id
stringlengths 14
16
| text
stringlengths 36
2.73k
| source
stringlengths 49
117
|
---|---|---|
5365811a00e1-8
|
maximal_marginal_relevance: Whether to use maximal marginal relevance.
Defaults to False.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
Defaults to 20.
return_score: Whether to return the score. Defaults to False.
Returns:
List of Documents most similar to the query vector.
"""
return self._search_helper(query=query, k=k, **kwargs)
[docs] def similarity_search_by_vector(
self, embedding: List[float], k: int = 4, **kwargs: Any
) -> List[Document]:
"""Return docs most similar to embedding vector.
Args:
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
Returns:
List of Documents most similar to the query vector.
"""
return self._search_helper(embedding=embedding, k=k, **kwargs)
[docs] def similarity_search_with_score(
self,
query: str,
distance_metric: str = "L2",
k: int = 4,
filter: Optional[Dict[str, str]] = None,
) -> List[Tuple[Document, float]]:
"""Run similarity search with Deep Lake with distance returned.
Args:
query (str): Query text to search for.
distance_metric: `L2` for Euclidean, `L1` for Nuclear, `max` L-infinity
distance, `cos` for cosine similarity, 'dot' for dot product.
Defaults to `L2`.
k (int): Number of results to return. Defaults to 4.
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/deeplake.html
|
5365811a00e1-9
|
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
Returns:
List[Tuple[Document, float]]: List of documents most similar to the query
text with distance in float.
"""
return self._search_helper(
query=query,
k=k,
filter=filter,
return_score=True,
distance_metric=distance_metric,
)
[docs] def max_marginal_relevance_search_by_vector(
self,
embedding: List[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns:
List of Documents selected by maximal marginal relevance.
"""
return self._search_helper(
embedding=embedding,
k=k,
fetch_k=fetch_k,
use_maximal_marginal_relevance=True,
lambda_mult=lambda_mult,
**kwargs,
)
[docs] def max_marginal_relevance_search(
self,
query: str,
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/deeplake.html
|
5365811a00e1-10
|
self,
query: str,
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns:
List of Documents selected by maximal marginal relevance.
"""
if self._embedding_function is None:
raise ValueError(
"For MMR search, you must specify an embedding function on" "creation."
)
return self._search_helper(
query=query,
k=k,
fetch_k=fetch_k,
use_maximal_marginal_relevance=True,
lambda_mult=lambda_mult,
**kwargs,
)
[docs] @classmethod
def from_texts(
cls,
texts: List[str],
embedding: Optional[Embeddings] = None,
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
dataset_path: str = _LANGCHAIN_DEFAULT_DEEPLAKE_PATH,
**kwargs: Any,
) -> DeepLake:
"""Create a Deep Lake dataset from a raw documents.
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/deeplake.html
|
5365811a00e1-11
|
) -> DeepLake:
"""Create a Deep Lake dataset from a raw documents.
If a dataset_path is specified, the dataset will be persisted in that location,
otherwise by default at `./deeplake`
Args:
path (str, pathlib.Path): - The full path to the dataset. Can be:
- Deep Lake cloud path of the form ``hub://username/dataset_name``.
To write to Deep Lake cloud datasets,
ensure that you are logged in to Deep Lake
(use 'activeloop login' from command line)
- AWS S3 path of the form ``s3://bucketname/path/to/dataset``.
Credentials are required in either the environment
- Google Cloud Storage path of the form
``gcs://bucketname/path/to/dataset``Credentials are required
in either the environment
- Local file system path of the form ``./path/to/dataset`` or
``~/path/to/dataset`` or ``path/to/dataset``.
- In-memory path of the form ``mem://path/to/dataset`` which doesn't
save the dataset, but keeps it in memory instead.
Should be used only for testing as it does not persist.
documents (List[Document]): List of documents to add.
embedding (Optional[Embeddings]): Embedding function. Defaults to None.
metadatas (Optional[List[dict]]): List of metadatas. Defaults to None.
ids (Optional[List[str]]): List of document IDs. Defaults to None.
Returns:
DeepLake: Deep Lake dataset.
"""
deeplake_dataset = cls(
dataset_path=dataset_path, embedding_function=embedding, **kwargs
)
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/deeplake.html
|
5365811a00e1-12
|
dataset_path=dataset_path, embedding_function=embedding, **kwargs
)
deeplake_dataset.add_texts(texts=texts, metadatas=metadatas, ids=ids)
return deeplake_dataset
[docs] def delete(
self,
ids: Any[List[str], None] = None,
filter: Any[Dict[str, str], None] = None,
delete_all: Any[bool, None] = None,
) -> bool:
"""Delete the entities in the dataset
Args:
ids (Optional[List[str]], optional): The document_ids to delete.
Defaults to None.
filter (Optional[Dict[str, str]], optional): The filter to delete by.
Defaults to None.
delete_all (Optional[bool], optional): Whether to drop the dataset.
Defaults to None.
"""
if delete_all:
self.ds.delete(large_ok=True)
return True
view = None
if ids:
view = self.ds.filter(lambda x: x["ids"].data()["value"] in ids)
ids = list(view.sample_indices)
if filter:
if view is None:
view = self.ds
view = view.filter(partial(dp_filter, filter=filter))
ids = list(view.sample_indices)
with self.ds:
for id in sorted(ids)[::-1]:
self.ds.pop(id)
self.ds.commit(f"deleted {len(ids)} samples", allow_empty=True)
return True
[docs] @classmethod
def force_delete_by_path(cls, path: str) -> None:
"""Force delete dataset by path"""
try:
import deeplake
except ImportError:
raise ValueError(
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/deeplake.html
|
5365811a00e1-13
|
try:
import deeplake
except ImportError:
raise ValueError(
"Could not import deeplake python package. "
"Please install it with `pip install deeplake`."
)
deeplake.delete(path, large_ok=True, force=True)
[docs] def delete_dataset(self) -> None:
"""Delete the collection."""
self.delete(delete_all=True)
[docs] def persist(self) -> None:
"""Persist the collection."""
self.ds.flush()
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/deeplake.html
|
0611fd2391ed-0
|
Source code for langchain.vectorstores.weaviate
"""Wrapper around weaviate vector database."""
from __future__ import annotations
import datetime
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Type
from uuid import uuid4
import numpy as np
from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.utils import get_from_dict_or_env
from langchain.vectorstores.base import VectorStore
from langchain.vectorstores.utils import maximal_marginal_relevance
def _default_schema(index_name: str) -> Dict:
return {
"class": index_name,
"properties": [
{
"name": "text",
"dataType": ["text"],
}
],
}
def _create_weaviate_client(**kwargs: Any) -> Any:
client = kwargs.get("client")
if client is not None:
return client
weaviate_url = get_from_dict_or_env(kwargs, "weaviate_url", "WEAVIATE_URL")
try:
# the weaviate api key param should not be mandatory
weaviate_api_key = get_from_dict_or_env(
kwargs, "weaviate_api_key", "WEAVIATE_API_KEY", None
)
except ValueError:
weaviate_api_key = None
try:
import weaviate
except ImportError:
raise ValueError(
"Could not import weaviate python package. "
"Please install it with `pip instal weaviate-client`"
)
auth = (
weaviate.auth.AuthApiKey(api_key=weaviate_api_key)
if weaviate_api_key is not None
else None
)
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/weaviate.html
|
0611fd2391ed-1
|
if weaviate_api_key is not None
else None
)
client = weaviate.Client(weaviate_url, auth_client_secret=auth)
return client
def _default_score_normalizer(val: float) -> float:
return 1 - 1 / (1 + np.exp(val))
def _json_serializable(value: Any) -> Any:
if isinstance(value, datetime.datetime):
return value.isoformat()
return value
[docs]class Weaviate(VectorStore):
"""Wrapper around Weaviate vector database.
To use, you should have the ``weaviate-client`` python package installed.
Example:
.. code-block:: python
import weaviate
from langchain.vectorstores import Weaviate
client = weaviate.Client(url=os.environ["WEAVIATE_URL"], ...)
weaviate = Weaviate(client, index_name, text_key)
"""
def __init__(
self,
client: Any,
index_name: str,
text_key: str,
embedding: Optional[Embeddings] = None,
attributes: Optional[List[str]] = None,
relevance_score_fn: Optional[
Callable[[float], float]
] = _default_score_normalizer,
by_text: bool = True,
):
"""Initialize with Weaviate client."""
try:
import weaviate
except ImportError:
raise ValueError(
"Could not import weaviate python package. "
"Please install it with `pip install weaviate-client`."
)
if not isinstance(client, weaviate.Client):
raise ValueError(
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/weaviate.html
|
0611fd2391ed-2
|
)
if not isinstance(client, weaviate.Client):
raise ValueError(
f"client should be an instance of weaviate.Client, got {type(client)}"
)
self._client = client
self._index_name = index_name
self._embedding = embedding
self._text_key = text_key
self._query_attrs = [self._text_key]
self._relevance_score_fn = relevance_score_fn
self._by_text = by_text
if attributes is not None:
self._query_attrs.extend(attributes)
[docs] def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> List[str]:
"""Upload texts with metadata (properties) to Weaviate."""
from weaviate.util import get_valid_uuid
ids = []
with self._client.batch as batch:
for i, text in enumerate(texts):
data_properties = {self._text_key: text}
if metadatas is not None:
for key, val in metadatas[i].items():
data_properties[key] = _json_serializable(val)
# If the UUID of one of the objects already exists
# then the existing object will be replaced by the new object.
_id = (
kwargs["uuids"][i] if "uuids" in kwargs else get_valid_uuid(uuid4())
)
if self._embedding is not None:
vector = self._embedding.embed_documents([text])[0]
else:
vector = None
batch.add_data_object(
data_object=data_properties,
class_name=self._index_name,
uuid=_id,
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/weaviate.html
|
0611fd2391ed-3
|
class_name=self._index_name,
uuid=_id,
vector=vector,
)
ids.append(_id)
return ids
[docs] def similarity_search(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Document]:
"""Return docs most similar to query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
Returns:
List of Documents most similar to the query.
"""
if self._by_text:
return self.similarity_search_by_text(query, k, **kwargs)
else:
if self._embedding is None:
raise ValueError(
"_embedding cannot be None for similarity_search when "
"_by_text=False"
)
embedding = self._embedding.embed_query(query)
return self.similarity_search_by_vector(embedding, k, **kwargs)
[docs] def similarity_search_by_text(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Document]:
"""Return docs most similar to query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
Returns:
List of Documents most similar to the query.
"""
content: Dict[str, Any] = {"concepts": [query]}
if kwargs.get("search_distance"):
content["certainty"] = kwargs.get("search_distance")
query_obj = self._client.query.get(self._index_name, self._query_attrs)
if kwargs.get("where_filter"):
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/weaviate.html
|
0611fd2391ed-4
|
if kwargs.get("where_filter"):
query_obj = query_obj.with_where(kwargs.get("where_filter"))
if kwargs.get("additional"):
query_obj = query_obj.with_additional(kwargs.get("additional"))
result = query_obj.with_near_text(content).with_limit(k).do()
if "errors" in result:
raise ValueError(f"Error during query: {result['errors']}")
docs = []
for res in result["data"]["Get"][self._index_name]:
text = res.pop(self._text_key)
docs.append(Document(page_content=text, metadata=res))
return docs
[docs] def similarity_search_by_vector(
self, embedding: List[float], k: int = 4, **kwargs: Any
) -> List[Document]:
"""Look up similar documents by embedding vector in Weaviate."""
vector = {"vector": embedding}
query_obj = self._client.query.get(self._index_name, self._query_attrs)
if kwargs.get("where_filter"):
query_obj = query_obj.with_where(kwargs.get("where_filter"))
if kwargs.get("additional"):
query_obj = query_obj.with_additional(kwargs.get("additional"))
result = query_obj.with_near_vector(vector).with_limit(k).do()
if "errors" in result:
raise ValueError(f"Error during query: {result['errors']}")
docs = []
for res in result["data"]["Get"][self._index_name]:
text = res.pop(self._text_key)
docs.append(Document(page_content=text, metadata=res))
return docs
[docs] def max_marginal_relevance_search(
self,
query: str,
k: int = 4,
fetch_k: int = 20,
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/weaviate.html
|
0611fd2391ed-5
|
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns:
List of Documents selected by maximal marginal relevance.
"""
if self._embedding is not None:
embedding = self._embedding.embed_query(query)
else:
raise ValueError(
"max_marginal_relevance_search requires a suitable Embeddings object"
)
return self.max_marginal_relevance_search_by_vector(
embedding, k=k, fetch_k=fetch_k, lambda_mult=lambda_mult, **kwargs
)
[docs] def max_marginal_relevance_search_by_vector(
self,
embedding: List[float],
k: int = 4,
fetch_k: int = 20,
lambda_mult: float = 0.5,
**kwargs: Any,
) -> List[Document]:
"""Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Args:
embedding: Embedding to look up documents similar to.
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/weaviate.html
|
0611fd2391ed-6
|
Args:
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns:
List of Documents selected by maximal marginal relevance.
"""
vector = {"vector": embedding}
query_obj = self._client.query.get(self._index_name, self._query_attrs)
if kwargs.get("where_filter"):
query_obj = query_obj.with_where(kwargs.get("where_filter"))
results = (
query_obj.with_additional("vector")
.with_near_vector(vector)
.with_limit(fetch_k)
.do()
)
payload = results["data"]["Get"][self._index_name]
embeddings = [result["_additional"]["vector"] for result in payload]
mmr_selected = maximal_marginal_relevance(
np.array(embedding), embeddings, k=k, lambda_mult=lambda_mult
)
docs = []
for idx in mmr_selected:
text = payload[idx].pop(self._text_key)
payload[idx].pop("_additional")
meta = payload[idx]
docs.append(Document(page_content=text, metadata=meta))
return docs
[docs] def similarity_search_with_score(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Tuple[Document, float]]:
if self._embedding is None:
raise ValueError(
"_embedding cannot be None for similarity_search_with_score"
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/weaviate.html
|
0611fd2391ed-7
|
raise ValueError(
"_embedding cannot be None for similarity_search_with_score"
)
content: Dict[str, Any] = {"concepts": [query]}
if kwargs.get("search_distance"):
content["certainty"] = kwargs.get("search_distance")
query_obj = self._client.query.get(self._index_name, self._query_attrs)
if not self._by_text:
embedding = self._embedding.embed_query(query)
vector = {"vector": embedding}
result = (
query_obj.with_near_vector(vector)
.with_limit(k)
.with_additional("vector")
.do()
)
else:
result = (
query_obj.with_near_text(content)
.with_limit(k)
.with_additional("vector")
.do()
)
if "errors" in result:
raise ValueError(f"Error during query: {result['errors']}")
docs_and_scores = []
for res in result["data"]["Get"][self._index_name]:
text = res.pop(self._text_key)
score = np.dot(
res["_additional"]["vector"], self._embedding.embed_query(query)
)
docs_and_scores.append((Document(page_content=text, metadata=res), score))
return docs_and_scores
def _similarity_search_with_relevance_scores(
self,
query: str,
k: int = 4,
**kwargs: Any,
) -> List[Tuple[Document, float]]:
"""Return docs and relevance scores, normalized on a scale from 0 to 1.
0 is dissimilar, 1 is most similar.
"""
if self._relevance_score_fn is None:
raise ValueError(
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/weaviate.html
|
0611fd2391ed-8
|
"""
if self._relevance_score_fn is None:
raise ValueError(
"relevance_score_fn must be provided to"
" Weaviate constructor to normalize scores"
)
docs_and_scores = self.similarity_search_with_score(query, k=k, **kwargs)
return [
(doc, self._relevance_score_fn(score)) for doc, score in docs_and_scores
]
[docs] @classmethod
def from_texts(
cls: Type[Weaviate],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> Weaviate:
"""Construct Weaviate wrapper from raw documents.
This is a user-friendly interface that:
1. Embeds documents.
2. Creates a new index for the embeddings in the Weaviate instance.
3. Adds the documents to the newly created Weaviate index.
This is intended to be a quick way to get started.
Example:
.. code-block:: python
from langchain.vectorstores.weaviate import Weaviate
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
weaviate = Weaviate.from_texts(
texts,
embeddings,
weaviate_url="http://localhost:8080"
)
"""
client = _create_weaviate_client(**kwargs)
from weaviate.util import get_valid_uuid
index_name = kwargs.get("index_name", f"LangChain_{uuid4().hex}")
embeddings = embedding.embed_documents(texts) if embedding else None
text_key = "text"
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/weaviate.html
|
0611fd2391ed-9
|
text_key = "text"
schema = _default_schema(index_name)
attributes = list(metadatas[0].keys()) if metadatas else None
# check whether the index already exists
if not client.schema.contains(schema):
client.schema.create_class(schema)
with client.batch as batch:
for i, text in enumerate(texts):
data_properties = {
text_key: text,
}
if metadatas is not None:
for key in metadatas[i].keys():
data_properties[key] = metadatas[i][key]
# If the UUID of one of the objects already exists
# then the existing objectwill be replaced by the new object.
if "uuids" in kwargs:
_id = kwargs["uuids"][i]
else:
_id = get_valid_uuid(uuid4())
# if an embedding strategy is not provided, we let
# weaviate create the embedding. Note that this will only
# work if weaviate has been installed with a vectorizer module
# like text2vec-contextionary for example
params = {
"uuid": _id,
"data_object": data_properties,
"class_name": index_name,
}
if embeddings is not None:
params["vector"] = embeddings[i]
batch.add_data_object(**params)
batch.flush()
relevance_score_fn = kwargs.get("relevance_score_fn")
by_text: bool = kwargs.get("by_text", False)
return cls(
client,
index_name,
text_key,
embedding=embedding,
attributes=attributes,
relevance_score_fn=relevance_score_fn,
by_text=by_text,
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/weaviate.html
|
0611fd2391ed-10
|
relevance_score_fn=relevance_score_fn,
by_text=by_text,
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/weaviate.html
|
a5ed7845efb6-0
|
Source code for langchain.vectorstores.typesense
"""Wrapper around Typesense vector search"""
from __future__ import annotations
import uuid
from typing import TYPE_CHECKING, Any, Iterable, List, Optional, Tuple, Union
from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.utils import get_from_env
from langchain.vectorstores.base import VectorStore
if TYPE_CHECKING:
from typesense.client import Client
from typesense.collection import Collection
[docs]class Typesense(VectorStore):
"""Wrapper around Typesense vector search.
To use, you should have the ``typesense`` python package installed.
Example:
.. code-block:: python
from langchain.embedding.openai import OpenAIEmbeddings
from langchain.vectorstores import Typesense
import typesense
node = {
"host": "localhost", # For Typesense Cloud use xxx.a1.typesense.net
"port": "8108", # For Typesense Cloud use 443
"protocol": "http" # For Typesense Cloud use https
}
typesense_client = typesense.Client(
{
"nodes": [node],
"api_key": "<API_KEY>",
"connection_timeout_seconds": 2
}
)
typesense_collection_name = "langchain-memory"
embedding = OpenAIEmbeddings()
vectorstore = Typesense(
typesense_client,
typesense_collection_name,
embedding.embed_query,
"text",
)
"""
def __init__(
self,
typesense_client: Client,
embedding: Embeddings,
*,
typesense_collection_name: Optional[str] = None,
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/typesense.html
|
a5ed7845efb6-1
|
*,
typesense_collection_name: Optional[str] = None,
text_key: str = "text",
):
"""Initialize with Typesense client."""
try:
from typesense import Client
except ImportError:
raise ValueError(
"Could not import typesense python package. "
"Please install it with `pip install typesense`."
)
if not isinstance(typesense_client, Client):
raise ValueError(
f"typesense_client should be an instance of typesense.Client, "
f"got {type(typesense_client)}"
)
self._typesense_client = typesense_client
self._embedding = embedding
self._typesense_collection_name = (
typesense_collection_name or f"langchain-{str(uuid.uuid4())}"
)
self._text_key = text_key
@property
def _collection(self) -> Collection:
return self._typesense_client.collections[self._typesense_collection_name]
def _prep_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]],
ids: Optional[List[str]],
) -> List[dict]:
"""Embed and create the documents"""
_ids = ids or (str(uuid.uuid4()) for _ in texts)
_metadatas: Iterable[dict] = metadatas or ({} for _ in texts)
embedded_texts = self._embedding.embed_documents(list(texts))
return [
{"id": _id, "vec": vec, f"{self._text_key}": text, "metadata": metadata}
for _id, vec, text, metadata in zip(_ids, embedded_texts, texts, _metadatas)
]
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/typesense.html
|
a5ed7845efb6-2
|
]
def _create_collection(self, num_dim: int) -> None:
fields = [
{"name": "vec", "type": "float[]", "num_dim": num_dim},
{"name": f"{self._text_key}", "type": "string"},
{"name": ".*", "type": "auto"},
]
self._typesense_client.collections.create(
{"name": self._typesense_collection_name, "fields": fields}
)
[docs] def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embedding and add to the vectorstore.
Args:
texts: Iterable of strings to add to the vectorstore.
metadatas: Optional list of metadatas associated with the texts.
ids: Optional list of ids to associate with the texts.
Returns:
List of ids from adding the texts into the vectorstore.
"""
from typesense.exceptions import ObjectNotFound
docs = self._prep_texts(texts, metadatas, ids)
try:
self._collection.documents.import_(docs, {"action": "upsert"})
except ObjectNotFound:
# Create the collection if it doesn't already exist
self._create_collection(len(docs[0]["vec"]))
self._collection.documents.import_(docs, {"action": "upsert"})
return [doc["id"] for doc in docs]
[docs] def similarity_search_with_score(
self,
query: str,
k: int = 4,
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/typesense.html
|
a5ed7845efb6-3
|
self,
query: str,
k: int = 4,
filter: Optional[str] = "",
) -> List[Tuple[Document, float]]:
"""Return typesense documents most similar to query, along with scores.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter: typesense filter_by expression to filter documents on
Returns:
List of Documents most similar to the query and score for each
"""
embedded_query = [str(x) for x in self._embedding.embed_query(query)]
query_obj = {
"q": "*",
"vector_query": f'vec:([{",".join(embedded_query)}], k:{k})',
"filter_by": filter,
"collection": self._typesense_collection_name,
}
docs = []
response = self._typesense_client.multi_search.perform(
{"searches": [query_obj]}, {}
)
for hit in response["results"][0]["hits"]:
document = hit["document"]
metadata = document["metadata"]
text = document[self._text_key]
score = hit["vector_distance"]
docs.append((Document(page_content=text, metadata=metadata), score))
return docs
[docs] def similarity_search(
self,
query: str,
k: int = 4,
filter: Optional[str] = "",
**kwargs: Any,
) -> List[Document]:
"""Return typesense documents most similar to query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/typesense.html
|
a5ed7845efb6-4
|
k: Number of Documents to return. Defaults to 4.
filter: typesense filter_by expression to filter documents on
Returns:
List of Documents most similar to the query and score for each
"""
docs_and_score = self.similarity_search_with_score(query, k=k, filter=filter)
return [doc for doc, _ in docs_and_score]
[docs] @classmethod
def from_client_params(
cls,
embedding: Embeddings,
*,
host: str = "localhost",
port: Union[str, int] = "8108",
protocol: str = "http",
typesense_api_key: Optional[str] = None,
connection_timeout_seconds: int = 2,
**kwargs: Any,
) -> Typesense:
"""Initialize Typesense directly from client parameters.
Example:
.. code-block:: python
from langchain.embedding.openai import OpenAIEmbeddings
from langchain.vectorstores import Typesense
# Pass in typesense_api_key as kwarg or set env var "TYPESENSE_API_KEY".
vectorstore = Typesense(
OpenAIEmbeddings(),
host="localhost",
port="8108",
protocol="http",
typesense_collection_name="langchain-memory",
)
"""
try:
from typesense import Client
except ImportError:
raise ValueError(
"Could not import typesense python package. "
"Please install it with `pip install typesense`."
)
node = {
"host": host,
"port": str(port),
"protocol": protocol,
}
typesense_api_key = typesense_api_key or get_from_env(
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/typesense.html
|
a5ed7845efb6-5
|
}
typesense_api_key = typesense_api_key or get_from_env(
"typesense_api_key", "TYPESENSE_API_KEY"
)
client_config = {
"nodes": [node],
"api_key": typesense_api_key,
"connection_timeout_seconds": connection_timeout_seconds,
}
return cls(Client(client_config), embedding, **kwargs)
[docs] @classmethod
def from_texts(
cls,
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
typesense_client: Optional[Client] = None,
typesense_client_params: Optional[dict] = None,
typesense_collection_name: Optional[str] = None,
text_key: str = "text",
**kwargs: Any,
) -> Typesense:
"""Construct Typesense wrapper from raw text."""
if typesense_client:
vectorstore = cls(typesense_client, embedding, **kwargs)
elif typesense_client_params:
vectorstore = cls.from_client_params(
embedding, **typesense_client_params, **kwargs
)
else:
raise ValueError(
"Must specify one of typesense_client or typesense_client_params."
)
vectorstore.add_texts(texts, metadatas=metadatas, ids=ids)
return vectorstore
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/typesense.html
|
579435eb0d5f-0
|
Source code for langchain.vectorstores.analyticdb
"""VectorStore wrapper around a Postgres/PGVector database."""
from __future__ import annotations
import logging
import uuid
from typing import Any, Dict, Iterable, List, Optional, Tuple
import sqlalchemy
from sqlalchemy import REAL, Index
from sqlalchemy.dialects.postgresql import ARRAY, JSON, UUID
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import Session, relationship
from sqlalchemy.sql.expression import func
from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.utils import get_from_dict_or_env
from langchain.vectorstores.base import VectorStore
Base = declarative_base() # type: Any
ADA_TOKEN_COUNT = 1536
_LANGCHAIN_DEFAULT_COLLECTION_NAME = "langchain"
class BaseModel(Base):
__abstract__ = True
uuid = sqlalchemy.Column(UUID(as_uuid=True), primary_key=True, default=uuid.uuid4)
class CollectionStore(BaseModel):
__tablename__ = "langchain_pg_collection"
name = sqlalchemy.Column(sqlalchemy.String)
cmetadata = sqlalchemy.Column(JSON)
embeddings = relationship(
"EmbeddingStore",
back_populates="collection",
passive_deletes=True,
)
@classmethod
def get_by_name(cls, session: Session, name: str) -> Optional["CollectionStore"]:
return session.query(cls).filter(cls.name == name).first() # type: ignore
@classmethod
def get_or_create(
cls,
session: Session,
name: str,
cmetadata: Optional[dict] = None,
) -> Tuple["CollectionStore", bool]:
"""
Get or create a collection.
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/analyticdb.html
|
579435eb0d5f-1
|
"""
Get or create a collection.
Returns [Collection, bool] where the bool is True if the collection was created.
"""
created = False
collection = cls.get_by_name(session, name)
if collection:
return collection, created
collection = cls(name=name, cmetadata=cmetadata)
session.add(collection)
session.commit()
created = True
return collection, created
class EmbeddingStore(BaseModel):
__tablename__ = "langchain_pg_embedding"
collection_id = sqlalchemy.Column(
UUID(as_uuid=True),
sqlalchemy.ForeignKey(
f"{CollectionStore.__tablename__}.uuid",
ondelete="CASCADE",
),
)
collection = relationship(CollectionStore, back_populates="embeddings")
embedding: sqlalchemy.Column = sqlalchemy.Column(ARRAY(REAL))
document = sqlalchemy.Column(sqlalchemy.String, nullable=True)
cmetadata = sqlalchemy.Column(JSON, nullable=True)
# custom_id : any user defined id
custom_id = sqlalchemy.Column(sqlalchemy.String, nullable=True)
# The following line creates an index named 'langchain_pg_embedding_vector_idx'
langchain_pg_embedding_vector_idx = Index(
"langchain_pg_embedding_vector_idx",
embedding,
postgresql_using="ann",
postgresql_with={
"distancemeasure": "L2",
"dim": 1536,
"pq_segments": 64,
"hnsw_m": 100,
"pq_centers": 2048,
},
)
class QueryResult:
EmbeddingStore: EmbeddingStore
distance: float
[docs]class AnalyticDB(VectorStore):
"""
VectorStore implementation using AnalyticDB.
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/analyticdb.html
|
579435eb0d5f-2
|
"""
VectorStore implementation using AnalyticDB.
AnalyticDB is a distributed full PostgresSQL syntax cloud-native database.
- `connection_string` is a postgres connection string.
- `embedding_function` any embedding function implementing
`langchain.embeddings.base.Embeddings` interface.
- `collection_name` is the name of the collection to use. (default: langchain)
- NOTE: This is not the name of the table, but the name of the collection.
The tables will be created when initializing the store (if not exists)
So, make sure the user has the right permissions to create tables.
- `pre_delete_collection` if True, will delete the collection if it exists.
(default: False)
- Useful for testing.
"""
def __init__(
self,
connection_string: str,
embedding_function: Embeddings,
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
collection_metadata: Optional[dict] = None,
pre_delete_collection: bool = False,
logger: Optional[logging.Logger] = None,
) -> None:
self.connection_string = connection_string
self.embedding_function = embedding_function
self.collection_name = collection_name
self.collection_metadata = collection_metadata
self.pre_delete_collection = pre_delete_collection
self.logger = logger or logging.getLogger(__name__)
self.__post_init__()
def __post_init__(
self,
) -> None:
"""
Initialize the store.
"""
self._conn = self.connect()
self.create_tables_if_not_exists()
self.create_collection()
[docs] def connect(self) -> sqlalchemy.engine.Connection:
engine = sqlalchemy.create_engine(self.connection_string)
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/analyticdb.html
|
579435eb0d5f-3
|
engine = sqlalchemy.create_engine(self.connection_string)
conn = engine.connect()
return conn
[docs] def create_tables_if_not_exists(self) -> None:
Base.metadata.create_all(self._conn)
[docs] def drop_tables(self) -> None:
Base.metadata.drop_all(self._conn)
[docs] def create_collection(self) -> None:
if self.pre_delete_collection:
self.delete_collection()
with Session(self._conn) as session:
CollectionStore.get_or_create(
session, self.collection_name, cmetadata=self.collection_metadata
)
[docs] def delete_collection(self) -> None:
self.logger.debug("Trying to delete collection")
with Session(self._conn) as session:
collection = self.get_collection(session)
if not collection:
self.logger.error("Collection not found")
return
session.delete(collection)
session.commit()
[docs] def get_collection(self, session: Session) -> Optional["CollectionStore"]:
return CollectionStore.get_by_name(session, self.collection_name)
[docs] def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embeddings and add to the vectorstore.
Args:
texts: Iterable of strings to add to the vectorstore.
metadatas: Optional list of metadatas associated with the texts.
kwargs: vectorstore specific parameters
Returns:
List of ids from adding the texts into the vectorstore.
"""
if ids is None:
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/analyticdb.html
|
579435eb0d5f-4
|
"""
if ids is None:
ids = [str(uuid.uuid1()) for _ in texts]
embeddings = self.embedding_function.embed_documents(list(texts))
if not metadatas:
metadatas = [{} for _ in texts]
with Session(self._conn) as session:
collection = self.get_collection(session)
if not collection:
raise ValueError("Collection not found")
for text, metadata, embedding, id in zip(texts, metadatas, embeddings, ids):
embedding_store = EmbeddingStore(
embedding=embedding,
document=text,
cmetadata=metadata,
custom_id=id,
)
collection.embeddings.append(embedding_store)
session.add(embedding_store)
session.commit()
return ids
[docs] def similarity_search(
self,
query: str,
k: int = 4,
filter: Optional[dict] = None,
**kwargs: Any,
) -> List[Document]:
"""Run similarity search with AnalyticDB with distance.
Args:
query (str): Query text to search for.
k (int): Number of results to return. Defaults to 4.
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
Returns:
List of Documents most similar to the query.
"""
embedding = self.embedding_function.embed_query(text=query)
return self.similarity_search_by_vector(
embedding=embedding,
k=k,
filter=filter,
)
[docs] def similarity_search_with_score(
self,
query: str,
k: int = 4,
filter: Optional[dict] = None,
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/analyticdb.html
|
579435eb0d5f-5
|
k: int = 4,
filter: Optional[dict] = None,
) -> List[Tuple[Document, float]]:
"""Return docs most similar to query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
Returns:
List of Documents most similar to the query and score for each
"""
embedding = self.embedding_function.embed_query(query)
docs = self.similarity_search_with_score_by_vector(
embedding=embedding, k=k, filter=filter
)
return docs
[docs] def similarity_search_with_score_by_vector(
self,
embedding: List[float],
k: int = 4,
filter: Optional[dict] = None,
) -> List[Tuple[Document, float]]:
with Session(self._conn) as session:
collection = self.get_collection(session)
if not collection:
raise ValueError("Collection not found")
filter_by = EmbeddingStore.collection_id == collection.uuid
if filter is not None:
filter_clauses = []
for key, value in filter.items():
filter_by_metadata = EmbeddingStore.cmetadata[key].astext == str(value)
filter_clauses.append(filter_by_metadata)
filter_by = sqlalchemy.and_(filter_by, *filter_clauses)
results: List[QueryResult] = (
session.query(
EmbeddingStore,
func.l2_distance(EmbeddingStore.embedding, embedding).label("distance"),
)
.filter(filter_by)
.order_by(EmbeddingStore.embedding.op("<->")(embedding))
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/analyticdb.html
|
579435eb0d5f-6
|
.order_by(EmbeddingStore.embedding.op("<->")(embedding))
.join(
CollectionStore,
EmbeddingStore.collection_id == CollectionStore.uuid,
)
.limit(k)
.all()
)
docs = [
(
Document(
page_content=result.EmbeddingStore.document,
metadata=result.EmbeddingStore.cmetadata,
),
result.distance if self.embedding_function is not None else None,
)
for result in results
]
return docs
[docs] def similarity_search_by_vector(
self,
embedding: List[float],
k: int = 4,
filter: Optional[dict] = None,
**kwargs: Any,
) -> List[Document]:
"""Return docs most similar to embedding vector.
Args:
embedding: Embedding to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
Returns:
List of Documents most similar to the query vector.
"""
docs_and_scores = self.similarity_search_with_score_by_vector(
embedding=embedding, k=k, filter=filter
)
return [doc for doc, _ in docs_and_scores]
[docs] @classmethod
def from_texts(
cls,
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
ids: Optional[List[str]] = None,
pre_delete_collection: bool = False,
**kwargs: Any,
) -> AnalyticDB:
"""
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/analyticdb.html
|
579435eb0d5f-7
|
**kwargs: Any,
) -> AnalyticDB:
"""
Return VectorStore initialized from texts and embeddings.
Postgres connection string is required
Either pass it as a parameter
or set the PGVECTOR_CONNECTION_STRING environment variable.
"""
connection_string = cls.get_connection_string(kwargs)
store = cls(
connection_string=connection_string,
collection_name=collection_name,
embedding_function=embedding,
pre_delete_collection=pre_delete_collection,
)
store.add_texts(texts=texts, metadatas=metadatas, ids=ids, **kwargs)
return store
[docs] @classmethod
def get_connection_string(cls, kwargs: Dict[str, Any]) -> str:
connection_string: str = get_from_dict_or_env(
data=kwargs,
key="connection_string",
env_key="PGVECTOR_CONNECTION_STRING",
)
if not connection_string:
raise ValueError(
"Postgres connection string is required"
"Either pass it as a parameter"
"or set the PGVECTOR_CONNECTION_STRING environment variable."
)
return connection_string
[docs] @classmethod
def from_documents(
cls,
documents: List[Document],
embedding: Embeddings,
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
ids: Optional[List[str]] = None,
pre_delete_collection: bool = False,
**kwargs: Any,
) -> AnalyticDB:
"""
Return VectorStore initialized from documents and embeddings.
Postgres connection string is required
Either pass it as a parameter
or set the PGVECTOR_CONNECTION_STRING environment variable.
"""
texts = [d.page_content for d in documents]
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/analyticdb.html
|
579435eb0d5f-8
|
"""
texts = [d.page_content for d in documents]
metadatas = [d.metadata for d in documents]
connection_string = cls.get_connection_string(kwargs)
kwargs["connection_string"] = connection_string
return cls.from_texts(
texts=texts,
pre_delete_collection=pre_delete_collection,
embedding=embedding,
metadatas=metadatas,
ids=ids,
collection_name=collection_name,
**kwargs,
)
[docs] @classmethod
def connection_string_from_db_params(
cls,
driver: str,
host: str,
port: int,
database: str,
user: str,
password: str,
) -> str:
"""Return connection string from database parameters."""
return f"postgresql+{driver}://{user}:{password}@{host}:{port}/{database}"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/analyticdb.html
|
45a2f772cc7f-0
|
Source code for langchain.vectorstores.elastic_vector_search
"""Wrapper around Elasticsearch vector database."""
from __future__ import annotations
import uuid
from abc import ABC
from typing import Any, Dict, Iterable, List, Optional, Tuple
from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.utils import get_from_env
from langchain.vectorstores.base import VectorStore
def _default_text_mapping(dim: int) -> Dict:
return {
"properties": {
"text": {"type": "text"},
"vector": {"type": "dense_vector", "dims": dim},
}
}
def _default_script_query(query_vector: List[float], filter: Optional[dict]) -> Dict:
if filter:
((key, value),) = filter.items()
filter = {"match": {f"metadata.{key}.keyword": f"{value}"}}
else:
filter = {"match_all": {}}
return {
"script_score": {
"query": filter,
"script": {
"source": "cosineSimilarity(params.query_vector, 'vector') + 1.0",
"params": {"query_vector": query_vector},
},
}
}
# ElasticVectorSearch is a concrete implementation of the abstract base class
# VectorStore, which defines a common interface for all vector database
# implementations. By inheriting from the ABC class, ElasticVectorSearch can be
# defined as an abstract base class itself, allowing the creation of subclasses with
# their own specific implementations. If you plan to subclass ElasticVectorSearch,
# you can inherit from it and define your own implementation of the necessary methods
# and attributes.
[docs]class ElasticVectorSearch(VectorStore, ABC):
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/elastic_vector_search.html
|
45a2f772cc7f-1
|
# and attributes.
[docs]class ElasticVectorSearch(VectorStore, ABC):
"""Wrapper around Elasticsearch as a vector database.
To connect to an Elasticsearch instance that does not require
login credentials, pass the Elasticsearch URL and index name along with the
embedding object to the constructor.
Example:
.. code-block:: python
from langchain import ElasticVectorSearch
from langchain.embeddings import OpenAIEmbeddings
embedding = OpenAIEmbeddings()
elastic_vector_search = ElasticVectorSearch(
elasticsearch_url="http://localhost:9200",
index_name="test_index",
embedding=embedding
)
To connect to an Elasticsearch instance that requires login credentials,
including Elastic Cloud, use the Elasticsearch URL format
https://username:password@es_host:9243. For example, to connect to Elastic
Cloud, create the Elasticsearch URL with the required authentication details and
pass it to the ElasticVectorSearch constructor as the named parameter
elasticsearch_url.
You can obtain your Elastic Cloud URL and login credentials by logging in to the
Elastic Cloud console at https://cloud.elastic.co, selecting your deployment, and
navigating to the "Deployments" page.
To obtain your Elastic Cloud password for the default "elastic" user:
1. Log in to the Elastic Cloud console at https://cloud.elastic.co
2. Go to "Security" > "Users"
3. Locate the "elastic" user and click "Edit"
4. Click "Reset password"
5. Follow the prompts to reset the password
The format for Elastic Cloud URLs is
https://username:password@cluster_id.region_id.gcp.cloud.es.io:9243.
Example:
.. code-block:: python
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/elastic_vector_search.html
|
45a2f772cc7f-2
|
Example:
.. code-block:: python
from langchain import ElasticVectorSearch
from langchain.embeddings import OpenAIEmbeddings
embedding = OpenAIEmbeddings()
elastic_host = "cluster_id.region_id.gcp.cloud.es.io"
elasticsearch_url = f"https://username:password@{elastic_host}:9243"
elastic_vector_search = ElasticVectorSearch(
elasticsearch_url=elasticsearch_url,
index_name="test_index",
embedding=embedding
)
Args:
elasticsearch_url (str): The URL for the Elasticsearch instance.
index_name (str): The name of the Elasticsearch index for the embeddings.
embedding (Embeddings): An object that provides the ability to embed text.
It should be an instance of a class that subclasses the Embeddings
abstract base class, such as OpenAIEmbeddings()
Raises:
ValueError: If the elasticsearch python package is not installed.
"""
def __init__(
self,
elasticsearch_url: str,
index_name: str,
embedding: Embeddings,
*,
ssl_verify: Optional[Dict[str, Any]] = None,
):
"""Initialize with necessary components."""
try:
import elasticsearch
except ImportError:
raise ImportError(
"Could not import elasticsearch python package. "
"Please install it with `pip install elasticsearch`."
)
self.embedding = embedding
self.index_name = index_name
_ssl_verify = ssl_verify or {}
try:
self.client = elasticsearch.Elasticsearch(elasticsearch_url, **_ssl_verify)
except ValueError as e:
raise ValueError(
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/elastic_vector_search.html
|
45a2f772cc7f-3
|
except ValueError as e:
raise ValueError(
f"Your elasticsearch client string is mis-formatted. Got error: {e} "
)
[docs] def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
refresh_indices: bool = True,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embeddings and add to the vectorstore.
Args:
texts: Iterable of strings to add to the vectorstore.
metadatas: Optional list of metadatas associated with the texts.
refresh_indices: bool to refresh ElasticSearch indices
Returns:
List of ids from adding the texts into the vectorstore.
"""
try:
from elasticsearch.exceptions import NotFoundError
from elasticsearch.helpers import bulk
except ImportError:
raise ImportError(
"Could not import elasticsearch python package. "
"Please install it with `pip install elasticsearch`."
)
requests = []
ids = []
embeddings = self.embedding.embed_documents(list(texts))
dim = len(embeddings[0])
mapping = _default_text_mapping(dim)
# check to see if the index already exists
try:
self.client.indices.get(index=self.index_name)
except NotFoundError:
# TODO would be nice to create index before embedding,
# just to save expensive steps for last
self.client.indices.create(index=self.index_name, mappings=mapping)
for i, text in enumerate(texts):
metadata = metadatas[i] if metadatas else {}
_id = str(uuid.uuid4())
request = {
"_op_type": "index",
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/elastic_vector_search.html
|
45a2f772cc7f-4
|
request = {
"_op_type": "index",
"_index": self.index_name,
"vector": embeddings[i],
"text": text,
"metadata": metadata,
"_id": _id,
}
ids.append(_id)
requests.append(request)
bulk(self.client, requests)
if refresh_indices:
self.client.indices.refresh(index=self.index_name)
return ids
[docs] def similarity_search(
self, query: str, k: int = 4, filter: Optional[dict] = None, **kwargs: Any
) -> List[Document]:
"""Return docs most similar to query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
Returns:
List of Documents most similar to the query.
"""
docs_and_scores = self.similarity_search_with_score(query, k, filter=filter)
documents = [d[0] for d in docs_and_scores]
return documents
[docs] def similarity_search_with_score(
self, query: str, k: int = 4, filter: Optional[dict] = None, **kwargs: Any
) -> List[Tuple[Document, float]]:
"""Return docs most similar to query.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
Returns:
List of Documents most similar to the query.
"""
embedding = self.embedding.embed_query(query)
script_query = _default_script_query(embedding, filter)
response = self.client.search(index=self.index_name, query=script_query, size=k)
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/elastic_vector_search.html
|
45a2f772cc7f-5
|
response = self.client.search(index=self.index_name, query=script_query, size=k)
hits = [hit for hit in response["hits"]["hits"]]
docs_and_scores = [
(
Document(
page_content=hit["_source"]["text"],
metadata=hit["_source"]["metadata"],
),
hit["_score"],
)
for hit in hits
]
return docs_and_scores
[docs] @classmethod
def from_texts(
cls,
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
elasticsearch_url: Optional[str] = None,
index_name: Optional[str] = None,
refresh_indices: bool = True,
**kwargs: Any,
) -> ElasticVectorSearch:
"""Construct ElasticVectorSearch wrapper from raw documents.
This is a user-friendly interface that:
1. Embeds documents.
2. Creates a new index for the embeddings in the Elasticsearch instance.
3. Adds the documents to the newly created Elasticsearch index.
This is intended to be a quick way to get started.
Example:
.. code-block:: python
from langchain import ElasticVectorSearch
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
elastic_vector_search = ElasticVectorSearch.from_texts(
texts,
embeddings,
elasticsearch_url="http://localhost:9200"
)
"""
elasticsearch_url = elasticsearch_url or get_from_env(
"elasticsearch_url", "ELASTICSEARCH_URL"
)
index_name = index_name or uuid.uuid4().hex
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/elastic_vector_search.html
|
45a2f772cc7f-6
|
)
index_name = index_name or uuid.uuid4().hex
vectorsearch = cls(elasticsearch_url, index_name, embedding, **kwargs)
vectorsearch.add_texts(
texts, metadatas=metadatas, refresh_indices=refresh_indices
)
return vectorsearch
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/elastic_vector_search.html
|
ba7f898df421-0
|
Source code for langchain.vectorstores.pinecone
"""Wrapper around Pinecone vector database."""
from __future__ import annotations
import logging
import uuid
from typing import Any, Callable, Iterable, List, Optional, Tuple
from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.vectorstores.base import VectorStore
logger = logging.getLogger(__name__)
[docs]class Pinecone(VectorStore):
"""Wrapper around Pinecone vector database.
To use, you should have the ``pinecone-client`` python package installed.
Example:
.. code-block:: python
from langchain.vectorstores import Pinecone
from langchain.embeddings.openai import OpenAIEmbeddings
import pinecone
# The environment should be the one specified next to the API key
# in your Pinecone console
pinecone.init(api_key="***", environment="...")
index = pinecone.Index("langchain-demo")
embeddings = OpenAIEmbeddings()
vectorstore = Pinecone(index, embeddings.embed_query, "text")
"""
def __init__(
self,
index: Any,
embedding_function: Callable,
text_key: str,
namespace: Optional[str] = None,
):
"""Initialize with Pinecone client."""
try:
import pinecone
except ImportError:
raise ValueError(
"Could not import pinecone python package. "
"Please install it with `pip install pinecone-client`."
)
if not isinstance(index, pinecone.index.Index):
raise ValueError(
f"client should be an instance of pinecone.index.Index, "
f"got {type(index)}"
)
self._index = index
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/pinecone.html
|
ba7f898df421-1
|
f"got {type(index)}"
)
self._index = index
self._embedding_function = embedding_function
self._text_key = text_key
self._namespace = namespace
[docs] def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
namespace: Optional[str] = None,
batch_size: int = 32,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embeddings and add to the vectorstore.
Args:
texts: Iterable of strings to add to the vectorstore.
metadatas: Optional list of metadatas associated with the texts.
ids: Optional list of ids to associate with the texts.
namespace: Optional pinecone namespace to add the texts to.
Returns:
List of ids from adding the texts into the vectorstore.
"""
if namespace is None:
namespace = self._namespace
# Embed and create the documents
docs = []
ids = ids or [str(uuid.uuid4()) for _ in texts]
for i, text in enumerate(texts):
embedding = self._embedding_function(text)
metadata = metadatas[i] if metadatas else {}
metadata[self._text_key] = text
docs.append((ids[i], embedding, metadata))
# upsert to Pinecone
self._index.upsert(vectors=docs, namespace=namespace, batch_size=batch_size)
return ids
[docs] def similarity_search_with_score(
self,
query: str,
k: int = 4,
filter: Optional[dict] = None,
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/pinecone.html
|
ba7f898df421-2
|
k: int = 4,
filter: Optional[dict] = None,
namespace: Optional[str] = None,
) -> List[Tuple[Document, float]]:
"""Return pinecone documents most similar to query, along with scores.
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter: Dictionary of argument(s) to filter on metadata
namespace: Namespace to search in. Default will search in '' namespace.
Returns:
List of Documents most similar to the query and score for each
"""
if namespace is None:
namespace = self._namespace
query_obj = self._embedding_function(query)
docs = []
results = self._index.query(
[query_obj],
top_k=k,
include_metadata=True,
namespace=namespace,
filter=filter,
)
for res in results["matches"]:
metadata = res["metadata"]
if self._text_key in metadata:
text = metadata.pop(self._text_key)
score = res["score"]
docs.append((Document(page_content=text, metadata=metadata), score))
else:
logger.warning(
f"Found document with no `{self._text_key}` key. Skipping."
)
return docs
[docs] def similarity_search(
self,
query: str,
k: int = 4,
filter: Optional[dict] = None,
namespace: Optional[str] = None,
**kwargs: Any,
) -> List[Document]:
"""Return pinecone documents most similar to query.
Args:
query: Text to look up documents similar to.
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/pinecone.html
|
ba7f898df421-3
|
Args:
query: Text to look up documents similar to.
k: Number of Documents to return. Defaults to 4.
filter: Dictionary of argument(s) to filter on metadata
namespace: Namespace to search in. Default will search in '' namespace.
Returns:
List of Documents most similar to the query and score for each
"""
docs_and_scores = self.similarity_search_with_score(
query, k=k, filter=filter, namespace=namespace, **kwargs
)
return [doc for doc, _ in docs_and_scores]
[docs] @classmethod
def from_texts(
cls,
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
ids: Optional[List[str]] = None,
batch_size: int = 32,
text_key: str = "text",
index_name: Optional[str] = None,
namespace: Optional[str] = None,
**kwargs: Any,
) -> Pinecone:
"""Construct Pinecone wrapper from raw documents.
This is a user friendly interface that:
1. Embeds documents.
2. Adds the documents to a provided Pinecone index
This is intended to be a quick way to get started.
Example:
.. code-block:: python
from langchain import Pinecone
from langchain.embeddings import OpenAIEmbeddings
import pinecone
# The environment should be the one specified next to the API key
# in your Pinecone console
pinecone.init(api_key="***", environment="...")
embeddings = OpenAIEmbeddings()
pinecone = Pinecone.from_texts(
texts,
embeddings,
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/pinecone.html
|
ba7f898df421-4
|
pinecone = Pinecone.from_texts(
texts,
embeddings,
index_name="langchain-demo"
)
"""
try:
import pinecone
except ImportError:
raise ValueError(
"Could not import pinecone python package. "
"Please install it with `pip install pinecone-client`."
)
indexes = pinecone.list_indexes() # checks if provided index exists
if index_name in indexes:
index = pinecone.Index(index_name)
elif len(indexes) == 0:
raise ValueError(
"No active indexes found in your Pinecone project, "
"are you sure you're using the right API key and environment?"
)
else:
raise ValueError(
f"Index '{index_name}' not found in your Pinecone project. "
f"Did you mean one of the following indexes: {', '.join(indexes)}"
)
for i in range(0, len(texts), batch_size):
# set end position of batch
i_end = min(i + batch_size, len(texts))
# get batch of texts and ids
lines_batch = texts[i:i_end]
# create ids if not provided
if ids:
ids_batch = ids[i:i_end]
else:
ids_batch = [str(uuid.uuid4()) for n in range(i, i_end)]
# create embeddings
embeds = embedding.embed_documents(lines_batch)
# prep metadata and upsert batch
if metadatas:
metadata = metadatas[i:i_end]
else:
metadata = [{} for _ in range(i, i_end)]
for j, line in enumerate(lines_batch):
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/pinecone.html
|
ba7f898df421-5
|
for j, line in enumerate(lines_batch):
metadata[j][text_key] = line
to_upsert = zip(ids_batch, embeds, metadata)
# upsert to Pinecone
index.upsert(vectors=list(to_upsert), namespace=namespace)
return cls(index, embedding.embed_query, text_key, namespace)
[docs] @classmethod
def from_existing_index(
cls,
index_name: str,
embedding: Embeddings,
text_key: str = "text",
namespace: Optional[str] = None,
) -> Pinecone:
"""Load pinecone vectorstore from index name."""
try:
import pinecone
except ImportError:
raise ValueError(
"Could not import pinecone python package. "
"Please install it with `pip install pinecone-client`."
)
return cls(
pinecone.Index(index_name), embedding.embed_query, text_key, namespace
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/pinecone.html
|
54867ed13540-0
|
Source code for langchain.vectorstores.myscale
"""Wrapper around MyScale vector database."""
from __future__ import annotations
import json
import logging
from hashlib import sha1
from threading import Thread
from typing import Any, Dict, Iterable, List, Optional, Tuple
from pydantic import BaseSettings
from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.vectorstores.base import VectorStore
logger = logging.getLogger()
def has_mul_sub_str(s: str, *args: Any) -> bool:
for a in args:
if a not in s:
return False
return True
[docs]class MyScaleSettings(BaseSettings):
"""MyScale Client Configuration
Attribute:
myscale_host (str) : An URL to connect to MyScale backend.
Defaults to 'localhost'.
myscale_port (int) : URL port to connect with HTTP. Defaults to 8443.
username (str) : Usernamed to login. Defaults to None.
password (str) : Password to login. Defaults to None.
index_type (str): index type string.
index_param (dict): index build parameter.
database (str) : Database name to find the table. Defaults to 'default'.
table (str) : Table name to operate on.
Defaults to 'vector_table'.
metric (str) : Metric to compute distance,
supported are ('l2', 'cosine', 'ip'). Defaults to 'cosine'.
column_map (Dict) : Column type map to project column name onto langchain
semantics. Must have keys: `text`, `id`, `vector`,
must be same size to number of columns. For example:
.. code-block:: python
{
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/myscale.html
|
54867ed13540-1
|
.. code-block:: python
{
'id': 'text_id',
'vector': 'text_embedding',
'text': 'text_plain',
'metadata': 'metadata_dictionary_in_json',
}
Defaults to identity map.
"""
host: str = "localhost"
port: int = 8443
username: Optional[str] = None
password: Optional[str] = None
index_type: str = "IVFFLAT"
index_param: Optional[Dict[str, str]] = None
column_map: Dict[str, str] = {
"id": "id",
"text": "text",
"vector": "vector",
"metadata": "metadata",
}
database: str = "default"
table: str = "langchain"
metric: str = "cosine"
def __getitem__(self, item: str) -> Any:
return getattr(self, item)
class Config:
env_file = ".env"
env_prefix = "myscale_"
env_file_encoding = "utf-8"
[docs]class MyScale(VectorStore):
"""Wrapper around MyScale vector database
You need a `clickhouse-connect` python package, and a valid account
to connect to MyScale.
MyScale can not only search with simple vector indexes,
it also supports complex query with multiple conditions,
constraints and even sub-queries.
For more information, please visit
[myscale official site](https://docs.myscale.com/en/overview/)
"""
def __init__(
self,
embedding: Embeddings,
config: Optional[MyScaleSettings] = None,
**kwargs: Any,
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/myscale.html
|
54867ed13540-2
|
config: Optional[MyScaleSettings] = None,
**kwargs: Any,
) -> None:
"""MyScale Wrapper to LangChain
embedding_function (Embeddings):
config (MyScaleSettings): Configuration to MyScale Client
Other keyword arguments will pass into
[clickhouse-connect](https://docs.myscale.com/)
"""
try:
from clickhouse_connect import get_client
except ImportError:
raise ValueError(
"Could not import clickhouse connect python package. "
"Please install it with `pip install clickhouse-connect`."
)
try:
from tqdm import tqdm
self.pgbar = tqdm
except ImportError:
# Just in case if tqdm is not installed
self.pgbar = lambda x: x
super().__init__()
if config is not None:
self.config = config
else:
self.config = MyScaleSettings()
assert self.config
assert self.config.host and self.config.port
assert (
self.config.column_map
and self.config.database
and self.config.table
and self.config.metric
)
for k in ["id", "vector", "text", "metadata"]:
assert k in self.config.column_map
assert self.config.metric in ["ip", "cosine", "l2"]
# initialize the schema
dim = len(embedding.embed_query("try this out"))
index_params = (
", " + ",".join([f"'{k}={v}'" for k, v in self.config.index_param.items()])
if self.config.index_param
else ""
)
schema_ = f"""
CREATE TABLE IF NOT EXISTS {self.config.database}.{self.config.table}(
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/myscale.html
|
54867ed13540-3
|
CREATE TABLE IF NOT EXISTS {self.config.database}.{self.config.table}(
{self.config.column_map['id']} String,
{self.config.column_map['text']} String,
{self.config.column_map['vector']} Array(Float32),
{self.config.column_map['metadata']} JSON,
CONSTRAINT cons_vec_len CHECK length(\
{self.config.column_map['vector']}) = {dim},
VECTOR INDEX vidx {self.config.column_map['vector']} \
TYPE {self.config.index_type}(\
'metric_type={self.config.metric}'{index_params})
) ENGINE = MergeTree ORDER BY {self.config.column_map['id']}
"""
self.dim = dim
self.BS = "\\"
self.must_escape = ("\\", "'")
self.embedding_function = embedding.embed_query
self.dist_order = "ASC" if self.config.metric in ["cosine", "l2"] else "DESC"
# Create a connection to myscale
self.client = get_client(
host=self.config.host,
port=self.config.port,
username=self.config.username,
password=self.config.password,
**kwargs,
)
self.client.command("SET allow_experimental_object_type=1")
self.client.command(schema_)
[docs] def escape_str(self, value: str) -> str:
return "".join(f"{self.BS}{c}" if c in self.must_escape else c for c in value)
def _build_istr(self, transac: Iterable, column_names: Iterable[str]) -> str:
ks = ",".join(column_names)
_data = []
for n in transac:
n = ",".join([f"'{self.escape_str(str(_n))}'" for _n in n])
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/myscale.html
|
54867ed13540-4
|
_data.append(f"({n})")
i_str = f"""
INSERT INTO TABLE
{self.config.database}.{self.config.table}({ks})
VALUES
{','.join(_data)}
"""
return i_str
def _insert(self, transac: Iterable, column_names: Iterable[str]) -> None:
_i_str = self._build_istr(transac, column_names)
self.client.command(_i_str)
[docs] def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
batch_size: int = 32,
ids: Optional[Iterable[str]] = None,
**kwargs: Any,
) -> List[str]:
"""Run more texts through the embeddings and add to the vectorstore.
Args:
texts: Iterable of strings to add to the vectorstore.
ids: Optional list of ids to associate with the texts.
batch_size: Batch size of insertion
metadata: Optional column data to be inserted
Returns:
List of ids from adding the texts into the vectorstore.
"""
# Embed and create the documents
ids = ids or [sha1(t.encode("utf-8")).hexdigest() for t in texts]
colmap_ = self.config.column_map
transac = []
column_names = {
colmap_["id"]: ids,
colmap_["text"]: texts,
colmap_["vector"]: map(self.embedding_function, texts),
}
metadatas = metadatas or [{} for _ in texts]
column_names[colmap_["metadata"]] = map(json.dumps, metadatas)
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/myscale.html
|
54867ed13540-5
|
column_names[colmap_["metadata"]] = map(json.dumps, metadatas)
assert len(set(colmap_) - set(column_names)) >= 0
keys, values = zip(*column_names.items())
try:
t = None
for v in self.pgbar(
zip(*values), desc="Inserting data...", total=len(metadatas)
):
assert len(v[keys.index(self.config.column_map["vector"])]) == self.dim
transac.append(v)
if len(transac) == batch_size:
if t:
t.join()
t = Thread(target=self._insert, args=[transac, keys])
t.start()
transac = []
if len(transac) > 0:
if t:
t.join()
self._insert(transac, keys)
return [i for i in ids]
except Exception as e:
logger.error(f"\033[91m\033[1m{type(e)}\033[0m \033[95m{str(e)}\033[0m")
return []
[docs] @classmethod
def from_texts(
cls,
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[Dict[Any, Any]]] = None,
config: Optional[MyScaleSettings] = None,
text_ids: Optional[Iterable[str]] = None,
batch_size: int = 32,
**kwargs: Any,
) -> MyScale:
"""Create Myscale wrapper with existing texts
Args:
embedding_function (Embeddings): Function to extract text embedding
texts (Iterable[str]): List or tuple of strings to be added
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/myscale.html
|
54867ed13540-6
|
texts (Iterable[str]): List or tuple of strings to be added
config (MyScaleSettings, Optional): Myscale configuration
text_ids (Optional[Iterable], optional): IDs for the texts.
Defaults to None.
batch_size (int, optional): Batchsize when transmitting data to MyScale.
Defaults to 32.
metadata (List[dict], optional): metadata to texts. Defaults to None.
Other keyword arguments will pass into
[clickhouse-connect](https://clickhouse.com/docs/en/integrations/python#clickhouse-connect-driver-api)
Returns:
MyScale Index
"""
ctx = cls(embedding, config, **kwargs)
ctx.add_texts(texts, ids=text_ids, batch_size=batch_size, metadatas=metadatas)
return ctx
def __repr__(self) -> str:
"""Text representation for myscale, prints backends, username and schemas.
Easy to use with `str(Myscale())`
Returns:
repr: string to show connection info and data schema
"""
_repr = f"\033[92m\033[1m{self.config.database}.{self.config.table} @ "
_repr += f"{self.config.host}:{self.config.port}\033[0m\n\n"
_repr += f"\033[1musername: {self.config.username}\033[0m\n\nTable Schema:\n"
_repr += "-" * 51 + "\n"
for r in self.client.query(
f"DESC {self.config.database}.{self.config.table}"
).named_results():
_repr += (
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/myscale.html
|
54867ed13540-7
|
).named_results():
_repr += (
f"|\033[94m{r['name']:24s}\033[0m|\033[96m{r['type']:24s}\033[0m|\n"
)
_repr += "-" * 51 + "\n"
return _repr
def _build_qstr(
self, q_emb: List[float], topk: int, where_str: Optional[str] = None
) -> str:
q_emb_str = ",".join(map(str, q_emb))
if where_str:
where_str = f"PREWHERE {where_str}"
else:
where_str = ""
q_str = f"""
SELECT {self.config.column_map['text']},
{self.config.column_map['metadata']}, dist
FROM {self.config.database}.{self.config.table}
{where_str}
ORDER BY distance({self.config.column_map['vector']}, [{q_emb_str}])
AS dist {self.dist_order}
LIMIT {topk}
"""
return q_str
[docs] def similarity_search(
self, query: str, k: int = 4, where_str: Optional[str] = None, **kwargs: Any
) -> List[Document]:
"""Perform a similarity search with MyScale
Args:
query (str): query string
k (int, optional): Top K neighbors to retrieve. Defaults to 4.
where_str (Optional[str], optional): where condition string.
Defaults to None.
NOTE: Please do not let end-user to fill this and always be aware
of SQL injection. When dealing with metadatas, remember to
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/myscale.html
|
54867ed13540-8
|
of SQL injection. When dealing with metadatas, remember to
use `{self.metadata_column}.attribute` instead of `attribute`
alone. The default name for it is `metadata`.
Returns:
List[Document]: List of Documents
"""
return self.similarity_search_by_vector(
self.embedding_function(query), k, where_str, **kwargs
)
[docs] def similarity_search_by_vector(
self,
embedding: List[float],
k: int = 4,
where_str: Optional[str] = None,
**kwargs: Any,
) -> List[Document]:
"""Perform a similarity search with MyScale by vectors
Args:
query (str): query string
k (int, optional): Top K neighbors to retrieve. Defaults to 4.
where_str (Optional[str], optional): where condition string.
Defaults to None.
NOTE: Please do not let end-user to fill this and always be aware
of SQL injection. When dealing with metadatas, remember to
use `{self.metadata_column}.attribute` instead of `attribute`
alone. The default name for it is `metadata`.
Returns:
List[Document]: List of (Document, similarity)
"""
q_str = self._build_qstr(embedding, k, where_str)
try:
return [
Document(
page_content=r[self.config.column_map["text"]],
metadata=r[self.config.column_map["metadata"]],
)
for r in self.client.query(q_str).named_results()
]
except Exception as e:
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/myscale.html
|
54867ed13540-9
|
]
except Exception as e:
logger.error(f"\033[91m\033[1m{type(e)}\033[0m \033[95m{str(e)}\033[0m")
return []
[docs] def similarity_search_with_relevance_scores(
self, query: str, k: int = 4, where_str: Optional[str] = None, **kwargs: Any
) -> List[Tuple[Document, float]]:
"""Perform a similarity search with MyScale
Args:
query (str): query string
k (int, optional): Top K neighbors to retrieve. Defaults to 4.
where_str (Optional[str], optional): where condition string.
Defaults to None.
NOTE: Please do not let end-user to fill this and always be aware
of SQL injection. When dealing with metadatas, remember to
use `{self.metadata_column}.attribute` instead of `attribute`
alone. The default name for it is `metadata`.
Returns:
List[Document]: List of documents
"""
q_str = self._build_qstr(self.embedding_function(query), k, where_str)
try:
return [
(
Document(
page_content=r[self.config.column_map["text"]],
metadata=r[self.config.column_map["metadata"]],
),
r["dist"],
)
for r in self.client.query(q_str).named_results()
]
except Exception as e:
logger.error(f"\033[91m\033[1m{type(e)}\033[0m \033[95m{str(e)}\033[0m")
return []
[docs] def drop(self) -> None:
"""
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/myscale.html
|
54867ed13540-10
|
return []
[docs] def drop(self) -> None:
"""
Helper function: Drop data
"""
self.client.command(
f"DROP TABLE IF EXISTS {self.config.database}.{self.config.table}"
)
@property
def metadata_column(self) -> str:
return self.config.column_map["metadata"]
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/myscale.html
|
8fe439e36071-0
|
Source code for langchain.vectorstores.tair
"""Wrapper around Tair Vector."""
from __future__ import annotations
import json
import logging
import uuid
from typing import Any, Iterable, List, Optional, Type
from langchain.docstore.document import Document
from langchain.embeddings.base import Embeddings
from langchain.utils import get_from_dict_or_env
from langchain.vectorstores.base import VectorStore
logger = logging.getLogger(__name__)
def _uuid_key() -> str:
return uuid.uuid4().hex
[docs]class Tair(VectorStore):
def __init__(
self,
embedding_function: Embeddings,
url: str,
index_name: str,
content_key: str = "content",
metadata_key: str = "metadata",
search_params: Optional[dict] = None,
**kwargs: Any,
):
self.embedding_function = embedding_function
self.index_name = index_name
try:
from tair import Tair as TairClient
except ImportError:
raise ValueError(
"Could not import tair python package. "
"Please install it with `pip install tair`."
)
try:
# connect to tair from url
client = TairClient.from_url(url, **kwargs)
except ValueError as e:
raise ValueError(f"Tair failed to connect: {e}")
self.client = client
self.content_key = content_key
self.metadata_key = metadata_key
self.search_params = search_params
[docs] def create_index_if_not_exist(
self,
dim: int,
distance_type: str,
index_type: str,
data_type: str,
**kwargs: Any,
) -> bool:
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/tair.html
|
8fe439e36071-1
|
data_type: str,
**kwargs: Any,
) -> bool:
index = self.client.tvs_get_index(self.index_name)
if index is not None:
logger.info("Index already exists")
return False
self.client.tvs_create_index(
self.index_name,
dim,
distance_type,
index_type,
data_type,
**kwargs,
)
return True
[docs] def add_texts(
self,
texts: Iterable[str],
metadatas: Optional[List[dict]] = None,
**kwargs: Any,
) -> List[str]:
"""Add texts data to an existing index."""
ids = []
keys = kwargs.get("keys", None)
# Write data to tair
pipeline = self.client.pipeline(transaction=False)
embeddings = self.embedding_function.embed_documents(list(texts))
for i, text in enumerate(texts):
# Use provided key otherwise use default key
key = keys[i] if keys else _uuid_key()
metadata = metadatas[i] if metadatas else {}
pipeline.tvs_hset(
self.index_name,
key,
embeddings[i],
False,
**{
self.content_key: text,
self.metadata_key: json.dumps(metadata),
},
)
ids.append(key)
pipeline.execute()
return ids
[docs] def similarity_search(
self, query: str, k: int = 4, **kwargs: Any
) -> List[Document]:
"""
Returns the most similar indexed documents to the query text.
Args:
query (str): The query text for which to find similar documents.
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/tair.html
|
8fe439e36071-2
|
Args:
query (str): The query text for which to find similar documents.
k (int): The number of documents to return. Default is 4.
Returns:
List[Document]: A list of documents that are most similar to the query text.
"""
# Creates embedding vector from user query
embedding = self.embedding_function.embed_query(query)
keys_and_scores = self.client.tvs_knnsearch(
self.index_name, k, embedding, False, None, **kwargs
)
pipeline = self.client.pipeline(transaction=False)
for key, _ in keys_and_scores:
pipeline.tvs_hmget(
self.index_name, key, self.metadata_key, self.content_key
)
docs = pipeline.execute()
return [
Document(
page_content=d[1],
metadata=json.loads(d[0]),
)
for d in docs
]
[docs] @classmethod
def from_texts(
cls: Type[Tair],
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
index_name: str = "langchain",
content_key: str = "content",
metadata_key: str = "metadata",
**kwargs: Any,
) -> Tair:
try:
from tair import tairvector
except ImportError:
raise ValueError(
"Could not import tair python package. "
"Please install it with `pip install tair`."
)
url = get_from_dict_or_env(kwargs, "tair_url", "TAIR_URL")
if "tair_url" in kwargs:
kwargs.pop("tair_url")
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/tair.html
|
8fe439e36071-3
|
if "tair_url" in kwargs:
kwargs.pop("tair_url")
distance_type = tairvector.DistanceMetric.InnerProduct
if "distance_type" in kwargs:
distance_type = kwargs.pop("distance_typ")
index_type = tairvector.IndexType.HNSW
if "index_type" in kwargs:
index_type = kwargs.pop("index_type")
data_type = tairvector.DataType.Float32
if "data_type" in kwargs:
data_type = kwargs.pop("data_type")
index_params = {}
if "index_params" in kwargs:
index_params = kwargs.pop("index_params")
search_params = {}
if "search_params" in kwargs:
search_params = kwargs.pop("search_params")
keys = None
if "keys" in kwargs:
keys = kwargs.pop("keys")
try:
tair_vector_store = cls(
embedding,
url,
index_name,
content_key=content_key,
metadata_key=metadata_key,
search_params=search_params,
**kwargs,
)
except ValueError as e:
raise ValueError(f"tair failed to connect: {e}")
# Create embeddings for documents
embeddings = embedding.embed_documents(texts)
tair_vector_store.create_index_if_not_exist(
len(embeddings[0]),
distance_type,
index_type,
data_type,
**index_params,
)
tair_vector_store.add_texts(texts, metadatas, keys=keys)
return tair_vector_store
[docs] @classmethod
def from_documents(
cls,
documents: List[Document],
embedding: Embeddings,
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/tair.html
|
8fe439e36071-4
|
cls,
documents: List[Document],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
index_name: str = "langchain",
content_key: str = "content",
metadata_key: str = "metadata",
**kwargs: Any,
) -> Tair:
texts = [d.page_content for d in documents]
metadatas = [d.metadata for d in documents]
return cls.from_texts(
texts, embedding, metadatas, index_name, content_key, metadata_key, **kwargs
)
[docs] @staticmethod
def drop_index(
index_name: str = "langchain",
**kwargs: Any,
) -> bool:
"""
Drop an existing index.
Args:
index_name (str): Name of the index to drop.
Returns:
bool: True if the index is dropped successfully.
"""
try:
from tair import Tair as TairClient
except ImportError:
raise ValueError(
"Could not import tair python package. "
"Please install it with `pip install tair`."
)
url = get_from_dict_or_env(kwargs, "tair_url", "TAIR_URL")
try:
if "tair_url" in kwargs:
kwargs.pop("tair_url")
client = TairClient.from_url(url=url, **kwargs)
except ValueError as e:
raise ValueError(f"Tair connection error: {e}")
# delete index
ret = client.tvs_del_index(index_name)
if ret == 0:
# index not exist
logger.info("Index does not exist")
return False
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/tair.html
|
8fe439e36071-5
|
# index not exist
logger.info("Index does not exist")
return False
return True
[docs] @classmethod
def from_existing_index(
cls,
embedding: Embeddings,
index_name: str = "langchain",
content_key: str = "content",
metadata_key: str = "metadata",
**kwargs: Any,
) -> Tair:
"""Connect to an existing Tair index."""
url = get_from_dict_or_env(kwargs, "tair_url", "TAIR_URL")
search_params = {}
if "search_params" in kwargs:
search_params = kwargs.pop("search_params")
return cls(
embedding,
url,
index_name,
content_key=content_key,
metadata_key=metadata_key,
search_params=search_params,
**kwargs,
)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/tair.html
|
dfafa07c5067-0
|
Source code for langchain.vectorstores.docarray.hnsw
"""Wrapper around Hnswlib store."""
from __future__ import annotations
from typing import Any, List, Literal, Optional
from langchain.embeddings.base import Embeddings
from langchain.vectorstores.docarray.base import (
DocArrayIndex,
_check_docarray_import,
)
[docs]class DocArrayHnswSearch(DocArrayIndex):
"""Wrapper around HnswLib storage.
To use it, you should have the ``docarray`` package with version >=0.32.0 installed.
You can install it with `pip install "langchain[docarray]"`.
"""
[docs] @classmethod
def from_params(
cls,
embedding: Embeddings,
work_dir: str,
n_dim: int,
dist_metric: Literal["cosine", "ip", "l2"] = "cosine",
max_elements: int = 1024,
index: bool = True,
ef_construction: int = 200,
ef: int = 10,
M: int = 16,
allow_replace_deleted: bool = True,
num_threads: int = 1,
**kwargs: Any,
) -> DocArrayHnswSearch:
"""Initialize DocArrayHnswSearch store.
Args:
embedding (Embeddings): Embedding function.
work_dir (str): path to the location where all the data will be stored.
n_dim (int): dimension of an embedding.
dist_metric (str): Distance metric for DocArrayHnswSearch can be one of:
"cosine", "ip", and "l2". Defaults to "cosine".
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/docarray/hnsw.html
|
dfafa07c5067-1
|
"cosine", "ip", and "l2". Defaults to "cosine".
max_elements (int): Maximum number of vectors that can be stored.
Defaults to 1024.
index (bool): Whether an index should be built for this field.
Defaults to True.
ef_construction (int): defines a construction time/accuracy trade-off.
Defaults to 200.
ef (int): parameter controlling query time/accuracy trade-off.
Defaults to 10.
M (int): parameter that defines the maximum number of outgoing
connections in the graph. Defaults to 16.
allow_replace_deleted (bool): Enables replacing of deleted elements
with new added ones. Defaults to True.
num_threads (int): Sets the number of cpu threads to use. Defaults to 1.
**kwargs: Other keyword arguments to be passed to the get_doc_cls method.
"""
_check_docarray_import()
from docarray.index import HnswDocumentIndex
doc_cls = cls._get_doc_cls(
dim=n_dim,
space=dist_metric,
max_elements=max_elements,
index=index,
ef_construction=ef_construction,
ef=ef,
M=M,
allow_replace_deleted=allow_replace_deleted,
num_threads=num_threads,
**kwargs,
)
doc_index = HnswDocumentIndex[doc_cls](work_dir=work_dir) # type: ignore
return cls(doc_index, embedding)
[docs] @classmethod
def from_texts(
cls,
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[dict]] = None,
work_dir: Optional[str] = None,
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/docarray/hnsw.html
|
dfafa07c5067-2
|
work_dir: Optional[str] = None,
n_dim: Optional[int] = None,
**kwargs: Any,
) -> DocArrayHnswSearch:
"""Create an DocArrayHnswSearch store and insert data.
Args:
texts (List[str]): Text data.
embedding (Embeddings): Embedding function.
metadatas (Optional[List[dict]]): Metadata for each text if it exists.
Defaults to None.
work_dir (str): path to the location where all the data will be stored.
n_dim (int): dimension of an embedding.
**kwargs: Other keyword arguments to be passed to the __init__ method.
Returns:
DocArrayHnswSearch Vector Store
"""
if work_dir is None:
raise ValueError("`work_dir` parameter has not been set.")
if n_dim is None:
raise ValueError("`n_dim` parameter has not been set.")
store = cls.from_params(embedding, work_dir, n_dim, **kwargs)
store.add_texts(texts=texts, metadatas=metadatas)
return store
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/docarray/hnsw.html
|
4313cc601fa0-0
|
Source code for langchain.vectorstores.docarray.in_memory
"""Wrapper around in-memory storage."""
from __future__ import annotations
from typing import Any, Dict, List, Literal, Optional
from langchain.embeddings.base import Embeddings
from langchain.vectorstores.docarray.base import (
DocArrayIndex,
_check_docarray_import,
)
[docs]class DocArrayInMemorySearch(DocArrayIndex):
"""Wrapper around in-memory storage for exact search.
To use it, you should have the ``docarray`` package with version >=0.32.0 installed.
You can install it with `pip install "langchain[docarray]"`.
"""
[docs] @classmethod
def from_params(
cls,
embedding: Embeddings,
metric: Literal[
"cosine_sim", "euclidian_dist", "sgeuclidean_dist"
] = "cosine_sim",
**kwargs: Any,
) -> DocArrayInMemorySearch:
"""Initialize DocArrayInMemorySearch store.
Args:
embedding (Embeddings): Embedding function.
metric (str): metric for exact nearest-neighbor search.
Can be one of: "cosine_sim", "euclidean_dist" and "sqeuclidean_dist".
Defaults to "cosine_sim".
**kwargs: Other keyword arguments to be passed to the get_doc_cls method.
"""
_check_docarray_import()
from docarray.index import InMemoryExactNNIndex
doc_cls = cls._get_doc_cls(space=metric, **kwargs)
doc_index = InMemoryExactNNIndex[doc_cls]() # type: ignore
return cls(doc_index, embedding)
[docs] @classmethod
def from_texts(
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/docarray/in_memory.html
|
4313cc601fa0-1
|
[docs] @classmethod
def from_texts(
cls,
texts: List[str],
embedding: Embeddings,
metadatas: Optional[List[Dict[Any, Any]]] = None,
**kwargs: Any,
) -> DocArrayInMemorySearch:
"""Create an DocArrayInMemorySearch store and insert data.
Args:
texts (List[str]): Text data.
embedding (Embeddings): Embedding function.
metadatas (Optional[List[Dict[Any, Any]]]): Metadata for each text
if it exists. Defaults to None.
metric (str): metric for exact nearest-neighbor search.
Can be one of: "cosine_sim", "euclidean_dist" and "sqeuclidean_dist".
Defaults to "cosine_sim".
Returns:
DocArrayInMemorySearch Vector Store
"""
store = cls.from_params(embedding, **kwargs)
store.add_texts(texts=texts, metadatas=metadatas)
return store
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/vectorstores/docarray/in_memory.html
|
ec3e8d3fd54a-0
|
Source code for langchain.output_parsers.regex
from __future__ import annotations
import re
from typing import Dict, List, Optional
from langchain.schema import BaseOutputParser
[docs]class RegexParser(BaseOutputParser):
"""Class to parse the output into a dictionary."""
regex: str
output_keys: List[str]
default_output_key: Optional[str] = None
@property
def _type(self) -> str:
"""Return the type key."""
return "regex_parser"
[docs] def parse(self, text: str) -> Dict[str, str]:
"""Parse the output of an LLM call."""
match = re.search(self.regex, text)
if match:
return {key: match.group(i + 1) for i, key in enumerate(self.output_keys)}
else:
if self.default_output_key is None:
raise ValueError(f"Could not parse output: {text}")
else:
return {
key: text if key == self.default_output_key else ""
for key in self.output_keys
}
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/output_parsers/regex.html
|
578e9cc98632-0
|
Source code for langchain.output_parsers.retry
from __future__ import annotations
from typing import TypeVar
from langchain.base_language import BaseLanguageModel
from langchain.chains.llm import LLMChain
from langchain.prompts.base import BasePromptTemplate
from langchain.prompts.prompt import PromptTemplate
from langchain.schema import (
BaseOutputParser,
OutputParserException,
PromptValue,
)
NAIVE_COMPLETION_RETRY = """Prompt:
{prompt}
Completion:
{completion}
Above, the Completion did not satisfy the constraints given in the Prompt.
Please try again:"""
NAIVE_COMPLETION_RETRY_WITH_ERROR = """Prompt:
{prompt}
Completion:
{completion}
Above, the Completion did not satisfy the constraints given in the Prompt.
Details: {error}
Please try again:"""
NAIVE_RETRY_PROMPT = PromptTemplate.from_template(NAIVE_COMPLETION_RETRY)
NAIVE_RETRY_WITH_ERROR_PROMPT = PromptTemplate.from_template(
NAIVE_COMPLETION_RETRY_WITH_ERROR
)
T = TypeVar("T")
[docs]class RetryOutputParser(BaseOutputParser[T]):
"""Wraps a parser and tries to fix parsing errors.
Does this by passing the original prompt and the completion to another
LLM, and telling it the completion did not satisfy criteria in the prompt.
"""
parser: BaseOutputParser[T]
retry_chain: LLMChain
[docs] @classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
parser: BaseOutputParser[T],
prompt: BasePromptTemplate = NAIVE_RETRY_PROMPT,
) -> RetryOutputParser[T]:
chain = LLMChain(llm=llm, prompt=prompt)
|
https://python.langchain.com/en/latest/_modules/langchain/output_parsers/retry.html
|
578e9cc98632-1
|
chain = LLMChain(llm=llm, prompt=prompt)
return cls(parser=parser, retry_chain=chain)
[docs] def parse_with_prompt(self, completion: str, prompt_value: PromptValue) -> T:
try:
parsed_completion = self.parser.parse(completion)
except OutputParserException:
new_completion = self.retry_chain.run(
prompt=prompt_value.to_string(), completion=completion
)
parsed_completion = self.parser.parse(new_completion)
return parsed_completion
[docs] def parse(self, completion: str) -> T:
raise NotImplementedError(
"This OutputParser can only be called by the `parse_with_prompt` method."
)
[docs] def get_format_instructions(self) -> str:
return self.parser.get_format_instructions()
@property
def _type(self) -> str:
return "retry"
[docs]class RetryWithErrorOutputParser(BaseOutputParser[T]):
"""Wraps a parser and tries to fix parsing errors.
Does this by passing the original prompt, the completion, AND the error
that was raised to another language model and telling it that the completion
did not work, and raised the given error. Differs from RetryOutputParser
in that this implementation provides the error that was raised back to the
LLM, which in theory should give it more information on how to fix it.
"""
parser: BaseOutputParser[T]
retry_chain: LLMChain
[docs] @classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
parser: BaseOutputParser[T],
prompt: BasePromptTemplate = NAIVE_RETRY_WITH_ERROR_PROMPT,
) -> RetryWithErrorOutputParser[T]:
|
https://python.langchain.com/en/latest/_modules/langchain/output_parsers/retry.html
|
578e9cc98632-2
|
) -> RetryWithErrorOutputParser[T]:
chain = LLMChain(llm=llm, prompt=prompt)
return cls(parser=parser, retry_chain=chain)
[docs] def parse_with_prompt(self, completion: str, prompt_value: PromptValue) -> T:
try:
parsed_completion = self.parser.parse(completion)
except OutputParserException as e:
new_completion = self.retry_chain.run(
prompt=prompt_value.to_string(), completion=completion, error=repr(e)
)
parsed_completion = self.parser.parse(new_completion)
return parsed_completion
[docs] def parse(self, completion: str) -> T:
raise NotImplementedError(
"This OutputParser can only be called by the `parse_with_prompt` method."
)
[docs] def get_format_instructions(self) -> str:
return self.parser.get_format_instructions()
@property
def _type(self) -> str:
return "retry_with_error"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/output_parsers/retry.html
|
f133ae86a837-0
|
Source code for langchain.output_parsers.rail_parser
from __future__ import annotations
from typing import Any, Dict
from langchain.schema import BaseOutputParser
[docs]class GuardrailsOutputParser(BaseOutputParser):
guard: Any
@property
def _type(self) -> str:
return "guardrails"
[docs] @classmethod
def from_rail(cls, rail_file: str, num_reasks: int = 1) -> GuardrailsOutputParser:
try:
from guardrails import Guard
except ImportError:
raise ValueError(
"guardrails-ai package not installed. "
"Install it by running `pip install guardrails-ai`."
)
return cls(guard=Guard.from_rail(rail_file, num_reasks=num_reasks))
[docs] @classmethod
def from_rail_string(
cls, rail_str: str, num_reasks: int = 1
) -> GuardrailsOutputParser:
try:
from guardrails import Guard
except ImportError:
raise ValueError(
"guardrails-ai package not installed. "
"Install it by running `pip install guardrails-ai`."
)
return cls(guard=Guard.from_rail_string(rail_str, num_reasks=num_reasks))
[docs] def get_format_instructions(self) -> str:
return self.guard.raw_prompt.format_instructions
[docs] def parse(self, text: str) -> Dict:
return self.guard.parse(text)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/output_parsers/rail_parser.html
|
8ce6984b82bd-0
|
Source code for langchain.output_parsers.list
from __future__ import annotations
from abc import abstractmethod
from typing import List
from langchain.schema import BaseOutputParser
[docs]class ListOutputParser(BaseOutputParser):
"""Class to parse the output of an LLM call to a list."""
@property
def _type(self) -> str:
return "list"
[docs] @abstractmethod
def parse(self, text: str) -> List[str]:
"""Parse the output of an LLM call."""
[docs]class CommaSeparatedListOutputParser(ListOutputParser):
"""Parse out comma separated lists."""
[docs] def get_format_instructions(self) -> str:
return (
"Your response should be a list of comma separated values, "
"eg: `foo, bar, baz`"
)
[docs] def parse(self, text: str) -> List[str]:
"""Parse the output of an LLM call."""
return text.strip().split(", ")
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/output_parsers/list.html
|
bae63a2d5865-0
|
Source code for langchain.output_parsers.structured
from __future__ import annotations
from typing import Any, List
from pydantic import BaseModel
from langchain.output_parsers.format_instructions import STRUCTURED_FORMAT_INSTRUCTIONS
from langchain.output_parsers.json import parse_and_check_json_markdown
from langchain.schema import BaseOutputParser
line_template = '\t"{name}": {type} // {description}'
[docs]class ResponseSchema(BaseModel):
name: str
description: str
def _get_sub_string(schema: ResponseSchema) -> str:
return line_template.format(
name=schema.name, description=schema.description, type="string"
)
[docs]class StructuredOutputParser(BaseOutputParser):
response_schemas: List[ResponseSchema]
[docs] @classmethod
def from_response_schemas(
cls, response_schemas: List[ResponseSchema]
) -> StructuredOutputParser:
return cls(response_schemas=response_schemas)
[docs] def get_format_instructions(self) -> str:
schema_str = "\n".join(
[_get_sub_string(schema) for schema in self.response_schemas]
)
return STRUCTURED_FORMAT_INSTRUCTIONS.format(format=schema_str)
[docs] def parse(self, text: str) -> Any:
expected_keys = [rs.name for rs in self.response_schemas]
return parse_and_check_json_markdown(text, expected_keys)
@property
def _type(self) -> str:
return "structured"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/output_parsers/structured.html
|
5c589f2b720a-0
|
Source code for langchain.output_parsers.fix
from __future__ import annotations
from typing import TypeVar
from langchain.base_language import BaseLanguageModel
from langchain.chains.llm import LLMChain
from langchain.output_parsers.prompts import NAIVE_FIX_PROMPT
from langchain.prompts.base import BasePromptTemplate
from langchain.schema import BaseOutputParser, OutputParserException
T = TypeVar("T")
[docs]class OutputFixingParser(BaseOutputParser[T]):
"""Wraps a parser and tries to fix parsing errors."""
parser: BaseOutputParser[T]
retry_chain: LLMChain
[docs] @classmethod
def from_llm(
cls,
llm: BaseLanguageModel,
parser: BaseOutputParser[T],
prompt: BasePromptTemplate = NAIVE_FIX_PROMPT,
) -> OutputFixingParser[T]:
chain = LLMChain(llm=llm, prompt=prompt)
return cls(parser=parser, retry_chain=chain)
[docs] def parse(self, completion: str) -> T:
try:
parsed_completion = self.parser.parse(completion)
except OutputParserException as e:
new_completion = self.retry_chain.run(
instructions=self.parser.get_format_instructions(),
completion=completion,
error=repr(e),
)
parsed_completion = self.parser.parse(new_completion)
return parsed_completion
[docs] def get_format_instructions(self) -> str:
return self.parser.get_format_instructions()
@property
def _type(self) -> str:
return "output_fixing"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/output_parsers/fix.html
|
04b01fe3788e-0
|
Source code for langchain.output_parsers.pydantic
import json
import re
from typing import Type, TypeVar
from pydantic import BaseModel, ValidationError
from langchain.output_parsers.format_instructions import PYDANTIC_FORMAT_INSTRUCTIONS
from langchain.schema import BaseOutputParser, OutputParserException
T = TypeVar("T", bound=BaseModel)
[docs]class PydanticOutputParser(BaseOutputParser[T]):
pydantic_object: Type[T]
[docs] def parse(self, text: str) -> T:
try:
# Greedy search for 1st json candidate.
match = re.search(
r"\{.*\}", text.strip(), re.MULTILINE | re.IGNORECASE | re.DOTALL
)
json_str = ""
if match:
json_str = match.group()
json_object = json.loads(json_str, strict=False)
return self.pydantic_object.parse_obj(json_object)
except (json.JSONDecodeError, ValidationError) as e:
name = self.pydantic_object.__name__
msg = f"Failed to parse {name} from completion {text}. Got: {e}"
raise OutputParserException(msg)
[docs] def get_format_instructions(self) -> str:
schema = self.pydantic_object.schema()
# Remove extraneous fields.
reduced_schema = schema
if "title" in reduced_schema:
del reduced_schema["title"]
if "type" in reduced_schema:
del reduced_schema["type"]
# Ensure json in context is well-formed with double quotes.
schema_str = json.dumps(reduced_schema)
return PYDANTIC_FORMAT_INSTRUCTIONS.format(schema=schema_str)
@property
def _type(self) -> str:
|
https://python.langchain.com/en/latest/_modules/langchain/output_parsers/pydantic.html
|
04b01fe3788e-1
|
@property
def _type(self) -> str:
return "pydantic"
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/output_parsers/pydantic.html
|
5375f464e5b0-0
|
Source code for langchain.output_parsers.regex_dict
from __future__ import annotations
import re
from typing import Dict, Optional
from langchain.schema import BaseOutputParser
[docs]class RegexDictParser(BaseOutputParser):
"""Class to parse the output into a dictionary."""
regex_pattern: str = r"{}:\s?([^.'\n']*)\.?" # : :meta private:
output_key_to_format: Dict[str, str]
no_update_value: Optional[str] = None
@property
def _type(self) -> str:
"""Return the type key."""
return "regex_dict_parser"
[docs] def parse(self, text: str) -> Dict[str, str]:
"""Parse the output of an LLM call."""
result = {}
for output_key, expected_format in self.output_key_to_format.items():
specific_regex = self.regex_pattern.format(re.escape(expected_format))
matches = re.findall(specific_regex, text)
if not matches:
raise ValueError(
f"No match found for output key: {output_key} with expected format \
{expected_format} on text {text}"
)
elif len(matches) > 1:
raise ValueError(
f"Multiple matches found for output key: {output_key} with \
expected format {expected_format} on text {text}"
)
elif (
self.no_update_value is not None and matches[0] == self.no_update_value
):
continue
else:
result[output_key] = matches[0]
return result
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/output_parsers/regex_dict.html
|
027c24a27c13-0
|
Source code for langchain.docstore.wikipedia
"""Wrapper around wikipedia API."""
from typing import Union
from langchain.docstore.base import Docstore
from langchain.docstore.document import Document
[docs]class Wikipedia(Docstore):
"""Wrapper around wikipedia API."""
def __init__(self) -> None:
"""Check that wikipedia package is installed."""
try:
import wikipedia # noqa: F401
except ImportError:
raise ImportError(
"Could not import wikipedia python package. "
"Please install it with `pip install wikipedia`."
)
[docs] def search(self, search: str) -> Union[str, Document]:
"""Try to search for wiki page.
If page exists, return the page summary, and a PageWithLookups object.
If page does not exist, return similar entries.
"""
import wikipedia
try:
page_content = wikipedia.page(search).content
url = wikipedia.page(search).url
result: Union[str, Document] = Document(
page_content=page_content, metadata={"page": url}
)
except wikipedia.PageError:
result = f"Could not find [{search}]. Similar: {wikipedia.search(search)}"
except wikipedia.DisambiguationError:
result = f"Could not find [{search}]. Similar: {wikipedia.search(search)}"
return result
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/docstore/wikipedia.html
|
e390c133c359-0
|
Source code for langchain.docstore.in_memory
"""Simple in memory docstore in the form of a dict."""
from typing import Dict, Union
from langchain.docstore.base import AddableMixin, Docstore
from langchain.docstore.document import Document
[docs]class InMemoryDocstore(Docstore, AddableMixin):
"""Simple in memory docstore in the form of a dict."""
def __init__(self, _dict: Dict[str, Document]):
"""Initialize with dict."""
self._dict = _dict
[docs] def add(self, texts: Dict[str, Document]) -> None:
"""Add texts to in memory dictionary."""
overlapping = set(texts).intersection(self._dict)
if overlapping:
raise ValueError(f"Tried to add ids that already exist: {overlapping}")
self._dict = dict(self._dict, **texts)
[docs] def search(self, search: str) -> Union[str, Document]:
"""Search via direct lookup."""
if search not in self._dict:
return f"ID {search} not found."
else:
return self._dict[search]
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/docstore/in_memory.html
|
85ff651634f0-0
|
Source code for langchain.prompts.base
"""BasePrompt schema definition."""
from __future__ import annotations
import json
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Any, Callable, Dict, List, Mapping, Optional, Set, Union
import yaml
from pydantic import BaseModel, Extra, Field, root_validator
from langchain.formatting import formatter
from langchain.schema import BaseMessage, BaseOutputParser, HumanMessage, PromptValue
def jinja2_formatter(template: str, **kwargs: Any) -> str:
"""Format a template using jinja2."""
try:
from jinja2 import Template
except ImportError:
raise ImportError(
"jinja2 not installed, which is needed to use the jinja2_formatter. "
"Please install it with `pip install jinja2`."
)
return Template(template).render(**kwargs)
def validate_jinja2(template: str, input_variables: List[str]) -> None:
input_variables_set = set(input_variables)
valid_variables = _get_jinja2_variables_from_template(template)
missing_variables = valid_variables - input_variables_set
extra_variables = input_variables_set - valid_variables
error_message = ""
if missing_variables:
error_message += f"Missing variables: {missing_variables} "
if extra_variables:
error_message += f"Extra variables: {extra_variables}"
if error_message:
raise KeyError(error_message.strip())
def _get_jinja2_variables_from_template(template: str) -> Set[str]:
try:
from jinja2 import Environment, meta
except ImportError:
raise ImportError(
"jinja2 not installed, which is needed to use the jinja2_formatter. "
|
https://python.langchain.com/en/latest/_modules/langchain/prompts/base.html
|
85ff651634f0-1
|
"jinja2 not installed, which is needed to use the jinja2_formatter. "
"Please install it with `pip install jinja2`."
)
env = Environment()
ast = env.parse(template)
variables = meta.find_undeclared_variables(ast)
return variables
DEFAULT_FORMATTER_MAPPING: Dict[str, Callable] = {
"f-string": formatter.format,
"jinja2": jinja2_formatter,
}
DEFAULT_VALIDATOR_MAPPING: Dict[str, Callable] = {
"f-string": formatter.validate_input_variables,
"jinja2": validate_jinja2,
}
def check_valid_template(
template: str, template_format: str, input_variables: List[str]
) -> None:
"""Check that template string is valid."""
if template_format not in DEFAULT_FORMATTER_MAPPING:
valid_formats = list(DEFAULT_FORMATTER_MAPPING)
raise ValueError(
f"Invalid template format. Got `{template_format}`;"
f" should be one of {valid_formats}"
)
try:
validator_func = DEFAULT_VALIDATOR_MAPPING[template_format]
validator_func(template, input_variables)
except KeyError as e:
raise ValueError(
"Invalid prompt schema; check for mismatched or missing input parameters. "
+ str(e)
)
class StringPromptValue(PromptValue):
text: str
def to_string(self) -> str:
"""Return prompt as string."""
return self.text
def to_messages(self) -> List[BaseMessage]:
"""Return prompt as messages."""
return [HumanMessage(content=self.text)]
[docs]class BasePromptTemplate(BaseModel, ABC):
"""Base class for all prompt templates, returning a prompt."""
|
https://python.langchain.com/en/latest/_modules/langchain/prompts/base.html
|
85ff651634f0-2
|
"""Base class for all prompt templates, returning a prompt."""
input_variables: List[str]
"""A list of the names of the variables the prompt template expects."""
output_parser: Optional[BaseOutputParser] = None
"""How to parse the output of calling an LLM on this formatted prompt."""
partial_variables: Mapping[str, Union[str, Callable[[], str]]] = Field(
default_factory=dict
)
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
[docs] @abstractmethod
def format_prompt(self, **kwargs: Any) -> PromptValue:
"""Create Chat Messages."""
@root_validator()
def validate_variable_names(cls, values: Dict) -> Dict:
"""Validate variable names do not include restricted names."""
if "stop" in values["input_variables"]:
raise ValueError(
"Cannot have an input variable named 'stop', as it is used internally,"
" please rename."
)
if "stop" in values["partial_variables"]:
raise ValueError(
"Cannot have an partial variable named 'stop', as it is used "
"internally, please rename."
)
overall = set(values["input_variables"]).intersection(
values["partial_variables"]
)
if overall:
raise ValueError(
f"Found overlapping input and partial variables: {overall}"
)
return values
[docs] def partial(self, **kwargs: Union[str, Callable[[], str]]) -> BasePromptTemplate:
"""Return a partial of the prompt template."""
prompt_dict = self.__dict__.copy()
prompt_dict["input_variables"] = list(
set(self.input_variables).difference(kwargs)
|
https://python.langchain.com/en/latest/_modules/langchain/prompts/base.html
|
85ff651634f0-3
|
prompt_dict["input_variables"] = list(
set(self.input_variables).difference(kwargs)
)
prompt_dict["partial_variables"] = {**self.partial_variables, **kwargs}
return type(self)(**prompt_dict)
def _merge_partial_and_user_variables(self, **kwargs: Any) -> Dict[str, Any]:
# Get partial params:
partial_kwargs = {
k: v if isinstance(v, str) else v()
for k, v in self.partial_variables.items()
}
return {**partial_kwargs, **kwargs}
[docs] @abstractmethod
def format(self, **kwargs: Any) -> str:
"""Format the prompt with the inputs.
Args:
kwargs: Any arguments to be passed to the prompt template.
Returns:
A formatted string.
Example:
.. code-block:: python
prompt.format(variable1="foo")
"""
@property
def _prompt_type(self) -> str:
"""Return the prompt type key."""
raise NotImplementedError
[docs] def dict(self, **kwargs: Any) -> Dict:
"""Return dictionary representation of prompt."""
prompt_dict = super().dict(**kwargs)
prompt_dict["_type"] = self._prompt_type
return prompt_dict
[docs] def save(self, file_path: Union[Path, str]) -> None:
"""Save the prompt.
Args:
file_path: Path to directory to save prompt to.
Example:
.. code-block:: python
prompt.save(file_path="path/prompt.yaml")
"""
if self.partial_variables:
raise ValueError("Cannot save prompt with partial variables.")
# Convert file to Path object.
if isinstance(file_path, str):
|
https://python.langchain.com/en/latest/_modules/langchain/prompts/base.html
|
85ff651634f0-4
|
# Convert file to Path object.
if isinstance(file_path, str):
save_path = Path(file_path)
else:
save_path = file_path
directory_path = save_path.parent
directory_path.mkdir(parents=True, exist_ok=True)
# Fetch dictionary to save
prompt_dict = self.dict()
if save_path.suffix == ".json":
with open(file_path, "w") as f:
json.dump(prompt_dict, f, indent=4)
elif save_path.suffix == ".yaml":
with open(file_path, "w") as f:
yaml.dump(prompt_dict, f, default_flow_style=False)
else:
raise ValueError(f"{save_path} must be json or yaml")
[docs]class StringPromptTemplate(BasePromptTemplate, ABC):
"""String prompt should expose the format method, returning a prompt."""
[docs] def format_prompt(self, **kwargs: Any) -> PromptValue:
"""Create Chat Messages."""
return StringPromptValue(text=self.format(**kwargs))
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/prompts/base.html
|
b42a5733f041-0
|
Source code for langchain.prompts.few_shot
"""Prompt template that contains few shot examples."""
from typing import Any, Dict, List, Optional
from pydantic import Extra, root_validator
from langchain.prompts.base import (
DEFAULT_FORMATTER_MAPPING,
StringPromptTemplate,
check_valid_template,
)
from langchain.prompts.example_selector.base import BaseExampleSelector
from langchain.prompts.prompt import PromptTemplate
[docs]class FewShotPromptTemplate(StringPromptTemplate):
"""Prompt template that contains few shot examples."""
examples: Optional[List[dict]] = None
"""Examples to format into the prompt.
Either this or example_selector should be provided."""
example_selector: Optional[BaseExampleSelector] = None
"""ExampleSelector to choose the examples to format into the prompt.
Either this or examples should be provided."""
example_prompt: PromptTemplate
"""PromptTemplate used to format an individual example."""
suffix: str
"""A prompt template string to put after the examples."""
input_variables: List[str]
"""A list of the names of the variables the prompt template expects."""
example_separator: str = "\n\n"
"""String separator used to join the prefix, the examples, and suffix."""
prefix: str = ""
"""A prompt template string to put before the examples."""
template_format: str = "f-string"
"""The format of the prompt template. Options are: 'f-string', 'jinja2'."""
validate_template: bool = True
"""Whether or not to try validating the template."""
@root_validator(pre=True)
def check_examples_and_selector(cls, values: Dict) -> Dict:
"""Check that one and only one of examples/example_selector are provided."""
|
https://python.langchain.com/en/latest/_modules/langchain/prompts/few_shot.html
|
b42a5733f041-1
|
"""Check that one and only one of examples/example_selector are provided."""
examples = values.get("examples", None)
example_selector = values.get("example_selector", None)
if examples and example_selector:
raise ValueError(
"Only one of 'examples' and 'example_selector' should be provided"
)
if examples is None and example_selector is None:
raise ValueError(
"One of 'examples' and 'example_selector' should be provided"
)
return values
@root_validator()
def template_is_valid(cls, values: Dict) -> Dict:
"""Check that prefix, suffix and input variables are consistent."""
if values["validate_template"]:
check_valid_template(
values["prefix"] + values["suffix"],
values["template_format"],
values["input_variables"] + list(values["partial_variables"]),
)
return values
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
def _get_examples(self, **kwargs: Any) -> List[dict]:
if self.examples is not None:
return self.examples
elif self.example_selector is not None:
return self.example_selector.select_examples(kwargs)
else:
raise ValueError
[docs] def format(self, **kwargs: Any) -> str:
"""Format the prompt with the inputs.
Args:
kwargs: Any arguments to be passed to the prompt template.
Returns:
A formatted string.
Example:
.. code-block:: python
prompt.format(variable1="foo")
"""
kwargs = self._merge_partial_and_user_variables(**kwargs)
# Get the examples to use.
|
https://python.langchain.com/en/latest/_modules/langchain/prompts/few_shot.html
|
b42a5733f041-2
|
# Get the examples to use.
examples = self._get_examples(**kwargs)
examples = [
{k: e[k] for k in self.example_prompt.input_variables} for e in examples
]
# Format the examples.
example_strings = [
self.example_prompt.format(**example) for example in examples
]
# Create the overall template.
pieces = [self.prefix, *example_strings, self.suffix]
template = self.example_separator.join([piece for piece in pieces if piece])
# Format the template with the input variables.
return DEFAULT_FORMATTER_MAPPING[self.template_format](template, **kwargs)
@property
def _prompt_type(self) -> str:
"""Return the prompt type key."""
return "few_shot"
[docs] def dict(self, **kwargs: Any) -> Dict:
"""Return a dictionary of the prompt."""
if self.example_selector:
raise ValueError("Saving an example selector is not currently supported")
return super().dict(**kwargs)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/prompts/few_shot.html
|
d07fabc23670-0
|
Source code for langchain.prompts.prompt
"""Prompt schema definition."""
from __future__ import annotations
from pathlib import Path
from string import Formatter
from typing import Any, Dict, List, Union
from pydantic import Extra, root_validator
from langchain.prompts.base import (
DEFAULT_FORMATTER_MAPPING,
StringPromptTemplate,
_get_jinja2_variables_from_template,
check_valid_template,
)
[docs]class PromptTemplate(StringPromptTemplate):
"""Schema to represent a prompt for an LLM.
Example:
.. code-block:: python
from langchain import PromptTemplate
prompt = PromptTemplate(input_variables=["foo"], template="Say {foo}")
"""
input_variables: List[str]
"""A list of the names of the variables the prompt template expects."""
template: str
"""The prompt template."""
template_format: str = "f-string"
"""The format of the prompt template. Options are: 'f-string', 'jinja2'."""
validate_template: bool = True
"""Whether or not to try validating the template."""
@property
def _prompt_type(self) -> str:
"""Return the prompt type key."""
return "prompt"
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
[docs] def format(self, **kwargs: Any) -> str:
"""Format the prompt with the inputs.
Args:
kwargs: Any arguments to be passed to the prompt template.
Returns:
A formatted string.
Example:
.. code-block:: python
prompt.format(variable1="foo")
"""
kwargs = self._merge_partial_and_user_variables(**kwargs)
|
https://python.langchain.com/en/latest/_modules/langchain/prompts/prompt.html
|
d07fabc23670-1
|
"""
kwargs = self._merge_partial_and_user_variables(**kwargs)
return DEFAULT_FORMATTER_MAPPING[self.template_format](self.template, **kwargs)
@root_validator()
def template_is_valid(cls, values: Dict) -> Dict:
"""Check that template and input variables are consistent."""
if values["validate_template"]:
all_inputs = values["input_variables"] + list(values["partial_variables"])
check_valid_template(
values["template"], values["template_format"], all_inputs
)
return values
[docs] @classmethod
def from_examples(
cls,
examples: List[str],
suffix: str,
input_variables: List[str],
example_separator: str = "\n\n",
prefix: str = "",
**kwargs: Any,
) -> PromptTemplate:
"""Take examples in list format with prefix and suffix to create a prompt.
Intended to be used as a way to dynamically create a prompt from examples.
Args:
examples: List of examples to use in the prompt.
suffix: String to go after the list of examples. Should generally
set up the user's input.
input_variables: A list of variable names the final prompt template
will expect.
example_separator: The separator to use in between examples. Defaults
to two new line characters.
prefix: String that should go before any examples. Generally includes
examples. Default to an empty string.
Returns:
The final prompt generated.
"""
template = example_separator.join([prefix, *examples, suffix])
return cls(input_variables=input_variables, template=template, **kwargs)
[docs] @classmethod
def from_file(
|
https://python.langchain.com/en/latest/_modules/langchain/prompts/prompt.html
|
d07fabc23670-2
|
[docs] @classmethod
def from_file(
cls, template_file: Union[str, Path], input_variables: List[str], **kwargs: Any
) -> PromptTemplate:
"""Load a prompt from a file.
Args:
template_file: The path to the file containing the prompt template.
input_variables: A list of variable names the final prompt template
will expect.
Returns:
The prompt loaded from the file.
"""
with open(str(template_file), "r") as f:
template = f.read()
return cls(input_variables=input_variables, template=template, **kwargs)
[docs] @classmethod
def from_template(cls, template: str, **kwargs: Any) -> PromptTemplate:
"""Load a prompt template from a template."""
if "template_format" in kwargs and kwargs["template_format"] == "jinja2":
# Get the variables for the template
input_variables = _get_jinja2_variables_from_template(template)
else:
input_variables = {
v for _, v, _, _ in Formatter().parse(template) if v is not None
}
if "partial_variables" in kwargs:
partial_variables = kwargs["partial_variables"]
input_variables = {
var for var in input_variables if var not in partial_variables
}
return cls(
input_variables=list(sorted(input_variables)), template=template, **kwargs
)
# For backwards compatibility.
Prompt = PromptTemplate
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/prompts/prompt.html
|
5375fd4a588e-0
|
Source code for langchain.prompts.loading
"""Load prompts from disk."""
import importlib
import json
import logging
from pathlib import Path
from typing import Union
import yaml
from langchain.output_parsers.regex import RegexParser
from langchain.prompts.base import BasePromptTemplate
from langchain.prompts.few_shot import FewShotPromptTemplate
from langchain.prompts.prompt import PromptTemplate
from langchain.utilities.loading import try_load_from_hub
URL_BASE = "https://raw.githubusercontent.com/hwchase17/langchain-hub/master/prompts/"
logger = logging.getLogger(__name__)
def load_prompt_from_config(config: dict) -> BasePromptTemplate:
"""Load prompt from Config Dict."""
if "_type" not in config:
logger.warning("No `_type` key found, defaulting to `prompt`.")
config_type = config.pop("_type", "prompt")
if config_type not in type_to_loader_dict:
raise ValueError(f"Loading {config_type} prompt not supported")
prompt_loader = type_to_loader_dict[config_type]
return prompt_loader(config)
def _load_template(var_name: str, config: dict) -> dict:
"""Load template from disk if applicable."""
# Check if template_path exists in config.
if f"{var_name}_path" in config:
# If it does, make sure template variable doesn't also exist.
if var_name in config:
raise ValueError(
f"Both `{var_name}_path` and `{var_name}` cannot be provided."
)
# Pop the template path from the config.
template_path = Path(config.pop(f"{var_name}_path"))
# Load the template.
if template_path.suffix == ".txt":
with open(template_path) as f:
|
https://python.langchain.com/en/latest/_modules/langchain/prompts/loading.html
|
5375fd4a588e-1
|
if template_path.suffix == ".txt":
with open(template_path) as f:
template = f.read()
else:
raise ValueError
# Set the template variable to the extracted variable.
config[var_name] = template
return config
def _load_examples(config: dict) -> dict:
"""Load examples if necessary."""
if isinstance(config["examples"], list):
pass
elif isinstance(config["examples"], str):
with open(config["examples"]) as f:
if config["examples"].endswith(".json"):
examples = json.load(f)
elif config["examples"].endswith((".yaml", ".yml")):
examples = yaml.safe_load(f)
else:
raise ValueError(
"Invalid file format. Only json or yaml formats are supported."
)
config["examples"] = examples
else:
raise ValueError("Invalid examples format. Only list or string are supported.")
return config
def _load_output_parser(config: dict) -> dict:
"""Load output parser."""
if "output_parser" in config and config["output_parser"]:
_config = config.pop("output_parser")
output_parser_type = _config.pop("_type")
if output_parser_type == "regex_parser":
output_parser = RegexParser(**_config)
else:
raise ValueError(f"Unsupported output parser {output_parser_type}")
config["output_parser"] = output_parser
return config
def _load_few_shot_prompt(config: dict) -> FewShotPromptTemplate:
"""Load the few shot prompt from the config."""
# Load the suffix and prefix templates.
config = _load_template("suffix", config)
config = _load_template("prefix", config)
|
https://python.langchain.com/en/latest/_modules/langchain/prompts/loading.html
|
5375fd4a588e-2
|
config = _load_template("prefix", config)
# Load the example prompt.
if "example_prompt_path" in config:
if "example_prompt" in config:
raise ValueError(
"Only one of example_prompt and example_prompt_path should "
"be specified."
)
config["example_prompt"] = load_prompt(config.pop("example_prompt_path"))
else:
config["example_prompt"] = load_prompt_from_config(config["example_prompt"])
# Load the examples.
config = _load_examples(config)
config = _load_output_parser(config)
return FewShotPromptTemplate(**config)
def _load_prompt(config: dict) -> PromptTemplate:
"""Load the prompt template from config."""
# Load the template from disk if necessary.
config = _load_template("template", config)
config = _load_output_parser(config)
return PromptTemplate(**config)
[docs]def load_prompt(path: Union[str, Path]) -> BasePromptTemplate:
"""Unified method for loading a prompt from LangChainHub or local fs."""
if hub_result := try_load_from_hub(
path, _load_prompt_from_file, "prompts", {"py", "json", "yaml"}
):
return hub_result
else:
return _load_prompt_from_file(path)
def _load_prompt_from_file(file: Union[str, Path]) -> BasePromptTemplate:
"""Load prompt from file."""
# Convert file to Path object.
if isinstance(file, str):
file_path = Path(file)
else:
file_path = file
# Load from either json or yaml.
if file_path.suffix == ".json":
with open(file_path) as f:
config = json.load(f)
|
https://python.langchain.com/en/latest/_modules/langchain/prompts/loading.html
|
5375fd4a588e-3
|
with open(file_path) as f:
config = json.load(f)
elif file_path.suffix == ".yaml":
with open(file_path, "r") as f:
config = yaml.safe_load(f)
elif file_path.suffix == ".py":
spec = importlib.util.spec_from_loader(
"prompt", loader=None, origin=str(file_path)
)
if spec is None:
raise ValueError("could not load spec")
helper = importlib.util.module_from_spec(spec)
with open(file_path, "rb") as f:
exec(f.read(), helper.__dict__)
if not isinstance(helper.PROMPT, BasePromptTemplate):
raise ValueError("Did not get object of type BasePromptTemplate.")
return helper.PROMPT
else:
raise ValueError(f"Got unsupported file type {file_path.suffix}")
# Load the prompt from the config now.
return load_prompt_from_config(config)
type_to_loader_dict = {
"prompt": _load_prompt,
"few_shot": _load_few_shot_prompt,
# "few_shot_with_templates": _load_few_shot_with_templates_prompt,
}
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/prompts/loading.html
|
10a81ed2f9cb-0
|
Source code for langchain.prompts.few_shot_with_templates
"""Prompt template that contains few shot examples."""
from typing import Any, Dict, List, Optional
from pydantic import Extra, root_validator
from langchain.prompts.base import DEFAULT_FORMATTER_MAPPING, StringPromptTemplate
from langchain.prompts.example_selector.base import BaseExampleSelector
from langchain.prompts.prompt import PromptTemplate
[docs]class FewShotPromptWithTemplates(StringPromptTemplate):
"""Prompt template that contains few shot examples."""
examples: Optional[List[dict]] = None
"""Examples to format into the prompt.
Either this or example_selector should be provided."""
example_selector: Optional[BaseExampleSelector] = None
"""ExampleSelector to choose the examples to format into the prompt.
Either this or examples should be provided."""
example_prompt: PromptTemplate
"""PromptTemplate used to format an individual example."""
suffix: StringPromptTemplate
"""A PromptTemplate to put after the examples."""
input_variables: List[str]
"""A list of the names of the variables the prompt template expects."""
example_separator: str = "\n\n"
"""String separator used to join the prefix, the examples, and suffix."""
prefix: Optional[StringPromptTemplate] = None
"""A PromptTemplate to put before the examples."""
template_format: str = "f-string"
"""The format of the prompt template. Options are: 'f-string', 'jinja2'."""
validate_template: bool = True
"""Whether or not to try validating the template."""
@root_validator(pre=True)
def check_examples_and_selector(cls, values: Dict) -> Dict:
"""Check that one and only one of examples/example_selector are provided."""
examples = values.get("examples", None)
|
https://python.langchain.com/en/latest/_modules/langchain/prompts/few_shot_with_templates.html
|
10a81ed2f9cb-1
|
examples = values.get("examples", None)
example_selector = values.get("example_selector", None)
if examples and example_selector:
raise ValueError(
"Only one of 'examples' and 'example_selector' should be provided"
)
if examples is None and example_selector is None:
raise ValueError(
"One of 'examples' and 'example_selector' should be provided"
)
return values
@root_validator()
def template_is_valid(cls, values: Dict) -> Dict:
"""Check that prefix, suffix and input variables are consistent."""
if values["validate_template"]:
input_variables = values["input_variables"]
expected_input_variables = set(values["suffix"].input_variables)
expected_input_variables |= set(values["partial_variables"])
if values["prefix"] is not None:
expected_input_variables |= set(values["prefix"].input_variables)
missing_vars = expected_input_variables.difference(input_variables)
if missing_vars:
raise ValueError(
f"Got input_variables={input_variables}, but based on "
f"prefix/suffix expected {expected_input_variables}"
)
return values
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
def _get_examples(self, **kwargs: Any) -> List[dict]:
if self.examples is not None:
return self.examples
elif self.example_selector is not None:
return self.example_selector.select_examples(kwargs)
else:
raise ValueError
[docs] def format(self, **kwargs: Any) -> str:
"""Format the prompt with the inputs.
Args:
kwargs: Any arguments to be passed to the prompt template.
Returns:
|
https://python.langchain.com/en/latest/_modules/langchain/prompts/few_shot_with_templates.html
|
10a81ed2f9cb-2
|
kwargs: Any arguments to be passed to the prompt template.
Returns:
A formatted string.
Example:
.. code-block:: python
prompt.format(variable1="foo")
"""
kwargs = self._merge_partial_and_user_variables(**kwargs)
# Get the examples to use.
examples = self._get_examples(**kwargs)
# Format the examples.
example_strings = [
self.example_prompt.format(**example) for example in examples
]
# Create the overall prefix.
if self.prefix is None:
prefix = ""
else:
prefix_kwargs = {
k: v for k, v in kwargs.items() if k in self.prefix.input_variables
}
for k in prefix_kwargs.keys():
kwargs.pop(k)
prefix = self.prefix.format(**prefix_kwargs)
# Create the overall suffix
suffix_kwargs = {
k: v for k, v in kwargs.items() if k in self.suffix.input_variables
}
for k in suffix_kwargs.keys():
kwargs.pop(k)
suffix = self.suffix.format(
**suffix_kwargs,
)
pieces = [prefix, *example_strings, suffix]
template = self.example_separator.join([piece for piece in pieces if piece])
# Format the template with the input variables.
return DEFAULT_FORMATTER_MAPPING[self.template_format](template, **kwargs)
@property
def _prompt_type(self) -> str:
"""Return the prompt type key."""
return "few_shot_with_templates"
[docs] def dict(self, **kwargs: Any) -> Dict:
"""Return a dictionary of the prompt."""
if self.example_selector:
raise ValueError("Saving an example selector is not currently supported")
|
https://python.langchain.com/en/latest/_modules/langchain/prompts/few_shot_with_templates.html
|
10a81ed2f9cb-3
|
if self.example_selector:
raise ValueError("Saving an example selector is not currently supported")
return super().dict(**kwargs)
By Harrison Chase
© Copyright 2023, Harrison Chase.
Last updated on May 28, 2023.
|
https://python.langchain.com/en/latest/_modules/langchain/prompts/few_shot_with_templates.html
|
402ab27790f3-0
|
Source code for langchain.prompts.chat
"""Chat prompt template."""
from __future__ import annotations
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Any, Callable, List, Sequence, Tuple, Type, TypeVar, Union
from pydantic import BaseModel, Field
from langchain.memory.buffer import get_buffer_string
from langchain.prompts.base import BasePromptTemplate, StringPromptTemplate
from langchain.prompts.prompt import PromptTemplate
from langchain.schema import (
AIMessage,
BaseMessage,
ChatMessage,
HumanMessage,
PromptValue,
SystemMessage,
)
class BaseMessagePromptTemplate(BaseModel, ABC):
@abstractmethod
def format_messages(self, **kwargs: Any) -> List[BaseMessage]:
"""To messages."""
@property
@abstractmethod
def input_variables(self) -> List[str]:
"""Input variables for this prompt template."""
[docs]class MessagesPlaceholder(BaseMessagePromptTemplate):
"""Prompt template that assumes variable is already list of messages."""
variable_name: str
[docs] def format_messages(self, **kwargs: Any) -> List[BaseMessage]:
"""To a BaseMessage."""
value = kwargs[self.variable_name]
if not isinstance(value, list):
raise ValueError(
f"variable {self.variable_name} should be a list of base messages, "
f"got {value}"
)
for v in value:
if not isinstance(v, BaseMessage):
raise ValueError(
f"variable {self.variable_name} should be a list of base messages,"
f" got {value}"
)
return value
@property
def input_variables(self) -> List[str]:
"""Input variables for this prompt template."""
|
https://python.langchain.com/en/latest/_modules/langchain/prompts/chat.html
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.