id
stringlengths
14
16
text
stringlengths
36
2.73k
source
stringlengths
49
117
c1e8cfc94978-21
try: while self._should_continue(iterations, time_elapsed): next_step_output = await self._atake_next_step( name_to_tool_map, color_mapping, inputs, intermediate_steps, run_manager=run_manager, ) if isinstance(next_step_output, AgentFinish): return await self._areturn( next_step_output, intermediate_steps, run_manager=run_manager, ) intermediate_steps.extend(next_step_output) if len(next_step_output) == 1: next_step_action = next_step_output[0] # See if tool should return directly tool_return = self._get_tool_return(next_step_action) if tool_return is not None: return await self._areturn( tool_return, intermediate_steps, run_manager=run_manager ) iterations += 1 time_elapsed = time.time() - start_time output = self.agent.return_stopped_response( self.early_stopping_method, intermediate_steps, **inputs ) return await self._areturn( output, intermediate_steps, run_manager=run_manager ) except TimeoutError: # stop early when interrupted by the async timeout output = self.agent.return_stopped_response( self.early_stopping_method, intermediate_steps, **inputs ) return await self._areturn( output, intermediate_steps, run_manager=run_manager ) def _get_tool_return( self, next_step_output: Tuple[AgentAction, str] ) -> Optional[AgentFinish]: """Check if the tool is a returning tool.""" agent_action, observation = next_step_output
https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html
c1e8cfc94978-22
agent_action, observation = next_step_output name_to_tool_map = {tool.name: tool for tool in self.tools} # Invalid tools won't be in the map, so we return False. if agent_action.tool in name_to_tool_map: if name_to_tool_map[agent_action.tool].return_direct: return AgentFinish( {self.agent.return_values[0]: observation}, "", ) return None By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/agent.html
514e92fa7c5d-0
Source code for langchain.agents.loading """Functionality for loading agents.""" import json import logging from pathlib import Path from typing import Any, List, Optional, Union import yaml from langchain.agents.agent import BaseSingleActionAgent from langchain.agents.tools import Tool from langchain.agents.types import AGENT_TO_CLASS from langchain.base_language import BaseLanguageModel from langchain.chains.loading import load_chain, load_chain_from_config from langchain.utilities.loading import try_load_from_hub logger = logging.getLogger(__file__) URL_BASE = "https://raw.githubusercontent.com/hwchase17/langchain-hub/master/agents/" def _load_agent_from_tools( config: dict, llm: BaseLanguageModel, tools: List[Tool], **kwargs: Any ) -> BaseSingleActionAgent: config_type = config.pop("_type") if config_type not in AGENT_TO_CLASS: raise ValueError(f"Loading {config_type} agent not supported") agent_cls = AGENT_TO_CLASS[config_type] combined_config = {**config, **kwargs} return agent_cls.from_llm_and_tools(llm, tools, **combined_config) def load_agent_from_config( config: dict, llm: Optional[BaseLanguageModel] = None, tools: Optional[List[Tool]] = None, **kwargs: Any, ) -> BaseSingleActionAgent: """Load agent from Config Dict.""" if "_type" not in config: raise ValueError("Must specify an agent Type in config") load_from_tools = config.pop("load_from_llm_and_tools", False) if load_from_tools: if llm is None: raise ValueError(
https://python.langchain.com/en/latest/_modules/langchain/agents/loading.html
514e92fa7c5d-1
if load_from_tools: if llm is None: raise ValueError( "If `load_from_llm_and_tools` is set to True, " "then LLM must be provided" ) if tools is None: raise ValueError( "If `load_from_llm_and_tools` is set to True, " "then tools must be provided" ) return _load_agent_from_tools(config, llm, tools, **kwargs) config_type = config.pop("_type") if config_type not in AGENT_TO_CLASS: raise ValueError(f"Loading {config_type} agent not supported") agent_cls = AGENT_TO_CLASS[config_type] if "llm_chain" in config: config["llm_chain"] = load_chain_from_config(config.pop("llm_chain")) elif "llm_chain_path" in config: config["llm_chain"] = load_chain(config.pop("llm_chain_path")) else: raise ValueError("One of `llm_chain` and `llm_chain_path` should be specified.") if "output_parser" in config: logger.warning( "Currently loading output parsers on agent is not supported, " "will just use the default one." ) del config["output_parser"] combined_config = {**config, **kwargs} return agent_cls(**combined_config) # type: ignore [docs]def load_agent(path: Union[str, Path], **kwargs: Any) -> BaseSingleActionAgent: """Unified method for loading a agent from LangChainHub or local fs.""" if hub_result := try_load_from_hub( path, _load_agent_from_file, "agents", {"json", "yaml"} ):
https://python.langchain.com/en/latest/_modules/langchain/agents/loading.html
514e92fa7c5d-2
): return hub_result else: return _load_agent_from_file(path, **kwargs) def _load_agent_from_file( file: Union[str, Path], **kwargs: Any ) -> BaseSingleActionAgent: """Load agent from file.""" # Convert file to Path object. if isinstance(file, str): file_path = Path(file) else: file_path = file # Load from either json or yaml. if file_path.suffix == ".json": with open(file_path) as f: config = json.load(f) elif file_path.suffix == ".yaml": with open(file_path, "r") as f: config = yaml.safe_load(f) else: raise ValueError("File type must be json or yaml") # Load the agent from the config now. return load_agent_from_config(config, **kwargs) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/loading.html
883526d446d4-0
Source code for langchain.agents.load_tools # flake8: noqa """Load tools.""" import warnings from typing import Any, Dict, List, Optional, Callable, Tuple from mypy_extensions import Arg, KwArg from langchain.agents.tools import Tool from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.callbacks.manager import Callbacks from langchain.chains.api import news_docs, open_meteo_docs, podcast_docs, tmdb_docs from langchain.chains.api.base import APIChain from langchain.chains.llm_math.base import LLMMathChain from langchain.chains.pal.base import PALChain from langchain.requests import TextRequestsWrapper from langchain.tools.arxiv.tool import ArxivQueryRun from langchain.tools.base import BaseTool from langchain.tools.bing_search.tool import BingSearchRun from langchain.tools.ddg_search.tool import DuckDuckGoSearchRun from langchain.tools.google_search.tool import GoogleSearchResults, GoogleSearchRun from langchain.tools.metaphor_search.tool import MetaphorSearchResults from langchain.tools.google_serper.tool import GoogleSerperResults, GoogleSerperRun from langchain.tools.graphql.tool import BaseGraphQLTool from langchain.tools.human.tool import HumanInputRun from langchain.tools.python.tool import PythonREPLTool from langchain.tools.requests.tool import ( RequestsDeleteTool, RequestsGetTool, RequestsPatchTool, RequestsPostTool, RequestsPutTool, ) from langchain.tools.scenexplain.tool import SceneXplainTool from langchain.tools.searx_search.tool import SearxSearchResults, SearxSearchRun from langchain.tools.shell.tool import ShellTool from langchain.tools.wikipedia.tool import WikipediaQueryRun
https://python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html
883526d446d4-1
from langchain.tools.shell.tool import ShellTool from langchain.tools.wikipedia.tool import WikipediaQueryRun from langchain.tools.wolfram_alpha.tool import WolframAlphaQueryRun from langchain.tools.openweathermap.tool import OpenWeatherMapQueryRun from langchain.utilities import ArxivAPIWrapper from langchain.utilities.bing_search import BingSearchAPIWrapper from langchain.utilities.duckduckgo_search import DuckDuckGoSearchAPIWrapper from langchain.utilities.google_search import GoogleSearchAPIWrapper from langchain.utilities.google_serper import GoogleSerperAPIWrapper from langchain.utilities.metaphor_search import MetaphorSearchAPIWrapper from langchain.utilities.awslambda import LambdaWrapper from langchain.utilities.graphql import GraphQLAPIWrapper from langchain.utilities.searx_search import SearxSearchWrapper from langchain.utilities.serpapi import SerpAPIWrapper from langchain.utilities.twilio import TwilioAPIWrapper from langchain.utilities.wikipedia import WikipediaAPIWrapper from langchain.utilities.wolfram_alpha import WolframAlphaAPIWrapper from langchain.utilities.openweathermap import OpenWeatherMapAPIWrapper def _get_python_repl() -> BaseTool: return PythonREPLTool() def _get_tools_requests_get() -> BaseTool: return RequestsGetTool(requests_wrapper=TextRequestsWrapper()) def _get_tools_requests_post() -> BaseTool: return RequestsPostTool(requests_wrapper=TextRequestsWrapper()) def _get_tools_requests_patch() -> BaseTool: return RequestsPatchTool(requests_wrapper=TextRequestsWrapper()) def _get_tools_requests_put() -> BaseTool: return RequestsPutTool(requests_wrapper=TextRequestsWrapper()) def _get_tools_requests_delete() -> BaseTool: return RequestsDeleteTool(requests_wrapper=TextRequestsWrapper()) def _get_terminal() -> BaseTool: return ShellTool()
https://python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html
883526d446d4-2
def _get_terminal() -> BaseTool: return ShellTool() _BASE_TOOLS: Dict[str, Callable[[], BaseTool]] = { "python_repl": _get_python_repl, "requests": _get_tools_requests_get, # preserved for backwards compatability "requests_get": _get_tools_requests_get, "requests_post": _get_tools_requests_post, "requests_patch": _get_tools_requests_patch, "requests_put": _get_tools_requests_put, "requests_delete": _get_tools_requests_delete, "terminal": _get_terminal, } def _get_pal_math(llm: BaseLanguageModel) -> BaseTool: return Tool( name="PAL-MATH", description="A language model that is really good at solving complex word math problems. Input should be a fully worded hard word math problem.", func=PALChain.from_math_prompt(llm).run, ) def _get_pal_colored_objects(llm: BaseLanguageModel) -> BaseTool: return Tool( name="PAL-COLOR-OBJ", description="A language model that is really good at reasoning about position and the color attributes of objects. Input should be a fully worded hard reasoning problem. Make sure to include all information about the objects AND the final question you want to answer.", func=PALChain.from_colored_object_prompt(llm).run, ) def _get_llm_math(llm: BaseLanguageModel) -> BaseTool: return Tool( name="Calculator", description="Useful for when you need to answer questions about math.", func=LLMMathChain.from_llm(llm=llm).run, coroutine=LLMMathChain.from_llm(llm=llm).arun,
https://python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html
883526d446d4-3
coroutine=LLMMathChain.from_llm(llm=llm).arun, ) def _get_open_meteo_api(llm: BaseLanguageModel) -> BaseTool: chain = APIChain.from_llm_and_api_docs(llm, open_meteo_docs.OPEN_METEO_DOCS) return Tool( name="Open Meteo API", description="Useful for when you want to get weather information from the OpenMeteo API. The input should be a question in natural language that this API can answer.", func=chain.run, ) _LLM_TOOLS: Dict[str, Callable[[BaseLanguageModel], BaseTool]] = { "pal-math": _get_pal_math, "pal-colored-objects": _get_pal_colored_objects, "llm-math": _get_llm_math, "open-meteo-api": _get_open_meteo_api, } def _get_news_api(llm: BaseLanguageModel, **kwargs: Any) -> BaseTool: news_api_key = kwargs["news_api_key"] chain = APIChain.from_llm_and_api_docs( llm, news_docs.NEWS_DOCS, headers={"X-Api-Key": news_api_key} ) return Tool( name="News API", description="Use this when you want to get information about the top headlines of current news stories. The input should be a question in natural language that this API can answer.", func=chain.run, ) def _get_tmdb_api(llm: BaseLanguageModel, **kwargs: Any) -> BaseTool: tmdb_bearer_token = kwargs["tmdb_bearer_token"] chain = APIChain.from_llm_and_api_docs( llm,
https://python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html
883526d446d4-4
chain = APIChain.from_llm_and_api_docs( llm, tmdb_docs.TMDB_DOCS, headers={"Authorization": f"Bearer {tmdb_bearer_token}"}, ) return Tool( name="TMDB API", description="Useful for when you want to get information from The Movie Database. The input should be a question in natural language that this API can answer.", func=chain.run, ) def _get_podcast_api(llm: BaseLanguageModel, **kwargs: Any) -> BaseTool: listen_api_key = kwargs["listen_api_key"] chain = APIChain.from_llm_and_api_docs( llm, podcast_docs.PODCAST_DOCS, headers={"X-ListenAPI-Key": listen_api_key}, ) return Tool( name="Podcast API", description="Use the Listen Notes Podcast API to search all podcasts or episodes. The input should be a question in natural language that this API can answer.", func=chain.run, ) def _get_lambda_api(**kwargs: Any) -> BaseTool: return Tool( name=kwargs["awslambda_tool_name"], description=kwargs["awslambda_tool_description"], func=LambdaWrapper(**kwargs).run, ) def _get_wolfram_alpha(**kwargs: Any) -> BaseTool: return WolframAlphaQueryRun(api_wrapper=WolframAlphaAPIWrapper(**kwargs)) def _get_google_search(**kwargs: Any) -> BaseTool: return GoogleSearchRun(api_wrapper=GoogleSearchAPIWrapper(**kwargs)) def _get_wikipedia(**kwargs: Any) -> BaseTool: return WikipediaQueryRun(api_wrapper=WikipediaAPIWrapper(**kwargs))
https://python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html
883526d446d4-5
return WikipediaQueryRun(api_wrapper=WikipediaAPIWrapper(**kwargs)) def _get_arxiv(**kwargs: Any) -> BaseTool: return ArxivQueryRun(api_wrapper=ArxivAPIWrapper(**kwargs)) def _get_google_serper(**kwargs: Any) -> BaseTool: return GoogleSerperRun(api_wrapper=GoogleSerperAPIWrapper(**kwargs)) def _get_google_serper_results_json(**kwargs: Any) -> BaseTool: return GoogleSerperResults(api_wrapper=GoogleSerperAPIWrapper(**kwargs)) def _get_google_search_results_json(**kwargs: Any) -> BaseTool: return GoogleSearchResults(api_wrapper=GoogleSearchAPIWrapper(**kwargs)) def _get_serpapi(**kwargs: Any) -> BaseTool: return Tool( name="Search", description="A search engine. Useful for when you need to answer questions about current events. Input should be a search query.", func=SerpAPIWrapper(**kwargs).run, coroutine=SerpAPIWrapper(**kwargs).arun, ) def _get_twilio(**kwargs: Any) -> BaseTool: return Tool( name="Text Message", description="Useful for when you need to send a text message to a provided phone number.", func=TwilioAPIWrapper(**kwargs).run, ) def _get_searx_search(**kwargs: Any) -> BaseTool: return SearxSearchRun(wrapper=SearxSearchWrapper(**kwargs)) def _get_searx_search_results_json(**kwargs: Any) -> BaseTool: wrapper_kwargs = {k: v for k, v in kwargs.items() if k != "num_results"} return SearxSearchResults(wrapper=SearxSearchWrapper(**wrapper_kwargs), **kwargs)
https://python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html
883526d446d4-6
return SearxSearchResults(wrapper=SearxSearchWrapper(**wrapper_kwargs), **kwargs) def _get_bing_search(**kwargs: Any) -> BaseTool: return BingSearchRun(api_wrapper=BingSearchAPIWrapper(**kwargs)) def _get_metaphor_search(**kwargs: Any) -> BaseTool: return MetaphorSearchResults(api_wrapper=MetaphorSearchAPIWrapper(**kwargs)) def _get_ddg_search(**kwargs: Any) -> BaseTool: return DuckDuckGoSearchRun(api_wrapper=DuckDuckGoSearchAPIWrapper(**kwargs)) def _get_human_tool(**kwargs: Any) -> BaseTool: return HumanInputRun(**kwargs) def _get_scenexplain(**kwargs: Any) -> BaseTool: return SceneXplainTool(**kwargs) def _get_graphql_tool(**kwargs: Any) -> BaseTool: graphql_endpoint = kwargs["graphql_endpoint"] wrapper = GraphQLAPIWrapper(graphql_endpoint=graphql_endpoint) return BaseGraphQLTool(graphql_wrapper=wrapper) def _get_openweathermap(**kwargs: Any) -> BaseTool: return OpenWeatherMapQueryRun(api_wrapper=OpenWeatherMapAPIWrapper(**kwargs)) _EXTRA_LLM_TOOLS: Dict[ str, Tuple[Callable[[Arg(BaseLanguageModel, "llm"), KwArg(Any)], BaseTool], List[str]], ] = { "news-api": (_get_news_api, ["news_api_key"]), "tmdb-api": (_get_tmdb_api, ["tmdb_bearer_token"]), "podcast-api": (_get_podcast_api, ["listen_api_key"]), } _EXTRA_OPTIONAL_TOOLS: Dict[str, Tuple[Callable[[KwArg(Any)], BaseTool], List[str]]] = {
https://python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html
883526d446d4-7
"wolfram-alpha": (_get_wolfram_alpha, ["wolfram_alpha_appid"]), "google-search": (_get_google_search, ["google_api_key", "google_cse_id"]), "google-search-results-json": ( _get_google_search_results_json, ["google_api_key", "google_cse_id", "num_results"], ), "searx-search-results-json": ( _get_searx_search_results_json, ["searx_host", "engines", "num_results", "aiosession"], ), "bing-search": (_get_bing_search, ["bing_subscription_key", "bing_search_url"]), "metaphor-search": (_get_metaphor_search, ["metaphor_api_key"]), "ddg-search": (_get_ddg_search, []), "google-serper": (_get_google_serper, ["serper_api_key", "aiosession"]), "google-serper-results-json": ( _get_google_serper_results_json, ["serper_api_key", "aiosession"], ), "serpapi": (_get_serpapi, ["serpapi_api_key", "aiosession"]), "twilio": (_get_twilio, ["account_sid", "auth_token", "from_number"]), "searx-search": (_get_searx_search, ["searx_host", "engines", "aiosession"]), "wikipedia": (_get_wikipedia, ["top_k_results", "lang"]), "arxiv": ( _get_arxiv, ["top_k_results", "load_max_docs", "load_all_available_meta"], ), "human": (_get_human_tool, ["prompt_func", "input_func"]),
https://python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html
883526d446d4-8
), "human": (_get_human_tool, ["prompt_func", "input_func"]), "awslambda": ( _get_lambda_api, ["awslambda_tool_name", "awslambda_tool_description", "function_name"], ), "sceneXplain": (_get_scenexplain, []), "graphql": (_get_graphql_tool, ["graphql_endpoint"]), "openweathermap-api": (_get_openweathermap, ["openweathermap_api_key"]), } def _handle_callbacks( callback_manager: Optional[BaseCallbackManager], callbacks: Callbacks ) -> Callbacks: if callback_manager is not None: warnings.warn( "callback_manager is deprecated. Please use callbacks instead.", DeprecationWarning, ) if callbacks is not None: raise ValueError( "Cannot specify both callback_manager and callbacks arguments." ) return callback_manager return callbacks [docs]def load_huggingface_tool( task_or_repo_id: str, model_repo_id: Optional[str] = None, token: Optional[str] = None, remote: bool = False, **kwargs: Any, ) -> BaseTool: try: from transformers import load_tool except ImportError: raise ValueError( "HuggingFace tools require the libraries `transformers>=4.29.0`" " and `huggingface_hub>=0.14.1` to be installed." " Please install it with" " `pip install --upgrade transformers huggingface_hub`." ) hf_tool = load_tool( task_or_repo_id, model_repo_id=model_repo_id, token=token, remote=remote,
https://python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html
883526d446d4-9
model_repo_id=model_repo_id, token=token, remote=remote, **kwargs, ) outputs = hf_tool.outputs if set(outputs) != {"text"}: raise NotImplementedError("Multimodal outputs not supported yet.") inputs = hf_tool.inputs if set(inputs) != {"text"}: raise NotImplementedError("Multimodal inputs not supported yet.") return Tool.from_function( hf_tool.__call__, name=hf_tool.name, description=hf_tool.description ) [docs]def load_tools( tool_names: List[str], llm: Optional[BaseLanguageModel] = None, callbacks: Callbacks = None, **kwargs: Any, ) -> List[BaseTool]: """Load tools based on their name. Args: tool_names: name of tools to load. llm: Optional language model, may be needed to initialize certain tools. callbacks: Optional callback manager or list of callback handlers. If not provided, default global callback manager will be used. Returns: List of tools. """ tools = [] callbacks = _handle_callbacks( callback_manager=kwargs.get("callback_manager"), callbacks=callbacks ) for name in tool_names: if name == "requests": warnings.warn( "tool name `requests` is deprecated - " "please use `requests_all` or specify the requests method" ) if name == "requests_all": # expand requests into various methods requests_method_tools = [ _tool for _tool in _BASE_TOOLS if _tool.startswith("requests_") ] tool_names.extend(requests_method_tools)
https://python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html
883526d446d4-10
] tool_names.extend(requests_method_tools) elif name in _BASE_TOOLS: tools.append(_BASE_TOOLS[name]()) elif name in _LLM_TOOLS: if llm is None: raise ValueError(f"Tool {name} requires an LLM to be provided") tool = _LLM_TOOLS[name](llm) tools.append(tool) elif name in _EXTRA_LLM_TOOLS: if llm is None: raise ValueError(f"Tool {name} requires an LLM to be provided") _get_llm_tool_func, extra_keys = _EXTRA_LLM_TOOLS[name] missing_keys = set(extra_keys).difference(kwargs) if missing_keys: raise ValueError( f"Tool {name} requires some parameters that were not " f"provided: {missing_keys}" ) sub_kwargs = {k: kwargs[k] for k in extra_keys} tool = _get_llm_tool_func(llm=llm, **sub_kwargs) tools.append(tool) elif name in _EXTRA_OPTIONAL_TOOLS: _get_tool_func, extra_keys = _EXTRA_OPTIONAL_TOOLS[name] sub_kwargs = {k: kwargs[k] for k in extra_keys if k in kwargs} tool = _get_tool_func(**sub_kwargs) tools.append(tool) else: raise ValueError(f"Got unknown tool {name}") if callbacks is not None: for tool in tools: tool.callbacks = callbacks return tools [docs]def get_all_tool_names() -> List[str]: """Get a list of all possible tool names.""" return ( list(_BASE_TOOLS)
https://python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html
883526d446d4-11
return ( list(_BASE_TOOLS) + list(_EXTRA_OPTIONAL_TOOLS) + list(_EXTRA_LLM_TOOLS) + list(_LLM_TOOLS) ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/load_tools.html
f2a9ea69274d-0
Source code for langchain.agents.agent_types from enum import Enum [docs]class AgentType(str, Enum): ZERO_SHOT_REACT_DESCRIPTION = "zero-shot-react-description" REACT_DOCSTORE = "react-docstore" SELF_ASK_WITH_SEARCH = "self-ask-with-search" CONVERSATIONAL_REACT_DESCRIPTION = "conversational-react-description" CHAT_ZERO_SHOT_REACT_DESCRIPTION = "chat-zero-shot-react-description" CHAT_CONVERSATIONAL_REACT_DESCRIPTION = "chat-conversational-react-description" STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION = ( "structured-chat-zero-shot-react-description" ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_types.html
f8a282741510-0
Source code for langchain.agents.self_ask_with_search.base """Chain that does self ask with search.""" from typing import Any, Sequence, Union from pydantic import Field from langchain.agents.agent import Agent, AgentExecutor, AgentOutputParser from langchain.agents.agent_types import AgentType from langchain.agents.self_ask_with_search.output_parser import SelfAskOutputParser from langchain.agents.self_ask_with_search.prompt import PROMPT from langchain.agents.tools import Tool from langchain.agents.utils import validate_tools_single_input from langchain.base_language import BaseLanguageModel from langchain.prompts.base import BasePromptTemplate from langchain.tools.base import BaseTool from langchain.utilities.google_serper import GoogleSerperAPIWrapper from langchain.utilities.serpapi import SerpAPIWrapper class SelfAskWithSearchAgent(Agent): """Agent for the self-ask-with-search paper.""" output_parser: AgentOutputParser = Field(default_factory=SelfAskOutputParser) @classmethod def _get_default_output_parser(cls, **kwargs: Any) -> AgentOutputParser: return SelfAskOutputParser() @property def _agent_type(self) -> str: """Return Identifier of agent type.""" return AgentType.SELF_ASK_WITH_SEARCH @classmethod def create_prompt(cls, tools: Sequence[BaseTool]) -> BasePromptTemplate: """Prompt does not depend on tools.""" return PROMPT @classmethod def _validate_tools(cls, tools: Sequence[BaseTool]) -> None: validate_tools_single_input(cls.__name__, tools) super()._validate_tools(tools) if len(tools) != 1: raise ValueError(f"Exactly one tool must be specified, but got {tools}")
https://python.langchain.com/en/latest/_modules/langchain/agents/self_ask_with_search/base.html
f8a282741510-1
raise ValueError(f"Exactly one tool must be specified, but got {tools}") tool_names = {tool.name for tool in tools} if tool_names != {"Intermediate Answer"}: raise ValueError( f"Tool name should be Intermediate Answer, got {tool_names}" ) @property def observation_prefix(self) -> str: """Prefix to append the observation with.""" return "Intermediate answer: " @property def llm_prefix(self) -> str: """Prefix to append the LLM call with.""" return "" [docs]class SelfAskWithSearchChain(AgentExecutor): """Chain that does self ask with search. Example: .. code-block:: python from langchain import SelfAskWithSearchChain, OpenAI, GoogleSerperAPIWrapper search_chain = GoogleSerperAPIWrapper() self_ask = SelfAskWithSearchChain(llm=OpenAI(), search_chain=search_chain) """ def __init__( self, llm: BaseLanguageModel, search_chain: Union[GoogleSerperAPIWrapper, SerpAPIWrapper], **kwargs: Any, ): """Initialize with just an LLM and a search chain.""" search_tool = Tool( name="Intermediate Answer", func=search_chain.run, description="Search" ) agent = SelfAskWithSearchAgent.from_llm_and_tools(llm, [search_tool]) super().__init__(agent=agent, tools=[search_tool], **kwargs) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/self_ask_with_search/base.html
e7d138a3fe24-0
Source code for langchain.agents.mrkl.base """Attempt to implement MRKL systems as described in arxiv.org/pdf/2205.00445.pdf.""" from __future__ import annotations from typing import Any, Callable, List, NamedTuple, Optional, Sequence from pydantic import Field from langchain.agents.agent import Agent, AgentExecutor, AgentOutputParser from langchain.agents.agent_types import AgentType from langchain.agents.mrkl.output_parser import MRKLOutputParser from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS, PREFIX, SUFFIX from langchain.agents.tools import Tool from langchain.agents.utils import validate_tools_single_input from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from langchain.tools.base import BaseTool class ChainConfig(NamedTuple): """Configuration for chain to use in MRKL system. Args: action_name: Name of the action. action: Action function to call. action_description: Description of the action. """ action_name: str action: Callable action_description: str [docs]class ZeroShotAgent(Agent): """Agent for the MRKL chain.""" output_parser: AgentOutputParser = Field(default_factory=MRKLOutputParser) @classmethod def _get_default_output_parser(cls, **kwargs: Any) -> AgentOutputParser: return MRKLOutputParser() @property def _agent_type(self) -> str: """Return Identifier of agent type.""" return AgentType.ZERO_SHOT_REACT_DESCRIPTION @property def observation_prefix(self) -> str:
https://python.langchain.com/en/latest/_modules/langchain/agents/mrkl/base.html
e7d138a3fe24-1
@property def observation_prefix(self) -> str: """Prefix to append the observation with.""" return "Observation: " @property def llm_prefix(self) -> str: """Prefix to append the llm call with.""" return "Thought:" [docs] @classmethod def create_prompt( cls, tools: Sequence[BaseTool], prefix: str = PREFIX, suffix: str = SUFFIX, format_instructions: str = FORMAT_INSTRUCTIONS, input_variables: Optional[List[str]] = None, ) -> PromptTemplate: """Create prompt in the style of the zero shot agent. Args: tools: List of tools the agent will have access to, used to format the prompt. prefix: String to put before the list of tools. suffix: String to put after the list of tools. input_variables: List of input variables the final prompt will expect. Returns: A PromptTemplate with the template assembled from the pieces here. """ tool_strings = "\n".join([f"{tool.name}: {tool.description}" for tool in tools]) tool_names = ", ".join([tool.name for tool in tools]) format_instructions = format_instructions.format(tool_names=tool_names) template = "\n\n".join([prefix, tool_strings, format_instructions, suffix]) if input_variables is None: input_variables = ["input", "agent_scratchpad"] return PromptTemplate(template=template, input_variables=input_variables) [docs] @classmethod def from_llm_and_tools( cls, llm: BaseLanguageModel, tools: Sequence[BaseTool],
https://python.langchain.com/en/latest/_modules/langchain/agents/mrkl/base.html
e7d138a3fe24-2
llm: BaseLanguageModel, tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, output_parser: Optional[AgentOutputParser] = None, prefix: str = PREFIX, suffix: str = SUFFIX, format_instructions: str = FORMAT_INSTRUCTIONS, input_variables: Optional[List[str]] = None, **kwargs: Any, ) -> Agent: """Construct an agent from an LLM and tools.""" cls._validate_tools(tools) prompt = cls.create_prompt( tools, prefix=prefix, suffix=suffix, format_instructions=format_instructions, input_variables=input_variables, ) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] _output_parser = output_parser or cls._get_default_output_parser() return cls( llm_chain=llm_chain, allowed_tools=tool_names, output_parser=_output_parser, **kwargs, ) @classmethod def _validate_tools(cls, tools: Sequence[BaseTool]) -> None: validate_tools_single_input(cls.__name__, tools) for tool in tools: if tool.description is None: raise ValueError( f"Got a tool {tool.name} without a description. For this agent, " f"a description must always be provided." ) super()._validate_tools(tools) [docs]class MRKLChain(AgentExecutor): """Chain that implements the MRKL system. Example: .. code-block:: python
https://python.langchain.com/en/latest/_modules/langchain/agents/mrkl/base.html
e7d138a3fe24-3
Example: .. code-block:: python from langchain import OpenAI, MRKLChain from langchain.chains.mrkl.base import ChainConfig llm = OpenAI(temperature=0) prompt = PromptTemplate(...) chains = [...] mrkl = MRKLChain.from_chains(llm=llm, prompt=prompt) """ [docs] @classmethod def from_chains( cls, llm: BaseLanguageModel, chains: List[ChainConfig], **kwargs: Any ) -> AgentExecutor: """User friendly way to initialize the MRKL chain. This is intended to be an easy way to get up and running with the MRKL chain. Args: llm: The LLM to use as the agent LLM. chains: The chains the MRKL system has access to. **kwargs: parameters to be passed to initialization. Returns: An initialized MRKL chain. Example: .. code-block:: python from langchain import LLMMathChain, OpenAI, SerpAPIWrapper, MRKLChain from langchain.chains.mrkl.base import ChainConfig llm = OpenAI(temperature=0) search = SerpAPIWrapper() llm_math_chain = LLMMathChain(llm=llm) chains = [ ChainConfig( action_name = "Search", action=search.search, action_description="useful for searching" ), ChainConfig( action_name="Calculator", action=llm_math_chain.run, action_description="useful for doing math" ) ] mrkl = MRKLChain.from_chains(llm, chains)
https://python.langchain.com/en/latest/_modules/langchain/agents/mrkl/base.html
e7d138a3fe24-4
] mrkl = MRKLChain.from_chains(llm, chains) """ tools = [ Tool( name=c.action_name, func=c.action, description=c.action_description, ) for c in chains ] agent = ZeroShotAgent.from_llm_and_tools(llm, tools) return cls(agent=agent, tools=tools, **kwargs) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/mrkl/base.html
67148455e83c-0
Source code for langchain.agents.structured_chat.base import re from typing import Any, List, Optional, Sequence, Tuple from pydantic import Field from langchain.agents.agent import Agent, AgentOutputParser from langchain.agents.structured_chat.output_parser import ( StructuredChatOutputParserWithRetries, ) from langchain.agents.structured_chat.prompt import FORMAT_INSTRUCTIONS, PREFIX, SUFFIX from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain from langchain.prompts.base import BasePromptTemplate from langchain.prompts.chat import ( ChatPromptTemplate, HumanMessagePromptTemplate, SystemMessagePromptTemplate, ) from langchain.schema import AgentAction from langchain.tools import BaseTool HUMAN_MESSAGE_TEMPLATE = "{input}\n\n{agent_scratchpad}" [docs]class StructuredChatAgent(Agent): output_parser: AgentOutputParser = Field( default_factory=StructuredChatOutputParserWithRetries ) @property def observation_prefix(self) -> str: """Prefix to append the observation with.""" return "Observation: " @property def llm_prefix(self) -> str: """Prefix to append the llm call with.""" return "Thought:" def _construct_scratchpad( self, intermediate_steps: List[Tuple[AgentAction, str]] ) -> str: agent_scratchpad = super()._construct_scratchpad(intermediate_steps) if not isinstance(agent_scratchpad, str): raise ValueError("agent_scratchpad should be of type string.") if agent_scratchpad: return ( f"This was your previous work "
https://python.langchain.com/en/latest/_modules/langchain/agents/structured_chat/base.html
67148455e83c-1
if agent_scratchpad: return ( f"This was your previous work " f"(but I haven't seen any of it! I only see what " f"you return as final answer):\n{agent_scratchpad}" ) else: return agent_scratchpad @classmethod def _validate_tools(cls, tools: Sequence[BaseTool]) -> None: pass @classmethod def _get_default_output_parser( cls, llm: Optional[BaseLanguageModel] = None, **kwargs: Any ) -> AgentOutputParser: return StructuredChatOutputParserWithRetries.from_llm(llm=llm) @property def _stop(self) -> List[str]: return ["Observation:"] [docs] @classmethod def create_prompt( cls, tools: Sequence[BaseTool], prefix: str = PREFIX, suffix: str = SUFFIX, human_message_template: str = HUMAN_MESSAGE_TEMPLATE, format_instructions: str = FORMAT_INSTRUCTIONS, input_variables: Optional[List[str]] = None, memory_prompts: Optional[List[BasePromptTemplate]] = None, ) -> BasePromptTemplate: tool_strings = [] for tool in tools: args_schema = re.sub("}", "}}}}", re.sub("{", "{{{{", str(tool.args))) tool_strings.append(f"{tool.name}: {tool.description}, args: {args_schema}") formatted_tools = "\n".join(tool_strings) tool_names = ", ".join([tool.name for tool in tools]) format_instructions = format_instructions.format(tool_names=tool_names) template = "\n\n".join([prefix, formatted_tools, format_instructions, suffix])
https://python.langchain.com/en/latest/_modules/langchain/agents/structured_chat/base.html
67148455e83c-2
template = "\n\n".join([prefix, formatted_tools, format_instructions, suffix]) if input_variables is None: input_variables = ["input", "agent_scratchpad"] _memory_prompts = memory_prompts or [] messages = [ SystemMessagePromptTemplate.from_template(template), *_memory_prompts, HumanMessagePromptTemplate.from_template(human_message_template), ] return ChatPromptTemplate(input_variables=input_variables, messages=messages) [docs] @classmethod def from_llm_and_tools( cls, llm: BaseLanguageModel, tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, output_parser: Optional[AgentOutputParser] = None, prefix: str = PREFIX, suffix: str = SUFFIX, human_message_template: str = HUMAN_MESSAGE_TEMPLATE, format_instructions: str = FORMAT_INSTRUCTIONS, input_variables: Optional[List[str]] = None, memory_prompts: Optional[List[BasePromptTemplate]] = None, **kwargs: Any, ) -> Agent: """Construct an agent from an LLM and tools.""" cls._validate_tools(tools) prompt = cls.create_prompt( tools, prefix=prefix, suffix=suffix, human_message_template=human_message_template, format_instructions=format_instructions, input_variables=input_variables, memory_prompts=memory_prompts, ) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools]
https://python.langchain.com/en/latest/_modules/langchain/agents/structured_chat/base.html
67148455e83c-3
) tool_names = [tool.name for tool in tools] _output_parser = output_parser or cls._get_default_output_parser(llm=llm) return cls( llm_chain=llm_chain, allowed_tools=tool_names, output_parser=_output_parser, **kwargs, ) @property def _agent_type(self) -> str: raise ValueError By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/structured_chat/base.html
9851611d971b-0
Source code for langchain.agents.conversational_chat.base """An agent designed to hold a conversation in addition to using tools.""" from __future__ import annotations from typing import Any, List, Optional, Sequence, Tuple from pydantic import Field from langchain.agents.agent import Agent, AgentOutputParser from langchain.agents.conversational_chat.output_parser import ConvoOutputParser from langchain.agents.conversational_chat.prompt import ( PREFIX, SUFFIX, TEMPLATE_TOOL_RESPONSE, ) from langchain.agents.utils import validate_tools_single_input from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.chains import LLMChain from langchain.prompts.base import BasePromptTemplate from langchain.prompts.chat import ( ChatPromptTemplate, HumanMessagePromptTemplate, MessagesPlaceholder, SystemMessagePromptTemplate, ) from langchain.schema import ( AgentAction, AIMessage, BaseMessage, BaseOutputParser, HumanMessage, ) from langchain.tools.base import BaseTool [docs]class ConversationalChatAgent(Agent): """An agent designed to hold a conversation in addition to using tools.""" output_parser: AgentOutputParser = Field(default_factory=ConvoOutputParser) template_tool_response: str = TEMPLATE_TOOL_RESPONSE @classmethod def _get_default_output_parser(cls, **kwargs: Any) -> AgentOutputParser: return ConvoOutputParser() @property def _agent_type(self) -> str: raise NotImplementedError @property def observation_prefix(self) -> str: """Prefix to append the observation with.""" return "Observation: " @property
https://python.langchain.com/en/latest/_modules/langchain/agents/conversational_chat/base.html
9851611d971b-1
return "Observation: " @property def llm_prefix(self) -> str: """Prefix to append the llm call with.""" return "Thought:" @classmethod def _validate_tools(cls, tools: Sequence[BaseTool]) -> None: super()._validate_tools(tools) validate_tools_single_input(cls.__name__, tools) [docs] @classmethod def create_prompt( cls, tools: Sequence[BaseTool], system_message: str = PREFIX, human_message: str = SUFFIX, input_variables: Optional[List[str]] = None, output_parser: Optional[BaseOutputParser] = None, ) -> BasePromptTemplate: tool_strings = "\n".join( [f"> {tool.name}: {tool.description}" for tool in tools] ) tool_names = ", ".join([tool.name for tool in tools]) _output_parser = output_parser or cls._get_default_output_parser() format_instructions = human_message.format( format_instructions=_output_parser.get_format_instructions() ) final_prompt = format_instructions.format( tool_names=tool_names, tools=tool_strings ) if input_variables is None: input_variables = ["input", "chat_history", "agent_scratchpad"] messages = [ SystemMessagePromptTemplate.from_template(system_message), MessagesPlaceholder(variable_name="chat_history"), HumanMessagePromptTemplate.from_template(final_prompt), MessagesPlaceholder(variable_name="agent_scratchpad"), ] return ChatPromptTemplate(input_variables=input_variables, messages=messages) def _construct_scratchpad( self, intermediate_steps: List[Tuple[AgentAction, str]] ) -> List[BaseMessage]:
https://python.langchain.com/en/latest/_modules/langchain/agents/conversational_chat/base.html
9851611d971b-2
) -> List[BaseMessage]: """Construct the scratchpad that lets the agent continue its thought process.""" thoughts: List[BaseMessage] = [] for action, observation in intermediate_steps: thoughts.append(AIMessage(content=action.log)) human_message = HumanMessage( content=self.template_tool_response.format(observation=observation) ) thoughts.append(human_message) return thoughts [docs] @classmethod def from_llm_and_tools( cls, llm: BaseLanguageModel, tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, output_parser: Optional[AgentOutputParser] = None, system_message: str = PREFIX, human_message: str = SUFFIX, input_variables: Optional[List[str]] = None, **kwargs: Any, ) -> Agent: """Construct an agent from an LLM and tools.""" cls._validate_tools(tools) _output_parser = output_parser or cls._get_default_output_parser() prompt = cls.create_prompt( tools, system_message=system_message, human_message=human_message, input_variables=input_variables, output_parser=_output_parser, ) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] return cls( llm_chain=llm_chain, allowed_tools=tool_names, output_parser=_output_parser, **kwargs, ) By Harrison Chase © Copyright 2023, Harrison Chase.
https://python.langchain.com/en/latest/_modules/langchain/agents/conversational_chat/base.html
9851611d971b-3
By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/conversational_chat/base.html
fd96a1e70548-0
Source code for langchain.agents.agent_toolkits.spark_sql.base """Spark SQL agent.""" from typing import Any, Dict, List, Optional from langchain.agents.agent import AgentExecutor from langchain.agents.agent_toolkits.spark_sql.prompt import SQL_PREFIX, SQL_SUFFIX from langchain.agents.agent_toolkits.spark_sql.toolkit import SparkSQLToolkit from langchain.agents.mrkl.base import ZeroShotAgent from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain [docs]def create_spark_sql_agent( llm: BaseLanguageModel, toolkit: SparkSQLToolkit, callback_manager: Optional[BaseCallbackManager] = None, prefix: str = SQL_PREFIX, suffix: str = SQL_SUFFIX, format_instructions: str = FORMAT_INSTRUCTIONS, input_variables: Optional[List[str]] = None, top_k: int = 10, max_iterations: Optional[int] = 15, max_execution_time: Optional[float] = None, early_stopping_method: str = "force", verbose: bool = False, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any], ) -> AgentExecutor: """Construct a sql agent from an LLM and tools.""" tools = toolkit.get_tools() prefix = prefix.format(top_k=top_k) prompt = ZeroShotAgent.create_prompt( tools, prefix=prefix, suffix=suffix, format_instructions=format_instructions, input_variables=input_variables, ) llm_chain = LLMChain( llm=llm,
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/spark_sql/base.html
fd96a1e70548-1
) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs) return AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, callback_manager=callback_manager, verbose=verbose, max_iterations=max_iterations, max_execution_time=max_execution_time, early_stopping_method=early_stopping_method, **(agent_executor_kwargs or {}), ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/spark_sql/base.html
c6dddb6f4261-0
Source code for langchain.agents.agent_toolkits.spark_sql.toolkit """Toolkit for interacting with Spark SQL.""" from typing import List from pydantic import Field from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.base_language import BaseLanguageModel from langchain.tools import BaseTool from langchain.tools.spark_sql.tool import ( InfoSparkSQLTool, ListSparkSQLTool, QueryCheckerTool, QuerySparkSQLTool, ) from langchain.utilities.spark_sql import SparkSQL [docs]class SparkSQLToolkit(BaseToolkit): """Toolkit for interacting with Spark SQL.""" db: SparkSQL = Field(exclude=True) llm: BaseLanguageModel = Field(exclude=True) class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" return [ QuerySparkSQLTool(db=self.db), InfoSparkSQLTool(db=self.db), ListSparkSQLTool(db=self.db), QueryCheckerTool(db=self.db, llm=self.llm), ] By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/spark_sql/toolkit.html
3a5bdb0e2f2b-0
Source code for langchain.agents.agent_toolkits.nla.toolkit """Toolkit for interacting with API's using natural language.""" from __future__ import annotations from typing import Any, List, Optional, Sequence from pydantic import Field from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.agents.agent_toolkits.nla.tool import NLATool from langchain.base_language import BaseLanguageModel from langchain.requests import Requests from langchain.tools.base import BaseTool from langchain.tools.openapi.utils.openapi_utils import OpenAPISpec from langchain.tools.plugin import AIPlugin [docs]class NLAToolkit(BaseToolkit): """Natural Language API Toolkit Definition.""" nla_tools: Sequence[NLATool] = Field(...) """List of API Endpoint Tools.""" [docs] def get_tools(self) -> List[BaseTool]: """Get the tools for all the API operations.""" return list(self.nla_tools) @staticmethod def _get_http_operation_tools( llm: BaseLanguageModel, spec: OpenAPISpec, requests: Optional[Requests] = None, verbose: bool = False, **kwargs: Any, ) -> List[NLATool]: """Get the tools for all the API operations.""" if not spec.paths: return [] http_operation_tools = [] for path in spec.paths: for method in spec.get_methods_for_path(path): endpoint_tool = NLATool.from_llm_and_method( llm=llm, path=path, method=method, spec=spec, requests=requests, verbose=verbose, **kwargs, ) http_operation_tools.append(endpoint_tool) return http_operation_tools
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/nla/toolkit.html
3a5bdb0e2f2b-1
) http_operation_tools.append(endpoint_tool) return http_operation_tools [docs] @classmethod def from_llm_and_spec( cls, llm: BaseLanguageModel, spec: OpenAPISpec, requests: Optional[Requests] = None, verbose: bool = False, **kwargs: Any, ) -> NLAToolkit: """Instantiate the toolkit by creating tools for each operation.""" http_operation_tools = cls._get_http_operation_tools( llm=llm, spec=spec, requests=requests, verbose=verbose, **kwargs ) return cls(nla_tools=http_operation_tools) [docs] @classmethod def from_llm_and_url( cls, llm: BaseLanguageModel, open_api_url: str, requests: Optional[Requests] = None, verbose: bool = False, **kwargs: Any, ) -> NLAToolkit: """Instantiate the toolkit from an OpenAPI Spec URL""" spec = OpenAPISpec.from_url(open_api_url) return cls.from_llm_and_spec( llm=llm, spec=spec, requests=requests, verbose=verbose, **kwargs ) [docs] @classmethod def from_llm_and_ai_plugin( cls, llm: BaseLanguageModel, ai_plugin: AIPlugin, requests: Optional[Requests] = None, verbose: bool = False, **kwargs: Any, ) -> NLAToolkit: """Instantiate the toolkit from an OpenAPI Spec URL""" spec = OpenAPISpec.from_url(ai_plugin.api.url)
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/nla/toolkit.html
3a5bdb0e2f2b-2
spec = OpenAPISpec.from_url(ai_plugin.api.url) # TODO: Merge optional Auth information with the `requests` argument return cls.from_llm_and_spec( llm=llm, spec=spec, requests=requests, verbose=verbose, **kwargs, ) [docs] @classmethod def from_llm_and_ai_plugin_url( cls, llm: BaseLanguageModel, ai_plugin_url: str, requests: Optional[Requests] = None, verbose: bool = False, **kwargs: Any, ) -> NLAToolkit: """Instantiate the toolkit from an OpenAPI Spec URL""" plugin = AIPlugin.from_url(ai_plugin_url) return cls.from_llm_and_ai_plugin( llm=llm, ai_plugin=plugin, requests=requests, verbose=verbose, **kwargs ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/nla/toolkit.html
51c8c135b92a-0
Source code for langchain.agents.agent_toolkits.python.base """Python agent.""" from typing import Any, Dict, Optional from langchain.agents.agent import AgentExecutor from langchain.agents.agent_toolkits.python.prompt import PREFIX from langchain.agents.mrkl.base import ZeroShotAgent from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain from langchain.tools.python.tool import PythonREPLTool [docs]def create_python_agent( llm: BaseLanguageModel, tool: PythonREPLTool, callback_manager: Optional[BaseCallbackManager] = None, verbose: bool = False, prefix: str = PREFIX, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any], ) -> AgentExecutor: """Construct a python agent from an LLM and tool.""" tools = [tool] prompt = ZeroShotAgent.create_prompt(tools, prefix=prefix) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs) return AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, callback_manager=callback_manager, verbose=verbose, **(agent_executor_kwargs or {}), ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/python/base.html
eb0f7df3d928-0
Source code for langchain.agents.agent_toolkits.zapier.toolkit """Zapier Toolkit.""" from typing import List from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.tools import BaseTool from langchain.tools.zapier.tool import ZapierNLARunAction from langchain.utilities.zapier import ZapierNLAWrapper [docs]class ZapierToolkit(BaseToolkit): """Zapier Toolkit.""" tools: List[BaseTool] = [] [docs] @classmethod def from_zapier_nla_wrapper( cls, zapier_nla_wrapper: ZapierNLAWrapper ) -> "ZapierToolkit": """Create a toolkit from a ZapierNLAWrapper.""" actions = zapier_nla_wrapper.list() tools = [ ZapierNLARunAction( action_id=action["id"], zapier_description=action["description"], params_schema=action["params"], api_wrapper=zapier_nla_wrapper, ) for action in actions ] return cls(tools=tools) [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" return self.tools By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/zapier/toolkit.html
959ddc7f91e7-0
Source code for langchain.agents.agent_toolkits.azure_cognitive_services.toolkit from __future__ import annotations import sys from typing import List from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.tools.azure_cognitive_services import ( AzureCogsFormRecognizerTool, AzureCogsImageAnalysisTool, AzureCogsSpeech2TextTool, AzureCogsText2SpeechTool, ) from langchain.tools.base import BaseTool [docs]class AzureCognitiveServicesToolkit(BaseToolkit): """Toolkit for Azure Cognitive Services.""" [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" tools = [ AzureCogsFormRecognizerTool(), AzureCogsSpeech2TextTool(), AzureCogsText2SpeechTool(), ] # TODO: Remove check once azure-ai-vision supports MacOS. if sys.platform.startswith("linux") or sys.platform.startswith("win"): tools.append(AzureCogsImageAnalysisTool()) return tools By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/azure_cognitive_services/toolkit.html
7a123646586d-0
Source code for langchain.agents.agent_toolkits.file_management.toolkit """Toolkit for interacting with the local filesystem.""" from __future__ import annotations from typing import List, Optional from pydantic import root_validator from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.tools import BaseTool from langchain.tools.file_management.copy import CopyFileTool from langchain.tools.file_management.delete import DeleteFileTool from langchain.tools.file_management.file_search import FileSearchTool from langchain.tools.file_management.list_dir import ListDirectoryTool from langchain.tools.file_management.move import MoveFileTool from langchain.tools.file_management.read import ReadFileTool from langchain.tools.file_management.write import WriteFileTool _FILE_TOOLS = { tool_cls.__fields__["name"].default: tool_cls for tool_cls in [ CopyFileTool, DeleteFileTool, FileSearchTool, MoveFileTool, ReadFileTool, WriteFileTool, ListDirectoryTool, ] } [docs]class FileManagementToolkit(BaseToolkit): """Toolkit for interacting with a Local Files.""" root_dir: Optional[str] = None """If specified, all file operations are made relative to root_dir.""" selected_tools: Optional[List[str]] = None """If provided, only provide the selected tools. Defaults to all.""" @root_validator def validate_tools(cls, values: dict) -> dict: selected_tools = values.get("selected_tools") or [] for tool_name in selected_tools: if tool_name not in _FILE_TOOLS: raise ValueError( f"File Tool of name {tool_name} not supported." f" Permitted tools: {list(_FILE_TOOLS)}" ) return values
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/file_management/toolkit.html
7a123646586d-1
) return values [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" allowed_tools = self.selected_tools or _FILE_TOOLS.keys() tools: List[BaseTool] = [] for tool in allowed_tools: tool_cls = _FILE_TOOLS[tool] tools.append(tool_cls(root_dir=self.root_dir)) # type: ignore return tools __all__ = ["FileManagementToolkit"] By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/file_management/toolkit.html
e173eb30b429-0
Source code for langchain.agents.agent_toolkits.playwright.toolkit """Playwright web browser toolkit.""" from __future__ import annotations from typing import TYPE_CHECKING, List, Optional, Type, cast from pydantic import Extra, root_validator from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.tools.base import BaseTool from langchain.tools.playwright.base import ( BaseBrowserTool, lazy_import_playwright_browsers, ) from langchain.tools.playwright.click import ClickTool from langchain.tools.playwright.current_page import CurrentWebPageTool from langchain.tools.playwright.extract_hyperlinks import ExtractHyperlinksTool from langchain.tools.playwright.extract_text import ExtractTextTool from langchain.tools.playwright.get_elements import GetElementsTool from langchain.tools.playwright.navigate import NavigateTool from langchain.tools.playwright.navigate_back import NavigateBackTool if TYPE_CHECKING: from playwright.async_api import Browser as AsyncBrowser from playwright.sync_api import Browser as SyncBrowser else: try: # We do this so pydantic can resolve the types when instantiating from playwright.async_api import Browser as AsyncBrowser from playwright.sync_api import Browser as SyncBrowser except ImportError: pass [docs]class PlayWrightBrowserToolkit(BaseToolkit): """Toolkit for web browser tools.""" sync_browser: Optional["SyncBrowser"] = None async_browser: Optional["AsyncBrowser"] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @root_validator def validate_imports_and_browser_provided(cls, values: dict) -> dict: """Check that the arguments are valid.""" lazy_import_playwright_browsers()
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/playwright/toolkit.html
e173eb30b429-1
"""Check that the arguments are valid.""" lazy_import_playwright_browsers() if values.get("async_browser") is None and values.get("sync_browser") is None: raise ValueError("Either async_browser or sync_browser must be specified.") return values [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" tool_classes: List[Type[BaseBrowserTool]] = [ ClickTool, NavigateTool, NavigateBackTool, ExtractTextTool, ExtractHyperlinksTool, GetElementsTool, CurrentWebPageTool, ] tools = [ tool_cls.from_browser( sync_browser=self.sync_browser, async_browser=self.async_browser ) for tool_cls in tool_classes ] return cast(List[BaseTool], tools) [docs] @classmethod def from_browser( cls, sync_browser: Optional[SyncBrowser] = None, async_browser: Optional[AsyncBrowser] = None, ) -> PlayWrightBrowserToolkit: """Instantiate the toolkit.""" # This is to raise a better error than the forward ref ones Pydantic would have lazy_import_playwright_browsers() return cls(sync_browser=sync_browser, async_browser=async_browser) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/playwright/toolkit.html
f014b7b71353-0
Source code for langchain.agents.agent_toolkits.openapi.base """OpenAPI spec agent.""" from typing import Any, Dict, List, Optional from langchain.agents.agent import AgentExecutor from langchain.agents.agent_toolkits.openapi.prompt import ( OPENAPI_PREFIX, OPENAPI_SUFFIX, ) from langchain.agents.agent_toolkits.openapi.toolkit import OpenAPIToolkit from langchain.agents.mrkl.base import ZeroShotAgent from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain [docs]def create_openapi_agent( llm: BaseLanguageModel, toolkit: OpenAPIToolkit, callback_manager: Optional[BaseCallbackManager] = None, prefix: str = OPENAPI_PREFIX, suffix: str = OPENAPI_SUFFIX, format_instructions: str = FORMAT_INSTRUCTIONS, input_variables: Optional[List[str]] = None, max_iterations: Optional[int] = 15, max_execution_time: Optional[float] = None, early_stopping_method: str = "force", verbose: bool = False, return_intermediate_steps: bool = False, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any], ) -> AgentExecutor: """Construct a json agent from an LLM and tools.""" tools = toolkit.get_tools() prompt = ZeroShotAgent.create_prompt( tools, prefix=prefix, suffix=suffix, format_instructions=format_instructions, input_variables=input_variables, ) llm_chain = LLMChain(
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/openapi/base.html
f014b7b71353-1
input_variables=input_variables, ) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs) return AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, callback_manager=callback_manager, verbose=verbose, return_intermediate_steps=return_intermediate_steps, max_iterations=max_iterations, max_execution_time=max_execution_time, early_stopping_method=early_stopping_method, **(agent_executor_kwargs or {}), ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/openapi/base.html
82fb90a20ce7-0
Source code for langchain.agents.agent_toolkits.openapi.toolkit """Requests toolkit.""" from __future__ import annotations from typing import Any, List from langchain.agents.agent import AgentExecutor from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.agents.agent_toolkits.json.base import create_json_agent from langchain.agents.agent_toolkits.json.toolkit import JsonToolkit from langchain.agents.agent_toolkits.openapi.prompt import DESCRIPTION from langchain.agents.tools import Tool from langchain.base_language import BaseLanguageModel from langchain.requests import TextRequestsWrapper from langchain.tools import BaseTool from langchain.tools.json.tool import JsonSpec from langchain.tools.requests.tool import ( RequestsDeleteTool, RequestsGetTool, RequestsPatchTool, RequestsPostTool, RequestsPutTool, ) class RequestsToolkit(BaseToolkit): """Toolkit for making requests.""" requests_wrapper: TextRequestsWrapper def get_tools(self) -> List[BaseTool]: """Return a list of tools.""" return [ RequestsGetTool(requests_wrapper=self.requests_wrapper), RequestsPostTool(requests_wrapper=self.requests_wrapper), RequestsPatchTool(requests_wrapper=self.requests_wrapper), RequestsPutTool(requests_wrapper=self.requests_wrapper), RequestsDeleteTool(requests_wrapper=self.requests_wrapper), ] [docs]class OpenAPIToolkit(BaseToolkit): """Toolkit for interacting with a OpenAPI api.""" json_agent: AgentExecutor requests_wrapper: TextRequestsWrapper [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" json_agent_tool = Tool( name="json_explorer", func=self.json_agent.run, description=DESCRIPTION, )
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/openapi/toolkit.html
82fb90a20ce7-1
func=self.json_agent.run, description=DESCRIPTION, ) request_toolkit = RequestsToolkit(requests_wrapper=self.requests_wrapper) return [*request_toolkit.get_tools(), json_agent_tool] [docs] @classmethod def from_llm( cls, llm: BaseLanguageModel, json_spec: JsonSpec, requests_wrapper: TextRequestsWrapper, **kwargs: Any, ) -> OpenAPIToolkit: """Create json agent from llm, then initialize.""" json_agent = create_json_agent(llm, JsonToolkit(spec=json_spec), **kwargs) return cls(json_agent=json_agent, requests_wrapper=requests_wrapper) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/openapi/toolkit.html
c67bf910e802-0
Source code for langchain.agents.agent_toolkits.json.base """Json agent.""" from typing import Any, Dict, List, Optional from langchain.agents.agent import AgentExecutor from langchain.agents.agent_toolkits.json.prompt import JSON_PREFIX, JSON_SUFFIX from langchain.agents.agent_toolkits.json.toolkit import JsonToolkit from langchain.agents.mrkl.base import ZeroShotAgent from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain [docs]def create_json_agent( llm: BaseLanguageModel, toolkit: JsonToolkit, callback_manager: Optional[BaseCallbackManager] = None, prefix: str = JSON_PREFIX, suffix: str = JSON_SUFFIX, format_instructions: str = FORMAT_INSTRUCTIONS, input_variables: Optional[List[str]] = None, verbose: bool = False, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any], ) -> AgentExecutor: """Construct a json agent from an LLM and tools.""" tools = toolkit.get_tools() prompt = ZeroShotAgent.create_prompt( tools, prefix=prefix, suffix=suffix, format_instructions=format_instructions, input_variables=input_variables, ) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs) return AgentExecutor.from_agent_and_tools(
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/json/base.html
c67bf910e802-1
return AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, callback_manager=callback_manager, verbose=verbose, **(agent_executor_kwargs or {}), ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/json/base.html
b73014861668-0
Source code for langchain.agents.agent_toolkits.json.toolkit """Toolkit for interacting with a JSON spec.""" from __future__ import annotations from typing import List from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.tools import BaseTool from langchain.tools.json.tool import JsonGetValueTool, JsonListKeysTool, JsonSpec [docs]class JsonToolkit(BaseToolkit): """Toolkit for interacting with a JSON spec.""" spec: JsonSpec [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" return [ JsonListKeysTool(spec=self.spec), JsonGetValueTool(spec=self.spec), ] By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/json/toolkit.html
3ebfa081b40f-0
Source code for langchain.agents.agent_toolkits.jira.toolkit """Jira Toolkit.""" from typing import List from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.tools import BaseTool from langchain.tools.jira.tool import JiraAction from langchain.utilities.jira import JiraAPIWrapper [docs]class JiraToolkit(BaseToolkit): """Jira Toolkit.""" tools: List[BaseTool] = [] [docs] @classmethod def from_jira_api_wrapper(cls, jira_api_wrapper: JiraAPIWrapper) -> "JiraToolkit": actions = jira_api_wrapper.list() tools = [ JiraAction( name=action["name"], description=action["description"], mode=action["mode"], api_wrapper=jira_api_wrapper, ) for action in actions ] return cls(tools=tools) [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" return self.tools By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/jira/toolkit.html
6c0c33498605-0
Source code for langchain.agents.agent_toolkits.powerbi.chat_base """Power BI agent.""" from typing import Any, Dict, List, Optional from langchain.agents import AgentExecutor from langchain.agents.agent import AgentOutputParser from langchain.agents.agent_toolkits.powerbi.prompt import ( POWERBI_CHAT_PREFIX, POWERBI_CHAT_SUFFIX, ) from langchain.agents.agent_toolkits.powerbi.toolkit import PowerBIToolkit from langchain.agents.conversational_chat.base import ConversationalChatAgent from langchain.callbacks.base import BaseCallbackManager from langchain.chat_models.base import BaseChatModel from langchain.memory import ConversationBufferMemory from langchain.memory.chat_memory import BaseChatMemory from langchain.utilities.powerbi import PowerBIDataset [docs]def create_pbi_chat_agent( llm: BaseChatModel, toolkit: Optional[PowerBIToolkit], powerbi: Optional[PowerBIDataset] = None, callback_manager: Optional[BaseCallbackManager] = None, output_parser: Optional[AgentOutputParser] = None, prefix: str = POWERBI_CHAT_PREFIX, suffix: str = POWERBI_CHAT_SUFFIX, examples: Optional[str] = None, input_variables: Optional[List[str]] = None, memory: Optional[BaseChatMemory] = None, top_k: int = 10, verbose: bool = False, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any], ) -> AgentExecutor: """Construct a pbi agent from an Chat LLM and tools. If you supply only a toolkit and no powerbi dataset, the same LLM is used for both. """ if toolkit is None:
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/powerbi/chat_base.html
6c0c33498605-1
""" if toolkit is None: if powerbi is None: raise ValueError("Must provide either a toolkit or powerbi dataset") toolkit = PowerBIToolkit(powerbi=powerbi, llm=llm, examples=examples) tools = toolkit.get_tools() agent = ConversationalChatAgent.from_llm_and_tools( llm=llm, tools=tools, system_message=prefix.format(top_k=top_k), human_message=suffix, input_variables=input_variables, callback_manager=callback_manager, output_parser=output_parser, verbose=verbose, **kwargs, ) return AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, callback_manager=callback_manager, memory=memory or ConversationBufferMemory(memory_key="chat_history", return_messages=True), verbose=verbose, **(agent_executor_kwargs or {}), ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/powerbi/chat_base.html
d84c93aede58-0
Source code for langchain.agents.agent_toolkits.powerbi.base """Power BI agent.""" from typing import Any, Dict, List, Optional from langchain.agents import AgentExecutor from langchain.agents.agent_toolkits.powerbi.prompt import ( POWERBI_PREFIX, POWERBI_SUFFIX, ) from langchain.agents.agent_toolkits.powerbi.toolkit import PowerBIToolkit from langchain.agents.mrkl.base import ZeroShotAgent from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain from langchain.utilities.powerbi import PowerBIDataset [docs]def create_pbi_agent( llm: BaseLanguageModel, toolkit: Optional[PowerBIToolkit], powerbi: Optional[PowerBIDataset] = None, callback_manager: Optional[BaseCallbackManager] = None, prefix: str = POWERBI_PREFIX, suffix: str = POWERBI_SUFFIX, format_instructions: str = FORMAT_INSTRUCTIONS, examples: Optional[str] = None, input_variables: Optional[List[str]] = None, top_k: int = 10, verbose: bool = False, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any], ) -> AgentExecutor: """Construct a pbi agent from an LLM and tools.""" if toolkit is None: if powerbi is None: raise ValueError("Must provide either a toolkit or powerbi dataset") toolkit = PowerBIToolkit(powerbi=powerbi, llm=llm, examples=examples) tools = toolkit.get_tools()
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/powerbi/base.html
d84c93aede58-1
tools = toolkit.get_tools() agent = ZeroShotAgent( llm_chain=LLMChain( llm=llm, prompt=ZeroShotAgent.create_prompt( tools, prefix=prefix.format(top_k=top_k), suffix=suffix, format_instructions=format_instructions, input_variables=input_variables, ), callback_manager=callback_manager, # type: ignore verbose=verbose, ), allowed_tools=[tool.name for tool in tools], **kwargs, ) return AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, callback_manager=callback_manager, verbose=verbose, **(agent_executor_kwargs or {}), ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/powerbi/base.html
6536bb019910-0
Source code for langchain.agents.agent_toolkits.powerbi.toolkit """Toolkit for interacting with a Power BI dataset.""" from typing import List, Optional from pydantic import Field from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain from langchain.prompts import PromptTemplate from langchain.tools import BaseTool from langchain.tools.powerbi.prompt import QUESTION_TO_QUERY from langchain.tools.powerbi.tool import ( InfoPowerBITool, ListPowerBITool, QueryPowerBITool, ) from langchain.utilities.powerbi import PowerBIDataset [docs]class PowerBIToolkit(BaseToolkit): """Toolkit for interacting with PowerBI dataset.""" powerbi: PowerBIDataset = Field(exclude=True) llm: BaseLanguageModel = Field(exclude=True) examples: Optional[str] = None max_iterations: int = 5 callback_manager: Optional[BaseCallbackManager] = None class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" if self.callback_manager: chain = LLMChain( llm=self.llm, callback_manager=self.callback_manager, prompt=PromptTemplate( template=QUESTION_TO_QUERY, input_variables=["tool_input", "tables", "schemas", "examples"], ), ) else: chain = LLMChain( llm=self.llm, prompt=PromptTemplate( template=QUESTION_TO_QUERY,
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/powerbi/toolkit.html
6536bb019910-1
prompt=PromptTemplate( template=QUESTION_TO_QUERY, input_variables=["tool_input", "tables", "schemas", "examples"], ), ) return [ QueryPowerBITool( llm_chain=chain, powerbi=self.powerbi, examples=self.examples, max_iterations=self.max_iterations, ), InfoPowerBITool(powerbi=self.powerbi), ListPowerBITool(powerbi=self.powerbi), ] By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/powerbi/toolkit.html
5f632235f57f-0
Source code for langchain.agents.agent_toolkits.csv.base """Agent for working with csvs.""" from typing import Any, List, Optional, Union from langchain.agents.agent import AgentExecutor from langchain.agents.agent_toolkits.pandas.base import create_pandas_dataframe_agent from langchain.base_language import BaseLanguageModel [docs]def create_csv_agent( llm: BaseLanguageModel, path: Union[str, List[str]], pandas_kwargs: Optional[dict] = None, **kwargs: Any, ) -> AgentExecutor: """Create csv agent by loading to a dataframe and using pandas agent.""" try: import pandas as pd except ImportError: raise ValueError( "pandas package not found, please install with `pip install pandas`" ) _kwargs = pandas_kwargs or {} if isinstance(path, str): df = pd.read_csv(path, **_kwargs) elif isinstance(path, list): df = [] for item in path: if not isinstance(item, str): raise ValueError(f"Expected str, got {type(path)}") df.append(pd.read_csv(item, **_kwargs)) else: raise ValueError(f"Expected str or list, got {type(path)}") return create_pandas_dataframe_agent(llm, df, **kwargs) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/csv/base.html
36fedfb79b7a-0
Source code for langchain.agents.agent_toolkits.gmail.toolkit from __future__ import annotations from typing import TYPE_CHECKING, List from pydantic import Field from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.tools import BaseTool from langchain.tools.gmail.create_draft import GmailCreateDraft from langchain.tools.gmail.get_message import GmailGetMessage from langchain.tools.gmail.get_thread import GmailGetThread from langchain.tools.gmail.search import GmailSearch from langchain.tools.gmail.send_message import GmailSendMessage from langchain.tools.gmail.utils import build_resource_service if TYPE_CHECKING: # This is for linting and IDE typehints from googleapiclient.discovery import Resource else: try: # We do this so pydantic can resolve the types when instantiating from googleapiclient.discovery import Resource except ImportError: pass SCOPES = ["https://mail.google.com/"] [docs]class GmailToolkit(BaseToolkit): """Toolkit for interacting with Gmail.""" api_resource: Resource = Field(default_factory=build_resource_service) class Config: """Pydantic config.""" arbitrary_types_allowed = True [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" return [ GmailCreateDraft(api_resource=self.api_resource), GmailSendMessage(api_resource=self.api_resource), GmailSearch(api_resource=self.api_resource), GmailGetMessage(api_resource=self.api_resource), GmailGetThread(api_resource=self.api_resource), ] By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/gmail/toolkit.html
d076f52eef5b-0
Source code for langchain.agents.agent_toolkits.spark.base """Agent for working with pandas objects.""" from typing import Any, Dict, List, Optional from langchain.agents.agent import AgentExecutor from langchain.agents.agent_toolkits.spark.prompt import PREFIX, SUFFIX from langchain.agents.mrkl.base import ZeroShotAgent from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain from langchain.llms.base import BaseLLM from langchain.tools.python.tool import PythonAstREPLTool def _validate_spark_df(df: Any) -> bool: try: from pyspark.sql import DataFrame as SparkLocalDataFrame return isinstance(df, SparkLocalDataFrame) except ImportError: return False def _validate_spark_connect_df(df: Any) -> bool: try: from pyspark.sql.connect.dataframe import DataFrame as SparkConnectDataFrame return isinstance(df, SparkConnectDataFrame) except ImportError: return False [docs]def create_spark_dataframe_agent( llm: BaseLLM, df: Any, callback_manager: Optional[BaseCallbackManager] = None, prefix: str = PREFIX, suffix: str = SUFFIX, input_variables: Optional[List[str]] = None, verbose: bool = False, return_intermediate_steps: bool = False, max_iterations: Optional[int] = 15, max_execution_time: Optional[float] = None, early_stopping_method: str = "force", agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any], ) -> AgentExecutor: """Construct a spark agent from an LLM and dataframe."""
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/spark/base.html
d076f52eef5b-1
) -> AgentExecutor: """Construct a spark agent from an LLM and dataframe.""" if not _validate_spark_df(df) and not _validate_spark_connect_df(df): raise ValueError("Spark is not installed. run `pip install pyspark`.") if input_variables is None: input_variables = ["df", "input", "agent_scratchpad"] tools = [PythonAstREPLTool(locals={"df": df})] prompt = ZeroShotAgent.create_prompt( tools, prefix=prefix, suffix=suffix, input_variables=input_variables ) partial_prompt = prompt.partial(df=str(df.first())) llm_chain = LLMChain( llm=llm, prompt=partial_prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] agent = ZeroShotAgent( llm_chain=llm_chain, allowed_tools=tool_names, callback_manager=callback_manager, **kwargs, ) return AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, callback_manager=callback_manager, verbose=verbose, return_intermediate_steps=return_intermediate_steps, max_iterations=max_iterations, max_execution_time=max_execution_time, early_stopping_method=early_stopping_method, **(agent_executor_kwargs or {}), ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/spark/base.html
abb2f2798441-0
Source code for langchain.agents.agent_toolkits.pandas.base """Agent for working with pandas objects.""" from typing import Any, Dict, List, Optional, Tuple from langchain.agents.agent import AgentExecutor from langchain.agents.agent_toolkits.pandas.prompt import ( MULTI_DF_PREFIX, PREFIX, SUFFIX_NO_DF, SUFFIX_WITH_DF, SUFFIX_WITH_MULTI_DF, ) from langchain.agents.mrkl.base import ZeroShotAgent from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain from langchain.prompts.base import BasePromptTemplate from langchain.tools.python.tool import PythonAstREPLTool def _get_multi_prompt( dfs: List[Any], prefix: Optional[str] = None, suffix: Optional[str] = None, input_variables: Optional[List[str]] = None, include_df_in_prompt: Optional[bool] = True, ) -> Tuple[BasePromptTemplate, List[PythonAstREPLTool]]: num_dfs = len(dfs) if suffix is not None: suffix_to_use = suffix include_dfs_head = True elif include_df_in_prompt: suffix_to_use = SUFFIX_WITH_MULTI_DF include_dfs_head = True else: suffix_to_use = SUFFIX_NO_DF include_dfs_head = False if input_variables is None: input_variables = ["input", "agent_scratchpad", "num_dfs"] if include_dfs_head: input_variables += ["dfs_head"] if prefix is None: prefix = MULTI_DF_PREFIX df_locals = {} for i, dataframe in enumerate(dfs):
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/pandas/base.html
abb2f2798441-1
df_locals = {} for i, dataframe in enumerate(dfs): df_locals[f"df{i + 1}"] = dataframe tools = [PythonAstREPLTool(locals=df_locals)] prompt = ZeroShotAgent.create_prompt( tools, prefix=prefix, suffix=suffix_to_use, input_variables=input_variables ) partial_prompt = prompt.partial() if "dfs_head" in input_variables: dfs_head = "\n\n".join([d.head().to_markdown() for d in dfs]) partial_prompt = partial_prompt.partial(num_dfs=str(num_dfs), dfs_head=dfs_head) if "num_dfs" in input_variables: partial_prompt = partial_prompt.partial(num_dfs=str(num_dfs)) return partial_prompt, tools def _get_single_prompt( df: Any, prefix: Optional[str] = None, suffix: Optional[str] = None, input_variables: Optional[List[str]] = None, include_df_in_prompt: Optional[bool] = True, ) -> Tuple[BasePromptTemplate, List[PythonAstREPLTool]]: if suffix is not None: suffix_to_use = suffix include_df_head = True elif include_df_in_prompt: suffix_to_use = SUFFIX_WITH_DF include_df_head = True else: suffix_to_use = SUFFIX_NO_DF include_df_head = False if input_variables is None: input_variables = ["input", "agent_scratchpad"] if include_df_head: input_variables += ["df_head"] if prefix is None: prefix = PREFIX tools = [PythonAstREPLTool(locals={"df": df})] prompt = ZeroShotAgent.create_prompt(
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/pandas/base.html
abb2f2798441-2
prompt = ZeroShotAgent.create_prompt( tools, prefix=prefix, suffix=suffix_to_use, input_variables=input_variables ) partial_prompt = prompt.partial() if "df_head" in input_variables: partial_prompt = partial_prompt.partial(df_head=str(df.head().to_markdown())) return partial_prompt, tools def _get_prompt_and_tools( df: Any, prefix: Optional[str] = None, suffix: Optional[str] = None, input_variables: Optional[List[str]] = None, include_df_in_prompt: Optional[bool] = True, ) -> Tuple[BasePromptTemplate, List[PythonAstREPLTool]]: try: import pandas as pd except ImportError: raise ValueError( "pandas package not found, please install with `pip install pandas`" ) if include_df_in_prompt is not None and suffix is not None: raise ValueError("If suffix is specified, include_df_in_prompt should not be.") if isinstance(df, list): for item in df: if not isinstance(item, pd.DataFrame): raise ValueError(f"Expected pandas object, got {type(df)}") return _get_multi_prompt( df, prefix=prefix, suffix=suffix, input_variables=input_variables, include_df_in_prompt=include_df_in_prompt, ) else: if not isinstance(df, pd.DataFrame): raise ValueError(f"Expected pandas object, got {type(df)}") return _get_single_prompt( df, prefix=prefix, suffix=suffix, input_variables=input_variables, include_df_in_prompt=include_df_in_prompt, )
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/pandas/base.html
abb2f2798441-3
include_df_in_prompt=include_df_in_prompt, ) [docs]def create_pandas_dataframe_agent( llm: BaseLanguageModel, df: Any, callback_manager: Optional[BaseCallbackManager] = None, prefix: Optional[str] = None, suffix: Optional[str] = None, input_variables: Optional[List[str]] = None, verbose: bool = False, return_intermediate_steps: bool = False, max_iterations: Optional[int] = 15, max_execution_time: Optional[float] = None, early_stopping_method: str = "force", agent_executor_kwargs: Optional[Dict[str, Any]] = None, include_df_in_prompt: Optional[bool] = True, **kwargs: Dict[str, Any], ) -> AgentExecutor: """Construct a pandas agent from an LLM and dataframe.""" prompt, tools = _get_prompt_and_tools( df, prefix=prefix, suffix=suffix, input_variables=input_variables, include_df_in_prompt=include_df_in_prompt, ) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] agent = ZeroShotAgent( llm_chain=llm_chain, allowed_tools=tool_names, callback_manager=callback_manager, **kwargs, ) return AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, callback_manager=callback_manager, verbose=verbose, return_intermediate_steps=return_intermediate_steps, max_iterations=max_iterations,
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/pandas/base.html
abb2f2798441-4
return_intermediate_steps=return_intermediate_steps, max_iterations=max_iterations, max_execution_time=max_execution_time, early_stopping_method=early_stopping_method, **(agent_executor_kwargs or {}), ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/pandas/base.html
ef91e2decaf4-0
Source code for langchain.agents.agent_toolkits.vectorstore.base """VectorStore agent.""" from typing import Any, Dict, Optional from langchain.agents.agent import AgentExecutor from langchain.agents.agent_toolkits.vectorstore.prompt import PREFIX, ROUTER_PREFIX from langchain.agents.agent_toolkits.vectorstore.toolkit import ( VectorStoreRouterToolkit, VectorStoreToolkit, ) from langchain.agents.mrkl.base import ZeroShotAgent from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain [docs]def create_vectorstore_agent( llm: BaseLanguageModel, toolkit: VectorStoreToolkit, callback_manager: Optional[BaseCallbackManager] = None, prefix: str = PREFIX, verbose: bool = False, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any], ) -> AgentExecutor: """Construct a vectorstore agent from an LLM and tools.""" tools = toolkit.get_tools() prompt = ZeroShotAgent.create_prompt(tools, prefix=prefix) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs) return AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, callback_manager=callback_manager, verbose=verbose, **(agent_executor_kwargs or {}), ) [docs]def create_vectorstore_router_agent(
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/vectorstore/base.html
ef91e2decaf4-1
) [docs]def create_vectorstore_router_agent( llm: BaseLanguageModel, toolkit: VectorStoreRouterToolkit, callback_manager: Optional[BaseCallbackManager] = None, prefix: str = ROUTER_PREFIX, verbose: bool = False, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any], ) -> AgentExecutor: """Construct a vectorstore router agent from an LLM and tools.""" tools = toolkit.get_tools() prompt = ZeroShotAgent.create_prompt(tools, prefix=prefix) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs) return AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, callback_manager=callback_manager, verbose=verbose, **(agent_executor_kwargs or {}), ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/vectorstore/base.html
2fd90ed0d348-0
Source code for langchain.agents.agent_toolkits.vectorstore.toolkit """Toolkit for interacting with a vector store.""" from typing import List from pydantic import BaseModel, Field from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.base_language import BaseLanguageModel from langchain.llms.openai import OpenAI from langchain.tools import BaseTool from langchain.tools.vectorstore.tool import ( VectorStoreQATool, VectorStoreQAWithSourcesTool, ) from langchain.vectorstores.base import VectorStore [docs]class VectorStoreInfo(BaseModel): """Information about a vectorstore.""" vectorstore: VectorStore = Field(exclude=True) name: str description: str class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True [docs]class VectorStoreToolkit(BaseToolkit): """Toolkit for interacting with a vector store.""" vectorstore_info: VectorStoreInfo = Field(exclude=True) llm: BaseLanguageModel = Field(default_factory=lambda: OpenAI(temperature=0)) class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" description = VectorStoreQATool.get_description( self.vectorstore_info.name, self.vectorstore_info.description ) qa_tool = VectorStoreQATool( name=self.vectorstore_info.name, description=description, vectorstore=self.vectorstore_info.vectorstore, llm=self.llm, ) description = VectorStoreQAWithSourcesTool.get_description( self.vectorstore_info.name, self.vectorstore_info.description )
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/vectorstore/toolkit.html
2fd90ed0d348-1
self.vectorstore_info.name, self.vectorstore_info.description ) qa_with_sources_tool = VectorStoreQAWithSourcesTool( name=f"{self.vectorstore_info.name}_with_sources", description=description, vectorstore=self.vectorstore_info.vectorstore, llm=self.llm, ) return [qa_tool, qa_with_sources_tool] [docs]class VectorStoreRouterToolkit(BaseToolkit): """Toolkit for routing between vectorstores.""" vectorstores: List[VectorStoreInfo] = Field(exclude=True) llm: BaseLanguageModel = Field(default_factory=lambda: OpenAI(temperature=0)) class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" tools: List[BaseTool] = [] for vectorstore_info in self.vectorstores: description = VectorStoreQATool.get_description( vectorstore_info.name, vectorstore_info.description ) qa_tool = VectorStoreQATool( name=vectorstore_info.name, description=description, vectorstore=vectorstore_info.vectorstore, llm=self.llm, ) tools.append(qa_tool) return tools By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/vectorstore/toolkit.html
222b3a59841a-0
Source code for langchain.agents.agent_toolkits.sql.base """SQL agent.""" from typing import Any, Dict, List, Optional from langchain.agents.agent import AgentExecutor from langchain.agents.agent_toolkits.sql.prompt import SQL_PREFIX, SQL_SUFFIX from langchain.agents.agent_toolkits.sql.toolkit import SQLDatabaseToolkit from langchain.agents.mrkl.base import ZeroShotAgent from langchain.agents.mrkl.prompt import FORMAT_INSTRUCTIONS from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.chains.llm import LLMChain [docs]def create_sql_agent( llm: BaseLanguageModel, toolkit: SQLDatabaseToolkit, callback_manager: Optional[BaseCallbackManager] = None, prefix: str = SQL_PREFIX, suffix: str = SQL_SUFFIX, format_instructions: str = FORMAT_INSTRUCTIONS, input_variables: Optional[List[str]] = None, top_k: int = 10, max_iterations: Optional[int] = 15, max_execution_time: Optional[float] = None, early_stopping_method: str = "force", verbose: bool = False, agent_executor_kwargs: Optional[Dict[str, Any]] = None, **kwargs: Dict[str, Any], ) -> AgentExecutor: """Construct a sql agent from an LLM and tools.""" tools = toolkit.get_tools() prefix = prefix.format(dialect=toolkit.dialect, top_k=top_k) prompt = ZeroShotAgent.create_prompt( tools, prefix=prefix, suffix=suffix, format_instructions=format_instructions, input_variables=input_variables, ) llm_chain = LLMChain( llm=llm,
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/sql/base.html
222b3a59841a-1
) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs) return AgentExecutor.from_agent_and_tools( agent=agent, tools=tools, callback_manager=callback_manager, verbose=verbose, max_iterations=max_iterations, max_execution_time=max_execution_time, early_stopping_method=early_stopping_method, **(agent_executor_kwargs or {}), ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/sql/base.html
6c0c21f72237-0
Source code for langchain.agents.agent_toolkits.sql.toolkit """Toolkit for interacting with a SQL database.""" from typing import List from pydantic import Field from langchain.agents.agent_toolkits.base import BaseToolkit from langchain.base_language import BaseLanguageModel from langchain.sql_database import SQLDatabase from langchain.tools import BaseTool from langchain.tools.sql_database.tool import ( InfoSQLDatabaseTool, ListSQLDatabaseTool, QueryCheckerTool, QuerySQLDataBaseTool, ) [docs]class SQLDatabaseToolkit(BaseToolkit): """Toolkit for interacting with SQL databases.""" db: SQLDatabase = Field(exclude=True) llm: BaseLanguageModel = Field(exclude=True) @property def dialect(self) -> str: """Return string representation of dialect to use.""" return self.db.dialect class Config: """Configuration for this pydantic object.""" arbitrary_types_allowed = True [docs] def get_tools(self) -> List[BaseTool]: """Get the tools in the toolkit.""" return [ QuerySQLDataBaseTool(db=self.db), InfoSQLDatabaseTool(db=self.db), ListSQLDatabaseTool(db=self.db), QueryCheckerTool(db=self.db, llm=self.llm), ] By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/agent_toolkits/sql/toolkit.html
32126c7ba4a2-0
Source code for langchain.agents.conversational.base """An agent designed to hold a conversation in addition to using tools.""" from __future__ import annotations from typing import Any, List, Optional, Sequence from pydantic import Field from langchain.agents.agent import Agent, AgentOutputParser from langchain.agents.agent_types import AgentType from langchain.agents.conversational.output_parser import ConvoOutputParser from langchain.agents.conversational.prompt import FORMAT_INSTRUCTIONS, PREFIX, SUFFIX from langchain.agents.utils import validate_tools_single_input from langchain.base_language import BaseLanguageModel from langchain.callbacks.base import BaseCallbackManager from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from langchain.tools.base import BaseTool [docs]class ConversationalAgent(Agent): """An agent designed to hold a conversation in addition to using tools.""" ai_prefix: str = "AI" output_parser: AgentOutputParser = Field(default_factory=ConvoOutputParser) @classmethod def _get_default_output_parser( cls, ai_prefix: str = "AI", **kwargs: Any ) -> AgentOutputParser: return ConvoOutputParser(ai_prefix=ai_prefix) @property def _agent_type(self) -> str: """Return Identifier of agent type.""" return AgentType.CONVERSATIONAL_REACT_DESCRIPTION @property def observation_prefix(self) -> str: """Prefix to append the observation with.""" return "Observation: " @property def llm_prefix(self) -> str: """Prefix to append the llm call with.""" return "Thought:" [docs] @classmethod def create_prompt( cls,
https://python.langchain.com/en/latest/_modules/langchain/agents/conversational/base.html
32126c7ba4a2-1
[docs] @classmethod def create_prompt( cls, tools: Sequence[BaseTool], prefix: str = PREFIX, suffix: str = SUFFIX, format_instructions: str = FORMAT_INSTRUCTIONS, ai_prefix: str = "AI", human_prefix: str = "Human", input_variables: Optional[List[str]] = None, ) -> PromptTemplate: """Create prompt in the style of the zero shot agent. Args: tools: List of tools the agent will have access to, used to format the prompt. prefix: String to put before the list of tools. suffix: String to put after the list of tools. ai_prefix: String to use before AI output. human_prefix: String to use before human output. input_variables: List of input variables the final prompt will expect. Returns: A PromptTemplate with the template assembled from the pieces here. """ tool_strings = "\n".join( [f"> {tool.name}: {tool.description}" for tool in tools] ) tool_names = ", ".join([tool.name for tool in tools]) format_instructions = format_instructions.format( tool_names=tool_names, ai_prefix=ai_prefix, human_prefix=human_prefix ) template = "\n\n".join([prefix, tool_strings, format_instructions, suffix]) if input_variables is None: input_variables = ["input", "chat_history", "agent_scratchpad"] return PromptTemplate(template=template, input_variables=input_variables) @classmethod def _validate_tools(cls, tools: Sequence[BaseTool]) -> None: super()._validate_tools(tools) validate_tools_single_input(cls.__name__, tools)
https://python.langchain.com/en/latest/_modules/langchain/agents/conversational/base.html
32126c7ba4a2-2
super()._validate_tools(tools) validate_tools_single_input(cls.__name__, tools) [docs] @classmethod def from_llm_and_tools( cls, llm: BaseLanguageModel, tools: Sequence[BaseTool], callback_manager: Optional[BaseCallbackManager] = None, output_parser: Optional[AgentOutputParser] = None, prefix: str = PREFIX, suffix: str = SUFFIX, format_instructions: str = FORMAT_INSTRUCTIONS, ai_prefix: str = "AI", human_prefix: str = "Human", input_variables: Optional[List[str]] = None, **kwargs: Any, ) -> Agent: """Construct an agent from an LLM and tools.""" cls._validate_tools(tools) prompt = cls.create_prompt( tools, ai_prefix=ai_prefix, human_prefix=human_prefix, prefix=prefix, suffix=suffix, format_instructions=format_instructions, input_variables=input_variables, ) llm_chain = LLMChain( llm=llm, prompt=prompt, callback_manager=callback_manager, ) tool_names = [tool.name for tool in tools] _output_parser = output_parser or cls._get_default_output_parser( ai_prefix=ai_prefix ) return cls( llm_chain=llm_chain, allowed_tools=tool_names, ai_prefix=ai_prefix, output_parser=_output_parser, **kwargs, ) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/conversational/base.html
cc29bfffad56-0
Source code for langchain.agents.react.base """Chain that implements the ReAct paper from https://arxiv.org/pdf/2210.03629.pdf.""" from typing import Any, List, Optional, Sequence from pydantic import Field from langchain.agents.agent import Agent, AgentExecutor, AgentOutputParser from langchain.agents.agent_types import AgentType from langchain.agents.react.output_parser import ReActOutputParser from langchain.agents.react.textworld_prompt import TEXTWORLD_PROMPT from langchain.agents.react.wiki_prompt import WIKI_PROMPT from langchain.agents.tools import Tool from langchain.agents.utils import validate_tools_single_input from langchain.base_language import BaseLanguageModel from langchain.docstore.base import Docstore from langchain.docstore.document import Document from langchain.prompts.base import BasePromptTemplate from langchain.tools.base import BaseTool class ReActDocstoreAgent(Agent): """Agent for the ReAct chain.""" output_parser: AgentOutputParser = Field(default_factory=ReActOutputParser) @classmethod def _get_default_output_parser(cls, **kwargs: Any) -> AgentOutputParser: return ReActOutputParser() @property def _agent_type(self) -> str: """Return Identifier of agent type.""" return AgentType.REACT_DOCSTORE @classmethod def create_prompt(cls, tools: Sequence[BaseTool]) -> BasePromptTemplate: """Return default prompt.""" return WIKI_PROMPT @classmethod def _validate_tools(cls, tools: Sequence[BaseTool]) -> None: validate_tools_single_input(cls.__name__, tools) super()._validate_tools(tools) if len(tools) != 2:
https://python.langchain.com/en/latest/_modules/langchain/agents/react/base.html
cc29bfffad56-1
super()._validate_tools(tools) if len(tools) != 2: raise ValueError(f"Exactly two tools must be specified, but got {tools}") tool_names = {tool.name for tool in tools} if tool_names != {"Lookup", "Search"}: raise ValueError( f"Tool names should be Lookup and Search, got {tool_names}" ) @property def observation_prefix(self) -> str: """Prefix to append the observation with.""" return "Observation: " @property def _stop(self) -> List[str]: return ["\nObservation:"] @property def llm_prefix(self) -> str: """Prefix to append the LLM call with.""" return "Thought:" class DocstoreExplorer: """Class to assist with exploration of a document store.""" def __init__(self, docstore: Docstore): """Initialize with a docstore, and set initial document to None.""" self.docstore = docstore self.document: Optional[Document] = None self.lookup_str = "" self.lookup_index = 0 def search(self, term: str) -> str: """Search for a term in the docstore, and if found save.""" result = self.docstore.search(term) if isinstance(result, Document): self.document = result return self._summary else: self.document = None return result def lookup(self, term: str) -> str: """Lookup a term in document (if saved).""" if self.document is None: raise ValueError("Cannot lookup without a successful search first") if term.lower() != self.lookup_str:
https://python.langchain.com/en/latest/_modules/langchain/agents/react/base.html
cc29bfffad56-2
if term.lower() != self.lookup_str: self.lookup_str = term.lower() self.lookup_index = 0 else: self.lookup_index += 1 lookups = [p for p in self._paragraphs if self.lookup_str in p.lower()] if len(lookups) == 0: return "No Results" elif self.lookup_index >= len(lookups): return "No More Results" else: result_prefix = f"(Result {self.lookup_index + 1}/{len(lookups)})" return f"{result_prefix} {lookups[self.lookup_index]}" @property def _summary(self) -> str: return self._paragraphs[0] @property def _paragraphs(self) -> List[str]: if self.document is None: raise ValueError("Cannot get paragraphs without a document") return self.document.page_content.split("\n\n") [docs]class ReActTextWorldAgent(ReActDocstoreAgent): """Agent for the ReAct TextWorld chain.""" [docs] @classmethod def create_prompt(cls, tools: Sequence[BaseTool]) -> BasePromptTemplate: """Return default prompt.""" return TEXTWORLD_PROMPT @classmethod def _validate_tools(cls, tools: Sequence[BaseTool]) -> None: validate_tools_single_input(cls.__name__, tools) super()._validate_tools(tools) if len(tools) != 1: raise ValueError(f"Exactly one tool must be specified, but got {tools}") tool_names = {tool.name for tool in tools} if tool_names != {"Play"}: raise ValueError(f"Tool name should be Play, got {tool_names}")
https://python.langchain.com/en/latest/_modules/langchain/agents/react/base.html
cc29bfffad56-3
raise ValueError(f"Tool name should be Play, got {tool_names}") [docs]class ReActChain(AgentExecutor): """Chain that implements the ReAct paper. Example: .. code-block:: python from langchain import ReActChain, OpenAI react = ReAct(llm=OpenAI()) """ def __init__(self, llm: BaseLanguageModel, docstore: Docstore, **kwargs: Any): """Initialize with the LLM and a docstore.""" docstore_explorer = DocstoreExplorer(docstore) tools = [ Tool( name="Search", func=docstore_explorer.search, description="Search for a term in the docstore.", ), Tool( name="Lookup", func=docstore_explorer.lookup, description="Lookup a term in the docstore.", ), ] agent = ReActDocstoreAgent.from_llm_and_tools(llm, tools) super().__init__(agent=agent, tools=tools, **kwargs) By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/agents/react/base.html
f05b4662a5bd-0
Source code for langchain.utilities.spark_sql from __future__ import annotations from typing import TYPE_CHECKING, Any, Iterable, List, Optional if TYPE_CHECKING: from pyspark.sql import DataFrame, Row, SparkSession [docs]class SparkSQL: def __init__( self, spark_session: Optional[SparkSession] = None, catalog: Optional[str] = None, schema: Optional[str] = None, ignore_tables: Optional[List[str]] = None, include_tables: Optional[List[str]] = None, sample_rows_in_table_info: int = 3, ): try: from pyspark.sql import SparkSession except ImportError: raise ValueError( "pyspark is not installed. Please install it with `pip install pyspark`" ) self._spark = ( spark_session if spark_session else SparkSession.builder.getOrCreate() ) if catalog is not None: self._spark.catalog.setCurrentCatalog(catalog) if schema is not None: self._spark.catalog.setCurrentDatabase(schema) self._all_tables = set(self._get_all_table_names()) self._include_tables = set(include_tables) if include_tables else set() if self._include_tables: missing_tables = self._include_tables - self._all_tables if missing_tables: raise ValueError( f"include_tables {missing_tables} not found in database" ) self._ignore_tables = set(ignore_tables) if ignore_tables else set() if self._ignore_tables: missing_tables = self._ignore_tables - self._all_tables if missing_tables: raise ValueError( f"ignore_tables {missing_tables} not found in database" )
https://python.langchain.com/en/latest/_modules/langchain/utilities/spark_sql.html
f05b4662a5bd-1
f"ignore_tables {missing_tables} not found in database" ) usable_tables = self.get_usable_table_names() self._usable_tables = set(usable_tables) if usable_tables else self._all_tables if not isinstance(sample_rows_in_table_info, int): raise TypeError("sample_rows_in_table_info must be an integer") self._sample_rows_in_table_info = sample_rows_in_table_info [docs] @classmethod def from_uri( cls, database_uri: str, engine_args: Optional[dict] = None, **kwargs: Any ) -> SparkSQL: """Creating a remote Spark Session via Spark connect. For example: SparkSQL.from_uri("sc://localhost:15002") """ try: from pyspark.sql import SparkSession except ImportError: raise ValueError( "pyspark is not installed. Please install it with `pip install pyspark`" ) spark = SparkSession.builder.remote(database_uri).getOrCreate() return cls(spark, **kwargs) [docs] def get_usable_table_names(self) -> Iterable[str]: """Get names of tables available.""" if self._include_tables: return self._include_tables # sorting the result can help LLM understanding it. return sorted(self._all_tables - self._ignore_tables) def _get_all_table_names(self) -> Iterable[str]: rows = self._spark.sql("SHOW TABLES").select("tableName").collect() return list(map(lambda row: row.tableName, rows)) def _get_create_table_stmt(self, table: str) -> str: statement = ( self._spark.sql(f"SHOW CREATE TABLE {table}").collect()[0].createtab_stmt
https://python.langchain.com/en/latest/_modules/langchain/utilities/spark_sql.html
f05b4662a5bd-2
) # Ignore the data source provider and options to reduce the number of tokens. using_clause_index = statement.find("USING") return statement[:using_clause_index] + ";" [docs] def get_table_info(self, table_names: Optional[List[str]] = None) -> str: all_table_names = self.get_usable_table_names() if table_names is not None: missing_tables = set(table_names).difference(all_table_names) if missing_tables: raise ValueError(f"table_names {missing_tables} not found in database") all_table_names = table_names tables = [] for table_name in all_table_names: table_info = self._get_create_table_stmt(table_name) if self._sample_rows_in_table_info: table_info += "\n\n/*" table_info += f"\n{self._get_sample_spark_rows(table_name)}\n" table_info += "*/" tables.append(table_info) final_str = "\n\n".join(tables) return final_str def _get_sample_spark_rows(self, table: str) -> str: query = f"SELECT * FROM {table} LIMIT {self._sample_rows_in_table_info}" df = self._spark.sql(query) columns_str = "\t".join(list(map(lambda f: f.name, df.schema.fields))) try: sample_rows = self._get_dataframe_results(df) # save the sample rows in string format sample_rows_str = "\n".join(["\t".join(row) for row in sample_rows]) except Exception: sample_rows_str = "" return ( f"{self._sample_rows_in_table_info} rows from {table} table:\n"
https://python.langchain.com/en/latest/_modules/langchain/utilities/spark_sql.html
f05b4662a5bd-3
f"{self._sample_rows_in_table_info} rows from {table} table:\n" f"{columns_str}\n" f"{sample_rows_str}" ) def _convert_row_as_tuple(self, row: Row) -> tuple: return tuple(map(str, row.asDict().values())) def _get_dataframe_results(self, df: DataFrame) -> list: return list(map(self._convert_row_as_tuple, df.collect())) [docs] def run(self, command: str, fetch: str = "all") -> str: df = self._spark.sql(command) if fetch == "one": df = df.limit(1) return str(self._get_dataframe_results(df)) [docs] def get_table_info_no_throw(self, table_names: Optional[List[str]] = None) -> str: """Get information about specified tables. Follows best practices as specified in: Rajkumar et al, 2022 (https://arxiv.org/abs/2204.00498) If `sample_rows_in_table_info`, the specified number of sample rows will be appended to each table description. This can increase performance as demonstrated in the paper. """ try: return self.get_table_info(table_names) except ValueError as e: """Format the error message""" return f"Error: {e}" [docs] def run_no_throw(self, command: str, fetch: str = "all") -> str: """Execute a SQL command and return a string representing the results. If the statement returns rows, a string of the results is returned. If the statement returns no rows, an empty string is returned. If the statement throws an error, the error message is returned.
https://python.langchain.com/en/latest/_modules/langchain/utilities/spark_sql.html
f05b4662a5bd-4
If the statement throws an error, the error message is returned. """ try: from pyspark.errors import PySparkException except ImportError: raise ValueError( "pyspark is not installed. Please install it with `pip install pyspark`" ) try: return self.run(command, fetch) except PySparkException as e: """Format the error message""" return f"Error: {e}" By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/utilities/spark_sql.html
fdb855b69cb6-0
Source code for langchain.utilities.python import sys from io import StringIO from typing import Dict, Optional from pydantic import BaseModel, Field [docs]class PythonREPL(BaseModel): """Simulates a standalone Python REPL.""" globals: Optional[Dict] = Field(default_factory=dict, alias="_globals") locals: Optional[Dict] = Field(default_factory=dict, alias="_locals") [docs] def run(self, command: str) -> str: """Run command with own globals/locals and returns anything printed.""" old_stdout = sys.stdout sys.stdout = mystdout = StringIO() try: exec(command, self.globals, self.locals) sys.stdout = old_stdout output = mystdout.getvalue() except Exception as e: sys.stdout = old_stdout output = repr(e) return output By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/utilities/python.html
6a49b5008147-0
Source code for langchain.utilities.bash """Wrapper around subprocess to run commands.""" from __future__ import annotations import platform import re import subprocess from typing import TYPE_CHECKING, List, Union from uuid import uuid4 if TYPE_CHECKING: import pexpect def _lazy_import_pexpect() -> pexpect: """Import pexpect only when needed.""" if platform.system() == "Windows": raise ValueError("Persistent bash processes are not yet supported on Windows.") try: import pexpect except ImportError: raise ImportError( "pexpect required for persistent bash processes." " To install, run `pip install pexpect`." ) return pexpect [docs]class BashProcess: """Executes bash commands and returns the output.""" def __init__( self, strip_newlines: bool = False, return_err_output: bool = False, persistent: bool = False, ): """Initialize with stripping newlines.""" self.strip_newlines = strip_newlines self.return_err_output = return_err_output self.prompt = "" self.process = None if persistent: self.prompt = str(uuid4()) self.process = self._initialize_persistent_process(self.prompt) @staticmethod def _initialize_persistent_process(prompt: str) -> pexpect.spawn: # Start bash in a clean environment # Doesn't work on windows pexpect = _lazy_import_pexpect() process = pexpect.spawn( "env", ["-i", "bash", "--norc", "--noprofile"], encoding="utf-8" ) # Set the custom prompt process.sendline("PS1=" + prompt)
https://python.langchain.com/en/latest/_modules/langchain/utilities/bash.html
6a49b5008147-1
# Set the custom prompt process.sendline("PS1=" + prompt) process.expect_exact(prompt, timeout=10) return process [docs] def run(self, commands: Union[str, List[str]]) -> str: """Run commands and return final output.""" if isinstance(commands, str): commands = [commands] commands = ";".join(commands) if self.process is not None: return self._run_persistent( commands, ) else: return self._run(commands) def _run(self, command: str) -> str: """Run commands and return final output.""" try: output = subprocess.run( command, shell=True, check=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, ).stdout.decode() except subprocess.CalledProcessError as error: if self.return_err_output: return error.stdout.decode() return str(error) if self.strip_newlines: output = output.strip() return output [docs] def process_output(self, output: str, command: str) -> str: # Remove the command from the output using a regular expression pattern = re.escape(command) + r"\s*\n" output = re.sub(pattern, "", output, count=1) return output.strip() def _run_persistent(self, command: str) -> str: """Run commands and return final output.""" pexpect = _lazy_import_pexpect() if self.process is None: raise ValueError("Process not initialized") self.process.sendline(command) # Clear the output with an empty string self.process.expect(self.prompt, timeout=10)
https://python.langchain.com/en/latest/_modules/langchain/utilities/bash.html
6a49b5008147-2
self.process.expect(self.prompt, timeout=10) self.process.sendline("") try: self.process.expect([self.prompt, pexpect.EOF], timeout=10) except pexpect.TIMEOUT: return f"Timeout error while executing command {command}" if self.process.after == pexpect.EOF: return f"Exited with error status: {self.process.exitstatus}" output = self.process.before output = self.process_output(output, command) if self.strip_newlines: return output.strip() return output By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/utilities/bash.html
0cce580b0bbb-0
Source code for langchain.utilities.google_places_api """Chain that calls Google Places API. """ import logging from typing import Any, Dict, Optional from pydantic import BaseModel, Extra, root_validator from langchain.utils import get_from_dict_or_env [docs]class GooglePlacesAPIWrapper(BaseModel): """Wrapper around Google Places API. To use, you should have the ``googlemaps`` python package installed, **an API key for the google maps platform**, and the enviroment variable ''GPLACES_API_KEY'' set with your API key , or pass 'gplaces_api_key' as a named parameter to the constructor. By default, this will return the all the results on the input query. You can use the top_k_results argument to limit the number of results. Example: .. code-block:: python from langchain import GooglePlacesAPIWrapper gplaceapi = GooglePlacesAPIWrapper() """ gplaces_api_key: Optional[str] = None google_map_client: Any #: :meta private: top_k_results: Optional[int] = None class Config: """Configuration for this pydantic object.""" extra = Extra.forbid arbitrary_types_allowed = True @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that api key is in your environment variable.""" gplaces_api_key = get_from_dict_or_env( values, "gplaces_api_key", "GPLACES_API_KEY" ) values["gplaces_api_key"] = gplaces_api_key try: import googlemaps values["google_map_client"] = googlemaps.Client(gplaces_api_key) except ImportError: raise ImportError(
https://python.langchain.com/en/latest/_modules/langchain/utilities/google_places_api.html
0cce580b0bbb-1
except ImportError: raise ImportError( "Could not import googlemaps python package. " "Please install it with `pip install googlemaps`." ) return values [docs] def run(self, query: str) -> str: """Run Places search and get k number of places that exists that match.""" search_results = self.google_map_client.places(query)["results"] num_to_return = len(search_results) places = [] if num_to_return == 0: return "Google Places did not find any places that match the description" num_to_return = ( num_to_return if self.top_k_results is None else min(num_to_return, self.top_k_results) ) for i in range(num_to_return): result = search_results[i] details = self.fetch_place_details(result["place_id"]) if details is not None: places.append(details) return "\n".join([f"{i+1}. {item}" for i, item in enumerate(places)]) [docs] def fetch_place_details(self, place_id: str) -> Optional[str]: try: place_details = self.google_map_client.place(place_id) formatted_details = self.format_place_details(place_details) return formatted_details except Exception as e: logging.error(f"An Error occurred while fetching place details: {e}") return None [docs] def format_place_details(self, place_details: Dict[str, Any]) -> Optional[str]: try: name = place_details.get("result", {}).get("name", "Unkown") address = place_details.get("result", {}).get( "formatted_address", "Unknown" )
https://python.langchain.com/en/latest/_modules/langchain/utilities/google_places_api.html
0cce580b0bbb-2
"formatted_address", "Unknown" ) phone_number = place_details.get("result", {}).get( "formatted_phone_number", "Unknown" ) website = place_details.get("result", {}).get("website", "Unknown") formatted_details = ( f"{name}\nAddress: {address}\n" f"Phone: {phone_number}\nWebsite: {website}\n\n" ) return formatted_details except Exception as e: logging.error(f"An error occurred while formatting place details: {e}") return None By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/utilities/google_places_api.html
329b88b9dca6-0
Source code for langchain.utilities.graphql import json from typing import Any, Callable, Dict, Optional from pydantic import BaseModel, Extra, root_validator [docs]class GraphQLAPIWrapper(BaseModel): """Wrapper around GraphQL API. To use, you should have the ``gql`` python package installed. This wrapper will use the GraphQL API to conduct queries. """ custom_headers: Optional[Dict[str, str]] = None graphql_endpoint: str gql_client: Any #: :meta private: gql_function: Callable[[str], Any] #: :meta private: class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator(pre=True) def validate_environment(cls, values: Dict) -> Dict: """Validate that the python package exists in the environment.""" try: from gql import Client, gql from gql.transport.requests import RequestsHTTPTransport except ImportError as e: raise ImportError( "Could not import gql python package. " f"Try installing it with `pip install gql`. Received error: {e}" ) headers = values.get("custom_headers") transport = RequestsHTTPTransport( url=values["graphql_endpoint"], headers=headers, ) client = Client(transport=transport, fetch_schema_from_transport=True) values["gql_client"] = client values["gql_function"] = gql return values [docs] def run(self, query: str) -> str: """Run a GraphQL query and get the results.""" result = self._execute_query(query) return json.dumps(result, indent=2)
https://python.langchain.com/en/latest/_modules/langchain/utilities/graphql.html
329b88b9dca6-1
result = self._execute_query(query) return json.dumps(result, indent=2) def _execute_query(self, query: str) -> Dict[str, Any]: """Execute a GraphQL query and return the results.""" document_node = self.gql_function(query) result = self.gql_client.execute(document_node) return result By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/utilities/graphql.html
4aeabd8356bd-0
Source code for langchain.utilities.duckduckgo_search """Util that calls DuckDuckGo Search. No setup required. Free. https://pypi.org/project/duckduckgo-search/ """ from typing import Dict, List, Optional from pydantic import BaseModel, Extra from pydantic.class_validators import root_validator [docs]class DuckDuckGoSearchAPIWrapper(BaseModel): """Wrapper for DuckDuckGo Search API. Free and does not require any setup """ k: int = 10 region: Optional[str] = "wt-wt" safesearch: str = "moderate" time: Optional[str] = "y" max_results: int = 5 class Config: """Configuration for this pydantic object.""" extra = Extra.forbid @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate that python package exists in environment.""" try: from duckduckgo_search import ddg # noqa: F401 except ImportError: raise ValueError( "Could not import duckduckgo-search python package. " "Please install it with `pip install duckduckgo-search`." ) return values [docs] def get_snippets(self, query: str) -> List[str]: """Run query through DuckDuckGo and return concatenated results.""" from duckduckgo_search import ddg results = ddg( query, region=self.region, safesearch=self.safesearch, time=self.time, max_results=self.max_results, ) if results is None or len(results) == 0:
https://python.langchain.com/en/latest/_modules/langchain/utilities/duckduckgo_search.html
4aeabd8356bd-1
) if results is None or len(results) == 0: return ["No good DuckDuckGo Search Result was found"] snippets = [result["body"] for result in results] return snippets [docs] def run(self, query: str) -> str: snippets = self.get_snippets(query) return " ".join(snippets) [docs] def results(self, query: str, num_results: int) -> List[Dict[str, str]]: """Run query through DuckDuckGo and return metadata. Args: query: The query to search for. num_results: The number of results to return. Returns: A list of dictionaries with the following keys: snippet - The description of the result. title - The title of the result. link - The link to the result. """ from duckduckgo_search import ddg results = ddg( query, region=self.region, safesearch=self.safesearch, time=self.time, max_results=num_results, ) if results is None or len(results) == 0: return [{"Result": "No good DuckDuckGo Search Result was found"}] def to_metadata(result: Dict) -> Dict[str, str]: return { "snippet": result["body"], "title": result["title"], "link": result["href"], } return [to_metadata(result) for result in results] By Harrison Chase © Copyright 2023, Harrison Chase. Last updated on May 28, 2023.
https://python.langchain.com/en/latest/_modules/langchain/utilities/duckduckgo_search.html
ad7fc28b3cd2-0
Source code for langchain.utilities.apify from typing import Any, Callable, Dict, Optional from pydantic import BaseModel, root_validator from langchain.document_loaders import ApifyDatasetLoader from langchain.document_loaders.base import Document from langchain.utils import get_from_dict_or_env [docs]class ApifyWrapper(BaseModel): """Wrapper around Apify. To use, you should have the ``apify-client`` python package installed, and the environment variable ``APIFY_API_TOKEN`` set with your API key, or pass `apify_api_token` as a named parameter to the constructor. """ apify_client: Any apify_client_async: Any @root_validator() def validate_environment(cls, values: Dict) -> Dict: """Validate environment. Validate that an Apify API token is set and the apify-client Python package exists in the current environment. """ apify_api_token = get_from_dict_or_env( values, "apify_api_token", "APIFY_API_TOKEN" ) try: from apify_client import ApifyClient, ApifyClientAsync values["apify_client"] = ApifyClient(apify_api_token) values["apify_client_async"] = ApifyClientAsync(apify_api_token) except ImportError: raise ValueError( "Could not import apify-client Python package. " "Please install it with `pip install apify-client`." ) return values [docs] def call_actor( self, actor_id: str, run_input: Dict, dataset_mapping_function: Callable[[Dict], Document], *, build: Optional[str] = None,
https://python.langchain.com/en/latest/_modules/langchain/utilities/apify.html