blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
listlengths
1
1
author_id
stringlengths
1
132
c5af1b1c066c1a49573ef543d9894567d5909df2
9e482a31dd8c1661ad1953d7fbd24a532306f58c
/Plays/Play10/medium_batch_normalization.py
2d0166d6dce71a2e1ec99d39a56e366341b49c99
[]
no_license
margaridav27/feup-fpro
49a66f6643c83adb948ff110f522948f43508519
e805e08d0fdd273db272300e3e9676c585030f23
refs/heads/master
2023-01-23T01:16:11.534704
2020-11-25T10:48:00
2020-11-25T10:48:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,115
py
# -*- coding: utf-8 -*- """ Created on Wed Dec 4 10:14:35 2019 @author: Margarida Viera """ #solution using generator def batch_norm(alist, batch_size): while len(alist) > 0: batch = [] l = alist.copy() if len(alist) < batch_size: batch_size = len(alist) for i in range(batch_size): batch.append(l[i]) alist.remove(l[i]) from statistics import median med = median(batch) for n in range(len(batch)): batch[n] -= med yield batch #solution using normal function return def batch_norm(alist, batch_size): batches = [] while len(alist) > batch_size: batches.append(alist[:batch_size]) alist = alist[batch_size:] if len(alist) != 0: batches.append(alist) from statistics import median for batch in batches: med = median(batch) for n in range(len(batch)): batch[n] -= med return batches print(batch_norm([10, 1, -12, 5, 1, 3, 7, 3, 3], 5))
79800f0401cbb5ee3dfdafd55b2f0532cd565719
ab37cdd76b8d4da54ff1ce30b0fa2e3dfadd207f
/1001-1099/1008/1008.py
e2d869f2abde08e4f8eb119987332f9815576b5f
[]
no_license
hay86/timus
b163d94052d3dedd51c82f5c10874402f805c6e1
0d06073228c23538ca785938c862d2b5e08bda63
refs/heads/master
2023-03-08T06:34:28.707612
2021-02-20T14:38:48
2021-02-20T14:38:48
100,444,783
0
2
null
null
null
null
UTF-8
Python
false
false
1,553
py
import sys img = [[False for i in range(12)] for j in range(12)] def one(): for i in range(n): x, y = [int(j) for j in sys.stdin.readline().split()] img[x][y] = True if i == 0: x0, y0 = x, y v = [[False for i in range(12)] for j in range(12)] q = [(x0, y0)] v[x0][y0] = True print '%d %d' % (x0, y0) while len(q) > 0: x, y = q.pop(0) o = '' if img[x+1][y] and not v[x+1][y]: o += 'R' q.append((x+1, y)) v[x+1][y] = True if img[x][y+1] and not v[x][y+1]: o += 'T' q.append((x, y+1)) v[x][y+1] = True if img[x-1][y] and not v[x-1][y]: o += 'L' q.append((x-1, y)) v[x-1][y] = True if img[x][y-1] and not v[x][y-1]: o += 'B' q.append((x, y-1)) v[x][y-1] = True if len(q) == 0: print '.' else: print o+',' def two(): xn, yn = x0, y0 xm, ym = x0, y0 count = 1 q=[(x0, y0)] img[x0][y0] = True for line in sys.stdin: if '.' in line: break x, y = q.pop(0) if 'R' in line: q.append((x+1, y)) count += 1 img[x+1][y] = True xm = max(xm, x+1) if 'T' in line: q.append((x, y+1)) count += 1 img[x][y+1] = True ym = max(ym, y+1) if 'L' in line: q.append((x-1, y)) count += 1 img[x-1][y] = True xn = min(xn, x-1) if 'B' in line: q.append((x, y-1)) count += 1 img[x][y-1] = True yn = min(yn, y-1) print count for x in range(xn, xm+1): for y in range(yn, ym+1): if img[x][y]: print x, y line = sys.stdin.readline() if not ' ' in line: n = int(line) one() else: x0, y0 = [int(y) for y in line.split()] two()
81a081122381d85928f0ad8fb3aab7f699135e78
aca971629c16f16a4b0360669579d0751fd5da67
/src/indelPlot.py
f896ef722c39a732f5391609743e33d9627abe56
[ "MIT" ]
permissive
ngannguyen/referenceViz
43769ded8cb3c77445391e26233352a61ed72744
6990a00739a712ccd1371e996229882252fa8f91
refs/heads/master
2021-01-01T06:26:33.975514
2012-03-22T21:34:54
2012-03-22T21:34:54
1,750,339
1
0
null
null
null
null
UTF-8
Python
false
false
7,150
py
#!/usr/bin/env python """ Create Snp plots nknguyen at soe dot ucsc dot edu Jun 15 2011 """ import os, sys from optparse import OptionParser import xml.etree.ElementTree as ET #from numpy import * import libPlotting as libplot import matplotlib.pyplot as pyplot import matplotlib.pylab as pylab from matplotlib.ticker import * from matplotlib.font_manager import FontProperties class Sample(): def __init__( self, xmlnode ): self.name = xmlnode.attrib[ 'sampleName' ] self.refname = xmlnode.attrib[ 'referenceName' ] self.dels = float(xmlnode.attrib['totalDeletionPerAlignedBase']) self.ins = float(xmlnode.attrib['totalInsertionPerAlignedBase']) self.indel = float(xmlnode.attrib['totalInsertionAndDeletionPerAlignedBase']) #add cases where it's both insertion & deletion (indel) to insertion & deletion: self.dels += self.indel self.ins += self.indel def readfiles( options ): statsList = [] for f in options.files: samples = [] xmltree = ET.parse( f ) root = xmltree.getroot() for s in root.findall( 'statsForSample' ): name = s.attrib[ 'sampleName' ] if name != 'aggregate' and name != 'ROOT' and name != '' and name not in options.filteredSamples: samples.append( Sample( s ) ) statsList.append( samples ) return statsList def initOptions( parser ): parser.add_option( '--outdir', dest='outdir', default='.', help='Output directory' ) #parser.add_option( '--numOutliners', dest='numOutliners', type='int', default=0, help='Number of outliners' ) parser.add_option('--filteredSamples', dest='filteredSamples', help='Hyphen separated list of samples that were filtered out (not to include in the plot)') def checkOptions( args, options, parser ): if len( args ) < 2: parser.error( 'Please provide two snpStats xml files.\n' ) options.files = [] for f in args: if not os.path.exists(f): parser.error( 'File %s does not exist.\n' % f ) options.files.append( f ) if options.filteredSamples: options.filteredSamples = options.filteredSamples.split('-') else: options.filteredSamples = [] def setAxes(fig, range1, range2): axleft = 0.12 axright = 0.95 axwidth = axright - axleft axbottom = 0.15 axtop = 0.95 axheight = axtop - axbottom margin = 0.015 h1 = (axheight - margin)*(range1/(range1 + range2)) h2 = axheight - margin - h1 ax2 = fig.add_axes( [axleft, axbottom, axwidth, h2] ) ax = fig.add_axes( [axleft, axbottom + h2 + margin, axwidth, h1] ) return ax, ax2 def drawPlot( options, samples1, samples2, type ): #Sorted in decreasing order of errorPerSite in samples1 if type == 'insertion': samples1 = sorted( samples1, key=lambda s:s.ins, reverse=True ) else: samples1 = sorted( samples1, key=lambda s:s.dels, reverse=True ) if len( samples1 ) < 1: return #remove chimpSample: chimpSample = None for i, s in enumerate(samples1): if s.name == 'panTro3': chimpSample = samples1.pop(i) break refname1 = samples1[0].refname refname2 = samples2[0].refname y1data = [ s.ins for s in samples1 ] if type == 'deletion': y1data = [ s.dels for s in samples1 ] xticklabels = [ s.name for s in samples1 ] #indel of refname1 w.r.t itself (0) y1data.append(0) xticklabels.append(refname1) y2data = [] for name in xticklabels: if name == refname2:#indel of refname2 w.r.t itself (0) y2data.append(0) for s in samples2: if s.name == name: if type == 'insertion': y2data.append(s.ins) else: y2data.append(s.dels) break if len(xticklabels) != len(y2data): sys.stderr.write("Input file 1 and 2 do not have the same set of samples\n") sys.exit( 1 ) #add the average column: num = 1 y1avr = sum(y1data)/float(len(y1data) - 1) y1data.append(y1avr) xticklabels.append('average') y2avr = sum(y2data)/float(len(y2data) - 1) y2data.append(y2avr) print "%s Average: %s %f, %s %f" %(type, refname1, y1avr, refname2, y2avr) #Add chimp: samples1.append(chimpSample) if type == 'insertion': y1data.append( chimpSample.ins ) else: y1data.append( chimpSample.dels ) for s in samples2: if s.name == 'panTro3': if type == 'insertion': y2data.append(s.ins) else: y2data.append(s.dels) xticklabels.append("panTro3") minMajority = min( [min(y2data), min(y1data)] ) - 0.0001 maxMajority = max( [max(y2data), max(y1data)] ) + 0.0001 basename = os.path.basename(options.files[0]) options.out = os.path.join( options.outdir, '%s_%s' %( type, basename.lstrip('pathStats').lstrip('_').rstrip('.xml') ) ) fig, pdf = libplot.initImage( 11.2, 10.0, options ) #ax, ax2 = setAxes(fig, maxOutlier - minOutlier, maxMajority - minMajority) ax2 = fig.add_axes( [0.15, 0.15, 0.8, 0.8] ) l2 = ax2.plot( y2data, marker='.', markersize=14.0, linestyle='none', color="#E31A1C" ) l1 = ax2.plot( y1data, marker='.', markersize=14.0, linestyle='none', color="#1F78B4" ) #Legend fontP = FontProperties() fontP.set_size("x-small") legend = ax2.legend([l1, l2], [libplot.properName(refname1), libplot.properName(refname2)], 'upper right', numpoints=1, prop=fontP) legend._drawFrame = False ax2.set_ylim( minMajority, maxMajority ) ax2.set_xlim( -0.5, len(xticklabels) -0.5 ) ax2.spines['top'].set_visible(False) ax2.spines['right'].set_visible(False) ax2.xaxis.tick_bottom() ax2.yaxis.set_ticks_position( 'left' ) ax2.set_xticks( range( 0, len(xticklabels) ) ) properxticklabels = [ libplot.properName(l) for l in xticklabels ] ax2.set_xticklabels( properxticklabels ) for label in ax2.xaxis.get_ticklabels(): label.set_rotation( 90 ) ax2.yaxis.grid(b=True, color="#CCCCCC", linestyle='-', linewidth=0.005) ax2.xaxis.grid(b=True, color="#CCCCCC", linestyle='-', linewidth=0.005) ax2.set_xlabel( 'Samples' ) title = 'Deletions' #if type == 'insertion': if type == 'insertion': ax2.set_ylabel( 'Insertions per site' ) title = 'Insertions' else: ax2.set_ylabel( 'Deletions per site' ) ax2.set_title( title ) libplot.writeImage( fig, pdf, options ) def main(): usage = ('Usage: %prog [options] file1.xml file2.xml\n\n') parser = OptionParser( usage = usage ) initOptions( parser ) libplot.initOptions( parser ) options, args = parser.parse_args() checkOptions( args, options, parser ) libplot.checkOptions( options, parser ) statsList = readfiles( options ) drawPlot( options, statsList[0], statsList[1], 'insertion' ) drawPlot( options, statsList[0], statsList[1], 'deletion' ) if __name__ == "__main__": main()
d82ed1cfeb3e9cf9432826e65574bb198fceddb4
01dad4d1d2ffaf2fa070e99fe828d42f59a9f9d1
/src/pycrop2ml_ui/packages/SQ_Energy_Balance/src/openalea/Penman.py
ab023da150792ac8a482b0e9d2ed39cd94ea4ed8
[ "MIT", "BSD-3-Clause" ]
permissive
AgriculturalModelExchangeInitiative/Pycrop2ml_ui
5e210facf9689348bb57c16060967118b7c5f49a
3d5d2b87a74f0be306056b71808286922fef2945
refs/heads/master
2023-06-24T13:52:39.933728
2023-06-17T00:17:26
2023-06-17T00:17:26
193,912,881
0
4
MIT
2023-02-25T13:26:57
2019-06-26T13:44:34
Jupyter Notebook
UTF-8
Python
false
false
6,614
py
# coding: utf8 import numpy from math import * def model_penman(evapoTranspirationPriestlyTaylor = 449.367, hslope = 0.584, VPDair = 2.19, psychrometricConstant = 0.66, Alpha = 1.5, lambdaV = 2.454, rhoDensityAir = 1.225, specificHeatCapacityAir = 0.00101, conductance = 598.685): """ - Description: * Title: Penman Model * Author: Pierre Martre * Reference: Modelling energy balance in the wheat crop model SiriusQuality2: Evapotranspiration and canopy and soil temperature calculations * Institution: INRA/LEPSE Montpellier * Abstract: This method is used when wind and vapor pressure daily data are available - inputs: * name: evapoTranspirationPriestlyTaylor ** min : 0 ** default : 449.367 ** max : 10000 ** uri : http://www1.clermont.inra.fr/siriusquality/?page_id=547 ** variablecategory : rate ** datatype : DOUBLE ** inputtype : variable ** unit : g m-2 d-1 ** description : evapoTranspiration of Priestly Taylor * name: hslope ** min : 0 ** default : 0.584 ** max : 1000 ** uri : http://www1.clermont.inra.fr/siriusquality/?page_id=547 ** variablecategory : auxiliary ** datatype : DOUBLE ** inputtype : variable ** unit : hPa °C-1 ** description : the slope of saturated vapor pressure temperature curve at a given temperature * name: VPDair ** min : 0 ** default : 2.19 ** max : 1000 ** uri : http://www1.clermont.inra.fr/siriusquality/?page_id=547 ** variablecategory : auxiliary ** datatype : DOUBLE ** inputtype : variable ** unit : hPa ** description : vapour pressure density * name: psychrometricConstant ** parametercategory : constant ** min : 0 ** datatype : DOUBLE ** max : 1 ** uri : http://www1.clermont.inra.fr/siriusquality/?page_id=547 ** default : 0.66 ** inputtype : parameter ** unit : ** description : psychrometric constant * name: Alpha ** parametercategory : constant ** min : 0 ** datatype : DOUBLE ** max : 100 ** uri : http://www1.clermont.inra.fr/siriusquality/?page_id=547 ** default : 1.5 ** inputtype : parameter ** unit : ** description : Priestley-Taylor evapotranspiration proportionality constant * name: lambdaV ** parametercategory : constant ** min : 0 ** datatype : DOUBLE ** max : 10 ** uri : http://www1.clermont.inra.fr/siriusquality/?page_id=547 ** default : 2.454 ** inputtype : parameter ** unit : ** description : latent heat of vaporization of water * name: rhoDensityAir ** parametercategory : constant ** datatype : DOUBLE ** uri : http://www1.clermont.inra.fr/siriusquality/?page_id=547 ** default : 1.225 ** inputtype : parameter ** unit : ** description : Density of air * name: specificHeatCapacityAir ** parametercategory : constant ** min : 0 ** datatype : DOUBLE ** max : 1 ** uri : http://www1.clermont.inra.fr/siriusquality/?page_id=547 ** default : 0.00101 ** inputtype : parameter ** unit : ** description : Specific heat capacity of dry air * name: conductance ** min : 0 ** default : 598.685 ** max : 10000 ** uri : http://www1.clermont.inra.fr/siriusquality/?page_id=547 ** variablecategory : state ** datatype : DOUBLE ** inputtype : variable ** unit : m d-1 ** description : conductance - outputs: * name: evapoTranspirationPenman ** min : 0 ** variablecategory : rate ** max : 5000 ** uri : http://www1.clermont.inra.fr/siriusquality/?page_id=547 ** datatype : DOUBLE ** unit : g m-2 d-1 ** description : evapoTranspiration of Penman Monteith """ evapoTranspirationPenman = evapoTranspirationPriestlyTaylor / Alpha + (1000.0 * (rhoDensityAir * specificHeatCapacityAir * VPDair * conductance / (lambdaV * (hslope + psychrometricConstant)))) return evapoTranspirationPenman
07fd478a0c99e3470575c12f1bb74ad945580d0c
e9a083fb04bf9061a2c49871cfbec9b37ff8f71b
/docs/source/conf.py
c609679b4ac4c8100904a33ce92c16726bc46c12
[]
no_license
olaurino/rama
7f86223d66f42c639672da6b8979eacaf56b28ed
2c88ca2263ccbf6d0737fea0ac5dc0341d71c53a
refs/heads/master
2021-01-25T14:49:32.330753
2018-06-04T14:25:27
2018-06-04T14:25:27
123,731,355
0
2
null
2018-05-08T13:25:28
2018-03-03T21:05:53
Python
UTF-8
Python
false
false
5,608
py
# -*- coding: utf-8 -*- # # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/stable/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) from rama.utils import Singleton from sphinx.ext.autodoc import ClassDocumenter import sphinx_rtd_theme # -- Project information ----------------------------------------------------- project = 'Rama' copyright = '2018, Omar Laurino' author = 'Omar Laurino' # The short X.Y version version = '' # The full version, including alpha/beta/rc tags release = '0.1' # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.todo', 'sphinx.ext.coverage', 'sphinx.ext.viewcode', 'sphinx.ext.githubpages', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path . exclude_patterns = [] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # # html_theme = 'alabaster' html_theme = 'sphinx_rtd_theme' # html_theme_options = {} html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # html_sidebars = {} # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = 'Ramadoc' # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'Rama.tex', 'Rama Documentation', 'Omar Laurino', 'manual'), ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'rama', 'Rama Documentation', [author], 1) ] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'Rama', 'Rama Documentation', author, 'Rama', 'One line description of project.', 'Miscellaneous'), ] # -- Extension configuration ------------------------------------------------- # -- Options for todo extension ---------------------------------------------- # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = True class SingletonDocumenter(ClassDocumenter): objtype = 'Singleton' directivetype = 'class' @classmethod def can_document_member(cls, member, membername, isattr, parent): return isinstance(member, Singleton) def setup(app): app.add_autodocumenter(SingletonDocumenter)
2b64d7c87cb71a336307dcbab4db4d5d324b4e43
95f1541cac9e356b108fd4a7698dccd469f3996e
/backend/app/misc/tasks.py
1b2ff7d1a667b0fef02eb0b51a72ae62a22e53c2
[]
no_license
ramonsaraiva/multiplicae
f98c29e57cf53e358540fd590d55472311d9c382
29054abc83bad2309ab66698d7f3f3bbd683d570
refs/heads/master
2023-08-15T00:07:51.203417
2020-02-19T02:57:24
2020-02-19T02:57:24
238,992,039
2
1
null
2021-09-22T18:35:52
2020-02-07T18:00:24
JavaScript
UTF-8
Python
false
false
114
py
import dramatiq @dramatiq.actor( queue_name='default', max_retries=1, ) def healthcheck(): return 0
8ed992846cecdd828e575dfa6c66da38336b9797
acf7457d3a799cb9bff12686d2d616688bcd4b5b
/packages/python/plotly/plotly/validators/scatter/legendgrouptitle/font/_family.py
630d0965793bea6d3cb6b80383b246586092f423
[ "MIT" ]
permissive
plotly/plotly.py
f4f61639f08160f16195efc95b5901dc5a937346
975a704074f01c078e0fdfa32bdf17130bf89e69
refs/heads/master
2023-09-06T06:15:08.340035
2023-08-24T12:28:14
2023-08-24T12:28:14
14,579,099
14,751
2,989
MIT
2023-09-08T19:55:32
2013-11-21T05:53:08
Python
UTF-8
Python
false
false
554
py
import _plotly_utils.basevalidators class FamilyValidator(_plotly_utils.basevalidators.StringValidator): def __init__( self, plotly_name="family", parent_name="scatter.legendgrouptitle.font", **kwargs, ): super(FamilyValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "style"), no_blank=kwargs.pop("no_blank", True), strict=kwargs.pop("strict", True), **kwargs, )
12c48d5ff16675e2a8f6a2d902504de1ea724719
3540272eb4522c637fb293a924a6ad8d7b365718
/tribune/news/models.py
33b78f25b5e2b10758918424db9589c053a886ce
[]
no_license
nevooronni/tribune
b0e80a4613758690702fa88eb99f44f4e8e66a30
7218d3514277ce408128b4e8c66da5639cf7dec4
refs/heads/master
2021-08-14T16:55:46.280863
2017-11-16T08:41:18
2017-11-16T08:41:18
110,561,868
0
1
null
null
null
null
UTF-8
Python
false
false
2,167
py
from django.db import models#import models class configured to allow us to communicate with the db import datetime as dt class Editor(models.Model):#created editor class inherits from model class first_name = models.CharField(max_length = 30)#charfield is the sql equivalent to varchar a string field for small to large size strings last_name = models.CharField(max_length = 30) email = models.EmailField() phone_number = models.CharField(max_length = 10,blank = True) def save_editor(self): self.save() def delete_editor(self): self.delete() #def display_all(self): #self.objects.all() #this updates our models so we can easily read it in the shell def __str__(self):#string representation of our model return self.first_name class Meta: ordering = ['first_name'] class tags(models.Model): name = models.CharField(max_length = 30) def __str__(self): return self.name class Article(models.Model): title = models.CharField(max_length = 60) post = models.TextField()#textarea tag in html editor = models.ForeignKey(Editor)#foreign key column defines one to many relationship to editor tags = models.ManyToManyField(tags)#many to many relationship with the tags class pub_date = models.DateTimeField(auto_now_add=True)#timestamp to establish when the articles were published article_image = models.ImageField(upload_to = 'articles/')#image field takes upload_to argument defines where the image will be stored in the file system. #def save_article(self): #self.save() def __str__(self): return self.title @classmethod def todays_news(cls): today = dt.date.today()#module to get todays date news = cls.objects.filter(pub_date__date = today)#qeury db to filter articles by current date return news @classmethod def day_news(cls,date):#takes date object as an argument news = cls.objects.filter(pub_date__date = date) return news @classmethod def search_by_title(cls,search_term): news = cls.objects.filter(title__icontains=search_term)#will filter our model data using the __icontains filter will check if any word in the title field of our articles matches the search_term return news
902d047c818eadc130281316b90cfde772634bd0
6b1aaded6a6d7ad8133eb93f5570d087b9ecefc0
/57.py
a778a4be509d89c1f7027528296bead44d2f43f7
[]
no_license
huangyingw/Leetcode-Python
53a772e1ecf298c829c0f058faa54c420420b002
9513e215d40145a5f2f40095b459693c79c4b560
refs/heads/master
2021-07-16T10:10:02.457765
2020-07-01T05:35:21
2020-07-01T05:35:21
192,150,219
1
0
null
null
null
null
UTF-8
Python
false
false
813
py
# Definition for an interval. # class Interval: # def __init__(self, s=0, e=0): # self.start = s # self.end = e class Solution: def insert(self, intervals, newInterval): """ :type intervals: List[Interval] :type newInterval: Interval :rtype: List[Interval] """ res = [] i = 0 while i < len(intervals) and intervals[i].end < newInterval.start: res.append(intervals[i]) i += 1 while i < len(intervals) and intervals[i].start <= newInterval.end: newInterval.start = min(intervals[i].start, newInterval.start) newInterval.end = max(intervals[i].end, newInterval.end) i += 1 res.append(newInterval) res.extend(intervals[i:]) return res
50d9115c118e9ba2d5ebc6b7d58c98818ecd010c
bd4734d50501e145bc850426c8ed595d1be862fb
/7Kyu - Growth of a Populationdef nb_year-p0- percent- aug- p- count - 0 while-p0-p- p0 - p0 - p0-percent/7Kyu - Growth of a Population.py
1259b444757fdd602a08df17a598257ae2dcc7d2
[]
no_license
OrdinaryCoder00/CODE-WARS-PROBLEMS-SOLUTIONS
f61ff9e5268305519ffeed4964589289f4148cfd
5711114ddcc6a5f22f143d431b2b2e4e4e8ac9fb
refs/heads/master
2021-10-23T09:09:45.670850
2019-03-16T13:24:17
2019-03-16T13:24:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
154
py
def nb_year(p0, percent, aug, p): count = 0 while(p0<p): p0 = p0 + p0*(percent/100) + aug count = count + 1 return count
bfe91353f94b7324769a5908cb44a049673dd6e2
de24f83a5e3768a2638ebcf13cbe717e75740168
/moodledata/vpl_data/303/usersdata/287/85098/submittedfiles/testes.py
890ae53b050f276e8465ffbca31d1de6d83407c7
[]
no_license
rafaelperazzo/programacao-web
95643423a35c44613b0f64bed05bd34780fe2436
170dd5440afb9ee68a973f3de13a99aa4c735d79
refs/heads/master
2021-01-12T14:06:25.773146
2017-12-22T16:05:45
2017-12-22T16:05:45
69,566,344
0
0
null
null
null
null
UTF-8
Python
false
false
88
py
# -*- coding: utf-8 -*- from minha_bib import* print(multiplicacao(2,3))
57b906c83a2d61619b54bb2afe90bb43616f21ce
4111ca5a73a22174f189361bef654c3f91c3b7ed
/Lintcode/Ladder_47_BigData/128. Hash Function.py
6d7607ff24020011e66b6d9c8c4b6774644f2261
[ "MIT" ]
permissive
ctc316/algorithm-python
58b541b654509ecf4e9eb8deebfcbdf785699cc4
ac4580d55e05e93e407c6156c9bb801808027d60
refs/heads/master
2020-03-16T06:09:50.130146
2019-08-02T02:50:49
2019-08-02T02:50:49
132,548,222
0
0
null
null
null
null
UTF-8
Python
false
false
283
py
class Solution: """ @param key: A string you should hash @param HASH_SIZE: An integer @return: An integer """ def hashCode(self, key, HASH_SIZE): code = 0 for ch in key: code = (code * 33 + ord(ch)) % HASH_SIZE return code
3f7c1ecec5f580016a5068bd48f1de2040b2bf6b
0a801544da5ad2f1969348512f7def8fa9176c7d
/backend/simplicite_23801/urls.py
25d91cd59bdf8a1ad01544b6a94abcbe42abf6ab
[]
no_license
crowdbotics-apps/simplicite-23801
75477b76531c2c53992f74183e9e2e80aefd22e4
e6a6f569c61449e50988201cf58cc5203d23e039
refs/heads/master
2023-02-11T12:27:04.807579
2021-01-13T03:01:57
2021-01-13T03:01:57
329,176,579
0
0
null
null
null
null
UTF-8
Python
false
false
2,668
py
"""simplicite_23801 URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from allauth.account.views import confirm_email from rest_framework import permissions from drf_yasg.views import get_schema_view from drf_yasg import openapi urlpatterns = [ path("", include("home.urls")), path("accounts/", include("allauth.urls")), path("modules/", include("modules.urls")), path("api/v1/", include("home.api.v1.urls")), path("admin/", admin.site.urls), path("users/", include("users.urls", namespace="users")), path("rest-auth/", include("rest_auth.urls")), # Override email confirm to use allauth's HTML view instead of rest_auth's API view path("rest-auth/registration/account-confirm-email/<str:key>/", confirm_email), path("rest-auth/registration/", include("rest_auth.registration.urls")), path("api/v1/", include("task.api.v1.urls")), path("task/", include("task.urls")), path("api/v1/", include("task_profile.api.v1.urls")), path("task_profile/", include("task_profile.urls")), path("api/v1/", include("tasker_business.api.v1.urls")), path("tasker_business/", include("tasker_business.urls")), path("api/v1/", include("location.api.v1.urls")), path("location/", include("location.urls")), path("api/v1/", include("wallet.api.v1.urls")), path("wallet/", include("wallet.urls")), path("api/v1/", include("task_category.api.v1.urls")), path("task_category/", include("task_category.urls")), path("home/", include("home.urls")), ] admin.site.site_header = "Simplicite" admin.site.site_title = "Simplicite Admin Portal" admin.site.index_title = "Simplicite Admin" # swagger api_info = openapi.Info( title="Simplicite API", default_version="v1", description="API documentation for Simplicite App", ) schema_view = get_schema_view( api_info, public=True, permission_classes=(permissions.IsAuthenticated,), ) urlpatterns += [ path("api-docs/", schema_view.with_ui("swagger", cache_timeout=0), name="api_docs") ]
c826ef5b94146713cbfb40ea8d2456a72ea50850
11137bde91389c04a95df6f6fdaf64f7f49f5f80
/introduction_MIT/16_2图表会骗人.py
582608abe22748eee617a7fb4bb7c90df1af46fb
[]
no_license
starschen/learning
cf3c5a76c867567bce73e9cacb2cf0979ba053d9
34decb8f9990117a5f40b8db6dba076a7f115671
refs/heads/master
2020-04-06T07:02:56.444233
2016-08-24T08:11:49
2016-08-24T08:11:49
39,417,895
0
0
null
null
null
null
UTF-8
Python
false
false
1,191
py
#encoding:utf8 #16_2图表会骗人.py #绘制房价 import pylab def plotHousing(impression): '''假设impression是一个字符串,必须是‘flat’, ‘volatile’或者是‘fair’ 生成房价随时间变化的图表''' f=open('midWestHousingPrices.txt','r') #文件的每一行是年季度价格 #数据来自美国中部区域 labels,prices=([],[]) for line in f: year,quarter,price=line.split(' ') label=year[2:4]+'\n Q'+quarter[1] labels.append(label) prices.append(float(price)/1000) quarters=pylab.arange(len(labels)) width=0.8 if impression=='flat': pylab.semilogy() pylab.bar(quarters,prices,width) pylab.xticks(quarters+width/2.0,labels) pylab.title('Housing Prices in U.S. Midwest') pylab.xlabel('Quarter') pylab.ylabel('Average Price($1,000\'s)') if impression=='flat': pylab.ylim(10,10**3) elif impression =='volatile': pylab.ylim(180,220) elif impression=='fair': pylab.ylim(150,250) else: raise ValueError plotHousing('flat') pylab.figure() plotHousing('volatile') pylab.figure() plotHousing('fair') pylab.show()
1b2a6c3181548e466eacfa3b040cbc883242e73b
35f1a21affd266e0069bfc5a1c83218847f13802
/pastie-5073437.py
9cc5c027ce00562a66e8461c02cfa8768964c92c
[]
no_license
KarenWest/pythonClassProjects
ff1e1116788174a2affaa96bfcb0e97df3ee92da
5aa496a71d36ffb9892ee6e377bd9f5d0d8e03a0
refs/heads/master
2016-09-16T15:20:26.882688
2014-02-21T20:07:57
2014-02-21T20:07:57
17,055,355
1
1
null
null
null
null
UTF-8
Python
false
false
772
py
#balance = 5000 #annualInterestRate = 0.18 #monthlyPaymentRate = 0.02 months = range(1, 13) # 1, 2, ... , 11, 12 owe = balance # It made sense to me to call this total amount oweing totalPaid = 0 for month in months: minPay = owe * monthlyPaymentRate # calculate our minimum payment interest = (owe - minPay) * (annualInterestRate / 12) # same for interest owe = owe - minPay + interest # calculate our new balance totalPaid += minPay # Sum up how much we've paid so far print('Month: %d' % month) # %d will be replaced by month print('Minimum monthly payment: %.2f' % minPay) # %.2f replaced by minPay, with 2 decimal places print('Remaining balance: %.2f' % owe) print('Total paid %.2f' % totalPaid) print('Remaining balance: %.2f' % owe)
4d909ba4892e6c9c564466ba0ea7fe903b3857ab
8bc7ba8eb10e30b38f2bcf00971bfe540c9d26b7
/paxes_cinder/k2aclient/v1/virtualswitch_manager.py
6d956eb5bdf9ebcdab6aba2f1378e4c6151dbbdc
[ "Apache-2.0" ]
permissive
windskyer/k_cinder
f8f003b2d1f9ca55c423ea0356f35a97b5294f69
000ee539ee4842a158071d26ee99d12c7c0a87da
refs/heads/master
2021-01-10T02:19:51.072078
2015-12-08T15:24:33
2015-12-08T15:24:33
47,629,931
0
0
null
null
null
null
UTF-8
Python
false
false
1,938
py
# # # ================================================================= # ================================================================= """VirtualSwitch interface.""" from paxes_cinder.k2aclient import base from paxes_cinder.k2aclient.v1 import k2uom class VirtualSwitchManager(base.ManagerWithFind): """Manage :class:`ClientNetworkAdapter` resources.""" resource_class = k2uom.VirtualSwitch def new(self): return self.resource_class(self, None) def list(self, managedsystem, xa=None): """Get a list of all VirtualSwitch for a particular ManagedSystem accessed through a particular hmc. :rtype: list of :class:`ClientNetworkAdapter`. """ return self._list("/rest/api/uom/ManagedSystem/%s/VirtualSwitch" % managedsystem, xa=xa) def get(self, managedsystem, virtualswitch, xa=None): """Given managedsystem, get a specific VirtualSwitch. :param virtualswitch: The ID of the :class:`VirtualSwitch`. :rtype: :class:`VirtualSwitch` """ return self._get("/rest/api/uom/ManagedSystem/%s/VirtualSwitch/%s" % (managedsystem, virtualswitch,), xa=xa) def delete(self, managedsystem, virtualswitch, xa=None): """Delete the specified instance """ return self._delete("uom", managedsystem, child=virtualswitch, xa=xa) def deletebyid(self, managedsystem_id, virtualswitch_id, xa=None): """Delete the specified instance """ return self._deletebyid("uom", "ManagedSystem", managedsystem_id, child_type=k2uom.VirtualSwitch, child_id=virtualswitch_id, xa=xa)
[ "leidong@localhost" ]
leidong@localhost
e463337960661352eec76273356b1323176686ca
04ae1836b9bc9d73d244f91b8f7fbf1bbc58ff29
/170/Solution.py
1ece9965f93617191e3d6e484aeefd64c54f0c67
[]
no_license
zhangruochi/leetcode
6f739fde222c298bae1c68236d980bd29c33b1c6
cefa2f08667de4d2973274de3ff29a31a7d25eda
refs/heads/master
2022-07-16T23:40:20.458105
2022-06-02T18:25:35
2022-06-02T18:25:35
78,989,941
14
6
null
null
null
null
UTF-8
Python
false
false
2,272
py
""" Design and implement a TwoSum class. It should support the following operations: add and find. add - Add the number to an internal data structure. find - Find if there exists any pair of numbers which sum is equal to the value. Example 1: add(1); add(3); add(5); find(4) -> true find(7) -> false Example 2: add(3); add(1); add(2); find(3) -> true find(6) -> false """ from collections import defaultdict class TwoSum: def __init__(self): """ Initialize your data structure here. """ self.count = 0 self.numbers = defaultdict(list) def add(self, number): """ Add the number to an internal data structure.. :type number: int :rtype: void """ self.numbers[number].append(self.count) self.count += 1 def find(self, value): """ Find if there exists any pair of numbers which sum is equal to the value. :type value: int :rtype: bool """ for num, indexs in self.numbers.items(): tmp = value - num if tmp in self.numbers: if tmp == num and len(indexs) > 1: return True if tmp != num: return True return False class TwoSum(object): def __init__(self): """ Initialize your data structure here. """ self.nums = {} def add(self, number): """ Add the number to an internal data structure.. :type number: int :rtype: None """ if number not in self.nums: self.nums[number] = 1 else: self.nums[number] += 1 def find(self, value): """ Find if there exists any pair of numbers which sum is equal to the value. :type value: int :rtype: bool """ for key in self.nums: second = value - key if ((key != second) and second in self.nums) or (key == second and self.nums[key] > 1): return True return False # Your TwoSum object will be instantiated and called as such: # obj = TwoSum() # obj.add(number) # param_2 = obj.find(value)
51bacc265849e99d5638fe2aa84fb25204c57781
a0dda8be5892a390836e19bf04ea1d098e92cf58
/叶常春视频例题/chap05/5-2-9-生词清单.py
6c9697103cde9015e7e96499929c29627c18643d
[]
no_license
wmm98/homework1
d9eb67c7491affd8c7e77458ceadaf0357ea5e6b
cd1f7f78e8dbd03ad72c7a0fdc4a8dc8404f5fe2
refs/heads/master
2020-04-14T19:22:21.733111
2019-01-08T14:09:58
2019-01-08T14:09:58
164,055,018
1
0
null
null
null
null
UTF-8
Python
false
false
307
py
# 例5-2-9 生词清单 new_words = [] for i in range(1, 101): word = input("输入生词:") if word == "*": break # break语句的作用是跳出循环,执行循环后面的语句。 if word not in new_words: new_words.append(word) print("生词清单:", new_words)
d4e630393d97b23b24b61c540310af9eced66716
4d4fcde3efaa334f7aa56beabd2aa26fbcc43650
/server/src/uds/core/managers/userservice/comms.py
e2b06381d46b8a78ab640c8bf0c609b7fff00dda
[]
no_license
xezpeleta/openuds
a8b11cb34eb0ef7bb2da80f67586a81b2de229ef
840a7a02bd7c9894e8863a8a50874cdfdbf30fcd
refs/heads/master
2023-08-21T17:55:48.914631
2021-10-06T10:39:06
2021-10-06T10:39:06
414,489,331
1
0
null
null
null
null
UTF-8
Python
false
false
7,264
py
# -*- coding: utf-8 -*- # # Copyright (c) 2019-2021 Virtual Cable S.L.U. # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither the name of Virtual Cable S.L.U. nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ .. moduleauthor:: Adolfo Gómez, dkmaster at dkmon dot com """ import os import json import base64 import tempfile import logging import typing import requests if typing.TYPE_CHECKING: from uds.models import UserService logger = logging.getLogger(__name__) TIMEOUT = 2 class NoActorComms(Exception): pass class OldActorVersion(NoActorComms): pass def _requestActor( userService: 'UserService', method: str, data: typing.Optional[typing.MutableMapping[str, typing.Any]] = None, minVersion: typing.Optional[str] = None, ) -> typing.Any: """ Makes a request to actor using "method" if data is None, request is done using GET, else POST if no communications url is provided or no min version, raises a "NoActorComms" exception (or OldActorVersion, derived from NoActorComms) Returns request response value interpreted as json """ url = userService.getCommsUrl() if not url: # logger.warning('No notification is made because agent does not supports notifications: %s', userService.friendly_name) raise NoActorComms( 'No notification urls for {}'.format(userService.friendly_name) ) minVersion = minVersion or '2.0.0' version = userService.getProperty('actor_version') or '0.0.0' if '-' in version or version < minVersion: logger.warning( 'Pool %s has old actors (%s)', userService.deployed_service.name, version ) raise OldActorVersion( 'Old actor version {} for {}'.format(version, userService.friendly_name) ) url += '/' + method proxy = userService.deployed_service.proxy try: if proxy: r = proxy.doProxyRequest(url=url, data=data, timeout=TIMEOUT) else: verify: typing.Union[bool, str] cert = userService.getProperty('cert') # cert = '' # Untils more tests, keep as previous.... TODO: Fix this when fully tested if cert: # Generate temp file, and delete it after verify = tempfile.mktemp('udscrt') with open(verify, 'wb') as f: f.write(cert.encode()) # Save cert else: verify = False if data is None: r = requests.get(url, verify=verify, timeout=TIMEOUT) else: r = requests.post( url, data=json.dumps(data), headers={'content-type': 'application/json'}, verify=verify, timeout=TIMEOUT, ) if verify: try: os.remove(typing.cast(str, verify)) except Exception: logger.exception('removing verify') js = r.json() if version >= '3.0.0': js = js['result'] logger.debug('Requested %s to actor. Url=%s', method, url) except Exception as e: logger.warning( 'Request %s failed: %s. Check connection on destination machine: %s', method, e, url, ) js = None return js def notifyPreconnect(userService: 'UserService', userName: str, protocol: str) -> None: """ Notifies a preconnect to an user service """ ip, hostname = userService.getConnectionSource() try: _requestActor( userService, 'preConnect', {'user': userName, 'protocol': protocol, 'ip': ip, 'hostname': hostname}, ) except NoActorComms: pass # If no preconnect, warning will appear on UDS log def checkUuid(userService: 'UserService') -> bool: """ Checks if the uuid of the service is the same of our known uuid on DB """ try: uuid = _requestActor(userService, 'uuid') if ( uuid and uuid != userService.uuid ): # Empty UUID means "no check this, fixed pool machine" logger.info( 'Machine %s do not have expected uuid %s, instead has %s', userService.friendly_name, userService.uuid, uuid, ) return False except NoActorComms: pass return True # Actor does not supports checking def requestScreenshot(userService: 'UserService') -> bytes: """ Returns an screenshot in PNG format (bytes) or empty png if not supported """ emptyPng = 'iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVR42mP8z8BQDwAEhQGAhKmMIQAAAABJRU5ErkJggg==' try: png = _requestActor( userService, 'screenshot', minVersion='3.0.0' ) # First valid version with screenshot is 3.0 except NoActorComms: png = None return base64.b64decode(png or emptyPng) def sendScript(userService: 'UserService', script: str, forUser: bool = False) -> None: """ If allowed, send script to user service """ try: data: typing.MutableMapping[str, typing.Any] = {'script': script} if forUser: data['user'] = forUser _requestActor(userService, 'script', data=data) except NoActorComms: pass def requestLogoff(userService: 'UserService') -> None: """ Ask client to logoff user """ try: _requestActor(userService, 'logout', data={}) except NoActorComms: pass def sendMessage(userService: 'UserService', message: str) -> None: """ Sends an screen message to client """ try: _requestActor(userService, 'message', data={'message': message}) except NoActorComms: pass
c886c20cf7de550debdfb0a88d9edcbafb45a992
0726db2d56b29f02a884885718deeddbf86df628
/lienp/visualize.py
af217e55f8ec1524e381eb022bcd47bbb2f01101
[]
no_license
makora9143/EquivCNP
515dfd95557d8d3a21d3fc0f295ce885a9deb913
a78dea12ab672e796c86427823c9f1b2fdd8df8d
refs/heads/master
2023-03-17T04:34:26.320055
2021-03-05T18:02:18
2021-03-05T18:02:18
254,292,834
5
0
null
null
null
null
UTF-8
Python
false
false
4,239
py
import io import PIL.Image import matplotlib.pyplot as plt import torch from torchvision.transforms import ToTensor, ToPILImage from torchvision.utils import make_grid def mnist_plot_function(target_x, target_y, context_x, context_y): img = torch.zeros((28, 28, 3)) img[:, :, 2] = torch.ones((28, 28)) idx = (context_x + 14).clamp(0, 27).long() img[idx[:, 0], idx[:, 1]] = context_y print(f'num context:{context_x.shape[0]}') plt.figure(figsize=(8, 4)) plt.subplot(121) plt.imshow(img.numpy()) plt.gray() plt.subplot(122) plt.imshow(target_y.reshape(28, 28).numpy()) plt.show() def plot_and_save_image(ctxs, tgts, preds, epoch=None): ctx_img = [] tgt_img = [] pred_img = [] for ctx, tgt, tgt_y_dist in zip(ctxs, tgts, preds): ctx_coords, ctx_values = ctx tgt_coords, tgt_values = tgt img = torch.zeros((28, 28, 3)) img[:, :, 2] = torch.ones((28, 28)) idx = (ctx_coords[0] + 14).clamp(0, 27).long() img[idx[:, 0], idx[:, 1]] = ctx_values[0] ctx_img.append(img.unsqueeze(0)) tgt_img.append(tgt_values.reshape(1, 1, 28, 28).repeat(1, 3, 1, 1)) pred_img.append(tgt_y_dist.mean.reshape(1, 1, 28, 28).repeat(1, 3, 1, 1)) ctx_img = torch.cat(ctx_img, 0).permute(0, 3, 1, 2).unsqueeze(1).to(torch.device('cpu')) tgt_img = torch.cat(tgt_img, 0).unsqueeze(1).to(torch.device('cpu')) pred_img = torch.cat(pred_img, 0).unsqueeze(1).to(torch.device('cpu')) img = torch.cat([ctx_img, tgt_img, pred_img], 1).reshape(-1, 3, 28, 28) img = make_grid(img, nrow=6).permute(1, 2, 0).clamp(0, 1) plt.imsave("epoch_{}.png".format(epoch if epoch is not None else "test"), img.numpy()) def plot_and_save_image2(ctxs, tgts, preds, img_shape, epoch=None): ctx_img = [] tgt_img = [] pred_img = [] C, W, H = img_shape for ctx_mask, tgt, tgt_y_dist in zip(ctxs, tgts, preds): img = torch.zeros((W, H, 3)) img[:, :, 2] = torch.ones((W, H)) img[ctx_mask[0, 0] == 1] = tgt[0, 0][ctx_mask[0, 0] == 1].unsqueeze(-1) ctx_img.append(img) tgt_img.append(tgt.repeat(1, 3//C, 1, 1)) pred_img.append(tgt_y_dist.mean.reshape(1, W, H, C).repeat(1, 1, 1, 3//C)) ctx_img = torch.stack(ctx_img, 0).permute(0, 3, 1, 2).unsqueeze(1).to(torch.device('cpu')) tgt_img = torch.cat(tgt_img, 0).unsqueeze(1).to(torch.device('cpu')) pred_img = torch.cat(pred_img, 0).unsqueeze(1).to(torch.device('cpu')).permute(0, 1, 4, 2, 3) img = torch.cat([ctx_img, tgt_img, pred_img], 1).reshape(-1, 3, W, H) img = make_grid(img, nrow=6).permute(1, 2, 0).clamp(0, 1) plt.imsave("epoch_{}.png".format(epoch if epoch is not None else "test"), img.numpy()) def plot_and_save_graph(ctxs, tgts, preds, gp_preds, epoch=None): graphs = [] for ctx, tgt, tgt_y_dist, gp_dist in zip(ctxs, tgts, preds, gp_preds): ctx_coords, ctx_values = ctx tgt_coords, tgt_values = tgt mean = tgt_y_dist.mean.cpu() lower, upper = tgt_y_dist.confidence_region() gp_mean = gp_dist.mean.cpu() gp_lower, gp_upper = gp_dist.confidence_region() plt.plot(tgt_coords.reshape(-1).cpu(), gp_mean.detach().cpu().reshape(-1), color='green') plt.fill_between(tgt_coords.cpu().reshape(-1), gp_lower.detach().cpu().reshape(-1), gp_upper.detach().cpu().reshape(-1), alpha=0.2, color='green') plt.plot(tgt_coords.reshape(-1).cpu(), mean.detach().cpu().reshape(-1), color='blue') plt.fill_between(tgt_coords.cpu().reshape(-1), lower.detach().cpu().reshape(-1), upper.detach().cpu().reshape(-1), alpha=0.2, color='blue') plt.plot(tgt_coords.reshape(-1).cpu(), tgt_values.reshape(-1), '--', color='gray') plt.plot(ctx_coords.reshape(-1).cpu(), ctx_values.reshape(-1).cpu(), 'o', color='black') buf = io.BytesIO() plt.savefig(buf, format='png') buf.seek(0) plt.clf() plt.close() img = PIL.Image.open(buf) img = ToTensor()(img) buf.close() graphs.append(img) img = ToPILImage()(make_grid(torch.stack(graphs, 0), nrow=2)) img.save("epoch_{}.png".format(epoch if epoch is not None else "test"))
d019acbd04f6f92c44b1c6b5ef4f6c1d988e6d74
c50c22c8f814c8d9b697337891904aa0be0edf56
/shortest_string.py
b26e0a4d78a888e7c2d4a6252bf9b0d4e510728a
[]
no_license
mhiloca/Codewars
a6dc6e8ea5e5c1e97fb4a3d01a059b3120b556b7
3155e4b20fbd96c8e7fbe6564014a136d095c079
refs/heads/master
2020-07-11T12:41:19.997254
2019-11-01T12:44:38
2019-11-01T12:44:38
204,541,593
0
0
null
null
null
null
UTF-8
Python
false
false
222
py
""" Simple, given a string of words, return the length of the shortest word(s). String will never be empty and you do not need to account for different data types. """ def find_short(s): return min(len(x) for x in s)
c5d4d2f46c24a51bf6824c2c8735e80bc1f67f80
3f4464c932403615c1fbbaf82eaec096426b1ef5
/StartOutPy4/CH6 Files and Exceptions/write_sales.py
ecb7c7a8611babac6e9db4c42a7bbdc92ed31f8e
[]
no_license
arcstarusa/prime
99af6e3fed275982bf11ada7bf1297294d527e91
5f1102aa7b6eaba18f97eb388525d48ab4cac563
refs/heads/master
2020-03-22T14:07:08.079963
2019-05-09T11:45:21
2019-05-09T11:45:21
140,154,408
0
0
null
null
null
null
UTF-8
Python
false
false
740
py
# This program prompts the user for sales amounts # and writes those amounts to the sales.txt file. 6-8 def main(): # Get the numbers of days. num_days = int(input('For how many days do ' + 'you have sales? ')) # Open a nuew file named sales.txt. sales_file = open('sales.txt', 'w') # Get the amount of sales for each day and write # it to the file. for count in range (1, num_days + 1): # Get the sales for a day. sales = float(input('Enter the sales for day #' + str(count) + ': ')) # Write the sales amount to the file. sales_file.write(str(sales) + '\n') # Close the file. sales_file.close() print('Data written to sales.txt') # Call the main function. main()
ee3ca22e9c0f5e05bbf59b552966f070d8a674d9
8613ec7f381a6683ae24b54fb2fb2ac24556ad0b
/20~29/ABC021/honest.py
9c7f3d43c9ab13670129a435bb52b6b7b42038ab
[]
no_license
Forest-Y/AtCoder
787aa3c7dc4d999a71661465349428ba60eb2f16
f97209da3743026920fb4a89fc0e4d42b3d5e277
refs/heads/master
2023-08-25T13:31:46.062197
2021-10-29T12:54:24
2021-10-29T12:54:24
301,642,072
0
0
null
null
null
null
UTF-8
Python
false
false
296
py
n = int(input()) a, b = map(int, input().split()) m = int(input()) x, y = [0] * m, [0] * m data = [[] for _ in range(n)] for i in range(m): x, y = map(int, input().split()) data[x - 1].append(y - 1) data[y - 1].append(x - 1) dist = [[-1] * n for i in range(n)] dist[a - 1][b - 1] = 0
4bbad83e050e46e0bd882f7147d3faa597ef6614
26d6c34df00a229dc85ad7326de6cb5672be7acc
/msgraph-cli-extensions/beta/files_beta/setup.py
917c1b376b39507335d14d388323f62f011a8a2c
[ "MIT" ]
permissive
BrianTJackett/msgraph-cli
87f92471f68f85e44872939d876b9ff5f0ae6b2c
78a4b1c73a23b85c070fed2fbca93758733f620e
refs/heads/main
2023-06-23T21:31:53.306655
2021-07-09T07:58:56
2021-07-09T07:58:56
386,993,555
0
0
NOASSERTION
2021-07-17T16:56:05
2021-07-17T16:56:05
null
UTF-8
Python
false
false
1,858
py
#!/usr/bin/env python # -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- from codecs import open from setuptools import setup, find_packages # HISTORY.rst entry. VERSION = '0.1.0' try: from azext_files_beta.manual.version import VERSION except ImportError: pass # The full list of classifiers is available at # https://pypi.python.org/pypi?%3Aaction=list_classifiers CLASSIFIERS = [ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Intended Audience :: System Administrators', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'License :: OSI Approved :: MIT License', ] DEPENDENCIES = [] try: from azext_files_beta.manual.dependency import DEPENDENCIES except ImportError: pass with open('README.md', 'r', encoding='utf-8') as f: README = f.read() with open('HISTORY.rst', 'r', encoding='utf-8') as f: HISTORY = f.read() setup( name='files_beta', version=VERSION, description='Microsoft Azure Command-Line Tools Files Extension', author='Microsoft Corporation', author_email='[email protected]', url='https://github.com/Azure/azure-cli-extensions/tree/master/files_beta', long_description=README + '\n\n' + HISTORY, license='MIT', classifiers=CLASSIFIERS, packages=find_packages(), install_requires=DEPENDENCIES, package_data={'azext_files_beta': ['azext_metadata.json']}, )
d005e74749c88692012dd32e899d20852ffbc130
c223e858c9ebf1b734221e4db4b3d594993a5536
/thespian/system/timing.py
ec5f22afa79083a0f4d2f9c23f08117403194959
[ "MIT" ]
permissive
jfasenfest/Thespian
17f9738aff648328a40f94d3225427d82fe27e39
5979a2c9791b774fb620253bb62253c95cf7d4b5
refs/heads/master
2020-12-26T00:27:09.446001
2016-11-28T21:48:20
2016-11-28T21:48:20
48,067,029
0
0
null
2016-11-21T23:17:52
2015-12-15T20:24:12
Python
UTF-8
Python
false
false
6,566
py
from datetime import datetime, timedelta ### ### Time Management ### def timePeriodSeconds(basis, other=None): if isinstance(basis, datetime): if isinstance(other, datetime): return timePeriodSeconds(other - basis) if isinstance(basis, timedelta): try: return basis.total_seconds() except AttributeError: # Must be Python 2.6... which doesn't have total_seconds yet return (basis.days * 24.0 * 60 * 60) + basis.seconds + (basis.microseconds / 1000.0 / 1000) raise TypeError('Cannot determine time from a %s argument'%str(type(basis))) def toTimeDeltaOrNone(timespec): if timespec is None: return None if isinstance(timespec, timedelta): return timespec if isinstance(timespec, int): return timedelta(seconds=timespec) if isinstance(timespec, float): return timedelta(seconds=int(timespec), microseconds = int((timespec - int(timespec)) * 1000 * 1000)) raise TypeError('Unknown type for timespec: %s'%type(timespec)) class ExpiryTime(object): def __init__(self, duration): self._time_to_quit = None if duration is None else (datetime.now() + duration) def expired(self): return False if self._time_to_quit is None else (datetime.now() >= self._time_to_quit) def remaining(self, forever=None): return forever if self._time_to_quit is None else \ (timedelta(seconds=0) if datetime.now() > self._time_to_quit else \ (self._time_to_quit - datetime.now())) def remainingSeconds(self, forever=None): return forever if self._time_to_quit is None else \ (0 if datetime.now() > self._time_to_quit else \ timePeriodSeconds(self._time_to_quit - datetime.now())) def __str__(self): if self._time_to_quit is None: return 'Forever' if self.expired(): return 'Expired_for_%s'%(datetime.now() - self._time_to_quit) return 'Expires_in_' + str(self.remaining()) def __eq__(self, o): if isinstance(o, timedelta): o = ExpiryTime(o) if self._time_to_quit == o._time_to_quit: return True if self._time_to_quit == None or o._time_to_quit == None: return False if self.expired() and o.expired(): return True return abs(self._time_to_quit - o._time_to_quit) < timedelta(microseconds=1) def __lt__(self, o): try: if self._time_to_quit is None and o._time_to_quit is None: return False except Exception: pass if self._time_to_quit is None: return False if isinstance(o, timedelta): o = ExpiryTime(o) if o._time_to_quit is None: return True return self._time_to_quit < o._time_to_quit def __gt__(self, o): try: if self._time_to_quit is None and o._time_to_quit is None: return False except Exception: pass return not self.__lt__(o) def __le__(self, o): return self.__eq__(o) or self.__lt__(o) def __ge__(self, o): return self.__eq__(o) or self.__gt__(o) def __ne__(self, o): return not self.__eq__(o) def __bool__(self): return self.expired() def __nonzero__(self): return self.expired() class ExpirationTimer(object): """Keeps track of a duration relative to an original time and indicates whether that duration has expired or how much time is left before it expires. As an optimization, this object will not call datetime.now() itself and must be updated via the `update_time_now()` method to accurately measure elapsed time. May also be initialized with a duration of None, indicating that it should never timeout and that `remaining()` should return the forever value (defaulting to None). """ def __init__(self, duration, timenow=None): self._time_now = timenow or datetime.now() self._time_to_quit = None if duration is None else (self._time_now + duration) def update_time_now(self, timenow): "Call this to update the elapsed time." self._time_now = timenow def expired(self): "Returns true if the indicated duration has passed since this was created." return False if self._time_to_quit is None else (self._time_now >= self._time_to_quit) def remaining(self, forever=None): """Returns a timedelta of remaining time until expiration, or 0 if the duration has already expired. Returns forever if no timeout.""" return forever if self._time_to_quit is None else \ (timedelta(seconds=0) if self._time_now > self._time_to_quit else \ (self._time_to_quit - self._time_now)) def remainingSeconds(self, forever=None): """Similar to `remaining()`, but returns an floating point value of the number of remaining seconds instead of returning a timedelta object. """ return forever if self._time_to_quit is None else \ (0 if self._time_now > self._time_to_quit else \ timePeriodSeconds(self._time_to_quit - self._time_now)) def __str__(self): if self._time_to_quit is None: return 'Forever' if self.expired(): return 'Expired_for_%s'%(self._time_now - self._time_to_quit) return 'Expires_in_' + str(self.remaining()) def __eq__(self, o): if isinstance(o, timedelta): o = ExpiryTime(o) if self._time_to_quit == o._time_to_quit: return True if self._time_to_quit == None or o._time_to_quit == None: return False if self.expired() and o.expired(): return True return abs(self._time_to_quit - o._time_to_quit) < timedelta(microseconds=1) def __lt__(self, o): try: if self._time_to_quit is None and o._time_to_quit is None: return False except Exception: pass if self._time_to_quit is None: return False if isinstance(o, timedelta): o = ExpiryTime(o) if o._time_to_quit is None: return True return self._time_to_quit < o._time_to_quit def __gt__(self, o): try: if self._time_to_quit is None and o._time_to_quit is None: return False except Exception: pass return not self.__lt__(o) def __le__(self, o): return self.__eq__(o) or self.__lt__(o) def __ge__(self, o): return self.__eq__(o) or self.__gt__(o) def __ne__(self, o): return not self.__eq__(o) def __bool__(self): return self.expired() def __nonzero__(self): return self.expired()
62604aec9fec8d853af4fd5bdc81a077ae397e7c
4e567fc53288f53cdcfa37c0f5490a29cf4bc0cd
/projects-inventory/inventory/inventorya.py
dc89e6b234d8d28aaf3a41b5b98a5039f3ac59d3
[]
no_license
sidarmawan/ansible_training
3e4bba3bde4557a23c92735314f09328319463c9
77d3acb3430143458de07ca2b8257f3a2637f59b
refs/heads/master
2022-04-08T06:01:31.043044
2020-01-16T09:56:41
2020-01-16T09:56:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
103
py
htttps://materials.example.com/labs/projects-inventory/inventorya.py: Unsupported scheme ‘htttps’.
65a4c9be5fe8054649cd3ece5dbe367bc18a3e9e
2dc17d12ff6ea9794177c81aa4f385e4e09a4aa5
/archive/55JumpGame.py
f503b433be7298c6acd75a571e1e0b2c43dd3322
[]
no_license
doraemon1293/Leetcode
924b19f840085a80a9e8c0092d340b69aba7a764
48ba21799f63225c104f649c3871444a29ab978a
refs/heads/master
2022-10-01T16:20:07.588092
2022-09-08T02:44:56
2022-09-08T02:44:56
122,086,222
0
0
null
null
null
null
WINDOWS-1252
Python
false
false
398
py
# coding=utf-8 ''' Created on 2017�3�7� @author: Administrator ''' class Solution(object): def canJump(self, nums): """ :type nums: List[int] :rtype: bool """ mini_true = len(nums) - 1 for i in xrange(len(nums) - 1, -1, -1): if nums[i] >= (mini_true - i): mini_true = i return mini_true == 0
db7d00585385b6589b6b11d0e3b16814d349cc17
a61ebd1507eeaa334aff44800b022ef0a258752a
/Code/CodeChef/remainder.py
37c511c002d48cc5390d47f937a2ec559c35e257
[ "MIT" ]
permissive
Jimut123/competitive_programming
14ce0ab65414e6086763519f95487cddc91205a9
b4cdebaceee719c1a256921829ebafda11c515f5
refs/heads/master
2023-03-05T15:42:57.194176
2022-04-08T08:53:26
2022-04-08T08:53:26
156,541,142
1
0
null
2019-05-29T17:10:28
2018-11-07T12:09:55
C++
UTF-8
Python
false
false
152
py
#[email protected] t = int(input()) l = [] for i in range(t): m,n = map(int,input().split()) l.append(m%n) for item in l: print(item)
aa9c2bf1b305cc6403a880948c9ce34f01af5268
2d19317ab9af09be9e6c8f0a25d4a43d4632b680
/first_project/urls.py
44eee9ee4a82b0a41d31cece1c0325b3b2218316
[]
no_license
rudiq4/first_project
73837d297b21ccd7c706fc08373473e9e4cd8b29
ba0e987f863f599da9700c355875af76158b76f0
refs/heads/master
2021-01-25T13:41:56.102967
2018-03-27T14:15:26
2018-03-27T14:15:26
123,607,387
0
0
null
null
null
null
UTF-8
Python
false
false
1,132
py
"""first_project URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.11/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ from django.conf.urls import url, include from django.contrib import admin from django.conf.urls.static import static from django.conf import settings urlpatterns = [ url(r'^admin/', admin.site.urls), url(r'^', include('Auto.urls')), url(r'^', include('Post.urls')), url(r'user/', include('User.urls')), ] \ + static(settings.STATIC_URL, document_root=settings.STATIC_ROOT) \ + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
6093d2129fcc9b86264e32f2199313f4ee2360fc
bdf86d69efc1c5b21950c316ddd078ad8a2f2ec0
/venv/Lib/site-packages/twisted/web/_http2.py
1a425a7729ffd88e8e0c2c4b4f98294cbdc6f975
[ "LicenseRef-scancode-unknown-license-reference", "MIT" ]
permissive
DuaNoDo/PythonProject
543e153553c58e7174031b910fd6451399afcc81
2c5c8aa89dda4dec2ff4ca7171189788bf8b5f2c
refs/heads/master
2020-05-07T22:22:29.878944
2019-06-14T07:44:35
2019-06-14T07:44:35
180,941,166
1
1
null
2019-06-04T06:27:29
2019-04-12T06:05:42
Python
UTF-8
Python
false
false
45,541
py
# -*- test-case-name: twisted.web.test.test_http2 -*- # Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ HTTP2 Implementation This is the basic server-side protocol implementation used by the Twisted Web server for HTTP2. This functionality is intended to be combined with the HTTP/1.1 and HTTP/1.0 functionality in twisted.web.http to provide complete protocol support for HTTP-type protocols. This API is currently considered private because it's in early draft form. When it has stabilised, it'll be made public. """ from __future__ import absolute_import, division import io import sys import warnings from collections import deque import h2.config import h2.connection import h2.errors import h2.events import h2.exceptions import priority from twisted.internet._producer_helpers import _PullToPush from twisted.internet.defer import Deferred from twisted.internet.error import ConnectionLost from twisted.internet.interfaces import ( IProtocol, ITransport, IConsumer, IPushProducer, ISSLTransport ) from twisted.internet.protocol import Protocol from twisted.logger import Logger from twisted.protocols.policies import TimeoutMixin from twisted.python.failure import Failure from zope.interface import implementer # This API is currently considered private. __all__ = [] _END_STREAM_SENTINEL = object() # Python versions 2.7.3 and older don't have a memoryview object that plays # well with the struct module, which h2 needs. On those versions, just refuse # to import. if sys.version_info < (2, 7, 4): warnings.warn( "HTTP/2 cannot be enabled because this version of Python is too " "old, and does not fully support memoryview objects.", UserWarning, stacklevel=2, ) raise ImportError("HTTP/2 not supported on this Python version.") @implementer(IProtocol, IPushProducer) class H2Connection(Protocol, TimeoutMixin): """ A class representing a single HTTP/2 connection. This implementation of L{IProtocol} works hand in hand with L{H2Stream}. This is because we have the requirement to register multiple producers for a single HTTP/2 connection, one for each stream. The standard Twisted interfaces don't really allow for this, so instead there's a custom interface between the two objects that allows them to work hand-in-hand here. @ivar conn: The HTTP/2 connection state machine. @type conn: L{h2.connection.H2Connection} @ivar streams: A mapping of stream IDs to L{H2Stream} objects, used to call specific methods on streams when events occur. @type streams: L{dict}, mapping L{int} stream IDs to L{H2Stream} objects. @ivar priority: A HTTP/2 priority tree used to ensure that responses are prioritised appropriately. @type priority: L{priority.PriorityTree} @ivar _consumerBlocked: A flag tracking whether or not the L{IConsumer} that is consuming this data has asked us to stop producing. @type _consumerBlocked: L{bool} @ivar _sendingDeferred: A L{Deferred} used to restart the data-sending loop when more response data has been produced. Will not be present if there is outstanding data still to send. @type _consumerBlocked: A L{twisted.internet.defer.Deferred}, or L{None} @ivar _outboundStreamQueues: A map of stream IDs to queues, used to store data blocks that are yet to be sent on the connection. These are used both to handle producers that do not respect L{IConsumer} but also to allow priority to multiplex data appropriately. @type _outboundStreamQueues: A L{dict} mapping L{int} stream IDs to L{collections.deque} queues, which contain either L{bytes} objects or C{_END_STREAM_SENTINEL}. @ivar _sender: A handle to the data-sending loop, allowing it to be terminated if needed. @type _sender: L{twisted.internet.task.LoopingCall} @ivar abortTimeout: The number of seconds to wait after we attempt to shut the transport down cleanly to give up and forcibly terminate it. This is only used when we time a connection out, to prevent errors causing the FD to get leaked. If this is L{None}, we will wait forever. @type abortTimeout: L{int} @ivar _abortingCall: The L{twisted.internet.base.DelayedCall} that will be used to forcibly close the transport if it doesn't close cleanly. @type _abortingCall: L{twisted.internet.base.DelayedCall} """ factory = None site = None abortTimeout = 15 _log = Logger() _abortingCall = None def __init__(self, reactor=None): config = h2.config.H2Configuration( client_side=False, header_encoding=None ) self.conn = h2.connection.H2Connection(config=config) self.streams = {} self.priority = priority.PriorityTree() self._consumerBlocked = None self._sendingDeferred = None self._outboundStreamQueues = {} self._streamCleanupCallbacks = {} self._stillProducing = True if reactor is None: from twisted.internet import reactor self._reactor = reactor # Start the data sending function. self._reactor.callLater(0, self._sendPrioritisedData) # Implementation of IProtocol def connectionMade(self): """ Called by the reactor when a connection is received. May also be called by the L{twisted.web.http._GenericHTTPChannelProtocol} during upgrade to HTTP/2. """ self.setTimeout(self.timeOut) self.conn.initiate_connection() self.transport.write(self.conn.data_to_send()) def dataReceived(self, data): """ Called whenever a chunk of data is received from the transport. @param data: The data received from the transport. @type data: L{bytes} """ self.resetTimeout() try: events = self.conn.receive_data(data) except h2.exceptions.ProtocolError: # A remote protocol error terminates the connection. dataToSend = self.conn.data_to_send() self.transport.write(dataToSend) self.transport.loseConnection() self.connectionLost(Failure()) return for event in events: if isinstance(event, h2.events.RequestReceived): self._requestReceived(event) elif isinstance(event, h2.events.DataReceived): self._requestDataReceived(event) elif isinstance(event, h2.events.StreamEnded): self._requestEnded(event) elif isinstance(event, h2.events.StreamReset): self._requestAborted(event) elif isinstance(event, h2.events.WindowUpdated): self._handleWindowUpdate(event) elif isinstance(event, h2.events.PriorityUpdated): self._handlePriorityUpdate(event) elif isinstance(event, h2.events.ConnectionTerminated): self.transport.loseConnection() self.connectionLost(ConnectionLost("Remote peer sent GOAWAY")) dataToSend = self.conn.data_to_send() if dataToSend: self.transport.write(dataToSend) def timeoutConnection(self): """ Called when the connection has been inactive for L{self.timeOut<twisted.protocols.policies.TimeoutMixin.timeOut>} seconds. Cleanly tears the connection down, attempting to notify the peer if needed. We override this method to add two extra bits of functionality: - We want to log the timeout. - We want to send a GOAWAY frame indicating that the connection is being terminated, and whether it was clean or not. We have to do this before the connection is torn down. """ self._log.info( "Timing out client {client}", client=self.transport.getPeer() ) # Check whether there are open streams. If there are, we're going to # want to use the error code PROTOCOL_ERROR. If there aren't, use # NO_ERROR. if (self.conn.open_outbound_streams > 0 or self.conn.open_inbound_streams > 0): error_code = h2.errors.ErrorCodes.PROTOCOL_ERROR else: error_code = h2.errors.ErrorCodes.NO_ERROR self.conn.close_connection(error_code=error_code) self.transport.write(self.conn.data_to_send()) # Don't let the client hold this connection open too long. if self.abortTimeout is not None: # We use self.callLater because that's what TimeoutMixin does, even # though we have a perfectly good reactor sitting around. See # https://twistedmatrix.com/trac/ticket/8488. self._abortingCall = self.callLater( self.abortTimeout, self.forceAbortClient ) # We're done, throw the connection away. self.transport.loseConnection() def forceAbortClient(self): """ Called if C{abortTimeout} seconds have passed since the timeout fired, and the connection still hasn't gone away. This can really only happen on extremely bad connections or when clients are maliciously attempting to keep connections open. """ self._log.info( "Forcibly timing out client: {client}", client=self.transport.getPeer() ) # We want to lose track of the _abortingCall so that no-one tries to # cancel it. self._abortingCall = None self.transport.abortConnection() def connectionLost(self, reason): """ Called when the transport connection is lost. Informs all outstanding response handlers that the connection has been lost, and cleans up all internal state. """ self._stillProducing = False self.setTimeout(None) for stream in self.streams.values(): stream.connectionLost(reason) for streamID in list(self.streams.keys()): self._requestDone(streamID) # If we were going to force-close the transport, we don't have to now. if self._abortingCall is not None: self._abortingCall.cancel() self._abortingCall = None # Implementation of IPushProducer # # Here's how we handle IPushProducer. We have multiple outstanding # H2Streams. Each of these exposes an IConsumer interface to the response # handler that allows it to push data into the H2Stream. The H2Stream then # writes the data into the H2Connection object. # # The H2Connection needs to manage these writes to account for: # # - flow control # - priority # # We manage each of these in different ways. # # For flow control, we simply use the equivalent of the IPushProducer # interface. We simply tell the H2Stream: "Hey, you can't send any data # right now, sorry!". When that stream becomes unblocked, we free it up # again. This allows the H2Stream to propagate this backpressure up the # chain. # # For priority, we need to keep a backlog of data frames that we can send, # and interleave them appropriately. This backlog is most sensibly kept in # the H2Connection object itself. We keep one queue per stream, which is # where the writes go, and then we have a loop that manages popping these # streams off in priority order. # # Logically then, we go as follows: # # 1. Stream calls writeDataToStream(). This causes a DataFrame to be placed # on the queue for that stream. It also informs the priority # implementation that this stream is unblocked. # 2. The _sendPrioritisedData() function spins in a tight loop. Each # iteration it asks the priority implementation which stream should send # next, and pops a data frame off that stream's queue. If, after sending # that frame, there is no data left on that stream's queue, the function # informs the priority implementation that the stream is blocked. # # If all streams are blocked, or if there are no outstanding streams, the # _sendPrioritisedData function waits to be awoken when more data is ready # to send. # # Note that all of this only applies to *data*. Headers and other control # frames deliberately skip this processing as they are not subject to flow # control or priority constraints. def stopProducing(self): """ Stop producing data. This tells the L{H2Connection} that its consumer has died, so it must stop producing data for good. """ self.connectionLost(ConnectionLost("Producing stopped")) def pauseProducing(self): """ Pause producing data. Tells the L{H2Connection} that it has produced too much data to process for the time being, and to stop until resumeProducing() is called. """ self._consumerBlocked = Deferred() def resumeProducing(self): """ Resume producing data. This tells the L{H2Connection} to re-add itself to the main loop and produce more data for the consumer. """ if self._consumerBlocked is not None: d = self._consumerBlocked self._consumerBlocked = None d.callback(None) def _sendPrioritisedData(self, *args): """ The data sending loop. This function repeatedly calls itself, either from L{Deferred}s or from L{reactor.callLater<twisted.internet.interfaces.IReactorTime.callLater>} This function sends data on streams according to the rules of HTTP/2 priority. It ensures that the data from each stream is interleved according to the priority signalled by the client, making sure that the connection is used with maximal efficiency. This function will execute if data is available: if all data is exhausted, the function will place a deferred onto the L{H2Connection} object and wait until it is called to resume executing. """ # If producing has stopped, we're done. Don't reschedule ourselves if not self._stillProducing: return stream = None while stream is None: try: stream = next(self.priority) except priority.DeadlockError: # All streams are currently blocked or not progressing. Wait # until a new one becomes available. assert self._sendingDeferred is None self._sendingDeferred = Deferred() self._sendingDeferred.addCallback(self._sendPrioritisedData) return # Wait behind the transport. if self._consumerBlocked is not None: self._consumerBlocked.addCallback(self._sendPrioritisedData) return self.resetTimeout() remainingWindow = self.conn.local_flow_control_window(stream) frameData = self._outboundStreamQueues[stream].popleft() maxFrameSize = min(self.conn.max_outbound_frame_size, remainingWindow) if frameData is _END_STREAM_SENTINEL: # There's no error handling here even though this can throw # ProtocolError because we really shouldn't encounter this problem. # If we do, that's a nasty bug. self.conn.end_stream(stream) self.transport.write(self.conn.data_to_send()) # Clean up the stream self._requestDone(stream) else: # Respect the max frame size. if len(frameData) > maxFrameSize: excessData = frameData[maxFrameSize:] frameData = frameData[:maxFrameSize] self._outboundStreamQueues[stream].appendleft(excessData) # There's deliberately no error handling here, because this just # absolutely should not happen. # If for whatever reason the max frame length is zero and so we # have no frame data to send, don't send any. if frameData: self.conn.send_data(stream, frameData) self.transport.write(self.conn.data_to_send()) # If there's no data left, this stream is now blocked. if not self._outboundStreamQueues[stream]: self.priority.block(stream) # Also, if the stream's flow control window is exhausted, tell it # to stop. if self.remainingOutboundWindow(stream) <= 0: self.streams[stream].flowControlBlocked() self._reactor.callLater(0, self._sendPrioritisedData) # Internal functions. def _requestReceived(self, event): """ Internal handler for when a request has been received. @param event: The Hyper-h2 event that encodes information about the received request. @type event: L{h2.events.RequestReceived} """ stream = H2Stream( event.stream_id, self, event.headers, self.requestFactory, self.site, self.factory ) self.streams[event.stream_id] = stream self._streamCleanupCallbacks[event.stream_id] = Deferred() self._outboundStreamQueues[event.stream_id] = deque() # Add the stream to the priority tree but immediately block it. try: self.priority.insert_stream(event.stream_id) except priority.DuplicateStreamError: # Stream already in the tree. This can happen if we received a # PRIORITY frame before a HEADERS frame. Just move on: we set the # stream up properly in _handlePriorityUpdate. pass else: self.priority.block(event.stream_id) def _requestDataReceived(self, event): """ Internal handler for when a chunk of data is received for a given request. @param event: The Hyper-h2 event that encodes information about the received data. @type event: L{h2.events.DataReceived} """ stream = self.streams[event.stream_id] stream.receiveDataChunk(event.data, event.flow_controlled_length) def _requestEnded(self, event): """ Internal handler for when a request is complete, and we expect no further data for that request. @param event: The Hyper-h2 event that encodes information about the completed stream. @type event: L{h2.events.StreamEnded} """ stream = self.streams[event.stream_id] stream.requestComplete() def _requestAborted(self, event): """ Internal handler for when a request is aborted by a remote peer. @param event: The Hyper-h2 event that encodes information about the reset stream. @type event: L{h2.events.StreamReset} """ stream = self.streams[event.stream_id] stream.connectionLost( ConnectionLost("Stream reset with code %s" % event.error_code) ) self._requestDone(event.stream_id) def _handlePriorityUpdate(self, event): """ Internal handler for when a stream priority is updated. @param event: The Hyper-h2 event that encodes information about the stream reprioritization. @type event: L{h2.events.PriorityUpdated} """ try: self.priority.reprioritize( stream_id=event.stream_id, depends_on=event.depends_on or None, weight=event.weight, exclusive=event.exclusive, ) except priority.MissingStreamError: # A PRIORITY frame arrived before the HEADERS frame that would # trigger us to insert the stream into the tree. That's fine: we # can create the stream here and mark it as blocked. self.priority.insert_stream( stream_id=event.stream_id, depends_on=event.depends_on or None, weight=event.weight, exclusive=event.exclusive, ) self.priority.block(event.stream_id) def writeHeaders(self, version, code, reason, headers, streamID): """ Called by L{twisted.web.http.Request} objects to write a complete set of HTTP headers to a stream. @param version: The HTTP version in use. Unused in HTTP/2. @type version: L{bytes} @param code: The HTTP status code to write. @type code: L{bytes} @param reason: The HTTP reason phrase to write. Unused in HTTP/2. @type reason: L{bytes} @param headers: The headers to write to the stream. @type headers: L{twisted.web.http_headers.Headers} @param streamID: The ID of the stream to write the headers to. @type streamID: L{int} """ headers.insert(0, (b':status', code)) try: self.conn.send_headers(streamID, headers) except h2.exceptions.StreamClosedError: # Stream was closed by the client at some point. We need to not # explode here: just swallow the error. That's what write() does # when a connection is lost, so that's what we do too. return else: self.transport.write(self.conn.data_to_send()) def writeDataToStream(self, streamID, data): """ May be called by L{H2Stream} objects to write response data to a given stream. Writes a single data frame. @param streamID: The ID of the stream to write the data to. @type streamID: L{int} @param data: The data chunk to write to the stream. @type data: L{bytes} """ self._outboundStreamQueues[streamID].append(data) # There's obviously no point unblocking this stream and the sending # loop if the data can't actually be sent, so confirm that there's # some room to send data. if self.conn.local_flow_control_window(streamID) > 0: self.priority.unblock(streamID) if self._sendingDeferred is not None: d = self._sendingDeferred self._sendingDeferred = None d.callback(streamID) if self.remainingOutboundWindow(streamID) <= 0: self.streams[streamID].flowControlBlocked() def endRequest(self, streamID): """ Called by L{H2Stream} objects to signal completion of a response. @param streamID: The ID of the stream to write the data to. @type streamID: L{int} """ self._outboundStreamQueues[streamID].append(_END_STREAM_SENTINEL) self.priority.unblock(streamID) if self._sendingDeferred is not None: d = self._sendingDeferred self._sendingDeferred = None d.callback(streamID) def abortRequest(self, streamID): """ Called by L{H2Stream} objects to request early termination of a stream. This emits a RstStream frame and then removes all stream state. @param streamID: The ID of the stream to write the data to. @type streamID: L{int} """ self.conn.reset_stream(streamID) self.transport.write(self.conn.data_to_send()) self._requestDone(streamID) def _requestDone(self, streamID): """ Called internally by the data sending loop to clean up state that was being used for the stream. Called when the stream is complete. @param streamID: The ID of the stream to clean up state for. @type streamID: L{int} """ del self._outboundStreamQueues[streamID] self.priority.remove_stream(streamID) del self.streams[streamID] cleanupCallback = self._streamCleanupCallbacks.pop(streamID) cleanupCallback.callback(streamID) def remainingOutboundWindow(self, streamID): """ Called to determine how much room is left in the send window for a given stream. Allows us to handle blocking and unblocking producers. @param streamID: The ID of the stream whose flow control window we'll check. @type streamID: L{int} @return: The amount of room remaining in the send window for the given stream, including the data queued to be sent. @rtype: L{int} """ # TODO: This involves a fair bit of looping and computation for # something that is called a lot. Consider caching values somewhere. windowSize = self.conn.local_flow_control_window(streamID) sendQueue = self._outboundStreamQueues[streamID] alreadyConsumed = sum( len(chunk) for chunk in sendQueue if chunk is not _END_STREAM_SENTINEL ) return windowSize - alreadyConsumed def _handleWindowUpdate(self, event): """ Manage flow control windows. Streams that are blocked on flow control will register themselves with the connection. This will fire deferreds that wake those streams up and allow them to continue processing. @param event: The Hyper-h2 event that encodes information about the flow control window change. @type event: L{h2.events.WindowUpdated} """ streamID = event.stream_id if streamID: if not self._streamIsActive(streamID): # We may have already cleaned up our stream state, making this # a late WINDOW_UPDATE frame. That's fine: the update is # unnecessary but benign. We'll ignore it. return # If we haven't got any data to send, don't unblock the stream. If # we do, we'll eventually get an exception inside the # _sendPrioritisedData loop some time later. if self._outboundStreamQueues.get(streamID): self.priority.unblock(streamID) self.streams[streamID].windowUpdated() else: # Update strictly applies to all streams. for stream in self.streams.values(): stream.windowUpdated() # If we still have data to send for this stream, unblock it. if self._outboundStreamQueues.get(stream.streamID): self.priority.unblock(stream.streamID) def getPeer(self): """ Get the remote address of this connection. Treat this method with caution. It is the unfortunate result of the CGI and Jabber standards, but should not be considered reliable for the usual host of reasons; port forwarding, proxying, firewalls, IP masquerading, etc. @return: An L{IAddress} provider. """ return self.transport.getPeer() def getHost(self): """ Similar to getPeer, but returns an address describing this side of the connection. @return: An L{IAddress} provider. """ return self.transport.getHost() def openStreamWindow(self, streamID, increment): """ Open the stream window by a given increment. @param streamID: The ID of the stream whose window needs to be opened. @type streamID: L{int} @param increment: The amount by which the stream window must be incremented. @type increment: L{int} """ self.conn.acknowledge_received_data(increment, streamID) data = self.conn.data_to_send() if data: self.transport.write(data) def _isSecure(self): """ Returns L{True} if this channel is using a secure transport. @returns: L{True} if this channel is secure. @rtype: L{bool} """ # A channel is secure if its transport is ISSLTransport. return ISSLTransport(self.transport, None) is not None def _send100Continue(self, streamID): """ Sends a 100 Continue response, used to signal to clients that further processing will be performed. @param streamID: The ID of the stream that needs the 100 Continue response @type streamID: L{int} """ headers = [(b':status', b'100')] self.conn.send_headers(headers=headers, stream_id=streamID) self.transport.write(self.conn.data_to_send()) def _respondToBadRequestAndDisconnect(self, streamID): """ This is a quick and dirty way of responding to bad requests. As described by HTTP standard we should be patient and accept the whole request from the client before sending a polite bad request response, even in the case when clients send tons of data. Unlike in the HTTP/1.1 case, this does not actually disconnect the underlying transport: there's no need. This instead just sends a 400 response and terminates the stream. @param streamID: The ID of the stream that needs the 100 Continue response @type streamID: L{int} """ headers = [(b':status', b'400')] self.conn.send_headers( headers=headers, stream_id=streamID, end_stream=True ) self.transport.write(self.conn.data_to_send()) stream = self.streams[streamID] stream.connectionLost(ConnectionLost("Invalid request")) self._requestDone(streamID) def _streamIsActive(self, streamID): """ Checks whether Twisted has still got state for a given stream and so can process events for that stream. @param streamID: The ID of the stream that needs processing. @type streamID: L{int} @return: Whether the stream still has state allocated. @rtype: L{bool} """ return streamID in self.streams @implementer(ITransport, IConsumer, IPushProducer) class H2Stream(object): """ A class representing a single HTTP/2 stream. This class works hand-in-hand with L{H2Connection}. It acts to provide an implementation of L{ITransport}, L{IConsumer}, and L{IProducer} that work for a single HTTP/2 connection, while tightly cleaving to the interface provided by those interfaces. It does this by having a tight coupling to L{H2Connection}, which allows associating many of the functions of L{ITransport}, L{IConsumer}, and L{IProducer} to objects on a stream-specific level. @ivar streamID: The numerical stream ID that this object corresponds to. @type streamID: L{int} @ivar producing: Whether this stream is currently allowed to produce data to its consumer. @type producing: L{bool} @ivar command: The HTTP verb used on the request. @type command: L{unicode} @ivar path: The HTTP path used on the request. @type path: L{unicode} @ivar producer: The object producing the response, if any. @type producer: L{IProducer} @ivar site: The L{twisted.web.server.Site} object this stream belongs to, if any. @type site: L{twisted.web.server.Site} @ivar factory: The L{twisted.web.http.HTTPFactory} object that constructed this stream's parent connection. @type factory: L{twisted.web.http.HTTPFactory} @ivar _producerProducing: Whether the producer stored in producer is currently producing data. @type _producerProducing: L{bool} @ivar _inboundDataBuffer: Any data that has been received from the network but has not yet been received by the consumer. @type _inboundDataBuffer: A L{collections.deque} containing L{bytes} @ivar _conn: A reference to the connection this stream belongs to. @type _conn: L{H2Connection} @ivar _request: A request object that this stream corresponds to. @type _request: L{twisted.web.iweb.IRequest} @ivar _buffer: A buffer containing data produced by the producer that could not be sent on the network at this time. @type _buffer: L{io.BytesIO} """ # We need a transport property for t.w.h.Request, but HTTP/2 doesn't want # to expose it. So we just set it to None. transport = None def __init__(self, streamID, connection, headers, requestFactory, site, factory): """ Initialize this HTTP/2 stream. @param streamID: The numerical stream ID that this object corresponds to. @type streamID: L{int} @param connection: The HTTP/2 connection this stream belongs to. @type connection: L{H2Connection} @param headers: The HTTP/2 request headers. @type headers: A L{list} of L{tuple}s of header name and header value, both as L{bytes}. @param requestFactory: A function that builds appropriate request request objects. @type requestFactory: A callable that returns a L{twisted.web.iweb.IRequest}. @param site: The L{twisted.web.server.Site} object this stream belongs to, if any. @type site: L{twisted.web.server.Site} @param factory: The L{twisted.web.http.HTTPFactory} object that constructed this stream's parent connection. @type factory: L{twisted.web.http.HTTPFactory} """ self.streamID = streamID self.site = site self.factory = factory self.producing = True self.command = None self.path = None self.producer = None self._producerProducing = False self._hasStreamingProducer = None self._inboundDataBuffer = deque() self._conn = connection self._request = requestFactory(self, queued=False) self._buffer = io.BytesIO() self._convertHeaders(headers) def _convertHeaders(self, headers): """ This method converts the HTTP/2 header set into something that looks like HTTP/1.1. In particular, it strips the 'special' headers and adds a Host: header. @param headers: The HTTP/2 header set. @type headers: A L{list} of L{tuple}s of header name and header value, both as L{bytes}. """ gotLength = False for header in headers: if not header[0].startswith(b':'): gotLength = ( _addHeaderToRequest(self._request, header) or gotLength ) elif header[0] == b':method': self.command = header[1] elif header[0] == b':path': self.path = header[1] elif header[0] == b':authority': # This is essentially the Host: header from HTTP/1.1 _addHeaderToRequest(self._request, (b'host', header[1])) if not gotLength: if self.command in (b'GET', b'HEAD'): self._request.gotLength(0) else: self._request.gotLength(None) self._request.parseCookies() expectContinue = self._request.requestHeaders.getRawHeaders(b'expect') if expectContinue and expectContinue[0].lower() == b'100-continue': self._send100Continue() # Methods called by the H2Connection def receiveDataChunk(self, data, flowControlledLength): """ Called when the connection has received a chunk of data from the underlying transport. If the stream has been registered with a consumer, and is currently able to push data, immediately passes it through. Otherwise, buffers the chunk until we can start producing. @param data: The chunk of data that was received. @type data: L{bytes} @param flowControlledLength: The total flow controlled length of this chunk, which is used when we want to re-open the window. May be different to C{len(data)}. @type flowControlledLength: L{int} """ if not self.producing: # Buffer data. self._inboundDataBuffer.append((data, flowControlledLength)) else: self._request.handleContentChunk(data) self._conn.openStreamWindow(self.streamID, flowControlledLength) def requestComplete(self): """ Called by the L{H2Connection} when the all data for a request has been received. Currently, with the legacy L{twisted.web.http.Request} object, just calls requestReceived unless the producer wants us to be quiet. """ if self.producing: self._request.requestReceived(self.command, self.path, b'HTTP/2') else: self._inboundDataBuffer.append((_END_STREAM_SENTINEL, None)) def connectionLost(self, reason): """ Called by the L{H2Connection} when a connection is lost or a stream is reset. @param reason: The reason the connection was lost. @type reason: L{str} """ self._request.connectionLost(reason) def windowUpdated(self): """ Called by the L{H2Connection} when this stream's flow control window has been opened. """ # If we don't have a producer, we have no-one to tell. if not self.producer: return # If we're not blocked on flow control, we don't care. if self._producerProducing: return # We check whether the stream's flow control window is actually above # 0, and then, if a producer is registered and we still have space in # the window, we unblock it. remainingWindow = self._conn.remainingOutboundWindow(self.streamID) if not remainingWindow > 0: return # We have a producer and space in the window, so that producer can # start producing again! self._producerProducing = True self.producer.resumeProducing() def flowControlBlocked(self): """ Called by the L{H2Connection} when this stream's flow control window has been exhausted. """ if not self.producer: return if self._producerProducing: self.producer.pauseProducing() self._producerProducing = False # Methods called by the consumer (usually an IRequest). def writeHeaders(self, version, code, reason, headers): """ Called by the consumer to write headers to the stream. @param version: The HTTP version. @type version: L{bytes} @param code: The status code. @type code: L{int} @param reason: The reason phrase. Ignored in HTTP/2. @type reason: L{bytes} @param headers: The HTTP response headers. @type: Any iterable of two-tuples of L{bytes}, representing header names and header values. """ self._conn.writeHeaders(version, code, reason, headers, self.streamID) def requestDone(self, request): """ Called by a consumer to clean up whatever permanent state is in use. @param request: The request calling the method. @type request: L{twisted.web.iweb.IRequest} """ self._conn.endRequest(self.streamID) def _send100Continue(self): """ Sends a 100 Continue response, used to signal to clients that further processing will be performed. """ self._conn._send100Continue(self.streamID) def _respondToBadRequestAndDisconnect(self): """ This is a quick and dirty way of responding to bad requests. As described by HTTP standard we should be patient and accept the whole request from the client before sending a polite bad request response, even in the case when clients send tons of data. Unlike in the HTTP/1.1 case, this does not actually disconnect the underlying transport: there's no need. This instead just sends a 400 response and terminates the stream. """ self._conn._respondToBadRequestAndDisconnect(self.streamID) # Implementation: ITransport def write(self, data): """ Write a single chunk of data into a data frame. @param data: The data chunk to send. @type data: L{bytes} """ self._conn.writeDataToStream(self.streamID, data) return def writeSequence(self, iovec): """ Write a sequence of chunks of data into data frames. @param iovec: A sequence of chunks to send. @type iovec: An iterable of L{bytes} chunks. """ for chunk in iovec: self.write(chunk) def loseConnection(self): """ Close the connection after writing all pending data. """ self._conn.endRequest(self.streamID) def abortConnection(self): """ Forcefully abort the connection by sending a RstStream frame. """ self._conn.abortRequest(self.streamID) def getPeer(self): """ Get information about the peer. """ return self._conn.getPeer() def getHost(self): """ Similar to getPeer, but for this side of the connection. """ return self._conn.getHost() def isSecure(self): """ Returns L{True} if this channel is using a secure transport. @returns: L{True} if this channel is secure. @rtype: L{bool} """ return self._conn._isSecure() # Implementation: IConsumer def registerProducer(self, producer, streaming): """ Register to receive data from a producer. This sets self to be a consumer for a producer. When this object runs out of data (as when a send(2) call on a socket succeeds in moving the last data from a userspace buffer into a kernelspace buffer), it will ask the producer to resumeProducing(). For L{IPullProducer} providers, C{resumeProducing} will be called once each time data is required. For L{IPushProducer} providers, C{pauseProducing} will be called whenever the write buffer fills up and C{resumeProducing} will only be called when it empties. @param producer: The producer to register. @type producer: L{IProducer} provider @param streaming: L{True} if C{producer} provides L{IPushProducer}, L{False} if C{producer} provides L{IPullProducer}. @type streaming: L{bool} @raise RuntimeError: If a producer is already registered. @return: L{None} """ if self.producer: raise ValueError( "registering producer %s before previous one (%s) was " "unregistered" % (producer, self.producer)) if not streaming: self.hasStreamingProducer = False producer = _PullToPush(producer, self) producer.startStreaming() else: self.hasStreamingProducer = True self.producer = producer self._producerProducing = True def unregisterProducer(self): """ @see: L{IConsumer.unregisterProducer} """ # When the producer is unregistered, we're done. if self.producer is not None and not self.hasStreamingProducer: self.producer.stopStreaming() self._producerProducing = False self.producer = None self.hasStreamingProducer = None # Implementation: IPushProducer def stopProducing(self): """ @see: L{IProducer.stopProducing} """ self.producing = False self.abortConnection() def pauseProducing(self): """ @see: L{IPushProducer.pauseProducing} """ self.producing = False def resumeProducing(self): """ @see: L{IPushProducer.resumeProducing} """ self.producing = True consumedLength = 0 while self.producing and self._inboundDataBuffer: # Allow for pauseProducing to be called in response to a call to # resumeProducing. chunk, flowControlledLength = self._inboundDataBuffer.popleft() if chunk is _END_STREAM_SENTINEL: self.requestComplete() else: consumedLength += flowControlledLength self._request.handleContentChunk(chunk) self._conn.openStreamWindow(self.streamID, consumedLength) def _addHeaderToRequest(request, header): """ Add a header tuple to a request header object. @param request: The request to add the header tuple to. @type request: L{twisted.web.http.Request} @param header: The header tuple to add to the request. @type header: A L{tuple} with two elements, the header name and header value, both as L{bytes}. @return: If the header being added was the C{Content-Length} header. @rtype: L{bool} """ requestHeaders = request.requestHeaders name, value = header values = requestHeaders.getRawHeaders(name) if values is not None: values.append(value) else: requestHeaders.setRawHeaders(name, [value]) if name == b'content-length': request.gotLength(int(value)) return True return False
8d4588530f69c619168a4cc1e6f9fb07ba1e6326
d2c4934325f5ddd567963e7bd2bdc0673f92bc40
/tests/artificial/transf_RelativeDifference/trend_Lag1Trend/cycle_12/ar_12/test_artificial_128_RelativeDifference_Lag1Trend_12_12_20.py
b92931e266c853cfe294b5ace5bc7d11ca7edc8c
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
jmabry/pyaf
797acdd585842474ff4ae1d9db5606877252d9b8
afbc15a851a2445a7824bf255af612dc429265af
refs/heads/master
2020-03-20T02:14:12.597970
2018-12-17T22:08:11
2018-12-17T22:08:11
137,104,552
0
0
BSD-3-Clause
2018-12-17T22:08:12
2018-06-12T17:15:43
Python
UTF-8
Python
false
false
280
py
import pyaf.Bench.TS_datasets as tsds import pyaf.tests.artificial.process_artificial_dataset as art art.process_dataset(N = 128 , FREQ = 'D', seed = 0, trendtype = "Lag1Trend", cycle_length = 12, transform = "RelativeDifference", sigma = 0.0, exog_count = 20, ar_order = 12);
89474e153defaaa9938f24de4429e92defcd0542
d723b9c2dcfc9e3366928fd0ea18ee5ee19c2b3c
/backend/apps/detections/upload_sets.py
140c2d9bcfbee0781d15cc18a2aab00c879d9188
[]
no_license
skarzi/yb_hackathon_2019
ff8266e89ae6fa74d57c61e4117d6fc176dba825
83c3d96795f6b14f97683ad5c998579adb3faaf4
refs/heads/master
2020-09-11T01:34:55.206979
2020-07-19T07:50:16
2020-07-19T07:50:16
221,895,345
0
0
null
null
null
null
UTF-8
Python
false
false
219
py
from flask import current_app from flask_uploads import ( IMAGES, UploadSet, configure_uploads, ) detections = UploadSet(name='detections', extensions=IMAGES) configure_uploads(current_app, (detections,))
71402662a43efd9f3ece9bfc6b5fb824add27987
c676bf5e77ba43639faa6f17646245f9d55d8687
/tests/ut/python/ops/test_tuple_slice.py
ea5112995c06203210d7c6ca569e2949187c6f26
[ "Apache-2.0", "BSD-3-Clause-Open-MPI", "MPL-2.0-no-copyleft-exception", "LGPL-2.1-only", "BSD-3-Clause", "MPL-2.0", "MPL-1.0", "Libpng", "AGPL-3.0-only", "MPL-1.1", "LicenseRef-scancode-proprietary-license", "MIT", "IJG", "LicenseRef-scancode-unknown-license-reference", "Unlicense", "Zlib", "GPL-2.0-only", "BSL-1.0", "LicenseRef-scancode-public-domain", "BSD-2-Clause" ]
permissive
zhengnengjin/mindspore
1e2644e311f54a8bd17010180198a46499e9c88f
544b859bb5f46611882749088b44c5aebae0fba1
refs/heads/master
2022-05-13T05:34:21.658335
2020-04-28T06:39:53
2020-04-28T06:39:53
259,522,589
2
0
Apache-2.0
2020-04-28T03:35:33
2020-04-28T03:35:33
null
UTF-8
Python
false
false
4,665
py
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test_tuple_slice """ import numpy as np import pytest from mindspore import Tensor from mindspore.nn import Cell import mindspore.ops.operations as P from ....mindspore_test_framework.mindspore_test import mindspore_test from ....mindspore_test_framework.pipeline.forward.compile_forward \ import pipeline_for_compile_forward_ge_graph_for_case_by_case_config from ....mindspore_test_framework.pipeline.forward.verify_exception \ import pipeline_for_verify_exception_for_case_by_case_config class NetWork_1(Cell): """ NetWork_1 definition """ def __init__(self): super(NetWork_1, self).__init__() self.addN = P.AddN() def construct(self, tensor_tuple): tensor_tuple_slice0 = tensor_tuple[:] tensor_tuple_slice1 = tensor_tuple[:3] tensor_tuple_slice2 = tensor_tuple[1:] tensor_tuple_slice3 = tensor_tuple[2:5:1] sum0 = self.addN(tensor_tuple_slice0) sum1 = self.addN(tensor_tuple_slice1) sum2 = self.addN(tensor_tuple_slice2) sum3 = self.addN(tensor_tuple_slice3) ret = sum0 + sum1 + sum2 + sum3 return ret class NetWork_2(Cell): """ NetWork_2 definition """ def __init__(self): super(NetWork_2, self).__init__() self.addN = P.AddN() def construct(self, tensor_tuple): tensor_tuple_slice0 = tensor_tuple[::-1] tensor_tuple_slice1 = tensor_tuple[-1::-1] tensor_tuple_slice2 = tensor_tuple[:-4:-1] tensor_tuple_slice3 = tensor_tuple[-6:3] tensor_tuple_slice4 = tensor_tuple[-1:-6:-2] sum0 = self.addN(tensor_tuple_slice0) sum1 = self.addN(tensor_tuple_slice1) sum2 = self.addN(tensor_tuple_slice2) sum3 = self.addN(tensor_tuple_slice3) sum4 = self.addN(tensor_tuple_slice4) ret = sum0 + sum1 + sum2 + sum3 + sum4 return ret class NetWork_3(Cell): """ NetWork_3 definition """ def __init__(self): super(NetWork_3, self).__init__() self.addN = P.AddN() def construct(self, tensor_tuple, start, stop, step=1): tensor_tuple_slice0 = tensor_tuple[start:stop:step] res = self.addN(tensor_tuple_slice0) return res test_cases = [ ('SlicePositive', { 'block': NetWork_1(), 'desc_inputs': [(Tensor(np.ones([2, 3, 4], np.int32)), Tensor(np.zeros([2, 3, 4], np.int32)), Tensor(np.ones([2, 3, 4], np.int32)), Tensor(np.ones([2, 3, 4], np.int32)), Tensor(np.zeros([2, 3, 4], np.int32)), Tensor(np.ones([2, 3, 4], np.int32)))], }), ('SliceNegative', { 'block': NetWork_2(), 'desc_inputs': [(Tensor(np.ones([2, 3, 4], np.int32)), Tensor(np.zeros([2, 3, 4], np.int32)), Tensor(np.ones([2, 3, 4], np.int32)), Tensor(np.ones([2, 3, 4], np.int32)), Tensor(np.zeros([2, 3, 4], np.int32)), Tensor(np.ones([2, 3, 4], np.int32)))], }), ] test_cases_for_verify_exception = [ ('SliceStartCross', { 'block': (NetWork_3(), {'exception': RuntimeError}), 'desc_inputs': [*(Tensor(np.ones([2, 3, 4], np.int32)), Tensor(np.zeros([2, 3, 4], np.int32)), Tensor(np.ones([2, 3, 4], np.int32)))], }), ('SliceStepZero', { 'block': (NetWork_3(), {'exception': RuntimeError}), 'desc_inputs': [*(Tensor(np.ones([2, 3, 4], np.int32)), Tensor(np.zeros([2, 3, 4], np.int32)), Tensor(np.ones([2, 3, 4], np.int32)))], }), ] @mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config) def test_compile(): return test_cases @mindspore_test(pipeline_for_verify_exception_for_case_by_case_config) def test_check_exception(): return test_cases_for_verify_exception
4b4a097a95f1da6da6dfa3927d7c83d66941ecdf
d8f0761acc94f9f1c0365e5a1716c9e17c6e4e16
/scrapers/bs4_selectors/selector.py
cabcd3ea0bed6889945755aac7fe5cf0cdf9cd8c
[]
no_license
lesleyfon/one-time-scrapers
75ca851107d59b4f2b7cd816b2ae46ecd11d6bc0
6ee5443497c9e05924abf5704c16112beb740064
refs/heads/master
2023-05-02T12:58:21.693133
2021-05-21T13:09:57
2021-05-21T13:09:57
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,990
py
############################## # # Beautiful Soup cheat sheet # # by # # Code Monkey King # ############################## # Step 1: import packages import requests from bs4 import BeautifulSoup # Step 2: define target URL url = 'https://podsearch.com/listing/car-talk.html' # Step 3: make HTTP request to the target URL response = requests.get(url) # Step 4: parse entire HTML document content = BeautifulSoup(response.text, 'lxml') # Step 5: parse PARENT element conteining needed data parent = content.find('div', {'class': 'col-md-8 col-sm-12 col-xs-12 pdl0'}) # Step 6: parse CHILD element containing the exact data we need child = parent.find('span').text # Step 7: split the target string if needed data = child.split(': ')[-1] # Step 8: print data to console print(data) ##################################### # # Useful data extraction techniques # ##################################### # extract FIRST data occurence by unique class description = content.find('p', {'class': 'pre-line'}).text print('\n', description) # extract ALL data occurences by unique class text = [ item.text for item in content.find_all('p', {'class': 'pre-line'}) ] print('\n', text) # reference similar data occurences by index print('\n', text[0]) print('\n', text[1]) # join list elements into one single string by whatever character print('\n', '\n joined by new line \n'.join(text)) # reference element by whatever attribute (ID in this case) button = content.find('button', {'id': 'headerSearchButton'}).text print(button) # extract FIRST other but textual node data element, e.g. HREF attribute or whatever link = content.find('a')['href'] print(link) # extract ALL other but textual node data elements, e.g. HREF attribute or whatever links = [ link['href'] for link in content.find_all('a') # filter on condition if needed #if link['href'] == 'https://podsearch.com/listing/rethinking-weight-loss.html' ] print(links)
3f710f824a9ba3fc05f946ea786168e280edb9f3
05040f0dce123be0d88e760808fdf6b1bbf1ac43
/backend/manage.py
38f19f1341ecef8ebd95be44a20975de9823d12e
[]
no_license
crowdbotics-apps/mobile-8-dec-dev-16453
8026421c163ab200a0106faaf3567faf469b348f
3cc2feeba0d1a753a98db7167491e5a28d7ae6fe
refs/heads/master
2023-01-23T10:02:48.817260
2020-12-08T15:42:47
2020-12-08T15:42:47
319,665,608
0
0
null
null
null
null
UTF-8
Python
false
false
642
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault("DJANGO_SETTINGS_MODULE", "mobile_8_dec_dev_16453.settings") try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == "__main__": main()
ec63ed048f6211cd69e8bc2bc40d3e6f418eaf0d
336cd9225281befde93e01858ede15f70d3e5b47
/params/cartpole_obs/shm_default copy.py
2ab5c02726c7c6586d11fff9f5736ea8bffe8c5f
[]
no_license
GuancongLuo/mpc-mpnet-py
7d6ba9f0c954185a724421091b1b098ec6d148e6
3d8d8ef743fd467fd2ffe177021edc6e852fd094
refs/heads/master
2023-02-06T03:49:06.072105
2020-12-07T11:01:08
2020-12-07T11:01:08
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,333
py
import numpy as np def get_params(): params = { 'solver_type': "cem", 'n_problem': 1, 'n_sample': 32, 'n_elite': 8, 'n_t': 1, 'max_it': 5, 'converge_r': 0.1, 'dt': 2e-3, 'mu_u': [0], 'sigma_u': [400], 'mu_t': 0.5, 'sigma_t': 0.5, 't_max': 1, 'verbose': False, # True,# 'step_size': 1, "goal_radius": 1.5, "sst_delta_near": .3, "sst_delta_drain": 0.1, "goal_bias": 0.05, "width": 4, "hybrid": False, "hybrid_p": 0.0, "cost_samples": 1, "mpnet_weight_path":"mpnet/exported/output/cartpole_obs/mpnet_10k_external_small_model.pt", #"mpnet_weight_path":"mpnet/exported/output/cartpole_obs/mpnet_10k_external_v2_deep.pt", # "mpnet_weight_path":"mpnet/exported/output/cartpole_obs/mpnet_10k.pt", # "mpnet_weight_path":"mpnet/exported/output/cartpole_obs/mpnet_10k_nonorm.pt", # "mpnet_weight_path":"mpnet/exported/output/cartpole_obs/mpnet_subsample0.5_10k.pt", # "cost_predictor_weight_path": "mpnet/exported/output/cartpole_obs/cost_10k.pt", "cost_predictor_weight_path": "mpnet/exported/output/cartpole_obs/cost_10k.pt", "cost_to_go_predictor_weight_path": "mpnet/exported/output/cartpole_obs/cost_to_go_obs.pt", "refine": False, "using_one_step_cost": False, "refine_lr": 0, "refine_threshold": 0, "device_id": "cuda:3", "cost_reselection": False, "number_of_iterations": 100000, "weights_array": [1, 1, 1, 0.5], 'max_planning_time': 50, 'shm_max_steps': 40 } cuda_batch_params = { 'solver_type' : "cem", 'n_problem' : 1, 'n_sample': 32, 'n_elite': 2, 'n_t': 1, 'max_it': 5, 'converge_r': 1e-1, 'dt': 2e-3, 'mu_u': [0], 'sigma_u': [400], 'mu_t': 0.4, 'sigma_t': 0.5, 't_max': 1, 'verbose': False,#True,# 'step_size': 1, "goal_radius": 1.5, "sst_delta_near": .6, "sst_delta_drain": .3, "goal_bias": 0.05, "width": 4, "hybrid": False, "hybrid_p": 0.0, "cost_samples": 5, "mpnet_weight_path":"mpnet/exported/output/cartpole_obs/mpnet_10k_external_small_model.pt", #"mpnet_weight_path":"mpnet/exported/output/cartpole_obs/mpnet_10k_external_v2_deep.pt", # "mpnet_weight_path":"mpnet/exported/output/cartpole_obs/mpnet_10k.pt", # "mpnet_weight_path":"mpnet/exported/output/cartpole_obs/mpnet_10k_nonorm.pt", # "mpnet_weight_path":"mpnet/exported/output/cartpole_obs/mpnet_subsample0.5_10k.pt", "cost_predictor_weight_path": "mpnet/exported/output/cartpole_obs/cost_10k.pt", "cost_to_go_predictor_weight_path": "mpnet/exported/output/cartpole_obs/cost_to_go_obs.pt", "refine": False, "using_one_step_cost": False, "refine_lr": 0.0, "refine_threshold": 0.0, "device_id": "cuda:0", "cost_reselection": False, "number_of_iterations": 40000, "weights_array": [1, 1, 1, .5], 'max_planning_time': 50, 'shm_max_steps': 40 } return cuda_batch_params
5d8565f123ea80979f9cd6a4454521fd2ddff15c
b0de612c2f7d03399c0d02c5aaf858a72c9ad818
/armi/nuclearDataIO/cccc/tests/test_rzflux.py
93771c4e863ba214363f58516bdda65027c1eb5c
[ "GPL-1.0-or-later", "BSD-3-Clause", "LicenseRef-scancode-free-unknown", "Apache-2.0" ]
permissive
wangcj05/armi
2007e7abf4b422caca0157fc4405b7f45fc6c118
8919afdfce75451b291e45ca1bc2e03c044c2090
refs/heads/master
2022-12-22T00:05:47.561722
2022-12-13T16:46:57
2022-12-13T16:46:57
277,868,987
0
0
Apache-2.0
2020-07-07T16:32:40
2020-07-07T16:32:39
null
UTF-8
Python
false
false
2,673
py
# Copyright 2019 TerraPower, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Test rzflux reading and writing. """ # pylint: disable=missing-function-docstring,missing-class-docstring,protected-access,invalid-name,no-self-use,no-method-argument,import-outside-toplevel import os import unittest from armi.nuclearDataIO.cccc import rzflux from armi.utils.directoryChangers import TemporaryDirectoryChanger THIS_DIR = os.path.dirname(__file__) # This RZFLUX was made by DIF3D 11 in a Cartesian test case. SIMPLE_RZFLUX = os.path.join(THIS_DIR, "fixtures", "simple_cartesian.rzflux") class TestRzflux(unittest.TestCase): """Tests the rzflux class""" def test_readRzflux(self): """Ensure we can read a RZFLUX file.""" flux = rzflux.readBinary(SIMPLE_RZFLUX) self.assertEqual( flux.groupFluxes.shape, (flux.metadata["NGROUP"], flux.metadata["NZONE"]) ) def test_writeRzflux(self): """Ensure that we can write a modified RZFLUX file.""" with TemporaryDirectoryChanger(): flux = rzflux.readBinary(SIMPLE_RZFLUX) rzflux.writeBinary(flux, "RZFLUX2") self.assertTrue(binaryFilesEqual(SIMPLE_RZFLUX, "RZFLUX2")) # perturb off-diag item to check row/col ordering flux.groupFluxes[2, 10] *= 1.1 flux.groupFluxes[12, 1] *= 1.2 rzflux.writeBinary(flux, "RZFLUX3") flux2 = rzflux.readBinary("RZFLUX3") self.assertAlmostEqual(flux2.groupFluxes[12, 1], flux.groupFluxes[12, 1]) def test_rwAscii(self): """Ensure that we can read/write in ascii format.""" with TemporaryDirectoryChanger(): flux = rzflux.readBinary(SIMPLE_RZFLUX) rzflux.writeAscii(flux, "RZFLUX.ascii") flux2 = rzflux.readAscii("RZFLUX.ascii") self.assertTrue((flux2.groupFluxes == flux.groupFluxes).all()) def binaryFilesEqual(fn1, fn2): """True if two files are bytewise identical.""" with open(fn1, "rb") as f1, open(fn2, "rb") as f2: for byte1, byte2 in zip(f1, f2): if byte1 != byte2: return False return True
70dd6b6891e4793418f9b327dcf8ddb1de563ef7
52b5773617a1b972a905de4d692540d26ff74926
/.history/clouds_20200703183549.py
deecd69a4f52fe13e3dd7c9a278d545d91b636a2
[]
no_license
MaryanneNjeri/pythonModules
56f54bf098ae58ea069bf33f11ae94fa8eedcabc
f4e56b1e4dda2349267af634a46f6b9df6686020
refs/heads/master
2022-12-16T02:59:19.896129
2020-09-11T12:05:22
2020-09-11T12:05:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
439
py
def jumpingClouds(c): i = 0 jumps = 0 while i < len(c)-2: if c[i] == 0 and c[i+2] == 0: print('here') print('c---->',c[i],'i-->',i) jumps +=1 i +=2 elif c[i] == 0 and c[i+1] == 0: print('here2') print('c---->',c[i],'i-->',i) jumps +=1 i +=1 print(jumps) jumpingClouds([0 ,0, 1, 0, 0, 1, 0])
2dda85a9ba04d01eb6f79efbf26e1aa3f5fe73a8
b23f9b54f622032e71a80a497ca2d7dbd48469ad
/setup.py
d7560750ca56a0500f4ae92ea7dba81932711c29
[]
no_license
h4ck3rm1k3/pycparserext
15cf0a02429f3fd6bad977cd612e74ca7b20b891
489fd9c4804e7b3f17760b0800cf81a930a2ec7e
refs/heads/master
2021-01-21T08:32:39.114178
2016-04-03T05:22:38
2016-04-03T05:22:38
55,293,358
0
0
null
2016-04-02T12:29:40
2016-04-02T12:29:40
null
UTF-8
Python
false
false
893
py
#!/usr/bin/env python # -*- coding: latin1 -*- from setuptools import setup setup(name="pycparserext", version="2016.1", description="Extensions for pycparser", long_description=open("README.rst", "r").read(), classifiers=[ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Intended Audience :: Other Audience', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: MIT License', 'Natural Language :: English', 'Programming Language :: Python', 'Topic :: Utilities', ], install_requires=[ "ply>=3.4", "pycparser>=2.14", ], author="Andreas Kloeckner", url="http://pypi.python.org/pypi/pycparserext", author_email="[email protected]", license="MIT", packages=["pycparserext"])
4bbf1ff6013d7a48ce63d817454fb8940a26487f
7d23fff61314842d6d7d8ca106382d163a04f139
/watch/models.py
3a423333ca2230cec766903c543e4a2e444032de
[ "MIT" ]
permissive
GeGe-K/Neighbourhood
8b71bc789a72d34769436a5a912ffde87b3c014b
366667dff147141558732e5c6f5004fe4cff221e
refs/heads/master
2022-12-09T18:26:27.536704
2019-01-16T14:13:37
2019-01-16T14:13:37
165,236,886
0
0
MIT
2022-12-08T01:32:31
2019-01-11T12:00:41
Python
UTF-8
Python
false
false
3,462
py
from django.db import models from django.contrib.auth.models import User import datetime as dt # Create your models here. class Location(models.Model): name = models.CharField(max_length=40) def __str__(self): return self.name class Neighbourhood(models.Model): ''' Neighbourhood class has the following properties ''' neighbourhood_name = models.CharField(max_length = 30) neighborhood_location = models.ForeignKey('Location', on_delete = models.CASCADE, null = True, blank =True) occupants = models.IntegerField(null = True) admin = models.ForeignKey(User, on_delete = models.CASCADE) def create_neighbourhood(self): self.save def delete_neighbourhood(self): self.delete() def __str__(self): return self.neighbourhood_name @classmethod def find_neighbourhood(cls, neighbourhood_id): neighbourhood = cls.objects.get(id = neighbourhood_id) return neighbourhood def update_nighbourhood(self): self.save() def update_occupants(self): self.occupants +=1 self.save() class UserProfile(models.Model): ''' UserProfile class has the following properties ''' first_name = models.CharField(max_length=20, blank=True) last_name = models.CharField(max_length=20,blank=True) email = models.EmailField() user = models.ForeignKey(User,on_delete=models.CASCADE) neighborhood = models.ForeignKey('Neighbourhood', on_delete=models.CASCADE, null=True, blank=True) def assign_neighbourhood(self, neighbourhood): self.neighbourhood = neighborhood self.save() def save_profile(self): self.save() def delete_profile(self): self.delete() def __str__(self): return f'{self.user.username}' class Business(models.Model): ''' Business class has the following properties ''' business_name = models.CharField(max_length = 50) owner = models.ForeignKey(User, on_delete = models.CASCADE) business_neighbourhood = models.ForeignKey( 'Neighbourhood', on_delete = models.CASCADE) email = models.EmailField() def create_business(self): self.save() def delete_business(self): self.delete() @classmethod def find_business(cls, business_id): business = cls.objects.get(id = business_id) return business def update_business(self, business_name): self.name = business_name self.save() def __str__(self): return self.business_name class EmergencyContacts(models.Model): ''' Emergency contact class has the following properties ''' name = models.CharField(max_length = 30) contacts = models.CharField(max_length = 20) email = models.EmailField() neighbourhood_contact = models.ForeignKey( 'Neighbourhood', on_delete = models.CASCADE) def __str__(self): return f'{self.name},{self.email}' class Post(models.Model): ''' Post class has the following properties ''' title = models.CharField(max_length=40) post_description = models.TextField(blank = True) posted_by = models.ForeignKey(User, on_delete = models.CASCADE) post_hood = models.ForeignKey('Neighbourhood', on_delete = models.CASCADE) posted_on = models.DateTimeField(auto_now_add = True) def __str__(self): return f'{self.title},{self.post_hood.neighbourhood_name}'
3ef2026eb83017aa5c24665674b8d15767fb2008
51d8f003828d6ee6e6611f0e133b1e35cf400601
/ipaxi/ixbr_api/core/tests/use_cases_tests/test_service_use_case.py
830992ce3f08fe190f0264ea26fd19099f6e8a39
[ "Apache-2.0" ]
permissive
tatubola/xpto
23b5f7a42c13c7d39eb321e52b9b4b2d1ef76c4c
6ed8cec23b06bccb1edf57e6b67af017f9a162d3
refs/heads/master
2020-04-02T11:05:24.560009
2018-10-23T17:41:10
2018-10-23T17:41:10
154,370,519
0
0
null
null
null
null
UTF-8
Python
false
false
1,817
py
from unittest.mock import patch from django.core.exceptions import ValidationError from django.test import TestCase from model_mommy import mommy from ...models import ContactsMap, MLPAv4, Tag from ...use_cases.service_use_case import delete_service_use_case from ..login import DefaultLogin class ServiceUseCaseTest(TestCase): def setUp(self): DefaultLogin.__init__(self) p = patch('ixbr_api.core.models.HistoricalTimeStampedModel.full_clean') p.start() self.addCleanup(p.stop) p = patch('ixbr_api.core.models.create_all_ips') p.start() self.addCleanup(p.stop) p = patch('ixbr_api.core.models.create_tag_by_channel_port') p.start() self.addCleanup(p.stop) def test_delete_service_use_case(self): tag = mommy.make(Tag, status='PRODUCTION') contacts_map = mommy.make(ContactsMap) service_mlpav4 = mommy.make(MLPAv4, tag=tag, make_m2m=True) service_mlpav4.asn.contactsmap_set.add(contacts_map) self.assertEqual(MLPAv4.objects.filter(pk=service_mlpav4.pk).count(), 1) delete_service_use_case(pk=service_mlpav4.pk) self.assertEqual(MLPAv4.objects.filter(pk=service_mlpav4.pk).count(), 0) def test_fail_delete_service_use_case(self): tag = mommy.make(Tag, status='PRODUCTION') contacts_map = mommy.make(ContactsMap) service_mlpav4 = mommy.make(MLPAv4, tag=tag, make_m2m=True) service_mlpav4.asn.contactsmap_set.add(contacts_map) self.assertEqual(MLPAv4.objects.filter(pk=service_mlpav4.pk).count(), 1) with self.assertRaisesMessage(ValidationError, "Invalid service primary key"): delete_service_use_case(pk=tag.pk) self.assertEqual(MLPAv4.objects.filter(pk=service_mlpav4.pk).count(), 1)
dca84f844680918ece78d15a17c804d7d4f4dc67
b7683c108e68ee2d28573edf55923eb34cc2f5ee
/3_Image_Processing/9_Contours/1_Intro/1_Contours_on_binary.py
9be454d9d82d0531c5524d093ed11ff8b9fa6b0f
[]
no_license
aCuissot/openVC_win_py_tutorial
cc42ab1a1fb6eaefe5a91c7e1bb1926a776b0e01
7186b629747cb16f2bf42a03d2339d3dc3ea77bd
refs/heads/master
2020-05-18T12:17:04.619047
2019-07-10T13:45:00
2019-07-10T13:45:00
184,403,715
0
0
null
null
null
null
UTF-8
Python
false
false
525
py
import numpy as np import cv2 as cv im = cv.imread('../../../Data/in/a.jpg') imgray = cv.cvtColor(im, cv.COLOR_BGR2GRAY) _, thresh = cv.threshold(imgray, 127, 255, 0) contours, hierarchy = cv.findContours(thresh, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE) cv.drawContours(im, contours, -1, (0, 255, 0), 3) """ pour ne dessiner qu'un contour, le 3e par ex: cv.drawContours(im, contours, 2, (0, 255, 0), 3) ou cnt = contours[3] cv.drawContours(img, [cnt], 0, (0,255,0), 3) """ cv.imshow('', im) cv.waitKey(0) cv.destroyAllWindows()
5656efc34e8254aae61d10bea0f54846789da243
338062cc2bb422f1364fd18ad5e721f6f713907a
/30. Библиотеки Python. Встроенные модули/Классная работа/Дни рождения друзей.py
901cba0c8631ab75c84e2788ce36d59850346786
[]
no_license
rady1337/FirstYandexLyceumCourse
f3421d5eac7e7fbea4f5e266ebeb6479b89941cf
0d27e452eda046ddd487d6471eeb7d9eb475bd39
refs/heads/master
2022-06-17T03:07:51.017888
2020-05-12T22:17:34
2020-05-12T22:17:34
263,459,364
0
1
null
null
null
null
UTF-8
Python
false
false
119
py
import datetime as dtdin = dt.datetime.now()dn = dt.timedelta(days=int(input()))print((din + dn).day, (din + dn).month)
3da46091f694239b44ce3c59e315748ab9fcae39
09efb7c148e82c22ce6cc7a17b5140aa03aa6e55
/env/lib/python3.6/site-packages/pandas/tests/groupby/test_filters.py
2ce04fc77408301e12a3a44d30366dafee4d3aad
[ "MIT" ]
permissive
harryturr/harryturr_garmin_dashboard
53071a23b267116e1945ae93d36e2a978c411261
734e04f8257f9f84f2553efeb7e73920e35aadc9
refs/heads/master
2023-01-19T22:10:57.374029
2020-01-29T10:47:56
2020-01-29T10:47:56
235,609,069
4
0
MIT
2023-01-05T05:51:27
2020-01-22T16:00:13
Python
UTF-8
Python
false
false
20,388
py
import numpy as np import pytest import pandas as pd from pandas import DataFrame, Series, Timestamp import pandas.util.testing as tm def test_filter_series(): s = pd.Series([1, 3, 20, 5, 22, 24, 7]) expected_odd = pd.Series([1, 3, 5, 7], index=[0, 1, 3, 6]) expected_even = pd.Series([20, 22, 24], index=[2, 4, 5]) grouper = s.apply(lambda x: x % 2) grouped = s.groupby(grouper) tm.assert_series_equal(grouped.filter(lambda x: x.mean() < 10), expected_odd) tm.assert_series_equal(grouped.filter(lambda x: x.mean() > 10), expected_even) # Test dropna=False. tm.assert_series_equal( grouped.filter(lambda x: x.mean() < 10, dropna=False), expected_odd.reindex(s.index), ) tm.assert_series_equal( grouped.filter(lambda x: x.mean() > 10, dropna=False), expected_even.reindex(s.index), ) def test_filter_single_column_df(): df = pd.DataFrame([1, 3, 20, 5, 22, 24, 7]) expected_odd = pd.DataFrame([1, 3, 5, 7], index=[0, 1, 3, 6]) expected_even = pd.DataFrame([20, 22, 24], index=[2, 4, 5]) grouper = df[0].apply(lambda x: x % 2) grouped = df.groupby(grouper) tm.assert_frame_equal(grouped.filter(lambda x: x.mean() < 10), expected_odd) tm.assert_frame_equal(grouped.filter(lambda x: x.mean() > 10), expected_even) # Test dropna=False. tm.assert_frame_equal( grouped.filter(lambda x: x.mean() < 10, dropna=False), expected_odd.reindex(df.index), ) tm.assert_frame_equal( grouped.filter(lambda x: x.mean() > 10, dropna=False), expected_even.reindex(df.index), ) def test_filter_multi_column_df(): df = pd.DataFrame({"A": [1, 12, 12, 1], "B": [1, 1, 1, 1]}) grouper = df["A"].apply(lambda x: x % 2) grouped = df.groupby(grouper) expected = pd.DataFrame({"A": [12, 12], "B": [1, 1]}, index=[1, 2]) tm.assert_frame_equal( grouped.filter(lambda x: x["A"].sum() - x["B"].sum() > 10), expected ) def test_filter_mixed_df(): df = pd.DataFrame({"A": [1, 12, 12, 1], "B": "a b c d".split()}) grouper = df["A"].apply(lambda x: x % 2) grouped = df.groupby(grouper) expected = pd.DataFrame({"A": [12, 12], "B": ["b", "c"]}, index=[1, 2]) tm.assert_frame_equal(grouped.filter(lambda x: x["A"].sum() > 10), expected) def test_filter_out_all_groups(): s = pd.Series([1, 3, 20, 5, 22, 24, 7]) grouper = s.apply(lambda x: x % 2) grouped = s.groupby(grouper) tm.assert_series_equal(grouped.filter(lambda x: x.mean() > 1000), s[[]]) df = pd.DataFrame({"A": [1, 12, 12, 1], "B": "a b c d".split()}) grouper = df["A"].apply(lambda x: x % 2) grouped = df.groupby(grouper) tm.assert_frame_equal(grouped.filter(lambda x: x["A"].sum() > 1000), df.loc[[]]) def test_filter_out_no_groups(): s = pd.Series([1, 3, 20, 5, 22, 24, 7]) grouper = s.apply(lambda x: x % 2) grouped = s.groupby(grouper) filtered = grouped.filter(lambda x: x.mean() > 0) tm.assert_series_equal(filtered, s) df = pd.DataFrame({"A": [1, 12, 12, 1], "B": "a b c d".split()}) grouper = df["A"].apply(lambda x: x % 2) grouped = df.groupby(grouper) filtered = grouped.filter(lambda x: x["A"].mean() > 0) tm.assert_frame_equal(filtered, df) def test_filter_out_all_groups_in_df(): # GH12768 df = pd.DataFrame({"a": [1, 1, 2], "b": [1, 2, 0]}) res = df.groupby("a") res = res.filter(lambda x: x["b"].sum() > 5, dropna=False) expected = pd.DataFrame({"a": [np.nan] * 3, "b": [np.nan] * 3}) tm.assert_frame_equal(expected, res) df = pd.DataFrame({"a": [1, 1, 2], "b": [1, 2, 0]}) res = df.groupby("a") res = res.filter(lambda x: x["b"].sum() > 5, dropna=True) expected = pd.DataFrame({"a": [], "b": []}, dtype="int64") tm.assert_frame_equal(expected, res) def test_filter_condition_raises(): def raise_if_sum_is_zero(x): if x.sum() == 0: raise ValueError else: return x.sum() > 0 s = pd.Series([-1, 0, 1, 2]) grouper = s.apply(lambda x: x % 2) grouped = s.groupby(grouper) msg = "the filter must return a boolean result" with pytest.raises(TypeError, match=msg): grouped.filter(raise_if_sum_is_zero) def test_filter_with_axis_in_groupby(): # issue 11041 index = pd.MultiIndex.from_product([range(10), [0, 1]]) data = pd.DataFrame(np.arange(100).reshape(-1, 20), columns=index, dtype="int64") result = data.groupby(level=0, axis=1).filter(lambda x: x.iloc[0, 0] > 10) expected = data.iloc[:, 12:20] tm.assert_frame_equal(result, expected) def test_filter_bad_shapes(): df = DataFrame({"A": np.arange(8), "B": list("aabbbbcc"), "C": np.arange(8)}) s = df["B"] g_df = df.groupby("B") g_s = s.groupby(s) f = lambda x: x msg = "filter function returned a DataFrame, but expected a scalar bool" with pytest.raises(TypeError, match=msg): g_df.filter(f) msg = "the filter must return a boolean result" with pytest.raises(TypeError, match=msg): g_s.filter(f) f = lambda x: x == 1 msg = "filter function returned a DataFrame, but expected a scalar bool" with pytest.raises(TypeError, match=msg): g_df.filter(f) msg = "the filter must return a boolean result" with pytest.raises(TypeError, match=msg): g_s.filter(f) f = lambda x: np.outer(x, x) msg = "can't multiply sequence by non-int of type 'str'" with pytest.raises(TypeError, match=msg): g_df.filter(f) msg = "the filter must return a boolean result" with pytest.raises(TypeError, match=msg): g_s.filter(f) def test_filter_nan_is_false(): df = DataFrame({"A": np.arange(8), "B": list("aabbbbcc"), "C": np.arange(8)}) s = df["B"] g_df = df.groupby(df["B"]) g_s = s.groupby(s) f = lambda x: np.nan tm.assert_frame_equal(g_df.filter(f), df.loc[[]]) tm.assert_series_equal(g_s.filter(f), s[[]]) def test_filter_against_workaround(): np.random.seed(0) # Series of ints s = Series(np.random.randint(0, 100, 1000)) grouper = s.apply(lambda x: np.round(x, -1)) grouped = s.groupby(grouper) f = lambda x: x.mean() > 10 old_way = s[grouped.transform(f).astype("bool")] new_way = grouped.filter(f) tm.assert_series_equal(new_way.sort_values(), old_way.sort_values()) # Series of floats s = 100 * Series(np.random.random(1000)) grouper = s.apply(lambda x: np.round(x, -1)) grouped = s.groupby(grouper) f = lambda x: x.mean() > 10 old_way = s[grouped.transform(f).astype("bool")] new_way = grouped.filter(f) tm.assert_series_equal(new_way.sort_values(), old_way.sort_values()) # Set up DataFrame of ints, floats, strings. from string import ascii_lowercase letters = np.array(list(ascii_lowercase)) N = 1000 random_letters = letters.take(np.random.randint(0, 26, N)) df = DataFrame( { "ints": Series(np.random.randint(0, 100, N)), "floats": N / 10 * Series(np.random.random(N)), "letters": Series(random_letters), } ) # Group by ints; filter on floats. grouped = df.groupby("ints") old_way = df[grouped.floats.transform(lambda x: x.mean() > N / 20).astype("bool")] new_way = grouped.filter(lambda x: x["floats"].mean() > N / 20) tm.assert_frame_equal(new_way, old_way) # Group by floats (rounded); filter on strings. grouper = df.floats.apply(lambda x: np.round(x, -1)) grouped = df.groupby(grouper) old_way = df[grouped.letters.transform(lambda x: len(x) < N / 10).astype("bool")] new_way = grouped.filter(lambda x: len(x.letters) < N / 10) tm.assert_frame_equal(new_way, old_way) # Group by strings; filter on ints. grouped = df.groupby("letters") old_way = df[grouped.ints.transform(lambda x: x.mean() > N / 20).astype("bool")] new_way = grouped.filter(lambda x: x["ints"].mean() > N / 20) tm.assert_frame_equal(new_way, old_way) def test_filter_using_len(): # BUG GH4447 df = DataFrame({"A": np.arange(8), "B": list("aabbbbcc"), "C": np.arange(8)}) grouped = df.groupby("B") actual = grouped.filter(lambda x: len(x) > 2) expected = DataFrame( {"A": np.arange(2, 6), "B": list("bbbb"), "C": np.arange(2, 6)}, index=np.arange(2, 6), ) tm.assert_frame_equal(actual, expected) actual = grouped.filter(lambda x: len(x) > 4) expected = df.loc[[]] tm.assert_frame_equal(actual, expected) # Series have always worked properly, but we'll test anyway. s = df["B"] grouped = s.groupby(s) actual = grouped.filter(lambda x: len(x) > 2) expected = Series(4 * ["b"], index=np.arange(2, 6), name="B") tm.assert_series_equal(actual, expected) actual = grouped.filter(lambda x: len(x) > 4) expected = s[[]] tm.assert_series_equal(actual, expected) def test_filter_maintains_ordering(): # Simple case: index is sequential. #4621 df = DataFrame( {"pid": [1, 1, 1, 2, 2, 3, 3, 3], "tag": [23, 45, 62, 24, 45, 34, 25, 62]} ) s = df["pid"] grouped = df.groupby("tag") actual = grouped.filter(lambda x: len(x) > 1) expected = df.iloc[[1, 2, 4, 7]] tm.assert_frame_equal(actual, expected) grouped = s.groupby(df["tag"]) actual = grouped.filter(lambda x: len(x) > 1) expected = s.iloc[[1, 2, 4, 7]] tm.assert_series_equal(actual, expected) # Now index is sequentially decreasing. df.index = np.arange(len(df) - 1, -1, -1) s = df["pid"] grouped = df.groupby("tag") actual = grouped.filter(lambda x: len(x) > 1) expected = df.iloc[[1, 2, 4, 7]] tm.assert_frame_equal(actual, expected) grouped = s.groupby(df["tag"]) actual = grouped.filter(lambda x: len(x) > 1) expected = s.iloc[[1, 2, 4, 7]] tm.assert_series_equal(actual, expected) # Index is shuffled. SHUFFLED = [4, 6, 7, 2, 1, 0, 5, 3] df.index = df.index[SHUFFLED] s = df["pid"] grouped = df.groupby("tag") actual = grouped.filter(lambda x: len(x) > 1) expected = df.iloc[[1, 2, 4, 7]] tm.assert_frame_equal(actual, expected) grouped = s.groupby(df["tag"]) actual = grouped.filter(lambda x: len(x) > 1) expected = s.iloc[[1, 2, 4, 7]] tm.assert_series_equal(actual, expected) def test_filter_multiple_timestamp(): # GH 10114 df = DataFrame( { "A": np.arange(5, dtype="int64"), "B": ["foo", "bar", "foo", "bar", "bar"], "C": Timestamp("20130101"), } ) grouped = df.groupby(["B", "C"]) result = grouped["A"].filter(lambda x: True) tm.assert_series_equal(df["A"], result) result = grouped["A"].transform(len) expected = Series([2, 3, 2, 3, 3], name="A") tm.assert_series_equal(result, expected) result = grouped.filter(lambda x: True) tm.assert_frame_equal(df, result) result = grouped.transform("sum") expected = DataFrame({"A": [2, 8, 2, 8, 8]}) tm.assert_frame_equal(result, expected) result = grouped.transform(len) expected = DataFrame({"A": [2, 3, 2, 3, 3]}) tm.assert_frame_equal(result, expected) def test_filter_and_transform_with_non_unique_int_index(): # GH4620 index = [1, 1, 1, 2, 1, 1, 0, 1] df = DataFrame( {"pid": [1, 1, 1, 2, 2, 3, 3, 3], "tag": [23, 45, 62, 24, 45, 34, 25, 62]}, index=index, ) grouped_df = df.groupby("tag") ser = df["pid"] grouped_ser = ser.groupby(df["tag"]) expected_indexes = [1, 2, 4, 7] # Filter DataFrame actual = grouped_df.filter(lambda x: len(x) > 1) expected = df.iloc[expected_indexes] tm.assert_frame_equal(actual, expected) actual = grouped_df.filter(lambda x: len(x) > 1, dropna=False) expected = df.copy() expected.iloc[[0, 3, 5, 6]] = np.nan tm.assert_frame_equal(actual, expected) # Filter Series actual = grouped_ser.filter(lambda x: len(x) > 1) expected = ser.take(expected_indexes) tm.assert_series_equal(actual, expected) actual = grouped_ser.filter(lambda x: len(x) > 1, dropna=False) NA = np.nan expected = Series([NA, 1, 1, NA, 2, NA, NA, 3], index, name="pid") # ^ made manually because this can get confusing! tm.assert_series_equal(actual, expected) # Transform Series actual = grouped_ser.transform(len) expected = Series([1, 2, 2, 1, 2, 1, 1, 2], index, name="pid") tm.assert_series_equal(actual, expected) # Transform (a column from) DataFrameGroupBy actual = grouped_df.pid.transform(len) tm.assert_series_equal(actual, expected) def test_filter_and_transform_with_multiple_non_unique_int_index(): # GH4620 index = [1, 1, 1, 2, 0, 0, 0, 1] df = DataFrame( {"pid": [1, 1, 1, 2, 2, 3, 3, 3], "tag": [23, 45, 62, 24, 45, 34, 25, 62]}, index=index, ) grouped_df = df.groupby("tag") ser = df["pid"] grouped_ser = ser.groupby(df["tag"]) expected_indexes = [1, 2, 4, 7] # Filter DataFrame actual = grouped_df.filter(lambda x: len(x) > 1) expected = df.iloc[expected_indexes] tm.assert_frame_equal(actual, expected) actual = grouped_df.filter(lambda x: len(x) > 1, dropna=False) expected = df.copy() expected.iloc[[0, 3, 5, 6]] = np.nan tm.assert_frame_equal(actual, expected) # Filter Series actual = grouped_ser.filter(lambda x: len(x) > 1) expected = ser.take(expected_indexes) tm.assert_series_equal(actual, expected) actual = grouped_ser.filter(lambda x: len(x) > 1, dropna=False) NA = np.nan expected = Series([NA, 1, 1, NA, 2, NA, NA, 3], index, name="pid") # ^ made manually because this can get confusing! tm.assert_series_equal(actual, expected) # Transform Series actual = grouped_ser.transform(len) expected = Series([1, 2, 2, 1, 2, 1, 1, 2], index, name="pid") tm.assert_series_equal(actual, expected) # Transform (a column from) DataFrameGroupBy actual = grouped_df.pid.transform(len) tm.assert_series_equal(actual, expected) def test_filter_and_transform_with_non_unique_float_index(): # GH4620 index = np.array([1, 1, 1, 2, 1, 1, 0, 1], dtype=float) df = DataFrame( {"pid": [1, 1, 1, 2, 2, 3, 3, 3], "tag": [23, 45, 62, 24, 45, 34, 25, 62]}, index=index, ) grouped_df = df.groupby("tag") ser = df["pid"] grouped_ser = ser.groupby(df["tag"]) expected_indexes = [1, 2, 4, 7] # Filter DataFrame actual = grouped_df.filter(lambda x: len(x) > 1) expected = df.iloc[expected_indexes] tm.assert_frame_equal(actual, expected) actual = grouped_df.filter(lambda x: len(x) > 1, dropna=False) expected = df.copy() expected.iloc[[0, 3, 5, 6]] = np.nan tm.assert_frame_equal(actual, expected) # Filter Series actual = grouped_ser.filter(lambda x: len(x) > 1) expected = ser.take(expected_indexes) tm.assert_series_equal(actual, expected) actual = grouped_ser.filter(lambda x: len(x) > 1, dropna=False) NA = np.nan expected = Series([NA, 1, 1, NA, 2, NA, NA, 3], index, name="pid") # ^ made manually because this can get confusing! tm.assert_series_equal(actual, expected) # Transform Series actual = grouped_ser.transform(len) expected = Series([1, 2, 2, 1, 2, 1, 1, 2], index, name="pid") tm.assert_series_equal(actual, expected) # Transform (a column from) DataFrameGroupBy actual = grouped_df.pid.transform(len) tm.assert_series_equal(actual, expected) def test_filter_and_transform_with_non_unique_timestamp_index(): # GH4620 t0 = Timestamp("2013-09-30 00:05:00") t1 = Timestamp("2013-10-30 00:05:00") t2 = Timestamp("2013-11-30 00:05:00") index = [t1, t1, t1, t2, t1, t1, t0, t1] df = DataFrame( {"pid": [1, 1, 1, 2, 2, 3, 3, 3], "tag": [23, 45, 62, 24, 45, 34, 25, 62]}, index=index, ) grouped_df = df.groupby("tag") ser = df["pid"] grouped_ser = ser.groupby(df["tag"]) expected_indexes = [1, 2, 4, 7] # Filter DataFrame actual = grouped_df.filter(lambda x: len(x) > 1) expected = df.iloc[expected_indexes] tm.assert_frame_equal(actual, expected) actual = grouped_df.filter(lambda x: len(x) > 1, dropna=False) expected = df.copy() expected.iloc[[0, 3, 5, 6]] = np.nan tm.assert_frame_equal(actual, expected) # Filter Series actual = grouped_ser.filter(lambda x: len(x) > 1) expected = ser.take(expected_indexes) tm.assert_series_equal(actual, expected) actual = grouped_ser.filter(lambda x: len(x) > 1, dropna=False) NA = np.nan expected = Series([NA, 1, 1, NA, 2, NA, NA, 3], index, name="pid") # ^ made manually because this can get confusing! tm.assert_series_equal(actual, expected) # Transform Series actual = grouped_ser.transform(len) expected = Series([1, 2, 2, 1, 2, 1, 1, 2], index, name="pid") tm.assert_series_equal(actual, expected) # Transform (a column from) DataFrameGroupBy actual = grouped_df.pid.transform(len) tm.assert_series_equal(actual, expected) def test_filter_and_transform_with_non_unique_string_index(): # GH4620 index = list("bbbcbbab") df = DataFrame( {"pid": [1, 1, 1, 2, 2, 3, 3, 3], "tag": [23, 45, 62, 24, 45, 34, 25, 62]}, index=index, ) grouped_df = df.groupby("tag") ser = df["pid"] grouped_ser = ser.groupby(df["tag"]) expected_indexes = [1, 2, 4, 7] # Filter DataFrame actual = grouped_df.filter(lambda x: len(x) > 1) expected = df.iloc[expected_indexes] tm.assert_frame_equal(actual, expected) actual = grouped_df.filter(lambda x: len(x) > 1, dropna=False) expected = df.copy() expected.iloc[[0, 3, 5, 6]] = np.nan tm.assert_frame_equal(actual, expected) # Filter Series actual = grouped_ser.filter(lambda x: len(x) > 1) expected = ser.take(expected_indexes) tm.assert_series_equal(actual, expected) actual = grouped_ser.filter(lambda x: len(x) > 1, dropna=False) NA = np.nan expected = Series([NA, 1, 1, NA, 2, NA, NA, 3], index, name="pid") # ^ made manually because this can get confusing! tm.assert_series_equal(actual, expected) # Transform Series actual = grouped_ser.transform(len) expected = Series([1, 2, 2, 1, 2, 1, 1, 2], index, name="pid") tm.assert_series_equal(actual, expected) # Transform (a column from) DataFrameGroupBy actual = grouped_df.pid.transform(len) tm.assert_series_equal(actual, expected) def test_filter_has_access_to_grouped_cols(): df = DataFrame([[1, 2], [1, 3], [5, 6]], columns=["A", "B"]) g = df.groupby("A") # previously didn't have access to col A #???? filt = g.filter(lambda x: x["A"].sum() == 2) tm.assert_frame_equal(filt, df.iloc[[0, 1]]) def test_filter_enforces_scalarness(): df = pd.DataFrame( [ ["best", "a", "x"], ["worst", "b", "y"], ["best", "c", "x"], ["best", "d", "y"], ["worst", "d", "y"], ["worst", "d", "y"], ["best", "d", "z"], ], columns=["a", "b", "c"], ) with pytest.raises(TypeError, match="filter function returned a.*"): df.groupby("c").filter(lambda g: g["a"] == "best") def test_filter_non_bool_raises(): df = pd.DataFrame( [ ["best", "a", 1], ["worst", "b", 1], ["best", "c", 1], ["best", "d", 1], ["worst", "d", 1], ["worst", "d", 1], ["best", "d", 1], ], columns=["a", "b", "c"], ) with pytest.raises(TypeError, match="filter function returned a.*"): df.groupby("a").filter(lambda g: g.c.mean()) def test_filter_dropna_with_empty_groups(): # GH 10780 data = pd.Series(np.random.rand(9), index=np.repeat([1, 2, 3], 3)) groupped = data.groupby(level=0) result_false = groupped.filter(lambda x: x.mean() > 1, dropna=False) expected_false = pd.Series([np.nan] * 9, index=np.repeat([1, 2, 3], 3)) tm.assert_series_equal(result_false, expected_false) result_true = groupped.filter(lambda x: x.mean() > 1, dropna=True) expected_true = pd.Series(index=pd.Index([], dtype=int)) tm.assert_series_equal(result_true, expected_true)
a2c28551321a031321b269385b8a40dee9d39c56
f4434c85e3814b6347f8f8099c081ed4af5678a5
/sdk/tables/azure-data-tables/azure/data/tables/_generated/aio/operations/_service_operations.py
4ef1391d9b929f9750111cbb76a4882ccc33b059
[ "LicenseRef-scancode-generic-cla", "MIT", "LGPL-2.1-or-later" ]
permissive
yunhaoling/azure-sdk-for-python
5da12a174a37672ac6ed8e3c1f863cb77010a506
c4eb0ca1aadb76ad892114230473034830116362
refs/heads/master
2022-06-11T01:17:39.636461
2020-12-08T17:42:08
2020-12-08T17:42:08
177,675,796
1
0
MIT
2020-03-31T20:35:17
2019-03-25T22:43:40
Python
UTF-8
Python
false
false
13,225
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, Callable, Dict, Generic, Optional, TypeVar import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from ... import models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class ServiceOperations: """ServiceOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.data.tables.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config async def set_properties( self, table_service_properties: "models.TableServiceProperties", timeout: Optional[int] = None, request_id_parameter: Optional[str] = None, **kwargs ) -> None: """Sets properties for an account's Table service endpoint, including properties for Analytics and CORS (Cross-Origin Resource Sharing) rules. :param table_service_properties: The Table Service properties. :type table_service_properties: ~azure.data.tables.models.TableServiceProperties :param timeout: The timeout parameter is expressed in seconds. :type timeout: int :param request_id_parameter: Provides a client-generated, opaque value with a 1 KB character limit that is recorded in the analytics logs when analytics logging is enabled. :type request_id_parameter: str :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) restype = "service" comp = "properties" content_type = kwargs.pop("content_type", "application/xml") accept = "application/xml" # Construct URL url = self.set_properties.metadata['url'] # type: ignore path_format_arguments = { 'url': self._serialize.url("self._config.url", self._config.url, 'str', skip_quote=True), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['restype'] = self._serialize.query("restype", restype, 'str') query_parameters['comp'] = self._serialize.query("comp", comp, 'str') if timeout is not None: query_parameters['timeout'] = self._serialize.query("timeout", timeout, 'int', minimum=0) # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['x-ms-version'] = self._serialize.header("self._config.version", self._config.version, 'str') if request_id_parameter is not None: header_parameters['x-ms-client-request-id'] = self._serialize.header("request_id_parameter", request_id_parameter, 'str') header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(table_service_properties, 'TableServiceProperties', is_xml=True) body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.TableServiceError, response) raise HttpResponseError(response=response, model=error) response_headers = {} response_headers['x-ms-client-request-id']=self._deserialize('str', response.headers.get('x-ms-client-request-id')) response_headers['x-ms-request-id']=self._deserialize('str', response.headers.get('x-ms-request-id')) response_headers['x-ms-version']=self._deserialize('str', response.headers.get('x-ms-version')) if cls: return cls(pipeline_response, None, response_headers) set_properties.metadata = {'url': '/'} # type: ignore async def get_properties( self, timeout: Optional[int] = None, request_id_parameter: Optional[str] = None, **kwargs ) -> "models.TableServiceProperties": """Gets the properties of an account's Table service, including properties for Analytics and CORS (Cross-Origin Resource Sharing) rules. :param timeout: The timeout parameter is expressed in seconds. :type timeout: int :param request_id_parameter: Provides a client-generated, opaque value with a 1 KB character limit that is recorded in the analytics logs when analytics logging is enabled. :type request_id_parameter: str :keyword callable cls: A custom type or function that will be passed the direct response :return: TableServiceProperties, or the result of cls(response) :rtype: ~azure.data.tables.models.TableServiceProperties :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.TableServiceProperties"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) restype = "service" comp = "properties" accept = "application/xml" # Construct URL url = self.get_properties.metadata['url'] # type: ignore path_format_arguments = { 'url': self._serialize.url("self._config.url", self._config.url, 'str', skip_quote=True), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['restype'] = self._serialize.query("restype", restype, 'str') query_parameters['comp'] = self._serialize.query("comp", comp, 'str') if timeout is not None: query_parameters['timeout'] = self._serialize.query("timeout", timeout, 'int', minimum=0) # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['x-ms-version'] = self._serialize.header("self._config.version", self._config.version, 'str') if request_id_parameter is not None: header_parameters['x-ms-client-request-id'] = self._serialize.header("request_id_parameter", request_id_parameter, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.TableServiceError, response) raise HttpResponseError(response=response, model=error) response_headers = {} response_headers['x-ms-client-request-id']=self._deserialize('str', response.headers.get('x-ms-client-request-id')) response_headers['x-ms-request-id']=self._deserialize('str', response.headers.get('x-ms-request-id')) response_headers['x-ms-version']=self._deserialize('str', response.headers.get('x-ms-version')) deserialized = self._deserialize('TableServiceProperties', pipeline_response) if cls: return cls(pipeline_response, deserialized, response_headers) return deserialized get_properties.metadata = {'url': '/'} # type: ignore async def get_statistics( self, timeout: Optional[int] = None, request_id_parameter: Optional[str] = None, **kwargs ) -> "models.TableServiceStats": """Retrieves statistics related to replication for the Table service. It is only available on the secondary location endpoint when read-access geo-redundant replication is enabled for the account. :param timeout: The timeout parameter is expressed in seconds. :type timeout: int :param request_id_parameter: Provides a client-generated, opaque value with a 1 KB character limit that is recorded in the analytics logs when analytics logging is enabled. :type request_id_parameter: str :keyword callable cls: A custom type or function that will be passed the direct response :return: TableServiceStats, or the result of cls(response) :rtype: ~azure.data.tables.models.TableServiceStats :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.TableServiceStats"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) restype = "service" comp = "stats" accept = "application/xml" # Construct URL url = self.get_statistics.metadata['url'] # type: ignore path_format_arguments = { 'url': self._serialize.url("self._config.url", self._config.url, 'str', skip_quote=True), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['restype'] = self._serialize.query("restype", restype, 'str') query_parameters['comp'] = self._serialize.query("comp", comp, 'str') if timeout is not None: query_parameters['timeout'] = self._serialize.query("timeout", timeout, 'int', minimum=0) # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['x-ms-version'] = self._serialize.header("self._config.version", self._config.version, 'str') if request_id_parameter is not None: header_parameters['x-ms-client-request-id'] = self._serialize.header("request_id_parameter", request_id_parameter, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.TableServiceError, response) raise HttpResponseError(response=response, model=error) response_headers = {} response_headers['x-ms-client-request-id']=self._deserialize('str', response.headers.get('x-ms-client-request-id')) response_headers['x-ms-request-id']=self._deserialize('str', response.headers.get('x-ms-request-id')) response_headers['x-ms-version']=self._deserialize('str', response.headers.get('x-ms-version')) response_headers['Date']=self._deserialize('rfc-1123', response.headers.get('Date')) deserialized = self._deserialize('TableServiceStats', pipeline_response) if cls: return cls(pipeline_response, deserialized, response_headers) return deserialized get_statistics.metadata = {'url': '/'} # type: ignore
56c2dc305f24ba5731f349d4284d1ede0e056579
91d1a6968b90d9d461e9a2ece12b465486e3ccc2
/ec2_write_1/ebs-default-kms-key-id_modify.py
9590bdb3b63ab3aa9cd39ae2bf409a3fec3eef4f
[]
no_license
lxtxl/aws_cli
c31fc994c9a4296d6bac851e680d5adbf7e93481
aaf35df1b7509abf5601d3f09ff1fece482facda
refs/heads/master
2023-02-06T09:00:33.088379
2020-12-27T13:38:45
2020-12-27T13:38:45
318,686,394
0
0
null
null
null
null
UTF-8
Python
false
false
1,870
py
#!/usr/bin/python # -*- codding: utf-8 -*- import os import sys sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))) from common.execute_command import write_one_parameter # url : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/modify-ebs-default-kms-key-id.html if __name__ == '__main__': """ get-ebs-default-kms-key-id : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/get-ebs-default-kms-key-id.html reset-ebs-default-kms-key-id : https://awscli.amazonaws.com/v2/documentation/api/latest/reference/ec2/reset-ebs-default-kms-key-id.html """ parameter_display_string = """ # kms-key-id : The identifier of the AWS Key Management Service (AWS KMS) customer master key (CMK) to use for Amazon EBS encryption. If this parameter is not specified, your AWS managed CMK for EBS is used. If KmsKeyId is specified, the encrypted state must be true . You can specify the CMK using any of the following: Key ID. For example, 1234abcd-12ab-34cd-56ef-1234567890ab. Key alias. For example, alias/ExampleAlias. Key ARN. For example, arn:aws:kms:us-east-1:012345678910:key/1234abcd-12ab-34cd-56ef-1234567890ab. Alias ARN. For example, arn:aws:kms:us-east-1:012345678910:alias/ExampleAlias. AWS authenticates the CMK asynchronously. Therefore, if you specify an ID, alias, or ARN that is not valid, the action can appear to complete, but eventually fails. Amazon EBS does not support asymmetric CMKs. """ add_option_dict = {} ####################################################################### # parameter display string add_option_dict["parameter_display_string"] = parameter_display_string # ex: add_option_dict["no_value_parameter_list"] = "--single-parameter" write_one_parameter("ec2", "modify-ebs-default-kms-key-id", "kms-key-id", add_option_dict)
e30eac1ded6ffcfd4458f5a272fdbbeb01c07f3a
f3a7eae3031bb9afe75116a9b86278490ac4a7e6
/text/symbols.py
c329f2df647246d4d8e564a02e78e26b68ac2691
[ "BSD-3-Clause", "MIT" ]
permissive
LOCS-AI/Multilanguage_Tacotron_2
ea34c4fb41e8112537529945b5a31cf2e78d0610
82c788fb26d93c6735c54c2fe4ae7bcbd0eec69f
refs/heads/master
2022-12-31T01:39:57.432804
2020-10-08T00:04:58
2020-10-08T00:04:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
989
py
""" from https://github.com/keithito/tacotron """ ''' Defines the set of symbols used in text input to the model. The default is a set of ASCII characters that works well for English or text that has been run through Unidecode. For other data, you can modify _characters. See TRAINING_DATA.md for details. ''' from text import cmudict _pad = '_' _punctuation = '!\'(),.:;? ' _special = '-' _letters = 'abcdefghijklmnopqrstuvwxyz' # Prepend "@" to ARPAbet symbols to ensure uniqueness (some are the same as uppercase letters): _arpabet = ['@' + s for s in cmudict.valid_symbols] hangul_symbol = u'''␀␃%"ᄀᄁᄂᄃᄄᄅᄆᄇᄈᄉᄊᄋᄌᄍᄎᄏᄐᄑᄒᅌᅡᅢᅣᅤᅥᅦᅧᅨᅩᅪᅫᅬᅭᅮᅯᅰᅱᅲᅳᅴᅵᆞᆢᆨᆩᆫᆬᆭᆮᆯᆰᆱᆲᆴᆶᆪᆷᆸᆹᆺᆻᆼᆽᆾᆿᇀᇁᇂ''' # Export all symbols: symbols = [_pad] + list(_special) + list(_punctuation) + _arpabet + list(_letters) symbols = list(hangul_symbol) + symbols
03608d220d4d293c64e7d19d2c5178953574c174
0e1e643e864bcb96cf06f14f4cb559b034e114d0
/Exps_7_v3/doc3d/Ablation4_ch016_ep003_7/W_w_M_to_C_pyr/pyr_6s/L7/step10_a.py
6c005ce2d39cf14a6d40bc0a6f470140b0365a40
[]
no_license
KongBOy/kong_model2
33a94a9d2be5b0f28f9d479b3744e1d0e0ebd307
1af20b168ffccf0d5293a393a40a9fa9519410b2
refs/heads/master
2022-10-14T03:09:22.543998
2022-10-06T11:33:42
2022-10-06T11:33:42
242,080,692
3
0
null
null
null
null
UTF-8
Python
false
false
942,122
py
############################################################################################################################################################################################################# ############################################################################################################################################################################################################# ### 把 kong_model2 加入 sys.path import os code_exe_path = os.path.realpath(__file__) ### 目前執行 step10_b.py 的 path code_exe_path_element = code_exe_path.split("\\") ### 把 path 切分 等等 要找出 kong_model 在第幾層 code_dir = "\\".join(code_exe_path_element[:-1]) kong_layer = code_exe_path_element.index("kong_model2") ### 找出 kong_model2 在第幾層 kong_model2_dir = "\\".join(code_exe_path_element[:kong_layer + 1]) ### 定位出 kong_model2 的 dir import sys ### 把 kong_model2 加入 sys.path sys.path.append(kong_model2_dir) sys.path.append(code_dir) # print(__file__.split("\\")[-1]) # print(" code_exe_path:", code_exe_path) # print(" code_exe_path_element:", code_exe_path_element) # print(" code_dir:", code_dir) # print(" kong_layer:", kong_layer) # print(" kong_model2_dir:", kong_model2_dir) ############################################################################################################################################################################################################# kong_to_py_layer = len(code_exe_path_element) - 1 - kong_layer ### 中間 -1 是為了長度轉index # print(" kong_to_py_layer:", kong_to_py_layer) if (kong_to_py_layer == 0): template_dir = "" elif(kong_to_py_layer == 2): template_dir = code_exe_path_element[kong_layer + 1][0:] ### [7:] 是為了去掉 step1x_, 後來覺得好像改有意義的名字不去掉也行所以 改 0 elif(kong_to_py_layer == 3): template_dir = code_exe_path_element[kong_layer + 1][0:] + "/" + code_exe_path_element[kong_layer + 2][0:] ### [5:] 是為了去掉 mask_ ,前面的 mask_ 是為了python 的 module 不能 數字開頭, 隨便加的這樣子, 後來覺得 自動排的順序也可以接受, 所以 改0 elif(kong_to_py_layer > 3): template_dir = code_exe_path_element[kong_layer + 1][0:] + "/" + code_exe_path_element[kong_layer + 2][0:] + "/" + "/".join(code_exe_path_element[kong_layer + 3: -1]) # print(" template_dir:", template_dir) ### 舉例: template_dir: 7_mask_unet/5_os_book_and_paper_have_dtd_hdr_mix_bg_tv_s04_mae ############################################################################################################################################################################################################# exp_dir = template_dir ############################################################################################################################################################################################################# from step06_a_datas_obj import * from step09_6side_L7 import * from step10_a2_loss_info_obj import * from step10_b2_exp_builder import Exp_builder rm_paths = [path for path in sys.path if code_dir in path] for rm_path in rm_paths: sys.path.remove(rm_path) rm_moduless = [module for module in sys.modules if "step09" in module] for rm_module in rm_moduless: del sys.modules[rm_module] ############################################################################################################################################################################################################# ''' exp_dir 是 決定 result_dir 的 "上一層"資料夾 名字喔! exp_dir要巢狀也沒問題~ 比如:exp_dir = "6_mask_unet/自己命的名字",那 result_dir 就都在: 6_mask_unet/自己命的名字/result_a 6_mask_unet/自己命的名字/result_b 6_mask_unet/自己命的名字/... ''' use_db_obj = type8_blender_kong_doc3d_in_W_and_I_gt_F use_loss_obj = [mae_s001_sobel_k9_s001_loss_info_builder.set_loss_target("UNet_W").copy()] ### z, y, x 順序是看 step07_b_0b_Multi_UNet 來對應的喔 ############################################################# ### 為了resul_analyze畫空白的圖,建一個empty的 Exp_builder empty = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_1__2side_1__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_1__2side_1__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="為了resul_analyze畫空白的圖,建一個empty的 Exp_builder") ############################################################# ################### ############# 1s1 ######### 2s1 ##### 3s1 ### 4s1 ch032_1side_1__2side_1__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_1__2side_1__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_1__2side_1__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ################### ############# 1s2 ######### 2s1 ##### 3s1 ### 4s1 ch032_1side_2__2side_1__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_1__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_2__2side_1__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ######### 2s1 ##### 3s1 ### 4s1 ch032_1side_2__2side_2__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_2__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_2__2side_2__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s2 ### 4s1 ch032_1side_2__2side_2__3side_2_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_2__3side_2_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_2__2side_2__3side_2_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_2__2side_2__3side_2_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_2__3side_2_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_2__2side_2__3side_2_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_2__2side_2__3side_2_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_2__3side_2_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_2__2side_2__3side_2_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_2__2side_2__3side_2_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_2__2side_2__3side_2_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_2__2side_2__3side_2_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ################### ############# 1s3 ######### 2s1 ##### 3s1 ### 4s1 ch032_1side_3__2side_1__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_1__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_1__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ######### 2s2 ##### 3s1 ### 4s1 ch032_1side_3__2side_2__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_2__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_2__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s2 ### 4s1 ch032_1side_3__2side_2__3side_2_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_2__3side_2_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_2__3side_2_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_3__2side_2__3side_2_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_2__3side_2_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_2__3side_2_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_2__3side_2_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_2__3side_2_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_2__3side_2_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_2__3side_2_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_2__3side_2_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_2__3side_2_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ######### 2s3 ##### 3s1 ### 4s1 ch032_1side_3__2side_3__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s2 ### 4s1 ch032_1side_3__2side_3__3side_2_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_2_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_2_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_3__2side_3__3side_2_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_2_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_2_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_2_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_2_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_2_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_2_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_2_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_2_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s3 ### 4s1 ch032_1side_3__2side_3__3side_3_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_3_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_3__2side_3__3side_3_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_3_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_3_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_3_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_3_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_3_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_3__2side_3__3side_3_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_3_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_3_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_3_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_3_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_3__2side_3__3side_3_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_3__2side_3__3side_3_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ################### ############# 1s4 ######### 2s1 ##### 3s1 ### 4s1 ch032_1side_4__2side_1__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_1__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_1__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ######### 2s2 ##### 3s1 ### 4s1 ch032_1side_4__2side_2__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_2__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_2__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s2 ### 4s1 ch032_1side_4__2side_2__3side_2_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_2__3side_2_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_2__3side_2_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_4__2side_2__3side_2_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_2__3side_2_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_2__3side_2_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_2__3side_2_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_2__3side_2_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_2__3side_2_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_2__3side_2_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_2__3side_2_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_2__3side_2_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ######### 2s3 ##### 3s1 ### 4s1 ch032_1side_4__2side_3__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s2 ### 4s1 ch032_1side_4__2side_3__3side_2_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_2_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_2_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_4__2side_3__3side_2_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_2_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_2_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_2_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_2_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_2_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_2_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_2_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_2_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s3 ### 4s1 ch032_1side_4__2side_3__3side_3_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_3_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_4__2side_3__3side_3_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_3_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_3_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_3_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_3_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_3_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_4__2side_3__3side_3_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_3_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_3_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_3_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_3_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_3__3side_3_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_3__3side_3_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ######### 2s4 ##### 3s1 ### 4s1 ch032_1side_4__2side_4__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s2 ### 4s1 ch032_1side_4__2side_4__3side_2_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_2_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_2_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_4__2side_4__3side_2_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_2_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_2_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_2_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_2_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_2_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_2_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_2_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_2_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s3 ### 4s1 ch032_1side_4__2side_4__3side_3_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_3_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_4__2side_4__3side_3_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_3_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_3_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_3_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_3_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_3_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_4__2side_4__3side_3_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_3_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_3_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_3_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_3_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_3_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_3_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s4 ### 4s1 ch032_1side_4__2side_4__3side_4_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_4__2side_4__3side_4_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_4__2side_4__3side_4_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s4 ch032_1side_4__2side_4__3side_4_4side_4_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_4_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_4_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_4_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_4_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_4_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_4_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_4_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_4_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_4__2side_4__3side_4_4side_4_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_4__2side_4__3side_4_4side_4_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ################### ############# 1s5 ######### 2s1 ##### 3s1 ### 4s1 ch032_1side_5__2side_1__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_1__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_1__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ######### 2s2 ##### 3s1 ### 4s1 ch032_1side_5__2side_2__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_2__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_2__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s2 ### 4s1 ch032_1side_5__2side_2__3side_2_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_2__3side_2_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_2__3side_2_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_5__2side_2__3side_2_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_2__3side_2_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_2__3side_2_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_2__3side_2_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_2__3side_2_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_2__3side_2_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_2__3side_2_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_2__3side_2_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_2__3side_2_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ######### 2s3 ##### 3s1 ### 4s1 ch032_1side_5__2side_3__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s2 ### 4s1 ch032_1side_5__2side_3__3side_2_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_2_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_2_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_5__2side_3__3side_2_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_2_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_2_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_3__3side_2_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_2_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_2_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_3__3side_2_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_2_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_2_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s3 ### 4s1 ch032_1side_5__2side_3__3side_3_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_3_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_3_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_5__2side_3__3side_3_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_3_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_3_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_3__3side_3_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_3_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_3_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_3__3side_3_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_3_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_3_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_5__2side_3__3side_3_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_3_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_3_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_3__3side_3_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_3_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_3_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_3__3side_3_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_3_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_3_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_3__3side_3_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_3_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_3_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_3__3side_3_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_3_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_3_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_3__3side_3_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_3__3side_3_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_3__3side_3_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ######### 2s4 ##### 3s1 ### 4s1 ch032_1side_5__2side_4__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s2 ### 4s1 ch032_1side_5__2side_4__3side_2_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_2_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_2_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_5__2side_4__3side_2_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_2_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_2_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_2_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_2_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_2_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_2_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_2_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_2_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s3 ### 4s1 ch032_1side_5__2side_4__3side_3_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_3_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_3_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_5__2side_4__3side_3_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_3_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_3_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_3_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_3_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_3_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_3_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_3_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_3_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_5__2side_4__3side_3_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_3_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_3_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_3_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_3_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_3_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_3_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_3_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_3_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_3_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_3_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_3_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_3_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_3_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_3_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_3_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_3_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_3_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s4 ### 4s1 ch032_1side_5__2side_4__3side_4_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_5__2side_4__3side_4_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_5__2side_4__3side_4_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s4 ch032_1side_5__2side_4__3side_4_4side_4_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_4_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_4_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_4_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_4_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_4_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_4_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_4_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_4_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_4__3side_4_4side_4_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_4__3side_4_4side_4_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ######### 2s5 ##### 3s1 ### 4s1 ch032_1side_5__2side_5__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s2 ### 4s1 ch032_1side_5__2side_5__3side_2_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_2_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_2_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_5__2side_5__3side_2_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_2_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_2_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_2_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_2_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_2_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_2_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_2_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_2_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s3 ### 4s1 ch032_1side_5__2side_5__3side_3_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_3_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_3_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_5__2side_5__3side_3_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_3_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_3_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_3_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_3_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_3_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_3_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_3_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_3_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_5__2side_5__3side_3_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_3_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_3_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_3_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_3_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_3_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_3_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_3_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_3_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_3_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_3_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_3_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_3_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_3_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_3_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_3_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_3_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_3_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s4 ### 4s1 ch032_1side_5__2side_5__3side_4_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_5__2side_5__3side_4_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_5__2side_5__3side_4_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s4 ch032_1side_5__2side_5__3side_4_4side_4_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_4_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_4_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_4_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_4_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_4_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_4_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_4_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_4_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_4_4side_4_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_4_4side_4_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s5 ### 4s1 ch032_1side_5__2side_5__3side_5_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_5__2side_5__3side_5_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_5__2side_5__3side_5_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s4 ch032_1side_5__2side_5__3side_5_4side_4_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_4_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_4_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_4_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_4_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_4_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_4_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_4_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_4_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_4_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_4_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s5 ch032_1side_5__2side_5__3side_5_4side_5_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_5_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_5_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_5_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_5_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_5_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_5_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_5_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_5_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_5_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_5_5s5_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s5_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s5_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_5_5s5_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s5_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s5_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_5_5s5_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s5_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s5_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_5_5s5_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s5_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s5_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_5__2side_5__3side_5_4side_5_5s5_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s5_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_5__2side_5__3side_5_4side_5_5s5_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ################### ############# 1s6 ######### 2s1 ##### 3s1 ### 4s1 ch032_1side_6__2side_1__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_1__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_1__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ######### 2s2 ##### 3s1 ### 4s1 ch032_1side_6__2side_2__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_2__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_2__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s2 ### 4s1 ch032_1side_6__2side_2__3side_2_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_2__3side_2_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_2__3side_2_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_6__2side_2__3side_2_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_2__3side_2_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_2__3side_2_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_2__3side_2_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_2__3side_2_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_2__3side_2_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_2__3side_2_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_2__3side_2_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_2__3side_2_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ######### 2s3 ##### 3s1 ### 4s1 ch032_1side_6__2side_3__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_3__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s2 ### 4s1 ch032_1side_6__2side_3__3side_2_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_2_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_3__3side_2_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_6__2side_3__3side_2_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_2_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_3__3side_2_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_3__3side_2_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_2_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_3__3side_2_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_3__3side_2_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_2_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_3__3side_2_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s3 ### 4s1 ch032_1side_6__2side_3__3side_3_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_3_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_3__3side_3_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_6__2side_3__3side_3_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_3_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_3__3side_3_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_3__3side_3_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_3_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_3__3side_3_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_3__3side_3_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_3_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_3__3side_3_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_6__2side_3__3side_3_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_3_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_3__3side_3_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_3__3side_3_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_3_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_3__3side_3_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_3__3side_3_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_3_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_3__3side_3_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_3__3side_3_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_3_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_3__3side_3_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_3__3side_3_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_3_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_3__3side_3_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_3__3side_3_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_3__3side_3_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_3__3side_3_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ######### 2s4 ##### 3s1 ### 4s1 ch032_1side_6__2side_4__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s2 ### 4s1 ch032_1side_6__2side_4__3side_2_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_2_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_2_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_6__2side_4__3side_2_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_2_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_2_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_2_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_2_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_2_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_2_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_2_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_2_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s3 ### 4s1 ch032_1side_6__2side_4__3side_3_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_3_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_3_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_6__2side_4__3side_3_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_3_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_3_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_3_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_3_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_3_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_3_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_3_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_3_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_6__2side_4__3side_3_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_3_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_3_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_3_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_3_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_3_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_3_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_3_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_3_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_3_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_3_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_3_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_3_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_3_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_3_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_3_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_3_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_3_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s4 ### 4s1 ch032_1side_6__2side_4__3side_4_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_6__2side_4__3side_4_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_4_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_4_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_6__2side_4__3side_4_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_4_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_4_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_4_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_4_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_4_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s4 ch032_1side_6__2side_4__3side_4_4side_4_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_4_4side_4_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_4_4side_4_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_4_4side_4_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_4_4side_4_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_4_4side_4_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_4_4side_4_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_4_4side_4_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_4_4side_4_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_4__3side_4_4side_4_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_4__3side_4_4side_4_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ######### 2s5 ##### 3s1 ### 4s1 ch032_1side_6__2side_5__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s2 ### 4s1 ch032_1side_6__2side_5__3side_2_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_2_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_2_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_6__2side_5__3side_2_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_2_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_2_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_2_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_2_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_2_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_2_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_2_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_2_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s3 ### 4s1 ch032_1side_6__2side_5__3side_3_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_3_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_3_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_6__2side_5__3side_3_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_3_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_3_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_3_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_3_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_3_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_3_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_3_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_3_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_6__2side_5__3side_3_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_3_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_3_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_3_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_3_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_3_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_3_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_3_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_3_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_3_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_3_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_3_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_3_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_3_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_3_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_3_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_3_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_3_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s4 ### 4s1 ch032_1side_6__2side_5__3side_4_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_6__2side_5__3side_4_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_4_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_4_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_6__2side_5__3side_4_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_4_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_4_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_4_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_4_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_4_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s4 ch032_1side_6__2side_5__3side_4_4side_4_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_4_4side_4_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_4_4side_4_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_4_4side_4_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_4_4side_4_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_4_4side_4_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_4_4side_4_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_4_4side_4_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_4_4side_4_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_4_4side_4_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_4_4side_4_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s5 ### 4s1 ch032_1side_6__2side_5__3side_5_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_6__2side_5__3side_5_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_6__2side_5__3side_5_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s4 ch032_1side_6__2side_5__3side_5_4side_4_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_4_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_4_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_4_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_4_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_4_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_4_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_4_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_4_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_4_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_4_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s5 ch032_1side_6__2side_5__3side_5_4side_5_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_5_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_5_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_5_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_5_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_5_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_5_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_5_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_5_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_5_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_5_5s5_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s5_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s5_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_5_5s5_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s5_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s5_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_5_5s5_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s5_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s5_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_5_5s5_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s5_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s5_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_5__3side_5_4side_5_5s5_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s5_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_5__3side_5_4side_5_5s5_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ######### 2s6 ##### 3s1 ### 4s1 ch032_1side_6__2side_6__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s2 ### 4s1 ch032_1side_6__2side_6__3side_2_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_2_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_2_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_6__2side_6__3side_2_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_2_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_2_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_2_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_2_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_2_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_2_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_2_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_2_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s3 ### 4s1 ch032_1side_6__2side_6__3side_3_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_3_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_3_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_6__2side_6__3side_3_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_3_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_3_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_3_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_3_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_3_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_3_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_3_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_3_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_6__2side_6__3side_3_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_3_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_3_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_3_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_3_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_3_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_3_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_3_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_3_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_3_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_3_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_3_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_3_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_3_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_3_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_3_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_3_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_3_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s4 ### 4s1 ch032_1side_6__2side_6__3side_4_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_6__2side_6__3side_4_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_4_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_4_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_6__2side_6__3side_4_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_4_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_4_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_4_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_4_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_4_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s4 ch032_1side_6__2side_6__3side_4_4side_4_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_4_4side_4_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_4_4side_4_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_4_4side_4_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_4_4side_4_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_4_4side_4_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_4_4side_4_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_4_4side_4_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_4_4side_4_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_4_4side_4_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_4_4side_4_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s5 ### 4s1 ch032_1side_6__2side_6__3side_5_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_6__2side_6__3side_5_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_6__2side_6__3side_5_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s4 ch032_1side_6__2side_6__3side_5_4side_4_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_4_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_4_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_4_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_4_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_4_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_4_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_4_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_4_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_4_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_4_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s5 ch032_1side_6__2side_6__3side_5_4side_5_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_5_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_5_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_5_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_5_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_5_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_5_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_5_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_5_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_5_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_5_5s5_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s5_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s5_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_5_5s5_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s5_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s5_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_5_5s5_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s5_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s5_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_5_5s5_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s5_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s5_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_5_4side_5_5s5_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s5_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_5_4side_5_5s5_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s6 ### 4s1 ch032_1side_6__2side_6__3side_6_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_6__2side_6__3side_6_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_6__2side_6__3side_6_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s4 ch032_1side_6__2side_6__3side_6_4side_4_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_4_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_4_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_4_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_4_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_4_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_4_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_4_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_4_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_4_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_4_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s5 ch032_1side_6__2side_6__3side_6_4side_5_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_5_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_5_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_5_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_5_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_5_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_5_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_5_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_5_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_5_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_5_5s5_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s5_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s5_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_5_5s5_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s5_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s5_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_5_5s5_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s5_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s5_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_5_5s5_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s5_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s5_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_5_5s5_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s5_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_5_5s5_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s6 ch032_1side_6__2side_6__3side_6_4side_6_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_6_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_6_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_6_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_6_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_6_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_6_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_6_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_6_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_6_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_6_5s5_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s5_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s5_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_6_5s5_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s5_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s5_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_6_5s5_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s5_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s5_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_6_5s5_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s5_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s5_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_6_5s5_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s5_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s5_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_6_5s6_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s6_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s6_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_6_5s6_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s6_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s6_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_6_5s6_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s6_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s6_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_6_5s6_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s6_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s6_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_6_5s6_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s6_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s6_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_6__2side_6__3side_6_4side_6_5s6_6s6 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s6_6s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_6__2side_6__3side_6_4side_6_5s6_6s6.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ################### ############# 1s7 ######### 2s1 ##### 3s1 ### 4s1 ch032_1side_7__2side_1__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_1__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_1__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ######### 2s2 ##### 3s1 ### 4s1 ch032_1side_7__2side_2__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_2__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_2__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s2 ### 4s1 ch032_1side_7__2side_2__3side_2_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_2__3side_2_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_2__3side_2_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_7__2side_2__3side_2_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_2__3side_2_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_2__3side_2_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_2__3side_2_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_2__3side_2_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_2__3side_2_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_2__3side_2_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_2__3side_2_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_2__3side_2_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ######### 2s3 ##### 3s1 ### 4s1 ch032_1side_7__2side_3__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_3__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_3__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s2 ### 4s1 ch032_1side_7__2side_3__3side_2_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_3__3side_2_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_3__3side_2_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_7__2side_3__3side_2_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_3__3side_2_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_3__3side_2_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_3__3side_2_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_3__3side_2_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_3__3side_2_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_3__3side_2_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_3__3side_2_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_3__3side_2_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s3 ### 4s1 ch032_1side_7__2side_3__3side_3_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_3__3side_3_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_3__3side_3_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_7__2side_3__3side_3_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_3__3side_3_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_3__3side_3_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_3__3side_3_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_3__3side_3_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_3__3side_3_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_3__3side_3_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_3__3side_3_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_3__3side_3_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_7__2side_3__3side_3_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_3__3side_3_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_3__3side_3_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_3__3side_3_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_3__3side_3_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_3__3side_3_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_3__3side_3_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_3__3side_3_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_3__3side_3_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_3__3side_3_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_3__3side_3_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_3__3side_3_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_3__3side_3_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_3__3side_3_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_3__3side_3_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_3__3side_3_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_3__3side_3_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_3__3side_3_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ######### 2s4 ##### 3s1 ### 4s1 ch032_1side_7__2side_4__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s2 ### 4s1 ch032_1side_7__2side_4__3side_2_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_2_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_2_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_7__2side_4__3side_2_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_2_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_2_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_4__3side_2_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_2_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_2_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_4__3side_2_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_2_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_2_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s3 ### 4s1 ch032_1side_7__2side_4__3side_3_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_3_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_3_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_7__2side_4__3side_3_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_3_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_3_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_4__3side_3_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_3_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_3_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_4__3side_3_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_3_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_3_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_7__2side_4__3side_3_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_3_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_3_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_4__3side_3_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_3_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_3_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_4__3side_3_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_3_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_3_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_4__3side_3_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_3_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_3_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_4__3side_3_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_3_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_3_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_4__3side_3_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_3_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_3_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s4 ### 4s1 ch032_1side_7__2side_4__3side_4_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_4_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_4_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_7__2side_4__3side_4_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_4_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_4_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_4__3side_4_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_4_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_4_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_4__3side_4_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_4_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_4_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_7__2side_4__3side_4_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_4_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_4_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_4__3side_4_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_4_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_4_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_4__3side_4_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_4_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_4_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_4__3side_4_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_4_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_4_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_4__3side_4_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_4_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_4_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_4__3side_4_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_4_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_4_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s4 ch032_1side_7__2side_4__3side_4_4side_4_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_4_4side_4_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_4_4side_4_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_4__3side_4_4side_4_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_4_4side_4_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_4_4side_4_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_4__3side_4_4side_4_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_4_4side_4_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_4_4side_4_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_4__3side_4_4side_4_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_4_4side_4_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_4_4side_4_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_4__3side_4_4side_4_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_4_4side_4_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_4_4side_4_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_4__3side_4_4side_4_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_4_4side_4_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_4_4side_4_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_4__3side_4_4side_4_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_4_4side_4_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_4_4side_4_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_4__3side_4_4side_4_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_4_4side_4_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_4_4side_4_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_4__3side_4_4side_4_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_4_4side_4_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_4_4side_4_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_4__3side_4_4side_4_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_4__3side_4_4side_4_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_4__3side_4_4side_4_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ######### 2s5 ##### 3s1 ### 4s1 ch032_1side_7__2side_5__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s2 ### 4s1 ch032_1side_7__2side_5__3side_2_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_2_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_2_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_7__2side_5__3side_2_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_2_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_2_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_2_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_2_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_2_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_2_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_2_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_2_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s3 ### 4s1 ch032_1side_7__2side_5__3side_3_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_3_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_3_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_7__2side_5__3side_3_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_3_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_3_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_3_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_3_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_3_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_3_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_3_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_3_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_7__2side_5__3side_3_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_3_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_3_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_3_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_3_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_3_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_3_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_3_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_3_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_3_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_3_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_3_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_3_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_3_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_3_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_3_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_3_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_3_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s4 ### 4s1 ch032_1side_7__2side_5__3side_4_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_4_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_4_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_7__2side_5__3side_4_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_4_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_4_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_4_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_4_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_4_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_4_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_4_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_4_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_7__2side_5__3side_4_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_4_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_4_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_4_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_4_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_4_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_4_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_4_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_4_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_4_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_4_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_4_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_4_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_4_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_4_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_4_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_4_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_4_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s4 ch032_1side_7__2side_5__3side_4_4side_4_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_4_4side_4_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_4_4side_4_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_4_4side_4_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_4_4side_4_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_4_4side_4_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_4_4side_4_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_4_4side_4_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_4_4side_4_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_4_4side_4_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_4_4side_4_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_4_4side_4_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_4_4side_4_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_4_4side_4_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_4_4side_4_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_4_4side_4_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_4_4side_4_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_4_4side_4_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_4_4side_4_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_4_4side_4_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_4_4side_4_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_4_4side_4_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_4_4side_4_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_4_4side_4_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_4_4side_4_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_4_4side_4_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_4_4side_4_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_4_4side_4_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_4_4side_4_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_4_4side_4_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s5 ### 4s1 ch032_1side_7__2side_5__3side_5_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_7__2side_5__3side_5_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_5_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_5_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_7__2side_5__3side_5_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_5_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_5_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_5_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_5_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_5_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s4 ch032_1side_7__2side_5__3side_5_4side_4_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_4_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_4_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_5_4side_4_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_4_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_4_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_5_4side_4_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_4_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_4_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_5_4side_4_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_4_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_4_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_5_4side_4_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_4_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_4_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_5_4side_4_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_4_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_4_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_5_4side_4_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_4_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_4_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_5_4side_4_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_4_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_4_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_5_4side_4_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_4_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_4_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_5_4side_4_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_4_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_4_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s5 ch032_1side_7__2side_5__3side_5_4side_5_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_5_4side_5_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_5_4side_5_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_5_4side_5_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_5_4side_5_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_5_4side_5_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_5_4side_5_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_5_4side_5_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_5_4side_5_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_5_4side_5_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_5_4side_5_5s5_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s5_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s5_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_5_4side_5_5s5_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s5_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s5_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_5_4side_5_5s5_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s5_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s5_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_5_4side_5_5s5_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s5_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s5_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_5__3side_5_4side_5_5s5_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s5_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_5__3side_5_4side_5_5s5_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ######### 2s6 ##### 3s1 ### 4s1 ch032_1side_7__2side_6__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s2 ### 4s1 ch032_1side_7__2side_6__3side_2_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_2_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_2_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_7__2side_6__3side_2_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_2_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_2_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_2_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_2_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_2_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_2_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_2_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_2_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s3 ### 4s1 ch032_1side_7__2side_6__3side_3_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_3_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_3_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_7__2side_6__3side_3_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_3_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_3_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_3_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_3_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_3_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_3_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_3_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_3_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_7__2side_6__3side_3_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_3_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_3_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_3_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_3_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_3_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_3_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_3_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_3_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_3_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_3_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_3_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_3_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_3_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_3_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_3_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_3_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_3_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s4 ### 4s1 ch032_1side_7__2side_6__3side_4_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_4_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_4_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_7__2side_6__3side_4_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_4_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_4_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_4_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_4_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_4_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_4_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_4_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_4_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_7__2side_6__3side_4_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_4_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_4_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_4_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_4_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_4_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_4_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_4_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_4_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_4_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_4_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_4_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_4_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_4_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_4_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_4_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_4_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_4_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s4 ch032_1side_7__2side_6__3side_4_4side_4_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_4_4side_4_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_4_4side_4_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_4_4side_4_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_4_4side_4_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_4_4side_4_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_4_4side_4_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_4_4side_4_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_4_4side_4_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_4_4side_4_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_4_4side_4_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_4_4side_4_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_4_4side_4_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_4_4side_4_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_4_4side_4_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_4_4side_4_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_4_4side_4_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_4_4side_4_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_4_4side_4_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_4_4side_4_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_4_4side_4_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_4_4side_4_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_4_4side_4_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_4_4side_4_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_4_4side_4_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_4_4side_4_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_4_4side_4_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_4_4side_4_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_4_4side_4_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_4_4side_4_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s5 ### 4s1 ch032_1side_7__2side_6__3side_5_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_7__2side_6__3side_5_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_5_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_5_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_7__2side_6__3side_5_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_5_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_5_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_5_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_5_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_5_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s4 ch032_1side_7__2side_6__3side_5_4side_4_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_4_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_4_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_5_4side_4_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_4_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_4_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_5_4side_4_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_4_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_4_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_5_4side_4_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_4_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_4_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_5_4side_4_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_4_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_4_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_5_4side_4_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_4_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_4_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_5_4side_4_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_4_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_4_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_5_4side_4_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_4_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_4_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_5_4side_4_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_4_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_4_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_5_4side_4_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_4_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_4_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s5 ch032_1side_7__2side_6__3side_5_4side_5_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_5_4side_5_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_5_4side_5_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_5_4side_5_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_5_4side_5_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_5_4side_5_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_5_4side_5_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_5_4side_5_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_5_4side_5_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_5_4side_5_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_5_4side_5_5s5_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s5_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s5_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_5_4side_5_5s5_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s5_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s5_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_5_4side_5_5s5_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s5_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s5_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_5_4side_5_5s5_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s5_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s5_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_5_4side_5_5s5_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s5_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_5_4side_5_5s5_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s6 ### 4s1 ch032_1side_7__2side_6__3side_6_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_7__2side_6__3side_6_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_7__2side_6__3side_6_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s4 ch032_1side_7__2side_6__3side_6_4side_4_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_4_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_4_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_4_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_4_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_4_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_4_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_4_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_4_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_4_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_4_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_4_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_4_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_4_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_4_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_4_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_4_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_4_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_4_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_4_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_4_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_4_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_4_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_4_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_4_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_4_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_4_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_4_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_4_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_4_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s5 ch032_1side_7__2side_6__3side_6_4side_5_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_5_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_5_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_5_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_5_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_5_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_5_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_5_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_5_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_5_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_5_5s5_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s5_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s5_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_5_5s5_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s5_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s5_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_5_5s5_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s5_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s5_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_5_5s5_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s5_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s5_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_5_5s5_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s5_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_5_5s5_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s6 ch032_1side_7__2side_6__3side_6_4side_6_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_6_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_6_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_6_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_6_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_6_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_6_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_6_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_6_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_6_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_6_5s5_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s5_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s5_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_6_5s5_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s5_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s5_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_6_5s5_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s5_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s5_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_6_5s5_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s5_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s5_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_6_5s5_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s5_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s5_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_6_5s6_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s6_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s6_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_6_5s6_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s6_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s6_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_6_5s6_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s6_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s6_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_6_5s6_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s6_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s6_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_6_5s6_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s6_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s6_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_6__3side_6_4side_6_5s6_6s6 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s6_6s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_6__3side_6_4side_6_5s6_6s6.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ######### 2s7 ##### 3s1 ### 4s1 ch032_1side_7__2side_7__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s2 ### 4s1 ch032_1side_7__2side_7__3side_2_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_2_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_2_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_7__2side_7__3side_2_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_2_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_2_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_2_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_2_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_2_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_2_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_2_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_2_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s3 ### 4s1 ch032_1side_7__2side_7__3side_3_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_3_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_3_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_7__2side_7__3side_3_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_3_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_3_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_3_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_3_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_3_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_3_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_3_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_3_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_7__2side_7__3side_3_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_3_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_3_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_3_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_3_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_3_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_3_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_3_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_3_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_3_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_3_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_3_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_3_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_3_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_3_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_3_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_3_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_3_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s4 ### 4s1 ch032_1side_7__2side_7__3side_4_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_4_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_4_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_7__2side_7__3side_4_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_4_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_4_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_4_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_4_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_4_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_4_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_4_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_4_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_7__2side_7__3side_4_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_4_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_4_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_4_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_4_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_4_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_4_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_4_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_4_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_4_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_4_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_4_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_4_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_4_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_4_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_4_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_4_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_4_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s4 ch032_1side_7__2side_7__3side_4_4side_4_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_4_4side_4_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_4_4side_4_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_4_4side_4_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_4_4side_4_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_4_4side_4_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_4_4side_4_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_4_4side_4_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_4_4side_4_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_4_4side_4_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_4_4side_4_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_4_4side_4_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_4_4side_4_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_4_4side_4_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_4_4side_4_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_4_4side_4_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_4_4side_4_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_4_4side_4_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_4_4side_4_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_4_4side_4_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_4_4side_4_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_4_4side_4_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_4_4side_4_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_4_4side_4_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_4_4side_4_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_4_4side_4_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_4_4side_4_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_4_4side_4_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_4_4side_4_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_4_4side_4_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s5 ### 4s1 ch032_1side_7__2side_7__3side_5_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_7__2side_7__3side_5_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_5_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_5_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_7__2side_7__3side_5_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_5_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_5_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_5_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_5_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_5_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s4 ch032_1side_7__2side_7__3side_5_4side_4_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_4_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_4_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_5_4side_4_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_4_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_4_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_5_4side_4_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_4_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_4_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_5_4side_4_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_4_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_4_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_5_4side_4_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_4_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_4_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_5_4side_4_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_4_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_4_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_5_4side_4_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_4_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_4_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_5_4side_4_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_4_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_4_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_5_4side_4_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_4_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_4_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_5_4side_4_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_4_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_4_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s5 ch032_1side_7__2side_7__3side_5_4side_5_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_5_4side_5_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_5_4side_5_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_5_4side_5_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_5_4side_5_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_5_4side_5_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_5_4side_5_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_5_4side_5_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_5_4side_5_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_5_4side_5_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_5_4side_5_5s5_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s5_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s5_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_5_4side_5_5s5_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s5_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s5_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_5_4side_5_5s5_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s5_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s5_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_5_4side_5_5s5_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s5_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s5_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_5_4side_5_5s5_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s5_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_5_4side_5_5s5_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s6 ### 4s1 ch032_1side_7__2side_7__3side_6_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_7__2side_7__3side_6_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_7__2side_7__3side_6_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s4 ch032_1side_7__2side_7__3side_6_4side_4_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_4_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_4_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_4_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_4_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_4_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_4_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_4_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_4_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_4_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_4_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_4_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_4_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_4_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_4_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_4_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_4_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_4_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_4_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_4_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_4_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_4_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_4_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_4_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_4_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_4_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_4_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_4_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_4_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_4_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s5 ch032_1side_7__2side_7__3side_6_4side_5_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_5_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_5_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_5_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_5_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_5_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_5_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_5_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_5_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_5_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_5_5s5_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s5_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s5_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_5_5s5_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s5_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s5_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_5_5s5_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s5_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s5_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_5_5s5_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s5_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s5_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_5_5s5_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s5_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_5_5s5_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s6 ch032_1side_7__2side_7__3side_6_4side_6_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_6_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_6_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_6_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_6_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_6_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_6_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_6_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_6_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_6_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_6_5s5_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s5_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s5_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_6_5s5_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s5_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s5_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_6_5s5_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s5_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s5_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_6_5s5_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s5_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s5_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_6_5s5_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s5_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s5_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_6_5s6_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s6_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s6_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_6_5s6_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s6_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s6_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_6_5s6_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s6_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s6_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_6_5s6_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s6_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s6_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_6_5s6_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s6_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s6_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_6_4side_6_5s6_6s6 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s6_6s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_6_4side_6_5s6_6s6.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s7 ### 4s1 ch032_1side_7__2side_7__3side_7_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_7__2side_7__3side_7_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_7__2side_7__3side_7_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s4 ch032_1side_7__2side_7__3side_7_4side_4_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_4_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_4_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_4_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_4_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_4_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_4_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_4_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_4_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_4_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_4_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_4_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_4_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_4_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_4_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_4_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_4_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_4_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_4_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_4_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_4_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_4_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_4_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_4_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_4_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_4_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_4_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_4_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_4_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_4_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s5 ch032_1side_7__2side_7__3side_7_4side_5_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_5_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_5_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_5_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_5_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_5_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_5_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_5_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_5_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_5_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_5_5s5_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s5_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s5_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_5_5s5_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s5_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s5_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_5_5s5_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s5_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s5_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_5_5s5_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s5_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s5_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_5_5s5_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s5_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_5_5s5_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s6 ch032_1side_7__2side_7__3side_7_4side_6_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_6_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_6_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_6_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_6_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_6_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_6_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_6_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_6_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_6_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_6_5s5_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s5_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s5_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_6_5s5_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s5_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s5_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_6_5s5_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s5_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s5_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_6_5s5_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s5_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s5_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_6_5s5_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s5_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s5_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_6_5s6_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s6_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s6_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_6_5s6_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s6_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s6_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_6_5s6_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s6_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s6_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_6_5s6_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s6_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s6_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_6_5s6_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s6_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s6_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_6_5s6_6s6 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s6_6s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_6_5s6_6s6.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s7 ch032_1side_7__2side_7__3side_7_4side_7_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_7_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_7_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_7_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_7_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_7_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_7_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_7_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_7_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_7_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_7_5s5_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s5_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s5_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_7_5s5_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s5_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s5_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_7_5s5_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s5_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s5_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_7_5s5_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s5_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s5_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_7_5s5_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s5_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s5_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_7_5s6_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s6_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s6_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_7_5s6_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s6_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s6_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_7_5s6_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s6_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s6_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_7_5s6_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s6_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s6_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_7_5s6_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s6_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s6_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_7_5s6_6s6 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s6_6s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s6_6s6.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_7_5s7_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s7_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s7_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_7_5s7_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s7_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s7_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_7_5s7_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s7_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s7_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_7_5s7_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s7_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s7_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_7_5s7_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s7_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s7_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_7_5s7_6s6 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s7_6s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s7_6s6.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_7__2side_7__3side_7_4side_7_5s7_6s7 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s7_6s7, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_7__2side_7__3side_7_4side_7_5s7_6s7.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ################### ############# 1s8 ######### 2s1 ##### 3s1 ### 4s1 ch032_1side_8__2side_1__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_1__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_1__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ######### 2s2 ##### 3s1 ### 4s1 ch032_1side_8__2side_2__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_2__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_2__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s2 ### 4s1 ch032_1side_8__2side_2__3side_2_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_2__3side_2_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_2__3side_2_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_8__2side_2__3side_2_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_2__3side_2_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_2__3side_2_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_2__3side_2_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_2__3side_2_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_2__3side_2_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_2__3side_2_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_2__3side_2_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_2__3side_2_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ######### 2s3 ##### 3s1 ### 4s1 ch032_1side_8__2side_3__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_3__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_3__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s2 ### 4s1 ch032_1side_8__2side_3__3side_2_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_3__3side_2_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_3__3side_2_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_8__2side_3__3side_2_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_3__3side_2_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_3__3side_2_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_3__3side_2_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_3__3side_2_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_3__3side_2_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_3__3side_2_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_3__3side_2_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_3__3side_2_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s3 ### 4s1 ch032_1side_8__2side_3__3side_3_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_3__3side_3_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_3__3side_3_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_8__2side_3__3side_3_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_3__3side_3_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_3__3side_3_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_3__3side_3_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_3__3side_3_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_3__3side_3_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_3__3side_3_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_3__3side_3_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_3__3side_3_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_8__2side_3__3side_3_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_3__3side_3_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_3__3side_3_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_3__3side_3_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_3__3side_3_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_3__3side_3_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_3__3side_3_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_3__3side_3_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_3__3side_3_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_3__3side_3_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_3__3side_3_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_3__3side_3_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_3__3side_3_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_3__3side_3_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_3__3side_3_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_3__3side_3_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_3__3side_3_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_3__3side_3_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ######### 2s4 ##### 3s1 ### 4s1 ch032_1side_8__2side_4__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s2 ### 4s1 ch032_1side_8__2side_4__3side_2_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_2_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_2_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_8__2side_4__3side_2_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_2_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_2_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_4__3side_2_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_2_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_2_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_4__3side_2_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_2_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_2_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s3 ### 4s1 ch032_1side_8__2side_4__3side_3_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_3_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_3_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_8__2side_4__3side_3_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_3_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_3_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_4__3side_3_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_3_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_3_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_4__3side_3_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_3_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_3_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_8__2side_4__3side_3_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_3_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_3_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_4__3side_3_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_3_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_3_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_4__3side_3_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_3_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_3_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_4__3side_3_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_3_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_3_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_4__3side_3_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_3_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_3_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_4__3side_3_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_3_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_3_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s4 ### 4s1 ch032_1side_8__2side_4__3side_4_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_4_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_4_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_8__2side_4__3side_4_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_4_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_4_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_4__3side_4_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_4_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_4_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_4__3side_4_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_4_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_4_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_8__2side_4__3side_4_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_4_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_4_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_4__3side_4_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_4_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_4_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_4__3side_4_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_4_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_4_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_4__3side_4_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_4_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_4_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_4__3side_4_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_4_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_4_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_4__3side_4_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_4_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_4_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s4 ch032_1side_8__2side_4__3side_4_4side_4_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_4_4side_4_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_4_4side_4_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_4__3side_4_4side_4_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_4_4side_4_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_4_4side_4_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_4__3side_4_4side_4_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_4_4side_4_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_4_4side_4_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_4__3side_4_4side_4_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_4_4side_4_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_4_4side_4_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_4__3side_4_4side_4_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_4_4side_4_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_4_4side_4_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_4__3side_4_4side_4_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_4_4side_4_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_4_4side_4_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_4__3side_4_4side_4_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_4_4side_4_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_4_4side_4_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_4__3side_4_4side_4_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_4_4side_4_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_4_4side_4_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_4__3side_4_4side_4_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_4_4side_4_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_4_4side_4_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_4__3side_4_4side_4_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_4__3side_4_4side_4_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_4__3side_4_4side_4_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ######### 2s5 ##### 3s1 ### 4s1 ch032_1side_8__2side_5__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s2 ### 4s1 ch032_1side_8__2side_5__3side_2_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_2_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_2_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_8__2side_5__3side_2_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_2_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_2_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_2_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_2_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_2_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_2_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_2_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_2_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s3 ### 4s1 ch032_1side_8__2side_5__3side_3_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_3_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_3_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_8__2side_5__3side_3_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_3_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_3_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_3_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_3_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_3_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_3_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_3_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_3_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_8__2side_5__3side_3_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_3_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_3_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_3_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_3_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_3_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_3_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_3_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_3_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_3_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_3_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_3_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_3_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_3_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_3_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_3_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_3_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_3_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s4 ### 4s1 ch032_1side_8__2side_5__3side_4_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_4_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_4_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_8__2side_5__3side_4_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_4_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_4_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_4_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_4_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_4_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_4_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_4_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_4_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_8__2side_5__3side_4_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_4_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_4_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_4_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_4_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_4_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_4_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_4_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_4_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_4_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_4_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_4_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_4_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_4_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_4_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_4_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_4_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_4_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s4 ch032_1side_8__2side_5__3side_4_4side_4_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_4_4side_4_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_4_4side_4_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_4_4side_4_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_4_4side_4_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_4_4side_4_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_4_4side_4_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_4_4side_4_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_4_4side_4_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_4_4side_4_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_4_4side_4_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_4_4side_4_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_4_4side_4_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_4_4side_4_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_4_4side_4_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_4_4side_4_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_4_4side_4_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_4_4side_4_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_4_4side_4_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_4_4side_4_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_4_4side_4_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_4_4side_4_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_4_4side_4_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_4_4side_4_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_4_4side_4_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_4_4side_4_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_4_4side_4_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_4_4side_4_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_4_4side_4_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_4_4side_4_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s5 ### 4s1 ch032_1side_8__2side_5__3side_5_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_8__2side_5__3side_5_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_5_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_5_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_8__2side_5__3side_5_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_5_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_5_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_5_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_5_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_5_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s4 ch032_1side_8__2side_5__3side_5_4side_4_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_4_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_4_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_5_4side_4_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_4_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_4_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_5_4side_4_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_4_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_4_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_5_4side_4_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_4_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_4_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_5_4side_4_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_4_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_4_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_5_4side_4_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_4_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_4_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_5_4side_4_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_4_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_4_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_5_4side_4_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_4_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_4_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_5_4side_4_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_4_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_4_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_5_4side_4_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_4_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_4_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s5 ch032_1side_8__2side_5__3side_5_4side_5_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_5_4side_5_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_5_4side_5_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_5_4side_5_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_5_4side_5_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_5_4side_5_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_5_4side_5_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_5_4side_5_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_5_4side_5_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_5_4side_5_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_5_4side_5_5s5_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s5_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s5_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_5_4side_5_5s5_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s5_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s5_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_5_4side_5_5s5_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s5_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s5_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_5_4side_5_5s5_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s5_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s5_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_5__3side_5_4side_5_5s5_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s5_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_5__3side_5_4side_5_5s5_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ######### 2s6 ##### 3s1 ### 4s1 ch032_1side_8__2side_6__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s2 ### 4s1 ch032_1side_8__2side_6__3side_2_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_2_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_2_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_8__2side_6__3side_2_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_2_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_2_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_2_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_2_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_2_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_2_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_2_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_2_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s3 ### 4s1 ch032_1side_8__2side_6__3side_3_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_3_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_3_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_8__2side_6__3side_3_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_3_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_3_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_3_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_3_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_3_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_3_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_3_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_3_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_8__2side_6__3side_3_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_3_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_3_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_3_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_3_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_3_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_3_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_3_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_3_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_3_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_3_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_3_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_3_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_3_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_3_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_3_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_3_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_3_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s4 ### 4s1 ch032_1side_8__2side_6__3side_4_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_4_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_4_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_8__2side_6__3side_4_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_4_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_4_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_4_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_4_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_4_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_4_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_4_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_4_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_8__2side_6__3side_4_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_4_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_4_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_4_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_4_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_4_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_4_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_4_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_4_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_4_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_4_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_4_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_4_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_4_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_4_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_4_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_4_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_4_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s4 ch032_1side_8__2side_6__3side_4_4side_4_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_4_4side_4_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_4_4side_4_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_4_4side_4_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_4_4side_4_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_4_4side_4_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_4_4side_4_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_4_4side_4_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_4_4side_4_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_4_4side_4_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_4_4side_4_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_4_4side_4_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_4_4side_4_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_4_4side_4_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_4_4side_4_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_4_4side_4_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_4_4side_4_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_4_4side_4_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_4_4side_4_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_4_4side_4_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_4_4side_4_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_4_4side_4_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_4_4side_4_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_4_4side_4_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_4_4side_4_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_4_4side_4_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_4_4side_4_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_4_4side_4_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_4_4side_4_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_4_4side_4_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s5 ### 4s1 ch032_1side_8__2side_6__3side_5_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_8__2side_6__3side_5_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_5_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_5_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_8__2side_6__3side_5_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_5_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_5_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_5_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_5_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_5_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s4 ch032_1side_8__2side_6__3side_5_4side_4_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_4_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_4_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_5_4side_4_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_4_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_4_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_5_4side_4_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_4_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_4_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_5_4side_4_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_4_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_4_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_5_4side_4_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_4_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_4_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_5_4side_4_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_4_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_4_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_5_4side_4_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_4_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_4_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_5_4side_4_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_4_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_4_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_5_4side_4_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_4_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_4_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_5_4side_4_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_4_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_4_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s5 ch032_1side_8__2side_6__3side_5_4side_5_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_5_4side_5_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_5_4side_5_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_5_4side_5_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_5_4side_5_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_5_4side_5_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_5_4side_5_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_5_4side_5_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_5_4side_5_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_5_4side_5_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_5_4side_5_5s5_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s5_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s5_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_5_4side_5_5s5_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s5_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s5_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_5_4side_5_5s5_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s5_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s5_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_5_4side_5_5s5_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s5_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s5_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_5_4side_5_5s5_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s5_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_5_4side_5_5s5_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s6 ### 4s1 ch032_1side_8__2side_6__3side_6_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_8__2side_6__3side_6_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_8__2side_6__3side_6_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s4 ch032_1side_8__2side_6__3side_6_4side_4_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_4_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_4_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_4_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_4_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_4_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_4_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_4_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_4_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_4_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_4_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_4_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_4_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_4_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_4_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_4_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_4_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_4_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_4_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_4_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_4_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_4_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_4_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_4_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_4_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_4_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_4_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_4_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_4_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_4_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s5 ch032_1side_8__2side_6__3side_6_4side_5_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_5_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_5_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_5_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_5_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_5_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_5_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_5_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_5_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_5_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_5_5s5_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s5_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s5_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_5_5s5_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s5_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s5_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_5_5s5_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s5_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s5_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_5_5s5_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s5_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s5_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_5_5s5_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s5_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_5_5s5_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s6 ch032_1side_8__2side_6__3side_6_4side_6_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_6_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_6_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_6_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_6_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_6_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_6_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_6_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_6_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_6_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_6_5s5_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s5_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s5_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_6_5s5_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s5_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s5_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_6_5s5_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s5_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s5_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_6_5s5_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s5_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s5_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_6_5s5_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s5_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s5_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_6_5s6_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s6_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s6_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_6_5s6_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s6_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s6_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_6_5s6_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s6_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s6_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_6_5s6_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s6_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s6_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_6_5s6_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s6_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s6_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_6__3side_6_4side_6_5s6_6s6 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s6_6s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_6__3side_6_4side_6_5s6_6s6.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ######### 2s7 ##### 3s1 ### 4s1 ch032_1side_8__2side_7__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s2 ### 4s1 ch032_1side_8__2side_7__3side_2_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_2_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_2_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_8__2side_7__3side_2_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_2_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_2_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_2_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_2_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_2_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_2_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_2_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_2_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s3 ### 4s1 ch032_1side_8__2side_7__3side_3_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_3_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_3_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_8__2side_7__3side_3_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_3_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_3_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_3_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_3_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_3_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_3_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_3_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_3_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_8__2side_7__3side_3_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_3_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_3_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_3_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_3_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_3_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_3_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_3_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_3_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_3_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_3_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_3_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_3_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_3_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_3_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_3_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_3_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_3_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s4 ### 4s1 ch032_1side_8__2side_7__3side_4_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_4_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_4_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_8__2side_7__3side_4_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_4_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_4_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_4_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_4_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_4_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_4_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_4_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_4_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_8__2side_7__3side_4_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_4_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_4_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_4_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_4_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_4_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_4_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_4_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_4_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_4_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_4_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_4_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_4_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_4_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_4_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_4_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_4_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_4_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s4 ch032_1side_8__2side_7__3side_4_4side_4_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_4_4side_4_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_4_4side_4_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_4_4side_4_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_4_4side_4_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_4_4side_4_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_4_4side_4_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_4_4side_4_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_4_4side_4_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_4_4side_4_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_4_4side_4_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_4_4side_4_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_4_4side_4_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_4_4side_4_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_4_4side_4_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_4_4side_4_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_4_4side_4_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_4_4side_4_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_4_4side_4_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_4_4side_4_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_4_4side_4_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_4_4side_4_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_4_4side_4_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_4_4side_4_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_4_4side_4_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_4_4side_4_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_4_4side_4_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_4_4side_4_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_4_4side_4_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_4_4side_4_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s5 ### 4s1 ch032_1side_8__2side_7__3side_5_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_8__2side_7__3side_5_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_5_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_5_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_8__2side_7__3side_5_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_5_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_5_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_5_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_5_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_5_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s4 ch032_1side_8__2side_7__3side_5_4side_4_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_4_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_4_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_5_4side_4_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_4_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_4_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_5_4side_4_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_4_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_4_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_5_4side_4_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_4_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_4_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_5_4side_4_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_4_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_4_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_5_4side_4_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_4_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_4_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_5_4side_4_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_4_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_4_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_5_4side_4_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_4_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_4_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_5_4side_4_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_4_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_4_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_5_4side_4_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_4_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_4_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s5 ch032_1side_8__2side_7__3side_5_4side_5_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_5_4side_5_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_5_4side_5_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_5_4side_5_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_5_4side_5_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_5_4side_5_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_5_4side_5_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_5_4side_5_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_5_4side_5_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_5_4side_5_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_5_4side_5_5s5_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s5_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s5_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_5_4side_5_5s5_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s5_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s5_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_5_4side_5_5s5_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s5_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s5_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_5_4side_5_5s5_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s5_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s5_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_5_4side_5_5s5_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s5_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_5_4side_5_5s5_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s6 ### 4s1 ch032_1side_8__2side_7__3side_6_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_8__2side_7__3side_6_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_8__2side_7__3side_6_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s4 ch032_1side_8__2side_7__3side_6_4side_4_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_4_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_4_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_4_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_4_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_4_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_4_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_4_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_4_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_4_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_4_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_4_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_4_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_4_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_4_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_4_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_4_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_4_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_4_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_4_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_4_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_4_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_4_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_4_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_4_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_4_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_4_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_4_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_4_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_4_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s5 ch032_1side_8__2side_7__3side_6_4side_5_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_5_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_5_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_5_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_5_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_5_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_5_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_5_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_5_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_5_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_5_5s5_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s5_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s5_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_5_5s5_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s5_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s5_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_5_5s5_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s5_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s5_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_5_5s5_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s5_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s5_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_5_5s5_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s5_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_5_5s5_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s6 ch032_1side_8__2side_7__3side_6_4side_6_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_6_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_6_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_6_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_6_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_6_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_6_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_6_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_6_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_6_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_6_5s5_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s5_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s5_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_6_5s5_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s5_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s5_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_6_5s5_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s5_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s5_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_6_5s5_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s5_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s5_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_6_5s5_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s5_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s5_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_6_5s6_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s6_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s6_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_6_5s6_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s6_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s6_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_6_5s6_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s6_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s6_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_6_5s6_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s6_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s6_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_6_5s6_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s6_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s6_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_6_4side_6_5s6_6s6 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s6_6s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_6_4side_6_5s6_6s6.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s7 ### 4s1 ch032_1side_8__2side_7__3side_7_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_8__2side_7__3side_7_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_8__2side_7__3side_7_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s4 ch032_1side_8__2side_7__3side_7_4side_4_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_4_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_4_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_4_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_4_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_4_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_4_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_4_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_4_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_4_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_4_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_4_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_4_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_4_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_4_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_4_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_4_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_4_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_4_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_4_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_4_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_4_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_4_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_4_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_4_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_4_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_4_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_4_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_4_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_4_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s5 ch032_1side_8__2side_7__3side_7_4side_5_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_5_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_5_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_5_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_5_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_5_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_5_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_5_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_5_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_5_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_5_5s5_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s5_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s5_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_5_5s5_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s5_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s5_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_5_5s5_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s5_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s5_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_5_5s5_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s5_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s5_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_5_5s5_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s5_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_5_5s5_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s6 ch032_1side_8__2side_7__3side_7_4side_6_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_6_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_6_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_6_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_6_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_6_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_6_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_6_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_6_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_6_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_6_5s5_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s5_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s5_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_6_5s5_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s5_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s5_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_6_5s5_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s5_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s5_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_6_5s5_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s5_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s5_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_6_5s5_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s5_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s5_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_6_5s6_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s6_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s6_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_6_5s6_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s6_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s6_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_6_5s6_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s6_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s6_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_6_5s6_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s6_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s6_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_6_5s6_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s6_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s6_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_6_5s6_6s6 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s6_6s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_6_5s6_6s6.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s7 ch032_1side_8__2side_7__3side_7_4side_7_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_7_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_7_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_7_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_7_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_7_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_7_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_7_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_7_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_7_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_7_5s5_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s5_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s5_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_7_5s5_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s5_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s5_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_7_5s5_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s5_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s5_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_7_5s5_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s5_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s5_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_7_5s5_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s5_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s5_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_7_5s6_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s6_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s6_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_7_5s6_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s6_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s6_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_7_5s6_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s6_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s6_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_7_5s6_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s6_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s6_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_7_5s6_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s6_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s6_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_7_5s6_6s6 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s6_6s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s6_6s6.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_7_5s7_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s7_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s7_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_7_5s7_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s7_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s7_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_7_5s7_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s7_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s7_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_7_5s7_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s7_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s7_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_7_5s7_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s7_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s7_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_7_5s7_6s6 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s7_6s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s7_6s6.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_7__3side_7_4side_7_5s7_6s7 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s7_6s7, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_7__3side_7_4side_7_5s7_6s7.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ######### 2s8 ##### 3s1 ### 4s1 ch032_1side_8__2side_8__3side_1_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_1_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_1_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s2 ### 4s1 ch032_1side_8__2side_8__3side_2_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_2_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_2_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_8__2side_8__3side_2_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_2_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_2_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_2_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_2_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_2_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_2_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_2_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_2_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s3 ### 4s1 ch032_1side_8__2side_8__3side_3_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_3_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_3_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_8__2side_8__3side_3_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_3_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_3_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_3_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_3_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_3_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_3_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_3_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_3_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_8__2side_8__3side_3_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_3_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_3_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_3_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_3_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_3_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_3_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_3_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_3_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_3_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_3_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_3_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_3_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_3_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_3_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_3_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_3_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_3_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s4 ### 4s1 ch032_1side_8__2side_8__3side_4_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_4_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_4_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_8__2side_8__3side_4_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_4_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_4_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_4_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_4_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_4_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_4_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_4_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_4_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_8__2side_8__3side_4_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_4_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_4_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_4_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_4_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_4_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_4_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_4_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_4_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_4_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_4_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_4_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_4_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_4_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_4_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_4_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_4_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_4_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s4 ch032_1side_8__2side_8__3side_4_4side_4_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_4_4side_4_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_4_4side_4_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_4_4side_4_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_4_4side_4_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_4_4side_4_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_4_4side_4_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_4_4side_4_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_4_4side_4_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_4_4side_4_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_4_4side_4_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_4_4side_4_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_4_4side_4_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_4_4side_4_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_4_4side_4_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_4_4side_4_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_4_4side_4_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_4_4side_4_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_4_4side_4_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_4_4side_4_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_4_4side_4_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_4_4side_4_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_4_4side_4_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_4_4side_4_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_4_4side_4_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_4_4side_4_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_4_4side_4_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_4_4side_4_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_4_4side_4_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_4_4side_4_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s5 ### 4s1 ch032_1side_8__2side_8__3side_5_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_8__2side_8__3side_5_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_5_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_5_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_8__2side_8__3side_5_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_5_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_5_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_5_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_5_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_5_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s4 ch032_1side_8__2side_8__3side_5_4side_4_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_4_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_4_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_5_4side_4_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_4_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_4_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_5_4side_4_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_4_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_4_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_5_4side_4_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_4_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_4_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_5_4side_4_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_4_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_4_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_5_4side_4_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_4_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_4_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_5_4side_4_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_4_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_4_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_5_4side_4_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_4_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_4_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_5_4side_4_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_4_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_4_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_5_4side_4_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_4_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_4_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s5 ch032_1side_8__2side_8__3side_5_4side_5_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_5_4side_5_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_5_4side_5_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_5_4side_5_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_5_4side_5_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_5_4side_5_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_5_4side_5_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_5_4side_5_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_5_4side_5_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_5_4side_5_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_5_4side_5_5s5_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s5_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s5_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_5_4side_5_5s5_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s5_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s5_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_5_4side_5_5s5_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s5_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s5_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_5_4side_5_5s5_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s5_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s5_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_5_4side_5_5s5_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s5_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_5_4side_5_5s5_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s6 ### 4s1 ch032_1side_8__2side_8__3side_6_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_8__2side_8__3side_6_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_8__2side_8__3side_6_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s4 ch032_1side_8__2side_8__3side_6_4side_4_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_4_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_4_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_4_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_4_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_4_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_4_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_4_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_4_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_4_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_4_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_4_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_4_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_4_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_4_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_4_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_4_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_4_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_4_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_4_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_4_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_4_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_4_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_4_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_4_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_4_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_4_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_4_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_4_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_4_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s5 ch032_1side_8__2side_8__3side_6_4side_5_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_5_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_5_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_5_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_5_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_5_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_5_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_5_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_5_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_5_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_5_5s5_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s5_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s5_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_5_5s5_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s5_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s5_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_5_5s5_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s5_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s5_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_5_5s5_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s5_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s5_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_5_5s5_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s5_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_5_5s5_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s6 ch032_1side_8__2side_8__3side_6_4side_6_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_6_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_6_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_6_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_6_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_6_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_6_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_6_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_6_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_6_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_6_5s5_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s5_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s5_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_6_5s5_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s5_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s5_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_6_5s5_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s5_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s5_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_6_5s5_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s5_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s5_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_6_5s5_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s5_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s5_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_6_5s6_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s6_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s6_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_6_5s6_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s6_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s6_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_6_5s6_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s6_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s6_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_6_5s6_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s6_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s6_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_6_5s6_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s6_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s6_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_6_4side_6_5s6_6s6 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s6_6s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_6_4side_6_5s6_6s6.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s7 ### 4s1 ch032_1side_8__2side_8__3side_7_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_8__2side_8__3side_7_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_8__2side_8__3side_7_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s4 ch032_1side_8__2side_8__3side_7_4side_4_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_4_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_4_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_4_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_4_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_4_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_4_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_4_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_4_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_4_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_4_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_4_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_4_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_4_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_4_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_4_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_4_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_4_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_4_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_4_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_4_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_4_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_4_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_4_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_4_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_4_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_4_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_4_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_4_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_4_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s5 ch032_1side_8__2side_8__3side_7_4side_5_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_5_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_5_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_5_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_5_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_5_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_5_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_5_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_5_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_5_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_5_5s5_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s5_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s5_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_5_5s5_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s5_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s5_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_5_5s5_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s5_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s5_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_5_5s5_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s5_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s5_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_5_5s5_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s5_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_5_5s5_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s6 ch032_1side_8__2side_8__3side_7_4side_6_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_6_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_6_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_6_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_6_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_6_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_6_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_6_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_6_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_6_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_6_5s5_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s5_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s5_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_6_5s5_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s5_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s5_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_6_5s5_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s5_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s5_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_6_5s5_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s5_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s5_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_6_5s5_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s5_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s5_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_6_5s6_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s6_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s6_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_6_5s6_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s6_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s6_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_6_5s6_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s6_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s6_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_6_5s6_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s6_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s6_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_6_5s6_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s6_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s6_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_6_5s6_6s6 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s6_6s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_6_5s6_6s6.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s7 ch032_1side_8__2side_8__3side_7_4side_7_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_7_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_7_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_7_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_7_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_7_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_7_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_7_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_7_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_7_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_7_5s5_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s5_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s5_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_7_5s5_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s5_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s5_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_7_5s5_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s5_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s5_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_7_5s5_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s5_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s5_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_7_5s5_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s5_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s5_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_7_5s6_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s6_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s6_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_7_5s6_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s6_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s6_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_7_5s6_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s6_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s6_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_7_5s6_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s6_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s6_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_7_5s6_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s6_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s6_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_7_5s6_6s6 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s6_6s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s6_6s6.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_7_5s7_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s7_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s7_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_7_5s7_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s7_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s7_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_7_5s7_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s7_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s7_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_7_5s7_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s7_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s7_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_7_5s7_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s7_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s7_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_7_5s7_6s6 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s7_6s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s7_6s6.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_7_4side_7_5s7_6s7 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s7_6s7, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_7_4side_7_5s7_6s7.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ##### 3s8 ### 4s1 ch032_1side_8__2side_8__3side_8_4side_1_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_1_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_1_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s2 ch032_1side_8__2side_8__3side_8_4side_2_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_2_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_2_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_2_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_2_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_2_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_2_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_2_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_2_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s3 ch032_1side_8__2side_8__3side_8_4side_3_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_3_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_3_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_3_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_3_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_3_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_3_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_3_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_3_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_3_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_3_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_3_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_3_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_3_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_3_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_3_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_3_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_3_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s4 ch032_1side_8__2side_8__3side_8_4side_4_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_4_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_4_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_4_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_4_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_4_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_4_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_4_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_4_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_4_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_4_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_4_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_4_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_4_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_4_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_4_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_4_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_4_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_4_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_4_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_4_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_4_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_4_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_4_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_4_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_4_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_4_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_4_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_4_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_4_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s5 ch032_1side_8__2side_8__3side_8_4side_5_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_5_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_5_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_5_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_5_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_5_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_5_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_5_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_5_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_5_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_5_5s5_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s5_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s5_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_5_5s5_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s5_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s5_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_5_5s5_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s5_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s5_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_5_5s5_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s5_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s5_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_5_5s5_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s5_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_5_5s5_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s6 ch032_1side_8__2side_8__3side_8_4side_6_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_6_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_6_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_6_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_6_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_6_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_6_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_6_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_6_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_6_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_6_5s5_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s5_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s5_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_6_5s5_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s5_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s5_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_6_5s5_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s5_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s5_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_6_5s5_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s5_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s5_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_6_5s5_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s5_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s5_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_6_5s6_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s6_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s6_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_6_5s6_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s6_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s6_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_6_5s6_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s6_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s6_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_6_5s6_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s6_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s6_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_6_5s6_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s6_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s6_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_6_5s6_6s6 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s6_6s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_6_5s6_6s6.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s7 ch032_1side_8__2side_8__3side_8_4side_7_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_7_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_7_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_7_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_7_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_7_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_7_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_7_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_7_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_7_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_7_5s5_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s5_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s5_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_7_5s5_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s5_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s5_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_7_5s5_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s5_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s5_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_7_5s5_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s5_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s5_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_7_5s5_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s5_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s5_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_7_5s6_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s6_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s6_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_7_5s6_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s6_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s6_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_7_5s6_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s6_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s6_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_7_5s6_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s6_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s6_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_7_5s6_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s6_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s6_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_7_5s6_6s6 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s6_6s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s6_6s6.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_7_5s7_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s7_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s7_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_7_5s7_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s7_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s7_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_7_5s7_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s7_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s7_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_7_5s7_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s7_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s7_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_7_5s7_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s7_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s7_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_7_5s7_6s6 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s7_6s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s7_6s6.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_7_5s7_6s7 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s7_6s7, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_7_5s7_6s7.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ### 4s8 ch032_1side_8__2side_8__3side_8_4side_8_5s1_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s1_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s1_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_8_5s2_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s2_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s2_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_8_5s2_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s2_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s2_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_8_5s3_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s3_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s3_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_8_5s3_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s3_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s3_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_8_5s3_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s3_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s3_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_8_5s4_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s4_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s4_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_8_5s4_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s4_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s4_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_8_5s4_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s4_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s4_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_8_5s4_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s4_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s4_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_8_5s5_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s5_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s5_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_8_5s5_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s5_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s5_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_8_5s5_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s5_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s5_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_8_5s5_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s5_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s5_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_8_5s5_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s5_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s5_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_8_5s6_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s6_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s6_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_8_5s6_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s6_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s6_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_8_5s6_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s6_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s6_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_8_5s6_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s6_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s6_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_8_5s6_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s6_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s6_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_8_5s6_6s6 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s6_6s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s6_6s6.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_8_5s7_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s7_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s7_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_8_5s7_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s7_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s7_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_8_5s7_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s7_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s7_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_8_5s7_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s7_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s7_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_8_5s7_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s7_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s7_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_8_5s7_6s6 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s7_6s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s7_6s6.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_8_5s7_6s7 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s7_6s7, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s7_6s7.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_8_5s8_6s1 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s8_6s1, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s8_6s1.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_8_5s8_6s2 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s8_6s2, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s8_6s2.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_8_5s8_6s3 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s8_6s3, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s8_6s3.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_8_5s8_6s4 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s8_6s4, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s8_6s4.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_8_5s8_6s5 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s8_6s5, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s8_6s5.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_8_5s8_6s6 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s8_6s6, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s8_6s6.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_8_5s8_6s7 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s8_6s7, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s8_6s7.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ch032_1side_8__2side_8__3side_8_4side_8_5s8_6s8 = Exp_builder().set_basic("train", use_db_obj, ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s8_6s8, use_loss_obj, exp_dir=exp_dir, code_exe_path=code_exe_path, describe_end=ch032_pyramid_1side_8__2side_8__3side_8_4side_8_5s8_6s8.kong_model.model_describe) .set_train_args(epochs= 3) .set_train_iter_args(it_see_fq=900 * 5, it_save_fq=900 * 5, it_down_step="half", it_down_fq=900).set_train_in_gt_use_range(use_in_range=Range(0, 1), use_gt_range=Range(0, 1)).set_result_name(result_name="") ############################################################# if(__name__ == "__main__"): print("build exps cost time:", time.time() - start_time) if len(sys.argv) < 2: ############################################################################################################ ### 直接按 F5 或打 python step10_b1_exp_obj_load_and_train_and_test.py,後面沒有接東西喔!才不會跑到下面給 step10_b_subprocss.py 用的程式碼~~~ ch032_1side_1__2side_1__3side_1_4side_1_5s1_6s1.build().run() # print('no argument') sys.exit() ### 以下是給 step10_b_subprocess.py 用的,相當於cmd打 python step10_b1_exp_obj_load_and_train_and_test.py 某個exp.build().run() eval(sys.argv[1])
1ac1bf0d486a318d12379426563fee9a8f6f22d6
fe85138c949c6198184c591780831fd2e183a24a
/Address Book.py
251c32fc6f328cd1f9352bc08e897b68bbe90efc
[]
no_license
valeri1383/Personal-Python-Projects
e98f6b7171298def019db4e28f6d176a709615cc
b7db81cb44668f549a7fd15de84c0cb23654ac3d
refs/heads/main
2023-05-26T09:02:24.260700
2023-05-22T14:40:28
2023-05-22T14:40:28
337,518,678
0
0
null
null
null
null
UTF-8
Python
false
false
2,253
py
from tkinter import * root = Tk() root.geometry('400x400') root.configure(bg='cyan') root.resizable(1, 1) root.title('Address Book') contact_list = [ ['John Smith', '07567374343'], ['Terry Adams', '07569984343'], ['Allen Gibson', '07564474743'], ['Grant Foster', '07567396843'], ['Hall Grey', '07567746343'] ] Name = StringVar() Number = StringVar() frame = Frame(root) frame.pack(side=RIGHT) scroll = Scrollbar(frame, orient=VERTICAL) select = Listbox(frame,bg='light goldenrod', yscrollcommand=scroll.set, width=30, height=33) scroll.configure(command=select.yview) scroll.pack(side=RIGHT, fill=Y) select.pack(side=LEFT, fill=BOTH, expand=1) def Selected(): return int(select.curselection()[0]) def AddContact(): contact_list.append([Name.get(), Number.get()]) Select_set() def EDIT(): contact_list[Selected()] = [Name.get(), Number.get()] Select_set() def DELETE(): del contact_list[Selected()] Select_set() def VIEW(): NAME, PHONE = contact_list[Selected()] Name.set(NAME) Number.set(PHONE) def EXIT(): root.destroy() def RESET(): Name.set('') Number.set('') def Select_set(): contact_list.sort() select.delete(0, END) for name, phone in contact_list: select.insert(END, name) Select_set() Label(root, text='NAME', font='arial 15 bold', bg='cyan').pack() Entry(root, font=20, bg='light yellow', textvariable=Name).pack() Label(root, text='PHONE NO.', font='arial 15 bold', bg='cyan').pack() Entry(root, font=20,bg='light yellow', textvariable=Number).pack() Button(root, text='ADD', width=7, font='arial 15 bold', bg='SlateGray4', command=AddContact).pack() Button(root, text='EDIT', width=7, font='arial 15 bold', bg='SlateGray4', command=EDIT).pack() Button(root, text="DELETE", width=7, font='arial 15 bold', bg='SlateGray4', command=DELETE).pack() Button(root, text="VIEW", width=7, font='arial 15 bold', bg='SlateGray4', command=VIEW).pack() Button(root, text="EXIT", width=7, font='arial 15 bold', bg='tomato', command=EXIT).pack() Button(root, text="RESET", width=7, font='arial 15 bold', bg='SlateGray4', command=RESET).pack() mainloop()
df8348437cb3f52a36143204a8098092a7baae05
cdd2003610c4c451dc38781d5ece2cf4e8138c27
/src/convert_rviz.py
cd66d10b1a8cd9aecf17d38b1ef969533384d9a9
[]
no_license
DLu/rwt_config_generator
7efb29d773dddae0868be14606ba91893fae806c
873b1aa0d4c94cdba3b15ef85d46f70c26f6dc86
refs/heads/master
2020-12-24T16:24:02.304617
2016-03-03T19:04:52
2016-03-03T19:04:52
39,230,985
2
1
null
null
null
null
UTF-8
Python
false
false
3,622
py
#!/usr/bin/python from __future__ import print_function import sys import yaml from rwt_config_generator import * import argparse import rospy def warning(*objs): print("WARNING: ", *objs, file=sys.stderr) parser = argparse.ArgumentParser() parser.add_argument('rviz_config') parser.add_argument('output_html_file', nargs='?') parser.add_argument('-b', '--bson', action='store_true') parser.add_argument('-u', '--host', type=str, nargs='?') args = parser.parse_args(rospy.myargv()[1:]) rviz = yaml.load( open(args.rviz_config) )['Visualization Manager'] def to_hex(s): if s is None: return None ns = tuple(map(int, s.split(';'))) s = '0x%02x%02x%02x'%ns return s def get(key, d=None): if d is None: d = rviz for s in key.split('/'): d = d.get(s, None) if d==None: return None return d def parse_displays(c, displays): for display in displays: if not display.get('Enabled', True): continue cls = display['Class'] if cls == 'rviz/Grid': c.add_grid() elif cls == 'rviz/RobotModel': c.add_model(param=display.get('Robot Description'), tfPrefix=display.get('TF Prefix')) elif cls == 'rviz/Marker': c.add_markers(topic=display.get('Marker Topic')) elif cls == 'rviz/MarkerArray': c.add_marker_array(topic=display.get('Marker Topic')) elif cls == 'rviz/InteractiveMarkers': topic = display.get('Update Topic') topic = topic.replace('/update', '') c.add_imarkers(topic=topic) elif cls == 'rviz/PointCloud2': c.add_pointcloud(topic=display.get('Topic'), size=display.get('Size (m)')) elif cls == 'rviz/LaserScan': c.add_laserscan(topic=display.get('Topic'), color=to_hex(display.get('Color')), size=display.get('Size (m)')) elif cls == 'rviz/Path': c.add_path(topic=display.get('Topic'), color=to_hex(display.get('Color'))) elif cls == 'rviz/Polygon': c.add_polygon(topic=display.get('Topic'), color=to_hex(display.get('Color'))) elif cls == 'rviz/Pose': c.add_pose(topic=display.get('Topic'), color=to_hex(display.get('Color')), shaft_radius=display.get('Shaft Radius'), head_radius=display.get('Head Radius'), shaft_length=display.get('Shaft Length'), head_length=display.get('Head Length')) elif cls == 'rviz/Odometry': c.add_odometry(topic=display.get('Topic'), color=to_hex(display.get('Color')), shaft_length=display.get('Length'), keep=display.get('Keep')) elif cls == 'rviz/PoseArray': c.add_posearray(topic=display.get('Topic'), color=to_hex(display.get('Color')), length=display.get('Arrow Length')) elif cls == 'rviz/PointStamped': c.add_point(topic=display.get('Topic'), color=to_hex(display.get('Color')), radius=display.get('Radius')) elif cls == 'rviz/Group': parse_displays( c, display['Displays'] ) elif cls == 'rviz/Map': c.add_map(topic=display.get('Topic'), alpha=display.get('Alpha'), tf=True) else: warning("Class %s not supported yet!"%cls) frame = get('Global Options/Fixed Frame') c = RWTConfig(host=args.host, fixed_frame=frame) if args.bson: c.add_bson_header() parse_displays(c, get('Displays')) if args.output_html_file: with open(args.output_html_file, 'w') as f: f.write(str(c)) else: print(c)
3c36c0d10742f9c25af173e2077d9c835a3e3ff8
1d928c3f90d4a0a9a3919a804597aa0a4aab19a3
/python/celery/2015/12/graph.py
d441a54ca1edf2545aaaa16e0d18be8ec8d7318d
[]
no_license
rosoareslv/SED99
d8b2ff5811e7f0ffc59be066a5a0349a92cbb845
a062c118f12b93172e31e8ca115ce3f871b64461
refs/heads/main
2023-02-22T21:59:02.703005
2021-01-28T19:40:51
2021-01-28T19:40:51
306,497,459
1
1
null
2020-11-24T20:56:18
2020-10-23T01:18:07
null
UTF-8
Python
false
false
6,432
py
# -*- coding: utf-8 -*- """ The :program:`celery graph` command. .. program:: celery graph """ from __future__ import absolute_import, unicode_literals from operator import itemgetter from celery.datastructures import DependencyGraph, GraphFormatter from celery.five import items from .base import Command __all__ = ['graph'] class graph(Command): args = """<TYPE> [arguments] ..... bootsteps [worker] [consumer] ..... workers [enumerate] """ def run(self, what=None, *args, **kwargs): map = {'bootsteps': self.bootsteps, 'workers': self.workers} if not what: raise self.UsageError('missing type') elif what not in map: raise self.Error('no graph {0} in {1}'.format(what, '|'.join(map))) return map[what](*args, **kwargs) def bootsteps(self, *args, **kwargs): worker = self.app.WorkController() include = {arg.lower() for arg in args or ['worker', 'consumer']} if 'worker' in include: graph = worker.blueprint.graph if 'consumer' in include: worker.blueprint.connect_with(worker.consumer.blueprint) else: graph = worker.consumer.blueprint.graph graph.to_dot(self.stdout) def workers(self, *args, **kwargs): def simplearg(arg): return maybe_list(itemgetter(0, 2)(arg.partition(':'))) def maybe_list(l, sep=','): return (l[0], l[1].split(sep) if sep in l[1] else l[1]) args = dict(simplearg(arg) for arg in args) generic = 'generic' in args def generic_label(node): return '{0} ({1}://)'.format(type(node).__name__, node._label.split('://')[0]) class Node(object): force_label = None scheme = {} def __init__(self, label, pos=None): self._label = label self.pos = pos def label(self): return self._label def __str__(self): return self.label() class Thread(Node): scheme = {'fillcolor': 'lightcyan4', 'fontcolor': 'yellow', 'shape': 'oval', 'fontsize': 10, 'width': 0.3, 'color': 'black'} def __init__(self, label, **kwargs): self._label = 'thr-{0}'.format(next(tids)) self.real_label = label self.pos = 0 class Formatter(GraphFormatter): def label(self, obj): return obj and obj.label() def node(self, obj): scheme = dict(obj.scheme) if obj.pos else obj.scheme if isinstance(obj, Thread): scheme['label'] = obj.real_label return self.draw_node( obj, dict(self.node_scheme, **scheme), ) def terminal_node(self, obj): return self.draw_node( obj, dict(self.term_scheme, **obj.scheme), ) def edge(self, a, b, **attrs): if isinstance(a, Thread): attrs.update(arrowhead='none', arrowtail='tee') return self.draw_edge(a, b, self.edge_scheme, attrs) def subscript(n): S = {'0': '₀', '1': '₁', '2': '₂', '3': '₃', '4': '₄', '5': '₅', '6': '₆', '7': '₇', '8': '₈', '9': '₉'} return ''.join([S[i] for i in str(n)]) class Worker(Node): pass class Backend(Node): scheme = {'shape': 'folder', 'width': 2, 'height': 1, 'color': 'black', 'fillcolor': 'peachpuff3', 'color': 'peachpuff4'} def label(self): return generic_label(self) if generic else self._label class Broker(Node): scheme = {'shape': 'circle', 'fillcolor': 'cadetblue3', 'color': 'cadetblue4', 'height': 1} def label(self): return generic_label(self) if generic else self._label from itertools import count tids = count(1) Wmax = int(args.get('wmax', 4) or 0) Tmax = int(args.get('tmax', 3) or 0) def maybe_abbr(l, name, max=Wmax): size = len(l) abbr = max and size > max if 'enumerate' in args: l = ['{0}{1}'.format(name, subscript(i + 1)) for i, obj in enumerate(l)] if abbr: l = l[0:max - 1] + [l[size - 1]] l[max - 2] = '{0}⎨…{1}⎬'.format( name[0], subscript(size - (max - 1))) return l try: workers = args['nodes'] threads = args.get('threads') or [] except KeyError: replies = self.app.control.inspect().stats() workers, threads = [], [] for worker, reply in items(replies): workers.append(worker) threads.append(reply['pool']['max-concurrency']) wlen = len(workers) backend = args.get('backend', self.app.conf.result_backend) threads_for = {} workers = maybe_abbr(workers, 'Worker') if Wmax and wlen > Wmax: threads = threads[0:3] + [threads[-1]] for i, threads in enumerate(threads): threads_for[workers[i]] = maybe_abbr( list(range(int(threads))), 'P', Tmax, ) broker = Broker(args.get( 'broker', self.app.connection_for_read().as_uri())) backend = Backend(backend) if backend else None graph = DependencyGraph(formatter=Formatter()) graph.add_arc(broker) if backend: graph.add_arc(backend) curworker = [0] for i, worker in enumerate(workers): worker = Worker(worker, pos=i) graph.add_arc(worker) graph.add_edge(worker, broker) if backend: graph.add_edge(worker, backend) threads = threads_for.get(worker._label) if threads: for thread in threads: thread = Thread(thread) graph.add_arc(thread) graph.add_edge(thread, worker) curworker[0] += 1 graph.to_dot(self.stdout)
4eb09dfed6ad25c8eddd6132f2dc73dff3fcc6a3
1933ef2c5b3ec58feeb50dd092d670f58a3ec2bb
/kospeech/models/modules.py
352b6a0bd0bf59f8861fa3d7e573569560a2ad30
[ "Apache-2.0" ]
permissive
hephaex/KoSpeech
68275af311ae5c53548f7c7bc27fe9dd5b1e441b
bf3fa0dc6d50089164fd0b47e02620062718d407
refs/heads/master
2022-12-02T02:00:01.164265
2020-08-05T08:47:55
2020-08-05T08:47:55
285,344,731
0
0
Apache-2.0
2020-08-12T14:53:11
2020-08-05T16:22:59
null
UTF-8
Python
false
false
1,579
py
import torch import torch.nn as nn import torch.nn.init as init from torch import Tensor class Linear(nn.Module): """ Wrapper class of torch.nn.Linear Weight initialize by xavier initialization and bias initialize to zeros. """ def __init__(self, in_features: int, out_features: int, bias: bool = True) -> None: super(Linear, self).__init__() self.linear = nn.Linear(in_features, out_features, bias=bias) init.xavier_uniform_(self.linear.weight) if bias: init.zeros_(self.linear.bias) def forward(self, x: Tensor) -> Tensor: return self.linear(x) class LayerNorm(nn.Module): """ Wrapper class of torch.nn.LayerNorm """ def __init__(self, dim: int, eps: float = 1e-6) -> None: super(LayerNorm, self).__init__() self.gamma = nn.Parameter(torch.ones(dim)) self.beta = nn.Parameter(torch.zeros(dim)) self.eps = eps def forward(self, z: Tensor) -> Tensor: mean = z.mean(dim=-1, keepdim=True) std = z.std(dim=-1, keepdim=True) output = (z - mean) / (std + self.eps) output = self.gamma * output + self.beta return output class View(nn.Module): """ Wrapper class of torch.view() for Sequential module. """ def __init__(self, shape: tuple, contiguous: bool = False): super(View, self).__init__() self.shape = shape self.contiguous = contiguous def forward(self, inputs): if self.contiguous: inputs = inputs.contiguous() return inputs.view(*self.shape)
525051e2943540875900fe0b6db434ee527c30ba
80d50ea48e10674b1b7d3f583a1c4b7d0b01200f
/examples/v1/usage-metering/GetUsageNetworkFlows_1239422069.py
60afb66b6f88d5918aba22ca4b3b72c0ab5be76d
[ "Apache-2.0", "BSD-3-Clause", "MIT", "MPL-2.0" ]
permissive
DataDog/datadog-api-client-python
3e01fa630278ad0b5c7005f08b7f61d07aa87345
392de360e7de659ee25e4a6753706820ca7c6a92
refs/heads/master
2023-09-01T20:32:37.718187
2023-09-01T14:42:04
2023-09-01T14:42:04
193,793,657
82
36
Apache-2.0
2023-09-14T18:22:39
2019-06-25T22:52:04
Python
UTF-8
Python
false
false
599
py
""" Get hourly usage for Network Flows returns "OK" response """ from datetime import datetime from dateutil.relativedelta import relativedelta from datadog_api_client import ApiClient, Configuration from datadog_api_client.v1.api.usage_metering_api import UsageMeteringApi configuration = Configuration() with ApiClient(configuration) as api_client: api_instance = UsageMeteringApi(api_client) response = api_instance.get_usage_network_flows( start_hr=(datetime.now() + relativedelta(days=-5)), end_hr=(datetime.now() + relativedelta(days=-3)), ) print(response)
16ffe2ce0b7d1d05344cc7814fd04b63e4a84196
98c6ea9c884152e8340605a706efefbea6170be5
/examples/data/Assignment_4/hrbmax002/piglatin.py
32eb09647dd7f6c75cec56edc0b28a10e8811327
[]
no_license
MrHamdulay/csc3-capstone
479d659e1dcd28040e83ebd9e3374d0ccc0c6817
6f0fa0fa1555ceb1b0fb33f25e9694e68b6a53d2
refs/heads/master
2021-03-12T21:55:57.781339
2014-09-22T02:22:22
2014-09-22T02:22:22
22,372,174
0
0
null
null
null
null
UTF-8
Python
false
false
998
py
def toPigLatin(s): if s[len(s)-1] != " ": s = s + " " answer = "" while len(s)>0: temp = s[0:s.index(" ")] s = s[s.index(" ")+1:] if temp[0].upper() in ["A","E","I","O","U"]: temp = temp + "way " else: temp = temp + "a" while temp[0].upper() not in ["A","E","I","O","U"]: temp = temp[1:] + temp[0] temp = temp + "ay " answer = answer + temp answer = answer[0:len(answer)-1] return answer def toEnglish(s): if s[len(s)-1] != " ": s = s + " " answer = "" while len(s)>0: temp = s[0:s.index(" ")] s = s[s.index(" ")+1:] if temp[-3:]=="way": answer = answer + " " + temp[0:-3] else: temp = temp[0:-2] while temp[-1] != "a": temp = temp[-1] + temp[0:-1] answer = answer + " " + temp[0:-1] return answer[1:]
eb085418aab782c970d7166273fd9b9262c46f5b
c858d9511cdb6a6ca723cd2dd05827d281fa764d
/MFTU/lesson 7/Test work/test_F.py
b6885f38ec053864866d442146f62a2ba115c3a5
[]
no_license
DontTouchMyMind/education
0c904aa929cb5349d7af7e06d9b1bbaab972ef95
32a53eb4086b730cc116e633f68cf01f3d4ec1d1
refs/heads/master
2021-03-12T11:15:02.479779
2020-09-17T08:19:50
2020-09-17T08:19:50
246,616,542
0
0
null
null
null
null
UTF-8
Python
false
false
577
py
# Необходимо найти НОД двух чисел, используя алгоритм Евклида. # # Формат входных данных # На вход подаются два натуральных числа, по числу в новой строке. # # Формат выходных данных # Одно число - НОД входных чисел. def gcd(a, b): if a == b: return a elif a > b: return gcd(a - b, b) else: return gcd(a, b - a) n1 = int(input()) n2 = int(input()) print(gcd(n1, n2))
51705550782e5a0f8c41b524d7d0cf60b7edc565
fcbf3ddca275606830d455a69df73e20ced6546a
/doc/conf.py
9ca4ca664b3f765a31dd264254f24c060e447023
[ "Apache-2.0" ]
permissive
KarchinLab/probabilistic2020
5f56e30e0c8484ac524081dd022c0159f24508ce
8e0b1b9578bd8189b1690dd2f17476c3305b98dc
refs/heads/master
2023-07-26T12:06:28.647117
2019-07-28T12:37:50
2019-07-28T12:37:50
57,408,263
8
7
Apache-2.0
2023-07-06T21:02:44
2016-04-29T19:32:49
Python
UTF-8
Python
false
false
8,727
py
# -*- coding: utf-8 -*- # # 20/20 Permutation Test documentation build configuration file, created by # sphinx-quickstart on Mon Jul 28 13:53:42 2014. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys, os # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath('..')) sys.path.insert(0, os.path.abspath('.')) sys.path.insert(0, os.path.abspath('./img')) # on_rtd is whether we are on readthedocs.org, this line of code grabbed from docs.readthedocs.org on_rtd = os.environ.get('READTHEDOCS', None) == 'True' if not on_rtd: # only import and set the theme if we're building docs locally import sphinx_rtd_theme html_theme = 'sphinx_rtd_theme' html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.doctest', 'sphinx.ext.mathjax', 'sphinx.ext.viewcode', #'numpydoc', #'IPython.sphinxext.ipython_console_highlighting', #'IPython.sphinxext.ipython_directive', #'matplotlib.sphinxext.plot_directive' ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'Probabilistic 20/20' copyright = u'2014-19, Collin Tokheim' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '1.2' # The full version, including alpha/beta/rc tags. release = '1.2.3' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'sphinx_rtd_theme' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] #html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'Probabilistic2020doc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'Probabilistic2020.tex', u'Probabilistic 20/20 Documentation', u'Collin Tokheim', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'Probabilistic 20/20 Documentation', u'Probabilistic 20/20 Documentation', [u'Collin Tokheim'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'Probabilistic2020', u'Probabilistic 20/20 Documentation', u'Collin Tokheim', 'Probabilistic2020', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote'
6450073c33cb50db18dc4b145b95d18e75ee47b0
e2d22f12f8e540a80d31de9debe775d35c3c5c22
/blousebrothers/confs/migrations/0037_auto_20170117_1535.py
6841343b2a40c2fbb431ff15ae9ddfd4cd5a80ee
[ "MIT" ]
permissive
sladinji/blousebrothers
360c3b78ec43379977dbf470e5721e6a695b2354
461de3ba011c0aaed3f0014136c4497b6890d086
refs/heads/master
2022-12-20T10:24:07.631454
2019-06-13T13:17:35
2019-06-13T13:17:35
66,867,705
1
0
NOASSERTION
2022-12-19T18:15:44
2016-08-29T18:04:33
Python
UTF-8
Python
false
false
813
py
# -*- coding: utf-8 -*- # Generated by Django 1.9.7 on 2017-01-17 15:35 from __future__ import unicode_literals from decimal import Decimal from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('confs', '0036_auto_20170110_1100'), ] operations = [ migrations.AlterField( model_name='conference', name='price', field=models.DecimalField(decimal_places=2, default=Decimal('0.5'), help_text='', max_digits=6, verbose_name='Prix de vente'), ), migrations.AlterField( model_name='conference', name='type', field=models.CharField(choices=[('DCP', 'DCP'), ('QI', 'QI'), ('LCA', 'LCA')], default='DP', max_length=10, verbose_name='Type'), ), ]
c8e2155ef68a3eba87ea0e8c4cab9b582c3f5355
8bc3e7bd0fa1714b3d0466e940ed801cf9a4c5d4
/pyvisual/node/io/system_var.py
2e6dfeaf5a70761d5951b4abff26e7ec2a04eaae
[]
no_license
m0r13/pyvisual
d99b3512fefaf4a2164362a0b7aabd1df9ecee03
f6b3e2217e647b80f1379716c00e8adb53975bca
refs/heads/master
2022-02-21T22:24:22.467475
2019-06-17T20:38:48
2019-06-17T20:38:48
140,211,941
0
0
null
null
null
null
UTF-8
Python
false
false
5,802
py
import json import os import time from collections import defaultdict, OrderedDict import imgui from pyvisual.node import dtype, value from pyvisual.node.base import Node from pyvisual.editor import widget SERIALIZATION_WRITE_INTERVAL = 5.0 SERIALIZATION_FILE = "system_vars.json" # if you add another variable with another dtype than here, add the name of the dtype below! VARIABLES = OrderedDict([ ("gain", {"dtype" : dtype.float, "dtype_args" : {"default" : 4.0, "range" : [0.0, float("inf")]}}), ("threshold", {"dtype" : dtype.float, "dtype_args" : {"default" : 0.4, "range" : [0.0, float("inf")]}}), ("ref_aspect", {"dtype" : dtype.str, "dtype_args" : {"default" : "16:9"}}), ("ref_highres_height", {"dtype" : dtype.int, "dtype_args" : {"default" : 1080, "range" : [0, float("inf")]}}), ("ref_lowres_height", {"dtype" : dtype.int, "dtype_args" : {"default" : 720, "range" : [0, float("inf")]}}), ("ref_noiseres_height", {"dtype" : dtype.int, "dtype_args" : {"default" : 512, "range" : [0, float("inf")]}}), ]) # name -> value for each variable values = OrderedDict() # name -> widget for each variable widgets = OrderedDict() # dtype -> list of (name, value) values_by_dtype = defaultdict(lambda: []) # initialize values and widgets that are associated with variables for name, spec in VARIABLES.items(): assert "dtype" in spec dt = spec["dtype"] dt_args = spec.get("dtype_args", {}) default_value = dt.default if "default" in dt_args: default_value = dt_args["default"] v = value.SettableValue(default_value) w = widget.create_widget(dt, dt_args) w.width = widget.WIDGET_WIDTH * 1.5 values[name] = v values_by_dtype[dt].append((name, v)) widgets[name] = w _variables_dirty = False _variables_last_written = 0 _node_instances = set() # Important: Call this when changed a value! (Is done by editor for example) def notify_change(): global _variables_dirty _variables_dirty = True for instance in _node_instances: instance.force_evaluate() # if the nodes would take over the values if they are changed only, # then this would need to be changed probably for value in values.values(): value.reset_changed() def read_variables(): serialized_values = {} if not os.path.isfile(SERIALIZATION_FILE): return serialized_values = json.load(open(SERIALIZATION_FILE)) for name, serialized_value in serialized_values.items(): if name not in VARIABLES: continue value = values[name] dt = VARIABLES[name]["dtype"] value.value = dt.base_type.unserialize(serialized_values[name]) notify_change() read_variables() def write_variables(force=False): global _variables_dirty, _variables_last_written if force or time.time() - _variables_last_written > SERIALIZATION_WRITE_INTERVAL: _variables_dirty = False _variables_last_written = time.time() data = {} for name, spec in VARIABLES.items(): value = values[name].value data[name] = spec["dtype"].base_type.serialize(value) with open("system_vars.json", "w") as f: json.dump(data, f) class GetSystemVar(Node): DTYPE = None class Meta: inputs = [ {"name" : "name", "dtype" : dtype.str, "hide" : True} ] options = { "virtual" : True } def __init__(self): super().__init__() self._value = None @property def collapsed_node_title(self): return "get system var: %s" % self.get("name") def start(self, graph): _node_instances.add(self) name = self.get("name") if name: self._value = values.get(name, None) if self._value is None: self.get_input("name").value = "" def _evaluate(self): output = self.get_output("output") if self._value != None: output.value = self._value.value def stop(self): _node_instances.remove(self) def _show_custom_ui(self): selected_name = self.get("name") preview = selected_name if selected_name else "<none>" if imgui.begin_combo("", preview): is_selected = not selected_name opened, selected = imgui.selectable("<none>", is_selected) if opened: self.get_input("name").value = "" self._value = None if is_selected: imgui.set_item_default_focus() imgui.separator() for name, value in values_by_dtype.get(self.DTYPE, []): is_selected = name == selected_name opened, selected = imgui.selectable(name, is_selected) if opened: self.get_input("name").value = name self._value = value if is_selected: imgui.set_item_default_focus() imgui.end_combo() @classmethod def get_presets(cls, graph): presets = [] for name, value in values_by_dtype.get(cls.DTYPE, []): presets.append((name, {"i_name" : name})) return presets dtype_capital_names = { dtype.float : "Float", dtype.str : "Str", dtype.int : "Int", } # create a GetXXXSystemVar class for each dtype node_classes = [] for dt in values_by_dtype.keys(): name = "Get%sSystemVar" % dtype_capital_names[dt] class Meta: outputs = [ {"name" : "output", "dtype" : dt, "manual_input": True}, ] options = { "virtual" : False, "show_title" : False } cls = type(name, (GetSystemVar,), {"DTYPE" : dt, "Meta" : Meta, "__module__" : __name__}) node_classes.append(cls)
1465bbad98fe6c51d22d31a82efaa6fba3362f45
e8a285cb1dcdae6f1b6d8506b8d25a1d031d6cd7
/cpptools/tests/test_write_pythia_hepmc3.py
d4e73a3185bc0137d2756b3b3f25a6b491647b97
[]
no_license
matplo/heppy
f30558e4ff3c1720c63b4d82f739b3f8acadc53e
88c931e3e7dcf57a3a476ef0a92f0204491cafb9
refs/heads/master
2023-07-07T18:17:04.486149
2023-06-29T20:45:32
2023-06-29T20:45:32
201,352,733
5
8
null
2023-07-04T21:57:31
2019-08-08T23:33:39
C
UTF-8
Python
false
false
782
py
#!/usr/bin/env python import pythia8 import pythiahepmc3 def create_and_init_pythia(config_strings=[]): pythia = pythia8.Pythia() for s in config_strings: pythia.readString(s) for extra_s in ["Next:numberShowEvent = 0", "Next:numberShowInfo = 0", "Next:numberShowProcess = 0", "Next:numberCount = 0"]: pythia.readString(extra_s) if pythia.init(): return pythia return None def main(): pythia = create_and_init_pythia(["PhaseSpace:pTHatMin = 2", "HardQCD:all = on"]) sfoutname = "test_write_pythia_hepmc3.dat" pyhepmcwriter = pythiahepmc3.Pythia8HepMCWrapper(sfoutname) for iEvent in range(100): if not pythia.next(): continue pyhepmcwriter.fillEvent(pythia) pythia.stat() print("[i] done writing to {}".format(sfoutname)) if __name__ == '__main__': main()
b1dc9e505c919a677e4ad516ba5eb32f5820c244
610dedfb6e21d297e8cdbcba599a4e564bd785cb
/EstruturaDeRepeticao/estruturaderepeticao-09.py
8b4c1153a41989cbf2047c8067840d6a96441880
[]
no_license
zumbipy/PythonExercicios
f7b2ddf2376b9ecb2aedc77531e3571dc746a12b
7a17b78cf927a2889b93238542e90e00810c43e6
refs/heads/master
2021-01-23T10:43:47.997462
2018-07-22T14:58:44
2018-07-22T14:58:44
93,086,120
1
1
null
null
null
null
UTF-8
Python
false
false
682
py
# Telegram: @ZumbiPy __ _ ___ # /_ / __ ____ _ / / (_) _ \__ __ # / /_/ // / ' \/ _ \/ / ___/ // / # /___/\_,_/_/_/_/_.__/_/_/ \_, / # E-mail: [email protected] /___/ """ 09 - Faça um programa que imprima na tela apenas os números ímpares entre 1 e 50. """ # ================================================================================ # Logica do Programa. # ================================================================================ for i in range(1, 50): # Quando resto de uma divisao por 2 for 0 ele e par se nao e ímpar. if i % 2 != 0: print(i) print("=" * 72) # ou for i in range(1, 50, 2): print(i)
dc6940ccab54fe26f6cdd8418152ac93e3a870f6
080c13cd91a073457bd9eddc2a3d13fc2e0e56ae
/MY_REPOS/awesome-4-new-developers/tensorflow-master/tensorflow/python/tpu/feature_column_v2.py
1a5bddb173a599ee196c98ef4cd8bf3483151377
[ "Apache-2.0" ]
permissive
Portfolio-Projects42/UsefulResourceRepo2.0
1dccc8961a09347f124d3ed7c27c6d73b9806189
75b1e23c757845b5f1894ebe53551a1cf759c6a3
refs/heads/master
2023-08-04T12:23:48.862451
2021-09-15T12:51:35
2021-09-15T12:51:35
null
0
0
null
null
null
null
UTF-8
Python
false
false
50,102
py
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =================================================================== """TPU Feature Column Library.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import math import enum from tensorflow.python.feature_column import feature_column as fc from tensorflow.python.feature_column import feature_column_lib as fc_lib from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import embedding_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import sparse_ops from tensorflow.python.ops import variable_scope from tensorflow.python.tpu import tpu from tensorflow.python.tpu.feature_column import _is_running_on_cpu from tensorflow.python.tpu.feature_column import _record_variable_scope_and_name from tensorflow.python.tpu.feature_column import _SUPPORTED_CATEGORICAL_COLUMNS_V2 from tensorflow.python.tpu.feature_column import _SUPPORTED_SEQUENCE_COLUMNS from tensorflow.python.tpu.feature_column import _TPUBaseEmbeddingColumn from tensorflow.python.util.tf_export import tf_export # pylint: disable=protected-access _ALLOWED_DEVICES = ["cpu", "tpu_tensor_core", "tpu_embedding_core"] _TENSOR_CORE_MASK_KEY_SUFFIX = "__TENSOR_CORE_MASK" class EmbeddingDevice(enum.Enum): CPU = 1 TPU_TENSOR_CORE = 2 TPU_EMBEDDING_CORE = 3 @tf_export(v1=["tpu.experimental.embedding_column"]) def embedding_column_v2( categorical_column, dimension, combiner="mean", initializer=None, max_sequence_length=0, learning_rate_fn=None, embedding_lookup_device=None, tensor_core_shape=None, use_safe_embedding_lookup=True, ): """TPU version of `tf.compat.v1.feature_column.embedding_column`. Note that the interface for `tf.tpu.experimental.embedding_column` is different from that of `tf.compat.v1.feature_column.embedding_column`: The following arguments are NOT supported: `ckpt_to_load_from`, `tensor_name_in_ckpt`, `max_norm` and `trainable`. Use this function in place of `tf.compat.v1.feature_column.embedding_column` when you want to use the TPU to accelerate your embedding lookups via TPU embeddings. ``` column = tf.feature_column.categorical_column_with_identity(...) tpu_column = tf.tpu.experimental.embedding_column(column, 10) ... def model_fn(features): dense_feature = tf.keras.layers.DenseFeature(tpu_column) embedded_feature = dense_feature(features) ... estimator = tf.estimator.tpu.TPUEstimator( model_fn=model_fn, ... embedding_config_spec=tf.estimator.tpu.experimental.EmbeddingConfigSpec( column=[tpu_column], ...)) ``` Args: categorical_column: A categorical column returned from `categorical_column_with_identity`, `weighted_categorical_column`, `categorical_column_with_vocabulary_file`, `categorical_column_with_vocabulary_list`, `sequence_categorical_column_with_identity`, `sequence_categorical_column_with_vocabulary_file`, `sequence_categorical_column_with_vocabulary_list` dimension: An integer specifying dimension of the embedding, must be > 0. combiner: A string specifying how to reduce if there are multiple entries in a single row for a non-sequence column. For more information, see `tf.feature_column.embedding_column`. initializer: A variable initializer function to be used in embedding variable initialization. If not specified, defaults to `tf.compat.v1.truncated_normal_initializer` with mean `0.0` and standard deviation `1/sqrt(dimension)`. max_sequence_length: An non-negative integer specifying the max sequence length. Any sequence shorter then this will be padded with 0 embeddings and any sequence longer will be truncated. This must be positive for sequence features and 0 for non-sequence features. learning_rate_fn: A function that takes global step and returns learning rate for the embedding table. If you intend to use the same learning rate for multiple embedding tables, please ensure that you pass the exact same python function to all calls of embedding_column, otherwise performence may suffer. embedding_lookup_device: The device on which to run the embedding lookup. Valid options are "cpu", "tpu_tensor_core", and "tpu_embedding_core". If specifying "tpu_tensor_core", a tensor_core_shape must be supplied. If not specified, the default behavior is embedding lookup on "tpu_embedding_core" for training and "cpu" for inference. Valid options for training : ["tpu_embedding_core", "tpu_tensor_core"] Valid options for serving : ["cpu", "tpu_tensor_core"] For training, tpu_embedding_core is good for large embedding vocab (>1M), otherwise, tpu_tensor_core is often sufficient. For serving, doing embedding lookup on tpu_tensor_core during serving is a way to reduce host cpu usage in cases where that is a bottleneck. tensor_core_shape: If supplied, a list of integers which specifies the intended dense shape to run embedding lookup for this feature on TensorCore. The batch dimension can be left None or -1 to indicate a dynamic shape. Only rank 2 shapes currently supported. use_safe_embedding_lookup: If true, uses safe_embedding_lookup_sparse instead of embedding_lookup_sparse. safe_embedding_lookup_sparse ensures there are no empty rows and all weights and ids are positive at the expense of extra compute cost. This only applies to rank 2 (NxM) shaped input tensors. Defaults to true, consider turning off if the above checks are not needed. Note that having empty rows will not trigger any error though the output result might be 0 or omitted. Returns: A `_TPUEmbeddingColumnV2`. Raises: ValueError: if `dimension` not > 0. ValueError: if `initializer` is specified but not callable. """ if not isinstance(categorical_column, _SUPPORTED_CATEGORICAL_COLUMNS_V2): raise TypeError( "categorical_column for tpu " " embedding_column must be type %s, got %s." % ( " or ".join([cc.__name__ for cc in _SUPPORTED_CATEGORICAL_COLUMNS_V2]), type(categorical_column), ) ) if (dimension is None) or (dimension < 1): raise ValueError("Invalid dimension {}.".format(dimension)) if tensor_core_shape and len(tensor_core_shape) != 2: raise ValueError( "tensor_core_shape must be size 2. Got {}.".format(tensor_core_shape) ) if (initializer is not None) and (not callable(initializer)): raise ValueError( "initializer must be callable if specified. " "Embedding of column_name: {}".format(categorical_column.name) ) if initializer is None: initializer = init_ops.truncated_normal_initializer( mean=0.0, stddev=1 / math.sqrt(dimension) ) if embedding_lookup_device and embedding_lookup_device not in _ALLOWED_DEVICES: raise ValueError( "If set, embedding_lookup_device must be in ", _ALLOWED_DEVICES ) if embedding_lookup_device == "cpu": embedding_lookup_device = EmbeddingDevice.CPU elif embedding_lookup_device == "tpu_tensor_core": embedding_lookup_device = EmbeddingDevice.TPU_TENSOR_CORE elif embedding_lookup_device == "tpu_embedding_core": embedding_lookup_device = EmbeddingDevice.TPU_EMBEDDING_CORE if embedding_lookup_device == EmbeddingDevice.TPU_TENSOR_CORE: if not tensor_core_shape: raise ValueError( "Using embedding_lookup_device=tpu_tensor_core requires " "tensor_core_shape to be set." ) if isinstance(categorical_column, _SUPPORTED_SEQUENCE_COLUMNS): raise ValueError( "embedding_lookup_device=tpu_tensor_core currently does " "not support sequence columns." ) if not embedding_lookup_device: return _TPUEmbeddingColumnV2( categorical_column=categorical_column, dimension=dimension, combiner=combiner, initializer=initializer, max_sequence_length=max_sequence_length, learning_rate_fn=learning_rate_fn, use_safe_embedding_lookup=use_safe_embedding_lookup, ) else: return _TPUDeviceSpecificEmbeddingColumnV2( categorical_column=categorical_column, dimension=dimension, combiner=combiner, initializer=initializer, max_sequence_length=max_sequence_length, learning_rate_fn=learning_rate_fn, embedding_lookup_device=embedding_lookup_device, tensor_core_shape=tensor_core_shape, use_safe_embedding_lookup=use_safe_embedding_lookup, ) @tf_export(v1=["tpu.experimental.shared_embedding_columns"]) def shared_embedding_columns_v2( categorical_columns, dimension, combiner="mean", initializer=None, shared_embedding_collection_name=None, max_sequence_lengths=None, learning_rate_fn=None, embedding_lookup_device=None, tensor_core_shape=None, use_safe_embedding_lookup=True, ): """TPU version of `tf.compat.v1.feature_column.shared_embedding_columns`. Note that the interface for `tf.tpu.experimental.shared_embedding_columns` is different from that of `tf.compat.v1.feature_column.shared_embedding_columns`: The following arguments are NOT supported: `ckpt_to_load_from`, `tensor_name_in_ckpt`, `max_norm` and `trainable`. Use this function in place of tf.compat.v1.feature_column.shared_embedding_columns` when you want to use the TPU to accelerate your embedding lookups via TPU embeddings. ``` column_a = tf.feature_column.categorical_column_with_identity(...) column_b = tf.feature_column.categorical_column_with_identity(...) tpu_columns = tf.tpu.experimental.shared_embedding_columns( [column_a, column_b], 10) ... def model_fn(features): dense_feature = tf.keras.layers.DenseFeature(tpu_columns) embedded_feature = dense_feature(features) ... estimator = tf.estimator.tpu.TPUEstimator( model_fn=model_fn, ... embedding_config_spec=tf.estimator.tpu.experimental.EmbeddingConfigSpec( column=tpu_columns, ...)) ``` Args: categorical_columns: A list of categorical columns returned from `categorical_column_with_identity`, `weighted_categorical_column`, `categorical_column_with_vocabulary_file`, `categorical_column_with_vocabulary_list`, `sequence_categorical_column_with_identity`, `sequence_categorical_column_with_vocabulary_file`, `sequence_categorical_column_with_vocabulary_list` dimension: An integer specifying dimension of the embedding, must be > 0. combiner: A string specifying how to reduce if there are multiple entries in a single row for a non-sequence column. For more information, see `tf.feature_column.embedding_column`. initializer: A variable initializer function to be used in embedding variable initialization. If not specified, defaults to `tf.truncated_normal_initializer` with mean `0.0` and standard deviation `1/sqrt(dimension)`. shared_embedding_collection_name: Optional name of the collection where shared embedding weights are added. If not given, a reasonable name will be chosen based on the names of `categorical_columns`. This is also used in `variable_scope` when creating shared embedding weights. max_sequence_lengths: An list of non-negative integers, either None or empty or the same length as the argument categorical_columns. Entries corresponding to non-sequence columns must be 0 and entries corresponding to sequence columns specify the max sequence length for the column. Any sequence shorter then this will be padded with 0 embeddings and any sequence longer will be truncated. learning_rate_fn: A function that takes global step and returns learning rate for the embedding table. If you intend to use the same learning rate for multiple embedding tables, please ensure that you pass the exact same python function to all calls of shared_embedding_columns, otherwise performence may suffer. embedding_lookup_device: The device on which to run the embedding lookup. Valid options are "cpu", "tpu_tensor_core", and "tpu_embedding_core". If specifying "tpu_tensor_core", a tensor_core_shape must be supplied. Defaults to "cpu". If not specified, the default behavior is embedding lookup on "tpu_embedding_core" for training and "cpu" for inference. Valid options for training : ["tpu_embedding_core", "tpu_tensor_core"] Valid options for serving : ["cpu", "tpu_tensor_core"] For training, tpu_embedding_core is good for large embedding vocab (>1M), otherwise, tpu_tensor_core is often sufficient. For serving, doing embedding lookup on tpu_tensor_core during serving is a way to reduce host cpu usage in cases where that is a bottleneck. tensor_core_shape: If supplied, a list of integers which specifies the intended dense shape to run embedding lookup for this feature on TensorCore. The batch dimension can be left None or -1 to indicate a dynamic shape. Only rank 2 shapes currently supported. use_safe_embedding_lookup: If true, uses safe_embedding_lookup_sparse instead of embedding_lookup_sparse. safe_embedding_lookup_sparse ensures there are no empty rows and all weights and ids are positive at the expense of extra compute cost. This only applies to rank 2 (NxM) shaped input tensors. Defaults to true, consider turning off if the above checks are not needed. Note that having empty rows will not trigger any error though the output result might be 0 or omitted. Returns: A list of `_TPUSharedEmbeddingColumnV2`. Raises: ValueError: if `dimension` not > 0. ValueError: if `initializer` is specified but not callable. ValueError: if `max_sequence_lengths` is specified and not the same length as `categorical_columns`. ValueError: if `max_sequence_lengths` is positive for a non sequence column or 0 for a sequence column. """ for categorical_column in categorical_columns: if not isinstance(categorical_column, _SUPPORTED_CATEGORICAL_COLUMNS_V2): raise TypeError( "categorical_column for tpu " " shared_embedding_columns must be type %s, got %s." % ( " or ".join( [cc.__name__ for cc in _SUPPORTED_CATEGORICAL_COLUMNS_V2] ), type(categorical_column), ) ) if not max_sequence_lengths: max_sequence_lengths = [0] * len(categorical_columns) if len(max_sequence_lengths) != len(categorical_columns): raise ValueError( "max_sequence_lengths and categorical_columns must be of " "the same length. len(max_sequence_lengths)={} " "len(categorical_columns)={}.".format( len(max_sequence_lengths), len(categorical_columns) ) ) if (dimension is None) or (dimension < 1): raise ValueError("Invalid dimension {}.".format(dimension)) if tensor_core_shape and len(tensor_core_shape) != 2: raise ValueError( "tensor_core_shape must be size 2. Got {}.".format(tensor_core_shape) ) if (initializer is not None) and (not callable(initializer)): raise ValueError("initializer must be callable if specified. ") if initializer is None: initializer = init_ops.truncated_normal_initializer( mean=0.0, stddev=1 / math.sqrt(dimension) ) # Sort the columns so the default collection name is deterministic even if the # user passes columns from an unsorted collection, such as dict.values(). sorted_columns = sorted(categorical_columns, key=lambda x: x.name) num_buckets = sorted_columns[0]._num_buckets # pylint: disable=protected-access for c in sorted_columns[1:]: if num_buckets != c._num_buckets: # pylint: disable=protected-access raise ValueError( "To use shared_embedding_column, all categorical_columns must have " "the same number of buckets. Given column: {} with buckets: {} does " "not match column: {} with buckets: {}".format( sorted_columns[0], num_buckets, c, c._num_buckets ) ) # pylint: disable=protected-access if not shared_embedding_collection_name: shared_embedding_collection_name = "_".join(c.name for c in sorted_columns) shared_embedding_collection_name += "_shared_embedding" tpu_columns = [] column_creator = fc_lib.SharedEmbeddingColumnCreator( dimension=dimension, initializer=initializer, ckpt_to_load_from=None, tensor_name_in_ckpt=None, num_buckets=num_buckets, trainable=None, name=shared_embedding_collection_name, ) if embedding_lookup_device and embedding_lookup_device not in _ALLOWED_DEVICES: raise ValueError( "If set, embedding_lookup_device must be in ", _ALLOWED_DEVICES ) if embedding_lookup_device == "cpu": embedding_lookup_device = EmbeddingDevice.CPU elif embedding_lookup_device == "tpu_tensor_core": embedding_lookup_device = EmbeddingDevice.TPU_TENSOR_CORE elif embedding_lookup_device == "tpu_embedding_core": embedding_lookup_device = EmbeddingDevice.TPU_EMBEDDING_CORE if embedding_lookup_device == EmbeddingDevice.TPU_TENSOR_CORE: if not tensor_core_shape: raise ValueError( "Using embedding_lookup_device=tpu_tensor_core requires " "tensor_core_shape to be set." ) for c in sorted_columns: if isinstance(c, _SUPPORTED_SEQUENCE_COLUMNS): raise ValueError( "embedding_lookup_device=tpu_tensor_core currently " "does not support sequence columns." ) # Create the state (_SharedEmbeddingColumnLayer) here. for categorical_column, max_sequence_length in zip( categorical_columns, max_sequence_lengths ): if not embedding_lookup_device: column = _TPUSharedEmbeddingColumnV2( categorical_column=categorical_column, shared_embedding_column_creator=column_creator, combiner=combiner, initializer=initializer, shared_embedding_collection_name=shared_embedding_collection_name, max_sequence_length=max_sequence_length, learning_rate_fn=learning_rate_fn, use_safe_embedding_lookup=use_safe_embedding_lookup, ) else: column = _TPUSharedDeviceSpecificEmbeddingColumnV2( categorical_column=categorical_column, shared_embedding_column_creator=column_creator, combiner=combiner, initializer=initializer, shared_embedding_collection_name=shared_embedding_collection_name, max_sequence_length=max_sequence_length, learning_rate_fn=learning_rate_fn, embedding_lookup_device=embedding_lookup_device, tensor_core_shape=tensor_core_shape, use_safe_embedding_lookup=use_safe_embedding_lookup, ) tpu_columns.append(column) return tpu_columns class _TPUEmbeddingColumnV2(_TPUBaseEmbeddingColumn, fc_lib.EmbeddingColumn): """Core Embedding Column.""" def __new__( cls, categorical_column, dimension, combiner="mean", initializer=None, max_sequence_length=0, learning_rate_fn=None, use_safe_embedding_lookup=True, bypass_scope_validation=False, ): del bypass_scope_validation # pylint: disable=redundant-keyword-arg return fc_lib.EmbeddingColumn.__new__( cls, categorical_column, dimension, combiner=combiner, initializer=initializer, ckpt_to_load_from=None, tensor_name_in_ckpt=None, max_norm=None, trainable=True, use_safe_embedding_lookup=use_safe_embedding_lookup, ) def __getnewargs__(self): return ( self._tpu_categorical_column, self.dimension, self.combiner, self.initializer, self._max_sequence_length, self._learning_rate_fn, self.use_safe_embedding_lookup, self._bypass_scope_validation, ) def __deepcopy__(self, memo): return _TPUEmbeddingColumnV2( *(copy.deepcopy(a, memo) for a in self.__getnewargs__()) ) def __init__( self, categorical_column, dimension, combiner="mean", initializer=None, max_sequence_length=0, learning_rate_fn=None, use_safe_embedding_lookup=True, bypass_scope_validation=False, ): _TPUBaseEmbeddingColumn.__init__( self, categorical_column, max_sequence_length=max_sequence_length, learning_rate_fn=learning_rate_fn, ) self._key = None # If true, scope validation is skipped to allow the same column to be used # in multiple variable scopes. By default, this is False, and we expect a # 1:1 mapping between feature columns and scopes. self._bypass_scope_validation = bypass_scope_validation def get_combiner(self): return self.combiner def get_embedding_table_size(self): """Returns num_ids and width.""" return (self.categorical_column._num_buckets, self.dimension) def get_feature_key_name(self): """get_feature_key_name.""" if self.is_categorical_column_weighted(): return self.categorical_column.categorical_column.name return self.categorical_column.name def get_weight_key_name(self): """get_weight_key_name.""" if self.is_categorical_column_weighted(): return self.categorical_column.weight_feature_key return None def get_embedding_var_name(self): """get_embedding_var_name.""" return self.categorical_column.name def get_initializer(self): return self.initializer def is_categorical_column_weighted(self): """Check if the categorical column of the embedding column is weighted.""" if isinstance( self.categorical_column, ( fc._WeightedCategoricalColumn, # pylint: disable=protected-access fc_lib.WeightedCategoricalColumn, ), ): return True return False def _get_dense_tensor(self, inputs, weight_collections=None, trainable=None): if tpu.under_tpu_inference_context(): def host_computation(): return fc_lib.EmbeddingColumn._get_dense_tensor( self, inputs, weight_collections, trainable ) return tpu.outside_compilation(host_computation) if _is_running_on_cpu(): return fc_lib.EmbeddingColumn._get_dense_tensor( self, inputs, weight_collections, trainable ) # TPU mode # Get the embeddings from the LazyBuilder. tensor = inputs.get(self.get_feature_key_name()) # Add to collection for _create_tpu_embedding_variables_and_ops _record_variable_scope_and_name( self.get_embedding_var_name(), "embedding_weights", bypass_scope_validation=self._bypass_scope_validation, ) return tensor def create_state(self, state_manager): if _is_running_on_cpu(): return fc_lib.EmbeddingColumn.create_state(self, state_manager) # Create state is called for the EmbeddingColumn to create its embedding # variables under feature column V2, if we are on TPU so record the scope # here. _record_variable_scope_and_name( self.get_embedding_var_name(), "embedding_weights", bypass_scope_validation=self._bypass_scope_validation, ) def get_dense_tensor(self, transformation_cache, state_manager): if tpu.under_tpu_inference_context(): def host_computation(): return fc_lib.EmbeddingColumn.get_dense_tensor( self, transformation_cache, state_manager ) return tpu.outside_compilation(host_computation) if _is_running_on_cpu(): return fc_lib.EmbeddingColumn.get_dense_tensor( self, transformation_cache, state_manager ) # TPU mode # Get the embeddings from the FeatureTransformationCache. tensor = transformation_cache.get(self.get_feature_key_name(), state_manager) return tensor def _get_sequence_dense_tensor( self, inputs, weight_collections=None, trainable=None ): if tpu.under_tpu_inference_context(): def host_computation(): return fc_lib.EmbeddingColumn._get_sequence_dense_tensor( self, inputs, weight_collections, trainable ) return tpu.outside_compilation(host_computation) if _is_running_on_cpu(): return fc_lib.EmbeddingColumn._get_sequence_dense_tensor( self, inputs, weight_collections, trainable ) tensor = inputs.get(self.get_feature_key_name()) tensor_lengths = inputs.get(self.get_sequence_length_feature_key_name()) # inputs is a _LazyBuilder and for rank 1 tensors, it calls expand_dims(-1). # We need to undo this to match the standard CPU sequence embedding. tensor_lengths = array_ops.squeeze(tensor_lengths, -1) # Add to collection for _create_tpu_embedding_variables_and_ops _record_variable_scope_and_name( self.get_embedding_var_name(), "embedding_weights", bypass_scope_validation=self._bypass_scope_validation, ) return fc_lib.SequenceDenseColumn.TensorSequenceLengthPair( dense_tensor=tensor, sequence_length=tensor_lengths ) def get_sequence_dense_tensor(self, transformation_cache, state_manager): if tpu.under_tpu_inference_context(): def host_computation(): return fc_lib.EmbeddingColumn.get_sequence_dense_tensor( self, transformation_cache, state_manager ) return tpu.outside_compilation(host_computation) if _is_running_on_cpu(): return fc_lib.EmbeddingColumn.get_sequence_dense_tensor( self, transformation_cache, state_manager ) tensor = transformation_cache.get(self.get_feature_key_name(), state_manager) tensor_lengths = transformation_cache.get( self.get_sequence_length_feature_key_name(), state_manager ) # FeatureTransformationCache expands rank 1 tensors (like sequence length) # to rank 2. We need to undo this to match the standard CPU sequence # embedding. tensor_lengths = array_ops.squeeze(tensor_lengths, -1) return fc_lib.SequenceDenseColumn.TensorSequenceLengthPair( dense_tensor=tensor, sequence_length=tensor_lengths ) class _TPUSharedEmbeddingColumnV2( _TPUBaseEmbeddingColumn, fc_lib.SharedEmbeddingColumn ): """Core Shared Embedding Column.""" def __new__( cls, categorical_column, shared_embedding_column_creator, combiner="mean", initializer=None, shared_embedding_collection_name=None, max_sequence_length=0, learning_rate_fn=None, use_safe_embedding_lookup=True, ): # pylint: disable=redundant-keyword-arg return fc_lib.SharedEmbeddingColumn.__new__( cls, categorical_column, combiner=combiner, shared_embedding_column_creator=shared_embedding_column_creator, max_norm=None, use_safe_embedding_lookup=use_safe_embedding_lookup, ) def __getnewargs__(self): return ( self._tpu_categorical_column, self.shared_embedding_column_creator, self.combiner, self._initializer, self._shared_embedding_collection_name, self._max_sequence_length, self._learning_rate_fn, ) def __deepcopy__(self, memo): return _TPUSharedEmbeddingColumnV2( *(copy.deepcopy(a, memo) for a in self.__getnewargs__()) ) def __init__( self, categorical_column, shared_embedding_column_creator, combiner="mean", initializer=None, shared_embedding_collection_name=None, max_sequence_length=0, learning_rate_fn=None, use_safe_embedding_lookup=True, ): _TPUBaseEmbeddingColumn.__init__( self, categorical_column, max_sequence_length=max_sequence_length, learning_rate_fn=learning_rate_fn, ) self._initializer = initializer self._shared_embedding_collection_name = shared_embedding_collection_name def get_combiner(self): return self.combiner def get_embedding_table_size(self): """Returns num_ids and width.""" return ( self.categorical_column._num_buckets, self.shared_embedding_column_creator.dimension, ) def get_feature_key_name(self): """get_feature_key_name.""" if self.is_categorical_column_weighted(): return self.categorical_column.categorical_column.name return self.categorical_column.name def get_weight_key_name(self): """get_weight_key_name.""" if self.is_categorical_column_weighted(): return self.categorical_column.weight_feature_key return None def get_embedding_var_name(self): """get_embedding_var_name.""" return self._shared_embedding_collection_name def get_initializer(self): return self._initializer def is_categorical_column_weighted(self): """Check if the categorical column of the embedding column is weighted.""" if isinstance( self.categorical_column, ( fc._WeightedCategoricalColumn, # pylint: disable=protected-access fc_lib.WeightedCategoricalColumn, ), ): return True return False def _get_dense_tensor_internal(self, transformation_cache, state_manager): if tpu.under_tpu_inference_context(): def host_computation(): return fc_lib.SharedEmbeddingColumn._get_dense_tensor_internal( self, transformation_cache, state_manager ) return tpu.outside_compilation(host_computation) if _is_running_on_cpu(): return fc_lib.SharedEmbeddingColumn._get_dense_tensor_internal( self, transformation_cache, state_manager ) # TPU mode # Get the embeddings from the FeatureTransformationCache. tensor = transformation_cache.get(self.get_feature_key_name(), state_manager) # Add to collection for _create_tpu_embedding_variables_and_ops # Note that in Feature Column V2, shared embeddings have no scope. _record_variable_scope_and_name( self.get_embedding_var_name(), self.shared_embedding_column_creator._name, is_shared_embedding=True, ) return tensor def get_sequence_dense_tensor(self, transformation_cache, state_manager): if tpu.under_tpu_inference_context(): def host_computation(): return fc_lib.SharedEmbeddingColumn.get_sequence_dense_tensor( self, transformation_cache, state_manager ) return tpu.outside_compilation(host_computation) if _is_running_on_cpu(): return fc_lib.SharedEmbeddingColumn.get_sequence_dense_tensor( self, transformation_cache, state_manager ) tensor = self._get_dense_tensor_internal(transformation_cache, state_manager) tensor_lengths = transformation_cache.get( self.get_sequence_length_feature_key_name(), state_manager ) # FeatureTransformationCache expands rank 1 tensors (like sequence length) # to rank 2. We need to undo this to match the standard CPU sequence # embedding. tensor_lengths = array_ops.squeeze(tensor_lengths, -1) return fc_lib.SequenceDenseColumn.TensorSequenceLengthPair( dense_tensor=tensor, sequence_length=tensor_lengths ) def split_sequence_columns_v2(feature_columns): """Split a list of _TPUEmbeddingColumn into sequence and non-sequence columns. For use in a TPUEstimator model_fn function. E.g. def model_fn(features): sequence_columns, feature_columns = ( tf.tpu.feature_column.split_sequence_columns(feature_columns)) input = tf.feature_column.input_layer( features=features, feature_columns=feature_columns) sequence_features, sequence_lengths = ( tf.contrib.feature_column.sequence_input_layer( features=features, feature_columns=sequence_columns)) Args: feature_columns: A list of _TPUEmbeddingColumns to split. Returns: Two lists of _TPUEmbeddingColumns, the first is the sequence columns and the second is the non-sequence columns. """ sequence_columns = [] non_sequence_columns = [] for column in feature_columns: if not isinstance(column, (_TPUEmbeddingColumnV2, _TPUSharedEmbeddingColumnV2)): raise TypeError( "column must be a _TPUEmbeddingColumnV2 or " "_TPUSharedEmbeddingColumnV2 but got %s instead." % (type(column)) ) if column.is_sequence_column(): sequence_columns.append(column) else: non_sequence_columns.append(column) return sequence_columns, non_sequence_columns def sparse_embedding_aggregate_slice( params, values_and_values_mask, combiner="mean", name="sparse_embedding_aggregate_slice", ): """Uses XLA's dynamic slice operations to perform embedding lookups. From third_party/cloud_tpu/models/movielens/tpu_embedding.py Args: params: Tensor of embedding table. Rank 2 (table_size x embedding dim) values_and_values_mask: is a two-tuple that contains: values - Tensor of embedding indices. Rank 2 (batch x n_indices) values_mask - Tensor of mask / weights. Rank 2 (batch x n_indices) combiner: The combiner to use for the embedding lookup. Currently supports 'sum' and 'mean'. name: Optional name scope for created ops Returns: Rank 2 tensor of aggregated (per batch element) embedding vectors. Raises: ValueError: Combiner is not supported. """ values, values_mask = values_and_values_mask # unpack the two-tuple with ops.name_scope(name): _, embedding_dimension = params.get_shape().as_list() n_batch, n_indices_padded = values.get_shape().as_list() if not n_batch: n_batch = -1 emb_lookup = array_ops.reshape( embedding_ops.embedding_lookup( params, array_ops.reshape(values, [n_batch, n_indices_padded]) ), [n_batch, n_indices_padded, embedding_dimension], ) values_mask_broadcast = array_ops.reshape( values_mask, [n_batch, n_indices_padded, 1] ) aggregate_emb = math_ops.reduce_sum(emb_lookup * values_mask_broadcast, axis=1) if combiner == "sum": return aggregate_emb elif combiner == "mean": # In the case we have an empty row, both aggregate_emb and # math_ops.reduce_sum(values_mask_broadcast, axis=1) will be 0. Thus, # we can take max it with a non-zero value to prevent NaNs. Note that # math_ops.reduce_sum(values_mask_broadcast, axis=1) will have integer # values so 1.0 is the smallest value. return aggregate_emb / math_ops.maximum( math_ops.reduce_sum(values_mask_broadcast, axis=1), 1.0 ) else: raise ValueError( "Dense TPU Embedding does not support combiner " "other than sum and mean." ) def pad_sparse_embedding_lookup_indices(sparse_indices, padded_size): """Creates statically-sized Tensors containing indices and weights. From third_party/cloud_tpu/models/movielens/tpu_embedding.py Also computes sparse_indices.values % embedding_table_size, for equivalent functionality to sparse_column_with_integerized_feature. The returned padded weight Tensor also doubles as a mask indicating which values in the returned padded indices Tensor are indices versus padded zeros. Args: sparse_indices: SparseTensor of embedding lookup indices. padded_size: Number of columns of the returned Tensors. Indices which fall out of bounds will be truncated to the padded size. Returns: (sparse_indices.values padded to the specified size, a mask the same size as the returned padded values in which 0s indicate padded locations and 1s (or values from sparse_weights) indicate actual values) """ batch_size = sparse_indices.dense_shape[0] sparse_indices = sparse_ops.sparse_slice( sparse_indices, [0, 0], [batch_size, padded_size] ) indices, values = sparse_indices.indices, sparse_indices.values padded_values = array_ops.scatter_nd( indices, math_ops.cast(values, dtypes.int32), shape=(batch_size, padded_size) ) weights = array_ops.ones_like(values, dtype=dtypes.float32) padded_mask = array_ops.scatter_nd( indices, weights, shape=(batch_size, padded_size) ) return padded_values, padded_mask def _check_invalid_cases(embedding_lookup_device): """Checks for invalid embedding_lookup_device configurations.""" if ( tpu.under_tpu_inference_context() and embedding_lookup_device == EmbeddingDevice.TPU_EMBEDDING_CORE ): raise ValueError( "Using embedding_lookup_device=tpu_embedding_core during inference " "is not supported." ) if embedding_lookup_device == EmbeddingDevice.CPU: if not tpu.under_tpu_inference_context(): raise ValueError( 'Using TPUEmbeddingColumn with embedding_lookup_device="cpu" ' "during training is not supported." ) class _TPUDeviceSpecificEmbeddingColumnV2(_TPUEmbeddingColumnV2): """TPUEmbeddingColumn which allows serving on TensorCore.""" def __new__(cls, *args, **kwargs): # For __new__, just capture the inference dense shape and call parent. if "tensor_core_shape" in kwargs: cls._tensor_core_shape = kwargs["tensor_core_shape"] del kwargs["tensor_core_shape"] if "embedding_lookup_device" in kwargs: cls._embedding_lookup_device = kwargs["embedding_lookup_device"] del kwargs["embedding_lookup_device"] return _TPUEmbeddingColumnV2.__new__(cls, *args, **kwargs) def __init__(self, *args, **kwargs): # For __init__, just capture the inference dense shape and call parent. if "tensor_core_shape" in kwargs: self._tensor_core_shape = kwargs["tensor_core_shape"] del kwargs["tensor_core_shape"] if "embedding_lookup_device" in kwargs: self._embedding_lookup_device = kwargs["embedding_lookup_device"] del kwargs["embedding_lookup_device"] _TPUEmbeddingColumnV2.__init__(self, *args, **kwargs) def __deepcopy__(self, memo): return _TPUDeviceSpecificEmbeddingColumnV2( *(copy.deepcopy(a, memo) for a in self.__getnewargs__()), tensor_core_shape=self._tensor_core_shape, embedding_lookup_device=self._embedding_lookup_device ) def create_state(self, state_manager): _check_invalid_cases(self._embedding_lookup_device) # CPU case. is_cpu = self._embedding_lookup_device == EmbeddingDevice.CPU is_cpu = is_cpu or _is_running_on_cpu() if is_cpu: return fc_lib.EmbeddingColumn.create_state(self, state_manager) # TPU_EMBEDDING_CORE case. elif self._embedding_lookup_device == EmbeddingDevice.TPU_EMBEDDING_CORE: return super(_TPUDeviceSpecificEmbeddingColumnV2, self).create_state( state_manager ) # TPU_EMBEDDING_CORE case. return fc_lib.EmbeddingColumn.create_state(self, state_manager) def get_dense_tensor(self, transformation_cache, state_manager): """Private method that follows get_dense_tensor.""" _check_invalid_cases(self._embedding_lookup_device) # CPU Case. is_cpu = self._embedding_lookup_device == EmbeddingDevice.CPU is_cpu = is_cpu or _is_running_on_cpu() if is_cpu: return super(_TPUDeviceSpecificEmbeddingColumnV2, self).get_dense_tensor( transformation_cache, state_manager ) # TPU_EMBEDDING_CORE case. elif self._embedding_lookup_device == EmbeddingDevice.TPU_EMBEDDING_CORE: return super(_TPUDeviceSpecificEmbeddingColumnV2, self).get_dense_tensor( transformation_cache, state_manager ) # TPU_EMBEDDING_CORE cases. if tpu.under_tpu_inference_context(): # For inference, use outside compile to densify and pad the input tensors. sparse_tensor = transformation_cache.get( self.categorical_column.name, state_manager ) def host_computation(): return pad_sparse_embedding_lookup_indices( sparse_tensor, self._tensor_core_shape[1] ) values, mask = tpu.outside_compilation(host_computation) else: # For training, the inputs should already have been densified and padded. values = transformation_cache.get( self.categorical_column.name, state_manager ) mask = transformation_cache.get( self.categorical_column.name + _TENSOR_CORE_MASK_KEY_SUFFIX, state_manager, ) embedding_weights = state_manager.get_variable(self, name="embedding_weights") return sparse_embedding_aggregate_slice( embedding_weights, (values, mask), self.get_combiner() ) def _get_dense_tensor(self, inputs, weight_collections=None, trainable=None): _check_invalid_cases(self._embedding_lookup_device) # CPU Case. is_cpu = self._embedding_lookup_device == EmbeddingDevice.CPU is_cpu = is_cpu or _is_running_on_cpu() if is_cpu: return super(_TPUDeviceSpecificEmbeddingColumnV2, self)._get_dense_tensor( inputs, weight_collections, trainable ) # TPU_EMBEDDING_CORE case. elif self._embedding_lookup_device == EmbeddingDevice.TPU_EMBEDDING_CORE: return super(_TPUDeviceSpecificEmbeddingColumnV2, self)._get_dense_tensor( inputs, weight_collections, trainable ) # TPU_EMBEDDING_CORE cases. if tpu.under_tpu_inference_context(): # For inference, use outside compile to densify and pad the input tensors. sparse_tensor = inputs.get(self.get_feature_key_name()) def host_computation(): return pad_sparse_embedding_lookup_indices( sparse_tensor, self._tensor_core_shape[1] ) values, mask = tpu.outside_compilation(host_computation) else: # For training, the inputs should already have been densified and padded. values = inputs.get(self.get_feature_key_name()) mask = inputs.get( self.get_feature_key_name() + _TENSOR_CORE_MASK_KEY_SUFFIX ) embedding_shape = ( self.categorical_column._num_buckets, self.dimension, ) # pylint: disable=protected-access if ( weight_collections and ops.GraphKeys.GLOBAL_VARIABLES not in weight_collections ): weight_collections.append(ops.GraphKeys.GLOBAL_VARIABLES) embedding_weights = variable_scope.get_variable( name="embedding_weights", shape=embedding_shape, dtype=dtypes.float32, initializer=self.initializer, trainable=self.trainable and trainable, collections=weight_collections, ) return sparse_embedding_aggregate_slice( embedding_weights, (values, mask), self.get_combiner() ) class _TPUSharedDeviceSpecificEmbeddingColumnV2(_TPUSharedEmbeddingColumnV2): """TPUSharedEmbeddingColumnV2 which allows serving on TensorCore.""" def __new__(cls, *args, **kwargs): # For __new__, just capture the inference dense shape and call parent. if "tensor_core_shape" in kwargs: cls._tensor_core_shape = kwargs["tensor_core_shape"] del kwargs["tensor_core_shape"] if "embedding_lookup_device" in kwargs: cls._embedding_lookup_device = kwargs["embedding_lookup_device"] del kwargs["embedding_lookup_device"] return _TPUSharedEmbeddingColumnV2.__new__(cls, *args, **kwargs) def __init__(self, *args, **kwargs): # For __init__, just capture the inference dense shape and call parent. if "tensor_core_shape" in kwargs: self._tensor_core_shape = kwargs["tensor_core_shape"] del kwargs["tensor_core_shape"] if "embedding_lookup_device" in kwargs: self._embedding_lookup_device = kwargs["embedding_lookup_device"] del kwargs["embedding_lookup_device"] _TPUSharedEmbeddingColumnV2.__init__(self, *args, **kwargs) def __deepcopy__(self, memo): return _TPUSharedDeviceSpecificEmbeddingColumnV2( *(copy.deepcopy(a, memo) for a in self.__getnewargs__()), tensor_core_shape=self._tensor_core_shape, embedding_lookup_device=self._embedding_lookup_device ) def _get_dense_tensor_internal(self, transformation_cache, state_manager): """Private method that follows _get_dense_tensor_internal.""" _check_invalid_cases(self._embedding_lookup_device) # CPU Case. is_cpu = self._embedding_lookup_device == EmbeddingDevice.CPU is_cpu = is_cpu or _is_running_on_cpu() if is_cpu: return super( _TPUSharedDeviceSpecificEmbeddingColumnV2, self )._get_dense_tensor_internal(transformation_cache, state_manager) # TPU_EMBEDDING_CORE case. if self._embedding_lookup_device == EmbeddingDevice.TPU_EMBEDDING_CORE: return super( _TPUSharedDeviceSpecificEmbeddingColumnV2, self )._get_dense_tensor_internal(transformation_cache, state_manager) # TPU_EMBEDDING_CORE cases. if tpu.under_tpu_inference_context(): # For inference, use outside compile to densify and pad the input tensors. sparse_tensor = transformation_cache.get( self.categorical_column.name, state_manager ) def host_computation(): return pad_sparse_embedding_lookup_indices( sparse_tensor, self._tensor_core_shape[1] ) values, mask = tpu.outside_compilation(host_computation) else: # For training, the inputs should already have been densified and padded. values = transformation_cache.get( self.categorical_column.name, state_manager ) mask = transformation_cache.get( self.categorical_column.name + _TENSOR_CORE_MASK_KEY_SUFFIX, state_manager, ) # Do a dense embedding lookup on TensorCore. embedding_weights = self.shared_embedding_column_creator.embedding_weights return sparse_embedding_aggregate_slice( embedding_weights, (values, mask), self.get_combiner() )
66f6e4500621285bbbbaf51d4c572120cb3598e7
3b1229c458aa232bfcf11cd6da5f1275e9bb3a8f
/python/Python基础/截图和代码/if、while、for/PaxHeader/01-if比较运算符.py
147895a71cc09ac233a82e6fae85d44e6ae21569
[]
no_license
sunjianbo/learning
4fee3ddc5e3d4040a49f2ef3e6f239fd6a67b393
384cb4e73cc67e390ee2f4be0da9fe0319d93644
refs/heads/master
2021-02-17T16:32:22.557614
2020-03-09T05:29:51
2020-03-09T05:29:51
245,111,571
0
0
null
null
null
null
UTF-8
Python
false
false
105
py
78 path=Python基础/截图和代码/if、while、for/01-if比较运算符.py 27 mtime=1491131771.711676
[ "sunjianbo" ]
sunjianbo
c5b435586383bec7e14c2017d6182ce5f217272e
449147399b91db8ca3192e9960834a73967cd01d
/pandas-ml-utils/pandas_ml_utils/ml/data/reconstruction/__init__.py
52b22fdb3e0d667496a779c3c98ac6e25c9b2549
[ "MIT" ]
permissive
brunoreisportela/pandas-ml-quant
04b81568b900d226bb7028ccbe81ea97d0c00587
a80b06aab28f38c3c6cb298e96f497e4fcdb95a5
refs/heads/master
2022-12-18T23:51:38.297857
2020-09-08T06:14:16
2020-09-08T06:14:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
49
py
from .prediction import assemble_prediction_frame
e3bb0a08160c3b5afbb1561fc67f5e5b2b320380
43a676d507c9f3e007d46b9335c82f77e35350f6
/config/wsgi.py
df17ccb416ed061cc0afd7cf24b277bc198a94b4
[]
no_license
Zoxon470/nekidaem-blog
79136fd9f4747afd01beb02bfd9d0c524493a6f6
c2539963d149841397e9eb2d4153a73abea15da2
refs/heads/master
2022-05-02T20:14:05.805564
2019-06-27T21:50:57
2019-06-27T21:50:57
194,165,211
0
2
null
2022-04-22T21:53:15
2019-06-27T21:25:07
JavaScript
UTF-8
Python
false
false
340
py
import os import sys from django.core.wsgi import get_wsgi_application app_path = os.path.abspath(os.path.join( os.path.dirname(os.path.abspath(__file__)), os.pardir)) sys.path.append(os.path.join(app_path, 'nekidaem-blog')) os.environ.setdefault("DJANGO_SETTINGS_MODULE", 'config.settings.dev') application = get_wsgi_application()
8001d2f7a9d565237552aea7cbf4fd1650d437b9
912196d86c93c29b3b031792e3cf886420a0fbde
/core/rnn/rnn_minibatch_test.py
c8e233c8e50eb5ebf1c20a8a41d63c0c12daa8c2
[ "Apache-2.0" ]
permissive
brian-lau/guac
fce363745c9a778733f1df765fd9c3b832fdeef4
c3db6cdbe56a1cb04486650ea5473287ba159ad4
refs/heads/master
2020-05-29T11:55:34.494957
2015-10-28T02:17:34
2015-10-28T02:17:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
48,065
py
# adapted from https://github.com/lisa-lab/DeepLearningTutorials from collections import OrderedDict import copy import os import re import random import timeit from hyperopt import STATUS_OK import numpy as np import pandas as pd from scipy import stats import theano from theano import tensor as T import common from ..util import defines from ..util import file_handling as fh from ..experiment import reusable_holdout from ..experiment import evaluation # Otherwise the deepcopy fails import sys sys.setrecursionlimit(5000) THEANO_FLAGS='floatX=float32' # utils functions def shuffle(lol, seed=None): ''' lol :: list of list as input seed :: seed the shuffling shuffle inplace each list in the same order ''' for l in lol: random.seed(seed) random.shuffle(l) class RNN(object): ''' elman neural net model ''' def __init__(self, nh, nc, ne, de, cs, init_scale=0.2, initial_embeddings=None, rnn_type='basic', # 'basic', 'GRU', or 'LSTM' pooling_method='max', #'max', 'mean', 'attention1' or 'attention2', extra_input_dims=0, train_embeddings=True, clip_gradients=False, bidirectional=True, bi_combine='concat' # 'concat', 'sum', or 'mean' ): ''' nh :: dimension of the hidden layer nc :: number of classes ne :: number of word embeddings in the vocabulary de :: dimension of the word embeddings cs :: word window context size ''' # initialize parameters dx = de * cs if extra_input_dims > 0: dx += extra_input_dims bi = 1 if bidirectional and bi_combine == 'concat': bi = 2 if initial_embeddings is None: self.emb = theano.shared(name='embeddings', value=init_scale * np.random.uniform(-1.0, 1.0, (ne, de)).astype(theano.config.floatX)) #(ne+1, de)) # add one for padding at the end else: self.emb = theano.shared(name='embeddings', value=initial_embeddings.astype(theano.config.floatX)) if extra_input_dims > 0: self.W_drld = theano.shared(name='W_drld', value=init_scale * np.random.uniform(-1.0, 1.0, (1, nh)) .astype(theano.config.floatX)) # common paramters (feeding into hidden node) self.W_xh = theano.shared(name='W_xh', value=init_scale * np.random.uniform(-1.0, 1.0, (dx, nh)) .astype(theano.config.floatX)) self.W_hh = theano.shared(name='W_hh', value=init_scale * np.random.uniform(-1.0, 1.0, (nh, nh)) .astype(theano.config.floatX)) self.b_h = theano.shared(name='b_h', value=np.array(np.random.uniform(0.0, 1.0, nh), dtype=theano.config.floatX)) # output layer parameters self.W_s = theano.shared(name='W_s', value=init_scale * np.random.uniform(-1.0, 1.0, (nh * bi, nc)) .astype(theano.config.floatX)) self.b_s = theano.shared(name='b_s', value=np.zeros(nc, dtype=theano.config.floatX)) # temporary parameters #self.h_i_f = theano.shared(name='h_i_f', value=np.zeros((2, nh), dtype=theano.config.floatX)) #if bidirectional: # self.h_i_r = theano.shared(name='h_i_r', value=np.zeros(nh, dtype=theano.config.floatX)) # Attention parameters if pooling_method == 'attention1' or pooling_method == 'attention2': self.W_a = theano.shared(name='W_a', value=init_scale * np.random.uniform(-1.0, 1.0, (bi*nh, 1)) .astype(theano.config.floatX)) self.b_a = theano.shared(name='b_a', value=0.0) # GRU parameters if rnn_type == 'GRU': self.W_xr = theano.shared(name='W_xr', value=init_scale * np.random.uniform(-1.0, 1.0, (dx, nh)) .astype(theano.config.floatX)) self.W_hr = theano.shared(name='W_hr', value=init_scale * np.random.uniform(-1.0, 1.0, (nh, nh)) .astype(theano.config.floatX)) self.b_r = theano.shared(name='b_r', value=np.zeros(nh, dtype=theano.config.floatX)) self.W_xz = theano.shared(name='W_xz', value=init_scale * np.random.uniform(-1.0, 1.0, (dx, nh)) .astype(theano.config.floatX)) self.W_hz = theano.shared(name='W_hz', value=init_scale * np.random.uniform(-1.0, 1.0, (nh, nh)) .astype(theano.config.floatX)) self.b_z = theano.shared(name='b_z', value=np.zeros(nh, dtype=theano.config.floatX)) # LSTM paramters if rnn_type == 'LSTM': # forget gate (needs special initialization) self.W_xf = theano.shared(name='W_xf', value=init_scale * np.random.uniform(-1.0, 1.0, (dx, nh)) .astype(theano.config.floatX)) self.W_hf = theano.shared(name='W_hf', value=init_scale * np.random.uniform(-1.0, 1.0, (nh, nh)) .astype(theano.config.floatX)) self.W_cf = theano.shared(name='W_cf', value=init_scale * np.random.uniform(-1.0, 1.0, (nh, nh)) .astype(theano.config.floatX)) self.b_f = theano.shared(name='b_f', value=np.array(np.random.uniform(0.0, 1.0, nh), dtype=theano.config.floatX)) # input gate self.W_xi = theano.shared(name='W_xi', value=init_scale * np.random.uniform(-1.0, 1.0, (dx, nh)) .astype(theano.config.floatX)) self.W_hi = theano.shared(name='W_hi', value=init_scale * np.random.uniform(-1.0, 1.0, (nh, nh)) .astype(theano.config.floatX)) self.W_ci = theano.shared(name='W_ci', value=init_scale * np.random.uniform(-1.0, 1.0, (nh, nh)) .astype(theano.config.floatX)) self.b_i = theano.shared(name='b_i', value=np.zeros(nh, dtype=theano.config.floatX)) # output gate self.W_xo = theano.shared(name='W_xo', value=init_scale * np.random.uniform(-1.0, 1.0, (dx, nh)) .astype(theano.config.floatX)) self.W_ho = theano.shared(name='W_ho', value=init_scale * np.random.uniform(-1.0, 1.0, (nh, nh)) .astype(theano.config.floatX)) self.W_co = theano.shared(name='W_co', value=init_scale * np.random.uniform(-1.0, 1.0, (nh, nh)) .astype(theano.config.floatX)) self.b_o = theano.shared(name='b_o', value=np.zeros(nh, dtype=theano.config.floatX)) # use normal ->hidden weights for memory cell # temp #self.c_i_f = theano.shared(name='c_i_f', value=np.zeros(nh, dtype=theano.config.floatX)) #if bidirectional: # self.c_i_r = theano.shared(name='c_i_r', value=np.zeros(nh, dtype=theano.config.floatX)) self.params = [self.W_xh, self.W_hh, self.b_h, self.W_s, self.b_s] #self.params += [self.h_i_f] if train_embeddings: self.params += [self.emb] if pooling_method == 'attention': self.params += [self.W_a, self.b_a] if rnn_type == 'GRU': self.params += [self.W_xr, self.W_hr, self.b_r, self.W_xz, self.W_hz, self.b_z] if rnn_type == 'LSTM': self.params += [self.W_xf, self.W_hf, self.W_cf, self.b_f, self.W_xi, self.W_hi, self.W_ci, self.b_i, self.W_xo, self.W_ho, self.W_co, self.b_o] #self.c_i_f] #if bidirectional: # self.params += [self.c_i_r] #if bidirectional: # self.params += [self.h_i_r] # create an X object based on the size of the object at the index [elements, emb_dim * window] idxs = T.tensor3('idxs', dtype='int32') if extra_input_dims: extra = T.tensor3('extra') extra_3d = extra.repeat(idxs.shape[0], axis=0) #x = T.concatenate([self.emb[idxs].reshape((idxs.shape[0], de*cs)), # T.repeat(extra, idxs.shape[0], axis=0)], axis=1) #temp = T.printing.Print('temp')(self.emb[idxs].reshape((idxs.shape[0], idxs.shape[1], de*cs))) temp = self.emb[idxs].reshape((idxs.shape[0], idxs.shape[1], de*cs)) x = T.concatenate([temp, extra_3d], axis=2) else: #x = T.printing.Print('x')(self.emb[idxs]) x = self.emb[idxs].reshape((idxs.shape[0], idxs.shape[1], de*cs)) # [n_elements, minibatch_size, emb_dim] #x = self.emb[idxs] y = T.imatrix('y') mask = T.tensor3('mask') mask_3d = mask.repeat(nh, axis=2) minibatch_size = T.iscalar() def recurrence_basic(x_t, mask_t, h_tm1): #h_t = theano.printing.Print('h_t')(T.nnet.sigmoid(T.dot(x_t, self.W_xh) + T.dot(h_tm1, self.W_hh) + self.b_h)) h_t = T.nnet.sigmoid(T.dot(x_t, self.W_xh) + T.dot(h_tm1, self.W_hh) + self.b_h) #masked_h_t = T.printing.Print('masked_h_t')(mask_t * h_t + (1 - mask_t) * h_tm1) # apply the mask to propogate the last (unmaksed) element in sequence to the end return mask_t * h_t + (1 - mask_t) * h_tm1 #return h_t def recurrence_basic_reverse(x_t, mask_t, h_tp1): h_t = T.nnet.sigmoid(T.dot(x_t, self.W_xh) + T.dot(h_tp1, self.W_hh) + self.b_h) return mask_t * h_t + (1 - mask_t) * h_tp1 def recurrence_gru(x_t, mask_t, h_tm1): r_t = T.nnet.sigmoid(T.dot(x_t, self.W_xr) + T.dot(h_tm1, self.W_hr) + self.b_r) z_t = T.nnet.sigmoid(T.dot(x_t, self.W_xz) + T.dot(h_tm1, self.W_hz) + self.b_z) g_t = T.tanh(T.dot(x_t, self.W_xh) + r_t * T.dot(h_tm1, self.W_hh) + self.b_h) h_t = (1 - z_t) * h_tm1 + z_t * g_t return mask_t * h_t + (1 - mask_t) * h_tm1 def recurrence_gru_reverse(x_t, mask_t, h_tp1): r_t = T.nnet.sigmoid(T.dot(x_t, self.W_xr) + T.dot(h_tp1, self.W_hr) + self.b_r) z_t = T.nnet.sigmoid(T.dot(x_t, self.W_xz) + T.dot(h_tp1, self.W_hz) + self.b_z) g_t = T.tanh(T.dot(x_t, self.W_xh) + r_t * T.dot(h_tp1, self.W_hh) + self.b_h) h_t = (1 - z_t) * h_tp1 + z_t * g_t return mask_t * h_t + (1 - mask_t) * h_tp1 def recurrence_lstm(x_t, mask_t, h_tm1, c_tm1): i_t = T.nnet.sigmoid(T.dot(x_t, self.W_xi) + T.dot(h_tm1, self.W_hi) + T.dot(c_tm1, self.W_ci) + self.b_i) f_t = T.nnet.sigmoid(T.dot(x_t, self.W_xf) + T.dot(h_tm1, self.W_hf) + T.dot(c_tm1, self.W_cf) + self.b_f) d_t = T.tanh(T.dot(x_t, self.W_xh) + T.dot(h_tm1, self.W_hh) + self.b_h) c_t = f_t * c_tm1 + i_t * d_t o_t = T.nnet.sigmoid(T.dot(x_t, self.W_xo) + T.dot(h_tm1, self.W_ho) + T.dot(c_t, self.W_co) + self.b_o) h_t = o_t * c_t return [mask_t * h_t + (1 - mask_t) * h_tm1, mask_t * c_t + (1 - mask_t) * c_tm1] def recurrence_lstm_reverse(x_t, mask_t, h_tp1, c_tp1): i_t = T.nnet.sigmoid(T.dot(x_t, self.W_xi) + T.dot(h_tp1, self.W_hi) + T.dot(c_tp1, self.W_ci) + self.b_i) f_t = T.nnet.sigmoid(T.dot(x_t, self.W_xf) + T.dot(h_tp1, self.W_hf) + T.dot(c_tp1, self.W_cf) + self.b_f) d_t = T.tanh(T.dot(x_t, self.W_xh) + T.dot(h_tp1, self.W_hh) + self.b_h) c_t = f_t * c_tp1 + i_t * d_t o_t = T.nnet.sigmoid(T.dot(x_t, self.W_xo) + T.dot(h_tp1, self.W_ho) + T.dot(c_t, self.W_co) + self.b_o) h_t = o_t * c_t return [mask_t * h_t + (1 - mask_t) * h_tp1, mask_t * c_t + (1 - mask_t) * c_tp1] h_r = None if rnn_type == 'GRU': h_f, _ = theano.scan(fn=recurrence_gru, sequences=[x, mask_3d], outputs_info=[T.alloc(np.array(0.), minibatch_size, nh)], n_steps=x.shape[0]) if bidirectional: h_r, _ = theano.scan(fn=recurrence_gru_reverse, sequences=[x, mask_3d], outputs_info=[T.alloc(np.array(0.), minibatch_size, nh)], go_backwards=True) elif rnn_type == 'LSTM': [h_f, c_f], _ = theano.scan(fn=recurrence_lstm, sequences=[x, mask_3d], outputs_info=[T.alloc(np.array(0.), minibatch_size, nh), T.alloc(np.array(0.), minibatch_size, nh)], n_steps=x.shape[0]) if bidirectional: [h_r, c_r], _ = theano.scan(fn=recurrence_lstm_reverse, sequences=[x, mask_3d], outputs_info=[T.alloc(np.array(0.), minibatch_size, nh), T.alloc(np.array(0.), minibatch_size, nh)], go_backwards=True) #[h_r, c_r], _ = theano.scan(fn=recurrence_lstm_reverse, sequences=x, # outputs_info=[self.h_i_r, self.c_i_r], go_backwards=True) else: #h_f, _ = theano.scan(fn=recurrence_basic, sequences=x, outputs_info=[self.h_i_f], n_steps=x.shape[0]) temp, _ = theano.scan(fn=recurrence_basic, sequences=[x, mask_3d], outputs_info=[T.alloc(np.array(0.), minibatch_size, nh)], n_steps=x.shape[0]) #h_f = theano.printing.Print('h_f')(temp) h_f = temp if bidirectional: h_r, _ = theano.scan(fn=recurrence_basic_reverse, sequences=[x, mask_3d], outputs_info=[T.alloc(np.array(0.), minibatch_size, nh)], go_backwards=True) if bidirectional: # reverse the second hidden layer so it lines up with the first h_r = h_r[::-1, :, :] if bi_combine == 'max': h = T.maximum(h_f, h_r) elif bi_combine == 'mean': h = (h_f + h_r) / 2.0 else: # concatenate #h = theano.printing.Print('h:')(T.concatenate([h_fp, h_rp], axis=1)) h = T.concatenate([h_f, h_r], axis=2) else: #temp = T.printing.Print('isnan')(T.max(T.isnan(h_f))) #h = h_f * (1-temp) h = h_f #[n_elements, minibatch_size, n_hidden] (?) a_sum = T.sum([1]) if pooling_method == 'attention1': # combine hidden nodes, then transform and sigmoid # THIS IS NOT WORKIGN... # SOFTMAX normalizes across the row (axis=1) #a = T.nnet.softmax((T.dot(h, self.W_a) + self.b_a).T) temp = T.dot(h, self.W_a) + self.b_a # softmax? a = T.exp(temp)/T.exp(temp).sum(axis=0, keepdims=True) a_sum = T.sum(a, ) # to check a is normalized a_rep = T.repeat(a, nh*bi, axis=2) weighted_sum = T.sum(h * a_rep, axis=0) p_y_given_x_sentence = T.nnet.sigmoid(T.dot(weighted_sum, self.W_s) + self.b_s) # [1, nc] in R(0,1) y_pred = p_y_given_x_sentence > 0.5 # note, max is just to coerce into proper shape #element_weights = T.outer(a, p_y_given_x_sentence) # [ne, nc] #p_y_given_x_sentence = T.nnet.sigmoid(T.dot(T.dot(a, h), self.W_s) + self.b_s) # [1, nc] in R(0,1) #y_pred = T.max(p_y_given_x_sentence, axis=0) > 0.5 # note, max is just to coerce into proper shape #element_weights = T.outer(a, p_y_given_x_sentence) # [ne, nc] elif pooling_method == 'attention2': # transform hidden nodes, sigmoid, then combine temp = T.dot(h, self.W_a) + self.b_a # softmax? a = T.exp(temp)/T.exp(temp).sum(axis=0, keepdims=True) # [ne, minibatch_size, 1]: normalized over ne #a = T.nnet.softmax((T.dot(h, self.W_a) + self.b_a)) a_sum = T.sum(a, axis=0) temp = T.nnet.sigmoid(T.dot(h, self.W_s) + self.b_s) # [ne, minibatch_size, nc] p_y_given_x_sentence = T.sum(temp * T.repeat(a, nc, axis=2), axis=0) # [minibatch_size, nc] in R(0,1) y_pred = p_y_given_x_sentence > 0.5 #element_weights = T.repeat(a.T, nc, axis=1) * temp # [ne, nc] elif pooling_method == 'mean': s = T.nnet.sigmoid((T.dot(h, self.W_s) + self.b_s)) # [n_elements, nc] in R(0,1) p_y_given_x_sentence = T.mean(s, axis=0) y_pred = p_y_given_x_sentence > 0.5 element_weights = s elif pooling_method == 'max': #s = T.nnet.sigmoid((T.dot(h, self.W_s) + self.b_s)) # [n_elements, minibatch_size, nc] in R(0,1) s = T.printing.Print('s')(T.nnet.sigmoid((T.dot(h, self.W_s) + self.b_s))) #s_shape = T.printing.Print('s_shape')(s.shape) #p_y_given_x_sentence = T.max(s_shape[0] * s, axis=0) p_y_given_x_sentence = T.max(s, axis=0) #p_y_given_x_sentence = T.printing.Print('p_y')(T.max(s, axis=0)) #temp = T.printing.Print('p_y')(p_y_given_x_sentence) #y_pred = T.printing.Print('y_pred')(p_y_given_x_sentence > 0.5) y_pred = p_y_given_x_sentence > 0.5 element_weights = s elif pooling_method == 'last': s = T.nnet.sigmoid((T.dot(h, self.W_s) + self.b_s)) # [n_elements, minibatch_size, nc] in R(0,1) p_y_given_x_sentence = s[-1, :, :] y_pred = p_y_given_x_sentence > 0.5 element_weights = s else: sys.exit("Pooling method not recognized") # cost and gradients and learning rate lr = T.scalar('lr_main') lr_emb_fac = T.scalar('lr_emb') #sentence_nll = T.mean(T.sum(-T.log(y*p_y_given_x_sentence + (1-y)*(1-p_y_given_x_sentence)), axis=1)) sentence_nll = T.sum(-T.log(y*p_y_given_x_sentence + (1-y)*(1-p_y_given_x_sentence))) sentence_gradients = T.grad(sentence_nll, self.params) if clip_gradients: sentence_gradients= [T.clip(g, -1, 1) for g in sentence_gradients] sentence_updates = OrderedDict((p, p - lr * g) for p, g in zip(self.params, [lr_emb_fac * sentence_gradients[0]] + sentence_gradients[1:])) # theano functions to compile if extra_input_dims > 0: self.sentence_classify = theano.function(inputs=[idxs, mask, extra, minibatch_size], outputs=y_pred) self.sentence_train = theano.function(inputs=[idxs, mask, extra, y, lr, lr_emb_fac, minibatch_size], outputs=[sentence_nll, a_sum], updates=sentence_updates) #if pooling_method == 'attention1' or pooling_method == 'attention2': # self.a_sum_check = theano.function(inputs=[idxs, extra], outputs=a_sum) self.sentence_step_through = theano.function(inputs=[idxs, mask, extra, minibatch_size], outputs=[h, self.W_s, self.b_s, p_y_given_x_sentence]) else: self.sentence_classify = theano.function(inputs=[idxs, mask, minibatch_size], outputs=y_pred) self.sentence_train = theano.function(inputs=[idxs, mask, y, lr, lr_emb_fac, minibatch_size], outputs=[sentence_nll, a_sum], updates=sentence_updates) #if pooling_method == 'attention1' or pooling_method == 'attention2': # self.a_sum_check = theano.function(inputs=[idxs, mask, minibatch_size], outputs=a_sum) self.sentence_step_through = theano.function(inputs=[idxs, mask, minibatch_size], outputs=[h, self.W_s, self.b_s, p_y_given_x_sentence]) self.normalize = theano.function(inputs=[], updates={self.emb: self.emb / T.sqrt((self.emb**2).sum(axis=1)) .dimshuffle(0, 'x')}) def step_through(self, x, mask, window_size, extra_input_dims=0, extra=None): seq_len, minibatch_size, window_size = x.shape words = x mask = np.array(mask.T).astype('int32').reshape((seq_len, minibatch_size, 1)) if extra_input_dims > 0: extra = np.array(extra).astype('int32').reshape((1, minibatch_size, extra_input_dims)) return self.sentence_step_through(words, mask, extra, minibatch_size) else: return self.sentence_step_through(words, mask, minibatch_size) def classify(self, x, mask, window_size, extra_input_dims=0, extra=None): #assert window_size == 1 #assert extra_input_dims == 0 #cwords = contextwin(x, window_size) ## make an array of these windows #words = map(lambda x: np.asarray(x).astype('int32'), cwords) """ for i in range(x.shape[0]): cwords = contextwin(list(x[i, :]), window_size) words = map(lambda q: np.asarray(q).astype('int32'), cwords) x[i, :] = words if len(x.shape) == 2: minibatch_size, seq_len = x.shape words = np.array(x.T).astype('int32') mask = np.array(mask.T).astype('int32').reshape((seq_len, minibatch_size, 1)) else: minibatch_size = 1 seq_len = x.shape[0] words = np.array(x).astype('int32').reshape((seq_len, minibatch_size)) mask = np.array(mask).astype('int32').reshape((seq_len, minibatch_size, 1)) """ """ if len(x.shape) == 2: minibatch_size, seq_len = x.shape words = np.zeros([seq_len, minibatch_size, window_size], dtype='int32') if window_size > 1: for i in range(minibatch_size): cwords = contextwin(list(x[i, :]), window_size) words_i = np.array(cwords, dtype='int32') #[words_i.extend(j) for j in cwords] words[:, i, :] = words_i x = words.T words = np.array(x.T).astype('int32').reshape((seq_len, minibatch_size, window_size)) mask = np.array(mask.T).astype('int32').reshape((seq_len, minibatch_size, 1)) else: minibatch_size = 1 seq_len = x.shape[0] words = np.zeros([seq_len, minibatch_size, window_size], dtype='int32') cwords = contextwin(x, window_size) words[:, 0, :] = np.array(cwords, dtype='int32') #words = np.array(words).astype('int32').reshape((seq_len, minibatch_size, window_size)) mask = np.array(mask).astype('int32').reshape((seq_len, 1, 1)) ` """ seq_len, minibatch_size, window_size = x.shape words = x mask = np.array(mask.T).astype('int32').reshape((seq_len, minibatch_size, 1)) if extra_input_dims > 0: extra = np.array(extra).astype('int32').reshape((1, minibatch_size, extra_input_dims)) return self.sentence_classify(words, mask, extra, minibatch_size) else: return self.sentence_classify(words, mask, minibatch_size) def train(self, x, mask, y, window_size, learning_rate, emb_lr_factor, extra_input_dims=0, extra=None): #assert window_size == 1 #assert extra_input_dims == 0 # concatenate words in a window #cwords = contextwin(x, window_size) # make an array of these windows #words = map(lambda x: np.asarray(x).astype('int32'), cwords) # if minibatch_size is 1, X = 1D list of indices, i.e. X.shape[0] = seq_len # if minibatch_size > 0, X = np.array([minibatch_size, seq_len]) """ if len(x.shape) == 2: minibatch_size, seq_len = x.shape words = np.zeros([seq_len, minibatch_size, window_size], dtype='int32') if window_size > 1: for i in range(minibatch_size): cwords = contextwin(list(x[i, :]), window_size) words_i = np.array(cwords, dtype='int32') #[words_i.extend(j) for j in cwords] words[:, i, :] = words_i x = words.T words = np.array(x.T).astype('int32').reshape((seq_len, minibatch_size, window_size)) mask = np.array(mask.T).astype('int32').reshape((seq_len, minibatch_size, 1)) y = np.array(y).astype('int32') else: minibatch_size = 1 seq_len = x.shape[0] words = np.zeros([seq_len, minibatch_size, window_size], dtype='int32') cwords = contextwin(x, window_size) words[:, 0, :] = np.array(cwords, dtype='int32') #words = np.array(words).astype('int32').reshape((seq_len, minibatch_size, window_size)) mask = np.array(mask).astype('int32').reshape((seq_len, 1, 1)) y = np.array(y).astype('int32').reshape((1, len(y))) """ seq_len, minibatch_size, window_size = x.shape words = x mask = np.array(mask.T).astype('int32').reshape((seq_len, minibatch_size, 1)) y = np.array(y).astype('int32') # train on these sentences and normalize if extra_input_dims > 0: extra = np.array(extra).astype('int32').reshape((1, minibatch_size, extra_input_dims)) nll = self.sentence_train(words, mask, extra, y, learning_rate, emb_lr_factor, minibatch_size) else: nll = self.sentence_train(words, mask, y, learning_rate, emb_lr_factor, minibatch_size) self.normalize() return nll def save(self, output_dir): for param in self.params: np.save(os.path.join(output_dir, param.name + '.npy'), param.get_value()) def load(self, input_dir): for param in self.params: param.set_value(np.load(os.path.join(input_dir, param.name + '.npy'))) def print_embeddings(self): for param in self.params: print param.name, param.get_value() def save_embeddings(self, filename): np.save(filename, self.emb) def contextwin(l, win): ''' win :: int corresponding to the size of the window given a list of indexes composing a sentence l :: array containing the word indexes it will return a list of list of indexes corresponding to context windows surrounding each word in the sentence ''' assert (win % 2) == 1 assert win >= 1 l = list(l) lpadded = win // 2 * [-1] + l + win // 2 * [-1] out = [lpadded[i:(i + win)] for i in range(len(l))] assert len(out) == len(l) return out def main(params=None): if params is None: params = { 'dataset': 'DRLD', 'exp_name': 'char_test', 'test_fold': 0, 'n_dev_folds': 1, 'min_doc_thresh': 1, 'initialize_word_vectors': True, 'vectors': 'chars_word2vec_25', # default_word2vec_300, anes_word2vec_300, chars_word2vec_25, eye_1 ... 'init_scale': 0.2, 'add_OOV_dim': True, 'win': 1, # size of context window 'add_DRLD': True, 'rnn_type': 'basic', # basic, GRU, or LSTM 'n_hidden': 50, # size of hidden units 'pooling_method': 'max', # max, mean, or attention1/2 'bidirectional': True, 'bi_combine': 'concat', # concat, max, or mean 'train_embeddings': True, 'lr': 0.1, # learning rate 'lr_emb_fac': 1, # factor to modify learning rate for embeddings 'decay_delay': 10, # number of epochs with no improvement before decreasing learning rate 'decay_factor': 0.5, # factor by which to multiply learning rate in case of delay 'n_epochs': 300, 'add_OOV_noise': True, 'OOV_noise_prob': 0.01, 'minibatch_size': 16, 'classify_minibatch_size': 64, 'ensemble': False, 'save_model': True, 'seed': 42, 'verbose': 1, 'reuse': False, 'orig_T': 0.04, 'tau': 0.01, 'clip_gradients': False } #params = fh.read_json('/Users/dcard/Projects/CMU/ARK/guac/experiments/best_mod.json') #params['exp_name'] += '_best' #params['n_hidden'] = int(params['n_hidden']) rnn_base_dir = '/Users/dcard/Projects/CMU/ARK/guac/experiments/rnn/car_test/' params_filename = fh.make_filename(rnn_base_dir, 'params', 'txt') params = fh.read_json(params_filename) fold = params['test_fold'] rnn_input_dir = fh.makedirs(rnn_base_dir, 'fold' + str(fold)) keys = params.keys() keys.sort() for key in keys: print key, ':', params[key] # seed the random number generators np.random.seed(params['seed']) random.seed(params['seed']) vector_type = params['vectors'].split('_')[0] params['word2vec_dim'] = int(params['vectors'].split('_')[-1]) reuser = None if params['reuse']: reuser = reusable_holdout.ReuseableHoldout(T=params['orig_T'], tau=params['tau']) if params['dataset'] == 'DRLD': datasets = ['Democrat-Likes', 'Democrat-Dislikes', 'Republican-Likes', 'Republican-Dislikes'] elif params['dataset'] == 'MIP': datasets = ['MIP-Personal-1', 'MIP-Personal-2', 'MIP-Political-1', 'MIP-Political-2'] elif params['dataset'] == 'MOLD': datasets = ['McCain-Likes', 'McCain-Dislikes', 'Obama-Likes', 'Obama-Dislikes'] elif params['dataset'] == 'Primary': datasets = ['Obama-Primary', 'Clinton-Primary'] elif params['dataset'] == 'General': datasets = ['Obama-General', 'McCain-General'] else: datasets = [params['dataset']] np.random.seed(params['seed']) random.seed(params['seed']) best_valid_f1s = [] best_true_valid_f1s = [] best_test_f1s = [] best_train_f1s = [] test_prediction_arrays = [] output_dir = fh.makedirs(defines.exp_dir, 'rnn', params['exp_name']) output_filename = fh.make_filename(output_dir, 'params', 'txt') fh.write_to_json(params, output_filename) for dev_fold in range(params['n_dev_folds']): print "dev fold =", dev_fold output_dir = fh.makedirs(defines.exp_dir, 'rnn', params['exp_name'], 'fold' + str(dev_fold)) if vector_type == 'chars': all_data, words2idx, items, all_labels = common.load_char_data(datasets, params['test_fold'], dev_fold) else: all_data, words2idx, items, all_labels = common.load_data(datasets, params['test_fold'], dev_fold, params['min_doc_thresh']) train_xy, valid_xy, test_xy = all_data train_lex, train_y = train_xy valid_lex, valid_y = valid_xy test_lex, test_y = test_xy #if params['minibatch_size'] > 1 or params['classify_minibatch_size'] > 1: print "padding input with zeros" all_data, all_masks = common.prepare_data(train_lex, valid_lex, test_lex) train_lex, valid_lex, test_lex = all_data train_masks, valid_masks, test_masks = all_masks #else: # train_masks = [np.ones(len(x)).astype('int32') for x in train_lex] # valid_masks = [np.ones(len(x)).astype('int32') for x in valid_lex] # test_masks = [np.ones(len(x)).astype('int32') for x in test_lex] print "expanding x with context win dows" # Rejigger to convert x to contex win in advance train_x_win = expand_x_with_context_win(train_lex, params['win']) valid_x_win = expand_x_with_context_win(valid_lex, params['win']) test_x_win = expand_x_with_context_win(test_lex, params['win']) order = range(len(train_lex)) print "done" train_items, dev_items, test_items = items vocsize = len(words2idx.keys()) idx2words = dict((k, v) for v, k in words2idx.iteritems()) best_test_predictions = None n_sentences = len(train_lex) print "vocsize = ", vocsize, 'n_train', n_sentences codes = all_labels.columns n_items, n_codes = all_labels.shape # get the words in the sentences for the test and validation sets words_valid = [map(lambda x: idx2words[x], w) for w in valid_lex] groundtruth_test = test_y[:] words_test = [map(lambda x: idx2words[x], w) for w in test_lex] #if vector_type == 'eye': # initial_embeddings = np.eye(vocsize) # emb_dim = initial_embeddings.shape[1] if params['initialize_word_vectors']: initial_embeddings = common.load_embeddings(params, words2idx) emb_dim = initial_embeddings.shape[1] else: initial_embeddings = None emb_dim = params['word2vec_dim'] print "embedding dim =", emb_dim temp_output = fh.make_filename(output_dir, 'embedding_labels', 'json') fh.write_to_json(idx2words, temp_output) extra_input_dims = 0 if params['add_DRLD']: extra_input_dims = 2 print "Building RNN" rnn = RNN(nh=params['n_hidden'], nc=n_codes, ne=vocsize, de=emb_dim, cs=params['win'], extra_input_dims=extra_input_dims, initial_embeddings=initial_embeddings, init_scale=params['init_scale'], rnn_type=params['rnn_type'], train_embeddings=params['train_embeddings'], pooling_method=params['pooling_method'], bidirectional=params['bidirectional'], bi_combine=params['bi_combine'], clip_gradients=params['clip_gradients'] ) rnn.load(rnn_input_dir) #temp_filename = fh.make_filename(output_dir, 'initial_embeddings', 'npy') #rnn.save_embeddings(temp_filename) train_likes = [1 if re.search('Likes', i) else 0 for i in train_items] dev_likes = [1 if re.search('Likes', i) else 0 for i in dev_items] test_likes = [1 if re.search('Likes', i) else 0 for i in test_items] train_dem = [1 if re.search('Democrat', i) else 0 for i in train_items] dev_dem = [1 if re.search('Democrat', i) else 0 for i in dev_items] test_dem = [1 if re.search('Democrat', i) else 0 for i in test_items] train_extra = [[train_likes[i], train_dem[i]] for i, t in enumerate(train_items)] dev_extra = [[dev_likes[i], dev_dem[i]] for i, t in enumerate(dev_items)] test_extra = [[test_likes[i], test_dem[i]] for i, t in enumerate(test_items)] ms = 1 mb_x, mb_masks, mb_extra, mb_y = select_minibatch(train_x_win, train_masks, train_extra, train_y, params['win'], 0, 1, order=np.arange(n_sentences)) print '\n'.join([' '.join([idx2words[idx] for idx in mb_x[:, k, 0].tolist()]) for k in range(ms)]) prediction = rnn.classify(mb_x, mb_masks, params['win'], extra_input_dims, mb_extra) print prediction h, W, b, p_y = rnn.step_through(mb_x, mb_masks, params['win'], extra_input_dims, mb_extra) print p_y print W print b temp = np.dot(h, W) + b s = 1.0/(1.0 + np.exp(-temp)) print s p_y_calc = np.max(s, axis=0) print p_y_calc print np.array(p_y_calc > 0.5, dtype='int') sys.exit() # train with early stopping on validation set best_f1 = -np.inf params['clr'] = params['lr'] for e in xrange(params['n_epochs']): # shuffle #shuffle([train_lex, train_y, train_extra, train_masks], params['seed']) # shuffle the input data shuffle([order, train_lex, train_y, train_extra, train_masks], params['seed']) # shuffle the input data params['ce'] = e # store the current epoch tic = timeit.default_timer() ms = params['minibatch_size'] n_train = len(train_lex) nll = 0 #for i, orig_x in enumerate(train_lex): for iteration, i in enumerate(range(0, n_train, ms)): #orig_x = train_lex[i] #n_words = len(orig_x) #if params['add_OOV_noise']: # draws = np.random.rand(n_words) # x = [OOV_index if draws[i] < params['OOV_noise_prob'] else orig_x[i] for i in range(n_words)] #else: # x = orig_x #y = train_y[i] extra = train_extra[i] #mask = train_masks[i] minibatch_x, minibatch_mask,\ minibatch_extra, minibatch_y= select_minibatch(train_x_win, train_masks, train_extra, train_y, params['win'], i, ms, order, params['add_OOV_noise'], params['OOV_noise_prob']) #if i == 0: # print '\n'.join([' '.join([idx2words[idx] for idx in minibatch_x[:, k, 0].tolist()]) for # k in range(ms)]) nll_i, a_sum = rnn.train(minibatch_x, minibatch_mask, minibatch_y, params['win'], params['clr'], params['lr_emb_fac'], extra_input_dims, minibatch_extra) nll += nll_i #rnn.train(x, mask, y, params['win'], params['clr'], params['lr_emb_fac'], # extra_input_dims, extra) print '[learning] epoch %i >> %2.2f%%' % ( e, (i + 1) * 100. / float(n_sentences)), print 'completed in %.2f (sec), nll = %.2f, a_sum = %.1f <<\r' % (timeit.default_timer() - tic, nll, np.max(a_sum)), sys.stdout.flush() if np.isnan(nll) or np.isinf(nll): if best_f1 > 0: break else: return {'loss': 1.0, 'final_test_f1': 0, 'valid_f1s': 0, 'true_valid_f1s': 0, 'train_f1s': 0, 'test_f1s': 0, 'status': STATUS_OK } # evaluation // back into the real world : idx -> words print "" #print "true y", train_y[-1] #y_pred = rnn.classify(np.array(train_x_win[-1]).reshape((1, len(train_x_win[-1]))), # train_masks[-1], params['win'], extra_input_dims, train_extra[-1])[0] #print "pred y", y_pred #if params['pooling_method'] == 'attention1' or params['pooling_method'] == 'attention2': # if extra_input_dims == 0: # r = np.random.randint(0, len(train_lex)) # print r, rnn.a_sum_check(np.asarray(contextwin(train_lex[r], params['win'])).astype('int32')) predictions_train = predict(n_train, params['classify_minibatch_size'], train_x_win, train_masks, train_y, params['win'], extra_input_dims, train_extra, rnn, order) n_valid = len(valid_lex) n_test = len(test_lex) predictions_valid = predict(n_valid, params['classify_minibatch_size'], valid_x_win, valid_masks, valid_y, params['win'], extra_input_dims, dev_extra, rnn) predictions_test = predict(n_test, params['classify_minibatch_size'], test_x_win, test_masks, test_y, params['win'], extra_input_dims, test_extra, rnn) """ predictions_train = [rnn.classify(x, train_masks[i], params['win'], extra_input_dims, train_extra[i])[0] for i, x in enumerate(train_lex)] predictions_valid = [rnn.classify(x, valid_masks[i], params['win'], extra_input_dims, dev_extra[i])[0] for i, x in enumerate(valid_lex)] predictions_test = [rnn.classify(x, test_masks[i], params['win'], extra_input_dims, test_extra[i])[0] for i, x in enumerate(test_lex)] """ train_f1 = common.calc_mean_f1(predictions_train, train_y) test_f1 = common.calc_mean_f1(predictions_test, test_y) valid_f1 = common.calc_mean_f1(predictions_valid, valid_y) question_f1s = [] question_pps = [] print "train_f1 =", train_f1, "valid_f1 =", valid_f1, "test_f1 =", test_f1 if valid_f1 > best_f1: best_rnn = copy.deepcopy(rnn) best_f1 = valid_f1 best_test_predictions = predictions_test if params['verbose']: print('NEW BEST: epoch', e, 'valid f1', valid_f1, 'best test f1', test_f1) params['tr_f1'] = train_f1 params['te_f1'] = test_f1 params['v_f1'] = valid_f1 params['be'] = e # store the current epoch as a new best # learning rate decay if no improvement in a given number of epochs if abs(params['be']-params['ce']) >= params['decay_delay']: params['clr'] *= params['decay_factor'] params['be'] = params['ce'] print "Reverting to current best; new learning rate = ", params['clr'] # also reset to the previous best rnn = best_rnn if params['clr'] < 1e-5: break if best_f1 == 1.0: break if best_f1 == 0 and e > 7: break if params['save_model']: predictions_valid = predict(len(valid_y), params['classify_minibatch_size'], valid_x_win, valid_masks, valid_y, params['win'], extra_input_dims, dev_extra, rnn) #predictions_valid = [best_rnn.classify(np.asarray(contextwin(x, params['win'])).astype('int32')) for x in valid_lex] best_rnn.save(output_dir) common.write_predictions(datasets, params['test_fold'], dev_fold, predictions_valid, dev_items, output_dir) print('BEST RESULT: epoch', params['be'], 'train F1 ', params['tr_f1'], 'valid F1', params['v_f1'], 'best test F1', params['te_f1'], 'with the model', output_dir) best_true_valid_f1s.append(params['v_f1']) best_test_f1s.append(params['te_f1']) best_train_f1s.append(params['tr_f1']) if reuser is not None: best_valid_f1 = reuser.mask_value(params['v_f1'], params['tr_f1']) else: best_valid_f1 = params['v_f1'] best_valid_f1s.append(best_valid_f1) test_prediction_arrays.append(np.array(best_test_predictions, dtype=int)) params['ensemble'] = False if params['ensemble']: test_predictions_stack = np.dstack(test_prediction_arrays) final_predictions = stats.mode(test_predictions_stack, axis=2)[0][:, :, 0] predicted_df = pd.DataFrame(final_predictions, index=test_items, columns=codes) true_df = pd.DataFrame(np.array(test_y), index=test_items, columns=codes) final_test_f1, final_test_pp = evaluation.calc_macro_mean_f1_pp(true_df, predicted_df) else: final_test_f1 = np.median(best_test_f1s) return {'loss': -np.median(best_valid_f1s), 'final_test_f1': final_test_f1, 'valid_f1s': best_valid_f1s, 'train_f1s': best_train_f1s, 'true_valid_f1s': best_true_valid_f1s, 'test_f1s': best_test_f1s, 'status': STATUS_OK } def expand_x_with_context_win(lex, window_size): x = np.vstack(lex) n_items, seq_len = x.shape x_win = np.zeros([seq_len, n_items, window_size], dtype='int32') if window_size > 1: for i in range(n_items): x_win[:, i, :] = np.array(contextwin(list(x[i, :]), window_size), dtype='int32') #x_i = #x_win = [[np.array(w).astype('int32') for w in contextwin(list(x), window_size)] for x in lex] else: x_win[:, :, 0] = x.T print "x_win.shape", x_win.shape return x_win def select_minibatch(x_win, masks, extra, y, window_size, i, minibatch_size, order=None, add_oov_noise=False, oov_noise_prob=0.0): n = len(masks) if order is None: order = range(n) ms = min(minibatch_size, n-i) if ms > 1: minibatch_mask = np.vstack([masks[j] for j in range(i, min(i+ms, n))]) max_len = np.max(np.argmin(minibatch_mask, axis=1)) if max_len == 0: max_len = len(masks[i]) try: minibatch_mask = minibatch_mask[:, 0: max_len].reshape((ms, max_len)) except: e = sys.exc_info()[0] print e print max_len print minibatch_mask minibatch_x = x_win[0: max_len, order[i: min(i+ms, n)], :] minibatch_extra = np.vstack([extra[j] for j in range(i, min(i+ms, n))]) minibatch_y = np.vstack([y[j] for j in range(i, min(i+ms, n))]) else: max_len = np.argmin(masks[i]) if max_len == 0: max_len = len(masks[i]) minibatch_mask = np.array(masks[i][0: max_len]).reshape((1, max_len)) minibatch_x = x_win[0: max_len, order[i], :].reshape((max_len, 1, window_size)) minibatch_extra = np.array(extra[i]).reshape((1, len(extra[i]))) minibatch_y = np.array(y[i]).reshape((1, len(y[i]))) if add_oov_noise: draws = np.random.rand(max_len, ms, window_size) minibatch_x = np.array(minibatch_x * np.array(draws > oov_noise_prob, dtype='int32'), dtype='int32') return minibatch_x, minibatch_mask, minibatch_extra, minibatch_y def predict(n, ms, x_win, masks, y, window_size, extra_input_dims, extra, rnn, order=None): predictions = [] for i in range(0, n, ms): mb_x, mb_masks, mb_extra, mb_y = select_minibatch(x_win, masks, extra, y, window_size, i, ms, order=order) if ms > 1: prediction = rnn.classify(mb_x, mb_masks, window_size, extra_input_dims, mb_extra) for p in prediction: predictions.append(p) else: prediction = rnn.classify(mb_x, mb_masks, window_size, extra_input_dims, mb_extra) predictions.append(prediction) return predictions if __name__ == '__main__': report = main() print report
b2cd196a4e77d83e542be25199838e0b8ec80ff9
ad357cfbec64afb8f4cc4043b212996768f9755c
/api/assessment/automate/formatters.py
dac02f8f9749219cec476cf1e0392f3c9036f96a
[ "MIT" ]
permissive
uktrade/market-access-api
6b4680e6455eb5c25480ccd3e3d9445654269f36
4da26d1be53843d22411577409d9489010bdda09
refs/heads/master
2023-08-30T14:47:10.373148
2023-08-29T13:58:08
2023-08-29T13:58:08
131,856,014
2
3
MIT
2023-09-14T08:04:42
2018-05-02T13:38:37
Python
UTF-8
Python
false
false
2,065
py
def rca(import_value, export_value): if import_value is None or export_value is None: return "NA" elif import_value > 0 and export_value > 0: return "Specialised" elif import_value < 0 and export_value < 0: return "Unspecialised" return "Inconclusive" def rca_diff(import_value, export_value, country1, country2): if import_value is None or export_value is None: return "NA" elif import_value > 0 and export_value > 0: return f"{country2} more specialised globally than in {country1}" elif import_value < 0 and export_value < 0: return f"{country2} more specialised in {country1} than globally" return "Inconclusive" def rca_diff_glob(import_value, export_value, country1, country2): if import_value is None or export_value is None: return "NA" elif import_value > 0 and export_value > 0: return f"{country2} more specialised globally than {country1}" elif import_value < 0 and export_value < 0: return f"{country1} more specialised globally than {country2}" return "Inconclusive" def format_value(value): if value < 1000: return f"£{round(value, 0)}" elif value > 1000000000: return f"£{round(value, -8) / 1000000000}bn" elif value > 1000000: return f"£{round(value, -5) / 1000000}m" return f"£{round(value, -2) / 1000}k" def value_range(import_value, export_value): if import_value < export_value: return f"{format_value(import_value)} - {format_value(export_value)}" return f"{format_value(export_value)} - {format_value(import_value)}" def percent_range(import_value, export_value, decimal_places): import_value *= 100 export_value *= 100 if import_value == export_value: return f"{round(import_value, decimal_places)}%" elif import_value < export_value: return f"{round(import_value, decimal_places)}% - {round(export_value, decimal_places)}%" return f"{round(export_value, decimal_places)}% - {round(import_value, decimal_places)}%"
e706179c11effcfa8f133d63d2655724fca4d1e9
0005e05b9d8b8ad0d3c3c0539b2ded9db6e9f1dd
/codechef_client/models/tag.py
4cdd6e64295823ef02e369ae6ce1a056970ea646
[]
no_license
termicoder/codechef-client-lib
a3e3de2b300355c5daa5ed3fad03a9859af13d86
74d6b21787c75a987e3451751f5554e4cc6cf469
refs/heads/master
2020-03-27T17:58:45.298121
2018-09-30T18:03:14
2018-09-30T18:03:14
146,889,644
0
0
null
null
null
null
UTF-8
Python
false
false
4,094
py
# coding: utf-8 """ CodeChef API CodeChef API to support different applications. # noqa: E501 OpenAPI spec version: 1.0.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class Tag(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'tag': 'str', 'type': 'str', 'count': 'int' } attribute_map = { 'tag': 'tag', 'type': 'type', 'count': 'count' } def __init__(self, tag=None, type=None, count=None): # noqa: E501 """Tag - a model defined in Swagger""" # noqa: E501 self._tag = None self._type = None self._count = None self.discriminator = None if tag is not None: self.tag = tag if type is not None: self.type = type if count is not None: self.count = count @property def tag(self): """Gets the tag of this Tag. # noqa: E501 Value # noqa: E501 :return: The tag of this Tag. # noqa: E501 :rtype: str """ return self._tag @tag.setter def tag(self, tag): """Sets the tag of this Tag. Value # noqa: E501 :param tag: The tag of this Tag. # noqa: E501 :type: str """ self._tag = tag @property def type(self): """Gets the type of this Tag. # noqa: E501 author/tag # noqa: E501 :return: The type of this Tag. # noqa: E501 :rtype: str """ return self._type @type.setter def type(self, type): """Sets the type of this Tag. author/tag # noqa: E501 :param type: The type of this Tag. # noqa: E501 :type: str """ self._type = type @property def count(self): """Gets the count of this Tag. # noqa: E501 Count of problems with this tag # noqa: E501 :return: The count of this Tag. # noqa: E501 :rtype: int """ return self._count @count.setter def count(self, count): """Sets the count of this Tag. Count of problems with this tag # noqa: E501 :param count: The count of this Tag. # noqa: E501 :type: int """ self._count = count def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, Tag): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
0ee27c2b6c2029409b39052286ba40d81a836616
d3efc82dfa61fb82e47c82d52c838b38b076084c
/Autocase_Result/SjShHBJJMM/YW_HBJJMM_SHSJ_067.py
4cb90cd9223c79893514c907a5e29a58cc20a03f
[]
no_license
nantongzyg/xtp_test
58ce9f328f62a3ea5904e6ed907a169ef2df9258
ca9ab5cee03d7a2f457a95fb0f4762013caa5f9f
refs/heads/master
2022-11-30T08:57:45.345460
2020-07-30T01:43:30
2020-07-30T01:43:30
280,388,441
0
0
null
null
null
null
UTF-8
Python
false
false
3,142
py
#!/usr/bin/python # -*- encoding: utf-8 -*- import sys sys.path.append("/home/yhl2/workspace/xtp_test/xtp/api") from xtp_test_case import * sys.path.append("/home/yhl2/workspace/xtp_test/service") from ServiceConfig import * from log import * sys.path.append("/home/yhl2/workspace/xtp_test/MoneyFund/moneyfundservice") from mfmainService import * from mfQueryStkPriceQty import * sys.path.append("/home/yhl2/workspace/xtp_test/MoneyFund/moneyfundmysql") from mfCaseParmInsertMysql import * sys.path.append("/home/yhl2/workspace/xtp_test/utils") from QueryOrderErrorMsg import queryOrderErrorMsg class YW_HBJJMM_SHSJ_067(xtp_test_case): # YW_HBJJMM_SHSJ_067 def test_YW_HBJJMM_SHSJ_067(self): title = '上海A股股票交易日五档即成转限价卖——错误的价格(价格10亿)' # 定义当前测试用例的期待值 # 期望状态:初始、未成交、部成、全成、部撤已报、部撤、已报待撤、已撤、废单、撤废、内部撤单 # xtp_ID和cancel_xtpID默认为0,不需要变动 case_goal = { '期望状态': '全成', 'errorID': 0, 'errorMSG': '', '是否生成报单': '是', '是否是撤废': '否', 'xtp_ID': 0, 'cancel_xtpID': 0, } logger.warning(title) # 定义委托参数信息------------------------------------------ # 参数:证券代码、市场、证券类型、证券状态、交易状态、买卖方向(B买S卖)、期望状态、Api stkparm = QueryStkPriceQty('999999', '1', '111', '2', '0', 'S', case_goal['期望状态'], Api) # 如果下单参数获取失败,则用例失败 if stkparm['返回结果'] is False: rs = { '用例测试结果': stkparm['返回结果'], '测试错误原因': '获取下单参数失败,' + stkparm['错误原因'], } self.assertEqual(rs['用例测试结果'], True) else: wt_reqs = { 'business_type': Api.const.XTP_BUSINESS_TYPE['XTP_BUSINESS_TYPE_CASH'], 'order_client_id':2, 'market': Api.const.XTP_MARKET_TYPE['XTP_MKT_SH_A'], 'ticker': stkparm['证券代码'], 'side': Api.const.XTP_SIDE_TYPE['XTP_SIDE_SELL'], 'price_type': Api.const.XTP_PRICE_TYPE['XTP_PRICE_BEST5_OR_LIMIT'], 'price': 1000000000, 'quantity': 200, 'position_effect': Api.const.XTP_POSITION_EFFECT_TYPE['XTP_POSITION_EFFECT_INIT'] } ParmIni(Api, case_goal['期望状态'], wt_reqs['price_type']) CaseParmInsertMysql(case_goal, wt_reqs) rs = serviceTest(Api, case_goal, wt_reqs) logger.warning('执行结果为' + str(rs['用例测试结果']) + ',' + str(rs['用例错误源']) + ',' + str(rs['用例错误原因'])) self.assertEqual(rs['用例测试结果'], True) # 0 if __name__ == '__main__': unittest.main()
3e0492db360ce01a76f540ff3bf14d2133ae8153
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/nouns/_bogies.py
e575bb083362fdfd4e25d0bf21f424dc5070f88d
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
226
py
from xai.brain.wordbase.nouns._bogy import _BOGY #calss header class _BOGIES(_BOGY, ): def __init__(self,): _BOGY.__init__(self) self.name = "BOGIES" self.specie = 'nouns' self.basic = "bogy" self.jsondata = {}
dffede7cbbfa98929853b8241f6a1e945007f560
e5fb2d912415c302221604126afa7cbbb0a039c0
/keras_gym/policies/test_special.py
d19afe8e363fc4399127c8f76a179ab42414bef4
[ "MIT" ]
permissive
KristianHolsheimer/keras-gym
fc034025a1180b1124fe1a25886b54088d2f3552
0296ddcc8685e1ce732c3173caaa0fd25af9ef58
refs/heads/master
2021-06-28T21:57:50.122753
2020-09-30T04:29:15
2020-09-30T04:29:15
174,637,157
17
5
MIT
2019-08-02T22:48:41
2019-03-09T02:09:03
Python
UTF-8
Python
false
false
1,012
py
from gym.envs.toy_text.frozen_lake import FrozenLakeEnv, RIGHT, DOWN from .special import UserInputPolicy class MockInputFunction: def __init__(self, return_value=None): self.return_value = return_value self._orig_input_fn = __builtins__['input'] def _mock_input_fn(self, prompt): print(prompt + str(self.return_value)) return self.return_value def __enter__(self): __builtins__['input'] = self._mock_input_fn def __exit__(self, type, value, traceback): __builtins__['input'] = self._orig_input_fn class TestUserInputPolicy: def test_expected(self): env = FrozenLakeEnv(is_slippery=False) policy = UserInputPolicy(env) s = env.reset() env.render() for i in [RIGHT, RIGHT, DOWN, DOWN, DOWN, RIGHT]: with MockInputFunction(return_value=i): a = policy(s) s, r, done, info = env.step(a) env.render() if done: break
097439d4e5e15a04cbe777f77fd0434256fd16d1
a61ca7b89ef5817b2027239ece9dd175f776c8f3
/rcsb/app/chem/LogFilterUtils.py
86c6b9113eaef1e38f51a767d80d66d89057586c
[ "Apache-2.0" ]
permissive
rcsb/py-rcsb_app_chem
7da2941f6e0d0f8ff0f5a802a3edb689d283659b
64ca10e6ccf8b604fa3d16ab72406408b22c0aca
refs/heads/master
2023-08-17T21:33:51.660687
2023-01-09T17:30:07
2023-01-09T17:30:07
245,858,180
0
0
Apache-2.0
2023-01-09T17:30:08
2020-03-08T17:31:37
Python
UTF-8
Python
false
false
866
py
## # File: LogFilterUtils.py # Date: 29-Jun-2020 jdw # # Pre-filter for Gunicorn/Uvicorn health check requests - ## # pylint: disable=E1101 import logging logger = logging.getLogger(__name__) class HealthCheckFilter(logging.Filter): def filter(self, record): return record.getMessage().find("/healthcheck") == -1 class LogFilterUtils(object): def __init__(self): pass def addFilters(self): logger.debug("Current loggers are: %r", [name for name in logging.root.manager.loggerDict]) # pylint: disable=no-member for name in logging.root.manager.loggerDict: # pylint: disable=no-member if any(x in name for x in ["uvicorn", "gunicorn"]): logger.debug("Add filter to logger %r", name) loggerT = logging.getLogger(name) loggerT.addFilter(HealthCheckFilter())
937ca15e0fcc69c211f17b69de785760dbc1afb7
9e87897c988af634c3fddc42113992a65ec006f4
/sims/repfam_fs/test/metrics_v2.py
e6aeb826dec6e7fd91e6f424c75731b25e4345ea
[ "MIT" ]
permissive
luiarthur/cytof5
152eb06030785fdff90220f0d0a244a02204c2e9
6b4df5e9fd94bfd586e96579b8c618fdf6f913ed
refs/heads/master
2021-07-20T13:39:45.821597
2021-03-02T23:27:35
2021-03-02T23:27:35
145,253,611
1
0
null
null
null
null
UTF-8
Python
false
false
8,927
py
import collections import os import sys import re import matplotlib.pyplot as plt import numpy as np import pandas as pd import rcparams KTRUE = [4, 5] def parse_Rs(path_to_Rs_csv): Rs = pd.read_csv(path_to_Rs_csv).rename(columns=dict(mean='Mean')) return Rs def get_ks(results_dir): # Get dir names for each K kdirs = sorted(os.listdir(results_dir)) # Get all values of K ks = [d.replace('KMCMC', '') for d in kdirs] return ks, kdirs def parse_log(path_to_log): # Read log file with open(path_to_log, "r") as f: contents = f.read() # Keep only the metrics metrics = contents.split('metrics:')[1] # Separate into lines metrics = metrics.split('\n') # keep only lines with '=>' metrics = list(filter(lambda line: '=>' in line, metrics)) # Create empty dict to return out = dict() # store metrics in a dict for metric in metrics: key, val = metric.split('=>') out[key.strip()] = float(val.strip()) return out def count_num_small_phenotypes(path, thresh=.01): rgx = lambda f: re.match('W\d+_hat', f) w_hat_paths = list(filter(rgx, os.listdir(path))) num_small_phenotypes = 0 for wpath in w_hat_paths: wi = np.genfromtxt('{}/{}'.format(path, wpath)) # num_small_phenotypes += ((0 < wi) * (wi < thresh)).sum() num_small_phenotypes += (wi < thresh).sum() return num_small_phenotypes def compute_num_selected_features(path): rgx = lambda f: re.match('W\d+_hat', f) w_hat_paths = list(filter(rgx, os.listdir(path))) di = [] for wpath in sorted(w_hat_paths): wi = np.genfromtxt('{}/{}'.format(path, wpath)) di.append((wi > 0).sum()) return di def get_metrics_for_each_dir(results_dir, thresh=.01): # Create dict to store results out = dict() # Traverse results for root, dirs, files in os.walk(results_dir): for f in files: if f == 'log.txt': path_to_log = '{}/{}'.format(root, f) # Parse LPML / DIC metrics = parse_log(path_to_log) # Parse W path_to_W = '{}/img/yz/txt/'.format(root) num_small_phenotypes = count_num_small_phenotypes(path_to_W, thresh) metrics['num_selected_features'] = compute_num_selected_features(path_to_W) metrics['num_small_phenotypes'] = num_small_phenotypes # Parse R path_to_R = '{}/img/txt/'.format(root) R_df = parse_Rs('{}/Rs.csv'.format(path_to_R)) metrics['I'] = R_df.shape[0] metrics['R_mean'] = R_df.Mean.to_numpy() metrics['R_lower'] = R_df.p_02_5.to_numpy() metrics['R_upper'] = R_df.p_97_5.to_numpy() # metrics['R_mean'] = R_df.p_50_0.to_numpy() # metrics['R_lower'] = R_df.p_25_0.to_numpy() # metrics['R_upper'] = R_df.p_75_0.to_numpy() # Parse Rprob path_to_Rprob = path_to_R R_prob = np.loadtxt('{}/prob_R_equals_K.txt'.format(path_to_R)) metrics['Rprob'] = R_prob.T # Append to metrics out[path_to_log] = metrics return out def get_exp_dict(results_dir): # Get Ks and KMCMC dirname ks, kdirs = get_ks(results_dir) # For each directory, all_metrics = get_metrics_for_each_dir(results_dir) # Experiments dictionary, indexed by (z, scale) exp_dict = dict() # Split all the keys for key in all_metrics: path = key.replace(results_dir + '/', '') kmcmc, z, scale, _, seed, _ = path.split('/') kmcmc_int = int(kmcmc.replace('KMCMC', '')) scale_float = float(scale.replace('scale', '')) new_key = (z, scale_float, seed) if new_key not in exp_dict: exp_dict[new_key] = dict() exp_dict[new_key][kmcmc_int] = all_metrics[key] return exp_dict def graph_for_setting(setting, exp_dict, metric, label, labels=None): d = exp_dict[setting] if metric == 'num_small_phenotypes': lpml = [] num_small = [] ks = [] for kmcmc in sorted(d.keys()): ks.append(kmcmc) lpml.append(d[kmcmc]['LPML']) num_small.append(d[kmcmc]['num_small_phenotypes']) plt.plot(num_small, lpml, marker='o', label=label) plt.xlabel('number of obscure phenotypes') plt.ylabel('LPML') elif metric == 'Rprob': K_min = list(d.keys())[0] I = d[K_min]['I'] if labels is not None: if len(labels) == 2: c = {labels[0]: 'blue', labels[1]: 'red'} else: print('NotImplemented!') for i in range(I): plt.subplot(I, 1, i + 1) ks = [] Ri_prob_equals_K_TRUE = [] Ks = sorted(d.keys()) for kmcmc in Ks: ks.append(kmcmc) if kmcmc < KTRUE[i]: Ri_prob_equals_K_TRUE.append(0) else: Ri_prob_equals_K_TRUE.append(d[kmcmc]['Rprob'][i, KTRUE[i] - 1]) plt.plot(ks, Ri_prob_equals_K_TRUE, color=c[label], marker='o', label=label) plt.xlabel('KMCMC') plt.ylabel('Prob(Ri = K_TRUE)') plt.ylim([-0.1, 1.1]) elif metric == 'R': K_min = list(d.keys())[0] I = d[K_min]['I'] if labels is not None: if len(labels) == 2: c = {labels[0]: 'blue', labels[1]: 'red'} else: print('NotImplemented!') for i in range(I): plt.subplot(I, 1, i + 1) ks = [] Ri_mean = [] Ri_lower = [] Ri_upper = [] Ks = sorted(d.keys()) for kmcmc in Ks: ks.append(kmcmc) Ri_mean.append(d[kmcmc]['R_mean'][i]) Ri_lower.append(d[kmcmc]['R_lower'][i]) Ri_upper.append(d[kmcmc]['R_upper'][i]) plt.plot(ks, Ri_mean, color=c[label], marker='o', label=label) plt.fill_between(ks, Ri_lower, Ri_upper, color=c[label], alpha=.3) plt.xlabel('KMCMC') plt.ylabel('R_{}'.format(i + 1)) plt.yticks(range(min(Ks) - 2, int(max(Ri_upper) + .5), 2), range(min(Ks) - 2, int(max(Ri_upper) + .5), 2)) else: ks = [] ms = [] for kmcmc in sorted(d.keys()): ks.append(kmcmc) ms.append(d[kmcmc][metric]) plt.plot(ks, ms, marker='o', label=label) plt.xlabel('K') plt.ylabel(metric) plt.xticks(ks) if __name__ == '__main__': if len(sys.argv) > 1: results_dir = sys.argv[1] else: results_dir = 'results/test-sims-5-5' print('Results dir: {}'.format(results_dir)) # Get a dictionary indexed by experiment setting (z, scale, seed) exp_dict = get_exp_dict(results_dir) # Metrics to plot # metrics = ['LPML', 'DIC', 'num_small_phenotypes', 'R'] # metrics = ['LPML', 'DIC', 'num_small_phenotypes'] metrics = ['LPML', 'DIC', 'R'] # Name of metrics dir metrics_dir = '{}/metrics'.format(results_dir) # Get unique zs zs = set([key[0] for key in exp_dict.keys()]) print('zs: {}'.format(zs)) # Get unique seeds seeds = set([key[2] for key in exp_dict.keys()]) print('seeds: {}'.format(seeds)) # Get unique scales scales = set([key[1] for key in exp_dict.keys()]) num_scales = len(scales) print('scales: {}'.format(scales)) # sorted exp_dict keys exp_dict_keys_sorted = sorted(exp_dict.keys()) # TODO: # graph Rs labels = ['scale={}'.format(scale)for scale in scales] for z in zs: for seed in seeds: for metric in metrics: for setting in exp_dict_keys_sorted: zidx, scale, sd = setting if z == zidx and sd == seed: label = 'scale={}'.format(scale) graph_for_setting(setting, exp_dict, metric, label, labels=labels) dest_dir = '{}/{}/{}'.format(metrics_dir, z, seed) if metric == 'R': plt.legend(loc='lower right') elif metric == 'Rprob': plt.legend(loc='lower center') else: plt.legend() plt.tight_layout() # Make destination dir if needed os.makedirs(dest_dir, exist_ok=True) plt.savefig('{}/{}.pdf'.format(dest_dir, metric)) plt.close()
8ef9af340d5e228e081e4752208ca6f0fc86e61c
45284836ae85685226b1f1e3b83e207e184aee0e
/05_ProbabilityAndStatistics/01_ProbAndStatsInPython_Beginner/01_IntroductionToStatistics/11_MeasuresOfCentralTendency.py
f822187cd0dd31bf9867f58f1fd34ff63b9187d8
[]
no_license
gaurab123/DataQuest
5060efc3d3449e6e098cb77d7fed913516aabdbd
a9da9a90fab639d239340edfc7d0b2010edf2b35
refs/heads/master
2021-09-14T15:10:13.047034
2018-05-02T19:11:23
2018-05-02T19:11:23
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,400
py
print("this mission cannot be run locally as the data used is loaded \"behind the scenes\" and I really don't have access to it") import matplotlib.pyplot as plt # Let's put a line over our plot that shows the mean. # This is the same histogram we plotted for skew a few screens ago. plt.hist(test_scores_normal) # We can use the .mean() method of a numpy array to compute the mean. mean_test_score = test_scores_normal.mean() # The axvline function will plot a vertical line over an existing plot. plt.axvline(mean_test_score) # Now we can show the plot and clear the figure. plt.show() # When we plot test_scores_negative, which is a very negatively skewed distribution, we see that the small values on the left pull the mean in that direction. # Very large and very small values can easily skew the mean. # Very skewed distributions can make the mean misleading. plt.hist(test_scores_negative) plt.axvline(test_scores_negative.mean()) plt.show() # We can do the same with the positive side. # Notice how the very high values pull the mean to the right more than we would expect. plt.hist(test_scores_positive) plt.axvline(test_scores_positive.mean()) plt.show() mean_normal = test_scores_normal.mean() mean_negative = test_scores_negative.mean() mean_positive = test_scores_positive.mean() print(mean_normal) print(mean_negative) print(mean_positive)
c4c6e0af2a87a16415a3f0575945f66d748ea0f4
2ed1cccb49ee1549f09747061a2513fb053c707d
/20181004/DProposed_gpu3.py
91281bf826beb09c8480f4a1812fba4e8869a002
[]
no_license
hhjung1202/Prob_network
1c766ef5191727a63a38654622e21f0d986b923e
dedd4e525c9393f15452709dda377ceee9849c15
refs/heads/master
2020-03-22T11:42:27.705442
2018-11-11T14:29:39
2018-11-11T14:29:39
139,990,155
0
0
null
null
null
null
UTF-8
Python
false
false
7,940
py
import torch from torch.autograd import Variable import torch.optim as optim from torchvision import datasets, transforms from DPmodel import * import os import torch.backends.cudnn as cudnn import time import utils os.environ["CUDA_VISIBLE_DEVICES"] = '3' def main(model_dir, model, dataset, batch_size=128): utils.default_model_dir = model_dir utils.c = None utils.str_w = '' # model = model lr = 0.1 start_time = time.time() if dataset == 'cifar10': if batch_size is 128: train_loader, test_loader = utils.cifar10_loader() elif batch_size is 64: train_loader, test_loader = utils.cifar10_loader_64() elif dataset == 'cifar100': train_loader, test_loader = utils.cifar100_loader() if torch.cuda.is_available(): # os.environ["CUDA_VISIBLE_DEVICES"] = '0' print("USE", torch.cuda.device_count(), "GPUs!") model = nn.DataParallel(model).cuda() cudnn.benchmark = True else: print("NO GPU -_-;") optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.9, weight_decay=1e-4, nesterov=True) criterion = nn.CrossEntropyLoss().cuda() start_epoch = 0 checkpoint = utils.load_checkpoint(model_dir) if not checkpoint: pass else: start_epoch = checkpoint['epoch'] + 1 model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) utils.init_learning(model.module) for epoch in range(start_epoch, 300): if epoch < 150: learning_rate = lr elif epoch < 225: learning_rate = lr * 0.1 else: learning_rate = lr * 0.01 for param_group in optimizer.param_groups: param_group['lr'] = learning_rate train(model, optimizer, criterion, train_loader, epoch, True) test(model, criterion, test_loader, epoch, True) utils.switching_learning(model.module) print('switching_learning to Gate') train(model, optimizer, criterion, train_loader, epoch, False) test(model, criterion, test_loader, epoch, False) utils.switching_learning(model.module) print('switching_learning to Gate') if epoch % 5 == 0: model_filename = 'checkpoint_%03d.pth.tar' % epoch utils.save_checkpoint({ 'epoch': epoch, 'model': model, 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict(), }, model_filename, model_dir) now = time.gmtime(time.time() - start_time) weight_extract(model, optimizer, criterion, train_loader, epoch) utils.conv_weight_L1_printing(model.module) print('{} hours {} mins {} secs for training'.format(now.tm_hour, now.tm_min, now.tm_sec)) def train(model, optimizer, criterion, train_loader, epoch, is_main): model.train() train_loss = 0 total = 0 correct = 0 for batch_idx, (data, target) in enumerate(train_loader): if torch.cuda.is_available(): data, target = Variable(data.cuda()), Variable(target.cuda()) else: data, target = Variable(data), Variable(target) optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() train_loss += loss.data[0] _, predicted = torch.max(output.data, 1) total += target.size(0) correct += predicted.eq(target.data).cpu().sum() if batch_idx % 10 == 0 and is_main is True: utils.print_log('Epoch: {} | Batch: {} | Loss: ({:.4f}) | Acc: ({:.2f}%) ({}/{})' .format(epoch, batch_idx, train_loss / (batch_idx + 1), 100. * correct / total, correct, total)) print('Epoch: {} | Batch: {} | Loss: ({:.4f}) | Acc: ({:.2f}%) ({}/{})' .format(epoch, batch_idx, train_loss / (batch_idx + 1), 100. * correct / total, correct, total)) elif batch_idx % 10 == 0 and is_main is False: utils.print_log('SWICH: {} | Batch: {} | Loss: ({:.4f}) | Acc: ({:.2f}%) ({}/{})' .format(epoch, batch_idx, train_loss / (batch_idx + 1), 100. * correct / total, correct, total)) print('SWICH: {} | Batch: {} | Loss: ({:.4f}) | Acc: ({:.2f}%) ({}/{})' .format(epoch, batch_idx, train_loss / (batch_idx + 1), 100. * correct / total, correct, total)) def weight_extract(model, optimizer, criterion, train_loader, epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): if torch.cuda.is_available(): data, target = Variable(data.cuda()), Variable(target.cuda()) else: data, target = Variable(data), Variable(target) optimizer.zero_grad() output = model(data) loss = criterion(output, target) utils.c = target.view(-1,1) # batch array torch.tensor[128] utils.c = utils.c.type(torch.cuda.FloatTensor) utils.weight_extract_densenet(model.module) for i in utils.c: for j in i: utils.str_w = utils.str_w + str(j.tolist()) + ',' utils.str_w += '\n' utils.save_to_csv() utils.str_w = '' if batch_idx % 100 == 0: print('Epoch: {}'.format(epoch)) def test(model, criterion, test_loader, epoch, is_main): model.eval() test_loss = 0 correct = 0 total = 0 for batch_idx, (data, target) in enumerate(test_loader): if torch.cuda.is_available(): data, target = Variable(data.cuda()), Variable(target.cuda()) else: data, target = Variable(data), Variable(target) outputs = model(data) loss = criterion(outputs, target) test_loss += loss.data[0] _, predicted = torch.max(outputs.data, 1) total += target.size(0) correct += predicted.eq(target.data).cpu().sum() max_result.append(correct) if is_main is True: utils.print_log('# TEST : Epoch : {} | Loss: ({:.4f}) | Acc: ({:.2f}%) ({}/{}) | Err: ({:.2f}%) | Max: ({})' .format(epoch, test_loss/(batch_idx+1), 100.*correct/total, correct, total, 100-100.*correct/total, max(max_result))) print('# TEST : Epoch : {} | Loss: ({:.4f}) | Acc: ({:.2f}%) ({}/{}) | Err: ({:.2f}% | Max: ({}))' .format(epoch, test_loss/(batch_idx+1), 100.*correct/total, correct, total, 100-100.*correct/total, max(max_result))) elif is_main is False: utils.print_log('$ TEST_S : Epoch : {} | Loss: ({:.4f}) | Acc: ({:.2f}%) ({}/{}) | Err: ({:.2f}%) | Max: ({})' .format(epoch, test_loss/(batch_idx+1), 100.*correct/total, correct, total, 100-100.*correct/total, max(max_result))) print('$ TEST_S : Epoch : {} | Loss: ({:.4f}) | Acc: ({:.2f}%) ({}/{}) | Err: ({:.2f}% | Max: ({}))' .format(epoch, test_loss/(batch_idx+1), 100.*correct/total, correct, total, 100-100.*correct/total, max(max_result))) layer_set = [14, 20, 32, 44, 56, 110] def do_learning(model_dir, db, layer, num_gate=0, batch_s=128, block_config=(6,6,6), is_bottleneck=True): global max_result max_result = [] model_selection = DenseNet(num_classes=10, num_gate=num_gate , block_config=block_config, is_bottleneck=is_bottleneck) dataset = 'cifar' + str(db) main(model_dir, model_selection, dataset, batch_s) if __name__=='__main__': for i in range(10): if i % 2 == 0: block_config = (12, 12, 12) is_bottleneck = False else: block_config = (6,6,6) is_bottleneck = True model_dir = '../hhjung/Dense_Prop/cifar10/DenseNet40/' + str(i) do_learning(model_dir, 10, layer_set[5], num_gate=0 , batch_s=64, block_config=block_config, is_bottleneck=is_bottleneck)
e69f0f7583c1022af9442415e61c2769e37c4122
dbf770eef8233f7da1850309cc4b7145bd8d67f1
/PYTHON-ADVANCED-SEPT-2020/PYTHON ADVANCED/03_MULTYDIMENSINAL LISTS/EXERCISE/06_chess.py
654a9eb872ce75844a3566d42fa88934b8ec214a
[]
no_license
vasil-panoff/PYTHON-ADVANCED-SEPT-2020_repo
610a37d1681ce9d0aa86628523620e1571b438dd
c63434f91de42d2f1241b6d76a96c7c63711c1d0
refs/heads/master
2023-03-22T07:44:53.620221
2021-03-15T20:42:14
2021-03-15T20:42:14
309,829,800
0
0
null
null
null
null
UTF-8
Python
false
false
1,217
py
possible_moves = ( (-1, -2), (-1, 2), (1, -2), (1, 2), (2, -1), (2, 1), (-2, 1), (-2, -1), ) board_size = int(input()) matrix = [['0'] * board_size for i in range(board_size)] def is_valid(i, j): if i < 0 or j < 0 or i >= board_size or j >= board_size: return False return matrix[i][j] == "K" knights_dict = {} def update_knights(i1, j1, i2, j2): if not is_valid(i2, j2): return if (i2, j2) not in knights_dict: knights_dict[(i2, j2)] = [] knights_dict[(i2, j2)].append((i1, j1)) if (i1, j1) not in knights_dict: knights_dict[i1, j1] = [] knights_dict[(i1, j1)].append((i2, j2)) for i in range(board_size): row = list(input()) for j in range(board_size): if row[j] == "K": matrix[i][j] = "K" for move_i, move_j in possible_moves: i1 = i j1 = j i2 = i + move_i j2 = j + move_j update_knights(i1, j1, i2, j2) num_removed = 0 max_knight = get_max_knight(knights_dict) while len(max_knight) > 0: remove_knight(matrix, max_knight) knights_dict num_removed += 1 print(num_removed)
fdb64336cf73e67d472705398ef382a50c520887
9b9a02657812ea0cb47db0ae411196f0e81c5152
/repoData/kushaldas-retask/allPythonContent.py
d19c699f3ba9cd5827f25619f2fb80dfe0dc8340
[]
no_license
aCoffeeYin/pyreco
cb42db94a3a5fc134356c9a2a738a063d0898572
0ac6653219c2701c13c508c5c4fc9bc3437eea06
refs/heads/master
2020-12-14T14:10:05.763693
2016-06-27T05:15:15
2016-06-27T05:15:15
null
0
0
null
null
null
null
UTF-8
Python
false
false
29,401
py
__FILENAME__ = conf # -*- coding: utf-8 -*- # # retask documentation build configuration file, created by # sphinx-quickstart on Tue Jul 3 14:56:38 2012. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys, os sys.path.insert(0, os.path.join(os.path.dirname(__file__), '..')) sys.path.append(os.path.abspath('_themes')) html_theme_path = ['_themes'] html_theme = 'kr' # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.intersphinx', 'sphinx.ext.autodoc', 'sphinx.ext.todo', 'sphinx.ext.doctest', 'sphinx.ext.coverage'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'retask' copyright = u'2012, Kushal Das' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '0.4' # The full version, including alpha/beta/rc tags. release = '0.4' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = ['_build'] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' #pygments_style = 'flask_theme_support.FlaskyStyle' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- html_sidebars = { 'index': ['sidebarintro.html', 'sourcelink.html', 'searchbox.html'], '**': ['sidebarlogo.html', 'localtoc.html', 'relations.html', 'sourcelink.html', 'searchbox.html'] } # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. #html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'retaskdoc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'retask.tex', u'retask Documentation', u'Kushal Das', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'retask', u'retask Documentation', [u'Kushal Das'], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'retask', u'retask Documentation', u'Kushal Das', 'retask', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' ########NEW FILE######## __FILENAME__ = flask_theme_support # flasky extensions. flasky pygments style based on tango style from pygments.style import Style from pygments.token import Keyword, Name, Comment, String, Error, \ Number, Operator, Generic, Whitespace, Punctuation, Other, Literal class FlaskyStyle(Style): background_color = "#f8f8f8" default_style = "" styles = { # No corresponding class for the following: #Text: "", # class: '' Whitespace: "underline #f8f8f8", # class: 'w' Error: "#a40000 border:#ef2929", # class: 'err' Other: "#000000", # class 'x' Comment: "italic #8f5902", # class: 'c' Comment.Preproc: "noitalic", # class: 'cp' Keyword: "bold #004461", # class: 'k' Keyword.Constant: "bold #004461", # class: 'kc' Keyword.Declaration: "bold #004461", # class: 'kd' Keyword.Namespace: "bold #004461", # class: 'kn' Keyword.Pseudo: "bold #004461", # class: 'kp' Keyword.Reserved: "bold #004461", # class: 'kr' Keyword.Type: "bold #004461", # class: 'kt' Operator: "#582800", # class: 'o' Operator.Word: "bold #004461", # class: 'ow' - like keywords Punctuation: "bold #000000", # class: 'p' # because special names such as Name.Class, Name.Function, etc. # are not recognized as such later in the parsing, we choose them # to look the same as ordinary variables. Name: "#000000", # class: 'n' Name.Attribute: "#c4a000", # class: 'na' - to be revised Name.Builtin: "#004461", # class: 'nb' Name.Builtin.Pseudo: "#3465a4", # class: 'bp' Name.Class: "#000000", # class: 'nc' - to be revised Name.Constant: "#000000", # class: 'no' - to be revised Name.Decorator: "#888", # class: 'nd' - to be revised Name.Entity: "#ce5c00", # class: 'ni' Name.Exception: "bold #cc0000", # class: 'ne' Name.Function: "#000000", # class: 'nf' Name.Property: "#000000", # class: 'py' Name.Label: "#f57900", # class: 'nl' Name.Namespace: "#000000", # class: 'nn' - to be revised Name.Other: "#000000", # class: 'nx' Name.Tag: "bold #004461", # class: 'nt' - like a keyword Name.Variable: "#000000", # class: 'nv' - to be revised Name.Variable.Class: "#000000", # class: 'vc' - to be revised Name.Variable.Global: "#000000", # class: 'vg' - to be revised Name.Variable.Instance: "#000000", # class: 'vi' - to be revised Number: "#990000", # class: 'm' Literal: "#000000", # class: 'l' Literal.Date: "#000000", # class: 'ld' String: "#4e9a06", # class: 's' String.Backtick: "#4e9a06", # class: 'sb' String.Char: "#4e9a06", # class: 'sc' String.Doc: "italic #8f5902", # class: 'sd' - like a comment String.Double: "#4e9a06", # class: 's2' String.Escape: "#4e9a06", # class: 'se' String.Heredoc: "#4e9a06", # class: 'sh' String.Interpol: "#4e9a06", # class: 'si' String.Other: "#4e9a06", # class: 'sx' String.Regex: "#4e9a06", # class: 'sr' String.Single: "#4e9a06", # class: 's1' String.Symbol: "#4e9a06", # class: 'ss' Generic: "#000000", # class: 'g' Generic.Deleted: "#a40000", # class: 'gd' Generic.Emph: "italic #000000", # class: 'ge' Generic.Error: "#ef2929", # class: 'gr' Generic.Heading: "bold #000080", # class: 'gh' Generic.Inserted: "#00A000", # class: 'gi' Generic.Output: "#888", # class: 'go' Generic.Prompt: "#745334", # class: 'gp' Generic.Strong: "bold #000000", # class: 'gs' Generic.Subheading: "bold #800080", # class: 'gu' Generic.Traceback: "bold #a40000", # class: 'gt' } ########NEW FILE######## __FILENAME__ = async_producer from retask import Task from retask import Queue import time queue = Queue('example') info1 = {'user': 'Fedora planet', 'url': 'http://planet.fedoraproject.org'} task1 = Task(info1) queue.connect() job = queue.enqueue(task1) print job.result time.sleep(30) print job.result ########NEW FILE######## __FILENAME__ = async_worker from retask import Queue import time queue = Queue('example') queue.connect() task = queue.wait() print task.data time.sleep(15) queue.send(task, "We received your information dear %s" % task.data['user']) ########NEW FILE######## __FILENAME__ = consumer from retask import Queue queue = Queue('example') queue.connect() while queue.length != 0: task = queue.dequeue() print task.data ########NEW FILE######## __FILENAME__ = producer from retask import Task from retask import Queue queue = Queue('example') info1 = {'user':'kushal', 'url':'http://kushaldas.in'} info2 = {'user':'fedora planet', 'url':'http://planet.fedoraproject.org'} task1 = Task(info1) task2 = Task(info2) queue.connect() queue.enqueue(task1) queue.enqueue(task2) ########NEW FILE######## __FILENAME__ = sync_producer from retask import Task from retask import Queue queue = Queue('example') info1 = {'user': 'Fedora planet', 'url': 'http://planet.fedoraproject.org'} task1 = Task(info1) queue.connect() job = queue.enqueue(task1) job.wait() print job.result ########NEW FILE######## __FILENAME__ = exceptions # -*- coding: utf-8 -*- """ retask.exceptions ~~~~~~~~~~~~~~~~~~~ This module contains the set of Retask's exceptions. """ class RetaskException(RuntimeError): """Some ambiguous exception occurred""" class ConnectionError(RetaskException): """A Connection error occurred.""" ########NEW FILE######## __FILENAME__ = queue #Copyright (C) 2012, Kushal Das <[email protected]> #Permission is hereby granted, free of charge, to any person obtaining a copy of #this software and associated documentation files (the "Software"), to deal in #the Software without restriction, including without limitation the rights to #use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies #of the Software, and to permit persons to whom the Software is furnished to do #so, subject to the following conditions: #The above copyright notice and this permission notice shall be included in all #copies or substantial portions of the Software. #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR #IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, #FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE #AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER #LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, #OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE #SOFTWARE. __author__ = 'Kushal Das <[email protected]>' __copyright__ = 'Copyright (c) 2012-2013 Kushal Das' __license__ = 'MIT' __status__ = 'Development' __version__ = '0.3' """ retask Queue implementation """ import json import redis import uuid import six from .task import Task from .exceptions import ConnectionError class Queue(object): """ Returns the ``Queue`` object with the given name. If the user passes optional config dictionary with details for Redis server, it will connect to that instance. By default it connects to the localhost. """ def __init__(self, name, config=None): specified_config = config or {} self.name = name self._name = 'retaskqueue-' + name self.config = { 'host': 'localhost', 'port': 6379, 'db': 0, 'password': None, } self.config.update(specified_config) self.rdb = None self.connected = False @property def length(self): """ Gives the length of the queue. Returns ``None`` if the queue is not connected. If the queue is not connected then it will raise :class:`retask.ConnectionError`. """ if not self.connected: raise ConnectionError('Queue is not connected') try: length = self.rdb.llen(self._name) except redis.exceptions.ConnectionError as err: raise ConnectionError(str(err)) return length def connect(self): """ Creates the connection with the redis server. Return ``True`` if the connection works, else returns ``False``. It does not take any arguments. :return: ``Boolean`` value .. note:: After creating the ``Queue`` object the user should call the ``connect`` method to create the connection. .. doctest:: >>> from retask import Queue >>> q = Queue('test') >>> q.connect() True """ config = self.config self.rdb = redis.Redis(config['host'], config['port'], config['db'],\ config['password']) try: info = self.rdb.info() self.connected = True except redis.ConnectionError: return False return True def wait(self, wait_time=0): """ Returns a :class:`~retask.task.Task` object from the queue. Returns ``False`` if it timeouts. :arg wait_time: Time in seconds to wait, default is infinite. :return: :class:`~retask.task.Task` object from the queue or False if it timeouts. .. doctest:: >>> from retask import Queue >>> q = Queue('test') >>> q.connect() True >>> task = q.wait() >>> print task.data {u'name': u'kushal'} .. note:: This is a blocking call, you can specity wait_time argument for timeout. """ if not self.connected: raise ConnectionError('Queue is not connected') data = self.rdb.brpop(self._name, wait_time) if data: task = Task() task.__dict__ = json.loads(data[1]) return task else: return False def dequeue(self): """ Returns a :class:`~retask.task.Task` object from the queue. Returns ``None`` if the queue is empty. :return: :class:`~retask.task.Task` object from the queue If the queue is not connected then it will raise :class:`retask.ConnectionError` .. doctest:: >>> from retask import Queue >>> q = Queue('test') >>> q.connect() True >>> t = q.dequeue() >>> print t.data {u'name': u'kushal'} """ if not self.connected: raise ConnectionError('Queue is not connected') if self.rdb.llen(self._name) == 0: return None data = self.rdb.rpop(self._name) if not data: return None if isinstance(data, six.binary_type): data = six.text_type(data, 'utf-8', errors = 'replace') task = Task() task.__dict__ = json.loads(data) return task def enqueue(self, task): """ Enqueues the given :class:`~retask.task.Task` object to the queue and returns a :class:`~retask.queue.Job` object. :arg task: ::class:`~retask.task.Task` object :return: :class:`~retask.queue.Job` object If the queue is not connected then it will raise :class:`retask.ConnectionError`. .. doctest:: >>> from retask import Queue >>> q = Queue('test') >>> q.connect() True >>> from retask.task import Task >>> task = Task({'name':'kushal'}) >>> job = q.enqueue(task) """ if not self.connected: raise ConnectionError('Queue is not connected') try: #We can set the value to the queue job = Job(self.rdb) task.urn = job.urn text = json.dumps(task.__dict__) self.rdb.lpush(self._name, text) except Exception as err: return False return job def send(self, task, result, expire=60): """ Sends the result back to the producer. This should be called if only you want to return the result in async manner. :arg task: ::class:`~retask.task.Task` object :arg result: Result data to be send back. Should be in JSON serializable. :arg expire: Time in seconds after the key expires. Default is 60 seconds. """ self.rdb.lpush(task.urn, json.dumps(result)) self.rdb.expire(task.urn, expire) def __repr__(self): if not self: return '%s()' % (self.__class__.__name__,) return '%s(%r)' % (self.__class__.__name__, self.name) def find(self, obj): """Returns the index of the given object in the queue, it might be string which will be searched inside each task. :arg obj: object we are looking :return: -1 if the object is not found or else the location of the task """ if not self.connected: raise ConnectionError('Queue is not connected') data = self.rdb.lrange(self._name, 0, -1) for i, datum in enumerate(data): if datum.find(str(obj)) != -1: return i return -1 class Job(object): """ Job object containing the result from the workers. :arg rdb: The underlying redis connection. """ def __init__(self, rdb): self.rdb = rdb self.urn = uuid.uuid4().urn self.__result = None @property def result(self): """ Returns the result from the worker for this job. This is used to pass result in async way. """ if self.__result: return self.__result data = self.rdb.rpop(self.urn) if data: self.rdb.delete(self.urn) data = json.loads(data) self.__result = data return data else: return None def wait(self, wait_time=0): """ Blocking call to check if the worker returns the result. One can use job.result after this call returns ``True``. :arg wait_time: Time in seconds to wait, default is infinite. :return: `True` or `False`. .. note:: This is a blocking call, you can specity wait_time argument for timeout. """ if self.__result: return True data = self.rdb.brpop(self.urn, wait_time) if data: self.rdb.delete(self.urn) data = json.loads(data[1]) self.__result = data return True else: return False ########NEW FILE######## __FILENAME__ = release NAME = 'retask' VERSION = '0.4' DESCRIPTION = 'Task Queue implementation in python' LONG_DESCRIPTION = '''Retask is a simple task queue implementation written for human beings. It provides generic solution to create and manage task queues.''' AUTHOR = 'Kushal Das' EMAIL = '[email protected]' COPYRIGHT = '2012-13 Kushal Das' URL = 'https://github.com/kushaldas/retask' LICENSE = 'MIT' __all__ = ('NAME', 'VERSION', 'DESCRIPTION', 'LONG_DESCRIPTION', 'AUTHOR', 'EMAIL', 'COPYRIGHT', 'URL', 'LICENSE') ########NEW FILE######## __FILENAME__ = task #Copyright (C) 2012, Kushal Das <[email protected]> #Permission is hereby granted, free of charge, to any person obtaining a copy of #this software and associated documentation files (the "Software"), to deal in #the Software without restriction, including without limitation the rights to #use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies #of the Software, and to permit persons to whom the Software is furnished to do #so, subject to the following conditions: #The above copyright notice and this permission notice shall be included in all #copies or substantial portions of the Software. #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR #IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, #FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE #AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER #LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, #OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE #SOFTWARE. __author__ = 'Kushal Das <[email protected]>' __copyright__ = 'Copyright (c) 2012-2013 Kushal Das' __license__ = 'MIT' __status__ = 'Development' __version__ = '0.3' """ Task Class """ import json class Task(object): """ Returns a new Task object, the information for the task is passed through argument ``data`` :kwarg data: Python object which contains information for the task. Should be serializable through ``JSON``. """ def __init__(self, data=None, raw=False, urn=None): if not raw: self._data = json.dumps(data) else: self._data = data self.urn = urn @property def data(self): """ The python object containing information for the current task """ return json.loads(self._data) @property def rawdata(self): """ The string representation of the actual python objects for the task .. note:: This should not be used directly by the users. This is for internal use only. """ return self._data def __repr__(self): return '%s(%s)' % (self.__class__.__name__, repr(self.data)) ########NEW FILE######## __FILENAME__ = tests import unittest import redis from mock import patch from retask import Task from retask import Queue class ConnectTest(unittest.TestCase): """ Test the connect method """ def runTest(self): queue = Queue('testqueue') self.assertTrue(queue.connect()) class LengthTest(unittest.TestCase): """ Tests the length method of the Queue """ @patch('redis.Redis') def runTest(self, mock_redis): m = mock_redis.return_value m.llen.return_value = 2 queue = Queue('testqueue') queue.connect() self.assertEqual(queue.length, 2) class SetTest(unittest.TestCase): """ Sets a task in the Queue """ def runTest(self): queue = Queue('testqueue') queue.connect() t = Task({'name':'kushal'}) self.assertTrue(queue.enqueue(t)) def tearDown(self): rdb = redis.Redis() rdb.delete('retaskqueue-testqueue') class GetTest(unittest.TestCase): """ Gets a task in the Queue """ def setUp(self): queue = Queue('testqueue') queue.connect() t = Task({'name':'kushal'}) queue.enqueue(t) def runTest(self): queue = Queue('testqueue') queue.connect() task = queue.dequeue() i = task.data self.assertEqual(task.data['name'], 'kushal') if __name__ == '__main__': unittest.main() ########NEW FILE########
00784a17b99b4077db9e72d37bf5cb26749d3043
64bf39b96a014b5d3f69b3311430185c64a7ff0e
/intro-ansible/venv3/lib/python3.8/site-packages/ansible_test/_data/sanity/code-smell/changelog.py
710b10f6c08ec6f6580b2837b46f9a06e6302fd6
[ "MIT" ]
permissive
SimonFangCisco/dne-dna-code
7072eba7da0389e37507b7a2aa5f7d0c0735a220
2ea7d4f00212f502bc684ac257371ada73da1ca9
refs/heads/master
2023-03-10T23:10:31.392558
2021-02-25T15:04:36
2021-02-25T15:04:36
342,274,373
0
0
MIT
2021-02-25T14:39:22
2021-02-25T14:39:22
null
UTF-8
Python
false
false
1,420
py
#!/usr/bin/env python from __future__ import (absolute_import, division, print_function) __metaclass__ = type import os import sys import subprocess def main(): paths = sys.argv[1:] or sys.stdin.read().splitlines() allowed_extensions = ('.yml', '.yaml') config_path = 'changelogs/config.yaml' # config must be detected independent of the file list since the file list only contains files under test (changed) has_config = os.path.exists(config_path) paths_to_check = [] for path in paths: if path == config_path: continue if path.startswith('changelogs/fragments/.'): if path in ('changelogs/fragments/.keep', 'changelogs/fragments/.gitkeep'): continue print('%s:%d:%d: file must not be a dotfile' % (path, 0, 0)) continue ext = os.path.splitext(path)[1] if ext not in allowed_extensions: print('%s:%d:%d: extension must be one of: %s' % (path, 0, 0, ', '.join(allowed_extensions))) paths_to_check.append(path) if not has_config: print('changelogs/config.yaml:0:0: config file does not exist') return if not paths_to_check: return cmd = [sys.executable, '-m', 'antsibull_changelog', 'lint'] + paths_to_check subprocess.call(cmd) # ignore the return code, rely on the output instead if __name__ == '__main__': main()
9c7efaaa782f42236b3ee163464ef9d613bc033c
0a5c103662e2ccea7698480bca28fb5c285aeafb
/info/dicom.py
033a6a5fb0ed810ef20d7d4d98a1b7d9b7f8d109
[]
no_license
joanshen0508/image_preprocessing
a8b9dc90e92552ca11af8b220a2ce235a558aef1
478e63593884d572a049590588df158c59447bab
refs/heads/master
2022-04-02T17:08:56.559871
2019-10-29T15:24:48
2019-10-29T15:24:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,477
py
from __future__ import division, print_function import os from os.path import join from pandas import DataFrame import re import dicom from inout.io_common import get_dicom_files_in_folder class DicomDataSummary(): """ This function allows the generation of information stored on nrrd files. """ def __init__(self, **kwargs): self.input_folder = 'input' self.output_folder = 'output' # All the arguments that are passed to the constructor of the class MUST have its name on it. for arg_name, arg_value in kwargs.items(): self.__dict__["_" + arg_name] = arg_value def __getattr__(self, attr): '''Generic getter for all the properties of the class''' return self.__dict__["_" + attr] def __setattr__(self, attr, value): '''Generic setter for all the properties of the class''' self.__dict__["_" + attr] = value def generate_data_summary(self, folder_name_regex, file_name='data_summary'): """It generates a small summary from the data_sum as a CSV file (shape and voxel size) :param folder_name_regex: :return: """ cases = [x for x in os.listdir(self._input_folder) if os.path.isdir(join(self._input_folder, x))] cases.sort() colums_dic = {'Date':'AcquisitionDate', 'EchoTime':'EchoTime', 'EchoTrainLength':'EchoTrainLength', 'Manufacturer':'Manufacturer', 'Model':'ManufacturerModelName', 'Modality':'Modality', 'RepetitionTime': 'RepetitionTime', 'Orientation': 'ImageOrientationPatient'} extra_columns = ['Size', 'Spacing', 'PixelSize'] all_columns = extra_columns + list(colums_dic.keys()) data_sum = DataFrame(index=cases, columns=all_columns) # In this case we look for folders inside each case for c_case in cases: print(F"---------- {c_case}----------") try: matched_folders = [x for x in os.listdir(join(self._input_folder, c_case)) if not (re.search(folder_name_regex, x) is None)] if len(matched_folders) > 1: print(F'Warning: more than one folder matched: {matched_folders}') if len(matched_folders) == 0: print(F'Warning: folder not matched for {c_case}') continue else: final_folder_name = join(self._input_folder, c_case, matched_folders[0]) all_dicom_files = get_dicom_files_in_folder(final_folder_name) ds = dicom.read_file(all_dicom_files[0]) # Reads dataset for c_name, c_key in colums_dic.items(): data_sum.loc[c_case][c_name] = eval(F'ds.{c_key}') data_sum.loc[c_case]['Size'] = F'{ds.Rows} x {ds.Columns} x {len(all_dicom_files)}' spacing = ds.PixelSpacing data_sum.loc[c_case]['Spacing'] = F'{spacing[0]} x {spacing[1]} x {ds.SliceThickness}' data_sum.loc[c_case]['PixelSize'] = F'{spacing[0]*spacing[1]*ds.SliceThickness:.2f}' except Exception as e: print(F'Failed for folder {c_case}: {e}') continue data_sum.to_csv(join(self._output_folder, file_name))
1d272705faf2bbdc1fdbd6b49ad2bb71b1a70d85
810a8ed334a29b81ddd5a4364c06d0272c3aae39
/clash-of-code/shortest/hexagon.py
4fd47cf99b5eb0c26472bb476aeafcc46280b64a
[ "MIT" ]
permissive
charlesfranciscodev/codingame
d7bdfc244cb58fa356dec73fb2f2ec5470755dbc
37b8e269e40f1b4e9807c305874f3b97f7c03a03
refs/heads/master
2023-08-16T23:26:20.818882
2023-08-16T17:12:06
2023-08-16T17:12:06
179,561,845
53
26
MIT
2021-05-19T19:36:46
2019-04-04T19:16:12
Python
UTF-8
Python
false
false
24
py
print(6*int(input())**2)
9d1e8ffeefbf7cee1e32d4c38a282759cf4dd220
577ba42cbf0a3230966ac66ef60fd401486e4c06
/website/apps/core/migrations/0021_transfer_year.py
96778623b064dec78ae6724511bdcd803f81ac46
[ "Apache-2.0" ]
permissive
shh-dlce/pulotu
984ca86de3ffe03e83bbb15b0d497f1ebf190ecd
82acbb8a3b7f3ec3acc76baffd4047265a77f7d3
refs/heads/master
2021-01-10T03:51:13.337840
2015-12-09T09:46:55
2015-12-09T09:46:55
46,917,922
2
0
Apache-2.0
2021-11-16T11:51:48
2015-11-26T09:48:42
Python
UTF-8
Python
false
false
8,072
py
# -*- coding: utf-8 -*- from south.utils import datetime_utils as datetime from south.db import db from south.v2 import DataMigration from django.db import models class Migration(DataMigration): def forwards(self, orm): "Write your forwards methods here." # Note: Don't use "from appname.models import ModelName". # Use orm.ModelName to refer to models in this application, # and orm['appname.ModelName'] for models in other applications. for source in orm.Source.objects.all(): source.year_new = source.year source.save() def backwards(self, orm): "Write your backwards methods here." raise RuntimeError("Cannot reverse this migration!") models = { u'auth.group': { 'Meta': {'object_name': 'Group'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, u'auth.permission': { 'Meta': {'ordering': "(u'content_type__app_label', u'content_type__model', u'codename')", 'unique_together': "((u'content_type', u'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, u'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "u'user_set'", 'blank': 'True', 'to': u"orm['auth.Group']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "u'user_set'", 'blank': 'True', 'to': u"orm['auth.Permission']"}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, u'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, u'core.culture': { 'Meta': {'ordering': "['culture']", 'object_name': 'Culture', 'db_table': "'cultures'"}, 'added': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'coder': ('django.db.models.fields.CharField', [], {'max_length': '256', 'null': 'True', 'blank': 'True'}), 'culture': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '128', 'db_index': 'True'}), 'editor': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['auth.User']"}), 'fact': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'languages': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['core.Language']", 'symmetrical': 'False', 'blank': 'True'}), 'notes': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '128'}) }, u'core.language': { 'Meta': {'ordering': "['language']", 'unique_together': "(('isocode', 'language'),)", 'object_name': 'Language', 'db_table': "'languages'"}, 'abvdcode': ('django.db.models.fields.IntegerField', [], {'db_index': 'True', 'unique': 'True', 'null': 'True', 'blank': 'True'}), 'added': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'classification': ('django.db.models.fields.TextField', [], {}), 'editor': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['auth.User']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'isocode': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '3', 'db_index': 'True'}), 'language': ('django.db.models.fields.CharField', [], {'max_length': '255', 'db_index': 'True'}) }, u'core.section': { 'Meta': {'ordering': "['id']", 'object_name': 'Section', 'db_table': "'sections'"}, 'added': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'editor': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['auth.User']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'notes': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'section': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '128'}) }, u'core.source': { 'Meta': {'ordering': "['author', 'year']", 'unique_together': "(['author', 'year'],)", 'object_name': 'Source', 'db_table': "'sources'", 'index_together': "[['author', 'year']]"}, 'added': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'author': ('django.db.models.fields.CharField', [], {'max_length': '255', 'db_index': 'True'}), 'bibtex': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'comment': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'editor': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['auth.User']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'reference': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '1000'}), 'year': ('django.db.models.fields.IntegerField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'year_new': ('django.db.models.fields.CharField', [], {'db_index': 'True', 'max_length': '255', 'null': 'True', 'blank': 'True'}) } } complete_apps = ['core'] symmetrical = True
0cb269eb77b00fc282b0b7a98450a744901f9bee
af4abf0a22db1cebae466c56b45da2f36f02f323
/parser/fase2/team08/Tytus_SQLPARSER_G8/optimizacion/Instrucciones/C3D/LlamadaC3D.py
dc3d1a8494a7f8ac134381a1aa4f9d6d7c4e705b
[ "MIT", "BSD-3-Clause" ]
permissive
joorgej/tytus
0c29408c09a021781bd3087f419420a62194d726
004efe1d73b58b4b8168f32e01b17d7d8a333a69
refs/heads/main
2023-02-17T14:00:00.571200
2021-01-09T00:48:47
2021-01-09T00:48:47
322,429,634
3
0
MIT
2021-01-09T00:40:50
2020-12-17T22:40:05
Python
UTF-8
Python
false
false
594
py
from optimizacion.Instrucciones.TablaSimbolos.InstruccionC3D import InstruccionC3D class LlamadaC3D(InstruccionC3D): def __init__(self, id,linea, columna): InstruccionC3D.__init__(self,linea,columna) self.id = id print("ENTRO A expresiones") def ejecutar(self, tabla, arbol): super().ejecutar(tabla,arbol) print(" linea: " + str(self.linea) + " columna: " + str(self.columna)) if self.id != None : if(self.id == "main"): return self.id + "()" else: return self.id +"()"
b93260df15ec3b7ec598572a2cee1d41b1db0c22
41a672c9505b5b53c58a01d5455acc410949aa24
/tests/aoutgoing/negative/group/C_39.py
2f601a227919b3259ac2e7c4da1ce6d2ad77009c
[]
no_license
Alexsorgo/mobile_iOS
b045a0ea058726841c88158be8407b7ae45e893e
7e298f890b408cedad9db9d0aefeccd9c10d6002
refs/heads/master
2022-12-12T17:26:14.039876
2020-03-18T06:34:56
2020-03-18T06:34:56
248,154,882
0
0
null
2021-06-02T01:13:05
2020-03-18T06:25:17
Python
UTF-8
Python
false
false
956
py
from configs import config from enums import error_enums from screens.group.group_screen import GroupScreen from controls.menu import Menu from tests.aoutgoing.base_test import BaseTest from utils.logs import log from utils.verify import Verify class TestC39(BaseTest): """ User has the ability to create group chat with 1 more user """ EMPTY_NAME = '' FRIEND = config.AMERICA_FIRSTNAME + ' ' + config.AMERICA_LASTNAME def test_c39(self): log.info("Create group with empty group name") menu = Menu(self.driver) group = GroupScreen(self.driver) menu.go_to(menu.wenums.GROUPS, [menu.wenums.NEW_GROUP]) group.add_user(self.FRIEND) group.tap_done() group.tap_group_name() group.set_group_name(self.EMPTY_NAME) group.tap_save() log.info("Verify group doesn't create") Verify.true(group.error_verify(error_enums.GROUP_NAME_MIN), "Group created")
255564aec5fbd2217b5838adab632433649e48fb
4a5f3b26fca176a80ca8eca796bc646bb225b017
/LSTM/lstm.py
fd4fa6f6352b46b189efd111d6f07ccf1a6d69d2
[]
no_license
musyoku/NLP
9a63dc882b07b017f7cfc72d863c4d9e5cbeff5e
9b040bb960b65fb2a1c330adafa6c52e3284a0c1
refs/heads/master
2021-01-21T04:53:57.029200
2016-07-10T17:08:03
2016-07-10T17:08:03
55,848,677
1
1
null
null
null
null
UTF-8
Python
false
false
8,963
py
# -*- coding: utf-8 -*- import os, time import numpy as np import chainer from chainer import cuda, Variable, optimizers, serializers, function, link from chainer.utils import type_check from chainer import functions as F from chainer import links as L from bnlstm import BNLSTM from embed_id import EmbedID activations = { "sigmoid": F.sigmoid, "tanh": F.tanh, "softplus": F.softplus, "relu": F.relu, "leaky_relu": F.leaky_relu, "elu": F.elu } class Conf: def __init__(self): self.use_gpu = True self.n_vocab = -1 # 文字埋め込みベクトルの次元数 self.embed_size = 200 # 各隠れ層のユニット数を入力側から出力側に向かって並べる # Unit sizes of each hidden layers # e.g 500(input vector)->250->100(output vector) # q_fc_units = [250] # We don't contain input and output unit size here. self.lstm_hidden_units = [1000] # if true, it uses BNLSTM self.lstm_apply_batchnorm = False self.lstm_apply_dropout = False # Fully-connected network that converts an output of the LSTM to a label distribution or an embed vector # We don't contain input and output unit size here. self.fc_hidden_units = [500] self.fc_apply_batchnorm = False self.fc_apply_dropout = False self.fc_activation_function = "tanh" # "embed_vector": outputs an embed vector. Instead of softmax layer, We use EmbedID.reverse() to convert vector to label id. # "softmax": outputs a probability distribution of label ids using softmax layer self.fc_output_type = LSTM.OUTPUT_TYPE_SOFTMAX self.learning_rate = 0.0025 self.gradient_momentum = 0.95 def check(self): if len(self.lstm_hidden_units) < 1: raise Exception("You need to add one or more hidden layers to LSTM network.") if len(self.fc_hidden_units) < 1: raise Exception("You need to add one or more hidden layers to fully-connected network.") class LSTMNetwork(chainer.Chain): def __init__(self, **layers): super(LSTMNetwork, self).__init__(**layers) self.n_layers = 0 self.apply_dropout = False def forward_one_step(self, x, test): chain = [x] # Hidden layers for i in range(self.n_layers): u = getattr(self, "layer_%i" % i)(chain[-1]) output = u if self.apply_dropout: output = F.dropout(output, train=not test) chain.append(output) return chain[-1] def reset_state(self): for i in range(self.n_layers): getattr(self, "layer_%i" % i).reset_state() def __call__(self, x, test=False): return self.forward_one_step(x, test=test) class FullyConnectedNetwork(chainer.Chain): def __init__(self, **layers): super(FullyConnectedNetwork, self).__init__(**layers) self.n_layers = 0 self.activation_function = "tanh" self.apply_dropout = False self.apply_batchnorm = False def forward_one_step(self, x, test): f = activations[self.activation_function] chain = [x] # Hidden layers for i in range(self.n_layers): u = chain[-1] if self.apply_batchnorm: u = getattr(self, "batchnorm_%i" % i)(u, test=test) u = getattr(self, "layer_%i" % i)(u) output = f(u) if self.apply_dropout and i != self.n_layers - 1: output = F.dropout(output, train=not test) chain.append(output) return chain[-1] def __call__(self, x, test=False): return self.forward_one_step(x, test=test) class LSTM: OUTPUT_TYPE_SOFTMAX = 1 OUTPUT_TYPE_EMBED_VECTOR = 2 def __init__(self, conf, name="lstm"): self.output_type = conf.fc_output_type self.embed_id, self.lstm, self.fc = self.build(conf) self.name = name self.optimizer_lstm = optimizers.Adam(alpha=conf.learning_rate, beta1=conf.gradient_momentum) self.optimizer_lstm.setup(self.lstm) self.optimizer_lstm.add_hook(chainer.optimizer.GradientClipping(10.0)) self.optimizer_fc = optimizers.Adam(alpha=conf.learning_rate, beta1=conf.gradient_momentum) self.optimizer_fc.setup(self.fc) self.optimizer_fc.add_hook(chainer.optimizer.GradientClipping(10.0)) self.optimizer_embed_id = optimizers.Adam(alpha=conf.learning_rate, beta1=conf.gradient_momentum) self.optimizer_embed_id.setup(self.embed_id) self.optimizer_embed_id.add_hook(chainer.optimizer.GradientClipping(10.0)) def build(self, conf): conf.check() wscale = 1.0 embed_id = EmbedID(conf.n_vocab, conf.embed_size, ignore_label=-1) if conf.use_gpu: embed_id.to_gpu() lstm_attributes = {} lstm_units = [(conf.embed_size, conf.lstm_hidden_units[0])] lstm_units += zip(conf.lstm_hidden_units[:-1], conf.lstm_hidden_units[1:]) for i, (n_in, n_out) in enumerate(lstm_units): if conf.lstm_apply_batchnorm: lstm_attributes["layer_%i" % i] = BNLSTM(n_in, n_out) else: lstm_attributes["layer_%i" % i] = L.LSTM(n_in, n_out) lstm = LSTMNetwork(**lstm_attributes) lstm.n_layers = len(lstm_units) lstm.apply_dropout = conf.lstm_apply_dropout if conf.use_gpu: lstm.to_gpu() fc_attributes = {} fc_units = [(conf.lstm_hidden_units[-1], conf.fc_hidden_units[0])] fc_units += zip(conf.fc_hidden_units[:-1], conf.fc_hidden_units[1:]) if conf.fc_output_type == self.OUTPUT_TYPE_EMBED_VECTOR: fc_units += [(conf.fc_hidden_units[-1], conf.embed_size)] elif conf.fc_output_type == self.OUTPUT_TYPE_SOFTMAX: fc_units += [(conf.fc_hidden_units[-1], conf.n_vocab)] else: raise Exception() for i, (n_in, n_out) in enumerate(fc_units): fc_attributes["layer_%i" % i] = L.Linear(n_in, n_out, wscale=wscale) fc_attributes["batchnorm_%i" % i] = L.BatchNormalization(n_in) fc = FullyConnectedNetwork(**fc_attributes) fc.n_layers = len(fc_units) fc.activation_function = conf.fc_activation_function fc.apply_batchnorm = conf.fc_apply_batchnorm fc.apply_dropout = conf.fc_apply_dropout if conf.use_gpu: fc.to_gpu() return embed_id, lstm, fc def __call__(self, x, test=False, softmax=True): output = self.embed_id(x) output = self.lstm(output, test=test) output = self.fc(output, test=test) if softmax and self.output_type == self.OUTPUT_TYPE_SOFTMAX: output = F.softmax(output) return output @property def xp(self): return np if self.lstm.layer_0._cpu else cuda.cupy @property def gpu(self): return True if self.xp is cuda.cupy else False def reset_state(self): self.lstm.reset_state() def predict(self, word, test=True, argmax=False): xp = self.xp c0 = Variable(xp.asarray([word], dtype=np.int32)) if self.output_type == self.OUTPUT_TYPE_SOFTMAX: output = self(c0, test=test, softmax=True) if xp is cuda.cupy: output.to_cpu() if argmax: ids = np.argmax(output.data, axis=1) else: ids = [np.random.choice(np.arange(output.data.shape[1]), p=output.data[0])] elif self.output_type == self.OUTPUT_TYPE_EMBED_VECTOR: output = self(c0, test=test, softmax=False) if argmax: ids = self.embed_id.reverse(output.data, to_cpu=True, sample=False) else: ids = self.embed_id.reverse(output.data, to_cpu=True, sample=True) return ids[0] def distribution(self, word, test=True): xp = self.xp c0 = Variable(xp.asarray([word], dtype=np.int32)) output = self(c0, test=test, softmax=True) if xp is cuda.cupy: output.to_cpu() return output.data def train(self, seq_batch, test=False): self.reset_state() xp = self.xp sum_loss = 0 seq_batch = seq_batch.T for c0, c1 in zip(seq_batch[:-1], seq_batch[1:]): c0 = Variable(xp.asanyarray(c0, dtype=np.int32)) c1 = Variable(xp.asanyarray(c1, dtype=np.int32)) output = self(c0, test=test, softmax=False) if self.output_type == self.OUTPUT_TYPE_SOFTMAX: loss = F.softmax_cross_entropy(output, c1) elif self.output_type == self.OUTPUT_TYPE_EMBED_VECTOR: target = Variable(self.embed_id(c1).data) loss = F.mean_squared_error(output, target) else: raise Exception() sum_loss += loss self.zero_grads() sum_loss.backward() self.update() if self.gpu: sum_loss.to_cpu() return sum_loss.data def zero_grads(self): self.optimizer_lstm.zero_grads() self.optimizer_fc.zero_grads() self.optimizer_embed_id.zero_grads() def update(self): self.optimizer_lstm.update() self.optimizer_fc.update() self.optimizer_embed_id.update() def should_save(self, prop): if isinstance(prop, chainer.Chain) or isinstance(prop, chainer.optimizer.GradientMethod) or isinstance(prop, EmbedID): return True return False def load(self, dir=None): if dir is None: raise Exception() for attr in vars(self): prop = getattr(self, attr) if self.should_save(prop): filename = dir + "/%s_%s.hdf5" % (self.name, attr) if os.path.isfile(filename): print "loading", filename serializers.load_hdf5(filename, prop) else: print filename, "missing." print "model loaded." def save(self, dir=None): if dir is None: raise Exception() try: os.mkdir(dir) except: pass for attr in vars(self): prop = getattr(self, attr) if self.should_save(prop): serializers.save_hdf5(dir + "/%s_%s.hdf5" % (self.name, attr), prop) print "model saved."
9544265ec76e9e6bce081dee8ea03c2ea278a212
c7e0c86a24521a13c3b06c73244e9f5854f47284
/smarts/env/tests/test_metrics.py
a9d43943678df687bf3dc894e97b9aeab7c2cbb1
[ "LGPL-3.0-only", "LicenseRef-scancode-warranty-disclaimer", "CC-BY-NC-4.0", "GPL-1.0-or-later", "LicenseRef-scancode-generic-exception", "LicenseRef-scancode-other-copyleft", "LicenseRef-scancode-unknown-license-reference", "LGPL-2.0-or-later", "GPL-3.0-or-later", "BSD-3-Clause", "MIT", "LGPL-3.0-or-later", "BSD-3-Clause-Modification", "LicenseRef-scancode-free-unknown", "Zlib", "LicenseRef-scancode-proprietary-license", "LGPL-2.1-or-later", "GPL-2.0-or-later", "LicenseRef-scancode-protobuf", "LGPL-2.1-only", "HPND", "GPL-2.0-only", "GPL-3.0-only", "Apache-2.0", "LicenseRef-scancode-other-permissive", "Python-2.0", "LicenseRef-scancode-public-domain", "BSD-2-Clause", "CDDL-1.0" ]
permissive
huawei-noah/SMARTS
243d1f1fa4d3afe52a1dd8f7c6c500054d4a1a97
2ae8bd76a0b6e4da5699629cec0fefa5aa47ce67
refs/heads/master
2023-08-31T05:06:29.064270
2023-08-28T23:11:31
2023-08-28T23:11:31
301,903,883
824
212
MIT
2023-08-08T14:52:00
2020-10-07T02:11:23
Python
UTF-8
Python
false
false
10,884
py
# MIT License # # Copyright (C) 2022. Huawei Technologies Co., Ltd. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import dataclasses from unittest import mock import gymnasium as gym import numpy as np import pytest from smarts.core.agent_interface import AgentInterface, DoneCriteria from smarts.core.controllers import ActionSpaceType from smarts.core.coordinates import Heading, Point from smarts.core.plan import EndlessGoal, Goal, Mission, PositionalGoal, Start from smarts.env.gymnasium.wrappers.metric.metrics import Metrics, MetricsError from smarts.zoo.agent_spec import AgentSpec def _intrfc_improper(): return [ {"accelerometer": False}, {"max_episode_steps": None}, {"neighborhood_vehicle_states": False}, {"waypoint_paths": False}, { "done_criteria": DoneCriteria( collision=False, off_road=True, ) }, { "done_criteria": DoneCriteria( collision=True, off_road=False, ) }, ] @pytest.fixture def get_agent_spec(request): base_intrfc = AgentInterface( action=ActionSpaceType.TargetPose, accelerometer=True, done_criteria=DoneCriteria( collision=True, off_road=True, off_route=False, on_shoulder=False, wrong_way=False, not_moving=False, agents_alive=None, ), max_episode_steps=5, neighborhood_vehicle_states=True, waypoint_paths=True, ) return AgentSpec(interface=dataclasses.replace(base_intrfc, **request.param)) @pytest.fixture(scope="module") def get_scenario(request): from pathlib import Path from smarts.sstudio.scenario_construction import build_scenario if request.param == "single_agent_intersection": scenario = str( Path(__file__).resolve().parents[3] / "scenarios" / "sumo" / "intersections" / "1_to_1lane_left_turn_c_agents_1" ) num_agents = 1 elif request.param == "multi_agent_merge": scenario = str( Path(__file__).resolve().parents[3] / "scenarios" / "sumo" / "merge" / "3lane_agents_2" ) num_agents = 2 build_scenario(scenario=scenario) return (scenario, num_agents) @pytest.fixture def make_env(get_agent_spec, get_scenario): env = gym.make( "smarts.env:hiway-v1", scenarios=[get_scenario[0]], agent_interfaces={ f"AGENT_{agent_id}": get_agent_spec.interface for agent_id in range(get_scenario[1]) }, headless=True, ) yield env env.close() @pytest.mark.parametrize("get_agent_spec", _intrfc_improper(), indirect=True) @pytest.mark.parametrize("get_scenario", ["single_agent_intersection"], indirect=True) def test_improper_interface(make_env): # Verify proper agent interface enabled. with pytest.raises(AttributeError): env = Metrics(env=make_env) @pytest.mark.parametrize("get_agent_spec", [{}], indirect=True) @pytest.mark.parametrize("get_scenario", ["single_agent_intersection"], indirect=True) def test_init(make_env): # Verify instantiation of Metrics wrapper. env = Metrics(env=make_env) # Verify blocked access to underlying private variables. for elem in ["_scen", "_road_map", "_records", "smarts"]: with pytest.raises(AttributeError): getattr(env, elem) def _mock_mission(start: Start, goal: Goal): def func(scenario_root, agents_to_be_briefed): return [Mission(start=start, goal=goal)] return func @pytest.mark.parametrize("get_agent_spec", [{}], indirect=True) @pytest.mark.parametrize("get_scenario", ["single_agent_intersection"], indirect=True) def test_reset(make_env): # Verify a scenario without PositionalGoal fails suitability check. with mock.patch( "smarts.core.scenario.Scenario.discover_agent_missions", side_effect=_mock_mission( start=Start(position=np.array([0, 0, 0]), heading=Heading(0)), goal=EndlessGoal(), ), ): with pytest.raises(MetricsError): env = Metrics(env=make_env) env.reset() return @pytest.mark.parametrize("get_agent_spec", [{}], indirect=True) @pytest.mark.parametrize("get_scenario", ["single_agent_intersection"], indirect=True) def test_end_in_off_road(make_env): # Verify that env.score() can be computed when vehicle goes off road. env = Metrics(env=make_env) obs, _ = env.reset() agent_name = next(iter(env.agent_interfaces.keys())) dones = {"__all__": False} while not dones["__all__"]: actions = { agent_name: np.append( obs[agent_name]["ego_vehicle_state"]["position"][:2] + np.array([0.5, -0.8]), [obs[agent_name]["ego_vehicle_state"]["heading"], 0.1], ) } obs, _, dones, _, _ = env.step(actions) assert obs[agent_name]["events"]["off_road"], ( "Expected vehicle to go off road, but it did not. " f"Events: {obs[agent_name]['events']}." ) env.score() # Verify that Count values increase with episode. records = env.records() scen_name = next(iter(records.keys())) counts = records[scen_name][agent_name].counts assert counts.goals == 0 assert counts.episodes == 1 assert counts.steps == 3 @pytest.mark.parametrize( "get_agent_spec", [{"max_episode_steps": 27, "done_criteria": DoneCriteria(off_route=True)}], indirect=True, ) @pytest.mark.parametrize("get_scenario", ["single_agent_intersection"], indirect=True) def test_end_in_off_route(make_env): # Verify that env.score() can be computed when vehicle ends in off route. # Note: # Point(-12, -1.6, 0) lies on edge-west-WE_0, i.e., to the left of the junction. # Point( 12, -1.6, 0) lies on edge-east-WE_0, i.e., to the right of the junction. # Point(1.5, 30.5, 0) lies on edge-north-SN_0, i.e., to the top of the junction. with mock.patch( "smarts.core.scenario.Scenario.discover_agent_missions", side_effect=_mock_mission( start=Start(position=np.array([-12, -1.6, 0]), heading=Heading(-1.57)), goal=PositionalGoal(position=Point(x=1.5, y=30.5, z=0), radius=3), ), ): env = Metrics(env=make_env) obs, _ = env.reset() agent_name = next(iter(env.agent_interfaces.keys())) dones = {"__all__": False} while not dones["__all__"]: actions = { agent_name: np.append( obs[agent_name]["ego_vehicle_state"]["position"][:2] + np.array([1, 0]), [obs[agent_name]["ego_vehicle_state"]["heading"], 0.1], ) } obs, _, dones, _, _ = env.step(actions) assert ( obs[agent_name]["ego_vehicle_state"]["lane_id"].rstrip() == "edge-east-WE_0" ), ( "Expected vehicle to drive off route, but it is at lane: " f"{obs[agent_name]['ego_vehicle_state']['lane_id']}." ) assert obs[agent_name]["events"]["off_route"], ( "Expected vehicle to go off route, but it did not. " f"Events: {obs[agent_name]['events']}." ) env.score() @pytest.mark.parametrize("get_agent_spec", [{"max_episode_steps": 1}], indirect=True) @pytest.mark.parametrize("get_scenario", ["single_agent_intersection"], indirect=True) def test_end_in_junction(make_env): # Verify that env.score() can be computed when vehicle ends in a junction. # Note: # Point(-1.76, 2.05, 0) lies on :junction-intersection_1_0, i.e., inside the junction. with mock.patch( "smarts.core.scenario.Scenario.discover_agent_missions", side_effect=_mock_mission( start=Start(position=np.array([-1.86, 1.95, 0]), heading=Heading(-1.00)), goal=PositionalGoal(position=Point(x=1.5, y=30.5, z=0), radius=3), ), ): env = Metrics(env=make_env) obs, _ = env.reset() agent_name = next(iter(obs.keys())) actions = { agent_id: np.array([-1.76, 2.05, -0.91, 0.1]) for agent_id in obs.keys() } obs, _, dones, _, _ = env.step(actions) assert ( obs[agent_name]["ego_vehicle_state"]["lane_id"].rstrip() == ":junction-intersection_1_0" ), ( "Expected vehicle to be inside junction, but it is at lane: " f"{obs[agent_name]['ego_vehicle_state']['lane_id']}." ) assert ( obs[agent_name]["events"]["reached_max_episode_steps"] and dones["__all__"] ), ( "Expected vehicle to reach max episode steps and become done, but " f"it did not. Dones: {dones}. Events: {obs[agent_name]['events']}." ) env.score() @pytest.mark.parametrize("get_agent_spec", [{}], indirect=True) @pytest.mark.parametrize("get_scenario", ["multi_agent_merge"], indirect=True) def test_records_and_scores(make_env): # Verify that records and scores are functional in multi-agent environment. # Note: # env.score() is only callable after >=1 episode. Hence step through 1 episode. env = Metrics(env=make_env) obs, _ = env.reset() terminated = {"__all__": False} while not terminated["__all__"]: actions = { agent_name: np.append( agent_obs["ego_vehicle_state"]["position"][:2], [0, 0.1] ) for agent_name, agent_obs in obs.items() } obs, _, terminated, _, _ = env.step(actions) env.records() env.score()
0afb5da3c5bf377521020e90704fbd297b46c016
e5b778a273e3888ad0575a9dada39d458158127a
/students/migrations/0009_lesson_icon.py
a4f54c33999a2c365ea2cd47c5cf66dca551542c
[]
no_license
SevenLines/django-tealeaf
896784baead7b9514e83edad8c3c2defdcdd060b
959dbcbdd37a4e8f45de400e71710c5e746a97da
refs/heads/master
2021-01-23T00:01:43.793383
2015-05-15T15:58:52
2015-05-15T15:58:52
17,891,988
0
0
null
null
null
null
UTF-8
Python
false
false
550
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import filer.fields.image class Migration(migrations.Migration): dependencies = [ ('filer', '__first__'), ('students', '0008_auto_20141128_1807'), ] operations = [ migrations.AddField( model_name='lesson', name='icon', field=filer.fields.image.FilerImageField(default=None, blank=True, to='filer.Image', null=True), preserve_default=True, ), ]
e7a9408e49112ddd9f5aafdb874c3377f4ad2d1c
767745e9c6207db9f6a9cf4f0be1af4732e7a111
/raiden/tests/integration/transfer/test_directransfer_invalid.py
d88e7c9f8a32e7f40677ba8b9fc4c75d7c1a3340
[ "MIT" ]
permissive
gcarq/raiden
ecc91860b99447028baea7fd171c19996644a5ef
82241c6da9188c4e029aef3bb42f0ab9f055c0e4
refs/heads/master
2020-03-10T03:31:55.174762
2018-04-11T19:18:21
2018-04-11T19:18:21
129,167,527
0
0
MIT
2018-04-11T23:52:12
2018-04-11T23:52:12
null
UTF-8
Python
false
false
6,738
py
# -*- coding: utf-8 -*- import pytest from raiden.api.python import RaidenAPI from raiden.messages import DirectTransfer from raiden.transfer import channel from raiden.transfer.state import EMPTY_MERKLE_ROOT from raiden.tests.utils.blockchain import wait_until_block from raiden.tests.utils.factories import ( UNIT_HASHLOCK, make_address, make_privkey_address, ) from raiden.tests.utils.transfer import ( assert_synched_channel_state, get_channelstate, sign_and_inject, ) @pytest.mark.skip(reason='direct_transfer_async doesnt return AsyncResult anymore') @pytest.mark.parametrize('channels_per_node', [1]) @pytest.mark.parametrize('number_of_nodes', [2]) def test_failsfast_directtransfer_exceeding_distributable( raiden_network, token_addresses, deposit ): alice_app, bob_app = raiden_network token_address = token_addresses[0] async_result = alice_app.raiden.direct_transfer_async( token_address, deposit * 2, bob_app.raiden.address, identifier=1, ) assert not async_result.get_nowait() @pytest.mark.parametrize('number_of_nodes', [2]) @pytest.mark.parametrize('channels_per_node', [1]) def test_receive_directtransfer_invalidtoken(raiden_network, deposit, token_addresses): app0, app1 = raiden_network token_address = token_addresses[0] channel0 = get_channelstate(app0, app1, token_address) identifier = 1 invalid_token_address = make_address() channel_identifier = channel0.identifier direct_transfer_message = DirectTransfer( identifier=identifier, nonce=1, token=invalid_token_address, channel=channel_identifier, transferred_amount=0, recipient=app1.raiden.address, locksroot=EMPTY_MERKLE_ROOT, ) sign_and_inject( direct_transfer_message, app0.raiden.private_key, app0.raiden.address, app1, ) assert_synched_channel_state( token_address, app0, deposit, [], app1, deposit, [], ) @pytest.mark.parametrize('number_of_nodes', [2]) @pytest.mark.parametrize('channels_per_node', [1]) def test_receive_directtransfer_invalidlocksroot(raiden_network, token_addresses): app0, app1 = raiden_network token_address = token_addresses[0] channel0 = get_channelstate(app0, app1, token_address) balance0 = channel.get_balance(channel0.our_state, channel0.partner_state) balance1 = channel.get_balance(channel0.partner_state, channel0.our_state) identifier = 1 invalid_locksroot = UNIT_HASHLOCK channel_identifier = channel0.identifier direct_transfer_message = DirectTransfer( identifier=identifier, nonce=1, token=token_address, channel=channel_identifier, transferred_amount=0, recipient=app1.raiden.address, locksroot=invalid_locksroot, ) sign_and_inject( direct_transfer_message, app0.raiden.private_key, app0.raiden.address, app1, ) assert_synched_channel_state( token_address, app0, balance0, [], app1, balance1, [] ) @pytest.mark.parametrize('number_of_nodes', [2]) @pytest.mark.parametrize('channels_per_node', [1]) def test_receive_directtransfer_invalidsender(raiden_network, deposit, token_addresses): app0, app1 = raiden_network token_address = token_addresses[0] other_key, other_address = make_privkey_address() channel0 = get_channelstate(app0, app1, token_address) channel_identifier = channel0.identifier direct_transfer_message = DirectTransfer( identifier=1, nonce=1, token=token_address, channel=channel_identifier, transferred_amount=10, recipient=app0.raiden.address, locksroot=EMPTY_MERKLE_ROOT, ) sign_and_inject( direct_transfer_message, other_key, other_address, app0, ) assert_synched_channel_state( token_address, app0, deposit, [], app1, deposit, [] ) @pytest.mark.parametrize('number_of_nodes', [2]) @pytest.mark.parametrize('channels_per_node', [1]) def test_receive_directtransfer_invalidnonce(raiden_network, deposit, token_addresses): app0, app1 = raiden_network token_address = token_addresses[0] channel0 = get_channelstate(app0, app1, token_address) transferred_amount = 10 same_identifier = 1 event = channel.send_directtransfer( channel0, transferred_amount, same_identifier, ) direct_transfer_message = DirectTransfer.from_event(event) sign_and_inject( direct_transfer_message, app0.raiden.private_key, app0.raiden.address, app1, ) # Send a *different* direct transfer with the *same nonce* invalid_transferred_amount = transferred_amount // 2 invalid_direct_transfer_message = DirectTransfer( identifier=same_identifier, nonce=1, token=token_address, channel=channel0.identifier, transferred_amount=invalid_transferred_amount, recipient=app1.raiden.address, locksroot=EMPTY_MERKLE_ROOT, ) sign_and_inject( invalid_direct_transfer_message, app0.raiden.private_key, app0.raiden.address, app1, ) assert_synched_channel_state( token_address, app0, deposit - transferred_amount, [], app1, deposit + transferred_amount, [], ) @pytest.mark.parametrize('number_of_nodes', [2]) @pytest.mark.parametrize('channels_per_node', [1]) @pytest.mark.parametrize('settle_timeout', [30]) def test_received_directtransfer_closedchannel(raiden_network, token_addresses, deposit): app0, app1 = raiden_network token_address = token_addresses[0] channel0 = get_channelstate(app0, app1, token_address) RaidenAPI(app1.raiden).channel_close( token_address, app0.raiden.address, ) wait_until_block( app0.raiden.chain, app0.raiden.chain.block_number() + 1, ) # Now receive one direct transfer for the closed channel direct_transfer_message = DirectTransfer( identifier=1, nonce=1, token=token_address, channel=channel0.identifier, transferred_amount=10, recipient=app0.raiden.address, locksroot=EMPTY_MERKLE_ROOT, ) sign_and_inject( direct_transfer_message, app0.raiden.private_key, app0.raiden.address, app1, ) # The local state must not change since the channel is already closed assert_synched_channel_state( token_address, app0, deposit, [], app1, deposit, [], )
b020ce1d7374b7195c3545ce178c7b9387f9ddd1
72b8e2d69cca8b5ecd28e61ef61fef85f9dd0489
/q190.py
3bf0f6319123cdb7f2dd25ae44e6f074a9eafef1
[]
no_license
maples1993/LeetCode
f975bc8570729d998481b097ee04effe5a7c5977
032016724564d0bee85f9e1b9d9d6c769d0eb667
refs/heads/master
2020-03-27T22:05:07.397746
2018-11-07T06:13:56
2018-11-07T06:13:56
147,203,152
1
0
null
null
null
null
UTF-8
Python
false
false
418
py
""" Date: 2018/9/6 """ class Solution: # @param n, an integer # @return an integer def reverseBits(self, n): n &= 0xFFFFFFFF print(bin(n)) res = 0 & 0xFFFFFFFF count = 0 while count < 32: count += 1 res <<= 1 if n & 1 == 1: res += 1 n >>= 1 return res print(Solution().reverseBits(43261596))
e1fc43f35600eb1ab30bcb687acd093d5345c74f
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/adjectives/_veritable.py
c4260f18bbed72556a78374e7679857fe6dc69a3
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
488
py
#calss header class _VERITABLE(): def __init__(self,): self.name = "VERITABLE" self.definitions = [u'used to describe something as another, more exciting, interesting, or unusual thing, as a way of emphasizing its character: '] self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.specie = 'adjectives' def run(self, obj1, obj2): self.jsondata[obj2] = {} self.jsondata[obj2]['properties'] = self.name.lower() return self.jsondata
55eb160926cb77920b63568d4be18c54eeebdb2d
41b59a9c8381fa3a92f5d2c37c91261afb9c82c4
/QCDEventShape/2017/MC/test/crab_bin_py8_3200_inf.py
ad911d60a95de92ad286c8ea8f0a46bafbafeab1
[]
no_license
Sumankkundu/ChargedParticle
c6d4f90b55df49321df2ecd758bb1f39db896f8c
eb5bada24b37a58ded186d6e5d2d7bd00898fefe
refs/heads/master
2023-07-15T03:34:33.377203
2021-08-31T05:01:32
2021-08-31T05:01:32
231,091,587
1
0
null
null
null
null
UTF-8
Python
false
false
2,495
py
#from CRABClient.UserUtilities import config, getUsernameFromSiteDB from CRABClient.UserUtilities import config config = config() config.General.requestName ='ESVQCD_UL_Ptbinned_3200toinf_tuneCP5_bin' #config.General.workArea = 'crab_projects_1' config.General.workArea = 'crab_projects' config.General.transferOutputs = True config.General.transferLogs = True config.JobType.pluginName = 'Analysis' config.JobType.psetName = 'Run_QCD_test_miaod_v2_106x_mc_cfg.py' #config.JobType.maxMemoryMB = 9000 # Default is 2500 : Max I have used is 13000 #config.JobType.maxJobRuntimeMin = 2750 #Default is 1315; 2750 minutes guaranteed to be available; Max I have used is 9000 #config.JobType.numCores = 4 config.JobType.inputFiles= [ "/afs/cern.ch/work/s/sukundu/private/ESV_charge_CMSSW/Uncertainty2017/AK4PFCHS_Summer19UL/Summer19UL17_JRV2_MC_PtResolution_AK4PFchs.txt", "/afs/cern.ch/work/s/sukundu/private/ESV_charge_CMSSW/Uncertainty2017/AK4PFCHS_Summer19UL/Summer19UL17_JRV2_MC_SF_AK4PFchs.txt", "/afs/cern.ch/work/s/sukundu/private/ESV_charge_CMSSW/Uncertainty2017/AK4PFCHS_Summer19UL/Summer19UL17_RunB_V5_DATA_UncertaintySources_AK4PFchs.txt", "/afs/cern.ch/work/s/sukundu/private/ESV_charge_CMSSW/Uncertainty2017/AK4PFCHS_Summer19UL/Summer19UL17_RunC_V5_DATA_UncertaintySources_AK4PFchs.txt", "/afs/cern.ch/work/s/sukundu/private/ESV_charge_CMSSW/Uncertainty2017/AK4PFCHS_Summer19UL/Summer19UL17_RunD_V5_DATA_UncertaintySources_AK4PFchs.txt", "/afs/cern.ch/work/s/sukundu/private/ESV_charge_CMSSW/Uncertainty2017/AK4PFCHS_Summer19UL/Summer19UL17_RunE_V5_DATA_UncertaintySources_AK4PFchs.txt", "/afs/cern.ch/work/s/sukundu/private/ESV_charge_CMSSW/Uncertainty2017/AK4PFCHS_Summer19UL/Summer19UL17_RunF_V5_DATA_UncertaintySources_AK4PFchs.txt" ] config.Data.inputDataset ='/QCD_Pt_3200toInf_TuneCP5_13TeV_pythia8/RunIISummer19UL17MiniAOD-106X_mc2017_realistic_v6-v2/MINIAODSIM' config.Data.inputDBS = 'global' #config.Data.splitting = 'EventBased' #config.Data.splitting = 'LumiBased' config.Data.splitting = 'FileBased' #config.Data.splitting = 'Automatic' #config.Data.unitsPerJob = 10 # for Automatic must be 180-2700 range config.Data.unitsPerJob = 1 #For Filebased or Lumibased #config.Data.outLFNDirBase = '/store/user/%s/' % (getUsernameFromSiteDB()) #config.Data.outLFNDirBase = '/store/user/%s/' % (sukundu) config.Data.publication = True config.Data.outputDatasetTag = 'MC_PY82017UL_Bin' config.JobType.allowUndistributedCMSSW = True config.Site.storageSite ='T2_IN_TIFR'
64592d3ee4f2219d3ea1f98f687bdb1984f866da
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02780/s702903623.py
ef5c9f02ab956fe90728da489ecd4bc87f90841f
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
326
py
n,k = map(int,input().split()) P = list(map(int,input().split())) P[0] = (P[0]+1.)/2 for i in range(1,len(P)): P[i] = (P[i]+1.)/2 P[i] = P[i-1]+P[i] ans = 0. if n==1: ans = P[0] elif len(P)-k==0: ans = P[k-1] else: for i in range(len(P)-k): ans = max(ans,(P[i+k]-P[i])) print(ans)
5208906c09939f76f644bef4f999ef65b8a1cfae
37438771565238194ea997fa65619bd32c823706
/catkin_ws/17-11-16/LPH/build/catkin_generated/order_packages.py
24ce42469160b8cc3411cbaef6a5190b3592e0f2
[]
no_license
Aaron9477/restore
b040b8be695c513946c0243c4acb735f427d8bba
8dc13ed7cf0c4e5cde911169d11e330d826f40bd
refs/heads/master
2021-09-15T10:50:59.969952
2018-05-31T03:11:55
2018-05-31T03:11:55
110,834,815
0
1
null
null
null
null
UTF-8
Python
false
false
310
py
# generated from catkin/cmake/template/order_packages.context.py.in source_root_dir = "/home/zq610/LPH/src" whitelisted_packages = "".split(';') if "" != "" else [] blacklisted_packages = "".split(';') if "" != "" else [] underlay_workspaces = "/opt/ros/kinetic".split(';') if "/opt/ros/kinetic" != "" else []
310ba0cb9368a175620ca3cbcbd62104bf3f9f8b
edc1f1369794a4a1c499c6e9d5fe49a712657611
/algorithms/leetcode_all/560.subarray-sum-equals-k/subarray-sum-equals-k.py
74c28e9996672f15fe435da46bf9edd7cf5ffdc2
[]
no_license
williamsyb/mycookbook
93d4aca1a539b506c8ed2797863de6da8a0ed70f
dd917b6eba48eef42f1086a54880bab6cd1fbf07
refs/heads/master
2023-03-07T04:16:18.384481
2020-11-11T14:36:54
2020-11-11T14:36:54
280,005,004
2
0
null
2023-03-07T02:07:46
2020-07-15T23:34:24
Python
UTF-8
Python
false
false
379
py
class Solution(object): def subarraySum(self, nums, k): """ :type nums: List[int] :type k: int :rtype: int """ preSum = ans = 0 visit = {0: 1} for i, n in enumerate(nums): preSum += n ans += visit.get(preSum - k, 0) visit[preSum] = visit.get(preSum, 0) + 1 return ans
835f35f32d97ac1b55d4dda8b712add353ad0796
66052f5ba08ddac0a56ee140af17cf78b1ff1174
/PLURALSIGHT_BEGINNERS/lib/python3.9/site-packages/holoviews/tests/plotting/matplotlib/testpointplot.py
ad2dbfe315b9cd12e93a78996c55f6e2f0f001f8
[]
no_license
enriquefariasrdz/Python
34704ceed001bbe8a23471eebefbe536b00031a5
b9191f7ad87b709a1b83c5cb3797a866b56aaa0d
refs/heads/master
2022-12-26T03:06:26.481456
2022-04-20T14:09:57
2022-04-20T14:09:57
27,020,899
1
1
null
2022-12-18T21:02:43
2014-11-23T03:33:52
Python
UTF-8
Python
false
false
14,958
py
import numpy as np from holoviews.core.overlay import NdOverlay from holoviews.core.spaces import HoloMap from holoviews.element import Points from .testplot import TestMPLPlot, mpl_renderer from ..utils import ParamLogStream try: from matplotlib import pyplot except: pass class TestPointPlot(TestMPLPlot): def test_points_non_numeric_size_warning(self): data = (np.arange(10), np.arange(10), list(map(chr, range(94,104)))) points = Points(data, vdims=['z']).opts(plot=dict(size_index=2)) with ParamLogStream() as log: mpl_renderer.get_plot(points) log_msg = log.stream.read() warning = ('z dimension is not numeric, ' 'cannot use to scale Points size.\n') self.assertEqual(log_msg, warning) def test_points_cbar_extend_both(self): img = Points(([0, 1], [0, 3])).redim(y=dict(range=(1,2))) plot = mpl_renderer.get_plot(img.opts(colorbar=True, color_index=1)) self.assertEqual(plot.handles['cbar'].extend, 'both') def test_points_cbar_extend_min(self): img = Points(([0, 1], [0, 3])).redim(y=dict(range=(1, None))) plot = mpl_renderer.get_plot(img.opts(colorbar=True, color_index=1)) self.assertEqual(plot.handles['cbar'].extend, 'min') def test_points_cbar_extend_max(self): img = Points(([0, 1], [0, 3])).redim(y=dict(range=(None, 2))) plot = mpl_renderer.get_plot(img.opts(colorbar=True, color_index=1)) self.assertEqual(plot.handles['cbar'].extend, 'max') def test_points_cbar_extend_clime(self): img = Points(([0, 1], [0, 3])).opts(style=dict(clim=(None, None))) plot = mpl_renderer.get_plot(img.opts(colorbar=True, color_index=1)) self.assertEqual(plot.handles['cbar'].extend, 'neither') def test_points_rcparams_do_not_persist(self): opts = dict(fig_rcparams={'text.usetex': True}) points = Points(([0, 1], [0, 3])).opts(plot=opts) mpl_renderer.get_plot(points) self.assertFalse(pyplot.rcParams['text.usetex']) def test_points_rcparams_used(self): opts = dict(fig_rcparams={'grid.color': 'red'}) points = Points(([0, 1], [0, 3])).opts(plot=opts) plot = mpl_renderer.get_plot(points) ax = plot.state.axes[0] lines = ax.get_xgridlines() self.assertEqual(lines[0].get_color(), 'red') def test_points_padding_square(self): points = Points([1, 2, 3]).options(padding=0.1) plot = mpl_renderer.get_plot(points) x_range, y_range = plot.handles['axis'].get_xlim(), plot.handles['axis'].get_ylim() self.assertEqual(x_range[0], -0.2) self.assertEqual(x_range[1], 2.2) self.assertEqual(y_range[0], 0.8) self.assertEqual(y_range[1], 3.2) def test_curve_padding_square_per_axis(self): curve = Points([1, 2, 3]).options(padding=((0, 0.1), (0.1, 0.2))) plot = mpl_renderer.get_plot(curve) x_range, y_range = plot.handles['axis'].get_xlim(), plot.handles['axis'].get_ylim() self.assertEqual(x_range[0], 0) self.assertEqual(x_range[1], 2.2) self.assertEqual(y_range[0], 0.8) self.assertEqual(y_range[1], 3.4) def test_points_padding_hard_xrange(self): points = Points([1, 2, 3]).redim.range(x=(0, 3)).options(padding=0.1) plot = mpl_renderer.get_plot(points) x_range, y_range = plot.handles['axis'].get_xlim(), plot.handles['axis'].get_ylim() self.assertEqual(x_range[0], 0) self.assertEqual(x_range[1], 3) self.assertEqual(y_range[0], 0.8) self.assertEqual(y_range[1], 3.2) def test_points_padding_soft_xrange(self): points = Points([1, 2, 3]).redim.soft_range(x=(0, 3)).options(padding=0.1) plot = mpl_renderer.get_plot(points) x_range, y_range = plot.handles['axis'].get_xlim(), plot.handles['axis'].get_ylim() self.assertEqual(x_range[0], 0) self.assertEqual(x_range[1], 3) self.assertEqual(y_range[0], 0.8) self.assertEqual(y_range[1], 3.2) def test_points_padding_unequal(self): points = Points([1, 2, 3]).options(padding=(0.05, 0.1)) plot = mpl_renderer.get_plot(points) x_range, y_range = plot.handles['axis'].get_xlim(), plot.handles['axis'].get_ylim() self.assertEqual(x_range[0], -0.1) self.assertEqual(x_range[1], 2.1) self.assertEqual(y_range[0], 0.8) self.assertEqual(y_range[1], 3.2) def test_points_padding_nonsquare(self): points = Points([1, 2, 3]).options(padding=0.1, aspect=2) plot = mpl_renderer.get_plot(points) x_range, y_range = plot.handles['axis'].get_xlim(), plot.handles['axis'].get_ylim() self.assertEqual(x_range[0], -0.1) self.assertEqual(x_range[1], 2.1) self.assertEqual(y_range[0], 0.8) self.assertEqual(y_range[1], 3.2) def test_points_padding_logx(self): points = Points([(1, 1), (2, 2), (3,3)]).options(padding=0.1, logx=True) plot = mpl_renderer.get_plot(points) x_range, y_range = plot.handles['axis'].get_xlim(), plot.handles['axis'].get_ylim() self.assertEqual(x_range[0], 0.89595845984076228) self.assertEqual(x_range[1], 3.3483695221017129) self.assertEqual(y_range[0], 0.8) self.assertEqual(y_range[1], 3.2) def test_points_padding_logy(self): points = Points([1, 2, 3]).options(padding=0.1, logy=True) plot = mpl_renderer.get_plot(points) x_range, y_range = plot.handles['axis'].get_xlim(), plot.handles['axis'].get_ylim() self.assertEqual(x_range[0], -0.2) self.assertEqual(x_range[1], 2.2) self.assertEqual(y_range[0], 0.89595845984076228) self.assertEqual(y_range[1], 3.3483695221017129) def test_points_padding_datetime_square(self): points = Points([(np.datetime64('2016-04-0%d' % i), i) for i in range(1, 4)]).options( padding=0.1 ) plot = mpl_renderer.get_plot(points) x_range, y_range = plot.handles['axis'].get_xlim(), plot.handles['axis'].get_ylim() self.assertEqual(x_range[0], 16891.8) self.assertEqual(x_range[1], 16894.2) self.assertEqual(y_range[0], 0.8) self.assertEqual(y_range[1], 3.2) def test_points_padding_datetime_nonsquare(self): points = Points([(np.datetime64('2016-04-0%d' % i), i) for i in range(1, 4)]).options( padding=0.1, aspect=2 ) plot = mpl_renderer.get_plot(points) x_range, y_range = plot.handles['axis'].get_xlim(), plot.handles['axis'].get_ylim() self.assertEqual(x_range[0], 16891.9) self.assertEqual(x_range[1], 16894.1) self.assertEqual(y_range[0], 0.8) self.assertEqual(y_range[1], 3.2) def test_points_sizes_scalar_update(self): hmap = HoloMap({i: Points([1, 2, 3]).opts(s=i*10) for i in range(1, 3)}) plot = mpl_renderer.get_plot(hmap) artist = plot.handles['artist'] plot.update((1,)) self.assertEqual(artist.get_sizes(), np.array([10])) plot.update((2,)) self.assertEqual(artist.get_sizes(), np.array([20])) ########################### # Styling mapping # ########################### def test_point_color_op(self): points = Points([(0, 0, '#000000'), (0, 1, '#FF0000'), (0, 2, '#00FF00')], vdims='color').options(color='color') plot = mpl_renderer.get_plot(points) artist = plot.handles['artist'] self.assertEqual(artist.get_facecolors(), np.array([[0, 0, 0, 1], [1, 0, 0, 1], [0, 1, 0, 1]])) def test_point_color_op_update(self): points = HoloMap({0: Points([(0, 0, '#000000'), (0, 1, '#FF0000'), (0, 2, '#00FF00')], vdims='color'), 1: Points([(0, 0, '#0000FF'), (0, 1, '#00FF00'), (0, 2, '#FF0000')], vdims='color')}).options(color='color') plot = mpl_renderer.get_plot(points) artist = plot.handles['artist'] plot.update((1,)) self.assertEqual(artist.get_facecolors(), np.array([[0, 0, 1, 1], [0, 1, 0, 1], [1, 0, 0, 1]])) def test_point_line_color_op(self): points = Points([(0, 0, '#000000'), (0, 1, '#FF0000'), (0, 2, '#00FF00')], vdims='color').options(edgecolors='color') plot = mpl_renderer.get_plot(points) artist = plot.handles['artist'] self.assertEqual(artist.get_edgecolors(), np.array([[0, 0, 0, 1], [1, 0, 0, 1], [0, 1, 0, 1]])) def test_point_line_color_op_update(self): points = HoloMap({0: Points([(0, 0, '#000000'), (0, 1, '#FF0000'), (0, 2, '#00FF00')], vdims='color'), 1: Points([(0, 0, '#0000FF'), (0, 1, '#00FF00'), (0, 2, '#FF0000')], vdims='color')}).options(edgecolors='color') plot = mpl_renderer.get_plot(points) artist = plot.handles['artist'] plot.update((1,)) self.assertEqual(artist.get_edgecolors(), np.array([[0, 0, 1, 1], [0, 1, 0, 1], [1, 0, 0, 1]])) def test_point_fill_color_op(self): points = Points([(0, 0, '#000000'), (0, 1, '#FF0000'), (0, 2, '#00FF00')], vdims='color').options(facecolors='color') plot = mpl_renderer.get_plot(points) artist = plot.handles['artist'] self.assertEqual(artist.get_facecolors(), np.array([[0, 0, 0, 1], [1, 0, 0, 1], [0, 1, 0, 1]])) def test_point_linear_color_op(self): points = Points([(0, 0, 0), (0, 1, 1), (0, 2, 2)], vdims='color').options(color='color') plot = mpl_renderer.get_plot(points) artist = plot.handles['artist'] self.assertEqual(np.asarray(artist.get_array()), np.array([0, 1, 2])) self.assertEqual(artist.get_clim(), (0, 2)) def test_point_linear_color_op_update(self): points = HoloMap({0: Points([(0, 0, 0), (0, 1, 1), (0, 2, 2)], vdims='color'), 1: Points([(0, 0, 2.5), (0, 1, 3), (0, 2, 1.2)], vdims='color')}).options(color='color', framewise=True) plot = mpl_renderer.get_plot(points) artist = plot.handles['artist'] self.assertEqual(artist.get_clim(), (0, 2)) plot.update((1,)) self.assertEqual(np.asarray(artist.get_array()), np.array([2.5, 3, 1.2])) self.assertEqual(artist.get_clim(), (1.2, 3)) def test_point_categorical_color_op(self): points = Points([(0, 0, 'A'), (0, 1, 'B'), (0, 2, 'A')], vdims='color').options(color='color') plot = mpl_renderer.get_plot(points) artist = plot.handles['artist'] self.assertEqual(np.asarray(artist.get_array()), np.array([0, 1, 0])) self.assertEqual(artist.get_clim(), (0, 1)) def test_point_size_op(self): points = Points([(0, 0, 1), (0, 1, 4), (0, 2, 8)], vdims='size').options(s='size') plot = mpl_renderer.get_plot(points) artist = plot.handles['artist'] self.assertEqual(artist.get_sizes(), np.array([1, 4, 8])) def test_point_size_op_update(self): points = HoloMap({0: Points([(0, 0, 3), (0, 1, 1), (0, 2, 2)], vdims='size'), 1: Points([(0, 0, 2.5), (0, 1, 3), (0, 2, 1.2)], vdims='size')}).options(s='size') plot = mpl_renderer.get_plot(points) artist = plot.handles['artist'] self.assertEqual(artist.get_sizes(), np.array([3, 1, 2])) plot.update((1,)) self.assertEqual(artist.get_sizes(), np.array([2.5, 3, 1.2])) def test_point_line_width_op(self): points = Points([(0, 0, 1), (0, 1, 4), (0, 2, 8)], vdims='line_width').options(linewidth='line_width') plot = mpl_renderer.get_plot(points) artist = plot.handles['artist'] self.assertEqual(artist.get_linewidths(), [1, 4, 8]) def test_point_line_width_op_update(self): points = HoloMap({0: Points([(0, 0, 3), (0, 1, 1), (0, 2, 2)], vdims='line_width'), 1: Points([(0, 0, 2.5), (0, 1, 3), (0, 2, 1.2)], vdims='line_width')}).options(linewidth='line_width') plot = mpl_renderer.get_plot(points) artist = plot.handles['artist'] self.assertEqual(artist.get_linewidths(), [3, 1, 2]) plot.update((1,)) self.assertEqual(artist.get_linewidths(), [2.5, 3, 1.2]) def test_point_marker_op(self): points = Points([(0, 0, 'circle'), (0, 1, 'triangle'), (0, 2, 'square')], vdims='marker').options(marker='marker') with self.assertRaises(Exception): mpl_renderer.get_plot(points) def test_point_alpha_op(self): points = Points([(0, 0, 0), (0, 1, 0.2), (0, 2, 0.7)], vdims='alpha').options(alpha='alpha') with self.assertRaises(Exception): mpl_renderer.get_plot(points) def test_op_ndoverlay_value(self): markers = ['d', 's'] overlay = NdOverlay({marker: Points(np.arange(i)) for i, marker in enumerate(markers)}, 'Marker').options('Points', marker='Marker') plot = mpl_renderer.get_plot(overlay) for subplot, marker in zip(plot.subplots.values(), markers): style = dict(subplot.style[subplot.cyclic_index]) style = subplot._apply_transforms(subplot.current_frame, {}, style) self.assertEqual(style['marker'], marker) def test_point_color_index_color_clash(self): points = Points([(0, 0, 0), (0, 1, 1), (0, 2, 2)], vdims='color').options(color='color', color_index='color') with ParamLogStream() as log: mpl_renderer.get_plot(points) log_msg = log.stream.read() warning = ("Cannot declare style mapping for 'color' option " "and declare a color_index; ignoring the color_index.\n") self.assertEqual(log_msg, warning) def test_point_size_index_size_clash(self): points = Points([(0, 0, 0), (0, 1, 1), (0, 2, 2)], vdims='size').options(s='size', size_index='size') with ParamLogStream() as log: mpl_renderer.get_plot(points) log_msg = log.stream.read() warning = ("Cannot declare style mapping for 's' option " "and declare a size_index; ignoring the size_index.\n") self.assertEqual(log_msg, warning)
d6b0539a2cd34a3318a634029493799c8d1029ff
2aec9c5e8c72b731d3abf22f2a407fe09c1cde09
/ZQZ510/ZQZ510/spiders/zqz.py
3a4ae2a8fc42615dd7eaaf1a56965897c452c5d3
[]
no_license
jiangyg/ZWFproject
8b24cc34970ae0a9c2a2b0039dc527c83a5862b5
aa35bc59566d92721f23d2dd00b0febd268ac2dd
refs/heads/master
2020-09-26T17:01:00.229380
2019-11-15T13:16:21
2019-11-15T13:16:21
226,297,631
0
1
null
2019-12-06T09:55:37
2019-12-06T09:55:36
null
UTF-8
Python
false
false
5,422
py
# -*- coding: utf-8 -*- import scrapy import time import json from ZQZ510.items import Zqz510Item empty_word = 'null' class ZqzSpider(scrapy.Spider): name = 'zqz' allowed_domains = ['zqz510.com'] start_urls = ['http://login.zqz510.com/judgmentDoc'] def parse(self, response): url = 'http://api.zqz510.com//tmof/query?ftxt=&ti=&apS=&pdStart=&pdEnd=&ty=&psty=&law=&litem=&pageNum=1' \ '&apS=&apD=&ag=&judgd=&tid=&cid=&callback=_jqjsp&_{}='.format(str(int(time.time() * 1000))) self.cookie = { 'uid': '213facea-5ac7-4069-ae4a-97168d559ebc', 'oid': 'UAGAP00003919', 'JSESSIONID': '9867C3C37D24634CB9D44D1AA5C6188F', 'c': '82f5dd5f-f8ae-459b-9907-fd0bb01d97cb', } yield scrapy.Request(url=url, callback=self.parse_first, cookies=self.cookie) def parse_first(self, response): json_text = json.loads(response.text[7:-1], encoding='utf-8') total = int(json_text['total']) all_page = int(total / 10) + 1 for page in range(all_page): url = 'http://api.zqz510.com//tmof/query?ftxt=&ti=&apS=&pdStart=&pdEnd=&ty=&psty=&law=&litem=&pageNum={}' \ '&apS=&apD=&ag=&judgd=&tid=&cid=&callback=_jqjsp&_{}='.format(str(page + 1), str(int(time.time() * 1000))) yield scrapy.Request(url=url, callback=self.parse_list, cookies=self.cookie) def parse_list(self, response): json_text = json.loads(response.text[7:-1], encoding='utf-8') for data in json_text['data']: item = Zqz510Item() if 'agS' in data: item['agS'] = data['agS'] else: item['agS'] = empty_word if 'agidS' in data: item['agidS'] = data['agidS'] else: item['agidS'] = empty_word if 'an' in data: item['an'] = data['an'] else: item['an'] = empty_word if 'anDest' in data: item['anDest'] = data['anDest'] else: item['anDest'] = empty_word if 'anList' in data: item['anList'] = str(data['anList']) else: item['anList'] = empty_word if 'apS' in data: item['apS'] = data['apS'] else: item['apS'] = empty_word if 'apidS' in data: item['apidS'] = data['apidS'] else: item['apidS'] = empty_word if 'cid' in data: item['cid'] = data['cid'] else: item['cid'] = empty_word if 'docid' in data: item['docid'] = data['docid'] else: item['docid'] = empty_word if 'law' in data: item['law'] = data['law'] else: item['law'] = empty_word if 'link' in data: item['link'] = data['link'] else: item['link'] = empty_word if 'litem' in data: item['litem'] = data['litem'] else: item['litem'] = empty_word if 'ltid' in data: item['ltid'] = data['ltid'] else: item['ltid'] = empty_word if 'pd' in data: item['pd'] = data['pd'] else: item['pd'] = empty_word if 'psty' in data: item['psty'] = data['psty'] else: item['psty'] = empty_word if 'rid' in data: item['rid'] = data['rid'] else: item['rid'] = empty_word if 'ti' in data: item['ti'] = data['ti'] else: item['ti'] = empty_word if 'ty' in data: item['ty'] = data['ty'] else: item['ty'] = empty_word detail_url = 'http://api.zqz510.com/tmof/detail?docid={}&callback=_jqjsp&_{}='.format(item['docid'], str(int(time.time() * 1000))) yield scrapy.Request(url=detail_url, callback=self.parse_detail, meta={'item': item}, cookies=self.cookie) def parse_detail(self, response): json_text = json.loads(response.text[7:-1], encoding='utf-8') item = response.meta['item'] if 'dtls' in json_text: item['dtls'] = str(json_text['dtls']) else: item['dtls'] = empty_word if 'ftxt' in json_text: item['ftxt'] = json_text['ftxt'] else: item['ftxt'] = empty_word if 'judg' in json_text: item['judg'] = str(json_text['judg']) else: item['judg'] = empty_word if 'judgList' in json_text: item['judgList'] = str(json_text['judgList']) else: item['judgList'] = empty_word if 'links' in json_text: item['links'] = str(json_text['links']) else: item['links'] = empty_word if 'ltidAll' in json_text: item['ltidAll'] = str(json_text['ltidAll']) else: item['ltidAll'] = empty_word if 'pdCn' in json_text: item['pdCn'] = str(json_text['pdCn']) else: item['pdCn'] = empty_word yield item
d72f0e6e1d8aaabc1a02b10a8fbc864b8f6d0b65
29345337bf86edc938f3b5652702d551bfc3f11a
/python/src/main/python/pyalink/alink/tests/examples/from_docs/test_totensorstreamop.py
78c1de91112c783148b8652120fe7425e975fcf9
[ "Apache-2.0" ]
permissive
vacaly/Alink
32b71ac4572ae3509d343e3d1ff31a4da2321b6d
edb543ee05260a1dd314b11384d918fa1622d9c1
refs/heads/master
2023-07-21T03:29:07.612507
2023-07-12T12:41:31
2023-07-12T12:41:31
283,079,072
0
0
Apache-2.0
2020-07-28T02:46:14
2020-07-28T02:46:13
null
UTF-8
Python
false
false
553
py
import unittest from pyalink.alink import * import numpy as np import pandas as pd class TestToTensorStreamOp(unittest.TestCase): def test_totensorstreamop(self): df = pd.DataFrame(["FLOAT#6#0.0 0.1 1.0 1.1 2.0 2.1 "]) source = StreamOperator.fromDataframe(df, schemaStr='vec string') source.link( ToTensorStreamOp() .setSelectedCol("vec") .setTensorShape([2, 3]) .setTensorDataType("float") ).print() StreamOperator.execute() pass
9ab8c1cfef72c9b54df1a43e0a919da8d13a725c
9c81c170f03ba925bf3d0682526245c202e384a7
/superset/cli/test.py
f175acec470cd59f06f6d1ad8de07765a2520901
[ "Apache-2.0", "OFL-1.1" ]
permissive
zcong1993/incubator-superset
2a08177641eff178dee9db852887ad2d19d70d54
269c99293f42089958dc98b5d6e5899509fc3111
refs/heads/master
2023-08-17T12:24:59.438120
2023-08-17T10:50:24
2023-08-17T10:50:24
209,522,299
0
0
Apache-2.0
2023-03-06T08:10:31
2019-09-19T10:09:21
TypeScript
UTF-8
Python
false
false
2,860
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import logging import click from colorama import Fore from flask.cli import with_appcontext import superset.utils.database as database_utils from superset import app, security_manager logger = logging.getLogger(__name__) @click.command() @with_appcontext def load_test_users() -> None: """ Loads admin, alpha, and gamma user for testing purposes Syncs permissions for those users/roles """ print(Fore.GREEN + "Loading a set of users for unit tests") load_test_users_run() def load_test_users_run() -> None: """ Loads admin, alpha, and gamma user for testing purposes Syncs permissions for those users/roles """ if app.config["TESTING"]: sm = security_manager examples_db = database_utils.get_example_database() examples_pv = sm.add_permission_view_menu("database_access", examples_db.perm) sm.sync_role_definitions() gamma_sqllab_role = sm.add_role("gamma_sqllab") sm.add_permission_role(gamma_sqllab_role, examples_pv) gamma_no_csv_role = sm.add_role("gamma_no_csv") sm.add_permission_role(gamma_no_csv_role, examples_pv) for role in ["Gamma", "sql_lab"]: for perm in sm.find_role(role).permissions: sm.add_permission_role(gamma_sqllab_role, perm) if str(perm) != "can csv on Superset": sm.add_permission_role(gamma_no_csv_role, perm) users = ( ("admin", "Admin"), ("gamma", "Gamma"), ("gamma2", "Gamma"), ("gamma_sqllab", "gamma_sqllab"), ("alpha", "Alpha"), ("gamma_no_csv", "gamma_no_csv"), ) for username, role in users: user = sm.find_user(username) if not user: sm.add_user( username, username, "user", username + "@fab.org", sm.find_role(role), password="general", ) sm.get_session.commit()
f4771bd090478972d022ce9b450d530bb2408052
6c3ab38e350734f1bc4f0c746ea55a12838ce5ee
/pcserver/mainapp/handlers.py
93a7d32aa090f9a76b8f6ab1bca16d7d2eda3868
[]
no_license
joelsemar/Programming-Challenge
1dd4fb487d02e05ed494e66da99a627970832988
b8bf8e115dc3c242d62bf696d3268a4b31019592
refs/heads/master
2020-05-17T15:16:45.892328
2011-08-31T19:17:15
2011-08-31T19:17:15
2,298,598
0
0
null
null
null
null
UTF-8
Python
false
false
1,662
py
from webservice_tools.utils import BaseHandler, AutoListHandler from webservice_tools.decorators import login_required from mainapp.models import * #@UnusedWildImport #Create your handlers here class PhotosHandler(AutoListHandler): model = Photo allowed_methods = ('GET',) extra_fields = ('image_url',) exclude = ('image', ) @login_required def read(self, request, response): """ Returns a list of Photo objects. API Handler: GET /photos Params: @key [string] your api key Returns: @photos [Photo] list of photos, see Photo docs for details """ return super(PhotosHandler, self).read(request, response) class PhotoHandler(BaseHandler): model = Photo allowed_methods = ('GET',) extra_fields = ('image_url',) exclude = ('image', ) @login_required def read(self, request, id, response): """ Fetch the details of a photo by id API Handler: GET /photo/{id} Params: @id [id] id of the photo (in the url) @key [string] your api key Returns: @title [string] title @description [string] a short description @image_url [url] a url to the corresponding image """ return super(PhotoHandler, self).read(request, id, response) #ALL DEFINITION EOF module_name = globals().get('__name__') handlers = sys.modules[module_name] handlers._all_ = [] for handler_name in dir(): m = getattr(handlers, handler_name) if type(m) == type(BaseHandler): handlers._all_.append(handler_name)
43e3f69a4d43e8fd97a6995fa95b1197d002dc0e
0315255c749b12216a7c8ac26378d8921466284a
/tests/integration/client/standard.py
969611b4d0a0800f10b1c10258875138538f5b08
[ "Apache-2.0" ]
permissive
jhutchins/salt
a32de1362c6787ec96df7ce57bf9b98f20eaf30a
22ec0cee6a8a842ec426b7a3e634723ea7ce7256
refs/heads/master
2021-01-21T00:05:05.782149
2012-04-06T22:03:19
2012-04-06T22:03:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,254
py
# Import python libs import subprocess # Import salt libs import integration class StdTest(integration.ModuleCase): ''' Test standard client calls ''' def test_cli(self): ''' Test cli function ''' cmd_iter = self.client.cmd_cli( 'minion', 'test.ping', ) for ret in cmd_iter: self.assertTrue(ret['minion']) def test_iter(self): ''' test cmd_iter ''' cmd_iter = self.client.cmd_iter( 'minion', 'test.ping', ) for ret in cmd_iter: self.assertTrue(ret['minion']) def test_iter_no_block(self): ''' test cmd_iter_no_block ''' cmd_iter = self.client.cmd_iter_no_block( 'minion', 'test.ping', ) for ret in cmd_iter: if ret is None: continue self.assertTrue(ret['minion']) def test_full_returns(self): ''' test cmd_iter ''' ret = self.client.cmd_full_return( 'minion', 'test.ping', ) self.assertTrue(ret['minion'])
0aa4fad95e735af119da27c643164c508715fe23
58c122786263edf8aec4a6b6b4986b2f3d4ff1d5
/modules/s3/pyvttbl/qsturng.py
49e432d4a21df43c96c06038b370da50df36ded8
[ "MIT", "LicenseRef-scancode-unknown-license-reference" ]
permissive
andygimma/eden
c9d0819e87ef05ff607cac6120dbddc86e55bc31
716d5e11ec0030493b582fa67d6f1c35de0af50d
refs/heads/master
2021-01-15T21:54:03.240072
2012-11-16T05:13:11
2012-11-16T05:13:11
6,726,106
1
0
null
null
null
null
UTF-8
Python
false
false
47,225
py
# Copyright (c) 2011, Roger Lew [see LICENSE.txt] # This software is funded in part by NIH Grant P20 RR016454. """ Implementation of Gleason's (1999) non-iterative upper quantile studentized range approximation. According to Gleason this method should be more accurate than the AS190 FORTRAN algorithm of Lund and Lund (1983) and works from .5 <= p <= .999 (The AS190 only works from .9 <= p <= .99). It is more efficient then the Copenhaver & Holland (1988) algorithm (used by the _qtukey_ R function) although it requires storing the A table in memory. (q distribution) approximations in Python. see: Gleason, J. R. (1999). An accurate, non-iterative approximation for studentized range quantiles. Computational Statistics & Data Analysis, (31), 147-158. Gleason, J. R. (1998). A table of quantile points of the Studentized range distribution. http://www.stata.com/stb/stb46/dm64/sturng.pdf """ import math import scipy.stats import numpy as np inf = float('inf') __version__ = '0.2.1' # changelog # 0.1 - initial release # 0.1.1 - vectorized # 0.2 - psturng added # 0.2.1 - T, R generation script relegated to make_tbls.py # Gleason's table was derived using least square estimation on the tabled # r values for combinations of p and v. In total there are 206 # estimates over p-values of .5, .75, .9, .95, .975, .99, .995, # and .999, and over v (degrees of freedom) of (1) - 20, 24, 30, 40, # 60, 120, and inf. combinations with p < .95 don't have coefficients # for v = 1. Hence the parentheses. These coefficients allow us to # form f-hat. f-hat with the inverse t transform of tinv(p,v) yields # a fairly accurate estimate of the studentized range distribution # across a wide range of values. According to Gleason this method # should be more accurate than algorithm AS190 of Lund and Lund (1983) # and work across a wider range of values (The AS190 only works # from .9 <= p <= .99). R's qtukey algorithm was used to add tables # at .675, .8, and .85. These aid approximations when p < .9. # # The code that generated this table is called make_tbls.py and is # located in version control. A = {(0.1, 2.0): [-2.2485085243379075, -1.5641014278923464, 0.55942294426816752, -0.060006608853883377], (0.1, 3.0): [-2.2061105943901564, -1.8415406600571855, 0.61880788039834955, -0.062217093661209831], (0.1, 4.0): [-2.1686691786678178, -2.008196172372553, 0.65010084431947401, -0.06289005500114471], (0.1, 5.0): [-2.145077200277393, -2.112454843879346, 0.66701240582821342, -0.062993502233654797], (0.1, 6.0): [-2.0896098049743155, -2.2400004934286497, 0.70088523391700142, -0.065907568563272748], (0.1, 7.0): [-2.0689296655661584, -2.3078445479584873, 0.71577374609418909, -0.067081034249350552], (0.1, 8.0): [-2.0064956480711262, -2.437400413087452, 0.76297532367415266, -0.072805518121505458], (0.1, 9.0): [-2.3269477513436061, -2.0469494712773089, 0.60662518717720593, -0.054887108437009016], (0.1, 10.0): [-2.514024350177229, -1.8261187841127482, 0.51674358077906746, -0.044590425150963633], (0.1, 11.0): [-2.5130181309130828, -1.8371718595995694, 0.51336701694862252, -0.043761825829092445], (0.1, 12.0): [-2.5203508109278823, -1.8355687130611862, 0.5063486549107169, -0.042646205063108261], (0.1, 13.0): [-2.5142536438310477, -1.8496969402776282, 0.50616991367764153, -0.042378379905665363], (0.1, 14.0): [-2.3924634153781352, -2.013859173066078, 0.56421893251638688, -0.048716888109540266], (0.1, 15.0): [-2.3573552940582574, -2.0576676976224362, 0.57424068771143233, -0.049367487649225841], (0.1, 16.0): [-2.3046427483044871, -2.1295959138627993, 0.59778272657680553, -0.051864829216301617], (0.1, 17.0): [-2.2230551072316125, -2.2472837435427127, 0.64255758243215211, -0.057186665209197643], (0.1, 18.0): [-2.3912859179716897, -2.0350604070641269, 0.55924788749333332, -0.047729331835226464], (0.1, 19.0): [-2.4169773092220623, -2.0048217969339146, 0.54493039319748915, -0.045991241346224065], (0.1, 20.0): [-2.4264087194660751, -1.9916614057049267, 0.53583555139648154, -0.04463049934517662], (0.1, 24.0): [-2.3969903132061869, -2.0252941869225345, 0.53428382141200137, -0.043116495567779786], (0.1, 30.0): [-2.2509922780354623, -2.2309248956124894, 0.60748041324937263, -0.051427415888817322], (0.1, 40.0): [-2.1310090183854946, -2.3908466074610564, 0.65844375382323217, -0.05676653804036895], (0.1, 60.0): [-1.9240060179027036, -2.6685751031012233, 0.75678826647453024, -0.067938584352398995], (0.1, 120.0): [-1.9814895487030182, -2.5962051736978373, 0.71793969041292693, -0.063126863201511618], (0.1, inf): [-1.913410267066703, -2.6947367328724732, 0.74742335122750592, -0.06660897234304515], (0.5, 2.0): [-0.88295935738770648, -0.1083576698911433, 0.035214966839394388, -0.0028576288978276461], (0.5, 3.0): [-0.89085829205846834, -0.10255696422201063, 0.033613638666631696, -0.0027101699918520737], (0.5, 4.0): [-0.89627345339338116, -0.099072524607668286, 0.032657774808907684, -0.0026219007698204916], (0.5, 5.0): [-0.89959145511941052, -0.097272836582026817, 0.032236187675182958, -0.0025911555217019663], (0.5, 6.0): [-0.89959428735702474, -0.098176292411106647, 0.032590766960226995, -0.0026319890073613164], (0.5, 7.0): [-0.90131491102863937, -0.097135907620296544, 0.032304124993269533, -0.0026057965808244125], (0.5, 8.0): [-0.90292500599432901, -0.096047500971337962, 0.032030946615574568, -0.0025848748659053891], (0.5, 9.0): [-0.90385598607803697, -0.095390771554571888, 0.031832651111105899, -0.0025656060219315991], (0.5, 10.0): [-0.90562524936125388, -0.093954488089771915, 0.031414451048323286, -0.0025257834705432031], (0.5, 11.0): [-0.90420347371173826, -0.095851656370277288, 0.0321150356209743, -0.0026055056400093451], (0.5, 12.0): [-0.90585973471757664, -0.094449306296728028, 0.031705945923210958, -0.0025673330195780191], (0.5, 13.0): [-0.90555437067293054, -0.094792991050780248, 0.031826594964571089, -0.0025807109129488545], (0.5, 14.0): [-0.90652756604388762, -0.093792156994564738, 0.031468966328889042, -0.0025395175361083741], (0.5, 15.0): [-0.90642323700400085, -0.094173017520487984, 0.031657517378893905, -0.0025659271829033877], (0.5, 16.0): [-0.90716338636685234, -0.093785178083820434, 0.031630091949657997, -0.0025701459247416637], (0.5, 17.0): [-0.90790133816769714, -0.093001147638638884, 0.031376863944487084, -0.002545143621663892], (0.5, 18.0): [-0.9077432927051563, -0.093343516378180599, 0.031518139662395313, -0.0025613906133277178], (0.5, 19.0): [-0.90789499456490286, -0.09316964789456067, 0.031440782366342901, -0.0025498353345867453], (0.5, 20.0): [-0.90842707861030725, -0.092696016476608592, 0.031296040311388329, -0.0025346963982742186], (0.5, 24.0): [-0.9083281347135469, -0.092959308144970776, 0.031464063190077093, -0.0025611384271086285], (0.5, 30.0): [-0.90857624050016828, -0.093043139391980514, 0.031578791729341332, -0.0025766595412777147], (0.5, 40.0): [-0.91034085045438684, -0.091978035738914568, 0.031451631000052639, -0.0025791418103733297], (0.5, 60.0): [-0.91084356681030032, -0.091452675572423425, 0.031333147984820044, -0.0025669786958144843], (0.5, 120.0): [-0.90963649561463833, -0.093414563261352349, 0.032215602703677425, -0.0026704024780441257], (0.5, inf): [-0.91077157500981665, -0.092899220350334571, 0.032230422399363315, -0.0026696941964372916], (0.675, 2.0): [-0.67231521026565144, -0.097083624030663451, 0.027991378901661649, -0.0021425184069845558], (0.675, 3.0): [-0.65661724764645824, -0.08147195494632696, 0.02345732427073333, -0.0017448570400999351], (0.675, 4.0): [-0.65045677697461124, -0.071419073399450431, 0.020741962576852499, -0.0015171262565892491], (0.675, 5.0): [-0.64718875357808325, -0.064720611425218344, 0.019053450246546449, -0.0013836232986228711], (0.675, 6.0): [-0.64523003702018655, -0.059926313672731824, 0.017918997181483924, -0.0012992250285556828], (0.675, 7.0): [-0.64403313148478836, -0.056248191513784476, 0.017091446791293721, -0.0012406558789511822], (0.675, 8.0): [-0.64325095865764359, -0.053352543126426684, 0.016471879286491072, -0.0011991839050964099], (0.675, 9.0): [-0.64271152754911653, -0.051023769620449078, 0.01599799600547195, -0.0011693637984597086], (0.675, 10.0): [-0.64232244408502626, -0.049118327462884373, 0.015629704966568955, -0.0011477775513952285], (0.675, 11.0): [-0.64203897854353564, -0.047524627960277892, 0.015334801262767227, -0.0011315057284007177], (0.675, 12.0): [-0.64180344973512771, -0.046205907576003291, 0.015108290595438166, -0.0011207364514518488], (0.675, 13.0): [-0.64162086456823342, -0.045076099336874231, 0.0149226565346125, -0.0011126140690497352], (0.675, 14.0): [-0.64146906480198984, -0.044108523550512715, 0.014772954218646743, -0.0011069708562369386], (0.675, 15.0): [-0.64133915151966603, -0.043273370927039825, 0.014651691599222836, -0.0011032216539514398], (0.675, 16.0): [-0.64123237842752079, -0.042538925012463868, 0.014549992487506169, -0.0011005633864334021], (0.675, 17.0): [-0.64113034037536609, -0.041905699463005854, 0.014470805560767184, -0.0010995286436738471], (0.675, 18.0): [-0.64104137391561256, -0.041343885546229336, 0.014404563657113593, -0.0010991304223377683], (0.675, 19.0): [-0.64096064882827297, -0.04084569291139839, 0.014350159655133801, -0.0010993656711121901], (0.675, 20.0): [-0.64088647405089572, -0.040402175957178085, 0.014305769823654429, -0.0011001304776712105], (0.675, 24.0): [-0.64063763965937837, -0.039034716348048545, 0.014196703837251648, -0.0011061961945598175], (0.675, 30.0): [-0.64034987716294889, -0.037749651156941719, 0.014147040999127263, -0.0011188251352919833], (0.675, 40.0): [-0.6399990514713938, -0.036583307574857803, 0.014172070700846548, -0.0011391004138624943], (0.675, 60.0): [-0.63955586202430248, -0.035576938958184395, 0.014287299153378865, -0.0011675811805794236], (0.675, 120.0): [-0.63899242674778622, -0.034763757512388853, 0.014500726912982405, -0.0012028491454427466], (0.675, inf): [-0.63832682579247613, -0.034101476695520404, 0.014780921043580184, -0.0012366204114216408], (0.75, 2.0): [-0.60684073638504454, -0.096375192078057031, 0.026567529471304554, -0.0019963228971914488], (0.75, 3.0): [-0.57986144519102656, -0.078570292718034881, 0.021280637925009449, -0.0015329306898533772], (0.75, 4.0): [-0.56820771686193594, -0.0668113563896649, 0.018065284051059189, -0.0012641485481533648], (0.75, 5.0): [-0.56175292435740221, -0.058864526929603825, 0.016046735025708799, -0.0011052560286524044], (0.75, 6.0): [-0.55773449282066356, -0.053136923269827351, 0.014684258167069347, -0.0010042826823561605], (0.75, 7.0): [-0.55509524598867332, -0.048752649191139405, 0.013696566605823626, -0.00093482210003133898], (0.75, 8.0): [-0.55324993686191515, -0.045305558708724644, 0.012959681992062138, -0.00088583541601696021], (0.75, 9.0): [-0.55189259054026196, -0.042539819902381634, 0.012398791106424769, -0.00085083962241435827], (0.75, 10.0): [-0.55085384656956893, -0.040281425755686585, 0.01196442242722482, -0.00082560322161492677], (0.75, 11.0): [-0.55003198103541273, -0.038410176100193948, 0.011623294239447784, -0.00080732975034320073], (0.75, 12.0): [-0.54936541596319177, -0.036838543267887103, 0.011351822637895701, -0.0007940703654926442], (0.75, 13.0): [-0.54881015972753833, -0.035506710625568455, 0.011134691307865171, -0.0007846360016355809], (0.75, 14.0): [-0.54834094346071949, -0.034364790609906569, 0.010958873929274728, -0.00077796645357008291], (0.75, 15.0): [-0.54793602418304255, -0.033379237455748029, 0.010816140998057593, -0.00077344175064785099], (0.75, 16.0): [-0.54758347689728037, -0.032520569145898917, 0.010699240399358219, -0.00077050847328596678], (0.75, 17.0): [-0.54727115963795303, -0.031769277192927527, 0.010603749751170481, -0.0007688642392748113], (0.75, 18.0): [-0.54699351808826535, -0.031105476267880995, 0.010524669113016114, -0.00076810656837464093], (0.75, 19.0): [-0.54674357626419079, -0.030516967201954001, 0.010459478822937069, -0.00076808652582440037], (0.75, 20.0): [-0.54651728378950126, -0.029992319199769232, 0.010405694998386575, -0.0007686417223966138], (0.75, 24.0): [-0.54578309546828363, -0.028372628574010936, 0.010269939602271542, -0.00077427370647261838], (0.75, 30.0): [-0.54501246434397554, -0.026834887880579802, 0.010195603314317611, -0.00078648615954105515], (0.75, 40.0): [-0.54418127442022624, -0.025413224488871379, 0.010196455193836855, -0.00080610785749523739], (0.75, 60.0): [-0.543265189207915, -0.024141961069146383, 0.010285001019536088, -0.00083332193364294587], (0.75, 120.0): [-0.54224757817994806, -0.023039071833948214, 0.010463365295636302, -0.00086612828539477918], (0.75, inf): [-0.54114579815367159, -0.02206592527426093, 0.01070374099737127, -0.00089726564005122183], (0.8, 2.0): [-0.56895274046831146, -0.096326255190541957, 0.025815915364208686, -0.0019136561019354845], (0.8, 3.0): [-0.5336038380862278, -0.077585191014876181, 0.020184759265389905, -0.0014242746007323785], (0.8, 4.0): [-0.51780274285934258, -0.064987738443608709, 0.016713309796866204, -0.001135379856633562], (0.8, 5.0): [-0.50894361222268403, -0.056379186603362705, 0.014511270339773345, -0.00096225604117493205], (0.8, 6.0): [-0.50335153028630408, -0.050168860294790812, 0.01302807093593626, -0.00085269812692536306], (0.8, 7.0): [-0.49960934380896432, -0.045417333787806033, 0.011955593330247398, -0.00077759605604250882], (0.8, 8.0): [-0.49694518248979763, -0.041689151516021969, 0.011158986677273709, -0.00072497430103953366], (0.8, 9.0): [-0.4949559974898507, -0.038702217132906024, 0.010554360004521268, -0.0006875213117164109], (0.8, 10.0): [-0.49341407910162483, -0.036266788741325398, 0.010087354421936092, -0.00066060835062865602], (0.8, 11.0): [-0.49218129312493897, -0.034252403643273498, 0.0097218584838579536, -0.00064123459335201907], (0.8, 12.0): [-0.49117223957112183, -0.032563269730499021, 0.0094318583096021404, -0.00062725253852419032], (0.8, 13.0): [-0.49032781145131277, -0.031132495018324432, 0.0091999762562792898, -0.0006172944366003854], (0.8, 14.0): [-0.48961049628464259, -0.029906921170494854, 0.009012451847823854, -0.00061026211968669543], (0.8, 15.0): [-0.48899069793054922, -0.028849609914548158, 0.0088602820002619594, -0.00060548991575179055], (0.8, 16.0): [-0.48844921216636505, -0.027929790075266154, 0.00873599263877896, -0.00060242119796859379], (0.8, 17.0): [-0.48797119683309537, -0.027123634910159868, 0.0086338139869481887, -0.00060061821593399998], (0.8, 18.0): [-0.48754596864745836, -0.026411968723496961, 0.0085493196604705755, -0.00059977083160833624], (0.8, 19.0): [-0.48716341805691843, -0.025781422230819986, 0.0084796655915025769, -0.00059970031758323466], (0.8, 20.0): [-0.48681739197185547, -0.025219629852198749, 0.0084221844254287765, -0.00060023212822886711], (0.8, 24.0): [-0.48570639629281365, -0.023480608772518948, 0.008274490561114187, -0.000605681105792215], (0.8, 30.0): [-0.48455867067770253, -0.021824655071720423, 0.0081888502974720567, -0.00061762126933785633], (0.8, 40.0): [-0.48335478729267423, -0.020279958998363389, 0.0081765095914194709, -0.00063657117129829635], (0.8, 60.0): [-0.48207351944996679, -0.018875344346672228, 0.0082473997191472338, -0.00066242478479277243], (0.8, 120.0): [-0.48070356185330182, -0.017621686995755746, 0.0084009638803223801, -0.00069300383808949318], (0.8, inf): [-0.47926687718713606, -0.016476575352367202, 0.0086097059646591811, -0.00072160843492730911], (0.85, 2.0): [-0.53366806986381743, -0.098288178252723263, 0.026002333446289064, -0.0019567144268844896], (0.85, 3.0): [-0.48995919239619989, -0.077312722648418056, 0.019368984865418108, -0.0013449670192265796], (0.85, 4.0): [-0.46956079162382858, -0.063818518513946695, 0.015581608910696544, -0.0010264315084377606], (0.85, 5.0): [-0.45790853796153624, -0.054680511194530226, 0.013229852432203093, -0.00084248430847535898], (0.85, 6.0): [-0.4505070841695738, -0.048050936682873302, 0.011636407582714191, -0.00072491480033529815], (0.85, 7.0): [-0.44548337477336181, -0.042996612516383016, 0.010493052959891263, -0.00064528784792153239], (0.85, 8.0): [-0.44186624932664148, -0.039040005821657585, 0.0096479530794160544, -0.00058990874360967567], (0.85, 9.0): [-0.43914118689812259, -0.035875693030752713, 0.0090088804130628187, -0.00055071480339399694], (0.85, 10.0): [-0.43701255390953769, -0.033300997407157376, 0.0085172159355344848, -0.00052272770799695464], (0.85, 11.0): [-0.43530109064899053, -0.031174742038490313, 0.0081335619868386066, -0.00050268353809787927], (0.85, 12.0): [-0.43389220376610071, -0.02939618314990838, 0.007830626267772851, -0.00048836431712678222], (0.85, 13.0): [-0.43271026958463166, -0.027890759135246888, 0.0075886916668632936, -0.00047819339710596971], (0.85, 14.0): [-0.43170230265007209, -0.026604156062396189, 0.0073939099688705547, -0.00047109996854335419], (0.85, 15.0): [-0.43083160459377423, -0.025494228911600785, 0.0072358738657550868, -0.00046630677052262481], (0.85, 16.0): [-0.4300699280587239, -0.024529612608808794, 0.0071069227026219683, -0.00046323869860941791], (0.85, 17.0): [-0.42939734931902857, -0.023685025616054269, 0.0070011541609695891, -0.00046147954942994158], (0.85, 18.0): [-0.42879829041505324, -0.022940655682782165, 0.006914006369119409, -0.00046070877994711774], (0.85, 19.0): [-0.42826119448419875, -0.022280181781634649, 0.0068417746905826433, -0.00046066841214091982], (0.85, 20.0): [-0.42777654887094479, -0.021690909076747832, 0.0067817408643717969, -0.00046118620289068032], (0.85, 24.0): [-0.42622450033640852, -0.019869646711890065, 0.0066276799593494029, -0.00046668820637553747], (0.85, 30.0): [-0.42463810443233418, -0.018130114737381745, 0.0065344613060499164, -0.00047835583417510423], (0.85, 40.0): [-0.42299917804589382, -0.016498222901308417, 0.0065120558343578407, -0.00049656043685325469], (0.85, 60.0): [-0.42129387265810464, -0.014992121475265813, 0.0065657795990087635, -0.00052069705640687698], (0.85, 120.0): [-0.41951580476366368, -0.013615722489371183, 0.0066923911275726814, -0.00054846911649167492], (0.85, inf): [-0.41768751825428968, -0.012327525092266726, 0.0068664920569562592, -0.00057403720261753539], (0.9, 1.0): [-0.65851063279096722, -0.126716242078905, 0.036318801917603061, -0.002901283222928193], (0.9, 2.0): [-0.50391945369829139, -0.096996108021146235, 0.024726437623473398, -0.0017901399938303017], (0.9, 3.0): [-0.44799791843058734, -0.077180370333307199, 0.018584042055594469, -0.0012647038118363408], (0.9, 4.0): [-0.42164091756145167, -0.063427071006287514, 0.014732203755741392, -0.00094904174117957688], (0.9, 5.0): [-0.40686856251221754, -0.053361940054842398, 0.012041802076025801, -0.00072960198292410612], (0.9, 6.0): [-0.39669926026535285, -0.046951517438004242, 0.010546647213094956, -0.00062621198002366064], (0.9, 7.0): [-0.39006553675807426, -0.04169480606532109, 0.0093687546601737195, -0.00054648695713273862], (0.9, 8.0): [-0.38570205067061908, -0.037083910859179794, 0.0083233218526375836, -0.00047177586974035451], (0.9, 9.0): [-0.38190737267892938, -0.034004585655388865, 0.0077531991574119183, -0.00044306547308527872], (0.9, 10.0): [-0.37893272918125737, -0.031394677600916979, 0.0072596802503533536, -0.0004160518834299966], (0.9, 11.0): [-0.37692512492705132, -0.028780793403136471, 0.0066937909049060379, -0.00037420010136784526], (0.9, 12.0): [-0.37506345200129187, -0.026956483290567372, 0.0064147730707776523, -0.00036595383207062906], (0.9, 13.0): [-0.37339516122383209, -0.02543949524844704, 0.0061760656530197187, -0.00035678737379179527], (0.9, 14.0): [-0.37216979891087842, -0.02396347606956644, 0.0059263234465969641, -0.0003439784452550796], (0.9, 15.0): [-0.371209456600122, -0.022696132732654414, 0.0057521677184623147, -0.00033961108561770848], (0.9, 16.0): [-0.36958924377983338, -0.022227885445863002, 0.0057691706799383926, -0.00035042762538099682], (0.9, 17.0): [-0.36884224719083203, -0.021146977888668726, 0.0055957928269732716, -0.00034283810412697531], (0.9, 18.0): [-0.36803087186793326, -0.020337731477576542, 0.0054655378095212759, -0.00033452966946535248], (0.9, 19.0): [-0.3676700404163355, -0.019370115848857467, 0.0053249296207149655, -0.00032975528909580403], (0.9, 20.0): [-0.36642276267188811, -0.019344251412284838, 0.0054454968582897528, -0.00034868111677540948], (0.9, 24.0): [-0.36450650753755193, -0.017284255499990679, 0.0052337500059176749, -0.00034898202845747288], (0.9, 30.0): [-0.36251868940168608, -0.015358560437631397, 0.0050914299956134786, -0.00035574528891633978], (0.9, 40.0): [-0.36008886676510943, -0.014016835682905486, 0.0051930835959111514, -0.00038798316011984165], (0.9, 60.0): [-0.35825590690268061, -0.011991568926537646, 0.0050632208542414191, -0.00039090198974493085], (0.9, 120.0): [-0.35543612237284411, -0.011074403997811812, 0.0053504570752765162, -0.00043647137428074178], (0.9, inf): [-0.35311806343057167, -0.0096254020092145353, 0.0054548591208177181, -0.00045343916634968493], (0.95, 1.0): [-0.65330318136020071, -0.12638310760474375, 0.035987535130769424, -0.0028562665467665315], (0.95, 2.0): [-0.47225160417826934, -0.10182570362271424, 0.025846563499059158, -0.0019096769058043243], (0.95, 3.0): [-0.4056635555586528, -0.077067172693350297, 0.017789909647225533, -0.001182961668735774], (0.95, 4.0): [-0.37041675177340955, -0.063815687118939465, 0.014115210247737845, -0.00089996098435117598], (0.95, 5.0): [-0.35152398291152309, -0.052156502640669317, 0.010753738086401853, -0.0005986841939451575], (0.95, 6.0): [-0.33806730015201264, -0.045668399809578597, 0.0093168898952878162, -0.00051369719615782102], (0.95, 7.0): [-0.32924041072104465, -0.040019601775490091, 0.0080051199552865163, -0.00042054536135868043], (0.95, 8.0): [-0.32289030266989077, -0.035575345931670443, 0.0070509089344694669, -0.00035980773304803576], (0.95, 9.0): [-0.31767304201477375, -0.032464945930165703, 0.0064755950437272143, -0.0003316676253661824], (0.95, 10.0): [-0.31424318064708656, -0.029133461621153, 0.0057437449431074795, -0.00027894252261209191], (0.95, 11.0): [-0.31113589620384974, -0.02685115250591049, 0.0053517905282942889, -0.00026155954116874666], (0.95, 12.0): [-0.30848983612414582, -0.025043238019239168, 0.0050661675913488829, -0.00025017202909614005], (0.95, 13.0): [-0.3059212907410393, -0.023863874699213077, 0.0049618051135807322, -0.00025665425781125703], (0.95, 14.0): [-0.30449676902720035, -0.021983976741572344, 0.0045740513735751968, -0.00022881166323945914], (0.95, 15.0): [-0.30264908294481396, -0.02104880307520084, 0.0044866571614804382, -0.00023187587597844057], (0.95, 16.0): [-0.30118294463097917, -0.020160231061926728, 0.0044170780759056859, -0.00023733502359045826], (0.95, 17.0): [-0.30020013353427744, -0.018959271614471574, 0.0041925333038202285, -0.00022274025630789767], (0.95, 18.0): [-0.29857886556874402, -0.018664437456802001, 0.0042557787632833697, -0.00023758868868853716], (0.95, 19.0): [-0.29796289236978263, -0.017632218552317589, 0.0040792779937959866, -0.00022753271474613109], (0.95, 20.0): [-0.29681506554838077, -0.017302563243037392, 0.0041188426221428964, -0.00023913038468772782], (0.95, 24.0): [-0.29403146911167666, -0.015332330986025032, 0.0039292170319163728, -0.00024003445648641732], (0.95, 30.0): [-0.29080775563775879, -0.013844059210779323, 0.0039279165616059892, -0.00026085104496801666], (0.95, 40.0): [-0.28821583032805109, -0.011894686715666892, 0.0038202623278839982, -0.00026933325102031252], (0.95, 60.0): [-0.28525636737751447, -0.010235910558409797, 0.0038147029777580001, -0.00028598362144178959], (0.95, 120.0): [-0.28241065885026539, -0.0086103836327305026, 0.0038450612886908714, -0.00030206053671559411], (0.95, inf): [-0.27885570064169296, -0.0078122455524849222, 0.0041798538053623453, -0.0003469494881774609], (0.975, 1.0): [-0.65203598304297983, -0.12608944279227957, 0.035710038757117347, -0.0028116024425349053], (0.975, 2.0): [-0.46371891130382281, -0.096954458319996509, 0.023958312519912289, -0.0017124565391080503], (0.975, 3.0): [-0.38265282195259875, -0.076782539231612282, 0.017405078796142955, -0.0011610853687902553], (0.975, 4.0): [-0.34051193158878401, -0.063652342734671602, 0.013528310336964293, -0.00083644708934990761], (0.975, 5.0): [-0.31777655705536484, -0.051694686914334619, 0.010115807205265859, -0.00054517465344192009], (0.975, 6.0): [-0.30177149019958716, -0.044806697631189059, 0.008483551848413786, -0.00042827853925009264], (0.975, 7.0): [-0.29046972313293562, -0.039732822689098744, 0.007435356037378946, -0.00037562928283350671], (0.975, 8.0): [-0.28309484007368141, -0.034764904940713388, 0.0062932513694928518, -0.00029339243611357956], (0.975, 9.0): [-0.27711707948119785, -0.031210465194810709, 0.0055576244284178435, -0.00024663798208895803], (0.975, 10.0): [-0.27249203448553611, -0.028259756468251584, 0.00499112012528406, -0.00021535380417035389], (0.975, 11.0): [-0.26848515860011007, -0.026146703336893323, 0.0046557767110634073, -0.00020400628148271448], (0.975, 12.0): [-0.26499921540008192, -0.024522931106167097, 0.0044259624958665278, -0.00019855685376441687], (0.975, 13.0): [-0.2625023751891592, -0.022785875653297854, 0.004150277321193792, -0.00018801223218078264], (0.975, 14.0): [-0.26038552414321758, -0.021303509859738341, 0.0039195608280464681, -0.00017826200169385824], (0.975, 15.0): [-0.25801244886414665, -0.020505508012402567, 0.0038754868932712929, -0.00018588907991739744], (0.975, 16.0): [-0.25685316062360508, -0.018888418269740373, 0.0035453092842317293, -0.00016235770674204116], (0.975, 17.0): [-0.25501132271353549, -0.018362951972357794, 0.0035653933105288631, -0.00017470353354992729], (0.975, 18.0): [-0.25325045404452656, -0.017993537285026156, 0.0036035867405376691, -0.00018635492166426884], (0.975, 19.0): [-0.25236899494677928, -0.016948921372207198, 0.0034138931781330802, -0.00017462253414687881], (0.975, 20.0): [-0.25134498025027691, -0.016249564498874988, 0.0033197284005334333, -0.00017098091103245596], (0.975, 24.0): [-0.24768690797476625, -0.014668160763513996, 0.0032850791186852558, -0.00019013480716844995], (0.975, 30.0): [-0.24420834707522676, -0.012911171716272752, 0.0031977676700968051, -0.00020114907914487053], (0.975, 40.0): [-0.24105725356215926, -0.010836526056169627, 0.0030231303550754159, -0.00020128696343148667], (0.975, 60.0): [-0.23732082703955223, -0.0095442727157385391, 0.0031432904473555259, -0.00023062224109383941], (0.975, 120.0): [-0.23358581879594578, -0.0081281259918709343, 0.0031877298679120094, -0.00024496230446851501], (0.975, inf): [-0.23004105093119268, -0.0067112585174133573, 0.0032760251638919435, -0.00026244001319462992], (0.99, 1.0): [-0.65154119422706203, -0.1266603927572312, 0.03607480609672048, -0.0028668112687608113], (0.99, 2.0): [-0.45463403324378804, -0.098701236234527367, 0.024412715761684689, -0.0017613772919362193], (0.99, 3.0): [-0.36402060051035778, -0.079244959193729148, 0.017838124021360584, -0.00119080116484847], (0.99, 4.0): [-0.31903506063953818, -0.061060740682445241, 0.012093154962939612, -0.00067268347188443093], (0.99, 5.0): [-0.28917014580689182, -0.052940780099313689, 0.010231009146279354, -0.00057178339184615239], (0.99, 6.0): [-0.27283240161179012, -0.042505435573209085, 0.0072753401118264534, -0.00031314034710725922], (0.99, 7.0): [-0.25773968720546719, -0.039384214480463406, 0.0069120882597286867, -0.00032994068754356204], (0.99, 8.0): [-0.24913629282433833, -0.033831567178432859, 0.0055516244725724185, -0.00022570786249671376], (0.99, 9.0): [-0.24252380896373404, -0.029488280751457097, 0.0045215453527922998, -0.00014424552929022646], (0.99, 10.0): [-0.23654349556639986, -0.02705600214566789, 0.0041627255469343632, -0.00013804427029504753], (0.99, 11.0): [-0.23187404969432468, -0.024803662094970855, 0.0037885852786822475, -0.00012334999287725012], (0.99, 12.0): [-0.22749929386320905, -0.023655085290534145, 0.0037845051889055896, -0.00014785715789924055], (0.99, 13.0): [-0.22458989143485605, -0.021688394892771506, 0.0034075294601425251, -0.00012436961982044268], (0.99, 14.0): [-0.22197623872225777, -0.020188830700102918, 0.0031648685865587473, -0.00011320740119998819], (0.99, 15.0): [-0.2193924323730066, -0.019327469111698265, 0.0031295453754886576, -0.00012373072900083014], (0.99, 16.0): [-0.21739436875855705, -0.018215854969324128, 0.0029638341057222645, -0.00011714667871412003], (0.99, 17.0): [-0.21548926805467686, -0.017447822179412719, 0.0028994805120482812, -0.00012001887015183794], (0.99, 18.0): [-0.21365014687077843, -0.01688869353338961, 0.0028778031289216546, -0.00012591199104792711], (0.99, 19.0): [-0.21236653761262406, -0.016057151563612645, 0.0027571468998022017, -0.00012049196593780046], (0.99, 20.0): [-0.21092693178421842, -0.015641706950956638, 0.0027765989877361293, -0.00013084915163086915], (0.99, 24.0): [-0.20681960327410207, -0.013804298040271909, 0.0026308276736585674, -0.0001355061502101814], (0.99, 30.0): [-0.20271691131071576, -0.01206095288359876, 0.0025426138004198909, -0.00014589047959047533], (0.99, 40.0): [-0.19833098054449289, -0.010714533963740719, 0.0025985992420317597, -0.0001688279944262007], (0.99, 60.0): [-0.19406768821236584, -0.0093297106482013985, 0.0026521518387539584, -0.00018884874193665104], (0.99, 120.0): [-0.19010213174677365, -0.0075958207221300924, 0.0025660823297025633, -0.00018906475172834352], (0.99, inf): [-0.18602070255787137, -0.0062121155165363188, 0.0026328293420766593, -0.00020453366529867131], (0.995, 1.0): [-0.65135583544951825, -0.1266868999507193, 0.036067522182457165, -0.0028654516958844922], (0.995, 2.0): [-0.45229774013072793, -0.09869462954369547, 0.024381858599368908, -0.0017594734553033394], (0.995, 3.0): [-0.35935765236429706, -0.076650408326671915, 0.016823026893528978, -0.0010835134496404637], (0.995, 4.0): [-0.30704474720931169, -0.063093047731613019, 0.012771683306774929, -0.00075852491621809955], (0.995, 5.0): [-0.27582551740863454, -0.052533353137885791, 0.0097776009845174372, -0.00051338031756399129], (0.995, 6.0): [-0.25657971464398704, -0.043424914996692286, 0.0074324147435969991, -0.00034105188850494067], (0.995, 7.0): [-0.24090407819707738, -0.039591604712200287, 0.0068848429451020387, -0.00034737131709273414], (0.995, 8.0): [-0.23089540800827862, -0.034353305816361958, 0.0056009527629820111, -0.00024389336976992433], (0.995, 9.0): [-0.22322694848310584, -0.030294770709722547, 0.0046751239747245543, -0.00017437479314218922], (0.995, 10.0): [-0.21722684126671632, -0.026993563560163809, 0.0039811592710905491, -0.00013135281785826703], (0.995, 11.0): [-0.21171635822852911, -0.025156193618212551, 0.0037507759652964205, -0.00012959836685175671], (0.995, 12.0): [-0.20745332165849167, -0.023318819535607219, 0.0034935020002058903, -0.00012642826898405916], (0.995, 13.0): [-0.20426054591612508, -0.021189796175249527, 0.003031472176128759, -9.0497733877531618e-05], (0.995, 14.0): [-0.20113536905578902, -0.020011536696623061, 0.0029215880889956729, -9.571527213951222e-05], (0.995, 15.0): [-0.19855601561006403, -0.018808533734002542, 0.0027608859956002344, -9.2472995256929217e-05], (0.995, 16.0): [-0.19619157579534008, -0.017970461530551096, 0.0027113719105000371, -9.9864874982890861e-05], (0.995, 17.0): [-0.19428015140726104, -0.017009762497670704, 0.0025833389598201345, -9.6137545738061124e-05], (0.995, 18.0): [-0.19243180236773033, -0.01631617252107519, 0.0025227443561618621, -9.8067580523432881e-05], (0.995, 19.0): [-0.19061294393069844, -0.01586226613672222, 0.0025207005902641781, -0.00010466151274918466], (0.995, 20.0): [-0.18946302696580328, -0.014975796567260896, 0.0023700506576419867, -9.5507779057884629e-05], (0.995, 24.0): [-0.18444251428695257, -0.013770955893918012, 0.0024579445553339903, -0.00012688402863358003], (0.995, 30.0): [-0.18009742499570078, -0.011831341846559026, 0.0022801125189390046, -0.00012536249967254906], (0.995, 40.0): [-0.17562721880943261, -0.010157142650455463, 0.0022121943861923474, -0.000134542652873434], (0.995, 60.0): [-0.17084630673594547, -0.0090224965852754805, 0.0023435529965815565, -0.00016240306777440115], (0.995, 120.0): [-0.16648414081054147, -0.0074792163241677225, 0.0023284585524533607, -0.00017116464012147041], (0.995, inf): [-0.16213921875452461, -0.0058985998630496144, 0.0022605819363689093, -0.00016896211491119114], (0.999, 1.0): [-0.65233994072089363, -0.12579427445444219, 0.035830577995679271, -0.0028470555202945564], (0.999, 2.0): [-0.45050164311326341, -0.098294804380698292, 0.024134463919493736, -0.0017269603956852841], (0.999, 3.0): [-0.35161741499307819, -0.076801152272374273, 0.016695693063138672, -0.0010661121974071864], (0.999, 4.0): [-0.29398448788574133, -0.06277319725219685, 0.012454220010543127, -0.00072644165723402445], (0.999, 5.0): [-0.25725364564365477, -0.053463787584337355, 0.0099664236557431545, -0.00054866039388980659], (0.999, 6.0): [-0.23674225795168574, -0.040973155890031254, 0.0062599481191736696, -0.00021565734226586692], (0.999, 7.0): [-0.21840108878983297, -0.037037020271877719, 0.0055908063671900703, -0.00020238790479809623], (0.999, 8.0): [-0.2057964743918449, -0.032500885103194356, 0.0046441644585661756, -0.00014769592268680274], (0.999, 9.0): [-0.19604592954882674, -0.029166922919677936, 0.0040644333111949814, -0.00012854052861297006], (0.999, 10.0): [-0.18857328935948367, -0.026316705703161091, 0.0035897350868809275, -0.00011572282691335702], (0.999, 11.0): [-0.18207431428535406, -0.024201081944369412, 0.0031647372098056077, -8.1145935982296439e-05], (0.999, 12.0): [-0.17796358148991101, -0.021054306118620879, 0.0023968085939602055, -1.5907156771296993e-05], (0.999, 13.0): [-0.17371965962745489, -0.019577162950177709, 0.0022391783473999739, -2.0613023472812558e-05], (0.999, 14.0): [-0.16905298116759873, -0.01967115985443986, 0.0026495208325889269, -9.1074275220634073e-05], (0.999, 15.0): [-0.16635662558214312, -0.017903767183469876, 0.0022301322677100496, -5.1956773935885426e-05], (0.999, 16.0): [-0.16388776549525449, -0.016671918839902419, 0.0020365289602744382, -4.3592447599724942e-05], (0.999, 17.0): [-0.16131934177990759, -0.015998918405126326, 0.0019990454743285904, -4.8176277491327653e-05], (0.999, 18.0): [-0.15880633110376571, -0.015830715141055916, 0.0021688405343832091, -8.061825248932771e-05], (0.999, 19.0): [-0.15644841913314136, -0.015729364721105681, 0.0022981443610378136, -0.00010093672643417343], (0.999, 20.0): [-0.15516596606222705, -0.014725095968258637, 0.0021117117014292155, -8.8806880297328484e-05], (0.999, 24.0): [-0.14997437768645827, -0.012755323295476786, 0.0018871651510496939, -8.0896370662414938e-05], (0.999, 30.0): [-0.14459974882323703, -0.011247323832877647, 0.0018637400643826279, -9.6415323191606741e-05], (0.999, 40.0): [-0.13933285919392555, -0.0097151769692496587, 0.0018131251876208683, -0.00010452598991994023], (0.999, 60.0): [-0.13424555343804143, -0.0082163027951669444, 0.0017883427892173382, -0.00011415865110808405], (0.999, 120.0): [-0.12896119523040372, -0.0070426701112581112, 0.0018472364154226955, -0.00012862202979478294], (0.999, inf): [-0.12397213562666673, -0.0056901201604149998, 0.0018260689406957129, -0.00013263452567995485]} # p values that are defined in the A table p_keys = [.1,.5,.675,.75,.8,.85,.9,.95,.975,.99,.995,.999] # v values that are defined in the A table v_keys = range(2, 21) + [24, 30, 40, 60, 120, inf] def _isfloat(x): """ returns True if x is a float, returns False otherwise """ try: float(x) except: return False return True def _phi(p): """returns the pth quantile inverse norm""" return scipy.stats.norm.isf(p) def _ptransform(p): """function for p-value abcissa transformation""" return -1. / (1. + 1.5 * _phi((1. + p)/2.)) def _select_points(a, list_like): """ returns one above a, one below a, and the third closest point to a sorted in ascending order for quadratic interpolation. Assumes that points above and below a exist. """ foo = [x for x in list(list_like) if x-a <= 0] z = [min(foo, key=lambda x : abs(x-a))] foo = [x for x in list(list_like) if x-a > 0] z.append(min(foo, key=lambda x : abs(x-a))) foo = [x for x in list(list_like) if x not in z] z.append(min(foo, key=lambda x : abs(x-a))) return sorted(z) def _func(a, p, r, v): """ calculates f-hat for the coefficients in a, probability p, sample mean difference r, and degrees of freedom v. """ # eq. 2.3 f = a[0]*math.log(r-1.) + \ a[1]*math.log(r-1.)**2 + \ a[2]*math.log(r-1.)**3 + \ a[3]*math.log(r-1.)**4 # eq. 2.7 and 2.8 corrections if r == 3: f += -0.002 / (1. + 12. * _phi(p)**2) if v <= 4.364: f += 1./517. - 1./(312.*(v,1e38)[v==inf]) else: f += 1./(191.*(v,1e38)[v==inf]) return -f def _interpolate_p(p, r, v): """ interpolates p based on the values in the A table for the scalar value of r and the scalar value of v """ # interpolate p (v should be in table) # if .5 < p < .75 use linear interpolation in q # if p > .75 use quadratic interpolation in log(y + r/v) # by -1. / (1. + 1.5 * _phi((1. + p)/2.)) # find the 3 closest v values p0, p1, p2 = _select_points(p, p_keys) y0 = _func(A[(p0, v)], p0, r, v) + 1. y1 = _func(A[(p1, v)], p1, r, v) + 1. y2 = _func(A[(p2, v)], p2, r, v) + 1. y_log0 = math.log(y0 + float(r)/float(v)) y_log1 = math.log(y1 + float(r)/float(v)) y_log2 = math.log(y2 + float(r)/float(v)) # If p < .85 apply only the ordinate transformation # if p > .85 apply the ordinate and the abcissa transformation # In both cases apply quadratic interpolation if p > .85: p_t = _ptransform(p) p0_t = _ptransform(p0) p1_t = _ptransform(p1) p2_t = _ptransform(p2) # calculate derivatives for quadratic interpolation d2 = 2*((y_log2-y_log1)/(p2_t-p1_t) - \ (y_log1-y_log0)/(p1_t-p0_t))/(p2_t-p0_t) if (p2+p0)>=(p1+p1): d1 = (y_log2-y_log1)/(p2_t-p1_t) - 0.5*d2*(p2_t-p1_t) else: d1 = (y_log1-y_log0)/(p1_t-p0_t) + 0.5*d2*(p1_t-p0_t) d0 = y_log1 # interpolate value y_log = (d2/2.) * (p_t-p1_t)**2. + d1 * (p_t-p1_t) + d0 # transform back to y y = math.exp(y_log) - float(r)/float(v) elif p > .5: # calculate derivatives for quadratic interpolation d2 = 2*((y_log2-y_log1)/(p2-p1) - \ (y_log1-y_log0)/(p1-p0))/(p2-p0) if (p2+p0)>=(p1+p1): d1 = (y_log2-y_log1)/(p2-p1) - 0.5*d2*(p2-p1) else: d1 = (y_log1-y_log0)/(p1-p0) + 0.5*d2*(p1-p0) d0 = y_log1 # interpolate values y_log = (d2/2.) * (p-p1)**2. + d1 * (p-p1) + d0 # transform back to y y = math.exp(y_log) - float(r)/float(v) else: # linear interpolation in q and p q0 = math.sqrt(2) * -y0 * \ scipy.stats.t.isf((1.+p0)/2., (v,1e38)[v>1e38]) q1 = math.sqrt(2) * -y1 * \ scipy.stats.t.isf((1.+p1)/2., (v,1e38)[v>1e38]) d1 = (q1-q0)/(p1-p0) d0 = q0 # interpolate values q = d1 * (p-p0) + d0 # transform back to y y = -q / (math.sqrt(2) * \ scipy.stats.t.isf((1.+p)/2., (v,1e38)[v>1e38])) return y def _interpolate_v(p, r, v): """ interpolates v based on the values in the A table for the scalar value of r and th """ # interpolate v (p should be in table) # ordinate: y**2 # abcissa: 1./v # find the 3 closest v values v0, v1, v2 = _select_points(v, v_keys+([],[1])[p>=.90]) # y = f - 1. y0 = _func(A[(p,v0)], p, r, v0) + 1. y1 = _func(A[(p,v1)], p, r, v1) + 1. y2 = _func(A[(p,v2)], p, r, v2) + 1. # if v2 is inf set to a big number so interpolation # calculations will work if v2 > 1e38: v2 = 1e38 # calculate derivatives for quadratic interpolation d2 = 2.*((y2**2-y1**2)/(1./v2-1./v1) - \ (y0**2-y1**2)/(1./v0-1./v1)) / (1./v2-1./v0) if (1./v2 + 1./v0) >= (1./v1+1./v1): d1 = (y2**2-y1**2) / (1./v2-1./v1) - 0.5*d2*(1./v2-1./v1) else: d1 = (y1**2-y0**2) / (1./v1-1./v0) + 0.5*d2*(1./v1-1./v0) d0 = y1**2 # calculate y y = math.sqrt((d2/2.)*(1./v-1./v1)**2. + d1*(1./v-1./v1)+ d0) return y def _qsturng(p, r, v): # r is interpolated through the q to y here we only need to # account for when p and/or v are not found in the table. global A, p_keys, v_keys if p < .1 or p > .999: raise ValueError('p must be between .1 and .999') if p < .9: if v < 2: raise ValueError('v must be > 2 when p < .9') else: if v < 1: raise ValueError('v must be > 1 when p >= .9') if A.has_key((p,v)): f = _func(A[(p,v)], p, r, v) y = f + 1. elif p not in p_keys and v not in v_keys+([],[1])[p>=.90]: # apply bilinear (quadratic) interpolation # # p0,v2 + o + p1,v2 + p2,v2 # r2 # # 1 # - (p,v) # v x # # r1 # p0,v1 + o + p1,v1 + p2,v1 # # # p0,v0 + o r0 + p1,v0 + p2,v0 # # _ptransform(p) # # (p1 and v1 may be below or above (p,v). The algorithm # works in both cases. For diagramatic simplicity it is # shown as above) # # 1. at v0, v1, and v2 use quadratic interpolation # to find r0, r1, r2 # # 2. use r0, r1, r2 and quadratic interpolaiton # to find y and (p,v) # find the 3 closest v values v0, v1, v2 = _select_points(v, v_keys+([],[1])[p>=.90]) # find the 2 closest p values p0, p1, p2 = _select_points(p, p_keys) r0 = _interpolate_p(p, r, v0) r1 = _interpolate_p(p, r, v1) r2 = _interpolate_p(p, r, v2) # calculate derivatives for quadratic interpolation d2 = 2.*((r2**2-r1**2)/(1./v2-1./v1) - \ (r0**2-r1**2)/(1./v0-1./v1)) / (1./v2-1./v0) if (1./v2 + 1./v0) >= (1./v1+1./v1): d1 = (r2**2-r1**2) / (1./v2-1./v1) - 0.5*d2*(1./v2-1./v1) else: d1 = (r1**2-r0**2) / (1./v1-1./v0) + 0.5*d2*(1./v1-1./v0) d0 = r1**2 # calculate y y = math.sqrt((d2/2.)*(1./v-1./v1)**2. + d1*(1./v-1./v1)+ d0) elif v not in v_keys+([],[1])[p>=.90]: y = _interpolate_v(p, r, v) elif p not in p_keys: y = _interpolate_p(p, r, v) return math.sqrt(2) * -y * \ scipy.stats.t.isf((1.+p)/2., (v,1e38)[v>1e38]) # make a qsturng functinon that will accept list-like objects _vqsturng = np.vectorize(_qsturng) def qsturng(p, r, v): """ returns the q-value of the Studentized Range q-distribution as a function of the probability (p), number of sample means (r), and the degrees of freedom (v). """ if all(map(_isfloat, [p, r, v])): return _qsturng(p, r, v) return _vqsturng(p, r, v) import scipy.optimize def _psturng(q, r, v): opt_func = lambda p, r, v: abs(_qsturng(p, r, v) - q) return 1. - scipy.optimize.fminbound(opt_func, .1, .999, args=(r,v)) _vpsturng = np.vectorize(_psturng) def psturng(q, r, v): """ returns the probability for the Studentized q-distribution where the value q cooresponds to qsturng(1 - p, r, v) If .001 is returned the probability should be interpreted as, p <= .001. Likewise if .9 is returned the probability should be interpreted as, p >= .9. """ if all(map(_isfloat, [q, r, v])): return _psturng(q, r, v) return _vpsturng(q, r, v) ##p, r, v = .9, 10, 20 ##print ##print 'p and v interpolation' ##print '\t20\t22\t24' ##print '.75',qsturng(.75, r, 20),qsturng(.75, r, 22),qsturng(.75, r, 24) ##print '.85',qsturng(.85, r, 20),qsturng(.85, r, 22),qsturng(.85, r, 24) ##print '.90',qsturng(.90, r, 20),qsturng(.90, r, 22),qsturng(.90, r, 24) ##print ##print 'p and v interpolation' ##print '\t120\t500\tinf' ##print '.950',qsturng(.95, r, 120),qsturng(.95, r, 500),qsturng(.95, r, inf) ##print '.960',qsturng(.96, r, 120),qsturng(.96, r, 500),qsturng(.96, r, inf) ##print '.975',qsturng(.975, r, 120),qsturng(.975, r, 500),qsturng(.975, r, inf) ##print ##print 'p and v interpolation' ##print '\t40\t50\t60' ##print '.950',qsturng(.95, r, 40),qsturng(.95, r, 50),qsturng(.95, r, 60) ##print '.960',qsturng(.96, r, 40),qsturng(.96, r, 50),qsturng(.96, r, 60) ##print '.975',qsturng(.975, r, 40),qsturng(.975, r, 50),qsturng(.975, r, 60) ##print ##print 'p and v interpolation' ##print '\t20\t22\t24' ##print '.50',qsturng(.5, r, 20),qsturng(.5, r, 22),qsturng(.5, r, 24) ##print '.60',qsturng(.6, r, 20),qsturng(.6, r, 22),qsturng(.6, r, 24) ##print '.75',qsturng(.75, r, 20),qsturng(.75, r, 22),qsturng(.75, r, 24)
11b9bf5a469cbefb5d55ecbc166fdf0b95d5e6a5
d2bb13cec7faf28e3d268312298f03c99806bd8b
/IPTS-16891-Dy2Ti2O7/norm_mesh_symm_All_rwp_100mK_7.py
d66eaa8f6dc140ec0ed3f53c2db9c0369b379c0f
[]
no_license
rosswhitfield/corelli
06a91c26556ea788f20f973a1018a56e82a8c09a
d9e47107e3272c4457aa0d2e0732fc0446f54279
refs/heads/master
2021-08-07T14:04:24.426151
2021-08-03T19:19:05
2021-08-03T19:19:05
51,771,543
0
0
null
null
null
null
UTF-8
Python
false
false
5,488
py
from mantid.simpleapi import * from mantid.geometry import SymmetryOperationFactory import numpy as np # about information on where the data are and where to save iptsfolder= "/SNS/CORELLI/IPTS-16891/" outputdir="/SNS/users/rwp/corelli/IPTS-16891-Dy2Ti2O7/" nxfiledir=iptsfolder + "nexus/" ccfiledir = iptsfolder +"shared/autoreduce/" UBfile = iptsfolder+"shared/DTO_UB_111Vertical.mat" reducedfile_prefix = "DTO_cc" LoadNexus(Filename='/SNS/CORELLI/shared/Vanadium/2016B/SolidAngle20160720NoCC.nxs', OutputWorkspace='sa') LoadNexus(Filename='/SNS/CORELLI/shared/Vanadium/2016B/Spectrum20160720NoCC.nxs', OutputWorkspace='flux') MaskBTP(Workspace='sa',Bank="1-30,62-91") MaskBTP(workspace='sa',Pixel='1-16,200-256') #Mask the magnet MaskBTP(Workspace='sa',Bank="49",Tube="1") MaskBTP(Workspace='sa',Bank="54",Tube="1") MaskBTP(Workspace='sa',Bank="58",Tube="13-16",Pixel="80-130") MaskBTP(Workspace='sa',Bank="59",Tube="1-4",Pixel="80-130") # Get UBs LoadEmptyInstrument(Filename='/SNS/CORELLI/shared/Calibration/CORELLI_Definition_cal_20160310.xml', OutputWorkspace='ub') LoadIsawUB(InputWorkspace='ub', Filename=UBfile) ub=mtd['ub'].sample().getOrientedLattice().getUB() print "Starting UB :" print ub #DTO Fd-3m (227) general position has 192 symmety operations. symOps = SymmetryOperationFactory.createSymOps(\ "x,y,z; -x,-y,z; -x,y,-z; x,-y,-z;\ z,x,y; z,-x,-y; -z,-x,y; -z,x,-y;\ y,z,x; -y,z,-x; y,-z,-x; -y,-z,x;\ y,x,-z; -y,-x,-z; y,-x,z; -y,x,z;\ x,z,-y; -x,z,y; -x,-z,-y; x,-z,y;\ z,y,-x; z,-y,x; -z,y,x; -z,-y,-x;\ -x,-y,-z; x,y,-z; x,-y,z; -x,y,z;\ -z,-x,-y; -z,x,y; z,x,-y; z,-x,y;\ -y,-z,-x; y,-z,x; -y,z,x; y,z,-x;\ -y,-x,z; y,x,z; -y,x,-z; y,-x,-z;\ -x,-z,y; x,-z,-y; x,z,y; -x,z,-y;\ -z,-y,x; -z,y,-x; z,-y,-x; z,y,x") ub_list=[] for sym in symOps: UBtrans = np.zeros((3,3)) UBtrans[0] = sym.transformHKL([1,0,0]) UBtrans[1] = sym.transformHKL([0,1,0]) UBtrans[2] = sym.transformHKL([0,0,1]) UBtrans=np.matrix(UBtrans.T) new_ub = ub*UBtrans print "Symmetry transform for "+sym.getIdentifier() print UBtrans print "New UB:" print new_ub ub_list.append(new_ub) #load in background #bkg=LoadEventNexus('/SNS/CORELLI/IPTS-15796/nexus/CORELLI_28124.nxs.h5') #bkg=LoadNexus('/SNS/CORELLI/IPTS-15796/shared/autoreduce/CORELLI_28124_elastic.nxs') #MaskDetectors(Workspace=bkg,MaskedWorkspace='sa') #pc_bkg=sum(bkg.getRun()['proton_charge'].value) #print 'pc_bkg=:'+str(pc_bkg) #T=1.8 K runs = range(34599,34635,1) #T=100 mK runs = range(34635,34653,1) totalrun = len(runs) print "Total number of runs %d" %totalrun if mtd.doesExist('normMD'): DeleteWorkspace('normMD') if mtd.doesExist('dataMD'): DeleteWorkspace('dataMD') #for r in runs: for index, r in enumerate(runs): print index, ' Processing run : %s' %r num=0 print 'Loading run number:'+ str(r) #filename='/SNS/CORELLI/IPTS-15526/nexus/CORELLI_'+str(r)+'.nxs.h5' #dataR=LoadEventNexus(Filename=filename) filename=ccfiledir+'CORELLI_'+str(r)+'_elastic.nxs' dataR=LoadNexus(Filename=filename) LoadInstrument(Workspace= dataR, Filename='/SNS/CORELLI/shared/Calibration/CORELLI_Definition_cal_20160310.xml',RewriteSpectraMap=False) MaskDetectors(Workspace=dataR,MaskedWorkspace='sa') pc_data=sum(dataR.getRun()['proton_charge'].value) print 'pc_data=:'+str(pc_data) #dataR=dataR - bkg*pc_data/pc_bkg # subtract the background if a background file was provided. Please make sure that the data were treated in the same way in terms of proton charge. if mtd.doesExist('Bkg'): bkg = mtd['Bkg'] ratio = pc_data/pc_bkg bkg_c = bkg*ratio Minus(LHSWorkspace=dataR, RHSWorkspace=bkg_c, OutputWorkspace=dataR) dataR=ConvertUnits(dataR,Target="Momentum",EMode="Elastic") dataR=CropWorkspace(dataR,XMin=2.5,XMax=10) SetGoniometer(dataR,Axis0="BL9:Mot:Sample:Axis2,0,1,0,1") LoadIsawUB(InputWorkspace=dataR,Filename=UBfile) for ub in ub_list: #for index, ub in enumerate(ub_list): #print "index, using UB ", (index+1), ":" num += 1 print "Run number"+str(r)+" Using UB:"+str(num) print ub SetUB(dataR, UB=ub) md=ConvertToMD(InputWorkspace=dataR,QDimensions='Q3D',dEAnalysisMode='Elastic', Q3DFrames='HKL', QConversionScales='HKL',MinValues='-7.1,-7.1,-7.1',MaxValues='7.1,7.1,7.1') a1,b1=MDNormSCD(InputWorkspace='md',FluxWorkspace='flux',SolidAngleWorkspace='sa', AlignedDim0="[H,0,0],-7.01,7.01,701", AlignedDim1="[0,K,0],-7.01,7.01,701", AlignedDim2="[0,0,L],-7.01,7.01,701") if mtd.doesExist('dataMD'): dataMD=dataMD+a1 else: dataMD=CloneMDWorkspace(a1) if mtd.doesExist('normMD'): normMD=normMD+b1 else: normMD=CloneMDWorkspace(b1) normData_CC=dataMD/normMD SaveMD('dataMD',Filename=outputdir+'DTO_datacc_48sym_Temp100mK_7.nxs') SaveMD('normMD',Filename=outputdir+'DTO_normcc_48sym_Temp100mK_7.nxs') SaveMD('normData_CC',Filename=outputdir+'DTO_normdatacc_48sym_Temp100mK_7.nxs') # group the data #data6K=GroupWorkspaces(datatoMerge) #md6K=GroupWorkspaces(mdtoMerge)