blob_id
stringlengths
40
40
directory_id
stringlengths
40
40
path
stringlengths
3
616
content_id
stringlengths
40
40
detected_licenses
listlengths
0
112
license_type
stringclasses
2 values
repo_name
stringlengths
5
115
snapshot_id
stringlengths
40
40
revision_id
stringlengths
40
40
branch_name
stringclasses
777 values
visit_date
timestamp[us]date
2015-08-06 10:31:46
2023-09-06 10:44:38
revision_date
timestamp[us]date
1970-01-01 02:38:32
2037-05-03 13:00:00
committer_date
timestamp[us]date
1970-01-01 02:38:32
2023-09-06 01:08:06
github_id
int64
4.92k
681M
star_events_count
int64
0
209k
fork_events_count
int64
0
110k
gha_license_id
stringclasses
22 values
gha_event_created_at
timestamp[us]date
2012-06-04 01:52:49
2023-09-14 21:59:50
gha_created_at
timestamp[us]date
2008-05-22 07:58:19
2023-08-21 12:35:19
gha_language
stringclasses
149 values
src_encoding
stringclasses
26 values
language
stringclasses
1 value
is_vendor
bool
2 classes
is_generated
bool
2 classes
length_bytes
int64
3
10.2M
extension
stringclasses
188 values
content
stringlengths
3
10.2M
authors
listlengths
1
1
author_id
stringlengths
1
132
70f76bc9b439c416383973f9088f2be3a89488ca
cb9b861f5f3c0a36acfa2d0e1664216587b91f07
/svr_surrogate.py
df181b6f63917221a1b40cfcb1ae7a7835fb5914
[]
no_license
rubinxin/SoTL
feae052dba5506b3750126b9f7180a02a01bd998
16e24371972aab2a5fa36f8febbe83ae4dacf352
refs/heads/master
2023-01-20T14:35:37.027939
2020-11-30T16:51:29
2020-11-30T16:51:29
307,888,874
0
0
null
null
null
null
UTF-8
Python
false
false
5,080
py
# Our implementation of SVR-based learning curve extrapolation surrogate # based on the description in B. Baker, O. Gupta, R. Raskar, and N. Naik, # “Accelerating neural architecture search using performance prediction,” arXiv preprint arXiv:1705.10823, 2017. import numpy as np from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import BayesianRidge from sklearn.model_selection import cross_val_score, train_test_split from sklearn.svm import NuSVR import time from scipy import stats def loguniform(low=0, high=1, size=None): return np.exp(np.random.uniform(np.log(low), np.log(high), size)) class LcSVR(object): def __init__(self, VC_all_archs_list, HP_all_archs_list, AP_all_archs_list, test_acc_all_archs_list, n_hypers=1000, n_train=200, seed=0, all_curve=True, model_name='svr'): self.n_hypers = n_hypers self.all_curve = all_curve self.n_train = n_train self.seed = seed self.model_name = model_name self.VC = np.vstack(VC_all_archs_list) self.HP = np.vstack(HP_all_archs_list) self.AP = np.vstack(AP_all_archs_list) self.DVC = np.diff(self.VC, n=1, axis=1) self.DDVC = np.diff(self.DVC, n=1, axis=1) self.max_epoch = self.VC.shape[1] self.test_acc_seed_all_arch = test_acc_all_archs_list def learn_hyper(self, epoch): n_epoch = int(epoch) VC_sub = self.VC[:, :n_epoch] DVC_sub = self.DVC[:, :n_epoch] DDVC_sub = self.DDVC[:, :n_epoch] mVC_sub = np.mean(VC_sub, axis=1)[:, None] stdVC_sub = np.std(VC_sub, axis=1)[:, None] mDVC_sub = np.mean(DVC_sub, axis=1)[:, None] stdDVC_sub = np.std(DVC_sub, axis=1)[:, None] mDDVC_sub = np.mean(DDVC_sub, axis=1)[:, None] stdDDVC_sub = np.std(DDVC_sub, axis=1)[:, None] if self.all_curve: TS = np.hstack([VC_sub, DVC_sub, DDVC_sub, mVC_sub, stdVC_sub]) else: TS = np.hstack([mVC_sub, stdVC_sub, mDVC_sub, stdDVC_sub, mDDVC_sub, stdDDVC_sub]) X = np.hstack([self.AP, self.HP, TS]) y_val_acc = self.VC[:, -1] y_test_acc = np.array(self.test_acc_seed_all_arch) y = np.vstack([y_val_acc, y_test_acc]).T # split into train/test data sets split = (X.shape[0] - self.n_train) / X.shape[0] X_train, X_test, y_both_train, y_both_test = train_test_split( X, y, test_size=split, random_state=self.seed) y_train = y_both_train[:, 0] # all final validation acc y_test = y_both_test[:, 1] # all final test acc np.random.seed(self.seed) # specify model parameters if self.model_name == 'svr': C = loguniform(1e-5, 10, self.n_hypers) nu = np.random.uniform(0, 1, self.n_hypers) gamma = loguniform(1e-5, 10, self.n_hypers) hyper = np.vstack([C, nu, gamma]).T else: print('Not implemented') print(f'start CV on {self.model_name}') mean_score_list = [] t_start = time.time() for i in range(self.n_hypers): # define model if self.model_name == 'svr': model = NuSVR(C=hyper[i, 0], nu=hyper[i, 1], gamma=hyper[i, 2], kernel='rbf') # model = SVR(C=hyper[i, 0], nu=hyper[i, 1], gamma= ,kernel='linear') elif self.model_name == 'blr': model = BayesianRidge(alpha_1=hyper[i, 0], alpha_2=hyper[i, 1], lambda_1=hyper[i, 2], lambda_2=hyper[i, 3]) elif self.model_name == 'rf': model = RandomForestRegressor(n_estimators=int(hyper[i, 0]), max_features=hyper[i, 1]) # perform cross validation to learn the best hyper value scores = cross_val_score(model, X_train, y_train, cv=3) mean_scores = np.mean(scores) mean_score_list.append(mean_scores) t_end = time.time() best_hyper_idx = np.argmax(mean_score_list) best_hyper = hyper[best_hyper_idx] max_score = np.max(mean_score_list) time_taken = t_end - t_start print(f'{self.model_name} on {self.seed} n_train={self.n_train}: ' f'best_hyper={best_hyper}, score={max_score}, time={time_taken}') self.epoch = epoch self.best_hyper = best_hyper self.X_train, self.X_test = X_train, X_test self.y_train, self.y_test = y_train, y_test return best_hyper, time_taken def extrapolate(self): if self.model_name == 'svr': best_model = NuSVR(C=self.best_hyper[0], nu=self.best_hyper[1], gamma=self.best_hyper[2], kernel='rbf') else: print('Not implemented') # train and fit model best_model.fit(self.X_train, self.y_train) y_pred = best_model.predict(self.X_test) rank_corr, p = stats.spearmanr(self.y_test, y_pred) print(f'{self.model_name} on n_train={self.n_train} e={self.epoch}: rank_corr={rank_corr}') return rank_corr
810b042622acc9d9cedfba2b326adb4433c28b73
fe4f2aeb889f939ea6caf4a34371a3558064abcd
/vqa/model_vlmap_finetune.py
5915643c18747587a1c77fb0bddde770a3e5516d
[ "MIT" ]
permissive
HyeonwooNoh/VQA-Transfer-ExternalData
cf9c1b82dd55389dfe5f52d8fd196780dd3d4629
d21b700bcdc3ba3c392ff793b3f5efe23eb68ed6
refs/heads/master
2021-10-25T22:58:00.318492
2019-04-08T04:52:46
2019-04-08T04:52:46
122,662,354
21
3
null
null
null
null
UTF-8
Python
false
false
9,938
py
import cPickle import h5py import os import numpy as np import tensorflow as tf from util import log from vlmap import modules W_DIM = 300 # Word dimension L_DIM = 1024 # Language dimension V_DIM = 1024 class Model(object): def __init__(self, batch, config, is_train=True): self.batch = batch self.config = config self.image_dir = config.image_dir self.is_train = is_train self.pretrained_param_path = config.pretrained_param_path if self.pretrained_param_path is None: raise ValueError('pretrained_param_path is mendatory') self.word_weight_dir = config.vlmap_word_weight_dir if self.word_weight_dir is None: raise ValueError('word_weight_dir is mendatory') self.losses = {} self.report = {} self.mid_result = {} self.vis_image = {} self.vocab = cPickle.load(open(config.vocab_path, 'rb')) self.answer_dict = cPickle.load(open( os.path.join(config.tf_record_dir, 'answer_dict.pkl'), 'rb')) self.num_answer = len(self.answer_dict['vocab']) self.num_train_answer = self.answer_dict['num_train_answer'] self.train_answer_mask = tf.expand_dims(tf.sequence_mask( self.num_train_answer, maxlen=self.num_answer, dtype=tf.float32), axis=0) self.glove_map = modules.LearnGloVe(self.vocab) self.v_word_map = modules.WordWeightEmbed( self.vocab, self.word_weight_dir, 'v_word', scope='V_WordMap') log.infov('loading image features...') with h5py.File(config.vfeat_path, 'r') as f: self.features = np.array(f.get('image_features')) log.infov('feature done') self.spatials = np.array(f.get('spatial_features')) log.infov('spatials done') self.normal_boxes = np.array(f.get('normal_boxes')) log.infov('normal_boxes done') self.num_boxes = np.array(f.get('num_boxes')) log.infov('num_boxes done') self.max_box_num = int(f['data_info']['max_box_num'].value) self.vfeat_dim = int(f['data_info']['vfeat_dim'].value) log.infov('done') self.build() def filter_train_vars(self, trainable_vars): train_vars = [] for var in trainable_vars: train_vars.append(var) return train_vars def filter_transfer_vars(self, all_vars): transfer_vars = [] for var in all_vars: if var.name.split('/')[0] == 'v_word_fc': transfer_vars.append(var) elif var.name.split('/')[0] == 'q_linear_v': transfer_vars.append(var) elif var.name.split('/')[0] == 'v_linear_v': transfer_vars.append(var) elif var.name.split('/')[0] == 'hadamard_attention': transfer_vars.append(var) elif var.name.split('/')[0] == 'q_linear_l': transfer_vars.append(var) elif var.name.split('/')[0] == 'pooled_linear_l': transfer_vars.append(var) elif var.name.split('/')[0] == 'joint_fc': transfer_vars.append(var) return transfer_vars def build(self): """ build network architecture and loss """ """ Visual features """ with tf.device('/cpu:0'): def load_feature(image_idx): selected_features = np.take(self.features, image_idx, axis=0) return selected_features V_ft = tf.py_func( load_feature, inp=[self.batch['image_idx']], Tout=tf.float32, name='sample_features') V_ft.set_shape([None, self.max_box_num, self.vfeat_dim]) num_V_ft = tf.gather(self.num_boxes, self.batch['image_idx'], name='gather_num_V_ft', axis=0) self.mid_result['num_V_ft'] = num_V_ft normal_boxes = tf.gather(self.normal_boxes, self.batch['image_idx'], name='gather_normal_boxes', axis=0) self.mid_result['normal_boxes'] = normal_boxes log.warning('v_linear_v') v_linear_v = modules.fc_layer( V_ft, V_DIM, use_bias=True, use_bn=False, use_ln=True, activation_fn=tf.nn.relu, is_training=self.is_train, scope='v_linear_v') """ Encode question """ q_token, q_len = self.batch['q_intseq'], self.batch['q_intseq_len'] q_embed = tf.nn.embedding_lookup(self.glove_map, q_token) q_L_map, q_L_ft = modules.encode_L_bidirection( q_embed, q_len, L_DIM, scope='encode_L_bi', cell_type='GRU') q_att_key = modules.fc_layer( # [bs, len, L_DIM] q_L_map, L_DIM, use_bias=True, use_bn=False, use_ln=True, activation_fn=tf.nn.relu, is_training=self.is_train, scope='q_att_key') q_att_query = modules.fc_layer( # [bs, L_DIM] q_L_ft, L_DIM, use_bias=True, use_bn=False, use_ln=True, activation_fn=tf.nn.relu, is_training=self.is_train, scope='q_att_query') w_att_score = modules.hadamard_attention( q_att_key, q_len, q_att_query, use_ln=False, is_train=self.is_train, scope='word_attention') q_v_embed = tf.nn.embedding_lookup(self.v_word_map, q_token) q_v_ft = modules.fc_layer( # [bs, len, L_DIM] q_v_embed, L_DIM, use_bias=True, use_bn=False, use_ln=True, activation_fn=tf.nn.relu, is_training=self.is_train, scope='v_word_fc') pooled_q_v = modules.attention_pooling(q_v_ft, w_att_score) # [bs, V_DIM} log.warning('q_linear_v') q_linear_v = modules.fc_layer( pooled_q_v, V_DIM, use_bias=True, use_bn=False, use_ln=True, activation_fn=tf.nn.relu, is_training=self.is_train, scope='q_linear_v') """ Perform attention """ att_score = modules.hadamard_attention(v_linear_v, num_V_ft, q_linear_v, use_ln=False, is_train=self.is_train, scope='hadamard_attention') self.mid_result['att_score'] = att_score pooled_V_ft = modules.attention_pooling(V_ft, att_score) """ Answer classification """ log.warning('pooled_linear_l') pooled_linear_l = modules.fc_layer( pooled_V_ft, L_DIM, use_bias=True, use_bn=False, use_ln=True, activation_fn=tf.nn.relu, is_training=self.is_train, scope='pooled_linear_l') log.warning('q_linear_l') l_linear_l = modules.fc_layer( q_L_ft, L_DIM, use_bias=True, use_bn=False, use_ln=True, activation_fn=tf.nn.relu, is_training=self.is_train, scope='q_linear_l') joint = modules.fc_layer( pooled_linear_l * l_linear_l, L_DIM * 2, use_bias=True, use_bn=False, use_ln=True, activation_fn=tf.nn.relu, is_training=self.is_train, scope='joint_fc') joint = tf.nn.dropout(joint, 0.5) logit = modules.WordWeightAnswer( joint, self.answer_dict, self.word_weight_dir, use_bias=True, is_training=self.is_train, scope='WordWeightAnswer') """ Compute loss and accuracy """ with tf.name_scope('loss'): answer_target = self.batch['answer_target'] loss = tf.nn.sigmoid_cross_entropy_with_logits( labels=answer_target, logits=logit) train_loss = tf.reduce_mean(tf.reduce_sum( loss * self.train_answer_mask, axis=-1)) report_loss = tf.reduce_mean(tf.reduce_sum(loss, axis=-1)) pred = tf.cast(tf.argmax(logit, axis=-1), dtype=tf.int32) one_hot_pred = tf.one_hot(pred, depth=self.num_answer, dtype=tf.float32) acc = tf.reduce_mean( tf.reduce_sum(one_hot_pred * answer_target, axis=-1)) self.mid_result['pred'] = pred self.losses['answer'] = train_loss self.report['answer_train_loss'] = train_loss self.report['answer_report_loss'] = report_loss self.report['answer_accuracy'] = acc """ Prepare image summary """ """ with tf.name_scope('prepare_summary'): self.vis_image['image_attention_qa'] = self.visualize_vqa_result( self.batch['image_id'], self.mid_result['normal_boxes'], self.mid_result['num_V_ft'], self.mid_result['att_score'], self.batch['q_intseq'], self.batch['q_intseq_len'], self.batch['answer_target'], self.mid_result['pred'], max_batch_num=20, line_width=2) """ self.loss = self.losses['answer'] # scalar summary for key, val in self.report.items(): tf.summary.scalar('train/{}'.format(key), val, collections=['heavy_train', 'train']) tf.summary.scalar('val/{}'.format(key), val, collections=['heavy_val', 'val']) tf.summary.scalar('testval/{}'.format(key), val, collections=['heavy_testval', 'testval']) # image summary for key, val in self.vis_image.items(): tf.summary.image('train-{}'.format(key), val, max_outputs=10, collections=['heavy_train']) tf.summary.image('val-{}'.format(key), val, max_outputs=10, collections=['heavy_val']) tf.summary.image('testval-{}'.format(key), val, max_outputs=10, collections=['heavy_testval']) return self.loss
69fffa27f3895ac0ec76dfa70d08f3e0ab8e62f2
e76c8b127ae58c5d3b5d22c069719a0343ea8302
/tf_ex_5_linear_reg_with_eager_api.py
31dc0013a8602daf6ff29927b818a2c4785c48cd
[]
no_license
janFrancoo/TensorFlow-Tutorials
18f3479fc647db3cbdb9fb9d5c0b9a67be804642
b34dbf903d2f5ff7bde6fb279fef6d7e2004a3bf
refs/heads/master
2020-07-23T02:01:14.940932
2019-10-26T08:41:23
2019-10-26T08:41:23
207,410,175
0
0
null
null
null
null
UTF-8
Python
false
false
1,490
py
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt # Set Eager API tf.enable_eager_execution() tfe = tf.contrib.eager # Parameters num_steps = 1000 learning_rate = .01 # Training data x_train = np.array([3.3, 4.4, 5.5, 6.71, 6.93, 4.168, 9.779, 6.182, 7.59, 2.167, 7.042, 10.791, 5.313, 7.997, 5.654, 9.27, 3.1]) y_train = np.array([1.7, 2.76, 2.09, 3.19, 1.694, 1.573, 3.366, 2.596, 2.53, 1.221, 2.827, 3.465, 1.65, 2.904, 2.42, 2.94, 1.3]) # Weights w = tfe.Variable(np.random.randn()) b = tfe.Variable(np.random.randn()) # Construct a linear model def linear_regression(inputs): return (inputs * w) + b # Define loss function def mean_square_fn(model_fn, inputs, labels): return tf.reduce_sum(((model_fn(inputs) - labels) ** 2) / (2 * len(x_train))) # Define optimizer optimizer = tf.train.GradientDescentOptimizer(learning_rate) # Compute gradients grad = tfe.implicit_gradients(mean_square_fn) # Start training for step in range(num_steps): optimizer.apply_gradients(grad(linear_regression, x_train, y_train)) if (step + 1) % 50 == 0: print("Epoch: {}, Loss: {}, W: {}, b: {}".format(step + 1, mean_square_fn(linear_regression, x_train, y_train), w.numpy(), b.numpy())) # Display plt.plot(x_train, y_train, 'ro', label='Original data') plt.plot(x_train, np.array(w * x_train + b), label='Fitted line') plt.legend() plt.show()
c094ca768a09f90b5ff71b83649c758e5347b11a
dbf34d933a288e6ebca568eaebaa53e5b98ba7c1
/src/rebecca/index/splitter.py
34d4aa005a6bca3c5d5273b7acd574142148f30d
[]
no_license
rebeccaframework/rebecca.index
dc68dfa2c1b77fc273a12b3f934074722fb8300c
ab452c9b375227e84fab42496633dc026421a283
refs/heads/master
2021-01-10T21:11:53.567186
2013-05-05T18:53:58
2013-05-05T18:53:58
null
0
0
null
null
null
null
UTF-8
Python
false
false
759
py
from zope.interface import implementer from zope.index.text.interfaces import ISplitter from persistent import Persistent from igo.Tagger import Tagger @implementer(ISplitter) class IgoSplitter(Persistent): def __init__(self, dictionary): self.dictionary = dictionary @property def tagger(self): if not hasattr(self, '_v_tagger'): self._v_tagger = Tagger(self.dictionary) return self._v_tagger def process(self, terms): results = [] for term in terms: results.extend(self.tagger.wakati(term)) return results def processGlob(self, terms): results = [] for term in terms: results.extend(self.tagger.wakati(term)) return results
c361eca7aae2a04817c28fe837c042af887c9567
411e5de8629d6449ff9aad2eeb8bb1dbd5977768
/AlgoExpert/greedy/minimumWaitingTime.py
654f08d249d968d38d7b072c4abfa1fdfa5e8e37
[ "MIT" ]
permissive
Muzque/Leetcode
cd22a8f5a17d9bdad48f8e2e4dba84051e2fb92b
2c37b4426b7e8bfc1cd2a807240b0afab2051d03
refs/heads/master
2022-06-01T20:40:28.019107
2022-04-01T15:38:16
2022-04-01T15:39:24
129,880,002
1
1
MIT
2022-04-01T15:39:25
2018-04-17T09:28:02
Python
UTF-8
Python
false
false
486
py
""" """ testcases = [ { 'input': [3, 2, 1, 2, 6], 'output': 17, }, { 'input': [2], 'output': 0, }, ] def minimumWaitingTime(queries): queries.sort() ret = 0 for i in range(len(queries)-1): if i > 0: queries[i] += queries[i-1] ret += queries[i] return ret if __name__ == '__main__': for tc in testcases: ret = minimumWaitingTime(tc['input']) assert(ret == tc['output'])
3d90e1a3792eaec38062f7ea1dbe0cfdf9455b06
3fa4a77e75738d00835dcca1c47d4b99d371b2d8
/backend/pyrogram/raw/base/server_dh_inner_data.py
6813099ac6c9cffd446ad983b6da40d37ae93590
[ "Apache-2.0" ]
permissive
appheap/social-media-analyzer
1711f415fcd094bff94ac4f009a7a8546f53196f
0f9da098bfb0b4f9eb38e0244aa3a168cf97d51c
refs/heads/master
2023-06-24T02:13:45.150791
2021-07-22T07:32:40
2021-07-22T07:32:40
287,000,778
5
3
null
null
null
null
UTF-8
Python
false
false
1,903
py
# Pyrogram - Telegram MTProto API Client Library for Python # Copyright (C) 2017-2021 Dan <https://github.com/delivrance> # # This file is part of Pyrogram. # # Pyrogram is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Pyrogram is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with Pyrogram. If not, see <http://www.gnu.org/licenses/>. # # # # # # # # # # # # # # # # # # # # # # # # # !!! WARNING !!! # # This is a generated file! # # All changes made in this file will be lost! # # # # # # # # # # # # # # # # # # # # # # # # # from typing import Union from pyrogram import raw from pyrogram.raw.core import TLObject ServerDHInnerData = Union[raw.types.ServerDHInnerData] # noinspection PyRedeclaration class ServerDHInnerData: # type: ignore """This base type has 1 constructor available. Constructors: .. hlist:: :columns: 2 - :obj:`ServerDHInnerData <pyrogram.raw.types.ServerDHInnerData>` """ QUALNAME = "pyrogram.raw.base.ServerDHInnerData" def __init__(self): raise TypeError("Base types can only be used for type checking purposes: " "you tried to use a base type instance as argument, " "but you need to instantiate one of its constructors instead. " "More info: https://docs.pyrogram.org/telegram/base/server-dh-inner-data")
6927adb2877ed18131676f2f35fb65189fcc17a5
ca617409a3a992a2014eab34bf45ea5cd22021d7
/event_management/serializers/venue.py
c595ecb61bac9e3ec3a25c229f8cb80dabf5c790
[]
no_license
Imam-Hossain-45/ticketing
89463b048db3c7b1bc92a4efc39b83c4f17d967f
65a124d579162a687b20dfbdba7fd85c110006c6
refs/heads/master
2022-04-14T22:36:23.152185
2020-03-07T11:52:38
2020-03-07T11:52:38
230,717,468
0
0
null
null
null
null
UTF-8
Python
false
false
495
py
from rest_framework import serializers from event_management.models import Venue from settings.models import Address class AddressCreateSerializer(serializers.ModelSerializer): class Meta: model = Address fields = '__all__' class VenueCreateSerializer(serializers.ModelSerializer): venue_address = AddressCreateSerializer() class Meta: model = Venue fields = ('name', 'amenities', 'capacity', 'contact_person', 'contact_mobile', 'venue_address')
8985c156f126ecc79db188ed97f0e9294a25d6d3
b048abb5f35b5c69b59387dda86ef0ed62a5b378
/elias.py
c0500cbf67226b4feaa64037b1e26cba1ccc0539
[]
no_license
vam-sin/DoctorElias
e7cc362417ad33bb0b43b354be3c65b7b38aa5fc
a3c543de17a3ab2f33e9d2c54159c0d378164084
refs/heads/master
2022-09-02T02:52:53.616775
2020-05-30T11:04:03
2020-05-30T11:04:03
257,921,467
0
1
null
null
null
null
UTF-8
Python
false
false
10,899
py
# tasks # Consider all symptoms. # Build engine # Take severity symptoms: 0-5 scale, 0 being not at all, 5 meaning extremely severe. # Libraries from experta import * symptoms_list = ['headache', 'back pain', 'chest pain', 'cough', 'fainting', 'fatigue', 'sunken eyes', 'low body temperature', 'restlesness', 'sore throat', 'fever', 'nausea', 'blurred vision'] # Diseases: [0,0,0,0,0,0,0,0,0,0,0,0,0] diseases_dict = ["Alzheimers", "Arthritis", "Asthma", "Diabetes", "Epilepsy", "Glaucoma", "Heart Disease", "Heat Stroke", "Hyperthyroidism", "Hypothermia", "Jaundice", "Sinusitis", "Tuberculosis"] symptoms_disease_map = [ [0,0,0,0,0,0,0,1,0,0,0,0,0] ,[0,1,0,0,0,0,1,0,0,0,0,0,0] ,[0,0,1,1,0,0,0,1,0,0,0,0,0] ,[0,0,0,0,0,0,1,0,0,0,0,1,1] ,[0,0,0,0,0,0,1,0,0,0,0,0,0] ,[1,0,0,0,0,0,0,0,0,0,0,1,1] ,[0,0,1,0,0,0,0,0,0,0,0,1,0] ,[1,0,0,0,0,0,0,0,0,1,0,1,0] ,[0,0,0,0,0,0,1,0,0,0,0,1,0] ,[0,0,0,0,1,0,0,0,1,0,0,0,0] ,[0,0,0,0,0,0,1,0,0,1,0,1,0] ,[1,0,0,1,0,1,0,0,0,1,0,0,0] ,[0,0,1,1,0,0,0,0,0,1,0,0,0]] def get_symptoms(disease): return symptoms_disease_map[diseases_dict.index(disease)] # Doctor Class class DoctorElias(KnowledgeEngine): @DefFacts() def start(self): print("Hey! Welcome to the Olive Wellness Centre, I am Elias! I believe you are here for a checkup. In order to do that, I will need you to ask some questions for me.\n For all these questions, answer with a number between 0 to 5. With 0 meaning that symptom is not present and 5 meaning a severe case of that symptom.\n") yield Fact(action = "diagnose") @Rule(Fact(action = "diagnose"), NOT(Fact(headache = W())), salience = 1) def symptom1(self): self.declare(Fact(headache = input("Do you have a headache? "))) @Rule(Fact(action = "diagnose"), NOT(Fact(back_pain = W())), salience = 1) def symptom2(self): self.declare(Fact(back_pain = input("Do you have back pain? "))) @Rule(Fact(action = "diagnose"), NOT(Fact(chest_pain = W())), salience = 1) def symptom3(self): self.declare(Fact(chest_pain = input("Do you have chest pain? "))) @Rule(Fact(action = "diagnose"), NOT(Fact(cough = W())), salience = 1) def symptom4(self): self.declare(Fact(cough = input("Do you have a cough? "))) @Rule(Fact(action = "diagnose"), NOT(Fact(fainting = W())), salience = 1) def symptom5(self): self.declare(Fact(fainting = input("Do you experience fainting? "))) @Rule(Fact(action = "diagnose"), NOT(Fact(fatigue = W())), salience = 1) def symptom6(self): self.declare(Fact(fatigue = input("Do you experience fatigue? "))) @Rule(Fact(action = "diagnose"), NOT(Fact(sunken_eyes = W())), salience = 1) def symptom7(self): self.declare(Fact(sunken_eyes = input("Do you have sunken eyes? "))) @Rule(Fact(action = "diagnose"), NOT(Fact(low_body_temp = W())), salience = 1) def symptom8(self): self.declare(Fact(low_body_temp = input("Do you have a low body temperature? "))) @Rule(Fact(action = "diagnose"), NOT(Fact(restlessness = W())), salience = 1) def symptom9(self): self.declare(Fact(restlessness = input("Do you feel restless? "))) @Rule(Fact(action = "diagnose"), NOT(Fact(sore_throat = W())), salience = 1) def symptom10(self): self.declare(Fact(sore_throat = input("Do you have a sore throat? "))) @Rule(Fact(action = "diagnose"), NOT(Fact(fever = W())), salience = 1) def symptom11(self): self.declare(Fact(fever = input("Do you have a fever? "))) @Rule(Fact(action = "diagnose"), NOT(Fact(nausea = W())), salience = 1) def symptom12(self): self.declare(Fact(nausea = input("Do you feel nauseous? "))) @Rule(Fact(action = "diagnose"), NOT(Fact(blurred_vision = W())), salience = 1) def symptom13(self): self.declare(Fact(blurred_vision = input("Do you experience blurred vision? "))) @Rule(Fact(action='diagnose'),Fact(headache="0"),Fact(back_pain="0"),Fact(chest_pain="0"),Fact(cough="0"),Fact(fainting="0"),Fact(sore_throat="0"),NOT(Fact(fatigue="0")),Fact(restlessness="0"),Fact(low_body_temp="0"),NOT(Fact(fever="0")),Fact(sunken_eyes="0"),NOT(Fact(nausea="0")),Fact(blurred_vision="0")) def disease_0(self): self.declare(Fact(disease="Jaundice")) @Rule(Fact(action='diagnose'),Fact(headache="0"),Fact(back_pain="0"),Fact(chest_pain="0"),Fact(cough="0"),Fact(fainting="0"),Fact(sore_throat="0"),Fact(fatigue="0"),NOT(Fact(restlessness="0")),Fact(low_body_temp="0"),Fact(fever="0"),Fact(sunken_eyes="0"),Fact(nausea="0"),Fact(blurred_vision="0")) def disease_1(self): self.declare(Fact(disease="Alzheimers")) @Rule(Fact(action='diagnose'),Fact(headache="0"),NOT(Fact(back_pain="0")),Fact(chest_pain="0"),Fact(cough="0"),Fact(fainting="0"),Fact(sore_throat="0"),NOT(Fact(fatigue="0")),Fact(restlessness="0"),Fact(low_body_temp="0"),Fact(fever="0"),Fact(sunken_eyes="0"),Fact(nausea="0"),Fact(blurred_vision="0")) def disease_2(self): self.declare(Fact(disease="Arthritis")) @Rule(Fact(action='diagnose'),Fact(headache="0"),Fact(back_pain="0"),NOT(Fact(chest_pain="0")),NOT(Fact(cough="0")),Fact(fainting="0"),Fact(sore_throat="0"),Fact(fatigue="0"),Fact(restlessness="0"),Fact(low_body_temp="0"),NOT(Fact(fever="1")),Fact(sunken_eyes="0"),Fact(nausea="0"),Fact(blurred_vision="0")) def disease_3(self): self.declare(Fact(disease="Tuberculosis")) @Rule(Fact(action='diagnose'),Fact(headache="0"),Fact(back_pain="0"),NOT(Fact(chest_pain="0")),NOT(Fact(cough="0")),Fact(fainting="0"),Fact(sore_throat="0"),Fact(fatigue="0"),NOT(Fact(restlessness="0")),Fact(low_body_temp="0"),Fact(fever="0"),Fact(sunken_eyes="0"),Fact(nausea="0"),Fact(blurred_vision="0")) def disease_4(self): self.declare(Fact(disease="Asthma")) @Rule(Fact(action='diagnose'),NOT(Fact(headache="0")),Fact(back_pain="0"),Fact(chest_pain="0"),NOT(Fact(cough="0")),Fact(fainting="0"),NOT(Fact(sore_throat="0")),Fact(fatigue="0"),Fact(restlessness="0"),Fact(low_body_temp="0"),NOT(Fact(fever="0")),Fact(sunken_eyes="0"),Fact(nausea="0"),Fact(blurred_vision="0")) def disease_5(self): self.declare(Fact(disease="Sinusitis")) @Rule(Fact(action='diagnose'),Fact(headache="0"),Fact(back_pain="0"),Fact(chest_pain="0"),Fact(cough="0"),Fact(fainting="0"),Fact(sore_throat="0"),NOT(Fact(fatigue="0")),Fact(restlessness="0"),Fact(low_body_temp="0"),Fact(fever="0"),Fact(sunken_eyes="0"),Fact(nausea="0"),Fact(blurred_vision="0")) def disease_6(self): self.declare(Fact(disease="Epilepsy")) @Rule(Fact(action='diagnose'),Fact(headache="0"),Fact(back_pain="0"),NOT(Fact(chest_pain="0")),Fact(cough="0"),Fact(fainting="0"),Fact(sore_throat="0"),Fact(fatigue="0"),Fact(restlessness="0"),Fact(low_body_temp="0"),Fact(fever="0"),Fact(sunken_eyes="0"),NOT(Fact(nausea="0")),Fact(blurred_vision="0")) def disease_7(self): self.declare(Fact(disease="Heart Disease")) @Rule(Fact(action='diagnose'),Fact(headache="0"),Fact(back_pain="0"),Fact(chest_pain="0"),Fact(cough="0"),Fact(fainting="0"),Fact(sore_throat="0"),NOT(Fact(fatigue="0")),Fact(restlessness="0"),Fact(low_body_temp="0"),Fact(fever="0"),Fact(sunken_eyes="0"),NOT(Fact(nausea="0")),NOT(Fact(blurred_vision="0"))) def disease_8(self): self.declare(Fact(disease="Diabetes")) @Rule(Fact(action='diagnose'),NOT(Fact(headache="0")),Fact(back_pain="0"),Fact(chest_pain="0"),Fact(cough="0"),Fact(fainting="0"),Fact(sore_throat="0"),Fact(fatigue="0"),Fact(restlessness="0"),Fact(low_body_temp="0"),Fact(fever="0"),Fact(sunken_eyes="0"),NOT(Fact(nausea="0")),NOT(Fact(blurred_vision="0"))) def disease_9(self): self.declare(Fact(disease="Glaucoma")) @Rule(Fact(action='diagnose'),Fact(headache="0"),Fact(back_pain="0"),Fact(chest_pain="0"),Fact(cough="0"),Fact(fainting="0"),Fact(sore_throat="0"),NOT(Fact(fatigue="0")),Fact(restlessness="0"),Fact(low_body_temp="0"),Fact(fever="0"),Fact(sunken_eyes="0"),NOT(Fact(nausea="0")),Fact(blurred_vision="0")) def disease_10(self): self.declare(Fact(disease="Hyperthyroidism")) @Rule(Fact(action='diagnose'),Fact(headache="1"),Fact(back_pain="0"),Fact(chest_pain="0"),Fact(cough="0"),Fact(fainting="0"),Fact(sore_throat="0"),Fact(fatigue="0"),Fact(restlessness="0"),Fact(low_body_temp="0"),NOT(Fact(fever="0")),Fact(sunken_eyes="0"),NOT(Fact(nausea="0")),Fact(blurred_vision="0")) def disease_11(self): self.declare(Fact(disease="Heat Stroke")) @Rule(Fact(action='diagnose'),Fact(headache="0"),Fact(back_pain="0"),Fact(chest_pain="0"),Fact(cough="0"),NOT(Fact(fainting="0")),Fact(sore_throat="0"),Fact(fatigue="0"),Fact(restlessness="0"),NOT(Fact(low_body_temp="0")),Fact(fever="0"),Fact(sunken_eyes="0"),Fact(nausea="0"),Fact(blurred_vision="0")) def disease_12(self): self.declare(Fact(disease="Hypothermia")) @Rule(Fact(action='diagnose'),Fact(disease=MATCH.disease),salience = -998) def disease(self, disease): id_disease = disease disease_details = get_symptoms(id_disease) print("\nThe disease could mostly be " + str(id_disease)) print("The rule taken into account was: ") for i in range(len(disease_details)): if disease_details[i] != 0: print("<" + symptoms_list[i] + "> yes.") else: print("<" + symptoms_list[i] + "> no.") print(" --> " + str(id_disease)) @Rule(Fact(action='diagnose'), Fact(headache=MATCH.headache), Fact(back_pain=MATCH.back_pain), Fact(chest_pain=MATCH.chest_pain), Fact(cough=MATCH.cough), Fact(fainting=MATCH.fainting), Fact(sore_throat=MATCH.sore_throat), Fact(fatigue=MATCH.fatigue), Fact(low_body_temp=MATCH.low_body_temp), Fact(restlessness=MATCH.restlessness), Fact(fever=MATCH.fever), Fact(sunken_eyes=MATCH.sunken_eyes), Fact(nausea=MATCH.nausea), Fact(blurred_vision=MATCH.blurred_vision),NOT(Fact(disease=MATCH.disease)),salience = -999) def unmatched(self,headache, back_pain, chest_pain, cough, fainting, sore_throat, fatigue, restlessness,low_body_temp ,fever ,sunken_eyes ,nausea ,blurred_vision): print("\nCould not exactly diagnose what the disease is, but let me try maximum symptom match!") dis_lis = [headache, back_pain, chest_pain, cough, fainting, sore_throat, fatigue, restlessness,low_body_temp ,fever ,sunken_eyes ,nausea ,blurred_vision] max_val = 0 max_dis = "" for i in range(len(symptoms_disease_map)): temp_val = 0 for j in range(len(symptoms_disease_map[i])): if dis_lis[j] == str(symptoms_disease_map[i][j]): temp_val += 1 if temp_val > max_val: max_val = temp_val max_dis = diseases_dict[i] id_disease = max_dis disease_details = get_symptoms(id_disease) print("\nThe disease could mostly be " + str(id_disease)) print("The rule taken into account was: ") for i in range(len(disease_details)): if disease_details[i] != 0: print("<" + symptoms_list[i] + "> yes.") else: print("<" + symptoms_list[i] + "> no.") print(" --> " + str(id_disease)) if __name__ == "__main__": elias = DoctorElias() while 1: elias.reset() elias.run() print("Would you like to diagnose some other symptoms?") if input() == "no": exit()
c9826cc909c6ccaa1d56df36acffaefce9861555
4a2f3369620add7a72de4f8c50ed208442e024ba
/my_admin/service/sites.py
690c970485c84f936cf79d39885be357d65086f3
[]
no_license
YangQian1992/CRM
a7292a48bbaf221baffdfdc80b04270f9d7a2398
7cd026f99a4bf46ed896517fbd1141d92a1072f3
refs/heads/master
2020-03-28T01:01:32.674293
2018-10-10T07:25:38
2018-10-10T07:25:38
147,470,027
1
0
null
null
null
null
UTF-8
Python
false
false
17,420
py
from django.conf.urls import url from django.shortcuts import render, HttpResponse, redirect from django.db.models.fields.related import ManyToManyField,ForeignKey,OneToOneField from django.utils.safestring import mark_safe from django.urls import reverse from django import forms from my_admin.utils.mypage import MyPage from django.db.models import Q import copy class Showlist(object): """ 展示类:只服务于listview视图函数 """ def __init__(self, config_obj, data_list, request): self.config_obj = config_obj self.data_list = data_list self.request = request # 分页 current_page = request.GET.get("page", 1) # 获取当前页面 all_data_amount = self.data_list.count() # 获取当前模型表中的总数据量 self.myPage_obj = MyPage(current_page, all_data_amount, request) # 实例化对象 self.current_show_data = data_list[self.myPage_obj.start:self.myPage_obj.end] # 获取一个新式actions格式:[{"text":"xxx","name":"patch_delete"},] def get_new_actions(self): add_actions = [] add_actions.extend(self.config_obj.actions) add_actions.append(self.config_obj.patch_delete) new_actions = [] # 新式actions for func in add_actions: new_actions.append({ "text":func.short_description, "name":func.__name__, }) return new_actions # 获取一个新式list_filter格式:{"publish":[xx,xx,],"authors":[xx,xx,]} def get_new_list_filter(self): new_list_filter = {} for str_field in self.config_obj.list_filter: get_url_params = copy.deepcopy(self.request.GET) current_field_pk = get_url_params.get(str_field,0) field_obj = self.config_obj.model._meta.get_field(str_field) # 新建存放表中数据的列表 model_list = [] if current_field_pk == 0: a_tag = '<a style="color:purple" href="?{}">{}</a>'.format(get_url_params.urlencode(), "全部") else: get_url_params.pop(str_field) a_tag = '<a style="color:purple" href="?{}">{}</a>'.format(get_url_params.urlencode(), "全部") model_list.append(a_tag) # 判断是否是关联字段 if isinstance(field_obj,ManyToManyField) or isinstance(field_obj,ForeignKey) or isinstance(field_obj,OneToOneField): rel_model = field_obj.rel.to rel_model_queryset = rel_model.objects.all() for rel_model_obj in rel_model_queryset: get_url_params[str_field] = rel_model_obj.pk if rel_model_obj.pk == int(current_field_pk): a_tag = '<a class="active" href="?{}">{}</a>'.format(get_url_params.urlencode(), rel_model_obj) else: a_tag = '<a href="?{}">{}</a>'.format(get_url_params.urlencode(), rel_model_obj) model_list.append(a_tag) else: current_model_queryset = self.config_obj.model.objects.values(str_field) for current_model_dict in current_model_queryset: get_url_params[str_field] = current_model_dict[str_field] if current_model_dict[str_field] == current_field_pk: a_tag = '<a class="active" href="?{}">{}</a>'.format(get_url_params.urlencode(), current_model_dict[str_field]) else: a_tag = '<a href="?{}">{}</a>'.format(get_url_params.urlencode(),current_model_dict[str_field]) model_list.append(a_tag) new_list_filter[str_field] = model_list return new_list_filter def get_header(self): # 创建数据表格头部分 header_list = [] for field_or_func in self.config_obj.get_new_list_display(): # 判断 field_or_func 是否可以被调用 if callable(field_or_func): add_header = field_or_func(self.config_obj, is_header=True) else: # 判断 field_or_func 是否为"__str__" if field_or_func == "__str__": # 继承默认配置类,就默认展示当前访问模型表的表名 add_header = self.config_obj.model._meta.model_name.upper() else: # 自定制配置类,就获取字段对象 field_obj = self.config_obj.model._meta.get_field(field_or_func) add_header = field_obj.verbose_name header_list.append(add_header) return header_list def get_body(self): # 创建数据表格体部分 new_data_list = [] for data_obj in self.current_show_data: inner_data_list = [] for field_or_func in self.config_obj.get_new_list_display(): # 判断 field_or_func 是否可以被调用 if callable(field_or_func): field_value = field_or_func(self.config_obj, data_obj=data_obj) else: # 针对继承默认配置类的模型表的list_display的值是"__str__".进行异常处理 try: # 判断field_or_func 所对应的字段对象的类型是否为ManyToManyField field_obj = self.config_obj.model._meta.get_field(field_or_func) if isinstance(field_obj, ManyToManyField): # 多对多关系的字段需要调用all() rel_obj_list = getattr(data_obj, field_or_func).all() rel_data_list = [str(item) for item in rel_obj_list] field_value = ",".join(rel_data_list) else: # 除了多对多关系以外的字段都可以直接添加,无需调用all() field_value = getattr(data_obj, field_or_func) if field_or_func in self.config_obj.list_display_links: # 若在当前访问模型表的配置类对象的list_display_links中能找到此field_or_func,则给此field_or_func对应的字段值添加a标签,可以跳转到编辑页面,再将构建好的a标签赋值给field_value change_url = self.config_obj.get_change_url(data_obj) field_value = mark_safe('<a href="{}">{}</a>'.format(change_url, field_value)) except Exception as e: # field_or_func 为"__str__" field_value = getattr(data_obj, field_or_func) inner_data_list.append(field_value) new_data_list.append(inner_data_list) return new_data_list class ModelMyAdmin(): model_form_class = [] list_display = ["__str__", ] list_display_links = [] search_fields = [] actions = [] list_filter = [] def __init__(self, model): self.model = model self.model_name = self.model._meta.model_name self.app_label = self.model._meta.app_label # 批量删除函数 def patch_delete(self,request,queryset): queryset.delete() # 定义汉语描述 patch_delete.short_description = "批量删除" # 获取增删改查的url def get_list_url(self): list_url = "{}_{}_list".format(self.app_label, self.model_name) return reverse(list_url) def get_add_url(self): list_url = "{}_{}_add".format(self.app_label, self.model_name) return reverse(list_url) def get_delete_url(self, data_obj): list_url = "{}_{}_delete".format(self.app_label, self.model_name) return reverse(list_url, args=(data_obj.pk,)) def get_change_url(self, data_obj): list_url = "{}_{}_change".format(self.app_label, self.model_name) return reverse(list_url, args=(data_obj.pk,)) # 默认操作函数 def delete(self, data_obj=None, is_header=False): if is_header: return "操作" else: return mark_safe('<a href="{}">删除</a>'.format(self.get_delete_url(data_obj))) def change(self, data_obj=None, is_header=False): if is_header: return "操作" else: return mark_safe('<a href="{}">编辑</a>'.format(self.get_change_url(data_obj))) def checkbox(self, data_obj=None, is_header=False): if is_header: return "选择" else: return mark_safe('<input type="checkbox" name="pk_list" value={}>'.format(data_obj.pk)) # 获取新的list_display def get_new_list_display(self): new_list_display = [] new_list_display.extend(self.list_display) new_list_display.insert(0, ModelMyAdmin.checkbox) new_list_display.append(ModelMyAdmin.delete) if not self.list_display_links: # 若继承默认配置类的list_display_links,则需要默认添加编辑列 new_list_display.append(ModelMyAdmin.change) return new_list_display # 获取默认配置类或者自定制配置类中的model_form def get_model_form(self): if self.model_form_class: return self.model_form_class else: class ModelFormClass(forms.ModelForm): class Meta: model = self.model fields = '__all__' return ModelFormClass # 获取新的model_form(添加pop功能) def get_new_model_form(self,form): from django.forms.models import ModelChoiceField for bfield in form: if isinstance(bfield.field, ModelChoiceField): bfield.is_pop = True # 获取字段的字符串格式 str_field = bfield.name # 获取关联字段所对应的表(类) rel_model = self.model._meta.get_field(str_field).rel.to # 获取关联字段所对应的表名 str_model_name = rel_model._meta.model_name # 获取关联字段所对应的app名 str_app_label = rel_model._meta.app_label # 通过反射获取到url _url = reverse("{}_{}_add".format(str_app_label,str_model_name)) bfield.url = _url bfield.pop_back_id = "id_" + str_field return form # 获取定位搜索条件 def get_search_condition(self, request): # 从url上获取填入的搜索值,没有就默认为空 search_value = request.GET.get("query", "") # 实例化出一个搜索对象 search_condition = Q() if search_value: # 将搜索联合条件更改为或,默认为且 search_condition.connector = "or" for field in self.search_fields: search_condition.children.append((field + '__icontains', search_value)) # 若不走if条件,则返回的是空搜索条件,即会显示所有信息 return search_condition # 获取筛选搜索条件 def get_filter_condition(self,request): filter_condition = Q() for key,val in request.GET.items(): if key in ["page","query"]: continue filter_condition.children.append((key,val)) return filter_condition # 视图函数(增删改查) def listview(self, request): if request.method == "POST": func_name = request.POST.get("actions","") pk_list = request.POST.getlist("pk_list") print("actions-->",func_name) # food: --> patch_init print("pk_list-->",pk_list) # pk_list--> ['5061', '5062', '5063'] queryset = self.model.objects.filter(pk__in = pk_list) if func_name: # func_name-->str 故需要通过反射来找到函数名 action = getattr(self,func_name) # 执行函数 action(request,queryset) # 获取添加数据的url add_url = self.get_add_url() # 获取展示数据的url list_url = self.get_list_url() # 获取当前模型表的所有数据 data_list = self.model.objects.all() # 获取定位搜索条件对象 search_condition = self.get_search_condition(request) # 获取筛选搜索条件对象 filter_condition = self.get_filter_condition(request) # 数据过滤 data_list = data_list.filter(search_condition).filter(filter_condition) # 需求:要用到Showlist类中的两个方法,故需要先实例化对象 show_list = Showlist(self, data_list, request) # 调用类中的方法或属性 header_list = show_list.get_header() current_show_data = show_list.get_body() page_html = show_list.myPage_obj.ret_html() new_actions = show_list.get_new_actions() new_list_filter = show_list.get_new_list_filter() return render(request, "my-admin/listview.html", { "current_show_data": current_show_data, "header_list": header_list, "current_model": self.model_name, "add_url": add_url, "page_html": page_html, "search_fields": self.search_fields, "new_actions": new_actions, "list_filter":self.list_filter, "list_url":list_url, "new_list_filter":new_list_filter, }) def addview(self, request): ModelFormClass = self.get_model_form() if request.method == "POST": form = ModelFormClass(request.POST) form_obj = self.get_new_model_form(form) if form_obj.is_valid(): obj = form_obj.save() pop = request.GET.get("pop","") if pop: form_data = str(obj) pk = obj.pk return render(request,"my-admin/pop.html",{"form_data":form_data,"pk":pk}) else: list_url = self.get_list_url() return redirect(list_url) return render(request, "my-admin/addview.html", { "form_obj": form_obj, "model_name": self.model_name, }) form = ModelFormClass() form_obj = self.get_new_model_form(form) return render(request, "my-admin/addview.html", { "form_obj": form_obj, "model_name": self.model_name, }) def changeview(self, request, id): ModelFormClass = self.get_model_form() change_obj = self.model.objects.get(pk=id) if request.method == "POST": form = ModelFormClass(data=request.POST, instance=change_obj) form_obj = self.get_new_model_form(form) if form_obj.is_valid(): form_obj.save() list_url = self.get_list_url() return redirect(list_url) return render(request, "my-admin/changeview.html", { "form_obj": form_obj, "model_name": self.model_name, }) form = ModelFormClass(instance=change_obj) form_obj = self.get_new_model_form(form) return render(request, "my-admin/changeview.html", { "form_obj": form_obj, "model_name": self.model_name, }) def deleteview(self, request, id): delete_obj = self.model.objects.get(pk=id) list_url = self.get_list_url() if request.method == "POST": delete_obj.delete() return redirect(list_url) form_obj = self.get_model_form()(instance=delete_obj) return render(request, "my-admin/delete.html", { "model_name": self.model_name, "form_obj": form_obj, "list_url": list_url, }) def extra_url(self): res = [] return res def get_urls_02(self): res = [ url(r'^$', self.listview, name="{}_{}_list".format(self.app_label, self.model_name)), url(r'^add/$', self.addview, name="{}_{}_add".format(self.app_label, self.model_name)), url(r'^(\d+)/change/$', self.changeview, name="{}_{}_change".format(self.app_label, self.model_name)), url(r'^(\d+)/delete/$', self.deleteview, name="{}_{}_delete".format(self.app_label, self.model_name)), ] res.extend(self.extra_url()) return res @property def urls(self): return self.get_urls_02(), None, None class MyAdminSite(): def __init__(self): self._registry = {} def register(self, model, my_admin_class=None): if not my_admin_class: my_admin_class = ModelMyAdmin self._registry[model] = my_admin_class(model) def get_urls_01(self): res = [] for model, config_obj in self._registry.items(): model_name = model._meta.model_name app_label = model._meta.app_label add_url = url(r'^{}/{}/'.format(app_label, model_name), config_obj.urls) res.append(add_url) return res @property def urls(self): return self.get_urls_01(), None, None site = MyAdminSite()
1e77c71e14d2df705175577ba95acfce83d220cc
e64db6fced156ea26497958dd3a9265db177ba2b
/manage.py
abb96d18b3314fdce50aae2b041b57e426611e36
[]
no_license
skyride/reve-flairs
9c2fe782db8f74696d4eea42c83abf1ceb55e72e
6f84d571f5756964b8bcb822147ce9b144036c76
refs/heads/master
2022-12-16T22:25:45.671614
2020-06-12T20:58:58
2020-06-12T20:58:58
110,861,354
2
1
null
2022-11-22T02:01:52
2017-11-15T16:55:30
Python
UTF-8
Python
false
false
804
py
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "flairs.settings") try: from django.core.management import execute_from_command_line except ImportError: # The above import may fail for some other reason. Ensure that the # issue is really that Django is missing to avoid masking other # exceptions on Python 2. try: import django except ImportError: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) raise execute_from_command_line(sys.argv)
2ea30df6db951105fb4bc2b8f1eb8fdd7e346f4d
cbd60a20e88adb174b40832adc093d848c9ca240
/solutions/busnumbers/busnumbers.py
690a0be7996a788721974b7b20150d4091bcf299
[]
no_license
maxoja/kattis-solution
377e05d468ba979a50697b62ce8efab5dcdddc63
b762bfa9bbf6ef691d3831c628d9d16255ec5e33
refs/heads/master
2018-10-09T04:53:31.579686
2018-07-19T12:39:09
2018-07-19T12:39:09
111,871,691
0
0
null
null
null
null
UTF-8
Python
false
false
579
py
n = int(input()) seq = sorted(list(map(int, input().split()))) prevs = [] for i in range(len(seq)): current = seq[i] nxt = -1 if i == len(seq)-1 else seq[i+1] if nxt == current+1: prevs.append(current) continue else: if prevs: ## print('enter' , prevs) if len(prevs) >= 2: print(str(prevs[0]) + '-' + str(current), end=' ') else: print(prevs[0], current, end=' ') prevs = [] else: print(current, end=' ')
[ "-" ]
-
3bd03fe4d769ba382d80392cf0c083c66cb30acb
71501709864eff17c873abbb97ffabbeba4cb5e3
/llvm13.0.0/lldb/test/API/functionalities/thread/concurrent_events/TestConcurrentTwoBreakpointThreads.py
1f6832d9ecdb1b993193adf3655ceba218a19e06
[ "NCSA", "Apache-2.0", "LLVM-exception" ]
permissive
LEA0317/LLVM-VideoCore4
d08ba6e6f26f7893709d3285bdbd67442b3e1651
7ae2304339760685e8b5556aacc7e9eee91de05c
refs/heads/master
2022-06-22T15:15:52.112867
2022-06-09T08:45:24
2022-06-09T08:45:24
189,765,789
1
0
NOASSERTION
2019-06-01T18:31:29
2019-06-01T18:31:29
null
UTF-8
Python
false
false
700
py
import unittest2 from lldbsuite.test.decorators import * from lldbsuite.test.concurrent_base import ConcurrentEventsBase from lldbsuite.test.lldbtest import TestBase @skipIfWindows class ConcurrentTwoBreakpointThreads(ConcurrentEventsBase): mydir = ConcurrentEventsBase.compute_mydir(__file__) # Atomic sequences are not supported yet for MIPS in LLDB. @skipIf(triple='^mips') @expectedFailureAll(archs=["aarch64"], oslist=["freebsd"], bugnumber="llvm.org/pr49433") def test(self): """Test two threads that trigger a breakpoint. """ self.build(dictionary=self.getBuildFlags()) self.do_thread_actions(num_breakpoint_threads=2)
433be8a7d7781edf3a6c0b6fd7ea8ce7d790b2f2
ca7aa979e7059467e158830b76673f5b77a0f5a3
/Python_codes/p02803/s436740421.py
e18ddeaa284997e7a2fa19641dcbbc710be7f0af
[]
no_license
Aasthaengg/IBMdataset
7abb6cbcc4fb03ef5ca68ac64ba460c4a64f8901
f33f1c5c3b16d0ea8d1f5a7d479ad288bb3f48d8
refs/heads/main
2023-04-22T10:22:44.763102
2021-05-13T17:27:22
2021-05-13T17:27:22
367,112,348
0
0
null
null
null
null
UTF-8
Python
false
false
1,057
py
from collections import deque H, W = map(int, input().split()) field = ['#' * (W+2)] * (H+2) for i in range(1, H+1): field[i] = '#' + input() + '#' di = [1, 0, -1, 0] dj = [0, 1, 0, -1] ans = 0 q = deque() for si in range(1, H+1): for sj in range(1, W+1): if field[si][sj] == '#': continue q.clear() q.append([si, sj]) dist = [[-1 for _ in range(W+2)] for _ in range(H+2)] dist[si][sj] = 0 dist_max = 0 while len(q) != 0: current = q.popleft() ci = current[0] cj = current[1] for d in range(4): next_i = ci + di[d] next_j = cj + dj[d] if field[next_i][next_j] == '#': continue if dist[next_i][next_j] != -1: continue q.append([next_i, next_j]) dist[next_i][next_j] = dist[ci][cj] + 1 dist_max = max(dist_max, dist[next_i][next_j]) ans = max(ans, dist_max) print(ans)
76f9cf3c70feb1745228287e760e543e56e9ce1d
900f3e5e0a5f9bbc28aa8673153046e725d66791
/less15/chat_v3/chat/chat/settings.py
e6a04b5f17f725ceee6cdb1c8879e9c0dbd6a011
[]
no_license
atadm/python_oop
c234437faebe5d387503c2c7f930ae72c2ee8107
2ffbadab28a18c28c14d36ccb008c5b36a426bde
refs/heads/master
2021-01-23T04:40:10.092048
2017-05-30T12:22:53
2017-05-30T12:22:53
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,427
py
""" Django settings for chat project. Generated by 'django-admin startproject' using Django 1.11.1. For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.11/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '692yjr^yr4$)m_4ud6j7^^!*gd%r+jcp!vn+nr@a4iuzy=m1js' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'chatApp.apps.ChatappConfig', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'chat.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')] , 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'chat.wsgi.application' # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql_psycopg2', 'NAME': 'chatdb', 'USER': 'postgres', 'PASSWORD': 'Univer123', 'HOST': '', # Set to empty string for localhost. 'PORT': '5433', # Set to empty string for default. } } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = '/static/'
6b09c02200e9cd1e184bdbbc08dba0c6c89f9b8e
e8f6a0d45cc5b98747967169cea652f90d4d6489
/week2/day2/taco_project/taco_project/settings.py
0d5bc4a9d6be4b8a4afe7e0834b1445e8f8b528f
[]
no_license
prowrestler215/python-2020-09-28
1371695c3b48bbd89a1c42d25aa8a5b626db1d19
d250ebd72e7f2a76f40ebbeb7fbb31ac36afd75f
refs/heads/master
2022-12-28T22:24:52.356588
2020-10-06T18:50:12
2020-10-06T18:50:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
3,128
py
""" Django settings for taco_project project. Generated by 'django-admin startproject' using Django 2.2.4. For more information on this file, see https://docs.djangoproject.com/en/2.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.2/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'kkc*+j-s50vfg_6s%p!rc^#5$pc2=okw94a6=r17z+lz1s&y@a' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'taco_stand_app', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'taco_project.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'taco_project.wsgi.application' # Database # https://docs.djangoproject.com/en/2.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Password validation # https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.2/howto/static-files/ STATIC_URL = '/static/'
d45bbc2ebc3e163699e0e18d6bf32523bccae91f
978248bf0f275ae688f194593aa32c267832b2b6
/xlsxwriter/test/worksheet/test_write_sheet_views8.py
16dd94be70b03ae21d672a359c7baa4a50a33d46
[ "BSD-2-Clause-Views" ]
permissive
satish1337/XlsxWriter
b0c216b91be1b74d6cac017a152023aa1d581de2
0ab9bdded4f750246c41a439f6a6cecaf9179030
refs/heads/master
2021-01-22T02:35:13.158752
2015-03-31T20:32:28
2015-03-31T20:32:28
33,300,989
1
0
null
null
null
null
UTF-8
Python
false
false
3,068
py
############################################################################### # # Tests for XlsxWriter. # # Copyright (c), 2013-2015, John McNamara, [email protected] # import unittest from ...compatibility import StringIO from ...worksheet import Worksheet class TestWriteSheetViews(unittest.TestCase): """ Test the Worksheet _write_sheet_views() method. """ def setUp(self): self.fh = StringIO() self.worksheet = Worksheet() self.worksheet._set_filehandle(self.fh) def test_write_sheet_views1(self): """Test the _write_sheet_views() method with split panes + selection""" self.worksheet.select() self.worksheet.set_selection('A2') self.worksheet.split_panes(15, 0) self.worksheet._write_sheet_views() exp = '<sheetViews><sheetView tabSelected="1" workbookViewId="0"><pane ySplit="600" topLeftCell="A2" activePane="bottomLeft"/><selection pane="bottomLeft" activeCell="A2" sqref="A2"/></sheetView></sheetViews>' got = self.fh.getvalue() self.assertEqual(got, exp) def test_write_sheet_views2(self): """Test the _write_sheet_views() method with split panes + selection""" self.worksheet.select() self.worksheet.set_selection('B1') self.worksheet.split_panes(0, 8.43) self.worksheet._write_sheet_views() exp = '<sheetViews><sheetView tabSelected="1" workbookViewId="0"><pane xSplit="1350" topLeftCell="B1" activePane="topRight"/><selection pane="topRight" activeCell="B1" sqref="B1"/></sheetView></sheetViews>' got = self.fh.getvalue() self.assertEqual(got, exp) def test_write_sheet_views3(self): """Test the _write_sheet_views() method with split panes + selection""" self.worksheet.select() self.worksheet.set_selection('G4') self.worksheet.split_panes(45, 54.14) self.worksheet._write_sheet_views() exp = '<sheetViews><sheetView tabSelected="1" workbookViewId="0"><pane xSplit="6150" ySplit="1200" topLeftCell="G4" activePane="bottomRight"/><selection pane="topRight" activeCell="G1" sqref="G1"/><selection pane="bottomLeft" activeCell="A4" sqref="A4"/><selection pane="bottomRight" activeCell="G4" sqref="G4"/></sheetView></sheetViews>' got = self.fh.getvalue() self.assertEqual(got, exp) def test_write_sheet_views4(self): """Test the _write_sheet_views() method with split panes + selection""" self.worksheet.select() self.worksheet.set_selection('I5') self.worksheet.split_panes(45, 54.14) self.worksheet._write_sheet_views() exp = '<sheetViews><sheetView tabSelected="1" workbookViewId="0"><pane xSplit="6150" ySplit="1200" topLeftCell="G4" activePane="bottomRight"/><selection pane="topRight" activeCell="G1" sqref="G1"/><selection pane="bottomLeft" activeCell="A4" sqref="A4"/><selection pane="bottomRight" activeCell="I5" sqref="I5"/></sheetView></sheetViews>' got = self.fh.getvalue() self.assertEqual(got, exp)
bd1244422c562b95b4abe609a6ecc9151d8cc0f3
2c5edd9a3c76f2a14c01c1bd879406850a12d96e
/config/default.py
37e61c16709d86117c0fa3d63970296d5b8742d2
[ "MIT" ]
permissive
by46/coffee
e13f5e22a8ff50158b603f5115d127e07c2e322b
f12e1e95f12da7e322a432a6386a1147c5549c3b
refs/heads/master
2020-08-14T04:42:05.248138
2017-10-23T13:39:05
2017-10-23T13:39:05
73,526,501
0
0
null
null
null
null
UTF-8
Python
false
false
486
py
HTTP_HOST = '0.0.0.0' HTTP_PORT = 8080 DEBUG = False SECRET_KEY = "\x02|\x86.\\\xea\xba\x89\xa3\xfc\r%s\x9e\x06\x9d\x01\x9c\x84\xa1b+uC" # Flask-NegLog Settings LOG_LEVEL = 'debug' LOG_FILENAME = "logs/error.log" LOG_BACKUP_COUNT = 10 LOG_MAX_BYTE = 1024 * 1024 * 10 LOG_FORMATTER = '%(asctime)s - %(levelname)s - %(message)s' LOG_ENABLE_CONSOLE = True # Flask-CORS Settings CORS_ORIGINS = "*" CORS_METHODS = "GET,POST,PUT" CORS_ALLOW_HEADERS = "Content-Type,Host"
e53bee84de0b19c27956646ed221e41449d3e3ae
0818a9020adc6e25b86060a8e84171d0b4958625
/tensorflow-piece/file_gene_scripts.py
840928b309ae60acdab8f757ab590e178999874f
[]
no_license
wgwangang/mycodes
2107becb6c457ed88b46426974a8f1fa07ed37dd
9fa48ca071eacf480034d1f69d3c05171d8a97d2
refs/heads/master
2020-03-28T07:58:45.017910
2018-03-14T07:21:14
2018-03-14T07:21:14
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,196
py
import os def generate_train_test_txt(data_root_dir, save_dir, rate=.1): train_txt_file_path = os.path.join(save_dir, "train.txt") test_txt_file_path = os.path.join(save_dir, "test.txt") dirs = os.listdir(data_root_dir) train_txt_file = open(train_txt_file_path, mode="w") test_txt_file = open(test_txt_file_path, mode="w") for i,level1 in enumerate(dirs): path_to_level1 = os.path.join(data_root_dir, level1) img_names = os.listdir(path_to_level1) test_num = rate*len(img_names) if test_num < 1: test_num = 1 test_num = int(test_num) for img in img_names[:-test_num]: abs_path = os.path.join(level1, img) item = abs_path+" "+str(i)+"\n" train_txt_file.write(item) for img in img_names[-test_num:]: abs_path = os.path.join(level1, img) item = abs_path + " " + str(i) + "\n" test_txt_file.write(item) print("people ", i, " Done!") train_txt_file.close() test_txt_file.close() def main(): generate_train_test_txt("/home/dafu/PycharmProjects/data", save_dir="../data") if __name__ == "__main__": main()
8e0277e0fae0c9499d3837975223b854aed5431e
6ba406a7c13d5c76934e36494c32c927bbda7ae7
/tests/trails_fhn.py
8ff814c29523973081000a55dda715750cf1dacf
[ "MIT" ]
permissive
sowmyamanojna/neuronmd
50e5e4bd9a4340fda73e363133314118ea815360
3994d02214c3cc4996261324cfe9238e34e29f1c
refs/heads/main
2023-07-09T01:31:32.597268
2021-08-23T14:33:38
2021-08-23T14:33:38
398,491,112
0
0
null
null
null
null
UTF-8
Python
false
false
315
py
import numpy as np import matplotlib.pyplot as plt from fitzhugh_nagumo import FHNNeuron neuron = FHNNeuron() tmax = 100 dt = 0.01 I = 1.75 t = np.arange(0, tmax, dt) neuron.simulate(0.6, 0, t, 0.6) neuron.plot(name="0.1") current_list = np.arange(0.01, I, 0.01) neuron.animate(t, current_list, ylim=[-0.45,1.5])
f82263b8d652c912b1df45704b5f390611d3dfd2
3b60e6f4bbc011003ac4929f01eb7409918deb79
/Analysis_v1/PlotterVariants/MultiSets/plotsHelper.py
ffa6f171c59e9cad382935e878e872b6eb9872c4
[]
no_license
uzzielperez/Analyses
d1a64a4e8730325c94e2bc8461544837be8a179d
1d66fa94763d7847011ea551ee872936c4c401be
refs/heads/master
2023-02-09T04:54:01.854209
2020-09-07T14:57:54
2020-09-07T14:57:54
120,850,137
0
0
null
2020-06-17T16:48:16
2018-02-09T03:14:04
C++
UTF-8
Python
false
false
8,671
py
import ROOT from ROOT import TMath, TClass,TKey, TIter,TCanvas, TPad, TFile, TPaveText, TColor, TGaxis, TH1F, TPad, TH1D, TLegend from ROOT import kBlack, kBlue, kRed from ROOT import gBenchmark, gStyle, gROOT, gDirectory import re import sys CMSlumiPath = '/uscms_data/d3/cuperez/CMSSW_8_0_25/src/scripts/pyroot' sys.path.append(CMSlumiPath) from CMSlumi import CMS_lumi import argparse def createRatio(h1, h2): h3 = h1.Clone("h3") h3.SetLineColor(kBlack) h3.SetMarkerStyle(21) h3.SetTitle("RATIO") #h3.SetMinimum(0.8) #h3.SetMaximum(2.5) # Set up plot for markers and errors h3.Sumw2() h3.SetStats(0) h3.Divide(h2) # Adjust y-axis settings y = h3.GetYaxis() y.SetTitle("ratio %s/%s" %(h1, h2)) #y.SetTitleOffset(4.55) #y = h3.GetYaxis() #y.SetTitle("ratio h1/h2 ") y.SetNdivisions(505) y.SetTitleSize(20) y.SetTitleFont(43) y.SetTitleOffset(1.55) y.SetLabelFont(43) y.SetLabelSize(15) # Adjust x-axis settings x = h3.GetXaxis() x.SetTitleSize(40) x.SetTitleFont(43) x.SetTitleOffset(10.0) x.SetLabelFont(43) x.SetLabelSize(15) return h3 def createCanvasPads(): c = TCanvas("c", "canvas", 800, 800) # Upper histogram plot is pad1 pad1 = TPad("pad1", "pad1", 0, 0.3, 1, 1.0) pad1.SetBottomMargin(0) # joins upper and lower plot #pad1.SetGridx() pad1.SetLogy() pad1.Draw() # Lower ratio plot is pad2 c.cd() # returns to main canvas before defining pad2 pad2 = TPad("pad2", "pad2", 0, 0.05, 1, 0.3) pad2.SetTopMargin(0) # joins upper and lower plot pad2.SetBottomMargin(0.2) pad2.SetGridy() #pad2.SetGridx() pad2.Draw() return c, pad1, pad2 #----------------------------------------- # Plotting functions def createHist(file_typ, color, objtype): hist = file_typ.Get(objtype) # e.g. DiphotonMinv hist.SetLineColor(color) # kOrange + 7 for MC hist.SetLineWidth(2) hist.GetYaxis().SetTitleSize(20) hist.GetYaxis().SetTitleFont(43) hist.GetYaxis().SetTitleOffset(1.55) hist.SetStats(0) #hist.SetAxisRange(450, 1050) return hist #---------------------------------------- # This part taken from andy buckley # https://root-forum.cern.ch/t/loop-over-all-objects-in-a-root-file/10807/4 def getall(d, basepath="/"): "Generator function to recurse into a ROOT file/dir and yield (path, obj) pairs" for key in d.GetListOfKeys(): kname = key.GetName() if key.IsFolder(): # TODO: -> "yield from" in Py3 for i in getall(d.Get(kname), basepath+kname+"/"): yield i else: yield basepath+kname, d.Get(kname) def makeList(ListName): ListName = [] return ListName def LoopObjKeys(fileAssign, obj_i, canvas_i, hist_i, index): for k, o in getall(fileAssign): #print "h_%s" %(k[1:]) obj_i.append(k[1:]) canvas_i.append("c_%s"%(k[1:])) histFi = createHist(fileAssign, index+1 , k[1:]) hist_i.append(histFi) #print "obj: %s" %(String(index)), obj_i[index] #def regexHelper(expTarget, WholeExpression, sec): # regex = (r'%s\s+(.*)'%(expTarget)) # match = re.findall(regex, WholeExpression) # # #match = match[0].split(" ") # #print regex, WholeExpression #def diphotonAnalysisStringFinder(objEL): def objSettings(obj): if obj.find("Minv") != -1: xtitle = r"m_{#gamma#gamma}#scale[1.0]{(GeV)}" # r"#scale[0.8]{m_{#gamma#gamma}(GeV)}" xmin = 0 xmax = 8000 SetLogy = True xpos1, ypos1, xpos2, ypos2 = .60, 0.63, 1.0, .85 elif obj.find("Pt") != -1: xtitle = "#scale[1.0]{p_{T}(GeV)}" xmin = 75 xmax = 8000 SetLogy = True xpos1, ypos1, xpos2, ypos2 = .60, 0.70, 1.0, .85 #xpos1, ypos1, xpos2, ypos2 = .40, 0.75, 1.0, .85 elif obj.find("Eta") != -1: xtitle = r"#eta" if obj.find("sc") != -1: xtitle = r"#scale[0.7]{sc} " + xtitle if obj.find("det") != -1: xtitle = r"#scale[0.7]{det} " + xtitle xmin = -3.0 xmax = 3.0 SetLogy = False xpos1, ypos1, xpos2, ypos2 = .32, 0.20, .85, .38 elif obj.find("Phi") != -1: xtitle = r"#phi" if obj.find("sc") != -1: xtitle = r"#scale[0.7]{sc} " + xtitle if obj.find("det") != -1: xtitle = r"#scale[0.7]{det} " + xtitle xmin = -3.5 xmax = 3.5 SetLogy = False xpos1, ypos1, xpos2, ypos2 = .32, 0.20, .85, .38 else: xtitle, xmin, xmax, SetLogy, xpos1, ypos1, xpos2, ypos2 return xtitle, xmin, xmax, SetLogy, xpos1, ypos1, xpos2, ypos2 def histDrawSettings(h, i, drawstyle): if i < 5: h.SetLineColor(1) #h.SetLineColor(i) h.SetFillColor(40+i) #h.SetLineStyle(i) h.Draw("hist same") else: h.SetLineColor(i+1) #h.SetLineColor(i) #h.SetFillColor(40+i) #h.SetLineStyle(i) h.Draw("same") # For same set of files Same parameters except one def LoopOverHistogramsPerFile(study, obj_f1, h, listofFiles, canv, outName): print "LOOP OVER HISTOGRAMS PER FILE" i = 0 #print len(obj_f1) while i<len(obj_f1): print obj_f1[i] ytitle = "Events" canv[i] = ROOT.TCanvas() #c, pad1, pad2 = createCanvasPads() scale = 1.00 #c.cd() o = obj_f1[i] xtitle, xmin, xmax, SetLogy, xpos1, ypos1, xpos2, ypos2 = objSettings(o) print xmin, xmax if obj_f1[i].find("diphoton") != -1: #ocount = ocount + 1 legentry = r"SM #gamma#gamma" elif (obj_f1[i].find("photon1")) != -1: legentry = r"#gamma_{1}" elif (obj_f1[i].find("photon2")) != -1: legentry = r"#gamma_{2}" else: legentry = obj_f1[i] # EBEE or EBEB if obj_f1[i].find("EBEE") != -1: xtitle = xtitle + r" #scale[0.45]{(EBEE)}" if obj_f1[i].find("EBEB") != -1: xtitle = xtitle + r" #scale[0.45]{(EBEB)}" # Photon1 or Photon2 if obj_f1[i].find("photon1") != -1: xtitle = r"#scale[1.0]{#gamma_{1}: }" + xtitle if obj_f1[i].find("photon2") != -1: xtitle = r"#scale[1.0]{#gamma_{2}: }" + xtitle # Draw All the Histograms in the List of Files FileNum = 0 hi = h[FileNum][i] #h[FileNum][i].Scale(scale) #h[FileNum][i].SetTitle(obj_f1[i]) h[FileNum][i].GetYaxis().SetTitle("Events") h[FileNum][i].GetXaxis().SetTitle(xtitle) h[FileNum][i].GetYaxis().SetTitleOffset(0.7) h[FileNum][i].GetXaxis().SetTitleOffset(1.1) #h[FileNum][i].GetXaxis().SetRangeUser(xmin, xmax) #h[FileNum][i].GetXaxis().SetLimits(xmin, xmax) leg = TLegend(xpos1, ypos1, xpos2, ypos2) leg.SetBorderSize(0) leg.SetFillStyle(0) leg.SetTextFont(42) leg.SetTextSize(0.035) #leg.SetEntrySeparation(3) #leg.SetEntrySeparation(0.3) while FileNum < len(listofFiles): canv[i].cd() if SetLogy: canv[i].SetLogy() ####### DRAW #hi.Draw("same") #hi.GetXaxis().SetLimits(xmin, xmax) lower_lim = hi.GetBinCenter(hi.FindFirstBinAbove(0,1)) upper_lim = hi.GetBinCenter(hi.FindLastBinAbove(0,1)) # hi.GetXaxis().SetLimits(xmin, xmax) #hi.GetXaxis().SetRangeUser(xmin, xmax) #print lower_lim, upper_lim #ymin = hi.GetMinimum() #ymax = hi.GetMaximum() #print ymax, ymin if "Minv" in o or "Pt" in o: ymin = 10**-3 ymax = 10**2 hi.GetYaxis().SetRangeUser(ymin, ymax) #hi.GetYaxis().SetLimits(ymin, ymax) #h[FileNum][i].GetXaxis().SetLimits(xmin, xmax) h[FileNum][i].GetXaxis().SetRangeUser(xmin, xmax) histDrawSettings(h[FileNum][i], FileNum+1, "hist same") #Labelling and Legends if FileNum < 4: pattern = r'Ms-([^(]*)\_M' match = re.findall(pattern, listofFiles[FileNum]) leg.AddEntry(h[FileNum][i], "MS-%s" %(match[0]), "f") else: pattern = r'LambdaT-([^(]*)\_M' match = re.findall(pattern, listofFiles[FileNum]) leg.AddEntry(h[FileNum][i], "LambdaT-%s" %(match[0]), "l") leg.Draw() leg.SetEntrySeparation(1.3) canv[i].Update() FileNum = FileNum + 1 print "filenum: ", FileNum CMS_lumi(canv[i], 4, 11, True) #leg.SetEntrySeparation(0.6) #leg.Draw() canv[i].Print("%s%s%s.png" %(outName, study, obj_f1[i])) # move to next object in root file i = i + 1
8fe76f727f44429df1fc0876ce238e15960bc6ec
549d11c89ce5a361de51f1e1c862a69880079e3c
/python高级语法/线程/都任务版的UDP聊天器.py
9d751967f4b2eaba2e1846ea3f723ae9a52eca1e
[]
no_license
BaldSuperman/workspace
f304845164b813b2088d565fe067d5cb1b7cc120
4835757937b700963fdbb37f75a5e6b09db97535
refs/heads/master
2020-08-01T15:32:02.593251
2019-09-26T08:04:50
2019-09-26T08:04:50
211,034,750
0
0
null
null
null
null
UTF-8
Python
false
false
953
py
import socket import threading def recv_msg( udp_socket): while True: recv_data = udp_socket.recvfrom(1024) print("收到的数据:{0}".format(recv_data)) def send_msg(udp_socket, dest_port,dest_ip): '''发送数据''' while True : send_data = input("输入发送的数据: ") udp_socket.sendto(send_data.encode('utf-8'), (dest_ip,dest_port)) def main(): #创建套接字 udp_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) #绑定本地信息 udp_socket.bind(("", 7890)) #获取对方ip dest_ip = input("请输入对方IP: ") dest_port = int(input("请输入对方port: ")) #接受数据 #创建线程执行接受发送功能 t_recv = threading.Thread(target=recv_msg, args=(udp_socket, )) t_send = threading.Thread(target=send_msg, args=(udp_socket, dest_port,dest_ip)) t_recv.start() t_send.start() if __name__ == '__main__': main()
f2c68ec335f6a55681c06b381e461d9c65326cee
a316a0018bd1cb42c477423916669ed32e2c5d7c
/homie/node/property/property_boolean.py
49d8eb14cd18735035fe6c9f1f25173d63f9b69c
[ "MIT" ]
permissive
mjcumming/HomieV3
a8b60ee9119059d546b69b31280cf15a7978e6fc
62278ec6e5f72071b2aaebe8e9f66b2071774ef7
refs/heads/master
2020-04-28T06:49:22.193682
2020-04-04T12:36:08
2020-04-04T12:36:08
175,072,550
5
7
MIT
2020-01-15T03:41:38
2019-03-11T19:44:17
Python
UTF-8
Python
false
false
624
py
from .property_base import Property_Base class Property_Boolean(Property_Base): def __init__(self, node, id, name, settable=True, retained=True, qos=1, unit=None, data_type='boolean', data_format=None, value=None, set_value=None): super().__init__(node,id,name,settable,retained,qos,unit,'boolean',data_format,value,set_value) def validate_value(self, value): return True # tests below validate def get_value_from_payload(self,payload): if payload == 'true': return True elif payload == 'false': return False else: return None
2b2ae4e3e90b1b98750f66a053a03514118123d6
e88f2f590e9b58c294ea34f9277748b6bbabeac7
/sandbox/finetuning/algos/concurrent_continuous_ppo.py
d4cd314bd47d95820381415300f80a6c264fbc93
[ "MIT", "LicenseRef-scancode-generic-cla" ]
permissive
jesbu1/rllab-finetuning
4aade730f0401f46675e5a7588ca59968272a41d
ccfbc9a612dc9c85238183209814e98666825d01
refs/heads/master
2022-12-04T10:42:37.442485
2020-08-18T00:07:39
2020-08-18T00:07:39
282,724,263
0
0
null
2020-07-26T20:03:48
2020-07-26T20:03:48
null
UTF-8
Python
false
false
10,264
py
import theano import theano.tensor as TT from rllab.misc import ext import numpy as np import copy import rllab.misc.logger as logger from rllab.spaces.box import Box from rllab.envs.env_spec import EnvSpec from sandbox.finetuning.policies.concurrent_hier_policy2 import HierarchicalPolicy from sandbox.finetuning.algos.hier_batch_polopt import BatchPolopt, \ BatchSampler # note that I use my own BatchPolopt class here from sandbox.finetuning.algos.hier_batch_sampler import HierBatchSampler from rllab.optimizers.first_order_optimizer import FirstOrderOptimizer from rllab.distributions.diagonal_gaussian import DiagonalGaussian from rllab.baselines.linear_feature_baseline import LinearFeatureBaseline from rllab.baselines.gaussian_mlp_baseline import GaussianMLPBaseline class ConcurrentContinuousPPO(BatchPolopt): """ Designed to enable concurrent training of a SNN that parameterizes skills and also train the manager at the same time Note that, if I'm not trying to do the sample approximation of the weird log of sum term, I don't need to know which skill was picked, just need to know the action """ # double check this constructor later def __init__(self, optimizer=None, optimizer_args=None, step_size=0.003, num_latents=6, latents=None, # some sort of iterable of the actual latent vectors period=10, # how often I choose a latent truncate_local_is_ratio=None, epsilon=0.1, train_pi_iters=10, use_skill_dependent_baseline=False, mlp_skill_dependent_baseline=False, freeze_manager=False, freeze_skills=False, **kwargs): if optimizer is None: if optimizer_args is None: # optimizer_args = dict() optimizer_args = dict(batch_size=None) self.optimizer = FirstOrderOptimizer(learning_rate=step_size, max_epochs=train_pi_iters, **optimizer_args) self.step_size = step_size self.truncate_local_is_ratio = truncate_local_is_ratio self.epsilon = epsilon super(ConcurrentContinuousPPO, self).__init__(**kwargs) # not sure if this line is correct self.num_latents = kwargs['policy'].latent_dim self.latents = latents self.period = period self.freeze_manager = freeze_manager self.freeze_skills = freeze_skills assert (not freeze_manager) or (not freeze_skills) # todo: fix this sampler stuff # import pdb; pdb.set_trace() self.sampler = HierBatchSampler(self, self.period) # self.sampler = BatchSampler(self) # i hope this is right self.diagonal = DiagonalGaussian(self.policy.low_policy.action_space.flat_dim) self.debug_fns = [] assert isinstance(self.policy, HierarchicalPolicy) self.period = self.policy.period assert self.policy.period == self.period self.continuous_latent = self.policy.continuous_latent assert self.continuous_latent # self.old_policy = copy.deepcopy(self.policy) # skill dependent baseline self.use_skill_dependent_baseline = use_skill_dependent_baseline self.mlp_skill_dependent_baseline = mlp_skill_dependent_baseline if use_skill_dependent_baseline: curr_env = kwargs['env'] skill_dependent_action_space = curr_env.action_space new_obs_space_no_bi = curr_env.observation_space.shape[0] + 1 # 1 for the t_remaining skill_dependent_obs_space_dim = (new_obs_space_no_bi * (self.num_latents + 1) + self.num_latents,) skill_dependent_obs_space = Box(-1.0, 1.0, shape=skill_dependent_obs_space_dim) skill_dependent_env_spec = EnvSpec(skill_dependent_obs_space, skill_dependent_action_space) if self.mlp_skill_dependent_baseline: self.skill_dependent_baseline = GaussianMLPBaseline(env_spec=skill_dependent_env_spec) else: self.skill_dependent_baseline = LinearFeatureBaseline(env_spec=skill_dependent_env_spec) # initialize the computation graph # optimize is run on >= 1 trajectory at a time # assumptions: 1 trajectory, which is a multiple of p; that the obs_var_probs is valid def init_opt(self): assert isinstance(self.policy, HierarchicalPolicy) assert not self.freeze_manager and not self.freeze_skills manager_surr_loss = 0 # skill_surr_loss = 0 obs_var_sparse = ext.new_tensor('sparse_obs', ndim=2, dtype=theano.config.floatX) obs_var_raw = ext.new_tensor('obs', ndim=3, dtype=theano.config.floatX) # todo: check the dtype action_var = self.env.action_space.new_tensor_variable('action', extra_dims=1, ) advantage_var = ext.new_tensor('advantage', ndim=1, dtype=theano.config.floatX) # latent_var = ext.new_tensor('latents', ndim=2, dtype=theano.config.floatX) mean_var = ext.new_tensor('mean', ndim=2, dtype=theano.config.floatX) log_std_var = ext.new_tensor('log_std', ndim=2, dtype=theano.config.floatX) # undoing the reshape, so that batch sampling is ok obs_var = TT.reshape(obs_var_raw, [obs_var_raw.shape[0] * obs_var_raw.shape[1], obs_var_raw.shape[2]]) ############################################################ ### calculating the skills portion of the surrogate loss ### ############################################################ latent_var_sparse = self.policy.manager.dist_info_sym(obs_var_sparse)['mean'] latent_var = TT.extra_ops.repeat(latent_var_sparse, self.period, axis=0) #.dimshuffle(0, 'x') dist_info_var = self.policy.low_policy.dist_info_sym(obs_var, state_info_var=latent_var) old_dist_info_var = dict(mean=mean_var, log_std=log_std_var) skill_lr = self.diagonal.likelihood_ratio_sym(action_var, old_dist_info_var, dist_info_var) skill_surr_loss_vector = TT.minimum(skill_lr * advantage_var, TT.clip(skill_lr, 1 - self.epsilon, 1 + self.epsilon) * advantage_var) skill_surr_loss = -TT.mean(skill_surr_loss_vector) surr_loss = skill_surr_loss # so that the relative magnitudes are correct if self.freeze_skills and not self.freeze_manager: raise NotImplementedError elif self.freeze_manager and not self.freeze_skills: raise NotImplementedError else: assert (not self.freeze_manager) or (not self.freeze_skills) input_list = [obs_var_raw, obs_var_sparse, action_var, advantage_var, mean_var, log_std_var] self.optimizer.update_opt( loss=surr_loss, target=self.policy, inputs=input_list ) return dict() # do the optimization def optimize_policy(self, itr, samples_data): print(len(samples_data['observations']), self.period) assert len(samples_data['observations']) % self.period == 0 # note that I have to do extra preprocessing to the advantages, and also create obs_var_sparse if self.use_skill_dependent_baseline: input_values = tuple(ext.extract( samples_data, "observations", "actions", "advantages", "agent_infos", "skill_advantages")) else: input_values = tuple(ext.extract( samples_data, "observations", "actions", "advantages", "agent_infos")) obs_raw = input_values[0].reshape(input_values[0].shape[0] // self.period, self.period, input_values[0].shape[1]) obs_sparse = input_values[0].take([i for i in range(0, input_values[0].shape[0], self.period)], axis=0) if not self.continuous_latent: advantage_sparse = input_values[2].reshape([input_values[2].shape[0] // self.period, self.period])[:, 0] latents = input_values[3]['latents'] latents_sparse = latents.take([i for i in range(0, latents.shape[0], self.period)], axis=0) prob = np.array( list(input_values[3]['prob'].take([i for i in range(0, latents.shape[0], self.period)], axis=0)), dtype=np.float32) mean = input_values[3]['mean'] log_std = input_values[3]['log_std'] if self.use_skill_dependent_baseline: advantage_var = input_values[4] else: advantage_var = input_values[2] # import ipdb; ipdb.set_trace() if self.freeze_skills and not self.freeze_manager: raise NotImplementedError elif self.freeze_manager and not self.freeze_skills: raise NotImplementedError else: assert (not self.freeze_manager) or (not self.freeze_skills) all_input_values = (obs_raw, obs_sparse, input_values[1], advantage_var, mean, log_std) # todo: assign current parameters to old policy; does this work? # old_param_values = self.policy.get_param_values(trainable=True) # self.old_policy.set_param_values(old_param_values, trainable=True) # old_param_values = self.policy.get_param_values() # self.old_policy.set_param_values(old_param_values) loss_before = self.optimizer.loss(all_input_values) self.optimizer.optimize(all_input_values) loss_after = self.optimizer.loss(all_input_values) logger.record_tabular('LossBefore', loss_before) logger.record_tabular('LossAfter', loss_after) logger.record_tabular('dLoss', loss_before - loss_after) return dict() def get_itr_snapshot(self, itr, samples_data): return dict( itr=itr, policy=self.policy, baseline=self.baseline, env=self.env ) def log_diagnostics(self, paths): # paths obtained by self.sampler.obtain_samples BatchPolopt.log_diagnostics(self, paths) # self.sampler.log_diagnostics(paths) # wasn't doing anything anyways # want to log the standard deviations # want to log the max and min of the actions
6ee0b28d5d47fef3766ee9a9567b845b290892dd
3298ad5f82b30e855637e9351fe908665e5a681e
/Regression/Polynomial Regression/polynomial_regression.py
07f16298a93575a5156ff3fe4ef8b1102a78ad42
[]
no_license
Pratyaksh7/Machine-learning
8ab5281aecd059405a86df4a3ade7bcb308f8120
74b7b045f17fe52bd02e99c0e25b8e0b4ac3f3a6
refs/heads/master
2022-12-21T14:05:28.882803
2020-09-28T17:03:55
2020-09-28T17:03:55
292,274,874
1
0
null
null
null
null
UTF-8
Python
false
false
1,924
py
import pandas as pd import numpy as np import matplotlib.pyplot as plt dataset = pd.read_csv('Position_Salaries.csv') X = dataset.iloc[: , 1:-1].values y = dataset.iloc[: , -1].values # training the linear regression model on the whole dataset from sklearn.linear_model import LinearRegression lin_reg = LinearRegression() lin_reg.fit(X, y) # training the polynomial regression model on the whole dataset from sklearn.preprocessing import PolynomialFeatures poly_reg = PolynomialFeatures(degree=4) X_poly = poly_reg.fit_transform(X) lin_reg_2 = LinearRegression() lin_reg_2.fit(X_poly,y) # visualising the linear regression results plt.scatter(X,y, color='red') plt.plot(X, lin_reg.predict(X), color= 'blue') # plotting the linear regression line for the X values and the predicted Salary i.e., lin_reg plt.title('Truth or Bluff (Linear Regression )') plt.xlabel('Position Level') plt.ylabel('Salary') plt.show() # visualising the polynomial regression results plt.scatter(X,y, color='red') plt.plot(X, lin_reg_2.predict(X_poly), color= 'blue') # plotting the linear regression line for the X values and the predicted Salary i.e., lin_reg plt.title('Truth or Bluff (Polynomial Regression )') plt.xlabel('Position Level') plt.ylabel('Salary') plt.show() # visualising the polynomial regression results(for higher resolution and smoother curve) X_grid = np.arange(min(X), max(X), 0.1) # choosing each point with a diff of 0.1 X_grid = X_grid.reshape((len(X_grid),1)) plt.scatter(X,y,color= 'red') plt.plot(X_grid, lin_reg_2.predict(poly_reg.fit_transform(X_grid)),color='blue') plt.title('Truth or Bluff (Polynomial Regression Smooth)') plt.xlabel('Position Level') plt.ylabel('Salary') plt.show() # predicting a new result with linear regression print(lin_reg.predict([[6.5]])) # predicting a new result with polynomial regression print(lin_reg_2.predict(poly_reg.fit_transform([[6.5]])))
079ded3be59ad28e3f6743e307ba309423d27dcd
87cfb3d137853d91faf4c1c5f6e34a4e4a5206d9
/src/zojax/cssregistry/tests.py
41aa3e1e8e541b96a69a0706d39bde5e7b101372
[ "ZPL-2.1" ]
permissive
Zojax/zojax.cssregistry
cea24579ef73f7ea2cec9c8b95671a5eeec0ce8f
688f4ecb7556935997bbe4c09713bf57ef7be617
refs/heads/master
2021-01-10T21:06:12.664527
2011-12-16T07:15:04
2011-12-16T07:15:04
2,034,954
0
0
null
null
null
null
UTF-8
Python
false
false
1,368
py
############################################################################## # # Copyright (c) 2009 Zope Foundation and Contributors. # All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## """ zojax.cssregistry tests $Id$ """ __docformat__ = "reStructuredText" import unittest, doctest from zope import interface, schema from zope.component import provideAdapter from zope.app.testing import setup from zope.traversing.namespace import view from zope.traversing.interfaces import ITraversable def setUp(test): setup.placelessSetUp() setup.setUpTraversal() provideAdapter(view, (None, None), ITraversable, name="view") def tearDown(test): setup.placelessTearDown() def test_suite(): return unittest.TestSuite(( doctest.DocFileSuite( 'README.txt', setUp=setUp, tearDown=tearDown, optionflags=doctest.NORMALIZE_WHITESPACE|doctest.ELLIPSIS), ))
2a330c17396ee6d12bfa8513bad002fed30eb3aa
d7016f69993570a1c55974582cda899ff70907ec
/sdk/eventhub/azure-mgmt-eventhub/azure/mgmt/eventhub/v2021_06_01_preview/aio/operations/_configuration_operations.py
983de8a70ad7b726dd2c34712f7c3a4f291083eb
[ "MIT", "LicenseRef-scancode-generic-cla", "LGPL-2.1-or-later" ]
permissive
kurtzeborn/azure-sdk-for-python
51ca636ad26ca51bc0c9e6865332781787e6f882
b23e71b289c71f179b9cf9b8c75b1922833a542a
refs/heads/main
2023-03-21T14:19:50.299852
2023-02-15T13:30:47
2023-02-15T13:30:47
157,927,277
0
0
MIT
2022-07-19T08:05:23
2018-11-16T22:15:30
Python
UTF-8
Python
false
false
12,584
py
# pylint: disable=too-many-lines # coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import sys from typing import Any, Callable, Dict, IO, Optional, TypeVar, Union, overload from azure.core.exceptions import ( ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, ResourceNotModifiedError, map_error, ) from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator_async import distributed_trace_async from azure.core.utils import case_insensitive_dict from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models as _models from ..._vendor import _convert_request from ...operations._configuration_operations import build_get_request, build_patch_request if sys.version_info >= (3, 8): from typing import Literal # pylint: disable=no-name-in-module, ungrouped-imports else: from typing_extensions import Literal # type: ignore # pylint: disable=ungrouped-imports T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class ConfigurationOperations: """ .. warning:: **DO NOT** instantiate this class directly. Instead, you should access the following operations through :class:`~azure.mgmt.eventhub.v2021_06_01_preview.aio.EventHubManagementClient`'s :attr:`configuration` attribute. """ models = _models def __init__(self, *args, **kwargs) -> None: input_args = list(args) self._client = input_args.pop(0) if input_args else kwargs.pop("client") self._config = input_args.pop(0) if input_args else kwargs.pop("config") self._serialize = input_args.pop(0) if input_args else kwargs.pop("serializer") self._deserialize = input_args.pop(0) if input_args else kwargs.pop("deserializer") @overload async def patch( self, resource_group_name: str, cluster_name: str, parameters: _models.ClusterQuotaConfigurationProperties, *, content_type: str = "application/json", **kwargs: Any ) -> Optional[_models.ClusterQuotaConfigurationProperties]: """Replace all specified Event Hubs Cluster settings with those contained in the request body. Leaves the settings not specified in the request body unmodified. :param resource_group_name: Name of the resource group within the azure subscription. Required. :type resource_group_name: str :param cluster_name: The name of the Event Hubs Cluster. Required. :type cluster_name: str :param parameters: Parameters for creating an Event Hubs Cluster resource. Required. :type parameters: ~azure.mgmt.eventhub.v2021_06_01_preview.models.ClusterQuotaConfigurationProperties :keyword content_type: Body Parameter content-type. Content type parameter for JSON body. Default value is "application/json". :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ClusterQuotaConfigurationProperties or None or the result of cls(response) :rtype: ~azure.mgmt.eventhub.v2021_06_01_preview.models.ClusterQuotaConfigurationProperties or None :raises ~azure.core.exceptions.HttpResponseError: """ @overload async def patch( self, resource_group_name: str, cluster_name: str, parameters: IO, *, content_type: str = "application/json", **kwargs: Any ) -> Optional[_models.ClusterQuotaConfigurationProperties]: """Replace all specified Event Hubs Cluster settings with those contained in the request body. Leaves the settings not specified in the request body unmodified. :param resource_group_name: Name of the resource group within the azure subscription. Required. :type resource_group_name: str :param cluster_name: The name of the Event Hubs Cluster. Required. :type cluster_name: str :param parameters: Parameters for creating an Event Hubs Cluster resource. Required. :type parameters: IO :keyword content_type: Body Parameter content-type. Content type parameter for binary body. Default value is "application/json". :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ClusterQuotaConfigurationProperties or None or the result of cls(response) :rtype: ~azure.mgmt.eventhub.v2021_06_01_preview.models.ClusterQuotaConfigurationProperties or None :raises ~azure.core.exceptions.HttpResponseError: """ @distributed_trace_async async def patch( self, resource_group_name: str, cluster_name: str, parameters: Union[_models.ClusterQuotaConfigurationProperties, IO], **kwargs: Any ) -> Optional[_models.ClusterQuotaConfigurationProperties]: """Replace all specified Event Hubs Cluster settings with those contained in the request body. Leaves the settings not specified in the request body unmodified. :param resource_group_name: Name of the resource group within the azure subscription. Required. :type resource_group_name: str :param cluster_name: The name of the Event Hubs Cluster. Required. :type cluster_name: str :param parameters: Parameters for creating an Event Hubs Cluster resource. Is either a ClusterQuotaConfigurationProperties type or a IO type. Required. :type parameters: ~azure.mgmt.eventhub.v2021_06_01_preview.models.ClusterQuotaConfigurationProperties or IO :keyword content_type: Body Parameter content-type. Known values are: 'application/json'. Default value is None. :paramtype content_type: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ClusterQuotaConfigurationProperties or None or the result of cls(response) :rtype: ~azure.mgmt.eventhub.v2021_06_01_preview.models.ClusterQuotaConfigurationProperties or None :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = case_insensitive_dict(kwargs.pop("headers", {}) or {}) _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-06-01-preview"] = kwargs.pop( "api_version", _params.pop("api-version", "2021-06-01-preview") ) content_type: Optional[str] = kwargs.pop("content_type", _headers.pop("Content-Type", None)) cls: ClsType[Optional[_models.ClusterQuotaConfigurationProperties]] = kwargs.pop("cls", None) content_type = content_type or "application/json" _json = None _content = None if isinstance(parameters, (IO, bytes)): _content = parameters else: _json = self._serialize.body(parameters, "ClusterQuotaConfigurationProperties") request = build_patch_request( resource_group_name=resource_group_name, cluster_name=cluster_name, subscription_id=self._config.subscription_id, api_version=api_version, content_type=content_type, json=_json, content=_content, template_url=self.patch.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200, 201, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize("ClusterQuotaConfigurationProperties", pipeline_response) if response.status_code == 201: deserialized = self._deserialize("ClusterQuotaConfigurationProperties", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized patch.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.EventHub/clusters/{clusterName}/quotaConfiguration/default" } @distributed_trace_async async def get( self, resource_group_name: str, cluster_name: str, **kwargs: Any ) -> _models.ClusterQuotaConfigurationProperties: """Get all Event Hubs Cluster settings - a collection of key/value pairs which represent the quotas and settings imposed on the cluster. :param resource_group_name: Name of the resource group within the azure subscription. Required. :type resource_group_name: str :param cluster_name: The name of the Event Hubs Cluster. Required. :type cluster_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ClusterQuotaConfigurationProperties or the result of cls(response) :rtype: ~azure.mgmt.eventhub.v2021_06_01_preview.models.ClusterQuotaConfigurationProperties :raises ~azure.core.exceptions.HttpResponseError: """ error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError, 304: ResourceNotModifiedError, } error_map.update(kwargs.pop("error_map", {}) or {}) _headers = kwargs.pop("headers", {}) or {} _params = case_insensitive_dict(kwargs.pop("params", {}) or {}) api_version: Literal["2021-06-01-preview"] = kwargs.pop( "api_version", _params.pop("api-version", "2021-06-01-preview") ) cls: ClsType[_models.ClusterQuotaConfigurationProperties] = kwargs.pop("cls", None) request = build_get_request( resource_group_name=resource_group_name, cluster_name=cluster_name, subscription_id=self._config.subscription_id, api_version=api_version, template_url=self.get.metadata["url"], headers=_headers, params=_params, ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response: PipelineResponse = await self._client._pipeline.run( # pylint: disable=protected-access request, stream=False, **kwargs ) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize("ClusterQuotaConfigurationProperties", pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = { "url": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.EventHub/clusters/{clusterName}/quotaConfiguration/default" }
07f515eae1a86622a522fa62d427c819d880730d
c8efab9c9f5cc7d6a16d319f839e14b6e5d40c34
/source/All_Solutions/1116.打印零与奇偶数/1116-打印零与奇偶数.py
6ba403369346dcd95a2fdfe939a07dc70c003e60
[ "MIT" ]
permissive
zhangwang0537/LeetCode-Notebook
73e4a4f2c90738dea4a8b77883b6f2c59e02e9c1
1dbd18114ed688ddeaa3ee83181d373dcc1429e5
refs/heads/master
2022-11-13T21:08:20.343562
2020-04-09T03:11:51
2020-04-09T03:11:51
277,572,643
0
0
MIT
2020-07-06T14:59:57
2020-07-06T14:59:56
null
UTF-8
Python
false
false
1,103
py
import threading class ZeroEvenOdd: def __init__(self, n): self.n = n+1 self.Zero=threading.Semaphore(1) self.Even=threading.Semaphore(0) self.Odd=threading.Semaphore(0) # printNumber(x) outputs "x", where x is an integer. def zero(self, printNumber: 'Callable[[int], None]') -> None: for i in range(1,self.n): self.Zero.acquire() printNumber(0) if i%2==1: self.Odd.release() else: self.Even.release() def even(self, printNumber: 'Callable[[int], None]') -> None: for i in range(1,self.n): if i%2==0: self.Even.acquire() printNumber(i) self.Zero.release() def odd(self, printNumber: 'Callable[[int], None]') -> None: for i in range(1,self.n): if i%2==1: self.Odd.acquire() printNumber(i) self.Zero.release()
c8813dfc6bcc9f3e14517bbb631dad71176f78d9
32eeb97dff5b1bf18cf5be2926b70bb322e5c1bd
/benchmark/wikipedia/testcase/interestallcases/testcase6_011_1.py
f8d2461ccd955bd20d8bbd39508574f42faae36b
[]
no_license
Prefest2018/Prefest
c374d0441d714fb90fca40226fe2875b41cf37fc
ac236987512889e822ea6686c5d2e5b66b295648
refs/heads/master
2021-12-09T19:36:24.554864
2021-12-06T12:46:14
2021-12-06T12:46:14
173,225,161
5
0
null
null
null
null
UTF-8
Python
false
false
8,155
py
#coding=utf-8 import os import subprocess import time import traceback from appium import webdriver from appium.webdriver.common.touch_action import TouchAction from selenium.common.exceptions import NoSuchElementException, WebDriverException desired_caps = { 'platformName' : 'Android', 'deviceName' : 'Android Emulator', 'platformVersion' : '4.4', 'appPackage' : 'org.wikipedia', 'appActivity' : 'org.wikipedia.main.MainActivity', 'resetKeyboard' : True, 'androidCoverage' : 'org.wikipedia/org.wikipedia.JacocoInstrumentation', 'noReset' : True } def command(cmd, timeout=5): p = subprocess.Popen(cmd, stderr=subprocess.STDOUT, stdout=subprocess.PIPE, shell=True) time.sleep(timeout) p.terminate() return def getElememt(driver, str) : for i in range(0, 5, 1): try: element = driver.find_element_by_android_uiautomator(str) except NoSuchElementException: time.sleep(1) else: return element os.popen("adb shell input tap 50 50") element = driver.find_element_by_android_uiautomator(str) return element def getElememtBack(driver, str1, str2) : for i in range(0, 2, 1): try: element = driver.find_element_by_android_uiautomator(str1) except NoSuchElementException: time.sleep(1) else: return element for i in range(0, 5, 1): try: element = driver.find_element_by_android_uiautomator(str2) except NoSuchElementException: time.sleep(1) else: return element os.popen("adb shell input tap 50 50") element = driver.find_element_by_android_uiautomator(str2) return element def swipe(driver, startxper, startyper, endxper, endyper) : size = driver.get_window_size() width = size["width"] height = size["height"] try: driver.swipe(start_x=int(width * startxper), start_y=int(height * startyper), end_x=int(width * endxper), end_y=int(height * endyper), duration=2000) except WebDriverException: time.sleep(1) driver.swipe(start_x=int(width * startxper), start_y=int(height * startyper), end_x=int(width * endxper), end_y=int(height * endyper), duration=2000) return def scrollToFindElement(driver, str) : for i in range(0, 5, 1): try: element = driver.find_element_by_android_uiautomator(str) except NoSuchElementException: swipe(driver, 0.5, 0.6, 0.5, 0.2) else: return element return def clickoncheckable(driver, str, value = "true") : parents = driver.find_elements_by_class_name("android.widget.LinearLayout") for parent in parents: try : parent.find_element_by_android_uiautomator(str) lists = parent.find_elements_by_class_name("android.widget.LinearLayout") if (len(lists) == 1) : innere = parent.find_element_by_android_uiautomator("new UiSelector().checkable(true)") nowvalue = innere.get_attribute("checked") if (nowvalue != value) : innere.click() break except NoSuchElementException: continue # preference setting and exit try : os.popen("adb shell svc data diable") time.sleep(5) starttime = time.time() driver = webdriver.Remote('http://localhost:4723/wd/hub', desired_caps) os.popen("adb shell am start -n org.wikipedia/org.wikipedia.settings.DeveloperSettingsActivity") scrollToFindElement(driver, "new UiSelector().text(\"useRestbase_setManually\")").click() clickoncheckable(driver, "new UiSelector().text(\"useRestbase_setManually\")", "false") scrollToFindElement(driver, "new UiSelector().text(\"mediaWikiBaseUriSupportsLangCode\")").click() clickoncheckable(driver, "new UiSelector().text(\"mediaWikiBaseUriSupportsLangCode\")", "true") scrollToFindElement(driver, "new UiSelector().text(\"suppressNotificationPolling\")").click() clickoncheckable(driver, "new UiSelector().text(\"suppressNotificationPolling\")", "true") scrollToFindElement(driver, "new UiSelector().text(\"memoryLeakTest\")").click() clickoncheckable(driver, "new UiSelector().text(\"memoryLeakTest\")", "true") scrollToFindElement(driver, "new UiSelector().text(\"readingListsFirstTimeSync\")").click() clickoncheckable(driver, "new UiSelector().text(\"readingListsFirstTimeSync\")", "false") driver.press_keycode(4) time.sleep(2) os.popen("adb shell am start -n org.wikipedia/org.wikipedia.settings.SettingsActivity") scrollToFindElement(driver, "new UiSelector().text(\"Download only over Wi-Fi\")").click() clickoncheckable(driver, "new UiSelector().text(\"Download only over Wi-Fi\")", "true") scrollToFindElement(driver, "new UiSelector().text(\"Show images\")").click() clickoncheckable(driver, "new UiSelector().text(\"Show images\")", "false") driver.press_keycode(4) time.sleep(2) except Exception, e: print 'FAIL' print 'str(e):\t\t', str(e) print 'repr(e):\t', repr(e) print traceback.format_exc() finally : endtime = time.time() print 'consumed time:', str(endtime - starttime), 's' command("adb shell am broadcast -a com.example.pkg.END_EMMA --es name \"6_011_pre\"") jacocotime = time.time() print 'jacoco time:', str(jacocotime - endtime), 's' driver.quit() # testcase011 try : starttime = time.time() driver = webdriver.Remote('http://localhost:4723/wd/hub', desired_caps) element = getElememtBack(driver, "new UiSelector().text(\"Search Wikipedia\")", "new UiSelector().className(\"android.widget.TextView\")") TouchAction(driver).tap(element).perform() driver.press_keycode(82) driver.press_keycode(82) driver.press_keycode(82) driver.press_keycode(82) driver.press_keycode(82) driver.press_keycode(82) element = getElememt(driver, "new UiSelector().resourceId(\"org.wikipedia:id/icon\").className(\"android.widget.ImageView\")") TouchAction(driver).tap(element).perform() element = getElememt(driver, "new UiSelector().className(\"android.widget.ImageButton\")") TouchAction(driver).tap(element).perform() element = getElememt(driver, "new UiSelector().resourceId(\"org.wikipedia:id/menu_overflow_button\").className(\"android.widget.TextView\")") TouchAction(driver).tap(element).perform() element = getElememt(driver, "new UiSelector().resourceId(\"org.wikipedia:id/menu_overflow_button\").className(\"android.widget.TextView\")") TouchAction(driver).long_press(element).release().perform() swipe(driver, 0.5, 0.8, 0.5, 0.2) element = getElememtBack(driver, "new UiSelector().text(\"Explore\")", "new UiSelector().className(\"android.widget.TextView\").instance(4)") TouchAction(driver).tap(element).perform() element = getElememt(driver, "new UiSelector().resourceId(\"org.wikipedia:id/menu_overflow_button\").className(\"android.widget.TextView\")") TouchAction(driver).tap(element).perform() element = getElememt(driver, "new UiSelector().resourceId(\"org.wikipedia:id/icon\").className(\"android.widget.ImageView\")") TouchAction(driver).tap(element).perform() element = getElememt(driver, "new UiSelector().resourceId(\"org.wikipedia:id/icon\").className(\"android.widget.ImageView\")") TouchAction(driver).tap(element).perform() element = getElememt(driver, "new UiSelector().resourceId(\"org.wikipedia:id/icon\").className(\"android.widget.ImageView\")") TouchAction(driver).tap(element).perform() element = getElememt(driver, "new UiSelector().resourceId(\"org.wikipedia:id/voice_search_button\").className(\"android.widget.ImageView\")") TouchAction(driver).tap(element).perform() element = getElememtBack(driver, "new UiSelector().text(\"Got it\")", "new UiSelector().className(\"android.widget.TextView\").instance(2)") TouchAction(driver).tap(element).perform() element = getElememt(driver, "new UiSelector().resourceId(\"org.wikipedia:id/icon\").className(\"android.widget.ImageView\")") TouchAction(driver).tap(element).perform() except Exception, e: print 'FAIL' print 'str(e):\t\t', str(e) print 'repr(e):\t', repr(e) print traceback.format_exc() else: print 'OK' finally: cpackage = driver.current_package endtime = time.time() print 'consumed time:', str(endtime - starttime), 's' command("adb shell am broadcast -a com.example.pkg.END_EMMA --es name \"6_011\"") jacocotime = time.time() print 'jacoco time:', str(jacocotime - endtime), 's' driver.quit() if (cpackage != 'org.wikipedia'): cpackage = "adb shell am force-stop " + cpackage os.popen(cpackage) os.popen("adb shell svc data enable")
9cbf5b6cf37fb49f49e1452747be65c5d74a5e7b
05887f0f20f3a57c11370021b996d76a56596e5f
/cats/articles/urls.py
ec12a3e5441c566e5a600233b109c2dba9bbd2ea
[]
no_license
kate-ka/cats_backend
11b5102f0e324713a30747d095291dbc9e194c3a
df19f7bfa4d94bf8effdd6f4866012a0a5302b71
refs/heads/master
2020-12-06T16:59:02.713830
2017-10-27T09:51:23
2017-10-27T09:51:23
73,502,091
0
0
null
null
null
null
UTF-8
Python
false
false
340
py
from django.conf.urls import url from rest_framework.urlpatterns import format_suffix_patterns from . views import ArticleList, ArticleDetail urlpatterns = [ url(r'^api-v1/articles/$', ArticleList.as_view()), url(r'^api-v1/articles/(?P<pk>[0-9]+)/$', ArticleDetail.as_view()), ] urlpatterns = format_suffix_patterns(urlpatterns)
ea1bcc55cfd8b75317e22e14dd2204cfadba8760
413f7768f98f72cef8423c473424d67642f1228f
/examples/10_useful_functions/ex06_enumerate.py
909474c54cfdc5aacf3c864d87b7e09cc6e3b343
[]
no_license
easypythoncode/PyNEng
a7bbf09c5424dcd81796f8836509be90c3b1a752
daaed1777cf5449d5494e5a8471396bbcb027de6
refs/heads/master
2023-03-22T01:21:47.250346
2022-08-29T18:25:13
2022-08-29T18:25:13
228,477,021
0
0
null
null
null
null
UTF-8
Python
false
false
176
py
from pprint import pprint with open("config_r1.txt") as f: for num, line in enumerate(f, 1): if line.startswith("interface"): print(num, line, end="")
7391bab13b498877c272f00e6690ce87243867f1
c85d43dc50c26ea0fa4f81b54fb37460ef6cca8d
/rms/urls.py
e59bd4b9b1b0e2b3f232d4b3be1bab71db14aab9
[]
no_license
yorong/buzzz-web-dev
c48dbc165d0aa3abce07971a2dee0280f9bf1e92
0b74bd1b7cfc7a6a7d61672f930d0bde635b4398
refs/heads/master
2021-08-23T02:38:00.544503
2017-12-02T16:01:31
2017-12-02T16:01:31
112,854,877
0
0
null
2017-12-02T15:50:40
2017-12-02T15:50:39
null
UTF-8
Python
false
false
281
py
from django.conf.urls import url # from django.views.generic.base import RedirectView from rms.views import ( RMSHomeView, RMSStartView, ) urlpatterns = [ url(r'^$', RMSHomeView.as_view(), name='home'), url(r'^start/$', RMSStartView.as_view(), name='start'), ]
af673f23ff715e728cc51363efba47a00d25983a
6fa7f99d3d3d9b177ef01ebf9a9da4982813b7d4
/MxNcFpABB68JCxSwA_21.py
c723eb2ea66a70cd882829dbe3acdcb56347c6b0
[]
no_license
daniel-reich/ubiquitous-fiesta
26e80f0082f8589e51d359ce7953117a3da7d38c
9af2700dbe59284f5697e612491499841a6c126f
refs/heads/master
2023-04-05T06:40:37.328213
2021-04-06T20:17:44
2021-04-06T20:17:44
355,318,759
0
0
null
null
null
null
UTF-8
Python
false
false
109
py
def legendre(p, n): sum = 0 i = 1 while n // p**i >= 1: sum += n // p**i i += 1 return sum
f2f5bb2c58b64f25edc908f54fe3891a4afcd5f3
ec65636f2f0183c43b1ec2eac343b9aa1fc7c459
/train/abnormal_detection_new/10.8.160.17/sga_shared_pool.py
8a737bdd656b80792eacc2ff1661d95aec78865d
[]
no_license
tyroarchitect/AIOPs
db5441e5180fcace77b2d1022adb53bbd0b11f23
46fe93329a1847efa70e5b73bcbfd54469645cdd
refs/heads/master
2020-04-16T13:45:02.963404
2018-11-15T06:50:57
2018-11-15T06:51:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
5,202
py
import tensorflow as tf import numpy as np import pandas as pd import matplotlib.pyplot as plt # settings of lstm model timesteps = 20 batch_size = 64 epochs = 5 lstm_size = 30 lstm_layers = 2 filename = "../../../datasets/1-10.8.160.17_20181027_20181109.csv" model = "../../../model/abnormal_detection_model_new/10.8.160.17/sga_shared_pool_model/SGA_SHARED_POOL_MODEL" column = "SGA_SHARED_POOL" start = 207313 end = 224584 class NewData(object): def __init__(self, filename, column, timesteps, start, end): self.timesteps = timesteps self.filename = filename self.column = column self.start = start self.end = end self.train_x, self.train_y, self.test_x, self.test_y = self.preprocess() def MaxMinNormalization(self, x, max_value, min_value): """ :param x: data :param max_value: max value in the data :param min_value: min value in the data :return: normalization data """ x = (x - min_value) / (max_value - min_value) return x def generateGroupDataList(self, seq): """ :param seq: continuous sequence of value in data :return: input data array and label data array in the format of numpy """ x = [] y = [] for i in range(len(seq) - self.timesteps): x.append(seq[i: i + self.timesteps]) y.append(seq[i + self.timesteps]) return np.array(x, dtype=np.float32), np.array(y, dtype=np.float32) def preprocess(self): """ :return: training data and testing data of given filename and column """ data = pd.read_csv(self.filename) data = data["VALUE"].values.tolist() data = data[self.start - 1:self.end] data = self.MaxMinNormalization(data, np.max(data, axis=0), np.min(data, axis=0)) train_x, train_y = self.generateGroupDataList(data) test_x, test_y = self.generateGroupDataList(data) return train_x, train_y, test_x, test_y def getBatches(self, x, y, batch_size): for i in range(0, len(x), batch_size): begin_i = i end_i = i + batch_size if (i + batch_size) < len(x) else len(x) yield x[begin_i:end_i], y[begin_i:end_i] def initPlaceholder(timesteps): x = tf.placeholder(tf.float32, [None, timesteps, 1], name='input_x') y_ = tf.placeholder(tf.float32, [None, 1], name='input_y') keep_prob = tf.placeholder(tf.float32, name='keep_prob') return x, y_, keep_prob def lstm_model(x, lstm_size, lstm_layers, keep_prob): # define basis structure LSTM cell def lstm_cell(): lstm = tf.contrib.rnn.BasicLSTMCell(lstm_size) drop = tf.contrib.rnn.DropoutWrapper(lstm, output_keep_prob=keep_prob) return drop # multi layer LSTM cell cell = tf.contrib.rnn.MultiRNNCell([lstm_cell() for _ in range(lstm_layers)]) # dynamic rnn outputs, final_state = tf.nn.dynamic_rnn(cell, x, dtype=tf.float32) # reverse outputs = outputs[:, -1] # fully connected predictions = tf.contrib.layers.fully_connected(outputs, 1, activation_fn=tf.sigmoid) return predictions def train_model(): # prepare data data = NewData(filename=filename, column=column, timesteps=timesteps, start=start, end=end) # init placeholder x, y, keep_prob = initPlaceholder(timesteps) predictions = lstm_model(x, lstm_size=lstm_size, lstm_layers=lstm_layers, keep_prob=keep_prob) # mse loss function cost = tf.losses.mean_squared_error(y, predictions) # optimizer optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(cost) tf.add_to_collection("predictions", predictions) saver = tf.train.Saver() # define session gpu_options = tf.GPUOptions(allow_growth=True) with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess: tf.global_variables_initializer().run() # batches counter iteration = 1 # loop for training for epoch in range(epochs): for xs, ys in data.getBatches(data.train_x, data.train_y, batch_size): feed_dict = {x: xs[:, :, None], y: ys[:, None], keep_prob: .5} loss, train_step = sess.run([cost, optimizer], feed_dict=feed_dict) if iteration % 100 == 0: print('Epochs:{}/{}'.format(epoch, epochs), 'Iteration:{}'.format(iteration), 'Train loss: {}'.format(loss)) iteration += 1 # save model as checkpoint format to optional folder saver.save(sess, model) # test model feed_dict = {x: data.test_x[:, :, None], keep_prob: 1.0} results = sess.run(predictions, feed_dict=feed_dict) plt.plot(results, 'r', label='predicted') plt.plot(data.test_y, 'g--', label='real') plt.legend() plt.show() if __name__ == "__main__": train_model()
a0b89519a21414737b9664285aa3073dcc619318
9ab48ad4a8daf4cab1cdf592bac722b096edd004
/genutility/fingerprinting.py
b20ca97a8ec9dc1a95e9d6192a517f13f01cf58d
[ "ISC" ]
permissive
Dobatymo/genutility
c902c9b2df8ca615b7b67681f505779a2667b794
857fad80f4235bda645e29abbc14f6e94072403b
refs/heads/master
2023-08-16T18:07:23.651000
2023-08-15T19:05:46
2023-08-15T19:05:46
202,296,877
4
1
ISC
2022-06-14T01:39:53
2019-08-14T07:22:23
Python
UTF-8
Python
false
false
4,528
py
import logging import numpy as np from PIL import Image, ImageFilter # from .numba import opjit from .numpy import rgb_to_hsi, rgb_to_ycbcr, unblock # fingerprinting aka perceptual hashing def phash_antijpeg(image: Image.Image) -> np.ndarray: """Source: An Anti-JPEG Compression Image Perceptual Hashing Algorithm `image` is a RGB pillow image. """ raise NotImplementedError def hu_moments(channels: np.ndarray) -> np.ndarray: """Calculates all Hu invariant image moments for all channels separately. Input array must be of shape [width, height, channels] Returns shape [moments, channels] """ # pre-calculate matrices n, m, _ = channels.shape coords_x, coords_y = np.meshgrid(np.arange(m), np.arange(n)) coords_x = np.expand_dims(coords_x, axis=-1) # for batch input, some change is needed here coords_y = np.expand_dims(coords_y, axis=-1) # for batch input, some change is needed here def M(p, q): return np.sum(coords_x**p * coords_y**q * channels, axis=(-2, -3)) def mu(p, q, xb, yb): return np.sum((coords_x - xb) ** p * (coords_y - yb) ** q * channels, axis=(-2, -3)) def eta(p, q, xb, yb, mu00): gamma = (p + q) / 2 + 1 return mu(p, q, xb, yb) / mu00**gamma def loop(): M00 = M(0, 0) if not np.all(M00 > 0.0): logging.error("M00: %s", M00) raise ValueError("Failed to calculate moments. Single color pictures are not supported yet.") M10 = M(1, 0) M01 = M(0, 1) xb = M10 / M00 yb = M01 / M00 mu00 = mu(0, 0, xb, yb) eta20 = eta(2, 0, xb, yb, mu00) eta02 = eta(0, 2, xb, yb, mu00) eta11 = eta(1, 1, xb, yb, mu00) eta30 = eta(3, 0, xb, yb, mu00) eta12 = eta(1, 2, xb, yb, mu00) eta21 = eta(2, 1, xb, yb, mu00) eta03 = eta(0, 3, xb, yb, mu00) phi1 = eta20 + eta02 phi2 = (eta20 - eta02) ** 2 + 4 * eta11**2 phi3 = (eta30 - 3 * eta12) ** 2 + (3 * eta21 - eta03) ** 2 phi4 = (eta30 + eta12) ** 2 + (eta21 + eta03) ** 2 phi5 = (eta30 - 3 * eta12) * (eta30 + eta12) * ((eta30 + eta12) ** 2 - 3 * (eta21 + eta03) ** 2) + ( 3 * eta21 - eta03 ) * (eta21 + eta03) * (3 * (eta30 + eta12) ** 2 - (eta21 + eta03) ** 2) phi6 = (eta20 - eta02) * ((eta30 + eta12) ** 2 - (eta21 + eta03) ** 2) + 4 * eta11 * (eta30 + eta12) * ( eta21 + eta03 ) phi7 = (3 * eta21 - eta03) * (eta30 + eta12) * ((eta30 + eta12) ** 2 - 3 * (eta21 + eta03) ** 2) - ( eta30 - 3 * eta12 ) * (eta21 + eta03) * (3 * (eta30 + eta12) ** 2 - (eta21 + eta03) ** 2) return np.array([phi1, phi2, phi3, phi4, phi5, phi6, phi7]) return loop() # @opjit() rgb_to_hsi and rgb_to_ycbcr not supported by numba def phash_moments_array(arr: np.ndarray) -> np.ndarray: arr = arr / 255.0 # convert colorspaces hsi = rgb_to_hsi(arr) ycbcr = rgb_to_ycbcr(arr) # .astype(np.uint8) channels = np.concatenate([hsi, ycbcr], axis=-1) return np.concatenate(hu_moments(channels).T) def phash_moments(image: Image.Image) -> np.ndarray: """Source: Perceptual Hashing for Color Images Using Invariant Moments `image` is a RGB pillow image. Results should be compared with L^2-Norm of difference vector. """ if image.mode != "RGB": raise ValueError("Only RGB images are supported") # preprocessing image = image.resize((512, 512), Image.BICUBIC) image = image.filter(ImageFilter.GaussianBlur(3)) image = np.array(image) return phash_moments_array(image) def phash_blockmean_array(arr: np.ndarray, bits: int = 256) -> np.ndarray: """If bits is not a multiple of 8, the result will be zero padded from the right. """ if len(arr.shape) != 2: raise ValueError("arr must be 2-dimensional") n = int(np.sqrt(bits)) if n**2 != bits: raise ValueError("bits must be a square number") blocks = unblock(arr, n, n) means = np.mean(blocks, axis=-1) median = np.median(means) bools = means >= median return np.packbits(bools) def phash_blockmean(image: Image.Image, bits: int = 256, x: int = 256) -> bytes: """Source: Block Mean Value Based Image Perceptual Hashing Method: 1 Metric: 'Bit error rate' (normalized hamming distance) """ image = image.convert("L").resize((x, x)) image = np.array(image) return phash_blockmean_array(image, bits).tobytes()
df66074ddd9a427cb855cccb45608dba94bd3f97
2f98aa7e5bfc2fc5ef25e4d5cfa1d7802e3a7fae
/python/python_3294.py
5e9ea46918a4f4b675a7c226efb96d67ef2616ba
[]
no_license
AK-1121/code_extraction
cc812b6832b112e3ffcc2bb7eb4237fd85c88c01
5297a4a3aab3bb37efa24a89636935da04a1f8b6
refs/heads/master
2020-05-23T08:04:11.789141
2015-10-22T19:19:40
2015-10-22T19:19:40
null
0
0
null
null
null
null
UTF-8
Python
false
false
88
py
# Piecewise list comprehensions in python [50 if hasProperty(x) else 10 for x in alist]
b7ed771c6a32261aa34a41a784151e1f35e36ea8
01ede4fc2497943cdf64211457338838cca97997
/DatasetManager/DatasetManager/arrangement/arrangement_statistics.py
f18a60997a7ab7ca3a83dee4b298d13b2924e591
[]
no_license
qsdfo/orchestration_aws
e317cb55a39789ad270410ba886a42f67e5ce81b
10ebb1752680b03e88fd08ca0a80e55b1269e8a1
refs/heads/master
2021-05-18T03:19:49.562863
2020-07-10T10:06:24
2020-07-10T10:06:24
251,080,622
0
0
null
null
null
null
UTF-8
Python
false
false
8,588
py
import copy import csv import os import shutil from DatasetManager.arrangement.instrument_grouping import get_instrument_grouping from DatasetManager.config import get_config from DatasetManager.arrangement.arrangement_helper import ArrangementIteratorGenerator, note_to_midiPitch, \ separate_instruments_names, OrchestraIteratorGenerator, score_to_pianoroll import music21 import numpy as np import json import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt class ComputeStatistics: def __init__(self, score_iterator, subdivision, savefolder_name, sounding_pitch_boolean=False): config = get_config() #  Dump folder self.dump_folder = config['dump_folder'] self.savefolder_name = f'{self.dump_folder}/{savefolder_name}/statistics' if os.path.isdir(self.savefolder_name): shutil.rmtree(self.savefolder_name) os.makedirs(self.savefolder_name) self.num_bins = 30 #  Simplify instrumentation simplify_instrumentation_path = config['simplify_instrumentation_path'] with open(simplify_instrumentation_path, 'r') as ff: self.simplify_instrumentation = json.load(ff) self.instrument_grouping = get_instrument_grouping() #  Histogram with range of notes per instrument self.tessitura = dict() # Histogram with number of simultaneous notes self.simultaneous_notes = dict() # Histogram with the number of simultaneous notes per instrument self.stat_dict = dict() #  Other stuffs used for parsing self.score_iterator = score_iterator self.subdivision = subdivision self.sounding_pitch_boolean = sounding_pitch_boolean #  Write out paths here self.simultaneous_notes_details_path = f'{self.savefolder_name}/simultaneous_notes_details.txt' open(self.simultaneous_notes_details_path, 'w').close() if self.sounding_pitch_boolean: self.tessitura_path = f'{self.savefolder_name}/tessitura_sounding' else: self.tessitura_path = f'{self.savefolder_name}/tessitura' if os.path.isdir(self.tessitura_path): shutil.rmtree(self.tessitura_path) os.makedirs(self.tessitura_path) return def get_statistics(self): for arrangement_pair in self.score_iterator(): if arrangement_pair is None: continue # Orchestra scores self.histogram_tessitura(arrangement_pair['Orchestra']) self.counting_simultaneous_notes(arrangement_pair['Orchestra'], True) self.counting_simultaneous_notes(arrangement_pair['Piano'], False) # Get reference tessitura for comparing when plotting with open('reference_tessitura.json') as ff: reference_tessitura = json.load(ff) reference_tessitura = { k: (note_to_midiPitch(music21.note.Note(v[0])), note_to_midiPitch(music21.note.Note(v[1]))) for k, v in reference_tessitura.items()} stats = [] this_stats = {} for instrument_name, histogram in self.tessitura.items(): # Plot histogram for each instrument x = range(128) y = list(histogram.astype(int)) plt.clf() plt.bar(x, y) plt.xlabel('Notes', fontsize=8) plt.ylabel('Frequency', fontsize=8) plt.title(instrument_name, fontsize=10) plt.xticks(np.arange(0, 128, 1)) # Add reference tessitura if instrument_name != "Remove": min_ref, max_ref = reference_tessitura[instrument_name] else: min_ref = 0 max_ref = 128 x = range(min_ref, max_ref) y = [0 for _ in range(len(x))] plt.plot(x, y, 'ro') plt.savefig(f'{self.tessitura_path}/{instrument_name}_tessitura.pdf') # Write stats in txt file total_num_notes = histogram.sum() non_zero_indices = np.nonzero(histogram)[0] lowest_pitch = non_zero_indices.min() highest_pitch = non_zero_indices.max() this_stats = { 'instrument_name': instrument_name, 'total_num_notes': total_num_notes, 'lowest_pitch': lowest_pitch, 'highest_pitch': highest_pitch } stats.append(this_stats) # Write number of co-occuring notes with open(f'{self.savefolder_name}/simultaneous_notes.txt', 'w') as ff: for instrument_name, simultaneous_counter in self.simultaneous_notes.items(): ff.write(f"## {instrument_name}\n") for ind, simultaneous_occurences in enumerate(list(simultaneous_counter)): ff.write(' {:d} : {:d}\n'.format(ind, int(simultaneous_occurences))) with open(f'{self.savefolder_name}/statistics.csv', 'w') as ff: fieldnames = this_stats.keys() writer = csv.DictWriter(ff, fieldnames=fieldnames, delimiter=";") writer.writeheader() for this_stats in stats: writer.writerow(this_stats) def histogram_tessitura(self, score): # Transpose to sounding pitch ? if self.sounding_pitch_boolean: if score.atSoundingPitch != 'unknown': score_processed = score.toSoundingPitch() else: score_processed = score for part in score_processed.parts: instrument_names = [self.instrument_grouping[e] for e in separate_instruments_names(self.simplify_instrumentation[part.partName])] for instrument_name in instrument_names: part_flat = part.flat histogram = music21.graph.plot.HistogramPitchSpace(part_flat) histogram.extractData() histogram_data = histogram.data for (pitch, frequency, _) in histogram_data: if instrument_name not in self.tessitura: self.tessitura[instrument_name] = np.zeros((128,)) self.tessitura[instrument_name][int(pitch)] += frequency return def counting_simultaneous_notes(self, score, orchestra_flag): if orchestra_flag: pr, onsets, _ = score_to_pianoroll( score, self.subdivision, self.simplify_instrumentation, self.instrument_grouping, self.sounding_pitch_boolean) else: pr, onsets, _ = score_to_pianoroll( score, self.subdivision, None, self.instrument_grouping, self.sounding_pitch_boolean) with open(self.simultaneous_notes_details_path, 'a') as ff: ff.write(f'##### {score.filePath}\n') for instrument_name, this_pr in pr.items(): # binarize this_pr_bin = np.where(this_pr > 0, 1, 0) # flatten this_pr_flat = this_pr_bin.sum(1) #  Update simultaneous notes counter if instrument_name not in self.simultaneous_notes.keys(): self.simultaneous_notes[instrument_name] = np.zeros((self.num_bins,)) histo, _ = np.histogram(this_pr_flat, bins=range(self.num_bins+1), range=range(self.num_bins+1)) self.simultaneous_notes[instrument_name] = self.simultaneous_notes[instrument_name] + histo return if __name__ == '__main__': database_path = '/home/leo/Recherche/Databases/Orchestration/arrangement/' subsets = [ # 'bouliane', # 'hand_picked_Spotify', # 'imslp', 'liszt_classical_archives' ] score_iterator = ArrangementIteratorGenerator( arrangement_path=database_path, subsets=subsets ) savefolder_name = 'liszt_beethov' # database_path = '/home/leo/Recherche/Databases/Orchestration/orchestral/' # subsets = [ # 'kunstderfuge' # ] # score_iterator = OrchestraIteratorGenerator( # folder_path=database_path, # subsets=subsets, # process_file=True # ) # savefolder_name = 'kunst_orchestral' simplify_instrumentation_path = 'simplify_instrumentation.json' sounding_pitch_boolean = True subdivision = 4 computeStatistics = ComputeStatistics(score_iterator, subdivision, savefolder_name, sounding_pitch_boolean) computeStatistics.get_statistics()
550b55101c715dd350fa5cd27249306a0f72db95
aea7bbe854591f493f4a37919eb75dde7f2eb2ca
/startCamp/03_day/flask/intro/function.py
f11de57476cf04f3c28b5c8018c3382bdd7abb9c
[]
no_license
GaYoung87/StartCamp
6e31a50d3037174b08a17114e467989520bb9a86
231b1fd0e245acb5d4570778aa41de79d6ad4b17
refs/heads/master
2020-06-17T11:52:38.256085
2019-07-12T01:14:47
2019-07-12T01:14:47
null
0
0
null
null
null
null
UTF-8
Python
false
false
167
py
# sum이라는 함수를 정의 def sum(num1, num2): # 숫자 num1, num2라는 인자를 받는 함수 return num1 + num2 result = sum(5, 6) print(result)
5a2524a0bd81ae136a6c230538fb8c7985d95562
09e57dd1374713f06b70d7b37a580130d9bbab0d
/data/p3BR/R2/benchmark/startCirq330.py
74d7d9238c53332a3cb7ad0438bb8c452fc6d169
[ "BSD-3-Clause" ]
permissive
UCLA-SEAL/QDiff
ad53650034897abb5941e74539e3aee8edb600ab
d968cbc47fe926b7f88b4adf10490f1edd6f8819
refs/heads/main
2023-08-05T04:52:24.961998
2021-09-19T02:56:16
2021-09-19T02:56:16
405,159,939
2
0
null
null
null
null
UTF-8
Python
false
false
4,271
py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 5/15/20 4:49 PM # @File : grover.py # qubit number=3 # total number=66 import cirq import cirq.google as cg from typing import Optional import sys from math import log2 import numpy as np #thatsNoCode from cirq.contrib.svg import SVGCircuit # Symbols for the rotation angles in the QAOA circuit. def make_circuit(n: int, input_qubit): c = cirq.Circuit() # circuit begin c.append(cirq.H.on(input_qubit[0])) # number=1 c.append(cirq.H.on(input_qubit[2])) # number=38 c.append(cirq.CZ.on(input_qubit[0],input_qubit[2])) # number=39 c.append(cirq.H.on(input_qubit[2])) # number=40 c.append(cirq.H.on(input_qubit[2])) # number=59 c.append(cirq.CZ.on(input_qubit[0],input_qubit[2])) # number=60 c.append(cirq.H.on(input_qubit[2])) # number=61 c.append(cirq.H.on(input_qubit[2])) # number=42 c.append(cirq.CZ.on(input_qubit[0],input_qubit[2])) # number=43 c.append(cirq.H.on(input_qubit[2])) # number=44 c.append(cirq.H.on(input_qubit[2])) # number=48 c.append(cirq.CZ.on(input_qubit[0],input_qubit[2])) # number=49 c.append(cirq.H.on(input_qubit[2])) # number=50 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[2])) # number=54 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[2])) # number=63 c.append(cirq.X.on(input_qubit[2])) # number=64 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[2])) # number=65 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[2])) # number=56 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[2])) # number=47 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[2])) # number=37 c.append(cirq.H.on(input_qubit[2])) # number=51 c.append(cirq.CZ.on(input_qubit[0],input_qubit[2])) # number=52 c.append(cirq.H.on(input_qubit[2])) # number=53 c.append(cirq.H.on(input_qubit[2])) # number=25 c.append(cirq.CZ.on(input_qubit[0],input_qubit[2])) # number=26 c.append(cirq.H.on(input_qubit[2])) # number=27 c.append(cirq.H.on(input_qubit[1])) # number=7 c.append(cirq.CZ.on(input_qubit[2],input_qubit[1])) # number=8 c.append(cirq.rx(0.17592918860102857).on(input_qubit[2])) # number=34 c.append(cirq.rx(-0.3989822670059037).on(input_qubit[1])) # number=30 c.append(cirq.H.on(input_qubit[1])) # number=9 c.append(cirq.H.on(input_qubit[1])) # number=18 c.append(cirq.rx(2.3310617489636263).on(input_qubit[2])) # number=58 c.append(cirq.CZ.on(input_qubit[2],input_qubit[1])) # number=19 c.append(cirq.H.on(input_qubit[1])) # number=20 c.append(cirq.X.on(input_qubit[1])) # number=62 c.append(cirq.Y.on(input_qubit[1])) # number=14 c.append(cirq.H.on(input_qubit[1])) # number=22 c.append(cirq.CZ.on(input_qubit[2],input_qubit[1])) # number=23 c.append(cirq.rx(-0.9173450548482197).on(input_qubit[1])) # number=57 c.append(cirq.H.on(input_qubit[1])) # number=24 c.append(cirq.Z.on(input_qubit[2])) # number=3 c.append(cirq.Z.on(input_qubit[1])) # number=41 c.append(cirq.X.on(input_qubit[1])) # number=17 c.append(cirq.Y.on(input_qubit[2])) # number=5 c.append(cirq.X.on(input_qubit[2])) # number=21 c.append(cirq.CNOT.on(input_qubit[1],input_qubit[0])) # number=15 c.append(cirq.CNOT.on(input_qubit[1],input_qubit[0])) # number=16 c.append(cirq.X.on(input_qubit[2])) # number=28 c.append(cirq.X.on(input_qubit[2])) # number=29 # circuit end c.append(cirq.measure(*input_qubit, key='result')) return c def bitstring(bits): return ''.join(str(int(b)) for b in bits) if __name__ == '__main__': qubit_count = 4 input_qubits = [cirq.GridQubit(i, 0) for i in range(qubit_count)] circuit = make_circuit(qubit_count,input_qubits) circuit = cg.optimized_for_sycamore(circuit, optimizer_type='sqrt_iswap') circuit_sample_count =2000 simulator = cirq.Simulator() result = simulator.run(circuit, repetitions=circuit_sample_count) frequencies = result.histogram(key='result', fold_func=bitstring) writefile = open("../data/startCirq330.csv","w+") print(format(frequencies),file=writefile) print("results end", file=writefile) print(circuit.__len__(), file=writefile) print(circuit,file=writefile) writefile.close()
7354bef465760c7821f2382d875c71a979be9fd7
332cceb4210ff9a5d99d2f3a65a704147edd01a2
/justext/utils.py
42e5074ec56396d742d4234e9106a0655e9de958
[]
permissive
miso-belica/jusText
16e5befcb449d3939ce62dc3460afbc768bd07cc
22a59079ea691d67e2383039cf5b40d490420115
refs/heads/main
2023-08-30T03:48:27.225553
2023-01-24T08:45:58
2023-01-24T08:45:58
8,121,947
527
70
BSD-2-Clause
2022-05-04T06:11:47
2013-02-10T11:42:20
Python
UTF-8
Python
false
false
1,965
py
# -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division, print_function, unicode_literals import re import os import sys import pkgutil MULTIPLE_WHITESPACE_PATTERN = re.compile(r"\s+", re.UNICODE) def normalize_whitespace(text): """ Translates multiple whitespace into single space character. If there is at least one new line character chunk is replaced by single LF (Unix new line) character. """ return MULTIPLE_WHITESPACE_PATTERN.sub(_replace_whitespace, text) def _replace_whitespace(match): """Normalize all spacing characters that aren't a newline to a space.""" text = match.group() return "\n" if "\n" in text or "\r" in text else " " def is_blank(string): """ Returns `True` if string contains only white-space characters or is empty. Otherwise `False` is returned. """ return not string or string.isspace() def get_stoplists(): """Returns a collection of built-in stop-lists.""" path_to_stoplists = os.path.dirname(sys.modules["justext"].__file__) path_to_stoplists = os.path.join(path_to_stoplists, "stoplists") stoplist_names = [] for filename in os.listdir(path_to_stoplists): name, extension = os.path.splitext(filename) if extension == ".txt": stoplist_names.append(name) return frozenset(stoplist_names) def get_stoplist(language): """Returns an built-in stop-list for the language as a set of words.""" file_path = os.path.join("stoplists", "%s.txt" % language) try: stopwords = pkgutil.get_data("justext", file_path) except IOError: raise ValueError( "Stoplist for language '%s' is missing. " "Please use function 'get_stoplists' for complete list of stoplists " "and feel free to contribute by your own stoplist." % language ) return frozenset(w.decode("utf8").lower() for w in stopwords.splitlines())
8e17f0a7737a188114983caa8fd0c1b8ec4af73e
ad6c519f356c0c49eb004084b12b5f08e3cd2e9e
/contrib/compile_po_files.py
1456bab6925d5b04a85ff3269ef94c187c334a03
[ "MIT" ]
permissive
csilvers/kake
1a773e7c2232ea243be256bb5e6bd92e0189db9d
51465b12d267a629dd61778918d83a2a134ec3b2
refs/heads/master
2021-05-05T23:07:40.425063
2019-01-23T23:35:48
2019-01-23T23:35:48
116,594,798
0
0
MIT
2019-01-23T23:19:17
2018-01-07T19:59:09
Python
UTF-8
Python
false
false
17,080
py
# TODO(colin): fix these lint errors (http://pep8.readthedocs.io/en/release-1.7.x/intro.html#error-codes) # pep8-disable:E128 """Converts translation (.po) files to the format we use internally. Most people convert .po files to .mo files and use the standard library gettext module to use the translation data. But not us. For reasons of efficiency -- both time and space -- we use our own file format which is basically a pickled dict. This converts the .po files to our new file format. """ from __future__ import absolute_import import md5 import os import shutil import sys import shared.util.thread import ka_globals from kake.lib import compile_rule from kake.lib import computed_inputs from kake.lib import log class NoSuchLocaleCompileFailure(compile_rule.BadRequestFailure): """Raised when GCS does not contain translations for the requested locale. When Google Cloud Storage (GCS) does not contain translations for a requested locale, this failure should be negatively cached to avoid re-requesting the same index over and over again. This failure is only raised on the dev-appserver, NOT on Jenkins. """ def __init__(self, locale): super(NoSuchLocaleCompileFailure, self).__init__( "The index for the '%s' locale is not present on " "Google Cloud Storage." % (locale)) class FetchFileFromS3(compile_rule.CompileBase): """If the po-file is stored on S3, retrieve it from there. PO files have traditionally been checked into source control (github.com:Khan/webapp-i18n). But a more modern approach has been to store those files remotely on S3, and only store the s3-file name in source control. We use the 'git bigfile' extension to control this. This compile rule deals with both cases: just copying the file in the first case and downloading from S3 in the second. """ def version(self): """Update every time build() changes in a way that affects output.""" return 1 @staticmethod def _munge_sys_path(): """Modify sys.path so we can load the git-bigfile library.""" # First, find out where git-bigfile lives. It lives on the # path, so we can just look for that. for pathdir in os.environ['PATH'].split(':'): if os.path.exists(os.path.join(pathdir, 'git-bigfile')): sys.path.append(os.path.dirname(pathdir)) return raise compile_rule.CompileFailure( "Can't find git-bigfile in %s" % os.environ['PATH']) @staticmethod def _download_from_s3(gitbigfile_module, outfile_abspath, sha): s3_fetcher = gitbigfile_module.GitBigfile().transport() log.v2('Downloading s3://%s/%s to %s' % ( s3_fetcher.bucket.name, sha, outfile_abspath + '.tmp')) s3_fetcher.get(sha, outfile_abspath + '.tmp') # Make sure we don't create the 'real' file until it's fully # downloaded. try: os.unlink(outfile_abspath) except (IOError, OSError): pass # probably "file not found" try: os.rename(outfile_abspath + '.tmp', outfile_abspath) except OSError: log.v1('Error fetching %s' % outfile_abspath) raise def build_many(self, outfile_infiles_changed_context): from shared.testutil import fake_datetime sha_to_files = {} # for the files we need to get from S3 for (outfile, infiles, _, context) in outfile_infiles_changed_context: assert len(infiles) == 1, infiles assert infiles[0].startswith('intl/translations/') with open(self.abspath(infiles[0])) as f: head = f.read(64).strip() # Does the head look like a sha1? (sha1's are only 40 bytes.) # If so, store it for later. If not, take care of it now. if head.strip('0123456789abcdefABCDEF') == '': sha_to_files.setdefault(head, []).append(outfile) else: # Nope, not a sha1. NOTE: We could also use a hard-link, # but that could fail if genfiles is on a different # filesystem from the source. Copying is more expensive # but safer. Symlinks are right out. shutil.copyfile(self.abspath(infiles[0]), self.abspath(outfile)) if not sha_to_files: return # We could just call 'git bigfile pull' but we purposefully # don't so as to leave untouched the file-contents in # intl/translations. This works better with kake, which # doesn't like it when input contents change as part of a kake # rule. self._munge_sys_path() # so the following import succeeds import gitbigfile.command # Download all our files from S3 in parallel. We store these # files under a 'permanent' name based on the sha1. (Later # we'll copy these files to outfile_name.) That way even if # you check out a different branch and come back to this one # again, you can get the old contents without needing to # revisit S3. # GitBigfile() (in _download_from_s3) runs 'git' commands in a # subprocess, so we need to be in the right repository for that. old_cwd = os.getcwd() os.chdir(self.abspath('intl/translations')) try: # This will actually try to download translation files via # bigfile. This requires a real datetime for making the # api requests to S3 (S3 complains about weird dates). with fake_datetime.suspend_fake_datetime(): arglists = [] for (sha, outfiles) in sha_to_files.iteritems(): # Typically a given sha will have only one outfile, # but for some shas (an empty po-file, e.g.), many # outfiles may share the same sha! log.v1('Fetching %s from S3' % ' '.join(outfiles)) # We just need to put this in a directory we know we # can write to: take one of the outfile dirs arbitrarily. sha_name = os.path.join(os.path.dirname(outfiles[0]), sha) arglists.append( (gitbigfile.command, self.abspath(sha_name), sha)) shared.util.thread.run_many_threads( self._download_from_s3, arglists) except RuntimeError as why: log.error(why) # probably misleading, but maybe helpful # TODO(csilvers): check whether git-bigfile *is* set up # correctly, and give a more precise failure message if so. raise compile_rule.CompileFailure( "Failed to download translation file for %s from S3. " "Make sure you have git-bigfile set up as per the " "configs in the khan-dotfiles repo: namely, the " "'bigfile' section in .gitconfig.khan, and the " "update_credentials() section in setup.sh." % outfile) finally: os.chdir(old_cwd) # Now copy from the sha-name to the actual output filename. for (sha, outfiles) in sha_to_files.iteritems(): sha_name = os.path.join(os.path.dirname(outfiles[0]), sha) for outfile in outfiles: log.v2('Copying from %s to %s' % (sha_name, outfile)) try: os.unlink(self.abspath(outfile)) except OSError: pass # probably file not found os.link(self.abspath(sha_name), self.abspath(outfile)) def num_outputs(self): """We limit how many parallel fetches we do so we don't overload S3.""" return 50 # This is only used on the dev-appserver, NOT on Jenkins (or else we'd never # update the indices!) class DownloadIndex(compile_rule.CompileBase): def __init__(self): super(DownloadIndex, self).__init__() self._locale_paths = None def version(self): """Update every time build() changes in a way that affects output.""" import datetime # Force redownloading once a month. return datetime.datetime.now().strftime("%Y-%m") def build(self, outfile_name, infile_names, changed, context): """Download .index and .chunk files from prod. CompilePOFile takes a long time to compute. So when not on jenkins we call this rule instead to fetch from prod what is there. """ if self._locale_paths is None: self._init_locale_paths() log.v2("Determining latest prod translation files for %s" % context['{lang}']) locale = context['{lang}'] locale_path = 'gs://ka_translations/%s/' % locale if locale_path not in self.locale_paths: raise NoSuchLocaleCompileFailure(locale) try: stdout = self.call_with_output(['gsutil', 'ls', locale_path]) except compile_rule.CompileFailure, e: # TODO(james): make sure we download gcloud and gsutil as part # of the khan-dotfiles setup. raise compile_rule.CompileFailure( "%s.\nFailed to download translations from gcs. Make sure " "that you have gsutil installed via gcloud." % e) dirs = stdout.split() if dirs: most_recent_dir = dirs[-1] log.v2("Downloading latest prod files from %s" % most_recent_dir) self.call( ['gsutil', '-m', 'cp', '-r', "%s*" % most_recent_dir, os.path.dirname(outfile_name)]) return # No translation files found on gcs ... lets complain raise compile_rule.CompileFailure( "Failed to find translation files for %s on gcs" % context['{lang}']) def _init_locale_paths(self): try: self.locale_paths = self.call_with_output( ['gsutil', 'ls', 'gs://ka_translations']).split() except compile_rule.CompileFailure, e: raise compile_rule.CompileFailure( "%s.\nFailed to download translations from gcs. Make sure " "that you have gsutil installed via gcloud." % e) class CompilePOFile(compile_rule.CompileBase): def version(self): """Update every time build() changes in a way that affects output.""" return 9 def build(self, outfile_name, infile_names, changed, context): """Merge the pofiles and approved pofiles & build pickle and chunks. We export from crowdin twice for each language. One time to get all the translated strings which winds up in intl/translation/pofile/{lang}.(rest|datastore).po files and another time to get just the approved translations which winds up in the intl/translation/approved_pofile/{lang}.(rest|datastore).po files. This merges them all together, preferring an entry in the approved pofile over the unapproved one, and adding a flag to the approved entries. We then create our own specially formatted files that use less space. There is the genfiles/translations/{lang}/index.pickle that gets created, and a bunch of genfiles/translations/{lang}/chunk.# files that the index file points to and holds the actual translations. """ # We import here so the kake system doesn't require these # imports unless they're actually used. import intl.translate from intl import polib_util full_content = '' for infile in sorted([n for n in infile_names if "approved_pofiles" not in n]): with open(self.abspath(infile)) as f: log.v3("Reading %s" % infile) full_content += f.read() approved_full_content = '' for infile in sorted([n for n in infile_names if "approved_pofiles" in n]): with open(self.abspath(infile)) as f: log.v3("Reading %s" % infile) approved_full_content += f.read() log.v3("Calculating md5 to get translation file version for %s" % context['{lang}']) # The output files need a version string. We'll use an # md5sum of the input files. version_md5sum = md5.new( full_content + approved_full_content).hexdigest() version = 'compile_po_%s' % version_md5sum translate_writer = intl.translate.TranslateWriter( os.path.dirname(outfile_name), context['{lang}'], version) # Now lets combine the two po files and add a flag to the approved # pofile entries. log.v3("Creating .index and .chunk translation files for %s" % context['{lang}']) approved_msgids = set() def add_approved_entry(po_entry): po_entry.flags.append('approved') approved_msgids.add(po_entry.msgid) translate_writer.add_poentry(po_entry) def add_unapproved_entry(po_entry): if po_entry.msgid not in approved_msgids: translate_writer.add_poentry(po_entry) _ = polib_util.streaming_pofile( approved_full_content.decode('utf-8'), callback=add_approved_entry) # called on each input POEntry. unapproved_pofile = polib_util.streaming_pofile( full_content.decode('utf-8'), callback=add_unapproved_entry) # This adds in the metadata (and only the metadata). translate_writer.add_pofile(unapproved_pofile) translate_writer.commit() class IntlToGenfiles(computed_inputs.ComputedInputsBase): """Replace intl/translations/pofile/glob with genfiles/translations... This is because we want to read files from the genfiles/translations/pofiles/ directory, but can't do a glob in that directory because it holds generated files. Luckily there's a 1-to-1 correspondence between files in the intl/ directory and in the genfiles/ directory, so we can say what the list of files in genfiles/translations/pofiles will be. """ def version(self): """Update if input_patterns() changes in a way that affects output.""" return 1 def input_patterns(self, outfile_name, context, triggers, changed): return [x.replace('intl/', 'genfiles/') for x in triggers] # "Expand" the intl/translations file if it's being stored as a sha1 # for use by 'git bigfile'. # NOTE: Changing git branches can cause intl/translations timestamps # to change. Since a changed .po file causes every single file in # that language to get recompiled -- expensive! -- it's worth it to # depend on crc's rather than just timestamps for these files. compile_rule.register_compile( 'EXPAND PO-FILE', 'genfiles/translations/pofiles/{{path}}', ['intl/translations/pofiles/{{path}}'], FetchFileFromS3(), compute_crc=True) # Also "expand" approved_pofiles with git bigfile. compile_rule.register_compile( 'EXPAND APPROVED PO-FILES', 'genfiles/translations/approved_pofiles/{{path}}', ['intl/translations/approved_pofiles/{{path}}'], FetchFileFromS3(), compute_crc=True) # (This isn't really po-file-related, but it's about expanding: these # are the other types of translation files that are stored in S3.) compile_rule.register_compile( 'EXPAND PICKLE-FILE', 'genfiles/translations/{{path}}.pickle', ['intl/translations/{{path}}.pickle'], FetchFileFromS3(), compute_crc=True) # In addition to index.pickle, this will also create all the chunk.# files. if ka_globals.is_on_jenkins: compile_rule.register_compile( 'DEPLOYED TRANSLATIONS', 'genfiles/translations/{lang}/index.pickle', # This allows for .po files being split up (to get under github # filesize limits: foo.po, foo.po.2, foo.po.3, etc.) # We fetch the actual files from # genfiles/translations/combined_pofiles, # but there's a 1-to-1 relationship between those files and the # ones in intl/translations/pofiles. IntlToGenfiles(['intl/translations/pofiles/{lang}.*', 'intl/translations/approved_pofiles/{lang}.*']), CompilePOFile()) else: # If not on jenkins (ie. dev server) we do not build this file # ourselves as it is very expensive to compute and instead download # it from prod. It's most likely fine to use out of date data, so we # don't rebuild on any inputs at all, but instead increase the version once # a month. If a dev wanted a newer datastore sooner, they need to run: # make sync_prod_translations LANGS=<lang> compile_rule.register_compile( 'DOWNLOAD PROD TRANSLATIONS', 'genfiles/translations/{lang}/index.pickle', [], DownloadIndex())
e42abe3c8e78b1c9969be47b78657894ae274870
351fa4edb6e904ff1ac83c6a790deaa7676be452
/graphs/graphUtil/graphAdjMat.py
a8211d8ac10c6c16d87eb91ba14de7aa24570e2a
[ "MIT" ]
permissive
shahbagdadi/py-algo-n-ds
42981a61631e1a9af7d5ac73bdc894ac0c2a1586
f3026631cd9f3c543250ef1e2cfdf2726e0526b8
refs/heads/master
2022-11-27T19:13:47.348893
2022-11-14T21:58:51
2022-11-14T21:58:51
246,944,662
0
0
null
null
null
null
UTF-8
Python
false
false
1,664
py
from typing import List from collections import deque from collections import defaultdict # A class to represent a graph. A graph # is the list of the adjacency Matrix. # Size of the array will be the no. of the # vertices "V" class Graph: def __init__(self, vertices, directed=True): self.V = vertices self.adjMatrix = [] self.directed = directed for i in range(self.V): self.adjMatrix.append([0 for i in range(self.V)]) # Function to add an edge in an undirected graph def add_edge(self, src, dest): if src == dest: print(f"Same vertex {src} and {dest}") self.adjMatrix[src][dest] = 1 if not self.directed: self.adjMatrix[dest][src] = 1 # Function to print the graph adj list def print_adj_list(self): for k in self.graph.keys(): print(f"Adjacency list of vertex {k}\n {k}", end="") for n in self.graph[k]: print(f" -> {n}", end="") print(" \n") def print_adj_mat(self): print(self.adjMatrix) # Breadth First Traversal of graph def BFS(self, root): q = deque([root]) visited = set([root]) while q: node = q.pop() print(f'{node} => ', end="") for i, child in enumerate(self.adjMatrix[node]): if child == 1 and i not in visited: visited.add(i) q.appendleft(i) g = Graph(5, True) g.add_edge(0, 1) g.add_edge(0, 4) g.add_edge(1, 4) g.add_edge(1, 3) g.add_edge(1, 2) g.add_edge(2, 3) g.print_adj_mat() print('====== BFS =====') g.BFS(0) print('\n')
1326a2e287de4aba98c8281869940dc914c7ec24
7db575150995965b0578f3b7c68567e07f5317b7
/tr2/models/transformer.py
f3799d94287770125fd19476f059cc6c49ce70a5
[]
no_license
anhdhbn/thesis-tr2
b14049cc3de517cdd9205239e4cf3d225d168e85
7a74bb1228f5493b37934f38a8d3e1ab5328fc3c
refs/heads/master
2023-03-27T21:51:57.763495
2021-02-26T12:51:20
2021-02-26T12:51:20
338,924,981
0
0
null
null
null
null
UTF-8
Python
false
false
4,876
py
import torch import torch.nn as nn from torch import Tensor from tr2.models.encoder import TransformerEncoder, TransformerEncoderLayer from tr2.models.decoder import TransformerDecoder, TransformerDecoderLayer class Transformer(nn.Module): def __init__(self, hidden_dims=512, num_heads = 8, num_encoder_layer=6, num_decoder_layer=6, dim_feed_forward=2048, dropout=.1 ): super().__init__() encoder_layer = TransformerEncoderLayer( hidden_dims=hidden_dims, num_heads=num_heads, dropout=dropout, dim_feedforward=dim_feed_forward ) self.encoder = TransformerEncoder( encoder_layer=encoder_layer, num_layers=num_encoder_layer ) decoder_layer = TransformerDecoderLayer( hidden_dims=hidden_dims, num_heads=num_heads, dropout=dropout, dim_feedforward=dim_feed_forward ) decoder_layer2 = TransformerDecoderLayer( hidden_dims=hidden_dims, num_heads=num_heads, dropout=dropout, dim_feedforward=dim_feed_forward ) self.decoder = TransformerDecoder(decoder_layer=decoder_layer, num_layers=num_decoder_layer) self.decoder2 = TransformerDecoder(decoder_layer=decoder_layer2, num_layers=num_decoder_layer) def _reset_parameters(self): for p in self.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) def forward(self, template: Tensor, mask_template: Tensor, pos_template: Tensor, search: Tensor, mask_search: Tensor, pos_search:Tensor) -> Tensor: """ :param src: tensor of shape [batchSize, hiddenDims, imageHeight // 32, imageWidth // 32] :param mask: tensor of shape [batchSize, imageHeight // 32, imageWidth // 32] Please refer to detr.py for more detailed description. :param query: object queries, tensor of shape [numQuery, hiddenDims]. :param pos: positional encoding, the same shape as src. :return: tensor of shape [batchSize, num_decoder_layer * WH, hiddenDims] """ # flatten NxCxHxW to HWxNxC bs, c, h, w = search.shape template = template.flatten(2).permute(2, 0, 1) # HWxNxC search = search.flatten(2).permute(2, 0, 1) # HWxNxC mask_template = mask_template.flatten(1) # NxHW mask_search = mask_search.flatten(1) # NxHW pos_template = pos_template.flatten(2).permute(2, 0, 1) # HWxNxC pos_search = pos_search.flatten(2).permute(2, 0, 1) # HWxNxC memory = self.encoder(template, src_key_padding_mask=mask_template, pos=pos_template) out = self.decoder(search, memory, memory_key_padding_mask=mask_template, pos_template=pos_template, pos_search=pos_search, tgt_key_padding_mask=mask_search) # num_decoder_layer x WH x N x C out2 = self.decoder2(search, memory, memory_key_padding_mask=mask_template, pos_template=pos_template, pos_search=pos_search, tgt_key_padding_mask=mask_search) # num_decoder_layer x WH x N x C return out.transpose(1, 2), out2.transpose(1, 2) def init(self, template, mask_template, pos_template): template = template.flatten(2).permute(2, 0, 1) # HWxNxC mask_template = mask_template.flatten(1) # NxHW pos_template = pos_template.flatten(2).permute(2, 0, 1) # HWxNxC return self.encoder(template, src_key_padding_mask=mask_template, pos=pos_template) def track(self, memory, mask_template, pos_template, search, mask_search, pos_search): search = search.flatten(2).permute(2, 0, 1) # HWxNxC mask_template = mask_template.flatten(1) # NxHW mask_search = mask_search.flatten(1) # NxHW pos_template = pos_template.flatten(2).permute(2, 0, 1) # HWxNxC pos_search = pos_search.flatten(2).permute(2, 0, 1) # HWxNxC out = self.decoder(search, memory, memory_key_padding_mask=mask_template, pos_template=pos_template, pos_search=pos_search, tgt_key_padding_mask=mask_search) out2 = self.decoder2(search, memory, memory_key_padding_mask=mask_template, pos_template=pos_template, pos_search=pos_search, tgt_key_padding_mask=mask_search) return out.transpose(1, 2), out2.transpose(1, 2) def build_transformer( hidden_dims=512, num_heads = 8, num_encoder_layer=6, num_decoder_layer=6, dim_feed_forward=2048, dropout=.1 ): return Transformer(hidden_dims=hidden_dims, num_heads = num_heads, num_encoder_layer = num_encoder_layer, num_decoder_layer = num_decoder_layer, dim_feed_forward = dim_feed_forward, dropout=dropout )
70b347db5fcd769831550b3fecad4822d3c19ea2
fe9573bad2f6452ad3e2e64539361b8bc92c1030
/Socket_programming/TLS_server.py
846eac13cb9e9873d922eb3e035275be919fb72a
[]
no_license
OceanicSix/Python_program
e74c593e2e360ae22a52371af6514fcad0e8f41f
2716646ce02db00306b475bad97105b260b6cd75
refs/heads/master
2022-01-25T16:59:31.212507
2022-01-09T02:01:58
2022-01-09T02:01:58
149,686,276
1
2
null
null
null
null
UTF-8
Python
false
false
1,090
py
#!/usr/bin/python3 import socket, ssl, pprint html = """ HTTP/1.1 200 OK\r\nContent-Type: text/html\r\n\r\n <!DOCTYPE html><html><body><h1>This is Bank32.com!</h1></body></html> """ SERVER_CERT = './certs/mycert.crt' SERVER_PRIVATE = './certs/mycert.key' # context = ssl.SSLContext(ssl.PROTOCOL_TLS_SERVER) # For Ubuntu 20.04 VM context = ssl.SSLContext(ssl.PROTOCOL_TLSv1_2) # For Ubuntu 16.04 VM context.load_cert_chain(SERVER_CERT, SERVER_PRIVATE) sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM, 0) sock.bind(('0.0.0.0', 4433)) sock.listen(5) while True: newsock, fromaddr = sock.accept() try: ssock = context.wrap_socket(newsock, server_side=True) print("TLS connection established") data = ssock.recv(1024) # Read data over TLS pprint.pprint("Request: {}".format(data)) ssock.sendall(html.encode('utf-8')) # Send data over TLS ssock.shutdown(socket.SHUT_RDWR) # Close the TLS connection ssock.close() except Exception as e: print("TLS connection fails") print(e) continue
8f5307ec6a941ac8d84d56f251ad4dbd6cccadd2
d362a983e055984c588ee81c66ba17d536bae2f5
/backend/agent/migrations/0003_beautician.py
50fc77458670228cbb0dd38577ad9635cf06145d
[]
no_license
prrraveen/Big-Stylist-CRM
1d770b5ad28f342dfc5d40002ddc3ee7cc6f840a
6cd84ce7b01a49a09b844c27ecc4575dcca54393
refs/heads/master
2021-01-10T04:37:43.414844
2015-12-15T10:47:21
2015-12-15T10:47:21
49,239,402
1
0
null
null
null
null
UTF-8
Python
false
false
2,057
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('agent', '0002_service'), ] operations = [ migrations.CreateModel( name='Beautician', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=100)), ('gender', models.CharField(max_length=1, choices=[(b'M', b'Male'), (b'F', b'Female')])), ('marital_status', models.CharField(max_length=1, choices=[(b'M', b'married'), (b'S', b'Single')])), ('family_members', models.CharField(max_length=80, blank=True)), ('age', models.IntegerField(null=True, blank=True)), ('customer_rating', models.IntegerField(null=True, blank=True)), ('bs_rating', models.IntegerField(null=True, blank=True)), ('rating_by_service', models.IntegerField(null=True, blank=True)), ('phone_number', models.CharField(max_length=11)), ('alternate_number', models.CharField(max_length=11, blank=True)), ('address', models.CharField(max_length=1000, blank=True)), ('locality', models.CharField(max_length=100)), ('employment_status', models.CharField(blank=True, max_length=1, choices=[(b'0', b'Employed'), (b'1', b'Unemployed')])), ('availability', models.CharField(blank=True, max_length=2, choices=[(b'A', b'Available'), (b'NA', b'Single')])), ('Services', models.ManyToManyField(to='agent.Service', null=True, blank=True)), ('pincode', models.ForeignKey(related_name='beautician_pincode', blank=True, to='agent.Pincode', null=True)), ('serving_in', models.ManyToManyField(related_name='beautician_pincode_server_in', null=True, to='agent.Pincode', blank=True)), ], ), ]
5c1167fe99ba3fb29255afa69fa05a2a94c03178
6c2d219dec81b75ac1aef7f96f4e072ed7562f81
/scenes/siteVogov.py
2501bf763ea4538e32f964cf4d904cf6f7aeb93f
[]
no_license
SFTEAM/scrapers
7e2b0a159cb19907017216c16a976d630d883ba5
778f282bf1b6954aa06d265fdb6f2ecc2e3c8e47
refs/heads/main
2023-08-15T18:21:41.922378
2021-09-24T22:24:29
2021-09-24T22:24:29
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,781
py
import re import scrapy from tpdb.BaseSceneScraper import BaseSceneScraper class VogovSpider(BaseSceneScraper): name = 'Vogov' network = 'Vogov' parent = 'Vogov' site = 'Vogov' start_urls = [ 'https://vogov.com' ] selector_map = { 'title': '//meta[@property="og:title"]/@content', 'description': '//div[contains(@class,"info-video-description")]/p/text()', 'performers': '//div[contains(@class,"info-video-models")]/a/text()', 'date': '//li[contains(text(),"Release")]/span/text()', 'image': '//meta[@property="og:image"]/@content', 'tags': '//div[contains(@class,"info-video-category")]/a/text()', 'external_id': r'videos\/(.*)\/?', 'trailer': '//script[contains(text(),"video_url")]/text()', 'pagination': '/latest-videos/%s/' } def get_scenes(self, response): scenes = response.xpath('//div[@class="video-post"]/div/a/@href').getall() for scene in scenes: yield scrapy.Request(url=self.format_link(response, scene), callback=self.parse_scene, meta={'site': 'Vogov'}) def get_trailer(self, response): if 'trailer' in self.get_selector_map() and self.get_selector_map('trailer'): trailer = self.process_xpath( response, self.get_selector_map('trailer')).get() trailer = re.search(r'video_url:\ .*?(https:\/\/.*?\.mp4)\/', trailer).group(1) if trailer: return trailer return '' def get_tags(self, response): if self.get_selector_map('tags'): tags = self.process_xpath( response, self.get_selector_map('tags')).getall() return list(map(lambda x: x.strip().title(), tags)) return []
5e7f226554ea2fb5c3ea365c54d0f77bb1955e6d
180dc578d12fff056fce1ef8bd1ba5c227f82afc
/tensorflow_models/__init__.py
18eea8c6304e418deeb1b34e45a57fd437c81079
[ "Apache-2.0" ]
permissive
jianzhnie/models
6cb96c873d7d251db17afac7144c4dbb84d4f1d6
d3507b550a3ade40cade60a79eb5b8978b56c7ae
refs/heads/master
2023-07-12T05:08:23.314636
2023-06-27T07:54:20
2023-06-27T07:54:20
281,858,258
2
0
Apache-2.0
2022-03-27T12:53:44
2020-07-23T05:22:33
Python
UTF-8
Python
false
false
909
py
# Copyright 2023 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TensorFlow Models Libraries.""" # pylint: disable=wildcard-import from tensorflow_models import nlp from tensorflow_models import vision from official import core from official.modeling import hyperparams from official.modeling import optimization from official.modeling import tf_utils as utils
14bc7b551cf26a394151530e590ccdb32e250759
09e57dd1374713f06b70d7b37a580130d9bbab0d
/benchmark/startPyquil2701.py
b7aa787a468a8dbc6e74cfb46597078a617fc507
[ "BSD-3-Clause" ]
permissive
UCLA-SEAL/QDiff
ad53650034897abb5941e74539e3aee8edb600ab
d968cbc47fe926b7f88b4adf10490f1edd6f8819
refs/heads/main
2023-08-05T04:52:24.961998
2021-09-19T02:56:16
2021-09-19T02:56:16
405,159,939
2
0
null
null
null
null
UTF-8
Python
false
false
1,864
py
# qubit number=4 # total number=41 import pyquil from pyquil.api import local_forest_runtime, QVMConnection from pyquil import Program, get_qc from pyquil.gates import * import numpy as np conn = QVMConnection() def make_circuit()-> Program: prog = Program() # circuit begin prog += H(3) # number=32 prog += CZ(0,3) # number=33 prog += H(3) # number=34 prog += H(3) # number=26 prog += CZ(0,3) # number=27 prog += H(3) # number=28 prog += X(3) # number=24 prog += CNOT(0,3) # number=25 prog += CNOT(0,3) # number=12 prog += H(2) # number=29 prog += CZ(0,2) # number=30 prog += H(2) # number=31 prog += X(2) # number=21 prog += CNOT(0,2) # number=22 prog += H(1) # number=2 prog += H(2) # number=3 prog += H(3) # number=4 prog += H(0) # number=5 prog += Y(3) # number=36 prog += H(3) # number=16 prog += CZ(1,3) # number=17 prog += H(3) # number=18 prog += H(1) # number=6 prog += H(2) # number=37 prog += CNOT(1,0) # number=38 prog += Z(1) # number=39 prog += CNOT(1,0) # number=40 prog += H(2) # number=7 prog += H(3) # number=8 prog += H(0) # number=9 prog += CNOT(3,0) # number=13 prog += CNOT(3,0) # number=14 # circuit end return prog def summrise_results(bitstrings) -> dict: d = {} for l in bitstrings: if d.get(l) is None: d[l] = 1 else: d[l] = d[l] + 1 return d if __name__ == '__main__': prog = make_circuit() qvm = get_qc('4q-qvm') results = qvm.run_and_measure(prog,1024) bitstrings = np.vstack([results[i] for i in qvm.qubits()]).T bitstrings = [''.join(map(str, l)) for l in bitstrings] writefile = open("../data/startPyquil2701.csv","w") print(summrise_results(bitstrings),file=writefile) writefile.close()
3811c8ded3c52d3c4297b523a72aef17f3e5b4ff
fe8bd31a416d7217c8b95d2ebf36158fdc0412de
/revscoring/languages/__init__.py
8076663b037c06ed1909940273411b71a9b88537
[ "MIT" ]
permissive
nealmcb/revscoring
f0020a9009e584a0f59576adcdd16eadae21ee06
e5c889093c4f49443d12193a2da725065c87e6d6
refs/heads/master
2021-01-11T11:32:10.684223
2015-10-21T22:34:56
2015-10-21T22:34:56
44,418,672
0
0
null
2015-10-17T01:16:45
2015-10-17T01:16:45
null
UTF-8
Python
false
false
788
py
""" This module implements a set of :class:`revscoring.Language` -- collections of features that are language specific. languages +++++++++ .. automodule:: revscoring.languages.english .. automodule:: revscoring.languages.french .. automodule:: revscoring.languages.hebrew .. automodule:: revscoring.languages.indonesian .. automodule:: revscoring.languages.persian .. automodule:: revscoring.languages.portuguese .. automodule:: revscoring.languages.spanish :members: .. automodule:: revscoring.languages.turkish :members: .. automodule:: revscoring.languages.vietnamese :members: Base classes ++++++++++++ .. automodule:: revscoring.languages.language .. automodule:: revscoring.languages.space_delimited """ from .language import Language __all__ = [Language]
9f837590386b08c2bb7b840886d6c4846297c5db
9130bdbd90b7a70ac4ae491ddd0d6564c1c733e0
/venv/lib/python3.8/site-packages/virtualenv/create/via_global_ref/builtin/python2/python2.py
6caf7949dd60cf3fde3fad0f2252a25efd921e37
[]
no_license
baruwaa12/Projects
6ca92561fb440c63eb48c9d1114b3fc8fa43f593
0d9a7b833f24729095308332b28c1cde63e9414d
refs/heads/main
2022-10-21T14:13:47.551218
2022-10-09T11:03:49
2022-10-09T11:03:49
160,078,601
0
0
null
null
null
null
UTF-8
Python
false
false
96
py
/home/runner/.cache/pip/pool/8e/42/70/9a4789553cf0ce8f7978c229b537dd040faa9b222a65ca6de3c88e8ad5
7e3edaadd3fc130cc391da1bfd5cd75125fbd91d
78b7a0f04a92499d7c7479d22a6d6ed0494f51d4
/doc/future_bottumup.py
2f3208851514d1180279d9e67312187043ba02fe
[]
no_license
duchesnay/pylearn-epac
5a6df8a68dc121ed6f87720250f24d927d553a04
70b0a85b7614b722ce40c506dfcb2e0c7dca8027
refs/heads/master
2021-01-21T00:16:09.693568
2013-07-23T10:21:56
2013-07-23T10:21:56
6,781,768
2
0
null
null
null
null
UTF-8
Python
false
false
7,240
py
# -*- coding: utf-8 -*- """ Created on Thu May 23 15:21:35 2013 @author: ed203246 """ from sklearn import datasets from sklearn.svm import SVC from sklearn.lda import LDA from sklearn.feature_selection import SelectKBest X, y = datasets.make_classification(n_samples=12, n_features=10, n_informative=2) from epac import Methods, Pipe self = Methods(*[Pipe(SelectKBest(k=k), SVC(kernel=kernel, C=C)) for kernel in ("linear", "rbf") for C in [1, 10] for k in [1, 2]]) self = Methods(*[Pipe(SelectKBest(k=k), SVC(C=C)) for C in [1, 10] for k in [1, 2]]) import copy self.fit_predict(X=X, y=y) self.reduce() [l.get_key() for l in svms.walk_nodes()] [l.get_key(2) for l in svms.walk_nodes()] # intermediary key collisions: trig aggregation """ # Model selection using CV: CV + Grid # ----------------------------------------- from epac import CVBestSearchRefit # CV + Grid search of a simple classifier wf = CVBestSearchRefit(*[SVC(C=C) for C in [1, 10]], n_folds=3) wf.fit_predict(X=X, y=y) wf.reduce() """ """ import numpy as np results_list = \ {'Methods/SelectKBest(k=1)/SVC(kernel=linear,C=1)': {'pred_te': np.array([1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0]), 'score_te': 0.83333333333333337, 'score_tr': 0.83333333333333337, 'true_te': np.array([1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0])}, 'Methods/SelectKBest(k=1)/SVC(kernel=linear,C=10)': {'pred_te': np.array([1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0]), 'score_te': 0.83333333333333337, 'score_tr': 0.83333333333333337, 'true_te': np.array([1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0])}, 'Methods/SelectKBest(k=1)/SVC(kernel=rbf,C=1)': {'pred_te': np.array([1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0]), 'score_te': 0.83333333333333337, 'score_tr': 0.83333333333333337, 'true_te': np.array([1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0])}, 'Methods/SelectKBest(k=1)/SVC(kernel=rbf,C=10)': {'pred_te': np.array([1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0]), 'score_te': 0.83333333333333337, 'score_tr': 0.83333333333333337, 'true_te': np.array([1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0])}, 'Methods/SelectKBest(k=2)/SVC(kernel=linear,C=1)': {'pred_te': np.array([1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0]), 'score_te': 0.83333333333333337, 'score_tr': 0.83333333333333337, 'true_te': np.array([1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0])}, 'Methods/SelectKBest(k=2)/SVC(kernel=linear,C=10)': {'pred_te': np.array([1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0]), 'score_te': 0.83333333333333337, 'score_tr': 0.83333333333333337, 'true_te': np.array([1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0])}, 'Methods/SelectKBest(k=2)/SVC(kernel=rbf,C=1)': {'pred_te': np.array([1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0]), 'score_te': 0.83333333333333337, 'score_tr': 0.83333333333333337, 'true_te': np.array([1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0])}, 'Methods/SelectKBest(k=2)/SVC(kernel=rbf,C=10)': {'pred_te': np.array([1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0]), 'score_te': 0.83333333333333337, 'score_tr': 0.83333333333333337, 'true_te': np.array([1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0])}} import numpy as np run epac/utils.py run epac/workflow/base.py results_list=\ {'Methods/SelectKBest(k=1)/SVC(C=1)': {'pred_te': np.array([1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0]), 'score_te': 0.83333333333333337, 'score_tr': 0.83333333333333337, 'true_te': np.array([1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0])}, 'Methods/SelectKBest(k=1)/SVC(C=10)': {'pred_te': np.array([1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0]), 'score_te': 0.83333333333333337, 'score_tr': 0.83333333333333337, 'true_te': np.array([1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0])}, 'Methods/SelectKBest(k=2)/SVC(C=1)': {'pred_te': np.array([1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0]), 'score_te': 0.83333333333333337, 'score_tr': 0.83333333333333337, 'true_te': np.array([1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0])}, 'Methods/SelectKBest(k=2)/SVC(C=10)': {'pred_te': np.array([1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0]), 'score_te': 0.83333333333333337, 'score_tr': 0.83333333333333337, 'true_te':np. array([1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0])}} """ keys_splited = [key_split(key, eval_args=True) for key in results_list.keys()] first = keys_splited[0] arg_grids = list() # list of [depth_idx, arg_idx, arg_name, [arg_values]] for i in xrange(len(first)): if len(first[i]) > 1: # has arguments for arg_idx in xrange(len(first[i][1])): arg_grids.append([i, arg_idx, first[i][1][arg_idx][0], [first[i][1][arg_idx][1]]]) # Check if Results can be stacked same depth, same node type a,d argument names # An enumerate all possible arguments values for other in keys_splited[1:]: if len(first) != len(other): print results_list.keys() raise ValueError("Results cannot be stacked: different depth") for i in xrange(len(first)): if first[i][0] != other[i][0]: print results_list.keys() raise ValueError("Results cannot be stacked: nodes have different type") if len(first[i]) > 1 and len(first[i][1]) != len(other[i][1]): print results_list.keys() raise ValueError("Results cannot be stacked: nodes have different length") if len(first[i]) > 1: # has arguments for arg_idx in xrange(len(first[i][1])): if first[i][1][arg_idx][0] != other[i][1][arg_idx][0]: print results_list.keys() raise ValueError("Results cannot be stacked: nodes have" "argument name") values = [item for item in arg_grids if i==item[0] and \ arg_idx==item[1]][0][3] values.append(other[i][1][arg_idx][1]) #values[i][1][arg_idx][1].append(other[i][1][arg_idx][1]) for grid in arg_grids: grid[3] = set(grid[3]) arg_grids @classmethod def stack_results(list_of_dict, axis_name=None, axis_values=[]): """Stack a list of Result(s) Example ------- >>> _list_of_dicts_2_dict_of_lists([dict(a=1, b=2), dict(a=10, b=20)]) {'a': [1, 10], 'b': [2, 20]} """ dict_of_list = dict() for d in list_of_dict: #self.children[child_idx].signature_args #sub_aggregate = sub_aggregates[0] for key2 in d.keys(): #key2 = sub_aggregate.keys()[0] result = d[key2] # result is a dictionary if isinstance(result, dict): if not key2 in dict_of_list.keys(): dict_of_list[key2] = dict() for key3 in result.keys(): if not key3 in dict_of_list[key2].keys(): dict_of_list[key2][key3] = ListWithMetaInfo() dict_of_list[key2][key3].axis_name = axis_name dict_of_list[key2][key3].axis_values = axis_values dict_of_list[key2][key3].append(result[key3]) else: # simply concatenate if not key2 in dict_of_list.keys(): dict_of_list[key2] = ListWithMetaInfo() dict_of_list[key2].axis_name = axis_name dict_of_list[key2].axis_values = axis_values dict_of_list[key2].append(result) return dict_of_list
2f6e31622147ccd5f16a2b68f420e3f8bf6471a0
c9c4536cebddfc3cc20f43084ccdb2ce1320b7e6
/experiments/utils.py
dfdf83bd5f97232f940217ba09e8103c9311d9a1
[ "MIT" ]
permissive
jdc08161063/gym-miniworld
adaf03db39fc47b88dfc5faa4f3f9e926c7f25ca
4e96db30cb574c6e0eb5db33e83c68a979094a7f
refs/heads/master
2020-04-06T17:06:23.350527
2018-11-14T19:47:17
2018-11-14T19:47:17
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,863
py
from functools import reduce import operator import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.autograd import Variable class Print(nn.Module): """ Layer that prints the size of its input. Used to debug nn.Sequential """ def __init__(self): super(Print, self).__init__() def forward(self, x): print('layer input:', x.shape) return x class GradReverse(torch.autograd.Function): """ Gradient reversal layer """ def __init__(self, lambd=1): self.lambd = lambd def forward(self, x): return x.view_as(x) def backward(self, grad_output): return (grad_output * -self.lambd) def init_weights(m): classname = m.__class__.__name__ if classname.startswith('Conv'): nn.init.orthogonal_(m.weight.data) m.bias.data.fill_(0) elif classname.find('Linear') != -1: nn.init.xavier_uniform_(m.weight) m.bias.data.fill_(0) elif classname.find('BatchNorm') != -1: m.weight.data.normal_(1.0, 0.02) m.bias.data.fill_(0) def print_model_info(model): modelSize = 0 for p in model.parameters(): pSize = reduce(operator.mul, p.size(), 1) modelSize += pSize print(str(model)) print('Total model size: %d' % modelSize) def make_var(arr): arr = np.ascontiguousarray(arr) arr = torch.from_numpy(arr).float() arr = Variable(arr) if torch.cuda.is_available(): arr = arr.cuda() return arr def save_img(file_name, img): from skimage import io if isinstance(img, Variable): img = img.data.numpy() if len(img.shape) == 4: img = img.squeeze(0) img = img.astype(np.uint8) io.imsave(file_name, img) def load_img(file_name): from skimage import io # Drop the alpha channel img = io.imread(file_name) img = img[:,:,0:3] / 255 # Flip the image vertically img = np.flip(img, 0) # Transpose the rows and columns img = img.transpose(2, 0, 1) # Make it a batch of size 1 var = make_var(img) var = var.unsqueeze(0) return var def gen_batch(gen_data_fn, batch_size=2): """ Returns a tuple of PyTorch Variable objects gen_data is expected to produce a tuple """ assert batch_size > 0 data = [] for i in range(0, batch_size): data.append(gen_data_fn()) # Create arrays of data elements for each variable num_vars = len(data[0]) arrays = [] for idx in range(0, num_vars): vals = [] for datum in data: vals.append(datum[idx]) arrays.append(vals) # Make a variable out of each element array vars = [] for array in arrays: var = make_var(np.stack(array)) vars.append(var) return tuple(vars)
127d350e935ff500677c170ab861f0343b28e635
e7b312b4cc3355f4ca98313ef2ac9f3b0d81f245
/abc/229/g/g.TLE.py
756dc1a784847d74805a2326514ab64db4f673f6
[]
no_license
minus9d/programming_contest_archive
75466ab820e45ee0fcd829e6fac8ebc2accbbcff
0cb9e709f40460305635ae4d46c8ddec1e86455e
refs/heads/master
2023-02-16T18:08:42.579335
2023-02-11T14:10:49
2023-02-11T14:10:49
21,788,942
0
0
null
null
null
null
UTF-8
Python
false
false
1,868
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 類題 https://tutorialspoint.com/program-to-find (YをN個連続させるのに必要な最小スワップ回数を求める) を見つけたので、これを使って二分探索で解こうとしたが、TLE 類題のコードは理解していない https://twitter.com/kyopro_friends/status/1464593018451750919 を参考にとき直すこと """ import array from bisect import * from collections import * import fractions import heapq from itertools import * import math import random import re import string import sys sys.setrecursionlimit(10 ** 9) # https://www.tutorialspoint.com/program-to-find-minimum-adjacent-swaps-for-k-consecutive-ones-in-python def calc_swap_num(nums, k): j = val = 0 ans = 10 ** 100 loc = [] for i, x in enumerate(nums): if x: loc.append(i) m = (j + len(loc) - 1)//2 val += loc[-1] - loc[m] - (len(loc)-j)//2 if len(loc) - j > k: m = (j + len(loc))//2 val -= loc[m] - loc[j] - (len(loc)-j)//2 j += 1 if len(loc)-j == k: ans = min(ans, val) return ans def solve(S, K): nums = [] for ch in S: if ch == 'Y': nums.append(1) else: nums.append(0) max_ans = sum(nums) # for i in range(1, max_ans + 1): # print(i, calc_swap_num(nums, i)) if max_ans == 0: return 0 tmp = calc_swap_num(nums, max_ans) if tmp <= K: return max_ans lo = 1 hi = max_ans while hi - lo > 1: mid = (lo + hi) // 2 tmp = calc_swap_num(nums, mid) if tmp <= K: lo = mid else: hi = mid return lo S = input() K = int(input()) print(solve(S, K))
67d1f7cd8d7bbddc37fe4bfd3e34c2c84521cfa4
5a8f9d8d1cc47ae83546b0e11279b1d891798435
/enumerate_reversible.py
fcce362a8588dd9d6a470e2f099a5cfab00ea31f
[ "MIT" ]
permissive
cjrh/enumerate_reversible
d81af841129adbad3a3d69a4955bfba202a174c7
d67044c78c1214c8749b60227d5c170d8c327770
refs/heads/master
2021-05-21T08:16:31.660568
2021-05-03T04:05:15
2021-05-03T04:05:15
252,613,686
0
0
MIT
2021-05-03T04:05:15
2020-04-03T02:27:01
Python
UTF-8
Python
false
false
438
py
original_enumerate = enumerate def enumerate(iterable, start=0): class Inner: def __iter__(self): yield from original_enumerate(iterable, start=start or 0) def __reversed__(self): stt = start or 0 rev = reversed(iterable) # First, for accurate exception msg rng = range(len(iterable) - 1 + stt, -1 + stt, -1) yield from zip(rng, rev) return Inner()
c2ad359b688548a3549a051c298426f0191150a1
492d3e666b87eff971628a74fe13facde01e2949
/htmlcov/_python_Django_My Projects_student-portal_Lib_site-packages_PIL_Jpeg2KImagePlugin_py.html.py
b8330d31117b1128e355617407fbf98b05fbbbd7
[]
no_license
OmarFateh/Student-Portal
42050da15327aa01944dc79b5e00ca34deb51531
167ffd3a4183529c0cbc5db4ab232026711ea915
refs/heads/master
2023-06-13T01:03:16.475588
2021-07-08T11:09:09
2021-07-08T11:09:09
382,895,837
0
0
null
null
null
null
UTF-8
Python
false
false
91,097
py
XXXXXXXXX XXXXX XXXXXX XXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXXXXXXXX XXX XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXX XXXXX XXXXXXXXXX XXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXX XXXXXXX XXXXX XXXXXXXXXXXXXXX XXXX XXXXXXXXXXXX XXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXX XXX XXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX X XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXX XXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXXXXXX XXXXXXXX XXXXXXXXXX XX XXX XXXXXXXXXXXXXX XXX XXXXXXXXXX XXXXXX XXXXXXX XXXXXXXXXXXXX XXXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXXXXX XXXXXXXXXXXXX XXXXX XXXXXXX XXXXXXXXXXXX XXXXXXX XXXXXXXXXXXXX XXXXXXXXXX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXXXXX XXXXXXXXXXXXX XXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXX XXXXXXXXXXXXX XXXXXXXXXX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXXXXX XXXXXXXXXXXXX XXXXX XXXXXXXXXXX XXXXXXXXXXXXXXXXX XXXXX XXXXXX XXXXXX XXXX XXXXXXXXXXXXXXXXXXX XXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXXXXXXXX XXXXXXXX XXXXXXXXXX XX XX XXXXXXXXXXXXXXXXXXXXXXX XX XXXX XXXXXXXX XXXXX XX XXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXXX XXXXXX XXXX XXXXXXXX XXXX XX XXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXXX XXXXXXXXX XXXXXXXXXXX XXXXX XXXX XX XXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXXX XXXXXX XXX XX XXXX XXXX XX XXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXXX XXXXX XXXXX XXXXXXXXXXX XXXXX XXXX XXXXXX XXXXXX XXXX XXXXXXXXXXXX XX XXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXX XXX XXXXXX XXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXX XXXXXXXX XXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXX XXXXXXXXXX XXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXX XXXXXXXXX XXX XXXX XXXXXXXX XXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXX XXXXXXXXX XXX XXXX XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXX XXX XXX XXXXXX XXXX XXX XXXXXXXXXXX XX XXXXX XXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXX XXXX XXXX XXXXXXXXXX XX XXXXXXX XXX XXXX XXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXX XXXX XXX XXX XXXXXX XXXXXXXX XXXXXXXXX X XXX XXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXX XXX XXXXXX XXX XX XXXXXXX XXXXX XXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXX XXXXX XXXXXXXXXXXX XXXXXXXXX X XXXXXX XXXXX XXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXX XXXX XXX XXX XXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXX XXX XXXXXX XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXX XXX XXXX XXX XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXX XXX XXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXX XXXXX XXXXXX XXX XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXX XXXX XXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX X XXXX XXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXX XXX XXXXX XXXXXXXX XXXXXX XXX XXXXXXXX XX XXXX XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXX XXXXXXXXX XXXX XXXXXXXX XX XXXXX XXX XXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXX XXXXXX XXX XXXXXX XXX XXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXX XXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXX XXX XXX XXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXX XXXX XX X XXXXXXXX XX XXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXX XXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XX XXXXXXXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXX XXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX XXXXXX XXXX XXXXXXXXXXXX XXXX XXXXXXXXXXXXXXXX XXX XX XXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXX XXXXXX XXXXXX XX XXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXX XXXXXXX XX XXXXXXXXXX XXXXX XXXXX XXXX XXXXXX XXXXXX XXXXXXX XXXXXXX
2b9e188a0d339e9e9ab6c6f43ca76d30a7100206
ca446c7e21cd1fb47a787a534fe308203196ef0d
/tests/graph/test_statement.py
4835355ef9be96cbb32485a349d98a91c0e3b83d
[ "MIT" ]
permissive
critocrito/followthemoney
1a37c277408af504a5c799714e53e0f0bd709f68
bcad19aedc3b193862018a3013a66869e115edff
refs/heads/master
2020-06-12T09:56:13.867937
2019-06-28T08:23:54
2019-06-28T08:23:54
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,279
py
# from nose.tools import assert_raises from unittest import TestCase from followthemoney import model from followthemoney.types import registry from followthemoney.graph import Statement, Node ENTITY = { 'id': 'test', 'schema': 'Person', 'properties': { 'name': 'Ralph Tester', 'birthDate': '1972-05-01', 'idNumber': ['9177171', '8e839023'], 'website': 'https://ralphtester.me', 'phone': '+12025557612', 'email': '[email protected]', 'passport': 'passportEntityId' } } class StatementTestCase(TestCase): def test_base(self): prop = model.get_qname('Thing:name') node = Node(registry.entity, 'banana') stmt = Statement(node, prop, "Theodore Böln") assert stmt.subject == node value = stmt.to_tuple() other = stmt.from_tuple(model, value) assert other == stmt, (stmt, other) assert hash(other) == hash(stmt) assert repr(other) == repr(stmt) def test_invert(self): prop = model.get_qname('Thing:name') node = Node(registry.entity, 'banana') stmt = Statement(node, prop, "Theodore") assert not stmt.inverted inv = stmt.invert() assert inv.inverted assert inv.rdf() is None banana = Node(registry.entity, 'banana') peach = Node(registry.entity, 'peach') prop = model.get_qname('Thing:sameAs') stmt = Statement(banana, prop, peach.value) inv = stmt.invert() assert inv.subject == peach assert inv.value_node == banana assert inv.prop == stmt.prop def test_make_statements(self): statements = list(model.get_proxy(ENTITY).statements) assert len(statements) == 8, len(statements) def test_rdf(self): statements = list(model.get_proxy(ENTITY).statements) triples = [l.rdf() for l in statements] assert len(triples) == 8, len(triples) for (s, p, o) in triples: assert 'test' in s, s if str(o) == 'Ralph Tester': assert str(p) == 'http://www.w3.org/2004/02/skos/core#prefLabel' # noqa if p == registry.phone: assert str(o) == 'tel:+12025557612', o # assert False, triples
2d7d3d140684312694eeceace7b7556b9773c49c
2e22d14109f41ec84554a7994cd850619d73dc4d
/core/socketserver.py
acbb6e93f7ec0b453e50d8a8c82c25425d367983
[ "MIT" ]
permissive
magus0219/clockwork
35cefeac77e68c1b5e12ab275b7fde18fd07edfc
78c08afdd14f226d7f5c13af633d41a2185ebb7f
refs/heads/master
2021-01-10T07:49:09.539766
2015-09-28T08:17:46
2015-09-28T08:17:46
43,036,160
0
0
null
null
null
null
UTF-8
Python
false
false
4,035
py
# coding:utf-8 ''' Created on Feb 17, 2014 @author: magus0219 ''' import socket, logging, threading, pickle from core.command import Command def recv_until(socket, suffix): ''' Receive message suffixed with specified char @param socket:socket @param suffix:suffix ''' message = '' while not message.endswith(suffix): data = socket.recv(4096) if not data: raise EOFError('Socket closed before we see suffix.') message += data return message class SocketServer(object): ''' Socket Server This socket server is started by clockwork server and only used to invoke methods of JobManager ''' def __init__(self, host, port, jobmanager): ''' Constructor ''' self.host = host self.port = port self.jobmanager = jobmanager self.logger = logging.getLogger("Server.SocketThread") def handleCommand(self, command): ''' Handle one request command of client and return server's answer @param command:Command to handle This function return a Command object which contains result type and detail information. ''' cmd = command.cmd try: if cmd == Command.JOB_ADD: jobid = int(command.data) self.jobmanager.addJob(jobid) return Command(Command.RESULT_SUCCESS, "Successful!") elif cmd == Command.JOB_REMOVE: jobid = int(command.data) self.jobmanager.removeJob(jobid) return Command(Command.RESULT_SUCCESS, "Successful!") elif cmd == Command.JOB_RELOAD: jobid = int(command.data) self.jobmanager.reloadJob(jobid) return Command(Command.RESULT_SUCCESS, "Successful!") elif cmd == Command.TASK_RUN_IMMEDIATELY: jobid, params = command.data jobid = int(jobid) task = self.jobmanager.spawnImmediateTask(jobid=jobid, params=params) return Command(Command.RESULT_SUCCESS, "Successful!", task.get_taskid()) elif cmd == Command.TASK_CANCEL: taskid = command.data self.jobmanager.cancelTask(taskid) return Command(Command.RESULT_SUCCESS, "Successful!") elif cmd == Command.STATUS: return Command(Command.RESULT_SUCCESS, self.jobmanager.getServerStatus()) except ValueError, e: self.logger.exception(e) return Command(Command.RESULT_FAIL, str(e)) def process(self, conn, address): ''' Thread entry where new socket created ''' self.logger.info("Accepted a connection from %s" % str(address)) self.logger.info("Socket connects %s and %s" % (conn.getsockname(), conn.getpeername())) cmd = pickle.loads(recv_until(conn, '.')) self.logger.info("Recieve Command:[%s]" % str(cmd)) while cmd.cmd != Command.EXIT: conn.sendall(pickle.dumps(self.handleCommand(cmd))) cmd = pickle.loads(recv_until(conn, '.')) self.logger.info("Recieve Command:[%s]" % str(cmd)) self.logger.info("Socket is Over") def start(self): ''' Start the socket server and enter the main loop ''' s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) s.bind((self.host, self.port)) s.listen(10) self.logger.info("SocketThread is Listening at %s:%s" % (self.host, str(self.port))) while True: conn, address = s.accept() thread = threading.Thread(target=self.process, args=(conn, address)) thread.daemon = True thread.start() if __name__ == '__main__': server = SocketServer("0.0.0.0", 3993) server.start()
d3c54bcbc564892dfd88c419f85921faa603d6a6
a6610e191090e216b0e0f23018cecc5181400a7a
/robotframework-ls/tests/robotframework_ls_tests/test_code_analysis.py
dd34aae67913ad1d119eaee83156b557a906088b
[ "Apache-2.0" ]
permissive
JohanMabille/robotframework-lsp
d7c4c00157dd7c12ab15b7125691f7052f77427c
610f0257fdcd79b8c38107a0ecf600f60160bc1f
refs/heads/master
2023-01-19T10:29:48.982578
2020-11-25T13:46:22
2020-11-25T13:46:22
296,245,093
0
0
NOASSERTION
2020-09-17T06:58:54
2020-09-17T06:58:53
null
UTF-8
Python
false
false
5,420
py
def _collect_errors(workspace, doc, data_regression, basename=None, config=None): from robotframework_ls.impl.completion_context import CompletionContext from robotframework_ls.impl.code_analysis import collect_analysis_errors completion_context = CompletionContext(doc, workspace=workspace.ws, config=config) errors = [ error.to_lsp_diagnostic() for error in collect_analysis_errors(completion_context) ] data_regression.check(errors, basename=basename) def test_keywords_analyzed(workspace, libspec_manager, data_regression): workspace.set_root("case1", libspec_manager=libspec_manager) doc = workspace.get_doc("case1.robot") doc.source = doc.source + ( "\n This keyword does not exist" "\n [Teardown] Also not there" ) _collect_errors(workspace, doc, data_regression) def test_keywords_analyzed_templates(workspace, libspec_manager, data_regression): workspace.set_root("case1", libspec_manager=libspec_manager) doc = workspace.get_doc("case1.robot") doc.source = """*** Settings *** Test Template this is not there""" _collect_errors(workspace, doc, data_regression) def test_keywords_with_vars_no_error(workspace, libspec_manager, data_regression): workspace.set_root("case1", libspec_manager=libspec_manager) doc = workspace.get_doc("case1.robot") doc.source = ( doc.source + """ I check ls I execute "ls" rara "-lh" *** Keywords *** I check ${cmd} Log ${cmd} I execute "${cmd}" rara "${opts}" Log ${cmd} ${opts} """ ) _collect_errors(workspace, doc, data_regression) def test_keywords_with_prefix_no_error(workspace, libspec_manager, data_regression): workspace.set_root("case1", libspec_manager=libspec_manager) doc = workspace.get_doc("case1.robot") # Ignore bdd-related prefixes (see: robotframework_ls.impl.robot_constants.BDD_PREFIXES) doc.source = ( doc.source + """ given I check ls then I execute *** Keywords *** I check ${cmd} Log ${cmd} I execute Log foo """ ) _collect_errors(workspace, doc, data_regression, basename="no_error") def test_keywords_prefixed_by_library(workspace, libspec_manager, data_regression): workspace.set_root("case4", libspec_manager=libspec_manager) doc = workspace.get_doc("case4.robot") doc.source = """*** Settings *** Library String Library Collections Resource case4resource.txt *** Test Cases *** Test BuiltIn.Log Logging case4resource3.Yet Another Equal Redefined String.Should Be Titlecase Hello World ${list}= BuiltIn.Create List 1 2 Collections.Append To List ${list} 3""" _collect_errors(workspace, doc, data_regression, basename="no_error") def test_keywords_prefixed_with_alias(workspace, libspec_manager, data_regression): workspace.set_root("case4", libspec_manager=libspec_manager) doc = workspace.get_doc("case4.robot") doc.source = """*** Settings *** Library Collections WITH NAME Col1 *** Test Cases *** Test Col1.Append To List ${list} 3""" _collect_errors(workspace, doc, data_regression, basename="no_error") def test_keywords_name_matches(workspace, libspec_manager, data_regression): workspace.set_root("case4", libspec_manager=libspec_manager) doc = workspace.get_doc("case4.robot") doc.source = """*** Settings *** Library Collections *** Test Cases *** Test AppendToList ${list} 3""" _collect_errors(workspace, doc, data_regression, basename="no_error") def test_resource_does_not_exist(workspace, libspec_manager, data_regression): workspace.set_root("case4", libspec_manager=libspec_manager) doc = workspace.get_doc("case4.robot") doc.source = """*** Settings *** Library DoesNotExist Library . Library .. Library ../ Resource does_not_exist.txt Resource ${foo}/does_not_exist.txt Resource ../does_not_exist.txt Resource . Resource .. Resource ../ Resource ../../does_not_exist.txt Resource case4resource.txt *** Test Cases *** Test case4resource3.Yet Another Equal Redefined""" from robotframework_ls.robot_config import RobotConfig config = RobotConfig() # Note: we don't give errors if we can't resolve a resource. _collect_errors(workspace, doc, data_regression, basename="no_error", config=config) def test_casing_on_filename(workspace, libspec_manager, data_regression): from robocorp_ls_core.protocols import IDocument from pathlib import Path # i.e.: Importing a python library with capital letters fails #143 workspace.set_root("case4", libspec_manager=libspec_manager) doc: IDocument = workspace.get_doc("case4.robot") p = Path(doc.path) (p.parent / "myPythonKeywords.py").write_text( """ class myPythonKeywords(object): ROBOT_LIBRARY_VERSION = 1.0 def __init__(self): pass def Uppercase_Keyword (self): return "Uppercase does not work" """ ) doc.source = """*** Settings *** Library myPythonKeywords.py *** Test Cases *** Test Uppercase Keyword""" from robotframework_ls.robot_config import RobotConfig config = RobotConfig() # Note: we don't give errors if we can't resolve a resource. _collect_errors(workspace, doc, data_regression, basename="no_error", config=config)
9ddff1fa09a2a5c49b82729b44d4140b40e1fa55
cbdbb05b91a4463639deefd44169d564773cd1fb
/djangoproj/pos/invoices/migrations/0011_auto_20150718_0908.py
d24848402c8400bd25b51f8bef05d5d93aff8b99
[]
no_license
blazprog/py3
e26ef36a485809334b1d5a1688777b12730ebf39
e15659e5d5a8ced617283f096e82135dc32a8df1
refs/heads/master
2020-03-19T20:55:22.304074
2018-06-11T12:25:18
2018-06-11T12:25:18
136,922,662
0
0
null
null
null
null
UTF-8
Python
false
false
684
py
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('invoices', '0010_artikel_davek'), ] operations = [ migrations.AddField( model_name='racunpozicija', name='txtNazivArtikla', field=models.CharField(max_length=25, default='naziv'), preserve_default=False, ), migrations.AddField( model_name='racunpozicija', name='txtSifraArtikla', field=models.CharField(max_length=5, default='sifra'), preserve_default=False, ), ]
5416209788d81dbbb8263cbf9614f1608d323758
03bf031efc1f171f0bb3cf8a565d7199ff073f96
/utils/admin.py
ad5b99e1ae02e5c6358ca6949bc8b89a84e33e2a
[ "MIT" ]
permissive
emilps/onlineweb4
a213175678ac76b1fbede9b0897c538c435a97e2
6f4aca2a4522698366ecdc6ab63c807ce5df2a96
refs/heads/develop
2020-03-30T01:11:46.941170
2019-05-10T19:49:21
2019-05-10T19:49:21
150,564,330
0
0
MIT
2019-05-10T19:49:22
2018-09-27T09:43:32
Python
UTF-8
Python
false
false
802
py
from django.contrib import admin class DepositWithdrawalFilter(admin.SimpleListFilter): """ A simple filter to select deposits, withdrawals or empty transactions """ title = 'Transaction type' parameter_name = 'amount' def lookups(self, request, model_admin): """ Tuples with values for url and display term """ return ( ('positive', 'Deposit'), ('negative', 'Withdrawal'), ('empty', 'Empty') ) def queryset(self, request, queryset): if self.value() == 'positive': return queryset.filter(amount__gt=0) if self.value() == 'negative': return queryset.filter(amount__lt=0) if self.value() == 'empty': return queryset.filter(amount=0)
c6de3f7935b22b0bd74ab9d330cc17353d8e8d40
fa53fb89ca8c822acdd2f843073c36e30168edf8
/manage.py
5102e0b5c62daefba1742c6dbaae769d93ffa7d3
[]
no_license
njokuifeanyigerald/honeypot-django
6aab38c74a599bd70e27768edddd9609f59f7810
1065dee3ce160cfffdd52088c6a9cc4faaabd0b9
refs/heads/master
2022-04-14T19:02:18.426331
2020-04-14T11:04:47
2020-04-14T11:04:47
255,585,678
0
0
null
null
null
null
UTF-8
Python
false
false
631
py
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'honeypotapp.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
12ada9555cc15be06cd931a4408c0bd361b6eb02
caf8cbcafd448a301997770165b323438d119f5e
/.history/chapter01/python_05_if_condition_20201128214052.py
9ee4357bc39e5526dabfbdaecafa8175ebd0349b
[ "MIT" ]
permissive
KustomApe/nerdape
03e0691f675f13ce2aefa46ee230111247e90c72
aef6fb2d1f8c364b26d91bf8570b4487a24de69a
refs/heads/main
2023-01-23T10:13:26.584386
2020-11-28T22:29:49
2020-11-28T22:29:49
309,897,105
0
0
null
null
null
null
UTF-8
Python
false
false
977
py
"""[if文について] もし〜だったら、こうして """ # if 条件: # 実行するブロック # 条件によって処理を適応したい場合 # 3000kmごとにオイル交換しないといけない distance = 3403 # if distance > 3000: # print('オイル交換時期です') total = 123200 average = total / 3 print(average) if average > 3000: print('オイル交換時期ですよ!') # 文字列を比較する/リストを比較する # if 'abc' == "ABC": # print('同類です') # if 'CDE' == 'CDE': # print('同類です') # if 'あいうえお' == 'あいうえお': # print('同類です') # 文字列を検索する/リストの要素を検索する # if 'abc' in "ABC": # print('ヒットしました!') # if 'ドリフト' in '僕はドリフトが好きです': # print('ヒットしました!') # if 'japan' in 'japanese domestic market vehicle': # print('ヒットしました!') # else文 # elif文
e68d1c40e9032cb0617ca2a03de48c33736f012f
9bd1daa53a7e5d65d4f7a3558f11d06006ecb000
/conditioner/tests/actions/factories.py
f744f19bb34a5f1c829d51e2f8696013d030116f
[ "MIT" ]
permissive
pombredanne/django-conditioner
55b01ac8e42a8e2c73025934c39aa72ee478c333
d5d2ad1f016bc3e6b34c74ff68cd024e8fad5125
refs/heads/master
2020-09-25T21:16:29.274170
2017-03-17T08:34:00
2017-03-17T08:34:00
null
0
0
null
null
null
null
UTF-8
Python
false
false
988
py
""" Conditioner module actions related factories """ import random import factory from faker import Factory as FakerFactory from conditioner.actions import LoggerAction, SendTemplatedEmailAction from conditioner.tests.factories import BaseActionFactory faker = FakerFactory.create() class LoggerActionFactory(BaseActionFactory): """ Factory for `conditioner.actions.misc.LoggerAction` model """ level = random.choice(LoggerAction.LEVEL_CHOICES)[0] message = factory.LazyAttribute(lambda n: faker.paragraph()) class Meta: model = LoggerAction class SendTemplatedEmailActionFactory(BaseActionFactory): """ Factory for `conditioner.actions.common.SendTemplatedEmailAction` model """ email = factory.LazyAttribute(lambda n: faker.email()) subject = factory.LazyAttribute(lambda n: faker.sentence()) template = factory.LazyAttribute(lambda n: faker.uri_path() + '.txt') class Meta: model = SendTemplatedEmailAction
46b9c87173a3e66d65c3f277092f5263a0cc669f
b7ae24b0dd67a7fafbf0253f24c80924df88da62
/lab/__init__.py
626fd8575bd86bfeacf23439331383cd0297afc2
[ "MIT" ]
permissive
gear/lab
b3a2b1e5babc1adb172f842651e4db5d20939a16
ad1c5838acbcc98abb5d5d93d5c7a6c2b74bdfa2
refs/heads/master
2020-12-19T01:30:33.478027
2020-01-23T10:30:52
2020-01-23T10:30:52
235,579,450
0
0
MIT
2020-01-22T13:29:16
2020-01-22T13:29:15
null
UTF-8
Python
false
false
28
py
import lab.logger as logger
1129328bacebf961f72d0c0b6cf180bcc0d9483c
ee6fb9095faef4c88848f5f769b296f672d37cd0
/photomosaic/imgutils.py
791cb03f378176e1dbb5c88b361c085704f9beeb
[]
no_license
cosmozhang1995/photo-mosaic
76ca2846db0eefd6d7ded117fec1b2ac06e823ea
f5c57a9765887aeeb65804c5597727646b945814
refs/heads/master
2022-07-10T14:13:10.605884
2020-02-14T08:51:08
2020-02-14T08:51:08
240,463,724
0
0
null
2022-06-22T01:05:54
2020-02-14T08:41:38
Python
UTF-8
Python
false
false
600
py
import cv2 import numpy as np def resize_cut(srcimg, dstsize): dstheight, dstwidth = dstsize img = srcimg imgheight, imgwidth = img.shape[:2] sc = max(dstheight/imgheight, dstwidth/imgwidth) imgsize = (int(np.ceil(imgheight*sc)), int(np.ceil(imgwidth*sc))) img = cv2.resize(img, (imgsize[1], imgsize[0])) imgheight, imgwidth = img.shape[:2] imgcut = (int((imgheight-dstheight)/2), int((imgwidth-dstwidth)/2)) imgcuttop, imgcutleft = imgcut imgcutbottom, imgcutright = (imgcuttop + dstheight, imgcutleft + dstwidth) img = img[imgcuttop:imgcutbottom, imgcutleft:imgcutright, :] return img
b4ffb6e7aa7720bf94408c4205e0d631a33ccac7
c7d7bafdff29a9e0f91bec25e88b8db1b6694643
/firebot/modules/mf.py
37002a949a6c8212931fce04e72ad19042a64323
[ "MIT" ]
permissive
ultra-noob/Vivek-UserBot
ebedb80d98ca72fe1167211c14e32c017fcdf903
6c371a4aaa0c05397efa36237e9a2118deeb0d91
refs/heads/main
2023-07-11T16:52:37.696359
2021-08-11T03:38:15
2021-08-11T03:38:15
394,882,145
0
1
null
2021-08-11T06:11:45
2021-08-11T06:11:45
null
UTF-8
Python
false
false
2,724
py
import sys from telethon import __version__, functions from firebot import CMD_HELP from firebot.utils import fire_on_cmd @fire.on(fire_on_cmd(pattern="mf ?(.*)", allow_sudo=True)) # pylint:disable=E0602 async def _(event): if event.fwd_from: return splugin_name = event.pattern_match.group(1) if splugin_name in borg._modules: s_help_string = borg._modules[splugin_name].__doc__ else: s_help_string = "" help_string = """ ......................................../´¯/) ......................................,/¯../ ...................................../..../ ..................................../´.¯/ ..................................../´¯/ ..................................,/¯../ ................................../..../ ................................./´¯./ ................................/´¯./ ..............................,/¯../ ............................./..../ ............................/´¯/ ........................../´¯./ ........................,/¯../ ......................./..../ ....................../´¯/ ....................,/¯../ .................../..../ ............./´¯/'...'/´¯¯`·¸ ........../'/.../..../......./¨¯\ ........('(...´...´.... ¯~/'...') .........\.................'...../ ..........''...\.......... _.·´ ............\..............( ..............\.............\... """.format( sys.version, __version__ ) tgbotusername = Config.TG_BOT_USER_NAME_BF_HER # pylint:disable=E0602 if tgbotusername is not None: results = await borg.inline_query( # pylint:disable=E0602 tgbotusername, help_string + "\n\n" + s_help_string ) await results[0].click( event.chat_id, reply_to=event.reply_to_msg_id, hide_via=True ) await event.delete() else: await event.reply(help_string + "\n\n" + s_help_string) await event.delete() @fire.on(fire_on_cmd(pattern="dc")) # pylint:disable=E0602 async def _(event): if event.fwd_from: return result = await borg(functions.help.GetNearestDcRequest()) # pylint:disable=E0602 await event.edit(result.stringify()) @fire.on(fire_on_cmd(pattern="config")) # pylint:disable=E0602 async def _(event): if event.fwd_from: return result = await borg(functions.help.GetConfigRequest()) # pylint:disable=E0602 result = result.stringify() logger.info(result) # pylint:disable=E0602 await event.edit("""Telethon UserBot powered by @UniBorg""") CMD_HELP.update( { "mf": "**Mf**\ \n\n**Syntax : **`.mf`\ \n**Usage :** funny plugin.\ \n\n**Syntax : **`.dc`\ \n**Usage :** shows nearest Dc." } )
98ad144923dfcbae14b423be115a14fbb1c611c4
150464efa69db3abf328ef8cd912e8e248c633e6
/_4.python/__code/Pythoneer-master/Jumbled Word/Jumbled(withouttkinter).py
7211039e1c6397134008308e8017b3165e1a9494
[]
no_license
bunshue/vcs
2d194906b7e8c077f813b02f2edc70c4b197ab2b
d9a994e3afbb9ea84cc01284934c39860fea1061
refs/heads/master
2023-08-23T22:53:08.303457
2023-08-23T13:02:34
2023-08-23T13:02:34
127,182,360
6
3
null
2023-05-22T21:33:09
2018-03-28T18:33:23
C#
UTF-8
Python
false
false
1,397
py
import os import sys from collections import defaultdict print " "; print "................................Jumbled ......................................"; print "NOTE : Please make sure, you enter all the letters necessary to make the word!"; print " "; print " "; word = input("Enter the word: ") print " "; #word = sys.argv[1] word1 = word #print word1 leng=len(word) no = leng chek='' dict = defaultdict(list) #word = input("Enter the : ") word = word.lower() word = sorted(word) word = ''.join(word) word = "\n"+word word = word.replace(" ", "") file = open("C:\Python27\Jumbled\Dictionary.txt", "r") line = file.readline() print " " count = 0; while line: if(line!=None): line = file.readline() j = line line = sorted(line) line = ''.join(line) j = ''.join(j) k = sorted(j) k = ''.join(k) k = k.lower() if (word==k): if(count<1): print "Solution : "+j+"\n", count=count+1; if(count>1): print "Another Combnation : "+j if(j=="mazahir"): print "'Mazahir' here! :), Hope you liked my program :D" #dict[word].append(k) file.close() fo = open("C:/Mazahir/now.txt", "w") line = fo.write( j ) fo.close() file = open("C:/Mazahir/now1.txt", "w") file.write( str(no) ) file.close()
6545749e1fcb37b005fd8a17f1fe2d41493c78ba
c36679186f669c6e3bd1c106c96d4a17be1f5ab1
/Ashraf/2.2.py
82910eaba95d405311c4da597335040cd6ff75a0
[]
no_license
touhiduzzaman-tuhin/python-code-university-life
60a3d671b200a6f5222c6d176c13c5f20f013509
6d2e3d90d430faa5c83fe79e7fb1ebe516994762
refs/heads/master
2023-03-22T15:18:10.636203
2021-03-06T18:52:04
2021-03-06T18:52:04
332,467,190
0
0
null
null
null
null
UTF-8
Python
false
false
56
py
x = int(input()) y = int(input()) z = x - y print(z)
7e6c1f50001acdca960cd972aca451db26803155
68ea05d0d276441cb2d1e39c620d5991e0211b94
/1940.py
a6e8f345cdc993bcae8b3a828ab9b0865b506f3b
[]
no_license
mcavalca/uri-python
286bc43aa157d3a6880dc222e0136c80cf079565
e22875d2609fe7e215f9f3ed3ca73a1bc2cf67be
refs/heads/master
2021-11-23T08:35:17.614443
2021-10-05T13:26:03
2021-10-05T13:26:03
131,339,175
50
27
null
2021-11-22T12:21:59
2018-04-27T19:54:09
Python
UTF-8
Python
false
false
236
py
j, r = [int(x) for x in input().split()] entrada = list(map(int, input().split())) pontos = [0] * j for k in range(j): pontos[k] = sum(entrada[k::j]) pontos = pontos[::-1] vencedor = j - pontos.index(max(pontos)) print(vencedor)
6a26301089da81a8e292227e32da92a3e05f82e2
f7d343efc7b48818cac4cf9b98423b77345a0067
/training/Permutations.py
10acfdf1568289dd3b55bcf473e76239ead669a4
[]
no_license
vijaymaddukuri/python_repo
70e0e24d0554c9fac50c5bdd85da3e15c6f64e65
93dd6d14ae4b0856aa7c6f059904cc1f13800e5f
refs/heads/master
2023-06-06T02:55:10.393125
2021-06-25T16:41:52
2021-06-25T16:41:52
151,547,280
0
1
null
null
null
null
UTF-8
Python
false
false
845
py
def permutations1(string): def factorial(n): fact=1 for i in range(1,n+1): fact=fact*i return fact repeat=len(string)-len(''.join(set(string))) n=factorial(len(string)) k=factorial(repeat) loop=n/(k**repeat) final=[] j=0 for i in range(loop): if i>=2: j=0 else: j+=1 new = string[j-1:] + string[j-1:] final.append(new) string=new return final return loop def permutations(string): result = set(string) if len(string) == 2: result.add(string[1] + string[0]) elif len(string) > 2: for i, c in enumerate(string): for s in permutations(string[:i] + string[i + 1:]): result.add(c + s) return list(result) a='abc' per=permutations(a) print(per)
e48b80cea00aad77f599556a86f3688235cc9a93
6cfa568e2012dde5c86265226b0dd3a49849c7f7
/website_sale_booking/__openerp__.py
6573e2e4ae8e491f0af198340e85248ca9f2cfc3
[]
no_license
arinno/odoo-website-sale-booking
c48771ee30dc8791656a7a9d75efa14fe07f88bc
dd2e45873e64ad0f5bdd24a23d905b70702cd85a
refs/heads/master
2021-01-09T06:23:01.904899
2017-02-05T07:10:21
2017-02-05T07:10:21
80,975,669
0
0
null
2017-02-05T07:06:24
2017-02-05T07:06:24
null
UTF-8
Python
false
false
425
py
{ 'name': 'Website Booking System', 'category': 'sale', 'description':""" OpenERP Website Booking System view. ========================== """, 'version': '1.0', 'js': [ ], 'css': [ ], 'author': 'Vertel AB', 'website': 'http://www.vertel.se', 'depends': ['website', 'product', 'hr_contract', 'resource'], 'data': ['view/website_sale_booking.xml'], 'installable': True, }
883364571d231534b05121da2095291109c936e8
9743d5fd24822f79c156ad112229e25adb9ed6f6
/xai/brain/wordbase/adjectives/_handpicked.py
d8b02e24092556f8401358860df23874bd852d2b
[ "MIT" ]
permissive
cash2one/xai
de7adad1758f50dd6786bf0111e71a903f039b64
e76f12c9f4dcf3ac1c7c08b0cc8844c0b0a104b6
refs/heads/master
2021-01-19T12:33:54.964379
2017-01-28T02:00:50
2017-01-28T02:00:50
null
0
0
null
null
null
null
UTF-8
Python
false
false
448
py
#calss header class _HANDPICKED(): def __init__(self,): self.name = "HANDPICKED" self.definitions = [u'Someone who is handpicked has been carefully chosen for a special job or purpose: '] self.parents = [] self.childen = [] self.properties = [] self.jsondata = {} self.specie = 'adjectives' def run(self, obj1, obj2): self.jsondata[obj2] = {} self.jsondata[obj2]['properties'] = self.name.lower() return self.jsondata
12752faa8e6f24d7152dd05c131acb18687b7faf
94df6de2ab8eef7d21eaf08f32dd23d380ada52b
/src/generative_playground/models/pg_runner.py
ab4805df09129ee680a0e52f8490c728139b459c
[ "MIT" ]
permissive
iisuslik43/generative_playground
f6a59adb757265e55e7e12c906e9785735042127
3e0d8c137c3a8620461dd1a07fe46c51bb0d97eb
refs/heads/master
2020-09-12T02:00:51.265874
2019-11-18T14:39:04
2019-11-18T14:39:04
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,266
py
import os, inspect from collections import deque import torch.optim as optim from torch.optim import lr_scheduler import torch import gzip, dill, cloudpickle import copy from generative_playground.models.reward_adjuster import adj_reward, AdjustedRewardCalculator from generative_playground.models.temperature_schedule import TemperatureCallback from generative_playground.molecules.molecule_saver_callback import MoleculeSaver from generative_playground.molecules.visualize_molecules import model_process_fun from generative_playground.utils.fit_rl import fit_rl from generative_playground.utils.gpu_utils import to_gpu from generative_playground.molecules.model_settings import get_settings from generative_playground.metrics.metric_monitor import MetricPlotter from generative_playground.models.problem.rl.task import SequenceGenerationTask from generative_playground.models.decoder.decoder import get_decoder from generative_playground.models.losses.policy_gradient_loss import PolicyGradientLoss from generative_playground.models.problem.policy import SoftmaxRandomSamplePolicy, SoftmaxRandomSamplePolicySparse from generative_playground.codec.codec import get_codec from generative_playground.molecules.data_utils.zinc_utils import get_smiles_from_database from generative_playground.data_utils.data_sources import GeneratorToIterable class Saveable: def save(self): print('saving to ' + self.save_file_name + '...') with gzip.open(self.save_file_name, 'wb') as f: dill.dump(self, f) print('done!') return self.save_file_name @classmethod def load(cls, save_file_name): print('loading from ' + save_file_name + '...') with gzip.open(save_file_name, 'rb') as f: inst = dill.load(f) print('done!') return inst class PolicyGradientRunner(Saveable): def __init__(self, grammar, smiles_source='ZINC', BATCH_SIZE=None, reward_fun=None, max_steps=277, num_batches=100, lr=2e-4, entropy_wgt=1.0, lr_schedule=None, root_name=None, preload_file_root_name=None, save_location=None, plot_metrics=True, metric_smooth=0.0, decoder_type='graph_conditional', on_policy_loss_type='advantage_record', priors='conditional', rule_temperature_schedule=None, eps=0.0, half_float=False, extra_repetition_penalty=0.0): self.num_batches = num_batches self.save_location = save_location self.molecule_saver = MoleculeSaver(None, gzip=True) self.metric_monitor = None # to be populated by self.set_root_name(...) zinc_data = get_smiles_from_database(source=smiles_source) zinc_set = set(zinc_data) lookbacks = [BATCH_SIZE, 10 * BATCH_SIZE, 100 * BATCH_SIZE] history_data = [deque(['O'], maxlen=lb) for lb in lookbacks] if root_name is not None: pass # gen_save_file = root_name + '_gen.h5' if preload_file_root_name is not None: gen_preload_file = preload_file_root_name + '_gen.h5' settings = get_settings(molecules=True, grammar=grammar) codec = get_codec(True, grammar, settings['max_seq_length']) if BATCH_SIZE is not None: settings['BATCH_SIZE'] = BATCH_SIZE self.alt_reward_calc = AdjustedRewardCalculator(reward_fun, zinc_set, lookbacks, extra_repetition_penalty, 0, discrim_model=None) self.reward_fun = lambda x: adj_reward(0, None, reward_fun, zinc_set, history_data, extra_repetition_penalty, x, alt_calc=self.alt_reward_calc) task = SequenceGenerationTask(molecules=True, grammar=grammar, reward_fun=self.alt_reward_calc, batch_size=BATCH_SIZE, max_steps=max_steps, save_dataset=None) if 'sparse' in decoder_type: rule_policy = SoftmaxRandomSamplePolicySparse() else: rule_policy = SoftmaxRandomSamplePolicy(temperature=torch.tensor(1.0), eps=eps) # TODO: strip this down to the normal call self.model = get_decoder(True, grammar, z_size=settings['z_size'], decoder_hidden_n=200, feature_len=codec.feature_len(), max_seq_length=max_steps, batch_size=BATCH_SIZE, decoder_type=decoder_type, reward_fun=self.alt_reward_calc, task=task, rule_policy=rule_policy, priors=priors)[0] if preload_file_root_name is not None: try: preload_path = os.path.realpath(save_location + gen_preload_file) self.model.load_state_dict(torch.load(preload_path, map_location='cpu'), strict=False) print('Generator weights loaded successfully!') except Exception as e: print('failed to load generator weights ' + str(e)) # construct the loader to feed the discriminator def make_callback(data): def hc(inputs, model, outputs, loss_fn, loss): graphs = outputs['graphs'] smiles = [g.to_smiles() for g in graphs] for s in smiles: # only store unique instances of molecules so discriminator can't guess on frequency if s not in data: data.append(s) return hc if plot_metrics: # TODO: save_file for rewards data goes here? self.metric_monitor_factory = lambda name: MetricPlotter(plot_prefix='', loss_display_cap=float('inf'), dashboard_name=name, save_location=save_location, process_model_fun=model_process_fun, smooth_weight=metric_smooth) else: self.metric_monitor_factory = lambda x: None # the on-policy fitter gen_extra_callbacks = [make_callback(d) for d in history_data] gen_extra_callbacks.append(self.molecule_saver) if rule_temperature_schedule is not None: gen_extra_callbacks.append(TemperatureCallback(rule_policy, rule_temperature_schedule)) nice_params = filter(lambda p: p.requires_grad, self.model.parameters()) self.optimizer = optim.Adam(nice_params, lr=lr, eps=1e-4) if lr_schedule is None: lr_schedule = lambda x: 1.0 self.scheduler = lr_scheduler.LambdaLR(self.optimizer, lr_schedule) self.loss = PolicyGradientLoss(on_policy_loss_type, entropy_wgt=entropy_wgt) self.fitter_factory = lambda: make_fitter(BATCH_SIZE, settings['z_size'], [self.metric_monitor] + gen_extra_callbacks, self) self.fitter = self.fitter_factory() self.set_root_name(root_name) print('Runner initialized!') def run(self): for i in range(self.num_batches): next(self.fitter) out = self.save() return out def set_root_name(self, root_name): self.root_name = root_name smiles_save_file = root_name + '_smiles.zip' smiles_save_path = os.path.realpath(self.save_location + '/' + smiles_save_file) self.molecule_saver.filename = smiles_save_path print('Saving SMILES to {}'.format(smiles_save_path)) self.fitter.gi_frame.f_locals['callbacks'][0] = self.metric_monitor_factory(root_name) print('publishing to ' + root_name) self.save_file_name = os.path.realpath(self.save_location + '/' + root_name + '_runner.zip') print('Runner to be saved to ' + self.save_file_name) def __getstate__(self): state = {key: value for key, value in self.__dict__.items() if key != 'fitter'} return state def __setstate__(self, state): self.__dict__.update(state) # need to use the factory because neither dill nor cloudpickle will serialize generators self.fitter = self.fitter_factory() def get_model_coeff_vector(self): coeffvec = self.model.stepper.model.get_params_as_vector() return coeffvec def set_model_coeff_vector(self, vector_in): self.model.stepper.model.set_params_from_vector(vector_in) @property def params(self): return self.get_model_coeff_vector() @params.setter def params(self, vector_in): self.set_model_coeff_vector(vector_in) @classmethod def load_from_root_name(cls, save_location, root_name): full_save_file = os.path.realpath(save_location + '/' + root_name + '_runner.zip') inst = cls.load(full_save_file) return inst def make_fitter(batch_size, z_size, callbacks, obj): def my_gen(length=100): for _ in range(length): yield to_gpu(torch.zeros(batch_size, z_size)) #settings['z_size'] fitter = fit_rl(train_gen=GeneratorToIterable(my_gen), model=obj.model, optimizer=obj.optimizer, scheduler=obj.scheduler, loss_fn=obj.loss, grad_clip=5, callbacks=callbacks ) return fitter
e7694b0db2814d86d4fe4e4c05b90604614b2138
91f30c829664ff409177e83776c9f4e2e98d9fc4
/apps/events/migrations/0002_auto_20180607_0411.py
0436f1e6422da2a9e882d0161aa9c56529c7231f
[]
no_license
TotalityHacks/madras
3ac92dc6caf989efcb02590f6474ab333d1f93fa
2395a703eed1a87cca3cdd6c0fb9162b69e8df27
refs/heads/master
2021-08-17T15:29:41.055074
2018-07-18T23:05:29
2018-07-18T23:05:29
105,232,414
4
5
null
2021-03-31T18:58:56
2017-09-29T05:13:41
Python
UTF-8
Python
false
false
581
py
# -*- coding: utf-8 -*- # Generated by Django 1.11.5 on 2018-06-07 04:11 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('events', '0001_initial'), ] operations = [ migrations.AlterField( model_name='event', name='description', field=models.TextField(), ), migrations.AlterField( model_name='event', name='title', field=models.CharField(max_length=40), ), ]
d4cb34b70a91e2240a08ad427a015525c61d1b39
7f8db5b974a747632729d16c431de7aca007af00
/0x11-python-network_1/8-json_api.py
482167a08bb420f6d28ad7b10c9d98d4c2ec9cbe
[]
no_license
thomasmontoya123/holbertonschool-higher_level_programming
6f5ceb636167efba1e36ed2dee7bf83b458f6751
48b7c9dccac77ccb0f57da1dc1d150f356612b13
refs/heads/master
2020-07-22T22:31:13.744490
2020-02-13T22:54:17
2020-02-13T22:54:17
207,351,235
0
0
null
null
null
null
UTF-8
Python
false
false
594
py
#!/usr/bin/python3 '''sends a POST request with the letter as a parameter.''' if __name__ == "__main__": import requests from sys import argv url = 'http://0.0.0.0:5000/search_user' if len(argv) == 2: values = {'q': argv[1]} result = requests.post(url, data=values) try: json = result.json() if json: print("[{}] {}".format(json.get("id"), json.get("name"))) else: print("No result") except Exception: print("Not a valid JSON") else: print("No result")
43f78419297092954ae2d68c3e9a6c3cdeb59b73
8bb2842aa73676d68a13732b78e3601e1305c4b2
/1920.py
5ce8ca2d8ffeda7120bfef402770ca16c94a7353
[]
no_license
Avani18/LeetCode
239fff9c42d2d5703c8c95a0efdc70879ba21b7d
8cd61c4b8159136fb0ade96a1e90bc19b4bd302d
refs/heads/master
2023-08-24T22:25:39.946426
2021-10-10T20:36:07
2021-10-10T20:36:07
264,523,162
0
0
null
null
null
null
UTF-8
Python
false
false
277
py
# Build Array from Permutation class Solution(object): def buildArray(self, nums): """ :type nums: List[int] :rtype: List[int] """ ans = [] for i in range(len(nums)): ans.append(nums[nums[i]]) return ans
b38cce92d3920a353b7dd2db6d9b362200d3e705
1f41b828fb652795482cdeaac1a877e2f19c252a
/maya_tools_backup/3dGroupTools/python/sgPWindow_projCoc_createSeparateView.py
113fa85b9bb3bb9c577bba013bb7dbe3ab4cea18
[]
no_license
jonntd/mayadev-1
e315efe582ea433dcf18d7f1e900920f5590b293
f76aeecb592df766d05a4e10fa2c2496f0310ca4
refs/heads/master
2021-05-02T07:16:17.941007
2018-02-05T03:55:12
2018-02-05T03:55:12
null
0
0
null
null
null
null
UTF-8
Python
false
false
10,157
py
import maya.cmds as cmds from functools import partial import sgBFunction_ui class WinA_Global: winName = 'sgPWindow_projCoc_createSeparateView' title = 'UI Separate View Creator' width = 450 height = 50 camField = '' resField1 = '' resField2 = '' sepGroup1 = '' sepGroup2 = '' sepField1 = '' sepField2 = '' scaleField= '' createWindowCheck = '' class WinA_Cmd: @staticmethod def uiCmdChangeCondition( *args ): resWidth = cmds.intField( WinA_Global.resField1, q=1, v=1 ) resHeight = cmds.intField( WinA_Global.resField2, q=1, v=1 ) sepGroupWidth = cmds.intField( WinA_Global.sepGroup1, q=1, v=1 ) sepGroupHeight = cmds.intField( WinA_Global.sepGroup2, q=1, v=1 ) sepFieldWidth = cmds.intField( WinA_Global.sepField1, q=1, v=1 ) sepFieldHeight = cmds.intField( WinA_Global.sepField2, q=1, v=1 ) resultWidth = float( resWidth ) / sepFieldWidth / sepGroupWidth resultHeight = float( resHeight ) / sepFieldHeight / sepGroupHeight cmds.floatField( WinA_Global.resultField1, e=1, v=resultWidth ) cmds.floatField( WinA_Global.resultField2, e=1, v=resultHeight ) @staticmethod def uiCmdCheckOnOff( *args ): createWindow = cmds.checkBox( WinA_Global.createWindowCheck, q=1, v=1 ) cmds.floatField( WinA_Global.scaleField, e=1, en=createWindow ) @staticmethod def cmdCreate( *args ): cam = cmds.textField( WinA_Global.camField, q=1, tx=1 ) width = cmds.intField( WinA_Global.resField1, q=1, v=1 ) height = cmds.intField( WinA_Global.resField2, q=1, v=1 ) sepGH = cmds.intField( WinA_Global.sepGroup1, q=1, v=1 ) sepGV = cmds.intField( WinA_Global.sepGroup2, q=1, v=1 ) sepH = cmds.intField( WinA_Global.sepField1, q=1, v=1 ) sepV = cmds.intField( WinA_Global.sepField2, q=1, v=1 ) scale = cmds.floatField( WinA_Global.scaleField, q=1, v=1 ) createWindow = cmds.checkBox( WinA_Global.createWindowCheck, q=1, v=1 ) import sgBProject_coc sgBProject_coc.createUiSeparactedViewGroup( cam, width, height, sepGH, sepGV, sepH,sepV, scale, createWindow ) @staticmethod def cmdClear( *args ): cam = cmds.textField( WinA_Global.camField, q=1, tx=1 ) import sgBProject_coc sgBProject_coc.removeUiSeparateView( cam ) class WinA_TwoIntField: def __init__(self, label1, label2, w1, w2, h ): self.label1 = label1 self.label2 = label2 self.width1 = w1 self.width2 = w2 self.height = h def create(self): form = cmds.formLayout() text1 = cmds.text( l= self.label1, w=self.width1, h=self.height, al='right' ) text2 = cmds.text( l= self.label2, w=self.width1, h=self.height, al='right' ) field1 = cmds.intField( w=self.width2, h=self.height ) field2 = cmds.intField( w=self.width2, h=self.height ) cmds.setParent( '..' ) cmds.formLayout( form, e=1, af=[( text1, 'top', 0 ), ( text1, 'left', 0 ), ( text2, 'top', 0 )], ac=[( text1, 'right', 0, field1 ), ( field2, 'left', 0, text2 )], ap=[( field1, 'right', 0, 50 ),( text2, 'left', 0, 50 )] ) self.field1 = field1 self.field2 = field2 self.form = form return form class WinA_TwoFloatField: def __init__(self, label1, label2, w1, w2, h ): self.label1 = label1 self.label2 = label2 self.width1 = w1 self.width2 = w2 self.height = h def create(self): form = cmds.formLayout() text1 = cmds.text( l= self.label1, w=self.width1, h=self.height, al='right' ) text2 = cmds.text( l= self.label2, w=self.width1, h=self.height, al='right' ) field1 = cmds.floatField( w=self.width2, h=self.height ) field2 = cmds.floatField( w=self.width2, h=self.height ) cmds.setParent( '..' ) cmds.formLayout( form, e=1, af=[( text1, 'top', 0 ), ( text1, 'left', 0 ), ( text2, 'top', 0 )], ac=[( text1, 'right', 0, field1 ), ( field2, 'left', 0, text2 )], ap=[( field1, 'right', 0, 50 ),( text2, 'left', 0, 50 )] ) self.field1 = field1 self.field2 = field2 self.form = form return form class WinA_FloatField: def __init__(self, label1, w1, w2, h ): self.label1 = label1 self.width1 = w1 self.width2 = w2 self.height = h def create(self): form = cmds.formLayout() text1 = cmds.text( l= self.label1, w=self.width1, h=self.height, al='right' ) field1 = cmds.floatField( w=self.width2, h=self.height ) cmds.setParent( '..' ) cmds.formLayout( form, e=1, af=[( text1, 'top', 0 ), ( text1, 'left', 0 )], ac=[( text1, 'right', 0, field1 )], ap=[( field1, 'right', 0, 50 )] ) self.field = field1 self.form = form return form class WinA: def __init__(self): self.winName = WinA_Global.winName self.title = WinA_Global.title self.width = WinA_Global.width self.height = WinA_Global.height self.uiTargetCam = sgBFunction_ui.PopupFieldUI_b( 'Target Camera : ' ) self.uiResolution = WinA_TwoIntField( "Resolusion Width : ", "Resolusion Height : ", 120, 80, 22 ) self.uiSepGroup = WinA_TwoIntField( "Sep Group Width num : ", "Sep Group Height num : ", 120, 80, 22 ) self.uiSeparate = WinA_TwoIntField( "Sep Width : ", "Sep Height : ", 120, 80, 22 ) self.uiResult = WinA_TwoFloatField( "Result Width : ", "Result Height", 120, 80, 22 ) self.uiWindowScale = WinA_FloatField( "Window Scale : ", 120, 80, 22 ) def create(self): if cmds.window( self.winName, ex=1 ): cmds.deleteUI( self.winName, wnd=1 ) cmds.window( self.winName, title=self.title ) form = cmds.formLayout() uiTargetCamForm = self.uiTargetCam.create() uiResolutionForm = self.uiResolution.create() uiSepGroupForm = self.uiSepGroup.create() uiSeparateForm = self.uiSeparate.create() uiResultForm = self.uiResult.create() uiCheckBox = cmds.checkBox( l='Create Window', cc= WinA_Cmd.uiCmdCheckOnOff ) uiWindowScaleForm= self.uiWindowScale.create() uiButton1From = cmds.button( l='C R E A T E', c= WinA_Cmd.cmdCreate ) uiButton2From = cmds.button( l='C L E A R', c= WinA_Cmd.cmdClear ) cmds.setParent( '..' ) cmds.formLayout( form, e=1, af=[( uiTargetCamForm, 'top', 5 ), ( uiTargetCamForm, 'left', 5 ), ( uiTargetCamForm, 'right', 5 ), ( uiResolutionForm, 'left', 5 ), ( uiResolutionForm, 'right', 5 ), ( uiSepGroupForm, 'left', 5 ), ( uiSepGroupForm, 'right', 5 ), ( uiSeparateForm, 'left', 5 ), ( uiSeparateForm, 'right', 5 ), ( uiResultForm, 'left', 5 ), ( uiResultForm, 'right', 5 ), ( uiCheckBox, 'left', 165 ), ( uiWindowScaleForm, 'left', 5 ),( uiWindowScaleForm, 'right', 5 ), ( uiButton1From, 'left', 2 ), ( uiButton1From, 'right', 2 ), ( uiButton2From, 'left', 2 ), ( uiButton2From, 'right', 2 ), ( uiButton2From, 'bottom', 2 )], ac=[( uiResolutionForm, 'top', 10, uiTargetCamForm ), ( uiSepGroupForm, 'top', 10, uiResolutionForm ), ( uiSeparateForm, 'top', 10, uiSepGroupForm ), ( uiResultForm, 'top', 10, uiSeparateForm ), ( uiCheckBox, 'top', 10, uiResultForm ), ( uiWindowScaleForm, 'top', 10, uiCheckBox ), ( uiButton1From, 'top', 15, uiWindowScaleForm ), ( uiButton2From, 'top', 2, uiButton1From )]) cmds.window( self.winName, e=1, wh=[ self.width, self.height ], rtf=1 ) cmds.showWindow( self.winName ) cmds.intField( self.uiResolution.field1, e=1, v=1920, cc= WinA_Cmd.uiCmdChangeCondition ) cmds.intField( self.uiResolution.field2, e=1, v=1080, cc= WinA_Cmd.uiCmdChangeCondition ) cmds.intField( self.uiSepGroup.field1, e=1, v=1, cc= WinA_Cmd.uiCmdChangeCondition ) cmds.intField( self.uiSepGroup.field2, e=1, v=1, cc= WinA_Cmd.uiCmdChangeCondition ) cmds.intField( self.uiSeparate.field1, e=1, v=2, cc= WinA_Cmd.uiCmdChangeCondition ) cmds.intField( self.uiSeparate.field2, e=1, v=2, cc= WinA_Cmd.uiCmdChangeCondition ) cmds.floatField( self.uiResult.field1, e=1, v=960, en=0 ) cmds.floatField( self.uiResult.field2, e=1, v=540, en=0 ) cmds.floatField( self.uiWindowScale.field, e=1, v=0.5, pre=2, en=0 ) WinA_Global.camField = self.uiTargetCam._field WinA_Global.resField1 = self.uiResolution.field1 WinA_Global.resField2 = self.uiResolution.field2 WinA_Global.sepGroup1 = self.uiSepGroup.field1 WinA_Global.sepGroup2 = self.uiSepGroup.field2 WinA_Global.sepField1 = self.uiSeparate.field1 WinA_Global.sepField2 = self.uiSeparate.field2 WinA_Global.resultField1 = self.uiResult.field1 WinA_Global.resultField2 = self.uiResult.field2 WinA_Global.scaleField= self.uiWindowScale.field WinA_Global.createWindowCheck = uiCheckBox
3323c4ec71a8a7d1a3ac28964a61aeacbeb33fd6
196eb2f5e3366987d7285bf980ac64254c4aec16
/supervised/util.py
4dbf6da6ffafcd128d865320bca7ad87e38b8408
[ "MIT" ]
permissive
mfouda/codenames
f54e0c4366edbf65251aadefddef1fda6cd7de9d
ccd0bd7578b3deedeec60d0849ec4ebca48b6426
refs/heads/master
2022-01-07T02:03:42.529978
2018-12-21T13:16:27
2018-12-21T13:16:27
null
0
0
null
null
null
null
UTF-8
Python
false
false
595
py
import time import matplotlib.pyplot as plt plt.switch_backend('agg') import matplotlib.ticker as ticker # noqa: E402 def as_minutes(s): m = s // 60 s -= m * 60 return '%dm %ds' % (m, s) def time_since(since, percent): now = time.time() s = now - since es = s / percent rs = es - s return '%s (- %s)' % (as_minutes(s), as_minutes(rs)) def show_plot(points): plt.figure() fig, ax = plt.subplots() # this locator puts ticks at regular intervals loc = ticker.MultipleLocator(base=0.2) ax.yaxis.set_major_locator(loc) plt.plot(points)
7b80ef96fa22fd633d5e959b647de4b9f16faedc
c7f98de17088cb4df6c171f1e76614beb1f4e0f7
/modules/vulnerability-analysis/w3af.py
73cb1fc29cbd307d7038d2d133f512666a097029
[]
no_license
fryjustinc/ptf
6262ca5b94a43a51e984d3eee1649a16584b597b
ba85f9e867b65b4aa4f06b6232207aadac9782c9
refs/heads/master
2020-03-31T09:43:44.474563
2018-10-08T18:39:03
2018-10-08T18:39:03
152,107,950
0
0
null
2018-10-08T16:00:37
2018-10-08T16:00:37
null
UTF-8
Python
false
false
244
py
#!/usr/bin/env python ##################################### # Installation module for w3af ##################################### AUTHOR="Justin Fry" INSTALL_TYPE="GIT" REPOSITORY_LOCATION="https://github.com/andresriancho/w3af" LAUNCHER="w3af"
47bcf163541fb59722252c3f339c87df5bc27d1b
a8a5772674e62beaa4f5b1f115d280103fd03749
/metstationdistance.py
06718ded3fcc86dd7af918765369d469f2ed4e6b
[]
no_license
tahentx/pv_workbook
c6fb3309d9acde5302dd3ea06a34ad2aee0de4b7
08912b0ef36a5226d23fa0430216a3f277aca33b
refs/heads/master
2022-12-12T20:39:35.688510
2021-03-30T03:20:54
2021-03-30T03:20:54
172,827,250
0
1
null
2022-12-08T16:47:39
2019-02-27T02:25:24
Python
UTF-8
Python
false
false
591
py
import csv from haversine import haversine with open('tucson.csv') as file: has_header = csv.Sniffer().has_header(file.read(1024)) file.seek(0) met = csv.reader(file) if has_header: next(met) met_list = list(met) coords = [] for x in met_list: coords.append(x[1:]) print(coords) # # def find_backup_metstation(coordinates: list) -> list: # backup_mets = [] # for i in range(len(coordinates)-1): # backup_mets.append(haversine(coordinates[i], coordinates[i + 1],unit='mi')) # print(type(coordinates[i])) # # find_backup_metstation(coords)
ce1d4c9f9dae392dbcd0c9e6cec095469f9b8092
0fccee4c738449f5e0a8f52ea5acabf51db0e910
/genfragments/ThirteenTeV/BulkGraviton/BulkGraviton_VBF_WW_inclu_narrow_M4000_13TeV-madgraph_cff.py
2bcf409e757355e8832799dc74ad7539b4678a06
[]
no_license
cms-sw/genproductions
f308ffaf3586c19b29853db40e6d662e937940ff
dd3d3a3826343d4f75ec36b4662b6e9ff1f270f4
refs/heads/master
2023-08-30T17:26:02.581596
2023-08-29T14:53:43
2023-08-29T14:53:43
11,424,867
69
987
null
2023-09-14T12:41:28
2013-07-15T14:18:33
Python
UTF-8
Python
false
false
797
py
import FWCore.ParameterSet.Config as cms # link to cards: # https://github.com/cms-sw/genproductions/tree/91ab3ea30e3c2280e4c31fdd7072a47eb2e5bdaa/bin/MadGraph5_aMCatNLO/cards/production/13TeV/exo_diboson/Spin-2/BulkGraviton_VBF_WW_inclu/BulkGraviton_VBF_WW_inclu_narrow_M4000 externalLHEProducer = cms.EDProducer("ExternalLHEProducer", args = cms.vstring('/cvmfs/cms.cern.ch/phys_generator/gridpacks/slc6_amd64_gcc481/13TeV/madgraph/V5_2.2.2/exo_diboson/Spin-2/BulkGraviton_VBF_WW_inclu/narrow/v1/BulkGraviton_VBF_WW_inclu_narrow_M4000_tarball.tar.xz'), nEvents = cms.untracked.uint32(5000), numberOfParameters = cms.uint32(1), outputFile = cms.string('cmsgrid_final.lhe'), scriptName = cms.FileInPath('GeneratorInterface/LHEInterface/data/run_generic_tarball_cvmfs.sh') )
c441b84ad77af9e2410f70a7eb69c516673a72a5
8e67d8618b9be7c777597b650876fa20082a6ebb
/14501.py
74d650e562528e9b9e0e32bd3b717523cf2ba523
[]
no_license
ljm9748/practice_codingtest
c5a2cc315c1ccd8f48a9424d13d2097c9fed0efc
367710238976c1a2f8b42bfc3fc2936c47b195c5
refs/heads/master
2023-01-14T12:29:32.530648
2020-11-18T17:49:50
2020-11-18T17:49:50
282,162,451
0
0
null
null
null
null
UTF-8
Python
false
false
284
py
n=int(input()) myinp=[] for _ in range(n): myinp.append(list(map(int, input().split()))) dp=[0]*(n) for i in range(n): day=myinp[i][0] val=myinp[i][1] if i+day-1<=(n-1): for j in range(i+day-1, n): dp[j]=max(dp[j], dp[i+day-2]+val) print(dp[n-1])
2855a822a742a7fbeb6e50814966d36d5e36be0c
61a856d931688a49435b3caab4e9d674ca2a32aa
/tests/test_zeroDS.py
27f6636792c8ed111a8de6cd4169b2281cecf6d1
[ "Apache-2.0" ]
permissive
kvt0012/NeMo
3c9803be76c7a2ef8d5cab6995ff1ef058144ffe
6ad05b45c46edb5d44366bd0703915075f72b4fc
refs/heads/master
2020-08-14T16:59:18.702254
2019-10-14T22:46:48
2019-10-14T22:46:48
215,203,912
1
0
Apache-2.0
2019-10-15T04:05:37
2019-10-15T04:05:34
null
UTF-8
Python
false
false
4,613
py
import unittest import os import tarfile import torch from ruamel.yaml import YAML from nemo.core.neural_types import * from .context import nemo, nemo_asr from .common_setup import NeMoUnitTest class TestZeroDL(NeMoUnitTest): labels = ["'", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z", " "] manifest_filepath = "tests/data/asr/an4_train.json" yaml = YAML(typ="safe") def setUp(self) -> None: super().setUp() data_folder = "tests/data/" print("Looking up for test ASR data") if not os.path.exists(data_folder + "nemo_asr"): print(f"Extracting ASR data to: {data_folder + 'nemo_asr'}") tar = tarfile.open("tests/data/asr.tar.gz", "r:gz") tar.extractall(path=data_folder) tar.close() else: print("ASR data found in: {0}".format(data_folder + "asr")) def test_simple_train(self): print("Simplest train test with ZeroDL") neural_factory = nemo.core.neural_factory.NeuralModuleFactory( backend=nemo.core.Backend.PyTorch, create_tb_writer=False) trainable_module = nemo.backends.pytorch.tutorials.TaylorNet(dim=4) data_source = nemo.backends.pytorch.common.ZerosDataLayer( size=10000, dtype=torch.FloatTensor, batch_size=128, output_ports={ "x": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(ChannelTag, dim=1)}), "y": NeuralType({ 0: AxisType(BatchTag), 1: AxisType(ChannelTag, dim=1)})}) loss = nemo.backends.pytorch.tutorials.MSELoss() x, y = data_source() y_pred = trainable_module(x=x) loss_tensor = loss(predictions=y_pred, target=y) callback = nemo.core.SimpleLossLoggerCallback( tensors=[loss_tensor], print_func=lambda x: print(f'Train Loss: {str(x[0].item())}')) neural_factory.train( [loss_tensor], callbacks=[callback], optimization_params={"num_epochs": 3, "lr": 0.0003}, optimizer="sgd") def test_asr_with_zero_ds(self): print("Testing ASR NMs with ZeroDS and without pre-processing") with open("tests/data/jasper_smaller.yaml") as file: jasper_model_definition = self.yaml.load(file) dl = nemo.backends.pytorch.common.ZerosDataLayer( size=100, dtype=torch.FloatTensor, batch_size=4, output_ports={ "processed_signal": NeuralType( {0: AxisType(BatchTag), 1: AxisType(SpectrogramSignalTag, dim=64), 2: AxisType(ProcessedTimeTag, dim=64)}), "processed_length": NeuralType( {0: AxisType(BatchTag)}), "transcript": NeuralType({0: AxisType(BatchTag), 1: AxisType(TimeTag, dim=64)}), "transcript_length": NeuralType({0: AxisType(BatchTag)}) }) jasper_encoder = nemo_asr.JasperEncoder( feat_in=jasper_model_definition['AudioPreprocessing']['features'], **jasper_model_definition["JasperEncoder"]) jasper_decoder = nemo_asr.JasperDecoderForCTC( feat_in=1024, num_classes=len(self.labels) ) ctc_loss = nemo_asr.CTCLossNM(num_classes=len(self.labels)) # DAG processed_signal, p_length, transcript, transcript_len = dl() encoded, encoded_len = jasper_encoder(audio_signal=processed_signal, length=p_length) # print(jasper_encoder) log_probs = jasper_decoder(encoder_output=encoded) loss = ctc_loss(log_probs=log_probs, targets=transcript, input_length=encoded_len, target_length=transcript_len) callback = nemo.core.SimpleLossLoggerCallback( tensors=[loss], print_func=lambda x: print(f'Train Loss: {str(x[0].item())}')) # Instantiate an optimizer to perform `train` action neural_factory = nemo.core.NeuralModuleFactory( backend=nemo.core.Backend.PyTorch, local_rank=None, create_tb_writer=False) neural_factory.train( [loss], callbacks=[callback], optimization_params={"num_epochs": 2, "lr": 0.0003}, optimizer="sgd")
a18ded8aafe21fcfb2e4ec9504aab06e4e2a2770
cad9ea1b8c1909d50a843426d994947f628bf890
/MARS-IEEE_IOT-HAR/MARS-v3.py
da2ad002cac6dde0c51a29d2a4891eb889b18b39
[]
no_license
xiaogaogaoxiao/MARS-IEEE_IoT-HAR
a50a34f0e8813f032d0dc326a2b397180dc13a7c
dfd5a83ef0fb9942aaba2a8c22f73e6c14c5e99f
refs/heads/main
2023-07-01T00:18:56.583927
2021-08-10T08:25:06
2021-08-10T08:25:06
null
0
0
null
null
null
null
UTF-8
Python
false
false
14,595
py
# multi-model import warnings warnings.filterwarnings('ignore') import numpy as np import pickle as pkl import matplotlib import matplotlib.pyplot as plt import sklearn.metrics as metrics import torch.nn.functional as F import itertools import torch.utils.data as dataf from sklearn import utils as skutils import pandas as pd from sklearn.metrics import roc_curve, auc from sklearn.preprocessing import label_binarize import MARS_Code.utils as utils import torch from torch import nn import argparse from sliding_window import sliding_window parser = argparse.ArgumentParser(description='MARS_HAR') parser.add_argument('--batch-size', type=int, default=100, metavar='N', help='input batch size for training (default: 100)') parser.add_argument('--epochs', type=int, default=200, metavar='N', help='number of epochs to train (default: 200)') parser.add_argument('--lr', type=float, default=0.001, metavar='LR', help='learning rate (default: 0.001)') parser.add_argument('--weight-decay', '--wd', default=1e-3, type=float, metavar='W', help='weight decay (default: 1e-3)') parser.add_argument('--imu-num', type=int, default=3, metavar='N', help='Imu number (default: 3)') parser.add_argument('--window-length', type=int, default=60, metavar='N', help='sliding window length (default: 60)') parser.add_argument('--window-step', type=int, default=30, metavar='N', help='window step (default: 30)') args = parser.parse_args() global IMU_NUM IMU_NUM = args.imu_num NB_SENSOR_CHANNELS = IMU_NUM * 12 SLIDING_WINDOW_LENGTH = args.window_length SLIDING_WINDOW_STEP = args.window_step BATCH_SIZE = args.batch_size # Load Data x_train, y_train, x_test, y_test = utils.load_dataset('/home/xspc/Downloads/Pose_dataset/xspc_DIP_dataset/DIP_8_2/DIP_3IMU_82.pkl') print('size of yt_train is:', y_train.shape) print("size of xt_train is", x_train.shape) assert NB_SENSOR_CHANNELS == x_train.shape[1] x_train, y_train = utils.opp_sliding_window(x_train, y_train, SLIDING_WINDOW_LENGTH, SLIDING_WINDOW_STEP) x_test, y_test = utils.opp_sliding_window(x_test, y_test, SLIDING_WINDOW_LENGTH, SLIDING_WINDOW_STEP) # Data is reshaped X_train = np.array(x_train) X_test = np.array(x_test) X_train = X_train.reshape(-1, SLIDING_WINDOW_LENGTH, NB_SENSOR_CHANNELS) # for input to Conv1D X_test = X_test.reshape(-1, SLIDING_WINDOW_LENGTH, NB_SENSOR_CHANNELS) # for input to Conv1D print(" ..after sliding and reshaping, train data: inputs {0}, labels {1}".format(X_train.shape, y_train.shape)) print(" ..after sliding and reshaping, test data : inputs {0}, labels {1}".format(X_test.shape, y_test.shape)) X_train, y_train = skutils.shuffle(X_train, y_train, random_state=42) X_test, y_test = skutils.shuffle(X_test, y_test, random_state=42) y_train = y_train.astype(np.int8) y_test = y_test.astype(np.int8) dataset_train = utils.Dataset(X_train, y_train) dataset_test = utils.Dataset(X_test, y_test) train_loader = dataf.DataLoader(dataset_train, batch_size=100, drop_last=True) test_loader = dataf.DataLoader(dataset_test, batch_size=100, drop_last=True) class HARModel2(nn.Module): def __init__(self, n_hidden=96, n_layers=1, n_filters=32, stride=2, stride1D = 1, BATCH_SIZE = 100, n_classes=5, filter_size=4, fusion = 2): # out_channels= 32, super(HARModel2, self).__init__() self.fusion = fusion self.n_layers = n_layers self.n_hidden = n_hidden self.n_filters = n_filters self.n_classes = n_classes self.filter_size = filter_size self.stride = stride self.stride1D = stride1D self.in_channels = NB_SENSOR_CHANNELS self.BATCH_SIZE = BATCH_SIZE # self.out_channels = out_channels self.net1d0 = nn.Sequential( nn.Conv1d(self.in_channels, self.n_filters, kernel_size=self.filter_size, stride=stride1D), nn.BatchNorm1d(n_filters), nn.ReLU(), nn.Conv1d(self.n_filters, 2 * self.n_filters, kernel_size=self.filter_size, stride=stride1D), nn.BatchNorm1d(2 * n_filters), nn.ReLU(), nn.Conv1d(2 * self.n_filters, 3 * self.n_filters, kernel_size=self.filter_size, stride=stride1D), nn.BatchNorm1d(3 * self.n_filters), nn.ReLU(), nn.Conv1d(3 * self.n_filters, 4 * self.n_filters, kernel_size=self.filter_size, stride=stride1D), nn.BatchNorm1d(4 * n_filters), nn.ReLU(), ) self.net1d3 = nn.Sequential( nn.ConvTranspose1d(4 * self.n_filters, 3 * self.n_filters, kernel_size=self.filter_size, stride=stride1D, output_padding=stride1D - 1), nn.BatchNorm1d(3 * self.n_filters), nn.ReLU(), nn.ConvTranspose1d(3 * self.n_filters, 2 * self.n_filters, kernel_size=self.filter_size, stride=stride1D), nn.BatchNorm1d(2 * n_filters), nn.ReLU(), nn.ConvTranspose1d(2 * self.n_filters, 1 * self.n_filters, kernel_size=self.filter_size, stride=stride1D), nn.BatchNorm1d(1 * self.n_filters), nn.ReLU(), nn.ConvTranspose1d(self.n_filters, self.in_channels, kernel_size=self.filter_size, stride=stride1D, output_padding=stride1D - 1), ) self.net2d0 = nn.Sequential( nn.Conv2d(1, n_filters, kernel_size=self.filter_size, stride=self.stride), # nn.BatchNorm2d(n_filters), nn.ReLU(), nn.Conv2d(n_filters, 2 * n_filters, kernel_size=self.filter_size, stride=self.stride), nn.BatchNorm2d(2 * n_filters), nn.ReLU(), nn.Conv2d(2 * n_filters, 2 * n_filters, kernel_size=self.filter_size, stride=self.stride-1), nn.BatchNorm2d(2 * n_filters), nn.ReLU(), nn.Conv2d(2 * n_filters, 3 * n_filters, kernel_size=self.filter_size, stride=self.stride-1), nn.BatchNorm2d(3 * n_filters), nn.ReLU(), # nn.Flatten() ) self.net2d3 = nn.Sequential( nn.ConvTranspose2d(3 * n_filters, 2 * n_filters, kernel_size=self.filter_size, stride=self.stride-1), nn.BatchNorm2d(2 * n_filters), nn.ReLU(), nn.ConvTranspose2d(2 * n_filters, 2 * n_filters, kernel_size=self.filter_size, stride=self.stride-1), nn.BatchNorm2d(2 * n_filters), nn.ReLU(), nn.ConvTranspose2d(2 * n_filters, n_filters, kernel_size=self.filter_size, stride=self.stride, output_padding=(1,1)), nn.BatchNorm2d(1 * n_filters), nn.ReLU(), nn.ConvTranspose2d(n_filters, 1, kernel_size=self.filter_size, stride=self.stride), ) self.net1d1 = nn.Sequential( nn.Linear(4 * self.n_filters * 48, self.n_hidden), nn.ReLU(), ) self.net1d2 = nn.Sequential( nn.Linear(self.n_hidden, 4 * self.n_filters * 48), nn.ReLU(), ) self.net2d1 = nn.Sequential( nn.Linear(672, self.n_hidden), nn.ReLU(), ) self.net2d2 = nn.Sequential( nn.Linear(self.n_hidden, 672), nn.ReLU(), ) self.netC = nn.Sequential( nn.Linear(self.n_hidden, self.n_classes), nn.ReLU(), nn.Linear(self.n_classes, self.n_classes), # nn.ReLU(), ) self.net_feature_fusion = nn.Sequential( nn.Linear(self.n_hidden, self.n_hidden), # nn.BatchNorm1d(self.n_classes), nn.Sigmoid(), ) self.fc = nn.Sequential( nn.Linear(6816, 1024), # nn.BatchNorm1d(self.n_classes), nn.ReLU(), nn.Linear(1024, self.n_hidden), # nn.BatchNorm1d(self.n_classes), nn.ReLU(), nn.Linear(self.n_hidden, self.n_classes), # nn.BatchNorm1d(self.n_classes), nn.Sigmoid(), ) # def latent_feature_fusion(self, latent_feature): # latent_feature1 = nn.Linear(latent_feature.shape[1], self.n_hidden) # return latent_feature_fused ### size equals to batch size * n_hidden def KL_Distance(self, f1, f2): criterion_KL = nn.KLDivLoss(reduce=True) log_probs1 = F.log_softmax(f1, 1) probs1 = F.softmax(f1, 1) log_probs2 = F.log_softmax(f2, 1) probs2 = F.softmax(f2, 1) Distance_estimate = (criterion_KL(log_probs1, probs2) + criterion_KL(log_probs2, probs1))/2 return Distance_estimate def forward(self, x): ### 1D x1d = x.view(-1, NB_SENSOR_CHANNELS, SLIDING_WINDOW_LENGTH) l1_1d = self.net1d0(x1d) l1_1d = l1_1d.view(self.BATCH_SIZE, -1) x1f = self.net1d1(l1_1d) l3_1d = self.net1d2(x1f) l3_1d = l3_1d.view(x1f.size(0), 4 * self.n_filters, 48) recon_x_1d = self.net1d3(l3_1d) recon_x_1d = recon_x_1d.view(-1, SLIDING_WINDOW_LENGTH, NB_SENSOR_CHANNELS) ### 2D x2d = x.view(-1, 1, SLIDING_WINDOW_LENGTH, NB_SENSOR_CHANNELS) l1_2d = self.net2d0(x2d) l1_2d = l1_2d.view(self.BATCH_SIZE, -1) x2f = self.net2d1(l1_2d) l3_2d = self.net2d2(x2f) l3_2d = l3_2d.view(x2f.size(0), 3 * self.n_filters, 7, 1) recon_x_2d = self.net2d3(l3_2d) latent_feature1, latent_feature2 = self.net_feature_fusion(x1f), self.net_feature_fusion(x2f) # if self.fusion == 2: reduced_dim_x = self.netC(x1f.mul(self.net_feature_fusion(x1f)) + x2f.mul(1 - self.net_feature_fusion(x2f))) SDKL = self.KL_Distance(latent_feature1, latent_feature2) # print('size of SDKL is:', SDKL.shape) # reduced_dim_x = self.netC(x1f + x2f) # fusion method II return recon_x_1d, reduced_dim_x, recon_x_2d, SDKL def init_hidden(self): """ Initializes hidden state """ # Create two new tensors with sizes n_layers x BATCH_SIZE x n_hidden, # initialized to zero, for hidden state and cell state of LSTM weight = next(self.parameters()).data if train_on_gpu: hidden = (nn.init.zeros_(weight.new(self.n_layers, self.BATCH_SIZE, self.n_hidden)).cuda(), nn.init.zeros_(weight.new(self.n_layers, self.BATCH_SIZE, self.n_hidden)).cuda()) else: hidden = (weight.new(self.n_layers, self.BATCH_SIZE, self.n_hidden).xavier_normal_(), weight.new(self.n_layers, self.BATCH_SIZE, self.n_hidden).xavier_normal_()) return hidden net = HARModel2() # check if GPU is available train_on_gpu = torch.cuda.is_available() if train_on_gpu: print('Training on GPU!') else: print('No GPU available, training on CPU; consider making n_epochs very small') opt = torch.optim.Adam(net.parameters(), lr=args.lr) criterion1 = nn.CrossEntropyLoss() criterion2 = nn.MSELoss() if train_on_gpu: net.cuda() best_acc = 0 def train(epoch): net.train() scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(opt, mode='min', factor=0.99, patience=4) print("Learning rate:", opt.defaults['lr']) train_losses = [] train_acc = 0 batch_j = 0 for i, data in enumerate(train_loader): # 一个batch、一个batch的往下走,对于train,先走完 x, y = data inputs, targets = x, y if train_on_gpu: inputs, targets = inputs.cuda(), targets.cuda() opt.zero_grad() recon_output_1d, fused_output0, recon_output_2d, SDKL = net(inputs) output01d = torch.squeeze(recon_output_1d) output02d = torch.squeeze(recon_output_2d) _, pred = torch.max(fused_output0, 1) loss = criterion1(fused_output0, targets.long()) + 0.05 * criterion2(inputs, output01d) + \ 0.05 * criterion2(inputs, output02d) + 0.01 * SDKL # 0.001 * 0.5 * train_losses.append(loss.item()) train_acc += (pred == targets.long()).sum().item() loss.backward() # 向后传播 opt.step() print("第%d个epoch的学习率:%f" % (epoch + 1, opt.param_groups[0]['lr'])) scheduler.step(loss) train_involved = (len(y_train) // BATCH_SIZE) * BATCH_SIZE print("Epoch: {}/{}...".format(epoch + 1, args.epochs), "Train Loss: {:.6f}...".format(np.mean(train_losses)), "Train Acc: {:.6f}...".format(train_acc / train_involved), end=" ") def test(epoch): net.eval() val_accuracy = 0 val_losses = [] global best_acc with torch.no_grad(): for i, data in enumerate(test_loader): # 在一个batch中,一个个的往下走; x, y = data inputs, targets = x, y if train_on_gpu: inputs, targets = inputs.cuda(), targets.cuda() _, fused_output, _, _ = net(inputs) _, predicted = torch.max(fused_output, 1) # decision level fusion val_loss = criterion1(fused_output, targets.long()) val_losses.append(val_loss.item()) val_accuracy += (predicted == targets.long()).sum().item() test_involved = (len(y_test) // BATCH_SIZE) * BATCH_SIZE print("Val Loss: {:.6f}...".format(np.mean(val_losses)), "Val Acc: {:.6f}...".format(val_accuracy / test_involved)) if best_acc < val_accuracy / test_involved: best_acc = val_accuracy / test_involved print("best model find: {:.6f}...".format(best_acc)) torch.save(net, '/home/xspc/Downloads/IMUPose_Code/xspc_test/MARS_Code/MARS_v3_result.pkl') else: print("no best model,the best is : {:.6f}...".format(best_acc)) try: for epoch in range(args.epochs): train(epoch) test(epoch) print("------Best Result--------") print("Val Acc: {:.6f}...".format(best_acc)) except KeyboardInterrupt: print("------Best Result--------") print("Val Acc: {:.6f}...".format(best_acc))
eaebb4666a97d396903989fc5c9df6e3c92ebdc2
e13091c137650cd31c8d9778087b369033d0cf96
/src/main/python/algo_expert/Algorithm Implementation /Sort/selection_sort.py
db348f63325d79466c26d8e70fdde8fcced1ec7b
[]
no_license
jwoojun/CodingTest
634e2cfe707b74c080ddbe5f32f58c1e6d849968
d62479d168085f13e73dfc1697c5438a97632d29
refs/heads/master
2023-08-22T09:03:32.392293
2021-10-31T01:00:33
2021-10-31T01:00:33
300,534,767
0
0
null
null
null
null
UTF-8
Python
false
false
253
py
# selection_sort def selection_sort(lst) : for i in range(len(lst)-1) : min_ = i for j in range(i+1, len(lst)) : if lst[min_] > lst[j] : min_ = j lst[i], lst[min_] = lst[min_], lst[i] return lst
cabb3418558dc0ccf9392089c057427ce71ee217
48e124e97cc776feb0ad6d17b9ef1dfa24e2e474
/sdk/python/pulumi_azure_native/containerregistry/v20210601preview/get_registry.py
946c32d8ea4c071d5a7c0fdf5ea8694660f0870d
[ "BSD-3-Clause", "Apache-2.0" ]
permissive
bpkgoud/pulumi-azure-native
0817502630062efbc35134410c4a784b61a4736d
a3215fe1b87fba69294f248017b1591767c2b96c
refs/heads/master
2023-08-29T22:39:49.984212
2021-11-15T12:43:41
2021-11-15T12:43:41
null
0
0
null
null
null
null
UTF-8
Python
false
false
15,021
py
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from . import outputs __all__ = [ 'GetRegistryResult', 'AwaitableGetRegistryResult', 'get_registry', 'get_registry_output', ] @pulumi.output_type class GetRegistryResult: """ An object that represents a container registry. """ def __init__(__self__, admin_user_enabled=None, anonymous_pull_enabled=None, creation_date=None, data_endpoint_enabled=None, data_endpoint_host_names=None, encryption=None, id=None, identity=None, location=None, login_server=None, name=None, network_rule_bypass_options=None, network_rule_set=None, policies=None, private_endpoint_connections=None, provisioning_state=None, public_network_access=None, sku=None, status=None, system_data=None, tags=None, type=None, zone_redundancy=None): if admin_user_enabled and not isinstance(admin_user_enabled, bool): raise TypeError("Expected argument 'admin_user_enabled' to be a bool") pulumi.set(__self__, "admin_user_enabled", admin_user_enabled) if anonymous_pull_enabled and not isinstance(anonymous_pull_enabled, bool): raise TypeError("Expected argument 'anonymous_pull_enabled' to be a bool") pulumi.set(__self__, "anonymous_pull_enabled", anonymous_pull_enabled) if creation_date and not isinstance(creation_date, str): raise TypeError("Expected argument 'creation_date' to be a str") pulumi.set(__self__, "creation_date", creation_date) if data_endpoint_enabled and not isinstance(data_endpoint_enabled, bool): raise TypeError("Expected argument 'data_endpoint_enabled' to be a bool") pulumi.set(__self__, "data_endpoint_enabled", data_endpoint_enabled) if data_endpoint_host_names and not isinstance(data_endpoint_host_names, list): raise TypeError("Expected argument 'data_endpoint_host_names' to be a list") pulumi.set(__self__, "data_endpoint_host_names", data_endpoint_host_names) if encryption and not isinstance(encryption, dict): raise TypeError("Expected argument 'encryption' to be a dict") pulumi.set(__self__, "encryption", encryption) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if identity and not isinstance(identity, dict): raise TypeError("Expected argument 'identity' to be a dict") pulumi.set(__self__, "identity", identity) if location and not isinstance(location, str): raise TypeError("Expected argument 'location' to be a str") pulumi.set(__self__, "location", location) if login_server and not isinstance(login_server, str): raise TypeError("Expected argument 'login_server' to be a str") pulumi.set(__self__, "login_server", login_server) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if network_rule_bypass_options and not isinstance(network_rule_bypass_options, str): raise TypeError("Expected argument 'network_rule_bypass_options' to be a str") pulumi.set(__self__, "network_rule_bypass_options", network_rule_bypass_options) if network_rule_set and not isinstance(network_rule_set, dict): raise TypeError("Expected argument 'network_rule_set' to be a dict") pulumi.set(__self__, "network_rule_set", network_rule_set) if policies and not isinstance(policies, dict): raise TypeError("Expected argument 'policies' to be a dict") pulumi.set(__self__, "policies", policies) if private_endpoint_connections and not isinstance(private_endpoint_connections, list): raise TypeError("Expected argument 'private_endpoint_connections' to be a list") pulumi.set(__self__, "private_endpoint_connections", private_endpoint_connections) if provisioning_state and not isinstance(provisioning_state, str): raise TypeError("Expected argument 'provisioning_state' to be a str") pulumi.set(__self__, "provisioning_state", provisioning_state) if public_network_access and not isinstance(public_network_access, str): raise TypeError("Expected argument 'public_network_access' to be a str") pulumi.set(__self__, "public_network_access", public_network_access) if sku and not isinstance(sku, dict): raise TypeError("Expected argument 'sku' to be a dict") pulumi.set(__self__, "sku", sku) if status and not isinstance(status, dict): raise TypeError("Expected argument 'status' to be a dict") pulumi.set(__self__, "status", status) if system_data and not isinstance(system_data, dict): raise TypeError("Expected argument 'system_data' to be a dict") pulumi.set(__self__, "system_data", system_data) if tags and not isinstance(tags, dict): raise TypeError("Expected argument 'tags' to be a dict") pulumi.set(__self__, "tags", tags) if type and not isinstance(type, str): raise TypeError("Expected argument 'type' to be a str") pulumi.set(__self__, "type", type) if zone_redundancy and not isinstance(zone_redundancy, str): raise TypeError("Expected argument 'zone_redundancy' to be a str") pulumi.set(__self__, "zone_redundancy", zone_redundancy) @property @pulumi.getter(name="adminUserEnabled") def admin_user_enabled(self) -> Optional[bool]: """ The value that indicates whether the admin user is enabled. """ return pulumi.get(self, "admin_user_enabled") @property @pulumi.getter(name="anonymousPullEnabled") def anonymous_pull_enabled(self) -> Optional[bool]: """ Enables registry-wide pull from unauthenticated clients. """ return pulumi.get(self, "anonymous_pull_enabled") @property @pulumi.getter(name="creationDate") def creation_date(self) -> str: """ The creation date of the container registry in ISO8601 format. """ return pulumi.get(self, "creation_date") @property @pulumi.getter(name="dataEndpointEnabled") def data_endpoint_enabled(self) -> Optional[bool]: """ Enable a single data endpoint per region for serving data. """ return pulumi.get(self, "data_endpoint_enabled") @property @pulumi.getter(name="dataEndpointHostNames") def data_endpoint_host_names(self) -> Sequence[str]: """ List of host names that will serve data when dataEndpointEnabled is true. """ return pulumi.get(self, "data_endpoint_host_names") @property @pulumi.getter def encryption(self) -> Optional['outputs.EncryptionPropertyResponse']: """ The encryption settings of container registry. """ return pulumi.get(self, "encryption") @property @pulumi.getter def id(self) -> str: """ The resource ID. """ return pulumi.get(self, "id") @property @pulumi.getter def identity(self) -> Optional['outputs.IdentityPropertiesResponse']: """ The identity of the container registry. """ return pulumi.get(self, "identity") @property @pulumi.getter def location(self) -> str: """ The location of the resource. This cannot be changed after the resource is created. """ return pulumi.get(self, "location") @property @pulumi.getter(name="loginServer") def login_server(self) -> str: """ The URL that can be used to log into the container registry. """ return pulumi.get(self, "login_server") @property @pulumi.getter def name(self) -> str: """ The name of the resource. """ return pulumi.get(self, "name") @property @pulumi.getter(name="networkRuleBypassOptions") def network_rule_bypass_options(self) -> Optional[str]: """ Whether to allow trusted Azure services to access a network restricted registry. """ return pulumi.get(self, "network_rule_bypass_options") @property @pulumi.getter(name="networkRuleSet") def network_rule_set(self) -> Optional['outputs.NetworkRuleSetResponse']: """ The network rule set for a container registry. """ return pulumi.get(self, "network_rule_set") @property @pulumi.getter def policies(self) -> Optional['outputs.PoliciesResponse']: """ The policies for a container registry. """ return pulumi.get(self, "policies") @property @pulumi.getter(name="privateEndpointConnections") def private_endpoint_connections(self) -> Sequence['outputs.PrivateEndpointConnectionResponse']: """ List of private endpoint connections for a container registry. """ return pulumi.get(self, "private_endpoint_connections") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> str: """ The provisioning state of the container registry at the time the operation was called. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="publicNetworkAccess") def public_network_access(self) -> Optional[str]: """ Whether or not public network access is allowed for the container registry. """ return pulumi.get(self, "public_network_access") @property @pulumi.getter def sku(self) -> 'outputs.SkuResponse': """ The SKU of the container registry. """ return pulumi.get(self, "sku") @property @pulumi.getter def status(self) -> 'outputs.StatusResponse': """ The status of the container registry at the time the operation was called. """ return pulumi.get(self, "status") @property @pulumi.getter(name="systemData") def system_data(self) -> 'outputs.SystemDataResponse': """ Metadata pertaining to creation and last modification of the resource. """ return pulumi.get(self, "system_data") @property @pulumi.getter def tags(self) -> Optional[Mapping[str, str]]: """ The tags of the resource. """ return pulumi.get(self, "tags") @property @pulumi.getter def type(self) -> str: """ The type of the resource. """ return pulumi.get(self, "type") @property @pulumi.getter(name="zoneRedundancy") def zone_redundancy(self) -> Optional[str]: """ Whether or not zone redundancy is enabled for this container registry """ return pulumi.get(self, "zone_redundancy") class AwaitableGetRegistryResult(GetRegistryResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetRegistryResult( admin_user_enabled=self.admin_user_enabled, anonymous_pull_enabled=self.anonymous_pull_enabled, creation_date=self.creation_date, data_endpoint_enabled=self.data_endpoint_enabled, data_endpoint_host_names=self.data_endpoint_host_names, encryption=self.encryption, id=self.id, identity=self.identity, location=self.location, login_server=self.login_server, name=self.name, network_rule_bypass_options=self.network_rule_bypass_options, network_rule_set=self.network_rule_set, policies=self.policies, private_endpoint_connections=self.private_endpoint_connections, provisioning_state=self.provisioning_state, public_network_access=self.public_network_access, sku=self.sku, status=self.status, system_data=self.system_data, tags=self.tags, type=self.type, zone_redundancy=self.zone_redundancy) def get_registry(registry_name: Optional[str] = None, resource_group_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetRegistryResult: """ An object that represents a container registry. :param str registry_name: The name of the container registry. :param str resource_group_name: The name of the resource group to which the container registry belongs. """ __args__ = dict() __args__['registryName'] = registry_name __args__['resourceGroupName'] = resource_group_name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azure-native:containerregistry/v20210601preview:getRegistry', __args__, opts=opts, typ=GetRegistryResult).value return AwaitableGetRegistryResult( admin_user_enabled=__ret__.admin_user_enabled, anonymous_pull_enabled=__ret__.anonymous_pull_enabled, creation_date=__ret__.creation_date, data_endpoint_enabled=__ret__.data_endpoint_enabled, data_endpoint_host_names=__ret__.data_endpoint_host_names, encryption=__ret__.encryption, id=__ret__.id, identity=__ret__.identity, location=__ret__.location, login_server=__ret__.login_server, name=__ret__.name, network_rule_bypass_options=__ret__.network_rule_bypass_options, network_rule_set=__ret__.network_rule_set, policies=__ret__.policies, private_endpoint_connections=__ret__.private_endpoint_connections, provisioning_state=__ret__.provisioning_state, public_network_access=__ret__.public_network_access, sku=__ret__.sku, status=__ret__.status, system_data=__ret__.system_data, tags=__ret__.tags, type=__ret__.type, zone_redundancy=__ret__.zone_redundancy) @_utilities.lift_output_func(get_registry) def get_registry_output(registry_name: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetRegistryResult]: """ An object that represents a container registry. :param str registry_name: The name of the container registry. :param str resource_group_name: The name of the resource group to which the container registry belongs. """ ...
6aff8bc6b2649dd67495d446bfea943bd810d87e
24e7e0dfaaeaca8f911b40fcc2937342a0f278fd
/venv/Lib/site-packages/pygments/plugin.py
76e8f6cb61c2c456a487266d8ae4197c7a0293af
[ "MIT" ]
permissive
BimiLevi/Covid19
90e234c639192d62bb87364ef96d6a46d8268fa0
5f07a9a4609383c02597373d76d6b6485d47936e
refs/heads/master
2023-08-04T13:13:44.480700
2023-08-01T08:36:36
2023-08-01T08:36:36
288,455,446
1
0
MIT
2021-01-22T19:36:26
2020-08-18T12:53:43
HTML
UTF-8
Python
false
false
1,734
py
# -*- coding: utf-8 -*- """ pygments.plugin ~~~~~~~~~~~~~~~ Pygments setuptools plugin interface. The methods defined here also work if setuptools isn't installed but they just return nothing. lexer plugins:: [pygments.lexers] yourlexer = yourmodule:YourLexer formatter plugins:: [pygments.formatters] yourformatter = yourformatter:YourFormatter /.ext = yourformatter:YourFormatter As you can see, you can define extensions for the formatter with a leading slash. syntax plugins:: [pygments.styles] yourstyle = yourstyle:YourStyle filter plugin:: [pygments.filter] yourfilter = yourfilter:YourFilter :copyright: Copyright 2006-2020 by the Pygments team, see AUTHORS. :license: BSD, see LICENSE for details. """ LEXER_ENTRY_POINT = 'pygments.lexers' FORMATTER_ENTRY_POINT = 'pygments.formatters' STYLE_ENTRY_POINT = 'pygments.styles' FILTER_ENTRY_POINT = 'pygments.filters' def iter_entry_points(group_name): try: import pkg_resources except (ImportError, IOError): return [] return pkg_resources.iter_entry_points(group_name) def find_plugin_lexers(): for entrypoint in iter_entry_points(LEXER_ENTRY_POINT): yield entrypoint.load() def find_plugin_formatters(): for entrypoint in iter_entry_points(FORMATTER_ENTRY_POINT): yield entrypoint.name, entrypoint.load() def find_plugin_styles(): for entrypoint in iter_entry_points(STYLE_ENTRY_POINT): yield entrypoint.name, entrypoint.load() def find_plugin_filters(): for entrypoint in iter_entry_points(FILTER_ENTRY_POINT): yield entrypoint.name, entrypoint.load()
964d74884c5d4fe523268950f181853cad302a7e
f77028577e88d228e9ce8252cc8e294505f7a61b
/web_backend/nvlserver/module/hw_module/specification/get_hw_module_specification.py
2c708377f8fa3bf925fcbfc53584e58eb50737ec
[]
no_license
Sud-26/Arkally
e82cebb7f907a3869443b714de43a1948d42519e
edf519067d0ac4c204c12450b6f19a446afc327e
refs/heads/master
2023-07-07T02:14:28.012545
2021-08-06T10:29:42
2021-08-06T10:29:42
392,945,826
0
0
null
null
null
null
UTF-8
Python
false
false
6,170
py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __version__ = '1.0.1' get_hw_module_list_query = """ SELECT hwm.id AS id, hwm.name AS name, COALESCE(hwm.module_id::VARCHAR, '') AS module_id, hwm.user_id AS user_id, coalesce(usr.fullname, '') AS user_name, hwm.traceable_object_id AS traceable_object_id, coalesce(tob.name, '') AS traceable_object_name, hwm.meta_information::json AS meta_information, hwm.show_on_map AS show_on_map, hwm.gprs_active AS gprs_active, hwm.active AS active, hwm.deleted AS deleted, hwm.created_on AS created_on, hwm.updated_on AS updated_on FROM public.hw_module AS hwm LEFT OUTER JOIN public.user AS usr ON usr.id = hwm.user_id LEFT OUTER JOIN public.traceable_object AS tob on hwm.traceable_object_id = tob.id WHERE hwm.deleted is FALSE AND ($1::BIGINT = 0 OR hwm.user_id = $1::BIGINT) AND ( $2::VARCHAR is NULL OR hwm.name ILIKE $2::VARCHAR || '%' OR hwm.name ILIKE '%' || $2::VARCHAR || '%' OR hwm.name ILIKE $2::VARCHAR || '%') """ get_hw_module_list_user_id_hw_module_id_list_query = """ SELECT hwm.id AS id FROM public.hw_module AS hwm WHERE hwm.deleted is FALSE AND hwm.active is TRUE AND hwm.show_on_map IS TRUE AND ($1::BIGINT IS NULL OR hwm.user_id = $1::BIGINT) AND (array_length($2::int[], 1) IS NULL OR hwm.traceable_object_id = any ($2::int[])) """ get_hw_module_list_dropdown_query = """ SELECT hwm.id AS id, hwm.name AS name FROM public.hw_module AS hwm WHERE hwm.deleted is FALSE AND hwm.active is TRUE AND ($1::BIGINT IS NULL OR hwm.user_id = $1::BIGINT) AND ( $2::VARCHAR is NULL OR hwm.name ILIKE $2::VARCHAR || '%' OR hwm.name ILIKE '%' || $2::VARCHAR || '%' OR hwm.name ILIKE $2::VARCHAR || '%') """ get_hw_module_list_count_query = """ SELECT count(*) AS hw_module_count FROM public.hw_module AS hwm LEFT OUTER JOIN public.user AS usr ON usr.id = hwm.user_id WHERE hwm.deleted is FALSE AND ($1::BIGINT = 0 OR hwm.user_id = $1::BIGINT) AND ( $2::VARCHAR is NULL OR hwm.name ILIKE $2::VARCHAR || '%' OR hwm.name ILIKE '%' || $2::VARCHAR || '%' OR hwm.name ILIKE $2::VARCHAR || '%') """ get_hw_module_element_query = """ SELECT hwm.id AS id, hwm.name AS name, COALESCE(hwm.module_id::VARCHAR, '') AS module_id, hwm.user_id AS user_id, coalesce(usr.fullname, '') AS user_name, hwm.traceable_object_id AS traceable_object_id, coalesce(tob.name, '') AS traceable_object_name, hwm.meta_information::json AS meta_information, hwm.show_on_map AS show_on_map, hwm.gprs_active AS gprs_active, hwm.active AS active, hwm.deleted AS deleted, hwm.created_on AS created_on, hwm.updated_on AS updated_on FROM public.hw_module AS hwm LEFT OUTER JOIN public.user AS usr ON usr.id = hwm.user_id LEFT OUTER JOIN public.traceable_object AS tob on hwm.traceable_object_id = tob.id WHERE hwm.deleted is FALSE AND hwm.id = $1; """ get_hw_module_element_by_traceable_object_id_query = """ SELECT hwm.id AS id, hwm.name AS name, COALESCE(hwm.module_id::VARCHAR, '') AS module_id, hwm.user_id AS user_id, coalesce(usr.fullname, '') AS user_name, hwm.traceable_object_id AS traceable_object_id, coalesce(tob.name, '') AS traceable_object_name, hwm.meta_information::json AS meta_information, hwm.gprs_active AS gprs_active, hwm.show_on_map AS show_on_map, hwm.active AS active, hwm.deleted AS deleted, hwm.created_on AS created_on, hwm.updated_on AS updated_on FROM public.hw_module AS hwm LEFT OUTER JOIN public.user AS usr ON usr.id = hwm.user_id LEFT OUTER JOIN public.traceable_object AS tob on hwm.traceable_object_id = tob.id WHERE hwm.deleted is FALSE AND ($1::BIGINT is NULL OR hwm.user_id = $1::BIGINT) AND hwm.traceable_object_id = $2; """ get_hw_module_element_by_name_query = """ SELECT hwm.id AS id, hwm.name AS name, COALESCE(hwm.module_id::VARCHAR, '') AS module_id, hwm.user_id AS user_id, coalesce(usr.fullname, '') AS user_name, hwm.traceable_object_id AS traceable_object_id, coalesce(tob.name, '') AS traceable_object_name, hwm.meta_information::json AS meta_information, hwm.gprs_active AS gprs_active, hwm.show_on_map AS show_on_map, hwm.active AS active, hwm.deleted AS deleted, hwm.created_on AS created_on, hwm.updated_on AS updated_on FROM public.hw_module AS hwm LEFT OUTER JOIN public.user AS usr ON usr.id = hwm.user_id LEFT OUTER JOIN public.traceable_object AS tob on hwm.traceable_object_id = tob.id WHERE hwm.deleted is FALSE AND ( $1::VARCHAR is NULL OR hwm.name ILIKE $1::VARCHAR || '%' OR hwm.name ILIKE '%' || $1::VARCHAR || '%' OR hwm.name ILIKE $1::VARCHAR || '%') LIMIT 1; """
42d1ab3ce84114a87a59d9c3f9a7720ae4e57ece
bffe3ed7c76d488a685f1a586f08270d5a6a847b
/side_service/utils/importer.py
a6ea97b8f8a7a02c6df5fb58ea6838cd08c9642a
[]
no_license
ganggas95/side-service
86a863d7b8d164e05584938aa63e56aa1ed8f793
c58ee47d1145cb704c4268006f135a141efc0667
refs/heads/nizar_dev
2021-06-21T11:37:54.771478
2019-10-14T23:45:39
2019-10-14T23:45:39
213,881,364
0
1
null
2021-05-06T19:55:47
2019-10-09T09:52:06
Python
UTF-8
Python
false
false
2,443
py
import os from numpy import int64 import pandas as pd from flask import current_app as app from side_service.models.prov import Provinsi from side_service.models.kab import Kabupaten from side_service.models.kec import Kecamatan from side_service.models.desa import Desa class FileImporter: temps = [] def __init__(self, filename): if filename: self.df = pd.read_csv(os.path.join( app.config["FILE_IMPORT_FOLDER"], filename), header=None) class ImportProvinceFile(FileImporter): def read_data(self): for row in range(0, len(self.df.index)): kode_prov = str(self.df[0][self.df.index[row]]) name = self.df[1][self.df.index[row]] prov = Provinsi(kode_prov, name) prov.save() print("Import Province is success") class ImportRegenciesFile(FileImporter): @property def provs(self): return Provinsi.all() def read_data(self): for prov in self.provs: df_prov = self.df.loc[self.df[1] == int64(prov.kode_prov)] for row in range(0, len(df_prov.index)): kode_kab = str(df_prov[0][df_prov.index[row]]) name = df_prov[2][df_prov.index[row]] kab = Kabupaten(kode_kab, name, prov.kode_prov) kab.save() print("Import Kabupaten is success") class ImportDistrictFile(FileImporter): @property def kabs(self): return Kabupaten.all() def read_data(self): for kab in self.kabs: df_kab = self.df.loc[self.df[1] == int64(kab.kode_kab)] for row in range(0, len(df_kab.index)): kode_kec = str(df_kab[0][df_kab.index[row]]) name = df_kab[2][df_kab.index[row]] kec = Kecamatan(kode_kec, name, kab.kode_kab) kec.save() print("Import District Success") class ImportVillagesFile(FileImporter): @property def kecs(self): return Kecamatan.all() def read_data(self): for kec in self.kecs: df_desa = self.df.loc[self.df[1] == int64(kec.kode_kec)] for row in range(0, len(df_desa.index)): kode_desa = str(df_desa[0][df_desa.index[row]]) name = df_desa[2][df_desa.index[row]] desa = Desa(kode_desa, name, kec.kode_kec) desa.save() print("Import Villages Success")
485fa53a3ac3eaa8756d5ab54cf31b30b0eb63c8
1daac610a9954619b136507cbef8db313c24fa42
/app/memory_cache/models.py
f69cc50f13703162f1f43536e2de8361e6d3f27c
[]
no_license
waynerv/memory-cache
b17a8d1c57382313e0b646e079a65f303b47bc2f
aa63044d9138b1da6149e54c8e83cb8d584451a1
refs/heads/master
2020-04-17T22:43:41.890703
2019-04-22T01:56:26
2019-04-22T01:56:26
167,005,947
8
1
null
null
null
null
UTF-8
Python
false
false
10,970
py
import os from datetime import datetime from flask import current_app from flask_avatars import Identicon from flask_login import UserMixin from werkzeug.security import generate_password_hash, check_password_hash from memory_cache.extensions import db from memory_cache.extensions import whooshee tagging = db.Table('tagging', db.Column('photo_id', db.Integer, db.ForeignKey('photo.id')), db.Column('tag_id', db.Integer, db.ForeignKey('tag.id')) ) roles_permissions = db.Table('roles_permissions', db.Column('role.id', db.Integer, db.ForeignKey('role.id')), db.Column('permission.id', db.Integer, db.ForeignKey('permission.id')) ) class Collect(db.Model): collector_id = db.Column(db.Integer, db.ForeignKey('user.id'), primary_key=True) collected_id = db.Column(db.Integer, db.ForeignKey('photo.id'), primary_key=True) timestamp = db.Column(db.DateTime, default=datetime.utcnow()) collector = db.relationship('User', back_populates='collections', lazy='joined') collected = db.relationship('Photo', back_populates='collectors', lazy='joined') class Follow(db.Model): follower_id = db.Column(db.Integer, db.ForeignKey('user.id'), primary_key=True) followed_id = db.Column(db.Integer, db.ForeignKey('user.id'), primary_key=True) timestamp = db.Column(db.DateTime, default=datetime.utcnow()) follower = db.relationship('User', foreign_keys=[follower_id], back_populates='following', lazy='joined') followed = db.relationship('User', foreign_keys=[followed_id], back_populates='followers', lazy='joined') @whooshee.register_model('username', 'name') class User(db.Model, UserMixin): id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(30)) username = db.Column(db.String(20), unique=True, index=True) password_hash = db.Column(db.String(128)) email = db.Column(db.String(254), unique=True, index=True) website = db.Column(db.String(255)) bio = db.Column(db.Text) location = db.Column(db.String(30)) member_since = db.Column(db.DateTime, default=datetime.utcnow()) confirmed = db.Column(db.Boolean) photos = db.relationship('Photo', back_populates='author', cascade='all, delete') notifications = db.relationship('Notification', back_populates='receiver', cascade='all, delete') collections = db.relationship('Collect', back_populates='collector', cascade='all') following = db.relationship('Follow', foreign_keys=[Follow.follower_id], back_populates='follower', lazy='dynamic', cascade='all') followers = db.relationship('Follow', foreign_keys=[Follow.followed_id], back_populates='followed', lazy='dynamic', cascade='all') role_id = db.Column(db.Integer, db.ForeignKey('role.id')) role = db.relationship('Role', back_populates='users') comments = db.relationship('Comment', back_populates='author') avatar_raw = db.Column(db.String(64)) avatar_s = db.Column(db.String(64)) avatar_m = db.Column(db.String(64)) avatar_l = db.Column(db.String(64)) receive_comment_notification = db.Column(db.Boolean, default=True) receive_follow_notification = db.Column(db.Boolean, default=True) receive_collect_notification = db.Column(db.Boolean, default=True) public_collections = db.Column(db.Boolean, default=True) locked = db.Column(db.Boolean, default=False) active = db.Column(db.Boolean, default=True) def __init__(self, **kwargs): super(User, self).__init__(**kwargs) self.set_role() self.generate_avatar() self.follow(self) # 关注自己 def set_password(self, password): self.password_hash = generate_password_hash(password) def validate_password(self, password): return check_password_hash(self.password_hash, password) def set_role(self): if self.role is None: if self.email == current_app.config['APP_ADMIN_EMAIL']: self.role = Role.query.filter(Role.name == 'Administrator').first() else: self.role = Role.query.filter(Role.name == 'User').first() def can(self, permission_name): permission = Permission.query.filter(Permission.name == permission_name).first() return permission is not None and self.role is not None and permission in self.role.permissions @property def is_admin(self): return self.role.name == 'Administrator' def generate_avatar(self): avatar = Identicon() filenames = avatar.generate(text=self.username) self.avatar_s = filenames[0] self.avatar_m = filenames[1] self.avatar_l = filenames[2] def collect(self, photo): if not self.is_collecting(photo): collect = Collect(collector=self, collected=photo) db.session.add(collect) db.session.commit() def uncollect(self, photo): collect = Collect.query.with_parent(self).filter_by(collected_id=photo.id).first() if collect: db.session.delete(collect) db.session.commit() def is_collecting(self, photo): return Collect.query.with_parent(self).filter_by(collected_id=photo.id).first() is not None def follow(self, user): if not self.is_following(user): follow = Follow(follower=self, followed=user) db.session.add(follow) db.session.commit() def unfollow(self, user): follow = self.following.filter_by(followed_id=user.id).first() if follow: db.session.delete(follow) db.session.commit() def is_following(self, user): if user.id is None: return False return self.following.filter_by(followed_id=user.id).first() is not None def is_followed_by(self, user): return self.followers.filter_by(follower_id=user.id).first() is not None def lock(self): self.locked = True self.role = Role.query.filter_by(name='Locked').first() db.session.commit() def unlock(self): self.locked = False self.role = Role.query.filter_by(name='User').first() db.session.commit() @property def is_active(self): return self.active def block(self): self.active = False db.session.commit() def unblock(self): self.active = True db.session.commit() @whooshee.register_model('description') class Photo(db.Model): id = db.Column(db.Integer, primary_key=True) description = db.Column(db.Text) filename = db.Column(db.String(64)) filename_s = db.Column(db.String(64)) filename_m = db.Column(db.String(64)) timestamp = db.Column(db.DateTime, default=datetime.utcnow()) author_id = db.Column(db.Integer, db.ForeignKey('user.id')) author = db.relationship('User', back_populates='photos') comments = db.relationship('Comment', back_populates='photo', cascade='all, delete') tags = db.relationship('Tag', secondary=tagging, back_populates='photos') collectors = db.relationship('Collect', back_populates='collected', cascade='all') flag = db.Column(db.Integer, default=0) can_comment = db.Column(db.Boolean, default=True) class Comment(db.Model): id = db.Column(db.Integer, primary_key=True) body = db.Column(db.Text) timestamp = db.Column(db.DateTime, default=datetime.utcnow()) author_id = db.Column(db.Integer, db.ForeignKey('user.id')) author = db.relationship('User', back_populates='comments') photo_id = db.Column(db.Integer, db.ForeignKey('photo.id')) photo = db.relationship('Photo', back_populates='comments') replied_id = db.Column(db.Integer, db.ForeignKey('comment.id')) replied = db.relationship('Comment', remote_side=[id], back_populates='replies') replies = db.relationship('Comment', back_populates='replied', cascade='all, delete-orphan') flag = db.Column(db.Integer, default=0) @whooshee.register_model('name') class Tag(db.Model): id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(64), unique=True) photos = db.relationship('Photo', secondary=tagging, back_populates='tags') class Notification(db.Model): id = db.Column(db.Integer, primary_key=True) message = db.Column(db.Text) is_read = db.Column(db.Boolean, default=False) timestamp = db.Column(db.DateTime, default=datetime.utcnow()) receiver_id = db.Column(db.Integer, db.ForeignKey('user.id')) receiver = db.relationship('User', back_populates='notifications') class Role(db.Model): id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(30)) permissions = db.relationship('Permission', secondary=roles_permissions, back_populates='roles') users = db.relationship('User', back_populates='role') @staticmethod def init_role(): roles_permissions_map = { 'Locked': ['FOLLOW', 'COLLECT'], 'User': ['FOLLOW', 'COLLECT', 'COMMENT', 'UPLOAD'], 'Moderator': ['FOLLOW', 'COLLECT', 'COMMENT', 'UPLOAD', 'MODERATE'], 'Administrator': ['FOLLOW', 'COLLECT', 'COMMENT', 'UPLOAD', 'MODERATE', 'ADMINISTER'] } for role_name in roles_permissions_map: role = Role.query.filter(Role.name == role_name).first() if role is None: role = Role(name=role_name) db.session.add(role) role.permissions = [] for permission_name in roles_permissions_map[role_name]: permission = Permission.query.filter(Permission.name == permission_name).first() if permission is None: permission = Permission(name=permission_name) db.session.add(permission) role.permissions.append(permission) db.session.commit() class Permission(db.Model): id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(30)) roles = db.relationship('Role', secondary=roles_permissions, back_populates='permissions') @db.event.listens_for(Photo, 'after_delete', named=True) def delete_photos(**kwargs): target = kwargs['target'] for filename in target.filename, target.filename_s, target.filename_m: if filename is not None: path = os.path.join(current_app.config['APP_UPLOAD_PATH'], filename) if os.path.exists(path): os.remove(path) @db.event.listens_for(User, 'after_delete', named=True) def delete_avatars(**kwargs): target = kwargs['target'] for filename in target.avatar_raw, target.avatar_s, target.avatar_m, target.avatar_l: if filename is not None: path = os.path.join(current_app.config['AVATARS_SAVE_PATH'], filename) if os.path.exists(path): os.remove(path)
b637325039f49ef3a68474942e03ff5f45a15a45
6455c57f85289fae2195e15b9de126ef1f6bf366
/project/job/models.py
d76497cb302d53dfa50245b326202b283d94f849
[]
no_license
muhamed-mustafa/django-job-board
8fcb76e8543509d233cb7697ced67c96f5d81fbc
6b3fa1d7126d9c400c1c6cf3ccb4c8061db8692b
refs/heads/master
2022-12-15T00:53:15.202174
2020-09-17T21:43:48
2020-09-17T21:43:48
null
0
0
null
null
null
null
UTF-8
Python
false
false
2,523
py
from django.db import models from django.utils.translation import ugettext as _ from django.utils.text import slugify from django.contrib.auth.models import User def image_upload(instance, filename): imagename, extension = filename.split(".") return 'jobs/%s.%s' % (instance.id, extension) class Job(models.Model): objects = None JOB_TYPE = ( ('Full Time', 'Full Time'), ('Part Time', 'Part Time') ) owner = models.ForeignKey(User, related_name='job_owner', on_delete=models.CASCADE) like = models.ManyToManyField(User,blank=True) location = models.CharField(max_length=20) title = models.CharField(max_length=100) job_type = models.CharField(max_length=100, choices=JOB_TYPE) description = models.TextField(max_length=1000) published_at = models.DateTimeField(auto_now=True) vacancy = models.IntegerField(default=1) salary = models.IntegerField(default=0) experience = models.IntegerField(default=1) category = models.ForeignKey('Category', on_delete=models.CASCADE) image = models.ImageField(upload_to=image_upload, null=True, blank=True) slug = models.SlugField(null=True, blank=True) facebook = models.CharField(max_length=500,null=True,blank=True) instagram = models.CharField(max_length=500,null=True,blank=True) google = models.CharField(max_length=500,null=True,blank=True) twitter = models.CharField(max_length=500,null=True,blank=True) def save(self, *args, **kwargs): if not self.slug: self.slug = slugify(self.title) super(Job, self).save(*args, **kwargs) class meta: verbose_name = _('Job') verbose_name_plural = _('Jobs') def __str__(self): return self.title class Category(models.Model): name = models.CharField(max_length=25) class meta: verbose_name = _('Category') verbose_name_plural = _('Categories') def __str__(self): return self.name class Apply(models.Model): job = models.ForeignKey(Job, related_name='apply_job', on_delete=models.CASCADE) name = models.CharField(max_length=50) email = models.EmailField(max_length=100) website = models.URLField() cv = models.FileField(upload_to='apply/') cover_letter = models.TextField(max_length=1000) created_at = models.DateTimeField(auto_now=True,null=True,blank=True) class Meta: verbose_name = _('Apply') verbose_name_plural = _('Applies') def __str__(self): return self.name
3d07fac9d2bb63738f35e626530cf62382648804
127e99fbdc4e04f90c0afc6f4d076cc3d7fdce06
/2021_하반기 코테연습/boj16937.py
6d06ddfaf0afe6fb35157d542a1476f2a0119f6a
[]
no_license
holim0/Algo_Study
54a6f10239368c6cf230b9f1273fe42caa97401c
ce734dcde091fa7f29b66dd3fb86d7a6109e8d9c
refs/heads/master
2023-08-25T14:07:56.420288
2021-10-25T12:28:23
2021-10-25T12:28:23
276,076,057
3
1
null
null
null
null
UTF-8
Python
false
false
999
py
from itertools import combinations h, w = map(int, input().split()) n = int(input()) sti = [] for _ in range(n): r, c = map(int, input().split()) if (r<=h and c<=w) or (r<=w and c<=h): sti.append((r, c)) answer = -1 johab = list(combinations(sti, 2)) for cur in johab: r1,c1, r2, c2 = cur[0][0], cur[0][1], cur[1][0], cur[1][1] rest_r, rest_c = h-r1, w-c1 rest_r2, rest_c2 = h-c1, w-r1 if rest_r>=0 and rest_c>=0: if (r2<=rest_r and c2<=w) or (r2<=h and c2<=rest_c): answer = max(answer, r1*c1+r2*c2) elif (c2<=rest_r and r2<=w) or (c2<=h and r2<=rest_c): answer = max(answer, r1*c1+r2*c2) if rest_r2>=0 and rest_c2>=0: if (r2<=rest_r2 and c2<=w) or (r2<=h and c2<=rest_c2): answer = max(answer, r1*c1+r2*c2) elif (c2<=rest_r2 and r2<=w) or (c2<=h and r2<=rest_c2): answer = max(answer, r1*c1+r2*c2) if answer == -1: print(0) else: print(answer)
925993af5a8f5017c130ba97532dac8831608bdd
18c1cbda3f9f6ca9cc9a27e93ddfece583c4fe43
/projects/DensePose/densepose/data/structures.py
340c396d95257f5bcb1728753f7883a205924856
[ "Apache-2.0" ]
permissive
zzzzzz0407/detectron2
0bd8e5def65eb72bc9477f08f8907958d9fd73a1
021fc5b1502bbba54e4714735736898803835ab0
refs/heads/master
2022-12-04T14:25:36.986566
2020-08-26T10:39:30
2020-08-26T10:39:30
276,800,695
1
0
Apache-2.0
2020-07-03T03:42:26
2020-07-03T03:42:25
null
UTF-8
Python
false
false
25,296
py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import base64 import numpy as np from io import BytesIO from typing import BinaryIO, Dict, Union import torch from PIL import Image from torch.nn import functional as F class DensePoseTransformData(object): # Horizontal symmetry label transforms used for horizontal flip MASK_LABEL_SYMMETRIES = [0, 1, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 14] # fmt: off POINT_LABEL_SYMMETRIES = [ 0, 1, 2, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15, 18, 17, 20, 19, 22, 21, 24, 23] # noqa # fmt: on def __init__(self, uv_symmetries: Dict[str, torch.Tensor], device: torch.device): self.mask_label_symmetries = DensePoseTransformData.MASK_LABEL_SYMMETRIES self.point_label_symmetries = DensePoseTransformData.POINT_LABEL_SYMMETRIES self.uv_symmetries = uv_symmetries self.device = torch.device("cpu") def to(self, device: torch.device, copy: bool = False) -> "DensePoseTransformData": """ Convert transform data to the specified device Args: device (torch.device): device to convert the data to copy (bool): flag that specifies whether to copy or to reference the data in case the device is the same Return: An instance of `DensePoseTransformData` with data stored on the specified device """ if self.device == device and not copy: return self uv_symmetry_map = {} for key in self.uv_symmetries: uv_symmetry_map[key] = self.uv_symmetries[key].to(device=device, copy=copy) return DensePoseTransformData(uv_symmetry_map, device) @staticmethod def load(io: Union[str, BinaryIO]): """ Args: io: (str or binary file-like object): input file to load data from Returns: An instance of `DensePoseTransformData` with transforms loaded from the file """ import scipy.io uv_symmetry_map = scipy.io.loadmat(io) uv_symmetry_map_torch = {} for key in ["U_transforms", "V_transforms"]: uv_symmetry_map_torch[key] = [] map_src = uv_symmetry_map[key] map_dst = uv_symmetry_map_torch[key] for i in range(map_src.shape[1]): map_dst.append(torch.from_numpy(map_src[0, i]).to(dtype=torch.float)) uv_symmetry_map_torch[key] = torch.stack(map_dst, dim=0) transform_data = DensePoseTransformData(uv_symmetry_map_torch, device=torch.device("cpu")) return transform_data class DensePoseDataRelative(object): """ Dense pose relative annotations that can be applied to any bounding box: x - normalized X coordinates [0, 255] of annotated points y - normalized Y coordinates [0, 255] of annotated points i - body part labels 0,...,24 for annotated points u - body part U coordinates [0, 1] for annotated points v - body part V coordinates [0, 1] for annotated points segm - 256x256 segmentation mask with values 0,...,14 To obtain absolute x and y data wrt some bounding box one needs to first divide the data by 256, multiply by the respective bounding box size and add bounding box offset: x_img = x0 + x_norm * w / 256.0 y_img = y0 + y_norm * h / 256.0 Segmentation masks are typically sampled to get image-based masks. """ # Key for normalized X coordinates in annotation dict X_KEY = "dp_x" # Key for normalized Y coordinates in annotation dict Y_KEY = "dp_y" # Key for U part coordinates in annotation dict U_KEY = "dp_U" # Key for V part coordinates in annotation dict V_KEY = "dp_V" # Key for I point labels in annotation dict I_KEY = "dp_I" # Key for segmentation mask in annotation dict S_KEY = "dp_masks" # Number of body parts in segmentation masks N_BODY_PARTS = 14 # Number of parts in point labels N_PART_LABELS = 24 MASK_SIZE = 256 def __init__(self, annotation, cleanup=False): is_valid, reason_not_valid = DensePoseDataRelative.validate_annotation(annotation) assert is_valid, "Invalid DensePose annotations: {}".format(reason_not_valid) self.x = torch.as_tensor(annotation[DensePoseDataRelative.X_KEY]) self.y = torch.as_tensor(annotation[DensePoseDataRelative.Y_KEY]) self.i = torch.as_tensor(annotation[DensePoseDataRelative.I_KEY]) self.u = torch.as_tensor(annotation[DensePoseDataRelative.U_KEY]) self.v = torch.as_tensor(annotation[DensePoseDataRelative.V_KEY]) self.segm = DensePoseDataRelative.extract_segmentation_mask(annotation) self.device = torch.device("cpu") if cleanup: DensePoseDataRelative.cleanup_annotation(annotation) def to(self, device): if self.device == device: return self new_data = DensePoseDataRelative.__new__(DensePoseDataRelative) new_data.x = self.x new_data.x = self.x.to(device) new_data.y = self.y.to(device) new_data.i = self.i.to(device) new_data.u = self.u.to(device) new_data.v = self.v.to(device) new_data.segm = self.segm.to(device) new_data.device = device return new_data @staticmethod def extract_segmentation_mask(annotation): import pycocotools.mask as mask_util poly_specs = annotation[DensePoseDataRelative.S_KEY] segm = torch.zeros((DensePoseDataRelative.MASK_SIZE,) * 2, dtype=torch.float32) for i in range(DensePoseDataRelative.N_BODY_PARTS): poly_i = poly_specs[i] if poly_i: mask_i = mask_util.decode(poly_i) segm[mask_i > 0] = i + 1 return segm @staticmethod def validate_annotation(annotation): for key in [ DensePoseDataRelative.X_KEY, DensePoseDataRelative.Y_KEY, DensePoseDataRelative.I_KEY, DensePoseDataRelative.U_KEY, DensePoseDataRelative.V_KEY, DensePoseDataRelative.S_KEY, ]: if key not in annotation: return False, "no {key} data in the annotation".format(key=key) return True, None @staticmethod def cleanup_annotation(annotation): for key in [ DensePoseDataRelative.X_KEY, DensePoseDataRelative.Y_KEY, DensePoseDataRelative.I_KEY, DensePoseDataRelative.U_KEY, DensePoseDataRelative.V_KEY, DensePoseDataRelative.S_KEY, ]: if key in annotation: del annotation[key] def apply_transform(self, transforms, densepose_transform_data): self._transform_pts(transforms, densepose_transform_data) self._transform_segm(transforms, densepose_transform_data) def _transform_pts(self, transforms, dp_transform_data): import detectron2.data.transforms as T # NOTE: This assumes that HorizFlipTransform is the only one that does flip do_hflip = sum(isinstance(t, T.HFlipTransform) for t in transforms.transforms) % 2 == 1 if do_hflip: self.x = self.segm.size(1) - self.x self._flip_iuv_semantics(dp_transform_data) for t in transforms.transforms: if isinstance(t, T.RotationTransform): xy_scale = np.array((t.w, t.h)) / DensePoseDataRelative.MASK_SIZE xy = t.apply_coords(np.stack((self.x, self.y), axis=1) * xy_scale) self.x, self.y = torch.tensor(xy / xy_scale, dtype=self.x.dtype).T def _flip_iuv_semantics(self, dp_transform_data: DensePoseTransformData) -> None: i_old = self.i.clone() uv_symmetries = dp_transform_data.uv_symmetries pt_label_symmetries = dp_transform_data.point_label_symmetries for i in range(self.N_PART_LABELS): if i + 1 in i_old: annot_indices_i = i_old == i + 1 if pt_label_symmetries[i + 1] != i + 1: self.i[annot_indices_i] = pt_label_symmetries[i + 1] u_loc = (self.u[annot_indices_i] * 255).long() v_loc = (self.v[annot_indices_i] * 255).long() self.u[annot_indices_i] = uv_symmetries["U_transforms"][i][v_loc, u_loc].to( device=self.u.device ) self.v[annot_indices_i] = uv_symmetries["V_transforms"][i][v_loc, u_loc].to( device=self.v.device ) def _transform_segm(self, transforms, dp_transform_data): import detectron2.data.transforms as T # NOTE: This assumes that HorizFlipTransform is the only one that does flip do_hflip = sum(isinstance(t, T.HFlipTransform) for t in transforms.transforms) % 2 == 1 if do_hflip: self.segm = torch.flip(self.segm, [1]) self._flip_segm_semantics(dp_transform_data) for t in transforms.transforms: if isinstance(t, T.RotationTransform): self._transform_segm_rotation(t) def _flip_segm_semantics(self, dp_transform_data): old_segm = self.segm.clone() mask_label_symmetries = dp_transform_data.mask_label_symmetries for i in range(self.N_BODY_PARTS): if mask_label_symmetries[i + 1] != i + 1: self.segm[old_segm == i + 1] = mask_label_symmetries[i + 1] def _transform_segm_rotation(self, rotation): self.segm = F.interpolate(self.segm[None, None, :], (rotation.h, rotation.w)).numpy() self.segm = torch.tensor(rotation.apply_segmentation(self.segm[0, 0]))[None, None, :] self.segm = F.interpolate(self.segm, [DensePoseDataRelative.MASK_SIZE] * 2)[0, 0] def normalized_coords_transform(x0, y0, w, h): """ Coordinates transform that maps top left corner to (-1, -1) and bottom right corner to (1, 1). Used for torch.grid_sample to initialize the grid """ def f(p): return (2 * (p[0] - x0) / w - 1, 2 * (p[1] - y0) / h - 1) return f class DensePoseOutput(object): def __init__(self, S, I, U, V, confidences): """ Args: S (`torch.Tensor`): coarse segmentation tensor of size (N, A, H, W) I (`torch.Tensor`): fine segmentation tensor of size (N, C, H, W) U (`torch.Tensor`): U coordinates for each fine segmentation label of size (N, C, H, W) V (`torch.Tensor`): V coordinates for each fine segmentation label of size (N, C, H, W) confidences (dict of str -> `torch.Tensor`) estimated confidence model parameters """ self.S = S self.I = I # noqa: E741 self.U = U self.V = V self.confidences = confidences self._check_output_dims(S, I, U, V) def _check_output_dims(self, S, I, U, V): assert ( len(S.size()) == 4 ), "Segmentation output should have 4 " "dimensions (NCHW), but has size {}".format( S.size() ) assert ( len(I.size()) == 4 ), "Segmentation output should have 4 " "dimensions (NCHW), but has size {}".format( S.size() ) assert ( len(U.size()) == 4 ), "Segmentation output should have 4 " "dimensions (NCHW), but has size {}".format( S.size() ) assert ( len(V.size()) == 4 ), "Segmentation output should have 4 " "dimensions (NCHW), but has size {}".format( S.size() ) assert len(S) == len(I), ( "Number of output segmentation planes {} " "should be equal to the number of output part index " "planes {}".format(len(S), len(I)) ) assert S.size()[2:] == I.size()[2:], ( "Output segmentation plane size {} " "should be equal to the output part index " "plane size {}".format(S.size()[2:], I.size()[2:]) ) assert I.size() == U.size(), ( "Part index output shape {} " "should be the same as U coordinates output shape {}".format(I.size(), U.size()) ) assert I.size() == V.size(), ( "Part index output shape {} " "should be the same as V coordinates output shape {}".format(I.size(), V.size()) ) def resize(self, image_size_hw): # do nothing - outputs are invariant to resize pass def _crop(self, S, I, U, V, bbox_old_xywh, bbox_new_xywh): """ Resample S, I, U, V from bbox_old to the cropped bbox_new """ x0old, y0old, wold, hold = bbox_old_xywh x0new, y0new, wnew, hnew = bbox_new_xywh tr_coords = normalized_coords_transform(x0old, y0old, wold, hold) topleft = (x0new, y0new) bottomright = (x0new + wnew, y0new + hnew) topleft_norm = tr_coords(topleft) bottomright_norm = tr_coords(bottomright) hsize = S.size(1) wsize = S.size(2) grid = torch.meshgrid( torch.arange( topleft_norm[1], bottomright_norm[1], (bottomright_norm[1] - topleft_norm[1]) / hsize, )[:hsize], torch.arange( topleft_norm[0], bottomright_norm[0], (bottomright_norm[0] - topleft_norm[0]) / wsize, )[:wsize], ) grid = torch.stack(grid, dim=2).to(S.device) assert ( grid.size(0) == hsize ), "Resampled grid expected " "height={}, actual height={}".format(hsize, grid.size(0)) assert grid.size(1) == wsize, "Resampled grid expected " "width={}, actual width={}".format( wsize, grid.size(1) ) S_new = F.grid_sample( S.unsqueeze(0), torch.unsqueeze(grid, 0), mode="bilinear", padding_mode="border", align_corners=True, ).squeeze(0) I_new = F.grid_sample( I.unsqueeze(0), torch.unsqueeze(grid, 0), mode="bilinear", padding_mode="border", align_corners=True, ).squeeze(0) U_new = F.grid_sample( U.unsqueeze(0), torch.unsqueeze(grid, 0), mode="bilinear", padding_mode="border", align_corners=True, ).squeeze(0) V_new = F.grid_sample( V.unsqueeze(0), torch.unsqueeze(grid, 0), mode="bilinear", padding_mode="border", align_corners=True, ).squeeze(0) return S_new, I_new, U_new, V_new def crop(self, indices_cropped, bboxes_old, bboxes_new): """ Crop outputs for selected bounding boxes to the new bounding boxes. """ # VK: cropping is ignored for now # for i, ic in enumerate(indices_cropped): # self.S[ic], self.I[ic], self.U[ic], self.V[ic] = \ # self._crop(self.S[ic], self.I[ic], self.U[ic], self.V[ic], # bboxes_old[i], bboxes_new[i]) pass def hflip(self, transform_data: DensePoseTransformData) -> None: """ Change S, I, U and V to take into account a Horizontal flip. """ if self.I.shape[0] > 0: for el in "SIUV": self.__dict__[el] = torch.flip(self.__dict__[el], [3]) self._flip_iuv_semantics_tensor(transform_data) self._flip_segm_semantics_tensor(transform_data) def _flip_iuv_semantics_tensor(self, dp_transform_data: DensePoseTransformData) -> None: point_label_symmetries = dp_transform_data.point_label_symmetries uv_symmetries = dp_transform_data.uv_symmetries N, C, H, W = self.U.shape u_loc = (self.U[:, 1:, :, :].clamp(0, 1) * 255).long() v_loc = (self.V[:, 1:, :, :].clamp(0, 1) * 255).long() Iindex = torch.arange(C - 1, device=self.U.device)[None, :, None, None].expand( N, C - 1, H, W ) self.U[:, 1:, :, :] = uv_symmetries["U_transforms"][Iindex, v_loc, u_loc] self.V[:, 1:, :, :] = uv_symmetries["V_transforms"][Iindex, v_loc, u_loc] for el in "IUV": self.__dict__[el] = self.__dict__[el][:, point_label_symmetries, :, :] def _flip_segm_semantics_tensor(self, dp_transform_data): if self.S.shape[1] == DensePoseDataRelative.N_BODY_PARTS + 1: self.S = self.S[:, dp_transform_data.mask_label_symmetries, :, :] def to_result(self, boxes_xywh): """ Convert DensePose outputs to results format. Results are more compact, but cannot be resampled any more """ result = DensePoseResult(boxes_xywh, self.S, self.I, self.U, self.V) return result def __getitem__(self, item): if isinstance(item, int): S_selected = self.S[item].unsqueeze(0) I_selected = self.I[item].unsqueeze(0) U_selected = self.U[item].unsqueeze(0) V_selected = self.V[item].unsqueeze(0) conf_selected = {} for key in self.confidences: conf_selected[key] = self.confidences[key][item].unsqueeze(0) else: S_selected = self.S[item] I_selected = self.I[item] U_selected = self.U[item] V_selected = self.V[item] conf_selected = {} for key in self.confidences: conf_selected[key] = self.confidences[key][item] return DensePoseOutput(S_selected, I_selected, U_selected, V_selected, conf_selected) def __str__(self): s = "DensePoseOutput S {}, I {}, U {}, V {}".format( list(self.S.size()), list(self.I.size()), list(self.U.size()), list(self.V.size()) ) s_conf = "confidences: [{}]".format( ", ".join([f"{key} {list(self.confidences[key].size())}" for key in self.confidences]) ) return ", ".join([s, s_conf]) def __len__(self): return self.S.size(0) class DensePoseResult(object): def __init__(self, boxes_xywh, S, I, U, V): self.results = [] self.boxes_xywh = boxes_xywh.cpu().tolist() assert len(boxes_xywh.size()) == 2 assert boxes_xywh.size(1) == 4 for i, box_xywh in enumerate(boxes_xywh): result_i = self._output_to_result(box_xywh, S[[i]], I[[i]], U[[i]], V[[i]]) result_numpy_i = result_i.cpu().numpy() result_encoded_i = DensePoseResult.encode_png_data(result_numpy_i) result_encoded_with_shape_i = (result_numpy_i.shape, result_encoded_i) self.results.append(result_encoded_with_shape_i) def __str__(self): s = "DensePoseResult: N={} [{}]".format( len(self.results), ", ".join([str(list(r[0])) for r in self.results]) ) return s def _output_to_result(self, box_xywh, S, I, U, V): x, y, w, h = box_xywh w = max(int(w), 1) h = max(int(h), 1) result = torch.zeros([3, h, w], dtype=torch.uint8, device=U.device) assert ( len(S.size()) == 4 ), "AnnIndex tensor size should have {} " "dimensions but has {}".format(4, len(S.size())) s_bbox = F.interpolate(S, (h, w), mode="bilinear", align_corners=False).argmax(dim=1) assert ( len(I.size()) == 4 ), "IndexUV tensor size should have {} " "dimensions but has {}".format(4, len(S.size())) i_bbox = ( F.interpolate(I, (h, w), mode="bilinear", align_corners=False).argmax(dim=1) * (s_bbox > 0).long() ).squeeze(0) assert len(U.size()) == 4, "U tensor size should have {} " "dimensions but has {}".format( 4, len(U.size()) ) u_bbox = F.interpolate(U, (h, w), mode="bilinear", align_corners=False) assert len(V.size()) == 4, "V tensor size should have {} " "dimensions but has {}".format( 4, len(V.size()) ) v_bbox = F.interpolate(V, (h, w), mode="bilinear", align_corners=False) result[0] = i_bbox for part_id in range(1, u_bbox.size(1)): result[1][i_bbox == part_id] = ( (u_bbox[0, part_id][i_bbox == part_id] * 255).clamp(0, 255).to(torch.uint8) ) result[2][i_bbox == part_id] = ( (v_bbox[0, part_id][i_bbox == part_id] * 255).clamp(0, 255).to(torch.uint8) ) assert ( result.size(1) == h ), "Results height {} should be equal" "to bounding box height {}".format(result.size(1), h) assert ( result.size(2) == w ), "Results width {} should be equal" "to bounding box width {}".format(result.size(2), w) return result @staticmethod def encode_png_data(arr): """ Encode array data as a PNG image using the highest compression rate @param arr [in] Data stored in an array of size (3, M, N) of type uint8 @return Base64-encoded string containing PNG-compressed data """ assert len(arr.shape) == 3, "Expected a 3D array as an input," " got a {0}D array".format( len(arr.shape) ) assert arr.shape[0] == 3, "Expected first array dimension of size 3," " got {0}".format( arr.shape[0] ) assert arr.dtype == np.uint8, "Expected an array of type np.uint8, " " got {0}".format( arr.dtype ) data = np.moveaxis(arr, 0, -1) im = Image.fromarray(data) fstream = BytesIO() im.save(fstream, format="png", optimize=True) s = base64.encodebytes(fstream.getvalue()).decode() return s @staticmethod def decode_png_data(shape, s): """ Decode array data from a string that contains PNG-compressed data @param Base64-encoded string containing PNG-compressed data @return Data stored in an array of size (3, M, N) of type uint8 """ fstream = BytesIO(base64.decodebytes(s.encode())) im = Image.open(fstream) data = np.moveaxis(np.array(im.getdata(), dtype=np.uint8), -1, 0) return data.reshape(shape) def __len__(self): return len(self.results) def __getitem__(self, item): result_encoded = self.results[item] bbox_xywh = self.boxes_xywh[item] return result_encoded, bbox_xywh class DensePoseList(object): _TORCH_DEVICE_CPU = torch.device("cpu") def __init__(self, densepose_datas, boxes_xyxy_abs, image_size_hw, device=_TORCH_DEVICE_CPU): assert len(densepose_datas) == len( boxes_xyxy_abs ), "Attempt to initialize DensePoseList with {} DensePose datas " "and {} boxes".format( len(densepose_datas), len(boxes_xyxy_abs) ) self.densepose_datas = [] for densepose_data in densepose_datas: assert isinstance(densepose_data, DensePoseDataRelative) or densepose_data is None, ( "Attempt to initialize DensePoseList with DensePose datas " "of type {}, expected DensePoseDataRelative".format(type(densepose_data)) ) densepose_data_ondevice = ( densepose_data.to(device) if densepose_data is not None else None ) self.densepose_datas.append(densepose_data_ondevice) self.boxes_xyxy_abs = boxes_xyxy_abs.to(device) self.image_size_hw = image_size_hw self.device = device def to(self, device): if self.device == device: return self return DensePoseList(self.densepose_datas, self.boxes_xyxy_abs, self.image_size_hw, device) def __iter__(self): return iter(self.densepose_datas) def __len__(self): return len(self.densepose_datas) def __repr__(self): s = self.__class__.__name__ + "(" s += "num_instances={}, ".format(len(self.densepose_datas)) s += "image_width={}, ".format(self.image_size_hw[1]) s += "image_height={})".format(self.image_size_hw[0]) return s def __getitem__(self, item): if isinstance(item, int): densepose_data_rel = self.densepose_datas[item] return densepose_data_rel elif isinstance(item, slice): densepose_datas_rel = self.densepose_datas[item] boxes_xyxy_abs = self.boxes_xyxy_abs[item] return DensePoseList( densepose_datas_rel, boxes_xyxy_abs, self.image_size_hw, self.device ) elif isinstance(item, torch.Tensor) and (item.dtype == torch.bool): densepose_datas_rel = [self.densepose_datas[i] for i, x in enumerate(item) if x > 0] boxes_xyxy_abs = self.boxes_xyxy_abs[item] return DensePoseList( densepose_datas_rel, boxes_xyxy_abs, self.image_size_hw, self.device ) else: densepose_datas_rel = [self.densepose_datas[i] for i in item] boxes_xyxy_abs = self.boxes_xyxy_abs[item] return DensePoseList( densepose_datas_rel, boxes_xyxy_abs, self.image_size_hw, self.device )
66249f846adc240a436f156b941e6d0a01b7be95
4bed9030031fc99f6ea3d5267bd9e773f54320f8
/sparse/repos/katyhon/hello-world.git/setup.py
9910a87c354430aea7dbbdccc76c28a3264a91f0
[ "BSD-3-Clause" ]
permissive
yuvipanda/mybinder.org-analytics
c5f4b939541d29727bc8d3c023b4d140de756f69
7b654e3e21dea790505c626d688aa15640ea5808
refs/heads/master
2021-06-13T05:49:12.447172
2018-12-22T21:48:12
2018-12-22T21:48:12
162,839,358
1
1
BSD-3-Clause
2021-06-10T21:05:50
2018-12-22T20:01:52
Jupyter Notebook
UTF-8
Python
false
false
1,133
py
# -*- coding: utf-8 -*- # @Author: Zebedee Nicholls # @Date: 2017-04-10 13:42:11 # @Last Modified by: Chris Smith # @Last Modified time: 2018-01-11 19:17:00 from setuptools import setup from setuptools import find_packages import versioneer # README # def readme(): with open('README.rst') as f: return f.read() setup(name='fair', version=versioneer.get_version(), cmdclass=versioneer.get_cmdclass(), description='Python package to perform calculations with the FAIR simple climate model', long_description=readme(), keywords='simple climate model temperature response carbon cycle emissions forcing', url='https://github.com/OMS-NetZero/FAIR', author='OMS-NetZero, Chris Smith, Richard Millar, Zebedee Nicholls, Myles Allen', author_email='[email protected], [email protected]', license='Apache 2.0', packages=find_packages(exclude=['tests*','docs*']), package_data={'': ['*.csv']}, include_package_data=True, install_requires=[ 'numpy>=1.11.3', 'scipy>=0.19.0', ], zip_safe=False, )
5aa1c34ec0e9bdc71669f247d97e9017b69ffe4c
1d928c3f90d4a0a9a3919a804597aa0a4aab19a3
/python/pandas/2017/4/test_partial.py
20cec2a3aa7db8b918db50da92411c32c9ee713d
[]
no_license
rosoareslv/SED99
d8b2ff5811e7f0ffc59be066a5a0349a92cbb845
a062c118f12b93172e31e8ca115ce3f871b64461
refs/heads/main
2023-02-22T21:59:02.703005
2021-01-28T19:40:51
2021-01-28T19:40:51
306,497,459
1
1
null
2020-11-24T20:56:18
2020-10-23T01:18:07
null
UTF-8
Python
false
false
20,616
py
""" test setting *parts* of objects both positionally and label based TOD: these should be split among the indexer tests """ import pytest from warnings import catch_warnings import numpy as np import pandas as pd from pandas import Series, DataFrame, Panel, Index, date_range from pandas.util import testing as tm class TestPartialSetting(tm.TestCase): def test_partial_setting(self): # GH2578, allow ix and friends to partially set # series s_orig = Series([1, 2, 3]) s = s_orig.copy() s[5] = 5 expected = Series([1, 2, 3, 5], index=[0, 1, 2, 5]) tm.assert_series_equal(s, expected) s = s_orig.copy() s.loc[5] = 5 expected = Series([1, 2, 3, 5], index=[0, 1, 2, 5]) tm.assert_series_equal(s, expected) s = s_orig.copy() s[5] = 5. expected = Series([1, 2, 3, 5.], index=[0, 1, 2, 5]) tm.assert_series_equal(s, expected) s = s_orig.copy() s.loc[5] = 5. expected = Series([1, 2, 3, 5.], index=[0, 1, 2, 5]) tm.assert_series_equal(s, expected) # iloc/iat raise s = s_orig.copy() def f(): s.iloc[3] = 5. pytest.raises(IndexError, f) def f(): s.iat[3] = 5. pytest.raises(IndexError, f) # ## frame ## df_orig = DataFrame( np.arange(6).reshape(3, 2), columns=['A', 'B'], dtype='int64') # iloc/iat raise df = df_orig.copy() def f(): df.iloc[4, 2] = 5. pytest.raises(IndexError, f) def f(): df.iat[4, 2] = 5. pytest.raises(IndexError, f) # row setting where it exists expected = DataFrame(dict({'A': [0, 4, 4], 'B': [1, 5, 5]})) df = df_orig.copy() df.iloc[1] = df.iloc[2] tm.assert_frame_equal(df, expected) expected = DataFrame(dict({'A': [0, 4, 4], 'B': [1, 5, 5]})) df = df_orig.copy() df.loc[1] = df.loc[2] tm.assert_frame_equal(df, expected) # like 2578, partial setting with dtype preservation expected = DataFrame(dict({'A': [0, 2, 4, 4], 'B': [1, 3, 5, 5]})) df = df_orig.copy() df.loc[3] = df.loc[2] tm.assert_frame_equal(df, expected) # single dtype frame, overwrite expected = DataFrame(dict({'A': [0, 2, 4], 'B': [0, 2, 4]})) df = df_orig.copy() with catch_warnings(record=True): df.ix[:, 'B'] = df.ix[:, 'A'] tm.assert_frame_equal(df, expected) # mixed dtype frame, overwrite expected = DataFrame(dict({'A': [0, 2, 4], 'B': Series([0, 2, 4])})) df = df_orig.copy() df['B'] = df['B'].astype(np.float64) with catch_warnings(record=True): df.ix[:, 'B'] = df.ix[:, 'A'] tm.assert_frame_equal(df, expected) # single dtype frame, partial setting expected = df_orig.copy() expected['C'] = df['A'] df = df_orig.copy() with catch_warnings(record=True): df.ix[:, 'C'] = df.ix[:, 'A'] tm.assert_frame_equal(df, expected) # mixed frame, partial setting expected = df_orig.copy() expected['C'] = df['A'] df = df_orig.copy() with catch_warnings(record=True): df.ix[:, 'C'] = df.ix[:, 'A'] tm.assert_frame_equal(df, expected) with catch_warnings(record=True): # ## panel ## p_orig = Panel(np.arange(16).reshape(2, 4, 2), items=['Item1', 'Item2'], major_axis=pd.date_range('2001/1/12', periods=4), minor_axis=['A', 'B'], dtype='float64') # panel setting via item p_orig = Panel(np.arange(16).reshape(2, 4, 2), items=['Item1', 'Item2'], major_axis=pd.date_range('2001/1/12', periods=4), minor_axis=['A', 'B'], dtype='float64') expected = p_orig.copy() expected['Item3'] = expected['Item1'] p = p_orig.copy() p.loc['Item3'] = p['Item1'] tm.assert_panel_equal(p, expected) # panel with aligned series expected = p_orig.copy() expected = expected.transpose(2, 1, 0) expected['C'] = DataFrame({'Item1': [30, 30, 30, 30], 'Item2': [32, 32, 32, 32]}, index=p_orig.major_axis) expected = expected.transpose(2, 1, 0) p = p_orig.copy() p.loc[:, :, 'C'] = Series([30, 32], index=p_orig.items) tm.assert_panel_equal(p, expected) # GH 8473 dates = date_range('1/1/2000', periods=8) df_orig = DataFrame(np.random.randn(8, 4), index=dates, columns=['A', 'B', 'C', 'D']) expected = pd.concat([df_orig, DataFrame( {'A': 7}, index=[dates[-1] + 1])]) df = df_orig.copy() df.loc[dates[-1] + 1, 'A'] = 7 tm.assert_frame_equal(df, expected) df = df_orig.copy() df.at[dates[-1] + 1, 'A'] = 7 tm.assert_frame_equal(df, expected) exp_other = DataFrame({0: 7}, index=[dates[-1] + 1]) expected = pd.concat([df_orig, exp_other], axis=1) df = df_orig.copy() df.loc[dates[-1] + 1, 0] = 7 tm.assert_frame_equal(df, expected) df = df_orig.copy() df.at[dates[-1] + 1, 0] = 7 tm.assert_frame_equal(df, expected) def test_partial_setting_mixed_dtype(self): # in a mixed dtype environment, try to preserve dtypes # by appending df = DataFrame([[True, 1], [False, 2]], columns=["female", "fitness"]) s = df.loc[1].copy() s.name = 2 expected = df.append(s) df.loc[2] = df.loc[1] tm.assert_frame_equal(df, expected) # columns will align df = DataFrame(columns=['A', 'B']) df.loc[0] = Series(1, index=range(4)) tm.assert_frame_equal(df, DataFrame(columns=['A', 'B'], index=[0])) # columns will align df = DataFrame(columns=['A', 'B']) df.loc[0] = Series(1, index=['B']) exp = DataFrame([[np.nan, 1]], columns=['A', 'B'], index=[0], dtype='float64') tm.assert_frame_equal(df, exp) # list-like must conform df = DataFrame(columns=['A', 'B']) def f(): df.loc[0] = [1, 2, 3] pytest.raises(ValueError, f) # TODO: #15657, these are left as object and not coerced df = DataFrame(columns=['A', 'B']) df.loc[3] = [6, 7] exp = DataFrame([[6, 7]], index=[3], columns=['A', 'B'], dtype='object') tm.assert_frame_equal(df, exp) def test_series_partial_set(self): # partial set with new index # Regression from GH4825 ser = Series([0.1, 0.2], index=[1, 2]) # loc expected = Series([np.nan, 0.2, np.nan], index=[3, 2, 3]) result = ser.loc[[3, 2, 3]] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([np.nan, 0.2, np.nan, np.nan], index=[3, 2, 3, 'x']) result = ser.loc[[3, 2, 3, 'x']] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([0.2, 0.2, 0.1], index=[2, 2, 1]) result = ser.loc[[2, 2, 1]] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([0.2, 0.2, np.nan, 0.1], index=[2, 2, 'x', 1]) result = ser.loc[[2, 2, 'x', 1]] tm.assert_series_equal(result, expected, check_index_type=True) # raises as nothing in in the index pytest.raises(KeyError, lambda: ser.loc[[3, 3, 3]]) expected = Series([0.2, 0.2, np.nan], index=[2, 2, 3]) result = ser.loc[[2, 2, 3]] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([0.3, np.nan, np.nan], index=[3, 4, 4]) result = Series([0.1, 0.2, 0.3], index=[1, 2, 3]).loc[[3, 4, 4]] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([np.nan, 0.3, 0.3], index=[5, 3, 3]) result = Series([0.1, 0.2, 0.3, 0.4], index=[1, 2, 3, 4]).loc[[5, 3, 3]] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([np.nan, 0.4, 0.4], index=[5, 4, 4]) result = Series([0.1, 0.2, 0.3, 0.4], index=[1, 2, 3, 4]).loc[[5, 4, 4]] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([0.4, np.nan, np.nan], index=[7, 2, 2]) result = Series([0.1, 0.2, 0.3, 0.4], index=[4, 5, 6, 7]).loc[[7, 2, 2]] tm.assert_series_equal(result, expected, check_index_type=True) expected = Series([0.4, np.nan, np.nan], index=[4, 5, 5]) result = Series([0.1, 0.2, 0.3, 0.4], index=[1, 2, 3, 4]).loc[[4, 5, 5]] tm.assert_series_equal(result, expected, check_index_type=True) # iloc expected = Series([0.2, 0.2, 0.1, 0.1], index=[2, 2, 1, 1]) result = ser.iloc[[1, 1, 0, 0]] tm.assert_series_equal(result, expected, check_index_type=True) def test_series_partial_set_with_name(self): # GH 11497 idx = Index([1, 2], dtype='int64', name='idx') ser = Series([0.1, 0.2], index=idx, name='s') # loc exp_idx = Index([3, 2, 3], dtype='int64', name='idx') expected = Series([np.nan, 0.2, np.nan], index=exp_idx, name='s') result = ser.loc[[3, 2, 3]] tm.assert_series_equal(result, expected, check_index_type=True) exp_idx = Index([3, 2, 3, 'x'], dtype='object', name='idx') expected = Series([np.nan, 0.2, np.nan, np.nan], index=exp_idx, name='s') result = ser.loc[[3, 2, 3, 'x']] tm.assert_series_equal(result, expected, check_index_type=True) exp_idx = Index([2, 2, 1], dtype='int64', name='idx') expected = Series([0.2, 0.2, 0.1], index=exp_idx, name='s') result = ser.loc[[2, 2, 1]] tm.assert_series_equal(result, expected, check_index_type=True) exp_idx = Index([2, 2, 'x', 1], dtype='object', name='idx') expected = Series([0.2, 0.2, np.nan, 0.1], index=exp_idx, name='s') result = ser.loc[[2, 2, 'x', 1]] tm.assert_series_equal(result, expected, check_index_type=True) # raises as nothing in in the index pytest.raises(KeyError, lambda: ser.loc[[3, 3, 3]]) exp_idx = Index([2, 2, 3], dtype='int64', name='idx') expected = Series([0.2, 0.2, np.nan], index=exp_idx, name='s') result = ser.loc[[2, 2, 3]] tm.assert_series_equal(result, expected, check_index_type=True) exp_idx = Index([3, 4, 4], dtype='int64', name='idx') expected = Series([0.3, np.nan, np.nan], index=exp_idx, name='s') idx = Index([1, 2, 3], dtype='int64', name='idx') result = Series([0.1, 0.2, 0.3], index=idx, name='s').loc[[3, 4, 4]] tm.assert_series_equal(result, expected, check_index_type=True) exp_idx = Index([5, 3, 3], dtype='int64', name='idx') expected = Series([np.nan, 0.3, 0.3], index=exp_idx, name='s') idx = Index([1, 2, 3, 4], dtype='int64', name='idx') result = Series([0.1, 0.2, 0.3, 0.4], index=idx, name='s').loc[[5, 3, 3]] tm.assert_series_equal(result, expected, check_index_type=True) exp_idx = Index([5, 4, 4], dtype='int64', name='idx') expected = Series([np.nan, 0.4, 0.4], index=exp_idx, name='s') idx = Index([1, 2, 3, 4], dtype='int64', name='idx') result = Series([0.1, 0.2, 0.3, 0.4], index=idx, name='s').loc[[5, 4, 4]] tm.assert_series_equal(result, expected, check_index_type=True) exp_idx = Index([7, 2, 2], dtype='int64', name='idx') expected = Series([0.4, np.nan, np.nan], index=exp_idx, name='s') idx = Index([4, 5, 6, 7], dtype='int64', name='idx') result = Series([0.1, 0.2, 0.3, 0.4], index=idx, name='s').loc[[7, 2, 2]] tm.assert_series_equal(result, expected, check_index_type=True) exp_idx = Index([4, 5, 5], dtype='int64', name='idx') expected = Series([0.4, np.nan, np.nan], index=exp_idx, name='s') idx = Index([1, 2, 3, 4], dtype='int64', name='idx') result = Series([0.1, 0.2, 0.3, 0.4], index=idx, name='s').loc[[4, 5, 5]] tm.assert_series_equal(result, expected, check_index_type=True) # iloc exp_idx = Index([2, 2, 1, 1], dtype='int64', name='idx') expected = Series([0.2, 0.2, 0.1, 0.1], index=exp_idx, name='s') result = ser.iloc[[1, 1, 0, 0]] tm.assert_series_equal(result, expected, check_index_type=True) def test_partial_set_invalid(self): # GH 4940 # allow only setting of 'valid' values orig = tm.makeTimeDataFrame() df = orig.copy() # don't allow not string inserts def f(): with catch_warnings(record=True): df.loc[100.0, :] = df.ix[0] pytest.raises(TypeError, f) def f(): with catch_warnings(record=True): df.loc[100, :] = df.ix[0] pytest.raises(TypeError, f) def f(): with catch_warnings(record=True): df.ix[100.0, :] = df.ix[0] pytest.raises(TypeError, f) def f(): with catch_warnings(record=True): df.ix[100, :] = df.ix[0] pytest.raises(ValueError, f) # allow object conversion here df = orig.copy() with catch_warnings(record=True): df.loc['a', :] = df.ix[0] exp = orig.append(pd.Series(df.ix[0], name='a')) tm.assert_frame_equal(df, exp) tm.assert_index_equal(df.index, pd.Index(orig.index.tolist() + ['a'])) assert df.index.dtype == 'object' def test_partial_set_empty_series(self): # GH5226 # partially set with an empty object series s = Series() s.loc[1] = 1 tm.assert_series_equal(s, Series([1], index=[1])) s.loc[3] = 3 tm.assert_series_equal(s, Series([1, 3], index=[1, 3])) s = Series() s.loc[1] = 1. tm.assert_series_equal(s, Series([1.], index=[1])) s.loc[3] = 3. tm.assert_series_equal(s, Series([1., 3.], index=[1, 3])) s = Series() s.loc['foo'] = 1 tm.assert_series_equal(s, Series([1], index=['foo'])) s.loc['bar'] = 3 tm.assert_series_equal(s, Series([1, 3], index=['foo', 'bar'])) s.loc[3] = 4 tm.assert_series_equal(s, Series([1, 3, 4], index=['foo', 'bar', 3])) def test_partial_set_empty_frame(self): # partially set with an empty object # frame df = DataFrame() def f(): df.loc[1] = 1 pytest.raises(ValueError, f) def f(): df.loc[1] = Series([1], index=['foo']) pytest.raises(ValueError, f) def f(): df.loc[:, 1] = 1 pytest.raises(ValueError, f) # these work as they don't really change # anything but the index # GH5632 expected = DataFrame(columns=['foo'], index=pd.Index( [], dtype='int64')) def f(): df = DataFrame() df['foo'] = Series([], dtype='object') return df tm.assert_frame_equal(f(), expected) def f(): df = DataFrame() df['foo'] = Series(df.index) return df tm.assert_frame_equal(f(), expected) def f(): df = DataFrame() df['foo'] = df.index return df tm.assert_frame_equal(f(), expected) expected = DataFrame(columns=['foo'], index=pd.Index([], dtype='int64')) expected['foo'] = expected['foo'].astype('float64') def f(): df = DataFrame() df['foo'] = [] return df tm.assert_frame_equal(f(), expected) def f(): df = DataFrame() df['foo'] = Series(range(len(df))) return df tm.assert_frame_equal(f(), expected) def f(): df = DataFrame() tm.assert_index_equal(df.index, pd.Index([], dtype='object')) df['foo'] = range(len(df)) return df expected = DataFrame(columns=['foo'], index=pd.Index([], dtype='int64')) expected['foo'] = expected['foo'].astype('float64') tm.assert_frame_equal(f(), expected) df = DataFrame() tm.assert_index_equal(df.columns, pd.Index([], dtype=object)) df2 = DataFrame() df2[1] = Series([1], index=['foo']) df.loc[:, 1] = Series([1], index=['foo']) tm.assert_frame_equal(df, DataFrame([[1]], index=['foo'], columns=[1])) tm.assert_frame_equal(df, df2) # no index to start expected = DataFrame({0: Series(1, index=range(4))}, columns=['A', 'B', 0]) df = DataFrame(columns=['A', 'B']) df[0] = Series(1, index=range(4)) df.dtypes str(df) tm.assert_frame_equal(df, expected) df = DataFrame(columns=['A', 'B']) df.loc[:, 0] = Series(1, index=range(4)) df.dtypes str(df) tm.assert_frame_equal(df, expected) def test_partial_set_empty_frame_row(self): # GH5720, GH5744 # don't create rows when empty expected = DataFrame(columns=['A', 'B', 'New'], index=pd.Index([], dtype='int64')) expected['A'] = expected['A'].astype('int64') expected['B'] = expected['B'].astype('float64') expected['New'] = expected['New'].astype('float64') df = DataFrame({"A": [1, 2, 3], "B": [1.2, 4.2, 5.2]}) y = df[df.A > 5] y['New'] = np.nan tm.assert_frame_equal(y, expected) # tm.assert_frame_equal(y,expected) expected = DataFrame(columns=['a', 'b', 'c c', 'd']) expected['d'] = expected['d'].astype('int64') df = DataFrame(columns=['a', 'b', 'c c']) df['d'] = 3 tm.assert_frame_equal(df, expected) tm.assert_series_equal(df['c c'], Series(name='c c', dtype=object)) # reindex columns is ok df = DataFrame({"A": [1, 2, 3], "B": [1.2, 4.2, 5.2]}) y = df[df.A > 5] result = y.reindex(columns=['A', 'B', 'C']) expected = DataFrame(columns=['A', 'B', 'C'], index=pd.Index([], dtype='int64')) expected['A'] = expected['A'].astype('int64') expected['B'] = expected['B'].astype('float64') expected['C'] = expected['C'].astype('float64') tm.assert_frame_equal(result, expected) def test_partial_set_empty_frame_set_series(self): # GH 5756 # setting with empty Series df = DataFrame(Series()) tm.assert_frame_equal(df, DataFrame({0: Series()})) df = DataFrame(Series(name='foo')) tm.assert_frame_equal(df, DataFrame({'foo': Series()})) def test_partial_set_empty_frame_empty_copy_assignment(self): # GH 5932 # copy on empty with assignment fails df = DataFrame(index=[0]) df = df.copy() df['a'] = 0 expected = DataFrame(0, index=[0], columns=['a']) tm.assert_frame_equal(df, expected) def test_partial_set_empty_frame_empty_consistencies(self): # GH 6171 # consistency on empty frames df = DataFrame(columns=['x', 'y']) df['x'] = [1, 2] expected = DataFrame(dict(x=[1, 2], y=[np.nan, np.nan])) tm.assert_frame_equal(df, expected, check_dtype=False) df = DataFrame(columns=['x', 'y']) df['x'] = ['1', '2'] expected = DataFrame( dict(x=['1', '2'], y=[np.nan, np.nan]), dtype=object) tm.assert_frame_equal(df, expected) df = DataFrame(columns=['x', 'y']) df.loc[0, 'x'] = 1 expected = DataFrame(dict(x=[1], y=[np.nan])) tm.assert_frame_equal(df, expected, check_dtype=False)
757fdd5ec99459542dde88e360700156603c2846
ee8c4c954b7c1711899b6d2527bdb12b5c79c9be
/assessment2/amazon/run/core/controllers/vivacious.py
6023c96df4e75d647fba458235af9ef85c64b4ef
[]
no_license
sqlconsult/byte
02ac9899aebea4475614969b594bfe2992ffe29a
548f6cb5038e927b54adca29caf02c981fdcecfc
refs/heads/master
2021-01-25T14:45:42.120220
2018-08-11T23:45:31
2018-08-11T23:45:31
117,135,069
0
0
null
null
null
null
UTF-8
Python
false
false
372
py
#!/usr/bin/env python3 from flask import Blueprint, Flask, render_template, request, url_for controller = Blueprint('vivacious', __name__, url_prefix='/vivacious') # @controller.route('/<string:title>', methods=['GET']) # def lookup(title): # if title == 'Republic': # TODO 2 # return render_template('republic.html') # TODO 2 # else: # pass
0743fab55b7760c26dc13b3922aea2a97eec77c6
50008b3b7fb7e14f793e92f5b27bf302112a3cb4
/recipes/Python/580763_Context_Manager_Arbitrary_Number_Files/recipe-580763.py
150135fb1201d2a97d2a7f356d35cb1f5cb58577
[ "MIT" ]
permissive
betty29/code-1
db56807e19ac9cfe711b41d475a322c168cfdca6
d097ca0ad6a6aee2180d32dce6a3322621f655fd
refs/heads/master
2023-03-14T08:15:47.492844
2021-02-24T15:39:59
2021-02-24T15:39:59
341,878,663
0
0
MIT
2021-02-24T15:40:00
2021-02-24T11:31:15
Python
UTF-8
Python
false
false
416
py
class Files(tuple): def __new__(cls, *filePaths): files = [] try: for filePath in filePaths: files.append(open(filePath)) files[-1].__enter__() except: for file in files: file.close() raise else: return super(Files, cls).__new__(cls, files) def __enter__(self): return self def __exit__(self, *args): for file in self: file.close()
8bc30b4ffffdd2a9e6c67b806b72324ac9bcf8c5
699c7f26a91106a2fc79bb15299ce0cee532a2dd
/test/pivottest.py
a875542be8d7a661c68859711f9c108434bede2c
[]
no_license
samconnolly/astro
70581a4d3f2086716aace3b5db65b74aaaa5df95
3731be313592c13dbb8af898e9734b98d83c0cc2
refs/heads/master
2020-04-06T03:40:27.454279
2014-03-12T14:36:34
2014-03-12T14:36:34
null
0
0
null
null
null
null
UTF-8
Python
false
false
1,709
py
# Programme to test how a pivoting spectral component, plus a # constant soft component changes the shape of the flux-flux diagram import numpy as np from pylab import * # parameters epivot = 2.0 # KeV pivot energy pivmin = 2.0 pivmax = 10.0 cindex = 2.0 # index of constant component nsteps = 10.0 # constants h = 6.63 # planck e = 1.6e-19 # electron charge # energy axis energy = np.arange(0.5,10.0,0.01) # energy range of spectrum in KeV logenergy = np.log(energy) # log of energy freq = (energy*e*1000.0)/h # frequency range in Hz stepsize = (pivmax-pivmin)/nsteps pivnorm = ( ((epivot*e*1000.0)/h)**pivmin) fluxflux = [[],[],[]] # plotting the log spectrum components # constant component cflux = freq**(-cindex) # constant flux component logcflux = np.log10(cflux) # log of constant flux logvflux = [] # varying component for piv in np.arange(pivmin,pivmax,stepsize): currvflux = (freq**(-piv)) pnorm = (((epivot*e*1000.0)/h)**piv) currvflux = (currvflux/pnorm)*pivnorm logcurrvflux = np.log10(currvflux) # log thereof logvflux.append(logcurrvflux) # soft/hard delineaters low = [np.log(0.5),np.log10(0.5)] div = [np.log(2.0),np.log10(2.0)] high = [np.log(10.0),np.log10(10.0)] yrange = [logcflux[-1],logvflux[-1][0]] subplot(1,2,1) # log spectrum plot #plot(logenergy,logcflux,color="red") plot(logenergy,logvflux[0],color="blue") plot(logenergy,logvflux[len(logvflux)/2],color="blue") plot(logenergy,logvflux[-1],color="blue") #plot(low,yrange) #plot(div,yrange) #plot(high,yrange) # total spectrum subplot(1,2,2) for x in [0,len(logvflux)/2,-1]: logtotal = logvflux[x] + logcflux plot(logenergy,logtotal) show()
cbb97a71e43ba0aeae79c64781b1c2a7c1f09cb8
8fb4f83ac4e13c4c6de7f412f68c280d86ddea15
/eon/tests/unit/deployer/network/ovsvapp/test_vapp_util.py
6e5508948b41971f8773c56807dceeb902078137
[ "Apache-2.0" ]
permissive
ArdanaCLM/hpe-eon
cbd61afa0473bbd9c6953e5067dbe5a7ff42c084
48a4086d2ccc5ccac60385b183f0d43f247c0b97
refs/heads/master
2021-07-25T18:55:30.176284
2017-10-24T08:49:42
2017-10-24T08:49:42
103,971,673
0
1
null
2017-11-07T15:47:45
2017-09-18T17:43:45
Python
UTF-8
Python
false
false
6,225
py
# # (c) Copyright 2015-2017 Hewlett Packard Enterprise Development Company LP # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # import contextlib from mock import patch from pyVmomi import vim from eon.deployer.network.ovsvapp.util.vapp_util import OVSvAppUtil from eon.deployer.util import VMwareUtils from eon.tests.unit import tests from eon.tests.unit.deployer import fake_inputs # TODO: Put all the helper classes in one location class PrepFolder: name = 'fake_folder' childEntity = False class MoveInto_Task: def __init__(self, val): self.val = val class Destroy_Task: pass class MOB: class content(): def rootFolder(self): pass def propertyCollector(self): pass class VM: class Vm: class config: annotation = 'hp-ovsvapp' class runtime: powerState = 'poweredOn' class PowerOff: pass class Destroy: pass vm = [Vm] class Cluster: @staticmethod def ReconfigureComputeResource_Task(cluster_spec_ex, modify): pass class TestOVSvAppUtil(tests.BaseTestCase): def setUp(self): super(TestOVSvAppUtil, self).setUp() self.ovs_vapp_util = OVSvAppUtil() vc_info = fake_inputs.data.get('vcenter_configuration') self.cluster = {'obj': Cluster(), 'name': vc_info.get('cluster'), 'configuration.dasConfig.enabled': True, 'configuration.drsConfig.enabled': True} def test_get_ovsvapps(self): fake_vms = [{'name': 'ovsvapp_fake_vm', 'config.annotation': 'hp-ovsvapp', 'runtime.host': 'host-1'}] content = None vm_folder = None with contextlib.nested( patch.object(VMwareUtils, 'get_view_ref'), patch.object(VMwareUtils, 'collect_properties', return_value=fake_vms))as ( mock_get_view_ref, mock_collect_properties): output = self.ovs_vapp_util.get_ovsvapps(content, vm_folder, fake_inputs.fake_clusters) self.assertEqual(fake_vms[0], output['host-1']) self.assertTrue(mock_get_view_ref.called) self.assertTrue(mock_collect_properties.called) def test_get_active_hosts(self): host = {'obj': 'host1', 'name': 'fake_host'} with patch.object(VMwareUtils, 'get_all_hosts', return_value=[host]) as mock_get_all_hosts: self.ovs_vapp_util.get_active_hosts(MOB, 'vm_folder', ['host1'], 'cluster') self.assertTrue(mock_get_all_hosts.called) def test_exec_multiprocessing(self): pass def test_get_folder(self): pass def test_create_host_folder(self): with patch.object(OVSvAppUtil, '_get_folder', return_value='fake_folder') as mock_get_folder: self.ovs_vapp_util.create_host_folder( 'content', [{'cluster': {'name': self.cluster.get('name')}}], 'host_folder') self.assertTrue(mock_get_folder.called) def test_move_hosts_in_to_folder(self): pass def test_enter_maintenance_mode(self): pass def test_destroy_failed_commissioned_vapps(self): host = {'obj': VM, 'name': 'fake_host'} with patch.object(VMwareUtils, 'wait_for_task') as mock_wait_for_task: self.ovs_vapp_util.destroy_failed_commissioned_vapps(host, MOB) self.assertTrue(mock_wait_for_task.called) def test_move_host_back_to_cluster(self): host = {'obj': 'host', 'name': 'fake_host'} cluster = {'obj': PrepFolder, 'name': 'fake_cluster'} with contextlib.nested( patch.object(OVSvAppUtil, 'destroy_failed_commissioned_vapps'), patch.object(OVSvAppUtil, 'enter_maintenance_mode'), patch.object(VMwareUtils, 'wait_for_task')) as ( mock_destroy, mock_enter_maintenance_mode, mock_wait_for_task): self.ovs_vapp_util.move_host_back_to_cluster(MOB, host, cluster, PrepFolder, 'err') self.assertTrue(mock_destroy.called) self.assertTrue(mock_enter_maintenance_mode.called) self.assertTrue(mock_wait_for_task.called) def test_get_host_parent(self): pass def test_get_cluster_inventory_path(self): pass def test_get_eon_env(self): pass def test_exec_subprocess(self): pass def test_disable_ha_on_ovsvapp(self): with contextlib.nested( patch.object(vim.VirtualMachine, '__init__', return_value=None), patch.object(vim.HostSystem, '__init__', return_value=None), patch.object(VMwareUtils, 'wait_for_task')) as ( mock_vm, mock_host, mock_wait_for_task): vim.VirtualMachine.name = 'fake-vm' self.vm_obj = vim.VirtualMachine() self.host_obj = vim.HostSystem() host = {'obj': self.host_obj, 'name': 'fake_host'} self.ovs_vapp_util.disable_ha_on_ovsvapp(fake_inputs.session['si'], self.vm_obj, self.cluster, host) self.assertTrue(mock_vm.called) self.assertTrue(mock_host.called) self.assertTrue(mock_wait_for_task.called)
e646bb93cc2e371f15aec3b80cb3f8c0380cccc1
51a37b7108f2f69a1377d98f714711af3c32d0df
/src/leetcode/P292.py
5c48dc1f6e7885796ce6210fadce7d6c63219433
[]
no_license
stupidchen/leetcode
1dd2683ba4b1c0382e9263547d6c623e4979a806
72d172ea25777980a49439042dbc39448fcad73d
refs/heads/master
2022-03-14T21:15:47.263954
2022-02-27T15:33:15
2022-02-27T15:33:15
55,680,865
7
1
null
null
null
null
UTF-8
Python
false
false
136
py
class Solution: def canWinNim(self, n): """ :type n: int :rtype: bool """ return n % 4 != 0
632dde6bdbc21624a39c299566810a9f9a7bbac0
24a9c8f2fac4e2b20f731387336ec4e22d5fd2c7
/AdministrativePenalty/天津市/1.保险监督管理局.py
40398e49e4a5061da89e045b006e224c3d4e1126
[]
no_license
yunli45/pycharmProjectHome
94833822e3036bf2baf8700c4493132e63177d4c
9a382c060963eb801a3da07423e84a4132257b02
refs/heads/master
2020-05-23T23:35:20.476973
2019-05-16T09:45:58
2019-05-16T09:49:16
186,986,803
0
0
null
null
null
null
UTF-8
Python
false
false
12,095
py
import requests import re import time from bs4 import BeautifulSoup import pymssql # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 抓取天津市滨海新区 —银监分局数据 # # # # # # # # # # # # # # # # # # # # # # # # # # # # class Utils(object): def __init__(self): self.header = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:60.0) Gecko/20100101 Firefox/60.0'} self.OnlyID = 1 self.showId = 12300000 def getPage(self,url=None): response = requests.get(url,headers = self.header) response = response.content.decode('UTF-8') return response def parsePage(self,url=None,pageNo=None,baseUrl="http://ningxia.circ.gov.cn",path="F:\行政处罚数据\天津\/%s"): if pageNo=='1': response = self.getPage("http://ningxia.circ.gov.cn/web/site35/tab3385/module8892/page1.htm") else: response = self.getPage(url+pageNo+'.htm') print("+++++++++++++++++++这是第:"+pageNo+"页++++++++++++++++") soup = BeautifulSoup(response, 'lxml') soup = soup.find_all('div', attrs={'id': "ess_ctr8892_contentpane"}) # print(soup) rs = re.findall(re.compile(r'<a.*?href="(.*?)".*?title="(.*?)">'), str(soup)) RsdataID = re.findall(re.compile(r'<a.*?href=".*?" id="(.*?)".*?>'), str(soup)) rsTimeList = re.findall(re.compile(r'<td style="width: 70px; color: #c5c5c5;">(.*?)</td>'), str(soup)) # print(rs) # print(rsTimeList) # print(RsdataID) srcList= [] titleList = [] # print(len(rs)) # print(rs) for i in rs : srcList.append(i[0]) titleList.append(i[1]) for src in srcList: resTitle =titleList[srcList.index(src)] resTime ='20'+ rsTimeList[srcList.index(src)].replace('(','').replace(')','') dataId = RsdataID[srcList.index(src)] if src.find("http") == -1: ContentSrc = baseUrl + src else: ContentSrc = src response2 = requests.get(ContentSrc,headers =self.header) response2 = response2.content.decode('UTF-8') soup2 = BeautifulSoup(response2,'lxml') rs2 = soup2.find('span',attrs={'id':'zoom'}) # # # # # # # # # # # # # # # # # # # 提取文书号等信息 # # # # # # # # # # # # # # # # # # rs2 = str(rs2).replace('\xa0','').replace('\u3000','').replace("'","''") rs2 = re.sub('<span.*?>','',rs2).replace('</span>','') # print(rs2) id = self.OnlyID dataId = dataId documentNum = re.sub(r'.*?处罚决定书','',resTitle).replace("(",'') .replace(")",'') # 书文号 # print(rs2) RsbePunished =re.findall(re.compile(r'当事人.*?</p>',re.M|re.S), rs2) if RsbePunished: bePunished = RsbePunished[0].replace("\n",'').replace("</p>",'') # 被处罚人或机构 # 被处罚机构或单位 else: bePunished = '' print(bePunished) Rsprincipal = re.findall(re.compile(r'法定代表人.*?</p>',re.M|re.S),rs2) Rsprincipa2 = re.findall(re.compile(r'主要负责人.*?</p>',re.M|re.S), rs2) # 法定代表人 # 法定代表人 if Rsprincipal: principal = Rsprincipal[0].replace("\n",'').replace("</p>",'') # 法定代表人 elif Rsprincipa2: principal = Rsprincipa2[0].replace("\n",'').replace("</p>",'') else: principal='' RslawEnforcement= re.findall(re.compile(r'当事人.*?:(.*?)</p>',re.M|re.S),rs2) # 被处罚机构或单位 if RslawEnforcement: lawEnforcement= RslawEnforcement[0].replace("\n",'').replace("</p>",'') else: lawEnforcement='' print(lawEnforcement) RspunishedDate = re.findall(re.compile(r'<p.*?>.*?(.*?年.*?月.*?日.*?).*?</p>'), rs2) # s时间 if RspunishedDate and len(RspunishedDate[-1])<= 30: punishedDate = RspunishedDate[-1] # 受处罚时间 else: punishedDate = resTime print(punishedDate) content = rs2 uniqueSign = ContentSrc # url地址 address = '天津'# 省份 area = '所有区县'# 地区 agency = '中国保监会天津监管局' # 处罚机构 if len(content) <= 100: grade = -1 # 级别 elif 100 < len(content)<= 200: grade = 1 # 级别 elif 200< len(content)<= 1500: grade = 2 # 级别 elif len(content)>1500: grade = 0 # 级别 showId = self.showId # 系统ID showAddress = None showArea = None # # # # # # # # # # # # # # # # # # # 附件下载 # # # # # # # # # # # # # # # # # # adjunct = re.findall(re.compile(r'<a.*?href="(.*?)".*?>(.*?)</a>', re.I | re.S), rs2) if rs2: conn = pymssql.connect(host='(local)', user='sa', password='123456', database='AdministrativePun') # 打开游标 cur = conn.cursor(); if not cur: raise Exception('数据库连接失败!') else: print("数据库链接成功") sql1 = " INSERT INTO TJbhxqCBRC(dataId,title,documentNum,bePunished,principal,lawEnforcement,punishedDate,content,uniqueSign,address,area,agency,grade,showId,showAddress,showArea) values ('%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s','%s') " % (dataId, resTitle, documentNum, bePunished,principal,lawEnforcement,punishedDate,content,uniqueSign,address, area, agency,grade,showId,showAddress,showArea) # print(sql1) if adjunct: print("这条数据存在附件,可能会很大,请稍等,已经自动开始下载.....") for xiaZai in adjunct: rsDocuniqueSign = xiaZai[0] rsDocName = xiaZai[1] xiaZai = str(xiaZai) rsDoc1 = re.findall(re.compile(r'.*?.doc', re.I), xiaZai) rsPdF = re.findall(re.compile(r'.*?.pdf', re.I), xiaZai) rsXlsx = re.findall(re.compile(r'.*?.xlsx|xls', re.I), xiaZai) rsZip = re.findall(re.compile(r'.*?.zip', re.I), xiaZai) rsRar = re.findall(re.compile(r'.*?.rar', re.I), xiaZai) reJpg = re.findall(re.compile(r'.*?.jpg', re.I), xiaZai) if rsDoc1: rsDocName = rsDocName + ".doc" rsDocName = rsDocName.replace("/", '_') path1 = path % (rsDocName) if rsDocuniqueSign.find("http") == -1: rsDocuniqueSign = "%s" % (baseUrl) + rsDocuniqueSign else: rsDocuniqueSign = rsDocuniqueSign # print(rsDocuniqueSign) r = requests.get(rsDocuniqueSign, headers=self.header, timeout=300) with open(path1, "wb") as f: f.write(r.content) f.close() elif rsPdF: rsDocName = rsDocName + ".PDF" rsDocName = rsDocName.replace("/", '_') path1 = path % (rsDocName) if rsDocuniqueSign.find("http") == -1: rsDocuniqueSign = baseUrl + rsDocuniqueSign else: rsDocuniqueSign = rsDocuniqueSign # print(rsDocuniqueSign) r = requests.get(rsDocuniqueSign, headers=self.header) with open(path1, "wb") as f: f.write(r.content) f.close() elif rsXlsx: rsDocName = rsDocName + ".xlsx" rsDocName = rsDocName.replace("/", '_') path1 = path % (rsDocName) if rsDocuniqueSign.find("http") == -1: rsDocuniqueSign = baseUrl + rsDocuniqueSign else: rsDocuniqueSign = rsDocuniqueSign # print(rsDocuniqueSign) r = requests.get(rsDocuniqueSign, headers=self.header) with open(path1, "wb") as f: f.write(r.content) f.close() elif rsZip: rsDocName = rsDocName + ".zip" rsDocName = rsDocName.replace("/", '_') path1 = path % (rsDocName) if rsDocuniqueSign.find("http") == -1: rsDocuniqueSign = baseUrl + rsDocuniqueSign else: rsDocuniqueSign = rsDocuniqueSign # print(rsDocuniqueSign) r = requests.get(rsDocuniqueSign, headers=self.header) with open(path1, "wb") as f: f.write(r.content) f.close() elif rsRar: rsDocName = rsDocName + ".rar" rsDocName = rsDocName.replace("/", '_') path1 = path % (rsDocName) if rsDocuniqueSign.find("http") == -1: rsDocuniqueSign = baseUrl + rsDocuniqueSign else: rsDocuniqueSign = rsDocuniqueSign # print(rsDocuniqueSign) r = requests.get(rsDocuniqueSign, headers=self.header) with open(path1, "wb") as f: f.write(r.content) f.close() elif reJpg: rsDocName = rsDocName + ".jpg" rsDocName = rsDocName.replace("/", '_') path1 = path % (rsDocName) if rsDocuniqueSign.find("http") == -1: rsDocuniqueSign = "%s" % (baseUrl) + rsDocuniqueSign else: rsDocuniqueSign = rsDocuniqueSign # print(rsDocuniqueSign) r = requests.get(rsDocuniqueSign, headers=self.header, timeout=300) with open(path1, "wb") as f: f.write(r.content) f.close() cur.execute(sql1) self.OnlyID += 1 self.showId += 1 conn.commit() conn.close() print("下一页开始的id是" + str(self.OnlyID)) print("这一夜爬取成功相关数据和文件,文件保存的目录在" + path) ####### 执行 ######## if __name__ =="__main__": url = "http://ningxia.circ.gov.cn/web/site35/tab3385/module8892/page" AdminiStrative =Utils() # parsePage(url) for i in range(0,12): AdminiStrative.parsePage(url,str(i+1)) time.sleep(3)