blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
listlengths
1
1
author_id
stringlengths
1
132
abd7adc1822c7a3ded2bfbb351e303bc38039614
99a310f6bb6c7a6c728f1b3ae78054487372042d
/aoc2019/intcode/state_machine.py
b68372737c28f105cbb818391176e19138743da5
[]
no_license
jepebe/aoc2018
46ce6b46479a0faf2c2970413af14a071dcfdb79
4bf91b99bec4b59529533ef70f24bf6496bada99
refs/heads/master
2023-01-11T16:44:42.125394
2023-01-06T06:27:14
2023-01-06T06:27:14
159,912,721
1
0
null
null
null
null
UTF-8
Python
false
false
5,926
py
from collections import defaultdict def get_address(state_machine, parameter, write_mode=False): mode = state_machine['parameter_modes'][parameter] pos = state_machine['pos'] if mode == 0: addr = state_machine['instructions'][pos] elif mode == 1: if write_mode: print('Writing in immediate mode?') addr = pos elif mode == 2: addr = state_machine['instructions'][pos] relative_pos = state_machine['relative_pos'] addr = addr + relative_pos else: raise ('Unknown addressing mode %i for read' % mode) return addr def read(state_machine, parameter): addr = get_address(state_machine, parameter) state_machine['pos'] += 1 if addr >= len(state_machine['instructions']): return state_machine['memory'][addr] else: return state_machine['instructions'][addr] def write(state_machine, parameter, value): addr = get_address(state_machine, parameter, write_mode=True) state_machine['pos'] += 1 if addr >= len(state_machine['instructions']): state_machine['memory'][addr] = value else: state_machine['instructions'][addr] = value def add(state_machine): a = read(state_machine, 0) b = read(state_machine, 1) write(state_machine, 2, a + b) def multiply(state_machine): a = read(state_machine, 0) b = read(state_machine, 1) write(state_machine, 2, a * b) def get_input(state_machine): if len(state_machine['input']) == 0: state_machine['wait'] = True state_machine['pos'] -= 1 state_machine['instruction_count'] -= 1 else: data = state_machine['input'].pop(0) write(state_machine, 0, data) def output(state_machine): value = read(state_machine, 0) state_machine['output'].append(value) if state_machine['output_enabled']: print('Output from state machine %s' % value) def jump_if_true(state_machine): a = read(state_machine, 0) b = read(state_machine, 1) if a != 0: state_machine['pos'] = b def jump_if_false(state_machine): a = read(state_machine, 0) b = read(state_machine, 1) if a == 0: state_machine['pos'] = b def less_than(state_machine): a = read(state_machine, 0) b = read(state_machine, 1) write(state_machine, 2, 1 if a < b else 0) def equals(state_machine): a = read(state_machine, 0) b = read(state_machine, 1) write(state_machine, 2, 1 if a == b else 0) def adjust_relative(state_machine): a = read(state_machine, 0) state_machine['relative_pos'] += a def halt(state_machine): state_machine['halt'] = True # print('Instruction count: %i' % state_machine['instruction_count']) def create_state_machine(instructions): return { 'instructions': list(instructions), 'backup_instructions': list(instructions), 'memory': defaultdict(int), 'operation': 0, 'parameter_modes': [0], 'pos': 0, 'relative_pos': 0, 'instruction_count': 0, 'input': [], 'output': [], 'last_output': None, 'output_enabled': False, 'opcodes': { 1: add, 2: multiply, 3: get_input, 4: output, 5: jump_if_true, 6: jump_if_false, 7: less_than, 8: equals, 9: adjust_relative, 99: halt }, 'halt': False, 'wait': False } def reset_state_machine(state_machine): state_machine['instructions'] = list(state_machine['backup_instructions']) state_machine['memory'] = defaultdict(int) state_machine['operation'] = 0 state_machine['parameter_modes'] = [0] state_machine['pos'] = 0 state_machine['relative_pos'] = 0 state_machine['instruction_count'] = 0 state_machine['input'] = [] state_machine['output'] = [] state_machine['last_output'] = None state_machine['output_enabled'] = False state_machine['halt'] = False state_machine['wait'] = False def parse(state_machine): pos = state_machine['pos'] opcode = state_machine['instructions'][pos] op = opcode % 100 p1 = ((opcode - op) // 100) % 10 p2 = ((opcode - op) // 1000) % 10 p3 = ((opcode - op) // 10000) % 10 state_machine['operation'] = state_machine['opcodes'][op] state_machine['parameter_modes'] = [p1, p2, p3] state_machine['pos'] += 1 def run_state_machine(state_machine): while not state_machine['halt'] and not state_machine['wait']: parse(state_machine) operation = state_machine['operation'] operation(state_machine) state_machine['instruction_count'] += 1 def add_input(state_machine, data): state_machine['input'].append(data) if state_machine['wait']: state_machine['wait'] = False def get_output(state_machine): if not has_output(state_machine): raise UserWarning('No output available!') state_machine['last_output'] = state_machine['output'][0] return state_machine['output'].pop(0) def has_output(state_machine): return len(state_machine['output']) > 0 def get_last_output(state_machine): return state_machine['last_output'] def flush_output(state_machine): while has_output(state_machine): get_output(state_machine) def load_instructions(filename): with open(filename) as f: instructions = f.readline().split(',') instructions = [int(x) for x in instructions] return instructions def load_state_machine(filename): instructions = load_instructions(filename) return create_state_machine(instructions) def is_running(state_machine): return not state_machine['halt'] def print_output(state_machine): import sys while has_output(state_machine): v = get_output(state_machine) sys.stdout.write(str(v) if v > 255 else chr(v))
64cddf5250ac60f94ef5c62aedfa3eb120d3e5f8
8ca70628ca811e08fb77b8e251fc8e5049486a65
/airbyte-integrations/bases/base-python/base_python/cdk/streams/exceptions.py
6727216dd5dd50496241a0890070cb87439e8f82
[ "MIT" ]
permissive
Tana8M/airbyte
a19544d2f7997ec7551793f7077d3e02bfe6ac84
49296ef657be272684c7259ed0d6be06e574dbe1
refs/heads/master
2023-04-15T15:04:22.849307
2021-04-23T23:12:55
2021-04-23T23:12:55
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,825
py
""" MIT License Copyright (c) 2020 Airbyte Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from typing import Union import requests class BaseBackoffException(requests.exceptions.HTTPError): pass class UserDefinedBackoffException(BaseBackoffException): """ An exception that exposes how long it attempted to backoff """ def __init__(self, backoff: Union[int, float], request: requests.PreparedRequest, response: requests.Response): """ :param backoff: how long to backoff in seconds :param request: the request that triggered this backoff exception :param response: the response that triggered the backoff exception """ self.backoff = backoff super().__init__(request=request, response=response) class DefaultBackoffException(BaseBackoffException): pass
e9a4c0ee8774a16092863b3972e7e903593cac32
492cb86b533bc74962a0e25ad190dab131f7cb09
/humanScape/urls.py
d66fdef307d8290976f7ee67668986092280f3c9
[]
no_license
acdacd66/humanscape
75f27815f6c1ac5975b3822e5abc5738aa9b3118
6fbeeca3346569c7f861bbffcbec731a6a9d6e51
refs/heads/main
2023-09-02T01:55:49.806746
2021-11-16T17:29:36
2021-11-16T17:29:36
428,570,173
0
1
null
2021-11-16T11:22:32
2021-11-16T08:10:30
Python
UTF-8
Python
false
false
820
py
"""humanScape URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/3.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path,include urlpatterns = [ path('admin/', admin.site.urls), path("clinical/", include("clinicalInformation.urls")), ]
3daab6c956e8d126316ecdb6ef6e71d8af6a258d
1c8a1b7cfb5c78fe94c4cc62a78dbfff96161924
/day05/test04.py
7715b05a49b005d9cad71dc19124fa6797945c72
[]
no_license
WHUTyuen/PIL_opencv
d264858f0eaa4ecc555747efd5f277f48a432b91
3ae6e7d878215866c304e64eac05bf1011ecb428
refs/heads/main
2023-01-01T14:00:33.331676
2020-11-01T11:35:18
2020-11-01T11:35:18
309,072,309
0
0
null
null
null
null
UTF-8
Python
false
false
1,122
py
import cv2 import numpy as np A = cv2.imread('3.jpg') B = cv2.imread('4.jpg') G = A.copy() gpA = [G] for i in range(6): G = cv2.pyrDown(G) gpA.append(G) G = B.copy() gpB = [G] for i in range(6): G = cv2.pyrDown(G) gpB.append(G) # generate Laplacian Pyramid for A lpA = [gpA[5]] for i in range(5, 0, -1): GE = cv2.pyrUp(gpA[i]) L = cv2.subtract(gpA[i - 1], GE) lpA.append(L) # generate Laplacian Pyramid for B lpB = [gpB[5]] for i in range(5, 0, -1): GE = cv2.pyrUp(gpB[i]) L = cv2.subtract(gpB[i - 1], GE) lpB.append(L) # Now add left and right halves of images in each level LS = [] for la, lb in zip(lpA, lpB): rows, cols, dpt = la.shape ls = np.hstack((la[:, 0:cols // 2], lb[:, cols // 2:])) LS.append(ls) # now reconstruct ls_ = LS[0] for i in range(1, 6): ls_ = cv2.pyrUp(ls_) ls_ = cv2.add(ls_, LS[i]) # image with direct connecting each half real = np.hstack((A[:, :cols // 2], B[:, cols // 2:])) cv2.imshow('Pyramid_blending.jpg', ls_) cv2.imshow('Direct_blending.jpg', real) cv2.waitKey(0)
27c38c01ec059532373e8cd03289ccde4ded2e1d
f0f3f8731145e236e8e08dafb4201108d35af488
/wish_list_items/migrations/0007_auto_20160414_1317.py
8478f0d9cfbb5235617279dac1587637337832db
[]
no_license
AaronScruggs/wish_list_project
49fdfc9c3a9e72470084bbf283085c15aa659a3e
a2a741823e0a570390ce344f3407f6f3b57f2590
refs/heads/master
2021-01-01T05:18:10.817456
2016-04-19T00:36:24
2016-04-19T00:36:24
56,259,190
0
0
null
null
null
null
UTF-8
Python
false
false
471
py
# -*- coding: utf-8 -*- # Generated by Django 1.9.5 on 2016-04-14 20:17 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('wish_list_items', '0006_auto_20160414_1312'), ] operations = [ migrations.AlterField( model_name='wishitem', name='item_url', field=models.URLField(default=True, null=True), ), ]
4816b6ce56b6ba10760fc6ec50b511666a0ef942
c0f5d309576f791f8cc062e2d0cad340eec41d7d
/3.py
846552142673f67774ae9cc5803b41248ec09248
[]
no_license
mjjin1214/algorithm
fa91455ab792c38d01fd210c12e53e50f516eb55
423119406061443939b4b966c7d9f1513544dd03
refs/heads/master
2020-04-22T19:31:23.981387
2019-04-05T07:58:10
2019-04-05T07:58:10
170,610,108
0
0
null
null
null
null
UTF-8
Python
false
false
456
py
import sys sys.stdin = open('input2.txt') def subset(n, su): global visit, count if n == len(score): if not visit & (1<<su): visit ^= (1<<su) count += 1 return subset(n+1, su+score[n]) subset(n+1, su) T = int(input()) for t in range(T): N = int(input()) score = list(set(map(int, input().split()))) visit = count = 0 subset(0, 0) print('#{} {}'.format(t+1, count+N-len(score)))
cb1e1c4fd0adabebcd87bc33eefe453ec2df48fa
942ee5e8d54e8ebe9c5c841fbfdd1da652946944
/1001-1500/1443.Minimum Time to Collect All Apples in a Tree.py
e8ae7ff0deadce1de133f2d3d5feb31d43fde59a
[]
no_license
kaiwensun/leetcode
0129c174457f32887fbca078fb448adce46dd89d
6b607f4aae3a4603e61f2e2b7480fdfba1d9b947
refs/heads/master
2023-08-31T07:30:50.459062
2023-08-27T07:59:16
2023-08-27T07:59:16
57,526,914
69
9
null
2023-08-20T06:34:41
2016-05-01T05:37:29
Python
UTF-8
Python
false
false
728
py
from collections import defaultdict class Solution(object): def minTime(self, n, edges, hasApple): """ :type n: int :type edges: List[List[int]] :type hasApple: List[bool] :rtype: int """ graph = defaultdict(list) for edge in edges: graph[edge[0]].append(edge[1]) graph[edge[1]].append(edge[0]) visited = set() def dfs(root): res = 0 if root not in visited: visited.add(root) for nbr in graph[root]: res += dfs(nbr) if res or hasApple[root]: res += 2 return res return max(0, dfs(0) - 2)
c2f2d9873572b84a36f2345329ebd77f92a88cbe
98e1716c1c3d071b2fedef0ac029eb410f55762c
/part15-statistical-thinking-1/No04-Bee-swarm-plot.py
0b503f7631dcaaedd5a7afe2edbda8d651de8a7c
[]
no_license
iamashu/Data-Camp-exercise-PythonTrack
564531bcf1dff119949cbb75e1fd63d89cb2779f
c72a4e806494f0e263ced9594597dc8882c2131c
refs/heads/master
2020-07-22T00:23:12.024386
2019-04-12T09:24:42
2019-04-12T09:24:42
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,212
py
#Bee swarm plot ''' Make a bee swarm plot of the iris petal lengths. Your x-axis should contain each of the three species, and the y-axis the petal lengths. A data frame containing the data is in your namespace as df. For your reference, the code Justin used to create the bee swarm plot in the video is provided below: _ = sns.swarmplot(x='state', y='dem_share', data=df_swing) _ = plt.xlabel('state') _ = plt.ylabel('percent of vote for Obama') plt.show() In the IPython Shell, you can use sns.swarmplot? or help(sns.swarmplot) for more details on how to make bee swarm plots using seaborn. Instructions In the IPython Shell, inspect the DataFrame df using df.head(). This will let you identify which column names you need to pass as the x and y keyword arguments in your call to sns.swarmplot(). Use sns.swarmplot() to make a bee swarm plot from the DataFrame containing the Fisher iris data set, df. The x-axis should contain each of the three species, and the y-axis should contain the petal lengths. Label the axes. Show your plot. ''' # code sns.swarmplot(x='species', y='petal length (cm)', data=df) # Label the axes plt.xlabel('species') plt.ylabel('petal length (cm)') # Show the plot plt.show()
f7bb5b008461cd4f51770163a3cf7e600d784405
81c5c07e1144747dc0e98f8dffb287a69be1eba7
/score_mcc_bin.py
686c4e86fcab42e4f12a69f6f893e59e1cfe31ee
[]
no_license
twistedmove/e2e_antispoofing
acbb9ec5bc4454c1698fc355d0c0fee3bf70006e
686dfb515b2c568a1006136f56bbaad0419f0787
refs/heads/master
2020-09-07T10:41:12.024794
2019-10-06T19:28:19
2019-10-06T19:28:19
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,454
py
import argparse import numpy as np import glob import torch import torch.nn.functional as F import os from kaldi_io import read_mat_scp import model as model_ import scipy.io as sio from utils import compute_eer_labels, set_device, read_trials, get_freer_gpu def prep_feats(data_): #data_ = ( data_ - data_.mean(0) ) / data_.std(0) features = data_.T if features.shape[1]<50: mul = int(np.ceil(50/features.shape[1])) features = np.tile(features, (1, mul)) features = features[:, :50] return torch.from_numpy(features[np.newaxis, np.newaxis, :, :]).float() if __name__ == '__main__': parser = argparse.ArgumentParser(description='Compute scores for mcc model') parser.add_argument('--path-to-data', type=str, default='./data/feats.scp', metavar='Path', help='Path to input data') parser.add_argument('--trials-path', type=str, default='./data/trials', metavar='Path', help='Path to trials file') parser.add_argument('--cp-path', type=str, default=None, metavar='Path', help='Path for file containing model') parser.add_argument('--out-path', type=str, default='./out.txt', metavar='Path', help='Path to output hdf file') parser.add_argument('--model', choices=['lstm', 'resnet', 'resnet_pca', 'lcnn_9', 'lcnn_29', 'lcnn_9_pca', 'lcnn_29_pca', 'lcnn_9_prodspec', 'lcnn_9_icqspec', 'lcnn_9_CC', 'lcnn_29_CC', 'resnet_CC'], default='lcnn_9', help='Model arch') parser.add_argument('--n-classes', type=int, default=-1, metavar='N', help='Number of classes for the mcc case (default: binary classification)') parser.add_argument('--no-cuda', action='store_true', default=False, help='Disables GPU use') parser.add_argument('--no-output-file', action='store_true', default=False, help='Disables writing scores into out file') parser.add_argument('--no-eer', action='store_true', default=False, help='Disables computation of EER') parser.add_argument('--eval', action='store_true', default=False, help='Enables eval trials reading') parser.add_argument('--ncoef', type=int, default=90, metavar='N', help='Number of cepstral coefs (default: 90)') parser.add_argument('--init-coef', type=int, default=0, metavar='N', help='First cepstral coefs (default: 0)') args = parser.parse_args() args.cuda = True if not args.no_cuda and torch.cuda.is_available() else False if args.cp_path is None: raise ValueError('There is no checkpoint/model path. Use arg --cp-path to indicate the path!') if os.path.isfile(args.out_path): os.remove(args.out_path) print(args.out_path + ' Removed') print('Cuda Mode is: {}'.format(args.cuda)) print('Selected model is: {}'.format(args.model)) if args.cuda: device = get_freer_gpu() if args.model == 'lstm': model = model_.cnn_lstm(nclasses=args.n_classes) elif args.model == 'resnet': model = model_.ResNet(nclasses=args.n_classes) elif args.model == 'resnet_pca': model = model_.ResNet_pca(nclasses=args.n_classes) elif args.model == 'lcnn_9': model = model_.lcnn_9layers(nclasses=args.n_classes) elif args.model == 'lcnn_29': model = model_.lcnn_29layers_v2(nclasses=args.n_classes) elif args.model == 'lcnn_9_pca': model = model_.lcnn_9layers_pca(nclasses=args.n_classes) elif args.model == 'lcnn_29_pca': model = model_.lcnn_29layers_v2_pca(nclasses=args.n_classes) elif args.model == 'lcnn_9_icqspec': model = model_.lcnn_9layers_icqspec(nclasses=args.n_classes) elif args.model == 'lcnn_9_prodspec': model = model_.lcnn_9layers_prodspec(nclasses=args.n_classes) elif args.model == 'lcnn_9_CC': model = model_.lcnn_9layers_CC(nclasses=args.n_classes, ncoef=args.ncoef, init_coef=args.init_coef) elif args.model == 'lcnn_29_CC': model = model_.lcnn_29layers_CC(nclasses=args.n_classes, ncoef=args.ncoef, init_coef=args.init_coef) elif args.model == 'resnet_CC': model = model_.ResNet_CC(nclasses=args.n_classes, ncoef=args.ncoef, init_coef=args.init_coef) print('Loading model') ckpt = torch.load(args.cp_path, map_location = lambda storage, loc: storage) model.load_state_dict(ckpt['model_state'], strict=False) model.eval() print('Model loaded') print('Loading data') if args.eval: test_utts = read_trials(args.trials_path, eval_=args.eval) else: test_utts, attack_type_list, label_list = read_trials(args.trials_path, eval_=args.eval) data = { k:m for k,m in read_mat_scp(args.path_to_data) } print('Data loaded') print('Start of scores computation') score_list = [] with torch.no_grad(): for i, utt in enumerate(test_utts): print('Computing score for utterance '+ utt) feats = prep_feats(data[utt]) try: if args.cuda: feats = feats.to(device) model = model.to(device) score = 1.-F.softmax(model.forward(feats), dim=1)[:,1:].sum().item() except: feats = feats.cpu() model = model.cpu() score = 1.-F.softmax(model.forward(feats), dim=1)[:,1:].sum().item() score_list.append(score) print('Score: {}'.format(score_list[-1])) if not args.no_output_file: print('Storing scores in output file:') print(args.out_path) with open(args.out_path, 'w') as f: if args.eval: for i, utt in enumerate(test_utts): f.write("%s" % ' '.join([utt, str(score_list[i])+'\n'])) else: for i, utt in enumerate(test_utts): f.write("%s" % ' '.join([utt, attack_type_list[i], label_list[i], str(score_list[i])+'\n'])) if not args.no_eer and not args.eval: print('EER: {}'.format(compute_eer_labels(label_list, score_list))) print('All done!!')
158c8395e7b37a739bbe7438d2a3fb3853747fb2
0b20f4ce14b9ff77c84cedbecbaa29831335920d
/tests/cloudformation/file_formats/test_yaml.py
76149f86216a57acc3de965d65a22daae34bad5a
[ "Apache-2.0" ]
permissive
sergesec488/checkov
219c1b3864ab4f70b39a4cd79b041e98f3145364
56008e1c531b3626f14716067731be6e673040bc
refs/heads/master
2023-04-10T12:26:49.749864
2021-02-26T18:36:52
2021-02-26T18:40:58
342,883,133
0
1
Apache-2.0
2023-03-30T13:31:25
2021-02-27T15:01:08
null
UTF-8
Python
false
false
681
py
import os import unittest from checkov.cloudformation.runner import Runner from checkov.runner_filter import RunnerFilter class TestYamlFileFormat(unittest.TestCase): def test_summary(self): runner = Runner() current_dir = os.path.dirname(os.path.realpath(__file__)) test_files_dir = current_dir + "/yaml" report = runner.run(root_folder=test_files_dir) summary = report.get_summary() self.assertEqual(summary['passed'], 1) self.assertEqual(summary['failed'], 0) self.assertEqual(summary['skipped'], 0) self.assertEqual(summary['parsing_errors'], 0) if __name__ == '__main__': unittest.main()
1161c6ec01e8bf8124199a123fc850feb16f7924
27c94d7e040902d3cdadd5862b15e67ec2ee4b6e
/exps/NAS-Bench-201-algos/DARTS-V1.py
67441af82a7bc2f760fa028163eb4ca9c8887773
[ "MIT" ]
permissive
D-X-Y/AutoDL-Projects
8a0779a7710d809af2b052787928d8d34c14d0d9
f46486e21b71ae6459a700be720d7648b5429569
refs/heads/main
2023-08-13T10:53:49.550889
2022-04-24T22:18:16
2022-04-24T22:18:16
168,538,768
989
197
MIT
2022-04-24T22:16:21
2019-01-31T14:30:50
Python
UTF-8
Python
false
false
15,785
py
################################################## # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 # ######################################################## # DARTS: Differentiable Architecture Search, ICLR 2019 # ######################################################## import sys, time, random, argparse from copy import deepcopy import torch from pathlib import Path from xautodl.config_utils import load_config, dict2config, configure2str from xautodl.datasets import get_datasets, get_nas_search_loaders from xautodl.procedures import ( prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler, ) from xautodl.utils import get_model_infos, obtain_accuracy from xautodl.log_utils import AverageMeter, time_string, convert_secs2time from xautodl.models import get_cell_based_tiny_net, get_search_spaces from nas_201_api import NASBench201API as API def search_func( xloader, network, criterion, scheduler, w_optimizer, a_optimizer, epoch_str, print_freq, logger, gradient_clip, ): data_time, batch_time = AverageMeter(), AverageMeter() base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter() arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() network.train() end = time.time() for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate( xloader ): scheduler.update(None, 1.0 * step / len(xloader)) base_targets = base_targets.cuda(non_blocking=True) arch_targets = arch_targets.cuda(non_blocking=True) # measure data loading time data_time.update(time.time() - end) # update the weights w_optimizer.zero_grad() _, logits = network(base_inputs) base_loss = criterion(logits, base_targets) base_loss.backward() if gradient_clip > 0: torch.nn.utils.clip_grad_norm_(network.parameters(), gradient_clip) w_optimizer.step() # record base_prec1, base_prec5 = obtain_accuracy( logits.data, base_targets.data, topk=(1, 5) ) base_losses.update(base_loss.item(), base_inputs.size(0)) base_top1.update(base_prec1.item(), base_inputs.size(0)) base_top5.update(base_prec5.item(), base_inputs.size(0)) # update the architecture-weight a_optimizer.zero_grad() _, logits = network(arch_inputs) arch_loss = criterion(logits, arch_targets) arch_loss.backward() a_optimizer.step() # record arch_prec1, arch_prec5 = obtain_accuracy( logits.data, arch_targets.data, topk=(1, 5) ) arch_losses.update(arch_loss.item(), arch_inputs.size(0)) arch_top1.update(arch_prec1.item(), arch_inputs.size(0)) arch_top5.update(arch_prec5.item(), arch_inputs.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if step % print_freq == 0 or step + 1 == len(xloader): Sstr = ( "*SEARCH* " + time_string() + " [{:}][{:03d}/{:03d}]".format(epoch_str, step, len(xloader)) ) Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format( batch_time=batch_time, data_time=data_time ) Wstr = "Base [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]".format( loss=base_losses, top1=base_top1, top5=base_top5 ) Astr = "Arch [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]".format( loss=arch_losses, top1=arch_top1, top5=arch_top5 ) logger.log(Sstr + " " + Tstr + " " + Wstr + " " + Astr) return base_losses.avg, base_top1.avg, base_top5.avg def valid_func(xloader, network, criterion): data_time, batch_time = AverageMeter(), AverageMeter() arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() network.eval() end = time.time() with torch.no_grad(): for step, (arch_inputs, arch_targets) in enumerate(xloader): arch_targets = arch_targets.cuda(non_blocking=True) # measure data loading time data_time.update(time.time() - end) # prediction _, logits = network(arch_inputs) arch_loss = criterion(logits, arch_targets) # record arch_prec1, arch_prec5 = obtain_accuracy( logits.data, arch_targets.data, topk=(1, 5) ) arch_losses.update(arch_loss.item(), arch_inputs.size(0)) arch_top1.update(arch_prec1.item(), arch_inputs.size(0)) arch_top5.update(arch_prec5.item(), arch_inputs.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() return arch_losses.avg, arch_top1.avg, arch_top5.avg def main(xargs): assert torch.cuda.is_available(), "CUDA is not available." torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.set_num_threads(xargs.workers) prepare_seed(xargs.rand_seed) logger = prepare_logger(args) train_data, valid_data, xshape, class_num = get_datasets( xargs.dataset, xargs.data_path, -1 ) # config_path = 'configs/nas-benchmark/algos/DARTS.config' config = load_config( xargs.config_path, {"class_num": class_num, "xshape": xshape}, logger ) search_loader, _, valid_loader = get_nas_search_loaders( train_data, valid_data, xargs.dataset, "configs/nas-benchmark/", config.batch_size, xargs.workers, ) logger.log( "||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}".format( xargs.dataset, len(search_loader), len(valid_loader), config.batch_size ) ) logger.log("||||||| {:10s} ||||||| Config={:}".format(xargs.dataset, config)) search_space = get_search_spaces("cell", xargs.search_space_name) if xargs.model_config is None: model_config = dict2config( { "name": "DARTS-V1", "C": xargs.channel, "N": xargs.num_cells, "max_nodes": xargs.max_nodes, "num_classes": class_num, "space": search_space, "affine": False, "track_running_stats": bool(xargs.track_running_stats), }, None, ) else: model_config = load_config( xargs.model_config, { "num_classes": class_num, "space": search_space, "affine": False, "track_running_stats": bool(xargs.track_running_stats), }, None, ) search_model = get_cell_based_tiny_net(model_config) logger.log("search-model :\n{:}".format(search_model)) w_optimizer, w_scheduler, criterion = get_optim_scheduler( search_model.get_weights(), config ) a_optimizer = torch.optim.Adam( search_model.get_alphas(), lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay, ) logger.log("w-optimizer : {:}".format(w_optimizer)) logger.log("a-optimizer : {:}".format(a_optimizer)) logger.log("w-scheduler : {:}".format(w_scheduler)) logger.log("criterion : {:}".format(criterion)) flop, param = get_model_infos(search_model, xshape) # logger.log('{:}'.format(search_model)) logger.log("FLOP = {:.2f} M, Params = {:.2f} MB".format(flop, param)) if xargs.arch_nas_dataset is None: api = None else: api = API(xargs.arch_nas_dataset) logger.log("{:} create API = {:} done".format(time_string(), api)) last_info, model_base_path, model_best_path = ( logger.path("info"), logger.path("model"), logger.path("best"), ) network, criterion = torch.nn.DataParallel(search_model).cuda(), criterion.cuda() if last_info.exists(): # automatically resume from previous checkpoint logger.log( "=> loading checkpoint of the last-info '{:}' start".format(last_info) ) last_info = torch.load(last_info) start_epoch = last_info["epoch"] checkpoint = torch.load(last_info["last_checkpoint"]) genotypes = checkpoint["genotypes"] valid_accuracies = checkpoint["valid_accuracies"] search_model.load_state_dict(checkpoint["search_model"]) w_scheduler.load_state_dict(checkpoint["w_scheduler"]) w_optimizer.load_state_dict(checkpoint["w_optimizer"]) a_optimizer.load_state_dict(checkpoint["a_optimizer"]) logger.log( "=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format( last_info, start_epoch ) ) else: logger.log("=> do not find the last-info file : {:}".format(last_info)) start_epoch, valid_accuracies, genotypes = ( 0, {"best": -1}, {-1: search_model.genotype()}, ) # start training start_time, search_time, epoch_time, total_epoch = ( time.time(), AverageMeter(), AverageMeter(), config.epochs + config.warmup, ) for epoch in range(start_epoch, total_epoch): w_scheduler.update(epoch, 0.0) need_time = "Time Left: {:}".format( convert_secs2time(epoch_time.val * (total_epoch - epoch), True) ) epoch_str = "{:03d}-{:03d}".format(epoch, total_epoch) logger.log( "\n[Search the {:}-th epoch] {:}, LR={:}".format( epoch_str, need_time, min(w_scheduler.get_lr()) ) ) search_w_loss, search_w_top1, search_w_top5 = search_func( search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, logger, xargs.gradient_clip, ) search_time.update(time.time() - start_time) logger.log( "[{:}] searching : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%, time-cost={:.1f} s".format( epoch_str, search_w_loss, search_w_top1, search_w_top5, search_time.sum ) ) valid_a_loss, valid_a_top1, valid_a_top5 = valid_func( valid_loader, network, criterion ) logger.log( "[{:}] evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%".format( epoch_str, valid_a_loss, valid_a_top1, valid_a_top5 ) ) # check the best accuracy valid_accuracies[epoch] = valid_a_top1 if valid_a_top1 > valid_accuracies["best"]: valid_accuracies["best"] = valid_a_top1 genotypes["best"] = search_model.genotype() find_best = True else: find_best = False genotypes[epoch] = search_model.genotype() logger.log( "<<<--->>> The {:}-th epoch : {:}".format(epoch_str, genotypes[epoch]) ) # save checkpoint save_path = save_checkpoint( { "epoch": epoch + 1, "args": deepcopy(xargs), "search_model": search_model.state_dict(), "w_optimizer": w_optimizer.state_dict(), "a_optimizer": a_optimizer.state_dict(), "w_scheduler": w_scheduler.state_dict(), "genotypes": genotypes, "valid_accuracies": valid_accuracies, }, model_base_path, logger, ) last_info = save_checkpoint( { "epoch": epoch + 1, "args": deepcopy(args), "last_checkpoint": save_path, }, logger.path("info"), logger, ) if find_best: logger.log( "<<<--->>> The {:}-th epoch : find the highest validation accuracy : {:.2f}%.".format( epoch_str, valid_a_top1 ) ) copy_checkpoint(model_base_path, model_best_path, logger) with torch.no_grad(): # logger.log('arch-parameters :\n{:}'.format( nn.functional.softmax(search_model.arch_parameters, dim=-1).cpu() )) logger.log("{:}".format(search_model.show_alphas())) if api is not None: logger.log("{:}".format(api.query_by_arch(genotypes[epoch], "200"))) # measure elapsed time epoch_time.update(time.time() - start_time) start_time = time.time() logger.log("\n" + "-" * 100) logger.log( "DARTS-V1 : run {:} epochs, cost {:.1f} s, last-geno is {:}.".format( total_epoch, search_time.sum, genotypes[total_epoch - 1] ) ) if api is not None: logger.log("{:}".format(api.query_by_arch(genotypes[total_epoch - 1], "200"))) logger.close() if __name__ == "__main__": parser = argparse.ArgumentParser("DARTS first order") parser.add_argument("--data_path", type=str, help="Path to dataset") parser.add_argument( "--dataset", type=str, choices=["cifar10", "cifar100", "ImageNet16-120"], help="Choose between Cifar10/100 and ImageNet-16.", ) # channels and number-of-cells parser.add_argument("--search_space_name", type=str, help="The search space name.") parser.add_argument("--max_nodes", type=int, help="The maximum number of nodes.") parser.add_argument("--channel", type=int, help="The number of channels.") parser.add_argument( "--num_cells", type=int, help="The number of cells in one stage." ) parser.add_argument( "--track_running_stats", type=int, choices=[0, 1], help="Whether use track_running_stats or not in the BN layer.", ) parser.add_argument("--config_path", type=str, help="The config path.") parser.add_argument( "--model_config", type=str, help="The path of the model configuration. When this arg is set, it will cover max_nodes / channels / num_cells.", ) parser.add_argument("--gradient_clip", type=float, default=5, help="") # architecture leraning rate parser.add_argument( "--arch_learning_rate", type=float, default=3e-4, help="learning rate for arch encoding", ) parser.add_argument( "--arch_weight_decay", type=float, default=1e-3, help="weight decay for arch encoding", ) # log parser.add_argument( "--workers", type=int, default=2, help="number of data loading workers (default: 2)", ) parser.add_argument( "--save_dir", type=str, help="Folder to save checkpoints and log." ) parser.add_argument( "--arch_nas_dataset", type=str, help="The path to load the architecture dataset (nas-benchmark).", ) parser.add_argument("--print_freq", type=int, help="print frequency (default: 200)") parser.add_argument("--rand_seed", type=int, help="manual seed") args = parser.parse_args() if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000) main(args)
c03967857b3abb3a4db4df537c2c4342ac393b68
d41d18d3ea6edd2ec478b500386375a8693f1392
/plotly/validators/scatter/marker/line/_width.py
108770c589b4e4605b6ff605e20647ef337325b7
[ "MIT" ]
permissive
miladrux/plotly.py
38921dd6618650d03be9891d6078e771ffccc99a
dbb79e43e2cc6c5762251537d24bad1dab930fff
refs/heads/master
2020-03-27T01:46:57.497871
2018-08-20T22:37:38
2018-08-20T22:37:38
145,742,203
1
0
MIT
2018-08-22T17:37:07
2018-08-22T17:37:07
null
UTF-8
Python
false
false
465
py
import _plotly_utils.basevalidators class WidthValidator(_plotly_utils.basevalidators.NumberValidator): def __init__( self, plotly_name='width', parent_name='scatter.marker.line', **kwargs ): super(WidthValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, array_ok=True, edit_type='style', min=0, role='style', **kwargs )
f60987e55994a05e1fbf45fa4d8ded677baca05b
732374714ffe0e0f2c07a493a2ee71c9271fdce0
/mysite/settings.py
bcd771fb691401a56d55a3106a4ee650b115e261
[]
no_license
aaronahmid/mosunhomesrealtors
721fb20d671f1a58c64abc8bdf1209a5ab3236f1
561b56fd90179e163f0c861dae1d451cc1cfc662
refs/heads/main
2023-08-13T02:22:46.005517
2021-10-09T05:15:59
2021-10-09T05:15:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,269
py
""" Django settings for mysite project. Generated by 'django-admin startproject' using Django 3.2.7. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ import os import dj_database_url import django_heroku import cloudinary import cloudinary.uploader import cloudinary.api from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'django-insecure--+3$m3fs+h3qdye&74^k@qadoro606d*%%qacpzw=&7g!ruu@l' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = False ALLOWED_HOSTS = ['127.0.0.1', '.herokuapp.com', 'www.mosunhomes-realtors.com', 'mosunhomes-realtors.com'] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'blog.apps.BlogConfig', 'cloudinary', 'cloudinary_storage', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'whitenoise.middleware.WhiteNoiseMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'mysite.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'mysite.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'Africa/Lagos' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ PROJECT_ROOT = os.path.dirname(os.path.abspath(__file__)) STATIC_URL = '/static/' STATICFILES_DIRS = os.path.join(BASE_DIR, "blog/static"), STATIC_ROOT = os.path.join(BASE_DIR, 'staticfiles') MEDIA_URL = '/media/' MEDIA_ROOT = os.path.join(BASE_DIR, 'media') STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage' cloudinary.config( cloud_name = "thormiwa", api_key = "584634363435482", api_secret = "XGzynridSBzxfDGpkyOMnHAHGrA" ) DEFAULT_FILE_STORAGE = 'cloudinary_storage.storage.MediaCloudinaryStorage' # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField' SECURE_PROXY_SSL_HEADER = ('HTTP_X_FORWARDED_PROTO', 'https') SECURE_SSL_REDIRECT = True # Activate Django-Heroku. django_heroku.settings(locals())
93b57b5d8ab7beae315d919322890e775a1998e9
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_188/ch78_2019_04_04_19_41_08_100209.py
61335cb39d3ea9f3ad223e32472973ee949e080e
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
1,203
py
from math import sqrt def calcula_tempo(atletas): tempo_de_conclusao = {} for nome in atletas: tempo_atleta = sqrt(200 / atletas[nome]) tempo_de_conclusao[nome] = tempo_atleta return tempo_de_conclusao def atleta_mais_rapido(dicionario): menor_tempo = 0 melhor_atleta = "" for nome in dicionario: if menor_tempo > dicionario[nome]: menor_tempo = dicionario[nome] melhor_atleta = nome return melhor_atleta def tempo_mais_curto(dicionario): menor_tempo = 0 for nome in dicionario: if menor_tempo > dicionario[nome]: menor_tempo = dicionario[nome] return menor_tempo nomes_aceleracoes_ateltas = {} sair = False while not sair: nome = input("Digite o nome do atleta: ") aceleracao = int(input("Digite a aceleracao do atleta: ")) if nome == "sair": sair = True else: nomes_aceleracoes_atletas[nome] = aceleracao nomes_tempos_atletas = calcula_tempo(nomes_aceleracoes_atletas) nome = atleta_mais_rapido(nomes_tempos_atletas) tempo = tempo_mais_curto(nomes_tempos_atletas) print('O vencedor é {0} com tempo de conclusão de {1} s'.format(nome, tempo))
b4cebd6904d477cd8224278ad3c87bbe2000ae9e
ccbfc7818c0b75929a1dfae41dc061d5e0b78519
/aliyun-openapi-python-sdk-master/aliyun-python-sdk-vpc/aliyunsdkvpc/request/v20160428/CreateRouterInterfaceRequest.py
f3794b0030c799277bdbb14c640f9f31c41bee1c
[ "Apache-2.0" ]
permissive
P79N6A/dysms_python
44b634ffb2856b81d5f79f65889bfd5232a9b546
f44877b35817e103eed469a637813efffa1be3e4
refs/heads/master
2020-04-28T15:25:00.368913
2019-03-13T07:52:34
2019-03-13T07:52:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,414
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest class CreateRouterInterfaceRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Vpc', '2016-04-28', 'CreateRouterInterface','vpc') def get_AccessPointId(self): return self.get_query_params().get('AccessPointId') def set_AccessPointId(self,AccessPointId): self.add_query_param('AccessPointId',AccessPointId) def get_OppositeRouterId(self): return self.get_query_params().get('OppositeRouterId') def set_OppositeRouterId(self,OppositeRouterId): self.add_query_param('OppositeRouterId',OppositeRouterId) def get_OppositeAccessPointId(self): return self.get_query_params().get('OppositeAccessPointId') def set_OppositeAccessPointId(self,OppositeAccessPointId): self.add_query_param('OppositeAccessPointId',OppositeAccessPointId) def get_ResourceOwnerId(self): return self.get_query_params().get('ResourceOwnerId') def set_ResourceOwnerId(self,ResourceOwnerId): self.add_query_param('ResourceOwnerId',ResourceOwnerId) def get_Role(self): return self.get_query_params().get('Role') def set_Role(self,Role): self.add_query_param('Role',Role) def get_ClientToken(self): return self.get_query_params().get('ClientToken') def set_ClientToken(self,ClientToken): self.add_query_param('ClientToken',ClientToken) def get_HealthCheckTargetIp(self): return self.get_query_params().get('HealthCheckTargetIp') def set_HealthCheckTargetIp(self,HealthCheckTargetIp): self.add_query_param('HealthCheckTargetIp',HealthCheckTargetIp) def get_Description(self): return self.get_query_params().get('Description') def set_Description(self,Description): self.add_query_param('Description',Description) def get_Spec(self): return self.get_query_params().get('Spec') def set_Spec(self,Spec): self.add_query_param('Spec',Spec) def get_OppositeInterfaceId(self): return self.get_query_params().get('OppositeInterfaceId') def set_OppositeInterfaceId(self,OppositeInterfaceId): self.add_query_param('OppositeInterfaceId',OppositeInterfaceId) def get_InstanceChargeType(self): return self.get_query_params().get('InstanceChargeType') def set_InstanceChargeType(self,InstanceChargeType): self.add_query_param('InstanceChargeType',InstanceChargeType) def get_Period(self): return self.get_query_params().get('Period') def set_Period(self,Period): self.add_query_param('Period',Period) def get_AutoPay(self): return self.get_query_params().get('AutoPay') def set_AutoPay(self,AutoPay): self.add_query_param('AutoPay',AutoPay) def get_ResourceOwnerAccount(self): return self.get_query_params().get('ResourceOwnerAccount') def set_ResourceOwnerAccount(self,ResourceOwnerAccount): self.add_query_param('ResourceOwnerAccount',ResourceOwnerAccount) def get_OppositeRegionId(self): return self.get_query_params().get('OppositeRegionId') def set_OppositeRegionId(self,OppositeRegionId): self.add_query_param('OppositeRegionId',OppositeRegionId) def get_OwnerAccount(self): return self.get_query_params().get('OwnerAccount') def set_OwnerAccount(self,OwnerAccount): self.add_query_param('OwnerAccount',OwnerAccount) def get_OwnerId(self): return self.get_query_params().get('OwnerId') def set_OwnerId(self,OwnerId): self.add_query_param('OwnerId',OwnerId) def get_OppositeInterfaceOwnerId(self): return self.get_query_params().get('OppositeInterfaceOwnerId') def set_OppositeInterfaceOwnerId(self,OppositeInterfaceOwnerId): self.add_query_param('OppositeInterfaceOwnerId',OppositeInterfaceOwnerId) def get_RouterType(self): return self.get_query_params().get('RouterType') def set_RouterType(self,RouterType): self.add_query_param('RouterType',RouterType) def get_HealthCheckSourceIp(self): return self.get_query_params().get('HealthCheckSourceIp') def set_HealthCheckSourceIp(self,HealthCheckSourceIp): self.add_query_param('HealthCheckSourceIp',HealthCheckSourceIp) def get_RouterId(self): return self.get_query_params().get('RouterId') def set_RouterId(self,RouterId): self.add_query_param('RouterId',RouterId) def get_OppositeRouterType(self): return self.get_query_params().get('OppositeRouterType') def set_OppositeRouterType(self,OppositeRouterType): self.add_query_param('OppositeRouterType',OppositeRouterType) def get_Name(self): return self.get_query_params().get('Name') def set_Name(self,Name): self.add_query_param('Name',Name) def get_PricingCycle(self): return self.get_query_params().get('PricingCycle') def set_PricingCycle(self,PricingCycle): self.add_query_param('PricingCycle',PricingCycle)
620b6dda3cf88205a7c9f1e46efff99abe37eb7d
256728286889a60e5d8896efc6869483daba3280
/cinemanio/sites/imdb/migrations/0001_initial.py
1f14d2c4b9e565d481ff8bf0acc5215f8e05d89a
[ "MIT" ]
permissive
cinemanio/backend
5236be94d08ec79b9fc8d8973aee93ec8fad9b1b
c393dc8c2d59dc99aa2c3314d3372b6e2bf5497f
refs/heads/master
2021-05-01T13:02:08.102705
2019-11-10T14:33:37
2019-11-10T14:33:37
121,069,149
4
0
MIT
2020-02-12T00:09:03
2018-02-11T01:00:31
Python
UTF-8
Python
false
false
1,273
py
# Generated by Django 2.0.1 on 2018-01-26 01:06 import cinemanio.sites.imdb.models from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('core', '0001_initial'), ] operations = [ migrations.CreateModel( name='ImdbMovie', fields=[ ('id', models.PositiveIntegerField(primary_key=True, serialize=False, verbose_name='IMDb ID')), ('rating', models.FloatField(blank=True, db_index=True, null=True, verbose_name='IMDb rating')), ('movie', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, related_name='imdb', to='core.Movie')), ], bases=(models.Model, cinemanio.sites.imdb.models.UrlMixin), ), migrations.CreateModel( name='ImdbPerson', fields=[ ('id', models.PositiveIntegerField(primary_key=True, serialize=False, verbose_name='IMDb ID')), ('person', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, related_name='imdb', to='core.Person')), ], bases=(models.Model, cinemanio.sites.imdb.models.UrlMixin), ), ]
edf977c8ee2771f059d611fdf4b49337c5b6119e
a4174a9d51577d9b72b4e5dcf1be56bc9b0d242b
/retinanet/model/head/builder.py
b4153ffafb41099f951afdc540259b1454c0ab31
[ "Apache-2.0" ]
permissive
lchen-wyze/retinanet-tensorflow2.x
996396724c858fdc954880f3c20db7865d930a87
86404a2da6ec636d4b1aef768ac52f018c127798
refs/heads/master
2023-08-23T06:12:39.629288
2021-10-18T15:52:23
2021-10-18T15:52:23
418,040,957
0
0
Apache-2.0
2021-10-17T06:26:21
2021-10-17T06:26:21
null
UTF-8
Python
false
false
2,157
py
import numpy as np import tensorflow as tf from retinanet.model.head.detection_head import DetectionHead def build_detection_heads( params, min_level, max_level, conv_2d_op_params=None, normalization_op_params=None, activation_fn=None): if activation_fn is None: raise ValueError('`activation_fn` cannot be None') box_head = DetectionHead( num_convs=params.num_convs, filters=params.filters, output_filters=params.num_anchors * 4, min_level=min_level, max_level=max_level, prediction_bias_initializer='zeros', conv_2d_op_params=conv_2d_op_params, normalization_op_params=normalization_op_params, activation_fn=activation_fn, name='box-head') prior_prob_init = tf.constant_initializer(-np.log((1 - 0.01) / 0.01)) class_head = DetectionHead( num_convs=params.num_convs, filters=params.filters, output_filters=params.num_anchors*params.num_classes, min_level=min_level, max_level=max_level, prediction_bias_initializer=prior_prob_init, conv_2d_op_params=conv_2d_op_params, normalization_op_params=normalization_op_params, activation_fn=activation_fn, name='class-head') return box_head, class_head def build_auxillary_head( num_convs, filters, num_anchors, min_level, max_level, conv_2d_op_params=None, normalization_op_params=None, activation_fn=None): if activation_fn is None: raise ValueError('`activation_fn` cannot be None') prior_prob_init = tf.constant_initializer(-np.log((1 - 0.5) / 0.5)) auxillary_head = DetectionHead( num_convs=num_convs, filters=filters, output_filters=num_anchors, min_level=min_level, max_level=max_level, prediction_bias_initializer=prior_prob_init, conv_2d_op_params=conv_2d_op_params, normalization_op_params=normalization_op_params, activation_fn=activation_fn, name='auxillary-head') return auxillary_head
1f0aab49aa5a6590e8778e8b8366970e2e0a08f6
62babb33b9bede95aac217db04636956279bb2e2
/bit operation/1395C Boboniu and Bit Operations.py
90ae03a3fd60423b3df792021485ced2af7a8c6a
[]
no_license
tycyd/codeforces
0322e31daf18544944c769fd2a50c6d006015e34
e0773f069c6c5793f9d9a07b61878a589e375a5f
refs/heads/master
2023-08-12T05:00:39.467404
2021-09-30T16:39:21
2021-09-30T16:39:21
266,847,425
0
0
null
null
null
null
UTF-8
Python
false
false
589
py
from sys import stdin, stdout # 1 1 1 => 1 0 0, 0 1 1 # 1 1 0 0 => 1 0 0 # def boboniu_and_bit_operations(n, m, a_a, b_a): for k in range(513): cnt = 0 for a in a_a: for b in b_a: if ((a & b) | k) == k: cnt += 1 break if cnt == n: return k return -1 n, m = map(int, stdin.readline().split()) a_a = list(map(int, stdin.readline().split())) b_a = list(map(int, stdin.readline().split())) stdout.write(str(boboniu_and_bit_operations(n, m, a_a, b_a)) + '\n')
bfa7845a3715e92b22b02ae33fc01bfb05d211e5
29e82a7b9412b10600fb5c7638c0918e08af67d7
/exps/algos/R_EA.py
bc3345bcc4569b24352b35198ea4b2200718e996
[ "MIT" ]
permissive
chenmingTHU/NAS-Projects
faa2edccd821b0ae0876179a1b02e7872d4bd91e
f8f44bfb31ed50c7156f9125ba34e49159848fb7
refs/heads/master
2020-12-02T14:48:17.363203
2019-12-29T09:17:26
2019-12-29T09:17:26
null
0
0
null
null
null
null
UTF-8
Python
false
false
12,177
py
################################################## # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # ################################################################## # Regularized Evolution for Image Classifier Architecture Search # ################################################################## import os, sys, time, glob, random, argparse import numpy as np, collections from copy import deepcopy import torch import torch.nn as nn from pathlib import Path lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) from config_utils import load_config, dict2config, configure2str from datasets import get_datasets, SearchDataset from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler from utils import get_model_infos, obtain_accuracy from log_utils import AverageMeter, time_string, convert_secs2time from nas_102_api import NASBench102API as API from models import CellStructure, get_search_spaces class Model(object): def __init__(self): self.arch = None self.accuracy = None def __str__(self): """Prints a readable version of this bitstring.""" return '{:}'.format(self.arch) def valid_func(xloader, network, criterion): data_time, batch_time = AverageMeter(), AverageMeter() arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() network.train() end = time.time() with torch.no_grad(): for step, (arch_inputs, arch_targets) in enumerate(xloader): arch_targets = arch_targets.cuda(non_blocking=True) # measure data loading time data_time.update(time.time() - end) # prediction _, logits = network(arch_inputs) arch_loss = criterion(logits, arch_targets) # record arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5)) arch_losses.update(arch_loss.item(), arch_inputs.size(0)) arch_top1.update (arch_prec1.item(), arch_inputs.size(0)) arch_top5.update (arch_prec5.item(), arch_inputs.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() return arch_losses.avg, arch_top1.avg, arch_top5.avg def train_and_eval(arch, nas_bench, extra_info): if nas_bench is not None: arch_index = nas_bench.query_index_by_arch( arch ) assert arch_index >= 0, 'can not find this arch : {:}'.format(arch) info = nas_bench.get_more_info(arch_index, 'cifar10-valid', None, True) valid_acc, time_cost = info['valid-accuracy'], info['train-all-time'] + info['valid-per-time'] #_, valid_acc = info.get_metrics('cifar10-valid', 'x-valid' , 25, True) # use the validation accuracy after 25 training epochs else: # train a model from scratch. raise ValueError('NOT IMPLEMENT YET') return valid_acc, time_cost def random_architecture_func(max_nodes, op_names): # return a random architecture def random_architecture(): genotypes = [] for i in range(1, max_nodes): xlist = [] for j in range(i): node_str = '{:}<-{:}'.format(i, j) op_name = random.choice( op_names ) xlist.append((op_name, j)) genotypes.append( tuple(xlist) ) return CellStructure( genotypes ) return random_architecture def mutate_arch_func(op_names): """Computes the architecture for a child of the given parent architecture. The parent architecture is cloned and mutated to produce the child architecture. The child architecture is mutated by randomly switch one operation to another. """ def mutate_arch_func(parent_arch): child_arch = deepcopy( parent_arch ) node_id = random.randint(0, len(child_arch.nodes)-1) node_info = list( child_arch.nodes[node_id] ) snode_id = random.randint(0, len(node_info)-1) xop = random.choice( op_names ) while xop == node_info[snode_id][0]: xop = random.choice( op_names ) node_info[snode_id] = (xop, node_info[snode_id][1]) child_arch.nodes[node_id] = tuple( node_info ) return child_arch return mutate_arch_func def regularized_evolution(cycles, population_size, sample_size, time_budget, random_arch, mutate_arch, nas_bench, extra_info): """Algorithm for regularized evolution (i.e. aging evolution). Follows "Algorithm 1" in Real et al. "Regularized Evolution for Image Classifier Architecture Search". Args: cycles: the number of cycles the algorithm should run for. population_size: the number of individuals to keep in the population. sample_size: the number of individuals that should participate in each tournament. time_budget: the upper bound of searching cost Returns: history: a list of `Model` instances, representing all the models computed during the evolution experiment. """ population = collections.deque() history, total_time_cost = [], 0 # Not used by the algorithm, only used to report results. # Initialize the population with random models. while len(population) < population_size: model = Model() model.arch = random_arch() model.accuracy, time_cost = train_and_eval(model.arch, nas_bench, extra_info) population.append(model) history.append(model) total_time_cost += time_cost # Carry out evolution in cycles. Each cycle produces a model and removes # another. #while len(history) < cycles: while total_time_cost < time_budget: # Sample randomly chosen models from the current population. start_time, sample = time.time(), [] while len(sample) < sample_size: # Inefficient, but written this way for clarity. In the case of neural # nets, the efficiency of this line is irrelevant because training neural # nets is the rate-determining step. candidate = random.choice(list(population)) sample.append(candidate) # The parent is the best model in the sample. parent = max(sample, key=lambda i: i.accuracy) # Create the child model and store it. child = Model() child.arch = mutate_arch(parent.arch) total_time_cost += time.time() - start_time child.accuracy, time_cost = train_and_eval(child.arch, nas_bench, extra_info) if total_time_cost + time_cost > time_budget: # return return history, total_time_cost else: total_time_cost += time_cost population.append(child) history.append(child) # Remove the oldest model. population.popleft() return history, total_time_cost def main(xargs, nas_bench): assert torch.cuda.is_available(), 'CUDA is not available.' torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.set_num_threads( xargs.workers ) prepare_seed(xargs.rand_seed) logger = prepare_logger(args) assert xargs.dataset == 'cifar10', 'currently only support CIFAR-10' train_data, valid_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1) split_Fpath = 'configs/nas-benchmark/cifar-split.txt' cifar_split = load_config(split_Fpath, None, None) train_split, valid_split = cifar_split.train, cifar_split.valid logger.log('Load split file from {:}'.format(split_Fpath)) config_path = 'configs/nas-benchmark/algos/R-EA.config' config = load_config(config_path, {'class_num': class_num, 'xshape': xshape}, logger) # To split data train_data_v2 = deepcopy(train_data) train_data_v2.transform = valid_data.transform valid_data = train_data_v2 search_data = SearchDataset(xargs.dataset, train_data, train_split, valid_split) # data loader train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split) , num_workers=xargs.workers, pin_memory=True) valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True) logger.log('||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(train_loader), len(valid_loader), config.batch_size)) logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config)) extra_info = {'config': config, 'train_loader': train_loader, 'valid_loader': valid_loader} search_space = get_search_spaces('cell', xargs.search_space_name) random_arch = random_architecture_func(xargs.max_nodes, search_space) mutate_arch = mutate_arch_func(search_space) #x =random_arch() ; y = mutate_arch(x) logger.log('{:} use nas_bench : {:}'.format(time_string(), nas_bench)) logger.log('-'*30 + ' start searching with the time budget of {:} s'.format(xargs.time_budget)) history, total_cost = regularized_evolution(xargs.ea_cycles, xargs.ea_population, xargs.ea_sample_size, xargs.time_budget, random_arch, mutate_arch, nas_bench if args.ea_fast_by_api else None, extra_info) logger.log('{:} regularized_evolution finish with history of {:} arch with {:.1f} s.'.format(time_string(), len(history), total_cost)) best_arch = max(history, key=lambda i: i.accuracy) best_arch = best_arch.arch logger.log('{:} best arch is {:}'.format(time_string(), best_arch)) info = nas_bench.query_by_arch( best_arch ) if info is None: logger.log('Did not find this architecture : {:}.'.format(best_arch)) else : logger.log('{:}'.format(info)) logger.log('-'*100) logger.close() return logger.log_dir, nas_bench.query_index_by_arch( best_arch ) if __name__ == '__main__': parser = argparse.ArgumentParser("Regularized Evolution Algorithm") parser.add_argument('--data_path', type=str, help='Path to dataset') parser.add_argument('--dataset', type=str, choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.') # channels and number-of-cells parser.add_argument('--search_space_name', type=str, help='The search space name.') parser.add_argument('--max_nodes', type=int, help='The maximum number of nodes.') parser.add_argument('--channel', type=int, help='The number of channels.') parser.add_argument('--num_cells', type=int, help='The number of cells in one stage.') parser.add_argument('--ea_cycles', type=int, help='The number of cycles in EA.') parser.add_argument('--ea_population', type=int, help='The population size in EA.') parser.add_argument('--ea_sample_size', type=int, help='The sample size in EA.') parser.add_argument('--ea_fast_by_api', type=int, help='Use our API to speed up the experiments or not.') parser.add_argument('--time_budget', type=int, help='The total time cost budge for searching (in seconds).') # log parser.add_argument('--workers', type=int, default=2, help='number of data loading workers (default: 2)') parser.add_argument('--save_dir', type=str, help='Folder to save checkpoints and log.') parser.add_argument('--arch_nas_dataset', type=str, help='The path to load the architecture dataset (tiny-nas-benchmark).') parser.add_argument('--print_freq', type=int, help='print frequency (default: 200)') parser.add_argument('--rand_seed', type=int, default=-1, help='manual seed') args = parser.parse_args() #if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000) args.ea_fast_by_api = args.ea_fast_by_api > 0 if args.arch_nas_dataset is None or not os.path.isfile(args.arch_nas_dataset): nas_bench = None else: print ('{:} build NAS-Benchmark-API from {:}'.format(time_string(), args.arch_nas_dataset)) nas_bench = API(args.arch_nas_dataset) if args.rand_seed < 0: save_dir, all_indexes, num = None, [], 500 for i in range(num): print ('{:} : {:03d}/{:03d}'.format(time_string(), i, num)) args.rand_seed = random.randint(1, 100000) save_dir, index = main(args, nas_bench) all_indexes.append( index ) torch.save(all_indexes, save_dir / 'results.pth') else: main(args, nas_bench)
4286d6e8f7466f4a7c7b415049764bd995510e58
272cf6bd5f56812e14c2ed0df60d626859ec2c96
/imdb_scrapy/spiders/script.py
e4449b1818474a1e4a37f9c3fa7e6064e5dd476e
[]
no_license
abhinavjha98/scrapy_simple_hired
a1b5933be5a401585f6cdfef48299b765cf25303
a0dbf812d1d4a5e16d8bf46633bdc95b747f2fd3
refs/heads/master
2023-01-24T05:46:24.639774
2020-11-30T17:17:09
2020-11-30T17:17:09
298,634,627
1
0
null
null
null
null
UTF-8
Python
false
false
2,352
py
# -*- coding: utf-8 -*- import scrapy import urllib import requests # item class included here class DmozItem(scrapy.Item): # define the fields for your item here like: ApplyLink = scrapy.Field() Title = scrapy.Field() Company = scrapy.Field() Location = scrapy.Field() salary = scrapy.Field() Logo = scrapy.Field() Description = scrapy.Field() class DmozSpider(scrapy.Spider): name = "dmoz" page_number = 2 start_urls = [ 'https://www.simplyhired.com/search?q=java&l=Philadelphia%2C+PA&job=fYxbZPaOvxUi_StIPQGdAhmm__9ReBI5jbVy7amchpkhgoG5xdkwUA' ] BASE_URL = 'https://www.simplyhired.com' def parse(self, response): links = response.css('a.card-link').xpath("@href").extract() for link in links: absolute_url = self.BASE_URL + link yield scrapy.Request(absolute_url, callback=self.parse_attr) next_page = "https://www.simplyhired.com/search?q=java&l=Philadelphia%2C+PA&pn="+str(DmozSpider.page_number)+"&job=fYxbZPaOvxUi_StIPQGdAhmm__9ReBI5jbVy7amchpkhgoG5xdkwUA" if DmozSpider.page_number<=91: DmozSpider.page_number +=1 yield response.follow(next_page,callback=self.parse) def parse_attr(self, response): item = DmozItem() logo = response.css('img.viewjob-company-logoImg').xpath("@src").extract() try: item["Logo"] = DmozSpider.BASE_URL+""+logo[0] except: item["Logo"] = 'none' item["Title"] = response.css("div.viewjob-jobTitle::text").extract() item["Location"] = response.css("div.viewjob-labelWithIcon::text")[1].extract() item["Company"] = response.css("div.viewjob-labelWithIcon::text")[0].extract() aa=response.css("div.p::text").extract() text_list="" for text in aa: text = text.rstrip("\n") text_list=text_list+text item["Description"] = text_list links = response.css('a.btn-apply').xpath("@href").extract() # final_url = urllib.request.urlopen("https://www.simplyhired.com"+links[0],None,1).geturl() final_url = requests.get("https://www.simplyhired.com"+links[0]) item["ApplyLink"] = final_url.url item["salary"]=response.css("span.viewjob-labelWithIcon::text").extract() return item
eb2bae37e9c648b4f4f8701e435601f4d4be96e9
0f556b9d4e250df73bf1e0929dbd4afad51e82fe
/smaller_than/smaller_than.py
cb6b4e049621e62ab38344e518e8ebe479383f31
[]
no_license
unabl4/PythonCodeClub
0ef1cb4d145860a4fda528c2eea513d0ba6b8327
72d5887342c1e0b304307a0e0ac9eb78f0202c35
refs/heads/master
2021-04-30T04:42:03.266029
2019-02-18T22:09:12
2019-02-18T22:09:12
121,541,065
0
0
null
null
null
null
UTF-8
Python
false
false
107
py
def smaller_than(number_1, number_2): return None if number_1 == number_2 else min(number_1, number_2)
8f3b6dd785a104a1985f13ba77bbd4751286ee03
7fd8a09fd94d09d568d67afcb4ecf3b60a936fe2
/Tests/TestEnvironment/test_config.py
ad9fcccfe8d638613e2087450489742dbd85bc2a
[ "MIT" ]
permissive
dev-11/eigen-technical-task
4c2ac82c02f2cbd6b7020d2cbfc33beca20db37f
c0b041fc2bd27d2706ccdab94f6eb618f17098bd
refs/heads/master
2021-05-20T22:14:32.015768
2021-03-28T12:02:50
2021-03-28T12:02:50
252,434,894
0
0
null
null
null
null
UTF-8
Python
false
false
128
py
DIRECTORIES_TO_SCAN = ['test_docs/'] TXT_FILE_EXTENSION = 'txt' DEFAULT_INTERESTING_WEIGHT = 1 INTERESTING_RATING_THRESHOLD = 5
19838a190c48902a9799ae5a54116786d9d5576b
163bbb4e0920dedd5941e3edfb2d8706ba75627d
/Code/CodeRecords/2901/58744/247697.py
300e82a6c695d61e1fd561bfba7acad1b071cf0a
[]
no_license
AdamZhouSE/pythonHomework
a25c120b03a158d60aaa9fdc5fb203b1bb377a19
ffc5606817a666aa6241cfab27364326f5c066ff
refs/heads/master
2022-11-24T08:05:22.122011
2020-07-28T16:21:24
2020-07-28T16:21:24
259,576,640
2
1
null
null
null
null
UTF-8
Python
false
false
289
py
num = int(input()) def isAlternatingBits(num): former_bit = 0 if num & 1 else 1 while num > 0: if num & 1 == former_bit: return False num >>= 1 former_bit = 0 if former_bit else 1 return True print(str(isAlternatingBits(num)).lower())
79a8e4c562139987c47fe34f81f4bc9c48703f36
3db7b5409f2f9c57ab3f98bda50f8b548d98063d
/samples/tests/test_model_samples.py
ed82dd678c2f104779586f523aeefb3e7b00a9f1
[ "Apache-2.0" ]
permissive
googleapis/python-bigquery
66db156b52e97565f6211b2fab5aac4e519fa798
3645e32aeebefe9d5a4bc71a6513942741f0f196
refs/heads/main
2023-09-01T07:41:24.893598
2023-08-23T19:04:13
2023-08-23T19:04:13
226,992,475
622
287
Apache-2.0
2023-09-12T04:31:26
2019-12-10T00:09:04
Python
UTF-8
Python
false
false
1,507
py
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import typing from .. import delete_model from .. import get_model from .. import list_models from .. import update_model if typing.TYPE_CHECKING: import pytest def test_model_samples( capsys: "pytest.CaptureFixture[str]", dataset_id: str, model_id: str ) -> None: """Since creating a model is a long operation, test all model samples in the same test, following a typical end-to-end flow. """ get_model.get_model(model_id) out, err = capsys.readouterr() assert model_id in out list_models.list_models(dataset_id) out, err = capsys.readouterr() assert "Models contained in '{}':".format(dataset_id) in out update_model.update_model(model_id) out, err = capsys.readouterr() assert "This model was modified from a Python program." in out delete_model.delete_model(model_id) out, err = capsys.readouterr() assert "Deleted model '{}'.".format(model_id) in out
f183c720412c131b71409791d712d87142101b8b
6e8d58340f2be5f00d55e2629052c0bbc9dcf390
/eggs/SQLAlchemy-0.5.6_dev_r6498-py2.6.egg/sqlalchemy/databases/mysql.py
ba6b026ea29aac857be41bbe8563e904dfc2ff43
[ "CC-BY-2.5", "MIT" ]
permissive
JCVI-Cloud/galaxy-tools-prok
e57389750d33ac766e1658838cdb0aaf9a59c106
3c44ecaf4b2e1f2d7269eabef19cbd2e88b3a99c
refs/heads/master
2021-05-02T06:23:05.414371
2014-03-21T18:12:43
2014-03-21T18:12:43
6,092,693
0
2
NOASSERTION
2020-07-25T20:38:17
2012-10-05T15:57:38
Python
UTF-8
Python
false
false
97,080
py
# -*- fill-column: 78 -*- # mysql.py # Copyright (C) 2005, 2006, 2007, 2008, 2009 Michael Bayer [email protected] # # This module is part of SQLAlchemy and is released under # the MIT License: http://www.opensource.org/licenses/mit-license.php """Support for the MySQL database. Overview -------- For normal SQLAlchemy usage, importing this module is unnecessary. It will be loaded on-demand when a MySQL connection is needed. The generic column types like :class:`~sqlalchemy.String` and :class:`~sqlalchemy.Integer` will automatically be adapted to the optimal matching MySQL column type. But if you would like to use one of the MySQL-specific or enhanced column types when creating tables with your :class:`~sqlalchemy.Table` definitions, then you will need to import them from this module:: from sqlalchemy.databases import mysql Table('mytable', metadata, Column('id', Integer, primary_key=True), Column('ittybittyblob', mysql.MSTinyBlob), Column('biggy', mysql.MSBigInteger(unsigned=True))) All standard MySQL column types are supported. The OpenGIS types are available for use via table reflection but have no special support or mapping to Python classes. If you're using these types and have opinions about how OpenGIS can be smartly integrated into SQLAlchemy please join the mailing list! Supported Versions and Features ------------------------------- SQLAlchemy supports 6 major MySQL versions: 3.23, 4.0, 4.1, 5.0, 5.1 and 6.0, with capabilities increasing with more modern servers. Versions 4.1 and higher support the basic SQL functionality that SQLAlchemy uses in the ORM and SQL expressions. These versions pass the applicable tests in the suite 100%. No heroic measures are taken to work around major missing SQL features- if your server version does not support sub-selects, for example, they won't work in SQLAlchemy either. Currently, the only DB-API driver supported is `MySQL-Python` (also referred to as `MySQLdb`). Either 1.2.1 or 1.2.2 are recommended. The alpha, beta and gamma releases of 1.2.1 and 1.2.2 should be avoided. Support for Jython and IronPython is planned. ===================================== =============== Feature Minimum Version ===================================== =============== sqlalchemy.orm 4.1.1 Table Reflection 3.23.x DDL Generation 4.1.1 utf8/Full Unicode Connections 4.1.1 Transactions 3.23.15 Two-Phase Transactions 5.0.3 Nested Transactions 5.0.3 ===================================== =============== See the official MySQL documentation for detailed information about features supported in any given server release. Character Sets -------------- Many MySQL server installations default to a ``latin1`` encoding for client connections. All data sent through the connection will be converted into ``latin1``, even if you have ``utf8`` or another character set on your tables and columns. With versions 4.1 and higher, you can change the connection character set either through server configuration or by including the ``charset`` parameter in the URL used for ``create_engine``. The ``charset`` option is passed through to MySQL-Python and has the side-effect of also enabling ``use_unicode`` in the driver by default. For regular encoded strings, also pass ``use_unicode=0`` in the connection arguments:: # set client encoding to utf8; all strings come back as unicode create_engine('mysql:///mydb?charset=utf8') # set client encoding to utf8; all strings come back as utf8 str create_engine('mysql:///mydb?charset=utf8&use_unicode=0') Storage Engines --------------- Most MySQL server installations have a default table type of ``MyISAM``, a non-transactional table type. During a transaction, non-transactional storage engines do not participate and continue to store table changes in autocommit mode. For fully atomic transactions, all participating tables must use a transactional engine such as ``InnoDB``, ``Falcon``, ``SolidDB``, `PBXT`, etc. Storage engines can be elected when creating tables in SQLAlchemy by supplying a ``mysql_engine='whatever'`` to the ``Table`` constructor. Any MySQL table creation option can be specified in this syntax:: Table('mytable', metadata, Column('data', String(32)), mysql_engine='InnoDB', mysql_charset='utf8' ) Keys ---- Not all MySQL storage engines support foreign keys. For ``MyISAM`` and similar engines, the information loaded by table reflection will not include foreign keys. For these tables, you may supply a :class:`~sqlalchemy.ForeignKeyConstraint` at reflection time:: Table('mytable', metadata, ForeignKeyConstraint(['other_id'], ['othertable.other_id']), autoload=True ) When creating tables, SQLAlchemy will automatically set ``AUTO_INCREMENT``` on an integer primary key column:: >>> t = Table('mytable', metadata, ... Column('mytable_id', Integer, primary_key=True) ... ) >>> t.create() CREATE TABLE mytable ( id INTEGER NOT NULL AUTO_INCREMENT, PRIMARY KEY (id) ) You can disable this behavior by supplying ``autoincrement=False`` to the :class:`~sqlalchemy.Column`. This flag can also be used to enable auto-increment on a secondary column in a multi-column key for some storage engines:: Table('mytable', metadata, Column('gid', Integer, primary_key=True, autoincrement=False), Column('id', Integer, primary_key=True) ) SQL Mode -------- MySQL SQL modes are supported. Modes that enable ``ANSI_QUOTES`` (such as ``ANSI``) require an engine option to modify SQLAlchemy's quoting style. When using an ANSI-quoting mode, supply ``use_ansiquotes=True`` when creating your ``Engine``:: create_engine('mysql://localhost/test', use_ansiquotes=True) This is an engine-wide option and is not toggleable on a per-connection basis. SQLAlchemy does not presume to ``SET sql_mode`` for you with this option. For the best performance, set the quoting style server-wide in ``my.cnf`` or by supplying ``--sql-mode`` to ``mysqld``. You can also use a :class:`sqlalchemy.pool.Pool` listener hook to issue a ``SET SESSION sql_mode='...'`` on connect to configure each connection. If you do not specify ``use_ansiquotes``, the regular MySQL quoting style is used by default. If you do issue a ``SET sql_mode`` through SQLAlchemy, the dialect must be updated if the quoting style is changed. Again, this change will affect all connections:: connection.execute('SET sql_mode="ansi"') connection.dialect.use_ansiquotes = True MySQL SQL Extensions -------------------- Many of the MySQL SQL extensions are handled through SQLAlchemy's generic function and operator support:: table.select(table.c.password==func.md5('plaintext')) table.select(table.c.username.op('regexp')('^[a-d]')) And of course any valid MySQL statement can be executed as a string as well. Some limited direct support for MySQL extensions to SQL is currently available. * SELECT pragma:: select(..., prefixes=['HIGH_PRIORITY', 'SQL_SMALL_RESULT']) * UPDATE with LIMIT:: update(..., mysql_limit=10) Troubleshooting --------------- If you have problems that seem server related, first check that you are using the most recent stable MySQL-Python package available. The Database Notes page on the wiki at http://www.sqlalchemy.org is a good resource for timely information affecting MySQL in SQLAlchemy. """ import datetime, decimal, inspect, re, sys from array import array as _array from sqlalchemy import exc, log, schema, sql, util from sqlalchemy.sql import operators as sql_operators from sqlalchemy.sql import functions as sql_functions from sqlalchemy.sql import compiler from sqlalchemy.engine import base as engine_base, default from sqlalchemy import types as sqltypes __all__ = ( 'MSBigInteger', 'MSMediumInteger', 'MSBinary', 'MSBit', 'MSBlob', 'MSBoolean', 'MSChar', 'MSDate', 'MSDateTime', 'MSDecimal', 'MSDouble', 'MSEnum', 'MSFloat', 'MSInteger', 'MSLongBlob', 'MSLongText', 'MSMediumBlob', 'MSMediumText', 'MSNChar', 'MSNVarChar', 'MSNumeric', 'MSSet', 'MSSmallInteger', 'MSString', 'MSText', 'MSTime', 'MSTimeStamp', 'MSTinyBlob', 'MSTinyInteger', 'MSTinyText', 'MSVarBinary', 'MSYear' ) RESERVED_WORDS = set( ['accessible', 'add', 'all', 'alter', 'analyze','and', 'as', 'asc', 'asensitive', 'before', 'between', 'bigint', 'binary', 'blob', 'both', 'by', 'call', 'cascade', 'case', 'change', 'char', 'character', 'check', 'collate', 'column', 'condition', 'constraint', 'continue', 'convert', 'create', 'cross', 'current_date', 'current_time', 'current_timestamp', 'current_user', 'cursor', 'database', 'databases', 'day_hour', 'day_microsecond', 'day_minute', 'day_second', 'dec', 'decimal', 'declare', 'default', 'delayed', 'delete', 'desc', 'describe', 'deterministic', 'distinct', 'distinctrow', 'div', 'double', 'drop', 'dual', 'each', 'else', 'elseif', 'enclosed', 'escaped', 'exists', 'exit', 'explain', 'false', 'fetch', 'float', 'float4', 'float8', 'for', 'force', 'foreign', 'from', 'fulltext', 'grant', 'group', 'having', 'high_priority', 'hour_microsecond', 'hour_minute', 'hour_second', 'if', 'ignore', 'in', 'index', 'infile', 'inner', 'inout', 'insensitive', 'insert', 'int', 'int1', 'int2', 'int3', 'int4', 'int8', 'integer', 'interval', 'into', 'is', 'iterate', 'join', 'key', 'keys', 'kill', 'leading', 'leave', 'left', 'like', 'limit', 'linear', 'lines', 'load', 'localtime', 'localtimestamp', 'lock', 'long', 'longblob', 'longtext', 'loop', 'low_priority', 'master_ssl_verify_server_cert', 'match', 'mediumblob', 'mediumint', 'mediumtext', 'middleint', 'minute_microsecond', 'minute_second', 'mod', 'modifies', 'natural', 'not', 'no_write_to_binlog', 'null', 'numeric', 'on', 'optimize', 'option', 'optionally', 'or', 'order', 'out', 'outer', 'outfile', 'precision', 'primary', 'procedure', 'purge', 'range', 'read', 'reads', 'read_only', 'read_write', 'real', 'references', 'regexp', 'release', 'rename', 'repeat', 'replace', 'require', 'restrict', 'return', 'revoke', 'right', 'rlike', 'schema', 'schemas', 'second_microsecond', 'select', 'sensitive', 'separator', 'set', 'show', 'smallint', 'spatial', 'specific', 'sql', 'sqlexception', 'sqlstate', 'sqlwarning', 'sql_big_result', 'sql_calc_found_rows', 'sql_small_result', 'ssl', 'starting', 'straight_join', 'table', 'terminated', 'then', 'tinyblob', 'tinyint', 'tinytext', 'to', 'trailing', 'trigger', 'true', 'undo', 'union', 'unique', 'unlock', 'unsigned', 'update', 'usage', 'use', 'using', 'utc_date', 'utc_time', 'utc_timestamp', 'values', 'varbinary', 'varchar', 'varcharacter', 'varying', 'when', 'where', 'while', 'with', 'write', 'x509', 'xor', 'year_month', 'zerofill', # 5.0 'columns', 'fields', 'privileges', 'soname', 'tables', # 4.1 'accessible', 'linear', 'master_ssl_verify_server_cert', 'range', 'read_only', 'read_write', # 5.1 ]) AUTOCOMMIT_RE = re.compile( r'\s*(?:UPDATE|INSERT|CREATE|DELETE|DROP|ALTER|LOAD +DATA|REPLACE)', re.I | re.UNICODE) SET_RE = re.compile( r'\s*SET\s+(?:(?:GLOBAL|SESSION)\s+)?\w', re.I | re.UNICODE) class _NumericType(object): """Base for MySQL numeric types.""" def __init__(self, kw): self.unsigned = kw.pop('unsigned', False) self.zerofill = kw.pop('zerofill', False) def _extend(self, spec): "Extend a numeric-type declaration with MySQL specific extensions." if self.unsigned: spec += ' UNSIGNED' if self.zerofill: spec += ' ZEROFILL' return spec class _StringType(object): """Base for MySQL string types.""" def __init__(self, charset=None, collation=None, ascii=False, unicode=False, binary=False, national=False, **kwargs): self.charset = charset # allow collate= or collation= self.collation = kwargs.get('collate', collation) self.ascii = ascii self.unicode = unicode self.binary = binary self.national = national def _extend(self, spec): """Extend a string-type declaration with standard SQL CHARACTER SET / COLLATE annotations and MySQL specific extensions. """ if self.charset: charset = 'CHARACTER SET %s' % self.charset elif self.ascii: charset = 'ASCII' elif self.unicode: charset = 'UNICODE' else: charset = None if self.collation: collation = 'COLLATE %s' % self.collation elif self.binary: collation = 'BINARY' else: collation = None if self.national: # NATIONAL (aka NCHAR/NVARCHAR) trumps charsets. return ' '.join([c for c in ('NATIONAL', spec, collation) if c is not None]) return ' '.join([c for c in (spec, charset, collation) if c is not None]) def __repr__(self): attributes = inspect.getargspec(self.__init__)[0][1:] attributes.extend(inspect.getargspec(_StringType.__init__)[0][1:]) params = {} for attr in attributes: val = getattr(self, attr) if val is not None and val is not False: params[attr] = val return "%s(%s)" % (self.__class__.__name__, ', '.join(['%s=%r' % (k, params[k]) for k in params])) class MSNumeric(sqltypes.Numeric, _NumericType): """MySQL NUMERIC type.""" def __init__(self, precision=10, scale=2, asdecimal=True, **kw): """Construct a NUMERIC. :param precision: Total digits in this number. If scale and precision are both None, values are stored to limits allowed by the server. :param scale: The number of digits after the decimal point. :param unsigned: a boolean, optional. :param zerofill: Optional. If true, values will be stored as strings left-padded with zeros. Note that this does not effect the values returned by the underlying database API, which continue to be numeric. """ _NumericType.__init__(self, kw) sqltypes.Numeric.__init__(self, precision, scale, asdecimal=asdecimal, **kw) def get_col_spec(self): if self.precision is None: return self._extend("NUMERIC") else: return self._extend("NUMERIC(%(precision)s, %(scale)s)" % {'precision': self.precision, 'scale' : self.scale}) def bind_processor(self, dialect): return None def result_processor(self, dialect): if not self.asdecimal: def process(value): if isinstance(value, decimal.Decimal): return float(value) else: return value return process else: return None class MSDecimal(MSNumeric): """MySQL DECIMAL type.""" def __init__(self, precision=10, scale=2, asdecimal=True, **kw): """Construct a DECIMAL. :param precision: Total digits in this number. If scale and precision are both None, values are stored to limits allowed by the server. :param scale: The number of digits after the decimal point. :param unsigned: a boolean, optional. :param zerofill: Optional. If true, values will be stored as strings left-padded with zeros. Note that this does not effect the values returned by the underlying database API, which continue to be numeric. """ super(MSDecimal, self).__init__(precision, scale, asdecimal=asdecimal, **kw) def get_col_spec(self): if self.precision is None: return self._extend("DECIMAL") elif self.scale is None: return self._extend("DECIMAL(%(precision)s)" % {'precision': self.precision}) else: return self._extend("DECIMAL(%(precision)s, %(scale)s)" % {'precision': self.precision, 'scale' : self.scale}) class MSDouble(sqltypes.Float, _NumericType): """MySQL DOUBLE type.""" def __init__(self, precision=None, scale=None, asdecimal=True, **kw): """Construct a DOUBLE. :param precision: Total digits in this number. If scale and precision are both None, values are stored to limits allowed by the server. :param scale: The number of digits after the decimal point. :param unsigned: a boolean, optional. :param zerofill: Optional. If true, values will be stored as strings left-padded with zeros. Note that this does not effect the values returned by the underlying database API, which continue to be numeric. """ if ((precision is None and scale is not None) or (precision is not None and scale is None)): raise exc.ArgumentError( "You must specify both precision and scale or omit " "both altogether.") _NumericType.__init__(self, kw) sqltypes.Float.__init__(self, asdecimal=asdecimal, **kw) self.scale = scale self.precision = precision def get_col_spec(self): if self.precision is not None and self.scale is not None: return self._extend("DOUBLE(%(precision)s, %(scale)s)" % {'precision': self.precision, 'scale' : self.scale}) else: return self._extend('DOUBLE') class MSReal(MSDouble): """MySQL REAL type.""" def __init__(self, precision=None, scale=None, asdecimal=True, **kw): """Construct a REAL. :param precision: Total digits in this number. If scale and precision are both None, values are stored to limits allowed by the server. :param scale: The number of digits after the decimal point. :param unsigned: a boolean, optional. :param zerofill: Optional. If true, values will be stored as strings left-padded with zeros. Note that this does not effect the values returned by the underlying database API, which continue to be numeric. """ MSDouble.__init__(self, precision, scale, asdecimal, **kw) def get_col_spec(self): if self.precision is not None and self.scale is not None: return self._extend("REAL(%(precision)s, %(scale)s)" % {'precision': self.precision, 'scale' : self.scale}) else: return self._extend('REAL') class MSFloat(sqltypes.Float, _NumericType): """MySQL FLOAT type.""" def __init__(self, precision=None, scale=None, asdecimal=False, **kw): """Construct a FLOAT. :param precision: Total digits in this number. If scale and precision are both None, values are stored to limits allowed by the server. :param scale: The number of digits after the decimal point. :param unsigned: a boolean, optional. :param zerofill: Optional. If true, values will be stored as strings left-padded with zeros. Note that this does not effect the values returned by the underlying database API, which continue to be numeric. """ _NumericType.__init__(self, kw) sqltypes.Float.__init__(self, asdecimal=asdecimal, **kw) self.scale = scale self.precision = precision def get_col_spec(self): if self.scale is not None and self.precision is not None: return self._extend("FLOAT(%s, %s)" % (self.precision, self.scale)) elif self.precision is not None: return self._extend("FLOAT(%s)" % (self.precision,)) else: return self._extend("FLOAT") def bind_processor(self, dialect): return None class MSInteger(sqltypes.Integer, _NumericType): """MySQL INTEGER type.""" def __init__(self, display_width=None, **kw): """Construct an INTEGER. :param display_width: Optional, maximum display width for this number. :param unsigned: a boolean, optional. :param zerofill: Optional. If true, values will be stored as strings left-padded with zeros. Note that this does not effect the values returned by the underlying database API, which continue to be numeric. """ if 'length' in kw: util.warn_deprecated("'length' is deprecated for MSInteger and subclasses. Use 'display_width'.") self.display_width = kw.pop('length') else: self.display_width = display_width _NumericType.__init__(self, kw) sqltypes.Integer.__init__(self, **kw) def get_col_spec(self): if self.display_width is not None: return self._extend("INTEGER(%(display_width)s)" % {'display_width': self.display_width}) else: return self._extend("INTEGER") class MSBigInteger(MSInteger): """MySQL BIGINTEGER type.""" def __init__(self, display_width=None, **kw): """Construct a BIGINTEGER. :param display_width: Optional, maximum display width for this number. :param unsigned: a boolean, optional. :param zerofill: Optional. If true, values will be stored as strings left-padded with zeros. Note that this does not effect the values returned by the underlying database API, which continue to be numeric. """ super(MSBigInteger, self).__init__(display_width, **kw) def get_col_spec(self): if self.display_width is not None: return self._extend("BIGINT(%(display_width)s)" % {'display_width': self.display_width}) else: return self._extend("BIGINT") class MSMediumInteger(MSInteger): """MySQL MEDIUMINTEGER type.""" def __init__(self, display_width=None, **kw): """Construct a MEDIUMINTEGER :param display_width: Optional, maximum display width for this number. :param unsigned: a boolean, optional. :param zerofill: Optional. If true, values will be stored as strings left-padded with zeros. Note that this does not effect the values returned by the underlying database API, which continue to be numeric. """ super(MSMediumInteger, self).__init__(display_width, **kw) def get_col_spec(self): if self.display_width is not None: return self._extend("MEDIUMINT(%(display_width)s)" % {'display_width': self.display_width}) else: return self._extend("MEDIUMINT") class MSTinyInteger(MSInteger): """MySQL TINYINT type.""" def __init__(self, display_width=None, **kw): """Construct a TINYINT. Note: following the usual MySQL conventions, TINYINT(1) columns reflected during Table(..., autoload=True) are treated as Boolean columns. :param display_width: Optional, maximum display width for this number. :param unsigned: a boolean, optional. :param zerofill: Optional. If true, values will be stored as strings left-padded with zeros. Note that this does not effect the values returned by the underlying database API, which continue to be numeric. """ super(MSTinyInteger, self).__init__(display_width, **kw) def get_col_spec(self): if self.display_width is not None: return self._extend("TINYINT(%s)" % self.display_width) else: return self._extend("TINYINT") class MSSmallInteger(sqltypes.Smallinteger, MSInteger): """MySQL SMALLINTEGER type.""" def __init__(self, display_width=None, **kw): """Construct a SMALLINTEGER. :param display_width: Optional, maximum display width for this number. :param unsigned: a boolean, optional. :param zerofill: Optional. If true, values will be stored as strings left-padded with zeros. Note that this does not effect the values returned by the underlying database API, which continue to be numeric. """ self.display_width = display_width _NumericType.__init__(self, kw) sqltypes.SmallInteger.__init__(self, **kw) def get_col_spec(self): if self.display_width is not None: return self._extend("SMALLINT(%(display_width)s)" % {'display_width': self.display_width}) else: return self._extend("SMALLINT") class MSBit(sqltypes.TypeEngine): """MySQL BIT type. This type is for MySQL 5.0.3 or greater for MyISAM, and 5.0.5 or greater for MyISAM, MEMORY, InnoDB and BDB. For older versions, use a MSTinyInteger() type. """ def __init__(self, length=None): """Construct a BIT. :param length: Optional, number of bits. """ self.length = length def result_processor(self, dialect): """Convert a MySQL's 64 bit, variable length binary string to a long.""" def process(value): if value is not None: v = 0L for i in map(ord, value): v = v << 8 | i value = v return value return process def get_col_spec(self): if self.length is not None: return "BIT(%s)" % self.length else: return "BIT" class MSDateTime(sqltypes.DateTime): """MySQL DATETIME type.""" def get_col_spec(self): return "DATETIME" class MSDate(sqltypes.Date): """MySQL DATE type.""" def get_col_spec(self): return "DATE" class MSTime(sqltypes.Time): """MySQL TIME type.""" def get_col_spec(self): return "TIME" def result_processor(self, dialect): def process(value): # convert from a timedelta value if value is not None: return datetime.time(value.seconds/60/60, value.seconds/60%60, value.seconds - (value.seconds/60*60)) else: return None return process class MSTimeStamp(sqltypes.TIMESTAMP): """MySQL TIMESTAMP type. To signal the orm to automatically re-select modified rows to retrieve the updated timestamp, add a ``server_default`` to your :class:`~sqlalchemy.Column` specification:: from sqlalchemy.databases import mysql Column('updated', mysql.MSTimeStamp, server_default=sql.text('CURRENT_TIMESTAMP') ) The full range of MySQL 4.1+ TIMESTAMP defaults can be specified in the the default:: server_default=sql.text('CURRENT TIMESTAMP ON UPDATE CURRENT_TIMESTAMP') """ def get_col_spec(self): return "TIMESTAMP" class MSYear(sqltypes.TypeEngine): """MySQL YEAR type, for single byte storage of years 1901-2155.""" def __init__(self, display_width=None): self.display_width = display_width def get_col_spec(self): if self.display_width is None: return "YEAR" else: return "YEAR(%s)" % self.display_width class MSText(_StringType, sqltypes.Text): """MySQL TEXT type, for text up to 2^16 characters.""" def __init__(self, length=None, **kwargs): """Construct a TEXT. :param length: Optional, if provided the server may optimize storage by substituting the smallest TEXT type sufficient to store ``length`` characters. :param charset: Optional, a column-level character set for this string value. Takes precedence to 'ascii' or 'unicode' short-hand. :param collation: Optional, a column-level collation for this string value. Takes precedence to 'binary' short-hand. :param ascii: Defaults to False: short-hand for the ``latin1`` character set, generates ASCII in schema. :param unicode: Defaults to False: short-hand for the ``ucs2`` character set, generates UNICODE in schema. :param national: Optional. If true, use the server's configured national character set. :param binary: Defaults to False: short-hand, pick the binary collation type that matches the column's character set. Generates BINARY in schema. This does not affect the type of data stored, only the collation of character data. """ _StringType.__init__(self, **kwargs) sqltypes.Text.__init__(self, length, kwargs.get('convert_unicode', False), kwargs.get('assert_unicode', None)) def get_col_spec(self): if self.length: return self._extend("TEXT(%d)" % self.length) else: return self._extend("TEXT") class MSTinyText(MSText): """MySQL TINYTEXT type, for text up to 2^8 characters.""" def __init__(self, **kwargs): """Construct a TINYTEXT. :param charset: Optional, a column-level character set for this string value. Takes precedence to 'ascii' or 'unicode' short-hand. :param collation: Optional, a column-level collation for this string value. Takes precedence to 'binary' short-hand. :param ascii: Defaults to False: short-hand for the ``latin1`` character set, generates ASCII in schema. :param unicode: Defaults to False: short-hand for the ``ucs2`` character set, generates UNICODE in schema. :param national: Optional. If true, use the server's configured national character set. :param binary: Defaults to False: short-hand, pick the binary collation type that matches the column's character set. Generates BINARY in schema. This does not affect the type of data stored, only the collation of character data. """ super(MSTinyText, self).__init__(**kwargs) def get_col_spec(self): return self._extend("TINYTEXT") class MSMediumText(MSText): """MySQL MEDIUMTEXT type, for text up to 2^24 characters.""" def __init__(self, **kwargs): """Construct a MEDIUMTEXT. :param charset: Optional, a column-level character set for this string value. Takes precedence to 'ascii' or 'unicode' short-hand. :param collation: Optional, a column-level collation for this string value. Takes precedence to 'binary' short-hand. :param ascii: Defaults to False: short-hand for the ``latin1`` character set, generates ASCII in schema. :param unicode: Defaults to False: short-hand for the ``ucs2`` character set, generates UNICODE in schema. :param national: Optional. If true, use the server's configured national character set. :param binary: Defaults to False: short-hand, pick the binary collation type that matches the column's character set. Generates BINARY in schema. This does not affect the type of data stored, only the collation of character data. """ super(MSMediumText, self).__init__(**kwargs) def get_col_spec(self): return self._extend("MEDIUMTEXT") class MSLongText(MSText): """MySQL LONGTEXT type, for text up to 2^32 characters.""" def __init__(self, **kwargs): """Construct a LONGTEXT. :param charset: Optional, a column-level character set for this string value. Takes precedence to 'ascii' or 'unicode' short-hand. :param collation: Optional, a column-level collation for this string value. Takes precedence to 'binary' short-hand. :param ascii: Defaults to False: short-hand for the ``latin1`` character set, generates ASCII in schema. :param unicode: Defaults to False: short-hand for the ``ucs2`` character set, generates UNICODE in schema. :param national: Optional. If true, use the server's configured national character set. :param binary: Defaults to False: short-hand, pick the binary collation type that matches the column's character set. Generates BINARY in schema. This does not affect the type of data stored, only the collation of character data. """ super(MSLongText, self).__init__(**kwargs) def get_col_spec(self): return self._extend("LONGTEXT") class MSString(_StringType, sqltypes.String): """MySQL VARCHAR type, for variable-length character data.""" def __init__(self, length=None, **kwargs): """Construct a VARCHAR. :param charset: Optional, a column-level character set for this string value. Takes precedence to 'ascii' or 'unicode' short-hand. :param collation: Optional, a column-level collation for this string value. Takes precedence to 'binary' short-hand. :param ascii: Defaults to False: short-hand for the ``latin1`` character set, generates ASCII in schema. :param unicode: Defaults to False: short-hand for the ``ucs2`` character set, generates UNICODE in schema. :param national: Optional. If true, use the server's configured national character set. :param binary: Defaults to False: short-hand, pick the binary collation type that matches the column's character set. Generates BINARY in schema. This does not affect the type of data stored, only the collation of character data. """ _StringType.__init__(self, **kwargs) sqltypes.String.__init__(self, length, kwargs.get('convert_unicode', False), kwargs.get('assert_unicode', None)) def get_col_spec(self): if self.length: return self._extend("VARCHAR(%d)" % self.length) else: return self._extend("VARCHAR") class MSChar(_StringType, sqltypes.CHAR): """MySQL CHAR type, for fixed-length character data.""" def __init__(self, length, **kwargs): """Construct an NCHAR. :param length: Maximum data length, in characters. :param binary: Optional, use the default binary collation for the national character set. This does not affect the type of data stored, use a BINARY type for binary data. :param collation: Optional, request a particular collation. Must be compatible with the national character set. """ _StringType.__init__(self, **kwargs) sqltypes.CHAR.__init__(self, length, kwargs.get('convert_unicode', False)) def get_col_spec(self): return self._extend("CHAR(%(length)s)" % {'length' : self.length}) class MSNVarChar(_StringType, sqltypes.String): """MySQL NVARCHAR type. For variable-length character data in the server's configured national character set. """ def __init__(self, length=None, **kwargs): """Construct an NVARCHAR. :param length: Maximum data length, in characters. :param binary: Optional, use the default binary collation for the national character set. This does not affect the type of data stored, use a BINARY type for binary data. :param collation: Optional, request a particular collation. Must be compatible with the national character set. """ kwargs['national'] = True _StringType.__init__(self, **kwargs) sqltypes.String.__init__(self, length, kwargs.get('convert_unicode', False)) def get_col_spec(self): # We'll actually generate the equiv. "NATIONAL VARCHAR" instead # of "NVARCHAR". return self._extend("VARCHAR(%(length)s)" % {'length': self.length}) class MSNChar(_StringType, sqltypes.CHAR): """MySQL NCHAR type. For fixed-length character data in the server's configured national character set. """ def __init__(self, length=None, **kwargs): """Construct an NCHAR. Arguments are: :param length: Maximum data length, in characters. :param binary: Optional, use the default binary collation for the national character set. This does not affect the type of data stored, use a BINARY type for binary data. :param collation: Optional, request a particular collation. Must be compatible with the national character set. """ kwargs['national'] = True _StringType.__init__(self, **kwargs) sqltypes.CHAR.__init__(self, length, kwargs.get('convert_unicode', False)) def get_col_spec(self): # We'll actually generate the equiv. "NATIONAL CHAR" instead of "NCHAR". return self._extend("CHAR(%(length)s)" % {'length': self.length}) class _BinaryType(sqltypes.Binary): """Base for MySQL binary types.""" def get_col_spec(self): if self.length: return "BLOB(%d)" % self.length else: return "BLOB" def result_processor(self, dialect): def process(value): if value is None: return None else: return util.buffer(value) return process class MSVarBinary(_BinaryType): """MySQL VARBINARY type, for variable length binary data.""" def __init__(self, length=None, **kw): """Construct a VARBINARY. Arguments are: :param length: Maximum data length, in characters. """ super(MSVarBinary, self).__init__(length, **kw) def get_col_spec(self): if self.length: return "VARBINARY(%d)" % self.length else: return "BLOB" class MSBinary(_BinaryType): """MySQL BINARY type, for fixed length binary data""" def __init__(self, length=None, **kw): """Construct a BINARY. This is a fixed length type, and short values will be right-padded with a server-version-specific pad value. :param length: Maximum data length, in bytes. If length is not specified, this will generate a BLOB. This usage is deprecated. """ super(MSBinary, self).__init__(length, **kw) def get_col_spec(self): if self.length: return "BINARY(%d)" % self.length else: return "BLOB" def result_processor(self, dialect): def process(value): if value is None: return None else: return util.buffer(value) return process class MSBlob(_BinaryType): """MySQL BLOB type, for binary data up to 2^16 bytes""" def __init__(self, length=None, **kw): """Construct a BLOB. Arguments are: :param length: Optional, if provided the server may optimize storage by substituting the smallest TEXT type sufficient to store ``length`` characters. """ super(MSBlob, self).__init__(length, **kw) def get_col_spec(self): if self.length: return "BLOB(%d)" % self.length else: return "BLOB" def result_processor(self, dialect): def process(value): if value is None: return None else: return util.buffer(value) return process def __repr__(self): return "%s()" % self.__class__.__name__ class MSTinyBlob(MSBlob): """MySQL TINYBLOB type, for binary data up to 2^8 bytes.""" def get_col_spec(self): return "TINYBLOB" class MSMediumBlob(MSBlob): """MySQL MEDIUMBLOB type, for binary data up to 2^24 bytes.""" def get_col_spec(self): return "MEDIUMBLOB" class MSLongBlob(MSBlob): """MySQL LONGBLOB type, for binary data up to 2^32 bytes.""" def get_col_spec(self): return "LONGBLOB" class MSEnum(MSString): """MySQL ENUM type.""" def __init__(self, *enums, **kw): """Construct an ENUM. Example: Column('myenum', MSEnum("foo", "bar", "baz")) Arguments are: :param enums: The range of valid values for this ENUM. Values will be quoted when generating the schema according to the quoting flag (see below). :param strict: Defaults to False: ensure that a given value is in this ENUM's range of permissible values when inserting or updating rows. Note that MySQL will not raise a fatal error if you attempt to store an out of range value- an alternate value will be stored instead. (See MySQL ENUM documentation.) :param charset: Optional, a column-level character set for this string value. Takes precedence to 'ascii' or 'unicode' short-hand. :param collation: Optional, a column-level collation for this string value. Takes precedence to 'binary' short-hand. :param ascii: Defaults to False: short-hand for the ``latin1`` character set, generates ASCII in schema. :param unicode: Defaults to False: short-hand for the ``ucs2`` character set, generates UNICODE in schema. :param binary: Defaults to False: short-hand, pick the binary collation type that matches the column's character set. Generates BINARY in schema. This does not affect the type of data stored, only the collation of character data. :param quoting: Defaults to 'auto': automatically determine enum value quoting. If all enum values are surrounded by the same quoting character, then use 'quoted' mode. Otherwise, use 'unquoted' mode. 'quoted': values in enums are already quoted, they will be used directly when generating the schema. 'unquoted': values in enums are not quoted, they will be escaped and surrounded by single quotes when generating the schema. Previous versions of this type always required manually quoted values to be supplied; future versions will always quote the string literals for you. This is a transitional option. """ self.quoting = kw.pop('quoting', 'auto') if self.quoting == 'auto': # What quoting character are we using? q = None for e in enums: if len(e) == 0: self.quoting = 'unquoted' break elif q is None: q = e[0] if e[0] != q or e[-1] != q: self.quoting = 'unquoted' break else: self.quoting = 'quoted' if self.quoting == 'quoted': util.warn_pending_deprecation( 'Manually quoting ENUM value literals is deprecated. Supply ' 'unquoted values and use the quoting= option in cases of ' 'ambiguity.') strip_enums = [] for a in enums: if a[0:1] == '"' or a[0:1] == "'": # strip enclosing quotes and unquote interior a = a[1:-1].replace(a[0] * 2, a[0]) strip_enums.append(a) self.enums = strip_enums else: self.enums = list(enums) self.strict = kw.pop('strict', False) length = max([len(v) for v in self.enums] + [0]) super(MSEnum, self).__init__(length, **kw) def bind_processor(self, dialect): super_convert = super(MSEnum, self).bind_processor(dialect) def process(value): if self.strict and value is not None and value not in self.enums: raise exc.InvalidRequestError('"%s" not a valid value for ' 'this enum' % value) if super_convert: return super_convert(value) else: return value return process def get_col_spec(self): quoted_enums = [] for e in self.enums: quoted_enums.append("'%s'" % e.replace("'", "''")) return self._extend("ENUM(%s)" % ",".join(quoted_enums)) class MSSet(MSString): """MySQL SET type.""" def __init__(self, *values, **kw): """Construct a SET. Example:: Column('myset', MSSet("'foo'", "'bar'", "'baz'")) Arguments are: :param values: The range of valid values for this SET. Values will be used exactly as they appear when generating schemas. Strings must be quoted, as in the example above. Single-quotes are suggested for ANSI compatibility and are required for portability to servers with ANSI_QUOTES enabled. :param charset: Optional, a column-level character set for this string value. Takes precedence to 'ascii' or 'unicode' short-hand. :param collation: Optional, a column-level collation for this string value. Takes precedence to 'binary' short-hand. :param ascii: Defaults to False: short-hand for the ``latin1`` character set, generates ASCII in schema. :param unicode: Defaults to False: short-hand for the ``ucs2`` character set, generates UNICODE in schema. :param binary: Defaults to False: short-hand, pick the binary collation type that matches the column's character set. Generates BINARY in schema. This does not affect the type of data stored, only the collation of character data. """ self.__ddl_values = values strip_values = [] for a in values: if a[0:1] == '"' or a[0:1] == "'": # strip enclosing quotes and unquote interior a = a[1:-1].replace(a[0] * 2, a[0]) strip_values.append(a) self.values = strip_values length = max([len(v) for v in strip_values] + [0]) super(MSSet, self).__init__(length, **kw) def result_processor(self, dialect): def process(value): # The good news: # No ',' quoting issues- commas aren't allowed in SET values # The bad news: # Plenty of driver inconsistencies here. if isinstance(value, util.set_types): # ..some versions convert '' to an empty set if not value: value.add('') # ..some return sets.Set, even for pythons that have __builtin__.set if not isinstance(value, set): value = set(value) return value # ...and some versions return strings if value is not None: return set(value.split(',')) else: return value return process def bind_processor(self, dialect): super_convert = super(MSSet, self).bind_processor(dialect) def process(value): if value is None or isinstance(value, (int, long, basestring)): pass else: if None in value: value = set(value) value.remove(None) value.add('') value = ','.join(value) if super_convert: return super_convert(value) else: return value return process def get_col_spec(self): return self._extend("SET(%s)" % ",".join(self.__ddl_values)) class MSBoolean(sqltypes.Boolean): """MySQL BOOLEAN type.""" def get_col_spec(self): return "BOOL" def result_processor(self, dialect): def process(value): if value is None: return None return value and True or False return process def bind_processor(self, dialect): def process(value): if value is True: return 1 elif value is False: return 0 elif value is None: return None else: return value and True or False return process colspecs = { sqltypes.Integer: MSInteger, sqltypes.Smallinteger: MSSmallInteger, sqltypes.Numeric: MSNumeric, sqltypes.Float: MSFloat, sqltypes.DateTime: MSDateTime, sqltypes.Date: MSDate, sqltypes.Time: MSTime, sqltypes.String: MSString, sqltypes.Binary: MSBlob, sqltypes.Boolean: MSBoolean, sqltypes.Text: MSText, sqltypes.CHAR: MSChar, sqltypes.NCHAR: MSNChar, sqltypes.TIMESTAMP: MSTimeStamp, sqltypes.BLOB: MSBlob, MSDouble: MSDouble, MSReal: MSReal, _BinaryType: _BinaryType, } # Everything 3.23 through 5.1 excepting OpenGIS types. ischema_names = { 'bigint': MSBigInteger, 'binary': MSBinary, 'bit': MSBit, 'blob': MSBlob, 'boolean':MSBoolean, 'char': MSChar, 'date': MSDate, 'datetime': MSDateTime, 'decimal': MSDecimal, 'double': MSDouble, 'enum': MSEnum, 'fixed': MSDecimal, 'float': MSFloat, 'int': MSInteger, 'integer': MSInteger, 'longblob': MSLongBlob, 'longtext': MSLongText, 'mediumblob': MSMediumBlob, 'mediumint': MSMediumInteger, 'mediumtext': MSMediumText, 'nchar': MSNChar, 'nvarchar': MSNVarChar, 'numeric': MSNumeric, 'set': MSSet, 'smallint': MSSmallInteger, 'text': MSText, 'time': MSTime, 'timestamp': MSTimeStamp, 'tinyblob': MSTinyBlob, 'tinyint': MSTinyInteger, 'tinytext': MSTinyText, 'varbinary': MSVarBinary, 'varchar': MSString, 'year': MSYear, } class MySQLExecutionContext(default.DefaultExecutionContext): def post_exec(self): if self.compiled.isinsert and not self.executemany: if (not len(self._last_inserted_ids) or self._last_inserted_ids[0] is None): self._last_inserted_ids = ([self.cursor.lastrowid] + self._last_inserted_ids[1:]) elif (not self.isupdate and not self.should_autocommit and self.statement and SET_RE.match(self.statement)): # This misses if a user forces autocommit on text('SET NAMES'), # which is probably a programming error anyhow. self.connection.info.pop(('mysql', 'charset'), None) def should_autocommit_text(self, statement): return AUTOCOMMIT_RE.match(statement) class MySQLDialect(default.DefaultDialect): """Details of the MySQL dialect. Not used directly in application code.""" name = 'mysql' supports_alter = True supports_unicode_statements = False # identifiers are 64, however aliases can be 255... max_identifier_length = 255 supports_sane_rowcount = True default_paramstyle = 'format' def __init__(self, use_ansiquotes=None, **kwargs): self.use_ansiquotes = use_ansiquotes default.DefaultDialect.__init__(self, **kwargs) def dbapi(cls): import MySQLdb as mysql return mysql dbapi = classmethod(dbapi) def create_connect_args(self, url): opts = url.translate_connect_args(database='db', username='user', password='passwd') opts.update(url.query) util.coerce_kw_type(opts, 'compress', bool) util.coerce_kw_type(opts, 'connect_timeout', int) util.coerce_kw_type(opts, 'client_flag', int) util.coerce_kw_type(opts, 'local_infile', int) # Note: using either of the below will cause all strings to be returned # as Unicode, both in raw SQL operations and with column types like # String and MSString. util.coerce_kw_type(opts, 'use_unicode', bool) util.coerce_kw_type(opts, 'charset', str) # Rich values 'cursorclass' and 'conv' are not supported via # query string. ssl = {} for key in ['ssl_ca', 'ssl_key', 'ssl_cert', 'ssl_capath', 'ssl_cipher']: if key in opts: ssl[key[4:]] = opts[key] util.coerce_kw_type(ssl, key[4:], str) del opts[key] if ssl: opts['ssl'] = ssl # FOUND_ROWS must be set in CLIENT_FLAGS to enable # supports_sane_rowcount. client_flag = opts.get('client_flag', 0) if self.dbapi is not None: try: import MySQLdb.constants.CLIENT as CLIENT_FLAGS client_flag |= CLIENT_FLAGS.FOUND_ROWS except: pass opts['client_flag'] = client_flag return [[], opts] def type_descriptor(self, typeobj): return sqltypes.adapt_type(typeobj, colspecs) def do_executemany(self, cursor, statement, parameters, context=None): rowcount = cursor.executemany(statement, parameters) if context is not None: context._rowcount = rowcount def supports_unicode_statements(self): return True def do_commit(self, connection): """Execute a COMMIT.""" # COMMIT/ROLLBACK were introduced in 3.23.15. # Yes, we have at least one user who has to talk to these old versions! # # Ignore commit/rollback if support isn't present, otherwise even basic # operations via autocommit fail. try: connection.commit() except: if self._server_version_info(connection) < (3, 23, 15): args = sys.exc_info()[1].args if args and args[0] == 1064: return raise def do_rollback(self, connection): """Execute a ROLLBACK.""" try: connection.rollback() except: if self._server_version_info(connection) < (3, 23, 15): args = sys.exc_info()[1].args if args and args[0] == 1064: return raise def do_begin_twophase(self, connection, xid): connection.execute("XA BEGIN %s", xid) def do_prepare_twophase(self, connection, xid): connection.execute("XA END %s", xid) connection.execute("XA PREPARE %s", xid) def do_rollback_twophase(self, connection, xid, is_prepared=True, recover=False): if not is_prepared: connection.execute("XA END %s", xid) connection.execute("XA ROLLBACK %s", xid) def do_commit_twophase(self, connection, xid, is_prepared=True, recover=False): if not is_prepared: self.do_prepare_twophase(connection, xid) connection.execute("XA COMMIT %s", xid) def do_recover_twophase(self, connection): resultset = connection.execute("XA RECOVER") return [row['data'][0:row['gtrid_length']] for row in resultset] def do_ping(self, connection): connection.ping() def is_disconnect(self, e): if isinstance(e, self.dbapi.OperationalError): return e.args[0] in (2006, 2013, 2014, 2045, 2055) elif isinstance(e, self.dbapi.InterfaceError): # if underlying connection is closed, this is the error you get return "(0, '')" in str(e) else: return False def get_default_schema_name(self, connection): return connection.execute('SELECT DATABASE()').scalar() get_default_schema_name = engine_base.connection_memoize( ('dialect', 'default_schema_name'))(get_default_schema_name) def table_names(self, connection, schema): """Return a Unicode SHOW TABLES from a given schema.""" charset = self._detect_charset(connection) self._autoset_identifier_style(connection) rp = connection.execute("SHOW TABLES FROM %s" % self.identifier_preparer.quote_identifier(schema)) return [row[0] for row in _compat_fetchall(rp, charset=charset)] def has_table(self, connection, table_name, schema=None): # SHOW TABLE STATUS LIKE and SHOW TABLES LIKE do not function properly # on macosx (and maybe win?) with multibyte table names. # # TODO: if this is not a problem on win, make the strategy swappable # based on platform. DESCRIBE is slower. # [ticket:726] # full_name = self.identifier_preparer.format_table(table, # use_schema=True) self._autoset_identifier_style(connection) full_name = '.'.join(self.identifier_preparer._quote_free_identifiers( schema, table_name)) st = "DESCRIBE %s" % full_name rs = None try: try: rs = connection.execute(st) have = rs.rowcount > 0 rs.close() return have except exc.SQLError, e: if e.orig.args[0] == 1146: return False raise finally: if rs: rs.close() def server_version_info(self, connection): """A tuple of the database server version. Formats the remote server version as a tuple of version values, e.g. ``(5, 0, 44)``. If there are strings in the version number they will be in the tuple too, so don't count on these all being ``int`` values. This is a fast check that does not require a round trip. It is also cached per-Connection. """ return self._server_version_info(connection.connection.connection) server_version_info = engine_base.connection_memoize( ('mysql', 'server_version_info'))(server_version_info) def _server_version_info(self, dbapi_con): """Convert a MySQL-python server_info string into a tuple.""" version = [] r = re.compile('[.\-]') for n in r.split(dbapi_con.get_server_info()): try: version.append(int(n)) except ValueError: version.append(n) return tuple(version) def reflecttable(self, connection, table, include_columns): """Load column definitions from the server.""" charset = self._detect_charset(connection) self._autoset_identifier_style(connection) try: reflector = self.reflector except AttributeError: preparer = self.identifier_preparer if (self.server_version_info(connection) < (4, 1) and self.use_ansiquotes): # ANSI_QUOTES doesn't affect SHOW CREATE TABLE on < 4.1 preparer = MySQLIdentifierPreparer(self) self.reflector = reflector = MySQLSchemaReflector(preparer) sql = self._show_create_table(connection, table, charset) if sql.startswith('CREATE ALGORITHM'): # Adapt views to something table-like. columns = self._describe_table(connection, table, charset) sql = reflector._describe_to_create(table, columns) self._adjust_casing(connection, table) return reflector.reflect(connection, table, sql, charset, only=include_columns) def _adjust_casing(self, connection, table, charset=None): """Adjust Table name to the server case sensitivity, if needed.""" casing = self._detect_casing(connection) # For winxx database hosts. TODO: is this really needed? if casing == 1 and table.name != table.name.lower(): table.name = table.name.lower() lc_alias = schema._get_table_key(table.name, table.schema) table.metadata.tables[lc_alias] = table def _detect_charset(self, connection): """Sniff out the character set in use for connection results.""" # Allow user override, won't sniff if force_charset is set. if ('mysql', 'force_charset') in connection.info: return connection.info[('mysql', 'force_charset')] # Note: MySQL-python 1.2.1c7 seems to ignore changes made # on a connection via set_character_set() if self.server_version_info(connection) < (4, 1, 0): try: return connection.connection.character_set_name() except AttributeError: # < 1.2.1 final MySQL-python drivers have no charset support. # a query is needed. pass # Prefer 'character_set_results' for the current connection over the # value in the driver. SET NAMES or individual variable SETs will # change the charset without updating the driver's view of the world. # # If it's decided that issuing that sort of SQL leaves you SOL, then # this can prefer the driver value. rs = connection.execute("SHOW VARIABLES LIKE 'character_set%%'") opts = dict([(row[0], row[1]) for row in _compat_fetchall(rs)]) if 'character_set_results' in opts: return opts['character_set_results'] try: return connection.connection.character_set_name() except AttributeError: # Still no charset on < 1.2.1 final... if 'character_set' in opts: return opts['character_set'] else: util.warn( "Could not detect the connection character set with this " "combination of MySQL server and MySQL-python. " "MySQL-python >= 1.2.2 is recommended. Assuming latin1.") return 'latin1' _detect_charset = engine_base.connection_memoize( ('mysql', 'charset'))(_detect_charset) def _detect_casing(self, connection): """Sniff out identifier case sensitivity. Cached per-connection. This value can not change without a server restart. """ # http://dev.mysql.com/doc/refman/5.0/en/name-case-sensitivity.html charset = self._detect_charset(connection) row = _compat_fetchone(connection.execute( "SHOW VARIABLES LIKE 'lower_case_table_names'"), charset=charset) if not row: cs = 0 else: # 4.0.15 returns OFF or ON according to [ticket:489] # 3.23 doesn't, 4.0.27 doesn't.. if row[1] == 'OFF': cs = 0 elif row[1] == 'ON': cs = 1 else: cs = int(row[1]) row.close() return cs _detect_casing = engine_base.connection_memoize( ('mysql', 'lower_case_table_names'))(_detect_casing) def _detect_collations(self, connection): """Pull the active COLLATIONS list from the server. Cached per-connection. """ collations = {} if self.server_version_info(connection) < (4, 1, 0): pass else: charset = self._detect_charset(connection) rs = connection.execute('SHOW COLLATION') for row in _compat_fetchall(rs, charset): collations[row[0]] = row[1] return collations _detect_collations = engine_base.connection_memoize( ('mysql', 'collations'))(_detect_collations) def use_ansiquotes(self, useansi): self._use_ansiquotes = useansi if useansi: self.preparer = MySQLANSIIdentifierPreparer else: self.preparer = MySQLIdentifierPreparer # icky if hasattr(self, 'identifier_preparer'): self.identifier_preparer = self.preparer(self) if hasattr(self, 'reflector'): del self.reflector use_ansiquotes = property(lambda s: s._use_ansiquotes, use_ansiquotes, doc="True if ANSI_QUOTES is in effect.") def _autoset_identifier_style(self, connection, charset=None): """Detect and adjust for the ANSI_QUOTES sql mode. If the dialect's use_ansiquotes is unset, query the server's sql mode and reset the identifier style. Note that this currently *only* runs during reflection. Ideally this would run the first time a connection pool connects to the database, but the infrastructure for that is not yet in place. """ if self.use_ansiquotes is not None: return row = _compat_fetchone( connection.execute("SHOW VARIABLES LIKE 'sql_mode'"), charset=charset) if not row: mode = '' else: mode = row[1] or '' # 4.0 if mode.isdigit(): mode_no = int(mode) mode = (mode_no | 4 == mode_no) and 'ANSI_QUOTES' or '' self.use_ansiquotes = 'ANSI_QUOTES' in mode def _show_create_table(self, connection, table, charset=None, full_name=None): """Run SHOW CREATE TABLE for a ``Table``.""" if full_name is None: full_name = self.identifier_preparer.format_table(table) st = "SHOW CREATE TABLE %s" % full_name rp = None try: try: rp = connection.execute(st) except exc.SQLError, e: if e.orig.args[0] == 1146: raise exc.NoSuchTableError(full_name) else: raise row = _compat_fetchone(rp, charset=charset) if not row: raise exc.NoSuchTableError(full_name) return row[1].strip() finally: if rp: rp.close() return sql def _describe_table(self, connection, table, charset=None, full_name=None): """Run DESCRIBE for a ``Table`` and return processed rows.""" if full_name is None: full_name = self.identifier_preparer.format_table(table) st = "DESCRIBE %s" % full_name rp, rows = None, None try: try: rp = connection.execute(st) except exc.SQLError, e: if e.orig.args[0] == 1146: raise exc.NoSuchTableError(full_name) else: raise rows = _compat_fetchall(rp, charset=charset) finally: if rp: rp.close() return rows class _MySQLPythonRowProxy(object): """Return consistent column values for all versions of MySQL-python. Smooth over data type issues (esp. with alpha driver versions) and normalize strings as Unicode regardless of user-configured driver encoding settings. """ # Some MySQL-python versions can return some columns as # sets.Set(['value']) (seriously) but thankfully that doesn't # seem to come up in DDL queries. def __init__(self, rowproxy, charset): self.rowproxy = rowproxy self.charset = charset def __getitem__(self, index): item = self.rowproxy[index] if isinstance(item, _array): item = item.tostring() if self.charset and isinstance(item, str): return item.decode(self.charset) else: return item def __getattr__(self, attr): item = getattr(self.rowproxy, attr) if isinstance(item, _array): item = item.tostring() if self.charset and isinstance(item, str): return item.decode(self.charset) else: return item class MySQLCompiler(compiler.DefaultCompiler): operators = compiler.DefaultCompiler.operators.copy() operators.update({ sql_operators.concat_op: lambda x, y: "concat(%s, %s)" % (x, y), sql_operators.mod: '%%', sql_operators.match_op: lambda x, y: "MATCH (%s) AGAINST (%s IN BOOLEAN MODE)" % (x, y) }) functions = compiler.DefaultCompiler.functions.copy() functions.update ({ sql_functions.random: 'rand%(expr)s', "utc_timestamp":"UTC_TIMESTAMP" }) extract_map = compiler.DefaultCompiler.extract_map.copy() extract_map.update ({ 'milliseconds': 'millisecond', }) def visit_typeclause(self, typeclause): type_ = typeclause.type.dialect_impl(self.dialect) if isinstance(type_, MSInteger): if getattr(type_, 'unsigned', False): return 'UNSIGNED INTEGER' else: return 'SIGNED INTEGER' elif isinstance(type_, (MSDecimal, MSDateTime, MSDate, MSTime)): return type_.get_col_spec() elif isinstance(type_, MSText): return 'CHAR' elif (isinstance(type_, _StringType) and not isinstance(type_, (MSEnum, MSSet))): if getattr(type_, 'length'): return 'CHAR(%s)' % type_.length else: return 'CHAR' elif isinstance(type_, _BinaryType): return 'BINARY' elif isinstance(type_, MSNumeric): return type_.get_col_spec().replace('NUMERIC', 'DECIMAL') elif isinstance(type_, MSTimeStamp): return 'DATETIME' elif isinstance(type_, (MSDateTime, MSDate, MSTime)): return type_.get_col_spec() else: return None def visit_cast(self, cast, **kwargs): # No cast until 4, no decimals until 5. type_ = self.process(cast.typeclause) if type_ is None: return self.process(cast.clause) return 'CAST(%s AS %s)' % (self.process(cast.clause), type_) def post_process_text(self, text): if '%%' in text: util.warn("The SQLAlchemy MySQLDB dialect now automatically escapes '%' in text() expressions to '%%'.") return text.replace('%', '%%') def get_select_precolumns(self, select): if isinstance(select._distinct, basestring): return select._distinct.upper() + " " elif select._distinct: return "DISTINCT " else: return "" def visit_join(self, join, asfrom=False, **kwargs): # 'JOIN ... ON ...' for inner joins isn't available until 4.0. # Apparently < 3.23.17 requires theta joins for inner joins # (but not outer). Not generating these currently, but # support can be added, preferably after dialects are # refactored to be version-sensitive. return ''.join( (self.process(join.left, asfrom=True), (join.isouter and " LEFT OUTER JOIN " or " INNER JOIN "), self.process(join.right, asfrom=True), " ON ", self.process(join.onclause))) def for_update_clause(self, select): if select.for_update == 'read': return ' LOCK IN SHARE MODE' else: return super(MySQLCompiler, self).for_update_clause(select) def limit_clause(self, select): # MySQL supports: # LIMIT <limit> # LIMIT <offset>, <limit> # and in server versions > 3.3: # LIMIT <limit> OFFSET <offset> # The latter is more readable for offsets but we're stuck with the # former until we can refine dialects by server revision. limit, offset = select._limit, select._offset if (limit, offset) == (None, None): return '' elif offset is not None: # As suggested by the MySQL docs, need to apply an # artificial limit if one wasn't provided if limit is None: limit = 18446744073709551615 return ' \n LIMIT %s, %s' % (offset, limit) else: # No offset provided, so just use the limit return ' \n LIMIT %s' % (limit,) def visit_update(self, update_stmt): self.stack.append({'from': set([update_stmt.table])}) self.isupdate = True colparams = self._get_colparams(update_stmt) text = "UPDATE " + self.preparer.format_table(update_stmt.table) + " SET " + ', '.join(["%s=%s" % (self.preparer.format_column(c[0]), c[1]) for c in colparams]) if update_stmt._whereclause: text += " WHERE " + self.process(update_stmt._whereclause) limit = update_stmt.kwargs.get('mysql_limit', None) if limit: text += " LIMIT %s" % limit self.stack.pop(-1) return text # ug. "InnoDB needs indexes on foreign keys and referenced keys [...]. # Starting with MySQL 4.1.2, these indexes are created automatically. # In older versions, the indexes must be created explicitly or the # creation of foreign key constraints fails." class MySQLSchemaGenerator(compiler.SchemaGenerator): def get_column_specification(self, column, first_pk=False): """Builds column DDL.""" colspec = [self.preparer.format_column(column), column.type.dialect_impl(self.dialect).get_col_spec()] default = self.get_column_default_string(column) if default is not None: colspec.append('DEFAULT ' + default) if not column.nullable: colspec.append('NOT NULL') if column.primary_key and column.autoincrement: try: first = [c for c in column.table.primary_key.columns if (c.autoincrement and isinstance(c.type, sqltypes.Integer) and not c.foreign_keys)].pop(0) if column is first: colspec.append('AUTO_INCREMENT') except IndexError: pass return ' '.join(colspec) def post_create_table(self, table): """Build table-level CREATE options like ENGINE and COLLATE.""" table_opts = [] for k in table.kwargs: if k.startswith('mysql_'): opt = k[6:].upper() joiner = '=' if opt in ('TABLESPACE', 'DEFAULT CHARACTER SET', 'CHARACTER SET', 'COLLATE'): joiner = ' ' table_opts.append(joiner.join((opt, table.kwargs[k]))) return ' '.join(table_opts) class MySQLSchemaDropper(compiler.SchemaDropper): def visit_index(self, index): self.append("\nDROP INDEX %s ON %s" % (self.preparer.quote(self._validate_identifier(index.name, False), index.quote), self.preparer.format_table(index.table))) self.execute() def drop_foreignkey(self, constraint): self.append("ALTER TABLE %s DROP FOREIGN KEY %s" % (self.preparer.format_table(constraint.table), self.preparer.format_constraint(constraint))) self.execute() class MySQLSchemaReflector(object): """Parses SHOW CREATE TABLE output.""" def __init__(self, identifier_preparer): """Construct a MySQLSchemaReflector. identifier_preparer An ANSIIdentifierPreparer type, used to determine the identifier quoting style in effect. """ self.preparer = identifier_preparer self._prep_regexes() def reflect(self, connection, table, show_create, charset, only=None): """Parse MySQL SHOW CREATE TABLE and fill in a ''Table''. show_create Unicode output of SHOW CREATE TABLE table A ''Table'', to be loaded with Columns, Indexes, etc. table.name will be set if not already charset FIXME, some constructed values (like column defaults) currently can't be Unicode. ''charset'' will convert them into the connection character set. only An optional sequence of column names. If provided, only these columns will be reflected, and any keys or constraints that include columns outside this set will also be omitted. That means that if ``only`` includes only one column in a 2 part primary key, the entire primary key will be omitted. """ keys, constraints = [], [] if only: only = set(only) for line in re.split(r'\r?\n', show_create): if line.startswith(' ' + self.preparer.initial_quote): self._add_column(table, line, charset, only) # a regular table options line elif line.startswith(') '): self._set_options(table, line) # an ANSI-mode table options line elif line == ')': pass elif line.startswith('CREATE '): self._set_name(table, line) # Not present in real reflection, but may be if loading from a file. elif not line: pass else: type_, spec = self.parse_constraints(line) if type_ is None: util.warn("Unknown schema content: %r" % line) elif type_ == 'key': keys.append(spec) elif type_ == 'constraint': constraints.append(spec) else: pass self._set_keys(table, keys, only) self._set_constraints(table, constraints, connection, only) def _set_name(self, table, line): """Override a Table name with the reflected name. table A ``Table`` line The first line of SHOW CREATE TABLE output. """ # Don't override by default. if table.name is None: table.name = self.parse_name(line) def _add_column(self, table, line, charset, only=None): spec = self.parse_column(line) if not spec: util.warn("Unknown column definition %r" % line) return if not spec['full']: util.warn("Incomplete reflection of column definition %r" % line) name, type_, args, notnull = \ spec['name'], spec['coltype'], spec['arg'], spec['notnull'] if only and name not in only: self.logger.info("Omitting reflected column %s.%s" % (table.name, name)) return # Convention says that TINYINT(1) columns == BOOLEAN if type_ == 'tinyint' and args == '1': type_ = 'boolean' args = None try: col_type = ischema_names[type_] except KeyError: util.warn("Did not recognize type '%s' of column '%s'" % (type_, name)) col_type = sqltypes.NullType # Column type positional arguments eg. varchar(32) if args is None or args == '': type_args = [] elif args[0] == "'" and args[-1] == "'": type_args = self._re_csv_str.findall(args) else: type_args = [int(v) for v in self._re_csv_int.findall(args)] # Column type keyword options type_kw = {} for kw in ('unsigned', 'zerofill'): if spec.get(kw, False): type_kw[kw] = True for kw in ('charset', 'collate'): if spec.get(kw, False): type_kw[kw] = spec[kw] if type_ == 'enum': type_kw['quoting'] = 'quoted' type_instance = col_type(*type_args, **type_kw) col_args, col_kw = [], {} # NOT NULL if spec.get('notnull', False): col_kw['nullable'] = False # AUTO_INCREMENT if spec.get('autoincr', False): col_kw['autoincrement'] = True elif issubclass(col_type, sqltypes.Integer): col_kw['autoincrement'] = False # DEFAULT default = spec.get('default', None) if default is not None and default != 'NULL': # Defaults should be in the native charset for the moment default = default.encode(charset) if type_ == 'timestamp': # can't be NULL for TIMESTAMPs if (default[0], default[-1]) != ("'", "'"): default = sql.text(default) else: default = default[1:-1] col_args.append(schema.DefaultClause(default)) table.append_column(schema.Column(name, type_instance, *col_args, **col_kw)) def _set_keys(self, table, keys, only): """Add ``Index`` and ``PrimaryKeyConstraint`` items to a ``Table``. Most of the information gets dropped here- more is reflected than the schema objects can currently represent. table A ``Table`` keys A sequence of key specifications produced by `constraints` only Optional `set` of column names. If provided, keys covering columns not in this set will be omitted. """ for spec in keys: flavor = spec['type'] col_names = [s[0] for s in spec['columns']] if only and not set(col_names).issubset(only): if flavor is None: flavor = 'index' self.logger.info( "Omitting %s KEY for (%s), key covers ommitted columns." % (flavor, ', '.join(col_names))) continue constraint = False if flavor == 'PRIMARY': key = schema.PrimaryKeyConstraint() constraint = True elif flavor == 'UNIQUE': key = schema.Index(spec['name'], unique=True) elif flavor in (None, 'FULLTEXT', 'SPATIAL'): key = schema.Index(spec['name']) else: self.logger.info( "Converting unknown KEY type %s to a plain KEY" % flavor) key = schema.Index(spec['name']) for col in [table.c[name] for name in col_names]: key.append_column(col) if constraint: table.append_constraint(key) def _set_constraints(self, table, constraints, connection, only): """Apply constraints to a ``Table``.""" default_schema = None for spec in constraints: # only FOREIGN KEYs ref_name = spec['table'][-1] ref_schema = len(spec['table']) > 1 and spec['table'][-2] or table.schema if not ref_schema: if default_schema is None: default_schema = connection.dialect.get_default_schema_name( connection) if table.schema == default_schema: ref_schema = table.schema loc_names = spec['local'] if only and not set(loc_names).issubset(only): self.logger.info( "Omitting FOREIGN KEY for (%s), key covers ommitted " "columns." % (', '.join(loc_names))) continue ref_key = schema._get_table_key(ref_name, ref_schema) if ref_key in table.metadata.tables: ref_table = table.metadata.tables[ref_key] else: ref_table = schema.Table( ref_name, table.metadata, schema=ref_schema, autoload=True, autoload_with=connection) ref_names = spec['foreign'] if ref_schema: refspec = [".".join([ref_schema, ref_name, column]) for column in ref_names] else: refspec = [".".join([ref_name, column]) for column in ref_names] con_kw = {} for opt in ('name', 'onupdate', 'ondelete'): if spec.get(opt, False): con_kw[opt] = spec[opt] key = schema.ForeignKeyConstraint(loc_names, refspec, link_to_name=True, **con_kw) table.append_constraint(key) def _set_options(self, table, line): """Apply safe reflected table options to a ``Table``. table A ``Table`` line The final line of SHOW CREATE TABLE output. """ options = self.parse_table_options(line) for nope in ('auto_increment', 'data_directory', 'index_directory'): options.pop(nope, None) for opt, val in options.items(): table.kwargs['mysql_%s' % opt] = val def _prep_regexes(self): """Pre-compile regular expressions.""" self._re_columns = [] self._pr_options = [] self._re_options_util = {} _final = self.preparer.final_quote quotes = dict(zip(('iq', 'fq', 'esc_fq'), [re.escape(s) for s in (self.preparer.initial_quote, _final, self.preparer._escape_identifier(_final))])) self._pr_name = _pr_compile( r'^CREATE (?:\w+ +)?TABLE +' r'%(iq)s(?P<name>(?:%(esc_fq)s|[^%(fq)s])+)%(fq)s +\($' % quotes, self.preparer._unescape_identifier) # `col`,`col2`(32),`col3`(15) DESC # # Note: ASC and DESC aren't reflected, so we'll punt... self._re_keyexprs = _re_compile( r'(?:' r'(?:%(iq)s((?:%(esc_fq)s|[^%(fq)s])+)%(fq)s)' r'(?:\((\d+)\))?(?=\,|$))+' % quotes) # 'foo' or 'foo','bar' or 'fo,o','ba''a''r' self._re_csv_str = _re_compile(r'\x27(?:\x27\x27|[^\x27])*\x27') # 123 or 123,456 self._re_csv_int = _re_compile(r'\d+') # `colname` <type> [type opts] # (NOT NULL | NULL) # DEFAULT ('value' | CURRENT_TIMESTAMP...) # COMMENT 'comment' # COLUMN_FORMAT (FIXED|DYNAMIC|DEFAULT) # STORAGE (DISK|MEMORY) self._re_column = _re_compile( r' ' r'%(iq)s(?P<name>(?:%(esc_fq)s|[^%(fq)s])+)%(fq)s +' r'(?P<coltype>\w+)' r'(?:\((?P<arg>(?:\d+|\d+,\d+|' r'(?:\x27(?:\x27\x27|[^\x27])*\x27,?)+))\))?' r'(?: +(?P<unsigned>UNSIGNED))?' r'(?: +(?P<zerofill>ZEROFILL))?' r'(?: +CHARACTER SET +(?P<charset>\w+))?' r'(?: +COLLATE +(P<collate>\w+))?' r'(?: +(?P<notnull>NOT NULL))?' r'(?: +DEFAULT +(?P<default>' r'(?:NULL|\x27(?:\x27\x27|[^\x27])*\x27|\w+)' r'(?:ON UPDATE \w+)?' r'))?' r'(?: +(?P<autoincr>AUTO_INCREMENT))?' r'(?: +COMMENT +(P<comment>(?:\x27\x27|[^\x27])+))?' r'(?: +COLUMN_FORMAT +(?P<colfmt>\w+))?' r'(?: +STORAGE +(?P<storage>\w+))?' r'(?: +(?P<extra>.*))?' r',?$' % quotes ) # Fallback, try to parse as little as possible self._re_column_loose = _re_compile( r' ' r'%(iq)s(?P<name>(?:%(esc_fq)s|[^%(fq)s])+)%(fq)s +' r'(?P<coltype>\w+)' r'(?:\((?P<arg>(?:\d+|\d+,\d+|\x27(?:\x27\x27|[^\x27])+\x27))\))?' r'.*?(?P<notnull>NOT NULL)?' % quotes ) # (PRIMARY|UNIQUE|FULLTEXT|SPATIAL) INDEX `name` (USING (BTREE|HASH))? # (`col` (ASC|DESC)?, `col` (ASC|DESC)?) # KEY_BLOCK_SIZE size | WITH PARSER name self._re_key = _re_compile( r' ' r'(?:(?P<type>\S+) )?KEY' r'(?: +%(iq)s(?P<name>(?:%(esc_fq)s|[^%(fq)s])+)%(fq)s)?' r'(?: +USING +(?P<using_pre>\S+))?' r' +\((?P<columns>.+?)\)' r'(?: +USING +(?P<using_post>\S+))?' r'(?: +KEY_BLOCK_SIZE +(?P<keyblock>\S+))?' r'(?: +WITH PARSER +(?P<parser>\S+))?' r',?$' % quotes ) # CONSTRAINT `name` FOREIGN KEY (`local_col`) # REFERENCES `remote` (`remote_col`) # MATCH FULL | MATCH PARTIAL | MATCH SIMPLE # ON DELETE CASCADE ON UPDATE RESTRICT # # unique constraints come back as KEYs kw = quotes.copy() kw['on'] = 'RESTRICT|CASCASDE|SET NULL|NOACTION' self._re_constraint = _re_compile( r' ' r'CONSTRAINT +' r'%(iq)s(?P<name>(?:%(esc_fq)s|[^%(fq)s])+)%(fq)s +' r'FOREIGN KEY +' r'\((?P<local>[^\)]+?)\) REFERENCES +' r'(?P<table>%(iq)s[^%(fq)s]+%(fq)s(?:\.%(iq)s[^%(fq)s]+%(fq)s)?) +' r'\((?P<foreign>[^\)]+?)\)' r'(?: +(?P<match>MATCH \w+))?' r'(?: +ON DELETE (?P<ondelete>%(on)s))?' r'(?: +ON UPDATE (?P<onupdate>%(on)s))?' % kw ) # PARTITION # # punt! self._re_partition = _re_compile( r' ' r'(?:SUB)?PARTITION') # Table-level options (COLLATE, ENGINE, etc.) for option in ('ENGINE', 'TYPE', 'AUTO_INCREMENT', 'AVG_ROW_LENGTH', 'CHARACTER SET', 'DEFAULT CHARSET', 'CHECKSUM', 'COLLATE', 'DELAY_KEY_WRITE', 'INSERT_METHOD', 'MAX_ROWS', 'MIN_ROWS', 'PACK_KEYS', 'ROW_FORMAT', 'KEY_BLOCK_SIZE'): self._add_option_word(option) for option in (('COMMENT', 'DATA_DIRECTORY', 'INDEX_DIRECTORY', 'PASSWORD', 'CONNECTION')): self._add_option_string(option) self._add_option_regex('UNION', r'\([^\)]+\)') self._add_option_regex('TABLESPACE', r'.*? STORAGE DISK') self._add_option_regex('RAID_TYPE', r'\w+\s+RAID_CHUNKS\s*\=\s*\w+RAID_CHUNKSIZE\s*=\s*\w+') self._re_options_util['='] = _re_compile(r'\s*=\s*$') def _add_option_string(self, directive): regex = (r'(?P<directive>%s\s*(?:=\s*)?)' r'(?:\x27.(?P<val>.*?)\x27(?!\x27)\x27)' % re.escape(directive)) self._pr_options.append( _pr_compile(regex, lambda v: v.replace("''", "'"))) def _add_option_word(self, directive): regex = (r'(?P<directive>%s\s*(?:=\s*)?)' r'(?P<val>\w+)' % re.escape(directive)) self._pr_options.append(_pr_compile(regex)) def _add_option_regex(self, directive, regex): regex = (r'(?P<directive>%s\s*(?:=\s*)?)' r'(?P<val>%s)' % (re.escape(directive), regex)) self._pr_options.append(_pr_compile(regex)) def parse_name(self, line): """Extract the table name. line The first line of SHOW CREATE TABLE """ regex, cleanup = self._pr_name m = regex.match(line) if not m: return None return cleanup(m.group('name')) def parse_column(self, line): """Extract column details. Falls back to a 'minimal support' variant if full parse fails. line Any column-bearing line from SHOW CREATE TABLE """ m = self._re_column.match(line) if m: spec = m.groupdict() spec['full'] = True return spec m = self._re_column_loose.match(line) if m: spec = m.groupdict() spec['full'] = False return spec return None def parse_constraints(self, line): """Parse a KEY or CONSTRAINT line. line A line of SHOW CREATE TABLE output """ # KEY m = self._re_key.match(line) if m: spec = m.groupdict() # convert columns into name, length pairs spec['columns'] = self._parse_keyexprs(spec['columns']) return 'key', spec # CONSTRAINT m = self._re_constraint.match(line) if m: spec = m.groupdict() spec['table'] = \ self.preparer.unformat_identifiers(spec['table']) spec['local'] = [c[0] for c in self._parse_keyexprs(spec['local'])] spec['foreign'] = [c[0] for c in self._parse_keyexprs(spec['foreign'])] return 'constraint', spec # PARTITION and SUBPARTITION m = self._re_partition.match(line) if m: # Punt! return 'partition', line # No match. return (None, line) def parse_table_options(self, line): """Build a dictionary of all reflected table-level options. line The final line of SHOW CREATE TABLE output. """ options = {} if not line or line == ')': return options r_eq_trim = self._re_options_util['='] for regex, cleanup in self._pr_options: m = regex.search(line) if not m: continue directive, value = m.group('directive'), m.group('val') directive = r_eq_trim.sub('', directive).lower() if cleanup: value = cleanup(value) options[directive] = value return options def _describe_to_create(self, table, columns): """Re-format DESCRIBE output as a SHOW CREATE TABLE string. DESCRIBE is a much simpler reflection and is sufficient for reflecting views for runtime use. This method formats DDL for columns only- keys are omitted. `columns` is a sequence of DESCRIBE or SHOW COLUMNS 6-tuples. SHOW FULL COLUMNS FROM rows must be rearranged for use with this function. """ buffer = [] for row in columns: (name, col_type, nullable, default, extra) = \ [row[i] for i in (0, 1, 2, 4, 5)] line = [' '] line.append(self.preparer.quote_identifier(name)) line.append(col_type) if not nullable: line.append('NOT NULL') if default: if 'auto_increment' in default: pass elif (col_type.startswith('timestamp') and default.startswith('C')): line.append('DEFAULT') line.append(default) elif default == 'NULL': line.append('DEFAULT') line.append(default) else: line.append('DEFAULT') line.append("'%s'" % default.replace("'", "''")) if extra: line.append(extra) buffer.append(' '.join(line)) return ''.join([('CREATE TABLE %s (\n' % self.preparer.quote_identifier(table.name)), ',\n'.join(buffer), '\n) ']) def _parse_keyexprs(self, identifiers): """Unpack '"col"(2),"col" ASC'-ish strings into components.""" return self._re_keyexprs.findall(identifiers) log.class_logger(MySQLSchemaReflector) class _MySQLIdentifierPreparer(compiler.IdentifierPreparer): """MySQL-specific schema identifier configuration.""" reserved_words = RESERVED_WORDS def __init__(self, dialect, **kw): super(_MySQLIdentifierPreparer, self).__init__(dialect, **kw) def _quote_free_identifiers(self, *ids): """Unilaterally identifier-quote any number of strings.""" return tuple([self.quote_identifier(i) for i in ids if i is not None]) class MySQLIdentifierPreparer(_MySQLIdentifierPreparer): """Traditional MySQL-specific schema identifier configuration.""" def __init__(self, dialect): super(MySQLIdentifierPreparer, self).__init__(dialect, initial_quote="`") def _escape_identifier(self, value): return value.replace('`', '``') def _unescape_identifier(self, value): return value.replace('``', '`') class MySQLANSIIdentifierPreparer(_MySQLIdentifierPreparer): """ANSI_QUOTES MySQL schema identifier configuration.""" pass def _compat_fetchall(rp, charset=None): """Proxy result rows to smooth over MySQL-Python driver inconsistencies.""" return [_MySQLPythonRowProxy(row, charset) for row in rp.fetchall()] def _compat_fetchone(rp, charset=None): """Proxy a result row to smooth over MySQL-Python driver inconsistencies.""" return _MySQLPythonRowProxy(rp.fetchone(), charset) def _pr_compile(regex, cleanup=None): """Prepare a 2-tuple of compiled regex and callable.""" return (_re_compile(regex), cleanup) def _re_compile(regex): """Compile a string to regex, I and UNICODE.""" return re.compile(regex, re.I | re.UNICODE) dialect = MySQLDialect dialect.statement_compiler = MySQLCompiler dialect.schemagenerator = MySQLSchemaGenerator dialect.schemadropper = MySQLSchemaDropper dialect.execution_ctx_cls = MySQLExecutionContext
a43a6ca183fe13cab45ff1ffe654cb22df55bdd3
b3f6daa5d6c987eb8a61d5fe125bf2a98997e259
/8kyu/Simple multiplication/index.py
0853411208f8f60cc3ab604295bcd6f49ea44358
[]
no_license
krnets/codewars-practice
53a0a6c9d2d8c2b94d6799a12f48dd588179a5ce
5f8e1cc1aebd900b9e5a276884419fc3e1ddef24
refs/heads/master
2022-12-20T19:33:43.337581
2022-12-16T05:32:39
2022-12-16T05:32:39
217,464,785
1
0
null
2020-07-20T08:36:31
2019-10-25T06:20:41
JavaScript
UTF-8
Python
false
false
668
py
# 8kyu - Simple multiplication """ This kata is about multiplying a given number by eight if it is an even number and by nine otherwise. """ # def simple_multiplication(number): # return 8 * number if number % 2 == 0 else 9 * number # def simple_multiplication(number): # return number * (8 if number % 2 == 0 else 9) # def simple_multiplication(number): # return number * [8, 9][number % 2] def simple_multiplication(number): return number * (8 + number % 2) q = simple_multiplication(2) # 16 q q = simple_multiplication(1) # 9 q q = simple_multiplication(8) # 64 q q = simple_multiplication(4) # 32 q q = simple_multiplication(5) # 45 q
c4629c6296276f6dd000ac6acc97097972160f92
4755dabdcff6a45b9c15bf9ea814c6b8037874bd
/build/laser_proc/catkin_generated/pkg.installspace.context.pc.py
8aa2d2e231584bb4c6aa2e425d2a5cc3e336be50
[]
no_license
Rallstad/RobotSnake
676a97bdfde0699736d613e73d539929a0c2b492
37ee6d5af0458b855acf7c2b83e0ee17833dbfd1
refs/heads/master
2023-01-03T05:46:46.268422
2018-05-27T16:01:47
2018-05-27T16:01:47
308,665,980
2
0
null
null
null
null
UTF-8
Python
false
false
698
py
# generated from catkin/cmake/template/pkg.context.pc.in CATKIN_PACKAGE_PREFIX = "" PROJECT_PKG_CONFIG_INCLUDE_DIRS = "/home/snake/Documents/catkin_ws/install/include".split(';') if "/home/snake/Documents/catkin_ws/install/include" != "" else [] PROJECT_CATKIN_DEPENDS = "roscpp;sensor_msgs;rosconsole;nodelet".replace(';', ' ') PKG_CONFIG_LIBRARIES_WITH_PREFIX = "-llaser_proc_library;-llaser_publisher;-llaser_transport;-llaser_proc_ROS;-lLaserProcNodelet".split(';') if "-llaser_proc_library;-llaser_publisher;-llaser_transport;-llaser_proc_ROS;-lLaserProcNodelet" != "" else [] PROJECT_NAME = "laser_proc" PROJECT_SPACE_DIR = "/home/snake/Documents/catkin_ws/install" PROJECT_VERSION = "0.1.4"
0d9c589064bdfa802bbc69912c2b119c8b1a3167
5b3d8b5c612c802fd846de63f86b57652d33f672
/Python/seven_kyu/to_jaden_case.py
6f1011c1120d950fcc87a4462cab4f25505b6208
[ "Apache-2.0" ]
permissive
Brokenshire/codewars-projects
1e591b57ed910a567f6c0423beb194fa7f8f693e
db9cd09618b8a7085b0d53ad76f73f9e249b9396
refs/heads/master
2021-07-22T18:50:25.847592
2021-01-25T23:27:17
2021-01-25T23:27:17
228,114,677
1
0
null
null
null
null
UTF-8
Python
false
false
942
py
# Python solution for 'Jaden Casing Strings' codewars question. # Level: 7 kyu # Tags: Fundamentals, Strings, and Arrays. # Author: Jack Brokenshire # Date: 17/02/2020 import unittest def to_jaden_case(string): """ Your task is to convert strings to how they would be written by Jaden Smith. The strings are actual quotes from Jaden Smith, but they are not capitalized in the same way he originally typed them. :param string: A string value input. :return: A new string with each word in the sentence capitalized. """ return " ".join(x.capitalize() for x in string.split()) class TestToJadenCase(unittest.TestCase): """Class to test 'to_jaden_case' function""" def test_name_list(self): quote = "How can mirrors be real if our eyes aren't real" self.assertEqual(to_jaden_case(quote), "How Can Mirrors Be Real If Our Eyes Aren't Real") if __name__ == '__main__': unittest.main()
b34d5bebd57109d20aee7fec341878dfb3c9875c
31eaed64b0caeda5c5fe3603609402034e6eb7be
/python_zumbi/py_web/test_scraping_2.py
8504ae20c38d531160f7f991a12e83e59ccd487b
[]
no_license
RaphaelfsOliveira/workspace_python
93657b581043176ecffb5783de208c0a00924832
90959697687b9398cc48146461750942802933b3
refs/heads/master
2021-01-11T17:39:49.574875
2017-06-28T20:55:43
2017-06-28T20:55:43
79,814,783
0
0
null
null
null
null
UTF-8
Python
false
false
344
py
import urllib.request #modulo que permite conversar com a internet pagina = urllib.request.urlopen( 'http://beans.itcarlow.ie/prices-loyalty.html') text = pagina.read().decode('utf8') print(text) i = text.find('>$') preco = float(text[i+2:i+6]) if preco < 4.74: print('Em Promoção: ', preco) else: print('Está Caro!!: ', preco)
d807a7d1a649fac018c6da8614952df89a7cdc5e
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/verbs/_snowboard.py
5100be7c8c861988ab39e3be570cce2fce7b2eba
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
347
py
#calss header class _SNOWBOARD(): def __init__(self,): self.name = "SNOWBOARD" self.definitions = [u'to slide on the snow by standing on a specially shaped board: '] self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.specie = 'verbs' def run(self, obj1 = [], obj2 = []): return self.jsondata
751a74264a973fe1ab989c874cc4a9a039bd45e4
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_55/373.py
65e1a8ea83c63527538a4d324820da9d12a0a74e
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,581
py
''' Created on May 9, 2010 @author: indra ''' import sys, os filename = "C-large" path = os.path.normpath(os.path.join(os.path.dirname(__file__), filename+".in")) reader = open(path, "rb") path = os.path.normpath(os.path.join(os.path.dirname(__file__), filename+".out")) writer = open(path,"w") ncases = int(reader.readline().rstrip()) caseno = 0 while caseno<ncases: caseno+=1 case = reader.readline().rstrip() R,k,N = [int(x) for x in case.split(' ')] case = reader.readline().rstrip() gps = [int(x) for x in case.split(' ')] totp = 0 for gp in gps: totp+=gp print (R,k,N) print gps print totp if totp<=k: writer.write("Case #%s: %d\n" % (str(caseno),R*totp)) continue rides = [-1]*N money = [0]*N retmon = 0 curloc = 0 curride = 0 curmon = 0 while rides[curloc]==-1 and curride<R: rides[curloc] = curride money[curloc] = curmon curride+=1 tem=0 while tem+gps[curloc]<=k: tem+=gps[curloc] curloc+=1 if curloc>=N: curloc-=N curmon+=tem if curride==R: writer.write("Case #%s: %d\n" % (str(caseno),curmon)) continue cycrides = curride - rides[curloc] cycmoney = curmon - money[curloc] R-=rides[curloc] retmon+=money[curloc] rleft = R%cycrides retmon += cycmoney*((R-rleft)/cycrides) lastrides = 0 while lastrides<rleft: lastrides+=1 tem=0 while tem+gps[curloc]<=k: tem+=gps[curloc] curloc+=1 if curloc>=N: curloc-=N retmon+=tem writer.write("Case #%s: %d\n" % (str(caseno),retmon)) writer.close()
aba1b20ca910395e8e556c928a2bf6e5d53cdac8
2d8da5cacd21dd425688d67e1a92faa50aefc6bc
/excel-sheet-column-number.py
c90dd1c70703b45a9911aa35628d96708bba7730
[]
no_license
stella-shen/Leetcode
970857edb74ae3ccf4bcce0c40e972ab8bcc5348
16ad99a6511543f0286559c483206c43ed655ddd
refs/heads/master
2021-01-19T02:48:49.918054
2018-11-29T10:36:43
2018-11-29T10:36:43
47,523,042
0
0
null
null
null
null
UTF-8
Python
false
false
349
py
class Solution(object): def titleToNumber(self, s): """ :type s: str :rtype: int """ ret = 0 for i in xrange(len(s)): ret *= 26 ret += ord(s[i]) - ord('A') + 1 return ret if __name__ == '__main__': sol = Solution() s = "AB" print sol.titleToNumber(s)
d0686bbf88f5f164a24afb5e2449f189d6ba2b4b
54f352a242a8ad6ff5516703e91da61e08d9a9e6
/Source Codes/AtCoder/abc008/B/4886377.py
4b2e8bb008ccb62443ac42cbdabfef1b5a1468e8
[]
no_license
Kawser-nerd/CLCDSA
5cbd8a4c3f65173e4e8e0d7ed845574c4770c3eb
aee32551795763b54acb26856ab239370cac4e75
refs/heads/master
2022-02-09T11:08:56.588303
2022-01-26T18:53:40
2022-01-26T18:53:40
211,783,197
23
9
null
null
null
null
UTF-8
Python
false
false
147
py
import collections N = int(input()) names = [input() for i in range(N)] max_ele = collections.Counter(names) print(max_ele.most_common()[0][0])
2c7332530c6106c9f596a55673e138596fa175ad
be7a0aa49a9b4fdad1b8b21c6f1eb6bd508be109
/ex027vs1.py
8f5869722797ed74a9a1bd50c65b05a9267c8f63
[]
no_license
tlima1011/python3-curso-em-video
29a60ee3355d6cb3ba8d1f48c6a3ecd7bc6e60dd
f6454f4d636a2bf73c151e67710f732e2d8e738c
refs/heads/master
2021-02-04T01:13:35.313590
2020-04-14T12:51:19
2020-04-14T12:51:19
243,593,899
0
0
null
null
null
null
UTF-8
Python
false
false
210
py
nomeCompleto = str(input('Informe seu nome completo.: ')).strip() nomeCompleto = nomeCompleto.split() print(f'Primeiro nome é {nomeCompleto[0].capitalize()} e o último é {nomeCompleto[-1].capitalize()}')
b9a0d4a8c907d64a769984ce54c21e598bceb55a
857fc21a40aa32d2a57637de1c723e4ab51062ff
/PythonChallenge/Ex05/05_01.py
93d0926dda5e81b77d9190b1a9e433c954140ed4
[ "MIT" ]
permissive
YorkFish/git_study
efa0149f94623d685e005d58dbaef405ab91d541
6e023244daaa22e12b24e632e76a13e5066f2947
refs/heads/master
2021-06-21T18:46:50.906441
2020-12-25T14:04:04
2020-12-25T14:04:04
171,432,914
0
0
null
null
null
null
UTF-8
Python
false
false
117
py
#!/usr/bin/env python3 # coding:utf-8 from pickle import load with open("banner.p", "rb") as f: print(load(f))
2e95edb992349cc95441512bef5344b238ed4afd
c3c2af25c3269e200d2773ec9f8800f4f9a20165
/backend/manage.py
42924076b3f1daf8f7bf76a1488f43e45b84b567
[]
no_license
crowdbotics-apps/divine-hill-27443
a39ecac7c1c5f510d00bf4e300acea3e46ecca24
f6abe52a7080da59cc99b1fb01a039933f273a2c
refs/heads/master
2023-04-26T09:05:39.002510
2021-05-26T19:29:02
2021-05-26T19:29:02
371,147,367
0
0
null
null
null
null
UTF-8
Python
false
false
637
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'divine_hill_27443.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
be9c106d741c93b8522ff5e49ea7ff2e5f2b74fe
aeeba89591b787bbe6b93ffb4889be9a8fca521e
/cfg.py
cf7791d7a7b0fe3603dac542a0bbc59c1ee3d3aa
[ "MIT" ]
permissive
wistic/python-web-crawler
efa7968f66ecd7396797390f253d0ff68f3623a1
e3738fd49d77bdff4c43a0ec31ed36cc381d26b8
refs/heads/master
2022-12-10T05:38:40.030202
2020-08-28T14:24:38
2020-08-28T14:24:38
288,676,553
1
0
null
null
null
null
UTF-8
Python
false
false
415
py
config = { "root_url": "https://flinkhub.com", "sleep_timer": 5, "Max_links_limit": 5000, "Recrawl_time_limit_hours": 24, "user_agent": "Python Spiderbot", "No_of_threads": 5, "database_name": "python-web-crawler", "collection_name": "Links", "connection_uri": "mongodb://localhost:27017/", "download_dir_path": "/home/wistic/github/python-web-crawler/html-files" }
6433092cbee060d537b5cb9919a76a1ec7c5ab85
683b73e0c95c755a08e019529aed3ff1a8eb30f8
/machina/apps/forum_conversation/forum_attachments/admin.py
de1995638c922ddee9447fdc8ec8937ae0ebd484
[ "BSD-3-Clause" ]
permissive
DrJackilD/django-machina
b3a7be9da22afd457162e0f5a147a7ed5802ade4
76858921f2cd247f3c1faf4dc0d9a85ea99be3e1
refs/heads/master
2020-12-26T08:19:09.838794
2016-03-11T03:55:25
2016-03-11T03:55:25
null
0
0
null
null
null
null
UTF-8
Python
false
false
492
py
# -*- coding: utf-8 -*- # Standard library imports # Third party imports from django.contrib import admin # Local application / specific library imports from machina.core.db.models import get_model Attachment = get_model('forum_attachments', 'Attachment') class AttachmentAdmin(admin.ModelAdmin): list_display = ('id', 'post', 'comment', 'file', ) list_display_links = ('id', 'post', 'comment', ) raw_id_fields = ('post', ) admin.site.register(Attachment, AttachmentAdmin)
0e13ea228a661ee0d8e2c5bfce784e4d705a8f66
09b0075f56455d1b54d8bf3e60ca3535b8083bdc
/WideResnet.py
595e4f69f1baa13a9f27f80fdb61e54773195de4
[]
no_license
YanYan0716/MPL
e02c1ddf036d6019c3596fd932c51c3a14187f5e
6ad82b050ec1ed81987c779df2dddff95dc1cde5
refs/heads/master
2023-04-17T23:05:54.164840
2021-05-07T01:14:49
2021-05-07T01:14:49
331,491,485
11
6
null
null
null
null
UTF-8
Python
false
false
7,157
py
import os from abc import ABC os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import tensorflow as tf import tensorflow.keras as keras from tensorflow.keras import layers from tensorflow.keras import regularizers import config class BasicBlock(layers.Layer): def __init__(self, in_channels, out_channels, stride, dropout, name, trainable): super(BasicBlock, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.stride = stride self.dropout = dropout # name = name self.trainable = trainable self.bn1 = layers.BatchNormalization( # momentum=0.999, epsilon=config.BATCH_NORM_EPSILON, trainable=self.trainable, name=name+'_bn1' ) self.relu1 = layers.LeakyReLU(alpha=0.2) self.conv1 = layers.Conv2D( filters=self.out_channels, kernel_size=3, strides=self.stride, padding='same', use_bias=False, kernel_initializer=keras.initializers.HeNormal(), kernel_regularizer=regularizers.l2(config.WEIGHT_DECAY), trainable=self.trainable, name=name+'_conv1', ) self.bn2 = layers.BatchNormalization( # momentum=0.999, epsilon=config.BATCH_NORM_EPSILON, trainable=self.trainable, name=name+'_bn2' ) self.relu2 = layers.LeakyReLU(alpha=0.2) self.dropout = layers.Dropout( rate=self.dropout, trainable=self.trainable, name=name+'_dropout', ) self.conv2 = layers.Conv2D( filters=self.out_channels, kernel_size=3, strides=1, padding='same', use_bias=False, kernel_initializer=keras.initializers.HeNormal(), kernel_regularizer=regularizers.l2(config.WEIGHT_DECAY), trainable=self.trainable, name=name+'_conv2', ) if self.stride != 1 or self.in_channels != self.out_channels: self.short_cut_relu = layers.LeakyReLU(alpha=0.2) self.short_cut = layers.Conv2D( filters=self.out_channels, kernel_size=1, strides=self.stride, padding='same', use_bias=False, kernel_initializer=keras.initializers.HeNormal(), kernel_regularizer=regularizers.l2(config.WEIGHT_DECAY), trainable=self.trainable, name=name+'_shortcut' ) self.add = layers.Add(name=name+'_add') def call(self, inputs, **kwargs): residual = inputs out = self.bn1(inputs) if self.stride != 1 or self.in_channels != self.out_channels: residual = out out = self.relu1(out) out = self.conv1(out) out = self.bn2(out) out = self.relu2(out) out = self.conv2(out) if self.stride != 1 or self.in_channels != self.out_channels: residual = self.short_cut_relu(residual) residual = self.short_cut(residual) # else: # shortcut = out out = self.add([residual, out]) return out class WideResnet(keras.Model): def __init__(self, k=[16, 32, 64, 128], name='wider'): super(WideResnet, self).__init__(name=name) self.k = k self.dropout = config.DROPOUT self.drop = layers.Dropout( rate=config.DROPOUT, trainable=self.trainable, name=name+'_dropout', ) self.conv1 = layers.Conv2D( filters=k[0], kernel_size=3, strides=1, padding='same', use_bias=False, kernel_initializer=keras.initializers.HeNormal(), kernel_regularizer=regularizers.l2(config.WEIGHT_DECAY), trainable=self.trainable, name=name + '_conv1', ) self.Basic1 = BasicBlock(in_channels=k[0], out_channels=k[1], stride=1, dropout=self.dropout, name=name+'_Basic1', trainable=True) self.Basic2 = BasicBlock(in_channels=k[1], out_channels=k[1], stride=1, dropout=self.dropout, name=name+'_Basic2', trainable=True) self.Basic3 = BasicBlock(in_channels=k[1], out_channels=k[1], stride=1, dropout=self.dropout, name=name+'_Basic3', trainable=True) self.Basic4 = BasicBlock(in_channels=k[1], out_channels=k[1], stride=1, dropout=self.dropout, name=name+'_Basic4', trainable=True) self.Basic5 = BasicBlock(in_channels=k[1], out_channels=k[2], stride=2, dropout=self.dropout, name=name+'_Basic5', trainable=True) self.Basic6 = BasicBlock(in_channels=k[2], out_channels=k[2], stride=1, dropout=self.dropout, name=name+'_Basic6', trainable=True) self.Basic7 = BasicBlock(in_channels=k[2], out_channels=k[2], stride=1, dropout=self.dropout, name=name+'_Basic7', trainable=True) self.Basic8 = BasicBlock(in_channels=k[2], out_channels=k[2], stride=1, dropout=self.dropout, name=name+'_Basic8', trainable=True) self.Basic9 = BasicBlock(in_channels=k[2], out_channels=k[3], stride=2, dropout=self.dropout, name=name+'_Basic9', trainable=True) self.Basic10 = BasicBlock(in_channels=k[3], out_channels=k[3], stride=1, dropout=self.dropout, name=name+'_Basic10', trainable=True) self.Basic11 = BasicBlock(in_channels=k[3], out_channels=k[3], stride=1, dropout=self.dropout, name=name+'_Basic11', trainable=True) self.Basic12 = BasicBlock(in_channels=k[3], out_channels=k[3], stride=1, dropout=self.dropout, name=name+'_Basic12', trainable=True) self.bn1 = layers.BatchNormalization( # momentum=0.999, epsilon=config.BATCH_NORM_EPSILON, trainable=self.trainable, name=name+'_bn1' ) self.relu1 = layers.LeakyReLU(alpha=0.2) self.avgpool = layers.GlobalAveragePooling2D(name=name+'_avgpool') self.dense = layers.Dense( units=config.NUM_CLASS, # kernel_initializer=keras.initializers.RandomNormal(mean=0., stddev=1.), # activation='softmax', kernel_regularizer=regularizers.l2(config.WEIGHT_DECAY), name=name+'_dense', ) def call(self, inputs, training=None, mask=None): x = self.conv1(inputs) x = self.Basic1(x) x = self.Basic2(x) x = self.Basic3(x) x = self.Basic4(x) x = self.Basic5(x) x = self.Basic6(x) x = self.Basic7(x) x = self.Basic8(x) x = self.Basic9(x) x = self.Basic10(x) x = self.Basic11(x) x = self.Basic12(x) x = self.bn1(x) x = self.relu1(x) x = self.avgpool(x) x = self.drop(x) out = self.dense(x) return out def model(self): input = keras.Input(shape=(32, 32, 3), dtype=tf.float32) return keras.Model(inputs=input, outputs=self.call(input)) if __name__ == '__main__': img = tf.random.normal([1, 32, 32, 3]) model = WideResnet().model() model.summary()
b5d716b2740e66732492a580f7db8280232f261e
d3d8acc788bd3a8d7e5f861ad87c4d802723062b
/test/step3_descope200MCHF_HLT.py
c2272355f19530f27df01562b14bf70d1dee3ae4
[]
no_license
calabria/L1IntegratedMuonTrigger
27ff0bde46208f84595423ec375080979fbe4c62
05a368b8d04f84b675d40445555f2cacfd135e4e
refs/heads/master
2021-01-24T21:57:42.232290
2015-08-11T11:52:35
2015-08-11T11:52:35
38,485,204
0
2
null
2015-08-11T11:52:35
2015-07-03T09:40:57
Python
UTF-8
Python
false
false
4,607
py
# Auto generated configuration file # using: # Revision: 1.20 # Source: /local/reps/CMSSW/CMSSW/Configuration/Applications/python/ConfigBuilder.py,v # with command line options: step3_descope200MCHF --fileout file:out_hlt_descope200MCHF.root --mc --eventcontent RECOSIM --step HLT --customise RecoParticleFlow/PandoraTranslator/customizeHGCalPandora_cff.cust_2023HGCalPandoraMuon,Configuration/DataProcessing/Utils.addMonitoring,L1Trigger/L1IntegratedMuonTrigger/phase2DescopingScenarios.descope200MCHF --datatier GEN-SIM-RECO --conditions PH2_1K_FB_V6::All --magField 38T_PostLS1 --filein file:/afs/cern.ch/work/d/dildick/public/GEM/MuonPhaseIIScopeDoc/CMSSW_6_2_0_SLHC26_patch3/src/001B71CC-0F38-E511-BEE2-002618943918.root --geometry Extended2023HGCalMuon,Extended2023HGCalMuonReco --no_exec -n 10 import FWCore.ParameterSet.Config as cms process = cms.Process('HLT') # import of standard configurations process.load('Configuration.StandardSequences.Services_cff') process.load('SimGeneral.HepPDTESSource.pythiapdt_cfi') process.load('FWCore.MessageService.MessageLogger_cfi') process.load('Configuration.EventContent.EventContent_cff') process.load('SimGeneral.MixingModule.mixNoPU_cfi') process.load('Configuration.Geometry.GeometryExtended2023HGCalMuonReco_cff') process.load('Configuration.StandardSequences.MagneticField_38T_PostLS1_cff') process.load('HLTrigger.Configuration.HLT_GRun_cff') process.load('Configuration.StandardSequences.EndOfProcess_cff') process.load('Configuration.StandardSequences.FrontierConditions_GlobalTag_cff') process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(10) ) # Input source process.source = cms.Source("PoolSource", secondaryFileNames = cms.untracked.vstring(), fileNames = cms.untracked.vstring('file:/afs/cern.ch/work/d/dildick/public/GEM/MuonPhaseIIScopeDoc/CMSSW_6_2_0_SLHC26_patch3/src/001B71CC-0F38-E511-BEE2-002618943918.root') ) process.options = cms.untracked.PSet( ) # Production Info process.configurationMetadata = cms.untracked.PSet( version = cms.untracked.string('$Revision: 1.20 $'), annotation = cms.untracked.string('step3_descope200MCHF nevts:10'), name = cms.untracked.string('Applications') ) # Output definition process.RECOSIMoutput = cms.OutputModule("PoolOutputModule", splitLevel = cms.untracked.int32(0), eventAutoFlushCompressedSize = cms.untracked.int32(5242880), outputCommands = process.RECOSIMEventContent.outputCommands, fileName = cms.untracked.string('file:out_hlt_descope200MCHF.root'), dataset = cms.untracked.PSet( filterName = cms.untracked.string(''), dataTier = cms.untracked.string('GEN-SIM-RECO') ) ) # Additional output definition # Other statements from Configuration.AlCa.GlobalTag import GlobalTag process.GlobalTag = GlobalTag(process.GlobalTag, 'PH2_1K_FB_V6::All', '') # Path and EndPath definitions process.endjob_step = cms.EndPath(process.endOfProcess) process.RECOSIMoutput_step = cms.EndPath(process.RECOSIMoutput) # Schedule definition process.schedule = cms.Schedule() process.schedule.extend(process.HLTSchedule) process.schedule.extend([process.endjob_step,process.RECOSIMoutput_step]) # customisation of the process. # Automatic addition of the customisation function from RecoParticleFlow.PandoraTranslator.customizeHGCalPandora_cff from RecoParticleFlow.PandoraTranslator.customizeHGCalPandora_cff import cust_2023HGCalPandoraMuon #call to customisation function cust_2023HGCalPandoraMuon imported from RecoParticleFlow.PandoraTranslator.customizeHGCalPandora_cff process = cust_2023HGCalPandoraMuon(process) # Automatic addition of the customisation function from HLTrigger.Configuration.customizeHLTforMC from HLTrigger.Configuration.customizeHLTforMC import customizeHLTforMC #call to customisation function customizeHLTforMC imported from HLTrigger.Configuration.customizeHLTforMC process = customizeHLTforMC(process) # Automatic addition of the customisation function from Configuration.DataProcessing.Utils from Configuration.DataProcessing.Utils import addMonitoring #call to customisation function addMonitoring imported from Configuration.DataProcessing.Utils process = addMonitoring(process) # Automatic addition of the customisation function from L1Trigger.L1IntegratedMuonTrigger.phase2DescopingScenarios from L1Trigger.L1IntegratedMuonTrigger.phase2DescopingScenarios import descope200MCHF #call to customisation function descope200MCHF imported from L1Trigger.L1IntegratedMuonTrigger.phase2DescopingScenarios process = descope200MCHF(process) # End of customisation functions
d8229a35567ff7594f50dbb89b7cea36bec123ac
148125096da896fd93292d2cd408265d159fec28
/qa/rpc-tests/p2p-acceptblock.py
2267768dbfeb2685302144171cfdd388f4355b4c
[ "MIT" ]
permissive
lycion/lkcoinse
7cfbcbdfc1e98f20d9dfc497ea65fd75ca6de25d
9cf9ed5730217566b44466c22dc255f0134ad1bb
refs/heads/master
2020-03-30T03:24:44.245148
2018-09-28T04:55:30
2018-09-28T04:55:30
150,548,883
0
0
null
null
null
null
UTF-8
Python
false
false
12,678
py
#!/usr/bin/env python3 # Copyright (c) 2015-2016 The Lkcoinse Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. import test_framework.loginit from test_framework.mininode import * from test_framework.test_framework import LkcoinseTestFramework from test_framework.util import * import time from test_framework.blocktools import create_block, create_coinbase ''' AcceptBlockTest -- test processing of unrequested blocks. Since behavior differs when receiving unrequested blocks from whitelisted peers versus non-whitelisted peers, this tests the behavior of both (effectively two separate tests running in parallel). Setup: two nodes, node0 and node1, not connected to each other. Node0 does not whitelist localhost, but node1 does. They will each be on their own chain for this test. We have one NodeConn connection to each, test_node and white_node respectively. The test: 1. Generate one block on each node, to leave IBD. 2. Mine a new block on each tip, and deliver to each node from node's peer. The tip should advance. 3. Mine a block that forks the previous block, and deliver to each node from corresponding peer. Node0 should not process this block (just accept the header), because it is unrequested and doesn't have more work than the tip. Node1 should process because this is coming from a whitelisted peer. 4. Send another block that builds on the forking block. Node0 should process this block but be stuck on the shorter chain, because it's missing an intermediate block. Node1 should reorg to this longer chain. 4b.Send 288 more blocks on the longer chain. Node0 should process all but the last block (too far ahead in height). Send all headers to Node1, and then send the last block in that chain. Node1 should accept the block because it's coming from a whitelisted peer. 5. Send a duplicate of the block in #3 to Node0. Node0 should not process the block because it is unrequested, and stay on the shorter chain. 6. Send Node0 an inv for the height 3 block produced in #4 above. Node0 should figure out that Node0 has the missing height 2 block and send a getdata. 7. Send Node0 the missing block again. Node0 should process and the tip should advance. ''' # TestNode: bare-bones "peer". Used mostly as a conduit for a test to sending # p2p messages to a node, generating the messages in the main testing logic. class TestNode(NodeConnCB): def __init__(self): NodeConnCB.__init__(self) self.connection = None self.ping_counter = 1 self.last_pong = msg_pong() def add_connection(self, conn): self.connection = conn # Track the last getdata message we receive (used in the test) def on_getdata(self, conn, message): self.last_getdata = message # Spin until verack message is received from the node. # We use this to signal that our test can begin. This # is called from the testing thread, so it needs to acquire # the global lock. def wait_for_verack(self): while True: with mininode_lock: if self.verack_received: return time.sleep(0.05) # Wrapper for the NodeConn's send_message function def send_message(self, message): self.connection.send_message(message) def on_pong(self, conn, message): self.last_pong = message # Sync up with the node after delivery of a block def sync_with_ping(self, timeout=30): self.connection.send_message(msg_ping(nonce=self.ping_counter)) received_pong = False sleep_time = 0.05 while not received_pong and timeout > 0: time.sleep(sleep_time) timeout -= sleep_time with mininode_lock: if self.last_pong.nonce == self.ping_counter: received_pong = True self.ping_counter += 1 return received_pong class AcceptBlockTest(LkcoinseTestFramework): def add_options(self, parser): parser.add_option("--testbinary", dest="testbinary", default=os.getenv("LKCOINSED", "lkcoinsed"), help="lkcoinsed binary to test") def setup_chain(self): initialize_chain_clean(self.options.tmpdir, 2) def setup_network(self): # Node0 will be used to test behavior of processing unrequested blocks # from peers which are not whitelisted, while Node1 will be used for # the whitelisted case. self.nodes = [] self.nodes.append(start_node(0, self.options.tmpdir, ["-debug"], binary=self.options.testbinary)) self.nodes.append(start_node(1, self.options.tmpdir, ["-debug", "-whitelist=127.0.0.1"], binary=self.options.testbinary)) def run_test(self): # Setup the p2p connections and start up the network thread. test_node = TestNode() # connects to node0 (not whitelisted) white_node = TestNode() # connects to node1 (whitelisted) connections = [] connections.append(NodeConn('127.0.0.1', p2p_port(0), self.nodes[0], test_node)) connections.append(NodeConn('127.0.0.1', p2p_port(1), self.nodes[1], white_node)) test_node.add_connection(connections[0]) white_node.add_connection(connections[1]) NetworkThread().start() # Start up network handling in another thread # Test logic begins here test_node.wait_for_verack() white_node.wait_for_verack() # 1. Have both nodes mine a block (leave IBD) [ n.generate(1) for n in self.nodes ] tips = [ int("0x" + n.getbestblockhash(), 0) for n in self.nodes ] # 2. Send one block that builds on each tip. # This should be accepted. blocks_h2 = [] # the height 2 blocks on each node's chain block_time = int(time.time()) + 1 for i in range(2): blocks_h2.append(create_block(tips[i], create_coinbase(2), block_time)) blocks_h2[i].solve() block_time += 1 test_node.send_message(msg_block(blocks_h2[0])) white_node.send_message(msg_block(blocks_h2[1])) [ x.sync_with_ping() for x in [test_node, white_node] ] assert_equal(self.nodes[0].getblockcount(), 2) assert_equal(self.nodes[1].getblockcount(), 2) print("First height 2 block accepted by both nodes") # 3. Send another block that builds on the original tip. blocks_h2f = [] # Blocks at height 2 that fork off the main chain for i in range(2): blocks_h2f.append(create_block(tips[i], create_coinbase(2), blocks_h2[i].nTime+1)) blocks_h2f[i].solve() test_node.send_message(msg_block(blocks_h2f[0])) white_node.send_message(msg_block(blocks_h2f[1])) [ x.sync_with_ping() for x in [test_node, white_node] ] for x in self.nodes[0].getchaintips(): if x['hash'] == blocks_h2f[0].hash: assert_equal(x['status'], "headers-only") for x in self.nodes[1].getchaintips(): if x['hash'] == blocks_h2f[1].hash: assert_equal(x['status'], "valid-headers") print("Second height 2 block accepted only from whitelisted peer") # 4. Now send another block that builds on the forking chain. blocks_h3 = [] for i in range(2): blocks_h3.append(create_block(blocks_h2f[i].sha256, create_coinbase(3), blocks_h2f[i].nTime+1)) blocks_h3[i].solve() test_node.send_message(msg_block(blocks_h3[0])) white_node.send_message(msg_block(blocks_h3[1])) [ x.sync_with_ping() for x in [test_node, white_node] ] # Since the earlier block was not processed by node0, the new block # can't be fully validated. for x in self.nodes[0].getchaintips(): if x['hash'] == blocks_h3[0].hash: assert_equal(x['status'], "headers-only") # But this block should be accepted by node0 since it has more work. try: self.nodes[0].getblock(blocks_h3[0].hash) print("Unrequested more-work block accepted from non-whitelisted peer") except: raise AssertionError("Unrequested more work block was not processed") # Node1 should have accepted and reorged. assert_equal(self.nodes[1].getblockcount(), 3) print("Successfully reorged to length 3 chain from whitelisted peer") # 4b. Now mine 288 more blocks and deliver; all should be processed but # the last (height-too-high) on node0. Node1 should process the tip if # we give it the headers chain leading to the tip. tips = blocks_h3 headers_message = msg_headers() all_blocks = [] # node0's blocks for j in range(2): for i in range(288): next_block = create_block(tips[j].sha256, create_coinbase(i + 4), tips[j].nTime+1) next_block.solve() if j==0: test_node.send_message(msg_block(next_block)) all_blocks.append(next_block) else: headers_message.headers.append(CBlockHeader(next_block)) tips[j] = next_block test_node.sync_with_ping() time.sleep(2) for x in all_blocks: try: self.nodes[0].getblock(x.hash) if x == all_blocks[287]: raise AssertionError("Unrequested block too far-ahead should have been ignored") except: if x == all_blocks[287]: print("Unrequested block too far-ahead not processed") else: raise AssertionError("Unrequested block with more work should have been accepted") headers_message.headers.pop() # Ensure the last block is unrequested white_node.send_message(headers_message) # Send headers leading to tip white_node.send_message(msg_block(tips[1])) # Now deliver the tip try: white_node.sync_with_ping() self.nodes[1].getblock(tips[1].hash) print("Unrequested block far ahead of tip accepted from whitelisted peer") except: raise AssertionError("Unrequested block from whitelisted peer not accepted") # 5. Test handling of unrequested block on the node that didn't process # Should still not be processed (even though it has a child that has more # work). test_node.send_message(msg_block(blocks_h2f[0])) # Here, if the sleep is too short, the test could falsely succeed (if the # node hasn't processed the block by the time the sleep returns, and then # the node processes it and incorrectly advances the tip). # But this would be caught later on, when we verify that an inv triggers # a getdata request for this block. test_node.sync_with_ping() assert_equal(self.nodes[0].getblockcount(), 2) print("Unrequested block that would complete more-work chain was ignored") # 6. Try to get node to request the missing block. # Poke the node with an inv for block at height 3 and see if that # triggers a getdata on block 2 (it should if block 2 is missing). with mininode_lock: # Clear state so we can check the getdata request test_node.last_getdata = None test_node.send_message(msg_inv([CInv(2, blocks_h3[0].sha256)])) test_node.sync_with_ping() with mininode_lock: getdata = test_node.last_getdata # Check that the getdata includes the right block assert_equal(getdata.inv[0].hash, blocks_h2f[0].sha256) print("Inv at tip triggered getdata for unprocessed block") # 7. Send the missing block for the third time (now it is requested) test_node.send_message(msg_block(blocks_h2f[0])) test_node.sync_with_ping() # Wait for the reorg to complete. It can be slower on some systems. while self.nodes[0].getblockcount() != 290: time.sleep(1) j = j + 1 if (j > 60): break assert_equal(self.nodes[0].getblockcount(), 290) print("Successfully reorged to longer chain from non-whitelisted peer") [ c.disconnect_node() for c in connections ] if __name__ == '__main__': AcceptBlockTest().main()
6537118072122509e9adad7738eee5616a1b24dd
fc83fc10fcc509316e612d73bd40a81d3ca0a2e6
/tests/nd_gaussian_multiprocessing.py
1f8c698393e3a088d991eb3484785a391dc3c783
[ "MIT" ]
permissive
DimitriMisiak/mcmc-red
47dfb7e0664205da55fa463df77851722082e3c3
caae0ce39d082e578176a5078a9184980b0851c3
refs/heads/main
2023-06-19T04:10:42.385862
2019-07-05T07:45:01
2019-07-05T07:45:01
387,757,149
0
0
null
null
null
null
UTF-8
Python
false
false
3,928
py
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Handy MCMC scripts. Test for the different fit method (mcmc, ptmcmc, minimizer). Author: Dimitri Misiak ([email protected]) """ import numpy as np import matplotlib.pyplot as plt import sys import scipy.signal as sgl from os import path import scipy.optimize as op import mcmc_red as mcr # close all plots plt.close('all') nsample = 1000 ndim = 4 SCALE = 'log' ### LINEAR SCALE if SCALE == 'linear': mu = np.random.uniform(-10, 10, ndim) sigma = np.random.uniform(0, 10, ndim) bounds = ((-20, 20),) * ndim ### LOG SCALE elif SCALE == 'log': mu_generator = np.random.uniform(-6, 0, ndim) mu = 10**mu_generator sigma = mu/10 bounds = ((1e-7, 1e1),) * ndim else: raise Exception('SCALE not set properly!') print("Generating blob at mu={0} and sigma={1}".format(mu, sigma)) blob = np.random.normal(mu, sigma, (nsample, ndim)) print("Checking") print("mean =", np.mean(blob, axis=0)) print("std =", np.std(blob, axis=0)) def chi2(param): return mcr.chi2_simple(blob, param, sigma) #def chi2(param): # x2 = np.sum( (blob - np.array(param))**2 / np.array(sigma)**2 ) # return x2 condi = None # XXX MCMC # save directory sampler_path = 'mcmc_sampler/autosave' # extracts the sup bounds and the inf bounds bounds = list(bounds) binf = list() bsup = list() for b in bounds: inf, sup = b binf.append(inf) bsup.append(sup) binf = np.array(binf) bsup = np.array(bsup) # additionnal constrain as function of the parameters if condi == None: condi = lambda p: True # Loglikelihood function taking into accounts the bounds def loglike(x): """ Loglikelihood being -chi2/2. Take into account the bounds. """ cinf = np.sum(x<binf) csup = np.sum(x>bsup) if cinf == 0 and csup == 0 and condi(x) == True: # return -0.5*aux(np.power(10,x)) return -0.5*chi2(x) else: return -np.inf # running the mcmc analysis sampler = mcr.mcmc_sampler_multi(loglike, bounds, nsteps=1000, path=sampler_path, threads=2, scale=SCALE) #nwalkers=None #nsteps=10000 #threads=4 ############################################################################## ## extracts the sup bounds and the inf bounds #bounds = list(bounds) #binf = list() #bsup = list() #for b in bounds: # inf, sup = b # binf.append(inf) # bsup.append(sup) #binf = np.array(binf) #bsup = np.array(bsup) # #condi = None ## additionnal constrain as function of the parameters #if condi == None: # condi = lambda p: True # ## Loglikelihood function taking into accounts the bounds #def loglike(x): # """ Loglikelihood being -chi2/2. # Take into account the bounds. # """ # cinf = np.sum(x<binf) # csup = np.sum(x>bsup) # if cinf == 0 and csup == 0 and condi(x) == True: ## return -0.5*aux(np.power(10,x)) # return -0.5*chi2(x) # else:china moon # return -np.inf # ## number of parameters/dimensions #ndim = len(bounds) # ## default nwalkers #if nwalkers == None: # nwalkers = 10 * ndim # ## walkers are uniformly spread in the parameter space #pos = list() #for n in xrange(nwalkers): # accept = False # while not accept: # new_pos = [ # np.random.uniform(low=l, high=h) for l,h in zip(binf, bsup) # ] # accept = condi(new_pos) # pos.append(new_pos) # ## MCMC analysis #sampler = emcee.EnsembleSampler(nwalkers, ndim, loglike, threads=threads) #sampler.run_mcmc(pos, nsteps, rstate0=np.random.get_state()) ############################################################################# # # loading the mcmc results logd, chain, lnprob, acc = mcr.get_mcmc_sampler(sampler_path) lab = tuple(['$\mu${}'.format(i) for i in range(ndim)]) dim = int(logd['dim']) xopt, inf, sup = mcr.mcmc_results(dim, chain, lnprob, acc, lab, scale=SCALE, savedir=sampler_path) print(xopt, inf, sup)
05c06ff5850ee1f5cbab0d42f5704ce5b0f4acb3
57d1580fd540b4819abb67f9db43fdfbba63725f
/hydrogen_notebooks/option_pricing/binomial_european_call_delta_hedging.py
29f3ca209e1b50cb4571fff0cac52d807c607296
[]
no_license
glyfish/alpaca
49edfcb9d80551825dfa4cf071f21aeb95a3502f
2b5b69bcf50ed081a526742658be503706af94b4
refs/heads/master
2023-02-22T00:24:19.293502
2022-09-05T17:20:23
2022-09-05T17:20:23
186,169,438
1
3
null
2023-02-11T00:52:12
2019-05-11T18:38:58
Python
UTF-8
Python
false
false
2,302
py
# %% %load_ext autoreload %autoreload 2 import os import sys import numpy from matplotlib import pyplot from lib import config from scipy.stats import binom wd = os.getcwd() yahoo_root = os.path.join(wd, 'data', 'yahoo') pyplot.style.use(config.glyfish_style) # %% def qrn(U, D, R): return (R - D) / (U - D) def qrn1(q, U, R): return q*(1.0 + U) / (1.0 + R) def binomial_tail_cdf(l, n, p): return 1.0 - binom.cdf(l, n, p) def cutoff(S0, U, D, K, n): for i in range(0, n + 1): iU = (1.0 + U)**i iD = (1.0 + D)**(n - i) payoff = S0*iU*iD - K if payoff > 0: return i return n + 1 def european_call_payoff(U, D, R, S0, K, n): l = cutoff(S0, U, D, K, n) q = qrn(U, D, R) q1 = qrn1(q, U, R) Ψq = binomial_tail_cdf(l - 1, n, q) Ψq1 = binomial_tail_cdf(l - 1, n, q1) return S0*Ψq1 - K*(1 + R)**(-n)*Ψq def delta(CU, CD, SU, SD): return (CU - CD) / (SU - SD) def init_borrow(S0, C0, x): return C0 - S0 * x def borrow(y, R, x1, x2, S): return y * (1 + R) + (x1 - x2) * S def portfolio_value(x, S, y): return x * S + y # %% n = 3 U = 0.2 D = -0.1 R = 0.1 S0 = 100.0 K = 105.0 # %% q = qrn(U, D, R) q1 = qrn1(q, U, R) l = cutoff(S0, U, D, K, n) Ψq = binomial_tail_cdf(l - 1, n, q) Ψq1 = binomial_tail_cdf(l - 1, n, q1) q, q1, l, Ψq, Ψq1 binom.cdf(l, n, q) # % # t = 0 C0 = european_call_payoff(U, D, R, S0, K, n) # %% # Delta hedge # t = 0 S1U = S0*(1.0 + U) S1D = S0*(1.0 + D) C1U = european_call_payoff(U, D, R, S1U, K, n - 1) C1D = european_call_payoff(U, D, R, S1D, K, n - 1) x1 = delta(C1U, C1D, S1U, S1D) y1 = init_borrow(S0, C0, x1) portfolio_value(x1, S0, y1) # t = 1 # The price goes up S1 = S0*(1+U) S1 = S0 * (1 + U) S2U = S1*(1.0 + U) S2D = S1*(1.0 + D) C2U = european_call_payoff(U, D, R, S2U, K, n - 2) C2D = european_call_payoff(U, D, R, S2D, K, n - 2) x2 = delta(C2U, C2D, S2U, S2D) y2 = borrow(y1, R, x1, x2, S1) portfolio_value(x2, S1, y2) # t = 2 # The price goes down S1 = S0*(1+U)*(1+D) S2 = S0 * (1 + U) * (1 + D) S3U = S2*(1.0 + U) S3D = S2*(1.0 + D) C3U = european_call_payoff(U, D, R, S3U, K, n - 3) C3D = european_call_payoff(U, D, R, S3D, K, n - 3) x3 = delta(C3U, C3D, S3U, S3D) y3 = borrow(y2, R, x2, x3, S2) portfolio_value(x3, S2, y3)
ce5dade7d36a431e3ec81dade64648f6c22eca35
7832e7dc8f1583471af9c08806ce7f1117cd228a
/aliyun-python-sdk-emr/aliyunsdkemr/request/v20160408/RunClusterServiceActionRequest.py
eb1c959505c70fd4e06aa43388665c4d9f9b06a3
[ "Apache-2.0" ]
permissive
dianplus/aliyun-openapi-python-sdk
d6494850ddf0e66aaf04607322f353df32959725
6edf1ed02994245dae1d1b89edc6cce7caa51622
refs/heads/master
2023-04-08T11:35:36.216404
2017-11-02T12:01:15
2017-11-02T12:01:15
109,257,597
0
0
NOASSERTION
2023-03-23T17:59:30
2017-11-02T11:44:27
Python
UTF-8
Python
false
false
3,508
py
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest class RunClusterServiceActionRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Emr', '2016-04-08', 'RunClusterServiceAction') def get_ResourceOwnerId(self): return self.get_query_params().get('ResourceOwnerId') def set_ResourceOwnerId(self,ResourceOwnerId): self.add_query_param('ResourceOwnerId',ResourceOwnerId) def get_ClusterId(self): return self.get_query_params().get('ClusterId') def set_ClusterId(self,ClusterId): self.add_query_param('ClusterId',ClusterId) def get_HostIdList(self): return self.get_query_params().get('HostIdList') def set_HostIdList(self,HostIdList): self.add_query_param('HostIdList',HostIdList) def get_ServiceName(self): return self.get_query_params().get('ServiceName') def set_ServiceName(self,ServiceName): self.add_query_param('ServiceName',ServiceName) def get_ServiceActionName(self): return self.get_query_params().get('ServiceActionName') def set_ServiceActionName(self,ServiceActionName): self.add_query_param('ServiceActionName',ServiceActionName) def get_CustomCommand(self): return self.get_query_params().get('CustomCommand') def set_CustomCommand(self,CustomCommand): self.add_query_param('CustomCommand',CustomCommand) def get_ComponentNameList(self): return self.get_query_params().get('ComponentNameList') def set_ComponentNameList(self,ComponentNameList): self.add_query_param('ComponentNameList',ComponentNameList) def get_Comment(self): return self.get_query_params().get('Comment') def set_Comment(self,Comment): self.add_query_param('Comment',Comment) def get_IsRolling(self): return self.get_query_params().get('IsRolling') def set_IsRolling(self,IsRolling): self.add_query_param('IsRolling',IsRolling) def get_NodeCountPerBatch(self): return self.get_query_params().get('NodeCountPerBatch') def set_NodeCountPerBatch(self,NodeCountPerBatch): self.add_query_param('NodeCountPerBatch',NodeCountPerBatch) def get_TotlerateFailCount(self): return self.get_query_params().get('TotlerateFailCount') def set_TotlerateFailCount(self,TotlerateFailCount): self.add_query_param('TotlerateFailCount',TotlerateFailCount) def get_OnlyRestartStaleConfigNodes(self): return self.get_query_params().get('OnlyRestartStaleConfigNodes') def set_OnlyRestartStaleConfigNodes(self,OnlyRestartStaleConfigNodes): self.add_query_param('OnlyRestartStaleConfigNodes',OnlyRestartStaleConfigNodes) def get_TurnOnMaintenanceMode(self): return self.get_query_params().get('TurnOnMaintenanceMode') def set_TurnOnMaintenanceMode(self,TurnOnMaintenanceMode): self.add_query_param('TurnOnMaintenanceMode',TurnOnMaintenanceMode)
b09fdc0bc43f30b2b51c8893afcf2024ef86d619
0009c76a25c89a0d61d3bc9e10071da58bdfaa5a
/py/ztools/mtp/mtp_tools.py
0496f5ae683026478bdcc98faf9cc9c89b3e14a9
[ "MIT" ]
permissive
julesontheroad/NSC_BUILDER
84054e70a80b572088b0806a47ceb398302451b5
e9083e83383281bdd9e167d3141163dcc56b6710
refs/heads/master
2023-07-05T05:23:17.114363
2021-11-15T19:34:47
2021-11-15T19:34:47
149,040,416
1,249
143
MIT
2022-12-15T03:19:33
2018-09-16T22:18:01
Python
UTF-8
Python
false
false
8,313
py
import os from listmanager import folder_to_list from listmanager import parsetags from pathlib import Path import Print import shutil from mtp.wpd import is_switch_connected import sys import subprocess from python_pick import pick from python_pick import Picker squirrel_dir=os.path.abspath(os.curdir) NSCB_dir=os.path.abspath('../'+(os.curdir)) if os.path.exists(os.path.join(squirrel_dir,'ztools')): NSCB_dir=squirrel_dir zconfig_dir=os.path.join(NSCB_dir, 'zconfig') ztools_dir=os.path.join(NSCB_dir,'ztools') squirrel_dir=ztools_dir elif os.path.exists(os.path.join(NSCB_dir,'ztools')): squirrel_dir=squirrel_dir ztools_dir=os.path.join(NSCB_dir, 'ztools') zconfig_dir=os.path.join(NSCB_dir, 'zconfig') else: ztools_dir=os.path.join(NSCB_dir, 'ztools') zconfig_dir=os.path.join(NSCB_dir, 'zconfig') testroute1=os.path.join(squirrel_dir, "squirrel.py") testroute2=os.path.join(squirrel_dir, "squirrel.exe") urlconfig=os.path.join(zconfig_dir,'NUT_DB_URL.txt') isExe=False if os.path.exists(testroute1): squirrel=testroute1 isExe=False elif os.path.exists(testroute2): squirrel=testroute2 isExe=True bin_folder=os.path.join(ztools_dir, 'bin') nscb_mtp=os.path.join(bin_folder, 'nscb_mtp.exe') cachefolder=os.path.join(ztools_dir, '_mtp_cache_') if not os.path.exists(cachefolder): os.makedirs(cachefolder) games_installed_cache=os.path.join(cachefolder, 'games_installed.txt') autoloader_files_cache=os.path.join(cachefolder, 'autoloader_files.txt') sd_xci_cache=os.path.join(cachefolder, 'sd_xci.txt') valid_saves_cache=os.path.join(cachefolder, 'valid_saves.txt') mtp_source_lib=os.path.join(zconfig_dir,'mtp_source_libraries.txt') mtp_internal_lib=os.path.join(zconfig_dir,'mtp_SD_libraries.txt') storage_info=os.path.join(cachefolder, 'storage.csv') download_lib_file = os.path.join(zconfig_dir, 'mtp_download_libraries.txt') sx_autoloader_db=os.path.join(zconfig_dir, 'sx_autoloader_db') def gen_sx_autoloader_files_menu(): print('***********************************************') print('SX AUTOLOADER GENERATE FILES FROM HDD OR FOLDER') print('***********************************************') print('') folder=input("Input a drive path: ") if not os.path.exists(folder): sys.exit("Can't find location") title = 'Target for autoloader files: ' options = ['HDD','SD'] selected = pick(options, title, min_selection_count=1) if selected[0]=='HDD': type='hdd' else: type='sd' title = 'Push files after generation?: ' options = ['YES','NO'] selected = pick(options, title, min_selection_count=1) if selected[0]=='YES': push=True else: push=False title = "Ensure files can't colide after transfer?: " options = ['YES','NO'] selected = pick(options, title, min_selection_count=1) if selected[0]=='YES': no_colide=True else: no_colide=False gen_sx_autoloader_files(folder,type=type,push=push,no_colide=no_colide) def gen_sx_autoloader_files(folder,type='hdd',push=False,no_colide=False): gamelist=folder_to_list(folder,['xci','xc0']) if type=='hdd': SD_folder=os.path.join(sx_autoloader_db, 'hdd') else: SD_folder=os.path.join(sx_autoloader_db, 'sd') if not os.path.exists(sx_autoloader_db): os.makedirs(sx_autoloader_db) if not os.path.exists(SD_folder): os.makedirs(SD_folder) for f in os.listdir(SD_folder): fp = os.path.join(SD_folder, f) try: shutil.rmtree(fp) except OSError: os.remove(fp) print(' * Generating autoloader files') try: for g in gamelist: try: fileid,fileversion,cctag,nG,nU,nD,baseid=parsetags(g) if fileid=='unknown': continue tfile=os.path.join(SD_folder,fileid) fileparts=Path(g).parts if type=='hdd': new_path=g.replace(fileparts[0],'"usbhdd:/') else: new_path=g.replace(fileparts[0],'"sdmc:/') new_path=new_path.replace('\\','/') with open(tfile,'w') as text_file: text_file.write(new_path) except:pass print(' DONE') if push==True: if not is_switch_connected(): sys.exit("Can't push files. Switch device isn't connected.\nCheck if mtp responder is running!!!") print(' * Pushing autoloader files') if type=='hdd': destiny="1: External SD Card\\sxos\\titles\\00FF0012656180FF\\cach\\hdd" else: destiny="1: External SD Card\\sxos\\titles\\00FF0012656180FF\\cach\\sd" process=subprocess.Popen([nscb_mtp,"TransferFolder","-ori",SD_folder,"-dst",destiny,"-fbf","true"]) while process.poll()==None: if process.poll()!=None: process.terminate(); if no_colide==True: cleanup_sx_autoloader_files() except BaseException as e: Print.error('Exception: ' + str(e)) pass def cleanup_sx_autoloader_files(): from mtp_game_manager import retrieve_xci_paths from mtp_game_manager import get_gamelist try: for f in os.listdir(cachefolder): fp = os.path.join(cachefolder, f) try: shutil.rmtree(fp) except OSError: os.remove(fp) except:pass if not is_switch_connected(): sys.exit("Can't push files. Switch device isn't connected.\nCheck if mtp responder is running!!!") retrieve_xci_paths() print(" * Retriving autoloader files in device. Please Wait...") process=subprocess.Popen([nscb_mtp,"Retrieve_autoloader_files","-tfile",autoloader_files_cache,"-show","false"],stdout=subprocess.PIPE,stderr=subprocess.PIPE) while process.poll()==None: if process.poll()!=None: process.terminate(); if os.path.exists(autoloader_files_cache): print(" Success") else: sys.exit("Autoloader files weren't retrieved properly") gamelist=get_gamelist(file=sd_xci_cache) autoloader_list=get_gamelist(file=autoloader_files_cache) sd_xci_ids=[] for g in gamelist: try: fileid,fileversion,cctag,nG,nU,nD,baseid=parsetags(g) sd_xci_ids.append(fileid) except:pass files_to_remove=[] for f in autoloader_list: fileparts=Path(f).parts if 'sdd' in fileparts and not (fileparts[-1] in sd_xci_ids): files_to_remove.append(f) elif 'hdd' in fileparts and (fileparts[-1] in sd_xci_ids): files_to_remove.append(f) print(" * The following files will be removed") for f in files_to_remove: print(" - "+f) for f in files_to_remove: process=subprocess.Popen([nscb_mtp,"DeleteFile","-fp",f]) while process.poll()==None: if process.poll()!=None: process.terminate(); def push_sx_autoloader_libraries(): if not is_switch_connected(): sys.exit("Can't push files. Switch device isn't connected.\nCheck if mtp responder is running!!!") title = "Ensure files can't colide after transfer?: " options = ['YES','NO'] selected = pick(options, title, min_selection_count=1) if selected[0]=='YES': no_colide=True else: no_colide=False print(' * Pushing autoloader files in hdd folder') HDD_folder=os.path.join(sx_autoloader_db, 'hdd') destiny="1: External SD Card\\sxos\\titles\\00FF0012656180FF\\cach\\hdd" process=subprocess.Popen([nscb_mtp,"TransferFolder","-ori",HDD_folder,"-dst",destiny,"-fbf","true"]) while process.poll()==None: if process.poll()!=None: process.terminate(); print(' * Pushing autoloader files in SD folder') SD_folder=os.path.join(sx_autoloader_db, 'sd') destiny="1: External SD Card\\sxos\\titles\\00FF0012656180FF\\cach\\sd" process=subprocess.Popen([nscb_mtp,"TransferFolder","-ori",SD_folder,"-dst",destiny,"-fbf","true"]) while process.poll()==None: if process.poll()!=None: process.terminate(); if no_colide==True: cleanup_sx_autoloader_files() def get_nca_ticket(filepath,nca): import Fs from binascii import hexlify as hx, unhexlify as uhx if filepath.endswith('xci') or filepath.endswith('xcz'): f = Fs.Xci(filepath) check=False;titleKey=0 for nspF in f.hfs0: if str(nspF._path)=="secure": for file in nspF: if (file._path).endswith('.tik'): titleKey = file.getTitleKeyBlock().to_bytes(16, byteorder='big') check=f.verify_key(nca,str(file._path)) if check==True: break return check,titleKey elif filepath.endswith('nsp') or filepath.endswith('nsz'): f = Fs.Nsp(filepath) check=False;titleKey=0 for file in f: if (file._path).endswith('.tik'): titleKey = file.getTitleKeyBlock().to_bytes(16, byteorder='big') check=f.verify_key(nca,str(file._path)) if check==True: break return check,titleKey
fa26cbfd0a0af998227fd24745c6f1b50a85ae34
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03046/s367901013.py
bd60026b909a76c85e533b517ac364ab9dac011a
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
1,127
py
from sys import stdout printn = lambda x: stdout.write(str(x)) inn = lambda : int(input()) inl = lambda: list(map(int, input().split())) inm = lambda: map(int, input().split()) ins = lambda : input().strip() DBG = True # and False BIG = 999999999 R = 10**9 + 7 def ddprint(x): if DBG: print(x) m,k = inm() if m==0 and k==0: print('0 0') exit() if m==0 and k>0: print('-1') exit() if m==1 and k==0: print('0 0 1 1') exit() if m==1 and k>0: print('-1') exit() if k>=2**m: print('-1') exit() if k==0: printn('0 0') for i in range(1,2**m): printn(' {} {}'.format(i,i)) print('') exit() u = [False]*(2**m) u[k] = True a = [] cnt = 0 for i in range(1,2**m): j = i^k if not u[i] and not u[j]: a.append(i) u[j] = True cnt += 1 if cnt==2**(m-1)-1: break s = [x for x in a] t = [x for x in a] t.reverse() s.extend([0,k,0]) s.extend(t) v = [x^k for x in a] t = [x for x in v] t.reverse() s.extend(v) s.append(k) s.extend(t) printn(s[0]) for i in range(1,len(s)): printn(' ' + str(s[i])) print("")
354f4e8b11fc7deaae648a37d207d137f827d66e
0aa87ee2e544f56c17c2dde28a3b3feed08daa14
/apps/users/urls.py
6dda1d1373eadae3c77476250c17308642600204
[]
no_license
yanshigou/mxonline
f2cc44724c1511418953e7e06d04661244b29455
cebc3295734713846828246fc54dd33f8df14f86
refs/heads/master
2022-12-09T12:11:05.734326
2022-08-17T10:38:13
2022-08-17T10:38:13
148,120,737
0
2
null
2022-12-08T02:58:15
2018-09-10T08:06:10
Python
UTF-8
Python
false
false
1,309
py
# -*- coding: utf-8 -*- __author__ = 'dzt' __date__ = '2018/12/21 23:48' from django.conf.urls import url from .views import UserInfoView, UploadImageView, UpdatePwdView, SendEmailCodeView, UpdateEmailView, MyCourses from .views import MyFavOrgView, MyFavTeacherView, MyFavCourseView, MyMessageView urlpatterns = [ # 用户信息 url(r'^info/$', UserInfoView.as_view(), name='user_info'), # 用户头像上传 url(r'^image/upload/$', UploadImageView.as_view(), name='image_upload'), # 用户个人中心修改密码 url(r'^update/pwd/$', UpdatePwdView.as_view(), name='update_pwd'), # 发送邮箱验证码 url(r'^sendemail_code/$', SendEmailCodeView.as_view(), name='sendemail_code'), # 修改邮箱 url(r'^update_email/$', UpdateEmailView.as_view(), name='update_email'), # 我的教程 url(r'^mycourses/$', MyCourses.as_view(), name='mycourses'), # 我的收藏 直播机构 url(r'^myfav/org/$', MyFavOrgView.as_view(), name='myfav_org'), # 我的收藏 主播 url(r'^myfav/teacher/$', MyFavTeacherView.as_view(), name='myfav_teacher'), # 我的收藏 教程 url(r'^myfav/course/$', MyFavCourseView.as_view(), name='myfav_course'), # 我的消息 url(r'^mymessage/$', MyMessageView.as_view(), name='mymessage'), ]
506ab3ede97c112af86c4a23956ee39a25c9aecd
83b1a267809c08a57a3bb16c103d71539502a650
/job/migrations/0011_apply_created_at.py
c9ebca4b68d4fe3dc9d8d3052bdac004ee5816f8
[]
no_license
rimatechcampus/django-jobboard-project-
c66933295b4692c7d3cb055dcf0cbaef80424b38
8823e1e7db011a4fbaa0fc87f1810bcd5dab08c6
refs/heads/master
2022-11-20T16:40:56.495550
2020-07-19T16:52:13
2020-07-19T16:52:13
279,794,420
0
0
null
null
null
null
UTF-8
Python
false
false
378
py
# Generated by Django 3.0.8 on 2020-07-18 08:13 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('job', '0010_apply_job'), ] operations = [ migrations.AddField( model_name='apply', name='created_at', field=models.DateTimeField(auto_now=True), ), ]
91f7b4d2efaf48ed26bfcc96e2670ac062a664fe
6515c886cc420539bed05b2250c76e1c6974e5da
/models/mxnet_resnet_50.py
708dbb07c13c01468c1d3fe4962f17ca8206bfd6
[]
no_license
yuanmengzhixing/pytorch_deep_metric_learning
a320fd4e8863b9b8c3768b61e46027ccfc2077ee
b57621355a49af89573447c72685694043548434
refs/heads/master
2020-03-22T23:10:11.622231
2018-03-11T08:02:56
2018-03-11T08:02:56
null
0
0
null
null
null
null
UTF-8
Python
false
false
35,697
py
import torch.nn as nn import torch.nn.functional as F import torch import numpy as np __weights_dict = dict() pre_trained_path = '/home/zhengxiawu/project/pytorch_deep_metric_learning/pretrained_models/kit_pytorch.npy' #pre_trained_path = '/home/zhengxiawu/deep_learning/model/mxnet_2_resnet/mx2pt_resnet_50.npy' #pre_trained_path = '/home/zhengxiawu/project/pytorch_deep_metric_learning/pretrained_models/resnet_50.npy' pre_trained_path = '/home/zhengxiawu/deep_learning/model/mxnet_2_resnet/resnet_50_pytorch.npy' def load_weights(): try: weights_dict = np.load(pre_trained_path).item() except: weights_dict = np.load(pre_trained_path, encoding='bytes').item() return weights_dict class mxnet_resnet_50(nn.Module): def __init__(self, **kwargs): super(mxnet_resnet_50, self).__init__() num_class = kwargs['num_class'] if kwargs['pretrain']: global __weights_dict __weights_dict = load_weights() self.conv1 = self.__conv(2, name='conv1', in_channels=3, out_channels=64, kernel_size=(7L, 7L), stride=(2L, 2L), groups=1, bias=True) self.bn_conv1 = self.__batch_normalization(2, 'bn_conv1', num_features=64, eps=9.99999974738e-05, momentum=0.899999976158) self.res2a_branch1 = self.__conv(2, name='res2a_branch1', in_channels=64, out_channels=256, kernel_size=(1L, 1L), stride=(1L, 1L), groups=1, bias=False) self.res2a_branch2a = self.__conv(2, name='res2a_branch2a', in_channels=64, out_channels=64, kernel_size=(1L, 1L), stride=(1L, 1L), groups=1, bias=False) self.bn2a_branch1 = self.__batch_normalization(2, 'bn2a_branch1', num_features=256, eps=9.99999974738e-05, momentum=0.899999976158) self.bn2a_branch2a = self.__batch_normalization(2, 'bn2a_branch2a', num_features=64, eps=9.99999974738e-05, momentum=0.899999976158) self.res2a_branch2b = self.__conv(2, name='res2a_branch2b', in_channels=64, out_channels=64, kernel_size=(3L, 3L), stride=(1L, 1L), groups=1, bias=False) self.bn2a_branch2b = self.__batch_normalization(2, 'bn2a_branch2b', num_features=64, eps=9.99999974738e-05, momentum=0.899999976158) self.res2a_branch2c = self.__conv(2, name='res2a_branch2c', in_channels=64, out_channels=256, kernel_size=(1L, 1L), stride=(1L, 1L), groups=1, bias=False) self.bn2a_branch2c = self.__batch_normalization(2, 'bn2a_branch2c', num_features=256, eps=9.99999974738e-05, momentum=0.899999976158) self.res2b_branch2a = self.__conv(2, name='res2b_branch2a', in_channels=256, out_channels=64, kernel_size=(1L, 1L), stride=(1L, 1L), groups=1, bias=False) self.bn2b_branch2a = self.__batch_normalization(2, 'bn2b_branch2a', num_features=64, eps=9.99999974738e-05, momentum=0.899999976158) self.res2b_branch2b = self.__conv(2, name='res2b_branch2b', in_channels=64, out_channels=64, kernel_size=(3L, 3L), stride=(1L, 1L), groups=1, bias=False) self.bn2b_branch2b = self.__batch_normalization(2, 'bn2b_branch2b', num_features=64, eps=9.99999974738e-05, momentum=0.899999976158) self.res2b_branch2c = self.__conv(2, name='res2b_branch2c', in_channels=64, out_channels=256, kernel_size=(1L, 1L), stride=(1L, 1L), groups=1, bias=False) self.bn2b_branch2c = self.__batch_normalization(2, 'bn2b_branch2c', num_features=256, eps=9.99999974738e-05, momentum=0.899999976158) self.res2c_branch2a = self.__conv(2, name='res2c_branch2a', in_channels=256, out_channels=64, kernel_size=(1L, 1L), stride=(1L, 1L), groups=1, bias=False) self.bn2c_branch2a = self.__batch_normalization(2, 'bn2c_branch2a', num_features=64, eps=9.99999974738e-05, momentum=0.899999976158) self.res2c_branch2b = self.__conv(2, name='res2c_branch2b', in_channels=64, out_channels=64, kernel_size=(3L, 3L), stride=(1L, 1L), groups=1, bias=False) self.bn2c_branch2b = self.__batch_normalization(2, 'bn2c_branch2b', num_features=64, eps=9.99999974738e-05, momentum=0.899999976158) self.res2c_branch2c = self.__conv(2, name='res2c_branch2c', in_channels=64, out_channels=256, kernel_size=(1L, 1L), stride=(1L, 1L), groups=1, bias=False) self.bn2c_branch2c = self.__batch_normalization(2, 'bn2c_branch2c', num_features=256, eps=9.99999974738e-05, momentum=0.899999976158) self.res3a_branch1 = self.__conv(2, name='res3a_branch1', in_channels=256, out_channels=512, kernel_size=(1L, 1L), stride=(2L, 2L), groups=1, bias=False) self.res3a_branch2a = self.__conv(2, name='res3a_branch2a', in_channels=256, out_channels=128, kernel_size=(1L, 1L), stride=(2L, 2L), groups=1, bias=False) self.bn3a_branch1 = self.__batch_normalization(2, 'bn3a_branch1', num_features=512, eps=9.99999974738e-05, momentum=0.899999976158) self.bn3a_branch2a = self.__batch_normalization(2, 'bn3a_branch2a', num_features=128, eps=9.99999974738e-05, momentum=0.899999976158) self.res3a_branch2b = self.__conv(2, name='res3a_branch2b', in_channels=128, out_channels=128, kernel_size=(3L, 3L), stride=(1L, 1L), groups=1, bias=False) self.bn3a_branch2b = self.__batch_normalization(2, 'bn3a_branch2b', num_features=128, eps=9.99999974738e-05, momentum=0.899999976158) self.res3a_branch2c = self.__conv(2, name='res3a_branch2c', in_channels=128, out_channels=512, kernel_size=(1L, 1L), stride=(1L, 1L), groups=1, bias=False) self.bn3a_branch2c = self.__batch_normalization(2, 'bn3a_branch2c', num_features=512, eps=9.99999974738e-05, momentum=0.899999976158) self.res3b_branch2a = self.__conv(2, name='res3b_branch2a', in_channels=512, out_channels=128, kernel_size=(1L, 1L), stride=(1L, 1L), groups=1, bias=False) self.bn3b_branch2a = self.__batch_normalization(2, 'bn3b_branch2a', num_features=128, eps=9.99999974738e-05, momentum=0.899999976158) self.res3b_branch2b = self.__conv(2, name='res3b_branch2b', in_channels=128, out_channels=128, kernel_size=(3L, 3L), stride=(1L, 1L), groups=1, bias=False) self.bn3b_branch2b = self.__batch_normalization(2, 'bn3b_branch2b', num_features=128, eps=9.99999974738e-05, momentum=0.899999976158) self.res3b_branch2c = self.__conv(2, name='res3b_branch2c', in_channels=128, out_channels=512, kernel_size=(1L, 1L), stride=(1L, 1L), groups=1, bias=False) self.bn3b_branch2c = self.__batch_normalization(2, 'bn3b_branch2c', num_features=512, eps=9.99999974738e-05, momentum=0.899999976158) self.res3c_branch2a = self.__conv(2, name='res3c_branch2a', in_channels=512, out_channels=128, kernel_size=(1L, 1L), stride=(1L, 1L), groups=1, bias=False) self.bn3c_branch2a = self.__batch_normalization(2, 'bn3c_branch2a', num_features=128, eps=9.99999974738e-05, momentum=0.899999976158) self.res3c_branch2b = self.__conv(2, name='res3c_branch2b', in_channels=128, out_channels=128, kernel_size=(3L, 3L), stride=(1L, 1L), groups=1, bias=False) self.bn3c_branch2b = self.__batch_normalization(2, 'bn3c_branch2b', num_features=128, eps=9.99999974738e-05, momentum=0.899999976158) self.res3c_branch2c = self.__conv(2, name='res3c_branch2c', in_channels=128, out_channels=512, kernel_size=(1L, 1L), stride=(1L, 1L), groups=1, bias=False) self.bn3c_branch2c = self.__batch_normalization(2, 'bn3c_branch2c', num_features=512, eps=9.99999974738e-05, momentum=0.899999976158) self.res3d_branch2a = self.__conv(2, name='res3d_branch2a', in_channels=512, out_channels=128, kernel_size=(1L, 1L), stride=(1L, 1L), groups=1, bias=False) self.bn3d_branch2a = self.__batch_normalization(2, 'bn3d_branch2a', num_features=128, eps=9.99999974738e-05, momentum=0.899999976158) self.res3d_branch2b = self.__conv(2, name='res3d_branch2b', in_channels=128, out_channels=128, kernel_size=(3L, 3L), stride=(1L, 1L), groups=1, bias=False) self.bn3d_branch2b = self.__batch_normalization(2, 'bn3d_branch2b', num_features=128, eps=9.99999974738e-05, momentum=0.899999976158) self.res3d_branch2c = self.__conv(2, name='res3d_branch2c', in_channels=128, out_channels=512, kernel_size=(1L, 1L), stride=(1L, 1L), groups=1, bias=False) self.bn3d_branch2c = self.__batch_normalization(2, 'bn3d_branch2c', num_features=512, eps=9.99999974738e-05, momentum=0.899999976158) self.res4a_branch1 = self.__conv(2, name='res4a_branch1', in_channels=512, out_channels=1024, kernel_size=(1L, 1L), stride=(2L, 2L), groups=1, bias=False) self.res4a_branch2a = self.__conv(2, name='res4a_branch2a', in_channels=512, out_channels=256, kernel_size=(1L, 1L), stride=(2L, 2L), groups=1, bias=False) self.bn4a_branch1 = self.__batch_normalization(2, 'bn4a_branch1', num_features=1024, eps=9.99999974738e-05, momentum=0.899999976158) self.bn4a_branch2a = self.__batch_normalization(2, 'bn4a_branch2a', num_features=256, eps=9.99999974738e-05, momentum=0.899999976158) self.res4a_branch2b = self.__conv(2, name='res4a_branch2b', in_channels=256, out_channels=256, kernel_size=(3L, 3L), stride=(1L, 1L), groups=1, bias=False) self.bn4a_branch2b = self.__batch_normalization(2, 'bn4a_branch2b', num_features=256, eps=9.99999974738e-05, momentum=0.899999976158) self.res4a_branch2c = self.__conv(2, name='res4a_branch2c', in_channels=256, out_channels=1024, kernel_size=(1L, 1L), stride=(1L, 1L), groups=1, bias=False) self.bn4a_branch2c = self.__batch_normalization(2, 'bn4a_branch2c', num_features=1024, eps=9.99999974738e-05, momentum=0.899999976158) self.res4b_branch2a = self.__conv(2, name='res4b_branch2a', in_channels=1024, out_channels=256, kernel_size=(1L, 1L), stride=(1L, 1L), groups=1, bias=False) self.bn4b_branch2a = self.__batch_normalization(2, 'bn4b_branch2a', num_features=256, eps=9.99999974738e-05, momentum=0.899999976158) self.res4b_branch2b = self.__conv(2, name='res4b_branch2b', in_channels=256, out_channels=256, kernel_size=(3L, 3L), stride=(1L, 1L), groups=1, bias=False) self.bn4b_branch2b = self.__batch_normalization(2, 'bn4b_branch2b', num_features=256, eps=9.99999974738e-05, momentum=0.899999976158) self.res4b_branch2c = self.__conv(2, name='res4b_branch2c', in_channels=256, out_channels=1024, kernel_size=(1L, 1L), stride=(1L, 1L), groups=1, bias=False) self.bn4b_branch2c = self.__batch_normalization(2, 'bn4b_branch2c', num_features=1024, eps=9.99999974738e-05, momentum=0.899999976158) self.res4c_branch2a = self.__conv(2, name='res4c_branch2a', in_channels=1024, out_channels=256, kernel_size=(1L, 1L), stride=(1L, 1L), groups=1, bias=False) self.bn4c_branch2a = self.__batch_normalization(2, 'bn4c_branch2a', num_features=256, eps=9.99999974738e-05, momentum=0.899999976158) self.res4c_branch2b = self.__conv(2, name='res4c_branch2b', in_channels=256, out_channels=256, kernel_size=(3L, 3L), stride=(1L, 1L), groups=1, bias=False) self.bn4c_branch2b = self.__batch_normalization(2, 'bn4c_branch2b', num_features=256, eps=9.99999974738e-05, momentum=0.899999976158) self.res4c_branch2c = self.__conv(2, name='res4c_branch2c', in_channels=256, out_channels=1024, kernel_size=(1L, 1L), stride=(1L, 1L), groups=1, bias=False) self.bn4c_branch2c = self.__batch_normalization(2, 'bn4c_branch2c', num_features=1024, eps=9.99999974738e-05, momentum=0.899999976158) self.res4d_branch2a = self.__conv(2, name='res4d_branch2a', in_channels=1024, out_channels=256, kernel_size=(1L, 1L), stride=(1L, 1L), groups=1, bias=False) self.bn4d_branch2a = self.__batch_normalization(2, 'bn4d_branch2a', num_features=256, eps=9.99999974738e-05, momentum=0.899999976158) self.res4d_branch2b = self.__conv(2, name='res4d_branch2b', in_channels=256, out_channels=256, kernel_size=(3L, 3L), stride=(1L, 1L), groups=1, bias=False) self.bn4d_branch2b = self.__batch_normalization(2, 'bn4d_branch2b', num_features=256, eps=9.99999974738e-05, momentum=0.899999976158) self.res4d_branch2c = self.__conv(2, name='res4d_branch2c', in_channels=256, out_channels=1024, kernel_size=(1L, 1L), stride=(1L, 1L), groups=1, bias=False) self.bn4d_branch2c = self.__batch_normalization(2, 'bn4d_branch2c', num_features=1024, eps=9.99999974738e-05, momentum=0.899999976158) self.res4e_branch2a = self.__conv(2, name='res4e_branch2a', in_channels=1024, out_channels=256, kernel_size=(1L, 1L), stride=(1L, 1L), groups=1, bias=False) self.bn4e_branch2a = self.__batch_normalization(2, 'bn4e_branch2a', num_features=256, eps=9.99999974738e-05, momentum=0.899999976158) self.res4e_branch2b = self.__conv(2, name='res4e_branch2b', in_channels=256, out_channels=256, kernel_size=(3L, 3L), stride=(1L, 1L), groups=1, bias=False) self.bn4e_branch2b = self.__batch_normalization(2, 'bn4e_branch2b', num_features=256, eps=9.99999974738e-05, momentum=0.899999976158) self.res4e_branch2c = self.__conv(2, name='res4e_branch2c', in_channels=256, out_channels=1024, kernel_size=(1L, 1L), stride=(1L, 1L), groups=1, bias=False) self.bn4e_branch2c = self.__batch_normalization(2, 'bn4e_branch2c', num_features=1024, eps=9.99999974738e-05, momentum=0.899999976158) self.res4f_branch2a = self.__conv(2, name='res4f_branch2a', in_channels=1024, out_channels=256, kernel_size=(1L, 1L), stride=(1L, 1L), groups=1, bias=False) self.bn4f_branch2a = self.__batch_normalization(2, 'bn4f_branch2a', num_features=256, eps=9.99999974738e-05, momentum=0.899999976158) self.res4f_branch2b = self.__conv(2, name='res4f_branch2b', in_channels=256, out_channels=256, kernel_size=(3L, 3L), stride=(1L, 1L), groups=1, bias=False) self.bn4f_branch2b = self.__batch_normalization(2, 'bn4f_branch2b', num_features=256, eps=9.99999974738e-05, momentum=0.899999976158) self.res4f_branch2c = self.__conv(2, name='res4f_branch2c', in_channels=256, out_channels=1024, kernel_size=(1L, 1L), stride=(1L, 1L), groups=1, bias=False) self.bn4f_branch2c = self.__batch_normalization(2, 'bn4f_branch2c', num_features=1024, eps=9.99999974738e-05, momentum=0.899999976158) self.res5a_branch1 = self.__conv(2, name='res5a_branch1', in_channels=1024, out_channels=2048, kernel_size=(1L, 1L), stride=(2L, 2L), groups=1, bias=False) self.res5a_branch2a = self.__conv(2, name='res5a_branch2a', in_channels=1024, out_channels=512, kernel_size=(1L, 1L), stride=(2L, 2L), groups=1, bias=False) self.bn5a_branch1 = self.__batch_normalization(2, 'bn5a_branch1', num_features=2048, eps=9.99999974738e-05, momentum=0.899999976158) self.bn5a_branch2a = self.__batch_normalization(2, 'bn5a_branch2a', num_features=512, eps=9.99999974738e-05, momentum=0.899999976158) self.res5a_branch2b = self.__conv(2, name='res5a_branch2b', in_channels=512, out_channels=512, kernel_size=(3L, 3L), stride=(1L, 1L), groups=1, bias=False) self.bn5a_branch2b = self.__batch_normalization(2, 'bn5a_branch2b', num_features=512, eps=9.99999974738e-05, momentum=0.899999976158) self.res5a_branch2c = self.__conv(2, name='res5a_branch2c', in_channels=512, out_channels=2048, kernel_size=(1L, 1L), stride=(1L, 1L), groups=1, bias=False) self.bn5a_branch2c = self.__batch_normalization(2, 'bn5a_branch2c', num_features=2048, eps=9.99999974738e-05, momentum=0.899999976158) self.res5b_branch2a = self.__conv(2, name='res5b_branch2a', in_channels=2048, out_channels=512, kernel_size=(1L, 1L), stride=(1L, 1L), groups=1, bias=False) self.bn5b_branch2a = self.__batch_normalization(2, 'bn5b_branch2a', num_features=512, eps=9.99999974738e-05, momentum=0.899999976158) self.res5b_branch2b = self.__conv(2, name='res5b_branch2b', in_channels=512, out_channels=512, kernel_size=(3L, 3L), stride=(1L, 1L), groups=1, bias=False) self.bn5b_branch2b = self.__batch_normalization(2, 'bn5b_branch2b', num_features=512, eps=9.99999974738e-05, momentum=0.899999976158) self.res5b_branch2c = self.__conv(2, name='res5b_branch2c', in_channels=512, out_channels=2048, kernel_size=(1L, 1L), stride=(1L, 1L), groups=1, bias=False) self.bn5b_branch2c = self.__batch_normalization(2, 'bn5b_branch2c', num_features=2048, eps=9.99999974738e-05, momentum=0.899999976158) self.res5c_branch2a = self.__conv(2, name='res5c_branch2a', in_channels=2048, out_channels=512, kernel_size=(1L, 1L), stride=(1L, 1L), groups=1, bias=False) self.bn5c_branch2a = self.__batch_normalization(2, 'bn5c_branch2a', num_features=512, eps=9.99999974738e-05, momentum=0.899999976158) self.res5c_branch2b = self.__conv(2, name='res5c_branch2b', in_channels=512, out_channels=512, kernel_size=(3L, 3L), stride=(1L, 1L), groups=1, bias=False) self.bn5c_branch2b = self.__batch_normalization(2, 'bn5c_branch2b', num_features=512, eps=9.99999974738e-05, momentum=0.899999976158) self.res5c_branch2c = self.__conv(2, name='res5c_branch2c', in_channels=512, out_channels=2048, kernel_size=(1L, 1L), stride=(1L, 1L), groups=1, bias=False) self.bn5c_branch2c = self.__batch_normalization(2, 'bn5c_branch2c', num_features=2048, eps=9.99999974738e-05, momentum=0.899999976158) self.class_fc = nn.Linear(4096, num_class) nn.init.xavier_uniform(self.class_fc._parameters['weight'],gain=0.624) nn.init.constant(self.class_fc._parameters['weight'],0) def forward(self, x, **kwargs): conv1_pad = F.pad(x, (3L, 3L, 3L, 3L)) conv1 = self.conv1(conv1_pad) # conv1_numpy = conv1.data.cpu().numpy() # param_numpy = self.conv1._parameters['weight'].data.cpu().numpy() bn_conv1 = self.bn_conv1(conv1) conv1_relu = F.relu(bn_conv1) pool1 = F.max_pool2d(conv1_relu, kernel_size=(3L, 3L), stride=(2L, 2L)) res2a_branch1 = self.res2a_branch1(pool1) res2a_branch2a = self.res2a_branch2a(pool1) bn2a_branch1 = self.bn2a_branch1(res2a_branch1) bn2a_branch2a = self.bn2a_branch2a(res2a_branch2a) res2a_branch2a_relu = F.relu(bn2a_branch2a) res2a_branch2b_pad = F.pad(res2a_branch2a_relu, (1L, 1L, 1L, 1L)) res2a_branch2b = self.res2a_branch2b(res2a_branch2b_pad) bn2a_branch2b = self.bn2a_branch2b(res2a_branch2b) res2a_branch2b_relu = F.relu(bn2a_branch2b) res2a_branch2c = self.res2a_branch2c(res2a_branch2b_relu) bn2a_branch2c = self.bn2a_branch2c(res2a_branch2c) res2a = bn2a_branch1 + bn2a_branch2c res2a_relu = F.relu(res2a) res2b_branch2a = self.res2b_branch2a(res2a_relu) bn2b_branch2a = self.bn2b_branch2a(res2b_branch2a) res2b_branch2a_relu = F.relu(bn2b_branch2a) res2b_branch2b_pad = F.pad(res2b_branch2a_relu, (1L, 1L, 1L, 1L)) res2b_branch2b = self.res2b_branch2b(res2b_branch2b_pad) bn2b_branch2b = self.bn2b_branch2b(res2b_branch2b) res2b_branch2b_relu = F.relu(bn2b_branch2b) res2b_branch2c = self.res2b_branch2c(res2b_branch2b_relu) bn2b_branch2c = self.bn2b_branch2c(res2b_branch2c) res2b = res2a_relu + bn2b_branch2c res2b_relu = F.relu(res2b) res2c_branch2a = self.res2c_branch2a(res2b_relu) bn2c_branch2a = self.bn2c_branch2a(res2c_branch2a) res2c_branch2a_relu = F.relu(bn2c_branch2a) res2c_branch2b_pad = F.pad(res2c_branch2a_relu, (1L, 1L, 1L, 1L)) res2c_branch2b = self.res2c_branch2b(res2c_branch2b_pad) bn2c_branch2b = self.bn2c_branch2b(res2c_branch2b) res2c_branch2b_relu = F.relu(bn2c_branch2b) res2c_branch2c = self.res2c_branch2c(res2c_branch2b_relu) bn2c_branch2c = self.bn2c_branch2c(res2c_branch2c) res2c = res2b_relu + bn2c_branch2c res2c_relu = F.relu(res2c) res3a_branch1 = self.res3a_branch1(res2c_relu) res3a_branch2a = self.res3a_branch2a(res2c_relu) bn3a_branch1 = self.bn3a_branch1(res3a_branch1) bn3a_branch2a = self.bn3a_branch2a(res3a_branch2a) res3a_branch2a_relu = F.relu(bn3a_branch2a) res3a_branch2b_pad = F.pad(res3a_branch2a_relu, (1L, 1L, 1L, 1L)) res3a_branch2b = self.res3a_branch2b(res3a_branch2b_pad) bn3a_branch2b = self.bn3a_branch2b(res3a_branch2b) res3a_branch2b_relu = F.relu(bn3a_branch2b) res3a_branch2c = self.res3a_branch2c(res3a_branch2b_relu) bn3a_branch2c = self.bn3a_branch2c(res3a_branch2c) res3a = bn3a_branch1 + bn3a_branch2c res3a_relu = F.relu(res3a) res3b_branch2a = self.res3b_branch2a(res3a_relu) bn3b_branch2a = self.bn3b_branch2a(res3b_branch2a) res3b_branch2a_relu = F.relu(bn3b_branch2a) res3b_branch2b_pad = F.pad(res3b_branch2a_relu, (1L, 1L, 1L, 1L)) res3b_branch2b = self.res3b_branch2b(res3b_branch2b_pad) bn3b_branch2b = self.bn3b_branch2b(res3b_branch2b) res3b_branch2b_relu = F.relu(bn3b_branch2b) res3b_branch2c = self.res3b_branch2c(res3b_branch2b_relu) bn3b_branch2c = self.bn3b_branch2c(res3b_branch2c) res3b = res3a_relu + bn3b_branch2c res3b_relu = F.relu(res3b) res3c_branch2a = self.res3c_branch2a(res3b_relu) bn3c_branch2a = self.bn3c_branch2a(res3c_branch2a) res3c_branch2a_relu = F.relu(bn3c_branch2a) res3c_branch2b_pad = F.pad(res3c_branch2a_relu, (1L, 1L, 1L, 1L)) res3c_branch2b = self.res3c_branch2b(res3c_branch2b_pad) bn3c_branch2b = self.bn3c_branch2b(res3c_branch2b) res3c_branch2b_relu = F.relu(bn3c_branch2b) res3c_branch2c = self.res3c_branch2c(res3c_branch2b_relu) bn3c_branch2c = self.bn3c_branch2c(res3c_branch2c) res3c = res3b_relu + bn3c_branch2c res3c_relu = F.relu(res3c) res3d_branch2a = self.res3d_branch2a(res3c_relu) bn3d_branch2a = self.bn3d_branch2a(res3d_branch2a) res3d_branch2a_relu = F.relu(bn3d_branch2a) res3d_branch2b_pad = F.pad(res3d_branch2a_relu, (1L, 1L, 1L, 1L)) res3d_branch2b = self.res3d_branch2b(res3d_branch2b_pad) bn3d_branch2b = self.bn3d_branch2b(res3d_branch2b) res3d_branch2b_relu = F.relu(bn3d_branch2b) res3d_branch2c = self.res3d_branch2c(res3d_branch2b_relu) bn3d_branch2c = self.bn3d_branch2c(res3d_branch2c) res3d = res3c_relu + bn3d_branch2c res3d_relu = F.relu(res3d) res4a_branch1 = self.res4a_branch1(res3d_relu) res4a_branch2a = self.res4a_branch2a(res3d_relu) bn4a_branch1 = self.bn4a_branch1(res4a_branch1) bn4a_branch2a = self.bn4a_branch2a(res4a_branch2a) res4a_branch2a_relu = F.relu(bn4a_branch2a) res4a_branch2b_pad = F.pad(res4a_branch2a_relu, (1L, 1L, 1L, 1L)) res4a_branch2b = self.res4a_branch2b(res4a_branch2b_pad) bn4a_branch2b = self.bn4a_branch2b(res4a_branch2b) res4a_branch2b_relu = F.relu(bn4a_branch2b) res4a_branch2c = self.res4a_branch2c(res4a_branch2b_relu) bn4a_branch2c = self.bn4a_branch2c(res4a_branch2c) res4a = bn4a_branch1 + bn4a_branch2c res4a_relu = F.relu(res4a) res4b_branch2a = self.res4b_branch2a(res4a_relu) bn4b_branch2a = self.bn4b_branch2a(res4b_branch2a) res4b_branch2a_relu = F.relu(bn4b_branch2a) res4b_branch2b_pad = F.pad(res4b_branch2a_relu, (1L, 1L, 1L, 1L)) res4b_branch2b = self.res4b_branch2b(res4b_branch2b_pad) bn4b_branch2b = self.bn4b_branch2b(res4b_branch2b) res4b_branch2b_relu = F.relu(bn4b_branch2b) res4b_branch2c = self.res4b_branch2c(res4b_branch2b_relu) bn4b_branch2c = self.bn4b_branch2c(res4b_branch2c) res4b = res4a_relu + bn4b_branch2c res4b_relu = F.relu(res4b) res4c_branch2a = self.res4c_branch2a(res4b_relu) bn4c_branch2a = self.bn4c_branch2a(res4c_branch2a) res4c_branch2a_relu = F.relu(bn4c_branch2a) res4c_branch2b_pad = F.pad(res4c_branch2a_relu, (1L, 1L, 1L, 1L)) res4c_branch2b = self.res4c_branch2b(res4c_branch2b_pad) bn4c_branch2b = self.bn4c_branch2b(res4c_branch2b) res4c_branch2b_relu = F.relu(bn4c_branch2b) res4c_branch2c = self.res4c_branch2c(res4c_branch2b_relu) bn4c_branch2c = self.bn4c_branch2c(res4c_branch2c) res4c = res4b_relu + bn4c_branch2c res4c_relu = F.relu(res4c) res4d_branch2a = self.res4d_branch2a(res4c_relu) bn4d_branch2a = self.bn4d_branch2a(res4d_branch2a) res4d_branch2a_relu = F.relu(bn4d_branch2a) res4d_branch2b_pad = F.pad(res4d_branch2a_relu, (1L, 1L, 1L, 1L)) res4d_branch2b = self.res4d_branch2b(res4d_branch2b_pad) bn4d_branch2b = self.bn4d_branch2b(res4d_branch2b) res4d_branch2b_relu = F.relu(bn4d_branch2b) res4d_branch2c = self.res4d_branch2c(res4d_branch2b_relu) bn4d_branch2c = self.bn4d_branch2c(res4d_branch2c) res4d = res4c_relu + bn4d_branch2c res4d_relu = F.relu(res4d) res4e_branch2a = self.res4e_branch2a(res4d_relu) bn4e_branch2a = self.bn4e_branch2a(res4e_branch2a) res4e_branch2a_relu = F.relu(bn4e_branch2a) res4e_branch2b_pad = F.pad(res4e_branch2a_relu, (1L, 1L, 1L, 1L)) res4e_branch2b = self.res4e_branch2b(res4e_branch2b_pad) bn4e_branch2b = self.bn4e_branch2b(res4e_branch2b) res4e_branch2b_relu = F.relu(bn4e_branch2b) res4e_branch2c = self.res4e_branch2c(res4e_branch2b_relu) bn4e_branch2c = self.bn4e_branch2c(res4e_branch2c) res4e = res4d_relu + bn4e_branch2c res4e_relu = F.relu(res4e) res4f_branch2a = self.res4f_branch2a(res4e_relu) bn4f_branch2a = self.bn4f_branch2a(res4f_branch2a) res4f_branch2a_relu = F.relu(bn4f_branch2a) res4f_branch2b_pad = F.pad(res4f_branch2a_relu, (1L, 1L, 1L, 1L)) res4f_branch2b = self.res4f_branch2b(res4f_branch2b_pad) bn4f_branch2b = self.bn4f_branch2b(res4f_branch2b) res4f_branch2b_relu = F.relu(bn4f_branch2b) res4f_branch2c = self.res4f_branch2c(res4f_branch2b_relu) bn4f_branch2c = self.bn4f_branch2c(res4f_branch2c) res4f = res4e_relu + bn4f_branch2c res4f_relu = F.relu(res4f) res5a_branch1 = self.res5a_branch1(res4f_relu) res5a_branch2a = self.res5a_branch2a(res4f_relu) bn5a_branch1 = self.bn5a_branch1(res5a_branch1) bn5a_branch2a = self.bn5a_branch2a(res5a_branch2a) res5a_branch2a_relu = F.relu(bn5a_branch2a) res5a_branch2b_pad = F.pad(res5a_branch2a_relu, (1L, 1L, 1L, 1L)) res5a_branch2b = self.res5a_branch2b(res5a_branch2b_pad) bn5a_branch2b = self.bn5a_branch2b(res5a_branch2b) res5a_branch2b_relu = F.relu(bn5a_branch2b) res5a_branch2c = self.res5a_branch2c(res5a_branch2b_relu) bn5a_branch2c = self.bn5a_branch2c(res5a_branch2c) res5a = bn5a_branch1 + bn5a_branch2c res5a_relu = F.relu(res5a) res5b_branch2a = self.res5b_branch2a(res5a_relu) bn5b_branch2a = self.bn5b_branch2a(res5b_branch2a) res5b_branch2a_relu = F.relu(bn5b_branch2a) res5b_branch2b_pad = F.pad(res5b_branch2a_relu, (1L, 1L, 1L, 1L)) res5b_branch2b = self.res5b_branch2b(res5b_branch2b_pad) bn5b_branch2b = self.bn5b_branch2b(res5b_branch2b) res5b_branch2b_relu = F.relu(bn5b_branch2b) res5b_branch2c = self.res5b_branch2c(res5b_branch2b_relu) bn5b_branch2c = self.bn5b_branch2c(res5b_branch2c) res5b = res5a_relu + bn5b_branch2c res5b_relu = F.relu(res5b) res5c_branch2a = self.res5c_branch2a(res5b_relu) bn5c_branch2a = self.bn5c_branch2a(res5c_branch2a) res5c_branch2a_relu = F.relu(bn5c_branch2a) res5c_branch2b_pad = F.pad(res5c_branch2a_relu, (1L, 1L, 1L, 1L)) res5c_branch2b = self.res5c_branch2b(res5c_branch2b_pad) bn5c_branch2b = self.bn5c_branch2b(res5c_branch2b) res5c_branch2b_relu = F.relu(bn5c_branch2b) res5c_branch2c = self.res5c_branch2c(res5c_branch2b_relu) bn5c_branch2c = self.bn5c_branch2c(res5c_branch2c) res5c = res5b_relu + bn5c_branch2c res5c_relu = F.relu(res5c) if kwargs['scda']: scda_x = torch.sum(res5c_relu,1,keepdim=True) mean_x = torch.mean(scda_x.view(scda_x.size(0),-1),1,True) scda_x = scda_x - mean_x scda_x = scda_x>0 scda_x = scda_x.float() res5c_relu = res5c_relu * scda_x pooling0 = F.max_pool2d(input=res5c_relu, kernel_size=res5c_relu.size()[2:]) pooling1 = F.avg_pool2d(input=res5c_relu, kernel_size=res5c_relu.size()[2:]) flatten0 = pooling0.view(pooling0.size(0), -1) flatten1 = pooling1.view(pooling1.size(0), -1) avg_x = F.normalize(flatten1, p=2, dim=1) max_x = F.normalize(flatten0, p=2, dim=1) x = torch.cat((avg_x, max_x), dim=1) # the last fc layer can be treat as distanc # ree compute x = x * kwargs['scale'] if kwargs['is_train']: x = self.class_fc(x) return x @staticmethod def __conv(dim, name, **kwargs): if dim == 1: layer = nn.Conv1d(**kwargs) elif dim == 2: layer = nn.Conv2d(**kwargs) elif dim == 3: layer = nn.Conv3d(**kwargs) else: raise NotImplementedError() layer.state_dict()['weight'].copy_(torch.from_numpy(__weights_dict[name]['weights'])) if 'bias' in __weights_dict[name]: layer.state_dict()['bias'].copy_(torch.from_numpy(__weights_dict[name]['bias'])) return layer @staticmethod def __batch_normalization(dim, name, **kwargs): if dim == 1: layer = nn.BatchNorm1d(**kwargs) elif dim == 2: layer = nn.BatchNorm2d(**kwargs) elif dim == 3: layer = nn.BatchNorm3d(**kwargs) else: raise NotImplementedError() if 'scale' in __weights_dict[name]: layer.state_dict()['weight'].copy_(torch.from_numpy(__weights_dict[name]['scale'])) else: layer.weight.data.fill_(1) if 'bias' in __weights_dict[name]: layer.state_dict()['bias'].copy_(torch.from_numpy(__weights_dict[name]['bias'])) else: layer.bias.data.fill_(0) layer.state_dict()['running_mean'].copy_(torch.from_numpy(__weights_dict[name]['mean'])) layer.state_dict()['running_var'].copy_(torch.from_numpy(__weights_dict[name]['var'])) return layer
47220864385f35b099736c3ef297a7ae7f1cbe54
ca08100b33a78c01bf49f097f4e80ed10e4ee9ad
/intrepidboats/apps/owners_portal/utils.py
605fe7065629b6a2f9983f3de5ed580162b6c11a
[]
no_license
elite0401/intrepidpowerboats
347eae14b584d1be9a61ca14c014135ab0d14ad0
d2a475b60d17aa078bf0feb5e0298c927e7362e7
refs/heads/master
2021-09-11T01:51:47.615117
2018-04-06T02:20:02
2018-04-06T02:20:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,654
py
from django.conf import settings from django.contrib.sites.models import Site from django.core.mail import send_mail from django.template.loader import render_to_string from django.urls import reverse from django.utils.translation import gettext as _ def send_report_email(user_boat): context = { 'user': user_boat.user, 'user_boat': user_boat, 'boat': user_boat.boat, 'site': Site.objects.get_current().domain, 'dashboard_url': reverse("owners_portal:owners_portal"), } send_mail( subject=_("New boat report - Intrepid Powerboats"), message=render_to_string('owners_portal/emails/report_email.txt', context), from_email=settings.BUILD_A_BOAT['NO_REPLY_EMAIL_REPORTS'], recipient_list=[user_boat.user.email], html_message=render_to_string('owners_portal/emails/report_email.html', context), ) def send_step_feedback_email(step_feedback): context = { 'comments': step_feedback.comments, 'user': step_feedback.user, 'step': '{title} (phase: {phase})'.format(title=step_feedback.step.title, phase=step_feedback.step.phase), 'boat': '{boat} (model: {model})'.format(boat=step_feedback.step.user_boat, model=step_feedback.step.user_boat.boat) } send_mail( subject=_("{user} has sent feedback on {step} in Owner's portal - Intrepid Powerboats".format( user=context['user'], step=context['step'], )), message=render_to_string('owners_portal/emails/step_feedback_email.txt', context), from_email=settings.NO_REPLY_EMAIL, recipient_list=settings.TO_EMAIL['OWNERS_PORTAL_FEEDBACK_FORM'], html_message=render_to_string('owners_portal/emails/step_feedback_email.html', context), ) def send_new_shared_video_uploaded_email(shared_video): from django.contrib.auth.models import User admins = User.objects.filter(is_superuser=True) subject = _("New uploaded video to vimeo") to = admins.values_list('email', flat=True) from_email = settings.NO_REPLY_EMAIL site = Site.objects.get_current() ctx = { 'user': shared_video.uploader, 'site': site.domain, 'admin_url': reverse("admin:owners_portal_sharedvideo_change", args=[shared_video.pk]), } message = render_to_string('owners_portal/emails/new_shared_video_email.txt', ctx) html_message = render_to_string('owners_portal/emails/new_shared_video_email.html', ctx) send_mail(subject=subject, message=message, from_email=from_email, recipient_list=to, html_message=html_message)
2c4cfe1cd667b7a708c96b4978b00325826dfb19
0987f31e64bcacb41ba3a1e20054d7b8ac0d7346
/contests/panasonic2020/a.py
3c85e5a3a0a4b6b5ab170b052566849aab8ae7bf
[]
no_license
masakiaota/kyoupuro
81ae52ab3014fb2b1e10472994afa4caa9ea463b
74915a40ac157f89fe400e3f98e9bf3c10012cd7
refs/heads/master
2021-06-27T04:13:52.152582
2020-09-20T03:21:17
2020-09-20T03:21:17
147,049,195
1
0
null
null
null
null
UTF-8
Python
false
false
1,905
py
import sys sys.setrecursionlimit(1 << 25) read = sys.stdin.readline def read_ints(): return list(map(int, read().split())) def read_a_int(): return int(read()) def read_tuple(H): ''' H is number of rows ''' ret = [] for _ in range(H): ret.append(tuple(map(int, read().split()))) return ret def read_col(H, n_cols): ''' H is number of rows n_cols is number of cols A列、B列が与えられるようなとき ''' ret = [[] for _ in range(n_cols)] for _ in range(H): tmp = list(map(int, read().split())) for col in range(n_cols): ret[col].append(tmp[col]) return ret def read_matrix(H): ''' H is number of rows ''' ret = [] for _ in range(H): ret.append(list(map(int, read().split()))) return ret # return [list(map(int, read().split())) for _ in range(H)] # 内包表記はpypyでは遅いため def read_map(H): ''' H is number of rows 文字列で与えられた盤面を読み取る用 ''' return [read()[:-1] for _ in range(H)] def read_map_as_int(H): ''' #→1,.→0として読み込む ''' ret = [] for _ in range(H): ret.append([1 if s == '#' else 0 for s in read()[:-1]]) # 内包表記はpypyでは若干遅いことに注意 # #numpy使うだろうからこれを残しておくけど return ret # default import from collections import defaultdict, Counter, deque from operator import itemgetter from itertools import product, permutations, combinations from bisect import bisect_left, bisect_right # , insort_left, insort_right from fractions import gcd def lcm(a, b): # 最小公約数 g = gcd(a, b) return a * b // g a = [1, 1, 1, 2, 1, 2, 1, 5, 2, 2, 1, 5, 1, 2, 1, 14, 1, 5, 1, 5, 2, 2, 1, 15, 2, 2, 5, 4, 1, 4, 1, 51] print(a[int(input()) - 1])
b1c5a6fe4a11aa713099d0337893a6259fa2e086
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02973/s301790930.py
280647a2fd8669a6345ecf3a1ac6c75ef906c3dc
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
269
py
from sys import stdin from bisect import bisect N = int(stdin.readline().rstrip()) A = [] for i in range(N): A.append(int(input())) dp = [] for a in A[::-1]: i = bisect(dp, a) if i < len(dp): dp[i] = a else: dp.append(a) print(len(dp))
1d1dfcd44cf71fa592df181189c7efe1af6af40d
7a8560742946bfb95f4a252693264c34d4d0473d
/k2/centroid.py
e09491c999915180b3830fd138110d6e2140551a
[ "MIT" ]
permissive
benmontet/K2-noise
3781e475ed6d5e2748a7ac3ddd878b8eec334254
a4b682cdf33f85d2dffc4cef115dcedacfccb4b4
refs/heads/master
2016-09-05T13:02:09.051080
2014-10-25T14:36:22
2014-10-25T14:36:22
22,899,258
1
0
null
null
null
null
UTF-8
Python
false
false
604
py
# -*- coding: utf-8 -*- from __future__ import division, print_function __all__ = ["centroid"] import numpy as np from functools import partial from itertools import izip, imap from .c3k import find_centroid def centroid(tpf, **kwargs): # Load the data. data = tpf.read() times = data["TIME"] images = data["FLUX"] quality = data["QUALITY"] # Get rid of the bad times based on quality flags. m = np.isfinite(times) * (quality == 0) images[~m, :] = np.nan f = partial(find_centroid, **kwargs) return [times] + list(imap(np.array, izip(*(imap(f, images)))))
02af91d9a068eb13b6123c2f26b025668f5bb79f
6eaf69ffd454ed6933e3395516246d878cb09781
/repozeldapapp/tests/functional/test_authentication.py
f998f67ccdc2ccc018c17f9cecb7cb08697d7a58
[]
no_license
ralphbean/repoze-ldap-app
0d6658ef13b153736aaed6aa07fbdcaf65cbe1d9
cc00fe59bcc286fd44d1e22a14c40cfc8419e21d
refs/heads/master
2021-01-01T05:35:25.069715
2011-07-19T15:30:31
2011-07-19T15:30:31
2,072,811
0
0
null
null
null
null
UTF-8
Python
false
false
3,583
py
# -*- coding: utf-8 -*- """ Integration tests for the :mod:`repoze.who`-powered authentication sub-system. As repoze-ldap-app grows and the authentication method changes, only these tests should be updated. """ from repozeldapapp.tests import TestController class TestAuthentication(TestController): """Tests for the default authentication setup. By default in TurboGears 2, :mod:`repoze.who` is configured with the same plugins specified by repoze.what-quickstart (which are listed in http://code.gustavonarea.net/repoze.what-quickstart/#repoze.what.plugins.quickstart.setup_sql_auth). As the settings for those plugins change, or the plugins are replaced, these tests should be updated. """ application_under_test = 'main' def test_forced_login(self): """Anonymous users are forced to login Test that anonymous users are automatically redirected to the login form when authorization is denied. Next, upon successful login they should be redirected to the initially requested page. """ # Requesting a protected area resp = self.app.get('/secc/', status=302) assert resp.location.startswith('http://localhost/login') # Getting the login form: resp = resp.follow(status=200) form = resp.form # Submitting the login form: form['login'] = u'manager' form['password'] = 'managepass' post_login = form.submit(status=302) # Being redirected to the initially requested page: assert post_login.location.startswith('http://localhost/post_login') initial_page = post_login.follow(status=302) assert 'authtkt' in initial_page.request.cookies, \ "Session cookie wasn't defined: %s" % initial_page.request.cookies assert initial_page.location.startswith('http://localhost/secc/'), \ initial_page.location def test_voluntary_login(self): """Voluntary logins must work correctly""" # Going to the login form voluntarily: resp = self.app.get('/login', status=200) form = resp.form # Submitting the login form: form['login'] = u'manager' form['password'] = 'managepass' post_login = form.submit(status=302) # Being redirected to the home page: assert post_login.location.startswith('http://localhost/post_login') home_page = post_login.follow(status=302) assert 'authtkt' in home_page.request.cookies, \ 'Session cookie was not defined: %s' % home_page.request.cookies assert home_page.location == 'http://localhost/' def test_logout(self): """Logouts must work correctly""" # Logging in voluntarily the quick way: resp = self.app.get('/login_handler?login=manager&password=managepass', status=302) resp = resp.follow(status=302) assert 'authtkt' in resp.request.cookies, \ 'Session cookie was not defined: %s' % resp.request.cookies # Logging out: resp = self.app.get('/logout_handler', status=302) assert resp.location.startswith('http://localhost/post_logout') # Finally, redirected to the home page: home_page = resp.follow(status=302) authtkt = home_page.request.cookies.get('authtkt') assert not authtkt or authtkt == 'INVALID', \ 'Session cookie was not deleted: %s' % home_page.request.cookies assert home_page.location == 'http://localhost/', home_page.location
1b20703b930ae2d775880d83cd617d40c9cdfa18
ea867a1db2b730964b471e5f198ac74988417fa5
/steemtools/helpers.py
5c4e3a5d73bff0aa5310093de2799d44d516835b
[ "MIT" ]
permissive
Denis007138/steemtools
0b58fa4bb2608c0134752b0855a36464cff9073a
c7f7ad9f482ff1b56e1218ceffbf574c95cf0c1f
refs/heads/master
2021-01-11T01:34:36.721177
2016-10-10T13:58:44
2016-10-10T13:58:44
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,494
py
import datetime import re import time import dateutil from dateutil import parser from funcy import contextmanager, decorator from werkzeug.contrib.cache import SimpleCache @contextmanager def timeit(): t1 = time.time() yield print("Time Elapsed: %.2f" % (time.time() - t1)) @decorator def simple_cache(func, cache_obj, timeout=3600): if type(cache_obj) is not SimpleCache: return func() name = "%s_%s_%s" % (func._func.__name__, func._args, func._kwargs) cache_value = cache_obj.get(name) if cache_value: return cache_value else: out = func() cache_obj.set(name, out, timeout=timeout) return out def read_asset(asset_string): re_asset = re.compile(r'(?P<number>\d*\.?\d+)\s?(?P<unit>[a-zA-Z]+)') res = re_asset.match(asset_string) return {'value': float(res.group('number')), 'symbol': res.group('unit')} def parse_payout(payout): return read_asset(payout)['value'] def time_diff(time1, time2): time1 = parser.parse(time1 + "UTC").timestamp() time2 = parser.parse(time2 + "UTC").timestamp() return time2 - time1 def is_comment(item): if item['permlink'][:3] == "re-": return True return False def time_elapsed(time1): created_at = parser.parse(time1 + "UTC").timestamp() now_adjusted = time.time() return now_adjusted - created_at def parse_time(block_time): return dateutil.parser.parse(block_time + "UTC").astimezone(datetime.timezone.utc)
be1ca56a4c8e33d679fe761dc4faa412b354bfa3
61e68e3a4d6cc841da4350dc193315822ca4e354
/lecture/4_정렬/4_퀵정렬.py
45420f20a5eaaae9aafb31ff3bea12843c0068c4
[]
no_license
sswwd95/Algorithm
34360cd333019d6ded60f967c19aa70f1655e12a
a70bdf02580a39b9a5c282a04b0b2f8c2cb41636
refs/heads/master
2023-04-16T21:05:07.293929
2021-05-08T10:58:05
2021-05-08T10:58:05
362,651,885
0
0
null
null
null
null
UTF-8
Python
false
false
1,091
py
array = [5, 7, 9, 0, 3, 1, 6, 2, 4, 8] def quick_sort(array, start, end): if start >= end: # 원소가 1개인 경우 종료 return pivot = start # 피벗은 첫 번째 원소 left = start + 1 right = end while(left <= right): # 피벗보다 큰 데이터를 찾을 때까지 반복 while(left <= end and array[left] <= array[pivot]): left += 1 # 피벗보다 작은 데이터를 찾을 때까지 반복 while(right > start and array[right] >= array[pivot]): right -= 1 if(left > right): # 엇갈렸다면 작은 데이터와 피벗을 교체 array[right], array[pivot] = array[pivot], array[right] else: # 엇갈리지 않았다면 작은 데이터와 큰 데이터를 교체 array[left], array[right] = array[right], array[left] # 분할 이후 왼쪽 부분과 오른쪽 부분에서 각각 정렬 수행 quick_sort(array, start, right - 1) quick_sort(array, right + 1, end) quick_sort(array, 0, len(array) - 1) print(array) # [0,1,2,3,4,5,6,7,8,9]
b4ebea591ef98eba50becc2628f71215e816a37f
15f321878face2af9317363c5f6de1e5ddd9b749
/solutions_python/Problem_84/306.py
0561a547b612e83a36f4cf677430a4ecdf3d37f6
[]
no_license
dr-dos-ok/Code_Jam_Webscraper
c06fd59870842664cd79c41eb460a09553e1c80a
26a35bf114a3aa30fc4c677ef069d95f41665cc0
refs/heads/master
2020-04-06T08:17:40.938460
2018-10-14T10:12:47
2018-10-14T10:12:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,233
py
import sys, math from multiprocessing import Pool def main(data): R,C,s = data for i in range(R): for j in range(C): try: if s[i][j] == "#": if s[i][j+1] == "#" and s[i+1][j] == "#" and s[i+1][j+1] == "#": s[i][j] = "/" s[i][j+1] = "\\" s[i+1][j] = "\\" s[i+1][j+1] = "/" else: return "Impossible" except: return "Impossible" return "\n".join(["".join(l) for l in s]) if __name__ == "__main__": mode = 0 if len(sys.argv) > 1: f = open(sys.argv[1]) mode = 1 else: f = open("test.txt") T = int(f.readline()) data = [] for i in range(T): R,C = map(int, f.readline().strip().split()) s = list() for j in range(R): s.append(list(f.readline().strip())) data.append((R, C, s)) if mode == 1: pool = Pool() r = pool.map(main, data) else: r = map(main, data) for i in range(T): print "Case #%d: \n%s" % (i+1, r[i])
327203d439300f410de4e56199b07bcb7a5b1cb1
3ca67d69abd4e74b7145b340cdda65532f90053b
/programmers/난이도별/level01.제일_작은_수_제거하기/Jaewon0702.py
9574b875696e370e939054a0279eb98293b8defd
[]
no_license
DKU-STUDY/Algorithm
19549516984b52a1c5cd73e1ed1e58f774d6d30e
6f78efdbefd8eedab24e43d74c7dae7f95c2893b
refs/heads/master
2023-02-18T06:48:39.309641
2023-02-09T07:16:14
2023-02-09T07:16:14
258,455,710
175
49
null
2023-02-09T07:16:16
2020-04-24T08:42:27
Python
UTF-8
Python
false
false
156
py
def solution(arr): arr.remove(min(arr)) return arr if len(arr) else [-1] print(solution([4, 3, 2, 1]) == [4, 3, 2]) print(solution([10]) == [-1])
bd9a420a7684d527bcd274c32086f85330ec970b
2704ad14c83050ac28f403371daa8e3148440e00
/chiadoge/wallet/did_wallet/did_info.py
2294be358c05f883b729c58c3c37a27b0b590ce5
[ "Apache-2.0" ]
permissive
Bgihe/chiadoge-blockchain
d5e01a53c8e15fa17c47b44d9c95e6511aa98b7f
befb179c65ffe42aebbc47c211f78e193a095d2b
refs/heads/main
2023-06-01T05:31:51.503755
2021-07-05T20:47:32
2021-07-05T20:47:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
919
py
from dataclasses import dataclass from typing import List, Optional, Tuple from chiadoge.types.blockchain_format.sized_bytes import bytes32 from chiadoge.util.ints import uint64 from chiadoge.util.streamable import streamable, Streamable from chiadoge.wallet.cc_wallet.ccparent import CCParent from chiadoge.types.blockchain_format.program import Program from chiadoge.types.blockchain_format.coin import Coin @dataclass(frozen=True) @streamable class DIDInfo(Streamable): origin_coin: Optional[Coin] # puzzlehash of this coin is our DID backup_ids: List[bytes] num_of_backup_ids_needed: uint64 parent_info: List[Tuple[bytes32, Optional[CCParent]]] # {coin.name(): CCParent} current_inner: Optional[Program] # represents a Program as bytes temp_coin: Optional[Coin] # partially recovered wallet uses these to hold info temp_puzhash: Optional[bytes32] temp_pubkey: Optional[bytes]
093c9c5f1b37d499d6bb6486317cbdcbb89a838e
17b63416cf2f66246e1cf655ccfa2eb9a108da3c
/abupy/AlphaBu/ABuPickStockExecute.py
f344c2ed857ae0f8c94dc194d151f49cddb60f57
[]
no_license
cmy00cmy/qtLearning
58aec5cf9fccf9d8f14adf1793306b8b8b5ecb7f
2b5fee7b9bbd832b20ba4e1b508be16b606249e0
refs/heads/master
2020-03-20T01:42:19.882639
2018-06-12T14:52:00
2018-06-12T14:52:00
137,085,926
0
2
null
null
null
null
UTF-8
Python
false
false
1,835
py
# -*- encoding:utf-8 -*- """ 包装选股worker进行,完善前后工作 """ from __future__ import absolute_import from __future__ import print_function from __future__ import division from .ABuPickStockWorker import AbuPickStockWorker from ..CoreBu.ABuEnvProcess import add_process_env_sig from ..MarketBu.ABuMarket import split_k_market from ..TradeBu.ABuKLManager import AbuKLManager from ..CoreBu.ABuFixes import ThreadPoolExecutor __author__ = '阿布' __weixin__ = 'abu_quant' @add_process_env_sig def do_pick_stock_work(choice_symbols, benchmark, capital, stock_pickers): """ 包装AbuPickStockWorker进行选股 :param choice_symbols: 初始备选交易对象序列 :param benchmark: 交易基准对象,AbuBenchmark实例对象 :param capital: 资金类AbuCapital实例化对象 :param stock_pickers: 选股因子序列 :return: """ kl_pd_manager = AbuKLManager(benchmark, capital) stock_pick = AbuPickStockWorker(capital, benchmark, kl_pd_manager, choice_symbols=choice_symbols, stock_pickers=stock_pickers) stock_pick.fit() return stock_pick.choice_symbols @add_process_env_sig def do_pick_stock_thread_work(choice_symbols, benchmark, capital, stock_pickers, n_thread): """包装AbuPickStockWorker启动线程进行选股""" result = [] def when_thread_done(r): result.extend(r.result()) with ThreadPoolExecutor(max_workers=n_thread) as pool: thread_symbols = split_k_market(n_thread, market_symbols=choice_symbols) for symbols in thread_symbols: future_result = pool.submit(do_pick_stock_work, symbols, benchmark, capital, stock_pickers) future_result.add_done_callback(when_thread_done) return result
c08a05fcca3a38d83fa5e5c0f599e925d0a2c97b
56a4d0d73c349aeaca7580ca248caf0cf893a8c5
/w2/using_find.py
af6a320679d645b836416da8a37d141b0a0c269d
[]
no_license
alejo8591/m101
79e62e0110bcc3e6ca82ac02ae3cdcbe13d51c67
d93d34a161ecede77defb9a6a3db389d4a9b0de8
refs/heads/master
2020-05-18T21:42:46.651036
2012-12-17T23:36:49
2012-12-17T23:36:49
null
0
0
null
null
null
null
UTF-8
Python
false
false
711
py
#!/usr/bin/env python import pymongo import sys connect = pymongo.Connection("mongodb://127.0.0.1", safe=True) db = connect.school scores = db.scores def find(): print "Find, reporting for duty" query = {'type':'exam'} try: iter = scores.find(query) except: print "Unexpected error:",sys.exc_info()[0] sanity = 0 for doc in iter: print doc sanity+=1 if (sanity > 10): break def find_one(): print "find one, reporting for duty" query = {'student_id':10} try: iter = scores.find_one(query) except: print "Unexpected error:",sys.exc_info()[0] print iter find_one() find()
b6a2760e083ef2662b8cb1a29ee20d3d09c6f19b
e76aa4de68988abcfceb7f90ea680505a9159995
/outrigger/__init__.py
358e6751f654522e24e8680c88312573f25843fb
[ "BSD-3-Clause" ]
permissive
ggraham/outrigger
3ab1798fbeb3c871cae4d2a12bcd721032c3a96c
135388192bd8b15fc248653ee50943448ff19160
refs/heads/master
2021-05-26T09:58:02.547479
2020-04-29T19:32:34
2020-04-29T19:32:34
254,086,816
0
0
BSD-3-Clause
2020-04-29T19:32:35
2020-04-08T12:52:08
null
UTF-8
Python
false
false
201
py
# -*- coding: utf-8 -*- __author__ = 'Olga Botvinnik' __email__ = '[email protected]' __version__ = '1.1.1' __all__ = ['psi', 'region', 'util', 'io', 'validate', 'index', 'common']
eba364f9af767f3702b519b7192b96c2b9890d8d
cc08f8eb47ef92839ba1cc0d04a7f6be6c06bd45
/Personal/Developent/advance-django-blog-master/venv/bin/coverage
49a1df365828a4beab01a74ad814ac7cc6b66a9d
[ "Apache-2.0" ]
permissive
ProsenjitKumar/PycharmProjects
d90d0e7c2f4adc84e861c12a3fcb9174f15cde17
285692394581441ce7b706afa3b7af9e995f1c55
refs/heads/master
2022-12-13T01:09:55.408985
2019-05-08T02:21:47
2019-05-08T02:21:47
181,052,978
1
1
null
2022-12-08T02:31:17
2019-04-12T17:21:59
null
UTF-8
Python
false
false
281
#!/root/PycharmProjects/Developent/advance-django-blog-master/venv/bin/python3.7 # -*- coding: utf-8 -*- import re import sys from coverage.cmdline import main if __name__ == '__main__': sys.argv[0] = re.sub(r'(-script\.pyw?|\.exe)?$', '', sys.argv[0]) sys.exit(main())
a7c60b78f32abc44f71b77a5227cb86f6803806d
659d41f0c737dffc2a6ebd5e773a6513da32e5ba
/scripts/experiments/Experiments729/dephasing_scan_duration.py
adf770c56bb5fd14721f410bb6a9d3b6978b1e37
[]
no_license
HaeffnerLab/sqip
b3d4d570becb1022083ea01fea9472115a183ace
5d18f167bd9a5344dcae3c13cc5a84213fb7c199
refs/heads/master
2020-05-21T23:11:10.448549
2019-11-21T02:00:58
2019-11-21T02:00:58
19,164,232
0
0
null
2019-11-04T04:39:37
2014-04-25T23:54:47
Python
UTF-8
Python
false
false
7,104
py
from common.abstractdevices.script_scanner.scan_methods import experiment from excitations import excitation_dephase from sqip.scripts.scriptLibrary.common_methods_729 import common_methods_729 as cm from sqip.scripts.scriptLibrary import dvParameters import time import labrad from labrad.units import WithUnit from numpy import linspace #The following command brinfgs the sequence plotter. #from common.okfpgaservers.pulser.pulse_sequences.plot_sequence import SequencePlotter class dephase_scan_duration(experiment): name = 'Dephase Scan Duration' dephasing_required_parameters = [ ('Dephasing_Pulses', 'preparation_line_selection'), ('Dephasing_Pulses', 'evolution_line_selection'), ('Dephasing_Pulses','preparation_sideband_selection'), ('Dephasing_Pulses','evolution_sideband_selection'), ('Dephasing_Pulses', 'scan_interaction_duration'), ('TrapFrequencies','axial_frequency'), ('TrapFrequencies','radial_frequency_1'), ('TrapFrequencies','radial_frequency_2'), ('TrapFrequencies','rf_drive_frequency'), ] @classmethod def all_required_parameters(cls): parameters = set(cls.dephasing_required_parameters) parameters = parameters.union(set(excitation_dephase.all_required_parameters())) parameters = list(parameters) #removing parameters we'll be overwriting, and they do not need to be loaded parameters.remove(('Dephasing_Pulses','evolution_ramsey_time')) parameters.remove(('Dephasing_Pulses','evolution_pulses_frequency')) parameters.remove(('Dephasing_Pulses','preparation_pulse_frequency')) return parameters def initialize(self, cxn, context, ident): self.ident = ident self.excite = self.make_experiment(excitation_dephase) self.excite.initialize(cxn, context, ident) self.scan = [] self.cxnlab = labrad.connect('192.168.169.49') #connection to labwide network self.drift_tracker = cxn.sd_tracker self.dv = cxn.data_vault self.data_save_context = cxn.context() self.setup_data_vault() def setup_sequence_parameters(self): p = self.parameters.Dephasing_Pulses trap = self.parameters.TrapFrequencies prep_line_frequency = cm.frequency_from_line_selection('auto', None, p.preparation_line_selection, self.drift_tracker) frequency_preparation = cm.add_sidebands(prep_line_frequency, p.preparation_sideband_selection, trap) #if same line is selected, match the frequency exactly same_line = p.preparation_line_selection == p.evolution_line_selection same_sideband = p.preparation_sideband_selection.aslist == p.evolution_sideband_selection.aslist print 'same line', same_line print 'same sideband', same_sideband if same_line and same_sideband: frequency_evolution = frequency_preparation else: evo_line_frequency = cm.frequency_from_line_selection('auto', None, p.evolution_line_selection, self.drift_tracker) frequency_evolution = cm.add_sidebands(evo_line_frequency, p.evolution_sideband_selection, trap) self.parameters['Dephasing_Pulses.preparation_pulse_frequency'] = frequency_preparation self.parameters['Dephasing_Pulses.evolution_pulses_frequency'] = frequency_evolution self.max_second_pulse = p.evolution_pulses_duration minim,maxim,steps = self.parameters.Dephasing_Pulses.scan_interaction_duration minim = minim['us']; maxim = maxim['us'] self.scan = linspace(minim,maxim, steps) self.scan = [WithUnit(pt, 'us') for pt in self.scan] def setup_data_vault(self): localtime = time.localtime() dirappend = [time.strftime("%Y%b%d",localtime) ,time.strftime("%H%M_%S", localtime)] directory = ['','Experiments'] directory.extend([self.name]) directory.extend(dirappend) self.dv.cd(directory, True,context = self.data_save_context) def data_vault_new_trace(self): localtime = time.localtime() datasetNameAppend = time.strftime("%Y%b%d_%H%M_%S",localtime) output_size = self.excite.output_size dependants = [('Excitation','Ion {}'.format(ion),'Probability') for ion in range(output_size)] self.dv.new('{0} {1}'.format(self.name, datasetNameAppend),[('Excitation', 'us')], dependants , context = self.data_save_context) window_name = ['Dephasing, Scan Duration'] self.dv.add_parameter('Window', window_name, context = self.data_save_context) self.dv.add_parameter('plotLive', True, context = self.data_save_context) def run(self, cxn, context): p = self.parameters.Dephasing_Pulses self.data_vault_new_trace() self.setup_sequence_parameters() for i,interaction_duration in enumerate(self.scan): should_stop = self.pause_or_stop() if should_stop: return False second_pulse_dur = min(self.max_second_pulse, interaction_duration) ramsey_time = max(WithUnit(0,'us'), interaction_duration - self.max_second_pulse) #ramsey_time = WithUnit(0,'us') p.evolution_ramsey_time = ramsey_time p.evolution_pulses_duration = second_pulse_dur self.excite.set_parameters(self.parameters) excitation, readout = self.excite.run(cxn, context) submission = [interaction_duration['us']] submission.extend(excitation) self.dv.add(submission, context = self.data_save_context) self.update_progress(i) self.save_parameters(self.dv, cxn, self.cxnlab, self.data_save_context) ####### FROM DYLAN -- PULSE SEQUENCE PLOTTING ######### #ttl = self.cxn.pulser.human_readable_ttl() #dds = self.cxn.pulser.human_readable_dds() #channels = self.cxn.pulser.get_channels().asarray #sp = SequencePlotter(ttl.asarray, dds.aslist, channels) #sp.makePlot() ############################################3 return True def finalize(self, cxn, context): pass def update_progress(self, iteration): progress = self.min_progress + (self.max_progress - self.min_progress) * float(iteration + 1.0) / len(self.scan) self.sc.script_set_progress(self.ident, progress) def save_parameters(self, dv, cxn, cxnlab, context): measuredDict = dvParameters.measureParameters(cxn, cxnlab) dvParameters.saveParameters(dv, measuredDict, context) dvParameters.saveParameters(dv, dict(self.parameters), context) if __name__ == '__main__': cxn = labrad.connect() scanner = cxn.scriptscanner exprt = dephase_scan_duration(cxn = cxn) ident = scanner.register_external_launch(exprt.name) exprt.execute(ident)
f5fb13e993e1f670fb944b04d958c11f4c9235e0
4a63c8e2545c6968547d7aa36c2dca85b9b84301
/workscheduler/src/backend/utils/datetime.py
88eb649edb561f5fec06a44475f4020eda3ac2b3
[]
no_license
epirevolve/workscheduler
458b8da84da94862c91de6544c5aaaefc1520d47
6c89e7264c5b66f4eb91b1989da6324695449703
refs/heads/develop
2023-01-23T02:01:29.356940
2019-12-30T01:16:32
2019-12-30T01:16:32
147,050,241
5
2
null
2023-01-04T11:42:19
2018-09-02T03:10:19
JavaScript
UTF-8
Python
false
false
207
py
# -*- coding: utf-8 -*- from datetime import datetime def is_overlap(a_from: datetime, a_to: datetime, b_from: datetime, b_to: datetime): return (b_from <= a_from <= b_to) or (b_from <= a_to <= b_to)
2f74ae3f7caac57b707a98584b6bdd4a40ded6f8
fd1dba8223ad1938916369b5eb721305ef197b30
/AtCoder/ABC/abc110/abc110c.py
b19744afbe63b3698d7e3487b7f15813a0167d39
[]
no_license
genkinanodesu/competitive
a3befd2f4127e2d41736655c8d0acfa9dc99c150
47003d545bcea848b409d60443655edb543d6ebb
refs/heads/master
2020-03-30T07:41:08.803867
2019-06-10T05:22:17
2019-06-10T05:22:17
150,958,656
0
0
null
null
null
null
UTF-8
Python
false
false
326
py
S = input() T = input() n = len(S) X = [[] for _ in range(26)] Y = [[] for _ in range(26)] for i in range(n): s = ord(S[i]) - 97 t = ord(T[i]) - 97 X[s].append(i) Y[t].append(i) P = [tuple(x) for x in X] Q = [tuple(y) for y in Y] if set(P) == set(Q): print('Yes') else: print('No')
be63e415ecf5e1d3a8f53e768d4c23c1d1643511
cca21b0ddca23665f886632a39a212d6b83b87c1
/virtual/classroom/views.py
07712f42f10a68880ba8e8500e4a6784453a72e1
[]
no_license
siumhossain/classroom
a8926621456d1e7ed77387fb8a5851825771a9d9
4afe9cdee2c58b71bd3711b042eae3f86172eaea
refs/heads/master
2023-02-02T08:28:14.958761
2020-12-24T14:58:59
2020-12-24T14:58:59
323,007,793
0
0
null
null
null
null
UTF-8
Python
false
false
7,300
py
from django.shortcuts import render from django.urls import reverse_lazy from django.views.generic.list import ListView from django.views.generic.edit import CreateView, UpdateView,DeleteView from .models import Course from django.contrib.auth.mixins import LoginRequiredMixin,PermissionRequiredMixin from django.shortcuts import redirect, get_object_or_404 from django.views.generic.base import TemplateResponseMixin,View from .forms import ModuleFormSet from django.forms.models import modelform_factory from django.apps import apps from .models import Module, Content from braces.views import CsrfExemptMixin, JsonRequestResponseMixin from django.db.models import Count from .models import Subject from django.views.generic.detail import DetailView from students.forms import CourseEnrollForm # Create your views here. from django.views.generic.list import ListView from .models import Course class ManageCourseListView(ListView): model = Course template_name = 'courses/manage/course/list.html' def get_queryset(self): qs = super().get_queryset() return qs.filter(owner=self.request.user) class OwnerMixin(object): def get_queryset(self): qs = super().get_queryset() return qs.filter(owner=self.request.user) class OwnerEditMixin(object): def form_valid(self, form): form.instance.owner = self.request.user return super().form_valid(form) class OwnerCourseMixin(OwnerMixin): model = Course fields = ['subject', 'title', 'slug', 'overview'] success_url = reverse_lazy('manage_course_list') class OwnerCourseEditMixin(OwnerCourseMixin, OwnerEditMixin): template_name = 'courses/manage/course/form.html' class ManageCourseListView(OwnerCourseMixin, ListView): template_name = 'courses/manage/course/list.html' class CourseCreateView(OwnerCourseEditMixin, CreateView): pass class CourseUpdateView(OwnerCourseEditMixin, UpdateView): pass class CourseDeleteView(OwnerCourseMixin, DeleteView): template_name = 'courses/manage/course/delete.html' class OwnerCourseMixin(OwnerMixin,LoginRequiredMixin,PermissionRequiredMixin): model = Course fields = ['subject', 'title', 'slug', 'overview'] success_url = reverse_lazy('manage_course_list') class ManageCourseListView(OwnerCourseMixin, ListView): template_name = 'courses/manage/course/list.html' permission_required = 'courses.view_course' class CourseCreateView(OwnerCourseEditMixin, CreateView): permission_required = 'courses.add_course' class CourseUpdateView(OwnerCourseEditMixin, UpdateView): permission_required = 'courses.change_course' class CourseDeleteView(OwnerCourseMixin, DeleteView): template_name = 'courses/manage/course/delete.html' permission_required = 'courses.delete_course' class CourseModuleUpdateView(TemplateResponseMixin, View): template_name = 'courses/manage/module/formset.html' course = None def get_formset(self, data=None): return ModuleFormSet(instance=self.course,data=data) def dispatch(self, request, pk): self.course = get_object_or_404(Course,id=pk,owner=request.user) return super().dispatch(request, pk) def get(self, request, *args, **kwargs): formset = self.get_formset() return self.render_to_response({'course': self.course,'formset': formset}) def post(self, request, *args, **kwargs): formset = self.get_formset(data=request.POST) if formset.is_valid(): formset.save() return redirect('manage_course_list') return self.render_to_response({'course': self.course,'formset': formset}) class ContentCreateUpdateView(TemplateResponseMixin, View): module = None model = None obj = None template_name = 'courses/manage/content/form.html' def get_model(self, model_name): if model_name in ['text', 'video', 'image', 'file']: return apps.get_model(app_label='courses',model_name=model_name) return None def get_form(self, model, *args, **kwargs): Form = modelform_factory(model, exclude=['owner','order','created','updated']) return Form(*args, **kwargs) def dispatch(self, request, module_id, model_name, id=None): self.module = get_object_or_404(Module,id=module_id,course__owner=request.user) self.model = self.get_mode(model_name) if id: self.obj = get_object_or_404(self.model,id=id,owner=request.user) return super().dispatch(request, module_id, model_name, id) def get(self, request, module_id, model_name, id=None): form = self.get_form(self.model, instance=self.obj) return self.render_to_response({'form': form,'object': self.obj}) def post(self, request, module_id, model_name, id=None): form = self.get_form(self.model,instance=self.obj,data=request.POST,files=request.FILES) if form.is_valid(): obj = form.save(commit=False) obj.owner = request.user obj.save() if not id: # new content Content.objects.create(module=self.module,item=obj) return redirect('module_content_list', self.module.id) return self.render_to_response({'form': form,'object': self.obj}) class ContentDeleteView(View): def post(self, request, id): content = get_object_or_404(Content,id=id,module__course__owner=request.user) module = content.module content.item.delete() content.delete() return redirect('module_content_list', module.id) class ModuleContentListView(TemplateResponseMixin, View): template_name = 'courses/manage/module/content_list.html' def get(self, request, module_id): module = get_object_or_404(Module,id=module_id,course__owner=request.user) return self.render_to_response({'module': module}) class ModuleOrderView(CsrfExemptMixin,JsonRequestResponseMixin,View): def post(self, request): for id, order in self.request_json.items(): Module.objects.filter(id=id,course__owner=request.user).update(order=order) return self.render_json_response({'saved': 'OK'}) class ContentOrderView(CsrfExemptMixin,JsonRequestResponseMixin,View): def post(self, request): for id, order in self.request_json.items(): Content.objects.filter(id=id,module__course__owner=request.user).update(order=order) return self.render_json_response({'saved': 'OK'}) class CourseListView(TemplateResponseMixin, View): model = Course template_name = 'courses/course/list.html' def get(self, request, subject=None): subjects = Subject.objects.annotate(total_courses=Count('courses')) courses = Course.objects.annotate(total_modules=Count('modules')) if subject: subject = get_object_or_404(Subject, slug=subject) courses = courses.filter(subject=subject) return self.render_to_response({'subjects': subjects,'subject': subject,'courses': courses}) class CourseDetailView(DetailView): model = Course template_name = 'courses/course/detail.html' def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) context['enroll_form'] = CourseEnrollForm(initial={'course':self.object}) return context
d9c01472e3a355d2c744a3b72a0896f067997726
5fb9f29964268223869944508798d6c21d9e5298
/sub_test/sub_test.py
ea78eeb031a733544b22f4926dc7ead63ea94ff4
[]
no_license
CodedQuen/Python-Pocket-Reference-
56459ce1509f74bc253af027be91935e62922948
8f7c69edb8ad4ac3ef7f70bab15ffe24eb162325
refs/heads/master
2022-06-14T20:57:13.799676
2020-05-05T08:27:17
2020-05-05T08:27:17
261,398,407
0
0
null
null
null
null
UTF-8
Python
false
false
298
py
from subprocess import call, Popen, PIPE, check_output print(call("ls -l", shell=True)) print(check_output("ls -l", shell=True).decode()) pipe1 = Popen("ls -l", stdout=PIPE, shell=True) pipe2 = Popen("wc -l", stdin=pipe1.stdout, stdout=PIPE, shell=True) print(pipe2.stdout.read().decode())
2b63046ccd7b852daa7ce8a78c6345d746f667f9
6c137e70bb6b1b618fbbceddaeb74416d387520f
/spyre/testing/cavity.py
1d95f5fa22fb580cf87be1fa538c49f3fa4ba85b
[ "BSD-2-Clause" ]
permissive
zhong-lab/code
fe497c75662f8c3b7ab3c01e7e351bff6d5e8d15
b810362e06b44387f0768353c602ec5d29b551a2
refs/heads/master
2023-01-28T09:46:01.448833
2022-06-12T22:53:47
2022-06-12T22:53:47
184,670,765
2
7
BSD-2-Clause
2022-12-08T21:46:15
2019-05-02T23:37:39
Python
UTF-8
Python
false
false
361
py
##Config file for lifetime_spyrelet.py in spyre/spyre/spyrelet/ # Device List devices = { 'vna':[ 'lantz.drivers.VNA.P9371A', ['TCPIP0::DESKTOP-ER250Q8::hislip0,4880::INSTR'], {} ] } # Experiment List spyrelets = { 'freqSweep':[ 'spyre.spyrelets.cavity_spyrelet.Record', {'vna': 'vna'}, {} ], }
[ "none" ]
none
4a04f161cd2987c6ca772ac5ef11c4953ecbb7ec
cfa35dc2ea93ee0eceb2399a9e6112e987579c09
/stonesoup/metricgenerator/__init__.py
580303c8a8d1dce6e8550f6f212b7afe198d89c9
[ "LicenseRef-scancode-proprietary-license", "MIT", "LicenseRef-scancode-unknown-license-reference", "Apache-2.0", "Python-2.0", "LicenseRef-scancode-secret-labs-2011" ]
permissive
dstl/Stone-Soup
227e6a9e6fbdceca14af3f0259f311ec74095597
f24090cc919b3b590b84f965a3884ed1293d181d
refs/heads/main
2023-09-01T14:33:14.626428
2023-09-01T11:35:46
2023-09-01T11:35:46
98,420,803
315
126
MIT
2023-09-14T14:55:34
2017-07-26T12:34:28
Python
UTF-8
Python
false
false
65
py
from .base import MetricGenerator __all__ = ['MetricGenerator']
3b74887e37753f6834df15e0acf789b4118532ec
26cf1df102b75b0c068047cc6eca0d50dbc70c5a
/melati/server/address_manager_store.py
b0adc0891bd154e0333b582a3e552035eb13fd9b
[ "Apache-2.0" ]
permissive
a96009467/melati-blockchain
307f9a92eee25a15aa294ddfed41a595e63acc50
28b8cd1590ee8fa860554c66d639a1fefc0d3c41
refs/heads/main
2023-06-24T13:53:41.332345
2021-07-20T09:37:49
2021-07-20T09:37:49
387,778,815
0
0
Apache-2.0
2021-07-20T12:06:20
2021-07-20T12:06:20
null
UTF-8
Python
false
false
8,257
py
import logging from typing import Dict, List, Tuple import aiosqlite from melati.server.address_manager import ( BUCKET_SIZE, NEW_BUCKET_COUNT, NEW_BUCKETS_PER_ADDRESS, AddressManager, ExtendedPeerInfo, ) log = logging.getLogger(__name__) class AddressManagerStore: """ Metadata table: - private key - new table count - tried table count Nodes table: * Maps entries from new/tried table to unique node ids. - node_id - IP, port, together with the IP, port of the source peer. New table: * Stores node_id, bucket for each occurrence in the new table of an entry. * Once we know the buckets, we can also deduce the bucket positions. Every other information, such as tried_matrix, map_addr, map_info, random_pos, be deduced and it is not explicitly stored, instead it is recalculated. """ db: aiosqlite.Connection @classmethod async def create(cls, connection) -> "AddressManagerStore": self = cls() self.db = connection await self.db.commit() await self.db.execute("pragma journal_mode=wal") await self.db.execute("pragma synchronous=2") await self.db.execute("CREATE TABLE IF NOT EXISTS peer_metadata(key text,value text)") await self.db.commit() await self.db.execute("CREATE TABLE IF NOT EXISTS peer_nodes(node_id int,value text)") await self.db.commit() await self.db.execute("CREATE TABLE IF NOT EXISTS peer_new_table(node_id int,bucket int)") await self.db.commit() return self async def clear(self) -> None: cursor = await self.db.execute("DELETE from peer_metadata") await cursor.close() cursor = await self.db.execute("DELETE from peer_nodes") await cursor.close() cursor = await self.db.execute("DELETE from peer_new_table") await cursor.close() await self.db.commit() async def get_metadata(self) -> Dict[str, str]: cursor = await self.db.execute("SELECT key, value from peer_metadata") metadata = await cursor.fetchall() await cursor.close() return {key: value for key, value in metadata} async def is_empty(self) -> bool: metadata = await self.get_metadata() if "key" not in metadata: return True if int(metadata.get("new_count", 0)) > 0: return False if int(metadata.get("tried_count", 0)) > 0: return False return True async def get_nodes(self) -> List[Tuple[int, ExtendedPeerInfo]]: cursor = await self.db.execute("SELECT node_id, value from peer_nodes") nodes_id = await cursor.fetchall() await cursor.close() return [(node_id, ExtendedPeerInfo.from_string(info_str)) for node_id, info_str in nodes_id] async def get_new_table(self) -> List[Tuple[int, int]]: cursor = await self.db.execute("SELECT node_id, bucket from peer_new_table") entries = await cursor.fetchall() await cursor.close() return [(node_id, bucket) for node_id, bucket in entries] async def set_metadata(self, metadata) -> None: for key, value in metadata: cursor = await self.db.execute( "INSERT OR REPLACE INTO peer_metadata VALUES(?, ?)", (key, value), ) await cursor.close() await self.db.commit() async def set_nodes(self, node_list) -> None: for node_id, peer_info in node_list: cursor = await self.db.execute( "INSERT OR REPLACE INTO peer_nodes VALUES(?, ?)", (node_id, peer_info.to_string()), ) await cursor.close() await self.db.commit() async def set_new_table(self, entries) -> None: for node_id, bucket in entries: cursor = await self.db.execute( "INSERT OR REPLACE INTO peer_new_table VALUES(?, ?)", (node_id, bucket), ) await cursor.close() await self.db.commit() async def serialize(self, address_manager: AddressManager): metadata = [] nodes = [] new_table_entries = [] metadata.append(("key", str(address_manager.key))) unique_ids = {} count_ids = 0 for node_id, info in address_manager.map_info.items(): unique_ids[node_id] = count_ids if info.ref_count > 0: assert count_ids != address_manager.new_count nodes.append((count_ids, info)) count_ids += 1 metadata.append(("new_count", str(count_ids))) tried_ids = 0 for node_id, info in address_manager.map_info.items(): if info.is_tried: assert info is not None assert tried_ids != address_manager.tried_count nodes.append((count_ids, info)) count_ids += 1 tried_ids += 1 metadata.append(("tried_count", str(tried_ids))) for bucket in range(NEW_BUCKET_COUNT): for i in range(BUCKET_SIZE): if address_manager.new_matrix[bucket][i] != -1: index = unique_ids[address_manager.new_matrix[bucket][i]] new_table_entries.append((index, bucket)) await self.clear() await self.set_metadata(metadata) await self.set_nodes(nodes) await self.set_new_table(new_table_entries) async def deserialize(self) -> AddressManager: address_manager = AddressManager() metadata = await self.get_metadata() nodes = await self.get_nodes() new_table_entries = await self.get_new_table() address_manager.clear() address_manager.key = int(metadata["key"]) address_manager.new_count = int(metadata["new_count"]) # address_manager.tried_count = int(metadata["tried_count"]) address_manager.tried_count = 0 new_table_nodes = [(node_id, info) for node_id, info in nodes if node_id < address_manager.new_count] for n, info in new_table_nodes: address_manager.map_addr[info.peer_info.host] = n address_manager.map_info[n] = info info.random_pos = len(address_manager.random_pos) address_manager.random_pos.append(n) address_manager.id_count = len(new_table_nodes) tried_table_nodes = [(node_id, info) for node_id, info in nodes if node_id >= address_manager.new_count] # lost_count = 0 for node_id, info in tried_table_nodes: tried_bucket = info.get_tried_bucket(address_manager.key) tried_bucket_pos = info.get_bucket_position(address_manager.key, False, tried_bucket) if address_manager.tried_matrix[tried_bucket][tried_bucket_pos] == -1: info.random_pos = len(address_manager.random_pos) info.is_tried = True id_count = address_manager.id_count address_manager.random_pos.append(id_count) address_manager.map_info[id_count] = info address_manager.map_addr[info.peer_info.host] = id_count address_manager.tried_matrix[tried_bucket][tried_bucket_pos] = id_count address_manager.id_count += 1 address_manager.tried_count += 1 # else: # lost_count += 1 # address_manager.tried_count -= lost_count for node_id, bucket in new_table_entries: if node_id >= 0 and node_id < address_manager.new_count: info = address_manager.map_info[node_id] bucket_pos = info.get_bucket_position(address_manager.key, True, bucket) if address_manager.new_matrix[bucket][bucket_pos] == -1 and info.ref_count < NEW_BUCKETS_PER_ADDRESS: info.ref_count += 1 address_manager.new_matrix[bucket][bucket_pos] = node_id for node_id, info in list(address_manager.map_info.items()): if not info.is_tried and info.ref_count == 0: address_manager.delete_new_entry_(node_id) address_manager.load_used_table_positions() return address_manager
992cbbcc8751d9aa132eea71a9c34ba42f5b03b4
4754226625d4a6b9680a22fd39166f502034aeb5
/samsung/[cutz]lab1.py
971e71a34d9cdfed878116d35cf9fd619e85ef26
[ "MIT" ]
permissive
cutz-j/AlgorithmStudy
298cc7d6fa92345629623a9bd8d186f0608cdf7c
de0f81220e29bd5e109d174800f507b12a3bee36
refs/heads/master
2021-07-01T03:15:51.627208
2021-02-24T01:24:44
2021-02-24T01:24:44
222,935,322
3
0
null
null
null
null
UTF-8
Python
false
false
1,913
py
import sys from itertools import combinations class Queue(): def __init__(self): self.front = 0 self.rear = 0 self.list = [] self.pop_count = 0 def append(self, x): self.list.append(x) self.rear += 1 def pop(self): res = self.list[self.front] self.front += 1 self.pop_count += 1 return res def empty(self): return len(self.list) == self.pop_count res = 0 rl = lambda: sys.stdin.readline() N, M = map(int, rl().split()) all_map = [] virus = [] zero = [] virus_num = sys.maxsize for i in range(N): tmp = list(map(int, rl().split())) for j, v in enumerate(tmp): if v == 2: virus.append((i, j)) elif v == 0: zero.append((i, j)) all_map.append(tmp) row_dir, col_dir = [1, 0, -1, 0], [0, 1, 0, -1] wall_comb = combinations(zero, 3) for wall in wall_comb: # visited = copy.deepcopy(all_map) visited = [] for i in range(N): tmp = [] for j in range(M): tmp.append(all_map[i][j]) visited.append(tmp) for w in wall: visited[w[0]][w[1]] = 1 v_num = 0 queue = Queue() for v in virus: queue.append(v) while queue.empty() == False: r, c = queue.pop() v_num += 1 if v_num > virus_num: break for i in range(4): new_r, new_c = r + row_dir[i], c + col_dir[i] if (0 <= new_r < N) and (0 <= new_c < M): if visited[new_r][new_c] == 0: queue.append((new_r, new_c)) visited[new_r][new_c] = 2 cnt, v_cnt = 0, 0 for i in range(N): for j in range(M): if visited[i][j] == 0: cnt += 1 if visited[i][j] == 2: v_cnt += 1 if cnt > res: res = cnt virus_num = v_cnt print(res)
76846a71c9a5bcac685d5452c7f039c04d5dd554
3712a929d1124f514ea7af1ac0d4a1de03bb6773
/开班笔记/python基础部分/day02/code/test.py
e2a14e0f4bc5a36dc4cbb782ba168443482180ac
[]
no_license
jiyabing/learning
abd82aa3fd37310b4a98b11ea802c5b0e37b7ad9
6059006b0f86aee9a74cfc116d2284eb44173f41
refs/heads/master
2020-04-02T20:47:33.025331
2018-10-26T05:46:10
2018-10-26T05:46:10
154,779,387
0
0
null
null
null
null
UTF-8
Python
false
false
129
py
#!/usr/bin/python3 print('这是我的python第一条语句') print('我现在开始学python') print('这是最后一条语句')
6eeced6d1506a1def659d8582180f495fff68a7f
50402cc4388dfee3a9dbe9e121ef217759ebdba8
/etc/MOPSO-ZDT2/ZDT2-1.py
d0f2faf6d992bb8b09ed659299c095a99a98486a
[]
no_license
dqyi11/SVNBackup
bd46a69ec55e3a4f981a9bca4c8340944d8d5886
9ad38e38453ef8539011cf4d9a9c0a363e668759
refs/heads/master
2020-03-26T12:15:01.155873
2015-12-10T01:11:36
2015-12-10T01:11:36
144,883,382
2
1
null
null
null
null
UTF-8
Python
false
false
1,413
py
''' Created on Jan 26, 2014 @author: daqing_yi ''' if __name__ == '__main__': from PerformanceAnalyzer import *; import sys; trial_time = 30; figFolder = sys.path[0] + "\\zdt2"; caseName = "ZDT2"; fileList1 = []; fileList2 = []; fileList3 = []; fileList4 = []; for tt in range(trial_time): filename1 = "ZDT2-"+str(tt)+"--Div.txt"; filename2 = "ZDT2-"+str(tt)+"--AD.txt"; filename3 = "ZDT2-"+str(tt)+"--Spread.txt"; filename4 = "ZDT2-"+str(tt)+"--Efficiency.txt"; fileList1.append(filename1); fileList2.append(filename2); fileList3.append(filename3); fileList4.append(filename4); analyzer1 = PerformanceAnalyzer(fileList1, figFolder, "Diversity", 10); analyzer1.genData(); analyzer1.plot(caseName); analyzer1.dump(caseName); analyzer2 = PerformanceAnalyzer(fileList2, figFolder, "Distance", 10); analyzer2.genData(); analyzer2.plot(caseName); analyzer2.dump(caseName); analyzer3 = PerformanceAnalyzer(fileList3, figFolder, "Spread", 10); analyzer3.genData(); analyzer3.plot(caseName); analyzer3.dump(caseName); analyzer4 = PerformanceAnalyzer(fileList4, figFolder, "Efficiency", 10); analyzer4.genData(); analyzer4.plot(caseName); analyzer4.dump(caseName);
[ "walter@e224401c-0ce2-47f2-81f6-2da1fe30fd39" ]
walter@e224401c-0ce2-47f2-81f6-2da1fe30fd39
1511968638f2441910615d9b97b2c2629ea64078
eb9c3dac0dca0ecd184df14b1fda62e61cc8c7d7
/google/ads/googleads/v6/googleads-py/google/ads/googleads/v6/resources/types/product_bidding_category_constant.py
6aacc16b169b40875e5f6b751c1c07d2a833a97f
[ "Apache-2.0" ]
permissive
Tryweirder/googleapis-gen
2e5daf46574c3af3d448f1177eaebe809100c346
45d8e9377379f9d1d4e166e80415a8c1737f284d
refs/heads/master
2023-04-05T06:30:04.726589
2021-04-13T23:35:20
2021-04-13T23:35:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,334
py
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore from google.ads.googleads.v6.enums.types import product_bidding_category_level from google.ads.googleads.v6.enums.types import product_bidding_category_status __protobuf__ = proto.module( package='google.ads.googleads.v6.resources', marshal='google.ads.googleads.v6', manifest={ 'ProductBiddingCategoryConstant', }, ) class ProductBiddingCategoryConstant(proto.Message): r"""A Product Bidding Category. Attributes: resource_name (str): Output only. The resource name of the product bidding category. Product bidding category resource names have the form: ``productBiddingCategoryConstants/{country_code}~{level}~{id}`` id (int): Output only. ID of the product bidding category. This ID is equivalent to the google_product_category ID as described in this article: https://support.google.com/merchants/answer/6324436. country_code (str): Output only. Two-letter upper-case country code of the product bidding category. product_bidding_category_constant_parent (str): Output only. Resource name of the parent product bidding category. level (google.ads.googleads.v6.enums.types.ProductBiddingCategoryLevelEnum.ProductBiddingCategoryLevel): Output only. Level of the product bidding category. status (google.ads.googleads.v6.enums.types.ProductBiddingCategoryStatusEnum.ProductBiddingCategoryStatus): Output only. Status of the product bidding category. language_code (str): Output only. Language code of the product bidding category. localized_name (str): Output only. Display value of the product bidding category localized according to language_code. """ resource_name = proto.Field(proto.STRING, number=1) id = proto.Field(proto.INT64, number=10, optional=True) country_code = proto.Field(proto.STRING, number=11, optional=True) product_bidding_category_constant_parent = proto.Field(proto.STRING, number=12, optional=True) level = proto.Field(proto.ENUM, number=5, enum=product_bidding_category_level.ProductBiddingCategoryLevelEnum.ProductBiddingCategoryLevel, ) status = proto.Field(proto.ENUM, number=6, enum=product_bidding_category_status.ProductBiddingCategoryStatusEnum.ProductBiddingCategoryStatus, ) language_code = proto.Field(proto.STRING, number=13, optional=True) localized_name = proto.Field(proto.STRING, number=14, optional=True) __all__ = tuple(sorted(__protobuf__.manifest))
[ "bazel-bot-development[bot]@users.noreply.github.com" ]
bazel-bot-development[bot]@users.noreply.github.com
37c5eab2b0dce309f35baf4e54e33fcf65b69a0f
b37c027a3f63305345f266e8f4f944721adbb956
/BASES/OLD/3_2_CAC_CC_SPLTED_CSDS/tx_no_gui.py
a9468578d04ae10a963ccd3699fadbf0be6ccf6e
[]
no_license
andrehoracio97/investigacao
fdfb663867e6fe9f240bb828b7b96b99323f8be3
5dd1fad12f4991bb737ed236426247dfb52333eb
refs/heads/master
2022-10-11T02:08:30.478893
2020-06-16T09:58:13
2020-06-16T09:58:13
193,519,669
0
0
null
null
null
null
UTF-8
Python
false
false
10,072
py
#!/usr/bin/env python2 # -*- coding: utf-8 -*- ################################################## # GNU Radio Python Flow Graph # Title: Tx No Gui # Author: andresilva # GNU Radio version: 3.7.13.5 ################################################## from gnuradio import blocks from gnuradio import digital from gnuradio import eng_notation from gnuradio import fec from gnuradio import gr from gnuradio import uhd from gnuradio.eng_option import eng_option from gnuradio.filter import firdes from gnuradio.filter import pfb from optparse import OptionParser import insert_vec_cpp import pmt import random import time class tx_no_gui(gr.top_block): def __init__(self, puncpat='11'): gr.top_block.__init__(self, "Tx No Gui") ################################################## # Parameters ################################################## self.puncpat = puncpat ################################################## # Variables ################################################## self.sps = sps = 4 self.nfilts = nfilts = 32 self.eb = eb = 0.22 self.tx_rrc_taps = tx_rrc_taps = firdes.root_raised_cosine(nfilts, nfilts, 1.0, eb, 5*sps*nfilts) self.taps_per_filt = taps_per_filt = len(tx_rrc_taps)/nfilts self.samp_rate_array_MCR = samp_rate_array_MCR = [7500000,4000000,3750000,3000000,2500000,2000000,1500000,1000000,937500,882352,833333,714285,533333,500000,421052,400000,380952] self.vector = vector = [int(random.random()*4) for i in range(49600)] self.variable_qtgui_range_0 = variable_qtgui_range_0 = 50 self.samp_rate = samp_rate = samp_rate_array_MCR[1] self.rate = rate = 2 self.polys = polys = [109, 79] self.pld_enc = pld_enc = map( (lambda a: fec.ccsds_encoder_make(440, 0, fec.CC_TERMINATED)), range(0,16) ); self.pld_const = pld_const = digital.constellation_rect(([0.707+0.707j, -0.707+0.707j, -0.707-0.707j, 0.707-0.707j]), ([0, 1, 2, 3]), 4, 2, 2, 1, 1).base() self.pld_const.gen_soft_dec_lut(8) self.k = k = 7 self.frequencia_usrp = frequencia_usrp = 484e6 self.filt_delay = filt_delay = 1+(taps_per_filt-1)/2 self.MCR = MCR = "master_clock_rate=60e6" ################################################## # Blocks ################################################## self.uhd_usrp_sink_0_0 = uhd.usrp_sink( ",".join(("serial=F5EAE1", MCR)), uhd.stream_args( cpu_format="fc32", channels=range(1), ), ) self.uhd_usrp_sink_0_0.set_samp_rate(samp_rate) self.uhd_usrp_sink_0_0.set_time_now(uhd.time_spec(time.time()), uhd.ALL_MBOARDS) self.uhd_usrp_sink_0_0.set_center_freq(frequencia_usrp, 0) self.uhd_usrp_sink_0_0.set_gain(variable_qtgui_range_0, 0) self.uhd_usrp_sink_0_0.set_antenna('TX/RX', 0) self.pfb_arb_resampler_xxx_0 = pfb.arb_resampler_ccf( sps, taps=(tx_rrc_taps), flt_size=nfilts) self.pfb_arb_resampler_xxx_0.declare_sample_delay(filt_delay) self.insert_vec_cpp_new_vec_0 = insert_vec_cpp.new_vec((vector)) self.fec_extended_encoder_0 = fec.extended_encoder(encoder_obj_list=pld_enc, threading='capillary', puncpat=puncpat) self.digital_map_bb_1_0 = digital.map_bb((pld_const.pre_diff_code())) self.digital_diff_encoder_bb_0 = digital.diff_encoder_bb(4) self.digital_chunks_to_symbols_xx_0_0 = digital.chunks_to_symbols_bc((pld_const.points()), 1) self.blocks_vector_source_x_0_0_0 = blocks.vector_source_b([0], True, 1, []) self.blocks_stream_to_tagged_stream_0_0_0 = blocks.stream_to_tagged_stream(gr.sizeof_char, 1, 992, "packet_len") self.blocks_stream_mux_0_1_0 = blocks.stream_mux(gr.sizeof_char*1, (96, 896)) self.blocks_stream_mux_0_0 = blocks.stream_mux(gr.sizeof_char*1, (892, 4)) self.blocks_repack_bits_bb_1_0_0_1 = blocks.repack_bits_bb(8, 1, '', False, gr.GR_MSB_FIRST) self.blocks_repack_bits_bb_1_0_0_0 = blocks.repack_bits_bb(1, 2, "packet_len", False, gr.GR_MSB_FIRST) self.blocks_multiply_const_vxx_1 = blocks.multiply_const_vcc((0.7, )) self.blocks_file_source_0_0_1_0_0_0 = blocks.file_source(gr.sizeof_char*1, '/home/andre/Desktop/Files_To_Transmit/video_lion.mpeg', False) self.blocks_file_source_0_0_1_0_0_0.set_begin_tag(pmt.PMT_NIL) self.acode_1104 = blocks.vector_source_b([0x1, 0x0, 0x1, 0x0, 0x1, 0x1, 0x0, 0x0, 0x1, 0x1, 0x0, 0x1, 0x1, 0x1, 0x0, 0x1, 0x1, 0x0, 0x1, 0x0, 0x0, 0x1, 0x0, 0x0, 0x1, 0x1, 0x1, 0x0, 0x0, 0x0, 0x1, 0x0, 0x1, 0x1, 0x1, 0x1, 0x0, 0x0, 0x1, 0x0, 0x1, 0x0, 0x0, 0x0, 0x1, 0x1, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1, 0x1, 0x1, 0x1, 0x1, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1, 0x1, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1, 0x1, 0x1, 0x0, 0x0, 0x0, 0x0], True, 1, []) ################################################## # Connections ################################################## self.connect((self.acode_1104, 0), (self.blocks_stream_mux_0_1_0, 0)) self.connect((self.blocks_file_source_0_0_1_0_0_0, 0), (self.blocks_repack_bits_bb_1_0_0_1, 0)) self.connect((self.blocks_multiply_const_vxx_1, 0), (self.uhd_usrp_sink_0_0, 0)) self.connect((self.blocks_repack_bits_bb_1_0_0_0, 0), (self.insert_vec_cpp_new_vec_0, 0)) self.connect((self.blocks_repack_bits_bb_1_0_0_1, 0), (self.fec_extended_encoder_0, 0)) self.connect((self.blocks_stream_mux_0_0, 0), (self.blocks_stream_mux_0_1_0, 1)) self.connect((self.blocks_stream_mux_0_1_0, 0), (self.blocks_stream_to_tagged_stream_0_0_0, 0)) self.connect((self.blocks_stream_to_tagged_stream_0_0_0, 0), (self.blocks_repack_bits_bb_1_0_0_0, 0)) self.connect((self.blocks_vector_source_x_0_0_0, 0), (self.blocks_stream_mux_0_0, 1)) self.connect((self.digital_chunks_to_symbols_xx_0_0, 0), (self.pfb_arb_resampler_xxx_0, 0)) self.connect((self.digital_diff_encoder_bb_0, 0), (self.digital_chunks_to_symbols_xx_0_0, 0)) self.connect((self.digital_map_bb_1_0, 0), (self.digital_diff_encoder_bb_0, 0)) self.connect((self.fec_extended_encoder_0, 0), (self.blocks_stream_mux_0_0, 0)) self.connect((self.insert_vec_cpp_new_vec_0, 0), (self.digital_map_bb_1_0, 0)) self.connect((self.pfb_arb_resampler_xxx_0, 0), (self.blocks_multiply_const_vxx_1, 0)) def get_puncpat(self): return self.puncpat def set_puncpat(self, puncpat): self.puncpat = puncpat def get_sps(self): return self.sps def set_sps(self, sps): self.sps = sps self.pfb_arb_resampler_xxx_0.set_rate(self.sps) def get_nfilts(self): return self.nfilts def set_nfilts(self, nfilts): self.nfilts = nfilts self.set_taps_per_filt(len(self.tx_rrc_taps)/self.nfilts) def get_eb(self): return self.eb def set_eb(self, eb): self.eb = eb def get_tx_rrc_taps(self): return self.tx_rrc_taps def set_tx_rrc_taps(self, tx_rrc_taps): self.tx_rrc_taps = tx_rrc_taps self.set_taps_per_filt(len(self.tx_rrc_taps)/self.nfilts) self.pfb_arb_resampler_xxx_0.set_taps((self.tx_rrc_taps)) def get_taps_per_filt(self): return self.taps_per_filt def set_taps_per_filt(self, taps_per_filt): self.taps_per_filt = taps_per_filt self.set_filt_delay(1+(self.taps_per_filt-1)/2) def get_samp_rate_array_MCR(self): return self.samp_rate_array_MCR def set_samp_rate_array_MCR(self, samp_rate_array_MCR): self.samp_rate_array_MCR = samp_rate_array_MCR self.set_samp_rate(self.samp_rate_array_MCR[1]) def get_vector(self): return self.vector def set_vector(self, vector): self.vector = vector def get_variable_qtgui_range_0(self): return self.variable_qtgui_range_0 def set_variable_qtgui_range_0(self, variable_qtgui_range_0): self.variable_qtgui_range_0 = variable_qtgui_range_0 self.uhd_usrp_sink_0_0.set_gain(self.variable_qtgui_range_0, 0) def get_samp_rate(self): return self.samp_rate def set_samp_rate(self, samp_rate): self.samp_rate = samp_rate self.uhd_usrp_sink_0_0.set_samp_rate(self.samp_rate) def get_rate(self): return self.rate def set_rate(self, rate): self.rate = rate def get_polys(self): return self.polys def set_polys(self, polys): self.polys = polys def get_pld_enc(self): return self.pld_enc def set_pld_enc(self, pld_enc): self.pld_enc = pld_enc def get_pld_const(self): return self.pld_const def set_pld_const(self, pld_const): self.pld_const = pld_const def get_k(self): return self.k def set_k(self, k): self.k = k def get_frequencia_usrp(self): return self.frequencia_usrp def set_frequencia_usrp(self, frequencia_usrp): self.frequencia_usrp = frequencia_usrp self.uhd_usrp_sink_0_0.set_center_freq(self.frequencia_usrp, 0) def get_filt_delay(self): return self.filt_delay def set_filt_delay(self, filt_delay): self.filt_delay = filt_delay def get_MCR(self): return self.MCR def set_MCR(self, MCR): self.MCR = MCR def argument_parser(): parser = OptionParser(usage="%prog: [options]", option_class=eng_option) parser.add_option( "", "--puncpat", dest="puncpat", type="string", default='11', help="Set puncpat [default=%default]") return parser def main(top_block_cls=tx_no_gui, options=None): if options is None: options, _ = argument_parser().parse_args() tb = top_block_cls(puncpat=options.puncpat) tb.start() tb.wait() if __name__ == '__main__': main()
37a4bed3bf5ad368c0622bb623e70c8852cd6ba3
c0239d75a8199ec84ad683f945c21785c1b59386
/dingtalk/api/rest/CorpDingTaskCreateRequest.py
ebe77db44bea52c850f1888fb9ce57aede6aae7f
[]
no_license
luss613/oauth_dingtalk
9f253a75ce914c577dbabfb84e97fd883e80e04b
1e2554642d2b16c642a031670d08efa4a74e8252
refs/heads/master
2023-04-23T01:16:33.450821
2020-06-18T08:22:57
2020-06-18T08:22:57
264,966,287
1
1
null
2020-06-18T08:31:24
2020-05-18T14:33:25
Python
UTF-8
Python
false
false
332
py
''' Created by auto_sdk on 2018.07.25 ''' from dingtalk.api.base import RestApi class CorpDingTaskCreateRequest(RestApi): def __init__(self,url=None): RestApi.__init__(self,url) self.task_send_v_o = None def getHttpMethod(self): return 'POST' def getapiname(self): return 'dingtalk.corp.ding.task.create'
79e39282fe18e3659d7f76f56c3f2ae8ce5dc408
d62f1c0bd9c35cd8ae681d7465e749d63bb59d4e
/Week1/Codingbat/List-1/same_first_last.py
43d30b5ee7aa5c509d24f23881f34fe800bd4642
[]
no_license
Yeldan/BFDjango
0134a57ec523b08e4ca139ec11c384eeefec6caa
a390e08b8711613040a972e30a25b4035ff58e37
refs/heads/master
2020-03-27T15:49:53.859506
2018-11-25T22:33:38
2018-11-25T22:33:38
146,742,341
0
0
null
null
null
null
UTF-8
Python
false
false
122
py
def same_first_last(nums): if len(nums) >= 1 and nums[0] == nums[len(nums)-1]: return True return False
2151cceac149e0509db788b0da44d68c4d1cd4cb
3e24611b7315b5ad588b2128570f1341b9c968e8
/Pseudo_Finder.py
2d5054ccbc1b1928f339f8fd026680b8d0102af6
[ "BSD-2-Clause" ]
permissive
bioCKO/lpp_Script
dc327be88c7d12243e25557f7da68d963917aa90
0cb2eedb48d4afa25abc2ed7231eb1fdd9baecc2
refs/heads/master
2022-02-27T12:35:05.979231
2019-08-27T05:56:33
2019-08-27T05:56:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
4,854
py
#!/usr/bin/env python #coding:utf-8 """ Author: --<> Purpose: Created: 2015/10/19 """ from lpp import * import os from optparse import OptionParser def check_path( path ): if not os.path.exists(path): os.makedirs( path ) return os.path.abspath(path)+'/' def GBLASTA( protein,assemblyresult,output ): #os.system("""makeblastdb -in %s -title Assem -parse_seqids -out Assem -dbtype nucl"""%(assemblyresult)) COMMAND = open("gblasta_run.bat",'w') RAW = fasta_check(open(protein,'rU')) i=0 for t,s in RAW: i+=1 COMMAND.write(""" genblast -P blast -q $input -t %s -o $output """%(assemblyresult)) os.system(""" Genblast_Run.py -i %s -s %s -c %s -o %s """%( protein,COMMAND.name, i,output ) ) def ParseGblasta(gbaresult,genewiseruncommand): COMMAND = open(genewiseruncommand,'w') cache_path = check_path("CACHE/") i=0 data_cache_hash = {} GBA = block_reading(open(gbaresult,'rU'), re.escape("//******************END*******************//") ) i=0 for e_b in GBA: i+=1 k=0 gb_block = re.split("\n\n+", e_b) if "for query:" not in e_b: continue proteinid = re.search("for query\:\s+(\S+)", e_b).group(1) for align in gb_block[1:]: if "gene cover" not in align: continue aligndata = re.search("cover\:\d+\((\S+)\%\)\|score:([^\|]+)", align) perc = float(aligndata.group(1)) score = float(aligndata.group(2)) if perc >=80: i+=1 if i not in data_cache_hash: PRO= open(cache_path+'%s.pep'%(i),'w') PRO.write(proteinseqHash[proteinid]) data_cache_hash[i] = [PRO.name] k+=1 NUC = open(cache_path+'%s_%s.nuc'%(i,k),'w') align_detail = align.split("\n")[0] align_detail_list = align_detail.split("|") subject_detail = align_detail_list[1] scaffold_name = subject_detail.split(":")[0] direct = align_detail_list[2] scaffoldStart,scaffoldEND = subject_detail.split(":")[1].split("..") scaffoldStart=int(scaffoldStart) scaffoldEND = int(scaffoldEND) if scaffoldStart<10000: scaffoldStart = 0 else: scaffoldStart =scaffoldStart -10000 scaffoldEND = scaffoldEND+10000 NUC.write(">"+scaffold_name+"__%s\n"%(scaffoldStart)+assemblyseqHash[scaffold_name][scaffoldStart:scaffoldEND]+'\n') commandline = """Genewise_Psuedeo.py -p %s -n %s -o %s.result.gff"""%(PRO.name,NUC.name,i) if direct =="-": commandline += " -d" COMMAND.write(commandline+'\n') COMMAND.close() os.system( "cat %s | parallel -j 64"%(COMMAND.name) ) os.system( "cat *.result.gff > %s"%(output) ) os.system(" rm *.result.gff") #os.system("cat %s| parallel -j %s >genewise.out") if __name__=='__main__': usage = '''usage: python2.7 %prog [options] Kmer Kmer is a list of K value you want,e.g [ 1, 2, 3, 4 ]''' parser = OptionParser(usage =usage ) parser.add_option("-c", "--CPU", action="store", dest="cpu", type='int', default = 60, help="CPU number for each thread") parser.add_option("-p", "--pro", action="store", dest="protein", help="protein sequence!!") parser.add_option("-a", "--assembly", action="store", dest="assembly", help="Assemblied Genome!!") parser.add_option("-o", "--out", action="store", dest="output", default = 'genewise.out', help="The output file you want!!") (options, args) = parser.parse_args() cpu = options.cpu protein = options.protein assembly = options.assembly output = options.output assemblyseqHash = {} for t,s in fasta_check(open(assembly,'rU')): t = t.split()[0][1:] s = re.sub("\s+",'',s) assemblyseqHash[t]=s proteinseqHash = {} for t,s in fasta_check(open(protein,'rU')): proteinseqHash[t.split()[0][1:]] = t+s GBLASTA(protein, assembly,"geneblasta.out") ParseGblasta("geneblasta.out", "genewise.command") os.remove("genewise.command") os.system("rm CACHE -rf") os.system("rm cache -rf") os.system( "rm *.xml")
eabfec2e4c0257175b2f88f159573dc90713903f
faaad3f79c5409ba87c32648562097a611884800
/app/app/migrations/0008_auto__add_field_partner_enabled.py
a3d5859a39c05f0df938dd399d231cd774ed6a0c
[]
no_license
ahguerilla/movements
d320cf4e59549f9aebb9c534ce4ae9c468189915
a2065b65ff96391571390d4d44744566b5f298ac
refs/heads/master
2020-12-29T02:32:05.568280
2018-05-11T16:22:00
2018-05-11T16:22:00
55,590,490
0
2
null
null
null
null
UTF-8
Python
false
false
9,276
py
# -*- coding: utf-8 -*- from south.utils import datetime_utils as datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'Partner.enabled' db.add_column(u'app_partner', 'enabled', self.gf('django.db.models.fields.BooleanField')(default=True), keep_default=False) def backwards(self, orm): # Deleting field 'Partner.enabled' db.delete_column(u'app_partner', 'enabled') models = { u'app.menuextension': { 'Meta': {'object_name': 'MenuExtension'}, 'extended_object': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['cms.Page']", 'unique': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'public_extension': ('django.db.models.fields.related.OneToOneField', [], {'related_name': "'draft_extension'", 'unique': 'True', 'null': 'True', 'to': u"orm['app.MenuExtension']"}), 'show_on_footer_menu': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'show_on_top_menu': ('django.db.models.fields.BooleanField', [], {'default': 'False'}) }, u'app.newslettersignups': { 'Meta': {'ordering': "('-registered_date',)", 'object_name': 'NewsletterSignups'}, 'email': ('django.db.models.fields.CharField', [], {'max_length': '300'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'registered_date': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}) }, u'app.notificationping': { 'Meta': {'object_name': 'NotificationPing'}, 'completed': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'send_email_to': ('django.db.models.fields.EmailField', [], {'max_length': '75'}) }, u'app.partner': { 'Meta': {'object_name': 'Partner'}, 'enabled': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'logo': ('django.db.models.fields.files.ImageField', [], {'max_length': '100'}), 'text': ('django.db.models.fields.TextField', [], {}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, u'app.safevpnlink': { 'Meta': {'object_name': 'SafeVPNLink', '_ormbases': ['cms.CMSPlugin']}, 'base_url': ('django.db.models.fields.CharField', [], {'max_length': '200'}), u'cmsplugin_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['cms.CMSPlugin']", 'unique': 'True', 'primary_key': 'True'}), 'key': ('django.db.models.fields.CharField', [], {'max_length': '10'}), 'link_text': ('django.db.models.fields.CharField', [], {'max_length': '500'}) }, 'cms.cmsplugin': { 'Meta': {'object_name': 'CMSPlugin'}, 'changed_date': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'creation_date': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'language': ('django.db.models.fields.CharField', [], {'max_length': '15', 'db_index': 'True'}), 'level': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'lft': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'parent': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['cms.CMSPlugin']", 'null': 'True', 'blank': 'True'}), 'placeholder': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['cms.Placeholder']", 'null': 'True'}), 'plugin_type': ('django.db.models.fields.CharField', [], {'max_length': '50', 'db_index': 'True'}), 'position': ('django.db.models.fields.PositiveSmallIntegerField', [], {'null': 'True', 'blank': 'True'}), 'rght': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'tree_id': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}) }, 'cms.page': { 'Meta': {'ordering': "('tree_id', 'lft')", 'unique_together': "(('publisher_is_draft', 'application_namespace'), ('reverse_id', 'site', 'publisher_is_draft'))", 'object_name': 'Page'}, 'application_namespace': ('django.db.models.fields.CharField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}), 'application_urls': ('django.db.models.fields.CharField', [], {'db_index': 'True', 'max_length': '200', 'null': 'True', 'blank': 'True'}), 'changed_by': ('django.db.models.fields.CharField', [], {'max_length': '70'}), 'changed_date': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'created_by': ('django.db.models.fields.CharField', [], {'max_length': '70'}), 'creation_date': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'in_navigation': ('django.db.models.fields.BooleanField', [], {'default': 'True', 'db_index': 'True'}), 'is_home': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'db_index': 'True'}), 'languages': ('django.db.models.fields.CharField', [], {'max_length': '255', 'null': 'True', 'blank': 'True'}), 'level': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'lft': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'limit_visibility_in_menu': ('django.db.models.fields.SmallIntegerField', [], {'default': 'None', 'null': 'True', 'db_index': 'True', 'blank': 'True'}), 'login_required': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'navigation_extenders': ('django.db.models.fields.CharField', [], {'db_index': 'True', 'max_length': '80', 'null': 'True', 'blank': 'True'}), 'parent': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'children'", 'null': 'True', 'to': "orm['cms.Page']"}), 'placeholders': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['cms.Placeholder']", 'symmetrical': 'False'}), 'publication_date': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'publication_end_date': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'publisher_is_draft': ('django.db.models.fields.BooleanField', [], {'default': 'True', 'db_index': 'True'}), 'publisher_public': ('django.db.models.fields.related.OneToOneField', [], {'related_name': "'publisher_draft'", 'unique': 'True', 'null': 'True', 'to': "orm['cms.Page']"}), 'reverse_id': ('django.db.models.fields.CharField', [], {'db_index': 'True', 'max_length': '40', 'null': 'True', 'blank': 'True'}), 'revision_id': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'rght': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'site': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'djangocms_pages'", 'to': u"orm['sites.Site']"}), 'soft_root': ('django.db.models.fields.BooleanField', [], {'default': 'False', 'db_index': 'True'}), 'template': ('django.db.models.fields.CharField', [], {'default': "'INHERIT'", 'max_length': '100'}), 'tree_id': ('django.db.models.fields.PositiveIntegerField', [], {'db_index': 'True'}), 'xframe_options': ('django.db.models.fields.IntegerField', [], {'default': '0'}) }, 'cms.placeholder': { 'Meta': {'object_name': 'Placeholder'}, 'default_width': ('django.db.models.fields.PositiveSmallIntegerField', [], {'null': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'slot': ('django.db.models.fields.CharField', [], {'max_length': '50', 'db_index': 'True'}) }, u'sites.site': { 'Meta': {'ordering': "(u'domain',)", 'object_name': 'Site', 'db_table': "u'django_site'"}, 'domain': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) } } complete_apps = ['app']
0fd00087bbe6ec945db73332b6cad077f02cef83
2359121ebcebba9db2cee20b4e8f8261c5b5116b
/configs_pytorch/f113-f10_6_pt.py
473e694402d9b971c6aaf8839943d7c3313f54aa
[]
no_license
EliasVansteenkiste/plnt
79840bbc9f1518c6831705d5a363dcb3e2d2e5c2
e15ea384fd0f798aabef04d036103fe7af3654e0
refs/heads/master
2021-01-20T00:34:37.275041
2017-07-20T18:03:08
2017-07-20T18:03:08
89,153,531
2
1
null
null
null
null
UTF-8
Python
false
false
13,362
py
#copy of j25 import numpy as np from collections import namedtuple from functools import partial from PIL import Image import data_transforms import data_iterators import pathfinder import utils import app import torch import torchvision import torch.optim as optim import torch.nn as nn import torch.nn.init import torch.nn.functional as F import math restart_from_save = None rng = np.random.RandomState(42) # transformations p_transform = {'patch_size': (256, 256), 'channels': 4, 'n_labels': 17} p_augmentation = { 'rot90_values': [0, 1, 2, 3], 'flip': [0, 1] } channel_zmuv_stats = { 'avg': [4970.55, 4245.35, 3064.64, 6360.08], 'std': [1785.79, 1576.31, 1661.19, 1841.09]} # data preparation function def data_prep_function_train(x, p_transform=p_transform, p_augmentation=p_augmentation, **kwargs): x = np.array(x,dtype=np.float32) x = data_transforms.channel_zmuv(x, img_stats=channel_zmuv_stats, no_channels=4) x = data_transforms.random_lossless(x, p_augmentation, rng) return x def data_prep_function_valid(x, p_transform=p_transform, **kwargs): x = np.array(x, dtype=np.float32) x = data_transforms.channel_zmuv(x, img_stats=channel_zmuv_stats, no_channels=4) return x def label_prep_function(x): #cut out the label return x # data iterators batch_size = 32 nbatches_chunk = 1 chunk_size = batch_size * nbatches_chunk folds = app.make_stratified_split(no_folds=10) #for checking if folds are equal over multiple config files for fold in folds: print sum(fold) train_ids = folds[1] + folds[2] + folds[3] + folds[4] + folds[5] + folds[0] + folds[7] + folds[8] + folds[9] valid_ids = folds[6] all_ids = folds[0] + folds[1] + folds[2] + folds[3] + folds[4] + folds[5] + folds[6] + folds[7] + folds[8] + folds[9] bad_ids = [] train_ids = [x for x in train_ids if x not in bad_ids] valid_ids = [x for x in valid_ids if x not in bad_ids] test_ids = np.arange(40669) test2_ids = np.arange(20522) train_data_iterator = data_iterators.DataGenerator(dataset='train', batch_size=chunk_size, img_ids = train_ids, p_transform=p_transform, data_prep_fun = data_prep_function_train, label_prep_fun = label_prep_function, rng=rng, full_batch=True, random=True, infinite=True) feat_data_iterator = data_iterators.DataGenerator(dataset='train', batch_size=chunk_size, img_ids = all_ids, p_transform=p_transform, data_prep_fun = data_prep_function_valid, label_prep_fun = label_prep_function, rng=rng, full_batch=False, random=True, infinite=False) valid_data_iterator = data_iterators.DataGenerator(dataset='train', batch_size=chunk_size, img_ids = valid_ids, p_transform=p_transform, data_prep_fun = data_prep_function_valid, label_prep_fun = label_prep_function, rng=rng, full_batch=False, random=True, infinite=False) test_data_iterator = data_iterators.DataGenerator(dataset='test', batch_size=chunk_size, img_ids = test_ids, p_transform=p_transform, data_prep_fun = data_prep_function_valid, label_prep_fun = label_prep_function, rng=rng, full_batch=False, random=False, infinite=False) test2_data_iterator = data_iterators.DataGenerator(dataset='test2', batch_size=chunk_size, img_ids = test2_ids, p_transform=p_transform, data_prep_fun = data_prep_function_valid, label_prep_fun = label_prep_function, rng=rng, full_batch=False, random=False, infinite=False) import tta tta = tta.LosslessTTA(p_augmentation) tta_test_data_iterator = data_iterators.TTADataGenerator(dataset='test', tta = tta, duplicate_label = False, img_ids = test_ids, p_transform=p_transform, data_prep_fun = data_prep_function_valid, label_prep_fun = label_prep_function, rng=rng, full_batch=False, random=False, infinite=False) tta_test2_data_iterator = data_iterators.TTADataGenerator(dataset='test2', tta = tta, duplicate_label = False, img_ids = test2_ids, p_transform=p_transform, data_prep_fun = data_prep_function_valid, label_prep_fun = label_prep_function, rng=rng, full_batch=False, random=False, infinite=False) tta_valid_data_iterator = data_iterators.TTADataGenerator(dataset='train', tta = tta, duplicate_label = True, batch_size=chunk_size, img_ids = valid_ids, p_transform=p_transform, data_prep_fun = data_prep_function_valid, label_prep_fun = label_prep_function, rng=rng, full_batch=False, random=True, infinite=False) tta_train_data_iterator = data_iterators.TTADataGenerator(dataset='train', tta = tta, duplicate_label = True, batch_size=chunk_size, img_ids = train_ids, p_transform=p_transform, data_prep_fun = data_prep_function_valid, label_prep_fun = label_prep_function, rng=rng, full_batch=False, random=True, infinite=False) tta_all_data_iterator = data_iterators.TTADataGenerator(dataset='train', tta = tta, duplicate_label = True, batch_size=chunk_size, img_ids = all_ids, p_transform=p_transform, data_prep_fun = data_prep_function_valid, label_prep_fun = label_prep_function, rng=rng, full_batch=False, random=True, infinite=False) nchunks_per_epoch = train_data_iterator.nsamples / chunk_size max_nchunks = nchunks_per_epoch * 60 validate_every = int(0.5 * nchunks_per_epoch) save_every = int(10 * nchunks_per_epoch) learning_rate_schedule = { 0: 5e-2, int(max_nchunks * 0.2): 2e-2, int(max_nchunks * 0.4): 1e-2, int(max_nchunks * 0.6): 3e-3, int(max_nchunks * 0.8): 1e-3 } # model from collections import OrderedDict class MyDenseNet(nn.Module): def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16), num_init_features=64, bn_size=4, drop_rate=0, num_classes=1000): super(MyDenseNet, self).__init__() # First convolution self.features = nn.Sequential(OrderedDict([ ('conv0', nn.Conv2d(4, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)), ('norm0', nn.BatchNorm2d(num_init_features)), ('relu0', nn.ReLU(inplace=True)), ('pool0', nn.MaxPool2d(kernel_size=3, stride=2, padding=1)), ])) # Each denseblock num_features = num_init_features self.blocks = [] final_num_features = 0 for i, num_layers in enumerate(block_config): block = torchvision.models.densenet._DenseBlock(num_layers=num_layers, num_input_features=num_features, bn_size=bn_size, growth_rate=growth_rate, drop_rate=drop_rate) self.features.add_module('denseblock%d' % (i + 1), block) self.blocks.append(block) num_features = num_features + num_layers * growth_rate if i != len(block_config) - 1: trans = torchvision.models.densenet._Transition(num_input_features=num_features, num_output_features=num_features // 2) self.features.add_module('transition%d' % (i + 1), trans) num_features = num_features // 2 # Final batch norm self.features.add_module('norm5', nn.BatchNorm2d(num_features)) self.classifier_drop = nn.Dropout(p=0.5) # Linear layer self.classifier = nn.Linear(num_features, num_classes) def forward(self, x, feat=False): features = self.features(x) out = F.relu(features, inplace=True) out = self.classifier_drop(out) out = F.avg_pool2d(out, kernel_size=7).view(features.size(0), -1) if feat: return out out = self.classifier(out) return out def my_densenet121(pretrained=False, **kwargs): r"""Densenet-121 model from `"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>` Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = MyDenseNet(num_init_features=64, growth_rate=32, block_config=(6, 12, 24, 16)) if pretrained: model.load_state_dict(torch.utils.model_zoo.load_url(torchvision.models.densenet.model_urls['densenet121'])) return model class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.densenet = my_densenet121(pretrained=False) self.densenet.apply(weight_init) self.densenet.classifier = nn.Linear(self.densenet.classifier.in_features, p_transform["n_labels"]) self.densenet.classifier.weight.data.zero_() def forward(self, x, feat=False): if feat: return self.densenet(x,feat) else: x = self.densenet(x) return F.sigmoid(x) def weight_init(m): if isinstance(m,nn.Conv2d): m.weight.data=nn.init.orthogonal(m.weight.data) def build_model(): net = Net() return namedtuple('Model', [ 'l_out'])( net ) # loss class MultiLoss(torch.nn.modules.loss._Loss): def __init__(self, weight): super(MultiLoss, self).__init__() self.weight = weight def forward(self, input, target): torch.nn.modules.loss._assert_no_grad(target) weighted = (self.weight*target)*(input-target)**2 +(1-target)*(input-target)**2 return torch.mean(weighted) def build_objective(): return MultiLoss(5.0) def build_objective2(): return MultiLoss(1.0) def score(gts, preds): return app.f2_score_arr(gts, preds) # updates def build_updates(model, learning_rate): return optim.SGD(model.parameters(), lr=learning_rate,momentum=0.9,weight_decay=0.0002)
207c707157fd441286ecf9952084a3c11def6be1
9c8fdfa389eaaf2df4c8ba0e3072d94671b5a622
/0163. Missing Ranges.py
dbf13be4a24913568795bb380bbbac50fd487f69
[]
no_license
aidardarmesh/leetcode2
41b64695afa850f9cc7847158abb6f2e8dc9abcd
4cf03307c5caeccaa87ccce249322bd02397f489
refs/heads/master
2023-02-27T11:22:09.803298
2021-02-07T06:47:35
2021-02-07T06:47:35
264,491,702
0
0
null
null
null
null
UTF-8
Python
false
false
480
py
from typing import * class Solution: def findMissingRanges(self, nums: List[int], lower: int, upper: int) -> List[str]: res = [] nums = [lower-1] + nums + [upper+1] for i in range(len(nums)-1): delta = nums[i+1] - nums[i] if delta == 2: res.append(str(nums[i]+1)) elif delta > 2: res.append(str(nums[i]+1) + '->' + str(nums[i+1]-1)) return res
7ff1327d876b5b1c37bba099c54717d552757bf5
aa0270b351402e421631ebc8b51e528448302fab
/sdk/cosmos/azure-mgmt-cosmosdb/azure/mgmt/cosmosdb/operations/_cassandra_data_centers_operations.py
038ebacf65a49f1624ecc977c3c8039ecf4bbf85
[ "MIT", "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later" ]
permissive
fangchen0601/azure-sdk-for-python
d04a22109d0ff8ff209c82e4154b7169b6cb2e53
c2e11d6682e368b2f062e714490d2de42e1fed36
refs/heads/master
2023-05-11T16:53:26.317418
2023-05-04T20:02:16
2023-05-04T20:02:16
300,440,803
0
0
MIT
2020-10-16T18:45:29
2020-10-01T22:27:56
null
UTF-8
Python
false
false
46,744
py
# pylint: disable=too-many-lines # coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, Callable, Dict, IO, Iterable, Optional, TypeVar, Union, cast, overload import urllib.parse from azure.core.exceptions import ( ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, ResourceNotModifiedError, map_error, ) from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpResponse from azure.core.polling import LROPoller, NoPolling, PollingMethod from azure.core.rest import HttpRequest from azure.core.tracing.decorator import distributed_trace from azure.core.utils import case_insensitive_dict from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.arm_polling import ARMPolling from .. import models as _models from .._serialization import Serializer from .._vendor import _convert_request, _format_url_section T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] _SERIALIZER = Serializer() _SERIALIZER.client_side_validation = False def build_list_request(resource_group_name: str, cluster_name: str, subscription_id: str, **kwargs: Any) -> HttpRequest: _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-03-15")) accept = _headers.pop("Accept", "application/json") # Construct URL _url = kwargs.pop( "template_url", "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/cassandraClusters/{clusterName}/dataCenters", ) # pylint: disable=line-too-long path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), "clusterName": _SERIALIZER.url( "cluster_name", cluster_name, "str", max_length=100, min_length=1, pattern=r"^[a-zA-Z0-9]+(-[a-zA-Z0-9]+)*$" ), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore # Construct parameters _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") # Construct headers _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs) def build_get_request( resource_group_name: str, cluster_name: str, data_center_name: str, subscription_id: str, **kwargs: Any ) -> HttpRequest: _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-03-15")) accept = _headers.pop("Accept", "application/json") # Construct URL _url = kwargs.pop( "template_url", "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/cassandraClusters/{clusterName}/dataCenters/{dataCenterName}", ) # pylint: disable=line-too-long path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), "clusterName": _SERIALIZER.url( "cluster_name", cluster_name, "str", max_length=100, min_length=1, pattern=r"^[a-zA-Z0-9]+(-[a-zA-Z0-9]+)*$" ), "dataCenterName": _SERIALIZER.url( "data_center_name", data_center_name, "str", max_length=100, min_length=1, pattern=r"^[a-zA-Z0-9]+(-[a-zA-Z0-9]+)*$", ), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore # Construct parameters _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") # Construct headers _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") return HttpRequest(method="GET", url=_url, params=_params, headers=_headers, **kwargs) def build_delete_request( resource_group_name: str, cluster_name: str, data_center_name: str, subscription_id: str, **kwargs: Any ) -> HttpRequest: _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-03-15")) accept = _headers.pop("Accept", "application/json") # Construct URL _url = kwargs.pop( "template_url", "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/cassandraClusters/{clusterName}/dataCenters/{dataCenterName}", ) # pylint: disable=line-too-long path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), "clusterName": _SERIALIZER.url( "cluster_name", cluster_name, "str", max_length=100, min_length=1, pattern=r"^[a-zA-Z0-9]+(-[a-zA-Z0-9]+)*$" ), "dataCenterName": _SERIALIZER.url( "data_center_name", data_center_name, "str", max_length=100, min_length=1, pattern=r"^[a-zA-Z0-9]+(-[a-zA-Z0-9]+)*$", ), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore # Construct parameters _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") # Construct headers _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") return HttpRequest(method="DELETE", url=_url, params=_params, headers=_headers, **kwargs) def build_create_update_request( resource_group_name: str, cluster_name: str, data_center_name: str, subscription_id: str, **kwargs: Any ) -> HttpRequest: _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-03-15")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") # Construct URL _url = kwargs.pop( "template_url", "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/cassandraClusters/{clusterName}/dataCenters/{dataCenterName}", ) # pylint: disable=line-too-long path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), "clusterName": _SERIALIZER.url( "cluster_name", cluster_name, "str", max_length=100, min_length=1, pattern=r"^[a-zA-Z0-9]+(-[a-zA-Z0-9]+)*$" ), "dataCenterName": _SERIALIZER.url( "data_center_name", data_center_name, "str", max_length=100, min_length=1, pattern=r"^[a-zA-Z0-9]+(-[a-zA-Z0-9]+)*$", ), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore # Construct parameters _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") # Construct headers if content_type is not None: _headers["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str") _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") return HttpRequest(method="PUT", url=_url, params=_params, headers=_headers, **kwargs) def build_update_request( resource_group_name: str, cluster_name: str, data_center_name: str, subscription_id: str, **kwargs: Any ) -> HttpRequest: _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: str = kwargs.pop("api_version", _params.pop("api-version", "2023-03-15")) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) accept = _headers.pop("Accept", "application/json") # Construct URL _url = kwargs.pop( "template_url", "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/cassandraClusters/{clusterName}/dataCenters/{dataCenterName}", ) # pylint: disable=line-too-long path_format_arguments = { "subscriptionId": _SERIALIZER.url("subscription_id", subscription_id, "str", min_length=1), "resourceGroupName": _SERIALIZER.url( "resource_group_name", resource_group_name, "str", max_length=90, min_length=1 ), "clusterName": _SERIALIZER.url( "cluster_name", cluster_name, "str", max_length=100, min_length=1, pattern=r"^[a-zA-Z0-9]+(-[a-zA-Z0-9]+)*$" ), "dataCenterName": _SERIALIZER.url( "data_center_name", data_center_name, "str", max_length=100, min_length=1, pattern=r"^[a-zA-Z0-9]+(-[a-zA-Z0-9]+)*$", ), } _url: str = _format_url_section(_url, **path_format_arguments) # type: ignore # Construct parameters _params["api-version"] = _SERIALIZER.query("api_version", api_version, "str") # Construct headers if content_type is not None: _headers["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str") _headers["Accept"] = _SERIALIZER.header("accept", accept, "str") return HttpRequest(method="PATCH", url=_url, params=_params, headers=_headers, **kwargs) class CassandraDataCentersOperations: """ .. warning:: **DO NOT** instantiate this class directly. Instead, you should access the following operations through :class:`~azure.mgmt.cosmosdb.CosmosDBManagementClient`'s :attr:`cassandra_data_centers` attribute. """ models = _models def __init__(self, *args, **kwargs): input_args = list(args) self._client = input_args.pop(0) if input_args else kwargs.pop("client") self._config = input_args.pop(0) if input_args else kwargs.pop("config") self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") @distributed_trace def list( self, resource_group_name: str, cluster_name: str, **kwargs: Any ) -> Iterable["_models.DataCenterResource"]: """List all data centers in a particular managed Cassandra cluster. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param cluster_name: Managed Cassandra cluster name. Required. :type cluster_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either DataCenterResource or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.cosmosdb.models.DataCenterResource] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.ListDataCenters] = kwargs.pop("cls", None) error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) def prepare_request(next_link=None): if not next_link: request = build_list_request( resource_group_name=resource_group_name, cluster_name=cluster_name, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.list.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) else: # make call to next link with the client's api-version _parsed_next_link = urllib.parse.urlparse(next_link) _next_request_params = case_insensitive_dict( { key: [urllib.parse.quote(v) for v in value] for key, value in urllib.parse.parse_qs(_parsed_next_link.query).items() } ) _next_request_params["api-version"] = self._config.api_version request = HttpRequest( "GET", urllib.parse.urljoin(next_link, _parsed_next_link.path), params=_next_request_params ) request = _convert_request(request) request.url = self._client.format_url(request.url) request.method = "GET" return request def extract_data(pipeline_response): deserialized = self._deserialize("ListDataCenters", pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) # type: ignore return None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access request, stream=_stream, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return ItemPaged(get_next, extract_data) list.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/cassandraClusters/{clusterName}/dataCenters" } @distributed_trace def get( self, resource_group_name: str, cluster_name: str, data_center_name: str, **kwargs: Any ) -> _models.DataCenterResource: """Get the properties of a managed Cassandra data center. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param cluster_name: Managed Cassandra cluster name. Required. :type cluster_name: str :param data_center_name: Data center name in a managed Cassandra cluster. Required. :type data_center_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: DataCenterResource or the result of cls(response) :rtype: ~azure.mgmt.cosmosdb.models.DataCenterResource :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[_models.DataCenterResource] = kwargs.pop("cls", None) request = build_get_request( resource_group_name=resource_group_name, cluster_name=cluster_name, data_center_name=data_center_name, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.get.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access request, stream=_stream, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize("DataCenterResource", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/cassandraClusters/{clusterName}/dataCenters/{dataCenterName}" } def _delete_initial( # pylint: disable=inconsistent-return-statements self, resource_group_name: str, cluster_name: str, data_center_name: str, **kwargs: Any ) -> None: error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) request = build_delete_request( resource_group_name=resource_group_name, cluster_name=cluster_name, data_center_name=data_center_name, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self._delete_initial.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access request, stream=_stream, **kwargs ) response = pipeline_response.http_response if response.status_code not in [202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/cassandraClusters/{clusterName}/dataCenters/{dataCenterName}" } @distributed_trace def begin_delete( self, resource_group_name: str, cluster_name: str, data_center_name: str, **kwargs: Any ) -> LROPoller[None]: """Delete a managed Cassandra data center. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param cluster_name: Managed Cassandra cluster name. Required. :type cluster_name: str :param data_center_name: Data center name in a managed Cassandra cluster. Required. :type data_center_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) cls: ClsType[None] = kwargs.pop("cls", None) polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) cont_token: Optional[str] = kwargs.pop("continuation_token", None) if cont_token is None: raw_result = self._delete_initial( # type: ignore resource_group_name=resource_group_name, cluster_name=cluster_name, data_center_name=data_center_name, api_version=api_version, cls=lambda x, y, z: x, headers=_headers, params=_params, **kwargs ) kwargs.pop("error_map", None) def get_long_running_output(pipeline_response): # pylint: disable=inconsistent-return-statements if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method: PollingMethod = cast(PollingMethod, ARMPolling(lro_delay, **kwargs)) elif polling is False: polling_method = cast(PollingMethod, NoPolling()) else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output, ) return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore begin_delete.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/cassandraClusters/{clusterName}/dataCenters/{dataCenterName}" } def _create_update_initial( self, resource_group_name: str, cluster_name: str, data_center_name: str, body: Union[_models.DataCenterResource, IO], **kwargs: Any ) -> _models.DataCenterResource: error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.DataCenterResource] = kwargs.pop("cls", None) content_type = content_type or "application/json" _json = None _content = None if isinstance(body, (IO, bytes)): _content = body else: _json = self._serialize.body(body, "DataCenterResource") request = build_create_update_request( resource_group_name=resource_group_name, cluster_name=cluster_name, data_center_name=data_center_name, subscription_id=self._config.subscription_id, api_version=api_version, content_type=content_type, json=_json, content=_content, template_url=self._create_update_initial.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access request, stream=_stream, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize("DataCenterResource", pipeline_response) if response.status_code == 201: deserialized = self._deserialize("DataCenterResource", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) # type: ignore return deserialized # type: ignore _create_update_initial.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/cassandraClusters/{clusterName}/dataCenters/{dataCenterName}" } @overload def begin_create_update( self, resource_group_name: str, cluster_name: str, data_center_name: str, body: _models.DataCenterResource, *, content_type: str = "application/json", **kwargs: Any ) -> LROPoller[_models.DataCenterResource]: """Create or update a managed Cassandra data center. When updating, overwrite all properties. To update only some properties, use PATCH. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param cluster_name: Managed Cassandra cluster name. Required. :type cluster_name: str :param data_center_name: Data center name in a managed Cassandra cluster. Required. :type data_center_name: str :param body: Parameters specifying the managed Cassandra data center. Required. :type body: ~azure.mgmt.cosmosdb.models.DataCenterResource :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. Default value is "application/json". :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either DataCenterResource or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.cosmosdb.models.DataCenterResource] :raises ~azure.core.exceptions.HttpResponseError: """ @overload def begin_create_update( self, resource_group_name: str, cluster_name: str, data_center_name: str, body: IO, *, content_type: str = "application/json", **kwargs: Any ) -> LROPoller[_models.DataCenterResource]: """Create or update a managed Cassandra data center. When updating, overwrite all properties. To update only some properties, use PATCH. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param cluster_name: Managed Cassandra cluster name. Required. :type cluster_name: str :param data_center_name: Data center name in a managed Cassandra cluster. Required. :type data_center_name: str :param body: Parameters specifying the managed Cassandra data center. Required. :type body: IO :keyword content_type: Body Parameter content-type. Content type parameter for binary body. Default value is "application/json". :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either DataCenterResource or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.cosmosdb.models.DataCenterResource] :raises ~azure.core.exceptions.HttpResponseError: """ @distributed_trace def begin_create_update( self, resource_group_name: str, cluster_name: str, data_center_name: str, body: Union[_models.DataCenterResource, IO], **kwargs: Any ) -> LROPoller[_models.DataCenterResource]: """Create or update a managed Cassandra data center. When updating, overwrite all properties. To update only some properties, use PATCH. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param cluster_name: Managed Cassandra cluster name. Required. :type cluster_name: str :param data_center_name: Data center name in a managed Cassandra cluster. Required. :type data_center_name: str :param body: Parameters specifying the managed Cassandra data center. Is either a DataCenterResource type or a IO type. Required. :type body: ~azure.mgmt.cosmosdb.models.DataCenterResource or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either DataCenterResource or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.cosmosdb.models.DataCenterResource] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.DataCenterResource] = kwargs.pop("cls", None) polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) cont_token: Optional[str] = kwargs.pop("continuation_token", None) if cont_token is None: raw_result = self._create_update_initial( resource_group_name=resource_group_name, cluster_name=cluster_name, data_center_name=data_center_name, body=body, api_version=api_version, content_type=content_type, cls=lambda x, y, z: x, headers=_headers, params=_params, **kwargs ) kwargs.pop("error_map", None) def get_long_running_output(pipeline_response): deserialized = self._deserialize("DataCenterResource", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method: PollingMethod = cast(PollingMethod, ARMPolling(lro_delay, **kwargs)) elif polling is False: polling_method = cast(PollingMethod, NoPolling()) else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output, ) return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore begin_create_update.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/cassandraClusters/{clusterName}/dataCenters/{dataCenterName}" } def _update_initial( self, resource_group_name: str, cluster_name: str, data_center_name: str, body: Union[_models.DataCenterResource, IO], **kwargs: Any ) -> _models.DataCenterResource: error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.DataCenterResource] = kwargs.pop("cls", None) content_type = content_type or "application/json" _json = None _content = None if isinstance(body, (IO, bytes)): _content = body else: _json = self._serialize.body(body, "DataCenterResource") request = build_update_request( resource_group_name=resource_group_name, cluster_name=cluster_name, data_center_name=data_center_name, subscription_id=self._config.subscription_id, api_version=api_version, content_type=content_type, json=_json, content=_content, template_url=self._update_initial.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) _stream = False pipeline_response: PipelineResponse = self._client._pipeline.run( # pylint: disable=protected-access request, stream=_stream, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize("DataCenterResource", pipeline_response) if response.status_code == 202: deserialized = self._deserialize("DataCenterResource", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) # type: ignore return deserialized # type: ignore _update_initial.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/cassandraClusters/{clusterName}/dataCenters/{dataCenterName}" } @overload def begin_update( self, resource_group_name: str, cluster_name: str, data_center_name: str, body: _models.DataCenterResource, *, content_type: str = "application/json", **kwargs: Any ) -> LROPoller[_models.DataCenterResource]: """Update some of the properties of a managed Cassandra data center. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param cluster_name: Managed Cassandra cluster name. Required. :type cluster_name: str :param data_center_name: Data center name in a managed Cassandra cluster. Required. :type data_center_name: str :param body: Parameters to provide for specifying the managed Cassandra data center. Required. :type body: ~azure.mgmt.cosmosdb.models.DataCenterResource :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. Default value is "application/json". :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either DataCenterResource or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.cosmosdb.models.DataCenterResource] :raises ~azure.core.exceptions.HttpResponseError: """ @overload def begin_update( self, resource_group_name: str, cluster_name: str, data_center_name: str, body: IO, *, content_type: str = "application/json", **kwargs: Any ) -> LROPoller[_models.DataCenterResource]: """Update some of the properties of a managed Cassandra data center. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param cluster_name: Managed Cassandra cluster name. Required. :type cluster_name: str :param data_center_name: Data center name in a managed Cassandra cluster. Required. :type data_center_name: str :param body: Parameters to provide for specifying the managed Cassandra data center. Required. :type body: IO :keyword content_type: Body Parameter content-type. Content type parameter for binary body. Default value is "application/json". :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either DataCenterResource or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.cosmosdb.models.DataCenterResource] :raises ~azure.core.exceptions.HttpResponseError: """ @distributed_trace def begin_update( self, resource_group_name: str, cluster_name: str, data_center_name: str, body: Union[_models.DataCenterResource, IO], **kwargs: Any ) -> LROPoller[_models.DataCenterResource]: """Update some of the properties of a managed Cassandra data center. :param resource_group_name: The name of the resource group. The name is case insensitive. Required. :type resource_group_name: str :param cluster_name: Managed Cassandra cluster name. Required. :type cluster_name: str :param data_center_name: Data center name in a managed Cassandra cluster. Required. :type data_center_name: str :param body: Parameters to provide for specifying the managed Cassandra data center. Is either a DataCenterResource type or a IO type. Required. :type body: ~azure.mgmt.cosmosdb.models.DataCenterResource or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either DataCenterResource or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.cosmosdb.models.DataCenterResource] :raises ~azure.core.exceptions.HttpResponseError: """ _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: str = kwargs.pop("api_version", _params.pop("api-version", self._config.api_version)) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[_models.DataCenterResource] = kwargs.pop("cls", None) polling: Union[bool, PollingMethod] = kwargs.pop("polling", True) lro_delay = kwargs.pop("polling_interval", self._config.polling_interval) cont_token: Optional[str] = kwargs.pop("continuation_token", None) if cont_token is None: raw_result = self._update_initial( resource_group_name=resource_group_name, cluster_name=cluster_name, data_center_name=data_center_name, body=body, api_version=api_version, content_type=content_type, cls=lambda x, y, z: x, headers=_headers, params=_params, **kwargs ) kwargs.pop("error_map", None) def get_long_running_output(pipeline_response): deserialized = self._deserialize("DataCenterResource", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method: PollingMethod = cast(PollingMethod, ARMPolling(lro_delay, **kwargs)) elif polling is False: polling_method = cast(PollingMethod, NoPolling()) else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output, ) return LROPoller(self._client, raw_result, get_long_running_output, polling_method) # type: ignore begin_update.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.DocumentDB/cassandraClusters/{clusterName}/dataCenters/{dataCenterName}" }
06a768b10284ec7d0ca364d50ef7abfd9a2060ff
358aaf68f3c60ebbbd86b3bc66d4e6c098bcb39e
/fonts/wonder16_8x16.py
ff96b7c5170caead9f8c94e725a350e50d913b60
[ "MIT" ]
permissive
ccccmagicboy/st7735_mpy
d2de0046abd81978d5176dace45a40758377af82
b15f1bde69fbe6e0eb4931c57e71c136d8e7f024
refs/heads/master
2022-08-28T23:18:04.353733
2020-05-28T04:19:21
2020-05-28T04:19:21
254,869,035
7
0
null
null
null
null
UTF-8
Python
false
false
6,756
py
"""converted from ..\fonts\WONDER16__8x16.bin """ WIDTH = 8 HEIGHT = 16 FIRST = 0x20 LAST = 0x7f _FONT =\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x18\x3c\x3c\x3c\x3c\x18\x18\x00\x18\x18\x00\x00\x00\x00'\ b'\x00\x36\x36\x36\x36\x14\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x6c\x6c\x6c\xfe\x6c\x6c\xfe\x6c\x6c\x6c\x00\x00\x00\x00'\ b'\x00\x00\x18\x18\x7c\xc6\xc0\x78\x3c\x06\xc6\x7c\x18\x18\x00\x00'\ b'\x00\x00\x00\x00\x00\x62\x66\x0c\x18\x30\x66\xc6\x00\x00\x00\x00'\ b'\x00\x00\x38\x6c\x38\x30\x76\x7e\xcc\xcc\xcc\x76\x00\x00\x00\x00'\ b'\x00\x0c\x0c\x0c\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x0c\x18\x30\x30\x30\x30\x30\x30\x18\x0c\x00\x00\x00\x00'\ b'\x00\x00\x30\x18\x0c\x0c\x0c\x0c\x0c\x0c\x18\x30\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x6c\x38\xfe\x38\x6c\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x18\x18\x7e\x18\x18\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0c\x0c\x0c\x18\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x00\x00\xfe\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x18\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x02\x06\x0c\x18\x30\x60\xc0\x80\x00\x00\x00\x00'\ b'\x00\x00\x7c\xc6\xc6\xc6\xd6\xd6\xc6\xc6\xc6\x7c\x00\x00\x00\x00'\ b'\x00\x00\x18\x78\x18\x18\x18\x18\x18\x18\x18\x7e\x00\x00\x00\x00'\ b'\x00\x00\x7c\xc6\xc6\x06\x0c\x18\x30\x60\xc6\xfe\x00\x00\x00\x00'\ b'\x00\x00\x7c\xc6\x06\x06\x3c\x06\x06\x06\xc6\x7c\x00\x00\x00\x00'\ b'\x00\x00\x0c\x1c\x3c\x6c\xcc\xcc\xfe\x0c\x0c\x1e\x00\x00\x00\x00'\ b'\x00\x00\xfe\xc0\xc0\xc0\xfc\x06\x06\x06\xc6\x7c\x00\x00\x00\x00'\ b'\x00\x00\x7c\xc6\xc0\xc0\xfc\xc6\xc6\xc6\xc6\x7c\x00\x00\x00\x00'\ b'\x00\x00\xfe\xc6\x06\x0c\x18\x30\x30\x30\x30\x30\x00\x00\x00\x00'\ b'\x00\x00\x7c\xc6\xc6\xc6\x7c\xc6\xc6\xc6\xc6\x7c\x00\x00\x00\x00'\ b'\x00\x00\x7c\xc6\xc6\xc6\xc6\x7e\x06\x06\xc6\x7c\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x0c\x0c\x00\x00\x0c\x0c\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x0c\x0c\x00\x00\x0c\x0c\x0c\x18\x00\x00\x00'\ b'\x00\x00\x00\x0c\x18\x30\x60\xc0\x60\x30\x18\x0c\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x00\xfe\x00\xfe\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x60\x30\x18\x0c\x06\x0c\x18\x30\x60\x00\x00\x00\x00'\ b'\x00\x00\x7c\xc6\xc6\x0c\x18\x18\x18\x00\x18\x18\x00\x00\x00\x00'\ b'\x00\x00\x7c\xc6\xc6\xc6\xde\xde\xde\xdc\xc0\x7e\x00\x00\x00\x00'\ b'\x00\x00\x38\x6c\xc6\xc6\xc6\xfe\xc6\xc6\xc6\xc6\x00\x00\x00\x00'\ b'\x00\x00\xfc\x66\x66\x66\x7c\x66\x66\x66\x66\xfc\x00\x00\x00\x00'\ b'\x00\x00\x3c\x66\xc2\xc0\xc0\xc0\xc0\xc2\x66\x3c\x00\x00\x00\x00'\ b'\x00\x00\xf8\x6c\x66\x66\x66\x66\x66\x66\x6c\xf8\x00\x00\x00\x00'\ b'\x00\x00\xfe\x66\x60\x60\x7c\x60\x60\x60\x66\xfe\x00\x00\x00\x00'\ b'\x00\x00\xfe\x66\x60\x60\x7c\x60\x60\x60\x60\xf0\x00\x00\x00\x00'\ b'\x00\x00\x7c\xc6\xc6\xc0\xc0\xc0\xce\xc6\xc6\x7c\x00\x00\x00\x00'\ b'\x00\x00\xc6\xc6\xc6\xc6\xfe\xc6\xc6\xc6\xc6\xc6\x00\x00\x00\x00'\ b'\x00\x00\x3c\x18\x18\x18\x18\x18\x18\x18\x18\x3c\x00\x00\x00\x00'\ b'\x00\x00\x3c\x18\x18\x18\x18\x18\x18\xd8\xd8\x70\x00\x00\x00\x00'\ b'\x00\x00\xc6\xc6\xcc\xd8\xf0\xf0\xd8\xcc\xc6\xc6\x00\x00\x00\x00'\ b'\x00\x00\xf0\x60\x60\x60\x60\x60\x60\x62\x66\xfe\x00\x00\x00\x00'\ b'\x00\x00\xc6\xc6\xee\xee\xfe\xd6\xd6\xd6\xc6\xc6\x00\x00\x00\x00'\ b'\x00\x00\xc6\xc6\xe6\xe6\xf6\xde\xce\xce\xc6\xc6\x00\x00\x00\x00'\ b'\x00\x00\x7c\xc6\xc6\xc6\xc6\xc6\xc6\xc6\xc6\x7c\x00\x00\x00\x00'\ b'\x00\x00\xfc\x66\x66\x66\x66\x7c\x60\x60\x60\xf0\x00\x00\x00\x00'\ b'\x00\x00\x7c\xc6\xc6\xc6\xc6\xc6\xc6\xd6\xd6\x7c\x06\x00\x00\x00'\ b'\x00\x00\xfc\x66\x66\x66\x7c\x78\x6c\x66\x66\xe6\x00\x00\x00\x00'\ b'\x00\x00\x7c\xc6\xc0\xc0\x70\x1c\x06\x06\xc6\x7c\x00\x00\x00\x00'\ b'\x00\x00\x7e\x5a\x18\x18\x18\x18\x18\x18\x18\x3c\x00\x00\x00\x00'\ b'\x00\x00\xc6\xc6\xc6\xc6\xc6\xc6\xc6\xc6\xc6\x7c\x00\x00\x00\x00'\ b'\x00\x00\xc6\xc6\xc6\xc6\xc6\xc6\xc6\x6c\x38\x10\x00\x00\x00\x00'\ b'\x00\x00\xc6\xc6\xc6\xd6\xd6\xd6\xfe\xee\xc6\xc6\x00\x00\x00\x00'\ b'\x00\x00\xc6\xc6\xc6\x6c\x38\x38\x6c\xc6\xc6\xc6\x00\x00\x00\x00'\ b'\x00\x00\x66\x66\x66\x66\x66\x3c\x18\x18\x18\x3c\x00\x00\x00\x00'\ b'\x00\x00\xfe\xc6\x86\x0c\x18\x30\x60\xc2\xc6\xfe\x00\x00\x00\x00'\ b'\x00\x00\x7c\x60\x60\x60\x60\x60\x60\x60\x60\x7c\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x80\xc0\x60\x30\x18\x0c\x06\x02\x00\x00\x00\x00'\ b'\x00\x00\x7c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x0c\x7c\x00\x00\x00\x00'\ b'\x00\x10\x38\x6c\xc6\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xff\xff'\ b'\x00\x18\x18\x18\x0c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x78\x0c\x7c\xcc\xcc\xdc\x76\x00\x00\x00\x00'\ b'\x00\x00\xe0\x60\x60\x7c\x66\x66\x66\x66\x66\xfc\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x7c\xc6\xc0\xc0\xc0\xc6\x7c\x00\x00\x00\x00'\ b'\x00\x00\x1c\x0c\x0c\x7c\xcc\xcc\xcc\xcc\xcc\x7e\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x7c\xc6\xc6\xfe\xc0\xc6\x7c\x00\x00\x00\x00'\ b'\x00\x00\x1c\x36\x30\x30\xfc\x30\x30\x30\x30\x78\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x76\xce\xc6\xc6\xce\x76\x06\xc6\x7c\x00\x00'\ b'\x00\x00\xe0\x60\x60\x7c\x66\x66\x66\x66\x66\xe6\x00\x00\x00\x00'\ b'\x00\x00\x18\x18\x00\x38\x18\x18\x18\x18\x18\x3c\x00\x00\x00\x00'\ b'\x00\x00\x0c\x0c\x00\x1c\x0c\x0c\x0c\x0c\x0c\xcc\xcc\x78\x00\x00'\ b'\x00\x00\xe0\x60\x60\x66\x66\x6c\x78\x6c\x66\xe6\x00\x00\x00\x00'\ b'\x00\x00\x38\x18\x18\x18\x18\x18\x18\x18\x18\x3c\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x6c\xfe\xd6\xd6\xc6\xc6\xc6\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\xdc\x66\x66\x66\x66\x66\x66\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x7c\xc6\xc6\xc6\xc6\xc6\x7c\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\xdc\x66\x66\x66\x66\x7c\x60\x60\xf0\x00\x00'\ b'\x00\x00\x00\x00\x00\x76\xcc\xcc\xcc\xcc\x7c\x0c\x0c\x1e\x00\x00'\ b'\x00\x00\x00\x00\x00\xdc\x66\x60\x60\x60\x60\xf0\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x7c\xc6\xc0\x7c\x06\xc6\x7c\x00\x00\x00\x00'\ b'\x00\x00\x30\x30\x30\xfc\x30\x30\x30\x30\x36\x1c\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\xcc\xcc\xcc\xcc\xcc\xcc\x76\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\xc6\xc6\xc6\xc6\x6c\x38\x10\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\xc6\xc6\xd6\xd6\xd6\xfe\x6c\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\xc6\xc6\x6c\x38\x6c\xc6\xc6\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\xc6\xc6\xc6\xc6\xce\x76\x06\xc6\x7c\x00\x00'\ b'\x00\x00\x00\x00\x00\xfe\x86\x0c\x18\x30\x62\xfe\x00\x00\x00\x00'\ b'\x00\x00\x0e\x18\x18\x18\x70\x18\x18\x18\x18\x0e\x00\x00\x00\x00'\ b'\x00\x00\x18\x18\x18\x18\x00\x18\x18\x18\x18\x18\x00\x00\x00\x00'\ b'\x00\x00\x70\x18\x18\x18\x0e\x18\x18\x18\x18\x70\x00\x00\x00\x00'\ b'\x00\x00\x76\xdc\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00'\ b'\x00\x00\x00\x00\x00\x10\x38\x38\x6c\x6c\xfe\x00\x00\x00\x00\x00'\ FONT = memoryview(_FONT)
4a84f62d878637adbdc7231f34f39011cb2eb011
5563fc38a479bf31b158e22ad381bcc1ef6677df
/triangles.py
cac783538a7e501568406903122530725b621395
[]
no_license
MonRes/tester_school_day5
e6a1d84bc32342e0e03061208458581ac4357f59
985fdb344bf7009c4ba3cd50910ba6b9b9fa172e
refs/heads/master
2020-03-19T05:13:38.891646
2018-06-03T14:30:07
2018-06-03T14:30:07
135,911,381
0
0
null
null
null
null
UTF-8
Python
false
false
585
py
a = 2 b = 4 c = 4 if a>0 and b>0 and c>0: if a + b > c and a + c > b and b + c > a: print ("da się utworzyć trójkąt") else: print ("nie da się") else: print("nie da się") #lub preferowana wersja if a <= 0 or b <= 0 or c <= 0: print ('nie da się utworzyć trójkąta - któras długość jest ujemna') elif a + b > c and a + c > b and b + c > a: print ('Da się utworzyć trójkąt') else: print ('nie da się utworzyć trójkąta') #mozna z powtarzającego się warunku utworzyć zmienną np. length_negative = a <= 0 or b<= 0 c <= 0
38bca89d76a9af6298b42dea1ea91f8d1a32682f
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/otherforms/_starriest.py
b761053999a8675654b8264719f4395358c732c9
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
226
py
#calss header class _STARRIEST(): def __init__(self,): self.name = "STARRIEST" self.definitions = starry self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.basic = ['starry']
2a2b3521345749ce428ed48884a780c98dae6414
eb19175c18053e5d414b4f6442bdfd0f9f97e24d
/graphene/contrib/django/fields.py
ba47047e1fdf7326bacd6da7cfc98592cf5da2b6
[ "MIT" ]
permissive
jhgg/graphene
6c4c5a64b7b0f39c8f6b32d17f62e1c31ca03825
67904e8329de3d69fec8c82ba8c3b4fe598afa8e
refs/heads/master
2020-12-25T21:23:22.556227
2015-10-15T19:56:40
2015-10-15T19:56:40
43,073,008
1
0
null
2015-09-24T14:47:19
2015-09-24T14:47:19
null
UTF-8
Python
false
false
3,071
py
from graphene.core.fields import ( ListField ) from graphene import relay from graphene.core.fields import Field, LazyField from graphene.utils import cached_property, memoize, LazyMap from graphene.relay.types import BaseNode from django.db.models.query import QuerySet from django.db.models.manager import Manager @memoize def get_type_for_model(schema, model): schema = schema types = schema.types.values() for _type in types: type_model = hasattr(_type, '_meta') and getattr( _type._meta, 'model', None) if model == type_model: return _type def lazy_map(value, func): if isinstance(value, Manager): value = value.get_queryset() if isinstance(value, QuerySet): return LazyMap(value, func) return value class DjangoConnectionField(relay.ConnectionField): def wrap_resolved(self, value, instance, args, info): schema = info.schema.graphene_schema return lazy_map(value, self.get_object_type(schema)) class LazyListField(ListField): def resolve(self, instance, args, info): schema = info.schema.graphene_schema resolved = super(LazyListField, self).resolve(instance, args, info) return lazy_map(resolved, self.get_object_type(schema)) class ConnectionOrListField(LazyField): @memoize def get_field(self, schema): model_field = self.field_type field_object_type = model_field.get_object_type(schema) if field_object_type and issubclass(field_object_type, BaseNode): field = DjangoConnectionField(model_field) else: field = LazyListField(model_field) field.contribute_to_class(self.object_type, self.name) return field class DjangoModelField(Field): def __init__(self, model, *args, **kwargs): super(DjangoModelField, self).__init__(None, *args, **kwargs) self.model = model def resolve(self, instance, args, info): resolved = super(DjangoModelField, self).resolve(instance, args, info) schema = info.schema.graphene_schema _type = self.get_object_type(schema) assert _type, ("Field %s cannot be retrieved as the " "ObjectType is not registered by the schema" % ( self.field_name )) return _type(resolved) @memoize def internal_type(self, schema): _type = self.get_object_type(schema) if not _type and self.object_type._meta.only_fields: raise Exception( "Model %r is not accessible by the schema. " "You can either register the type manually " "using @schema.register. " "Or disable the field %s in %s" % ( self.model, self.field_name, self.object_type ) ) return _type and _type.internal_type(schema) or Field.SKIP def get_object_type(self, schema): return get_type_for_model(schema, self.model)
8278b2891590710961bc86a4918e67d99a0fd397
7dc4413967a57c95bda3037154d151190a9309a3
/django/mysite/mysite/ilib.py
a6d101b8121a4f3fce0e90b946e21d9a56f0aac0
[]
no_license
connectthefuture/PythonCode
de0e74d81ef46ab34144172588455964d75d6648
01bb8c8052c2d89f0aed881f3ae886c8d04f1655
refs/heads/master
2021-05-14T23:31:26.334953
2016-05-21T13:04:34
2016-05-21T13:04:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,458
py
import re import cStringIO from django.http import HttpRequest class DynamicFormException(Exception): pass class DynamicForm: def __init__(self,): self.fielddesc = [] # property, max_length, pattern, enum def add(self, name, ** kwargs): self.fielddesc.append((name, kwargs)) def valid(self): for x, y in self.fielddesc: pass def as_table(self): tmp = u'<tr><th><label for="id_%s">%s:</label></th><td><input id="id_%s" name="%s" type="text" /></td></tr>' cio = cStringIO.StringIO() for key, value in self.fielddesc: lower_key = key.lower() cio.write(tmp % (lower_key, key, lower_key, key)) return cio.getvalue() def valid(self, request): # fields = [x for x, y in self.fielddesc] tmp = dict(self.fielddesc) for key, value, in request.POST.items(): if key in tmp: if 'max_length' in tmp[key] and len(value) > tmp[key]['max_length']: raise DynamicFormException('field length too long') if 'pattern' in tmp[key] and not re.search(value, tmp[key]['pattern']): raise DynamicFormException('value dont match pattern') # def NeedLogin(): # if not request.user.is_authenticated(): # return HttpResponseRedirect('/accounts/login') if __name__ == '__main__': df = DynamicForm() df.add('A') print(df.as_table())
3e013ccefdef52f15ef3f49e35457dfbaad52bc4
be0898ceaee2a7758ffe0365b976f597b2ad26dd
/rls/common/recorder.py
15420a8f27c34b97cd49f7aeb8b188faf7054628
[ "Apache-2.0" ]
permissive
violet712/RLs
1edaa6427108e3e36d513cb6038be771837ecca4
25cc97c96cbb19fe859c9387b7547cbada2c89f2
refs/heads/master
2023-08-25T12:04:24.174034
2021-10-03T15:37:32
2021-10-03T15:37:32
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,179
py
from abc import ABC, abstractmethod from collections import defaultdict from copy import deepcopy from typing import Dict import numpy as np from rls.utils.np_utils import arrprint class Recoder(ABC): def __init__(self): pass @abstractmethod def episode_reset(self): pass @abstractmethod def episode_step(self, rewards, dones): pass @abstractmethod def episode_end(self): pass class SimpleMovingAverageRecoder(Recoder): def __init__(self, n_copies, agent_ids, gamma=0.99, verbose=False, length=10): super().__init__() self.n_copies = n_copies self.agent_ids = agent_ids self.gamma = gamma self.verbose = verbose self.length = length self.now = 0 self.r_list = [] self.max = defaultdict(int) self.min = defaultdict(int) self.mean = defaultdict(int) self.total_step = 0 self.episode = 0 self.steps = None self.total_returns = None self.discounted_returns = None self.already_dones = None def episode_reset(self): self.steps = defaultdict(lambda: np.zeros((self.n_copies,), dtype=int)) self.total_returns = defaultdict(lambda: np.zeros((self.n_copies,), dtype=float)) self.discounted_returns = defaultdict(lambda: np.zeros((self.n_copies,), dtype=float)) self.already_dones = defaultdict(lambda: np.zeros((self.n_copies,), dtype=bool)) def episode_step(self, rewards: Dict[str, np.ndarray], dones: Dict[str, np.ndarray]): for id in self.agent_ids: self.total_step += 1 self.discounted_returns[id] += (self.gamma ** self.steps[id]) * (1 - self.already_dones[id]) * rewards[id] self.steps[id] += (1 - self.already_dones[id]).astype(int) self.total_returns[id] += (1 - self.already_dones[id]) * rewards[id] self.already_dones[id] = np.logical_or(self.already_dones[id], dones[id]) def episode_end(self): # TODO: optimize self.episode += 1 self.r_list.append(deepcopy(self.total_returns)) if self.now >= self.length: r_old = self.r_list.pop(0) for id in self.agent_ids: self.max[id] += (self.total_returns[id].max() - r_old[id].max()) / self.length self.min[id] += (self.total_returns[id].min() - r_old[id].min()) / self.length self.mean[id] += (self.total_returns[id].mean() - r_old[id].mean()) / self.length else: self.now = min(self.now + 1, self.length) for id in self.agent_ids: self.max[id] += (self.total_returns[id].max() - self.max[id]) / self.now self.min[id] += (self.total_returns[id].min() - self.min[id]) / self.now self.mean[id] += (self.total_returns[id].mean() - self.mean[id]) / self.now @property def is_all_done(self): # TODO: if len(self.agent_ids) > 1: return np.logical_or(*self.already_dones.values()).all() else: return self.already_dones[self.agent_ids[0]].all() @property def has_done(self): # TODO: if len(self.agent_ids) > 1: return np.logical_or(*self.already_dones.values()).any() else: return self.already_dones[self.agent_ids[0]].any() def summary_dict(self, title='Agent'): _dicts = {} for id in self.agent_ids: _dicts[id] = { f'{title}/total_rt_mean': self.total_returns[id].mean(), f'{title}/total_rt_min': self.total_returns[id].min(), f'{title}/total_rt_max': self.total_returns[id].max(), f'{title}/discounted_rt_mean': self.discounted_returns[id].mean(), f'{title}/discounted_rt_min': self.discounted_returns[id].min(), f'{title}/discounted_rt_max': self.discounted_returns[id].max(), f'{title}/sma_max': self.max[id], f'{title}/sma_min': self.min[id], f'{title}/sma_mean': self.mean[id] } if self.verbose: _dicts[id].update({ f'{title}/first_done_step': self.steps[id][ self.already_dones[id] > 0].min() if self.has_done else -1, f'{title}/last_done_step': self.steps[id][ self.already_dones[id] > 0].max() if self.has_done else -1 }) return _dicts def __str__(self): _str = f'Eps: {self.episode:3d}' for id in self.agent_ids: _str += f'\n Agent: {id.ljust(10)} | S: {self.steps[id].max():4d} | R: {arrprint(self.total_returns[id], 2)}' if self.verbose: first_done_step = self.steps[id][self.already_dones[id] > 0].min() if self.has_done else -1 last_done_step = self.steps[id][self.already_dones[id] > 0].max() if self.has_done else -1 _str += f' | FDS {first_done_step:4d} | LDS {last_done_step:4d}' return _str
5932b28ef3e56a2c7b55c65e689ac09cb368b2aa
72a03df85a6b1b06148338b9119b0b25d4fca164
/goods/migrations/0008_auto_20191022_0228.py
0a43eb86b65337692f50444b6527fb7210f08651
[]
no_license
zeetec20/django-EComerce
f60bcc73ebb8d88ca06d5c8a77331681abc958ff
5cf8e2aed3f9babe76043337a39f1dfbd0967916
refs/heads/master
2022-12-12T03:45:47.710718
2019-12-06T10:31:18
2019-12-06T10:31:18
216,199,678
1
0
null
2022-12-08T06:55:45
2019-10-19T12:02:33
JavaScript
UTF-8
Python
false
false
337
py
# Generated by Django 2.2.5 on 2019-10-22 02:28 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('goods', '0007_auto_20191018_2140'), ] operations = [ migrations.RenameModel( old_name='SemuaBarang', new_name='SemuaBrand', ), ]
3362db548136e579197bb364e3296c92ff316937
7aa9f79ce2dc379e1139ee5cdf545a1d8aba8f39
/pygame_menu/examples/other/dynamic_widget_update.py
5f12d964b99e455d1adc88bf769d1109ae870a2e
[ "MIT" ]
permissive
arpruss/pygame-menu
7a755cad7bd36bda8750b6e820146a1037e5d73f
25cefb5cfc60383544d704b83a32d43dfc621c23
refs/heads/master
2021-07-23T17:51:24.536494
2021-05-08T17:27:47
2021-05-08T17:27:47
248,988,541
0
0
MIT
2020-04-03T17:24:25
2020-03-21T14:05:48
Python
UTF-8
Python
false
false
7,566
py
""" pygame-menu https://github.com/ppizarror/pygame-menu EXAMPLE - DYNAMIC WIDGET UPDATE Dynamically updates the widgets based on user events. License: ------------------------------------------------------------------------------- The MIT License (MIT) Copyright 2017-2021 Pablo Pizarro R. @ppizarror Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ------------------------------------------------------------------------------- """ __all__ = ['main'] import pygame import pygame_menu from pygame_menu.examples import create_example_window import math from typing import Dict, Any class App(object): """ The following object creates the whole app. """ image_widget: 'pygame_menu.widgets.Image' item_description_widget: 'pygame_menu.widgets.Label' menu: 'pygame_menu.Menu' modes: Dict[int, Dict[str, Any]] quit_button: 'pygame_menu.widgets.Button' quit_button_fake: 'pygame_menu.widgets.Button' selector_widget: 'pygame_menu.widgets.Selector' surface: 'pygame.Surface' def __init__(self) -> None: """ Constructor. """ self.surface = create_example_window('Example - Dynamic Widget Update', (640, 480), flags=pygame.NOFRAME) # Load image default_image = pygame_menu.BaseImage( image_path=pygame_menu.baseimage.IMAGE_EXAMPLE_PYGAME_MENU ).scale(0.2, 0.2) # Set theme theme = pygame_menu.themes.THEME_DEFAULT.copy() theme.title_bar_style = pygame_menu.widgets.MENUBAR_STYLE_UNDERLINE_TITLE theme.title_close_button_cursor = pygame_menu.locals.CURSOR_HAND theme.title_font_color = (35, 35, 35) # This dict stores the values of the widgets to be changed dynamically self.modes = { 1: { 'image': default_image.copy(), 'label': { 'color': theme.widget_font_color, 'size': theme.widget_font_size, 'text': 'The first one is very epic' } }, 2: { 'image': default_image.copy().to_bw(), 'label': { 'color': (0, 0, 0), 'size': 20, 'text': 'This other one is also epic, but fancy' } }, 3: { 'image': default_image.copy().flip(False, True).pick_channels('r'), 'label': { 'color': (255, 0, 0), 'size': 45, 'text': 'YOU D I E D' } } } # Create menus self.menu = pygame_menu.Menu( height=480, onclose=pygame_menu.events.CLOSE, theme=theme, title='Everything is dynamic now', width=640 ) self.selector_widget = self.menu.add.selector( title='Pick one option: ', items=[('The first', 1), ('The second', 2), ('The final mode', 3)], onchange=self._on_selector_change ) self.image_widget = self.menu.add.image( image_path=self.modes[1]['image'], padding=(25, 0, 0, 0) # top, right, bottom, left ) self.item_description_widget = self.menu.add.label(title='') self.quit_button = self.menu.add.button('Quit', pygame_menu.events.EXIT) self.quit_button_fake = self.menu.add.button('You cannot quit', self.fake_quit, font_color=(255, 255, 255)) self.quit_button_fake.add_draw_callback(self.animate_quit_button) # Update the widgets based on selected value from selector get_value # returns selected item tuple and index, so [0][1] means the second object # from ('The first', 1) tuple self._update_from_selection(int(self.selector_widget.get_value()[0][1])) def animate_quit_button( self, widget: 'pygame_menu.widgets.Widget', menu: 'pygame_menu.Menu' ) -> None: """ Animate widgets if the last option is selected. :param widget: Widget to be updated :param menu: Menu :return: None """ if self.current == 3: t = widget.get_counter_attribute('t', menu.get_clock().get_time() * 0.0075, math.pi) widget.set_padding(10 * (1 + math.sin(t))) # Oscillating padding widget.set_background_color((int(125 * (1 + math.sin(t))), 0, 0), None) c = int(127 * (1 + math.cos(t))) widget.update_font({'color': (c, c, c)}) # Widget font now is in grayscale # widget.translate(10 * math.cos(t), 10 * math.sin(t)) widget.rotate(5 * t) @staticmethod def fake_quit() -> None: """ Function executed by fake quit button. :return: None """ print('I said that you cannot quit') def _update_from_selection(self, index: int) -> None: """ Change widgets depending on index. :param index: Index :return: None """ self.current = index self.image_widget.set_image(self.modes[index]['image']) self.item_description_widget.set_title(self.modes[index]['label']['text']) self.item_description_widget.update_font( {'color': self.modes[index]['label']['color'], 'size': self.modes[index]['label']['size']} ) # Swap buttons using hide/show if index == 3: self.quit_button.hide() self.quit_button_fake.show() else: self.quit_button.show() self.quit_button_fake.hide() def _on_selector_change(self, selected: Any, value: int) -> None: """ Function executed if selector changes. :param selected: Selector data containing text and index :param value: Value from the selected option :return: None """ print('Selected data:', selected) self._update_from_selection(value) def mainloop(self, test: bool) -> None: """ App mainloop. :param test: Test status """ self.menu.mainloop(self.surface, disable_loop=test) def main(test: bool = False) -> 'App': """ Main function. :param test: Indicate function is being tested :return: App object """ app = App() app.mainloop(test) return app if __name__ == '__main__': main()
89280ef30b0eb48a4d06dff7f8128783ab05c9f9
ce15a162d71254d86207b60ec6c1c75117f4fe7c
/NiaPy/algorithms/other/ts.py
dd8050570c98318c15e3f7ab10433f47ffb341f5
[ "MIT" ]
permissive
sowmya-debug/NiaPy
eadfceabe939f08acdda87d0879abf72952d4cd1
1b8fa9949d238a01523a9822977e32dec4d86aa5
refs/heads/master
2022-04-18T05:20:05.140735
2020-04-18T16:35:30
2020-04-18T16:35:30
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,789
py
# encoding=utf8 import logging from numpy import random as rand from NiaPy.algorithms.algorithm import Algorithm logging.basicConfig() logger = logging.getLogger('NiaPy.algorithms.other') logger.setLevel('INFO') __all__ = ['TabuSearch'] # TODO implement algorithm def TabuSearchF(task, SR=None, TL_size=25, rnd=rand): if SR == None: SR = task.bRange x = rnd.uniform(task.Lower, task.Upper) x_f = task.eval(x) # while not task.stopCondI(): # Generate neigours # evaluate x not in ts # get best of of evaluated # compare new best with best return x, x_f class TabuSearch(Algorithm): r"""Implementation of Tabu Search Algorithm. Algorithm: Tabu Search Algorithm Date: 2018 Authors: Klemen Berkovič License: MIT Reference URL: http://www.cleveralgorithms.com/nature-inspired/stochastic/tabu_search.html Reference paper: Attributes: Name (List[str]): List of strings representing algorithm name. """ Name = ['TabuSearch', 'TS'] @staticmethod def typeParameters(): return { 'NP': lambda x: isinstance(x, int) and x > 0 } def setParameters(self, **ukwargs): r"""Set the algorithm parameters/arguments.""" Algorithm.setParameters(self, **ukwargs) def move(self): return list() def runIteration(self, task, pop, fpop, xb, fxb, **dparams): r"""Core function of the algorithm. Args: task (Task): Optimization task. pop (numpy.ndarray): Current population. fpop (numpy.ndarray): Individuals fitness/objective values. xb (numpy.ndarray): Global best solution. fxb (float): Global best solutions fitness/objective value. **dparams (dict): Returns: Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, float, dict]: """ return pop, fpop, xb, fxb, dparams # vim: tabstop=3 noexpandtab shiftwidth=3 softtabstop=3
56085b3164c256eb63983021c193772e29f849b1
de413f085b8c185ac4314a3c875bb2725ae1783a
/python/ThirteenTeV/Hadronizer/Hadronizer_TuneCP5_13TeV_SUSYGluGluToBBHToTauTau_M-90-amcatnlo-pythia8_cff.py
df7a7c19e1e37e8b2d8549bb7b5010c22c6b5bf8
[]
no_license
good-soul/genproductions
17b14eade1501207c0c4f389a2d3270239acf8a7
12bf6275067b332930e5fc7d65f1a05575d8d549
refs/heads/master
2021-04-18T18:48:18.575337
2018-03-24T13:29:56
2018-03-24T13:29:56
126,669,480
1
0
null
2018-03-25T06:04:53
2018-03-25T06:04:53
null
UTF-8
Python
false
false
1,231
py
import FWCore.ParameterSet.Config as cms from Configuration.Generator.Pythia8CommonSettings_cfi import * from Configuration.Generator.MCTunes2017.PythiaCP5Settings_cfi import * from Configuration.Generator.Pythia8aMCatNLOSettings_cfi import * generator = cms.EDFilter("Pythia8HadronizerFilter", maxEventsToPrint = cms.untracked.int32(1), pythiaPylistVerbosity = cms.untracked.int32(1), filterEfficiency = cms.untracked.double(1.0), pythiaHepMCVerbosity = cms.untracked.bool(False), comEnergy = cms.double(13000.), PythiaParameters = cms.PSet( pythia8CommonSettingsBlock, pythia8CP5SettingsBlock, pythia8aMCatNLOSettingsBlock, processParameters = cms.vstring( 'TimeShower:nPartonsInBorn = 2', #number of coloured particles (before resonance decays) in born matrix element 'SLHA:useDecayTable = off', '25:onMode = off', # turn OFF all H decays '25:onIfAny = 15', # turn ON H->tautau '25:m0 = 90' # mass of H ), parameterSets = cms.vstring('pythia8CommonSettings', 'pythia8CP5Settings', 'pythia8aMCatNLOSettings', 'processParameters' ) ) )
aac60b91b7a89824d2aa7fd64a3bf958d5cd6e37
2650ae36aca9912d3b75302a52bc91f26c8de31f
/nova/objects/instance.py
8859dc00c185f6adacb4e98c5b2d5ad4c54d8465
[ "Apache-2.0" ]
permissive
wangyc666666/ussuri_nova
52c09bd001dc1cc9e30364bd1dd916207d8ed644
0706b514f288216c41d64e98524ef7e517efb8d8
refs/heads/master
2023-02-25T10:38:00.966937
2021-02-02T07:51:07
2021-02-02T07:51:07
331,877,668
0
0
null
null
null
null
UTF-8
Python
false
false
68,441
py
# Copyright 2013 IBM Corp. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import contextlib from oslo_config import cfg from oslo_db import exception as db_exc from oslo_log import log as logging from oslo_serialization import jsonutils from oslo_utils import timeutils from oslo_utils import versionutils from sqlalchemy import or_ from sqlalchemy.sql import false from sqlalchemy.sql import func from sqlalchemy.sql import null from nova import availability_zones as avail_zone from nova.compute import task_states from nova.compute import vm_states from nova.db import api as db from nova.db.sqlalchemy import api as db_api from nova.db.sqlalchemy import models from nova import exception from nova.i18n import _ from nova.network import model as network_model from nova import notifications from nova import objects from nova.objects import base from nova.objects import fields from nova import utils CONF = cfg.CONF LOG = logging.getLogger(__name__) # List of fields that can be joined in DB layer. _INSTANCE_OPTIONAL_JOINED_FIELDS = ['metadata', 'system_metadata', 'info_cache', 'security_groups', 'pci_devices', 'tags', 'services', 'fault'] # These are fields that are optional but don't translate to db columns _INSTANCE_OPTIONAL_NON_COLUMN_FIELDS = ['flavor', 'old_flavor', 'new_flavor', 'ec2_ids'] # These are fields that are optional and in instance_extra _INSTANCE_EXTRA_FIELDS = ['numa_topology', 'pci_requests', 'flavor', 'vcpu_model', 'migration_context', 'keypairs', 'device_metadata', 'trusted_certs', 'resources'] # These are fields that applied/drooped by migration_context _MIGRATION_CONTEXT_ATTRS = ['numa_topology', 'pci_requests', 'pci_devices', 'resources'] # These are fields that can be specified as expected_attrs INSTANCE_OPTIONAL_ATTRS = (_INSTANCE_OPTIONAL_JOINED_FIELDS + _INSTANCE_OPTIONAL_NON_COLUMN_FIELDS + _INSTANCE_EXTRA_FIELDS) # These are fields that most query calls load by default INSTANCE_DEFAULT_FIELDS = ['metadata', 'system_metadata', 'info_cache', 'security_groups'] # Maximum count of tags to one instance MAX_TAG_COUNT = 50 def _expected_cols(expected_attrs): """Return expected_attrs that are columns needing joining. NB: This function may modify expected_attrs if one requested attribute requires another. """ if not expected_attrs: return expected_attrs simple_cols = [attr for attr in expected_attrs if attr in _INSTANCE_OPTIONAL_JOINED_FIELDS] complex_cols = ['extra.%s' % field for field in _INSTANCE_EXTRA_FIELDS if field in expected_attrs] if complex_cols: simple_cols.append('extra') simple_cols = [x for x in simple_cols if x not in _INSTANCE_EXTRA_FIELDS] expected_cols = simple_cols + complex_cols # NOTE(pumaranikar): expected_cols list can contain duplicates since # caller appends column attributes to expected_attr without checking if # it is already present in the list or not. Hence, we remove duplicates # here, if any. The resultant list is sorted based on list index to # maintain the insertion order. return sorted(list(set(expected_cols)), key=expected_cols.index) _NO_DATA_SENTINEL = object() # TODO(berrange): Remove NovaObjectDictCompat @base.NovaObjectRegistry.register class Instance(base.NovaPersistentObject, base.NovaObject, base.NovaObjectDictCompat): # Version 2.0: Initial version # Version 2.1: Added services # Version 2.2: Added keypairs # Version 2.3: Added device_metadata # Version 2.4: Added trusted_certs # Version 2.5: Added hard_delete kwarg in destroy # Version 2.6: Added hidden # Version 2.7: Added resources VERSION = '2.7' fields = { 'id': fields.IntegerField(), 'user_id': fields.StringField(nullable=True), 'project_id': fields.StringField(nullable=True), 'image_ref': fields.StringField(nullable=True), 'kernel_id': fields.StringField(nullable=True), 'ramdisk_id': fields.StringField(nullable=True), 'hostname': fields.StringField(nullable=True), 'launch_index': fields.IntegerField(nullable=True), 'key_name': fields.StringField(nullable=True), 'key_data': fields.StringField(nullable=True), 'power_state': fields.IntegerField(nullable=True), 'vm_state': fields.StringField(nullable=True), 'task_state': fields.StringField(nullable=True), 'services': fields.ObjectField('ServiceList'), 'memory_mb': fields.IntegerField(nullable=True), 'vcpus': fields.IntegerField(nullable=True), 'root_gb': fields.IntegerField(nullable=True), 'ephemeral_gb': fields.IntegerField(nullable=True), 'ephemeral_key_uuid': fields.UUIDField(nullable=True), 'host': fields.StringField(nullable=True), 'node': fields.StringField(nullable=True), 'instance_type_id': fields.IntegerField(nullable=True), 'user_data': fields.StringField(nullable=True), 'reservation_id': fields.StringField(nullable=True), 'launched_at': fields.DateTimeField(nullable=True), 'terminated_at': fields.DateTimeField(nullable=True), 'availability_zone': fields.StringField(nullable=True), 'display_name': fields.StringField(nullable=True), 'display_description': fields.StringField(nullable=True), 'launched_on': fields.StringField(nullable=True), 'locked': fields.BooleanField(default=False), 'locked_by': fields.StringField(nullable=True), 'os_type': fields.StringField(nullable=True), 'architecture': fields.StringField(nullable=True), 'vm_mode': fields.StringField(nullable=True), 'uuid': fields.UUIDField(), 'root_device_name': fields.StringField(nullable=True), 'default_ephemeral_device': fields.StringField(nullable=True), 'default_swap_device': fields.StringField(nullable=True), 'config_drive': fields.StringField(nullable=True), 'access_ip_v4': fields.IPV4AddressField(nullable=True), 'access_ip_v6': fields.IPV6AddressField(nullable=True), 'auto_disk_config': fields.BooleanField(default=False), 'progress': fields.IntegerField(nullable=True), 'shutdown_terminate': fields.BooleanField(default=False), 'disable_terminate': fields.BooleanField(default=False), # TODO(stephenfin): Remove this in version 3.0 of the object 'cell_name': fields.StringField(nullable=True), 'metadata': fields.DictOfStringsField(), 'system_metadata': fields.DictOfNullableStringsField(), 'info_cache': fields.ObjectField('InstanceInfoCache', nullable=True), # TODO(stephenfin): Remove this in version 3.0 of the object as it's # related to nova-network 'security_groups': fields.ObjectField('SecurityGroupList'), 'fault': fields.ObjectField('InstanceFault', nullable=True), 'cleaned': fields.BooleanField(default=False), 'pci_devices': fields.ObjectField('PciDeviceList', nullable=True), 'numa_topology': fields.ObjectField('InstanceNUMATopology', nullable=True), 'pci_requests': fields.ObjectField('InstancePCIRequests', nullable=True), 'device_metadata': fields.ObjectField('InstanceDeviceMetadata', nullable=True), 'tags': fields.ObjectField('TagList'), 'flavor': fields.ObjectField('Flavor'), 'old_flavor': fields.ObjectField('Flavor', nullable=True), 'new_flavor': fields.ObjectField('Flavor', nullable=True), 'vcpu_model': fields.ObjectField('VirtCPUModel', nullable=True), 'ec2_ids': fields.ObjectField('EC2Ids'), 'migration_context': fields.ObjectField('MigrationContext', nullable=True), 'keypairs': fields.ObjectField('KeyPairList'), 'trusted_certs': fields.ObjectField('TrustedCerts', nullable=True), 'hidden': fields.BooleanField(default=False), 'resources': fields.ObjectField('ResourceList', nullable=True), } obj_extra_fields = ['name'] def obj_make_compatible(self, primitive, target_version): super(Instance, self).obj_make_compatible(primitive, target_version) target_version = versionutils.convert_version_to_tuple(target_version) if target_version < (2, 7) and 'resources' in primitive: del primitive['resources'] if target_version < (2, 6) and 'hidden' in primitive: del primitive['hidden'] if target_version < (2, 4) and 'trusted_certs' in primitive: del primitive['trusted_certs'] if target_version < (2, 3) and 'device_metadata' in primitive: del primitive['device_metadata'] if target_version < (2, 2) and 'keypairs' in primitive: del primitive['keypairs'] if target_version < (2, 1) and 'services' in primitive: del primitive['services'] def __init__(self, *args, **kwargs): super(Instance, self).__init__(*args, **kwargs) self._reset_metadata_tracking() @property def image_meta(self): return objects.ImageMeta.from_instance(self) def _reset_metadata_tracking(self, fields=None): if fields is None or 'system_metadata' in fields: self._orig_system_metadata = (dict(self.system_metadata) if 'system_metadata' in self else {}) if fields is None or 'metadata' in fields: self._orig_metadata = (dict(self.metadata) if 'metadata' in self else {}) def obj_clone(self): """Create a copy of this instance object.""" nobj = super(Instance, self).obj_clone() # Since the base object only does a deep copy of the defined fields, # need to make sure to also copy the additional tracking metadata # attributes so they don't show as changed and cause the metadata # to always be updated even when stale information. if hasattr(self, '_orig_metadata'): nobj._orig_metadata = dict(self._orig_metadata) if hasattr(self, '_orig_system_metadata'): nobj._orig_system_metadata = dict(self._orig_system_metadata) return nobj def obj_reset_changes(self, fields=None, recursive=False): super(Instance, self).obj_reset_changes(fields, recursive=recursive) self._reset_metadata_tracking(fields=fields) def obj_what_changed(self): changes = super(Instance, self).obj_what_changed() if 'metadata' in self and self.metadata != self._orig_metadata: changes.add('metadata') if 'system_metadata' in self and (self.system_metadata != self._orig_system_metadata): changes.add('system_metadata') return changes @classmethod def _obj_from_primitive(cls, context, objver, primitive): self = super(Instance, cls)._obj_from_primitive(context, objver, primitive) self._reset_metadata_tracking() return self @property def name(self): try: base_name = CONF.instance_name_template % self.id except TypeError: # Support templates like "uuid-%(uuid)s", etc. info = {} # NOTE(russellb): Don't use self.iteritems() here, as it will # result in infinite recursion on the name property. for key in self.fields: if key == 'name': # NOTE(danms): prevent recursion continue elif not self.obj_attr_is_set(key): # NOTE(danms): Don't trigger lazy-loads continue info[key] = self[key] try: base_name = CONF.instance_name_template % info except KeyError: base_name = self.uuid except (exception.ObjectActionError, exception.OrphanedObjectError): # This indicates self.id was not set and/or could not be # lazy loaded. What this means is the instance has not # been persisted to a db yet, which should indicate it has # not been scheduled yet. In this situation it will have a # blank name. if (self.vm_state == vm_states.BUILDING and self.task_state == task_states.SCHEDULING): base_name = '' else: # If the vm/task states don't indicate that it's being booted # then we have a bug here. Log an error and attempt to return # the uuid which is what an error above would return. LOG.error('Could not lazy-load instance.id while ' 'attempting to generate the instance name.') base_name = self.uuid return base_name def _flavor_from_db(self, db_flavor): """Load instance flavor information from instance_extra.""" # Before we stored flavors in instance_extra, certain fields, defined # in nova.compute.flavors.system_metadata_flavor_props, were stored # in the instance.system_metadata for the embedded instance.flavor. # The "disabled" and "is_public" fields weren't one of those keys, # however, so really old instances that had their embedded flavor # converted to the serialized instance_extra form won't have the # disabled attribute set and we need to default those here so callers # don't explode trying to load instance.flavor.disabled. def _default_flavor_values(flavor): if 'disabled' not in flavor: flavor.disabled = False if 'is_public' not in flavor: flavor.is_public = True flavor_info = jsonutils.loads(db_flavor) self.flavor = objects.Flavor.obj_from_primitive(flavor_info['cur']) _default_flavor_values(self.flavor) if flavor_info['old']: self.old_flavor = objects.Flavor.obj_from_primitive( flavor_info['old']) _default_flavor_values(self.old_flavor) else: self.old_flavor = None if flavor_info['new']: self.new_flavor = objects.Flavor.obj_from_primitive( flavor_info['new']) _default_flavor_values(self.new_flavor) else: self.new_flavor = None self.obj_reset_changes(['flavor', 'old_flavor', 'new_flavor']) @staticmethod def _from_db_object(context, instance, db_inst, expected_attrs=None): """Method to help with migration to objects. Converts a database entity to a formal object. """ instance._context = context if expected_attrs is None: expected_attrs = [] # Most of the field names match right now, so be quick for field in instance.fields: if field in INSTANCE_OPTIONAL_ATTRS: continue elif field == 'deleted': instance.deleted = db_inst['deleted'] == db_inst['id'] elif field == 'cleaned': instance.cleaned = db_inst['cleaned'] == 1 else: instance[field] = db_inst[field] if 'metadata' in expected_attrs: instance['metadata'] = utils.instance_meta(db_inst) if 'system_metadata' in expected_attrs: instance['system_metadata'] = utils.instance_sys_meta(db_inst) if 'fault' in expected_attrs: instance['fault'] = ( objects.InstanceFault.get_latest_for_instance( context, instance.uuid)) if 'ec2_ids' in expected_attrs: instance._load_ec2_ids() if 'info_cache' in expected_attrs: if db_inst.get('info_cache') is None: instance.info_cache = None elif not instance.obj_attr_is_set('info_cache'): # TODO(danms): If this ever happens on a backlevel instance # passed to us by a backlevel service, things will break instance.info_cache = objects.InstanceInfoCache(context) if instance.info_cache is not None: instance.info_cache._from_db_object(context, instance.info_cache, db_inst['info_cache']) # TODO(danms): If we are updating these on a backlevel instance, # we'll end up sending back new versions of these objects (see # above note for new info_caches if 'pci_devices' in expected_attrs: pci_devices = base.obj_make_list( context, objects.PciDeviceList(context), objects.PciDevice, db_inst['pci_devices']) instance['pci_devices'] = pci_devices # TODO(stephenfin): Remove this as it's related to nova-network if 'security_groups' in expected_attrs: sec_groups = base.obj_make_list( context, objects.SecurityGroupList(context), objects.SecurityGroup, db_inst.get('security_groups', [])) instance['security_groups'] = sec_groups if 'tags' in expected_attrs: tags = base.obj_make_list( context, objects.TagList(context), objects.Tag, db_inst['tags']) instance['tags'] = tags if 'services' in expected_attrs: services = base.obj_make_list( context, objects.ServiceList(context), objects.Service, db_inst['services']) instance['services'] = services instance._extra_attributes_from_db_object(instance, db_inst, expected_attrs) instance.obj_reset_changes() return instance @staticmethod def _extra_attributes_from_db_object(instance, db_inst, expected_attrs=None): """Method to help with migration of extra attributes to objects. """ if expected_attrs is None: expected_attrs = [] # NOTE(danms): We can be called with a dict instead of a # SQLAlchemy object, so we have to be careful here if hasattr(db_inst, '__dict__'): have_extra = 'extra' in db_inst.__dict__ and db_inst['extra'] else: have_extra = 'extra' in db_inst and db_inst['extra'] if 'numa_topology' in expected_attrs: if have_extra: instance._load_numa_topology( db_inst['extra'].get('numa_topology')) else: instance.numa_topology = None if 'pci_requests' in expected_attrs: if have_extra: instance._load_pci_requests( db_inst['extra'].get('pci_requests')) else: instance.pci_requests = None if 'device_metadata' in expected_attrs: if have_extra: instance._load_device_metadata( db_inst['extra'].get('device_metadata')) else: instance.device_metadata = None if 'vcpu_model' in expected_attrs: if have_extra: instance._load_vcpu_model( db_inst['extra'].get('vcpu_model')) else: instance.vcpu_model = None if 'migration_context' in expected_attrs: if have_extra: instance._load_migration_context( db_inst['extra'].get('migration_context')) else: instance.migration_context = None if 'keypairs' in expected_attrs: if have_extra: instance._load_keypairs(db_inst['extra'].get('keypairs')) if 'trusted_certs' in expected_attrs: if have_extra: instance._load_trusted_certs( db_inst['extra'].get('trusted_certs')) else: instance.trusted_certs = None if 'resources' in expected_attrs: if have_extra: instance._load_resources( db_inst['extra'].get('resources')) else: instance.resources = None if any([x in expected_attrs for x in ('flavor', 'old_flavor', 'new_flavor')]): if have_extra and db_inst['extra'].get('flavor'): instance._flavor_from_db(db_inst['extra']['flavor']) @staticmethod @db.select_db_reader_mode def _db_instance_get_by_uuid(context, uuid, columns_to_join, use_slave=False): return db.instance_get_by_uuid(context, uuid, columns_to_join=columns_to_join) @base.remotable_classmethod def get_by_uuid(cls, context, uuid, expected_attrs=None, use_slave=False): if expected_attrs is None: expected_attrs = ['info_cache', 'security_groups'] columns_to_join = _expected_cols(expected_attrs) db_inst = cls._db_instance_get_by_uuid(context, uuid, columns_to_join, use_slave=use_slave) return cls._from_db_object(context, cls(), db_inst, expected_attrs) @base.remotable_classmethod def get_by_id(cls, context, inst_id, expected_attrs=None): if expected_attrs is None: expected_attrs = ['info_cache', 'security_groups'] columns_to_join = _expected_cols(expected_attrs) db_inst = db.instance_get(context, inst_id, columns_to_join=columns_to_join) return cls._from_db_object(context, cls(), db_inst, expected_attrs) @base.remotable def create(self): if self.obj_attr_is_set('id'): raise exception.ObjectActionError(action='create', reason='already created') if self.obj_attr_is_set('deleted') and self.deleted: raise exception.ObjectActionError(action='create', reason='already deleted') updates = self.obj_get_changes() # NOTE(danms): We know because of the check above that deleted # is either unset or false. Since we need to avoid passing False # down to the DB layer (which uses an integer), we can always # default it to zero here. updates['deleted'] = 0 expected_attrs = [attr for attr in INSTANCE_DEFAULT_FIELDS if attr in updates] # TODO(stephenfin): Remove this as it's related to nova-network if 'security_groups' in updates: updates['security_groups'] = [x.name for x in updates['security_groups']] if 'info_cache' in updates: updates['info_cache'] = { 'network_info': updates['info_cache'].network_info.json() } updates['extra'] = {} numa_topology = updates.pop('numa_topology', None) expected_attrs.append('numa_topology') if numa_topology: updates['extra']['numa_topology'] = numa_topology._to_json() else: updates['extra']['numa_topology'] = None pci_requests = updates.pop('pci_requests', None) expected_attrs.append('pci_requests') if pci_requests: updates['extra']['pci_requests'] = ( pci_requests.to_json()) else: updates['extra']['pci_requests'] = None device_metadata = updates.pop('device_metadata', None) expected_attrs.append('device_metadata') if device_metadata: updates['extra']['device_metadata'] = ( device_metadata._to_json()) else: updates['extra']['device_metadata'] = None flavor = updates.pop('flavor', None) if flavor: expected_attrs.append('flavor') old = ((self.obj_attr_is_set('old_flavor') and self.old_flavor) and self.old_flavor.obj_to_primitive() or None) new = ((self.obj_attr_is_set('new_flavor') and self.new_flavor) and self.new_flavor.obj_to_primitive() or None) flavor_info = { 'cur': self.flavor.obj_to_primitive(), 'old': old, 'new': new, } self._nullify_flavor_description(flavor_info) updates['extra']['flavor'] = jsonutils.dumps(flavor_info) keypairs = updates.pop('keypairs', None) if keypairs is not None: expected_attrs.append('keypairs') updates['extra']['keypairs'] = jsonutils.dumps( keypairs.obj_to_primitive()) vcpu_model = updates.pop('vcpu_model', None) expected_attrs.append('vcpu_model') if vcpu_model: updates['extra']['vcpu_model'] = ( jsonutils.dumps(vcpu_model.obj_to_primitive())) else: updates['extra']['vcpu_model'] = None trusted_certs = updates.pop('trusted_certs', None) expected_attrs.append('trusted_certs') if trusted_certs: updates['extra']['trusted_certs'] = jsonutils.dumps( trusted_certs.obj_to_primitive()) else: updates['extra']['trusted_certs'] = None resources = updates.pop('resources', None) expected_attrs.append('resources') if resources: updates['extra']['resources'] = jsonutils.dumps( resources.obj_to_primitive()) else: updates['extra']['resources'] = None db_inst = db.instance_create(self._context, updates) self._from_db_object(self._context, self, db_inst, expected_attrs) # NOTE(danms): The EC2 ids are created on their first load. In order # to avoid them being missing and having to be loaded later, we # load them once here on create now that the instance record is # created. self._load_ec2_ids() self.obj_reset_changes(['ec2_ids']) @base.remotable def destroy(self, hard_delete=False): if not self.obj_attr_is_set('id'): raise exception.ObjectActionError(action='destroy', reason='already destroyed') if not self.obj_attr_is_set('uuid'): raise exception.ObjectActionError(action='destroy', reason='no uuid') if not self.obj_attr_is_set('host') or not self.host: # NOTE(danms): If our host is not set, avoid a race constraint = db.constraint(host=db.equal_any(None)) else: constraint = None try: db_inst = db.instance_destroy(self._context, self.uuid, constraint=constraint, hard_delete=hard_delete) self._from_db_object(self._context, self, db_inst) except exception.ConstraintNotMet: raise exception.ObjectActionError(action='destroy', reason='host changed') delattr(self, base.get_attrname('id')) def _save_info_cache(self, context): if self.info_cache: with self.info_cache.obj_alternate_context(context): self.info_cache.save() # TODO(stephenfin): Remove this as it's related to nova-network def _save_security_groups(self, context): security_groups = self.security_groups or [] for secgroup in security_groups: with secgroup.obj_alternate_context(context): secgroup.save() self.security_groups.obj_reset_changes() def _save_fault(self, context): # NOTE(danms): I don't think we need to worry about this, do we? pass def _save_pci_requests(self, context): # TODO(danms): Unfortunately, extra.pci_requests is not a serialized # PciRequests object (!), so we have to handle it specially here. # That should definitely be fixed! self._extra_values_to_save['pci_requests'] = ( self.pci_requests.to_json()) def _save_pci_devices(self, context): # NOTE(yjiang5): All devices held by PCI tracker, only PCI tracker # permitted to update the DB. all change to devices from here will # be dropped. pass def _save_tags(self, context): # NOTE(gibi): tags are not saved through the instance pass def _save_services(self, context): # NOTE(mriedem): services are not saved through the instance pass @staticmethod def _nullify_flavor_description(flavor_info): """Helper method to nullify descriptions from a set of primitive flavors. Note that we don't remove the flavor description since that would make the versioned notification FlavorPayload have to handle the field not being set on the embedded instance.flavor. :param dict: dict of primitive flavor objects where the values are the flavors which get persisted in the instance_extra.flavor table. """ for flavor in flavor_info.values(): if flavor and 'description' in flavor['nova_object.data']: flavor['nova_object.data']['description'] = None def _save_flavor(self, context): if not any([x in self.obj_what_changed() for x in ('flavor', 'old_flavor', 'new_flavor')]): return flavor_info = { 'cur': self.flavor.obj_to_primitive(), 'old': (self.old_flavor and self.old_flavor.obj_to_primitive() or None), 'new': (self.new_flavor and self.new_flavor.obj_to_primitive() or None), } self._nullify_flavor_description(flavor_info) self._extra_values_to_save['flavor'] = jsonutils.dumps(flavor_info) self.obj_reset_changes(['flavor', 'old_flavor', 'new_flavor']) def _save_old_flavor(self, context): if 'old_flavor' in self.obj_what_changed(): self._save_flavor(context) def _save_new_flavor(self, context): if 'new_flavor' in self.obj_what_changed(): self._save_flavor(context) def _save_ec2_ids(self, context): # NOTE(hanlind): Read-only so no need to save this. pass def _save_keypairs(self, context): if 'keypairs' in self.obj_what_changed(): self._save_extra_generic('keypairs') self.obj_reset_changes(['keypairs'], recursive=True) def _save_extra_generic(self, field): if field in self.obj_what_changed(): obj = getattr(self, field) value = None if obj is not None: value = jsonutils.dumps(obj.obj_to_primitive()) self._extra_values_to_save[field] = value # TODO(stephenfin): Remove the 'admin_state_reset' field in version 3.0 of # the object @base.remotable def save(self, expected_vm_state=None, expected_task_state=None, admin_state_reset=False): """Save updates to this instance Column-wise updates will be made based on the result of self.obj_what_changed(). If expected_task_state is provided, it will be checked against the in-database copy of the instance before updates are made. :param expected_vm_state: Optional tuple of valid vm states for the instance to be in :param expected_task_state: Optional tuple of valid task states for the instance to be in :param admin_state_reset: True if admin API is forcing setting of task_state/vm_state """ context = self._context self._extra_values_to_save = {} updates = {} changes = self.obj_what_changed() for field in self.fields: # NOTE(danms): For object fields, we construct and call a # helper method like self._save_$attrname() if (self.obj_attr_is_set(field) and isinstance(self.fields[field], fields.ObjectField)): try: getattr(self, '_save_%s' % field)(context) except AttributeError: if field in _INSTANCE_EXTRA_FIELDS: self._save_extra_generic(field) continue LOG.exception('No save handler for %s', field, instance=self) except db_exc.DBReferenceError as exp: if exp.key != 'instance_uuid': raise # NOTE(melwitt): This will happen if we instance.save() # before an instance.create() and FK constraint fails. # In practice, this occurs in cells during a delete of # an unscheduled instance. Otherwise, it could happen # as a result of bug. raise exception.InstanceNotFound(instance_id=self.uuid) elif field in changes: updates[field] = self[field] if self._extra_values_to_save: db.instance_extra_update_by_uuid(context, self.uuid, self._extra_values_to_save) if not updates: return # Cleaned needs to be turned back into an int here if 'cleaned' in updates: if updates['cleaned']: updates['cleaned'] = 1 else: updates['cleaned'] = 0 if expected_task_state is not None: updates['expected_task_state'] = expected_task_state if expected_vm_state is not None: updates['expected_vm_state'] = expected_vm_state expected_attrs = [attr for attr in _INSTANCE_OPTIONAL_JOINED_FIELDS if self.obj_attr_is_set(attr)] if 'pci_devices' in expected_attrs: # NOTE(danms): We don't refresh pci_devices on save right now expected_attrs.remove('pci_devices') # NOTE(alaski): We need to pull system_metadata for the # notification.send_update() below. If we don't there's a KeyError # when it tries to extract the flavor. if 'system_metadata' not in expected_attrs: expected_attrs.append('system_metadata') old_ref, inst_ref = db.instance_update_and_get_original( context, self.uuid, updates, columns_to_join=_expected_cols(expected_attrs)) self._from_db_object(context, self, inst_ref, expected_attrs=expected_attrs) # NOTE(danms): We have to be super careful here not to trigger # any lazy-loads that will unmigrate or unbackport something. So, # make a copy of the instance for notifications first. new_ref = self.obj_clone() notifications.send_update(context, old_ref, new_ref) self.obj_reset_changes() @base.remotable def refresh(self, use_slave=False): extra = [field for field in INSTANCE_OPTIONAL_ATTRS if self.obj_attr_is_set(field)] current = self.__class__.get_by_uuid(self._context, uuid=self.uuid, expected_attrs=extra, use_slave=use_slave) # NOTE(danms): We orphan the instance copy so we do not unexpectedly # trigger a lazy-load (which would mean we failed to calculate the # expected_attrs properly) current._context = None for field in self.fields: if field not in self: continue if field not in current: # If the field isn't in current we should not # touch it, triggering a likely-recursive lazy load. # Log it so we can see it happening though, as it # probably isn't expected in most cases. LOG.debug('Field %s is set but not in refreshed ' 'instance, skipping', field) continue if field == 'info_cache': self.info_cache.refresh() elif self[field] != current[field]: self[field] = current[field] self.obj_reset_changes() def _load_generic(self, attrname): instance = self.__class__.get_by_uuid(self._context, uuid=self.uuid, expected_attrs=[attrname]) if attrname not in instance: # NOTE(danms): Never allow us to recursively-load raise exception.ObjectActionError( action='obj_load_attr', reason=_('loading %s requires recursion') % attrname) # NOTE(danms): load anything we don't already have from the # instance we got from the database to make the most of the # performance hit. for field in self.fields: if field in instance and field not in self: setattr(self, field, getattr(instance, field)) def _load_fault(self): self.fault = objects.InstanceFault.get_latest_for_instance( self._context, self.uuid) def _load_numa_topology(self, db_topology=_NO_DATA_SENTINEL): if db_topology is None: self.numa_topology = None elif db_topology is not _NO_DATA_SENTINEL: self.numa_topology = \ objects.InstanceNUMATopology.obj_from_db_obj(self.uuid, db_topology) else: try: self.numa_topology = \ objects.InstanceNUMATopology.get_by_instance_uuid( self._context, self.uuid) except exception.NumaTopologyNotFound: self.numa_topology = None def _load_pci_requests(self, db_requests=_NO_DATA_SENTINEL): if db_requests is not _NO_DATA_SENTINEL: self.pci_requests = objects.InstancePCIRequests.obj_from_db( self._context, self.uuid, db_requests) else: self.pci_requests = \ objects.InstancePCIRequests.get_by_instance_uuid( self._context, self.uuid) def _load_device_metadata(self, db_dev_meta=_NO_DATA_SENTINEL): if db_dev_meta is None: self.device_metadata = None elif db_dev_meta is not _NO_DATA_SENTINEL: self.device_metadata = \ objects.InstanceDeviceMetadata.obj_from_db( self._context, db_dev_meta) else: self.device_metadata = \ objects.InstanceDeviceMetadata.get_by_instance_uuid( self._context, self.uuid) def _load_flavor(self): instance = self.__class__.get_by_uuid( self._context, uuid=self.uuid, expected_attrs=['flavor']) # NOTE(danms): Orphan the instance to make sure we don't lazy-load # anything below instance._context = None self.flavor = instance.flavor self.old_flavor = instance.old_flavor self.new_flavor = instance.new_flavor def _load_vcpu_model(self, db_vcpu_model=_NO_DATA_SENTINEL): if db_vcpu_model is None: self.vcpu_model = None elif db_vcpu_model is _NO_DATA_SENTINEL: self.vcpu_model = objects.VirtCPUModel.get_by_instance_uuid( self._context, self.uuid) else: db_vcpu_model = jsonutils.loads(db_vcpu_model) self.vcpu_model = objects.VirtCPUModel.obj_from_primitive( db_vcpu_model) def _load_ec2_ids(self): self.ec2_ids = objects.EC2Ids.get_by_instance(self._context, self) # TODO(stephenfin): Remove this as it's related to nova-network def _load_security_groups(self): self.security_groups = objects.SecurityGroupList.get_by_instance( self._context, self) def _load_pci_devices(self): self.pci_devices = objects.PciDeviceList.get_by_instance_uuid( self._context, self.uuid) def _load_migration_context(self, db_context=_NO_DATA_SENTINEL): if db_context is _NO_DATA_SENTINEL: try: self.migration_context = ( objects.MigrationContext.get_by_instance_uuid( self._context, self.uuid)) except exception.MigrationContextNotFound: self.migration_context = None elif db_context is None: self.migration_context = None else: self.migration_context = objects.MigrationContext.obj_from_db_obj( db_context) def _load_keypairs(self, db_keypairs=_NO_DATA_SENTINEL): if db_keypairs is _NO_DATA_SENTINEL: inst = objects.Instance.get_by_uuid(self._context, self.uuid, expected_attrs=['keypairs']) if 'keypairs' in inst: self.keypairs = inst.keypairs self.keypairs.obj_reset_changes(recursive=True) self.obj_reset_changes(['keypairs']) else: self.keypairs = objects.KeyPairList(objects=[]) # NOTE(danms): We leave the keypairs attribute dirty in hopes # someone else will save it for us elif db_keypairs: self.keypairs = objects.KeyPairList.obj_from_primitive( jsonutils.loads(db_keypairs)) self.obj_reset_changes(['keypairs']) def _load_tags(self): self.tags = objects.TagList.get_by_resource_id( self._context, self.uuid) def _load_trusted_certs(self, db_trusted_certs=_NO_DATA_SENTINEL): if db_trusted_certs is None: self.trusted_certs = None elif db_trusted_certs is _NO_DATA_SENTINEL: self.trusted_certs = objects.TrustedCerts.get_by_instance_uuid( self._context, self.uuid) else: self.trusted_certs = objects.TrustedCerts.obj_from_primitive( jsonutils.loads(db_trusted_certs)) def _load_resources(self, db_resources=_NO_DATA_SENTINEL): if db_resources is None: self.resources = None elif db_resources is _NO_DATA_SENTINEL: self.resources = objects.ResourceList.get_by_instance_uuid( self._context, self.uuid) else: self.resources = objects.ResourceList.obj_from_primitive( jsonutils.loads(db_resources)) def apply_migration_context(self): if self.migration_context: self._set_migration_context_to_instance(prefix='new_') else: LOG.debug("Trying to apply a migration context that does not " "seem to be set for this instance", instance=self) def revert_migration_context(self): if self.migration_context: self._set_migration_context_to_instance(prefix='old_') else: LOG.debug("Trying to revert a migration context that does not " "seem to be set for this instance", instance=self) def _set_migration_context_to_instance(self, prefix): for inst_attr_name in _MIGRATION_CONTEXT_ATTRS: setattr(self, inst_attr_name, None) attr_name = prefix + inst_attr_name if attr_name in self.migration_context: attr_value = getattr( self.migration_context, attr_name) setattr(self, inst_attr_name, attr_value) @contextlib.contextmanager def mutated_migration_context(self): """Context manager to temporarily apply the migration context. Calling .save() from within the context manager means that the mutated context will be saved which can cause incorrect resource tracking, and should be avoided. """ # First check to see if we even have a migration context set and if not # we can exit early without lazy-loading other attributes. if 'migration_context' in self and self.migration_context is None: yield return current_values = {} for attr_name in _MIGRATION_CONTEXT_ATTRS: current_values[attr_name] = getattr(self, attr_name) self.apply_migration_context() try: yield finally: for attr_name in _MIGRATION_CONTEXT_ATTRS: setattr(self, attr_name, current_values[attr_name]) @base.remotable def drop_migration_context(self): if self.migration_context: db.instance_extra_update_by_uuid(self._context, self.uuid, {'migration_context': None}) self.migration_context = None def clear_numa_topology(self): numa_topology = self.numa_topology if numa_topology is not None: self.numa_topology = numa_topology.clear_host_pinning() def obj_load_attr(self, attrname): # NOTE(danms): We can't lazy-load anything without a context and a uuid if not self._context: raise exception.OrphanedObjectError(method='obj_load_attr', objtype=self.obj_name()) if 'uuid' not in self: raise exception.ObjectActionError( action='obj_load_attr', reason=_('attribute %s not lazy-loadable') % attrname) LOG.debug("Lazy-loading '%(attr)s' on %(name)s uuid %(uuid)s", {'attr': attrname, 'name': self.obj_name(), 'uuid': self.uuid, }) with utils.temporary_mutation(self._context, read_deleted='yes'): self._obj_load_attr(attrname) def _obj_load_attr(self, attrname): """Internal method for loading attributes from instances. NOTE: Do not use this directly. This method contains the implementation of lazy-loading attributes from Instance object, minus some massaging of the context and error-checking. This should always be called with the object-local context set for reading deleted instances and with uuid set. All of the code below depends on those two things. Thus, this should only be called from obj_load_attr() itself. :param attrname: The name of the attribute to be loaded """ # NOTE(danms): We handle some fields differently here so that we # can be more efficient if attrname == 'fault': self._load_fault() elif attrname == 'numa_topology': self._load_numa_topology() elif attrname == 'device_metadata': self._load_device_metadata() elif attrname == 'pci_requests': self._load_pci_requests() elif attrname == 'vcpu_model': self._load_vcpu_model() elif attrname == 'ec2_ids': self._load_ec2_ids() elif attrname == 'migration_context': self._load_migration_context() elif attrname == 'keypairs': # NOTE(danms): Let keypairs control its own destiny for # resetting changes. return self._load_keypairs() elif attrname == 'trusted_certs': return self._load_trusted_certs() elif attrname == 'resources': return self._load_resources() elif attrname == 'security_groups': self._load_security_groups() elif attrname == 'pci_devices': self._load_pci_devices() elif 'flavor' in attrname: self._load_flavor() elif attrname == 'services' and self.deleted: # NOTE(mriedem): The join in the data model for instances.services # filters on instances.deleted == 0, so if the instance is deleted # don't attempt to even load services since we'll fail. self.services = objects.ServiceList(self._context) elif attrname == 'tags': if self.deleted: # NOTE(mriedem): Same story as services, the DB API query # in instance_tag_get_by_instance_uuid will fail if the # instance has been deleted so just return an empty tag list. self.tags = objects.TagList(self._context) else: self._load_tags() elif attrname in self.fields and attrname != 'id': # NOTE(danms): We've never let 'id' be lazy-loaded, and use its # absence as a sentinel that it hasn't been created in the database # yet, so refuse to do so here. self._load_generic(attrname) else: # NOTE(danms): This is historically what we did for # something not in a field that was force-loaded. So, just # do this for consistency. raise exception.ObjectActionError( action='obj_load_attr', reason=_('attribute %s not lazy-loadable') % attrname) self.obj_reset_changes([attrname]) def get_flavor(self, namespace=None): prefix = ('%s_' % namespace) if namespace is not None else '' attr = '%sflavor' % prefix try: return getattr(self, attr) except exception.FlavorNotFound: # NOTE(danms): This only happens in the case where we don't # have flavor information in instance_extra, and doing # this triggers a lookup based on our instance_type_id for # (very) legacy instances. That legacy code expects a None here, # so emulate it for this helper, even though the actual attribute # is not nullable. return None @base.remotable def delete_metadata_key(self, key): """Optimized metadata delete method. This provides a more efficient way to delete a single metadata key, instead of just calling instance.save(). This should be called with the key still present in self.metadata, which it will update after completion. """ db.instance_metadata_delete(self._context, self.uuid, key) md_was_changed = 'metadata' in self.obj_what_changed() del self.metadata[key] self._orig_metadata.pop(key, None) notifications.send_update(self._context, self, self) if not md_was_changed: self.obj_reset_changes(['metadata']) def get_network_info(self): if self.info_cache is None: return network_model.NetworkInfo.hydrate([]) return self.info_cache.network_info def get_bdms(self): return objects.BlockDeviceMappingList.get_by_instance_uuid( self._context, self.uuid) def _make_instance_list(context, inst_list, db_inst_list, expected_attrs): get_fault = expected_attrs and 'fault' in expected_attrs inst_faults = {} if get_fault: # Build an instance_uuid:latest-fault mapping expected_attrs.remove('fault') instance_uuids = [inst['uuid'] for inst in db_inst_list] faults = objects.InstanceFaultList.get_by_instance_uuids( context, instance_uuids) for fault in faults: if fault.instance_uuid not in inst_faults: inst_faults[fault.instance_uuid] = fault inst_cls = objects.Instance inst_list.objects = [] for db_inst in db_inst_list: inst_obj = inst_cls._from_db_object( context, inst_cls(context), db_inst, expected_attrs=expected_attrs) if get_fault: inst_obj.fault = inst_faults.get(inst_obj.uuid, None) inst_list.objects.append(inst_obj) inst_list.obj_reset_changes() return inst_list @db_api.pick_context_manager_writer def populate_missing_availability_zones(context, count): # instances without host have no reasonable AZ to set not_empty_host = models.Instance.host != None # noqa E711 instances = (context.session.query(models.Instance). filter(not_empty_host). filter_by(availability_zone=None).limit(count).all()) count_all = len(instances) count_hit = 0 for instance in instances: az = avail_zone.get_instance_availability_zone(context, instance) instance.availability_zone = az instance.save(context.session) count_hit += 1 return count_all, count_hit @base.NovaObjectRegistry.register class InstanceList(base.ObjectListBase, base.NovaObject): # Version 2.0: Initial Version # Version 2.1: Add get_uuids_by_host() # Version 2.2: Pagination for get_active_by_window_joined() # Version 2.3: Add get_count_by_vm_state() # Version 2.4: Add get_counts() # Version 2.5: Add get_uuids_by_host_and_node() # Version 2.6: Add get_uuids_by_hosts() VERSION = '2.6' fields = { 'objects': fields.ListOfObjectsField('Instance'), } @classmethod @db.select_db_reader_mode def _get_by_filters_impl(cls, context, filters, sort_key='created_at', sort_dir='desc', limit=None, marker=None, expected_attrs=None, use_slave=False, sort_keys=None, sort_dirs=None): if sort_keys or sort_dirs: db_inst_list = db.instance_get_all_by_filters_sort( context, filters, limit=limit, marker=marker, columns_to_join=_expected_cols(expected_attrs), sort_keys=sort_keys, sort_dirs=sort_dirs) else: db_inst_list = db.instance_get_all_by_filters( context, filters, sort_key, sort_dir, limit=limit, marker=marker, columns_to_join=_expected_cols(expected_attrs)) return db_inst_list @base.remotable_classmethod def get_by_filters(cls, context, filters, sort_key='created_at', sort_dir='desc', limit=None, marker=None, expected_attrs=None, use_slave=False, sort_keys=None, sort_dirs=None): db_inst_list = cls._get_by_filters_impl( context, filters, sort_key=sort_key, sort_dir=sort_dir, limit=limit, marker=marker, expected_attrs=expected_attrs, use_slave=use_slave, sort_keys=sort_keys, sort_dirs=sort_dirs) # NOTE(melwitt): _make_instance_list could result in joined objects' # (from expected_attrs) _from_db_object methods being called during # Instance._from_db_object, each of which might choose to perform # database writes. So, we call this outside of _get_by_filters_impl to # avoid being nested inside a 'reader' database transaction context. return _make_instance_list(context, cls(), db_inst_list, expected_attrs) @staticmethod @db.select_db_reader_mode def _db_instance_get_all_by_host(context, host, columns_to_join, use_slave=False): return db.instance_get_all_by_host(context, host, columns_to_join=columns_to_join) @base.remotable_classmethod def get_by_host(cls, context, host, expected_attrs=None, use_slave=False): db_inst_list = cls._db_instance_get_all_by_host( context, host, columns_to_join=_expected_cols(expected_attrs), use_slave=use_slave) return _make_instance_list(context, cls(), db_inst_list, expected_attrs) @base.remotable_classmethod def get_by_host_and_node(cls, context, host, node, expected_attrs=None): db_inst_list = db.instance_get_all_by_host_and_node( context, host, node, columns_to_join=_expected_cols(expected_attrs)) return _make_instance_list(context, cls(), db_inst_list, expected_attrs) @staticmethod @db_api.pick_context_manager_reader def _get_uuids_by_host_and_node(context, host, node): return context.session.query( models.Instance.uuid).filter_by( host=host).filter_by(node=node).filter_by(deleted=0).all() @base.remotable_classmethod def get_uuids_by_host_and_node(cls, context, host, node): """Return non-deleted instance UUIDs for the given host and node. :param context: nova auth request context :param host: Filter instances on this host. :param node: Filter instances on this node. :returns: list of non-deleted instance UUIDs on the given host and node """ return cls._get_uuids_by_host_and_node(context, host, node) @base.remotable_classmethod def get_by_host_and_not_type(cls, context, host, type_id=None, expected_attrs=None): db_inst_list = db.instance_get_all_by_host_and_not_type( context, host, type_id=type_id) return _make_instance_list(context, cls(), db_inst_list, expected_attrs) @base.remotable_classmethod def get_all(cls, context, expected_attrs=None): """Returns all instances on all nodes.""" db_instances = db.instance_get_all( context, columns_to_join=_expected_cols(expected_attrs)) return _make_instance_list(context, cls(), db_instances, expected_attrs) @base.remotable_classmethod def get_hung_in_rebooting(cls, context, reboot_window, expected_attrs=None): db_inst_list = db.instance_get_all_hung_in_rebooting(context, reboot_window) return _make_instance_list(context, cls(), db_inst_list, expected_attrs) @staticmethod @db.select_db_reader_mode def _db_instance_get_active_by_window_joined( context, begin, end, project_id, host, columns_to_join, use_slave=False, limit=None, marker=None): return db.instance_get_active_by_window_joined( context, begin, end, project_id, host, columns_to_join=columns_to_join, limit=limit, marker=marker) @base.remotable_classmethod def _get_active_by_window_joined(cls, context, begin, end=None, project_id=None, host=None, expected_attrs=None, use_slave=False, limit=None, marker=None): # NOTE(mriedem): We need to convert the begin/end timestamp strings # to timezone-aware datetime objects for the DB API call. begin = timeutils.parse_isotime(begin) end = timeutils.parse_isotime(end) if end else None db_inst_list = cls._db_instance_get_active_by_window_joined( context, begin, end, project_id, host, columns_to_join=_expected_cols(expected_attrs), use_slave=use_slave, limit=limit, marker=marker) return _make_instance_list(context, cls(), db_inst_list, expected_attrs) @classmethod def get_active_by_window_joined(cls, context, begin, end=None, project_id=None, host=None, expected_attrs=None, use_slave=False, limit=None, marker=None): """Get instances and joins active during a certain time window. :param:context: nova request context :param:begin: datetime for the start of the time window :param:end: datetime for the end of the time window :param:project_id: used to filter instances by project :param:host: used to filter instances on a given compute host :param:expected_attrs: list of related fields that can be joined in the database layer when querying for instances :param use_slave if True, ship this query off to a DB slave :param limit: maximum number of instances to return per page :param marker: last instance uuid from the previous page :returns: InstanceList """ # NOTE(mriedem): We have to convert the datetime objects to string # primitives for the remote call. begin = utils.isotime(begin) end = utils.isotime(end) if end else None return cls._get_active_by_window_joined(context, begin, end, project_id, host, expected_attrs, use_slave=use_slave, limit=limit, marker=marker) # TODO(stephenfin): Remove this as it's related to nova-network @base.remotable_classmethod def get_by_security_group_id(cls, context, security_group_id): db_secgroup = db.security_group_get( context, security_group_id, columns_to_join=['instances.info_cache', 'instances.system_metadata']) return _make_instance_list(context, cls(), db_secgroup['instances'], ['info_cache', 'system_metadata']) # TODO(stephenfin): Remove this as it's related to nova-network @classmethod def get_by_security_group(cls, context, security_group): return cls.get_by_security_group_id(context, security_group.id) # TODO(stephenfin): Remove this as it's related to nova-network @base.remotable_classmethod def get_by_grantee_security_group_ids(cls, context, security_group_ids): raise NotImplementedError() def fill_faults(self): """Batch query the database for our instances' faults. :returns: A list of instance uuids for which faults were found. """ uuids = [inst.uuid for inst in self] faults = objects.InstanceFaultList.get_latest_by_instance_uuids( self._context, uuids) faults_by_uuid = {} for fault in faults: faults_by_uuid[fault.instance_uuid] = fault for instance in self: if instance.uuid in faults_by_uuid: instance.fault = faults_by_uuid[instance.uuid] else: # NOTE(danms): Otherwise the caller will cause a lazy-load # when checking it, and we know there are none instance.fault = None instance.obj_reset_changes(['fault']) return faults_by_uuid.keys() @base.remotable_classmethod def get_uuids_by_host(cls, context, host): return db.instance_get_all_uuids_by_hosts(context, [host])[host] @base.remotable_classmethod def get_uuids_by_hosts(cls, context, hosts): """Returns a dict, keyed by hypervisor hostname, of a list of instance UUIDs associated with that compute node. """ return db.instance_get_all_uuids_by_hosts(context, hosts) @staticmethod @db_api.pick_context_manager_reader def _get_count_by_vm_state_in_db(context, project_id, user_id, vm_state): return context.session.query(models.Instance.id).\ filter_by(deleted=0).\ filter_by(project_id=project_id).\ filter_by(user_id=user_id).\ filter_by(vm_state=vm_state).\ count() @base.remotable_classmethod def get_count_by_vm_state(cls, context, project_id, user_id, vm_state): return cls._get_count_by_vm_state_in_db(context, project_id, user_id, vm_state) @staticmethod @db_api.pick_context_manager_reader def _get_counts_in_db(context, project_id, user_id=None): # NOTE(melwitt): Copied from nova/db/sqlalchemy/api.py: # It would be better to have vm_state not be nullable # but until then we test it explicitly as a workaround. not_soft_deleted = or_( models.Instance.vm_state != vm_states.SOFT_DELETED, models.Instance.vm_state == null() ) project_query = context.session.query( func.count(models.Instance.id), func.sum(models.Instance.vcpus), func.sum(models.Instance.memory_mb)).\ filter_by(deleted=0).\ filter(not_soft_deleted).\ filter_by(project_id=project_id) # NOTE(mriedem): Filter out hidden instances since there should be a # non-hidden version of the instance in another cell database and the # API will only show one of them, so we don't count the hidden copy. project_query = project_query.filter( or_(models.Instance.hidden == false(), models.Instance.hidden == null())) project_result = project_query.first() fields = ('instances', 'cores', 'ram') project_counts = {field: int(project_result[idx] or 0) for idx, field in enumerate(fields)} counts = {'project': project_counts} if user_id: user_result = project_query.filter_by(user_id=user_id).first() user_counts = {field: int(user_result[idx] or 0) for idx, field in enumerate(fields)} counts['user'] = user_counts return counts @base.remotable_classmethod def get_counts(cls, context, project_id, user_id=None): """Get the counts of Instance objects in the database. :param context: The request context for database access :param project_id: The project_id to count across :param user_id: The user_id to count across :returns: A dict containing the project-scoped counts and user-scoped counts if user_id is specified. For example: {'project': {'instances': <count across project>, 'cores': <count across project>, 'ram': <count across project}, 'user': {'instances': <count across user>, 'cores': <count across user>, 'ram': <count across user>}} """ return cls._get_counts_in_db(context, project_id, user_id=user_id) @staticmethod @db_api.pick_context_manager_reader def _get_count_by_hosts(context, hosts): return context.session.query(models.Instance).\ filter_by(deleted=0).\ filter(models.Instance.host.in_(hosts)).count() @classmethod def get_count_by_hosts(cls, context, hosts): return cls._get_count_by_hosts(context, hosts)
f7fff0ac356294d06420d93470eddbf0fdae1747
b78721fca486f8cc5e486c50c98218fef5453215
/ders_06_fonksiyonlar_01/parametresiz_fonk_01.py
5292c7d4f57255af1049abf9f13b1abf4b2b4317
[]
no_license
lakadirgeldi57/Bilgisayar-Bilimi-Python-Dersleri
bc8a37fc2a15d3bec2538a2c999434d53876b9bd
253e2c1498ff86d9a3c13cc3d2bdc74278c41938
refs/heads/master
2020-03-12T00:58:00.020432
2018-04-02T08:48:32
2018-04-02T08:48:32
130,363,017
0
0
null
2018-04-20T13:04:19
2018-04-20T13:04:18
null
UTF-8
Python
false
false
109
py
from random import random random() print(random()*10) #random(20) #random fonksiyonu parametresiz çalışır
b406e80149521103532381d0ae26b036733a82c3
e3365bc8fa7da2753c248c2b8a5c5e16aef84d9f
/indices/unfett.py
08fb69846efbb7ebacd195fa5a2e1e3f7091d4d0
[]
no_license
psdh/WhatsintheVector
e8aabacc054a88b4cb25303548980af9a10c12a8
a24168d068d9c69dc7a0fd13f606c080ae82e2a6
refs/heads/master
2021-01-25T10:34:22.651619
2015-09-23T11:54:06
2015-09-23T11:54:06
42,749,205
2
3
null
2015-09-23T11:54:07
2015-09-18T22:06:38
Python
UTF-8
Python
false
false
314
py
ii = [('CookGHP3.py', 1), ('MarrFDI.py', 1), ('WilbRLW4.py', 1), ('CookGHP.py', 1), ('WilkJMC3.py', 1), ('AubePRP.py', 1), ('ChalTPW2.py', 3), ('ClarGE2.py', 1), ('GilmCRS.py', 2), ('DibdTRL2.py', 1), ('WadeJEB.py', 1), ('NewmJLP.py', 2), ('BabbCRD.py', 1), ('ClarGE3.py', 1), ('ChalTPW.py', 1), ('KeigTSS.py', 1)]
b76ff91f6f8b759a8badf1e850fa18b4717619a1
7d122748fb075ffe16e82e3616cf5e5b60dee5bb
/custom/plm_date_bom-11.0.1.1/plm_date_bom/extended_class/mrp_bom_extension.py
ca28d1564b38428586c80c1d1071c319df543794
[]
no_license
kulius/odoo11_uw
95cd3b9cfdb18676e61d3565901f8ded0ee537d3
a6f950a4c05c90ac5f53c1602ac2cda33faf41ee
refs/heads/master
2021-08-07T07:53:15.585825
2018-07-23T03:33:20
2018-07-23T03:33:20
131,130,935
1
4
null
null
null
null
UTF-8
Python
false
false
7,842
py
# -*- encoding: utf-8 -*- ############################################################################## # # OmniaSolutions, Your own solutions # Copyright (C) 2010 OmniaSolutions (<http://omniasolutions.eu>). All Rights Reserved # $Id$ # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## ''' Created on 18 Jul 2016 @author: Daniel Smerghetto ''' import logging from odoo import models from odoo import fields from odoo import api from odoo import _ from odoo.exceptions import UserError class mrp_bom_extension_data(models.Model): _name = 'mrp.bom' _inherit = 'mrp.bom' @api.multi def _obsolete_compute(self): ''' Verify if obsolete lines are present in current bom ''' for bomObj in self: obsoleteFlag = False for bomLine in bomObj.bom_line_ids: if bomLine.product_id.state == 'obsoleted': obsoleteFlag = True break bomObj.sudo().obsolete_presents = obsoleteFlag bomObj.sudo().write({'obsolete_presents': obsoleteFlag}) # don't remove this force write or when form is opened the value is not updated # If store = True is set you need to provide @api.depends because odoo has to know when to compute that field. # If you decide to compute that field each time without store you have always to put it in the view or the field will not be computed obsolete_presents_computed = fields.Boolean(string=_("Obsolete presents computed"), compute='_obsolete_compute') obsolete_presents = fields.Boolean(_("Obsolete presents")) @api.onchange('bom_line_ids') def onchangeBomLine(self): self._obsolete_compute() @api.multi def action_wizard_compute_bom(self): return { 'domain': [], 'name': _('Bom Computation Type'), 'view_type': 'form', 'view_mode': 'form', 'res_model': 'plm.temporary_date_compute', 'type': 'ir.actions.act_window', 'target': 'new', } @api.multi def showAllBomsToCompute(self): outLines = [] def recursion(bomBrwsList): for bomBrws in bomBrwsList: for bomLineBrws in bomBrws.bom_line_ids: templateBrws = bomLineBrws.product_id.product_tmpl_id bomIds = self.getBomFromTemplate(templateBrws, 'normal') recursion(bomIds) if not templateBrws: logging.warning('Product %s is not related to a product template.' % (bomLineBrws.product_id.id)) continue if templateBrws.state == 'obsoleted': outLines.append(bomBrws.id) recursion(self) outLines = list(set(outLines)) return { 'type': 'ir.actions.act_window', 'name': _('Product Engineering'), 'view_type': 'form', 'view_mode': 'tree,form', 'res_model': 'mrp.bom', 'domain': [('id', 'in', outLines)], } def getBomFromTemplate(self, prodTmplBrws, bomType): ''' Return bom object from product template and bom type ''' return self.search([('product_tmpl_id', '=', prodTmplBrws.id), ('type', '=', bomType)]) class mrp_bom_data_compute(models.Model): _name = 'plm.temporary_date_compute' compute_type = fields.Selection([ ('update', _('Update Bom replacing obsoleted bom lines with components at the latest revision.')), ('new_bom', _('Create new bom using last revision of all components.')) ], _('Compute Type'), required=True) @api.multi def action_compute_bom(self): ''' Divide due to choosen operation ''' bomIds = self.env.context.get('active_ids', []) # Surely one record a time arrive here because comes from xml if self.compute_type == 'update': self.updateObsoleteBom(bomIds) elif self.compute_type == 'new_bom': self.copyObsoleteBom(bomIds) else: raise _('You must select at least one option!') def updateObsoleteBom(self, bomIds=[], recursive=False): ''' Update all obsoleted bom lines with last released product ''' bomObj = self.env['mrp.bom'] prodProdObj = self.env['product.product'] for bomBrws in bomObj.browse(bomIds): if bomBrws.type != 'normal': raise UserError(_('This functionality is avaible only for normal bom.')) for bomLineBrws in bomBrws.bom_line_ids: templateBrws = bomLineBrws.product_id.product_tmpl_id if recursive: bomIds = bomObj.getBomFromTemplate(templateBrws, 'normal').ids self.updateObsoleteBom(bomIds) if not templateBrws: logging.warning('Product %s is not related to a product template.' % (bomLineBrws.product_id.id)) continue if templateBrws.state == 'obsoleted': eng_code = templateBrws.engineering_code prodProdBrws = prodProdObj.search([('engineering_code', '=', eng_code)], order='engineering_revision DESC', limit=1) for prodBrws in prodProdBrws: bomLineBrws.product_id = prodBrws if recursive: # Check if new added product has boms self.updateObsoleteBom(prodBrws.product_tmpl_id.bom_ids.ids) bomBrws._obsolete_compute() return { 'type': 'ir.actions.act_window', 'name': _('Product Engineering'), 'view_type': 'form', 'view_mode': 'form', 'res_model': 'mrp.bom', 'domain': [('id', 'in', bomIds)], } def copyObsoleteBom(self, bomIds=[]): ''' Copy current bom containing obsoleted components and update the copy with the last product revisions ''' bomObject = self.env['mrp.bom'] for bomId in bomIds: newBomBrws = bomObject.browse(bomId).copy() self.updateObsoleteBom(newBomBrws.ids) bomObject.browse(bomIds).write({'active': False}) return { 'type': 'ir.actions.act_window', 'name': _('Product Engineering'), 'view_type': 'form', 'view_mode': 'form', 'res_model': 'mrp.bom', 'domain': [('id', 'in', newBomBrws.id)], } class bom_line_obsoleted_extension(models.Model): _name = 'mrp.bom.line' _inherit = 'mrp.bom.line' @api.onchange('state') def onchange_line_state(self): ''' Force update flag every time bom line state changes ''' for bomLineObj in self: bomBrws = bomLineObj.bom_id bomBrws._obsolete_compute()
f35f28d00f30430c9bed83d19a5e8c63c8ceee27
fab14fae2b494068aa793901d76464afb965df7e
/benchmarks/ltl_maxplus/f3/maxplus_20_96.py
2290b13126da73730e698908abfb46342a0f1f39
[ "MIT" ]
permissive
teodorov/F3
673f6f9ccc25acdfdecbfc180f439253474ba250
c863215c318d7d5f258eb9be38c6962cf6863b52
refs/heads/master
2023-08-04T17:37:38.771863
2021-09-16T07:38:28
2021-09-16T07:38:28
null
0
0
null
null
null
null
UTF-8
Python
false
false
43,733
py
from collections import Iterable from mathsat import msat_term, msat_env from mathsat import msat_make_true, msat_make_false from mathsat import msat_make_constant, msat_declare_function from mathsat import msat_get_rational_type from mathsat import msat_make_and as _msat_make_and from mathsat import msat_make_or as _msat_make_or from mathsat import msat_make_not from mathsat import msat_make_leq, msat_make_equal from mathsat import msat_make_number, msat_make_plus, msat_make_times from ltl.ltl import TermMap, LTLEncoder from utils import name_next def msat_make_and(menv: msat_env, *args): if len(args) == 0: return msat_make_true(menv) if len(args) == 1: return args[0] res = _msat_make_and(menv, args[0], args[1]) for arg in args[2:]: res = _msat_make_and(menv, res, arg) return res def msat_make_or(menv: msat_env, *args): if len(args) == 0: return msat_make_false(menv) if len(args) == 1: return args[0] res = _msat_make_or(menv, args[0], args[1]) for arg in args[2:]: res = _msat_make_or(menv, res, arg) return res def msat_make_minus(menv: msat_env, arg0: msat_term, arg1: msat_term): n_m1 = msat_make_number(menv, "-1") arg1 = msat_make_times(menv, arg1, n_m1) return msat_make_plus(menv, arg0, arg1) def msat_make_lt(menv: msat_env, arg0: msat_term, arg1: msat_term): geq = msat_make_geq(menv, arg0, arg1) return msat_make_not(menv, geq) def msat_make_geq(menv: msat_env, arg0: msat_term, arg1: msat_term): return msat_make_leq(menv, arg1, arg0) def msat_make_gt(menv: msat_env, arg0: msat_term, arg1: msat_term): leq = msat_make_leq(menv, arg0, arg1) return msat_make_not(menv, leq) def msat_make_impl(menv: msat_env, arg0: msat_term, arg1: msat_term): n_arg0 = msat_make_not(menv, arg0) return msat_make_or(menv, n_arg0, arg1) def check_ltl(menv: msat_env, enc: LTLEncoder) -> (Iterable, msat_term, msat_term, msat_term): assert menv assert isinstance(menv, msat_env) assert enc assert isinstance(enc, LTLEncoder) real_type = msat_get_rational_type(menv) names = ["x_0", "x_1", "x_2", "x_3", "x_4", "x_5", "x_6", "x_7", "x_8", "x_9", "x_10", "x_11", "x_12", "x_13", "x_14", "x_15", "x_16", "x_17", "x_18", "x_19"] xs = [msat_declare_function(menv, name, real_type) for name in names] xs = [msat_make_constant(menv, x) for x in xs] x_xs = [msat_declare_function(menv, name_next(name), real_type) for name in names] x_xs = [msat_make_constant(menv, x_x) for x_x in x_xs] curr2next = {x: x_x for x, x_x in zip(xs, x_xs)} n_10_0 = msat_make_number(menv, "10.0") n_11_0 = msat_make_number(menv, "11.0") n_12_0 = msat_make_number(menv, "12.0") n_13_0 = msat_make_number(menv, "13.0") n_14_0 = msat_make_number(menv, "14.0") n_15_0 = msat_make_number(menv, "15.0") n_16_0 = msat_make_number(menv, "16.0") n_17_0 = msat_make_number(menv, "17.0") n_18_0 = msat_make_number(menv, "18.0") n_19_0 = msat_make_number(menv, "19.0") n_1_0 = msat_make_number(menv, "1.0") n_20_0 = msat_make_number(menv, "20.0") n_2_0 = msat_make_number(menv, "2.0") n_3_0 = msat_make_number(menv, "3.0") n_4_0 = msat_make_number(menv, "4.0") n_5_0 = msat_make_number(menv, "5.0") n_6_0 = msat_make_number(menv, "6.0") n_7_0 = msat_make_number(menv, "7.0") n_8_0 = msat_make_number(menv, "8.0") n_9_0 = msat_make_number(menv, "9.0") init = msat_make_true(menv) trans = msat_make_true(menv) # transitions expr0 = msat_make_plus(menv, xs[0], n_2_0) expr1 = msat_make_plus(menv, xs[1], n_4_0) expr2 = msat_make_plus(menv, xs[3], n_3_0) expr3 = msat_make_plus(menv, xs[8], n_8_0) expr4 = msat_make_plus(menv, xs[9], n_14_0) expr5 = msat_make_plus(menv, xs[10], n_15_0) expr6 = msat_make_plus(menv, xs[15], n_2_0) expr7 = msat_make_plus(menv, xs[16], n_3_0) expr8 = msat_make_plus(menv, xs[17], n_17_0) expr9 = msat_make_plus(menv, xs[18], n_1_0) _t = msat_make_and(menv, msat_make_geq(menv, x_xs[0], expr0), msat_make_geq(menv, x_xs[0], expr1), msat_make_geq(menv, x_xs[0], expr2), msat_make_geq(menv, x_xs[0], expr3), msat_make_geq(menv, x_xs[0], expr4), msat_make_geq(menv, x_xs[0], expr5), msat_make_geq(menv, x_xs[0], expr6), msat_make_geq(menv, x_xs[0], expr7), msat_make_geq(menv, x_xs[0], expr8), msat_make_geq(menv, x_xs[0], expr9),) _t = msat_make_and(menv, _t, msat_make_or(menv, msat_make_equal(menv, x_xs[0], expr0), msat_make_equal(menv, x_xs[0], expr1), msat_make_equal(menv, x_xs[0], expr2), msat_make_equal(menv, x_xs[0], expr3), msat_make_equal(menv, x_xs[0], expr4), msat_make_equal(menv, x_xs[0], expr5), msat_make_equal(menv, x_xs[0], expr6), msat_make_equal(menv, x_xs[0], expr7), msat_make_equal(menv, x_xs[0], expr8), msat_make_equal(menv, x_xs[0], expr9),)) trans = msat_make_and(menv, trans, _t) expr0 = msat_make_plus(menv, xs[1], n_19_0) expr1 = msat_make_plus(menv, xs[2], n_18_0) expr2 = msat_make_plus(menv, xs[3], n_13_0) expr3 = msat_make_plus(menv, xs[8], n_10_0) expr4 = msat_make_plus(menv, xs[9], n_16_0) expr5 = msat_make_plus(menv, xs[11], n_16_0) expr6 = msat_make_plus(menv, xs[12], n_10_0) expr7 = msat_make_plus(menv, xs[13], n_10_0) expr8 = msat_make_plus(menv, xs[16], n_7_0) expr9 = msat_make_plus(menv, xs[19], n_10_0) _t = msat_make_and(menv, msat_make_geq(menv, x_xs[1], expr0), msat_make_geq(menv, x_xs[1], expr1), msat_make_geq(menv, x_xs[1], expr2), msat_make_geq(menv, x_xs[1], expr3), msat_make_geq(menv, x_xs[1], expr4), msat_make_geq(menv, x_xs[1], expr5), msat_make_geq(menv, x_xs[1], expr6), msat_make_geq(menv, x_xs[1], expr7), msat_make_geq(menv, x_xs[1], expr8), msat_make_geq(menv, x_xs[1], expr9),) _t = msat_make_and(menv, _t, msat_make_or(menv, msat_make_equal(menv, x_xs[1], expr0), msat_make_equal(menv, x_xs[1], expr1), msat_make_equal(menv, x_xs[1], expr2), msat_make_equal(menv, x_xs[1], expr3), msat_make_equal(menv, x_xs[1], expr4), msat_make_equal(menv, x_xs[1], expr5), msat_make_equal(menv, x_xs[1], expr6), msat_make_equal(menv, x_xs[1], expr7), msat_make_equal(menv, x_xs[1], expr8), msat_make_equal(menv, x_xs[1], expr9),)) trans = msat_make_and(menv, trans, _t) expr0 = msat_make_plus(menv, xs[0], n_18_0) expr1 = msat_make_plus(menv, xs[1], n_17_0) expr2 = msat_make_plus(menv, xs[5], n_9_0) expr3 = msat_make_plus(menv, xs[6], n_10_0) expr4 = msat_make_plus(menv, xs[7], n_7_0) expr5 = msat_make_plus(menv, xs[9], n_15_0) expr6 = msat_make_plus(menv, xs[11], n_9_0) expr7 = msat_make_plus(menv, xs[12], n_1_0) expr8 = msat_make_plus(menv, xs[13], n_5_0) expr9 = msat_make_plus(menv, xs[14], n_15_0) _t = msat_make_and(menv, msat_make_geq(menv, x_xs[2], expr0), msat_make_geq(menv, x_xs[2], expr1), msat_make_geq(menv, x_xs[2], expr2), msat_make_geq(menv, x_xs[2], expr3), msat_make_geq(menv, x_xs[2], expr4), msat_make_geq(menv, x_xs[2], expr5), msat_make_geq(menv, x_xs[2], expr6), msat_make_geq(menv, x_xs[2], expr7), msat_make_geq(menv, x_xs[2], expr8), msat_make_geq(menv, x_xs[2], expr9),) _t = msat_make_and(menv, _t, msat_make_or(menv, msat_make_equal(menv, x_xs[2], expr0), msat_make_equal(menv, x_xs[2], expr1), msat_make_equal(menv, x_xs[2], expr2), msat_make_equal(menv, x_xs[2], expr3), msat_make_equal(menv, x_xs[2], expr4), msat_make_equal(menv, x_xs[2], expr5), msat_make_equal(menv, x_xs[2], expr6), msat_make_equal(menv, x_xs[2], expr7), msat_make_equal(menv, x_xs[2], expr8), msat_make_equal(menv, x_xs[2], expr9),)) trans = msat_make_and(menv, trans, _t) expr0 = msat_make_plus(menv, xs[0], n_19_0) expr1 = msat_make_plus(menv, xs[1], n_6_0) expr2 = msat_make_plus(menv, xs[2], n_11_0) expr3 = msat_make_plus(menv, xs[6], n_4_0) expr4 = msat_make_plus(menv, xs[7], n_9_0) expr5 = msat_make_plus(menv, xs[8], n_3_0) expr6 = msat_make_plus(menv, xs[12], n_6_0) expr7 = msat_make_plus(menv, xs[16], n_6_0) expr8 = msat_make_plus(menv, xs[17], n_4_0) expr9 = msat_make_plus(menv, xs[19], n_18_0) _t = msat_make_and(menv, msat_make_geq(menv, x_xs[3], expr0), msat_make_geq(menv, x_xs[3], expr1), msat_make_geq(menv, x_xs[3], expr2), msat_make_geq(menv, x_xs[3], expr3), msat_make_geq(menv, x_xs[3], expr4), msat_make_geq(menv, x_xs[3], expr5), msat_make_geq(menv, x_xs[3], expr6), msat_make_geq(menv, x_xs[3], expr7), msat_make_geq(menv, x_xs[3], expr8), msat_make_geq(menv, x_xs[3], expr9),) _t = msat_make_and(menv, _t, msat_make_or(menv, msat_make_equal(menv, x_xs[3], expr0), msat_make_equal(menv, x_xs[3], expr1), msat_make_equal(menv, x_xs[3], expr2), msat_make_equal(menv, x_xs[3], expr3), msat_make_equal(menv, x_xs[3], expr4), msat_make_equal(menv, x_xs[3], expr5), msat_make_equal(menv, x_xs[3], expr6), msat_make_equal(menv, x_xs[3], expr7), msat_make_equal(menv, x_xs[3], expr8), msat_make_equal(menv, x_xs[3], expr9),)) trans = msat_make_and(menv, trans, _t) expr0 = msat_make_plus(menv, xs[0], n_16_0) expr1 = msat_make_plus(menv, xs[5], n_9_0) expr2 = msat_make_plus(menv, xs[7], n_19_0) expr3 = msat_make_plus(menv, xs[8], n_10_0) expr4 = msat_make_plus(menv, xs[10], n_16_0) expr5 = msat_make_plus(menv, xs[11], n_11_0) expr6 = msat_make_plus(menv, xs[12], n_17_0) expr7 = msat_make_plus(menv, xs[13], n_10_0) expr8 = msat_make_plus(menv, xs[14], n_6_0) expr9 = msat_make_plus(menv, xs[15], n_18_0) _t = msat_make_and(menv, msat_make_geq(menv, x_xs[4], expr0), msat_make_geq(menv, x_xs[4], expr1), msat_make_geq(menv, x_xs[4], expr2), msat_make_geq(menv, x_xs[4], expr3), msat_make_geq(menv, x_xs[4], expr4), msat_make_geq(menv, x_xs[4], expr5), msat_make_geq(menv, x_xs[4], expr6), msat_make_geq(menv, x_xs[4], expr7), msat_make_geq(menv, x_xs[4], expr8), msat_make_geq(menv, x_xs[4], expr9),) _t = msat_make_and(menv, _t, msat_make_or(menv, msat_make_equal(menv, x_xs[4], expr0), msat_make_equal(menv, x_xs[4], expr1), msat_make_equal(menv, x_xs[4], expr2), msat_make_equal(menv, x_xs[4], expr3), msat_make_equal(menv, x_xs[4], expr4), msat_make_equal(menv, x_xs[4], expr5), msat_make_equal(menv, x_xs[4], expr6), msat_make_equal(menv, x_xs[4], expr7), msat_make_equal(menv, x_xs[4], expr8), msat_make_equal(menv, x_xs[4], expr9),)) trans = msat_make_and(menv, trans, _t) expr0 = msat_make_plus(menv, xs[0], n_20_0) expr1 = msat_make_plus(menv, xs[1], n_2_0) expr2 = msat_make_plus(menv, xs[2], n_16_0) expr3 = msat_make_plus(menv, xs[6], n_12_0) expr4 = msat_make_plus(menv, xs[11], n_10_0) expr5 = msat_make_plus(menv, xs[13], n_20_0) expr6 = msat_make_plus(menv, xs[14], n_11_0) expr7 = msat_make_plus(menv, xs[15], n_18_0) expr8 = msat_make_plus(menv, xs[17], n_13_0) expr9 = msat_make_plus(menv, xs[19], n_6_0) _t = msat_make_and(menv, msat_make_geq(menv, x_xs[5], expr0), msat_make_geq(menv, x_xs[5], expr1), msat_make_geq(menv, x_xs[5], expr2), msat_make_geq(menv, x_xs[5], expr3), msat_make_geq(menv, x_xs[5], expr4), msat_make_geq(menv, x_xs[5], expr5), msat_make_geq(menv, x_xs[5], expr6), msat_make_geq(menv, x_xs[5], expr7), msat_make_geq(menv, x_xs[5], expr8), msat_make_geq(menv, x_xs[5], expr9),) _t = msat_make_and(menv, _t, msat_make_or(menv, msat_make_equal(menv, x_xs[5], expr0), msat_make_equal(menv, x_xs[5], expr1), msat_make_equal(menv, x_xs[5], expr2), msat_make_equal(menv, x_xs[5], expr3), msat_make_equal(menv, x_xs[5], expr4), msat_make_equal(menv, x_xs[5], expr5), msat_make_equal(menv, x_xs[5], expr6), msat_make_equal(menv, x_xs[5], expr7), msat_make_equal(menv, x_xs[5], expr8), msat_make_equal(menv, x_xs[5], expr9),)) trans = msat_make_and(menv, trans, _t) expr0 = msat_make_plus(menv, xs[1], n_13_0) expr1 = msat_make_plus(menv, xs[2], n_11_0) expr2 = msat_make_plus(menv, xs[5], n_8_0) expr3 = msat_make_plus(menv, xs[7], n_11_0) expr4 = msat_make_plus(menv, xs[10], n_12_0) expr5 = msat_make_plus(menv, xs[11], n_14_0) expr6 = msat_make_plus(menv, xs[13], n_16_0) expr7 = msat_make_plus(menv, xs[14], n_12_0) expr8 = msat_make_plus(menv, xs[15], n_8_0) expr9 = msat_make_plus(menv, xs[18], n_15_0) _t = msat_make_and(menv, msat_make_geq(menv, x_xs[6], expr0), msat_make_geq(menv, x_xs[6], expr1), msat_make_geq(menv, x_xs[6], expr2), msat_make_geq(menv, x_xs[6], expr3), msat_make_geq(menv, x_xs[6], expr4), msat_make_geq(menv, x_xs[6], expr5), msat_make_geq(menv, x_xs[6], expr6), msat_make_geq(menv, x_xs[6], expr7), msat_make_geq(menv, x_xs[6], expr8), msat_make_geq(menv, x_xs[6], expr9),) _t = msat_make_and(menv, _t, msat_make_or(menv, msat_make_equal(menv, x_xs[6], expr0), msat_make_equal(menv, x_xs[6], expr1), msat_make_equal(menv, x_xs[6], expr2), msat_make_equal(menv, x_xs[6], expr3), msat_make_equal(menv, x_xs[6], expr4), msat_make_equal(menv, x_xs[6], expr5), msat_make_equal(menv, x_xs[6], expr6), msat_make_equal(menv, x_xs[6], expr7), msat_make_equal(menv, x_xs[6], expr8), msat_make_equal(menv, x_xs[6], expr9),)) trans = msat_make_and(menv, trans, _t) expr0 = msat_make_plus(menv, xs[1], n_4_0) expr1 = msat_make_plus(menv, xs[3], n_3_0) expr2 = msat_make_plus(menv, xs[8], n_13_0) expr3 = msat_make_plus(menv, xs[9], n_18_0) expr4 = msat_make_plus(menv, xs[12], n_13_0) expr5 = msat_make_plus(menv, xs[13], n_17_0) expr6 = msat_make_plus(menv, xs[14], n_16_0) expr7 = msat_make_plus(menv, xs[16], n_9_0) expr8 = msat_make_plus(menv, xs[17], n_2_0) expr9 = msat_make_plus(menv, xs[18], n_13_0) _t = msat_make_and(menv, msat_make_geq(menv, x_xs[7], expr0), msat_make_geq(menv, x_xs[7], expr1), msat_make_geq(menv, x_xs[7], expr2), msat_make_geq(menv, x_xs[7], expr3), msat_make_geq(menv, x_xs[7], expr4), msat_make_geq(menv, x_xs[7], expr5), msat_make_geq(menv, x_xs[7], expr6), msat_make_geq(menv, x_xs[7], expr7), msat_make_geq(menv, x_xs[7], expr8), msat_make_geq(menv, x_xs[7], expr9),) _t = msat_make_and(menv, _t, msat_make_or(menv, msat_make_equal(menv, x_xs[7], expr0), msat_make_equal(menv, x_xs[7], expr1), msat_make_equal(menv, x_xs[7], expr2), msat_make_equal(menv, x_xs[7], expr3), msat_make_equal(menv, x_xs[7], expr4), msat_make_equal(menv, x_xs[7], expr5), msat_make_equal(menv, x_xs[7], expr6), msat_make_equal(menv, x_xs[7], expr7), msat_make_equal(menv, x_xs[7], expr8), msat_make_equal(menv, x_xs[7], expr9),)) trans = msat_make_and(menv, trans, _t) expr0 = msat_make_plus(menv, xs[2], n_5_0) expr1 = msat_make_plus(menv, xs[3], n_4_0) expr2 = msat_make_plus(menv, xs[5], n_14_0) expr3 = msat_make_plus(menv, xs[7], n_13_0) expr4 = msat_make_plus(menv, xs[10], n_2_0) expr5 = msat_make_plus(menv, xs[11], n_20_0) expr6 = msat_make_plus(menv, xs[12], n_17_0) expr7 = msat_make_plus(menv, xs[15], n_17_0) expr8 = msat_make_plus(menv, xs[16], n_16_0) expr9 = msat_make_plus(menv, xs[19], n_16_0) _t = msat_make_and(menv, msat_make_geq(menv, x_xs[8], expr0), msat_make_geq(menv, x_xs[8], expr1), msat_make_geq(menv, x_xs[8], expr2), msat_make_geq(menv, x_xs[8], expr3), msat_make_geq(menv, x_xs[8], expr4), msat_make_geq(menv, x_xs[8], expr5), msat_make_geq(menv, x_xs[8], expr6), msat_make_geq(menv, x_xs[8], expr7), msat_make_geq(menv, x_xs[8], expr8), msat_make_geq(menv, x_xs[8], expr9),) _t = msat_make_and(menv, _t, msat_make_or(menv, msat_make_equal(menv, x_xs[8], expr0), msat_make_equal(menv, x_xs[8], expr1), msat_make_equal(menv, x_xs[8], expr2), msat_make_equal(menv, x_xs[8], expr3), msat_make_equal(menv, x_xs[8], expr4), msat_make_equal(menv, x_xs[8], expr5), msat_make_equal(menv, x_xs[8], expr6), msat_make_equal(menv, x_xs[8], expr7), msat_make_equal(menv, x_xs[8], expr8), msat_make_equal(menv, x_xs[8], expr9),)) trans = msat_make_and(menv, trans, _t) expr0 = msat_make_plus(menv, xs[1], n_7_0) expr1 = msat_make_plus(menv, xs[3], n_16_0) expr2 = msat_make_plus(menv, xs[4], n_4_0) expr3 = msat_make_plus(menv, xs[5], n_16_0) expr4 = msat_make_plus(menv, xs[9], n_15_0) expr5 = msat_make_plus(menv, xs[10], n_13_0) expr6 = msat_make_plus(menv, xs[11], n_12_0) expr7 = msat_make_plus(menv, xs[14], n_15_0) expr8 = msat_make_plus(menv, xs[16], n_13_0) expr9 = msat_make_plus(menv, xs[19], n_9_0) _t = msat_make_and(menv, msat_make_geq(menv, x_xs[9], expr0), msat_make_geq(menv, x_xs[9], expr1), msat_make_geq(menv, x_xs[9], expr2), msat_make_geq(menv, x_xs[9], expr3), msat_make_geq(menv, x_xs[9], expr4), msat_make_geq(menv, x_xs[9], expr5), msat_make_geq(menv, x_xs[9], expr6), msat_make_geq(menv, x_xs[9], expr7), msat_make_geq(menv, x_xs[9], expr8), msat_make_geq(menv, x_xs[9], expr9),) _t = msat_make_and(menv, _t, msat_make_or(menv, msat_make_equal(menv, x_xs[9], expr0), msat_make_equal(menv, x_xs[9], expr1), msat_make_equal(menv, x_xs[9], expr2), msat_make_equal(menv, x_xs[9], expr3), msat_make_equal(menv, x_xs[9], expr4), msat_make_equal(menv, x_xs[9], expr5), msat_make_equal(menv, x_xs[9], expr6), msat_make_equal(menv, x_xs[9], expr7), msat_make_equal(menv, x_xs[9], expr8), msat_make_equal(menv, x_xs[9], expr9),)) trans = msat_make_and(menv, trans, _t) expr0 = msat_make_plus(menv, xs[2], n_7_0) expr1 = msat_make_plus(menv, xs[3], n_4_0) expr2 = msat_make_plus(menv, xs[5], n_11_0) expr3 = msat_make_plus(menv, xs[6], n_13_0) expr4 = msat_make_plus(menv, xs[7], n_2_0) expr5 = msat_make_plus(menv, xs[10], n_19_0) expr6 = msat_make_plus(menv, xs[13], n_19_0) expr7 = msat_make_plus(menv, xs[16], n_19_0) expr8 = msat_make_plus(menv, xs[17], n_4_0) expr9 = msat_make_plus(menv, xs[19], n_1_0) _t = msat_make_and(menv, msat_make_geq(menv, x_xs[10], expr0), msat_make_geq(menv, x_xs[10], expr1), msat_make_geq(menv, x_xs[10], expr2), msat_make_geq(menv, x_xs[10], expr3), msat_make_geq(menv, x_xs[10], expr4), msat_make_geq(menv, x_xs[10], expr5), msat_make_geq(menv, x_xs[10], expr6), msat_make_geq(menv, x_xs[10], expr7), msat_make_geq(menv, x_xs[10], expr8), msat_make_geq(menv, x_xs[10], expr9),) _t = msat_make_and(menv, _t, msat_make_or(menv, msat_make_equal(menv, x_xs[10], expr0), msat_make_equal(menv, x_xs[10], expr1), msat_make_equal(menv, x_xs[10], expr2), msat_make_equal(menv, x_xs[10], expr3), msat_make_equal(menv, x_xs[10], expr4), msat_make_equal(menv, x_xs[10], expr5), msat_make_equal(menv, x_xs[10], expr6), msat_make_equal(menv, x_xs[10], expr7), msat_make_equal(menv, x_xs[10], expr8), msat_make_equal(menv, x_xs[10], expr9),)) trans = msat_make_and(menv, trans, _t) expr0 = msat_make_plus(menv, xs[0], n_6_0) expr1 = msat_make_plus(menv, xs[4], n_1_0) expr2 = msat_make_plus(menv, xs[6], n_6_0) expr3 = msat_make_plus(menv, xs[10], n_20_0) expr4 = msat_make_plus(menv, xs[11], n_4_0) expr5 = msat_make_plus(menv, xs[12], n_13_0) expr6 = msat_make_plus(menv, xs[13], n_6_0) expr7 = msat_make_plus(menv, xs[14], n_4_0) expr8 = msat_make_plus(menv, xs[15], n_16_0) expr9 = msat_make_plus(menv, xs[19], n_7_0) _t = msat_make_and(menv, msat_make_geq(menv, x_xs[11], expr0), msat_make_geq(menv, x_xs[11], expr1), msat_make_geq(menv, x_xs[11], expr2), msat_make_geq(menv, x_xs[11], expr3), msat_make_geq(menv, x_xs[11], expr4), msat_make_geq(menv, x_xs[11], expr5), msat_make_geq(menv, x_xs[11], expr6), msat_make_geq(menv, x_xs[11], expr7), msat_make_geq(menv, x_xs[11], expr8), msat_make_geq(menv, x_xs[11], expr9),) _t = msat_make_and(menv, _t, msat_make_or(menv, msat_make_equal(menv, x_xs[11], expr0), msat_make_equal(menv, x_xs[11], expr1), msat_make_equal(menv, x_xs[11], expr2), msat_make_equal(menv, x_xs[11], expr3), msat_make_equal(menv, x_xs[11], expr4), msat_make_equal(menv, x_xs[11], expr5), msat_make_equal(menv, x_xs[11], expr6), msat_make_equal(menv, x_xs[11], expr7), msat_make_equal(menv, x_xs[11], expr8), msat_make_equal(menv, x_xs[11], expr9),)) trans = msat_make_and(menv, trans, _t) expr0 = msat_make_plus(menv, xs[2], n_8_0) expr1 = msat_make_plus(menv, xs[4], n_18_0) expr2 = msat_make_plus(menv, xs[5], n_14_0) expr3 = msat_make_plus(menv, xs[8], n_15_0) expr4 = msat_make_plus(menv, xs[13], n_9_0) expr5 = msat_make_plus(menv, xs[14], n_7_0) expr6 = msat_make_plus(menv, xs[15], n_12_0) expr7 = msat_make_plus(menv, xs[17], n_1_0) expr8 = msat_make_plus(menv, xs[18], n_1_0) expr9 = msat_make_plus(menv, xs[19], n_17_0) _t = msat_make_and(menv, msat_make_geq(menv, x_xs[12], expr0), msat_make_geq(menv, x_xs[12], expr1), msat_make_geq(menv, x_xs[12], expr2), msat_make_geq(menv, x_xs[12], expr3), msat_make_geq(menv, x_xs[12], expr4), msat_make_geq(menv, x_xs[12], expr5), msat_make_geq(menv, x_xs[12], expr6), msat_make_geq(menv, x_xs[12], expr7), msat_make_geq(menv, x_xs[12], expr8), msat_make_geq(menv, x_xs[12], expr9),) _t = msat_make_and(menv, _t, msat_make_or(menv, msat_make_equal(menv, x_xs[12], expr0), msat_make_equal(menv, x_xs[12], expr1), msat_make_equal(menv, x_xs[12], expr2), msat_make_equal(menv, x_xs[12], expr3), msat_make_equal(menv, x_xs[12], expr4), msat_make_equal(menv, x_xs[12], expr5), msat_make_equal(menv, x_xs[12], expr6), msat_make_equal(menv, x_xs[12], expr7), msat_make_equal(menv, x_xs[12], expr8), msat_make_equal(menv, x_xs[12], expr9),)) trans = msat_make_and(menv, trans, _t) expr0 = msat_make_plus(menv, xs[0], n_6_0) expr1 = msat_make_plus(menv, xs[2], n_10_0) expr2 = msat_make_plus(menv, xs[3], n_4_0) expr3 = msat_make_plus(menv, xs[6], n_2_0) expr4 = msat_make_plus(menv, xs[9], n_7_0) expr5 = msat_make_plus(menv, xs[10], n_8_0) expr6 = msat_make_plus(menv, xs[12], n_5_0) expr7 = msat_make_plus(menv, xs[13], n_17_0) expr8 = msat_make_plus(menv, xs[14], n_17_0) expr9 = msat_make_plus(menv, xs[15], n_10_0) _t = msat_make_and(menv, msat_make_geq(menv, x_xs[13], expr0), msat_make_geq(menv, x_xs[13], expr1), msat_make_geq(menv, x_xs[13], expr2), msat_make_geq(menv, x_xs[13], expr3), msat_make_geq(menv, x_xs[13], expr4), msat_make_geq(menv, x_xs[13], expr5), msat_make_geq(menv, x_xs[13], expr6), msat_make_geq(menv, x_xs[13], expr7), msat_make_geq(menv, x_xs[13], expr8), msat_make_geq(menv, x_xs[13], expr9),) _t = msat_make_and(menv, _t, msat_make_or(menv, msat_make_equal(menv, x_xs[13], expr0), msat_make_equal(menv, x_xs[13], expr1), msat_make_equal(menv, x_xs[13], expr2), msat_make_equal(menv, x_xs[13], expr3), msat_make_equal(menv, x_xs[13], expr4), msat_make_equal(menv, x_xs[13], expr5), msat_make_equal(menv, x_xs[13], expr6), msat_make_equal(menv, x_xs[13], expr7), msat_make_equal(menv, x_xs[13], expr8), msat_make_equal(menv, x_xs[13], expr9),)) trans = msat_make_and(menv, trans, _t) expr0 = msat_make_plus(menv, xs[2], n_2_0) expr1 = msat_make_plus(menv, xs[4], n_19_0) expr2 = msat_make_plus(menv, xs[5], n_14_0) expr3 = msat_make_plus(menv, xs[6], n_17_0) expr4 = msat_make_plus(menv, xs[8], n_14_0) expr5 = msat_make_plus(menv, xs[9], n_1_0) expr6 = msat_make_plus(menv, xs[10], n_18_0) expr7 = msat_make_plus(menv, xs[16], n_14_0) expr8 = msat_make_plus(menv, xs[18], n_20_0) expr9 = msat_make_plus(menv, xs[19], n_5_0) _t = msat_make_and(menv, msat_make_geq(menv, x_xs[14], expr0), msat_make_geq(menv, x_xs[14], expr1), msat_make_geq(menv, x_xs[14], expr2), msat_make_geq(menv, x_xs[14], expr3), msat_make_geq(menv, x_xs[14], expr4), msat_make_geq(menv, x_xs[14], expr5), msat_make_geq(menv, x_xs[14], expr6), msat_make_geq(menv, x_xs[14], expr7), msat_make_geq(menv, x_xs[14], expr8), msat_make_geq(menv, x_xs[14], expr9),) _t = msat_make_and(menv, _t, msat_make_or(menv, msat_make_equal(menv, x_xs[14], expr0), msat_make_equal(menv, x_xs[14], expr1), msat_make_equal(menv, x_xs[14], expr2), msat_make_equal(menv, x_xs[14], expr3), msat_make_equal(menv, x_xs[14], expr4), msat_make_equal(menv, x_xs[14], expr5), msat_make_equal(menv, x_xs[14], expr6), msat_make_equal(menv, x_xs[14], expr7), msat_make_equal(menv, x_xs[14], expr8), msat_make_equal(menv, x_xs[14], expr9),)) trans = msat_make_and(menv, trans, _t) expr0 = msat_make_plus(menv, xs[0], n_12_0) expr1 = msat_make_plus(menv, xs[1], n_2_0) expr2 = msat_make_plus(menv, xs[4], n_3_0) expr3 = msat_make_plus(menv, xs[5], n_12_0) expr4 = msat_make_plus(menv, xs[7], n_6_0) expr5 = msat_make_plus(menv, xs[8], n_9_0) expr6 = msat_make_plus(menv, xs[9], n_11_0) expr7 = msat_make_plus(menv, xs[10], n_8_0) expr8 = msat_make_plus(menv, xs[15], n_16_0) expr9 = msat_make_plus(menv, xs[18], n_11_0) _t = msat_make_and(menv, msat_make_geq(menv, x_xs[15], expr0), msat_make_geq(menv, x_xs[15], expr1), msat_make_geq(menv, x_xs[15], expr2), msat_make_geq(menv, x_xs[15], expr3), msat_make_geq(menv, x_xs[15], expr4), msat_make_geq(menv, x_xs[15], expr5), msat_make_geq(menv, x_xs[15], expr6), msat_make_geq(menv, x_xs[15], expr7), msat_make_geq(menv, x_xs[15], expr8), msat_make_geq(menv, x_xs[15], expr9),) _t = msat_make_and(menv, _t, msat_make_or(menv, msat_make_equal(menv, x_xs[15], expr0), msat_make_equal(menv, x_xs[15], expr1), msat_make_equal(menv, x_xs[15], expr2), msat_make_equal(menv, x_xs[15], expr3), msat_make_equal(menv, x_xs[15], expr4), msat_make_equal(menv, x_xs[15], expr5), msat_make_equal(menv, x_xs[15], expr6), msat_make_equal(menv, x_xs[15], expr7), msat_make_equal(menv, x_xs[15], expr8), msat_make_equal(menv, x_xs[15], expr9),)) trans = msat_make_and(menv, trans, _t) expr0 = msat_make_plus(menv, xs[0], n_7_0) expr1 = msat_make_plus(menv, xs[2], n_16_0) expr2 = msat_make_plus(menv, xs[3], n_17_0) expr3 = msat_make_plus(menv, xs[5], n_9_0) expr4 = msat_make_plus(menv, xs[7], n_8_0) expr5 = msat_make_plus(menv, xs[9], n_19_0) expr6 = msat_make_plus(menv, xs[12], n_15_0) expr7 = msat_make_plus(menv, xs[15], n_18_0) expr8 = msat_make_plus(menv, xs[17], n_1_0) expr9 = msat_make_plus(menv, xs[18], n_11_0) _t = msat_make_and(menv, msat_make_geq(menv, x_xs[16], expr0), msat_make_geq(menv, x_xs[16], expr1), msat_make_geq(menv, x_xs[16], expr2), msat_make_geq(menv, x_xs[16], expr3), msat_make_geq(menv, x_xs[16], expr4), msat_make_geq(menv, x_xs[16], expr5), msat_make_geq(menv, x_xs[16], expr6), msat_make_geq(menv, x_xs[16], expr7), msat_make_geq(menv, x_xs[16], expr8), msat_make_geq(menv, x_xs[16], expr9),) _t = msat_make_and(menv, _t, msat_make_or(menv, msat_make_equal(menv, x_xs[16], expr0), msat_make_equal(menv, x_xs[16], expr1), msat_make_equal(menv, x_xs[16], expr2), msat_make_equal(menv, x_xs[16], expr3), msat_make_equal(menv, x_xs[16], expr4), msat_make_equal(menv, x_xs[16], expr5), msat_make_equal(menv, x_xs[16], expr6), msat_make_equal(menv, x_xs[16], expr7), msat_make_equal(menv, x_xs[16], expr8), msat_make_equal(menv, x_xs[16], expr9),)) trans = msat_make_and(menv, trans, _t) expr0 = msat_make_plus(menv, xs[0], n_15_0) expr1 = msat_make_plus(menv, xs[3], n_7_0) expr2 = msat_make_plus(menv, xs[4], n_1_0) expr3 = msat_make_plus(menv, xs[5], n_5_0) expr4 = msat_make_plus(menv, xs[6], n_6_0) expr5 = msat_make_plus(menv, xs[8], n_4_0) expr6 = msat_make_plus(menv, xs[10], n_15_0) expr7 = msat_make_plus(menv, xs[12], n_4_0) expr8 = msat_make_plus(menv, xs[15], n_18_0) expr9 = msat_make_plus(menv, xs[18], n_18_0) _t = msat_make_and(menv, msat_make_geq(menv, x_xs[17], expr0), msat_make_geq(menv, x_xs[17], expr1), msat_make_geq(menv, x_xs[17], expr2), msat_make_geq(menv, x_xs[17], expr3), msat_make_geq(menv, x_xs[17], expr4), msat_make_geq(menv, x_xs[17], expr5), msat_make_geq(menv, x_xs[17], expr6), msat_make_geq(menv, x_xs[17], expr7), msat_make_geq(menv, x_xs[17], expr8), msat_make_geq(menv, x_xs[17], expr9),) _t = msat_make_and(menv, _t, msat_make_or(menv, msat_make_equal(menv, x_xs[17], expr0), msat_make_equal(menv, x_xs[17], expr1), msat_make_equal(menv, x_xs[17], expr2), msat_make_equal(menv, x_xs[17], expr3), msat_make_equal(menv, x_xs[17], expr4), msat_make_equal(menv, x_xs[17], expr5), msat_make_equal(menv, x_xs[17], expr6), msat_make_equal(menv, x_xs[17], expr7), msat_make_equal(menv, x_xs[17], expr8), msat_make_equal(menv, x_xs[17], expr9),)) trans = msat_make_and(menv, trans, _t) expr0 = msat_make_plus(menv, xs[0], n_20_0) expr1 = msat_make_plus(menv, xs[1], n_19_0) expr2 = msat_make_plus(menv, xs[2], n_19_0) expr3 = msat_make_plus(menv, xs[5], n_19_0) expr4 = msat_make_plus(menv, xs[6], n_3_0) expr5 = msat_make_plus(menv, xs[15], n_15_0) expr6 = msat_make_plus(menv, xs[16], n_4_0) expr7 = msat_make_plus(menv, xs[17], n_20_0) expr8 = msat_make_plus(menv, xs[18], n_11_0) expr9 = msat_make_plus(menv, xs[19], n_8_0) _t = msat_make_and(menv, msat_make_geq(menv, x_xs[18], expr0), msat_make_geq(menv, x_xs[18], expr1), msat_make_geq(menv, x_xs[18], expr2), msat_make_geq(menv, x_xs[18], expr3), msat_make_geq(menv, x_xs[18], expr4), msat_make_geq(menv, x_xs[18], expr5), msat_make_geq(menv, x_xs[18], expr6), msat_make_geq(menv, x_xs[18], expr7), msat_make_geq(menv, x_xs[18], expr8), msat_make_geq(menv, x_xs[18], expr9),) _t = msat_make_and(menv, _t, msat_make_or(menv, msat_make_equal(menv, x_xs[18], expr0), msat_make_equal(menv, x_xs[18], expr1), msat_make_equal(menv, x_xs[18], expr2), msat_make_equal(menv, x_xs[18], expr3), msat_make_equal(menv, x_xs[18], expr4), msat_make_equal(menv, x_xs[18], expr5), msat_make_equal(menv, x_xs[18], expr6), msat_make_equal(menv, x_xs[18], expr7), msat_make_equal(menv, x_xs[18], expr8), msat_make_equal(menv, x_xs[18], expr9),)) trans = msat_make_and(menv, trans, _t) expr0 = msat_make_plus(menv, xs[1], n_14_0) expr1 = msat_make_plus(menv, xs[3], n_7_0) expr2 = msat_make_plus(menv, xs[6], n_20_0) expr3 = msat_make_plus(menv, xs[7], n_18_0) expr4 = msat_make_plus(menv, xs[8], n_19_0) expr5 = msat_make_plus(menv, xs[9], n_5_0) expr6 = msat_make_plus(menv, xs[10], n_4_0) expr7 = msat_make_plus(menv, xs[12], n_4_0) expr8 = msat_make_plus(menv, xs[15], n_6_0) expr9 = msat_make_plus(menv, xs[19], n_13_0) _t = msat_make_and(menv, msat_make_geq(menv, x_xs[19], expr0), msat_make_geq(menv, x_xs[19], expr1), msat_make_geq(menv, x_xs[19], expr2), msat_make_geq(menv, x_xs[19], expr3), msat_make_geq(menv, x_xs[19], expr4), msat_make_geq(menv, x_xs[19], expr5), msat_make_geq(menv, x_xs[19], expr6), msat_make_geq(menv, x_xs[19], expr7), msat_make_geq(menv, x_xs[19], expr8), msat_make_geq(menv, x_xs[19], expr9),) _t = msat_make_and(menv, _t, msat_make_or(menv, msat_make_equal(menv, x_xs[19], expr0), msat_make_equal(menv, x_xs[19], expr1), msat_make_equal(menv, x_xs[19], expr2), msat_make_equal(menv, x_xs[19], expr3), msat_make_equal(menv, x_xs[19], expr4), msat_make_equal(menv, x_xs[19], expr5), msat_make_equal(menv, x_xs[19], expr6), msat_make_equal(menv, x_xs[19], expr7), msat_make_equal(menv, x_xs[19], expr8), msat_make_equal(menv, x_xs[19], expr9),)) trans = msat_make_and(menv, trans, _t) # ltl property: (X (F (G (X (x_12 - x_13 > 1))))) ltl = enc.make_X(enc.make_F(enc.make_G(enc.make_X(msat_make_gt(menv, msat_make_minus(menv, xs[12], xs[13]), msat_make_number(menv, "1")))))) return TermMap(curr2next), init, trans, ltl
bc6317ffce733d59f4cb9a2013922e8ab494fce7
b1bc2e54f8cd35c9abb6fc4adb35b386c12fe6b4
/toontown/src/battle/BattleBase.py
4534121d532aca205c36f1cedce7650e1355db65
[]
no_license
satire6/Anesidora
da3a44e2a49b85252b87b612b435fb4970469583
0e7bfc1fe29fd595df0b982e40f94c30befb1ec7
refs/heads/master
2022-12-16T20:05:13.167119
2020-09-11T16:58:04
2020-09-11T17:02:06
294,751,966
89
32
null
null
null
null
UTF-8
Python
false
false
13,125
py
from pandac.PandaModules import * from toontown.toonbase.ToontownBattleGlobals import * from direct.task.Timer import * import math from direct.directnotify import DirectNotifyGlobal from toontown.toon import NPCToons from toontown.toonbase import TTLocalizer # locations of the various types of data within the toonAttacks list # used when calculating attack damage, accuracy bonus, and damage bonus # TOON_ID_COL = 0 TOON_TRACK_COL = 1 TOON_LVL_COL = 2 TOON_TGT_COL = 3 TOON_HP_COL = 4 TOON_ACCBONUS_COL = 5 TOON_HPBONUS_COL = 6 TOON_KBBONUS_COL = 7 SUIT_DIED_COL = 8 SUIT_REVIVE_COL = 9 # locations of the various types of data within the suitAttacks list # used when calculating toon attack type, target, and attack damage # SUIT_ID_COL = 0 SUIT_ATK_COL = 1 SUIT_TGT_COL = 2 SUIT_HP_COL = 3 TOON_DIED_COL = 4 SUIT_BEFORE_TOONS_COL = 5 SUIT_TAUNT_COL = 6 # Toon actions and attacks # NO_ID = -1 NO_ATTACK = -1 UN_ATTACK = -2 PASS_ATTACK = -3 # used so we can display pass indicator NO_TRAP = -1 LURE_SUCCEEDED = -1 PASS = 98 SOS = 99 NPCSOS = 97 PETSOS = 96 FIRE = 100 # Defined in ToontownBattleGlobals.py HEAL = HEAL_TRACK TRAP = TRAP_TRACK LURE = LURE_TRACK SOUND = SOUND_TRACK THROW = THROW_TRACK SQUIRT = SQUIRT_TRACK DROP = DROP_TRACK # For reference, in ToontownBattleGlobals # NPC_RESTOCK_GAGS = 7 # NPC_TOONS_HIT = 8 # NPC_COGS_MISS = 9 # Attack times # TOON_ATTACK_TIME = 12.0 SUIT_ATTACK_TIME = 12.0 TOON_TRAP_DELAY = 0.8 TOON_SOUND_DELAY = 1.0 TOON_THROW_DELAY = 0.5 TOON_THROW_SUIT_DELAY = 1.0 TOON_SQUIRT_DELAY = 0.5 TOON_SQUIRT_SUIT_DELAY = 1.0 TOON_DROP_DELAY = 0.8 TOON_DROP_SUIT_DELAY = 1.0 TOON_RUN_T = 3.3 TIMEOUT_PER_USER = 5 TOON_FIRE_DELAY = 0.5 TOON_FIRE_SUIT_DELAY = 1.0 # Reward times # REWARD_TIMEOUT = 120 FLOOR_REWARD_TIMEOUT = 4 BUILDING_REWARD_TIMEOUT = 300 try: # debugBattles = base.config.GetBool('debug-battles', 0) CLIENT_INPUT_TIMEOUT = base.config.GetFloat('battle-input-timeout', TTLocalizer.BBbattleInputTimeout) except: # debugBattles = simbase.config.GetBool('debug-battles', 0) CLIENT_INPUT_TIMEOUT = simbase.config.GetFloat('battle-input-timeout', TTLocalizer.BBbattleInputTimeout) def levelAffectsGroup(track, level): #return (level % 2) return attackAffectsGroup(track, level) #UBER def attackAffectsGroup(track, level, type=None): #if (track == HEAL and (level % 2)): # return 1 #elif (track == LURE and (level % 2)): # return 1 #elif (track == SOUND): # return 1 #elif (track == NPCSOS or type == NPCSOS or track == PETSOS or type == PETSOS): # return 1 #else: # return 0 if (track == NPCSOS or type == NPCSOS or track == PETSOS or type == PETSOS): return 1 elif (track >= 0) and (track <= DROP_TRACK): return AvPropTargetCat[AvPropTarget[track]][level] else: return 0 def getToonAttack(id, track=NO_ATTACK, level=-1, target=-1): """ getToonAttack(id, track, level, target) """ return [id, track, level, target, [], 0, 0, [], 0, 0] def getDefaultSuitAttacks(): """ getDefaultSuitAttacks() """ suitAttacks = [[NO_ID, NO_ATTACK, -1, [], 0, 0, 0], [NO_ID, NO_ATTACK, -1, [], 0, 0, 0], [NO_ID, NO_ATTACK, -1, [], 0, 0, 0], [NO_ID, NO_ATTACK, -1, [], 0, 0, 0]] return suitAttacks def getDefaultSuitAttack(): """ getDefaultSuitAttack() """ return [NO_ID, NO_ATTACK, -1, [], 0, 0, 0] def findToonAttack(toons, attacks, track): """ findToonAttack(toons, attacks, track) Return all attacks of the specified track sorted by increasing level """ foundAttacks = [] for t in toons: if (attacks.has_key(t)): attack = attacks[t] local_track = attack[TOON_TRACK_COL] # If it's an NPC, convert to the appropriate track if (track != NPCSOS and attack[TOON_TRACK_COL] == NPCSOS): local_track = NPCToons.getNPCTrack(attack[TOON_TGT_COL]) if (local_track == track): if local_track == FIRE: canFire = 1 for attackCheck in foundAttacks: if attackCheck[TOON_TGT_COL] == attack[TOON_TGT_COL]: canFire = 0 else: pass if canFire: assert(t == attack[TOON_ID_COL]) foundAttacks.append(attack) else: assert(t == attack[TOON_ID_COL]) foundAttacks.append(attack) def compFunc(a, b): if (a[TOON_LVL_COL] > b[TOON_LVL_COL]): return 1 elif (a[TOON_LVL_COL] < b[TOON_LVL_COL]): return -1 return 0 foundAttacks.sort(compFunc) return foundAttacks # A little pad time added to server time calculations, to allow for # slow or out-of-sync clients. In general, the AI server will give # each client the expected time to complete its movie, plus # SERVER_BUFFER_TIME, and then will ask all the clients to move on # with or without the slow one(s). SERVER_BUFFER_TIME = 2.0 #CLIENT_INPUT_TIMEOUT = TTLocalizer.BBbattleInputTimeout SERVER_INPUT_TIMEOUT = CLIENT_INPUT_TIMEOUT + SERVER_BUFFER_TIME # The maximum time we expect a suit to take walk to its position in # battle. MAX_JOIN_T = TTLocalizer.BBbattleInputTimeout # The length of time for a faceoff taunt. FACEOFF_TAUNT_T = 3.5 # length of time we look at the interactive prop helping toons FACEOFF_LOOK_AT_PROP_T = 6 # The amount of time it takes to open up the elevator doors and walk # out. ELEVATOR_T = 4.0 BATTLE_SMALL_VALUE = 0.0000001 # This is the furthest we expect to have to walk from the face-off to # get the battle. If we are further away than this, we suspect we are # victims of clock skew. MAX_EXPECTED_DISTANCE_FROM_BATTLE = 50.0 class BattleBase: notify = DirectNotifyGlobal.directNotify.newCategory('BattleBase') # This defines the points where the suits will stand in battle. # For each number of suits in the battle (1, 2, 3, or 4), the # corresponding element of suitPoints is a list of n (pos, heading) # pairs for each of the n suits to stand. suitPoints = ( ((Point3(0, 5, 0), 179), ), ((Point3(2, 5.3, 0), 170), (Point3(-2, 5.3, 0), 180), ), ((Point3(4, 5.2, 0), 170), (Point3(0, 6, 0), 179), (Point3(-4, 5.2, 0), 190), ), ((Point3(6, 4.4, 0), 160), (Point3(2, 6.3, 0), 170), (Point3(-2, 6.3, 0), 190), (Point3(-6, 4.4, 0), 200), )) # And this defines the single set of points for suits who are # "pending": they have joined the battle, but are waiting for the # next round to begin before they take their place. suitPendingPoints = ( (Point3(-4, 8.2, 0), 190), (Point3(0, 9, 0), 179), (Point3(4, 8.2, 0), 170), (Point3(8, 3.2, 0), 160), ) # This is similar to the above, but for toons instead of suits. toonPoints = ( ((Point3(0, -6, 0), 0), ), ((Point3(1.5, -6.5, 0), 5), (Point3(-1.5, -6.5, 0), -5), ), ((Point3(3, -6.75, 0), 5), (Point3(0, -7, 0), 0), (Point3(-3, -6.75, 0), -5), ), ((Point3(4.5, -7, 0), 10), (Point3(1.5, -7.5, 0), 5), (Point3(-1.5, -7.5, 0), -5), (Point3(-4.5, -7, 0), -10), )) toonPendingPoints = ( (Point3(-3, -8, 0), -5), (Point3(0, -9, 0), 0), (Point3(3, -8, 0), 5), (Point3(5.5, -5.5, 0), 20), ) # These define the points on the perimeter of the battle circle # for suits and toons who are "joining"; this allows the avatar to # walk a circle around the battle to get to its pending point, # defined above. posA = Point3(0, 10, 0) posB = Point3(-7.071, 7.071, 0) posC = Point3(-10, 0, 0) posD = Point3(-7.071, -7.071, 0) posE = Point3(0, -10, 0) posF = Point3(7.071, -7.071, 0) posG = Point3(10, 0, 0) posH = Point3(7.071, 7.071, 0) allPoints = (posA, posB, posC, posD, posE, posF, posG, posH) toonCwise = [posA, posB, posC, posD, posE] toonCCwise = [posH, posG, posF, posE] suitCwise = [posE, posF, posG, posH, posA] suitCCwise = [posD, posC, posB, posA] suitSpeed = 4.8 toonSpeed = 8.0 def __init__(self): """ __init__() """ self.pos = Point3(0, 0, 0) self.initialSuitPos = Point3(0, 1, 0) self.timer = Timer() self.resetLists() def resetLists(self): """ resetLists() """ self.suits = [] self.pendingSuits = [] self.joiningSuits = [] self.activeSuits = [] self.luredSuits = [] self.suitGone = 0 self.toons = [] self.joiningToons = [] self.pendingToons = [] self.activeToons = [] self.runningToons = [] self.toonGone = 0 # keep track of toons who helped, so we know which toons just passed all the time self.helpfulToons = [] def calcFaceoffTime(self, centerpos, suitpos): """ calcFaceoffTime(centerpos, suitpos) """ facing = Vec3(centerpos - suitpos) facing.normalize() suitdest = Point3(centerpos - Point3(facing * 6.0)) dist = Vec3(suitdest - suitpos).length() return (dist / BattleBase.suitSpeed) def calcSuitMoveTime(self, pos0, pos1): """ calcSuitMoveTime(pos0, pos1) """ dist = Vec3(pos0 - pos1).length() return (dist / BattleBase.suitSpeed) def calcToonMoveTime(self, pos0, pos1): """ calcToonMoveTime(pos0, pos1) """ dist = Vec3(pos0 - pos1).length() return (dist / BattleBase.toonSpeed) def buildJoinPointList(self, avPos, destPos, toon=0): """ buildJoinPointList(avPos, destPos, toon) This function is called when suits or toons ask to join the battle and need to figure out how to walk to their selected pending point (destPos). It builds a list of points the avatar should walk through in order to get there. If the list is empty, the avatar will walk straight there. """ # In the default case, avatars walk around the perimeter of # the battle cell to get to their target point. Figure out # the shortest path around the circle. # First, find the closest battle join point minDist = 999999.0 nearestP = None for p in BattleBase.allPoints: dist = Vec3(avPos - p).length() if (dist < minDist): nearestP = p minDist = dist assert(nearestP != None) self.notify.debug('buildJoinPointList() - avp: %s nearp: %s' % \ (avPos, nearestP)) # See if destPos is the closest point dist = Vec3(avPos - destPos).length() if (dist < minDist): self.notify.debug('buildJoinPointList() - destPos is nearest') return [] if (toon == 1): if (nearestP == BattleBase.posE): self.notify.debug('buildJoinPointList() - posE') plist = [BattleBase.posE] elif (BattleBase.toonCwise.count(nearestP) == 1): self.notify.debug('buildJoinPointList() - clockwise') index = BattleBase.toonCwise.index(nearestP) plist = BattleBase.toonCwise[index+1:] else: self.notify.debug('buildJoinPointList() - counter-clockwise') assert(BattleBase.toonCCwise.count(nearestP) == 1) index = BattleBase.toonCCwise.index(nearestP) plist = BattleBase.toonCCwise[index+1:] else: if (nearestP == BattleBase.posA): self.notify.debug('buildJoinPointList() - posA') plist = [BattleBase.posA] elif (BattleBase.suitCwise.count(nearestP) == 1): self.notify.debug('buildJoinPointList() - clockwise') index = BattleBase.suitCwise.index(nearestP) plist = BattleBase.suitCwise[index+1:] else: self.notify.debug('buildJoinPointList() - counter-clockwise') assert(BattleBase.suitCCwise.count(nearestP) == 1) index = BattleBase.suitCCwise.index(nearestP) plist = BattleBase.suitCCwise[index+1:] self.notify.debug('buildJoinPointList() - plist: %s' % plist) return plist def addHelpfulToon(self, toonId): """Add toonId to our helpful toons, make sure it's in the list at most once.""" if toonId not in self.helpfulToons: self.helpfulToons.append(toonId)
2d84981defdffa31bab43937d8c437d0f446791f
cb4d5f3b8e4bd0a35acd3b61152f78ed7098ddb6
/baby/urls.py
127336d28e6864648102c2c9db0effde63b74ca7
[]
no_license
apatten001/Shower
8b3c5a94d11c2299774c6839a956e59e30e6b8cc
b4fe99ffbe992f6b01c5b86d9331771a0554cb11
refs/heads/master
2021-04-07T02:35:51.035339
2018-03-15T21:44:36
2018-03-15T21:44:36
125,427,382
0
0
null
null
null
null
UTF-8
Python
false
false
894
py
"""baby URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.0/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path, include from shower.views import HomeView urlpatterns = [ path('admin/', admin.site.urls), path('', HomeView.as_view(), name='home'), path('', include('shower.urls', namespace='shower')), ]