Dataset Viewer
repo
stringlengths 7
59
| instance_id
stringlengths 11
63
| base_commit
stringlengths 40
40
| patch
stringlengths 167
798k
| test_patch
stringclasses 1
value | problem_statement
stringlengths 20
65.2k
| hints_text
stringlengths 0
142k
| created_at
timestamp[ns]date 2015-08-30 10:31:05
2024-12-13 16:08:19
| environment_setup_commit
stringclasses 1
value | version
stringclasses 1
value | FAIL_TO_PASS
sequencelengths 0
0
| PASS_TO_PASS
sequencelengths 0
0
|
---|---|---|---|---|---|---|---|---|---|---|---|
augerai/a2ml | augerai__a2ml-611 | 30601dc95093e45ebafb500fa70fcdafe65edd24 | diff --git a/a2ml/__init__.py b/a2ml/__init__.py
index e71bfca8..5baef1cb 100644
--- a/a2ml/__init__.py
+++ b/a2ml/__init__.py
@@ -1,1 +1,1 @@
-__version__ = '1.0.79'
+__version__ = '1.0.80'
diff --git a/a2ml/api/a2ml.py b/a2ml/api/a2ml.py
index 03454e01..b7002dab 100644
--- a/a2ml/api/a2ml.py
+++ b/a2ml/api/a2ml.py
@@ -279,7 +279,7 @@ def deploy(self, model_id, locally=False, review=False, provider=None,
@show_result
def predict(self, model_id, filename=None, data=None, columns=None, predicted_at=None,
threshold=None, score=False, score_true_data=None,
- output=None, no_features_in_result = None, locally=False, provider=None):
+ output=None, no_features_in_result = None, locally=False, provider=None, predict_labels=None):
"""Predict results with new data against deployed model. Predictions are stored next to the file with data to be predicted on. The file name will be appended with suffix _predicted.
Note:
@@ -299,6 +299,7 @@ def predict(self, model_id, filename=None, data=None, columns=None, predicted_at
no_features_in_result(bool) : Do not return feature columns in prediction result. False by default
locally(bool, str): Predicts using a local model with auger.ai.predict if True, on the Provider Cloud if False. If set to "docker", then docker image used to run the model
provider (str): The automl provider you wish to run. For example 'auger'. The default is None - use provider set in costructor or config.
+ predict_labels (dict, bool): Run ActiveLearn to select data for labelling
Returns:
if filename is not None. ::
@@ -363,7 +364,7 @@ def predict(self, model_id, filename=None, data=None, columns=None, predicted_at
"""
return self.get_runner(locally, model_id, provider).execute_one_provider('predict', filename, model_id,
threshold, locally, data, columns, predicted_at, output, no_features_in_result,
- score, score_true_data )
+ score, score_true_data, predict_labels )
@show_result
def actuals(self, model_id, filename=None, data=None, columns=None, actuals_at=None,
diff --git a/a2ml/api/a2ml_model.py b/a2ml/api/a2ml_model.py
index 7f810fd8..770c9376 100644
--- a/a2ml/api/a2ml_model.py
+++ b/a2ml/api/a2ml_model.py
@@ -68,7 +68,7 @@ def deploy(self, model_id, locally=False, review=False, provider=None,
@show_result
def predict(self, model_id, filename=None, data=None, columns=None, predicted_at=None,
threshold=None, score=False, score_true_data=None,
- output=None, no_features_in_result=None, locally=False, provider=None):
+ output=None, no_features_in_result=None, locally=False, provider=None, predict_labels=None):
"""Predict results with new data against deployed model. Predictions are stored next to the file with data to be predicted on. The file name will be appended with suffix _predicted.
Note:
@@ -88,6 +88,7 @@ def predict(self, model_id, filename=None, data=None, columns=None, predicted_at
no_features_in_result(bool) : Do not return feature columns in prediction result. False by default
locally(bool, str): Predicts using a local model with auger.ai.predict if True, on the Provider Cloud if False. If set to "docker", then docker image used to run the model
provider (str): The automl provider you wish to run. For example 'auger'. The default is None - use provider set in costructor or config.
+ predict_labels (dict, bool): Run ActiveLearn to select data for labelling
Returns:
if filename is not None. ::
@@ -152,7 +153,7 @@ def predict(self, model_id, filename=None, data=None, columns=None, predicted_at
"""
return self.get_runner(locally, model_id, provider).execute_one_provider('predict', filename, model_id,
threshold, locally, data, columns, predicted_at, output, no_features_in_result,
- score, score_true_data )
+ score, score_true_data, predict_labels )
@show_result
def actuals(self, model_id, filename=None, data=None, columns=None, actuals_at=None,
diff --git a/a2ml/api/auger/a2ml.py b/a2ml/api/auger/a2ml.py
index f367c7a6..af40e9f8 100644
--- a/a2ml/api/auger/a2ml.py
+++ b/a2ml/api/auger/a2ml.py
@@ -25,10 +25,11 @@ def deploy(self, model_id, locally=False, review=False, name=None, algorithm=Non
return AugerModel(self.ctx).deploy(model_id, locally, review, name, algorithm, score, data_path, metadata)
def predict(self, model_id, filename, threshold=None, locally=False, data=None, columns=None,
- predicted_at=None, output=None, no_features_in_result=None, score=False, score_true_data=None):
+ predicted_at=None, output=None, no_features_in_result=None, score=False,
+ score_true_data=None, predict_labels=None):
return AugerModel(self.ctx).predict(
model_id, filename, threshold, locally, data, columns, predicted_at, output,
- no_features_in_result, score, score_true_data)
+ no_features_in_result, score, score_true_data, predict_labels)
def actuals(self, model_id, filename=None, data=None, columns=None, actuals_at=None,
actual_date_column=None, experiment_params=None, locally=False):
diff --git a/a2ml/api/auger/impl/cloud/pipeline.py b/a2ml/api/auger/impl/cloud/pipeline.py
index dc056474..aacf1a0e 100644
--- a/a2ml/api/auger/impl/cloud/pipeline.py
+++ b/a2ml/api/auger/impl/cloud/pipeline.py
@@ -95,7 +95,7 @@ def has_endpoint(self, props=None):
return is_endpoint
def predict(self, records, features, threshold=None, file_url=None, predicted_at=None,
- no_features_in_result=None, score=False, score_true_data=None):
+ no_features_in_result=None, score=False, score_true_data=None, predict_labels=None):
if self.object_id is None:
raise AugerException('Please provide Auger Pipeline id')
@@ -120,7 +120,7 @@ def predict(self, records, features, threshold=None, file_url=None, predicted_at
prediction_properties = \
prediction_api.create(records, features, threshold=threshold, file_url=file_url,
predicted_at=predicted_at, no_features_in_result=no_features_in_result,
- score=score, score_true_data=score_true_data)
+ score=score, score_true_data=score_true_data, predict_labels=predict_labels)
return prediction_properties.get('result')
diff --git a/a2ml/api/auger/impl/cloud/prediction.py b/a2ml/api/auger/impl/cloud/prediction.py
index 81f50387..da3dd44b 100644
--- a/a2ml/api/auger/impl/cloud/prediction.py
+++ b/a2ml/api/auger/impl/cloud/prediction.py
@@ -15,7 +15,7 @@ def __init__(self, ctx, pipeline_api, use_endpoint=False):
self._set_api_request_path("AugerEndpointPredictionApi")
def create(self, records, features, threshold=None, file_url=None, predicted_at=None,
- no_features_in_result=None, score=False, score_true_data=None):
+ no_features_in_result=None, score=False, score_true_data=None, predict_labels=None):
params = {
'records': records,
'features': features,
@@ -43,4 +43,7 @@ def create(self, records, features, threshold=None, file_url=None, predicted_at=
if score_true_data:
params['score_true_data'] = score_true_data
+ if predict_labels:
+ params['predict_labels'] = predict_labels
+
return self._call_create(params, ['requested', 'running'])
diff --git a/a2ml/api/auger/impl/model.py b/a2ml/api/auger/impl/model.py
index 1af255e6..f2797bb4 100644
--- a/a2ml/api/auger/impl/model.py
+++ b/a2ml/api/auger/impl/model.py
@@ -31,9 +31,9 @@ def undeploy(self, model_id, locally=False):
return ModelUndeploy(self.ctx, self.project).execute(model_id, locally)
def predict(self, filename, model_id, threshold=None, locally=False, data=None, columns=None, predicted_at=None,
- output=None, no_features_in_result=None, score=False, score_true_data=None):
+ output=None, no_features_in_result=None, score=False, score_true_data=None, predict_labels=None):
return ModelPredict(self.ctx).execute(filename, model_id, threshold, locally, data, columns,
- predicted_at, output, no_features_in_result, score, score_true_data)
+ predicted_at, output, no_features_in_result, score, score_true_data, predict_labels)
def actuals(self, model_id, filename=None, data=None, columns=None, actuals_at=None,
actual_date_column=None, experiment_params=None, locally=False):
diff --git a/a2ml/api/auger/impl/mparts/predict.py b/a2ml/api/auger/impl/mparts/predict.py
index d523f6ca..8743c065 100644
--- a/a2ml/api/auger/impl/mparts/predict.py
+++ b/a2ml/api/auger/impl/mparts/predict.py
@@ -24,7 +24,7 @@ def __init__(self, ctx):
def execute(self, filename, model_id, threshold=None, locally=False, data=None, columns=None,
predicted_at=None, output=None, no_features_in_result=None,
- score=False, score_true_data=None):
+ score=False, score_true_data=None, predict_labels=None):
if filename is not None and isinstance(filename, str) and \
not (filename.startswith("http:") or filename.startswith("https:")) and \
not fsclient.is_s3_path(filename):
@@ -34,13 +34,13 @@ def execute(self, filename, model_id, threshold=None, locally=False, data=None,
if locally:
if locally == "docker":
predicted = self._predict_locally_in_docker(filename, model_id, threshold, data, columns, predicted_at, output,
- no_features_in_result, score, score_true_data)
+ no_features_in_result, score, score_true_data, predict_labels)
else:
predicted = self._predict_locally(filename, model_id, threshold, data, columns, predicted_at, output,
- no_features_in_result, score, score_true_data)
+ no_features_in_result, score, score_true_data, predict_labels)
else:
predicted = self._predict_on_cloud(filename, model_id, threshold, data, columns, predicted_at, output,
- no_features_in_result, score, score_true_data)
+ no_features_in_result, score, score_true_data, predict_labels)
return predicted
@@ -104,7 +104,7 @@ def _check_model_project(self, pipeline_api):
self.ctx.config.get('name'), model_project_name))
def _predict_on_cloud(self, filename, model_id, threshold, data, columns, predicted_at,
- output, no_features_in_result, score, score_true_data):
+ output, no_features_in_result, score, score_true_data, predict_labels):
records, features, file_url, is_pandas_df = self._process_input(filename, data, columns)
temp_file = None
ds_result = None
@@ -114,7 +114,7 @@ def _predict_on_cloud(self, filename, model_id, threshold, data, columns, predic
pipeline_api = AugerPipelineApi(self.ctx, None, model_id)
predictions = pipeline_api.predict(records, features, threshold=threshold, file_url=file_url,
predicted_at=predicted_at, no_features_in_result=no_features_in_result,
- score=score, score_true_data=score_true_data)
+ score=score, score_true_data=score_true_data, predict_labels=predict_labels)
try:
ds_result = DataFrame.create_dataframe(predictions.get('signed_prediction_url'),
@@ -145,7 +145,7 @@ def _predict_on_cloud(self, filename, model_id, threshold, data, columns, predic
fsclient.remove_file(temp_file)
def _predict_locally(self, filename_arg, model_id, threshold, data, columns, predicted_at,
- output, no_features_in_result, score, score_true_data):
+ output, no_features_in_result, score, score_true_data, predict_labels):
from auger_ml.model_exporter import ModelExporter
is_model_loaded, model_path = ModelDeploy(self.ctx, None).verify_local_model(model_id)
@@ -161,12 +161,17 @@ def _predict_locally(self, filename_arg, model_id, threshold, data, columns, pre
if score and score_true_data is None:
options = fsclient.read_json_file(os.path.join(model_path, "options.json"))
- ds = DataFrame.create_dataframe(filename_arg, data, [options['targetFeature']])
+ ds = DataFrame.create_dataframe(filename_arg, data)#, [options['targetFeature']])
score_true_data = ds.df
-
- res, options = ModelExporter({}).predict_by_model_to_ds(model_path,
- path_to_predict=filename_arg, records=data, features=columns,
- threshold=threshold, no_features_in_result=no_features_in_result)
+
+ if predict_labels:
+ res, options = ModelExporter({}).predict_labels_by_model_to_ds(model_path,
+ path_to_predict=filename_arg, records=data, features=columns,
+ threshold=threshold, no_features_in_result=no_features_in_result, predict_labels=predict_labels)
+ else:
+ res, options = ModelExporter({}).predict_by_model_to_ds(model_path,
+ path_to_predict=filename_arg, records=data, features=columns,
+ threshold=threshold, no_features_in_result=no_features_in_result)
ds_result = DataFrame({'data_path': None})
ds_result.df = res.df
@@ -192,7 +197,7 @@ def _predict_locally(self, filename_arg, model_id, threshold, data, columns, pre
# no_features_in_result=no_features_in_result) #, output=output)
def _predict_locally_in_docker(self, filename_arg, model_id, threshold, data, columns, predicted_at,
- output, no_features_in_result, score, score_true_data):
+ output, no_features_in_result, score, score_true_data, predict_labels):
model_deploy = ModelDeploy(self.ctx, None)
is_model_loaded, model_path = model_deploy.verify_local_model(model_id, add_model_folder=False)
if not is_model_loaded:
@@ -205,7 +210,7 @@ def _predict_locally_in_docker(self, filename_arg, model_id, threshold, data, co
filename = os.path.join(self.ctx.config.get_path(), '.augerml', 'predict_data.csv')
ds.saveToCsvFile(filename, compression=None)
- predicted = self._docker_run_predict(filename, threshold, model_path, score, score_true_data)
+ predicted = self._docker_run_predict(filename, threshold, model_path, score, score_true_data, predict_labels)
if not filename_arg:
ds_result = DataFrame.create_dataframe(predicted)
@@ -223,7 +228,7 @@ def _predict_locally_in_docker(self, filename_arg, model_id, threshold, data, co
return predicted
- def _docker_run_predict(self, filename, threshold, model_path, score, score_true_data):
+ def _docker_run_predict(self, filename, threshold, model_path, score, score_true_data, predict_labels):
cluster_settings = AugerClusterApi.get_cluster_settings(self.ctx)
docker_tag = cluster_settings.get('kubernetes_stack')
predict_file = os.path.basename(filename)
diff --git a/a2ml/api/auger/model.py b/a2ml/api/auger/model.py
index 326a219f..5f061718 100644
--- a/a2ml/api/auger/model.py
+++ b/a2ml/api/auger/model.py
@@ -23,15 +23,15 @@ def deploy(self, project, model_id, locally, review, name, algorithm, score, dat
@authenticated
#@with_project(autocreate=False)
def predict(self, filename, model_id, threshold, locally, data, columns, predicted_at, output,
- no_features_in_result, score, score_true_data):
+ no_features_in_result, score, score_true_data, predict_labels):
if locally:
self.deploy(model_id, locally, review=False, name=None, algorithm=None, score=None, data_path=None)
predicted = Model(self.ctx, project=None).predict(
filename, model_id, threshold, locally, data, columns, predicted_at, output,
- no_features_in_result, score, score_true_data)
+ no_features_in_result, score, score_true_data, predict_labels)
- if filename:
+ if output:
self.ctx.log('Predictions stored in %s' % predicted)
if isinstance(predicted, dict) and 'predicted' in predicted:
diff --git a/a2ml/api/utils/formatter.py b/a2ml/api/utils/formatter.py
index e7a118bb..d5f37508 100644
--- a/a2ml/api/utils/formatter.py
+++ b/a2ml/api/utils/formatter.py
@@ -12,7 +12,8 @@ def print_table(log, table_list, headers=None, hor_lines=True):
col_list = list(table_list[0].keys() if table_list else [])
row_list = [col_list] # 1st row = header
for item in table_list:
- row_list.append([str(item.get(col) or '') for col in col_list])
+ row_list.append([str(item.get(col)) if item.get(col) is not None else '' for col in col_list])
+
# maximun size of the col for each element
col_size = [max(map(len, col)) for col in zip(*row_list)]
# insert seperating line before every line, and extra one for ending.
diff --git a/setup.py b/setup.py
index 646d8b7c..3998fdeb 100644
--- a/setup.py
+++ b/setup.py
@@ -84,13 +84,13 @@ def run(self):
'google-cloud-automl'
],
'predict': [
- 'auger.ai.predict[all]==1.0.104'
+ 'auger.ai.predict[all]==1.0.106'
],
'predict_no_cat_lgbm': [
- 'auger.ai.predict[no_cat_lgbm]==1.0.104'
+ 'auger.ai.predict[no_cat_lgbm]==1.0.106'
],
'predict_no_lgbm': [
- 'auger.ai.predict[no_cat_lgbm]==1.0.104',
+ 'auger.ai.predict[no_cat_lgbm]==1.0.106',
'catboost'
]
}
| WIP: Move api to auger.ai repo
Moving all aunderlying auger api code to auger.ai repo
| 2022-09-29T10:02:12 | 0.0 | [] | [] |
|||
augerai/a2ml | augerai__a2ml-610 | 0198cb1d42783000318a5e4579018a8be362743f | diff --git a/.circleci/config.yml b/.circleci/config.yml
deleted file mode 100644
index 8b70a2d2..00000000
--- a/.circleci/config.yml
+++ /dev/null
@@ -1,254 +0,0 @@
-version: 2.1
-
-orbs:
- docker: circleci/[email protected]
- aws-eks: circleci/[email protected]
- role: airswap/[email protected]
- aws-cli: circleci/[email protected]
- kubernetes: circleci/[email protected]
- helm: circleci/[email protected]
-
-jobs:
- build-docs:
- docker:
- - image: circleci/python:3.7-stretch
- steps:
- - checkout
- - run: sudo chown -R circleci:circleci /usr/local/bin
- - run: sudo chown -R circleci:circleci /usr/local/lib/python3.7/site-packages
- - restore_cache:
- keys:
- - a2ml-python-doc-deps-v3-{{ arch }}-3.7-{{ .Branch }}-{{ checksum "setup.py" }}-{{ checksum "docs/requirements.txt" }}
- - a2ml-python-doc-deps-v3-{{ arch }}-3.7-{{ .Branch }}
- - a2ml-python-doc-deps-v3-{{ arch }}-3.7
- - run:
- name: Install dependencies
- command: |
- virtualenv venv
- source venv/bin/activate
- make develop-docs
- - save_cache:
- key: a2ml-python-doc-deps-v3-{{ arch }}-3.7-{{ .Branch }}-{{ checksum "setup.py" }}-{{ checksum "docs/requirements.txt" }}
- paths:
- - "venv"
- - "/home/circleci/.cache/pip"
- - run:
- name: Build docs
- command: |
- source venv/bin/activate
- cd docs/
- make html
- - persist_to_workspace:
- root: docs/build
- paths: html
- publish-docs:
- docker:
- - image: node:10.15.0
- steps:
- - checkout
- - attach_workspace:
- at: docs/build
- - add_ssh_keys:
- fingerprints: "44:aa:23:95:60:12:6b:b5:8d:b2:e5:05:24:1f:94:cf"
- - run:
- name: Deploy docs to gh-pages branch
- command: |
- git config user.email "[email protected]"
- git config user.name "augerbot"
- npm install -g --silent [email protected]
- gh-pages --dotfiles --message "[skip ci] Updates" --dist docs/build/html
- build-and-test:
- docker:
- - image: cimg/base:stable
- steps:
- - checkout
- - setup_remote_docker
- - run:
- name: Install Docker Compose
- environment:
- COMPOSE_VERSION: '1.29.2'
- command: |
- curl -L "https://github.com/docker/compose/releases/download/${COMPOSE_VERSION}/docker-compose-$(uname -s)-$(uname -m)" -o ~/docker-compose
- chmod +x ~/docker-compose
- sudo mv ~/docker-compose /usr/local/bin/docker-compose
- - run: make config docker-test
- - run: make docker-save
- - persist_to_workspace:
- root: .
- paths:
- - ./image.tar.gz
- publish-docker:
- executor: docker/machine
- parameters:
- docker-tag:
- description: Tag to publish
- type: string
- default: latest
- steps:
- - checkout
- - attach_workspace:
- at: ./
- - docker/check
- - run: make docker-load
- - run: DOCKER_TAG=<< parameters.docker-tag >> make docker-tag
- - docker/push:
- image: augerai/a2ml
- tag: << parameters.docker-tag >>
-
- publish-pip:
- docker:
- - image: circleci/python:3.7-stretch
- steps:
- - checkout
- - run:
- command: |
- echo -e "[pypi]" >> ~/.pypirc
- echo -e "username = $PYPI_USERNAME" >> ~/.pypirc
- echo -e "password = $PYPI_PASSWORD" >> ~/.pypirc
- - run: make build
- - run: make release
-
- deploy-to-k8s:
- executor: aws-eks/python3
- parameters:
- cluster-name:
- description: |
- Name of the EKS cluster
- type: string
- default: ${STAGING_CLUSTER_NAME}
- aws-region:
- description: |
- AWS region
- type: string
- default: ${AWS_DEFAULT_REGION}
- namespace:
- description: |
- a2ml namespace
- type: string
- default: a2ml
- release-name:
- description: |
- a2ml helm release-name
- type: string
- default: a2ml
- reuse-values:
- description: |
- Reuse last release's values and merge in any overrides
- type: boolean
- default: true
- account-id:
- description: |
- AWS account containing the cluster
- type: string
- default: ${ACCOUNT_ID}
- role-name:
- description: |
- AWS role to assume for deploying to eks
- type: string
- default: ${ROLE_NAME}
- values-to-override:
- description: |
- Values will be used as helm install --set "key1=value1,key2=value2"
- type: string
- default: ""
- steps:
- - aws-cli/setup
- - role/assume-role:
- account-id: << parameters.account-id >>
- role-name: << parameters.role-name >>
- - aws-eks/update-kubeconfig-with-authenticator:
- cluster-name: << parameters.cluster-name >>
- aws-region: << parameters.aws-region >>
- install-kubectl: true
- - helm/install-helm-client:
- version: v3.4.2
- - run:
- command: |
- helm repo add augerai https://augerai.github.io/charts
- helm repo update
- helm repo list
- name: Add augerai repo
- - helm/upgrade-helm-chart:
- helm-version: v3.2.4
- chart: augerai/a2ml
- namespace: << parameters.namespace >>
- release-name: << parameters.release-name >>
- reuse-values: << parameters.reuse-values >>
- values-to-override: << parameters.values-to-override >>
-
-workflows:
- build-test-publish:
- jobs:
- - build-and-test:
- filters:
- tags:
- only: /^v.*/
- - build-docs
- - publish-docs:
- requires:
- - build-and-test
- - build-docs
- filters:
- branches:
- only:
- - master
- - publish-docker:
- context: docker-hub
- name: docker-publish-tag
- docker-tag: $CIRCLE_TAG
- requires:
- - build-and-test
- filters:
- tags:
- only: /^v.*/
- branches:
- ignore: /.*/
- - publish-docker:
- context: docker-hub
- name: docker-publish-master
- requires:
- - build-and-test
- filters:
- branches:
- only:
- - master
- tags:
- ignore: /^v.*/
- - deploy-to-k8s:
- name: deploy-to-k8s-master
- cluster-name: ${STAGING_CLUSTER_NAME}
- values-to-override: "image.tag=latest"
- release-name: a2ml
- namespace: a2ml
- context: eks
- requires:
- - docker-publish-master
- filters:
- branches:
- only:
- - master
- tags:
- ignore: /^v.*/
- - deploy-to-k8s:
- name: deploy-to-k8s
- namespace: a2ml
- release-name: a2ml
- values-to-override: "image.tag=$CIRCLE_TAG"
- context: eks
- requires:
- - docker-publish-tag
- account-id: ${PROD_ACCOUNT_ID}
- cluster-name: ${PROD_CLUSTER_NAME}
- role-name: ${PROD_ROLE_NAME}
- filters:
- tags:
- only: /^v.*/
- branches:
- ignore: /.*/
- - publish-pip:
- filters:
- tags:
- only: /^v.*/
- branches:
- ignore: /.*/
- context: pypi
diff --git a/.github/workflows/docs.yml b/.github/workflows/docs.yml
new file mode 100644
index 00000000..f87c87d2
--- /dev/null
+++ b/.github/workflows/docs.yml
@@ -0,0 +1,32 @@
+name: docs
+
+on:
+ push:
+ tags:
+ - v*
+
+jobs:
+ build_publish_docs:
+ runs-on: ubuntu-latest
+
+ steps:
+ - uses: actions/checkout@v3
+ - name: Set up Python
+ uses: actions/setup-python@v3
+ with:
+ python-version: 3.7
+
+ - name: Build docs
+ run: |
+ make develop-docs
+ cd docs/
+ make html
+
+ - name: Deploy
+ uses: peaceiris/actions-gh-pages@v3
+ with:
+ github_token: ${{ secrets.GITHUB_TOKEN }}
+ publish_dir: docs/build/html
+
+
+
\ No newline at end of file
diff --git a/.github/workflows/publish_docker.yml b/.github/workflows/publish_docker.yml
new file mode 100644
index 00000000..80739507
--- /dev/null
+++ b/.github/workflows/publish_docker.yml
@@ -0,0 +1,69 @@
+name: publish_docker
+
+on:
+ push:
+ tags:
+ - v*
+ branches:
+ - master
+
+jobs:
+ publish_docker:
+ runs-on: ubuntu-latest
+
+ permissions:
+ id-token: write
+ contents: read
+ env:
+ DOCKER_TAG: ${{github.ref_type == 'tag' && github.ref_name || 'latest'}}
+ REPO_NAME: 'augerai/a2ml'
+ DOCKER_USER: ${{ secrets.DOCKER_USER }}
+ DOCKER_PASS: ${{ secrets.DOCKER_PASS }}
+
+ AWS_KS_ROLE: ${{ secrets[format('AWS_KS_{0}_ROLE', github.ref_type == 'tag' && 'STABLE' || 'EXPERIMENTAL')] }}
+ CLUSTER_NAME: ${{ secrets[format('{0}_CLUSTER_NAME', github.ref_type == 'tag' && 'STABLE' || 'EXPERIMENTAL')] }}
+ KUBECONFIG_FILE: '/home/runner/.kube/config'
+ RELEASE_NAME: 'a2ml'
+
+ steps:
+ - uses: actions/checkout@v3
+
+ - name: Build docker and run tests
+ run: make config docker-test
+
+ - name: Push docker image
+ run: |
+ docker login -u $DOCKER_USER -p $DOCKER_PASS
+ docker push $REPO_NAME:$DOCKER_TAG
+
+ - name: configure aws credentials with role1
+ uses: aws-actions/configure-aws-credentials@v1
+ with:
+ role-to-assume: ${{ secrets.AWS_ROLE }}
+ aws-region: us-west-2
+
+ - name: Assume execution role
+ uses: aws-actions/configure-aws-credentials@v1
+ with:
+ aws-access-key-id: ${{ env.AWS_ACCESS_KEY_ID }}
+ aws-region: us-west-2
+ aws-secret-access-key: ${{ env.AWS_SECRET_ACCESS_KEY }}
+ aws-session-token: ${{ env.AWS_SESSION_TOKEN }}
+ role-duration-seconds: 3000
+ role-skip-session-tagging: true
+ role-to-assume: ${{ env.AWS_KS_ROLE }}
+
+ - uses: azure/[email protected]
+ - uses: azure/setup-helm@v1
+ with:
+ version: 'v3.4.2'
+
+ - name: setup the kubectl config
+ run : aws eks update-kubeconfig --name $CLUSTER_NAME
+
+ - name: Helm upgrade augerai repo
+ run: |
+ helm repo add augerai https://augerai.github.io/charts
+ helm repo update
+ helm repo list
+ helm upgrade $RELEASE_NAME $REPO_NAME --namespace=$RELEASE_NAME --set=image.tag=$DOCKER_TAG --reuse-values --wait --atomic --kubeconfig $KUBECONFIG_FILE
diff --git a/.github/workflows/publish_pip.yml b/.github/workflows/publish_pip.yml
new file mode 100644
index 00000000..e10e2f9a
--- /dev/null
+++ b/.github/workflows/publish_pip.yml
@@ -0,0 +1,33 @@
+name: publish_pip
+
+on:
+ push:
+ tags:
+ - v*
+
+jobs:
+ publish_pip:
+ runs-on: ubuntu-latest
+ env:
+ PYPI_USERNAME: ${{ secrets.PYPI_USERNAME }}
+ PYPI_PASSWORD: ${{ secrets.PYPI_PASSWORD }}
+
+ steps:
+ - uses: actions/checkout@v3
+ - name: Set up Python
+ uses: actions/setup-python@v3
+ with:
+ python-version: 3.7
+
+ - name: Make pypirc file
+ run: |
+ echo -e "[pypi]" >> ~/.pypirc
+ echo -e "username = $PYPI_USERNAME" >> ~/.pypirc
+ echo -e "password = $PYPI_PASSWORD" >> ~/.pypirc
+
+ - name: Install dependencies
+ run: pip install wheel
+ - name: Build wheel
+ run: make build
+ - name: Deploy package
+ run: make release
diff --git a/a2ml/__init__.py b/a2ml/__init__.py
index 53a7c762..461d9678 100644
--- a/a2ml/__init__.py
+++ b/a2ml/__init__.py
@@ -1,1 +1,1 @@
-__version__ = '1.0.76'
+__version__ = '1.0.77'
diff --git a/a2ml/api/a2ml.py b/a2ml/api/a2ml.py
index dc72609a..03454e01 100644
--- a/a2ml/api/a2ml.py
+++ b/a2ml/api/a2ml.py
@@ -8,7 +8,7 @@ class A2ML(BaseA2ML):
"""Facade to A2ML providers."""
def __init__(self, ctx, provider = None):
- """Initializes A2ML PREDIT instance.
+ """Initializes new A2ML PREDIT instance.
Args:
ctx (object): An instance of the a2ml Context.
diff --git a/a2ml/api/model_review/model_review.py b/a2ml/api/model_review/model_review.py
index f84dfa20..11f95335 100644
--- a/a2ml/api/model_review/model_review.py
+++ b/a2ml/api/model_review/model_review.py
@@ -79,6 +79,8 @@ def _do_score_actual(self, df_data, predicted_feature=None, extra_features=[]):
def validate_roi_syntax(self, expressions, features=[]):
res = []
+ logging.info('validate_roi_syntax with experession: %s'%(expressions))
+
known_vars = ["A", "P", "$" + self.target_feature] + list(
map(lambda name: "$" + name, set(self.original_features + features))
)
diff --git a/docs/requirements.txt b/docs/requirements.txt
index 51d880e1..0f8a6e5f 100644
--- a/docs/requirements.txt
+++ b/docs/requirements.txt
@@ -1,2 +1,2 @@
-sphinx~=3.0.4
+sphinx~=4.4.0
git+https://github.com/augerai/sphinx_rtd_theme.git@bump-version#2ab38df0d303163e0e6c2bac80d907e9915000cb'
| WIP: Move api to auger.ai repo
Moving all aunderlying auger api code to auger.ai repo
| 2022-05-09T20:42:48 | 0.0 | [] | [] |
|||
augerai/a2ml | augerai__a2ml-607 | 2273c754ddc486783b6b1095e15c5b67e7c48242 | diff --git a/a2ml/__init__.py b/a2ml/__init__.py
index a53afbe9..218e3516 100644
--- a/a2ml/__init__.py
+++ b/a2ml/__init__.py
@@ -1,1 +1,1 @@
-__version__ = '1.0.65'
+__version__ = '1.0.66'
diff --git a/a2ml/api/auger/config.py b/a2ml/api/auger/config.py
index 0a9e47a5..3d8013fb 100644
--- a/a2ml/api/auger/config.py
+++ b/a2ml/api/auger/config.py
@@ -3,7 +3,7 @@ def __init__(self, ctx):
super(AugerConfig, self).__init__()
self.ctx = ctx
- def set_data_set(self, name, source=None, validation=False):
+ def set_data_set(self, name, source=None, validation=False, user_name=None):
#TODO: add more providers later
if validation:
self.ctx.config.set('experiment/validation_dataset', name)
@@ -12,6 +12,9 @@ def set_data_set(self, name, source=None, validation=False):
else:
#print("set_data_set: %s"%self.ctx.use_auger_cloud())
self.ctx.config.set('dataset', name)
+ if user_name:
+ self.ctx.config.set('dataset_name', user_name)
+
if self.ctx.use_auger_cloud() and 'azure' in self.ctx.get_providers():
self.ctx.config.set('dataset', name, "azure")
@@ -21,9 +24,34 @@ def set_data_set(self, name, source=None, validation=False):
def set_experiment(self, experiment_name, experiment_session_id):
self.ctx.config.set('experiment/name', experiment_name)
self.ctx.config.set('experiment/experiment_session_id', experiment_session_id)
+
+ if self.ctx.config.get('dataset_name'):
+ dataset_name = self.ctx.config.get('dataset_name')
+ self.ctx.config.set(f'experiments/{dataset_name}/experiment_id', experiment_name)
+ self.ctx.config.set(f'experiments/{dataset_name}/experiment_session_id', experiment_session_id)
+
self.ctx.config.write()
+ def _get_experiment_by_dataset(self):
+ dataset_name = self.ctx.config.get('dataset_name')
+ experiments = self.ctx.config.get('experiments', {})
+
+ return experiments.get(dataset_name, {})
+
+ def get_experiment(self):
+ return self._get_experiment_by_dataset().get('experiment_id',
+ self.ctx.config.get('experiment/name'))
+
+ def get_experiment_session(self):
+ return self._get_experiment_by_dataset().get('experiment_session_id',
+ self.ctx.config.get('experiment/experiment_session_id'))
+
+ def get_dataset(self):
+ return self._get_experiment_by_dataset().get('dataset_id',
+ self.ctx.config.get('dataset'))
+
def set_project(self, project_name):
self.ctx.config.set('name', project_name)
self.ctx.config.write()
return self
+
diff --git a/a2ml/api/auger/dataset.py b/a2ml/api/auger/dataset.py
index 65ec91ea..a99cc098 100644
--- a/a2ml/api/auger/dataset.py
+++ b/a2ml/api/auger/dataset.py
@@ -18,7 +18,7 @@ def __init__(self, ctx):
@with_project(autocreate=False)
def list(self, project):
count = 0
- selected = self.ctx.config.get('dataset', None)
+ selected = AugerConfig(self.ctx).get_dataset() #self.ctx.config.get('dataset', None)
for dataset in iter(DataSet(self.ctx, project).list()):
self.ctx.log(
('[%s] ' % ('x' if selected == dataset.get('name') else ' ')) +
@@ -40,7 +40,7 @@ def _create(self, project, source = None, validation=False, name=None, descripti
if source is None:
source = self.ctx.config.get('source', None)
dataset = DataSet(self.ctx, project).create(source, name, description)
- AugerConfig(self.ctx).set_data_set(dataset.name, source, validation)
+ AugerConfig(self.ctx).set_data_set(dataset.name, source, validation, name)
return dataset
@@ -60,7 +60,7 @@ def upload(self, project, source = None, name=None):
@with_project(autocreate=False)
def delete(self, project, name):
if name is None:
- name = self.ctx.config.get('dataset', None)
+ name = AugerConfig(self.ctx).get_dataset() #self.ctx.config.get('dataset', None)
DataSet(self.ctx, project, name).delete()
if name == self.ctx.config.get('dataset', None):
AugerConfig(self.ctx).set_data_set(None, None, False).set_experiment(None, None)
@@ -69,7 +69,7 @@ def delete(self, project, name):
@error_handler
def select(self, name):
- old_name = self.ctx.config.get('dataset', None)
+ old_name = AugerConfig(self.ctx).get_dataset() #self.ctx.config.get('dataset', None)
if name != old_name:
AugerConfig(self.ctx).set_data_set(name, None, False).set_experiment(None, None)
self.ctx.log('Selected DataSet %s' % name)
@@ -80,7 +80,7 @@ def select(self, name):
@with_project(autocreate=False)
def download(self, project, name, path_to_download):
if name is None:
- name = self.ctx.config.get('dataset', None)
+ name = AugerConfig(self.ctx).get_dataset() #self.ctx.config.get('dataset', None)
file_name = DataSet(self.ctx, project, name).download(path_to_download)
self.ctx.log('Downloaded dataset %s to %s' % (name, file_name))
return {'dowloaded': name, 'file': file_name}
diff --git a/a2ml/api/auger/experiment.py b/a2ml/api/auger/experiment.py
index edb4df07..04dbc3cc 100644
--- a/a2ml/api/auger/experiment.py
+++ b/a2ml/api/auger/experiment.py
@@ -31,7 +31,7 @@ def list(self, dataset):
@with_dataset
def start(self, dataset):
experiment_name = \
- self.ctx.config.get('experiment/name', None)
+ AugerConfig(self.ctx).get_experiment() #self.ctx.config.get('experiment/name', None)
experiment_name, session_id = \
Experiment(self.ctx, dataset, experiment_name).start()
AugerConfig(self.ctx).set_experiment(experiment_name, session_id)
@@ -41,12 +41,12 @@ def start(self, dataset):
@authenticated
@with_dataset
def stop(self, dataset, run_id = None):
- name = self.ctx.config.get('experiment/name', None)
+ name = AugerConfig(self.ctx).get_experiment() #self.ctx.config.get('experiment/name', None)
if name is None:
raise AugerException('Please specify Experiment name...')
if run_id is None:
- run_id = self.ctx.config.get(
- 'experiment/experiment_session_id', None)
+ run_id = AugerConfig(self.ctx).get_experiment_session()
+ #self.ctx.config.get('experiment/experiment_session_id', None)
if Experiment(self.ctx, dataset, name).stop(run_id):
self.ctx.log('Search is stopped...')
@@ -58,12 +58,13 @@ def stop(self, dataset, run_id = None):
@authenticated
@with_dataset
def leaderboard(self, dataset, run_id = None):
- name = self.ctx.config.get('experiment/name', None)
+ name = AugerConfig(self.ctx).get_experiment() #self.ctx.config.get('experiment/name', None)
if name is None:
raise AugerException('Please specify Experiment name...')
if run_id is None:
- run_id = self.ctx.config.get(
- 'experiment/experiment_session_id', None)
+ run_id = AugerConfig(self.ctx).get_experiment_session()
+ # run_id = self.ctx.config.get(
+ # 'experiment/experiment_session_id', None)
leaderboard, status, run_id, trials_count, errors = Experiment(
self.ctx, dataset, name).leaderboard(run_id)
if leaderboard is None:
@@ -109,7 +110,7 @@ def leaderboard(self, dataset, run_id = None):
@authenticated
@with_dataset
def history(self, dataset):
- name = self.ctx.config.get('experiment/name', None)
+ name = AugerConfig(self.ctx).get_experiment() #self.ctx.config.get('experiment/name', None)
if name is None:
raise AugerException('Please specify Experiment name...')
for exp_run in iter(Experiment(self.ctx, dataset, name).history()):
diff --git a/a2ml/api/auger/impl/decorators.py b/a2ml/api/auger/impl/decorators.py
index aaa73523..f681cad2 100644
--- a/a2ml/api/auger/impl/decorators.py
+++ b/a2ml/api/auger/impl/decorators.py
@@ -33,10 +33,11 @@ def wrapper(self, *args, **kwargs):
def with_dataset(decorated):
from .dataset import DataSet
+ from ..config import AugerConfig
def wrapper(self, *args, **kwargs):
project = _get_project(self, False)
- data_set_name = self.ctx.config.get('dataset', None)
+ data_set_name = AugerConfig(self.ctx).get_dataset() #self.ctx.config.get('dataset', None)
if data_set_name is None:
raise AugerException(
'Please specify dataset name in auger.yaml/dataset...')
diff --git a/a2ml/api/utils/context.py b/a2ml/api/utils/context.py
index 853aa570..cab0cf6c 100644
--- a/a2ml/api/utils/context.py
+++ b/a2ml/api/utils/context.py
@@ -14,7 +14,7 @@
class Context(object):
"""The Context class provides an environment to run A2ML"""
- def __init__(self, name='config', path=None, debug=False):
+ def __init__(self, name='auger', path=None, debug=False):
"""Initializes the Context instance
Args:
@@ -39,7 +39,7 @@ def __init__(self, name='config', path=None, debug=False):
self.provider_info = None
if len(self.name) > 0:
- self.name = "{:<9}".format('[%s]' % self.name)
+ self.name = f'[{self.name}] ' #"{:<9}".format('[%s]' % self.name)
self.debug = self.config.get('debug', debug)
self.set_runs_on_server(False)
@@ -109,6 +109,8 @@ def is_external_provider(self):
return providers and providers[0] == 'external'
def copy(self, name):
+ return self
+
"""creates a copy of an existing Context
Args:
@@ -123,23 +125,23 @@ def copy(self, name):
ctx = Context()
new_ctx = ctx.copy()
"""
- new = Context(name, self.config.path, self.debug)
- new.set_runs_on_server(self._runs_on_server)
- new.notificator = self.notificator
- new.request_id = self.request_id
- new.config.parts = self.config.parts
- new.config.parts_changes = self.config.parts_changes
-
- try:
- new.config.set("providers", name, config_name='config')
- except Exception as e:
- # In case if command run in folder without config, do not set it
- pass
+ # new = Context(name, self.config.path, self.debug)
+ # new.set_runs_on_server(self._runs_on_server)
+ # new.notificator = self.notificator
+ # new.request_id = self.request_id
+ # new.config.parts = self.config.parts
+ # new.config.parts_changes = self.config.parts_changes
+
+ # try:
+ # new.config.set("providers", name, config_name='config')
+ # except Exception as e:
+ # # In case if command run in folder without config, do not set it
+ # pass
- if hasattr(self, 'credentials'):
- new.credentials = self.credentials
+ # if hasattr(self, 'credentials'):
+ # new.credentials = self.credentials
- return new
+ # return new
def log(self, msg, *args, **kwargs):
log.info('%s%s' %(self.name, msg), *args, **kwargs)
diff --git a/a2ml/cmdl/commands/cmd_import.py b/a2ml/cmdl/commands/cmd_import.py
index 2502ef75..fcc87dbc 100644
--- a/a2ml/cmdl/commands/cmd_import.py
+++ b/a2ml/cmdl/commands/cmd_import.py
@@ -5,12 +5,14 @@
@click.command('import', short_help='Import data for training.')
@click.option('--source', '-s', type=click.STRING, required=False,
help='Source file to import.If skipped, then import source from config.yml.')
[email protected]('--name', '-n', type=click.STRING, required=False,
+ help='Name file to import.')
@click.option('--description', '-d', type=click.STRING, required=False,
help='Description of dataset.')
@click.option('--provider', '-p', type=click.Choice(['auger','azure']), required=False,
help='Cloud AutoML Provider.')
@pass_context
-def cmdl(ctx, source, description, provider):
+def cmdl(ctx, source, name, description, provider):
"""Import data for training."""
ctx.setup_logger(format='')
- A2ML(ctx, provider).import_data(source, description=description)
+ A2ML(ctx, provider).import_data(source, name, description=description)
| WIP: Move api to auger.ai repo
Moving all aunderlying auger api code to auger.ai repo
| 2022-03-17T09:51:24 | 0.0 | [] | [] |
|||
augerai/a2ml | augerai__a2ml-601 | bb141e98e7cb89a5d6aa226cb98adbb1b3163add | diff --git a/a2ml/api/a2ml.py b/a2ml/api/a2ml.py
index 69f5b188..8424c81a 100644
--- a/a2ml/api/a2ml.py
+++ b/a2ml/api/a2ml.py
@@ -365,7 +365,8 @@ def predict(self, model_id, filename=None, data=None, columns=None, predicted_at
score, score_true_data )
@show_result
- def actuals(self, model_id, filename=None, data=None, columns=None, actuals_at=None, actual_date_column=None, locally=False, provider=None):
+ def actuals(self, model_id, filename=None, data=None, columns=None, actuals_at=None,
+ actual_date_column=None, experiment_params=None, locally=False, provider=None):
"""Submits actual results(ground truths) for predictions of a deployed model. This is used to review and monitor active models.
Note:
@@ -396,6 +397,12 @@ def actuals(self, model_id, filename=None, data=None, columns=None, actuals_at=N
columns(list): list of column names if data is array of records
actuals_at: Actuals date. Use for review of historical data.
actual_date_column(str): name of column in data which contains actual date
+ experiment_params(dict): parameters to calculate experiment metrics ::
+
+ start_date(date): experiment actuals start date
+ end_date(date): experiment actuals end date
+ date_col(str): column name with date
+
locally(bool): Process actuals locally.
provider (str): The automl provider you wish to run. For example 'auger'. The default is None - use provider set in costructor or config.
@@ -437,7 +444,8 @@ def actuals(self, model_id, filename=None, data=None, columns=None, actuals_at=N
A2ML(ctx, "external").actuals('external_model_id', data=actual_records,columns=columns)
"""
- return self.get_runner(locally, model_id, provider).execute_one_provider('actuals', model_id, filename, data, columns, actuals_at, actual_date_column, locally)
+ return self.get_runner(locally, model_id, provider).execute_one_provider('actuals',
+ model_id, filename, data, columns, actuals_at, actual_date_column, experiment_params, locally)
@show_result
diff --git a/a2ml/api/a2ml_model.py b/a2ml/api/a2ml_model.py
index aaf1cf0c..86dae92b 100644
--- a/a2ml/api/a2ml_model.py
+++ b/a2ml/api/a2ml_model.py
@@ -155,7 +155,8 @@ def predict(self, model_id, filename=None, data=None, columns=None, predicted_at
score, score_true_data )
@show_result
- def actuals(self, model_id, filename=None, data=None, columns=None, actuals_at=None, actual_date_column=None, locally=False, provider=None):
+ def actuals(self, model_id, filename=None, data=None, columns=None, actuals_at=None,
+ actual_date_column=None, experiment_params=None, locally=False, provider=None):
"""Submits actual results(ground truths) for predictions of a deployed model. This is used to review and monitor active models.
Note:
@@ -186,6 +187,13 @@ def actuals(self, model_id, filename=None, data=None, columns=None, actuals_at=N
columns(list): list of column names if data is array of records
actuals_at: Actuals date. Use for review of historical data.
actual_date_column(str): name of column in data which contains actual date
+ experiment_params(dict): parameters to calculate experiment metrics ::
+
+ start_date(date): experiment actuals start date
+ end_date(date): experiment actuals end date
+ date_col(str): column name with date
+
+
locally(bool): Process actuals locally.
provider (str): The automl provider you wish to run. For example 'auger'. The default is None - use provider set in costructor or config.
@@ -227,7 +235,8 @@ def actuals(self, model_id, filename=None, data=None, columns=None, actuals_at=N
A2MLModel(ctx, "external").actuals('external_model_id', data=actual_records,columns=columns)
"""
- return self.get_runner(locally, model_id, provider).execute_one_provider('actuals', model_id, filename, data, columns, actuals_at, actual_date_column, locally)
+ return self.get_runner(locally, model_id, provider).execute_one_provider('actuals',
+ model_id, filename, data, columns, actuals_at, actual_date_column, experiment_params, locally)
@show_result
def review_alert(self, model_id, parameters = None, locally=False, provider=None, name=None):
diff --git a/a2ml/api/auger/a2ml.py b/a2ml/api/auger/a2ml.py
index 27c75909..46f7db9d 100644
--- a/a2ml/api/auger/a2ml.py
+++ b/a2ml/api/auger/a2ml.py
@@ -30,9 +30,10 @@ def predict(self, model_id, filename, threshold=None, locally=False, data=None,
model_id, filename, threshold, locally, data, columns, predicted_at, output,
no_features_in_result, score, score_true_data)
- def actuals(self, model_id, filename=None, data=None, columns=None, actuals_at=None, actual_date_column=None, locally=False):
+ def actuals(self, model_id, filename=None, data=None, columns=None, actuals_at=None,
+ actual_date_column=None, experiment_params=None, locally=False):
return AugerModel(self.ctx).actuals(
- model_id, filename, data, columns, actuals_at, actual_date_column, locally)
+ model_id, filename, data, columns, actuals_at, actual_date_column, experiment_params, locally)
def delete_actuals(self, model_id, with_predictions=False, begin_date=None, end_date=None, locally=False):
return AugerModel(self.ctx).delete_actuals(
diff --git a/a2ml/api/auger/impl/cloud/actual.py b/a2ml/api/auger/impl/cloud/actual.py
index 17e08373..c29c7f23 100644
--- a/a2ml/api/auger/impl/cloud/actual.py
+++ b/a2ml/api/auger/impl/cloud/actual.py
@@ -12,7 +12,7 @@ def __init__(self, ctx, pipeline_api, use_endpoint=False):
self.parent_id_name = "endpoint_id"
self._set_api_request_path("AugerEndpointActualApi")
- def create(self, records, features, actuals_at, actuals_path, actual_date_column):
+ def create(self, records, features, actuals_at, actuals_path, actual_date_column, experiment_params):
params = {}
if self.use_endpoint:
params['endpoint_id'] = self.parent_api.object_id
@@ -35,6 +35,10 @@ def create(self, records, features, actuals_at, actuals_path, actual_date_column
if actuals_at:
params['actuals_at'] = str(actuals_at)
+ if experiment_params:
+ params['experiment_params'] = experiment_params
+
+ print(params)
return self._call_create(
params=params,
has_return_object=False)
diff --git a/a2ml/api/auger/impl/cloud/pipeline.py b/a2ml/api/auger/impl/cloud/pipeline.py
index 4c2e4605..b5c1847e 100644
--- a/a2ml/api/auger/impl/cloud/pipeline.py
+++ b/a2ml/api/auger/impl/cloud/pipeline.py
@@ -94,12 +94,12 @@ def predict(self, records, features, threshold=None, file_url=None, predicted_at
return prediction_properties.get('result')
- def actual(self, records, features, actuals_at, actuals_path, actual_date_column):
+ def actual(self, records, features, actuals_at, actuals_path, actual_date_column, experiment_params):
if self.object_id is None:
raise AugerException('Please provide Auger Pipeline id')
actual_api = AugerActualApi(self.ctx, self, use_endpoint=self.check_endpoint())
- actual_api.create(records, features, actuals_at, actuals_path, actual_date_column)
+ actual_api.create(records, features, actuals_at, actuals_path, actual_date_column, experiment_params)
#TODO: get object actual from cloud
return True
diff --git a/a2ml/api/auger/impl/model.py b/a2ml/api/auger/impl/model.py
index 89e2b25e..72826d08 100644
--- a/a2ml/api/auger/impl/model.py
+++ b/a2ml/api/auger/impl/model.py
@@ -35,7 +35,8 @@ def predict(self, filename, model_id, threshold=None, locally=False, data=None,
return ModelPredict(self.ctx).execute(filename, model_id, threshold, locally, data, columns,
predicted_at, output, no_features_in_result, score, score_true_data)
- def actuals(self, model_id, filename=None, data=None, columns=None, actuals_at=None, actual_date_column=None, locally=False):
+ def actuals(self, model_id, filename=None, data=None, columns=None, actuals_at=None,
+ actual_date_column=None, experiment_params=None, locally=False):
if locally:
is_loaded, model_path = ModelDeploy(self.ctx, self.project).verify_local_model(model_id)
@@ -57,10 +58,12 @@ def actuals(self, model_id, filename=None, data=None, columns=None, actuals_at=N
columns=columns,
actual_date=actuals_at,
actual_date_column=actual_date_column,
+ experiment_params=experiment_params,
provider='auger'
)
else:
- return ModelActual(self.ctx).execute(model_id, filename, data, columns, actuals_at, actual_date_column)
+ return ModelActual(self.ctx).execute(model_id, filename, data, columns, actuals_at,
+ actual_date_column, experiment_params)
def delete_actuals(self, model_id, with_predictions=False, begin_date=None, end_date=None, locally=False):
if locally:
diff --git a/a2ml/api/auger/impl/mparts/actual.py b/a2ml/api/auger/impl/mparts/actual.py
index aad79269..50edcb7b 100644
--- a/a2ml/api/auger/impl/mparts/actual.py
+++ b/a2ml/api/auger/impl/mparts/actual.py
@@ -12,9 +12,9 @@ def __init__(self, ctx):
super(ModelActual, self).__init__()
self.ctx = ctx
- def execute(self, model_id, filename, data, columns, actuals_at, actual_date_column):
+ def execute(self, model_id, filename, data, columns, actuals_at, actual_date_column, experiment_params):
records, features, file_url, is_pandas_df = ModelPredict(self.ctx)._process_input(filename, data,
columns=columns)
pipeline_api = AugerPipelineApi(self.ctx, None, model_id)
- return pipeline_api.actual(records, features, actuals_at, file_url, actual_date_column)
+ return pipeline_api.actual(records, features, actuals_at, file_url, actual_date_column, experiment_params)
diff --git a/a2ml/api/auger/model.py b/a2ml/api/auger/model.py
index 7901f871..326a219f 100644
--- a/a2ml/api/auger/model.py
+++ b/a2ml/api/auger/model.py
@@ -42,8 +42,9 @@ def predict(self, filename, model_id, threshold, locally, data, columns, predict
@error_handler
@authenticated
@with_project(autocreate=False)
- def actuals(self, project, model_id, filename=None, data=None, columns=None, actuals_at=None, actual_date_column=None, locally=False):
- return Model(self.ctx, project).actuals(model_id, filename, data, columns, actuals_at, actual_date_column, locally)
+ def actuals(self, project, model_id, filename=None, data=None, columns=None, actuals_at=None,
+ actual_date_column=None, experiment_params=None, locally=False):
+ return Model(self.ctx, project).actuals(model_id, filename, data, columns, actuals_at, actual_date_column, experiment_params, locally)
@error_handler
@authenticated
diff --git a/a2ml/api/model_review/model_review.py b/a2ml/api/model_review/model_review.py
index 6df5be05..1d2e0bf9 100644
--- a/a2ml/api/model_review/model_review.py
+++ b/a2ml/api/model_review/model_review.py
@@ -145,7 +145,7 @@ def add_external_model(self, target_column, scoring, task_type, binary_classific
def add_actuals(
self, ctx, actuals_path=None, data=None, columns=None, external_model=False,
actual_date=None, actual_date_column=None, actuals_id = None, return_count=False, provider='auger',
- do_predict=False
+ do_predict=False, experiment_params=None
):
ds_actuals = DataFrame.create_dataframe(actuals_path, data, features=columns)
@@ -178,8 +178,12 @@ def add_actuals(
result = self._do_score_actual(ds_actuals.df)
baseline_score = {}
+ experiment_score = {}
+ experiment_count = 0
if "baseline_target" in ds_actuals.columns:
baseline_score = self._do_score_actual(ds_actuals.df, "baseline_target")
+ if experiment_params:
+ experiment_score, experiment_count = self._do_score_actual_experiment(ds_actuals, experiment_params)
#logging.info("Actual result: %s", result)
ds_actuals.df = ds_actuals.df.rename(columns={self.target_feature: 'a2ml_predicted'})
@@ -207,10 +211,34 @@ def add_actuals(
ds_actuals.saveToFeatherFile(os.path.join(self.model_path, "predictions", file_name))
if return_count:
- return {'score': result, 'count': actuals_count, 'baseline_score': baseline_score}
+ return {'score': result, 'count': actuals_count, 'baseline_score': baseline_score,
+ 'experiment_score': experiment_score, 'experiment_count': experiment_count}
else:
return result
+ def _do_score_actual_experiment(self, ds_actuals, experiment_params):
+ if experiment_params.get('start_date') and experiment_params.get('end_date'):
+ df_exp_actuals = ds_actuals.df.query("%s>='%s' and %s<'%s'"%(
+ experiment_params.get('date_col'),
+ experiment_params.get('start_date'),
+ experiment_params.get('date_col'),
+ experiment_params.get('end_date')
+ ))
+ elif experiment_params.get('start_date'):
+ df_exp_actuals = ds_actuals.df.query("%s>='%s'"%(
+ experiment_params.get('date_col'),
+ experiment_params.get('start_date')
+ ))
+ elif experiment_params.get('end_date'):
+ df_exp_actuals = ds_actuals.df.query("%s<'%s'"%(
+ experiment_params.get('date_col'),
+ experiment_params.get('end_date')
+ ))
+ else:
+ df_exp_actuals = ds_actuals.df
+
+ return self._do_score_actual(df_exp_actuals), len(df_exp_actuals)
+
def _do_predict(self, ctx, ds_actuals, provider, predict_feature=None, predicted_at=None):
missing_features = set(self.original_features) - set(ds_actuals.columns)
if len(missing_features) > 0:
diff --git a/a2ml/tasks_queue/tasks_hub_api.py b/a2ml/tasks_queue/tasks_hub_api.py
index 73bafa16..d5ccbae4 100644
--- a/a2ml/tasks_queue/tasks_hub_api.py
+++ b/a2ml/tasks_queue/tasks_hub_api.py
@@ -560,7 +560,8 @@ def score_actuals_by_model_task(params):
return_count=params.get('return_count', False),
provider=params.get('provider'),
external_model=external_model,
- do_predict=params.get('do_predict', False)
+ do_predict=params.get('do_predict', False),
+ experiment_params=params.get('experiment_params'),
)
@celeryApp.task(ignore_result=True)
| WIP: Move api to auger.ai repo
Moving all aunderlying auger api code to auger.ai repo
| 2021-10-29T17:51:10 | 0.0 | [] | [] |
|||
augerai/a2ml | augerai__a2ml-594 | c255bd05603d41d4bfb604ec940225d2656b0b6c | diff --git a/a2ml/__init__.py b/a2ml/__init__.py
index b41bc4d5..f47e40c5 100644
--- a/a2ml/__init__.py
+++ b/a2ml/__init__.py
@@ -1,1 +1,1 @@
-__version__ = '1.0.37'
+__version__ = '1.0.38'
diff --git a/a2ml/api/a2ml.py b/a2ml/api/a2ml.py
index 14fd78f0..6049297e 100644
--- a/a2ml/api/a2ml.py
+++ b/a2ml/api/a2ml.py
@@ -1,6 +1,6 @@
from a2ml.api.base_a2ml import BaseA2ML
from a2ml.api.utils.show_result import show_result
-from a2ml.api.utils import convert_source
+#from a2ml.api.utils import convert_source
from a2ml.api.utils.context import Context
@@ -28,7 +28,7 @@ def __init__(self, ctx, provider = None):
self.local_runner = lambda: self.build_runner(ctx, provider, force_local=True)
@show_result
- def import_data(self, source=None):
+ def import_data(self, source=None, name=None):
"""Imports data defined in context. Uploading the same file name will result in versions being appended to the file name.
Note:
@@ -46,6 +46,7 @@ def import_data(self, source=None):
Args:
source (str, optional): Local file name, remote url to the data source file, Pandas DataFrame or postgres url
+ name (str, optional): Name of dataset, if none then file name used. If source is DataFrame then name should be specified.
Returns:
Results for each provider. ::
@@ -70,8 +71,7 @@ def import_data(self, source=None):
a2ml = A2ML(ctx, 'auger, azure')
a2ml.import_data()
"""
- with convert_source(source, self.ctx.config.get("name", "source_data")) as data_source:
- return self.runner.execute('import_data', source=data_source)
+ return self.runner.execute('import_data', source=source, name=name)
@show_result
def preprocess_data(self, data, preprocessors, locally=False):
diff --git a/a2ml/api/a2ml_dataset.py b/a2ml/api/a2ml_dataset.py
index 1a623e87..9861efa2 100644
--- a/a2ml/api/a2ml_dataset.py
+++ b/a2ml/api/a2ml_dataset.py
@@ -1,6 +1,6 @@
from a2ml.api.base_a2ml import BaseA2ML
from a2ml.api.utils.show_result import show_result
-from a2ml.api.utils import convert_source
+#from a2ml.api.utils import convert_source
class A2MLDataset(BaseA2ML):
@@ -58,11 +58,12 @@ def list(self):
return self.runner.execute('list')
@show_result
- def create(self, source = None):
+ def create(self, source = None, name=None):
"""Create a new DataSet for the Project specified in the .yaml.
Args:
source (str, optional): Local file name, remote url to the data source file, Pandas DataFrame or postgres url
+ name (str, optional): Name of dataset, if none then file name used. If source is DataFrame then name should be specified.
Returns:
Results for each provider. ::
@@ -82,8 +83,7 @@ def create(self, source = None):
ctx = Context()
dataset = DataSet(ctx, 'auger, azure').create('../dataset.csv')
"""
- with convert_source(source, self.ctx.config.get("name", "source_data")) as data_source:
- return self.runner.execute('create', data_source)
+ return self.runner.execute('create', data_source, name)
@show_result
def delete(self, name = None):
diff --git a/a2ml/api/auger/a2ml.py b/a2ml/api/auger/a2ml.py
index 394c873f..86cc3b80 100644
--- a/a2ml/api/auger/a2ml.py
+++ b/a2ml/api/auger/a2ml.py
@@ -9,8 +9,8 @@ def __init__(self, ctx):
super(AugerA2ML, self).__init__()
self.ctx = ctx
- def import_data(self, source=None):
- return AugerDataset(self.ctx).create(source=source)
+ def import_data(self, source=None, name=None):
+ return AugerDataset(self.ctx).create(source=source, name=name)
def preprocess_data(self, data, preprocessors, locally=False):
return AugerDataset(self.ctx).preprocess_data(data, preprocessors, locally)
diff --git a/a2ml/api/auger/dataset.py b/a2ml/api/auger/dataset.py
index 4e7ffc6a..0619f62c 100644
--- a/a2ml/api/auger/dataset.py
+++ b/a2ml/api/auger/dataset.py
@@ -31,15 +31,15 @@ def list(self, project):
@error_handler
@authenticated
@with_project(autocreate=True)
- def create(self, project, source = None, validation=False):
- dataset = self._create(project, source, validation)
+ def create(self, project, source = None, validation=False, name=None):
+ dataset = self._create(project, source, validation, name)
self.ctx.log('Created DataSet %s' % dataset.name)
return {'created': dataset.name}
- def _create(self, project, source = None, validation=False):
+ def _create(self, project, source = None, validation=False, name=None):
if source is None:
source = self.ctx.config.get('source', None)
- dataset = DataSet(self.ctx, project).create(source)
+ dataset = DataSet(self.ctx, project).create(source, name)
AugerConfig(self.ctx).set_data_set(dataset.name, source, validation)
return dataset
diff --git a/a2ml/api/auger/impl/cloud/dataset.py b/a2ml/api/auger/impl/cloud/dataset.py
index 6419bfda..ae56a0c7 100644
--- a/a2ml/api/auger/impl/cloud/dataset.py
+++ b/a2ml/api/auger/impl/cloud/dataset.py
@@ -6,6 +6,7 @@
import urllib.parse
import urllib.request
import xml.etree.ElementTree as ElementTree
+from a2ml.api.utils.dataframe import DataFrame
from .cluster import AugerClusterApi
from .project_file import AugerProjectFileApi
@@ -31,8 +32,17 @@ def do_upload_file(self, data_source_file, data_set_name=None, local_data_source
# AugerDataSetApi.verify(data_source_file, self.ctx.config.path)
if local_data_source:
- file_url = self._upload_to_cloud(data_source_file)
- file_name = os.path.basename(data_source_file)
+ if DataFrame.is_dataframe(data_source_file):
+ with fsclient.save_atomic("%s.parquet"%data_set_name, move_file=False) as local_path:
+ ds = DataFrame.create_dataframe(data_source_file)
+ ds.saveToParquetFile(local_path)
+ file_url = self._upload_to_cloud(local_path)
+
+ file_name = data_set_name
+ else:
+ file_url = self._upload_to_cloud(data_source_file)
+ file_name = os.path.basename(data_source_file)
+
if data_set_name:
self.object_name = data_set_name
else:
@@ -81,6 +91,9 @@ def _get_readable_name(self):
@staticmethod
def verify(data_source_file, config_path=None):
+ if DataFrame.is_dataframe(data_source_file):
+ return data_source_file, True
+
if urllib.parse.urlparse(data_source_file).scheme in ['http', 'https']:
return data_source_file, False
diff --git a/a2ml/api/auger/impl/dataset.py b/a2ml/api/auger/impl/dataset.py
index 6a86af1a..b05fb435 100644
--- a/a2ml/api/auger/impl/dataset.py
+++ b/a2ml/api/auger/impl/dataset.py
@@ -10,7 +10,7 @@ def __init__(self, ctx, project, data_set_name=None):
ctx, project, data_set_name)
self.project = project
- def create(self, data_source_file):
+ def create(self, data_source_file, name):
if data_source_file is None:
raise AugerException('Please specify data source file...')
@@ -19,7 +19,7 @@ def create(self, data_source_file):
self.project.start()
- super().create(data_source_file, self.object_name, local_data_source=local_data_source)
+ super().create(data_source_file, name if name else self.object_name, local_data_source=local_data_source)
return self
def upload_file(self, data_source_file):
diff --git a/a2ml/api/utils/__init__.py b/a2ml/api/utils/__init__.py
index 22429b26..6acf1a52 100644
--- a/a2ml/api/utils/__init__.py
+++ b/a2ml/api/utils/__init__.py
@@ -215,14 +215,14 @@ def convert_to_date(date):
else:
return date
[email protected]
-def convert_source(source, name):
- if source is not None and isinstance(source, pd.DataFrame):
- with fsclient.save_atomic("%s.parquet"%name, move_file=False) as local_path:
- source.to_parquet(local_path, index=False, compression="gzip")
- yield local_path
- else:
- yield source
+# @contextlib.contextmanager
+# def convert_source(source, name):
+# if source is not None and isinstance(source, pd.DataFrame):
+# with fsclient.save_atomic("%s.parquet"%name, move_file=False) as local_path:
+# source.to_parquet(local_path, index=False, compression="gzip")
+# yield local_path
+# else:
+# yield source
def retry_helper(func, retry_errors=[], num_try=10, delay=10, ctx=None):
nTry = 0
diff --git a/a2ml/api/utils/dataframe.py b/a2ml/api/utils/dataframe.py
index ca737052..d81998f7 100644
--- a/a2ml/api/utils/dataframe.py
+++ b/a2ml/api/utils/dataframe.py
@@ -43,21 +43,48 @@ def _get_compression(self, extension):
return compression
@staticmethod
- def create_dataframe(data_path=None, records=None, features=None):
- if data_path:
- ds = DataFrame({'data_path': data_path})
- ds.load(features = features)
- elif records is not None and isinstance(records, pd.DataFrame):
- ds = DataFrame({})
- ds.df = records
- if features:
- ds.df = ds.df[features]
-
- ds.from_pandas = True
+ def create_dataframe(data_path=None, records=None, features=None, reset_index=False):
+ if data_path is not None:
+ if isinstance(data_path, pd.DataFrame):
+ ds = DataFrame({})
+ ds.df = data_path
+ elif isinstance(data_path, DataFrame):
+ ds = data_path
+ elif isinstance(data_path, list):
+ ds = DataFrame({})
+ ds.load_records(data_path)
+ elif isinstance(data_path, dict):
+ ds = DataFrame({})
+
+ if 'data' in data_path and 'columns' in data_path:
+ ds.load_records(data_path['data'], features=data_path['columns'])
+ else:
+ ds.load_records(data_path)
+ else:
+ ds = DataFrame({'data_path': data_path})
+ ds.load(features = features)
else:
ds = DataFrame({})
ds.load_records(records, features=features)
+ if reset_index and ds.df is not None:
+ ds.df.reset_index(drop=True, inplace=True)
+
+
+ # if data_path:
+ # ds = DataFrame({'data_path': data_path})
+ # ds.load(features = features)
+ # elif records is not None and isinstance(records, pd.DataFrame):
+ # ds = DataFrame({})
+ # ds.df = records
+ # if features:
+ # ds.df = ds.df[features]
+
+ # ds.from_pandas = True
+ # else:
+ # ds = DataFrame({})
+ # ds.load_records(records, features=features)
+
return ds
@staticmethod
@@ -72,6 +99,10 @@ def load_from_files(files, features=None):
except Exception as exc:
logging.exception("load_from_files failed for: %s. Error: %s"%(path, exc))
+ @staticmethod
+ def is_dataframe(data):
+ return isinstance(data, pd.DataFrame) or isinstance(data, DataFrame)
+
def load_from_file(self, path, features=None, nrows=None):
from collections import OrderedDict
| WIP: Move api to auger.ai repo
Moving all aunderlying auger api code to auger.ai repo
| 2021-09-01T21:01:12 | 0.0 | [] | [] |
|||
augerai/a2ml | augerai__a2ml-591 | e8fc37867e2ede621fa14a6877f661d62de5ae20 | diff --git a/a2ml/__init__.py b/a2ml/__init__.py
index 1c327d42..24d5b4c5 100644
--- a/a2ml/__init__.py
+++ b/a2ml/__init__.py
@@ -1,1 +1,1 @@
-__version__ = '1.0.34'
+__version__ = '1.0.35'
diff --git a/a2ml/api/a2ml.py b/a2ml/api/a2ml.py
index aa0e4284..14fd78f0 100644
--- a/a2ml/api/a2ml.py
+++ b/a2ml/api/a2ml.py
@@ -73,6 +73,61 @@ def import_data(self, source=None):
with convert_source(source, self.ctx.config.get("name", "source_data")) as data_source:
return self.runner.execute('import_data', source=data_source)
+ @show_result
+ def preprocess_data(self, data, preprocessors, locally=False):
+ """Preprocess data
+
+ Args:
+ data (str|pandas.DataFrame): Input data for preprocess. Can be path to file(local or s3) or Pandas Dataframe
+ preprocessors (array of dicts): List of preprocessors with parameters ::
+
+ [
+ {'text': {'text_cols': []}}
+ ]
+
+ Preprocessors:
+ text
+ * text_cols(array): List of text columns to process
+ * text_metrics ['mean_length', 'unique_count', 'separation_score'] : Calculate metrics for text fields and after vectorize(separation_score)
+ * tokenize (dict): Default - {'max_text_len': 30000, 'tokenizers': ['sent'], 'remove_chars': '○•'}
+ * vectorize ('en_use_lg'|'hashing'|'en_use_md'|'en_use_cmlm_md'|'en_use_cmlm_lg'): See see https://github.com/MartinoMensio/spacy-universal-sentence-encoder
+ * dim_reduction(dict): Generate features based on vectors. See https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html ::
+
+ {
+ 'alg_name': 'PCA'|'t-SNE',
+ 'args': {'n_components': 2} #Number of components to keep.
+ }
+
+ * output_prefix (str): Prefix for generated columns. Format name: {prefix}_{colname}_{num}
+
+ * calc_distance ['none', 'cosine', 'cityblock', 'euclidean', 'haversine', 'l1', 'l2', 'manhattan', 'nan_euclidean'] | 'cosine' : See https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.distance_metrics.html#sklearn.metrics.pairwise.distance_metrics
+ * compare_pairs (array of dicts): When calc_distance is not none. ::
+
+ [
+ {'compare_cols': [{'dataset_idx': 0, 'cols': ['col1']}, {'dataset_idx': 1, 'cols': ['col2']}],
+ 'output_name':'cosine_col1_col2', 'params': {}
+ },
+ {'compare_cols': [{'dataset_idx': 0, 'cols': ['col3']}, {'dataset_idx': 1, 'cols': ['col4']}],
+ 'output_name':'cosine_col3_col4', 'params': {}
+ },
+ ]
+
+ * datasets: List of datasets to process, may be empty, so all fields takes from main dataset ::
+
+ [
+ {'path': 'path', 'keys': ['main_key', 'local_key'], 'text_metrics': ['separation_score', 'mean_length', 'unique_count']},
+ {'path': 'path1', 'keys': ['main_key1', 'local_key1']}
+ ]
+
+ Returns:
+ {
+ 'result': True,
+ 'data': 'data in input format'
+ }
+
+ """
+ return self.get_runner(locally).execute_one_provider('preprocess_data', data, preprocessors, locally)
+
@show_result
def train(self):
"""Starts training session based on context state.
diff --git a/a2ml/api/auger/a2ml.py b/a2ml/api/auger/a2ml.py
index 2a55df5e..394c873f 100644
--- a/a2ml/api/auger/a2ml.py
+++ b/a2ml/api/auger/a2ml.py
@@ -12,6 +12,9 @@ def __init__(self, ctx):
def import_data(self, source=None):
return AugerDataset(self.ctx).create(source=source)
+ def preprocess_data(self, data, preprocessors, locally=False):
+ return AugerDataset(self.ctx).preprocess_data(data, preprocessors, locally)
+
def train(self):
return AugerExperiment(self.ctx).start()
diff --git a/a2ml/api/auger/dataset.py b/a2ml/api/auger/dataset.py
index dc0b6fee..4e7ffc6a 100644
--- a/a2ml/api/auger/dataset.py
+++ b/a2ml/api/auger/dataset.py
@@ -73,3 +73,25 @@ def download(self, project, name, path_to_download):
file_name = DataSet(self.ctx, project, name).download(path_to_download)
self.ctx.log('Downloaded dataset %s to %s' % (name, file_name))
return {'dowloaded': name, 'file': file_name}
+
+ def preprocess_data(self, data, preprocessors, locally):
+ if locally:
+ return self._preprocess_data_locally(data, preprocessors)
+ else:
+ raise Exception("preprocess_data supported with locally=True only.")
+
+ def _preprocess_data_locally(self, data, preprocessors):
+ from auger_ml.preprocessors.text import TextPreprocessor
+
+ res = data
+ for p in preprocessors:
+ name = list(p.keys())[0]
+ params = list(p.values())[0]
+ if name != 'text':
+ raise Exception("Only text preprocessor supported.")
+
+ tp = TextPreprocessor(params)
+ res = tp.fit_transform(res)
+
+ return res
+
\ No newline at end of file
diff --git a/setup.py b/setup.py
index 0a6f572f..2b11a88c 100644
--- a/setup.py
+++ b/setup.py
@@ -86,7 +86,7 @@ def run(self):
'google-cloud-automl'
],
'predict': [
- 'auger.ai.predict==1.0.79'
+ 'auger.ai.predict==1.0.80'
]
}
| WIP: Move api to auger.ai repo
Moving all aunderlying auger api code to auger.ai repo
| 2021-08-12T20:59:36 | 0.0 | [] | [] |
|||
augerai/a2ml | augerai__a2ml-587 | 858d43f5475354996519821e2f99d8a038440a23 | diff --git a/a2ml/__init__.py b/a2ml/__init__.py
index 93dae163..0630b51e 100644
--- a/a2ml/__init__.py
+++ b/a2ml/__init__.py
@@ -1,1 +1,1 @@
-__version__ = '1.0.32'
+__version__ = '1.0.33'
diff --git a/a2ml/api/a2ml.py b/a2ml/api/a2ml.py
index 09fe4116..aa0e4284 100644
--- a/a2ml/api/a2ml.py
+++ b/a2ml/api/a2ml.py
@@ -221,7 +221,8 @@ def deploy(self, model_id, locally=False, review=True, provider=None,
@show_result
def predict(self, model_id, filename=None, data=None, columns=None, predicted_at=None,
- threshold=None, output=None, no_features_in_result = None, locally=False, provider=None):
+ threshold=None, score=False, score_true_data=None,
+ output=None, no_features_in_result = None, locally=False, provider=None):
"""Predict results with new data against deployed model. Predictions are stored next to the file with data to be predicted on. The file name will be appended with suffix _predicted.
Note:
@@ -235,6 +236,8 @@ def predict(self, model_id, filename=None, data=None, columns=None, predicted_at
columns(list): list of column names if data is array of records
predicted_at: Predict data date. Use for review of historical data.
threshold(float): For classification models only. This will return class probabilities with response.
+ score(bool): Calculate scores for predicted results.
+ score_true_data(str, pandas.DataFrame, dict): Data with true values to calculate scores. If missed, target from filename used for true values.
output(str): Output csv file path.
no_features_in_result(bool) : Do not return feature columns in prediction result. False by default
locally(bool, str): Predicts using a local model with auger.ai.predict if True, on the Provider Cloud if False. If set to "docker", then docker image used to run the model
@@ -301,7 +304,9 @@ def predict(self, model_id, filename=None, data=None, columns=None, predicted_at
# predictions are stored in rv[provider]['data']['predicted']
"""
- return self.get_runner(locally, model_id, provider).execute_one_provider('predict', filename, model_id, threshold, locally, data, columns, predicted_at, output, no_features_in_result)
+ return self.get_runner(locally, model_id, provider).execute_one_provider('predict', filename, model_id,
+ threshold, locally, data, columns, predicted_at, output, no_features_in_result,
+ score, score_true_data )
@show_result
def actuals(self, model_id, filename=None, data=None, columns=None, actuals_at=None, actual_date_column=None, locally=False, provider=None):
diff --git a/a2ml/api/a2ml_model.py b/a2ml/api/a2ml_model.py
index 2be596f0..b58e2132 100644
--- a/a2ml/api/a2ml_model.py
+++ b/a2ml/api/a2ml_model.py
@@ -66,7 +66,8 @@ def deploy(self, model_id, locally=False, review=True, provider=None,
@show_result
def predict(self, model_id, filename=None, data=None, columns=None, predicted_at=None,
- threshold=None, output=None, no_features_in_result=None, locally=False, provider=None):
+ threshold=None, score=False, score_true_data=None,
+ output=None, no_features_in_result=None, locally=False, provider=None):
"""Predict results with new data against deployed model. Predictions are stored next to the file with data to be predicted on. The file name will be appended with suffix _predicted.
Note:
@@ -80,6 +81,8 @@ def predict(self, model_id, filename=None, data=None, columns=None, predicted_at
columns(list): list of column names if data is array of records
predicted_at: Predict data date. Use for review of historical data.
threshold(float): For classification models only. This will return class probabilities with response.
+ score(bool): Calculate scores for predicted results.
+ score_true_data(str, pandas.DataFrame, dict): Data with true values to calculate scores. If missed, target from filename used for true values.
output(str): Output csv file path.
no_features_in_result(bool) : Do not return feature columns in prediction result. False by default
locally(bool, str): Predicts using a local model with auger.ai.predict if True, on the Provider Cloud if False. If set to "docker", then docker image used to run the model
@@ -146,7 +149,9 @@ def predict(self, model_id, filename=None, data=None, columns=None, predicted_at
# predictions are stored in rv[provider]['data']['predicted']
"""
- return self.get_runner(locally, model_id, provider).execute_one_provider('predict', filename, model_id, threshold, locally, data, columns, predicted_at, output, no_features_in_result)
+ return self.get_runner(locally, model_id, provider).execute_one_provider('predict', filename, model_id,
+ threshold, locally, data, columns, predicted_at, output, no_features_in_result,
+ score, score_true_data )
@show_result
def actuals(self, model_id, filename=None, data=None, columns=None, actuals_at=None, actual_date_column=None, locally=False, provider=None):
diff --git a/a2ml/api/auger/a2ml.py b/a2ml/api/auger/a2ml.py
index 3e998b5c..2a55df5e 100644
--- a/a2ml/api/auger/a2ml.py
+++ b/a2ml/api/auger/a2ml.py
@@ -21,9 +21,11 @@ def evaluate(self, run_id = None):
def deploy(self, model_id, locally=False, review=True, name=None, algorithm=None, score=None, data_path=None ):
return AugerModel(self.ctx).deploy(model_id, locally, review, name, algorithm, score, data_path)
- def predict(self, model_id, filename, threshold=None, locally=False, data=None, columns=None, predicted_at=None, output=None, no_features_in_result=None):
+ def predict(self, model_id, filename, threshold=None, locally=False, data=None, columns=None,
+ predicted_at=None, output=None, no_features_in_result=None, score=False, score_true_data=None):
return AugerModel(self.ctx).predict(
- model_id, filename, threshold, locally, data, columns, predicted_at, output, no_features_in_result)
+ model_id, filename, threshold, locally, data, columns, predicted_at, output,
+ no_features_in_result, score, score_true_data)
def actuals(self, model_id, filename=None, data=None, columns=None, actuals_at=None, actual_date_column=None, locally=False):
return AugerModel(self.ctx).actuals(
diff --git a/a2ml/api/auger/config.py b/a2ml/api/auger/config.py
index 5331a4f8..0a9e47a5 100644
--- a/a2ml/api/auger/config.py
+++ b/a2ml/api/auger/config.py
@@ -7,12 +7,12 @@ def set_data_set(self, name, source=None, validation=False):
#TODO: add more providers later
if validation:
self.ctx.config.set('experiment/validation_dataset', name)
- if self.ctx.use_auger_cloud():
+ if self.ctx.use_auger_cloud() and 'azure' in self.ctx.get_providers():
self.ctx.config.set('experiment/validation_dataset', name, "azure")
else:
- print("set_data_set: %s"%self.ctx.use_auger_cloud())
+ #print("set_data_set: %s"%self.ctx.use_auger_cloud())
self.ctx.config.set('dataset', name)
- if self.ctx.use_auger_cloud():
+ if self.ctx.use_auger_cloud() and 'azure' in self.ctx.get_providers():
self.ctx.config.set('dataset', name, "azure")
self.ctx.config.write_all()
diff --git a/a2ml/api/auger/impl/cloud/pipeline.py b/a2ml/api/auger/impl/cloud/pipeline.py
index e3232201..42057f2b 100644
--- a/a2ml/api/auger/impl/cloud/pipeline.py
+++ b/a2ml/api/auger/impl/cloud/pipeline.py
@@ -49,7 +49,8 @@ def check_endpoint(self, props=None):
return is_endpoint
- def predict(self, records, features, threshold=None, file_url=None, predicted_at=None, no_features_in_result=None):
+ def predict(self, records, features, threshold=None, file_url=None, predicted_at=None,
+ no_features_in_result=None, score=False, score_true_data=None):
if self.object_id is None:
raise AugerException('Please provide Auger Pipeline id')
@@ -73,8 +74,9 @@ def predict(self, records, features, threshold=None, file_url=None, predicted_at
prediction_api = AugerPredictionApi(self.ctx, self, use_endpoint=self.check_endpoint(props))
prediction_properties = \
prediction_api.create(records, features, threshold=threshold, file_url=file_url,
- predicted_at=predicted_at, no_features_in_result=no_features_in_result)
-
+ predicted_at=predicted_at, no_features_in_result=no_features_in_result,
+ score=score, score_true_data=score_true_data)
+
return prediction_properties.get('result')
def actual(self, records, features, actuals_at, actuals_path, actual_date_column):
diff --git a/a2ml/api/auger/impl/cloud/prediction.py b/a2ml/api/auger/impl/cloud/prediction.py
index c9c76704..81f50387 100644
--- a/a2ml/api/auger/impl/cloud/prediction.py
+++ b/a2ml/api/auger/impl/cloud/prediction.py
@@ -14,7 +14,8 @@ def __init__(self, ctx, pipeline_api, use_endpoint=False):
self.parent_id_name = "endpoint_id"
self._set_api_request_path("AugerEndpointPredictionApi")
- def create(self, records, features, threshold=None, file_url=None, predicted_at=None, no_features_in_result=None):
+ def create(self, records, features, threshold=None, file_url=None, predicted_at=None,
+ no_features_in_result=None, score=False, score_true_data=None):
params = {
'records': records,
'features': features,
@@ -35,5 +36,11 @@ def create(self, records, features, threshold=None, file_url=None, predicted_at=
if no_features_in_result is not None:
params['no_features_in_result'] = no_features_in_result
-
+
+ if score:
+ params['score'] = score
+
+ if score_true_data:
+ params['score_true_data'] = score_true_data
+
return self._call_create(params, ['requested', 'running'])
diff --git a/a2ml/api/auger/impl/cloud/rest_api.py b/a2ml/api/auger/impl/cloud/rest_api.py
index 58dcb9a7..fd1f39ae 100644
--- a/a2ml/api/auger/impl/cloud/rest_api.py
+++ b/a2ml/api/auger/impl/cloud/rest_api.py
@@ -25,11 +25,18 @@ def call_ex(self, method, params={}):
if params.get('id') and not method.startswith('create_'):
oid = params['id']
del params['id']
- #print(method, oid, params)
- return getattr(self.hub_client, method)(oid, **params)
+ print(method, oid, params)
+ res = getattr(self.hub_client, method)(oid, **params)
else:
- #print(method, params)
- return getattr(self.hub_client, method)(**params)
+ if method == 'create_endpoint_prediction' or method == 'create_endpoint_actual':
+ print(method, params.keys())
+ else:
+ print(method, params)
+
+ res = getattr(self.hub_client, method)(**params)
+
+ #print(res)
+ return res
def call(self, method, params={}):
result = self.call_ex(method, params)
diff --git a/a2ml/api/auger/impl/model.py b/a2ml/api/auger/impl/model.py
index c6afa0e7..eeee9960 100644
--- a/a2ml/api/auger/impl/model.py
+++ b/a2ml/api/auger/impl/model.py
@@ -30,11 +30,13 @@ def review(self, model_id):
def undeploy(self, model_id, locally=False):
return ModelUndeploy(self.ctx, self.project).execute(model_id, locally)
- def predict(self, filename, model_id, threshold=None, locally=False, data=None, columns=None, predicted_at=None, output=None, no_features_in_result=None):
+ def predict(self, filename, model_id, threshold=None, locally=False, data=None, columns=None, predicted_at=None,
+ output=None, no_features_in_result=None, score=False, score_true_data=None):
if locally:
self.deploy(model_id, locally)
- return ModelPredict(self.ctx).execute(filename, model_id, threshold, locally, data, columns, predicted_at, output, no_features_in_result)
+ return ModelPredict(self.ctx).execute(filename, model_id, threshold, locally, data, columns,
+ predicted_at, output, no_features_in_result, score, score_true_data)
def actuals(self, model_id, filename=None, data=None, columns=None, actuals_at=None, actual_date_column=None, locally=False):
if locally:
diff --git a/a2ml/api/auger/impl/mparts/predict.py b/a2ml/api/auger/impl/mparts/predict.py
index 005de202..ec19a7a2 100644
--- a/a2ml/api/auger/impl/mparts/predict.py
+++ b/a2ml/api/auger/impl/mparts/predict.py
@@ -23,7 +23,8 @@ def __init__(self, ctx):
self.ctx = ctx
def execute(self, filename, model_id, threshold=None, locally=False, data=None, columns=None,
- predicted_at=None, output=None, no_features_in_result=None):
+ predicted_at=None, output=None, no_features_in_result=None,
+ score=False, score_true_data=None):
if filename and not (filename.startswith("http:") or filename.startswith("https:")) and\
not fsclient.is_s3_path(filename):
self.ctx.log('Predicting on data in %s' % filename)
@@ -31,11 +32,14 @@ def execute(self, filename, model_id, threshold=None, locally=False, data=None,
if locally:
if locally == "docker":
- predicted = self._predict_locally_in_docker(filename, model_id, threshold, data, columns, predicted_at, output, no_features_in_result)
+ predicted = self._predict_locally_in_docker(filename, model_id, threshold, data, columns, predicted_at, output,
+ no_features_in_result, score, score_true_data)
else:
- predicted = self._predict_locally(filename, model_id, threshold, data, columns, predicted_at, output, no_features_in_result)
+ predicted = self._predict_locally(filename, model_id, threshold, data, columns, predicted_at, output,
+ no_features_in_result, score, score_true_data)
else:
- predicted = self._predict_on_cloud(filename, model_id, threshold, data, columns, predicted_at, output, no_features_in_result)
+ predicted = self._predict_on_cloud(filename, model_id, threshold, data, columns, predicted_at, output,
+ no_features_in_result, score, score_true_data)
return predicted
@@ -98,7 +102,8 @@ def _check_model_project(self, pipeline_api):
raise AugerException("Project name: %s in config.yml is different from model project name: %s. Please change name in config.yml."%(
self.ctx.config.get('name'), model_project_name))
- def _predict_on_cloud(self, filename, model_id, threshold, data, columns, predicted_at, output, no_features_in_result):
+ def _predict_on_cloud(self, filename, model_id, threshold, data, columns, predicted_at,
+ output, no_features_in_result, score, score_true_data):
records, features, file_url, is_pandas_df = self._process_input(filename, data, columns)
temp_file = None
ds_result = None
@@ -107,7 +112,8 @@ def _predict_on_cloud(self, filename, model_id, threshold, data, columns, predic
else:
pipeline_api = AugerPipelineApi(self.ctx, None, model_id)
predictions = pipeline_api.predict(records, features, threshold=threshold, file_url=file_url,
- predicted_at=predicted_at, no_features_in_result=no_features_in_result)
+ predicted_at=predicted_at, no_features_in_result=no_features_in_result,
+ score=score, score_true_data=score_true_data)
try:
ds_result = DataFrame.create_dataframe(predictions.get('signed_prediction_url'),
@@ -137,7 +143,8 @@ def _predict_on_cloud(self, filename, model_id, threshold, data, columns, predic
if temp_file:
fsclient.remove_file(temp_file)
- def _predict_locally(self, filename_arg, model_id, threshold, data, columns, predicted_at, output, no_features_in_result):
+ def _predict_locally(self, filename_arg, model_id, threshold, data, columns, predicted_at,
+ output, no_features_in_result, score, score_true_data):
from auger_ml.model_exporter import ModelExporter
is_model_loaded, model_path = ModelDeploy(self.ctx, None).verify_local_model(model_id)
@@ -148,6 +155,11 @@ def _predict_locally(self, filename_arg, model_id, threshold, data, columns, pre
if columns is not None:
columns = list(columns)
+ if score and score_true_data is None:
+ options = fsclient.read_json_file(os.path.join(model_path, "options.json"))
+ ds = DataFrame.create_dataframe(filename_arg, data, [options['targetFeature']])
+ score_true_data = ds.df
+
res, options = ModelExporter({}).predict_by_model_to_ds(model_path,
path_to_predict=filename_arg, records=data, features=columns,
threshold=threshold, no_features_in_result=no_features_in_result)
@@ -158,16 +170,25 @@ def _predict_locally(self, filename_arg, model_id, threshold, data, columns, pre
if isinstance(data, pd.DataFrame):
ds_result.from_pandas = True
- return ModelHelper.save_prediction(ds_result,
+ predictions = ModelHelper.save_prediction(ds_result,
prediction_id = None, json_result=False, count_in_result=False, prediction_date=predicted_at,
model_path=model_path, model_id=model_id, output=output)
+ if not score:
+ return predictions
+
+ scores = ModelExporter({}).score_by_model(model_path, predictions=predictions,
+ test_path = score_true_data)
+
+ return {'predicted': predictions, 'scores': scores}
+
# return ModelExporter({}).predict_by_model(model_path=model_path,
# path_to_predict=filename_arg, records=data, features=columns,
# threshold=threshold, prediction_date=predicted_at,
# no_features_in_result=no_features_in_result) #, output=output)
- def _predict_locally_in_docker(self, filename_arg, model_id, threshold, data, columns, predicted_at, output, no_features_in_result):
+ def _predict_locally_in_docker(self, filename_arg, model_id, threshold, data, columns, predicted_at,
+ output, no_features_in_result, score, score_true_data):
model_deploy = ModelDeploy(self.ctx, None)
is_model_loaded, model_path = model_deploy.verify_local_model(model_id, add_model_folder=False)
if not is_model_loaded:
@@ -180,7 +201,7 @@ def _predict_locally_in_docker(self, filename_arg, model_id, threshold, data, co
filename = os.path.join(self.ctx.config.get_path(), '.augerml', 'predict_data.csv')
ds.saveToCsvFile(filename, compression=None)
- predicted = self._docker_run_predict(filename, threshold, model_path)
+ predicted = self._docker_run_predict(filename, threshold, model_path, score, score_true_data)
if not filename_arg:
ds_result = DataFrame.create_dataframe(predicted)
@@ -198,13 +219,14 @@ def _predict_locally_in_docker(self, filename_arg, model_id, threshold, data, co
return predicted
- def _docker_run_predict(self, filename, threshold, model_path):
+ def _docker_run_predict(self, filename, threshold, model_path, score, score_true_data):
cluster_settings = AugerClusterApi.get_cluster_settings(self.ctx)
docker_tag = cluster_settings.get('kubernetes_stack')
predict_file = os.path.basename(filename)
data_path = os.path.abspath(os.path.dirname(filename))
model_path = os.path.abspath(model_path)
+ #TODO: support score, score_true_data
call_args = "--verbose=True --path_to_predict=./model_data/%s %s" % \
(predict_file, "--threshold=%s" % str(threshold) if threshold else '')
diff --git a/a2ml/api/auger/model.py b/a2ml/api/auger/model.py
index 84f8c13a..d9011329 100644
--- a/a2ml/api/auger/model.py
+++ b/a2ml/api/auger/model.py
@@ -21,10 +21,12 @@ def deploy(self, project, model_id, locally, review, name, algorithm, score, dat
@error_handler
@authenticated
- @with_project(autocreate=False)
- def predict(self, project, filename, model_id, threshold, locally, data, columns, predicted_at, output, no_features_in_result):
- predicted = Model(self.ctx, project).predict(
- filename, model_id, threshold, locally, data, columns, predicted_at, output, no_features_in_result)
+ #@with_project(autocreate=False)
+ def predict(self, filename, model_id, threshold, locally, data, columns, predicted_at, output,
+ no_features_in_result, score, score_true_data):
+ predicted = Model(self.ctx, project=None).predict(
+ filename, model_id, threshold, locally, data, columns, predicted_at, output,
+ no_features_in_result, score, score_true_data)
if filename:
self.ctx.log('Predictions stored in %s' % predicted)
diff --git a/a2ml/api/utils/dataframe.py b/a2ml/api/utils/dataframe.py
index caf7c45b..ca737052 100644
--- a/a2ml/api/utils/dataframe.py
+++ b/a2ml/api/utils/dataframe.py
@@ -50,6 +50,9 @@ def create_dataframe(data_path=None, records=None, features=None):
elif records is not None and isinstance(records, pd.DataFrame):
ds = DataFrame({})
ds.df = records
+ if features:
+ ds.df = ds.df[features]
+
ds.from_pandas = True
else:
ds = DataFrame({})
diff --git a/a2ml/cmdl/commands/cmd_deploy.py b/a2ml/cmdl/commands/cmd_deploy.py
index cd050865..0920c958 100644
--- a/a2ml/cmdl/commands/cmd_deploy.py
+++ b/a2ml/cmdl/commands/cmd_deploy.py
@@ -4,10 +4,10 @@
@click.command('deploy', short_help='Deploy trained model.')
[email protected]('model-id', required=False, type=click.STRING)
@click.option('--provider', '-p', type=click.Choice(['auger','azure','external']), required=False,
help='Cloud AutoML Provider.')
[email protected]('model-id', required=False, type=click.STRING)
[email protected]('--locally', is_flag=True, default=False,
[email protected]('--locally', '-l', is_flag=True, default=False,
help='Download and deploy trained model locally.')
@click.option('--no-review', is_flag=True, default=False,
help='Do not support model review based on actual data.')
diff --git a/a2ml/cmdl/commands/cmd_model.py b/a2ml/cmdl/commands/cmd_model.py
index 8fedc0a6..c9291fbc 100644
--- a/a2ml/cmdl/commands/cmd_model.py
+++ b/a2ml/cmdl/commands/cmd_model.py
@@ -28,15 +28,19 @@ def cmdl(ctx):
@pass_context
def deploy(ctx, provider, model_id, locally, no_review, name, algorithm, score, data_path):
"""Deploy trained model."""
- A2MLModel(ctx, provider).deploy(model_id, locally, not no_review, name=name, algorithm=algorithm, score=score, data_path=data_path)
+ A2MLModel(ctx, provider).deploy(model_id, locally=locally, review=not no_review,
+ name=name, algorithm=algorithm, score=score, data_path=data_path)
@click.command('predict', short_help='Predict with deployed model.')
[email protected]('model-id', required=True, type=click.STRING)
@click.argument('filename', required=True, type=click.STRING)
@click.option('--threshold', '-t', default=None, type=float,
help='Threshold.')
[email protected]('--model-id', '-m', type=click.STRING, required=True,
- help='Deployed model id.')
[email protected]('--locally', is_flag=True, default=False,
[email protected]('--score', '-s', is_flag=True, default=False,
+ help='Calculate scores for predicted results.')
[email protected]('--score_true_path', type=click.STRING, required=False,
+ help='Path to true values to calculate scores. If missed, target from filename used for true values.')
[email protected]('--locally', '-l', is_flag=True, default=False,
help='Predict locally using auger.ai.predict package.')
@click.option('--docker', is_flag=True, default=False,
help='Predict locally using Docker image to run model.')
@@ -50,12 +54,13 @@ def predict(ctx, provider, filename, model_id, threshold, locally, docker, outpu
if docker:
locally = "docker"
- A2MLModel(ctx, provider).predict(filename=filename, model_id=model_id, threshold=threshold, locally=locally, output=output)
+ A2MLModel(ctx, provider).predict(model_id, filename=filename,
+ threshold=threshold, score=score, score_true_data=score_true_path,
+ locally=locally, output=output)
@click.command('actuals', short_help='Send actual values for deployed model. Needed for review and monitoring.')
[email protected]('model-id', required=True, type=click.STRING)
@click.argument('filename', required=True, type=click.STRING)
[email protected]('--model-id', '-m', type=click.STRING, required=True,
- help='Deployed model id.')
@click.option('--provider', '-p', type=click.Choice(['auger','azure']), required=False,
help='Cloud AutoML Provider.')
@click.option('--locally', is_flag=True, default=False,
@@ -98,8 +103,7 @@ def undeploy(ctx, provider, model_id, locally):
A2MLModel(ctx, provider).undeploy(model_id, locally)
@click.command('delete_actuals', short_help='Delete files with actuals and predcitions locally or from specified provider(s).')
[email protected]('--model-id', '-m', type=click.STRING, required=True,
- help='Deployed model id.')
[email protected]('model-id', required=True, type=click.STRING)
@click.option('--with-predictions', is_flag=True, default=False,
help='Remove predictions.')
@click.option('--begin-date', '-b', type=click.STRING, required=False,
diff --git a/a2ml/cmdl/commands/cmd_predict.py b/a2ml/cmdl/commands/cmd_predict.py
index 526c31cb..b27c00aa 100644
--- a/a2ml/cmdl/commands/cmd_predict.py
+++ b/a2ml/cmdl/commands/cmd_predict.py
@@ -4,24 +4,28 @@
@click.command('predict', short_help='Predict with deployed model.')
[email protected]('--provider', '-p', type=click.Choice(['auger','azure']), required=False,
- help='Cloud AutoML Provider.')
[email protected]('model-id', required=True, type=click.STRING)
@click.argument('filename', required=True, type=click.STRING)
@click.option('--threshold', '-t', default=None, type=float,
help='Threshold.')
[email protected]('--model-id', '-m', type=click.STRING, required=False,
- help='Deployed model id.')
[email protected]('--locally', is_flag=True, default=False,
[email protected]('--score', '-s', is_flag=True, default=False,
+ help='Calculate scores for predicted results.')
[email protected]('--score_true_path', type=click.STRING, required=False,
+ help='Path to true values to calculate scores. If missed, target from filename used for true values.')
[email protected]('--locally', '-l', is_flag=True, default=False,
help='Predict locally using auger.ai.predict package.')
@click.option('--docker', is_flag=True, default=False,
help='Predict locally using Docker image to run model.')
@click.option('--output', '-o', type=click.STRING, required=False,
help='Output csv file path.')
[email protected]('--provider', '-p', type=click.Choice(['auger','azure']), required=False,
+ help='Cloud AutoML Provider.')
@pass_context
def cmdl(ctx, provider, filename, model_id, threshold, locally, docker, output):
"""Predict with deployed model."""
ctx.setup_logger(format='')
if docker:
locally = "docker"
- A2ML(ctx, provider).predict(
- filename=filename, model_id=model_id, threshold=threshold, locally=locally, output=output)
+ A2ML(ctx, provider).predict( model_id, filename=filename,
+ threshold=threshold, score=score, score_true_data=score_true_path,
+ locally=locally, output=output)
| WIP: Move api to auger.ai repo
Moving all aunderlying auger api code to auger.ai repo
| 2021-08-08T19:21:50 | 0.0 | [] | [] |
|||
augerai/a2ml | augerai__a2ml-582 | 4963565d278901b20ce8715959270a36d4c2d053 | diff --git a/a2ml/api/roi/var_names_fetcher.py b/a2ml/api/roi/var_names_fetcher.py
index 2bbeb87c..355c8418 100644
--- a/a2ml/api/roi/var_names_fetcher.py
+++ b/a2ml/api/roi/var_names_fetcher.py
@@ -36,6 +36,9 @@ def evaluate_unary_op_node(self, node):
def evaluate_func_node(self, node):
list(map(lambda node: self.evaluate(node), node.arg_nodes))
+ def evaluate_tuple_node(self, node):
+ list(map(lambda node: self.evaluate(node), node.item_nodes))
+
def evaluate_top_node(self, node):
list(map(lambda n: self.evaluate(n), node.child_nodes()))
| WIP: Move api to auger.ai repo
Moving all aunderlying auger api code to auger.ai repo
| 2021-07-05T18:24:00 | 0.0 | [] | [] |
|||
augerai/a2ml | augerai__a2ml-578 | 2486bd45dfae8cf149e8dec88c18ba63b7f1141a | diff --git a/a2ml/__init__.py b/a2ml/__init__.py
index ac1a0a5d..cf42dc04 100644
--- a/a2ml/__init__.py
+++ b/a2ml/__init__.py
@@ -1,1 +1,1 @@
-__version__ = '1.0.28'
+__version__ = '1.0.29'
diff --git a/a2ml/api/a2ml.py b/a2ml/api/a2ml.py
index 32308b80..09fe4116 100644
--- a/a2ml/api/a2ml.py
+++ b/a2ml/api/a2ml.py
@@ -314,7 +314,7 @@ def actuals(self, model_id, filename=None, data=None, columns=None, actuals_at=N
:widths: 50 50 50
:header-rows: 1
- * - target: predicted value. If missed - predict called automatically
+ * - predicted( or target): predicted value. If missed - predict called automatically
- actual
- baseline_target: predicted value for baseline model (OPTIONAL)
* - Iris-setosa
diff --git a/a2ml/api/a2ml_model.py b/a2ml/api/a2ml_model.py
index 9730d888..2be596f0 100644
--- a/a2ml/api/a2ml_model.py
+++ b/a2ml/api/a2ml_model.py
@@ -159,7 +159,7 @@ def actuals(self, model_id, filename=None, data=None, columns=None, actuals_at=N
:widths: 50 50 50
:header-rows: 1
- * - target: predicted value. If missed - predict called automatically
+ * - predicted ( or target): predicted value. If missed - predict called automatically
- actual
- baseline_target: predicted value for baseline model (OPTIONAL)
* - Iris-setosa
diff --git a/a2ml/api/model_review/model_review.py b/a2ml/api/model_review/model_review.py
index 46130f39..d641dc8c 100644
--- a/a2ml/api/model_review/model_review.py
+++ b/a2ml/api/model_review/model_review.py
@@ -169,8 +169,11 @@ def add_actuals(
actuals_count = ds_actuals.count()
ds_actuals.df.rename(columns={"actual": 'a2ml_actual'}, inplace=True)
+ if 'predicted' in ds_actuals.columns and not self.target_feature in ds_actuals.columns:
+ ds_actuals.df = ds_actuals.df.rename(columns={'predicted': self.target_feature})
+
if provider is not None and (do_predict or not self.target_feature in ds_actuals.columns):
- logging.info("Actual data missing predicted value column: %s. Call predict with features from actual data: %s"%(self.target_feature, ds_actuals.columns))
+ logging.info("Actual data missing 'predicted' column and predicted value column: %s. Call predict with features from actual data: %s"%(self.target_feature, ds_actuals.columns))
self._do_predict(ctx, ds_actuals, provider)
result = self._do_score_actual(ds_actuals.df)
| WIP: Move api to auger.ai repo
Moving all aunderlying auger api code to auger.ai repo
| 2021-07-02T19:47:17 | 0.0 | [] | [] |
|||
augerai/a2ml | augerai__a2ml-560 | 6cf1f1c1e471b7101fbf8f510e8ef3cec6bacc88 | diff --git a/a2ml/__init__.py b/a2ml/__init__.py
index dce8b34b..fa7c0d49 100644
--- a/a2ml/__init__.py
+++ b/a2ml/__init__.py
@@ -1,1 +1,1 @@
-__version__ = '1.0.19'
+__version__ = '1.0.20'
diff --git a/a2ml/api/a2ml.py b/a2ml/api/a2ml.py
index 0a727c3b..921f8892 100644
--- a/a2ml/api/a2ml.py
+++ b/a2ml/api/a2ml.py
@@ -221,7 +221,7 @@ def deploy(self, model_id, locally=False, review=True, provider=None,
@show_result
def predict(self, model_id, filename=None, data=None, columns=None, predicted_at=None,
- threshold=None, output=None, locally=False, provider=None):
+ threshold=None, output=None, no_features_in_result = None, locally=False, provider=None):
"""Predict results with new data against deployed model. Predictions are stored next to the file with data to be predicted on. The file name will be appended with suffix _predicted.
Note:
@@ -236,7 +236,8 @@ def predict(self, model_id, filename=None, data=None, columns=None, predicted_at
predicted_at: Predict data date. Use for review of historical data.
threshold(float): For classification models only. This will return class probabilities with response.
output(str): Output csv file path.
- locally(bool): Predicts using a local model if True, on the Provider Cloud if False.
+ no_features_in_result(bool) : Do not return feature columns in prediction result. False by default
+ locally(bool, str): Predicts using a local model with auger.ai.predict if True, on the Provider Cloud if False. If set to "docker", then docker image used to run the model
provider (str): The automl provider you wish to run. For example 'auger'. The default is None - use provider set in costructor or config.
Returns:
@@ -287,7 +288,7 @@ def predict(self, model_id, filename=None, data=None, columns=None, predicted_at
# predictions are returned as rv[provider]['data']['predicted']
"""
- return self.get_runner(locally, model_id, provider).execute_one_provider('predict', filename, model_id, threshold, locally, data, columns, predicted_at, output)
+ return self.get_runner(locally, model_id, provider).execute_one_provider('predict', filename, model_id, threshold, locally, data, columns, predicted_at, output, no_features_in_result)
@show_result
def actuals(self, model_id, filename=None, data=None, columns=None, actuals_at=None, actual_date_column=None, locally=False, provider=None):
diff --git a/a2ml/api/a2ml_model.py b/a2ml/api/a2ml_model.py
index da68a419..4df4de90 100644
--- a/a2ml/api/a2ml_model.py
+++ b/a2ml/api/a2ml_model.py
@@ -66,7 +66,7 @@ def deploy(self, model_id, locally=False, review=True, provider=None,
@show_result
def predict(self, model_id, filename=None, data=None, columns=None, predicted_at=None,
- threshold=None, output=None, locally=False, provider=None):
+ threshold=None, output=None, no_features_in_result=None, locally=False, provider=None):
"""Predict results with new data against deployed model. Predictions are stored next to the file with data to be predicted on. The file name will be appended with suffix _predicted.
Note:
@@ -81,7 +81,8 @@ def predict(self, model_id, filename=None, data=None, columns=None, predicted_at
predicted_at: Predict data date. Use for review of historical data.
threshold(float): For classification models only. This will return class probabilities with response.
output(str): Output csv file path.
- locally(bool): Predicts using a local model if True, on the Provider Cloud if False.
+ no_features_in_result(bool) : Do not return feature columns in prediction result. False by default
+ locally(bool, str): Predicts using a local model with auger.ai.predict if True, on the Provider Cloud if False. If set to "docker", then docker image used to run the model
provider (str): The automl provider you wish to run. For example 'auger'. The default is None - use provider set in costructor or config.
Returns:
@@ -132,7 +133,7 @@ def predict(self, model_id, filename=None, data=None, columns=None, predicted_at
# predictions are returned as rv[provider]['data']['predicted']
"""
- return self.get_runner(locally, model_id, provider).execute_one_provider('predict', filename, model_id, threshold, locally, data, columns, predicted_at, output)
+ return self.get_runner(locally, model_id, provider).execute_one_provider('predict', filename, model_id, threshold, locally, data, columns, predicted_at, output, no_features_in_result)
@show_result
def actuals(self, model_id, filename=None, data=None, columns=None, actuals_at=None, actual_date_column=None, locally=False, provider=None):
diff --git a/a2ml/api/auger/a2ml.py b/a2ml/api/auger/a2ml.py
index 5bc25d38..3e998b5c 100644
--- a/a2ml/api/auger/a2ml.py
+++ b/a2ml/api/auger/a2ml.py
@@ -21,9 +21,9 @@ def evaluate(self, run_id = None):
def deploy(self, model_id, locally=False, review=True, name=None, algorithm=None, score=None, data_path=None ):
return AugerModel(self.ctx).deploy(model_id, locally, review, name, algorithm, score, data_path)
- def predict(self, model_id, filename, threshold=None, locally=False, data=None, columns=None, predicted_at=None, output=None):
+ def predict(self, model_id, filename, threshold=None, locally=False, data=None, columns=None, predicted_at=None, output=None, no_features_in_result=None):
return AugerModel(self.ctx).predict(
- model_id, filename, threshold, locally, data, columns, predicted_at, output)
+ model_id, filename, threshold, locally, data, columns, predicted_at, output, no_features_in_result)
def actuals(self, model_id, filename=None, data=None, columns=None, actuals_at=None, actual_date_column=None, locally=False):
return AugerModel(self.ctx).actuals(
diff --git a/a2ml/api/auger/impl/cloud/experiment_session.py b/a2ml/api/auger/impl/cloud/experiment_session.py
index 7b6a474d..2668f8fe 100644
--- a/a2ml/api/auger/impl/cloud/experiment_session.py
+++ b/a2ml/api/auger/impl/cloud/experiment_session.py
@@ -72,6 +72,8 @@ def get_leaderboard(self):
'{0:.4f}'.format(item.get('score_value'))
}
review_metric = self.ctx.config.get('review/metric')
+ if review_metric == 'roi':
+ review_metric = 'mda'
if review_metric:
l_item[review_metric] = \
'{0:.4f}'.format(item.get('raw_data', {}).get('all_scores', {}).get(review_metric, 0.0))
diff --git a/a2ml/api/auger/impl/cloud/pipeline.py b/a2ml/api/auger/impl/cloud/pipeline.py
index 8149b184..e3232201 100644
--- a/a2ml/api/auger/impl/cloud/pipeline.py
+++ b/a2ml/api/auger/impl/cloud/pipeline.py
@@ -49,7 +49,7 @@ def check_endpoint(self, props=None):
return is_endpoint
- def predict(self, records, features, threshold=None, file_url=None, predicted_at=None):
+ def predict(self, records, features, threshold=None, file_url=None, predicted_at=None, no_features_in_result=None):
if self.object_id is None:
raise AugerException('Please provide Auger Pipeline id')
@@ -72,7 +72,9 @@ def predict(self, records, features, threshold=None, file_url=None, predicted_at
prediction_api = AugerPredictionApi(self.ctx, self, use_endpoint=self.check_endpoint(props))
prediction_properties = \
- prediction_api.create(records, features, threshold=threshold, file_url=file_url, predicted_at=predicted_at)
+ prediction_api.create(records, features, threshold=threshold, file_url=file_url,
+ predicted_at=predicted_at, no_features_in_result=no_features_in_result)
+
return prediction_properties.get('result')
def actual(self, records, features, actuals_at, actuals_path, actual_date_column):
diff --git a/a2ml/api/auger/impl/cloud/pipeline_file.py b/a2ml/api/auger/impl/cloud/pipeline_file.py
index ddeee2ec..bb7e65db 100644
--- a/a2ml/api/auger/impl/cloud/pipeline_file.py
+++ b/a2ml/api/auger/impl/cloud/pipeline_file.py
@@ -31,7 +31,7 @@ def download(self, url, path_to_download, trial_id):
return file_name
def _get_status_name(self):
- return 's3_model_path_status'
+ return 'signed_s3_model_path_status'
def _log_status(self, status):
if status is None:
diff --git a/a2ml/api/auger/impl/cloud/prediction.py b/a2ml/api/auger/impl/cloud/prediction.py
index 67f85dd5..c9c76704 100644
--- a/a2ml/api/auger/impl/cloud/prediction.py
+++ b/a2ml/api/auger/impl/cloud/prediction.py
@@ -14,7 +14,7 @@ def __init__(self, ctx, pipeline_api, use_endpoint=False):
self.parent_id_name = "endpoint_id"
self._set_api_request_path("AugerEndpointPredictionApi")
- def create(self, records, features, threshold=None, file_url=None, predicted_at=None):
+ def create(self, records, features, threshold=None, file_url=None, predicted_at=None, no_features_in_result=None):
params = {
'records': records,
'features': features,
@@ -33,4 +33,7 @@ def create(self, records, features, threshold=None, file_url=None, predicted_at=
if predicted_at:
params['predicted_at'] = str(predicted_at)
+ if no_features_in_result is not None:
+ params['no_features_in_result'] = no_features_in_result
+
return self._call_create(params, ['requested', 'running'])
diff --git a/a2ml/api/auger/impl/model.py b/a2ml/api/auger/impl/model.py
index 3ece907e..c6afa0e7 100644
--- a/a2ml/api/auger/impl/model.py
+++ b/a2ml/api/auger/impl/model.py
@@ -30,23 +30,21 @@ def review(self, model_id):
def undeploy(self, model_id, locally=False):
return ModelUndeploy(self.ctx, self.project).execute(model_id, locally)
- def predict(self, filename, model_id, threshold=None, locally=False, data=None, columns=None, predicted_at=None, output=None):
+ def predict(self, filename, model_id, threshold=None, locally=False, data=None, columns=None, predicted_at=None, output=None, no_features_in_result=None):
if locally:
self.deploy(model_id, locally)
- return ModelPredict(self.ctx).execute(filename, model_id, threshold, locally, data, columns, predicted_at, output)
+ return ModelPredict(self.ctx).execute(filename, model_id, threshold, locally, data, columns, predicted_at, output, no_features_in_result)
def actuals(self, model_id, filename=None, data=None, columns=None, actuals_at=None, actual_date_column=None, locally=False):
if locally:
- is_loaded, model_path, model_name = ModelDeploy(self.ctx, self.project).\
- verify_local_model(model_id)
+ is_loaded, model_path = ModelDeploy(self.ctx, self.project).verify_local_model(model_id)
if not is_loaded:
raise AugerException('Model should be deployed locally.')
- model_path, model_existed = ModelPredict(self.ctx)._extract_model(model_name)
params = {
- 'model_path': os.path.join(model_path, "model"),
+ 'model_path': model_path,
'roi': {
'filter': str(self.ctx.config.get('review/roi/filter')),
'revenue': str(self.ctx.config.get('review/roi/revenue')),
@@ -67,28 +65,22 @@ def actuals(self, model_id, filename=None, data=None, columns=None, actuals_at=N
def delete_actuals(self, model_id, with_predictions=False, begin_date=None, end_date=None, locally=False):
if locally:
- is_loaded, model_path, model_name = ModelDeploy(self.ctx, self.project).\
- verify_local_model(model_id)
-
+ is_loaded, model_path = ModelDeploy(self.ctx, self.project).verify_local_model(model_id)
if not is_loaded:
raise AugerException('Model should be deployed locally.')
- model_path, model_existed = ModelPredict(self.ctx)._extract_model(model_name)
- return ModelReview({'model_path': os.path.join(model_path, "model")}).delete_actuals(
+ return ModelReview({'model_path': model_path}).delete_actuals(
with_predictions=with_predictions, begin_date=begin_date, end_date=end_date)
else:
return ModelDeleteActual(self.ctx).execute(model_id, with_predictions, begin_date, end_date)
def build_review_data(self, model_id, locally, output):
if locally:
- is_loaded, model_path, model_name = ModelDeploy(self.ctx, self.project).\
- verify_local_model(model_id)
-
+ is_loaded, model_path = ModelDeploy(self.ctx, self.project).verify_local_model(model_id)
if not is_loaded:
raise AugerException('Model should be deployed locally.')
- model_path, model_existed = ModelPredict(self.ctx)._extract_model(model_name)
- return ModelReview({'model_path': os.path.join(model_path, "model")}).build_review_data(
+ return ModelReview({'model_path': model_path}).build_review_data(
data_path=self.ctx.config.get("source"), output=output)
else:
raise Exception("Not Implemented.")
diff --git a/a2ml/api/auger/impl/mparts/deploy.py b/a2ml/api/auger/impl/mparts/deploy.py
index be68bfcc..9eeeaf2a 100644
--- a/a2ml/api/auger/impl/mparts/deploy.py
+++ b/a2ml/api/auger/impl/mparts/deploy.py
@@ -23,7 +23,7 @@ def __init__(self, ctx, project):
def execute(self, model_id, locally=False, review=True, name=None, algorithm=None, score=None, data_path=None):
if locally:
- return self.deploy_model_locally(model_id, review, name, data_path)
+ return self.deploy_model_locally(model_id, review, name, data_path, locally)
else:
return self.deploy_model_in_cloud(model_id, review, name, algorithm, score, data_path)
@@ -159,36 +159,65 @@ def deploy_model_in_cloud(self, model_id, review, name, algorithm, score, data_p
return pipeline_properties.get('id')
- def deploy_model_locally(self, model_id, review, name, data_path):
- is_loaded, model_path, model_name = self.verify_local_model(model_id)
+ def deploy_model_locally(self, model_id, review, name, data_path, locally):
+ is_loaded, model_path = self.verify_local_model(model_id)
#TODO: support review flag
if not is_loaded:
self.ctx.log('Downloading model %s' % model_id)
self.project.start()
+ models_path = os.path.join(self.ctx.config.get_path(), 'models')
pipeline_file_api = AugerPipelineFileApi(self.ctx, None)
pipeline_file_properties = pipeline_file_api.create(model_id)
downloaded_model_file = pipeline_file_api.download(
pipeline_file_properties['signed_s3_model_path'],
- model_path, model_id)
+ models_path, model_id)
self.ctx.log('Downloaded model to %s' % downloaded_model_file)
- self.ctx.log('Pulling docker image required to predict')
- self._docker_pull_image()
+ if locally == 'docker':
+ self.ctx.log('Pulling docker image required to predict')
+ self._docker_pull_image()
+ else:
+ self.ctx.log('To run predict locally install a2ml[predict]')
else:
- self.ctx.log('Downloaded model is %s' % model_name)
+ self.ctx.log('Downloaded model is %s' % model_path)
return model_id
- def verify_local_model(self, model_id):
- model_path = os.path.join(self.ctx.config.get_path(), 'models')
- model_name = os.path.join(model_path, 'model-%s.zip' % model_id)
- is_exists = fsclient.is_folder_exists(os.path.join(model_path,"model-%s"%model_id))
- if not is_exists:
- is_exists = fsclient.is_file_exists(model_name)
- return is_exists, model_path, model_name
+ def get_local_model_paths(self, model_id):
+ models_path = os.path.join(self.ctx.config.get_path(), 'models')
+ model_zip_path = os.path.join(models_path, 'model-%s.zip' % model_id)
+ model_path = os.path.join(models_path,"model-%s"%model_id)
+
+ return model_path, model_zip_path
+
+ def verify_local_model(self, model_id, add_model_folder=True):
+ model_path, model_zip_path = self.get_local_model_paths(model_id)
+
+ is_exists = fsclient.is_folder_exists(model_path)
+ if not is_exists and fsclient.is_file_exists(model_zip_path):
+ self._extract_model(model_zip_path)
+
+ if add_model_folder:
+ model_path = os.path.join(model_path, "model")
+
+ is_exists = fsclient.is_folder_exists(model_path)
+
+ return is_exists, model_path
+
+ def _extract_model(self, model_name):
+ from zipfile import ZipFile
+
+ model_path = os.path.splitext(model_name)[0]
+ model_existed = os.path.exists(model_path)
+
+ if not model_existed:
+ with ZipFile(model_name, 'r') as zip_file:
+ zip_file.extractall(model_path)
+
+ return model_path, model_existed
def _docker_pull_image(self):
cluster_settings = AugerClusterApi.get_cluster_settings(self.ctx)
diff --git a/a2ml/api/auger/impl/mparts/predict.py b/a2ml/api/auger/impl/mparts/predict.py
index 510e4ce4..005de202 100644
--- a/a2ml/api/auger/impl/mparts/predict.py
+++ b/a2ml/api/auger/impl/mparts/predict.py
@@ -1,7 +1,6 @@
import os
import shutil
import subprocess
-from zipfile import ZipFile
import sys
import pandas as pd
@@ -23,16 +22,20 @@ def __init__(self, ctx):
super(ModelPredict, self).__init__()
self.ctx = ctx
- def execute(self, filename, model_id, threshold=None, locally=False, data=None, columns=None, predicted_at=None, output=None):
+ def execute(self, filename, model_id, threshold=None, locally=False, data=None, columns=None,
+ predicted_at=None, output=None, no_features_in_result=None):
if filename and not (filename.startswith("http:") or filename.startswith("https:")) and\
not fsclient.is_s3_path(filename):
self.ctx.log('Predicting on data in %s' % filename)
filename = os.path.abspath(filename)
if locally:
- predicted = self._predict_locally(filename, model_id, threshold, data, columns, predicted_at, output)
+ if locally == "docker":
+ predicted = self._predict_locally_in_docker(filename, model_id, threshold, data, columns, predicted_at, output, no_features_in_result)
+ else:
+ predicted = self._predict_locally(filename, model_id, threshold, data, columns, predicted_at, output, no_features_in_result)
else:
- predicted = self._predict_on_cloud(filename, model_id, threshold, data, columns, predicted_at, output)
+ predicted = self._predict_on_cloud(filename, model_id, threshold, data, columns, predicted_at, output, no_features_in_result)
return predicted
@@ -95,7 +98,7 @@ def _check_model_project(self, pipeline_api):
raise AugerException("Project name: %s in config.yml is different from model project name: %s. Please change name in config.yml."%(
self.ctx.config.get('name'), model_project_name))
- def _predict_on_cloud(self, filename, model_id, threshold, data, columns, predicted_at, output):
+ def _predict_on_cloud(self, filename, model_id, threshold, data, columns, predicted_at, output, no_features_in_result):
records, features, file_url, is_pandas_df = self._process_input(filename, data, columns)
temp_file = None
ds_result = None
@@ -103,7 +106,8 @@ def _predict_on_cloud(self, filename, model_id, threshold, data, columns, predic
ds_result = DataFrame.create_dataframe(None, [], features+[self.ctx.config.get('target')])
else:
pipeline_api = AugerPipelineApi(self.ctx, None, model_id)
- predictions = pipeline_api.predict(records, features, threshold=threshold, file_url=file_url, predicted_at=predicted_at)
+ predictions = pipeline_api.predict(records, features, threshold=threshold, file_url=file_url,
+ predicted_at=predicted_at, no_features_in_result=no_features_in_result)
try:
ds_result = DataFrame.create_dataframe(predictions.get('signed_prediction_url'),
@@ -121,11 +125,10 @@ def _predict_on_cloud(self, filename, model_id, threshold, data, columns, predic
ds_result.loaded_columns = columns
ds_result.from_pandas = is_pandas_df
- is_model_loaded, model_path_1, model_name = \
- ModelDeploy(self.ctx, None).verify_local_model(model_id)
- model_path = None
- if is_model_loaded:
- model_path = os.path.join(model_path_1, "model-%s"%model_id, 'model')
+ # Save prediction in local model folder if exist
+ is_model_loaded, model_path = ModelDeploy(self.ctx, None).verify_local_model(model_id)
+ if not is_model_loaded:
+ model_path = None
return ModelHelper.save_prediction(ds_result,
prediction_id = None, json_result=False, count_in_result=False, prediction_date=predicted_at,
@@ -134,17 +137,42 @@ def _predict_on_cloud(self, filename, model_id, threshold, data, columns, predic
if temp_file:
fsclient.remove_file(temp_file)
- def _predict_locally(self, filename_arg, model_id, threshold, data, columns, predicted_at, output):
- model_deploy = ModelDeploy(self.ctx, None)
- is_model_loaded, model_path, model_name = \
- model_deploy.verify_local_model(model_id)
+ def _predict_locally(self, filename_arg, model_id, threshold, data, columns, predicted_at, output, no_features_in_result):
+ from auger_ml.model_exporter import ModelExporter
+ is_model_loaded, model_path = ModelDeploy(self.ctx, None).verify_local_model(model_id)
if not is_model_loaded:
raise AugerException('Model isn\'t loaded locally. '
'Please use a2ml deploy command to download model.')
- model_path, model_existed = self._extract_model(model_name)
- model_options = fsclient.read_json_file(os.path.join(model_path, "model", "options.json"))
+ if columns is not None:
+ columns = list(columns)
+
+ res, options = ModelExporter({}).predict_by_model_to_ds(model_path,
+ path_to_predict=filename_arg, records=data, features=columns,
+ threshold=threshold, no_features_in_result=no_features_in_result)
+
+ ds_result = DataFrame({'data_path': None})
+ ds_result.df = res.df
+ ds_result.loaded_columns = columns
+ if isinstance(data, pd.DataFrame):
+ ds_result.from_pandas = True
+
+ return ModelHelper.save_prediction(ds_result,
+ prediction_id = None, json_result=False, count_in_result=False, prediction_date=predicted_at,
+ model_path=model_path, model_id=model_id, output=output)
+
+ # return ModelExporter({}).predict_by_model(model_path=model_path,
+ # path_to_predict=filename_arg, records=data, features=columns,
+ # threshold=threshold, prediction_date=predicted_at,
+ # no_features_in_result=no_features_in_result) #, output=output)
+
+ def _predict_locally_in_docker(self, filename_arg, model_id, threshold, data, columns, predicted_at, output, no_features_in_result):
+ model_deploy = ModelDeploy(self.ctx, None)
+ is_model_loaded, model_path = model_deploy.verify_local_model(model_id, add_model_folder=False)
+ if not is_model_loaded:
+ raise AugerException('Model isn\'t loaded locally. '
+ 'Please use a2ml deploy command to download model.')
filename = filename_arg
if not filename:
@@ -152,15 +180,7 @@ def _predict_locally(self, filename_arg, model_id, threshold, data, columns, pre
filename = os.path.join(self.ctx.config.get_path(), '.augerml', 'predict_data.csv')
ds.saveToCsvFile(filename, compression=None)
- try:
- predicted = \
- self._docker_run_predict(filename, threshold, model_path)
- finally:
- # clean up unzipped model
- # if it wasn't unzipped before
- if not model_existed:
- fsclient.remove_folder(model_path)
- model_path = None
+ predicted = self._docker_run_predict(filename, threshold, model_path)
if not filename_arg:
ds_result = DataFrame.create_dataframe(predicted)
@@ -178,16 +198,6 @@ def _predict_locally(self, filename_arg, model_id, threshold, data, columns, pre
return predicted
- def _extract_model(self, model_name):
- model_path = os.path.splitext(model_name)[0]
- model_existed = os.path.exists(model_path)
-
- if not model_existed:
- with ZipFile(model_name, 'r') as zip_file:
- zip_file.extractall(model_path)
-
- return model_path, model_existed
-
def _docker_run_predict(self, filename, threshold, model_path):
cluster_settings = AugerClusterApi.get_cluster_settings(self.ctx)
docker_tag = cluster_settings.get('kubernetes_stack')
diff --git a/a2ml/api/auger/impl/mparts/undeploy.py b/a2ml/api/auger/impl/mparts/undeploy.py
index 1dc26592..c15e2af2 100644
--- a/a2ml/api/auger/impl/mparts/undeploy.py
+++ b/a2ml/api/auger/impl/mparts/undeploy.py
@@ -17,15 +17,11 @@ def __init__(self, ctx, project):
def execute(self, model_id, locally=False):
if locally:
- is_loaded, model_path, model_name = \
- ModelDeploy(self.ctx, self.project).verify_local_model(model_id)
- self.ctx.log("Undeploy model. Remove local model: %s" % model_name)
+ model_path, model_zip_path = ModelDeploy(self.ctx, self.project).get_local_model_paths(model_id)
+ self.ctx.log("Undeploy model. Remove local model: %s" % model_path)
- if is_loaded:
- fsclient.remove_file(model_name)
-
- model_folder = os.path.splitext(model_name)[0]
- fsclient.remove_folder(model_folder)
+ fsclient.remove_file(model_zip_path)
+ fsclient.remove_folder(model_path)
else:
pipeline_api = AugerPipelineApi(self.ctx, None, model_id)
if pipeline_api.check_endpoint():
diff --git a/a2ml/api/auger/model.py b/a2ml/api/auger/model.py
index 24bbd661..84f8c13a 100644
--- a/a2ml/api/auger/model.py
+++ b/a2ml/api/auger/model.py
@@ -22,9 +22,9 @@ def deploy(self, project, model_id, locally, review, name, algorithm, score, dat
@error_handler
@authenticated
@with_project(autocreate=False)
- def predict(self, project, filename, model_id, threshold, locally, data, columns, predicted_at, output):
+ def predict(self, project, filename, model_id, threshold, locally, data, columns, predicted_at, output, no_features_in_result):
predicted = Model(self.ctx, project).predict(
- filename, model_id, threshold, locally, data, columns, predicted_at, output)
+ filename, model_id, threshold, locally, data, columns, predicted_at, output, no_features_in_result)
if filename:
self.ctx.log('Predictions stored in %s' % predicted)
diff --git a/a2ml/api/azure/a2ml.py b/a2ml/api/azure/a2ml.py
index 078a7c9b..ef265de8 100644
--- a/a2ml/api/azure/a2ml.py
+++ b/a2ml/api/azure/a2ml.py
@@ -26,12 +26,12 @@ def deploy(self, model_id, locally=False, review=True, name=None, algorithm=None
return AzureModel(self.ctx).deploy(model_id, locally, review, name, algorithm, score, data_path)
- def predict(self, filename, model_id, threshold=None, locally=False, data=None, columns=None, predicted_at=None, output=None):
+ def predict(self, filename, model_id, threshold=None, locally=False, data=None, columns=None, predicted_at=None, output=None, no_features_in_result=None):
from a2ml.api.azure.model import AzureModel
return AzureModel(self.ctx).predict(
filename, model_id, threshold=threshold, locally=locally, data=data, columns=columns,
- predicted_at=predicted_at, output=output)
+ predicted_at=predicted_at, output=output, no_features_in_result=no_features_in_result)
def actuals(self, model_id, filename=None, data=None, columns=None, actuals_at=None, actual_date_column=None, locally=False):
from a2ml.api.azure.model import AzureModel
diff --git a/a2ml/api/azure/model.py b/a2ml/api/azure/model.py
index 5f7fb49f..8b473826 100644
--- a/a2ml/api/azure/model.py
+++ b/a2ml/api/azure/model.py
@@ -239,8 +239,8 @@ def get_df(data):
@error_handler
@authenticated
def predict(self, filename, model_id, threshold=None, locally=False, data=None, columns=None,
- predicted_at=None, output=None, json_result=False, count_in_result=False, prediction_id=None
- ):
+ predicted_at=None, output=None, json_result=False, count_in_result=False, prediction_id=None,
+ no_features_in_result=None):
ds = DataFrame.create_dataframe(filename, data, columns)
model_path = self.ctx.config.get_model_path(model_id)
options = fsclient.read_json_file(os.path.join(model_path, "options.json"))
diff --git a/a2ml/api/model_review/model_helper.py b/a2ml/api/model_review/model_helper.py
index 355b49a1..d2244c38 100644
--- a/a2ml/api/model_review/model_helper.py
+++ b/a2ml/api/model_review/model_helper.py
@@ -100,7 +100,7 @@ def save_metric(metric_id, project_path, metric_name, metric_data):
# @staticmethod
# def _get_score_byname(scoring):
- # from sklearn.metrics.scorer import get_scorer
+ # from sklearn.metrics import get_scorer
# from sklearn.metrics import SCORERS
# #TODO: below metrics does not directly map to sklearn:
@@ -157,7 +157,7 @@ def save_metric(metric_id, project_path, metric_name, metric_data):
@staticmethod
def calculate_scores(options, y_test, X_test=None, estimator=None, y_pred=None, raise_main_score=True):
- from sklearn.metrics.scorer import get_scorer
+ from sklearn.metrics import get_scorer
from sklearn.model_selection._validation import _score
from sklearn.metrics import confusion_matrix
diff --git a/a2ml/api/model_review/scores/classification.py b/a2ml/api/model_review/scores/classification.py
index 76493cc3..3acd890d 100644
--- a/a2ml/api/model_review/scores/classification.py
+++ b/a2ml/api/model_review/scores/classification.py
@@ -3,7 +3,7 @@
from sklearn.metrics import make_scorer, recall_score, average_precision_score, roc_auc_score
from sklearn.metrics import confusion_matrix
from sklearn.metrics import matthews_corrcoef as mcc
-from sklearn.metrics.scorer import SCORERS
+from sklearn.metrics import SCORERS
def kappa(y_true, y_pred, weights=None, allow_off_by_one=False):
diff --git a/a2ml/api/model_review/scores/regression.py b/a2ml/api/model_review/scores/regression.py
index b8cdf0bb..704f4539 100644
--- a/a2ml/api/model_review/scores/regression.py
+++ b/a2ml/api/model_review/scores/regression.py
@@ -1,6 +1,6 @@
import numpy as np
from sklearn.metrics import make_scorer, mean_squared_error, mean_squared_log_error, mean_absolute_error
-from sklearn.metrics.scorer import SCORERS
+from sklearn.metrics import SCORERS
EPSILON = 1e-10
diff --git a/a2ml/cmdl/commands/cmd_model.py b/a2ml/cmdl/commands/cmd_model.py
index a380e6ac..8fedc0a6 100644
--- a/a2ml/cmdl/commands/cmd_model.py
+++ b/a2ml/cmdl/commands/cmd_model.py
@@ -37,14 +37,19 @@ def deploy(ctx, provider, model_id, locally, no_review, name, algorithm, score,
@click.option('--model-id', '-m', type=click.STRING, required=True,
help='Deployed model id.')
@click.option('--locally', is_flag=True, default=False,
+ help='Predict locally using auger.ai.predict package.')
[email protected]('--docker', is_flag=True, default=False,
help='Predict locally using Docker image to run model.')
@click.option('--provider', '-p', type=click.Choice(['auger','azure']), required=False,
help='Cloud AutoML Provider.')
@click.option('--output', '-o', type=click.STRING, required=False,
help='Output csv file path.')
@pass_context
-def predict(ctx, provider, filename, model_id, threshold, locally, output):
+def predict(ctx, provider, filename, model_id, threshold, locally, docker, output):
"""Predict with deployed model."""
+ if docker:
+ locally = "docker"
+
A2MLModel(ctx, provider).predict(filename=filename, model_id=model_id, threshold=threshold, locally=locally, output=output)
@click.command('actuals', short_help='Send actual values for deployed model. Needed for review and monitoring.')
diff --git a/a2ml/cmdl/commands/cmd_predict.py b/a2ml/cmdl/commands/cmd_predict.py
index 5665273d..526c31cb 100644
--- a/a2ml/cmdl/commands/cmd_predict.py
+++ b/a2ml/cmdl/commands/cmd_predict.py
@@ -12,12 +12,16 @@
@click.option('--model-id', '-m', type=click.STRING, required=False,
help='Deployed model id.')
@click.option('--locally', is_flag=True, default=False,
+ help='Predict locally using auger.ai.predict package.')
[email protected]('--docker', is_flag=True, default=False,
help='Predict locally using Docker image to run model.')
@click.option('--output', '-o', type=click.STRING, required=False,
help='Output csv file path.')
@pass_context
-def cmdl(ctx, provider, filename, model_id, threshold, locally, output):
+def cmdl(ctx, provider, filename, model_id, threshold, locally, docker, output):
"""Predict with deployed model."""
ctx.setup_logger(format='')
+ if docker:
+ locally = "docker"
A2ML(ctx, provider).predict(
filename=filename, model_id=model_id, threshold=threshold, locally=locally, output=output)
diff --git a/a2ml/tasks_queue/tasks_hub_api.py b/a2ml/tasks_queue/tasks_hub_api.py
index 534adde5..5340fca5 100644
--- a/a2ml/tasks_queue/tasks_hub_api.py
+++ b/a2ml/tasks_queue/tasks_hub_api.py
@@ -531,7 +531,8 @@ def predict_by_model_task(params):
count_in_result=params.get('count_in_result'),
predicted_at=params.get('prediction_date'),
prediction_id = params.get('prediction_id'),
- locally = params.get('locally', False)
+ locally = params.get('locally', False),
+ no_features_in_result=params.get('no_features_in_result', False)
)
_update_hub_objects(ctx, params.get('provider'), params)
diff --git a/setup.py b/setup.py
index cf55b2a8..1a73562d 100644
--- a/setup.py
+++ b/setup.py
@@ -28,9 +28,9 @@ def run(self):
install_requires = [
- 'numpy<1.19.0,>=1.16.0', # version for azure
- 'pandas>=0.22', # version for azure
- 'joblib>=0.14.1', # version for azure
+ 'numpy==1.18.5', # version for azure
+ 'pandas==1.2.4', # version for azure
+ 'joblib==1.0.1', # version for azure
'ruamel.yaml>0.16.7', # version for azure
'pyarrow<2.0.0,>=0.17.0', # version for azure
'scipy==1.5.2',
@@ -72,23 +72,30 @@ def run(self):
'redis',
's3fs>=0.4.0,<0.5.0',
'uvicorn',
+ 'scikit-learn==0.24.2'
],
'azure': [
- 'scikit-learn~=0.22.2',
- 'xgboost<=0.90',
+ #'scikit-learn~=0.22.2',
+ #'xgboost<=0.90',
# https://github.com/Azure/azure-sdk-for-python/issues/13871
#'azure-mgmt-resource==10.2.0',
- 'azureml-sdk[automl]~=1.22.0'
+ #this needs to move to setup.azure.py and do not include default
+ 'azureml-sdk[automl]==1.29.0'
],
'google': [
'google-cloud-automl'
+ ],
+ 'predict': [
+ 'auger.ai.predict==1.0.72'
]
}
# Meta dependency groups.
all_deps = []
for group_name in extras:
- all_deps += extras[group_name]
+ if group_name != 'predict' and group_name != 'google' and group_name != 'azure':
+ all_deps += extras[group_name]
+
extras['all'] = all_deps
| WIP: Move api to auger.ai repo
Moving all aunderlying auger api code to auger.ai repo
| 2021-05-27T20:31:05 | 0.0 | [] | [] |
|||
augerai/a2ml | augerai__a2ml-547 | 84094892b7a1865b4d6a0f1d13b2af695b5f154b | diff --git a/a2ml/api/roi/grammar.bnf b/a2ml/api/roi/grammar.bnf
index 73b56ba7..5701ae44 100644
--- a/a2ml/api/roi/grammar.bnf
+++ b/a2ml/api/roi/grammar.bnf
@@ -96,7 +96,7 @@ func_call_statement:
| NAME '(' (expression (',' expression)*)? ')'
top_expression:
- | top_expression_type' NUMBER 'by' expression ['per' expression] ['where' expression] ['from' '(' top_expression ')']
+ | top_expression_type' NUMBER 'by' shift_expr ['per' expression] ['where' expression] ['from' '(' top_expression ')']
top_expression_type:
| 'top'
diff --git a/a2ml/api/roi/parser.py b/a2ml/api/roi/parser.py
index d2b798fa..d9c2a920 100644
--- a/a2ml/api/roi/parser.py
+++ b/a2ml/api/roi/parser.py
@@ -376,7 +376,7 @@ def top_expression(self):
node.limit_node = self.const_node(Token.INT_CONST)
self.eat(Token.BY)
- node.order_node = self.expression()
+ node.order_node = self.shift_expr()
if self.current_token.type == Token.PER:
self.eat(Token.PER)
diff --git a/a2ml/api/roi/validator.py b/a2ml/api/roi/validator.py
index 03c2de16..b299bb03 100644
--- a/a2ml/api/roi/validator.py
+++ b/a2ml/api/roi/validator.py
@@ -1,6 +1,6 @@
from a2ml.api.roi.base_interpreter import BaseInterpreter
from a2ml.api.roi.lexer import AstError, Lexer
-from a2ml.api.roi.parser import Parser
+from a2ml.api.roi.parser import Parser, TopNode
class ValidationError(AstError):
pass
@@ -84,5 +84,8 @@ def evaluate_func_node(self, node):
raise ValidationError(f"unknown function '{node.func_name}' at position {node.position()}")
def evaluate_top_node(self, node):
+ if not isinstance(self.root, TopNode):
+ raise ValidationError(f"top or bottom expression cannot be used as an argument or operand")
+
return all(map(lambda n: self.evaluate(n), node.child_nodes()))
| Check how and/or works in top expression
e.g.
```
top 8 by P and $spread_pct < 0.5 from (top 1 by P per $symbol)
$spread_pct < 0.5 and top 8 by P from (top 1 by P per $symbol)
```
| 2021-04-26T13:57:29 | 0.0 | [] | [] |
|||
augerai/a2ml | augerai__a2ml-545 | 0369a5aedaf72a0533c6e3890c1d668a8246fc23 | diff --git a/a2ml/__init__.py b/a2ml/__init__.py
index cc08f086..9b076950 100644
--- a/a2ml/__init__.py
+++ b/a2ml/__init__.py
@@ -1,1 +1,1 @@
-__version__ = '1.0.14'
+__version__ = '1.0.15'
diff --git a/a2ml/api/a2ml.py b/a2ml/api/a2ml.py
index aa213b05..0a727c3b 100644
--- a/a2ml/api/a2ml.py
+++ b/a2ml/api/a2ml.py
@@ -300,7 +300,7 @@ def actuals(self, model_id, filename=None, data=None, columns=None, actuals_at=N
:widths: 50 50 50
:header-rows: 1
- * - target: predicted value
+ * - target: predicted value. If missed - predict called automatically
- actual
- baseline_target: predicted value for baseline model (OPTIONAL)
* - Iris-setosa
@@ -310,7 +310,7 @@ def actuals(self, model_id, filename=None, data=None, columns=None, actuals_at=N
- Iris-virginica
- Iris-virginica
- It may also contain train features to retrain while Review(if target missed) and for distribution chart
+ It may also contain train features to predict(if target missed), retrain model while Review and for distribution chart
This method support only one provider
diff --git a/a2ml/api/a2ml_model.py b/a2ml/api/a2ml_model.py
index c8764b19..da68a419 100644
--- a/a2ml/api/a2ml_model.py
+++ b/a2ml/api/a2ml_model.py
@@ -145,7 +145,7 @@ def actuals(self, model_id, filename=None, data=None, columns=None, actuals_at=N
:widths: 50 50 50
:header-rows: 1
- * - target: predicted value
+ * - target: predicted value. If missed - predict called automatically
- actual
- baseline_target: predicted value for baseline model (OPTIONAL)
* - Iris-setosa
@@ -155,7 +155,7 @@ def actuals(self, model_id, filename=None, data=None, columns=None, actuals_at=N
- Iris-virginica
- Iris-virginica
- It may also contain train features to retrain while Review(if target missed) and for distribution chart
+ It may also contain train features to predict(if target missed), retrain model while Review and for distribution chart
This method support only one provider
@@ -226,6 +226,12 @@ def review_alert(self, model_id, parameters = None, locally=False, provider=None
* threshold (float)
* sensitivity (int): The amount of time(in hours) this metric must be at or below the threshold to trigger the alert.
+ * threshold_policy (all_values/average_value/any_value)
+
+ - all_values: Default value. Trigger an alert when all values in sensitivity below threshold
+ - average_value: Trigger an alert when average of values in sensitivity below threshold
+ - any_value: Trigger an alert when any value in sensitivity below threshold
+
* action (no/retrain/retrain_deploy)
- no: no action should be executed
diff --git a/a2ml/api/auger/impl/cloud/endpoint.py b/a2ml/api/auger/impl/cloud/endpoint.py
index 27030333..e581af4a 100644
--- a/a2ml/api/auger/impl/cloud/endpoint.py
+++ b/a2ml/api/auger/impl/cloud/endpoint.py
@@ -14,8 +14,9 @@ def __init__(self, ctx, endpoint_api, endpoint_id=None):
def create(self, pipeline_id, name):
return self._call_create({'pipeline_id': pipeline_id, 'name': name},[])
- def update(self, name):
- return self._call_update({ 'id': self.object_id, 'name': name})
+ def update(self, params):
+ params['id'] = self.object_id
+ return self._call_update(params)
def update_roi(self):
roi_names = ['review/roi/filter', 'review/roi/investment', 'review/roi/revenue']
diff --git a/a2ml/api/auger/impl/cloud/experiment.py b/a2ml/api/auger/impl/cloud/experiment.py
index 65194f98..45a6c715 100644
--- a/a2ml/api/auger/impl/cloud/experiment.py
+++ b/a2ml/api/auger/impl/cloud/experiment.py
@@ -96,8 +96,6 @@ def get_experiment_options(config, ):
if config.get('experiment/search_space', None) is not None:
options['search_space'] = config.get('experiment/search_space')
- if config.get('review/metric'):
- options['review_metric'] = config.get('review/metric')
if config.get('review/alert/retrain_policy/type'):
options['retrain_policy_type'] = config.get('review/alert/retrain_policy/type')
if config.get('review/alert/retrain_policy/value'):
diff --git a/a2ml/api/auger/impl/cloud/review_alert.py b/a2ml/api/auger/impl/cloud/review_alert.py
index 30363621..821279ed 100644
--- a/a2ml/api/auger/impl/cloud/review_alert.py
+++ b/a2ml/api/auger/impl/cloud/review_alert.py
@@ -23,6 +23,7 @@ def create_update(self, parameters=None):
'active': parameters.get('active', config.get('review/alert/active')),
'kind': parameters.get('type', config.get('review/alert/type')),
'threshold': float(parameters.get('threshold', config.get('review/alert/threshold'))),
+ 'threshold_policy': parameters.get('threshold_policy', config.get('review/alert/threshold_policy')),
'sensitivity': int(parameters.get('sensitivity', config.get('review/alert/sensitivity'))),
'actions': parameters.get('action', config.get('review/alert/action')),
'notifications': parameters.get('notification', config.get('review/alert/notification'))
diff --git a/a2ml/api/auger/impl/mparts/deploy.py b/a2ml/api/auger/impl/mparts/deploy.py
index 61a32901..ddb7c98a 100644
--- a/a2ml/api/auger/impl/mparts/deploy.py
+++ b/a2ml/api/auger/impl/mparts/deploy.py
@@ -50,8 +50,12 @@ def create_update_review_alert(self, model_id, pipeline_properties=None, paramet
endpoint_api = AugerEndpointApi(self.ctx, None,
pipeline_properties['endpoint_pipelines'][0].get('endpoint_id'))
+ params = {'review_metric': self.ctx.config.get('review/metric')}
if name and update_name:
- endpoint_api.update(name)
+ params['name'] = name
+
+ if params:
+ endpoint_api.update(params)
session_id = endpoint_api.properties().get('primary_experiment_session_id')
if session_id:
diff --git a/a2ml/api/azure/model.py b/a2ml/api/azure/model.py
index 43eae7b5..5f7fb49f 100644
--- a/a2ml/api/azure/model.py
+++ b/a2ml/api/azure/model.py
@@ -47,7 +47,6 @@ def deploy(self, model_id, locally, review, name=None, algorithm=None, score=Non
'scoreNames': [self.ctx.config.get('experiment/metric')],
'scoring': self.ctx.config.get('experiment/metric'),
"score_name": self.ctx.config.get('experiment/metric'),
- "review_metric": self.ctx.config.get('review/metric'),
"originalFeatureColumns": model_features,
"model_type": self.ctx.config.get("model_type")
}
diff --git a/a2ml/api/model_review/model_review.py b/a2ml/api/model_review/model_review.py
index eec8cf41..916659c1 100644
--- a/a2ml/api/model_review/model_review.py
+++ b/a2ml/api/model_review/model_review.py
@@ -332,7 +332,6 @@ def score_model_performance_daily(self, date_from, date_to, extra_features=[]):
res[str(curr_date)] = {
'scores': scores,
'score_name': self.options.get('score_name'),
- 'review_metric': self.options.get('review_metric'),
'baseline_scores': baseline_score
}
diff --git a/a2ml/cmdl/template/config.yaml b/a2ml/cmdl/template/config.yaml
index 566e9a90..2bfc8cc3 100644
--- a/a2ml/cmdl/template/config.yaml
+++ b/a2ml/cmdl/template/config.yaml
@@ -72,13 +72,19 @@ review:
alert:
# Activate/Deactivate Review Alert
active: True
- #model_accuracy - Decrease in Model Accuracy: the model accuracy threshold allowed before trigger is initiated. Default threshold: 0.7. Default sensitivity: 72
- #feature_average_range - Feature Average Out-Of-Range: Trigger an alert if average feature value during time period goes beyond the standard deviation range calculated during training period by the specified number of times or more. Default threshold: 1. Default sensitivity: 168
- #runtime_errors_burst - Burst Of Runtime Errors: Trigger an alert if runtime error count exceeds threshold. Default threshold: 5. Default sensitivity: 1
+ # model_accuracy - Decrease in Model Accuracy: the model accuracy threshold allowed before trigger is initiated. Default threshold: 0.7. Default sensitivity: 72
+ # feature_average_range - Feature Average Out-Of-Range: Trigger an alert if average feature value during time period goes beyond the standard deviation range calculated during training period by the specified number of times or more. Default threshold: 1. Default sensitivity: 168
+ # runtime_errors_burst - Burst Of Runtime Errors: Trigger an alert if runtime error count exceeds threshold. Default threshold: 5. Default sensitivity: 1
type: model_accuracy
threshold: 0.7
#The amount of time(in hours) this metric must be at or below the threshold to trigger the alert.
sensitivity: 72
+
+ # all_values - Trigger an alert when all values in sensitivity below threshold.
+ # average_value - Trigger an alert when average of values in sensitivity below threshold.
+ # any_value - Trigger an alert when any value in sensitivity below threshold
+ threshold_policy: all_values
+
#no - no action should be executed
#retrain - Use new predictions and actuals as test set to retrain the model.
#retrain_deploy - Deploy retrained model and make it active model of this endpoint.
diff --git a/docs/source/dev/configuration.rst b/docs/source/dev/configuration.rst
index a8d2caee..c983ac6f 100644
--- a/docs/source/dev/configuration.rst
+++ b/docs/source/dev/configuration.rst
@@ -44,6 +44,7 @@ All Providers
type: model_accuracy
threshold: 0.7
sensitivity: 72
+ threshold_policy: all_values
action: retrain_deploy
notification: user
@@ -91,6 +92,13 @@ All Providers
* **review.alert.threshold** Float
* **review.alert.sensitivity** The amount of time(in hours) this metric must be at or below the threshold to trigger the alert.
+ * **review.alert.threshold_policy**
+
+ * **Supported Review Alert threshold policies**
+ * **all_values** Trigger an alert when all values in sensitivity below threshold.
+ * **average_value** Trigger an alert when average of values in sensitivity below threshold.
+ * **any_value** Trigger an alert when any value in sensitivity below threshold.
+
* **review.alert.action**
* **Supported Review Alert actions**
diff --git a/docs/source/dev/mlram.rst b/docs/source/dev/mlram.rst
index 941cf7d6..1da9d1cf 100644
--- a/docs/source/dev/mlram.rst
+++ b/docs/source/dev/mlram.rst
@@ -11,6 +11,8 @@ Auger model
Monitored model
===================
+See application example: https://github.com/augerai/mlram_apps
+
1. Create A2ML application with external provider:
.. code-block:: bash
@@ -66,6 +68,9 @@ To review distribution chart , send training features with target and actuals:
.. code-block:: python
+ # If call just after actuals, wait some time till server process the data
+ time.sleep(30)
+
ctx = Context()
result = A2ML(ctx).review(model_id='external_model_id')
if result['data']['status'] == 'retrain':
| WIP: Move api to auger.ai repo
Moving all aunderlying auger api code to auger.ai repo
| 2021-04-21T11:17:28 | 0.0 | [] | [] |
|||
augerai/a2ml | augerai__a2ml-536 | 71d7180c37deba8a27bee7b1c67f9dae2d39553e | diff --git a/a2ml/__init__.py b/a2ml/__init__.py
index b49950b1..0fb5dff1 100644
--- a/a2ml/__init__.py
+++ b/a2ml/__init__.py
@@ -1,1 +1,1 @@
-__version__ = '1.0.11'
+__version__ = '1.0.12'
diff --git a/a2ml/api/auger/impl/cloud/base.py b/a2ml/api/auger/impl/cloud/base.py
index 81c45ac1..5ea06a53 100644
--- a/a2ml/api/auger/impl/cloud/base.py
+++ b/a2ml/api/auger/impl/cloud/base.py
@@ -134,6 +134,7 @@ def _call_create(self, params=None, progress=None,has_return_object=True):
if has_return_object:
if object_properties:
self.object_id = object_properties.get('id')
+ self.object_name = object_properties.get('name') #name can be changed by hub
if progress:
self.wait_for_status(progress)
return self.properties()
| WIP: Move api to auger.ai repo
Moving all aunderlying auger api code to auger.ai repo
| 2021-03-22T06:21:43 | 0.0 | [] | [] |
|||
augerai/a2ml | augerai__a2ml-535 | 3088a5db6d2dc5fdb4c4489740411cf140b77a62 | diff --git a/a2ml/__init__.py b/a2ml/__init__.py
index d521168a..b49950b1 100644
--- a/a2ml/__init__.py
+++ b/a2ml/__init__.py
@@ -1,1 +1,1 @@
-__version__ = '1.0.10'
+__version__ = '1.0.11'
diff --git a/a2ml/api/a2ml.py b/a2ml/api/a2ml.py
index c92955a7..3a14194f 100644
--- a/a2ml/api/a2ml.py
+++ b/a2ml/api/a2ml.py
@@ -175,7 +175,8 @@ def evaluate(self, run_id = None):
return self.runner.execute('evaluate', run_id = run_id)
@show_result
- def deploy(self, model_id, locally=False, review=True, provider=None, name=None, algorithm=None, score=None):
+ def deploy(self, model_id, locally=False, review=True, provider=None,
+ name=None, algorithm=None, score=None, data_path=None):
"""Deploy a model locally or to specified provider(s).
Note:
@@ -190,6 +191,7 @@ def deploy(self, model_id, locally=False, review=True, provider=None, name=None,
name (str): Friendly name for the model. Used as name for Review Endpoint
algorithm (str): Self-hosted model(external provider) algorithm name.
score (float): Self-hosted model(external provider) score.
+ data_path (str): Data path to fit model when deploy. Return new deployed model-id
Returns:
::
@@ -214,7 +216,8 @@ def deploy(self, model_id, locally=False, review=True, provider=None, name=None,
model_id = result['model_id']
"""
- return self.get_runner(locally, model_id, provider).execute_one_provider('deploy', model_id, locally, review, name, algorithm, score)
+ return self.get_runner(locally, model_id, provider).execute_one_provider('deploy',
+ model_id, locally, review, name, algorithm, score, data_path)
@show_result
def predict(self, model_id, filename=None, data=None, columns=None, predicted_at=None,
diff --git a/a2ml/api/a2ml_model.py b/a2ml/api/a2ml_model.py
index 83db12dd..b5400042 100644
--- a/a2ml/api/a2ml_model.py
+++ b/a2ml/api/a2ml_model.py
@@ -25,7 +25,8 @@ def __init__(self, ctx, provider=None):
self.local_runner = lambda: self.build_runner(ctx, provider, force_local=True)
@show_result
- def deploy(self, model_id, locally=False, review=True, provider=None, name=None, algorithm=None, score=None):
+ def deploy(self, model_id, locally=False, review=True, provider=None,
+ name=None, algorithm=None, score=None, data_path=None):
"""Deploy a model locally or to specified provider(s).
Args:
@@ -36,6 +37,7 @@ def deploy(self, model_id, locally=False, review=True, provider=None, name=None,
name (str): Friendly name for the model. Used as name for Review Endpoint
algorithm (str): Self-hosted model(external provider) algorithm name.
score (float): Self-hosted model(external provider) score.
+ data_path (str): Data path to fit model when deploy. Return new deployed model-id
Returns:
::
@@ -59,7 +61,8 @@ def deploy(self, model_id, locally=False, review=True, provider=None, name=None,
model_id = result['model_id']
"""
- return self.get_runner(locally, model_id, provider).execute_one_provider('deploy', model_id, locally, review, name, algorithm, score)
+ return self.get_runner(locally, model_id, provider).execute_one_provider('deploy',
+ model_id, locally, review, name, algorithm, score, data_path)
@show_result
def predict(self, model_id, filename=None, data=None, columns=None, predicted_at=None,
diff --git a/a2ml/api/auger/a2ml.py b/a2ml/api/auger/a2ml.py
index 015fff4e..5bc25d38 100644
--- a/a2ml/api/auger/a2ml.py
+++ b/a2ml/api/auger/a2ml.py
@@ -18,8 +18,8 @@ def train(self):
def evaluate(self, run_id = None):
return AugerExperiment(self.ctx).leaderboard(run_id)
- def deploy(self, model_id, locally=False, review=True, name=None, algorithm=None, score=None):
- return AugerModel(self.ctx).deploy(model_id, locally, review, name, algorithm, score)
+ def deploy(self, model_id, locally=False, review=True, name=None, algorithm=None, score=None, data_path=None ):
+ return AugerModel(self.ctx).deploy(model_id, locally, review, name, algorithm, score, data_path)
def predict(self, model_id, filename, threshold=None, locally=False, data=None, columns=None, predicted_at=None, output=None):
return AugerModel(self.ctx).predict(
diff --git a/a2ml/api/auger/impl/cloud/pipeline.py b/a2ml/api/auger/impl/cloud/pipeline.py
index 7e289e20..8149b184 100644
--- a/a2ml/api/auger/impl/cloud/pipeline.py
+++ b/a2ml/api/auger/impl/cloud/pipeline.py
@@ -11,8 +11,9 @@ def __init__(self, ctx, experiment_api, pipeline_id=None):
super(AugerPipelineApi, self).__init__(
ctx, experiment_api, None, pipeline_id)
- def create(self, trial_id, review=True, name=None):
- return self._call_create({'trial_id': trial_id, 'is_review_model_enabled' : review, 'name': name},
+ def create(self, trial_id, review=True, name=None, refit_data_path=None):
+ return self._call_create({'trial_id': trial_id, 'is_review_model_enabled' : review, 'name': name,
+ 'refit_data_path': refit_data_path},
['creating_files', 'packaging', 'deploying'])
def create_external(self, review, name, project_id, algorithm, score):
diff --git a/a2ml/api/auger/impl/model.py b/a2ml/api/auger/impl/model.py
index 19ec06c7..3ece907e 100644
--- a/a2ml/api/auger/impl/model.py
+++ b/a2ml/api/auger/impl/model.py
@@ -18,8 +18,8 @@ def __init__(self, ctx, project):
self.project = project
self.ctx = ctx
- def deploy(self, model_id, locally=False, review=True, name=None, algorithm=None, score=None):
- return ModelDeploy(self.ctx, self.project).execute(model_id, locally, review, name, algorithm, score)
+ def deploy(self, model_id, locally=False, review=True, name=None, algorithm=None, score=None, data_path=None):
+ return ModelDeploy(self.ctx, self.project).execute(model_id, locally, review, name, algorithm, score, data_path)
def review_alert(self, model_id, parameters, name):
return ModelDeploy(self.ctx, self.project).create_update_review_alert(model_id, None, parameters, name)
diff --git a/a2ml/api/auger/impl/mparts/deploy.py b/a2ml/api/auger/impl/mparts/deploy.py
index 391cf465..90d020eb 100644
--- a/a2ml/api/auger/impl/mparts/deploy.py
+++ b/a2ml/api/auger/impl/mparts/deploy.py
@@ -21,11 +21,11 @@ def __init__(self, ctx, project):
self.project = project
self.ctx = ctx
- def execute(self, model_id, locally=False, review=True, name=None, algorithm=None, score=None):
+ def execute(self, model_id, locally=False, review=True, name=None, algorithm=None, score=None, data_path=None):
if locally:
- return self.deploy_model_locally(model_id, review, name)
+ return self.deploy_model_locally(model_id, review, name, data_path)
else:
- return self.deploy_model_in_cloud(model_id, review, name, algorithm, score)
+ return self.deploy_model_in_cloud(model_id, review, name, algorithm, score, data_path)
def create_update_review_alert(self, model_id, pipeline_properties=None, parameters=None, name=None):
if not self.ctx.config.get('review'):
@@ -121,7 +121,9 @@ def review(self, model_id):
}
return result
- def deploy_model_in_cloud(self, model_id, review, name, algorithm, score):
+ def deploy_model_in_cloud(self, model_id, review, name, algorithm, score, data_path):
+ from .predict import ModelPredict
+
self.ctx.log('Deploying model %s' % model_id)
if self.ctx.is_external_provider():
@@ -129,8 +131,12 @@ def deploy_model_in_cloud(self, model_id, review, name, algorithm, score):
self.ctx, None).create_external(review, name, self.project.object_id, algorithm, score)
else:
self.project.start()
+ data_url = None
+ if data_path:
+ _, _, data_url, _ = ModelPredict(self.ctx)._process_input(data_path, None, None)
+
pipeline_properties = AugerPipelineApi(
- self.ctx, None).create(model_id, review, name)
+ self.ctx, None).create(model_id, review, name, data_url)
if pipeline_properties.get('status') == 'ready':
if review:
@@ -144,7 +150,7 @@ def deploy_model_in_cloud(self, model_id, review, name, algorithm, score):
return pipeline_properties.get('id')
- def deploy_model_locally(self, model_id, review, name):
+ def deploy_model_locally(self, model_id, review, name, data_path):
is_loaded, model_path, model_name = self.verify_local_model(model_id)
#TODO: support review flag
if not is_loaded:
diff --git a/a2ml/api/auger/model.py b/a2ml/api/auger/model.py
index b901ee1c..24bbd661 100644
--- a/a2ml/api/auger/model.py
+++ b/a2ml/api/auger/model.py
@@ -15,8 +15,8 @@ def __init__(self, ctx):
@error_handler
@authenticated
@with_project(autocreate=False)
- def deploy(self, project, model_id, locally, review, name, algorithm, score):
- model_id = Model(self.ctx, project).deploy(model_id, locally, review, name, algorithm, score)
+ def deploy(self, project, model_id, locally, review, name, algorithm, score, data_path):
+ model_id = Model(self.ctx, project).deploy(model_id, locally, review, name, algorithm, score, data_path)
return {'model_id': model_id}
@error_handler
diff --git a/a2ml/api/azure/a2ml.py b/a2ml/api/azure/a2ml.py
index a2647eee..078a7c9b 100644
--- a/a2ml/api/azure/a2ml.py
+++ b/a2ml/api/azure/a2ml.py
@@ -21,10 +21,10 @@ def evaluate(self, run_id = None):
return AzureExperiment(self.ctx).leaderboard(run_id)
- def deploy(self, model_id, locally=False, review=True, name=None, algorithm=None, score=None):
+ def deploy(self, model_id, locally=False, review=True, name=None, algorithm=None, score=None, data_path=None):
from a2ml.api.azure.model import AzureModel
- return AzureModel(self.ctx).deploy(model_id, locally, review, name, algorithm, score)
+ return AzureModel(self.ctx).deploy(model_id, locally, review, name, algorithm, score, data_path)
def predict(self, filename, model_id, threshold=None, locally=False, data=None, columns=None, predicted_at=None, output=None):
from a2ml.api.azure.model import AzureModel
diff --git a/a2ml/api/azure/model.py b/a2ml/api/azure/model.py
index 83195e43..43eae7b5 100644
--- a/a2ml/api/azure/model.py
+++ b/a2ml/api/azure/model.py
@@ -20,7 +20,7 @@ def __init__(self, ctx):
@error_handler
@authenticated
- def deploy(self, model_id, locally, review, name=None, algorithm=None, score=None):
+ def deploy(self, model_id, locally, review, name=None, algorithm=None, score=None, data_path=None):
if locally:
is_loaded, model_path = self.verify_local_model(model_id)
if is_loaded:
diff --git a/a2ml/cmdl/commands/cmd_deploy.py b/a2ml/cmdl/commands/cmd_deploy.py
index 474b1dae..0793b065 100644
--- a/a2ml/cmdl/commands/cmd_deploy.py
+++ b/a2ml/cmdl/commands/cmd_deploy.py
@@ -17,8 +17,10 @@
help='Self-hosted model(external provider) algorithm name.')
@click.option('--score', '-s', required=False, type=float,
help='Self-hosted model(external provider) score.')
[email protected]('--data-path', '-d', type=click.STRING, required=False,
+ help='Data path to fit model when deploy. Return new deployed model-id')
@pass_context
-def cmdl(ctx, provider, model_id, locally, no_review, name, algorithm, score):
+def cmdl(ctx, provider, model_id, locally, no_review, name, algorithm, score, data_path):
"""Deploy trained model."""
ctx.setup_logger(format='')
- A2ML(ctx, provider).deploy(model_id, locally, not no_review, name=name, algorithm=algorithm, score=score)
+ A2ML(ctx, provider).deploy(model_id, locally, not no_review, name=name, algorithm=algorithm, score=score, data_path=data_path)
diff --git a/a2ml/cmdl/commands/cmd_model.py b/a2ml/cmdl/commands/cmd_model.py
index ccc5bacf..e6b187b4 100644
--- a/a2ml/cmdl/commands/cmd_model.py
+++ b/a2ml/cmdl/commands/cmd_model.py
@@ -23,10 +23,12 @@ def cmdl(ctx):
help='Self-hosted model(external provider) algorithm name.')
@click.option('--score', '-s', required=False, type=float,
help='Self-hosted model(external provider) score.')
[email protected]('--data-path', '-d', type=click.STRING, required=False,
+ help='Data path to fit model when deploy. Return new deployed model-id')
@pass_context
-def deploy(ctx, provider, model_id, locally, no_review, name, algorithm, score):
+def deploy(ctx, provider, model_id, locally, no_review, name, algorithm, score, data_path):
"""Deploy trained model."""
- A2MLModel(ctx, provider).deploy(model_id, locally, not no_review, name=name, algorithm=algorithm, score=score)
+ A2MLModel(ctx, provider).deploy(model_id, locally, not no_review, name=name, algorithm=algorithm, score=score, data_path=data_path)
@click.command('predict', short_help='Predict with deployed model.')
@click.argument('filename', required=True, type=click.STRING)
| WIP: Move api to auger.ai repo
Moving all aunderlying auger api code to auger.ai repo
| 2021-03-09T17:48:33 | 0.0 | [] | [] |
|||
augerai/a2ml | augerai__a2ml-534 | 2e580917f270c6ed64528af1e34c08626d5a3fc0 | diff --git a/a2ml/__init__.py b/a2ml/__init__.py
index a67a991b..d521168a 100644
--- a/a2ml/__init__.py
+++ b/a2ml/__init__.py
@@ -1,1 +1,1 @@
-__version__ = '1.0.09'
+__version__ = '1.0.10'
diff --git a/a2ml/api/a2ml_model.py b/a2ml/api/a2ml_model.py
index ed58746d..83db12dd 100644
--- a/a2ml/api/a2ml_model.py
+++ b/a2ml/api/a2ml_model.py
@@ -204,7 +204,7 @@ def actuals(self, model_id, filename=None, data=None, columns=None, actuals_at=N
return self.get_runner(locally, model_id, provider).execute_one_provider('actuals', model_id, filename, data, columns, actuals_at, actual_date_column, locally)
@show_result
- def review_alert(self, model_id, parameters = None, locally=False, provider=None):
+ def review_alert(self, model_id, parameters = None, locally=False, provider=None, name=None):
"""Update Review parameters.
Args:
@@ -230,6 +230,7 @@ def review_alert(self, model_id, parameters = None, locally=False, provider=None
locally(bool): Process review locally.
provider (str): The automl provider you wish to run. For example 'auger'. The default is None - use provider defined by model_id or set in costructor.
+ name (str): Friendly name for the model. Used as name for Review Endpoint
Returns:
::
@@ -244,7 +245,7 @@ def review_alert(self, model_id, parameters = None, locally=False, provider=None
ctx = Context()
model = A2MLModel(ctx).review_alert(model_id='D881079E1ED14FB')
"""
- return self.get_runner(locally, model_id, provider).execute_one_provider('review_alert', model_id, parameters)
+ return self.get_runner(locally, model_id, provider).execute_one_provider('review_alert', model_id, parameters, name)
@show_result
def review(self, model_id, locally=False, provider=None):
diff --git a/a2ml/api/auger/impl/cloud/endpoint.py b/a2ml/api/auger/impl/cloud/endpoint.py
index eed9eb81..27030333 100644
--- a/a2ml/api/auger/impl/cloud/endpoint.py
+++ b/a2ml/api/auger/impl/cloud/endpoint.py
@@ -14,6 +14,9 @@ def __init__(self, ctx, endpoint_api, endpoint_id=None):
def create(self, pipeline_id, name):
return self._call_create({'pipeline_id': pipeline_id, 'name': name},[])
+ def update(self, name):
+ return self._call_update({ 'id': self.object_id, 'name': name})
+
def update_roi(self):
roi_names = ['review/roi/filter', 'review/roi/investment', 'review/roi/revenue']
roi_values = []
diff --git a/a2ml/api/auger/impl/model.py b/a2ml/api/auger/impl/model.py
index aedc93d4..19ec06c7 100644
--- a/a2ml/api/auger/impl/model.py
+++ b/a2ml/api/auger/impl/model.py
@@ -21,8 +21,8 @@ def __init__(self, ctx, project):
def deploy(self, model_id, locally=False, review=True, name=None, algorithm=None, score=None):
return ModelDeploy(self.ctx, self.project).execute(model_id, locally, review, name, algorithm, score)
- def review_alert(self, model_id, parameters):
- return ModelDeploy(self.ctx, self.project).create_update_review_alert(model_id, None, parameters)
+ def review_alert(self, model_id, parameters, name):
+ return ModelDeploy(self.ctx, self.project).create_update_review_alert(model_id, None, parameters, name)
def review(self, model_id):
return ModelDeploy(self.ctx, self.project).review(model_id)
diff --git a/a2ml/api/auger/impl/mparts/deploy.py b/a2ml/api/auger/impl/mparts/deploy.py
index 1023a93b..391cf465 100644
--- a/a2ml/api/auger/impl/mparts/deploy.py
+++ b/a2ml/api/auger/impl/mparts/deploy.py
@@ -34,7 +34,8 @@ def create_update_review_alert(self, model_id, pipeline_properties=None, paramet
if not pipeline_properties:
pipeline_properties = AugerPipelineApi(self.ctx, None, model_id).properties()
- endpoint_api = None
+ endpoint_api = None
+ update_name = True
if not pipeline_properties.get('endpoint_pipelines'):
self.ctx.log('Creating review endpoint ...')
endpoint_api = AugerEndpointApi(self.ctx, None)
@@ -42,12 +43,16 @@ def create_update_review_alert(self, model_id, pipeline_properties=None, paramet
name = fsclient.get_path_base_name(self.ctx.config.get('source'))
endpoint_properties = endpoint_api.create(pipeline_properties.get('id'), name)
pipeline_properties['endpoint_pipelines'] = [endpoint_properties.get('id')]
+ update_name = False
if pipeline_properties.get('endpoint_pipelines'):
if endpoint_api is None:
endpoint_api = AugerEndpointApi(self.ctx, None,
pipeline_properties['endpoint_pipelines'][0].get('endpoint_id'))
+ if name and update_name:
+ endpoint_api.update(name)
+
session_id = endpoint_api.properties().get('primary_experiment_session_id')
if session_id:
AugerExperimentSessionApi(self.ctx, None, None, session_id).update_settings()
diff --git a/a2ml/api/auger/model.py b/a2ml/api/auger/model.py
index 516c5c0f..b901ee1c 100644
--- a/a2ml/api/auger/model.py
+++ b/a2ml/api/auger/model.py
@@ -46,8 +46,8 @@ def delete_actuals(self, project, model_id, with_predictions=False, begin_date=N
@error_handler
@authenticated
@with_project(autocreate=False)
- def review_alert(self, project, model_id, parameters):
- return Model(self.ctx, project).review_alert(model_id, parameters)
+ def review_alert(self, project, model_id, parameters, name):
+ return Model(self.ctx, project).review_alert(model_id, parameters, name)
@error_handler
@authenticated
diff --git a/a2ml/api/azure/model.py b/a2ml/api/azure/model.py
index e4342fd9..83195e43 100644
--- a/a2ml/api/azure/model.py
+++ b/a2ml/api/azure/model.py
@@ -554,7 +554,7 @@ def undeploy(self, model_id, locally):
@error_handler
@authenticated
- def review_alert(self, model_id, parameters):
+ def review_alert(self, model_id, parameters, name):
raise AzureException("Not Implemented. Set use_auger_cloud: True in config.yml")
@error_handler
diff --git a/a2ml/api/model_review/model_helper.py b/a2ml/api/model_review/model_helper.py
index 64ceeb18..6a0c3541 100644
--- a/a2ml/api/model_review/model_helper.py
+++ b/a2ml/api/model_review/model_helper.py
@@ -4,7 +4,7 @@
import numpy as np
import json
-from a2ml.api.utils import get_uid, get_uid4, fsclient, remove_dups_from_list
+from a2ml.api.utils import get_uid, get_uid4, fsclient, remove_dups_from_list, sort_arrays
from a2ml.api.utils.dataframe import DataFrame
@@ -184,6 +184,12 @@ def calculate_scores(options, y_test, X_test=None, estimator=None, y_pred=None,
else:
logging.error("calculate_scores: no scaling found for target fold group: %s"%options['fold_group'])
+ if options.get("score_top_count"):
+ if y_pred is None:
+ y_pred = estimator.predict(X_test)
+
+ y_pred, y_test = sort_arrays(y_pred, y_test, options.get("score_top_count"))
+
all_scores = {}
if y_pred is not None:
if options.get('binaryClassification'):
diff --git a/a2ml/api/utils/__init__.py b/a2ml/api/utils/__init__.py
index 876bbf2e..f39f229e 100644
--- a/a2ml/api/utils/__init__.py
+++ b/a2ml/api/utils/__init__.py
@@ -249,4 +249,13 @@ def retry_helper(func, retry_errors=[], num_try=10, delay=10, ctx=None):
time.sleep(delay*nTry)
else:
raise
-
+
+def sort_arrays(ar1, ar2, top_n=None, desc=True):
+ p = ar1.argsort()
+ if desc:
+ p = p[::-1]
+ if top_n:
+ p = p[:top_n]
+
+ return ar1[p], ar2[p]
+
diff --git a/a2ml/cmdl/commands/cmd_model.py b/a2ml/cmdl/commands/cmd_model.py
index d2275b79..ccc5bacf 100644
--- a/a2ml/cmdl/commands/cmd_model.py
+++ b/a2ml/cmdl/commands/cmd_model.py
@@ -62,10 +62,12 @@ def actuals(ctx, provider, filename, model_id, locally):
@click.argument('model-id', required=True, type=click.STRING)
@click.option('--provider', '-p', type=click.Choice(['auger','azure']), required=False,
help='Cloud AutoML Provider.')
[email protected]('--name', '-n', required=False, type=click.STRING,
+ help='Model friendly name.Used as name for Review Endpoint')
@pass_context
-def review_alert(ctx, provider, model_id):
+def review_alert(ctx, provider, model_id, name):
"""Predict with deployed model."""
- A2MLModel(ctx, provider).review_alert(model_id)
+ A2MLModel(ctx, provider).review_alert(model_id, name=name)
@click.command('review', short_help='Review information about deployed model.')
@click.argument('model-id', required=True, type=click.STRING)
| WIP: Move api to auger.ai repo
Moving all aunderlying auger api code to auger.ai repo
| 2021-03-03T11:26:13 | 0.0 | [] | [] |
End of preview. Expand
in Data Studio
README.md exists but content is empty.
- Downloads last month
- 8