Datasets:

Languages:
Vietnamese
ArXiv:
License:
mlqa / mlqa.py
holylovenia's picture
Upload mlqa.py with huggingface_hub
c625ad3 verified
import json
import os
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = r"""\
@article{lewis2019mlqa,
author={Lewis, Patrick and O\{g}uz, Barlas and Rinott, Ruty and Riedel, Sebastian and Schwenk, Holger},
title={MLQA: Evaluating Cross-lingual Extractive Question Answering},
journal={arXiv preprint arXiv:1910.07475},
year={2019}
}
"""
_DATASETNAME = "mlqa"
_DESCRIPTION = """\
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
"""
_HOMEPAGE = "https://github.com/facebookresearch/MLQA"
_LICENSE = Licenses.CC_BY_SA_3_0.value
_LANGUAGES = ["vie"]
_URL = "https://dl.fbaipublicfiles.com/MLQA/"
_DEV_TEST_URL = "MLQA_V1.zip"
_TRANSLATE_TEST_URL = "mlqa-translate-test.tar.gz"
_TRANSLATE_TRAIN_URL = "mlqa-translate-train.tar.gz"
_SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
_LOCAL = False
class MLQADataset(datasets.GeneratorBasedBuilder):
"""
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average.
"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
subsets = [
"mlqa-translate-test.vi",
"mlqa-translate-train.vi",
"mlqa.vi.ar",
"mlqa.vi.de",
"mlqa.vi.zh",
"mlqa.vi.en",
"mlqa.vi.es",
"mlqa.vi.hi",
"mlqa.vi.vi",
"mlqa.ar.vi",
"mlqa.de.vi",
"mlqa.zh.vi",
"mlqa.en.vi",
"mlqa.es.vi",
"mlqa.hi.vi",
]
BUILDER_CONFIGS = [
SEACrowdConfig(
name="{sub}_source".format(sub=subset),
version=datasets.Version(_SOURCE_VERSION),
description="{sub} source schema".format(sub=subset),
schema="source",
subset_id="{sub}".format(sub=subset),
)
for subset in subsets
] + [
SEACrowdConfig(
name="{sub}_seacrowd_qa".format(sub=subset),
version=datasets.Version(_SEACROWD_VERSION),
description="{sub} SEACrowd schema".format(sub=subset),
schema="seacrowd_qa",
subset_id="{sub}".format(sub=subset),
)
for subset in subsets
]
DEFAULT_CONFIG_NAME = "mlqa.vi.vi_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{"context": datasets.Value("string"), "question": datasets.Value("string"), "answers": datasets.Features({"answer_start": [datasets.Value("int64")], "text": [datasets.Value("string")]}), "id": datasets.Value("string")}
)
elif self.config.schema == "seacrowd_qa":
features = schemas.qa_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
name_split = self.config.name.split("_")
url = ""
data_path = ""
if name_split[0].startswith("mlqa-translate-train"):
config_name, lang = name_split[0].split(".")
url = _URL + _TRANSLATE_TRAIN_URL
data_path = dl_manager.download(url)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# Whatever you put in gen_kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": f"{config_name}/{lang}_squad-translate-train-train-v1.1.json",
"files": dl_manager.iter_archive(data_path),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": f"{config_name}/{lang}_squad-translate-train-dev-v1.1.json",
"files": dl_manager.iter_archive(data_path),
"split": "test",
},
),
]
elif name_split[0].startswith("mlqa-translate-test"):
config_name, lang = name_split[0].split(".")
url = _URL + _TRANSLATE_TEST_URL
data_path = dl_manager.download(url)
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": f"{config_name}/translate-test-context-{lang}-question-{lang}.json",
"files": dl_manager.iter_archive(data_path),
"split": "test",
},
),
]
elif name_split[0].startswith("mlqa."):
url = _URL + _DEV_TEST_URL
data_path = dl_manager.download_and_extract(url)
ctx_lang, qst_lang = name_split[0].split(".")[1:]
return [
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(
os.path.join(data_path, "MLQA_V1/dev"),
f"dev-context-{ctx_lang}-question-{qst_lang}.json",
),
"split": "dev",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(
os.path.join(data_path, "MLQA_V1/test"),
f"test-context-{ctx_lang}-question-{qst_lang}.json",
),
"split": "test",
},
),
]
elif name_split[0] == "mlqa":
url = _URL + _DEV_TEST_URL
data_path = dl_manager.download_and_extract(url)
ctx_lang = qst_lang = "vi"
return [
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(
os.path.join(data_path, "MLQA_V1/dev"),
f"dev-context-{ctx_lang}-question-{qst_lang}.json",
),
"split": "dev",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(
os.path.join(data_path, "MLQA_V1/test"),
f"test-context-{ctx_lang}-question-{qst_lang}.json",
),
"split": "test",
},
),
]
def _generate_examples(self, filepath: Path, split: str, files=None) -> Tuple[int, Dict]:
is_config_ok = True
if self.config.name.startswith("mlqa-translate"):
for path, f in files:
if path == filepath:
data = json.loads(f.read().decode("utf-8"))
break
elif self.config.schema == "source" or self.config.schema == "seacrowd_qa":
with open(filepath, encoding="utf-8") as f:
data = json.load(f)
else:
is_config_ok = False
raise ValueError(f"Invalid config: {self.config.name}")
if is_config_ok:
count = 0
for examples in data["data"]:
for example in examples["paragraphs"]:
context = example["context"]
for qa in example["qas"]:
question = qa["question"]
id_ = qa["id"]
answers = qa["answers"]
answers_start = [answer["answer_start"] for answer in answers]
answers_text = [answer["text"] for answer in answers]
if self.config.schema == "source":
yield count, {
"context": context,
"question": question,
"answers": {"answer_start": answers_start, "text": answers_text},
"id": id_,
}
count += 1
elif self.config.schema == "seacrowd_qa":
yield count, {"question_id": id_, "context": context, "question": question, "answer": {"answer_start": answers_start[0], "text": answers_text[0]}, "id": id_, "choices": [], "type": "extractive", "document_id": count, "meta":{}}
count += 1