id
stringlengths 14
16
| text
stringlengths 36
2.73k
| source
stringlengths 49
117
|
---|---|---|
ad7fc28b3cd2-1
|
*,
build: Optional[str] = None,
memory_mbytes: Optional[int] = None,
timeout_secs: Optional[int] = None,
) -> ApifyDatasetLoader:
"""Run an Actor on the Apify platform and wait for results to be ready.
Args:
actor_id (str): The ID or name of the Actor on the Apify platform.
run_input (Dict): The input object of the Actor that you're trying to run.
dataset_mapping_function (Callable): A function that takes a single
dictionary (an Apify dataset item) and converts it to an
instance of the Document class.
build (str, optional): Optionally specifies the actor build to run.
It can be either a build tag or build number.
memory_mbytes (int, optional): Optional memory limit for the run,
in megabytes.
timeout_secs (int, optional): Optional timeout for the run, in seconds.
Returns:
ApifyDatasetLoader: A loader that will fetch the records from the
Actor run's default dataset.
"""
actor_call = self.apify_client.actor(actor_id).call(
run_input=run_input,
build=build,
memory_mbytes=memory_mbytes,
timeout_secs=timeout_secs,
)
return ApifyDatasetLoader(
dataset_id=actor_call["defaultDatasetId"],
dataset_mapping_function=dataset_mapping_function,
)
[docs] async def acall_actor(
self,
actor_id: str,
run_input: Dict,
dataset_mapping_function: Callable[[Dict], Document],
*,
build: Optional[str] = None,
memory_mbytes: Optional[int] = None,
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/apify.html
|
ad7fc28b3cd2-2
|
memory_mbytes: Optional[int] = None,
timeout_secs: Optional[int] = None,
) -> ApifyDatasetLoader:
"""Run an Actor on the Apify platform and wait for results to be ready.
Args:
actor_id (str): The ID or name of the Actor on the Apify platform.
run_input (Dict): The input object of the Actor that you're trying to run.
dataset_mapping_function (Callable): A function that takes a single
dictionary (an Apify dataset item) and converts it to
an instance of the Document class.
build (str, optional): Optionally specifies the actor build to run.
It can be either a build tag or build number.
memory_mbytes (int, optional): Optional memory limit for the run,
in megabytes.
timeout_secs (int, optional): Optional timeout for the run, in seconds.
Returns:
ApifyDatasetLoader: A loader that will fetch the records from the
Actor run's default dataset.
"""
actor_call = await self.apify_client_async.actor(actor_id).call(
run_input=run_input,
build=build,
memory_mbytes=memory_mbytes,
timeout_secs=timeout_secs,
)
return ApifyDatasetLoader(
dataset_id=actor_call["defaultDatasetId"],
dataset_mapping_function=dataset_mapping_function,
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/apify.html
|
704b90f364be-0
|
Source code for langchain.utilities.twilio
"""Util that calls Twilio."""
from typing import Any, Dict, Optional
from pydantic import BaseModel, Extra, root_validator
from langchain.utils import get_from_dict_or_env
[docs]class TwilioAPIWrapper(BaseModel):
"""Sms Client using Twilio.
To use, you should have the ``twilio`` python package installed,
and the environment variables ``TWILIO_ACCOUNT_SID``, ``TWILIO_AUTH_TOKEN``, and
``TWILIO_FROM_NUMBER``, or pass `account_sid`, `auth_token`, and `from_number` as
named parameters to the constructor.
Example:
.. code-block:: python
from langchain.utilities.twilio import TwilioAPIWrapper
twilio = TwilioAPIWrapper(
account_sid="ACxxx",
auth_token="xxx",
from_number="+10123456789"
)
twilio.run('test', '+12484345508')
"""
client: Any #: :meta private:
account_sid: Optional[str] = None
"""Twilio account string identifier."""
auth_token: Optional[str] = None
"""Twilio auth token."""
from_number: Optional[str] = None
"""A Twilio phone number in [E.164](https://www.twilio.com/docs/glossary/what-e164)
format, an
[alphanumeric sender ID](https://www.twilio.com/docs/sms/send-messages#use-an-alphanumeric-sender-id),
or a [Channel Endpoint address](https://www.twilio.com/docs/sms/channels#channel-addresses)
that is enabled for the type of message you want to send. Phone numbers or
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/twilio.html
|
704b90f364be-1
|
that is enabled for the type of message you want to send. Phone numbers or
[short codes](https://www.twilio.com/docs/sms/api/short-code) purchased from
Twilio also work here. You cannot, for example, spoof messages from a private
cell phone number. If you are using `messaging_service_sid`, this parameter
must be empty.
""" # noqa: E501
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = False
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
try:
from twilio.rest import Client
except ImportError:
raise ImportError(
"Could not import twilio python package. "
"Please install it with `pip install twilio`."
)
account_sid = get_from_dict_or_env(values, "account_sid", "TWILIO_ACCOUNT_SID")
auth_token = get_from_dict_or_env(values, "auth_token", "TWILIO_AUTH_TOKEN")
values["from_number"] = get_from_dict_or_env(
values, "from_number", "TWILIO_FROM_NUMBER"
)
values["client"] = Client(account_sid, auth_token)
return values
[docs] def run(self, body: str, to: str) -> str:
"""Run body through Twilio and respond with message sid.
Args:
body: The text of the message you want to send. Can be up to 1,600
characters in length.
to: The destination phone number in
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/twilio.html
|
704b90f364be-2
|
characters in length.
to: The destination phone number in
[E.164](https://www.twilio.com/docs/glossary/what-e164) format for
SMS/MMS or
[Channel user address](https://www.twilio.com/docs/sms/channels#channel-addresses)
for other 3rd-party channels.
""" # noqa: E501
message = self.client.messages.create(to, from_=self.from_number, body=body)
return message.sid
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/twilio.html
|
a75cb9db5f54-0
|
Source code for langchain.utilities.searx_search
"""Utility for using SearxNG meta search API.
SearxNG is a privacy-friendly free metasearch engine that aggregates results from
`multiple search engines
<https://docs.searxng.org/admin/engines/configured_engines.html>`_ and databases and
supports the `OpenSearch
<https://github.com/dewitt/opensearch/blob/master/opensearch-1-1-draft-6.md>`_
specification.
More detailes on the installtion instructions `here. <../../integrations/searx.html>`_
For the search API refer to https://docs.searxng.org/dev/search_api.html
Quick Start
-----------
In order to use this utility you need to provide the searx host. This can be done
by passing the named parameter :attr:`searx_host <SearxSearchWrapper.searx_host>`
or exporting the environment variable SEARX_HOST.
Note: this is the only required parameter.
Then create a searx search instance like this:
.. code-block:: python
from langchain.utilities import SearxSearchWrapper
# when the host starts with `http` SSL is disabled and the connection
# is assumed to be on a private network
searx_host='http://self.hosted'
search = SearxSearchWrapper(searx_host=searx_host)
You can now use the ``search`` instance to query the searx API.
Searching
---------
Use the :meth:`run() <SearxSearchWrapper.run>` and
:meth:`results() <SearxSearchWrapper.results>` methods to query the searx API.
Other methods are are available for convenience.
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/searx_search.html
|
a75cb9db5f54-1
|
Other methods are are available for convenience.
:class:`SearxResults` is a convenience wrapper around the raw json result.
Example usage of the ``run`` method to make a search:
.. code-block:: python
s.run(query="what is the best search engine?")
Engine Parameters
-----------------
You can pass any `accepted searx search API
<https://docs.searxng.org/dev/search_api.html>`_ parameters to the
:py:class:`SearxSearchWrapper` instance.
In the following example we are using the
:attr:`engines <SearxSearchWrapper.engines>` and the ``language`` parameters:
.. code-block:: python
# assuming the searx host is set as above or exported as an env variable
s = SearxSearchWrapper(engines=['google', 'bing'],
language='es')
Search Tips
-----------
Searx offers a special
`search syntax <https://docs.searxng.org/user/index.html#search-syntax>`_
that can also be used instead of passing engine parameters.
For example the following query:
.. code-block:: python
s = SearxSearchWrapper("langchain library", engines=['github'])
# can also be written as:
s = SearxSearchWrapper("langchain library !github")
# or even:
s = SearxSearchWrapper("langchain library !gh")
In some situations you might want to pass an extra string to the search query.
For example when the `run()` method is called by an agent. The search suffix can
also be used as a way to pass extra parameters to searx or the underlying search
engines.
.. code-block:: python
# select the github engine and pass the search suffix
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/searx_search.html
|
a75cb9db5f54-2
|
.. code-block:: python
# select the github engine and pass the search suffix
s = SearchWrapper("langchain library", query_suffix="!gh")
s = SearchWrapper("langchain library")
# select github the conventional google search syntax
s.run("large language models", query_suffix="site:github.com")
*NOTE*: A search suffix can be defined on both the instance and the method level.
The resulting query will be the concatenation of the two with the former taking
precedence.
See `SearxNG Configured Engines
<https://docs.searxng.org/admin/engines/configured_engines.html>`_ and
`SearxNG Search Syntax <https://docs.searxng.org/user/index.html#id1>`_
for more details.
Notes
-----
This wrapper is based on the SearxNG fork https://github.com/searxng/searxng which is
better maintained than the original Searx project and offers more features.
Public searxNG instances often use a rate limiter for API usage, so you might want to
use a self hosted instance and disable the rate limiter.
If you are self-hosting an instance you can customize the rate limiter for your
own network as described `here <https://github.com/searxng/searxng/pull/2129>`_.
For a list of public SearxNG instances see https://searx.space/
"""
import json
from typing import Any, Dict, List, Optional
import aiohttp
import requests
from pydantic import BaseModel, Extra, Field, PrivateAttr, root_validator, validator
from langchain.utils import get_from_dict_or_env
def _get_default_params() -> dict:
return {"language": "en", "format": "json"}
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/searx_search.html
|
a75cb9db5f54-3
|
return {"language": "en", "format": "json"}
[docs]class SearxResults(dict):
"""Dict like wrapper around search api results."""
_data = ""
def __init__(self, data: str):
"""Take a raw result from Searx and make it into a dict like object."""
json_data = json.loads(data)
super().__init__(json_data)
self.__dict__ = self
def __str__(self) -> str:
"""Text representation of searx result."""
return self._data
@property
def results(self) -> Any:
"""Silence mypy for accessing this field.
:meta private:
"""
return self.get("results")
@property
def answers(self) -> Any:
"""Helper accessor on the json result."""
return self.get("answers")
[docs]class SearxSearchWrapper(BaseModel):
"""Wrapper for Searx API.
To use you need to provide the searx host by passing the named parameter
``searx_host`` or exporting the environment variable ``SEARX_HOST``.
In some situations you might want to disable SSL verification, for example
if you are running searx locally. You can do this by passing the named parameter
``unsecure``. You can also pass the host url scheme as ``http`` to disable SSL.
Example:
.. code-block:: python
from langchain.utilities import SearxSearchWrapper
searx = SearxSearchWrapper(searx_host="http://localhost:8888")
Example with SSL disabled:
.. code-block:: python
from langchain.utilities import SearxSearchWrapper
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/searx_search.html
|
a75cb9db5f54-4
|
.. code-block:: python
from langchain.utilities import SearxSearchWrapper
# note the unsecure parameter is not needed if you pass the url scheme as
# http
searx = SearxSearchWrapper(searx_host="http://localhost:8888",
unsecure=True)
"""
_result: SearxResults = PrivateAttr()
searx_host: str = ""
unsecure: bool = False
params: dict = Field(default_factory=_get_default_params)
headers: Optional[dict] = None
engines: Optional[List[str]] = []
categories: Optional[List[str]] = []
query_suffix: Optional[str] = ""
k: int = 10
aiosession: Optional[Any] = None
@validator("unsecure")
def disable_ssl_warnings(cls, v: bool) -> bool:
"""Disable SSL warnings."""
if v:
# requests.urllib3.disable_warnings()
try:
import urllib3
urllib3.disable_warnings()
except ImportError as e:
print(e)
return v
@root_validator()
def validate_params(cls, values: Dict) -> Dict:
"""Validate that custom searx params are merged with default ones."""
user_params = values["params"]
default = _get_default_params()
values["params"] = {**default, **user_params}
engines = values.get("engines")
if engines:
values["params"]["engines"] = ",".join(engines)
categories = values.get("categories")
if categories:
values["params"]["categories"] = ",".join(categories)
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/searx_search.html
|
a75cb9db5f54-5
|
if categories:
values["params"]["categories"] = ",".join(categories)
searx_host = get_from_dict_or_env(values, "searx_host", "SEARX_HOST")
if not searx_host.startswith("http"):
print(
f"Warning: missing the url scheme on host \
! assuming secure https://{searx_host} "
)
searx_host = "https://" + searx_host
elif searx_host.startswith("http://"):
values["unsecure"] = True
cls.disable_ssl_warnings(True)
values["searx_host"] = searx_host
return values
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
def _searx_api_query(self, params: dict) -> SearxResults:
"""Actual request to searx API."""
raw_result = requests.get(
self.searx_host,
headers=self.headers,
params=params,
verify=not self.unsecure,
)
# test if http result is ok
if not raw_result.ok:
raise ValueError("Searx API returned an error: ", raw_result.text)
res = SearxResults(raw_result.text)
self._result = res
return res
async def _asearx_api_query(self, params: dict) -> SearxResults:
if not self.aiosession:
async with aiohttp.ClientSession() as session:
async with session.get(
self.searx_host,
headers=self.headers,
params=params,
ssl=(lambda: False if self.unsecure else None)(),
) as response:
if not response.ok:
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/searx_search.html
|
a75cb9db5f54-6
|
) as response:
if not response.ok:
raise ValueError("Searx API returned an error: ", response.text)
result = SearxResults(await response.text())
self._result = result
else:
async with self.aiosession.get(
self.searx_host,
headers=self.headers,
params=params,
verify=not self.unsecure,
) as response:
if not response.ok:
raise ValueError("Searx API returned an error: ", response.text)
result = SearxResults(await response.text())
self._result = result
return result
[docs] def run(
self,
query: str,
engines: Optional[List[str]] = None,
categories: Optional[List[str]] = None,
query_suffix: Optional[str] = "",
**kwargs: Any,
) -> str:
"""Run query through Searx API and parse results.
You can pass any other params to the searx query API.
Args:
query: The query to search for.
query_suffix: Extra suffix appended to the query.
engines: List of engines to use for the query.
categories: List of categories to use for the query.
**kwargs: extra parameters to pass to the searx API.
Returns:
str: The result of the query.
Raises:
ValueError: If an error occured with the query.
Example:
This will make a query to the qwant engine:
.. code-block:: python
from langchain.utilities import SearxSearchWrapper
searx = SearxSearchWrapper(searx_host="http://my.searx.host")
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/searx_search.html
|
a75cb9db5f54-7
|
searx.run("what is the weather in France ?", engine="qwant")
# the same result can be achieved using the `!` syntax of searx
# to select the engine using `query_suffix`
searx.run("what is the weather in France ?", query_suffix="!qwant")
"""
_params = {
"q": query,
}
params = {**self.params, **_params, **kwargs}
if self.query_suffix and len(self.query_suffix) > 0:
params["q"] += " " + self.query_suffix
if isinstance(query_suffix, str) and len(query_suffix) > 0:
params["q"] += " " + query_suffix
if isinstance(engines, list) and len(engines) > 0:
params["engines"] = ",".join(engines)
if isinstance(categories, list) and len(categories) > 0:
params["categories"] = ",".join(categories)
res = self._searx_api_query(params)
if len(res.answers) > 0:
toret = res.answers[0]
# only return the content of the results list
elif len(res.results) > 0:
toret = "\n\n".join([r.get("content", "") for r in res.results[: self.k]])
else:
toret = "No good search result found"
return toret
[docs] async def arun(
self,
query: str,
engines: Optional[List[str]] = None,
query_suffix: Optional[str] = "",
**kwargs: Any,
) -> str:
"""Asynchronously version of `run`."""
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/searx_search.html
|
a75cb9db5f54-8
|
) -> str:
"""Asynchronously version of `run`."""
_params = {
"q": query,
}
params = {**self.params, **_params, **kwargs}
if self.query_suffix and len(self.query_suffix) > 0:
params["q"] += " " + self.query_suffix
if isinstance(query_suffix, str) and len(query_suffix) > 0:
params["q"] += " " + query_suffix
if isinstance(engines, list) and len(engines) > 0:
params["engines"] = ",".join(engines)
res = await self._asearx_api_query(params)
if len(res.answers) > 0:
toret = res.answers[0]
# only return the content of the results list
elif len(res.results) > 0:
toret = "\n\n".join([r.get("content", "") for r in res.results[: self.k]])
else:
toret = "No good search result found"
return toret
[docs] def results(
self,
query: str,
num_results: int,
engines: Optional[List[str]] = None,
categories: Optional[List[str]] = None,
query_suffix: Optional[str] = "",
**kwargs: Any,
) -> List[Dict]:
"""Run query through Searx API and returns the results with metadata.
Args:
query: The query to search for.
query_suffix: Extra suffix appended to the query.
num_results: Limit the number of results to return.
engines: List of engines to use for the query.
categories: List of categories to use for the query.
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/searx_search.html
|
a75cb9db5f54-9
|
categories: List of categories to use for the query.
**kwargs: extra parameters to pass to the searx API.
Returns:
Dict with the following keys:
{
snippet: The description of the result.
title: The title of the result.
link: The link to the result.
engines: The engines used for the result.
category: Searx category of the result.
}
"""
_params = {
"q": query,
}
params = {**self.params, **_params, **kwargs}
if self.query_suffix and len(self.query_suffix) > 0:
params["q"] += " " + self.query_suffix
if isinstance(query_suffix, str) and len(query_suffix) > 0:
params["q"] += " " + query_suffix
if isinstance(engines, list) and len(engines) > 0:
params["engines"] = ",".join(engines)
if isinstance(categories, list) and len(categories) > 0:
params["categories"] = ",".join(categories)
results = self._searx_api_query(params).results[:num_results]
if len(results) == 0:
return [{"Result": "No good Search Result was found"}]
return [
{
"snippet": result.get("content", ""),
"title": result["title"],
"link": result["url"],
"engines": result["engines"],
"category": result["category"],
}
for result in results
]
[docs] async def aresults(
self,
query: str,
num_results: int,
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/searx_search.html
|
a75cb9db5f54-10
|
self,
query: str,
num_results: int,
engines: Optional[List[str]] = None,
query_suffix: Optional[str] = "",
**kwargs: Any,
) -> List[Dict]:
"""Asynchronously query with json results.
Uses aiohttp. See `results` for more info.
"""
_params = {
"q": query,
}
params = {**self.params, **_params, **kwargs}
if self.query_suffix and len(self.query_suffix) > 0:
params["q"] += " " + self.query_suffix
if isinstance(query_suffix, str) and len(query_suffix) > 0:
params["q"] += " " + query_suffix
if isinstance(engines, list) and len(engines) > 0:
params["engines"] = ",".join(engines)
results = (await self._asearx_api_query(params)).results[:num_results]
if len(results) == 0:
return [{"Result": "No good Search Result was found"}]
return [
{
"snippet": result.get("content", ""),
"title": result["title"],
"link": result["url"],
"engines": result["engines"],
"category": result["category"],
}
for result in results
]
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/searx_search.html
|
c91ccd978826-0
|
Source code for langchain.utilities.google_search
"""Util that calls Google Search."""
from typing import Any, Dict, List, Optional
from pydantic import BaseModel, Extra, root_validator
from langchain.utils import get_from_dict_or_env
[docs]class GoogleSearchAPIWrapper(BaseModel):
"""Wrapper for Google Search API.
Adapted from: Instructions adapted from https://stackoverflow.com/questions/
37083058/
programmatically-searching-google-in-python-using-custom-search
TODO: DOCS for using it
1. Install google-api-python-client
- If you don't already have a Google account, sign up.
- If you have never created a Google APIs Console project,
read the Managing Projects page and create a project in the Google API Console.
- Install the library using pip install google-api-python-client
The current version of the library is 2.70.0 at this time
2. To create an API key:
- Navigate to the APIs & Services→Credentials panel in Cloud Console.
- Select Create credentials, then select API key from the drop-down menu.
- The API key created dialog box displays your newly created key.
- You now have an API_KEY
3. Setup Custom Search Engine so you can search the entire web
- Create a custom search engine in this link.
- In Sites to search, add any valid URL (i.e. www.stackoverflow.com).
- That’s all you have to fill up, the rest doesn’t matter.
In the left-side menu, click Edit search engine → {your search engine name}
→ Setup Set Search the entire web to ON. Remove the URL you added from
the list of Sites to search.
- Under Search engine ID you’ll find the search-engine-ID.
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/google_search.html
|
c91ccd978826-1
|
- Under Search engine ID you’ll find the search-engine-ID.
4. Enable the Custom Search API
- Navigate to the APIs & Services→Dashboard panel in Cloud Console.
- Click Enable APIs and Services.
- Search for Custom Search API and click on it.
- Click Enable.
URL for it: https://console.cloud.google.com/apis/library/customsearch.googleapis
.com
"""
search_engine: Any #: :meta private:
google_api_key: Optional[str] = None
google_cse_id: Optional[str] = None
k: int = 10
siterestrict: bool = False
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
def _google_search_results(self, search_term: str, **kwargs: Any) -> List[dict]:
cse = self.search_engine.cse()
if self.siterestrict:
cse = cse.siterestrict()
res = cse.list(q=search_term, cx=self.google_cse_id, **kwargs).execute()
return res.get("items", [])
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
google_api_key = get_from_dict_or_env(
values, "google_api_key", "GOOGLE_API_KEY"
)
values["google_api_key"] = google_api_key
google_cse_id = get_from_dict_or_env(values, "google_cse_id", "GOOGLE_CSE_ID")
values["google_cse_id"] = google_cse_id
try:
from googleapiclient.discovery import build
except ImportError:
raise ImportError(
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/google_search.html
|
c91ccd978826-2
|
from googleapiclient.discovery import build
except ImportError:
raise ImportError(
"google-api-python-client is not installed. "
"Please install it with `pip install google-api-python-client`"
)
service = build("customsearch", "v1", developerKey=google_api_key)
values["search_engine"] = service
return values
[docs] def run(self, query: str) -> str:
"""Run query through GoogleSearch and parse result."""
snippets = []
results = self._google_search_results(query, num=self.k)
if len(results) == 0:
return "No good Google Search Result was found"
for result in results:
if "snippet" in result:
snippets.append(result["snippet"])
return " ".join(snippets)
[docs] def results(self, query: str, num_results: int) -> List[Dict]:
"""Run query through GoogleSearch and return metadata.
Args:
query: The query to search for.
num_results: The number of results to return.
Returns:
A list of dictionaries with the following keys:
snippet - The description of the result.
title - The title of the result.
link - The link to the result.
"""
metadata_results = []
results = self._google_search_results(query, num=num_results)
if len(results) == 0:
return [{"Result": "No good Google Search Result was found"}]
for result in results:
metadata_result = {
"title": result["title"],
"link": result["link"],
}
if "snippet" in result:
metadata_result["snippet"] = result["snippet"]
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/google_search.html
|
c91ccd978826-3
|
if "snippet" in result:
metadata_result["snippet"] = result["snippet"]
metadata_results.append(metadata_result)
return metadata_results
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/google_search.html
|
d8feacdf65b7-0
|
Source code for langchain.utilities.wikipedia
"""Util that calls Wikipedia."""
import logging
from typing import Any, Dict, List, Optional
from pydantic import BaseModel, Extra, root_validator
from langchain.schema import Document
logger = logging.getLogger(__name__)
WIKIPEDIA_MAX_QUERY_LENGTH = 300
[docs]class WikipediaAPIWrapper(BaseModel):
"""Wrapper around WikipediaAPI.
To use, you should have the ``wikipedia`` python package installed.
This wrapper will use the Wikipedia API to conduct searches and
fetch page summaries. By default, it will return the page summaries
of the top-k results.
It limits the Document content by doc_content_chars_max.
"""
wiki_client: Any #: :meta private:
top_k_results: int = 3
lang: str = "en"
load_all_available_meta: bool = False
doc_content_chars_max: int = 4000
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that the python package exists in environment."""
try:
import wikipedia
wikipedia.set_lang(values["lang"])
values["wiki_client"] = wikipedia
except ImportError:
raise ImportError(
"Could not import wikipedia python package. "
"Please install it with `pip install wikipedia`."
)
return values
[docs] def run(self, query: str) -> str:
"""Run Wikipedia search and get page summaries."""
page_titles = self.wiki_client.search(query[:WIKIPEDIA_MAX_QUERY_LENGTH])
summaries = []
for page_title in page_titles[: self.top_k_results]:
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/wikipedia.html
|
d8feacdf65b7-1
|
summaries = []
for page_title in page_titles[: self.top_k_results]:
if wiki_page := self._fetch_page(page_title):
if summary := self._formatted_page_summary(page_title, wiki_page):
summaries.append(summary)
if not summaries:
return "No good Wikipedia Search Result was found"
return "\n\n".join(summaries)[: self.doc_content_chars_max]
@staticmethod
def _formatted_page_summary(page_title: str, wiki_page: Any) -> Optional[str]:
return f"Page: {page_title}\nSummary: {wiki_page.summary}"
def _page_to_document(self, page_title: str, wiki_page: Any) -> Document:
main_meta = {
"title": page_title,
"summary": wiki_page.summary,
"source": wiki_page.url,
}
add_meta = (
{
"categories": wiki_page.categories,
"page_url": wiki_page.url,
"image_urls": wiki_page.images,
"related_titles": wiki_page.links,
"parent_id": wiki_page.parent_id,
"references": wiki_page.references,
"revision_id": wiki_page.revision_id,
"sections": wiki_page.sections,
}
if self.load_all_available_meta
else {}
)
doc = Document(
page_content=wiki_page.content[: self.doc_content_chars_max],
metadata={
**main_meta,
**add_meta,
},
)
return doc
def _fetch_page(self, page: str) -> Optional[str]:
try:
return self.wiki_client.page(title=page, auto_suggest=False)
except (
self.wiki_client.exceptions.PageError,
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/wikipedia.html
|
d8feacdf65b7-2
|
except (
self.wiki_client.exceptions.PageError,
self.wiki_client.exceptions.DisambiguationError,
):
return None
[docs] def load(self, query: str) -> List[Document]:
"""
Run Wikipedia search and get the article text plus the meta information.
See
Returns: a list of documents.
"""
page_titles = self.wiki_client.search(query[:WIKIPEDIA_MAX_QUERY_LENGTH])
docs = []
for page_title in page_titles[: self.top_k_results]:
if wiki_page := self._fetch_page(page_title):
if doc := self._page_to_document(page_title, wiki_page):
docs.append(doc)
return docs
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/wikipedia.html
|
1ebbe137d0f3-0
|
Source code for langchain.utilities.awslambda
"""Util that calls Lambda."""
import json
from typing import Any, Dict, Optional
from pydantic import BaseModel, Extra, root_validator
[docs]class LambdaWrapper(BaseModel):
"""Wrapper for AWS Lambda SDK.
Docs for using:
1. pip install boto3
2. Create a lambda function using the AWS Console or CLI
3. Run `aws configure` and enter your AWS credentials
"""
lambda_client: Any #: :meta private:
function_name: Optional[str] = None
awslambda_tool_name: Optional[str] = None
awslambda_tool_description: Optional[str] = None
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that python package exists in environment."""
try:
import boto3
except ImportError:
raise ImportError(
"boto3 is not installed. Please install it with `pip install boto3`"
)
values["lambda_client"] = boto3.client("lambda")
values["function_name"] = values["function_name"]
return values
[docs] def run(self, query: str) -> str:
"""Invoke Lambda function and parse result."""
res = self.lambda_client.invoke(
FunctionName=self.function_name,
InvocationType="RequestResponse",
Payload=json.dumps({"body": query}),
)
try:
payload_stream = res["Payload"]
payload_string = payload_stream.read().decode("utf-8")
answer = json.loads(payload_string)["body"]
except StopIteration:
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/awslambda.html
|
1ebbe137d0f3-1
|
answer = json.loads(payload_string)["body"]
except StopIteration:
return "Failed to parse response from Lambda"
if answer is None or answer == "":
# We don't want to return the assumption alone if answer is empty
return "Request failed."
else:
return f"Result: {answer}"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/awslambda.html
|
e53c9fcf331d-0
|
Source code for langchain.utilities.google_serper
"""Util that calls Google Search using the Serper.dev API."""
from typing import Any, Dict, List, Optional
import aiohttp
import requests
from pydantic.class_validators import root_validator
from pydantic.main import BaseModel
from typing_extensions import Literal
from langchain.utils import get_from_dict_or_env
[docs]class GoogleSerperAPIWrapper(BaseModel):
"""Wrapper around the Serper.dev Google Search API.
You can create a free API key at https://serper.dev.
To use, you should have the environment variable ``SERPER_API_KEY``
set with your API key, or pass `serper_api_key` as a named parameter
to the constructor.
Example:
.. code-block:: python
from langchain import GoogleSerperAPIWrapper
google_serper = GoogleSerperAPIWrapper()
"""
k: int = 10
gl: str = "us"
hl: str = "en"
# "places" and "images" is available from Serper but not implemented in the
# parser of run(). They can be used in results()
type: Literal["news", "search", "places", "images"] = "search"
result_key_for_type = {
"news": "news",
"places": "places",
"images": "images",
"search": "organic",
}
tbs: Optional[str] = None
serper_api_key: Optional[str] = None
aiosession: Optional[aiohttp.ClientSession] = None
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
@root_validator()
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/google_serper.html
|
e53c9fcf331d-1
|
arbitrary_types_allowed = True
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key exists in environment."""
serper_api_key = get_from_dict_or_env(
values, "serper_api_key", "SERPER_API_KEY"
)
values["serper_api_key"] = serper_api_key
return values
[docs] def results(self, query: str, **kwargs: Any) -> Dict:
"""Run query through GoogleSearch."""
return self._google_serper_api_results(
query,
gl=self.gl,
hl=self.hl,
num=self.k,
tbs=self.tbs,
search_type=self.type,
**kwargs,
)
[docs] def run(self, query: str, **kwargs: Any) -> str:
"""Run query through GoogleSearch and parse result."""
results = self._google_serper_api_results(
query,
gl=self.gl,
hl=self.hl,
num=self.k,
tbs=self.tbs,
search_type=self.type,
**kwargs,
)
return self._parse_results(results)
[docs] async def aresults(self, query: str, **kwargs: Any) -> Dict:
"""Run query through GoogleSearch."""
results = await self._async_google_serper_search_results(
query,
gl=self.gl,
hl=self.hl,
num=self.k,
search_type=self.type,
tbs=self.tbs,
**kwargs,
)
return results
[docs] async def arun(self, query: str, **kwargs: Any) -> str:
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/google_serper.html
|
e53c9fcf331d-2
|
"""Run query through GoogleSearch and parse result async."""
results = await self._async_google_serper_search_results(
query,
gl=self.gl,
hl=self.hl,
num=self.k,
search_type=self.type,
tbs=self.tbs,
**kwargs,
)
return self._parse_results(results)
def _parse_snippets(self, results: dict) -> List[str]:
snippets = []
if results.get("answerBox"):
answer_box = results.get("answerBox", {})
if answer_box.get("answer"):
return [answer_box.get("answer")]
elif answer_box.get("snippet"):
return [answer_box.get("snippet").replace("\n", " ")]
elif answer_box.get("snippetHighlighted"):
return answer_box.get("snippetHighlighted")
if results.get("knowledgeGraph"):
kg = results.get("knowledgeGraph", {})
title = kg.get("title")
entity_type = kg.get("type")
if entity_type:
snippets.append(f"{title}: {entity_type}.")
description = kg.get("description")
if description:
snippets.append(description)
for attribute, value in kg.get("attributes", {}).items():
snippets.append(f"{title} {attribute}: {value}.")
for result in results[self.result_key_for_type[self.type]][: self.k]:
if "snippet" in result:
snippets.append(result["snippet"])
for attribute, value in result.get("attributes", {}).items():
snippets.append(f"{attribute}: {value}.")
if len(snippets) == 0:
return ["No good Google Search Result was found"]
return snippets
def _parse_results(self, results: dict) -> str:
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/google_serper.html
|
e53c9fcf331d-3
|
return snippets
def _parse_results(self, results: dict) -> str:
return " ".join(self._parse_snippets(results))
def _google_serper_api_results(
self, search_term: str, search_type: str = "search", **kwargs: Any
) -> dict:
headers = {
"X-API-KEY": self.serper_api_key or "",
"Content-Type": "application/json",
}
params = {
"q": search_term,
**{key: value for key, value in kwargs.items() if value is not None},
}
response = requests.post(
f"https://google.serper.dev/{search_type}", headers=headers, params=params
)
response.raise_for_status()
search_results = response.json()
return search_results
async def _async_google_serper_search_results(
self, search_term: str, search_type: str = "search", **kwargs: Any
) -> dict:
headers = {
"X-API-KEY": self.serper_api_key or "",
"Content-Type": "application/json",
}
url = f"https://google.serper.dev/{search_type}"
params = {
"q": search_term,
**{key: value for key, value in kwargs.items() if value is not None},
}
if not self.aiosession:
async with aiohttp.ClientSession() as session:
async with session.post(
url, params=params, headers=headers, raise_for_status=False
) as response:
search_results = await response.json()
else:
async with self.aiosession.post(
url, params=params, headers=headers, raise_for_status=True
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/google_serper.html
|
e53c9fcf331d-4
|
url, params=params, headers=headers, raise_for_status=True
) as response:
search_results = await response.json()
return search_results
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/google_serper.html
|
884ac0958d70-0
|
Source code for langchain.utilities.wolfram_alpha
"""Util that calls WolframAlpha."""
from typing import Any, Dict, Optional
from pydantic import BaseModel, Extra, root_validator
from langchain.utils import get_from_dict_or_env
[docs]class WolframAlphaAPIWrapper(BaseModel):
"""Wrapper for Wolfram Alpha.
Docs for using:
1. Go to wolfram alpha and sign up for a developer account
2. Create an app and get your APP ID
3. Save your APP ID into WOLFRAM_ALPHA_APPID env variable
4. pip install wolframalpha
"""
wolfram_client: Any #: :meta private:
wolfram_alpha_appid: Optional[str] = None
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
wolfram_alpha_appid = get_from_dict_or_env(
values, "wolfram_alpha_appid", "WOLFRAM_ALPHA_APPID"
)
values["wolfram_alpha_appid"] = wolfram_alpha_appid
try:
import wolframalpha
except ImportError:
raise ImportError(
"wolframalpha is not installed. "
"Please install it with `pip install wolframalpha`"
)
client = wolframalpha.Client(wolfram_alpha_appid)
values["wolfram_client"] = client
return values
[docs] def run(self, query: str) -> str:
"""Run query through WolframAlpha and parse result."""
res = self.wolfram_client.query(query)
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/wolfram_alpha.html
|
884ac0958d70-1
|
res = self.wolfram_client.query(query)
try:
assumption = next(res.pods).text
answer = next(res.results).text
except StopIteration:
return "Wolfram Alpha wasn't able to answer it"
if answer is None or answer == "":
# We don't want to return the assumption alone if answer is empty
return "No good Wolfram Alpha Result was found"
else:
return f"Assumption: {assumption} \nAnswer: {answer}"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/wolfram_alpha.html
|
fafc75a5d9f0-0
|
Source code for langchain.utilities.bing_search
"""Util that calls Bing Search.
In order to set this up, follow instructions at:
https://levelup.gitconnected.com/api-tutorial-how-to-use-bing-web-search-api-in-python-4165d5592a7e
"""
from typing import Dict, List
import requests
from pydantic import BaseModel, Extra, root_validator
from langchain.utils import get_from_dict_or_env
[docs]class BingSearchAPIWrapper(BaseModel):
"""Wrapper for Bing Search API.
In order to set this up, follow instructions at:
https://levelup.gitconnected.com/api-tutorial-how-to-use-bing-web-search-api-in-python-4165d5592a7e
"""
bing_subscription_key: str
bing_search_url: str
k: int = 10
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
def _bing_search_results(self, search_term: str, count: int) -> List[dict]:
headers = {"Ocp-Apim-Subscription-Key": self.bing_subscription_key}
params = {
"q": search_term,
"count": count,
"textDecorations": True,
"textFormat": "HTML",
}
response = requests.get(
self.bing_search_url, headers=headers, params=params # type: ignore
)
response.raise_for_status()
search_results = response.json()
return search_results["webPages"]["value"]
@root_validator(pre=True)
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and endpoint exists in environment."""
bing_subscription_key = get_from_dict_or_env(
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/bing_search.html
|
fafc75a5d9f0-1
|
bing_subscription_key = get_from_dict_or_env(
values, "bing_subscription_key", "BING_SUBSCRIPTION_KEY"
)
values["bing_subscription_key"] = bing_subscription_key
bing_search_url = get_from_dict_or_env(
values,
"bing_search_url",
"BING_SEARCH_URL",
# default="https://api.bing.microsoft.com/v7.0/search",
)
values["bing_search_url"] = bing_search_url
return values
[docs] def run(self, query: str) -> str:
"""Run query through BingSearch and parse result."""
snippets = []
results = self._bing_search_results(query, count=self.k)
if len(results) == 0:
return "No good Bing Search Result was found"
for result in results:
snippets.append(result["snippet"])
return " ".join(snippets)
[docs] def results(self, query: str, num_results: int) -> List[Dict]:
"""Run query through BingSearch and return metadata.
Args:
query: The query to search for.
num_results: The number of results to return.
Returns:
A list of dictionaries with the following keys:
snippet - The description of the result.
title - The title of the result.
link - The link to the result.
"""
metadata_results = []
results = self._bing_search_results(query, count=num_results)
if len(results) == 0:
return [{"Result": "No good Bing Search Result was found"}]
for result in results:
metadata_result = {
"snippet": result["snippet"],
"title": result["name"],
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/bing_search.html
|
fafc75a5d9f0-2
|
"snippet": result["snippet"],
"title": result["name"],
"link": result["url"],
}
metadata_results.append(metadata_result)
return metadata_results
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/bing_search.html
|
b1f3f5a2a4a2-0
|
Source code for langchain.utilities.powerbi
"""Wrapper around a Power BI endpoint."""
from __future__ import annotations
import asyncio
import logging
import os
from typing import TYPE_CHECKING, Any, Dict, Iterable, List, Optional, Union
import aiohttp
import requests
from aiohttp import ServerTimeoutError
from pydantic import BaseModel, Field, root_validator, validator
from requests.exceptions import Timeout
_LOGGER = logging.getLogger(__name__)
BASE_URL = os.getenv("POWERBI_BASE_URL", "https://api.powerbi.com/v1.0/myorg")
if TYPE_CHECKING:
from azure.core.credentials import TokenCredential
[docs]class PowerBIDataset(BaseModel):
"""Create PowerBI engine from dataset ID and credential or token.
Use either the credential or a supplied token to authenticate.
If both are supplied the credential is used to generate a token.
The impersonated_user_name is the UPN of a user to be impersonated.
If the model is not RLS enabled, this will be ignored.
"""
dataset_id: str
table_names: List[str]
group_id: Optional[str] = None
credential: Optional[TokenCredential] = None
token: Optional[str] = None
impersonated_user_name: Optional[str] = None
sample_rows_in_table_info: int = Field(default=1, gt=0, le=10)
schemas: Dict[str, str] = Field(default_factory=dict)
aiosession: Optional[aiohttp.ClientSession] = None
class Config:
"""Configuration for this pydantic object."""
arbitrary_types_allowed = True
@validator("table_names", allow_reuse=True)
def fix_table_names(cls, table_names: List[str]) -> List[str]:
"""Fix the table names."""
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/powerbi.html
|
b1f3f5a2a4a2-1
|
"""Fix the table names."""
return [fix_table_name(table) for table in table_names]
@root_validator(pre=True, allow_reuse=True)
def token_or_credential_present(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Validate that at least one of token and credentials is present."""
if "token" in values or "credential" in values:
return values
raise ValueError("Please provide either a credential or a token.")
@property
def request_url(self) -> str:
"""Get the request url."""
if self.group_id:
return f"{BASE_URL}/groups/{self.group_id}/datasets/{self.dataset_id}/executeQueries" # noqa: E501 # pylint: disable=C0301
return f"{BASE_URL}/datasets/{self.dataset_id}/executeQueries" # noqa: E501 # pylint: disable=C0301
@property
def headers(self) -> Dict[str, str]:
"""Get the token."""
if self.token:
return {
"Content-Type": "application/json",
"Authorization": "Bearer " + self.token,
}
from azure.core.exceptions import (
ClientAuthenticationError, # pylint: disable=import-outside-toplevel
)
if self.credential:
try:
token = self.credential.get_token(
"https://analysis.windows.net/powerbi/api/.default"
).token
return {
"Content-Type": "application/json",
"Authorization": "Bearer " + token,
}
except Exception as exc: # pylint: disable=broad-exception-caught
raise ClientAuthenticationError(
"Could not get a token from the supplied credentials."
) from exc
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/powerbi.html
|
b1f3f5a2a4a2-2
|
"Could not get a token from the supplied credentials."
) from exc
raise ClientAuthenticationError("No credential or token supplied.")
[docs] def get_table_names(self) -> Iterable[str]:
"""Get names of tables available."""
return self.table_names
[docs] def get_schemas(self) -> str:
"""Get the available schema's."""
if self.schemas:
return ", ".join([f"{key}: {value}" for key, value in self.schemas.items()])
return "No known schema's yet. Use the schema_powerbi tool first."
@property
def table_info(self) -> str:
"""Information about all tables in the database."""
return self.get_table_info()
def _get_tables_to_query(
self, table_names: Optional[Union[List[str], str]] = None
) -> Optional[List[str]]:
"""Get the tables names that need to be queried, after checking they exist."""
if table_names is not None:
if (
isinstance(table_names, list)
and len(table_names) > 0
and table_names[0] != ""
):
fixed_tables = [fix_table_name(table) for table in table_names]
non_existing_tables = [
table for table in fixed_tables if table not in self.table_names
]
if non_existing_tables:
_LOGGER.warning(
"Table(s) %s not found in dataset.",
", ".join(non_existing_tables),
)
tables = [
table for table in fixed_tables if table not in non_existing_tables
]
return tables if tables else None
if isinstance(table_names, str) and table_names != "":
if table_names not in self.table_names:
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/powerbi.html
|
b1f3f5a2a4a2-3
|
if table_names not in self.table_names:
_LOGGER.warning("Table %s not found in dataset.", table_names)
return None
return [fix_table_name(table_names)]
return self.table_names
def _get_tables_todo(self, tables_todo: List[str]) -> List[str]:
"""Get the tables that still need to be queried."""
return [table for table in tables_todo if table not in self.schemas]
def _get_schema_for_tables(self, table_names: List[str]) -> str:
"""Create a string of the table schemas for the supplied tables."""
schemas = [
schema for table, schema in self.schemas.items() if table in table_names
]
return ", ".join(schemas)
[docs] def get_table_info(
self, table_names: Optional[Union[List[str], str]] = None
) -> str:
"""Get information about specified tables."""
tables_requested = self._get_tables_to_query(table_names)
if tables_requested is None:
return "No (valid) tables requested."
tables_todo = self._get_tables_todo(tables_requested)
for table in tables_todo:
self._get_schema(table)
return self._get_schema_for_tables(tables_requested)
[docs] async def aget_table_info(
self, table_names: Optional[Union[List[str], str]] = None
) -> str:
"""Get information about specified tables."""
tables_requested = self._get_tables_to_query(table_names)
if tables_requested is None:
return "No (valid) tables requested."
tables_todo = self._get_tables_todo(tables_requested)
await asyncio.gather(*[self._aget_schema(table) for table in tables_todo])
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/powerbi.html
|
b1f3f5a2a4a2-4
|
await asyncio.gather(*[self._aget_schema(table) for table in tables_todo])
return self._get_schema_for_tables(tables_requested)
def _get_schema(self, table: str) -> None:
"""Get the schema for a table."""
try:
result = self.run(
f"EVALUATE TOPN({self.sample_rows_in_table_info}, {table})"
)
self.schemas[table] = json_to_md(result["results"][0]["tables"][0]["rows"])
except Timeout:
_LOGGER.warning("Timeout while getting table info for %s", table)
self.schemas[table] = "unknown"
except Exception as exc: # pylint: disable=broad-exception-caught
_LOGGER.warning("Error while getting table info for %s: %s", table, exc)
self.schemas[table] = "unknown"
async def _aget_schema(self, table: str) -> None:
"""Get the schema for a table."""
try:
result = await self.arun(
f"EVALUATE TOPN({self.sample_rows_in_table_info}, {table})"
)
self.schemas[table] = json_to_md(result["results"][0]["tables"][0]["rows"])
except ServerTimeoutError:
_LOGGER.warning("Timeout while getting table info for %s", table)
self.schemas[table] = "unknown"
except Exception as exc: # pylint: disable=broad-exception-caught
_LOGGER.warning("Error while getting table info for %s: %s", table, exc)
self.schemas[table] = "unknown"
def _create_json_content(self, command: str) -> dict[str, Any]:
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/powerbi.html
|
b1f3f5a2a4a2-5
|
def _create_json_content(self, command: str) -> dict[str, Any]:
"""Create the json content for the request."""
return {
"queries": [{"query": rf"{command}"}],
"impersonatedUserName": self.impersonated_user_name,
"serializerSettings": {"includeNulls": True},
}
[docs] def run(self, command: str) -> Any:
"""Execute a DAX command and return a json representing the results."""
_LOGGER.debug("Running command: %s", command)
result = requests.post(
self.request_url,
json=self._create_json_content(command),
headers=self.headers,
timeout=10,
)
return result.json()
[docs] async def arun(self, command: str) -> Any:
"""Execute a DAX command and return the result asynchronously."""
_LOGGER.debug("Running command: %s", command)
if self.aiosession:
async with self.aiosession.post(
self.request_url,
headers=self.headers,
json=self._create_json_content(command),
timeout=10,
) as response:
response_json = await response.json()
return response_json
async with aiohttp.ClientSession() as session:
async with session.post(
self.request_url,
headers=self.headers,
json=self._create_json_content(command),
timeout=10,
) as response:
response_json = await response.json()
return response_json
def json_to_md(
json_contents: List[Dict[str, Union[str, int, float]]],
table_name: Optional[str] = None,
) -> str:
"""Converts a JSON object to a markdown table."""
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/powerbi.html
|
b1f3f5a2a4a2-6
|
) -> str:
"""Converts a JSON object to a markdown table."""
output_md = ""
headers = json_contents[0].keys()
for header in headers:
header.replace("[", ".").replace("]", "")
if table_name:
header.replace(f"{table_name}.", "")
output_md += f"| {header} "
output_md += "|\n"
for row in json_contents:
for value in row.values():
output_md += f"| {value} "
output_md += "|\n"
return output_md
def fix_table_name(table: str) -> str:
"""Add single quotes around table names that contain spaces."""
if " " in table and not table.startswith("'") and not table.endswith("'"):
return f"'{table}'"
return table
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/powerbi.html
|
35dbad7683df-0
|
Source code for langchain.utilities.openweathermap
"""Util that calls OpenWeatherMap using PyOWM."""
from typing import Any, Dict, Optional
from pydantic import Extra, root_validator
from langchain.tools.base import BaseModel
from langchain.utils import get_from_dict_or_env
[docs]class OpenWeatherMapAPIWrapper(BaseModel):
"""Wrapper for OpenWeatherMap API using PyOWM.
Docs for using:
1. Go to OpenWeatherMap and sign up for an API key
2. Save your API KEY into OPENWEATHERMAP_API_KEY env variable
3. pip install pyowm
"""
owm: Any
openweathermap_api_key: Optional[str] = None
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator(pre=True)
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key exists in environment."""
openweathermap_api_key = get_from_dict_or_env(
values, "openweathermap_api_key", "OPENWEATHERMAP_API_KEY"
)
try:
import pyowm
except ImportError:
raise ImportError(
"pyowm is not installed. Please install it with `pip install pyowm`"
)
owm = pyowm.OWM(openweathermap_api_key)
values["owm"] = owm
return values
def _format_weather_info(self, location: str, w: Any) -> str:
detailed_status = w.detailed_status
wind = w.wind()
humidity = w.humidity
temperature = w.temperature("celsius")
rain = w.rain
heat_index = w.heat_index
clouds = w.clouds
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/openweathermap.html
|
35dbad7683df-1
|
heat_index = w.heat_index
clouds = w.clouds
return (
f"In {location}, the current weather is as follows:\n"
f"Detailed status: {detailed_status}\n"
f"Wind speed: {wind['speed']} m/s, direction: {wind['deg']}°\n"
f"Humidity: {humidity}%\n"
f"Temperature: \n"
f" - Current: {temperature['temp']}°C\n"
f" - High: {temperature['temp_max']}°C\n"
f" - Low: {temperature['temp_min']}°C\n"
f" - Feels like: {temperature['feels_like']}°C\n"
f"Rain: {rain}\n"
f"Heat index: {heat_index}\n"
f"Cloud cover: {clouds}%"
)
[docs] def run(self, location: str) -> str:
"""Get the current weather information for a specified location."""
mgr = self.owm.weather_manager()
observation = mgr.weather_at_place(location)
w = observation.weather
return self._format_weather_info(location, w)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/openweathermap.html
|
349a47a72a9e-0
|
Source code for langchain.utilities.metaphor_search
"""Util that calls Metaphor Search API.
In order to set this up, follow instructions at:
"""
import json
from typing import Dict, List
import aiohttp
import requests
from pydantic import BaseModel, Extra, root_validator
from langchain.utils import get_from_dict_or_env
METAPHOR_API_URL = "https://api.metaphor.systems"
[docs]class MetaphorSearchAPIWrapper(BaseModel):
"""Wrapper for Metaphor Search API."""
metaphor_api_key: str
k: int = 10
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
def _metaphor_search_results(self, query: str, num_results: int) -> List[dict]:
headers = {"X-Api-Key": self.metaphor_api_key}
params = {"numResults": num_results, "query": query}
response = requests.post(
# type: ignore
f"{METAPHOR_API_URL}/search",
headers=headers,
json=params,
)
response.raise_for_status()
search_results = response.json()
print(search_results)
return search_results["results"]
@root_validator(pre=True)
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and endpoint exists in environment."""
metaphor_api_key = get_from_dict_or_env(
values, "metaphor_api_key", "METAPHOR_API_KEY"
)
values["metaphor_api_key"] = metaphor_api_key
return values
[docs] def results(self, query: str, num_results: int) -> List[Dict]:
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/metaphor_search.html
|
349a47a72a9e-1
|
"""Run query through Metaphor Search and return metadata.
Args:
query: The query to search for.
num_results: The number of results to return.
Returns:
A list of dictionaries with the following keys:
title - The title of the
url - The url
author - Author of the content, if applicable. Otherwise, None.
date_created - Estimated date created,
in YYYY-MM-DD format. Otherwise, None.
"""
raw_search_results = self._metaphor_search_results(
query, num_results=num_results
)
return self._clean_results(raw_search_results)
[docs] async def results_async(self, query: str, num_results: int) -> List[Dict]:
"""Get results from the Metaphor Search API asynchronously."""
# Function to perform the API call
async def fetch() -> str:
headers = {"X-Api-Key": self.metaphor_api_key}
params = {"numResults": num_results, "query": query}
async with aiohttp.ClientSession() as session:
async with session.post(
f"{METAPHOR_API_URL}/search", json=params, headers=headers
) as res:
if res.status == 200:
data = await res.text()
return data
else:
raise Exception(f"Error {res.status}: {res.reason}")
results_json_str = await fetch()
results_json = json.loads(results_json_str)
return self._clean_results(results_json["results"])
def _clean_results(self, raw_search_results: List[Dict]) -> List[Dict]:
cleaned_results = []
for result in raw_search_results:
cleaned_results.append(
{
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/metaphor_search.html
|
349a47a72a9e-2
|
for result in raw_search_results:
cleaned_results.append(
{
"title": result["title"],
"url": result["url"],
"author": result["author"],
"date_created": result["dateCreated"],
}
)
return cleaned_results
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/metaphor_search.html
|
0e922c13836e-0
|
Source code for langchain.utilities.serpapi
"""Chain that calls SerpAPI.
Heavily borrowed from https://github.com/ofirpress/self-ask
"""
import os
import sys
from typing import Any, Dict, Optional, Tuple
import aiohttp
from pydantic import BaseModel, Extra, Field, root_validator
from langchain.utils import get_from_dict_or_env
class HiddenPrints:
"""Context manager to hide prints."""
def __enter__(self) -> None:
"""Open file to pipe stdout to."""
self._original_stdout = sys.stdout
sys.stdout = open(os.devnull, "w")
def __exit__(self, *_: Any) -> None:
"""Close file that stdout was piped to."""
sys.stdout.close()
sys.stdout = self._original_stdout
[docs]class SerpAPIWrapper(BaseModel):
"""Wrapper around SerpAPI.
To use, you should have the ``google-search-results`` python package installed,
and the environment variable ``SERPAPI_API_KEY`` set with your API key, or pass
`serpapi_api_key` as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain import SerpAPIWrapper
serpapi = SerpAPIWrapper()
"""
search_engine: Any #: :meta private:
params: dict = Field(
default={
"engine": "google",
"google_domain": "google.com",
"gl": "us",
"hl": "en",
}
)
serpapi_api_key: Optional[str] = None
aiosession: Optional[aiohttp.ClientSession] = None
class Config:
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/serpapi.html
|
0e922c13836e-1
|
aiosession: Optional[aiohttp.ClientSession] = None
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
serpapi_api_key = get_from_dict_or_env(
values, "serpapi_api_key", "SERPAPI_API_KEY"
)
values["serpapi_api_key"] = serpapi_api_key
try:
from serpapi import GoogleSearch
values["search_engine"] = GoogleSearch
except ImportError:
raise ValueError(
"Could not import serpapi python package. "
"Please install it with `pip install google-search-results`."
)
return values
[docs] async def arun(self, query: str, **kwargs: Any) -> str:
"""Run query through SerpAPI and parse result async."""
return self._process_response(await self.aresults(query))
[docs] def run(self, query: str, **kwargs: Any) -> str:
"""Run query through SerpAPI and parse result."""
return self._process_response(self.results(query))
[docs] def results(self, query: str) -> dict:
"""Run query through SerpAPI and return the raw result."""
params = self.get_params(query)
with HiddenPrints():
search = self.search_engine(params)
res = search.get_dict()
return res
[docs] async def aresults(self, query: str) -> dict:
"""Use aiohttp to run query through SerpAPI and return the results async."""
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/serpapi.html
|
0e922c13836e-2
|
"""Use aiohttp to run query through SerpAPI and return the results async."""
def construct_url_and_params() -> Tuple[str, Dict[str, str]]:
params = self.get_params(query)
params["source"] = "python"
if self.serpapi_api_key:
params["serp_api_key"] = self.serpapi_api_key
params["output"] = "json"
url = "https://serpapi.com/search"
return url, params
url, params = construct_url_and_params()
if not self.aiosession:
async with aiohttp.ClientSession() as session:
async with session.get(url, params=params) as response:
res = await response.json()
else:
async with self.aiosession.get(url, params=params) as response:
res = await response.json()
return res
[docs] def get_params(self, query: str) -> Dict[str, str]:
"""Get parameters for SerpAPI."""
_params = {
"api_key": self.serpapi_api_key,
"q": query,
}
params = {**self.params, **_params}
return params
@staticmethod
def _process_response(res: dict) -> str:
"""Process response from SerpAPI."""
if "error" in res.keys():
raise ValueError(f"Got error from SerpAPI: {res['error']}")
if "answer_box" in res.keys() and "answer" in res["answer_box"].keys():
toret = res["answer_box"]["answer"]
elif "answer_box" in res.keys() and "snippet" in res["answer_box"].keys():
toret = res["answer_box"]["snippet"]
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/serpapi.html
|
0e922c13836e-3
|
toret = res["answer_box"]["snippet"]
elif (
"answer_box" in res.keys()
and "snippet_highlighted_words" in res["answer_box"].keys()
):
toret = res["answer_box"]["snippet_highlighted_words"][0]
elif (
"sports_results" in res.keys()
and "game_spotlight" in res["sports_results"].keys()
):
toret = res["sports_results"]["game_spotlight"]
elif (
"shopping_results" in res.keys()
and "title" in res["shopping_results"][0].keys()
):
toret = res["shopping_results"][:3]
elif (
"knowledge_graph" in res.keys()
and "description" in res["knowledge_graph"].keys()
):
toret = res["knowledge_graph"]["description"]
elif "snippet" in res["organic_results"][0].keys():
toret = res["organic_results"][0]["snippet"]
elif "link" in res["organic_results"][0].keys():
toret = res["organic_results"][0]["link"]
else:
toret = "No good search result found"
return toret
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/serpapi.html
|
42c351212fbb-0
|
Source code for langchain.utilities.arxiv
"""Util that calls Arxiv."""
import logging
import os
from typing import Any, Dict, List
from pydantic import BaseModel, Extra, root_validator
from langchain.schema import Document
logger = logging.getLogger(__name__)
[docs]class ArxivAPIWrapper(BaseModel):
"""Wrapper around ArxivAPI.
To use, you should have the ``arxiv`` python package installed.
https://lukasschwab.me/arxiv.py/index.html
This wrapper will use the Arxiv API to conduct searches and
fetch document summaries. By default, it will return the document summaries
of the top-k results.
It limits the Document content by doc_content_chars_max.
Set doc_content_chars_max=None if you don't want to limit the content size.
Parameters:
top_k_results: number of the top-scored document used for the arxiv tool
ARXIV_MAX_QUERY_LENGTH: the cut limit on the query used for the arxiv tool.
load_max_docs: a limit to the number of loaded documents
load_all_available_meta:
if True: the `metadata` of the loaded Documents gets all available meta info
(see https://lukasschwab.me/arxiv.py/index.html#Result),
if False: the `metadata` gets only the most informative fields.
"""
arxiv_client: Any #: :meta private:
arxiv_exceptions: Any # :meta private:
top_k_results: int = 3
ARXIV_MAX_QUERY_LENGTH = 300
load_max_docs: int = 100
load_all_available_meta: bool = False
doc_content_chars_max: int = 4000
class Config:
"""Configuration for this pydantic object."""
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/arxiv.html
|
42c351212fbb-1
|
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that the python package exists in environment."""
try:
import arxiv
values["arxiv_search"] = arxiv.Search
values["arxiv_exceptions"] = (
arxiv.ArxivError,
arxiv.UnexpectedEmptyPageError,
arxiv.HTTPError,
)
values["arxiv_result"] = arxiv.Result
except ImportError:
raise ImportError(
"Could not import arxiv python package. "
"Please install it with `pip install arxiv`."
)
return values
[docs] def run(self, query: str) -> str:
"""
Run Arxiv search and get the article meta information.
See https://lukasschwab.me/arxiv.py/index.html#Search
See https://lukasschwab.me/arxiv.py/index.html#Result
It uses only the most informative fields of article meta information.
"""
try:
results = self.arxiv_search( # type: ignore
query[: self.ARXIV_MAX_QUERY_LENGTH], max_results=self.top_k_results
).results()
except self.arxiv_exceptions as ex:
return f"Arxiv exception: {ex}"
docs = [
f"Published: {result.updated.date()}\nTitle: {result.title}\n"
f"Authors: {', '.join(a.name for a in result.authors)}\n"
f"Summary: {result.summary}"
for result in results
]
if docs:
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/arxiv.html
|
42c351212fbb-2
|
for result in results
]
if docs:
return "\n\n".join(docs)[: self.doc_content_chars_max]
else:
return "No good Arxiv Result was found"
[docs] def load(self, query: str) -> List[Document]:
"""
Run Arxiv search and get the article texts plus the article meta information.
See https://lukasschwab.me/arxiv.py/index.html#Search
Returns: a list of documents with the document.page_content in text format
"""
try:
import fitz
except ImportError:
raise ImportError(
"PyMuPDF package not found, please install it with "
"`pip install pymupdf`"
)
try:
results = self.arxiv_search( # type: ignore
query[: self.ARXIV_MAX_QUERY_LENGTH], max_results=self.load_max_docs
).results()
except self.arxiv_exceptions as ex:
logger.debug("Error on arxiv: %s", ex)
return []
docs: List[Document] = []
for result in results:
try:
doc_file_name: str = result.download_pdf()
with fitz.open(doc_file_name) as doc_file:
text: str = "".join(page.get_text() for page in doc_file)
except FileNotFoundError as f_ex:
logger.debug(f_ex)
continue
if self.load_all_available_meta:
extra_metadata = {
"entry_id": result.entry_id,
"published_first_time": str(result.published.date()),
"comment": result.comment,
"journal_ref": result.journal_ref,
"doi": result.doi,
"primary_category": result.primary_category,
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/arxiv.html
|
42c351212fbb-3
|
"doi": result.doi,
"primary_category": result.primary_category,
"categories": result.categories,
"links": [link.href for link in result.links],
}
else:
extra_metadata = {}
metadata = {
"Published": str(result.updated.date()),
"Title": result.title,
"Authors": ", ".join(a.name for a in result.authors),
"Summary": result.summary,
**extra_metadata,
}
doc = Document(
page_content=text[: self.doc_content_chars_max], metadata=metadata
)
docs.append(doc)
os.remove(doc_file_name)
return docs
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/utilities/arxiv.html
|
863f53f10d35-0
|
Source code for langchain.vectorstores.opensearch_vector_search
"""Wrapper around OpenSearch vector database."""
from __future__ import annotations
import uuid
from typing import Any, Dict, Iterable, List, Optional, Tuple
from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.utils import get_from_dict_or_env
from langchain.vectorstores.base import VectorStore
IMPORT_OPENSEARCH_PY_ERROR = (
"Could not import OpenSearch. Please install it with `pip install opensearch-py`."
)
SCRIPT_SCORING_SEARCH = "script_scoring"
PAINLESS_SCRIPTING_SEARCH = "painless_scripting"
MATCH_ALL_QUERY = {"match_all": {}} # type: Dict
def _import_opensearch() -> Any:
"""Import OpenSearch if available, otherwise raise error."""
try:
from opensearchpy import OpenSearch
except ImportError:
raise ValueError(IMPORT_OPENSEARCH_PY_ERROR)
return OpenSearch
def _import_bulk() -> Any:
"""Import bulk if available, otherwise raise error."""
try:
from opensearchpy.helpers import bulk
except ImportError:
raise ValueError(IMPORT_OPENSEARCH_PY_ERROR)
return bulk
def _import_not_found_error() -> Any:
"""Import not found error if available, otherwise raise error."""
try:
from opensearchpy.exceptions import NotFoundError
except ImportError:
raise ValueError(IMPORT_OPENSEARCH_PY_ERROR)
return NotFoundError
def _get_opensearch_client(opensearch_url: str, **kwargs: Any) -> Any:
"""Get OpenSearch client from the opensearch_url, otherwise raise error."""
try:
opensearch = _import_opensearch()
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html
|
863f53f10d35-1
|
try:
opensearch = _import_opensearch()
client = opensearch(opensearch_url, **kwargs)
except ValueError as e:
raise ValueError(
f"OpenSearch client string provided is not in proper format. "
f"Got error: {e} "
)
return client
def _validate_embeddings_and_bulk_size(embeddings_length: int, bulk_size: int) -> None:
"""Validate Embeddings Length and Bulk Size."""
if embeddings_length == 0:
raise RuntimeError("Embeddings size is zero")
if bulk_size < embeddings_length:
raise RuntimeError(
f"The embeddings count, {embeddings_length} is more than the "
f"[bulk_size], {bulk_size}. Increase the value of [bulk_size]."
)
def _bulk_ingest_embeddings(
client: Any,
index_name: str,
embeddings: List[List[float]],
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
vector_field: str = "vector_field",
text_field: str = "text",
mapping: Dict = {},
) -> List[str]:
"""Bulk Ingest Embeddings into given index."""
bulk = _import_bulk()
not_found_error = _import_not_found_error()
requests = []
ids = []
mapping = mapping
try:
client.indices.get(index=index_name)
except not_found_error:
client.indices.create(index=index_name, body=mapping)
for i, text in enumerate(texts):
metadata = metadatas[i] if metadatas else {}
_id = str(uuid.uuid4())
request = {
"_op_type": "index",
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html
|
863f53f10d35-2
|
request = {
"_op_type": "index",
"_index": index_name,
vector_field: embeddings[i],
text_field: text,
"metadata": metadata,
"_id": _id,
}
requests.append(request)
ids.append(_id)
bulk(client, requests)
client.indices.refresh(index=index_name)
return ids
def _default_scripting_text_mapping(
dim: int,
vector_field: str = "vector_field",
) -> Dict:
"""For Painless Scripting or Script Scoring,the default mapping to create index."""
return {
"mappings": {
"properties": {
vector_field: {"type": "knn_vector", "dimension": dim},
}
}
}
def _default_text_mapping(
dim: int,
engine: str = "nmslib",
space_type: str = "l2",
ef_search: int = 512,
ef_construction: int = 512,
m: int = 16,
vector_field: str = "vector_field",
) -> Dict:
"""For Approximate k-NN Search, this is the default mapping to create index."""
return {
"settings": {"index": {"knn": True, "knn.algo_param.ef_search": ef_search}},
"mappings": {
"properties": {
vector_field: {
"type": "knn_vector",
"dimension": dim,
"method": {
"name": "hnsw",
"space_type": space_type,
"engine": engine,
"parameters": {"ef_construction": ef_construction, "m": m},
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html
|
863f53f10d35-3
|
"parameters": {"ef_construction": ef_construction, "m": m},
},
}
}
},
}
def _default_approximate_search_query(
query_vector: List[float],
k: int = 4,
vector_field: str = "vector_field",
) -> Dict:
"""For Approximate k-NN Search, this is the default query."""
return {
"size": k,
"query": {"knn": {vector_field: {"vector": query_vector, "k": k}}},
}
def _approximate_search_query_with_boolean_filter(
query_vector: List[float],
boolean_filter: Dict,
k: int = 4,
vector_field: str = "vector_field",
subquery_clause: str = "must",
) -> Dict:
"""For Approximate k-NN Search, with Boolean Filter."""
return {
"size": k,
"query": {
"bool": {
"filter": boolean_filter,
subquery_clause: [
{"knn": {vector_field: {"vector": query_vector, "k": k}}}
],
}
},
}
def _approximate_search_query_with_lucene_filter(
query_vector: List[float],
lucene_filter: Dict,
k: int = 4,
vector_field: str = "vector_field",
) -> Dict:
"""For Approximate k-NN Search, with Lucene Filter."""
search_query = _default_approximate_search_query(
query_vector, k=k, vector_field=vector_field
)
search_query["query"]["knn"][vector_field]["filter"] = lucene_filter
return search_query
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html
|
863f53f10d35-4
|
return search_query
def _default_script_query(
query_vector: List[float],
space_type: str = "l2",
pre_filter: Dict = MATCH_ALL_QUERY,
vector_field: str = "vector_field",
) -> Dict:
"""For Script Scoring Search, this is the default query."""
return {
"query": {
"script_score": {
"query": pre_filter,
"script": {
"source": "knn_score",
"lang": "knn",
"params": {
"field": vector_field,
"query_value": query_vector,
"space_type": space_type,
},
},
}
}
}
def __get_painless_scripting_source(
space_type: str, query_vector: List[float], vector_field: str = "vector_field"
) -> str:
"""For Painless Scripting, it returns the script source based on space type."""
source_value = (
"(1.0 + "
+ space_type
+ "("
+ str(query_vector)
+ ", doc['"
+ vector_field
+ "']))"
)
if space_type == "cosineSimilarity":
return source_value
else:
return "1/" + source_value
def _default_painless_scripting_query(
query_vector: List[float],
space_type: str = "l2Squared",
pre_filter: Dict = MATCH_ALL_QUERY,
vector_field: str = "vector_field",
) -> Dict:
"""For Painless Scripting Search, this is the default query."""
source = __get_painless_scripting_source(space_type, query_vector)
return {
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html
|
863f53f10d35-5
|
source = __get_painless_scripting_source(space_type, query_vector)
return {
"query": {
"script_score": {
"query": pre_filter,
"script": {
"source": source,
"params": {
"field": vector_field,
"query_value": query_vector,
},
},
}
}
}
def _get_kwargs_value(kwargs: Any, key: str, default_value: Any) -> Any:
"""Get the value of the key if present. Else get the default_value."""
if key in kwargs:
return kwargs.get(key)
return default_value
[docs]class OpenSearchVectorSearch(VectorStore):
"""Wrapper around OpenSearch as a vector database.
Example:
.. code-block:: python
from langchain import OpenSearchVectorSearch
opensearch_vector_search = OpenSearchVectorSearch(
"http://localhost:9200",
"embeddings",
embedding_function
)
"""
def __init__(
self,
opensearch_url: str,
index_name: str,
embedding_function: Embeddings,
**kwargs: Any,
):
"""Initialize with necessary components."""
self.embedding_function = embedding_function
self.index_name = index_name
self.client = _get_opensearch_client(opensearch_url, **kwargs)
[docs] def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
bulk_size: int = 500,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embeddings and add to the vectorstore.
Args:
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html
|
863f53f10d35-6
|
"""Run more texts through the embeddings and add to the vectorstore.
Args:
texts: Iterable of strings to add to the vectorstore.
metadatas: Optional list of metadatas associated with the texts.
bulk_size: Bulk API request count; Default: 500
Returns:
List of ids from adding the texts into the vectorstore.
Optional Args:
vector_field: Document field embeddings are stored in. Defaults to
"vector_field".
text_field: Document field the text of the document is stored in. Defaults
to "text".
"""
embeddings = self.embedding_function.embed_documents(list(texts))
_validate_embeddings_and_bulk_size(len(embeddings), bulk_size)
text_field = _get_kwargs_value(kwargs, "text_field", "text")
dim = len(embeddings[0])
engine = _get_kwargs_value(kwargs, "engine", "nmslib")
space_type = _get_kwargs_value(kwargs, "space_type", "l2")
ef_search = _get_kwargs_value(kwargs, "ef_search", 512)
ef_construction = _get_kwargs_value(kwargs, "ef_construction", 512)
m = _get_kwargs_value(kwargs, "m", 16)
vector_field = _get_kwargs_value(kwargs, "vector_field", "vector_field")
mapping = _default_text_mapping(
dim, engine, space_type, ef_search, ef_construction, m, vector_field
)
return _bulk_ingest_embeddings(
self.client,
self.index_name,
embeddings,
texts,
metadatas,
vector_field,
text_field,
mapping,
)
[docs] def similarity_search(
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html
|
863f53f10d35-7
|
text_field,
mapping,
)
[docs] def similarity_search(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Document]:
"""Return docs most similar to query.
By default supports Approximate Search.
Also supports Script Scoring and Painless Scripting.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
Returns:
List of Documents most similar to the query.
Optional Args:
vector_field: Document field embeddings are stored in. Defaults to
"vector_field".
text_field: Document field the text of the document is stored in. Defaults
to "text".
metadata_field: Document field that metadata is stored in. Defaults to
"metadata".
Can be set to a special value "*" to include the entire document.
Optional Args for Approximate Search:
search_type: "approximate_search"; default: "approximate_search"
boolean_filter: A Boolean filter consists of a Boolean query that
contains a k-NN query and a filter.
subquery_clause: Query clause on the knn vector field; default: "must"
lucene_filter: the Lucene algorithm decides whether to perform an exact
k-NN search with pre-filtering or an approximate search with modified
post-filtering.
Optional Args for Script Scoring Search:
search_type: "script_scoring"; default: "approximate_search"
space_type: "l2", "l1", "linf", "cosinesimil", "innerproduct",
"hammingbit"; default: "l2"
pre_filter: script_score query to pre-filter documents before identifying
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html
|
863f53f10d35-8
|
pre_filter: script_score query to pre-filter documents before identifying
nearest neighbors; default: {"match_all": {}}
Optional Args for Painless Scripting Search:
search_type: "painless_scripting"; default: "approximate_search"
space_type: "l2Squared", "l1Norm", "cosineSimilarity"; default: "l2Squared"
pre_filter: script_score query to pre-filter documents before identifying
nearest neighbors; default: {"match_all": {}}
"""
docs_with_scores = self.similarity_search_with_score(query, k, **kwargs)
return [doc[0] for doc in docs_with_scores]
[docs] def similarity_search_with_score(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Tuple[Document, float]]:
"""Return docs and it's scores most similar to query.
By default supports Approximate Search.
Also supports Script Scoring and Painless Scripting.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
Returns:
List of Documents along with its scores most similar to the query.
Optional Args:
same as `similarity_search`
"""
embedding = self.embedding_function.embed_query(query)
search_type = _get_kwargs_value(kwargs, "search_type", "approximate_search")
text_field = _get_kwargs_value(kwargs, "text_field", "text")
metadata_field = _get_kwargs_value(kwargs, "metadata_field", "metadata")
vector_field = _get_kwargs_value(kwargs, "vector_field", "vector_field")
if search_type == "approximate_search":
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html
|
863f53f10d35-9
|
if search_type == "approximate_search":
boolean_filter = _get_kwargs_value(kwargs, "boolean_filter", {})
subquery_clause = _get_kwargs_value(kwargs, "subquery_clause", "must")
lucene_filter = _get_kwargs_value(kwargs, "lucene_filter", {})
if boolean_filter != {} and lucene_filter != {}:
raise ValueError(
"Both `boolean_filter` and `lucene_filter` are provided which "
"is invalid"
)
if boolean_filter != {}:
search_query = _approximate_search_query_with_boolean_filter(
embedding,
boolean_filter,
k=k,
vector_field=vector_field,
subquery_clause=subquery_clause,
)
elif lucene_filter != {}:
search_query = _approximate_search_query_with_lucene_filter(
embedding, lucene_filter, k=k, vector_field=vector_field
)
else:
search_query = _default_approximate_search_query(
embedding, k=k, vector_field=vector_field
)
elif search_type == SCRIPT_SCORING_SEARCH:
space_type = _get_kwargs_value(kwargs, "space_type", "l2")
pre_filter = _get_kwargs_value(kwargs, "pre_filter", MATCH_ALL_QUERY)
search_query = _default_script_query(
embedding, space_type, pre_filter, vector_field
)
elif search_type == PAINLESS_SCRIPTING_SEARCH:
space_type = _get_kwargs_value(kwargs, "space_type", "l2Squared")
pre_filter = _get_kwargs_value(kwargs, "pre_filter", MATCH_ALL_QUERY)
search_query = _default_painless_scripting_query(
embedding, space_type, pre_filter, vector_field
)
else:
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html
|
863f53f10d35-10
|
embedding, space_type, pre_filter, vector_field
)
else:
raise ValueError("Invalid `search_type` provided as an argument")
response = self.client.search(index=self.index_name, body=search_query)
hits = [hit for hit in response["hits"]["hits"][:k]]
documents_with_scores = [
(
Document(
page_content=hit["_source"][text_field],
metadata=hit["_source"]
if metadata_field == "*" or metadata_field not in hit["_source"]
else hit["_source"][metadata_field],
),
hit["_score"],
)
for hit in hits
]
return documents_with_scores
[docs] @classmethod
def from_texts(
cls,
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
bulk_size: int = 500,
**kwargs: Any,
) -> OpenSearchVectorSearch:
"""Construct OpenSearchVectorSearch wrapper from raw documents.
Example:
.. code-block:: python
from langchain import OpenSearchVectorSearch
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
opensearch_vector_search = OpenSearchVectorSearch.from_texts(
texts,
embeddings,
opensearch_url="http://localhost:9200"
)
OpenSearch by default supports Approximate Search powered by nmslib, faiss
and lucene engines recommended for large datasets. Also supports brute force
search through Script Scoring and Painless Scripting.
Optional Args:
vector_field: Document field embeddings are stored in. Defaults to
"vector_field".
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html
|
863f53f10d35-11
|
vector_field: Document field embeddings are stored in. Defaults to
"vector_field".
text_field: Document field the text of the document is stored in. Defaults
to "text".
Optional Keyword Args for Approximate Search:
engine: "nmslib", "faiss", "lucene"; default: "nmslib"
space_type: "l2", "l1", "cosinesimil", "linf", "innerproduct"; default: "l2"
ef_search: Size of the dynamic list used during k-NN searches. Higher values
lead to more accurate but slower searches; default: 512
ef_construction: Size of the dynamic list used during k-NN graph creation.
Higher values lead to more accurate graph but slower indexing speed;
default: 512
m: Number of bidirectional links created for each new element. Large impact
on memory consumption. Between 2 and 100; default: 16
Keyword Args for Script Scoring or Painless Scripting:
is_appx_search: False
"""
opensearch_url = get_from_dict_or_env(
kwargs, "opensearch_url", "OPENSEARCH_URL"
)
# List of arguments that needs to be removed from kwargs
# before passing kwargs to get opensearch client
keys_list = [
"opensearch_url",
"index_name",
"is_appx_search",
"vector_field",
"text_field",
"engine",
"space_type",
"ef_search",
"ef_construction",
"m",
]
embeddings = embedding.embed_documents(texts)
_validate_embeddings_and_bulk_size(len(embeddings), bulk_size)
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html
|
863f53f10d35-12
|
_validate_embeddings_and_bulk_size(len(embeddings), bulk_size)
dim = len(embeddings[0])
# Get the index name from either from kwargs or ENV Variable
# before falling back to random generation
index_name = get_from_dict_or_env(
kwargs, "index_name", "OPENSEARCH_INDEX_NAME", default=uuid.uuid4().hex
)
is_appx_search = _get_kwargs_value(kwargs, "is_appx_search", True)
vector_field = _get_kwargs_value(kwargs, "vector_field", "vector_field")
text_field = _get_kwargs_value(kwargs, "text_field", "text")
if is_appx_search:
engine = _get_kwargs_value(kwargs, "engine", "nmslib")
space_type = _get_kwargs_value(kwargs, "space_type", "l2")
ef_search = _get_kwargs_value(kwargs, "ef_search", 512)
ef_construction = _get_kwargs_value(kwargs, "ef_construction", 512)
m = _get_kwargs_value(kwargs, "m", 16)
mapping = _default_text_mapping(
dim, engine, space_type, ef_search, ef_construction, m, vector_field
)
else:
mapping = _default_scripting_text_mapping(dim)
[kwargs.pop(key, None) for key in keys_list]
client = _get_opensearch_client(opensearch_url, **kwargs)
_bulk_ingest_embeddings(
client,
index_name,
embeddings,
texts,
metadatas,
vector_field,
text_field,
mapping,
)
return cls(opensearch_url, index_name, embedding, **kwargs)
By Harrison Chase
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html
|
863f53f10d35-13
|
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/opensearch_vector_search.html
|
7d59e9575f17-0
|
Source code for langchain.vectorstores.faiss
"""Wrapper around FAISS vector database."""
from __future__ import annotations
import math
import os
import pickle
import uuid
from pathlib import Path
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple
import numpy as np
from langchain.docstore.base import AddableMixin, Docstore
from langchain.docstore.document import Document
from langchain.docstore.in_memory import InMemoryDocstore
from langchain.embeddings.base import Embeddings
from langchain.vectorstores.base import VectorStore
from langchain.vectorstores.utils import maximal_marginal_relevance
def dependable_faiss_import(no_avx2: Optional[bool] = None) -> Any:
"""
Import faiss if available, otherwise raise error.
If FAISS_NO_AVX2 environment variable is set, it will be considered
to load FAISS with no AVX2 optimization.
Args:
no_avx2: Load FAISS strictly with no AVX2 optimization
so that the vectorstore is portable and compatible with other devices.
"""
if no_avx2 is None and "FAISS_NO_AVX2" in os.environ:
no_avx2 = bool(os.getenv("FAISS_NO_AVX2"))
try:
if no_avx2:
from faiss import swigfaiss as faiss
else:
import faiss
except ImportError:
raise ValueError(
"Could not import faiss python package. "
"Please install it with `pip install faiss` "
"or `pip install faiss-cpu` (depending on Python version)."
)
return faiss
def _default_relevance_score_fn(score: float) -> float:
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/faiss.html
|
7d59e9575f17-1
|
return faiss
def _default_relevance_score_fn(score: float) -> float:
"""Return a similarity score on a scale [0, 1]."""
# The 'correct' relevance function
# may differ depending on a few things, including:
# - the distance / similarity metric used by the VectorStore
# - the scale of your embeddings (OpenAI's are unit normed. Many others are not!)
# - embedding dimensionality
# - etc.
# This function converts the euclidean norm of normalized embeddings
# (0 is most similar, sqrt(2) most dissimilar)
# to a similarity function (0 to 1)
return 1.0 - score / math.sqrt(2)
[docs]class FAISS(VectorStore):
"""Wrapper around FAISS vector database.
To use, you should have the ``faiss`` python package installed.
Example:
.. code-block:: python
from langchain import FAISS
faiss = FAISS(embedding_function, index, docstore, index_to_docstore_id)
"""
def __init__(
self,
embedding_function: Callable,
index: Any,
docstore: Docstore,
index_to_docstore_id: Dict[int, str],
relevance_score_fn: Optional[
Callable[[float], float]
] = _default_relevance_score_fn,
normalize_L2: bool = False,
):
"""Initialize with necessary components."""
self.embedding_function = embedding_function
self.index = index
self.docstore = docstore
self.index_to_docstore_id = index_to_docstore_id
self.relevance_score_fn = relevance_score_fn
self._normalize_L2 = normalize_L2
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/faiss.html
|
7d59e9575f17-2
|
self._normalize_L2 = normalize_L2
def __add(
self,
texts: Iterable[str],
embeddings: Iterable[List[float]],
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
**kwargs: Any,
) -> List[str]:
if not isinstance(self.docstore, AddableMixin):
raise ValueError(
"If trying to add texts, the underlying docstore should support "
f"adding items, which {self.docstore} does not"
)
documents = []
for i, text in enumerate(texts):
metadata = metadatas[i] if metadatas else {}
documents.append(Document(page_content=text, metadata=metadata))
if ids is None:
ids = [str(uuid.uuid4()) for _ in texts]
# Add to the index, the index_to_id mapping, and the docstore.
starting_len = len(self.index_to_docstore_id)
faiss = dependable_faiss_import()
vector = np.array(embeddings, dtype=np.float32)
if self._normalize_L2:
faiss.normalize_L2(vector)
self.index.add(vector)
# Get list of index, id, and docs.
full_info = [(starting_len + i, ids[i], doc) for i, doc in enumerate(documents)]
# Add information to docstore and index.
self.docstore.add({_id: doc for _, _id, doc in full_info})
index_to_id = {index: _id for index, _id, _ in full_info}
self.index_to_docstore_id.update(index_to_id)
return [_id for _, _id, _ in full_info]
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/faiss.html
|
7d59e9575f17-3
|
return [_id for _, _id, _ in full_info]
[docs] def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embeddings and add to the vectorstore.
Args:
texts: Iterable of strings to add to the vectorstore.
metadatas: Optional list of metadatas associated with the texts.
ids: Optional list of unique IDs.
Returns:
List of ids from adding the texts into the vectorstore.
"""
if not isinstance(self.docstore, AddableMixin):
raise ValueError(
"If trying to add texts, the underlying docstore should support "
f"adding items, which {self.docstore} does not"
)
# Embed and create the documents.
embeddings = [self.embedding_function(text) for text in texts]
return self.__add(texts, embeddings, metadatas=metadatas, ids=ids, **kwargs)
[docs] def add_embeddings(
self,
text_embeddings: Iterable[Tuple[str, List[float]]],
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embeddings and add to the vectorstore.
Args:
text_embeddings: Iterable pairs of string and embedding to
add to the vectorstore.
metadatas: Optional list of metadatas associated with the texts.
ids: Optional list of unique IDs.
Returns:
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/faiss.html
|
7d59e9575f17-4
|
ids: Optional list of unique IDs.
Returns:
List of ids from adding the texts into the vectorstore.
"""
if not isinstance(self.docstore, AddableMixin):
raise ValueError(
"If trying to add texts, the underlying docstore should support "
f"adding items, which {self.docstore} does not"
)
# Embed and create the documents.
texts, embeddings = zip(*text_embeddings)
return self.__add(texts, embeddings, metadatas=metadatas, ids=ids, **kwargs)
[docs] def similarity_search_with_score_by_vector(
self, embedding: List[float], k: int = 4
) -> List[Tuple[Document, float]]:
"""Return docs most similar to query.
Args:
embedding: Embedding vector to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
Returns:
List of Documents most similar to the query and score for each
"""
faiss = dependable_faiss_import()
vector = np.array([embedding], dtype=np.float32)
if self._normalize_L2:
faiss.normalize_L2(vector)
scores, indices = self.index.search(vector, k)
docs = []
for j, i in enumerate(indices[0]):
if i == -1:
# This happens when not enough docs are returned.
continue
_id = self.index_to_docstore_id[i]
doc = self.docstore.search(_id)
if not isinstance(doc, Document):
raise ValueError(f"Could not find document for id {_id}, got {doc}")
docs.append((doc, scores[0][j]))
return docs
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/faiss.html
|
7d59e9575f17-5
|
docs.append((doc, scores[0][j]))
return docs
[docs] def similarity_search_with_score(
self, query: str, k: int = 4
) -> List[Tuple[Document, float]]:
"""Return docs most similar to query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
Returns:
List of Documents most similar to the query and score for each
"""
embedding = self.embedding_function(query)
docs = self.similarity_search_with_score_by_vector(embedding, k)
return docs
[docs] def similarity_search_by_vector(
self, embedding: List[float], k: int = 4, **kwargs: Any
) -> List[Document]:
"""Return docs most similar to embedding vector.
Args:
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
Returns:
List of Documents most similar to the embedding.
"""
docs_and_scores = self.similarity_search_with_score_by_vector(embedding, k)
return [doc for doc, _ in docs_and_scores]
[docs] def similarity_search(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Document]:
"""Return docs most similar to query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
Returns:
List of Documents most similar to the query.
"""
docs_and_scores = self.similarity_search_with_score(query, k)
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/faiss.html
|
7d59e9575f17-6
|
"""
docs_and_scores = self.similarity_search_with_score(query, k)
return [doc for doc, _ in docs_and_scores]
[docs] def max_marginal_relevance_search_by_vector(
self,
embedding: List[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns:
List of Documents selected by maximal marginal relevance.
"""
_, indices = self.index.search(np.array([embedding], dtype=np.float32), fetch_k)
# -1 happens when not enough docs are returned.
embeddings = [self.index.reconstruct(int(i)) for i in indices[0] if i != -1]
mmr_selected = maximal_marginal_relevance(
np.array([embedding], dtype=np.float32),
embeddings,
k=k,
lambda_mult=lambda_mult,
)
selected_indices = [indices[0][i] for i in mmr_selected]
docs = []
for i in selected_indices:
if i == -1:
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/faiss.html
|
7d59e9575f17-7
|
docs = []
for i in selected_indices:
if i == -1:
# This happens when not enough docs are returned.
continue
_id = self.index_to_docstore_id[i]
doc = self.docstore.search(_id)
if not isinstance(doc, Document):
raise ValueError(f"Could not find document for id {_id}, got {doc}")
docs.append(doc)
return docs
[docs] def max_marginal_relevance_search(
self,
query: str,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns:
List of Documents selected by maximal marginal relevance.
"""
embedding = self.embedding_function(query)
docs = self.max_marginal_relevance_search_by_vector(
embedding, k, fetch_k, lambda_mult=lambda_mult
)
return docs
[docs] def merge_from(self, target: FAISS) -> None:
"""Merge another FAISS object with the current one.
Add the target FAISS to the current one.
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/faiss.html
|
7d59e9575f17-8
|
Add the target FAISS to the current one.
Args:
target: FAISS object you wish to merge into the current one
Returns:
None.
"""
if not isinstance(self.docstore, AddableMixin):
raise ValueError("Cannot merge with this type of docstore")
# Numerical index for target docs are incremental on existing ones
starting_len = len(self.index_to_docstore_id)
# Merge two IndexFlatL2
self.index.merge_from(target.index)
# Get id and docs from target FAISS object
full_info = []
for i, target_id in target.index_to_docstore_id.items():
doc = target.docstore.search(target_id)
if not isinstance(doc, Document):
raise ValueError("Document should be returned")
full_info.append((starting_len + i, target_id, doc))
# Add information to docstore and index_to_docstore_id.
self.docstore.add({_id: doc for _, _id, doc in full_info})
index_to_id = {index: _id for index, _id, _ in full_info}
self.index_to_docstore_id.update(index_to_id)
@classmethod
def __from(
cls,
texts: List[str],
embeddings: List[List[float]],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
normalize_L2: bool = False,
**kwargs: Any,
) -> FAISS:
faiss = dependable_faiss_import()
index = faiss.IndexFlatL2(len(embeddings[0]))
vector = np.array(embeddings, dtype=np.float32)
if normalize_L2:
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/faiss.html
|
7d59e9575f17-9
|
vector = np.array(embeddings, dtype=np.float32)
if normalize_L2:
faiss.normalize_L2(vector)
index.add(vector)
documents = []
if ids is None:
ids = [str(uuid.uuid4()) for _ in texts]
for i, text in enumerate(texts):
metadata = metadatas[i] if metadatas else {}
documents.append(Document(page_content=text, metadata=metadata))
index_to_id = dict(enumerate(ids))
docstore = InMemoryDocstore(dict(zip(index_to_id.values(), documents)))
return cls(
embedding.embed_query,
index,
docstore,
index_to_id,
normalize_L2=normalize_L2,
**kwargs,
)
[docs] @classmethod
def from_texts(
cls,
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
**kwargs: Any,
) -> FAISS:
"""Construct FAISS wrapper from raw documents.
This is a user friendly interface that:
1. Embeds documents.
2. Creates an in memory docstore
3. Initializes the FAISS database
This is intended to be a quick way to get started.
Example:
.. code-block:: python
from langchain import FAISS
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
faiss = FAISS.from_texts(texts, embeddings)
"""
embeddings = embedding.embed_documents(texts)
return cls.__from(
texts,
embeddings,
embedding,
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/faiss.html
|
7d59e9575f17-10
|
return cls.__from(
texts,
embeddings,
embedding,
metadatas=metadatas,
ids=ids,
**kwargs,
)
[docs] @classmethod
def from_embeddings(
cls,
text_embeddings: List[Tuple[str, List[float]]],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
**kwargs: Any,
) -> FAISS:
"""Construct FAISS wrapper from raw documents.
This is a user friendly interface that:
1. Embeds documents.
2. Creates an in memory docstore
3. Initializes the FAISS database
This is intended to be a quick way to get started.
Example:
.. code-block:: python
from langchain import FAISS
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
text_embeddings = embeddings.embed_documents(texts)
text_embedding_pairs = list(zip(texts, text_embeddings))
faiss = FAISS.from_embeddings(text_embedding_pairs, embeddings)
"""
texts = [t[0] for t in text_embeddings]
embeddings = [t[1] for t in text_embeddings]
return cls.__from(
texts,
embeddings,
embedding,
metadatas=metadatas,
ids=ids,
**kwargs,
)
[docs] def save_local(self, folder_path: str, index_name: str = "index") -> None:
"""Save FAISS index, docstore, and index_to_docstore_id to disk.
Args:
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/faiss.html
|
7d59e9575f17-11
|
Args:
folder_path: folder path to save index, docstore,
and index_to_docstore_id to.
index_name: for saving with a specific index file name
"""
path = Path(folder_path)
path.mkdir(exist_ok=True, parents=True)
# save index separately since it is not picklable
faiss = dependable_faiss_import()
faiss.write_index(
self.index, str(path / "{index_name}.faiss".format(index_name=index_name))
)
# save docstore and index_to_docstore_id
with open(path / "{index_name}.pkl".format(index_name=index_name), "wb") as f:
pickle.dump((self.docstore, self.index_to_docstore_id), f)
[docs] @classmethod
def load_local(
cls, folder_path: str, embeddings: Embeddings, index_name: str = "index"
) -> FAISS:
"""Load FAISS index, docstore, and index_to_docstore_id to disk.
Args:
folder_path: folder path to load index, docstore,
and index_to_docstore_id from.
embeddings: Embeddings to use when generating queries
index_name: for saving with a specific index file name
"""
path = Path(folder_path)
# load index separately since it is not picklable
faiss = dependable_faiss_import()
index = faiss.read_index(
str(path / "{index_name}.faiss".format(index_name=index_name))
)
# load docstore and index_to_docstore_id
with open(path / "{index_name}.pkl".format(index_name=index_name), "rb") as f:
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/faiss.html
|
7d59e9575f17-12
|
docstore, index_to_docstore_id = pickle.load(f)
return cls(embeddings.embed_query, index, docstore, index_to_docstore_id)
def _similarity_search_with_relevance_scores(
self,
query: str,
k: int = 4,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
"""Return docs and their similarity scores on a scale from 0 to 1."""
if self.relevance_score_fn is None:
raise ValueError(
"normalize_score_fn must be provided to"
" FAISS constructor to normalize scores"
)
docs_and_scores = self.similarity_search_with_score(query, k=k)
return [(doc, self.relevance_score_fn(score)) for doc, score in docs_and_scores]
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/faiss.html
|
87c177b06841-0
|
Source code for langchain.vectorstores.atlas
"""Wrapper around Atlas by Nomic."""
from __future__ import annotations
import logging
import uuid
from typing import Any, Iterable, List, Optional, Type
import numpy as np
from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.vectorstores.base import VectorStore
logger = logging.getLogger(__name__)
[docs]class AtlasDB(VectorStore):
"""Wrapper around Atlas: Nomic's neural database and rhizomatic instrument.
To use, you should have the ``nomic`` python package installed.
Example:
.. code-block:: python
from langchain.vectorstores import AtlasDB
from langchain.embeddings.openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
vectorstore = AtlasDB("my_project", embeddings.embed_query)
"""
_ATLAS_DEFAULT_ID_FIELD = "atlas_id"
def __init__(
self,
name: str,
embedding_function: Optional[Embeddings] = None,
api_key: Optional[str] = None,
description: str = "A description for your project",
is_public: bool = True,
reset_project_if_exists: bool = False,
) -> None:
"""
Initialize the Atlas Client
Args:
name (str): The name of your project. If the project already exists,
it will be loaded.
embedding_function (Optional[Callable]): An optional function used for
embedding your data. If None, data will be embedded with
Nomic's embed model.
api_key (str): Your nomic API key
description (str): A description for your project.
is_public (bool): Whether your project is publicly accessible.
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/atlas.html
|
87c177b06841-1
|
is_public (bool): Whether your project is publicly accessible.
True by default.
reset_project_if_exists (bool): Whether to reset this project if it
already exists. Default False.
Generally userful during development and testing.
"""
try:
import nomic
from nomic import AtlasProject
except ImportError:
raise ValueError(
"Could not import nomic python package. "
"Please install it with `pip install nomic`."
)
if api_key is None:
raise ValueError("No API key provided. Sign up at atlas.nomic.ai!")
nomic.login(api_key)
self._embedding_function = embedding_function
modality = "text"
if self._embedding_function is not None:
modality = "embedding"
# Check if the project exists, create it if not
self.project = AtlasProject(
name=name,
description=description,
modality=modality,
is_public=is_public,
reset_project_if_exists=reset_project_if_exists,
unique_id_field=AtlasDB._ATLAS_DEFAULT_ID_FIELD,
)
self.project._latest_project_state()
[docs] def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
refresh: bool = True,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embeddings and add to the vectorstore.
Args:
texts (Iterable[str]): Texts to add to the vectorstore.
metadatas (Optional[List[dict]], optional): Optional list of metadatas.
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/atlas.html
|
87c177b06841-2
|
metadatas (Optional[List[dict]], optional): Optional list of metadatas.
ids (Optional[List[str]]): An optional list of ids.
refresh(bool): Whether or not to refresh indices with the updated data.
Default True.
Returns:
List[str]: List of IDs of the added texts.
"""
if (
metadatas is not None
and len(metadatas) > 0
and "text" in metadatas[0].keys()
):
raise ValueError("Cannot accept key text in metadata!")
texts = list(texts)
if ids is None:
ids = [str(uuid.uuid1()) for _ in texts]
# Embedding upload case
if self._embedding_function is not None:
_embeddings = self._embedding_function.embed_documents(texts)
embeddings = np.stack(_embeddings)
if metadatas is None:
data = [
{AtlasDB._ATLAS_DEFAULT_ID_FIELD: ids[i], "text": texts[i]}
for i, _ in enumerate(texts)
]
else:
for i in range(len(metadatas)):
metadatas[i][AtlasDB._ATLAS_DEFAULT_ID_FIELD] = ids[i]
metadatas[i]["text"] = texts[i]
data = metadatas
self.project._validate_map_data_inputs(
[], id_field=AtlasDB._ATLAS_DEFAULT_ID_FIELD, data=data
)
with self.project.wait_for_project_lock():
self.project.add_embeddings(embeddings=embeddings, data=data)
# Text upload case
else:
if metadatas is None:
data = [
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/atlas.html
|
87c177b06841-3
|
else:
if metadatas is None:
data = [
{"text": text, AtlasDB._ATLAS_DEFAULT_ID_FIELD: ids[i]}
for i, text in enumerate(texts)
]
else:
for i, text in enumerate(texts):
metadatas[i]["text"] = texts
metadatas[i][AtlasDB._ATLAS_DEFAULT_ID_FIELD] = ids[i]
data = metadatas
self.project._validate_map_data_inputs(
[], id_field=AtlasDB._ATLAS_DEFAULT_ID_FIELD, data=data
)
with self.project.wait_for_project_lock():
self.project.add_text(data)
if refresh:
if len(self.project.indices) > 0:
with self.project.wait_for_project_lock():
self.project.rebuild_maps()
return ids
[docs] def create_index(self, **kwargs: Any) -> Any:
"""Creates an index in your project.
See
https://docs.nomic.ai/atlas_api.html#nomic.project.AtlasProject.create_index
for full detail.
"""
with self.project.wait_for_project_lock():
return self.project.create_index(**kwargs)
[docs] def similarity_search(
self,
query: str,
k: int = 4,
**kwargs: Any,
) -> List[Document]:
"""Run similarity search with AtlasDB
Args:
query (str): Query text to search for.
k (int): Number of results to return. Defaults to 4.
Returns:
List[Document]: List of documents most similar to the query text.
"""
if self._embedding_function is None:
raise NotImplementedError(
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/atlas.html
|
87c177b06841-4
|
"""
if self._embedding_function is None:
raise NotImplementedError(
"AtlasDB requires an embedding_function for text similarity search!"
)
_embedding = self._embedding_function.embed_documents([query])[0]
embedding = np.array(_embedding).reshape(1, -1)
with self.project.wait_for_project_lock():
neighbors, _ = self.project.projections[0].vector_search(
queries=embedding, k=k
)
datas = self.project.get_data(ids=neighbors[0])
docs = [
Document(page_content=datas[i]["text"], metadata=datas[i])
for i, neighbor in enumerate(neighbors)
]
return docs
[docs] @classmethod
def from_texts(
cls: Type[AtlasDB],
texts: List[str],
embedding: Optional[Embeddings] = None,
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
name: Optional[str] = None,
api_key: Optional[str] = None,
description: str = "A description for your project",
is_public: bool = True,
reset_project_if_exists: bool = False,
index_kwargs: Optional[dict] = None,
**kwargs: Any,
) -> AtlasDB:
"""Create an AtlasDB vectorstore from a raw documents.
Args:
texts (List[str]): The list of texts to ingest.
name (str): Name of the project to create.
api_key (str): Your nomic API key,
embedding (Optional[Embeddings]): Embedding function. Defaults to None.
metadatas (Optional[List[dict]]): List of metadatas. Defaults to None.
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/atlas.html
|
87c177b06841-5
|
ids (Optional[List[str]]): Optional list of document IDs. If None,
ids will be auto created
description (str): A description for your project.
is_public (bool): Whether your project is publicly accessible.
True by default.
reset_project_if_exists (bool): Whether to reset this project if it
already exists. Default False.
Generally userful during development and testing.
index_kwargs (Optional[dict]): Dict of kwargs for index creation.
See https://docs.nomic.ai/atlas_api.html
Returns:
AtlasDB: Nomic's neural database and finest rhizomatic instrument
"""
if name is None or api_key is None:
raise ValueError("`name` and `api_key` cannot be None.")
# Inject relevant kwargs
all_index_kwargs = {"name": name + "_index", "indexed_field": "text"}
if index_kwargs is not None:
for k, v in index_kwargs.items():
all_index_kwargs[k] = v
# Build project
atlasDB = cls(
name,
embedding_function=embedding,
api_key=api_key,
description="A description for your project",
is_public=is_public,
reset_project_if_exists=reset_project_if_exists,
)
with atlasDB.project.wait_for_project_lock():
atlasDB.add_texts(texts=texts, metadatas=metadatas, ids=ids)
atlasDB.create_index(**all_index_kwargs)
return atlasDB
[docs] @classmethod
def from_documents(
cls: Type[AtlasDB],
documents: List[Document],
embedding: Optional[Embeddings] = None,
ids: Optional[List[str]] = None,
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/atlas.html
|
87c177b06841-6
|
ids: Optional[List[str]] = None,
name: Optional[str] = None,
api_key: Optional[str] = None,
persist_directory: Optional[str] = None,
description: str = "A description for your project",
is_public: bool = True,
reset_project_if_exists: bool = False,
index_kwargs: Optional[dict] = None,
**kwargs: Any,
) -> AtlasDB:
"""Create an AtlasDB vectorstore from a list of documents.
Args:
name (str): Name of the collection to create.
api_key (str): Your nomic API key,
documents (List[Document]): List of documents to add to the vectorstore.
embedding (Optional[Embeddings]): Embedding function. Defaults to None.
ids (Optional[List[str]]): Optional list of document IDs. If None,
ids will be auto created
description (str): A description for your project.
is_public (bool): Whether your project is publicly accessible.
True by default.
reset_project_if_exists (bool): Whether to reset this project if
it already exists. Default False.
Generally userful during development and testing.
index_kwargs (Optional[dict]): Dict of kwargs for index creation.
See https://docs.nomic.ai/atlas_api.html
Returns:
AtlasDB: Nomic's neural database and finest rhizomatic instrument
"""
if name is None or api_key is None:
raise ValueError("`name` and `api_key` cannot be None.")
texts = [doc.page_content for doc in documents]
metadatas = [doc.metadata for doc in documents]
return cls.from_texts(
name=name,
api_key=api_key,
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/atlas.html
|
87c177b06841-7
|
return cls.from_texts(
name=name,
api_key=api_key,
texts=texts,
embedding=embedding,
metadatas=metadatas,
ids=ids,
description=description,
is_public=is_public,
reset_project_if_exists=reset_project_if_exists,
index_kwargs=index_kwargs,
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/atlas.html
|
8606344a1a12-0
|
Source code for langchain.vectorstores.sklearn
""" Wrapper around scikit-learn NearestNeighbors implementation.
The vector store can be persisted in json, bson or parquet format.
"""
import importlib
import json
import math
import os
from abc import ABC, abstractmethod
from typing import Any, Dict, Iterable, List, Literal, Optional, Tuple, Type
from uuid import uuid4
from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.vectorstores.base import VectorStore
def guard_import(
module_name: str, *, pip_name: Optional[str] = None, package: Optional[str] = None
) -> Any:
"""Dynamically imports a module and raises a helpful exception if the module is not
installed."""
try:
module = importlib.import_module(module_name, package)
except ImportError:
raise ImportError(
f"Could not import {module_name} python package. "
f"Please install it with `pip install {pip_name or module_name}`."
)
return module
class BaseSerializer(ABC):
"""Abstract base class for saving and loading data."""
def __init__(self, persist_path: str) -> None:
self.persist_path = persist_path
@classmethod
@abstractmethod
def extension(cls) -> str:
"""The file extension suggested by this serializer (without dot)."""
@abstractmethod
def save(self, data: Any) -> None:
"""Saves the data to the persist_path"""
@abstractmethod
def load(self) -> Any:
"""Loads the data from the persist_path"""
class JsonSerializer(BaseSerializer):
"""Serializes data in json using the json package from python standard library."""
@classmethod
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/sklearn.html
|
8606344a1a12-1
|
"""Serializes data in json using the json package from python standard library."""
@classmethod
def extension(cls) -> str:
return "json"
def save(self, data: Any) -> None:
with open(self.persist_path, "w") as fp:
json.dump(data, fp)
def load(self) -> Any:
with open(self.persist_path, "r") as fp:
return json.load(fp)
class BsonSerializer(BaseSerializer):
"""Serializes data in binary json using the bson python package."""
def __init__(self, persist_path: str) -> None:
super().__init__(persist_path)
self.bson = guard_import("bson")
@classmethod
def extension(cls) -> str:
return "bson"
def save(self, data: Any) -> None:
with open(self.persist_path, "wb") as fp:
fp.write(self.bson.dumps(data))
def load(self) -> Any:
with open(self.persist_path, "rb") as fp:
return self.bson.loads(fp.read())
class ParquetSerializer(BaseSerializer):
"""Serializes data in Apache Parquet format using the pyarrow package."""
def __init__(self, persist_path: str) -> None:
super().__init__(persist_path)
self.pd = guard_import("pandas")
self.pa = guard_import("pyarrow")
self.pq = guard_import("pyarrow.parquet")
@classmethod
def extension(cls) -> str:
return "parquet"
def save(self, data: Any) -> None:
df = self.pd.DataFrame(data)
table = self.pa.Table.from_pandas(df)
if os.path.exists(self.persist_path):
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/sklearn.html
|
8606344a1a12-2
|
if os.path.exists(self.persist_path):
backup_path = str(self.persist_path) + "-backup"
os.rename(self.persist_path, backup_path)
try:
self.pq.write_table(table, self.persist_path)
except Exception as exc:
os.rename(backup_path, self.persist_path)
raise exc
else:
os.remove(backup_path)
else:
self.pq.write_table(table, self.persist_path)
def load(self) -> Any:
table = self.pq.read_table(self.persist_path)
df = table.to_pandas()
return {col: series.tolist() for col, series in df.items()}
SERIALIZER_MAP: Dict[str, Type[BaseSerializer]] = {
"json": JsonSerializer,
"bson": BsonSerializer,
"parquet": ParquetSerializer,
}
class SKLearnVectorStoreException(RuntimeError):
pass
[docs]class SKLearnVectorStore(VectorStore):
"""A simple in-memory vector store based on the scikit-learn library
NearestNeighbors implementation."""
def __init__(
self,
embedding: Embeddings,
*,
persist_path: Optional[str] = None,
serializer: Literal["json", "bson", "parquet"] = "json",
metric: str = "cosine",
**kwargs: Any,
) -> None:
np = guard_import("numpy")
sklearn_neighbors = guard_import("sklearn.neighbors", pip_name="scikit-learn")
# non-persistent properties
self._np = np
self._neighbors = sklearn_neighbors.NearestNeighbors(metric=metric, **kwargs)
self._neighbors_fitted = False
self._embedding_function = embedding
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/sklearn.html
|
8606344a1a12-3
|
self._neighbors_fitted = False
self._embedding_function = embedding
self._persist_path = persist_path
self._serializer: Optional[BaseSerializer] = None
if self._persist_path is not None:
serializer_cls = SERIALIZER_MAP[serializer]
self._serializer = serializer_cls(persist_path=self._persist_path)
# data properties
self._embeddings: List[List[float]] = []
self._texts: List[str] = []
self._metadatas: List[dict] = []
self._ids: List[str] = []
# cache properties
self._embeddings_np: Any = np.asarray([])
if self._persist_path is not None and os.path.isfile(self._persist_path):
self._load()
[docs] def persist(self) -> None:
if self._serializer is None:
raise SKLearnVectorStoreException(
"You must specify a persist_path on creation to persist the "
"collection."
)
data = {
"ids": self._ids,
"texts": self._texts,
"metadatas": self._metadatas,
"embeddings": self._embeddings,
}
self._serializer.save(data)
def _load(self) -> None:
if self._serializer is None:
raise SKLearnVectorStoreException(
"You must specify a persist_path on creation to load the " "collection."
)
data = self._serializer.load()
self._embeddings = data["embeddings"]
self._texts = data["texts"]
self._metadatas = data["metadatas"]
self._ids = data["ids"]
self._update_neighbors()
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/sklearn.html
|
8606344a1a12-4
|
self._ids = data["ids"]
self._update_neighbors()
[docs] def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
**kwargs: Any,
) -> List[str]:
_texts = list(texts)
_ids = ids or [str(uuid4()) for _ in _texts]
self._texts.extend(_texts)
self._embeddings.extend(self._embedding_function.embed_documents(_texts))
self._metadatas.extend(metadatas or ([{}] * len(_texts)))
self._ids.extend(_ids)
self._update_neighbors()
return _ids
def _update_neighbors(self) -> None:
if len(self._embeddings) == 0:
raise SKLearnVectorStoreException(
"No data was added to SKLearnVectorStore."
)
self._embeddings_np = self._np.asarray(self._embeddings)
self._neighbors.fit(self._embeddings_np)
self._neighbors_fitted = True
[docs] def similarity_search_with_score(
self, query: str, *, k: int = 4, **kwargs: Any
) -> List[Tuple[Document, float]]:
if not self._neighbors_fitted:
raise SKLearnVectorStoreException(
"No data was added to SKLearnVectorStore."
)
query_embedding = self._embedding_function.embed_query(query)
neigh_dists, neigh_idxs = self._neighbors.kneighbors(
[query_embedding], n_neighbors=k
)
res = []
for idx, dist in zip(neigh_idxs[0], neigh_dists[0]):
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/sklearn.html
|
8606344a1a12-5
|
for idx, dist in zip(neigh_idxs[0], neigh_dists[0]):
_idx = int(idx)
metadata = {"id": self._ids[_idx], **self._metadatas[_idx]}
doc = Document(page_content=self._texts[_idx], metadata=metadata)
res.append((doc, dist))
return res
[docs] def similarity_search(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Document]:
docs_scores = self.similarity_search_with_score(query, k=k, **kwargs)
return [doc for doc, _ in docs_scores]
def _similarity_search_with_relevance_scores(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Tuple[Document, float]]:
docs_dists = self.similarity_search_with_score(query=query, k=k, **kwargs)
docs, dists = zip(*docs_dists)
scores = [1 / math.exp(dist) for dist in dists]
return list(zip(list(docs), scores))
[docs] @classmethod
def from_texts(
cls,
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
persist_path: Optional[str] = None,
**kwargs: Any,
) -> "SKLearnVectorStore":
vs = SKLearnVectorStore(embedding, persist_path=persist_path, **kwargs)
vs.add_texts(texts, metadatas=metadatas, ids=ids)
return vs
By Harrison Chase
© Copyright 2023, Harrison Chase.
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/sklearn.html
|
8606344a1a12-6
|
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/sklearn.html
|
0833652bd04f-0
|
Source code for langchain.vectorstores.vectara
"""Wrapper around Vectara vector database."""
from __future__ import annotations
import json
import logging
import os
from hashlib import md5
from typing import Any, Iterable, List, Optional, Tuple, Type
import requests
from pydantic import Field
from langchain.embeddings.base import Embeddings
from langchain.schema import Document
from langchain.vectorstores.base import VectorStore, VectorStoreRetriever
[docs]class Vectara(VectorStore):
"""Implementation of Vector Store using Vectara (https://vectara.com).
Example:
.. code-block:: python
from langchain.vectorstores import Vectara
vectorstore = Vectara(
vectara_customer_id=vectara_customer_id,
vectara_corpus_id=vectara_corpus_id,
vectara_api_key=vectara_api_key
)
"""
def __init__(
self,
vectara_customer_id: Optional[str] = None,
vectara_corpus_id: Optional[str] = None,
vectara_api_key: Optional[str] = None,
):
"""Initialize with Vectara API."""
self._vectara_customer_id = vectara_customer_id or os.environ.get(
"VECTARA_CUSTOMER_ID"
)
self._vectara_corpus_id = vectara_corpus_id or os.environ.get(
"VECTARA_CORPUS_ID"
)
self._vectara_api_key = vectara_api_key or os.environ.get("VECTARA_API_KEY")
if (
self._vectara_customer_id is None
or self._vectara_corpus_id is None
or self._vectara_api_key is None
):
logging.warning(
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/vectara.html
|
0833652bd04f-1
|
or self._vectara_api_key is None
):
logging.warning(
"Cant find Vectara credentials, customer_id or corpus_id in "
"environment."
)
else:
logging.debug(f"Using corpus id {self._vectara_corpus_id}")
self._session = requests.Session() # to reuse connections
def _get_post_headers(self) -> dict:
"""Returns headers that should be attached to each post request."""
return {
"x-api-key": self._vectara_api_key,
"customer-id": self._vectara_customer_id,
"Content-Type": "application/json",
}
def _delete_doc(self, doc_id: str) -> bool:
"""
Delete a document from the Vectara corpus.
Args:
url (str): URL of the page to delete.
doc_id (str): ID of the document to delete.
Returns:
bool: True if deletion was successful, False otherwise.
"""
body = {
"customer_id": self._vectara_customer_id,
"corpus_id": self._vectara_corpus_id,
"document_id": doc_id,
}
response = self._session.post(
"https://api.vectara.io/v1/delete-doc",
data=json.dumps(body),
verify=True,
headers=self._get_post_headers(),
)
if response.status_code != 200:
logging.error(
f"Delete request failed for doc_id = {doc_id} with status code "
f"{response.status_code}, reason {response.reason}, text "
f"{response.text}"
)
return False
return True
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/vectara.html
|
0833652bd04f-2
|
f"{response.text}"
)
return False
return True
def _index_doc(self, doc_id: str, text: str, metadata: dict) -> bool:
request: dict[str, Any] = {}
request["customer_id"] = self._vectara_customer_id
request["corpus_id"] = self._vectara_corpus_id
request["document"] = {
"document_id": doc_id,
"metadataJson": json.dumps(metadata),
"section": [{"text": text, "metadataJson": json.dumps(metadata)}],
}
response = self._session.post(
headers=self._get_post_headers(),
url="https://api.vectara.io/v1/index",
data=json.dumps(request),
timeout=30,
verify=True,
)
status_code = response.status_code
result = response.json()
status_str = result["status"]["code"] if "status" in result else None
if status_code == 409 or (status_str and status_str == "ALREADY_EXISTS"):
return False
else:
return True
[docs] def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embeddings and add to the vectorstore.
Args:
texts: Iterable of strings to add to the vectorstore.
metadatas: Optional list of metadatas associated with the texts.
Returns:
List of ids from adding the texts into the vectorstore.
"""
ids = [md5(text.encode("utf-8")).hexdigest() for text in texts]
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/vectara.html
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.