blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
listlengths
1
1
author_id
stringlengths
1
132
9fc53d2f86b48376293a5a058d7bc51c042f9954
432a8d6bc8ad5af9cb5585c2184b05f58e842285
/realestate/utils/lib.py
4d27c004e2ffb49fcfc1a66ea242da7599daace1
[]
no_license
314casso/estate-agent
963e2a909ac9b190253d8ee40a69947cf19b1261
ccd07bd599dc51251523cf5e4ea6991b1d0d529d
refs/heads/master
2022-03-21T04:37:44.946548
2022-03-15T19:29:06
2022-03-15T19:29:06
4,037,752
7
2
null
null
null
null
UTF-8
Python
false
false
2,169
py
# -*- coding: utf-8 -*- from estatebase.models import LayoutFeature _capital_letters = { u'А': u'A', u'Б': u'B', u'В': u'V', u'Г': u'G', u'Д': u'D', u'Е': u'E', u'Ё': u'E', u'Ж': u'Zh', u'З': u'Z', u'И': u'I', u'Й': u'Y', u'К': u'K', u'Л': u'L', u'М': u'M', u'Н': u'N', u'О': u'O', u'П': u'P', u'Р': u'R', u'С': u'S', u'Т': u'T', u'У': u'U', u'Ф': u'F', u'Х': u'H', u'Ц': u'Ts', u'Ч': u'Ch', u'Ш': u'Sh', u'Щ': u'Sch', u'Ъ': u'', u'Ы': u'Y', u'Ь': u'', u'Э': u'E', u'Ю': u'Yu', u'Я': u'Ya',} _lower_case_letters = { u'а': u'a', u'б': u'b', u'в': u'v', u'г': u'g', u'д': u'd', u'е': u'e', u'ё': u'e', u'ж': u'zh', u'з': u'z', u'и': u'i', u'й': u'y', u'к': u'k', u'л': u'l', u'м': u'm', u'н': u'n', u'о': u'o', u'п': u'p', u'р': u'r', u'с': u's', u'т': u't', u'у': u'u', u'ф': u'f', u'х': u'h', u'ц': u'ts', u'ч': u'ch', u'ш': u'sh', u'щ': u'sch', u'ъ': u'', u'ы': u'y', u'ь': u'', u'э': u'e', u'ю': u'yu', u'я': u'ya',} def transliterate(string): capital_letters = _capital_letters lower_case_letters = _lower_case_letters len_str = len(string) translit_string = u"" for index, char in enumerate(string, 1): repl = lower_case_letters.get(char) if repl: translit_string += repl continue repl = capital_letters.get(char) if repl: if len_str > index: if string[index] not in lower_case_letters: repl = repl.upper() else: repl = repl.upper() else: repl = '' translit_string += repl return translit_string for st in LayoutFeature.objects.all().order_by('name'): result = '%s = %s' % (transliterate(st.name), st.pk) print result.upper() # lst = list(WallConstrucion.objects.values_list('name', flat=True).order_by('id')) # print ', '.join(lst)
7f5db971fd478bb2ddf727c5947c78c2ad8f595f
ef50ddb13bc1e21e0feb7ccef228d7593a67924a
/vize/130401064.py
cbb6d848233adc660af1fb03870ab2d065225646
[ "Unlicense" ]
permissive
nyucel/blm2010
8577ffda17312b41545ad4b9e2fef10b99bd3d8e
544df2b5c946fba1864c4c6c3a6e349d0f10d18e
refs/heads/master
2022-11-16T16:12:50.811339
2020-06-27T11:10:55
2020-06-27T11:10:55
259,298,537
3
155
Unlicense
2020-06-27T11:10:57
2020-04-27T11:49:35
Python
UTF-8
Python
false
false
2,622
py
# Süleyman Baltacı - 130401064 # -*- coding: utf-8 -*- import numpy as np def RMSE(pred, target): err = np.subtract(target, pred) return (np.mean(err**2))**0.5 # veri dosyasi acilir f = open("veriler.txt") # veriler okunur, varsa bos satirlar silinir data = f.readlines() if "\n" in data: data.remove("\n") # veriler numpy array seklinde y'ye kaydedilir, x 0'dan baslatilir y = np.array(data, dtype=int) x = np.array([i for i in range(len(y))], dtype=int) # sonuc dosyasi acilir f_sonuc = open("sonuclar.txt","w+") f_sonuc.write("Tum veri uzerine tek bir polinom tanimlandiginda:\n\n") ## Tum veri uzerine tek bir polinom fit edilginde: RMSE_list = [0]*6 for i in range(6): # ip : interpolasyon fonksiyonu poly = np.poly1d(np.polyfit(x, y, i+1)) f_sonuc.write(f"Polinom derecesi: {i+1} \n") f_sonuc.write(f"Katsayilar: {poly.coeffs} \n") # RMSE hesaplanir RMSE_list[i] = RMSE(poly(x), y) f_sonuc.write(f"RMSE: {RMSE_list[i]:.3f} \n\n") # en iyi sonucu veren polinomun derecesi bulunur, RMSE ile birlikte yazdirilir eniyi_derece = np.argmin(RMSE_list)+1 f_sonuc.write(f"En dusuk hatayi {eniyi_derece}. dereceden polinom vermektedir.\n") f_sonuc.write(f"RMSE: {RMSE_list[eniyi_derece-1]:.3f} \n\n\n") ## veri onluk kisimlara bolunerek her birine polinom fit edildiginde: f_sonuc.write("Her bir onluk icin farkli polinomlar bulundugunda:\n\n") # kac farkli polinom gerektigi hesaplanir: onluk_sayisi = int((len(x)/10)) + 1 for i in range(onluk_sayisi): # polinom fit edilecek aralik icin indexler bulunur, x ve y datasi secilir: i_min = i*10 i_max = min(i*10+9, len(x)-1) x_curr = x[i_min:i_max+1:] y_curr = y[i_min:i_max+1:] # her bir dereceden polinomlarin ve RMSE'lerinin tutulacagi listler tanimlanir poly_lst =[] RMSE_list = [] # polinom fit edilecek aralik eger 7'den kucuk veri iceriyorsa, # en fazla (bu araliktaki nokta sayisi) - 1 dereceli polinom denenir for j in range(min(i_max-i_min, 6)): # poly_lst listesine j dereceli polinom fit edilir, RMSE hesaplanir poly_lst.append(np.poly1d(np.polyfit(x_curr, y_curr, j+1))) RMSE_list.append(RMSE(poly_lst[j](x_curr), y_curr)) # en iyi sonucu veren polinom derecesi bulunur ve sonuc yazdirilir eniyi_derece = np.argmin(RMSE_list) + 1 f_sonuc.write(f"x : [ {x[i_min]} {x[i_max]} ]\n") f_sonuc.write(f"Polinom derecesi: {eniyi_derece}, ") f_sonuc.write(f"RMSE: {RMSE_list[eniyi_derece-1]:.3f} \n\n") f_sonuc.close() f.close()
628f41c51f58945e9f1e879863efe51d95e39ea8
cdf38bcd5f8a1f383a6c3b7d427382c3b83d4831
/users/schema.py
e49405ee50228175e5c6b66cdf5d7415c987d34b
[]
no_license
profmcdan/real-estate-api
95725947f8893fbdf37156e2dc0055cd64e4f75e
44fe874151844139dc1f912128534565a6cfc029
refs/heads/master
2023-08-09T07:15:25.400049
2019-10-19T20:05:44
2019-10-19T20:05:44
216,026,644
0
0
null
2023-07-22T19:08:33
2019-10-18T13:09:48
Python
UTF-8
Python
false
false
1,247
py
from django.contrib.auth import get_user_model import graphene from graphene_django import DjangoObjectType from graphql import GraphQLError class UserType(DjangoObjectType): class Meta: model = get_user_model() class CreateUser(graphene.Mutation): user = graphene.Field(UserType) class Arguments: email = graphene.String(required=True) password = graphene.String(required=True) firstname = graphene.String(required=True) lastname = graphene.String(required=True) def mutate(self, info, email, firstname, lastname, password): user = get_user_model().objects.create_user(email=email, password=password, firstname=firstname, lastname=lastname) return CreateUser(user=user) class Mutation(graphene.ObjectType): create_user = CreateUser.Field() class Query(graphene.ObjectType): users = graphene.List(UserType) me = graphene.Field(UserType) def resolve_users(self, info): return get_user_model().objects.all() def resolve_me(self, info): user = info.context.user or None if user.is_anonymous: raise GraphQLError('Authentication required') return user
bd0ff58733337b54a62c497740f531e4ad1eb6c9
e972e39c4580ce0099eb905c1922b501dce54901
/update/manager.py
425234f3f256bc175b8da462919582e9e8e6f79b
[ "Apache-2.0" ]
permissive
y-du/module-update-service
cf8070e1fa842ea7767fb8315b2bb1bd377ff623
34de1474ab26cd8f590d93809ddf1376a62d8b49
refs/heads/master
2022-09-12T09:21:12.200249
2020-05-25T18:46:26
2020-05-25T18:46:26
266,853,076
0
0
null
null
null
null
UTF-8
Python
false
false
3,985
py
""" Copyright 2020 Yann Dumont Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ __all__ = ("Manager", ) from .logger import getLogger from .configuration import mu_conf, EnvVars from .util import ModuleState, getDelay import requests import time logger = getLogger(__name__.split(".", 1)[-1]) class Manager: def __get(self, url): response = requests.get(url=url) if not response.status_code == 200: raise RuntimeError(response.status_code) return response.json() def __getRemoteModules(self, url, mod_ids): modules = dict() for mod_id in mod_ids: try: modules[mod_id] = self.__get("{}/{}".format(url, mod_id)) except Exception as ex: logger.error("can't retrieve module '{}' from registry - {}".format(mod_id, ex)) return modules def __mergeConfigs(self, old: dict, new: dict): for key in old: for k, v in old[key]["service_configs"].items(): if k in new[key]["service_configs"] and not v == new[key]["service_configs"][k]: logger.debug("found user value for '{}'".format(k)) new[key]["service_configs"][k] = v def run(self): try: while True: time.sleep(getDelay()) try: local_mods = self.__get("{}/{}".format(mu_conf.MM.url, mu_conf.MM.api)) remote_mods = self.__getRemoteModules("{}/{}".format(mu_conf.MR.url, mu_conf.MR.api), local_mods.keys()) pending = list() for mod_id in set(local_mods) & set(remote_mods): logger.info("checking '{}' ...".format(local_mods[mod_id]["name"])) if not local_mods[mod_id]["hash"] == remote_mods[mod_id]["hash"]: pending.append(mod_id) logger.info("update pending for '{}' ...".format(local_mods[mod_id]["name"])) for mod_id in pending: logger.info("merging configs for '{}' ...".format(local_mods[mod_id]["name"])) configs = self.__get("{}/{}/{}".format(mu_conf.CS.url, mu_conf.CS.api, mod_id)) self.__mergeConfigs(configs, remote_mods[mod_id]["services"]) for mod_id in pending: logger.info("updating '{}' ...".format(local_mods[mod_id]["name"])) requests.patch(url="{}/{}/{}".format(mu_conf.MM.url, mu_conf.MM.api, mod_id), json={"state": ModuleState.inactive}) while True: response = self.__get("{}/{}/{}".format(mu_conf.MM.url, mu_conf.MM.api, mod_id)) if response["state"] == ModuleState.inactive: break time.sleep(1) remote_mods[mod_id]["id"] = mod_id requests.post(url="{}/{}".format(mu_conf.MM.url, mu_conf.MM.api), json=remote_mods[mod_id]) requests.patch(url="{}/{}/{}".format(mu_conf.MM.url, mu_conf.MM.api, mod_id), json={"state": ModuleState.active}) logger.info("update for '{}' successful".format(local_mods[mod_id]["name"])) except Exception as ex: logger.exception("error during update:".format(ex)) finally: pass
ea0b5eede4c8cb9424aa453427c0777b0e2f0a88
ac16a937f32602cf16114463f8e875a972f64c27
/docs/dolfin/1.0.beta/python/source/demo/undocumented/curl-curl/python/demo_curl-curl.py
c4b4e14e33bf345faaaab62069618ae9936b675d
[]
no_license
mparno/fenics-web
2073248da6f9918ffedbe9be8a3433bc1cbb7ffb
7202752da876b1f9ab02c1d5a5f28ff5da526528
refs/heads/master
2021-05-05T04:45:46.436236
2016-12-06T20:25:44
2016-12-06T20:25:44
118,628,385
2
0
null
2018-01-23T15:21:47
2018-01-23T15:21:46
null
UTF-8
Python
false
false
2,160
py
""" Eddy currents phenomena in low conducting body can be described using electric vector potential and curl-curl operator: \nabla \times \nabla \times T = - \frac{\partial B}{\partial t} Electric vector potential defined as: \nabla \times T = J Boundary condition: J_n = 0, T_t=T_w=0, \frac{\partial T_n}{\partial n} = 0 which is naturaly fulfilled for zero Dirichlet BC with Nedelec (edge) elements. """ # Copyright (C) 2009 Bartosz Sawicki # # This file is part of DOLFIN. # # DOLFIN is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # DOLFIN is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with DOLFIN. If not, see <http://www.gnu.org/licenses/>. # # Modified by Anders Logg 2011 # # First added: 2009-04-02 # Last changed: 2011-06-28 from dolfin import * # Create mesh mesh = UnitSphere(8) # Define function spaces PN = FunctionSpace(mesh, "Nedelec 1st kind H(curl)", 1) P1 = VectorFunctionSpace(mesh, "CG", 1) # Define test and trial functions v0 = TestFunction(PN) u0 = TrialFunction(PN) v1 = TestFunction(P1) u1 = TrialFunction(P1) # Define functions dbdt = Expression(("0.0", "0.0", "1.0"), degree=1) zero = Expression(("0.0", "0.0", "0.0"), degree=1) T = Function(PN) J = Function(P1) # Dirichlet boundary class DirichletBoundary(SubDomain): def inside(self, x, on_boundary): return on_boundary # Boundary condition bc = DirichletBC(PN, zero, DirichletBoundary()) # Solve eddy currents equation (using potential T) solve(inner(curl(v0), curl(u0))*dx == -inner(v0, dbdt)*dx, T, bc) # Solve density equation solve(inner(v1, u1)*dx == dot(v1, curl(T))*dx, J) # Plot solution plot(J) file=File("current_density.pvd") file << J # Hold plot interactive()
f3cb3e73b19d480a327c9c4be7db3b599096e61e
9918208c80a3c396d8a1e13783d501d60dbc2050
/integration_tests/conftest.py
3fb8ef70a199bdfdb9c0ef602f656687b6fc764c
[]
no_license
benjimin/digitalearthau
2d3010be76fad0d0b6b4854dbbad07e98254b239
5098bf3c88627cad78a8caa5ab703c586c17a6f7
refs/heads/develop
2022-02-27T07:36:16.009689
2017-09-14T05:51:27
2017-09-14T05:51:27
103,460,937
0
0
null
2017-09-13T23:10:15
2017-09-13T23:10:15
null
UTF-8
Python
false
false
3,552
py
import itertools import logging import os from contextlib import contextmanager from pathlib import Path import pytest import shutil import yaml import digitalearthau from datacube.config import LocalConfig from datacube.index._api import Index from datacube.index.postgres import PostgresDb from datacube.index.postgres import _dynamic from datacube.index.postgres.tables import _core try: from yaml import CSafeLoader as SafeLoader except ImportError: from yaml import SafeLoader INTEGRATION_DEFAULT_CONFIG_PATH = Path(__file__).parent.joinpath('deaintegration.conf') INTEGRATION_TEST_DATA = Path(__file__).parent / 'data' PROJECT_ROOT = Path(__file__).parents[1] DEA_MD_TYPES = digitalearthau.CONFIG_DIR / 'metadata-types.yaml' DEA_PRODUCTS_DIR = digitalearthau.CONFIG_DIR / 'products' def load_yaml_file(path): with path.open() as f: return list(yaml.load_all(f, Loader=SafeLoader)) @pytest.fixture def integration_test_data(tmpdir): d = tmpdir.join('integration_data') shutil.copytree(str(INTEGRATION_TEST_DATA), str(d)) return Path(str(d)) @pytest.fixture def dea_index(index: Index): """ An index initialised with DEA config (products) """ # Add DEA metadata types, products. They'll be validated etc. for md_type_def in load_yaml_file(DEA_MD_TYPES): index.metadata_types.add(index.metadata_types.from_doc(md_type_def)) for product_file in DEA_PRODUCTS_DIR.glob('*.yaml'): for product_def in load_yaml_file(product_file): index.products.add_document(product_def) return index @pytest.fixture def datasets(dea_index): # Add test datasets, collection definitions. pass @pytest.fixture def integration_config_paths(): return ( str(INTEGRATION_DEFAULT_CONFIG_PATH), os.path.expanduser('~/.datacube_integration.conf') ) @pytest.fixture def global_integration_cli_args(integration_config_paths): """ The first arguments to pass to a cli command for integration test configuration. """ # List of a config files in order. return list(itertools.chain(*(('--config_file', f) for f in integration_config_paths))) @pytest.fixture def local_config(integration_config_paths): return LocalConfig.find(integration_config_paths) @pytest.fixture() def db(local_config): db = PostgresDb.from_config(local_config, application_name='dea-test-run', validate_connection=False) # Drop and recreate tables so our tests have a clean db. with db.connect() as connection: _core.drop_db(connection._connection) remove_dynamic_indexes() # Disable informational messages since we're doing this on every test run. with _increase_logging(_core._LOG) as _: _core.ensure_db(db._engine) # We don't need informational create/drop messages for every config change. _dynamic._LOG.setLevel(logging.WARN) yield db db.close() @contextmanager def _increase_logging(log, level=logging.WARN): previous_level = log.getEffectiveLevel() log.setLevel(level) yield log.setLevel(previous_level) def remove_dynamic_indexes(): """ Clear any dynamically created indexes from the schema. """ # Our normal indexes start with "ix_", dynamic indexes with "dix_" for table in _core.METADATA.tables.values(): table.indexes.intersection_update([i for i in table.indexes if not i.name.startswith('dix_')]) @pytest.fixture def index(db): """ :type db: datacube.index.postgres._api.PostgresDb """ return Index(db)
3035b1f0f246ca1584d7f6b2f6e66ffe09a73ff8
07f34b776ac30e0e5e431730826eba0b324c5ad6
/fleet/deploy/template_manager.py
b8cfdc6736c8d9fdebaaed15d5a81f4add8297d2
[ "MIT" ]
permissive
chrismcguire/fleet-py
bc54bd3293fcf5f921149ea412fe80ae8a9201bf
be8fdfc09e70110a8169add6a682e19d46ef6252
refs/heads/master
2021-01-17T09:24:16.390100
2015-08-13T22:55:16
2015-08-13T22:55:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
992
py
__author__ = 'sukrit' from pkg_resources import resource_string BUNDLED_TEMPLATE_PREFIX = "bundled://" RAW_TEMPLATE_PREFIX = "raw://" def fetch_template(template_url): if template_url.startswith('http://') or \ template_url.startswith('https://'): pass if template_url.startswith(BUNDLED_TEMPLATE_PREFIX) and \ len(template_url) > len(BUNDLED_TEMPLATE_PREFIX): template_file = template_url[len(BUNDLED_TEMPLATE_PREFIX):] +\ ".service" template = resource_string(__name__, '../../templates/'+template_file) return template if template_url.startswith(RAW_TEMPLATE_PREFIX) and \ len(template_url) > len(RAW_TEMPLATE_PREFIX): return template_url[len(RAW_TEMPLATE_PREFIX):] def fetch_bundled_template_url(group='default', template_type='app'): template_url = '{}{}-{}'.format(BUNDLED_TEMPLATE_PREFIX, group, template_type) return template_url
b03a754744d2e92f98ee97643c8249fbd63105f3
20f951bd927e4e5cde8ef7781813fcf0d51cc3ea
/fossir/core/db/sqlalchemy/__init__.py
a5540829307aa4983312efca38ece0cfeda969e1
[]
no_license
HodardCodeclub/SoftwareDevelopment
60a0fbab045cb1802925d4dd5012d5b030c272e0
6300f2fae830c0c2c73fe0afd9c684383bce63e5
refs/heads/master
2021-01-20T00:30:02.800383
2018-04-27T09:28:25
2018-04-27T09:28:25
101,277,325
0
2
null
null
null
null
UTF-8
Python
false
false
771
py
# This file is part of fossir. # Copyright (C) 2002 - 2017 European Organization for Nuclear Research (CERN). # # fossir is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation; either version 3 of the # License, or (at your option) any later version. # # fossir is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with fossir; if not, see <http://www.gnu.org/licenses/>. from .core import db from .custom import *
ae21bc2c5a6ff8248e3231bbae691421738545f1
0cb970785a746a30f9b44b3e5234157818688197
/listsFolder/sort.py
16f655fb2a7ec882998f946257dc9b5209e1ce96
[]
no_license
charan2108/pythonprojectsNew
4255bbb81b6cf0d47c51c131ed93a0bb331a669c
b2f273d44937ec576daa0235d0d0326ff5149bf8
refs/heads/main
2023-05-03T16:55:33.242693
2021-05-26T11:18:17
2021-05-26T11:18:17
371,001,254
0
0
null
null
null
null
UTF-8
Python
false
false
196
py
cars = ['ferrari', 'ford', 'benz', 'audi', 'lamb'] print(cars) cars.sort() print(cars) #reverse cars = ['ferrari', 'ford', 'benz', 'audi', 'lamb'] print(cars) cars.sort(reverse=True) print(cars)
8d100df0263bb83dcda32092b5d7db7a35557b4f
db818127b373da9d88583e717f184f483a1f844d
/instruction_env/Lib/site-packages/sphinx/theming.py
30e4dffdb64f9391dcd1cda6dd9c8bf3505c626b
[ "MIT" ]
permissive
lfunderburk/Effective-Instructions
4af5a763b5021668abd6d37f1d860eeff07bfee8
ce40f890fb8623ff1ec9c3e9e1190505cbd1e6db
refs/heads/main
2023-04-14T22:43:48.363281
2021-04-26T05:40:19
2021-04-26T05:40:19
331,163,652
0
0
MIT
2021-04-26T05:40:22
2021-01-20T01:58:52
null
UTF-8
Python
false
false
8,695
py
""" sphinx.theming ~~~~~~~~~~~~~~ Theming support for HTML builders. :copyright: Copyright 2007-2021 by the Sphinx team, see AUTHORS. :license: BSD, see LICENSE for details. """ import configparser import os import shutil import tempfile from os import path from typing import Any, Dict, List from zipfile import ZipFile import pkg_resources from sphinx import package_dir from sphinx.errors import ThemeError from sphinx.locale import __ from sphinx.util import logging from sphinx.util.osutil import ensuredir if False: # For type annotation from sphinx.application import Sphinx logger = logging.getLogger(__name__) NODEFAULT = object() THEMECONF = 'theme.conf' def extract_zip(filename: str, targetdir: str) -> None: """Extract zip file to target directory.""" ensuredir(targetdir) with ZipFile(filename) as archive: for name in archive.namelist(): if name.endswith('/'): continue entry = path.join(targetdir, name) ensuredir(path.dirname(entry)) with open(path.join(entry), 'wb') as fp: fp.write(archive.read(name)) class Theme: """A Theme is a set of HTML templates and configurations. This class supports both theme directory and theme archive (zipped theme).""" def __init__(self, name: str, theme_path: str, factory: "HTMLThemeFactory") -> None: self.name = name self.base = None self.rootdir = None if path.isdir(theme_path): # already a directory, do nothing self.rootdir = None self.themedir = theme_path else: # extract the theme to a temp directory self.rootdir = tempfile.mkdtemp('sxt') self.themedir = path.join(self.rootdir, name) extract_zip(theme_path, self.themedir) self.config = configparser.RawConfigParser() self.config.read(path.join(self.themedir, THEMECONF)) try: inherit = self.config.get('theme', 'inherit') except configparser.NoSectionError as exc: raise ThemeError(__('theme %r doesn\'t have "theme" setting') % name) from exc except configparser.NoOptionError as exc: raise ThemeError(__('theme %r doesn\'t have "inherit" setting') % name) from exc if inherit != 'none': try: self.base = factory.create(inherit) except ThemeError as exc: raise ThemeError(__('no theme named %r found, inherited by %r') % (inherit, name)) from exc def get_theme_dirs(self) -> List[str]: """Return a list of theme directories, beginning with this theme's, then the base theme's, then that one's base theme's, etc. """ if self.base is None: return [self.themedir] else: return [self.themedir] + self.base.get_theme_dirs() def get_config(self, section: str, name: str, default: Any = NODEFAULT) -> Any: """Return the value for a theme configuration setting, searching the base theme chain. """ try: return self.config.get(section, name) except (configparser.NoOptionError, configparser.NoSectionError) as exc: if self.base: return self.base.get_config(section, name, default) if default is NODEFAULT: raise ThemeError(__('setting %s.%s occurs in none of the ' 'searched theme configs') % (section, name)) from exc else: return default def get_options(self, overrides: Dict[str, Any] = {}) -> Dict[str, Any]: """Return a dictionary of theme options and their values.""" if self.base: options = self.base.get_options() else: options = {} try: options.update(self.config.items('options')) except configparser.NoSectionError: pass for option, value in overrides.items(): if option not in options: logger.warning(__('unsupported theme option %r given') % option) else: options[option] = value return options def cleanup(self) -> None: """Remove temporary directories.""" if self.rootdir: try: shutil.rmtree(self.rootdir) except Exception: pass if self.base: self.base.cleanup() def is_archived_theme(filename: str) -> bool: """Check the specified file is an archived theme file or not.""" try: with ZipFile(filename) as f: return THEMECONF in f.namelist() except Exception: return False class HTMLThemeFactory: """A factory class for HTML Themes.""" def __init__(self, app: "Sphinx") -> None: self.app = app self.themes = app.html_themes self.load_builtin_themes() if getattr(app.config, 'html_theme_path', None): self.load_additional_themes(app.config.html_theme_path) def load_builtin_themes(self) -> None: """Load built-in themes.""" themes = self.find_themes(path.join(package_dir, 'themes')) for name, theme in themes.items(): self.themes[name] = theme def load_additional_themes(self, theme_paths: str) -> None: """Load additional themes placed at specified directories.""" for theme_path in theme_paths: abs_theme_path = path.abspath(path.join(self.app.confdir, theme_path)) themes = self.find_themes(abs_theme_path) for name, theme in themes.items(): self.themes[name] = theme def load_extra_theme(self, name: str) -> None: """Try to load a theme having specifed name.""" if name == 'alabaster': self.load_alabaster_theme() elif name == 'sphinx_rtd_theme': self.load_sphinx_rtd_theme() else: self.load_external_theme(name) def load_alabaster_theme(self) -> None: """Load alabaster theme.""" import alabaster self.themes['alabaster'] = path.join(alabaster.get_path(), 'alabaster') def load_sphinx_rtd_theme(self) -> None: """Load sphinx_rtd_theme theme (if exists).""" try: import sphinx_rtd_theme theme_path = sphinx_rtd_theme.get_html_theme_path() self.themes['sphinx_rtd_theme'] = path.join(theme_path, 'sphinx_rtd_theme') except ImportError: pass def load_external_theme(self, name: str) -> None: """Try to load a theme using entry_points. Sphinx refers to ``sphinx_themes`` entry_points. """ # look up for new styled entry_points at first entry_points = pkg_resources.iter_entry_points('sphinx.html_themes', name) try: entry_point = next(entry_points) self.app.registry.load_extension(self.app, entry_point.module_name) return except StopIteration: pass def find_themes(self, theme_path: str) -> Dict[str, str]: """Search themes from specified directory.""" themes = {} # type: Dict[str, str] if not path.isdir(theme_path): return themes for entry in os.listdir(theme_path): pathname = path.join(theme_path, entry) if path.isfile(pathname) and entry.lower().endswith('.zip'): if is_archived_theme(pathname): name = entry[:-4] themes[name] = pathname else: logger.warning(__('file %r on theme path is not a valid ' 'zipfile or contains no theme'), entry) else: if path.isfile(path.join(pathname, THEMECONF)): themes[entry] = pathname return themes def create(self, name: str) -> Theme: """Create an instance of theme.""" if name not in self.themes: self.load_extra_theme(name) if name not in self.themes: if name == 'sphinx_rtd_theme': raise ThemeError(__('sphinx_rtd_theme is no longer a hard dependency ' 'since version 1.4.0. Please install it manually.' '(pip install sphinx_rtd_theme)')) else: raise ThemeError(__('no theme named %r found ' '(missing theme.conf?)') % name) return Theme(name, self.themes[name], factory=self)
d134bb106b4a554dcd7baf533c2c404fd5273d94
cfc49e6e65ed37ddf297fc7dffacee8f905d6aa0
/modulo_counter.py
5717eeb441ff429c28ab838b66ead40db1c14c04
[]
no_license
IfDougelseSa/cursoPython
c94cc1215643f272f935d5766e7a2b36025ddbe2
3f9ceb9701a514106d49b2144b7f2845416ed8ec
refs/heads/main
2023-06-12T16:51:29.413031
2021-07-07T00:20:53
2021-07-07T00:20:53
369,268,883
1
0
null
null
null
null
UTF-8
Python
false
false
1,476
py
""" Módulo Collections - Counter(Contador) Collections -> High-performance Container datetypes Counter -> Recebe um iterável como parâmetro e cria um objeto do tipo Collections Counter que é parecido com um dicionário, contendo como chave o elemento da lista passado como parâmetro e como valor a quantidade de ocorrẽncias desse elemento. # Utilizando o counter from collections import Counter #Exemplo 1 #Podemos utilizar qualquer iterável, aqui usamos uma lista. lista = [1, 1, 2, 2, 3, 3, 3, 1 ,1 ,1 ,2 ,2 ,4 ,4 ,4 , 5, 5, 3 , 55, 33, 66 , 55, 44, 33, 22, 2, 22, 33] res = Counter(lista) print(type(res)) print(res) # Counter({1: 5, 2: 5, 3: 4, 4: 3, 33: 3, 5: 2, 55: 2, 22: 2, 66: 1, 44: 1}) # Veja que para cada elemento da lista, o Counter criou uma chave e colocou como valor a quantidade # de ocorrências. # Exemplo 2 print(Counter('Geek University')) Counter({'e': 3, 'i': 2, 'G': 1, 'k': 1, ' ': 1, 'U': 1, 'n': 1, 'v': 1, 'r': 1, 's': 1, 't': 1, 'y': 1}) """ from collections import Counter # Exemplo 3 texto = """ Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been the industry's standard dummy text ever since the 1500s, when an unknown printer took a galley of type and scrambled it to make a type specimen book""" palavras = texto.split() # print(palavras) res = Counter(palavras) print(res) #Encontrado as 5 palavras com mais ocorrência no texto. print(res.most_common(5))
1c4c018ec89c29b3fc8cded55da8088b460dfabd
923a14dd594191d77e30465027ece8371f28a7a6
/web-serpng/code/serpng/routers.py
40ae10220712dfe584223b7dc6fce22c9e272418
[]
no_license
alyago/django-web
3af7b3389df59104eaf5e50ed9cc2c3e730fed7f
da3073eec6d676dfe0164502b80d2a1c75e89575
refs/heads/master
2021-01-10T19:33:45.425520
2013-11-21T09:43:37
2013-11-21T09:43:37
null
0
0
null
null
null
null
UTF-8
Python
false
false
681
py
# Copyright (c) 2012, Simply Hired, Inc. All rights reserved. """Database Router""" class SHRouter(object): def db_for_read(self, model, **hints): if model.__module__.startswith("autocomplete.models"): return 'autocomplete' else: None class AllowSyncDBRouter(object): def allow_syncdb(self, db, model): if db == 'default' and model.__module__.startswith('django.contrib.sessions.models'): return True if db == 'resume' and (model.__module__.startswith("serpng.resume.models") or model.__module__.startswith('south.')): return True return False
7e332c7f55f2003b9937427a4820c249e496d06f
306555b6f10ce4d64caca22c4a291a5ac6337e07
/Gaussian_Process.py
a9ae6361738bc3536a29d8302b8fce228b8be27e
[]
no_license
BerenMillidge/GPs
1b107a265bb77452d2bb9a4a0854ae1b398ae6b7
3a8824c7c39a48d827ff098556bc23406cc7faad
refs/heads/master
2022-03-27T10:58:32.282459
2017-09-28T15:02:39
2017-09-28T15:02:39
null
0
0
null
null
null
null
UTF-8
Python
false
false
589
py
from __future__ import division import numpy as np from kernels import* default_kernel = Kernel("exponential_kernel", [0.01]) class GP: def __init__(self, dataprovider, kernel = default_kernel): self.dataprovider = dataprovider self.kernel = kernel def one_d_prior(self,data_vector): N = len(data_vector) means = np.zeros(N) cov = np.zeros([N,N]) for i in xrange(N): for j in xrange(N): cov[i][j] = self.kernel.calculate_kernel_value(data_vector[i], data_vector[j]) #draw from the distribution and return return np.random.multivariate_normal(means,cov)
acc8860470b0001df7b8ae5651c2f43957062c25
ab9b1505a9f57d28cb12b853f14c7d00d34c36c5
/cursopython/pythonteste/aula21ambiente02.py
99e2618b048a734f08e61eb2d64041cd1d63e1f6
[ "MIT" ]
permissive
AtilaCosta87/Python
610a1170c8a043e09c3580f18a048181cfbc8348
b4eea7885d16df80feecc4c699a8348ca13a80c2
refs/heads/master
2022-05-27T04:24:40.469166
2020-04-25T02:08:23
2020-04-25T02:08:23
258,666,708
0
0
null
null
null
null
UTF-8
Python
false
false
485
py
def soma(a=0, b=0, c=0): """ -> Faz a soma de três valores e mostra o resultado na tela. :param a: O primeiro valor :param b: O seguando valor :param c: O terceiro valor Função criada por Átila Costa na aula do canal CursoemVideo """ s = a + b + c print(f'A soma vale {s}', end='') #soma(3, 2, 5) #soma(3, 2) #soma(3) #soma() #soma(3, 3, 5, 8) -> vai dar erro, pois pode receber até 3 parametros #soma(3, 3, 5) #soma(b=4, c=2) soma(c=3, a=2)
6644c8aa6bde8b175f454eb1aa510bbe1314618c
cebc80d0d9dcdd0b2458f4d2105dcc489d2079ee
/setup.py
2d85325bff794a58bf51d88e285b8a390c7235ac
[]
no_license
Gilles86/flogiston
1bd1fafc1a4a1efc5369293db34bcd0d4ce16582
62f27cdc4e740855c18139ff402face543bc5c92
refs/heads/master
2016-09-05T09:06:40.993535
2015-11-23T13:37:58
2015-11-23T13:37:58
29,321,422
0
0
null
null
null
null
UTF-8
Python
false
false
767
py
#!/usr/bin/env python #from distutils.core import setup from setuptools import setup def configuration(parent_package='',top_path=None): from numpy.distutils.misc_util import Configuration config = Configuration(None, parent_package, top_path) config.add_subpackage('flogiston') return config def main(): from numpy.distutils.core import setup setup(name='flogiston', version='0.1', description='Link fMRI data to cognitive models like the LBA model', author='Gilles de Hollander', author_email='[email protected]', url='http://www.gillesdehollander.nl', packages=['flogiston'], configuration=configuration ) if __name__ == '__main__': main()
11ad67e1dedb58c8ff4f8931564ffb3a5a93e13f
920520ec421d75e225cbee480a3f251fde5eeee4
/tests/correct2/test-typing05.py
057f3f7bc361a7b70d8878624348c722daded4d3
[]
no_license
hbradlow/cs164
23fcbceabb9fe002b36e18036c0316b4476c1f03
2165e9fc99bbb977be56b98f2ad30013d371a3c9
refs/heads/master
2021-05-26T16:05:45.056557
2012-11-13T23:51:53
2012-11-13T23:51:53
5,835,786
0
0
null
null
null
null
UTF-8
Python
false
false
34
py
x = "Hello" y = ", world" z = x+y
5c3ec9b8bca633c0b13497f11002177fbd589d58
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_151/ch22_2020_09_09_18_55_45_398877.py
949d4f34161a93ae72b7f3993ee0a87fd3a1d540
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
187
py
def reduction(x, y): f = round((365 * x * y * 10) / (60 * 24), 0) return f a = int(input('cigarros p/ dia ')) b = int(input('fuma a quantos anos ')) c = reduction(a, b) print(c)
128902adf28d2ffa058348060bc4cb5b09cddc8a
5eb97d15b975c3ef3de10401594f31c502e04de4
/YeNet-Tensorflow/testSRM.py
f04d18729452e84e6c517654c59ebc785251e5bd
[]
no_license
coriverchen/Steganalysis
863f133f506afa9e8400d2c14acee833d942d51f
f7844698bff217ff206b9a3de15ccec708951c83
refs/heads/master
2022-03-30T10:25:30.118715
2019-11-29T04:21:59
2019-11-29T04:21:59
256,136,538
1
1
null
null
null
null
UTF-8
Python
false
false
164
py
# -*- coding: utf-8 -*- """ Created on Thu Aug 8 14:33:16 2019 @author: Lee """ import numpy as np SRM_Kernels = np.load('SRM_Kernels.npy') print(SRM_Kernels[:1])
ddc0a997d94790c09c5b3f29e15b52bf20049b5f
3d51fe39809673432adda8d7e10c1afca7d3a68f
/bcbio/variation/validate.py
afd03dd0c33eef1e94db1c14581d3ece24f472c5
[ "MIT" ]
permissive
travc/bcbio-nextgen
13c5cfeb917c65d42fa6432eb50b252b3fe2d4d6
63eb26ba46502fa1b3e691e7c81a36809dc288e9
refs/heads/master
2021-01-19T22:40:31.035339
2015-10-02T08:27:54
2015-10-02T08:27:54
43,542,446
0
0
null
2015-10-02T08:21:23
2015-10-02T08:21:22
null
UTF-8
Python
false
false
20,069
py
"""Perform validation of final calls against known reference materials. Automates the process of checking pipeline results against known valid calls to identify discordant variants. This provides a baseline for ensuring the validity of pipeline updates and algorithm changes. """ import collections import csv import os import shutil import subprocess import time from pysam import VariantFile import toolz as tz import yaml from bcbio import broad, utils from bcbio.bam import callable from bcbio.distributed.transaction import file_transaction from bcbio.heterogeneity import bubbletree from bcbio.pipeline import config_utils, shared from bcbio.pipeline import datadict as dd from bcbio.provenance import do from bcbio.variation import validateplot, vcfutils, multi, naming # ## Individual sample comparisons def _get_validate(data): """Retrieve items to validate, from single samples or from combined joint calls. """ if data.get("vrn_file") and "validate" in data["config"]["algorithm"]: return data elif "group_orig" in data: for sub in multi.get_orig_items(data): if "validate" in sub["config"]["algorithm"]: sub_val = utils.deepish_copy(sub) sub_val["vrn_file"] = data["vrn_file"] return sub_val return None def normalize_input_path(x, data): """Normalize path for input files, handling relative paths. Looks for non-absolute paths in local and fastq directories """ if x is None: return None elif os.path.isabs(x): return os.path.normpath(x) else: for d in [data["dirs"].get("fastq"), data["dirs"].get("work")]: if d: cur_x = os.path.normpath(os.path.join(d, x)) if os.path.exists(cur_x): return cur_x raise IOError("Could not find validation file %s" % x) def _gunzip(f, data): if f is None: return None elif f.endswith(".gz"): out_file = f.replace(".gz", "") if not utils.file_exists(out_file): with file_transaction(data, out_file) as tx_out_file: cmd = "gunzip -c {f} > {tx_out_file}" do.run(cmd.format(**locals()), "gunzip input file") return out_file else: return f def _get_caller(data): callers = [tz.get_in(["config", "algorithm", "jointcaller"], data), tz.get_in(["config", "algorithm", "variantcaller"], data), "precalled"] return [c for c in callers if c][0] def compare_to_rm(data): """Compare final variant calls against reference materials of known calls. """ toval_data = _get_validate(data) if toval_data: if isinstance(toval_data["vrn_file"], (list, tuple)): raise NotImplementedError("Multiple input files for validation: %s" % toval_data["vrn_file"]) else: vrn_file = os.path.abspath(toval_data["vrn_file"]) rm_file = normalize_input_path(toval_data["config"]["algorithm"]["validate"], toval_data) rm_interval_file = _gunzip(normalize_input_path(toval_data["config"]["algorithm"].get("validate_regions"), toval_data), toval_data) caller = _get_caller(toval_data) sample = dd.get_sample_name(toval_data) base_dir = utils.safe_makedir(os.path.join(toval_data["dirs"]["work"], "validate", sample, caller)) rm_file = naming.handle_synonyms(rm_file, dd.get_ref_file(data), data["genome_build"], base_dir, data) rm_interval_file = (naming.handle_synonyms(rm_interval_file, dd.get_ref_file(data), data["genome_build"], base_dir, data) if rm_interval_file else None) vmethod = tz.get_in(["config", "algorithm", "validate_method"], data, "rtg") if vmethod == "rtg": eval_files = _run_rtg_eval(vrn_file, rm_file, rm_interval_file, base_dir, toval_data) data["validate"] = _rtg_add_summary_file(eval_files, base_dir, toval_data) elif vmethod == "bcbio.variation": data["validate"] = _run_bcbio_variation(vrn_file, rm_file, rm_interval_file, base_dir, sample, caller, toval_data) return [[data]] # ## Real Time Genomics vcfeval def _get_sample_and_caller(data): return [tz.get_in(["metadata", "validate_sample"], data) or dd.get_sample_name(data), _get_caller(data)] def _rtg_add_summary_file(eval_files, base_dir, data): """Parse output TP FP and FN files to generate metrics for plotting. """ out_file = os.path.join(base_dir, "validate-summary.csv") if not utils.file_uptodate(out_file, eval_files["tp"]): with file_transaction(data, out_file) as tx_out_file: with open(tx_out_file, "w") as out_handle: writer = csv.writer(out_handle) writer.writerow(["sample", "caller", "vtype", "metric", "value"]) base = _get_sample_and_caller(data) for metric in ["tp", "fp", "fn"]: for vtype, bcftools_types in [("SNPs", "snps"), ("Indels", "indels,mnps,other")]: in_file = eval_files[metric] cmd = ("bcftools view --types {bcftools_types} {in_file} | grep -v ^# | wc -l") count = int(subprocess.check_output(cmd.format(**locals()), shell=True)) writer.writerow(base + [vtype, metric, count]) eval_files["summary"] = out_file return eval_files def _run_rtg_eval(vrn_file, rm_file, rm_interval_file, base_dir, data): """Run evaluation of a caller against the truth set using rtg vcfeval. """ out_dir = os.path.join(base_dir, "rtg") if not utils.file_exists(os.path.join(out_dir, "done")): if os.path.exists(out_dir): shutil.rmtree(out_dir) if not rm_file.endswith(".vcf.gz") or not os.path.exists(rm_file + ".tbi"): rm_file = vcfutils.bgzip_and_index(rm_file, data["config"], out_dir=base_dir) if len(vcfutils.get_samples(vrn_file)) > 1: base, ext = utils.splitext_plus(vrn_file) sample_file = os.path.join(base_dir, "%s-%s%s" % (base, dd.get_sample_name(data), ext)) vrn_file = vcfutils.select_sample(vrn_file, dd.get_sample_name(data), sample_file, data["config"]) if not vrn_file.endswith(".vcf.gz") or not os.path.exists(vrn_file + ".tbi"): vrn_file = vcfutils.bgzip_and_index(vrn_file, data["config"], out_dir=base_dir) interval_bed = _get_merged_intervals(rm_interval_file, base_dir, data) ref_dir, ref_filebase = os.path.split(dd.get_ref_file(data)) rtg_ref = os.path.normpath(os.path.join(ref_dir, os.path.pardir, "rtg", "%s.sdf" % (os.path.splitext(ref_filebase)[0]))) assert os.path.exists(rtg_ref), ("Did not find rtg indexed reference file for validation:\n%s\n" "Run bcbio_nextgen.py upgrade --data --aligners rtg" % rtg_ref) cmd = ["rtg", "vcfeval", "-b", rm_file, "--bed-regions", interval_bed, "-c", vrn_file, "-t", rtg_ref, "-o", out_dir] do.run(cmd, "Validate calls using rtg vcfeval", data) return {"tp": os.path.join(out_dir, "tp.vcf.gz"), "fp": os.path.join(out_dir, "fp.vcf.gz"), "fn": os.path.join(out_dir, "fn.vcf.gz")} def _get_merged_intervals(rm_interval_file, base_dir, data): """Retrieve intervals to run validation on, merging reference and callable BED files. """ a_intervals = get_analysis_intervals(data) if a_intervals: final_intervals = shared.remove_lcr_regions(a_intervals, [data]) if rm_interval_file: sample, caller = _get_sample_and_caller(data) combo_intervals = os.path.join(base_dir, "%s-%s-%s-wrm.bed" % (utils.splitext_plus(os.path.basename(final_intervals))[0], sample, caller)) if not utils.file_uptodate(combo_intervals, final_intervals): with file_transaction(data, combo_intervals) as tx_out_file: with utils.chdir(os.path.dirname(tx_out_file)): # Copy files locally to avoid issues on shared filesystems # where BEDtools has trouble accessing the same base # files from multiple locations a = os.path.basename(final_intervals) b = os.path.basename(rm_interval_file) try: shutil.copyfile(final_intervals, a) except IOError: time.sleep(60) shutil.copyfile(final_intervals, a) try: shutil.copyfile(rm_interval_file, b) except IOError: time.sleep(60) shutil.copyfile(rm_interval_file, b) cmd = ("bedtools intersect -nonamecheck -a {a} -b {b} > {tx_out_file}") do.run(cmd.format(**locals()), "Intersect callable intervals for rtg vcfeval") final_intervals = combo_intervals else: assert rm_interval_file, "No intervals to subset analysis with" final_intervals = shared.remove_lcr_regions(rm_interval_file, [data]) return final_intervals def get_analysis_intervals(data): """Retrieve analysis regions for the current variant calling pipeline. """ if data.get("ensemble_bed"): return data["ensemble_bed"] elif data.get("align_bam"): return callable.sample_callable_bed(data["align_bam"], dd.get_ref_file(data), data) elif data.get("work_bam"): return callable.sample_callable_bed(data["work_bam"], dd.get_ref_file(data), data) elif data.get("work_bam_callable"): return callable.sample_callable_bed(data["work_bam_callable"], dd.get_ref_file(data), data) else: for key in ["callable_regions", "variant_regions"]: intervals = data["config"]["algorithm"].get(key) if intervals: return intervals # ## bcbio.variation comparison -- deprecated approach def _run_bcbio_variation(vrn_file, rm_file, rm_interval_file, base_dir, sample, caller, data): """Run validation of a caller against the truth set using bcbio.variation. """ val_config_file = _create_validate_config_file(vrn_file, rm_file, rm_interval_file, base_dir, data) work_dir = os.path.join(base_dir, "work") out = {"summary": os.path.join(work_dir, "validate-summary.csv"), "grading": os.path.join(work_dir, "validate-grading.yaml"), "discordant": os.path.join(work_dir, "%s-eval-ref-discordance-annotate.vcf" % sample)} if not utils.file_exists(out["discordant"]) or not utils.file_exists(out["grading"]): bcbio_variation_comparison(val_config_file, base_dir, data) out["concordant"] = filter(os.path.exists, [os.path.join(work_dir, "%s-%s-concordance.vcf" % (sample, x)) for x in ["eval-ref", "ref-eval"]])[0] return out def bcbio_variation_comparison(config_file, base_dir, data): """Run a variant comparison using the bcbio.variation toolkit, given an input configuration. """ tmp_dir = utils.safe_makedir(os.path.join(base_dir, "tmp")) bv_jar = config_utils.get_jar("bcbio.variation", config_utils.get_program("bcbio_variation", data["config"], "dir")) resources = config_utils.get_resources("bcbio_variation", data["config"]) jvm_opts = resources.get("jvm_opts", ["-Xms750m", "-Xmx2g"]) cmd = ["java"] + jvm_opts + broad.get_default_jvm_opts(tmp_dir) + \ ["-jar", bv_jar, "variant-compare", config_file] do.run(cmd, "Comparing variant calls using bcbio.variation", data) def _create_validate_config_file(vrn_file, rm_file, rm_interval_file, base_dir, data): config_dir = utils.safe_makedir(os.path.join(base_dir, "config")) config_file = os.path.join(config_dir, "validate.yaml") if not utils.file_uptodate(config_file, vrn_file): with file_transaction(data, config_file) as tx_config_file: with open(tx_config_file, "w") as out_handle: out = _create_validate_config(vrn_file, rm_file, rm_interval_file, base_dir, data) yaml.safe_dump(out, out_handle, default_flow_style=False, allow_unicode=False) return config_file def _create_validate_config(vrn_file, rm_file, rm_interval_file, base_dir, data): """Create a bcbio.variation configuration input for validation. """ ref_call = {"file": str(rm_file), "name": "ref", "type": "grading-ref", "fix-sample-header": True, "remove-refcalls": True} a_intervals = get_analysis_intervals(data) if a_intervals: a_intervals = shared.remove_lcr_regions(a_intervals, [data]) if rm_interval_file: ref_call["intervals"] = rm_interval_file eval_call = {"file": vrn_file, "name": "eval", "remove-refcalls": True} exp = {"sample": data["name"][-1], "ref": dd.get_ref_file(data), "approach": "grade", "calls": [ref_call, eval_call]} if a_intervals: exp["intervals"] = os.path.abspath(a_intervals) if data.get("align_bam"): exp["align"] = data["align_bam"] elif data.get("work_bam"): exp["align"] = data["work_bam"] return {"dir": {"base": base_dir, "out": "work", "prep": "work/prep"}, "experiments": [exp]} # ## Summarize comparisons def _flatten_grading(stats): vtypes = ["snp", "indel"] cat = "concordant" for vtype in vtypes: yield vtype, cat, stats[cat][cat].get(vtype, 0) for vtype in vtypes: for vclass, vitems in sorted(stats["discordant"].get(vtype, {}).iteritems()): for vreason, val in sorted(vitems.iteritems()): yield vtype, "discordant-%s-%s" % (vclass, vreason), val yield vtype, "discordant-%s-total" % vclass, sum(vitems.itervalues()) def _has_grading_info(samples): for data in (x[0] for x in samples): for variant in data.get("variants", []): if variant.get("validate"): return True return False def _group_validate_samples(samples): extras = [] validated = collections.defaultdict(list) for data in (x[0] for x in samples): is_v = False for variant in data.get("variants", []): if variant.get("validate"): is_v = True if is_v: for batch_key in (["metadata", "validate_batch"], ["metadata", "batch"], ["description"]): vname = tz.get_in(batch_key, data) if vname: break if isinstance(vname, (list, tuple)): vname = vname[0] validated[vname].append(data) else: extras.append([data]) return validated, extras def summarize_grading(samples): """Provide summaries of grading results across all samples. """ if not _has_grading_info(samples): return samples validate_dir = utils.safe_makedir(os.path.join(samples[0][0]["dirs"]["work"], "validate")) header = ["sample", "caller", "variant.type", "category", "value"] validated, out = _group_validate_samples(samples) for vname, vitems in validated.iteritems(): out_csv = os.path.join(validate_dir, "grading-summary-%s.csv" % vname) with open(out_csv, "w") as out_handle: writer = csv.writer(out_handle) writer.writerow(header) plot_data = [] plot_files = [] for data in vitems: for variant in data.get("variants", []): if variant.get("validate"): variant["validate"]["grading_summary"] = out_csv if tz.get_in(["validate", "grading"], variant): for row in _get_validate_plotdata_yaml(variant, data): writer.writerow(row) plot_data.append(row) else: plot_files.append(variant["validate"]["summary"]) if plot_files: plots = validateplot.classifyplot_from_plotfiles(plot_files, out_csv) elif plot_data: plots = validateplot.create(plot_data, header, 0, data["config"], os.path.splitext(out_csv)[0]) else: plots = None for data in vitems: for variant in data.get("variants", []): if variant.get("validate"): variant["validate"]["grading_plots"] = plots out.append([data]) return out def _get_validate_plotdata_yaml(variant, data): """Retrieve validation plot data from grading YAML file (old style). """ with open(variant["validate"]["grading"]) as in_handle: grade_stats = yaml.load(in_handle) for sample_stats in grade_stats: sample = sample_stats["sample"] for vtype, cat, val in _flatten_grading(sample_stats): yield [sample, variant.get("variantcaller", ""), vtype, cat, val] # ## Summarize by frequency def freq_summary(val_file, call_file, truth_file, target_name): """Summarize true and false positive calls by variant type and frequency. Resolve differences in true/false calls based on output from hap.py: https://github.com/sequencing/hap.py """ out_file = "%s-freqs.csv" % utils.splitext_plus(val_file)[0] truth_freqs = _read_truth_freqs(truth_file) call_freqs = _read_call_freqs(call_file, target_name) with VariantFile(val_file) as val_in: with open(out_file, "w") as out_handle: writer = csv.writer(out_handle) writer.writerow(["vtype", "valclass", "freq"]) for rec in val_in: call_type = _classify_rec(rec) val_type = _get_validation_status(rec) key = _get_key(rec) freq = truth_freqs.get(key, call_freqs.get(key, 0.0)) writer.writerow([call_type, val_type, freq]) return out_file def _get_key(rec): return (rec.contig, rec.pos, rec.ref, rec.alts[0]) def _classify_rec(rec): """Determine class of variant in the record. """ if max([len(x) for x in rec.alleles]) == 1: return "snp" else: return "indel" def _get_validation_status(rec): """Retrieve the status of the validation, supporting hap.py output """ return rec.info["type"] def _read_call_freqs(in_file, sample_name): """Identify frequencies for calls in the input file. """ out = {} with VariantFile(in_file) as call_in: for rec in call_in: if rec.filter.keys() == ["PASS"]: for name, sample in rec.samples.items(): if name == sample_name: alt, depth = bubbletree.sample_alt_and_depth(sample) if depth > 0: out[_get_key(rec)] = float(alt) / float(depth) return out def _read_truth_freqs(in_file): """Read frequency of calls from truth VCF. Currently handles DREAM data, needs generalization for other datasets. """ out = {} with VariantFile(in_file) as bcf_in: for rec in bcf_in: freq = float(rec.info.get("VAF", 1.0)) out[_get_key(rec)] = freq return out
c48d547a02107433a9ba668d5a79b1c1374499e5
03f1a716d426dcb7b5d77b9050e6332ab0726a9f
/nn6/__init__.py
724f5c4d6039bd7f245d65cd0740ea1f63523eab
[ "MIT" ]
permissive
brice291/nn6
8e8688179834dfea3bd8d1f453e1135bfb6c5e45
9c7ca32514aa121ad36504f0c11177d8989660ae
refs/heads/master
2022-04-03T02:00:13.599236
2019-12-02T09:20:16
2019-12-02T09:20:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
839
py
import numpy as np from numpy.linalg import norm # 函數 f 對變數 k 的偏微分: df / dk def df(f, p, k, step=0.01): p1 = p.copy() p1[k] = p[k]+step return (f(p1) - f(p)) / step # 函數 f 在點 p 上的梯度 def grad(f, p, step=0.01): gp = p.copy() for k in range(len(p)): gp[k] = df(f, p, k, step) return gp # 使用梯度下降法尋找函數最低點 def gd(f, p0, step=0.001): p = p0.copy() while (True): gp = grad(f, p) # 計算梯度 gp glen = norm(gp) # norm = 梯度的長度 (步伐大小) print('p=', p, 'f(p)=', f(p), 'glen=', glen) if glen < 0.00001: # 如果步伐已經很小了,那麼就停止吧! break # gstep = np.mul(gp, -1 * step) # gstep = 逆梯度方向的一小步 gstep = np.multiply(gp, -1*step) p += gstep # 向 gstep 方向走一小步 return p # 傳回最低點!
850ac07380673e3ec79b314d5c5c986d50092181
f0a44b63a385e1c0f1f5a15160b446c2a2ddd6fc
/examples/transform_ucs.py
ee0962d84cada4759f9a40046f14c79071c8b632
[ "MIT" ]
permissive
triroakenshield/ezdxf
5652326710f2a24652605cdeae9dd6fc58e4f2eb
82e964a574bcb86febc677bd63f1626318f51caf
refs/heads/master
2023-08-17T12:17:02.583094
2021-10-09T08:23:36
2021-10-09T08:23:36
415,426,069
1
0
MIT
2021-10-09T21:31:25
2021-10-09T21:31:25
null
UTF-8
Python
false
false
4,940
py
# Copyright (c) 2020-2021 Manfred Moitzi # License: MIT License import pathlib import math import ezdxf from ezdxf import zoom from ezdxf.math import UCS, Vec3 OUTDIR = pathlib.Path("~/Desktop/Outbox").expanduser() NARROW = "OpenSansCondensed-Light" X_COUNT = 7 Y_COUNT = 7 DX = 2 DY = 2 def add_circle(msp, ucs): msp.add_circle( center=(0, 0), radius=0.5, dxfattribs={ "color": 6, }, ).transform(ucs.matrix) def add_ocs_circle(msp, ucs): msp.add_circle( center=(0, 0, 0.5), radius=0.25, dxfattribs={ "color": 6, "extrusion": (1, 0, 0), }, ).transform(ucs.matrix) def add_ellipse(msp, ucs): msp.add_ellipse( center=(0, 0), major_axis=(0.5, 0, 0), ratio=0.5, start_param=0, end_param=math.pi, dxfattribs={ "color": 1, }, ).transform(ucs.matrix) def add_ocs_arc(msp, ucs): msp.add_arc( center=(0, 0, 0.5), radius=0.25, start_angle=0, end_angle=90, dxfattribs={ "color": 4, "extrusion": (-1, 0, 0), }, ).transform(ucs.matrix) def add_solid(msp, ucs): msp.add_solid( [(-0.25, -0.15), (0.25, -0.15), (0, -0.5)], dxfattribs={"color": 2} ).transform(ucs.matrix) def add_trace(msp, ucs): msp.add_trace( [(-0.25, 0.15), (0.25, 0.15), (0, 0.5)], dxfattribs={"color": 7} ).transform(ucs.matrix) def add_3dface(msp, ucs): msp.add_3dface( [(0, 0, 0), (0.5, 0.5, 0), (0.5, 0.5, 0.5), (0, 0, 0.5)], dxfattribs={"color": 8}, ).transform(ucs.matrix) def add_lwpolyline(msp, ucs): msp.add_lwpolyline( [(0, 0, 0), (0.3, 0, 1), (0.3, 0.3, 0), (0, 0.3, 0)], format="xyb", dxfattribs={"color": 6}, ).transform(ucs.matrix) def add_text(msp, ucs): msp.add_text( "TEXT", dxfattribs={ "color": 4, "style": NARROW, "height": 0.2, }, ).set_align("MIDDLE_CENTER").transform(ucs.matrix) def add_mtext(msp, ucs): # It is always better to use text_direction instead of a rotation angle, # which works only for extrusion == (0, 0, 1) msp.add_mtext( "MTEXT", dxfattribs={ "color": 5, "style": NARROW, "char_height": 0.2, "insert": (0, 0), "rotation": 90, "attachment_point": 4, }, ).transform(ucs.matrix) def scene1(filename): doc = ezdxf.new("R2010", setup=True) msp = doc.modelspace() ucs = UCS() angle = math.pi / 12 # 15 degree for ix in range(X_COUNT): for iy in range(Y_COUNT): ucs.moveto((ix * DX, iy * DY, 0)) ucs.render_axis(msp, length=1) add_circle(msp, ucs) # add_ocs_circle(msp, ucs) # add_ocs_arc(msp, ucs) # add_text(msp, ucs) add_mtext(msp, ucs) add_ellipse(msp, ucs) # add_solid(msp, ucs) add_trace(msp, ucs) # add_3dface(msp, ucs) # add_lwpolyline(msp, ucs) ucs = ucs.rotate_local_z(angle) ucs = UCS().rotate_local_x(ix * angle) zoom.extents(msp) doc.saveas(filename) def add_excentric_text(msp, ucs, location, text): text = msp.add_mtext( text, dxfattribs={ "color": 5, "style": NARROW, "char_height": 0.2, "insert": location, "attachment_point": 5, }, ) text.transform(ucs.matrix) msp.add_line( start=(0, 0, 0), end=(location.x, 0, 0), dxfattribs={"color": 1} ).transform(ucs.matrix) msp.add_line( start=(location.x, 0, 0), end=(location.x, location.y, 0), dxfattribs={"color": 3}, ).transform(ucs.matrix) msp.add_line( start=(location.x, location.y, 0), end=(location.x, location.y, location.z), dxfattribs={"color": 5}, ).transform(ucs.matrix) def scene2(filename): doc = ezdxf.new("R2010", setup=True) msp = doc.modelspace() delta = 6 for z in range(-2, 3): for y in range(-2, 3): for x in range(-2, 3): cx = x * delta cy = y * delta cz = z * delta ucs = ( UCS(origin=(cx, cy, cz)) .rotate_local_z(math.radians(45)) .rotate_local_x(math.radians(30)) ) add_excentric_text( msp, ucs, location=Vec3(1, 2, 3), text=f"Hallo\n(x={cx}, y={cy}, z={cz})", ) zoom.extents(msp) doc.saveas(filename) if __name__ == "__main__": scene1(OUTDIR / "transform_scene_1.dxf") scene2(OUTDIR / "transform_scene_2.dxf")
a76426fce9150b66d25e45f27cf70a5f4ef87ffc
99e44f844d78de330391f2b17bbf2e293bf24b1b
/pytorch/torch/optim/lr_scheduler.py
69c0da4e36cb9c95170818a997cced0fb0e7c5d2
[ "BSD-3-Clause", "LicenseRef-scancode-generic-cla", "Apache-2.0", "BSD-2-Clause", "MIT" ]
permissive
raghavnauhria/whatmt
be10d57bcd6134dd5714d0c4058abd56a1b35a13
c20483a437c82936cb0fb8080925e37b9c4bba87
refs/heads/master
2022-12-04T05:39:24.601698
2019-07-22T09:43:30
2019-07-22T09:43:30
193,026,689
0
1
MIT
2022-11-28T17:50:19
2019-06-21T03:48:20
C++
UTF-8
Python
false
false
32,251
py
import types import math from torch._six import inf from functools import partial, wraps import warnings from bisect import bisect_right from .optimizer import Optimizer class _LRScheduler(object): def __init__(self, optimizer, last_epoch=-1): if not isinstance(optimizer, Optimizer): raise TypeError('{} is not an Optimizer'.format( type(optimizer).__name__)) self.optimizer = optimizer if last_epoch == -1: for group in optimizer.param_groups: group.setdefault('initial_lr', group['lr']) last_epoch = 0 else: for i, group in enumerate(optimizer.param_groups): if 'initial_lr' not in group: raise KeyError("param 'initial_lr' is not specified " "in param_groups[{}] when resuming an optimizer".format(i)) self.base_lrs = list(map(lambda group: group['initial_lr'], optimizer.param_groups)) self.last_epoch = last_epoch # Following https://github.com/pytorch/pytorch/issues/20124 # We would like to ensure that `lr_scheduler.step()` is called after # `optimizer.step()` def with_counter(func, opt): @wraps(func) def wrapper(*args, **kwargs): opt._step_count += 1 return func(*args, **kwargs) wrapper._with_counter = True return wrapper self.optimizer.step = with_counter(self.optimizer.step, self.optimizer) self.optimizer._step_count = 0 self._step_count = 0 self.step(last_epoch) def state_dict(self): """Returns the state of the scheduler as a :class:`dict`. It contains an entry for every variable in self.__dict__ which is not the optimizer. """ return {key: value for key, value in self.__dict__.items() if key != 'optimizer'} def load_state_dict(self, state_dict): """Loads the schedulers state. Arguments: state_dict (dict): scheduler state. Should be an object returned from a call to :meth:`state_dict`. """ self.__dict__.update(state_dict) def get_lr(self): raise NotImplementedError def step(self, epoch=None): # Raise a warning if old pattern is detected # https://github.com/pytorch/pytorch/issues/20124 if self._step_count == 1: if not hasattr(self.optimizer.step, "_with_counter"): warnings.warn("Seems like `optimizer.step()` has been overridden after learning rate scheduler " "initialization. Please, make sure to call `optimizer.step()` before " "`lr_scheduler.step()`. See more details at " "https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate", UserWarning) # Just check if there were two first lr_scheduler.step() calls before optimizer.step() elif self.optimizer._step_count < 1: warnings.warn("Detected call of `lr_scheduler.step()` before `optimizer.step()`. " "In PyTorch 1.1.0 and later, you should call them in the opposite order: " "`optimizer.step()` before `lr_scheduler.step()`. Failure to do this " "will result in PyTorch skipping the first value of the learning rate schedule." "See more details at " "https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate", UserWarning) self._step_count += 1 if epoch is None: epoch = self.last_epoch + 1 self.last_epoch = epoch for param_group, lr in zip(self.optimizer.param_groups, self.get_lr()): param_group['lr'] = lr class LambdaLR(_LRScheduler): """Sets the learning rate of each parameter group to the initial lr times a given function. When last_epoch=-1, sets initial lr as lr. Args: optimizer (Optimizer): Wrapped optimizer. lr_lambda (function or list): A function which computes a multiplicative factor given an integer parameter epoch, or a list of such functions, one for each group in optimizer.param_groups. last_epoch (int): The index of last epoch. Default: -1. Example: >>> # Assuming optimizer has two groups. >>> lambda1 = lambda epoch: epoch // 30 >>> lambda2 = lambda epoch: 0.95 ** epoch >>> scheduler = LambdaLR(optimizer, lr_lambda=[lambda1, lambda2]) >>> for epoch in range(100): >>> train(...) >>> validate(...) >>> scheduler.step() """ def __init__(self, optimizer, lr_lambda, last_epoch=-1): self.optimizer = optimizer if not isinstance(lr_lambda, list) and not isinstance(lr_lambda, tuple): self.lr_lambdas = [lr_lambda] * len(optimizer.param_groups) else: if len(lr_lambda) != len(optimizer.param_groups): raise ValueError("Expected {} lr_lambdas, but got {}".format( len(optimizer.param_groups), len(lr_lambda))) self.lr_lambdas = list(lr_lambda) self.last_epoch = last_epoch super(LambdaLR, self).__init__(optimizer, last_epoch) def state_dict(self): """Returns the state of the scheduler as a :class:`dict`. It contains an entry for every variable in self.__dict__ which is not the optimizer. The learning rate lambda functions will only be saved if they are callable objects and not if they are functions or lambdas. """ state_dict = {key: value for key, value in self.__dict__.items() if key not in ('optimizer', 'lr_lambdas')} state_dict['lr_lambdas'] = [None] * len(self.lr_lambdas) for idx, fn in enumerate(self.lr_lambdas): if not isinstance(fn, types.FunctionType): state_dict['lr_lambdas'][idx] = fn.__dict__.copy() return state_dict def load_state_dict(self, state_dict): """Loads the schedulers state. Arguments: state_dict (dict): scheduler state. Should be an object returned from a call to :meth:`state_dict`. """ lr_lambdas = state_dict.pop('lr_lambdas') self.__dict__.update(state_dict) for idx, fn in enumerate(lr_lambdas): if fn is not None: self.lr_lambdas[idx].__dict__.update(fn) def get_lr(self): return [base_lr * lmbda(self.last_epoch) for lmbda, base_lr in zip(self.lr_lambdas, self.base_lrs)] class StepLR(_LRScheduler): """Sets the learning rate of each parameter group to the initial lr decayed by gamma every step_size epochs. When last_epoch=-1, sets initial lr as lr. Args: optimizer (Optimizer): Wrapped optimizer. step_size (int): Period of learning rate decay. gamma (float): Multiplicative factor of learning rate decay. Default: 0.1. last_epoch (int): The index of last epoch. Default: -1. Example: >>> # Assuming optimizer uses lr = 0.05 for all groups >>> # lr = 0.05 if epoch < 30 >>> # lr = 0.005 if 30 <= epoch < 60 >>> # lr = 0.0005 if 60 <= epoch < 90 >>> # ... >>> scheduler = StepLR(optimizer, step_size=30, gamma=0.1) >>> for epoch in range(100): >>> train(...) >>> validate(...) >>> scheduler.step() """ def __init__(self, optimizer, step_size, gamma=0.1, last_epoch=-1): self.step_size = step_size self.gamma = gamma super(StepLR, self).__init__(optimizer, last_epoch) def get_lr(self): return [base_lr * self.gamma ** (self.last_epoch // self.step_size) for base_lr in self.base_lrs] class MultiStepLR(_LRScheduler): """Set the learning rate of each parameter group to the initial lr decayed by gamma once the number of epoch reaches one of the milestones. When last_epoch=-1, sets initial lr as lr. Args: optimizer (Optimizer): Wrapped optimizer. milestones (list): List of epoch indices. Must be increasing. gamma (float): Multiplicative factor of learning rate decay. Default: 0.1. last_epoch (int): The index of last epoch. Default: -1. Example: >>> # Assuming optimizer uses lr = 0.05 for all groups >>> # lr = 0.05 if epoch < 30 >>> # lr = 0.005 if 30 <= epoch < 80 >>> # lr = 0.0005 if epoch >= 80 >>> scheduler = MultiStepLR(optimizer, milestones=[30,80], gamma=0.1) >>> for epoch in range(100): >>> train(...) >>> validate(...) >>> scheduler.step() """ def __init__(self, optimizer, milestones, gamma=0.1, last_epoch=-1): if not list(milestones) == sorted(milestones): raise ValueError('Milestones should be a list of' ' increasing integers. Got {}', milestones) self.milestones = milestones self.gamma = gamma super(MultiStepLR, self).__init__(optimizer, last_epoch) def get_lr(self): return [base_lr * self.gamma ** bisect_right(self.milestones, self.last_epoch) for base_lr in self.base_lrs] class ExponentialLR(_LRScheduler): """Set the learning rate of each parameter group to the initial lr decayed by gamma every epoch. When last_epoch=-1, sets initial lr as lr. Args: optimizer (Optimizer): Wrapped optimizer. gamma (float): Multiplicative factor of learning rate decay. last_epoch (int): The index of last epoch. Default: -1. """ def __init__(self, optimizer, gamma, last_epoch=-1): self.gamma = gamma super(ExponentialLR, self).__init__(optimizer, last_epoch) def get_lr(self): return [base_lr * self.gamma ** self.last_epoch for base_lr in self.base_lrs] class CosineAnnealingLR(_LRScheduler): r"""Set the learning rate of each parameter group using a cosine annealing schedule, where :math:`\eta_{max}` is set to the initial lr and :math:`T_{cur}` is the number of epochs since the last restart in SGDR: .. math:: \eta_t = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min})(1 + \cos(\frac{T_{cur}}{T_{max}}\pi)) When last_epoch=-1, sets initial lr as lr. It has been proposed in `SGDR: Stochastic Gradient Descent with Warm Restarts`_. Note that this only implements the cosine annealing part of SGDR, and not the restarts. Args: optimizer (Optimizer): Wrapped optimizer. T_max (int): Maximum number of iterations. eta_min (float): Minimum learning rate. Default: 0. last_epoch (int): The index of last epoch. Default: -1. .. _SGDR\: Stochastic Gradient Descent with Warm Restarts: https://arxiv.org/abs/1608.03983 """ def __init__(self, optimizer, T_max, eta_min=0, last_epoch=-1): self.T_max = T_max self.eta_min = eta_min super(CosineAnnealingLR, self).__init__(optimizer, last_epoch) def get_lr(self): return [self.eta_min + (base_lr - self.eta_min) * (1 + math.cos(math.pi * self.last_epoch / self.T_max)) / 2 for base_lr in self.base_lrs] class ReduceLROnPlateau(object): """Reduce learning rate when a metric has stopped improving. Models often benefit from reducing the learning rate by a factor of 2-10 once learning stagnates. This scheduler reads a metrics quantity and if no improvement is seen for a 'patience' number of epochs, the learning rate is reduced. Args: optimizer (Optimizer): Wrapped optimizer. mode (str): One of `min`, `max`. In `min` mode, lr will be reduced when the quantity monitored has stopped decreasing; in `max` mode it will be reduced when the quantity monitored has stopped increasing. Default: 'min'. factor (float): Factor by which the learning rate will be reduced. new_lr = lr * factor. Default: 0.1. patience (int): Number of epochs with no improvement after which learning rate will be reduced. For example, if `patience = 2`, then we will ignore the first 2 epochs with no improvement, and will only decrease the LR after the 3rd epoch if the loss still hasn't improved then. Default: 10. verbose (bool): If ``True``, prints a message to stdout for each update. Default: ``False``. threshold (float): Threshold for measuring the new optimum, to only focus on significant changes. Default: 1e-4. threshold_mode (str): One of `rel`, `abs`. In `rel` mode, dynamic_threshold = best * ( 1 + threshold ) in 'max' mode or best * ( 1 - threshold ) in `min` mode. In `abs` mode, dynamic_threshold = best + threshold in `max` mode or best - threshold in `min` mode. Default: 'rel'. cooldown (int): Number of epochs to wait before resuming normal operation after lr has been reduced. Default: 0. min_lr (float or list): A scalar or a list of scalars. A lower bound on the learning rate of all param groups or each group respectively. Default: 0. eps (float): Minimal decay applied to lr. If the difference between new and old lr is smaller than eps, the update is ignored. Default: 1e-8. Example: >>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9) >>> scheduler = ReduceLROnPlateau(optimizer, 'min') >>> for epoch in range(10): >>> train(...) >>> val_loss = validate(...) >>> # Note that step should be called after validate() >>> scheduler.step(val_loss) """ def __init__(self, optimizer, mode='min', factor=0.1, patience=10, verbose=False, threshold=1e-4, threshold_mode='rel', cooldown=0, min_lr=0, eps=1e-8): if factor >= 1.0: raise ValueError('Factor should be < 1.0.') self.factor = factor if not isinstance(optimizer, Optimizer): raise TypeError('{} is not an Optimizer'.format( type(optimizer).__name__)) self.optimizer = optimizer if isinstance(min_lr, list) or isinstance(min_lr, tuple): if len(min_lr) != len(optimizer.param_groups): raise ValueError("expected {} min_lrs, got {}".format( len(optimizer.param_groups), len(min_lr))) self.min_lrs = list(min_lr) else: self.min_lrs = [min_lr] * len(optimizer.param_groups) self.patience = patience self.verbose = verbose self.cooldown = cooldown self.cooldown_counter = 0 self.mode = mode self.threshold = threshold self.threshold_mode = threshold_mode self.best = None self.num_bad_epochs = None self.mode_worse = None # the worse value for the chosen mode self.is_better = None self.eps = eps self.last_epoch = -1 self._init_is_better(mode=mode, threshold=threshold, threshold_mode=threshold_mode) self._reset() def _reset(self): """Resets num_bad_epochs counter and cooldown counter.""" self.best = self.mode_worse self.cooldown_counter = 0 self.num_bad_epochs = 0 def step(self, metrics, epoch=None): # convert `metrics` to float, in case it's a zero-dim Tensor current = float(metrics) if epoch is None: epoch = self.last_epoch = self.last_epoch + 1 self.last_epoch = epoch if self.is_better(current, self.best): self.best = current self.num_bad_epochs = 0 else: self.num_bad_epochs += 1 if self.in_cooldown: self.cooldown_counter -= 1 self.num_bad_epochs = 0 # ignore any bad epochs in cooldown if self.num_bad_epochs > self.patience: self._reduce_lr(epoch) self.cooldown_counter = self.cooldown self.num_bad_epochs = 0 def _reduce_lr(self, epoch): for i, param_group in enumerate(self.optimizer.param_groups): old_lr = float(param_group['lr']) new_lr = max(old_lr * self.factor, self.min_lrs[i]) if old_lr - new_lr > self.eps: param_group['lr'] = new_lr if self.verbose: print('Epoch {:5d}: reducing learning rate' ' of group {} to {:.4e}.'.format(epoch, i, new_lr)) @property def in_cooldown(self): return self.cooldown_counter > 0 def _cmp(self, mode, threshold_mode, threshold, a, best): if mode == 'min' and threshold_mode == 'rel': rel_epsilon = 1. - threshold return a < best * rel_epsilon elif mode == 'min' and threshold_mode == 'abs': return a < best - threshold elif mode == 'max' and threshold_mode == 'rel': rel_epsilon = threshold + 1. return a > best * rel_epsilon else: # mode == 'max' and epsilon_mode == 'abs': return a > best + threshold def _init_is_better(self, mode, threshold, threshold_mode): if mode not in {'min', 'max'}: raise ValueError('mode ' + mode + ' is unknown!') if threshold_mode not in {'rel', 'abs'}: raise ValueError('threshold mode ' + threshold_mode + ' is unknown!') if mode == 'min': self.mode_worse = inf else: # mode == 'max': self.mode_worse = -inf self.is_better = partial(self._cmp, mode, threshold_mode, threshold) def state_dict(self): return {key: value for key, value in self.__dict__.items() if key not in {'optimizer', 'is_better'}} def load_state_dict(self, state_dict): self.__dict__.update(state_dict) self._init_is_better(mode=self.mode, threshold=self.threshold, threshold_mode=self.threshold_mode) class CyclicLR(_LRScheduler): """Sets the learning rate of each parameter group according to cyclical learning rate policy (CLR). The policy cycles the learning rate between two boundaries with a constant frequency, as detailed in the paper `Cyclical Learning Rates for Training Neural Networks`_. The distance between the two boundaries can be scaled on a per-iteration or per-cycle basis. Cyclical learning rate policy changes the learning rate after every batch. `step` should be called after a batch has been used for training. This class has three built-in policies, as put forth in the paper: "triangular": A basic triangular cycle w/ no amplitude scaling. "triangular2": A basic triangular cycle that scales initial amplitude by half each cycle. "exp_range": A cycle that scales initial amplitude by gamma**(cycle iterations) at each cycle iteration. This implementation was adapted from the github repo: `bckenstler/CLR`_ Args: optimizer (Optimizer): Wrapped optimizer. base_lr (float or list): Initial learning rate which is the lower boundary in the cycle for each parameter group. max_lr (float or list): Upper learning rate boundaries in the cycle for each parameter group. Functionally, it defines the cycle amplitude (max_lr - base_lr). The lr at any cycle is the sum of base_lr and some scaling of the amplitude; therefore max_lr may not actually be reached depending on scaling function. step_size_up (int): Number of training iterations in the increasing half of a cycle. Default: 2000 step_size_down (int): Number of training iterations in the decreasing half of a cycle. If step_size_down is None, it is set to step_size_up. Default: None mode (str): One of {triangular, triangular2, exp_range}. Values correspond to policies detailed above. If scale_fn is not None, this argument is ignored. Default: 'triangular' gamma (float): Constant in 'exp_range' scaling function: gamma**(cycle iterations) Default: 1.0 scale_fn (function): Custom scaling policy defined by a single argument lambda function, where 0 <= scale_fn(x) <= 1 for all x >= 0. If specified, then 'mode' is ignored. Default: None scale_mode (str): {'cycle', 'iterations'}. Defines whether scale_fn is evaluated on cycle number or cycle iterations (training iterations since start of cycle). Default: 'cycle' cycle_momentum (bool): If ``True``, momentum is cycled inversely to learning rate between 'base_momentum' and 'max_momentum'. Default: True base_momentum (float or list): Lower momentum boundaries in the cycle for each parameter group. Note that momentum is cycled inversely to learning rate; at the peak of a cycle, momentum is 'base_momentum' and learning rate is 'max_lr'. Default: 0.8 max_momentum (float or list): Upper momentum boundaries in the cycle for each parameter group. Functionally, it defines the cycle amplitude (max_momentum - base_momentum). The momentum at any cycle is the difference of max_momentum and some scaling of the amplitude; therefore base_momentum may not actually be reached depending on scaling function. Note that momentum is cycled inversely to learning rate; at the start of a cycle, momentum is 'max_momentum' and learning rate is 'base_lr' Default: 0.9 last_epoch (int): The index of the last batch. This parameter is used when resuming a training job. Since `step()` should be invoked after each batch instead of after each epoch, this number represents the total number of *batches* computed, not the total number of epochs computed. When last_epoch=-1, the schedule is started from the beginning. Default: -1 Example: >>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9) >>> scheduler = torch.optim.lr_scheduler.CyclicLR(optimizer, base_lr=0.01, max_lr=0.1) >>> data_loader = torch.utils.data.DataLoader(...) >>> for epoch in range(10): >>> for batch in data_loader: >>> train_batch(...) >>> scheduler.step() .. _Cyclical Learning Rates for Training Neural Networks: https://arxiv.org/abs/1506.01186 .. _bckenstler/CLR: https://github.com/bckenstler/CLR """ def __init__(self, optimizer, base_lr, max_lr, step_size_up=2000, step_size_down=None, mode='triangular', gamma=1., scale_fn=None, scale_mode='cycle', cycle_momentum=True, base_momentum=0.8, max_momentum=0.9, last_epoch=-1): if not isinstance(optimizer, Optimizer): raise TypeError('{} is not an Optimizer'.format( type(optimizer).__name__)) self.optimizer = optimizer base_lrs = self._format_param('base_lr', optimizer, base_lr) if last_epoch == -1: for lr, group in zip(base_lrs, optimizer.param_groups): group['lr'] = lr self.max_lrs = self._format_param('max_lr', optimizer, max_lr) step_size_up = float(step_size_up) step_size_down = float(step_size_down) if step_size_down is not None else step_size_up self.total_size = step_size_up + step_size_down self.step_ratio = step_size_up / self.total_size if mode not in ['triangular', 'triangular2', 'exp_range'] \ and scale_fn is None: raise ValueError('mode is invalid and scale_fn is None') self.mode = mode self.gamma = gamma if scale_fn is None: if self.mode == 'triangular': self.scale_fn = self._triangular_scale_fn self.scale_mode = 'cycle' elif self.mode == 'triangular2': self.scale_fn = self._triangular2_scale_fn self.scale_mode = 'cycle' elif self.mode == 'exp_range': self.scale_fn = self._exp_range_scale_fn self.scale_mode = 'iterations' else: self.scale_fn = scale_fn self.scale_mode = scale_mode self.cycle_momentum = cycle_momentum if cycle_momentum: if 'momentum' not in optimizer.defaults: raise ValueError('optimizer must support momentum with `cycle_momentum` option enabled') base_momentums = self._format_param('base_momentum', optimizer, base_momentum) if last_epoch == -1: for momentum, group in zip(base_momentums, optimizer.param_groups): group['momentum'] = momentum self.base_momentums = list(map(lambda group: group['momentum'], optimizer.param_groups)) self.max_momentums = self._format_param('max_momentum', optimizer, max_momentum) super(CyclicLR, self).__init__(optimizer, last_epoch) def _format_param(self, name, optimizer, param): """Return correctly formatted lr/momentum for each param group.""" if isinstance(param, (list, tuple)): if len(param) != len(optimizer.param_groups): raise ValueError("expected {} values for {}, got {}".format( len(optimizer.param_groups), name, len(param))) return param else: return [param] * len(optimizer.param_groups) def _triangular_scale_fn(self, x): return 1. def _triangular2_scale_fn(self, x): return 1 / (2. ** (x - 1)) def _exp_range_scale_fn(self, x): return self.gamma**(x) def get_lr(self): """Calculates the learning rate at batch index. This function treats `self.last_epoch` as the last batch index. If `self.cycle_momentum` is ``True``, this function has a side effect of updating the optimizer's momentum. """ cycle = math.floor(1 + self.last_epoch / self.total_size) x = 1. + self.last_epoch / self.total_size - cycle if x <= self.step_ratio: scale_factor = x / self.step_ratio else: scale_factor = (x - 1) / (self.step_ratio - 1) lrs = [] for base_lr, max_lr in zip(self.base_lrs, self.max_lrs): base_height = (max_lr - base_lr) * scale_factor if self.scale_mode == 'cycle': lr = base_lr + base_height * self.scale_fn(cycle) else: lr = base_lr + base_height * self.scale_fn(self.last_epoch) lrs.append(lr) if self.cycle_momentum: momentums = [] for base_momentum, max_momentum in zip(self.base_momentums, self.max_momentums): base_height = (max_momentum - base_momentum) * scale_factor if self.scale_mode == 'cycle': momentum = max_momentum - base_height * self.scale_fn(cycle) else: momentum = max_momentum - base_height * self.scale_fn(self.last_epoch) momentums.append(momentum) for param_group, momentum in zip(self.optimizer.param_groups, momentums): param_group['momentum'] = momentum return lrs class CosineAnnealingWarmRestarts(_LRScheduler): r"""Set the learning rate of each parameter group using a cosine annealing schedule, where :math:`\eta_{max}` is set to the initial lr, :math:`T_{cur}` is the number of epochs since the last restart and :math:`T_{i}` is the number of epochs between two warm restarts in SGDR: .. math:: \eta_t = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min})(1 + \cos(\frac{T_{cur}}{T_{i}}\pi)) When :math:`T_{cur}=T_{i}`, set :math:`\eta_t = \eta_{min}`. When :math:`T_{cur}=0`(after restart), set :math:`\eta_t=\eta_{max}`. It has been proposed in `SGDR: Stochastic Gradient Descent with Warm Restarts`_. Args: optimizer (Optimizer): Wrapped optimizer. T_0 (int): Number of iterations for the first restart. T_mult (int, optional): A factor increases :math:`T_{i}` after a restart. Default: 1. eta_min (float, optional): Minimum learning rate. Default: 0. last_epoch (int, optional): The index of last epoch. Default: -1. .. _SGDR\: Stochastic Gradient Descent with Warm Restarts: https://arxiv.org/abs/1608.03983 """ def __init__(self, optimizer, T_0, T_mult=1, eta_min=0, last_epoch=-1): if T_0 <= 0 or not isinstance(T_0, int): raise ValueError("Expected positive integer T_0, but got {}".format(T_0)) if T_mult < 1 or not isinstance(T_mult, int): raise ValueError("Expected integer T_mult >= 1, but got {}".format(T_mult)) self.T_0 = T_0 self.T_i = T_0 self.T_mult = T_mult self.eta_min = eta_min super(CosineAnnealingWarmRestarts, self).__init__(optimizer, last_epoch) self.T_cur = last_epoch def get_lr(self): return [self.eta_min + (base_lr - self.eta_min) * (1 + math.cos(math.pi * self.T_cur / self.T_i)) / 2 for base_lr in self.base_lrs] def step(self, epoch=None): """Step could be called after every batch update Example: >>> scheduler = CosineAnnealingWarmRestarts(optimizer, T_0, T_mult) >>> iters = len(dataloader) >>> for epoch in range(20): >>> for i, sample in enumerate(dataloader): >>> inputs, labels = sample['inputs'], sample['labels'] >>> scheduler.step(epoch + i / iters) >>> optimizer.zero_grad() >>> outputs = net(inputs) >>> loss = criterion(outputs, labels) >>> loss.backward() >>> optimizer.step() This function can be called in an interleaved way. Example: >>> scheduler = CosineAnnealingWarmRestarts(optimizer, T_0, T_mult) >>> for epoch in range(20): >>> scheduler.step() >>> scheduler.step(26) >>> scheduler.step() # scheduler.step(27), instead of scheduler(20) """ if epoch is None: epoch = self.last_epoch + 1 self.T_cur = self.T_cur + 1 if self.T_cur >= self.T_i: self.T_cur = self.T_cur - self.T_i self.T_i = self.T_i * self.T_mult else: if epoch < 0: raise ValueError("Expected non-negative epoch, but got {}".format(epoch)) if epoch >= self.T_0: if self.T_mult == 1: self.T_cur = epoch % self.T_0 else: n = int(math.log((epoch / self.T_0 * (self.T_mult - 1) + 1), self.T_mult)) self.T_cur = epoch - self.T_0 * (self.T_mult ** n - 1) / (self.T_mult - 1) self.T_i = self.T_0 * self.T_mult ** (n) else: self.T_i = self.T_0 self.T_cur = epoch self.last_epoch = math.floor(epoch) for param_group, lr in zip(self.optimizer.param_groups, self.get_lr()): param_group['lr'] = lr
35d2c662fbb29329f46cc039d12df65fcc2e402e
53fab060fa262e5d5026e0807d93c75fb81e67b9
/backup/user_337/ch78_2020_04_12_01_52_05_952994.py
618d2e41901705a68a61d1e4af17bec9060603e5
[]
no_license
gabriellaec/desoft-analise-exercicios
b77c6999424c5ce7e44086a12589a0ad43d6adca
01940ab0897aa6005764fc220b900e4d6161d36b
refs/heads/main
2023-01-31T17:19:42.050628
2020-12-16T05:21:31
2020-12-16T05:21:31
306,735,108
0
0
null
null
null
null
UTF-8
Python
false
false
491
py
nome = input('Nome?') atletas = {} i = 0 while nome != 'sair': a = float(input('aceleração?')) atletas[nome] = a nome = input('Nome?') if i == 0: vence = a i+= 1 valores = atletas.values() dic = {} for i in valores: tempo = (200/i)**(1/2) for k in atletas.keys(): if atletas[k] == i: dic[k] = tempo valor = dic.values() for e in valor: if e < vence: vence = e for q in atletas: if atletas[q] == e: atleta = q
6da4091fd8ac8ad313d1b7259bd84c569f0a6e08
920f0fbb7064f2017ff62da372eaf79ddcc9035b
/lc_ladder/company/amzn/oa/Search_A_2D_Matrix.py
617d0c9cea04baca4bd662f4ceb49c9887b4a548
[]
no_license
JenZhen/LC
b29a1c45d8c905680c7b4ad0017516b3dca80cc4
85219de95e41551fce5af816b66643495fe51e01
refs/heads/master
2021-06-03T10:03:02.901376
2020-08-05T19:44:48
2020-08-05T19:44:48
104,683,578
3
1
null
2020-08-05T19:44:50
2017-09-24T23:30:35
Python
UTF-8
Python
false
false
1,980
py
#! /usr/local/bin/python3 # Requirement # Example # 写出一个高效的算法来搜索 m × n矩阵中的值。 # # 这个矩阵具有以下特性: # # 每行中的整数从左到右是排序的。 # 每行的第一个数大于上一行的最后一个整数。 # 样例 # 考虑下列矩阵: # # [ # [1, 3, 5, 7], # [10, 11, 16, 20], # [23, 30, 34, 50] # ] # 给出 target = 3,返回 true # # 挑战 # O(log(n) + log(m)) 时间复杂度 """ Algo: Binary Search D.S.: Solution: Time: O(log(n) + log(m)) Corner cases: """ class Solution: """ @param matrix: matrix, a list of lists of integers @param target: An integer @return: a boolean, indicate whether matrix contains target """ def searchMatrix(self, matrix, target): # write your code here if not matrix or not matrix[0] or target is None: return False m, n = len(matrix), len(matrix[0]) # search which row target is l, r = 0, m - 1 row, col = -1, -1 while l + 1 < r: mid = l + (r - l) // 2 if matrix[mid][0] <= target <= matrix[mid][n - 1]: row = mid break elif target < matrix[mid][0]: r = mid - 1 else: l = mid + 1 if matrix[l][0] <= target <= matrix[l][n - 1]: row = l if matrix[r][0] <= target <= matrix[r][n - 1]: row = r if row == -1: return False # serach which col target is l, r = 0, n - 1 while l + 1 < r: mid = l + (r - l) // 2 if matrix[row][mid] == target: return True elif target < matrix[row][mid]: r = mid - 1 else: l = mid + 1 if matrix[row][l] == target or matrix[row][r] == target: return True return False # Test Cases if __name__ == "__main__": solution = Solution()
261532ca2c00510c5ce9c8dbe6e2c6d3433977c6
85a9ffeccb64f6159adbd164ff98edf4ac315e33
/pysnmp/HH3C-MP-MIB.py
7952f4768e11aeef8d12a312c4032a70c9ce1d05
[ "Apache-2.0" ]
permissive
agustinhenze/mibs.snmplabs.com
5d7d5d4da84424c5f5a1ed2752f5043ae00019fb
1fc5c07860542b89212f4c8ab807057d9a9206c7
refs/heads/master
2020-12-26T12:41:41.132395
2019-08-16T15:51:41
2019-08-16T15:53:57
237,512,469
0
0
Apache-2.0
2020-01-31T20:41:36
2020-01-31T20:41:35
null
UTF-8
Python
false
false
8,080
py
# # PySNMP MIB module HH3C-MP-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/HH3C-MP-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 19:15:35 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # ObjectIdentifier, Integer, OctetString = mibBuilder.importSymbols("ASN1", "ObjectIdentifier", "Integer", "OctetString") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ConstraintsUnion, ValueSizeConstraint, ConstraintsIntersection, SingleValueConstraint, ValueRangeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsUnion", "ValueSizeConstraint", "ConstraintsIntersection", "SingleValueConstraint", "ValueRangeConstraint") hh3cRhw, = mibBuilder.importSymbols("HH3C-OID-MIB", "hh3cRhw") ifIndex, = mibBuilder.importSymbols("IF-MIB", "ifIndex") ObjectGroup, NotificationGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "ObjectGroup", "NotificationGroup", "ModuleCompliance") NotificationType, Gauge32, TimeTicks, Counter64, ObjectIdentity, IpAddress, Integer32, Bits, iso, MibScalar, MibTable, MibTableRow, MibTableColumn, Counter32, Unsigned32, MibIdentifier, ModuleIdentity = mibBuilder.importSymbols("SNMPv2-SMI", "NotificationType", "Gauge32", "TimeTicks", "Counter64", "ObjectIdentity", "IpAddress", "Integer32", "Bits", "iso", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "Counter32", "Unsigned32", "MibIdentifier", "ModuleIdentity") DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "TextualConvention") hh3cMultilinkPPP = ModuleIdentity((1, 3, 6, 1, 4, 1, 25506, 8, 33)) if mibBuilder.loadTexts: hh3cMultilinkPPP.setLastUpdated('200405180000Z') if mibBuilder.loadTexts: hh3cMultilinkPPP.setOrganization('Hangzhou H3C Tech. Co., Ltd.') hh3cMpObjects = MibIdentifier((1, 3, 6, 1, 4, 1, 25506, 8, 33, 1)) hh3cMpMultilinkTable = MibTable((1, 3, 6, 1, 4, 1, 25506, 8, 33, 1, 1), ) if mibBuilder.loadTexts: hh3cMpMultilinkTable.setStatus('current') hh3cMpMultilinkEntry = MibTableRow((1, 3, 6, 1, 4, 1, 25506, 8, 33, 1, 1, 1), ).setIndexNames((0, "IF-MIB", "ifIndex")) if mibBuilder.loadTexts: hh3cMpMultilinkEntry.setStatus('current') hh3cMpMultilinkDescr = MibTableColumn((1, 3, 6, 1, 4, 1, 25506, 8, 33, 1, 1, 1, 1), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: hh3cMpMultilinkDescr.setStatus('current') hh3cMpBundleName = MibTableColumn((1, 3, 6, 1, 4, 1, 25506, 8, 33, 1, 1, 1, 2), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: hh3cMpBundleName.setStatus('current') hh3cMpBundledSlot = MibTableColumn((1, 3, 6, 1, 4, 1, 25506, 8, 33, 1, 1, 1, 3), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: hh3cMpBundledSlot.setStatus('current') hh3cMpBundledMemberCnt = MibTableColumn((1, 3, 6, 1, 4, 1, 25506, 8, 33, 1, 1, 1, 4), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: hh3cMpBundledMemberCnt.setStatus('current') hh3cMpLostFragments = MibTableColumn((1, 3, 6, 1, 4, 1, 25506, 8, 33, 1, 1, 1, 5), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: hh3cMpLostFragments.setStatus('current') hh3cMpReorderedPkts = MibTableColumn((1, 3, 6, 1, 4, 1, 25506, 8, 33, 1, 1, 1, 6), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: hh3cMpReorderedPkts.setStatus('current') hh3cMpUnassignedPkts = MibTableColumn((1, 3, 6, 1, 4, 1, 25506, 8, 33, 1, 1, 1, 7), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: hh3cMpUnassignedPkts.setStatus('current') hh3cMpInterleavedPkts = MibTableColumn((1, 3, 6, 1, 4, 1, 25506, 8, 33, 1, 1, 1, 8), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: hh3cMpInterleavedPkts.setStatus('current') hh3cMpRcvdSequence = MibTableColumn((1, 3, 6, 1, 4, 1, 25506, 8, 33, 1, 1, 1, 9), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: hh3cMpRcvdSequence.setStatus('current') hh3cMpSentSequence = MibTableColumn((1, 3, 6, 1, 4, 1, 25506, 8, 33, 1, 1, 1, 10), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: hh3cMpSentSequence.setStatus('current') hh3cMpMemberlinkTable = MibTable((1, 3, 6, 1, 4, 1, 25506, 8, 33, 1, 2), ) if mibBuilder.loadTexts: hh3cMpMemberlinkTable.setStatus('current') hh3cMpMemberlinkEntry = MibTableRow((1, 3, 6, 1, 4, 1, 25506, 8, 33, 1, 2, 1), ).setIndexNames((0, "IF-MIB", "ifIndex"), (0, "HH3C-MP-MIB", "hh3cMpMemberlinkSeqNumber")) if mibBuilder.loadTexts: hh3cMpMemberlinkEntry.setStatus('current') hh3cMpMemberlinkSeqNumber = MibTableColumn((1, 3, 6, 1, 4, 1, 25506, 8, 33, 1, 2, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: hh3cMpMemberlinkSeqNumber.setStatus('current') hh3cMpMemberlinkIfIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 25506, 8, 33, 1, 2, 1, 2), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: hh3cMpMemberlinkIfIndex.setStatus('current') hh3cMpMemberlinkDescr = MibTableColumn((1, 3, 6, 1, 4, 1, 25506, 8, 33, 1, 2, 1, 3), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: hh3cMpMemberlinkDescr.setStatus('current') hh3cMpMemberlinkMpStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 25506, 8, 33, 1, 2, 1, 4), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: hh3cMpMemberlinkMpStatus.setStatus('current') hh3cMpNotifications = MibIdentifier((1, 3, 6, 1, 4, 1, 25506, 8, 33, 2)) hh3cMpConformance = MibIdentifier((1, 3, 6, 1, 4, 1, 25506, 8, 33, 3)) hh3cMpCompliances = MibIdentifier((1, 3, 6, 1, 4, 1, 25506, 8, 33, 3, 1)) hh3cMpCompliance = ModuleCompliance((1, 3, 6, 1, 4, 1, 25506, 8, 33, 3, 1, 1)).setObjects(("HH3C-MP-MIB", "hh3cMpMandatoryGroup")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): hh3cMpCompliance = hh3cMpCompliance.setStatus('current') hh3cMpGroups = MibIdentifier((1, 3, 6, 1, 4, 1, 25506, 8, 33, 3, 2)) hh3cMpMandatoryGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 25506, 8, 33, 3, 2, 1)).setObjects(("HH3C-MP-MIB", "hh3cMpBundledMemberCnt"), ("HH3C-MP-MIB", "hh3cMpMemberlinkSeqNumber"), ("HH3C-MP-MIB", "hh3cMpMemberlinkIfIndex")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): hh3cMpMandatoryGroup = hh3cMpMandatoryGroup.setStatus('current') hh3cMpInfoGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 25506, 8, 33, 3, 2, 2)).setObjects(("HH3C-MP-MIB", "hh3cMpMultilinkDescr"), ("HH3C-MP-MIB", "hh3cMpBundleName"), ("HH3C-MP-MIB", "hh3cMpBundledSlot"), ("HH3C-MP-MIB", "hh3cMpBundledMemberCnt"), ("HH3C-MP-MIB", "hh3cMpLostFragments"), ("HH3C-MP-MIB", "hh3cMpReorderedPkts"), ("HH3C-MP-MIB", "hh3cMpUnassignedPkts"), ("HH3C-MP-MIB", "hh3cMpInterleavedPkts"), ("HH3C-MP-MIB", "hh3cMpRcvdSequence"), ("HH3C-MP-MIB", "hh3cMpSentSequence"), ("HH3C-MP-MIB", "hh3cMpMemberlinkDescr"), ("HH3C-MP-MIB", "hh3cMpMemberlinkMpStatus")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): hh3cMpInfoGroup = hh3cMpInfoGroup.setStatus('current') mibBuilder.exportSymbols("HH3C-MP-MIB", hh3cMpMemberlinkTable=hh3cMpMemberlinkTable, hh3cMpNotifications=hh3cMpNotifications, hh3cMpBundleName=hh3cMpBundleName, hh3cMpMultilinkEntry=hh3cMpMultilinkEntry, hh3cMpInterleavedPkts=hh3cMpInterleavedPkts, hh3cMpCompliances=hh3cMpCompliances, hh3cMpMultilinkTable=hh3cMpMultilinkTable, hh3cMpMemberlinkDescr=hh3cMpMemberlinkDescr, hh3cMultilinkPPP=hh3cMultilinkPPP, hh3cMpBundledMemberCnt=hh3cMpBundledMemberCnt, hh3cMpObjects=hh3cMpObjects, hh3cMpUnassignedPkts=hh3cMpUnassignedPkts, hh3cMpMemberlinkSeqNumber=hh3cMpMemberlinkSeqNumber, hh3cMpMemberlinkEntry=hh3cMpMemberlinkEntry, hh3cMpCompliance=hh3cMpCompliance, hh3cMpSentSequence=hh3cMpSentSequence, hh3cMpMultilinkDescr=hh3cMpMultilinkDescr, hh3cMpLostFragments=hh3cMpLostFragments, hh3cMpMemberlinkIfIndex=hh3cMpMemberlinkIfIndex, hh3cMpConformance=hh3cMpConformance, hh3cMpRcvdSequence=hh3cMpRcvdSequence, hh3cMpMemberlinkMpStatus=hh3cMpMemberlinkMpStatus, PYSNMP_MODULE_ID=hh3cMultilinkPPP, hh3cMpGroups=hh3cMpGroups, hh3cMpInfoGroup=hh3cMpInfoGroup, hh3cMpMandatoryGroup=hh3cMpMandatoryGroup, hh3cMpBundledSlot=hh3cMpBundledSlot, hh3cMpReorderedPkts=hh3cMpReorderedPkts)
8fccf7816b9470fb84f1a4004f158f26b3e9010d
fa165cdb86defd6d6131ac763c38d6875c4ebec8
/manage.py
e472a9b3db0e0dfb7893cce4f0d989c49fb87545
[]
no_license
HongHanh120/generate-image-captcha
3f93665393eae0df41c2bafdb2e02a1d9dd29da4
144aae5fed9e15c670d8eda9501e53d7dc252256
refs/heads/main
2023-05-16T05:41:52.215234
2021-06-01T19:18:17
2021-06-01T19:18:17
354,935,311
0
0
null
null
null
null
UTF-8
Python
false
false
672
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): """Run administrative tasks.""" os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'generate_captcha.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
d7ca2662615309dffb8694f7333f7b13866cb74a
487ce91881032c1de16e35ed8bc187d6034205f7
/codes/CodeJamCrawler/16_0_1/kcrt/A.py
8a78979fdd4d2249fd6b2449edec65b0d5a74bda
[]
no_license
DaHuO/Supergraph
9cd26d8c5a081803015d93cf5f2674009e92ef7e
c88059dc66297af577ad2b8afa4e0ac0ad622915
refs/heads/master
2021-06-14T16:07:52.405091
2016-08-21T13:39:13
2016-08-21T13:39:13
49,829,508
2
0
null
2021-03-19T21:55:46
2016-01-17T18:23:00
Python
UTF-8
Python
false
false
371
py
# -*- coding: utf-8 -*- T = int(input()) for t in range(T): N = int(input()) if N == 0: result = "INSOMNIA" else: n = 0 digits_seen = set() while len(digits_seen) != 10: n += N for x in str(n): digits_seen.add(x) result = str(n) print("Case #" + str(t + 1) + ": " + result)
497971334d48da8fa1c01f649fa7eedf0c06d2a2
b83ac23819fd7ba998563f2ad870405bdd07cc2b
/experiments/util/util.py
5911d151f027ca6f96b5121f25011c81af5f76ec
[ "MIT" ]
permissive
Limmen/gym-idsgame
699abd2894bce15108f1606f5fb71f612dd7ba03
d10830fef55308d383c98b41b34688a7fceae357
refs/heads/master
2023-09-01T17:32:16.768138
2023-08-22T12:00:53
2023-08-22T12:00:53
247,794,752
49
12
MIT
2021-04-21T07:50:06
2020-03-16T19:00:27
Python
UTF-8
Python
false
false
3,889
py
""" Utility functions for experiments with the idsgame-env """ import io import json import jsonpickle import logging import time import argparse import os from gym_idsgame.config.client_config import ClientConfig def create_artefact_dirs(output_dir: str, random_seed : int) -> None: """ Creates artefact directories if they do not already exist :param output_dir: the base directory :param random_seed: the random seed of the experiment :return: None """ if not os.path.exists(output_dir + "/results/logs/" + str(random_seed) + "/"): os.makedirs(output_dir + "/results/logs/" + str(random_seed) + "/") if not os.path.exists(output_dir + "/results/plots/" + str(random_seed) + "/"): os.makedirs(output_dir + "/results/plots/" + str(random_seed) + "/") if not os.path.exists(output_dir + "/results/data/" + str(random_seed) + "/"): os.makedirs(output_dir + "/results/data/" + str(random_seed) + "/") if not os.path.exists(output_dir + "/results/hyperparameters/" + str(random_seed) + "/"): os.makedirs(output_dir + "/results/hyperparameters/" + str(random_seed) + "/") if not os.path.exists(output_dir + "/results/gifs/" + str(random_seed) + "/"): os.makedirs(output_dir + "/results/gifs/" + str(random_seed) + "/") if not os.path.exists(output_dir + "/results/tensorboard/" + str(random_seed) + "/"): os.makedirs(output_dir + "/results/tensorboard/" + str(random_seed) + "/") def setup_logger(name: str, logdir: str, time_str = None): """ Configures the logger for writing log-data of experiments :param name: name of the logger :param logdir: directory to save log files :param time_str: time string for file names :return: None """ # create formatter formatter = logging.Formatter('%(asctime)s,%(message)s') # log to console ch = logging.StreamHandler() ch.setLevel(logging.INFO) ch.setFormatter(formatter) logger = logging.getLogger(name) logger.setLevel(logging.INFO) # log to file if time_str is None: time_str = str(time.time()) fh = logging.FileHandler(logdir + "/" + time_str + "_" + name + ".log", mode="w") fh.setLevel(logging.INFO) fh.setFormatter(formatter) # add the handlers to the logger logger.addHandler(fh) #logger.addHandler(ch) return logger def write_config_file(config: ClientConfig, path: str) -> None: """ Writes a config object to a config file :param config: the config to write :param path: the path to write the file :return: None """ json_str = json.dumps(json.loads(jsonpickle.encode(config)), indent=4, sort_keys=True) with io.open(path, 'w', encoding='utf-8') as f: f.write(json_str) def read_config(config_path) -> ClientConfig: """ Reads configuration of the experiment from a json file :param config_path: the path to the configuration file :return: the configuration """ with io.open(config_path, 'r', encoding='utf-8') as f: json_str = f.read() client_config: ClientConfig = jsonpickle.decode(json_str) return client_config def parse_args(default_config_path): """ Parses the commandline arguments with argparse :param default_config_path: default path to config file """ parser = argparse.ArgumentParser(description='Parse flags to configure the json parsing') parser.add_argument("-cp", "--configpath", help="Path to configuration file", default=default_config_path, type=str) parser.add_argument("-po", "--plotonly", help="Boolean parameter, if true, only plot", action="store_true") parser.add_argument("-nc", "--noconfig", help="Boolean parameter, if true always override config", action="store_true") args = parser.parse_args() return args
c83e2817d9a860680a5a11fdeadfb2a9d45c9037
1793aac7856809ed8e121955056154de50a2ae8f
/c07_pycon_tw/p14_digit_stack.py
51b37d4dba55ac1dce6921328221a67bb068261c
[]
no_license
ZpRoc/checkio
fe4af88f116f75f8197cd31d857ae5262615b6af
126647f8971732bdf13d49092df178654dee889b
refs/heads/main
2023-03-22T23:52:37.330312
2021-03-10T02:28:56
2021-03-10T02:28:56
335,871,362
0
0
null
null
null
null
UTF-8
Python
false
false
635
py
# ---------------------------------------------------------------- # # Digit Stack # Take the one off the top of the pile! # (Numbers) # ---------------------------------------------------------------- # # ---------------------------------------------------------------- # # ---------------------------------------------------------------- # # ---------------------------------------------------------------- # # ---------------------------------------------------------------- # # ---------------------------------------------------------------- # # ---------------------------------------------------------------- #
5f477bed338ceb2d6e833ae8f6b79e32aa1680ee
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/nouns/_sneers.py
a803280a36259a958b364c4e672bcfc2c97f2596
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
231
py
from xai.brain.wordbase.nouns._sneer import _SNEER #calss header class _SNEERS(_SNEER, ): def __init__(self,): _SNEER.__init__(self) self.name = "SNEERS" self.specie = 'nouns' self.basic = "sneer" self.jsondata = {}
291ab02ed979348e94062f8dfa48aa3b87c29f40
af5c8d742226965ef73cf761782f0825fb374b7c
/string_format/parcela.py
21d6fe1122398071d26d21ef974fc71e743cdae5
[]
no_license
Zahidsqldba07/PythonExamples-1
002e99d2581c05bfb8a1766caff12991f55e11bb
a9f5bbc58cc6941a73c537b3a22d812cc9081785
refs/heads/master
2023-03-16T08:40:43.781000
2019-01-11T04:33:03
2019-01-11T04:33:03
null
0
0
null
null
null
null
UTF-8
Python
false
false
735
py
# coding: utf-8 # Passagem Aérea # (c) Héricles Emanuel, UFCG, Programação 1 milhas = float(raw_input()) aliquota = float(raw_input()) valor_passagem = (milhas * aliquota) + 51.00 print "Valor da passagem: R$ %.2f" % valor_passagem #Formas de Pagamento # À vista pag_vista = valor_passagem * 0.75 # Em 6 parcelas pag_6 = valor_passagem * 0.95 # Em 10 parcelas pag_10 = valor_passagem # Valor das parcelas # 6 Parcelas parcela_6 = pag_6 / 6 # 10 Parcelas parcela_10 = pag_10 / 10 print "\nPagamento:" print "1. À vista. R$ %.2f" % pag_vista print "2. Em 6 parcelas. Total: R$ %.2f" % pag_6 print " 6 x R$ %.2f" % parcela_6 print "3. Em 10 parcelas. Total: R$ %.2f" % pag_10 print " 10 x R$ %.2f" % parcela_10
2facbb1ce7570c8227c25a19f561d45f47185148
8ef5a09d76a11c56963f18e6a08474a1a8bafe3c
/leet_code/1446. Consecutive Characters.py
9379134d01e057544f21fef8f3b8eec1ee75c106
[]
no_license
roiei/algo
32c4677649c7666db148f6183fbfbf66c8b1969f
ae8bb8bf4ae4026ccaf1dce323b4098547dd35ec
refs/heads/master
2022-04-01T19:21:27.768675
2022-02-19T06:15:29
2022-02-19T06:15:29
169,021,154
0
0
null
null
null
null
UTF-8
Python
false
false
633
py
import time from util.util_list import * from util.util_tree import * import copy import heapq import bisect import collections class Solution: def maxPower(self, s: str) -> int: if not s: return 0 cur = s[0] mx = cnt = 1 for i in range(1, len(s)): if s[i] == cur: cnt += 1 mx = max(cnt, mx) continue cnt = 1 cur = s[i] return mx stime = time.time() print(2 == Solution().maxPower(s = "leetcode")) print('elapse time: {} sec'.format(time.time() - stime))
2f1a3d7401b312b6b3dbbeef3cacb792e34eb756
206e54f4ad23386a08b634dbf1c5bc691ef76390
/build/scripts-3.6/4scanner
80627675ba7ac052fa3161208bd2848b3dfb8f4e
[ "MIT" ]
permissive
Python3pkg/4scanner
f604cd0e265ec96f39116270c5dedb67f4d9b7d1
7e647081fd6a4fb7baff1a5fd11e2cdc3d22bd20
refs/heads/master
2021-01-21T09:14:32.962898
2017-05-18T19:38:38
2017-05-18T19:38:38
91,650,218
0
0
null
2017-05-18T04:56:17
2017-05-18T04:56:17
null
UTF-8
Python
false
false
1,866
#!/usr/local/opt/python3/bin/python3.6 import argparse import os import scanner import time def main(): # Arguments parsing and validation parser = argparse.ArgumentParser() parser.add_argument("keywords_file", help="file with the keywords to search for") parser.add_argument("-o", "--output", help="Specify output folder") parser.add_argument("-w", "--wait-time", help="Time to wait between each scan in minutes. " "Default is 5 minutes") parser.add_argument("-q", "--quota", help="Exit when specified size quota " "is exceeded. Ex: 500MB, 30GB etc...") args = parser.parse_args() # Checking keywords file if not os.path.isfile(args.keywords_file): print("Keywords file does not exist...") exit(1) if args.output: output = args.output if not os.path.exists(output): print("{0} Does not exist.".format(output)) exit(1) else: output = os.getcwd() # Checking for quota if args.quota: if "gb" in args.quota.lower(): quota_mb = args.quota.lower().split('g')[0] * 1000 elif "mb" in args.quota.lower(): quota_mb = args.quota.lower().split('m')[0] else: print("Quota format invalid. Valid example: 20GB, 700MB etc...") exit(1) else: quota_mb = False # Checking for sleep time if args.wait_time: wait_time = args.wait_time * 60 else: wait_time = 300 log_file = "downloaded-{0}.txt".format(time.strftime('%d%m%Y_%H%M')) scanner.scan(args.keywords_file, output, log_file, quota_mb, wait_time) if __name__ == '__main__': try: main() except KeyboardInterrupt: pass
c20ef58d20f34d8cb7e2c6df7c4607975c74d86e
2dadf0fb64c52655704d9231b8039fc0343c5e88
/py_wake/tests/test_blockage_models/test_selfsimilarity.py
f7695f796c9dfe4810417efb6ead3f6cf6b334b5
[ "MIT" ]
permissive
luqidndx/PyWake
45377245e8d35db3c7b33b27ef11b812db0a6ada
3d046eb14c4597de49ac2fee3771b8e0e68820ad
refs/heads/master
2022-07-02T01:40:28.575907
2020-05-13T16:51:42
2020-05-13T16:51:42
259,701,236
0
0
MIT
2020-04-28T17:06:59
2020-04-28T17:06:58
null
UTF-8
Python
false
false
5,796
py
import pytest import matplotlib.pyplot as plt import numpy as np from py_wake.deficit_models import SelfSimilarityDeficit from py_wake.deficit_models.no_wake import NoWakeDeficit from py_wake.deficit_models.noj import NOJDeficit from py_wake.examples.data import hornsrev1 from py_wake.examples.data.hornsrev1 import Hornsrev1Site from py_wake.superposition_models import LinearSum from py_wake.tests import npt from py_wake.wind_farm_models.engineering_models import All2AllIterative @pytest.fixture(scope='module') def setup(): site = Hornsrev1Site() windTurbines = hornsrev1.HornsrevV80() ss = SelfSimilarityDeficit() return site, windTurbines, ss def test_selfsimilarity_reference_figures(setup): ss = setup[2] ws = 10 D = 80 R = D / 2 WS_ilk = np.array([[[ws]]]) D_src_il = np.array([[D]]) ct_ilk = np.array([[[.8]]]) x1, y1 = -np.arange(200), np.array([0]) deficit_centerline = ss.calc_deficit(WS_ilk=WS_ilk, D_src_il=D_src_il, dw_ijlk=x1.reshape((1, len(x1), 1, 1)), cw_ijlk=y1.reshape((1, len(y1), 1, 1)), ct_ilk=ct_ilk)[0, :, 0, 0] x2, y2 = np.array([-2 * R]), np.arange(200) deficit_radial = ss.calc_deficit(WS_ilk=WS_ilk, D_src_il=D_src_il, dw_ijlk=x2.reshape((1, len(x2), 1, 1)), cw_ijlk=y2.reshape((1, len(y2), 1, 1)), ct_ilk=ct_ilk)[0, :, 0, 0] r12 = np.sqrt(ss.lambda_ * (ss.eta + (x2 / R) ** 2)) # Eq. (13) from [1] if 0: plt.title('Fig 11 from [1]') plt.xlabel('x/R') plt.ylabel('a') plt.plot(x1 / R, deficit_centerline / ws) print(list(np.round(deficit_centerline[::20], 6))) plt.figure() plt.title('Fig 10 from [1]') print(list(np.round(deficit_radial[::20] / deficit_radial[0], 6))) plt.xlabel('y/R12 (epsilon)') plt.ylabel('f') plt.plot((y2 / R) / r12, deficit_radial / deficit_radial[0]) plt.show() fig11_ref = np.array([[-0.025, -1, -2, -3, -4, -5], [0.318, 0.096, 0.035, 0.017, 0.010, 0.0071]]).T npt.assert_array_almost_equal(np.interp(-fig11_ref[:, 0], -x1 / R, deficit_centerline / ws), fig11_ref[:, 1], 1) npt.assert_array_almost_equal(deficit_centerline[::20], [0, 1.806478, 0.95716, 0.548851, 0.345007, 0.233735, 0.1677, 0.125738, 0.097573, 0.077819]) fig10_ref = np.array([[0, 1, 2, 3], [1, .5, .15, .045]]).T npt.assert_array_almost_equal(np.interp(fig10_ref[:, 0], (y2 / R) / r12, deficit_radial / deficit_radial[0]), fig10_ref[:, 1], 1) npt.assert_array_almost_equal(deficit_radial[::20] / deficit_radial[0], [1.0, 0.933011, 0.772123, 0.589765, 0.430823, 0.307779, 0.217575, 0.153065, 0.107446, 0.075348]) def test_blockage_map(setup): site, windTurbines, ss = setup wm = All2AllIterative(site, windTurbines, wake_deficitModel=NoWakeDeficit(), superpositionModel=LinearSum(), blockage_deficitModel=ss) flow_map = wm(x=[0], y=[0], wd=[270], ws=[10]).flow_map() X_j, Y_j = flow_map.XY WS_eff = flow_map.WS_eff_xylk[:, :, 0, 0] if 0: plt.contourf(X_j, Y_j, WS_eff) plt.plot(X_j[200, ::50], Y_j[200, ::50], '.-') plt.plot(X_j[250, ::50], Y_j[250, ::50], '.-') print(list(np.round(WS_eff[200, ::50], 6))) print(list(np.round(WS_eff[250, ::50], 6))) ss.windTurbines.plot([0], [0], wd=[270]) plt.show() npt.assert_array_almost_equal(WS_eff[200, ::50], [9.940967, 9.911659, 9.855934, 9.736016, 9.44199, 10.0, 10.0, 10.0, 10.0, 10.0]) npt.assert_array_almost_equal(WS_eff[250, ::50], [9.937601, 9.90397, 9.834701, 9.659045, 9.049764, 10.0, 10.0, 10.0, 10.0, 10.0]) def test_wake_and_blockage(setup): site, windTurbines, ss = setup noj_ss = All2AllIterative(site, windTurbines, wake_deficitModel=NOJDeficit(), blockage_deficitModel=ss, superpositionModel=LinearSum()) flow_map = noj_ss(x=[0], y=[0], wd=[270], ws=[10]).flow_map() X_j, Y_j = flow_map.XY WS_eff = flow_map.WS_eff_xylk[:, :, 0, 0] npt.assert_array_almost_equal(WS_eff[200, ::50], [9.940967, 9.911659, 9.855934, 9.736016, 9.44199, 4.560631, 5.505472, 6.223921, 6.782925, 7.226399]) npt.assert_array_almost_equal(WS_eff[250, ::50], [9.937601, 9.90397, 9.834701, 9.659045, 9.049764, 4.560631, 5.505472, 6.223921, 6.782925, 7.226399]) if 0: plt.contourf(X_j, Y_j, WS_eff) plt.plot(X_j[200, ::50], Y_j[200, ::50], '.-') plt.plot(X_j[250, ::50], Y_j[250, ::50], '.-') print(list(np.round(WS_eff[200, ::50], 6))) print(list(np.round(WS_eff[250, ::50], 6))) ss.windTurbines.plot([0], [0], wd=[270]) plt.show() def test_aep_two_turbines(setup): site, windTurbines, ss = setup nwm_ss = All2AllIterative(site, windTurbines, wake_deficitModel=NoWakeDeficit(), blockage_deficitModel=ss, superpositionModel=LinearSum()) sim_res = nwm_ss(x=[0, 80 * 3], y=[0, 0]) aep_no_blockage = sim_res.aep_ilk(with_wake_loss=False).sum(2) aep = sim_res.aep_ilk().sum(2) # blockage reduce aep(wd=270) by .5% npt.assert_almost_equal((aep_no_blockage[0, 270] - aep[0, 270]) / aep_no_blockage[0, 270] * 100, 0.4896853) if 0: plt.plot(sim_res.WS_eff_ilk[:, :, 7].T) plt.show()
fedd53070c0b4a1d64e61591d4c69662132cb765
7b55cfc4ffa7678e4c7b8f2312831ebbd549e54f
/proj1/tests/other-tests/oskis-angels_tests/regexperts_tests/test-proj1
afb5b61b6d7e62ec1bf967ca1639a3a68c36a002
[]
no_license
czchen1/cs164-projects
0d330efef85421e611a436b165428ba0ddfb3512
a04cafbcaafd32e518227dacf89a6d7837bf9f57
refs/heads/master
2020-03-27T04:03:31.727524
2018-08-23T21:43:46
2018-08-23T21:43:46
145,909,148
0
0
null
null
null
null
UTF-8
Python
false
false
4,436
#!/usr/bin/env python3 # Test compiler against suite of Python programs. Requires that pyunparse be # on the path. import os, sys, re from subprocess import Popen, PIPE from getopt import getopt, GetoptError def Usage(): print(''' Usage: test-proj1 [ --errors ] [ --compiler=COMPILER ] [ --retain ] \ [ --runtime=RUNTIME.py ] DIR/BASE.py ... Runs COMPILER (default ./apyc) on each DIR/BASE.py with the command COMPILER --phase=1 -o BASE.ast PROGRAM-FILE In the absence of the --errors option, unparses the result into a Python program BASE-2.py. If there is a file BASE.pre, prefixes that to BASE-2.py; otherwise, if there is a file RUNTIME.py specified, prefixes that. Then runs python on BASE-2.py. If there is a file DIR/BASE.in, uses that as the standard input. Otherwise, uses the empty file for the standard input. Compares the output to file DIR/BASE.std, if that is present, and otherwise just checks that the python interpreter exits normally. Retains ASTs if --retain. With the --errors option, checks that the compiler exits with a non-zero exit code and that stderr contains at least one error message in the correct format. Does not unparse the resulting AST or execute the Python interpreter. Reports results and exits with 0 if there are no errors, and with 1 otherwise.''', file=sys.stderr) def Run(command, *args, **keys): if args: command = command % args proc = Popen (command, shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE) out, err = proc.communicate(keys.get ('stdin', '')) return proc.returncode, out.decode('utf-8'), err.decode('utf-8') def Remove(file): try: os.unlink(file) except OSError: pass def Contents(file): try: f = open(file) r = f.read() f.close() return r except: return "" def Compile(prog, ast): global Stdout, Stderr code, Stdout, Stderr = Run("%s --phase=1 -o %s %s", compiler, ast, prog) return code == 0 def Unparse(ast, python, prefix=""): code, out, err = Run("pyunparse --remove-extensions %s", ast) if code != 0: return False outfile = open(python, "w") outfile.write(prefix + out) outfile.close() return True def Execute(prog, inp): global Stdout, Stderr code, Stdout, Stderr = Run("python %s", prog, stdin=inp.encode('utf-8')) return code == 0 def HasError(errout): return re.search (r'(?m)^[^:]+\.py:\d+:\s*\S', errout) try: opts, tests = getopt (sys.argv[1:], 'h', ['help', 'retain', 'errors', 'runtime=', 'compiler=']) except GetoptError: Usage() sys.exit(1) compiler = './apyc' errors = False retain = False runtime = '' for opt, val in opts: if opt in ( '-h', '--help' ): Usage() sys.exit(0) elif opt == '--errors': errors = True elif opt == '--compiler': compiler = val elif opt == '--retain': retain = True elif opt == '--runtime': runtime = Contents(val) N = 0 OK = 0 for f in tests: N += 1 dir, file = os.path.split(f) base, ext = os.path.splitext(file) print(base + ".py:", end=" ") ast = base + ".ast" if errors: if Compile(f, ast): msg = "FAIL (wrong exit code)" elif HasError (Stderr): msg = "OK" else: msg = "FAIL (bad error message)" else: prog2 = base + "-2.py" inp = os.path.join(dir, base + ".in") std = Contents (os.path.join(dir, base + ".std")) prefix = Contents(os.path.join(dir, base + ".pre")) or runtime if not Compile(f, ast): msg = "FAIL (wrong exit code)" elif Stderr: msg = "FAIL (error messages)" elif not Unparse(ast, prog2, prefix): msg = "FAIL (bad AST)" elif not Execute(prog2, Contents(inp)): msg = "FAIL (execution error)" elif Stderr: msg = "FAIL (error output on execution)" elif std and std != Stdout: msg = "FAIL (wrong output)" else: msg = "OK" Remove(prog2) if not retain: Remove(ast) if msg == "OK": OK += 1 print(msg) print() print("Ran %d tests." % N) if OK == N: print("All passed.") sys.exit(0) else: print("%d failed." % (N - OK)) sys.exit(1)
e7e0c38178d388d789d1caec87893f7825006c74
3d19e1a316de4d6d96471c64332fff7acfaf1308
/Users/L/lk_morgan/molecular_spectroscopy_data_3.py
e22a7abf2fdbca5d126d00da9a5629182b65adc7
[]
no_license
BerilBBJ/scraperwiki-scraper-vault
4e98837ac3b1cc3a3edb01b8954ed00f341c8fcc
65ea6a943cc348a9caf3782b900b36446f7e137d
refs/heads/master
2021-12-02T23:55:58.481210
2013-09-30T17:02:59
2013-09-30T17:02:59
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,992
py
########################################################################################### # We use a ScraperWiki library called pdftoxml to scrape PDFs. # This is an example of scraping a simple PDF. ########################################################################################### import scraperwiki import urllib2 import lxml.etree import lxml.html import re htmlurl=scraperwiki.scrape("http://spec.jpl.nasa.gov/ftp/pub/catalog/catdir.html") html = lxml.html.fromstring(htmlurl) text_arr=[] for el in html.cssselect("div[align='left'] a"): text=el.text_content() text_arr.append(text) cat_list=[] for k in text_arr: if k != 'pdf' and k !='Tex': cat_list.append(k) species_list=[] for l in cat_list: start = l.find('c') end = l.find('.cat', start) species_list.append(l[start+1:end]) for i in species_list: #Skip the 055002 and 102002 files for now as they don't follow the regular format, need to fix this at some point if i !='055002' and i !='102002': print i sp_url="http://spec.jpl.nasa.gov/ftp/pub/catalog/doc/d"+i+".pdf" url = sp_url pdfdata = urllib2.urlopen(url).read() xmldata = scraperwiki.pdftoxml(pdfdata,'-hidden') root = lxml.etree.fromstring(xmldata) pages = list(root) # this function has to work recursively because we might have "<b>Part1 <i>part 2</i></b>" def gettext_with_bi_tags(el): res = [ ] if el.text: res.append(el.text) for lel in el: res.append("<%s>" % lel.tag) res.append(gettext_with_bi_tags(lel)) res.append("</%s>" % lel.tag) if el.tail: res.append(el.tail) return "".join(res) print gettext_with_bi_tags(pages[0]) row=[] pagei=0 for page in list(pages): pagei=pagei+1 eli=0 for el in list(page): eli=eli+1 row.append(gettext_with_bi_tags(el)) try: Species_Tagn=row.index('Species Tag:') Species=row[Species_Tagn+1] except: Species='No Info' try: Namen = row.index('Name:') if row[Namen+1] == row[Versionn-1]:Name=row[Namen+1] else:Name=row[Namen+1]+row[Versionn-1] except: Name='No Info' Versionn=row.index('Version:') Daten=row.index('Date:') Q300n=row.index('Q(300.0)=') Q225n=row.index('Q(225.0)=') Q150n=row.index('Q(150.0)=') Q75n=row.index('Q(75.00)=') Q37n=row.index('Q(37.50)=') Q18n=row.index('Q(18.75)=') Q9n=row.index('Q(9.375)=') try: mu_an=row.index('a') except: mu_an=row.index('0') try: mu_bn=row.index('b') except: mu_bn=row.index(u'\xb5 =') try: mu_cn=row.index('c') except: mu_cn=row.index('el') maxJn=row.index('Max. J:') An=row.index('A=') Bn=row.index('B=') Cn=row.index('C=') State=row[Versionn+2:Daten] statn='' for j in State: statn=statn+' '+j if row[An+1] == u'\xb5' or row[An+1] == u'\xb5 =':A='no data' else: A=row[An+1] if row[Bn+1] == u'\xb5':B='no data' else: B=row[Bn+1] C_test=row[Cn+1] if C_test != '0' or '1' or '2' or '3' or '4' or '5' or '6' or '7' or '8' or '9':C='no data' else:C=row[Cn+1] if row[mu_an+2] != '0' or '1' or '2' or '3' or '4' or '5' or '6' or '7' or '8' or '9':mua='no data' else: mua=row[mu_an+2] if row[mu_bn+2] != '0' or '1' or '2' or '3' or '4' or '5' or '6' or '7' or '8' or '9':mub='no data' else: mub=row[mu_cn+2] if row[mu_cn+2] != '0' or '1' or '2' or '3' or '4' or '5' or '6' or '7' or '8' or '9':muc='no data' else: muc=row[mu_cn+2] scraperwiki.sqlite.save(unique_keys=["Species Tag"],data={"Molecule":Name,"State":statn,"Species Tag":Species,"Max J":row[maxJn+1],"mu a":mua,"mu b":mub,"mu c":muc,"A":A,"B":B,"C":C,"Q300":row[Q300n+1],"Q225":row[Q225n+1],"Q150":row[Q150n+1],"Q75":row[Q75n+1],"Q37":row[Q37n+1],"Q18":row[Q18n+1],"Q9":row[Q9n+1]}) ########################################################################################### # We use a ScraperWiki library called pdftoxml to scrape PDFs. # This is an example of scraping a simple PDF. ########################################################################################### import scraperwiki import urllib2 import lxml.etree import lxml.html import re htmlurl=scraperwiki.scrape("http://spec.jpl.nasa.gov/ftp/pub/catalog/catdir.html") html = lxml.html.fromstring(htmlurl) text_arr=[] for el in html.cssselect("div[align='left'] a"): text=el.text_content() text_arr.append(text) cat_list=[] for k in text_arr: if k != 'pdf' and k !='Tex': cat_list.append(k) species_list=[] for l in cat_list: start = l.find('c') end = l.find('.cat', start) species_list.append(l[start+1:end]) for i in species_list: #Skip the 055002 and 102002 files for now as they don't follow the regular format, need to fix this at some point if i !='055002' and i !='102002': print i sp_url="http://spec.jpl.nasa.gov/ftp/pub/catalog/doc/d"+i+".pdf" url = sp_url pdfdata = urllib2.urlopen(url).read() xmldata = scraperwiki.pdftoxml(pdfdata,'-hidden') root = lxml.etree.fromstring(xmldata) pages = list(root) # this function has to work recursively because we might have "<b>Part1 <i>part 2</i></b>" def gettext_with_bi_tags(el): res = [ ] if el.text: res.append(el.text) for lel in el: res.append("<%s>" % lel.tag) res.append(gettext_with_bi_tags(lel)) res.append("</%s>" % lel.tag) if el.tail: res.append(el.tail) return "".join(res) print gettext_with_bi_tags(pages[0]) row=[] pagei=0 for page in list(pages): pagei=pagei+1 eli=0 for el in list(page): eli=eli+1 row.append(gettext_with_bi_tags(el)) try: Species_Tagn=row.index('Species Tag:') Species=row[Species_Tagn+1] except: Species='No Info' try: Namen = row.index('Name:') if row[Namen+1] == row[Versionn-1]:Name=row[Namen+1] else:Name=row[Namen+1]+row[Versionn-1] except: Name='No Info' Versionn=row.index('Version:') Daten=row.index('Date:') Q300n=row.index('Q(300.0)=') Q225n=row.index('Q(225.0)=') Q150n=row.index('Q(150.0)=') Q75n=row.index('Q(75.00)=') Q37n=row.index('Q(37.50)=') Q18n=row.index('Q(18.75)=') Q9n=row.index('Q(9.375)=') try: mu_an=row.index('a') except: mu_an=row.index('0') try: mu_bn=row.index('b') except: mu_bn=row.index(u'\xb5 =') try: mu_cn=row.index('c') except: mu_cn=row.index('el') maxJn=row.index('Max. J:') An=row.index('A=') Bn=row.index('B=') Cn=row.index('C=') State=row[Versionn+2:Daten] statn='' for j in State: statn=statn+' '+j if row[An+1] == u'\xb5' or row[An+1] == u'\xb5 =':A='no data' else: A=row[An+1] if row[Bn+1] == u'\xb5':B='no data' else: B=row[Bn+1] C_test=row[Cn+1] if C_test != '0' or '1' or '2' or '3' or '4' or '5' or '6' or '7' or '8' or '9':C='no data' else:C=row[Cn+1] if row[mu_an+2] != '0' or '1' or '2' or '3' or '4' or '5' or '6' or '7' or '8' or '9':mua='no data' else: mua=row[mu_an+2] if row[mu_bn+2] != '0' or '1' or '2' or '3' or '4' or '5' or '6' or '7' or '8' or '9':mub='no data' else: mub=row[mu_cn+2] if row[mu_cn+2] != '0' or '1' or '2' or '3' or '4' or '5' or '6' or '7' or '8' or '9':muc='no data' else: muc=row[mu_cn+2] scraperwiki.sqlite.save(unique_keys=["Species Tag"],data={"Molecule":Name,"State":statn,"Species Tag":Species,"Max J":row[maxJn+1],"mu a":mua,"mu b":mub,"mu c":muc,"A":A,"B":B,"C":C,"Q300":row[Q300n+1],"Q225":row[Q225n+1],"Q150":row[Q150n+1],"Q75":row[Q75n+1],"Q37":row[Q37n+1],"Q18":row[Q18n+1],"Q9":row[Q9n+1]})
061e7dda33dcb2c2fb0db6cad3aee933e290bf59
b1bc2e54f8cd35c9abb6fc4adb35b386c12fe6b4
/toontown/src/coghq/LobbyManager.py
a7cc7848ebf5356ae4059739f695cbf473e47cec
[]
no_license
satire6/Anesidora
da3a44e2a49b85252b87b612b435fb4970469583
0e7bfc1fe29fd595df0b982e40f94c30befb1ec7
refs/heads/master
2022-12-16T20:05:13.167119
2020-09-11T16:58:04
2020-09-11T17:02:06
294,751,966
89
32
null
null
null
null
UTF-8
Python
false
false
850
py
from pandac.PandaModules import * from toontown.toonbase import ToontownGlobals from direct.distributed import DistributedObject from direct.directnotify import DirectNotifyGlobal from toontown.toonbase import TTLocalizer class LobbyManager(DistributedObject.DistributedObject): notify = DirectNotifyGlobal.directNotify.newCategory("LobbyManager") SetFactoryZoneMsg = "setFactoryZone" def __init__(self, cr): DistributedObject.DistributedObject.__init__(self, cr) def generate(self): self.notify.debug("generate") DistributedObject.DistributedObject.generate(self) def disable(self): self.notify.debug("disable") self.ignoreAll() DistributedObject.DistributedObject.disable(self) def getSuitDoorOrigin(self): return 1 def getBossLevel(self): return 0
237881d1efcacc8a677adc585e4d749afd015af4
ebda2abceb39e2a85210f0f0b193d3221811d582
/5ed sozdanie.py
4960fa60c8c4903e3fae811136d6f612453db8a8
[]
no_license
PashaKim/Python-dnd-backstory
783e7604a185e594810a65430d1151db8388f8bb
d13876f3530b6dfca18a9638260a77d49990a401
refs/heads/master
2020-03-18T15:04:02.296576
2018-05-26T03:15:27
2018-05-26T03:15:27
134,885,128
0
0
null
null
null
null
UTF-8
Python
false
false
119,372
py
# coding=utf-8 import numpy import random import sys def dice(dicemin,dicemax,droll): return numpy.random.randint(dicemin, dicemax+1, droll) def story(): return dice(1, 20, 1) # def Characteristics(): # Char = [dice(1, 6, 4) for x in range(0, 6)] # Char = [sum(L[1:4], 0) for L in Char] # Char.sort() # return Char def sixroll(): six = dice(1, 6, 4) six.sort() six = sorted(six, reverse=True) return sum(six[:3]) STR = sixroll() DEX = sixroll() CON = sixroll() INT = sixroll() WSD = sixroll() CHR = sixroll() Char = [STR, DEX, CON, INT, WSD, CHR] Char.sort() Zoloto = dice(30, 50, 1) Zoloto = Zoloto[0] #print('Доступные классы: Варвар, Бард, Жрец, Друид, Воин, Монах, Паладин, Следопыт, Плут, Чародей, Волшебник') #Prof = input('Выберите ваш класс персонажа: ') # Prof = random.choice(('Варвар', 'Воин', 'Паладин', # 'Бард', 'Следопыт', 'Плут', # 'Друид', 'Монах', 'Жрец', # 'Чародей', 'Волшебник')) Prof ='Искатель приключений' print(Char) def proftochar(): STR = Char[5] DEX = Char[3] CON = Char[4] INT = Char[0] WSD = Char[2] CHR = Char[1] if Prof in ('Бард', 'бард', 'Скальд', 'скальд', 'Поэт', 'поэт'): STR = Char[0] DEX = Char[4] CON = Char[3] INT = Char[1] WSD = Char[2] CHR = Char[5] elif Prof in ('Варвар', 'варвар', 'Берсерк', 'берсерк'): STR = Char[5] DEX = Char[3] CON = Char[4] INT = Char[0] WSD = Char[2] CHR = Char[1] elif Prof in ('Жрец', 'жрец', 'Священик', 'cвященик'): STR = Char[3] DEX = Char[0] CON = Char[4] INT = Char[2] WSD = Char[5] CHR = Char[1] elif Prof in ('Друид', 'друид'): STR = Char[0] DEX = Char[3] CON = Char[4] INT = Char[2] WSD = Char[5] CHR = Char[1] elif Prof in ('воин', 'солдат', 'рыцарь', 'Воин'): STR = Char[5] DEX = Char[3] CON = Char[4] INT = Char[0] WSD = Char[2] CHR = Char[1] elif Prof in ('Монах', 'монах'): STR = Char[2] DEX = Char[5] CON = Char[3] INT = Char[1] WSD = Char[4] CHR = Char[0] elif Prof in ('Паладин', 'паладин', 'воин света', 'Воин света'): STR = Char[5] DEX = Char[0] CON = Char[3] INT = Char[1] WSD = Char[2] CHR = Char[4] elif Prof in ('Следопыт', 'следопыт', 'Лучник', 'лучник'): STR = Char[3] DEX = Char[5] CON = Char[2] INT = Char[0] WSD = Char[4] CHR = Char[1] elif Prof in ('Плут', 'плут', 'убийца', 'вор'): STR = Char[1] DEX = Char[5] CON = Char[3] INT = Char[0] WSD = Char[2] CHR = Char[4] elif Prof in ('Чародей', 'чародей', 'маг', 'Маг'): STR = Char[0] DEX = Char[1] CON = Char[4] INT = Char[2] WSD = Char[3] CHR = Char[5] elif Prof in ('колдун', 'Колдун'): STR = Char[1] DEX = Char[0] CON = Char[4] INT = Char[2] WSD = Char[3] CHR = Char[5] elif Prof in ('Волшебник', 'волшебник'): STR = Char[0] DEX = Char[2] CON = Char[4] INT = Char[5] WSD = Char[3] CHR = Char[1] return STR, DEX, CON, INT, WSD, CHR STRm = int((STR - 10)//2) DEXm = int((DEX - 10)//2) CONm = int((CON - 10)//2) INTm = int((INT - 10)//2) WSDm = int((WSD - 10)//2) CHRm = int((CHR - 10)//2) skill = { 'Акробатика (ЛоВ)': DEXm, 'Анализ (ИнТ)': INTm, 'Атлетика (СиЛ)': STRm, 'Внимательность (МуД)': WSDm, 'Выживание (МуД)': WSDm, 'Выступление (ХаР)': CHRm, 'Запугивание (ХаР)': CHRm, 'История (ИнТ)': INTm, 'Лечение (МуД)': WSDm, 'Ловкость Рук (ЛоВ)': DEXm, 'Магия (ИнТ)': INTm, 'Обман (ХаР)': CHRm, 'Природа (ИнТ)': INTm, 'Проницательность (МуД)': WSDm, 'Религия (ИнТ)': INTm, 'Скрытность (ЛоВ)': DEXm, 'Убеждение (ХаР)': CHRm, 'Уход за животными (МуД)': WSDm, } def profesion(): sredStr = skill['Атлетика (СиЛ)'] sredDex = (skill['Акробатика (ЛоВ)']+skill['Ловкость Рук (ЛоВ)']+skill['Скрытность (ЛоВ)'])//3 sredCon = CONm sredInt = (skill['Анализ (ИнТ)']+skill['История (ИнТ)']+skill['Магия (ИнТ)']+skill['Природа (ИнТ)']+skill['Религия (ИнТ)'])//5 sredWsd = (skill['Внимательность (МуД)']+skill['Выживание (МуД)']+skill['Лечение (МуД)']+skill['Проницательность (МуД)']+skill['Уход за животными (МуД)'])//5 sredChr = (skill['Выступление (ХаР)']+skill['Запугивание (ХаР)']+skill['Обман (ХаР)']+skill['Убеждение (ХаР)'])//4 # print([sredStr, sredDex, sredInt, sredWsd, sredChr]) if sredStr and sredDex> sredInt and sredWsd and sredChr: Prof = 'Варвар' elif sredStr and sredChr > sredInt and sredWsd and sredDex: Prof = 'Паладин' elif sredChr > sredStr and sredInt and sredWsd: Prof = 'Бард' elif sredChr > sredDex and sredStr and sredInt and sredWsd: Prof = 'Колдун' elif sredChr > sredDex and sredStr: Prof = 'Чародей' elif sredInt > sredDex and sredStr: Prof = 'Волшебника' elif sredWsd > sredDex and sredInt and sredChr: Prof = 'Жрец' elif sredWsd > sredStr and sredChr: Prof = 'Друид' elif sredDex > sredStr and sredInt and sredChr: Prof = 'Монах' elif sredDex > sredChr: Prof = 'Следопыт' elif sredDex > sredStr and sredWsd: Prof = 'Плут' else: Prof = 'Воин' return Prof Story = [story() for d in range(1, 35)] def Table1(): #Таблица 1: Обстоятельства рождения global Zoloto if Story[1] <= 1: print('Нищий') skill['Ловкость Рук (ЛоВ)'] += 2 Zoloto -= 25 elif Story[1] == 2: #15: Преступление print('Преступник. \n', 'Его занятие: '+Table15()) skill['Запугивание (ХаР)'] += 2 elif Story[1] == 3: print('Палач.') skill['Религия (ИнТ)'] += 2 elif Story[1] == 4: print('Телохранитель.') skill['Атлетика (СиЛ)'] += 2 elif Story[1] == 5: #29: Нанятый шпионить print('Шпион.') skill['Скрытность (ЛоВ)'] += 2 skill['Обман (ХаР)'] += 2 print('-Есть ли у вас братья и сёстры?') Table2() print('Вас сразу ввели в курс семейных дел:') Table29() elif Story[1] == 6: print('Солдат.') skill['Атлетика (СиЛ)'] += 2 elif Story[1] == 7: print('Лекарь.') skill['Лечение (МуД)'] += 2 elif Story[1] == 8: print('Крестьянин.') skill['Атлетика (СиЛ)'] += 2 elif Story[1] == 9: print('Дипломат.') skill['Убеждение (ХаР)'] += 2 elif Story[1] == 10: print('Гробовщик.') skill['Религия (ИнТ)'] += 2 elif Story[1] == 11: print('Священник.') skill['Религия (ИнТ)'] += 2 elif Story[1] == 12: print('Юрист.') skill['Убеждение (ХаР)'] += 2 elif Story[1] == 13: print('Учёный') skill['История (ИнТ)'] += 2 elif Story[1] == 14: print('Ремесленник.') skill['Внимательность (МуД)'] += 2 elif Story[1] == 15: print('Торговец.') skill['Убеждение (ХаР)'] += 2 elif Story[1] == 16: print('Дворянин.') skill['Проницательность (МуД)'] += 2 Zoloto += 25 elif Story[1] == 17: #5: Злодей print(Table5()) elif Story[1] == 18: print('Великий герой.') elif Story[1] == 19: print('Выращен зверьми. Вы могли бегать в стае волков,' 'пока не встретили цивилизованных существ, а может быть,' 'вас вырастили разумные магические звери, такие как ворги или единороги.') skill['Природа (ИнТ)'] += 4 skill['Уход за животными (МуД)'] += 4 elif Story[1] == 20: print('Вы приёмный ребёнок.') print('Ваши опекуны:') Story[1] = dice(1, 19, 1) Table1() def Table2(): #Таблица 2: Братья и сёстры if Story[2] <= 2: print('Нет ни братьев ни сестер.') elif Story[2] == 3: print('Однояйцевый близнец.') elif Story[2] == 4: print('Младшая сестра.') elif Story[2] == 5: print('Младший брат.') elif Story[2] == 6: print('Старшая сестра.') elif Story[2] == 7: print('Старший брат.') elif Story[2] == 8: print('Две сестры.') elif Story[2] == 9: print('Два брата.') elif Story[2] == 10: print('Старшая сестра и сводный брат.') elif Story[2] == 11: print('Две сводные сестры.') elif Story[2] == 12: print('Младший брат-бастард.') elif Story[2] == 13: print('Вы — бастард, у вас есть две сестры и два брата.') elif Story[2] == 14: print('У ваших родителей кроме вас ещё три ребёнка. Определите сами кто это.') elif Story[2] == 15: print('Два сводных брата или сестры, у каждого разные родители.') elif Story[2] == 16: print('У ваших родителей кроме вас ещё шесть детей (вы — младший).') elif Story[2] == 17: print('Однояйцевый близнец и младший брат.') elif Story[2] == 18: print('Разнояйцовый близнец.') elif Story[2] == 19: print('У ваших родителей кроме вас четыре ребёнка (вы — старший).') elif Story[2] == 20: print('Разлучён с семьёй в молодости.') Story[2] = dice(1, 19, 1) Table2() def Table3(): #Таблица 3: Уход из дома global Zoloto print('-Уход из дома:') Story[3] = story() if Story[3] <= 4: # 4: Попечение print('Вас отправили на попечение.') Table4() elif Story[3] == 5: # 5: Злодей, 9: Месть print('Ваш дом был уничтожен злодеем:'+Table5m()) print('Вы решили отомстить:') Table9() elif Story[3] == 6: # 5: Злодей \Конец print('Ваш дом был уничтожен злодеем:'+Table5m()) print(' Ваша жизнь искателя приключений начинается.') # sys.exit("Конец") elif Story[3] == 7: # Таблица 30: Цирк print('Вы сбежали, чтобы устроиться в цирк.') skill['Акробатика (ЛоВ)'] += 2 skill['Выступление (ХаР)'] += 2 Table30() elif Story[3] == 8: # Таблица 19: В бегах print(' Вы сбежали от жестокого члена семьи, который хотел использовать вас для чего-то жуткого.') Table19() elif Story[3] == 9: # Таблица 12: Персона print('Вы сбежали с любимым человеком. ') Table12() elif Story[3] == 10: #Таблица 11: Поиски if Story[2] <= 2: print('Вы узнаёте о существовании единокровной сестры или брата. Вы решили отправиться на поиски родственника.') else: print('Вы отправились на поиски пропавшего или живущего далеко родного брата или сестры.') Table11('person') elif Story[3] == 11: # Таблица 31: Испытание стойкости Таблица 17: Неудача Конец print('Большая часть вашей семьи умерла от чумы.') Table31() if Story[31] <= 8: Table17() else: print('Справившись с болезнью, вы решили начать жизнь искателя приключений.') # sys.exit("Конец") elif Story[3] == 12: # Таблица 16: Рабство print('Вас похитили и поработили.') Table16() elif Story[3] == 13: #Таблица 34: Похищенный на корабль print('Вас захватили пираты.') Table34() elif Story[3] == 14: # Таблица 15: Преступление Таблица 26: Гильдия воров print('Ваша семья разорилась. Вам пришлось покинуть дом, чтобы совершать '+Table15()+' ради выживания.') Table26() elif Story[3] == 15: # Таблица 20: Охрана каравана print('Вы ушли из города с караваном, чтобы посмотреть мир.') Table20() elif Story[3] == 16: # Таблица 11: Поиски print('Вы отправились на поиски фамильных ценностей или древнего мощного предмета.') Table11('object') elif Story[3] == 17: # Таблица 7: Проклятый print('Вы были прокляты и покинули дом, чтобы не навлечь беду на семью.') Table7() elif Story[3] == 18: # Таблица 10: Башня волшебника print('На вашу семью было наложено заклятье, и вы ищете волшебника, способного его снять. В обмен волшебник попросил оказать ему услугу.') Table10() elif Story[3] == 19: # Таблица 33: Дворянство print('Ваши родители пообещали дворянину ваши услуги в обмен на прощение долгов.') Table33() elif Story[3] == 20: # Таблица 8: Прибытие print('Вы ушли исследовать мир. Путь привел вас в..') Table8() def Table4(): #Таблица 4: Попечение global Zoloto print('-Попечение:') Story[4] = story() if Story[4] == 1: # Таблица 17: Неудача print('Вы не добрались до точки назначения.') Table17() elif 2 <= Story[4] <= 3: # Таблица 6: Торговые дела print('Вы стали помощником торговца.') skill['Убеждение (ХаР)'] += 2 Zoloto += 10 Table6() elif 4 <= Story[4] <= 5: # Таблица 10: Башня волшебника print('Вы стали подмастерьем волшебника.') skill['Магия (ИнТ)'] += 2 Table10() elif 6 <= Story[4] <= 7: # Таблица 27: Отправленный в храм print('Вы стали послушником в монастыре. ') skill['Религия (ИнТ)'] += 2 Table27() elif 8 <= Story[4] <= 9: # Таблица 22: Военная служба print('Вы поступили на военную службу.') skill['Атлетика (СиЛ)'] += 2 Table22() elif 10 <= Story[4] <= 11: # Таблица 12: Персона if skill['Внимательность (МуД)'] > skill['Акробатика (ЛоВ)'] or skill['Выступление (ХаР)']: print('Вы стали подмастерьем умелого ремесленника') skill['Внимательность (МуД)'] += 2 else: print('Вы стали подмастерьем умелого артиста.') skill['Акробатика (ЛоВ)'] += 2 skill['Выступление (ХаР)'] += 2 Table12() elif 12 <= Story[4] <= 13: # Таблица 12: Персона print('Вы учились у актёра.') skill['Обман (ХаР)'] += 2 skill['Выступление (ХаР)'] += 2 Table12() elif 14 <= Story[4] <= 15: # Таблица 15: Преступление Таблица 26: Гильдия воров print('Ваш наставник оказался преступником. Его ремесло: '+Table15()) skill['Ловкость Рук (ЛоВ)'] += 2 skill['Обман (ХаР)'] += 2 Table26() elif 16 <= Story[4] <= 17: # Таблица 30: Цирк print('Вместо того, чтобы попасть к наставнику, вы устроились в цирк.') skill['Акробатика (ЛоВ)'] += 2 skill['Выступление (ХаР)'] += 2 Table30() elif 18 <= Story[4] <= 19: #Таблица 33: Дворянство print('Вы прислуживали в доме дворянина.') skill['Убеждение (ХаР)'] += 2 Table33() elif 20 <= Story[4]: # Таблица 5: Злодей Таблица 3: Уход из дома print('Вашего наставника убил '+Table5m()) print('Вы вернулись домой.') Table3() def Table5(): #Таблица 5: Злодей Story[5] = story() if Story[5] == 1: var = 'Полу-орк' elif Story[5] == 2: var = 'Единорог' elif Story[5] == 3: var = 'Вермедведь' elif Story[5] == 4: var = 'Дракон' elif Story[5] == 5: var = 'Волшебник' elif Story[5] == 6: var = 'Военачальник' elif Story[5] == 7: var = 'Вампир' elif Story[5] == 8: var = 'Коатль' elif Story[5] == 9: var = 'Эмпирей' elif Story[5] == 10: var = 'Кентавр' elif Story[5] == 11: var = 'Дриада' elif Story[5] == 12: var = 'Фейские существо' elif Story[5] == 13: var = 'Глубинный гном' elif Story[5] == 14: var = 'Джинн' elif Story[5] == 15: var = 'Каменный великан' elif Story[5] == 16: var = 'Глава гильдии воров' elif Story[5] == 17: var = 'Влиятельный торговец' elif Story[5] == 18: var = 'Дворянин' elif Story[5] == 19: var = 'Волшебник' elif Story[5] == 20: var = 'Ааракокра' return var def Table5m(): #Таблица 5: Монстры Story[5] = story() if Story[5] == 1: var = 'Орк' elif Story[5] == 2: var = 'Гоблин' elif Story[5] == 3: var = 'Великан' elif Story[5] == 4: var = 'Жаболюд' elif Story[5] == 5: var = 'Циклоп' elif Story[5] == 6: var = 'Химера' elif Story[5] == 7: var = 'Вампир' elif Story[5] == 8: var = 'Лич-лорд' elif Story[5] == 9: var = 'Тролль' elif Story[5] == 10: var = 'Демон' elif Story[5] == 11: var = 'Аболет' elif Story[5] == 12: var = 'Фейские существо' elif Story[5] == 13: var = 'Живодёр разума' elif Story[5] == 14: var = 'Доппельгангер' elif Story[5] == 15: var = 'Бехолдер' elif Story[5] == 16: var = 'Медвежатник' elif Story[5] == 17: var = 'Камбион' elif Story[5] == 18: var = 'Баньши' elif Story[5] == 19: var = 'Волшебник' elif Story[5] == 20: var = 'Глава культа' return var def Table6(): #Таблица 6: Торговые дела global Zoloto print('-Торговые дела:') Story[6] = story() + skill['Убеждение (ХаР)'] if Story[6] <= 4: # Таблица 21: Заключённый print('Ваш наниматель или конкурент обвинил вас в краже товаров, и вас отправили в тюрьму.') Table21() elif 5 <= Story[6] <=8: # Таблица 26: Гильдия воров print('Вы занялись контрабандой и связались с ворами.') Table26() elif 9 <= Story[6] <=11: # Таблица 20: Охрана каравана print('Ваши навыки торговли оказались не на высоте, и вы решили устроиться вместо этого охранником каравана.') Table20() elif 12 <= Story[6] <=14: # Таблица 17: Неудача print('Вы умелый торговец, но в одной из деловых поездок вы попали в засаду.') skill['Убеждение (ХаР)'] += 2 Table17() elif 15 <= Story[6] <= 18: # Таблица 28: Посредничество print(' Вы устраивали замечательные демонстрации товаров, и к вам пришли другие торговцы. \n ' 'Они хотят, чтобы вы разрешили их торговый спор.') skill['Убеждение (ХаР)'] += 2 Table28() elif 19 <= Story[6]: print('Вы — знаток торговли. К несчастью, вам помешал '+Table5m()) Zoloto += 10 skill['Убеждение (ХаР)'] += 2 print('Вы решили отомстить.') Table9() def Table7(): #Таблица 7: Проклятый global Zoloto print('-Проклятый:') Story[7] = story() if Story[7] <= 4: # Таблица 11: Поиски print('Еда и напитки не имеют вкуса, а музыка не приносит радости.\n ' 'Вам нужна информация о том, как снять это проклятье.') Table11('infa') elif 5 <= Story[7] <= 7: # Таблица 11: Поиски print('От ваших поцелуев других тошнит и продирает до костей мороз.\n' ' Только одна личность может снять это проклятье.') Table11('person') elif 8 <= Story[7] <= 10: # Таблица 10: Башня волшебника print('Из ваших глаз постоянно текут чёрные слёзы. \n' 'Вы отправились к волшебнику, чтобы снять это проклятье, но тот поможет только в обмен на вашу услугу.') Table10() elif 11 <= Story[7] <= 13: # Таблица 27: Отправленный в храм print('Одна ваша рука сделана из гибкого камня, и не чувствует ни прикосновений, ни тепла.' ' Вы отправились в храм, чтобы снять проклятье, но в замен вы должны оказать услугу жрецам.') Table27() elif 14 <= Story[7] <= 16: # Таблица 11: Поиски print('У вас кошачий глаз, окружённый сморщенной чёрной кожей и светящийся зелёным. ' 'Вам нужен некий предмет для снятия этого проклятья.') Table11('object') elif 17 <= Story[7] <= 20: # Конец print('Одна ваша рука — кривая чешуйчатая лапа. \n' 'Вы не знаете, как снять это проклятье, но вы всё ещё ищете ответ. \n' ' Ваша жизнь искателя приключения начинается.') # sys.exit("Конец") def Table8(): # Таблица 8: Прибытие global Zoloto print('-Прибытие:') Story[8] = story() if Story[8] == 1: #Таблица 34: Похищенный на корабль print('Портовый город. Вас насильно завербовали.') Table34() elif Story[8] == 2: # Таблица 23: Драка в таверне print('Таверна на торговой дороге.') Table23() elif Story[8] == 3: # Таблица 16: Рабство print('Лагерь работорговцев.') Table16() elif Story[8] == 4: # Таблица 25: Затерявшийся в глубинах print('Горная крепость дварфов. Они попросили вас помочь устранить опасности в их туннелях.') Table25() elif Story[8] == 5: # Таблица 10: Башня волшебника print('Башня волшебника.') Table10() elif Story[8] == 6: # Таблица 28: Посредничество print('Охотничьи угодья дворянина, на которых вас и поймали. Вы начали оправдываться.') Table28() elif Story[8] == 7: # Таблица 9: Месть print('Логово злодея: '+Table5m()) Table9() elif Story[8] == 8: # Таблица 18: Друг в нужде print('Дом друга. Ему нужна ваша помощь. ') Table18() elif Story[8] == 9: # Таблица 22: Военная служба print('Военный лагерь.') Table22() elif Story[8] == 10: # Таблица 8: Прибытие print('Странствующая община полуросликов, сплавляющихся на баржах по реке. Они научили вас охотиться.') skill['Внимательность (МуД)'] += 2 print('Река привела вас...') Table8() elif Story[8] == 11: # Таблица 7: Проклятый print('Дом с привидениями. Вы убежали, но были прокляты.') Table7() elif Story[8] == 12: # Таблица 31: Испытание стойкости Таблица 24: Выживание в глуши print('Маленькая деревня в глуши.') Table31() print('Вы пережили кошмарную зиму, а потом отправились на поиски еды.') Table24() elif Story[8] == 13: # Таблица 31: Испытание стойкости Таблица 11: Поиски print('Город на болоте. Среди населения разразилась эпидемия.') Table31() print('Вы отправились на поиски лекарства.') Table11('object') elif Story[8] == 14: # Таблица 28: Посредничество print('Лесная община эльфов. Они были против вашего присутствия и потребовали, чтобы вы доказали своё право находиться здесь.') Table28() elif Story[8] == 15: # Таблица 33: Дворянство print('Особняк дворянина.') Table33() elif Story[8] == 16: # Таблица 30: Цирк print('Бродячий цирк на большой дороге. Вы на какое-то время присоединяетесь к ним.') Table30() elif Story[8] == 17: # Таблица 11: Поиски print('Дом вашего друга. Сам он пропал, и вы подозреваете что-то дурное.') Table11('person') elif Story[8] == 18: # Таблица 6: Торговые дела print('Торговый город, разделённый рекой. Вас вовлекли в какие-то торговые дела.') Table6() elif Story[8] == 19: # Таблица 19: В бегах print('Тайное убежище бандитов. Вы украли часть их золота, но сбежали, когда они вас заметили.') Zoloto +=10 Table19() elif Story[8] == 20: print('Священная роща дриад и трентов.') if skill['Природа (ИнТ)'] + story() >= 12: # Таблица 24: Выживание в глуши print('Феи прощают вас и позволяют идти дальше.') Table24() else: # Таблица 7: Проклятый print('Они вас проклинают, и вы спасаетесь бегством.') Table7() def Table9(): #Таблица 9: Месть global Zoloto print('-Месть:') Story[9] = story() if Story[9] <= 2: # Таблица 17: Неудача print('Из-за какого-то события вы потеряли след врага. ') Table17() elif 3 <= Story[9] <= 5: # Таблица 24: Выживание в глуши print('Стремясь схватиться с врагом, вы затерялись в глуши.') Table24() elif 6 <= Story[9] <= 8:# Таблица 21: Заключённый print('Вы победили врага, но были заключены под стражу его союзниками.') Table21() elif 9 <= Story[9] <= 11:# Таблица 31: Испытание стойкости Таблица 8: Прибытие print('Вы с врагом попались в чью-то ловушку, и должны выжить, полагаясь только друг на друга.') Table31() print('Ваши пути разошлись.') Table8() elif 12 <= Story[9] <= 14: # Таблица 25: Затерявшийся в глубинах print('Враг обманом заманил вас подземелья или пещеры и бросил там.') Table25() elif 15 <= Story[9] <= 17: # Таблица 28: Посредничество print('Враг оказался слишком сильным, и вы должны проявить красноречие вместо грубой силы.') Table28() elif 18 <= Story[9] <= 20: # Конец print('Враг победил вас, но вы сбежали и готовитесь отомстить. \n' 'Ваша жизнь искателя приключений начинается. ') # 'В качестве альтернативы вы можете совершить ещё один бросок по этой таблице.') # sys.exit("Конец") def Table10(): # Таблица 10: Башня волшебника global Zoloto print('-Башня волшебника:') Story[10] = story() + skill['Магия (ИнТ)'] if Story[10] <= 3: # Таблица 19: В бегах print('Вы испортили ритуал, исполняемый волшебником, и впустили в этот мир демона.\n' ' Он схватился с волшебником, а вы в суматохе сбежали.') Table19() elif 4 <= Story[10] <= 5: # Таблица 24: Выживание в глуши print('Вы случайно сломали хрустальный шар, и злой маг превратил вас в жабу и выкинул в болото. \n' ' Вы прожили там месяц, а потом вернулись в обычный облик. ') Table24() elif 6 <= Story[10] <= 7: # Таблица 8: Прибытие print('Вы пытались исполнить заклинание и подожгли башню. Взбешённый маг со злости телепортировал вас.') Table8() elif 8 <= Story[10] <= 9: # Таблица 11: Поиски print('Вы прервали ритуал в самый ответственный момент, отчего волшебника куда-то перенесло.\n' 'Вы отправились на поиски мага') Table11('person') elif 10 <= Story[10] <= 11: # Таблица 11: Поиски print('Вы выпустили гомункула, который украл волшебную палочку мага и улетел. \n' ' Волшебник требует, чтобы вы вернули эту палочку или принесли другую, более мощную.') Table11('object') elif 12 <= Story[10] <= 13: # Таблица 31: Испытание стойкости print('Вы сварили плохое зелье и заболели, когда выпили его.') Table31() Table10() elif 14 <= Story[10] <= 16: # Конец print('Вы спасли книгу заклинаний от пожара и были награждены. \n' 'Вы получаете зелье исцеления в стартовом наборе. \n' ' Ваша жизнь искателя приключений начинается.') # sys.exit("Конец") elif 17 <= Story[10] <= 18: # Таблица 22: Военная служба print('Волшебник оценил ваши навыки и взял вас на войну между магами.') skill['Магия (ИнТ)'] += 2 Table22() elif 19 <= Story[10]: # Конец print('Вы удивили волшебника своими способностями.\n' ' Польщённый вашими услугами волшебник отправляет вас в мир за новыми знаниями.\n' ' Вы получаете зелье исцеления в стартовом наборе. \n' ' Ваша жизнь искателя приключений начинается. \n') skill['Магия (ИнТ)'] += 2 # sys.exit("Конец") def Table11(t): # Таблица 11: Поиски target = t global Zoloto print('-Поиски:') Story[11] = story() + skill['Внимательность (МуД)'] if Story[11] <= 4: # Конец print('Вы не нашли никаких признаков того, что искали. \n' 'Ваша жизнь искателя приключений начинается с ещё невыполненным заданием.') # sys.exit("Конец") elif 5 <= Story[11] <= 8: # Таблица 23: Драка в таверне print('Пытаясь напоить и разговорить народ, вы сами напились и устроили драку.') Table23() elif 9 <= Story[11] <= 13: # Таблица 19: В бегах print('В своих поисках вы наткнулись на деятельность '+Table5m()+', которого разозлили ваши изыскания.') Table19() elif 14 <= Story[11] <= 17: print('Вы обнаружили, что вам нужен ещё один кусочек головоломки.') skill['Внимательность (МуД)'] += 2 print('Вы ищете новую информацию.') Table11(t) elif 18 <= Story[11]: print('Вы находите то, что искали.') skill['Внимательность (МуД)'] += 2 if target == 'person': # Если это человек, совершите бросок по таблице 12. Таблица 12: Персона Table12() elif target == 'object': #Если это предмет, совершите бросок по таблице 13. Таблица 13: Предмет Table13() else: # Если это информация, совершите бросок по таблице 14. Таблица 14: Информация Table14() def Table12(): # Таблица 12: Персона global Zoloto print('-Персона:') Story[12] = story() if Story[12] <= 2: #Конец Таблица 5: Злодей print('Это существо убито злым '+Table5m()+'. Ваша жизнь искателя приключений начинается.') if INT <= 10: # Таблица 23: Драка в таверне print('Вы попробовали залить печаль вином.') Table23() # else: # sys.exit("Конец") elif 3 <= Story[12] <= 4: # Таблица 26: Гильдия воров print('Это существо шантажируют представители гильдии воров. Вы внедряетесь к ним, чтобы найти шантажиста.') Table26() elif 5 <= Story[12] <= 6: # Таблица 31: Испытание стойкости print('Это существо умерло от болезни. Вы заразились.') Table31() print('Ваша жизнь искателя приключений начинается.') if INT <= 10: # Таблица 23: Драка в таверне print('Вы попробовали залить печаль вином.') Table23() # else: # sys.exit("Конец") elif 7 <= Story[12] <= 8: #Таблица 19: В бегах print('Это существо оказалось доппельгангером. Вы сбежали до того, как узнали всю историю целиком.') Table19() elif 9 <= Story[12] <= 10:# Таблица 5: Злодей Таблица 9: Месть print('Это существо убито злым '+Table5m()) Table9() elif 11 <= Story[12] <= 12: # Таблица 5: Злодей Таблица 11: Поиски print('Это существо похищено злодеем и удерживается ради выкупа. \n' 'Вы должны найти для '+Table5m()+' некий предмет, или вы никогда не увидите это существо.') Table11('object') elif 13 <= Story[12] <= 14: # Таблица 17: Неудача print('Это существо всего лишь использовало вас, и на самом деле презирает вас. \n' 'Оно прогоняет вас прочь. В отчаянии вы не смотрели по сторонам и попали в беду.') Table17() elif 15 <= Story[12] <= 16: # Таблица 9: Месть print('Это существо перешло на сторону врага. Вы захотели вернуть это существо обратно.') Table9() elif 17 <= Story[12] <= 18: print('Это существо оказалось вашим родственником. \n' 'Ваша жизнь искателя приключений начинается одновременно с этим откровением.') if INT > 15 or WSD > 15: print('Ваше знание и опыт раскусили проходимца:') print('Родство было предлогом для того, чтобы выведать у вас информацию или получить наследство. \n' 'Ваша жизнь искателя приключений начинается с осознания того, что вас одурачили и предали.') # sys.exit("Конец") elif 19 <= Story[12] <= 20: # Таблица 18: Друг в нужде print('Этому существу нужна ваша помощь.') Table18() def Table13(): # Таблица 13: Предмет global Zoloto print('-Предмет:') Story[13] = story() if Story[13] <= 4: # Таблица 7: Проклятый print('Этот предмет проклят.') elif 5 <= Story[13] <= 8: # Таблица 5: Злодей Таблица 9: Месть print('Этот предмет украден злодеем. '+Table5m()) print('Вы попытались заполучить этот предмет.') Table9() elif 9 <= Story[13] <= 12: # Таблица 21: Заключённый print('Этот предмет оказался у таинственной фигуры в плаще, совершившей преступление. \n' 'После того как вас видели вместе, вас обвинили и бросили в тюрьму.') Table21() elif 13 <= Story[13] <= 16: # Конец print('Этот предмет уничтожен. Ваша жизнь искателя приключений начинается, когда вы пытаетесь чем-то заменить его.') # sys.exit("Конец") elif 17 <= Story[13] <= 20: # Конец print('Вы получаете искомый предмет. Ваша жизнь искателя приключений начинается, и вы уже владеете им.') # sys.exit("Конец") def Table14(): # Таблица 14: Информация global Zoloto print('-Информация:') Story[14] = story() + skill['Анализ (ИнТ)'] if Story[14] <= 4: # Конец print('Вы получаете информацию, но за неё нужно заплатить.\n' ' Ваша жизнь искателя приключений начинается с этим знанием.') Zoloto -= 20 # sys.exit("Конец") elif 5 <= Story[13] <= 7: # Конец print('Найденная вами информация ложна. \n' 'Вы не уверены, намеренно ли вас вводят в заблуждение, и вы не знаете, где находится правда. \n' 'Ваша жизнь искателя приключений начинается.') # sys.exit("Конец") elif 8 <= Story[13] <= 11: # Таблица 16: Рабство print('Вы задавали слишком много вопросов, и кто-то заплатил, чтобы вы исчезли.') Table16() elif 12 <= Story[13] <= 15: # Таблица 11: Поиски print('Информация вела к другой тайне. ') Table11('infa') elif 16 <= Story[13] <= 18: # Конец print('Вы получаете нужную информацию. Ваша жизнь искателя приключений начинается с этим знанием.') # sys.exit("Конец") elif 19 <= Story[13]: # Конец print('Вы стали опытным сыщиком. Вы получаете искомую информацию и находите карту сокровищ. \n' 'Вы получаете тренировку Знания Улиц и Внимательности и начинаете жизнь искателя приключений.') skill['Внимательность (МуД)'] += 2 skill['Анализ (ИнТ)'] += 2 # sys.exit("Конец") def Table15(): #Таблица 15: Преступление Story[15] = story() if Story[15] == 1: var = 'Контрабанда' elif Story[15] == 2: var = 'Заказное убийство' elif Story[15] == 3: var = 'Квартирная кража' elif Story[15] == 4: var = 'Подстрекательство к мятежу' elif Story[15] == 5: var = 'Карманная кража' elif Story[15] == 6: var = 'Похищение' elif Story[15] == 7: var = 'Грабёж' elif Story[15] == 8: var = 'Пиратство' elif Story[15] == 9: var = 'Браконьерство' elif Story[15] ==10: var = 'Фальшивомонетничество' elif Story[15] ==11: var = 'Фальсификация товаров' elif Story[15] ==12: var = 'Мошенничество' elif Story[15] ==13: var = 'Торговля на чёрном рынке' elif Story[15] ==14: var = 'Работорговля' elif Story[15] ==15: var = 'Святотатство' elif Story[15] == 16: var = 'Осквернение могил' elif Story[15] == 17: var = 'Шантаж' elif Story[15] == 18: var = 'Шпионаж' elif Story[15] == 19: var = 'Жульничество в азартных играх' elif Story[15] == 20: var = 'Выдача себя за дворянина' return var def Table16(): # Таблица 16: Рабство global Zoloto, CON print('-Рабство:') Story[16] = story() if Story[16] <= 2: # Таблица 31: Испытание стойкости print('Вы много лет пробыли рабом, но потом хозяин вас благодушно отпустил.') CON += 2 Table31() print('Ваша жизнь искателя приключений начинается.') # sys.exit("Конец") elif 3 <= Story[16] <= 4: # Таблица 9: Месть Таблица 5: Злодей print('Вы сбежали из рабства и нашли, кто виноват в вашем похищении.\n ' 'Если подозреваемых нет, это '+Table5m()) Table9() elif 5 <= Story[16] <= 6: # Таблица 25: Затерявшийся в глубинах print('Вы добывали под землёй драгоценные металлы.') CON += 2 skill['Выживание (МуД)'] += 2 print('Вы попытались сбежать по пещерам.') Table25() elif 7 <= Story[16] <= 8: #Таблица 24: Выживание в глуши print('Вы возглавили восстание рабов, которое было подавлено. \n' 'Вы несколько лет провели в цепях, презираемые и рабами и похитителями. \n' 'Ваши хозяева начинают считать вас помехой и оставляют умирать в глуши:') Table24() elif 9 <= Story[16] <= 10: #Таблица 22: Военная служба print('Регулярные войска освободили вас и ваших братьев по несчастью. Вы присоединяетесь к ним.') Table22() elif 11 <= Story[16] <= 12: #Таблица 19: В бегах print('Вы сбежали, когда на вас никто не обращал внимания, но хозяева хотят вас вернуть.') Table19() elif 13 <= Story[16] <= 14: #Таблица 17: Неудача print('Вы возглавили восстание рабов, но когда вы сбежали со своими приятелями, удача отвернулась от вас.') Table17() elif 15 <= Story[16] <= 16: #Таблица 27: Отправленный в храм print('Практически все владельцы рабов погибли в катастрофе, выглядящей как возмездие богов. \n' 'Вы хотите отблагодарить освободившую вас сущность.') Table27() elif 17 <= Story[16] <= 18: #Таблица 33: Дворянство print('Дворянин выкупил вас и позволил отработать долг.') Table33() elif 19 <= Story[16] <= 20: #Таблица 18: Друг в нужде print('Друг накопил денег, чтобы выкупить вас, но ему в ответ нужно оказать услугу.') Table18() def Table17(): # Таблица 17: Неудача global Zoloto print('-Неудача:') Story[17] = story() if Story[17] <= 2: #Таблица 22: Военная служба print('Началась война, и вас вербуют на службу.') Table22() elif 3 <= Story[17] <= 4: # Таблица 9: Месть print('Бандиты ограбили вас и оставили связанным. Вы освободились и хотите отомстить. ') Zoloto -= Zoloto/2 Table9() elif 5 <= Story[17] <= 6: # Таблица 21: Заключённый print('Вас по ошибке заключили под стражу.') Table21() elif 7 <= Story[17] <= 8: # Таблица 12: Персона print('Вы в кого-то влюбились и теперь не можете сосредоточиться.') Table12() elif 9 <= Story[17] <= 10: # Таблица 23: Драка в таверне print('Вы набрели на таверну, и когда вы потеряли счёт кружкам с выпивкой, началась заварушка.') Table23() elif 11 <= Story[17] <= 12: # Таблица 10: Башня волшебника print('Волшебник зачаровал вас и сделал своим слугой.') Table10() elif Story[17] == 13: # Таблица 16: Рабство print(' Вас поймали работорговцы.') Table16() elif Story[17] == 14: # Таблица 34: Похищенный на корабль print('Вас насильно завербовали.') Table34() elif 15 <= Story[17] <= 16: # Таблица 24: Выживание в глуши print('Вы заблудились в глуши.') Table24() elif 17 <= Story[17] <= 18: print('Фейские существо на несколько лет заманило вас в Страну Фей, хотя по вашим ощущениям прошло всего несколько дней.') if CHR < 10: # Таблица 7: Проклятый print('Обиженная фея наградила вас проклятьем за уход.') Table7() else: # Конец print('Ваша жизнь искателя приключений начинается с того, что вы покидаете Страну Фей.') # sys.exit("Конец") elif 19 <= Story[17] <= 20: # Таблица 8: Прибытие print('Яростный шторм надолго задержал вас в месте, в котором вы не намеревались останавливаться.') Table8() def Table18(): # Таблица 18: Друг в нужде global Zoloto print('-Друг в нужде:') Story[18] = story() if Story[18] <= 4: # Таблица 15: Преступление Таблица 26: Гильдия воров print('Другу нужна ваша помощь в совершении '+Table15()+'.\n' 'У вас всё получилось, но гильдия воров потребовала, чтобы вы оказали для них услугу за несанкционированную деятельность.') Table26() elif 5 <= Story[18] <= 8: # Таблица 19: В бегах print('Другу нужна помощь в спасении члена вашей семьи, которого хотят казнить. Вы преуспели, но теперь вас разыскивают власти.') Table19() elif 9 <= Story[18] <= 12: # Таблица 28: Посредничество print('Вашему другу нужно, чтобы вы поговорили с кем-то, и он смог жениться.') Table28() elif 13 <= Story[18] <= 16: # Таблица 21: Заключённый print('Друг только притворялся, что ему нужна помощь, а на самом деле хочет свалить на вас своё преступление.') Table21() elif 17 <= Story[18] <= 20: # Таблица 23: Драка в таверне print('Другу не нужна ваша помощь. Он всё это подстроил, чтобы устроить вечеринку в вашу честь. \n' 'Когда вечеринка была в самом разгаре:') Table23() def Table19(): # Таблица 19: В бегах global Zoloto print('-В бегах:') Story[19] = story() + skill['Внимательность (МуД)'] if Story[19] <= 4: # Таблица 16: Рабство print('Преследователи поймали вас и продали в рабство.') Table16() elif 5 <= Story[19] <= 7: # Таблица 21: Заключённый print('Ваши преследователи поймали вас и заключили под стражу.') Table21() elif 8 <= Story[19] <= 10: # Таблица 17: Неудача print('Побег от врагов был прерван неким событием. ') Table17() elif 11 <= Story[19] <= 12: # Таблица 8: Прибытие print('Убегая от врагов, никогда не знаешь, кому доверять, и вы постоянно пытались понять чужие мотивы.') skill['Проницательность (МуД)'] += 2 Table8() elif 13 <= Story[19] <= 15: # Конец print('Враги преследуют вас по пятам. \n' 'Ваша жизнь искателя приключений начинается со знанием того, что преследователи могут показаться в любой момент.') skill['Внимательность (МуД)'] += 2 elif 16 <= Story[19] <= 18: # Конец print('Вы исчезаете без следа, и преследователи сдаются — на какое-то время.\n' 'Вы получаете тренировку Обмана. Ваша жизнь искателя приключений начинается.') skill['Обман (ХаР)'] +=2 elif 19 <= Story[19]: print('Вы выследили преследователей задолго до того как они нашли вас, и вы устроили так, что их заметили их же враги. \n' 'Они уже никого теперь не смогут преследовать. Вы начинаете жизнь искателя приключений, окружённый славой безжалостного хитреца.') skill['Внимательность (МуД)'] += 2 skill['Обман (ХаР)'] += 2 def Table20(): # Таблица 20: Охрана каравана global Zoloto print('-Охрана каравана:') Story[20] = story() + skill['Внимательность (МуД)'] if Story[20] <=3: # Таблица 27: Отправленный в храм print('Караван остановился на ночь, и к вашему лагерю присоединились другие путники. \n' 'К несчастью, они оказались вампирами, и они напали на вас ночью. \n' 'Вы бежали по ночи, а за спиной гоготали вампиры, и вы спаслись лишь за счёт того, что добежали до храма.') Table27() elif 4 <= Story[20] <=6: #Таблица 25: Затерявшийся в глубинах print('Внезапно появившийся булит напал на караван. \n' ' Когда вы побежали на помощь, вы упали в яму, прорытую чудовищем, и оказались в подземных туннелях. ') Table25() elif 7 <= Story[20] <= 8: # Таблица 24: Выживание в глуши print('Дракон напал и поднял в воздух фургон, в котором вы укрылись вместе с собратьями по несчастью. \n' 'Вы выпрыгнули, когда дракон пролетал низко над деревьями. ') Table24() elif 9 <= Story[20] <= 11: # Таблица 8: Прибытие print('Ваша работа прошла без особых событий — вам даже было скучно. ' 'Когда караван остановился вы прилегли вздремнуть, а проснувшись, обнаружили, что караван ушёл без вас.') Table8() elif 12 <= Story[20] <= 14: #Конец print('Вы хорошо охраняли караван в долгом переходе. Ваша жизнь искателя приключений начинается.') Zoloto += 10 elif 15 <= Story[20] <= 17: # Таблица 20: Охрана каравана zlodey = Table5m() print('На караван напал '+zlodey+' с прислужниками. ' 'Вы заметили их издалека и смогли достаточно подготовить защиту, чтобы отогнать их. \n', zlodey+' поклялся вам отомстить.') #'когда вам в следующий раз нужно будет совершить бросок по таблице 5, используйте этого злодея.' skill['Внимательность (МуД)'] += 2 Table20() elif 18 <= Story[20]: # Таблица 8: Прибытие print('Вы издалека заметили неприятности на дороге, и сумели поймать в плен бандитов, засевших в засаде.' 'Глава каравана выдал вам дополнительную плату, а также возможность получить деньги за пойманных разбойников.') skill['Внимательность (МуД)'] += 2 Zoloto += 20 Table8() def Table21():#Таблица 21: Заключённый global Zoloto print('-Заключённый:') # print('Вас заперли вместе с преступниками всех мастей. Кто-то был оговорён, но многие действительно виновны в ужасных преступлениях.') Story[21] = story() + skill['Запугивание (ХаР)'] if Story[21] <= 3: #31: Испытание стойкости #Таблица 21: Заключённый print('Вы год гнили в каземате.') Table31() Table21() elif 4 <= Story[21] <= 5:#31: Испытание стойкости, 11: Поиски print('Вы отсидели несколько лет.') Table31() print('После освобождения вы пытались воссоединиться с членами семьи или друзьями.') Table11('person') elif 6 <= Story[21] <= 8:#26: Гильдия воров print('Вам пришлось вступить в тюремную банду, связанную с преступной группировкой на свободе. \n' 'Они устроили вам побег, а взамен вы должны оказать им услугу.') Table26() elif 9 <= Story[21] <= 11:#16: Рабство print('Ваше буйное поведение принесло вам репутацию смутьяна, \n' 'и вместо содержания в тюрьме вас продали в рабство.') Table16() elif 12 <= Story[21] <= 14:#15: Преступление, 19: В бегах print('Ваш сокамерник был осуждён за '+Table15(), '\n' 'Вы с сокамерником выкопали туннель и сбежали.') Table19() elif 15 <= Story[21] <= 16:#22: Военная служба print('Вашу стойкость заметил начальник тюрьмы, и остаток срока вы провели среди охраны.') skill['Запугивание (ХаР)'] +=2 Table22() elif 17 <= Story[21] <= 18:#33: Дворянство print('Вас должны были казнить. К счастью, дворянин, впечатлённый вашей речью перед лицом смерти, вмешался и выкупил вашу свободу.\n' 'За это вы должны ему служить.') Table33() elif 19 <= Story[21]:#Конец print('Вы стали лидером заключённых. Благодаря связям с людьми на воле ваши подельники \n' 'устроили вам досрочное освобождение и собрали небольшую сумму денег.\n' 'Ваша жизнь искателя приключений начинается.') Zoloto += 20 skill['Запугивание (ХаР)'] += 2 skill['Проницательность (МуД)'] += 2 # sys.exit("Конец") def Table22():# Таблица 22: Военная служба global Zoloto print('-Военная служба:') print('Теперь ты в армии!') Story[22] = story() + skill['Атлетика (СиЛ)'] if Story[22] <= 2: # Таблица 19: В бегах print('Хаос и резня на поле боя сломили вас, и вы дезертировали.') Table19() elif 3 <= Story[21] <= 4: # Таблица 20: Охрана каравана print('Вы оказались плохим солдатом, и вас отправили охранять обоз.') Table20() elif 5 <= Story[21] <= 6: #Таблица 24: Выживание в глуши print('Ваш взвод окружили враги и вы едва выжили, сбежав в пустоши на вражеской территории.') Table24() elif 7 <= Story[21] <= 8: # Таблица 25: Затерявшийся в глубинах print('Ваше войско было разбито, а его остатки укрылись в разрушенном замке. ' 'Там вы нашли туннели и подземелье, и вместо того чтобы ждать смерть от рук врага, вы с другими солдатами отправились искать другой выход.') Table25() elif 9 <= Story[21] <= 10: # Таблица 16: Рабство print('Вы хорошо сражались, но не избежали пленения. Враги взяли вас под стражу.') Table16() elif 11 <= Story[21] <= 12: # Таблица 28: Посредничество print('Ваш взвод наткнулся на вражеский. Переговоры зашли в тупик. \n' 'Вы попытались мирно урегулировать конфликт.') Table28() elif 13 <= Story[21] <= 14: # Конец Таблица 11: Поиски print('Вы выжили, но какой ценой! Вы потеряли конечность и носите протез. \n' 'Ваша жизнь искателя приключений начинается с возвращения с войны.') skill['Атлетика (СиЛ)'] += 2 variant = input('Занятся поисками волшебного протеза?[Да/Нет]: ') if variant == 'Да': print('Вы занялись поисками волшебного протеза.') Table11('object') else: pass elif 15 <= Story[21] <= 16: # Таблица 8: Прибытие print('Вы прошли войну относительно невредимым, и были демобилизованы далеко от того места, где были рекрутированы.') Table8() elif 17 <= Story[21] <= 18: # Конец print('Вы хорошо себя показали на поле боя и помогли многим своим соратникам. \n' 'Вы получаете тренировку Целительства за частое перевязывание чужих ран. Вы начинаете жизнь искателя приключений.') skill['Лечение (МуД)'] += 2 elif 19 <= Story[21]: print('Вы стали боевым героем и получили новое звание. \n' 'Вы начинаете жизнь искателя приключений со званием, предоставляющим военные привилегии и дополнительную ответственность.') skill['Атлетика (СиЛ)'] += 2 Zoloto += 15 def Table23():# Таблица 23: Драка в таверне global Zoloto print('-Драка в таверне:') print('В таверне начинается драка.') Story[23] = story() + skill['Атлетика (СиЛ)'] if Story[23] <=4: # Таблица 21: Заключённый print('Вы лежали без сознания на полу, когда прибыли стражи, и вас арестовали.') Table21() elif 5 <= Story[23] <= 8:# Таблица 19: В бегах print('Во время драки таверна загорелась и сгорела дотла. \n' 'Вы вырвались наружу, но теперь придётся спасаться бегством.') Table19() elif 9 <= Story[23] <= 11: # Таблица 29: Нанятый шпионить print('Вас нокаутировали, но хозяин заведения восхитился вашим буйством и не дал вас арестовать. \n' 'Вам всё равно придётся возмещать ущерб, проработав на хозяина несколько месяцев. \n' 'Во время работы вы услышали чужой заговор, а когда сообщили о нём, вам поручили внедриться в группу заговорщиков.') Table29() elif 12 <= Story[23] <= 15: # Таблица 8: Прибытие print('Вы хорошо проявили себя и скрылись до того как придут власти и арестуют драчунов.') skill['Атлетика (СиЛ)'] +=2 Table8() elif 16 <= Story[23] <= 18: # Таблица 18: Друг в нужде print('Вы передрались со всеми посетителями, а потом все пожали друг другу руки и начали заглушать боль песнями и выпивкой.\n ' 'Вы получаете тренировку Атлетики и заводите несколько новых друзей.') skill['Атлетика (СиЛ)'] += 2 Table18() elif 19 <= Story[23]: print('Вы спасли жизнь владельца заведения и отправили злодеев в бегство. В качестве награды вы становитесь совладельцем. \n ' 'Ваша жизнь искателя приключений начинается.') skill['Атлетика (СиЛ)'] += 2 Zoloto +=30 def Table24(): #Таблица 24: Выживание в глуши global Zoloto Story[24]= story() + skill['Природа (ИнТ)'] print('-Выживание в глуши:') if Story[24] <= 5:# Таблица 31: Испытание стойкости Таблица 24: Выживание в глуши print('Вы год прожили в глуши робинзоном, ни разу не соприкоснувшись с цивилизацией.') skill['Природа (ИнТ)'] +=2 Table31() Table24() elif 6 <= Story[24] <= 7: #Таблица 25: Затерявшийся в глубинах print('Вы укрылись в пещере на ночь, а когда с охоты вернулись совомедведи, вам пришлось отступить глубже в туннели.') Table25() elif 8 <= Story[24] <= 9: #Таблица 18: Друг в нужде print('Вы встретили дварфа-старателя, ищущего новое место для рудника. \n' 'Вы с ним подружились, и он помог вам вернуться к цивилизации.\n' 'Взамен он попросил вас оказать небольшую услугу. ') Table18() elif 10 <= Story[24] <= 11: # Таблица 8: Прибытие print('Вы нашли след, который должен вести в поселение.') Table8() elif 12 <= Story[24] <= 14: # Таблица 32: Пророческое послание Конец print('Вы нашли волшебную поляну и встретились с фейским существом.\n' ' Оно коснулось вашего лба и перед тем как вы потеряли сознание, в вашем сознании появилась чужая мысль.') Table32() print('Ваша жизнь искателя приключений началась, когда вы проснулись далеко от чудесной поляны.') elif 15 <= Story[24] <= 16: # Таблица 20: Охрана каравана print('В глуши на вас вышел враждебно настроенный друид.\n' ' Впечатлившись вашей способностью выживать, он обучил вас новым навыкам и проводил до дороги, где вы примкнули к проходящему каравану.') skill['Природа (ИнТ)'] +=2 Table20() elif 17 <= Story[24] <= 18: print('Вы приручили в странствиях дикую лошадь. \n' ' Вы начинаете жизнь искателя приключений с боевой лошадью и возвращением к цивилизации.') skill['Природа (ИнТ)'] += 2 elif 19 <= Story[24]: print('Вы стали отличным охотником и следопытом. \n' 'Вы вернулись из глуши сильным, и начали жизнь искателя приключений.') skill['Скрытность (ЛоВ)'] += 2 skill['Природа (ИнТ)'] += 2 def Table25():# Таблица 25: Затерявшийся в глубинах global Zoloto print('-Затерявшийся в глубинах:') Story[25] = story() + skill['Выживание (МуД)'] if Story[25] <=5:# Таблица 31: Испытание стойкости Таблица 25: Затерявшийся в глубинах print('0—5 Вы несколько дней бродили во тьме, питаясь насекомыми и летучими мышами.') Table31() Table25() elif 6 <= Story[25] <= 7:# Таблица 16: Рабство print('Вас взял в плен дуэргар, который привёл вас на рынок рабов в Подземье и продал там.') Table16() elif 8 <= Story[25] <= 9: # Таблица 18: Друг в нужде print('Вы встретили дварфа-старателя, ищущего новое место для рудника. \n' 'Вы с ним подружились, и он помог вам вернуться к цивилизации.\n' 'Взамен он попросил вас оказать небольшую услугу.') Table18() elif 10 <= Story[25] <= 12: # Таблица 7: Проклятый print('В туннелях вы нашли огромную статую с глазами из рубинов.\n' 'Вы выковыряли один, но вам пришлось бежать, когда за вами по туннелям бросилось племя гоблинов. \n' 'Увеличьте стартовый капитал на 50 зм. К несчастью, это рубин был проклят.') Zoloto += 50 Table7() elif 13 <= Story[25] <= 15: # Таблица 8: Прибытие print('Вы бродили по туннелям, и столкнулись с жутким иллитидом. \n' 'Его щупальца метнулись к вам, и всё вокруг потемнело.\n' 'Вы очнулись в другом месте, не понимая как вы там оказались и почему вам позволили жить. \n' 'Странно, но теперь вы знаете Глубинную Речь. ' 'Вы оказались в ...') skill['Анализ (ИнТ)'] += 2 Table8() elif 16 <= Story[25] <= 18: #Таблица 5: Злодей print('Вы шли по туннелям, пока не обнаружили логово '+Table5m()+'. \n' 'Вы украли карту, ведущую к сокровищам, и выбрались на поверхность по туннелям врага.\n' 'Ваша жизнь искателя приключений начинается, и у вас есть похищенная карта.') skill['Скрытность (ЛоВ)'] +=2 elif 19 <= Story[25]: # Таблица 8: Прибытие print('Вы неожиданно легко провели время под землёй, и стали адептом в тихом исследовании.' 'Вы вылезли напротив...') skill['Скрытность (ЛоВ)'] += 2 skill['Анализ (ИнТ)'] += 2 Table8() def Table26(): #Таблица 26: Гильдия воров ''' ''' global Zoloto Story[26]= story() + skill['Ловкость Рук (ЛоВ)'] print('-Гильдия воров:') if Story[26] <= 5: #Таблица 15: Преступление Таблица 21: Заключённый print('Гильдия использовала вас в качестве козла отпущения.' 'Вас обвинили в '+Table15()) Table21() elif 6 <= Story[26] <= 7:#Таблица 15: Преступление Таблица 19: В бегах print('Гильдия отправила вас на задание:'+Table15()+', но вы попались. \n' 'Члены гильдии спасли вас от властей, но теперь вас разыскивают.') Table19() elif 8 <= Story[26] <= 9: #Таблица 34: Похищенный на корабль print('8—9 Вы часто работали в районе доков, и вас похитили на корабль.') Table34() elif 10 <= Story[26] <= 11: #Таблица 24: Выживание в глуши print('Вы выполняли для гильдии мелкие поручения, но привлекли внимание властей. \n' 'У них недостаточно доказательств для ареста, так что вас просто изгнали из города.') Table24() elif 12 <= Story[26] <= 14: #Таблица 26: Гильдия воров print('Вы много сделали для гильдии, но лидеры всё равно не уверены в вас.') Zoloto += 10 skill['Ловкость Рук (ЛоВ)'] += 2 Table26() # 'Если снова выпадет этот результат, вы заслужите достаточно доверия, чтобы стать полноправным членом гильдии. ' 'Вы получаете тренировку Воровства, и ваша жизнь искателя приключений начинается.' elif 15 <= Story[26] <= 16:# Таблица 9: Месть print('Ваши навыки в гильдии очень ценят, и вскоре вам начали поручать самую ценную работу. \n' 'Соперник, завидующий вашему продвижению, начал вам строить козни. ') skill['Ловкость Рук (ЛоВ)'] += 2 skill['Скрытность (ЛоВ)'] += 2 Table9() elif 17 <= Story[26] <= 18:#Таблица 29: Нанятый шпионить print('Вы провернули много хитрых грабежей, и получили под вымышленным именем титул великого вора.\n' 'В конечном счёте власти вас поймали, но в тюрьму вас не посадили. \n' 'Вам простят преступления, если вы будете на них шпионить.') skill['Ловкость Рук (ЛоВ)'] += 4 skill['Обман (ХаР)'] += 2 Table29() elif 19 <= Story[26]:# Конец print('Вы стали опытным преступником, и когда глава гильдии был убит: '+Table5()+', вас выбрали новым главой. \n' 'Ваша жизнь искателя приключений начинается с того, что вы являетесь лидером гильдии воров и несёте за неё полную ответственность.') skill['Ловкость Рук (ЛоВ)'] += 6 skill['Скрытность (ЛоВ)'] += 4 skill['Анализ (ИнТ)'] += 2 Zoloto += 50 def Table27(): #Таблица 27: Отправленный в храм global Zoloto Story[27] = story() + skill['Религия (ИнТ)'] print('-Отправленный в храм:') if Story[27] <= 4: # Таблица 7: Проклятый print('Ваше поведение оскорбило богов, и теперь вы прокляты.') Table7() elif 5 <= Story[27] <= 7: # Таблица 19: В бегах print('Вы сорвали религиозный обряд и случайно подожгли храм. \n' ' Жрецы напали на вас до того как вы смогли объяснить, что это была ошибка, и вам пришлось бежать.\n' ' Теперь они вас разыскивают. ') Table19() elif 8 <= Story[27] <= 10: # Таблица 28: Посредничество print('Вы задали неуместный вопрос о догме храма, и подняли разногласия, из-за которых жрецы поссорились. \n' 'Вы попытались предотвратить раскол церкви.') Table28() elif 11 <= Story[27] <= 13: # Таблица 11: Поиски print('Вам было таинственное видение, которое никто из жрецов не смог объяснить. \n' 'Они отправили вас на поиски странствующего оракула своего ордена, чтобы вы могли узнать больше.') Table11('person') elif 14 <= Story[27] <= 16: #Таблица 4: Попечение print('Ваше обучение в храме и жажда познания впечатлили жрецов. \n' 'Они научили вас всему, чему могли, и отправили к наставнику, чтобы вы могли и дальше получать знания.') skill['Религия (ИнТ)'] += 2 Table4() elif 17 <= Story[27] <= 18:#Таблица 8: Прибытие print('Ваша преданность храму впечатлила служивших там жрецов. Они отправили вас в мир разносить веру. ') skill['Религия (ИнТ)'] += 2 skill['Лечение (МуД)'] += 2 Table8() elif 19 <= Story[27]: #Таблица 32: Пророческое послание print('Вы получили в храме божественное видение.') skill['Религия (ИнТ)'] += 2 skill['Проницательность (МуД)'] += 2 Table32() print('Ваша жизнь искателя приключений начинается.') def Table28(): #Таблица 28: Посредничество global Zoloto Story[28]= story() + skill['Убеждение (ХаР)'] print('-Посредничество:') if Story[28] <= 4: # Таблица 22: Военная служба print('Переговоры провалились, ситуация вышла из-под контроля и разразилась новая война.\n ' 'Вас заставили сражаться на одной из сторон.') Table22() elif 5 <= Story[28] <= 6:# Таблица 19: В бегах print('Ваша попытка провести переговоры грубо провалилась, и вам пришлось ретироваться от разозлённого собеседника.') Table19() elif 7 <= Story[28] <= 8:# Таблица 11: Поиски print('Те, с кем вы общались, согласятся на ваши условия только в обмен на священный для них предмет.') Table11('object') elif 9 <= Story[28] <= 11:#Таблица 11: Поиски print('Ваших навыков оказалось недостаточно, и другая сторона потребовала, чтобы вы привели кого-то другого, и только тогда они смогут принять решение.') Table11('person') elif 12 <= Story[28] <= 14:#Таблица 8: Прибытие print('Вы едва-едва достигли успеха, но разозлённая другая сторона потребовала, чтобы вы уехали, и только так они согласятся.') Table8() elif 15 <= Story[28] <= 17:#Таблица 33: Дворянство print('Вы привели убедительный аргумент, и завоевали уважение тех, с кем вы разговаривали. \n' 'Эта мудрость привлекла внимание дворянина.') skill['Убеждение (ХаР)'] +=2 Table33() elif 18 <= Story[28]: print('Ваше красноречие впечатлило тех, с кем вы говорили, и они согласились на ваши условия. \n' 'Вас объявили почётным гостем и одарили знаками внимания. \n' 'Ваша жизнь искателя приключений начинается. ') skill['Убеждение (ХаР)'] += 2 skill['Проницательность (МуД)'] += 2 Zoloto += 10 def Table29(): #Таблица 29: Нанятый шпионить global Zoloto Story[29]= story() + skill['Обман (ХаР)'] print('-Нанятый шпионить:') if Story[29] <= 4:#21: Заключённый print('Вы практически сразу выдали себя,\n' 'и те, за кем вы шпионили, бросили вас за решётку.') Table21() elif 5 <= Story[29] <= 8:#19: В бегах print('Другу нужна помощь в спасении члена вашей семьи, которого хотят казнить.\n' 'Вы преуспели, но теперь вас разыскивают власти.') Table19() elif 6 <= Story[29] <= 7:#18: Друг в нужде print('Вам пришлось шпионить за другом.\n' 'Вы предали нанимателей и попытались помочь своему приятелю.') Table18() elif 8<= Story[29] <= 9:#9: Месть print('Выполняя задание, вы вышли на вражеского шпиона, и всё осложнилось.\n' 'Ваш соперник сбежал с нужной вам информацией, и вы начали его преследовать.') Table9() elif 10<= Story[29] <= 13:#11: Поиски print('Ваша слежка раскрыла заговор, но у вас ещё не все части головоломки.\n' 'Вы отправились за информацией, которая откроет правду.') Table11('infa') elif 14<= Story[29] <= 16:#---Конец--- print('Во время слежки вы провели серьёзные изыскания и сблизились с учёными по теме своих поисков.\n' 'Однако найденную вами информацию использовали неожиданным образом, и теперь эти учёные в беде.\n' 'Вы получаете тренировку Истории. Ваша жизнь искателя приключений начинается,\n' 'но те, кто помогал вам, находятся в опасности от событий, произошедших в вашем прошлом.') # sys.exit("Конец") elif 17<= Story[29] <= 18:#5: Злодей,19: В бегах print('С теми, за кем вы следите, сотрудничает опасный '+Table5m()+'. \n' 'Благодаря великолепному обману, вы подобрались к нему и похитили нужную информацию.\n' 'После того как вы ушли, он понял, что вы сделали.') skill['Обман (ХаР)'] += 2 Table19() elif 19<= Story[29]:#---Конец--- print('В ходе миссии вы столкнулись с вражеским шпионом, и начали политическую игру на грани фола, включая взаимные подколки и подлог. \n' 'Вы разошлись друзьями, и оба оставили свою цель, ничего не узнав. Ваша жизнь искателя приключений начинается.') skill['Обман (ХаР)'] += 2 skill['Скрытность (ЛоВ)'] += 5 def Table30(): #Таблица 30: Цирк global Zoloto # Story[30] = story() print('-Цирк:') if Story[30] == 1:# Таблица 5: Злодей Таблица 9: Месть print('До того как началась ваша жизнь в цирке, '+Table5m()+' разрушил его. \n' 'Осталось только несколько актёров вместе с вами. ' 'Вы и другие актёры попытались отомстить.') Table9() elif Story[30] == 2: print('Блошиный цирк. Совершите проверку Внимательности (Сл 12). ') if skill['Внимательность (МуД)'] + story() > 12: skill['Внимательность (МуД)'] +=2 print('Ваша жизнь искателя приключений начинается после успешного сезона выступлений.') Zoloto +=10 else: print('Ваша жизнь искателя приключений начинается с того, что на вас завелись блохи.') elif Story[30] == 3: print('Мим.') if skill['Обман (ХаР)'] + story() > 12: skill['Обман (ХаР)'] += 2 print('У вас отлично выходит и вы можете провести с цирком ещё один сезон;') Table30() else: #Таблица 17: Неудача print('Вас выгоняют из цирка, и вы попадаете в засаду на дороге;') Table17() elif Story[30] == 4: print('Чудаковатый актёр второго плана.') if skill['Запугивание (ХаР)'] + story() > 12: skill['Запугивание (ХаР)'] += 2 print('После выступления один из зрителей протянул вам кусок пергамента и сразу исчез в толпе:') Table32() print('Ваша жизнь искателя приключений начинается.') else: #Таблица 8: Прибытие print('Вас выгоняют из цирка;') Table8() elif Story[30] == 5: print('Клоун.') if skill['Убеждение (ХаР)'] + story() > 12: #Таблица 33: Дворянство skill['Убеждение (ХаР)'] += 2 print('Вы привлекаете внимание дворянина, которому нужен шут для ребёнка; ') Table33() else: print('Ваша жизнь искателя приключений начинается с позорного изгнания из цирка.') elif Story[30] == 6: print('Силач.') if skill['Атлетика (СиЛ)'] + story() > 12: # Таблица 34: Похищенный на корабль skill['Атлетика (СиЛ)'] += 2 print('Ваше сильное тело привлекло внимание вербовщиков на флот;') Table34() else: #Таблица 22: Военная служба print('Вам отказываются платить; \n' 'В поисках денег вы отправляетесь на службу в армию:') Zoloto -= 10 Table22() elif Story[30] == 7: print('Всадник-акробат.') if skill['Акробатика (ЛоВ)'] + story() > 12: skill['Акробатика (ЛоВ)'] += 2 print('Ваша ловкость впечатлила зрителей. Ваша жизнь искателя приключений начинается в успешной труппе') elif skill['Уход за животными (МуД)'] + story() > 12: skill['Уход за животными (МуД)'] += 2 print('Вы смогли натренорвать лошадей. Ваша жизнь искателя приключений начинается в известной труппе') else:#Таблица 31: Испытание стойкости print('Вы получаете травму;') Table31() print('Ваша жизнь искателя приключений начинается после того как цирк уходит без вас.') elif Story[30] == 8: print('Актёр, демонстрирующий освобождение от оков. Совершите проверку Акробатики или Атлетики (Сл 12), а затем проверку Выносливости (Сл 12).') if skill['Выступление (ХаР)'] + story() > 12: skill['Выступление (ХаР)'] += 2 print('Ваша жизнь искателя приключений начинается после успешного сезона выступлений.') else: #Таблица 26: Гильдия воров print('Вашим наставником становится представитель гильдии воров;') Table26() elif Story[30] == 9: print('Дрессировщик.') if skill['Уход за животными (МуД)'] + story() > 12: skill['Уход за животными (МуД)'] += 2 print('Ваша жизнь искателя приключений начинается после успешного сезона выступлений.') else:#Таблица 24: Выживание в глуши print('В случае провала ваше животное сбегает, и вы отправляетесь его искать;') Table24() elif Story[30] == 10: print('Танцор.') if skill['Акробатика (ЛоВ)'] + story() > 12:#Таблица 33: Дворянство skill['Акробатика (ЛоВ)'] += 2 print('Вы попадаетесь на глаза дворянину, который переманивает вас к себе; ') Table33() else:#Таблица 23: Драка в таверне print('Вас отправляют танцевать в таверну;') Table23() elif Story[30] == 11: print('Фокусник.') if skill['Ловкость Рук (ЛоВ)'] + story() > 12:# Таблица 10: Башня волшебника skill['Ловкость Рук (ЛоВ)'] += 2 print('Некий волшебник проявляет желание обучить вас настоящей магии;') Table10() else: print('Ваше выступление вызвало у публики хохот;') Story[30] = 5 Table30() elif Story[30] == 12: print('Гибкий акробат.') if skill['Акробатика (ЛоВ)'] + story() > 12:# Таблица 29: Нанятый шпионить skill['Скрытность (ЛоВ)'] += 2 skill['Акробатика (ЛоВ)'] += 2 print('Вы привлекаете внимание лидера шпионов, которому нужно, чтобы кто-то с вашими навыками проник во вражеский лагерь;') Table29() else:#Таблица 16: Рабство print('Жадный хозяин цирка продаёт вас в рабство;') Table16() elif Story[30] == 13: print('Гимнаст.') if skill['Атлетика (СиЛ)'] + story() > 12:#Таблица 20: Охрана каравана skill['Атлетика (СиЛ)'] += 2 print('Вы с товарищами отправились в соседний город:') Table20() else: # Таблица 3: Уход из дома print('Вы с позором возвращаетесь домой;') Table3() elif Story[30] == 14: print('Жонглёр.') if skill['Ловкость Рук (ЛоВ)'] + story() > 12: skill['Ловкость Рук (ЛоВ)'] += 2 print('Ваша ловкость впечатлила зрителей. Ваша жизнь искателя приключений начинается в успешной труппе') else: # #Таблица 8: Прибытие print('Вас выгоняют из цирка;') Table8() elif Story[30] == 15: print('Шпагоглотатель.') if skill['Акробатика (ЛоВ)'] + story() > 12:#Таблица 17: Неудача skill['Акробатика (ЛоВ)'] += 2 print('Вы выступаете в пути;') Table17() else: print('Ваша жизнь искателя приключений начинается, но вы не можете говорить до первого продолжительного отдыха') elif Story[30] == 16: print('Акробат.') if skill['Акробатика (ЛоВ)'] + story() > 12:# Таблица 9: Месть skill['Акробатика (ЛоВ)'] += 4 print('Вы встречаете дворянина, который проявляет к вам интерес.\n' 'Этот дворянин хочет отомстить '+Table5m()+', и вас втягивают в это противостояние. ') Table9() else: print('Вы получаете травму;)') Table31() if Story[31] < 9: print('Ваша жизнь искателя приключений начинается после того, как сочувствующие товарищи по цирку уходят без вас.') else: # Таблица 29: Нанятый шпионить print('Вы привлекаете внимание лидера шпионов, которому нужно, чтобы кто-то с вашими навыками проник во вражеский лагерь;') Table29() elif Story[30] == 17: print('Метатель кинжалов.') if DEXm + story() > 15: skill['Внимательность (МуД)'] += 2 print('Ваша жизнь искателя приключений начинается успешным артистом.') else: #Таблица 21: Заключённый print('Вы случайно кого-то убиваете или раните, и вас заключают под стражу;') Table21() elif Story[30] == 18: print('Глотатель пламени.') if CONm + story() > 12:#Таблица 23: Драка в таверне CONm += 2 print('Вы начинаете выступать в таверне;') Table23() elif INTm + story() > 12:#Таблица 10: Башня волшебника skill['Магия (ИнТ)'] +=2 print('Некий волшебник проявляет желание обучить вас призывать огонь;') Table10() else: print('Ваша жизнь искателя приключений начинается, но вы не можете говорить до первого продолжительного отдыха.') elif Story[30] == 19: print('Предсказатель.') if skill['Обман (ХаР)'] + story() > 12:#Таблица 32: Пророческое послание skill['Обман (ХаР)'] += 2 print('Вы получаете пугающее видение;') Table32() else:#Таблица 7: Проклятый print('Вы обижаете настоящего прорицателя и становитесь проклятым;') Table7() elif Story[30] == 20: print('Управляющий.') if skill['Убеждение (ХаР)'] + story() > 12:# Таблица 6: Торговые дела print('Торговец нанимает вас продавцом для своего магазина;') Zoloto += 10 Table6() else: print('Цирк разоряется после нескольких неудачных выступлений. \n' 'Ваша жизнь искателя приключений начинается с того, что многие актёры обвиняют вас в потере источника средств к существованию,\n' ' а кто-то может даже желать отомстить') def Table31(): #Таблица 31: Испытание стойкости global Zoloto, CON, CONm Story[31] = story() + CONm print('-Испытание стойкости:') if Story[31] <= 4: print('Вы чуть было не умерли. Вы теперь хромаете, вас терзает жуткий кашель, \n' ' у вас искривлённые руки, подслеповатый глаз или другое ярко выраженное недомогание.') elif 5 <= Story[31] <= 8: print('Вы едва выжили. Всё это оставило на вас физические и душевные шрамы, но вы как-то их компенсировали.') elif 9 <= Story[31] <= 12: print('Вы справились с неприятностями, не теряя боевого духа.') elif 13 <= Story[31] <= 16: print('Вы справились «на ура».') CON += 2 elif 17 <= Story[31]: print('Это было просто. Вы стали сильнее чем были.') skill['Атлетика (СиЛ)'] +=2 CON += 2 def Table32(): #Таблица 32: Пророческое послание global Zoloto Story[32] = story() print('-Пророческое послание:') if Story[32] == 1: print('Вы — предвестник конца света.') elif Story[32] == 2: print('Вы найдёте великое сокровище, которое нужно будет вернуть его владельцу, иначе вы никогда не достигнете желаемого.') elif Story[32] == 3: print('Вам суждено стать создателем королей.') elif Story[32] == 4: print('Тёмные силы считают вас принадлежащим им.') elif Story[32] == 5: print('Некий бог считает вас особенным, и внимательно наблюдает за вами.') elif Story[32] == 6: print('При рождении вас разлучили с близнецом.') elif Story[32] == 7: print('У вас не родная семья. На самом деле вы — наследник престола.') elif Story[32] == 8: print('Вы не рождались, вас создали искусственно.') elif Story[32] == 9: print('В вашем теле обитают две души.') elif Story[32] == 10: print('Ваш близкий друг заключён в предмете, принадлежащем злодею. Совершите бросок по таблице 5, чтобы определить, кто это был.') elif Story[32] == 11: print('Когда-то другом вашей семьи был великий злодей. Совершите бросок по таблице 5, чтобы определить, кто это был.') elif Story[32] == 12: print('Ваш родственник носит притворную личину.') elif Story[32] == 13: print('Ваших истинных друзей можно сосчитать по пальцам одной руки.') elif Story[32] == 14: print('Один из ваших друзей скоро вас предаст.') elif Story[32] == 15: print('Враг ближе, чем вы думаете.') elif Story[32] == 16: print('Не доверяй картам, когда заблудишься.') elif Story[32] == 17: print('Совет, которого вы скоро будете искать, заведёт вас не туда.') elif Story[32] == 18: print('Не путешествуйте по воде в течение месяца.') elif Story[32] == 19: print('Укрывайтесь от бурь, если только они не придут с севера.') elif Story[32] == 20: print('Не доверяйте своим инстинктам ночью.') def Table33(): #Таблица 33: Дворянство global Zoloto Story[33] = story() + skill['Проницательность (МуД)'] print('-Дворянство:') if Story[33] <= 3:# Таблица 16: Рабство print('Ваше «служение» в доме дворянина на самом деле было рабством.') Table16() elif 4 <= Story[33] <= 5: #Таблица 21: Заключённый print('Дворянин поручил вам задачу, которая оказалась нелегальной. \n' 'Вас арестовали, и дворянин позволил вам гнить в тюрьме.') Table21() elif 6 <= Story[33] <= 7: # Таблица 24: Выживание в глуши print('Один из родственников дворянина слишком заинтересовался вами, и тот в гневе выгнал вас.') Table24() elif 8 <= Story[33] <= 9: #Таблица 8: Прибытие print('Вы приняли участие в маскараде и веселили людей развязным поведением, но когда все сняли маски, \n' 'вы забылись и продолжили кривляться, чем оскорбили гостей и смутили хозяина дома.\n' 'Вас выставили из дома дворянина.') Table8() elif 10 <= Story[33] <= 11: #Таблица 12: Персона print('Вы очень сблизились с дочерью или сыном дворянина, и решили сбежать вдвоём. \n' 'Ночью вы вместе убежали от разозлённого отца.') Table12() elif 12 <= Story[33] <= 14: #Таблица 6: Торговые дела print('Дворянин так проникся к вам, что доверил вести дела своего дома.') skill['Проницательность (МуД)'] += 2 Table6() elif 15 <= Story[33] <= 17: #Конец print('Вы так понравились дворянину, что он пообещал породниться с вами. \n' 'Ваша жизнь искателя приключений начинается до того, как вы женитесь.') skill['Проницательность (МуД)'] += 2 Zoloto += 50 elif 18 <= Story[33]: #Таблица 18: Друг в нужде print('Дворянин становится вашим хорошим другом.') skill['Проницательность (МуД)'] += 2 skill['Убеждение (ХаР)'] += 2 Table18() def Table34(): #Таблица 34: Похищенный на корабль global Zoloto, CONm Story_pirate = story() print('-Похищенный на корабль:') if Story_pirate <= 5: #Таблица 31: Испытание стойкости Таблица 34: Похищенный на корабль print('Вы целый год прожили жизнью пирата.') CONm += 1 Table31() Table34() elif 6 <= Story_pirate <= 7:#Таблица 27: Отправленный в храм print('Корабль несколько недель простоял в зоне штиля. \n' 'Когда ветер всё же подул, он вынес вас на берег к месту у большого храма. \n' 'В знак благодарности богам вы какое-то время служили в этом храме.') Table27() elif 8 <= Story_pirate <= 9: print('Вы возглавили мятеж против капитана. ') if skill['Атлетика (СиЛ)'] + story() >= 12: # Конец print('Вы начинаете жизнь искателя приключений в качестве капитана корабля с небольшим экипажем.') skill['Атлетика (СиЛ)'] += 2 else: # Таблица 21: Заключённый print('Вас сажают в тюрьму, когда корабль приходит в порт;') Table21() elif Story_pirate == 10: #Таблица 22: Военная служба print('Вы славно потрудились в сражениях на море.' 'Вы продолжили службу на суше.') skill['Атлетика (СиЛ)'] += 2 Zoloto += 10 Table22() elif Story_pirate == 11: # Таблица 24: Выживание в глуши print('Вы сбежали во время остановки для охоты на таинственном побережье.') Table24() elif Story_pirate == 12: #Таблица 31: Испытание стойкости Таблица 33: Дворянство print('Корабль потопило морское чудище.') Table31() print('Вас спас проходящий мимо корабль дворянина.') Table33() elif Story_pirate == 13: # Конец print(Table5()+' потопил ваш корабль и взял вас в плен. \n' 'Один из сторонников злодея сжалился над вами и позволил сбежать.\n' 'Ваша жизнь искателя приключений начинается, и у вас теперь есть враг и потенциальный друг в стане врага.') elif Story_pirate == 14: # Таблица 7: Проклятый print('Таинственная буря сбила корабль с курса, и вы оказались на необычном острове.\n' 'Исследуя его, вы подхватили проклятье, и экипаж бросил вас в ближайшем порту. ') Table7() elif Story_pirate == 15: print('Вы дежурили в «вороньем гнезде». Совершите проверку Внимательности (Сл 12). ') if skill['Внимательность (МуД)'] + story() >= 12: print('Ваша жизнь искателя приключений начинается после успешного рейса.') skill['Внимательность (МуД)'] += 2 else: print('Корабль тонет. Вас считают приносящим неудачу, и высаживают на берег; \n' 'Ваша жизнь искателя приключений начинается.') elif Story_pirate == 16: #Таблица 31: Испытание стойкости print('Вы разозлили капитана, и вас заставили пройтись по рее. ') Zoloto -= 20 Table31() print('Ваша жизнь искателя приключений начинается с того, что вас выносит на берег.') elif Story_pirate == 17: #Таблица 19: В бегах print('Вы украли на корабле карту сокровищ и скрылись на берегу.' ' Теперь вы прячетесь от моряков, желающих вернуть карту.') Table19() elif Story_pirate == 18: #Таблица 16: Рабство print('Пираты напали на корабль, захватили вас в плен, и продали в рабство.') Table16() elif Story_pirate == 19: #Таблица 31: Испытание стойкости Таблица 8: Прибытие print('Вас высадили на острове за оскорбление капитана.') Table31() print('Вас спасли.') Table8() elif Story_pirate == 20: #Таблица 6: Торговые дела print('Вы подружились с капитаном и убедили его заняться мирной деятельностью.\n' 'Вы начали представлять торговые интересы капитана на суше.') skill['Убеждение (ХаР)'] += 3 Table6() print('--------------------------------------------------------------------------') print('-Обстоятельства рождения вашего персонажаа:\nКто Вас вырастил?') Table1() if Story[1] != 5: if Story[1] != 19: Story[1] = story() - 2 if Story[1] == 5: Story[1] = story() - 2 print('и') Table1() print('-Есть ли у вас братья и сёстры?') Table2() Table3() print('--------------') Prof = profesion() STR, DEX, CON, INT, WSD, CHR = proftochar() print('Характеристики вашего '+Prof+':\n' 'Сила:', STR, '\n' 'Ловкость:', DEX, '\n' "Телосложение:", CON, '\n' "Интеллект:", INT, '\n' "Мудрость:", WSD, '\n' "Харизма:", CHR) print('--------------') print(skill) print('Золото: ', Zoloto) input('')
bf4dfb85175642bde5e44e837f015463e1b8fed7
036a41c913b3a4e7ae265e22a672dd89302d3200
/1201-1300/1237/1237_Python_1.py
7e07569009a051950622f77e1c5934eb19a13fe8
[]
no_license
ChangxingJiang/LeetCode
e76f96ebda68d7ade53575354479cfc33ad4f627
a2209206cdd7229dd33e416f611e71a984a8dd9e
refs/heads/master
2023-04-13T15:23:35.174390
2021-04-24T05:54:14
2021-04-24T05:54:14
272,088,506
0
0
null
null
null
null
UTF-8
Python
false
false
1,021
py
from typing import List class CustomFunction: def f(self, x, y): return x + y class Solution: def findSolution(self, customfunction: 'CustomFunction', z: int) -> List[List[int]]: idx1 = 1 idx2 = 1000 ans = [] while idx1 <= 1000 and idx2 >= 1: if customfunction.f(idx1, idx2) < z: mid = (idx1 + idx2) // 2 if customfunction.f(mid, idx2) < z: idx1 = max(mid, idx1 + 1) else: idx1 += 1 elif customfunction.f(idx1, idx2) > z: mid = (idx1 + idx2) // 2 if customfunction.f(idx1, mid) > z: idx2 = min(mid, idx2 - 1) else: idx2 -= 1 else: ans.append([idx1, idx2]) idx1 += 1 idx2 -= 1 return ans if __name__ == "__main__": print(Solution().findSolution(CustomFunction(), 5)) # [[1,4],[2,3],[3,2],[4,1]]
b35153d84b3d5de30ced8c149b72bb65a1168607
1ba5c90292dbed982a23167fd083dd2cf29f6d8d
/bin/boliau-filter
5a2dda5ecd69ac3fffc88b2999546c11e061382c
[ "LicenseRef-scancode-unknown-license-reference", "MIT" ]
permissive
hychen/boliau
8d99a331056ef18001cae5503084624c1e43618c
618e4557c7b4a3d97c9926b1d7e691291472ff7c
refs/heads/master
2021-01-01T17:37:25.012545
2013-08-16T09:58:58
2013-08-16T09:58:58
7,454,169
1
0
null
null
null
null
UTF-8
Python
false
false
1,269
#!/usr/bin/env python # -*- coding: utf-8 -* # # File: boliau-filter # # Copyright (C) 2012 Hsin-Yi Chen (hychen) # Author(s): Hsin-Yi Chen (hychen) <[email protected]> # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. from boliau import cmd cmd.do_filter()
99012b699de3c397114f096d138336ae93ba00d4
f4434c85e3814b6347f8f8099c081ed4af5678a5
/sdk/cdn/azure-mgmt-cdn/azure/mgmt/cdn/aio/operations/_custom_domains_operations.py
5eb84d3dc8f8ef6e445a6fe922db3b4cd6ecf94c
[ "LicenseRef-scancode-generic-cla", "MIT", "LGPL-2.1-or-later" ]
permissive
yunhaoling/azure-sdk-for-python
5da12a174a37672ac6ed8e3c1f863cb77010a506
c4eb0ca1aadb76ad892114230473034830116362
refs/heads/master
2022-06-11T01:17:39.636461
2020-12-08T17:42:08
2020-12-08T17:42:08
177,675,796
1
0
MIT
2020-03-31T20:35:17
2019-03-25T22:43:40
Python
UTF-8
Python
false
false
31,052
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class CustomDomainsOperations: """CustomDomainsOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.cdn.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list_by_endpoint( self, resource_group_name: str, profile_name: str, endpoint_name: str, **kwargs ) -> AsyncIterable["models.CustomDomainListResult"]: """Lists all of the existing custom domains within an endpoint. :param resource_group_name: Name of the Resource group within the Azure subscription. :type resource_group_name: str :param profile_name: Name of the CDN profile which is unique within the resource group. :type profile_name: str :param endpoint_name: Name of the endpoint under the profile which is unique globally. :type endpoint_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either CustomDomainListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.cdn.models.CustomDomainListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.CustomDomainListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-15" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_by_endpoint.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'profileName': self._serialize.url("profile_name", profile_name, 'str'), 'endpointName': self._serialize.url("endpoint_name", endpoint_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('CustomDomainListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize(models.ErrorResponse, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_by_endpoint.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Cdn/profiles/{profileName}/endpoints/{endpointName}/customDomains'} # type: ignore async def get( self, resource_group_name: str, profile_name: str, endpoint_name: str, custom_domain_name: str, **kwargs ) -> "models.CustomDomain": """Gets an existing custom domain within an endpoint. :param resource_group_name: Name of the Resource group within the Azure subscription. :type resource_group_name: str :param profile_name: Name of the CDN profile which is unique within the resource group. :type profile_name: str :param endpoint_name: Name of the endpoint under the profile which is unique globally. :type endpoint_name: str :param custom_domain_name: Name of the custom domain within an endpoint. :type custom_domain_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: CustomDomain, or the result of cls(response) :rtype: ~azure.mgmt.cdn.models.CustomDomain :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.CustomDomain"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-15" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'profileName': self._serialize.url("profile_name", profile_name, 'str'), 'endpointName': self._serialize.url("endpoint_name", endpoint_name, 'str'), 'customDomainName': self._serialize.url("custom_domain_name", custom_domain_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('CustomDomain', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Cdn/profiles/{profileName}/endpoints/{endpointName}/customDomains/{customDomainName}'} # type: ignore async def _create_initial( self, resource_group_name: str, profile_name: str, endpoint_name: str, custom_domain_name: str, host_name: Optional[str] = None, **kwargs ) -> "models.CustomDomain": cls = kwargs.pop('cls', None) # type: ClsType["models.CustomDomain"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) _custom_domain_properties = models.CustomDomainParameters(host_name=host_name) api_version = "2020-04-15" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'profileName': self._serialize.url("profile_name", profile_name, 'str'), 'endpointName': self._serialize.url("endpoint_name", endpoint_name, 'str'), 'customDomainName': self._serialize.url("custom_domain_name", custom_domain_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(_custom_domain_properties, 'CustomDomainParameters') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('CustomDomain', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('CustomDomain', pipeline_response) if response.status_code == 202: deserialized = self._deserialize('CustomDomain', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Cdn/profiles/{profileName}/endpoints/{endpointName}/customDomains/{customDomainName}'} # type: ignore async def begin_create( self, resource_group_name: str, profile_name: str, endpoint_name: str, custom_domain_name: str, host_name: Optional[str] = None, **kwargs ) -> AsyncLROPoller["models.CustomDomain"]: """Creates a new custom domain within an endpoint. :param resource_group_name: Name of the Resource group within the Azure subscription. :type resource_group_name: str :param profile_name: Name of the CDN profile which is unique within the resource group. :type profile_name: str :param endpoint_name: Name of the endpoint under the profile which is unique globally. :type endpoint_name: str :param custom_domain_name: Name of the custom domain within an endpoint. :type custom_domain_name: str :param host_name: The host name of the custom domain. Must be a domain name. :type host_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either CustomDomain or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.cdn.models.CustomDomain] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.CustomDomain"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._create_initial( resource_group_name=resource_group_name, profile_name=profile_name, endpoint_name=endpoint_name, custom_domain_name=custom_domain_name, host_name=host_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('CustomDomain', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = AsyncARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Cdn/profiles/{profileName}/endpoints/{endpointName}/customDomains/{customDomainName}'} # type: ignore async def _delete_initial( self, resource_group_name: str, profile_name: str, endpoint_name: str, custom_domain_name: str, **kwargs ) -> Optional["models.CustomDomain"]: cls = kwargs.pop('cls', None) # type: ClsType[Optional["models.CustomDomain"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-15" accept = "application/json" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'profileName': self._serialize.url("profile_name", profile_name, 'str'), 'endpointName': self._serialize.url("endpoint_name", endpoint_name, 'str'), 'customDomainName': self._serialize.url("custom_domain_name", custom_domain_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = None if response.status_code == 202: deserialized = self._deserialize('CustomDomain', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Cdn/profiles/{profileName}/endpoints/{endpointName}/customDomains/{customDomainName}'} # type: ignore async def begin_delete( self, resource_group_name: str, profile_name: str, endpoint_name: str, custom_domain_name: str, **kwargs ) -> AsyncLROPoller["models.CustomDomain"]: """Deletes an existing custom domain within an endpoint. :param resource_group_name: Name of the Resource group within the Azure subscription. :type resource_group_name: str :param profile_name: Name of the CDN profile which is unique within the resource group. :type profile_name: str :param endpoint_name: Name of the endpoint under the profile which is unique globally. :type endpoint_name: str :param custom_domain_name: Name of the custom domain within an endpoint. :type custom_domain_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.CustomDomain"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._delete_initial( resource_group_name=resource_group_name, profile_name=profile_name, endpoint_name=endpoint_name, custom_domain_name=custom_domain_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('CustomDomain', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = AsyncARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Cdn/profiles/{profileName}/endpoints/{endpointName}/customDomains/{customDomainName}'} # type: ignore async def disable_custom_https( self, resource_group_name: str, profile_name: str, endpoint_name: str, custom_domain_name: str, **kwargs ) -> Optional["models.CustomDomain"]: """Disable https delivery of the custom domain. :param resource_group_name: Name of the Resource group within the Azure subscription. :type resource_group_name: str :param profile_name: Name of the CDN profile which is unique within the resource group. :type profile_name: str :param endpoint_name: Name of the endpoint under the profile which is unique globally. :type endpoint_name: str :param custom_domain_name: Name of the custom domain within an endpoint. :type custom_domain_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: CustomDomain, or the result of cls(response) :rtype: ~azure.mgmt.cdn.models.CustomDomain or None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[Optional["models.CustomDomain"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-15" accept = "application/json" # Construct URL url = self.disable_custom_https.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'profileName': self._serialize.url("profile_name", profile_name, 'str'), 'endpointName': self._serialize.url("endpoint_name", endpoint_name, 'str'), 'customDomainName': self._serialize.url("custom_domain_name", custom_domain_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.post(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = None if response.status_code == 202: deserialized = self._deserialize('CustomDomain', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized disable_custom_https.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Cdn/profiles/{profileName}/endpoints/{endpointName}/customDomains/{customDomainName}/disableCustomHttps'} # type: ignore async def enable_custom_https( self, resource_group_name: str, profile_name: str, endpoint_name: str, custom_domain_name: str, custom_domain_https_parameters: Optional["models.CustomDomainHttpsParameters"] = None, **kwargs ) -> Optional["models.CustomDomain"]: """Enable https delivery of the custom domain. :param resource_group_name: Name of the Resource group within the Azure subscription. :type resource_group_name: str :param profile_name: Name of the CDN profile which is unique within the resource group. :type profile_name: str :param endpoint_name: Name of the endpoint under the profile which is unique globally. :type endpoint_name: str :param custom_domain_name: Name of the custom domain within an endpoint. :type custom_domain_name: str :param custom_domain_https_parameters: The configuration specifying how to enable HTTPS for the custom domain - using CDN managed certificate or user's own certificate. If not specified, enabling ssl uses CDN managed certificate by default. :type custom_domain_https_parameters: ~azure.mgmt.cdn.models.CustomDomainHttpsParameters :keyword callable cls: A custom type or function that will be passed the direct response :return: CustomDomain, or the result of cls(response) :rtype: ~azure.mgmt.cdn.models.CustomDomain or None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[Optional["models.CustomDomain"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-04-15" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.enable_custom_https.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str', max_length=90, min_length=1, pattern=r'^[-\w\._\(\)]+$'), 'profileName': self._serialize.url("profile_name", profile_name, 'str'), 'endpointName': self._serialize.url("endpoint_name", endpoint_name, 'str'), 'customDomainName': self._serialize.url("custom_domain_name", custom_domain_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] if custom_domain_https_parameters is not None: body_content = self._serialize.body(custom_domain_https_parameters, 'CustomDomainHttpsParameters') else: body_content = None body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize(models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = None if response.status_code == 202: deserialized = self._deserialize('CustomDomain', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized enable_custom_https.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Cdn/profiles/{profileName}/endpoints/{endpointName}/customDomains/{customDomainName}/enableCustomHttps'} # type: ignore
338ab5824090a54458b92bcebc0868ff7bbea5b4
61eec9771de17885af1f817ddf7df8eaa1fdd168
/build/robmovil_msgs/catkin_generated/generate_cached_setup.py
116ed7667ac27a834209aaf5ce7318f3a3bf28e8
[]
no_license
jrr1984/TP_FINAL_ROBOTICA
c1ce681b5ea4ca4fea7bfcde00fb289dc81842df
46988eccec3d8e11f56a6e6e43315d446ded12e7
refs/heads/master
2020-03-28T21:26:39.339951
2018-09-17T16:42:14
2018-09-17T16:42:14
149,156,738
0
0
null
null
null
null
UTF-8
Python
false
false
1,331
py
# -*- coding: utf-8 -*- from __future__ import print_function import argparse import os import stat import sys # find the import for catkin's python package - either from source space or from an installed underlay if os.path.exists(os.path.join('/opt/ros/kinetic/share/catkin/cmake', 'catkinConfig.cmake.in')): sys.path.insert(0, os.path.join('/opt/ros/kinetic/share/catkin/cmake', '..', 'python')) try: from catkin.environment_cache import generate_environment_script except ImportError: # search for catkin package in all workspaces and prepend to path for workspace in "/opt/ros/kinetic;/home/jrr/catkin_ws/devel".split(';'): python_path = os.path.join(workspace, 'lib/python2.7/dist-packages') if os.path.isdir(os.path.join(python_path, 'catkin')): sys.path.insert(0, python_path) break from catkin.environment_cache import generate_environment_script code = generate_environment_script('/home/jrr/catkin_ws/devel/.private/robmovil_msgs/env.sh') output_filename = '/home/jrr/catkin_ws/build/robmovil_msgs/catkin_generated/setup_cached.sh' with open(output_filename, 'w') as f: #print('Generate script for cached setup "%s"' % output_filename) f.write('\n'.join(code)) mode = os.stat(output_filename).st_mode os.chmod(output_filename, mode | stat.S_IXUSR)
fc075357702383e855d1b916cb2ef66b92f99214
7fdac5209f86de756b9a8123a0911b70738eceeb
/pySDC/tests/test_tutorials/test_step_1.py
50d02c63344d3cb3b66cf680ff3d9c731d6e2d36
[ "BSD-2-Clause" ]
permissive
Parallel-in-Time/pySDC
edc66e399f6066effc5aaa376883e88e06b5332b
1a51834bedffd4472e344bed28f4d766614b1537
refs/heads/master
2023-08-30T23:17:56.017934
2023-08-30T05:42:00
2023-08-30T05:42:00
26,165,004
30
31
BSD-2-Clause
2023-09-14T06:40:13
2014-11-04T10:56:53
Jupyter Notebook
UTF-8
Python
false
false
524
py
import pytest @pytest.mark.base def test_A(): from pySDC.tutorial.step_1.A_spatial_problem_setup import main as main_A main_A() @pytest.mark.base def test_B(): from pySDC.tutorial.step_1.B_spatial_accuracy_check import main as main_B main_B() @pytest.mark.base def test_C(): from pySDC.tutorial.step_1.C_collocation_problem_setup import main as main_C main_C() @pytest.mark.base def test_D(): from pySDC.tutorial.step_1.D_collocation_accuracy_check import main as main_D main_D()
501f74a0807b79882ffefe833d5d2afa2a9ccab0
b1f1dc12ee3aec4235b4263424f8d4eba4f996a6
/courses/courses/courses/settings.py
b487361dd3fee8795f6c3e82b6547138dce3142e
[]
no_license
daveydog24/courses_django
c25f6c21912392acd9459656a12373f32b1babdf
9f900771bd1e14fc8baca23f036f4649f85ac7d4
refs/heads/master
2020-03-17T13:06:46.041356
2018-05-16T06:44:21
2018-05-16T06:44:21
133,617,559
0
0
null
null
null
null
UTF-8
Python
false
false
3,121
py
""" Django settings for courses project. Generated by 'django-admin startproject' using Django 1.10. For more information on this file, see https://docs.djangoproject.com/en/1.10/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.10/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.10/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'ued$a+r6e07h9yt+1(w1q%y(1i)tmw*)qacyh$0k-4=4xgucct' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'apps.courses_app', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'courses.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'courses.wsgi.application' # Database # https://docs.djangoproject.com/en/1.10/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/1.10/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.10/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.10/howto/static-files/ STATIC_URL = '/static/'
43019e739fd97a9d55793a78ce5e2ae210eff614
8876406eaef11bff8566b54746ca2a7fae3525db
/setup.py
4c3c25f64e6ea9d2e13bd8210b73d610353940d2
[ "BSD-3-Clause" ]
permissive
remibergsma/cs
19e0ba4b9ea5c97329e743577d1c8cb10aa593d2
de004f6aa08ee8fc0dc342b334a2731b8c5be964
refs/heads/master
2020-12-28T20:30:43.209507
2015-06-03T08:40:13
2015-06-03T08:40:13
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,086
py
# coding: utf-8 from setuptools import setup with open('README.rst', 'r') as f: long_description = f.read() setup( name='cs', version='0.6.8', url='https://github.com/exoscale/cs', license='BSD', author=u'Bruno Renié', description=('A simple yet powerful CloudStack API client for ' 'Python and the command-line.'), long_description=long_description, py_modules=('cs',), zip_safe=False, include_package_data=True, platforms='any', classifiers=( 'Intended Audience :: Developers', 'Intended Audience :: System Administrators', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 3', ), install_requires=( 'requests', ), extras_require={ 'highlight': ['pygments'], }, test_suite='tests', entry_points={ 'console_scripts': [ 'cs = cs:main', ], }, )
8059df45728dd522b8eaf9bfac6c0b962d0f7839
0667af1539008f9c6c0dcde2d3f50e8bbccf97f3
/source/rttov_test/profile-datasets-py/standard54lev_nogas/006.py
29fa4a49fa333f38babeedbd3040338a5c6cfdcf
[ "BSD-3-Clause", "LicenseRef-scancode-unknown-license-reference" ]
permissive
bucricket/projectMAScorrection
bc6b90f07c34bf3e922225b2c7bd680955f901ed
89489026c8e247ec7c364e537798e766331fe569
refs/heads/master
2021-01-22T03:54:21.557485
2019-03-10T01:47:32
2019-03-10T01:47:32
81,468,938
0
0
null
null
null
null
UTF-8
Python
false
false
3,904
py
""" Profile ../profile-datasets-py/standard54lev_nogas/006.py file automaticaly created by prof_gen.py script """ self["ID"] = "../profile-datasets-py/standard54lev_nogas/006.py" self["Q"] = numpy.array([ 1.42610400e+00, 2.25740200e+00, 3.03034000e+00, 3.69967200e+00, 4.31610400e+00, 4.78132800e+00, 5.07478900e+00, 5.19176800e+00, 5.24924200e+00, 5.19879300e+00, 5.07691300e+00, 4.97253200e+00, 4.91453000e+00, 4.85289800e+00, 4.77784900e+00, 4.68692800e+00, 4.57725700e+00, 4.47492000e+00, 4.32859300e+00, 4.16293300e+00, 4.00311700e+00, 3.89910100e+00, 3.84313200e+00, 3.83660900e+00, 3.90954900e+00, 4.65101500e+00, 5.63378900e+00, 9.11755200e+00, 1.54746500e+01, 2.64265500e+01, 4.48840100e+01, 7.45942600e+01, 1.42818600e+02, 2.77400700e+02, 4.26100500e+02, 5.67428700e+02, 8.00060400e+02, 1.05809300e+03, 1.34364000e+03, 1.75293000e+03, 2.17224400e+03, 2.70441300e+03, 3.21086700e+03, 3.87373300e+03, 4.48421200e+03, 5.05073700e+03, 5.56837500e+03, 6.03632700e+03, 6.53543000e+03, 6.97678600e+03, 7.36122200e+03, 7.68945200e+03, 7.96208200e+03, 8.17961100e+03]) self["P"] = numpy.array([ 5.00000000e-03, 1.31000000e-02, 3.04000000e-02, 6.44000000e-02, 1.26300000e-01, 2.32400000e-01, 4.05200000e-01, 6.74900000e-01, 1.08010000e+00, 1.66910000e+00, 2.50110000e+00, 3.64620000e+00, 5.18640000e+00, 7.21500000e+00, 9.83680000e+00, 1.31672000e+01, 1.73308000e+01, 2.24601000e+01, 2.86937000e+01, 3.61735000e+01, 4.50430000e+01, 5.54433000e+01, 6.75109000e+01, 8.13744000e+01, 9.71505000e+01, 1.14941500e+02, 1.34831800e+02, 1.56884600e+02, 1.81139400e+02, 2.07609200e+02, 2.36278400e+02, 2.67101200e+02, 3.00000000e+02, 3.34864800e+02, 3.71552900e+02, 4.09889300e+02, 4.49667700e+02, 4.90651600e+02, 5.32576900e+02, 5.75153800e+02, 6.18070600e+02, 6.60996500e+02, 7.03586300e+02, 7.45484100e+02, 7.86327800e+02, 8.25754600e+02, 8.63404700e+02, 8.98927500e+02, 9.31985300e+02, 9.62258700e+02, 9.89451000e+02, 1.01329200e+03, 1.03354400e+03, 1.05000000e+03]) self["T"] = numpy.array([ 190.1948, 201.2227, 211.8073, 223.5081, 236.1925, 248.2361, 259.807 , 268.0701, 270.6029, 261.7915, 253.267 , 245.5053, 238.5085, 232.1688, 228.139 , 225.8658, 224.038 , 222.399 , 220.8289, 219.3256, 217.9126, 216.7 , 216.7 , 216.7 , 216.7 , 216.7 , 216.7 , 216.7 , 216.7 , 216.7432, 218.4824, 223.6361, 228.5799, 233.4172, 238.0864, 242.5655, 246.9064, 251.0443, 254.9895, 258.7664, 262.3204, 265.715 , 268.8759, 271.8706, 274.6321, 277.2104, 279.572 , 281.7077, 283.6703, 285.4074, 286.9218, 288.2157, 289.291 , 290.1495]) self["CTP"] = 500.0 self["CFRACTION"] = 1.0 self["IDG"] = 4 self["ISH"] = 4 self["ELEVATION"] = 0.2 self["S2M"]["T"] = 288.2 self["S2M"]["Q"] = 7488.49927299 self["S2M"]["O"] = 0.0164756909121 self["S2M"]["P"] = 1100.0 self["S2M"]["U"] = -6.0 self["S2M"]["V"] = 0.0 self["S2M"]["WFETC"] = 200000.0 self["SKIN"]["SURFTYPE"] = 0 self["SKIN"]["WATERTYPE"] = 1 self["SKIN"]["T"] = 286.2 self["SKIN"]["SALINITY"] = 37.0 self["SKIN"]["FOAM_FRACTION"] = 0.9 self["SKIN"]["FASTEM"] = numpy.array([ 3. , 5. , 15. , 0.1, 0.3]) self["ZENANGLE"] = 60.0 self["AZANGLE"] = 45.0 self["SUNZENANGLE"] = 0.0 self["SUNAZANGLE"] = 0.0 self["LATITUDE"] = -45.0 self["GAS_UNITS"] = 2 self["BE"] = 0.7 self["COSBK"] = 1.0 self["DATE"] = numpy.array([1976, 7, 1]) self["TIME"] = numpy.array([ 9, 45, 0])
14fb6d53004b22663463f0d74039ca56e3a85c52
8bd6b0784de9a1e6a39d0f5f23f2d8fb50c73d49
/MethodRefine-Rand/logistics/MethodRefine/logistics_benchmark-low/testing/testing_39.py
11af675b7493eb76367a40c8454e27bc462ca562
[]
no_license
sysulic/MethodRefine
a483d74e65337dff4bc2539ce3caa3bf83748b48
adbb22d4663041d853d3132f75032b7561bf605c
refs/heads/master
2020-09-14T10:45:55.948174
2020-05-01T09:13:59
2020-05-01T09:13:59
223,104,986
3
2
null
2020-04-27T11:01:36
2019-11-21T06:33:16
Python
UTF-8
Python
false
false
1,654
py
#!/usr/bin/env python # coding=utf-8 import sys sys.path.insert(0, './') from logistic import * import new_tihtn_planner state0 = new_tihtn_planner.State('state0') allow = False state0.loc = {'truck1':('city1','loc1'),'truck2':('city2','loc1'),'truck3':('city3','loc1'),'truck4':('city4','loc1'),'truck5':('city5','loc2'),'plane1':('city4','loc1'),'pkg1':('city1','loc1'),'pkg2':('city2','loc2'),'pkg3':('city1','loc1'),'pkg4':('city2','loc2'),} state0.load = {'truck1':False,'truck2':False,'truck3':False,'truck4':False,'truck5':False,'plane1':False,} state0.plane_nums = 1 new_tihtn_planner.declare_types({'location':[('city1','loc1'),('city1','loc2'),('city2','loc1'),('city2','loc2'),('city3','loc1'),('city3','loc2'),('city4','loc1'),('city4','loc2'),('city5','loc1'),('city5','loc2'),],'truck':['truck1','truck2','truck3','truck4','truck5',],'plane':['plane1',],'pkg':['pkg1','pkg2','pkg3','pkg4',]}) new_tihtn_planner.declare_funs({load_plane:['pkg', 'location', 'plane'],load_truck:['pkg', 'location', 'truck'],by_plane:['plane', 'location'],drive_truck:['truck', 'location'], unload_truck:['pkg', 'location', 'truck'],unload_plane:['pkg', 'location', 'plane']}) new_tihtn_planner.instance() def execute(completable): return new_tihtn_planner.pyhop(completable, allow, state0,[('delievery','pkg1',('city4','loc2')),('delievery','pkg2',('city4','loc2')),('delievery','pkg3',('city4','loc1')),('delievery','pkg4',('city4','loc2')),],[[0, 1],[1, 2],[2, 3],], 9) def add_methods(fun_obj_list): for fun in fun_obj_list: new_tihtn_planner.add_method(fun.func_name.split('__')[0], fun) def reverse_methods(): new_tihtn_planner.reverse_methods()
a196daf132349155bf416fdc4b57e570c83a009f
7f5ca987c51ffd49b3cba3ffa3e719fc2b8606aa
/classtest1.py
1160fea16133893b6bfb38a6943c5b03ddd0e5dc
[]
no_license
Yao-Phoenix/TrainCode
1134b995fddb3d3556fdce05c3219a875b08f6d3
2227a70ad5389207af7a84114a5413be3ec2ada2
refs/heads/master
2020-09-13T03:56:02.235742
2019-12-17T03:48:00
2019-12-17T03:48:00
222,648,922
0
0
null
null
null
null
UTF-8
Python
false
false
518
py
class UserData: def __init__(self,id,name): self.id = id self._name = name class NewUser(UserData): @property def name(self): return self._name @name.setter def name(self, value): if len(value) <= 3: print("ERROR") return self._name = value if __name__ == '__main__': user1 = NewUser(101, 'Jack') user1.name = 'Lou' user1.name = 'Jackie' user2 = NewUser(102, 'Louplus') print(user1.name) print(user2.name)
e72c98c5a54cc288211b129dfa01220fda615b8c
2e935ca936976d2d2bd4e785e2f3f29c63771542
/ExPy11205.py
fba7158c4dd56aa10949bc9293c983dc7ae0a0a6
[]
no_license
zoro6908/PY_acamedy
4a370e866fef19f6d2e7697eb809352b6ac703f5
460d26639f7bd8cf2486950dc70feae6a2959ca0
refs/heads/master
2023-04-26T18:10:44.691326
2021-05-25T00:11:02
2021-05-25T00:11:02
298,425,369
0
0
null
null
null
null
UTF-8
Python
false
false
796
py
# 파이썬 기초부터 활용까지 (2020.09) # [12과] 엑셀 작업 # 정렬방식 / 폰트지정 / 선긋기 : styles 객체의 Alignment, Font, Border, Side 클래스 이용 import openpyxl # from openpyxl.styles import Alignment, Font, Border, Side from openpyxl.styles import * wb = openpyxl.Workbook() ws = wb.active ws['B3'] = 'Hello' ws['B3'].font = Font(name = 'HY헤드라인M', bold = True, size = 20, italic=True, underline='single') ws['B3'].alignment = Alignment(horizontal='center', vertical='center') th = Side(border_style='thin') db = Side(border_style='double') ws['B3'].border = Border(top=th, bottom=th, left=db, right=db) wb.save('ExPy11205.xlsx')
cfe2b636fcb88772b97e8c84b97d910528fa961f
1fe8d4133981e53e88abf633046060b56fae883e
/venv/lib/python3.8/site-packages/keras/engine/training_v1.py
ed875cfba01676d954377d3288f63abbfad0c678
[]
no_license
Akira331/flask-cifar10
6c49db8485038731ce67d23f0972b9574746c7a7
283e7a2867c77d4b6aba7aea9013bf241d35d76c
refs/heads/master
2023-06-14T16:35:06.384755
2021-07-05T14:09:15
2021-07-05T14:09:15
382,864,970
0
0
null
null
null
null
UTF-8
Python
false
false
131
py
version https://git-lfs.github.com/spec/v1 oid sha256:1eee4b42243c8bc161538de91452850d0486f84aae8e4c4cc9987a3c09eb1557 size 137398
67f3dc9b0610a75280a1d0333c50e0c9d0068017
2f98aa7e5bfc2fc5ef25e4d5cfa1d7802e3a7fae
/python/python_24308.py
40aee1514e2f6af905f3da41368b0b9dc8eddebd
[]
no_license
AK-1121/code_extraction
cc812b6832b112e3ffcc2bb7eb4237fd85c88c01
5297a4a3aab3bb37efa24a89636935da04a1f8b6
refs/heads/master
2020-05-23T08:04:11.789141
2015-10-22T19:19:40
2015-10-22T19:19:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
73
py
# How to solve permission denied error in cron? chmod u+x shellScript.sh
16d42264f14e0df27c1fd16e5ca5faa78c9249da
f504fc2714ed09c3bc1e84dfe67c04af585b8700
/Player.py
69028cc93fd718f9f797d04ae68fa470de7516b0
[]
no_license
MasumTech/OOP-Concept-in-Python
04c88a28c2c8bf7ed0231c0da223f216177a07f9
7a0a9e214003c759a84e2e28bf8b4702b2e3ced8
refs/heads/master
2020-12-15T16:06:36.909927
2020-01-20T19:04:19
2020-01-20T19:04:19
235,169,330
1
0
null
null
null
null
UTF-8
Python
false
false
139
py
class Player: minAge = 18 maxAge = 50 def __init__(self,name,age): self.name = name self.age = age
faf85093b79775e745c7246975277e8edab9fc7e
c16ea32a4cddb6b63ad3bacce3c6db0259d2bacd
/google/ads/googleads/v4/googleads-py/google/ads/googleads/v4/services/types/income_range_view_service.py
d0425e8f88ca57d8de6d14f5c2900c3cc4c07201
[ "Apache-2.0" ]
permissive
dizcology/googleapis-gen
74a72b655fba2565233e5a289cfaea6dc7b91e1a
478f36572d7bcf1dc66038d0e76b9b3fa2abae63
refs/heads/master
2023-06-04T15:51:18.380826
2021-06-16T20:42:38
2021-06-16T20:42:38
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,281
py
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore __protobuf__ = proto.module( package='google.ads.googleads.v4.services', marshal='google.ads.googleads.v4', manifest={ 'GetIncomeRangeViewRequest', }, ) class GetIncomeRangeViewRequest(proto.Message): r"""Request message for [IncomeRangeViewService.GetIncomeRangeView][google.ads.googleads.v4.services.IncomeRangeViewService.GetIncomeRangeView]. Attributes: resource_name (str): Required. The resource name of the income range view to fetch. """ resource_name = proto.Field( proto.STRING, number=1, ) __all__ = tuple(sorted(__protobuf__.manifest))
[ "bazel-bot-development[bot]@users.noreply.github.com" ]
bazel-bot-development[bot]@users.noreply.github.com
70617f3d7d699cb8fa1781509963bc430072ca0c
b3217e2bb6e72fbcb15df99b5c6c10ea4731a5b7
/anheng/2020NewYear/pwn/unctf_EasyShellcode/pwn1.py
331c88293dc6c22ceb2553d7c395ca0eef05c56f
[]
no_license
CrackerCat/ctf-6
5704de09eda187e111c7719c71e0a81c5d5c39e3
aa7846548451572fe54a380dc8d367a0132ad2ec
refs/heads/master
2023-01-28T06:18:01.764650
2020-12-07T12:05:20
2020-12-07T12:05:20
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,641
py
#!/usr/bin/python #coding=utf-8 #__author__:TaQini from pwn import * local_file = './pwn1' local_libc = '/lib/x86_64-linux-gnu/libc.so.6' remote_libc = local_libc # '../libc.so.6' is_local = False is_remote = False if len(sys.argv) == 1: is_local = True p = process(local_file) libc = ELF(local_libc) elif len(sys.argv) > 1: is_remote = True if len(sys.argv) == 3: host = sys.argv[1] port = sys.argv[2] else: host, port = sys.argv[1].split(':') p = remote(host, port) libc = ELF(remote_libc) elf = ELF(local_file) context.log_level = 'debug' context.arch = elf.arch se = lambda data :p.send(data) sa = lambda delim,data :p.sendafter(delim, data) sl = lambda data :p.sendline(data) sla = lambda delim,data :p.sendlineafter(delim, data) sea = lambda delim,data :p.sendafter(delim, data) rc = lambda numb=4096 :p.recv(numb) ru = lambda delims, drop=True :p.recvuntil(delims, drop) uu32 = lambda data :u32(data.ljust(4, '\0')) uu64 = lambda data :u64(data.ljust(8, '\0')) info_addr = lambda tag, addr :p.info(tag + ': {:#x}'.format(addr)) def debug(cmd=''): if is_local: gdb.attach(p,cmd) ru('What do you want to say?\n') # generated by aplha3 shellcode = 'Ph0666TY1131Xh333311k13XjiV11Hc1ZXYf1TqIHf9kDqW02DqX0D1Hu3M2G0Z2o4H0u0P160Z0g7O0Z0C100y5O3G020B2n060N4q0n2t0B0001010H3S2y0Y0O0n0z01340d2F4y8P115l1n0J0h0a070t' debug('b *0x400ca3') sl(shellcode) # debug() # info_addr('tag',addr) # log.warning('--------------') p.interactive()
48a9047e0d1aabf60095420fd3a14dd3c84a6d55
efdd433fb2e358bb9ec4cb293db2211f5516a9e4
/Documents/BACKEND/week6/6.1-django/activities/kittyadopt/manage.py
0dd361a397935e4b5f3e57c33be49970bee34522
[]
no_license
errinmarie/FeedBack
3e5c2e581ee207f486567bd838ac864f2c959f18
c7cf1aefea226b10b4387ded4a0693d786558d14
refs/heads/master
2021-10-01T20:08:53.846515
2018-11-28T02:49:41
2018-11-28T02:49:41
159,429,473
0
0
null
null
null
null
UTF-8
Python
false
false
542
py
#!/usr/bin/env python import os import sys if __name__ == '__main__': os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'kittyadopt.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv)
2523fb189b949d3b82eaec95c265a2e1f0967c70
48faee5b845e43e6c102cb027f43c8b886ecaa5e
/accounts/admin.py
70ffd71bf72808920c9ff285ffcdb97d3c0f9675
[]
no_license
hornLK/LonedayAdmin
66c0a8b978967a0144a216f621c872a6d2197229
36ba3fe763788423801ad5ab14462624114da804
refs/heads/master
2022-12-26T06:57:47.675915
2018-05-15T13:08:34
2018-05-15T13:08:34
131,375,220
0
0
null
null
null
null
UTF-8
Python
false
false
2,184
py
from django.contrib import admin from django import forms from django.contrib.auth.models import Group from django.contrib.auth.admin import UserAdmin as BaseUserAdmin from django.contrib.auth.forms import ReadOnlyPasswordHashField from accounts.models import UserInfo,Permission,Role class UserCreationForm(forms.ModelForm): password1 = forms.CharField(label='Password',widget=forms.PasswordInput) password2 = forms.CharField(label='Password confirmation',widget=forms.PasswordInput) class Meta: model = UserInfo fields = ('email','nickname') def clean_Password2(self): password1 = self.cleaned_data.get("password1",None) password2 = self.cleaned_data.get("password2",None) if password1 and password2 and password1 != password2: raise forms.ValidationError("密码不匹配") return password2 def save(self,commit=True): user = super().save(commit=False) user.set_password(self.cleaned_data["password1"]) if commit: user.save() return user class UserChangeForm(forms.ModelForm): password = ReadOnlyPasswordHashField() class Meta: model = UserInfo fields = ('email','nickname','role','is_active','is_superuser') def clean_password(self): return self.initial["password"] class UserAdmin(BaseUserAdmin): form = UserChangeForm add_form = UserCreationForm list_display = ('email','nickname','role','is_active','is_superuser') list_filter = ('is_superuser','is_active','role') fieldsets = ( ('基础',{'fields':('email','nickname')}), ('权限',{'fields':('role','is_superuser')}), ('状态',{'fields':('is_active',)}) ) add_fieldsets = ( (None,{ 'classes':('wide',), 'fields':('email','nickname','password1','password2','role','is_active','is_superuser') } ), ) search_fields = ('email',) ordering = ('email',) filter_horizontal = () # Register your models here. admin.site.register(UserInfo,UserAdmin) admin.site.register(Role) admin.site.register(Permission) admin.site.unregister(Group)
dd095298a9afc68335157cb824950644c08ba41d
aee144770c8f4ec5987777aebe5b064e558fc474
/doc/integrations/pytorch/parlai/tasks/squad2/build.py
094ee646331483740208e88da52a11b78a65a498
[ "CC-BY-SA-3.0", "MIT", "Apache-2.0", "AGPL-3.0-only" ]
permissive
adgang/cortx
1d8e6314643baae0e6ee93d4136013840ead9f3b
a73e1476833fa3b281124d2cb9231ee0ca89278d
refs/heads/main
2023-04-22T04:54:43.836690
2021-05-11T00:39:34
2021-05-11T00:39:34
361,394,462
1
0
Apache-2.0
2021-04-25T10:12:59
2021-04-25T10:12:59
null
UTF-8
Python
false
false
1,480
py
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # Download and build the data if it does not exist. import parlai.core.build_data as build_data import os from parlai.core.build_data import DownloadableFile RESOURCES = [ DownloadableFile( 'https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v2.0.json', 'train-v2.0.json', '68dcfbb971bd3e96d5b46c7177b16c1a4e7d4bdef19fb204502738552dede002', zipped=False, ), DownloadableFile( 'https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v2.0.json', 'dev-v2.0.json', '80a5225e94905956a6446d296ca1093975c4d3b3260f1d6c8f68bc2ab77182d8', zipped=False, ), ] def build(opt): dpath = os.path.join(opt['datapath'], 'SQuAD2') version = None if not build_data.built(dpath, version_string=version): print('[building data: ' + dpath + ']') if build_data.built(dpath): # An older version exists, so remove these outdated files. build_data.remove_dir(dpath) build_data.make_dir(dpath) # Download the data. for downloadable_file in RESOURCES: downloadable_file.download_file(dpath) # Mark the data as built. build_data.mark_done(dpath, version_string=version)
5c38ea20e9d5d8f3e31e5d4bd17e1440db4f3d73
c4c159a21d2f1ea0d7dfaa965aeff01c8ef70dce
/flask/flaskenv/Lib/site-packages/tensorflow/contrib/keras/api/keras/metrics/__init__.py
6e02c1674ee83334cbe7062ab4c5e87eda1d47c4
[]
no_license
AhsonAslam/webapi
54cf7466aac4685da1105f9fb84c686e38f92121
1b2bfa4614e7afdc57c9210b0674506ea70b20b5
refs/heads/master
2020-07-27T06:05:36.057953
2019-09-17T06:35:33
2019-09-17T06:35:33
208,895,450
0
0
null
null
null
null
UTF-8
Python
false
false
129
py
version https://git-lfs.github.com/spec/v1 oid sha256:0a12f3b7372d5432f0d79f402b4769a59e1d06dc405da5210bbf689cb36fa0e2 size 2230
[ "github@cuba12345" ]
github@cuba12345
20fe5b0263f72b03e4ae1cdf890921f70b6e373a
50a12a72e68d90fbd358e42b667242ad7c9373b1
/shenfun/legendre/matrices.py
d2c18434839b61b1d0b412a8c8a9cfe43e93be08
[ "BSD-2-Clause" ]
permissive
AMSSYu/shenfun
1a3be63ec9ef8c5c97fff354838c2e88e65f71d3
c4c657e217ab7bcfb7d6e213569d16e108c7f0b2
refs/heads/master
2023-05-19T11:13:36.979962
2021-06-08T14:20:46
2021-06-08T14:20:46
null
0
0
null
null
null
null
UTF-8
Python
false
false
41,109
py
r""" This module contains specific inner product matrices for the different bases in the Legendre family. A naming convention is used for the first three capital letters for all matrices. The first letter refers to type of matrix. - Mass matrices start with `B` - One derivative start with `C` - Stiffness - One derivative for test and trial - start with `A` - Biharmonic - Two derivatives for test and trial - start with `S` The next two letters refer to the test and trialfunctions, respectively - Dirichlet: `D` - Neumann: `N` - Legendre: `L` - Biharmonic: `B` As such, there are 4 mass matrices, BSDSDmat, BSNSNmat, BLLmat and BSBSBmat, corresponding to the four bases above. A matrix may consist of different types of test and trialfunctions as long as they are all in the Legendre family. A mass matrix using Dirichlet test and Neumann trial is named BDNmat. All matrices in this module may be looked up using the 'mat' dictionary, which takes test and trialfunctions along with the number of derivatives to be applied to each. As such the mass matrix BSDSDmat may be looked up as >>> import numpy as np >>> from shenfun.legendre.matrices import mat >>> from shenfun.legendre.bases import ShenDirichlet as SD >>> B = mat[((SD, 0), (SD, 0))] and an instance of the matrix can be created as >>> B0 = SD(10) >>> BM = B((B0, 0), (B0, 0)) >>> d = {-2: np.array([-0.4, -0.28571429, -0.22222222, -0.18181818, -0.15384615, -0.13333333]), ... 0: np.array([2.4, 0.95238095, 0.62222222, 0.46753247, 0.37606838, 0.31515152, 0.27149321, 0.23859649]), ... 2: np.array([-0.4, -0.28571429, -0.22222222, -0.18181818, -0.15384615, -0.13333333])} >>> [np.all(abs(BM[k]-v) < 1e-7) for k, v in d.items()] [True, True, True] However, this way of creating matrices is not reccommended use. It is far more elegant to use the TrialFunction/TestFunction interface, and to generate the matrix as an inner product: >>> from shenfun import TrialFunction, TestFunction, inner >>> u = TrialFunction(B0) >>> v = TestFunction(B0) >>> BM = inner(u, v) >>> [np.all(abs(BM[k]-v) < 1e-7) for k, v in d.items()] [True, True, True] To see that this is in fact the BSDSDmat: >>> print(BM.__class__) <class 'shenfun.legendre.matrices.BSDSDmat'> """ from __future__ import division #__all__ = ['mat'] import functools import numpy as np import sympy as sp from shenfun.matrixbase import SpectralMatrix from shenfun.la import TDMA as neumann_TDMA from shenfun.optimization import cython from .la import TDMA from . import bases # Short names for instances of bases L = bases.Orthogonal SD = bases.ShenDirichlet SB = bases.ShenBiharmonic SN = bases.ShenNeumann UD = bases.UpperDirichlet DN = bases.DirichletNeumann BF = bases.BeamFixedFree BCD = bases.BCDirichlet BCB = bases.BCBiharmonic x = sp.symbols('x', real=True) xp = sp.symbols('x', real=True, positive=True) #pylint: disable=unused-variable, redefined-builtin, bad-continuation class BLLmat(SpectralMatrix): r"""Mass matrix for inner product .. math:: B_{kj} = (L_j, L_k)_w where .. math:: j = 0, 1, ..., N \text{ and } k = 0, 1, ..., N and :math:`L_k` is the Legendre basis function. """ def __init__(self, test, trial, measure=1): assert isinstance(test[0], L) assert isinstance(trial[0], L) N = test[0].N k = np.arange(N, dtype=float) d = {0: 2./(2.*k+1)} if test[0].quad == 'GL': d[0][-1] = 2./(N-1) SpectralMatrix.__init__(self, d, test, trial, measure=measure) def solve(self, b, u=None, axis=0): s = self.trialfunction[0].slice() if u is None: u = b else: assert u.shape == b.shape sl = [np.newaxis]*u.ndim sl[axis] = s sl = tuple(sl) ss = self.trialfunction[0].sl[s] d = (1./self.scale)/self[0] u[ss] = b[ss]*d[sl] return u class BSDSDmat(SpectralMatrix): r"""Mass matrix for inner product .. math:: B_{kj} = (\psi_j, \psi_k)_w where .. math:: j = 0, 1, ..., N-2 \text{ and } k = 0, 1, ..., N-2 and :math:`\psi_k` is the Shen Legendre Dirichlet basis function. """ def __init__(self, test, trial, measure=1): assert isinstance(test[0], SD) assert isinstance(trial[0], SD) N = test[0].N k = np.arange(N-2, dtype=float) d = {-2: -2./(2*k[2:] + 1), 0: 2./(2.*k+1) + 2./(2*k+5)} if test[0].quad == 'GL': d[0][-1] = 2./(2*(N-3)+1) + 2./(N-1) if test[0].is_scaled(): d[0] /= (4*k+6) d[-2] /= (np.sqrt(4*k[2:]+6)*np.sqrt(4*k[:-2]+6)) d[2] = d[-2] SpectralMatrix.__init__(self, d, test, trial, measure=measure) self.solve = TDMA(self) class BSNSNmat(SpectralMatrix): r"""Mass matrix for inner product .. math:: B_{kj} = (\psi_j, \psi_k)_w where .. math:: j = 0, 1, ..., N-2 \text{ and } k = 0, 1, ..., N-2 and :math:`\psi_k` is the Shen Legendre Neumann basis function. """ def __init__(self, test, trial, measure=1): assert isinstance(test[0], SN) assert isinstance(trial[0], SN) N = test[0].N k = np.arange(N-2, dtype=float) alpha = k*(k+1)/(k+2)/(k+3) d0 = 2./(2*k+1) d = {0: d0 + alpha**2*2./(2*(k+2)+1), 2: -d0[2:]*alpha[:-2]} if test[0].quad == 'GL': d[0][-1] = d0[-1] + alpha[-1]**2*2./(N-1) d[-2] = d[2] SpectralMatrix.__init__(self, d, test, trial, measure=measure) #self.solve = neumann_TDMA(self) class BSBSBmat(SpectralMatrix): r"""Mass matrix for inner product .. math:: B_{kj} = (\psi_j, \psi_k)_w where .. math:: j = 0, 1, ..., N-4 \text{ and } k = 0, 1, ..., N-4 and :math:`\psi_k` is the Shen Legendre Biharmonic basis function. """ def __init__(self, test, trial, measure=1): from shenfun.la import PDMA assert isinstance(test[0], SB) assert isinstance(trial[0], SB) N = test[0].N k = np.arange(N, dtype=float) gk = (2*k+3)/(2*k+7) hk = -(1+gk) ek = 2./(2*k+1) if test[0].quad == 'GL': ek[-1] = 2./(N-1) d = {0: ek[:-4] + hk[:-4]**2*ek[2:-2] + gk[:-4]**2*ek[4:], 2: hk[:-6]*ek[2:-4] + gk[:-6]*hk[2:-4]*ek[4:-2], 4: gk[:-8]*ek[4:-4]} d[-2] = d[2] d[-4] = d[4] SpectralMatrix.__init__(self, d, test, trial, measure=measure) self.solve = PDMA(self) class BBFBFmat(SpectralMatrix): r"""Mass matrix for inner product .. math:: B_{kj} = (\psi_j, \psi_k)_w where .. math:: j = 0, 1, ..., N-4 \text{ and } k = 0, 1, ..., N-4 and :math:`\psi_k` is the BeamFixedFree Biharmonic basis function. """ def __init__(self, test, trial, measure=1): assert isinstance(test[0], BF) assert isinstance(trial[0], BF) N = test[0].N k = np.arange(N-4, dtype=float) f1 = lambda k: 4*(2*k+3)/((k+3)**2) f2 = lambda k: -(2*(k-1)*(k+1)*(k+6)*(2*k+5)/((k+3)**2*(k+4)*(2*k+7))) f3 = lambda k: -4*(k+1)**2*(2*k+3)/((k+3)**2*(k+4)**2) f4 = lambda k: (((k+1)/(k+3))*((k+2)/(k+4)))**2*(2*k+3)/(2*k+7) d = {0: 2/(2*k+1)+f1(k)**2*2/(2*k+3)+f2(k)**2*2/(2*k+5)+f3(k)**2*2/(2*k+7)+f4(k)**2*2/(2*k+9), 1: (f1(k)*2/(2*k+3)+f1(k+1)*f2(k)*2/(2*k+5)+f2(k+1)*f3(k)*2/(2*k+7)+f3(k+1)*f4(k)*2/(2*k+9))[:-1], 2: (f2(k)*2/(2*k+5)+f1(k+2)*f3(k)*2/(2*k+7)+f2(k+2)*f4(k)*2/(2*k+9))[:-2], 3: (f3(k)*2/(2*k+7)+f1(k+3)*f4(k)*2/(2*k+9))[:-3], 4: (f4(k)*2/(2*k+9))[:-4] } d[-1] = d[1].copy() d[-2] = d[2].copy() d[-3] = d[3].copy() d[-4] = d[4].copy() if test[0].quad == 'GL': k = N-5 d[0][-1] = 2/(2*k+1)+f1(k)**2*2/(2*k+3)+f2(k)**2*2/(2*k+5)+f3(k)**2*2/(2*k+7)+f4(k)**2*2/(N-1) SpectralMatrix.__init__(self, d, test, trial, measure=measure) class BSDLmat(SpectralMatrix): r"""Mass matrix for inner product .. math:: B_{kj} = (L_j, \psi_k)_w where .. math:: j = 0, 1, ..., N \text{ and } k = 0, 1, ..., N-2 and :math:`\psi_k` is the Shen Legendre Dirichlet basis function. """ def __init__(self, test, trial, measure=1): assert isinstance(test[0], SD) assert isinstance(trial[0], L) N = test[0].N k = np.arange(N, dtype=float) sc = np.ones(N) if test[0].is_scaled(): sc = 1. / np.sqrt(4*k+6) d = {2: -2./(2*k[2:] + 1)*sc[:-2], 0: 2./(2.*k[:-2]+1)*sc[:-2]} if test[0].quad == 'GL': d[2][-1] = -2./(N-1)*sc[N-3] SpectralMatrix.__init__(self, d, test, trial, measure=measure) class BLSDmat(SpectralMatrix): r"""Mass matrix for inner product .. math:: B_{kj} = (\psi_j, L_k)_w where .. math:: j = 0, 1, ..., N-2 \text{ and } k = 0, 1, ..., N and :math:`\psi_j` is the Shen Legendre Dirichlet basis function. """ def __init__(self, test, trial, measure=1): assert isinstance(test[0], L) assert isinstance(trial[0], SD) N = test[0].N k = np.arange(N, dtype=float) sc = np.ones(N) if trial[0].is_scaled(): sc = 1. / np.sqrt(4*k+6) d = {-2: -2./(2*k[2:] + 1)*sc[:-2], 0: 2./(2.*k[:-2]+1)*sc[:-2]} if test[0].quad == 'GL': d[-2][-1] = -2./(N-1)*sc[-3] SpectralMatrix.__init__(self, d, test, trial, measure=measure) class BDNDNmat(SpectralMatrix): r"""Mass matrix for inner product .. math:: B_{kj} = (\psi_j, \psi_k)_w where .. math:: j = 0, 1, ..., N-2 \text{ and } k = 0, 1, ..., N-2 and :math:`\psi_k` is a mixed Legendre Dirichlet/Neumann basis function. """ def __init__(self, test, trial, measure=1): assert isinstance(test[0], DN) assert isinstance(trial[0], DN) N = test[0].N k = np.arange(N-2, dtype=float) km = k[:-1] kp = k[:-2] d = {0: 2/(2*k+1) + 2*((2*k+3)/(k+2))/(k+2)**3 + 2*((k+1)/(k+2))**4/(2*k+5), 1: (2/(km+2)**2 - 2*((km+1)/(km+2))**2/(km+3)**2), 2: -2*((kp+1)/(kp+2))**2/(2*kp+5) } d[-1] = d[1].copy() d[-2] = d[2].copy() if test[0].quad == 'GL': k = N-3 d[0][-1] = 2/(2*k+1) + 2*((2*k+3)/(k+2))/(k+2)**3 + 2*((k+1)/(k+2))**4/(N-1) SpectralMatrix.__init__(self, d, test, trial, measure=measure) class ASDSDmat(SpectralMatrix): r"""Stiffness matrix for inner product .. math:: A_{kj} = (\psi'_j, \psi'_k)_w where .. math:: j = 0, 1, ..., N-2 \text{ and } k = 0, 1, ..., N-2 and :math:`\psi_k` is the Shen Legendre Dirichlet basis function. """ def __init__(self, test, trial, scale=1, measure=1): assert isinstance(test[0], SD) assert isinstance(trial[0], SD) N = test[0].N k = np.arange(N-2, dtype=float) if not test[0].is_scaled(): d = {0: 4*k+6} else: d = {0: 1} SpectralMatrix.__init__(self, d, test, trial, scale=scale, measure=measure) def solve(self, b, u=None, axis=0): N = self.shape[0] + 2 assert N == b.shape[axis] s = self.trialfunction[0].slice() if u is None: u = b else: assert u.shape == b.shape if not self.trialfunction[0].is_scaled(): # Move axis to first if axis > 0: u = np.moveaxis(u, axis, 0) if u is not b: b = np.moveaxis(b, axis, 0) bs = b[s] us = u[s] d = 1./self[0] sl = [np.newaxis]*bs.ndim sl[0] = slice(None) us[:] = bs*d[tuple(sl)] u /= self.scale self.testfunction[0].bc.set_boundary_dofs(u, True) if axis > 0: u = np.moveaxis(u, 0, axis) if u is not b: b = np.moveaxis(b, axis, 0) else: ss = [slice(None)]*b.ndim ss[axis] = s ss = tuple(ss) u[ss] = b[ss] u /= (self.scale*self[0]) self.testfunction[0].bc.set_boundary_dofs(u, True) return u class ASNSNmat(SpectralMatrix): r"""Stiffness matrix for inner product .. math:: A_{kj} = (\psi'_j, \psi'_k)_w where .. math:: j = 0, 1, ..., N-2 \text{ and } k = 0, 1, ..., N-2 and :math:`\psi_k` is the Shen Legendre Neumann basis function. """ def __init__(self, test, trial, scale=1, measure=1): assert isinstance(test[0], SN) assert isinstance(trial[0], SN) N = test[0].N k = np.arange(N-2, dtype=float) alpha = k*(k+1)/(k+2)/(k+3) d0 = 2./(2*k+1) d = {0: d0*alpha*(k+0.5)*((k+2)*(k+3)-k*(k+1))} SpectralMatrix.__init__(self, d, test, trial, scale=scale, measure=measure) def solve(self, b, u=None, axis=0): N = self.shape[0] + 2 assert N == b.shape[axis] s = self.trialfunction[0].slice() if u is None: u = b else: assert u.shape == b.shape # Move axis to first if axis > 0: u = np.moveaxis(u, axis, 0) if u is not b: b = np.moveaxis(b, axis, 0) bs = b[s] us = u[s] d = np.ones(self.shape[0]) d[1:] = 1./self[0][1:] sl = [np.newaxis]*bs.ndim sl[0] = slice(None) us[:] = bs*d[tuple(sl)] u /= self.scale self.testfunction[0].bc.set_boundary_dofs(u, True) if self.testfunction[0].use_fixed_gauge: u[0] = self.testfunction[0].mean/(2/self.testfunction[0].domain_factor()) if axis > 0: u = np.moveaxis(u, 0, axis) if u is not b: b = np.moveaxis(b, axis, 0) return u class ASBSBmat(SpectralMatrix): r"""Stiffness matrix for inner product .. math:: A_{kj} = (\psi'_j, \psi'_k)_w where .. math:: j = 0, 1, ..., N-4 \text{ and } k = 0, 1, ..., N-4 and :math:`\psi_k` is the Shen Legendre Biharmonic basis function. """ def __init__(self, test, trial, scale=1, measure=1): assert isinstance(test[0], SB) assert isinstance(trial[0], SB) N = test[0].N k = np.arange(N-4, dtype=float) gk = (2*k+3)/(2*k+7) d = {0: 2*(2*k+3)*(1+gk), 2: -2*(2*k[:-2]+3)} d[-2] = d[2] SpectralMatrix.__init__(self, d, test, trial, scale=scale, measure=measure) class ADNDNmat(SpectralMatrix): r"""Stiffness matrix for inner product .. math:: A_{kj} = (\psi'_j, \psi'_k)_w where .. math:: j = 0, 1, ..., N-2 \text{ and } k = 0, 1, ..., N-2 and :math:`\psi_k` is the mixed Legendre Dirichlet/Neumann basis function. """ def __init__(self, test, trial, scale=1, measure=1): assert isinstance(test[0], DN) assert isinstance(trial[0], DN) N = test[0].N k = np.arange(N-2, dtype=float) d = {0: ((k+1)/(k+2))**2*((k+2)*(k+3)- k*(k+1))} SpectralMatrix.__init__(self, d, test, trial, scale=scale, measure=measure) def solve(self, b, u=None, axis=0): N = self.shape[0] + 2 assert N == b.shape[axis] s = self.trialfunction[0].slice() if u is None: u = b else: assert u.shape == b.shape # Move axis to first if axis > 0: u = np.moveaxis(u, axis, 0) if u is not b: b = np.moveaxis(b, axis, 0) bs = b[s] us = u[s] d = 1./self[0] sl = [np.newaxis]*bs.ndim sl[0] = slice(None) us[:] = bs*d[tuple(sl)] u /= self.scale self.testfunction[0].bc.set_boundary_dofs(u, True) if axis > 0: u = np.moveaxis(u, 0, axis) if u is not b: b = np.moveaxis(b, axis, 0) return u class SBFBFmat(SpectralMatrix): r"""Biharmonic matrix for inner product .. math:: S_{kj} = (\psi''_j, \psi''_k)_w where .. math:: j = 0, 1, ..., N-4 \text{ and } k = 0, 1, ..., N-4 and :math:`\psi_k` is the BeamFixedFree basis function. """ def __init__(self, test, trial, scale=1, measure=1): assert isinstance(test[0], BF) assert isinstance(trial[0], BF) N = test[0].N k = np.arange(N-4, dtype=float) f4 = (((k+1)/(k+3))*((k+2)/(k+4)))**2*(2*k+3)/(2*k+7) d = {0: f4*(k+2.5)*((k+4)*(k+5)-(k+2)*(k+3))*((k+2)*(k+3)-k*(k+1))} SpectralMatrix.__init__(self, d, test, trial, scale=scale, measure=measure) def solve(self, b, u=None, axis=0): N = self.shape[0] + 4 assert N == b.shape[axis] s = self.trialfunction[0].slice() if u is None: u = b else: assert u.shape == b.shape # Move axis to first if axis > 0: u = np.moveaxis(u, axis, 0) if u is not b: b = np.moveaxis(b, axis, 0) bs = b[s] us = u[s] d = 1./self[0] sl = [np.newaxis]*bs.ndim sl[0] = slice(None) us[:] = bs*d[tuple(sl)] u /= self.scale self.testfunction[0].bc.set_boundary_dofs(u, True) if axis > 0: u = np.moveaxis(u, 0, axis) if u is not b: b = np.moveaxis(b, axis, 0) return u class GLLmat(SpectralMatrix): r"""Stiffness matrix for inner product .. math:: B_{kj} = (L_j'', L_k)_w where .. math:: j = 0, 1, ..., N \text{ and } k = 0, 1, ..., N and :math:`L_k` is the Legendre basis function. """ def __init__(self, test, trial, measure=1): assert isinstance(test[0], L) assert isinstance(trial[0], L) N = test[0].N k = np.arange(N, dtype=float) self._keyscale = 1 def _getkey(i): j = abs(i) return self._keyscale*((k[:-j]+0.5)*(k[j:]*(k[j:]+1) - k[:-j]*(k[:-j]+1))*2./(2*k[:-j]+1)) if trial[1]: d = dict.fromkeys(np.arange(2, N, 2), _getkey) else: d = dict.fromkeys(-np.arange(2, N, 2), _getkey) SpectralMatrix.__init__(self, d, test, trial, measure=measure) self._matvec_methods += ['cython'] def matvec(self, v, c, format='cython', axis=0): c.fill(0) trial = self.trialfunction[1] if format == 'cython' and v.ndim == 3 and trial: cython.Matvec.GLL_matvec3D_ptr(v, c, axis) self.scale_array(c, self.scale*self._keyscale) elif format == 'cython' and v.ndim == 2 and trial: cython.Matvec.GLL_matvec2D_ptr(v, c, axis) self.scale_array(c, self.scale*self._keyscale) elif format == 'cython' and v.ndim == 1 and trial: cython.Matvec.GLL_matvec(v, c) self.scale_array(c, self.scale*self._keyscale) else: c = super(GLLmat, self).matvec(v, c, format=format, axis=axis) return c class SSBSBmat(SpectralMatrix): r"""Stiffness matrix for inner product .. math:: A_{kj} = (\psi''_j, \psi''_k)_w where .. math:: j = 0, 1, ..., N-4 \text{ and } k = 0, 1, ..., N-4 and :math:`\psi_k` is the Shen Legendre Biharmonic basis function. """ def __init__(self, test, trial, measure=1): assert isinstance(test[0], SB) assert isinstance(trial[0], SB) N = test[0].N k = np.arange(N-4, dtype=float) d = {0: 2*(2*k+3)**2*(2*k+5)} SpectralMatrix.__init__(self, d, test, trial, measure=measure) class CLLmat(SpectralMatrix): r"""Matrix for inner product .. math:: C_{kj} = (\psi'_j, \psi_k)_w where .. math:: j = 0, 1, ..., N \text{ and } k = 0, 1, ..., N and :math:`\psi_k` is the orthogonal Legendre basis function. """ def __init__(self, test, trial, measure=1): assert isinstance(test[0], L) assert isinstance(trial[0], L) N = test[0].N self._keyscale = 1 def _getkey(i): return 2*self._keyscale d = dict.fromkeys(np.arange(1, N, 2), _getkey) SpectralMatrix.__init__(self, d, test, trial, measure=measure) self._matvec_methods += ['cython', 'self'] def matvec(self, v, c, format='self', axis=0): c.fill(0) if format == 'self': if axis > 0: c = np.moveaxis(c, axis, 0) v = np.moveaxis(v, axis, 0) ve = v[-2:0:-2].cumsum(axis=0) vo = v[-1:0:-2].cumsum(axis=0) c[-3::-2] = ve*2 c[-2::-2] = vo*2 if axis > 0: c = np.moveaxis(c, 0, axis) v = np.moveaxis(v, 0, axis) self.scale_array(c, self.scale*self._keyscale) elif format == 'cython' and v.ndim == 3: cython.Matvec.CLL_matvec3D_ptr(v, c, axis) self.scale_array(c, self.scale*self._keyscale) elif format == 'cython' and v.ndim == 2: cython.Matvec.CLL_matvec2D_ptr(v, c, axis) self.scale_array(c, self.scale*self._keyscale) elif format == 'cython' and v.ndim == 1: cython.Matvec.CLL_matvec(v, c) self.scale_array(c, self.scale*self._keyscale) else: c = super(CLLmat, self).matvec(v, c, format=format, axis=axis) return c class CLLmatT(SpectralMatrix): r"""Matrix for inner product .. math:: C_{kj} = (\psi'_j, \psi_k)_w where .. math:: j = 0, 1, ..., N \text{ and } k = 0, 1, ..., N and :math:`\psi_k` is the orthogonal Legendre basis function. """ def __init__(self, test, trial, measure=1): assert isinstance(test[0], L) assert isinstance(trial[0], L) N = test[0].N self._keyscale = 1 def _getkey(i): return 2*self._keyscale d = dict.fromkeys(-np.arange(1, N, 2), _getkey) SpectralMatrix.__init__(self, d, test, trial, measure=measure) class CLSDmat(SpectralMatrix): r"""Matrix for inner product .. math:: C_{kj} = (\psi'_j, L_k)_w where .. math:: j = 0, 1, ..., N-2 \text{ and } k = 0, 1, ..., N and :math:`\psi_k` is the Shen Legendre Dirichlet basis function. """ def __init__(self, test, trial, measure=1): assert isinstance(test[0], L) assert isinstance(trial[0], SD) N = test[0].N d = {-1: -2} if trial[0].is_scaled(): k = np.arange(N-2, dtype=float) d[-1] = -2. / np.sqrt(4*k+6) SpectralMatrix.__init__(self, d, test, trial, measure=measure) class CSDLmat(SpectralMatrix): r"""Matrix for inner product .. math:: C_{kj} = (L_j, \psi'_k)_w where .. math:: j = 0, 1, ..., N \text{ and } k = 0, 1, ..., N-2 and :math:`\psi_k` is the Shen Legendre Dirichlet basis function. """ def __init__(self, test, trial, measure=1): assert isinstance(test[0], SD) assert isinstance(trial[0], L) N = test[0].N d = {1: -2} if test[0].is_scaled(): k = np.arange(N-2, dtype=float) d[1] = -2. / np.sqrt(4*k+6) SpectralMatrix.__init__(self, d, test, trial, measure=measure) class CSDSDmat(SpectralMatrix): r"""Matrix for inner product .. math:: C_{kj} = (\psi'_j, \psi_k)_w where .. math:: j = 0, 1, ..., N-2 \text{ and } k = 0, 1, ..., N-2 and :math:`\psi_k` is the Shen Legendre Dirichlet basis function. """ def __init__(self, test, trial, scale=1, measure=1): assert isinstance(test[0], SD) assert isinstance(trial[0], SD) N = test[0].N d = {-1: -2, 1: 2} if trial[0].is_scaled(): k = np.arange(N-2, dtype=float) d[-1] = -2/np.sqrt(4*k[:-1]+6) d[1] = 2/np.sqrt(4*k[:-1]+6) SpectralMatrix.__init__(self, d, test, trial, scale=scale, measure=measure) class CSDSDTmat(SpectralMatrix): r"""Matrix for inner product .. math:: C_{kj} = (\psi_j, \psi'_k)_w where .. math:: j = 0, 1, ..., N-2 \text{ and } k = 0, 1, ..., N-2 and :math:`\psi_k` is the Shen Legendre Dirichlet basis function. """ def __init__(self, test, trial, scale=1, measure=1): assert isinstance(test[0], SD) assert isinstance(trial[0], SD) N = test[0].N d = {-1: 2, 1: -2} if trial[0].is_scaled(): k = np.arange(N-2, dtype=float) d[-1] = 2/np.sqrt(4*k[:-1]+6) d[1] = -2/np.sqrt(4*k[:-1]+6) SpectralMatrix.__init__(self, d, test, trial, scale=scale, measure=measure) class ASDSDrp1mat(SpectralMatrix): r"""Matrix for inner product .. math:: A_{kj} = \int_{-1}^{1} \psi_j'(x) \psi_k'(x) (1+x) dx where .. math:: j = 0, 1, ..., N-2 \text{ and } k = 0, 1, ..., N-2 and :math:`\psi_k` is the Shen Legendre Dirichlet basis function. """ def __init__(self, test, trial, scale=1, measure=1): assert isinstance(test[0], SD) assert isinstance(trial[0], SD) assert test[0].quad == 'LG' k = np.arange(test[0].N-2) d = {0: 4*k+6, 1: 2*k[:-1]+4, -1: 2*k[:-1]+4} SpectralMatrix.__init__(self, d, test, trial, scale=scale, measure=measure) class ASDSD2rp1mat(SpectralMatrix): r"""Matrix for inner product .. math:: A_{kj} = \int_{-1}^{1} \psi_j(x) \psi_k''(x) (1+x) dx where .. math:: j = 0, 1, ..., N-2 \text{ and } k = 0, 1, ..., N-2 and :math:`\psi_k` is the Shen Legendre Dirichlet basis function. """ def __init__(self, test, trial, scale=1, measure=1): assert isinstance(test[0], SD) assert isinstance(trial[0], SD) assert test[0].quad == 'LG' k = np.arange(test[0].N-2) d = {0: -(4*k+6), 1: -(2*k[:-1]+6), -1: -(2*k[:-1]+2)} SpectralMatrix.__init__(self, d, test, trial, scale=scale, measure=measure) class ASDSD2Trp1mat(SpectralMatrix): r"""Matrix for inner product .. math:: A_{kj} = \int_{-1}^{1} \psi_j''(x) \psi_k(x) (1+x) dx where .. math:: j = 0, 1, ..., N-2 \text{ and } k = 0, 1, ..., N-2 and :math:`\psi_k` is the Shen Legendre Dirichlet basis function. """ def __init__(self, test, trial, scale=1, measure=1): assert isinstance(test[0], SD) assert isinstance(trial[0], SD) assert test[0].quad == 'LG' k = np.arange(test[0].N-2) d = {0: -(4*k+6), -1: -(2*k[:-1]+6), 1: -(2*k[:-1]+2)} SpectralMatrix.__init__(self, d, test, trial, scale=scale, measure=measure) class AUDUDrp1mat(SpectralMatrix): r"""Matrix for inner product .. math:: A_{kj} = \int_{-1}^{1} \psi_j'(x) \psi_k'(x) (1+x) dx where .. math:: j = 0, 1, ..., N-2 \text{ and } k = 0, 1, ..., N-2 and :math:`\psi_k` is the Upper Dirichlet basis function. """ def __init__(self, test, trial, scale=1, measure=1): assert isinstance(test[0], UD) assert isinstance(trial[0], UD) assert test[0].quad == 'LG' k = np.arange(test[0].N-1) d = {0: 2*k+2} SpectralMatrix.__init__(self, d, test, trial, scale=scale, measure=measure) class AUDUDrp1smat(SpectralMatrix): r"""Matrix for inner product .. math:: A_{kj} = \int_{-1}^{1} \psi_j'(x) \psi_k'(x) (1+x)**2 dx where .. math:: j = 0, 1, ..., N-2 \text{ and } k = 0, 1, ..., N-2 and :math:`\psi_k` is the Upper Dirichlet basis function. """ def __init__(self, test, trial, scale=1, measure=1): assert isinstance(test[0], UD) assert isinstance(trial[0], UD) assert test[0].quad == 'LG' k = np.arange(test[0].N-1) #d = {0: 4*k**2*(k+1)/(2*k+1)+4*(k+1)**2*(k+2)/(2*k+3)-4*k*(k+1), # 1: 2*(k[:-1]+1)*(k[:-1]+2)-4*(k[:-1]+1)**2*(k[:-1]+2)/(2*k[:-1]+3)} d = {0: 2*(k+1)**2*(1/(2*k+1)+1/(2*k+3)), 1: 2*k[1:]*(k[1:]+1)/(2*k[1:]+1)} d[-1] = d[1].copy() SpectralMatrix.__init__(self, d, test, trial, scale=scale, measure=measure) class GUDUDrp1smat(SpectralMatrix): r"""Matrix for inner product .. math:: A_{kj} = \int_{-1}^{1} \psi_j(x) \psi_k''(x) (1+x)**2 dx where .. math:: j = 0, 1, ..., N-2 \text{ and } k = 0, 1, ..., N-2 and :math:`\psi_k` is the Upper Dirichlet basis function. """ def __init__(self, test, trial, scale=1, measure=1): assert isinstance(test[0], UD) assert isinstance(trial[0], UD) assert test[0].quad == 'LG' k = np.arange(test[0].N-1) d = {0: -2*(k+1)*((k-1)/(2*k+1) + (k+3)/(2*k+3)), 1: -2*(k[1:]+1)*(k[1:]+2)/(2*k[1:]+1), -1: -2*k[:-1]*(k[:-1]+1)/(2*k[:-1]+3)} SpectralMatrix.__init__(self, d, test, trial, scale=scale, measure=measure) class BUDUDrp1smat(SpectralMatrix): r"""Matrix for inner product .. math:: B_{kj} = \int_{-1}^{1} \psi_j(x) \psi_k(x) (1+x)**2 dx where .. math:: j = 0, 1, ..., N-2 \text{ and } k = 0, 1, ..., N-2 and :math:`\psi_k` is the Upper Dirichlet basis function. """ def __init__(self, test, trial, scale=1, measure=1): assert isinstance(test[0], UD) assert isinstance(trial[0], UD) assert test[0].quad == 'LG' k = np.arange(test[0].N-1) #a00 = 2/(2*k+1) #a11 = 2/(2*k+3) #a22 = 2/(2*k+5) #c00 = ((k+1)**2/(2*k+1)/(2*k+3) + k**2/(2*k+1)/(2*k-1))*a00 #c11 = ((k+2)**2/(2*k+3)/(2*k+5) + (k+1)**2/(2*k+3)/(2*k+1))*a11 #c02 = (k+2)*(k+1)/(2*k+5)/(2*k+3)*a00 #c13 = ((k+3)*(k+2)/(2*k+7)/(2*k+5))*a11 #b01 = (k+1)/(2*k+3)*a00 #b12 = (k+2)/(2*k+5)*a11 #d = {0: a00+c00-4*b01+a11+c11, # 1: (2*b01-c02-a11-c11+2*b12)[:-1], # -1: (2*b01-c02-a11-c11+2*b12)[:-1], # 2: (c02-2*b12+c13)[:-2], # -2: (c02-2*b12+c13)[:-2], # 3: -c13[:-3].copy(), # -3: -c13[:-3].copy()} d = {0: (k/(2*k+1))**2*(2/(2*k-1) + 2/(2*k+3)) + ((k+2)/(2*k+3))**2 * (2/(2*k+1)+2/(2*k+5)), 1: 2*k[1:]*(k[1:]+1)/(2*k[1:]+1)**2*(1/(2*k[1:]-1)+1/(2*k[1:]+3)) - 2*(k[1:]+2)*(k[1:]-1)/(2*k[1:]+3)/(2*k[1:]+1)/(2*k[1:]-1), 2: -2*k[2:]*(k[2:]-2)/(2*k[2:]+1)/(2*k[2:]-1)/(2*k[2:]-3)-2*k[2:]*(k[2:]+2)/(2*k[2:]+3)/(2*k[2:]+1)/(2*k[2:]-1), 3: -2*k[3:]*(k[3:]-1)/(2*k[3:]+1)/(2*k[3:]-1)/(2*k[3:]-3)} d[-1] = d[1].copy() d[-2] = d[2].copy() d[-3] = d[3].copy() SpectralMatrix.__init__(self, d, test, trial, scale=scale, measure=measure) class CUDUDrp1mat(SpectralMatrix): r"""Matrix for inner product .. math:: A_{kj} = \int_{-1}^{1} \psi_j(x) \psi_k'(x) (1+x) dx where .. math:: j = 0, 1, ..., N-2 \text{ and } k = 0, 1, ..., N-2 and :math:`\psi_k` is the Upper Dirichlet basis function. """ def __init__(self, test, trial, scale=1, measure=1): assert isinstance(test[0], UD) assert isinstance(trial[0], UD) assert test[0].quad == 'LG' k = np.arange(test[0].N-1) d = {0: -2*(k+1)/(2*k+1)+2*(k+1)/(2*k+3), 1: 2*(k[1:]+1)/(2*k[1:]+1), -1: -2*(k[:-1]+1)/(2*k[:-1]+3)} SpectralMatrix.__init__(self, d, test, trial, scale=scale, measure=measure) class BUDUDmat(SpectralMatrix): r"""Mass matrix for inner product .. math:: B_{kj} = (\psi_j, \psi_k)_w where .. math:: j = 0, 1, ..., N-1 \text{ and } k = 0, 1, ..., N-1 and :math:`\psi_k` is the Legendre UpperDirichlet basis function. """ def __init__(self, test, trial, measure=1): assert isinstance(test[0], UD) assert isinstance(trial[0], UD) N = test[0].N k = np.arange(N-1, dtype=float) d = {-1: -2./(2*k[1:] + 1), 0: 2./(2.*k+1) + 2./(2*k+3)} if test[0].quad == 'GL': d[0][-1] = 2./(2*(N-2)+1) + 2./(N-1) d[1] = d[-1] SpectralMatrix.__init__(self, d, test, trial, measure=measure) class BUDUDrp1mat(SpectralMatrix): r"""Matrix for inner product .. math:: B_{kj} = \int_{-1}^{1} \psi_j(x) \psi_k(x) (1+x) dx where .. math:: j = 0, 1, ..., N-2 \text{ and } k = 0, 1, ..., N-2 and :math:`\psi_k` is the Upper Dirichlet basis function. """ def __init__(self, test, trial, scale=1, measure=1): assert isinstance(test[0], UD) assert isinstance(trial[0], UD) assert test[0].quad == 'LG' k = np.arange(test[0].N-1) d = {0: 2*k+2} d = {0: 4*(k+1)/(2*k+1)/(2*k+3), 1: 4/(2*k[:-1]+1)/(2*k[:-1]+3)/(2*k[:-1]+5), 2: -2*(k[:-2]+2)/(2*k[:-2]+3)/(2*k[:-2]+5)} d[-1] = d[1] d[-2] = d[2] SpectralMatrix.__init__(self, d, test, trial, scale=scale, measure=measure) class BSDSD1orp1mat(SpectralMatrix): r"""Matrix for inner product .. math:: A_{kj} = \int_{-1}^{1} \psi_j(x) \psi_k(x) 1/(1+x) dx where .. math:: j = 0, 1, ..., N-2 \text{ and } k = 0, 1, ..., N-2 and :math:`\psi_k` is the Shen Legendre Dirichlet basis function. """ def __init__(self, test, trial, scale=1, measure=1): assert isinstance(test[0], SD) assert isinstance(trial[0], SD) assert test[0].quad == 'LG' k = np.arange(test[0].N-2) d = {0: 2*(2*k+3)/(k+1)/(k+2), 1: -2/(k[:-1]+2), -1: -2/(k[:-1]+2)} SpectralMatrix.__init__(self, d, test, trial, scale=scale, measure=measure) class BSDSDrp1mat(SpectralMatrix): r"""Matrix for inner product .. math:: A_{kj} = \int_{-1}^{1} \psi_j(x) \psi_k(x) (1+x) dx where .. math:: j = 0, 1, ..., N-2 \text{ and } k = 0, 1, ..., N-2 and :math:`\psi_k` is the Shen Legendre Dirichlet basis function. """ def __init__(self, test, trial, scale=1, measure=1): assert isinstance(test[0], SD) assert isinstance(trial[0], SD) assert test[0].quad == 'LG' k = np.arange(test[0].N-2) d = {0: 2/(2*k+1)+2/(2*k+5), 1: 2/(2*k[:-1]+1)/(2*k[:-1]+5) + 2*(k[:-1]+3)/(2*k[:-1]+5)/(2*k[:-1]+7), 2: -2/(2*k[:-2]+5), 3: -2*(k[:-3]+3)/(2*k[:-3]+5)/(2*k[:-3]+7)} d[-1] = d[1] d[-2] = d[2] d[-3] = d[3] SpectralMatrix.__init__(self, d, test, trial, scale=scale, measure=measure) class BSDBCDmat(SpectralMatrix): r"""Mass matrix for inner product .. math:: B_{kj} = (\psi_j, \phi_k)_w where .. math:: j = 0, 1 \text{ and } k = 0, 1, ..., N-2 and :math:`\psi_j` is the Dirichlet boundary basis and :math:`\phi_k` is the Shen Dirichlet basis function. """ def __init__(self, test, trial, measure=1): assert isinstance(test[0], SD) assert isinstance(trial[0], BCD) N = test[0].N k = np.arange(N-2, dtype=float) if not test[0].is_scaled(): d = {0: np.array([1, 1./3.]), 1: np.array([1.0]), -1: np.array([-1./3., 0])} else: d = {0: np.array([1./np.sqrt(6.), 1./3./np.sqrt(10.)]), 1: np.array([1./np.sqrt(6.)]), -1: np.array([-1./3./np.sqrt(10.), 0])} SpectralMatrix.__init__(self, d, test, trial, measure=measure) class BSBBCBmat(SpectralMatrix): r"""Mass matrix for inner product .. math:: B_{kj} = (\psi_j, \phi_k)_w where .. math:: j = 0, 1, 2, 3 \text{ and } k = 0, 1, ..., N-4 and :math:`\psi_j` is the Biharmonic boundary basis and :math:`\phi_k` is the Shen Biharmonic basis function. """ def __init__(self, test, trial, measure=1): assert isinstance(test[0], SB) assert isinstance(trial[0], BCB) N = test[0].N k = np.arange(N-4, dtype=float) d = {0: np.array([1, 4/9, -1/15, 1/35]), 1: np.array([1, -1/9, 1/15]), 2: np.array([3/7, -1/9]), 3: np.array([-3/7]), -1: np.array([-4/9, 0, 1/35, 0]), -2: np.array([0, -1/35, 0, 0]), -3: np.array([1/35, 0, 0, 0])} SpectralMatrix.__init__(self, d, test, trial, measure=measure) class _Legmatrix(SpectralMatrix): def __init__(self, test, trial, measure=1): SpectralMatrix.__init__(self, {}, test, trial, measure=measure) class _LegMatDict(dict): """Dictionary of inner product matrices Matrices that are missing keys are generated from Vandermonde type computations. """ def __missing__(self, key): measure = 1 if len(key) == 2 else key[3] c = functools.partial(_Legmatrix, measure=measure) self[key] = c return c def __getitem__(self, key): matrix = dict.__getitem__(self, key) return matrix mat = _LegMatDict({ ((L, 0), (L, 0)): BLLmat, ((L, 0), (L, 1)): CLLmat, ((L, 1), (L, 0)): CLLmatT, ((L, 0), (SD, 1)): CLSDmat, ((SD, 1), (L, 0)): CSDLmat, ((SD, 0), (SD, 1)): CSDSDmat, ((SD, 1), (SD, 0)): functools.partial(CSDSDmat, scale=-1.), ((SD, 0), (SD, 0)): BSDSDmat, ((SB, 0), (SB, 0)): BSBSBmat, ((SN, 0), (SN, 0)): BSNSNmat, ((SD, 0), (L, 0)): BSDLmat, ((L, 0), (SD, 0)): BLSDmat, ((SD, 1), (SD, 1)): ASDSDmat, ((SD, 2), (SD, 0)): functools.partial(ASDSDmat, scale=-1.), ((SD, 0), (SD, 2)): functools.partial(ASDSDmat, scale=-1.), ((SN, 1), (SN, 1)): ASNSNmat, ((SN, 2), (SN, 0)): functools.partial(ASNSNmat, scale=-1.), ((SN, 0), (SN, 2)): functools.partial(ASNSNmat, scale=-1.), ((L, 2), (L, 0)): GLLmat, ((L, 0), (L, 2)): GLLmat, ((SB, 2), (SB, 2)): SSBSBmat, ((SB, 1), (SB, 1)): ASBSBmat, ((SB, 0), (SB, 2)): functools.partial(ASBSBmat, scale=-1.), ((SB, 2), (SB, 0)): functools.partial(ASBSBmat, scale=-1.), ((SB, 0), (SB, 4)): SSBSBmat, ((SB, 4), (SB, 0)): SSBSBmat, ((SD, 1), (SD, 1), (-1, 1), 1+x): functools.partial(ASDSDrp1mat, measure=1+x), ((SD, 0), (SD, 2), (-1, 1), 1+x): functools.partial(ASDSD2rp1mat, measure=1+x), ((SD, 2), (SD, 0), (-1, 1), 1+x): functools.partial(ASDSD2Trp1mat, measure=1+x), ((SD, 0), (SD, 2), (0, 1), xp): functools.partial(ASDSD2rp1mat, scale=0.5, measure=xp), ((SD, 2), (SD, 0), (0, 1), xp): functools.partial(ASDSD2Trp1mat, scale=0.5, measure=xp), ((SD, 1), (SD, 1), (0, 1), xp): functools.partial(ASDSDrp1mat, scale=0.5, measure=xp), ((SD, 0), (SD, 0), (-1, 1), 1+x): functools.partial(BSDSDrp1mat, measure=1+x), ((SD, 0), (SD, 0), (0, 1), xp): functools.partial(BSDSDrp1mat, scale=0.5, measure=xp), ((SD, 0), (SD, 0), (-1, 1), 1/(1+x)): functools.partial(BSDSD1orp1mat, measure=1/(1+x)), ((SD, 0), (SD, 0), (0, 1), 1/xp): functools.partial(BSDSD1orp1mat, scale=2, measure=1/xp), ((UD, 1), (UD, 1), (-1, 1), 1+x): functools.partial(AUDUDrp1mat, measure=(1+x)), ((UD, 1), (UD, 1), (0, 1), xp): functools.partial(AUDUDrp1mat, scale=0.5, measure=xp), ((UD, 0), (UD, 0), (-1, 1), 1+x): functools.partial(BUDUDrp1mat, measure=(1+x)), ((UD, 0), (UD, 0), (0, 1), xp): functools.partial(BUDUDrp1mat, scale=0.5, measure=xp), ((UD, 1), (UD, 1), (-1, 1), (1+x)**2): functools.partial(AUDUDrp1smat, measure=(1+x)**2), ((UD, 1), (UD, 1), (0, 1), xp**2): functools.partial(AUDUDrp1smat, scale=0.25, measure=xp**2), ((UD, 0), (UD, 2), (-1, 1), (1+x)**2): functools.partial(GUDUDrp1smat, measure=(1+x)**2), ((UD, 0), (UD, 2), (0, 1), xp**2): functools.partial(GUDUDrp1smat, scale=0.25, measure=xp**2), ((UD, 0), (UD, 1), (-1, 1), (1+x)): functools.partial(CUDUDrp1mat, measure=(1+x)), ((UD, 0), (UD, 1), (0, 1), xp): functools.partial(CUDUDrp1mat, scale=0.5, measure=xp), ((UD, 0), (UD, 0), (-1, 1), (1+x)**2): functools.partial(BUDUDrp1smat, measure=(1+x)**2), ((UD, 0), (UD, 0), (0, 1), xp**2): functools.partial(BUDUDrp1smat, scale=0.25, measure=xp**2), ((UD, 0), (UD, 0)): BUDUDmat, ((SD, 0), (BCD, 0)): BSDBCDmat, ((SB, 0), (BCB, 0)): BSBBCBmat, ((DN, 0), (DN, 0)): BDNDNmat, ((DN, 1), (DN, 1)): ADNDNmat, ((DN, 2), (DN, 0)): functools.partial(ADNDNmat, scale=-1.), ((DN, 0), (DN, 2)): functools.partial(ADNDNmat, scale=-1.), ((BF, 4), (BF, 0)): SBFBFmat, ((BF, 0), (BF, 4)): SBFBFmat, ((BF, 2), (BF, 2)): SBFBFmat, ((BF, 0), (BF, 0)): BBFBFmat }) #mat = _LegMatDict({})
67ccb1475ec05c04027a13cfadd67b4b28e9004e
cb8d1db4af4401b019775132fe92f3eae4cb92df
/_unittests/ut_cli/test_cli_file_helper.py
b24c031f8bd1ec2a412e0fabd6edd470918e6747
[ "MIT" ]
permissive
Pandinosaurus/pyquickhelper
041d6c6d2832845bd89027ffaab333239efc3959
860ec5b9a53bae4fc616076c0b52dbe2a1153d30
refs/heads/master
2023-07-24T12:27:25.700277
2023-07-17T07:02:34
2023-07-17T07:02:34
169,426,142
0
0
MIT
2023-07-17T07:53:04
2019-02-06T15:17:53
Jupyter Notebook
UTF-8
Python
false
false
1,549
py
""" @brief test tree node (time=7s) """ import sys import os import unittest from io import StringIO from pyquickhelper.loghelper import fLOG, BufferedPrint from pyquickhelper.pycode import get_temp_folder from pyquickhelper.__main__ import main class TestCliFileHelper(unittest.TestCase): def test_cli_file_helper(self): fLOG( __file__, self._testMethodName, OutputPrint=__name__ == "__main__") this = os.path.abspath(os.path.dirname(__file__)) st = BufferedPrint() main(args=["ls", "-f", this, "-p", ".*[.]py", "-r", "f"], fLOG=st.fprint) res = str(st) self.assertIn(".py", res) this = os.path.abspath(os.path.dirname(__file__)) st = BufferedPrint() main(args=["ls", "-f", this, "-p", ".*[.]py", "-r", "f", '-n', 'pycache', '-fu', '1'], fLOG=st.fprint) res = str(st) self.assertIn(".py", res) self.assertNotIn("pycache", res) this = os.path.abspath(os.path.dirname(__file__)) st = BufferedPrint() main(args=["ls", "-f", this, "-p", ".*[.]py", "-r", "f", '-n', 'pycache', '-fu', '1', '-s', "test_(.*)", '-su', 'unit_\\1'], fLOG=st.fprint) res = str(st) self.assertIn(".py", res) self.assertNotIn("pycache", res) self.assertNotIn("test_parser", res) self.assertIn("unit_parser", res) if __name__ == "__main__": unittest.main()
51142e7b8d3e124bfee304c104a86f3a4b396682
f8ffa8ff257266df3de9d20d95b291e393f88434
/Python from scratch/Warsztaty/Warsztaty01/zad01.py
33e1c3878f88c9c49cec628e9e7d3339b1b0c28c
[]
no_license
janiszewskibartlomiej/Python_Code_Me_Gda
c0583c068ef08b6130398ddf93c3a3d1a843b487
7568de2a9acf80bab1429bb55bafd89daad9b729
refs/heads/master
2020-03-30T05:06:26.757033
2020-03-02T08:53:28
2020-03-02T08:53:28
150,781,356
0
0
null
null
null
null
UTF-8
Python
false
false
564
py
ekwipunek = {'pieniądze':158.40, 'sprzęt':['kompas', 'latarka', 'śpiwór'], 'prowiant':['jabłko', 'woda', 'batonik', 'batonik']} print('Lista ekwipunku to: ', ekwipunek) print('Harcesz kupił karimatę za 29.99 zł') ekwipunek['pieniądze'] = ekwipunek['pieniądze'] - 29.99 ekwipunek['sprzęt'].append('karimata') print(ekwipunek) print('Harcerz zjadł batonik') ekwipunek['prowiant'].remove('batonik') print(ekwipunek['prowiant']) print('Harcerz ma 7 przedmiotów w plecaku: ', ekwipunek['sprzęt'] + ekwipunek['prowiant'])
1c6026e1dbb38669cf355d1ec7f80ae280b72c1f
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/nouns/_wagering.py
3ad88745da9973ac13e723d2d10defa24d8be66f
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
235
py
from xai.brain.wordbase.nouns._wager import _WAGER #calss header class _WAGERING(_WAGER, ): def __init__(self,): _WAGER.__init__(self) self.name = "WAGERING" self.specie = 'nouns' self.basic = "wager" self.jsondata = {}
db604c59ed67ae9680c1fe9108853daaf57af74b
3d5958a79c02fe885324956bfead037999c73c7a
/trimesh/io/stl.py
32912d8f687bcee9809cc8e06c6380fe138bfba6
[ "MIT" ]
permissive
Mambix/trimesh
def56d14994076cfcc24e3c3d67d5e27bea5bb49
99d01909a1f4cf56d777a8339a6c2443cf37d6b8
refs/heads/master
2020-05-27T21:20:11.800221
2017-03-02T00:57:53
2017-03-02T00:57:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
6,643
py
import numpy as np # the exception raised if an STL file object doesn't match its header class HeaderError(Exception): pass # define a numpy datatype for the data section of a binary STL file _stl_dtype = np.dtype([('normals', np.float32, (3)), ('vertices', np.float32, (3, 3)), ('attributes', np.uint16)]) # define a numpy datatype for the header of a binary STL file _stl_dtype_header = np.dtype([('header', np.void, 80), ('face_count', np.int32)]) def load_stl(file_obj, file_type=None): ''' Load an STL file from a file object. Arguments ---------- file_obj: open file- like object file_type: not used Returns ---------- loaded: kwargs for a Trimesh constructor with keys: vertices: (n,3) float, vertices faces: (m,3) int, indexes of vertices face_normals: (m,3) float, normal vector of each face ''' # save start of file obj file_pos = file_obj.tell() try: # check the file for a header which matches the file length # if that is true, it is almost certainly a binary STL file # if the header doesn't match the file length a HeaderError will be # raised return load_stl_binary(file_obj) except HeaderError: # move the file back to where it was initially file_obj.seek(file_pos) # try to load the file as an ASCII STL # if the header doesn't match the file length a HeaderError will be # raised return load_stl_ascii(file_obj) def load_stl_binary(file_obj): ''' Load a binary STL file from a file object. Arguments ---------- file_obj: open file- like object Returns ---------- loaded: kwargs for a Trimesh constructor with keys: vertices: (n,3) float, vertices faces: (m,3) int, indexes of vertices face_normals: (m,3) float, normal vector of each face ''' header = np.fromstring(file_obj.read(84), dtype=_stl_dtype_header) # now we check the length from the header versus the length of the file # data_start should always be position 84, but hard coding that felt ugly data_start = file_obj.tell() # this seeks to the end of the file # position 0, relative to the end of the file 'whence=2' file_obj.seek(0, 2) # we save the location of the end of the file and seek back to where we # started from data_end = file_obj.tell() file_obj.seek(data_start) # the binary format has a rigidly defined structure, and if the length # of the file doesn't match the header, the loaded version is almost # certainly going to be garbage. data_ok = ( data_end - data_start) == (header['face_count'] * _stl_dtype.itemsize) # this check is to see if this really is a binary STL file. # if we don't do this and try to load a file that isn't structured properly # we will be producing garbage or crashing hard # so it's much better to raise an exception here. if not data_ok: raise HeaderError('Binary STL has incorrect length in header!') # all of our vertices will be loaded in order due to the STL format, # so faces are just sequential indices reshaped. faces = np.arange(header['face_count'] * 3).reshape((-1, 3)) blob = np.fromstring(file_obj.read(), dtype=_stl_dtype) result = {'vertices': blob['vertices'].reshape((-1, 3)), 'face_normals': blob['normals'].reshape((-1, 3)), 'faces': faces} return result def load_stl_ascii(file_obj): ''' Load an ASCII STL file from a file object. Arguments ---------- file_obj: open file- like object Returns ---------- loaded: kwargs for a Trimesh constructor with keys: vertices: (n,3) float, vertices faces: (m,3) int, indexes of vertices face_normals: (m,3) float, normal vector of each face ''' header = file_obj.readline() text = file_obj.read() if hasattr(text, 'decode'): text = text.decode('utf-8') text = text.lower().split('endsolid')[0] blob = np.array(text.split()) # there are 21 'words' in each face face_len = 21 face_count = len(blob) / face_len if (len(blob) % face_len) != 0: raise HeaderError('Incorrect number of values in STL file!') face_count = int(face_count) # this offset is to be added to a fixed set of indices that is tiled offset = face_len * np.arange(face_count).reshape((-1, 1)) normal_index = np.tile([2, 3, 4], (face_count, 1)) + offset vertex_index = np.tile( [8, 9, 10, 12, 13, 14, 16, 17, 18], (face_count, 1)) + offset # faces are groups of three sequential vertices, as vertices are not # references faces = np.arange(face_count * 3).reshape((-1, 3)) face_normals = blob[normal_index].astype(np.float64) vertices = blob[vertex_index.reshape((-1, 3))].astype(np.float64) return {'vertices': vertices, 'faces': faces, 'face_normals': face_normals} def export_stl(mesh): ''' Convert a Trimesh object into a binary STL file. Arguments --------- mesh: Trimesh object Returns --------- export: bytes, representing mesh in binary STL form ''' header = np.zeros(1, dtype=_stl_dtype_header) header['face_count'] = len(mesh.faces) packed = np.zeros(len(mesh.faces), dtype=_stl_dtype) packed['normals'] = mesh.face_normals packed['vertices'] = mesh.triangles export = header.tostring() export += packed.tostring() return export def export_stl_ascii(mesh): ''' Convert a Trimesh object into an ASCII STL file. Arguments --------- mesh: Trimesh object Returns --------- export: str, mesh represented as an ASCII STL file ''' # move all the data thats going into the STL file into one array blob = np.zeros((len(mesh.faces), 4, 3)) blob[:, 0, :] = mesh.face_normals blob[:, 1:, :] = mesh.triangles # create a lengthy format string for the data section of the file format_string = 'facet normal {} {} {}\nouter loop\n' format_string += 'vertex {} {} {}\n' * 3 format_string += 'endloop\nendfacet\n' format_string *= len(mesh.faces) # concatenate the header, data, and footer export = 'solid \n' export += format_string.format(*blob.reshape(-1)) export += 'endsolid' return export _stl_loaders = {'stl': load_stl, 'stl_ascii': load_stl}
480d9a66e2a6c4e56d92084f3b27f5626c89d12a
f9b5c37a098ed940d943415aadda130c13271754
/dailyfresh/f_goods/migrations/0003_auto_20180619_2120.py
47da203ab64800d2950a865ce0879526e9bf7ef2
[]
no_license
duanHongPy/django
cd00fe819576741a7c1860ea420275129d759d67
3fee019b3d8d50218410366d62eac29700f9e69a
refs/heads/master
2020-03-19T23:28:01.420061
2018-06-21T02:53:19
2018-06-21T02:53:19
137,007,195
0
0
null
null
null
null
UTF-8
Python
false
false
558
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.13 on 2018-06-19 13:20 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('f_goods', '0002_auto_20180619_1910'), ] operations = [ migrations.RemoveField( model_name='goodinfo', name='gsales', ), migrations.AlterField( model_name='goodinfo', name='gclick', field=models.IntegerField(default=0), ), ]
96e8c5c0de2d305c63d6d23a0b1aaeb507e67ff8
ddd7d37f3a98b508e16f27978bf788fc61358225
/wsgi.py
06b4bc7a115d792c6e0690fac47c8d93e9c07d3e
[]
no_license
nbh847/bbs_practice
b124e59b86b8fb65b2e5ee34b8e7065a05bcee41
21946cbf27a34028a53144a2c202d763fda6ee21
refs/heads/master
2020-03-28T19:20:31.590484
2018-10-24T14:15:40
2018-10-24T14:15:40
148,966,258
0
0
null
null
null
null
UTF-8
Python
false
false
624
py
#!/usr/bin/env python3 import sys from os.path import abspath from os.path import dirname # 设置当前目录为工作目录 sys.path.insert(0, abspath(dirname(__file__))) # 引入 app.py import app # 必须有一个叫做 application 的变量 # gunicorn 就要这个变量 # 这个变量的值必须是 Flask 实例 # 这是规定的套路(协议) application = app.app # 这是把代码部署到 apache gunicorn nginx 后面的套路 """ ➜ ~ cat /etc/supervisor/conf.d/xx.conf [program:todo] command=/usr/local/bin/gunicorn wsgi --bind 0.0.0.0:2000 --pid /tmp/todo.pid directory=/root/web13 autostart=true """
1fe4732f5442e87e5d6cb0918e6cdd85870b6616
6fa701cdaa0d83caa0d3cbffe39b40e54bf3d386
/google/cloud/lifesciences/v2beta/lifesciences-v2beta-py/google/cloud/lifesciences_v2beta/services/workflows_service_v2_beta/transports/grpc.py
442db128588b94be3735bf27ac5f0af52c460e0e
[ "Apache-2.0" ]
permissive
oltoco/googleapis-gen
bf40cfad61b4217aca07068bd4922a86e3bbd2d5
00ca50bdde80906d6f62314ef4f7630b8cdb6e15
refs/heads/master
2023-07-17T22:11:47.848185
2021-08-29T20:39:47
2021-08-29T20:39:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
13,300
py
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import warnings from typing import Callable, Dict, Optional, Sequence, Tuple, Union from google.api_core import grpc_helpers # type: ignore from google.api_core import operations_v1 # type: ignore from google.api_core import gapic_v1 # type: ignore import google.auth # type: ignore from google.auth import credentials as ga_credentials # type: ignore from google.auth.transport.grpc import SslCredentials # type: ignore import grpc # type: ignore from google.cloud.lifesciences_v2beta.types import workflows from google.longrunning import operations_pb2 # type: ignore from .base import WorkflowsServiceV2BetaTransport, DEFAULT_CLIENT_INFO class WorkflowsServiceV2BetaGrpcTransport(WorkflowsServiceV2BetaTransport): """gRPC backend transport for WorkflowsServiceV2Beta. A service for running workflows, such as pipelines consisting of Docker containers. This class defines the same methods as the primary client, so the primary client can load the underlying transport implementation and call it. It sends protocol buffers over the wire using gRPC (which is built on top of HTTP/2); the ``grpcio`` package must be installed. """ _stubs: Dict[str, Callable] def __init__(self, *, host: str = 'lifesciences.googleapis.com', credentials: ga_credentials.Credentials = None, credentials_file: str = None, scopes: Sequence[str] = None, channel: grpc.Channel = None, api_mtls_endpoint: str = None, client_cert_source: Callable[[], Tuple[bytes, bytes]] = None, ssl_channel_credentials: grpc.ChannelCredentials = None, client_cert_source_for_mtls: Callable[[], Tuple[bytes, bytes]] = None, quota_project_id: Optional[str] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, always_use_jwt_access: Optional[bool] = False, ) -> None: """Instantiate the transport. Args: host (Optional[str]): The hostname to connect to. credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. This argument is ignored if ``channel`` is provided. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is ignored if ``channel`` is provided. scopes (Optional(Sequence[str])): A list of scopes. This argument is ignored if ``channel`` is provided. channel (Optional[grpc.Channel]): A ``Channel`` instance through which to make calls. api_mtls_endpoint (Optional[str]): Deprecated. The mutual TLS endpoint. If provided, it overrides the ``host`` argument and tries to create a mutual TLS channel with client SSL credentials from ``client_cert_source`` or applicatin default SSL credentials. client_cert_source (Optional[Callable[[], Tuple[bytes, bytes]]]): Deprecated. A callback to provide client SSL certificate bytes and private key bytes, both in PEM format. It is ignored if ``api_mtls_endpoint`` is None. ssl_channel_credentials (grpc.ChannelCredentials): SSL credentials for grpc channel. It is ignored if ``channel`` is provided. client_cert_source_for_mtls (Optional[Callable[[], Tuple[bytes, bytes]]]): A callback to provide client certificate bytes and private key bytes, both in PEM format. It is used to configure mutual TLS channel. It is ignored if ``channel`` or ``ssl_channel_credentials`` is provided. quota_project_id (Optional[str]): An optional project to use for billing and quota. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. always_use_jwt_access (Optional[bool]): Whether self signed JWT should be used for service account credentials. Raises: google.auth.exceptions.MutualTLSChannelError: If mutual TLS transport creation failed for any reason. google.api_core.exceptions.DuplicateCredentialArgs: If both ``credentials`` and ``credentials_file`` are passed. """ self._grpc_channel = None self._ssl_channel_credentials = ssl_channel_credentials self._stubs: Dict[str, Callable] = {} self._operations_client = None if api_mtls_endpoint: warnings.warn("api_mtls_endpoint is deprecated", DeprecationWarning) if client_cert_source: warnings.warn("client_cert_source is deprecated", DeprecationWarning) if channel: # Ignore credentials if a channel was passed. credentials = False # If a channel was explicitly provided, set it. self._grpc_channel = channel self._ssl_channel_credentials = None else: if api_mtls_endpoint: host = api_mtls_endpoint # Create SSL credentials with client_cert_source or application # default SSL credentials. if client_cert_source: cert, key = client_cert_source() self._ssl_channel_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) else: self._ssl_channel_credentials = SslCredentials().ssl_credentials else: if client_cert_source_for_mtls and not ssl_channel_credentials: cert, key = client_cert_source_for_mtls() self._ssl_channel_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) # The base transport sets the host, credentials and scopes super().__init__( host=host, credentials=credentials, credentials_file=credentials_file, scopes=scopes, quota_project_id=quota_project_id, client_info=client_info, always_use_jwt_access=always_use_jwt_access, ) if not self._grpc_channel: self._grpc_channel = type(self).create_channel( self._host, credentials=self._credentials, credentials_file=credentials_file, scopes=self._scopes, ssl_credentials=self._ssl_channel_credentials, quota_project_id=quota_project_id, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) # Wrap messages. This must be done after self._grpc_channel exists self._prep_wrapped_messages(client_info) @classmethod def create_channel(cls, host: str = 'lifesciences.googleapis.com', credentials: ga_credentials.Credentials = None, credentials_file: str = None, scopes: Optional[Sequence[str]] = None, quota_project_id: Optional[str] = None, **kwargs) -> grpc.Channel: """Create and return a gRPC channel object. Args: host (Optional[str]): The host for the channel to use. credentials (Optional[~.Credentials]): The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is mutually exclusive with credentials. scopes (Optional[Sequence[str]]): A optional list of scopes needed for this service. These are only used when credentials are not specified and are passed to :func:`google.auth.default`. quota_project_id (Optional[str]): An optional project to use for billing and quota. kwargs (Optional[dict]): Keyword arguments, which are passed to the channel creation. Returns: grpc.Channel: A gRPC channel object. Raises: google.api_core.exceptions.DuplicateCredentialArgs: If both ``credentials`` and ``credentials_file`` are passed. """ return grpc_helpers.create_channel( host, credentials=credentials, credentials_file=credentials_file, quota_project_id=quota_project_id, default_scopes=cls.AUTH_SCOPES, scopes=scopes, default_host=cls.DEFAULT_HOST, **kwargs ) @property def grpc_channel(self) -> grpc.Channel: """Return the channel designed to connect to this service. """ return self._grpc_channel @property def operations_client(self) -> operations_v1.OperationsClient: """Create the client designed to process long-running operations. This property caches on the instance; repeated calls return the same client. """ # Sanity check: Only create a new client if we do not already have one. if self._operations_client is None: self._operations_client = operations_v1.OperationsClient( self.grpc_channel ) # Return the client from cache. return self._operations_client @property def run_pipeline(self) -> Callable[ [workflows.RunPipelineRequest], operations_pb2.Operation]: r"""Return a callable for the run pipeline method over gRPC. Runs a pipeline. The returned Operation's [metadata] [google.longrunning.Operation.metadata] field will contain a [google.cloud.lifesciences.v2beta.Metadata][google.cloud.lifesciences.v2beta.Metadata] object describing the status of the pipeline execution. The [response][google.longrunning.Operation.response] field will contain a [google.cloud.lifesciences.v2beta.RunPipelineResponse][google.cloud.lifesciences.v2beta.RunPipelineResponse] object if the pipeline completes successfully. **Note:** Before you can use this method, the *Life Sciences Service Agent* must have access to your project. This is done automatically when the Cloud Life Sciences API is first enabled, but if you delete this permission you must disable and re-enable the API to grant the Life Sciences Service Agent the required permissions. Authorization requires the following `Google IAM <https://cloud.google.com/iam/>`__ permission: - ``lifesciences.workflows.run`` Returns: Callable[[~.RunPipelineRequest], ~.Operation]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if 'run_pipeline' not in self._stubs: self._stubs['run_pipeline'] = self.grpc_channel.unary_unary( '/google.cloud.lifesciences.v2beta.WorkflowsServiceV2Beta/RunPipeline', request_serializer=workflows.RunPipelineRequest.serialize, response_deserializer=operations_pb2.Operation.FromString, ) return self._stubs['run_pipeline'] __all__ = ( 'WorkflowsServiceV2BetaGrpcTransport', )
[ "bazel-bot-development[bot]@users.noreply.github.com" ]
bazel-bot-development[bot]@users.noreply.github.com
7c2da6da0584f39818fbf738cbb2c1a7d78c13aa
8535bbc7781c4691880c935bd7025646f0dbb7c3
/check mirror images of two arrays.py
daa0276c484e75516f27c7d2d1b8b51dc8139981
[]
no_license
Mahadev0317/Codekata
3b2149f3116ebe4b48b2059b873544c27b23ff39
c35fa0ed0c4870faea69152638f461e743a9ff69
refs/heads/master
2020-04-15T04:59:17.062947
2019-05-29T04:46:35
2019-05-29T04:46:35
164,404,727
1
2
null
null
null
null
UTF-8
Python
false
false
183
py
n=int(input()) li=list(map(int,input().split())) lis=list(map(int,input().split())) k=n-1 for i in range(n): if li[i]!=lis[k]: print("no") break k-=1 else: print("yes")
9404fc7b69c9461b11360f92805c0269adeb68e9
f07a42f652f46106dee4749277d41c302e2b7406
/Data Set/bug-fixing-5/9e606bfdbe039112b609c263cb4dfc23e31ffe93-<check_regressors_train>-bug.py
46b71af4c66c69b7a702b9f117d56ad37df9194f
[]
no_license
wsgan001/PyFPattern
e0fe06341cc5d51b3ad0fe29b84098d140ed54d1
cc347e32745f99c0cd95e79a18ddacc4574d7faa
refs/heads/main
2023-08-25T23:48:26.112133
2021-10-23T14:11:22
2021-10-23T14:11:22
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,033
py
@ignore_warnings(category=(DeprecationWarning, FutureWarning)) def check_regressors_train(name, regressor_orig): (X, y) = _boston_subset() y = StandardScaler().fit_transform(y.reshape((- 1), 1)) y = y.ravel() regressor = clone(regressor_orig) y = multioutput_estimator_convert_y_2d(regressor, y) rnd = np.random.RandomState(0) if ((not hasattr(regressor, 'alphas')) and hasattr(regressor, 'alpha')): regressor.alpha = 0.01 if (name == 'PassiveAggressiveRegressor'): regressor.C = 0.01 assert_raises(ValueError, regressor.fit, X, y[:(- 1)]) if (name in CROSS_DECOMPOSITION): y_ = np.vstack([y, ((2 * y) + rnd.randint(2, size=len(y)))]) y_ = y_.T else: y_ = y set_random_state(regressor) regressor.fit(X, y_) regressor.fit(X.tolist(), y_.tolist()) y_pred = regressor.predict(X) assert_equal(y_pred.shape, y_.shape) if (name not in ('PLSCanonical', 'CCA', 'RANSACRegressor')): assert_greater(regressor.score(X, y_), 0.5)
3b2933c2a78105815d35f620b0fe153ed6a99d8c
fca36ece36254e6175d7ac26791ae0e0abedd040
/ex03.py
8f728c512cd7fc125cef46901dabc8aa8b3eabc0
[]
no_license
DikranHachikyan/python-programming-20190318
72c63ccdb716db871c755bb589e333c9fc57bcd5
0e6b4c599be3d69efdb4acf7817abc3d9d41eb7b
refs/heads/master
2020-04-29T23:35:10.401263
2019-04-18T14:59:30
2019-04-18T14:59:30
176,480,840
1
0
null
null
null
null
UTF-8
Python
false
false
130
py
#!/home/wizard/anaconda3/bin/python def main(): x = int(input('x=')) if x < 10: print('x={}'.format(x)) main()
1f8bd03e1ef888abd81c307876d56b9be3c041cf
b3a2ac9eb02a6eef9e6f3504afabc6400f894f56
/clld/tests/test_web_app.py
b32979cb1f2d24ff5e626188403624fba5dc541a
[ "BSD-3-Clause", "MIT", "Apache-2.0" ]
permissive
Anaphory/clld
9f67c477e228eff05fdc7b7fa4310c703af02108
bed1a6d08275a41fd7b5d13a0af19e4e538d186c
refs/heads/master
2021-01-17T04:50:05.382411
2017-02-16T11:20:11
2017-02-16T11:20:11
66,831,136
0
0
null
2016-08-29T09:43:06
2016-08-29T09:43:05
null
UTF-8
Python
false
false
3,180
py
# coding: utf8 from __future__ import unicode_literals, print_function, division, absolute_import import importlib from zope.interface import Interface from pyramid.testing import Configurator from pyramid.httpexceptions import HTTPNotFound from purl import URL from clld.db.models.common import Contribution, ValueSet, Language, Language_files from clld.tests.util import TestWithEnv, Route, TESTS_DIR, WithDbAndDataMixin from clld.interfaces import IMapMarker from clld.web.adapters.download import N3Dump class Tests(WithDbAndDataMixin, TestWithEnv): def test_CLLDRequest(self): self.assertTrue(isinstance(self.env['request'].purl, URL)) c = self.env['request'].db.query(Contribution).first() self.env['request'].resource_url(c, ext='geojson') self.assertEqual(None, self.env['request'].ctx_for_url('/some/path/to/nowhere')) assert self.env['request'].ctx_for_url('/') self.env['request'].file_url(Language_files(id='1', object=Language.first())) assert self.env['request'].get_datatable('valuesets', ValueSet) assert self.env['request'].blog is None def test_menu_item(self): from clld.web.app import menu_item assert menu_item('contributions', None, self.env['request']) def test_ctx_factory(self): from clld.web.app import ctx_factory for model, route in [ (Contribution, 'contributions'), (ValueSet, 'valuesets'), (Language, 'languages'), ]: obj = model.first() self.set_request_properties( matchdict={'id': obj.id}, matched_route=Route(route)) ctx_factory(model, 'index', self.env['request']) ctx_factory(model, 'rsc', self.env['request']) self.set_request_properties(matchdict={'id': 'xxx'}) self.assertRaises( HTTPNotFound, ctx_factory, Contribution, 'rsc', self.env['request']) def test_MapMarker(self): marker = self.env['request'].registry.getUtility(IMapMarker) self.assertTrue(marker(None, self.env['request'])) def test_add_config_from_file(self): from clld.web.app import add_settings_from_file config = Configurator() add_settings_from_file(config, TESTS_DIR.joinpath('test.ini')) assert 'app:main.use' in config.registry.settings def test_config(self): class IF(Interface): pass config = Configurator( root_package=importlib.import_module('clld.web'), settings={ 'sqlalchemy.url': 'sqlite://', 'clld.pacific_centered_maps': True}) config.include('clld.web.app') # should have no effect, because a resource with this name is registered by # default: config.register_menu('languages', ('sources', dict(label='References'))) config.register_resource('language', None, None) config.register_resource('testresource', Language, IF, with_index=True, test=True) config.register_download(N3Dump(Language, 'clld')) config.add_301('/301pattern', 'http://example.org') config.add_410('/410pattern')
ba67521102acfb8f7814511d76092c36dc6602be
5ca85847885c6fd6f9728b0b2dffb66e96a81a1d
/hemlock/database/types/__init__.py
6c06c43fc1ad509b883efcf9d4a7a2afd3756cbc
[]
no_license
syfreed/hemlock_test2
682d843636883a6a2b883932cd7282e9b865ebcd
61933fd17630ddd1bb46d8f2090b1b039a3b4e99
refs/heads/master
2020-08-03T11:21:18.460905
2019-09-29T22:36:36
2019-09-29T22:36:36
211,733,895
0
0
null
2019-10-22T14:21:27
2019-09-29T22:25:30
Python
UTF-8
Python
false
false
227
py
"""Custom Hemlock database types""" from hemlock.database.types.data_frame import DataFrame, DataFrameType from hemlock.database.types.function import Function, FunctionType from hemlock.database.types.markup import MarkupType
380aef44b9b7964ea582816fee79936176253abd
8152e8fba564bcfa435c45dab41cd6f0b455f857
/farmdation_project/farmdation/contrib/sites/migrations/0002_set_site_domain_and_name.py
4c91e98dd67d65f97ee31ca5c1c705f719a236ea
[ "MIT" ]
permissive
panuta/django-storehouse
af068d9fb356f1f6243854c8944ff8146833202e
6b90b0de231671b20f2f549a74a52d87694d821a
refs/heads/master
2021-01-17T18:19:45.791785
2016-07-02T02:52:04
2016-07-02T02:52:04
62,430,151
0
0
null
null
null
null
UTF-8
Python
false
false
1,152
py
""" To understand why this file is here, please read: http://cookiecutter-django.readthedocs.org/en/latest/faq.html#why-is-there-a-django-contrib-sites-directory-in-cookiecutter-django """ # -*- coding: utf-8 -*- from __future__ import unicode_literals from django.conf import settings from django.db import migrations def update_site_forward(apps, schema_editor): """Set site domain and name.""" Site = apps.get_model("sites", "Site") Site.objects.update_or_create( id=settings.SITE_ID, defaults={ "domain": settings.WEBSITE_DOMAIN, "name": settings.WEBSITE_NAME } ) def update_site_backward(apps, schema_editor): """Revert site domain and name to default.""" Site = apps.get_model("sites", "Site") Site.objects.update_or_create( id=settings.SITE_ID, defaults={ "domain": "example.com", "name": "example.com" } ) class Migration(migrations.Migration): dependencies = [ ('sites', '0001_initial'), ] operations = [ migrations.RunPython(update_site_forward, update_site_backward), ]
df67e70950e1afba7bbc49e3c1d809e2e069b4f4
ecb6b752523a126ef17895854b18e02df41c4cfe
/app_backend/tests/test_skf_categories.py
cd07666e4b26e67263b352f3da1a4e2f7482217e
[ "MIT" ]
permissive
zhanghe06/bearing_project
cd6a1b2ba509392da37e5797a3619454ca464276
25729aa7a8a5b38906e60b370609b15e8911ecdd
refs/heads/master
2023-05-27T17:23:22.561045
2023-05-23T09:26:07
2023-05-23T09:39:14
126,219,603
2
5
MIT
2022-12-08T03:11:27
2018-03-21T17:54:44
JavaScript
UTF-8
Python
false
false
1,824
py
#!/usr/bin/env python # encoding: utf-8 """ @author: zhanghe @software: PyCharm @file: test_skf_categories.py @time: 2020-05-19 16:32 """ import csv import requests def test_get_skf_categories(csv_name, category_id): params = { 'id': category_id, 'language': 'en', 'source': 'webpim', 'site': '307', 'hits': 100, 'offset': 0, } url = 'https://search.skf.com/prod/search-skfcom/rest/apps/opc_v1/searchers/categories' header = ['Designation', 'd[mm]', 'D[mm]', 'B[mm]', 'C[kN]', 'Co[kN]', 'Pu[kN]', 'G-Speed[r/min]', 'O-Speed[r/min]'] out = open('skf_%s.csv' % csv_name, 'a') csv_write = csv.writer(out, dialect='excel') csv_write.writerow(header) c = 0 next_page = 0 while 1: if next_page == -1: break res = requests.get(url, params=params).json() rows = res.get('documentList', {}).get('documents', []) for r in rows: data = [r['title']] + r['table_values'] csv_write.writerow(data[:9]) c += 1 print(params['hits'] * next_page + len(rows)) if res.get('documentList', {}).get('numberOfHits', 0) > params['hits'] * next_page + len(rows): next_page += 1 else: next_page = -1 params['offset'] = params['hits'] * next_page out.close() print('共计%s行记录' % c) def run(): category_map = { 'angular_contact_ball_bearings': 'BA1_010', 'cylindrical_roller_bearings': 'BC1_010', 'angular_contact_thrust_ball_bearings_double_direction': 'BEA_010', 'angular_contact_thrust_ball_bearings_for_screw_drives_single direction': 'BDA_010', } for k, v in category_map.items(): test_get_skf_categories(k, v) if __name__ == '__main__': run()
91aaf6d522486538a0edfd27de42e4a83a77f21e
ab4b210d204512f51a4807a652ccc0edaabe3341
/kombu/tests/test_functional/test_amqplib.py
94b9bfc92db9136c20c361ea1cc76fe35f9ccf9a
[ "BSD-3-Clause" ]
permissive
mixedpuppy/kombu
2c4ec30ccc8ab9ccb20bab525cd525febb085ce2
04b9a6f2fb6854fadbb4c29880866135354fdeef
refs/heads/master
2021-01-18T08:40:39.106451
2010-09-06T22:41:02
2010-09-06T22:41:02
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,517
py
import socket import time import unittest2 as unittest from nose import SkipTest from kombu import BrokerConnection from kombu import Producer, Consumer, Exchange, Queue def consumeN(conn, consumer, n=1): messages = [] def callback(message_data, message): messages.append(message_data) message.ack() prev, consumer.callbacks = consumer.callbacks, [callback] while True: conn.drain_events(timeout=1) if len(messages) >= n: break consumer.callback = prev return messages class test_amqplib(unittest.TestCase): def purge(self, names): chan = self.connection.channel() map(chan.queue_purge, names) def setUp(self): self.connection = BrokerConnection(transport="amqplib") try: self.connection.connect() except socket.error: self.connected = False else: self.connected = True self.exchange = Exchange("tamqplib", "direct") self.queue = Queue("tamqplib", self.exchange, "tamqplib") def test_produce__consume(self): if not self.connected: raise SkipTest("Broker not running.") chan1 = self.connection.channel() producer = Producer(chan1, self.exchange) producer.publish({"foo": "bar"}, routing_key="tamqplib") chan1.close() chan2 = self.connection.channel() consumer = Consumer(chan2, self.queue) message = consumeN(self.connection, consumer) self.assertDictEqual(message[0], {"foo": "bar"}) chan2.close() self.purge(["tamqplib"]) def test_produce__consume_multiple(self): if not self.connected: raise SkipTest("Broker not running.") chan1 = self.connection.channel() producer = Producer(chan1, self.exchange) b1 = Queue("pyamqplib.b1", self.exchange, "b1") b2 = Queue("pyamqplib.b2", self.exchange, "b2") b3 = Queue("pyamqplib.b3", self.exchange, "b3") producer.publish("b1", routing_key="b1") producer.publish("b2", routing_key="b2") producer.publish("b3", routing_key="b3") chan1.close() chan2 = self.connection.channel() consumer = Consumer(chan2, [b1, b2, b3]) messages = consumeN(self.connection, consumer, 3) self.assertItemsEqual(messages, ["b1", "b2", "b3"]) chan2.close() self.purge(["pyamqplib.b1", "pyamqplib.b2", "pyamqplib.b3"]) def test_timeout(self): if not self.connected: raise SkipTest("Broker not running.") chan = self.connection.channel() self.purge([self.queue.name]) consumer = Consumer(chan, self.queue) self.assertRaises(socket.timeout, self.connection.drain_events, timeout=0.3) consumer.cancel() def test_basic_get(self): chan1 = self.connection.channel() producer = Producer(chan1, self.exchange) producer.publish({"basic.get": "this"}, routing_key="basic_get") chan1.close() chan2 = self.connection.channel() queue = Queue("amqplib_basic_get", self.exchange, "basic_get") queue = queue(chan2) queue.declare() for i in range(50): m = queue.get() if m: break time.sleep(0.1) self.assertEqual(m.payload, {"basic.get": "this"}) chan2.close() def tearDown(self): if self.connected: self.connection.close()
f2f0d7e4e1a772df81cc5683ffdb4d196a8873f2
219566971a08625ca14c5ea7a6e1231454694a4b
/utils/sk_utils/encoder.py
bf2df2abcba4cbf2f1eb74522ece933562b35e72
[]
no_license
daxiongshu/kaggle-review
6b22e73702cd7a61f3d175f301c37dcc0d6e3ae2
fc02e85d0544dd64d57c05081c8774dc87d1972e
refs/heads/master
2021-01-19T18:03:23.795917
2017-11-26T18:16:25
2017-11-26T18:16:25
101,109,595
28
14
null
null
null
null
UTF-8
Python
false
false
1,317
py
from sklearn.feature_extraction import DictVectorizer from scipy import sparse def onehot_encode(tr,te,cols=None): if cols is None: cols = [i for i in tr.columns.values if i in te.columns.values] vec = DictVectorizer() for col in cols: tr[col] = tr[col].map(str) te[col] = te[col].map(str) print("start fitting") X = vec.fit_transform(tr[cols].T.to_dict().values()) Xt = vec.transform(te[cols].T.to_dict().values()) print("done fitting",X.shape,Xt.shape) return X,Xt def onehot_encode_bar(tr,te,cols=None,bar=10000): if cols is None: cols = [i for i in tr.columns.values if i in te.columns.values] vec = DictVectorizer() cat,num = [],[] for col in cols: nu = tr[col].unique().shape[0] if (nu<bar and nu>2) or tr[col].dtype=='object': cat.append(col) tr[col] = tr[col].map(str) te[col] = te[col].map(str) else: num.append(col) print("start fitting num of cat features:",len(cat)) X = vec.fit_transform(tr[cat].T.to_dict().values()) Xt = vec.transform(te[cat].T.to_dict().values()) print("done fitting",X.shape,Xt.shape) X = sparse.hstack([X,tr[num].values],format='csr') Xt = sparse.hstack([Xt,te[num].values],format='csr') return X,Xt
af68bf54c136aa54b298013c4dfeb5bfe6778541
ad13583673551857615498b9605d9dcab63bb2c3
/output/instances/nistData/list/float/Schema+Instance/NISTXML-SV-IV-list-float-minLength-2-2.py
ff4cdb9e18778ab154122ead5ea2d8575b566545
[ "MIT" ]
permissive
tefra/xsdata-w3c-tests
397180205a735b06170aa188f1f39451d2089815
081d0908382a0e0b29c8ee9caca6f1c0e36dd6db
refs/heads/main
2023-08-03T04:25:37.841917
2023-07-29T17:10:13
2023-07-30T12:11:13
239,622,251
2
0
MIT
2023-07-25T14:19:04
2020-02-10T21:59:47
Python
UTF-8
Python
false
false
392
py
from output.models.nist_data.list_pkg.float_pkg.schema_instance.nistschema_sv_iv_list_float_min_length_2_xsd.nistschema_sv_iv_list_float_min_length_2 import NistschemaSvIvListFloatMinLength2 obj = NistschemaSvIvListFloatMinLength2( value=[ 4.9827486e+21, 3.5627644e+26, 5.6398728e+22, 8.9484692e+16, 5.2629679e+25, 6.6862685e+16, ] )
1806b9d06d3b1f2f058b6de59649d283c0cc1248
d15092c5fa7e5d825f5204fa2e799f88c9495de5
/non_semantic_speech_benchmark/export_model/model_export_utils.py
4bd07af3f1681f17c17e09b7d7d39b1a8d54e647
[ "CC-BY-4.0", "Apache-2.0" ]
permissive
GuyLor/google-research
229e27ff7cf1c838736704537e3636defa710200
083ccfb249a3e2bfc49a9d56f7d2b7aae42e8c2c
refs/heads/master
2023-09-05T16:28:26.720671
2021-11-16T06:17:56
2021-11-16T06:17:56
428,534,818
0
0
Apache-2.0
2021-11-16T05:56:17
2021-11-16T05:56:16
null
UTF-8
Python
false
false
6,971
py
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities and common steps for model export.""" import os from typing import Any, Dict, List, Optional from absl import flags from absl import logging import numpy as np import tensorflow as tf from non_semantic_speech_benchmark.data_prep import data_prep_utils from non_semantic_speech_benchmark.distillation import frontend_lib from non_semantic_speech_benchmark.distillation import models from non_semantic_speech_benchmark.distillation.compression_lib import compression_op as compression from non_semantic_speech_benchmark.distillation.compression_lib import compression_wrapper def get_experiment_dirs(experiment_dir): """Returns a list of experiment directories. NOTE: This assumes that only folders with hyperparams in their name occur in the working dict. Args: experiment_dir: Base for all directories. Returns: List of specific experiment subdirs. """ if not tf.io.gfile.exists(experiment_dir): raise ValueError(f'Experiment dir doesn\'t exist: {experiment_dir}') experiment_dirs = [f for f in tf.io.gfile.listdir(experiment_dir) if tf.io.gfile.isdir(os.path.join(experiment_dir, f))] return experiment_dirs def get_params(experiment_dir_str): """Extracts hyperparams from experiment directory string. Args: experiment_dir_str: The folder-name for the set of hyperparams. Eg: '1-al=1.0,ap=False,lr=0.0001,ms=small,tbs=512' Returns: A dict mapping param key (str) to eval'ed value (float/eval/string). """ parsed_params = {} start_idx = experiment_dir_str.find('-') + 1 for kv in experiment_dir_str[start_idx:].split(','): cur_split = kv.split('=') if len(cur_split) != 2: raise ValueError(f'Folder doesn\'t split properly: {kv}') key, value = cur_split try: value = eval(value) # pylint: disable=eval-used except: # pylint: disable=bare-except pass parsed_params[key] = value return parsed_params def get_default_compressor(): compression_params = compression.CompressionOp.get_default_hparams().parse('') compressor = compression_wrapper.get_apply_compression( compression_params, global_step=0) return compressor def get_model(checkpoint_folder_path, params, tflite_friendly, checkpoint_number = None, include_frontend = False): """Given folder & training params, exports SavedModel without frontend.""" # Optionally override frontend flags from # `non_semantic_speech_benchmark/export_model/tf_frontend.py` override_flag_names = ['frame_hop', 'n_required', 'num_mel_bins', 'frame_width'] for flag_name in override_flag_names: if flag_name in params: setattr(flags.FLAGS, flag_name, params[flag_name]) static_model = models.get_keras_model( params['mt'], bottleneck_dimension=None, output_dimension=1024, truncate_output=params['tr'] if 'tr' in params else False, frontend=include_frontend, compressor=None, tflite=tflite_friendly) checkpoint = tf.train.Checkpoint(model=static_model) if checkpoint_number: checkpoint_to_load = os.path.join( checkpoint_folder_path, f'ckpt-{checkpoint_number}') assert tf.train.load_checkpoint(checkpoint_to_load) else: checkpoint_to_load = tf.train.latest_checkpoint(checkpoint_folder_path) checkpoint.restore(checkpoint_to_load).expect_partial() return static_model def convert_tflite_model(model, quantize, model_path): """Uses TFLiteConverter to convert a Keras Model. Args: model: Keras model obtained from get_tflite_friendly_model. quantize: Whether to quantize TFLite model using dynamic quantization. See: https://www.tensorflow.org/lite/performance/post_training_quant model_path: Path for TFLite file. """ converter = tf.lite.TFLiteConverter.from_keras_model(model) converter.target_spec.supported_ops = [ tf.lite.OpsSet.TFLITE_BUILTINS, # enable TensorFlow Lite ops. # There is a GatherV2 op in the frontend that isn't supported by TFLite # as a builtin op. (It works as a TFLite builtin only if the sample size # to the frontend is a constant) # However, TFLite supports importing some relevant operators from TF, # at the cost of binary size (~ a few MB). # See: https://www.tensorflow.org/lite/guide/ops_select # NOTE: This has no effect on the model/binary size if the graph does not # required the extra TF ops (for example, for no-frontend versio tf.lite.OpsSet.SELECT_TF_OPS # enable TensorFlow ops. ] if quantize: converter.optimizations = [tf.lite.Optimize.DEFAULT] tflite_buffer = converter.convert() with tf.io.gfile.GFile(model_path, 'wb') as f: f.write(tflite_buffer) logging.info('Exported TFLite model to %s.', model_path) def sanity_check( include_frontend, model_path, embedding_dim, tflite, n_required = None, frame_width = None, num_mel_bins = None): """Sanity check model by running dummy inference.""" n_required = n_required or flags.FLAGS.n_required frame_width = frame_width or flags.FLAGS.frame_width num_mel_bins = num_mel_bins or flags.FLAGS.num_mel_bins if include_frontend: input_shape = (1, 2 * n_required) expected_output_shape = (7, embedding_dim) else: feats_inner_dim = frontend_lib.get_frontend_output_shape()[0] * frame_width input_shape = (1, feats_inner_dim, num_mel_bins, 1) expected_output_shape = (1, embedding_dim) logging.info('Input shape: %s. Expected output shape: %s', input_shape, expected_output_shape) model_input = np.zeros(input_shape, dtype=np.float32) if tflite: logging.info('Building tflite interpreter...') interpreter = data_prep_utils.build_tflite_interpreter( model_path) logging.info('Running inference...') output = data_prep_utils.samples_to_embedding_tflite( model_input, sample_rate=16000, interpreter=interpreter, output_key='0', name='sanity_check') else: logging.info('Loading and running inference with SavedModel...') model = tf.saved_model.load(model_path) output = model(model_input)['embedding'].numpy() np.testing.assert_array_equal(output.shape, expected_output_shape) logging.info('Model "%s" worked.', model_path)
4a0f4b497cb62c2567f2afacb29986f97a64d2b4
ddea930392ac5360b21e9043b620e703a9ccb31c
/tfx/components/transform/component.py
7cb900078da95ed33cbe2fdf9bd9a465b5e9a56e
[ "Apache-2.0" ]
permissive
Ark-kun/tfx
9c82b688776c80b2435bbb6154476526e8525ec8
f685f0387bd145316f43ceb484e64f893e749dcb
refs/heads/master
2021-07-25T05:58:15.168607
2020-05-22T01:07:44
2020-05-22T01:08:18
180,868,735
0
0
Apache-2.0
2019-04-11T20:01:57
2019-04-11T20:01:57
null
UTF-8
Python
false
false
6,330
py
# Lint as: python2, python3 # Copyright 2019 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TFX Transform component definition.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from typing import Optional, Text, Union import absl from tfx import types from tfx.components.base import base_component from tfx.components.base import executor_spec from tfx.components.transform import executor from tfx.orchestration import data_types from tfx.types import artifact from tfx.types import artifact_utils from tfx.types import standard_artifacts from tfx.types.standard_component_specs import TransformSpec class Transform(base_component.BaseComponent): """A TFX component to transform the input examples. The Transform component wraps TensorFlow Transform (tf.Transform) to preprocess data in a TFX pipeline. This component will load the preprocessing_fn from input module file, preprocess both 'train' and 'eval' splits of input examples, generate the `tf.Transform` output, and save both transform function and transformed examples to orchestrator desired locations. ## Providing a preprocessing function The TFX executor will use the estimator provided in the `module_file` file to train the model. The Transform executor will look specifically for the `preprocessing_fn()` function within that file. An example of `preprocessing_fn()` can be found in the [user-supplied code]((https://github.com/tensorflow/tfx/blob/master/tfx/examples/chicago_taxi_pipeline/taxi_utils.py)) of the TFX Chicago Taxi pipeline example. ## Example ``` # Performs transformations and feature engineering in training and serving. transform = Transform( examples=example_gen.outputs['examples'], schema=infer_schema.outputs['schema'], module_file=module_file) ``` Please see https://www.tensorflow.org/tfx/transform for more details. """ SPEC_CLASS = TransformSpec EXECUTOR_SPEC = executor_spec.ExecutorClassSpec(executor.Executor) def __init__( self, examples: types.Channel = None, schema: types.Channel = None, module_file: Optional[Union[Text, data_types.RuntimeParameter]] = None, preprocessing_fn: Optional[Union[Text, data_types.RuntimeParameter]] = None, transform_graph: Optional[types.Channel] = None, transformed_examples: Optional[types.Channel] = None, input_data: Optional[types.Channel] = None, instance_name: Optional[Text] = None, enable_cache: Optional[bool] = None): """Construct a Transform component. Args: examples: A Channel of type `standard_artifacts.Examples` (required). This should contain the two splits 'train' and 'eval'. schema: A Channel of type `standard_artifacts.Schema`. This should contain a single schema artifact. module_file: The file path to a python module file, from which the 'preprocessing_fn' function will be loaded. The function must have the following signature. def preprocessing_fn(inputs: Dict[Text, Any]) -> Dict[Text, Any]: ... where the values of input and returned Dict are either tf.Tensor or tf.SparseTensor. Exactly one of 'module_file' or 'preprocessing_fn' must be supplied. preprocessing_fn: The path to python function that implements a 'preprocessing_fn'. See 'module_file' for expected signature of the function. Exactly one of 'module_file' or 'preprocessing_fn' must be supplied. transform_graph: Optional output 'TransformPath' channel for output of 'tf.Transform', which includes an exported Tensorflow graph suitable for both training and serving; transformed_examples: Optional output 'ExamplesPath' channel for materialized transformed examples, which includes both 'train' and 'eval' splits. input_data: Backwards compatibility alias for the 'examples' argument. instance_name: Optional unique instance name. Necessary iff multiple transform components are declared in the same pipeline. enable_cache: Optional boolean to indicate if cache is enabled for the Transform component. If not specified, defaults to the value specified for pipeline's enable_cache parameter. Raises: ValueError: When both or neither of 'module_file' and 'preprocessing_fn' is supplied. """ if input_data: absl.logging.warning( 'The "input_data" argument to the Transform component has ' 'been renamed to "examples" and is deprecated. Please update your ' 'usage as support for this argument will be removed soon.') examples = input_data if bool(module_file) == bool(preprocessing_fn): raise ValueError( "Exactly one of 'module_file' or 'preprocessing_fn' must be supplied." ) transform_graph = transform_graph or types.Channel( type=standard_artifacts.TransformGraph, artifacts=[standard_artifacts.TransformGraph()]) if not transformed_examples: example_artifact = standard_artifacts.Examples() example_artifact.split_names = artifact_utils.encode_split_names( artifact.DEFAULT_EXAMPLE_SPLITS) transformed_examples = types.Channel( type=standard_artifacts.Examples, artifacts=[example_artifact]) spec = TransformSpec( examples=examples, schema=schema, module_file=module_file, preprocessing_fn=preprocessing_fn, transform_graph=transform_graph, transformed_examples=transformed_examples) super(Transform, self).__init__( spec=spec, instance_name=instance_name, enable_cache=enable_cache)
c7c37367f4842a662f51398fc768a9d153243f39
159fddadea70761e5fa15ecc15ab68342958d088
/tours/migrations/0039_auto_20190923_2153.py
60ceae4908da7ea110c38c75959b195ff22bd085
[]
no_license
lalit1796/mytrip
56a2bcdaa70ffe1234025e3b0599c53d4633462c
2b8ab34d16960ef228adb2458e5b4bd0213ee923
refs/heads/master
2023-08-08T01:07:30.487038
2021-09-04T14:04:42
2021-09-04T14:04:42
402,809,166
0
0
null
null
null
null
UTF-8
Python
false
false
415
py
# Generated by Django 2.2.2 on 2019-09-23 16:23 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('tours', '0038_auto_20190923_2151'), ] operations = [ migrations.AlterField( model_name='package', name='uid', field=models.CharField(default='--uid--', max_length=200, unique=True), ), ]
059ed3b99dab6d54ca4af7819e104d653bac903a
0a2cc497665f2a14460577f129405f6e4f793791
/sdk/compute/azure-mgmt-compute/azure/mgmt/compute/v2020_12_01/aio/operations/_disks_operations.py
908b970b39f436b84f4bc140829b20f3c1d96b40
[ "MIT", "LGPL-2.1-or-later", "LicenseRef-scancode-generic-cla" ]
permissive
hivyas/azure-sdk-for-python
112158aa9e1dd6e30cf6b3dde19f5db6ea2a577b
8b3258fa45f5dc25236c22ad950e48aa4e1c181c
refs/heads/master
2023-06-17T12:01:26.392186
2021-05-18T19:56:01
2021-05-18T19:56:01
313,761,277
1
1
MIT
2020-12-02T17:48:22
2020-11-17T22:42:00
Python
UTF-8
Python
false
false
41,458
py
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models as _models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class DisksOperations: """DisksOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.compute.v2020_12_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config async def _create_or_update_initial( self, resource_group_name: str, disk_name: str, disk: "_models.Disk", **kwargs ) -> "_models.Disk": cls = kwargs.pop('cls', None) # type: ClsType["_models.Disk"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-12-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'diskName': self._serialize.url("disk_name", disk_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(disk, 'Disk') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('Disk', pipeline_response) if response.status_code == 202: deserialized = self._deserialize('Disk', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/disks/{diskName}'} # type: ignore async def begin_create_or_update( self, resource_group_name: str, disk_name: str, disk: "_models.Disk", **kwargs ) -> AsyncLROPoller["_models.Disk"]: """Creates or updates a disk. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param disk_name: The name of the managed disk that is being created. The name can't be changed after the disk is created. Supported characters for the name are a-z, A-Z, 0-9 and _. The maximum name length is 80 characters. :type disk_name: str :param disk: Disk object supplied in the body of the Put disk operation. :type disk: ~azure.mgmt.compute.v2020_12_01.models.Disk :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: Pass in True if you'd like the AsyncARMPolling polling method, False for no polling, or your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either Disk or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.compute.v2020_12_01.models.Disk] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.Disk"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._create_or_update_initial( resource_group_name=resource_group_name, disk_name=disk_name, disk=disk, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('Disk', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'diskName': self._serialize.url("disk_name", disk_name, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/disks/{diskName}'} # type: ignore async def _update_initial( self, resource_group_name: str, disk_name: str, disk: "_models.DiskUpdate", **kwargs ) -> "_models.Disk": cls = kwargs.pop('cls', None) # type: ClsType["_models.Disk"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-12-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._update_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'diskName': self._serialize.url("disk_name", disk_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(disk, 'DiskUpdate') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('Disk', pipeline_response) if response.status_code == 202: deserialized = self._deserialize('Disk', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/disks/{diskName}'} # type: ignore async def begin_update( self, resource_group_name: str, disk_name: str, disk: "_models.DiskUpdate", **kwargs ) -> AsyncLROPoller["_models.Disk"]: """Updates (patches) a disk. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param disk_name: The name of the managed disk that is being created. The name can't be changed after the disk is created. Supported characters for the name are a-z, A-Z, 0-9 and _. The maximum name length is 80 characters. :type disk_name: str :param disk: Disk object supplied in the body of the Patch disk operation. :type disk: ~azure.mgmt.compute.v2020_12_01.models.DiskUpdate :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: Pass in True if you'd like the AsyncARMPolling polling method, False for no polling, or your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either Disk or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.compute.v2020_12_01.models.Disk] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.Disk"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._update_initial( resource_group_name=resource_group_name, disk_name=disk_name, disk=disk, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('Disk', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'diskName': self._serialize.url("disk_name", disk_name, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/disks/{diskName}'} # type: ignore async def get( self, resource_group_name: str, disk_name: str, **kwargs ) -> "_models.Disk": """Gets information about a disk. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param disk_name: The name of the managed disk that is being created. The name can't be changed after the disk is created. Supported characters for the name are a-z, A-Z, 0-9 and _. The maximum name length is 80 characters. :type disk_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: Disk, or the result of cls(response) :rtype: ~azure.mgmt.compute.v2020_12_01.models.Disk :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.Disk"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-12-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'diskName': self._serialize.url("disk_name", disk_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('Disk', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/disks/{diskName}'} # type: ignore async def _delete_initial( self, resource_group_name: str, disk_name: str, **kwargs ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-12-01" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'diskName': self._serialize.url("disk_name", disk_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/disks/{diskName}'} # type: ignore async def begin_delete( self, resource_group_name: str, disk_name: str, **kwargs ) -> AsyncLROPoller[None]: """Deletes a disk. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param disk_name: The name of the managed disk that is being created. The name can't be changed after the disk is created. Supported characters for the name are a-z, A-Z, 0-9 and _. The maximum name length is 80 characters. :type disk_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: Pass in True if you'd like the AsyncARMPolling polling method, False for no polling, or your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._delete_initial( resource_group_name=resource_group_name, disk_name=disk_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'diskName': self._serialize.url("disk_name", disk_name, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/disks/{diskName}'} # type: ignore def list_by_resource_group( self, resource_group_name: str, **kwargs ) -> AsyncIterable["_models.DiskList"]: """Lists all the disks under a resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either DiskList or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.compute.v2020_12_01.models.DiskList] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.DiskList"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-12-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_by_resource_group.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('DiskList', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_by_resource_group.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/disks'} # type: ignore def list( self, **kwargs ) -> AsyncIterable["_models.DiskList"]: """Lists all the disks under a subscription. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either DiskList or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.compute.v2020_12_01.models.DiskList] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.DiskList"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-12-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('DiskList', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Compute/disks'} # type: ignore async def _grant_access_initial( self, resource_group_name: str, disk_name: str, grant_access_data: "_models.GrantAccessData", **kwargs ) -> Optional["_models.AccessUri"]: cls = kwargs.pop('cls', None) # type: ClsType[Optional["_models.AccessUri"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-12-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._grant_access_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'diskName': self._serialize.url("disk_name", disk_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(grant_access_data, 'GrantAccessData') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('AccessUri', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _grant_access_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/disks/{diskName}/beginGetAccess'} # type: ignore async def begin_grant_access( self, resource_group_name: str, disk_name: str, grant_access_data: "_models.GrantAccessData", **kwargs ) -> AsyncLROPoller["_models.AccessUri"]: """Grants access to a disk. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param disk_name: The name of the managed disk that is being created. The name can't be changed after the disk is created. Supported characters for the name are a-z, A-Z, 0-9 and _. The maximum name length is 80 characters. :type disk_name: str :param grant_access_data: Access data object supplied in the body of the get disk access operation. :type grant_access_data: ~azure.mgmt.compute.v2020_12_01.models.GrantAccessData :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: Pass in True if you'd like the AsyncARMPolling polling method, False for no polling, or your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either AccessUri or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.compute.v2020_12_01.models.AccessUri] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.AccessUri"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._grant_access_initial( resource_group_name=resource_group_name, disk_name=disk_name, grant_access_data=grant_access_data, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('AccessUri', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'diskName': self._serialize.url("disk_name", disk_name, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_grant_access.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/disks/{diskName}/beginGetAccess'} # type: ignore async def _revoke_access_initial( self, resource_group_name: str, disk_name: str, **kwargs ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-12-01" # Construct URL url = self._revoke_access_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'diskName': self._serialize.url("disk_name", disk_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] request = self._client.post(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _revoke_access_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/disks/{diskName}/endGetAccess'} # type: ignore async def begin_revoke_access( self, resource_group_name: str, disk_name: str, **kwargs ) -> AsyncLROPoller[None]: """Revokes access to a disk. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param disk_name: The name of the managed disk that is being created. The name can't be changed after the disk is created. Supported characters for the name are a-z, A-Z, 0-9 and _. The maximum name length is 80 characters. :type disk_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: Pass in True if you'd like the AsyncARMPolling polling method, False for no polling, or your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._revoke_access_initial( resource_group_name=resource_group_name, disk_name=disk_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'diskName': self._serialize.url("disk_name", disk_name, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_revoke_access.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Compute/disks/{diskName}/endGetAccess'} # type: ignore
d41f85e2c73f965a8555cd3f6da0967a0e321fde
5cc4a73d6fb144d72e74b07a10b60fc36bfe50ec
/videos/api/serializers.py
462b50c2b48ff27afdefbc67ced6a79e795bd6b4
[]
no_license
pedrofolch/digitalsoil
79d9497dcbb54df3c7df64f9da35d71d592fe580
7b6d1ffd34e991cf87c91342e5336a97fa1cf59b
refs/heads/master
2022-12-11T00:47:01.728729
2019-04-11T03:34:12
2019-04-11T03:34:12
120,937,159
0
0
null
2022-12-08T04:58:09
2018-02-09T17:49:10
CSS
UTF-8
Python
false
false
1,113
py
from rest_framework import serializers from videos.models import Video class VideoSerializer(serializers.ModelSerializer): uri = serializers.SerializerMethodField(read_only=True) class Meta: model = Video fields = [ 'uri', 'pk', 'title', 'embed_code', 'share_message', 'order', 'tags', 'slug', 'active', 'featured', 'free_preview', 'category', 'timestamp', 'updated' ] read_only_fields = ['user', 'order', ] def get_uri(self, obj): request = self.context.get('request') return obj.get_api_url(request=request) def validate_title(self, value): """We want the title to be unique""" qs = Video.objects.filter(title__iexact=value) # including instance if self.instance: qs = qs.exclude(pk=self.instance.pk) if qs.exists(): raise serializers.ValidationError("This title has already been used") return value
c079f148da7e00212e3eaf5c747a85338457e1a3
08d02c1dcdac6b909d725cdc3ba4e0cd8a7f203b
/src/krotov/propagators.py
fcdec377f370598de080711e3aad775cb3142963
[ "BSD-3-Clause" ]
permissive
huangdouzi11/krotov
5f49c5e054a079373c40e5e10c2698387a58ef49
3c3d98255e97c3cebde0e1956c2c3de326274c6f
refs/heads/master
2020-11-30T14:22:16.998735
2019-12-16T05:32:33
2019-12-16T05:32:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
14,115
py
r"""Routines that can be passed as `propagator` to :func:`.optimize_pulses` The numerical effort involved in the optimization is almost entirely within the simulation of the system dynamics. In every iteration and for every objective, the system must be "propagated" once forwards in time and once backwards in time, see also :mod:`krotov.parallelization`. The implementation of this time propagation must be inside the user-supplied routine `propagator` that is passed to :func:`.optimize_pulses` and must calculate the propagation over a single time step. In particular, :func:`qutip.mesolve.mesolve` is not automatically used for simulating any dynamics within the optimization. The signature for any `propagator` must be the same as the "reference" :func:`expm` propagator: >>> str(inspect.signature(krotov.propagators.expm)) '(H, state, dt, c_ops=None, backwards=False, initialize=False)' The arguments are as follows (cf. :class:`Propagator`): * `H` is the system Hamiltonian or Liouvillian, in a nested-list format similar to that used by :func:`qutip.mesolve.mesolve`, e.g., for a Hamiltonian $\Op{H} = \Op{H}_0 + c \Op{H}_1$, where $c$ is the value of a control field at a particular point in time, `propagator` would receive a list ``[H0, [H1, c]]`` where ``H0`` and ``H1`` are :class:`qutip.Qobj` operators. The nested-list for `H` used here, with scalar values for the controls, is obtained internally from the format used by :func:`~qutip.mesolve.mesolve`, with time-dependent controls over the entire time grid, via :func:`krotov.conversions.plug_in_pulse_values`. * `state` is the :class:`qutip.Qobj` state that should be propagated, either a Hilbert space state, or a density matrix. * `dt` is the time step (a float). It is always positive, even for ``backwards=True``. * `c_ops` is None, or a list of collapse (Lindblad) operators, where each list element is a :class:`qutip.Qobj` instance (or possibly a nested list, for time-dependent Lindblad operators. Note that is generally preferred for `H` to be a Liouvillian, for dissipative dynamics. * `backwards` (:class:`bool`): If passed as `True`, the `propagator` should propagate backwards in time. In Hilbert space, this means using -`dt` instead of `dt`. In Liouville space, there is no difference between forward and backward propagation. In the context of Krotov's method, the backward propagation uses the conjugate Hamiltonian, respectively Liouvillian. However, the `propagator` routine does not need to be aware of this fact: it will receive the appropriate `H` and `c_ops`. * `initialize` (:class:`bool`): A flag to indicate the beginning of a propagation over a time grid. If False in subsequent calls, the `propagator` may assume that the input `state` is the result of the previous call to `propagator`. The routines in this module are provided with no guarantee to be either general or efficient. The :func:`expm` propagator is exact to machine precision, but generally extremely slow. For "production use", it is recommended to supply a problem-specific `propagator` that is highly optimized for speed. You might consider the use of Cython_. This is key to minimize the runtime of the optimization. The `initialize` flag enables "stateful" propagators that cache data between calls. This can significantly improve numerical efficiency. :class:`DensityMatrixODEPropagator` is an example for such a propagator. In general, any stateful `propagator` should be an instance of :class:`Propagator`. .. _Cython: https://cython.org """ from abc import ABC, abstractmethod import numpy as np import qutip import scipy from qutip.cy.spconvert import dense2D_to_fastcsr_fmode from qutip.cy.spmatfuncs import spmvpy_csr from qutip.superoperator import mat2vec, vec2mat __all__ = ['expm', 'Propagator', 'DensityMatrixODEPropagator'] def expm(H, state, dt, c_ops=None, backwards=False, initialize=False): """Propagate using matrix exponentiation This supports `H` being a Hamiltonian (for a Hilbert space `state`) or a Liouvillian (for `state` being a density matrix) in nested-list format. Collapse operators `c_ops` are not supported. The propagator is not stateful, thus `initialize` is ignored. """ if c_ops is None: c_ops = [] if len(c_ops) > 0: raise NotImplementedError("Liouville exponentiation not implemented") assert isinstance(H, list) and len(H) > 0 eqm_factor = -1j # factor in front of H on rhs of the equation of motion if isinstance(H[0], list): if H[0][1].type == 'super': eqm_factor = 1 if backwards: eqm_factor = eqm_factor.conjugate() A = (eqm_factor * H[0][1]) * H[0][0] else: if H[0].type == 'super': eqm_factor = 1 if backwards: eqm_factor = eqm_factor.conjugate() A = eqm_factor * H[0] for part in H[1:]: if isinstance(part, list): A += (eqm_factor * part[1]) * part[0] else: A += eqm_factor * part ok_types = (state.type == 'oper' and A.type == 'super') or ( state.type in ['ket', 'bra'] and A.type == 'oper' ) if ok_types: return ((A * dt).expm())(state) else: raise NotImplementedError( "Cannot handle argument types A:%s, state:%s" % (A.type, state.type) ) class Propagator(ABC): """Abstract base class for stateful propagators""" @abstractmethod def __call__( self, H, state, dt, c_ops=None, backwards=False, initialize=False ): """Evaluation of a single propagation step Args: H (list): A Hamiltonian or Liouvillian in qutip's nested-list format, with a scalar value in the place of a time-dependency. For example, ``[H0, [H1, u]]`` for a drift Hamiltonian ``H0``, a control Hamiltonian ``H1``, and a scalar value ``u`` that is a time-dependent control evaluated for a particular point in time. state (qutip.Qobj): The state to propagate dt (float): The time step over which to propagate c_ops (list or None): A list of Lindblad operators. Using explicit Lindblad operators should be avoided: it is usually more efficient to convert them into a Lindbladian, passed as `H` backwards (bool): Whether the propagation is forward in time or backward in time initialize (bool): Whether the propagator should (re-)initialize for a new propagation, when the propagator is used to advance on a time grid, `initialize` should be passed as True for the initial time step (0 to `dt` in a forward propagation, or T to T-dt for a backward propagation), and False otherwise. Note: A propagator may assume the propagation to be "sequential" when `initialize` is False. That is, the state to propagate is the result of the previous call to the propagator. """ pass class DensityMatrixODEPropagator(Propagator): """Propagator for density matrix evolution under a Lindbladian See :class:`qutip.solver.Options` for all arguments except `reentrant`. Passing True for the `reentrant` re-initializes the propagator in every time step. Warning: By default, the propagator is not "re-entrant". That is, you cannot use more than one instance of :class:`DensityMatrixODEPropagator` in the same process at the same time. This limitation is due to :class:`scipy.integrate.ode` with the "zvode" integrator not being re-entrant. Passing ``reentrant=True`` side-steps this problem by re-initializating :class:`scipy.integrate.ode` in every time step. This makes it possible to use :class:`DensityMatrixODEPropagator` in the optimization of multiple objectives, but creates a significant overhead. """ def __init__( self, method='adams', order=12, atol=1e-8, rtol=1e-6, nsteps=1000, first_step=0, min_step=0, max_step=0, reentrant=False, ): self.method = method self.order = order self.atol = atol self.rtol = rtol self.nsteps = nsteps self.first_step = first_step self.min_step = min_step self.max_step = max_step self._L_list = None # cached Liouvillian data self._control_indices = None # which indices in `L` have a control val self._r = None # the integrator self._t = 0.0 # time up to which we've integrated self._y = None # current vectorized state self.reentrant = reentrant def __call__( self, H, state, dt, c_ops=None, backwards=False, initialize=False ): """Evaluation of a single propagation step Args: H (list): A Liouvillian superoperator in qutip's nested-list format, with a scalar value in the place of a time-dependency. For example, ``[L0, [L1, u]]`` for a drift Liouvillian ``L0``, a control Liouvillian ``H1``, and a scalar value ``u`` that is a time-dependent control evaluated for a particular point in time. If `initialize` is False, only the control values are taken into account; any operators are assumed to be identical to the internally cached values of `H` during initialization. state (qutip.Qobj): The density matrix to propagate. The passed value is ignored unless `initialize` is given as True. Otherwise, it is assumed that `state` matches the (internally stored) state that was the result from the previous propagation step. dt (float): The time step over which to propagate c_ops (list or None): An empty list, or None. Since this propagator assumes a full Liouvillian, it cannot be combined with Lindblad operators. backwards (bool): Whether the propagation is forward in time or backward in time. Since the equation of motion for a Liouvillian and conjugate Liouvillian is the same, this parameter has no effect. Instead, for the backward propagation, the conjugate Liouvillian must be passed for `L`. initialize (bool): Whether to (re-)initialize for a new propagation. This caches `H` (except for the control values) and `state` internally. """ # H is really an L, but it's a very bad idea for a subclass not to # follow the interface of the parent (including argument names). # Internally, however, we'll use L instead of H if initialize or self.reentrant: self._initialize(H, state, dt, c_ops, backwards) else: if self.reentrant: self._initialize_integrator(self._y) # only update the control values for i in self._control_indices: self._L_list[i][1] = H[i][1] self._t += dt self._r.integrate(self._t) self._y = self._r.y return qutip.Qobj( dense2D_to_fastcsr_fmode( vec2mat(self._y), state.shape[0], state.shape[1] ), dims=state.dims, isherm=True, ) @staticmethod def _rhs(t, rho, L_list): # _rhs being a staticmethod enables the propagator to be pickled (for # parallelization) out = np.zeros(rho.shape[0], dtype=complex) L = L_list[0][0] L_coeff = L_list[0][1] spmvpy_csr(L.data, L.indices, L.indptr, rho, L_coeff, out) for n in range(1, len(L_list)): L = L_list[n][0] L_coeff = L_list[n][1] spmvpy_csr(L.data, L.indices, L.indptr, rho, L_coeff, out) return out def _initialize(self, L, rho, dt, c_ops, backwards): self._initialize_data(L, rho, dt, c_ops, backwards) self._initialize_integrator(self._y) def _initialize_data(self, L, rho, dt, c_ops, backwards): L_list = [] control_indices = [] if not (c_ops is None or len(c_ops) == 0): # in principle, we could convert c_ops to a Lindbladian, here raise NotImplementedError("c_ops not implemented") for (i, spec) in enumerate(L): if isinstance(spec, qutip.Qobj): l_op = spec l_coeff = 1 elif isinstance(spec, list) and isinstance(spec[0], qutip.Qobj): l_op = spec[0] l_coeff = spec[1] control_indices.append(i) else: raise ValueError( "Incorrect specification of time-dependent Liouvillian" ) if l_op.type == 'super': L_list.append([l_op.data, l_coeff, False]) else: raise ValueError( "Incorrect specification of time-dependent Liouvillian" ) self._L_list = L_list self._control_indices = control_indices if rho.type == 'oper': self._y = mat2vec(rho.full()).ravel('F') # initial state else: raise ValueError("rho must be a density matrix") def _initialize_integrator(self, initial_vector): r = scipy.integrate.ode(self._rhs) r.set_integrator( 'zvode', method=self.method, order=self.order, atol=self.atol, rtol=self.rtol, nsteps=self.nsteps, first_step=self.first_step, min_step=self.min_step, max_step=self.max_step, ) r.set_initial_value(initial_vector) r.set_f_params(self._L_list) self._r = r self._t = 0.0
6d640e9621785207c8da853c9f502cf40e5f4c34
74a30d76f49051ec0200a847fe83431a9501f3d7
/address_func.py
a5b6612a9078be5ba1d28b66d635386fd78f59b7
[]
no_license
Milziade/nano_dash
97e827ac24c5e8f3d97e8de69e151afd4d7d8fac
00618fa1f6d425b63f6ada625569eadda69a0176
refs/heads/master
2023-05-01T02:36:51.595622
2021-05-12T14:06:07
2021-05-12T14:06:07
362,456,210
1
0
null
null
null
null
UTF-8
Python
false
false
2,908
py
import requests import pandas as pd import random import colors def get_json(nano_address): action = { 'action': 'account_history', 'account': nano_address, 'count': '-1' } r = requests.post('https://mynano.ninja/api/node', json=action).json() if 'error' in r: return False return r['history'] def get_df(history): df = pd.DataFrame().from_dict(history) df = df.replace('nano_3kwppxjcggzs65fjh771ch6dbuic3xthsn5wsg6i5537jacw7m493ra8574x', 'FreeNanoFaucet.com') df = df.replace('nano_34prihdxwz3u4ps8qjnn14p7ujyewkoxkwyxm3u665it8rg5rdqw84qrypzk', 'nano-faucet.org') df = df.replace('nano_3pg8khw8gs94c1qeq9741n99ubrut8sj3n9kpntim1rm35h4wdzirofazmwt', 'nano.trade') df = df.replace('nano_1tyd79peyzk4bs5ok1enb633dqsrxou91k7y4zzo1oegw4s75bokmj1pey4s', 'Apollo Faucet') df['amount'] = [int(i)/10**30 for i in df['amount']] df['local_timestamp'] = pd.to_datetime(df['local_timestamp'], unit='s') del df['hash'] del df['height'] return df.to_dict('records'), df.columns.values def get_balance(nano_address): action = { "action": "account_info", "account": nano_address } r = requests.post('https://mynano.ninja/api/node', json=action).json() return int(r['balance'])/10**30 def pie_chart(df): receive_acc = list(set(item['account'] for item in df if item['type'] == 'receive')) amount_receive = {i: 0 for i in receive_acc} send_acc = list(set(item['account'] for item in df if item['type'] == 'send')) amount_send = {i: 0 for i in send_acc} for d in df: key = d['account'] if key in amount_receive: amount_receive[key] += d['amount'] else: amount_send[key] += d['amount'] return list(amount_receive.keys()), list(amount_receive.values()), \ list(amount_send.keys()), list(amount_send.values()) def balance_over_time(df: dict): # Otteniamo il momento, il tipo di transazione e l'ammontare time = list([item['type'], item['amount'], str(item['local_timestamp']).split()[0]] for item in df) # Se l'account invia soldi, l'ammontare per il bilancio diviene negativo for item in time: if item[0] == 'send': item[1] = -item[1] time_n = [time[i][2] for i in range(len(time))] # Date e orari di ogni transazione insta_bal = [time[i][1] for i in range(len(time))] overall_bal = [0] # Bilancio cumulativo for i in range(len(time)): x = time[-1-i][1] + overall_bal[-1] overall_bal.append(x) overall_bal.pop(0) return overall_bal, list(reversed(time_n)), list(reversed(insta_bal)) def get_colors(n): # creates n different color colors_list = [] for i in range(n): cols = colors.colors col = random.choice(cols) #cols.remove(col) colors_list.append(col) return colors_list
9cfd5d850bcc7982efa80f394dbca752ca768af5
39c7f0955e0247bbe34ec0f2a4a7e2d3294dc0df
/deployment-scripts/scripts/infrastructure/openstack/openstack-create-instance.py
2426dac27ae7ea1e05036985173780e9337887f9
[]
no_license
marjancek/Showcase
df9eac6b7c32d2209b6ffac3f80d6c6d92c5c1d3
eced27c10b7b9d5e4b10d296661e33cb0375a5fa
refs/heads/master
2021-01-15T09:08:48.146581
2014-11-19T12:13:16
2014-11-19T12:13:16
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,061
py
from novaclient.v1_1 import client as novaclient from common.Cloudscale import * from scripts.common.Cloudscale import check_args, parse_args class CreateInstance: def __init__(self, cfg): self.cfg = cfg self.user = cfg.get('OPENSTACK', 'username') self.pwd = cfg.get('OPENSTACK', 'password') self.url = cfg.get('OPENSTACK', 'auth_url') self.tenant = cfg.get('OPENSTACK', 'tenant_name') self.image_name = cfg.get('OPENSTACK', 'image_name') server = self.create_instance() print [s['addr'] for s in server.addresses[self.tenant] if s['OS-EXT-IPS:type'] == 'floating'][0] def create_instance(self): nc = novaclient.Client(self.user, self.pwd, self.tenant, auth_url=self.url) for f in nc.flavors.list(): print f for server in nc.servers.list(): if server._info['name'] == self.instance_name: return server if __name__ == '__main__': check_args(1, "<config_path>") _, cfg, _, _ = parse_args() CreateInstance(cfg)
43d1732932045b85378fb924ea0c306a767dc816
93090ffc3ccaf142a0c739e00c28486175220373
/04-day/main.py
96482f4046784b840f4b1a090c566af8992a3b4e
[ "MIT" ]
permissive
timbook/advent-of-code-2020
f17b89fb1ccb5fe449b4864cca64a95f527c6782
3b1c107a67b9f31891e77a258e45aee76fac4e47
refs/heads/main
2023-01-25T01:19:02.520349
2020-12-17T20:31:31
2020-12-17T20:31:31
317,431,021
0
0
null
null
null
null
UTF-8
Python
false
false
2,161
py
import re from functools import reduce raw = open('input.txt', 'r').read().split('\n\n') class Passport: required_fields = ['byr', 'iyr', 'eyr', 'hgt', 'hcl', 'ecl', 'pid'] def __init__(self, entry): fields = re.split('\s', entry.strip()) self.fields = {field.split(':')[0]:field.split(':')[1] for field in fields} def is_valid_a(self): return all(req in self.fields for req in self.required_fields) def is_valid_b(self): return self.is_valid_a() and reduce( lambda a, b: a and b, [ self.is_valid_byr(), self.is_valid_iyr(), self.is_valid_eyr(), self.is_valid_hgt(), self.is_valid_hcl(), self.is_valid_ecl(), self.is_valid_pid() ] ) def is_valid_byr(self): byr = self.fields['byr'] return re.match('\d{4}', byr) and (1920 <= int(byr) <= 2002) def is_valid_iyr(self): iyr = self.fields['iyr'] return re.match('\d{4}', iyr) and (2010 <= int(iyr) <= 2020) def is_valid_eyr(self): eyr = self.fields['eyr'] return re.match('\d{4}', eyr) and (2020 <= int(eyr) <= 2030) def is_valid_hgt(self): hgt = self.fields['hgt'][:-2] unit = self.fields['hgt'][-2:] if unit == 'cm': return re.match('\d+', hgt) and (150 <= int(hgt) <= 193) elif unit == 'in': return re.match('\d+', hgt) and (59 <= int(hgt) <= 76) else: return False def is_valid_hcl(self): hcl = self.fields['hcl'] return bool(re.match('#[0-9a-f]{6}', hcl)) def is_valid_ecl(self): return self.fields['ecl'] in ['amb', 'blu', 'brn', 'gry', 'grn', 'hzl', 'oth'] def is_valid_pid(self): return bool(re.match('^\d{9}$', self.fields['pid'])) passports = [Passport(line) for line in raw] n_valid = sum(ppt.is_valid_a() for ppt in passports) print(f"A :: Number of valid passports: {n_valid}") # 199 too high n_valid = sum(ppt.is_valid_b() for ppt in passports) print(f"B :: Number of valid passports: {n_valid}")
5d028cc1080c4c3e46b7d4d114f8177121ac2c6d
d16c15f2fb433c6b5874ea49ff5db89315e9711d
/benchmarks/comparison-with-addict.py
2f6c181632636f0ac48d33a840027e004ad8d8d9
[ "MIT" ]
permissive
vltr/middle
f9e16735beaccafdc7535271418dd9a8f6b22706
f7782610fbb1d9232a3b4cfea057a9331db2775e
refs/heads/develop
2023-08-17T20:35:02.878999
2019-06-18T15:44:46
2019-06-18T15:44:46
138,063,484
11
2
MIT
2023-09-04T21:27:09
2018-06-20T17:15:26
Python
UTF-8
Python
false
false
4,561
py
import cProfile import sys from enum import Enum from enum import IntEnum from enum import unique from typing import Dict from typing import List from typing import Set # --------------------------------------------------------------- # # Import boilerplate # --------------------------------------------------------------- # try: import timy import middle from addict import Dict as ADict except ImportError: print( "To run this script, you must install these dependencies:", file=sys.stderr, ) print("- addict", file=sys.stderr) print("- middle", file=sys.stderr) print("- timy", file=sys.stderr) sys.exit(1) # --------------------------------------------------------------- # # Fixed variables # --------------------------------------------------------------- # TOTAL_LOOPS = 1_000_000 if "short" in sys.argv: TOTAL_LOOPS = 1 # --------------------------------------------------------------- # # Enum definition # --------------------------------------------------------------- # @unique class PlatformEnum(str, Enum): XBOX1 = "XBOX1" PLAYSTATION4 = "PLAYSTATION4" PC = "PC" @unique class LanguageEnum(IntEnum): ENGLISH = 1 JAPANESE = 2 SPANISH = 3 GERMAN = 4 PORTUGUESE = 5 @unique class CityRegionEnum(str, Enum): TROPICAL = "TROPICAL" TEMPERATE = "TEMPERATE" BOREAL = "BOREAL" # --------------------------------------------------------------- # # middle model definition # --------------------------------------------------------------- # class MiddleCity(middle.Model): name: str = middle.field() region: CityRegionEnum = middle.field() class MiddleGame(middle.Model): name: str = middle.field() platform: PlatformEnum = middle.field() score: float = middle.field() resolution_tested: str = middle.field() genre: List[str] = middle.field() rating: Dict[str, float] = middle.field() players: Set[str] = middle.field() language: LanguageEnum = middle.field() awesome_city: MiddleCity = middle.field() # --------------------------------------------------------------- # # Test variable # --------------------------------------------------------------- # MODEL_INSTANCE = { "name": "Cities: Skylines", "platform": "PC", "score": 9.0, "resolution_tested": "1920x1080", "genre": ["Simulators", "City Building"], "rating": {"IGN": 8.5, "Gamespot": 8.0, "Steam": 4.5}, "players": ["Flux", "strictoaster"], "language": 1, "awesome_city": {"name": "Blumenau", "region": "TEMPERATE"}, } # --------------------------------------------------------------- # # Test runnable # --------------------------------------------------------------- # def test_addict(): game = ADict(MODEL_INSTANCE) assert isinstance(game.name, str) assert isinstance(game.platform, str) assert isinstance(game.score, float) assert isinstance(game.resolution_tested, str) assert isinstance(game.genre, list) assert isinstance(game.rating, dict) assert isinstance(game.players, list) assert isinstance(game.language, int) assert isinstance(game.awesome_city, dict) assert isinstance(game.awesome_city.name, str) assert isinstance(game.awesome_city.region, str) def test_middle(): game = MiddleGame(**MODEL_INSTANCE) assert isinstance(game, MiddleGame) assert isinstance(game.name, str) assert isinstance(game.platform, PlatformEnum) assert isinstance(game.score, float) assert isinstance(game.resolution_tested, str) assert isinstance(game.genre, list) assert isinstance(game.rating, dict) assert isinstance(game.players, set) assert isinstance(game.language, LanguageEnum) assert isinstance(game.awesome_city, MiddleCity) assert isinstance(game.awesome_city.name, str) assert isinstance(game.awesome_city.region, CityRegionEnum) # --------------------------------------------------------------- # # Run tests # --------------------------------------------------------------- # def main(): if "profile" in sys.argv: cProfile.run( "for i in range({}): test_addict()".format(TOTAL_LOOPS), sort="tottime", ) cProfile.run( "for i in range({}): test_middle()".format(TOTAL_LOOPS), sort="tottime", ) else: timy.timer(ident="addict", loops=TOTAL_LOOPS)(test_addict).__call__() timy.timer(ident="middle", loops=TOTAL_LOOPS)(test_middle).__call__() if __name__ == "__main__": main()
8d00346ccd82c5a105df92d54bf196574f2e3de6
255e19ddc1bcde0d3d4fe70e01cec9bb724979c9
/all-gists/9c113f9b86aece3efdf169af67c4e436/snippet.py
0262b68437c1a2c6ae2c332e575f4c5626c155a7
[ "MIT" ]
permissive
gistable/gistable
26c1e909928ec463026811f69b61619b62f14721
665d39a2bd82543d5196555f0801ef8fd4a3ee48
refs/heads/master
2023-02-17T21:33:55.558398
2023-02-11T18:20:10
2023-02-11T18:20:10
119,861,038
76
19
null
2020-07-26T03:14:55
2018-02-01T16:19:24
Python
UTF-8
Python
false
false
288
py
def main(): n,k=[int(i) for i in input().split(' ')] a=[1]*(n+1) for i in range(1,min(k, n+1)): a[i]=a[i-1]+a[i-1] if k <= n: a[k]=sum([a[j] for j in range(k)]) for i in range(k+1, n+1): a[i]=a[i-1]+a[i-1]-a[i-k-1] print(str(a[n])) main()
6f30e11fcb2ba4ecc7185185027b62f16a44e4c6
be5ea20226c37d81f1ccb2f704d8825d36e88765
/01. Defining classes/Exercise/01_car.py
00078b2c67447f092dffe365c113ef2ae8c2b86b
[]
no_license
dimDamyanov/PythonOOP
3845e450e5a48fef4f70a186664e07c0cd60e09b
723204f5b7e953874fac9314e48eb1d1628d6ff5
refs/heads/main
2023-04-07T18:00:36.735248
2021-04-19T20:57:14
2021-04-19T20:57:14
341,329,346
0
0
null
null
null
null
UTF-8
Python
false
false
316
py
class Car: def __init__(self, name: str, model: str, engine: str): self.name = name self.model = model self.engine = engine def get_info(self): return f'This is {self.name} {self.model} with engine {self.engine}' car = Car("Kia", "Rio", "1.3L B3 I4") print(car.get_info())
06ab40e0b88490e56e9bd9ac37b30153986def03
09d7c902e35df7eec3d3da192f0aaa47739540a5
/user_portrait/cron/flow4/zmq_work_weibo_flow4.py
241ba690235543b12bd7c89723eb1de326fac4c5
[]
no_license
yuwendong/user_portrait
2a9604ea5389f9410aae98acad11742454c36d6e
1b2cd78c91a7154c3e360a90d8426b53b68b4453
refs/heads/master
2020-12-24T16:41:06.469723
2015-10-15T14:32:26
2015-10-15T14:32:26
38,371,050
1
0
null
2015-07-01T12:54:02
2015-07-01T12:54:01
null
UTF-8
Python
false
false
5,036
py
# -*- coding=utf-8 -*- import re import sys import zmq import time import json import math from datetime import datetime reload(sys) sys.path.append('../../') from time_utils import ts2datetime, datetime2ts from global_utils import R_CLUSTER_FLOW2 as r_cluster from global_config import ZMQ_VENT_PORT_FLOW4, ZMQ_CTRL_VENT_PORT_FLOW4,\ ZMQ_VENT_HOST_FLOW1, ZMQ_CTRL_HOST_FLOW1 from global_config import SENSITIVE_WORDS_PATH f = open(SENSITIVE_WORDS_PATH, 'rb') # test #f = open('/home/ubuntu8/huxiaoqian/user_portrait/user_portrait/cron/flow2/zz.txt', 'rb') def load_sensitive_words(): ZZ_WORD = [] for line in f: line_list = line.split('=') word = line_list[0] ZZ_WORD.append(word.decode('utf-8')) f.close() return ZZ_WORD SENSITIVE_WORD = load_sensitive_words() print 'sensitive_word:', SENSITIVE_WORD def cal_text_work(item): uid = item['uid'] timestamp = item['timestamp'] date = ts2datetime(timestamp) ts = datetime2ts(date) #print 'ts:', date, ts text = item['text'] if isinstance(text, str): text = text.decode('utf-8', 'ignore') RE = re.compile(u'#([a-zA-Z-_⺀-⺙⺛-⻳⼀-⿕々〇〡-〩〸-〺〻㐀-䶵一-鿃豈-鶴侮-頻並-龎]+)#', re.UNICODE) hashtag_list = RE.findall(text) if hashtag_list: # there all use unicode· hashtag_dict = dict() for hashtag in hashtag_list: try: hashtag_dict[hashtag] += 1 except: hashtag_dict[hashtag] = 1 try: hashtag_count_string = r_cluster.hget('hashtag_'+str(ts), str(uid)) #print 'key:hashtag_'+ str(ts) #print 'hget hashtag result:', hashtag_count_string hashtag_count_dict = json.loads(hashtag_count_string) for hashtag in hashtag_dict: count = hashtag_dict[hashtag] try: hashtag_count_dict[hashtag] += count except: hashtag_count_dict[hashtag] = count #print 'hashtag_count_dict:', hashtag_count_dict r_cluster.hset('hashtag_'+str(ts), str(uid), json.dumps(hashtag_count_dict)) except: #print 'hash_dict:', hashtag_dict r_cluster.hset('hashtag_'+str(ts), str(uid), json.dumps(hashtag_dict)) def cal_text_sensitive(item): text = item['text'] uid = item['uid'] timestamp = item['timestamp'] date = ts2datetime(timestamp) ts = datetime2ts(date) if isinstance(text, str): text = text.decode('utf-8', 'ignore') sensitive_result = [word for word in SENSITIVE_WORD if word in text] if sensitive_result: sensitive_dict = dict() for word in sensitive_result: try: sensitive_dict[word] += 1 except: sensitive_dict[word] = 1 #print 'sensitive_dict:', sensitive_dict try: sensitive_count_string = r_cluster.hget('sensitive_'+str(ts), str(uid)) #print 'key:sensitive_', str(ts) #print 'hget sensitive result:', sensitive_count_string sensitive_count_dict = json.loads(sensitive_count_string) for word in sensitive_dict: count = sensitive_dict[word] try: sensitive_count_dict[word] += count except: sensitive_count_dict[word] = count #print 'sensitive_count_dict:', sensitive_count_dict r_cluster.hset('sensitive_'+str(ts), str(uid), json.dumps(sensitive_count_dict)) except: #print 'sensitive:', sensitive_dict r_cluster.hset('sensitive_'+str(ts), str(uid), json.dumps(sensitive_dict)) if __name__ == "__main__": """ receive weibo """ context = zmq.Context() receiver = context.socket(zmq.PULL) receiver.connect('tcp://%s:%s' %(ZMQ_VENT_HOST_FLOW1, ZMQ_VENT_PORT_FLOW4)) controller = context.socket(zmq.SUB) controller.connect("tcp://%s:%s" %(ZMQ_VENT_HOST_FLOW1, ZMQ_CTRL_VENT_PORT_FLOW4) count = 0 tb = time.time() ts = tb while 1: try: item = receiver.recv_json() except Exception, e: print Exception, ":", e if not item: continue if item['sp_type'] == '1': try: if item and (item['message_type']==1 or item['message_type']==3): cal_text_work(item) cal_text_sensitive(item) except: pass count += 1 if count % 10000 == 0: te = time.time() print '[%s] cal speed: %s sec/per %s' % (datetime.now().strftime('%Y-%m-%d %H:%M:%S'), te - ts, 10000) #if count % 100000 == 0: # print '[%s] total cal %s, cost %s sec [avg %s per/sec]' % (datetime.now().strftime('%Y-%m-%d %H:%M:%S'), count, te - tb, count / (te - tb)) ts = te
324d2ab09e9924efc6e877be13f4cdfe40095ef3
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03495/s459851114.py
65115c84d9ff5de8c900d6c54330919f477407fb
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
218
py
# arc086_a.py import collections N, K = map(int, input().split()) A = list(map(int, input().split())) C = collections.Counter(A) C = sorted(C.values()) lenght = len(C) # print(lenght, K, C) print(sum(C[:(lenght-K)]))
2df623dd9db20cd2aa0eb30f1334f2ffc828c00c
a47e5a1565b8b4a23010020fa6ed4225459845e7
/marubatsu1.py
3085d8d5bc8fb46f0a2622392e8575a84bd52493
[]
no_license
katuhito/workspace13
0a4832e510c5f59a48aa0262985bcda91c01908d
16e55c5e6f32e009ff27c9a22315916175303970
refs/heads/master
2023-03-08T08:48:28.602697
2021-03-07T01:07:41
2021-03-07T01:07:41
335,497,536
0
0
null
null
null
null
UTF-8
Python
false
false
811
py
# 3目並べ import random goal = [ 0b111000000, 0b000111000, 0b000000111, 0b100100100, 0b010010010, 0b001001001, 0b100010001, 0b001010100 ] # 3つ並んだか判定 def check(player): for mask in goal: if player & mask == mask: return True return False # 交互に置く def play(p1, p2): if check(p2): #3つ並んだら出力して終了 print([bin(p1), bin(p2)]) return board = p1 | p2 if board == 0b111111111: #すべて置いたら引き分けで終了 print([bin(p1), bin(p2)]) return # 置ける場所を探す w = [i for i in range(9) if(board & (1 << i)) == 0] # ランダムに置いてみる r = random.choice(w) play(p2, p1 | (1 << r)) #手番を入れ替えて次を探す play(0, 0)
a29f6993d7d12c4674aecc24f39f9aa52dc357fc
8b85b933041abac2879484c6280c1bf79f91358d
/moss/plotting.py
b2b3d28e4123da388554e57a623c5361d41b42e4
[ "BSD-3-Clause" ]
permissive
ghaseminya/moss
109a4c37d2ecd85bfaff03c563eded98d5296530
06a0ea862b9a6112921dcf5cf2a6d445d7f7e0dc
refs/heads/master
2020-12-30T14:44:33.504941
2017-05-09T17:24:28
2017-05-09T17:24:28
91,079,527
1
0
null
2017-05-12T10:20:17
2017-05-12T10:20:17
null
UTF-8
Python
false
false
338
py
import matplotlib.pyplot as plt def grid_axes_labels(axes, xlabel=None, ylabel=None, **kws): plt.setp(axes.flat, xlabel="", ylabel="") if xlabel is not None: for ax in axes[-1]: ax.set_xlabel(xlabel, **kws) if ylabel is not None: for ax in axes[:, 0]: ax.set_ylabel(ylabel, **kws)
83a1f372106c9220a41955a816d98ee436bd4081
7e118b7f02275e7d1faf1e24e6bb1f6d1e173da5
/04_factory/pizza_store/lib/pizza.py
4bd3d2bd59b7f2f37614cabbd5b5c69869ede551
[ "MIT" ]
permissive
denzow/practice-design-pattern
e378a7d2d95585ab6e3c3a4b72f46c5faeb2b92b
141d59c51375e36769a73b6ff135a8afae64b664
refs/heads/master
2021-05-13T17:33:10.892543
2018-02-11T14:53:06
2018-02-11T14:53:06
116,826,619
1
0
null
null
null
null
UTF-8
Python
false
false
1,487
py
# coding: utf-8 from abc import ABC, abstractmethod class Pizza(ABC): def __init__(self, ingredient_factory): """ :param lib.pizza_factory.PizzaIngredientFactory ingredient_factory: """ self._ingredient_factory = ingredient_factory self._name = None self._dough = None self._sauce = None self._veggies = [] self._cheese = None self._pepperoni = None self._clam = None @abstractmethod def prepare(self): pass def bake(self): print('350度で25分間焼く') def cut(self): print('ピザを扇型に切り分ける') def box(self): print('PizzaStoreの正式な箱にピザを入れる') def set_name(self, name): self._name = name def get_name(self): return self._name class CheesePizza(Pizza): def prepare(self): print('{}を下処理'.format(self._name)) self._dough = self._ingredient_factory.create_dough() self._sauce = self._ingredient_factory.create_sauce() self._cheese = self._ingredient_factory.create_cheese() class ClamPizza(Pizza): def prepare(self): print('{}を下処理'.format(self._name)) self._dough = self._ingredient_factory.create_dough() self._sauce = self._ingredient_factory.create_sauce() self._cheese = self._ingredient_factory.create_cheese() self._clam = self._ingredient_factory.create_clam()
9ec342d11277ab3c3daa4867c1bb011eb93f1655
fc529d1d801d695150a6ebcd3e2d548ffa8d738d
/tests/test_parser.py
86ba3dbec713ac04cd077e2304299e0d3fd5199a
[]
permissive
JeanExtreme002/Virtual-Assistant
1db080cf3026a64918c0ebadd1727c29bb46205e
1444af964b21c6d043b1b8ccb23f34999c5fd81a
refs/heads/master
2021-07-25T05:54:58.886570
2021-07-09T05:35:31
2021-07-09T05:35:31
219,252,394
7
2
BSD-3-Clause
2020-09-22T16:01:20
2019-11-03T04:41:47
Python
UTF-8
Python
false
false
1,510
py
import os, sys, util sys.path.append(os.getcwd()) from src.assistant.exec.commandList import CommandList from src.assistant.exec.parser import VoiceCommandParser command_list = CommandList("EN-US") parser = VoiceCommandParser(command_list) def test_parse_system_command(): command_instance = parser.parse("repeat hello world") target_command = command_list.get_command_instance_by_voice_command("repeat") assert command_instance.system_command.lower() == "repeat" assert command_instance.args.lower() == "hello world" assert command_instance.info == target_command.info def test_parse_user_command(): voice_command, terminal_command = util.generate_random_user_command() command_list.set_user_command(voice_command, {"terminal_command": terminal_command}) other_voice_command = voice_command + " and something more" other_terminal_command = terminal_command + " and something more" command_list.set_user_command(other_voice_command, {"terminal_command": other_terminal_command}) argument1, argument2 = "a docile dog eating meet", "a cute cat sleeping" command_instance = parser.parse(voice_command + " " + argument1) other_command_instance = parser.parse(other_voice_command + " " + argument2) assert command_instance.terminal_command == terminal_command assert command_instance.args.lower() == argument1 assert other_command_instance.terminal_command == other_terminal_command assert other_command_instance.args.lower() == argument2
7f418a52a6716871d15b6b8f3ba89cbaa3cd4da8
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p03138/s702162180.py
23360336ae7fa25d7e78a6efe78b883d1ec939af
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
434
py
import os, sys, re, math N,K = list(map(int,input().split(' '))) A = list(map(int,input().split(' '))) d = math.ceil(math.log2(1e+12)) ones = [0 for _ in range(d)] for a in A: s = bin(a)[::-1] for i in range(len(s)-2): if s[i] == '1': ones[i] += 1 X = 0 for di in range(d-1,-1,-1): if X + 2 ** di <= K and ones[di] <= N * 0.5: X += 2 ** di ret = 0 for a in A: ret += X ^ a print(ret)
efdd83f89865011b36433b262e2cd99fe684ad1c
6c10c6e229014dc3bf14efaec2ea8bf07c406752
/AILearning/OptimationDeepLearning/MinibatchSGD.py
e41b377b4f3ba2829d2a1b4188d25f78bd57522d
[]
no_license
GuyRobot/AIPythonExamples
e59c6edb355d9cadee2b3f19a087b1b656956262
4acdd0d4966e31a616910554bc075b641aa152df
refs/heads/master
2021-05-21T13:05:49.615593
2021-02-28T06:41:04
2021-02-28T06:41:04
252,662,467
0
0
null
null
null
null
UTF-8
Python
false
false
4,465
py
from d2l import AllDeepLearning as d2l from mxnet import autograd, gluon, init, nd from mxnet.gluon import nn import numpy as np """ Mini batches w←w−η_t*g_t where gt=∂_wf(x_t,w) We can increase the computational efficiency of this operation by applying it to a minibatch of observations at a time. That is, we replace the gradient gt over a single observation by one over a small batch gt= 1/|B_t| * ∂w∑i∈B_t(f(xi,w)) """ def get_data_ch11(batch_size=10, n=1500): data = np.genfromtxt("E:\\Python_Data\\airfoil_self_noise.dat", dtype=np.float32) data = (data - data.mean(axis=0)) / data.std(axis=0) data_iter = d2l.load_array((data[:n, :-1], data[:n, -1]), batch_size, is_train=True) return data_iter, data.shape[1] - 1 def sgd(params, states, hyper_params): for p in params: p[:] -= hyper_params['lr'] * p.grad def train_ch11(trainer_fn, state, hyper_params, data_iter, feature_dim, num_epochs=2): w = nd.random.normal(scale=0.01, shape=(feature_dim, 1)) b = nd.zeros(1) w.attach_grad() b.attach_grad() net, loss = lambda X: d2l.linreg(X, w, b), d2l.squared_loss animator = d2l.Animator(xlabel='epoch', ylabel='loss', xlim=[0, num_epochs], ylim=[0.22, 0.32]) n, timer = 0, d2l.Timer() for _ in range(num_epochs): for X, y in data_iter: with autograd.record(): l = loss(net(X), y).mean() l.backward() trainer_fn([w, b], state, hyper_params) n += X.shape[0] if n % 200 == 0: timer.stop() animator.add(n / X.shape[0] / len(data_iter), d2l.evaluate_loss(net, data_iter, loss)) timer.start() print('loss: %.3f, %.3f sec/epoch' % (animator.Y[0][-1], timer.avg())) return timer.cumsum(), animator.Y[0] def train_sgd(lr, batch_size, num_epochs=2): data_iter, feature_dim = get_data_ch11(batch_size) return train_ch11(sgd, None, {'lr': lr}, data_iter, feature_dim, num_epochs) gd_res = train_sgd(1, 1500, 10) sgd_res = train_sgd(0.005, 1) mini1_res = train_sgd(.4, 100) mini2_res = train_sgd(.05, 10) d2l.set_figsize([6, 3]) d2l.plot(*list(map(list, zip(gd_res, sgd_res, mini1_res, mini2_res))), 'time (sec)', 'loss', xlim=[1e-2, 10], legend=['gd', 'sgd', 'batch size = 100', 'batch size = 10']) d2l.plt.gca().set_xscale('log') d2l.plt.show() def train_gluon_ch11(tr_name, hyper_params, data_iter, num_epochs=2): net = nn.Sequential() net.add(nn.Dense(1)) net.initialize(init.Normal(sigma=.01)) trainer = gluon.Trainer(net.collect_params(), tr_name, hyper_params) loss = gluon.loss.L2Loss() animator = d2l.Animator(xlabel='epoch', ylabel='loss', xlim=[0, num_epochs], ylim=[0.22, 0.35]) n, timer = 0, d2l.Timer() for _ in range(num_epochs): for X, y in data_iter: with autograd.record(): l = loss(net(X), y) l.backward() trainer.step(X.shape[0]) n += X.shape[0] if n % 200 == 0: timer.stop() animator.add(n / X.shape[0]/len(data_iter), (d2l.evaluate_loss(net, data_iter, loss))) timer.start() print('loss: %.3f, %.3f sec/epoch' % (animator.Y[0][-1], timer.avg())) data_iter, _ = get_data_ch11(10) train_gluon_ch11('sgd', {'learning_rate': 0.05}, data_iter) d2l.plt.show() """ Vectorization makes code more efficient due to reduced overhead arising from the deep learning framework and due to better memory locality and caching on CPUs and GPUs. There is a trade-off between statistical efficiency arising from SGD and computational efficiency arising from processing large batches of data at a time. Minibatch stochastic gradient descent offers the best of both worlds: computational and statistical efficiency. In minibatch SGD we process batches of data obtained by a random permutation of the training data (i.e., each observation is processed only once per epoch, albeit in random order). It is advisable to decay the learning rates during training. In general, minibatch SGD is faster than SGD and gradient descent for convergence to a smaller risk, when measured in terms of clock time. """
149b691ee439a8d0a0d99a8d0e4ac6254fc50945
2cc6cf6e9d91799cbd9ac02f2771f7c9f95776bd
/test13.py
ce7a89c8373a7740d97c943989fa75b86726a611
[]
no_license
Master-sum/python_project
f938aa9f27e040c68c11766e1358dd7fff231b22
63036d1d80cd645d8080c8fee5bb30f241ab9914
refs/heads/master
2022-04-22T04:45:21.263195
2020-04-11T11:14:54
2020-04-11T11:14:54
254,782,126
1
0
null
null
null
null
UTF-8
Python
false
false
226
py
def change (aint,alst): aint = 0 alst[0] = 0 alst.append(4) print('aint:',aint) print('alst:',alst) aint = 3 alst = [1,2,3] print('1',aint) print('1',alst) change(aint,alst) print('3',aint) print('3',alst)
aeb8b2fe9095164e8fa12451d0d10e1a784add85
651a296c8f45b5799781fd78a6b5329effe702a0
/subset/comp_rank_grlex.py
0d203ef0c529c7bf4b41b524004553b9408e4928
[]
no_license
pdhhiep/Computation_using_Python
095d14370fe1a01a192d7e44fcc81a52655f652b
407ed29fddc267950e9860b8bbd1e038f0387c97
refs/heads/master
2021-05-29T12:35:12.630232
2015-06-27T01:05:17
2015-06-27T01:05:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,691
py
#!/usr/bin/env python def comp_rank_grlex ( kc, xc ): #*****************************************************************************80 # ## COMP_RANK_GRLEX computes the graded lexicographic rank of a composition. # # Discussion: # # The graded lexicographic ordering is used, over all KC-compositions # for NC = 0, 1, 2, ... # # For example, if KC = 3, the ranking begins: # # Rank Sum 1 2 3 # ---- --- -- -- -- # 1 0 0 0 0 # # 2 1 0 0 1 # 3 1 0 1 0 # 4 1 1 0 1 # # 5 2 0 0 2 # 6 2 0 1 1 # 7 2 0 2 0 # 8 2 1 0 1 # 9 2 1 1 0 # 10 2 2 0 0 # # 11 3 0 0 3 # 12 3 0 1 2 # 13 3 0 2 1 # 14 3 0 3 0 # 15 3 1 0 2 # 16 3 1 1 1 # 17 3 1 2 0 # 18 3 2 0 1 # 19 3 2 1 0 # 20 3 3 0 0 # # 21 4 0 0 4 # .. .. .. .. .. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 30 October 2014 # # Author: # # John Burkardt # # Parameters: # # Input, int KC, the number of parts in the composition. # 1 <= KC. # # Input, int XC[KC], the composition. # For each 1 <= I <= KC, we have 0 <= XC(I). # # Output, int RANK, the rank of the composition. # from i4_choose import i4_choose from i4vec_sum import i4vec_sum from sys import exit import numpy as np # # Ensure that 1 <= KC. # if ( kc < 1 ): print ''; print 'COMP_RANK_GRLEX - Fatal error!' print ' KC < 1' exit ( 'COMP_RANK_GRLEX - Fatal error!' ) # # Ensure that 0 <= XC(I). # for i in range ( 0, kc ): if ( xc[i] < 0 ): print '' print 'COMP_RANK_GRLEX - Fatal error!' print ' XC[I] < 0' exit ( 'COMP_RANK_GRLEX - Fatal error!' ); # # NC = sum ( XC ) # nc = i4vec_sum ( kc, xc ) # # Convert to KSUBSET format. # ns = nc + kc - 1 ks = kc - 1 xs = np.zeros ( ks, dtype = np.int32 ) xs[0] = xc[0] + 1 for i in range ( 2, kc ): xs[i-1] = xs[i-2] + xc[i-1] + 1 # # Compute the rank. # rank = 1; for i in range ( 1, ks + 1 ): if ( i == 1 ): tim1 = 0 else: tim1 = xs[i-2]; if ( tim1 + 1 <= xs[i-1] - 1 ): for j in range ( tim1 + 1, xs[i-1] ): rank = rank + i4_choose ( ns - j, ks - i ) for n in range ( 0, nc ): rank = rank + i4_choose ( n + kc - 1, n ) return rank def comp_rank_grlex_test ( ): #*****************************************************************************80 # ## COMP_RANK_GRLEX_TEST tests COMP_RANK_GRLEX. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 30 October 2014 # # Author: # # John Burkardt # from comp_random_grlex import comp_random_grlex print '' print 'COMP_RANK_GRLEX_TEST' print ' A COMP is a composition of an integer N into K parts.' print ' Each part is nonnegative. The order matters.' print ' COMP_RANK_GRLEX determines the rank of a COMP' print ' from its parts.' print '' print ' Actual Inferred' print ' Test Rank Rank' print '' kc = 3 rank1 = 20 rank2 = 60 seed = 123456789 for test in range ( 0, 5 ): xc, rank3, seed = comp_random_grlex ( kc, rank1, rank2, seed ) rank4 = comp_rank_grlex ( kc, xc ) print ' %4d %6d %8d' % ( test, rank3, rank4 ) # # Terminate. # print '' print 'COMP_RANK_GRLEX_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) comp_rank_grlex_test ( ) timestamp ( )
917f1e4058d8ddec0274a5dd448fc901123da679
e1f53cb481f2b6ea2ac3ee53d0251c5d9ea782e0
/src/pyaid/xml/XMLConfigParser.py
8b3e6cb5d6bcf0235329fc8e3052b949a29c32ed
[]
no_license
hannahp/PyAid
8771ee35c2fdf9503e68e808dc0028e885e68158
b9562a954552334fab16c32a6b8285ea3e1571e0
refs/heads/master
2021-01-22T14:02:26.068735
2014-01-29T23:33:33
2014-01-29T23:33:33
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,164
py
# XMLConfigParser.py # (C)2011 # Scott Ernst import re import xml.dom.minidom as minidom import codecs from pyaid.xml.ConfigData import ConfigData #___________________________________________________________________________________________________ XMLConfigParser class XMLConfigParser(object): """XMLConfigParser.""" #=================================================================================================== # C L A S S TYPE_ID = 'xml' #=================================================================================================== # P U B L I C #___________________________________________________________________________________________________ parseFile @staticmethod def parseFile(path, target=None, parseToInterchangeFormat =False): fh = codecs.open(path, 'r', 'utf-8') xml = fh.read() fh.close() return XMLConfigParser.parse(xml, target, parseToInterchangeFormat) #___________________________________________________________________________________________________ parse @staticmethod def parse(xml, target=None, parseToInterchangeFormat =False): # Removes whitespace between tags to reduce potential parsing issues. pattern = re.compile('\<\?xml(.*)\?\>') if pattern.search(xml) is None: xml = '<?xml version="1.0" encoding="utf-8"?>' + xml dom = minidom.parseString(re.sub('>[\n\r\s\t]+<','><',xml)) if target is None: target = {} cd = ConfigData() for node in dom.childNodes[0].childNodes: # Ignore whitespace generated text nodes if isinstance(node, (minidom.Comment, minidom.Text)): continue XMLConfigParser._parseNode(node, cd) if parseToInterchangeFormat: cd.writeToInterchangeDict(target) else: cd.writeToDict(target) return target #___________________________________________________________________________________________________ serializeToFile @staticmethod def serializeToFile(targetFile, interchangeData): xml = XMLConfigParser.serializeToXML(interchangeData) fh = codecs.open(targetFile, 'wb', 'utf-8') fh.write(xml) fh.close() #___________________________________________________________________________________________________ serialize @staticmethod def serialize(interchangeData): xml = '<vm>\n' for n,v in interchangeData.iteritems(): xml += XMLConfigParser._writeNode(n, v) return (xml + '</vm>').decode('unicode_escape') #=================================================================================================== # P R I V A T E #___________________________________________________________________________________________________ _writeNode @staticmethod def _writeNode(name, data, depth =1): indent = (' '*4*depth) target = indent + '<' if isinstance(data, list): d = '|'.join(data[1]) if isinstance(data[1], list) else str(data) target += data[0] + ' n="' + name + '" v="' + d + '" />\n' elif isinstance(data, dict): target += 'o n="' + name + '">\n' for n,v in data.iteritems(): target += XMLConfigParser._writeNode(n, v, depth+1) target += indent + '</o>' elif isinstance(data, str): target += 's' + 'n="' + name + '" v="' + data + '" />\n' elif isinstance(data, (int, float)): target += 'n' + 'n="' + name + '" v="' + str(data) + '" />\n' else: target += 'unknown n="' + name + '" />' return target #___________________________________________________________________________________________________ _parseNode @staticmethod def _parseNode(node, configData): nodeName = node.getAttribute('n') nodeType = node.tagName if nodeType != 'o': XMLConfigParser._parseAttribute(nodeName, nodeType, node.getAttribute('v'), configData) return cd = ConfigData() for k in node.attributes.keys(): if k != 'n': aValue = node.getAttribute(k) aType = 's' if aValue.find(':') != -1: aValue = node.getAttribute(k).split(':') aType = str(aValue[0]) aValue = aValue[-1] XMLConfigParser._parseAttribute(k, aType, aValue, cd) for child in node.childNodes: XMLConfigParser._parseNode(child, cd) configData.setItem(nodeName, 'o', cd) #___________________________________________________________________________________________________ _parseAttribute @staticmethod def _parseAttribute(attrName, attrType, attrValue, configData): configData.setItem(attrName, attrType, attrValue)
8c0a4f5b85c510d63ce5695baafd7aac77604f94
3d6bb3df9ca1d0de6f749b927531de0790aa2e1d
/compare_SV_groups_to_trees.py
5927663662c3f71b3728d89b37c671512184bf25
[]
no_license
standardgalactic/kuhner-python
da1d66a6d638a9a379ba6bae2affdf151f8c27c5
30b73554cc8bc9d532c8108b34dd1a056596fec7
refs/heads/master
2023-07-07T04:18:30.634268
2020-04-06T04:37:48
2020-04-06T04:37:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
7,128
py
# -*- coding: utf-8 -*- """ Created on Thu Oct 4 12:43:41 2018 @author: Lucian """ from __future__ import division from os import walk from os import path from os import readlink from os import mkdir from os.path import isfile from copy import deepcopy import numpy import math import matplotlib.pyplot as plt import csv import ete3 #import lucianSNPLibrary as lsl groupdir = "SNV_groups/" treedir = "phylip_TS_analysis/" SVfile = "SV_events.txt" patientfile = "patient_analysis_SVs.tsv" allg_outfile = "all_groups_SVs.tsv" #outdir = "SNV_SV_tree_compare" + tag + "/" #if not path.isdir(outdir): # mkdir(outdir) groupfiles = [] for __, _, files in walk(groupdir): groupfiles += files def callGroup(group, allsamples, tree): if len(group) == 1: return "Singleton" if len(group) == len(allsamples): return "Root" trueset = set() falseset = set() for branch in tree: if branch.name != "": for sample in group: if sample in branch.name: trueset.add(branch) for sample in allsamples: if sample in group: continue if sample in branch.name: falseset.add(branch) if "blood" in branch.name: tree.set_outgroup(branch) trueroot = tree.get_common_ancestor(trueset) for fbranch in falseset: testset = trueset.copy() testset.add(fbranch) newroot = tree.get_common_ancestor(testset) if newroot == trueroot: return "Ungrouped" return "Grouped" # Read in the SNV numbers groupdata = {} allsamples= {} for gfile in groupfiles: if "all" in gfile or "patient" in gfile or "SV_" in gfile: continue patient = gfile.split("_")[0] groupdata[patient] = {} allsamples[patient] = set() for line in open(groupdir + gfile, "r"): if "Patient" in line: continue lvec = line.rstrip().split() assert(patient == lvec[0]) count = int(lvec[1]) perc = float(lvec[2]) samples = tuple(lvec[3:]) groupdata[patient][samples] = {} groupdata[patient][samples]["count"] = count groupdata[patient][samples]["percentage"] = perc groupdata[patient][samples]["SV_count"] = 0 for sample in samples: allsamples[patient].add(sample) #Read in the SV numbes SVs = {} samplelists = {} for line in open(SVfile, "r"): if "chr" in line: continue lvec = line.rstrip().split() (__, __, patient, sample, type, ch1, start1, end1, __, ch2, start2, end2, __, __, __, __) = lvec svid = (type, ch1, start1, end1, ch2, start2, end2) if patient not in SVs: SVs[patient] = {} if svid not in SVs[patient]: SVs[patient][svid] = set() SVs[patient][svid].add(sample) #Count the SVs by sample list nmulti = 0 nmulti_singletons = 0 nmulti_multis = 0 nsingle = 0 SVcounts = {} for patient in SVs: SVtotal = 0 for segid in SVs[patient]: samples = list(SVs[patient][segid]) samples.sort() samples = tuple(samples) if samples not in groupdata[patient]: groupdata[patient][samples] = {} groupdata[patient][samples]["count"] = 0 groupdata[patient][samples]["percentage"] = 0.0 groupdata[patient][samples]["SV_count"] = 0 groupdata[patient][samples]["SV_count"] += 1 SVtotal += 1 nsingle += 1 for samples in groupdata[patient]: groupdata[patient][samples]["SV_percentage"] = groupdata[patient][samples]["SV_count"]/SVtotal print("Number of segments with a single call:", str(nsingle)) print("Number of segments with multiple calls:", str(nmulti)) print("Number of segments with multiple calls, all singletons:", str(nmulti_singletons)) print("Number of segments with multiple calls, all multiples:", str(nmulti_multis)) #Now put the tree data in there, too: for patient in groupdata: treefilename = treedir + patient + "_outtree.txt" if patient == "891": treefilename = treedir + patient + "a_outtree.txt" tree = ete3.Tree(treefilename) for samples in groupdata[patient]: groupdata[patient][samples]["matches_tree"] = callGroup(samples, allsamples[patient], tree) #And finally, write out all of our information. outfile = open(groupdir + allg_outfile, "w") outfile.write("Patient\tMatches_tree\tCount\tPercentage\tSV count\tSV percentage\tSample1\tSample2\tSample3\tSample4\tSample5\tSample6\n") for patient in groupdata: for samples in groupdata[patient]: outfile.write(patient) outfile.write("\t" + groupdata[patient][samples]["matches_tree"]) outfile.write("\t" + str(groupdata[patient][samples]["count"])) outfile.write("\t" + str(groupdata[patient][samples]["percentage"])) outfile.write("\t" + str(groupdata[patient][samples]["SV_count"])) outfile.write("\t" + str(groupdata[patient][samples]["SV_percentage"])) for sample in samples: outfile.write("\t" + sample) outfile.write("\n") outfile.close() #Now do some analysis has23GD = ["74", "279", "303", "391", "396", "450", "772", "997"] types = ["Singleton", "Root", "Grouped", "Ungrouped"] outfile = open(groupdir + patientfile, "w") outfile.write("Patient\tnSNVmin\tnSNVmax\thas 2-3 GD") for type in types: outfile.write("\t" + type + " counts") outfile.write("\t" + type + " total") outfile.write("\tUngrouped potential subclone counts\tUngrouped potential scomubclone total\n") for patient in groupdata: smallestSNVcount = 100000 maxSNVcount = 0 for samples in groupdata[patient]: SNVcount = groupdata[patient][samples]["count"] if groupdata[patient][samples]["matches_tree"] == "Grouped": if SNVcount < smallestSNVcount: smallestSNVcount = SNVcount if SNVcount > maxSNVcount: maxSNVcount = SNVcount possibleSubcloneThreshold = smallestSNVcount*3/4 SVcounts = {} for match in types: SVcounts[match] = [] SVcounts["subclones"] = [] for samples in groupdata[patient]: theseSamples = groupdata[patient][samples] SVcount = theseSamples["SV_count"] if SVcount ==0: continue if theseSamples["matches_tree"] == "Ungrouped" and theseSamples["count"] >= possibleSubcloneThreshold: SVcounts["subclones"].append(SVcount) else: SVcounts[theseSamples["matches_tree"]].append(SVcount) outfile.write(patient) outfile.write("\t" + str(possibleSubcloneThreshold)) outfile.write("\t" + str(maxSNVcount)) outfile.write("\t" + str(patient in has23GD)) for type in types: outfile.write("\t") for num in SVcounts[type]: outfile.write("//" + str(num)) outfile.write("\t" + str(sum(SVcounts[type]))) outfile.write("\t") for num in SVcounts["subclones"]: outfile.write("//" + str(num)) outfile.write("\t" + str(sum(SVcounts["subclones"]))) outfile.write("\n") outfile.close()