|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
from datasets.download.download_manager import DownloadManager |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
|
|
_CITATION = "" |
|
|
|
_LOCAL = False |
|
_LANGUAGES = ["tha"] |
|
_DATASETNAME = "thai_databricks_dolly" |
|
_DESCRIPTION = """\ |
|
This is a Thai-instructed dataset translated from databricks-dolly-15k using |
|
Google Cloud Translation. databricks-dolly-15k is an open-source dataset of |
|
instruction-following records generated by thousands of Databricks employees in |
|
several behavioral categories outlined in the InstructGPT paper, including |
|
brainstorming, classification, closed QA, generation, information extraction, |
|
open QA, and summarization. |
|
""" |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/Thaweewat/databricks-dolly-15k-th" |
|
_LICENSE = Licenses.CC_BY_SA_3_0.value |
|
_URL = "https://huggingface.co/datasets/Thaweewat/databricks-dolly-15k-th/resolve/main/databricks-dolly-15k-th.parquet" |
|
_SUPPORTED_TASKS = [Tasks.INSTRUCTION_TUNING] |
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class ThaiDatabricksDollyDataset(datasets.GeneratorBasedBuilder): |
|
"""Thai Databricks Dolly Dataset""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
SEACROWD_SCHEMA_NAME = "t2t" |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=_DATASETNAME, |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
subset_id=_DATASETNAME, |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"instruction": datasets.Value("string"), |
|
"context": datasets.Value("string"), |
|
"response": datasets.Value("string"), |
|
"category": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
features = schemas.text2text_features |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
data_file = Path(dl_manager.download_and_extract(_URL)) |
|
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_file})] |
|
|
|
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]: |
|
"""Yield examples as (key, example) tuples""" |
|
|
|
df = pd.read_parquet(filepath, engine="pyarrow") |
|
for idx, row in df.iterrows(): |
|
instruction = row.get("instruction").strip() |
|
context = row.get("context").strip() |
|
response = row.get("response").strip() |
|
category = row.get("category").strip() |
|
if self.config.schema == "source": |
|
example = { |
|
"instruction": instruction, |
|
"context": context, |
|
"response": response, |
|
"category": category, |
|
} |
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
text_1 = f"Context: {context}\n\n{instruction}" if context else instruction |
|
text_2 = response |
|
example = { |
|
"id": str(idx), |
|
"text_1": text_1, |
|
"text_2": text_2, |
|
"text_1_name": "context_and_instruction", |
|
"text_2_name": "response", |
|
} |
|
|
|
yield idx, example |
|
|