hash
stringlengths 64
64
| content
stringlengths 0
1.51M
|
---|---|
7748ecbb8ef0402c68b025368390b27b29c74723e30776e47057b5e96f16c8d1 | """
This module can be used to solve 2D beam bending problems with
singularity functions in mechanics.
"""
from sympy.core import S, Symbol, diff, symbols
from sympy.core.add import Add
from sympy.core.expr import Expr
from sympy.core.function import (Derivative, Function)
from sympy.core.mul import Mul
from sympy.core.relational import Eq
from sympy.core.sympify import sympify
from sympy.solvers import linsolve
from sympy.solvers.ode.ode import dsolve
from sympy.solvers.solvers import solve
from sympy.printing import sstr
from sympy.functions import SingularityFunction, Piecewise, factorial
from sympy.integrals import integrate
from sympy.series import limit
from sympy.plotting import plot, PlotGrid
from sympy.geometry.entity import GeometryEntity
from sympy.external import import_module
from sympy.sets.sets import Interval
from sympy.utilities.lambdify import lambdify
from sympy.utilities.decorator import doctest_depends_on
from sympy.utilities.iterables import iterable
numpy = import_module('numpy', import_kwargs={'fromlist':['arange']})
class Beam:
"""
A Beam is a structural element that is capable of withstanding load
primarily by resisting against bending. Beams are characterized by
their cross sectional profile(Second moment of area), their length
and their material.
.. note::
A consistent sign convention must be used while solving a beam
bending problem; the results will
automatically follow the chosen sign convention. However, the
chosen sign convention must respect the rule that, on the positive
side of beam's axis (in respect to current section), a loading force
giving positive shear yields a negative moment, as below (the
curved arrow shows the positive moment and rotation):
.. image:: allowed-sign-conventions.png
Examples
========
There is a beam of length 4 meters. A constant distributed load of 6 N/m
is applied from half of the beam till the end. There are two simple supports
below the beam, one at the starting point and another at the ending point
of the beam. The deflection of the beam at the end is restricted.
Using the sign convention of downwards forces being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols, Piecewise
>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(4, E, I)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(6, 2, 0)
>>> b.apply_load(R2, 4, -1)
>>> b.bc_deflection = [(0, 0), (4, 0)]
>>> b.boundary_conditions
{'deflection': [(0, 0), (4, 0)], 'slope': []}
>>> b.load
R1*SingularityFunction(x, 0, -1) + R2*SingularityFunction(x, 4, -1) + 6*SingularityFunction(x, 2, 0)
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.load
-3*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 2, 0) - 9*SingularityFunction(x, 4, -1)
>>> b.shear_force()
3*SingularityFunction(x, 0, 0) - 6*SingularityFunction(x, 2, 1) + 9*SingularityFunction(x, 4, 0)
>>> b.bending_moment()
3*SingularityFunction(x, 0, 1) - 3*SingularityFunction(x, 2, 2) + 9*SingularityFunction(x, 4, 1)
>>> b.slope()
(-3*SingularityFunction(x, 0, 2)/2 + SingularityFunction(x, 2, 3) - 9*SingularityFunction(x, 4, 2)/2 + 7)/(E*I)
>>> b.deflection()
(7*x - SingularityFunction(x, 0, 3)/2 + SingularityFunction(x, 2, 4)/4 - 3*SingularityFunction(x, 4, 3)/2)/(E*I)
>>> b.deflection().rewrite(Piecewise)
(7*x - Piecewise((x**3, x > 0), (0, True))/2
- 3*Piecewise(((x - 4)**3, x > 4), (0, True))/2
+ Piecewise(((x - 2)**4, x > 2), (0, True))/4)/(E*I)
Calculate the support reactions for a fully symbolic beam of length L.
There are two simple supports below the beam, one at the starting point
and another at the ending point of the beam. The deflection of the beam
at the end is restricted. The beam is loaded with:
* a downward point load P1 applied at L/4
* an upward point load P2 applied at L/8
* a counterclockwise moment M1 applied at L/2
* a clockwise moment M2 applied at 3*L/4
* a distributed constant load q1, applied downward, starting from L/2
up to 3*L/4
* a distributed constant load q2, applied upward, starting from 3*L/4
up to L
No assumptions are needed for symbolic loads. However, defining a positive
length will help the algorithm to compute the solution.
>>> E, I = symbols('E, I')
>>> L = symbols("L", positive=True)
>>> P1, P2, M1, M2, q1, q2 = symbols("P1, P2, M1, M2, q1, q2")
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(L, E, I)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, L, -1)
>>> b.apply_load(P1, L/4, -1)
>>> b.apply_load(-P2, L/8, -1)
>>> b.apply_load(M1, L/2, -2)
>>> b.apply_load(-M2, 3*L/4, -2)
>>> b.apply_load(q1, L/2, 0, 3*L/4)
>>> b.apply_load(-q2, 3*L/4, 0, L)
>>> b.bc_deflection = [(0, 0), (L, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> print(b.reaction_loads[R1])
(-3*L**2*q1 + L**2*q2 - 24*L*P1 + 28*L*P2 - 32*M1 + 32*M2)/(32*L)
>>> print(b.reaction_loads[R2])
(-5*L**2*q1 + 7*L**2*q2 - 8*L*P1 + 4*L*P2 + 32*M1 - 32*M2)/(32*L)
"""
def __init__(self, length, elastic_modulus, second_moment, area=Symbol('A'), variable=Symbol('x'), base_char='C'):
"""Initializes the class.
Parameters
==========
length : Sympifyable
A Symbol or value representing the Beam's length.
elastic_modulus : Sympifyable
A SymPy expression representing the Beam's Modulus of Elasticity.
It is a measure of the stiffness of the Beam material. It can
also be a continuous function of position along the beam.
second_moment : Sympifyable or Geometry object
Describes the cross-section of the beam via a SymPy expression
representing the Beam's second moment of area. It is a geometrical
property of an area which reflects how its points are distributed
with respect to its neutral axis. It can also be a continuous
function of position along the beam. Alternatively ``second_moment``
can be a shape object such as a ``Polygon`` from the geometry module
representing the shape of the cross-section of the beam. In such cases,
it is assumed that the x-axis of the shape object is aligned with the
bending axis of the beam. The second moment of area will be computed
from the shape object internally.
area : Symbol/float
Represents the cross-section area of beam
variable : Symbol, optional
A Symbol object that will be used as the variable along the beam
while representing the load, shear, moment, slope and deflection
curve. By default, it is set to ``Symbol('x')``.
base_char : String, optional
A String that will be used as base character to generate sequential
symbols for integration constants in cases where boundary conditions
are not sufficient to solve them.
"""
self.length = length
self.elastic_modulus = elastic_modulus
if isinstance(second_moment, GeometryEntity):
self.cross_section = second_moment
else:
self.cross_section = None
self.second_moment = second_moment
self.variable = variable
self._base_char = base_char
self._boundary_conditions = {'deflection': [], 'slope': []}
self._load = 0
self.area = area
self._applied_supports = []
self._support_as_loads = []
self._applied_loads = []
self._reaction_loads = {}
self._ild_reactions = {}
self._ild_shear = 0
self._ild_moment = 0
# _original_load is a copy of _load equations with unsubstituted reaction
# forces. It is used for calculating reaction forces in case of I.L.D.
self._original_load = 0
self._composite_type = None
self._hinge_position = None
def __str__(self):
shape_description = self._cross_section if self._cross_section else self._second_moment
str_sol = 'Beam({}, {}, {})'.format(sstr(self._length), sstr(self._elastic_modulus), sstr(shape_description))
return str_sol
@property
def reaction_loads(self):
""" Returns the reaction forces in a dictionary."""
return self._reaction_loads
@property
def ild_shear(self):
""" Returns the I.L.D. shear equation."""
return self._ild_shear
@property
def ild_reactions(self):
""" Returns the I.L.D. reaction forces in a dictionary."""
return self._ild_reactions
@property
def ild_moment(self):
""" Returns the I.L.D. moment equation."""
return self._ild_moment
@property
def length(self):
"""Length of the Beam."""
return self._length
@length.setter
def length(self, l):
self._length = sympify(l)
@property
def area(self):
"""Cross-sectional area of the Beam. """
return self._area
@area.setter
def area(self, a):
self._area = sympify(a)
@property
def variable(self):
"""
A symbol that can be used as a variable along the length of the beam
while representing load distribution, shear force curve, bending
moment, slope curve and the deflection curve. By default, it is set
to ``Symbol('x')``, but this property is mutable.
Examples
========
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I, A = symbols('E, I, A')
>>> x, y, z = symbols('x, y, z')
>>> b = Beam(4, E, I)
>>> b.variable
x
>>> b.variable = y
>>> b.variable
y
>>> b = Beam(4, E, I, A, z)
>>> b.variable
z
"""
return self._variable
@variable.setter
def variable(self, v):
if isinstance(v, Symbol):
self._variable = v
else:
raise TypeError("""The variable should be a Symbol object.""")
@property
def elastic_modulus(self):
"""Young's Modulus of the Beam. """
return self._elastic_modulus
@elastic_modulus.setter
def elastic_modulus(self, e):
self._elastic_modulus = sympify(e)
@property
def second_moment(self):
"""Second moment of area of the Beam. """
return self._second_moment
@second_moment.setter
def second_moment(self, i):
self._cross_section = None
if isinstance(i, GeometryEntity):
raise ValueError("To update cross-section geometry use `cross_section` attribute")
else:
self._second_moment = sympify(i)
@property
def cross_section(self):
"""Cross-section of the beam"""
return self._cross_section
@cross_section.setter
def cross_section(self, s):
if s:
self._second_moment = s.second_moment_of_area()[0]
self._cross_section = s
@property
def boundary_conditions(self):
"""
Returns a dictionary of boundary conditions applied on the beam.
The dictionary has three keywords namely moment, slope and deflection.
The value of each keyword is a list of tuple, where each tuple
contains location and value of a boundary condition in the format
(location, value).
Examples
========
There is a beam of length 4 meters. The bending moment at 0 should be 4
and at 4 it should be 0. The slope of the beam should be 1 at 0. The
deflection should be 2 at 0.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(4, E, I)
>>> b.bc_deflection = [(0, 2)]
>>> b.bc_slope = [(0, 1)]
>>> b.boundary_conditions
{'deflection': [(0, 2)], 'slope': [(0, 1)]}
Here the deflection of the beam should be ``2`` at ``0``.
Similarly, the slope of the beam should be ``1`` at ``0``.
"""
return self._boundary_conditions
@property
def bc_slope(self):
return self._boundary_conditions['slope']
@bc_slope.setter
def bc_slope(self, s_bcs):
self._boundary_conditions['slope'] = s_bcs
@property
def bc_deflection(self):
return self._boundary_conditions['deflection']
@bc_deflection.setter
def bc_deflection(self, d_bcs):
self._boundary_conditions['deflection'] = d_bcs
def join(self, beam, via="fixed"):
"""
This method joins two beams to make a new composite beam system.
Passed Beam class instance is attached to the right end of calling
object. This method can be used to form beams having Discontinuous
values of Elastic modulus or Second moment.
Parameters
==========
beam : Beam class object
The Beam object which would be connected to the right of calling
object.
via : String
States the way two Beam object would get connected
- For axially fixed Beams, via="fixed"
- For Beams connected via hinge, via="hinge"
Examples
========
There is a cantilever beam of length 4 meters. For first 2 meters
its moment of inertia is `1.5*I` and `I` for the other end.
A pointload of magnitude 4 N is applied from the top at its free end.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b1 = Beam(2, E, 1.5*I)
>>> b2 = Beam(2, E, I)
>>> b = b1.join(b2, "fixed")
>>> b.apply_load(20, 4, -1)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, 0, -2)
>>> b.bc_slope = [(0, 0)]
>>> b.bc_deflection = [(0, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.load
80*SingularityFunction(x, 0, -2) - 20*SingularityFunction(x, 0, -1) + 20*SingularityFunction(x, 4, -1)
>>> b.slope()
(-((-80*SingularityFunction(x, 0, 1) + 10*SingularityFunction(x, 0, 2) - 10*SingularityFunction(x, 4, 2))/I + 120/I)/E + 80.0/(E*I))*SingularityFunction(x, 2, 0)
- 0.666666666666667*(-80*SingularityFunction(x, 0, 1) + 10*SingularityFunction(x, 0, 2) - 10*SingularityFunction(x, 4, 2))*SingularityFunction(x, 0, 0)/(E*I)
+ 0.666666666666667*(-80*SingularityFunction(x, 0, 1) + 10*SingularityFunction(x, 0, 2) - 10*SingularityFunction(x, 4, 2))*SingularityFunction(x, 2, 0)/(E*I)
"""
x = self.variable
E = self.elastic_modulus
new_length = self.length + beam.length
if self.second_moment != beam.second_moment:
new_second_moment = Piecewise((self.second_moment, x<=self.length),
(beam.second_moment, x<=new_length))
else:
new_second_moment = self.second_moment
if via == "fixed":
new_beam = Beam(new_length, E, new_second_moment, x)
new_beam._composite_type = "fixed"
return new_beam
if via == "hinge":
new_beam = Beam(new_length, E, new_second_moment, x)
new_beam._composite_type = "hinge"
new_beam._hinge_position = self.length
return new_beam
def apply_support(self, loc, type="fixed"):
"""
This method applies support to a particular beam object.
Parameters
==========
loc : Sympifyable
Location of point at which support is applied.
type : String
Determines type of Beam support applied. To apply support structure
with
- zero degree of freedom, type = "fixed"
- one degree of freedom, type = "pin"
- two degrees of freedom, type = "roller"
Examples
========
There is a beam of length 30 meters. A moment of magnitude 120 Nm is
applied in the clockwise direction at the end of the beam. A pointload
of magnitude 8 N is applied from the top of the beam at the starting
point. There are two simple supports below the beam. One at the end
and another one at a distance of 10 meters from the start. The
deflection is restricted at both the supports.
Using the sign convention of upward forces and clockwise moment
being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(30, E, I)
>>> b.apply_support(10, 'roller')
>>> b.apply_support(30, 'roller')
>>> b.apply_load(-8, 0, -1)
>>> b.apply_load(120, 30, -2)
>>> R_10, R_30 = symbols('R_10, R_30')
>>> b.solve_for_reaction_loads(R_10, R_30)
>>> b.load
-8*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 10, -1)
+ 120*SingularityFunction(x, 30, -2) + 2*SingularityFunction(x, 30, -1)
>>> b.slope()
(-4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2)
+ 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) + 4000/3)/(E*I)
"""
loc = sympify(loc)
self._applied_supports.append((loc, type))
if type in ("pin", "roller"):
reaction_load = Symbol('R_'+str(loc))
self.apply_load(reaction_load, loc, -1)
self.bc_deflection.append((loc, 0))
else:
reaction_load = Symbol('R_'+str(loc))
reaction_moment = Symbol('M_'+str(loc))
self.apply_load(reaction_load, loc, -1)
self.apply_load(reaction_moment, loc, -2)
self.bc_deflection.append((loc, 0))
self.bc_slope.append((loc, 0))
self._support_as_loads.append((reaction_moment, loc, -2, None))
self._support_as_loads.append((reaction_load, loc, -1, None))
def apply_load(self, value, start, order, end=None):
"""
This method adds up the loads given to a particular beam object.
Parameters
==========
value : Sympifyable
The value inserted should have the units [Force/(Distance**(n+1)]
where n is the order of applied load.
Units for applied loads:
- For moments, unit = kN*m
- For point loads, unit = kN
- For constant distributed load, unit = kN/m
- For ramp loads, unit = kN/m/m
- For parabolic ramp loads, unit = kN/m/m/m
- ... so on.
start : Sympifyable
The starting point of the applied load. For point moments and
point forces this is the location of application.
order : Integer
The order of the applied load.
- For moments, order = -2
- For point loads, order =-1
- For constant distributed load, order = 0
- For ramp loads, order = 1
- For parabolic ramp loads, order = 2
- ... so on.
end : Sympifyable, optional
An optional argument that can be used if the load has an end point
within the length of the beam.
Examples
========
There is a beam of length 4 meters. A moment of magnitude 3 Nm is
applied in the clockwise direction at the starting point of the beam.
A point load of magnitude 4 N is applied from the top of the beam at
2 meters from the starting point and a parabolic ramp load of magnitude
2 N/m is applied below the beam starting from 2 meters to 3 meters
away from the starting point of the beam.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(4, E, I)
>>> b.apply_load(-3, 0, -2)
>>> b.apply_load(4, 2, -1)
>>> b.apply_load(-2, 2, 2, end=3)
>>> b.load
-3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1) - 2*SingularityFunction(x, 2, 2) + 2*SingularityFunction(x, 3, 0) + 4*SingularityFunction(x, 3, 1) + 2*SingularityFunction(x, 3, 2)
"""
x = self.variable
value = sympify(value)
start = sympify(start)
order = sympify(order)
self._applied_loads.append((value, start, order, end))
self._load += value*SingularityFunction(x, start, order)
self._original_load += value*SingularityFunction(x, start, order)
if end:
# load has an end point within the length of the beam.
self._handle_end(x, value, start, order, end, type="apply")
def remove_load(self, value, start, order, end=None):
"""
This method removes a particular load present on the beam object.
Returns a ValueError if the load passed as an argument is not
present on the beam.
Parameters
==========
value : Sympifyable
The magnitude of an applied load.
start : Sympifyable
The starting point of the applied load. For point moments and
point forces this is the location of application.
order : Integer
The order of the applied load.
- For moments, order= -2
- For point loads, order=-1
- For constant distributed load, order=0
- For ramp loads, order=1
- For parabolic ramp loads, order=2
- ... so on.
end : Sympifyable, optional
An optional argument that can be used if the load has an end point
within the length of the beam.
Examples
========
There is a beam of length 4 meters. A moment of magnitude 3 Nm is
applied in the clockwise direction at the starting point of the beam.
A pointload of magnitude 4 N is applied from the top of the beam at
2 meters from the starting point and a parabolic ramp load of magnitude
2 N/m is applied below the beam starting from 2 meters to 3 meters
away from the starting point of the beam.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(4, E, I)
>>> b.apply_load(-3, 0, -2)
>>> b.apply_load(4, 2, -1)
>>> b.apply_load(-2, 2, 2, end=3)
>>> b.load
-3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1) - 2*SingularityFunction(x, 2, 2) + 2*SingularityFunction(x, 3, 0) + 4*SingularityFunction(x, 3, 1) + 2*SingularityFunction(x, 3, 2)
>>> b.remove_load(-2, 2, 2, end = 3)
>>> b.load
-3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1)
"""
x = self.variable
value = sympify(value)
start = sympify(start)
order = sympify(order)
if (value, start, order, end) in self._applied_loads:
self._load -= value*SingularityFunction(x, start, order)
self._original_load -= value*SingularityFunction(x, start, order)
self._applied_loads.remove((value, start, order, end))
else:
msg = "No such load distribution exists on the beam object."
raise ValueError(msg)
if end:
# load has an end point within the length of the beam.
self._handle_end(x, value, start, order, end, type="remove")
def _handle_end(self, x, value, start, order, end, type):
"""
This functions handles the optional `end` value in the
`apply_load` and `remove_load` functions. When the value
of end is not NULL, this function will be executed.
"""
if order.is_negative:
msg = ("If 'end' is provided the 'order' of the load cannot "
"be negative, i.e. 'end' is only valid for distributed "
"loads.")
raise ValueError(msg)
# NOTE : A Taylor series can be used to define the summation of
# singularity functions that subtract from the load past the end
# point such that it evaluates to zero past 'end'.
f = value*x**order
if type == "apply":
# iterating for "apply_load" method
for i in range(0, order + 1):
self._load -= (f.diff(x, i).subs(x, end - start) *
SingularityFunction(x, end, i)/factorial(i))
self._original_load -= (f.diff(x, i).subs(x, end - start) *
SingularityFunction(x, end, i)/factorial(i))
elif type == "remove":
# iterating for "remove_load" method
for i in range(0, order + 1):
self._load += (f.diff(x, i).subs(x, end - start) *
SingularityFunction(x, end, i)/factorial(i))
self._original_load += (f.diff(x, i).subs(x, end - start) *
SingularityFunction(x, end, i)/factorial(i))
@property
def load(self):
"""
Returns a Singularity Function expression which represents
the load distribution curve of the Beam object.
Examples
========
There is a beam of length 4 meters. A moment of magnitude 3 Nm is
applied in the clockwise direction at the starting point of the beam.
A point load of magnitude 4 N is applied from the top of the beam at
2 meters from the starting point and a parabolic ramp load of magnitude
2 N/m is applied below the beam starting from 3 meters away from the
starting point of the beam.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(4, E, I)
>>> b.apply_load(-3, 0, -2)
>>> b.apply_load(4, 2, -1)
>>> b.apply_load(-2, 3, 2)
>>> b.load
-3*SingularityFunction(x, 0, -2) + 4*SingularityFunction(x, 2, -1) - 2*SingularityFunction(x, 3, 2)
"""
return self._load
@property
def applied_loads(self):
"""
Returns a list of all loads applied on the beam object.
Each load in the list is a tuple of form (value, start, order, end).
Examples
========
There is a beam of length 4 meters. A moment of magnitude 3 Nm is
applied in the clockwise direction at the starting point of the beam.
A pointload of magnitude 4 N is applied from the top of the beam at
2 meters from the starting point. Another pointload of magnitude 5 N
is applied at same position.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(4, E, I)
>>> b.apply_load(-3, 0, -2)
>>> b.apply_load(4, 2, -1)
>>> b.apply_load(5, 2, -1)
>>> b.load
-3*SingularityFunction(x, 0, -2) + 9*SingularityFunction(x, 2, -1)
>>> b.applied_loads
[(-3, 0, -2, None), (4, 2, -1, None), (5, 2, -1, None)]
"""
return self._applied_loads
def _solve_hinge_beams(self, *reactions):
"""Method to find integration constants and reactional variables in a
composite beam connected via hinge.
This method resolves the composite Beam into its sub-beams and then
equations of shear force, bending moment, slope and deflection are
evaluated for both of them separately. These equations are then solved
for unknown reactions and integration constants using the boundary
conditions applied on the Beam. Equal deflection of both sub-beams
at the hinge joint gives us another equation to solve the system.
Examples
========
A combined beam, with constant fkexural rigidity E*I, is formed by joining
a Beam of length 2*l to the right of another Beam of length l. The whole beam
is fixed at both of its both end. A point load of magnitude P is also applied
from the top at a distance of 2*l from starting point.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> l=symbols('l', positive=True)
>>> b1=Beam(l, E, I)
>>> b2=Beam(2*l, E, I)
>>> b=b1.join(b2,"hinge")
>>> M1, A1, M2, A2, P = symbols('M1 A1 M2 A2 P')
>>> b.apply_load(A1,0,-1)
>>> b.apply_load(M1,0,-2)
>>> b.apply_load(P,2*l,-1)
>>> b.apply_load(A2,3*l,-1)
>>> b.apply_load(M2,3*l,-2)
>>> b.bc_slope=[(0,0), (3*l, 0)]
>>> b.bc_deflection=[(0,0), (3*l, 0)]
>>> b.solve_for_reaction_loads(M1, A1, M2, A2)
>>> b.reaction_loads
{A1: -5*P/18, A2: -13*P/18, M1: 5*P*l/18, M2: -4*P*l/9}
>>> b.slope()
(5*P*l*SingularityFunction(x, 0, 1)/18 - 5*P*SingularityFunction(x, 0, 2)/36 + 5*P*SingularityFunction(x, l, 2)/36)*SingularityFunction(x, 0, 0)/(E*I)
- (5*P*l*SingularityFunction(x, 0, 1)/18 - 5*P*SingularityFunction(x, 0, 2)/36 + 5*P*SingularityFunction(x, l, 2)/36)*SingularityFunction(x, l, 0)/(E*I)
+ (P*l**2/18 - 4*P*l*SingularityFunction(-l + x, 2*l, 1)/9 - 5*P*SingularityFunction(-l + x, 0, 2)/36 + P*SingularityFunction(-l + x, l, 2)/2
- 13*P*SingularityFunction(-l + x, 2*l, 2)/36)*SingularityFunction(x, l, 0)/(E*I)
>>> b.deflection()
(5*P*l*SingularityFunction(x, 0, 2)/36 - 5*P*SingularityFunction(x, 0, 3)/108 + 5*P*SingularityFunction(x, l, 3)/108)*SingularityFunction(x, 0, 0)/(E*I)
- (5*P*l*SingularityFunction(x, 0, 2)/36 - 5*P*SingularityFunction(x, 0, 3)/108 + 5*P*SingularityFunction(x, l, 3)/108)*SingularityFunction(x, l, 0)/(E*I)
+ (5*P*l**3/54 + P*l**2*(-l + x)/18 - 2*P*l*SingularityFunction(-l + x, 2*l, 2)/9 - 5*P*SingularityFunction(-l + x, 0, 3)/108 + P*SingularityFunction(-l + x, l, 3)/6
- 13*P*SingularityFunction(-l + x, 2*l, 3)/108)*SingularityFunction(x, l, 0)/(E*I)
"""
x = self.variable
l = self._hinge_position
E = self._elastic_modulus
I = self._second_moment
if isinstance(I, Piecewise):
I1 = I.args[0][0]
I2 = I.args[1][0]
else:
I1 = I2 = I
load_1 = 0 # Load equation on first segment of composite beam
load_2 = 0 # Load equation on second segment of composite beam
# Distributing load on both segments
for load in self.applied_loads:
if load[1] < l:
load_1 += load[0]*SingularityFunction(x, load[1], load[2])
if load[2] == 0:
load_1 -= load[0]*SingularityFunction(x, load[3], load[2])
elif load[2] > 0:
load_1 -= load[0]*SingularityFunction(x, load[3], load[2]) + load[0]*SingularityFunction(x, load[3], 0)
elif load[1] == l:
load_1 += load[0]*SingularityFunction(x, load[1], load[2])
load_2 += load[0]*SingularityFunction(x, load[1] - l, load[2])
elif load[1] > l:
load_2 += load[0]*SingularityFunction(x, load[1] - l, load[2])
if load[2] == 0:
load_2 -= load[0]*SingularityFunction(x, load[3] - l, load[2])
elif load[2] > 0:
load_2 -= load[0]*SingularityFunction(x, load[3] - l, load[2]) + load[0]*SingularityFunction(x, load[3] - l, 0)
h = Symbol('h') # Force due to hinge
load_1 += h*SingularityFunction(x, l, -1)
load_2 -= h*SingularityFunction(x, 0, -1)
eq = []
shear_1 = integrate(load_1, x)
shear_curve_1 = limit(shear_1, x, l)
eq.append(shear_curve_1)
bending_1 = integrate(shear_1, x)
moment_curve_1 = limit(bending_1, x, l)
eq.append(moment_curve_1)
shear_2 = integrate(load_2, x)
shear_curve_2 = limit(shear_2, x, self.length - l)
eq.append(shear_curve_2)
bending_2 = integrate(shear_2, x)
moment_curve_2 = limit(bending_2, x, self.length - l)
eq.append(moment_curve_2)
C1 = Symbol('C1')
C2 = Symbol('C2')
C3 = Symbol('C3')
C4 = Symbol('C4')
slope_1 = S.One/(E*I1)*(integrate(bending_1, x) + C1)
def_1 = S.One/(E*I1)*(integrate((E*I)*slope_1, x) + C1*x + C2)
slope_2 = S.One/(E*I2)*(integrate(integrate(integrate(load_2, x), x), x) + C3)
def_2 = S.One/(E*I2)*(integrate((E*I)*slope_2, x) + C4)
for position, value in self.bc_slope:
if position<l:
eq.append(slope_1.subs(x, position) - value)
else:
eq.append(slope_2.subs(x, position - l) - value)
for position, value in self.bc_deflection:
if position<l:
eq.append(def_1.subs(x, position) - value)
else:
eq.append(def_2.subs(x, position - l) - value)
eq.append(def_1.subs(x, l) - def_2.subs(x, 0)) # Deflection of both the segments at hinge would be equal
constants = list(linsolve(eq, C1, C2, C3, C4, h, *reactions))
reaction_values = list(constants[0])[5:]
self._reaction_loads = dict(zip(reactions, reaction_values))
self._load = self._load.subs(self._reaction_loads)
# Substituting constants and reactional load and moments with their corresponding values
slope_1 = slope_1.subs({C1: constants[0][0], h:constants[0][4]}).subs(self._reaction_loads)
def_1 = def_1.subs({C1: constants[0][0], C2: constants[0][1], h:constants[0][4]}).subs(self._reaction_loads)
slope_2 = slope_2.subs({x: x-l, C3: constants[0][2], h:constants[0][4]}).subs(self._reaction_loads)
def_2 = def_2.subs({x: x-l,C3: constants[0][2], C4: constants[0][3], h:constants[0][4]}).subs(self._reaction_loads)
self._hinge_beam_slope = slope_1*SingularityFunction(x, 0, 0) - slope_1*SingularityFunction(x, l, 0) + slope_2*SingularityFunction(x, l, 0)
self._hinge_beam_deflection = def_1*SingularityFunction(x, 0, 0) - def_1*SingularityFunction(x, l, 0) + def_2*SingularityFunction(x, l, 0)
def solve_for_reaction_loads(self, *reactions):
"""
Solves for the reaction forces.
Examples
========
There is a beam of length 30 meters. A moment of magnitude 120 Nm is
applied in the clockwise direction at the end of the beam. A pointload
of magnitude 8 N is applied from the top of the beam at the starting
point. There are two simple supports below the beam. One at the end
and another one at a distance of 10 meters from the start. The
deflection is restricted at both the supports.
Using the sign convention of upward forces and clockwise moment
being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(30, E, I)
>>> b.apply_load(-8, 0, -1)
>>> b.apply_load(R1, 10, -1) # Reaction force at x = 10
>>> b.apply_load(R2, 30, -1) # Reaction force at x = 30
>>> b.apply_load(120, 30, -2)
>>> b.bc_deflection = [(10, 0), (30, 0)]
>>> b.load
R1*SingularityFunction(x, 10, -1) + R2*SingularityFunction(x, 30, -1)
- 8*SingularityFunction(x, 0, -1) + 120*SingularityFunction(x, 30, -2)
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.reaction_loads
{R1: 6, R2: 2}
>>> b.load
-8*SingularityFunction(x, 0, -1) + 6*SingularityFunction(x, 10, -1)
+ 120*SingularityFunction(x, 30, -2) + 2*SingularityFunction(x, 30, -1)
"""
if self._composite_type == "hinge":
return self._solve_hinge_beams(*reactions)
x = self.variable
l = self.length
C3 = Symbol('C3')
C4 = Symbol('C4')
shear_curve = limit(self.shear_force(), x, l)
moment_curve = limit(self.bending_moment(), x, l)
slope_eqs = []
deflection_eqs = []
slope_curve = integrate(self.bending_moment(), x) + C3
for position, value in self._boundary_conditions['slope']:
eqs = slope_curve.subs(x, position) - value
slope_eqs.append(eqs)
deflection_curve = integrate(slope_curve, x) + C4
for position, value in self._boundary_conditions['deflection']:
eqs = deflection_curve.subs(x, position) - value
deflection_eqs.append(eqs)
solution = list((linsolve([shear_curve, moment_curve] + slope_eqs
+ deflection_eqs, (C3, C4) + reactions).args)[0])
solution = solution[2:]
self._reaction_loads = dict(zip(reactions, solution))
self._load = self._load.subs(self._reaction_loads)
def shear_force(self):
"""
Returns a Singularity Function expression which represents
the shear force curve of the Beam object.
Examples
========
There is a beam of length 30 meters. A moment of magnitude 120 Nm is
applied in the clockwise direction at the end of the beam. A pointload
of magnitude 8 N is applied from the top of the beam at the starting
point. There are two simple supports below the beam. One at the end
and another one at a distance of 10 meters from the start. The
deflection is restricted at both the supports.
Using the sign convention of upward forces and clockwise moment
being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(30, E, I)
>>> b.apply_load(-8, 0, -1)
>>> b.apply_load(R1, 10, -1)
>>> b.apply_load(R2, 30, -1)
>>> b.apply_load(120, 30, -2)
>>> b.bc_deflection = [(10, 0), (30, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.shear_force()
8*SingularityFunction(x, 0, 0) - 6*SingularityFunction(x, 10, 0) - 120*SingularityFunction(x, 30, -1) - 2*SingularityFunction(x, 30, 0)
"""
x = self.variable
return -integrate(self.load, x)
def max_shear_force(self):
"""Returns maximum Shear force and its coordinate
in the Beam object."""
shear_curve = self.shear_force()
x = self.variable
terms = shear_curve.args
singularity = [] # Points at which shear function changes
for term in terms:
if isinstance(term, Mul):
term = term.args[-1] # SingularityFunction in the term
singularity.append(term.args[1])
singularity.sort()
singularity = list(set(singularity))
intervals = [] # List of Intervals with discrete value of shear force
shear_values = [] # List of values of shear force in each interval
for i, s in enumerate(singularity):
if s == 0:
continue
try:
shear_slope = Piecewise((float("nan"), x<=singularity[i-1]),(self._load.rewrite(Piecewise), x<s), (float("nan"), True))
points = solve(shear_slope, x)
val = []
for point in points:
val.append(abs(shear_curve.subs(x, point)))
points.extend([singularity[i-1], s])
val += [abs(limit(shear_curve, x, singularity[i-1], '+')), abs(limit(shear_curve, x, s, '-'))]
max_shear = max(val)
shear_values.append(max_shear)
intervals.append(points[val.index(max_shear)])
# If shear force in a particular Interval has zero or constant
# slope, then above block gives NotImplementedError as
# solve can't represent Interval solutions.
except NotImplementedError:
initial_shear = limit(shear_curve, x, singularity[i-1], '+')
final_shear = limit(shear_curve, x, s, '-')
# If shear_curve has a constant slope(it is a line).
if shear_curve.subs(x, (singularity[i-1] + s)/2) == (initial_shear + final_shear)/2 and initial_shear != final_shear:
shear_values.extend([initial_shear, final_shear])
intervals.extend([singularity[i-1], s])
else: # shear_curve has same value in whole Interval
shear_values.append(final_shear)
intervals.append(Interval(singularity[i-1], s))
shear_values = list(map(abs, shear_values))
maximum_shear = max(shear_values)
point = intervals[shear_values.index(maximum_shear)]
return (point, maximum_shear)
def bending_moment(self):
"""
Returns a Singularity Function expression which represents
the bending moment curve of the Beam object.
Examples
========
There is a beam of length 30 meters. A moment of magnitude 120 Nm is
applied in the clockwise direction at the end of the beam. A pointload
of magnitude 8 N is applied from the top of the beam at the starting
point. There are two simple supports below the beam. One at the end
and another one at a distance of 10 meters from the start. The
deflection is restricted at both the supports.
Using the sign convention of upward forces and clockwise moment
being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(30, E, I)
>>> b.apply_load(-8, 0, -1)
>>> b.apply_load(R1, 10, -1)
>>> b.apply_load(R2, 30, -1)
>>> b.apply_load(120, 30, -2)
>>> b.bc_deflection = [(10, 0), (30, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.bending_moment()
8*SingularityFunction(x, 0, 1) - 6*SingularityFunction(x, 10, 1) - 120*SingularityFunction(x, 30, 0) - 2*SingularityFunction(x, 30, 1)
"""
x = self.variable
return integrate(self.shear_force(), x)
def max_bmoment(self):
"""Returns maximum Shear force and its coordinate
in the Beam object."""
bending_curve = self.bending_moment()
x = self.variable
terms = bending_curve.args
singularity = [] # Points at which bending moment changes
for term in terms:
if isinstance(term, Mul):
term = term.args[-1] # SingularityFunction in the term
singularity.append(term.args[1])
singularity.sort()
singularity = list(set(singularity))
intervals = [] # List of Intervals with discrete value of bending moment
moment_values = [] # List of values of bending moment in each interval
for i, s in enumerate(singularity):
if s == 0:
continue
try:
moment_slope = Piecewise((float("nan"), x<=singularity[i-1]),(self.shear_force().rewrite(Piecewise), x<s), (float("nan"), True))
points = solve(moment_slope, x)
val = []
for point in points:
val.append(abs(bending_curve.subs(x, point)))
points.extend([singularity[i-1], s])
val += [abs(limit(bending_curve, x, singularity[i-1], '+')), abs(limit(bending_curve, x, s, '-'))]
max_moment = max(val)
moment_values.append(max_moment)
intervals.append(points[val.index(max_moment)])
# If bending moment in a particular Interval has zero or constant
# slope, then above block gives NotImplementedError as solve
# can't represent Interval solutions.
except NotImplementedError:
initial_moment = limit(bending_curve, x, singularity[i-1], '+')
final_moment = limit(bending_curve, x, s, '-')
# If bending_curve has a constant slope(it is a line).
if bending_curve.subs(x, (singularity[i-1] + s)/2) == (initial_moment + final_moment)/2 and initial_moment != final_moment:
moment_values.extend([initial_moment, final_moment])
intervals.extend([singularity[i-1], s])
else: # bending_curve has same value in whole Interval
moment_values.append(final_moment)
intervals.append(Interval(singularity[i-1], s))
moment_values = list(map(abs, moment_values))
maximum_moment = max(moment_values)
point = intervals[moment_values.index(maximum_moment)]
return (point, maximum_moment)
def point_cflexure(self):
"""
Returns a Set of point(s) with zero bending moment and
where bending moment curve of the beam object changes
its sign from negative to positive or vice versa.
Examples
========
There is is 10 meter long overhanging beam. There are
two simple supports below the beam. One at the start
and another one at a distance of 6 meters from the start.
Point loads of magnitude 10KN and 20KN are applied at
2 meters and 4 meters from start respectively. A Uniformly
distribute load of magnitude of magnitude 3KN/m is also
applied on top starting from 6 meters away from starting
point till end.
Using the sign convention of upward forces and clockwise moment
being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> b = Beam(10, E, I)
>>> b.apply_load(-4, 0, -1)
>>> b.apply_load(-46, 6, -1)
>>> b.apply_load(10, 2, -1)
>>> b.apply_load(20, 4, -1)
>>> b.apply_load(3, 6, 0)
>>> b.point_cflexure()
[10/3]
"""
# To restrict the range within length of the Beam
moment_curve = Piecewise((float("nan"), self.variable<=0),
(self.bending_moment(), self.variable<self.length),
(float("nan"), True))
points = solve(moment_curve.rewrite(Piecewise), self.variable,
domain=S.Reals)
return points
def slope(self):
"""
Returns a Singularity Function expression which represents
the slope the elastic curve of the Beam object.
Examples
========
There is a beam of length 30 meters. A moment of magnitude 120 Nm is
applied in the clockwise direction at the end of the beam. A pointload
of magnitude 8 N is applied from the top of the beam at the starting
point. There are two simple supports below the beam. One at the end
and another one at a distance of 10 meters from the start. The
deflection is restricted at both the supports.
Using the sign convention of upward forces and clockwise moment
being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(30, E, I)
>>> b.apply_load(-8, 0, -1)
>>> b.apply_load(R1, 10, -1)
>>> b.apply_load(R2, 30, -1)
>>> b.apply_load(120, 30, -2)
>>> b.bc_deflection = [(10, 0), (30, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.slope()
(-4*SingularityFunction(x, 0, 2) + 3*SingularityFunction(x, 10, 2)
+ 120*SingularityFunction(x, 30, 1) + SingularityFunction(x, 30, 2) + 4000/3)/(E*I)
"""
x = self.variable
E = self.elastic_modulus
I = self.second_moment
if self._composite_type == "hinge":
return self._hinge_beam_slope
if not self._boundary_conditions['slope']:
return diff(self.deflection(), x)
if isinstance(I, Piecewise) and self._composite_type == "fixed":
args = I.args
slope = 0
prev_slope = 0
prev_end = 0
for i in range(len(args)):
if i != 0:
prev_end = args[i-1][1].args[1]
slope_value = -S.One/E*integrate(self.bending_moment()/args[i][0], (x, prev_end, x))
if i != len(args) - 1:
slope += (prev_slope + slope_value)*SingularityFunction(x, prev_end, 0) - \
(prev_slope + slope_value)*SingularityFunction(x, args[i][1].args[1], 0)
else:
slope += (prev_slope + slope_value)*SingularityFunction(x, prev_end, 0)
prev_slope = slope_value.subs(x, args[i][1].args[1])
return slope
C3 = Symbol('C3')
slope_curve = -integrate(S.One/(E*I)*self.bending_moment(), x) + C3
bc_eqs = []
for position, value in self._boundary_conditions['slope']:
eqs = slope_curve.subs(x, position) - value
bc_eqs.append(eqs)
constants = list(linsolve(bc_eqs, C3))
slope_curve = slope_curve.subs({C3: constants[0][0]})
return slope_curve
def deflection(self):
"""
Returns a Singularity Function expression which represents
the elastic curve or deflection of the Beam object.
Examples
========
There is a beam of length 30 meters. A moment of magnitude 120 Nm is
applied in the clockwise direction at the end of the beam. A pointload
of magnitude 8 N is applied from the top of the beam at the starting
point. There are two simple supports below the beam. One at the end
and another one at a distance of 10 meters from the start. The
deflection is restricted at both the supports.
Using the sign convention of upward forces and clockwise moment
being positive.
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> E, I = symbols('E, I')
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(30, E, I)
>>> b.apply_load(-8, 0, -1)
>>> b.apply_load(R1, 10, -1)
>>> b.apply_load(R2, 30, -1)
>>> b.apply_load(120, 30, -2)
>>> b.bc_deflection = [(10, 0), (30, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.deflection()
(4000*x/3 - 4*SingularityFunction(x, 0, 3)/3 + SingularityFunction(x, 10, 3)
+ 60*SingularityFunction(x, 30, 2) + SingularityFunction(x, 30, 3)/3 - 12000)/(E*I)
"""
x = self.variable
E = self.elastic_modulus
I = self.second_moment
if self._composite_type == "hinge":
return self._hinge_beam_deflection
if not self._boundary_conditions['deflection'] and not self._boundary_conditions['slope']:
if isinstance(I, Piecewise) and self._composite_type == "fixed":
args = I.args
prev_slope = 0
prev_def = 0
prev_end = 0
deflection = 0
for i in range(len(args)):
if i != 0:
prev_end = args[i-1][1].args[1]
slope_value = -S.One/E*integrate(self.bending_moment()/args[i][0], (x, prev_end, x))
recent_segment_slope = prev_slope + slope_value
deflection_value = integrate(recent_segment_slope, (x, prev_end, x))
if i != len(args) - 1:
deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0) \
- (prev_def + deflection_value)*SingularityFunction(x, args[i][1].args[1], 0)
else:
deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0)
prev_slope = slope_value.subs(x, args[i][1].args[1])
prev_def = deflection_value.subs(x, args[i][1].args[1])
return deflection
base_char = self._base_char
constants = symbols(base_char + '3:5')
return S.One/(E*I)*integrate(-integrate(self.bending_moment(), x), x) + constants[0]*x + constants[1]
elif not self._boundary_conditions['deflection']:
base_char = self._base_char
constant = symbols(base_char + '4')
return integrate(self.slope(), x) + constant
elif not self._boundary_conditions['slope'] and self._boundary_conditions['deflection']:
if isinstance(I, Piecewise) and self._composite_type == "fixed":
args = I.args
prev_slope = 0
prev_def = 0
prev_end = 0
deflection = 0
for i in range(len(args)):
if i != 0:
prev_end = args[i-1][1].args[1]
slope_value = -S.One/E*integrate(self.bending_moment()/args[i][0], (x, prev_end, x))
recent_segment_slope = prev_slope + slope_value
deflection_value = integrate(recent_segment_slope, (x, prev_end, x))
if i != len(args) - 1:
deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0) \
- (prev_def + deflection_value)*SingularityFunction(x, args[i][1].args[1], 0)
else:
deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0)
prev_slope = slope_value.subs(x, args[i][1].args[1])
prev_def = deflection_value.subs(x, args[i][1].args[1])
return deflection
base_char = self._base_char
C3, C4 = symbols(base_char + '3:5') # Integration constants
slope_curve = -integrate(self.bending_moment(), x) + C3
deflection_curve = integrate(slope_curve, x) + C4
bc_eqs = []
for position, value in self._boundary_conditions['deflection']:
eqs = deflection_curve.subs(x, position) - value
bc_eqs.append(eqs)
constants = list(linsolve(bc_eqs, (C3, C4)))
deflection_curve = deflection_curve.subs({C3: constants[0][0], C4: constants[0][1]})
return S.One/(E*I)*deflection_curve
if isinstance(I, Piecewise) and self._composite_type == "fixed":
args = I.args
prev_slope = 0
prev_def = 0
prev_end = 0
deflection = 0
for i in range(len(args)):
if i != 0:
prev_end = args[i-1][1].args[1]
slope_value = S.One/E*integrate(self.bending_moment()/args[i][0], (x, prev_end, x))
recent_segment_slope = prev_slope + slope_value
deflection_value = integrate(recent_segment_slope, (x, prev_end, x))
if i != len(args) - 1:
deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0) \
- (prev_def + deflection_value)*SingularityFunction(x, args[i][1].args[1], 0)
else:
deflection += (prev_def + deflection_value)*SingularityFunction(x, prev_end, 0)
prev_slope = slope_value.subs(x, args[i][1].args[1])
prev_def = deflection_value.subs(x, args[i][1].args[1])
return deflection
C4 = Symbol('C4')
deflection_curve = integrate(self.slope(), x) + C4
bc_eqs = []
for position, value in self._boundary_conditions['deflection']:
eqs = deflection_curve.subs(x, position) - value
bc_eqs.append(eqs)
constants = list(linsolve(bc_eqs, C4))
deflection_curve = deflection_curve.subs({C4: constants[0][0]})
return deflection_curve
def max_deflection(self):
"""
Returns point of max deflection and its corresponding deflection value
in a Beam object.
"""
# To restrict the range within length of the Beam
slope_curve = Piecewise((float("nan"), self.variable<=0),
(self.slope(), self.variable<self.length),
(float("nan"), True))
points = solve(slope_curve.rewrite(Piecewise), self.variable,
domain=S.Reals)
deflection_curve = self.deflection()
deflections = [deflection_curve.subs(self.variable, x) for x in points]
deflections = list(map(abs, deflections))
if len(deflections) != 0:
max_def = max(deflections)
return (points[deflections.index(max_def)], max_def)
else:
return None
def shear_stress(self):
"""
Returns an expression representing the Shear Stress
curve of the Beam object.
"""
return self.shear_force()/self._area
def plot_shear_stress(self, subs=None):
"""
Returns a plot of shear stress present in the beam object.
Parameters
==========
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 8 meters and area of cross section 2 square
meters. A constant distributed load of 10 KN/m is applied from half of
the beam till the end. There are two simple supports below the beam,
one at the starting point and another at the ending point of the beam.
A pointload of magnitude 5 KN is also applied from top of the
beam, at a distance of 4 meters from the starting point.
Take E = 200 GPa and I = 400*(10**-6) meter**4.
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(8, 200*(10**9), 400*(10**-6), 2)
>>> b.apply_load(5000, 2, -1)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, 8, -1)
>>> b.apply_load(10000, 4, 0, end=8)
>>> b.bc_deflection = [(0, 0), (8, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.plot_shear_stress()
Plot object containing:
[0]: cartesian line: 6875*SingularityFunction(x, 0, 0) - 2500*SingularityFunction(x, 2, 0)
- 5000*SingularityFunction(x, 4, 1) + 15625*SingularityFunction(x, 8, 0)
+ 5000*SingularityFunction(x, 8, 1) for x over (0.0, 8.0)
"""
shear_stress = self.shear_stress()
x = self.variable
length = self.length
if subs is None:
subs = {}
for sym in shear_stress.atoms(Symbol):
if sym != x and sym not in subs:
raise ValueError('value of %s was not passed.' %sym)
if length in subs:
length = subs[length]
# Returns Plot of Shear Stress
return plot (shear_stress.subs(subs), (x, 0, length),
title='Shear Stress', xlabel=r'$\mathrm{x}$', ylabel=r'$\tau$',
line_color='r')
def plot_shear_force(self, subs=None):
"""
Returns a plot for Shear force present in the Beam object.
Parameters
==========
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 8 meters. A constant distributed load of 10 KN/m
is applied from half of the beam till the end. There are two simple supports
below the beam, one at the starting point and another at the ending point
of the beam. A pointload of magnitude 5 KN is also applied from top of the
beam, at a distance of 4 meters from the starting point.
Take E = 200 GPa and I = 400*(10**-6) meter**4.
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(8, 200*(10**9), 400*(10**-6))
>>> b.apply_load(5000, 2, -1)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, 8, -1)
>>> b.apply_load(10000, 4, 0, end=8)
>>> b.bc_deflection = [(0, 0), (8, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.plot_shear_force()
Plot object containing:
[0]: cartesian line: 13750*SingularityFunction(x, 0, 0) - 5000*SingularityFunction(x, 2, 0)
- 10000*SingularityFunction(x, 4, 1) + 31250*SingularityFunction(x, 8, 0)
+ 10000*SingularityFunction(x, 8, 1) for x over (0.0, 8.0)
"""
shear_force = self.shear_force()
if subs is None:
subs = {}
for sym in shear_force.atoms(Symbol):
if sym == self.variable:
continue
if sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if self.length in subs:
length = subs[self.length]
else:
length = self.length
return plot(shear_force.subs(subs), (self.variable, 0, length), title='Shear Force',
xlabel=r'$\mathrm{x}$', ylabel=r'$\mathrm{V}$', line_color='g')
def plot_bending_moment(self, subs=None):
"""
Returns a plot for Bending moment present in the Beam object.
Parameters
==========
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 8 meters. A constant distributed load of 10 KN/m
is applied from half of the beam till the end. There are two simple supports
below the beam, one at the starting point and another at the ending point
of the beam. A pointload of magnitude 5 KN is also applied from top of the
beam, at a distance of 4 meters from the starting point.
Take E = 200 GPa and I = 400*(10**-6) meter**4.
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(8, 200*(10**9), 400*(10**-6))
>>> b.apply_load(5000, 2, -1)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, 8, -1)
>>> b.apply_load(10000, 4, 0, end=8)
>>> b.bc_deflection = [(0, 0), (8, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.plot_bending_moment()
Plot object containing:
[0]: cartesian line: 13750*SingularityFunction(x, 0, 1) - 5000*SingularityFunction(x, 2, 1)
- 5000*SingularityFunction(x, 4, 2) + 31250*SingularityFunction(x, 8, 1)
+ 5000*SingularityFunction(x, 8, 2) for x over (0.0, 8.0)
"""
bending_moment = self.bending_moment()
if subs is None:
subs = {}
for sym in bending_moment.atoms(Symbol):
if sym == self.variable:
continue
if sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if self.length in subs:
length = subs[self.length]
else:
length = self.length
return plot(bending_moment.subs(subs), (self.variable, 0, length), title='Bending Moment',
xlabel=r'$\mathrm{x}$', ylabel=r'$\mathrm{M}$', line_color='b')
def plot_slope(self, subs=None):
"""
Returns a plot for slope of deflection curve of the Beam object.
Parameters
==========
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 8 meters. A constant distributed load of 10 KN/m
is applied from half of the beam till the end. There are two simple supports
below the beam, one at the starting point and another at the ending point
of the beam. A pointload of magnitude 5 KN is also applied from top of the
beam, at a distance of 4 meters from the starting point.
Take E = 200 GPa and I = 400*(10**-6) meter**4.
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(8, 200*(10**9), 400*(10**-6))
>>> b.apply_load(5000, 2, -1)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, 8, -1)
>>> b.apply_load(10000, 4, 0, end=8)
>>> b.bc_deflection = [(0, 0), (8, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.plot_slope()
Plot object containing:
[0]: cartesian line: -8.59375e-5*SingularityFunction(x, 0, 2) + 3.125e-5*SingularityFunction(x, 2, 2)
+ 2.08333333333333e-5*SingularityFunction(x, 4, 3) - 0.0001953125*SingularityFunction(x, 8, 2)
- 2.08333333333333e-5*SingularityFunction(x, 8, 3) + 0.00138541666666667 for x over (0.0, 8.0)
"""
slope = self.slope()
if subs is None:
subs = {}
for sym in slope.atoms(Symbol):
if sym == self.variable:
continue
if sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if self.length in subs:
length = subs[self.length]
else:
length = self.length
return plot(slope.subs(subs), (self.variable, 0, length), title='Slope',
xlabel=r'$\mathrm{x}$', ylabel=r'$\theta$', line_color='m')
def plot_deflection(self, subs=None):
"""
Returns a plot for deflection curve of the Beam object.
Parameters
==========
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 8 meters. A constant distributed load of 10 KN/m
is applied from half of the beam till the end. There are two simple supports
below the beam, one at the starting point and another at the ending point
of the beam. A pointload of magnitude 5 KN is also applied from top of the
beam, at a distance of 4 meters from the starting point.
Take E = 200 GPa and I = 400*(10**-6) meter**4.
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(8, 200*(10**9), 400*(10**-6))
>>> b.apply_load(5000, 2, -1)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, 8, -1)
>>> b.apply_load(10000, 4, 0, end=8)
>>> b.bc_deflection = [(0, 0), (8, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> b.plot_deflection()
Plot object containing:
[0]: cartesian line: 0.00138541666666667*x - 2.86458333333333e-5*SingularityFunction(x, 0, 3)
+ 1.04166666666667e-5*SingularityFunction(x, 2, 3) + 5.20833333333333e-6*SingularityFunction(x, 4, 4)
- 6.51041666666667e-5*SingularityFunction(x, 8, 3) - 5.20833333333333e-6*SingularityFunction(x, 8, 4)
for x over (0.0, 8.0)
"""
deflection = self.deflection()
if subs is None:
subs = {}
for sym in deflection.atoms(Symbol):
if sym == self.variable:
continue
if sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if self.length in subs:
length = subs[self.length]
else:
length = self.length
return plot(deflection.subs(subs), (self.variable, 0, length),
title='Deflection', xlabel=r'$\mathrm{x}$', ylabel=r'$\delta$',
line_color='r')
def plot_loading_results(self, subs=None):
"""
Returns a subplot of Shear Force, Bending Moment,
Slope and Deflection of the Beam object.
Parameters
==========
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 8 meters. A constant distributed load of 10 KN/m
is applied from half of the beam till the end. There are two simple supports
below the beam, one at the starting point and another at the ending point
of the beam. A pointload of magnitude 5 KN is also applied from top of the
beam, at a distance of 4 meters from the starting point.
Take E = 200 GPa and I = 400*(10**-6) meter**4.
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> R1, R2 = symbols('R1, R2')
>>> b = Beam(8, 200*(10**9), 400*(10**-6))
>>> b.apply_load(5000, 2, -1)
>>> b.apply_load(R1, 0, -1)
>>> b.apply_load(R2, 8, -1)
>>> b.apply_load(10000, 4, 0, end=8)
>>> b.bc_deflection = [(0, 0), (8, 0)]
>>> b.solve_for_reaction_loads(R1, R2)
>>> axes = b.plot_loading_results()
"""
length = self.length
variable = self.variable
if subs is None:
subs = {}
for sym in self.deflection().atoms(Symbol):
if sym == self.variable:
continue
if sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if length in subs:
length = subs[length]
ax1 = plot(self.shear_force().subs(subs), (variable, 0, length),
title="Shear Force", xlabel=r'$\mathrm{x}$', ylabel=r'$\mathrm{V}$',
line_color='g', show=False)
ax2 = plot(self.bending_moment().subs(subs), (variable, 0, length),
title="Bending Moment", xlabel=r'$\mathrm{x}$', ylabel=r'$\mathrm{M}$',
line_color='b', show=False)
ax3 = plot(self.slope().subs(subs), (variable, 0, length),
title="Slope", xlabel=r'$\mathrm{x}$', ylabel=r'$\theta$',
line_color='m', show=False)
ax4 = plot(self.deflection().subs(subs), (variable, 0, length),
title="Deflection", xlabel=r'$\mathrm{x}$', ylabel=r'$\delta$',
line_color='r', show=False)
return PlotGrid(4, 1, ax1, ax2, ax3, ax4)
def _solve_for_ild_equations(self):
"""
Helper function for I.L.D. It takes the unsubstituted
copy of the load equation and uses it to calculate shear force and bending
moment equations.
"""
x = self.variable
shear_force = -integrate(self._original_load, x)
bending_moment = integrate(shear_force, x)
return shear_force, bending_moment
def solve_for_ild_reactions(self, value, *reactions):
"""
Determines the Influence Line Diagram equations for reaction
forces under the effect of a moving load.
Parameters
==========
value : Integer
Magnitude of moving load
reactions :
The reaction forces applied on the beam.
Examples
========
There is a beam of length 10 meters. There are two simple supports
below the beam, one at the starting point and another at the ending
point of the beam. Calculate the I.L.D. equations for reaction forces
under the effect of a moving load of magnitude 1kN.
.. image:: ildreaction.png
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> E, I = symbols('E, I')
>>> R_0, R_10 = symbols('R_0, R_10')
>>> b = Beam(10, E, I)
>>> b.apply_support(0, 'roller')
>>> b.apply_support(10, 'roller')
>>> b.solve_for_ild_reactions(1,R_0,R_10)
>>> b.ild_reactions
{R_0: x/10 - 1, R_10: -x/10}
"""
shear_force, bending_moment = self._solve_for_ild_equations()
x = self.variable
l = self.length
C3 = Symbol('C3')
C4 = Symbol('C4')
shear_curve = limit(shear_force, x, l) - value
moment_curve = limit(bending_moment, x, l) - value*(l-x)
slope_eqs = []
deflection_eqs = []
slope_curve = integrate(bending_moment, x) + C3
for position, value in self._boundary_conditions['slope']:
eqs = slope_curve.subs(x, position) - value
slope_eqs.append(eqs)
deflection_curve = integrate(slope_curve, x) + C4
for position, value in self._boundary_conditions['deflection']:
eqs = deflection_curve.subs(x, position) - value
deflection_eqs.append(eqs)
solution = list((linsolve([shear_curve, moment_curve] + slope_eqs
+ deflection_eqs, (C3, C4) + reactions).args)[0])
solution = solution[2:]
# Determining the equations and solving them.
self._ild_reactions = dict(zip(reactions, solution))
def plot_ild_reactions(self, subs=None):
"""
Plots the Influence Line Diagram of Reaction Forces
under the effect of a moving load. This function
should be called after calling solve_for_ild_reactions().
Parameters
==========
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 10 meters. A point load of magnitude 5KN
is also applied from top of the beam, at a distance of 4 meters
from the starting point. There are two simple supports below the
beam, located at the starting point and at a distance of 7 meters
from the starting point. Plot the I.L.D. equations for reactions
at both support points under the effect of a moving load
of magnitude 1kN.
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> E, I = symbols('E, I')
>>> R_0, R_7 = symbols('R_0, R_7')
>>> b = Beam(10, E, I)
>>> b.apply_support(0, 'roller')
>>> b.apply_support(7, 'roller')
>>> b.apply_load(5,4,-1)
>>> b.solve_for_ild_reactions(1,R_0,R_7)
>>> b.ild_reactions
{R_0: x/7 - 22/7, R_7: -x/7 - 20/7}
>>> b.plot_ild_reactions()
PlotGrid object containing:
Plot[0]:Plot object containing:
[0]: cartesian line: x/7 - 22/7 for x over (0.0, 10.0)
Plot[1]:Plot object containing:
[0]: cartesian line: -x/7 - 20/7 for x over (0.0, 10.0)
"""
if not self._ild_reactions:
raise ValueError("I.L.D. reaction equations not found. Please use solve_for_ild_reactions() to generate the I.L.D. reaction equations.")
x = self.variable
ildplots = []
if subs is None:
subs = {}
for reaction in self._ild_reactions:
for sym in self._ild_reactions[reaction].atoms(Symbol):
if sym != x and sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
for sym in self._length.atoms(Symbol):
if sym != x and sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
for reaction in self._ild_reactions:
ildplots.append(plot(self._ild_reactions[reaction].subs(subs),
(x, 0, self._length.subs(subs)), title='I.L.D. for Reactions',
xlabel=x, ylabel=reaction, line_color='blue', show=False))
return PlotGrid(len(ildplots), 1, *ildplots)
def solve_for_ild_shear(self, distance, value, *reactions):
"""
Determines the Influence Line Diagram equations for shear at a
specified point under the effect of a moving load.
Parameters
==========
distance : Integer
Distance of the point from the start of the beam
for which equations are to be determined
value : Integer
Magnitude of moving load
reactions :
The reaction forces applied on the beam.
Examples
========
There is a beam of length 12 meters. There are two simple supports
below the beam, one at the starting point and another at a distance
of 8 meters. Calculate the I.L.D. equations for Shear at a distance
of 4 meters under the effect of a moving load of magnitude 1kN.
.. image:: ildshear.png
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> E, I = symbols('E, I')
>>> R_0, R_8 = symbols('R_0, R_8')
>>> b = Beam(12, E, I)
>>> b.apply_support(0, 'roller')
>>> b.apply_support(8, 'roller')
>>> b.solve_for_ild_reactions(1, R_0, R_8)
>>> b.solve_for_ild_shear(4, 1, R_0, R_8)
>>> b.ild_shear
Piecewise((x/8, x < 4), (x/8 - 1, x > 4))
"""
x = self.variable
l = self.length
shear_force, _ = self._solve_for_ild_equations()
shear_curve1 = value - limit(shear_force, x, distance)
shear_curve2 = (limit(shear_force, x, l) - limit(shear_force, x, distance)) - value
for reaction in reactions:
shear_curve1 = shear_curve1.subs(reaction,self._ild_reactions[reaction])
shear_curve2 = shear_curve2.subs(reaction,self._ild_reactions[reaction])
shear_eq = Piecewise((shear_curve1, x < distance), (shear_curve2, x > distance))
self._ild_shear = shear_eq
def plot_ild_shear(self,subs=None):
"""
Plots the Influence Line Diagram for Shear under the effect
of a moving load. This function should be called after
calling solve_for_ild_shear().
Parameters
==========
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 12 meters. There are two simple supports
below the beam, one at the starting point and another at a distance
of 8 meters. Plot the I.L.D. for Shear at a distance
of 4 meters under the effect of a moving load of magnitude 1kN.
.. image:: ildshear.png
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> E, I = symbols('E, I')
>>> R_0, R_8 = symbols('R_0, R_8')
>>> b = Beam(12, E, I)
>>> b.apply_support(0, 'roller')
>>> b.apply_support(8, 'roller')
>>> b.solve_for_ild_reactions(1, R_0, R_8)
>>> b.solve_for_ild_shear(4, 1, R_0, R_8)
>>> b.ild_shear
Piecewise((x/8, x < 4), (x/8 - 1, x > 4))
>>> b.plot_ild_shear()
Plot object containing:
[0]: cartesian line: Piecewise((x/8, x < 4), (x/8 - 1, x > 4)) for x over (0.0, 12.0)
"""
if not self._ild_shear:
raise ValueError("I.L.D. shear equation not found. Please use solve_for_ild_shear() to generate the I.L.D. shear equations.")
x = self.variable
l = self._length
if subs is None:
subs = {}
for sym in self._ild_shear.atoms(Symbol):
if sym != x and sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
for sym in self._length.atoms(Symbol):
if sym != x and sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
return plot(self._ild_shear.subs(subs), (x, 0, l), title='I.L.D. for Shear',
xlabel=r'$\mathrm{X}$', ylabel=r'$\mathrm{V}$', line_color='blue',show=True)
def solve_for_ild_moment(self, distance, value, *reactions):
"""
Determines the Influence Line Diagram equations for moment at a
specified point under the effect of a moving load.
Parameters
==========
distance : Integer
Distance of the point from the start of the beam
for which equations are to be determined
value : Integer
Magnitude of moving load
reactions :
The reaction forces applied on the beam.
Examples
========
There is a beam of length 12 meters. There are two simple supports
below the beam, one at the starting point and another at a distance
of 8 meters. Calculate the I.L.D. equations for Moment at a distance
of 4 meters under the effect of a moving load of magnitude 1kN.
.. image:: ildshear.png
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> E, I = symbols('E, I')
>>> R_0, R_8 = symbols('R_0, R_8')
>>> b = Beam(12, E, I)
>>> b.apply_support(0, 'roller')
>>> b.apply_support(8, 'roller')
>>> b.solve_for_ild_reactions(1, R_0, R_8)
>>> b.solve_for_ild_moment(4, 1, R_0, R_8)
>>> b.ild_moment
Piecewise((-x/2, x < 4), (x/2 - 4, x > 4))
"""
x = self.variable
l = self.length
_, moment = self._solve_for_ild_equations()
moment_curve1 = value*(distance-x) - limit(moment, x, distance)
moment_curve2= (limit(moment, x, l)-limit(moment, x, distance))-value*(l-x)
for reaction in reactions:
moment_curve1 = moment_curve1.subs(reaction, self._ild_reactions[reaction])
moment_curve2 = moment_curve2.subs(reaction, self._ild_reactions[reaction])
moment_eq = Piecewise((moment_curve1, x < distance), (moment_curve2, x > distance))
self._ild_moment = moment_eq
def plot_ild_moment(self,subs=None):
"""
Plots the Influence Line Diagram for Moment under the effect
of a moving load. This function should be called after
calling solve_for_ild_moment().
Parameters
==========
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 12 meters. There are two simple supports
below the beam, one at the starting point and another at a distance
of 8 meters. Plot the I.L.D. for Moment at a distance
of 4 meters under the effect of a moving load of magnitude 1kN.
.. image:: ildshear.png
Using the sign convention of downwards forces being positive.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> E, I = symbols('E, I')
>>> R_0, R_8 = symbols('R_0, R_8')
>>> b = Beam(12, E, I)
>>> b.apply_support(0, 'roller')
>>> b.apply_support(8, 'roller')
>>> b.solve_for_ild_reactions(1, R_0, R_8)
>>> b.solve_for_ild_moment(4, 1, R_0, R_8)
>>> b.ild_moment
Piecewise((-x/2, x < 4), (x/2 - 4, x > 4))
>>> b.plot_ild_moment()
Plot object containing:
[0]: cartesian line: Piecewise((-x/2, x < 4), (x/2 - 4, x > 4)) for x over (0.0, 12.0)
"""
if not self._ild_moment:
raise ValueError("I.L.D. moment equation not found. Please use solve_for_ild_moment() to generate the I.L.D. moment equations.")
x = self.variable
if subs is None:
subs = {}
for sym in self._ild_moment.atoms(Symbol):
if sym != x and sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
for sym in self._length.atoms(Symbol):
if sym != x and sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
return plot(self._ild_moment.subs(subs), (x, 0, self._length), title='I.L.D. for Moment',
xlabel=r'$\mathrm{X}$', ylabel=r'$\mathrm{M}$', line_color='blue', show=True)
@doctest_depends_on(modules=('numpy',))
def draw(self, pictorial=True):
"""
Returns a plot object representing the beam diagram of the beam.
.. note::
The user must be careful while entering load values.
The draw function assumes a sign convention which is used
for plotting loads.
Given a right handed coordinate system with XYZ coordinates,
the beam's length is assumed to be along the positive X axis.
The draw function recognizes positve loads(with n>-2) as loads
acting along negative Y direction and positve moments acting
along positive Z direction.
Parameters
==========
pictorial: Boolean (default=True)
Setting ``pictorial=True`` would simply create a pictorial (scaled) view
of the beam diagram not with the exact dimensions.
Although setting ``pictorial=False`` would create a beam diagram with
the exact dimensions on the plot
Examples
========
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam
>>> from sympy import symbols
>>> R1, R2 = symbols('R1, R2')
>>> E, I = symbols('E, I')
>>> b = Beam(50, 20, 30)
>>> b.apply_load(10, 2, -1)
>>> b.apply_load(R1, 10, -1)
>>> b.apply_load(R2, 30, -1)
>>> b.apply_load(90, 5, 0, 23)
>>> b.apply_load(10, 30, 1, 50)
>>> b.apply_support(50, "pin")
>>> b.apply_support(0, "fixed")
>>> b.apply_support(20, "roller")
>>> p = b.draw()
>>> p
Plot object containing:
[0]: cartesian line: 25*SingularityFunction(x, 5, 0) - 25*SingularityFunction(x, 23, 0)
+ SingularityFunction(x, 30, 1) - 20*SingularityFunction(x, 50, 0)
- SingularityFunction(x, 50, 1) + 5 for x over (0.0, 50.0)
[1]: cartesian line: 5 for x over (0.0, 50.0)
>>> p.show()
"""
if not numpy:
raise ImportError("To use this function numpy module is required")
x = self.variable
# checking whether length is an expression in terms of any Symbol.
if isinstance(self.length, Expr):
l = list(self.length.atoms(Symbol))
# assigning every Symbol a default value of 10
l = {i:10 for i in l}
length = self.length.subs(l)
else:
l = {}
length = self.length
height = length/10
rectangles = []
rectangles.append({'xy':(0, 0), 'width':length, 'height': height, 'facecolor':"brown"})
annotations, markers, load_eq,load_eq1, fill = self._draw_load(pictorial, length, l)
support_markers, support_rectangles = self._draw_supports(length, l)
rectangles += support_rectangles
markers += support_markers
sing_plot = plot(height + load_eq, height + load_eq1, (x, 0, length),
xlim=(-height, length + height), ylim=(-length, 1.25*length), annotations=annotations,
markers=markers, rectangles=rectangles, line_color='brown', fill=fill, axis=False, show=False)
return sing_plot
def _draw_load(self, pictorial, length, l):
loads = list(set(self.applied_loads) - set(self._support_as_loads))
height = length/10
x = self.variable
annotations = []
markers = []
load_args = []
scaled_load = 0
load_args1 = []
scaled_load1 = 0
load_eq = 0 # For positive valued higher order loads
load_eq1 = 0 # For negative valued higher order loads
fill = None
plus = 0 # For positive valued higher order loads
minus = 0 # For negative valued higher order loads
for load in loads:
# check if the position of load is in terms of the beam length.
if l:
pos = load[1].subs(l)
else:
pos = load[1]
# point loads
if load[2] == -1:
if isinstance(load[0], Symbol) or load[0].is_negative:
annotations.append({'text':'', 'xy':(pos, 0), 'xytext':(pos, height - 4*height), 'arrowprops':dict(width= 1.5, headlength=5, headwidth=5, facecolor='black')})
else:
annotations.append({'text':'', 'xy':(pos, height), 'xytext':(pos, height*4), 'arrowprops':dict(width= 1.5, headlength=4, headwidth=4, facecolor='black')})
# moment loads
elif load[2] == -2:
if load[0].is_negative:
markers.append({'args':[[pos], [height/2]], 'marker': r'$\circlearrowright$', 'markersize':15})
else:
markers.append({'args':[[pos], [height/2]], 'marker': r'$\circlearrowleft$', 'markersize':15})
# higher order loads
elif load[2] >= 0:
# `fill` will be assigned only when higher order loads are present
value, start, order, end = load
# Positive loads have their seperate equations
if(value>0):
plus = 1
# if pictorial is True we remake the load equation again with
# some constant magnitude values.
if pictorial:
value = 10**(1-order) if order > 0 else length/2
scaled_load += value*SingularityFunction(x, start, order)
if end:
f2 = 10**(1-order)*x**order if order > 0 else length/2*x**order
for i in range(0, order + 1):
scaled_load -= (f2.diff(x, i).subs(x, end - start)*
SingularityFunction(x, end, i)/factorial(i))
if pictorial:
if isinstance(scaled_load, Add):
load_args = scaled_load.args
else:
# when the load equation consists of only a single term
load_args = (scaled_load,)
load_eq = [i.subs(l) for i in load_args]
else:
if isinstance(self.load, Add):
load_args = self.load.args
else:
load_args = (self.load,)
load_eq = [i.subs(l) for i in load_args if list(i.atoms(SingularityFunction))[0].args[2] >= 0]
load_eq = Add(*load_eq)
# filling higher order loads with colour
expr = height + load_eq.rewrite(Piecewise)
y1 = lambdify(x, expr, 'numpy')
# For loads with negative value
else:
minus = 1
# if pictorial is True we remake the load equation again with
# some constant magnitude values.
if pictorial:
value = 10**(1-order) if order > 0 else length/2
scaled_load1 += value*SingularityFunction(x, start, order)
if end:
f2 = 10**(1-order)*x**order if order > 0 else length/2*x**order
for i in range(0, order + 1):
scaled_load1 -= (f2.diff(x, i).subs(x, end - start)*
SingularityFunction(x, end, i)/factorial(i))
if pictorial:
if isinstance(scaled_load1, Add):
load_args1 = scaled_load1.args
else:
# when the load equation consists of only a single term
load_args1 = (scaled_load1,)
load_eq1 = [i.subs(l) for i in load_args1]
else:
if isinstance(self.load, Add):
load_args1 = self.load.args1
else:
load_args1 = (self.load,)
load_eq1 = [i.subs(l) for i in load_args if list(i.atoms(SingularityFunction))[0].args[2] >= 0]
load_eq1 = -Add(*load_eq1)-height
# filling higher order loads with colour
expr = height + load_eq1.rewrite(Piecewise)
y1_ = lambdify(x, expr, 'numpy')
y = numpy.arange(0, float(length), 0.001)
y2 = float(height)
if(plus == 1 and minus == 1):
fill = {'x': y, 'y1': y1(y), 'y2': y1_(y), 'color':'darkkhaki'}
elif(plus == 1):
fill = {'x': y, 'y1': y1(y), 'y2': y2, 'color':'darkkhaki'}
else:
fill = {'x': y, 'y1': y1_(y), 'y2': y2, 'color':'darkkhaki'}
return annotations, markers, load_eq, load_eq1, fill
def _draw_supports(self, length, l):
height = float(length/10)
support_markers = []
support_rectangles = []
for support in self._applied_supports:
if l:
pos = support[0].subs(l)
else:
pos = support[0]
if support[1] == "pin":
support_markers.append({'args':[pos, [0]], 'marker':6, 'markersize':13, 'color':"black"})
elif support[1] == "roller":
support_markers.append({'args':[pos, [-height/2.5]], 'marker':'o', 'markersize':11, 'color':"black"})
elif support[1] == "fixed":
if pos == 0:
support_rectangles.append({'xy':(0, -3*height), 'width':-length/20, 'height':6*height + height, 'fill':False, 'hatch':'/////'})
else:
support_rectangles.append({'xy':(length, -3*height), 'width':length/20, 'height': 6*height + height, 'fill':False, 'hatch':'/////'})
return support_markers, support_rectangles
class Beam3D(Beam):
"""
This class handles loads applied in any direction of a 3D space along
with unequal values of Second moment along different axes.
.. note::
A consistent sign convention must be used while solving a beam
bending problem; the results will
automatically follow the chosen sign convention.
This class assumes that any kind of distributed load/moment is
applied through out the span of a beam.
Examples
========
There is a beam of l meters long. A constant distributed load of magnitude q
is applied along y-axis from start till the end of beam. A constant distributed
moment of magnitude m is also applied along z-axis from start till the end of beam.
Beam is fixed at both of its end. So, deflection of the beam at the both ends
is restricted.
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols, simplify, collect, factor
>>> l, E, G, I, A = symbols('l, E, G, I, A')
>>> b = Beam3D(l, E, G, I, A)
>>> x, q, m = symbols('x, q, m')
>>> b.apply_load(q, 0, 0, dir="y")
>>> b.apply_moment_load(m, 0, -1, dir="z")
>>> b.shear_force()
[0, -q*x, 0]
>>> b.bending_moment()
[0, 0, -m*x + q*x**2/2]
>>> b.bc_slope = [(0, [0, 0, 0]), (l, [0, 0, 0])]
>>> b.bc_deflection = [(0, [0, 0, 0]), (l, [0, 0, 0])]
>>> b.solve_slope_deflection()
>>> factor(b.slope())
[0, 0, x*(-l + x)*(-A*G*l**3*q + 2*A*G*l**2*q*x - 12*E*I*l*q
- 72*E*I*m + 24*E*I*q*x)/(12*E*I*(A*G*l**2 + 12*E*I))]
>>> dx, dy, dz = b.deflection()
>>> dy = collect(simplify(dy), x)
>>> dx == dz == 0
True
>>> dy == (x*(12*E*I*l*(A*G*l**2*q - 2*A*G*l*m + 12*E*I*q)
... + x*(A*G*l*(3*l*(A*G*l**2*q - 2*A*G*l*m + 12*E*I*q) + x*(-2*A*G*l**2*q + 4*A*G*l*m - 24*E*I*q))
... + A*G*(A*G*l**2 + 12*E*I)*(-2*l**2*q + 6*l*m - 4*m*x + q*x**2)
... - 12*E*I*q*(A*G*l**2 + 12*E*I)))/(24*A*E*G*I*(A*G*l**2 + 12*E*I)))
True
References
==========
.. [1] http://homes.civil.aau.dk/jc/FemteSemester/Beams3D.pdf
"""
def __init__(self, length, elastic_modulus, shear_modulus, second_moment,
area, variable=Symbol('x')):
"""Initializes the class.
Parameters
==========
length : Sympifyable
A Symbol or value representing the Beam's length.
elastic_modulus : Sympifyable
A SymPy expression representing the Beam's Modulus of Elasticity.
It is a measure of the stiffness of the Beam material.
shear_modulus : Sympifyable
A SymPy expression representing the Beam's Modulus of rigidity.
It is a measure of rigidity of the Beam material.
second_moment : Sympifyable or list
A list of two elements having SymPy expression representing the
Beam's Second moment of area. First value represent Second moment
across y-axis and second across z-axis.
Single SymPy expression can be passed if both values are same
area : Sympifyable
A SymPy expression representing the Beam's cross-sectional area
in a plane prependicular to length of the Beam.
variable : Symbol, optional
A Symbol object that will be used as the variable along the beam
while representing the load, shear, moment, slope and deflection
curve. By default, it is set to ``Symbol('x')``.
"""
super().__init__(length, elastic_modulus, second_moment, variable)
self.shear_modulus = shear_modulus
self.area = area
self._load_vector = [0, 0, 0]
self._moment_load_vector = [0, 0, 0]
self._torsion_moment = {}
self._load_Singularity = [0, 0, 0]
self._slope = [0, 0, 0]
self._deflection = [0, 0, 0]
self._angular_deflection = 0
@property
def shear_modulus(self):
"""Young's Modulus of the Beam. """
return self._shear_modulus
@shear_modulus.setter
def shear_modulus(self, e):
self._shear_modulus = sympify(e)
@property
def second_moment(self):
"""Second moment of area of the Beam. """
return self._second_moment
@second_moment.setter
def second_moment(self, i):
if isinstance(i, list):
i = [sympify(x) for x in i]
self._second_moment = i
else:
self._second_moment = sympify(i)
@property
def area(self):
"""Cross-sectional area of the Beam. """
return self._area
@area.setter
def area(self, a):
self._area = sympify(a)
@property
def load_vector(self):
"""
Returns a three element list representing the load vector.
"""
return self._load_vector
@property
def moment_load_vector(self):
"""
Returns a three element list representing moment loads on Beam.
"""
return self._moment_load_vector
@property
def boundary_conditions(self):
"""
Returns a dictionary of boundary conditions applied on the beam.
The dictionary has two keywords namely slope and deflection.
The value of each keyword is a list of tuple, where each tuple
contains location and value of a boundary condition in the format
(location, value). Further each value is a list corresponding to
slope or deflection(s) values along three axes at that location.
Examples
========
There is a beam of length 4 meters. The slope at 0 should be 4 along
the x-axis and 0 along others. At the other end of beam, deflection
along all the three axes should be zero.
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(30, E, G, I, A, x)
>>> b.bc_slope = [(0, (4, 0, 0))]
>>> b.bc_deflection = [(4, [0, 0, 0])]
>>> b.boundary_conditions
{'deflection': [(4, [0, 0, 0])], 'slope': [(0, (4, 0, 0))]}
Here the deflection of the beam should be ``0`` along all the three axes at ``4``.
Similarly, the slope of the beam should be ``4`` along x-axis and ``0``
along y and z axis at ``0``.
"""
return self._boundary_conditions
def polar_moment(self):
"""
Returns the polar moment of area of the beam
about the X axis with respect to the centroid.
Examples
========
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A = symbols('l, E, G, I, A')
>>> b = Beam3D(l, E, G, I, A)
>>> b.polar_moment()
2*I
>>> I1 = [9, 15]
>>> b = Beam3D(l, E, G, I1, A)
>>> b.polar_moment()
24
"""
if not iterable(self.second_moment):
return 2*self.second_moment
return sum(self.second_moment)
def apply_load(self, value, start, order, dir="y"):
"""
This method adds up the force load to a particular beam object.
Parameters
==========
value : Sympifyable
The magnitude of an applied load.
dir : String
Axis along which load is applied.
order : Integer
The order of the applied load.
- For point loads, order=-1
- For constant distributed load, order=0
- For ramp loads, order=1
- For parabolic ramp loads, order=2
- ... so on.
"""
x = self.variable
value = sympify(value)
start = sympify(start)
order = sympify(order)
if dir == "x":
if not order == -1:
self._load_vector[0] += value
self._load_Singularity[0] += value*SingularityFunction(x, start, order)
elif dir == "y":
if not order == -1:
self._load_vector[1] += value
self._load_Singularity[1] += value*SingularityFunction(x, start, order)
else:
if not order == -1:
self._load_vector[2] += value
self._load_Singularity[2] += value*SingularityFunction(x, start, order)
def apply_moment_load(self, value, start, order, dir="y"):
"""
This method adds up the moment loads to a particular beam object.
Parameters
==========
value : Sympifyable
The magnitude of an applied moment.
dir : String
Axis along which moment is applied.
order : Integer
The order of the applied load.
- For point moments, order=-2
- For constant distributed moment, order=-1
- For ramp moments, order=0
- For parabolic ramp moments, order=1
- ... so on.
"""
x = self.variable
value = sympify(value)
start = sympify(start)
order = sympify(order)
if dir == "x":
if not order == -2:
self._moment_load_vector[0] += value
else:
if start in list(self._torsion_moment):
self._torsion_moment[start] += value
else:
self._torsion_moment[start] = value
self._load_Singularity[0] += value*SingularityFunction(x, start, order)
elif dir == "y":
if not order == -2:
self._moment_load_vector[1] += value
self._load_Singularity[0] += value*SingularityFunction(x, start, order)
else:
if not order == -2:
self._moment_load_vector[2] += value
self._load_Singularity[0] += value*SingularityFunction(x, start, order)
def apply_support(self, loc, type="fixed"):
if type in ("pin", "roller"):
reaction_load = Symbol('R_'+str(loc))
self._reaction_loads[reaction_load] = reaction_load
self.bc_deflection.append((loc, [0, 0, 0]))
else:
reaction_load = Symbol('R_'+str(loc))
reaction_moment = Symbol('M_'+str(loc))
self._reaction_loads[reaction_load] = [reaction_load, reaction_moment]
self.bc_deflection.append((loc, [0, 0, 0]))
self.bc_slope.append((loc, [0, 0, 0]))
def solve_for_reaction_loads(self, *reaction):
"""
Solves for the reaction forces.
Examples
========
There is a beam of length 30 meters. It it supported by rollers at
of its end. A constant distributed load of magnitude 8 N is applied
from start till its end along y-axis. Another linear load having
slope equal to 9 is applied along z-axis.
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(30, E, G, I, A, x)
>>> b.apply_load(8, start=0, order=0, dir="y")
>>> b.apply_load(9*x, start=0, order=0, dir="z")
>>> b.bc_deflection = [(0, [0, 0, 0]), (30, [0, 0, 0])]
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
>>> b.apply_load(R1, start=0, order=-1, dir="y")
>>> b.apply_load(R2, start=30, order=-1, dir="y")
>>> b.apply_load(R3, start=0, order=-1, dir="z")
>>> b.apply_load(R4, start=30, order=-1, dir="z")
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
>>> b.reaction_loads
{R1: -120, R2: -120, R3: -1350, R4: -2700}
"""
x = self.variable
l = self.length
q = self._load_Singularity
shear_curves = [integrate(load, x) for load in q]
moment_curves = [integrate(shear, x) for shear in shear_curves]
for i in range(3):
react = [r for r in reaction if (shear_curves[i].has(r) or moment_curves[i].has(r))]
if len(react) == 0:
continue
shear_curve = limit(shear_curves[i], x, l)
moment_curve = limit(moment_curves[i], x, l)
sol = list((linsolve([shear_curve, moment_curve], react).args)[0])
sol_dict = dict(zip(react, sol))
reaction_loads = self._reaction_loads
# Check if any of the evaluated rection exists in another direction
# and if it exists then it should have same value.
for key in sol_dict:
if key in reaction_loads and sol_dict[key] != reaction_loads[key]:
raise ValueError("Ambiguous solution for %s in different directions." % key)
self._reaction_loads.update(sol_dict)
def shear_force(self):
"""
Returns a list of three expressions which represents the shear force
curve of the Beam object along all three axes.
"""
x = self.variable
q = self._load_vector
return [integrate(-q[0], x), integrate(-q[1], x), integrate(-q[2], x)]
def axial_force(self):
"""
Returns expression of Axial shear force present inside the Beam object.
"""
return self.shear_force()[0]
def shear_stress(self):
"""
Returns a list of three expressions which represents the shear stress
curve of the Beam object along all three axes.
"""
return [self.shear_force()[0]/self._area, self.shear_force()[1]/self._area, self.shear_force()[2]/self._area]
def axial_stress(self):
"""
Returns expression of Axial stress present inside the Beam object.
"""
return self.axial_force()/self._area
def bending_moment(self):
"""
Returns a list of three expressions which represents the bending moment
curve of the Beam object along all three axes.
"""
x = self.variable
m = self._moment_load_vector
shear = self.shear_force()
return [integrate(-m[0], x), integrate(-m[1] + shear[2], x),
integrate(-m[2] - shear[1], x) ]
def torsional_moment(self):
"""
Returns expression of Torsional moment present inside the Beam object.
"""
return self.bending_moment()[0]
def solve_for_torsion(self):
"""
Solves for the angular deflection due to the torsional effects of
moments being applied in the x-direction i.e. out of or into the beam.
Here, a positive torque means the direction of the torque is positive
i.e. out of the beam along the beam-axis. Likewise, a negative torque
signifies a torque into the beam cross-section.
Examples
========
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(20, E, G, I, A, x)
>>> b.apply_moment_load(4, 4, -2, dir='x')
>>> b.apply_moment_load(4, 8, -2, dir='x')
>>> b.apply_moment_load(4, 8, -2, dir='x')
>>> b.solve_for_torsion()
>>> b.angular_deflection().subs(x, 3)
18/(G*I)
"""
x = self.variable
sum_moments = 0
for point in list(self._torsion_moment):
sum_moments += self._torsion_moment[point]
list(self._torsion_moment).sort()
pointsList = list(self._torsion_moment)
torque_diagram = Piecewise((sum_moments, x<=pointsList[0]), (0, x>=pointsList[0]))
for i in range(len(pointsList))[1:]:
sum_moments -= self._torsion_moment[pointsList[i-1]]
torque_diagram += Piecewise((0, x<=pointsList[i-1]), (sum_moments, x<=pointsList[i]), (0, x>=pointsList[i]))
integrated_torque_diagram = integrate(torque_diagram)
self._angular_deflection = integrated_torque_diagram/(self.shear_modulus*self.polar_moment())
def solve_slope_deflection(self):
x = self.variable
l = self.length
E = self.elastic_modulus
G = self.shear_modulus
I = self.second_moment
if isinstance(I, list):
I_y, I_z = I[0], I[1]
else:
I_y = I_z = I
A = self._area
load = self._load_vector
moment = self._moment_load_vector
defl = Function('defl')
theta = Function('theta')
# Finding deflection along x-axis(and corresponding slope value by differentiating it)
# Equation used: Derivative(E*A*Derivative(def_x(x), x), x) + load_x = 0
eq = Derivative(E*A*Derivative(defl(x), x), x) + load[0]
def_x = dsolve(Eq(eq, 0), defl(x)).args[1]
# Solving constants originated from dsolve
C1 = Symbol('C1')
C2 = Symbol('C2')
constants = list((linsolve([def_x.subs(x, 0), def_x.subs(x, l)], C1, C2).args)[0])
def_x = def_x.subs({C1:constants[0], C2:constants[1]})
slope_x = def_x.diff(x)
self._deflection[0] = def_x
self._slope[0] = slope_x
# Finding deflection along y-axis and slope across z-axis. System of equation involved:
# 1: Derivative(E*I_z*Derivative(theta_z(x), x), x) + G*A*(Derivative(defl_y(x), x) - theta_z(x)) + moment_z = 0
# 2: Derivative(G*A*(Derivative(defl_y(x), x) - theta_z(x)), x) + load_y = 0
C_i = Symbol('C_i')
# Substitute value of `G*A*(Derivative(defl_y(x), x) - theta_z(x))` from (2) in (1)
eq1 = Derivative(E*I_z*Derivative(theta(x), x), x) + (integrate(-load[1], x) + C_i) + moment[2]
slope_z = dsolve(Eq(eq1, 0)).args[1]
# Solve for constants originated from using dsolve on eq1
constants = list((linsolve([slope_z.subs(x, 0), slope_z.subs(x, l)], C1, C2).args)[0])
slope_z = slope_z.subs({C1:constants[0], C2:constants[1]})
# Put value of slope obtained back in (2) to solve for `C_i` and find deflection across y-axis
eq2 = G*A*(Derivative(defl(x), x)) + load[1]*x - C_i - G*A*slope_z
def_y = dsolve(Eq(eq2, 0), defl(x)).args[1]
# Solve for constants originated from using dsolve on eq2
constants = list((linsolve([def_y.subs(x, 0), def_y.subs(x, l)], C1, C_i).args)[0])
self._deflection[1] = def_y.subs({C1:constants[0], C_i:constants[1]})
self._slope[2] = slope_z.subs(C_i, constants[1])
# Finding deflection along z-axis and slope across y-axis. System of equation involved:
# 1: Derivative(E*I_y*Derivative(theta_y(x), x), x) - G*A*(Derivative(defl_z(x), x) + theta_y(x)) + moment_y = 0
# 2: Derivative(G*A*(Derivative(defl_z(x), x) + theta_y(x)), x) + load_z = 0
# Substitute value of `G*A*(Derivative(defl_y(x), x) + theta_z(x))` from (2) in (1)
eq1 = Derivative(E*I_y*Derivative(theta(x), x), x) + (integrate(load[2], x) - C_i) + moment[1]
slope_y = dsolve(Eq(eq1, 0)).args[1]
# Solve for constants originated from using dsolve on eq1
constants = list((linsolve([slope_y.subs(x, 0), slope_y.subs(x, l)], C1, C2).args)[0])
slope_y = slope_y.subs({C1:constants[0], C2:constants[1]})
# Put value of slope obtained back in (2) to solve for `C_i` and find deflection across z-axis
eq2 = G*A*(Derivative(defl(x), x)) + load[2]*x - C_i + G*A*slope_y
def_z = dsolve(Eq(eq2,0)).args[1]
# Solve for constants originated from using dsolve on eq2
constants = list((linsolve([def_z.subs(x, 0), def_z.subs(x, l)], C1, C_i).args)[0])
self._deflection[2] = def_z.subs({C1:constants[0], C_i:constants[1]})
self._slope[1] = slope_y.subs(C_i, constants[1])
def slope(self):
"""
Returns a three element list representing slope of deflection curve
along all the three axes.
"""
return self._slope
def deflection(self):
"""
Returns a three element list representing deflection curve along all
the three axes.
"""
return self._deflection
def angular_deflection(self):
"""
Returns a function in x depicting how the angular deflection, due to moments
in the x-axis on the beam, varies with x.
"""
return self._angular_deflection
def _plot_shear_force(self, dir, subs=None):
shear_force = self.shear_force()
if dir == 'x':
dir_num = 0
color = 'r'
elif dir == 'y':
dir_num = 1
color = 'g'
elif dir == 'z':
dir_num = 2
color = 'b'
if subs is None:
subs = {}
for sym in shear_force[dir_num].atoms(Symbol):
if sym != self.variable and sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if self.length in subs:
length = subs[self.length]
else:
length = self.length
return plot(shear_force[dir_num].subs(subs), (self.variable, 0, length), show = False, title='Shear Force along %c direction'%dir,
xlabel=r'$\mathrm{X}$', ylabel=r'$\mathrm{V(%c)}$'%dir, line_color=color)
def plot_shear_force(self, dir="all", subs=None):
"""
Returns a plot for Shear force along all three directions
present in the Beam object.
Parameters
==========
dir : string (default : "all")
Direction along which shear force plot is required.
If no direction is specified, all plots are displayed.
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 20 meters. It it supported by rollers
at of its end. A linear load having slope equal to 12 is applied
along y-axis. A constant distributed load of magnitude 15 N is
applied from start till its end along z-axis.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(20, E, G, I, A, x)
>>> b.apply_load(15, start=0, order=0, dir="z")
>>> b.apply_load(12*x, start=0, order=0, dir="y")
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
>>> b.apply_load(R1, start=0, order=-1, dir="z")
>>> b.apply_load(R2, start=20, order=-1, dir="z")
>>> b.apply_load(R3, start=0, order=-1, dir="y")
>>> b.apply_load(R4, start=20, order=-1, dir="y")
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
>>> b.plot_shear_force()
PlotGrid object containing:
Plot[0]:Plot object containing:
[0]: cartesian line: 0 for x over (0.0, 20.0)
Plot[1]:Plot object containing:
[0]: cartesian line: -6*x**2 for x over (0.0, 20.0)
Plot[2]:Plot object containing:
[0]: cartesian line: -15*x for x over (0.0, 20.0)
"""
dir = dir.lower()
# For shear force along x direction
if dir == "x":
Px = self._plot_shear_force('x', subs)
return Px.show()
# For shear force along y direction
elif dir == "y":
Py = self._plot_shear_force('y', subs)
return Py.show()
# For shear force along z direction
elif dir == "z":
Pz = self._plot_shear_force('z', subs)
return Pz.show()
# For shear force along all direction
else:
Px = self._plot_shear_force('x', subs)
Py = self._plot_shear_force('y', subs)
Pz = self._plot_shear_force('z', subs)
return PlotGrid(3, 1, Px, Py, Pz)
def _plot_bending_moment(self, dir, subs=None):
bending_moment = self.bending_moment()
if dir == 'x':
dir_num = 0
color = 'g'
elif dir == 'y':
dir_num = 1
color = 'c'
elif dir == 'z':
dir_num = 2
color = 'm'
if subs is None:
subs = {}
for sym in bending_moment[dir_num].atoms(Symbol):
if sym != self.variable and sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if self.length in subs:
length = subs[self.length]
else:
length = self.length
return plot(bending_moment[dir_num].subs(subs), (self.variable, 0, length), show = False, title='Bending Moment along %c direction'%dir,
xlabel=r'$\mathrm{X}$', ylabel=r'$\mathrm{M(%c)}$'%dir, line_color=color)
def plot_bending_moment(self, dir="all", subs=None):
"""
Returns a plot for bending moment along all three directions
present in the Beam object.
Parameters
==========
dir : string (default : "all")
Direction along which bending moment plot is required.
If no direction is specified, all plots are displayed.
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 20 meters. It it supported by rollers
at of its end. A linear load having slope equal to 12 is applied
along y-axis. A constant distributed load of magnitude 15 N is
applied from start till its end along z-axis.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(20, E, G, I, A, x)
>>> b.apply_load(15, start=0, order=0, dir="z")
>>> b.apply_load(12*x, start=0, order=0, dir="y")
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
>>> b.apply_load(R1, start=0, order=-1, dir="z")
>>> b.apply_load(R2, start=20, order=-1, dir="z")
>>> b.apply_load(R3, start=0, order=-1, dir="y")
>>> b.apply_load(R4, start=20, order=-1, dir="y")
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
>>> b.plot_bending_moment()
PlotGrid object containing:
Plot[0]:Plot object containing:
[0]: cartesian line: 0 for x over (0.0, 20.0)
Plot[1]:Plot object containing:
[0]: cartesian line: -15*x**2/2 for x over (0.0, 20.0)
Plot[2]:Plot object containing:
[0]: cartesian line: 2*x**3 for x over (0.0, 20.0)
"""
dir = dir.lower()
# For bending moment along x direction
if dir == "x":
Px = self._plot_bending_moment('x', subs)
return Px.show()
# For bending moment along y direction
elif dir == "y":
Py = self._plot_bending_moment('y', subs)
return Py.show()
# For bending moment along z direction
elif dir == "z":
Pz = self._plot_bending_moment('z', subs)
return Pz.show()
# For bending moment along all direction
else:
Px = self._plot_bending_moment('x', subs)
Py = self._plot_bending_moment('y', subs)
Pz = self._plot_bending_moment('z', subs)
return PlotGrid(3, 1, Px, Py, Pz)
def _plot_slope(self, dir, subs=None):
slope = self.slope()
if dir == 'x':
dir_num = 0
color = 'b'
elif dir == 'y':
dir_num = 1
color = 'm'
elif dir == 'z':
dir_num = 2
color = 'g'
if subs is None:
subs = {}
for sym in slope[dir_num].atoms(Symbol):
if sym != self.variable and sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if self.length in subs:
length = subs[self.length]
else:
length = self.length
return plot(slope[dir_num].subs(subs), (self.variable, 0, length), show = False, title='Slope along %c direction'%dir,
xlabel=r'$\mathrm{X}$', ylabel=r'$\mathrm{\theta(%c)}$'%dir, line_color=color)
def plot_slope(self, dir="all", subs=None):
"""
Returns a plot for Slope along all three directions
present in the Beam object.
Parameters
==========
dir : string (default : "all")
Direction along which Slope plot is required.
If no direction is specified, all plots are displayed.
subs : dictionary
Python dictionary containing Symbols as keys and their
corresponding values.
Examples
========
There is a beam of length 20 meters. It it supported by rollers
at of its end. A linear load having slope equal to 12 is applied
along y-axis. A constant distributed load of magnitude 15 N is
applied from start till its end along z-axis.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(20, 40, 21, 100, 25, x)
>>> b.apply_load(15, start=0, order=0, dir="z")
>>> b.apply_load(12*x, start=0, order=0, dir="y")
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
>>> b.apply_load(R1, start=0, order=-1, dir="z")
>>> b.apply_load(R2, start=20, order=-1, dir="z")
>>> b.apply_load(R3, start=0, order=-1, dir="y")
>>> b.apply_load(R4, start=20, order=-1, dir="y")
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
>>> b.solve_slope_deflection()
>>> b.plot_slope()
PlotGrid object containing:
Plot[0]:Plot object containing:
[0]: cartesian line: 0 for x over (0.0, 20.0)
Plot[1]:Plot object containing:
[0]: cartesian line: -x**3/1600 + 3*x**2/160 - x/8 for x over (0.0, 20.0)
Plot[2]:Plot object containing:
[0]: cartesian line: x**4/8000 - 19*x**2/172 + 52*x/43 for x over (0.0, 20.0)
"""
dir = dir.lower()
# For Slope along x direction
if dir == "x":
Px = self._plot_slope('x', subs)
return Px.show()
# For Slope along y direction
elif dir == "y":
Py = self._plot_slope('y', subs)
return Py.show()
# For Slope along z direction
elif dir == "z":
Pz = self._plot_slope('z', subs)
return Pz.show()
# For Slope along all direction
else:
Px = self._plot_slope('x', subs)
Py = self._plot_slope('y', subs)
Pz = self._plot_slope('z', subs)
return PlotGrid(3, 1, Px, Py, Pz)
def _plot_deflection(self, dir, subs=None):
deflection = self.deflection()
if dir == 'x':
dir_num = 0
color = 'm'
elif dir == 'y':
dir_num = 1
color = 'r'
elif dir == 'z':
dir_num = 2
color = 'c'
if subs is None:
subs = {}
for sym in deflection[dir_num].atoms(Symbol):
if sym != self.variable and sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if self.length in subs:
length = subs[self.length]
else:
length = self.length
return plot(deflection[dir_num].subs(subs), (self.variable, 0, length), show = False, title='Deflection along %c direction'%dir,
xlabel=r'$\mathrm{X}$', ylabel=r'$\mathrm{\delta(%c)}$'%dir, line_color=color)
def plot_deflection(self, dir="all", subs=None):
"""
Returns a plot for Deflection along all three directions
present in the Beam object.
Parameters
==========
dir : string (default : "all")
Direction along which deflection plot is required.
If no direction is specified, all plots are displayed.
subs : dictionary
Python dictionary containing Symbols as keys and their
corresponding values.
Examples
========
There is a beam of length 20 meters. It it supported by rollers
at of its end. A linear load having slope equal to 12 is applied
along y-axis. A constant distributed load of magnitude 15 N is
applied from start till its end along z-axis.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(20, 40, 21, 100, 25, x)
>>> b.apply_load(15, start=0, order=0, dir="z")
>>> b.apply_load(12*x, start=0, order=0, dir="y")
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
>>> b.apply_load(R1, start=0, order=-1, dir="z")
>>> b.apply_load(R2, start=20, order=-1, dir="z")
>>> b.apply_load(R3, start=0, order=-1, dir="y")
>>> b.apply_load(R4, start=20, order=-1, dir="y")
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
>>> b.solve_slope_deflection()
>>> b.plot_deflection()
PlotGrid object containing:
Plot[0]:Plot object containing:
[0]: cartesian line: 0 for x over (0.0, 20.0)
Plot[1]:Plot object containing:
[0]: cartesian line: x**5/40000 - 4013*x**3/90300 + 26*x**2/43 + 1520*x/903 for x over (0.0, 20.0)
Plot[2]:Plot object containing:
[0]: cartesian line: x**4/6400 - x**3/160 + 27*x**2/560 + 2*x/7 for x over (0.0, 20.0)
"""
dir = dir.lower()
# For deflection along x direction
if dir == "x":
Px = self._plot_deflection('x', subs)
return Px.show()
# For deflection along y direction
elif dir == "y":
Py = self._plot_deflection('y', subs)
return Py.show()
# For deflection along z direction
elif dir == "z":
Pz = self._plot_deflection('z', subs)
return Pz.show()
# For deflection along all direction
else:
Px = self._plot_deflection('x', subs)
Py = self._plot_deflection('y', subs)
Pz = self._plot_deflection('z', subs)
return PlotGrid(3, 1, Px, Py, Pz)
def plot_loading_results(self, dir='x', subs=None):
"""
Returns a subplot of Shear Force, Bending Moment,
Slope and Deflection of the Beam object along the direction specified.
Parameters
==========
dir : string (default : "x")
Direction along which plots are required.
If no direction is specified, plots along x-axis are displayed.
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 20 meters. It it supported by rollers
at of its end. A linear load having slope equal to 12 is applied
along y-axis. A constant distributed load of magnitude 15 N is
applied from start till its end along z-axis.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(20, E, G, I, A, x)
>>> subs = {E:40, G:21, I:100, A:25}
>>> b.apply_load(15, start=0, order=0, dir="z")
>>> b.apply_load(12*x, start=0, order=0, dir="y")
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
>>> b.apply_load(R1, start=0, order=-1, dir="z")
>>> b.apply_load(R2, start=20, order=-1, dir="z")
>>> b.apply_load(R3, start=0, order=-1, dir="y")
>>> b.apply_load(R4, start=20, order=-1, dir="y")
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
>>> b.solve_slope_deflection()
>>> b.plot_loading_results('y',subs)
PlotGrid object containing:
Plot[0]:Plot object containing:
[0]: cartesian line: -6*x**2 for x over (0.0, 20.0)
Plot[1]:Plot object containing:
[0]: cartesian line: -15*x**2/2 for x over (0.0, 20.0)
Plot[2]:Plot object containing:
[0]: cartesian line: -x**3/1600 + 3*x**2/160 - x/8 for x over (0.0, 20.0)
Plot[3]:Plot object containing:
[0]: cartesian line: x**5/40000 - 4013*x**3/90300 + 26*x**2/43 + 1520*x/903 for x over (0.0, 20.0)
"""
dir = dir.lower()
if subs is None:
subs = {}
ax1 = self._plot_shear_force(dir, subs)
ax2 = self._plot_bending_moment(dir, subs)
ax3 = self._plot_slope(dir, subs)
ax4 = self._plot_deflection(dir, subs)
return PlotGrid(4, 1, ax1, ax2, ax3, ax4)
def _plot_shear_stress(self, dir, subs=None):
shear_stress = self.shear_stress()
if dir == 'x':
dir_num = 0
color = 'r'
elif dir == 'y':
dir_num = 1
color = 'g'
elif dir == 'z':
dir_num = 2
color = 'b'
if subs is None:
subs = {}
for sym in shear_stress[dir_num].atoms(Symbol):
if sym != self.variable and sym not in subs:
raise ValueError('Value of %s was not passed.' %sym)
if self.length in subs:
length = subs[self.length]
else:
length = self.length
return plot(shear_stress[dir_num].subs(subs), (self.variable, 0, length), show = False, title='Shear stress along %c direction'%dir,
xlabel=r'$\mathrm{X}$', ylabel=r'$\tau(%c)$'%dir, line_color=color)
def plot_shear_stress(self, dir="all", subs=None):
"""
Returns a plot for Shear Stress along all three directions
present in the Beam object.
Parameters
==========
dir : string (default : "all")
Direction along which shear stress plot is required.
If no direction is specified, all plots are displayed.
subs : dictionary
Python dictionary containing Symbols as key and their
corresponding values.
Examples
========
There is a beam of length 20 meters and area of cross section 2 square
meters. It it supported by rollers at of its end. A linear load having
slope equal to 12 is applied along y-axis. A constant distributed load
of magnitude 15 N is applied from start till its end along z-axis.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(20, E, G, I, 2, x)
>>> b.apply_load(15, start=0, order=0, dir="z")
>>> b.apply_load(12*x, start=0, order=0, dir="y")
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
>>> b.apply_load(R1, start=0, order=-1, dir="z")
>>> b.apply_load(R2, start=20, order=-1, dir="z")
>>> b.apply_load(R3, start=0, order=-1, dir="y")
>>> b.apply_load(R4, start=20, order=-1, dir="y")
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
>>> b.plot_shear_stress()
PlotGrid object containing:
Plot[0]:Plot object containing:
[0]: cartesian line: 0 for x over (0.0, 20.0)
Plot[1]:Plot object containing:
[0]: cartesian line: -3*x**2 for x over (0.0, 20.0)
Plot[2]:Plot object containing:
[0]: cartesian line: -15*x/2 for x over (0.0, 20.0)
"""
dir = dir.lower()
# For shear stress along x direction
if dir == "x":
Px = self._plot_shear_stress('x', subs)
return Px.show()
# For shear stress along y direction
elif dir == "y":
Py = self._plot_shear_stress('y', subs)
return Py.show()
# For shear stress along z direction
elif dir == "z":
Pz = self._plot_shear_stress('z', subs)
return Pz.show()
# For shear stress along all direction
else:
Px = self._plot_shear_stress('x', subs)
Py = self._plot_shear_stress('y', subs)
Pz = self._plot_shear_stress('z', subs)
return PlotGrid(3, 1, Px, Py, Pz)
def _max_shear_force(self, dir):
"""
Helper function for max_shear_force().
"""
dir = dir.lower()
if dir == 'x':
dir_num = 0
elif dir == 'y':
dir_num = 1
elif dir == 'z':
dir_num = 2
if not self.shear_force()[dir_num]:
return (0,0)
# To restrict the range within length of the Beam
load_curve = Piecewise((float("nan"), self.variable<=0),
(self._load_vector[dir_num], self.variable<self.length),
(float("nan"), True))
points = solve(load_curve.rewrite(Piecewise), self.variable,
domain=S.Reals)
points.append(0)
points.append(self.length)
shear_curve = self.shear_force()[dir_num]
shear_values = [shear_curve.subs(self.variable, x) for x in points]
shear_values = list(map(abs, shear_values))
max_shear = max(shear_values)
return (points[shear_values.index(max_shear)], max_shear)
def max_shear_force(self):
"""
Returns point of max shear force and its corresponding shear value
along all directions in a Beam object as a list.
solve_for_reaction_loads() must be called before using this function.
Examples
========
There is a beam of length 20 meters. It it supported by rollers
at of its end. A linear load having slope equal to 12 is applied
along y-axis. A constant distributed load of magnitude 15 N is
applied from start till its end along z-axis.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(20, 40, 21, 100, 25, x)
>>> b.apply_load(15, start=0, order=0, dir="z")
>>> b.apply_load(12*x, start=0, order=0, dir="y")
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
>>> b.apply_load(R1, start=0, order=-1, dir="z")
>>> b.apply_load(R2, start=20, order=-1, dir="z")
>>> b.apply_load(R3, start=0, order=-1, dir="y")
>>> b.apply_load(R4, start=20, order=-1, dir="y")
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
>>> b.max_shear_force()
[(0, 0), (20, 2400), (20, 300)]
"""
max_shear = []
max_shear.append(self._max_shear_force('x'))
max_shear.append(self._max_shear_force('y'))
max_shear.append(self._max_shear_force('z'))
return max_shear
def _max_bending_moment(self, dir):
"""
Helper function for max_bending_moment().
"""
dir = dir.lower()
if dir == 'x':
dir_num = 0
elif dir == 'y':
dir_num = 1
elif dir == 'z':
dir_num = 2
if not self.bending_moment()[dir_num]:
return (0,0)
# To restrict the range within length of the Beam
shear_curve = Piecewise((float("nan"), self.variable<=0),
(self.shear_force()[dir_num], self.variable<self.length),
(float("nan"), True))
points = solve(shear_curve.rewrite(Piecewise), self.variable,
domain=S.Reals)
points.append(0)
points.append(self.length)
bending_moment_curve = self.bending_moment()[dir_num]
bending_moments = [bending_moment_curve.subs(self.variable, x) for x in points]
bending_moments = list(map(abs, bending_moments))
max_bending_moment = max(bending_moments)
return (points[bending_moments.index(max_bending_moment)], max_bending_moment)
def max_bending_moment(self):
"""
Returns point of max bending moment and its corresponding bending moment value
along all directions in a Beam object as a list.
solve_for_reaction_loads() must be called before using this function.
Examples
========
There is a beam of length 20 meters. It it supported by rollers
at of its end. A linear load having slope equal to 12 is applied
along y-axis. A constant distributed load of magnitude 15 N is
applied from start till its end along z-axis.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(20, 40, 21, 100, 25, x)
>>> b.apply_load(15, start=0, order=0, dir="z")
>>> b.apply_load(12*x, start=0, order=0, dir="y")
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
>>> b.apply_load(R1, start=0, order=-1, dir="z")
>>> b.apply_load(R2, start=20, order=-1, dir="z")
>>> b.apply_load(R3, start=0, order=-1, dir="y")
>>> b.apply_load(R4, start=20, order=-1, dir="y")
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
>>> b.max_bending_moment()
[(0, 0), (20, 3000), (20, 16000)]
"""
max_bmoment = []
max_bmoment.append(self._max_bending_moment('x'))
max_bmoment.append(self._max_bending_moment('y'))
max_bmoment.append(self._max_bending_moment('z'))
return max_bmoment
max_bmoment = max_bending_moment
def _max_deflection(self, dir):
"""
Helper function for max_Deflection()
"""
dir = dir.lower()
if dir == 'x':
dir_num = 0
elif dir == 'y':
dir_num = 1
elif dir == 'z':
dir_num = 2
if not self.deflection()[dir_num]:
return (0,0)
# To restrict the range within length of the Beam
slope_curve = Piecewise((float("nan"), self.variable<=0),
(self.slope()[dir_num], self.variable<self.length),
(float("nan"), True))
points = solve(slope_curve.rewrite(Piecewise), self.variable,
domain=S.Reals)
points.append(0)
points.append(self._length)
deflection_curve = self.deflection()[dir_num]
deflections = [deflection_curve.subs(self.variable, x) for x in points]
deflections = list(map(abs, deflections))
max_def = max(deflections)
return (points[deflections.index(max_def)], max_def)
def max_deflection(self):
"""
Returns point of max deflection and its corresponding deflection value
along all directions in a Beam object as a list.
solve_for_reaction_loads() and solve_slope_deflection() must be called
before using this function.
Examples
========
There is a beam of length 20 meters. It it supported by rollers
at of its end. A linear load having slope equal to 12 is applied
along y-axis. A constant distributed load of magnitude 15 N is
applied from start till its end along z-axis.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy.physics.continuum_mechanics.beam import Beam3D
>>> from sympy import symbols
>>> l, E, G, I, A, x = symbols('l, E, G, I, A, x')
>>> b = Beam3D(20, 40, 21, 100, 25, x)
>>> b.apply_load(15, start=0, order=0, dir="z")
>>> b.apply_load(12*x, start=0, order=0, dir="y")
>>> b.bc_deflection = [(0, [0, 0, 0]), (20, [0, 0, 0])]
>>> R1, R2, R3, R4 = symbols('R1, R2, R3, R4')
>>> b.apply_load(R1, start=0, order=-1, dir="z")
>>> b.apply_load(R2, start=20, order=-1, dir="z")
>>> b.apply_load(R3, start=0, order=-1, dir="y")
>>> b.apply_load(R4, start=20, order=-1, dir="y")
>>> b.solve_for_reaction_loads(R1, R2, R3, R4)
>>> b.solve_slope_deflection()
>>> b.max_deflection()
[(0, 0), (10, 495/14), (-10 + 10*sqrt(10793)/43, (10 - 10*sqrt(10793)/43)**3/160 - 20/7 + (10 - 10*sqrt(10793)/43)**4/6400 + 20*sqrt(10793)/301 + 27*(10 - 10*sqrt(10793)/43)**2/560)]
"""
max_def = []
max_def.append(self._max_deflection('x'))
max_def.append(self._max_deflection('y'))
max_def.append(self._max_deflection('z'))
return max_def
|
aa7aebfca6af6ef2e1da7f1986723ad0a22b6c79f42b094120306d1a6b258373 | """
This module can be used to solve problems related
to 2D Trusses.
"""
from cmath import inf
from sympy.core.add import Add
from sympy.core.mul import Mul
from sympy.core.symbol import Symbol
from sympy.core.sympify import sympify
from sympy import Matrix, pi
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.matrices.dense import zeros
from sympy import sin, cos
class Truss:
"""
A Truss is an assembly of members such as beams,
connected by nodes, that create a rigid structure.
In engineering, a truss is a structure that
consists of two-force members only.
Trusses are extremely important in engineering applications
and can be seen in numerous real-world applications like bridges.
Examples
========
There is a Truss consisting of four nodes and five
members connecting the nodes. A force P acts
downward on the node D and there also exist pinned
and roller joints on the nodes A and B respectively.
.. image:: truss_example.png
>>> from sympy.physics.continuum_mechanics.truss import Truss
>>> t = Truss()
>>> t.add_node("node_1", 0, 0)
>>> t.add_node("node_2", 6, 0)
>>> t.add_node("node_3", 2, 2)
>>> t.add_node("node_4", 2, 0)
>>> t.add_member("member_1", "node_1", "node_4")
>>> t.add_member("member_2", "node_2", "node_4")
>>> t.add_member("member_3", "node_1", "node_3")
>>> t.add_member("member_4", "node_2", "node_3")
>>> t.add_member("member_5", "node_3", "node_4")
>>> t.apply_load("node_4", magnitude=10, direction=270)
>>> t.apply_support("node_1", type="fixed")
>>> t.apply_support("node_2", type="roller")
"""
def __init__(self):
"""
Initializes the class
"""
self._nodes = []
self._members = {}
self._loads = {}
self._supports = {}
self._node_labels = []
self._node_positions = []
self._node_position_x = []
self._node_position_y = []
self._nodes_occupied = {}
self._reaction_loads = {}
self._internal_forces = {}
self._node_coordinates = {}
@property
def nodes(self):
"""
Returns the nodes of the truss along with their positions.
"""
return self._nodes
@property
def node_labels(self):
"""
Returns the node labels of the truss.
"""
return self._node_labels
@property
def node_positions(self):
"""
Returns the positions of the nodes of the truss.
"""
return self._node_positions
@property
def members(self):
"""
Returns the members of the truss along with the start and end points.
"""
return self._members
@property
def member_labels(self):
"""
Returns the members of the truss along with the start and end points.
"""
return self._member_labels
@property
def supports(self):
"""
Returns the nodes with provided supports along with the kind of support provided i.e.
pinned or roller.
"""
return self._supports
@property
def loads(self):
"""
Returns the loads acting on the truss.
"""
return self._loads
@property
def reaction_loads(self):
"""
Returns the reaction forces for all supports which are all initialized to 0.
"""
return self._reaction_loads
@property
def internal_forces(self):
"""
Returns the internal forces for all members which are all initialized to 0.
"""
return self._internal_forces
def add_node(self, label, x, y):
"""
This method adds a node to the truss along with its name/label and its location.
Parameters
==========
label: String or a Symbol
The label for a node. It is the only way to identify a particular node.
x: Sympifyable
The x-coordinate of the position of the node.
y: Sympifyable
The y-coordinate of the position of the node.
Examples
========
>>> from sympy.physics.continuum_mechanics.truss import Truss
>>> t = Truss()
>>> t.add_node('A', 0, 0)
>>> t.nodes
[('A', 0, 0)]
>>> t.add_node('B', 3, 0)
>>> t.nodes
[('A', 0, 0), ('B', 3, 0)]
"""
x = sympify(x)
y = sympify(y)
if label in self._node_labels:
raise ValueError("Node needs to have a unique label")
elif x in self._node_position_x and y in self._node_position_y and self._node_position_x.index(x)==self._node_position_y.index(y):
raise ValueError("A node already exists at the given position")
else :
self._nodes.append((label, x, y))
self._node_labels.append(label)
self._node_positions.append((x, y))
self._node_position_x.append(x)
self._node_position_y.append(y)
self._node_coordinates[label] = [x, y]
def remove_node(self, label):
"""
This method removes a node from the truss.
Parameters
==========
label: String or Symbol
The label of the node to be removed.
Examples
========
>>> from sympy.physics.continuum_mechanics.truss import Truss
>>> t = Truss()
>>> t.add_node('A', 0, 0)
>>> t.nodes
[('A', 0, 0)]
>>> t.add_node('B', 3, 0)
>>> t.nodes
[('A', 0, 0), ('B', 3, 0)]
>>> t.remove_node('A')
>>> t.nodes
[('B', 3, 0)]
"""
for i in range(len(self.nodes)):
if self._node_labels[i] == label:
x = self._node_position_x[i]
y = self._node_position_y[i]
if label not in self._node_labels:
raise ValueError("No such node exists in the truss")
else:
members_duplicate = self._members.copy()
for member in members_duplicate:
if label == self._members[member][0] or label == self._members[member][1]:
raise ValueError("The node given has members already attached to it")
self._nodes.remove((label, x, y))
self._node_labels.remove(label)
self._node_positions.remove((x, y))
self._node_position_x.remove(x)
self._node_position_y.remove(y)
if label in list(self._loads):
self._loads.pop(label)
if label in list(self._supports):
self._supports.pop(label)
self._node_coordinates.pop(label)
def add_member(self, label, start, end):
"""
This method adds a member between any two nodes in the given truss.
Parameters
==========
label: String or Symbol
The label for a member. It is the only way to identify a particular member.
start: String or Symbol
The label of the starting point/node of the member.
end: String or Symbol
The label of the ending point/node of the member.
Examples
========
>>> from sympy.physics.continuum_mechanics.truss import Truss
>>> t = Truss()
>>> t.add_node('A', 0, 0)
>>> t.add_node('B', 3, 0)
>>> t.add_node('C', 2, 2)
>>> t.add_member('AB', 'A', 'B')
>>> t.members
{'AB': ['A', 'B']}
"""
if start not in self._node_labels or end not in self._node_labels or start==end:
raise ValueError("The start and end points of the member must be unique nodes")
elif label in list(self._members):
raise ValueError("A member with the same label already exists for the truss")
elif self._nodes_occupied.get(tuple([start, end])):
raise ValueError("A member already exists between the two nodes")
else:
self._members[label] = [start, end]
self._nodes_occupied[start, end] = True
self._nodes_occupied[end, start] = True
self._internal_forces[label] = 0
def remove_member(self, label):
"""
This method removes a member from the given truss.
Parameters
==========
label: String or Symbol
The label for the member to be removed.
Examples
========
>>> from sympy.physics.continuum_mechanics.truss import Truss
>>> t = Truss()
>>> t.add_node('A', 0, 0)
>>> t.add_node('B', 3, 0)
>>> t.add_node('C', 2, 2)
>>> t.add_member('AB', 'A', 'B')
>>> t.add_member('AC', 'A', 'C')
>>> t.add_member('BC', 'B', 'C')
>>> t.members
{'AB': ['A', 'B'], 'AC': ['A', 'C'], 'BC': ['B', 'C']}
>>> t.remove_member('AC')
>>> t.members
{'AB': ['A', 'B'], 'BC': ['B', 'C']}
"""
if label not in list(self._members):
raise ValueError("No such member exists in the Truss")
else:
self._nodes_occupied.pop(tuple([self._members[label][0], self._members[label][1]]))
self._nodes_occupied.pop(tuple([self._members[label][1], self._members[label][0]]))
self._members.pop(label)
self._internal_forces.pop(label)
def change_node_label(self, label, new_label):
"""
This method changes the label of a node.
Parameters
==========
label: String or Symbol
The label of the node for which the label has
to be changed.
new_label: String or Symbol
The new label of the node.
Examples
========
>>> from sympy.physics.continuum_mechanics.truss import Truss
>>> t = Truss()
>>> t.add_node('A', 0, 0)
>>> t.add_node('B', 3, 0)
>>> t.nodes
[('A', 0, 0), ('B', 3, 0)]
>>> t.change_node_label('A', 'C')
>>> t.nodes
[('C', 0, 0), ('B', 3, 0)]
"""
if label not in self._node_labels:
raise ValueError("No such node exists for the Truss")
elif new_label in self._node_labels:
raise ValueError("A node with the given label already exists")
else:
for node in self._nodes:
if node[0] == label:
self._nodes[self._nodes.index((label, node[1], node[2]))] = (new_label, node[1], node[2])
self._node_labels[self._node_labels.index(node[0])] = new_label
self._node_coordinates[new_label] = self._node_coordinates[label]
self._node_coordinates.pop(label)
if node[0] in list(self._supports):
self._supports[new_label] = self._supports[node[0]]
self._supports.pop(node[0])
if new_label in list(self._supports):
if self._supports[new_label] == 'pinned':
if 'R_'+str(label)+'_x' in list(self._reaction_loads) and 'R_'+str(label)+'_y' in list(self._reaction_loads):
self._reaction_loads['R_'+str(new_label)+'_x'] = self._reaction_loads['R_'+str(label)+'_x']
self._reaction_loads['R_'+str(new_label)+'_y'] = self._reaction_loads['R_'+str(label)+'_y']
self._reaction_loads.pop('R_'+str(label)+'_x')
self._reaction_loads.pop('R_'+str(label)+'_y')
self._loads[new_label] = self._loads[label]
for load in self._loads[new_label]:
if load[1] == 90:
load[0] -= Symbol('R_'+str(label)+'_y')
if load[0] == 0:
self._loads[label].remove(load)
break
for load in self._loads[new_label]:
if load[1] == 0:
load[0] -= Symbol('R_'+str(label)+'_x')
if load[0] == 0:
self._loads[label].remove(load)
break
self.apply_load(new_label, Symbol('R_'+str(new_label)+'_x'), 0)
self.apply_load(new_label, Symbol('R_'+str(new_label)+'_y'), 90)
self._loads.pop(label)
elif self._supports[new_label] == 'roller':
self._loads[new_label] = self._loads[label]
for load in self._loads[label]:
if load[1] == 90:
load[0] -= Symbol('R_'+str(label)+'_y')
if load[0] == 0:
self._loads[label].remove(load)
break
self.apply_load(new_label, Symbol('R_'+str(new_label)+'_y'), 90)
self._loads.pop(label)
else:
if label in list(self._loads):
self._loads[new_label] = self._loads[label]
self._loads.pop(label)
for member in list(self._members):
if self._members[member][0] == node[0]:
self._members[member][0] = new_label
self._nodes_occupied[(new_label, self._members[member][1])] = True
self._nodes_occupied[(self._members[member][1], new_label)] = True
self._nodes_occupied.pop(tuple([label, self._members[member][1]]))
self._nodes_occupied.pop(tuple([self._members[member][1], label]))
elif self._members[member][1] == node[0]:
self._members[member][1] = new_label
self._nodes_occupied[(self._members[member][0], new_label)] = True
self._nodes_occupied[(new_label, self._members[member][0])] = True
self._nodes_occupied.pop(tuple([self._members[member][0], label]))
self._nodes_occupied.pop(tuple([label, self._members[member][0]]))
def change_member_label(self, label, new_label):
"""
This method changes the label of a member.
Parameters
==========
label: String or Symbol
The label of the member for which the label has
to be changed.
new_label: String or Symbol
The new label of the member.
Examples
========
>>> from sympy.physics.continuum_mechanics.truss import Truss
>>> t = Truss()
>>> t.add_node('A', 0, 0)
>>> t.add_node('B', 3, 0)
>>> t.nodes
[('A', 0, 0), ('B', 3, 0)]
>>> t.change_node_label('A', 'C')
>>> t.nodes
[('C', 0, 0), ('B', 3, 0)]
>>> t.add_member('BC', 'B', 'C')
>>> t.members
{'BC': ['B', 'C']}
>>> t.change_member_label('BC', 'BC_new')
>>> t.members
{'BC_new': ['B', 'C']}
"""
if label not in list(self._members):
raise ValueError("No such member exists for the Truss")
else:
members_duplicate = list(self._members).copy()
for member in members_duplicate:
if member == label:
self._members[new_label] = [self._members[member][0], self._members[member][1]]
self._members.pop(label)
self._internal_forces[new_label] = self._internal_forces[label]
self._internal_forces.pop(label)
def apply_load(self, location, magnitude, direction):
"""
This method applies an external load at a particular node
Parameters
==========
location: String or Symbol
Label of the Node at which load is applied.
magnitude: Sympifyable
Magnitude of the load applied. It must always be positive and any changes in
the direction of the load are not reflected here.
direction: Sympifyable
The angle, in degrees, that the load vector makes with the horizontal
in the counter-clockwise direction. It takes the values 0 to 360,
inclusive.
Examples
========
>>> from sympy.physics.continuum_mechanics.truss import Truss
>>> from sympy import symbols
>>> t = Truss()
>>> t.add_node('A', 0, 0)
>>> t.add_node('B', 3, 0)
>>> P = symbols('P')
>>> t.apply_load('A', P, 90)
>>> t.apply_load('A', P/2, 45)
>>> t.apply_load('A', P/4, 90)
>>> t.loads
{'A': [[P, 90], [P/2, 45], [P/4, 90]]}
"""
magnitude = sympify(magnitude)
direction = sympify(direction)
if location not in self.node_labels:
raise ValueError("Load must be applied at a known node")
else:
if location in list(self._loads):
self._loads[location].append([magnitude, direction])
else:
self._loads[location] = [[magnitude, direction]]
def remove_load(self, location, magnitude, direction):
"""
This method removes an already
present external load at a particular node
Parameters
==========
location: String or Symbol
Label of the Node at which load is applied and is to be removed.
magnitude: Sympifyable
Magnitude of the load applied.
direction: Sympifyable
The angle, in degrees, that the load vector makes with the horizontal
in the counter-clockwise direction. It takes the values 0 to 360,
inclusive.
Examples
========
>>> from sympy.physics.continuum_mechanics.truss import Truss
>>> from sympy import symbols
>>> t = Truss()
>>> t.add_node('A', 0, 0)
>>> t.add_node('B', 3, 0)
>>> P = symbols('P')
>>> t.apply_load('A', P, 90)
>>> t.apply_load('A', P/2, 45)
>>> t.apply_load('A', P/4, 90)
>>> t.loads
{'A': [[P, 90], [P/2, 45], [P/4, 90]]}
>>> t.remove_load('A', P/4, 90)
>>> t.loads
{'A': [[P, 90], [P/2, 45]]}
"""
magnitude = sympify(magnitude)
direction = sympify(direction)
if location not in self.node_labels:
raise ValueError("Load must be removed from a known node")
else:
if [magnitude, direction] not in self._loads[location]:
raise ValueError("No load of this magnitude and direction has been applied at this node")
else:
self._loads[location].remove([magnitude, direction])
if self._loads[location] == []:
self._loads.pop(location)
def apply_support(self, location, type):
"""
This method adds a pinned or roller support at a particular node
Parameters
==========
location: String or Symbol
Label of the Node at which support is added.
type: String
Type of the support being provided at the node.
Examples
========
>>> from sympy.physics.continuum_mechanics.truss import Truss
>>> t = Truss()
>>> t.add_node('A', 0, 0)
>>> t.add_node('B', 3, 0)
>>> t.apply_support('A', 'pinned')
>>> t.supports
{'A': 'pinned'}
"""
if location not in self._node_labels:
raise ValueError("Support must be added on a known node")
else:
if location not in list(self._supports):
if type == 'pinned':
self.apply_load(location, Symbol('R_'+str(location)+'_x'), 0)
self.apply_load(location, Symbol('R_'+str(location)+'_y'), 90)
elif type == 'roller':
self.apply_load(location, Symbol('R_'+str(location)+'_y'), 90)
elif self._supports[location] == 'pinned':
if type == 'roller':
self.remove_load(location, Symbol('R_'+str(location)+'_x'), 0)
elif self._supports[location] == 'roller':
if type == 'pinned':
self.apply_load(location, Symbol('R_'+str(location)+'_x'), 0)
self._supports[location] = type
def remove_support(self, location):
"""
This method removes support from a particular node
Parameters
==========
location: String or Symbol
Label of the Node at which support is to be removed.
Examples
========
>>> from sympy.physics.continuum_mechanics.truss import Truss
>>> t = Truss()
>>> t.add_node('A', 0, 0)
>>> t.add_node('B', 3, 0)
>>> t.apply_support('A', 'pinned')
>>> t.supports
{'A': 'pinned'}
>>> t.remove_support('A')
>>> t.supports
{}
"""
if location not in self._node_labels:
raise ValueError("No such node exists in the Truss")
elif location not in list(self._supports):
raise ValueError("No support has been added to the given node")
else:
if self._supports[location] == 'pinned':
self.remove_load(location, Symbol('R_'+str(location)+'_x'), 0)
self.remove_load(location, Symbol('R_'+str(location)+'_y'), 90)
elif self._supports[location] == 'roller':
self.remove_load(location, Symbol('R_'+str(location)+'_y'), 90)
self._supports.pop(location)
def solve(self):
"""
This method solves for all reaction forces of all supports and all internal forces
of all the members in the truss, provided the Truss is solvable.
A Truss is solvable if the following condition is met,
2n >= r + m
Where n is the number of nodes, r is the number of reaction forces, where each pinned
support has 2 reaction forces and each roller has 1, and m is the number of members.
The given condition is derived from the fact that a system of equations is solvable
only when the number of variables is lesser than or equal to the number of equations.
Equilibrium Equations in x and y directions give two equations per node giving 2n number
equations. However, the truss needs to be stable as well and may be unstable if 2n > r + m.
The number of variables is simply the sum of the number of reaction forces and member
forces.
.. note::
The sign convention for the internal forces present in a member revolves around whether each
force is compressive or tensile. While forming equations for each node, internal force due
to a member on the node is assumed to be away from the node i.e. each force is assumed to
be compressive by default. Hence, a positive value for an internal force implies the
presence of compressive force in the member and a negative value implies a tensile force.
Examples
========
>>> from sympy.physics.continuum_mechanics.truss import Truss
>>> t = Truss()
>>> t.add_node("node_1", 0, 0)
>>> t.add_node("node_2", 6, 0)
>>> t.add_node("node_3", 2, 2)
>>> t.add_node("node_4", 2, 0)
>>> t.add_member("member_1", "node_1", "node_4")
>>> t.add_member("member_2", "node_2", "node_4")
>>> t.add_member("member_3", "node_1", "node_3")
>>> t.add_member("member_4", "node_2", "node_3")
>>> t.add_member("member_5", "node_3", "node_4")
>>> t.apply_load("node_4", magnitude=10, direction=270)
>>> t.apply_support("node_1", type="pinned")
>>> t.apply_support("node_2", type="roller")
>>> t.solve()
>>> t.reaction_loads
{'R_node_1_x': 0, 'R_node_1_y': 20/3, 'R_node_2_y': 10/3}
>>> t.internal_forces
{'member_1': 20/3, 'member_2': 20/3, 'member_3': -20*sqrt(2)/3, 'member_4': -10*sqrt(5)/3, 'member_5': 10}
"""
count_reaction_loads = 0
for node in self._nodes:
if node[0] in list(self._supports):
if self._supports[node[0]]=='pinned':
count_reaction_loads += 2
elif self._supports[node[0]]=='roller':
count_reaction_loads += 1
if 2*len(self._nodes) != len(self._members) + count_reaction_loads:
raise ValueError("The given truss cannot be solved")
coefficients_matrix = [[0 for i in range(2*len(self._nodes))] for j in range(2*len(self._nodes))]
load_matrix = zeros(2*len(self.nodes), 1)
load_matrix_row = 0
for node in self._nodes:
if node[0] in list(self._loads):
for load in self._loads[node[0]]:
if load[0]!=Symbol('R_'+str(node[0])+'_x') and load[0]!=Symbol('R_'+str(node[0])+'_y'):
load_matrix[load_matrix_row] -= load[0]*cos(pi*load[1]/180)
load_matrix[load_matrix_row + 1] -= load[0]*sin(pi*load[1]/180)
load_matrix_row += 2
cols = 0
row = 0
for node in self._nodes:
if node[0] in list(self._supports):
if self._supports[node[0]]=='pinned':
coefficients_matrix[row][cols] += 1
coefficients_matrix[row+1][cols+1] += 1
cols += 2
elif self._supports[node[0]]=='roller':
coefficients_matrix[row+1][cols] += 1
cols += 1
row += 2
for member in list(self._members):
start = self._members[member][0]
end = self._members[member][1]
length = sqrt((self._node_coordinates[start][0]-self._node_coordinates[end][0])**2 + (self._node_coordinates[start][1]-self._node_coordinates[end][1])**2)
start_index = self._node_labels.index(start)
end_index = self._node_labels.index(end)
horizontal_component_start = (self._node_coordinates[end][0]-self._node_coordinates[start][0])/length
vertical_component_start = (self._node_coordinates[end][1]-self._node_coordinates[start][1])/length
horizontal_component_end = (self._node_coordinates[start][0]-self._node_coordinates[end][0])/length
vertical_component_end = (self._node_coordinates[start][1]-self._node_coordinates[end][1])/length
coefficients_matrix[start_index*2][cols] += horizontal_component_start
coefficients_matrix[start_index*2+1][cols] += vertical_component_start
coefficients_matrix[end_index*2][cols] += horizontal_component_end
coefficients_matrix[end_index*2+1][cols] += vertical_component_end
cols += 1
forces_matrix = (Matrix(coefficients_matrix)**-1)*load_matrix
self._reaction_loads = {}
i = 0
min_load = inf
for node in self._nodes:
if node[0] in list(self._loads):
for load in self._loads[node[0]]:
if type(load[0]) not in [Symbol, Mul, Add]:
min_load = min(min_load, load[0])
for j in range(len(forces_matrix)):
if type(forces_matrix[j]) not in [Symbol, Mul, Add]:
if abs(forces_matrix[j]/min_load) <1E-10:
forces_matrix[j] = 0
for node in self._nodes:
if node[0] in list(self._supports):
if self._supports[node[0]]=='pinned':
self._reaction_loads['R_'+str(node[0])+'_x'] = forces_matrix[i]
self._reaction_loads['R_'+str(node[0])+'_y'] = forces_matrix[i+1]
i += 2
elif self._supports[node[0]]=='roller':
self._reaction_loads['R_'+str(node[0])+'_y'] = forces_matrix[i]
i += 1
for member in list(self._members):
self._internal_forces[member] = forces_matrix[i]
i += 1
return
|
e6458800d927dc6c5bc204c6da3543435a917a3222ed9af03847553fcfeb14c4 | from sympy.core.function import expand_mul
from sympy.core.numbers import pi
from sympy.core.singleton import S
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (cos, sin)
from sympy.core.backend import Matrix, _simplify_matrix
from sympy.core.symbol import symbols
from sympy.physics.mechanics import (dynamicsymbols, Body, PinJoint,
PrismaticJoint, CylindricalJoint)
from sympy.physics.mechanics.joint import Joint
from sympy.physics.vector import Vector, ReferenceFrame, Point
from sympy.testing.pytest import raises, XFAIL, warns_deprecated_sympy
Vector.simp = True
t = dynamicsymbols._t # type: ignore
def _generate_body(interframe=False):
N = ReferenceFrame('N')
A = ReferenceFrame('A')
P = Body('P', frame=N)
C = Body('C', frame=A)
if interframe:
Pint, Cint = ReferenceFrame('P_int'), ReferenceFrame('C_int')
Pint.orient_axis(N, N.x, pi)
Cint.orient_axis(A, A.y, -pi / 2)
return N, A, P, C, Pint, Cint
return N, A, P, C
def test_Joint():
parent = Body('parent')
child = Body('child')
raises(TypeError, lambda: Joint('J', parent, child))
def test_coordinate_generation():
q, u, qj, uj = dynamicsymbols('q u q_J u_J')
q0j, q1j, q2j, q3j, u0j, u1j, u2j, u3j = dynamicsymbols('q0:4_J u0:4_J')
q0, q1, q2, q3, u0, u1, u2, u3 = dynamicsymbols('q0:4 u0:4')
_, _, P, C = _generate_body()
# Using PinJoint to access Joint's coordinate generation method
J = PinJoint('J', P, C)
# Test single given
assert J._fill_coordinate_list(q, 1) == Matrix([q])
assert J._fill_coordinate_list([u], 1) == Matrix([u])
assert J._fill_coordinate_list([u], 1, offset=2) == Matrix([u])
# Test None
assert J._fill_coordinate_list(None, 1) == Matrix([qj])
assert J._fill_coordinate_list([None], 1) == Matrix([qj])
assert J._fill_coordinate_list([q0, None], 3) == Matrix([q0, q1j, q2j])
# Test autofill
assert J._fill_coordinate_list(None, 3) == Matrix([q0j, q1j, q2j])
assert J._fill_coordinate_list([], 3) == Matrix([q0j, q1j, q2j])
# Test offset
assert J._fill_coordinate_list([], 3, offset=1) == Matrix([q1j, q2j, q3j])
assert J._fill_coordinate_list(q1, 3, offset=1) == Matrix([q1, q2j, q3j])
assert J._fill_coordinate_list([q1, None, q3], 3, offset=1) == Matrix(
[q1, q2j, q3])
assert J._fill_coordinate_list(None, 2, offset=2) == Matrix([q2j, q3j])
# Test label
assert J._fill_coordinate_list(None, 1, 'u') == Matrix([uj])
assert J._fill_coordinate_list([], 3, 'u') == Matrix([u0j, u1j, u2j])
assert J._fill_coordinate_list([u0], 3, 'u', 1) == Matrix([u0, u2j, u3j])
# Test single numbering
assert J._fill_coordinate_list(None, 1, number_single=True) == Matrix([q0j])
assert J._fill_coordinate_list([], 1, 'u', 2, True) == Matrix([u2j])
assert J._fill_coordinate_list([], 3, 'q') == Matrix([q0j, q1j, q2j])
# Test too many coordinates supplied
raises(ValueError, lambda: J._fill_coordinate_list([q0, q1], 1))
raises(ValueError, lambda: J._fill_coordinate_list([u0, u1, None], 2, 'u'))
# Test incorrect coordinate type
raises(TypeError, lambda: J._fill_coordinate_list([q0, symbols('q1')], 2))
raises(TypeError, lambda: J._fill_coordinate_list([q0 + q1, q1], 2))
def test_pin_joint():
P = Body('P')
C = Body('C')
l, m = symbols('l m')
q, u = dynamicsymbols('q_J, u_J')
Pj = PinJoint('J', P, C)
assert Pj.name == 'J'
assert Pj.parent == P
assert Pj.child == C
assert Pj.coordinates == Matrix([q])
assert Pj.speeds == Matrix([u])
assert Pj.kdes == Matrix([u - q.diff(t)])
assert Pj.joint_axis == P.frame.x
assert Pj.child_point.pos_from(C.masscenter) == Vector(0)
assert Pj.parent_point.pos_from(P.masscenter) == Vector(0)
assert Pj.parent_point.pos_from(Pj._child_point) == Vector(0)
assert C.masscenter.pos_from(P.masscenter) == Vector(0)
assert Pj.parent_interframe == P.frame
assert Pj.child_interframe == C.frame
assert Pj.__str__() == 'PinJoint: J parent: P child: C'
P1 = Body('P1')
C1 = Body('C1')
Pint = ReferenceFrame('P_int')
Pint.orient_axis(P1.frame, P1.y, pi / 2)
J1 = PinJoint('J1', P1, C1, parent_point=l*P1.frame.x,
child_point=m*C1.frame.y, joint_axis=P1.frame.z,
parent_interframe=Pint)
assert J1._joint_axis == P1.frame.z
assert J1._child_point.pos_from(C1.masscenter) == m * C1.frame.y
assert J1._parent_point.pos_from(P1.masscenter) == l * P1.frame.x
assert J1._parent_point.pos_from(J1._child_point) == Vector(0)
assert (P1.masscenter.pos_from(C1.masscenter) ==
-l*P1.frame.x + m*C1.frame.y)
assert J1.parent_interframe == Pint
assert J1.child_interframe == C1.frame
q, u = dynamicsymbols('q, u')
N, A, P, C, Pint, Cint = _generate_body(True)
parent_point = P.masscenter.locatenew('parent_point', N.x + N.y)
child_point = C.masscenter.locatenew('child_point', C.y + C.z)
J = PinJoint('J', P, C, q, u, parent_point=parent_point,
child_point=child_point, parent_interframe=Pint,
child_interframe=Cint, joint_axis=N.z)
assert J.joint_axis == N.z
assert J.parent_point.vel(N) == 0
assert J.parent_point == parent_point
assert J.child_point == child_point
assert J.child_point.pos_from(P.masscenter) == N.x + N.y
assert J.parent_point.pos_from(C.masscenter) == C.y + C.z
assert C.masscenter.pos_from(P.masscenter) == N.x + N.y - C.y - C.z
assert C.masscenter.vel(N).express(N) == (u * sin(q) - u * cos(q)) * N.x + (
-u * sin(q) - u * cos(q)) * N.y
assert J.parent_interframe == Pint
assert J.child_interframe == Cint
def test_pin_joint_double_pendulum():
q1, q2 = dynamicsymbols('q1 q2')
u1, u2 = dynamicsymbols('u1 u2')
m, l = symbols('m l')
N = ReferenceFrame('N')
A = ReferenceFrame('A')
B = ReferenceFrame('B')
C = Body('C', frame=N) # ceiling
PartP = Body('P', frame=A, mass=m)
PartR = Body('R', frame=B, mass=m)
J1 = PinJoint('J1', C, PartP, speeds=u1, coordinates=q1,
child_point=-l*A.x, joint_axis=C.frame.z)
J2 = PinJoint('J2', PartP, PartR, speeds=u2, coordinates=q2,
child_point=-l*B.x, joint_axis=PartP.frame.z)
# Check orientation
assert N.dcm(A) == Matrix([[cos(q1), -sin(q1), 0],
[sin(q1), cos(q1), 0], [0, 0, 1]])
assert A.dcm(B) == Matrix([[cos(q2), -sin(q2), 0],
[sin(q2), cos(q2), 0], [0, 0, 1]])
assert _simplify_matrix(N.dcm(B)) == Matrix([[cos(q1 + q2), -sin(q1 + q2), 0],
[sin(q1 + q2), cos(q1 + q2), 0],
[0, 0, 1]])
# Check Angular Velocity
assert A.ang_vel_in(N) == u1 * N.z
assert B.ang_vel_in(A) == u2 * A.z
assert B.ang_vel_in(N) == u1 * N.z + u2 * A.z
# Check kde
assert J1.kdes == Matrix([u1 - q1.diff(t)])
assert J2.kdes == Matrix([u2 - q2.diff(t)])
# Check Linear Velocity
assert PartP.masscenter.vel(N) == l*u1*A.y
assert PartR.masscenter.vel(A) == l*u2*B.y
assert PartR.masscenter.vel(N) == l*u1*A.y + l*(u1 + u2)*B.y
def test_pin_joint_chaos_pendulum():
mA, mB, lA, lB, h = symbols('mA, mB, lA, lB, h')
theta, phi, omega, alpha = dynamicsymbols('theta phi omega alpha')
N = ReferenceFrame('N')
A = ReferenceFrame('A')
B = ReferenceFrame('B')
lA = (lB - h / 2) / 2
lC = (lB/2 + h/4)
rod = Body('rod', frame=A, mass=mA)
plate = Body('plate', mass=mB, frame=B)
C = Body('C', frame=N)
J1 = PinJoint('J1', C, rod, coordinates=theta, speeds=omega,
child_point=lA*A.z, joint_axis=N.y)
J2 = PinJoint('J2', rod, plate, coordinates=phi, speeds=alpha,
parent_point=lC*A.z, joint_axis=A.z)
# Check orientation
assert A.dcm(N) == Matrix([[cos(theta), 0, -sin(theta)],
[0, 1, 0],
[sin(theta), 0, cos(theta)]])
assert A.dcm(B) == Matrix([[cos(phi), -sin(phi), 0],
[sin(phi), cos(phi), 0],
[0, 0, 1]])
assert B.dcm(N) == Matrix([
[cos(phi)*cos(theta), sin(phi), -sin(theta)*cos(phi)],
[-sin(phi)*cos(theta), cos(phi), sin(phi)*sin(theta)],
[sin(theta), 0, cos(theta)]])
# Check Angular Velocity
assert A.ang_vel_in(N) == omega*N.y
assert A.ang_vel_in(B) == -alpha*A.z
assert N.ang_vel_in(B) == -omega*N.y - alpha*A.z
# Check kde
assert J1.kdes == Matrix([omega - theta.diff(t)])
assert J2.kdes == Matrix([alpha - phi.diff(t)])
# Check pos of masscenters
assert C.masscenter.pos_from(rod.masscenter) == lA*A.z
assert rod.masscenter.pos_from(plate.masscenter) == - lC * A.z
# Check Linear Velocities
assert rod.masscenter.vel(N) == (h/4 - lB/2)*omega*A.x
assert plate.masscenter.vel(N) == ((h/4 - lB/2)*omega +
(h/4 + lB/2)*omega)*A.x
@XFAIL
def test_pin_joint_interframe():
q, u = dynamicsymbols('q, u')
# Check not connected
N, A, P, C = _generate_body()
Pint, Cint = ReferenceFrame('Pint'), ReferenceFrame('Cint')
raises(ValueError, lambda: PinJoint('J', P, C, parent_interframe=Pint))
raises(ValueError, lambda: PinJoint('J', P, C, child_interframe=Cint))
# Check not fixed interframe
Pint.orient_axis(N, N.z, q)
Cint.orient_axis(A, A.z, q)
raises(ValueError, lambda: PinJoint('J', P, C, parent_interframe=Pint))
raises(ValueError, lambda: PinJoint('J', P, C, child_interframe=Cint))
# Check only parent_interframe
N, A, P, C = _generate_body()
Pint = ReferenceFrame('Pint')
Pint.orient_body_fixed(N, (pi / 4, pi, pi / 3), 'xyz')
PinJoint('J', P, C, q, u, parent_point=N.x, child_point=-C.y,
parent_interframe=Pint, joint_axis=C.x)
assert _simplify_matrix(N.dcm(A)) == Matrix([
[-1 / 2, sqrt(3) * cos(q) / 2, -sqrt(3) * sin(q) / 2],
[sqrt(6) / 4, sqrt(2) * (2 * sin(q) + cos(q)) / 4,
sqrt(2) * (-sin(q) + 2 * cos(q)) / 4],
[sqrt(6) / 4, sqrt(2) * (-2 * sin(q) + cos(q)) / 4,
-sqrt(2) * (sin(q) + 2 * cos(q)) / 4]])
assert A.ang_vel_in(N) == u * Pint.x
assert C.masscenter.pos_from(P.masscenter) == N.x + A.y
assert C.masscenter.vel(N) == u * A.z
assert P.masscenter.vel(Pint) == Vector(0)
assert C.masscenter.vel(Pint) == u * A.z
# Check only child_interframe
N, A, P, C = _generate_body()
Cint = ReferenceFrame('Cint')
Cint.orient_body_fixed(A, (2 * pi / 3, -pi, pi / 2), 'xyz')
PinJoint('J', P, C, q, u, parent_point=-N.z, child_point=C.x,
child_interframe=Cint, joint_axis=P.x + P.z)
assert _simplify_matrix(N.dcm(A)) == Matrix([
[-sqrt(2) * sin(q) / 2,
-sqrt(3) * (cos(q) - 1) / 4 - cos(q) / 4 - S(1) / 4,
sqrt(3) * (cos(q) + 1) / 4 - cos(q) / 4 + S(1) / 4],
[cos(q), (sqrt(2) + sqrt(6)) * -sin(q) / 4,
(-sqrt(2) + sqrt(6)) * sin(q) / 4],
[sqrt(2) * sin(q) / 2,
sqrt(3) * (cos(q) + 1) / 4 + cos(q) / 4 - S(1) / 4,
sqrt(3) * (1 - cos(q)) / 4 + cos(q) / 4 + S(1) / 4]])
assert A.ang_vel_in(N) == sqrt(2) * u / 2 * N.x + sqrt(2) * u / 2 * N.z
assert C.masscenter.pos_from(P.masscenter) == - N.z - A.x
assert C.masscenter.vel(N).simplify() == (
-sqrt(6) - sqrt(2)) * u / 4 * A.y + (
-sqrt(2) + sqrt(6)) * u / 4 * A.z
assert C.masscenter.vel(Cint) == Vector(0)
# Check combination
N, A, P, C = _generate_body()
Pint, Cint = ReferenceFrame('Pint'), ReferenceFrame('Cint')
Pint.orient_body_fixed(N, (-pi / 2, pi, pi / 2), 'xyz')
Cint.orient_body_fixed(A, (2 * pi / 3, -pi, pi / 2), 'xyz')
PinJoint('J', P, C, q, u, parent_point=N.x - N.y, child_point=-C.z,
parent_interframe=Pint, child_interframe=Cint,
joint_axis=Cint.x + Cint.z)
assert _simplify_matrix(N.dcm(A)) == Matrix([
[cos(q), (sqrt(2) + sqrt(6)) * -sin(q) / 4,
(-sqrt(2) + sqrt(6)) * sin(q) / 4],
[-sqrt(2) * sin(q) / 2,
-sqrt(3) * (cos(q) + 1) / 4 - cos(q) / 4 + S(1) / 4,
sqrt(3) * (cos(q) - 1) / 4 - cos(q) / 4 - S(1) / 4],
[sqrt(2) * sin(q) / 2,
sqrt(3) * (cos(q) - 1) / 4 + cos(q) / 4 + S(1) / 4,
-sqrt(3) * (cos(q) + 1) / 4 + cos(q) / 4 - S(1) / 4]])
assert A.ang_vel_in(N) == sqrt(2) * u / 2 * Pint.x + sqrt(
2) * u / 2 * Pint.z
assert C.masscenter.pos_from(P.masscenter) == N.x - N.y + A.z
N_v_C = (-sqrt(2) + sqrt(6)) * u / 4 * A.x
assert C.masscenter.vel(N).simplify() == N_v_C
assert C.masscenter.vel(Pint).simplify() == N_v_C
assert C.masscenter.vel(Cint) == Vector(0)
def test_pin_joint_joint_axis():
q, u = dynamicsymbols('q, u')
# Check parent as reference
N, A, P, C, Pint, Cint = _generate_body(True)
pin = PinJoint('J', P, C, q, u, parent_interframe=Pint,
child_interframe=Cint, joint_axis=P.y)
assert pin.joint_axis == P.y
assert N.dcm(A) == Matrix([[sin(q), 0, cos(q)], [0, -1, 0],
[cos(q), 0, -sin(q)]])
# Check parent_interframe as reference
N, A, P, C, Pint, Cint = _generate_body(True)
pin = PinJoint('J', P, C, q, u, parent_interframe=Pint,
child_interframe=Cint, joint_axis=Pint.y)
assert pin.joint_axis == Pint.y
assert N.dcm(A) == Matrix([[-sin(q), 0, cos(q)], [0, -1, 0],
[cos(q), 0, sin(q)]])
# Check child_interframe as reference
N, A, P, C, Pint, Cint = _generate_body(True)
pin = PinJoint('J', P, C, q, u, parent_interframe=Pint,
child_interframe=Cint, joint_axis=Cint.y)
assert pin.joint_axis == Cint.y
assert N.dcm(A) == Matrix([[-sin(q), 0, cos(q)], [0, -1, 0],
[cos(q), 0, sin(q)]])
# Check child as reference
N, A, P, C, Pint, Cint = _generate_body(True)
pin = PinJoint('J', P, C, q, u, parent_interframe=Pint,
child_interframe=Cint, joint_axis=C.y)
assert pin.joint_axis == C.y
assert N.dcm(A) == Matrix([[-sin(q), 0, cos(q)], [0, -1, 0],
[cos(q), 0, sin(q)]])
# Check combination of joint_axis with interframes supplied as vectors (2x)
N, A, P, C = _generate_body()
pin = PinJoint('J', P, C, q, u, parent_interframe=N.z,
child_interframe=-C.z, joint_axis=N.z)
assert pin.joint_axis == N.z
assert N.dcm(A) == Matrix([[-cos(q), -sin(q), 0], [-sin(q), cos(q), 0],
[0, 0, -1]])
N, A, P, C = _generate_body()
pin = PinJoint('J', P, C, q, u, parent_interframe=N.z,
child_interframe=-C.z, joint_axis=N.x)
assert pin.joint_axis == N.x
assert N.dcm(A) == Matrix([[-1, 0, 0], [0, cos(q), sin(q)],
[0, sin(q), -cos(q)]])
# Check time varying axis
N, A, P, C, Pint, Cint = _generate_body(True)
raises(ValueError, lambda: PinJoint('J', P, C,
joint_axis=cos(q) * N.x + sin(q) * N.y))
# Check some invalid combinations
raises(ValueError, lambda: PinJoint('J', P, C, joint_axis=P.x + C.y))
raises(ValueError, lambda: PinJoint(
'J', P, C, parent_interframe=Pint, child_interframe=Cint,
joint_axis=Pint.x + C.y))
raises(ValueError, lambda: PinJoint(
'J', P, C, parent_interframe=Pint, child_interframe=Cint,
joint_axis=P.x + Cint.y))
# Check valid special combination
N, A, P, C, Pint, Cint = _generate_body(True)
PinJoint('J', P, C, parent_interframe=Pint, child_interframe=Cint,
joint_axis=Pint.x + P.y)
N, A, P, C, Pint, Cint = _generate_body(True)
PinJoint('J', P, C, parent_interframe=Pint, child_interframe=Cint,
joint_axis=Cint.x + C.y)
# Check invalid zero vector
raises(Exception, lambda: PinJoint(
'J', P, C, parent_interframe=Pint, child_interframe=Cint,
joint_axis=Vector(0)))
raises(ValueError, lambda: PinJoint(
'J', P, C, parent_interframe=Pint, child_interframe=Cint,
joint_axis=C.z - Cint.x))
def test_pin_joint_arbitrary_axis():
q, u = dynamicsymbols('q_J, u_J')
# When the bodies are attached though masscenters but axes are opposite.
N, A, P, C = _generate_body()
PinJoint('J', P, C, child_interframe=-A.x)
assert (-A.x).angle_between(N.x) == 0
assert -A.x.express(N) == N.x
assert A.dcm(N) == Matrix([[-1, 0, 0],
[0, -cos(q), -sin(q)],
[0, -sin(q), cos(q)]])
assert A.ang_vel_in(N) == u*N.x
assert A.ang_vel_in(N).magnitude() == sqrt(u**2)
assert C.masscenter.pos_from(P.masscenter) == 0
assert C.masscenter.pos_from(P.masscenter).express(N).simplify() == 0
assert C.masscenter.vel(N) == 0
# When axes are different and parent joint is at masscenter but child joint
# is at a unit vector from child masscenter.
N, A, P, C = _generate_body()
PinJoint('J', P, C, child_interframe=A.y, child_point=A.x)
assert A.y.angle_between(N.x) == 0 # Axis are aligned
assert A.y.express(N) == N.x
assert A.dcm(N) == Matrix([[0, -cos(q), -sin(q)],
[1, 0, 0],
[0, -sin(q), cos(q)]])
assert A.ang_vel_in(N) == u*N.x
assert A.ang_vel_in(N).express(A) == u * A.y
assert A.ang_vel_in(N).magnitude() == sqrt(u**2)
assert A.ang_vel_in(N).cross(A.y) == 0
assert C.masscenter.vel(N) == u*A.z
assert C.masscenter.pos_from(P.masscenter) == -A.x
assert (C.masscenter.pos_from(P.masscenter).express(N).simplify() ==
cos(q)*N.y + sin(q)*N.z)
assert C.masscenter.vel(N).angle_between(A.x) == pi/2
# Similar to previous case but wrt parent body
N, A, P, C = _generate_body()
PinJoint('J', P, C, parent_interframe=N.y, parent_point=N.x)
assert N.y.angle_between(A.x) == 0 # Axis are aligned
assert N.y.express(A) == A.x
assert A.dcm(N) == Matrix([[0, 1, 0],
[-cos(q), 0, sin(q)],
[sin(q), 0, cos(q)]])
assert A.ang_vel_in(N) == u*N.y
assert A.ang_vel_in(N).express(A) == u*A.x
assert A.ang_vel_in(N).magnitude() == sqrt(u**2)
angle = A.ang_vel_in(N).angle_between(A.x)
assert angle.xreplace({u: 1}) == 0
assert C.masscenter.vel(N) == 0
assert C.masscenter.pos_from(P.masscenter) == N.x
# Both joint pos id defined but different axes
N, A, P, C = _generate_body()
PinJoint('J', P, C, parent_point=N.x, child_point=A.x,
child_interframe=A.x + A.y)
assert expand_mul(N.x.angle_between(A.x + A.y)) == 0 # Axis are aligned
assert (A.x + A.y).express(N).simplify() == sqrt(2)*N.x
assert _simplify_matrix(A.dcm(N)) == Matrix([
[sqrt(2)/2, -sqrt(2)*cos(q)/2, -sqrt(2)*sin(q)/2],
[sqrt(2)/2, sqrt(2)*cos(q)/2, sqrt(2)*sin(q)/2],
[0, -sin(q), cos(q)]])
assert A.ang_vel_in(N) == u*N.x
assert (A.ang_vel_in(N).express(A).simplify() ==
(u*A.x + u*A.y)/sqrt(2))
assert A.ang_vel_in(N).magnitude() == sqrt(u**2)
angle = A.ang_vel_in(N).angle_between(A.x + A.y)
assert angle.xreplace({u: 1}) == 0
assert C.masscenter.vel(N).simplify() == (u * A.z)/sqrt(2)
assert C.masscenter.pos_from(P.masscenter) == N.x - A.x
assert (C.masscenter.pos_from(P.masscenter).express(N).simplify() ==
(1 - sqrt(2)/2)*N.x + sqrt(2)*cos(q)/2*N.y +
sqrt(2)*sin(q)/2*N.z)
assert (C.masscenter.vel(N).express(N).simplify() ==
-sqrt(2)*u*sin(q)/2*N.y + sqrt(2)*u*cos(q)/2*N.z)
assert C.masscenter.vel(N).angle_between(A.x) == pi/2
N, A, P, C = _generate_body()
PinJoint('J', P, C, parent_point=N.x, child_point=A.x,
child_interframe=A.x + A.y - A.z)
assert expand_mul(N.x.angle_between(A.x + A.y - A.z)) == 0 # Axis aligned
assert (A.x + A.y - A.z).express(N).simplify() == sqrt(3)*N.x
assert _simplify_matrix(A.dcm(N)) == Matrix([
[sqrt(3)/3, -sqrt(6)*sin(q + pi/4)/3,
sqrt(6)*cos(q + pi/4)/3],
[sqrt(3)/3, sqrt(6)*cos(q + pi/12)/3,
sqrt(6)*sin(q + pi/12)/3],
[-sqrt(3)/3, sqrt(6)*cos(q + 5*pi/12)/3,
sqrt(6)*sin(q + 5*pi/12)/3]])
assert A.ang_vel_in(N) == u*N.x
assert A.ang_vel_in(N).express(A).simplify() == (u*A.x + u*A.y -
u*A.z)/sqrt(3)
assert A.ang_vel_in(N).magnitude() == sqrt(u**2)
angle = A.ang_vel_in(N).angle_between(A.x + A.y-A.z)
assert angle.xreplace({u: 1}) == 0
assert C.masscenter.vel(N).simplify() == (u*A.y + u*A.z)/sqrt(3)
assert C.masscenter.pos_from(P.masscenter) == N.x - A.x
assert (C.masscenter.pos_from(P.masscenter).express(N).simplify() ==
(1 - sqrt(3)/3)*N.x + sqrt(6)*sin(q + pi/4)/3*N.y -
sqrt(6)*cos(q + pi/4)/3*N.z)
assert (C.masscenter.vel(N).express(N).simplify() ==
sqrt(6)*u*cos(q + pi/4)/3*N.y +
sqrt(6)*u*sin(q + pi/4)/3*N.z)
assert C.masscenter.vel(N).angle_between(A.x) == pi/2
N, A, P, C = _generate_body()
m, n = symbols('m n')
PinJoint('J', P, C, parent_point=m * N.x, child_point=n * A.x,
child_interframe=A.x + A.y - A.z,
parent_interframe=N.x - N.y + N.z)
angle = (N.x - N.y + N.z).angle_between(A.x + A.y - A.z)
assert expand_mul(angle) == 0 # Axis are aligned
assert ((A.x-A.y+A.z).express(N).simplify() ==
(-4*cos(q)/3 - S(1)/3)*N.x + (S(1)/3 - 4*sin(q + pi/6)/3)*N.y +
(4*cos(q + pi/3)/3 - S(1)/3)*N.z)
assert _simplify_matrix(A.dcm(N)) == Matrix([
[S(1)/3 - 2*cos(q)/3, -2*sin(q + pi/6)/3 - S(1)/3,
2*cos(q + pi/3)/3 + S(1)/3],
[2*cos(q + pi/3)/3 + S(1)/3, 2*cos(q)/3 - S(1)/3,
2*sin(q + pi/6)/3 + S(1)/3],
[-2*sin(q + pi/6)/3 - S(1)/3, 2*cos(q + pi/3)/3 + S(1)/3,
2*cos(q)/3 - S(1)/3]])
assert A.ang_vel_in(N) == (u*N.x - u*N.y + u*N.z)/sqrt(3)
assert A.ang_vel_in(N).express(A).simplify() == (u*A.x + u*A.y -
u*A.z)/sqrt(3)
assert A.ang_vel_in(N).magnitude() == sqrt(u**2)
angle = A.ang_vel_in(N).angle_between(A.x+A.y-A.z)
assert angle.xreplace({u: 1}) == 0
assert (C.masscenter.vel(N).simplify() ==
sqrt(3)*n*u/3*A.y + sqrt(3)*n*u/3*A.z)
assert C.masscenter.pos_from(P.masscenter) == m*N.x - n*A.x
assert (C.masscenter.pos_from(P.masscenter).express(N).simplify() ==
(m + n*(2*cos(q) - 1)/3)*N.x + n*(2*sin(q + pi/6) +
1)/3*N.y - n*(2*cos(q + pi/3) + 1)/3*N.z)
assert (C.masscenter.vel(N).express(N).simplify() ==
- 2*n*u*sin(q)/3*N.x + 2*n*u*cos(q + pi/6)/3*N.y +
2*n*u*sin(q + pi/3)/3*N.z)
assert C.masscenter.vel(N).dot(N.x - N.y + N.z).simplify() == 0
def test_create_aligned_frame_pi():
N, A, P, C = _generate_body()
f = Joint._create_aligned_interframe(P, -P.x, P.x)
assert f.z == P.z
f = Joint._create_aligned_interframe(P, -P.y, P.y)
assert f.x == P.x
f = Joint._create_aligned_interframe(P, -P.z, P.z)
assert f.y == P.y
f = Joint._create_aligned_interframe(P, -P.x - P.y, P.x + P.y)
assert f.z == P.z
f = Joint._create_aligned_interframe(P, -P.y - P.z, P.y + P.z)
assert f.x == P.x
f = Joint._create_aligned_interframe(P, -P.x - P.z, P.x + P.z)
assert f.y == P.y
f = Joint._create_aligned_interframe(P, -P.x - P.y - P.z, P.x + P.y + P.z)
assert f.y - f.z == P.y - P.z
def test_pin_joint_axis():
q, u = dynamicsymbols('q u')
# Test default joint axis
N, A, P, C, Pint, Cint = _generate_body(True)
J = PinJoint('J', P, C, q, u, parent_interframe=Pint, child_interframe=Cint)
assert J.joint_axis == Pint.x
# Test for the same joint axis expressed in different frames
N_R_A = Matrix([[0, sin(q), cos(q)],
[0, -cos(q), sin(q)],
[1, 0, 0]])
N, A, P, C, Pint, Cint = _generate_body(True)
PinJoint('J', P, C, q, u, parent_interframe=Pint, child_interframe=Cint,
joint_axis=N.z)
assert N.dcm(A) == N_R_A
N, A, P, C, Pint, Cint = _generate_body(True)
PinJoint('J', P, C, q, u, parent_interframe=Pint, child_interframe=Cint,
joint_axis=-Pint.z)
assert N.dcm(A) == N_R_A
N, A, P, C, Pint, Cint = _generate_body(True)
PinJoint('J', P, C, q, u, parent_interframe=Pint, child_interframe=Cint,
joint_axis=-Cint.z)
assert N.dcm(A) == N_R_A
N, A, P, C, Pint, Cint = _generate_body(True)
PinJoint('J', P, C, q, u, parent_interframe=Pint, child_interframe=Cint,
joint_axis=A.x)
assert N.dcm(A) == N_R_A
# Test time varying joint axis
N, A, P, C, Pint, Cint = _generate_body(True)
raises(ValueError, lambda: PinJoint('J', P, C, joint_axis=q * N.z))
def test_locate_joint_pos():
# Test Vector and default
N, A, P, C = _generate_body()
joint = PinJoint('J', P, C, parent_point=N.y + N.z)
assert joint.parent_point.name == 'J_P_joint'
assert joint.parent_point.pos_from(P.masscenter) == N.y + N.z
assert joint.child_point == C.masscenter
# Test Point objects
N, A, P, C = _generate_body()
parent_point = P.masscenter.locatenew('p', N.y + N.z)
joint = PinJoint('J', P, C, parent_point=parent_point,
child_point=C.masscenter)
assert joint.parent_point == parent_point
assert joint.child_point == C.masscenter
# Check invalid type
N, A, P, C = _generate_body()
raises(TypeError,
lambda: PinJoint('J', P, C, parent_point=N.x.to_matrix(N)))
# Test time varying positions
q = dynamicsymbols('q')
N, A, P, C = _generate_body()
raises(ValueError, lambda: PinJoint('J', P, C, parent_point=q * N.x))
N, A, P, C = _generate_body()
child_point = C.masscenter.locatenew('p', q * A.y)
raises(ValueError, lambda: PinJoint('J', P, C, child_point=child_point))
# Test undefined position
child_point = Point('p')
raises(ValueError, lambda: PinJoint('J', P, C, child_point=child_point))
def test_locate_joint_frame():
# Test rotated frame and default
N, A, P, C = _generate_body()
parent_interframe = ReferenceFrame('int_frame')
parent_interframe.orient_axis(N, N.z, 1)
joint = PinJoint('J', P, C, parent_interframe=parent_interframe)
assert joint.parent_interframe == parent_interframe
assert joint.parent_interframe.ang_vel_in(N) == 0
assert joint.child_interframe == A
# Test time varying orientations
q = dynamicsymbols('q')
N, A, P, C = _generate_body()
parent_interframe = ReferenceFrame('int_frame')
parent_interframe.orient_axis(N, N.z, q)
raises(ValueError,
lambda: PinJoint('J', P, C, parent_interframe=parent_interframe))
# Test undefined frame
N, A, P, C = _generate_body()
child_interframe = ReferenceFrame('int_frame')
child_interframe.orient_axis(N, N.z, 1) # Defined with respect to parent
raises(ValueError,
lambda: PinJoint('J', P, C, child_interframe=child_interframe))
def test_sliding_joint():
_, _, P, C = _generate_body()
q, u = dynamicsymbols('q_S, u_S')
S = PrismaticJoint('S', P, C)
assert S.name == 'S'
assert S.parent == P
assert S.child == C
assert S.coordinates == Matrix([q])
assert S.speeds == Matrix([u])
assert S.kdes == Matrix([u - q.diff(t)])
assert S.joint_axis == P.frame.x
assert S.child_point.pos_from(C.masscenter) == Vector(0)
assert S.parent_point.pos_from(P.masscenter) == Vector(0)
assert S.parent_point.pos_from(S.child_point) == - q * P.frame.x
assert P.masscenter.pos_from(C.masscenter) == - q * P.frame.x
assert C.masscenter.vel(P.frame) == u * P.frame.x
assert P.ang_vel_in(C) == 0
assert C.ang_vel_in(P) == 0
assert S.__str__() == 'PrismaticJoint: S parent: P child: C'
N, A, P, C = _generate_body()
l, m = symbols('l m')
Pint = ReferenceFrame('P_int')
Pint.orient_axis(P.frame, P.y, pi / 2)
S = PrismaticJoint('S', P, C, parent_point=l * P.frame.x,
child_point=m * C.frame.y, joint_axis=P.frame.z,
parent_interframe=Pint)
assert S.joint_axis == P.frame.z
assert S.child_point.pos_from(C.masscenter) == m * C.frame.y
assert S.parent_point.pos_from(P.masscenter) == l * P.frame.x
assert S.parent_point.pos_from(S.child_point) == - q * P.frame.z
assert P.masscenter.pos_from(C.masscenter) == - l*N.x - q*N.z + m*A.y
assert C.masscenter.vel(P.frame) == u * P.frame.z
assert P.masscenter.vel(Pint) == Vector(0)
assert C.ang_vel_in(P) == 0
assert P.ang_vel_in(C) == 0
_, _, P, C = _generate_body()
Pint = ReferenceFrame('P_int')
Pint.orient_axis(P.frame, P.y, pi / 2)
S = PrismaticJoint('S', P, C, parent_point=l * P.frame.z,
child_point=m * C.frame.x, joint_axis=P.frame.z,
parent_interframe=Pint)
assert S.joint_axis == P.frame.z
assert S.child_point.pos_from(C.masscenter) == m * C.frame.x
assert S.parent_point.pos_from(P.masscenter) == l * P.frame.z
assert S.parent_point.pos_from(S.child_point) == - q * P.frame.z
assert P.masscenter.pos_from(C.masscenter) == (-l - q)*P.frame.z + m*C.frame.x
assert C.masscenter.vel(P.frame) == u * P.frame.z
assert C.ang_vel_in(P) == 0
assert P.ang_vel_in(C) == 0
def test_sliding_joint_arbitrary_axis():
q, u = dynamicsymbols('q_S, u_S')
N, A, P, C = _generate_body()
PrismaticJoint('S', P, C, child_interframe=-A.x)
assert (-A.x).angle_between(N.x) == 0
assert -A.x.express(N) == N.x
assert A.dcm(N) == Matrix([[-1, 0, 0], [0, -1, 0], [0, 0, 1]])
assert C.masscenter.pos_from(P.masscenter) == q * N.x
assert C.masscenter.pos_from(P.masscenter).express(A).simplify() == -q * A.x
assert C.masscenter.vel(N) == u * N.x
assert C.masscenter.vel(N).express(A) == -u * A.x
assert A.ang_vel_in(N) == 0
assert N.ang_vel_in(A) == 0
#When axes are different and parent joint is at masscenter but child joint is at a unit vector from
#child masscenter.
N, A, P, C = _generate_body()
PrismaticJoint('S', P, C, child_interframe=A.y, child_point=A.x)
assert A.y.angle_between(N.x) == 0 #Axis are aligned
assert A.y.express(N) == N.x
assert A.dcm(N) == Matrix([[0, -1, 0], [1, 0, 0], [0, 0, 1]])
assert C.masscenter.vel(N) == u * N.x
assert C.masscenter.vel(N).express(A) == u * A.y
assert C.masscenter.pos_from(P.masscenter) == q*N.x - A.x
assert C.masscenter.pos_from(P.masscenter).express(N).simplify() == q*N.x + N.y
assert A.ang_vel_in(N) == 0
assert N.ang_vel_in(A) == 0
#Similar to previous case but wrt parent body
N, A, P, C = _generate_body()
PrismaticJoint('S', P, C, parent_interframe=N.y, parent_point=N.x)
assert N.y.angle_between(A.x) == 0 #Axis are aligned
assert N.y.express(A) == A.x
assert A.dcm(N) == Matrix([[0, 1, 0], [-1, 0, 0], [0, 0, 1]])
assert C.masscenter.vel(N) == u * N.y
assert C.masscenter.vel(N).express(A) == u * A.x
assert C.masscenter.pos_from(P.masscenter) == N.x + q*N.y
assert A.ang_vel_in(N) == 0
assert N.ang_vel_in(A) == 0
#Both joint pos is defined but different axes
N, A, P, C = _generate_body()
PrismaticJoint('S', P, C, parent_point=N.x, child_point=A.x,
child_interframe=A.x + A.y)
assert N.x.angle_between(A.x + A.y) == 0 #Axis are aligned
assert (A.x + A.y).express(N) == sqrt(2)*N.x
assert A.dcm(N) == Matrix([[sqrt(2)/2, -sqrt(2)/2, 0], [sqrt(2)/2, sqrt(2)/2, 0], [0, 0, 1]])
assert C.masscenter.pos_from(P.masscenter) == (q + 1)*N.x - A.x
assert C.masscenter.pos_from(P.masscenter).express(N) == (q - sqrt(2)/2 + 1)*N.x + sqrt(2)/2*N.y
assert C.masscenter.vel(N).express(A) == u * (A.x + A.y)/sqrt(2)
assert C.masscenter.vel(N) == u*N.x
assert A.ang_vel_in(N) == 0
assert N.ang_vel_in(A) == 0
N, A, P, C = _generate_body()
PrismaticJoint('S', P, C, parent_point=N.x, child_point=A.x,
child_interframe=A.x + A.y - A.z)
assert N.x.angle_between(A.x + A.y - A.z) == 0 #Axis are aligned
assert (A.x + A.y - A.z).express(N) == sqrt(3)*N.x
assert _simplify_matrix(A.dcm(N)) == Matrix([[sqrt(3)/3, -sqrt(3)/3, sqrt(3)/3],
[sqrt(3)/3, sqrt(3)/6 + S(1)/2, S(1)/2 - sqrt(3)/6],
[-sqrt(3)/3, S(1)/2 - sqrt(3)/6, sqrt(3)/6 + S(1)/2]])
assert C.masscenter.pos_from(P.masscenter) == (q + 1)*N.x - A.x
assert C.masscenter.pos_from(P.masscenter).express(N) == \
(q - sqrt(3)/3 + 1)*N.x + sqrt(3)/3*N.y - sqrt(3)/3*N.z
assert C.masscenter.vel(N) == u*N.x
assert C.masscenter.vel(N).express(A) == sqrt(3)*u/3*A.x + sqrt(3)*u/3*A.y - sqrt(3)*u/3*A.z
assert A.ang_vel_in(N) == 0
assert N.ang_vel_in(A) == 0
N, A, P, C = _generate_body()
m, n = symbols('m n')
PrismaticJoint('S', P, C, parent_point=m*N.x, child_point=n*A.x,
child_interframe=A.x + A.y - A.z,
parent_interframe=N.x - N.y + N.z)
# 0 angle means that the axis are aligned
assert (N.x-N.y+N.z).angle_between(A.x+A.y-A.z).simplify() == 0
assert (A.x+A.y-A.z).express(N) == N.x - N.y + N.z
assert _simplify_matrix(A.dcm(N)) == Matrix([[-S(1)/3, -S(2)/3, S(2)/3],
[S(2)/3, S(1)/3, S(2)/3],
[-S(2)/3, S(2)/3, S(1)/3]])
assert C.masscenter.pos_from(P.masscenter) == \
(m + sqrt(3)*q/3)*N.x - sqrt(3)*q/3*N.y + sqrt(3)*q/3*N.z - n*A.x
assert C.masscenter.pos_from(P.masscenter).express(N) == \
(m + n/3 + sqrt(3)*q/3)*N.x + (2*n/3 - sqrt(3)*q/3)*N.y + (-2*n/3 + sqrt(3)*q/3)*N.z
assert C.masscenter.vel(N) == sqrt(3)*u/3*N.x - sqrt(3)*u/3*N.y + sqrt(3)*u/3*N.z
assert C.masscenter.vel(N).express(A) == sqrt(3)*u/3*A.x + sqrt(3)*u/3*A.y - sqrt(3)*u/3*A.z
assert A.ang_vel_in(N) == 0
assert N.ang_vel_in(A) == 0
def test_cylindrical_joint():
N, A, P, C = _generate_body()
q0_def, q1_def, u0_def, u1_def = dynamicsymbols('q0:2_J, u0:2_J')
Cj = CylindricalJoint('J', P, C)
assert Cj.name == 'J'
assert Cj.parent == P
assert Cj.child == C
assert Cj.coordinates == Matrix([q0_def, q1_def])
assert Cj.speeds == Matrix([u0_def, u1_def])
assert Cj.rotation_coordinate == q0_def
assert Cj.translation_coordinate == q1_def
assert Cj.rotation_speed == u0_def
assert Cj.translation_speed == u1_def
assert Cj.kdes == Matrix([u0_def - q0_def.diff(t), u1_def - q1_def.diff(t)])
assert Cj.joint_axis == N.x
assert Cj.child_point.pos_from(C.masscenter) == Vector(0)
assert Cj.parent_point.pos_from(P.masscenter) == Vector(0)
assert Cj.parent_point.pos_from(Cj._child_point) == -q1_def * N.x
assert C.masscenter.pos_from(P.masscenter) == q1_def * N.x
assert Cj.child_point.vel(N) == u1_def * N.x
assert A.ang_vel_in(N) == u0_def * N.x
assert Cj.parent_interframe == N
assert Cj.child_interframe == A
assert Cj.__str__() == 'CylindricalJoint: J parent: P child: C'
q0, q1, u0, u1 = dynamicsymbols('q0:2, u0:2')
l, m = symbols('l, m')
N, A, P, C, Pint, Cint = _generate_body(True)
Cj = CylindricalJoint('J', P, C, rotation_coordinate=q0, rotation_speed=u0,
translation_speed=u1, parent_point=m * N.x,
child_point=l * A.y, parent_interframe=Pint,
child_interframe=Cint, joint_axis=2 * N.z)
assert Cj.coordinates == Matrix([q0, q1_def])
assert Cj.speeds == Matrix([u0, u1])
assert Cj.rotation_coordinate == q0
assert Cj.translation_coordinate == q1_def
assert Cj.rotation_speed == u0
assert Cj.translation_speed == u1
assert Cj.kdes == Matrix([u0 - q0.diff(t), u1 - q1_def.diff(t)])
assert Cj.joint_axis == 2 * N.z
assert Cj.child_point.pos_from(C.masscenter) == l * A.y
assert Cj.parent_point.pos_from(P.masscenter) == m * N.x
assert Cj.parent_point.pos_from(Cj._child_point) == -q1_def * N.z
assert C.masscenter.pos_from(
P.masscenter) == m * N.x + q1_def * N.z - l * A.y
assert C.masscenter.vel(N) == u1 * N.z - u0 * l * A.z
assert A.ang_vel_in(N) == u0 * N.z
def test_deprecated_parent_child_axis():
q, u = dynamicsymbols('q_J, u_J')
N, A, P, C = _generate_body()
with warns_deprecated_sympy():
PinJoint('J', P, C, child_axis=-A.x)
assert (-A.x).angle_between(N.x) == 0
assert -A.x.express(N) == N.x
assert A.dcm(N) == Matrix([[-1, 0, 0],
[0, -cos(q), -sin(q)],
[0, -sin(q), cos(q)]])
assert A.ang_vel_in(N) == u * N.x
assert A.ang_vel_in(N).magnitude() == sqrt(u ** 2)
N, A, P, C = _generate_body()
with warns_deprecated_sympy():
PrismaticJoint('J', P, C, parent_axis=P.x + P.y)
assert (A.x).angle_between(N.x + N.y) == 0
assert A.x.express(N) == (N.x + N.y) / sqrt(2)
assert A.dcm(N) == Matrix([[sqrt(2) / 2, sqrt(2) / 2, 0],
[-sqrt(2) / 2, sqrt(2) / 2, 0], [0, 0, 1]])
assert A.ang_vel_in(N) == Vector(0)
def test_deprecated_joint_pos():
N, A, P, C = _generate_body()
with warns_deprecated_sympy():
pin = PinJoint('J', P, C, parent_joint_pos=N.x + N.y,
child_joint_pos=C.y - C.z)
assert pin.parent_point.pos_from(P.masscenter) == N.x + N.y
assert pin.child_point.pos_from(C.masscenter) == C.y - C.z
N, A, P, C = _generate_body()
with warns_deprecated_sympy():
slider = PrismaticJoint('J', P, C, parent_joint_pos=N.z + N.y,
child_joint_pos=C.y - C.x)
assert slider.parent_point.pos_from(P.masscenter) == N.z + N.y
assert slider.child_point.pos_from(C.masscenter) == C.y - C.x
|
64be7f8d960440fa6df0609cfd5694d726c2d79cee5b0aa5b714dd42e9be2ed2 | from sympy.core.backend import sin, cos, tan, pi, symbols, Matrix, S
from sympy.physics.mechanics import (Particle, Point, ReferenceFrame,
RigidBody)
from sympy.physics.mechanics import (angular_momentum, dynamicsymbols,
inertia, inertia_of_point_mass,
kinetic_energy, linear_momentum,
outer, potential_energy, msubs,
find_dynamicsymbols, Lagrangian)
from sympy.physics.mechanics.functions import gravity, center_of_mass
from sympy.testing.pytest import raises
q1, q2, q3, q4, q5 = symbols('q1 q2 q3 q4 q5')
N = ReferenceFrame('N')
A = N.orientnew('A', 'Axis', [q1, N.z])
B = A.orientnew('B', 'Axis', [q2, A.x])
C = B.orientnew('C', 'Axis', [q3, B.y])
def test_inertia():
N = ReferenceFrame('N')
ixx, iyy, izz = symbols('ixx iyy izz')
ixy, iyz, izx = symbols('ixy iyz izx')
assert inertia(N, ixx, iyy, izz) == (ixx * (N.x | N.x) + iyy *
(N.y | N.y) + izz * (N.z | N.z))
assert inertia(N, 0, 0, 0) == 0 * (N.x | N.x)
raises(TypeError, lambda: inertia(0, 0, 0, 0))
assert inertia(N, ixx, iyy, izz, ixy, iyz, izx) == (ixx * (N.x | N.x) +
ixy * (N.x | N.y) + izx * (N.x | N.z) + ixy * (N.y | N.x) + iyy *
(N.y | N.y) + iyz * (N.y | N.z) + izx * (N.z | N.x) + iyz * (N.z |
N.y) + izz * (N.z | N.z))
def test_inertia_of_point_mass():
r, s, t, m = symbols('r s t m')
N = ReferenceFrame('N')
px = r * N.x
I = inertia_of_point_mass(m, px, N)
assert I == m * r**2 * (N.y | N.y) + m * r**2 * (N.z | N.z)
py = s * N.y
I = inertia_of_point_mass(m, py, N)
assert I == m * s**2 * (N.x | N.x) + m * s**2 * (N.z | N.z)
pz = t * N.z
I = inertia_of_point_mass(m, pz, N)
assert I == m * t**2 * (N.x | N.x) + m * t**2 * (N.y | N.y)
p = px + py + pz
I = inertia_of_point_mass(m, p, N)
assert I == (m * (s**2 + t**2) * (N.x | N.x) -
m * r * s * (N.x | N.y) -
m * r * t * (N.x | N.z) -
m * r * s * (N.y | N.x) +
m * (r**2 + t**2) * (N.y | N.y) -
m * s * t * (N.y | N.z) -
m * r * t * (N.z | N.x) -
m * s * t * (N.z | N.y) +
m * (r**2 + s**2) * (N.z | N.z))
def test_linear_momentum():
N = ReferenceFrame('N')
Ac = Point('Ac')
Ac.set_vel(N, 25 * N.y)
I = outer(N.x, N.x)
A = RigidBody('A', Ac, N, 20, (I, Ac))
P = Point('P')
Pa = Particle('Pa', P, 1)
Pa.point.set_vel(N, 10 * N.x)
raises(TypeError, lambda: linear_momentum(A, A, Pa))
raises(TypeError, lambda: linear_momentum(N, N, Pa))
assert linear_momentum(N, A, Pa) == 10 * N.x + 500 * N.y
def test_angular_momentum_and_linear_momentum():
"""A rod with length 2l, centroidal inertia I, and mass M along with a
particle of mass m fixed to the end of the rod rotate with an angular rate
of omega about point O which is fixed to the non-particle end of the rod.
The rod's reference frame is A and the inertial frame is N."""
m, M, l, I = symbols('m, M, l, I')
omega = dynamicsymbols('omega')
N = ReferenceFrame('N')
a = ReferenceFrame('a')
O = Point('O')
Ac = O.locatenew('Ac', l * N.x)
P = Ac.locatenew('P', l * N.x)
O.set_vel(N, 0 * N.x)
a.set_ang_vel(N, omega * N.z)
Ac.v2pt_theory(O, N, a)
P.v2pt_theory(O, N, a)
Pa = Particle('Pa', P, m)
A = RigidBody('A', Ac, a, M, (I * outer(N.z, N.z), Ac))
expected = 2 * m * omega * l * N.y + M * l * omega * N.y
assert linear_momentum(N, A, Pa) == expected
raises(TypeError, lambda: angular_momentum(N, N, A, Pa))
raises(TypeError, lambda: angular_momentum(O, O, A, Pa))
raises(TypeError, lambda: angular_momentum(O, N, O, Pa))
expected = (I + M * l**2 + 4 * m * l**2) * omega * N.z
assert angular_momentum(O, N, A, Pa) == expected
def test_kinetic_energy():
m, M, l1 = symbols('m M l1')
omega = dynamicsymbols('omega')
N = ReferenceFrame('N')
O = Point('O')
O.set_vel(N, 0 * N.x)
Ac = O.locatenew('Ac', l1 * N.x)
P = Ac.locatenew('P', l1 * N.x)
a = ReferenceFrame('a')
a.set_ang_vel(N, omega * N.z)
Ac.v2pt_theory(O, N, a)
P.v2pt_theory(O, N, a)
Pa = Particle('Pa', P, m)
I = outer(N.z, N.z)
A = RigidBody('A', Ac, a, M, (I, Ac))
raises(TypeError, lambda: kinetic_energy(Pa, Pa, A))
raises(TypeError, lambda: kinetic_energy(N, N, A))
assert 0 == (kinetic_energy(N, Pa, A) - (M*l1**2*omega**2/2
+ 2*l1**2*m*omega**2 + omega**2/2)).expand()
def test_potential_energy():
m, M, l1, g, h, H = symbols('m M l1 g h H')
omega = dynamicsymbols('omega')
N = ReferenceFrame('N')
O = Point('O')
O.set_vel(N, 0 * N.x)
Ac = O.locatenew('Ac', l1 * N.x)
P = Ac.locatenew('P', l1 * N.x)
a = ReferenceFrame('a')
a.set_ang_vel(N, omega * N.z)
Ac.v2pt_theory(O, N, a)
P.v2pt_theory(O, N, a)
Pa = Particle('Pa', P, m)
I = outer(N.z, N.z)
A = RigidBody('A', Ac, a, M, (I, Ac))
Pa.potential_energy = m * g * h
A.potential_energy = M * g * H
assert potential_energy(A, Pa) == m * g * h + M * g * H
def test_Lagrangian():
M, m, g, h = symbols('M m g h')
N = ReferenceFrame('N')
O = Point('O')
O.set_vel(N, 0 * N.x)
P = O.locatenew('P', 1 * N.x)
P.set_vel(N, 10 * N.x)
Pa = Particle('Pa', P, 1)
Ac = O.locatenew('Ac', 2 * N.y)
Ac.set_vel(N, 5 * N.y)
a = ReferenceFrame('a')
a.set_ang_vel(N, 10 * N.z)
I = outer(N.z, N.z)
A = RigidBody('A', Ac, a, 20, (I, Ac))
Pa.potential_energy = m * g * h
A.potential_energy = M * g * h
raises(TypeError, lambda: Lagrangian(A, A, Pa))
raises(TypeError, lambda: Lagrangian(N, N, Pa))
def test_msubs():
a, b = symbols('a, b')
x, y, z = dynamicsymbols('x, y, z')
# Test simple substitution
expr = Matrix([[a*x + b, x*y.diff() + y],
[x.diff().diff(), z + sin(z.diff())]])
sol = Matrix([[a + b, y],
[x.diff().diff(), 1]])
sd = {x: 1, z: 1, z.diff(): 0, y.diff(): 0}
assert msubs(expr, sd) == sol
# Test smart substitution
expr = cos(x + y)*tan(x + y) + b*x.diff()
sd = {x: 0, y: pi/2, x.diff(): 1}
assert msubs(expr, sd, smart=True) == b + 1
N = ReferenceFrame('N')
v = x*N.x + y*N.y
d = x*(N.x|N.x) + y*(N.y|N.y)
v_sol = 1*N.y
d_sol = 1*(N.y|N.y)
sd = {x: 0, y: 1}
assert msubs(v, sd) == v_sol
assert msubs(d, sd) == d_sol
def test_find_dynamicsymbols():
a, b = symbols('a, b')
x, y, z = dynamicsymbols('x, y, z')
expr = Matrix([[a*x + b, x*y.diff() + y],
[x.diff().diff(), z + sin(z.diff())]])
# Test finding all dynamicsymbols
sol = {x, y.diff(), y, x.diff().diff(), z, z.diff()}
assert find_dynamicsymbols(expr) == sol
# Test finding all but those in sym_list
exclude_list = [x, y, z]
sol = {y.diff(), x.diff().diff(), z.diff()}
assert find_dynamicsymbols(expr, exclude=exclude_list) == sol
# Test finding all dynamicsymbols in a vector with a given reference frame
d, e, f = dynamicsymbols('d, e, f')
A = ReferenceFrame('A')
v = d * A.x + e * A.y + f * A.z
sol = {d, e, f}
assert find_dynamicsymbols(v, reference_frame=A) == sol
# Test if a ValueError is raised on supplying only a vector as input
raises(ValueError, lambda: find_dynamicsymbols(v))
def test_gravity():
N = ReferenceFrame('N')
m, M, g = symbols('m M g')
F1, F2 = dynamicsymbols('F1 F2')
po = Point('po')
pa = Particle('pa', po, m)
A = ReferenceFrame('A')
P = Point('P')
I = outer(A.x, A.x)
B = RigidBody('B', P, A, M, (I, P))
forceList = [(po, F1), (P, F2)]
forceList.extend(gravity(g*N.y, pa, B))
l = [(po, F1), (P, F2), (po, g*m*N.y), (P, g*M*N.y)]
for i in range(len(l)):
for j in range(len(l[i])):
assert forceList[i][j] == l[i][j]
# This function tests the center_of_mass() function
# that was added in PR #14758 to compute the center of
# mass of a system of bodies.
def test_center_of_mass():
a = ReferenceFrame('a')
m = symbols('m', real=True)
p1 = Particle('p1', Point('p1_pt'), S.One)
p2 = Particle('p2', Point('p2_pt'), S(2))
p3 = Particle('p3', Point('p3_pt'), S(3))
p4 = Particle('p4', Point('p4_pt'), m)
b_f = ReferenceFrame('b_f')
b_cm = Point('b_cm')
mb = symbols('mb')
b = RigidBody('b', b_cm, b_f, mb, (outer(b_f.x, b_f.x), b_cm))
p2.point.set_pos(p1.point, a.x)
p3.point.set_pos(p1.point, a.x + a.y)
p4.point.set_pos(p1.point, a.y)
b.masscenter.set_pos(p1.point, a.y + a.z)
point_o=Point('o')
point_o.set_pos(p1.point, center_of_mass(p1.point, p1, p2, p3, p4, b))
expr = 5/(m + mb + 6)*a.x + (m + mb + 3)/(m + mb + 6)*a.y + mb/(m + mb + 6)*a.z
assert point_o.pos_from(p1.point)-expr == 0
|
42f000b687c0a80e2841a62fc4dd602bb4097fa4c6ac8dd3a98e5f1e36cfdb4d | from sympy.core.symbol import symbols
from sympy.physics.mechanics import Point, ReferenceFrame, Dyadic, RigidBody
from sympy.physics.mechanics import dynamicsymbols, outer, inertia
from sympy.physics.mechanics import inertia_of_point_mass
from sympy.core.backend import expand, zeros, _simplify_matrix
from sympy.testing.pytest import raises, warns_deprecated_sympy
def test_rigidbody():
m, m2, v1, v2, v3, omega = symbols('m m2 v1 v2 v3 omega')
A = ReferenceFrame('A')
A2 = ReferenceFrame('A2')
P = Point('P')
P2 = Point('P2')
I = Dyadic(0)
I2 = Dyadic(0)
B = RigidBody('B', P, A, m, (I, P))
assert B.mass == m
assert B.frame == A
assert B.masscenter == P
assert B.inertia == (I, B.masscenter)
B.mass = m2
B.frame = A2
B.masscenter = P2
B.inertia = (I2, B.masscenter)
raises(TypeError, lambda: RigidBody(P, P, A, m, (I, P)))
raises(TypeError, lambda: RigidBody('B', P, P, m, (I, P)))
raises(TypeError, lambda: RigidBody('B', P, A, m, (P, P)))
raises(TypeError, lambda: RigidBody('B', P, A, m, (I, I)))
assert B.__str__() == 'B'
assert B.mass == m2
assert B.frame == A2
assert B.masscenter == P2
assert B.inertia == (I2, B.masscenter)
assert B.masscenter == P2
assert B.inertia == (I2, B.masscenter)
# Testing linear momentum function assuming A2 is the inertial frame
N = ReferenceFrame('N')
P2.set_vel(N, v1 * N.x + v2 * N.y + v3 * N.z)
assert B.linear_momentum(N) == m2 * (v1 * N.x + v2 * N.y + v3 * N.z)
def test_rigidbody2():
M, v, r, omega, g, h = dynamicsymbols('M v r omega g h')
N = ReferenceFrame('N')
b = ReferenceFrame('b')
b.set_ang_vel(N, omega * b.x)
P = Point('P')
I = outer(b.x, b.x)
Inertia_tuple = (I, P)
B = RigidBody('B', P, b, M, Inertia_tuple)
P.set_vel(N, v * b.x)
assert B.angular_momentum(P, N) == omega * b.x
O = Point('O')
O.set_vel(N, v * b.x)
P.set_pos(O, r * b.y)
assert B.angular_momentum(O, N) == omega * b.x - M*v*r*b.z
B.potential_energy = M * g * h
assert B.potential_energy == M * g * h
assert expand(2 * B.kinetic_energy(N)) == omega**2 + M * v**2
def test_rigidbody3():
q1, q2, q3, q4 = dynamicsymbols('q1:5')
p1, p2, p3 = symbols('p1:4')
m = symbols('m')
A = ReferenceFrame('A')
B = A.orientnew('B', 'axis', [q1, A.x])
O = Point('O')
O.set_vel(A, q2*A.x + q3*A.y + q4*A.z)
P = O.locatenew('P', p1*B.x + p2*B.y + p3*B.z)
P.v2pt_theory(O, A, B)
I = outer(B.x, B.x)
rb1 = RigidBody('rb1', P, B, m, (I, P))
# I_S/O = I_S/S* + I_S*/O
rb2 = RigidBody('rb2', P, B, m,
(I + inertia_of_point_mass(m, P.pos_from(O), B), O))
assert rb1.central_inertia == rb2.central_inertia
assert rb1.angular_momentum(O, A) == rb2.angular_momentum(O, A)
def test_pendulum_angular_momentum():
"""Consider a pendulum of length OA = 2a, of mass m as a rigid body of
center of mass G (OG = a) which turn around (O,z). The angle between the
reference frame R and the rod is q. The inertia of the body is I =
(G,0,ma^2/3,ma^2/3). """
m, a = symbols('m, a')
q = dynamicsymbols('q')
R = ReferenceFrame('R')
R1 = R.orientnew('R1', 'Axis', [q, R.z])
R1.set_ang_vel(R, q.diff() * R.z)
I = inertia(R1, 0, m * a**2 / 3, m * a**2 / 3)
O = Point('O')
A = O.locatenew('A', 2*a * R1.x)
G = O.locatenew('G', a * R1.x)
S = RigidBody('S', G, R1, m, (I, G))
O.set_vel(R, 0)
A.v2pt_theory(O, R, R1)
G.v2pt_theory(O, R, R1)
assert (4 * m * a**2 / 3 * q.diff() * R.z -
S.angular_momentum(O, R).express(R)) == 0
def test_rigidbody_inertia():
N = ReferenceFrame('N')
m, Ix, Iy, Iz, a, b = symbols('m, I_x, I_y, I_z, a, b')
Io = inertia(N, Ix, Iy, Iz)
o = Point('o')
p = o.locatenew('p', a * N.x + b * N.y)
R = RigidBody('R', o, N, m, (Io, p))
I_check = inertia(N, Ix - b ** 2 * m, Iy - a ** 2 * m,
Iz - m * (a ** 2 + b ** 2), m * a * b)
assert R.inertia == (Io, p)
assert R.central_inertia == I_check
R.central_inertia = Io
assert R.inertia == (Io, o)
assert R.central_inertia == Io
R.inertia = (Io, p)
assert R.inertia == (Io, p)
assert R.central_inertia == I_check
def test_parallel_axis():
N = ReferenceFrame('N')
m, Ix, Iy, Iz, a, b = symbols('m, I_x, I_y, I_z, a, b')
Io = inertia(N, Ix, Iy, Iz)
o = Point('o')
p = o.locatenew('p', a * N.x + b * N.y)
R = RigidBody('R', o, N, m, (Io, o))
Ip = R.parallel_axis(p)
Ip_expected = inertia(N, Ix + m * b**2, Iy + m * a**2,
Iz + m * (a**2 + b**2), ixy=-m * a * b)
assert Ip == Ip_expected
# Reference frame from which the parallel axis is viewed should not matter
A = ReferenceFrame('A')
A.orient_axis(N, N.z, 1)
assert _simplify_matrix(
(R.parallel_axis(p, A) - Ip_expected).to_matrix(A)) == zeros(3, 3)
def test_deprecated_set_potential_energy():
m, g, h = symbols('m g h')
A = ReferenceFrame('A')
P = Point('P')
I = Dyadic(0)
B = RigidBody('B', P, A, m, (I, P))
with warns_deprecated_sympy():
B.set_potential_energy(m*g*h)
|
d2ca28ae5fe9fad570471d235ab79ec562d7064defd776675bdbc9d14eade8f8 | from sympy.core.function import expand
from sympy.core.symbol import symbols
from sympy.functions.elementary.trigonometric import (cos, sin)
from sympy.matrices.dense import Matrix
from sympy.simplify.trigsimp import trigsimp
from sympy.physics.mechanics import (PinJoint, JointsMethod, Body, KanesMethod,
PrismaticJoint, LagrangesMethod, inertia)
from sympy.physics.vector import dynamicsymbols, ReferenceFrame
from sympy.testing.pytest import raises
from sympy.core.backend import zeros
from sympy.utilities.lambdify import lambdify
from sympy.solvers.solvers import solve
t = dynamicsymbols._t # type: ignore
def test_jointsmethod():
P = Body('P')
C = Body('C')
Pin = PinJoint('P1', P, C)
C_ixx, g = symbols('C_ixx g')
q, u = dynamicsymbols('q_P1, u_P1')
P.apply_force(g*P.y)
method = JointsMethod(P, Pin)
assert method.frame == P.frame
assert method.bodies == [C, P]
assert method.loads == [(P.masscenter, g*P.frame.y)]
assert method.q == Matrix([q])
assert method.u == Matrix([u])
assert method.kdes == Matrix([u - q.diff()])
soln = method.form_eoms()
assert soln == Matrix([[-C_ixx*u.diff()]])
assert method.forcing_full == Matrix([[u], [0]])
assert method.mass_matrix_full == Matrix([[1, 0], [0, C_ixx]])
assert isinstance(method.method, KanesMethod)
def test_jointmethod_duplicate_coordinates_speeds():
P = Body('P')
C = Body('C')
T = Body('T')
q, u = dynamicsymbols('q u')
P1 = PinJoint('P1', P, C, q)
P2 = PrismaticJoint('P2', C, T, q)
raises(ValueError, lambda: JointsMethod(P, P1, P2))
P1 = PinJoint('P1', P, C, speeds=u)
P2 = PrismaticJoint('P2', C, T, speeds=u)
raises(ValueError, lambda: JointsMethod(P, P1, P2))
P1 = PinJoint('P1', P, C, q, u)
P2 = PrismaticJoint('P2', C, T, q, u)
raises(ValueError, lambda: JointsMethod(P, P1, P2))
def test_complete_simple_double_pendulum():
q1, q2 = dynamicsymbols('q1 q2')
u1, u2 = dynamicsymbols('u1 u2')
m, l, g = symbols('m l g')
C = Body('C') # ceiling
PartP = Body('P', mass=m)
PartR = Body('R', mass=m)
J1 = PinJoint('J1', C, PartP, speeds=u1, coordinates=q1,
child_point=-l*PartP.x, joint_axis=C.z)
J2 = PinJoint('J2', PartP, PartR, speeds=u2, coordinates=q2,
child_point=-l*PartR.x, joint_axis=PartP.z)
PartP.apply_force(m*g*C.x)
PartR.apply_force(m*g*C.x)
method = JointsMethod(C, J1, J2)
method.form_eoms()
assert expand(method.mass_matrix_full) == Matrix([[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 2*l**2*m*cos(q2) + 3*l**2*m, l**2*m*cos(q2) + l**2*m],
[0, 0, l**2*m*cos(q2) + l**2*m, l**2*m]])
assert trigsimp(method.forcing_full) == trigsimp(Matrix([[u1], [u2], [-g*l*m*(sin(q1 + q2) + sin(q1)) -
g*l*m*sin(q1) + l**2*m*(2*u1 + u2)*u2*sin(q2)],
[-g*l*m*sin(q1 + q2) - l**2*m*u1**2*sin(q2)]]))
def test_two_dof_joints():
q1, q2, u1, u2 = dynamicsymbols('q1 q2 u1 u2')
m, c1, c2, k1, k2 = symbols('m c1 c2 k1 k2')
W = Body('W')
B1 = Body('B1', mass=m)
B2 = Body('B2', mass=m)
J1 = PrismaticJoint('J1', W, B1, coordinates=q1, speeds=u1)
J2 = PrismaticJoint('J2', B1, B2, coordinates=q2, speeds=u2)
W.apply_force(k1*q1*W.x, reaction_body=B1)
W.apply_force(c1*u1*W.x, reaction_body=B1)
B1.apply_force(k2*q2*W.x, reaction_body=B2)
B1.apply_force(c2*u2*W.x, reaction_body=B2)
method = JointsMethod(W, J1, J2)
method.form_eoms()
MM = method.mass_matrix
forcing = method.forcing
rhs = MM.LUsolve(forcing)
assert expand(rhs[0]) == expand((-k1 * q1 - c1 * u1 + k2 * q2 + c2 * u2)/m)
assert expand(rhs[1]) == expand((k1 * q1 + c1 * u1 - 2 * k2 * q2 - 2 *
c2 * u2) / m)
def test_simple_pedulum():
l, m, g = symbols('l m g')
C = Body('C')
b = Body('b', mass=m)
q = dynamicsymbols('q')
P = PinJoint('P', C, b, speeds=q.diff(t), coordinates=q,
child_point=-l * b.x, joint_axis=C.z)
b.potential_energy = - m * g * l * cos(q)
method = JointsMethod(C, P)
method.form_eoms(LagrangesMethod)
rhs = method.rhs()
assert rhs[1] == -g*sin(q)/l
def test_chaos_pendulum():
#https://www.pydy.org/examples/chaos_pendulum.html
mA, mB, lA, lB, IAxx, IBxx, IByy, IBzz, g = symbols('mA, mB, lA, lB, IAxx, IBxx, IByy, IBzz, g')
theta, phi, omega, alpha = dynamicsymbols('theta phi omega alpha')
A = ReferenceFrame('A')
B = ReferenceFrame('B')
rod = Body('rod', mass=mA, frame=A, central_inertia=inertia(A, IAxx, IAxx, 0))
plate = Body('plate', mass=mB, frame=B, central_inertia=inertia(B, IBxx, IByy, IBzz))
C = Body('C')
J1 = PinJoint('J1', C, rod, coordinates=theta, speeds=omega,
child_point=-lA * rod.z, joint_axis=C.y)
J2 = PinJoint('J2', rod, plate, coordinates=phi, speeds=alpha,
parent_point=(lB - lA) * rod.z, joint_axis=rod.z)
rod.apply_force(mA*g*C.z)
plate.apply_force(mB*g*C.z)
method = JointsMethod(C, J1, J2)
method.form_eoms()
MM = method.mass_matrix
forcing = method.forcing
rhs = MM.LUsolve(forcing)
xd = (-2 * IBxx * alpha * omega * sin(phi) * cos(phi) + 2 * IByy * alpha * omega * sin(phi) *
cos(phi) - g * lA * mA * sin(theta) - g * lB * mB * sin(theta)) / (IAxx + IBxx *
sin(phi)**2 + IByy * cos(phi)**2 + lA**2 * mA + lB**2 * mB)
assert (rhs[0] - xd).simplify() == 0
xd = (IBxx - IByy) * omega**2 * sin(phi) * cos(phi) / IBzz
assert (rhs[1] - xd).simplify() == 0
def test_four_bar_linkage_with_manual_constraints():
q1, q2, q3, u1, u2, u3 = dynamicsymbols('q1:4, u1:4')
l1, l2, l3, l4, rho = symbols('l1:5, rho')
N = ReferenceFrame('N')
inertias = [inertia(N, 0, 0, rho * l ** 3 / 12) for l in (l1, l2, l3, l4)]
link1 = Body('Link1', frame=N, mass=rho * l1, central_inertia=inertias[0])
link2 = Body('Link2', mass=rho * l2, central_inertia=inertias[1])
link3 = Body('Link3', mass=rho * l3, central_inertia=inertias[2])
link4 = Body('Link4', mass=rho * l4, central_inertia=inertias[3])
joint1 = PinJoint(
'J1', link1, link2, coordinates=q1, speeds=u1, joint_axis=link1.z,
parent_point=l1 / 2 * link1.x, child_point=-l2 / 2 * link2.x)
joint2 = PinJoint(
'J2', link2, link3, coordinates=q2, speeds=u2, joint_axis=link2.z,
parent_point=l2 / 2 * link2.x, child_point=-l3 / 2 * link3.x)
joint3 = PinJoint(
'J3', link3, link4, coordinates=q3, speeds=u3, joint_axis=link3.z,
parent_point=l3 / 2 * link3.x, child_point=-l4 / 2 * link4.x)
loop = link4.masscenter.pos_from(link1.masscenter) \
+ l1 / 2 * link1.x + l4 / 2 * link4.x
fh = Matrix([loop.dot(link1.x), loop.dot(link1.y)])
method = JointsMethod(link1, joint1, joint2, joint3)
t = dynamicsymbols._t
qdots = solve(method.kdes, [q1.diff(t), q2.diff(t), q3.diff(t)])
fhd = fh.diff(t).subs(qdots)
kane = KanesMethod(method.frame, q_ind=[q1], u_ind=[u1],
q_dependent=[q2, q3], u_dependent=[u2, u3],
kd_eqs=method.kdes, configuration_constraints=fh,
velocity_constraints=fhd, forcelist=method.loads,
bodies=method.bodies)
fr, frs = kane.kanes_equations()
assert fr == zeros(1)
# Numerically check the mass- and forcing-matrix
p = Matrix([l1, l2, l3, l4, rho])
q = Matrix([q1, q2, q3])
u = Matrix([u1, u2, u3])
eval_m = lambdify((q, p), kane.mass_matrix)
eval_f = lambdify((q, u, p), kane.forcing)
eval_fhd = lambdify((q, u, p), fhd)
p_vals = [0.13, 0.24, 0.21, 0.34, 997]
q_vals = [2.1, 0.6655470375077588, 2.527408138024188] # Satisfies fh
u_vals = [0.2, -0.17963733938852067, 0.1309060540601612] # Satisfies fhd
mass_check = Matrix([[3.452709815256506e+01, 7.003948798374735e+00,
-4.939690970641498e+00],
[-2.203792703880936e-14, 2.071702479957077e-01,
2.842917573033711e-01],
[-1.300000000000123e-01, -8.836934896046506e-03,
1.864891330060847e-01]])
forcing_check = Matrix([[-0.031211821321648],
[-0.00066022608181],
[0.001813559741243]])
eps = 1e-10
assert all(abs(x) < eps for x in eval_fhd(q_vals, u_vals, p_vals))
assert all(abs(x) < eps for x in
(Matrix(eval_m(q_vals, p_vals)) - mass_check))
assert all(abs(x) < eps for x in
(Matrix(eval_f(q_vals, u_vals, p_vals)) - forcing_check))
|
7d5ddda7de2e15b13b6476fb0e40f47c9d5481b49d735355572d3246e6197ee9 | from sympy.core.backend import (Symbol, symbols, sin, cos, Matrix, zeros,
_simplify_matrix)
from sympy.physics.vector import Point, ReferenceFrame, dynamicsymbols, Dyadic
from sympy.physics.mechanics import inertia, Body
from sympy.testing.pytest import raises
def test_default():
body = Body('body')
assert body.name == 'body'
assert body.loads == []
point = Point('body_masscenter')
point.set_vel(body.frame, 0)
com = body.masscenter
frame = body.frame
assert com.vel(frame) == point.vel(frame)
assert body.mass == Symbol('body_mass')
ixx, iyy, izz = symbols('body_ixx body_iyy body_izz')
ixy, iyz, izx = symbols('body_ixy body_iyz body_izx')
assert body.inertia == (inertia(body.frame, ixx, iyy, izz, ixy, iyz, izx),
body.masscenter)
def test_custom_rigid_body():
# Body with RigidBody.
rigidbody_masscenter = Point('rigidbody_masscenter')
rigidbody_mass = Symbol('rigidbody_mass')
rigidbody_frame = ReferenceFrame('rigidbody_frame')
body_inertia = inertia(rigidbody_frame, 1, 0, 0)
rigid_body = Body('rigidbody_body', rigidbody_masscenter, rigidbody_mass,
rigidbody_frame, body_inertia)
com = rigid_body.masscenter
frame = rigid_body.frame
rigidbody_masscenter.set_vel(rigidbody_frame, 0)
assert com.vel(frame) == rigidbody_masscenter.vel(frame)
assert com.pos_from(com) == rigidbody_masscenter.pos_from(com)
assert rigid_body.mass == rigidbody_mass
assert rigid_body.inertia == (body_inertia, rigidbody_masscenter)
assert rigid_body.is_rigidbody
assert hasattr(rigid_body, 'masscenter')
assert hasattr(rigid_body, 'mass')
assert hasattr(rigid_body, 'frame')
assert hasattr(rigid_body, 'inertia')
def test_particle_body():
# Body with Particle
particle_masscenter = Point('particle_masscenter')
particle_mass = Symbol('particle_mass')
particle_frame = ReferenceFrame('particle_frame')
particle_body = Body('particle_body', particle_masscenter, particle_mass,
particle_frame)
com = particle_body.masscenter
frame = particle_body.frame
particle_masscenter.set_vel(particle_frame, 0)
assert com.vel(frame) == particle_masscenter.vel(frame)
assert com.pos_from(com) == particle_masscenter.pos_from(com)
assert particle_body.mass == particle_mass
assert not hasattr(particle_body, "_inertia")
assert hasattr(particle_body, 'frame')
assert hasattr(particle_body, 'masscenter')
assert hasattr(particle_body, 'mass')
assert particle_body.inertia == (Dyadic(0), particle_body.masscenter)
assert particle_body.central_inertia == Dyadic(0)
assert not particle_body.is_rigidbody
particle_body.central_inertia = inertia(particle_frame, 1, 1, 1)
assert particle_body.central_inertia == inertia(particle_frame, 1, 1, 1)
assert particle_body.is_rigidbody
particle_body = Body('particle_body', mass=particle_mass)
assert not particle_body.is_rigidbody
point = particle_body.masscenter.locatenew('point', particle_body.x)
point_inertia = particle_mass * inertia(particle_body.frame, 0, 1, 1)
particle_body.inertia = (point_inertia, point)
assert particle_body.inertia == (point_inertia, point)
assert particle_body.central_inertia == Dyadic(0)
assert particle_body.is_rigidbody
def test_particle_body_add_force():
# Body with Particle
particle_masscenter = Point('particle_masscenter')
particle_mass = Symbol('particle_mass')
particle_frame = ReferenceFrame('particle_frame')
particle_body = Body('particle_body', particle_masscenter, particle_mass,
particle_frame)
a = Symbol('a')
force_vector = a * particle_body.frame.x
particle_body.apply_force(force_vector, particle_body.masscenter)
assert len(particle_body.loads) == 1
point = particle_body.masscenter.locatenew(
particle_body._name + '_point0', 0)
point.set_vel(particle_body.frame, 0)
force_point = particle_body.loads[0][0]
frame = particle_body.frame
assert force_point.vel(frame) == point.vel(frame)
assert force_point.pos_from(force_point) == point.pos_from(force_point)
assert particle_body.loads[0][1] == force_vector
def test_body_add_force():
# Body with RigidBody.
rigidbody_masscenter = Point('rigidbody_masscenter')
rigidbody_mass = Symbol('rigidbody_mass')
rigidbody_frame = ReferenceFrame('rigidbody_frame')
body_inertia = inertia(rigidbody_frame, 1, 0, 0)
rigid_body = Body('rigidbody_body', rigidbody_masscenter, rigidbody_mass,
rigidbody_frame, body_inertia)
l = Symbol('l')
Fa = Symbol('Fa')
point = rigid_body.masscenter.locatenew(
'rigidbody_body_point0',
l * rigid_body.frame.x)
point.set_vel(rigid_body.frame, 0)
force_vector = Fa * rigid_body.frame.z
# apply_force with point
rigid_body.apply_force(force_vector, point)
assert len(rigid_body.loads) == 1
force_point = rigid_body.loads[0][0]
frame = rigid_body.frame
assert force_point.vel(frame) == point.vel(frame)
assert force_point.pos_from(force_point) == point.pos_from(force_point)
assert rigid_body.loads[0][1] == force_vector
# apply_force without point
rigid_body.apply_force(force_vector)
assert len(rigid_body.loads) == 2
assert rigid_body.loads[1][1] == force_vector
# passing something else than point
raises(TypeError, lambda: rigid_body.apply_force(force_vector, 0))
raises(TypeError, lambda: rigid_body.apply_force(0))
def test_body_add_torque():
body = Body('body')
torque_vector = body.frame.x
body.apply_torque(torque_vector)
assert len(body.loads) == 1
assert body.loads[0] == (body.frame, torque_vector)
raises(TypeError, lambda: body.apply_torque(0))
def test_body_masscenter_vel():
A = Body('A')
N = ReferenceFrame('N')
B = Body('B', frame=N)
A.masscenter.set_vel(N, N.z)
assert A.masscenter_vel(B) == N.z
assert A.masscenter_vel(N) == N.z
def test_body_ang_vel():
A = Body('A')
N = ReferenceFrame('N')
B = Body('B', frame=N)
A.frame.set_ang_vel(N, N.y)
assert A.ang_vel_in(B) == N.y
assert B.ang_vel_in(A) == -N.y
assert A.ang_vel_in(N) == N.y
def test_body_dcm():
A = Body('A')
B = Body('B')
A.frame.orient_axis(B.frame, B.frame.z, 10)
assert A.dcm(B) == Matrix([[cos(10), sin(10), 0], [-sin(10), cos(10), 0], [0, 0, 1]])
assert A.dcm(B.frame) == Matrix([[cos(10), sin(10), 0], [-sin(10), cos(10), 0], [0, 0, 1]])
def test_body_axis():
N = ReferenceFrame('N')
B = Body('B', frame=N)
assert B.x == N.x
assert B.y == N.y
assert B.z == N.z
def test_apply_force_multiple_one_point():
a, b = symbols('a b')
P = Point('P')
B = Body('B')
f1 = a*B.x
f2 = b*B.y
B.apply_force(f1, P)
assert B.loads == [(P, f1)]
B.apply_force(f2, P)
assert B.loads == [(P, f1+f2)]
def test_apply_force():
f, g = symbols('f g')
q, x, v1, v2 = dynamicsymbols('q x v1 v2')
P1 = Point('P1')
P2 = Point('P2')
B1 = Body('B1')
B2 = Body('B2')
N = ReferenceFrame('N')
P1.set_vel(B1.frame, v1*B1.x)
P2.set_vel(B2.frame, v2*B2.x)
force = f*q*N.z # time varying force
B1.apply_force(force, P1, B2, P2) #applying equal and opposite force on moving points
assert B1.loads == [(P1, force)]
assert B2.loads == [(P2, -force)]
g1 = B1.mass*g*N.y
g2 = B2.mass*g*N.y
B1.apply_force(g1) #applying gravity on B1 masscenter
B2.apply_force(g2) #applying gravity on B2 masscenter
assert B1.loads == [(P1,force), (B1.masscenter, g1)]
assert B2.loads == [(P2, -force), (B2.masscenter, g2)]
force2 = x*N.x
B1.apply_force(force2, reaction_body=B2) #Applying time varying force on masscenter
assert B1.loads == [(P1, force), (B1.masscenter, force2+g1)]
assert B2.loads == [(P2, -force), (B2.masscenter, -force2+g2)]
def test_apply_torque():
t = symbols('t')
q = dynamicsymbols('q')
B1 = Body('B1')
B2 = Body('B2')
N = ReferenceFrame('N')
torque = t*q*N.x
B1.apply_torque(torque, B2) #Applying equal and opposite torque
assert B1.loads == [(B1.frame, torque)]
assert B2.loads == [(B2.frame, -torque)]
torque2 = t*N.y
B1.apply_torque(torque2)
assert B1.loads == [(B1.frame, torque+torque2)]
def test_clear_load():
a = symbols('a')
P = Point('P')
B = Body('B')
force = a*B.z
B.apply_force(force, P)
assert B.loads == [(P, force)]
B.clear_loads()
assert B.loads == []
def test_remove_load():
P1 = Point('P1')
P2 = Point('P2')
B = Body('B')
f1 = B.x
f2 = B.y
B.apply_force(f1, P1)
B.apply_force(f2, P2)
assert B.loads == [(P1, f1), (P2, f2)]
B.remove_load(P2)
assert B.loads == [(P1, f1)]
B.apply_torque(f1.cross(f2))
assert B.loads == [(P1, f1), (B.frame, f1.cross(f2))]
B.remove_load()
assert B.loads == [(P1, f1)]
def test_apply_loads_on_multi_degree_freedom_holonomic_system():
"""Example based on: https://pydy.readthedocs.io/en/latest/examples/multidof-holonomic.html"""
W = Body('W') #Wall
B = Body('B') #Block
P = Body('P') #Pendulum
b = Body('b') #bob
q1, q2 = dynamicsymbols('q1 q2') #generalized coordinates
k, c, g, kT = symbols('k c g kT') #constants
F, T = dynamicsymbols('F T') #Specified forces
#Applying forces
B.apply_force(F*W.x)
W.apply_force(k*q1*W.x, reaction_body=B) #Spring force
W.apply_force(c*q1.diff()*W.x, reaction_body=B) #dampner
P.apply_force(P.mass*g*W.y)
b.apply_force(b.mass*g*W.y)
#Applying torques
P.apply_torque(kT*q2*W.z, reaction_body=b)
P.apply_torque(T*W.z)
assert B.loads == [(B.masscenter, (F - k*q1 - c*q1.diff())*W.x)]
assert P.loads == [(P.masscenter, P.mass*g*W.y), (P.frame, (T + kT*q2)*W.z)]
assert b.loads == [(b.masscenter, b.mass*g*W.y), (b.frame, -kT*q2*W.z)]
assert W.loads == [(W.masscenter, (c*q1.diff() + k*q1)*W.x)]
def test_parallel_axis():
N = ReferenceFrame('N')
m, Ix, Iy, Iz, a, b = symbols('m, I_x, I_y, I_z, a, b')
Io = inertia(N, Ix, Iy, Iz)
# Test RigidBody
o = Point('o')
p = o.locatenew('p', a * N.x + b * N.y)
R = Body('R', masscenter=o, frame=N, mass=m, central_inertia=Io)
Ip = R.parallel_axis(p)
Ip_expected = inertia(N, Ix + m * b**2, Iy + m * a**2,
Iz + m * (a**2 + b**2), ixy=-m * a * b)
assert Ip == Ip_expected
# Reference frame from which the parallel axis is viewed should not matter
A = ReferenceFrame('A')
A.orient_axis(N, N.z, 1)
assert _simplify_matrix(
(R.parallel_axis(p, A) - Ip_expected).to_matrix(A)) == zeros(3, 3)
# Test Particle
o = Point('o')
p = o.locatenew('p', a * N.x + b * N.y)
P = Body('P', masscenter=o, mass=m, frame=N)
Ip = P.parallel_axis(p, N)
Ip_expected = inertia(N, m * b ** 2, m * a ** 2, m * (a ** 2 + b ** 2),
ixy=-m * a * b)
assert not P.is_rigidbody
assert Ip == Ip_expected
|
76c8ed5d0a015dc14369c29ce790db6524f52faf5718a3744ccb420671cde616 | from sympy.core.symbol import Symbol, symbols
from sympy.physics.continuum_mechanics.truss import Truss
from sympy import sqrt
def test_truss():
A = Symbol('A')
B = Symbol('B')
C = Symbol('C')
AB, BC, AC = symbols('AB, BC, AC')
P = Symbol('P')
t = Truss()
assert t.nodes == []
assert t.node_labels == []
assert t.node_positions == []
assert t.members == {}
assert t.loads == {}
assert t.supports == {}
assert t.reaction_loads == {}
assert t.internal_forces == {}
# testing the add_node method
t.add_node(A, 0, 0)
t.add_node(B, 2, 2)
t.add_node(C, 3, 0)
assert t.nodes == [(A, 0, 0), (B, 2, 2), (C, 3, 0)]
assert t.node_labels == [A, B, C]
assert t.node_positions == [(0, 0), (2, 2), (3, 0)]
assert t.loads == {}
assert t.supports == {}
assert t.reaction_loads == {}
# testing the remove_node method
t.remove_node(C)
assert t.nodes == [(A, 0, 0), (B, 2, 2)]
assert t.node_labels == [A, B]
assert t.node_positions == [(0, 0), (2, 2)]
assert t.loads == {}
assert t.supports == {}
t.add_node(C, 3, 0)
# testing the add_member method
t.add_member(AB, A, B)
t.add_member(BC, B, C)
t.add_member(AC, A, C)
assert t.members == {AB: [A, B], BC: [B, C], AC: [A, C]}
assert t.internal_forces == {AB: 0, BC: 0, AC: 0}
# testing the remove_member method
t.remove_member(BC)
assert t.members == {AB: [A, B], AC: [A, C]}
assert t.internal_forces == {AB: 0, AC: 0}
t.add_member(BC, B, C)
D, CD = symbols('D, CD')
# testing the change_label methods
t.change_node_label(B, D)
assert t.nodes == [(A, 0, 0), (D, 2, 2), (C, 3, 0)]
assert t.node_labels == [A, D, C]
assert t.loads == {}
assert t.supports == {}
assert t.members == {AB: [A, D], BC: [D, C], AC: [A, C]}
t.change_member_label(BC, CD)
assert t.members == {AB: [A, D], CD: [D, C], AC: [A, C]}
assert t.internal_forces == {AB: 0, CD: 0, AC: 0}
# testing the apply_load method
t.apply_load(A, P, 90)
t.apply_load(A, P/4, 90)
t.apply_load(A, 2*P,45)
t.apply_load(D, P/2, 90)
assert t.loads == {A: [[P, 90], [P/4, 90], [2*P, 45]], D: [[P/2, 90]]}
assert t.loads[A] == [[P, 90], [P/4, 90], [2*P, 45]]
# testing the remove_load method
t.remove_load(A, P/4, 90)
assert t.loads == {A: [[P, 90], [2*P, 45]], D: [[P/2, 90]]}
assert t.loads[A] == [[P, 90], [2*P, 45]]
# testing the apply_support method
t.apply_support(A, "pinned")
t.apply_support(D, "roller")
assert t.supports == {A: 'pinned', D: 'roller'}
assert t.reaction_loads == {}
assert t.loads == {A: [[P, 90], [2*P, 45], [Symbol('R_A_x'), 0], [Symbol('R_A_y'), 90]], D: [[P/2, 90], [Symbol('R_D_y'), 90]]}
# testing the remove_support method
t.remove_support(A)
assert t.supports == {D: 'roller'}
assert t.reaction_loads == {}
assert t.loads == {A: [[P, 90], [2*P, 45]], D: [[P/2, 90], [Symbol('R_D_y'), 90]]}
t.apply_support(A, "pinned")
# testing the solve method
t.solve()
assert t.reaction_loads['R_A_x'] == -sqrt(2)*P
assert t.reaction_loads['R_A_y'] == -sqrt(2)*P - P
assert t.reaction_loads['R_D_y'] == -P/2
assert t.internal_forces[AB]/P == 0
assert t.internal_forces[CD] == 0
assert t.internal_forces[AC] == 0
|
3943098d963b1ed5892f4ca0aa47560bc2dd0aa89b25984709f61e5eef9e0781 | r"""
Array expressions are expressions representing N-dimensional arrays, without
evaluating them. These expressions represent in a certain way abstract syntax
trees of operations on N-dimensional arrays.
Every N-dimensional array operator has a corresponding array expression object.
Table of correspondences:
=============================== =============================
Array operator Array expression operator
=============================== =============================
tensorproduct ArrayTensorProduct
tensorcontraction ArrayContraction
tensordiagonal ArrayDiagonal
permutedims PermuteDims
=============================== =============================
Examples
========
``ArraySymbol`` objects are the N-dimensional equivalent of ``MatrixSymbol``
objects in the matrix module:
>>> from sympy.tensor.array.expressions import ArraySymbol
>>> from sympy.abc import i, j, k
>>> A = ArraySymbol("A", (3, 2, 4))
>>> A.shape
(3, 2, 4)
>>> A[i, j, k]
A[i, j, k]
>>> A.as_explicit()
[[[A[0, 0, 0], A[0, 0, 1], A[0, 0, 2], A[0, 0, 3]],
[A[0, 1, 0], A[0, 1, 1], A[0, 1, 2], A[0, 1, 3]]],
[[A[1, 0, 0], A[1, 0, 1], A[1, 0, 2], A[1, 0, 3]],
[A[1, 1, 0], A[1, 1, 1], A[1, 1, 2], A[1, 1, 3]]],
[[A[2, 0, 0], A[2, 0, 1], A[2, 0, 2], A[2, 0, 3]],
[A[2, 1, 0], A[2, 1, 1], A[2, 1, 2], A[2, 1, 3]]]]
Component-explicit arrays can be added inside array expressions:
>>> from sympy import Array
>>> from sympy import tensorproduct
>>> from sympy.tensor.array.expressions import ArrayTensorProduct
>>> a = Array([1, 2, 3])
>>> b = Array([i, j, k])
>>> expr = ArrayTensorProduct(a, b, b)
>>> expr
ArrayTensorProduct([1, 2, 3], [i, j, k], [i, j, k])
>>> expr.as_explicit() == tensorproduct(a, b, b)
True
Constructing array expressions from index-explicit forms
--------------------------------------------------------
Array expressions are index-implicit. This means they do not use any indices to
represent array operations. The function ``convert_indexed_to_array( ... )``
may be used to convert index-explicit expressions to array expressions.
It takes as input two parameters: the index-explicit expression and the order
of the indices:
>>> from sympy.tensor.array.expressions import convert_indexed_to_array
>>> from sympy import Sum
>>> A = ArraySymbol("A", (3, 3))
>>> B = ArraySymbol("B", (3, 3))
>>> convert_indexed_to_array(A[i, j], [i, j])
A
>>> convert_indexed_to_array(A[i, j], [j, i])
PermuteDims(A, (0 1))
>>> convert_indexed_to_array(A[i, j] + B[j, i], [i, j])
ArrayAdd(A, PermuteDims(B, (0 1)))
>>> convert_indexed_to_array(Sum(A[i, j]*B[j, k], (j, 0, 2)), [i, k])
ArrayContraction(ArrayTensorProduct(A, B), (1, 2))
The diagonal of a matrix in the array expression form:
>>> convert_indexed_to_array(A[i, i], [i])
ArrayDiagonal(A, (0, 1))
The trace of a matrix in the array expression form:
>>> convert_indexed_to_array(Sum(A[i, i], (i, 0, 2)), [i])
ArrayContraction(A, (0, 1))
Compatibility with matrices
---------------------------
Array expressions can be mixed with objects from the matrix module:
>>> from sympy import MatrixSymbol
>>> from sympy.tensor.array.expressions import ArrayContraction
>>> M = MatrixSymbol("M", 3, 3)
>>> N = MatrixSymbol("N", 3, 3)
Express the matrix product in the array expression form:
>>> from sympy.tensor.array.expressions import convert_matrix_to_array
>>> expr = convert_matrix_to_array(M*N)
>>> expr
ArrayContraction(ArrayTensorProduct(M, N), (1, 2))
The expression can be converted back to matrix form:
>>> from sympy.tensor.array.expressions import convert_array_to_matrix
>>> convert_array_to_matrix(expr)
M*N
Add a second contraction on the remaining axes in order to get the trace of `M \cdot N`:
>>> expr_tr = ArrayContraction(expr, (0, 1))
>>> expr_tr
ArrayContraction(ArrayContraction(ArrayTensorProduct(M, N), (1, 2)), (0, 1))
Flatten the expression by calling ``.doit()`` and remove the nested array contraction operations:
>>> expr_tr.doit()
ArrayContraction(ArrayTensorProduct(M, N), (0, 3), (1, 2))
Get the explicit form of the array expression:
>>> expr.as_explicit()
[[M[0, 0]*N[0, 0] + M[0, 1]*N[1, 0] + M[0, 2]*N[2, 0], M[0, 0]*N[0, 1] + M[0, 1]*N[1, 1] + M[0, 2]*N[2, 1], M[0, 0]*N[0, 2] + M[0, 1]*N[1, 2] + M[0, 2]*N[2, 2]],
[M[1, 0]*N[0, 0] + M[1, 1]*N[1, 0] + M[1, 2]*N[2, 0], M[1, 0]*N[0, 1] + M[1, 1]*N[1, 1] + M[1, 2]*N[2, 1], M[1, 0]*N[0, 2] + M[1, 1]*N[1, 2] + M[1, 2]*N[2, 2]],
[M[2, 0]*N[0, 0] + M[2, 1]*N[1, 0] + M[2, 2]*N[2, 0], M[2, 0]*N[0, 1] + M[2, 1]*N[1, 1] + M[2, 2]*N[2, 1], M[2, 0]*N[0, 2] + M[2, 1]*N[1, 2] + M[2, 2]*N[2, 2]]]
Express the trace of a matrix:
>>> from sympy import Trace
>>> convert_matrix_to_array(Trace(M))
ArrayContraction(M, (0, 1))
>>> convert_matrix_to_array(Trace(M*N))
ArrayContraction(ArrayTensorProduct(M, N), (0, 3), (1, 2))
Express the transposition of a matrix (will be expressed as a permutation of the axes:
>>> convert_matrix_to_array(M.T)
PermuteDims(M, (0 1))
Compute the derivative array expressions:
>>> from sympy.tensor.array.expressions import array_derive
>>> d = array_derive(M, M)
>>> d
PermuteDims(ArrayTensorProduct(I, I), (3)(1 2))
Verify that the derivative corresponds to the form computed with explicit matrices:
>>> d.as_explicit()
[[[[1, 0, 0], [0, 0, 0], [0, 0, 0]], [[0, 1, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 1], [0, 0, 0], [0, 0, 0]]], [[[0, 0, 0], [1, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 1, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 1], [0, 0, 0]]], [[[0, 0, 0], [0, 0, 0], [1, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 1, 0]], [[0, 0, 0], [0, 0, 0], [0, 0, 1]]]]
>>> Me = M.as_explicit()
>>> Me.diff(Me)
[[[[1, 0, 0], [0, 0, 0], [0, 0, 0]], [[0, 1, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 1], [0, 0, 0], [0, 0, 0]]], [[[0, 0, 0], [1, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 1, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 1], [0, 0, 0]]], [[[0, 0, 0], [0, 0, 0], [1, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 1, 0]], [[0, 0, 0], [0, 0, 0], [0, 0, 1]]]]
"""
__all__ = [
"ArraySymbol", "ArrayElement", "ZeroArray", "OneArray",
"ArrayTensorProduct",
"ArrayContraction",
"ArrayDiagonal",
"PermuteDims",
"ArrayAdd",
"ArrayElementwiseApplyFunc",
"Reshape",
"convert_array_to_matrix",
"convert_matrix_to_array",
"convert_array_to_indexed",
"convert_indexed_to_array",
"array_derive",
]
from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct, ArrayAdd, PermuteDims, ArrayDiagonal, \
ArrayContraction, Reshape, ArraySymbol, ArrayElement, ZeroArray, OneArray, ArrayElementwiseApplyFunc
from sympy.tensor.array.expressions.arrayexpr_derivatives import array_derive
from sympy.tensor.array.expressions.from_array_to_indexed import convert_array_to_indexed
from sympy.tensor.array.expressions.from_array_to_matrix import convert_array_to_matrix
from sympy.tensor.array.expressions.from_indexed_to_array import convert_indexed_to_array
from sympy.tensor.array.expressions.from_matrix_to_array import convert_matrix_to_array
|
1325b9d93a65071231db99940ef23fe53cdcf0b0fa327a7a5cd5bdc08c3da47e | from sympy.tensor.array.expressions import from_indexed_to_array
from sympy.tensor.array.expressions.conv_array_to_indexed import _conv_to_from_decorator
convert_indexed_to_array = _conv_to_from_decorator(from_indexed_to_array.convert_indexed_to_array)
|
b2763c63374c8d47444d6a593470dcdfa3edaffd2ca784b923c9ec7412b6ba3d | from collections import defaultdict
from sympy import Function
from sympy.combinatorics.permutations import _af_invert
from sympy.concrete.summations import Sum
from sympy.core.add import Add
from sympy.core.mul import Mul
from sympy.core.numbers import Integer
from sympy.core.power import Pow
from sympy.core.sorting import default_sort_key
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.tensor.array.expressions import ArrayElementwiseApplyFunc
from sympy.tensor.indexed import (Indexed, IndexedBase)
from sympy.combinatorics import Permutation
from sympy.matrices.expressions.matexpr import MatrixElement
from sympy.tensor.array.expressions.array_expressions import ArrayDiagonal, \
get_shape, ArrayElement, _array_tensor_product, _array_diagonal, _array_contraction, _array_add, \
_permute_dims, OneArray, ArrayAdd
from sympy.tensor.array.expressions.utils import _get_argindex, _get_diagonal_indices
def convert_indexed_to_array(expr, first_indices=None):
r"""
Parse indexed expression into a form useful for code generation.
Examples
========
>>> from sympy.tensor.array.expressions.from_indexed_to_array import convert_indexed_to_array
>>> from sympy import MatrixSymbol, Sum, symbols
>>> i, j, k, d = symbols("i j k d")
>>> M = MatrixSymbol("M", d, d)
>>> N = MatrixSymbol("N", d, d)
Recognize the trace in summation form:
>>> expr = Sum(M[i, i], (i, 0, d-1))
>>> convert_indexed_to_array(expr)
ArrayContraction(M, (0, 1))
Recognize the extraction of the diagonal by using the same index `i` on
both axes of the matrix:
>>> expr = M[i, i]
>>> convert_indexed_to_array(expr)
ArrayDiagonal(M, (0, 1))
This function can help perform the transformation expressed in two
different mathematical notations as:
`\sum_{j=0}^{N-1} A_{i,j} B_{j,k} \Longrightarrow \mathbf{A}\cdot \mathbf{B}`
Recognize the matrix multiplication in summation form:
>>> expr = Sum(M[i, j]*N[j, k], (j, 0, d-1))
>>> convert_indexed_to_array(expr)
ArrayContraction(ArrayTensorProduct(M, N), (1, 2))
Specify that ``k`` has to be the starting index:
>>> convert_indexed_to_array(expr, first_indices=[k])
ArrayContraction(ArrayTensorProduct(N, M), (0, 3))
"""
result, indices = _convert_indexed_to_array(expr)
if any(isinstance(i, (int, Integer)) for i in indices):
result = ArrayElement(result, indices)
indices = []
if not first_indices:
return result
def _check_is_in(elem, indices):
if elem in indices:
return True
if any(elem in i for i in indices if isinstance(i, frozenset)):
return True
return False
repl = {j: i for i in indices if isinstance(i, frozenset) for j in i}
first_indices = [repl.get(i, i) for i in first_indices]
for i in first_indices:
if not _check_is_in(i, indices):
first_indices.remove(i)
first_indices.extend([i for i in indices if not _check_is_in(i, first_indices)])
def _get_pos(elem, indices):
if elem in indices:
return indices.index(elem)
for i, e in enumerate(indices):
if not isinstance(e, frozenset):
continue
if elem in e:
return i
raise ValueError("not found")
permutation = _af_invert([_get_pos(i, first_indices) for i in indices])
if isinstance(result, ArrayAdd):
return _array_add(*[_permute_dims(arg, permutation) for arg in result.args])
else:
return _permute_dims(result, permutation)
def _convert_indexed_to_array(expr):
if isinstance(expr, Sum):
function = expr.function
summation_indices = expr.variables
subexpr, subindices = _convert_indexed_to_array(function)
subindicessets = {j: i for i in subindices if isinstance(i, frozenset) for j in i}
summation_indices = sorted(set([subindicessets.get(i, i) for i in summation_indices]), key=default_sort_key)
# TODO: check that Kronecker delta is only contracted to one other element:
kronecker_indices = set([])
if isinstance(function, Mul):
for arg in function.args:
if not isinstance(arg, KroneckerDelta):
continue
arg_indices = sorted(set(arg.indices), key=default_sort_key)
if len(arg_indices) == 2:
kronecker_indices.update(arg_indices)
kronecker_indices = sorted(kronecker_indices, key=default_sort_key)
# Check dimensional consistency:
shape = get_shape(subexpr)
if shape:
for ind, istart, iend in expr.limits:
i = _get_argindex(subindices, ind)
if istart != 0 or iend+1 != shape[i]:
raise ValueError("summation index and array dimension mismatch: %s" % ind)
contraction_indices = []
subindices = list(subindices)
if isinstance(subexpr, ArrayDiagonal):
diagonal_indices = list(subexpr.diagonal_indices)
dindices = subindices[-len(diagonal_indices):]
subindices = subindices[:-len(diagonal_indices)]
for index in summation_indices:
if index in dindices:
position = dindices.index(index)
contraction_indices.append(diagonal_indices[position])
diagonal_indices[position] = None
diagonal_indices = [i for i in diagonal_indices if i is not None]
for i, ind in enumerate(subindices):
if ind in summation_indices:
pass
if diagonal_indices:
subexpr = _array_diagonal(subexpr.expr, *diagonal_indices)
else:
subexpr = subexpr.expr
axes_contraction = defaultdict(list)
for i, ind in enumerate(subindices):
include = all(j not in kronecker_indices for j in ind) if isinstance(ind, frozenset) else ind not in kronecker_indices
if ind in summation_indices and include:
axes_contraction[ind].append(i)
subindices[i] = None
for k, v in axes_contraction.items():
if any(i in kronecker_indices for i in k) if isinstance(k, frozenset) else k in kronecker_indices:
continue
contraction_indices.append(tuple(v))
free_indices = [i for i in subindices if i is not None]
indices_ret = list(free_indices)
indices_ret.sort(key=lambda x: free_indices.index(x))
return _array_contraction(
subexpr,
*contraction_indices,
free_indices=free_indices
), tuple(indices_ret)
if isinstance(expr, Mul):
args, indices = zip(*[_convert_indexed_to_array(arg) for arg in expr.args])
# Check if there are KroneckerDelta objects:
kronecker_delta_repl = {}
for arg in args:
if not isinstance(arg, KroneckerDelta):
continue
# Diagonalize two indices:
i, j = arg.indices
kindices = set(arg.indices)
if i in kronecker_delta_repl:
kindices.update(kronecker_delta_repl[i])
if j in kronecker_delta_repl:
kindices.update(kronecker_delta_repl[j])
kindices = frozenset(kindices)
for index in kindices:
kronecker_delta_repl[index] = kindices
# Remove KroneckerDelta objects, their relations should be handled by
# ArrayDiagonal:
newargs = []
newindices = []
for arg, loc_indices in zip(args, indices):
if isinstance(arg, KroneckerDelta):
continue
newargs.append(arg)
newindices.append(loc_indices)
flattened_indices = [kronecker_delta_repl.get(j, j) for i in newindices for j in i]
diagonal_indices, ret_indices = _get_diagonal_indices(flattened_indices)
tp = _array_tensor_product(*newargs)
if diagonal_indices:
return _array_diagonal(tp, *diagonal_indices), ret_indices
else:
return tp, ret_indices
if isinstance(expr, MatrixElement):
indices = expr.args[1:]
diagonal_indices, ret_indices = _get_diagonal_indices(indices)
if diagonal_indices:
return _array_diagonal(expr.args[0], *diagonal_indices), ret_indices
else:
return expr.args[0], ret_indices
if isinstance(expr, ArrayElement):
indices = expr.indices
diagonal_indices, ret_indices = _get_diagonal_indices(indices)
if diagonal_indices:
return _array_diagonal(expr.name, *diagonal_indices), ret_indices
else:
return expr.name, ret_indices
if isinstance(expr, Indexed):
indices = expr.indices
diagonal_indices, ret_indices = _get_diagonal_indices(indices)
if diagonal_indices:
return _array_diagonal(expr.base, *diagonal_indices), ret_indices
else:
return expr.args[0], ret_indices
if isinstance(expr, IndexedBase):
raise NotImplementedError
if isinstance(expr, KroneckerDelta):
return expr, expr.indices
if isinstance(expr, Add):
args, indices = zip(*[_convert_indexed_to_array(arg) for arg in expr.args])
args = list(args)
# Check if all indices are compatible. Otherwise expand the dimensions:
index0 = []
shape0 = []
for arg, arg_indices in zip(args, indices):
arg_indices_set = set(arg_indices)
arg_indices_missing = arg_indices_set.difference(index0)
index0.extend([i for i in arg_indices if i in arg_indices_missing])
arg_shape = get_shape(arg)
shape0.extend([arg_shape[i] for i, e in enumerate(arg_indices) if e in arg_indices_missing])
for i, (arg, arg_indices) in enumerate(zip(args, indices)):
if len(arg_indices) < len(index0):
missing_indices_pos = [i for i, e in enumerate(index0) if e not in arg_indices]
missing_shape = [shape0[i] for i in missing_indices_pos]
arg_indices = tuple(index0[j] for j in missing_indices_pos) + arg_indices
args[i] = _array_tensor_product(OneArray(*missing_shape), args[i])
permutation = Permutation([arg_indices.index(j) for j in index0])
# Perform index permutations:
args[i] = _permute_dims(args[i], permutation)
return _array_add(*args), tuple(index0)
if isinstance(expr, Pow):
subexpr, subindices = _convert_indexed_to_array(expr.base)
if isinstance(expr.exp, (int, Integer)):
diags = zip(*[(2*i, 2*i + 1) for i in range(expr.exp)])
arr = _array_diagonal(_array_tensor_product(*[subexpr for i in range(expr.exp)]), *diags)
return arr, subindices
if isinstance(expr, Function):
subexpr, subindices = _convert_indexed_to_array(expr.args[0])
return ArrayElementwiseApplyFunc(type(expr), subexpr), subindices
return expr, ()
|
f39619053648e28f5d26d2832575ee83f94954b1bc753ff6d804fb97b0caa321 | from sympy.tensor.array.expressions import from_array_to_matrix
from sympy.tensor.array.expressions.conv_array_to_indexed import _conv_to_from_decorator
convert_array_to_matrix = _conv_to_from_decorator(from_array_to_matrix.convert_array_to_matrix)
_array2matrix = _conv_to_from_decorator(from_array_to_matrix._array2matrix)
_remove_trivial_dims = _conv_to_from_decorator(from_array_to_matrix._remove_trivial_dims)
|
048c2542bed1282f1b64dde647c2020b94d8382f6e6ac61c57465cd5534a9a21 | from sympy.tensor.array.expressions import from_array_to_indexed
from sympy.utilities.decorator import deprecated
_conv_to_from_decorator = deprecated(
"module has been renamed by replacing 'conv_' with 'from_' in its name",
deprecated_since_version="1.11",
active_deprecations_target="deprecated-conv-array-expr-module-names",
)
convert_array_to_indexed = _conv_to_from_decorator(from_array_to_indexed.convert_array_to_indexed)
|
5d8caab7436c412ae0369124afcc5319e52147b65878d9635457d5105d4aeef0 | from sympy.tensor.array.expressions import from_matrix_to_array
from sympy.tensor.array.expressions.conv_array_to_indexed import _conv_to_from_decorator
convert_matrix_to_array = _conv_to_from_decorator(from_matrix_to_array.convert_matrix_to_array)
|
d770a4470454aac7a82c3bfc5d2010f8eec9c1bd391966479e4f7cc089683a79 | import collections.abc
import operator
from collections import defaultdict, Counter
from functools import reduce
import itertools
from itertools import accumulate
from typing import Optional, List, Dict as tDict, Tuple as tTuple
import typing
from sympy.core.numbers import Integer
from sympy.core.relational import Equality
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.core.basic import Basic
from sympy.core.containers import Tuple
from sympy.core.expr import Expr
from sympy.core.function import (Function, Lambda)
from sympy.core.mul import Mul
from sympy.core.singleton import S
from sympy.core.sorting import default_sort_key
from sympy.core.symbol import (Dummy, Symbol)
from sympy.matrices.common import MatrixCommon
from sympy.matrices.expressions.diagonal import diagonalize_vector
from sympy.matrices.expressions.matexpr import MatrixExpr
from sympy.matrices.expressions.special import ZeroMatrix
from sympy.tensor.array.arrayop import (permutedims, tensorcontraction, tensordiagonal, tensorproduct)
from sympy.tensor.array.dense_ndim_array import ImmutableDenseNDimArray
from sympy.tensor.array.ndim_array import NDimArray
from sympy.tensor.indexed import (Indexed, IndexedBase)
from sympy.matrices.expressions.matexpr import MatrixElement
from sympy.tensor.array.expressions.utils import _apply_recursively_over_nested_lists, _sort_contraction_indices, \
_get_mapping_from_subranks, _build_push_indices_up_func_transformation, _get_contraction_links, \
_build_push_indices_down_func_transformation
from sympy.combinatorics import Permutation
from sympy.combinatorics.permutations import _af_invert
from sympy.core.sympify import _sympify
class _ArrayExpr(Expr):
shape: tTuple[Expr, ...]
def __getitem__(self, item):
if not isinstance(item, collections.abc.Iterable):
item = (item,)
ArrayElement._check_shape(self, item)
return self._get(item)
def _get(self, item):
return _get_array_element_or_slice(self, item)
class ArraySymbol(_ArrayExpr):
"""
Symbol representing an array expression
"""
def __new__(cls, symbol, shape: typing.Iterable) -> "ArraySymbol":
if isinstance(symbol, str):
symbol = Symbol(symbol)
# symbol = _sympify(symbol)
shape = Tuple(*map(_sympify, shape))
obj = Expr.__new__(cls, symbol, shape)
return obj
@property
def name(self):
return self._args[0]
@property
def shape(self):
return self._args[1]
def as_explicit(self):
if not all(i.is_Integer for i in self.shape):
raise ValueError("cannot express explicit array with symbolic shape")
data = [self[i] for i in itertools.product(*[range(j) for j in self.shape])]
return ImmutableDenseNDimArray(data).reshape(*self.shape)
class ArrayElement(Expr):
"""
An element of an array.
"""
_diff_wrt = True
is_symbol = True
is_commutative = True
def __new__(cls, name, indices):
if isinstance(name, str):
name = Symbol(name)
name = _sympify(name)
if not isinstance(indices, collections.abc.Iterable):
indices = (indices,)
indices = _sympify(tuple(indices))
cls._check_shape(name, indices)
obj = Expr.__new__(cls, name, indices)
return obj
@classmethod
def _check_shape(cls, name, indices):
indices = tuple(indices)
if hasattr(name, "shape"):
index_error = IndexError("number of indices does not match shape of the array")
if len(indices) != len(name.shape):
raise index_error
if any((i >= s) == True for i, s in zip(indices, name.shape)):
raise ValueError("shape is out of bounds")
if any((i < 0) == True for i in indices):
raise ValueError("shape contains negative values")
@property
def name(self):
return self._args[0]
@property
def indices(self):
return self._args[1]
def _eval_derivative(self, s):
if not isinstance(s, ArrayElement):
return S.Zero
if s == self:
return S.One
if s.name != self.name:
return S.Zero
return Mul.fromiter(KroneckerDelta(i, j) for i, j in zip(self.indices, s.indices))
class ZeroArray(_ArrayExpr):
"""
Symbolic array of zeros. Equivalent to ``ZeroMatrix`` for matrices.
"""
def __new__(cls, *shape):
if len(shape) == 0:
return S.Zero
shape = map(_sympify, shape)
obj = Expr.__new__(cls, *shape)
return obj
@property
def shape(self):
return self._args
def as_explicit(self):
if not all(i.is_Integer for i in self.shape):
raise ValueError("Cannot return explicit form for symbolic shape.")
return ImmutableDenseNDimArray.zeros(*self.shape)
def _get(self, item):
return S.Zero
class OneArray(_ArrayExpr):
"""
Symbolic array of ones.
"""
def __new__(cls, *shape):
if len(shape) == 0:
return S.One
shape = map(_sympify, shape)
obj = Expr.__new__(cls, *shape)
return obj
@property
def shape(self):
return self._args
def as_explicit(self):
if not all(i.is_Integer for i in self.shape):
raise ValueError("Cannot return explicit form for symbolic shape.")
return ImmutableDenseNDimArray([S.One for i in range(reduce(operator.mul, self.shape))]).reshape(*self.shape)
def _get(self, item):
return S.One
class _CodegenArrayAbstract(Basic):
@property
def subranks(self):
"""
Returns the ranks of the objects in the uppermost tensor product inside
the current object. In case no tensor products are contained, return
the atomic ranks.
Examples
========
>>> from sympy.tensor.array import tensorproduct, tensorcontraction
>>> from sympy import MatrixSymbol
>>> M = MatrixSymbol("M", 3, 3)
>>> N = MatrixSymbol("N", 3, 3)
>>> P = MatrixSymbol("P", 3, 3)
Important: do not confuse the rank of the matrix with the rank of an array.
>>> tp = tensorproduct(M, N, P)
>>> tp.subranks
[2, 2, 2]
>>> co = tensorcontraction(tp, (1, 2), (3, 4))
>>> co.subranks
[2, 2, 2]
"""
return self._subranks[:]
def subrank(self):
"""
The sum of ``subranks``.
"""
return sum(self.subranks)
@property
def shape(self):
return self._shape
def doit(self, **hints):
deep = hints.get("deep", True)
if deep:
return self.func(*[arg.doit(**hints) for arg in self.args])._canonicalize()
else:
return self._canonicalize()
class ArrayTensorProduct(_CodegenArrayAbstract):
r"""
Class to represent the tensor product of array-like objects.
"""
def __new__(cls, *args, **kwargs):
args = [_sympify(arg) for arg in args]
canonicalize = kwargs.pop("canonicalize", False)
ranks = [get_rank(arg) for arg in args]
obj = Basic.__new__(cls, *args)
obj._subranks = ranks
shapes = [get_shape(i) for i in args]
if any(i is None for i in shapes):
obj._shape = None
else:
obj._shape = tuple(j for i in shapes for j in i)
if canonicalize:
return obj._canonicalize()
return obj
def _canonicalize(self):
args = self.args
args = self._flatten(args)
ranks = [get_rank(arg) for arg in args]
# Check if there are nested permutation and lift them up:
permutation_cycles = []
for i, arg in enumerate(args):
if not isinstance(arg, PermuteDims):
continue
permutation_cycles.extend([[k + sum(ranks[:i]) for k in j] for j in arg.permutation.cyclic_form])
args[i] = arg.expr
if permutation_cycles:
return _permute_dims(_array_tensor_product(*args), Permutation(sum(ranks)-1)*Permutation(permutation_cycles))
if len(args) == 1:
return args[0]
# If any object is a ZeroArray, return a ZeroArray:
if any(isinstance(arg, (ZeroArray, ZeroMatrix)) for arg in args):
shapes = reduce(operator.add, [get_shape(i) for i in args], ())
return ZeroArray(*shapes)
# If there are contraction objects inside, transform the whole
# expression into `ArrayContraction`:
contractions = {i: arg for i, arg in enumerate(args) if isinstance(arg, ArrayContraction)}
if contractions:
ranks = [_get_subrank(arg) if isinstance(arg, ArrayContraction) else get_rank(arg) for arg in args]
cumulative_ranks = list(accumulate([0] + ranks))[:-1]
tp = _array_tensor_product(*[arg.expr if isinstance(arg, ArrayContraction) else arg for arg in args])
contraction_indices = [tuple(cumulative_ranks[i] + k for k in j) for i, arg in contractions.items() for j in arg.contraction_indices]
return _array_contraction(tp, *contraction_indices)
diagonals = {i: arg for i, arg in enumerate(args) if isinstance(arg, ArrayDiagonal)}
if diagonals:
inverse_permutation = []
last_perm = []
ranks = [get_rank(arg) for arg in args]
cumulative_ranks = list(accumulate([0] + ranks))[:-1]
for i, arg in enumerate(args):
if isinstance(arg, ArrayDiagonal):
i1 = get_rank(arg) - len(arg.diagonal_indices)
i2 = len(arg.diagonal_indices)
inverse_permutation.extend([cumulative_ranks[i] + j for j in range(i1)])
last_perm.extend([cumulative_ranks[i] + j for j in range(i1, i1 + i2)])
else:
inverse_permutation.extend([cumulative_ranks[i] + j for j in range(get_rank(arg))])
inverse_permutation.extend(last_perm)
tp = _array_tensor_product(*[arg.expr if isinstance(arg, ArrayDiagonal) else arg for arg in args])
ranks2 = [_get_subrank(arg) if isinstance(arg, ArrayDiagonal) else get_rank(arg) for arg in args]
cumulative_ranks2 = list(accumulate([0] + ranks2))[:-1]
diagonal_indices = [tuple(cumulative_ranks2[i] + k for k in j) for i, arg in diagonals.items() for j in arg.diagonal_indices]
return _permute_dims(_array_diagonal(tp, *diagonal_indices), _af_invert(inverse_permutation))
return self.func(*args, canonicalize=False)
@classmethod
def _flatten(cls, args):
args = [i for arg in args for i in (arg.args if isinstance(arg, cls) else [arg])]
return args
def as_explicit(self):
return tensorproduct(*[arg.as_explicit() if hasattr(arg, "as_explicit") else arg for arg in self.args])
class ArrayAdd(_CodegenArrayAbstract):
r"""
Class for elementwise array additions.
"""
def __new__(cls, *args, **kwargs):
args = [_sympify(arg) for arg in args]
ranks = [get_rank(arg) for arg in args]
ranks = list(set(ranks))
if len(ranks) != 1:
raise ValueError("summing arrays of different ranks")
shapes = [arg.shape for arg in args]
if len({i for i in shapes if i is not None}) > 1:
raise ValueError("mismatching shapes in addition")
canonicalize = kwargs.pop("canonicalize", False)
obj = Basic.__new__(cls, *args)
obj._subranks = ranks
if any(i is None for i in shapes):
obj._shape = None
else:
obj._shape = shapes[0]
if canonicalize:
return obj._canonicalize()
return obj
def _canonicalize(self):
args = self.args
# Flatten:
args = self._flatten_args(args)
shapes = [get_shape(arg) for arg in args]
args = [arg for arg in args if not isinstance(arg, (ZeroArray, ZeroMatrix))]
if len(args) == 0:
if any(i for i in shapes if i is None):
raise NotImplementedError("cannot handle addition of ZeroMatrix/ZeroArray and undefined shape object")
return ZeroArray(*shapes[0])
elif len(args) == 1:
return args[0]
return self.func(*args, canonicalize=False)
@classmethod
def _flatten_args(cls, args):
new_args = []
for arg in args:
if isinstance(arg, ArrayAdd):
new_args.extend(arg.args)
else:
new_args.append(arg)
return new_args
def as_explicit(self):
return reduce(
operator.add,
[arg.as_explicit() if hasattr(arg, "as_explicit") else arg for arg in self.args])
class PermuteDims(_CodegenArrayAbstract):
r"""
Class to represent permutation of axes of arrays.
Examples
========
>>> from sympy.tensor.array import permutedims
>>> from sympy import MatrixSymbol
>>> M = MatrixSymbol("M", 3, 3)
>>> cg = permutedims(M, [1, 0])
The object ``cg`` represents the transposition of ``M``, as the permutation
``[1, 0]`` will act on its indices by switching them:
`M_{ij} \Rightarrow M_{ji}`
This is evident when transforming back to matrix form:
>>> from sympy.tensor.array.expressions.from_array_to_matrix import convert_array_to_matrix
>>> convert_array_to_matrix(cg)
M.T
>>> N = MatrixSymbol("N", 3, 2)
>>> cg = permutedims(N, [1, 0])
>>> cg.shape
(2, 3)
There are optional parameters that can be used as alternative to the permutation:
>>> from sympy.tensor.array.expressions import ArraySymbol, PermuteDims
>>> M = ArraySymbol("M", (1, 2, 3, 4, 5))
>>> expr = PermuteDims(M, index_order_old="ijklm", index_order_new="kijml")
>>> expr
PermuteDims(M, (0 2 1)(3 4))
>>> expr.shape
(3, 1, 2, 5, 4)
Permutations of tensor products are simplified in order to achieve a
standard form:
>>> from sympy.tensor.array import tensorproduct
>>> M = MatrixSymbol("M", 4, 5)
>>> tp = tensorproduct(M, N)
>>> tp.shape
(4, 5, 3, 2)
>>> perm1 = permutedims(tp, [2, 3, 1, 0])
The args ``(M, N)`` have been sorted and the permutation has been
simplified, the expression is equivalent:
>>> perm1.expr.args
(N, M)
>>> perm1.shape
(3, 2, 5, 4)
>>> perm1.permutation
(2 3)
The permutation in its array form has been simplified from
``[2, 3, 1, 0]`` to ``[0, 1, 3, 2]``, as the arguments of the tensor
product `M` and `N` have been switched:
>>> perm1.permutation.array_form
[0, 1, 3, 2]
We can nest a second permutation:
>>> perm2 = permutedims(perm1, [1, 0, 2, 3])
>>> perm2.shape
(2, 3, 5, 4)
>>> perm2.permutation.array_form
[1, 0, 3, 2]
"""
def __new__(cls, expr, permutation=None, index_order_old=None, index_order_new=None, **kwargs):
from sympy.combinatorics import Permutation
expr = _sympify(expr)
expr_rank = get_rank(expr)
permutation = cls._get_permutation_from_arguments(permutation, index_order_old, index_order_new, expr_rank)
permutation = Permutation(permutation)
permutation_size = permutation.size
if permutation_size != expr_rank:
raise ValueError("Permutation size must be the length of the shape of expr")
canonicalize = kwargs.pop("canonicalize", False)
obj = Basic.__new__(cls, expr, permutation)
obj._subranks = [get_rank(expr)]
shape = get_shape(expr)
if shape is None:
obj._shape = None
else:
obj._shape = tuple(shape[permutation(i)] for i in range(len(shape)))
if canonicalize:
return obj._canonicalize()
return obj
def _canonicalize(self):
expr = self.expr
permutation = self.permutation
if isinstance(expr, PermuteDims):
subexpr = expr.expr
subperm = expr.permutation
permutation = permutation * subperm
expr = subexpr
if isinstance(expr, ArrayContraction):
expr, permutation = self._PermuteDims_denestarg_ArrayContraction(expr, permutation)
if isinstance(expr, ArrayTensorProduct):
expr, permutation = self._PermuteDims_denestarg_ArrayTensorProduct(expr, permutation)
if isinstance(expr, (ZeroArray, ZeroMatrix)):
return ZeroArray(*[expr.shape[i] for i in permutation.array_form])
plist = permutation.array_form
if plist == sorted(plist):
return expr
return self.func(expr, permutation, canonicalize=False)
@property
def expr(self):
return self.args[0]
@property
def permutation(self):
return self.args[1]
@classmethod
def _PermuteDims_denestarg_ArrayTensorProduct(cls, expr, permutation):
# Get the permutation in its image-form:
perm_image_form = _af_invert(permutation.array_form)
args = list(expr.args)
# Starting index global position for every arg:
cumul = list(accumulate([0] + expr.subranks))
# Split `perm_image_form` into a list of list corresponding to the indices
# of every argument:
perm_image_form_in_components = [perm_image_form[cumul[i]:cumul[i+1]] for i in range(len(args))]
# Create an index, target-position-key array:
ps = [(i, sorted(comp)) for i, comp in enumerate(perm_image_form_in_components)]
# Sort the array according to the target-position-key:
# In this way, we define a canonical way to sort the arguments according
# to the permutation.
ps.sort(key=lambda x: x[1])
# Read the inverse-permutation (i.e. image-form) of the args:
perm_args_image_form = [i[0] for i in ps]
# Apply the args-permutation to the `args`:
args_sorted = [args[i] for i in perm_args_image_form]
# Apply the args-permutation to the array-form of the permutation of the axes (of `expr`):
perm_image_form_sorted_args = [perm_image_form_in_components[i] for i in perm_args_image_form]
new_permutation = Permutation(_af_invert([j for i in perm_image_form_sorted_args for j in i]))
return _array_tensor_product(*args_sorted), new_permutation
@classmethod
def _PermuteDims_denestarg_ArrayContraction(cls, expr, permutation):
if not isinstance(expr, ArrayContraction):
return expr, permutation
if not isinstance(expr.expr, ArrayTensorProduct):
return expr, permutation
args = expr.expr.args
subranks = [get_rank(arg) for arg in expr.expr.args]
contraction_indices = expr.contraction_indices
contraction_indices_flat = [j for i in contraction_indices for j in i]
cumul = list(accumulate([0] + subranks))
# Spread the permutation in its array form across the args in the corresponding
# tensor-product arguments with free indices:
permutation_array_blocks_up = []
image_form = _af_invert(permutation.array_form)
counter = 0
for i, e in enumerate(subranks):
current = []
for j in range(cumul[i], cumul[i+1]):
if j in contraction_indices_flat:
continue
current.append(image_form[counter])
counter += 1
permutation_array_blocks_up.append(current)
# Get the map of axis repositioning for every argument of tensor-product:
index_blocks = [[j for j in range(cumul[i], cumul[i+1])] for i, e in enumerate(expr.subranks)]
index_blocks_up = expr._push_indices_up(expr.contraction_indices, index_blocks)
inverse_permutation = permutation**(-1)
index_blocks_up_permuted = [[inverse_permutation(j) for j in i if j is not None] for i in index_blocks_up]
# Sorting key is a list of tuple, first element is the index of `args`, second element of
# the tuple is the sorting key to sort `args` of the tensor product:
sorting_keys = list(enumerate(index_blocks_up_permuted))
sorting_keys.sort(key=lambda x: x[1])
# Now we can get the permutation acting on the args in its image-form:
new_perm_image_form = [i[0] for i in sorting_keys]
# Apply the args-level permutation to various elements:
new_index_blocks = [index_blocks[i] for i in new_perm_image_form]
new_index_perm_array_form = _af_invert([j for i in new_index_blocks for j in i])
new_args = [args[i] for i in new_perm_image_form]
new_contraction_indices = [tuple(new_index_perm_array_form[j] for j in i) for i in contraction_indices]
new_expr = _array_contraction(_array_tensor_product(*new_args), *new_contraction_indices)
new_permutation = Permutation(_af_invert([j for i in [permutation_array_blocks_up[k] for k in new_perm_image_form] for j in i]))
return new_expr, new_permutation
@classmethod
def _check_permutation_mapping(cls, expr, permutation):
subranks = expr.subranks
index2arg = [i for i, arg in enumerate(expr.args) for j in range(expr.subranks[i])]
permuted_indices = [permutation(i) for i in range(expr.subrank())]
new_args = list(expr.args)
arg_candidate_index = index2arg[permuted_indices[0]]
current_indices = []
new_permutation = []
inserted_arg_cand_indices = set([])
for i, idx in enumerate(permuted_indices):
if index2arg[idx] != arg_candidate_index:
new_permutation.extend(current_indices)
current_indices = []
arg_candidate_index = index2arg[idx]
current_indices.append(idx)
arg_candidate_rank = subranks[arg_candidate_index]
if len(current_indices) == arg_candidate_rank:
new_permutation.extend(sorted(current_indices))
local_current_indices = [j - min(current_indices) for j in current_indices]
i1 = index2arg[i]
new_args[i1] = _permute_dims(new_args[i1], Permutation(local_current_indices))
inserted_arg_cand_indices.add(arg_candidate_index)
current_indices = []
new_permutation.extend(current_indices)
# TODO: swap args positions in order to simplify the expression:
# TODO: this should be in a function
args_positions = list(range(len(new_args)))
# Get possible shifts:
maps = {}
cumulative_subranks = [0] + list(accumulate(subranks))
for i in range(len(subranks)):
s = set([index2arg[new_permutation[j]] for j in range(cumulative_subranks[i], cumulative_subranks[i+1])])
if len(s) != 1:
continue
elem = next(iter(s))
if i != elem:
maps[i] = elem
# Find cycles in the map:
lines = []
current_line = []
while maps:
if len(current_line) == 0:
k, v = maps.popitem()
current_line.append(k)
else:
k = current_line[-1]
if k not in maps:
current_line = []
continue
v = maps.pop(k)
if v in current_line:
lines.append(current_line)
current_line = []
continue
current_line.append(v)
for line in lines:
for i, e in enumerate(line):
args_positions[line[(i + 1) % len(line)]] = e
# TODO: function in order to permute the args:
permutation_blocks = [[new_permutation[cumulative_subranks[i] + j] for j in range(e)] for i, e in enumerate(subranks)]
new_args = [new_args[i] for i in args_positions]
new_permutation_blocks = [permutation_blocks[i] for i in args_positions]
new_permutation2 = [j for i in new_permutation_blocks for j in i]
return _array_tensor_product(*new_args), Permutation(new_permutation2) # **(-1)
@classmethod
def _check_if_there_are_closed_cycles(cls, expr, permutation):
args = list(expr.args)
subranks = expr.subranks
cyclic_form = permutation.cyclic_form
cumulative_subranks = [0] + list(accumulate(subranks))
cyclic_min = [min(i) for i in cyclic_form]
cyclic_max = [max(i) for i in cyclic_form]
cyclic_keep = []
for i, cycle in enumerate(cyclic_form):
flag = True
for j in range(len(cumulative_subranks) - 1):
if cyclic_min[i] >= cumulative_subranks[j] and cyclic_max[i] < cumulative_subranks[j+1]:
# Found a sinkable cycle.
args[j] = _permute_dims(args[j], Permutation([[k - cumulative_subranks[j] for k in cyclic_form[i]]]))
flag = False
break
if flag:
cyclic_keep.append(cyclic_form[i])
return _array_tensor_product(*args), Permutation(cyclic_keep, size=permutation.size)
def nest_permutation(self):
r"""
DEPRECATED.
"""
ret = self._nest_permutation(self.expr, self.permutation)
if ret is None:
return self
return ret
@classmethod
def _nest_permutation(cls, expr, permutation):
if isinstance(expr, ArrayTensorProduct):
return _permute_dims(*cls._check_if_there_are_closed_cycles(expr, permutation))
elif isinstance(expr, ArrayContraction):
# Invert tree hierarchy: put the contraction above.
cycles = permutation.cyclic_form
newcycles = ArrayContraction._convert_outer_indices_to_inner_indices(expr, *cycles)
newpermutation = Permutation(newcycles)
new_contr_indices = [tuple(newpermutation(j) for j in i) for i in expr.contraction_indices]
return _array_contraction(PermuteDims(expr.expr, newpermutation), *new_contr_indices)
elif isinstance(expr, ArrayAdd):
return _array_add(*[PermuteDims(arg, permutation) for arg in expr.args])
return None
def as_explicit(self):
expr = self.expr
if hasattr(expr, "as_explicit"):
expr = expr.as_explicit()
return permutedims(expr, self.permutation)
@classmethod
def _get_permutation_from_arguments(cls, permutation, index_order_old, index_order_new, dim):
if permutation is None:
if index_order_new is None or index_order_old is None:
raise ValueError("Permutation not defined")
return PermuteDims._get_permutation_from_index_orders(index_order_old, index_order_new, dim)
else:
if index_order_new is not None:
raise ValueError("index_order_new cannot be defined with permutation")
if index_order_old is not None:
raise ValueError("index_order_old cannot be defined with permutation")
return permutation
@classmethod
def _get_permutation_from_index_orders(cls, index_order_old, index_order_new, dim):
if len(set(index_order_new)) != dim:
raise ValueError("wrong number of indices in index_order_new")
if len(set(index_order_old)) != dim:
raise ValueError("wrong number of indices in index_order_old")
if len(set.symmetric_difference(set(index_order_new), set(index_order_old))) > 0:
raise ValueError("index_order_new and index_order_old must have the same indices")
permutation = [index_order_old.index(i) for i in index_order_new]
return permutation
class ArrayDiagonal(_CodegenArrayAbstract):
r"""
Class to represent the diagonal operator.
Explanation
===========
In a 2-dimensional array it returns the diagonal, this looks like the
operation:
`A_{ij} \rightarrow A_{ii}`
The diagonal over axes 1 and 2 (the second and third) of the tensor product
of two 2-dimensional arrays `A \otimes B` is
`\Big[ A_{ab} B_{cd} \Big]_{abcd} \rightarrow \Big[ A_{ai} B_{id} \Big]_{adi}`
In this last example the array expression has been reduced from
4-dimensional to 3-dimensional. Notice that no contraction has occurred,
rather there is a new index `i` for the diagonal, contraction would have
reduced the array to 2 dimensions.
Notice that the diagonalized out dimensions are added as new dimensions at
the end of the indices.
"""
def __new__(cls, expr, *diagonal_indices, **kwargs):
expr = _sympify(expr)
diagonal_indices = [Tuple(*sorted(i)) for i in diagonal_indices]
canonicalize = kwargs.get("canonicalize", False)
shape = get_shape(expr)
if shape is not None:
cls._validate(expr, *diagonal_indices, **kwargs)
# Get new shape:
positions, shape = cls._get_positions_shape(shape, diagonal_indices)
else:
positions = None
if len(diagonal_indices) == 0:
return expr
obj = Basic.__new__(cls, expr, *diagonal_indices)
obj._positions = positions
obj._subranks = _get_subranks(expr)
obj._shape = shape
if canonicalize:
return obj._canonicalize()
return obj
def _canonicalize(self):
expr = self.expr
diagonal_indices = self.diagonal_indices
trivial_diags = [i for i in diagonal_indices if len(i) == 1]
if len(trivial_diags) > 0:
trivial_pos = {e[0]: i for i, e in enumerate(diagonal_indices) if len(e) == 1}
diag_pos = {e: i for i, e in enumerate(diagonal_indices) if len(e) > 1}
diagonal_indices_short = [i for i in diagonal_indices if len(i) > 1]
rank1 = get_rank(self)
rank2 = len(diagonal_indices)
rank3 = rank1 - rank2
inv_permutation = []
counter1: int = 0
indices_down = ArrayDiagonal._push_indices_down(diagonal_indices_short, list(range(rank1)), get_rank(expr))
for i in indices_down:
if i in trivial_pos:
inv_permutation.append(rank3 + trivial_pos[i])
elif isinstance(i, (Integer, int)):
inv_permutation.append(counter1)
counter1 += 1
else:
inv_permutation.append(rank3 + diag_pos[i])
permutation = _af_invert(inv_permutation)
if len(diagonal_indices_short) > 0:
return _permute_dims(_array_diagonal(expr, *diagonal_indices_short), permutation)
else:
return _permute_dims(expr, permutation)
if isinstance(expr, ArrayAdd):
return self._ArrayDiagonal_denest_ArrayAdd(expr, *diagonal_indices)
if isinstance(expr, ArrayDiagonal):
return self._ArrayDiagonal_denest_ArrayDiagonal(expr, *diagonal_indices)
if isinstance(expr, PermuteDims):
return self._ArrayDiagonal_denest_PermuteDims(expr, *diagonal_indices)
if isinstance(expr, (ZeroArray, ZeroMatrix)):
positions, shape = self._get_positions_shape(expr.shape, diagonal_indices)
return ZeroArray(*shape)
return self.func(expr, *diagonal_indices, canonicalize=False)
@staticmethod
def _validate(expr, *diagonal_indices, **kwargs):
# Check that no diagonalization happens on indices with mismatched
# dimensions:
shape = get_shape(expr)
for i in diagonal_indices:
if any(j >= len(shape) for j in i):
raise ValueError("index is larger than expression shape")
if len({shape[j] for j in i}) != 1:
raise ValueError("diagonalizing indices of different dimensions")
if not kwargs.get("allow_trivial_diags", False) and len(i) <= 1:
raise ValueError("need at least two axes to diagonalize")
if len(set(i)) != len(i):
raise ValueError("axis index cannot be repeated")
@staticmethod
def _remove_trivial_dimensions(shape, *diagonal_indices):
return [tuple(j for j in i) for i in diagonal_indices if shape[i[0]] != 1]
@property
def expr(self):
return self.args[0]
@property
def diagonal_indices(self):
return self.args[1:]
@staticmethod
def _flatten(expr, *outer_diagonal_indices):
inner_diagonal_indices = expr.diagonal_indices
all_inner = [j for i in inner_diagonal_indices for j in i]
all_inner.sort()
# TODO: add API for total rank and cumulative rank:
total_rank = _get_subrank(expr)
inner_rank = len(all_inner)
outer_rank = total_rank - inner_rank
shifts = [0 for i in range(outer_rank)]
counter = 0
pointer = 0
for i in range(outer_rank):
while pointer < inner_rank and counter >= all_inner[pointer]:
counter += 1
pointer += 1
shifts[i] += pointer
counter += 1
outer_diagonal_indices = tuple(tuple(shifts[j] + j for j in i) for i in outer_diagonal_indices)
diagonal_indices = inner_diagonal_indices + outer_diagonal_indices
return _array_diagonal(expr.expr, *diagonal_indices)
@classmethod
def _ArrayDiagonal_denest_ArrayAdd(cls, expr, *diagonal_indices):
return _array_add(*[_array_diagonal(arg, *diagonal_indices) for arg in expr.args])
@classmethod
def _ArrayDiagonal_denest_ArrayDiagonal(cls, expr, *diagonal_indices):
return cls._flatten(expr, *diagonal_indices)
@classmethod
def _ArrayDiagonal_denest_PermuteDims(cls, expr: PermuteDims, *diagonal_indices):
back_diagonal_indices = [[expr.permutation(j) for j in i] for i in diagonal_indices]
nondiag = [i for i in range(get_rank(expr)) if not any(i in j for j in diagonal_indices)]
back_nondiag = [expr.permutation(i) for i in nondiag]
remap = {e: i for i, e in enumerate(sorted(back_nondiag))}
new_permutation1 = [remap[i] for i in back_nondiag]
shift = len(new_permutation1)
diag_block_perm = [i + shift for i in range(len(back_diagonal_indices))]
new_permutation = new_permutation1 + diag_block_perm
return _permute_dims(
_array_diagonal(
expr.expr,
*back_diagonal_indices
),
new_permutation
)
def _push_indices_down_nonstatic(self, indices):
transform = lambda x: self._positions[x] if x < len(self._positions) else None
return _apply_recursively_over_nested_lists(transform, indices)
def _push_indices_up_nonstatic(self, indices):
def transform(x):
for i, e in enumerate(self._positions):
if (isinstance(e, int) and x == e) or (isinstance(e, tuple) and x in e):
return i
return _apply_recursively_over_nested_lists(transform, indices)
@classmethod
def _push_indices_down(cls, diagonal_indices, indices, rank):
positions, shape = cls._get_positions_shape(range(rank), diagonal_indices)
transform = lambda x: positions[x] if x < len(positions) else None
return _apply_recursively_over_nested_lists(transform, indices)
@classmethod
def _push_indices_up(cls, diagonal_indices, indices, rank):
positions, shape = cls._get_positions_shape(range(rank), diagonal_indices)
def transform(x):
for i, e in enumerate(positions):
if (isinstance(e, int) and x == e) or (isinstance(e, (tuple, Tuple)) and (x in e)):
return i
return _apply_recursively_over_nested_lists(transform, indices)
@classmethod
def _get_positions_shape(cls, shape, diagonal_indices):
data1 = tuple((i, shp) for i, shp in enumerate(shape) if not any(i in j for j in diagonal_indices))
pos1, shp1 = zip(*data1) if data1 else ((), ())
data2 = tuple((i, shape[i[0]]) for i in diagonal_indices)
pos2, shp2 = zip(*data2) if data2 else ((), ())
positions = pos1 + pos2
shape = shp1 + shp2
return positions, shape
def as_explicit(self):
expr = self.expr
if hasattr(expr, "as_explicit"):
expr = expr.as_explicit()
return tensordiagonal(expr, *self.diagonal_indices)
class ArrayElementwiseApplyFunc(_CodegenArrayAbstract):
def __new__(cls, function, element):
if not isinstance(function, Lambda):
d = Dummy('d')
function = Lambda(d, function(d))
obj = _CodegenArrayAbstract.__new__(cls, function, element)
obj._subranks = _get_subranks(element)
return obj
@property
def function(self):
return self.args[0]
@property
def expr(self):
return self.args[1]
@property
def shape(self):
return self.expr.shape
def _get_function_fdiff(self):
d = Dummy("d")
function = self.function(d)
fdiff = function.diff(d)
if isinstance(fdiff, Function):
fdiff = type(fdiff)
else:
fdiff = Lambda(d, fdiff)
return fdiff
def as_explicit(self):
expr = self.expr
if hasattr(expr, "as_explicit"):
expr = expr.as_explicit()
return expr.applyfunc(self.function)
class ArrayContraction(_CodegenArrayAbstract):
r"""
This class is meant to represent contractions of arrays in a form easily
processable by the code printers.
"""
def __new__(cls, expr, *contraction_indices, **kwargs):
contraction_indices = _sort_contraction_indices(contraction_indices)
expr = _sympify(expr)
canonicalize = kwargs.get("canonicalize", False)
obj = Basic.__new__(cls, expr, *contraction_indices)
obj._subranks = _get_subranks(expr)
obj._mapping = _get_mapping_from_subranks(obj._subranks)
free_indices_to_position = {i: i for i in range(sum(obj._subranks)) if all(i not in cind for cind in contraction_indices)}
obj._free_indices_to_position = free_indices_to_position
shape = get_shape(expr)
cls._validate(expr, *contraction_indices)
if shape:
shape = tuple(shp for i, shp in enumerate(shape) if not any(i in j for j in contraction_indices))
obj._shape = shape
if canonicalize:
return obj._canonicalize()
return obj
def _canonicalize(self):
expr = self.expr
contraction_indices = self.contraction_indices
if len(contraction_indices) == 0:
return expr
if isinstance(expr, ArrayContraction):
return self._ArrayContraction_denest_ArrayContraction(expr, *contraction_indices)
if isinstance(expr, (ZeroArray, ZeroMatrix)):
return self._ArrayContraction_denest_ZeroArray(expr, *contraction_indices)
if isinstance(expr, PermuteDims):
return self._ArrayContraction_denest_PermuteDims(expr, *contraction_indices)
if isinstance(expr, ArrayTensorProduct):
expr, contraction_indices = self._sort_fully_contracted_args(expr, contraction_indices)
expr, contraction_indices = self._lower_contraction_to_addends(expr, contraction_indices)
if len(contraction_indices) == 0:
return expr
if isinstance(expr, ArrayDiagonal):
return self._ArrayContraction_denest_ArrayDiagonal(expr, *contraction_indices)
if isinstance(expr, ArrayAdd):
return self._ArrayContraction_denest_ArrayAdd(expr, *contraction_indices)
# Check single index contractions on 1-dimensional axes:
contraction_indices = [i for i in contraction_indices if len(i) > 1 or get_shape(expr)[i[0]] != 1]
if len(contraction_indices) == 0:
return expr
return self.func(expr, *contraction_indices, canonicalize=False)
def __mul__(self, other):
if other == 1:
return self
else:
raise NotImplementedError("Product of N-dim arrays is not uniquely defined. Use another method.")
def __rmul__(self, other):
if other == 1:
return self
else:
raise NotImplementedError("Product of N-dim arrays is not uniquely defined. Use another method.")
@staticmethod
def _validate(expr, *contraction_indices):
shape = get_shape(expr)
if shape is None:
return
# Check that no contraction happens when the shape is mismatched:
for i in contraction_indices:
if len({shape[j] for j in i if shape[j] != -1}) != 1:
raise ValueError("contracting indices of different dimensions")
@classmethod
def _push_indices_down(cls, contraction_indices, indices):
flattened_contraction_indices = [j for i in contraction_indices for j in i]
flattened_contraction_indices.sort()
transform = _build_push_indices_down_func_transformation(flattened_contraction_indices)
return _apply_recursively_over_nested_lists(transform, indices)
@classmethod
def _push_indices_up(cls, contraction_indices, indices):
flattened_contraction_indices = [j for i in contraction_indices for j in i]
flattened_contraction_indices.sort()
transform = _build_push_indices_up_func_transformation(flattened_contraction_indices)
return _apply_recursively_over_nested_lists(transform, indices)
@classmethod
def _lower_contraction_to_addends(cls, expr, contraction_indices):
if isinstance(expr, ArrayAdd):
raise NotImplementedError()
if not isinstance(expr, ArrayTensorProduct):
return expr, contraction_indices
subranks = expr.subranks
cumranks = list(accumulate([0] + subranks))
contraction_indices_remaining = []
contraction_indices_args = [[] for i in expr.args]
backshift = set([])
for i, contraction_group in enumerate(contraction_indices):
for j in range(len(expr.args)):
if not isinstance(expr.args[j], ArrayAdd):
continue
if all(cumranks[j] <= k < cumranks[j+1] for k in contraction_group):
contraction_indices_args[j].append([k - cumranks[j] for k in contraction_group])
backshift.update(contraction_group)
break
else:
contraction_indices_remaining.append(contraction_group)
if len(contraction_indices_remaining) == len(contraction_indices):
return expr, contraction_indices
total_rank = get_rank(expr)
shifts = list(accumulate([1 if i in backshift else 0 for i in range(total_rank)]))
contraction_indices_remaining = [Tuple.fromiter(j - shifts[j] for j in i) for i in contraction_indices_remaining]
ret = _array_tensor_product(*[
_array_contraction(arg, *contr) for arg, contr in zip(expr.args, contraction_indices_args)
])
return ret, contraction_indices_remaining
def split_multiple_contractions(self):
"""
Recognize multiple contractions and attempt at rewriting them as paired-contractions.
This allows some contractions involving more than two indices to be
rewritten as multiple contractions involving two indices, thus allowing
the expression to be rewritten as a matrix multiplication line.
Examples:
* `A_ij b_j0 C_jk` ===> `A*DiagMatrix(b)*C`
Care for:
- matrix being diagonalized (i.e. `A_ii`)
- vectors being diagonalized (i.e. `a_i0`)
Multiple contractions can be split into matrix multiplications if
not more than two arguments are non-diagonals or non-vectors.
Vectors get diagonalized while diagonal matrices remain diagonal.
The non-diagonal matrices can be at the beginning or at the end
of the final matrix multiplication line.
"""
editor = _EditArrayContraction(self)
contraction_indices = self.contraction_indices
onearray_insert = []
for indl, links in enumerate(contraction_indices):
if len(links) <= 2:
continue
# Check multiple contractions:
#
# Examples:
#
# * `A_ij b_j0 C_jk` ===> `A*DiagMatrix(b)*C \otimes OneArray(1)` with permutation (1 2)
#
# Care for:
# - matrix being diagonalized (i.e. `A_ii`)
# - vectors being diagonalized (i.e. `a_i0`)
# Multiple contractions can be split into matrix multiplications if
# not more than three arguments are non-diagonals or non-vectors.
#
# Vectors get diagonalized while diagonal matrices remain diagonal.
# The non-diagonal matrices can be at the beginning or at the end
# of the final matrix multiplication line.
positions = editor.get_mapping_for_index(indl)
# Also consider the case of diagonal matrices being contracted:
current_dimension = self.expr.shape[links[0]]
not_vectors: tTuple[_ArgE, int] = []
vectors: tTuple[_ArgE, int] = []
for arg_ind, rel_ind in positions:
arg = editor.args_with_ind[arg_ind]
mat = arg.element
abs_arg_start, abs_arg_end = editor.get_absolute_range(arg)
other_arg_pos = 1-rel_ind
other_arg_abs = abs_arg_start + other_arg_pos
if ((1 not in mat.shape) or
((current_dimension == 1) is True and mat.shape != (1, 1)) or
any(other_arg_abs in l for li, l in enumerate(contraction_indices) if li != indl)
):
not_vectors.append((arg, rel_ind))
else:
vectors.append((arg, rel_ind))
if len(not_vectors) > 2:
# If more than two arguments in the multiple contraction are
# non-vectors and non-diagonal matrices, we cannot find a way
# to split this contraction into a matrix multiplication line:
continue
# Three cases to handle:
# - zero non-vectors
# - one non-vector
# - two non-vectors
for v, rel_ind in vectors:
v.element = diagonalize_vector(v.element)
vectors_to_loop = not_vectors[:1] + vectors + not_vectors[1:]
first_not_vector, rel_ind = vectors_to_loop[0]
new_index = first_not_vector.indices[rel_ind]
for v, rel_ind in vectors_to_loop[1:-1]:
v.indices[rel_ind] = new_index
new_index = editor.get_new_contraction_index()
assert v.indices.index(None) == 1 - rel_ind
v.indices[v.indices.index(None)] = new_index
onearray_insert.append(v)
last_vec, rel_ind = vectors_to_loop[-1]
last_vec.indices[rel_ind] = new_index
for v in onearray_insert:
editor.insert_after(v, _ArgE(OneArray(1), [None]))
return editor.to_array_contraction()
def flatten_contraction_of_diagonal(self):
if not isinstance(self.expr, ArrayDiagonal):
return self
contraction_down = self.expr._push_indices_down(self.expr.diagonal_indices, self.contraction_indices)
new_contraction_indices = []
diagonal_indices = self.expr.diagonal_indices[:]
for i in contraction_down:
contraction_group = list(i)
for j in i:
diagonal_with = [k for k in diagonal_indices if j in k]
contraction_group.extend([l for k in diagonal_with for l in k])
diagonal_indices = [k for k in diagonal_indices if k not in diagonal_with]
new_contraction_indices.append(sorted(set(contraction_group)))
new_contraction_indices = ArrayDiagonal._push_indices_up(diagonal_indices, new_contraction_indices)
return _array_contraction(
_array_diagonal(
self.expr.expr,
*diagonal_indices
),
*new_contraction_indices
)
@staticmethod
def _get_free_indices_to_position_map(free_indices, contraction_indices):
free_indices_to_position = {}
flattened_contraction_indices = [j for i in contraction_indices for j in i]
counter = 0
for ind in free_indices:
while counter in flattened_contraction_indices:
counter += 1
free_indices_to_position[ind] = counter
counter += 1
return free_indices_to_position
@staticmethod
def _get_index_shifts(expr):
"""
Get the mapping of indices at the positions before the contraction
occurs.
Examples
========
>>> from sympy.tensor.array import tensorproduct, tensorcontraction
>>> from sympy import MatrixSymbol
>>> M = MatrixSymbol("M", 3, 3)
>>> N = MatrixSymbol("N", 3, 3)
>>> cg = tensorcontraction(tensorproduct(M, N), [1, 2])
>>> cg._get_index_shifts(cg)
[0, 2]
Indeed, ``cg`` after the contraction has two dimensions, 0 and 1. They
need to be shifted by 0 and 2 to get the corresponding positions before
the contraction (that is, 0 and 3).
"""
inner_contraction_indices = expr.contraction_indices
all_inner = [j for i in inner_contraction_indices for j in i]
all_inner.sort()
# TODO: add API for total rank and cumulative rank:
total_rank = _get_subrank(expr)
inner_rank = len(all_inner)
outer_rank = total_rank - inner_rank
shifts = [0 for i in range(outer_rank)]
counter = 0
pointer = 0
for i in range(outer_rank):
while pointer < inner_rank and counter >= all_inner[pointer]:
counter += 1
pointer += 1
shifts[i] += pointer
counter += 1
return shifts
@staticmethod
def _convert_outer_indices_to_inner_indices(expr, *outer_contraction_indices):
shifts = ArrayContraction._get_index_shifts(expr)
outer_contraction_indices = tuple(tuple(shifts[j] + j for j in i) for i in outer_contraction_indices)
return outer_contraction_indices
@staticmethod
def _flatten(expr, *outer_contraction_indices):
inner_contraction_indices = expr.contraction_indices
outer_contraction_indices = ArrayContraction._convert_outer_indices_to_inner_indices(expr, *outer_contraction_indices)
contraction_indices = inner_contraction_indices + outer_contraction_indices
return _array_contraction(expr.expr, *contraction_indices)
@classmethod
def _ArrayContraction_denest_ArrayContraction(cls, expr, *contraction_indices):
return cls._flatten(expr, *contraction_indices)
@classmethod
def _ArrayContraction_denest_ZeroArray(cls, expr, *contraction_indices):
contraction_indices_flat = [j for i in contraction_indices for j in i]
shape = [e for i, e in enumerate(expr.shape) if i not in contraction_indices_flat]
return ZeroArray(*shape)
@classmethod
def _ArrayContraction_denest_ArrayAdd(cls, expr, *contraction_indices):
return _array_add(*[_array_contraction(i, *contraction_indices) for i in expr.args])
@classmethod
def _ArrayContraction_denest_PermuteDims(cls, expr, *contraction_indices):
permutation = expr.permutation
plist = permutation.array_form
new_contraction_indices = [tuple(permutation(j) for j in i) for i in contraction_indices]
new_plist = [i for i in plist if not any(i in j for j in new_contraction_indices)]
new_plist = cls._push_indices_up(new_contraction_indices, new_plist)
return _permute_dims(
_array_contraction(expr.expr, *new_contraction_indices),
Permutation(new_plist)
)
@classmethod
def _ArrayContraction_denest_ArrayDiagonal(cls, expr: 'ArrayDiagonal', *contraction_indices):
diagonal_indices = list(expr.diagonal_indices)
down_contraction_indices = expr._push_indices_down(expr.diagonal_indices, contraction_indices, get_rank(expr.expr))
# Flatten diagonally contracted indices:
down_contraction_indices = [[k for j in i for k in (j if isinstance(j, (tuple, Tuple)) else [j])] for i in down_contraction_indices]
new_contraction_indices = []
for contr_indgrp in down_contraction_indices:
ind = contr_indgrp[:]
for j, diag_indgrp in enumerate(diagonal_indices):
if diag_indgrp is None:
continue
if any(i in diag_indgrp for i in contr_indgrp):
ind.extend(diag_indgrp)
diagonal_indices[j] = None
new_contraction_indices.append(sorted(set(ind)))
new_diagonal_indices_down = [i for i in diagonal_indices if i is not None]
new_diagonal_indices = ArrayContraction._push_indices_up(new_contraction_indices, new_diagonal_indices_down)
return _array_diagonal(
_array_contraction(expr.expr, *new_contraction_indices),
*new_diagonal_indices
)
@classmethod
def _sort_fully_contracted_args(cls, expr, contraction_indices):
if expr.shape is None:
return expr, contraction_indices
cumul = list(accumulate([0] + expr.subranks))
index_blocks = [list(range(cumul[i], cumul[i+1])) for i in range(len(expr.args))]
contraction_indices_flat = {j for i in contraction_indices for j in i}
fully_contracted = [all(j in contraction_indices_flat for j in range(cumul[i], cumul[i+1])) for i, arg in enumerate(expr.args)]
new_pos = sorted(range(len(expr.args)), key=lambda x: (0, default_sort_key(expr.args[x])) if fully_contracted[x] else (1,))
new_args = [expr.args[i] for i in new_pos]
new_index_blocks_flat = [j for i in new_pos for j in index_blocks[i]]
index_permutation_array_form = _af_invert(new_index_blocks_flat)
new_contraction_indices = [tuple(index_permutation_array_form[j] for j in i) for i in contraction_indices]
new_contraction_indices = _sort_contraction_indices(new_contraction_indices)
return _array_tensor_product(*new_args), new_contraction_indices
def _get_contraction_tuples(self):
r"""
Return tuples containing the argument index and position within the
argument of the index position.
Examples
========
>>> from sympy import MatrixSymbol
>>> from sympy.abc import N
>>> from sympy.tensor.array import tensorproduct, tensorcontraction
>>> A = MatrixSymbol("A", N, N)
>>> B = MatrixSymbol("B", N, N)
>>> cg = tensorcontraction(tensorproduct(A, B), (1, 2))
>>> cg._get_contraction_tuples()
[[(0, 1), (1, 0)]]
Notes
=====
Here the contraction pair `(1, 2)` meaning that the 2nd and 3rd indices
of the tensor product `A\otimes B` are contracted, has been transformed
into `(0, 1)` and `(1, 0)`, identifying the same indices in a different
notation. `(0, 1)` is the second index (1) of the first argument (i.e.
0 or `A`). `(1, 0)` is the first index (i.e. 0) of the second
argument (i.e. 1 or `B`).
"""
mapping = self._mapping
return [[mapping[j] for j in i] for i in self.contraction_indices]
@staticmethod
def _contraction_tuples_to_contraction_indices(expr, contraction_tuples):
# TODO: check that `expr` has `.subranks`:
ranks = expr.subranks
cumulative_ranks = [0] + list(accumulate(ranks))
return [tuple(cumulative_ranks[j]+k for j, k in i) for i in contraction_tuples]
@property
def free_indices(self):
return self._free_indices[:]
@property
def free_indices_to_position(self):
return dict(self._free_indices_to_position)
@property
def expr(self):
return self.args[0]
@property
def contraction_indices(self):
return self.args[1:]
def _contraction_indices_to_components(self):
expr = self.expr
if not isinstance(expr, ArrayTensorProduct):
raise NotImplementedError("only for contractions of tensor products")
ranks = expr.subranks
mapping = {}
counter = 0
for i, rank in enumerate(ranks):
for j in range(rank):
mapping[counter] = (i, j)
counter += 1
return mapping
def sort_args_by_name(self):
"""
Sort arguments in the tensor product so that their order is lexicographical.
Examples
========
>>> from sympy.tensor.array.expressions.from_matrix_to_array import convert_matrix_to_array
>>> from sympy import MatrixSymbol
>>> from sympy.abc import N
>>> A = MatrixSymbol("A", N, N)
>>> B = MatrixSymbol("B", N, N)
>>> C = MatrixSymbol("C", N, N)
>>> D = MatrixSymbol("D", N, N)
>>> cg = convert_matrix_to_array(C*D*A*B)
>>> cg
ArrayContraction(ArrayTensorProduct(A, D, C, B), (0, 3), (1, 6), (2, 5))
>>> cg.sort_args_by_name()
ArrayContraction(ArrayTensorProduct(A, D, B, C), (0, 3), (1, 4), (2, 7))
"""
expr = self.expr
if not isinstance(expr, ArrayTensorProduct):
return self
args = expr.args
sorted_data = sorted(enumerate(args), key=lambda x: default_sort_key(x[1]))
pos_sorted, args_sorted = zip(*sorted_data)
reordering_map = {i: pos_sorted.index(i) for i, arg in enumerate(args)}
contraction_tuples = self._get_contraction_tuples()
contraction_tuples = [[(reordering_map[j], k) for j, k in i] for i in contraction_tuples]
c_tp = _array_tensor_product(*args_sorted)
new_contr_indices = self._contraction_tuples_to_contraction_indices(
c_tp,
contraction_tuples
)
return _array_contraction(c_tp, *new_contr_indices)
def _get_contraction_links(self):
r"""
Returns a dictionary of links between arguments in the tensor product
being contracted.
See the example for an explanation of the values.
Examples
========
>>> from sympy import MatrixSymbol
>>> from sympy.abc import N
>>> from sympy.tensor.array.expressions.from_matrix_to_array import convert_matrix_to_array
>>> A = MatrixSymbol("A", N, N)
>>> B = MatrixSymbol("B", N, N)
>>> C = MatrixSymbol("C", N, N)
>>> D = MatrixSymbol("D", N, N)
Matrix multiplications are pairwise contractions between neighboring
matrices:
`A_{ij} B_{jk} C_{kl} D_{lm}`
>>> cg = convert_matrix_to_array(A*B*C*D)
>>> cg
ArrayContraction(ArrayTensorProduct(B, C, A, D), (0, 5), (1, 2), (3, 6))
>>> cg._get_contraction_links()
{0: {0: (2, 1), 1: (1, 0)}, 1: {0: (0, 1), 1: (3, 0)}, 2: {1: (0, 0)}, 3: {0: (1, 1)}}
This dictionary is interpreted as follows: argument in position 0 (i.e.
matrix `A`) has its second index (i.e. 1) contracted to `(1, 0)`, that
is argument in position 1 (matrix `B`) on the first index slot of `B`,
this is the contraction provided by the index `j` from `A`.
The argument in position 1 (that is, matrix `B`) has two contractions,
the ones provided by the indices `j` and `k`, respectively the first
and second indices (0 and 1 in the sub-dict). The link `(0, 1)` and
`(2, 0)` respectively. `(0, 1)` is the index slot 1 (the 2nd) of
argument in position 0 (that is, `A_{\ldot j}`), and so on.
"""
args, dlinks = _get_contraction_links([self], self.subranks, *self.contraction_indices)
return dlinks
def as_explicit(self):
expr = self.expr
if hasattr(expr, "as_explicit"):
expr = expr.as_explicit()
return tensorcontraction(expr, *self.contraction_indices)
class Reshape(_CodegenArrayAbstract):
"""
Reshape the dimensions of an array expression.
Examples
========
>>> from sympy.tensor.array.expressions import ArraySymbol, Reshape
>>> A = ArraySymbol("A", (6,))
>>> A.shape
(6,)
>>> Reshape(A, (3, 2)).shape
(3, 2)
Check the component-explicit forms:
>>> A.as_explicit()
[A[0], A[1], A[2], A[3], A[4], A[5]]
>>> Reshape(A, (3, 2)).as_explicit()
[[A[0], A[1]], [A[2], A[3]], [A[4], A[5]]]
"""
def __new__(cls, expr, shape):
expr = _sympify(expr)
if not isinstance(shape, Tuple):
shape = Tuple(*shape)
if Equality(Mul.fromiter(expr.shape), Mul.fromiter(shape)) == False:
raise ValueError("shape mismatch")
obj = Expr.__new__(cls, expr, shape)
obj._shape = tuple(shape)
obj._expr = expr
return obj
@property
def shape(self):
return self._shape
@property
def expr(self):
return self._expr
def doit(self, *args, **kwargs):
if kwargs.get("deep", True):
expr = self.expr.doit(*args, **kwargs)
else:
expr = self.expr
if isinstance(expr, (MatrixCommon, NDimArray)):
return expr.reshape(*self.shape)
return Reshape(expr, self.shape)
def as_explicit(self):
ee = self.expr
if hasattr(ee, "as_explicit"):
ee = ee.as_explicit()
if isinstance(ee, MatrixCommon):
from sympy import Array
ee = Array(ee)
elif isinstance(ee, MatrixExpr):
return self
return ee.reshape(*self.shape)
class _ArgE:
"""
The ``_ArgE`` object contains references to the array expression
(``.element``) and a list containing the information about index
contractions (``.indices``).
Index contractions are numbered and contracted indices show the number of
the contraction. Uncontracted indices have ``None`` value.
For example:
``_ArgE(M, [None, 3])``
This object means that expression ``M`` is part of an array contraction
and has two indices, the first is not contracted (value ``None``),
the second index is contracted to the 4th (i.e. number ``3``) group of the
array contraction object.
"""
indices: List[Optional[int]]
def __init__(self, element, indices: Optional[List[Optional[int]]] = None):
self.element = element
if indices is None:
self.indices = [None for i in range(get_rank(element))]
else:
self.indices = indices
def __str__(self):
return "_ArgE(%s, %s)" % (self.element, self.indices)
__repr__ = __str__
class _IndPos:
"""
Index position, requiring two integers in the constructor:
- arg: the position of the argument in the tensor product,
- rel: the relative position of the index inside the argument.
"""
def __init__(self, arg: int, rel: int):
self.arg = arg
self.rel = rel
def __str__(self):
return "_IndPos(%i, %i)" % (self.arg, self.rel)
__repr__ = __str__
def __iter__(self):
yield from [self.arg, self.rel]
class _EditArrayContraction:
"""
Utility class to help manipulate array contraction objects.
This class takes as input an ``ArrayContraction`` object and turns it into
an editable object.
The field ``args_with_ind`` of this class is a list of ``_ArgE`` objects
which can be used to easily edit the contraction structure of the
expression.
Once editing is finished, the ``ArrayContraction`` object may be recreated
by calling the ``.to_array_contraction()`` method.
"""
def __init__(self, base_array: typing.Union[ArrayContraction, ArrayDiagonal, ArrayTensorProduct]):
expr: Basic
diagonalized: tTuple[tTuple[int, ...], ...]
contraction_indices: List[tTuple[int]]
if isinstance(base_array, ArrayContraction):
mapping = _get_mapping_from_subranks(base_array.subranks)
expr = base_array.expr
contraction_indices = base_array.contraction_indices
diagonalized = ()
elif isinstance(base_array, ArrayDiagonal):
if isinstance(base_array.expr, ArrayContraction):
mapping = _get_mapping_from_subranks(base_array.expr.subranks)
expr = base_array.expr.expr
diagonalized = ArrayContraction._push_indices_down(base_array.expr.contraction_indices, base_array.diagonal_indices)
contraction_indices = base_array.expr.contraction_indices
elif isinstance(base_array.expr, ArrayTensorProduct):
mapping = {}
expr = base_array.expr
diagonalized = base_array.diagonal_indices
contraction_indices = []
else:
mapping = {}
expr = base_array.expr
diagonalized = base_array.diagonal_indices
contraction_indices = []
elif isinstance(base_array, ArrayTensorProduct):
expr = base_array
contraction_indices = []
diagonalized = ()
else:
raise NotImplementedError()
if isinstance(expr, ArrayTensorProduct):
args = list(expr.args)
else:
args = [expr]
args_with_ind: List[_ArgE] = [_ArgE(arg) for arg in args]
for i, contraction_tuple in enumerate(contraction_indices):
for j in contraction_tuple:
arg_pos, rel_pos = mapping[j]
args_with_ind[arg_pos].indices[rel_pos] = i
self.args_with_ind: List[_ArgE] = args_with_ind
self.number_of_contraction_indices: int = len(contraction_indices)
self._track_permutation: Optional[List[List[int]]] = None
mapping = _get_mapping_from_subranks(base_array.subranks)
# Trick: add diagonalized indices as negative indices into the editor object:
for i, e in enumerate(diagonalized):
for j in e:
arg_pos, rel_pos = mapping[j]
self.args_with_ind[arg_pos].indices[rel_pos] = -1 - i
def insert_after(self, arg: _ArgE, new_arg: _ArgE):
pos = self.args_with_ind.index(arg)
self.args_with_ind.insert(pos + 1, new_arg)
def get_new_contraction_index(self):
self.number_of_contraction_indices += 1
return self.number_of_contraction_indices - 1
def refresh_indices(self):
updates: tDict[int, int] = {}
for arg_with_ind in self.args_with_ind:
updates.update({i: -1 for i in arg_with_ind.indices if i is not None})
for i, e in enumerate(sorted(updates)):
updates[e] = i
self.number_of_contraction_indices: int = len(updates)
for arg_with_ind in self.args_with_ind:
arg_with_ind.indices = [updates.get(i, None) for i in arg_with_ind.indices]
def merge_scalars(self):
scalars = []
for arg_with_ind in self.args_with_ind:
if len(arg_with_ind.indices) == 0:
scalars.append(arg_with_ind)
for i in scalars:
self.args_with_ind.remove(i)
scalar = Mul.fromiter([i.element for i in scalars])
if len(self.args_with_ind) == 0:
self.args_with_ind.append(_ArgE(scalar))
else:
from sympy.tensor.array.expressions.from_array_to_matrix import _a2m_tensor_product
self.args_with_ind[0].element = _a2m_tensor_product(scalar, self.args_with_ind[0].element)
def to_array_contraction(self):
# Count the ranks of the arguments:
counter = 0
# Create a collector for the new diagonal indices:
diag_indices = defaultdict(list)
count_index_freq = Counter()
for arg_with_ind in self.args_with_ind:
count_index_freq.update(Counter(arg_with_ind.indices))
free_index_count = count_index_freq[None]
# Construct the inverse permutation:
inv_perm1 = []
inv_perm2 = []
# Keep track of which diagonal indices have already been processed:
done = set([])
# Counter for the diagonal indices:
counter4 = 0
for arg_with_ind in self.args_with_ind:
# If some diagonalization axes have been removed, they should be
# permuted in order to keep the permutation.
# Add permutation here
counter2 = 0 # counter for the indices
for i in arg_with_ind.indices:
if i is None:
inv_perm1.append(counter4)
counter2 += 1
counter4 += 1
continue
if i >= 0:
continue
# Reconstruct the diagonal indices:
diag_indices[-1 - i].append(counter + counter2)
if count_index_freq[i] == 1 and i not in done:
inv_perm1.append(free_index_count - 1 - i)
done.add(i)
elif i not in done:
inv_perm2.append(free_index_count - 1 - i)
done.add(i)
counter2 += 1
# Remove negative indices to restore a proper editor object:
arg_with_ind.indices = [i if i is not None and i >= 0 else None for i in arg_with_ind.indices]
counter += len([i for i in arg_with_ind.indices if i is None or i < 0])
inverse_permutation = inv_perm1 + inv_perm2
permutation = _af_invert(inverse_permutation)
# Get the diagonal indices after the detection of HadamardProduct in the expression:
diag_indices_filtered = [tuple(v) for v in diag_indices.values() if len(v) > 1]
self.merge_scalars()
self.refresh_indices()
args = [arg.element for arg in self.args_with_ind]
contraction_indices = self.get_contraction_indices()
expr = _array_contraction(_array_tensor_product(*args), *contraction_indices)
expr2 = _array_diagonal(expr, *diag_indices_filtered)
if self._track_permutation is not None:
permutation2 = _af_invert([j for i in self._track_permutation for j in i])
expr2 = _permute_dims(expr2, permutation2)
expr3 = _permute_dims(expr2, permutation)
return expr3
def get_contraction_indices(self) -> List[List[int]]:
contraction_indices: List[List[int]] = [[] for i in range(self.number_of_contraction_indices)]
current_position: int = 0
for i, arg_with_ind in enumerate(self.args_with_ind):
for j in arg_with_ind.indices:
if j is not None:
contraction_indices[j].append(current_position)
current_position += 1
return contraction_indices
def get_mapping_for_index(self, ind) -> List[_IndPos]:
if ind >= self.number_of_contraction_indices:
raise ValueError("index value exceeding the index range")
positions: List[_IndPos] = []
for i, arg_with_ind in enumerate(self.args_with_ind):
for j, arg_ind in enumerate(arg_with_ind.indices):
if ind == arg_ind:
positions.append(_IndPos(i, j))
return positions
def get_contraction_indices_to_ind_rel_pos(self) -> List[List[_IndPos]]:
contraction_indices: List[List[_IndPos]] = [[] for i in range(self.number_of_contraction_indices)]
for i, arg_with_ind in enumerate(self.args_with_ind):
for j, ind in enumerate(arg_with_ind.indices):
if ind is not None:
contraction_indices[ind].append(_IndPos(i, j))
return contraction_indices
def count_args_with_index(self, index: int) -> int:
"""
Count the number of arguments that have the given index.
"""
counter: int = 0
for arg_with_ind in self.args_with_ind:
if index in arg_with_ind.indices:
counter += 1
return counter
def get_args_with_index(self, index: int) -> List[_ArgE]:
"""
Get a list of arguments having the given index.
"""
ret: List[_ArgE] = [i for i in self.args_with_ind if index in i.indices]
return ret
@property
def number_of_diagonal_indices(self):
data = set([])
for arg in self.args_with_ind:
data.update({i for i in arg.indices if i is not None and i < 0})
return len(data)
def track_permutation_start(self):
permutation = []
perm_diag = []
counter: int = 0
counter2: int = -1
for arg_with_ind in self.args_with_ind:
perm = []
for i in arg_with_ind.indices:
if i is not None:
if i < 0:
perm_diag.append(counter2)
counter2 -= 1
continue
perm.append(counter)
counter += 1
permutation.append(perm)
max_ind = max([max(i) if i else -1 for i in permutation]) if permutation else -1
perm_diag = [max_ind - i for i in perm_diag]
self._track_permutation = permutation + [perm_diag]
def track_permutation_merge(self, destination: _ArgE, from_element: _ArgE):
index_destination = self.args_with_ind.index(destination)
index_element = self.args_with_ind.index(from_element)
self._track_permutation[index_destination].extend(self._track_permutation[index_element]) # type: ignore
self._track_permutation.pop(index_element) # type: ignore
def get_absolute_free_range(self, arg: _ArgE) -> typing.Tuple[int, int]:
"""
Return the range of the free indices of the arg as absolute positions
among all free indices.
"""
counter = 0
for arg_with_ind in self.args_with_ind:
number_free_indices = len([i for i in arg_with_ind.indices if i is None])
if arg_with_ind == arg:
return counter, counter + number_free_indices
counter += number_free_indices
raise IndexError("argument not found")
def get_absolute_range(self, arg: _ArgE) -> typing.Tuple[int, int]:
"""
Return the absolute range of indices for arg, disregarding dummy
indices.
"""
counter = 0
for arg_with_ind in self.args_with_ind:
number_indices = len(arg_with_ind.indices)
if arg_with_ind == arg:
return counter, counter + number_indices
counter += number_indices
raise IndexError("argument not found")
def get_rank(expr):
if isinstance(expr, (MatrixExpr, MatrixElement)):
return 2
if isinstance(expr, _CodegenArrayAbstract):
return len(expr.shape)
if isinstance(expr, NDimArray):
return expr.rank()
if isinstance(expr, Indexed):
return expr.rank
if isinstance(expr, IndexedBase):
shape = expr.shape
if shape is None:
return -1
else:
return len(shape)
if hasattr(expr, "shape"):
return len(expr.shape)
return 0
def _get_subrank(expr):
if isinstance(expr, _CodegenArrayAbstract):
return expr.subrank()
return get_rank(expr)
def _get_subranks(expr):
if isinstance(expr, _CodegenArrayAbstract):
return expr.subranks
else:
return [get_rank(expr)]
def get_shape(expr):
if hasattr(expr, "shape"):
return expr.shape
return ()
def nest_permutation(expr):
if isinstance(expr, PermuteDims):
return expr.nest_permutation()
else:
return expr
def _array_tensor_product(*args, **kwargs):
return ArrayTensorProduct(*args, canonicalize=True, **kwargs)
def _array_contraction(expr, *contraction_indices, **kwargs):
return ArrayContraction(expr, *contraction_indices, canonicalize=True, **kwargs)
def _array_diagonal(expr, *diagonal_indices, **kwargs):
return ArrayDiagonal(expr, *diagonal_indices, canonicalize=True, **kwargs)
def _permute_dims(expr, permutation, **kwargs):
return PermuteDims(expr, permutation, canonicalize=True, **kwargs)
def _array_add(*args, **kwargs):
return ArrayAdd(*args, canonicalize=True, **kwargs)
def _get_array_element_or_slice(expr, indices):
return ArrayElement(expr, indices)
|
40ce654fbfc3ffc88d9bed391309240127bc9f156a523b3737b0ba0da80d3173 | import operator
from functools import reduce, singledispatch
from sympy.core.expr import Expr
from sympy.core.singleton import S
from sympy.matrices.expressions.hadamard import HadamardProduct
from sympy.matrices.expressions.inverse import Inverse
from sympy.matrices.expressions.matexpr import (MatrixExpr, MatrixSymbol)
from sympy.matrices.expressions.special import Identity
from sympy.matrices.expressions.transpose import Transpose
from sympy.combinatorics.permutations import _af_invert
from sympy.matrices.expressions.applyfunc import ElementwiseApplyFunction
from sympy.tensor.array.expressions.array_expressions import (
_ArrayExpr, ZeroArray, ArraySymbol, ArrayTensorProduct, ArrayAdd,
PermuteDims, ArrayDiagonal, ArrayElementwiseApplyFunc, get_rank,
get_shape, ArrayContraction, _array_tensor_product, _array_contraction,
_array_diagonal, _array_add, _permute_dims, Reshape)
from sympy.tensor.array.expressions.from_matrix_to_array import convert_matrix_to_array
@singledispatch
def array_derive(expr, x):
raise NotImplementedError(f"not implemented for type {type(expr)}")
@array_derive.register(Expr)
def _(expr: Expr, x: _ArrayExpr):
return ZeroArray(*x.shape)
@array_derive.register(ArrayTensorProduct)
def _(expr: ArrayTensorProduct, x: Expr):
args = expr.args
addend_list = []
for i, arg in enumerate(expr.args):
darg = array_derive(arg, x)
if darg == 0:
continue
args_prev = args[:i]
args_succ = args[i+1:]
shape_prev = reduce(operator.add, map(get_shape, args_prev), ())
shape_succ = reduce(operator.add, map(get_shape, args_succ), ())
addend = _array_tensor_product(*args_prev, darg, *args_succ)
tot1 = len(get_shape(x))
tot2 = tot1 + len(shape_prev)
tot3 = tot2 + len(get_shape(arg))
tot4 = tot3 + len(shape_succ)
perm = [i for i in range(tot1, tot2)] + \
[i for i in range(tot1)] + [i for i in range(tot2, tot3)] + \
[i for i in range(tot3, tot4)]
addend = _permute_dims(addend, _af_invert(perm))
addend_list.append(addend)
if len(addend_list) == 1:
return addend_list[0]
elif len(addend_list) == 0:
return S.Zero
else:
return _array_add(*addend_list)
@array_derive.register(ArraySymbol)
def _(expr: ArraySymbol, x: _ArrayExpr):
if expr == x:
return _permute_dims(
ArrayTensorProduct.fromiter(Identity(i) for i in expr.shape),
[2*i for i in range(len(expr.shape))] + [2*i+1 for i in range(len(expr.shape))]
)
return ZeroArray(*(x.shape + expr.shape))
@array_derive.register(MatrixSymbol)
def _(expr: MatrixSymbol, x: _ArrayExpr):
m, n = expr.shape
if expr == x:
return _permute_dims(
_array_tensor_product(Identity(m), Identity(n)),
[0, 2, 1, 3]
)
return ZeroArray(*(x.shape + expr.shape))
@array_derive.register(Identity)
def _(expr: Identity, x: _ArrayExpr):
return ZeroArray(*(x.shape + expr.shape))
@array_derive.register(Transpose)
def _(expr: Transpose, x: Expr):
# D(A.T, A) ==> (m,n,i,j) ==> D(A_ji, A_mn) = d_mj d_ni
# D(B.T, A) ==> (m,n,i,j) ==> D(B_ji, A_mn)
fd = array_derive(expr.arg, x)
return _permute_dims(fd, [0, 1, 3, 2])
@array_derive.register(Inverse)
def _(expr: Inverse, x: Expr):
mat = expr.I
dexpr = array_derive(mat, x)
tp = _array_tensor_product(-expr, dexpr, expr)
mp = _array_contraction(tp, (1, 4), (5, 6))
pp = _permute_dims(mp, [1, 2, 0, 3])
return pp
@array_derive.register(ElementwiseApplyFunction)
def _(expr: ElementwiseApplyFunction, x: Expr):
assert get_rank(expr) == 2
assert get_rank(x) == 2
fdiff = expr._get_function_fdiff()
dexpr = array_derive(expr.expr, x)
tp = _array_tensor_product(
ElementwiseApplyFunction(fdiff, expr.expr),
dexpr
)
td = _array_diagonal(
tp, (0, 4), (1, 5)
)
return td
@array_derive.register(ArrayElementwiseApplyFunc)
def _(expr: ArrayElementwiseApplyFunc, x: Expr):
fdiff = expr._get_function_fdiff()
subexpr = expr.expr
dsubexpr = array_derive(subexpr, x)
tp = _array_tensor_product(
dsubexpr,
ArrayElementwiseApplyFunc(fdiff, subexpr)
)
b = get_rank(x)
c = get_rank(expr)
diag_indices = [(b + i, b + c + i) for i in range(c)]
return _array_diagonal(tp, *diag_indices)
@array_derive.register(MatrixExpr)
def _(expr: MatrixExpr, x: Expr):
cg = convert_matrix_to_array(expr)
return array_derive(cg, x)
@array_derive.register(HadamardProduct)
def _(expr: HadamardProduct, x: Expr):
raise NotImplementedError()
@array_derive.register(ArrayContraction)
def _(expr: ArrayContraction, x: Expr):
fd = array_derive(expr.expr, x)
rank_x = len(get_shape(x))
contraction_indices = expr.contraction_indices
new_contraction_indices = [tuple(j + rank_x for j in i) for i in contraction_indices]
return _array_contraction(fd, *new_contraction_indices)
@array_derive.register(ArrayDiagonal)
def _(expr: ArrayDiagonal, x: Expr):
dsubexpr = array_derive(expr.expr, x)
rank_x = len(get_shape(x))
diag_indices = [[j + rank_x for j in i] for i in expr.diagonal_indices]
return _array_diagonal(dsubexpr, *diag_indices)
@array_derive.register(ArrayAdd)
def _(expr: ArrayAdd, x: Expr):
return _array_add(*[array_derive(arg, x) for arg in expr.args])
@array_derive.register(PermuteDims)
def _(expr: PermuteDims, x: Expr):
de = array_derive(expr.expr, x)
perm = [0, 1] + [i + 2 for i in expr.permutation.array_form]
return _permute_dims(de, perm)
@array_derive.register(Reshape)
def _(expr: Reshape, x: Expr):
de = array_derive(expr.expr, x)
return Reshape(de, get_shape(x) + expr.shape)
def matrix_derive(expr, x):
from sympy.tensor.array.expressions.from_array_to_matrix import convert_array_to_matrix
ce = convert_matrix_to_array(expr)
dce = array_derive(ce, x)
return convert_array_to_matrix(dce).doit()
|
b601a33b4c1f0e7ea28ad1efcd7c1e1e2c1934262fd386190e66051db6d19c8b | import itertools
from collections import defaultdict
from typing import Tuple as tTuple, Union as tUnion, FrozenSet, Dict as tDict, List, Optional
from functools import singledispatch
from itertools import accumulate
from sympy import MatMul, Basic, Wild, KroneckerProduct
from sympy.assumptions.ask import (Q, ask)
from sympy.core.mul import Mul
from sympy.core.singleton import S
from sympy.matrices.expressions.diagonal import DiagMatrix
from sympy.matrices.expressions.hadamard import hadamard_product, HadamardPower
from sympy.matrices.expressions.matexpr import MatrixExpr
from sympy.matrices.expressions.special import (Identity, ZeroMatrix, OneMatrix)
from sympy.matrices.expressions.trace import Trace
from sympy.matrices.expressions.transpose import Transpose
from sympy.combinatorics.permutations import _af_invert, Permutation
from sympy.matrices.common import MatrixCommon
from sympy.matrices.expressions.applyfunc import ElementwiseApplyFunction
from sympy.matrices.expressions.matexpr import MatrixElement
from sympy.tensor.array.expressions.array_expressions import PermuteDims, ArrayDiagonal, \
ArrayTensorProduct, OneArray, get_rank, _get_subrank, ZeroArray, ArrayContraction, \
ArrayAdd, _CodegenArrayAbstract, get_shape, ArrayElementwiseApplyFunc, _ArrayExpr, _EditArrayContraction, _ArgE, \
ArrayElement, _array_tensor_product, _array_contraction, _array_diagonal, _array_add, _permute_dims
from sympy.tensor.array.expressions.utils import _get_mapping_from_subranks
def _get_candidate_for_matmul_from_contraction(scan_indices: List[Optional[int]], remaining_args: List[_ArgE]) -> tTuple[Optional[_ArgE], bool, int]:
scan_indices_int: List[int] = [i for i in scan_indices if i is not None]
if len(scan_indices_int) == 0:
return None, False, -1
transpose: bool = False
candidate: Optional[_ArgE] = None
candidate_index: int = -1
for arg_with_ind2 in remaining_args:
if not isinstance(arg_with_ind2.element, MatrixExpr):
continue
for index in scan_indices_int:
if candidate_index != -1 and candidate_index != index:
# A candidate index has already been selected, check
# repetitions only for that index:
continue
if index in arg_with_ind2.indices:
if set(arg_with_ind2.indices) == {index}:
# Index repeated twice in arg_with_ind2
candidate = None
break
if candidate is None:
candidate = arg_with_ind2
candidate_index = index
transpose = (index == arg_with_ind2.indices[1])
else:
# Index repeated more than twice, break
candidate = None
break
return candidate, transpose, candidate_index
def _insert_candidate_into_editor(editor: _EditArrayContraction, arg_with_ind: _ArgE, candidate: _ArgE, transpose1: bool, transpose2: bool):
other = candidate.element
other_index: Optional[int]
if transpose2:
other = Transpose(other)
other_index = candidate.indices[0]
else:
other_index = candidate.indices[1]
new_element = (Transpose(arg_with_ind.element) if transpose1 else arg_with_ind.element) * other
editor.args_with_ind.remove(candidate)
new_arge = _ArgE(new_element)
return new_arge, other_index
def _support_function_tp1_recognize(contraction_indices, args):
if len(contraction_indices) == 0:
return _a2m_tensor_product(*args)
ac = _array_contraction(_array_tensor_product(*args), *contraction_indices)
editor = _EditArrayContraction(ac)
editor.track_permutation_start()
while True:
flag_stop: bool = True
for i, arg_with_ind in enumerate(editor.args_with_ind):
if not isinstance(arg_with_ind.element, MatrixExpr):
continue
first_index = arg_with_ind.indices[0]
second_index = arg_with_ind.indices[1]
first_frequency = editor.count_args_with_index(first_index)
second_frequency = editor.count_args_with_index(second_index)
if first_index is not None and first_frequency == 1 and first_index == second_index:
flag_stop = False
arg_with_ind.element = Trace(arg_with_ind.element)._normalize()
arg_with_ind.indices = []
break
scan_indices = []
if first_frequency == 2:
scan_indices.append(first_index)
if second_frequency == 2:
scan_indices.append(second_index)
candidate, transpose, found_index = _get_candidate_for_matmul_from_contraction(scan_indices, editor.args_with_ind[i+1:])
if candidate is not None:
flag_stop = False
editor.track_permutation_merge(arg_with_ind, candidate)
transpose1 = found_index == first_index
new_arge, other_index = _insert_candidate_into_editor(editor, arg_with_ind, candidate, transpose1, transpose)
if found_index == first_index:
new_arge.indices = [second_index, other_index]
else:
new_arge.indices = [first_index, other_index]
set_indices = set(new_arge.indices)
if len(set_indices) == 1 and set_indices != {None}:
# This is a trace:
new_arge.element = Trace(new_arge.element)._normalize()
new_arge.indices = []
editor.args_with_ind[i] = new_arge
# TODO: is this break necessary?
break
if flag_stop:
break
editor.refresh_indices()
return editor.to_array_contraction()
def _find_trivial_matrices_rewrite(expr: ArrayTensorProduct):
# If there are matrices of trivial shape in the tensor product (i.e. shape
# (1, 1)), try to check if there is a suitable non-trivial MatMul where the
# expression can be inserted.
# For example, if "a" has shape (1, 1) and "b" has shape (k, 1), the
# expressions "_array_tensor_product(a, b*b.T)" can be rewritten as
# "b*a*b.T"
trivial_matrices = []
pos: Optional[int] = None
first: Optional[MatrixExpr] = None
second: Optional[MatrixExpr] = None
removed: List[int] = []
counter: int = 0
args: List[Optional[Basic]] = [i for i in expr.args]
for i, arg in enumerate(expr.args):
if isinstance(arg, MatrixExpr):
if arg.shape == (1, 1):
trivial_matrices.append(arg)
args[i] = None
removed.extend([counter, counter+1])
elif pos is None and isinstance(arg, MatMul):
margs = arg.args
for j, e in enumerate(margs):
if isinstance(e, MatrixExpr) and e.shape[1] == 1:
pos = i
first = MatMul.fromiter(margs[:j+1])
second = MatMul.fromiter(margs[j+1:])
break
counter += get_rank(arg)
if pos is None:
return expr, []
args[pos] = (first*MatMul.fromiter(i for i in trivial_matrices)*second).doit()
return _array_tensor_product(*[i for i in args if i is not None]), removed
def _find_trivial_kronecker_products_broadcast(expr: ArrayTensorProduct):
newargs: List[Basic] = []
removed = []
count_dims = 0
for i, arg in enumerate(expr.args):
count_dims += get_rank(arg)
shape = get_shape(arg)
current_range = [count_dims-i for i in range(len(shape), 0, -1)]
if (shape == (1, 1) and len(newargs) > 0 and 1 not in get_shape(newargs[-1]) and
isinstance(newargs[-1], MatrixExpr) and isinstance(arg, MatrixExpr)):
# KroneckerProduct object allows the trick of broadcasting:
newargs[-1] = KroneckerProduct(newargs[-1], arg)
removed.extend(current_range)
elif 1 not in shape and len(newargs) > 0 and get_shape(newargs[-1]) == (1, 1):
# Broadcast:
newargs[-1] = KroneckerProduct(newargs[-1], arg)
prev_range = [i for i in range(min(current_range)) if i not in removed]
removed.extend(prev_range[-2:])
else:
newargs.append(arg)
return _array_tensor_product(*newargs), removed
@singledispatch
def _array2matrix(expr):
return expr
@_array2matrix.register(ZeroArray)
def _(expr: ZeroArray):
if get_rank(expr) == 2:
return ZeroMatrix(*expr.shape)
else:
return expr
@_array2matrix.register(ArrayTensorProduct)
def _(expr: ArrayTensorProduct):
return _a2m_tensor_product(*[_array2matrix(arg) for arg in expr.args])
@_array2matrix.register(ArrayContraction)
def _(expr: ArrayContraction):
expr = expr.flatten_contraction_of_diagonal()
expr = identify_removable_identity_matrices(expr)
expr = expr.split_multiple_contractions()
expr = identify_hadamard_products(expr)
if not isinstance(expr, ArrayContraction):
return _array2matrix(expr)
subexpr = expr.expr
contraction_indices: tTuple[tTuple[int]] = expr.contraction_indices
if contraction_indices == ((0,), (1,)) or (
contraction_indices == ((0,),) and subexpr.shape[1] == 1
) or (
contraction_indices == ((1,),) and subexpr.shape[0] == 1
):
shape = subexpr.shape
subexpr = _array2matrix(subexpr)
if isinstance(subexpr, MatrixExpr):
return OneMatrix(1, shape[0])*subexpr*OneMatrix(shape[1], 1)
if isinstance(subexpr, ArrayTensorProduct):
newexpr = _array_contraction(_array2matrix(subexpr), *contraction_indices)
contraction_indices = newexpr.contraction_indices
if any(i > 2 for i in newexpr.subranks):
addends = _array_add(*[_a2m_tensor_product(*j) for j in itertools.product(*[i.args if isinstance(i,
ArrayAdd) else [i] for i in expr.expr.args])])
newexpr = _array_contraction(addends, *contraction_indices)
if isinstance(newexpr, ArrayAdd):
ret = _array2matrix(newexpr)
return ret
assert isinstance(newexpr, ArrayContraction)
ret = _support_function_tp1_recognize(contraction_indices, list(newexpr.expr.args))
return ret
elif not isinstance(subexpr, _CodegenArrayAbstract):
ret = _array2matrix(subexpr)
if isinstance(ret, MatrixExpr):
assert expr.contraction_indices == ((0, 1),)
return _a2m_trace(ret)
else:
return _array_contraction(ret, *expr.contraction_indices)
@_array2matrix.register(ArrayDiagonal)
def _(expr: ArrayDiagonal):
pexpr = _array_diagonal(_array2matrix(expr.expr), *expr.diagonal_indices)
pexpr = identify_hadamard_products(pexpr)
if isinstance(pexpr, ArrayDiagonal):
pexpr = _array_diag2contr_diagmatrix(pexpr)
if expr == pexpr:
return expr
return _array2matrix(pexpr)
@_array2matrix.register(PermuteDims)
def _(expr: PermuteDims):
if expr.permutation.array_form == [1, 0]:
return _a2m_transpose(_array2matrix(expr.expr))
elif isinstance(expr.expr, ArrayTensorProduct):
ranks = expr.expr.subranks
inv_permutation = expr.permutation**(-1)
newrange = [inv_permutation(i) for i in range(sum(ranks))]
newpos = []
counter = 0
for rank in ranks:
newpos.append(newrange[counter:counter+rank])
counter += rank
newargs = []
newperm = []
scalars = []
for pos, arg in zip(newpos, expr.expr.args):
if len(pos) == 0:
scalars.append(_array2matrix(arg))
elif pos == sorted(pos):
newargs.append((_array2matrix(arg), pos[0]))
newperm.extend(pos)
elif len(pos) == 2:
newargs.append((_a2m_transpose(_array2matrix(arg)), pos[0]))
newperm.extend(reversed(pos))
else:
raise NotImplementedError()
newargs = [i[0] for i in newargs]
return _permute_dims(_a2m_tensor_product(*scalars, *newargs), _af_invert(newperm))
elif isinstance(expr.expr, ArrayContraction):
mat_mul_lines = _array2matrix(expr.expr)
if not isinstance(mat_mul_lines, ArrayTensorProduct):
return _permute_dims(mat_mul_lines, expr.permutation)
# TODO: this assumes that all arguments are matrices, it may not be the case:
permutation = Permutation(2*len(mat_mul_lines.args)-1)*expr.permutation
permuted = [permutation(i) for i in range(2*len(mat_mul_lines.args))]
args_array = [None for i in mat_mul_lines.args]
for i in range(len(mat_mul_lines.args)):
p1 = permuted[2*i]
p2 = permuted[2*i+1]
if p1 // 2 != p2 // 2:
return _permute_dims(mat_mul_lines, permutation)
if p1 > p2:
args_array[i] = _a2m_transpose(mat_mul_lines.args[p1 // 2])
else:
args_array[i] = mat_mul_lines.args[p1 // 2]
return _a2m_tensor_product(*args_array)
else:
return expr
@_array2matrix.register(ArrayAdd)
def _(expr: ArrayAdd):
addends = [_array2matrix(arg) for arg in expr.args]
return _a2m_add(*addends)
@_array2matrix.register(ArrayElementwiseApplyFunc)
def _(expr: ArrayElementwiseApplyFunc):
subexpr = _array2matrix(expr.expr)
if isinstance(subexpr, MatrixExpr):
if subexpr.shape != (1, 1):
d = expr.function.bound_symbols[0]
w = Wild("w", exclude=[d])
p = Wild("p", exclude=[d])
m = expr.function.expr.match(w*d**p)
if m is not None:
return m[w]*HadamardPower(subexpr, m[p])
return ElementwiseApplyFunction(expr.function, subexpr)
else:
return ArrayElementwiseApplyFunc(expr.function, subexpr)
@_array2matrix.register(ArrayElement)
def _(expr: ArrayElement):
ret = _array2matrix(expr.name)
if isinstance(ret, MatrixExpr):
return MatrixElement(ret, *expr.indices)
return ArrayElement(ret, expr.indices)
@singledispatch
def _remove_trivial_dims(expr):
return expr, []
@_remove_trivial_dims.register(ArrayTensorProduct)
def _(expr: ArrayTensorProduct):
# Recognize expressions like [x, y] with shape (k, 1, k, 1) as `x*y.T`.
# The matrix expression has to be equivalent to the tensor product of the
# matrices, with trivial dimensions (i.e. dim=1) dropped.
# That is, add contractions over trivial dimensions:
removed = []
newargs = []
cumul = list(accumulate([0] + [get_rank(arg) for arg in expr.args]))
pending = None
prev_i = None
for i, arg in enumerate(expr.args):
current_range = list(range(cumul[i], cumul[i+1]))
if isinstance(arg, OneArray):
removed.extend(current_range)
continue
if not isinstance(arg, (MatrixExpr, MatrixCommon)):
rarg, rem = _remove_trivial_dims(arg)
removed.extend(rem)
newargs.append(rarg)
continue
elif getattr(arg, "is_Identity", False) and arg.shape == (1, 1):
if arg.shape == (1, 1):
# Ignore identity matrices of shape (1, 1) - they are equivalent to scalar 1.
removed.extend(current_range)
continue
elif arg.shape == (1, 1):
arg, _ = _remove_trivial_dims(arg)
# Matrix is equivalent to scalar:
if len(newargs) == 0:
newargs.append(arg)
elif 1 in get_shape(newargs[-1]):
if newargs[-1].shape[1] == 1:
newargs[-1] = newargs[-1]*arg
else:
newargs[-1] = arg*newargs[-1]
removed.extend(current_range)
else:
newargs.append(arg)
elif 1 in arg.shape:
k = [i for i in arg.shape if i != 1][0]
if pending is None:
pending = k
prev_i = i
newargs.append(arg)
elif pending == k:
prev = newargs[-1]
if prev.shape[0] == 1:
d1 = cumul[prev_i]
prev = _a2m_transpose(prev)
else:
d1 = cumul[prev_i] + 1
if arg.shape[1] == 1:
d2 = cumul[i] + 1
arg = _a2m_transpose(arg)
else:
d2 = cumul[i]
newargs[-1] = prev*arg
pending = None
removed.extend([d1, d2])
else:
newargs.append(arg)
pending = k
prev_i = i
else:
newargs.append(arg)
pending = None
newexpr, newremoved = _a2m_tensor_product(*newargs), sorted(removed)
if isinstance(newexpr, ArrayTensorProduct):
newexpr, newremoved2 = _find_trivial_matrices_rewrite(newexpr)
newremoved = _combine_removed(-1, newremoved, newremoved2)
if isinstance(newexpr, ArrayTensorProduct):
newexpr, newremoved2 = _find_trivial_kronecker_products_broadcast(newexpr)
newremoved = _combine_removed(-1, newremoved, newremoved2)
return newexpr, newremoved
@_remove_trivial_dims.register(ArrayAdd)
def _(expr: ArrayAdd):
rec = [_remove_trivial_dims(arg) for arg in expr.args]
newargs, removed = zip(*rec)
if len(set([get_shape(i) for i in newargs])) > 1:
return expr, []
if len(removed) == 0:
return expr, removed
removed1 = removed[0]
return _a2m_add(*newargs), removed1
@_remove_trivial_dims.register(PermuteDims)
def _(expr: PermuteDims):
subexpr, subremoved = _remove_trivial_dims(expr.expr)
p = expr.permutation.array_form
pinv = _af_invert(expr.permutation.array_form)
shift = list(accumulate([1 if i in subremoved else 0 for i in range(len(p))]))
premoved = [pinv[i] for i in subremoved]
p2 = [e - shift[e] for i, e in enumerate(p) if e not in subremoved]
# TODO: check if subremoved should be permuted as well...
newexpr = _permute_dims(subexpr, p2)
premoved = sorted(premoved)
if newexpr != expr:
newexpr, removed2 = _remove_trivial_dims(_array2matrix(newexpr))
premoved = _combine_removed(-1, premoved, removed2)
return newexpr, premoved
@_remove_trivial_dims.register(ArrayContraction)
def _(expr: ArrayContraction):
new_expr, removed0 = _array_contraction_to_diagonal_multiple_identity(expr)
if new_expr != expr:
new_expr2, removed1 = _remove_trivial_dims(_array2matrix(new_expr))
removed = _combine_removed(-1, removed0, removed1)
return new_expr2, removed
rank1 = get_rank(expr)
expr, removed1 = remove_identity_matrices(expr)
if not isinstance(expr, ArrayContraction):
expr2, removed2 = _remove_trivial_dims(expr)
return expr2, _combine_removed(rank1, removed1, removed2)
newexpr, removed2 = _remove_trivial_dims(expr.expr)
shifts = list(accumulate([1 if i in removed2 else 0 for i in range(get_rank(expr.expr))]))
new_contraction_indices = [tuple(j for j in i if j not in removed2) for i in expr.contraction_indices]
# Remove possible empty tuples "()":
new_contraction_indices = [i for i in new_contraction_indices if len(i) > 0]
contraction_indices_flat = [j for i in expr.contraction_indices for j in i]
removed2 = [i for i in removed2 if i not in contraction_indices_flat]
new_contraction_indices = [tuple(j - shifts[j] for j in i) for i in new_contraction_indices]
# Shift removed2:
removed2 = ArrayContraction._push_indices_up(expr.contraction_indices, removed2)
removed = _combine_removed(rank1, removed1, removed2)
return _array_contraction(newexpr, *new_contraction_indices), list(removed)
def _remove_diagonalized_identity_matrices(expr: ArrayDiagonal):
assert isinstance(expr, ArrayDiagonal)
editor = _EditArrayContraction(expr)
mapping = {i: {j for j in editor.args_with_ind if i in j.indices} for i in range(-1, -1-editor.number_of_diagonal_indices, -1)}
removed = []
counter: int = 0
for i, arg_with_ind in enumerate(editor.args_with_ind):
counter += len(arg_with_ind.indices)
if isinstance(arg_with_ind.element, Identity):
if None in arg_with_ind.indices and any(i is not None and (i < 0) == True for i in arg_with_ind.indices):
diag_ind = [j for j in arg_with_ind.indices if j is not None][0]
other = [j for j in mapping[diag_ind] if j != arg_with_ind][0]
if not isinstance(other.element, MatrixExpr):
continue
if 1 not in other.element.shape:
continue
if None not in other.indices:
continue
editor.args_with_ind[i].element = None
none_index = other.indices.index(None)
other.element = DiagMatrix(other.element)
other_range = editor.get_absolute_range(other)
removed.extend([other_range[0] + none_index])
editor.args_with_ind = [i for i in editor.args_with_ind if i.element is not None]
removed = ArrayDiagonal._push_indices_up(expr.diagonal_indices, removed, get_rank(expr.expr))
return editor.to_array_contraction(), removed
@_remove_trivial_dims.register(ArrayDiagonal)
def _(expr: ArrayDiagonal):
newexpr, removed = _remove_trivial_dims(expr.expr)
shifts = list(accumulate([0] + [1 if i in removed else 0 for i in range(get_rank(expr.expr))]))
new_diag_indices_map = {i: tuple(j for j in i if j not in removed) for i in expr.diagonal_indices}
for old_diag_tuple, new_diag_tuple in new_diag_indices_map.items():
if len(new_diag_tuple) == 1:
removed = [i for i in removed if i not in old_diag_tuple]
new_diag_indices = [tuple(j - shifts[j] for j in i) for i in new_diag_indices_map.values()]
rank = get_rank(expr.expr)
removed = ArrayDiagonal._push_indices_up(expr.diagonal_indices, removed, rank)
removed = sorted({i for i in removed})
# If there are single axes to diagonalize remaining, it means that their
# corresponding dimension has been removed, they no longer need diagonalization:
new_diag_indices = [i for i in new_diag_indices if len(i) > 0]
if len(new_diag_indices) > 0:
newexpr2 = _array_diagonal(newexpr, *new_diag_indices, allow_trivial_diags=True)
else:
newexpr2 = newexpr
if isinstance(newexpr2, ArrayDiagonal):
newexpr3, removed2 = _remove_diagonalized_identity_matrices(newexpr2)
removed = _combine_removed(-1, removed, removed2)
return newexpr3, removed
else:
return newexpr2, removed
@_remove_trivial_dims.register(ElementwiseApplyFunction)
def _(expr: ElementwiseApplyFunction):
subexpr, removed = _remove_trivial_dims(expr.expr)
if subexpr.shape == (1, 1):
# TODO: move this to ElementwiseApplyFunction
return expr.function(subexpr), removed + [0, 1]
return ElementwiseApplyFunction(expr.function, subexpr), []
@_remove_trivial_dims.register(ArrayElementwiseApplyFunc)
def _(expr: ArrayElementwiseApplyFunc):
subexpr, removed = _remove_trivial_dims(expr.expr)
return ArrayElementwiseApplyFunc(expr.function, subexpr), removed
def convert_array_to_matrix(expr):
r"""
Recognize matrix expressions in codegen objects.
If more than one matrix multiplication line have been detected, return a
list with the matrix expressions.
Examples
========
>>> from sympy.tensor.array.expressions.from_indexed_to_array import convert_indexed_to_array
>>> from sympy.tensor.array import tensorcontraction, tensorproduct
>>> from sympy import MatrixSymbol, Sum
>>> from sympy.abc import i, j, k, l, N
>>> from sympy.tensor.array.expressions.from_matrix_to_array import convert_matrix_to_array
>>> from sympy.tensor.array.expressions.from_array_to_matrix import convert_array_to_matrix
>>> A = MatrixSymbol("A", N, N)
>>> B = MatrixSymbol("B", N, N)
>>> C = MatrixSymbol("C", N, N)
>>> D = MatrixSymbol("D", N, N)
>>> expr = Sum(A[i, j]*B[j, k], (j, 0, N-1))
>>> cg = convert_indexed_to_array(expr)
>>> convert_array_to_matrix(cg)
A*B
>>> cg = convert_indexed_to_array(expr, first_indices=[k])
>>> convert_array_to_matrix(cg)
B.T*A.T
Transposition is detected:
>>> expr = Sum(A[j, i]*B[j, k], (j, 0, N-1))
>>> cg = convert_indexed_to_array(expr)
>>> convert_array_to_matrix(cg)
A.T*B
>>> cg = convert_indexed_to_array(expr, first_indices=[k])
>>> convert_array_to_matrix(cg)
B.T*A
Detect the trace:
>>> expr = Sum(A[i, i], (i, 0, N-1))
>>> cg = convert_indexed_to_array(expr)
>>> convert_array_to_matrix(cg)
Trace(A)
Recognize some more complex traces:
>>> expr = Sum(A[i, j]*B[j, i], (i, 0, N-1), (j, 0, N-1))
>>> cg = convert_indexed_to_array(expr)
>>> convert_array_to_matrix(cg)
Trace(A*B)
More complicated expressions:
>>> expr = Sum(A[i, j]*B[k, j]*A[l, k], (j, 0, N-1), (k, 0, N-1))
>>> cg = convert_indexed_to_array(expr)
>>> convert_array_to_matrix(cg)
A*B.T*A.T
Expressions constructed from matrix expressions do not contain literal
indices, the positions of free indices are returned instead:
>>> expr = A*B
>>> cg = convert_matrix_to_array(expr)
>>> convert_array_to_matrix(cg)
A*B
If more than one line of matrix multiplications is detected, return
separate matrix multiplication factors embedded in a tensor product object:
>>> cg = tensorcontraction(tensorproduct(A, B, C, D), (1, 2), (5, 6))
>>> convert_array_to_matrix(cg)
ArrayTensorProduct(A*B, C*D)
The two lines have free indices at axes 0, 3 and 4, 7, respectively.
"""
rec = _array2matrix(expr)
rec, removed = _remove_trivial_dims(rec)
return rec
def _array_diag2contr_diagmatrix(expr: ArrayDiagonal):
if isinstance(expr.expr, ArrayTensorProduct):
args = list(expr.expr.args)
diag_indices = list(expr.diagonal_indices)
mapping = _get_mapping_from_subranks([_get_subrank(arg) for arg in args])
tuple_links = [[mapping[j] for j in i] for i in diag_indices]
contr_indices = []
total_rank = get_rank(expr)
replaced = [False for arg in args]
for i, (abs_pos, rel_pos) in enumerate(zip(diag_indices, tuple_links)):
if len(abs_pos) != 2:
continue
(pos1_outer, pos1_inner), (pos2_outer, pos2_inner) = rel_pos
arg1 = args[pos1_outer]
arg2 = args[pos2_outer]
if get_rank(arg1) != 2 or get_rank(arg2) != 2:
if replaced[pos1_outer]:
diag_indices[i] = None
if replaced[pos2_outer]:
diag_indices[i] = None
continue
pos1_in2 = 1 - pos1_inner
pos2_in2 = 1 - pos2_inner
if arg1.shape[pos1_in2] == 1:
if arg1.shape[pos1_inner] != 1:
darg1 = DiagMatrix(arg1)
else:
darg1 = arg1
args.append(darg1)
contr_indices.append(((pos2_outer, pos2_inner), (len(args)-1, pos1_inner)))
total_rank += 1
diag_indices[i] = None
args[pos1_outer] = OneArray(arg1.shape[pos1_in2])
replaced[pos1_outer] = True
elif arg2.shape[pos2_in2] == 1:
if arg2.shape[pos2_inner] != 1:
darg2 = DiagMatrix(arg2)
else:
darg2 = arg2
args.append(darg2)
contr_indices.append(((pos1_outer, pos1_inner), (len(args)-1, pos2_inner)))
total_rank += 1
diag_indices[i] = None
args[pos2_outer] = OneArray(arg2.shape[pos2_in2])
replaced[pos2_outer] = True
diag_indices_new = [i for i in diag_indices if i is not None]
cumul = list(accumulate([0] + [get_rank(arg) for arg in args]))
contr_indices2 = [tuple(cumul[a] + b for a, b in i) for i in contr_indices]
tc = _array_contraction(
_array_tensor_product(*args), *contr_indices2
)
td = _array_diagonal(tc, *diag_indices_new)
return td
return expr
def _a2m_mul(*args):
if not any(isinstance(i, _CodegenArrayAbstract) for i in args):
from sympy.matrices.expressions.matmul import MatMul
return MatMul(*args).doit()
else:
return _array_contraction(
_array_tensor_product(*args),
*[(2*i-1, 2*i) for i in range(1, len(args))]
)
def _a2m_tensor_product(*args):
scalars = []
arrays = []
for arg in args:
if isinstance(arg, (MatrixExpr, _ArrayExpr, _CodegenArrayAbstract)):
arrays.append(arg)
else:
scalars.append(arg)
scalar = Mul.fromiter(scalars)
if len(arrays) == 0:
return scalar
if scalar != 1:
if isinstance(arrays[0], _CodegenArrayAbstract):
arrays = [scalar] + arrays
else:
arrays[0] *= scalar
return _array_tensor_product(*arrays)
def _a2m_add(*args):
if not any(isinstance(i, _CodegenArrayAbstract) for i in args):
from sympy.matrices.expressions.matadd import MatAdd
return MatAdd(*args).doit()
else:
return _array_add(*args)
def _a2m_trace(arg):
if isinstance(arg, _CodegenArrayAbstract):
return _array_contraction(arg, (0, 1))
else:
from sympy.matrices.expressions.trace import Trace
return Trace(arg)
def _a2m_transpose(arg):
if isinstance(arg, _CodegenArrayAbstract):
return _permute_dims(arg, [1, 0])
else:
from sympy.matrices.expressions.transpose import Transpose
return Transpose(arg).doit()
def identify_hadamard_products(expr: tUnion[ArrayContraction, ArrayDiagonal]):
editor: _EditArrayContraction = _EditArrayContraction(expr)
map_contr_to_args: tDict[FrozenSet, List[_ArgE]] = defaultdict(list)
map_ind_to_inds: tDict[Optional[int], int] = defaultdict(int)
for arg_with_ind in editor.args_with_ind:
for ind in arg_with_ind.indices:
map_ind_to_inds[ind] += 1
if None in arg_with_ind.indices:
continue
map_contr_to_args[frozenset(arg_with_ind.indices)].append(arg_with_ind)
k: FrozenSet[int]
v: List[_ArgE]
for k, v in map_contr_to_args.items():
make_trace: bool = False
if len(k) == 1 and next(iter(k)) >= 0 and sum([next(iter(k)) in i for i in map_contr_to_args]) == 1:
# This is a trace: the arguments are fully contracted with only one
# index, and the index isn't used anywhere else:
make_trace = True
first_element = S.One
elif len(k) != 2:
# Hadamard product only defined for matrices:
continue
if len(v) == 1:
# Hadamard product with a single argument makes no sense:
continue
for ind in k:
if map_ind_to_inds[ind] <= 2:
# There is no other contraction, skip:
continue
def check_transpose(x):
x = [i if i >= 0 else -1-i for i in x]
return x == sorted(x)
# Check if expression is a trace:
if all([map_ind_to_inds[j] == len(v) and j >= 0 for j in k]) and all([j >= 0 for j in k]):
# This is a trace
make_trace = True
first_element = v[0].element
if not check_transpose(v[0].indices):
first_element = first_element.T
hadamard_factors = v[1:]
else:
hadamard_factors = v
# This is a Hadamard product:
hp = hadamard_product(*[i.element if check_transpose(i.indices) else Transpose(i.element) for i in hadamard_factors])
hp_indices = v[0].indices
if not check_transpose(hadamard_factors[0].indices):
hp_indices = list(reversed(hp_indices))
if make_trace:
hp = Trace(first_element*hp.T)._normalize()
hp_indices = []
editor.insert_after(v[0], _ArgE(hp, hp_indices))
for i in v:
editor.args_with_ind.remove(i)
return editor.to_array_contraction()
def identify_removable_identity_matrices(expr):
editor = _EditArrayContraction(expr)
flag: bool = True
while flag:
flag = False
for arg_with_ind in editor.args_with_ind:
if isinstance(arg_with_ind.element, Identity):
k = arg_with_ind.element.shape[0]
# Candidate for removal:
if arg_with_ind.indices == [None, None]:
# Free identity matrix, will be cleared by _remove_trivial_dims:
continue
elif None in arg_with_ind.indices:
ind = [j for j in arg_with_ind.indices if j is not None][0]
counted = editor.count_args_with_index(ind)
if counted == 1:
# Identity matrix contracted only on one index with itself,
# transform to a OneArray(k) element:
editor.insert_after(arg_with_ind, OneArray(k))
editor.args_with_ind.remove(arg_with_ind)
flag = True
break
elif counted > 2:
# Case counted = 2 is a matrix multiplication by identity matrix, skip it.
# Case counted > 2 is a multiple contraction,
# this is a case where the contraction becomes a diagonalization if the
# identity matrix is dropped.
continue
elif arg_with_ind.indices[0] == arg_with_ind.indices[1]:
ind = arg_with_ind.indices[0]
counted = editor.count_args_with_index(ind)
if counted > 1:
editor.args_with_ind.remove(arg_with_ind)
flag = True
break
else:
# This is a trace, skip it as it will be recognized somewhere else:
pass
elif ask(Q.diagonal(arg_with_ind.element)):
if arg_with_ind.indices == [None, None]:
continue
elif None in arg_with_ind.indices:
pass
elif arg_with_ind.indices[0] == arg_with_ind.indices[1]:
ind = arg_with_ind.indices[0]
counted = editor.count_args_with_index(ind)
if counted == 3:
# A_ai B_bi D_ii ==> A_ai D_ij B_bj
ind_new = editor.get_new_contraction_index()
other_args = [j for j in editor.args_with_ind if j != arg_with_ind]
other_args[1].indices = [ind_new if j == ind else j for j in other_args[1].indices]
arg_with_ind.indices = [ind, ind_new]
flag = True
break
return editor.to_array_contraction()
def remove_identity_matrices(expr: ArrayContraction):
editor = _EditArrayContraction(expr)
removed: List[int] = []
permutation_map = {}
free_indices = list(accumulate([0] + [sum([i is None for i in arg.indices]) for arg in editor.args_with_ind]))
free_map = {k: v for k, v in zip(editor.args_with_ind, free_indices[:-1])}
update_pairs = {}
for ind in range(editor.number_of_contraction_indices):
args = editor.get_args_with_index(ind)
identity_matrices = [i for i in args if isinstance(i.element, Identity)]
number_identity_matrices = len(identity_matrices)
# If the contraction involves a non-identity matrix and multiple identity matrices:
if number_identity_matrices != len(args) - 1 or number_identity_matrices == 0:
continue
# Get the non-identity element:
non_identity = [i for i in args if not isinstance(i.element, Identity)][0]
# Check that all identity matrices have at least one free index
# (otherwise they would be contractions to some other elements)
if any([None not in i.indices for i in identity_matrices]):
continue
# Mark the identity matrices for removal:
for i in identity_matrices:
i.element = None
removed.extend(range(free_map[i], free_map[i] + len([j for j in i.indices if j is None])))
last_removed = removed.pop(-1)
update_pairs[last_removed, ind] = non_identity.indices[:]
# Remove the indices from the non-identity matrix, as the contraction
# no longer exists:
non_identity.indices = [None if i == ind else i for i in non_identity.indices]
removed.sort()
shifts = list(accumulate([1 if i in removed else 0 for i in range(get_rank(expr))]))
for (last_removed, ind), non_identity_indices in update_pairs.items():
pos = [free_map[non_identity] + i for i, e in enumerate(non_identity_indices) if e == ind]
assert len(pos) == 1
for j in pos:
permutation_map[j] = last_removed
editor.args_with_ind = [i for i in editor.args_with_ind if i.element is not None]
ret_expr = editor.to_array_contraction()
permutation = []
counter = 0
counter2 = 0
for j in range(get_rank(expr)):
if j in removed:
continue
if counter2 in permutation_map:
target = permutation_map[counter2]
permutation.append(target - shifts[target])
counter2 += 1
else:
while counter in permutation_map.values():
counter += 1
permutation.append(counter)
counter += 1
counter2 += 1
ret_expr2 = _permute_dims(ret_expr, _af_invert(permutation))
return ret_expr2, removed
def _combine_removed(dim: int, removed1: List[int], removed2: List[int]) -> List[int]:
# Concatenate two axis removal operations as performed by
# _remove_trivial_dims,
removed1 = sorted(removed1)
removed2 = sorted(removed2)
i = 0
j = 0
removed = []
while True:
if j >= len(removed2):
while i < len(removed1):
removed.append(removed1[i])
i += 1
break
elif i < len(removed1) and removed1[i] <= i + removed2[j]:
removed.append(removed1[i])
i += 1
else:
removed.append(i + removed2[j])
j += 1
return removed
def _array_contraction_to_diagonal_multiple_identity(expr: ArrayContraction):
editor = _EditArrayContraction(expr)
editor.track_permutation_start()
removed: List[int] = []
diag_index_counter: int = 0
for i in range(editor.number_of_contraction_indices):
identities = []
args = []
for j, arg in enumerate(editor.args_with_ind):
if i not in arg.indices:
continue
if isinstance(arg.element, Identity):
identities.append(arg)
else:
args.append(arg)
if len(identities) == 0:
continue
if len(args) + len(identities) < 3:
continue
new_diag_ind = -1 - diag_index_counter
diag_index_counter += 1
# Variable "flag" to control whether to skip this contraction set:
flag: bool = True
for i1, id1 in enumerate(identities):
if None not in id1.indices:
flag = True
break
free_pos = list(range(*editor.get_absolute_free_range(id1)))[0]
editor._track_permutation[-1].append(free_pos) # type: ignore
id1.element = None
flag = False
break
if flag:
continue
for arg in identities[:i1] + identities[i1+1:]:
arg.element = None
removed.extend(range(*editor.get_absolute_free_range(arg)))
for arg in args:
arg.indices = [new_diag_ind if j == i else j for j in arg.indices]
for j, e in enumerate(editor.args_with_ind):
if e.element is None:
editor._track_permutation[j] = None # type: ignore
editor._track_permutation = [i for i in editor._track_permutation if i is not None] # type: ignore
# Renumber permutation array form in order to deal with deleted positions:
remap = {e: i for i, e in enumerate(sorted({k for j in editor._track_permutation for k in j}))}
editor._track_permutation = [[remap[j] for j in i] for i in editor._track_permutation]
editor.args_with_ind = [i for i in editor.args_with_ind if i.element is not None]
new_expr = editor.to_array_contraction()
return new_expr, removed
|
daf9127a9f423ca62b4104b4bbc0329ffb1cef27a4d73c338e30962b971f61ef | from sympy import Lambda, S, Dummy, KroneckerProduct
from sympy.core.symbol import symbols
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import cos, sin
from sympy.matrices.expressions.hadamard import HadamardProduct, HadamardPower
from sympy.matrices.expressions.special import (Identity, OneMatrix, ZeroMatrix)
from sympy.matrices.expressions.matexpr import MatrixElement
from sympy.tensor.array.expressions.from_matrix_to_array import convert_matrix_to_array
from sympy.tensor.array.expressions.from_array_to_matrix import _support_function_tp1_recognize, \
_array_diag2contr_diagmatrix, convert_array_to_matrix, _remove_trivial_dims, _array2matrix, \
_combine_removed, identify_removable_identity_matrices, _array_contraction_to_diagonal_multiple_identity
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.combinatorics import Permutation
from sympy.matrices.expressions.diagonal import DiagMatrix, DiagonalMatrix
from sympy.matrices import Trace, MatMul, Transpose
from sympy.tensor.array.expressions.array_expressions import ZeroArray, OneArray, \
ArrayElement, ArraySymbol, ArrayElementwiseApplyFunc, _array_tensor_product, _array_contraction, \
_array_diagonal, _permute_dims, PermuteDims, ArrayAdd, ArrayDiagonal, ArrayContraction, ArrayTensorProduct
from sympy.testing.pytest import raises
i, j, k, l, m, n = symbols("i j k l m n")
I = Identity(k)
I1 = Identity(1)
M = MatrixSymbol("M", k, k)
N = MatrixSymbol("N", k, k)
P = MatrixSymbol("P", k, k)
Q = MatrixSymbol("Q", k, k)
A = MatrixSymbol("A", k, k)
B = MatrixSymbol("B", k, k)
C = MatrixSymbol("C", k, k)
D = MatrixSymbol("D", k, k)
X = MatrixSymbol("X", k, k)
Y = MatrixSymbol("Y", k, k)
a = MatrixSymbol("a", k, 1)
b = MatrixSymbol("b", k, 1)
c = MatrixSymbol("c", k, 1)
d = MatrixSymbol("d", k, 1)
x = MatrixSymbol("x", k, 1)
y = MatrixSymbol("y", k, 1)
def test_arrayexpr_convert_array_to_matrix():
cg = _array_contraction(_array_tensor_product(M), (0, 1))
assert convert_array_to_matrix(cg) == Trace(M)
cg = _array_contraction(_array_tensor_product(M, N), (0, 1), (2, 3))
assert convert_array_to_matrix(cg) == Trace(M) * Trace(N)
cg = _array_contraction(_array_tensor_product(M, N), (0, 3), (1, 2))
assert convert_array_to_matrix(cg) == Trace(M * N)
cg = _array_contraction(_array_tensor_product(M, N), (0, 2), (1, 3))
assert convert_array_to_matrix(cg) == Trace(M * N.T)
cg = convert_matrix_to_array(M * N * P)
assert convert_array_to_matrix(cg) == M * N * P
cg = convert_matrix_to_array(M * N.T * P)
assert convert_array_to_matrix(cg) == M * N.T * P
cg = _array_contraction(_array_tensor_product(M,N,P,Q), (1, 2), (5, 6))
assert convert_array_to_matrix(cg) == _array_tensor_product(M * N, P * Q)
cg = _array_contraction(_array_tensor_product(-2, M, N), (1, 2))
assert convert_array_to_matrix(cg) == -2 * M * N
a = MatrixSymbol("a", k, 1)
b = MatrixSymbol("b", k, 1)
c = MatrixSymbol("c", k, 1)
cg = PermuteDims(
_array_contraction(
_array_tensor_product(
a,
ArrayAdd(
_array_tensor_product(b, c),
_array_tensor_product(c, b),
)
), (2, 4)), [0, 1, 3, 2])
assert convert_array_to_matrix(cg) == a * (b.T * c + c.T * b)
za = ZeroArray(m, n)
assert convert_array_to_matrix(za) == ZeroMatrix(m, n)
cg = _array_tensor_product(3, M)
assert convert_array_to_matrix(cg) == 3 * M
# Partial conversion to matrix multiplication:
expr = _array_contraction(_array_tensor_product(M, N, P, Q), (0, 2), (1, 4, 6))
assert convert_array_to_matrix(expr) == _array_contraction(_array_tensor_product(M.T*N, P, Q), (0, 2, 4))
x = MatrixSymbol("x", k, 1)
cg = PermuteDims(
_array_contraction(_array_tensor_product(OneArray(1), x, OneArray(1), DiagMatrix(Identity(1))),
(0, 5)), Permutation(1, 2, 3))
assert convert_array_to_matrix(cg) == x
expr = ArrayAdd(M, PermuteDims(M, [1, 0]))
assert convert_array_to_matrix(expr) == M + Transpose(M)
def test_arrayexpr_convert_array_to_matrix2():
cg = _array_contraction(_array_tensor_product(M, N), (1, 3))
assert convert_array_to_matrix(cg) == M * N.T
cg = PermuteDims(_array_tensor_product(M, N), Permutation([0, 1, 3, 2]))
assert convert_array_to_matrix(cg) == _array_tensor_product(M, N.T)
cg = _array_tensor_product(M, PermuteDims(N, Permutation([1, 0])))
assert convert_array_to_matrix(cg) == _array_tensor_product(M, N.T)
cg = _array_contraction(
PermuteDims(
_array_tensor_product(M, N, P, Q), Permutation([0, 2, 3, 1, 4, 5, 7, 6])),
(1, 2), (3, 5)
)
assert convert_array_to_matrix(cg) == _array_tensor_product(M * P.T * Trace(N), Q.T)
cg = _array_contraction(
_array_tensor_product(M, N, P, PermuteDims(Q, Permutation([1, 0]))),
(1, 5), (2, 3)
)
assert convert_array_to_matrix(cg) == _array_tensor_product(M * P.T * Trace(N), Q.T)
cg = _array_tensor_product(M, PermuteDims(N, [1, 0]))
assert convert_array_to_matrix(cg) == _array_tensor_product(M, N.T)
cg = _array_tensor_product(PermuteDims(M, [1, 0]), PermuteDims(N, [1, 0]))
assert convert_array_to_matrix(cg) == _array_tensor_product(M.T, N.T)
cg = _array_tensor_product(PermuteDims(N, [1, 0]), PermuteDims(M, [1, 0]))
assert convert_array_to_matrix(cg) == _array_tensor_product(N.T, M.T)
cg = _array_contraction(M, (0,), (1,))
assert convert_array_to_matrix(cg) == OneMatrix(1, k)*M*OneMatrix(k, 1)
cg = _array_contraction(x, (0,), (1,))
assert convert_array_to_matrix(cg) == OneMatrix(1, k)*x
Xm = MatrixSymbol("Xm", m, n)
cg = _array_contraction(Xm, (0,), (1,))
assert convert_array_to_matrix(cg) == OneMatrix(1, m)*Xm*OneMatrix(n, 1)
def test_arrayexpr_convert_array_to_diagonalized_vector():
# Check matrix recognition over trivial dimensions:
cg = _array_tensor_product(a, b)
assert convert_array_to_matrix(cg) == a * b.T
cg = _array_tensor_product(I1, a, b)
assert convert_array_to_matrix(cg) == a * b.T
# Recognize trace inside a tensor product:
cg = _array_contraction(_array_tensor_product(A, B, C), (0, 3), (1, 2))
assert convert_array_to_matrix(cg) == Trace(A * B) * C
# Transform diagonal operator to contraction:
cg = _array_diagonal(_array_tensor_product(A, a), (1, 2))
assert _array_diag2contr_diagmatrix(cg) == _array_contraction(_array_tensor_product(A, OneArray(1), DiagMatrix(a)), (1, 3))
assert convert_array_to_matrix(cg) == A * DiagMatrix(a)
cg = _array_diagonal(_array_tensor_product(a, b), (0, 2))
assert _array_diag2contr_diagmatrix(cg) == _permute_dims(
_array_contraction(_array_tensor_product(DiagMatrix(a), OneArray(1), b), (0, 3)), [1, 2, 0]
)
assert convert_array_to_matrix(cg) == b.T * DiagMatrix(a)
cg = _array_diagonal(_array_tensor_product(A, a), (0, 2))
assert _array_diag2contr_diagmatrix(cg) == _array_contraction(_array_tensor_product(A, OneArray(1), DiagMatrix(a)), (0, 3))
assert convert_array_to_matrix(cg) == A.T * DiagMatrix(a)
cg = _array_diagonal(_array_tensor_product(I, x, I1), (0, 2), (3, 5))
assert _array_diag2contr_diagmatrix(cg) == _array_contraction(_array_tensor_product(I, OneArray(1), I1, DiagMatrix(x)), (0, 5))
assert convert_array_to_matrix(cg) == DiagMatrix(x)
cg = _array_diagonal(_array_tensor_product(I, x, A, B), (1, 2), (5, 6))
assert _array_diag2contr_diagmatrix(cg) == _array_diagonal(_array_contraction(_array_tensor_product(I, OneArray(1), A, B, DiagMatrix(x)), (1, 7)), (5, 6))
# TODO: this is returning a wrong result:
# convert_array_to_matrix(cg)
cg = _array_diagonal(_array_tensor_product(I1, a, b), (1, 3, 5))
assert convert_array_to_matrix(cg) == a*b.T
cg = _array_diagonal(_array_tensor_product(I1, a, b), (1, 3))
assert _array_diag2contr_diagmatrix(cg) == _array_contraction(_array_tensor_product(OneArray(1), a, b, I1), (2, 6))
assert convert_array_to_matrix(cg) == a*b.T
cg = _array_diagonal(_array_tensor_product(x, I1), (1, 2))
assert isinstance(cg, ArrayDiagonal)
assert cg.diagonal_indices == ((1, 2),)
assert convert_array_to_matrix(cg) == x
cg = _array_diagonal(_array_tensor_product(x, I), (0, 2))
assert _array_diag2contr_diagmatrix(cg) == _array_contraction(_array_tensor_product(OneArray(1), I, DiagMatrix(x)), (1, 3))
assert convert_array_to_matrix(cg).doit() == DiagMatrix(x)
raises(ValueError, lambda: _array_diagonal(x, (1,)))
# Ignore identity matrices with contractions:
cg = _array_contraction(_array_tensor_product(I, A, I, I), (0, 2), (1, 3), (5, 7))
assert cg.split_multiple_contractions() == cg
assert convert_array_to_matrix(cg) == Trace(A) * I
cg = _array_contraction(_array_tensor_product(Trace(A) * I, I, I), (1, 5), (3, 4))
assert cg.split_multiple_contractions() == cg
assert convert_array_to_matrix(cg).doit() == Trace(A) * I
# Add DiagMatrix when required:
cg = _array_contraction(_array_tensor_product(A, a), (1, 2))
assert cg.split_multiple_contractions() == cg
assert convert_array_to_matrix(cg) == A * a
cg = _array_contraction(_array_tensor_product(A, a, B), (1, 2, 4))
assert cg.split_multiple_contractions() == _array_contraction(_array_tensor_product(A, DiagMatrix(a), OneArray(1), B), (1, 2), (3, 5))
assert convert_array_to_matrix(cg) == A * DiagMatrix(a) * B
cg = _array_contraction(_array_tensor_product(A, a, B), (0, 2, 4))
assert cg.split_multiple_contractions() == _array_contraction(_array_tensor_product(A, DiagMatrix(a), OneArray(1), B), (0, 2), (3, 5))
assert convert_array_to_matrix(cg) == A.T * DiagMatrix(a) * B
cg = _array_contraction(_array_tensor_product(A, a, b, a.T, B), (0, 2, 4, 7, 9))
assert cg.split_multiple_contractions() == _array_contraction(_array_tensor_product(A, DiagMatrix(a), OneArray(1),
DiagMatrix(b), OneArray(1), DiagMatrix(a), OneArray(1), B),
(0, 2), (3, 5), (6, 9), (8, 12))
assert convert_array_to_matrix(cg) == A.T * DiagMatrix(a) * DiagMatrix(b) * DiagMatrix(a) * B.T
cg = _array_contraction(_array_tensor_product(I1, I1, I1), (1, 2, 4))
assert cg.split_multiple_contractions() == _array_contraction(_array_tensor_product(I1, I1, OneArray(1), I1), (1, 2), (3, 5))
assert convert_array_to_matrix(cg) == 1
cg = _array_contraction(_array_tensor_product(I, I, I, I, A), (1, 2, 8), (5, 6, 9))
assert convert_array_to_matrix(cg.split_multiple_contractions()).doit() == A
cg = _array_contraction(_array_tensor_product(A, a, C, a, B), (1, 2, 4), (5, 6, 8))
expected = _array_contraction(_array_tensor_product(A, DiagMatrix(a), OneArray(1), C, DiagMatrix(a), OneArray(1), B), (1, 3), (2, 5), (6, 7), (8, 10))
assert cg.split_multiple_contractions() == expected
assert convert_array_to_matrix(cg) == A * DiagMatrix(a) * C * DiagMatrix(a) * B
cg = _array_contraction(_array_tensor_product(a, I1, b, I1, (a.T*b).applyfunc(cos)), (1, 2, 8), (5, 6, 9))
expected = _array_contraction(_array_tensor_product(a, I1, OneArray(1), b, I1, OneArray(1), (a.T*b).applyfunc(cos)),
(1, 3), (2, 10), (6, 8), (7, 11))
assert cg.split_multiple_contractions().dummy_eq(expected)
assert convert_array_to_matrix(cg).doit().dummy_eq(MatMul(a, (a.T * b).applyfunc(cos), b.T))
def test_arrayexpr_convert_array_contraction_tp_additions():
a = ArrayAdd(
_array_tensor_product(M, N),
_array_tensor_product(N, M)
)
tp = _array_tensor_product(P, a, Q)
expr = _array_contraction(tp, (3, 4))
expected = _array_tensor_product(
P,
ArrayAdd(
_array_contraction(_array_tensor_product(M, N), (1, 2)),
_array_contraction(_array_tensor_product(N, M), (1, 2)),
),
Q
)
assert expr == expected
assert convert_array_to_matrix(expr) == _array_tensor_product(P, M * N + N * M, Q)
expr = _array_contraction(tp, (1, 2), (3, 4), (5, 6))
result = _array_contraction(
_array_tensor_product(
P,
ArrayAdd(
_array_contraction(_array_tensor_product(M, N), (1, 2)),
_array_contraction(_array_tensor_product(N, M), (1, 2)),
),
Q
), (1, 2), (3, 4))
assert expr == result
assert convert_array_to_matrix(expr) == P * (M * N + N * M) * Q
def test_arrayexpr_convert_array_to_implicit_matmul():
# Trivial dimensions are suppressed, so the result can be expressed in matrix form:
cg = _array_tensor_product(a, b)
assert convert_array_to_matrix(cg) == a * b.T
cg = _array_tensor_product(a, b, I)
assert convert_array_to_matrix(cg) == _array_tensor_product(a*b.T, I)
cg = _array_tensor_product(I, a, b)
assert convert_array_to_matrix(cg) == _array_tensor_product(I, a*b.T)
cg = _array_tensor_product(a, I, b)
assert convert_array_to_matrix(cg) == _array_tensor_product(a, I, b)
cg = _array_contraction(_array_tensor_product(I, I), (1, 2))
assert convert_array_to_matrix(cg) == I
cg = PermuteDims(_array_tensor_product(I, Identity(1)), [0, 2, 1, 3])
assert convert_array_to_matrix(cg) == I
def test_arrayexpr_convert_array_to_matrix_remove_trivial_dims():
# Tensor Product:
assert _remove_trivial_dims(_array_tensor_product(a, b)) == (a * b.T, [1, 3])
assert _remove_trivial_dims(_array_tensor_product(a.T, b)) == (a * b.T, [0, 3])
assert _remove_trivial_dims(_array_tensor_product(a, b.T)) == (a * b.T, [1, 2])
assert _remove_trivial_dims(_array_tensor_product(a.T, b.T)) == (a * b.T, [0, 2])
assert _remove_trivial_dims(_array_tensor_product(I, a.T, b.T)) == (_array_tensor_product(I, a * b.T), [2, 4])
assert _remove_trivial_dims(_array_tensor_product(a.T, I, b.T)) == (_array_tensor_product(a.T, I, b.T), [])
assert _remove_trivial_dims(_array_tensor_product(a, I)) == (_array_tensor_product(a, I), [])
assert _remove_trivial_dims(_array_tensor_product(I, a)) == (_array_tensor_product(I, a), [])
assert _remove_trivial_dims(_array_tensor_product(a.T, b.T, c, d)) == (
_array_tensor_product(a * b.T, c * d.T), [0, 2, 5, 7])
assert _remove_trivial_dims(_array_tensor_product(a.T, I, b.T, c, d, I)) == (
_array_tensor_product(a.T, I, b*c.T, d, I), [4, 7])
# Addition:
cg = ArrayAdd(_array_tensor_product(a, b), _array_tensor_product(c, d))
assert _remove_trivial_dims(cg) == (a * b.T + c * d.T, [1, 3])
# Permute Dims:
cg = PermuteDims(_array_tensor_product(a, b), Permutation(3)(1, 2))
assert _remove_trivial_dims(cg) == (a * b.T, [2, 3])
cg = PermuteDims(_array_tensor_product(a, I, b), Permutation(5)(1, 2, 3, 4))
assert _remove_trivial_dims(cg) == (cg, [])
cg = PermuteDims(_array_tensor_product(I, b, a), Permutation(5)(1, 2, 4, 5, 3))
assert _remove_trivial_dims(cg) == (PermuteDims(_array_tensor_product(I, b * a.T), [0, 2, 3, 1]), [4, 5])
# Diagonal:
cg = _array_diagonal(_array_tensor_product(M, a), (1, 2))
assert _remove_trivial_dims(cg) == (cg, [])
# Contraction:
cg = _array_contraction(_array_tensor_product(M, a), (1, 2))
assert _remove_trivial_dims(cg) == (cg, [])
# A few more cases to test the removal and shift of nested removed axes
# with array contractions and array diagonals:
tp = _array_tensor_product(
OneMatrix(1, 1),
M,
x,
OneMatrix(1, 1),
Identity(1),
)
expr = _array_contraction(tp, (1, 8))
rexpr, removed = _remove_trivial_dims(expr)
assert removed == [0, 5, 6, 7]
expr = _array_contraction(tp, (1, 8), (3, 4))
rexpr, removed = _remove_trivial_dims(expr)
assert removed == [0, 3, 4, 5]
expr = _array_diagonal(tp, (1, 8))
rexpr, removed = _remove_trivial_dims(expr)
assert removed == [0, 5, 6, 7, 8]
expr = _array_diagonal(tp, (1, 8), (3, 4))
rexpr, removed = _remove_trivial_dims(expr)
assert removed == [0, 3, 4, 5, 6]
expr = _array_diagonal(_array_contraction(_array_tensor_product(A, x, I, I1), (1, 2, 5)), (1, 4))
rexpr, removed = _remove_trivial_dims(expr)
assert removed == [2, 3]
cg = _array_diagonal(_array_tensor_product(PermuteDims(_array_tensor_product(x, I1), Permutation(1, 2, 3)), (x.T*x).applyfunc(sqrt)), (2, 4), (3, 5))
rexpr, removed = _remove_trivial_dims(cg)
assert removed == [1, 2]
# Contractions with identity matrices need to be followed by a permutation
# in order
cg = _array_contraction(_array_tensor_product(A, B, C, M, I), (1, 8))
ret, removed = _remove_trivial_dims(cg)
assert ret == PermuteDims(_array_tensor_product(A, B, C, M), [0, 2, 3, 4, 5, 6, 7, 1])
assert removed == []
cg = _array_contraction(_array_tensor_product(A, B, C, M, I), (1, 8), (3, 4))
ret, removed = _remove_trivial_dims(cg)
assert ret == PermuteDims(_array_contraction(_array_tensor_product(A, B, C, M), (3, 4)), [0, 2, 3, 4, 5, 1])
assert removed == []
# Trivial matrices are sometimes inserted into MatMul expressions:
cg = _array_tensor_product(b*b.T, a.T*a)
ret, removed = _remove_trivial_dims(cg)
assert ret == b*a.T*a*b.T
assert removed == [2, 3]
Xs = ArraySymbol("X", (3, 2, k))
cg = _array_tensor_product(M, Xs, b.T*c, a*a.T, b*b.T, c.T*d)
ret, removed = _remove_trivial_dims(cg)
assert ret == _array_tensor_product(M, Xs, a*b.T*c*c.T*d*a.T, b*b.T)
assert removed == [5, 6, 11, 12]
cg = _array_diagonal(_array_tensor_product(I, I1, x), (1, 4), (3, 5))
assert _remove_trivial_dims(cg) == (PermuteDims(_array_diagonal(_array_tensor_product(I, x), (1, 2)), Permutation(1, 2)), [1])
expr = _array_diagonal(_array_tensor_product(x, I, y), (0, 2))
assert _remove_trivial_dims(expr) == (PermuteDims(_array_tensor_product(DiagMatrix(x), y), [1, 2, 3, 0]), [0])
expr = _array_diagonal(_array_tensor_product(x, I, y), (0, 2), (3, 4))
assert _remove_trivial_dims(expr) == (expr, [])
def test_arrayexpr_convert_array_to_matrix_diag2contraction_diagmatrix():
cg = _array_diagonal(_array_tensor_product(M, a), (1, 2))
res = _array_diag2contr_diagmatrix(cg)
assert res.shape == cg.shape
assert res == _array_contraction(_array_tensor_product(M, OneArray(1), DiagMatrix(a)), (1, 3))
raises(ValueError, lambda: _array_diagonal(_array_tensor_product(a, M), (1, 2)))
cg = _array_diagonal(_array_tensor_product(a.T, M), (1, 2))
res = _array_diag2contr_diagmatrix(cg)
assert res.shape == cg.shape
assert res == _array_contraction(_array_tensor_product(OneArray(1), M, DiagMatrix(a.T)), (1, 4))
cg = _array_diagonal(_array_tensor_product(a.T, M, N, b.T), (1, 2), (4, 7))
res = _array_diag2contr_diagmatrix(cg)
assert res.shape == cg.shape
assert res == _array_contraction(
_array_tensor_product(OneArray(1), M, N, OneArray(1), DiagMatrix(a.T), DiagMatrix(b.T)), (1, 7), (3, 9))
cg = _array_diagonal(_array_tensor_product(a, M, N, b.T), (0, 2), (4, 7))
res = _array_diag2contr_diagmatrix(cg)
assert res.shape == cg.shape
assert res == _array_contraction(
_array_tensor_product(OneArray(1), M, N, OneArray(1), DiagMatrix(a), DiagMatrix(b.T)), (1, 6), (3, 9))
cg = _array_diagonal(_array_tensor_product(a, M, N, b.T), (0, 4), (3, 7))
res = _array_diag2contr_diagmatrix(cg)
assert res.shape == cg.shape
assert res == _array_contraction(
_array_tensor_product(OneArray(1), M, N, OneArray(1), DiagMatrix(a), DiagMatrix(b.T)), (3, 6), (2, 9))
I1 = Identity(1)
x = MatrixSymbol("x", k, 1)
A = MatrixSymbol("A", k, k)
cg = _array_diagonal(_array_tensor_product(x, A.T, I1), (0, 2))
assert _array_diag2contr_diagmatrix(cg).shape == cg.shape
assert _array2matrix(cg).shape == cg.shape
def test_arrayexpr_convert_array_to_matrix_support_function():
assert _support_function_tp1_recognize([], [2 * k]) == 2 * k
assert _support_function_tp1_recognize([(1, 2)], [A, 2 * k, B, 3]) == 6 * k * A * B
assert _support_function_tp1_recognize([(0, 3), (1, 2)], [A, B]) == Trace(A * B)
assert _support_function_tp1_recognize([(1, 2)], [A, B]) == A * B
assert _support_function_tp1_recognize([(0, 2)], [A, B]) == A.T * B
assert _support_function_tp1_recognize([(1, 3)], [A, B]) == A * B.T
assert _support_function_tp1_recognize([(0, 3)], [A, B]) == A.T * B.T
assert _support_function_tp1_recognize([(1, 2), (5, 6)], [A, B, C, D]) == _array_tensor_product(A * B, C * D)
assert _support_function_tp1_recognize([(1, 4), (3, 6)], [A, B, C, D]) == PermuteDims(
_array_tensor_product(A * C, B * D), [0, 2, 1, 3])
assert _support_function_tp1_recognize([(0, 3), (1, 4)], [A, B, C]) == B * A * C
assert _support_function_tp1_recognize([(9, 10), (1, 2), (5, 6), (3, 4), (7, 8)],
[X, Y, A, B, C, D]) == X * Y * A * B * C * D
assert _support_function_tp1_recognize([(9, 10), (1, 2), (5, 6), (3, 4)],
[X, Y, A, B, C, D]) == _array_tensor_product(X * Y * A * B, C * D)
assert _support_function_tp1_recognize([(1, 7), (3, 8), (4, 11)], [X, Y, A, B, C, D]) == PermuteDims(
_array_tensor_product(X * B.T, Y * C, A.T * D.T), [0, 2, 4, 1, 3, 5]
)
assert _support_function_tp1_recognize([(0, 1), (3, 6), (5, 8)], [X, A, B, C, D]) == PermuteDims(
_array_tensor_product(Trace(X) * A * C, B * D), [0, 2, 1, 3])
assert _support_function_tp1_recognize([(1, 2), (3, 4), (5, 6), (7, 8)], [A, A, B, C, D]) == A ** 2 * B * C * D
assert _support_function_tp1_recognize([(1, 2), (3, 4), (5, 6), (7, 8)], [X, A, B, C, D]) == X * A * B * C * D
assert _support_function_tp1_recognize([(1, 6), (3, 8), (5, 10)], [X, Y, A, B, C, D]) == PermuteDims(
_array_tensor_product(X * B, Y * C, A * D), [0, 2, 4, 1, 3, 5]
)
assert _support_function_tp1_recognize([(1, 4), (3, 6)], [A, B, C, D]) == PermuteDims(
_array_tensor_product(A * C, B * D), [0, 2, 1, 3])
assert _support_function_tp1_recognize([(0, 4), (1, 7), (2, 5), (3, 8)], [X, A, B, C, D]) == C*X.T*B*A*D
assert _support_function_tp1_recognize([(0, 4), (1, 7), (2, 5), (3, 8)], [X, A, B, C, D]) == C*X.T*B*A*D
def test_convert_array_to_hadamard_products():
expr = HadamardProduct(M, N)
cg = convert_matrix_to_array(expr)
ret = convert_array_to_matrix(cg)
assert ret == expr
expr = HadamardProduct(M, N)*P
cg = convert_matrix_to_array(expr)
ret = convert_array_to_matrix(cg)
assert ret == expr
expr = Q*HadamardProduct(M, N)*P
cg = convert_matrix_to_array(expr)
ret = convert_array_to_matrix(cg)
assert ret == expr
expr = Q*HadamardProduct(M, N.T)*P
cg = convert_matrix_to_array(expr)
ret = convert_array_to_matrix(cg)
assert ret == expr
expr = HadamardProduct(M, N)*HadamardProduct(Q, P)
cg = convert_matrix_to_array(expr)
ret = convert_array_to_matrix(cg)
assert expr == ret
expr = P.T*HadamardProduct(M, N)*HadamardProduct(Q, P)
cg = convert_matrix_to_array(expr)
ret = convert_array_to_matrix(cg)
assert expr == ret
# ArrayDiagonal should be converted
cg = _array_diagonal(_array_tensor_product(M, N, Q), (1, 3), (0, 2, 4))
ret = convert_array_to_matrix(cg)
expected = PermuteDims(_array_diagonal(_array_tensor_product(HadamardProduct(M.T, N.T), Q), (1, 2)), [1, 0, 2])
assert expected == ret
# Special case that should return the same expression:
cg = _array_diagonal(_array_tensor_product(HadamardProduct(M, N), Q), (0, 2))
ret = convert_array_to_matrix(cg)
assert ret == cg
# Hadamard products with traces:
expr = Trace(HadamardProduct(M, N))
cg = convert_matrix_to_array(expr)
ret = convert_array_to_matrix(cg)
assert ret == Trace(HadamardProduct(M.T, N.T))
expr = Trace(A*HadamardProduct(M, N))
cg = convert_matrix_to_array(expr)
ret = convert_array_to_matrix(cg)
assert ret == Trace(HadamardProduct(M, N)*A)
expr = Trace(HadamardProduct(A, M)*N)
cg = convert_matrix_to_array(expr)
ret = convert_array_to_matrix(cg)
assert ret == Trace(HadamardProduct(M.T, N)*A)
# These should not be converted into Hadamard products:
cg = _array_diagonal(_array_tensor_product(M, N), (0, 1, 2, 3))
ret = convert_array_to_matrix(cg)
assert ret == cg
cg = _array_diagonal(_array_tensor_product(A), (0, 1))
ret = convert_array_to_matrix(cg)
assert ret == cg
cg = _array_diagonal(_array_tensor_product(M, N, P), (0, 2, 4), (1, 3, 5))
assert convert_array_to_matrix(cg) == HadamardProduct(M, N, P)
cg = _array_diagonal(_array_tensor_product(M, N, P), (0, 3, 4), (1, 2, 5))
assert convert_array_to_matrix(cg) == HadamardProduct(M, P, N.T)
cg = _array_diagonal(_array_tensor_product(I, I1, x), (1, 4), (3, 5))
assert convert_array_to_matrix(cg) == DiagMatrix(x)
def test_identify_removable_identity_matrices():
D = DiagonalMatrix(MatrixSymbol("D", k, k))
cg = _array_contraction(_array_tensor_product(A, B, I), (1, 2, 4, 5))
expected = _array_contraction(_array_tensor_product(A, B), (1, 2))
assert identify_removable_identity_matrices(cg) == expected
cg = _array_contraction(_array_tensor_product(A, B, C, I), (1, 3, 5, 6, 7))
expected = _array_contraction(_array_tensor_product(A, B, C), (1, 3, 5))
assert identify_removable_identity_matrices(cg) == expected
# Tests with diagonal matrices:
cg = _array_contraction(_array_tensor_product(A, B, D), (1, 2, 4, 5))
ret = identify_removable_identity_matrices(cg)
expected = _array_contraction(_array_tensor_product(A, B, D), (1, 4), (2, 5))
assert ret == expected
cg = _array_contraction(_array_tensor_product(A, B, D, M, N), (1, 2, 4, 5, 6, 8))
ret = identify_removable_identity_matrices(cg)
assert ret == cg
def test_combine_removed():
assert _combine_removed(6, [0, 1, 2], [0, 1, 2]) == [0, 1, 2, 3, 4, 5]
assert _combine_removed(8, [2, 5], [1, 3, 4]) == [1, 2, 4, 5, 6]
assert _combine_removed(8, [7], []) == [7]
def test_array_contraction_to_diagonal_multiple_identities():
expr = _array_contraction(_array_tensor_product(A, B, I, C), (1, 2, 4), (5, 6))
assert _array_contraction_to_diagonal_multiple_identity(expr) == (expr, [])
assert convert_array_to_matrix(expr) == _array_contraction(_array_tensor_product(A, B, C), (1, 2, 4))
expr = _array_contraction(_array_tensor_product(A, I, I), (1, 2, 4))
assert _array_contraction_to_diagonal_multiple_identity(expr) == (A, [2])
assert convert_array_to_matrix(expr) == A
expr = _array_contraction(_array_tensor_product(A, I, I, B), (1, 2, 4), (3, 6))
assert _array_contraction_to_diagonal_multiple_identity(expr) == (expr, [])
expr = _array_contraction(_array_tensor_product(A, I, I, B), (1, 2, 3, 4, 6))
assert _array_contraction_to_diagonal_multiple_identity(expr) == (expr, [])
def test_convert_array_element_to_matrix():
expr = ArrayElement(M, (i, j))
assert convert_array_to_matrix(expr) == MatrixElement(M, i, j)
expr = ArrayElement(_array_contraction(_array_tensor_product(M, N), (1, 3)), (i, j))
assert convert_array_to_matrix(expr) == MatrixElement(M*N.T, i, j)
expr = ArrayElement(_array_tensor_product(M, N), (i, j, m, n))
assert convert_array_to_matrix(expr) == expr
def test_convert_array_elementwise_function_to_matrix():
d = Dummy("d")
expr = ArrayElementwiseApplyFunc(Lambda(d, sin(d)), x.T*y)
assert convert_array_to_matrix(expr) == sin(x.T*y)
expr = ArrayElementwiseApplyFunc(Lambda(d, d**2), x.T*y)
assert convert_array_to_matrix(expr) == (x.T*y)**2
expr = ArrayElementwiseApplyFunc(Lambda(d, sin(d)), x)
assert convert_array_to_matrix(expr).dummy_eq(x.applyfunc(sin))
expr = ArrayElementwiseApplyFunc(Lambda(d, 1 / (2 * sqrt(d))), x)
assert convert_array_to_matrix(expr) == S.Half * HadamardPower(x, -S.Half)
def test_array2matrix():
# See issue https://github.com/sympy/sympy/pull/22877
expr = PermuteDims(ArrayContraction(ArrayTensorProduct(x, I, I1, x), (0, 3), (1, 7)), Permutation(2, 3))
expected = PermuteDims(ArrayTensorProduct(x*x.T, I1), Permutation(3)(1, 2))
assert _array2matrix(expr) == expected
def test_recognize_broadcasting():
expr = ArrayTensorProduct(x.T*x, A)
assert _remove_trivial_dims(expr) == (KroneckerProduct(x.T*x, A), [0, 1])
expr = ArrayTensorProduct(A, x.T*x)
assert _remove_trivial_dims(expr) == (KroneckerProduct(A, x.T*x), [2, 3])
expr = ArrayTensorProduct(A, B, x.T*x, C)
assert _remove_trivial_dims(expr) == (ArrayTensorProduct(A, KroneckerProduct(B, x.T*x), C), [4, 5])
# Always prefer matrix multiplication to Kronecker product, if possible:
expr = ArrayTensorProduct(a, b, x.T*x)
assert _remove_trivial_dims(expr) == (a*x.T*x*b.T, [1, 3, 4, 5])
|
455106fea52c5e2047f601ed5a9dbef69302e09d9a2dce2251dcc114cd10c93c | from sympy import tanh
from sympy.concrete.summations import Sum
from sympy.core.symbol import symbols
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.matrices.expressions.special import Identity
from sympy.tensor.array.expressions import ArrayElementwiseApplyFunc
from sympy.tensor.indexed import IndexedBase
from sympy.combinatorics import Permutation
from sympy.tensor.array.expressions.array_expressions import ArrayContraction, ArrayTensorProduct, \
ArrayDiagonal, ArrayAdd, PermuteDims, ArrayElement, _array_tensor_product, _array_contraction, _array_diagonal, \
_array_add, _permute_dims, ArraySymbol, OneArray
from sympy.tensor.array.expressions.from_array_to_matrix import convert_array_to_matrix
from sympy.tensor.array.expressions.from_indexed_to_array import convert_indexed_to_array, _convert_indexed_to_array
from sympy.testing.pytest import raises
A, B = symbols("A B", cls=IndexedBase)
i, j, k, l, m, n = symbols("i j k l m n")
d0, d1, d2, d3 = symbols("d0:4")
I = Identity(k)
M = MatrixSymbol("M", k, k)
N = MatrixSymbol("N", k, k)
P = MatrixSymbol("P", k, k)
Q = MatrixSymbol("Q", k, k)
a = MatrixSymbol("a", k, 1)
b = MatrixSymbol("b", k, 1)
c = MatrixSymbol("c", k, 1)
d = MatrixSymbol("d", k, 1)
def test_arrayexpr_convert_index_to_array_support_function():
expr = M[i, j]
assert _convert_indexed_to_array(expr) == (M, (i, j))
expr = M[i, j]*N[k, l]
assert _convert_indexed_to_array(expr) == (ArrayTensorProduct(M, N), (i, j, k, l))
expr = M[i, j]*N[j, k]
assert _convert_indexed_to_array(expr) == (ArrayDiagonal(ArrayTensorProduct(M, N), (1, 2)), (i, k, j))
expr = Sum(M[i, j]*N[j, k], (j, 0, k-1))
assert _convert_indexed_to_array(expr) == (ArrayContraction(ArrayTensorProduct(M, N), (1, 2)), (i, k))
expr = M[i, j] + N[i, j]
assert _convert_indexed_to_array(expr) == (ArrayAdd(M, N), (i, j))
expr = M[i, j] + N[j, i]
assert _convert_indexed_to_array(expr) == (ArrayAdd(M, PermuteDims(N, Permutation([1, 0]))), (i, j))
expr = M[i, j] + M[j, i]
assert _convert_indexed_to_array(expr) == (ArrayAdd(M, PermuteDims(M, Permutation([1, 0]))), (i, j))
expr = (M*N*P)[i, j]
assert _convert_indexed_to_array(expr) == (_array_contraction(ArrayTensorProduct(M, N, P), (1, 2), (3, 4)), (i, j))
expr = expr.function # Disregard summation in previous expression
ret1, ret2 = _convert_indexed_to_array(expr)
assert ret1 == ArrayDiagonal(ArrayTensorProduct(M, N, P), (1, 2), (3, 4))
assert str(ret2) == "(i, j, _i_1, _i_2)"
expr = KroneckerDelta(i, j)*M[i, k]
assert _convert_indexed_to_array(expr) == (M, ({i, j}, k))
expr = KroneckerDelta(i, j)*KroneckerDelta(j, k)*M[i, l]
assert _convert_indexed_to_array(expr) == (M, ({i, j, k}, l))
expr = KroneckerDelta(j, k)*(M[i, j]*N[k, l] + N[i, j]*M[k, l])
assert _convert_indexed_to_array(expr) == (_array_diagonal(_array_add(
ArrayTensorProduct(M, N),
_permute_dims(ArrayTensorProduct(M, N), Permutation(0, 2)(1, 3))
), (1, 2)), (i, l, frozenset({j, k})))
expr = KroneckerDelta(j, m)*KroneckerDelta(m, k)*(M[i, j]*N[k, l] + N[i, j]*M[k, l])
assert _convert_indexed_to_array(expr) == (_array_diagonal(_array_add(
ArrayTensorProduct(M, N),
_permute_dims(ArrayTensorProduct(M, N), Permutation(0, 2)(1, 3))
), (1, 2)), (i, l, frozenset({j, m, k})))
expr = KroneckerDelta(i, j)*KroneckerDelta(j, k)*KroneckerDelta(k,m)*M[i, 0]*KroneckerDelta(m, n)
assert _convert_indexed_to_array(expr) == (M, ({i, j, k, m, n}, 0))
expr = M[i, i]
assert _convert_indexed_to_array(expr) == (ArrayDiagonal(M, (0, 1)), (i,))
def test_arrayexpr_convert_indexed_to_array_expression():
s = Sum(A[i]*B[i], (i, 0, 3))
cg = convert_indexed_to_array(s)
assert cg == ArrayContraction(ArrayTensorProduct(A, B), (0, 1))
expr = M*N
result = ArrayContraction(ArrayTensorProduct(M, N), (1, 2))
elem = expr[i, j]
assert convert_indexed_to_array(elem) == result
expr = M*N*M
elem = expr[i, j]
result = _array_contraction(_array_tensor_product(M, M, N), (1, 4), (2, 5))
cg = convert_indexed_to_array(elem)
assert cg == result
cg = convert_indexed_to_array((M * N * P)[i, j])
assert cg == _array_contraction(ArrayTensorProduct(M, N, P), (1, 2), (3, 4))
cg = convert_indexed_to_array((M * N.T * P)[i, j])
assert cg == _array_contraction(ArrayTensorProduct(M, N, P), (1, 3), (2, 4))
expr = -2*M*N
elem = expr[i, j]
cg = convert_indexed_to_array(elem)
assert cg == ArrayContraction(ArrayTensorProduct(-2, M, N), (1, 2))
def test_arrayexpr_convert_array_element_to_array_expression():
A = ArraySymbol("A", (k,))
B = ArraySymbol("B", (k,))
s = Sum(A[i]*B[i], (i, 0, k-1))
cg = convert_indexed_to_array(s)
assert cg == ArrayContraction(ArrayTensorProduct(A, B), (0, 1))
s = A[i]*B[i]
cg = convert_indexed_to_array(s)
assert cg == ArrayDiagonal(ArrayTensorProduct(A, B), (0, 1))
s = A[i]*B[j]
cg = convert_indexed_to_array(s, [i, j])
assert cg == ArrayTensorProduct(A, B)
cg = convert_indexed_to_array(s, [j, i])
assert cg == ArrayTensorProduct(B, A)
s = tanh(A[i]*B[j])
cg = convert_indexed_to_array(s, [i, j])
assert cg.dummy_eq(ArrayElementwiseApplyFunc(tanh, ArrayTensorProduct(A, B)))
def test_arrayexpr_convert_indexed_to_array_and_back_to_matrix():
expr = a.T*b
elem = expr[0, 0]
cg = convert_indexed_to_array(elem)
assert cg == ArrayElement(ArrayContraction(ArrayTensorProduct(a, b), (0, 2)), [0, 0])
expr = M[i,j] + N[i,j]
p1, p2 = _convert_indexed_to_array(expr)
assert convert_array_to_matrix(p1) == M + N
expr = M[i,j] + N[j,i]
p1, p2 = _convert_indexed_to_array(expr)
assert convert_array_to_matrix(p1) == M + N.T
expr = M[i,j]*N[k,l] + N[i,j]*M[k,l]
p1, p2 = _convert_indexed_to_array(expr)
assert convert_array_to_matrix(p1) == ArrayAdd(
ArrayTensorProduct(M, N),
ArrayTensorProduct(N, M))
expr = (M*N*P)[i, j]
p1, p2 = _convert_indexed_to_array(expr)
assert convert_array_to_matrix(p1) == M * N * P
expr = Sum(M[i,j]*(N*P)[j,m], (j, 0, k-1))
p1, p2 = _convert_indexed_to_array(expr)
assert convert_array_to_matrix(p1) == M * N * P
expr = Sum((P[j, m] + P[m, j])*(M[i,j]*N[m,n] + N[i,j]*M[m,n]), (j, 0, k-1), (m, 0, k-1))
p1, p2 = _convert_indexed_to_array(expr)
assert convert_array_to_matrix(p1) == M * P * N + M * P.T * N + N * P * M + N * P.T * M
def test_arrayexpr_convert_indexed_to_array_out_of_bounds():
expr = Sum(M[i, i], (i, 0, 4))
raises(ValueError, lambda: convert_indexed_to_array(expr))
expr = Sum(M[i, i], (i, 0, k))
raises(ValueError, lambda: convert_indexed_to_array(expr))
expr = Sum(M[i, i], (i, 1, k-1))
raises(ValueError, lambda: convert_indexed_to_array(expr))
expr = Sum(M[i, j]*N[j,m], (j, 0, 4))
raises(ValueError, lambda: convert_indexed_to_array(expr))
expr = Sum(M[i, j]*N[j,m], (j, 0, k))
raises(ValueError, lambda: convert_indexed_to_array(expr))
expr = Sum(M[i, j]*N[j,m], (j, 1, k-1))
raises(ValueError, lambda: convert_indexed_to_array(expr))
def test_arrayexpr_convert_indexed_to_array_broadcast():
A = ArraySymbol("A", (3, 3))
B = ArraySymbol("B", (3, 3))
expr = A[i, j] + B[k, l]
O2 = OneArray(3, 3)
expected = ArrayAdd(ArrayTensorProduct(A, O2), ArrayTensorProduct(O2, B))
assert convert_indexed_to_array(expr) == expected
assert convert_indexed_to_array(expr, [i, j, k, l]) == expected
assert convert_indexed_to_array(expr, [l, k, i, j]) == ArrayAdd(PermuteDims(ArrayTensorProduct(O2, A), [1, 0, 2, 3]), PermuteDims(ArrayTensorProduct(B, O2), [1, 0, 2, 3]))
expr = A[i, j] + B[j, k]
O1 = OneArray(3)
assert convert_indexed_to_array(expr, [i, j, k]) == ArrayAdd(ArrayTensorProduct(A, O1), ArrayTensorProduct(O1, B))
C = ArraySymbol("C", (d0, d1))
D = ArraySymbol("D", (d3, d1))
expr = C[i, j] + D[k, j]
assert convert_indexed_to_array(expr, [i, j, k]) == ArrayAdd(ArrayTensorProduct(C, OneArray(d3)), PermuteDims(ArrayTensorProduct(OneArray(d0), D), [0, 2, 1]))
X = ArraySymbol("X", (5, 3))
expr = X[i, n] - X[j, n]
assert convert_indexed_to_array(expr, [i, j, n]) == ArrayAdd(ArrayTensorProduct(-1, OneArray(5), X), PermuteDims(ArrayTensorProduct(X, OneArray(5)), [0, 2, 1]))
raises(ValueError, lambda: convert_indexed_to_array(C[i, j] + D[i, j]))
|
0c6f08a14b710b2d9a7168d41d450abb86d1b13c576de14b16328c2c0d8674b6 | from sympy import MatrixSymbol, symbols, Sum
from sympy.tensor.array.expressions import conv_array_to_indexed, from_array_to_indexed, ArrayTensorProduct, \
ArrayContraction, conv_array_to_matrix, from_array_to_matrix, conv_matrix_to_array, from_matrix_to_array, \
conv_indexed_to_array, from_indexed_to_array
from sympy.testing.pytest import warns
from sympy.utilities.exceptions import SymPyDeprecationWarning
def test_deprecated_conv_module_results():
M = MatrixSymbol("M", 3, 3)
N = MatrixSymbol("N", 3, 3)
i, j, d = symbols("i j d")
x = ArrayContraction(ArrayTensorProduct(M, N), (1, 2))
y = Sum(M[i, d]*N[d, j], (d, 0, 2))
with warns(SymPyDeprecationWarning, test_stacklevel=False):
assert conv_array_to_indexed.convert_array_to_indexed(x, [i, j]).dummy_eq(from_array_to_indexed.convert_array_to_indexed(x, [i, j]))
assert conv_array_to_matrix.convert_array_to_matrix(x) == from_array_to_matrix.convert_array_to_matrix(x)
assert conv_matrix_to_array.convert_matrix_to_array(M*N) == from_matrix_to_array.convert_matrix_to_array(M*N)
assert conv_indexed_to_array.convert_indexed_to_array(y) == from_indexed_to_array.convert_indexed_to_array(y)
|
eb23711971fa057e7ad3b1538cc930476b7dc0d56512157c24c4a1e14216bb1f | from sympy import Sum, Dummy, sin
from sympy.tensor.array.expressions import ArraySymbol, ArrayTensorProduct, ArrayContraction, PermuteDims, \
ArrayDiagonal, ArrayAdd, OneArray, ZeroArray, convert_indexed_to_array, ArrayElementwiseApplyFunc, Reshape
from sympy.tensor.array.expressions.from_array_to_indexed import convert_array_to_indexed
from sympy.abc import i, j, k, l, m, n, o
def test_convert_array_to_indexed_main():
A = ArraySymbol("A", (3, 3, 3))
B = ArraySymbol("B", (3, 3))
C = ArraySymbol("C", (3, 3))
d_ = Dummy("d_")
assert convert_array_to_indexed(A, [i, j, k]) == A[i, j, k]
expr = ArrayTensorProduct(A, B, C)
conv = convert_array_to_indexed(expr, [i,j,k,l,m,n,o])
assert conv == A[i,j,k]*B[l,m]*C[n,o]
assert convert_indexed_to_array(conv, [i,j,k,l,m,n,o]) == expr
expr = ArrayContraction(A, (0, 2))
assert convert_array_to_indexed(expr, [i]).dummy_eq(Sum(A[d_, i, d_], (d_, 0, 2)))
expr = ArrayDiagonal(A, (0, 2))
assert convert_array_to_indexed(expr, [i, j]) == A[j, i, j]
expr = PermuteDims(A, [1, 2, 0])
conv = convert_array_to_indexed(expr, [i, j, k])
assert conv == A[k, i, j]
assert convert_indexed_to_array(conv, [i, j, k]) == expr
expr = ArrayAdd(B, C, PermuteDims(C, [1, 0]))
conv = convert_array_to_indexed(expr, [i, j])
assert conv == B[i, j] + C[i, j] + C[j, i]
assert convert_indexed_to_array(conv, [i, j]) == expr
expr = ArrayElementwiseApplyFunc(sin, A)
conv = convert_array_to_indexed(expr, [i, j, k])
assert conv == sin(A[i, j, k])
assert convert_indexed_to_array(conv, [i, j, k]).dummy_eq(expr)
assert convert_array_to_indexed(OneArray(3, 3), [i, j]) == 1
assert convert_array_to_indexed(ZeroArray(3, 3), [i, j]) == 0
expr = Reshape(A, (27,))
assert convert_array_to_indexed(expr, [i]) == A[i // 9, i // 3 % 3, i % 3]
X = ArraySymbol("X", (2, 3, 4, 5, 6))
expr = Reshape(X, (2*3*4*5*6,))
assert convert_array_to_indexed(expr, [i]) == X[i // 360, i // 120 % 3, i // 30 % 4, i // 6 % 5, i % 6]
expr = Reshape(X, (4, 9, 2, 2, 5))
one_index = 180*i + 20*j + 10*k + 5*l + m
expected = X[one_index // (3*4*5*6), one_index // (4*5*6) % 3, one_index // (5*6) % 4, one_index // 6 % 5, one_index % 6]
assert convert_array_to_indexed(expr, [i, j, k, l, m]) == expected
X = ArraySymbol("X", (2*3*5,))
expr = Reshape(X, (2, 3, 5))
assert convert_array_to_indexed(expr, [i, j, k]) == X[15*i + 5*j + k]
|
1b683913497e140070632428c1b28abcb70423c3558895da60b5b779411cbe3c | from sympy import Lambda, KroneckerProduct
from sympy.core.symbol import symbols, Dummy
from sympy.matrices.expressions.hadamard import (HadamardPower, HadamardProduct)
from sympy.matrices.expressions.inverse import Inverse
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.matrices.expressions.matpow import MatPow
from sympy.matrices.expressions.special import Identity
from sympy.matrices.expressions.trace import Trace
from sympy.matrices.expressions.transpose import Transpose
from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct, ArrayContraction, \
PermuteDims, ArrayDiagonal, ArrayElementwiseApplyFunc, _array_contraction, _array_tensor_product, Reshape
from sympy.tensor.array.expressions.from_array_to_matrix import convert_array_to_matrix
from sympy.tensor.array.expressions.from_matrix_to_array import convert_matrix_to_array
i, j, k, l, m, n = symbols("i j k l m n")
I = Identity(k)
M = MatrixSymbol("M", k, k)
N = MatrixSymbol("N", k, k)
P = MatrixSymbol("P", k, k)
Q = MatrixSymbol("Q", k, k)
A = MatrixSymbol("A", k, k)
B = MatrixSymbol("B", k, k)
C = MatrixSymbol("C", k, k)
D = MatrixSymbol("D", k, k)
X = MatrixSymbol("X", k, k)
Y = MatrixSymbol("Y", k, k)
a = MatrixSymbol("a", k, 1)
b = MatrixSymbol("b", k, 1)
c = MatrixSymbol("c", k, 1)
d = MatrixSymbol("d", k, 1)
def test_arrayexpr_convert_matrix_to_array():
expr = M*N
result = ArrayContraction(ArrayTensorProduct(M, N), (1, 2))
assert convert_matrix_to_array(expr) == result
expr = M*N*M
result = _array_contraction(ArrayTensorProduct(M, N, M), (1, 2), (3, 4))
assert convert_matrix_to_array(expr) == result
expr = Transpose(M)
assert convert_matrix_to_array(expr) == PermuteDims(M, [1, 0])
expr = M*Transpose(N)
assert convert_matrix_to_array(expr) == _array_contraction(_array_tensor_product(M, PermuteDims(N, [1, 0])), (1, 2))
expr = 3*M*N
res = convert_matrix_to_array(expr)
rexpr = convert_array_to_matrix(res)
assert expr == rexpr
expr = 3*M + N*M.T*M + 4*k*N
res = convert_matrix_to_array(expr)
rexpr = convert_array_to_matrix(res)
assert expr == rexpr
expr = Inverse(M)*N
rexpr = convert_array_to_matrix(convert_matrix_to_array(expr))
assert expr == rexpr
expr = M**2
rexpr = convert_array_to_matrix(convert_matrix_to_array(expr))
assert expr == rexpr
expr = M*(2*N + 3*M)
res = convert_matrix_to_array(expr)
rexpr = convert_array_to_matrix(res)
assert expr == rexpr
expr = Trace(M)
result = ArrayContraction(M, (0, 1))
assert convert_matrix_to_array(expr) == result
expr = 3*Trace(M)
result = ArrayContraction(ArrayTensorProduct(3, M), (0, 1))
assert convert_matrix_to_array(expr) == result
expr = 3*Trace(Trace(M) * M)
result = ArrayContraction(ArrayTensorProduct(3, M, M), (0, 1), (2, 3))
assert convert_matrix_to_array(expr) == result
expr = 3*Trace(M)**2
result = ArrayContraction(ArrayTensorProduct(3, M, M), (0, 1), (2, 3))
assert convert_matrix_to_array(expr) == result
expr = HadamardProduct(M, N)
result = ArrayDiagonal(ArrayTensorProduct(M, N), (0, 2), (1, 3))
assert convert_matrix_to_array(expr) == result
expr = HadamardProduct(M*N, N*M)
result = ArrayDiagonal(ArrayContraction(ArrayTensorProduct(M, N, N, M), (1, 2), (5, 6)), (0, 2), (1, 3))
assert convert_matrix_to_array(expr) == result
expr = HadamardPower(M, 2)
result = ArrayDiagonal(ArrayTensorProduct(M, M), (0, 2), (1, 3))
assert convert_matrix_to_array(expr) == result
expr = HadamardPower(M*N, 2)
result = ArrayDiagonal(ArrayContraction(ArrayTensorProduct(M, N, M, N), (1, 2), (5, 6)), (0, 2), (1, 3))
assert convert_matrix_to_array(expr) == result
expr = HadamardPower(M, n)
d0 = Dummy("d0")
result = ArrayElementwiseApplyFunc(Lambda(d0, d0**n), M)
assert convert_matrix_to_array(expr).dummy_eq(result)
expr = M**2
assert isinstance(expr, MatPow)
assert convert_matrix_to_array(expr) == ArrayContraction(ArrayTensorProduct(M, M), (1, 2))
expr = a.T*b
cg = convert_matrix_to_array(expr)
assert cg == ArrayContraction(ArrayTensorProduct(a, b), (0, 2))
expr = KroneckerProduct(A, B)
cg = convert_matrix_to_array(expr)
assert cg == Reshape(PermuteDims(ArrayTensorProduct(A, B), [0, 2, 1, 3]), (k**2, k**2))
expr = KroneckerProduct(A, B, C, D)
cg = convert_matrix_to_array(expr)
assert cg == Reshape(PermuteDims(ArrayTensorProduct(A, B, C, D), [0, 2, 4, 6, 1, 3, 5, 7]), (k**4, k**4))
|
5ae7391b4d88cba300c0a7e2854b9042b36ed5590d554fd6e18c7730d0e2ca0d | from sympy.assumptions.ask import Q
from sympy.assumptions.refine import refine
from sympy.core.numbers import oo
from sympy.core.relational import Equality, Eq, Ne
from sympy.core.singleton import S
from sympy.core.symbol import (Dummy, symbols)
from sympy.functions import Piecewise
from sympy.functions.elementary.trigonometric import cos, sin
from sympy.sets.sets import (Interval, Union)
from sympy.simplify.simplify import simplify
from sympy.logic.boolalg import (
And, Boolean, Equivalent, ITE, Implies, Nand, Nor, Not, Or,
POSform, SOPform, Xor, Xnor, conjuncts, disjuncts,
distribute_or_over_and, distribute_and_over_or,
eliminate_implications, is_nnf, is_cnf, is_dnf, simplify_logic,
to_nnf, to_cnf, to_dnf, to_int_repr, bool_map, true, false,
BooleanAtom, is_literal, term_to_integer,
truth_table, as_Boolean, to_anf, is_anf, distribute_xor_over_and,
anf_coeffs, ANFform, bool_minterm, bool_maxterm, bool_monomial,
_check_pair, _convert_to_varsSOP, _convert_to_varsPOS, Exclusive,
gateinputcount)
from sympy.assumptions.cnf import CNF
from sympy.testing.pytest import raises, XFAIL, slow
from itertools import combinations, permutations, product
A, B, C, D = symbols('A:D')
a, b, c, d, e, w, x, y, z = symbols('a:e w:z')
def test_overloading():
"""Test that |, & are overloaded as expected"""
assert A & B == And(A, B)
assert A | B == Or(A, B)
assert (A & B) | C == Or(And(A, B), C)
assert A >> B == Implies(A, B)
assert A << B == Implies(B, A)
assert ~A == Not(A)
assert A ^ B == Xor(A, B)
def test_And():
assert And() is true
assert And(A) == A
assert And(True) is true
assert And(False) is false
assert And(True, True) is true
assert And(True, False) is false
assert And(False, False) is false
assert And(True, A) == A
assert And(False, A) is false
assert And(True, True, True) is true
assert And(True, True, A) == A
assert And(True, False, A) is false
assert And(1, A) == A
raises(TypeError, lambda: And(2, A))
raises(TypeError, lambda: And(A < 2, A))
assert And(A < 1, A >= 1) is false
e = A > 1
assert And(e, e.canonical) == e.canonical
g, l, ge, le = A > B, B < A, A >= B, B <= A
assert And(g, l, ge, le) == And(ge, g)
assert {And(*i) for i in permutations((l,g,le,ge))} == {And(ge, g)}
assert And(And(Eq(a, 0), Eq(b, 0)), And(Ne(a, 0), Eq(c, 0))) is false
def test_Or():
assert Or() is false
assert Or(A) == A
assert Or(True) is true
assert Or(False) is false
assert Or(True, True) is true
assert Or(True, False) is true
assert Or(False, False) is false
assert Or(True, A) is true
assert Or(False, A) == A
assert Or(True, False, False) is true
assert Or(True, False, A) is true
assert Or(False, False, A) == A
assert Or(1, A) is true
raises(TypeError, lambda: Or(2, A))
raises(TypeError, lambda: Or(A < 2, A))
assert Or(A < 1, A >= 1) is true
e = A > 1
assert Or(e, e.canonical) == e
g, l, ge, le = A > B, B < A, A >= B, B <= A
assert Or(g, l, ge, le) == Or(g, ge)
def test_Xor():
assert Xor() is false
assert Xor(A) == A
assert Xor(A, A) is false
assert Xor(True, A, A) is true
assert Xor(A, A, A, A, A) == A
assert Xor(True, False, False, A, B) == ~Xor(A, B)
assert Xor(True) is true
assert Xor(False) is false
assert Xor(True, True) is false
assert Xor(True, False) is true
assert Xor(False, False) is false
assert Xor(True, A) == ~A
assert Xor(False, A) == A
assert Xor(True, False, False) is true
assert Xor(True, False, A) == ~A
assert Xor(False, False, A) == A
assert isinstance(Xor(A, B), Xor)
assert Xor(A, B, Xor(C, D)) == Xor(A, B, C, D)
assert Xor(A, B, Xor(B, C)) == Xor(A, C)
assert Xor(A < 1, A >= 1, B) == Xor(0, 1, B) == Xor(1, 0, B)
e = A > 1
assert Xor(e, e.canonical) == Xor(0, 0) == Xor(1, 1)
def test_rewrite_as_And():
expr = x ^ y
assert expr.rewrite(And) == (x | y) & (~x | ~y)
def test_rewrite_as_Or():
expr = x ^ y
assert expr.rewrite(Or) == (x & ~y) | (y & ~x)
def test_rewrite_as_Nand():
expr = (y & z) | (z & ~w)
assert expr.rewrite(Nand) == ~(~(y & z) & ~(z & ~w))
def test_rewrite_as_Nor():
expr = z & (y | ~w)
assert expr.rewrite(Nor) == ~(~z | ~(y | ~w))
def test_Not():
raises(TypeError, lambda: Not(True, False))
assert Not(True) is false
assert Not(False) is true
assert Not(0) is true
assert Not(1) is false
assert Not(2) is false
def test_Nand():
assert Nand() is false
assert Nand(A) == ~A
assert Nand(True) is false
assert Nand(False) is true
assert Nand(True, True) is false
assert Nand(True, False) is true
assert Nand(False, False) is true
assert Nand(True, A) == ~A
assert Nand(False, A) is true
assert Nand(True, True, True) is false
assert Nand(True, True, A) == ~A
assert Nand(True, False, A) is true
def test_Nor():
assert Nor() is true
assert Nor(A) == ~A
assert Nor(True) is false
assert Nor(False) is true
assert Nor(True, True) is false
assert Nor(True, False) is false
assert Nor(False, False) is true
assert Nor(True, A) is false
assert Nor(False, A) == ~A
assert Nor(True, True, True) is false
assert Nor(True, True, A) is false
assert Nor(True, False, A) is false
def test_Xnor():
assert Xnor() is true
assert Xnor(A) == ~A
assert Xnor(A, A) is true
assert Xnor(True, A, A) is false
assert Xnor(A, A, A, A, A) == ~A
assert Xnor(True) is false
assert Xnor(False) is true
assert Xnor(True, True) is true
assert Xnor(True, False) is false
assert Xnor(False, False) is true
assert Xnor(True, A) == A
assert Xnor(False, A) == ~A
assert Xnor(True, False, False) is false
assert Xnor(True, False, A) == A
assert Xnor(False, False, A) == ~A
def test_Implies():
raises(ValueError, lambda: Implies(A, B, C))
assert Implies(True, True) is true
assert Implies(True, False) is false
assert Implies(False, True) is true
assert Implies(False, False) is true
assert Implies(0, A) is true
assert Implies(1, 1) is true
assert Implies(1, 0) is false
assert A >> B == B << A
assert (A < 1) >> (A >= 1) == (A >= 1)
assert (A < 1) >> (S.One > A) is true
assert A >> A is true
def test_Equivalent():
assert Equivalent(A, B) == Equivalent(B, A) == Equivalent(A, B, A)
assert Equivalent() is true
assert Equivalent(A, A) == Equivalent(A) is true
assert Equivalent(True, True) == Equivalent(False, False) is true
assert Equivalent(True, False) == Equivalent(False, True) is false
assert Equivalent(A, True) == A
assert Equivalent(A, False) == Not(A)
assert Equivalent(A, B, True) == A & B
assert Equivalent(A, B, False) == ~A & ~B
assert Equivalent(1, A) == A
assert Equivalent(0, A) == Not(A)
assert Equivalent(A, Equivalent(B, C)) != Equivalent(Equivalent(A, B), C)
assert Equivalent(A < 1, A >= 1) is false
assert Equivalent(A < 1, A >= 1, 0) is false
assert Equivalent(A < 1, A >= 1, 1) is false
assert Equivalent(A < 1, S.One > A) == Equivalent(1, 1) == Equivalent(0, 0)
assert Equivalent(Equality(A, B), Equality(B, A)) is true
def test_Exclusive():
assert Exclusive(False, False, False) is true
assert Exclusive(True, False, False) is true
assert Exclusive(True, True, False) is false
assert Exclusive(True, True, True) is false
def test_equals():
assert Not(Or(A, B)).equals(And(Not(A), Not(B))) is True
assert Equivalent(A, B).equals((A >> B) & (B >> A)) is True
assert ((A | ~B) & (~A | B)).equals((~A & ~B) | (A & B)) is True
assert (A >> B).equals(~A >> ~B) is False
assert (A >> (B >> A)).equals(A >> (C >> A)) is False
raises(NotImplementedError, lambda: (A & B).equals(A > B))
def test_simplification_boolalg():
"""
Test working of simplification methods.
"""
set1 = [[0, 0, 1], [0, 1, 1], [1, 0, 0], [1, 1, 0]]
set2 = [[0, 0, 0], [0, 1, 0], [1, 0, 1], [1, 1, 1]]
assert SOPform([x, y, z], set1) == Or(And(Not(x), z), And(Not(z), x))
assert Not(SOPform([x, y, z], set2)) == \
Not(Or(And(Not(x), Not(z)), And(x, z)))
assert POSform([x, y, z], set1 + set2) is true
assert SOPform([x, y, z], set1 + set2) is true
assert SOPform([Dummy(), Dummy(), Dummy()], set1 + set2) is true
minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1],
[1, 1, 1, 1]]
dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]]
assert (
SOPform([w, x, y, z], minterms, dontcares) ==
Or(And(y, z), And(Not(w), Not(x))))
assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z)
minterms = [1, 3, 7, 11, 15]
dontcares = [0, 2, 5]
assert (
SOPform([w, x, y, z], minterms, dontcares) ==
Or(And(y, z), And(Not(w), Not(x))))
assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z)
minterms = [1, [0, 0, 1, 1], 7, [1, 0, 1, 1],
[1, 1, 1, 1]]
dontcares = [0, [0, 0, 1, 0], 5]
assert (
SOPform([w, x, y, z], minterms, dontcares) ==
Or(And(y, z), And(Not(w), Not(x))))
assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z)
minterms = [1, {y: 1, z: 1}]
dontcares = [0, [0, 0, 1, 0], 5]
assert (
SOPform([w, x, y, z], minterms, dontcares) ==
Or(And(y, z), And(Not(w), Not(x))))
assert POSform([w, x, y, z], minterms, dontcares) == And(Or(Not(w), y), z)
minterms = [{y: 1, z: 1}, 1]
dontcares = [[0, 0, 0, 0]]
minterms = [[0, 0, 0]]
raises(ValueError, lambda: SOPform([w, x, y, z], minterms))
raises(ValueError, lambda: POSform([w, x, y, z], minterms))
raises(TypeError, lambda: POSform([w, x, y, z], ["abcdefg"]))
# test simplification
ans = And(A, Or(B, C))
assert simplify_logic(A & (B | C)) == ans
assert simplify_logic((A & B) | (A & C)) == ans
assert simplify_logic(Implies(A, B)) == Or(Not(A), B)
assert simplify_logic(Equivalent(A, B)) == \
Or(And(A, B), And(Not(A), Not(B)))
assert simplify_logic(And(Equality(A, 2), C)) == And(Equality(A, 2), C)
assert simplify_logic(And(Equality(A, 2), A)) is S.false
assert simplify_logic(And(Equality(A, 2), A)) == And(Equality(A, 2), A)
assert simplify_logic(And(Equality(A, B), C)) == And(Equality(A, B), C)
assert simplify_logic(Or(And(Equality(A, 3), B), And(Equality(A, 3), C))) \
== And(Equality(A, 3), Or(B, C))
b = (~x & ~y & ~z) | (~x & ~y & z)
e = And(A, b)
assert simplify_logic(e) == A & ~x & ~y
raises(ValueError, lambda: simplify_logic(A & (B | C), form='blabla'))
assert simplify(Or(x <= y, And(x < y, z))) == (x <= y)
assert simplify(Or(x <= y, And(y > x, z))) == (x <= y)
assert simplify(Or(x >= y, And(y < x, z))) == (x >= y)
# Check that expressions with nine variables or more are not simplified
# (without the force-flag)
a, b, c, d, e, f, g, h, j = symbols('a b c d e f g h j')
expr = a & b & c & d & e & f & g & h & j | \
a & b & c & d & e & f & g & h & ~j
# This expression can be simplified to get rid of the j variables
assert simplify_logic(expr) == expr
# Test dontcare
assert simplify_logic((a & b) | c | d, dontcare=(a & b)) == c | d
# check input
ans = SOPform([x, y], [[1, 0]])
assert SOPform([x, y], [[1, 0]]) == ans
assert POSform([x, y], [[1, 0]]) == ans
raises(ValueError, lambda: SOPform([x], [[1]], [[1]]))
assert SOPform([x], [[1]], [[0]]) is true
assert SOPform([x], [[0]], [[1]]) is true
assert SOPform([x], [], []) is false
raises(ValueError, lambda: POSform([x], [[1]], [[1]]))
assert POSform([x], [[1]], [[0]]) is true
assert POSform([x], [[0]], [[1]]) is true
assert POSform([x], [], []) is false
# check working of simplify
assert simplify((A & B) | (A & C)) == And(A, Or(B, C))
assert simplify(And(x, Not(x))) == False
assert simplify(Or(x, Not(x))) == True
assert simplify(And(Eq(x, 0), Eq(x, y))) == And(Eq(x, 0), Eq(y, 0))
assert And(Eq(x - 1, 0), Eq(x, y)).simplify() == And(Eq(x, 1), Eq(y, 1))
assert And(Ne(x - 1, 0), Ne(x, y)).simplify() == And(Ne(x, 1), Ne(x, y))
assert And(Eq(x - 1, 0), Ne(x, y)).simplify() == And(Eq(x, 1), Ne(y, 1))
assert And(Eq(x - 1, 0), Eq(x, z + y), Eq(y + x, 0)).simplify(
) == And(Eq(x, 1), Eq(y, -1), Eq(z, 2))
assert And(Eq(x - 1, 0), Eq(x + 2, 3)).simplify() == Eq(x, 1)
assert And(Ne(x - 1, 0), Ne(x + 2, 3)).simplify() == Ne(x, 1)
assert And(Eq(x - 1, 0), Eq(x + 2, 2)).simplify() == False
assert And(Ne(x - 1, 0), Ne(x + 2, 2)).simplify(
) == And(Ne(x, 1), Ne(x, 0))
def test_bool_map():
"""
Test working of bool_map function.
"""
minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1], [1, 0, 1, 1],
[1, 1, 1, 1]]
assert bool_map(Not(Not(a)), a) == (a, {a: a})
assert bool_map(SOPform([w, x, y, z], minterms),
POSform([w, x, y, z], minterms)) == \
(And(Or(Not(w), y), Or(Not(x), y), z), {x: x, w: w, z: z, y: y})
assert bool_map(SOPform([x, z, y], [[1, 0, 1]]),
SOPform([a, b, c], [[1, 0, 1]])) != False
function1 = SOPform([x, z, y], [[1, 0, 1], [0, 0, 1]])
function2 = SOPform([a, b, c], [[1, 0, 1], [1, 0, 0]])
assert bool_map(function1, function2) == \
(function1, {y: a, z: b})
assert bool_map(Xor(x, y), ~Xor(x, y)) == False
assert bool_map(And(x, y), Or(x, y)) is None
assert bool_map(And(x, y), And(x, y, z)) is None
# issue 16179
assert bool_map(Xor(x, y, z), ~Xor(x, y, z)) == False
assert bool_map(Xor(a, x, y, z), ~Xor(a, x, y, z)) == False
def test_bool_symbol():
"""Test that mixing symbols with boolean values
works as expected"""
assert And(A, True) == A
assert And(A, True, True) == A
assert And(A, False) is false
assert And(A, True, False) is false
assert Or(A, True) is true
assert Or(A, False) == A
def test_is_boolean():
assert isinstance(True, Boolean) is False
assert isinstance(true, Boolean) is True
assert 1 == True
assert 1 != true
assert (1 == true) is False
assert 0 == False
assert 0 != false
assert (0 == false) is False
assert true.is_Boolean is True
assert (A & B).is_Boolean
assert (A | B).is_Boolean
assert (~A).is_Boolean
assert (A ^ B).is_Boolean
assert A.is_Boolean != isinstance(A, Boolean)
assert isinstance(A, Boolean)
def test_subs():
assert (A & B).subs(A, True) == B
assert (A & B).subs(A, False) is false
assert (A & B).subs(B, True) == A
assert (A & B).subs(B, False) is false
assert (A & B).subs({A: True, B: True}) is true
assert (A | B).subs(A, True) is true
assert (A | B).subs(A, False) == B
assert (A | B).subs(B, True) is true
assert (A | B).subs(B, False) == A
assert (A | B).subs({A: True, B: True}) is true
"""
we test for axioms of boolean algebra
see https://en.wikipedia.org/wiki/Boolean_algebra_(structure)
"""
def test_commutative():
"""Test for commutativity of And and Or"""
A, B = map(Boolean, symbols('A,B'))
assert A & B == B & A
assert A | B == B | A
def test_and_associativity():
"""Test for associativity of And"""
assert (A & B) & C == A & (B & C)
def test_or_assicativity():
assert ((A | B) | C) == (A | (B | C))
def test_double_negation():
a = Boolean()
assert ~(~a) == a
# test methods
def test_eliminate_implications():
assert eliminate_implications(Implies(A, B, evaluate=False)) == (~A) | B
assert eliminate_implications(
A >> (C >> Not(B))) == Or(Or(Not(B), Not(C)), Not(A))
assert eliminate_implications(Equivalent(A, B, C, D)) == \
(~A | B) & (~B | C) & (~C | D) & (~D | A)
def test_conjuncts():
assert conjuncts(A & B & C) == {A, B, C}
assert conjuncts((A | B) & C) == {A | B, C}
assert conjuncts(A) == {A}
assert conjuncts(True) == {True}
assert conjuncts(False) == {False}
def test_disjuncts():
assert disjuncts(A | B | C) == {A, B, C}
assert disjuncts((A | B) & C) == {(A | B) & C}
assert disjuncts(A) == {A}
assert disjuncts(True) == {True}
assert disjuncts(False) == {False}
def test_distribute():
assert distribute_and_over_or(Or(And(A, B), C)) == And(Or(A, C), Or(B, C))
assert distribute_or_over_and(And(A, Or(B, C))) == Or(And(A, B), And(A, C))
assert distribute_xor_over_and(And(A, Xor(B, C))) == Xor(And(A, B), And(A, C))
def test_to_anf():
x, y, z = symbols('x,y,z')
assert to_anf(And(x, y)) == And(x, y)
assert to_anf(Or(x, y)) == Xor(x, y, And(x, y))
assert to_anf(Or(Implies(x, y), And(x, y), y)) == \
Xor(x, True, x & y, remove_true=False)
assert to_anf(Or(Nand(x, y), Nor(x, y), Xnor(x, y), Implies(x, y))) == True
assert to_anf(Or(x, Not(y), Nor(x,z), And(x, y), Nand(y, z))) == \
Xor(True, And(y, z), And(x, y, z), remove_true=False)
assert to_anf(Xor(x, y)) == Xor(x, y)
assert to_anf(Not(x)) == Xor(x, True, remove_true=False)
assert to_anf(Nand(x, y)) == Xor(True, And(x, y), remove_true=False)
assert to_anf(Nor(x, y)) == Xor(x, y, True, And(x, y), remove_true=False)
assert to_anf(Implies(x, y)) == Xor(x, True, And(x, y), remove_true=False)
assert to_anf(Equivalent(x, y)) == Xor(x, y, True, remove_true=False)
assert to_anf(Nand(x | y, x >> y), deep=False) == \
Xor(True, And(Or(x, y), Implies(x, y)), remove_true=False)
assert to_anf(Nor(x ^ y, x & y), deep=False) == \
Xor(True, Or(Xor(x, y), And(x, y)), remove_true=False)
def test_to_nnf():
assert to_nnf(true) is true
assert to_nnf(false) is false
assert to_nnf(A) == A
assert to_nnf(A | ~A | B) is true
assert to_nnf(A & ~A & B) is false
assert to_nnf(A >> B) == ~A | B
assert to_nnf(Equivalent(A, B, C)) == (~A | B) & (~B | C) & (~C | A)
assert to_nnf(A ^ B ^ C) == \
(A | B | C) & (~A | ~B | C) & (A | ~B | ~C) & (~A | B | ~C)
assert to_nnf(ITE(A, B, C)) == (~A | B) & (A | C)
assert to_nnf(Not(A | B | C)) == ~A & ~B & ~C
assert to_nnf(Not(A & B & C)) == ~A | ~B | ~C
assert to_nnf(Not(A >> B)) == A & ~B
assert to_nnf(Not(Equivalent(A, B, C))) == And(Or(A, B, C), Or(~A, ~B, ~C))
assert to_nnf(Not(A ^ B ^ C)) == \
(~A | B | C) & (A | ~B | C) & (A | B | ~C) & (~A | ~B | ~C)
assert to_nnf(Not(ITE(A, B, C))) == (~A | ~B) & (A | ~C)
assert to_nnf((A >> B) ^ (B >> A)) == (A & ~B) | (~A & B)
assert to_nnf((A >> B) ^ (B >> A), False) == \
(~A | ~B | A | B) & ((A & ~B) | (~A & B))
assert ITE(A, 1, 0).to_nnf() == A
assert ITE(A, 0, 1).to_nnf() == ~A
# although ITE can hold non-Boolean, it will complain if
# an attempt is made to convert the ITE to Boolean nnf
raises(TypeError, lambda: ITE(A < 1, [1], B).to_nnf())
def test_to_cnf():
assert to_cnf(~(B | C)) == And(Not(B), Not(C))
assert to_cnf((A & B) | C) == And(Or(A, C), Or(B, C))
assert to_cnf(A >> B) == (~A) | B
assert to_cnf(A >> (B & C)) == (~A | B) & (~A | C)
assert to_cnf(A & (B | C) | ~A & (B | C), True) == B | C
assert to_cnf(A & B) == And(A, B)
assert to_cnf(Equivalent(A, B)) == And(Or(A, Not(B)), Or(B, Not(A)))
assert to_cnf(Equivalent(A, B & C)) == \
(~A | B) & (~A | C) & (~B | ~C | A)
assert to_cnf(Equivalent(A, B | C), True) == \
And(Or(Not(B), A), Or(Not(C), A), Or(B, C, Not(A)))
assert to_cnf(A + 1) == A + 1
def test_issue_18904():
x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15 = symbols('x1:16')
eq = (( x1 & x2 & x3 & x4 & x5 & x6 & x7 & x8 & x9 ) |
( x1 & x2 & x3 & x4 & x5 & x6 & x7 & x10 & x9 ) |
( x1 & x11 & x3 & x12 & x5 & x13 & x14 & x15 & x9 ))
assert is_cnf(to_cnf(eq))
raises(ValueError, lambda: to_cnf(eq, simplify=True))
for f, t in zip((And, Or), (to_cnf, to_dnf)):
eq = f(x1, x2, x3, x4, x5, x6, x7, x8, x9)
raises(ValueError, lambda: to_cnf(eq, simplify=True))
assert t(eq, simplify=True, force=True) == eq
def test_issue_9949():
assert is_cnf(to_cnf((b > -5) | (a > 2) & (a < 4)))
def test_to_CNF():
assert CNF.CNF_to_cnf(CNF.to_CNF(~(B | C))) == to_cnf(~(B | C))
assert CNF.CNF_to_cnf(CNF.to_CNF((A & B) | C)) == to_cnf((A & B) | C)
assert CNF.CNF_to_cnf(CNF.to_CNF(A >> B)) == to_cnf(A >> B)
assert CNF.CNF_to_cnf(CNF.to_CNF(A >> (B & C))) == to_cnf(A >> (B & C))
assert CNF.CNF_to_cnf(CNF.to_CNF(A & (B | C) | ~A & (B | C))) == to_cnf(A & (B | C) | ~A & (B | C))
assert CNF.CNF_to_cnf(CNF.to_CNF(A & B)) == to_cnf(A & B)
def test_to_dnf():
assert to_dnf(~(B | C)) == And(Not(B), Not(C))
assert to_dnf(A & (B | C)) == Or(And(A, B), And(A, C))
assert to_dnf(A >> B) == (~A) | B
assert to_dnf(A >> (B & C)) == (~A) | (B & C)
assert to_dnf(A | B) == A | B
assert to_dnf(Equivalent(A, B), True) == \
Or(And(A, B), And(Not(A), Not(B)))
assert to_dnf(Equivalent(A, B & C), True) == \
Or(And(A, B, C), And(Not(A), Not(B)), And(Not(A), Not(C)))
assert to_dnf(A + 1) == A + 1
def test_to_int_repr():
x, y, z = map(Boolean, symbols('x,y,z'))
def sorted_recursive(arg):
try:
return sorted(sorted_recursive(x) for x in arg)
except TypeError: # arg is not a sequence
return arg
assert sorted_recursive(to_int_repr([x | y, z | x], [x, y, z])) == \
sorted_recursive([[1, 2], [1, 3]])
assert sorted_recursive(to_int_repr([x | y, z | ~x], [x, y, z])) == \
sorted_recursive([[1, 2], [3, -1]])
def test_is_anf():
x, y = symbols('x,y')
assert is_anf(true) is True
assert is_anf(false) is True
assert is_anf(x) is True
assert is_anf(And(x, y)) is True
assert is_anf(Xor(x, y, And(x, y))) is True
assert is_anf(Xor(x, y, Or(x, y))) is False
assert is_anf(Xor(Not(x), y)) is False
def test_is_nnf():
assert is_nnf(true) is True
assert is_nnf(A) is True
assert is_nnf(~A) is True
assert is_nnf(A & B) is True
assert is_nnf((A & B) | (~A & A) | (~B & B) | (~A & ~B), False) is True
assert is_nnf((A | B) & (~A | ~B)) is True
assert is_nnf(Not(Or(A, B))) is False
assert is_nnf(A ^ B) is False
assert is_nnf((A & B) | (~A & A) | (~B & B) | (~A & ~B), True) is False
def test_is_cnf():
assert is_cnf(x) is True
assert is_cnf(x | y | z) is True
assert is_cnf(x & y & z) is True
assert is_cnf((x | y) & z) is True
assert is_cnf((x & y) | z) is False
assert is_cnf(~(x & y) | z) is False
def test_is_dnf():
assert is_dnf(x) is True
assert is_dnf(x | y | z) is True
assert is_dnf(x & y & z) is True
assert is_dnf((x & y) | z) is True
assert is_dnf((x | y) & z) is False
assert is_dnf(~(x | y) & z) is False
def test_ITE():
A, B, C = symbols('A:C')
assert ITE(True, False, True) is false
assert ITE(True, True, False) is true
assert ITE(False, True, False) is false
assert ITE(False, False, True) is true
assert isinstance(ITE(A, B, C), ITE)
A = True
assert ITE(A, B, C) == B
A = False
assert ITE(A, B, C) == C
B = True
assert ITE(And(A, B), B, C) == C
assert ITE(Or(A, False), And(B, True), False) is false
assert ITE(x, A, B) == Not(x)
assert ITE(x, B, A) == x
assert ITE(1, x, y) == x
assert ITE(0, x, y) == y
raises(TypeError, lambda: ITE(2, x, y))
raises(TypeError, lambda: ITE(1, [], y))
raises(TypeError, lambda: ITE(1, (), y))
raises(TypeError, lambda: ITE(1, y, []))
assert ITE(1, 1, 1) is S.true
assert isinstance(ITE(1, 1, 1, evaluate=False), ITE)
raises(TypeError, lambda: ITE(x > 1, y, x))
assert ITE(Eq(x, True), y, x) == ITE(x, y, x)
assert ITE(Eq(x, False), y, x) == ITE(~x, y, x)
assert ITE(Ne(x, True), y, x) == ITE(~x, y, x)
assert ITE(Ne(x, False), y, x) == ITE(x, y, x)
assert ITE(Eq(S. true, x), y, x) == ITE(x, y, x)
assert ITE(Eq(S.false, x), y, x) == ITE(~x, y, x)
assert ITE(Ne(S.true, x), y, x) == ITE(~x, y, x)
assert ITE(Ne(S.false, x), y, x) == ITE(x, y, x)
# 0 and 1 in the context are not treated as True/False
# so the equality must always be False since dissimilar
# objects cannot be equal
assert ITE(Eq(x, 0), y, x) == x
assert ITE(Eq(x, 1), y, x) == x
assert ITE(Ne(x, 0), y, x) == y
assert ITE(Ne(x, 1), y, x) == y
assert ITE(Eq(x, 0), y, z).subs(x, 0) == y
assert ITE(Eq(x, 0), y, z).subs(x, 1) == z
raises(ValueError, lambda: ITE(x > 1, y, x, z))
def test_is_literal():
assert is_literal(True) is True
assert is_literal(False) is True
assert is_literal(A) is True
assert is_literal(~A) is True
assert is_literal(Or(A, B)) is False
assert is_literal(Q.zero(A)) is True
assert is_literal(Not(Q.zero(A))) is True
assert is_literal(Or(A, B)) is False
assert is_literal(And(Q.zero(A), Q.zero(B))) is False
assert is_literal(x < 3)
assert not is_literal(x + y < 3)
def test_operators():
# Mostly test __and__, __rand__, and so on
assert True & A == A & True == A
assert False & A == A & False == False
assert A & B == And(A, B)
assert True | A == A | True == True
assert False | A == A | False == A
assert A | B == Or(A, B)
assert ~A == Not(A)
assert True >> A == A << True == A
assert False >> A == A << False == True
assert A >> True == True << A == True
assert A >> False == False << A == ~A
assert A >> B == B << A == Implies(A, B)
assert True ^ A == A ^ True == ~A
assert False ^ A == A ^ False == A
assert A ^ B == Xor(A, B)
def test_true_false():
assert true is S.true
assert false is S.false
assert true is not True
assert false is not False
assert true
assert not false
assert true == True
assert false == False
assert not (true == False)
assert not (false == True)
assert not (true == false)
assert hash(true) == hash(True)
assert hash(false) == hash(False)
assert len({true, True}) == len({false, False}) == 1
assert isinstance(true, BooleanAtom)
assert isinstance(false, BooleanAtom)
# We don't want to subclass from bool, because bool subclasses from
# int. But operators like &, |, ^, <<, >>, and ~ act differently on 0 and
# 1 then we want them to on true and false. See the docstrings of the
# various And, Or, etc. functions for examples.
assert not isinstance(true, bool)
assert not isinstance(false, bool)
# Note: using 'is' comparison is important here. We want these to return
# true and false, not True and False
assert Not(true) is false
assert Not(True) is false
assert Not(false) is true
assert Not(False) is true
assert ~true is false
assert ~false is true
for T, F in product((True, true), (False, false)):
assert And(T, F) is false
assert And(F, T) is false
assert And(F, F) is false
assert And(T, T) is true
assert And(T, x) == x
assert And(F, x) is false
if not (T is True and F is False):
assert T & F is false
assert F & T is false
if F is not False:
assert F & F is false
if T is not True:
assert T & T is true
assert Or(T, F) is true
assert Or(F, T) is true
assert Or(F, F) is false
assert Or(T, T) is true
assert Or(T, x) is true
assert Or(F, x) == x
if not (T is True and F is False):
assert T | F is true
assert F | T is true
if F is not False:
assert F | F is false
if T is not True:
assert T | T is true
assert Xor(T, F) is true
assert Xor(F, T) is true
assert Xor(F, F) is false
assert Xor(T, T) is false
assert Xor(T, x) == ~x
assert Xor(F, x) == x
if not (T is True and F is False):
assert T ^ F is true
assert F ^ T is true
if F is not False:
assert F ^ F is false
if T is not True:
assert T ^ T is false
assert Nand(T, F) is true
assert Nand(F, T) is true
assert Nand(F, F) is true
assert Nand(T, T) is false
assert Nand(T, x) == ~x
assert Nand(F, x) is true
assert Nor(T, F) is false
assert Nor(F, T) is false
assert Nor(F, F) is true
assert Nor(T, T) is false
assert Nor(T, x) is false
assert Nor(F, x) == ~x
assert Implies(T, F) is false
assert Implies(F, T) is true
assert Implies(F, F) is true
assert Implies(T, T) is true
assert Implies(T, x) == x
assert Implies(F, x) is true
assert Implies(x, T) is true
assert Implies(x, F) == ~x
if not (T is True and F is False):
assert T >> F is false
assert F << T is false
assert F >> T is true
assert T << F is true
if F is not False:
assert F >> F is true
assert F << F is true
if T is not True:
assert T >> T is true
assert T << T is true
assert Equivalent(T, F) is false
assert Equivalent(F, T) is false
assert Equivalent(F, F) is true
assert Equivalent(T, T) is true
assert Equivalent(T, x) == x
assert Equivalent(F, x) == ~x
assert Equivalent(x, T) == x
assert Equivalent(x, F) == ~x
assert ITE(T, T, T) is true
assert ITE(T, T, F) is true
assert ITE(T, F, T) is false
assert ITE(T, F, F) is false
assert ITE(F, T, T) is true
assert ITE(F, T, F) is false
assert ITE(F, F, T) is true
assert ITE(F, F, F) is false
assert all(i.simplify(1, 2) is i for i in (S.true, S.false))
def test_bool_as_set():
assert ITE(y <= 0, False, y >= 1).as_set() == Interval(1, oo)
assert And(x <= 2, x >= -2).as_set() == Interval(-2, 2)
assert Or(x >= 2, x <= -2).as_set() == Interval(-oo, -2) + Interval(2, oo)
assert Not(x > 2).as_set() == Interval(-oo, 2)
# issue 10240
assert Not(And(x > 2, x < 3)).as_set() == \
Union(Interval(-oo, 2), Interval(3, oo))
assert true.as_set() == S.UniversalSet
assert false.as_set() is S.EmptySet
assert x.as_set() == S.UniversalSet
assert And(Or(x < 1, x > 3), x < 2).as_set() == Interval.open(-oo, 1)
assert And(x < 1, sin(x) < 3).as_set() == (x < 1).as_set()
raises(NotImplementedError, lambda: (sin(x) < 1).as_set())
# watch for object morph in as_set
assert Eq(-1, cos(2*x)**2/sin(2*x)**2).as_set() is S.EmptySet
@XFAIL
def test_multivariate_bool_as_set():
x, y = symbols('x,y')
assert And(x >= 0, y >= 0).as_set() == Interval(0, oo)*Interval(0, oo)
assert Or(x >= 0, y >= 0).as_set() == S.Reals*S.Reals - \
Interval(-oo, 0, True, True)*Interval(-oo, 0, True, True)
def test_all_or_nothing():
x = symbols('x', extended_real=True)
args = x >= -oo, x <= oo
v = And(*args)
if v.func is And:
assert len(v.args) == len(args) - args.count(S.true)
else:
assert v == True
v = Or(*args)
if v.func is Or:
assert len(v.args) == 2
else:
assert v == True
def test_canonical_atoms():
assert true.canonical == true
assert false.canonical == false
def test_negated_atoms():
assert true.negated == false
assert false.negated == true
def test_issue_8777():
assert And(x > 2, x < oo).as_set() == Interval(2, oo, left_open=True)
assert And(x >= 1, x < oo).as_set() == Interval(1, oo)
assert (x < oo).as_set() == Interval(-oo, oo)
assert (x > -oo).as_set() == Interval(-oo, oo)
def test_issue_8975():
assert Or(And(-oo < x, x <= -2), And(2 <= x, x < oo)).as_set() == \
Interval(-oo, -2) + Interval(2, oo)
def test_term_to_integer():
assert term_to_integer([1, 0, 1, 0, 0, 1, 0]) == 82
assert term_to_integer('0010101000111001') == 10809
def test_issue_21971():
a, b, c, d = symbols('a b c d')
f = a & b & c | a & c
assert f.subs(a & c, d) == b & d | d
assert f.subs(a & b & c, d) == a & c | d
f = (a | b | c) & (a | c)
assert f.subs(a | c, d) == (b | d) & d
assert f.subs(a | b | c, d) == (a | c) & d
f = (a ^ b ^ c) & (a ^ c)
assert f.subs(a ^ c, d) == (b ^ d) & d
assert f.subs(a ^ b ^ c, d) == (a ^ c) & d
def test_truth_table():
assert list(truth_table(And(x, y), [x, y], input=False)) == \
[False, False, False, True]
assert list(truth_table(x | y, [x, y], input=False)) == \
[False, True, True, True]
assert list(truth_table(x >> y, [x, y], input=False)) == \
[True, True, False, True]
assert list(truth_table(And(x, y), [x, y])) == \
[([0, 0], False), ([0, 1], False), ([1, 0], False), ([1, 1], True)]
def test_issue_8571():
for t in (S.true, S.false):
raises(TypeError, lambda: +t)
raises(TypeError, lambda: -t)
raises(TypeError, lambda: abs(t))
# use int(bool(t)) to get 0 or 1
raises(TypeError, lambda: int(t))
for o in [S.Zero, S.One, x]:
for _ in range(2):
raises(TypeError, lambda: o + t)
raises(TypeError, lambda: o - t)
raises(TypeError, lambda: o % t)
raises(TypeError, lambda: o*t)
raises(TypeError, lambda: o/t)
raises(TypeError, lambda: o**t)
o, t = t, o # do again in reversed order
def test_expand_relational():
n = symbols('n', negative=True)
p, q = symbols('p q', positive=True)
r = ((n + q*(-n/q + 1))/(q*(-n/q + 1)) < 0)
assert r is not S.false
assert r.expand() is S.false
assert (q > 0).expand() is S.true
def test_issue_12717():
assert S.true.is_Atom == True
assert S.false.is_Atom == True
def test_as_Boolean():
nz = symbols('nz', nonzero=True)
assert all(as_Boolean(i) is S.true for i in (True, S.true, 1, nz))
z = symbols('z', zero=True)
assert all(as_Boolean(i) is S.false for i in (False, S.false, 0, z))
assert all(as_Boolean(i) == i for i in (x, x < 0))
for i in (2, S(2), x + 1, []):
raises(TypeError, lambda: as_Boolean(i))
def test_binary_symbols():
assert ITE(x < 1, y, z).binary_symbols == {y, z}
for f in (Eq, Ne):
assert f(x, 1).binary_symbols == set()
assert f(x, True).binary_symbols == {x}
assert f(x, False).binary_symbols == {x}
assert S.true.binary_symbols == set()
assert S.false.binary_symbols == set()
assert x.binary_symbols == {x}
assert And(x, Eq(y, False), Eq(z, 1)).binary_symbols == {x, y}
assert Q.prime(x).binary_symbols == set()
assert Q.lt(x, 1).binary_symbols == set()
assert Q.is_true(x).binary_symbols == {x}
assert Q.eq(x, True).binary_symbols == {x}
assert Q.prime(x).binary_symbols == set()
def test_BooleanFunction_diff():
assert And(x, y).diff(x) == Piecewise((0, Eq(y, False)), (1, True))
def test_issue_14700():
A, B, C, D, E, F, G, H = symbols('A B C D E F G H')
q = ((B & D & H & ~F) | (B & H & ~C & ~D) | (B & H & ~C & ~F) |
(B & H & ~D & ~G) | (B & H & ~F & ~G) | (C & G & ~B & ~D) |
(C & G & ~D & ~H) | (C & G & ~F & ~H) | (D & F & H & ~B) |
(D & F & ~G & ~H) | (B & D & F & ~C & ~H) | (D & E & F & ~B & ~C) |
(D & F & ~A & ~B & ~C) | (D & F & ~A & ~C & ~H) |
(A & B & D & F & ~E & ~H))
soldnf = ((B & D & H & ~F) | (D & F & H & ~B) | (B & H & ~C & ~D) |
(B & H & ~D & ~G) | (C & G & ~B & ~D) | (C & G & ~D & ~H) |
(C & G & ~F & ~H) | (D & F & ~G & ~H) | (D & E & F & ~C & ~H) |
(D & F & ~A & ~C & ~H) | (A & B & D & F & ~E & ~H))
solcnf = ((B | C | D) & (B | D | G) & (C | D | H) & (C | F | H) &
(D | G | H) & (F | G | H) & (B | F | ~D | ~H) &
(~B | ~D | ~F | ~H) & (D | ~B | ~C | ~G | ~H) &
(A | H | ~C | ~D | ~F | ~G) & (H | ~C | ~D | ~E | ~F | ~G) &
(B | E | H | ~A | ~D | ~F | ~G))
assert simplify_logic(q, "dnf") == soldnf
assert simplify_logic(q, "cnf") == solcnf
minterms = [[0, 1, 0, 0], [0, 1, 0, 1], [0, 1, 1, 0], [0, 1, 1, 1],
[0, 0, 1, 1], [1, 0, 1, 1]]
dontcares = [[1, 0, 0, 0], [1, 0, 0, 1], [1, 1, 0, 0], [1, 1, 0, 1]]
assert SOPform([w, x, y, z], minterms) == (x & ~w) | (y & z & ~x)
# Should not be more complicated with don't cares
assert SOPform([w, x, y, z], minterms, dontcares) == \
(x & ~w) | (y & z & ~x)
def test_relational_simplification():
w, x, y, z = symbols('w x y z', real=True)
d, e = symbols('d e', real=False)
# Test all combinations or sign and order
assert Or(x >= y, x < y).simplify() == S.true
assert Or(x >= y, y > x).simplify() == S.true
assert Or(x >= y, -x > -y).simplify() == S.true
assert Or(x >= y, -y < -x).simplify() == S.true
assert Or(-x <= -y, x < y).simplify() == S.true
assert Or(-x <= -y, -x > -y).simplify() == S.true
assert Or(-x <= -y, y > x).simplify() == S.true
assert Or(-x <= -y, -y < -x).simplify() == S.true
assert Or(y <= x, x < y).simplify() == S.true
assert Or(y <= x, y > x).simplify() == S.true
assert Or(y <= x, -x > -y).simplify() == S.true
assert Or(y <= x, -y < -x).simplify() == S.true
assert Or(-y >= -x, x < y).simplify() == S.true
assert Or(-y >= -x, y > x).simplify() == S.true
assert Or(-y >= -x, -x > -y).simplify() == S.true
assert Or(-y >= -x, -y < -x).simplify() == S.true
assert Or(x < y, x >= y).simplify() == S.true
assert Or(y > x, x >= y).simplify() == S.true
assert Or(-x > -y, x >= y).simplify() == S.true
assert Or(-y < -x, x >= y).simplify() == S.true
assert Or(x < y, -x <= -y).simplify() == S.true
assert Or(-x > -y, -x <= -y).simplify() == S.true
assert Or(y > x, -x <= -y).simplify() == S.true
assert Or(-y < -x, -x <= -y).simplify() == S.true
assert Or(x < y, y <= x).simplify() == S.true
assert Or(y > x, y <= x).simplify() == S.true
assert Or(-x > -y, y <= x).simplify() == S.true
assert Or(-y < -x, y <= x).simplify() == S.true
assert Or(x < y, -y >= -x).simplify() == S.true
assert Or(y > x, -y >= -x).simplify() == S.true
assert Or(-x > -y, -y >= -x).simplify() == S.true
assert Or(-y < -x, -y >= -x).simplify() == S.true
# Some other tests
assert Or(x >= y, w < z, x <= y).simplify() == S.true
assert And(x >= y, x < y).simplify() == S.false
assert Or(x >= y, Eq(y, x)).simplify() == (x >= y)
assert And(x >= y, Eq(y, x)).simplify() == Eq(x, y)
assert And(Eq(x, y), x >= 1, 2 < y, y >= 5, z < y).simplify() == \
(Eq(x, y) & (x >= 1) & (y >= 5) & (y > z))
assert Or(Eq(x, y), x >= y, w < y, z < y).simplify() == \
(x >= y) | (y > z) | (w < y)
assert And(Eq(x, y), x >= y, w < y, y >= z, z < y).simplify() == \
Eq(x, y) & (y > z) & (w < y)
# assert And(Eq(x, y), x >= y, w < y, y >= z, z < y).simplify(relational_minmax=True) == \
# And(Eq(x, y), y > Max(w, z))
# assert Or(Eq(x, y), x >= 1, 2 < y, y >= 5, z < y).simplify(relational_minmax=True) == \
# (Eq(x, y) | (x >= 1) | (y > Min(2, z)))
assert And(Eq(x, y), x >= 1, 2 < y, y >= 5, z < y).simplify() == \
(Eq(x, y) & (x >= 1) & (y >= 5) & (y > z))
assert (Eq(x, y) & Eq(d, e) & (x >= y) & (d >= e)).simplify() == \
(Eq(x, y) & Eq(d, e) & (d >= e))
assert And(Eq(x, y), Eq(x, -y)).simplify() == And(Eq(x, 0), Eq(y, 0))
assert Xor(x >= y, x <= y).simplify() == Ne(x, y)
assert And(x > 1, x < -1, Eq(x, y)).simplify() == S.false
# From #16690
assert And(x >= y, Eq(y, 0)).simplify() == And(x >= 0, Eq(y, 0))
assert Or(Ne(x, 1), Ne(x, 2)).simplify() == S.true
assert And(Eq(x, 1), Ne(2, x)).simplify() == Eq(x, 1)
assert Or(Eq(x, 1), Ne(2, x)).simplify() == Ne(x, 2)
def test_issue_8373():
x = symbols('x', real=True)
assert Or(x < 1, x > -1).simplify() == S.true
assert Or(x < 1, x >= 1).simplify() == S.true
assert And(x < 1, x >= 1).simplify() == S.false
assert Or(x <= 1, x >= 1).simplify() == S.true
def test_issue_7950():
x = symbols('x', real=True)
assert And(Eq(x, 1), Eq(x, 2)).simplify() == S.false
@slow
def test_relational_simplification_numerically():
def test_simplification_numerically_function(original, simplified):
symb = original.free_symbols
n = len(symb)
valuelist = list(set(list(combinations(list(range(-(n-1), n))*n, n))))
for values in valuelist:
sublist = dict(zip(symb, values))
originalvalue = original.subs(sublist)
simplifiedvalue = simplified.subs(sublist)
assert originalvalue == simplifiedvalue, "Original: {}\nand"\
" simplified: {}\ndo not evaluate to the same value for {}"\
"".format(original, simplified, sublist)
w, x, y, z = symbols('w x y z', real=True)
d, e = symbols('d e', real=False)
expressions = (And(Eq(x, y), x >= y, w < y, y >= z, z < y),
And(Eq(x, y), x >= 1, 2 < y, y >= 5, z < y),
Or(Eq(x, y), x >= 1, 2 < y, y >= 5, z < y),
And(x >= y, Eq(y, x)),
Or(And(Eq(x, y), x >= y, w < y, Or(y >= z, z < y)),
And(Eq(x, y), x >= 1, 2 < y, y >= -1, z < y)),
(Eq(x, y) & Eq(d, e) & (x >= y) & (d >= e)),
)
for expression in expressions:
test_simplification_numerically_function(expression,
expression.simplify())
def test_relational_simplification_patterns_numerically():
from sympy.core import Wild
from sympy.logic.boolalg import _simplify_patterns_and, \
_simplify_patterns_or, _simplify_patterns_xor
a = Wild('a')
b = Wild('b')
c = Wild('c')
symb = [a, b, c]
patternlists = [[And, _simplify_patterns_and()],
[Or, _simplify_patterns_or()],
[Xor, _simplify_patterns_xor()]]
valuelist = list(set(list(combinations(list(range(-2, 3))*3, 3))))
# Skip combinations of +/-2 and 0, except for all 0
valuelist = [v for v in valuelist if any([w % 2 for w in v]) or not any(v)]
for func, patternlist in patternlists:
for pattern in patternlist:
original = func(*pattern[0].args)
simplified = pattern[1]
for values in valuelist:
sublist = dict(zip(symb, values))
originalvalue = original.xreplace(sublist)
simplifiedvalue = simplified.xreplace(sublist)
assert originalvalue == simplifiedvalue, "Original: {}\nand"\
" simplified: {}\ndo not evaluate to the same value for"\
"{}".format(pattern[0], simplified, sublist)
def test_issue_16803():
n = symbols('n')
# No simplification done, but should not raise an exception
assert ((n > 3) | (n < 0) | ((n > 0) & (n < 3))).simplify() == \
(n > 3) | (n < 0) | ((n > 0) & (n < 3))
def test_issue_17530():
r = {x: oo, y: oo}
assert Or(x + y > 0, x - y < 0).subs(r)
assert not And(x + y < 0, x - y < 0).subs(r)
raises(TypeError, lambda: Or(x + y < 0, x - y < 0).subs(r))
raises(TypeError, lambda: And(x + y > 0, x - y < 0).subs(r))
raises(TypeError, lambda: And(x + y > 0, x - y < 0).subs(r))
def test_anf_coeffs():
assert anf_coeffs([1, 0]) == [1, 1]
assert anf_coeffs([0, 0, 0, 1]) == [0, 0, 0, 1]
assert anf_coeffs([0, 1, 1, 1]) == [0, 1, 1, 1]
assert anf_coeffs([1, 1, 1, 0]) == [1, 0, 0, 1]
assert anf_coeffs([1, 0, 0, 0]) == [1, 1, 1, 1]
assert anf_coeffs([1, 0, 0, 1]) == [1, 1, 1, 0]
assert anf_coeffs([1, 1, 0, 1]) == [1, 0, 1, 1]
def test_ANFform():
x, y = symbols('x,y')
assert ANFform([x], [1, 1]) == True
assert ANFform([x], [0, 0]) == False
assert ANFform([x], [1, 0]) == Xor(x, True, remove_true=False)
assert ANFform([x, y], [1, 1, 1, 0]) == \
Xor(True, And(x, y), remove_true=False)
def test_bool_minterm():
x, y = symbols('x,y')
assert bool_minterm(3, [x, y]) == And(x, y)
assert bool_minterm([1, 0], [x, y]) == And(Not(y), x)
def test_bool_maxterm():
x, y = symbols('x,y')
assert bool_maxterm(2, [x, y]) == Or(Not(x), y)
assert bool_maxterm([0, 1], [x, y]) == Or(Not(y), x)
def test_bool_monomial():
x, y = symbols('x,y')
assert bool_monomial(1, [x, y]) == y
assert bool_monomial([1, 1], [x, y]) == And(x, y)
def test_check_pair():
assert _check_pair([0, 1, 0], [0, 1, 1]) == 2
assert _check_pair([0, 1, 0], [1, 1, 1]) == -1
def test_issue_19114():
expr = (B & C) | (A & ~C) | (~A & ~B)
# Expression is minimal, but there are multiple minimal forms possible
res1 = (A & B) | (C & ~A) | (~B & ~C)
result = to_dnf(expr, simplify=True)
assert result in (expr, res1)
def test_issue_20870():
result = SOPform([a, b, c, d], [1, 2, 3, 4, 5, 6, 8, 9, 11, 12, 14, 15])
expected = ((d & ~b) | (a & b & c) | (a & ~c & ~d) |
(b & ~a & ~c) | (c & ~a & ~d))
assert result == expected
def test_convert_to_varsSOP():
assert _convert_to_varsSOP([0, 1, 0], [x, y, z]) == And(Not(x), y, Not(z))
assert _convert_to_varsSOP([3, 1, 0], [x, y, z]) == And(y, Not(z))
def test_convert_to_varsPOS():
assert _convert_to_varsPOS([0, 1, 0], [x, y, z]) == Or(x, Not(y), z)
assert _convert_to_varsPOS([3, 1, 0], [x, y, z]) == Or(Not(y), z)
def test_gateinputcount():
a, b, c, d, e = symbols('a:e')
assert gateinputcount(And(a, b)) == 2
assert gateinputcount(a | b & c & d ^ (e | a)) == 9
assert gateinputcount(And(a, True)) == 0
raises(TypeError, lambda: gateinputcount(a*b))
def test_refine():
# relational
assert not refine(x < 0, ~(x < 0))
assert refine(x < 0, (x < 0))
assert refine(x < 0, (0 > x)) is S.true
assert refine(x < 0, (y < 0)) == (x < 0)
assert not refine(x <= 0, ~(x <= 0))
assert refine(x <= 0, (x <= 0))
assert refine(x <= 0, (0 >= x)) is S.true
assert refine(x <= 0, (y <= 0)) == (x <= 0)
assert not refine(x > 0, ~(x > 0))
assert refine(x > 0, (x > 0))
assert refine(x > 0, (0 < x)) is S.true
assert refine(x > 0, (y > 0)) == (x > 0)
assert not refine(x >= 0, ~(x >= 0))
assert refine(x >= 0, (x >= 0))
assert refine(x >= 0, (0 <= x)) is S.true
assert refine(x >= 0, (y >= 0)) == (x >= 0)
assert not refine(Eq(x, 0), ~(Eq(x, 0)))
assert refine(Eq(x, 0), (Eq(x, 0)))
assert refine(Eq(x, 0), (Eq(0, x))) is S.true
assert refine(Eq(x, 0), (Eq(y, 0))) == Eq(x, 0)
assert not refine(Ne(x, 0), ~(Ne(x, 0)))
assert refine(Ne(x, 0), (Ne(0, x))) is S.true
assert refine(Ne(x, 0), (Ne(x, 0)))
assert refine(Ne(x, 0), (Ne(y, 0))) == (Ne(x, 0))
# boolean functions
assert refine(And(x > 0, y > 0), (x > 0)) == (y > 0)
assert refine(And(x > 0, y > 0), (x > 0) & (y > 0)) is S.true
# predicates
assert refine(Q.positive(x), Q.positive(x)) is S.true
assert refine(Q.positive(x), Q.negative(x)) is S.false
assert refine(Q.positive(x), Q.real(x)) == Q.positive(x)
def test_relational_threeterm_simplification_patterns_numerically():
from sympy.core import Wild
from sympy.logic.boolalg import _simplify_patterns_and3
a = Wild('a')
b = Wild('b')
c = Wild('c')
symb = [a, b, c]
patternlists = [[And, _simplify_patterns_and3()]]
valuelist = list(set(list(combinations(list(range(-2, 3))*3, 3))))
# Skip combinations of +/-2 and 0, except for all 0
valuelist = [v for v in valuelist if any([w % 2 for w in v]) or not any(v)]
for func, patternlist in patternlists:
for pattern in patternlist:
original = func(*pattern[0].args)
simplified = pattern[1]
for values in valuelist:
sublist = dict(zip(symb, values))
originalvalue = original.xreplace(sublist)
simplifiedvalue = simplified.xreplace(sublist)
assert originalvalue == simplifiedvalue, "Original: {}\nand"\
" simplified: {}\ndo not evaluate to the same value for"\
"{}".format(pattern[0], simplified, sublist)
|
8f7fc1abbecfb7284b3e50085cbf523c65a7abda7940f97d760d44e5276ac7c1 | from typing import Tuple as tTuple
from functools import wraps
from sympy.core import S, Integer, Basic, Mul, Add
from sympy.core.assumptions import check_assumptions
from sympy.core.decorators import call_highest_priority
from sympy.core.expr import Expr, ExprBuilder
from sympy.core.logic import FuzzyBool
from sympy.core.symbol import Str, Dummy, symbols, Symbol
from sympy.core.sympify import SympifyError, _sympify
from sympy.external.gmpy import SYMPY_INTS
from sympy.functions import conjugate, adjoint
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.matrices.common import NonSquareMatrixError
from sympy.matrices.matrices import MatrixKind, MatrixBase
from sympy.multipledispatch import dispatch
from sympy.utilities.misc import filldedent
def _sympifyit(arg, retval=None):
# This version of _sympifyit sympifies MutableMatrix objects
def deco(func):
@wraps(func)
def __sympifyit_wrapper(a, b):
try:
b = _sympify(b)
return func(a, b)
except SympifyError:
return retval
return __sympifyit_wrapper
return deco
class MatrixExpr(Expr):
"""Superclass for Matrix Expressions
MatrixExprs represent abstract matrices, linear transformations represented
within a particular basis.
Examples
========
>>> from sympy import MatrixSymbol
>>> A = MatrixSymbol('A', 3, 3)
>>> y = MatrixSymbol('y', 3, 1)
>>> x = (A.T*A).I * A * y
See Also
========
MatrixSymbol, MatAdd, MatMul, Transpose, Inverse
"""
__slots__ = () # type: tTuple[str, ...]
# Should not be considered iterable by the
# sympy.utilities.iterables.iterable function. Subclass that actually are
# iterable (i.e., explicit matrices) should set this to True.
_iterable = False
_op_priority = 11.0
is_Matrix = True # type: bool
is_MatrixExpr = True # type: bool
is_Identity = None # type: FuzzyBool
is_Inverse = False
is_Transpose = False
is_ZeroMatrix = False
is_MatAdd = False
is_MatMul = False
is_commutative = False
is_number = False
is_symbol = False
is_scalar = False
kind: MatrixKind = MatrixKind()
def __new__(cls, *args, **kwargs):
args = map(_sympify, args)
return Basic.__new__(cls, *args, **kwargs)
# The following is adapted from the core Expr object
@property
def shape(self) -> tTuple[Expr, Expr]:
raise NotImplementedError
@property
def _add_handler(self):
return MatAdd
@property
def _mul_handler(self):
return MatMul
def __neg__(self):
return MatMul(S.NegativeOne, self).doit()
def __abs__(self):
raise NotImplementedError
@_sympifyit('other', NotImplemented)
@call_highest_priority('__radd__')
def __add__(self, other):
return MatAdd(self, other).doit()
@_sympifyit('other', NotImplemented)
@call_highest_priority('__add__')
def __radd__(self, other):
return MatAdd(other, self).doit()
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rsub__')
def __sub__(self, other):
return MatAdd(self, -other).doit()
@_sympifyit('other', NotImplemented)
@call_highest_priority('__sub__')
def __rsub__(self, other):
return MatAdd(other, -self).doit()
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rmul__')
def __mul__(self, other):
return MatMul(self, other).doit()
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rmul__')
def __matmul__(self, other):
return MatMul(self, other).doit()
@_sympifyit('other', NotImplemented)
@call_highest_priority('__mul__')
def __rmul__(self, other):
return MatMul(other, self).doit()
@_sympifyit('other', NotImplemented)
@call_highest_priority('__mul__')
def __rmatmul__(self, other):
return MatMul(other, self).doit()
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rpow__')
def __pow__(self, other):
return MatPow(self, other).doit()
@_sympifyit('other', NotImplemented)
@call_highest_priority('__pow__')
def __rpow__(self, other):
raise NotImplementedError("Matrix Power not defined")
@_sympifyit('other', NotImplemented)
@call_highest_priority('__rtruediv__')
def __truediv__(self, other):
return self * other**S.NegativeOne
@_sympifyit('other', NotImplemented)
@call_highest_priority('__truediv__')
def __rtruediv__(self, other):
raise NotImplementedError()
#return MatMul(other, Pow(self, S.NegativeOne))
@property
def rows(self):
return self.shape[0]
@property
def cols(self):
return self.shape[1]
@property
def is_square(self):
return self.rows == self.cols
def _eval_conjugate(self):
from sympy.matrices.expressions.adjoint import Adjoint
return Adjoint(Transpose(self))
def as_real_imag(self, deep=True, **hints):
return self._eval_as_real_imag()
def _eval_as_real_imag(self):
real = S.Half * (self + self._eval_conjugate())
im = (self - self._eval_conjugate())/(2*S.ImaginaryUnit)
return (real, im)
def _eval_inverse(self):
return Inverse(self)
def _eval_determinant(self):
return Determinant(self)
def _eval_transpose(self):
return Transpose(self)
def _eval_power(self, exp):
"""
Override this in sub-classes to implement simplification of powers. The cases where the exponent
is -1, 0, 1 are already covered in MatPow.doit(), so implementations can exclude these cases.
"""
return MatPow(self, exp)
def _eval_simplify(self, **kwargs):
if self.is_Atom:
return self
else:
from sympy.simplify import simplify
return self.func(*[simplify(x, **kwargs) for x in self.args])
def _eval_adjoint(self):
from sympy.matrices.expressions.adjoint import Adjoint
return Adjoint(self)
def _eval_derivative_n_times(self, x, n):
return Basic._eval_derivative_n_times(self, x, n)
def _eval_derivative(self, x):
# `x` is a scalar:
if self.has(x):
# See if there are other methods using it:
return super()._eval_derivative(x)
else:
return ZeroMatrix(*self.shape)
@classmethod
def _check_dim(cls, dim):
"""Helper function to check invalid matrix dimensions"""
ok = check_assumptions(dim, integer=True, nonnegative=True)
if ok is False:
raise ValueError(
"The dimension specification {} should be "
"a nonnegative integer.".format(dim))
def _entry(self, i, j, **kwargs):
raise NotImplementedError(
"Indexing not implemented for %s" % self.__class__.__name__)
def adjoint(self):
return adjoint(self)
def as_coeff_Mul(self, rational=False):
"""Efficiently extract the coefficient of a product. """
return S.One, self
def conjugate(self):
return conjugate(self)
def transpose(self):
from sympy.matrices.expressions.transpose import transpose
return transpose(self)
@property
def T(self):
'''Matrix transposition'''
return self.transpose()
def inverse(self):
if not self.is_square:
raise NonSquareMatrixError('Inverse of non-square matrix')
return self._eval_inverse()
def inv(self):
return self.inverse()
def det(self):
from sympy.matrices.expressions.determinant import det
return det(self)
@property
def I(self):
return self.inverse()
def valid_index(self, i, j):
def is_valid(idx):
return isinstance(idx, (int, Integer, Symbol, Expr))
return (is_valid(i) and is_valid(j) and
(self.rows is None or
(i >= -self.rows) != False and (i < self.rows) != False) and
(j >= -self.cols) != False and (j < self.cols) != False)
def __getitem__(self, key):
if not isinstance(key, tuple) and isinstance(key, slice):
from sympy.matrices.expressions.slice import MatrixSlice
return MatrixSlice(self, key, (0, None, 1))
if isinstance(key, tuple) and len(key) == 2:
i, j = key
if isinstance(i, slice) or isinstance(j, slice):
from sympy.matrices.expressions.slice import MatrixSlice
return MatrixSlice(self, i, j)
i, j = _sympify(i), _sympify(j)
if self.valid_index(i, j) != False:
return self._entry(i, j)
else:
raise IndexError("Invalid indices (%s, %s)" % (i, j))
elif isinstance(key, (SYMPY_INTS, Integer)):
# row-wise decomposition of matrix
rows, cols = self.shape
# allow single indexing if number of columns is known
if not isinstance(cols, Integer):
raise IndexError(filldedent('''
Single indexing is only supported when the number
of columns is known.'''))
key = _sympify(key)
i = key // cols
j = key % cols
if self.valid_index(i, j) != False:
return self._entry(i, j)
else:
raise IndexError("Invalid index %s" % key)
elif isinstance(key, (Symbol, Expr)):
raise IndexError(filldedent('''
Only integers may be used when addressing the matrix
with a single index.'''))
raise IndexError("Invalid index, wanted %s[i,j]" % self)
def _is_shape_symbolic(self) -> bool:
return (not isinstance(self.rows, (SYMPY_INTS, Integer))
or not isinstance(self.cols, (SYMPY_INTS, Integer)))
def as_explicit(self):
"""
Returns a dense Matrix with elements represented explicitly
Returns an object of type ImmutableDenseMatrix.
Examples
========
>>> from sympy import Identity
>>> I = Identity(3)
>>> I
I
>>> I.as_explicit()
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
See Also
========
as_mutable: returns mutable Matrix type
"""
if self._is_shape_symbolic():
raise ValueError(
'Matrix with symbolic shape '
'cannot be represented explicitly.')
from sympy.matrices.immutable import ImmutableDenseMatrix
return ImmutableDenseMatrix([[self[i, j]
for j in range(self.cols)]
for i in range(self.rows)])
def as_mutable(self):
"""
Returns a dense, mutable matrix with elements represented explicitly
Examples
========
>>> from sympy import Identity
>>> I = Identity(3)
>>> I
I
>>> I.shape
(3, 3)
>>> I.as_mutable()
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
See Also
========
as_explicit: returns ImmutableDenseMatrix
"""
return self.as_explicit().as_mutable()
def __array__(self):
from numpy import empty
a = empty(self.shape, dtype=object)
for i in range(self.rows):
for j in range(self.cols):
a[i, j] = self[i, j]
return a
def equals(self, other):
"""
Test elementwise equality between matrices, potentially of different
types
>>> from sympy import Identity, eye
>>> Identity(3).equals(eye(3))
True
"""
return self.as_explicit().equals(other)
def canonicalize(self):
return self
def as_coeff_mmul(self):
return S.One, MatMul(self)
@staticmethod
def from_index_summation(expr, first_index=None, last_index=None, dimensions=None):
r"""
Parse expression of matrices with explicitly summed indices into a
matrix expression without indices, if possible.
This transformation expressed in mathematical notation:
`\sum_{j=0}^{N-1} A_{i,j} B_{j,k} \Longrightarrow \mathbf{A}\cdot \mathbf{B}`
Optional parameter ``first_index``: specify which free index to use as
the index starting the expression.
Examples
========
>>> from sympy import MatrixSymbol, MatrixExpr, Sum
>>> from sympy.abc import i, j, k, l, N
>>> A = MatrixSymbol("A", N, N)
>>> B = MatrixSymbol("B", N, N)
>>> expr = Sum(A[i, j]*B[j, k], (j, 0, N-1))
>>> MatrixExpr.from_index_summation(expr)
A*B
Transposition is detected:
>>> expr = Sum(A[j, i]*B[j, k], (j, 0, N-1))
>>> MatrixExpr.from_index_summation(expr)
A.T*B
Detect the trace:
>>> expr = Sum(A[i, i], (i, 0, N-1))
>>> MatrixExpr.from_index_summation(expr)
Trace(A)
More complicated expressions:
>>> expr = Sum(A[i, j]*B[k, j]*A[l, k], (j, 0, N-1), (k, 0, N-1))
>>> MatrixExpr.from_index_summation(expr)
A*B.T*A.T
"""
from sympy.tensor.array.expressions.from_indexed_to_array import convert_indexed_to_array
from sympy.tensor.array.expressions.from_array_to_matrix import convert_array_to_matrix
first_indices = []
if first_index is not None:
first_indices.append(first_index)
if last_index is not None:
first_indices.append(last_index)
arr = convert_indexed_to_array(expr, first_indices=first_indices)
return convert_array_to_matrix(arr)
def applyfunc(self, func):
from .applyfunc import ElementwiseApplyFunction
return ElementwiseApplyFunction(func, self)
@dispatch(MatrixExpr, Expr)
def _eval_is_eq(lhs, rhs): # noqa:F811
return False
@dispatch(MatrixExpr, MatrixExpr) # type: ignore
def _eval_is_eq(lhs, rhs): # noqa:F811
if lhs.shape != rhs.shape:
return False
if (lhs - rhs).is_ZeroMatrix:
return True
def get_postprocessor(cls):
def _postprocessor(expr):
# To avoid circular imports, we can't have MatMul/MatAdd on the top level
mat_class = {Mul: MatMul, Add: MatAdd}[cls]
nonmatrices = []
matrices = []
for term in expr.args:
if isinstance(term, MatrixExpr):
matrices.append(term)
else:
nonmatrices.append(term)
if not matrices:
return cls._from_args(nonmatrices)
if nonmatrices:
if cls == Mul:
for i in range(len(matrices)):
if not matrices[i].is_MatrixExpr:
# If one of the matrices explicit, absorb the scalar into it
# (doit will combine all explicit matrices into one, so it
# doesn't matter which)
matrices[i] = matrices[i].__mul__(cls._from_args(nonmatrices))
nonmatrices = []
break
else:
# Maintain the ability to create Add(scalar, matrix) without
# raising an exception. That way different algorithms can
# replace matrix expressions with non-commutative symbols to
# manipulate them like non-commutative scalars.
return cls._from_args(nonmatrices + [mat_class(*matrices).doit(deep=False)])
if mat_class == MatAdd:
return mat_class(*matrices).doit(deep=False)
return mat_class(cls._from_args(nonmatrices), *matrices).doit(deep=False)
return _postprocessor
Basic._constructor_postprocessor_mapping[MatrixExpr] = {
"Mul": [get_postprocessor(Mul)],
"Add": [get_postprocessor(Add)],
}
def _matrix_derivative(expr, x, old_algorithm=False):
if isinstance(expr, MatrixBase) or isinstance(x, MatrixBase):
# Do not use array expressions for explicit matrices:
old_algorithm = True
if old_algorithm:
return _matrix_derivative_old_algorithm(expr, x)
from sympy.tensor.array.expressions.from_matrix_to_array import convert_matrix_to_array
from sympy.tensor.array.expressions.arrayexpr_derivatives import array_derive
from sympy.tensor.array.expressions.from_array_to_matrix import convert_array_to_matrix
array_expr = convert_matrix_to_array(expr)
diff_array_expr = array_derive(array_expr, x)
diff_matrix_expr = convert_array_to_matrix(diff_array_expr)
return diff_matrix_expr
def _matrix_derivative_old_algorithm(expr, x):
from sympy.tensor.array.array_derivatives import ArrayDerivative
lines = expr._eval_derivative_matrix_lines(x)
parts = [i.build() for i in lines]
from sympy.tensor.array.expressions.from_array_to_matrix import convert_array_to_matrix
parts = [[convert_array_to_matrix(j) for j in i] for i in parts]
def _get_shape(elem):
if isinstance(elem, MatrixExpr):
return elem.shape
return 1, 1
def get_rank(parts):
return sum([j not in (1, None) for i in parts for j in _get_shape(i)])
ranks = [get_rank(i) for i in parts]
rank = ranks[0]
def contract_one_dims(parts):
if len(parts) == 1:
return parts[0]
else:
p1, p2 = parts[:2]
if p2.is_Matrix:
p2 = p2.T
if p1 == Identity(1):
pbase = p2
elif p2 == Identity(1):
pbase = p1
else:
pbase = p1*p2
if len(parts) == 2:
return pbase
else: # len(parts) > 2
if pbase.is_Matrix:
raise ValueError("")
return pbase*Mul.fromiter(parts[2:])
if rank <= 2:
return Add.fromiter([contract_one_dims(i) for i in parts])
return ArrayDerivative(expr, x)
class MatrixElement(Expr):
parent = property(lambda self: self.args[0])
i = property(lambda self: self.args[1])
j = property(lambda self: self.args[2])
_diff_wrt = True
is_symbol = True
is_commutative = True
def __new__(cls, name, n, m):
n, m = map(_sympify, (n, m))
from sympy.matrices.matrices import MatrixBase
if isinstance(name, str):
name = Symbol(name)
else:
if isinstance(name, MatrixBase):
if n.is_Integer and m.is_Integer:
return name[n, m]
name = _sympify(name) # change mutable into immutable
else:
name = _sympify(name)
if not isinstance(name.kind, MatrixKind):
raise TypeError("First argument of MatrixElement should be a matrix")
if not getattr(name, 'valid_index', lambda n, m: True)(n, m):
raise IndexError('indices out of range')
obj = Expr.__new__(cls, name, n, m)
return obj
@property
def symbol(self):
return self.args[0]
def doit(self, **hints):
deep = hints.get('deep', True)
if deep:
args = [arg.doit(**hints) for arg in self.args]
else:
args = self.args
return args[0][args[1], args[2]]
@property
def indices(self):
return self.args[1:]
def _eval_derivative(self, v):
if not isinstance(v, MatrixElement):
from sympy.matrices.matrices import MatrixBase
if isinstance(self.parent, MatrixBase):
return self.parent.diff(v)[self.i, self.j]
return S.Zero
M = self.args[0]
m, n = self.parent.shape
if M == v.args[0]:
return KroneckerDelta(self.args[1], v.args[1], (0, m-1)) * \
KroneckerDelta(self.args[2], v.args[2], (0, n-1))
if isinstance(M, Inverse):
from sympy.concrete.summations import Sum
i, j = self.args[1:]
i1, i2 = symbols("z1, z2", cls=Dummy)
Y = M.args[0]
r1, r2 = Y.shape
return -Sum(M[i, i1]*Y[i1, i2].diff(v)*M[i2, j], (i1, 0, r1-1), (i2, 0, r2-1))
if self.has(v.args[0]):
return None
return S.Zero
class MatrixSymbol(MatrixExpr):
"""Symbolic representation of a Matrix object
Creates a SymPy Symbol to represent a Matrix. This matrix has a shape and
can be included in Matrix Expressions
Examples
========
>>> from sympy import MatrixSymbol, Identity
>>> A = MatrixSymbol('A', 3, 4) # A 3 by 4 Matrix
>>> B = MatrixSymbol('B', 4, 3) # A 4 by 3 Matrix
>>> A.shape
(3, 4)
>>> 2*A*B + Identity(3)
I + 2*A*B
"""
is_commutative = False
is_symbol = True
_diff_wrt = True
def __new__(cls, name, n, m):
n, m = _sympify(n), _sympify(m)
cls._check_dim(m)
cls._check_dim(n)
if isinstance(name, str):
name = Str(name)
obj = Basic.__new__(cls, name, n, m)
return obj
@property
def shape(self):
return self.args[1], self.args[2]
@property
def name(self):
return self.args[0].name
def _entry(self, i, j, **kwargs):
return MatrixElement(self, i, j)
@property
def free_symbols(self):
return {self}
def _eval_simplify(self, **kwargs):
return self
def _eval_derivative(self, x):
# x is a scalar:
return ZeroMatrix(self.shape[0], self.shape[1])
def _eval_derivative_matrix_lines(self, x):
if self != x:
first = ZeroMatrix(x.shape[0], self.shape[0]) if self.shape[0] != 1 else S.Zero
second = ZeroMatrix(x.shape[1], self.shape[1]) if self.shape[1] != 1 else S.Zero
return [_LeftRightArgs(
[first, second],
)]
else:
first = Identity(self.shape[0]) if self.shape[0] != 1 else S.One
second = Identity(self.shape[1]) if self.shape[1] != 1 else S.One
return [_LeftRightArgs(
[first, second],
)]
def matrix_symbols(expr):
return [sym for sym in expr.free_symbols if sym.is_Matrix]
class _LeftRightArgs:
r"""
Helper class to compute matrix derivatives.
The logic: when an expression is derived by a matrix `X_{mn}`, two lines of
matrix multiplications are created: the one contracted to `m` (first line),
and the one contracted to `n` (second line).
Transposition flips the side by which new matrices are connected to the
lines.
The trace connects the end of the two lines.
"""
def __init__(self, lines, higher=S.One):
self._lines = [i for i in lines]
self._first_pointer_parent = self._lines
self._first_pointer_index = 0
self._first_line_index = 0
self._second_pointer_parent = self._lines
self._second_pointer_index = 1
self._second_line_index = 1
self.higher = higher
@property
def first_pointer(self):
return self._first_pointer_parent[self._first_pointer_index]
@first_pointer.setter
def first_pointer(self, value):
self._first_pointer_parent[self._first_pointer_index] = value
@property
def second_pointer(self):
return self._second_pointer_parent[self._second_pointer_index]
@second_pointer.setter
def second_pointer(self, value):
self._second_pointer_parent[self._second_pointer_index] = value
def __repr__(self):
built = [self._build(i) for i in self._lines]
return "_LeftRightArgs(lines=%s, higher=%s)" % (
built,
self.higher,
)
def transpose(self):
self._first_pointer_parent, self._second_pointer_parent = self._second_pointer_parent, self._first_pointer_parent
self._first_pointer_index, self._second_pointer_index = self._second_pointer_index, self._first_pointer_index
self._first_line_index, self._second_line_index = self._second_line_index, self._first_line_index
return self
@staticmethod
def _build(expr):
if isinstance(expr, ExprBuilder):
return expr.build()
if isinstance(expr, list):
if len(expr) == 1:
return expr[0]
else:
return expr[0](*[_LeftRightArgs._build(i) for i in expr[1]])
else:
return expr
def build(self):
data = [self._build(i) for i in self._lines]
if self.higher != 1:
data += [self._build(self.higher)]
data = [i for i in data]
return data
def matrix_form(self):
if self.first != 1 and self.higher != 1:
raise ValueError("higher dimensional array cannot be represented")
def _get_shape(elem):
if isinstance(elem, MatrixExpr):
return elem.shape
return (None, None)
if _get_shape(self.first)[1] != _get_shape(self.second)[1]:
# Remove one-dimensional identity matrices:
# (this is needed by `a.diff(a)` where `a` is a vector)
if _get_shape(self.second) == (1, 1):
return self.first*self.second[0, 0]
if _get_shape(self.first) == (1, 1):
return self.first[1, 1]*self.second.T
raise ValueError("incompatible shapes")
if self.first != 1:
return self.first*self.second.T
else:
return self.higher
def rank(self):
"""
Number of dimensions different from trivial (warning: not related to
matrix rank).
"""
rank = 0
if self.first != 1:
rank += sum([i != 1 for i in self.first.shape])
if self.second != 1:
rank += sum([i != 1 for i in self.second.shape])
if self.higher != 1:
rank += 2
return rank
def _multiply_pointer(self, pointer, other):
from ...tensor.array.expressions.array_expressions import ArrayTensorProduct
from ...tensor.array.expressions.array_expressions import ArrayContraction
subexpr = ExprBuilder(
ArrayContraction,
[
ExprBuilder(
ArrayTensorProduct,
[
pointer,
other
]
),
(1, 2)
],
validator=ArrayContraction._validate
)
return subexpr
def append_first(self, other):
self.first_pointer *= other
def append_second(self, other):
self.second_pointer *= other
def _make_matrix(x):
from sympy.matrices.immutable import ImmutableDenseMatrix
if isinstance(x, MatrixExpr):
return x
return ImmutableDenseMatrix([[x]])
from .matmul import MatMul
from .matadd import MatAdd
from .matpow import MatPow
from .transpose import Transpose
from .inverse import Inverse
from .special import ZeroMatrix, Identity
from .determinant import Determinant
|
3c3d52453dbab7b4b9b7ba33e067465d43768b2a08500b6e7a3b9e4bf6809781 | #!/usr/bin/env python3
from subprocess import check_output
import sys
import os.path
def main(tarname, gitroot):
"""Run this as ./compare_tar_against_git.py TARFILE GITROOT
Args
====
TARFILE: Path to the built sdist (sympy-xx.tar.gz)
GITROOT: Path ro root of git (dir containing .git)
"""
compare_tar_against_git(tarname, gitroot)
## TARBALL WHITELISTS
# If a file does not end up in the tarball that should, add it to setup.py if
# it is Python, or MANIFEST.in if it is not. (There is a command at the top
# of setup.py to gather all the things that should be there).
# TODO: Also check that this whitelist isn't growing out of date from files
# removed from git.
# Files that are in git that should not be in the tarball
git_whitelist = {
# Git specific dotfiles
'.gitattributes',
'.gitignore',
'.mailmap',
# Travis and CI
'.travis.yml',
'.github/workflows/runtests.yml',
'.github/workflows/ci-sage.yml',
'.github/workflows/comment-on-pr.yml',
'.github/workflows/release.yml',
'.github/workflows/docs-preview.yml',
'.github/workflows/checkconflict.yml',
'.ci/durations.json',
'.ci/generate_durations_log.sh',
'.ci/parse_durations_log.py',
'.ci/blacklisted.json',
'.ci/README.rst',
'.circleci/config.yml',
'.github/FUNDING.yml',
'.editorconfig',
'.coveragerc',
'CODEOWNERS',
'asv.conf.actions.json',
'asv.conf.travis.json',
'coveragerc_travis',
'codecov.yml',
'pytest.ini',
'MANIFEST.in',
'banner.svg',
# Code of conduct
'CODE_OF_CONDUCT.md',
# Pull request template
'PULL_REQUEST_TEMPLATE.md',
# Contributing guide
'CONTRIBUTING.md',
# Nothing from bin/ should be shipped unless we intend to install it. Most
# of this stuff is for development anyway. To run the tests from the
# tarball, use setup.py test, or import sympy and run sympy.test() or
# sympy.doctest().
'bin/adapt_paths.py',
'bin/ask_update.py',
'bin/authors_update.py',
'bin/build_doc.sh',
'bin/coverage_doctest.py',
'bin/coverage_report.py',
'bin/deploy_doc.sh',
'bin/diagnose_imports',
'bin/doctest',
'bin/generate_module_list.py',
'bin/generate_test_list.py',
'bin/get_sympy.py',
'bin/mailmap_update.py',
'bin/py.bench',
'bin/strip_whitespace',
'bin/sympy_time.py',
'bin/sympy_time_cache.py',
'bin/test',
'bin/test_external_imports.py',
'bin/test_executable.py',
'bin/test_import',
'bin/test_import.py',
'bin/test_isolated',
'bin/test_py2_import.py',
'bin/test_setup.py',
'bin/test_submodule_imports.py',
'bin/test_travis.sh',
'bin/test_optional_dependencies.py',
'bin/test_sphinx.sh',
'bin/mailmap_check.py',
'bin/test_symengine.py',
'bin/test_tensorflow.py',
'bin/test_pyodide.mjs',
# The notebooks are not ready for shipping yet. They need to be cleaned
# up, and preferably doctested. See also
# https://github.com/sympy/sympy/issues/6039.
'examples/advanced/identitysearch_example.ipynb',
'examples/beginner/plot_advanced.ipynb',
'examples/beginner/plot_colors.ipynb',
'examples/beginner/plot_discont.ipynb',
'examples/beginner/plot_gallery.ipynb',
'examples/beginner/plot_intro.ipynb',
'examples/intermediate/limit_examples_advanced.ipynb',
'examples/intermediate/schwarzschild.ipynb',
'examples/notebooks/density.ipynb',
'examples/notebooks/fidelity.ipynb',
'examples/notebooks/fresnel_integrals.ipynb',
'examples/notebooks/qubits.ipynb',
'examples/notebooks/sho1d_example.ipynb',
'examples/notebooks/spin.ipynb',
'examples/notebooks/trace.ipynb',
'examples/notebooks/Bezout_Dixon_resultant.ipynb',
'examples/notebooks/IntegrationOverPolytopes.ipynb',
'examples/notebooks/Macaulay_resultant.ipynb',
'examples/notebooks/Sylvester_resultant.ipynb',
'examples/notebooks/README.txt',
# This stuff :)
'release/.gitignore',
'release/README.md',
'release/compare_tar_against_git.py',
'release/update_docs.py',
'release/build_docs.py',
'release/github_release.py',
'release/helpers.py',
'release/releasecheck.py',
'release/sha256.py',
'release/authors.py',
'release/ci_release_script.sh',
# This is just a distribute version of setup.py. Used mainly for setup.py
# develop, which we don't care about in the release tarball
'setupegg.py',
# pytest stuff
'conftest.py',
# Encrypted deploy key for deploying dev docs to GitHub
'github_deploy_key.enc',
}
# Files that should be in the tarball should not be in git
tarball_whitelist = {
# Generated by setup.py. Contains metadata for PyPI.
"PKG-INFO",
# Generated by setuptools. More metadata.
'setup.cfg',
'sympy.egg-info/PKG-INFO',
'sympy.egg-info/SOURCES.txt',
'sympy.egg-info/dependency_links.txt',
'sympy.egg-info/requires.txt',
'sympy.egg-info/top_level.txt',
'sympy.egg-info/not-zip-safe',
'sympy.egg-info/entry_points.txt',
# Not sure where this is generated from...
'doc/commit_hash.txt',
}
def blue(text):
return "\033[34m%s\033[0m" % text
def red(text):
return "\033[31m%s\033[0m" % text
def run(*cmdline, cwd=None):
"""
Run command in subprocess and get lines of output
"""
return check_output(cmdline, encoding='utf-8', cwd=cwd).splitlines()
def full_path_split(path):
"""
Function to do a full split on a path.
"""
# Based on https://stackoverflow.com/a/13505966/161801
rest, tail = os.path.split(path)
if not rest or rest == os.path.sep:
return (tail,)
return full_path_split(rest) + (tail,)
def compare_tar_against_git(tarname, gitroot):
"""
Compare the contents of the tarball against git ls-files
See the bottom of the file for the whitelists.
"""
git_lsfiles = set(i.strip() for i in run('git', 'ls-files', cwd=gitroot))
tar_output_orig = set(run('tar', 'tf', tarname))
tar_output = set()
for file in tar_output_orig:
# The tar files are like sympy-0.7.3/sympy/__init__.py, and the git
# files are like sympy/__init__.py.
split_path = full_path_split(file)
if split_path[-1]:
# Exclude directories, as git ls-files does not include them
tar_output.add(os.path.join(*split_path[1:]))
# print tar_output
# print git_lsfiles
fail = False
print()
print(blue("Files in the tarball from git that should not be there:"))
print()
for line in sorted(tar_output.intersection(git_whitelist)):
fail = True
print(line)
print()
print(blue("Files in git but not in the tarball:"))
print()
for line in sorted(git_lsfiles - tar_output - git_whitelist):
fail = True
print(line)
print()
print(blue("Files in the tarball but not in git:"))
print()
for line in sorted(tar_output - git_lsfiles - tarball_whitelist):
fail = True
print(line)
print()
if fail:
sys.exit(red("Non-whitelisted files found or not found in the tarball"))
if __name__ == "__main__":
main(*sys.argv[1:])
|
cfd05d58144dc0c536f37f1f32a95a747e6e7b004176bb14e8241975203e24bd | #
# SymPy documentation build configuration file, created by
# sphinx-quickstart.py on Sat Mar 22 19:34:32 2008.
#
# This file is execfile()d with the current directory set to its containing dir.
#
# The contents of this file are pickled, so don't put values in the namespace
# that aren't pickleable (module imports are okay, they're removed automatically).
#
# All configuration values have a default value; values that are commented out
# serve to show the default value.
import sys
import inspect
import os
import subprocess
from datetime import datetime
# Make sure we import sympy from git
sys.path.insert(0, os.path.abspath('../..'))
import sympy
# If your extensions are in another directory, add it here.
sys.path = ['ext'] + sys.path
# General configuration
# ---------------------
# Add any Sphinx extension module names here, as strings. They can be extensions
# coming with Sphinx (named 'sphinx.addons.*') or your custom ones.
extensions = ['sphinx.ext.autodoc', 'sphinx.ext.linkcode',
'sphinx_math_dollar', 'sphinx.ext.mathjax', 'numpydoc',
'sphinx_reredirects', 'sphinx_copybutton',
'sphinx.ext.graphviz', 'matplotlib.sphinxext.plot_directive',
'myst_parser', 'convert-svg-to-pdf', 'sphinx.ext.intersphinx',
]
# Add redirects here. This should be done whenever a page that is in the
# existing release docs is moved somewhere else so that the URLs don't break.
# The format is
# "page/path/without/extension": "../relative_path_with.html"
# Note that the html path is relative to the redirected page. Always test the
# redirect manually (they aren't tested automatically). See
# https://documatt.gitlab.io/sphinx-reredirects/usage.html
redirects = {
"guides/getting_started/install": "../../install.html",
"documentation-style-guide": "contributing/documentation-style-guide.html",
"gotchas": "explanation/gotchas.html",
"special_topics/classification": "../explanation/classification.html",
"special_topics/finite_diff_derivatives": "../explanation/finite_diff_derivatives.html",
"special_topics/intro": "../explanation/index.html",
"special_topics/index": "../explanation/index.html",
"modules/index": "../reference/index.html",
"modules/physics/index": "../../reference/public/physics/index.html",
"guides/contributing/index": "../../contributing/index.html",
"guides/contributing/dev-setup": "../../contributing/dev-setup.html",
"guides/contributing/dependencies": "../../contributing/dependencies.html",
"guides/contributing/build-docs": "../../contributing/build-docs.html",
"guides/contributing/debug": "../../contributing/debug.html",
"guides/contributing/docstring": "../../contributing/docstring.html",
"guides/documentation-style-guide": "../../contributing/contributing/documentation-style-guide.html",
"guides/make-a-contribution": "../../contributing/make-a-contribution.html",
"guides/contributing/deprecations": "../../contributing/deprecations.html",
"tutorial/preliminaries": "../tutorials/intro-tutorial/preliminaries.html",
"tutorial/intro": "../tutorials/intro-tutorial/intro.html",
"tutorial/index": "../tutorials/intro-tutorial/index.html",
"tutorial/gotchas": "../tutorials/intro-tutorial/gotchas.html",
"tutorial/features": "../tutorials/intro-tutorial/features.html",
"tutorial/next": "../tutorials/intro-tutorial/next.html",
"tutorial/basic_operations": "../tutorials/intro-tutorial/basic_operations.html",
"tutorial/printing": "../tutorials/intro-tutorial/printing.html",
"tutorial/simplification": "../tutorials/intro-tutorial/simplification.html",
"tutorial/calculus": "../tutorials/intro-tutorial/calculus.html",
"tutorial/solvers": "../tutorials/intro-tutorial/solvers.html",
"tutorial/matrices": "../tutorials/intro-tutorial/matrices.html",
"tutorial/manipulation": "../tutorials/intro-tutorial/manipulation.html",
}
html_baseurl = "https://docs.sympy.org/latest/"
# Configure Sphinx copybutton (see https://sphinx-copybutton.readthedocs.io/en/latest/use.html)
copybutton_prompt_text = r">>> |\.\.\. |\$ |In \[\d*\]: | {2,5}\.\.\.: | {5,8}: "
copybutton_prompt_is_regexp = True
# Use this to use pngmath instead
#extensions = ['sphinx.ext.autodoc', 'sphinx.ext.viewcode', 'sphinx.ext.pngmath', ]
# Enable warnings for all bad cross references. These are turned into errors
# with the -W flag in the Makefile.
nitpicky = True
nitpick_ignore = [
('py:class', 'sympy.logic.boolalg.Boolean')
]
# To stop docstrings inheritance.
autodoc_inherit_docstrings = False
# See https://www.sympy.org/sphinx-math-dollar/
mathjax3_config = {
"tex": {
"inlineMath": [['\\(', '\\)']],
"displayMath": [["\\[", "\\]"]],
}
}
# Myst configuration (for .md files). See
# https://myst-parser.readthedocs.io/en/latest/syntax/optional.html
myst_enable_extensions = ["dollarmath", "linkify"]
myst_heading_anchors = 6
# myst_update_mathjax = False
# Add any paths that contain templates here, relative to this directory.
templates_path = ['_templates']
# The suffix of source filenames.
source_suffix = '.rst'
# The master toctree document.
master_doc = 'index'
suppress_warnings = ['ref.citation', 'ref.footnote']
# General substitutions.
project = 'SymPy'
copyright = '{} SymPy Development Team'.format(datetime.utcnow().year)
# The default replacements for |version| and |release|, also used in various
# other places throughout the built documents.
#
# The short X.Y version.
version = sympy.__version__
# The full version, including alpha/beta/rc tags.
release = version
# There are two options for replacing |today|: either, you set today to some
# non-false value, then it is used:
#today = ''
# Else, today_fmt is used as the format for a strftime call.
today_fmt = '%B %d, %Y'
# List of documents that shouldn't be included in the build.
#unused_docs = []
# If true, '()' will be appended to :func: etc. cross-reference text.
#add_function_parentheses = True
# If true, the current module name will be prepended to all description
# unit titles (such as .. function::).
#add_module_names = True
# If true, sectionauthor and moduleauthor directives will be shown in the
# output. They are ignored by default.
#show_authors = False
# The name of the Pygments (syntax highlighting) style to use.
sys.path.append(os.path.abspath("./_pygments"))
pygments_style = 'styles.SphinxHighContrastStyle'
pygments_dark_style = 'styles.NativeHighContrastStyle'
# Don't show the source code hyperlinks when using matplotlib plot directive.
plot_html_show_source_link = False
# Options for HTML output
# -----------------------
# The style sheet to use for HTML and HTML Help pages. A file of that name
# must exist either in Sphinx' static/ path, or in one of the custom paths
# given in html_static_path.
# html_style = 'default.css'
# Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = ['_static']
# If not '', a 'Last updated on:' timestamp is inserted at every page bottom,
# using the given strftime format.
html_last_updated_fmt = '%b %d, %Y'
# was classic
# html_theme = "classic"
html_theme = "furo"
# Adjust the sidebar so that the entire sidebar is scrollable
html_sidebars = {
"**": [
"sidebar/scroll-start.html",
"sidebar/brand.html",
"sidebar/search.html",
"sidebar/navigation.html",
"sidebar/versions.html",
"sidebar/scroll-end.html",
],
}
common_theme_variables = {
# Main "SymPy green" colors. Many things uses these colors.
"color-brand-primary": "#52833A",
"color-brand-content": "#307748",
# The left sidebar.
"color-sidebar-background": "#3B5526",
"color-sidebar-background-border": "var(--color-background-primary)",
"color-sidebar-link-text": "#FFFFFF",
"color-sidebar-brand-text": "var(--color-sidebar-link-text--top-level)",
"color-sidebar-link-text--top-level": "#FFFFFF",
"color-sidebar-item-background--hover": "var(--color-brand-primary)",
"color-sidebar-item-expander-background--hover": "var(--color-brand-primary)",
"color-link-underline--hover": "var(--color-link)",
"color-api-keyword": "#000000bd",
"color-api-name": "var(--color-brand-content)",
"color-api-pre-name": "var(--color-brand-content)",
"api-font-size": "var(--font-size--normal)",
"color-foreground-secondary": "#53555B",
# TODO: Add the other types of admonitions here if anyone uses them.
"color-admonition-title-background--seealso": "#CCCCCC",
"color-admonition-title--seealso": "black",
"color-admonition-title-background--note": "#CCCCCC",
"color-admonition-title--note": "black",
"color-admonition-title-background--warning": "var(--color-problematic)",
"color-admonition-title--warning": "white",
"admonition-font-size": "var(--font-size--normal)",
"admonition-title-font-size": "var(--font-size--normal)",
# Note: this doesn't work. If we want to change this, we have to set
# it as the .highlight background in custom.css.
"color-code-background": "hsl(80deg 100% 95%)",
"code-font-size": "var(--font-size--small)",
"font-stack--monospace": 'DejaVu Sans Mono,"SFMono-Regular",Menlo,Consolas,Monaco,Liberation Mono,Lucida Console,monospace;'
}
html_theme_options = {
"light_css_variables": common_theme_variables,
# The dark variables automatically inherit values from the light variables
"dark_css_variables": {
**common_theme_variables,
"color-brand-primary": "#33CB33",
"color-brand-content": "#1DBD1D",
"color-api-keyword": "#FFFFFFbd",
"color-api-overall": "#FFFFFF90",
"color-api-paren": "#FFFFFF90",
"color-sidebar-item-background--hover": "#52833A",
"color-sidebar-item-expander-background--hover": "#52833A",
# This is the color of the text in the right sidebar
"color-foreground-secondary": "#9DA1AC",
"color-admonition-title-background--seealso": "#555555",
"color-admonition-title-background--note": "#555555",
"color-problematic": "#B30000",
},
# See https://pradyunsg.me/furo/customisation/footer/
"footer_icons": [
{
"name": "GitHub",
"url": "https://github.com/sympy/sympy",
"html": """
<svg stroke="currentColor" fill="currentColor" stroke-width="0" viewBox="0 0 16 16">
<path fill-rule="evenodd" d="M8 0C3.58 0 0 3.58 0 8c0 3.54 2.29 6.53 5.47 7.59.4.07.55-.17.55-.38 0-.19-.01-.82-.01-1.49-2.01.37-2.53-.49-2.69-.94-.09-.23-.48-.94-.82-1.13-.28-.15-.68-.52-.01-.53.63-.01 1.08.58 1.23.82.72 1.21 1.87.87 2.33.66.07-.52.28-.87.51-1.07-1.78-.2-3.64-.89-3.64-3.95 0-.87.31-1.59.82-2.15-.08-.2-.36-1.02.08-2.12 0 0 .67-.21 2.2.82.64-.18 1.32-.27 2-.27.68 0 1.36.09 2 .27 1.53-1.04 2.2-.82 2.2-.82.44 1.1.16 1.92.08 2.12.51.56.82 1.27.82 2.15 0 3.07-1.87 3.75-3.65 3.95.29.25.54.73.54 1.48 0 1.07-.01 1.93-.01 2.2 0 .21.15.46.55.38A8.013 8.013 0 0 0 16 8c0-4.42-3.58-8-8-8z"></path>
</svg>
""",
"class": "",
},
],
}
# Add a header for PR preview builds. See the Circle CI configuration.
if os.environ.get("CIRCLECI") == "true":
PR_NUMBER = os.environ.get('CIRCLE_PR_NUMBER')
SHA1 = os.environ.get('CIRCLE_SHA1')
html_theme_options['announcement'] = f"""This is a preview build from
SymPy pull request <a href="https://github.com/sympy/sympy/pull/{PR_NUMBER}">
#{PR_NUMBER}</a>. It was built against <a
href="https://github.com/sympy/sympy/pull/{PR_NUMBER}/commits/{SHA1}">{SHA1[:7]}</a>.
If you aren't looking for a PR preview, go to <a
href="https://docs.sympy.org/">the main SymPy documentation</a>. """
# custom.css contains changes that aren't possible with the above because they
# aren't specified in the Furo theme as CSS variables
html_css_files = ['custom.css']
# html_js_files = []
# If true, SmartyPants will be used to convert quotes and dashes to
# typographically correct entities.
#html_use_smartypants = True
# Content template for the index page.
#html_index = ''
# Custom sidebar templates, maps document names to template names.
#html_sidebars = {}
# Additional templates that should be rendered to pages, maps page names to
# template names.
#html_additional_pages = {}
# If false, no module index is generated.
#html_use_modindex = True
html_domain_indices = ['py-modindex']
# If true, the reST sources are included in the HTML build as _sources/<name>.
# html_copy_source = True
# Output file base name for HTML help builder.
htmlhelp_basename = 'SymPydoc'
language = 'en'
# Options for LaTeX output
# ------------------------
# The paper size ('letter' or 'a4').
#latex_paper_size = 'letter'
# The font size ('10pt', '11pt' or '12pt').
#latex_font_size = '10pt'
# Grouping the document tree into LaTeX files. List of tuples
# (source start file, target name, title, author, document class [howto/manual], toctree_only).
# toctree_only is set to True so that the start file document itself is not included in the
# output, only the documents referenced by it via TOC trees. The extra stuff in the master
# document is intended to show up in the HTML, but doesn't really belong in the LaTeX output.
latex_documents = [('index', 'sympy-%s.tex' % release, 'SymPy Documentation',
'SymPy Development Team', 'manual', True)]
# Additional stuff for the LaTeX preamble.
# Tweaked to work with XeTeX.
latex_elements = {
'babel': '',
'fontenc': r'''
% Define version of \LaTeX that is usable in math mode
\let\OldLaTeX\LaTeX
\renewcommand{\LaTeX}{\text{\OldLaTeX}}
\usepackage{bm}
\usepackage{amssymb}
\usepackage{fontspec}
\usepackage[english]{babel}
\defaultfontfeatures{Mapping=tex-text}
\setmainfont{DejaVu Serif}
\setsansfont{DejaVu Sans}
\setmonofont{DejaVu Sans Mono}
''',
'fontpkg': '',
'inputenc': '',
'utf8extra': '',
'preamble': r'''
'''
}
# SymPy logo on title page
html_logo = '_static/sympylogo.png'
latex_logo = '_static/sympylogo_big.png'
html_favicon = '../_build/logo/sympy-notailtext-favicon.ico'
# Documents to append as an appendix to all manuals.
#latex_appendices = []
# Show page numbers next to internal references
latex_show_pagerefs = True
# We use False otherwise the module index gets generated twice.
latex_use_modindex = False
default_role = 'math'
pngmath_divpng_args = ['-gamma 1.5', '-D 110']
# Note, this is ignored by the mathjax extension
# Any \newcommand should be defined in the file
pngmath_latex_preamble = '\\usepackage{amsmath}\n' \
'\\usepackage{bm}\n' \
'\\usepackage{amsfonts}\n' \
'\\usepackage{amssymb}\n' \
'\\setlength{\\parindent}{0pt}\n'
texinfo_documents = [
(master_doc, 'sympy', 'SymPy Documentation', 'SymPy Development Team',
'SymPy', 'Computer algebra system (CAS) in Python', 'Programming', 1),
]
# Use svg for graphviz
graphviz_output_format = 'svg'
# Enable links to other packages
intersphinx_mapping = {
'matplotlib': ('https://matplotlib.org/stable/', None),
'mpmath': ('https://mpmath.org/doc/current/', None),
"scipy": ("https://docs.scipy.org/doc/scipy/", None),
"numpy": ("https://numpy.org/doc/stable/", None),
}
# Require :external: to reference intersphinx. Prevents accidentally linking
# to something from matplotlib.
intersphinx_disabled_reftypes = ['*']
# Requried for linkcode extension.
# Get commit hash from the external file.
commit_hash_filepath = '../commit_hash.txt'
commit_hash = None
if os.path.isfile(commit_hash_filepath):
with open(commit_hash_filepath) as f:
commit_hash = f.readline()
# Get commit hash from the external file.
if not commit_hash:
try:
commit_hash = subprocess.check_output(['git', 'rev-parse', 'HEAD'])
commit_hash = commit_hash.decode('ascii')
commit_hash = commit_hash.rstrip()
except:
import warnings
warnings.warn(
"Failed to get the git commit hash as the command " \
"'git rev-parse HEAD' is not working. The commit hash will be " \
"assumed as the SymPy master, but the lines may be misleading " \
"or nonexistent as it is not the correct branch the doc is " \
"built with. Check your installation of 'git' if you want to " \
"resolve this warning.")
commit_hash = 'master'
fork = 'sympy'
blobpath = \
"https://github.com/{}/sympy/blob/{}/sympy/".format(fork, commit_hash)
def linkcode_resolve(domain, info):
"""Determine the URL corresponding to Python object."""
if domain != 'py':
return
modname = info['module']
fullname = info['fullname']
submod = sys.modules.get(modname)
if submod is None:
return
obj = submod
for part in fullname.split('.'):
try:
obj = getattr(obj, part)
except Exception:
return
# strip decorators, which would resolve to the source of the decorator
# possibly an upstream bug in getsourcefile, bpo-1764286
try:
unwrap = inspect.unwrap
except AttributeError:
pass
else:
obj = unwrap(obj)
try:
fn = inspect.getsourcefile(obj)
except Exception:
fn = None
if not fn:
return
try:
source, lineno = inspect.getsourcelines(obj)
except Exception:
lineno = None
if lineno:
linespec = "#L%d-L%d" % (lineno, lineno + len(source) - 1)
else:
linespec = ""
fn = os.path.relpath(fn, start=os.path.dirname(sympy.__file__))
return blobpath + fn + linespec
|
ee940f4f45746de3c0bf1dc791804b6b8661d5bcf62fbb4ee2041f2072cf57dc | """
Finite Discrete Random Variables - Prebuilt variable types
Contains
========
FiniteRV
DiscreteUniform
Die
Bernoulli
Coin
Binomial
BetaBinomial
Hypergeometric
Rademacher
IdealSoliton
RobustSoliton
"""
from sympy.core.cache import cacheit
from sympy.core.function import Lambda
from sympy.core.numbers import (Integer, Rational)
from sympy.core.relational import (Eq, Ge, Gt, Le, Lt)
from sympy.core.singleton import S
from sympy.core.symbol import (Dummy, Symbol)
from sympy.core.sympify import sympify
from sympy.functions.combinatorial.factorials import binomial
from sympy.functions.elementary.exponential import log
from sympy.functions.elementary.piecewise import Piecewise
from sympy.logic.boolalg import Or
from sympy.sets.contains import Contains
from sympy.sets.fancysets import Range
from sympy.sets.sets import (Intersection, Interval)
from sympy.functions.special.beta_functions import beta as beta_fn
from sympy.stats.frv import (SingleFiniteDistribution,
SingleFinitePSpace)
from sympy.stats.rv import _value_check, Density, is_random
from sympy.utilities.iterables import multiset
from sympy.utilities.misc import filldedent
__all__ = ['FiniteRV',
'DiscreteUniform',
'Die',
'Bernoulli',
'Coin',
'Binomial',
'BetaBinomial',
'Hypergeometric',
'Rademacher',
'IdealSoliton',
'RobustSoliton',
]
def rv(name, cls, *args, **kwargs):
args = list(map(sympify, args))
dist = cls(*args)
if kwargs.pop('check', True):
dist.check(*args)
pspace = SingleFinitePSpace(name, dist)
if any(is_random(arg) for arg in args):
from sympy.stats.compound_rv import CompoundPSpace, CompoundDistribution
pspace = CompoundPSpace(name, CompoundDistribution(dist))
return pspace.value
class FiniteDistributionHandmade(SingleFiniteDistribution):
@property
def dict(self):
return self.args[0]
def pmf(self, x):
x = Symbol('x')
return Lambda(x, Piecewise(*(
[(v, Eq(k, x)) for k, v in self.dict.items()] + [(S.Zero, True)])))
@property
def set(self):
return set(self.dict.keys())
@staticmethod
def check(density):
for p in density.values():
_value_check((p >= 0, p <= 1),
"Probability at a point must be between 0 and 1.")
val = sum(density.values())
_value_check(Eq(val, 1) != S.false, "Total Probability must be 1.")
def FiniteRV(name, density, **kwargs):
r"""
Create a Finite Random Variable given a dict representing the density.
Parameters
==========
name : Symbol
Represents name of the random variable.
density : dict
Dictionary containing the pdf of finite distribution
check : bool
If True, it will check whether the given density
integrates to 1 over the given set. If False, it
will not perform this check. Default is False.
Examples
========
>>> from sympy.stats import FiniteRV, P, E
>>> density = {0: .1, 1: .2, 2: .3, 3: .4}
>>> X = FiniteRV('X', density)
>>> E(X)
2.00000000000000
>>> P(X >= 2)
0.700000000000000
Returns
=======
RandomSymbol
"""
# have a default of False while `rv` should have a default of True
kwargs['check'] = kwargs.pop('check', False)
return rv(name, FiniteDistributionHandmade, density, **kwargs)
class DiscreteUniformDistribution(SingleFiniteDistribution):
@staticmethod
def check(*args):
# not using _value_check since there is a
# suggestion for the user
if len(set(args)) != len(args):
weights = multiset(args)
n = Integer(len(args))
for k in weights:
weights[k] /= n
raise ValueError(filldedent("""
Repeated args detected but set expected. For a
distribution having different weights for each
item use the following:""") + (
'\nS("FiniteRV(%s, %s)")' % ("'X'", weights)))
@property
def p(self):
return Rational(1, len(self.args))
@property # type: ignore
@cacheit
def dict(self):
return {k: self.p for k in self.set}
@property
def set(self):
return set(self.args)
def pmf(self, x):
if x in self.args:
return self.p
else:
return S.Zero
def DiscreteUniform(name, items):
r"""
Create a Finite Random Variable representing a uniform distribution over
the input set.
Parameters
==========
items : list/tuple
Items over which Uniform distribution is to be made
Examples
========
>>> from sympy.stats import DiscreteUniform, density
>>> from sympy import symbols
>>> X = DiscreteUniform('X', symbols('a b c')) # equally likely over a, b, c
>>> density(X).dict
{a: 1/3, b: 1/3, c: 1/3}
>>> Y = DiscreteUniform('Y', list(range(5))) # distribution over a range
>>> density(Y).dict
{0: 1/5, 1: 1/5, 2: 1/5, 3: 1/5, 4: 1/5}
Returns
=======
RandomSymbol
References
==========
.. [1] https://en.wikipedia.org/wiki/Discrete_uniform_distribution
.. [2] http://mathworld.wolfram.com/DiscreteUniformDistribution.html
"""
return rv(name, DiscreteUniformDistribution, *items)
class DieDistribution(SingleFiniteDistribution):
_argnames = ('sides',)
@staticmethod
def check(sides):
_value_check((sides.is_positive, sides.is_integer),
"number of sides must be a positive integer.")
@property
def is_symbolic(self):
return not self.sides.is_number
@property
def high(self):
return self.sides
@property
def low(self):
return S.One
@property
def set(self):
if self.is_symbolic:
return Intersection(S.Naturals0, Interval(0, self.sides))
return set(map(Integer, range(1, self.sides + 1)))
def pmf(self, x):
x = sympify(x)
if not (x.is_number or x.is_Symbol or is_random(x)):
raise ValueError("'x' expected as an argument of type 'number', 'Symbol', or "
"'RandomSymbol' not %s" % (type(x)))
cond = Ge(x, 1) & Le(x, self.sides) & Contains(x, S.Integers)
return Piecewise((S.One/self.sides, cond), (S.Zero, True))
def Die(name, sides=6):
r"""
Create a Finite Random Variable representing a fair die.
Parameters
==========
sides : Integer
Represents the number of sides of the Die, by default is 6
Examples
========
>>> from sympy.stats import Die, density
>>> from sympy import Symbol
>>> D6 = Die('D6', 6) # Six sided Die
>>> density(D6).dict
{1: 1/6, 2: 1/6, 3: 1/6, 4: 1/6, 5: 1/6, 6: 1/6}
>>> D4 = Die('D4', 4) # Four sided Die
>>> density(D4).dict
{1: 1/4, 2: 1/4, 3: 1/4, 4: 1/4}
>>> n = Symbol('n', positive=True, integer=True)
>>> Dn = Die('Dn', n) # n sided Die
>>> density(Dn).dict
Density(DieDistribution(n))
>>> density(Dn).dict.subs(n, 4).doit()
{1: 1/4, 2: 1/4, 3: 1/4, 4: 1/4}
Returns
=======
RandomSymbol
"""
return rv(name, DieDistribution, sides)
class BernoulliDistribution(SingleFiniteDistribution):
_argnames = ('p', 'succ', 'fail')
@staticmethod
def check(p, succ, fail):
_value_check((p >= 0, p <= 1),
"p should be in range [0, 1].")
@property
def set(self):
return {self.succ, self.fail}
def pmf(self, x):
if isinstance(self.succ, Symbol) and isinstance(self.fail, Symbol):
return Piecewise((self.p, x == self.succ),
(1 - self.p, x == self.fail),
(S.Zero, True))
return Piecewise((self.p, Eq(x, self.succ)),
(1 - self.p, Eq(x, self.fail)),
(S.Zero, True))
def Bernoulli(name, p, succ=1, fail=0):
r"""
Create a Finite Random Variable representing a Bernoulli process.
Parameters
==========
p : Rational number between 0 and 1
Represents probability of success
succ : Integer/symbol/string
Represents event of success
fail : Integer/symbol/string
Represents event of failure
Examples
========
>>> from sympy.stats import Bernoulli, density
>>> from sympy import S
>>> X = Bernoulli('X', S(3)/4) # 1-0 Bernoulli variable, probability = 3/4
>>> density(X).dict
{0: 1/4, 1: 3/4}
>>> X = Bernoulli('X', S.Half, 'Heads', 'Tails') # A fair coin toss
>>> density(X).dict
{Heads: 1/2, Tails: 1/2}
Returns
=======
RandomSymbol
References
==========
.. [1] https://en.wikipedia.org/wiki/Bernoulli_distribution
.. [2] http://mathworld.wolfram.com/BernoulliDistribution.html
"""
return rv(name, BernoulliDistribution, p, succ, fail)
def Coin(name, p=S.Half):
r"""
Create a Finite Random Variable representing a Coin toss.
Parameters
==========
p : Rational Numeber between 0 and 1
Represents probability of getting "Heads", by default is Half
Examples
========
>>> from sympy.stats import Coin, density
>>> from sympy import Rational
>>> C = Coin('C') # A fair coin toss
>>> density(C).dict
{H: 1/2, T: 1/2}
>>> C2 = Coin('C2', Rational(3, 5)) # An unfair coin
>>> density(C2).dict
{H: 3/5, T: 2/5}
Returns
=======
RandomSymbol
See Also
========
sympy.stats.Binomial
References
==========
.. [1] https://en.wikipedia.org/wiki/Coin_flipping
"""
return rv(name, BernoulliDistribution, p, 'H', 'T')
class BinomialDistribution(SingleFiniteDistribution):
_argnames = ('n', 'p', 'succ', 'fail')
@staticmethod
def check(n, p, succ, fail):
_value_check((n.is_integer, n.is_nonnegative),
"'n' must be nonnegative integer.")
_value_check((p <= 1, p >= 0),
"p should be in range [0, 1].")
@property
def high(self):
return self.n
@property
def low(self):
return S.Zero
@property
def is_symbolic(self):
return not self.n.is_number
@property
def set(self):
if self.is_symbolic:
return Intersection(S.Naturals0, Interval(0, self.n))
return set(self.dict.keys())
def pmf(self, x):
n, p = self.n, self.p
x = sympify(x)
if not (x.is_number or x.is_Symbol or is_random(x)):
raise ValueError("'x' expected as an argument of type 'number', 'Symbol', or "
"'RandomSymbol' not %s" % (type(x)))
cond = Ge(x, 0) & Le(x, n) & Contains(x, S.Integers)
return Piecewise((binomial(n, x) * p**x * (1 - p)**(n - x), cond), (S.Zero, True))
@property # type: ignore
@cacheit
def dict(self):
if self.is_symbolic:
return Density(self)
return {k*self.succ + (self.n-k)*self.fail: self.pmf(k)
for k in range(0, self.n + 1)}
def Binomial(name, n, p, succ=1, fail=0):
r"""
Create a Finite Random Variable representing a binomial distribution.
Parameters
==========
n : Positive Integer
Represents number of trials
p : Rational Number between 0 and 1
Represents probability of success
succ : Integer/symbol/string
Represents event of success, by default is 1
fail : Integer/symbol/string
Represents event of failure, by default is 0
Examples
========
>>> from sympy.stats import Binomial, density
>>> from sympy import S, Symbol
>>> X = Binomial('X', 4, S.Half) # Four "coin flips"
>>> density(X).dict
{0: 1/16, 1: 1/4, 2: 3/8, 3: 1/4, 4: 1/16}
>>> n = Symbol('n', positive=True, integer=True)
>>> p = Symbol('p', positive=True)
>>> X = Binomial('X', n, S.Half) # n "coin flips"
>>> density(X).dict
Density(BinomialDistribution(n, 1/2, 1, 0))
>>> density(X).dict.subs(n, 4).doit()
{0: 1/16, 1: 1/4, 2: 3/8, 3: 1/4, 4: 1/16}
Returns
=======
RandomSymbol
References
==========
.. [1] https://en.wikipedia.org/wiki/Binomial_distribution
.. [2] http://mathworld.wolfram.com/BinomialDistribution.html
"""
return rv(name, BinomialDistribution, n, p, succ, fail)
#-------------------------------------------------------------------------------
# Beta-binomial distribution ----------------------------------------------------------
class BetaBinomialDistribution(SingleFiniteDistribution):
_argnames = ('n', 'alpha', 'beta')
@staticmethod
def check(n, alpha, beta):
_value_check((n.is_integer, n.is_nonnegative),
"'n' must be nonnegative integer. n = %s." % str(n))
_value_check((alpha > 0),
"'alpha' must be: alpha > 0 . alpha = %s" % str(alpha))
_value_check((beta > 0),
"'beta' must be: beta > 0 . beta = %s" % str(beta))
@property
def high(self):
return self.n
@property
def low(self):
return S.Zero
@property
def is_symbolic(self):
return not self.n.is_number
@property
def set(self):
if self.is_symbolic:
return Intersection(S.Naturals0, Interval(0, self.n))
return set(map(Integer, range(self.n + 1)))
def pmf(self, k):
n, a, b = self.n, self.alpha, self.beta
return binomial(n, k) * beta_fn(k + a, n - k + b) / beta_fn(a, b)
def BetaBinomial(name, n, alpha, beta):
r"""
Create a Finite Random Variable representing a Beta-binomial distribution.
Parameters
==========
n : Positive Integer
Represents number of trials
alpha : Real positive number
beta : Real positive number
Examples
========
>>> from sympy.stats import BetaBinomial, density
>>> X = BetaBinomial('X', 2, 1, 1)
>>> density(X).dict
{0: 1/3, 1: 2*beta(2, 2), 2: 1/3}
Returns
=======
RandomSymbol
References
==========
.. [1] https://en.wikipedia.org/wiki/Beta-binomial_distribution
.. [2] http://mathworld.wolfram.com/BetaBinomialDistribution.html
"""
return rv(name, BetaBinomialDistribution, n, alpha, beta)
class HypergeometricDistribution(SingleFiniteDistribution):
_argnames = ('N', 'm', 'n')
@staticmethod
def check(n, N, m):
_value_check((N.is_integer, N.is_nonnegative),
"'N' must be nonnegative integer. N = %s." % str(n))
_value_check((n.is_integer, n.is_nonnegative),
"'n' must be nonnegative integer. n = %s." % str(n))
_value_check((m.is_integer, m.is_nonnegative),
"'m' must be nonnegative integer. m = %s." % str(n))
@property
def is_symbolic(self):
return not all(x.is_number for x in (self.N, self.m, self.n))
@property
def high(self):
return Piecewise((self.n, Lt(self.n, self.m) != False), (self.m, True))
@property
def low(self):
return Piecewise((0, Gt(0, self.n + self.m - self.N) != False), (self.n + self.m - self.N, True))
@property
def set(self):
N, m, n = self.N, self.m, self.n
if self.is_symbolic:
return Intersection(S.Naturals0, Interval(self.low, self.high))
return {i for i in range(max(0, n + m - N), min(n, m) + 1)}
def pmf(self, k):
N, m, n = self.N, self.m, self.n
return S(binomial(m, k) * binomial(N - m, n - k))/binomial(N, n)
def Hypergeometric(name, N, m, n):
r"""
Create a Finite Random Variable representing a hypergeometric distribution.
Parameters
==========
N : Positive Integer
Represents finite population of size N.
m : Positive Integer
Represents number of trials with required feature.
n : Positive Integer
Represents numbers of draws.
Examples
========
>>> from sympy.stats import Hypergeometric, density
>>> X = Hypergeometric('X', 10, 5, 3) # 10 marbles, 5 white (success), 3 draws
>>> density(X).dict
{0: 1/12, 1: 5/12, 2: 5/12, 3: 1/12}
Returns
=======
RandomSymbol
References
==========
.. [1] https://en.wikipedia.org/wiki/Hypergeometric_distribution
.. [2] http://mathworld.wolfram.com/HypergeometricDistribution.html
"""
return rv(name, HypergeometricDistribution, N, m, n)
class RademacherDistribution(SingleFiniteDistribution):
@property
def set(self):
return {-1, 1}
@property
def pmf(self):
k = Dummy('k')
return Lambda(k, Piecewise((S.Half, Or(Eq(k, -1), Eq(k, 1))), (S.Zero, True)))
def Rademacher(name):
r"""
Create a Finite Random Variable representing a Rademacher distribution.
Examples
========
>>> from sympy.stats import Rademacher, density
>>> X = Rademacher('X')
>>> density(X).dict
{-1: 1/2, 1: 1/2}
Returns
=======
RandomSymbol
See Also
========
sympy.stats.Bernoulli
References
==========
.. [1] https://en.wikipedia.org/wiki/Rademacher_distribution
"""
return rv(name, RademacherDistribution)
class IdealSolitonDistribution(SingleFiniteDistribution):
_argnames = ('k',)
@staticmethod
def check(k):
_value_check(k.is_integer and k.is_positive,
"'k' must be a positive integer.")
@property
def low(self):
return S.One
@property
def high(self):
return self.k
@property
def set(self):
return set(map(Integer, range(1, self.k + 1)))
@property # type: ignore
@cacheit
def dict(self):
if self.k.is_Symbol:
return Density(self)
d = {1: Rational(1, self.k)}
d.update(dict((i, Rational(1, i*(i - 1))) for i in range(2, self.k + 1)))
return d
def pmf(self, x):
x = sympify(x)
if not (x.is_number or x.is_Symbol or is_random(x)):
raise ValueError("'x' expected as an argument of type 'number', 'Symbol', or "
"'RandomSymbol' not %s" % (type(x)))
cond1 = Eq(x, 1) & x.is_integer
cond2 = Ge(x, 1) & Le(x, self.k) & x.is_integer
return Piecewise((1/self.k, cond1), (1/(x*(x - 1)), cond2), (S.Zero, True))
def IdealSoliton(name, k):
r"""
Create a Finite Random Variable of Ideal Soliton Distribution
Parameters
==========
k : Positive Integer
Represents the number of input symbols in an LT (Luby Transform) code.
Examples
========
>>> from sympy.stats import IdealSoliton, density, P, E
>>> sol = IdealSoliton('sol', 5)
>>> density(sol).dict
{1: 1/5, 2: 1/2, 3: 1/6, 4: 1/12, 5: 1/20}
>>> density(sol).set
{1, 2, 3, 4, 5}
>>> from sympy import Symbol
>>> k = Symbol('k', positive=True, integer=True)
>>> sol = IdealSoliton('sol', k)
>>> density(sol).dict
Density(IdealSolitonDistribution(k))
>>> density(sol).dict.subs(k, 10).doit()
{1: 1/10, 2: 1/2, 3: 1/6, 4: 1/12, 5: 1/20, 6: 1/30, 7: 1/42, 8: 1/56, 9: 1/72, 10: 1/90}
>>> E(sol.subs(k, 10))
7381/2520
>>> P(sol.subs(k, 4) > 2)
1/4
Returns
=======
RandomSymbol
References
==========
.. [1] https://en.wikipedia.org/wiki/Soliton_distribution#Ideal_distribution
.. [2] http://pages.cs.wisc.edu/~suman/courses/740/papers/luby02lt.pdf
"""
return rv(name, IdealSolitonDistribution, k)
class RobustSolitonDistribution(SingleFiniteDistribution):
_argnames= ('k', 'delta', 'c')
@staticmethod
def check(k, delta, c):
_value_check(k.is_integer and k.is_positive,
"'k' must be a positive integer")
_value_check(Gt(delta, 0) and Le(delta, 1),
"'delta' must be a real number in the interval (0,1)")
_value_check(c.is_positive,
"'c' must be a positive real number.")
@property
def R(self):
return self.c * log(self.k/self.delta) * self.k**0.5
@property
def Z(self):
z = 0
for i in Range(1, round(self.k/self.R)):
z += (1/i)
z += log(self.R/self.delta)
return 1 + z * self.R/self.k
@property
def low(self):
return S.One
@property
def high(self):
return self.k
@property
def set(self):
return set(map(Integer, range(1, self.k + 1)))
@property
def is_symbolic(self):
return not (self.k.is_number and self.c.is_number and self.delta.is_number)
def pmf(self, x):
x = sympify(x)
if not (x.is_number or x.is_Symbol or is_random(x)):
raise ValueError("'x' expected as an argument of type 'number', 'Symbol', or "
"'RandomSymbol' not %s" % (type(x)))
cond1 = Eq(x, 1) & x.is_integer
cond2 = Ge(x, 1) & Le(x, self.k) & x.is_integer
rho = Piecewise((Rational(1, self.k), cond1), (Rational(1, x*(x-1)), cond2), (S.Zero, True))
cond1 = Ge(x, 1) & Le(x, round(self.k/self.R)-1)
cond2 = Eq(x, round(self.k/self.R))
tau = Piecewise((self.R/(self.k * x), cond1), (self.R * log(self.R/self.delta)/self.k, cond2), (S.Zero, True))
return (rho + tau)/self.Z
def RobustSoliton(name, k, delta, c):
r'''
Create a Finite Random Variable of Robust Soliton Distribution
Parameters
==========
k : Positive Integer
Represents the number of input symbols in an LT (Luby Transform) code.
delta : Positive Rational Number
Represents the failure probability. Must be in the interval (0,1).
c : Positive Rational Number
Constant of proportionality. Values close to 1 are recommended
Examples
========
>>> from sympy.stats import RobustSoliton, density, P, E
>>> robSol = RobustSoliton('robSol', 5, 0.5, 0.01)
>>> density(robSol).dict
{1: 0.204253668152708, 2: 0.490631107897393, 3: 0.165210624506162, 4: 0.0834387731899302, 5: 0.0505633404760675}
>>> density(robSol).set
{1, 2, 3, 4, 5}
>>> from sympy import Symbol
>>> k = Symbol('k', positive=True, integer=True)
>>> c = Symbol('c', positive=True)
>>> robSol = RobustSoliton('robSol', k, 0.5, c)
>>> density(robSol).dict
Density(RobustSolitonDistribution(k, 0.5, c))
>>> density(robSol).dict.subs(k, 10).subs(c, 0.03).doit()
{1: 0.116641095387194, 2: 0.467045731687165, 3: 0.159984123349381, 4: 0.0821431680681869, 5: 0.0505765646770100,
6: 0.0345781523420719, 7: 0.0253132820710503, 8: 0.0194459129233227, 9: 0.0154831166726115, 10: 0.0126733075238887}
>>> E(robSol.subs(k, 10).subs(c, 0.05))
2.91358846104106
>>> P(robSol.subs(k, 4).subs(c, 0.1) > 2)
0.243650614389834
Returns
=======
RandomSymbol
References
==========
.. [1] https://en.wikipedia.org/wiki/Soliton_distribution#Robust_distribution
.. [2] http://www.inference.org.uk/mackay/itprnn/ps/588.596.pdf
.. [3] http://pages.cs.wisc.edu/~suman/courses/740/papers/luby02lt.pdf
'''
return rv(name, RobustSolitonDistribution, k, delta, c)
|
87ed50007d000d274c4b3d7652fad6c3d20a0eeb60a259a06122acdc3d197aff | from sympy.core.numbers import oo
from sympy.core.relational import Eq
from sympy.core.symbol import symbols
from sympy.polys.domains import FiniteField, QQ, RationalField, FF
from sympy.solvers.solvers import solve
from sympy.utilities.iterables import is_sequence
from sympy.utilities.misc import as_int
from .factor_ import divisors
from .residue_ntheory import polynomial_congruence
class EllipticCurve:
"""
Create the following Elliptic Curve over domain.
`y^{2} + a_{1} x y + a_{3} y = x^{3} + a_{2} x^{2} + a_{4} x + a_{6}`
The default domain is ``QQ``. If no coefficient ``a1``, ``a2``, ``a3``,
it create curve as following form.
`y^{2} = x^{3} + a_{4} x + a_{6}`
Examples
========
References
==========
.. [1] J. Silverman "A Friendly Introduction to Number Theory" Third Edition
.. [2] http://mathworld.wolfram.com/EllipticDiscriminant.html
.. [3] G. Hardy, E. Wright "An Introduction to the Theory of Numbers" Sixth Edition
"""
def __init__(self, a4, a6, a1=0, a2=0, a3=0, modulus = 0):
if modulus == 0:
domain = QQ
else:
domain = FF(modulus)
a1, a2, a3, a4, a6 = map(domain.convert, (a1, a2, a3, a4, a6))
self._domain = domain
self.modulus = modulus
# Calculate discriminant
b2 = a1**2 + 4 * a2
b4 = 2 * a4 + a1 * a3
b6 = a3**2 + 4 * a6
b8 = a1**2 * a6 + 4 * a2 * a6 - a1 * a3 * a4 + a2 * a3**2 - a4**2
self._b2, self._b4, self._b6, self._b8 = b2, b4, b6, b8
self._discrim = -b2**2 * b8 - 8 * b4**3 - 27 * b6**2 + 9 * b2 * b4 * b6
self._a1 = a1
self._a2 = a2
self._a3 = a3
self._a4 = a4
self._a6 = a6
x, y, z = symbols('x y z')
self.x, self.y, self.z = x, y, z
self._eq = Eq(y**2*z + a1*x*y*z + a3*y*z**2, x**3 + a2*x**2*z + a4*x*z**2 + a6*z**3)
if isinstance(self._domain, FiniteField):
self._rank = 0
elif isinstance(self._domain, RationalField):
self._rank = None
def __call__(self, x, y, z=1):
return EllipticCurvePoint(x, y, z, self)
def __contains__(self, point):
if is_sequence(point):
if len(point) == 2:
z1 = 1
else:
z1 = point[2]
x1, y1 = point[:2]
elif isinstance(point, EllipticCurvePoint):
x1, y1, z1 = point.x, point.y, point.z
else:
raise ValueError('Invalid point.')
if self.characteristic == 0 and z1 == 0:
return True
return self._eq.subs({self.x: x1, self.y: y1, self.z: z1})
def __repr__(self):
return 'E({}): {}'.format(self._domain, self._eq)
def minimal(self):
"""
Return minimal Weierstrass equation.
Examples
========
>>> from sympy.ntheory.elliptic_curve import EllipticCurve
>>> e1 = EllipticCurve(-10, -20, 0, -1, 1)
>>> e1.minimal()
E(QQ): Eq(y**2*z, x**3 - 13392*x*z**2 - 1080432*z**3)
"""
char = self.characteristic
if char == 2:
return self
if char == 3:
return EllipticCurve(self._b4/2, self._b6/4, a2=self._b2/4, modulus=self.modulus)
c4 = self._b2**2 - 24*self._b4
c6 = -self._b2**3 + 36*self._b2*self._b4 - 216*self._b6
return EllipticCurve(-27*c4, -54*c6, modulus=self.modulus)
def points(self):
"""
Return points of curve over Finite Field.
Examples
========
>>> from sympy.ntheory.elliptic_curve import EllipticCurve
>>> e2 = EllipticCurve(1, 1, 1, 1, 1, modulus=5)
>>> e2.points()
{(0, 2), (1, 4), (2, 0), (2, 2), (3, 0), (3, 1), (4, 0)}
"""
char = self.characteristic
all_pt = set()
if char >= 1:
for i in range(char):
congruence_eq = ((self._eq.lhs - self._eq.rhs).subs({self.x: i, self.z: 1}))
sol = polynomial_congruence(congruence_eq, char)
for num in sol:
all_pt.add((i, num))
return all_pt
else:
raise ValueError("Infinitely many points")
def points_x(self, x):
"Returns points on with curve where xcoordinate = x"
pt = []
if self._domain == QQ:
for y in solve(self._eq.subs(self.x, x)):
pt.append((x, y))
congruence_eq = ((self._eq.lhs - self._eq.rhs).subs({self.x: x, self.z: 1}))
for y in polynomial_congruence(congruence_eq, self.characteristic):
pt.append((x, y))
return pt
def torsion_points(self):
"""
Return torsion points of curve over Rational number.
Return point objects those are finite order.
According to Nagell-Lutz theorem, torsion point p(x, y)
x and y are integers, either y = 0 or y**2 is divisor
of discriminent. According to Mazur's theorem, there are
at most 15 points in torsion collection.
Examples
========
>>> from sympy.ntheory.elliptic_curve import EllipticCurve
>>> e2 = EllipticCurve(-43, 166)
>>> sorted(e2.torsion_points())
[(-5, -16), (-5, 16), O, (3, -8), (3, 8), (11, -32), (11, 32)]
"""
if self.characteristic > 0:
raise ValueError("No torsion point for Finite Field.")
l = [EllipticCurvePoint.point_at_infinity(self)]
for xx in solve(self._eq.subs({self.y: 0, self.z: 1})):
if xx.is_rational:
l.append(self(xx, 0))
for i in divisors(self.discriminant, generator=True):
j = int(i**.5)
if j**2 == i:
for xx in solve(self._eq.subs({self.y: j, self.z: 1})):
if not xx.is_rational:
continue
p = self(xx, j)
if p.order() != oo:
l.extend([p, -p])
return l
@property
def characteristic(self):
"""
Return domain characteristic.
Examples
========
>>> from sympy.ntheory.elliptic_curve import EllipticCurve
>>> e2 = EllipticCurve(-43, 166)
>>> e2.characteristic
0
"""
return self._domain.characteristic()
@property
def discriminant(self):
"""
Return curve discriminant.
Examples
========
>>> from sympy.ntheory.elliptic_curve import EllipticCurve
>>> e2 = EllipticCurve(0, 17)
>>> e2.discriminant
-124848
"""
return int(self._discrim)
@property
def is_singular(self):
"""
Return True if curve discriminant is equal to zero.
"""
return self.discriminant == 0
@property
def j_invariant(self):
"""
Return curve j-invariant.
Examples
========
>>> from sympy.ntheory.elliptic_curve import EllipticCurve
>>> e1 = EllipticCurve(-2, 0, 0, 1, 1)
>>> e1.j_invariant
1404928/389
"""
c4 = self._b2**2 - 24*self._b4
return self._domain.to_sympy(c4**3 / self._discrim)
@property
def order(self):
"""
Number of points in Finite field.
Examples
========
>>> from sympy.ntheory.elliptic_curve import EllipticCurve
>>> e2 = EllipticCurve(1, 0, modulus=19)
>>> e2.order
19
"""
if self.characteristic == 0:
raise NotImplementedError("Still not implemented")
return len(self.points())
@property
def rank(self):
"""
Number of independent points of infinite order.
For Finite field, it must be 0.
"""
if self._rank is not None:
return self._rank
raise NotImplementedError("Still not implemented")
class EllipticCurvePoint:
"""
Point of Elliptic Curve
Examples
========
>>> from sympy.ntheory.elliptic_curve import EllipticCurve
>>> e1 = EllipticCurve(-17, 16)
>>> p1 = e1(0, -4, 1)
>>> p2 = e1(1, 0)
>>> p1 + p2
(15, -56)
>>> e3 = EllipticCurve(-1, 9)
>>> e3(1, -3) * 3
(664/169, 17811/2197)
>>> (e3(1, -3) * 3).order()
oo
>>> e2 = EllipticCurve(-2, 0, 0, 1, 1)
>>> p = e2(-1,1)
>>> q = e2(0, -1)
>>> p+q
(4, 8)
>>> p-q
(1, 0)
>>> 3*p-5*q
(328/361, -2800/6859)
"""
@staticmethod
def point_at_infinity(curve):
return EllipticCurvePoint(0, 1, 0, curve)
def __init__(self, x, y, z, curve):
dom = curve._domain.convert
self.x = dom(x)
self.y = dom(y)
self.z = dom(z)
self._curve = curve
self._domain = self._curve._domain
if not self._curve.__contains__(self):
raise ValueError("The curve does not contain this point")
def __add__(self, p):
if self.z == 0:
return p
if p.z == 0:
return self
x1, y1 = self.x/self.z, self.y/self.z
x2, y2 = p.x/p.z, p.y/p.z
a1 = self._curve._a1
a2 = self._curve._a2
a3 = self._curve._a3
a4 = self._curve._a4
a6 = self._curve._a6
if x1 != x2:
slope = (y1 - y2) / (x1 - x2)
yint = (y1 * x2 - y2 * x1) / (x2 - x1)
else:
if (y1 + y2) == 0:
return self.point_at_infinity(self._curve)
slope = (3 * x1**2 + 2*a2*x1 + a4 - a1*y1) / (a1 * x1 + a3 + 2 * y1)
yint = (-x1**3 + a4*x1 + 2*a6 - a3*y1) / (a1*x1 + a3 + 2*y1)
x3 = slope**2 + a1*slope - a2 - x1 - x2
y3 = -(slope + a1) * x3 - yint - a3
return self._curve(x3, y3, 1)
def __lt__(self, other):
return (self.x, self.y, self.z) < (other.x, other.y, other.z)
def __mul__(self, n):
n = as_int(n)
r = self.point_at_infinity(self._curve)
if n == 0:
return r
if n < 0:
return -self * -n
p = self
while n:
if n & 1:
r = r + p
n >>= 1
p = p + p
return r
def __rmul__(self, n):
return self * n
def __neg__(self):
return EllipticCurvePoint(self.x, -self.y - self._curve._a1*self.x - self._curve._a3, self.z, self._curve)
def __repr__(self):
if self.z == 0:
return 'O'
dom = self._curve._domain
try:
return '({}, {})'.format(dom.to_sympy(self.x), dom.to_sympy(self.y))
except TypeError:
pass
return '({}, {})'.format(self.x, self.y)
def __sub__(self, other):
return self.__add__(-other)
def order(self):
"""
Return point order n where nP = 0.
"""
if self.z == 0:
return 1
if self.y == 0: # P = -P
return 2
p = self * 2
if p.y == -self.y: # 2P = -P
return 3
i = 2
if self._domain != QQ:
while int(p.x) == p.x and int(p.y) == p.y:
p = self + p
i += 1
if p.z == 0:
return i
return oo
while p.x.numerator == p.x and p.y.numerator == p.y:
p = self + p
i += 1
if i > 12:
return oo
if p.z == 0:
return i
return oo
|
f7f00dd3e3397be52990493e89c4a28d7327fa544f6f78485bcdb90518fb6be2 | from math import factorial as _factorial, log, prod
from itertools import chain, islice, product
from sympy.combinatorics import Permutation
from sympy.combinatorics.permutations import (_af_commutes_with, _af_invert,
_af_rmul, _af_rmuln, _af_pow, Cycle)
from sympy.combinatorics.util import (_check_cycles_alt_sym,
_distribute_gens_by_base, _orbits_transversals_from_bsgs,
_handle_precomputed_bsgs, _base_ordering, _strong_gens_from_distr,
_strip, _strip_af)
from sympy.core import Basic
from sympy.core.random import _randrange, randrange, choice
from sympy.core.symbol import Symbol
from sympy.core.sympify import _sympify
from sympy.functions.combinatorial.factorials import factorial
from sympy.ntheory import primefactors, sieve
from sympy.ntheory.factor_ import (factorint, multiplicity)
from sympy.ntheory.primetest import isprime
from sympy.utilities.iterables import has_variety, is_sequence, uniq
rmul = Permutation.rmul_with_af
_af_new = Permutation._af_new
class PermutationGroup(Basic):
r"""The class defining a Permutation group.
Explanation
===========
``PermutationGroup([p1, p2, ..., pn])`` returns the permutation group
generated by the list of permutations. This group can be supplied
to Polyhedron if one desires to decorate the elements to which the
indices of the permutation refer.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> from sympy.combinatorics import Polyhedron
The permutations corresponding to motion of the front, right and
bottom face of a $2 \times 2$ Rubik's cube are defined:
>>> F = Permutation(2, 19, 21, 8)(3, 17, 20, 10)(4, 6, 7, 5)
>>> R = Permutation(1, 5, 21, 14)(3, 7, 23, 12)(8, 10, 11, 9)
>>> D = Permutation(6, 18, 14, 10)(7, 19, 15, 11)(20, 22, 23, 21)
These are passed as permutations to PermutationGroup:
>>> G = PermutationGroup(F, R, D)
>>> G.order()
3674160
The group can be supplied to a Polyhedron in order to track the
objects being moved. An example involving the $2 \times 2$ Rubik's cube is
given there, but here is a simple demonstration:
>>> a = Permutation(2, 1)
>>> b = Permutation(1, 0)
>>> G = PermutationGroup(a, b)
>>> P = Polyhedron(list('ABC'), pgroup=G)
>>> P.corners
(A, B, C)
>>> P.rotate(0) # apply permutation 0
>>> P.corners
(A, C, B)
>>> P.reset()
>>> P.corners
(A, B, C)
Or one can make a permutation as a product of selected permutations
and apply them to an iterable directly:
>>> P10 = G.make_perm([0, 1])
>>> P10('ABC')
['C', 'A', 'B']
See Also
========
sympy.combinatorics.polyhedron.Polyhedron,
sympy.combinatorics.permutations.Permutation
References
==========
.. [1] Holt, D., Eick, B., O'Brien, E.
"Handbook of Computational Group Theory"
.. [2] Seress, A.
"Permutation Group Algorithms"
.. [3] https://en.wikipedia.org/wiki/Schreier_vector
.. [4] https://en.wikipedia.org/wiki/Nielsen_transformation#Product_replacement_algorithm
.. [5] Frank Celler, Charles R.Leedham-Green, Scott H.Murray,
Alice C.Niemeyer, and E.A.O'Brien. "Generating Random
Elements of a Finite Group"
.. [6] https://en.wikipedia.org/wiki/Block_%28permutation_group_theory%29
.. [7] http://www.algorithmist.com/index.php/Union_Find
.. [8] https://en.wikipedia.org/wiki/Multiply_transitive_group#Multiply_transitive_groups
.. [9] https://en.wikipedia.org/wiki/Center_%28group_theory%29
.. [10] https://en.wikipedia.org/wiki/Centralizer_and_normalizer
.. [11] http://groupprops.subwiki.org/wiki/Derived_subgroup
.. [12] https://en.wikipedia.org/wiki/Nilpotent_group
.. [13] http://www.math.colostate.edu/~hulpke/CGT/cgtnotes.pdf
.. [14] https://www.gap-system.org/Manuals/doc/ref/manual.pdf
"""
is_group = True
def __new__(cls, *args, dups=True, **kwargs):
"""The default constructor. Accepts Cycle and Permutation forms.
Removes duplicates unless ``dups`` keyword is ``False``.
"""
if not args:
args = [Permutation()]
else:
args = list(args[0] if is_sequence(args[0]) else args)
if not args:
args = [Permutation()]
if any(isinstance(a, Cycle) for a in args):
args = [Permutation(a) for a in args]
if has_variety(a.size for a in args):
degree = kwargs.pop('degree', None)
if degree is None:
degree = max(a.size for a in args)
for i in range(len(args)):
if args[i].size != degree:
args[i] = Permutation(args[i], size=degree)
if dups:
args = list(uniq([_af_new(list(a)) for a in args]))
if len(args) > 1:
args = [g for g in args if not g.is_identity]
return Basic.__new__(cls, *args, **kwargs)
def __init__(self, *args, **kwargs):
self._generators = list(self.args)
self._order = None
self._center = []
self._is_abelian = None
self._is_transitive = None
self._is_sym = None
self._is_alt = None
self._is_primitive = None
self._is_nilpotent = None
self._is_solvable = None
self._is_trivial = None
self._transitivity_degree = None
self._max_div = None
self._is_perfect = None
self._is_cyclic = None
self._r = len(self._generators)
self._degree = self._generators[0].size
# these attributes are assigned after running schreier_sims
self._base = []
self._strong_gens = []
self._strong_gens_slp = []
self._basic_orbits = []
self._transversals = []
self._transversal_slp = []
# these attributes are assigned after running _random_pr_init
self._random_gens = []
# finite presentation of the group as an instance of `FpGroup`
self._fp_presentation = None
def __getitem__(self, i):
return self._generators[i]
def __contains__(self, i):
"""Return ``True`` if *i* is contained in PermutationGroup.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> p = Permutation(1, 2, 3)
>>> Permutation(3) in PermutationGroup(p)
True
"""
if not isinstance(i, Permutation):
raise TypeError("A PermutationGroup contains only Permutations as "
"elements, not elements of type %s" % type(i))
return self.contains(i)
def __len__(self):
return len(self._generators)
def equals(self, other):
"""Return ``True`` if PermutationGroup generated by elements in the
group are same i.e they represent the same PermutationGroup.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> p = Permutation(0, 1, 2, 3, 4, 5)
>>> G = PermutationGroup([p, p**2])
>>> H = PermutationGroup([p**2, p])
>>> G.generators == H.generators
False
>>> G.equals(H)
True
"""
if not isinstance(other, PermutationGroup):
return False
set_self_gens = set(self.generators)
set_other_gens = set(other.generators)
# before reaching the general case there are also certain
# optimisation and obvious cases requiring less or no actual
# computation.
if set_self_gens == set_other_gens:
return True
# in the most general case it will check that each generator of
# one group belongs to the other PermutationGroup and vice-versa
for gen1 in set_self_gens:
if not other.contains(gen1):
return False
for gen2 in set_other_gens:
if not self.contains(gen2):
return False
return True
def __mul__(self, other):
"""
Return the direct product of two permutation groups as a permutation
group.
Explanation
===========
This implementation realizes the direct product by shifting the index
set for the generators of the second group: so if we have ``G`` acting
on ``n1`` points and ``H`` acting on ``n2`` points, ``G*H`` acts on
``n1 + n2`` points.
Examples
========
>>> from sympy.combinatorics.named_groups import CyclicGroup
>>> G = CyclicGroup(5)
>>> H = G*G
>>> H
PermutationGroup([
(9)(0 1 2 3 4),
(5 6 7 8 9)])
>>> H.order()
25
"""
if isinstance(other, Permutation):
return Coset(other, self, dir='+')
gens1 = [perm._array_form for perm in self.generators]
gens2 = [perm._array_form for perm in other.generators]
n1 = self._degree
n2 = other._degree
start = list(range(n1))
end = list(range(n1, n1 + n2))
for i in range(len(gens2)):
gens2[i] = [x + n1 for x in gens2[i]]
gens2 = [start + gen for gen in gens2]
gens1 = [gen + end for gen in gens1]
together = gens1 + gens2
gens = [_af_new(x) for x in together]
return PermutationGroup(gens)
def _random_pr_init(self, r, n, _random_prec_n=None):
r"""Initialize random generators for the product replacement algorithm.
Explanation
===========
The implementation uses a modification of the original product
replacement algorithm due to Leedham-Green, as described in [1],
pp. 69-71; also, see [2], pp. 27-29 for a detailed theoretical
analysis of the original product replacement algorithm, and [4].
The product replacement algorithm is used for producing random,
uniformly distributed elements of a group `G` with a set of generators
`S`. For the initialization ``_random_pr_init``, a list ``R`` of
`\max\{r, |S|\}` group generators is created as the attribute
``G._random_gens``, repeating elements of `S` if necessary, and the
identity element of `G` is appended to ``R`` - we shall refer to this
last element as the accumulator. Then the function ``random_pr()``
is called ``n`` times, randomizing the list ``R`` while preserving
the generation of `G` by ``R``. The function ``random_pr()`` itself
takes two random elements ``g, h`` among all elements of ``R`` but
the accumulator and replaces ``g`` with a randomly chosen element
from `\{gh, g(~h), hg, (~h)g\}`. Then the accumulator is multiplied
by whatever ``g`` was replaced by. The new value of the accumulator is
then returned by ``random_pr()``.
The elements returned will eventually (for ``n`` large enough) become
uniformly distributed across `G` ([5]). For practical purposes however,
the values ``n = 50, r = 11`` are suggested in [1].
Notes
=====
THIS FUNCTION HAS SIDE EFFECTS: it changes the attribute
self._random_gens
See Also
========
random_pr
"""
deg = self.degree
random_gens = [x._array_form for x in self.generators]
k = len(random_gens)
if k < r:
for i in range(k, r):
random_gens.append(random_gens[i - k])
acc = list(range(deg))
random_gens.append(acc)
self._random_gens = random_gens
# handle randomized input for testing purposes
if _random_prec_n is None:
for i in range(n):
self.random_pr()
else:
for i in range(n):
self.random_pr(_random_prec=_random_prec_n[i])
def _union_find_merge(self, first, second, ranks, parents, not_rep):
"""Merges two classes in a union-find data structure.
Explanation
===========
Used in the implementation of Atkinson's algorithm as suggested in [1],
pp. 83-87. The class merging process uses union by rank as an
optimization. ([7])
Notes
=====
THIS FUNCTION HAS SIDE EFFECTS: the list of class representatives,
``parents``, the list of class sizes, ``ranks``, and the list of
elements that are not representatives, ``not_rep``, are changed due to
class merging.
See Also
========
minimal_block, _union_find_rep
References
==========
.. [1] Holt, D., Eick, B., O'Brien, E.
"Handbook of computational group theory"
.. [7] http://www.algorithmist.com/index.php/Union_Find
"""
rep_first = self._union_find_rep(first, parents)
rep_second = self._union_find_rep(second, parents)
if rep_first != rep_second:
# union by rank
if ranks[rep_first] >= ranks[rep_second]:
new_1, new_2 = rep_first, rep_second
else:
new_1, new_2 = rep_second, rep_first
total_rank = ranks[new_1] + ranks[new_2]
if total_rank > self.max_div:
return -1
parents[new_2] = new_1
ranks[new_1] = total_rank
not_rep.append(new_2)
return 1
return 0
def _union_find_rep(self, num, parents):
"""Find representative of a class in a union-find data structure.
Explanation
===========
Used in the implementation of Atkinson's algorithm as suggested in [1],
pp. 83-87. After the representative of the class to which ``num``
belongs is found, path compression is performed as an optimization
([7]).
Notes
=====
THIS FUNCTION HAS SIDE EFFECTS: the list of class representatives,
``parents``, is altered due to path compression.
See Also
========
minimal_block, _union_find_merge
References
==========
.. [1] Holt, D., Eick, B., O'Brien, E.
"Handbook of computational group theory"
.. [7] http://www.algorithmist.com/index.php/Union_Find
"""
rep, parent = num, parents[num]
while parent != rep:
rep = parent
parent = parents[rep]
# path compression
temp, parent = num, parents[num]
while parent != rep:
parents[temp] = rep
temp = parent
parent = parents[temp]
return rep
@property
def base(self):
r"""Return a base from the Schreier-Sims algorithm.
Explanation
===========
For a permutation group `G`, a base is a sequence of points
`B = (b_1, b_2, \dots, b_k)` such that no element of `G` apart
from the identity fixes all the points in `B`. The concepts of
a base and strong generating set and their applications are
discussed in depth in [1], pp. 87-89 and [2], pp. 55-57.
An alternative way to think of `B` is that it gives the
indices of the stabilizer cosets that contain more than the
identity permutation.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> G = PermutationGroup([Permutation(0, 1, 3)(2, 4)])
>>> G.base
[0, 2]
See Also
========
strong_gens, basic_transversals, basic_orbits, basic_stabilizers
"""
if self._base == []:
self.schreier_sims()
return self._base
def baseswap(self, base, strong_gens, pos, randomized=False,
transversals=None, basic_orbits=None, strong_gens_distr=None):
r"""Swap two consecutive base points in base and strong generating set.
Explanation
===========
If a base for a group `G` is given by `(b_1, b_2, \dots, b_k)`, this
function returns a base `(b_1, b_2, \dots, b_{i+1}, b_i, \dots, b_k)`,
where `i` is given by ``pos``, and a strong generating set relative
to that base. The original base and strong generating set are not
modified.
The randomized version (default) is of Las Vegas type.
Parameters
==========
base, strong_gens
The base and strong generating set.
pos
The position at which swapping is performed.
randomized
A switch between randomized and deterministic version.
transversals
The transversals for the basic orbits, if known.
basic_orbits
The basic orbits, if known.
strong_gens_distr
The strong generators distributed by basic stabilizers, if known.
Returns
=======
(base, strong_gens)
``base`` is the new base, and ``strong_gens`` is a generating set
relative to it.
Examples
========
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> from sympy.combinatorics.testutil import _verify_bsgs
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> S = SymmetricGroup(4)
>>> S.schreier_sims()
>>> S.base
[0, 1, 2]
>>> base, gens = S.baseswap(S.base, S.strong_gens, 1, randomized=False)
>>> base, gens
([0, 2, 1],
[(0 1 2 3), (3)(0 1), (1 3 2),
(2 3), (1 3)])
check that base, gens is a BSGS
>>> S1 = PermutationGroup(gens)
>>> _verify_bsgs(S1, base, gens)
True
See Also
========
schreier_sims
Notes
=====
The deterministic version of the algorithm is discussed in
[1], pp. 102-103; the randomized version is discussed in [1], p.103, and
[2], p.98. It is of Las Vegas type.
Notice that [1] contains a mistake in the pseudocode and
discussion of BASESWAP: on line 3 of the pseudocode,
`|\beta_{i+1}^{\left\langle T\right\rangle}|` should be replaced by
`|\beta_{i}^{\left\langle T\right\rangle}|`, and the same for the
discussion of the algorithm.
"""
# construct the basic orbits, generators for the stabilizer chain
# and transversal elements from whatever was provided
transversals, basic_orbits, strong_gens_distr = \
_handle_precomputed_bsgs(base, strong_gens, transversals,
basic_orbits, strong_gens_distr)
base_len = len(base)
degree = self.degree
# size of orbit of base[pos] under the stabilizer we seek to insert
# in the stabilizer chain at position pos + 1
size = len(basic_orbits[pos])*len(basic_orbits[pos + 1]) \
//len(_orbit(degree, strong_gens_distr[pos], base[pos + 1]))
# initialize the wanted stabilizer by a subgroup
if pos + 2 > base_len - 1:
T = []
else:
T = strong_gens_distr[pos + 2][:]
# randomized version
if randomized is True:
stab_pos = PermutationGroup(strong_gens_distr[pos])
schreier_vector = stab_pos.schreier_vector(base[pos + 1])
# add random elements of the stabilizer until they generate it
while len(_orbit(degree, T, base[pos])) != size:
new = stab_pos.random_stab(base[pos + 1],
schreier_vector=schreier_vector)
T.append(new)
# deterministic version
else:
Gamma = set(basic_orbits[pos])
Gamma.remove(base[pos])
if base[pos + 1] in Gamma:
Gamma.remove(base[pos + 1])
# add elements of the stabilizer until they generate it by
# ruling out member of the basic orbit of base[pos] along the way
while len(_orbit(degree, T, base[pos])) != size:
gamma = next(iter(Gamma))
x = transversals[pos][gamma]
temp = x._array_form.index(base[pos + 1]) # (~x)(base[pos + 1])
if temp not in basic_orbits[pos + 1]:
Gamma = Gamma - _orbit(degree, T, gamma)
else:
y = transversals[pos + 1][temp]
el = rmul(x, y)
if el(base[pos]) not in _orbit(degree, T, base[pos]):
T.append(el)
Gamma = Gamma - _orbit(degree, T, base[pos])
# build the new base and strong generating set
strong_gens_new_distr = strong_gens_distr[:]
strong_gens_new_distr[pos + 1] = T
base_new = base[:]
base_new[pos], base_new[pos + 1] = base_new[pos + 1], base_new[pos]
strong_gens_new = _strong_gens_from_distr(strong_gens_new_distr)
for gen in T:
if gen not in strong_gens_new:
strong_gens_new.append(gen)
return base_new, strong_gens_new
@property
def basic_orbits(self):
r"""
Return the basic orbits relative to a base and strong generating set.
Explanation
===========
If `(b_1, b_2, \dots, b_k)` is a base for a group `G`, and
`G^{(i)} = G_{b_1, b_2, \dots, b_{i-1}}` is the ``i``-th basic stabilizer
(so that `G^{(1)} = G`), the ``i``-th basic orbit relative to this base
is the orbit of `b_i` under `G^{(i)}`. See [1], pp. 87-89 for more
information.
Examples
========
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> S = SymmetricGroup(4)
>>> S.basic_orbits
[[0, 1, 2, 3], [1, 2, 3], [2, 3]]
See Also
========
base, strong_gens, basic_transversals, basic_stabilizers
"""
if self._basic_orbits == []:
self.schreier_sims()
return self._basic_orbits
@property
def basic_stabilizers(self):
r"""
Return a chain of stabilizers relative to a base and strong generating
set.
Explanation
===========
The ``i``-th basic stabilizer `G^{(i)}` relative to a base
`(b_1, b_2, \dots, b_k)` is `G_{b_1, b_2, \dots, b_{i-1}}`. For more
information, see [1], pp. 87-89.
Examples
========
>>> from sympy.combinatorics.named_groups import AlternatingGroup
>>> A = AlternatingGroup(4)
>>> A.schreier_sims()
>>> A.base
[0, 1]
>>> for g in A.basic_stabilizers:
... print(g)
...
PermutationGroup([
(3)(0 1 2),
(1 2 3)])
PermutationGroup([
(1 2 3)])
See Also
========
base, strong_gens, basic_orbits, basic_transversals
"""
if self._transversals == []:
self.schreier_sims()
strong_gens = self._strong_gens
base = self._base
if not base: # e.g. if self is trivial
return []
strong_gens_distr = _distribute_gens_by_base(base, strong_gens)
basic_stabilizers = []
for gens in strong_gens_distr:
basic_stabilizers.append(PermutationGroup(gens))
return basic_stabilizers
@property
def basic_transversals(self):
"""
Return basic transversals relative to a base and strong generating set.
Explanation
===========
The basic transversals are transversals of the basic orbits. They
are provided as a list of dictionaries, each dictionary having
keys - the elements of one of the basic orbits, and values - the
corresponding transversal elements. See [1], pp. 87-89 for more
information.
Examples
========
>>> from sympy.combinatorics.named_groups import AlternatingGroup
>>> A = AlternatingGroup(4)
>>> A.basic_transversals
[{0: (3), 1: (3)(0 1 2), 2: (3)(0 2 1), 3: (0 3 1)}, {1: (3), 2: (1 2 3), 3: (1 3 2)}]
See Also
========
strong_gens, base, basic_orbits, basic_stabilizers
"""
if self._transversals == []:
self.schreier_sims()
return self._transversals
def composition_series(self):
r"""
Return the composition series for a group as a list
of permutation groups.
Explanation
===========
The composition series for a group `G` is defined as a
subnormal series `G = H_0 > H_1 > H_2 \ldots` A composition
series is a subnormal series such that each factor group
`H(i+1) / H(i)` is simple.
A subnormal series is a composition series only if it is of
maximum length.
The algorithm works as follows:
Starting with the derived series the idea is to fill
the gap between `G = der[i]` and `H = der[i+1]` for each
`i` independently. Since, all subgroups of the abelian group
`G/H` are normal so, first step is to take the generators
`g` of `G` and add them to generators of `H` one by one.
The factor groups formed are not simple in general. Each
group is obtained from the previous one by adding one
generator `g`, if the previous group is denoted by `H`
then the next group `K` is generated by `g` and `H`.
The factor group `K/H` is cyclic and it's order is
`K.order()//G.order()`. The series is then extended between
`K` and `H` by groups generated by powers of `g` and `H`.
The series formed is then prepended to the already existing
series.
Examples
========
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> from sympy.combinatorics.named_groups import CyclicGroup
>>> S = SymmetricGroup(12)
>>> G = S.sylow_subgroup(2)
>>> C = G.composition_series()
>>> [H.order() for H in C]
[1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1]
>>> G = S.sylow_subgroup(3)
>>> C = G.composition_series()
>>> [H.order() for H in C]
[243, 81, 27, 9, 3, 1]
>>> G = CyclicGroup(12)
>>> C = G.composition_series()
>>> [H.order() for H in C]
[12, 6, 3, 1]
"""
der = self.derived_series()
if not all(g.is_identity for g in der[-1].generators):
raise NotImplementedError('Group should be solvable')
series = []
for i in range(len(der)-1):
H = der[i+1]
up_seg = []
for g in der[i].generators:
K = PermutationGroup([g] + H.generators)
order = K.order() // H.order()
down_seg = []
for p, e in factorint(order).items():
for _ in range(e):
down_seg.append(PermutationGroup([g] + H.generators))
g = g**p
up_seg = down_seg + up_seg
H = K
up_seg[0] = der[i]
series.extend(up_seg)
series.append(der[-1])
return series
def coset_transversal(self, H):
"""Return a transversal of the right cosets of self by its subgroup H
using the second method described in [1], Subsection 4.6.7
"""
if not H.is_subgroup(self):
raise ValueError("The argument must be a subgroup")
if H.order() == 1:
return self._elements
self._schreier_sims(base=H.base) # make G.base an extension of H.base
base = self.base
base_ordering = _base_ordering(base, self.degree)
identity = Permutation(self.degree - 1)
transversals = self.basic_transversals[:]
# transversals is a list of dictionaries. Get rid of the keys
# so that it is a list of lists and sort each list in
# the increasing order of base[l]^x
for l, t in enumerate(transversals):
transversals[l] = sorted(t.values(),
key = lambda x: base_ordering[base[l]^x])
orbits = H.basic_orbits
h_stabs = H.basic_stabilizers
g_stabs = self.basic_stabilizers
indices = [x.order()//y.order() for x, y in zip(g_stabs, h_stabs)]
# T^(l) should be a right transversal of H^(l) in G^(l) for
# 1<=l<=len(base). While H^(l) is the trivial group, T^(l)
# contains all the elements of G^(l) so we might just as well
# start with l = len(h_stabs)-1
if len(g_stabs) > len(h_stabs):
T = g_stabs[len(h_stabs)]._elements
else:
T = [identity]
l = len(h_stabs)-1
t_len = len(T)
while l > -1:
T_next = []
for u in transversals[l]:
if u == identity:
continue
b = base_ordering[base[l]^u]
for t in T:
p = t*u
if all(base_ordering[h^p] >= b for h in orbits[l]):
T_next.append(p)
if t_len + len(T_next) == indices[l]:
break
if t_len + len(T_next) == indices[l]:
break
T += T_next
t_len += len(T_next)
l -= 1
T.remove(identity)
T = [identity] + T
return T
def _coset_representative(self, g, H):
"""Return the representative of Hg from the transversal that
would be computed by ``self.coset_transversal(H)``.
"""
if H.order() == 1:
return g
# The base of self must be an extension of H.base.
if not(self.base[:len(H.base)] == H.base):
self._schreier_sims(base=H.base)
orbits = H.basic_orbits[:]
h_transversals = [list(_.values()) for _ in H.basic_transversals]
transversals = [list(_.values()) for _ in self.basic_transversals]
base = self.base
base_ordering = _base_ordering(base, self.degree)
def step(l, x):
gamma = sorted(orbits[l], key = lambda y: base_ordering[y^x])[0]
i = [base[l]^h for h in h_transversals[l]].index(gamma)
x = h_transversals[l][i]*x
if l < len(orbits)-1:
for u in transversals[l]:
if base[l]^u == base[l]^x:
break
x = step(l+1, x*u**-1)*u
return x
return step(0, g)
def coset_table(self, H):
"""Return the standardised (right) coset table of self in H as
a list of lists.
"""
# Maybe this should be made to return an instance of CosetTable
# from fp_groups.py but the class would need to be changed first
# to be compatible with PermutationGroups
if not H.is_subgroup(self):
raise ValueError("The argument must be a subgroup")
T = self.coset_transversal(H)
n = len(T)
A = list(chain.from_iterable((gen, gen**-1)
for gen in self.generators))
table = []
for i in range(n):
row = [self._coset_representative(T[i]*x, H) for x in A]
row = [T.index(r) for r in row]
table.append(row)
# standardize (this is the same as the algorithm used in coset_table)
# If CosetTable is made compatible with PermutationGroups, this
# should be replaced by table.standardize()
A = range(len(A))
gamma = 1
for alpha, a in product(range(n), A):
beta = table[alpha][a]
if beta >= gamma:
if beta > gamma:
for x in A:
z = table[gamma][x]
table[gamma][x] = table[beta][x]
table[beta][x] = z
for i in range(n):
if table[i][x] == beta:
table[i][x] = gamma
elif table[i][x] == gamma:
table[i][x] = beta
gamma += 1
if gamma >= n-1:
return table
def center(self):
r"""
Return the center of a permutation group.
Explanation
===========
The center for a group `G` is defined as
`Z(G) = \{z\in G | \forall g\in G, zg = gz \}`,
the set of elements of `G` that commute with all elements of `G`.
It is equal to the centralizer of `G` inside `G`, and is naturally a
subgroup of `G` ([9]).
Examples
========
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> D = DihedralGroup(4)
>>> G = D.center()
>>> G.order()
2
See Also
========
centralizer
Notes
=====
This is a naive implementation that is a straightforward application
of ``.centralizer()``
"""
return self.centralizer(self)
def centralizer(self, other):
r"""
Return the centralizer of a group/set/element.
Explanation
===========
The centralizer of a set of permutations ``S`` inside
a group ``G`` is the set of elements of ``G`` that commute with all
elements of ``S``::
`C_G(S) = \{ g \in G | gs = sg \forall s \in S\}` ([10])
Usually, ``S`` is a subset of ``G``, but if ``G`` is a proper subgroup of
the full symmetric group, we allow for ``S`` to have elements outside
``G``.
It is naturally a subgroup of ``G``; the centralizer of a permutation
group is equal to the centralizer of any set of generators for that
group, since any element commuting with the generators commutes with
any product of the generators.
Parameters
==========
other
a permutation group/list of permutations/single permutation
Examples
========
>>> from sympy.combinatorics.named_groups import (SymmetricGroup,
... CyclicGroup)
>>> S = SymmetricGroup(6)
>>> C = CyclicGroup(6)
>>> H = S.centralizer(C)
>>> H.is_subgroup(C)
True
See Also
========
subgroup_search
Notes
=====
The implementation is an application of ``.subgroup_search()`` with
tests using a specific base for the group ``G``.
"""
if hasattr(other, 'generators'):
if other.is_trivial or self.is_trivial:
return self
degree = self.degree
identity = _af_new(list(range(degree)))
orbits = other.orbits()
num_orbits = len(orbits)
orbits.sort(key=lambda x: -len(x))
long_base = []
orbit_reps = [None]*num_orbits
orbit_reps_indices = [None]*num_orbits
orbit_descr = [None]*degree
for i in range(num_orbits):
orbit = list(orbits[i])
orbit_reps[i] = orbit[0]
orbit_reps_indices[i] = len(long_base)
for point in orbit:
orbit_descr[point] = i
long_base = long_base + orbit
base, strong_gens = self.schreier_sims_incremental(base=long_base)
strong_gens_distr = _distribute_gens_by_base(base, strong_gens)
i = 0
for i in range(len(base)):
if strong_gens_distr[i] == [identity]:
break
base = base[:i]
base_len = i
for j in range(num_orbits):
if base[base_len - 1] in orbits[j]:
break
rel_orbits = orbits[: j + 1]
num_rel_orbits = len(rel_orbits)
transversals = [None]*num_rel_orbits
for j in range(num_rel_orbits):
rep = orbit_reps[j]
transversals[j] = dict(
other.orbit_transversal(rep, pairs=True))
trivial_test = lambda x: True
tests = [None]*base_len
for l in range(base_len):
if base[l] in orbit_reps:
tests[l] = trivial_test
else:
def test(computed_words, l=l):
g = computed_words[l]
rep_orb_index = orbit_descr[base[l]]
rep = orbit_reps[rep_orb_index]
im = g._array_form[base[l]]
im_rep = g._array_form[rep]
tr_el = transversals[rep_orb_index][base[l]]
# using the definition of transversal,
# base[l]^g = rep^(tr_el*g);
# if g belongs to the centralizer, then
# base[l]^g = (rep^g)^tr_el
return im == tr_el._array_form[im_rep]
tests[l] = test
def prop(g):
return [rmul(g, gen) for gen in other.generators] == \
[rmul(gen, g) for gen in other.generators]
return self.subgroup_search(prop, base=base,
strong_gens=strong_gens, tests=tests)
elif hasattr(other, '__getitem__'):
gens = list(other)
return self.centralizer(PermutationGroup(gens))
elif hasattr(other, 'array_form'):
return self.centralizer(PermutationGroup([other]))
def commutator(self, G, H):
"""
Return the commutator of two subgroups.
Explanation
===========
For a permutation group ``K`` and subgroups ``G``, ``H``, the
commutator of ``G`` and ``H`` is defined as the group generated
by all the commutators `[g, h] = hgh^{-1}g^{-1}` for ``g`` in ``G`` and
``h`` in ``H``. It is naturally a subgroup of ``K`` ([1], p.27).
Examples
========
>>> from sympy.combinatorics.named_groups import (SymmetricGroup,
... AlternatingGroup)
>>> S = SymmetricGroup(5)
>>> A = AlternatingGroup(5)
>>> G = S.commutator(S, A)
>>> G.is_subgroup(A)
True
See Also
========
derived_subgroup
Notes
=====
The commutator of two subgroups `H, G` is equal to the normal closure
of the commutators of all the generators, i.e. `hgh^{-1}g^{-1}` for `h`
a generator of `H` and `g` a generator of `G` ([1], p.28)
"""
ggens = G.generators
hgens = H.generators
commutators = []
for ggen in ggens:
for hgen in hgens:
commutator = rmul(hgen, ggen, ~hgen, ~ggen)
if commutator not in commutators:
commutators.append(commutator)
res = self.normal_closure(commutators)
return res
def coset_factor(self, g, factor_index=False):
"""Return ``G``'s (self's) coset factorization of ``g``
Explanation
===========
If ``g`` is an element of ``G`` then it can be written as the product
of permutations drawn from the Schreier-Sims coset decomposition,
The permutations returned in ``f`` are those for which
the product gives ``g``: ``g = f[n]*...f[1]*f[0]`` where ``n = len(B)``
and ``B = G.base``. f[i] is one of the permutations in
``self._basic_orbits[i]``.
If factor_index==True,
returns a tuple ``[b[0],..,b[n]]``, where ``b[i]``
belongs to ``self._basic_orbits[i]``
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation(0, 1, 3, 7, 6, 4)(2, 5)
>>> b = Permutation(0, 1, 3, 2)(4, 5, 7, 6)
>>> G = PermutationGroup([a, b])
Define g:
>>> g = Permutation(7)(1, 2, 4)(3, 6, 5)
Confirm that it is an element of G:
>>> G.contains(g)
True
Thus, it can be written as a product of factors (up to
3) drawn from u. See below that a factor from u1 and u2
and the Identity permutation have been used:
>>> f = G.coset_factor(g)
>>> f[2]*f[1]*f[0] == g
True
>>> f1 = G.coset_factor(g, True); f1
[0, 4, 4]
>>> tr = G.basic_transversals
>>> f[0] == tr[0][f1[0]]
True
If g is not an element of G then [] is returned:
>>> c = Permutation(5, 6, 7)
>>> G.coset_factor(c)
[]
See Also
========
sympy.combinatorics.util._strip
"""
if isinstance(g, (Cycle, Permutation)):
g = g.list()
if len(g) != self._degree:
# this could either adjust the size or return [] immediately
# but we don't choose between the two and just signal a possible
# error
raise ValueError('g should be the same size as permutations of G')
I = list(range(self._degree))
basic_orbits = self.basic_orbits
transversals = self._transversals
factors = []
base = self.base
h = g
for i in range(len(base)):
beta = h[base[i]]
if beta == base[i]:
factors.append(beta)
continue
if beta not in basic_orbits[i]:
return []
u = transversals[i][beta]._array_form
h = _af_rmul(_af_invert(u), h)
factors.append(beta)
if h != I:
return []
if factor_index:
return factors
tr = self.basic_transversals
factors = [tr[i][factors[i]] for i in range(len(base))]
return factors
def generator_product(self, g, original=False):
r'''
Return a list of strong generators `[s1, \dots, sn]`
s.t `g = sn \times \dots \times s1`. If ``original=True``, make the
list contain only the original group generators
'''
product = []
if g.is_identity:
return []
if g in self.strong_gens:
if not original or g in self.generators:
return [g]
else:
slp = self._strong_gens_slp[g]
for s in slp:
product.extend(self.generator_product(s, original=True))
return product
elif g**-1 in self.strong_gens:
g = g**-1
if not original or g in self.generators:
return [g**-1]
else:
slp = self._strong_gens_slp[g]
for s in slp:
product.extend(self.generator_product(s, original=True))
l = len(product)
product = [product[l-i-1]**-1 for i in range(l)]
return product
f = self.coset_factor(g, True)
for i, j in enumerate(f):
slp = self._transversal_slp[i][j]
for s in slp:
if not original:
product.append(self.strong_gens[s])
else:
s = self.strong_gens[s]
product.extend(self.generator_product(s, original=True))
return product
def coset_rank(self, g):
"""rank using Schreier-Sims representation.
Explanation
===========
The coset rank of ``g`` is the ordering number in which
it appears in the lexicographic listing according to the
coset decomposition
The ordering is the same as in G.generate(method='coset').
If ``g`` does not belong to the group it returns None.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation(0, 1, 3, 7, 6, 4)(2, 5)
>>> b = Permutation(0, 1, 3, 2)(4, 5, 7, 6)
>>> G = PermutationGroup([a, b])
>>> c = Permutation(7)(2, 4)(3, 5)
>>> G.coset_rank(c)
16
>>> G.coset_unrank(16)
(7)(2 4)(3 5)
See Also
========
coset_factor
"""
factors = self.coset_factor(g, True)
if not factors:
return None
rank = 0
b = 1
transversals = self._transversals
base = self._base
basic_orbits = self._basic_orbits
for i in range(len(base)):
k = factors[i]
j = basic_orbits[i].index(k)
rank += b*j
b = b*len(transversals[i])
return rank
def coset_unrank(self, rank, af=False):
"""unrank using Schreier-Sims representation
coset_unrank is the inverse operation of coset_rank
if 0 <= rank < order; otherwise it returns None.
"""
if rank < 0 or rank >= self.order():
return None
base = self.base
transversals = self.basic_transversals
basic_orbits = self.basic_orbits
m = len(base)
v = [0]*m
for i in range(m):
rank, c = divmod(rank, len(transversals[i]))
v[i] = basic_orbits[i][c]
a = [transversals[i][v[i]]._array_form for i in range(m)]
h = _af_rmuln(*a)
if af:
return h
else:
return _af_new(h)
@property
def degree(self):
"""Returns the size of the permutations in the group.
Explanation
===========
The number of permutations comprising the group is given by
``len(group)``; the number of permutations that can be generated
by the group is given by ``group.order()``.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([1, 0, 2])
>>> G = PermutationGroup([a])
>>> G.degree
3
>>> len(G)
1
>>> G.order()
2
>>> list(G.generate())
[(2), (2)(0 1)]
See Also
========
order
"""
return self._degree
@property
def identity(self):
'''
Return the identity element of the permutation group.
'''
return _af_new(list(range(self.degree)))
@property
def elements(self):
"""Returns all the elements of the permutation group as a set
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> p = PermutationGroup(Permutation(1, 3), Permutation(1, 2))
>>> p.elements
{(1 2 3), (1 3 2), (1 3), (2 3), (3), (3)(1 2)}
"""
return set(self._elements)
@property
def _elements(self):
"""Returns all the elements of the permutation group as a list
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> p = PermutationGroup(Permutation(1, 3), Permutation(1, 2))
>>> p._elements
[(3), (3)(1 2), (1 3), (2 3), (1 2 3), (1 3 2)]
"""
return list(islice(self.generate(), None))
def derived_series(self):
r"""Return the derived series for the group.
Explanation
===========
The derived series for a group `G` is defined as
`G = G_0 > G_1 > G_2 > \ldots` where `G_i = [G_{i-1}, G_{i-1}]`,
i.e. `G_i` is the derived subgroup of `G_{i-1}`, for
`i\in\mathbb{N}`. When we have `G_k = G_{k-1}` for some
`k\in\mathbb{N}`, the series terminates.
Returns
=======
A list of permutation groups containing the members of the derived
series in the order `G = G_0, G_1, G_2, \ldots`.
Examples
========
>>> from sympy.combinatorics.named_groups import (SymmetricGroup,
... AlternatingGroup, DihedralGroup)
>>> A = AlternatingGroup(5)
>>> len(A.derived_series())
1
>>> S = SymmetricGroup(4)
>>> len(S.derived_series())
4
>>> S.derived_series()[1].is_subgroup(AlternatingGroup(4))
True
>>> S.derived_series()[2].is_subgroup(DihedralGroup(2))
True
See Also
========
derived_subgroup
"""
res = [self]
current = self
nxt = self.derived_subgroup()
while not current.is_subgroup(nxt):
res.append(nxt)
current = nxt
nxt = nxt.derived_subgroup()
return res
def derived_subgroup(self):
r"""Compute the derived subgroup.
Explanation
===========
The derived subgroup, or commutator subgroup is the subgroup generated
by all commutators `[g, h] = hgh^{-1}g^{-1}` for `g, h\in G` ; it is
equal to the normal closure of the set of commutators of the generators
([1], p.28, [11]).
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([1, 0, 2, 4, 3])
>>> b = Permutation([0, 1, 3, 2, 4])
>>> G = PermutationGroup([a, b])
>>> C = G.derived_subgroup()
>>> list(C.generate(af=True))
[[0, 1, 2, 3, 4], [0, 1, 3, 4, 2], [0, 1, 4, 2, 3]]
See Also
========
derived_series
"""
r = self._r
gens = [p._array_form for p in self.generators]
set_commutators = set()
degree = self._degree
rng = list(range(degree))
for i in range(r):
for j in range(r):
p1 = gens[i]
p2 = gens[j]
c = list(range(degree))
for k in rng:
c[p2[p1[k]]] = p1[p2[k]]
ct = tuple(c)
if ct not in set_commutators:
set_commutators.add(ct)
cms = [_af_new(p) for p in set_commutators]
G2 = self.normal_closure(cms)
return G2
def generate(self, method="coset", af=False):
"""Return iterator to generate the elements of the group.
Explanation
===========
Iteration is done with one of these methods::
method='coset' using the Schreier-Sims coset representation
method='dimino' using the Dimino method
If ``af = True`` it yields the array form of the permutations
Examples
========
>>> from sympy.combinatorics import PermutationGroup
>>> from sympy.combinatorics.polyhedron import tetrahedron
The permutation group given in the tetrahedron object is also
true groups:
>>> G = tetrahedron.pgroup
>>> G.is_group
True
Also the group generated by the permutations in the tetrahedron
pgroup -- even the first two -- is a proper group:
>>> H = PermutationGroup(G[0], G[1])
>>> J = PermutationGroup(list(H.generate())); J
PermutationGroup([
(0 1)(2 3),
(1 2 3),
(1 3 2),
(0 3 1),
(0 2 3),
(0 3)(1 2),
(0 1 3),
(3)(0 2 1),
(0 3 2),
(3)(0 1 2),
(0 2)(1 3)])
>>> _.is_group
True
"""
if method == "coset":
return self.generate_schreier_sims(af)
elif method == "dimino":
return self.generate_dimino(af)
else:
raise NotImplementedError('No generation defined for %s' % method)
def generate_dimino(self, af=False):
"""Yield group elements using Dimino's algorithm.
If ``af == True`` it yields the array form of the permutations.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([0, 2, 1, 3])
>>> b = Permutation([0, 2, 3, 1])
>>> g = PermutationGroup([a, b])
>>> list(g.generate_dimino(af=True))
[[0, 1, 2, 3], [0, 2, 1, 3], [0, 2, 3, 1],
[0, 1, 3, 2], [0, 3, 2, 1], [0, 3, 1, 2]]
References
==========
.. [1] The Implementation of Various Algorithms for Permutation Groups in
the Computer Algebra System: AXIOM, N.J. Doye, M.Sc. Thesis
"""
idn = list(range(self.degree))
order = 0
element_list = [idn]
set_element_list = {tuple(idn)}
if af:
yield idn
else:
yield _af_new(idn)
gens = [p._array_form for p in self.generators]
for i in range(len(gens)):
# D elements of the subgroup G_i generated by gens[:i]
D = element_list[:]
N = [idn]
while N:
A = N
N = []
for a in A:
for g in gens[:i + 1]:
ag = _af_rmul(a, g)
if tuple(ag) not in set_element_list:
# produce G_i*g
for d in D:
order += 1
ap = _af_rmul(d, ag)
if af:
yield ap
else:
p = _af_new(ap)
yield p
element_list.append(ap)
set_element_list.add(tuple(ap))
N.append(ap)
self._order = len(element_list)
def generate_schreier_sims(self, af=False):
"""Yield group elements using the Schreier-Sims representation
in coset_rank order
If ``af = True`` it yields the array form of the permutations
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([0, 2, 1, 3])
>>> b = Permutation([0, 2, 3, 1])
>>> g = PermutationGroup([a, b])
>>> list(g.generate_schreier_sims(af=True))
[[0, 1, 2, 3], [0, 2, 1, 3], [0, 3, 2, 1],
[0, 1, 3, 2], [0, 2, 3, 1], [0, 3, 1, 2]]
"""
n = self._degree
u = self.basic_transversals
basic_orbits = self._basic_orbits
if len(u) == 0:
for x in self.generators:
if af:
yield x._array_form
else:
yield x
return
if len(u) == 1:
for i in basic_orbits[0]:
if af:
yield u[0][i]._array_form
else:
yield u[0][i]
return
u = list(reversed(u))
basic_orbits = basic_orbits[::-1]
# stg stack of group elements
stg = [list(range(n))]
posmax = [len(x) for x in u]
n1 = len(posmax) - 1
pos = [0]*n1
h = 0
while 1:
# backtrack when finished iterating over coset
if pos[h] >= posmax[h]:
if h == 0:
return
pos[h] = 0
h -= 1
stg.pop()
continue
p = _af_rmul(u[h][basic_orbits[h][pos[h]]]._array_form, stg[-1])
pos[h] += 1
stg.append(p)
h += 1
if h == n1:
if af:
for i in basic_orbits[-1]:
p = _af_rmul(u[-1][i]._array_form, stg[-1])
yield p
else:
for i in basic_orbits[-1]:
p = _af_rmul(u[-1][i]._array_form, stg[-1])
p1 = _af_new(p)
yield p1
stg.pop()
h -= 1
@property
def generators(self):
"""Returns the generators of the group.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([0, 2, 1])
>>> b = Permutation([1, 0, 2])
>>> G = PermutationGroup([a, b])
>>> G.generators
[(1 2), (2)(0 1)]
"""
return self._generators
def contains(self, g, strict=True):
"""Test if permutation ``g`` belong to self, ``G``.
Explanation
===========
If ``g`` is an element of ``G`` it can be written as a product
of factors drawn from the cosets of ``G``'s stabilizers. To see
if ``g`` is one of the actual generators defining the group use
``G.has(g)``.
If ``strict`` is not ``True``, ``g`` will be resized, if necessary,
to match the size of permutations in ``self``.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation(1, 2)
>>> b = Permutation(2, 3, 1)
>>> G = PermutationGroup(a, b, degree=5)
>>> G.contains(G[0]) # trivial check
True
>>> elem = Permutation([[2, 3]], size=5)
>>> G.contains(elem)
True
>>> G.contains(Permutation(4)(0, 1, 2, 3))
False
If strict is False, a permutation will be resized, if
necessary:
>>> H = PermutationGroup(Permutation(5))
>>> H.contains(Permutation(3))
False
>>> H.contains(Permutation(3), strict=False)
True
To test if a given permutation is present in the group:
>>> elem in G.generators
False
>>> G.has(elem)
False
See Also
========
coset_factor, sympy.core.basic.Basic.has, __contains__
"""
if not isinstance(g, Permutation):
return False
if g.size != self.degree:
if strict:
return False
g = Permutation(g, size=self.degree)
if g in self.generators:
return True
return bool(self.coset_factor(g.array_form, True))
@property
def is_perfect(self):
"""Return ``True`` if the group is perfect.
A group is perfect if it equals to its derived subgroup.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation(1,2,3)(4,5)
>>> b = Permutation(1,2,3,4,5)
>>> G = PermutationGroup([a, b])
>>> G.is_perfect
False
"""
if self._is_perfect is None:
self._is_perfect = self.equals(self.derived_subgroup())
return self._is_perfect
@property
def is_abelian(self):
"""Test if the group is Abelian.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([0, 2, 1])
>>> b = Permutation([1, 0, 2])
>>> G = PermutationGroup([a, b])
>>> G.is_abelian
False
>>> a = Permutation([0, 2, 1])
>>> G = PermutationGroup([a])
>>> G.is_abelian
True
"""
if self._is_abelian is not None:
return self._is_abelian
self._is_abelian = True
gens = [p._array_form for p in self.generators]
for x in gens:
for y in gens:
if y <= x:
continue
if not _af_commutes_with(x, y):
self._is_abelian = False
return False
return True
def abelian_invariants(self):
"""
Returns the abelian invariants for the given group.
Let ``G`` be a nontrivial finite abelian group. Then G is isomorphic to
the direct product of finitely many nontrivial cyclic groups of
prime-power order.
Explanation
===========
The prime-powers that occur as the orders of the factors are uniquely
determined by G. More precisely, the primes that occur in the orders of the
factors in any such decomposition of ``G`` are exactly the primes that divide
``|G|`` and for any such prime ``p``, if the orders of the factors that are
p-groups in one such decomposition of ``G`` are ``p^{t_1} >= p^{t_2} >= ... p^{t_r}``,
then the orders of the factors that are p-groups in any such decomposition of ``G``
are ``p^{t_1} >= p^{t_2} >= ... p^{t_r}``.
The uniquely determined integers ``p^{t_1} >= p^{t_2} >= ... p^{t_r}``, taken
for all primes that divide ``|G|`` are called the invariants of the nontrivial
group ``G`` as suggested in ([14], p. 542).
Notes
=====
We adopt the convention that the invariants of a trivial group are [].
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([0, 2, 1])
>>> b = Permutation([1, 0, 2])
>>> G = PermutationGroup([a, b])
>>> G.abelian_invariants()
[2]
>>> from sympy.combinatorics import CyclicGroup
>>> G = CyclicGroup(7)
>>> G.abelian_invariants()
[7]
"""
if self.is_trivial:
return []
gns = self.generators
inv = []
G = self
H = G.derived_subgroup()
Hgens = H.generators
for p in primefactors(G.order()):
ranks = []
while True:
pows = []
for g in gns:
elm = g**p
if not H.contains(elm):
pows.append(elm)
K = PermutationGroup(Hgens + pows) if pows else H
r = G.order()//K.order()
G = K
gns = pows
if r == 1:
break
ranks.append(multiplicity(p, r))
if ranks:
pows = [1]*ranks[0]
for i in ranks:
for j in range(i):
pows[j] = pows[j]*p
inv.extend(pows)
inv.sort()
return inv
def is_elementary(self, p):
"""Return ``True`` if the group is elementary abelian. An elementary
abelian group is a finite abelian group, where every nontrivial
element has order `p`, where `p` is a prime.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([0, 2, 1])
>>> G = PermutationGroup([a])
>>> G.is_elementary(2)
True
>>> a = Permutation([0, 2, 1, 3])
>>> b = Permutation([3, 1, 2, 0])
>>> G = PermutationGroup([a, b])
>>> G.is_elementary(2)
True
>>> G.is_elementary(3)
False
"""
return self.is_abelian and all(g.order() == p for g in self.generators)
def _eval_is_alt_sym_naive(self, only_sym=False, only_alt=False):
"""A naive test using the group order."""
if only_sym and only_alt:
raise ValueError(
"Both {} and {} cannot be set to True"
.format(only_sym, only_alt))
n = self.degree
sym_order = _factorial(n)
order = self.order()
if order == sym_order:
self._is_sym = True
self._is_alt = False
if only_alt:
return False
return True
elif 2*order == sym_order:
self._is_sym = False
self._is_alt = True
if only_sym:
return False
return True
return False
def _eval_is_alt_sym_monte_carlo(self, eps=0.05, perms=None):
"""A test using monte-carlo algorithm.
Parameters
==========
eps : float, optional
The criterion for the incorrect ``False`` return.
perms : list[Permutation], optional
If explicitly given, it tests over the given candidats
for testing.
If ``None``, it randomly computes ``N_eps`` and chooses
``N_eps`` sample of the permutation from the group.
See Also
========
_check_cycles_alt_sym
"""
if perms is None:
n = self.degree
if n < 17:
c_n = 0.34
else:
c_n = 0.57
d_n = (c_n*log(2))/log(n)
N_eps = int(-log(eps)/d_n)
perms = (self.random_pr() for i in range(N_eps))
return self._eval_is_alt_sym_monte_carlo(perms=perms)
for perm in perms:
if _check_cycles_alt_sym(perm):
return True
return False
def is_alt_sym(self, eps=0.05, _random_prec=None):
r"""Monte Carlo test for the symmetric/alternating group for degrees
>= 8.
Explanation
===========
More specifically, it is one-sided Monte Carlo with the
answer True (i.e., G is symmetric/alternating) guaranteed to be
correct, and the answer False being incorrect with probability eps.
For degree < 8, the order of the group is checked so the test
is deterministic.
Notes
=====
The algorithm itself uses some nontrivial results from group theory and
number theory:
1) If a transitive group ``G`` of degree ``n`` contains an element
with a cycle of length ``n/2 < p < n-2`` for ``p`` a prime, ``G`` is the
symmetric or alternating group ([1], pp. 81-82)
2) The proportion of elements in the symmetric/alternating group having
the property described in 1) is approximately `\log(2)/\log(n)`
([1], p.82; [2], pp. 226-227).
The helper function ``_check_cycles_alt_sym`` is used to
go over the cycles in a permutation and look for ones satisfying 1).
Examples
========
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> D = DihedralGroup(10)
>>> D.is_alt_sym()
False
See Also
========
_check_cycles_alt_sym
"""
if _random_prec is not None:
N_eps = _random_prec['N_eps']
perms= (_random_prec[i] for i in range(N_eps))
return self._eval_is_alt_sym_monte_carlo(perms=perms)
if self._is_sym or self._is_alt:
return True
if self._is_sym is False and self._is_alt is False:
return False
n = self.degree
if n < 8:
return self._eval_is_alt_sym_naive()
elif self.is_transitive():
return self._eval_is_alt_sym_monte_carlo(eps=eps)
self._is_sym, self._is_alt = False, False
return False
@property
def is_nilpotent(self):
"""Test if the group is nilpotent.
Explanation
===========
A group `G` is nilpotent if it has a central series of finite length.
Alternatively, `G` is nilpotent if its lower central series terminates
with the trivial group. Every nilpotent group is also solvable
([1], p.29, [12]).
Examples
========
>>> from sympy.combinatorics.named_groups import (SymmetricGroup,
... CyclicGroup)
>>> C = CyclicGroup(6)
>>> C.is_nilpotent
True
>>> S = SymmetricGroup(5)
>>> S.is_nilpotent
False
See Also
========
lower_central_series, is_solvable
"""
if self._is_nilpotent is None:
lcs = self.lower_central_series()
terminator = lcs[len(lcs) - 1]
gens = terminator.generators
degree = self.degree
identity = _af_new(list(range(degree)))
if all(g == identity for g in gens):
self._is_solvable = True
self._is_nilpotent = True
return True
else:
self._is_nilpotent = False
return False
else:
return self._is_nilpotent
def is_normal(self, gr, strict=True):
"""Test if ``G=self`` is a normal subgroup of ``gr``.
Explanation
===========
G is normal in gr if
for each g2 in G, g1 in gr, ``g = g1*g2*g1**-1`` belongs to G
It is sufficient to check this for each g1 in gr.generators and
g2 in G.generators.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([1, 2, 0])
>>> b = Permutation([1, 0, 2])
>>> G = PermutationGroup([a, b])
>>> G1 = PermutationGroup([a, Permutation([2, 0, 1])])
>>> G1.is_normal(G)
True
"""
if not self.is_subgroup(gr, strict=strict):
return False
d_self = self.degree
d_gr = gr.degree
if self.is_trivial and (d_self == d_gr or not strict):
return True
if self._is_abelian:
return True
new_self = self.copy()
if not strict and d_self != d_gr:
if d_self < d_gr:
new_self = PermGroup(new_self.generators + [Permutation(d_gr - 1)])
else:
gr = PermGroup(gr.generators + [Permutation(d_self - 1)])
gens2 = [p._array_form for p in new_self.generators]
gens1 = [p._array_form for p in gr.generators]
for g1 in gens1:
for g2 in gens2:
p = _af_rmuln(g1, g2, _af_invert(g1))
if not new_self.coset_factor(p, True):
return False
return True
def is_primitive(self, randomized=True):
r"""Test if a group is primitive.
Explanation
===========
A permutation group ``G`` acting on a set ``S`` is called primitive if
``S`` contains no nontrivial block under the action of ``G``
(a block is nontrivial if its cardinality is more than ``1``).
Notes
=====
The algorithm is described in [1], p.83, and uses the function
minimal_block to search for blocks of the form `\{0, k\}` for ``k``
ranging over representatives for the orbits of `G_0`, the stabilizer of
``0``. This algorithm has complexity `O(n^2)` where ``n`` is the degree
of the group, and will perform badly if `G_0` is small.
There are two implementations offered: one finds `G_0`
deterministically using the function ``stabilizer``, and the other
(default) produces random elements of `G_0` using ``random_stab``,
hoping that they generate a subgroup of `G_0` with not too many more
orbits than `G_0` (this is suggested in [1], p.83). Behavior is changed
by the ``randomized`` flag.
Examples
========
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> D = DihedralGroup(10)
>>> D.is_primitive()
False
See Also
========
minimal_block, random_stab
"""
if self._is_primitive is not None:
return self._is_primitive
if self.is_transitive() is False:
return False
if randomized:
random_stab_gens = []
v = self.schreier_vector(0)
for _ in range(len(self)):
random_stab_gens.append(self.random_stab(0, v))
stab = PermutationGroup(random_stab_gens)
else:
stab = self.stabilizer(0)
orbits = stab.orbits()
for orb in orbits:
x = orb.pop()
if x != 0 and any(e != 0 for e in self.minimal_block([0, x])):
self._is_primitive = False
return False
self._is_primitive = True
return True
def minimal_blocks(self, randomized=True):
'''
For a transitive group, return the list of all minimal
block systems. If a group is intransitive, return `False`.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> DihedralGroup(6).minimal_blocks()
[[0, 1, 0, 1, 0, 1], [0, 1, 2, 0, 1, 2]]
>>> G = PermutationGroup(Permutation(1,2,5))
>>> G.minimal_blocks()
False
See Also
========
minimal_block, is_transitive, is_primitive
'''
def _number_blocks(blocks):
# number the blocks of a block system
# in order and return the number of
# blocks and the tuple with the
# reordering
n = len(blocks)
appeared = {}
m = 0
b = [None]*n
for i in range(n):
if blocks[i] not in appeared:
appeared[blocks[i]] = m
b[i] = m
m += 1
else:
b[i] = appeared[blocks[i]]
return tuple(b), m
if not self.is_transitive():
return False
blocks = []
num_blocks = []
rep_blocks = []
if randomized:
random_stab_gens = []
v = self.schreier_vector(0)
for i in range(len(self)):
random_stab_gens.append(self.random_stab(0, v))
stab = PermutationGroup(random_stab_gens)
else:
stab = self.stabilizer(0)
orbits = stab.orbits()
for orb in orbits:
x = orb.pop()
if x != 0:
block = self.minimal_block([0, x])
num_block, _ = _number_blocks(block)
# a representative block (containing 0)
rep = {j for j in range(self.degree) if num_block[j] == 0}
# check if the system is minimal with
# respect to the already discovere ones
minimal = True
blocks_remove_mask = [False] * len(blocks)
for i, r in enumerate(rep_blocks):
if len(r) > len(rep) and rep.issubset(r):
# i-th block system is not minimal
blocks_remove_mask[i] = True
elif len(r) < len(rep) and r.issubset(rep):
# the system being checked is not minimal
minimal = False
break
# remove non-minimal representative blocks
blocks = [b for i, b in enumerate(blocks) if not blocks_remove_mask[i]]
num_blocks = [n for i, n in enumerate(num_blocks) if not blocks_remove_mask[i]]
rep_blocks = [r for i, r in enumerate(rep_blocks) if not blocks_remove_mask[i]]
if minimal and num_block not in num_blocks:
blocks.append(block)
num_blocks.append(num_block)
rep_blocks.append(rep)
return blocks
@property
def is_solvable(self):
"""Test if the group is solvable.
``G`` is solvable if its derived series terminates with the trivial
group ([1], p.29).
Examples
========
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> S = SymmetricGroup(3)
>>> S.is_solvable
True
See Also
========
is_nilpotent, derived_series
"""
if self._is_solvable is None:
if self.order() % 2 != 0:
return True
ds = self.derived_series()
terminator = ds[len(ds) - 1]
gens = terminator.generators
degree = self.degree
identity = _af_new(list(range(degree)))
if all(g == identity for g in gens):
self._is_solvable = True
return True
else:
self._is_solvable = False
return False
else:
return self._is_solvable
def is_subgroup(self, G, strict=True):
"""Return ``True`` if all elements of ``self`` belong to ``G``.
If ``strict`` is ``False`` then if ``self``'s degree is smaller
than ``G``'s, the elements will be resized to have the same degree.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> from sympy.combinatorics import SymmetricGroup, CyclicGroup
Testing is strict by default: the degree of each group must be the
same:
>>> p = Permutation(0, 1, 2, 3, 4, 5)
>>> G1 = PermutationGroup([Permutation(0, 1, 2), Permutation(0, 1)])
>>> G2 = PermutationGroup([Permutation(0, 2), Permutation(0, 1, 2)])
>>> G3 = PermutationGroup([p, p**2])
>>> assert G1.order() == G2.order() == G3.order() == 6
>>> G1.is_subgroup(G2)
True
>>> G1.is_subgroup(G3)
False
>>> G3.is_subgroup(PermutationGroup(G3[1]))
False
>>> G3.is_subgroup(PermutationGroup(G3[0]))
True
To ignore the size, set ``strict`` to ``False``:
>>> S3 = SymmetricGroup(3)
>>> S5 = SymmetricGroup(5)
>>> S3.is_subgroup(S5, strict=False)
True
>>> C7 = CyclicGroup(7)
>>> G = S5*C7
>>> S5.is_subgroup(G, False)
True
>>> C7.is_subgroup(G, 0)
False
"""
if isinstance(G, SymmetricPermutationGroup):
if self.degree != G.degree:
return False
return True
if not isinstance(G, PermutationGroup):
return False
if self == G or self.generators[0]==Permutation():
return True
if G.order() % self.order() != 0:
return False
if self.degree == G.degree or \
(self.degree < G.degree and not strict):
gens = self.generators
else:
return False
return all(G.contains(g, strict=strict) for g in gens)
@property
def is_polycyclic(self):
"""Return ``True`` if a group is polycyclic. A group is polycyclic if
it has a subnormal series with cyclic factors. For finite groups,
this is the same as if the group is solvable.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([0, 2, 1, 3])
>>> b = Permutation([2, 0, 1, 3])
>>> G = PermutationGroup([a, b])
>>> G.is_polycyclic
True
"""
return self.is_solvable
def is_transitive(self, strict=True):
"""Test if the group is transitive.
Explanation
===========
A group is transitive if it has a single orbit.
If ``strict`` is ``False`` the group is transitive if it has
a single orbit of length different from 1.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([0, 2, 1, 3])
>>> b = Permutation([2, 0, 1, 3])
>>> G1 = PermutationGroup([a, b])
>>> G1.is_transitive()
False
>>> G1.is_transitive(strict=False)
True
>>> c = Permutation([2, 3, 0, 1])
>>> G2 = PermutationGroup([a, c])
>>> G2.is_transitive()
True
>>> d = Permutation([1, 0, 2, 3])
>>> e = Permutation([0, 1, 3, 2])
>>> G3 = PermutationGroup([d, e])
>>> G3.is_transitive() or G3.is_transitive(strict=False)
False
"""
if self._is_transitive: # strict or not, if True then True
return self._is_transitive
if strict:
if self._is_transitive is not None: # we only store strict=True
return self._is_transitive
ans = len(self.orbit(0)) == self.degree
self._is_transitive = ans
return ans
got_orb = False
for x in self.orbits():
if len(x) > 1:
if got_orb:
return False
got_orb = True
return got_orb
@property
def is_trivial(self):
"""Test if the group is the trivial group.
This is true if the group contains only the identity permutation.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> G = PermutationGroup([Permutation([0, 1, 2])])
>>> G.is_trivial
True
"""
if self._is_trivial is None:
self._is_trivial = len(self) == 1 and self[0].is_Identity
return self._is_trivial
def lower_central_series(self):
r"""Return the lower central series for the group.
The lower central series for a group `G` is the series
`G = G_0 > G_1 > G_2 > \ldots` where
`G_k = [G, G_{k-1}]`, i.e. every term after the first is equal to the
commutator of `G` and the previous term in `G1` ([1], p.29).
Returns
=======
A list of permutation groups in the order `G = G_0, G_1, G_2, \ldots`
Examples
========
>>> from sympy.combinatorics.named_groups import (AlternatingGroup,
... DihedralGroup)
>>> A = AlternatingGroup(4)
>>> len(A.lower_central_series())
2
>>> A.lower_central_series()[1].is_subgroup(DihedralGroup(2))
True
See Also
========
commutator, derived_series
"""
res = [self]
current = self
nxt = self.commutator(self, current)
while not current.is_subgroup(nxt):
res.append(nxt)
current = nxt
nxt = self.commutator(self, current)
return res
@property
def max_div(self):
"""Maximum proper divisor of the degree of a permutation group.
Explanation
===========
Obviously, this is the degree divided by its minimal proper divisor
(larger than ``1``, if one exists). As it is guaranteed to be prime,
the ``sieve`` from ``sympy.ntheory`` is used.
This function is also used as an optimization tool for the functions
``minimal_block`` and ``_union_find_merge``.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> G = PermutationGroup([Permutation([0, 2, 1, 3])])
>>> G.max_div
2
See Also
========
minimal_block, _union_find_merge
"""
if self._max_div is not None:
return self._max_div
n = self.degree
if n == 1:
return 1
for x in sieve:
if n % x == 0:
d = n//x
self._max_div = d
return d
def minimal_block(self, points):
r"""For a transitive group, finds the block system generated by
``points``.
Explanation
===========
If a group ``G`` acts on a set ``S``, a nonempty subset ``B`` of ``S``
is called a block under the action of ``G`` if for all ``g`` in ``G``
we have ``gB = B`` (``g`` fixes ``B``) or ``gB`` and ``B`` have no
common points (``g`` moves ``B`` entirely). ([1], p.23; [6]).
The distinct translates ``gB`` of a block ``B`` for ``g`` in ``G``
partition the set ``S`` and this set of translates is known as a block
system. Moreover, we obviously have that all blocks in the partition
have the same size, hence the block size divides ``|S|`` ([1], p.23).
A ``G``-congruence is an equivalence relation ``~`` on the set ``S``
such that ``a ~ b`` implies ``g(a) ~ g(b)`` for all ``g`` in ``G``.
For a transitive group, the equivalence classes of a ``G``-congruence
and the blocks of a block system are the same thing ([1], p.23).
The algorithm below checks the group for transitivity, and then finds
the ``G``-congruence generated by the pairs ``(p_0, p_1), (p_0, p_2),
..., (p_0,p_{k-1})`` which is the same as finding the maximal block
system (i.e., the one with minimum block size) such that
``p_0, ..., p_{k-1}`` are in the same block ([1], p.83).
It is an implementation of Atkinson's algorithm, as suggested in [1],
and manipulates an equivalence relation on the set ``S`` using a
union-find data structure. The running time is just above
`O(|points||S|)`. ([1], pp. 83-87; [7]).
Examples
========
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> D = DihedralGroup(10)
>>> D.minimal_block([0, 5])
[0, 1, 2, 3, 4, 0, 1, 2, 3, 4]
>>> D.minimal_block([0, 1])
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
See Also
========
_union_find_rep, _union_find_merge, is_transitive, is_primitive
"""
if not self.is_transitive():
return False
n = self.degree
gens = self.generators
# initialize the list of equivalence class representatives
parents = list(range(n))
ranks = [1]*n
not_rep = []
k = len(points)
# the block size must divide the degree of the group
if k > self.max_div:
return [0]*n
for i in range(k - 1):
parents[points[i + 1]] = points[0]
not_rep.append(points[i + 1])
ranks[points[0]] = k
i = 0
len_not_rep = k - 1
while i < len_not_rep:
gamma = not_rep[i]
i += 1
for gen in gens:
# find has side effects: performs path compression on the list
# of representatives
delta = self._union_find_rep(gamma, parents)
# union has side effects: performs union by rank on the list
# of representatives
temp = self._union_find_merge(gen(gamma), gen(delta), ranks,
parents, not_rep)
if temp == -1:
return [0]*n
len_not_rep += temp
for i in range(n):
# force path compression to get the final state of the equivalence
# relation
self._union_find_rep(i, parents)
# rewrite result so that block representatives are minimal
new_reps = {}
return [new_reps.setdefault(r, i) for i, r in enumerate(parents)]
def conjugacy_class(self, x):
r"""Return the conjugacy class of an element in the group.
Explanation
===========
The conjugacy class of an element ``g`` in a group ``G`` is the set of
elements ``x`` in ``G`` that are conjugate with ``g``, i.e. for which
``g = xax^{-1}``
for some ``a`` in ``G``.
Note that conjugacy is an equivalence relation, and therefore that
conjugacy classes are partitions of ``G``. For a list of all the
conjugacy classes of the group, use the conjugacy_classes() method.
In a permutation group, each conjugacy class corresponds to a particular
`cycle structure': for example, in ``S_3``, the conjugacy classes are:
* the identity class, ``{()}``
* all transpositions, ``{(1 2), (1 3), (2 3)}``
* all 3-cycles, ``{(1 2 3), (1 3 2)}``
Examples
========
>>> from sympy.combinatorics import Permutation, SymmetricGroup
>>> S3 = SymmetricGroup(3)
>>> S3.conjugacy_class(Permutation(0, 1, 2))
{(0 1 2), (0 2 1)}
Notes
=====
This procedure computes the conjugacy class directly by finding the
orbit of the element under conjugation in G. This algorithm is only
feasible for permutation groups of relatively small order, but is like
the orbit() function itself in that respect.
"""
# Ref: "Computing the conjugacy classes of finite groups"; Butler, G.
# Groups '93 Galway/St Andrews; edited by Campbell, C. M.
new_class = {x}
last_iteration = new_class
while len(last_iteration) > 0:
this_iteration = set()
for y in last_iteration:
for s in self.generators:
conjugated = s * y * (~s)
if conjugated not in new_class:
this_iteration.add(conjugated)
new_class.update(last_iteration)
last_iteration = this_iteration
return new_class
def conjugacy_classes(self):
r"""Return the conjugacy classes of the group.
Explanation
===========
As described in the documentation for the .conjugacy_class() function,
conjugacy is an equivalence relation on a group G which partitions the
set of elements. This method returns a list of all these conjugacy
classes of G.
Examples
========
>>> from sympy.combinatorics import SymmetricGroup
>>> SymmetricGroup(3).conjugacy_classes()
[{(2)}, {(0 1 2), (0 2 1)}, {(0 2), (1 2), (2)(0 1)}]
"""
identity = _af_new(list(range(self.degree)))
known_elements = {identity}
classes = [known_elements.copy()]
for x in self.generate():
if x not in known_elements:
new_class = self.conjugacy_class(x)
classes.append(new_class)
known_elements.update(new_class)
return classes
def normal_closure(self, other, k=10):
r"""Return the normal closure of a subgroup/set of permutations.
Explanation
===========
If ``S`` is a subset of a group ``G``, the normal closure of ``A`` in ``G``
is defined as the intersection of all normal subgroups of ``G`` that
contain ``A`` ([1], p.14). Alternatively, it is the group generated by
the conjugates ``x^{-1}yx`` for ``x`` a generator of ``G`` and ``y`` a
generator of the subgroup ``\left\langle S\right\rangle`` generated by
``S`` (for some chosen generating set for ``\left\langle S\right\rangle``)
([1], p.73).
Parameters
==========
other
a subgroup/list of permutations/single permutation
k
an implementation-specific parameter that determines the number
of conjugates that are adjoined to ``other`` at once
Examples
========
>>> from sympy.combinatorics.named_groups import (SymmetricGroup,
... CyclicGroup, AlternatingGroup)
>>> S = SymmetricGroup(5)
>>> C = CyclicGroup(5)
>>> G = S.normal_closure(C)
>>> G.order()
60
>>> G.is_subgroup(AlternatingGroup(5))
True
See Also
========
commutator, derived_subgroup, random_pr
Notes
=====
The algorithm is described in [1], pp. 73-74; it makes use of the
generation of random elements for permutation groups by the product
replacement algorithm.
"""
if hasattr(other, 'generators'):
degree = self.degree
identity = _af_new(list(range(degree)))
if all(g == identity for g in other.generators):
return other
Z = PermutationGroup(other.generators[:])
base, strong_gens = Z.schreier_sims_incremental()
strong_gens_distr = _distribute_gens_by_base(base, strong_gens)
basic_orbits, basic_transversals = \
_orbits_transversals_from_bsgs(base, strong_gens_distr)
self._random_pr_init(r=10, n=20)
_loop = True
while _loop:
Z._random_pr_init(r=10, n=10)
for _ in range(k):
g = self.random_pr()
h = Z.random_pr()
conj = h^g
res = _strip(conj, base, basic_orbits, basic_transversals)
if res[0] != identity or res[1] != len(base) + 1:
gens = Z.generators
gens.append(conj)
Z = PermutationGroup(gens)
strong_gens.append(conj)
temp_base, temp_strong_gens = \
Z.schreier_sims_incremental(base, strong_gens)
base, strong_gens = temp_base, temp_strong_gens
strong_gens_distr = \
_distribute_gens_by_base(base, strong_gens)
basic_orbits, basic_transversals = \
_orbits_transversals_from_bsgs(base,
strong_gens_distr)
_loop = False
for g in self.generators:
for h in Z.generators:
conj = h^g
res = _strip(conj, base, basic_orbits,
basic_transversals)
if res[0] != identity or res[1] != len(base) + 1:
_loop = True
break
if _loop:
break
return Z
elif hasattr(other, '__getitem__'):
return self.normal_closure(PermutationGroup(other))
elif hasattr(other, 'array_form'):
return self.normal_closure(PermutationGroup([other]))
def orbit(self, alpha, action='tuples'):
r"""Compute the orbit of alpha `\{g(\alpha) | g \in G\}` as a set.
Explanation
===========
The time complexity of the algorithm used here is `O(|Orb|*r)` where
`|Orb|` is the size of the orbit and ``r`` is the number of generators of
the group. For a more detailed analysis, see [1], p.78, [2], pp. 19-21.
Here alpha can be a single point, or a list of points.
If alpha is a single point, the ordinary orbit is computed.
if alpha is a list of points, there are three available options:
'union' - computes the union of the orbits of the points in the list
'tuples' - computes the orbit of the list interpreted as an ordered
tuple under the group action ( i.e., g((1,2,3)) = (g(1), g(2), g(3)) )
'sets' - computes the orbit of the list interpreted as a sets
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([1, 2, 0, 4, 5, 6, 3])
>>> G = PermutationGroup([a])
>>> G.orbit(0)
{0, 1, 2}
>>> G.orbit([0, 4], 'union')
{0, 1, 2, 3, 4, 5, 6}
See Also
========
orbit_transversal
"""
return _orbit(self.degree, self.generators, alpha, action)
def orbit_rep(self, alpha, beta, schreier_vector=None):
"""Return a group element which sends ``alpha`` to ``beta``.
Explanation
===========
If ``beta`` is not in the orbit of ``alpha``, the function returns
``False``. This implementation makes use of the schreier vector.
For a proof of correctness, see [1], p.80
Examples
========
>>> from sympy.combinatorics.named_groups import AlternatingGroup
>>> G = AlternatingGroup(5)
>>> G.orbit_rep(0, 4)
(0 4 1 2 3)
See Also
========
schreier_vector
"""
if schreier_vector is None:
schreier_vector = self.schreier_vector(alpha)
if schreier_vector[beta] is None:
return False
k = schreier_vector[beta]
gens = [x._array_form for x in self.generators]
a = []
while k != -1:
a.append(gens[k])
beta = gens[k].index(beta) # beta = (~gens[k])(beta)
k = schreier_vector[beta]
if a:
return _af_new(_af_rmuln(*a))
else:
return _af_new(list(range(self._degree)))
def orbit_transversal(self, alpha, pairs=False):
r"""Computes a transversal for the orbit of ``alpha`` as a set.
Explanation
===========
For a permutation group `G`, a transversal for the orbit
`Orb = \{g(\alpha) | g \in G\}` is a set
`\{g_\beta | g_\beta(\alpha) = \beta\}` for `\beta \in Orb`.
Note that there may be more than one possible transversal.
If ``pairs`` is set to ``True``, it returns the list of pairs
`(\beta, g_\beta)`. For a proof of correctness, see [1], p.79
Examples
========
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> G = DihedralGroup(6)
>>> G.orbit_transversal(0)
[(5), (0 1 2 3 4 5), (0 5)(1 4)(2 3), (0 2 4)(1 3 5), (5)(0 4)(1 3), (0 3)(1 4)(2 5)]
See Also
========
orbit
"""
return _orbit_transversal(self._degree, self.generators, alpha, pairs)
def orbits(self, rep=False):
"""Return the orbits of ``self``, ordered according to lowest element
in each orbit.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation(1, 5)(2, 3)(4, 0, 6)
>>> b = Permutation(1, 5)(3, 4)(2, 6, 0)
>>> G = PermutationGroup([a, b])
>>> G.orbits()
[{0, 2, 3, 4, 6}, {1, 5}]
"""
return _orbits(self._degree, self._generators)
def order(self):
"""Return the order of the group: the number of permutations that
can be generated from elements of the group.
The number of permutations comprising the group is given by
``len(group)``; the length of each permutation in the group is
given by ``group.size``.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([1, 0, 2])
>>> G = PermutationGroup([a])
>>> G.degree
3
>>> len(G)
1
>>> G.order()
2
>>> list(G.generate())
[(2), (2)(0 1)]
>>> a = Permutation([0, 2, 1])
>>> b = Permutation([1, 0, 2])
>>> G = PermutationGroup([a, b])
>>> G.order()
6
See Also
========
degree
"""
if self._order is not None:
return self._order
if self._is_sym:
n = self._degree
self._order = factorial(n)
return self._order
if self._is_alt:
n = self._degree
self._order = factorial(n)/2
return self._order
m = prod([len(x) for x in self.basic_transversals])
self._order = m
return m
def index(self, H):
"""
Returns the index of a permutation group.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation(1,2,3)
>>> b =Permutation(3)
>>> G = PermutationGroup([a])
>>> H = PermutationGroup([b])
>>> G.index(H)
3
"""
if H.is_subgroup(self):
return self.order()//H.order()
@property
def is_symmetric(self):
"""Return ``True`` if the group is symmetric.
Examples
========
>>> from sympy.combinatorics import SymmetricGroup
>>> g = SymmetricGroup(5)
>>> g.is_symmetric
True
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> g = PermutationGroup(
... Permutation(0, 1, 2, 3, 4),
... Permutation(2, 3))
>>> g.is_symmetric
True
Notes
=====
This uses a naive test involving the computation of the full
group order.
If you need more quicker taxonomy for large groups, you can use
:meth:`PermutationGroup.is_alt_sym`.
However, :meth:`PermutationGroup.is_alt_sym` may not be accurate
and is not able to distinguish between an alternating group and
a symmetric group.
See Also
========
is_alt_sym
"""
_is_sym = self._is_sym
if _is_sym is not None:
return _is_sym
n = self.degree
if n >= 8:
if self.is_transitive():
_is_alt_sym = self._eval_is_alt_sym_monte_carlo()
if _is_alt_sym:
if any(g.is_odd for g in self.generators):
self._is_sym, self._is_alt = True, False
return True
self._is_sym, self._is_alt = False, True
return False
return self._eval_is_alt_sym_naive(only_sym=True)
self._is_sym, self._is_alt = False, False
return False
return self._eval_is_alt_sym_naive(only_sym=True)
@property
def is_alternating(self):
"""Return ``True`` if the group is alternating.
Examples
========
>>> from sympy.combinatorics import AlternatingGroup
>>> g = AlternatingGroup(5)
>>> g.is_alternating
True
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> g = PermutationGroup(
... Permutation(0, 1, 2, 3, 4),
... Permutation(2, 3, 4))
>>> g.is_alternating
True
Notes
=====
This uses a naive test involving the computation of the full
group order.
If you need more quicker taxonomy for large groups, you can use
:meth:`PermutationGroup.is_alt_sym`.
However, :meth:`PermutationGroup.is_alt_sym` may not be accurate
and is not able to distinguish between an alternating group and
a symmetric group.
See Also
========
is_alt_sym
"""
_is_alt = self._is_alt
if _is_alt is not None:
return _is_alt
n = self.degree
if n >= 8:
if self.is_transitive():
_is_alt_sym = self._eval_is_alt_sym_monte_carlo()
if _is_alt_sym:
if all(g.is_even for g in self.generators):
self._is_sym, self._is_alt = False, True
return True
self._is_sym, self._is_alt = True, False
return False
return self._eval_is_alt_sym_naive(only_alt=True)
self._is_sym, self._is_alt = False, False
return False
return self._eval_is_alt_sym_naive(only_alt=True)
@classmethod
def _distinct_primes_lemma(cls, primes):
"""Subroutine to test if there is only one cyclic group for the
order."""
primes = sorted(primes)
l = len(primes)
for i in range(l):
for j in range(i+1, l):
if primes[j] % primes[i] == 1:
return None
return True
@property
def is_cyclic(self):
r"""
Return ``True`` if the group is Cyclic.
Examples
========
>>> from sympy.combinatorics.named_groups import AbelianGroup
>>> G = AbelianGroup(3, 4)
>>> G.is_cyclic
True
>>> G = AbelianGroup(4, 4)
>>> G.is_cyclic
False
Notes
=====
If the order of a group $n$ can be factored into the distinct
primes $p_1, p_2, \dots , p_s$ and if
.. math::
\forall i, j \in \{1, 2, \dots, s \}:
p_i \not \equiv 1 \pmod {p_j}
holds true, there is only one group of the order $n$ which
is a cyclic group [1]_. This is a generalization of the lemma
that the group of order $15, 35, \dots$ are cyclic.
And also, these additional lemmas can be used to test if a
group is cyclic if the order of the group is already found.
- If the group is abelian and the order of the group is
square-free, the group is cyclic.
- If the order of the group is less than $6$ and is not $4$, the
group is cyclic.
- If the order of the group is prime, the group is cyclic.
References
==========
.. [1] 1978: John S. Rose: A Course on Group Theory,
Introduction to Finite Group Theory: 1.4
"""
if self._is_cyclic is not None:
return self._is_cyclic
if len(self.generators) == 1:
self._is_cyclic = True
self._is_abelian = True
return True
if self._is_abelian is False:
self._is_cyclic = False
return False
order = self.order()
if order < 6:
self._is_abelian = True
if order != 4:
self._is_cyclic = True
return True
factors = factorint(order)
if all(v == 1 for v in factors.values()):
if self._is_abelian:
self._is_cyclic = True
return True
primes = list(factors.keys())
if PermutationGroup._distinct_primes_lemma(primes) is True:
self._is_cyclic = True
self._is_abelian = True
return True
for p in factors:
pgens = []
for g in self.generators:
pgens.append(g**p)
if self.index(self.subgroup(pgens)) != p:
self._is_cyclic = False
return False
self._is_cyclic = True
self._is_abelian = True
return True
def pointwise_stabilizer(self, points, incremental=True):
r"""Return the pointwise stabilizer for a set of points.
Explanation
===========
For a permutation group `G` and a set of points
`\{p_1, p_2,\ldots, p_k\}`, the pointwise stabilizer of
`p_1, p_2, \ldots, p_k` is defined as
`G_{p_1,\ldots, p_k} =
\{g\in G | g(p_i) = p_i \forall i\in\{1, 2,\ldots,k\}\}` ([1],p20).
It is a subgroup of `G`.
Examples
========
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> S = SymmetricGroup(7)
>>> Stab = S.pointwise_stabilizer([2, 3, 5])
>>> Stab.is_subgroup(S.stabilizer(2).stabilizer(3).stabilizer(5))
True
See Also
========
stabilizer, schreier_sims_incremental
Notes
=====
When incremental == True,
rather than the obvious implementation using successive calls to
``.stabilizer()``, this uses the incremental Schreier-Sims algorithm
to obtain a base with starting segment - the given points.
"""
if incremental:
base, strong_gens = self.schreier_sims_incremental(base=points)
stab_gens = []
degree = self.degree
for gen in strong_gens:
if [gen(point) for point in points] == points:
stab_gens.append(gen)
if not stab_gens:
stab_gens = _af_new(list(range(degree)))
return PermutationGroup(stab_gens)
else:
gens = self._generators
degree = self.degree
for x in points:
gens = _stabilizer(degree, gens, x)
return PermutationGroup(gens)
def make_perm(self, n, seed=None):
"""
Multiply ``n`` randomly selected permutations from
pgroup together, starting with the identity
permutation. If ``n`` is a list of integers, those
integers will be used to select the permutations and they
will be applied in L to R order: make_perm((A, B, C)) will
give CBA(I) where I is the identity permutation.
``seed`` is used to set the seed for the random selection
of permutations from pgroup. If this is a list of integers,
the corresponding permutations from pgroup will be selected
in the order give. This is mainly used for testing purposes.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a, b = [Permutation([1, 0, 3, 2]), Permutation([1, 3, 0, 2])]
>>> G = PermutationGroup([a, b])
>>> G.make_perm(1, [0])
(0 1)(2 3)
>>> G.make_perm(3, [0, 1, 0])
(0 2 3 1)
>>> G.make_perm([0, 1, 0])
(0 2 3 1)
See Also
========
random
"""
if is_sequence(n):
if seed is not None:
raise ValueError('If n is a sequence, seed should be None')
n, seed = len(n), n
else:
try:
n = int(n)
except TypeError:
raise ValueError('n must be an integer or a sequence.')
randomrange = _randrange(seed)
# start with the identity permutation
result = Permutation(list(range(self.degree)))
m = len(self)
for _ in range(n):
p = self[randomrange(m)]
result = rmul(result, p)
return result
def random(self, af=False):
"""Return a random group element
"""
rank = randrange(self.order())
return self.coset_unrank(rank, af)
def random_pr(self, gen_count=11, iterations=50, _random_prec=None):
"""Return a random group element using product replacement.
Explanation
===========
For the details of the product replacement algorithm, see
``_random_pr_init`` In ``random_pr`` the actual 'product replacement'
is performed. Notice that if the attribute ``_random_gens``
is empty, it needs to be initialized by ``_random_pr_init``.
See Also
========
_random_pr_init
"""
if self._random_gens == []:
self._random_pr_init(gen_count, iterations)
random_gens = self._random_gens
r = len(random_gens) - 1
# handle randomized input for testing purposes
if _random_prec is None:
s = randrange(r)
t = randrange(r - 1)
if t == s:
t = r - 1
x = choice([1, 2])
e = choice([-1, 1])
else:
s = _random_prec['s']
t = _random_prec['t']
if t == s:
t = r - 1
x = _random_prec['x']
e = _random_prec['e']
if x == 1:
random_gens[s] = _af_rmul(random_gens[s], _af_pow(random_gens[t], e))
random_gens[r] = _af_rmul(random_gens[r], random_gens[s])
else:
random_gens[s] = _af_rmul(_af_pow(random_gens[t], e), random_gens[s])
random_gens[r] = _af_rmul(random_gens[s], random_gens[r])
return _af_new(random_gens[r])
def random_stab(self, alpha, schreier_vector=None, _random_prec=None):
"""Random element from the stabilizer of ``alpha``.
The schreier vector for ``alpha`` is an optional argument used
for speeding up repeated calls. The algorithm is described in [1], p.81
See Also
========
random_pr, orbit_rep
"""
if schreier_vector is None:
schreier_vector = self.schreier_vector(alpha)
if _random_prec is None:
rand = self.random_pr()
else:
rand = _random_prec['rand']
beta = rand(alpha)
h = self.orbit_rep(alpha, beta, schreier_vector)
return rmul(~h, rand)
def schreier_sims(self):
"""Schreier-Sims algorithm.
Explanation
===========
It computes the generators of the chain of stabilizers
`G > G_{b_1} > .. > G_{b1,..,b_r} > 1`
in which `G_{b_1,..,b_i}` stabilizes `b_1,..,b_i`,
and the corresponding ``s`` cosets.
An element of the group can be written as the product
`h_1*..*h_s`.
We use the incremental Schreier-Sims algorithm.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([0, 2, 1])
>>> b = Permutation([1, 0, 2])
>>> G = PermutationGroup([a, b])
>>> G.schreier_sims()
>>> G.basic_transversals
[{0: (2)(0 1), 1: (2), 2: (1 2)},
{0: (2), 2: (0 2)}]
"""
if self._transversals:
return
self._schreier_sims()
return
def _schreier_sims(self, base=None):
schreier = self.schreier_sims_incremental(base=base, slp_dict=True)
base, strong_gens = schreier[:2]
self._base = base
self._strong_gens = strong_gens
self._strong_gens_slp = schreier[2]
if not base:
self._transversals = []
self._basic_orbits = []
return
strong_gens_distr = _distribute_gens_by_base(base, strong_gens)
basic_orbits, transversals, slps = _orbits_transversals_from_bsgs(base,\
strong_gens_distr, slp=True)
# rewrite the indices stored in slps in terms of strong_gens
for i, slp in enumerate(slps):
gens = strong_gens_distr[i]
for k in slp:
slp[k] = [strong_gens.index(gens[s]) for s in slp[k]]
self._transversals = transversals
self._basic_orbits = [sorted(x) for x in basic_orbits]
self._transversal_slp = slps
def schreier_sims_incremental(self, base=None, gens=None, slp_dict=False):
"""Extend a sequence of points and generating set to a base and strong
generating set.
Parameters
==========
base
The sequence of points to be extended to a base. Optional
parameter with default value ``[]``.
gens
The generating set to be extended to a strong generating set
relative to the base obtained. Optional parameter with default
value ``self.generators``.
slp_dict
If `True`, return a dictionary `{g: gens}` for each strong
generator `g` where `gens` is a list of strong generators
coming before `g` in `strong_gens`, such that the product
of the elements of `gens` is equal to `g`.
Returns
=======
(base, strong_gens)
``base`` is the base obtained, and ``strong_gens`` is the strong
generating set relative to it. The original parameters ``base``,
``gens`` remain unchanged.
Examples
========
>>> from sympy.combinatorics.named_groups import AlternatingGroup
>>> from sympy.combinatorics.testutil import _verify_bsgs
>>> A = AlternatingGroup(7)
>>> base = [2, 3]
>>> seq = [2, 3]
>>> base, strong_gens = A.schreier_sims_incremental(base=seq)
>>> _verify_bsgs(A, base, strong_gens)
True
>>> base[:2]
[2, 3]
Notes
=====
This version of the Schreier-Sims algorithm runs in polynomial time.
There are certain assumptions in the implementation - if the trivial
group is provided, ``base`` and ``gens`` are returned immediately,
as any sequence of points is a base for the trivial group. If the
identity is present in the generators ``gens``, it is removed as
it is a redundant generator.
The implementation is described in [1], pp. 90-93.
See Also
========
schreier_sims, schreier_sims_random
"""
if base is None:
base = []
if gens is None:
gens = self.generators[:]
degree = self.degree
id_af = list(range(degree))
# handle the trivial group
if len(gens) == 1 and gens[0].is_Identity:
if slp_dict:
return base, gens, {gens[0]: [gens[0]]}
return base, gens
# prevent side effects
_base, _gens = base[:], gens[:]
# remove the identity as a generator
_gens = [x for x in _gens if not x.is_Identity]
# make sure no generator fixes all base points
for gen in _gens:
if all(x == gen._array_form[x] for x in _base):
for new in id_af:
if gen._array_form[new] != new:
break
else:
assert None # can this ever happen?
_base.append(new)
# distribute generators according to basic stabilizers
strong_gens_distr = _distribute_gens_by_base(_base, _gens)
strong_gens_slp = []
# initialize the basic stabilizers, basic orbits and basic transversals
orbs = {}
transversals = {}
slps = {}
base_len = len(_base)
for i in range(base_len):
transversals[i], slps[i] = _orbit_transversal(degree, strong_gens_distr[i],
_base[i], pairs=True, af=True, slp=True)
transversals[i] = dict(transversals[i])
orbs[i] = list(transversals[i].keys())
# main loop: amend the stabilizer chain until we have generators
# for all stabilizers
i = base_len - 1
while i >= 0:
# this flag is used to continue with the main loop from inside
# a nested loop
continue_i = False
# test the generators for being a strong generating set
db = {}
for beta, u_beta in list(transversals[i].items()):
for j, gen in enumerate(strong_gens_distr[i]):
gb = gen._array_form[beta]
u1 = transversals[i][gb]
g1 = _af_rmul(gen._array_form, u_beta)
slp = [(i, g) for g in slps[i][beta]]
slp = [(i, j)] + slp
if g1 != u1:
# test if the schreier generator is in the i+1-th
# would-be basic stabilizer
y = True
try:
u1_inv = db[gb]
except KeyError:
u1_inv = db[gb] = _af_invert(u1)
schreier_gen = _af_rmul(u1_inv, g1)
u1_inv_slp = slps[i][gb][:]
u1_inv_slp.reverse()
u1_inv_slp = [(i, (g,)) for g in u1_inv_slp]
slp = u1_inv_slp + slp
h, j, slp = _strip_af(schreier_gen, _base, orbs, transversals, i, slp=slp, slps=slps)
if j <= base_len:
# new strong generator h at level j
y = False
elif h:
# h fixes all base points
y = False
moved = 0
while h[moved] == moved:
moved += 1
_base.append(moved)
base_len += 1
strong_gens_distr.append([])
if y is False:
# if a new strong generator is found, update the
# data structures and start over
h = _af_new(h)
strong_gens_slp.append((h, slp))
for l in range(i + 1, j):
strong_gens_distr[l].append(h)
transversals[l], slps[l] =\
_orbit_transversal(degree, strong_gens_distr[l],
_base[l], pairs=True, af=True, slp=True)
transversals[l] = dict(transversals[l])
orbs[l] = list(transversals[l].keys())
i = j - 1
# continue main loop using the flag
continue_i = True
if continue_i is True:
break
if continue_i is True:
break
if continue_i is True:
continue
i -= 1
strong_gens = _gens[:]
if slp_dict:
# create the list of the strong generators strong_gens and
# rewrite the indices of strong_gens_slp in terms of the
# elements of strong_gens
for k, slp in strong_gens_slp:
strong_gens.append(k)
for i in range(len(slp)):
s = slp[i]
if isinstance(s[1], tuple):
slp[i] = strong_gens_distr[s[0]][s[1][0]]**-1
else:
slp[i] = strong_gens_distr[s[0]][s[1]]
strong_gens_slp = dict(strong_gens_slp)
# add the original generators
for g in _gens:
strong_gens_slp[g] = [g]
return (_base, strong_gens, strong_gens_slp)
strong_gens.extend([k for k, _ in strong_gens_slp])
return _base, strong_gens
def schreier_sims_random(self, base=None, gens=None, consec_succ=10,
_random_prec=None):
r"""Randomized Schreier-Sims algorithm.
Explanation
===========
The randomized Schreier-Sims algorithm takes the sequence ``base``
and the generating set ``gens``, and extends ``base`` to a base, and
``gens`` to a strong generating set relative to that base with
probability of a wrong answer at most `2^{-consec\_succ}`,
provided the random generators are sufficiently random.
Parameters
==========
base
The sequence to be extended to a base.
gens
The generating set to be extended to a strong generating set.
consec_succ
The parameter defining the probability of a wrong answer.
_random_prec
An internal parameter used for testing purposes.
Returns
=======
(base, strong_gens)
``base`` is the base and ``strong_gens`` is the strong generating
set relative to it.
Examples
========
>>> from sympy.combinatorics.testutil import _verify_bsgs
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> S = SymmetricGroup(5)
>>> base, strong_gens = S.schreier_sims_random(consec_succ=5)
>>> _verify_bsgs(S, base, strong_gens) #doctest: +SKIP
True
Notes
=====
The algorithm is described in detail in [1], pp. 97-98. It extends
the orbits ``orbs`` and the permutation groups ``stabs`` to
basic orbits and basic stabilizers for the base and strong generating
set produced in the end.
The idea of the extension process
is to "sift" random group elements through the stabilizer chain
and amend the stabilizers/orbits along the way when a sift
is not successful.
The helper function ``_strip`` is used to attempt
to decompose a random group element according to the current
state of the stabilizer chain and report whether the element was
fully decomposed (successful sift) or not (unsuccessful sift). In
the latter case, the level at which the sift failed is reported and
used to amend ``stabs``, ``base``, ``gens`` and ``orbs`` accordingly.
The halting condition is for ``consec_succ`` consecutive successful
sifts to pass. This makes sure that the current ``base`` and ``gens``
form a BSGS with probability at least `1 - 1/\text{consec\_succ}`.
See Also
========
schreier_sims
"""
if base is None:
base = []
if gens is None:
gens = self.generators
base_len = len(base)
n = self.degree
# make sure no generator fixes all base points
for gen in gens:
if all(gen(x) == x for x in base):
new = 0
while gen._array_form[new] == new:
new += 1
base.append(new)
base_len += 1
# distribute generators according to basic stabilizers
strong_gens_distr = _distribute_gens_by_base(base, gens)
# initialize the basic stabilizers, basic transversals and basic orbits
transversals = {}
orbs = {}
for i in range(base_len):
transversals[i] = dict(_orbit_transversal(n, strong_gens_distr[i],
base[i], pairs=True))
orbs[i] = list(transversals[i].keys())
# initialize the number of consecutive elements sifted
c = 0
# start sifting random elements while the number of consecutive sifts
# is less than consec_succ
while c < consec_succ:
if _random_prec is None:
g = self.random_pr()
else:
g = _random_prec['g'].pop()
h, j = _strip(g, base, orbs, transversals)
y = True
# determine whether a new base point is needed
if j <= base_len:
y = False
elif not h.is_Identity:
y = False
moved = 0
while h(moved) == moved:
moved += 1
base.append(moved)
base_len += 1
strong_gens_distr.append([])
# if the element doesn't sift, amend the strong generators and
# associated stabilizers and orbits
if y is False:
for l in range(1, j):
strong_gens_distr[l].append(h)
transversals[l] = dict(_orbit_transversal(n,
strong_gens_distr[l], base[l], pairs=True))
orbs[l] = list(transversals[l].keys())
c = 0
else:
c += 1
# build the strong generating set
strong_gens = strong_gens_distr[0][:]
for gen in strong_gens_distr[1]:
if gen not in strong_gens:
strong_gens.append(gen)
return base, strong_gens
def schreier_vector(self, alpha):
"""Computes the schreier vector for ``alpha``.
Explanation
===========
The Schreier vector efficiently stores information
about the orbit of ``alpha``. It can later be used to quickly obtain
elements of the group that send ``alpha`` to a particular element
in the orbit. Notice that the Schreier vector depends on the order
in which the group generators are listed. For a definition, see [3].
Since list indices start from zero, we adopt the convention to use
"None" instead of 0 to signify that an element does not belong
to the orbit.
For the algorithm and its correctness, see [2], pp.78-80.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([2, 4, 6, 3, 1, 5, 0])
>>> b = Permutation([0, 1, 3, 5, 4, 6, 2])
>>> G = PermutationGroup([a, b])
>>> G.schreier_vector(0)
[-1, None, 0, 1, None, 1, 0]
See Also
========
orbit
"""
n = self.degree
v = [None]*n
v[alpha] = -1
orb = [alpha]
used = [False]*n
used[alpha] = True
gens = self.generators
r = len(gens)
for b in orb:
for i in range(r):
temp = gens[i]._array_form[b]
if used[temp] is False:
orb.append(temp)
used[temp] = True
v[temp] = i
return v
def stabilizer(self, alpha):
r"""Return the stabilizer subgroup of ``alpha``.
Explanation
===========
The stabilizer of `\alpha` is the group `G_\alpha =
\{g \in G | g(\alpha) = \alpha\}`.
For a proof of correctness, see [1], p.79.
Examples
========
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> G = DihedralGroup(6)
>>> G.stabilizer(5)
PermutationGroup([
(5)(0 4)(1 3)])
See Also
========
orbit
"""
return PermGroup(_stabilizer(self._degree, self._generators, alpha))
@property
def strong_gens(self):
r"""Return a strong generating set from the Schreier-Sims algorithm.
Explanation
===========
A generating set `S = \{g_1, g_2, \dots, g_t\}` for a permutation group
`G` is a strong generating set relative to the sequence of points
(referred to as a "base") `(b_1, b_2, \dots, b_k)` if, for
`1 \leq i \leq k` we have that the intersection of the pointwise
stabilizer `G^{(i+1)} := G_{b_1, b_2, \dots, b_i}` with `S` generates
the pointwise stabilizer `G^{(i+1)}`. The concepts of a base and
strong generating set and their applications are discussed in depth
in [1], pp. 87-89 and [2], pp. 55-57.
Examples
========
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> D = DihedralGroup(4)
>>> D.strong_gens
[(0 1 2 3), (0 3)(1 2), (1 3)]
>>> D.base
[0, 1]
See Also
========
base, basic_transversals, basic_orbits, basic_stabilizers
"""
if self._strong_gens == []:
self.schreier_sims()
return self._strong_gens
def subgroup(self, gens):
"""
Return the subgroup generated by `gens` which is a list of
elements of the group
"""
if not all(g in self for g in gens):
raise ValueError("The group does not contain the supplied generators")
G = PermutationGroup(gens)
return G
def subgroup_search(self, prop, base=None, strong_gens=None, tests=None,
init_subgroup=None):
"""Find the subgroup of all elements satisfying the property ``prop``.
Explanation
===========
This is done by a depth-first search with respect to base images that
uses several tests to prune the search tree.
Parameters
==========
prop
The property to be used. Has to be callable on group elements
and always return ``True`` or ``False``. It is assumed that
all group elements satisfying ``prop`` indeed form a subgroup.
base
A base for the supergroup.
strong_gens
A strong generating set for the supergroup.
tests
A list of callables of length equal to the length of ``base``.
These are used to rule out group elements by partial base images,
so that ``tests[l](g)`` returns False if the element ``g`` is known
not to satisfy prop base on where g sends the first ``l + 1`` base
points.
init_subgroup
if a subgroup of the sought group is
known in advance, it can be passed to the function as this
parameter.
Returns
=======
res
The subgroup of all elements satisfying ``prop``. The generating
set for this group is guaranteed to be a strong generating set
relative to the base ``base``.
Examples
========
>>> from sympy.combinatorics.named_groups import (SymmetricGroup,
... AlternatingGroup)
>>> from sympy.combinatorics.testutil import _verify_bsgs
>>> S = SymmetricGroup(7)
>>> prop_even = lambda x: x.is_even
>>> base, strong_gens = S.schreier_sims_incremental()
>>> G = S.subgroup_search(prop_even, base=base, strong_gens=strong_gens)
>>> G.is_subgroup(AlternatingGroup(7))
True
>>> _verify_bsgs(G, base, G.generators)
True
Notes
=====
This function is extremely lengthy and complicated and will require
some careful attention. The implementation is described in
[1], pp. 114-117, and the comments for the code here follow the lines
of the pseudocode in the book for clarity.
The complexity is exponential in general, since the search process by
itself visits all members of the supergroup. However, there are a lot
of tests which are used to prune the search tree, and users can define
their own tests via the ``tests`` parameter, so in practice, and for
some computations, it's not terrible.
A crucial part in the procedure is the frequent base change performed
(this is line 11 in the pseudocode) in order to obtain a new basic
stabilizer. The book mentiones that this can be done by using
``.baseswap(...)``, however the current implementation uses a more
straightforward way to find the next basic stabilizer - calling the
function ``.stabilizer(...)`` on the previous basic stabilizer.
"""
# initialize BSGS and basic group properties
def get_reps(orbits):
# get the minimal element in the base ordering
return [min(orbit, key = lambda x: base_ordering[x]) \
for orbit in orbits]
def update_nu(l):
temp_index = len(basic_orbits[l]) + 1 -\
len(res_basic_orbits_init_base[l])
# this corresponds to the element larger than all points
if temp_index >= len(sorted_orbits[l]):
nu[l] = base_ordering[degree]
else:
nu[l] = sorted_orbits[l][temp_index]
if base is None:
base, strong_gens = self.schreier_sims_incremental()
base_len = len(base)
degree = self.degree
identity = _af_new(list(range(degree)))
base_ordering = _base_ordering(base, degree)
# add an element larger than all points
base_ordering.append(degree)
# add an element smaller than all points
base_ordering.append(-1)
# compute BSGS-related structures
strong_gens_distr = _distribute_gens_by_base(base, strong_gens)
basic_orbits, transversals = _orbits_transversals_from_bsgs(base,
strong_gens_distr)
# handle subgroup initialization and tests
if init_subgroup is None:
init_subgroup = PermutationGroup([identity])
if tests is None:
trivial_test = lambda x: True
tests = []
for i in range(base_len):
tests.append(trivial_test)
# line 1: more initializations.
res = init_subgroup
f = base_len - 1
l = base_len - 1
# line 2: set the base for K to the base for G
res_base = base[:]
# line 3: compute BSGS and related structures for K
res_base, res_strong_gens = res.schreier_sims_incremental(
base=res_base)
res_strong_gens_distr = _distribute_gens_by_base(res_base,
res_strong_gens)
res_generators = res.generators
res_basic_orbits_init_base = \
[_orbit(degree, res_strong_gens_distr[i], res_base[i])\
for i in range(base_len)]
# initialize orbit representatives
orbit_reps = [None]*base_len
# line 4: orbit representatives for f-th basic stabilizer of K
orbits = _orbits(degree, res_strong_gens_distr[f])
orbit_reps[f] = get_reps(orbits)
# line 5: remove the base point from the representatives to avoid
# getting the identity element as a generator for K
orbit_reps[f].remove(base[f])
# line 6: more initializations
c = [0]*base_len
u = [identity]*base_len
sorted_orbits = [None]*base_len
for i in range(base_len):
sorted_orbits[i] = basic_orbits[i][:]
sorted_orbits[i].sort(key=lambda point: base_ordering[point])
# line 7: initializations
mu = [None]*base_len
nu = [None]*base_len
# this corresponds to the element smaller than all points
mu[l] = degree + 1
update_nu(l)
# initialize computed words
computed_words = [identity]*base_len
# line 8: main loop
while True:
# apply all the tests
while l < base_len - 1 and \
computed_words[l](base[l]) in orbit_reps[l] and \
base_ordering[mu[l]] < \
base_ordering[computed_words[l](base[l])] < \
base_ordering[nu[l]] and \
tests[l](computed_words):
# line 11: change the (partial) base of K
new_point = computed_words[l](base[l])
res_base[l] = new_point
new_stab_gens = _stabilizer(degree, res_strong_gens_distr[l],
new_point)
res_strong_gens_distr[l + 1] = new_stab_gens
# line 12: calculate minimal orbit representatives for the
# l+1-th basic stabilizer
orbits = _orbits(degree, new_stab_gens)
orbit_reps[l + 1] = get_reps(orbits)
# line 13: amend sorted orbits
l += 1
temp_orbit = [computed_words[l - 1](point) for point
in basic_orbits[l]]
temp_orbit.sort(key=lambda point: base_ordering[point])
sorted_orbits[l] = temp_orbit
# lines 14 and 15: update variables used minimality tests
new_mu = degree + 1
for i in range(l):
if base[l] in res_basic_orbits_init_base[i]:
candidate = computed_words[i](base[i])
if base_ordering[candidate] > base_ordering[new_mu]:
new_mu = candidate
mu[l] = new_mu
update_nu(l)
# line 16: determine the new transversal element
c[l] = 0
temp_point = sorted_orbits[l][c[l]]
gamma = computed_words[l - 1]._array_form.index(temp_point)
u[l] = transversals[l][gamma]
# update computed words
computed_words[l] = rmul(computed_words[l - 1], u[l])
# lines 17 & 18: apply the tests to the group element found
g = computed_words[l]
temp_point = g(base[l])
if l == base_len - 1 and \
base_ordering[mu[l]] < \
base_ordering[temp_point] < base_ordering[nu[l]] and \
temp_point in orbit_reps[l] and \
tests[l](computed_words) and \
prop(g):
# line 19: reset the base of K
res_generators.append(g)
res_base = base[:]
# line 20: recalculate basic orbits (and transversals)
res_strong_gens.append(g)
res_strong_gens_distr = _distribute_gens_by_base(res_base,
res_strong_gens)
res_basic_orbits_init_base = \
[_orbit(degree, res_strong_gens_distr[i], res_base[i]) \
for i in range(base_len)]
# line 21: recalculate orbit representatives
# line 22: reset the search depth
orbit_reps[f] = get_reps(orbits)
l = f
# line 23: go up the tree until in the first branch not fully
# searched
while l >= 0 and c[l] == len(basic_orbits[l]) - 1:
l = l - 1
# line 24: if the entire tree is traversed, return K
if l == -1:
return PermutationGroup(res_generators)
# lines 25-27: update orbit representatives
if l < f:
# line 26
f = l
c[l] = 0
# line 27
temp_orbits = _orbits(degree, res_strong_gens_distr[f])
orbit_reps[f] = get_reps(temp_orbits)
# line 28: update variables used for minimality testing
mu[l] = degree + 1
temp_index = len(basic_orbits[l]) + 1 - \
len(res_basic_orbits_init_base[l])
if temp_index >= len(sorted_orbits[l]):
nu[l] = base_ordering[degree]
else:
nu[l] = sorted_orbits[l][temp_index]
# line 29: set the next element from the current branch and update
# accordingly
c[l] += 1
if l == 0:
gamma = sorted_orbits[l][c[l]]
else:
gamma = computed_words[l - 1]._array_form.index(sorted_orbits[l][c[l]])
u[l] = transversals[l][gamma]
if l == 0:
computed_words[l] = u[l]
else:
computed_words[l] = rmul(computed_words[l - 1], u[l])
@property
def transitivity_degree(self):
r"""Compute the degree of transitivity of the group.
Explanation
===========
A permutation group `G` acting on `\Omega = \{0, 1, \dots, n-1\}` is
``k``-fold transitive, if, for any `k` points
`(a_1, a_2, \dots, a_k) \in \Omega` and any `k` points
`(b_1, b_2, \dots, b_k) \in \Omega` there exists `g \in G` such that
`g(a_1) = b_1, g(a_2) = b_2, \dots, g(a_k) = b_k`
The degree of transitivity of `G` is the maximum ``k`` such that
`G` is ``k``-fold transitive. ([8])
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> a = Permutation([1, 2, 0])
>>> b = Permutation([1, 0, 2])
>>> G = PermutationGroup([a, b])
>>> G.transitivity_degree
3
See Also
========
is_transitive, orbit
"""
if self._transitivity_degree is None:
n = self.degree
G = self
# if G is k-transitive, a tuple (a_0,..,a_k)
# can be brought to (b_0,...,b_(k-1), b_k)
# where b_0,...,b_(k-1) are fixed points;
# consider the group G_k which stabilizes b_0,...,b_(k-1)
# if G_k is transitive on the subset excluding b_0,...,b_(k-1)
# then G is (k+1)-transitive
for i in range(n):
orb = G.orbit(i)
if len(orb) != n - i:
self._transitivity_degree = i
return i
G = G.stabilizer(i)
self._transitivity_degree = n
return n
else:
return self._transitivity_degree
def _p_elements_group(self, p):
'''
For an abelian p-group, return the subgroup consisting of
all elements of order p (and the identity)
'''
gens = self.generators[:]
gens = sorted(gens, key=lambda x: x.order(), reverse=True)
gens_p = [g**(g.order()/p) for g in gens]
gens_r = []
for i in range(len(gens)):
x = gens[i]
x_order = x.order()
# x_p has order p
x_p = x**(x_order/p)
if i > 0:
P = PermutationGroup(gens_p[:i])
else:
P = PermutationGroup(self.identity)
if x**(x_order/p) not in P:
gens_r.append(x**(x_order/p))
else:
# replace x by an element of order (x.order()/p)
# so that gens still generates G
g = P.generator_product(x_p, original=True)
for s in g:
x = x*s**-1
x_order = x_order/p
# insert x to gens so that the sorting is preserved
del gens[i]
del gens_p[i]
j = i - 1
while j < len(gens) and gens[j].order() >= x_order:
j += 1
gens = gens[:j] + [x] + gens[j:]
gens_p = gens_p[:j] + [x] + gens_p[j:]
return PermutationGroup(gens_r)
def _sylow_alt_sym(self, p):
'''
Return a p-Sylow subgroup of a symmetric or an
alternating group.
Explanation
===========
The algorithm for this is hinted at in [1], Chapter 4,
Exercise 4.
For Sym(n) with n = p^i, the idea is as follows. Partition
the interval [0..n-1] into p equal parts, each of length p^(i-1):
[0..p^(i-1)-1], [p^(i-1)..2*p^(i-1)-1]...[(p-1)*p^(i-1)..p^i-1].
Find a p-Sylow subgroup of Sym(p^(i-1)) (treated as a subgroup
of ``self``) acting on each of the parts. Call the subgroups
P_1, P_2...P_p. The generators for the subgroups P_2...P_p
can be obtained from those of P_1 by applying a "shifting"
permutation to them, that is, a permutation mapping [0..p^(i-1)-1]
to the second part (the other parts are obtained by using the shift
multiple times). The union of this permutation and the generators
of P_1 is a p-Sylow subgroup of ``self``.
For n not equal to a power of p, partition
[0..n-1] in accordance with how n would be written in base p.
E.g. for p=2 and n=11, 11 = 2^3 + 2^2 + 1 so the partition
is [[0..7], [8..9], {10}]. To generate a p-Sylow subgroup,
take the union of the generators for each of the parts.
For the above example, {(0 1), (0 2)(1 3), (0 4), (1 5)(2 7)}
from the first part, {(8 9)} from the second part and
nothing from the third. This gives 4 generators in total, and
the subgroup they generate is p-Sylow.
Alternating groups are treated the same except when p=2. In this
case, (0 1)(s s+1) should be added for an appropriate s (the start
of a part) for each part in the partitions.
See Also
========
sylow_subgroup, is_alt_sym
'''
n = self.degree
gens = []
identity = Permutation(n-1)
# the case of 2-sylow subgroups of alternating groups
# needs special treatment
alt = p == 2 and all(g.is_even for g in self.generators)
# find the presentation of n in base p
coeffs = []
m = n
while m > 0:
coeffs.append(m % p)
m = m // p
power = len(coeffs)-1
# for a symmetric group, gens[:i] is the generating
# set for a p-Sylow subgroup on [0..p**(i-1)-1]. For
# alternating groups, the same is given by gens[:2*(i-1)]
for i in range(1, power+1):
if i == 1 and alt:
# (0 1) shouldn't be added for alternating groups
continue
gen = Permutation([(j + p**(i-1)) % p**i for j in range(p**i)])
gens.append(identity*gen)
if alt:
gen = Permutation(0, 1)*gen*Permutation(0, 1)*gen
gens.append(gen)
# the first point in the current part (see the algorithm
# description in the docstring)
start = 0
while power > 0:
a = coeffs[power]
# make the permutation shifting the start of the first
# part ([0..p^i-1] for some i) to the current one
for _ in range(a):
shift = Permutation()
if start > 0:
for i in range(p**power):
shift = shift(i, start + i)
if alt:
gen = Permutation(0, 1)*shift*Permutation(0, 1)*shift
gens.append(gen)
j = 2*(power - 1)
else:
j = power
for i, gen in enumerate(gens[:j]):
if alt and i % 2 == 1:
continue
# shift the generator to the start of the
# partition part
gen = shift*gen*shift
gens.append(gen)
start += p**power
power = power-1
return gens
def sylow_subgroup(self, p):
'''
Return a p-Sylow subgroup of the group.
The algorithm is described in [1], Chapter 4, Section 7
Examples
========
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> from sympy.combinatorics.named_groups import AlternatingGroup
>>> D = DihedralGroup(6)
>>> S = D.sylow_subgroup(2)
>>> S.order()
4
>>> G = SymmetricGroup(6)
>>> S = G.sylow_subgroup(5)
>>> S.order()
5
>>> G1 = AlternatingGroup(3)
>>> G2 = AlternatingGroup(5)
>>> G3 = AlternatingGroup(9)
>>> S1 = G1.sylow_subgroup(3)
>>> S2 = G2.sylow_subgroup(3)
>>> S3 = G3.sylow_subgroup(3)
>>> len1 = len(S1.lower_central_series())
>>> len2 = len(S2.lower_central_series())
>>> len3 = len(S3.lower_central_series())
>>> len1 == len2
True
>>> len1 < len3
True
'''
from sympy.combinatorics.homomorphisms import (
orbit_homomorphism, block_homomorphism)
if not isprime(p):
raise ValueError("p must be a prime")
def is_p_group(G):
# check if the order of G is a power of p
# and return the power
m = G.order()
n = 0
while m % p == 0:
m = m/p
n += 1
if m == 1:
return True, n
return False, n
def _sylow_reduce(mu, nu):
# reduction based on two homomorphisms
# mu and nu with trivially intersecting
# kernels
Q = mu.image().sylow_subgroup(p)
Q = mu.invert_subgroup(Q)
nu = nu.restrict_to(Q)
R = nu.image().sylow_subgroup(p)
return nu.invert_subgroup(R)
order = self.order()
if order % p != 0:
return PermutationGroup([self.identity])
p_group, n = is_p_group(self)
if p_group:
return self
if self.is_alt_sym():
return PermutationGroup(self._sylow_alt_sym(p))
# if there is a non-trivial orbit with size not divisible
# by p, the sylow subgroup is contained in its stabilizer
# (by orbit-stabilizer theorem)
orbits = self.orbits()
non_p_orbits = [o for o in orbits if len(o) % p != 0 and len(o) != 1]
if non_p_orbits:
G = self.stabilizer(list(non_p_orbits[0]).pop())
return G.sylow_subgroup(p)
if not self.is_transitive():
# apply _sylow_reduce to orbit actions
orbits = sorted(orbits, key=len)
omega1 = orbits.pop()
omega2 = orbits[0].union(*orbits)
mu = orbit_homomorphism(self, omega1)
nu = orbit_homomorphism(self, omega2)
return _sylow_reduce(mu, nu)
blocks = self.minimal_blocks()
if len(blocks) > 1:
# apply _sylow_reduce to block system actions
mu = block_homomorphism(self, blocks[0])
nu = block_homomorphism(self, blocks[1])
return _sylow_reduce(mu, nu)
elif len(blocks) == 1:
block = list(blocks)[0]
if any(e != 0 for e in block):
# self is imprimitive
mu = block_homomorphism(self, block)
if not is_p_group(mu.image())[0]:
S = mu.image().sylow_subgroup(p)
return mu.invert_subgroup(S).sylow_subgroup(p)
# find an element of order p
g = self.random()
g_order = g.order()
while g_order % p != 0 or g_order == 0:
g = self.random()
g_order = g.order()
g = g**(g_order // p)
if order % p**2 != 0:
return PermutationGroup(g)
C = self.centralizer(g)
while C.order() % p**n != 0:
S = C.sylow_subgroup(p)
s_order = S.order()
Z = S.center()
P = Z._p_elements_group(p)
h = P.random()
C_h = self.centralizer(h)
while C_h.order() % p*s_order != 0:
h = P.random()
C_h = self.centralizer(h)
C = C_h
return C.sylow_subgroup(p)
def _block_verify(self, L, alpha):
delta = sorted(list(self.orbit(alpha)))
# p[i] will be the number of the block
# delta[i] belongs to
p = [-1]*len(delta)
blocks = [-1]*len(delta)
B = [[]] # future list of blocks
u = [0]*len(delta) # u[i] in L s.t. alpha^u[i] = B[0][i]
t = L.orbit_transversal(alpha, pairs=True)
for a, beta in t:
B[0].append(a)
i_a = delta.index(a)
p[i_a] = 0
blocks[i_a] = alpha
u[i_a] = beta
rho = 0
m = 0 # number of blocks - 1
while rho <= m:
beta = B[rho][0]
for g in self.generators:
d = beta^g
i_d = delta.index(d)
sigma = p[i_d]
if sigma < 0:
# define a new block
m += 1
sigma = m
u[i_d] = u[delta.index(beta)]*g
p[i_d] = sigma
rep = d
blocks[i_d] = rep
newb = [rep]
for gamma in B[rho][1:]:
i_gamma = delta.index(gamma)
d = gamma^g
i_d = delta.index(d)
if p[i_d] < 0:
u[i_d] = u[i_gamma]*g
p[i_d] = sigma
blocks[i_d] = rep
newb.append(d)
else:
# B[rho] is not a block
s = u[i_gamma]*g*u[i_d]**(-1)
return False, s
B.append(newb)
else:
for h in B[rho][1:]:
if h^g not in B[sigma]:
# B[rho] is not a block
s = u[delta.index(beta)]*g*u[i_d]**(-1)
return False, s
rho += 1
return True, blocks
def _verify(H, K, phi, z, alpha):
'''
Return a list of relators ``rels`` in generators ``gens`_h` that
are mapped to ``H.generators`` by ``phi`` so that given a finite
presentation <gens_k | rels_k> of ``K`` on a subset of ``gens_h``
<gens_h | rels_k + rels> is a finite presentation of ``H``.
Explanation
===========
``H`` should be generated by the union of ``K.generators`` and ``z``
(a single generator), and ``H.stabilizer(alpha) == K``; ``phi`` is a
canonical injection from a free group into a permutation group
containing ``H``.
The algorithm is described in [1], Chapter 6.
Examples
========
>>> from sympy.combinatorics import free_group, Permutation, PermutationGroup
>>> from sympy.combinatorics.homomorphisms import homomorphism
>>> from sympy.combinatorics.fp_groups import FpGroup
>>> H = PermutationGroup(Permutation(0, 2), Permutation (1, 5))
>>> K = PermutationGroup(Permutation(5)(0, 2))
>>> F = free_group("x_0 x_1")[0]
>>> gens = F.generators
>>> phi = homomorphism(F, H, F.generators, H.generators)
>>> rels_k = [gens[0]**2] # relators for presentation of K
>>> z= Permutation(1, 5)
>>> check, rels_h = H._verify(K, phi, z, 1)
>>> check
True
>>> rels = rels_k + rels_h
>>> G = FpGroup(F, rels) # presentation of H
>>> G.order() == H.order()
True
See also
========
strong_presentation, presentation, stabilizer
'''
orbit = H.orbit(alpha)
beta = alpha^(z**-1)
K_beta = K.stabilizer(beta)
# orbit representatives of K_beta
gammas = [alpha, beta]
orbits = list({tuple(K_beta.orbit(o)) for o in orbit})
orbit_reps = [orb[0] for orb in orbits]
for rep in orbit_reps:
if rep not in gammas:
gammas.append(rep)
# orbit transversal of K
betas = [alpha, beta]
transversal = {alpha: phi.invert(H.identity), beta: phi.invert(z**-1)}
for s, g in K.orbit_transversal(beta, pairs=True):
if s not in transversal:
transversal[s] = transversal[beta]*phi.invert(g)
union = K.orbit(alpha).union(K.orbit(beta))
while (len(union) < len(orbit)):
for gamma in gammas:
if gamma in union:
r = gamma^z
if r not in union:
betas.append(r)
transversal[r] = transversal[gamma]*phi.invert(z)
for s, g in K.orbit_transversal(r, pairs=True):
if s not in transversal:
transversal[s] = transversal[r]*phi.invert(g)
union = union.union(K.orbit(r))
break
# compute relators
rels = []
for b in betas:
k_gens = K.stabilizer(b).generators
for y in k_gens:
new_rel = transversal[b]
gens = K.generator_product(y, original=True)
for g in gens[::-1]:
new_rel = new_rel*phi.invert(g)
new_rel = new_rel*transversal[b]**-1
perm = phi(new_rel)
try:
gens = K.generator_product(perm, original=True)
except ValueError:
return False, perm
for g in gens:
new_rel = new_rel*phi.invert(g)**-1
if new_rel not in rels:
rels.append(new_rel)
for gamma in gammas:
new_rel = transversal[gamma]*phi.invert(z)*transversal[gamma^z]**-1
perm = phi(new_rel)
try:
gens = K.generator_product(perm, original=True)
except ValueError:
return False, perm
for g in gens:
new_rel = new_rel*phi.invert(g)**-1
if new_rel not in rels:
rels.append(new_rel)
return True, rels
def strong_presentation(self):
'''
Return a strong finite presentation of group. The generators
of the returned group are in the same order as the strong
generators of group.
The algorithm is based on Sims' Verify algorithm described
in [1], Chapter 6.
Examples
========
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> P = DihedralGroup(4)
>>> G = P.strong_presentation()
>>> P.order() == G.order()
True
See Also
========
presentation, _verify
'''
from sympy.combinatorics.fp_groups import (FpGroup,
simplify_presentation)
from sympy.combinatorics.free_groups import free_group
from sympy.combinatorics.homomorphisms import (block_homomorphism,
homomorphism, GroupHomomorphism)
strong_gens = self.strong_gens[:]
stabs = self.basic_stabilizers[:]
base = self.base[:]
# injection from a free group on len(strong_gens)
# generators into G
gen_syms = [('x_%d'%i) for i in range(len(strong_gens))]
F = free_group(', '.join(gen_syms))[0]
phi = homomorphism(F, self, F.generators, strong_gens)
H = PermutationGroup(self.identity)
while stabs:
alpha = base.pop()
K = H
H = stabs.pop()
new_gens = [g for g in H.generators if g not in K]
if K.order() == 1:
z = new_gens.pop()
rels = [F.generators[-1]**z.order()]
intermediate_gens = [z]
K = PermutationGroup(intermediate_gens)
# add generators one at a time building up from K to H
while new_gens:
z = new_gens.pop()
intermediate_gens = [z] + intermediate_gens
K_s = PermutationGroup(intermediate_gens)
orbit = K_s.orbit(alpha)
orbit_k = K.orbit(alpha)
# split into cases based on the orbit of K_s
if orbit_k == orbit:
if z in K:
rel = phi.invert(z)
perm = z
else:
t = K.orbit_rep(alpha, alpha^z)
rel = phi.invert(z)*phi.invert(t)**-1
perm = z*t**-1
for g in K.generator_product(perm, original=True):
rel = rel*phi.invert(g)**-1
new_rels = [rel]
elif len(orbit_k) == 1:
# `success` is always true because `strong_gens`
# and `base` are already a verified BSGS. Later
# this could be changed to start with a randomly
# generated (potential) BSGS, and then new elements
# would have to be appended to it when `success`
# is false.
success, new_rels = K_s._verify(K, phi, z, alpha)
else:
# K.orbit(alpha) should be a block
# under the action of K_s on K_s.orbit(alpha)
check, block = K_s._block_verify(K, alpha)
if check:
# apply _verify to the action of K_s
# on the block system; for convenience,
# add the blocks as additional points
# that K_s should act on
t = block_homomorphism(K_s, block)
m = t.codomain.degree # number of blocks
d = K_s.degree
# conjugating with p will shift
# permutations in t.image() to
# higher numbers, e.g.
# p*(0 1)*p = (m m+1)
p = Permutation()
for i in range(m):
p *= Permutation(i, i+d)
t_img = t.images
# combine generators of K_s with their
# action on the block system
images = {g: g*p*t_img[g]*p for g in t_img}
for g in self.strong_gens[:-len(K_s.generators)]:
images[g] = g
K_s_act = PermutationGroup(list(images.values()))
f = GroupHomomorphism(self, K_s_act, images)
K_act = PermutationGroup([f(g) for g in K.generators])
success, new_rels = K_s_act._verify(K_act, f.compose(phi), f(z), d)
for n in new_rels:
if n not in rels:
rels.append(n)
K = K_s
group = FpGroup(F, rels)
return simplify_presentation(group)
def presentation(self, eliminate_gens=True):
'''
Return an `FpGroup` presentation of the group.
The algorithm is described in [1], Chapter 6.1.
'''
from sympy.combinatorics.fp_groups import (FpGroup,
simplify_presentation)
from sympy.combinatorics.coset_table import CosetTable
from sympy.combinatorics.free_groups import free_group
from sympy.combinatorics.homomorphisms import homomorphism
if self._fp_presentation:
return self._fp_presentation
def _factor_group_by_rels(G, rels):
if isinstance(G, FpGroup):
rels.extend(G.relators)
return FpGroup(G.free_group, list(set(rels)))
return FpGroup(G, rels)
gens = self.generators
len_g = len(gens)
if len_g == 1:
order = gens[0].order()
# handle the trivial group
if order == 1:
return free_group([])[0]
F, x = free_group('x')
return FpGroup(F, [x**order])
if self.order() > 20:
half_gens = self.generators[0:(len_g+1)//2]
else:
half_gens = []
H = PermutationGroup(half_gens)
H_p = H.presentation()
len_h = len(H_p.generators)
C = self.coset_table(H)
n = len(C) # subgroup index
gen_syms = [('x_%d'%i) for i in range(len(gens))]
F = free_group(', '.join(gen_syms))[0]
# mapping generators of H_p to those of F
images = [F.generators[i] for i in range(len_h)]
R = homomorphism(H_p, F, H_p.generators, images, check=False)
# rewrite relators
rels = R(H_p.relators)
G_p = FpGroup(F, rels)
# injective homomorphism from G_p into self
T = homomorphism(G_p, self, G_p.generators, gens)
C_p = CosetTable(G_p, [])
C_p.table = [[None]*(2*len_g) for i in range(n)]
# initiate the coset transversal
transversal = [None]*n
transversal[0] = G_p.identity
# fill in the coset table as much as possible
for i in range(2*len_h):
C_p.table[0][i] = 0
gamma = 1
for alpha, x in product(range(n), range(2*len_g)):
beta = C[alpha][x]
if beta == gamma:
gen = G_p.generators[x//2]**((-1)**(x % 2))
transversal[beta] = transversal[alpha]*gen
C_p.table[alpha][x] = beta
C_p.table[beta][x + (-1)**(x % 2)] = alpha
gamma += 1
if gamma == n:
break
C_p.p = list(range(n))
beta = x = 0
while not C_p.is_complete():
# find the first undefined entry
while C_p.table[beta][x] == C[beta][x]:
x = (x + 1) % (2*len_g)
if x == 0:
beta = (beta + 1) % n
# define a new relator
gen = G_p.generators[x//2]**((-1)**(x % 2))
new_rel = transversal[beta]*gen*transversal[C[beta][x]]**-1
perm = T(new_rel)
nxt = G_p.identity
for s in H.generator_product(perm, original=True):
nxt = nxt*T.invert(s)**-1
new_rel = new_rel*nxt
# continue coset enumeration
G_p = _factor_group_by_rels(G_p, [new_rel])
C_p.scan_and_fill(0, new_rel)
C_p = G_p.coset_enumeration([], strategy="coset_table",
draft=C_p, max_cosets=n, incomplete=True)
self._fp_presentation = simplify_presentation(G_p)
return self._fp_presentation
def polycyclic_group(self):
"""
Return the PolycyclicGroup instance with below parameters:
Explanation
===========
* pc_sequence : Polycyclic sequence is formed by collecting all
the missing generators between the adjacent groups in the
derived series of given permutation group.
* pc_series : Polycyclic series is formed by adding all the missing
generators of ``der[i+1]`` in ``der[i]``, where ``der`` represents
the derived series.
* relative_order : A list, computed by the ratio of adjacent groups in
pc_series.
"""
from sympy.combinatorics.pc_groups import PolycyclicGroup
if not self.is_polycyclic:
raise ValueError("The group must be solvable")
der = self.derived_series()
pc_series = []
pc_sequence = []
relative_order = []
pc_series.append(der[-1])
der.reverse()
for i in range(len(der)-1):
H = der[i]
for g in der[i+1].generators:
if g not in H:
H = PermutationGroup([g] + H.generators)
pc_series.insert(0, H)
pc_sequence.insert(0, g)
G1 = pc_series[0].order()
G2 = pc_series[1].order()
relative_order.insert(0, G1 // G2)
return PolycyclicGroup(pc_sequence, pc_series, relative_order, collector=None)
def _orbit(degree, generators, alpha, action='tuples'):
r"""Compute the orbit of alpha `\{g(\alpha) | g \in G\}` as a set.
Explanation
===========
The time complexity of the algorithm used here is `O(|Orb|*r)` where
`|Orb|` is the size of the orbit and ``r`` is the number of generators of
the group. For a more detailed analysis, see [1], p.78, [2], pp. 19-21.
Here alpha can be a single point, or a list of points.
If alpha is a single point, the ordinary orbit is computed.
if alpha is a list of points, there are three available options:
'union' - computes the union of the orbits of the points in the list
'tuples' - computes the orbit of the list interpreted as an ordered
tuple under the group action ( i.e., g((1, 2, 3)) = (g(1), g(2), g(3)) )
'sets' - computes the orbit of the list interpreted as a sets
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup
>>> from sympy.combinatorics.perm_groups import _orbit
>>> a = Permutation([1, 2, 0, 4, 5, 6, 3])
>>> G = PermutationGroup([a])
>>> _orbit(G.degree, G.generators, 0)
{0, 1, 2}
>>> _orbit(G.degree, G.generators, [0, 4], 'union')
{0, 1, 2, 3, 4, 5, 6}
See Also
========
orbit, orbit_transversal
"""
if not hasattr(alpha, '__getitem__'):
alpha = [alpha]
gens = [x._array_form for x in generators]
if len(alpha) == 1 or action == 'union':
orb = alpha
used = [False]*degree
for el in alpha:
used[el] = True
for b in orb:
for gen in gens:
temp = gen[b]
if used[temp] == False:
orb.append(temp)
used[temp] = True
return set(orb)
elif action == 'tuples':
alpha = tuple(alpha)
orb = [alpha]
used = {alpha}
for b in orb:
for gen in gens:
temp = tuple([gen[x] for x in b])
if temp not in used:
orb.append(temp)
used.add(temp)
return set(orb)
elif action == 'sets':
alpha = frozenset(alpha)
orb = [alpha]
used = {alpha}
for b in orb:
for gen in gens:
temp = frozenset([gen[x] for x in b])
if temp not in used:
orb.append(temp)
used.add(temp)
return {tuple(x) for x in orb}
def _orbits(degree, generators):
"""Compute the orbits of G.
If ``rep=False`` it returns a list of sets else it returns a list of
representatives of the orbits
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.perm_groups import _orbits
>>> a = Permutation([0, 2, 1])
>>> b = Permutation([1, 0, 2])
>>> _orbits(a.size, [a, b])
[{0, 1, 2}]
"""
orbs = []
sorted_I = list(range(degree))
I = set(sorted_I)
while I:
i = sorted_I[0]
orb = _orbit(degree, generators, i)
orbs.append(orb)
# remove all indices that are in this orbit
I -= orb
sorted_I = [i for i in sorted_I if i not in orb]
return orbs
def _orbit_transversal(degree, generators, alpha, pairs, af=False, slp=False):
r"""Computes a transversal for the orbit of ``alpha`` as a set.
Explanation
===========
generators generators of the group ``G``
For a permutation group ``G``, a transversal for the orbit
`Orb = \{g(\alpha) | g \in G\}` is a set
`\{g_\beta | g_\beta(\alpha) = \beta\}` for `\beta \in Orb`.
Note that there may be more than one possible transversal.
If ``pairs`` is set to ``True``, it returns the list of pairs
`(\beta, g_\beta)`. For a proof of correctness, see [1], p.79
if ``af`` is ``True``, the transversal elements are given in
array form.
If `slp` is `True`, a dictionary `{beta: slp_beta}` is returned
for `\beta \in Orb` where `slp_beta` is a list of indices of the
generators in `generators` s.t. if `slp_beta = [i_1 \dots i_n]`
`g_\beta = generators[i_n] \times \dots \times generators[i_1]`.
Examples
========
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> from sympy.combinatorics.perm_groups import _orbit_transversal
>>> G = DihedralGroup(6)
>>> _orbit_transversal(G.degree, G.generators, 0, False)
[(5), (0 1 2 3 4 5), (0 5)(1 4)(2 3), (0 2 4)(1 3 5), (5)(0 4)(1 3), (0 3)(1 4)(2 5)]
"""
tr = [(alpha, list(range(degree)))]
slp_dict = {alpha: []}
used = [False]*degree
used[alpha] = True
gens = [x._array_form for x in generators]
for x, px in tr:
px_slp = slp_dict[x]
for gen in gens:
temp = gen[x]
if used[temp] == False:
slp_dict[temp] = [gens.index(gen)] + px_slp
tr.append((temp, _af_rmul(gen, px)))
used[temp] = True
if pairs:
if not af:
tr = [(x, _af_new(y)) for x, y in tr]
if not slp:
return tr
return tr, slp_dict
if af:
tr = [y for _, y in tr]
if not slp:
return tr
return tr, slp_dict
tr = [_af_new(y) for _, y in tr]
if not slp:
return tr
return tr, slp_dict
def _stabilizer(degree, generators, alpha):
r"""Return the stabilizer subgroup of ``alpha``.
Explanation
===========
The stabilizer of `\alpha` is the group `G_\alpha =
\{g \in G | g(\alpha) = \alpha\}`.
For a proof of correctness, see [1], p.79.
degree : degree of G
generators : generators of G
Examples
========
>>> from sympy.combinatorics.perm_groups import _stabilizer
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> G = DihedralGroup(6)
>>> _stabilizer(G.degree, G.generators, 5)
[(5)(0 4)(1 3), (5)]
See Also
========
orbit
"""
orb = [alpha]
table = {alpha: list(range(degree))}
table_inv = {alpha: list(range(degree))}
used = [False]*degree
used[alpha] = True
gens = [x._array_form for x in generators]
stab_gens = []
for b in orb:
for gen in gens:
temp = gen[b]
if used[temp] is False:
gen_temp = _af_rmul(gen, table[b])
orb.append(temp)
table[temp] = gen_temp
table_inv[temp] = _af_invert(gen_temp)
used[temp] = True
else:
schreier_gen = _af_rmuln(table_inv[temp], gen, table[b])
if schreier_gen not in stab_gens:
stab_gens.append(schreier_gen)
return [_af_new(x) for x in stab_gens]
PermGroup = PermutationGroup
class SymmetricPermutationGroup(Basic):
"""
The class defining the lazy form of SymmetricGroup.
deg : int
"""
def __new__(cls, deg):
deg = _sympify(deg)
obj = Basic.__new__(cls, deg)
return obj
def __init__(self, *args, **kwargs):
self._deg = self.args[0]
self._order = None
def __contains__(self, i):
"""Return ``True`` if *i* is contained in SymmetricPermutationGroup.
Examples
========
>>> from sympy.combinatorics import Permutation, SymmetricPermutationGroup
>>> G = SymmetricPermutationGroup(4)
>>> Permutation(1, 2, 3) in G
True
"""
if not isinstance(i, Permutation):
raise TypeError("A SymmetricPermutationGroup contains only Permutations as "
"elements, not elements of type %s" % type(i))
return i.size == self.degree
def order(self):
"""
Return the order of the SymmetricPermutationGroup.
Examples
========
>>> from sympy.combinatorics import SymmetricPermutationGroup
>>> G = SymmetricPermutationGroup(4)
>>> G.order()
24
"""
if self._order is not None:
return self._order
n = self._deg
self._order = factorial(n)
return self._order
@property
def degree(self):
"""
Return the degree of the SymmetricPermutationGroup.
Examples
========
>>> from sympy.combinatorics import SymmetricPermutationGroup
>>> G = SymmetricPermutationGroup(4)
>>> G.degree
4
"""
return self._deg
@property
def identity(self):
'''
Return the identity element of the SymmetricPermutationGroup.
Examples
========
>>> from sympy.combinatorics import SymmetricPermutationGroup
>>> G = SymmetricPermutationGroup(4)
>>> G.identity()
(3)
'''
return _af_new(list(range(self._deg)))
class Coset(Basic):
"""A left coset of a permutation group with respect to an element.
Parameters
==========
g : Permutation
H : PermutationGroup
dir : "+" or "-", If not specified by default it will be "+"
here ``dir`` specified the type of coset "+" represent the
right coset and "-" represent the left coset.
G : PermutationGroup, optional
The group which contains *H* as its subgroup and *g* as its
element.
If not specified, it would automatically become a symmetric
group ``SymmetricPermutationGroup(g.size)`` and
``SymmetricPermutationGroup(H.degree)`` if ``g.size`` and ``H.degree``
are matching.``SymmetricPermutationGroup`` is a lazy form of SymmetricGroup
used for representation purpose.
"""
def __new__(cls, g, H, G=None, dir="+"):
g = _sympify(g)
if not isinstance(g, Permutation):
raise NotImplementedError
H = _sympify(H)
if not isinstance(H, PermutationGroup):
raise NotImplementedError
if G is not None:
G = _sympify(G)
if not isinstance(G, (PermutationGroup, SymmetricPermutationGroup)):
raise NotImplementedError
if not H.is_subgroup(G):
raise ValueError("{} must be a subgroup of {}.".format(H, G))
if g not in G:
raise ValueError("{} must be an element of {}.".format(g, G))
else:
g_size = g.size
h_degree = H.degree
if g_size != h_degree:
raise ValueError(
"The size of the permutation {} and the degree of "
"the permutation group {} should be matching "
.format(g, H))
G = SymmetricPermutationGroup(g.size)
if isinstance(dir, str):
dir = Symbol(dir)
elif not isinstance(dir, Symbol):
raise TypeError("dir must be of type basestring or "
"Symbol, not %s" % type(dir))
if str(dir) not in ('+', '-'):
raise ValueError("dir must be one of '+' or '-' not %s" % dir)
obj = Basic.__new__(cls, g, H, G, dir)
return obj
def __init__(self, *args, **kwargs):
self._dir = self.args[3]
@property
def is_left_coset(self):
"""
Check if the coset is left coset that is ``gH``.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup, Coset
>>> a = Permutation(1, 2)
>>> b = Permutation(0, 1)
>>> G = PermutationGroup([a, b])
>>> cst = Coset(a, G, dir="-")
>>> cst.is_left_coset
True
"""
return str(self._dir) == '-'
@property
def is_right_coset(self):
"""
Check if the coset is right coset that is ``Hg``.
Examples
========
>>> from sympy.combinatorics import Permutation, PermutationGroup, Coset
>>> a = Permutation(1, 2)
>>> b = Permutation(0, 1)
>>> G = PermutationGroup([a, b])
>>> cst = Coset(a, G, dir="+")
>>> cst.is_right_coset
True
"""
return str(self._dir) == '+'
def as_list(self):
"""
Return all the elements of coset in the form of list.
"""
g = self.args[0]
H = self.args[1]
cst = []
if str(self._dir) == '+':
for h in H.elements:
cst.append(h*g)
else:
for h in H.elements:
cst.append(g*h)
return cst
|
943889f46e2ce42787d28a8e98f6da23518b5078c3d28a1d3a86e424787d45b7 | from sympy.combinatorics.permutations import Permutation
from sympy.core.symbol import symbols
from sympy.matrices import Matrix
from sympy.utilities.iterables import variations, rotate_left
def symmetric(n):
"""
Generates the symmetric group of order n, Sn.
Examples
========
>>> from sympy.combinatorics.generators import symmetric
>>> list(symmetric(3))
[(2), (1 2), (2)(0 1), (0 1 2), (0 2 1), (0 2)]
"""
for perm in variations(range(n), n):
yield Permutation(perm)
def cyclic(n):
"""
Generates the cyclic group of order n, Cn.
Examples
========
>>> from sympy.combinatorics.generators import cyclic
>>> list(cyclic(5))
[(4), (0 1 2 3 4), (0 2 4 1 3),
(0 3 1 4 2), (0 4 3 2 1)]
See Also
========
dihedral
"""
gen = list(range(n))
for i in range(n):
yield Permutation(gen)
gen = rotate_left(gen, 1)
def alternating(n):
"""
Generates the alternating group of order n, An.
Examples
========
>>> from sympy.combinatorics.generators import alternating
>>> list(alternating(3))
[(2), (0 1 2), (0 2 1)]
"""
for perm in variations(range(n), n):
p = Permutation(perm)
if p.is_even:
yield p
def dihedral(n):
"""
Generates the dihedral group of order 2n, Dn.
The result is given as a subgroup of Sn, except for the special cases n=1
(the group S2) and n=2 (the Klein 4-group) where that's not possible
and embeddings in S2 and S4 respectively are given.
Examples
========
>>> from sympy.combinatorics.generators import dihedral
>>> list(dihedral(3))
[(2), (0 2), (0 1 2), (1 2), (0 2 1), (2)(0 1)]
See Also
========
cyclic
"""
if n == 1:
yield Permutation([0, 1])
yield Permutation([1, 0])
elif n == 2:
yield Permutation([0, 1, 2, 3])
yield Permutation([1, 0, 3, 2])
yield Permutation([2, 3, 0, 1])
yield Permutation([3, 2, 1, 0])
else:
gen = list(range(n))
for i in range(n):
yield Permutation(gen)
yield Permutation(gen[::-1])
gen = rotate_left(gen, 1)
def rubik_cube_generators():
"""Return the permutations of the 3x3 Rubik's cube, see
http://www.gap-system.org/Doc/Examples/rubik.html
"""
a = [
[(1, 3, 8, 6), (2, 5, 7, 4), (9, 33, 25, 17), (10, 34, 26, 18),
(11, 35, 27, 19)],
[(9, 11, 16, 14), (10, 13, 15, 12), (1, 17, 41, 40), (4, 20, 44, 37),
(6, 22, 46, 35)],
[(17, 19, 24, 22), (18, 21, 23, 20), (6, 25, 43, 16), (7, 28, 42, 13),
(8, 30, 41, 11)],
[(25, 27, 32, 30), (26, 29, 31, 28), (3, 38, 43, 19), (5, 36, 45, 21),
(8, 33, 48, 24)],
[(33, 35, 40, 38), (34, 37, 39, 36), (3, 9, 46, 32), (2, 12, 47, 29),
(1, 14, 48, 27)],
[(41, 43, 48, 46), (42, 45, 47, 44), (14, 22, 30, 38),
(15, 23, 31, 39), (16, 24, 32, 40)]
]
return [Permutation([[i - 1 for i in xi] for xi in x], size=48) for x in a]
def rubik(n):
"""Return permutations for an nxn Rubik's cube.
Permutations returned are for rotation of each of the slice
from the face up to the last face for each of the 3 sides (in this order):
front, right and bottom. Hence, the first n - 1 permutations are for the
slices from the front.
"""
if n < 2:
raise ValueError('dimension of cube must be > 1')
# 1-based reference to rows and columns in Matrix
def getr(f, i):
return faces[f].col(n - i)
def getl(f, i):
return faces[f].col(i - 1)
def getu(f, i):
return faces[f].row(i - 1)
def getd(f, i):
return faces[f].row(n - i)
def setr(f, i, s):
faces[f][:, n - i] = Matrix(n, 1, s)
def setl(f, i, s):
faces[f][:, i - 1] = Matrix(n, 1, s)
def setu(f, i, s):
faces[f][i - 1, :] = Matrix(1, n, s)
def setd(f, i, s):
faces[f][n - i, :] = Matrix(1, n, s)
# motion of a single face
def cw(F, r=1):
for _ in range(r):
face = faces[F]
rv = []
for c in range(n):
for r in range(n - 1, -1, -1):
rv.append(face[r, c])
faces[F] = Matrix(n, n, rv)
def ccw(F):
cw(F, 3)
# motion of plane i from the F side;
# fcw(0) moves the F face, fcw(1) moves the plane
# just behind the front face, etc...
def fcw(i, r=1):
for _ in range(r):
if i == 0:
cw(F)
i += 1
temp = getr(L, i)
setr(L, i, list(getu(D, i)))
setu(D, i, list(reversed(getl(R, i))))
setl(R, i, list(getd(U, i)))
setd(U, i, list(reversed(temp)))
i -= 1
def fccw(i):
fcw(i, 3)
# motion of the entire cube from the F side
def FCW(r=1):
for _ in range(r):
cw(F)
ccw(B)
cw(U)
t = faces[U]
cw(L)
faces[U] = faces[L]
cw(D)
faces[L] = faces[D]
cw(R)
faces[D] = faces[R]
faces[R] = t
def FCCW():
FCW(3)
# motion of the entire cube from the U side
def UCW(r=1):
for _ in range(r):
cw(U)
ccw(D)
t = faces[F]
faces[F] = faces[R]
faces[R] = faces[B]
faces[B] = faces[L]
faces[L] = t
def UCCW():
UCW(3)
# defining the permutations for the cube
U, F, R, B, L, D = names = symbols('U, F, R, B, L, D')
# the faces are represented by nxn matrices
faces = {}
count = 0
for fi in range(6):
f = []
for a in range(n**2):
f.append(count)
count += 1
faces[names[fi]] = Matrix(n, n, f)
# this will either return the value of the current permutation
# (show != 1) or else append the permutation to the group, g
def perm(show=0):
# add perm to the list of perms
p = []
for f in names:
p.extend(faces[f])
if show:
return p
g.append(Permutation(p))
g = [] # container for the group's permutations
I = list(range(6*n**2)) # the identity permutation used for checking
# define permutations corresponding to cw rotations of the planes
# up TO the last plane from that direction; by not including the
# last plane, the orientation of the cube is maintained.
# F slices
for i in range(n - 1):
fcw(i)
perm()
fccw(i) # restore
assert perm(1) == I
# R slices
# bring R to front
UCW()
for i in range(n - 1):
fcw(i)
# put it back in place
UCCW()
# record
perm()
# restore
# bring face to front
UCW()
fccw(i)
# restore
UCCW()
assert perm(1) == I
# D slices
# bring up bottom
FCW()
UCCW()
FCCW()
for i in range(n - 1):
# turn strip
fcw(i)
# put bottom back on the bottom
FCW()
UCW()
FCCW()
# record
perm()
# restore
# bring up bottom
FCW()
UCCW()
FCCW()
# turn strip
fccw(i)
# put bottom back on the bottom
FCW()
UCW()
FCCW()
assert perm(1) == I
return g
|
87a353687f7da06d20d6557185284163615ce08c17c8c51cd08877d4a23a905c | from sympy.combinatorics.permutations import Permutation, _af_rmul, \
_af_invert, _af_new
from sympy.combinatorics.perm_groups import PermutationGroup, _orbit, \
_orbit_transversal
from sympy.combinatorics.util import _distribute_gens_by_base, \
_orbits_transversals_from_bsgs
"""
References for tensor canonicalization:
[1] R. Portugal "Algorithmic simplification of tensor expressions",
J. Phys. A 32 (1999) 7779-7789
[2] R. Portugal, B.F. Svaiter "Group-theoretic Approach for Symbolic
Tensor Manipulation: I. Free Indices"
arXiv:math-ph/0107031v1
[3] L.R.U. Manssur, R. Portugal "Group-theoretic Approach for Symbolic
Tensor Manipulation: II. Dummy Indices"
arXiv:math-ph/0107032v1
[4] xperm.c part of XPerm written by J. M. Martin-Garcia
http://www.xact.es/index.html
"""
def dummy_sgs(dummies, sym, n):
"""
Return the strong generators for dummy indices.
Parameters
==========
dummies : List of dummy indices.
`dummies[2k], dummies[2k+1]` are paired indices.
In base form, the dummy indices are always in
consecutive positions.
sym : symmetry under interchange of contracted dummies::
* None no symmetry
* 0 commuting
* 1 anticommuting
n : number of indices
Examples
========
>>> from sympy.combinatorics.tensor_can import dummy_sgs
>>> dummy_sgs(list(range(2, 8)), 0, 8)
[[0, 1, 3, 2, 4, 5, 6, 7, 8, 9], [0, 1, 2, 3, 5, 4, 6, 7, 8, 9],
[0, 1, 2, 3, 4, 5, 7, 6, 8, 9], [0, 1, 4, 5, 2, 3, 6, 7, 8, 9],
[0, 1, 2, 3, 6, 7, 4, 5, 8, 9]]
"""
if len(dummies) > n:
raise ValueError("List too large")
res = []
# exchange of contravariant and covariant indices
if sym is not None:
for j in dummies[::2]:
a = list(range(n + 2))
if sym == 1:
a[n] = n + 1
a[n + 1] = n
a[j], a[j + 1] = a[j + 1], a[j]
res.append(a)
# rename dummy indices
for j in dummies[:-3:2]:
a = list(range(n + 2))
a[j:j + 4] = a[j + 2], a[j + 3], a[j], a[j + 1]
res.append(a)
return res
def _min_dummies(dummies, sym, indices):
"""
Return list of minima of the orbits of indices in group of dummies.
See ``double_coset_can_rep`` for the description of ``dummies`` and ``sym``.
``indices`` is the initial list of dummy indices.
Examples
========
>>> from sympy.combinatorics.tensor_can import _min_dummies
>>> _min_dummies([list(range(2, 8))], [0], list(range(10)))
[0, 1, 2, 2, 2, 2, 2, 2, 8, 9]
"""
num_types = len(sym)
m = [min(dx) if dx else None for dx in dummies]
res = indices[:]
for i in range(num_types):
for c, i in enumerate(indices):
for j in range(num_types):
if i in dummies[j]:
res[c] = m[j]
break
return res
def _trace_S(s, j, b, S_cosets):
"""
Return the representative h satisfying s[h[b]] == j
If there is not such a representative return None
"""
for h in S_cosets[b]:
if s[h[b]] == j:
return h
return None
def _trace_D(gj, p_i, Dxtrav):
"""
Return the representative h satisfying h[gj] == p_i
If there is not such a representative return None
"""
for h in Dxtrav:
if h[gj] == p_i:
return h
return None
def _dumx_remove(dumx, dumx_flat, p0):
"""
remove p0 from dumx
"""
res = []
for dx in dumx:
if p0 not in dx:
res.append(dx)
continue
k = dx.index(p0)
if k % 2 == 0:
p0_paired = dx[k + 1]
else:
p0_paired = dx[k - 1]
dx.remove(p0)
dx.remove(p0_paired)
dumx_flat.remove(p0)
dumx_flat.remove(p0_paired)
res.append(dx)
def transversal2coset(size, base, transversal):
a = []
j = 0
for i in range(size):
if i in base:
a.append(sorted(transversal[j].values()))
j += 1
else:
a.append([list(range(size))])
j = len(a) - 1
while a[j] == [list(range(size))]:
j -= 1
return a[:j + 1]
def double_coset_can_rep(dummies, sym, b_S, sgens, S_transversals, g):
r"""
Butler-Portugal algorithm for tensor canonicalization with dummy indices.
Parameters
==========
dummies
list of lists of dummy indices,
one list for each type of index;
the dummy indices are put in order contravariant, covariant
[d0, -d0, d1, -d1, ...].
sym
list of the symmetries of the index metric for each type.
possible symmetries of the metrics
* 0 symmetric
* 1 antisymmetric
* None no symmetry
b_S
base of a minimal slot symmetry BSGS.
sgens
generators of the slot symmetry BSGS.
S_transversals
transversals for the slot BSGS.
g
permutation representing the tensor.
Returns
=======
Return 0 if the tensor is zero, else return the array form of
the permutation representing the canonical form of the tensor.
Notes
=====
A tensor with dummy indices can be represented in a number
of equivalent ways which typically grows exponentially with
the number of indices. To be able to establish if two tensors
with many indices are equal becomes computationally very slow
in absence of an efficient algorithm.
The Butler-Portugal algorithm [3] is an efficient algorithm to
put tensors in canonical form, solving the above problem.
Portugal observed that a tensor can be represented by a permutation,
and that the class of tensors equivalent to it under slot and dummy
symmetries is equivalent to the double coset `D*g*S`
(Note: in this documentation we use the conventions for multiplication
of permutations p, q with (p*q)(i) = p[q[i]] which is opposite
to the one used in the Permutation class)
Using the algorithm by Butler to find a representative of the
double coset one can find a canonical form for the tensor.
To see this correspondence,
let `g` be a permutation in array form; a tensor with indices `ind`
(the indices including both the contravariant and the covariant ones)
can be written as
`t = T(ind[g[0]], \dots, ind[g[n-1]])`,
where `n = len(ind)`;
`g` has size `n + 2`, the last two indices for the sign of the tensor
(trick introduced in [4]).
A slot symmetry transformation `s` is a permutation acting on the slots
`t \rightarrow T(ind[(g*s)[0]], \dots, ind[(g*s)[n-1]])`
A dummy symmetry transformation acts on `ind`
`t \rightarrow T(ind[(d*g)[0]], \dots, ind[(d*g)[n-1]])`
Being interested only in the transformations of the tensor under
these symmetries, one can represent the tensor by `g`, which transforms
as
`g -> d*g*s`, so it belongs to the coset `D*g*S`, or in other words
to the set of all permutations allowed by the slot and dummy symmetries.
Let us explain the conventions by an example.
Given a tensor `T^{d3 d2 d1}{}_{d1 d2 d3}` with the slot symmetries
`T^{a0 a1 a2 a3 a4 a5} = -T^{a2 a1 a0 a3 a4 a5}`
`T^{a0 a1 a2 a3 a4 a5} = -T^{a4 a1 a2 a3 a0 a5}`
and symmetric metric, find the tensor equivalent to it which
is the lowest under the ordering of indices:
lexicographic ordering `d1, d2, d3` and then contravariant
before covariant index; that is the canonical form of the tensor.
The canonical form is `-T^{d1 d2 d3}{}_{d1 d2 d3}`
obtained using `T^{a0 a1 a2 a3 a4 a5} = -T^{a2 a1 a0 a3 a4 a5}`.
To convert this problem in the input for this function,
use the following ordering of the index names
(- for covariant for short) `d1, -d1, d2, -d2, d3, -d3`
`T^{d3 d2 d1}{}_{d1 d2 d3}` corresponds to `g = [4, 2, 0, 1, 3, 5, 6, 7]`
where the last two indices are for the sign
`sgens = [Permutation(0, 2)(6, 7), Permutation(0, 4)(6, 7)]`
sgens[0] is the slot symmetry `-(0, 2)`
`T^{a0 a1 a2 a3 a4 a5} = -T^{a2 a1 a0 a3 a4 a5}`
sgens[1] is the slot symmetry `-(0, 4)`
`T^{a0 a1 a2 a3 a4 a5} = -T^{a4 a1 a2 a3 a0 a5}`
The dummy symmetry group D is generated by the strong base generators
`[(0, 1), (2, 3), (4, 5), (0, 2)(1, 3), (0, 4)(1, 5)]`
where the first three interchange covariant and contravariant
positions of the same index (d1 <-> -d1) and the last two interchange
the dummy indices themselves (d1 <-> d2).
The dummy symmetry acts from the left
`d = [1, 0, 2, 3, 4, 5, 6, 7]` exchange `d1 \leftrightarrow -d1`
`T^{d3 d2 d1}{}_{d1 d2 d3} == T^{d3 d2}{}_{d1}{}^{d1}{}_{d2 d3}`
`g=[4, 2, 0, 1, 3, 5, 6, 7] -> [4, 2, 1, 0, 3, 5, 6, 7] = _af_rmul(d, g)`
which differs from `_af_rmul(g, d)`.
The slot symmetry acts from the right
`s = [2, 1, 0, 3, 4, 5, 7, 6]` exchanges slots 0 and 2 and changes sign
`T^{d3 d2 d1}{}_{d1 d2 d3} == -T^{d1 d2 d3}{}_{d1 d2 d3}`
`g=[4,2,0,1,3,5,6,7] -> [0, 2, 4, 1, 3, 5, 7, 6] = _af_rmul(g, s)`
Example in which the tensor is zero, same slot symmetries as above:
`T^{d2}{}_{d1 d3}{}^{d1 d3}{}_{d2}`
`= -T^{d3}{}_{d1 d3}{}^{d1 d2}{}_{d2}` under slot symmetry `-(0,4)`;
`= T_{d3 d1}{}^{d3}{}^{d1 d2}{}_{d2}` under slot symmetry `-(0,2)`;
`= T^{d3}{}_{d1 d3}{}^{d1 d2}{}_{d2}` symmetric metric;
`= 0` since two of these lines have tensors differ only for the sign.
The double coset D*g*S consists of permutations `h = d*g*s` corresponding
to equivalent tensors; if there are two `h` which are the same apart
from the sign, return zero; otherwise
choose as representative the tensor with indices
ordered lexicographically according to `[d1, -d1, d2, -d2, d3, -d3]`
that is ``rep = min(D*g*S) = min([d*g*s for d in D for s in S])``
The indices are fixed one by one; first choose the lowest index
for slot 0, then the lowest remaining index for slot 1, etc.
Doing this one obtains a chain of stabilizers
`S \rightarrow S_{b0} \rightarrow S_{b0,b1} \rightarrow \dots` and
`D \rightarrow D_{p0} \rightarrow D_{p0,p1} \rightarrow \dots`
where ``[b0, b1, ...] = range(b)`` is a base of the symmetric group;
the strong base `b_S` of S is an ordered sublist of it;
therefore it is sufficient to compute once the
strong base generators of S using the Schreier-Sims algorithm;
the stabilizers of the strong base generators are the
strong base generators of the stabilizer subgroup.
``dbase = [p0, p1, ...]`` is not in general in lexicographic order,
so that one must recompute the strong base generators each time;
however this is trivial, there is no need to use the Schreier-Sims
algorithm for D.
The algorithm keeps a TAB of elements `(s_i, d_i, h_i)`
where `h_i = d_i \times g \times s_i` satisfying `h_i[j] = p_j` for `0 \le j < i`
starting from `s_0 = id, d_0 = id, h_0 = g`.
The equations `h_0[0] = p_0, h_1[1] = p_1, \dots` are solved in this order,
choosing each time the lowest possible value of p_i
For `j < i`
`d_i*g*s_i*S_{b_0, \dots, b_{i-1}}*b_j = D_{p_0, \dots, p_{i-1}}*p_j`
so that for dx in `D_{p_0,\dots,p_{i-1}}` and sx in
`S_{base[0], \dots, base[i-1]}` one has `dx*d_i*g*s_i*sx*b_j = p_j`
Search for dx, sx such that this equation holds for `j = i`;
it can be written as `s_i*sx*b_j = J, dx*d_i*g*J = p_j`
`sx*b_j = s_i**-1*J; sx = trace(s_i**-1, S_{b_0,...,b_{i-1}})`
`dx**-1*p_j = d_i*g*J; dx = trace(d_i*g*J, D_{p_0,...,p_{i-1}})`
`s_{i+1} = s_i*trace(s_i**-1*J, S_{b_0,...,b_{i-1}})`
`d_{i+1} = trace(d_i*g*J, D_{p_0,...,p_{i-1}})**-1*d_i`
`h_{i+1}*b_i = d_{i+1}*g*s_{i+1}*b_i = p_i`
`h_n*b_j = p_j` for all j, so that `h_n` is the solution.
Add the found `(s, d, h)` to TAB1.
At the end of the iteration sort TAB1 with respect to the `h`;
if there are two consecutive `h` in TAB1 which differ only for the
sign, the tensor is zero, so return 0;
if there are two consecutive `h` which are equal, keep only one.
Then stabilize the slot generators under `i` and the dummy generators
under `p_i`.
Assign `TAB = TAB1` at the end of the iteration step.
At the end `TAB` contains a unique `(s, d, h)`, since all the slots
of the tensor `h` have been fixed to have the minimum value according
to the symmetries. The algorithm returns `h`.
It is important that the slot BSGS has lexicographic minimal base,
otherwise there is an `i` which does not belong to the slot base
for which `p_i` is fixed by the dummy symmetry only, while `i`
is not invariant from the slot stabilizer, so `p_i` is not in
general the minimal value.
This algorithm differs slightly from the original algorithm [3]:
the canonical form is minimal lexicographically, and
the BSGS has minimal base under lexicographic order.
Equal tensors `h` are eliminated from TAB.
Examples
========
>>> from sympy.combinatorics.permutations import Permutation
>>> from sympy.combinatorics.tensor_can import double_coset_can_rep, get_transversals
>>> gens = [Permutation(x) for x in [[2, 1, 0, 3, 4, 5, 7, 6], [4, 1, 2, 3, 0, 5, 7, 6]]]
>>> base = [0, 2]
>>> g = Permutation([4, 2, 0, 1, 3, 5, 6, 7])
>>> transversals = get_transversals(base, gens)
>>> double_coset_can_rep([list(range(6))], [0], base, gens, transversals, g)
[0, 1, 2, 3, 4, 5, 7, 6]
>>> g = Permutation([4, 1, 3, 0, 5, 2, 6, 7])
>>> double_coset_can_rep([list(range(6))], [0], base, gens, transversals, g)
0
"""
size = g.size
g = g.array_form
num_dummies = size - 2
indices = list(range(num_dummies))
all_metrics_with_sym = not any(_ is None for _ in sym)
num_types = len(sym)
dumx = dummies[:]
dumx_flat = []
for dx in dumx:
dumx_flat.extend(dx)
b_S = b_S[:]
sgensx = [h._array_form for h in sgens]
if b_S:
S_transversals = transversal2coset(size, b_S, S_transversals)
# strong generating set for D
dsgsx = []
for i in range(num_types):
dsgsx.extend(dummy_sgs(dumx[i], sym[i], num_dummies))
idn = list(range(size))
# TAB = list of entries (s, d, h) where h = _af_rmuln(d,g,s)
# for short, in the following d*g*s means _af_rmuln(d,g,s)
TAB = [(idn, idn, g)]
for i in range(size - 2):
b = i
testb = b in b_S and sgensx
if testb:
sgensx1 = [_af_new(_) for _ in sgensx]
deltab = _orbit(size, sgensx1, b)
else:
deltab = {b}
# p1 = min(IMAGES) = min(Union D_p*h*deltab for h in TAB)
if all_metrics_with_sym:
md = _min_dummies(dumx, sym, indices)
else:
md = [min(_orbit(size, [_af_new(
ddx) for ddx in dsgsx], ii)) for ii in range(size - 2)]
p_i = min([min([md[h[x]] for x in deltab]) for s, d, h in TAB])
dsgsx1 = [_af_new(_) for _ in dsgsx]
Dxtrav = _orbit_transversal(size, dsgsx1, p_i, False, af=True) \
if dsgsx else None
if Dxtrav:
Dxtrav = [_af_invert(x) for x in Dxtrav]
# compute the orbit of p_i
for ii in range(num_types):
if p_i in dumx[ii]:
# the orbit is made by all the indices in dum[ii]
if sym[ii] is not None:
deltap = dumx[ii]
else:
# the orbit is made by all the even indices if p_i
# is even, by all the odd indices if p_i is odd
p_i_index = dumx[ii].index(p_i) % 2
deltap = dumx[ii][p_i_index::2]
break
else:
deltap = [p_i]
TAB1 = []
while TAB:
s, d, h = TAB.pop()
if min([md[h[x]] for x in deltab]) != p_i:
continue
deltab1 = [x for x in deltab if md[h[x]] == p_i]
# NEXT = s*deltab1 intersection (d*g)**-1*deltap
dg = _af_rmul(d, g)
dginv = _af_invert(dg)
sdeltab = [s[x] for x in deltab1]
gdeltap = [dginv[x] for x in deltap]
NEXT = [x for x in sdeltab if x in gdeltap]
# d, s satisfy
# d*g*s*base[i-1] = p_{i-1}; using the stabilizers
# d*g*s*S_{base[0],...,base[i-1]}*base[i-1] =
# D_{p_0,...,p_{i-1}}*p_{i-1}
# so that to find d1, s1 satisfying d1*g*s1*b = p_i
# one can look for dx in D_{p_0,...,p_{i-1}} and
# sx in S_{base[0],...,base[i-1]}
# d1 = dx*d; s1 = s*sx
# d1*g*s1*b = dx*d*g*s*sx*b = p_i
for j in NEXT:
if testb:
# solve s1*b = j with s1 = s*sx for some element sx
# of the stabilizer of ..., base[i-1]
# sx*b = s**-1*j; sx = _trace_S(s, j,...)
# s1 = s*trace_S(s**-1*j,...)
s1 = _trace_S(s, j, b, S_transversals)
if not s1:
continue
else:
s1 = [s[ix] for ix in s1]
else:
s1 = s
# assert s1[b] == j # invariant
# solve d1*g*j = p_i with d1 = dx*d for some element dg
# of the stabilizer of ..., p_{i-1}
# dx**-1*p_i = d*g*j; dx**-1 = trace_D(d*g*j,...)
# d1 = trace_D(d*g*j,...)**-1*d
# to save an inversion in the inner loop; notice we did
# Dxtrav = [perm_af_invert(x) for x in Dxtrav] out of the loop
if Dxtrav:
d1 = _trace_D(dg[j], p_i, Dxtrav)
if not d1:
continue
else:
if p_i != dg[j]:
continue
d1 = idn
assert d1[dg[j]] == p_i # invariant
d1 = [d1[ix] for ix in d]
h1 = [d1[g[ix]] for ix in s1]
# assert h1[b] == p_i # invariant
TAB1.append((s1, d1, h1))
# if TAB contains equal permutations, keep only one of them;
# if TAB contains equal permutations up to the sign, return 0
TAB1.sort(key=lambda x: x[-1])
prev = [0] * size
while TAB1:
s, d, h = TAB1.pop()
if h[:-2] == prev[:-2]:
if h[-1] != prev[-1]:
return 0
else:
TAB.append((s, d, h))
prev = h
# stabilize the SGS
sgensx = [h for h in sgensx if h[b] == b]
if b in b_S:
b_S.remove(b)
_dumx_remove(dumx, dumx_flat, p_i)
dsgsx = []
for i in range(num_types):
dsgsx.extend(dummy_sgs(dumx[i], sym[i], num_dummies))
return TAB[0][-1]
def canonical_free(base, gens, g, num_free):
"""
Canonicalization of a tensor with respect to free indices
choosing the minimum with respect to lexicographical ordering
in the free indices.
Explanation
===========
``base``, ``gens`` BSGS for slot permutation group
``g`` permutation representing the tensor
``num_free`` number of free indices
The indices must be ordered with first the free indices
See explanation in double_coset_can_rep
The algorithm is a variation of the one given in [2].
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.tensor_can import canonical_free
>>> gens = [[1, 0, 2, 3, 5, 4], [2, 3, 0, 1, 4, 5],[0, 1, 3, 2, 5, 4]]
>>> gens = [Permutation(h) for h in gens]
>>> base = [0, 2]
>>> g = Permutation([2, 1, 0, 3, 4, 5])
>>> canonical_free(base, gens, g, 4)
[0, 3, 1, 2, 5, 4]
Consider the product of Riemann tensors
``T = R^{a}_{d0}^{d1,d2}*R_{d2,d1}^{d0,b}``
The order of the indices is ``[a, b, d0, -d0, d1, -d1, d2, -d2]``
The permutation corresponding to the tensor is
``g = [0, 3, 4, 6, 7, 5, 2, 1, 8, 9]``
In particular ``a`` is position ``0``, ``b`` is in position ``9``.
Use the slot symmetries to get `T` is a form which is the minimal
in lexicographic order in the free indices ``a`` and ``b``, e.g.
``-R^{a}_{d0}^{d1,d2}*R^{b,d0}_{d2,d1}`` corresponding to
``[0, 3, 4, 6, 1, 2, 7, 5, 9, 8]``
>>> from sympy.combinatorics.tensor_can import riemann_bsgs, tensor_gens
>>> base, gens = riemann_bsgs
>>> size, sbase, sgens = tensor_gens(base, gens, [[], []], 0)
>>> g = Permutation([0, 3, 4, 6, 7, 5, 2, 1, 8, 9])
>>> canonical_free(sbase, [Permutation(h) for h in sgens], g, 2)
[0, 3, 4, 6, 1, 2, 7, 5, 9, 8]
"""
g = g.array_form
size = len(g)
if not base:
return g[:]
transversals = get_transversals(base, gens)
for x in sorted(g[:-2]):
if x not in base:
base.append(x)
h = g
for i, transv in enumerate(transversals):
h_i = [size]*num_free
# find the element s in transversals[i] such that
# _af_rmul(h, s) has its free elements with the lowest position in h
s = None
for sk in transv.values():
h1 = _af_rmul(h, sk)
hi = [h1.index(ix) for ix in range(num_free)]
if hi < h_i:
h_i = hi
s = sk
if s:
h = _af_rmul(h, s)
return h
def _get_map_slots(size, fixed_slots):
res = list(range(size))
pos = 0
for i in range(size):
if i in fixed_slots:
continue
res[i] = pos
pos += 1
return res
def _lift_sgens(size, fixed_slots, free, s):
a = []
j = k = 0
fd = list(zip(fixed_slots, free))
fd = [y for x, y in sorted(fd)]
num_free = len(free)
for i in range(size):
if i in fixed_slots:
a.append(fd[k])
k += 1
else:
a.append(s[j] + num_free)
j += 1
return a
def canonicalize(g, dummies, msym, *v):
"""
canonicalize tensor formed by tensors
Parameters
==========
g : permutation representing the tensor
dummies : list representing the dummy indices
it can be a list of dummy indices of the same type
or a list of lists of dummy indices, one list for each
type of index;
the dummy indices must come after the free indices,
and put in order contravariant, covariant
[d0, -d0, d1,-d1,...]
msym : symmetry of the metric(s)
it can be an integer or a list;
in the first case it is the symmetry of the dummy index metric;
in the second case it is the list of the symmetries of the
index metric for each type
v : list, (base_i, gens_i, n_i, sym_i) for tensors of type `i`
base_i, gens_i : BSGS for tensors of this type.
The BSGS should have minimal base under lexicographic ordering;
if not, an attempt is made do get the minimal BSGS;
in case of failure,
canonicalize_naive is used, which is much slower.
n_i : number of tensors of type `i`.
sym_i : symmetry under exchange of component tensors of type `i`.
Both for msym and sym_i the cases are
* None no symmetry
* 0 commuting
* 1 anticommuting
Returns
=======
0 if the tensor is zero, else return the array form of
the permutation representing the canonical form of the tensor.
Algorithm
=========
First one uses canonical_free to get the minimum tensor under
lexicographic order, using only the slot symmetries.
If the component tensors have not minimal BSGS, it is attempted
to find it; if the attempt fails canonicalize_naive
is used instead.
Compute the residual slot symmetry keeping fixed the free indices
using tensor_gens(base, gens, list_free_indices, sym).
Reduce the problem eliminating the free indices.
Then use double_coset_can_rep and lift back the result reintroducing
the free indices.
Examples
========
one type of index with commuting metric;
`A_{a b}` and `B_{a b}` antisymmetric and commuting
`T = A_{d0 d1} * B^{d0}{}_{d2} * B^{d2 d1}`
`ord = [d0,-d0,d1,-d1,d2,-d2]` order of the indices
g = [1, 3, 0, 5, 4, 2, 6, 7]
`T_c = 0`
>>> from sympy.combinatorics.tensor_can import get_symmetric_group_sgs, canonicalize, bsgs_direct_product
>>> from sympy.combinatorics import Permutation
>>> base2a, gens2a = get_symmetric_group_sgs(2, 1)
>>> t0 = (base2a, gens2a, 1, 0)
>>> t1 = (base2a, gens2a, 2, 0)
>>> g = Permutation([1, 3, 0, 5, 4, 2, 6, 7])
>>> canonicalize(g, range(6), 0, t0, t1)
0
same as above, but with `B_{a b}` anticommuting
`T_c = -A^{d0 d1} * B_{d0}{}^{d2} * B_{d1 d2}`
can = [0,2,1,4,3,5,7,6]
>>> t1 = (base2a, gens2a, 2, 1)
>>> canonicalize(g, range(6), 0, t0, t1)
[0, 2, 1, 4, 3, 5, 7, 6]
two types of indices `[a,b,c,d,e,f]` and `[m,n]`, in this order,
both with commuting metric
`f^{a b c}` antisymmetric, commuting
`A_{m a}` no symmetry, commuting
`T = f^c{}_{d a} * f^f{}_{e b} * A_m{}^d * A^{m b} * A_n{}^a * A^{n e}`
ord = [c,f,a,-a,b,-b,d,-d,e,-e,m,-m,n,-n]
g = [0,7,3, 1,9,5, 11,6, 10,4, 13,2, 12,8, 14,15]
The canonical tensor is
`T_c = -f^{c a b} * f^{f d e} * A^m{}_a * A_{m d} * A^n{}_b * A_{n e}`
can = [0,2,4, 1,6,8, 10,3, 11,7, 12,5, 13,9, 15,14]
>>> base_f, gens_f = get_symmetric_group_sgs(3, 1)
>>> base1, gens1 = get_symmetric_group_sgs(1)
>>> base_A, gens_A = bsgs_direct_product(base1, gens1, base1, gens1)
>>> t0 = (base_f, gens_f, 2, 0)
>>> t1 = (base_A, gens_A, 4, 0)
>>> dummies = [range(2, 10), range(10, 14)]
>>> g = Permutation([0, 7, 3, 1, 9, 5, 11, 6, 10, 4, 13, 2, 12, 8, 14, 15])
>>> canonicalize(g, dummies, [0, 0], t0, t1)
[0, 2, 4, 1, 6, 8, 10, 3, 11, 7, 12, 5, 13, 9, 15, 14]
"""
from sympy.combinatorics.testutil import canonicalize_naive
if not isinstance(msym, list):
if msym not in (0, 1, None):
raise ValueError('msym must be 0, 1 or None')
num_types = 1
else:
num_types = len(msym)
if not all(msymx in (0, 1, None) for msymx in msym):
raise ValueError('msym entries must be 0, 1 or None')
if len(dummies) != num_types:
raise ValueError(
'dummies and msym must have the same number of elements')
size = g.size
num_tensors = 0
v1 = []
for base_i, gens_i, n_i, sym_i in v:
# check that the BSGS is minimal;
# this property is used in double_coset_can_rep;
# if it is not minimal use canonicalize_naive
if not _is_minimal_bsgs(base_i, gens_i):
mbsgs = get_minimal_bsgs(base_i, gens_i)
if not mbsgs:
can = canonicalize_naive(g, dummies, msym, *v)
return can
base_i, gens_i = mbsgs
v1.append((base_i, gens_i, [[]] * n_i, sym_i))
num_tensors += n_i
if num_types == 1 and not isinstance(msym, list):
dummies = [dummies]
msym = [msym]
flat_dummies = []
for dumx in dummies:
flat_dummies.extend(dumx)
if flat_dummies and flat_dummies != list(range(flat_dummies[0], flat_dummies[-1] + 1)):
raise ValueError('dummies is not valid')
# slot symmetry of the tensor
size1, sbase, sgens = gens_products(*v1)
if size != size1:
raise ValueError(
'g has size %d, generators have size %d' % (size, size1))
free = [i for i in range(size - 2) if i not in flat_dummies]
num_free = len(free)
# g1 minimal tensor under slot symmetry
g1 = canonical_free(sbase, sgens, g, num_free)
if not flat_dummies:
return g1
# save the sign of g1
sign = 0 if g1[-1] == size - 1 else 1
# the free indices are kept fixed.
# Determine free_i, the list of slots of tensors which are fixed
# since they are occupied by free indices, which are fixed.
start = 0
for i, (base_i, gens_i, n_i, sym_i) in enumerate(v):
free_i = []
len_tens = gens_i[0].size - 2
# for each component tensor get a list od fixed islots
for j in range(n_i):
# get the elements corresponding to the component tensor
h = g1[start:(start + len_tens)]
fr = []
# get the positions of the fixed elements in h
for k in free:
if k in h:
fr.append(h.index(k))
free_i.append(fr)
start += len_tens
v1[i] = (base_i, gens_i, free_i, sym_i)
# BSGS of the tensor with fixed free indices
# if tensor_gens fails in gens_product, use canonicalize_naive
size, sbase, sgens = gens_products(*v1)
# reduce the permutations getting rid of the free indices
pos_free = [g1.index(x) for x in range(num_free)]
size_red = size - num_free
g1_red = [x - num_free for x in g1 if x in flat_dummies]
if sign:
g1_red.extend([size_red - 1, size_red - 2])
else:
g1_red.extend([size_red - 2, size_red - 1])
map_slots = _get_map_slots(size, pos_free)
sbase_red = [map_slots[i] for i in sbase if i not in pos_free]
sgens_red = [_af_new([map_slots[i] for i in y._array_form if i not in pos_free]) for y in sgens]
dummies_red = [[x - num_free for x in y] for y in dummies]
transv_red = get_transversals(sbase_red, sgens_red)
g1_red = _af_new(g1_red)
g2 = double_coset_can_rep(
dummies_red, msym, sbase_red, sgens_red, transv_red, g1_red)
if g2 == 0:
return 0
# lift to the case with the free indices
g3 = _lift_sgens(size, pos_free, free, g2)
return g3
def perm_af_direct_product(gens1, gens2, signed=True):
"""
Direct products of the generators gens1 and gens2.
Examples
========
>>> from sympy.combinatorics.tensor_can import perm_af_direct_product
>>> gens1 = [[1, 0, 2, 3], [0, 1, 3, 2]]
>>> gens2 = [[1, 0]]
>>> perm_af_direct_product(gens1, gens2, False)
[[1, 0, 2, 3, 4, 5], [0, 1, 3, 2, 4, 5], [0, 1, 2, 3, 5, 4]]
>>> gens1 = [[1, 0, 2, 3, 5, 4], [0, 1, 3, 2, 4, 5]]
>>> gens2 = [[1, 0, 2, 3]]
>>> perm_af_direct_product(gens1, gens2, True)
[[1, 0, 2, 3, 4, 5, 7, 6], [0, 1, 3, 2, 4, 5, 6, 7], [0, 1, 2, 3, 5, 4, 6, 7]]
"""
gens1 = [list(x) for x in gens1]
gens2 = [list(x) for x in gens2]
s = 2 if signed else 0
n1 = len(gens1[0]) - s
n2 = len(gens2[0]) - s
start = list(range(n1))
end = list(range(n1, n1 + n2))
if signed:
gens1 = [gen[:-2] + end + [gen[-2] + n2, gen[-1] + n2]
for gen in gens1]
gens2 = [start + [x + n1 for x in gen] for gen in gens2]
else:
gens1 = [gen + end for gen in gens1]
gens2 = [start + [x + n1 for x in gen] for gen in gens2]
res = gens1 + gens2
return res
def bsgs_direct_product(base1, gens1, base2, gens2, signed=True):
"""
Direct product of two BSGS.
Parameters
==========
base1 : base of the first BSGS.
gens1 : strong generating sequence of the first BSGS.
base2, gens2 : similarly for the second BSGS.
signed : flag for signed permutations.
Examples
========
>>> from sympy.combinatorics.tensor_can import (get_symmetric_group_sgs, bsgs_direct_product)
>>> base1, gens1 = get_symmetric_group_sgs(1)
>>> base2, gens2 = get_symmetric_group_sgs(2)
>>> bsgs_direct_product(base1, gens1, base2, gens2)
([1], [(4)(1 2)])
"""
s = 2 if signed else 0
n1 = gens1[0].size - s
base = list(base1)
base += [x + n1 for x in base2]
gens1 = [h._array_form for h in gens1]
gens2 = [h._array_form for h in gens2]
gens = perm_af_direct_product(gens1, gens2, signed)
size = len(gens[0])
id_af = list(range(size))
gens = [h for h in gens if h != id_af]
if not gens:
gens = [id_af]
return base, [_af_new(h) for h in gens]
def get_symmetric_group_sgs(n, antisym=False):
"""
Return base, gens of the minimal BSGS for (anti)symmetric tensor
Parameters
==========
n : rank of the tensor
antisym : bool
``antisym = False`` symmetric tensor
``antisym = True`` antisymmetric tensor
Examples
========
>>> from sympy.combinatorics.tensor_can import get_symmetric_group_sgs
>>> get_symmetric_group_sgs(3)
([0, 1], [(4)(0 1), (4)(1 2)])
"""
if n == 1:
return [], [_af_new(list(range(3)))]
gens = [Permutation(n - 1)(i, i + 1)._array_form for i in range(n - 1)]
if antisym == 0:
gens = [x + [n, n + 1] for x in gens]
else:
gens = [x + [n + 1, n] for x in gens]
base = list(range(n - 1))
return base, [_af_new(h) for h in gens]
riemann_bsgs = [0, 2], [Permutation(0, 1)(4, 5), Permutation(2, 3)(4, 5),
Permutation(5)(0, 2)(1, 3)]
def get_transversals(base, gens):
"""
Return transversals for the group with BSGS base, gens
"""
if not base:
return []
stabs = _distribute_gens_by_base(base, gens)
orbits, transversals = _orbits_transversals_from_bsgs(base, stabs)
transversals = [{x: h._array_form for x, h in y.items()} for y in
transversals]
return transversals
def _is_minimal_bsgs(base, gens):
"""
Check if the BSGS has minimal base under lexigographic order.
base, gens BSGS
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.tensor_can import riemann_bsgs, _is_minimal_bsgs
>>> _is_minimal_bsgs(*riemann_bsgs)
True
>>> riemann_bsgs1 = ([2, 0], ([Permutation(5)(0, 1)(4, 5), Permutation(5)(0, 2)(1, 3)]))
>>> _is_minimal_bsgs(*riemann_bsgs1)
False
"""
base1 = []
sgs1 = gens[:]
size = gens[0].size
for i in range(size):
if not all(h._array_form[i] == i for h in sgs1):
base1.append(i)
sgs1 = [h for h in sgs1 if h._array_form[i] == i]
return base1 == base
def get_minimal_bsgs(base, gens):
"""
Compute a minimal GSGS
base, gens BSGS
If base, gens is a minimal BSGS return it; else return a minimal BSGS
if it fails in finding one, it returns None
TODO: use baseswap in the case in which if it fails in finding a
minimal BSGS
Examples
========
>>> from sympy.combinatorics import Permutation
>>> from sympy.combinatorics.tensor_can import get_minimal_bsgs
>>> riemann_bsgs1 = ([2, 0], ([Permutation(5)(0, 1)(4, 5), Permutation(5)(0, 2)(1, 3)]))
>>> get_minimal_bsgs(*riemann_bsgs1)
([0, 2], [(0 1)(4 5), (5)(0 2)(1 3), (2 3)(4 5)])
"""
G = PermutationGroup(gens)
base, gens = G.schreier_sims_incremental()
if not _is_minimal_bsgs(base, gens):
return None
return base, gens
def tensor_gens(base, gens, list_free_indices, sym=0):
"""
Returns size, res_base, res_gens BSGS for n tensors of the
same type.
Explanation
===========
base, gens BSGS for tensors of this type
list_free_indices list of the slots occupied by fixed indices
for each of the tensors
sym symmetry under commutation of two tensors
sym None no symmetry
sym 0 commuting
sym 1 anticommuting
Examples
========
>>> from sympy.combinatorics.tensor_can import tensor_gens, get_symmetric_group_sgs
two symmetric tensors with 3 indices without free indices
>>> base, gens = get_symmetric_group_sgs(3)
>>> tensor_gens(base, gens, [[], []])
(8, [0, 1, 3, 4], [(7)(0 1), (7)(1 2), (7)(3 4), (7)(4 5), (7)(0 3)(1 4)(2 5)])
two symmetric tensors with 3 indices with free indices in slot 1 and 0
>>> tensor_gens(base, gens, [[1], [0]])
(8, [0, 4], [(7)(0 2), (7)(4 5)])
four symmetric tensors with 3 indices, two of which with free indices
"""
def _get_bsgs(G, base, gens, free_indices):
"""
return the BSGS for G.pointwise_stabilizer(free_indices)
"""
if not free_indices:
return base[:], gens[:]
else:
H = G.pointwise_stabilizer(free_indices)
base, sgs = H.schreier_sims_incremental()
return base, sgs
# if not base there is no slot symmetry for the component tensors
# if list_free_indices.count([]) < 2 there is no commutation symmetry
# so there is no resulting slot symmetry
if not base and list_free_indices.count([]) < 2:
n = len(list_free_indices)
size = gens[0].size
size = n * (size - 2) + 2
return size, [], [_af_new(list(range(size)))]
# if any(list_free_indices) one needs to compute the pointwise
# stabilizer, so G is needed
if any(list_free_indices):
G = PermutationGroup(gens)
else:
G = None
# no_free list of lists of indices for component tensors without fixed
# indices
no_free = []
size = gens[0].size
id_af = list(range(size))
num_indices = size - 2
if not list_free_indices[0]:
no_free.append(list(range(num_indices)))
res_base, res_gens = _get_bsgs(G, base, gens, list_free_indices[0])
for i in range(1, len(list_free_indices)):
base1, gens1 = _get_bsgs(G, base, gens, list_free_indices[i])
res_base, res_gens = bsgs_direct_product(res_base, res_gens,
base1, gens1, 1)
if not list_free_indices[i]:
no_free.append(list(range(size - 2, size - 2 + num_indices)))
size += num_indices
nr = size - 2
res_gens = [h for h in res_gens if h._array_form != id_af]
# if sym there are no commuting tensors stop here
if sym is None or not no_free:
if not res_gens:
res_gens = [_af_new(id_af)]
return size, res_base, res_gens
# if the component tensors have moinimal BSGS, so is their direct
# product P; the slot symmetry group is S = P*C, where C is the group
# to (anti)commute the component tensors with no free indices
# a stabilizer has the property S_i = P_i*C_i;
# the BSGS of P*C has SGS_P + SGS_C and the base is
# the ordered union of the bases of P and C.
# If P has minimal BSGS, so has S with this base.
base_comm = []
for i in range(len(no_free) - 1):
ind1 = no_free[i]
ind2 = no_free[i + 1]
a = list(range(ind1[0]))
a.extend(ind2)
a.extend(ind1)
base_comm.append(ind1[0])
a.extend(list(range(ind2[-1] + 1, nr)))
if sym == 0:
a.extend([nr, nr + 1])
else:
a.extend([nr + 1, nr])
res_gens.append(_af_new(a))
res_base = list(res_base)
# each base is ordered; order the union of the two bases
for i in base_comm:
if i not in res_base:
res_base.append(i)
res_base.sort()
if not res_gens:
res_gens = [_af_new(id_af)]
return size, res_base, res_gens
def gens_products(*v):
"""
Returns size, res_base, res_gens BSGS for n tensors of different types.
Explanation
===========
v is a sequence of (base_i, gens_i, free_i, sym_i)
where
base_i, gens_i BSGS of tensor of type `i`
free_i list of the fixed slots for each of the tensors
of type `i`; if there are `n_i` tensors of type `i`
and none of them have fixed slots, `free = [[]]*n_i`
sym 0 (1) if the tensors of type `i` (anti)commute among themselves
Examples
========
>>> from sympy.combinatorics.tensor_can import get_symmetric_group_sgs, gens_products
>>> base, gens = get_symmetric_group_sgs(2)
>>> gens_products((base, gens, [[], []], 0))
(6, [0, 2], [(5)(0 1), (5)(2 3), (5)(0 2)(1 3)])
>>> gens_products((base, gens, [[1], []], 0))
(6, [2], [(5)(2 3)])
"""
res_size, res_base, res_gens = tensor_gens(*v[0])
for i in range(1, len(v)):
size, base, gens = tensor_gens(*v[i])
res_base, res_gens = bsgs_direct_product(res_base, res_gens, base,
gens, 1)
res_size = res_gens[0].size
id_af = list(range(res_size))
res_gens = [h for h in res_gens if h != id_af]
if not res_gens:
res_gens = [id_af]
return res_size, res_base, res_gens
|
2113822cceb7a780136b35ac2bda91c66c7c6d98e83215b13ab4e6d10e51469a | from sympy.ntheory.primetest import isprime
from sympy.combinatorics.perm_groups import PermutationGroup
from sympy.printing.defaults import DefaultPrinting
from sympy.combinatorics.free_groups import free_group
class PolycyclicGroup(DefaultPrinting):
is_group = True
is_solvable = True
def __init__(self, pc_sequence, pc_series, relative_order, collector=None):
"""
Parameters
==========
pc_sequence : list
A sequence of elements whose classes generate the cyclic factor
groups of pc_series.
pc_series : list
A subnormal sequence of subgroups where each factor group is cyclic.
relative_order : list
The orders of factor groups of pc_series.
collector : Collector
By default, it is None. Collector class provides the
polycyclic presentation with various other functionalities.
"""
self.pcgs = pc_sequence
self.pc_series = pc_series
self.relative_order = relative_order
self.collector = Collector(self.pcgs, pc_series, relative_order) if not collector else collector
def is_prime_order(self):
return all(isprime(order) for order in self.relative_order)
def length(self):
return len(self.pcgs)
class Collector(DefaultPrinting):
"""
References
==========
.. [1] Holt, D., Eick, B., O'Brien, E.
"Handbook of Computational Group Theory"
Section 8.1.3
"""
def __init__(self, pcgs, pc_series, relative_order, free_group_=None, pc_presentation=None):
"""
Most of the parameters for the Collector class are the same as for PolycyclicGroup.
Others are described below.
Parameters
==========
free_group_ : tuple
free_group_ provides the mapping of polycyclic generating
sequence with the free group elements.
pc_presentation : dict
Provides the presentation of polycyclic groups with the
help of power and conjugate relators.
See Also
========
PolycyclicGroup
"""
self.pcgs = pcgs
self.pc_series = pc_series
self.relative_order = relative_order
self.free_group = free_group('x:{}'.format(len(pcgs)))[0] if not free_group_ else free_group_
self.index = {s: i for i, s in enumerate(self.free_group.symbols)}
self.pc_presentation = self.pc_relators()
def minimal_uncollected_subword(self, word):
r"""
Returns the minimal uncollected subwords.
Explanation
===========
A word ``v`` defined on generators in ``X`` is a minimal
uncollected subword of the word ``w`` if ``v`` is a subword
of ``w`` and it has one of the following form
* `v = {x_{i+1}}^{a_j}x_i`
* `v = {x_{i+1}}^{a_j}{x_i}^{-1}`
* `v = {x_i}^{a_j}`
for `a_j` not in `\{1, \ldots, s-1\}`. Where, ``s`` is the power
exponent of the corresponding generator.
Examples
========
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> from sympy.combinatorics import free_group
>>> G = SymmetricGroup(4)
>>> PcGroup = G.polycyclic_group()
>>> collector = PcGroup.collector
>>> F, x1, x2 = free_group("x1, x2")
>>> word = x2**2*x1**7
>>> collector.minimal_uncollected_subword(word)
((x2, 2),)
"""
# To handle the case word = <identity>
if not word:
return None
array = word.array_form
re = self.relative_order
index = self.index
for i in range(len(array)):
s1, e1 = array[i]
if re[index[s1]] and (e1 < 0 or e1 > re[index[s1]]-1):
return ((s1, e1), )
for i in range(len(array)-1):
s1, e1 = array[i]
s2, e2 = array[i+1]
if index[s1] > index[s2]:
e = 1 if e2 > 0 else -1
return ((s1, e1), (s2, e))
return None
def relations(self):
"""
Separates the given relators of pc presentation in power and
conjugate relations.
Returns
=======
(power_rel, conj_rel)
Separates pc presentation into power and conjugate relations.
Examples
========
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> G = SymmetricGroup(3)
>>> PcGroup = G.polycyclic_group()
>>> collector = PcGroup.collector
>>> power_rel, conj_rel = collector.relations()
>>> power_rel
{x0**2: (), x1**3: ()}
>>> conj_rel
{x0**-1*x1*x0: x1**2}
See Also
========
pc_relators
"""
power_relators = {}
conjugate_relators = {}
for key, value in self.pc_presentation.items():
if len(key.array_form) == 1:
power_relators[key] = value
else:
conjugate_relators[key] = value
return power_relators, conjugate_relators
def subword_index(self, word, w):
"""
Returns the start and ending index of a given
subword in a word.
Parameters
==========
word : FreeGroupElement
word defined on free group elements for a
polycyclic group.
w : FreeGroupElement
subword of a given word, whose starting and
ending index to be computed.
Returns
=======
(i, j)
A tuple containing starting and ending index of ``w``
in the given word.
Examples
========
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> from sympy.combinatorics import free_group
>>> G = SymmetricGroup(4)
>>> PcGroup = G.polycyclic_group()
>>> collector = PcGroup.collector
>>> F, x1, x2 = free_group("x1, x2")
>>> word = x2**2*x1**7
>>> w = x2**2*x1
>>> collector.subword_index(word, w)
(0, 3)
>>> w = x1**7
>>> collector.subword_index(word, w)
(2, 9)
"""
low = -1
high = -1
for i in range(len(word)-len(w)+1):
if word.subword(i, i+len(w)) == w:
low = i
high = i+len(w)
break
if low == high == -1:
return -1, -1
return low, high
def map_relation(self, w):
"""
Return a conjugate relation.
Explanation
===========
Given a word formed by two free group elements, the
corresponding conjugate relation with those free
group elements is formed and mapped with the collected
word in the polycyclic presentation.
Examples
========
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> from sympy.combinatorics import free_group
>>> G = SymmetricGroup(3)
>>> PcGroup = G.polycyclic_group()
>>> collector = PcGroup.collector
>>> F, x0, x1 = free_group("x0, x1")
>>> w = x1*x0
>>> collector.map_relation(w)
x1**2
See Also
========
pc_presentation
"""
array = w.array_form
s1 = array[0][0]
s2 = array[1][0]
key = ((s2, -1), (s1, 1), (s2, 1))
key = self.free_group.dtype(key)
return self.pc_presentation[key]
def collected_word(self, word):
r"""
Return the collected form of a word.
Explanation
===========
A word ``w`` is called collected, if `w = {x_{i_1}}^{a_1} * \ldots *
{x_{i_r}}^{a_r}` with `i_1 < i_2< \ldots < i_r` and `a_j` is in
`\{1, \ldots, {s_j}-1\}`.
Otherwise w is uncollected.
Parameters
==========
word : FreeGroupElement
An uncollected word.
Returns
=======
word
A collected word of form `w = {x_{i_1}}^{a_1}, \ldots,
{x_{i_r}}^{a_r}` with `i_1, i_2, \ldots, i_r` and `a_j \in
\{1, \ldots, {s_j}-1\}`.
Examples
========
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> from sympy.combinatorics.perm_groups import PermutationGroup
>>> from sympy.combinatorics import free_group
>>> G = SymmetricGroup(4)
>>> PcGroup = G.polycyclic_group()
>>> collector = PcGroup.collector
>>> F, x0, x1, x2, x3 = free_group("x0, x1, x2, x3")
>>> word = x3*x2*x1*x0
>>> collected_word = collector.collected_word(word)
>>> free_to_perm = {}
>>> free_group = collector.free_group
>>> for sym, gen in zip(free_group.symbols, collector.pcgs):
... free_to_perm[sym] = gen
>>> G1 = PermutationGroup()
>>> for w in word:
... sym = w[0]
... perm = free_to_perm[sym]
... G1 = PermutationGroup([perm] + G1.generators)
>>> G2 = PermutationGroup()
>>> for w in collected_word:
... sym = w[0]
... perm = free_to_perm[sym]
... G2 = PermutationGroup([perm] + G2.generators)
The two are not identical, but they are equivalent:
>>> G1.equals(G2), G1 == G2
(True, False)
See Also
========
minimal_uncollected_subword
"""
free_group = self.free_group
while True:
w = self.minimal_uncollected_subword(word)
if not w:
break
low, high = self.subword_index(word, free_group.dtype(w))
if low == -1:
continue
s1, e1 = w[0]
if len(w) == 1:
re = self.relative_order[self.index[s1]]
q = e1 // re
r = e1-q*re
key = ((w[0][0], re), )
key = free_group.dtype(key)
if self.pc_presentation[key]:
presentation = self.pc_presentation[key].array_form
sym, exp = presentation[0]
word_ = ((w[0][0], r), (sym, q*exp))
word_ = free_group.dtype(word_)
else:
if r != 0:
word_ = ((w[0][0], r), )
word_ = free_group.dtype(word_)
else:
word_ = None
word = word.eliminate_word(free_group.dtype(w), word_)
if len(w) == 2 and w[1][1] > 0:
s2, e2 = w[1]
s2 = ((s2, 1), )
s2 = free_group.dtype(s2)
word_ = self.map_relation(free_group.dtype(w))
word_ = s2*word_**e1
word_ = free_group.dtype(word_)
word = word.substituted_word(low, high, word_)
elif len(w) == 2 and w[1][1] < 0:
s2, e2 = w[1]
s2 = ((s2, 1), )
s2 = free_group.dtype(s2)
word_ = self.map_relation(free_group.dtype(w))
word_ = s2**-1*word_**e1
word_ = free_group.dtype(word_)
word = word.substituted_word(low, high, word_)
return word
def pc_relators(self):
r"""
Return the polycyclic presentation.
Explanation
===========
There are two types of relations used in polycyclic
presentation.
* Power relations : Power relators are of the form `x_i^{re_i}`,
where `i \in \{0, \ldots, \mathrm{len(pcgs)}\}`, ``x`` represents polycyclic
generator and ``re`` is the corresponding relative order.
* Conjugate relations : Conjugate relators are of the form `x_j^-1x_ix_j`,
where `j < i \in \{0, \ldots, \mathrm{len(pcgs)}\}`.
Returns
=======
A dictionary with power and conjugate relations as key and
their collected form as corresponding values.
Notes
=====
Identity Permutation is mapped with empty ``()``.
Examples
========
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> from sympy.combinatorics.permutations import Permutation
>>> S = SymmetricGroup(49).sylow_subgroup(7)
>>> der = S.derived_series()
>>> G = der[len(der)-2]
>>> PcGroup = G.polycyclic_group()
>>> collector = PcGroup.collector
>>> pcgs = PcGroup.pcgs
>>> len(pcgs)
6
>>> free_group = collector.free_group
>>> pc_resentation = collector.pc_presentation
>>> free_to_perm = {}
>>> for s, g in zip(free_group.symbols, pcgs):
... free_to_perm[s] = g
>>> for k, v in pc_resentation.items():
... k_array = k.array_form
... if v != ():
... v_array = v.array_form
... lhs = Permutation()
... for gen in k_array:
... s = gen[0]
... e = gen[1]
... lhs = lhs*free_to_perm[s]**e
... if v == ():
... assert lhs.is_identity
... continue
... rhs = Permutation()
... for gen in v_array:
... s = gen[0]
... e = gen[1]
... rhs = rhs*free_to_perm[s]**e
... assert lhs == rhs
"""
free_group = self.free_group
rel_order = self.relative_order
pc_relators = {}
perm_to_free = {}
pcgs = self.pcgs
for gen, s in zip(pcgs, free_group.generators):
perm_to_free[gen**-1] = s**-1
perm_to_free[gen] = s
pcgs = pcgs[::-1]
series = self.pc_series[::-1]
rel_order = rel_order[::-1]
collected_gens = []
for i, gen in enumerate(pcgs):
re = rel_order[i]
relation = perm_to_free[gen]**re
G = series[i]
l = G.generator_product(gen**re, original = True)
l.reverse()
word = free_group.identity
for g in l:
word = word*perm_to_free[g]
word = self.collected_word(word)
pc_relators[relation] = word if word else ()
self.pc_presentation = pc_relators
collected_gens.append(gen)
if len(collected_gens) > 1:
conj = collected_gens[len(collected_gens)-1]
conjugator = perm_to_free[conj]
for j in range(len(collected_gens)-1):
conjugated = perm_to_free[collected_gens[j]]
relation = conjugator**-1*conjugated*conjugator
gens = conj**-1*collected_gens[j]*conj
l = G.generator_product(gens, original = True)
l.reverse()
word = free_group.identity
for g in l:
word = word*perm_to_free[g]
word = self.collected_word(word)
pc_relators[relation] = word if word else ()
self.pc_presentation = pc_relators
return pc_relators
def exponent_vector(self, element):
r"""
Return the exponent vector of length equal to the
length of polycyclic generating sequence.
Explanation
===========
For a given generator/element ``g`` of the polycyclic group,
it can be represented as `g = {x_1}^{e_1}, \ldots, {x_n}^{e_n}`,
where `x_i` represents polycyclic generators and ``n`` is
the number of generators in the free_group equal to the length
of pcgs.
Parameters
==========
element : Permutation
Generator of a polycyclic group.
Examples
========
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> from sympy.combinatorics.permutations import Permutation
>>> G = SymmetricGroup(4)
>>> PcGroup = G.polycyclic_group()
>>> collector = PcGroup.collector
>>> pcgs = PcGroup.pcgs
>>> collector.exponent_vector(G[0])
[1, 0, 0, 0]
>>> exp = collector.exponent_vector(G[1])
>>> g = Permutation()
>>> for i in range(len(exp)):
... g = g*pcgs[i]**exp[i] if exp[i] else g
>>> assert g == G[1]
References
==========
.. [1] Holt, D., Eick, B., O'Brien, E.
"Handbook of Computational Group Theory"
Section 8.1.1, Definition 8.4
"""
free_group = self.free_group
G = PermutationGroup()
for g in self.pcgs:
G = PermutationGroup([g] + G.generators)
gens = G.generator_product(element, original = True)
gens.reverse()
perm_to_free = {}
for sym, g in zip(free_group.generators, self.pcgs):
perm_to_free[g**-1] = sym**-1
perm_to_free[g] = sym
w = free_group.identity
for g in gens:
w = w*perm_to_free[g]
word = self.collected_word(w)
index = self.index
exp_vector = [0]*len(free_group)
word = word.array_form
for t in word:
exp_vector[index[t[0]]] = t[1]
return exp_vector
def depth(self, element):
r"""
Return the depth of a given element.
Explanation
===========
The depth of a given element ``g`` is defined by
`\mathrm{dep}[g] = i` if `e_1 = e_2 = \ldots = e_{i-1} = 0`
and `e_i != 0`, where ``e`` represents the exponent-vector.
Examples
========
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> G = SymmetricGroup(3)
>>> PcGroup = G.polycyclic_group()
>>> collector = PcGroup.collector
>>> collector.depth(G[0])
2
>>> collector.depth(G[1])
1
References
==========
.. [1] Holt, D., Eick, B., O'Brien, E.
"Handbook of Computational Group Theory"
Section 8.1.1, Definition 8.5
"""
exp_vector = self.exponent_vector(element)
return next((i+1 for i, x in enumerate(exp_vector) if x), len(self.pcgs)+1)
def leading_exponent(self, element):
r"""
Return the leading non-zero exponent.
Explanation
===========
The leading exponent for a given element `g` is defined
by `\mathrm{leading\_exponent}[g]` `= e_i`, if `\mathrm{depth}[g] = i`.
Examples
========
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> G = SymmetricGroup(3)
>>> PcGroup = G.polycyclic_group()
>>> collector = PcGroup.collector
>>> collector.leading_exponent(G[1])
1
"""
exp_vector = self.exponent_vector(element)
depth = self.depth(element)
if depth != len(self.pcgs)+1:
return exp_vector[depth-1]
return None
def _sift(self, z, g):
h = g
d = self.depth(h)
while d < len(self.pcgs) and z[d-1] != 1:
k = z[d-1]
e = self.leading_exponent(h)*(self.leading_exponent(k))**-1
e = e % self.relative_order[d-1]
h = k**-e*h
d = self.depth(h)
return h
def induced_pcgs(self, gens):
"""
Parameters
==========
gens : list
A list of generators on which polycyclic subgroup
is to be defined.
Examples
========
>>> from sympy.combinatorics.named_groups import SymmetricGroup
>>> S = SymmetricGroup(8)
>>> G = S.sylow_subgroup(2)
>>> PcGroup = G.polycyclic_group()
>>> collector = PcGroup.collector
>>> gens = [G[0], G[1]]
>>> ipcgs = collector.induced_pcgs(gens)
>>> [gen.order() for gen in ipcgs]
[2, 2, 2]
>>> G = S.sylow_subgroup(3)
>>> PcGroup = G.polycyclic_group()
>>> collector = PcGroup.collector
>>> gens = [G[0], G[1]]
>>> ipcgs = collector.induced_pcgs(gens)
>>> [gen.order() for gen in ipcgs]
[3]
"""
z = [1]*len(self.pcgs)
G = gens
while G:
g = G.pop(0)
h = self._sift(z, g)
d = self.depth(h)
if d < len(self.pcgs):
for gen in z:
if gen != 1:
G.append(h**-1*gen**-1*h*gen)
z[d-1] = h;
z = [gen for gen in z if gen != 1]
return z
def constructive_membership_test(self, ipcgs, g):
"""
Return the exponent vector for induced pcgs.
"""
e = [0]*len(ipcgs)
h = g
d = self.depth(h)
for i, gen in enumerate(ipcgs):
while self.depth(gen) == d:
f = self.leading_exponent(h)*self.leading_exponent(gen)
f = f % self.relative_order[d-1]
h = gen**(-f)*h
e[i] = f
d = self.depth(h)
if h == 1:
return e
return False
|
2c8bbff3ffd128cbfc11f5c07e4af4f1429848cab98462412c7c83492e6777ef | from sympy.combinatorics.permutations import Permutation, _af_invert, _af_rmul
from sympy.ntheory import isprime
rmul = Permutation.rmul
_af_new = Permutation._af_new
############################################
#
# Utilities for computational group theory
#
############################################
def _base_ordering(base, degree):
r"""
Order `\{0, 1, \dots, n-1\}` so that base points come first and in order.
Parameters
==========
base : the base
degree : the degree of the associated permutation group
Returns
=======
A list ``base_ordering`` such that ``base_ordering[point]`` is the
number of ``point`` in the ordering.
Examples
========
>>> from sympy.combinatorics import SymmetricGroup
>>> from sympy.combinatorics.util import _base_ordering
>>> S = SymmetricGroup(4)
>>> S.schreier_sims()
>>> _base_ordering(S.base, S.degree)
[0, 1, 2, 3]
Notes
=====
This is used in backtrack searches, when we define a relation `\ll` on
the underlying set for a permutation group of degree `n`,
`\{0, 1, \dots, n-1\}`, so that if `(b_1, b_2, \dots, b_k)` is a base we
have `b_i \ll b_j` whenever `i<j` and `b_i \ll a` for all
`i\in\{1,2, \dots, k\}` and `a` is not in the base. The idea is developed
and applied to backtracking algorithms in [1], pp.108-132. The points
that are not in the base are taken in increasing order.
References
==========
.. [1] Holt, D., Eick, B., O'Brien, E.
"Handbook of computational group theory"
"""
base_len = len(base)
ordering = [0]*degree
for i in range(base_len):
ordering[base[i]] = i
current = base_len
for i in range(degree):
if i not in base:
ordering[i] = current
current += 1
return ordering
def _check_cycles_alt_sym(perm):
"""
Checks for cycles of prime length p with n/2 < p < n-2.
Explanation
===========
Here `n` is the degree of the permutation. This is a helper function for
the function is_alt_sym from sympy.combinatorics.perm_groups.
Examples
========
>>> from sympy.combinatorics.util import _check_cycles_alt_sym
>>> from sympy.combinatorics import Permutation
>>> a = Permutation([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [11, 12]])
>>> _check_cycles_alt_sym(a)
False
>>> b = Permutation([[0, 1, 2, 3, 4, 5, 6], [7, 8, 9, 10]])
>>> _check_cycles_alt_sym(b)
True
See Also
========
sympy.combinatorics.perm_groups.PermutationGroup.is_alt_sym
"""
n = perm.size
af = perm.array_form
current_len = 0
total_len = 0
used = set()
for i in range(n//2):
if i not in used and i < n//2 - total_len:
current_len = 1
used.add(i)
j = i
while af[j] != i:
current_len += 1
j = af[j]
used.add(j)
total_len += current_len
if current_len > n//2 and current_len < n - 2 and isprime(current_len):
return True
return False
def _distribute_gens_by_base(base, gens):
r"""
Distribute the group elements ``gens`` by membership in basic stabilizers.
Explanation
===========
Notice that for a base `(b_1, b_2, \dots, b_k)`, the basic stabilizers
are defined as `G^{(i)} = G_{b_1, \dots, b_{i-1}}` for
`i \in\{1, 2, \dots, k\}`.
Parameters
==========
base : a sequence of points in `\{0, 1, \dots, n-1\}`
gens : a list of elements of a permutation group of degree `n`.
Returns
=======
List of length `k`, where `k` is
the length of ``base``. The `i`-th entry contains those elements in
``gens`` which fix the first `i` elements of ``base`` (so that the
`0`-th entry is equal to ``gens`` itself). If no element fixes the first
`i` elements of ``base``, the `i`-th element is set to a list containing
the identity element.
Examples
========
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> from sympy.combinatorics.util import _distribute_gens_by_base
>>> D = DihedralGroup(3)
>>> D.schreier_sims()
>>> D.strong_gens
[(0 1 2), (0 2), (1 2)]
>>> D.base
[0, 1]
>>> _distribute_gens_by_base(D.base, D.strong_gens)
[[(0 1 2), (0 2), (1 2)],
[(1 2)]]
See Also
========
_strong_gens_from_distr, _orbits_transversals_from_bsgs,
_handle_precomputed_bsgs
"""
base_len = len(base)
degree = gens[0].size
stabs = [[] for _ in range(base_len)]
max_stab_index = 0
for gen in gens:
j = 0
while j < base_len - 1 and gen._array_form[base[j]] == base[j]:
j += 1
if j > max_stab_index:
max_stab_index = j
for k in range(j + 1):
stabs[k].append(gen)
for i in range(max_stab_index + 1, base_len):
stabs[i].append(_af_new(list(range(degree))))
return stabs
def _handle_precomputed_bsgs(base, strong_gens, transversals=None,
basic_orbits=None, strong_gens_distr=None):
"""
Calculate BSGS-related structures from those present.
Explanation
===========
The base and strong generating set must be provided; if any of the
transversals, basic orbits or distributed strong generators are not
provided, they will be calculated from the base and strong generating set.
Parameters
==========
``base`` - the base
``strong_gens`` - the strong generators
``transversals`` - basic transversals
``basic_orbits`` - basic orbits
``strong_gens_distr`` - strong generators distributed by membership in basic
stabilizers
Returns
=======
``(transversals, basic_orbits, strong_gens_distr)`` where ``transversals``
are the basic transversals, ``basic_orbits`` are the basic orbits, and
``strong_gens_distr`` are the strong generators distributed by membership
in basic stabilizers.
Examples
========
>>> from sympy.combinatorics.named_groups import DihedralGroup
>>> from sympy.combinatorics.util import _handle_precomputed_bsgs
>>> D = DihedralGroup(3)
>>> D.schreier_sims()
>>> _handle_precomputed_bsgs(D.base, D.strong_gens,
... basic_orbits=D.basic_orbits)
([{0: (2), 1: (0 1 2), 2: (0 2)}, {1: (2), 2: (1 2)}], [[0, 1, 2], [1, 2]], [[(0 1 2), (0 2), (1 2)], [(1 2)]])
See Also
========
_orbits_transversals_from_bsgs, _distribute_gens_by_base
"""
if strong_gens_distr is None:
strong_gens_distr = _distribute_gens_by_base(base, strong_gens)
if transversals is None:
if basic_orbits is None:
basic_orbits, transversals = \
_orbits_transversals_from_bsgs(base, strong_gens_distr)
else:
transversals = \
_orbits_transversals_from_bsgs(base, strong_gens_distr,
transversals_only=True)
else:
if basic_orbits is None:
base_len = len(base)
basic_orbits = [None]*base_len
for i in range(base_len):
basic_orbits[i] = list(transversals[i].keys())
return transversals, basic_orbits, strong_gens_distr
def _orbits_transversals_from_bsgs(base, strong_gens_distr,
transversals_only=False, slp=False):
"""
Compute basic orbits and transversals from a base and strong generating set.
Explanation
===========
The generators are provided as distributed across the basic stabilizers.
If the optional argument ``transversals_only`` is set to True, only the
transversals are returned.
Parameters
==========
``base`` - The base.
``strong_gens_distr`` - Strong generators distributed by membership in basic
stabilizers.
``transversals_only`` - bool
A flag switching between returning only the
transversals and both orbits and transversals.
``slp`` -
If ``True``, return a list of dictionaries containing the
generator presentations of the elements of the transversals,
i.e. the list of indices of generators from ``strong_gens_distr[i]``
such that their product is the relevant transversal element.
Examples
========
>>> from sympy.combinatorics import SymmetricGroup
>>> from sympy.combinatorics.util import _distribute_gens_by_base
>>> S = SymmetricGroup(3)
>>> S.schreier_sims()
>>> strong_gens_distr = _distribute_gens_by_base(S.base, S.strong_gens)
>>> (S.base, strong_gens_distr)
([0, 1], [[(0 1 2), (2)(0 1), (1 2)], [(1 2)]])
See Also
========
_distribute_gens_by_base, _handle_precomputed_bsgs
"""
from sympy.combinatorics.perm_groups import _orbit_transversal
base_len = len(base)
degree = strong_gens_distr[0][0].size
transversals = [None]*base_len
slps = [None]*base_len
if transversals_only is False:
basic_orbits = [None]*base_len
for i in range(base_len):
transversals[i], slps[i] = _orbit_transversal(degree, strong_gens_distr[i],
base[i], pairs=True, slp=True)
transversals[i] = dict(transversals[i])
if transversals_only is False:
basic_orbits[i] = list(transversals[i].keys())
if transversals_only:
return transversals
else:
if not slp:
return basic_orbits, transversals
return basic_orbits, transversals, slps
def _remove_gens(base, strong_gens, basic_orbits=None, strong_gens_distr=None):
"""
Remove redundant generators from a strong generating set.
Parameters
==========
``base`` - a base
``strong_gens`` - a strong generating set relative to ``base``
``basic_orbits`` - basic orbits
``strong_gens_distr`` - strong generators distributed by membership in basic
stabilizers
Returns
=======
A strong generating set with respect to ``base`` which is a subset of
``strong_gens``.
Examples
========
>>> from sympy.combinatorics import SymmetricGroup
>>> from sympy.combinatorics.util import _remove_gens
>>> from sympy.combinatorics.testutil import _verify_bsgs
>>> S = SymmetricGroup(15)
>>> base, strong_gens = S.schreier_sims_incremental()
>>> new_gens = _remove_gens(base, strong_gens)
>>> len(new_gens)
14
>>> _verify_bsgs(S, base, new_gens)
True
Notes
=====
This procedure is outlined in [1],p.95.
References
==========
.. [1] Holt, D., Eick, B., O'Brien, E.
"Handbook of computational group theory"
"""
from sympy.combinatorics.perm_groups import _orbit
base_len = len(base)
degree = strong_gens[0].size
if strong_gens_distr is None:
strong_gens_distr = _distribute_gens_by_base(base, strong_gens)
if basic_orbits is None:
basic_orbits = []
for i in range(base_len):
basic_orbit = _orbit(degree, strong_gens_distr[i], base[i])
basic_orbits.append(basic_orbit)
strong_gens_distr.append([])
res = strong_gens[:]
for i in range(base_len - 1, -1, -1):
gens_copy = strong_gens_distr[i][:]
for gen in strong_gens_distr[i]:
if gen not in strong_gens_distr[i + 1]:
temp_gens = gens_copy[:]
temp_gens.remove(gen)
if temp_gens == []:
continue
temp_orbit = _orbit(degree, temp_gens, base[i])
if temp_orbit == basic_orbits[i]:
gens_copy.remove(gen)
res.remove(gen)
return res
def _strip(g, base, orbits, transversals):
"""
Attempt to decompose a permutation using a (possibly partial) BSGS
structure.
Explanation
===========
This is done by treating the sequence ``base`` as an actual base, and
the orbits ``orbits`` and transversals ``transversals`` as basic orbits and
transversals relative to it.
This process is called "sifting". A sift is unsuccessful when a certain
orbit element is not found or when after the sift the decomposition
does not end with the identity element.
The argument ``transversals`` is a list of dictionaries that provides
transversal elements for the orbits ``orbits``.
Parameters
==========
``g`` - permutation to be decomposed
``base`` - sequence of points
``orbits`` - a list in which the ``i``-th entry is an orbit of ``base[i]``
under some subgroup of the pointwise stabilizer of `
`base[0], base[1], ..., base[i - 1]``. The groups themselves are implicit
in this function since the only information we need is encoded in the orbits
and transversals
``transversals`` - a list of orbit transversals associated with the orbits
``orbits``.
Examples
========
>>> from sympy.combinatorics import Permutation, SymmetricGroup
>>> from sympy.combinatorics.util import _strip
>>> S = SymmetricGroup(5)
>>> S.schreier_sims()
>>> g = Permutation([0, 2, 3, 1, 4])
>>> _strip(g, S.base, S.basic_orbits, S.basic_transversals)
((4), 5)
Notes
=====
The algorithm is described in [1],pp.89-90. The reason for returning
both the current state of the element being decomposed and the level
at which the sifting ends is that they provide important information for
the randomized version of the Schreier-Sims algorithm.
References
==========
.. [1] Holt, D., Eick, B., O'Brien, E."Handbook of computational group theory"
See Also
========
sympy.combinatorics.perm_groups.PermutationGroup.schreier_sims
sympy.combinatorics.perm_groups.PermutationGroup.schreier_sims_random
"""
h = g._array_form
base_len = len(base)
for i in range(base_len):
beta = h[base[i]]
if beta == base[i]:
continue
if beta not in orbits[i]:
return _af_new(h), i + 1
u = transversals[i][beta]._array_form
h = _af_rmul(_af_invert(u), h)
return _af_new(h), base_len + 1
def _strip_af(h, base, orbits, transversals, j, slp=[], slps={}):
"""
optimized _strip, with h, transversals and result in array form
if the stripped elements is the identity, it returns False, base_len + 1
j h[base[i]] == base[i] for i <= j
"""
base_len = len(base)
for i in range(j+1, base_len):
beta = h[base[i]]
if beta == base[i]:
continue
if beta not in orbits[i]:
if not slp:
return h, i + 1
return h, i + 1, slp
u = transversals[i][beta]
if h == u:
if not slp:
return False, base_len + 1
return False, base_len + 1, slp
h = _af_rmul(_af_invert(u), h)
if slp:
u_slp = slps[i][beta][:]
u_slp.reverse()
u_slp = [(i, (g,)) for g in u_slp]
slp = u_slp + slp
if not slp:
return h, base_len + 1
return h, base_len + 1, slp
def _strong_gens_from_distr(strong_gens_distr):
"""
Retrieve strong generating set from generators of basic stabilizers.
This is just the union of the generators of the first and second basic
stabilizers.
Parameters
==========
``strong_gens_distr`` - strong generators distributed by membership in basic
stabilizers
Examples
========
>>> from sympy.combinatorics import SymmetricGroup
>>> from sympy.combinatorics.util import (_strong_gens_from_distr,
... _distribute_gens_by_base)
>>> S = SymmetricGroup(3)
>>> S.schreier_sims()
>>> S.strong_gens
[(0 1 2), (2)(0 1), (1 2)]
>>> strong_gens_distr = _distribute_gens_by_base(S.base, S.strong_gens)
>>> _strong_gens_from_distr(strong_gens_distr)
[(0 1 2), (2)(0 1), (1 2)]
See Also
========
_distribute_gens_by_base
"""
if len(strong_gens_distr) == 1:
return strong_gens_distr[0][:]
else:
result = strong_gens_distr[0]
for gen in strong_gens_distr[1]:
if gen not in result:
result.append(gen)
return result
|
0c0c081a4ca1bc4cdebfd78b7c144702762de3a0d7e3274031c8fedaa9d65459 | from collections import defaultdict
from sympy.concrete.products import Product
from sympy.concrete.summations import Sum
from sympy.core import (Basic, S, Add, Mul, Pow, Symbol, sympify,
expand_func, Function, Dummy, Expr, factor_terms,
expand_power_exp, Eq)
from sympy.core.exprtools import factor_nc
from sympy.core.parameters import global_parameters
from sympy.core.function import (expand_log, count_ops, _mexpand,
nfloat, expand_mul, expand)
from sympy.core.numbers import Float, I, pi, Rational
from sympy.core.relational import Relational
from sympy.core.rules import Transform
from sympy.core.sorting import ordered
from sympy.core.sympify import _sympify
from sympy.core.traversal import bottom_up as _bottom_up, walk as _walk
from sympy.functions import gamma, exp, sqrt, log, exp_polar, re
from sympy.functions.combinatorial.factorials import CombinatorialFunction
from sympy.functions.elementary.complexes import unpolarify, Abs, sign
from sympy.functions.elementary.exponential import ExpBase
from sympy.functions.elementary.hyperbolic import HyperbolicFunction
from sympy.functions.elementary.integers import ceiling
from sympy.functions.elementary.piecewise import (Piecewise, piecewise_fold,
piecewise_simplify)
from sympy.functions.elementary.trigonometric import TrigonometricFunction
from sympy.functions.special.bessel import (BesselBase, besselj, besseli,
besselk, bessely, jn)
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.integrals.integrals import Integral
from sympy.matrices.expressions import (MatrixExpr, MatAdd, MatMul,
MatPow, MatrixSymbol)
from sympy.polys import together, cancel, factor
from sympy.polys.numberfields.minpoly import _is_sum_surds, _minimal_polynomial_sq
from sympy.simplify.combsimp import combsimp
from sympy.simplify.cse_opts import sub_pre, sub_post
from sympy.simplify.hyperexpand import hyperexpand
from sympy.simplify.powsimp import powsimp
from sympy.simplify.radsimp import radsimp, fraction, collect_abs
from sympy.simplify.sqrtdenest import sqrtdenest
from sympy.simplify.trigsimp import trigsimp, exptrigsimp
from sympy.utilities.decorator import deprecated
from sympy.utilities.iterables import has_variety, sift, subsets, iterable
from sympy.utilities.misc import as_int
import mpmath
def separatevars(expr, symbols=[], dict=False, force=False):
"""
Separates variables in an expression, if possible. By
default, it separates with respect to all symbols in an
expression and collects constant coefficients that are
independent of symbols.
Explanation
===========
If ``dict=True`` then the separated terms will be returned
in a dictionary keyed to their corresponding symbols.
By default, all symbols in the expression will appear as
keys; if symbols are provided, then all those symbols will
be used as keys, and any terms in the expression containing
other symbols or non-symbols will be returned keyed to the
string 'coeff'. (Passing None for symbols will return the
expression in a dictionary keyed to 'coeff'.)
If ``force=True``, then bases of powers will be separated regardless
of assumptions on the symbols involved.
Notes
=====
The order of the factors is determined by Mul, so that the
separated expressions may not necessarily be grouped together.
Although factoring is necessary to separate variables in some
expressions, it is not necessary in all cases, so one should not
count on the returned factors being factored.
Examples
========
>>> from sympy.abc import x, y, z, alpha
>>> from sympy import separatevars, sin
>>> separatevars((x*y)**y)
(x*y)**y
>>> separatevars((x*y)**y, force=True)
x**y*y**y
>>> e = 2*x**2*z*sin(y)+2*z*x**2
>>> separatevars(e)
2*x**2*z*(sin(y) + 1)
>>> separatevars(e, symbols=(x, y), dict=True)
{'coeff': 2*z, x: x**2, y: sin(y) + 1}
>>> separatevars(e, [x, y, alpha], dict=True)
{'coeff': 2*z, alpha: 1, x: x**2, y: sin(y) + 1}
If the expression is not really separable, or is only partially
separable, separatevars will do the best it can to separate it
by using factoring.
>>> separatevars(x + x*y - 3*x**2)
-x*(3*x - y - 1)
If the expression is not separable then expr is returned unchanged
or (if dict=True) then None is returned.
>>> eq = 2*x + y*sin(x)
>>> separatevars(eq) == eq
True
>>> separatevars(2*x + y*sin(x), symbols=(x, y), dict=True) is None
True
"""
expr = sympify(expr)
if dict:
return _separatevars_dict(_separatevars(expr, force), symbols)
else:
return _separatevars(expr, force)
def _separatevars(expr, force):
if isinstance(expr, Abs):
arg = expr.args[0]
if arg.is_Mul and not arg.is_number:
s = separatevars(arg, dict=True, force=force)
if s is not None:
return Mul(*map(expr.func, s.values()))
else:
return expr
if len(expr.free_symbols) < 2:
return expr
# don't destroy a Mul since much of the work may already be done
if expr.is_Mul:
args = list(expr.args)
changed = False
for i, a in enumerate(args):
args[i] = separatevars(a, force)
changed = changed or args[i] != a
if changed:
expr = expr.func(*args)
return expr
# get a Pow ready for expansion
if expr.is_Pow and expr.base != S.Exp1:
expr = Pow(separatevars(expr.base, force=force), expr.exp)
# First try other expansion methods
expr = expr.expand(mul=False, multinomial=False, force=force)
_expr, reps = posify(expr) if force else (expr, {})
expr = factor(_expr).subs(reps)
if not expr.is_Add:
return expr
# Find any common coefficients to pull out
args = list(expr.args)
commonc = args[0].args_cnc(cset=True, warn=False)[0]
for i in args[1:]:
commonc &= i.args_cnc(cset=True, warn=False)[0]
commonc = Mul(*commonc)
commonc = commonc.as_coeff_Mul()[1] # ignore constants
commonc_set = commonc.args_cnc(cset=True, warn=False)[0]
# remove them
for i, a in enumerate(args):
c, nc = a.args_cnc(cset=True, warn=False)
c = c - commonc_set
args[i] = Mul(*c)*Mul(*nc)
nonsepar = Add(*args)
if len(nonsepar.free_symbols) > 1:
_expr = nonsepar
_expr, reps = posify(_expr) if force else (_expr, {})
_expr = (factor(_expr)).subs(reps)
if not _expr.is_Add:
nonsepar = _expr
return commonc*nonsepar
def _separatevars_dict(expr, symbols):
if symbols:
if not all(t.is_Atom for t in symbols):
raise ValueError("symbols must be Atoms.")
symbols = list(symbols)
elif symbols is None:
return {'coeff': expr}
else:
symbols = list(expr.free_symbols)
if not symbols:
return None
ret = {i: [] for i in symbols + ['coeff']}
for i in Mul.make_args(expr):
expsym = i.free_symbols
intersection = set(symbols).intersection(expsym)
if len(intersection) > 1:
return None
if len(intersection) == 0:
# There are no symbols, so it is part of the coefficient
ret['coeff'].append(i)
else:
ret[intersection.pop()].append(i)
# rebuild
for k, v in ret.items():
ret[k] = Mul(*v)
return ret
def posify(eq):
"""Return ``eq`` (with generic symbols made positive) and a
dictionary containing the mapping between the old and new
symbols.
Explanation
===========
Any symbol that has positive=None will be replaced with a positive dummy
symbol having the same name. This replacement will allow more symbolic
processing of expressions, especially those involving powers and
logarithms.
A dictionary that can be sent to subs to restore ``eq`` to its original
symbols is also returned.
>>> from sympy import posify, Symbol, log, solve
>>> from sympy.abc import x
>>> posify(x + Symbol('p', positive=True) + Symbol('n', negative=True))
(_x + n + p, {_x: x})
>>> eq = 1/x
>>> log(eq).expand()
log(1/x)
>>> log(posify(eq)[0]).expand()
-log(_x)
>>> p, rep = posify(eq)
>>> log(p).expand().subs(rep)
-log(x)
It is possible to apply the same transformations to an iterable
of expressions:
>>> eq = x**2 - 4
>>> solve(eq, x)
[-2, 2]
>>> eq_x, reps = posify([eq, x]); eq_x
[_x**2 - 4, _x]
>>> solve(*eq_x)
[2]
"""
eq = sympify(eq)
if iterable(eq):
f = type(eq)
eq = list(eq)
syms = set()
for e in eq:
syms = syms.union(e.atoms(Symbol))
reps = {}
for s in syms:
reps.update({v: k for k, v in posify(s)[1].items()})
for i, e in enumerate(eq):
eq[i] = e.subs(reps)
return f(eq), {r: s for s, r in reps.items()}
reps = {s: Dummy(s.name, positive=True, **s.assumptions0)
for s in eq.free_symbols if s.is_positive is None}
eq = eq.subs(reps)
return eq, {r: s for s, r in reps.items()}
def hypersimp(f, k):
"""Given combinatorial term f(k) simplify its consecutive term ratio
i.e. f(k+1)/f(k). The input term can be composed of functions and
integer sequences which have equivalent representation in terms
of gamma special function.
Explanation
===========
The algorithm performs three basic steps:
1. Rewrite all functions in terms of gamma, if possible.
2. Rewrite all occurrences of gamma in terms of products
of gamma and rising factorial with integer, absolute
constant exponent.
3. Perform simplification of nested fractions, powers
and if the resulting expression is a quotient of
polynomials, reduce their total degree.
If f(k) is hypergeometric then as result we arrive with a
quotient of polynomials of minimal degree. Otherwise None
is returned.
For more information on the implemented algorithm refer to:
1. W. Koepf, Algorithms for m-fold Hypergeometric Summation,
Journal of Symbolic Computation (1995) 20, 399-417
"""
f = sympify(f)
g = f.subs(k, k + 1) / f
g = g.rewrite(gamma)
if g.has(Piecewise):
g = piecewise_fold(g)
g = g.args[-1][0]
g = expand_func(g)
g = powsimp(g, deep=True, combine='exp')
if g.is_rational_function(k):
return simplify(g, ratio=S.Infinity)
else:
return None
def hypersimilar(f, g, k):
"""
Returns True if ``f`` and ``g`` are hyper-similar.
Explanation
===========
Similarity in hypergeometric sense means that a quotient of
f(k) and g(k) is a rational function in ``k``. This procedure
is useful in solving recurrence relations.
For more information see hypersimp().
"""
f, g = list(map(sympify, (f, g)))
h = (f/g).rewrite(gamma)
h = h.expand(func=True, basic=False)
return h.is_rational_function(k)
def signsimp(expr, evaluate=None):
"""Make all Add sub-expressions canonical wrt sign.
Explanation
===========
If an Add subexpression, ``a``, can have a sign extracted,
as determined by could_extract_minus_sign, it is replaced
with Mul(-1, a, evaluate=False). This allows signs to be
extracted from powers and products.
Examples
========
>>> from sympy import signsimp, exp, symbols
>>> from sympy.abc import x, y
>>> i = symbols('i', odd=True)
>>> n = -1 + 1/x
>>> n/x/(-n)**2 - 1/n/x
(-1 + 1/x)/(x*(1 - 1/x)**2) - 1/(x*(-1 + 1/x))
>>> signsimp(_)
0
>>> x*n + x*-n
x*(-1 + 1/x) + x*(1 - 1/x)
>>> signsimp(_)
0
Since powers automatically handle leading signs
>>> (-2)**i
-2**i
signsimp can be used to put the base of a power with an integer
exponent into canonical form:
>>> n**i
(-1 + 1/x)**i
By default, signsimp does not leave behind any hollow simplification:
if making an Add canonical wrt sign didn't change the expression, the
original Add is restored. If this is not desired then the keyword
``evaluate`` can be set to False:
>>> e = exp(y - x)
>>> signsimp(e) == e
True
>>> signsimp(e, evaluate=False)
exp(-(x - y))
"""
if evaluate is None:
evaluate = global_parameters.evaluate
expr = sympify(expr)
if not isinstance(expr, (Expr, Relational)) or expr.is_Atom:
return expr
# get rid of an pre-existing unevaluation regarding sign
e = expr.replace(lambda x: x.is_Mul and -(-x) != x, lambda x: -(-x))
e = sub_post(sub_pre(e))
if not isinstance(e, (Expr, Relational)) or e.is_Atom:
return e
if e.is_Add:
rv = e.func(*[signsimp(a) for a in e.args])
if not evaluate and isinstance(rv, Add
) and rv.could_extract_minus_sign():
return Mul(S.NegativeOne, -rv, evaluate=False)
return rv
if evaluate:
e = e.replace(lambda x: x.is_Mul and -(-x) != x, lambda x: -(-x))
return e
def simplify(expr, ratio=1.7, measure=count_ops, rational=False, inverse=False, doit=True, **kwargs):
"""Simplifies the given expression.
Explanation
===========
Simplification is not a well defined term and the exact strategies
this function tries can change in the future versions of SymPy. If
your algorithm relies on "simplification" (whatever it is), try to
determine what you need exactly - is it powsimp()?, radsimp()?,
together()?, logcombine()?, or something else? And use this particular
function directly, because those are well defined and thus your algorithm
will be robust.
Nonetheless, especially for interactive use, or when you do not know
anything about the structure of the expression, simplify() tries to apply
intelligent heuristics to make the input expression "simpler". For
example:
>>> from sympy import simplify, cos, sin
>>> from sympy.abc import x, y
>>> a = (x + x**2)/(x*sin(y)**2 + x*cos(y)**2)
>>> a
(x**2 + x)/(x*sin(y)**2 + x*cos(y)**2)
>>> simplify(a)
x + 1
Note that we could have obtained the same result by using specific
simplification functions:
>>> from sympy import trigsimp, cancel
>>> trigsimp(a)
(x**2 + x)/x
>>> cancel(_)
x + 1
In some cases, applying :func:`simplify` may actually result in some more
complicated expression. The default ``ratio=1.7`` prevents more extreme
cases: if (result length)/(input length) > ratio, then input is returned
unmodified. The ``measure`` parameter lets you specify the function used
to determine how complex an expression is. The function should take a
single argument as an expression and return a number such that if
expression ``a`` is more complex than expression ``b``, then
``measure(a) > measure(b)``. The default measure function is
:func:`~.count_ops`, which returns the total number of operations in the
expression.
For example, if ``ratio=1``, ``simplify`` output cannot be longer
than input.
::
>>> from sympy import sqrt, simplify, count_ops, oo
>>> root = 1/(sqrt(2)+3)
Since ``simplify(root)`` would result in a slightly longer expression,
root is returned unchanged instead::
>>> simplify(root, ratio=1) == root
True
If ``ratio=oo``, simplify will be applied anyway::
>>> count_ops(simplify(root, ratio=oo)) > count_ops(root)
True
Note that the shortest expression is not necessary the simplest, so
setting ``ratio`` to 1 may not be a good idea.
Heuristically, the default value ``ratio=1.7`` seems like a reasonable
choice.
You can easily define your own measure function based on what you feel
should represent the "size" or "complexity" of the input expression. Note
that some choices, such as ``lambda expr: len(str(expr))`` may appear to be
good metrics, but have other problems (in this case, the measure function
may slow down simplify too much for very large expressions). If you do not
know what a good metric would be, the default, ``count_ops``, is a good
one.
For example:
>>> from sympy import symbols, log
>>> a, b = symbols('a b', positive=True)
>>> g = log(a) + log(b) + log(a)*log(1/b)
>>> h = simplify(g)
>>> h
log(a*b**(1 - log(a)))
>>> count_ops(g)
8
>>> count_ops(h)
5
So you can see that ``h`` is simpler than ``g`` using the count_ops metric.
However, we may not like how ``simplify`` (in this case, using
``logcombine``) has created the ``b**(log(1/a) + 1)`` term. A simple way
to reduce this would be to give more weight to powers as operations in
``count_ops``. We can do this by using the ``visual=True`` option:
>>> print(count_ops(g, visual=True))
2*ADD + DIV + 4*LOG + MUL
>>> print(count_ops(h, visual=True))
2*LOG + MUL + POW + SUB
>>> from sympy import Symbol, S
>>> def my_measure(expr):
... POW = Symbol('POW')
... # Discourage powers by giving POW a weight of 10
... count = count_ops(expr, visual=True).subs(POW, 10)
... # Every other operation gets a weight of 1 (the default)
... count = count.replace(Symbol, type(S.One))
... return count
>>> my_measure(g)
8
>>> my_measure(h)
14
>>> 15./8 > 1.7 # 1.7 is the default ratio
True
>>> simplify(g, measure=my_measure)
-log(a)*log(b) + log(a) + log(b)
Note that because ``simplify()`` internally tries many different
simplification strategies and then compares them using the measure
function, we get a completely different result that is still different
from the input expression by doing this.
If ``rational=True``, Floats will be recast as Rationals before simplification.
If ``rational=None``, Floats will be recast as Rationals but the result will
be recast as Floats. If rational=False(default) then nothing will be done
to the Floats.
If ``inverse=True``, it will be assumed that a composition of inverse
functions, such as sin and asin, can be cancelled in any order.
For example, ``asin(sin(x))`` will yield ``x`` without checking whether
x belongs to the set where this relation is true. The default is
False.
Note that ``simplify()`` automatically calls ``doit()`` on the final
expression. You can avoid this behavior by passing ``doit=False`` as
an argument.
Also, it should be noted that simplifying a boolean expression is not
well defined. If the expression prefers automatic evaluation (such as
:obj:`~.Eq()` or :obj:`~.Or()`), simplification will return ``True`` or
``False`` if truth value can be determined. If the expression is not
evaluated by default (such as :obj:`~.Predicate()`), simplification will
not reduce it and you should use :func:`~.refine()` or :func:`~.ask()`
function. This inconsistency will be resolved in future version.
See Also
========
sympy.assumptions.refine.refine : Simplification using assumptions.
sympy.assumptions.ask.ask : Query for boolean expressions using assumptions.
"""
def shorter(*choices):
"""
Return the choice that has the fewest ops. In case of a tie,
the expression listed first is selected.
"""
if not has_variety(choices):
return choices[0]
return min(choices, key=measure)
def done(e):
rv = e.doit() if doit else e
return shorter(rv, collect_abs(rv))
expr = sympify(expr, rational=rational)
kwargs = dict(
ratio=kwargs.get('ratio', ratio),
measure=kwargs.get('measure', measure),
rational=kwargs.get('rational', rational),
inverse=kwargs.get('inverse', inverse),
doit=kwargs.get('doit', doit))
# no routine for Expr needs to check for is_zero
if isinstance(expr, Expr) and expr.is_zero:
return S.Zero if not expr.is_Number else expr
_eval_simplify = getattr(expr, '_eval_simplify', None)
if _eval_simplify is not None:
return _eval_simplify(**kwargs)
original_expr = expr = collect_abs(signsimp(expr))
if not isinstance(expr, Basic) or not expr.args: # XXX: temporary hack
return expr
if inverse and expr.has(Function):
expr = inversecombine(expr)
if not expr.args: # simplified to atomic
return expr
# do deep simplification
handled = Add, Mul, Pow, ExpBase
expr = expr.replace(
# here, checking for x.args is not enough because Basic has
# args but Basic does not always play well with replace, e.g.
# when simultaneous is True found expressions will be masked
# off with a Dummy but not all Basic objects in an expression
# can be replaced with a Dummy
lambda x: isinstance(x, Expr) and x.args and not isinstance(
x, handled),
lambda x: x.func(*[simplify(i, **kwargs) for i in x.args]),
simultaneous=False)
if not isinstance(expr, handled):
return done(expr)
if not expr.is_commutative:
expr = nc_simplify(expr)
# TODO: Apply different strategies, considering expression pattern:
# is it a purely rational function? Is there any trigonometric function?...
# See also https://github.com/sympy/sympy/pull/185.
# rationalize Floats
floats = False
if rational is not False and expr.has(Float):
floats = True
expr = nsimplify(expr, rational=True)
expr = _bottom_up(expr, lambda w: getattr(w, 'normal', lambda: w)())
expr = Mul(*powsimp(expr).as_content_primitive())
_e = cancel(expr)
expr1 = shorter(_e, _mexpand(_e).cancel()) # issue 6829
expr2 = shorter(together(expr, deep=True), together(expr1, deep=True))
if ratio is S.Infinity:
expr = expr2
else:
expr = shorter(expr2, expr1, expr)
if not isinstance(expr, Basic): # XXX: temporary hack
return expr
expr = factor_terms(expr, sign=False)
# must come before `Piecewise` since this introduces more `Piecewise` terms
if expr.has(sign):
expr = expr.rewrite(Abs)
# Deal with Piecewise separately to avoid recursive growth of expressions
if expr.has(Piecewise):
# Fold into a single Piecewise
expr = piecewise_fold(expr)
# Apply doit, if doit=True
expr = done(expr)
# Still a Piecewise?
if expr.has(Piecewise):
# Fold into a single Piecewise, in case doit lead to some
# expressions being Piecewise
expr = piecewise_fold(expr)
# kroneckersimp also affects Piecewise
if expr.has(KroneckerDelta):
expr = kroneckersimp(expr)
# Still a Piecewise?
if expr.has(Piecewise):
# Do not apply doit on the segments as it has already
# been done above, but simplify
expr = piecewise_simplify(expr, deep=True, doit=False)
# Still a Piecewise?
if expr.has(Piecewise):
# Try factor common terms
expr = shorter(expr, factor_terms(expr))
# As all expressions have been simplified above with the
# complete simplify, nothing more needs to be done here
return expr
# hyperexpand automatically only works on hypergeometric terms
# Do this after the Piecewise part to avoid recursive expansion
expr = hyperexpand(expr)
if expr.has(KroneckerDelta):
expr = kroneckersimp(expr)
if expr.has(BesselBase):
expr = besselsimp(expr)
if expr.has(TrigonometricFunction, HyperbolicFunction):
expr = trigsimp(expr, deep=True)
if expr.has(log):
expr = shorter(expand_log(expr, deep=True), logcombine(expr))
if expr.has(CombinatorialFunction, gamma):
# expression with gamma functions or non-integer arguments is
# automatically passed to gammasimp
expr = combsimp(expr)
if expr.has(Sum):
expr = sum_simplify(expr, **kwargs)
if expr.has(Integral):
expr = expr.xreplace({
i: factor_terms(i) for i in expr.atoms(Integral)})
if expr.has(Product):
expr = product_simplify(expr, **kwargs)
from sympy.physics.units import Quantity
if expr.has(Quantity):
from sympy.physics.units.util import quantity_simplify
expr = quantity_simplify(expr)
short = shorter(powsimp(expr, combine='exp', deep=True), powsimp(expr), expr)
short = shorter(short, cancel(short))
short = shorter(short, factor_terms(short), expand_power_exp(expand_mul(short)))
if short.has(TrigonometricFunction, HyperbolicFunction, ExpBase, exp):
short = exptrigsimp(short)
# get rid of hollow 2-arg Mul factorization
hollow_mul = Transform(
lambda x: Mul(*x.args),
lambda x:
x.is_Mul and
len(x.args) == 2 and
x.args[0].is_Number and
x.args[1].is_Add and
x.is_commutative)
expr = short.xreplace(hollow_mul)
numer, denom = expr.as_numer_denom()
if denom.is_Add:
n, d = fraction(radsimp(1/denom, symbolic=False, max_terms=1))
if n is not S.One:
expr = (numer*n).expand()/d
if expr.could_extract_minus_sign():
n, d = fraction(expr)
if d != 0:
expr = signsimp(-n/(-d))
if measure(expr) > ratio*measure(original_expr):
expr = original_expr
# restore floats
if floats and rational is None:
expr = nfloat(expr, exponent=False)
return done(expr)
def sum_simplify(s, **kwargs):
"""Main function for Sum simplification"""
if not isinstance(s, Add):
s = s.xreplace({a: sum_simplify(a, **kwargs)
for a in s.atoms(Add) if a.has(Sum)})
s = expand(s)
if not isinstance(s, Add):
return s
terms = s.args
s_t = [] # Sum Terms
o_t = [] # Other Terms
for term in terms:
sum_terms, other = sift(Mul.make_args(term),
lambda i: isinstance(i, Sum), binary=True)
if not sum_terms:
o_t.append(term)
continue
other = [Mul(*other)]
s_t.append(Mul(*(other + [s._eval_simplify(**kwargs) for s in sum_terms])))
result = Add(sum_combine(s_t), *o_t)
return result
def sum_combine(s_t):
"""Helper function for Sum simplification
Attempts to simplify a list of sums, by combining limits / sum function's
returns the simplified sum
"""
used = [False] * len(s_t)
for method in range(2):
for i, s_term1 in enumerate(s_t):
if not used[i]:
for j, s_term2 in enumerate(s_t):
if not used[j] and i != j:
temp = sum_add(s_term1, s_term2, method)
if isinstance(temp, (Sum, Mul)):
s_t[i] = temp
s_term1 = s_t[i]
used[j] = True
result = S.Zero
for i, s_term in enumerate(s_t):
if not used[i]:
result = Add(result, s_term)
return result
def factor_sum(self, limits=None, radical=False, clear=False, fraction=False, sign=True):
"""Return Sum with constant factors extracted.
If ``limits`` is specified then ``self`` is the summand; the other
keywords are passed to ``factor_terms``.
Examples
========
>>> from sympy import Sum
>>> from sympy.abc import x, y
>>> from sympy.simplify.simplify import factor_sum
>>> s = Sum(x*y, (x, 1, 3))
>>> factor_sum(s)
y*Sum(x, (x, 1, 3))
>>> factor_sum(s.function, s.limits)
y*Sum(x, (x, 1, 3))
"""
# XXX deprecate in favor of direct call to factor_terms
kwargs = dict(radical=radical, clear=clear,
fraction=fraction, sign=sign)
expr = Sum(self, *limits) if limits else self
return factor_terms(expr, **kwargs)
def sum_add(self, other, method=0):
"""Helper function for Sum simplification"""
#we know this is something in terms of a constant * a sum
#so we temporarily put the constants inside for simplification
#then simplify the result
def __refactor(val):
args = Mul.make_args(val)
sumv = next(x for x in args if isinstance(x, Sum))
constant = Mul(*[x for x in args if x != sumv])
return Sum(constant * sumv.function, *sumv.limits)
if isinstance(self, Mul):
rself = __refactor(self)
else:
rself = self
if isinstance(other, Mul):
rother = __refactor(other)
else:
rother = other
if type(rself) is type(rother):
if method == 0:
if rself.limits == rother.limits:
return factor_sum(Sum(rself.function + rother.function, *rself.limits))
elif method == 1:
if simplify(rself.function - rother.function) == 0:
if len(rself.limits) == len(rother.limits) == 1:
i = rself.limits[0][0]
x1 = rself.limits[0][1]
y1 = rself.limits[0][2]
j = rother.limits[0][0]
x2 = rother.limits[0][1]
y2 = rother.limits[0][2]
if i == j:
if x2 == y1 + 1:
return factor_sum(Sum(rself.function, (i, x1, y2)))
elif x1 == y2 + 1:
return factor_sum(Sum(rself.function, (i, x2, y1)))
return Add(self, other)
def product_simplify(s, **kwargs):
"""Main function for Product simplification"""
terms = Mul.make_args(s)
p_t = [] # Product Terms
o_t = [] # Other Terms
deep = kwargs.get('deep', True)
for term in terms:
if isinstance(term, Product):
if deep:
p_t.append(Product(term.function.simplify(**kwargs),
*term.limits))
else:
p_t.append(term)
else:
o_t.append(term)
used = [False] * len(p_t)
for method in range(2):
for i, p_term1 in enumerate(p_t):
if not used[i]:
for j, p_term2 in enumerate(p_t):
if not used[j] and i != j:
tmp_prod = product_mul(p_term1, p_term2, method)
if isinstance(tmp_prod, Product):
p_t[i] = tmp_prod
used[j] = True
result = Mul(*o_t)
for i, p_term in enumerate(p_t):
if not used[i]:
result = Mul(result, p_term)
return result
def product_mul(self, other, method=0):
"""Helper function for Product simplification"""
if type(self) is type(other):
if method == 0:
if self.limits == other.limits:
return Product(self.function * other.function, *self.limits)
elif method == 1:
if simplify(self.function - other.function) == 0:
if len(self.limits) == len(other.limits) == 1:
i = self.limits[0][0]
x1 = self.limits[0][1]
y1 = self.limits[0][2]
j = other.limits[0][0]
x2 = other.limits[0][1]
y2 = other.limits[0][2]
if i == j:
if x2 == y1 + 1:
return Product(self.function, (i, x1, y2))
elif x1 == y2 + 1:
return Product(self.function, (i, x2, y1))
return Mul(self, other)
def _nthroot_solve(p, n, prec):
"""
helper function for ``nthroot``
It denests ``p**Rational(1, n)`` using its minimal polynomial
"""
from sympy.solvers import solve
while n % 2 == 0:
p = sqrtdenest(sqrt(p))
n = n // 2
if n == 1:
return p
pn = p**Rational(1, n)
x = Symbol('x')
f = _minimal_polynomial_sq(p, n, x)
if f is None:
return None
sols = solve(f, x)
for sol in sols:
if abs(sol - pn).n() < 1./10**prec:
sol = sqrtdenest(sol)
if _mexpand(sol**n) == p:
return sol
def logcombine(expr, force=False):
"""
Takes logarithms and combines them using the following rules:
- log(x) + log(y) == log(x*y) if both are positive
- a*log(x) == log(x**a) if x is positive and a is real
If ``force`` is ``True`` then the assumptions above will be assumed to hold if
there is no assumption already in place on a quantity. For example, if
``a`` is imaginary or the argument negative, force will not perform a
combination but if ``a`` is a symbol with no assumptions the change will
take place.
Examples
========
>>> from sympy import Symbol, symbols, log, logcombine, I
>>> from sympy.abc import a, x, y, z
>>> logcombine(a*log(x) + log(y) - log(z))
a*log(x) + log(y) - log(z)
>>> logcombine(a*log(x) + log(y) - log(z), force=True)
log(x**a*y/z)
>>> x,y,z = symbols('x,y,z', positive=True)
>>> a = Symbol('a', real=True)
>>> logcombine(a*log(x) + log(y) - log(z))
log(x**a*y/z)
The transformation is limited to factors and/or terms that
contain logs, so the result depends on the initial state of
expansion:
>>> eq = (2 + 3*I)*log(x)
>>> logcombine(eq, force=True) == eq
True
>>> logcombine(eq.expand(), force=True)
log(x**2) + I*log(x**3)
See Also
========
posify: replace all symbols with symbols having positive assumptions
sympy.core.function.expand_log: expand the logarithms of products
and powers; the opposite of logcombine
"""
def f(rv):
if not (rv.is_Add or rv.is_Mul):
return rv
def gooda(a):
# bool to tell whether the leading ``a`` in ``a*log(x)``
# could appear as log(x**a)
return (a is not S.NegativeOne and # -1 *could* go, but we disallow
(a.is_extended_real or force and a.is_extended_real is not False))
def goodlog(l):
# bool to tell whether log ``l``'s argument can combine with others
a = l.args[0]
return a.is_positive or force and a.is_nonpositive is not False
other = []
logs = []
log1 = defaultdict(list)
for a in Add.make_args(rv):
if isinstance(a, log) and goodlog(a):
log1[()].append(([], a))
elif not a.is_Mul:
other.append(a)
else:
ot = []
co = []
lo = []
for ai in a.args:
if ai.is_Rational and ai < 0:
ot.append(S.NegativeOne)
co.append(-ai)
elif isinstance(ai, log) and goodlog(ai):
lo.append(ai)
elif gooda(ai):
co.append(ai)
else:
ot.append(ai)
if len(lo) > 1:
logs.append((ot, co, lo))
elif lo:
log1[tuple(ot)].append((co, lo[0]))
else:
other.append(a)
# if there is only one log in other, put it with the
# good logs
if len(other) == 1 and isinstance(other[0], log):
log1[()].append(([], other.pop()))
# if there is only one log at each coefficient and none have
# an exponent to place inside the log then there is nothing to do
if not logs and all(len(log1[k]) == 1 and log1[k][0] == [] for k in log1):
return rv
# collapse multi-logs as far as possible in a canonical way
# TODO: see if x*log(a)+x*log(a)*log(b) -> x*log(a)*(1+log(b))?
# -- in this case, it's unambiguous, but if it were were a log(c) in
# each term then it's arbitrary whether they are grouped by log(a) or
# by log(c). So for now, just leave this alone; it's probably better to
# let the user decide
for o, e, l in logs:
l = list(ordered(l))
e = log(l.pop(0).args[0]**Mul(*e))
while l:
li = l.pop(0)
e = log(li.args[0]**e)
c, l = Mul(*o), e
if isinstance(l, log): # it should be, but check to be sure
log1[(c,)].append(([], l))
else:
other.append(c*l)
# logs that have the same coefficient can multiply
for k in list(log1.keys()):
log1[Mul(*k)] = log(logcombine(Mul(*[
l.args[0]**Mul(*c) for c, l in log1.pop(k)]),
force=force), evaluate=False)
# logs that have oppositely signed coefficients can divide
for k in ordered(list(log1.keys())):
if k not in log1: # already popped as -k
continue
if -k in log1:
# figure out which has the minus sign; the one with
# more op counts should be the one
num, den = k, -k
if num.count_ops() > den.count_ops():
num, den = den, num
other.append(
num*log(log1.pop(num).args[0]/log1.pop(den).args[0],
evaluate=False))
else:
other.append(k*log1.pop(k))
return Add(*other)
return _bottom_up(expr, f)
def inversecombine(expr):
"""Simplify the composition of a function and its inverse.
Explanation
===========
No attention is paid to whether the inverse is a left inverse or a
right inverse; thus, the result will in general not be equivalent
to the original expression.
Examples
========
>>> from sympy.simplify.simplify import inversecombine
>>> from sympy import asin, sin, log, exp
>>> from sympy.abc import x
>>> inversecombine(asin(sin(x)))
x
>>> inversecombine(2*log(exp(3*x)))
6*x
"""
def f(rv):
if isinstance(rv, log):
if isinstance(rv.args[0], exp) or (rv.args[0].is_Pow and rv.args[0].base == S.Exp1):
rv = rv.args[0].exp
elif rv.is_Function and hasattr(rv, "inverse"):
if (len(rv.args) == 1 and len(rv.args[0].args) == 1 and
isinstance(rv.args[0], rv.inverse(argindex=1))):
rv = rv.args[0].args[0]
if rv.is_Pow and rv.base == S.Exp1:
if isinstance(rv.exp, log):
rv = rv.exp.args[0]
return rv
return _bottom_up(expr, f)
def kroneckersimp(expr):
"""
Simplify expressions with KroneckerDelta.
The only simplification currently attempted is to identify multiplicative cancellation:
Examples
========
>>> from sympy import KroneckerDelta, kroneckersimp
>>> from sympy.abc import i
>>> kroneckersimp(1 + KroneckerDelta(0, i) * KroneckerDelta(1, i))
1
"""
def args_cancel(args1, args2):
for i1 in range(2):
for i2 in range(2):
a1 = args1[i1]
a2 = args2[i2]
a3 = args1[(i1 + 1) % 2]
a4 = args2[(i2 + 1) % 2]
if Eq(a1, a2) is S.true and Eq(a3, a4) is S.false:
return True
return False
def cancel_kronecker_mul(m):
args = m.args
deltas = [a for a in args if isinstance(a, KroneckerDelta)]
for delta1, delta2 in subsets(deltas, 2):
args1 = delta1.args
args2 = delta2.args
if args_cancel(args1, args2):
return S.Zero * m # In case of oo etc
return m
if not expr.has(KroneckerDelta):
return expr
if expr.has(Piecewise):
expr = expr.rewrite(KroneckerDelta)
newexpr = expr
expr = None
while newexpr != expr:
expr = newexpr
newexpr = expr.replace(lambda e: isinstance(e, Mul), cancel_kronecker_mul)
return expr
def besselsimp(expr):
"""
Simplify bessel-type functions.
Explanation
===========
This routine tries to simplify bessel-type functions. Currently it only
works on the Bessel J and I functions, however. It works by looking at all
such functions in turn, and eliminating factors of "I" and "-1" (actually
their polar equivalents) in front of the argument. Then, functions of
half-integer order are rewritten using strigonometric functions and
functions of integer order (> 1) are rewritten using functions
of low order. Finally, if the expression was changed, compute
factorization of the result with factor().
>>> from sympy import besselj, besseli, besselsimp, polar_lift, I, S
>>> from sympy.abc import z, nu
>>> besselsimp(besselj(nu, z*polar_lift(-1)))
exp(I*pi*nu)*besselj(nu, z)
>>> besselsimp(besseli(nu, z*polar_lift(-I)))
exp(-I*pi*nu/2)*besselj(nu, z)
>>> besselsimp(besseli(S(-1)/2, z))
sqrt(2)*cosh(z)/(sqrt(pi)*sqrt(z))
>>> besselsimp(z*besseli(0, z) + z*(besseli(2, z))/2 + besseli(1, z))
3*z*besseli(0, z)/2
"""
# TODO
# - better algorithm?
# - simplify (cos(pi*b)*besselj(b,z) - besselj(-b,z))/sin(pi*b) ...
# - use contiguity relations?
def replacer(fro, to, factors):
factors = set(factors)
def repl(nu, z):
if factors.intersection(Mul.make_args(z)):
return to(nu, z)
return fro(nu, z)
return repl
def torewrite(fro, to):
def tofunc(nu, z):
return fro(nu, z).rewrite(to)
return tofunc
def tominus(fro):
def tofunc(nu, z):
return exp(I*pi*nu)*fro(nu, exp_polar(-I*pi)*z)
return tofunc
orig_expr = expr
ifactors = [I, exp_polar(I*pi/2), exp_polar(-I*pi/2)]
expr = expr.replace(
besselj, replacer(besselj,
torewrite(besselj, besseli), ifactors))
expr = expr.replace(
besseli, replacer(besseli,
torewrite(besseli, besselj), ifactors))
minusfactors = [-1, exp_polar(I*pi)]
expr = expr.replace(
besselj, replacer(besselj, tominus(besselj), minusfactors))
expr = expr.replace(
besseli, replacer(besseli, tominus(besseli), minusfactors))
z0 = Dummy('z')
def expander(fro):
def repl(nu, z):
if (nu % 1) == S.Half:
return simplify(trigsimp(unpolarify(
fro(nu, z0).rewrite(besselj).rewrite(jn).expand(
func=True)).subs(z0, z)))
elif nu.is_Integer and nu > 1:
return fro(nu, z).expand(func=True)
return fro(nu, z)
return repl
expr = expr.replace(besselj, expander(besselj))
expr = expr.replace(bessely, expander(bessely))
expr = expr.replace(besseli, expander(besseli))
expr = expr.replace(besselk, expander(besselk))
def _bessel_simp_recursion(expr):
def _use_recursion(bessel, expr):
while True:
bessels = expr.find(lambda x: isinstance(x, bessel))
try:
for ba in sorted(bessels, key=lambda x: re(x.args[0])):
a, x = ba.args
bap1 = bessel(a+1, x)
bap2 = bessel(a+2, x)
if expr.has(bap1) and expr.has(bap2):
expr = expr.subs(ba, 2*(a+1)/x*bap1 - bap2)
break
else:
return expr
except (ValueError, TypeError):
return expr
if expr.has(besselj):
expr = _use_recursion(besselj, expr)
if expr.has(bessely):
expr = _use_recursion(bessely, expr)
return expr
expr = _bessel_simp_recursion(expr)
if expr != orig_expr:
expr = expr.factor()
return expr
def nthroot(expr, n, max_len=4, prec=15):
"""
Compute a real nth-root of a sum of surds.
Parameters
==========
expr : sum of surds
n : integer
max_len : maximum number of surds passed as constants to ``nsimplify``
Algorithm
=========
First ``nsimplify`` is used to get a candidate root; if it is not a
root the minimal polynomial is computed; the answer is one of its
roots.
Examples
========
>>> from sympy.simplify.simplify import nthroot
>>> from sympy import sqrt
>>> nthroot(90 + 34*sqrt(7), 3)
sqrt(7) + 3
"""
expr = sympify(expr)
n = sympify(n)
p = expr**Rational(1, n)
if not n.is_integer:
return p
if not _is_sum_surds(expr):
return p
surds = []
coeff_muls = [x.as_coeff_Mul() for x in expr.args]
for x, y in coeff_muls:
if not x.is_rational:
return p
if y is S.One:
continue
if not (y.is_Pow and y.exp == S.Half and y.base.is_integer):
return p
surds.append(y)
surds.sort()
surds = surds[:max_len]
if expr < 0 and n % 2 == 1:
p = (-expr)**Rational(1, n)
a = nsimplify(p, constants=surds)
res = a if _mexpand(a**n) == _mexpand(-expr) else p
return -res
a = nsimplify(p, constants=surds)
if _mexpand(a) is not _mexpand(p) and _mexpand(a**n) == _mexpand(expr):
return _mexpand(a)
expr = _nthroot_solve(expr, n, prec)
if expr is None:
return p
return expr
def nsimplify(expr, constants=(), tolerance=None, full=False, rational=None,
rational_conversion='base10'):
"""
Find a simple representation for a number or, if there are free symbols or
if ``rational=True``, then replace Floats with their Rational equivalents. If
no change is made and rational is not False then Floats will at least be
converted to Rationals.
Explanation
===========
For numerical expressions, a simple formula that numerically matches the
given numerical expression is sought (and the input should be possible
to evalf to a precision of at least 30 digits).
Optionally, a list of (rationally independent) constants to
include in the formula may be given.
A lower tolerance may be set to find less exact matches. If no tolerance
is given then the least precise value will set the tolerance (e.g. Floats
default to 15 digits of precision, so would be tolerance=10**-15).
With ``full=True``, a more extensive search is performed
(this is useful to find simpler numbers when the tolerance
is set low).
When converting to rational, if rational_conversion='base10' (the default), then
convert floats to rationals using their base-10 (string) representation.
When rational_conversion='exact' it uses the exact, base-2 representation.
Examples
========
>>> from sympy import nsimplify, sqrt, GoldenRatio, exp, I, pi
>>> nsimplify(4/(1+sqrt(5)), [GoldenRatio])
-2 + 2*GoldenRatio
>>> nsimplify((1/(exp(3*pi*I/5)+1)))
1/2 - I*sqrt(sqrt(5)/10 + 1/4)
>>> nsimplify(I**I, [pi])
exp(-pi/2)
>>> nsimplify(pi, tolerance=0.01)
22/7
>>> nsimplify(0.333333333333333, rational=True, rational_conversion='exact')
6004799503160655/18014398509481984
>>> nsimplify(0.333333333333333, rational=True)
1/3
See Also
========
sympy.core.function.nfloat
"""
try:
return sympify(as_int(expr))
except (TypeError, ValueError):
pass
expr = sympify(expr).xreplace({
Float('inf'): S.Infinity,
Float('-inf'): S.NegativeInfinity,
})
if expr is S.Infinity or expr is S.NegativeInfinity:
return expr
if rational or expr.free_symbols:
return _real_to_rational(expr, tolerance, rational_conversion)
# SymPy's default tolerance for Rationals is 15; other numbers may have
# lower tolerances set, so use them to pick the largest tolerance if None
# was given
if tolerance is None:
tolerance = 10**-min([15] +
[mpmath.libmp.libmpf.prec_to_dps(n._prec)
for n in expr.atoms(Float)])
# XXX should prec be set independent of tolerance or should it be computed
# from tolerance?
prec = 30
bprec = int(prec*3.33)
constants_dict = {}
for constant in constants:
constant = sympify(constant)
v = constant.evalf(prec)
if not v.is_Float:
raise ValueError("constants must be real-valued")
constants_dict[str(constant)] = v._to_mpmath(bprec)
exprval = expr.evalf(prec, chop=True)
re, im = exprval.as_real_imag()
# safety check to make sure that this evaluated to a number
if not (re.is_Number and im.is_Number):
return expr
def nsimplify_real(x):
orig = mpmath.mp.dps
xv = x._to_mpmath(bprec)
try:
# We'll be happy with low precision if a simple fraction
if not (tolerance or full):
mpmath.mp.dps = 15
rat = mpmath.pslq([xv, 1])
if rat is not None:
return Rational(-int(rat[1]), int(rat[0]))
mpmath.mp.dps = prec
newexpr = mpmath.identify(xv, constants=constants_dict,
tol=tolerance, full=full)
if not newexpr:
raise ValueError
if full:
newexpr = newexpr[0]
expr = sympify(newexpr)
if x and not expr: # don't let x become 0
raise ValueError
if expr.is_finite is False and xv not in [mpmath.inf, mpmath.ninf]:
raise ValueError
return expr
finally:
# even though there are returns above, this is executed
# before leaving
mpmath.mp.dps = orig
try:
if re:
re = nsimplify_real(re)
if im:
im = nsimplify_real(im)
except ValueError:
if rational is None:
return _real_to_rational(expr, rational_conversion=rational_conversion)
return expr
rv = re + im*S.ImaginaryUnit
# if there was a change or rational is explicitly not wanted
# return the value, else return the Rational representation
if rv != expr or rational is False:
return rv
return _real_to_rational(expr, rational_conversion=rational_conversion)
def _real_to_rational(expr, tolerance=None, rational_conversion='base10'):
"""
Replace all reals in expr with rationals.
Examples
========
>>> from sympy.simplify.simplify import _real_to_rational
>>> from sympy.abc import x
>>> _real_to_rational(.76 + .1*x**.5)
sqrt(x)/10 + 19/25
If rational_conversion='base10', this uses the base-10 string. If
rational_conversion='exact', the exact, base-2 representation is used.
>>> _real_to_rational(0.333333333333333, rational_conversion='exact')
6004799503160655/18014398509481984
>>> _real_to_rational(0.333333333333333)
1/3
"""
expr = _sympify(expr)
inf = Float('inf')
p = expr
reps = {}
reduce_num = None
if tolerance is not None and tolerance < 1:
reduce_num = ceiling(1/tolerance)
for fl in p.atoms(Float):
key = fl
if reduce_num is not None:
r = Rational(fl).limit_denominator(reduce_num)
elif (tolerance is not None and tolerance >= 1 and
fl.is_Integer is False):
r = Rational(tolerance*round(fl/tolerance)
).limit_denominator(int(tolerance))
else:
if rational_conversion == 'exact':
r = Rational(fl)
reps[key] = r
continue
elif rational_conversion != 'base10':
raise ValueError("rational_conversion must be 'base10' or 'exact'")
r = nsimplify(fl, rational=False)
# e.g. log(3).n() -> log(3) instead of a Rational
if fl and not r:
r = Rational(fl)
elif not r.is_Rational:
if fl in (inf, -inf):
r = S.ComplexInfinity
elif fl < 0:
fl = -fl
d = Pow(10, int(mpmath.log(fl)/mpmath.log(10)))
r = -Rational(str(fl/d))*d
elif fl > 0:
d = Pow(10, int(mpmath.log(fl)/mpmath.log(10)))
r = Rational(str(fl/d))*d
else:
r = S.Zero
reps[key] = r
return p.subs(reps, simultaneous=True)
def clear_coefficients(expr, rhs=S.Zero):
"""Return `p, r` where `p` is the expression obtained when Rational
additive and multiplicative coefficients of `expr` have been stripped
away in a naive fashion (i.e. without simplification). The operations
needed to remove the coefficients will be applied to `rhs` and returned
as `r`.
Examples
========
>>> from sympy.simplify.simplify import clear_coefficients
>>> from sympy.abc import x, y
>>> from sympy import Dummy
>>> expr = 4*y*(6*x + 3)
>>> clear_coefficients(expr - 2)
(y*(2*x + 1), 1/6)
When solving 2 or more expressions like `expr = a`,
`expr = b`, etc..., it is advantageous to provide a Dummy symbol
for `rhs` and simply replace it with `a`, `b`, etc... in `r`.
>>> rhs = Dummy('rhs')
>>> clear_coefficients(expr, rhs)
(y*(2*x + 1), _rhs/12)
>>> _[1].subs(rhs, 2)
1/6
"""
was = None
free = expr.free_symbols
if expr.is_Rational:
return (S.Zero, rhs - expr)
while expr and was != expr:
was = expr
m, expr = (
expr.as_content_primitive()
if free else
factor_terms(expr).as_coeff_Mul(rational=True))
rhs /= m
c, expr = expr.as_coeff_Add(rational=True)
rhs -= c
expr = signsimp(expr, evaluate = False)
if expr.could_extract_minus_sign():
expr = -expr
rhs = -rhs
return expr, rhs
def nc_simplify(expr, deep=True):
'''
Simplify a non-commutative expression composed of multiplication
and raising to a power by grouping repeated subterms into one power.
Priority is given to simplifications that give the fewest number
of arguments in the end (for example, in a*b*a*b*c*a*b*c simplifying
to (a*b)**2*c*a*b*c gives 5 arguments while a*b*(a*b*c)**2 has 3).
If ``expr`` is a sum of such terms, the sum of the simplified terms
is returned.
Keyword argument ``deep`` controls whether or not subexpressions
nested deeper inside the main expression are simplified. See examples
below. Setting `deep` to `False` can save time on nested expressions
that do not need simplifying on all levels.
Examples
========
>>> from sympy import symbols
>>> from sympy.simplify.simplify import nc_simplify
>>> a, b, c = symbols("a b c", commutative=False)
>>> nc_simplify(a*b*a*b*c*a*b*c)
a*b*(a*b*c)**2
>>> expr = a**2*b*a**4*b*a**4
>>> nc_simplify(expr)
a**2*(b*a**4)**2
>>> nc_simplify(a*b*a*b*c**2*(a*b)**2*c**2)
((a*b)**2*c**2)**2
>>> nc_simplify(a*b*a*b + 2*a*c*a**2*c*a**2*c*a)
(a*b)**2 + 2*(a*c*a)**3
>>> nc_simplify(b**-1*a**-1*(a*b)**2)
a*b
>>> nc_simplify(a**-1*b**-1*c*a)
(b*a)**(-1)*c*a
>>> expr = (a*b*a*b)**2*a*c*a*c
>>> nc_simplify(expr)
(a*b)**4*(a*c)**2
>>> nc_simplify(expr, deep=False)
(a*b*a*b)**2*(a*c)**2
'''
if isinstance(expr, MatrixExpr):
expr = expr.doit(inv_expand=False)
_Add, _Mul, _Pow, _Symbol = MatAdd, MatMul, MatPow, MatrixSymbol
else:
_Add, _Mul, _Pow, _Symbol = Add, Mul, Pow, Symbol
# =========== Auxiliary functions ========================
def _overlaps(args):
# Calculate a list of lists m such that m[i][j] contains the lengths
# of all possible overlaps between args[:i+1] and args[i+1+j:].
# An overlap is a suffix of the prefix that matches a prefix
# of the suffix.
# For example, let expr=c*a*b*a*b*a*b*a*b. Then m[3][0] contains
# the lengths of overlaps of c*a*b*a*b with a*b*a*b. The overlaps
# are a*b*a*b, a*b and the empty word so that m[3][0]=[4,2,0].
# All overlaps rather than only the longest one are recorded
# because this information helps calculate other overlap lengths.
m = [[([1, 0] if a == args[0] else [0]) for a in args[1:]]]
for i in range(1, len(args)):
overlaps = []
j = 0
for j in range(len(args) - i - 1):
overlap = []
for v in m[i-1][j+1]:
if j + i + 1 + v < len(args) and args[i] == args[j+i+1+v]:
overlap.append(v + 1)
overlap += [0]
overlaps.append(overlap)
m.append(overlaps)
return m
def _reduce_inverses(_args):
# replace consecutive negative powers by an inverse
# of a product of positive powers, e.g. a**-1*b**-1*c
# will simplify to (a*b)**-1*c;
# return that new args list and the number of negative
# powers in it (inv_tot)
inv_tot = 0 # total number of inverses
inverses = []
args = []
for arg in _args:
if isinstance(arg, _Pow) and arg.args[1] < 0:
inverses = [arg**-1] + inverses
inv_tot += 1
else:
if len(inverses) == 1:
args.append(inverses[0]**-1)
elif len(inverses) > 1:
args.append(_Pow(_Mul(*inverses), -1))
inv_tot -= len(inverses) - 1
inverses = []
args.append(arg)
if inverses:
args.append(_Pow(_Mul(*inverses), -1))
inv_tot -= len(inverses) - 1
return inv_tot, tuple(args)
def get_score(s):
# compute the number of arguments of s
# (including in nested expressions) overall
# but ignore exponents
if isinstance(s, _Pow):
return get_score(s.args[0])
elif isinstance(s, (_Add, _Mul)):
return sum([get_score(a) for a in s.args])
return 1
def compare(s, alt_s):
# compare two possible simplifications and return a
# "better" one
if s != alt_s and get_score(alt_s) < get_score(s):
return alt_s
return s
# ========================================================
if not isinstance(expr, (_Add, _Mul, _Pow)) or expr.is_commutative:
return expr
args = expr.args[:]
if isinstance(expr, _Pow):
if deep:
return _Pow(nc_simplify(args[0]), args[1]).doit()
else:
return expr
elif isinstance(expr, _Add):
return _Add(*[nc_simplify(a, deep=deep) for a in args]).doit()
else:
# get the non-commutative part
c_args, args = expr.args_cnc()
com_coeff = Mul(*c_args)
if com_coeff != 1:
return com_coeff*nc_simplify(expr/com_coeff, deep=deep)
inv_tot, args = _reduce_inverses(args)
# if most arguments are negative, work with the inverse
# of the expression, e.g. a**-1*b*a**-1*c**-1 will become
# (c*a*b**-1*a)**-1 at the end so can work with c*a*b**-1*a
invert = False
if inv_tot > len(args)/2:
invert = True
args = [a**-1 for a in args[::-1]]
if deep:
args = tuple(nc_simplify(a) for a in args)
m = _overlaps(args)
# simps will be {subterm: end} where `end` is the ending
# index of a sequence of repetitions of subterm;
# this is for not wasting time with subterms that are part
# of longer, already considered sequences
simps = {}
post = 1
pre = 1
# the simplification coefficient is the number of
# arguments by which contracting a given sequence
# would reduce the word; e.g. in a*b*a*b*c*a*b*c,
# contracting a*b*a*b to (a*b)**2 removes 3 arguments
# while a*b*c*a*b*c to (a*b*c)**2 removes 6. It's
# better to contract the latter so simplification
# with a maximum simplification coefficient will be chosen
max_simp_coeff = 0
simp = None # information about future simplification
for i in range(1, len(args)):
simp_coeff = 0
l = 0 # length of a subterm
p = 0 # the power of a subterm
if i < len(args) - 1:
rep = m[i][0]
start = i # starting index of the repeated sequence
end = i+1 # ending index of the repeated sequence
if i == len(args)-1 or rep == [0]:
# no subterm is repeated at this stage, at least as
# far as the arguments are concerned - there may be
# a repetition if powers are taken into account
if (isinstance(args[i], _Pow) and
not isinstance(args[i].args[0], _Symbol)):
subterm = args[i].args[0].args
l = len(subterm)
if args[i-l:i] == subterm:
# e.g. a*b in a*b*(a*b)**2 is not repeated
# in args (= [a, b, (a*b)**2]) but it
# can be matched here
p += 1
start -= l
if args[i+1:i+1+l] == subterm:
# e.g. a*b in (a*b)**2*a*b
p += 1
end += l
if p:
p += args[i].args[1]
else:
continue
else:
l = rep[0] # length of the longest repeated subterm at this point
start -= l - 1
subterm = args[start:end]
p = 2
end += l
if subterm in simps and simps[subterm] >= start:
# the subterm is part of a sequence that
# has already been considered
continue
# count how many times it's repeated
while end < len(args):
if l in m[end-1][0]:
p += 1
end += l
elif isinstance(args[end], _Pow) and args[end].args[0].args == subterm:
# for cases like a*b*a*b*(a*b)**2*a*b
p += args[end].args[1]
end += 1
else:
break
# see if another match can be made, e.g.
# for b*a**2 in b*a**2*b*a**3 or a*b in
# a**2*b*a*b
pre_exp = 0
pre_arg = 1
if start - l >= 0 and args[start-l+1:start] == subterm[1:]:
if isinstance(subterm[0], _Pow):
pre_arg = subterm[0].args[0]
exp = subterm[0].args[1]
else:
pre_arg = subterm[0]
exp = 1
if isinstance(args[start-l], _Pow) and args[start-l].args[0] == pre_arg:
pre_exp = args[start-l].args[1] - exp
start -= l
p += 1
elif args[start-l] == pre_arg:
pre_exp = 1 - exp
start -= l
p += 1
post_exp = 0
post_arg = 1
if end + l - 1 < len(args) and args[end:end+l-1] == subterm[:-1]:
if isinstance(subterm[-1], _Pow):
post_arg = subterm[-1].args[0]
exp = subterm[-1].args[1]
else:
post_arg = subterm[-1]
exp = 1
if isinstance(args[end+l-1], _Pow) and args[end+l-1].args[0] == post_arg:
post_exp = args[end+l-1].args[1] - exp
end += l
p += 1
elif args[end+l-1] == post_arg:
post_exp = 1 - exp
end += l
p += 1
# Consider a*b*a**2*b*a**2*b*a:
# b*a**2 is explicitly repeated, but note
# that in this case a*b*a is also repeated
# so there are two possible simplifications:
# a*(b*a**2)**3*a**-1 or (a*b*a)**3
# The latter is obviously simpler.
# But in a*b*a**2*b**2*a**2 the simplifications are
# a*(b*a**2)**2 and (a*b*a)**3*a in which case
# it's better to stick with the shorter subterm
if post_exp and exp % 2 == 0 and start > 0:
exp = exp/2
_pre_exp = 1
_post_exp = 1
if isinstance(args[start-1], _Pow) and args[start-1].args[0] == post_arg:
_post_exp = post_exp + exp
_pre_exp = args[start-1].args[1] - exp
elif args[start-1] == post_arg:
_post_exp = post_exp + exp
_pre_exp = 1 - exp
if _pre_exp == 0 or _post_exp == 0:
if not pre_exp:
start -= 1
post_exp = _post_exp
pre_exp = _pre_exp
pre_arg = post_arg
subterm = (post_arg**exp,) + subterm[:-1] + (post_arg**exp,)
simp_coeff += end-start
if post_exp:
simp_coeff -= 1
if pre_exp:
simp_coeff -= 1
simps[subterm] = end
if simp_coeff > max_simp_coeff:
max_simp_coeff = simp_coeff
simp = (start, _Mul(*subterm), p, end, l)
pre = pre_arg**pre_exp
post = post_arg**post_exp
if simp:
subterm = _Pow(nc_simplify(simp[1], deep=deep), simp[2])
pre = nc_simplify(_Mul(*args[:simp[0]])*pre, deep=deep)
post = post*nc_simplify(_Mul(*args[simp[3]:]), deep=deep)
simp = pre*subterm*post
if pre != 1 or post != 1:
# new simplifications may be possible but no need
# to recurse over arguments
simp = nc_simplify(simp, deep=False)
else:
simp = _Mul(*args)
if invert:
simp = _Pow(simp, -1)
# see if factor_nc(expr) is simplified better
if not isinstance(expr, MatrixExpr):
f_expr = factor_nc(expr)
if f_expr != expr:
alt_simp = nc_simplify(f_expr, deep=deep)
simp = compare(simp, alt_simp)
else:
simp = simp.doit(inv_expand=False)
return simp
def dotprodsimp(expr, withsimp=False):
"""Simplification for a sum of products targeted at the kind of blowup that
occurs during summation of products. Intended to reduce expression blowup
during matrix multiplication or other similar operations. Only works with
algebraic expressions and does not recurse into non.
Parameters
==========
withsimp : bool, optional
Specifies whether a flag should be returned along with the expression
to indicate roughly whether simplification was successful. It is used
in ``MatrixArithmetic._eval_pow_by_recursion`` to avoid attempting to
simplify an expression repetitively which does not simplify.
"""
def count_ops_alg(expr):
"""Optimized count algebraic operations with no recursion into
non-algebraic args that ``core.function.count_ops`` does. Also returns
whether rational functions may be present according to negative
exponents of powers or non-number fractions.
Returns
=======
ops, ratfunc : int, bool
``ops`` is the number of algebraic operations starting at the top
level expression (not recursing into non-alg children). ``ratfunc``
specifies whether the expression MAY contain rational functions
which ``cancel`` MIGHT optimize.
"""
ops = 0
args = [expr]
ratfunc = False
while args:
a = args.pop()
if not isinstance(a, Basic):
continue
if a.is_Rational:
if a is not S.One: # -1/3 = NEG + DIV
ops += bool (a.p < 0) + bool (a.q != 1)
elif a.is_Mul:
if a.could_extract_minus_sign():
ops += 1
if a.args[0] is S.NegativeOne:
a = a.as_two_terms()[1]
else:
a = -a
n, d = fraction(a)
if n.is_Integer:
ops += 1 + bool (n < 0)
args.append(d) # won't be -Mul but could be Add
elif d is not S.One:
if not d.is_Integer:
args.append(d)
ratfunc=True
ops += 1
args.append(n) # could be -Mul
else:
ops += len(a.args) - 1
args.extend(a.args)
elif a.is_Add:
laargs = len(a.args)
negs = 0
for ai in a.args:
if ai.could_extract_minus_sign():
negs += 1
ai = -ai
args.append(ai)
ops += laargs - (negs != laargs) # -x - y = NEG + SUB
elif a.is_Pow:
ops += 1
args.append(a.base)
if not ratfunc:
ratfunc = a.exp.is_negative is not False
return ops, ratfunc
def nonalg_subs_dummies(expr, dummies):
"""Substitute dummy variables for non-algebraic expressions to avoid
evaluation of non-algebraic terms that ``polys.polytools.cancel`` does.
"""
if not expr.args:
return expr
if expr.is_Add or expr.is_Mul or expr.is_Pow:
args = None
for i, a in enumerate(expr.args):
c = nonalg_subs_dummies(a, dummies)
if c is a:
continue
if args is None:
args = list(expr.args)
args[i] = c
if args is None:
return expr
return expr.func(*args)
return dummies.setdefault(expr, Dummy())
simplified = False # doesn't really mean simplified, rather "can simplify again"
if isinstance(expr, Basic) and (expr.is_Add or expr.is_Mul or expr.is_Pow):
expr2 = expr.expand(deep=True, modulus=None, power_base=False,
power_exp=False, mul=True, log=False, multinomial=True, basic=False)
if expr2 != expr:
expr = expr2
simplified = True
exprops, ratfunc = count_ops_alg(expr)
if exprops >= 6: # empirically tested cutoff for expensive simplification
if ratfunc:
dummies = {}
expr2 = nonalg_subs_dummies(expr, dummies)
if expr2 is expr or count_ops_alg(expr2)[0] >= 6: # check again after substitution
expr3 = cancel(expr2)
if expr3 != expr2:
expr = expr3.subs([(d, e) for e, d in dummies.items()])
simplified = True
# very special case: x/(x-1) - 1/(x-1) -> 1
elif (exprops == 5 and expr.is_Add and expr.args [0].is_Mul and
expr.args [1].is_Mul and expr.args [0].args [-1].is_Pow and
expr.args [1].args [-1].is_Pow and
expr.args [0].args [-1].exp is S.NegativeOne and
expr.args [1].args [-1].exp is S.NegativeOne):
expr2 = together (expr)
expr2ops = count_ops_alg(expr2)[0]
if expr2ops < exprops:
expr = expr2
simplified = True
else:
simplified = True
return (expr, simplified) if withsimp else expr
bottom_up = deprecated(
"""
Using bottom_up from the sympy.simplify.simplify submodule is
deprecated.
Instead, use bottom_up from the top-level sympy namespace, like
sympy.bottom_up
""",
deprecated_since_version="1.10",
active_deprecations_target="deprecated-traversal-functions-moved",
)(_bottom_up)
# XXX: This function really should either be private API or exported in the
# top-level sympy/__init__.py
walk = deprecated(
"""
Using walk from the sympy.simplify.simplify submodule is
deprecated.
Instead, use walk from sympy.core.traversal.walk
""",
deprecated_since_version="1.10",
active_deprecations_target="deprecated-traversal-functions-moved",
)(_walk)
|
7e01324b9c56c2f1140d60e403b9dca3d93de8d0f19a37f7007acfe98735cec8 | from collections import defaultdict
from sympy.core.add import Add
from sympy.core.expr import Expr
from sympy.core.exprtools import Factors, gcd_terms, factor_terms
from sympy.core.function import expand_mul
from sympy.core.mul import Mul
from sympy.core.numbers import pi, I
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.core.sorting import ordered
from sympy.core.symbol import Dummy
from sympy.core.sympify import sympify
from sympy.core.traversal import bottom_up
from sympy.functions.combinatorial.factorials import binomial
from sympy.functions.elementary.hyperbolic import (
cosh, sinh, tanh, coth, sech, csch, HyperbolicFunction)
from sympy.functions.elementary.trigonometric import (
cos, sin, tan, cot, sec, csc, sqrt, TrigonometricFunction)
from sympy.ntheory.factor_ import perfect_power
from sympy.polys.polytools import factor
from sympy.strategies.tree import greedy
from sympy.strategies.core import identity, debug
from sympy import SYMPY_DEBUG
# ================== Fu-like tools ===========================
def TR0(rv):
"""Simplification of rational polynomials, trying to simplify
the expression, e.g. combine things like 3*x + 2*x, etc....
"""
# although it would be nice to use cancel, it doesn't work
# with noncommutatives
return rv.normal().factor().expand()
def TR1(rv):
"""Replace sec, csc with 1/cos, 1/sin
Examples
========
>>> from sympy.simplify.fu import TR1, sec, csc
>>> from sympy.abc import x
>>> TR1(2*csc(x) + sec(x))
1/cos(x) + 2/sin(x)
"""
def f(rv):
if isinstance(rv, sec):
a = rv.args[0]
return S.One/cos(a)
elif isinstance(rv, csc):
a = rv.args[0]
return S.One/sin(a)
return rv
return bottom_up(rv, f)
def TR2(rv):
"""Replace tan and cot with sin/cos and cos/sin
Examples
========
>>> from sympy.simplify.fu import TR2
>>> from sympy.abc import x
>>> from sympy import tan, cot, sin, cos
>>> TR2(tan(x))
sin(x)/cos(x)
>>> TR2(cot(x))
cos(x)/sin(x)
>>> TR2(tan(tan(x) - sin(x)/cos(x)))
0
"""
def f(rv):
if isinstance(rv, tan):
a = rv.args[0]
return sin(a)/cos(a)
elif isinstance(rv, cot):
a = rv.args[0]
return cos(a)/sin(a)
return rv
return bottom_up(rv, f)
def TR2i(rv, half=False):
"""Converts ratios involving sin and cos as follows::
sin(x)/cos(x) -> tan(x)
sin(x)/(cos(x) + 1) -> tan(x/2) if half=True
Examples
========
>>> from sympy.simplify.fu import TR2i
>>> from sympy.abc import x, a
>>> from sympy import sin, cos
>>> TR2i(sin(x)/cos(x))
tan(x)
Powers of the numerator and denominator are also recognized
>>> TR2i(sin(x)**2/(cos(x) + 1)**2, half=True)
tan(x/2)**2
The transformation does not take place unless assumptions allow
(i.e. the base must be positive or the exponent must be an integer
for both numerator and denominator)
>>> TR2i(sin(x)**a/(cos(x) + 1)**a)
sin(x)**a/(cos(x) + 1)**a
"""
def f(rv):
if not rv.is_Mul:
return rv
n, d = rv.as_numer_denom()
if n.is_Atom or d.is_Atom:
return rv
def ok(k, e):
# initial filtering of factors
return (
(e.is_integer or k.is_positive) and (
k.func in (sin, cos) or (half and
k.is_Add and
len(k.args) >= 2 and
any(any(isinstance(ai, cos) or ai.is_Pow and ai.base is cos
for ai in Mul.make_args(a)) for a in k.args))))
n = n.as_powers_dict()
ndone = [(k, n.pop(k)) for k in list(n.keys()) if not ok(k, n[k])]
if not n:
return rv
d = d.as_powers_dict()
ddone = [(k, d.pop(k)) for k in list(d.keys()) if not ok(k, d[k])]
if not d:
return rv
# factoring if necessary
def factorize(d, ddone):
newk = []
for k in d:
if k.is_Add and len(k.args) > 1:
knew = factor(k) if half else factor_terms(k)
if knew != k:
newk.append((k, knew))
if newk:
for i, (k, knew) in enumerate(newk):
del d[k]
newk[i] = knew
newk = Mul(*newk).as_powers_dict()
for k in newk:
v = d[k] + newk[k]
if ok(k, v):
d[k] = v
else:
ddone.append((k, v))
del newk
factorize(n, ndone)
factorize(d, ddone)
# joining
t = []
for k in n:
if isinstance(k, sin):
a = cos(k.args[0], evaluate=False)
if a in d and d[a] == n[k]:
t.append(tan(k.args[0])**n[k])
n[k] = d[a] = None
elif half:
a1 = 1 + a
if a1 in d and d[a1] == n[k]:
t.append((tan(k.args[0]/2))**n[k])
n[k] = d[a1] = None
elif isinstance(k, cos):
a = sin(k.args[0], evaluate=False)
if a in d and d[a] == n[k]:
t.append(tan(k.args[0])**-n[k])
n[k] = d[a] = None
elif half and k.is_Add and k.args[0] is S.One and \
isinstance(k.args[1], cos):
a = sin(k.args[1].args[0], evaluate=False)
if a in d and d[a] == n[k] and (d[a].is_integer or \
a.is_positive):
t.append(tan(a.args[0]/2)**-n[k])
n[k] = d[a] = None
if t:
rv = Mul(*(t + [b**e for b, e in n.items() if e]))/\
Mul(*[b**e for b, e in d.items() if e])
rv *= Mul(*[b**e for b, e in ndone])/Mul(*[b**e for b, e in ddone])
return rv
return bottom_up(rv, f)
def TR3(rv):
"""Induced formula: example sin(-a) = -sin(a)
Examples
========
>>> from sympy.simplify.fu import TR3
>>> from sympy.abc import x, y
>>> from sympy import pi
>>> from sympy import cos
>>> TR3(cos(y - x*(y - x)))
cos(x*(x - y) + y)
>>> cos(pi/2 + x)
-sin(x)
>>> cos(30*pi/2 + x)
-cos(x)
"""
from sympy.simplify.simplify import signsimp
# Negative argument (already automatic for funcs like sin(-x) -> -sin(x)
# but more complicated expressions can use it, too). Also, trig angles
# between pi/4 and pi/2 are not reduced to an angle between 0 and pi/4.
# The following are automatically handled:
# Argument of type: pi/2 +/- angle
# Argument of type: pi +/- angle
# Argument of type : 2k*pi +/- angle
def f(rv):
if not isinstance(rv, TrigonometricFunction):
return rv
rv = rv.func(signsimp(rv.args[0]))
if not isinstance(rv, TrigonometricFunction):
return rv
if (rv.args[0] - S.Pi/4).is_positive is (S.Pi/2 - rv.args[0]).is_positive is True:
fmap = {cos: sin, sin: cos, tan: cot, cot: tan, sec: csc, csc: sec}
rv = fmap[type(rv)](S.Pi/2 - rv.args[0])
return rv
return bottom_up(rv, f)
def TR4(rv):
"""Identify values of special angles.
a= 0 pi/6 pi/4 pi/3 pi/2
----------------------------------------------------
sin(a) 0 1/2 sqrt(2)/2 sqrt(3)/2 1
cos(a) 1 sqrt(3)/2 sqrt(2)/2 1/2 0
tan(a) 0 sqt(3)/3 1 sqrt(3) --
Examples
========
>>> from sympy import pi
>>> from sympy import cos, sin, tan, cot
>>> for s in (0, pi/6, pi/4, pi/3, pi/2):
... print('%s %s %s %s' % (cos(s), sin(s), tan(s), cot(s)))
...
1 0 0 zoo
sqrt(3)/2 1/2 sqrt(3)/3 sqrt(3)
sqrt(2)/2 sqrt(2)/2 1 1
1/2 sqrt(3)/2 sqrt(3) sqrt(3)/3
0 1 zoo 0
"""
# special values at 0, pi/6, pi/4, pi/3, pi/2 already handled
return rv
def _TR56(rv, f, g, h, max, pow):
"""Helper for TR5 and TR6 to replace f**2 with h(g**2)
Options
=======
max : controls size of exponent that can appear on f
e.g. if max=4 then f**4 will be changed to h(g**2)**2.
pow : controls whether the exponent must be a perfect power of 2
e.g. if pow=True (and max >= 6) then f**6 will not be changed
but f**8 will be changed to h(g**2)**4
>>> from sympy.simplify.fu import _TR56 as T
>>> from sympy.abc import x
>>> from sympy import sin, cos
>>> h = lambda x: 1 - x
>>> T(sin(x)**3, sin, cos, h, 4, False)
(1 - cos(x)**2)*sin(x)
>>> T(sin(x)**6, sin, cos, h, 6, False)
(1 - cos(x)**2)**3
>>> T(sin(x)**6, sin, cos, h, 6, True)
sin(x)**6
>>> T(sin(x)**8, sin, cos, h, 10, True)
(1 - cos(x)**2)**4
"""
def _f(rv):
# I'm not sure if this transformation should target all even powers
# or only those expressible as powers of 2. Also, should it only
# make the changes in powers that appear in sums -- making an isolated
# change is not going to allow a simplification as far as I can tell.
if not (rv.is_Pow and rv.base.func == f):
return rv
if not rv.exp.is_real:
return rv
if (rv.exp < 0) == True:
return rv
if (rv.exp > max) == True:
return rv
if rv.exp == 1:
return rv
if rv.exp == 2:
return h(g(rv.base.args[0])**2)
else:
if rv.exp % 2 == 1:
e = rv.exp//2
return f(rv.base.args[0])*h(g(rv.base.args[0])**2)**e
elif rv.exp == 4:
e = 2
elif not pow:
if rv.exp % 2:
return rv
e = rv.exp//2
else:
p = perfect_power(rv.exp)
if not p:
return rv
e = rv.exp//2
return h(g(rv.base.args[0])**2)**e
return bottom_up(rv, _f)
def TR5(rv, max=4, pow=False):
"""Replacement of sin**2 with 1 - cos(x)**2.
See _TR56 docstring for advanced use of ``max`` and ``pow``.
Examples
========
>>> from sympy.simplify.fu import TR5
>>> from sympy.abc import x
>>> from sympy import sin
>>> TR5(sin(x)**2)
1 - cos(x)**2
>>> TR5(sin(x)**-2) # unchanged
sin(x)**(-2)
>>> TR5(sin(x)**4)
(1 - cos(x)**2)**2
"""
return _TR56(rv, sin, cos, lambda x: 1 - x, max=max, pow=pow)
def TR6(rv, max=4, pow=False):
"""Replacement of cos**2 with 1 - sin(x)**2.
See _TR56 docstring for advanced use of ``max`` and ``pow``.
Examples
========
>>> from sympy.simplify.fu import TR6
>>> from sympy.abc import x
>>> from sympy import cos
>>> TR6(cos(x)**2)
1 - sin(x)**2
>>> TR6(cos(x)**-2) #unchanged
cos(x)**(-2)
>>> TR6(cos(x)**4)
(1 - sin(x)**2)**2
"""
return _TR56(rv, cos, sin, lambda x: 1 - x, max=max, pow=pow)
def TR7(rv):
"""Lowering the degree of cos(x)**2.
Examples
========
>>> from sympy.simplify.fu import TR7
>>> from sympy.abc import x
>>> from sympy import cos
>>> TR7(cos(x)**2)
cos(2*x)/2 + 1/2
>>> TR7(cos(x)**2 + 1)
cos(2*x)/2 + 3/2
"""
def f(rv):
if not (rv.is_Pow and rv.base.func == cos and rv.exp == 2):
return rv
return (1 + cos(2*rv.base.args[0]))/2
return bottom_up(rv, f)
def TR8(rv, first=True):
"""Converting products of ``cos`` and/or ``sin`` to a sum or
difference of ``cos`` and or ``sin`` terms.
Examples
========
>>> from sympy.simplify.fu import TR8
>>> from sympy import cos, sin
>>> TR8(cos(2)*cos(3))
cos(5)/2 + cos(1)/2
>>> TR8(cos(2)*sin(3))
sin(5)/2 + sin(1)/2
>>> TR8(sin(2)*sin(3))
-cos(5)/2 + cos(1)/2
"""
def f(rv):
if not (
rv.is_Mul or
rv.is_Pow and
rv.base.func in (cos, sin) and
(rv.exp.is_integer or rv.base.is_positive)):
return rv
if first:
n, d = [expand_mul(i) for i in rv.as_numer_denom()]
newn = TR8(n, first=False)
newd = TR8(d, first=False)
if newn != n or newd != d:
rv = gcd_terms(newn/newd)
if rv.is_Mul and rv.args[0].is_Rational and \
len(rv.args) == 2 and rv.args[1].is_Add:
rv = Mul(*rv.as_coeff_Mul())
return rv
args = {cos: [], sin: [], None: []}
for a in ordered(Mul.make_args(rv)):
if a.func in (cos, sin):
args[type(a)].append(a.args[0])
elif (a.is_Pow and a.exp.is_Integer and a.exp > 0 and \
a.base.func in (cos, sin)):
# XXX this is ok but pathological expression could be handled
# more efficiently as in TRmorrie
args[type(a.base)].extend([a.base.args[0]]*a.exp)
else:
args[None].append(a)
c = args[cos]
s = args[sin]
if not (c and s or len(c) > 1 or len(s) > 1):
return rv
args = args[None]
n = min(len(c), len(s))
for i in range(n):
a1 = s.pop()
a2 = c.pop()
args.append((sin(a1 + a2) + sin(a1 - a2))/2)
while len(c) > 1:
a1 = c.pop()
a2 = c.pop()
args.append((cos(a1 + a2) + cos(a1 - a2))/2)
if c:
args.append(cos(c.pop()))
while len(s) > 1:
a1 = s.pop()
a2 = s.pop()
args.append((-cos(a1 + a2) + cos(a1 - a2))/2)
if s:
args.append(sin(s.pop()))
return TR8(expand_mul(Mul(*args)))
return bottom_up(rv, f)
def TR9(rv):
"""Sum of ``cos`` or ``sin`` terms as a product of ``cos`` or ``sin``.
Examples
========
>>> from sympy.simplify.fu import TR9
>>> from sympy import cos, sin
>>> TR9(cos(1) + cos(2))
2*cos(1/2)*cos(3/2)
>>> TR9(cos(1) + 2*sin(1) + 2*sin(2))
cos(1) + 4*sin(3/2)*cos(1/2)
If no change is made by TR9, no re-arrangement of the
expression will be made. For example, though factoring
of common term is attempted, if the factored expression
was not changed, the original expression will be returned:
>>> TR9(cos(3) + cos(3)*cos(2))
cos(3) + cos(2)*cos(3)
"""
def f(rv):
if not rv.is_Add:
return rv
def do(rv, first=True):
# cos(a)+/-cos(b) can be combined into a product of cosines and
# sin(a)+/-sin(b) can be combined into a product of cosine and
# sine.
#
# If there are more than two args, the pairs which "work" will
# have a gcd extractable and the remaining two terms will have
# the above structure -- all pairs must be checked to find the
# ones that work. args that don't have a common set of symbols
# are skipped since this doesn't lead to a simpler formula and
# also has the arbitrariness of combining, for example, the x
# and y term instead of the y and z term in something like
# cos(x) + cos(y) + cos(z).
if not rv.is_Add:
return rv
args = list(ordered(rv.args))
if len(args) != 2:
hit = False
for i in range(len(args)):
ai = args[i]
if ai is None:
continue
for j in range(i + 1, len(args)):
aj = args[j]
if aj is None:
continue
was = ai + aj
new = do(was)
if new != was:
args[i] = new # update in place
args[j] = None
hit = True
break # go to next i
if hit:
rv = Add(*[_f for _f in args if _f])
if rv.is_Add:
rv = do(rv)
return rv
# two-arg Add
split = trig_split(*args)
if not split:
return rv
gcd, n1, n2, a, b, iscos = split
# application of rule if possible
if iscos:
if n1 == n2:
return gcd*n1*2*cos((a + b)/2)*cos((a - b)/2)
if n1 < 0:
a, b = b, a
return -2*gcd*sin((a + b)/2)*sin((a - b)/2)
else:
if n1 == n2:
return gcd*n1*2*sin((a + b)/2)*cos((a - b)/2)
if n1 < 0:
a, b = b, a
return 2*gcd*cos((a + b)/2)*sin((a - b)/2)
return process_common_addends(rv, do) # DON'T sift by free symbols
return bottom_up(rv, f)
def TR10(rv, first=True):
"""Separate sums in ``cos`` and ``sin``.
Examples
========
>>> from sympy.simplify.fu import TR10
>>> from sympy.abc import a, b, c
>>> from sympy import cos, sin
>>> TR10(cos(a + b))
-sin(a)*sin(b) + cos(a)*cos(b)
>>> TR10(sin(a + b))
sin(a)*cos(b) + sin(b)*cos(a)
>>> TR10(sin(a + b + c))
(-sin(a)*sin(b) + cos(a)*cos(b))*sin(c) + \
(sin(a)*cos(b) + sin(b)*cos(a))*cos(c)
"""
def f(rv):
if rv.func not in (cos, sin):
return rv
f = rv.func
arg = rv.args[0]
if arg.is_Add:
if first:
args = list(ordered(arg.args))
else:
args = list(arg.args)
a = args.pop()
b = Add._from_args(args)
if b.is_Add:
if f == sin:
return sin(a)*TR10(cos(b), first=False) + \
cos(a)*TR10(sin(b), first=False)
else:
return cos(a)*TR10(cos(b), first=False) - \
sin(a)*TR10(sin(b), first=False)
else:
if f == sin:
return sin(a)*cos(b) + cos(a)*sin(b)
else:
return cos(a)*cos(b) - sin(a)*sin(b)
return rv
return bottom_up(rv, f)
def TR10i(rv):
"""Sum of products to function of sum.
Examples
========
>>> from sympy.simplify.fu import TR10i
>>> from sympy import cos, sin, sqrt
>>> from sympy.abc import x
>>> TR10i(cos(1)*cos(3) + sin(1)*sin(3))
cos(2)
>>> TR10i(cos(1)*sin(3) + sin(1)*cos(3) + cos(3))
cos(3) + sin(4)
>>> TR10i(sqrt(2)*cos(x)*x + sqrt(6)*sin(x)*x)
2*sqrt(2)*x*sin(x + pi/6)
"""
global _ROOT2, _ROOT3, _invROOT3
if _ROOT2 is None:
_roots()
def f(rv):
if not rv.is_Add:
return rv
def do(rv, first=True):
# args which can be expressed as A*(cos(a)*cos(b)+/-sin(a)*sin(b))
# or B*(cos(a)*sin(b)+/-cos(b)*sin(a)) can be combined into
# A*f(a+/-b) where f is either sin or cos.
#
# If there are more than two args, the pairs which "work" will have
# a gcd extractable and the remaining two terms will have the above
# structure -- all pairs must be checked to find the ones that
# work.
if not rv.is_Add:
return rv
args = list(ordered(rv.args))
if len(args) != 2:
hit = False
for i in range(len(args)):
ai = args[i]
if ai is None:
continue
for j in range(i + 1, len(args)):
aj = args[j]
if aj is None:
continue
was = ai + aj
new = do(was)
if new != was:
args[i] = new # update in place
args[j] = None
hit = True
break # go to next i
if hit:
rv = Add(*[_f for _f in args if _f])
if rv.is_Add:
rv = do(rv)
return rv
# two-arg Add
split = trig_split(*args, two=True)
if not split:
return rv
gcd, n1, n2, a, b, same = split
# identify and get c1 to be cos then apply rule if possible
if same: # coscos, sinsin
gcd = n1*gcd
if n1 == n2:
return gcd*cos(a - b)
return gcd*cos(a + b)
else: #cossin, cossin
gcd = n1*gcd
if n1 == n2:
return gcd*sin(a + b)
return gcd*sin(b - a)
rv = process_common_addends(
rv, do, lambda x: tuple(ordered(x.free_symbols)))
# need to check for inducible pairs in ratio of sqrt(3):1 that
# appeared in different lists when sorting by coefficient
while rv.is_Add:
byrad = defaultdict(list)
for a in rv.args:
hit = 0
if a.is_Mul:
for ai in a.args:
if ai.is_Pow and ai.exp is S.Half and \
ai.base.is_Integer:
byrad[ai].append(a)
hit = 1
break
if not hit:
byrad[S.One].append(a)
# no need to check all pairs -- just check for the onees
# that have the right ratio
args = []
for a in byrad:
for b in [_ROOT3*a, _invROOT3]:
if b in byrad:
for i in range(len(byrad[a])):
if byrad[a][i] is None:
continue
for j in range(len(byrad[b])):
if byrad[b][j] is None:
continue
was = Add(byrad[a][i] + byrad[b][j])
new = do(was)
if new != was:
args.append(new)
byrad[a][i] = None
byrad[b][j] = None
break
if args:
rv = Add(*(args + [Add(*[_f for _f in v if _f])
for v in byrad.values()]))
else:
rv = do(rv) # final pass to resolve any new inducible pairs
break
return rv
return bottom_up(rv, f)
def TR11(rv, base=None):
"""Function of double angle to product. The ``base`` argument can be used
to indicate what is the un-doubled argument, e.g. if 3*pi/7 is the base
then cosine and sine functions with argument 6*pi/7 will be replaced.
Examples
========
>>> from sympy.simplify.fu import TR11
>>> from sympy import cos, sin, pi
>>> from sympy.abc import x
>>> TR11(sin(2*x))
2*sin(x)*cos(x)
>>> TR11(cos(2*x))
-sin(x)**2 + cos(x)**2
>>> TR11(sin(4*x))
4*(-sin(x)**2 + cos(x)**2)*sin(x)*cos(x)
>>> TR11(sin(4*x/3))
4*(-sin(x/3)**2 + cos(x/3)**2)*sin(x/3)*cos(x/3)
If the arguments are simply integers, no change is made
unless a base is provided:
>>> TR11(cos(2))
cos(2)
>>> TR11(cos(4), 2)
-sin(2)**2 + cos(2)**2
There is a subtle issue here in that autosimplification will convert
some higher angles to lower angles
>>> cos(6*pi/7) + cos(3*pi/7)
-cos(pi/7) + cos(3*pi/7)
The 6*pi/7 angle is now pi/7 but can be targeted with TR11 by supplying
the 3*pi/7 base:
>>> TR11(_, 3*pi/7)
-sin(3*pi/7)**2 + cos(3*pi/7)**2 + cos(3*pi/7)
"""
def f(rv):
if rv.func not in (cos, sin):
return rv
if base:
f = rv.func
t = f(base*2)
co = S.One
if t.is_Mul:
co, t = t.as_coeff_Mul()
if t.func not in (cos, sin):
return rv
if rv.args[0] == t.args[0]:
c = cos(base)
s = sin(base)
if f is cos:
return (c**2 - s**2)/co
else:
return 2*c*s/co
return rv
elif not rv.args[0].is_Number:
# make a change if the leading coefficient's numerator is
# divisible by 2
c, m = rv.args[0].as_coeff_Mul(rational=True)
if c.p % 2 == 0:
arg = c.p//2*m/c.q
c = TR11(cos(arg))
s = TR11(sin(arg))
if rv.func == sin:
rv = 2*s*c
else:
rv = c**2 - s**2
return rv
return bottom_up(rv, f)
def _TR11(rv):
"""
Helper for TR11 to find half-arguments for sin in factors of
num/den that appear in cos or sin factors in the den/num.
Examples
========
>>> from sympy.simplify.fu import TR11, _TR11
>>> from sympy import cos, sin
>>> from sympy.abc import x
>>> TR11(sin(x/3)/(cos(x/6)))
sin(x/3)/cos(x/6)
>>> _TR11(sin(x/3)/(cos(x/6)))
2*sin(x/6)
>>> TR11(sin(x/6)/(sin(x/3)))
sin(x/6)/sin(x/3)
>>> _TR11(sin(x/6)/(sin(x/3)))
1/(2*cos(x/6))
"""
def f(rv):
if not isinstance(rv, Expr):
return rv
def sincos_args(flat):
# find arguments of sin and cos that
# appears as bases in args of flat
# and have Integer exponents
args = defaultdict(set)
for fi in Mul.make_args(flat):
b, e = fi.as_base_exp()
if e.is_Integer and e > 0:
if b.func in (cos, sin):
args[type(b)].add(b.args[0])
return args
num_args, den_args = map(sincos_args, rv.as_numer_denom())
def handle_match(rv, num_args, den_args):
# for arg in sin args of num_args, look for arg/2
# in den_args and pass this half-angle to TR11
# for handling in rv
for narg in num_args[sin]:
half = narg/2
if half in den_args[cos]:
func = cos
elif half in den_args[sin]:
func = sin
else:
continue
rv = TR11(rv, half)
den_args[func].remove(half)
return rv
# sin in num, sin or cos in den
rv = handle_match(rv, num_args, den_args)
# sin in den, sin or cos in num
rv = handle_match(rv, den_args, num_args)
return rv
return bottom_up(rv, f)
def TR12(rv, first=True):
"""Separate sums in ``tan``.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy import tan
>>> from sympy.simplify.fu import TR12
>>> TR12(tan(x + y))
(tan(x) + tan(y))/(-tan(x)*tan(y) + 1)
"""
def f(rv):
if not rv.func == tan:
return rv
arg = rv.args[0]
if arg.is_Add:
if first:
args = list(ordered(arg.args))
else:
args = list(arg.args)
a = args.pop()
b = Add._from_args(args)
if b.is_Add:
tb = TR12(tan(b), first=False)
else:
tb = tan(b)
return (tan(a) + tb)/(1 - tan(a)*tb)
return rv
return bottom_up(rv, f)
def TR12i(rv):
"""Combine tan arguments as
(tan(y) + tan(x))/(tan(x)*tan(y) - 1) -> -tan(x + y).
Examples
========
>>> from sympy.simplify.fu import TR12i
>>> from sympy import tan
>>> from sympy.abc import a, b, c
>>> ta, tb, tc = [tan(i) for i in (a, b, c)]
>>> TR12i((ta + tb)/(-ta*tb + 1))
tan(a + b)
>>> TR12i((ta + tb)/(ta*tb - 1))
-tan(a + b)
>>> TR12i((-ta - tb)/(ta*tb - 1))
tan(a + b)
>>> eq = (ta + tb)/(-ta*tb + 1)**2*(-3*ta - 3*tc)/(2*(ta*tc - 1))
>>> TR12i(eq.expand())
-3*tan(a + b)*tan(a + c)/(2*(tan(a) + tan(b) - 1))
"""
def f(rv):
if not (rv.is_Add or rv.is_Mul or rv.is_Pow):
return rv
n, d = rv.as_numer_denom()
if not d.args or not n.args:
return rv
dok = {}
def ok(di):
m = as_f_sign_1(di)
if m:
g, f, s = m
if s is S.NegativeOne and f.is_Mul and len(f.args) == 2 and \
all(isinstance(fi, tan) for fi in f.args):
return g, f
d_args = list(Mul.make_args(d))
for i, di in enumerate(d_args):
m = ok(di)
if m:
g, t = m
s = Add(*[_.args[0] for _ in t.args])
dok[s] = S.One
d_args[i] = g
continue
if di.is_Add:
di = factor(di)
if di.is_Mul:
d_args.extend(di.args)
d_args[i] = S.One
elif di.is_Pow and (di.exp.is_integer or di.base.is_positive):
m = ok(di.base)
if m:
g, t = m
s = Add(*[_.args[0] for _ in t.args])
dok[s] = di.exp
d_args[i] = g**di.exp
else:
di = factor(di)
if di.is_Mul:
d_args.extend(di.args)
d_args[i] = S.One
if not dok:
return rv
def ok(ni):
if ni.is_Add and len(ni.args) == 2:
a, b = ni.args
if isinstance(a, tan) and isinstance(b, tan):
return a, b
n_args = list(Mul.make_args(factor_terms(n)))
hit = False
for i, ni in enumerate(n_args):
m = ok(ni)
if not m:
m = ok(-ni)
if m:
n_args[i] = S.NegativeOne
else:
if ni.is_Add:
ni = factor(ni)
if ni.is_Mul:
n_args.extend(ni.args)
n_args[i] = S.One
continue
elif ni.is_Pow and (
ni.exp.is_integer or ni.base.is_positive):
m = ok(ni.base)
if m:
n_args[i] = S.One
else:
ni = factor(ni)
if ni.is_Mul:
n_args.extend(ni.args)
n_args[i] = S.One
continue
else:
continue
else:
n_args[i] = S.One
hit = True
s = Add(*[_.args[0] for _ in m])
ed = dok[s]
newed = ed.extract_additively(S.One)
if newed is not None:
if newed:
dok[s] = newed
else:
dok.pop(s)
n_args[i] *= -tan(s)
if hit:
rv = Mul(*n_args)/Mul(*d_args)/Mul(*[(Add(*[
tan(a) for a in i.args]) - 1)**e for i, e in dok.items()])
return rv
return bottom_up(rv, f)
def TR13(rv):
"""Change products of ``tan`` or ``cot``.
Examples
========
>>> from sympy.simplify.fu import TR13
>>> from sympy import tan, cot
>>> TR13(tan(3)*tan(2))
-tan(2)/tan(5) - tan(3)/tan(5) + 1
>>> TR13(cot(3)*cot(2))
cot(2)*cot(5) + 1 + cot(3)*cot(5)
"""
def f(rv):
if not rv.is_Mul:
return rv
# XXX handle products of powers? or let power-reducing handle it?
args = {tan: [], cot: [], None: []}
for a in ordered(Mul.make_args(rv)):
if a.func in (tan, cot):
args[type(a)].append(a.args[0])
else:
args[None].append(a)
t = args[tan]
c = args[cot]
if len(t) < 2 and len(c) < 2:
return rv
args = args[None]
while len(t) > 1:
t1 = t.pop()
t2 = t.pop()
args.append(1 - (tan(t1)/tan(t1 + t2) + tan(t2)/tan(t1 + t2)))
if t:
args.append(tan(t.pop()))
while len(c) > 1:
t1 = c.pop()
t2 = c.pop()
args.append(1 + cot(t1)*cot(t1 + t2) + cot(t2)*cot(t1 + t2))
if c:
args.append(cot(c.pop()))
return Mul(*args)
return bottom_up(rv, f)
def TRmorrie(rv):
"""Returns cos(x)*cos(2*x)*...*cos(2**(k-1)*x) -> sin(2**k*x)/(2**k*sin(x))
Examples
========
>>> from sympy.simplify.fu import TRmorrie, TR8, TR3
>>> from sympy.abc import x
>>> from sympy import Mul, cos, pi
>>> TRmorrie(cos(x)*cos(2*x))
sin(4*x)/(4*sin(x))
>>> TRmorrie(7*Mul(*[cos(x) for x in range(10)]))
7*sin(12)*sin(16)*cos(5)*cos(7)*cos(9)/(64*sin(1)*sin(3))
Sometimes autosimplification will cause a power to be
not recognized. e.g. in the following, cos(4*pi/7) automatically
simplifies to -cos(3*pi/7) so only 2 of the 3 terms are
recognized:
>>> TRmorrie(cos(pi/7)*cos(2*pi/7)*cos(4*pi/7))
-sin(3*pi/7)*cos(3*pi/7)/(4*sin(pi/7))
A touch by TR8 resolves the expression to a Rational
>>> TR8(_)
-1/8
In this case, if eq is unsimplified, the answer is obtained
directly:
>>> eq = cos(pi/9)*cos(2*pi/9)*cos(3*pi/9)*cos(4*pi/9)
>>> TRmorrie(eq)
1/16
But if angles are made canonical with TR3 then the answer
is not simplified without further work:
>>> TR3(eq)
sin(pi/18)*cos(pi/9)*cos(2*pi/9)/2
>>> TRmorrie(_)
sin(pi/18)*sin(4*pi/9)/(8*sin(pi/9))
>>> TR8(_)
cos(7*pi/18)/(16*sin(pi/9))
>>> TR3(_)
1/16
The original expression would have resolve to 1/16 directly with TR8,
however:
>>> TR8(eq)
1/16
References
==========
.. [1] https://en.wikipedia.org/wiki/Morrie%27s_law
"""
def f(rv, first=True):
if not rv.is_Mul:
return rv
if first:
n, d = rv.as_numer_denom()
return f(n, 0)/f(d, 0)
args = defaultdict(list)
coss = {}
other = []
for c in rv.args:
b, e = c.as_base_exp()
if e.is_Integer and isinstance(b, cos):
co, a = b.args[0].as_coeff_Mul()
args[a].append(co)
coss[b] = e
else:
other.append(c)
new = []
for a in args:
c = args[a]
c.sort()
while c:
k = 0
cc = ci = c[0]
while cc in c:
k += 1
cc *= 2
if k > 1:
newarg = sin(2**k*ci*a)/2**k/sin(ci*a)
# see how many times this can be taken
take = None
ccs = []
for i in range(k):
cc /= 2
key = cos(a*cc, evaluate=False)
ccs.append(cc)
take = min(coss[key], take or coss[key])
# update exponent counts
for i in range(k):
cc = ccs.pop()
key = cos(a*cc, evaluate=False)
coss[key] -= take
if not coss[key]:
c.remove(cc)
new.append(newarg**take)
else:
b = cos(c.pop(0)*a)
other.append(b**coss[b])
if new:
rv = Mul(*(new + other + [
cos(k*a, evaluate=False) for a in args for k in args[a]]))
return rv
return bottom_up(rv, f)
def TR14(rv, first=True):
"""Convert factored powers of sin and cos identities into simpler
expressions.
Examples
========
>>> from sympy.simplify.fu import TR14
>>> from sympy.abc import x, y
>>> from sympy import cos, sin
>>> TR14((cos(x) - 1)*(cos(x) + 1))
-sin(x)**2
>>> TR14((sin(x) - 1)*(sin(x) + 1))
-cos(x)**2
>>> p1 = (cos(x) + 1)*(cos(x) - 1)
>>> p2 = (cos(y) - 1)*2*(cos(y) + 1)
>>> p3 = (3*(cos(y) - 1))*(3*(cos(y) + 1))
>>> TR14(p1*p2*p3*(x - 1))
-18*(x - 1)*sin(x)**2*sin(y)**4
"""
def f(rv):
if not rv.is_Mul:
return rv
if first:
# sort them by location in numerator and denominator
# so the code below can just deal with positive exponents
n, d = rv.as_numer_denom()
if d is not S.One:
newn = TR14(n, first=False)
newd = TR14(d, first=False)
if newn != n or newd != d:
rv = newn/newd
return rv
other = []
process = []
for a in rv.args:
if a.is_Pow:
b, e = a.as_base_exp()
if not (e.is_integer or b.is_positive):
other.append(a)
continue
a = b
else:
e = S.One
m = as_f_sign_1(a)
if not m or m[1].func not in (cos, sin):
if e is S.One:
other.append(a)
else:
other.append(a**e)
continue
g, f, si = m
process.append((g, e.is_Number, e, f, si, a))
# sort them to get like terms next to each other
process = list(ordered(process))
# keep track of whether there was any change
nother = len(other)
# access keys
keys = (g, t, e, f, si, a) = list(range(6))
while process:
A = process.pop(0)
if process:
B = process[0]
if A[e].is_Number and B[e].is_Number:
# both exponents are numbers
if A[f] == B[f]:
if A[si] != B[si]:
B = process.pop(0)
take = min(A[e], B[e])
# reinsert any remainder
# the B will likely sort after A so check it first
if B[e] != take:
rem = [B[i] for i in keys]
rem[e] -= take
process.insert(0, rem)
elif A[e] != take:
rem = [A[i] for i in keys]
rem[e] -= take
process.insert(0, rem)
if isinstance(A[f], cos):
t = sin
else:
t = cos
other.append((-A[g]*B[g]*t(A[f].args[0])**2)**take)
continue
elif A[e] == B[e]:
# both exponents are equal symbols
if A[f] == B[f]:
if A[si] != B[si]:
B = process.pop(0)
take = A[e]
if isinstance(A[f], cos):
t = sin
else:
t = cos
other.append((-A[g]*B[g]*t(A[f].args[0])**2)**take)
continue
# either we are done or neither condition above applied
other.append(A[a]**A[e])
if len(other) != nother:
rv = Mul(*other)
return rv
return bottom_up(rv, f)
def TR15(rv, max=4, pow=False):
"""Convert sin(x)**-2 to 1 + cot(x)**2.
See _TR56 docstring for advanced use of ``max`` and ``pow``.
Examples
========
>>> from sympy.simplify.fu import TR15
>>> from sympy.abc import x
>>> from sympy import sin
>>> TR15(1 - 1/sin(x)**2)
-cot(x)**2
"""
def f(rv):
if not (isinstance(rv, Pow) and isinstance(rv.base, sin)):
return rv
e = rv.exp
if e % 2 == 1:
return TR15(rv.base**(e + 1))/rv.base
ia = 1/rv
a = _TR56(ia, sin, cot, lambda x: 1 + x, max=max, pow=pow)
if a != ia:
rv = a
return rv
return bottom_up(rv, f)
def TR16(rv, max=4, pow=False):
"""Convert cos(x)**-2 to 1 + tan(x)**2.
See _TR56 docstring for advanced use of ``max`` and ``pow``.
Examples
========
>>> from sympy.simplify.fu import TR16
>>> from sympy.abc import x
>>> from sympy import cos
>>> TR16(1 - 1/cos(x)**2)
-tan(x)**2
"""
def f(rv):
if not (isinstance(rv, Pow) and isinstance(rv.base, cos)):
return rv
e = rv.exp
if e % 2 == 1:
return TR15(rv.base**(e + 1))/rv.base
ia = 1/rv
a = _TR56(ia, cos, tan, lambda x: 1 + x, max=max, pow=pow)
if a != ia:
rv = a
return rv
return bottom_up(rv, f)
def TR111(rv):
"""Convert f(x)**-i to g(x)**i where either ``i`` is an integer
or the base is positive and f, g are: tan, cot; sin, csc; or cos, sec.
Examples
========
>>> from sympy.simplify.fu import TR111
>>> from sympy.abc import x
>>> from sympy import tan
>>> TR111(1 - 1/tan(x)**2)
1 - cot(x)**2
"""
def f(rv):
if not (
isinstance(rv, Pow) and
(rv.base.is_positive or rv.exp.is_integer and rv.exp.is_negative)):
return rv
if isinstance(rv.base, tan):
return cot(rv.base.args[0])**-rv.exp
elif isinstance(rv.base, sin):
return csc(rv.base.args[0])**-rv.exp
elif isinstance(rv.base, cos):
return sec(rv.base.args[0])**-rv.exp
return rv
return bottom_up(rv, f)
def TR22(rv, max=4, pow=False):
"""Convert tan(x)**2 to sec(x)**2 - 1 and cot(x)**2 to csc(x)**2 - 1.
See _TR56 docstring for advanced use of ``max`` and ``pow``.
Examples
========
>>> from sympy.simplify.fu import TR22
>>> from sympy.abc import x
>>> from sympy import tan, cot
>>> TR22(1 + tan(x)**2)
sec(x)**2
>>> TR22(1 + cot(x)**2)
csc(x)**2
"""
def f(rv):
if not (isinstance(rv, Pow) and rv.base.func in (cot, tan)):
return rv
rv = _TR56(rv, tan, sec, lambda x: x - 1, max=max, pow=pow)
rv = _TR56(rv, cot, csc, lambda x: x - 1, max=max, pow=pow)
return rv
return bottom_up(rv, f)
def TRpower(rv):
"""Convert sin(x)**n and cos(x)**n with positive n to sums.
Examples
========
>>> from sympy.simplify.fu import TRpower
>>> from sympy.abc import x
>>> from sympy import cos, sin
>>> TRpower(sin(x)**6)
-15*cos(2*x)/32 + 3*cos(4*x)/16 - cos(6*x)/32 + 5/16
>>> TRpower(sin(x)**3*cos(2*x)**4)
(3*sin(x)/4 - sin(3*x)/4)*(cos(4*x)/2 + cos(8*x)/8 + 3/8)
References
==========
.. [1] https://en.wikipedia.org/wiki/List_of_trigonometric_identities#Power-reduction_formulae
"""
def f(rv):
if not (isinstance(rv, Pow) and isinstance(rv.base, (sin, cos))):
return rv
b, n = rv.as_base_exp()
x = b.args[0]
if n.is_Integer and n.is_positive:
if n.is_odd and isinstance(b, cos):
rv = 2**(1-n)*Add(*[binomial(n, k)*cos((n - 2*k)*x)
for k in range((n + 1)/2)])
elif n.is_odd and isinstance(b, sin):
rv = 2**(1-n)*S.NegativeOne**((n-1)/2)*Add(*[binomial(n, k)*
S.NegativeOne**k*sin((n - 2*k)*x) for k in range((n + 1)/2)])
elif n.is_even and isinstance(b, cos):
rv = 2**(1-n)*Add(*[binomial(n, k)*cos((n - 2*k)*x)
for k in range(n/2)])
elif n.is_even and isinstance(b, sin):
rv = 2**(1-n)*S.NegativeOne**(n/2)*Add(*[binomial(n, k)*
S.NegativeOne**k*cos((n - 2*k)*x) for k in range(n/2)])
if n.is_even:
rv += 2**(-n)*binomial(n, n/2)
return rv
return bottom_up(rv, f)
def L(rv):
"""Return count of trigonometric functions in expression.
Examples
========
>>> from sympy.simplify.fu import L
>>> from sympy.abc import x
>>> from sympy import cos, sin
>>> L(cos(x)+sin(x))
2
"""
return S(rv.count(TrigonometricFunction))
# ============== end of basic Fu-like tools =====================
if SYMPY_DEBUG:
(TR0, TR1, TR2, TR3, TR4, TR5, TR6, TR7, TR8, TR9, TR10, TR11, TR12, TR13,
TR2i, TRmorrie, TR14, TR15, TR16, TR12i, TR111, TR22
)= list(map(debug,
(TR0, TR1, TR2, TR3, TR4, TR5, TR6, TR7, TR8, TR9, TR10, TR11, TR12, TR13,
TR2i, TRmorrie, TR14, TR15, TR16, TR12i, TR111, TR22)))
# tuples are chains -- (f, g) -> lambda x: g(f(x))
# lists are choices -- [f, g] -> lambda x: min(f(x), g(x), key=objective)
CTR1 = [(TR5, TR0), (TR6, TR0), identity]
CTR2 = (TR11, [(TR5, TR0), (TR6, TR0), TR0])
CTR3 = [(TRmorrie, TR8, TR0), (TRmorrie, TR8, TR10i, TR0), identity]
CTR4 = [(TR4, TR10i), identity]
RL1 = (TR4, TR3, TR4, TR12, TR4, TR13, TR4, TR0)
# XXX it's a little unclear how this one is to be implemented
# see Fu paper of reference, page 7. What is the Union symbol referring to?
# The diagram shows all these as one chain of transformations, but the
# text refers to them being applied independently. Also, a break
# if L starts to increase has not been implemented.
RL2 = [
(TR4, TR3, TR10, TR4, TR3, TR11),
(TR5, TR7, TR11, TR4),
(CTR3, CTR1, TR9, CTR2, TR4, TR9, TR9, CTR4),
identity,
]
def fu(rv, measure=lambda x: (L(x), x.count_ops())):
"""Attempt to simplify expression by using transformation rules given
in the algorithm by Fu et al.
:func:`fu` will try to minimize the objective function ``measure``.
By default this first minimizes the number of trig terms and then minimizes
the number of total operations.
Examples
========
>>> from sympy.simplify.fu import fu
>>> from sympy import cos, sin, tan, pi, S, sqrt
>>> from sympy.abc import x, y, a, b
>>> fu(sin(50)**2 + cos(50)**2 + sin(pi/6))
3/2
>>> fu(sqrt(6)*cos(x) + sqrt(2)*sin(x))
2*sqrt(2)*sin(x + pi/3)
CTR1 example
>>> eq = sin(x)**4 - cos(y)**2 + sin(y)**2 + 2*cos(x)**2
>>> fu(eq)
cos(x)**4 - 2*cos(y)**2 + 2
CTR2 example
>>> fu(S.Half - cos(2*x)/2)
sin(x)**2
CTR3 example
>>> fu(sin(a)*(cos(b) - sin(b)) + cos(a)*(sin(b) + cos(b)))
sqrt(2)*sin(a + b + pi/4)
CTR4 example
>>> fu(sqrt(3)*cos(x)/2 + sin(x)/2)
sin(x + pi/3)
Example 1
>>> fu(1-sin(2*x)**2/4-sin(y)**2-cos(x)**4)
-cos(x)**2 + cos(y)**2
Example 2
>>> fu(cos(4*pi/9))
sin(pi/18)
>>> fu(cos(pi/9)*cos(2*pi/9)*cos(3*pi/9)*cos(4*pi/9))
1/16
Example 3
>>> fu(tan(7*pi/18)+tan(5*pi/18)-sqrt(3)*tan(5*pi/18)*tan(7*pi/18))
-sqrt(3)
Objective function example
>>> fu(sin(x)/cos(x)) # default objective function
tan(x)
>>> fu(sin(x)/cos(x), measure=lambda x: -x.count_ops()) # maximize op count
sin(x)/cos(x)
References
==========
.. [1] https://www.sciencedirect.com/science/article/pii/S0895717706001609
"""
fRL1 = greedy(RL1, measure)
fRL2 = greedy(RL2, measure)
was = rv
rv = sympify(rv)
if not isinstance(rv, Expr):
return rv.func(*[fu(a, measure=measure) for a in rv.args])
rv = TR1(rv)
if rv.has(tan, cot):
rv1 = fRL1(rv)
if (measure(rv1) < measure(rv)):
rv = rv1
if rv.has(tan, cot):
rv = TR2(rv)
if rv.has(sin, cos):
rv1 = fRL2(rv)
rv2 = TR8(TRmorrie(rv1))
rv = min([was, rv, rv1, rv2], key=measure)
return min(TR2i(rv), rv, key=measure)
def process_common_addends(rv, do, key2=None, key1=True):
"""Apply ``do`` to addends of ``rv`` that (if ``key1=True``) share at least
a common absolute value of their coefficient and the value of ``key2`` when
applied to the argument. If ``key1`` is False ``key2`` must be supplied and
will be the only key applied.
"""
# collect by absolute value of coefficient and key2
absc = defaultdict(list)
if key1:
for a in rv.args:
c, a = a.as_coeff_Mul()
if c < 0:
c = -c
a = -a # put the sign on `a`
absc[(c, key2(a) if key2 else 1)].append(a)
elif key2:
for a in rv.args:
absc[(S.One, key2(a))].append(a)
else:
raise ValueError('must have at least one key')
args = []
hit = False
for k in absc:
v = absc[k]
c, _ = k
if len(v) > 1:
e = Add(*v, evaluate=False)
new = do(e)
if new != e:
e = new
hit = True
args.append(c*e)
else:
args.append(c*v[0])
if hit:
rv = Add(*args)
return rv
fufuncs = '''
TR0 TR1 TR2 TR3 TR4 TR5 TR6 TR7 TR8 TR9 TR10 TR10i TR11
TR12 TR13 L TR2i TRmorrie TR12i
TR14 TR15 TR16 TR111 TR22'''.split()
FU = dict(list(zip(fufuncs, list(map(locals().get, fufuncs)))))
def _roots():
global _ROOT2, _ROOT3, _invROOT3
_ROOT2, _ROOT3 = sqrt(2), sqrt(3)
_invROOT3 = 1/_ROOT3
_ROOT2 = None
def trig_split(a, b, two=False):
"""Return the gcd, s1, s2, a1, a2, bool where
If two is False (default) then::
a + b = gcd*(s1*f(a1) + s2*f(a2)) where f = cos if bool else sin
else:
if bool, a + b was +/- cos(a1)*cos(a2) +/- sin(a1)*sin(a2) and equals
n1*gcd*cos(a - b) if n1 == n2 else
n1*gcd*cos(a + b)
else a + b was +/- cos(a1)*sin(a2) +/- sin(a1)*cos(a2) and equals
n1*gcd*sin(a + b) if n1 = n2 else
n1*gcd*sin(b - a)
Examples
========
>>> from sympy.simplify.fu import trig_split
>>> from sympy.abc import x, y, z
>>> from sympy import cos, sin, sqrt
>>> trig_split(cos(x), cos(y))
(1, 1, 1, x, y, True)
>>> trig_split(2*cos(x), -2*cos(y))
(2, 1, -1, x, y, True)
>>> trig_split(cos(x)*sin(y), cos(y)*sin(y))
(sin(y), 1, 1, x, y, True)
>>> trig_split(cos(x), -sqrt(3)*sin(x), two=True)
(2, 1, -1, x, pi/6, False)
>>> trig_split(cos(x), sin(x), two=True)
(sqrt(2), 1, 1, x, pi/4, False)
>>> trig_split(cos(x), -sin(x), two=True)
(sqrt(2), 1, -1, x, pi/4, False)
>>> trig_split(sqrt(2)*cos(x), -sqrt(6)*sin(x), two=True)
(2*sqrt(2), 1, -1, x, pi/6, False)
>>> trig_split(-sqrt(6)*cos(x), -sqrt(2)*sin(x), two=True)
(-2*sqrt(2), 1, 1, x, pi/3, False)
>>> trig_split(cos(x)/sqrt(6), sin(x)/sqrt(2), two=True)
(sqrt(6)/3, 1, 1, x, pi/6, False)
>>> trig_split(-sqrt(6)*cos(x)*sin(y), -sqrt(2)*sin(x)*sin(y), two=True)
(-2*sqrt(2)*sin(y), 1, 1, x, pi/3, False)
>>> trig_split(cos(x), sin(x))
>>> trig_split(cos(x), sin(z))
>>> trig_split(2*cos(x), -sin(x))
>>> trig_split(cos(x), -sqrt(3)*sin(x))
>>> trig_split(cos(x)*cos(y), sin(x)*sin(z))
>>> trig_split(cos(x)*cos(y), sin(x)*sin(y))
>>> trig_split(-sqrt(6)*cos(x), sqrt(2)*sin(x)*sin(y), two=True)
"""
global _ROOT2, _ROOT3, _invROOT3
if _ROOT2 is None:
_roots()
a, b = [Factors(i) for i in (a, b)]
ua, ub = a.normal(b)
gcd = a.gcd(b).as_expr()
n1 = n2 = 1
if S.NegativeOne in ua.factors:
ua = ua.quo(S.NegativeOne)
n1 = -n1
elif S.NegativeOne in ub.factors:
ub = ub.quo(S.NegativeOne)
n2 = -n2
a, b = [i.as_expr() for i in (ua, ub)]
def pow_cos_sin(a, two):
"""Return ``a`` as a tuple (r, c, s) such that
``a = (r or 1)*(c or 1)*(s or 1)``.
Three arguments are returned (radical, c-factor, s-factor) as
long as the conditions set by ``two`` are met; otherwise None is
returned. If ``two`` is True there will be one or two non-None
values in the tuple: c and s or c and r or s and r or s or c with c
being a cosine function (if possible) else a sine, and s being a sine
function (if possible) else oosine. If ``two`` is False then there
will only be a c or s term in the tuple.
``two`` also require that either two cos and/or sin be present (with
the condition that if the functions are the same the arguments are
different or vice versa) or that a single cosine or a single sine
be present with an optional radical.
If the above conditions dictated by ``two`` are not met then None
is returned.
"""
c = s = None
co = S.One
if a.is_Mul:
co, a = a.as_coeff_Mul()
if len(a.args) > 2 or not two:
return None
if a.is_Mul:
args = list(a.args)
else:
args = [a]
a = args.pop(0)
if isinstance(a, cos):
c = a
elif isinstance(a, sin):
s = a
elif a.is_Pow and a.exp is S.Half: # autoeval doesn't allow -1/2
co *= a
else:
return None
if args:
b = args[0]
if isinstance(b, cos):
if c:
s = b
else:
c = b
elif isinstance(b, sin):
if s:
c = b
else:
s = b
elif b.is_Pow and b.exp is S.Half:
co *= b
else:
return None
return co if co is not S.One else None, c, s
elif isinstance(a, cos):
c = a
elif isinstance(a, sin):
s = a
if c is None and s is None:
return
co = co if co is not S.One else None
return co, c, s
# get the parts
m = pow_cos_sin(a, two)
if m is None:
return
coa, ca, sa = m
m = pow_cos_sin(b, two)
if m is None:
return
cob, cb, sb = m
# check them
if (not ca) and cb or ca and isinstance(ca, sin):
coa, ca, sa, cob, cb, sb = cob, cb, sb, coa, ca, sa
n1, n2 = n2, n1
if not two: # need cos(x) and cos(y) or sin(x) and sin(y)
c = ca or sa
s = cb or sb
if not isinstance(c, s.func):
return None
return gcd, n1, n2, c.args[0], s.args[0], isinstance(c, cos)
else:
if not coa and not cob:
if (ca and cb and sa and sb):
if isinstance(ca, sa.func) is not isinstance(cb, sb.func):
return
args = {j.args for j in (ca, sa)}
if not all(i.args in args for i in (cb, sb)):
return
return gcd, n1, n2, ca.args[0], sa.args[0], isinstance(ca, sa.func)
if ca and sa or cb and sb or \
two and (ca is None and sa is None or cb is None and sb is None):
return
c = ca or sa
s = cb or sb
if c.args != s.args:
return
if not coa:
coa = S.One
if not cob:
cob = S.One
if coa is cob:
gcd *= _ROOT2
return gcd, n1, n2, c.args[0], pi/4, False
elif coa/cob == _ROOT3:
gcd *= 2*cob
return gcd, n1, n2, c.args[0], pi/3, False
elif coa/cob == _invROOT3:
gcd *= 2*coa
return gcd, n1, n2, c.args[0], pi/6, False
def as_f_sign_1(e):
"""If ``e`` is a sum that can be written as ``g*(a + s)`` where
``s`` is ``+/-1``, return ``g``, ``a``, and ``s`` where ``a`` does
not have a leading negative coefficient.
Examples
========
>>> from sympy.simplify.fu import as_f_sign_1
>>> from sympy.abc import x
>>> as_f_sign_1(x + 1)
(1, x, 1)
>>> as_f_sign_1(x - 1)
(1, x, -1)
>>> as_f_sign_1(-x + 1)
(-1, x, -1)
>>> as_f_sign_1(-x - 1)
(-1, x, 1)
>>> as_f_sign_1(2*x + 2)
(2, x, 1)
"""
if not e.is_Add or len(e.args) != 2:
return
# exact match
a, b = e.args
if a in (S.NegativeOne, S.One):
g = S.One
if b.is_Mul and b.args[0].is_Number and b.args[0] < 0:
a, b = -a, -b
g = -g
return g, b, a
# gcd match
a, b = [Factors(i) for i in e.args]
ua, ub = a.normal(b)
gcd = a.gcd(b).as_expr()
if S.NegativeOne in ua.factors:
ua = ua.quo(S.NegativeOne)
n1 = -1
n2 = 1
elif S.NegativeOne in ub.factors:
ub = ub.quo(S.NegativeOne)
n1 = 1
n2 = -1
else:
n1 = n2 = 1
a, b = [i.as_expr() for i in (ua, ub)]
if a is S.One:
a, b = b, a
n1, n2 = n2, n1
if n1 == -1:
gcd = -gcd
n2 = -n2
if b is S.One:
return gcd, a, n2
def _osborne(e, d):
"""Replace all hyperbolic functions with trig functions using
the Osborne rule.
Notes
=====
``d`` is a dummy variable to prevent automatic evaluation
of trigonometric/hyperbolic functions.
References
==========
.. [1] https://en.wikipedia.org/wiki/Hyperbolic_function
"""
def f(rv):
if not isinstance(rv, HyperbolicFunction):
return rv
a = rv.args[0]
a = a*d if not a.is_Add else Add._from_args([i*d for i in a.args])
if isinstance(rv, sinh):
return I*sin(a)
elif isinstance(rv, cosh):
return cos(a)
elif isinstance(rv, tanh):
return I*tan(a)
elif isinstance(rv, coth):
return cot(a)/I
elif isinstance(rv, sech):
return sec(a)
elif isinstance(rv, csch):
return csc(a)/I
else:
raise NotImplementedError('unhandled %s' % rv.func)
return bottom_up(e, f)
def _osbornei(e, d):
"""Replace all trig functions with hyperbolic functions using
the Osborne rule.
Notes
=====
``d`` is a dummy variable to prevent automatic evaluation
of trigonometric/hyperbolic functions.
References
==========
.. [1] https://en.wikipedia.org/wiki/Hyperbolic_function
"""
def f(rv):
if not isinstance(rv, TrigonometricFunction):
return rv
const, x = rv.args[0].as_independent(d, as_Add=True)
a = x.xreplace({d: S.One}) + const*I
if isinstance(rv, sin):
return sinh(a)/I
elif isinstance(rv, cos):
return cosh(a)
elif isinstance(rv, tan):
return tanh(a)/I
elif isinstance(rv, cot):
return coth(a)*I
elif isinstance(rv, sec):
return sech(a)
elif isinstance(rv, csc):
return csch(a)*I
else:
raise NotImplementedError('unhandled %s' % rv.func)
return bottom_up(e, f)
def hyper_as_trig(rv):
"""Return an expression containing hyperbolic functions in terms
of trigonometric functions. Any trigonometric functions initially
present are replaced with Dummy symbols and the function to undo
the masking and the conversion back to hyperbolics is also returned. It
should always be true that::
t, f = hyper_as_trig(expr)
expr == f(t)
Examples
========
>>> from sympy.simplify.fu import hyper_as_trig, fu
>>> from sympy.abc import x
>>> from sympy import cosh, sinh
>>> eq = sinh(x)**2 + cosh(x)**2
>>> t, f = hyper_as_trig(eq)
>>> f(fu(t))
cosh(2*x)
References
==========
.. [1] https://en.wikipedia.org/wiki/Hyperbolic_function
"""
from sympy.simplify.simplify import signsimp
from sympy.simplify.radsimp import collect
# mask off trig functions
trigs = rv.atoms(TrigonometricFunction)
reps = [(t, Dummy()) for t in trigs]
masked = rv.xreplace(dict(reps))
# get inversion substitutions in place
reps = [(v, k) for k, v in reps]
d = Dummy()
return _osborne(masked, d), lambda x: collect(signsimp(
_osbornei(x, d).xreplace(dict(reps))), S.ImaginaryUnit)
def sincos_to_sum(expr):
"""Convert products and powers of sin and cos to sums.
Explanation
===========
Applied power reduction TRpower first, then expands products, and
converts products to sums with TR8.
Examples
========
>>> from sympy.simplify.fu import sincos_to_sum
>>> from sympy.abc import x
>>> from sympy import cos, sin
>>> sincos_to_sum(16*sin(x)**3*cos(2*x)**2)
7*sin(x) - 5*sin(3*x) + 3*sin(5*x) - sin(7*x)
"""
if not expr.has(cos, sin):
return expr
else:
return TR8(expand_mul(TRpower(expr)))
|
c07c2bceb98e4f024ba72ccaa3367db773577643065df1c40896e130e6cda2b6 | from itertools import combinations_with_replacement
from sympy.core import symbols, Add, Dummy
from sympy.core.numbers import Rational
from sympy.polys import cancel, ComputationFailed, parallel_poly_from_expr, reduced, Poly
from sympy.polys.monomials import Monomial, monomial_div
from sympy.polys.polyerrors import DomainError, PolificationFailed
from sympy.utilities.misc import debug
def ratsimp(expr):
"""
Put an expression over a common denominator, cancel and reduce.
Examples
========
>>> from sympy import ratsimp
>>> from sympy.abc import x, y
>>> ratsimp(1/x + 1/y)
(x + y)/(x*y)
"""
f, g = cancel(expr).as_numer_denom()
try:
Q, r = reduced(f, [g], field=True, expand=False)
except ComputationFailed:
return f/g
return Add(*Q) + cancel(r/g)
def ratsimpmodprime(expr, G, *gens, quick=True, polynomial=False, **args):
"""
Simplifies a rational expression ``expr`` modulo the prime ideal
generated by ``G``. ``G`` should be a Groebner basis of the
ideal.
Examples
========
>>> from sympy.simplify.ratsimp import ratsimpmodprime
>>> from sympy.abc import x, y
>>> eq = (x + y**5 + y)/(x - y)
>>> ratsimpmodprime(eq, [x*y**5 - x - y], x, y, order='lex')
(-x**2 - x*y - x - y)/(-x**2 + x*y)
If ``polynomial`` is ``False``, the algorithm computes a rational
simplification which minimizes the sum of the total degrees of
the numerator and the denominator.
If ``polynomial`` is ``True``, this function just brings numerator and
denominator into a canonical form. This is much faster, but has
potentially worse results.
References
==========
.. [1] M. Monagan, R. Pearce, Rational Simplification Modulo a Polynomial
Ideal, https://dl.acm.org/doi/pdf/10.1145/1145768.1145809
(specifically, the second algorithm)
"""
from sympy.solvers.solvers import solve
debug('ratsimpmodprime', expr)
# usual preparation of polynomials:
num, denom = cancel(expr).as_numer_denom()
try:
polys, opt = parallel_poly_from_expr([num, denom] + G, *gens, **args)
except PolificationFailed:
return expr
domain = opt.domain
if domain.has_assoc_Field:
opt.domain = domain.get_field()
else:
raise DomainError(
"Cannot compute rational simplification over %s" % domain)
# compute only once
leading_monomials = [g.LM(opt.order) for g in polys[2:]]
tested = set()
def staircase(n):
"""
Compute all monomials with degree less than ``n`` that are
not divisible by any element of ``leading_monomials``.
"""
if n == 0:
return [1]
S = []
for mi in combinations_with_replacement(range(len(opt.gens)), n):
m = [0]*len(opt.gens)
for i in mi:
m[i] += 1
if all(monomial_div(m, lmg) is None for lmg in
leading_monomials):
S.append(m)
return [Monomial(s).as_expr(*opt.gens) for s in S] + staircase(n - 1)
def _ratsimpmodprime(a, b, allsol, N=0, D=0):
r"""
Computes a rational simplification of ``a/b`` which minimizes
the sum of the total degrees of the numerator and the denominator.
Explanation
===========
The algorithm proceeds by looking at ``a * d - b * c`` modulo
the ideal generated by ``G`` for some ``c`` and ``d`` with degree
less than ``a`` and ``b`` respectively.
The coefficients of ``c`` and ``d`` are indeterminates and thus
the coefficients of the normalform of ``a * d - b * c`` are
linear polynomials in these indeterminates.
If these linear polynomials, considered as system of
equations, have a nontrivial solution, then `\frac{a}{b}
\equiv \frac{c}{d}` modulo the ideal generated by ``G``. So,
by construction, the degree of ``c`` and ``d`` is less than
the degree of ``a`` and ``b``, so a simpler representation
has been found.
After a simpler representation has been found, the algorithm
tries to reduce the degree of the numerator and denominator
and returns the result afterwards.
As an extension, if quick=False, we look at all possible degrees such
that the total degree is less than *or equal to* the best current
solution. We retain a list of all solutions of minimal degree, and try
to find the best one at the end.
"""
c, d = a, b
steps = 0
maxdeg = a.total_degree() + b.total_degree()
if quick:
bound = maxdeg - 1
else:
bound = maxdeg
while N + D <= bound:
if (N, D) in tested:
break
tested.add((N, D))
M1 = staircase(N)
M2 = staircase(D)
debug('%s / %s: %s, %s' % (N, D, M1, M2))
Cs = symbols("c:%d" % len(M1), cls=Dummy)
Ds = symbols("d:%d" % len(M2), cls=Dummy)
ng = Cs + Ds
c_hat = Poly(
sum([Cs[i] * M1[i] for i in range(len(M1))]), opt.gens + ng)
d_hat = Poly(
sum([Ds[i] * M2[i] for i in range(len(M2))]), opt.gens + ng)
r = reduced(a * d_hat - b * c_hat, G, opt.gens + ng,
order=opt.order, polys=True)[1]
S = Poly(r, gens=opt.gens).coeffs()
sol = solve(S, Cs + Ds, particular=True, quick=True)
if sol and not all(s == 0 for s in sol.values()):
c = c_hat.subs(sol)
d = d_hat.subs(sol)
# The "free" variables occurring before as parameters
# might still be in the substituted c, d, so set them
# to the value chosen before:
c = c.subs(dict(list(zip(Cs + Ds, [1] * (len(Cs) + len(Ds))))))
d = d.subs(dict(list(zip(Cs + Ds, [1] * (len(Cs) + len(Ds))))))
c = Poly(c, opt.gens)
d = Poly(d, opt.gens)
if d == 0:
raise ValueError('Ideal not prime?')
allsol.append((c_hat, d_hat, S, Cs + Ds))
if N + D != maxdeg:
allsol = [allsol[-1]]
break
steps += 1
N += 1
D += 1
if steps > 0:
c, d, allsol = _ratsimpmodprime(c, d, allsol, N, D - steps)
c, d, allsol = _ratsimpmodprime(c, d, allsol, N - steps, D)
return c, d, allsol
# preprocessing. this improves performance a bit when deg(num)
# and deg(denom) are large:
num = reduced(num, G, opt.gens, order=opt.order)[1]
denom = reduced(denom, G, opt.gens, order=opt.order)[1]
if polynomial:
return (num/denom).cancel()
c, d, allsol = _ratsimpmodprime(
Poly(num, opt.gens, domain=opt.domain), Poly(denom, opt.gens, domain=opt.domain), [])
if not quick and allsol:
debug('Looking for best minimal solution. Got: %s' % len(allsol))
newsol = []
for c_hat, d_hat, S, ng in allsol:
sol = solve(S, ng, particular=True, quick=False)
# all values of sol should be numbers; if not, solve is broken
newsol.append((c_hat.subs(sol), d_hat.subs(sol)))
c, d = min(newsol, key=lambda x: len(x[0].terms()) + len(x[1].terms()))
if not domain.is_Field:
cn, c = c.clear_denoms(convert=True)
dn, d = d.clear_denoms(convert=True)
r = Rational(cn, dn)
else:
r = Rational(1)
return (c*r.q)/(d*r.p)
|
d7b059415961fa509c4170d1ad78671cb0665dd3427c0ce80f55a4de811a2e2b | from typing import Any, Set as tSet
from functools import reduce
from itertools import permutations
from sympy.combinatorics import Permutation
from sympy.core import (
Basic, Expr, Function, diff,
Pow, Mul, Add, Lambda, S, Tuple, Dict
)
from sympy.core.cache import cacheit
from sympy.core.symbol import Symbol, Dummy
from sympy.core.symbol import Str
from sympy.core.sympify import _sympify
from sympy.functions import factorial
from sympy.matrices import ImmutableDenseMatrix as Matrix
from sympy.solvers import solve
from sympy.utilities.exceptions import (sympy_deprecation_warning,
SymPyDeprecationWarning,
ignore_warnings)
# TODO you are a bit excessive in the use of Dummies
# TODO dummy point, literal field
# TODO too often one needs to call doit or simplify on the output, check the
# tests and find out why
from sympy.tensor.array import ImmutableDenseNDimArray
class Manifold(Basic):
"""
A mathematical manifold.
Explanation
===========
A manifold is a topological space that locally resembles
Euclidean space near each point [1].
This class does not provide any means to study the topological
characteristics of the manifold that it represents, though.
Parameters
==========
name : str
The name of the manifold.
dim : int
The dimension of the manifold.
Examples
========
>>> from sympy.diffgeom import Manifold
>>> m = Manifold('M', 2)
>>> m
M
>>> m.dim
2
References
==========
.. [1] https://en.wikipedia.org/wiki/Manifold
"""
def __new__(cls, name, dim, **kwargs):
if not isinstance(name, Str):
name = Str(name)
dim = _sympify(dim)
obj = super().__new__(cls, name, dim)
obj.patches = _deprecated_list(
"""
Manifold.patches is deprecated. The Manifold object is now
immutable. Instead use a separate list to keep track of the
patches.
""", [])
return obj
@property
def name(self):
return self.args[0]
@property
def dim(self):
return self.args[1]
class Patch(Basic):
"""
A patch on a manifold.
Explanation
===========
Coordinate patch, or patch in short, is a simply-connected open set around
a point in the manifold [1]. On a manifold one can have many patches that
do not always include the whole manifold. On these patches coordinate
charts can be defined that permit the parameterization of any point on the
patch in terms of a tuple of real numbers (the coordinates).
This class does not provide any means to study the topological
characteristics of the patch that it represents.
Parameters
==========
name : str
The name of the patch.
manifold : Manifold
The manifold on which the patch is defined.
Examples
========
>>> from sympy.diffgeom import Manifold, Patch
>>> m = Manifold('M', 2)
>>> p = Patch('P', m)
>>> p
P
>>> p.dim
2
References
==========
.. [1] G. Sussman, J. Wisdom, W. Farr, Functional Differential Geometry
(2013)
"""
def __new__(cls, name, manifold, **kwargs):
if not isinstance(name, Str):
name = Str(name)
obj = super().__new__(cls, name, manifold)
obj.manifold.patches.append(obj) # deprecated
obj.coord_systems = _deprecated_list(
"""
Patch.coord_systms is deprecated. The Patch class is now
immutable. Instead use a separate list to keep track of coordinate
systems.
""", [])
return obj
@property
def name(self):
return self.args[0]
@property
def manifold(self):
return self.args[1]
@property
def dim(self):
return self.manifold.dim
class CoordSystem(Basic):
"""
A coordinate system defined on the patch.
Explanation
===========
Coordinate system is a system that uses one or more coordinates to uniquely
determine the position of the points or other geometric elements on a
manifold [1].
By passing ``Symbols`` to *symbols* parameter, user can define the name and
assumptions of coordinate symbols of the coordinate system. If not passed,
these symbols are generated automatically and are assumed to be real valued.
By passing *relations* parameter, user can define the tranform relations of
coordinate systems. Inverse transformation and indirect transformation can
be found automatically. If this parameter is not passed, coordinate
transformation cannot be done.
Parameters
==========
name : str
The name of the coordinate system.
patch : Patch
The patch where the coordinate system is defined.
symbols : list of Symbols, optional
Defines the names and assumptions of coordinate symbols.
relations : dict, optional
Key is a tuple of two strings, who are the names of the systems where
the coordinates transform from and transform to.
Value is a tuple of the symbols before transformation and a tuple of
the expressions after transformation.
Examples
========
We define two-dimensional Cartesian coordinate system and polar coordinate
system.
>>> from sympy import symbols, pi, sqrt, atan2, cos, sin
>>> from sympy.diffgeom import Manifold, Patch, CoordSystem
>>> m = Manifold('M', 2)
>>> p = Patch('P', m)
>>> x, y = symbols('x y', real=True)
>>> r, theta = symbols('r theta', nonnegative=True)
>>> relation_dict = {
... ('Car2D', 'Pol'): [(x, y), (sqrt(x**2 + y**2), atan2(y, x))],
... ('Pol', 'Car2D'): [(r, theta), (r*cos(theta), r*sin(theta))]
... }
>>> Car2D = CoordSystem('Car2D', p, (x, y), relation_dict)
>>> Pol = CoordSystem('Pol', p, (r, theta), relation_dict)
``symbols`` property returns ``CoordinateSymbol`` instances. These symbols
are not same with the symbols used to construct the coordinate system.
>>> Car2D
Car2D
>>> Car2D.dim
2
>>> Car2D.symbols
(x, y)
>>> _[0].func
<class 'sympy.diffgeom.diffgeom.CoordinateSymbol'>
``transformation()`` method returns the transformation function from
one coordinate system to another. ``transform()`` method returns the
transformed coordinates.
>>> Car2D.transformation(Pol)
Lambda((x, y), Matrix([
[sqrt(x**2 + y**2)],
[ atan2(y, x)]]))
>>> Car2D.transform(Pol)
Matrix([
[sqrt(x**2 + y**2)],
[ atan2(y, x)]])
>>> Car2D.transform(Pol, [1, 2])
Matrix([
[sqrt(5)],
[atan(2)]])
``jacobian()`` method returns the Jacobian matrix of coordinate
transformation between two systems. ``jacobian_determinant()`` method
returns the Jacobian determinant of coordinate transformation between two
systems.
>>> Pol.jacobian(Car2D)
Matrix([
[cos(theta), -r*sin(theta)],
[sin(theta), r*cos(theta)]])
>>> Pol.jacobian(Car2D, [1, pi/2])
Matrix([
[0, -1],
[1, 0]])
>>> Car2D.jacobian_determinant(Pol)
1/sqrt(x**2 + y**2)
>>> Car2D.jacobian_determinant(Pol, [1,0])
1
References
==========
.. [1] https://en.wikipedia.org/wiki/Coordinate_system
"""
def __new__(cls, name, patch, symbols=None, relations={}, **kwargs):
if not isinstance(name, Str):
name = Str(name)
# canonicallize the symbols
if symbols is None:
names = kwargs.get('names', None)
if names is None:
symbols = Tuple(
*[Symbol('%s_%s' % (name.name, i), real=True)
for i in range(patch.dim)]
)
else:
sympy_deprecation_warning(
f"""
The 'names' argument to CoordSystem is deprecated. Use 'symbols' instead. That
is, replace
CoordSystem(..., names={names})
with
CoordSystem(..., symbols=[{', '.join(["Symbol(" + repr(n) + ", real=True)" for n in names])}])
""",
deprecated_since_version="1.7",
active_deprecations_target="deprecated-diffgeom-mutable",
)
symbols = Tuple(
*[Symbol(n, real=True) for n in names]
)
else:
syms = []
for s in symbols:
if isinstance(s, Symbol):
syms.append(Symbol(s.name, **s._assumptions.generator))
elif isinstance(s, str):
sympy_deprecation_warning(
f"""
Passing a string as the coordinate symbol name to CoordSystem is deprecated.
Pass a Symbol with the appropriate name and assumptions instead.
That is, replace {s} with Symbol({s!r}, real=True).
""",
deprecated_since_version="1.7",
active_deprecations_target="deprecated-diffgeom-mutable",
)
syms.append(Symbol(s, real=True))
symbols = Tuple(*syms)
# canonicallize the relations
rel_temp = {}
for k,v in relations.items():
s1, s2 = k
if not isinstance(s1, Str):
s1 = Str(s1)
if not isinstance(s2, Str):
s2 = Str(s2)
key = Tuple(s1, s2)
# Old version used Lambda as a value.
if isinstance(v, Lambda):
v = (tuple(v.signature), tuple(v.expr))
else:
v = (tuple(v[0]), tuple(v[1]))
rel_temp[key] = v
relations = Dict(rel_temp)
# construct the object
obj = super().__new__(cls, name, patch, symbols, relations)
# Add deprecated attributes
obj.transforms = _deprecated_dict(
"""
CoordSystem.transforms is deprecated. The CoordSystem class is now
immutable. Use the 'relations' keyword argument to the
CoordSystems() constructor to specify relations.
""", {})
obj._names = [str(n) for n in symbols]
obj.patch.coord_systems.append(obj) # deprecated
obj._dummies = [Dummy(str(n)) for n in symbols] # deprecated
obj._dummy = Dummy()
return obj
@property
def name(self):
return self.args[0]
@property
def patch(self):
return self.args[1]
@property
def manifold(self):
return self.patch.manifold
@property
def symbols(self):
return tuple(CoordinateSymbol(self, i, **s._assumptions.generator)
for i,s in enumerate(self.args[2]))
@property
def relations(self):
return self.args[3]
@property
def dim(self):
return self.patch.dim
##########################################################################
# Finding transformation relation
##########################################################################
def transformation(self, sys):
"""
Return coordinate transformation function from *self* to *sys*.
Parameters
==========
sys : CoordSystem
Returns
=======
sympy.Lambda
Examples
========
>>> from sympy.diffgeom.rn import R2_r, R2_p
>>> R2_r.transformation(R2_p)
Lambda((x, y), Matrix([
[sqrt(x**2 + y**2)],
[ atan2(y, x)]]))
"""
signature = self.args[2]
key = Tuple(self.name, sys.name)
if self == sys:
expr = Matrix(self.symbols)
elif key in self.relations:
expr = Matrix(self.relations[key][1])
elif key[::-1] in self.relations:
expr = Matrix(self._inverse_transformation(sys, self))
else:
expr = Matrix(self._indirect_transformation(self, sys))
return Lambda(signature, expr)
@staticmethod
def _solve_inverse(sym1, sym2, exprs, sys1_name, sys2_name):
ret = solve(
[t[0] - t[1] for t in zip(sym2, exprs)],
list(sym1), dict=True)
if len(ret) == 0:
temp = "Cannot solve inverse relation from {} to {}."
raise NotImplementedError(temp.format(sys1_name, sys2_name))
elif len(ret) > 1:
temp = "Obtained multiple inverse relation from {} to {}."
raise ValueError(temp.format(sys1_name, sys2_name))
return ret[0]
@classmethod
def _inverse_transformation(cls, sys1, sys2):
# Find the transformation relation from sys2 to sys1
forward = sys1.transform(sys2)
inv_results = cls._solve_inverse(sys1.symbols, sys2.symbols, forward,
sys1.name, sys2.name)
signature = tuple(sys1.symbols)
return [inv_results[s] for s in signature]
@classmethod
@cacheit
def _indirect_transformation(cls, sys1, sys2):
# Find the transformation relation between two indirectly connected
# coordinate systems
rel = sys1.relations
path = cls._dijkstra(sys1, sys2)
transforms = []
for s1, s2 in zip(path, path[1:]):
if (s1, s2) in rel:
transforms.append(rel[(s1, s2)])
else:
sym2, inv_exprs = rel[(s2, s1)]
sym1 = tuple(Dummy() for i in sym2)
ret = cls._solve_inverse(sym2, sym1, inv_exprs, s2, s1)
ret = tuple(ret[s] for s in sym2)
transforms.append((sym1, ret))
syms = sys1.args[2]
exprs = syms
for newsyms, newexprs in transforms:
exprs = tuple(e.subs(zip(newsyms, exprs)) for e in newexprs)
return exprs
@staticmethod
def _dijkstra(sys1, sys2):
# Use Dijkstra algorithm to find the shortest path between two indirectly-connected
# coordinate systems
# return value is the list of the names of the systems.
relations = sys1.relations
graph = {}
for s1, s2 in relations.keys():
if s1 not in graph:
graph[s1] = {s2}
else:
graph[s1].add(s2)
if s2 not in graph:
graph[s2] = {s1}
else:
graph[s2].add(s1)
path_dict = {sys:[0, [], 0] for sys in graph} # minimum distance, path, times of visited
def visit(sys):
path_dict[sys][2] = 1
for newsys in graph[sys]:
distance = path_dict[sys][0] + 1
if path_dict[newsys][0] >= distance or not path_dict[newsys][1]:
path_dict[newsys][0] = distance
path_dict[newsys][1] = [i for i in path_dict[sys][1]]
path_dict[newsys][1].append(sys)
visit(sys1.name)
while True:
min_distance = max(path_dict.values(), key=lambda x:x[0])[0]
newsys = None
for sys, lst in path_dict.items():
if 0 < lst[0] <= min_distance and not lst[2]:
min_distance = lst[0]
newsys = sys
if newsys is None:
break
visit(newsys)
result = path_dict[sys2.name][1]
result.append(sys2.name)
if result == [sys2.name]:
raise KeyError("Two coordinate systems are not connected.")
return result
def connect_to(self, to_sys, from_coords, to_exprs, inverse=True, fill_in_gaps=False):
sympy_deprecation_warning(
"""
The CoordSystem.connect_to() method is deprecated. Instead,
generate a new instance of CoordSystem with the 'relations'
keyword argument (CoordSystem classes are now immutable).
""",
deprecated_since_version="1.7",
active_deprecations_target="deprecated-diffgeom-mutable",
)
from_coords, to_exprs = dummyfy(from_coords, to_exprs)
self.transforms[to_sys] = Matrix(from_coords), Matrix(to_exprs)
if inverse:
to_sys.transforms[self] = self._inv_transf(from_coords, to_exprs)
if fill_in_gaps:
self._fill_gaps_in_transformations()
@staticmethod
def _inv_transf(from_coords, to_exprs):
# Will be removed when connect_to is removed
inv_from = [i.as_dummy() for i in from_coords]
inv_to = solve(
[t[0] - t[1] for t in zip(inv_from, to_exprs)],
list(from_coords), dict=True)[0]
inv_to = [inv_to[fc] for fc in from_coords]
return Matrix(inv_from), Matrix(inv_to)
@staticmethod
def _fill_gaps_in_transformations():
# Will be removed when connect_to is removed
raise NotImplementedError
##########################################################################
# Coordinate transformations
##########################################################################
def transform(self, sys, coordinates=None):
"""
Return the result of coordinate transformation from *self* to *sys*.
If coordinates are not given, coordinate symbols of *self* are used.
Parameters
==========
sys : CoordSystem
coordinates : Any iterable, optional.
Returns
=======
sympy.ImmutableDenseMatrix containing CoordinateSymbol
Examples
========
>>> from sympy.diffgeom.rn import R2_r, R2_p
>>> R2_r.transform(R2_p)
Matrix([
[sqrt(x**2 + y**2)],
[ atan2(y, x)]])
>>> R2_r.transform(R2_p, [0, 1])
Matrix([
[ 1],
[pi/2]])
"""
if coordinates is None:
coordinates = self.symbols
if self != sys:
transf = self.transformation(sys)
coordinates = transf(*coordinates)
else:
coordinates = Matrix(coordinates)
return coordinates
def coord_tuple_transform_to(self, to_sys, coords):
"""Transform ``coords`` to coord system ``to_sys``."""
sympy_deprecation_warning(
"""
The CoordSystem.coord_tuple_transform_to() method is deprecated.
Use the CoordSystem.transform() method instead.
""",
deprecated_since_version="1.7",
active_deprecations_target="deprecated-diffgeom-mutable",
)
coords = Matrix(coords)
if self != to_sys:
with ignore_warnings(SymPyDeprecationWarning):
transf = self.transforms[to_sys]
coords = transf[1].subs(list(zip(transf[0], coords)))
return coords
def jacobian(self, sys, coordinates=None):
"""
Return the jacobian matrix of a transformation on given coordinates.
If coordinates are not given, coordinate symbols of *self* are used.
Parameters
==========
sys : CoordSystem
coordinates : Any iterable, optional.
Returns
=======
sympy.ImmutableDenseMatrix
Examples
========
>>> from sympy.diffgeom.rn import R2_r, R2_p
>>> R2_p.jacobian(R2_r)
Matrix([
[cos(theta), -rho*sin(theta)],
[sin(theta), rho*cos(theta)]])
>>> R2_p.jacobian(R2_r, [1, 0])
Matrix([
[1, 0],
[0, 1]])
"""
result = self.transform(sys).jacobian(self.symbols)
if coordinates is not None:
result = result.subs(list(zip(self.symbols, coordinates)))
return result
jacobian_matrix = jacobian
def jacobian_determinant(self, sys, coordinates=None):
"""
Return the jacobian determinant of a transformation on given
coordinates. If coordinates are not given, coordinate symbols of *self*
are used.
Parameters
==========
sys : CoordSystem
coordinates : Any iterable, optional.
Returns
=======
sympy.Expr
Examples
========
>>> from sympy.diffgeom.rn import R2_r, R2_p
>>> R2_r.jacobian_determinant(R2_p)
1/sqrt(x**2 + y**2)
>>> R2_r.jacobian_determinant(R2_p, [1, 0])
1
"""
return self.jacobian(sys, coordinates).det()
##########################################################################
# Points
##########################################################################
def point(self, coords):
"""Create a ``Point`` with coordinates given in this coord system."""
return Point(self, coords)
def point_to_coords(self, point):
"""Calculate the coordinates of a point in this coord system."""
return point.coords(self)
##########################################################################
# Base fields.
##########################################################################
def base_scalar(self, coord_index):
"""Return ``BaseScalarField`` that takes a point and returns one of the coordinates."""
return BaseScalarField(self, coord_index)
coord_function = base_scalar
def base_scalars(self):
"""Returns a list of all coordinate functions.
For more details see the ``base_scalar`` method of this class."""
return [self.base_scalar(i) for i in range(self.dim)]
coord_functions = base_scalars
def base_vector(self, coord_index):
"""Return a basis vector field.
The basis vector field for this coordinate system. It is also an
operator on scalar fields."""
return BaseVectorField(self, coord_index)
def base_vectors(self):
"""Returns a list of all base vectors.
For more details see the ``base_vector`` method of this class."""
return [self.base_vector(i) for i in range(self.dim)]
def base_oneform(self, coord_index):
"""Return a basis 1-form field.
The basis one-form field for this coordinate system. It is also an
operator on vector fields."""
return Differential(self.coord_function(coord_index))
def base_oneforms(self):
"""Returns a list of all base oneforms.
For more details see the ``base_oneform`` method of this class."""
return [self.base_oneform(i) for i in range(self.dim)]
class CoordinateSymbol(Symbol):
"""A symbol which denotes an abstract value of i-th coordinate of
the coordinate system with given context.
Explanation
===========
Each coordinates in coordinate system are represented by unique symbol,
such as x, y, z in Cartesian coordinate system.
You may not construct this class directly. Instead, use `symbols` method
of CoordSystem.
Parameters
==========
coord_sys : CoordSystem
index : integer
Examples
========
>>> from sympy import symbols, Lambda, Matrix, sqrt, atan2, cos, sin
>>> from sympy.diffgeom import Manifold, Patch, CoordSystem
>>> m = Manifold('M', 2)
>>> p = Patch('P', m)
>>> x, y = symbols('x y', real=True)
>>> r, theta = symbols('r theta', nonnegative=True)
>>> relation_dict = {
... ('Car2D', 'Pol'): Lambda((x, y), Matrix([sqrt(x**2 + y**2), atan2(y, x)])),
... ('Pol', 'Car2D'): Lambda((r, theta), Matrix([r*cos(theta), r*sin(theta)]))
... }
>>> Car2D = CoordSystem('Car2D', p, [x, y], relation_dict)
>>> Pol = CoordSystem('Pol', p, [r, theta], relation_dict)
>>> x, y = Car2D.symbols
``CoordinateSymbol`` contains its coordinate symbol and index.
>>> x.name
'x'
>>> x.coord_sys == Car2D
True
>>> x.index
0
>>> x.is_real
True
You can transform ``CoordinateSymbol`` into other coordinate system using
``rewrite()`` method.
>>> x.rewrite(Pol)
r*cos(theta)
>>> sqrt(x**2 + y**2).rewrite(Pol).simplify()
r
"""
def __new__(cls, coord_sys, index, **assumptions):
name = coord_sys.args[2][index].name
obj = super().__new__(cls, name, **assumptions)
obj.coord_sys = coord_sys
obj.index = index
return obj
def __getnewargs__(self):
return (self.coord_sys, self.index)
def _hashable_content(self):
return (
self.coord_sys, self.index
) + tuple(sorted(self.assumptions0.items()))
def _eval_rewrite(self, rule, args, **hints):
if isinstance(rule, CoordSystem):
return rule.transform(self.coord_sys)[self.index]
return super()._eval_rewrite(rule, args, **hints)
class Point(Basic):
"""Point defined in a coordinate system.
Explanation
===========
Mathematically, point is defined in the manifold and does not have any coordinates
by itself. Coordinate system is what imbues the coordinates to the point by coordinate
chart. However, due to the difficulty of realizing such logic, you must supply
a coordinate system and coordinates to define a Point here.
The usage of this object after its definition is independent of the
coordinate system that was used in order to define it, however due to
limitations in the simplification routines you can arrive at complicated
expressions if you use inappropriate coordinate systems.
Parameters
==========
coord_sys : CoordSystem
coords : list
The coordinates of the point.
Examples
========
>>> from sympy import pi
>>> from sympy.diffgeom import Point
>>> from sympy.diffgeom.rn import R2, R2_r, R2_p
>>> rho, theta = R2_p.symbols
>>> p = Point(R2_p, [rho, 3*pi/4])
>>> p.manifold == R2
True
>>> p.coords()
Matrix([
[ rho],
[3*pi/4]])
>>> p.coords(R2_r)
Matrix([
[-sqrt(2)*rho/2],
[ sqrt(2)*rho/2]])
"""
def __new__(cls, coord_sys, coords, **kwargs):
coords = Matrix(coords)
obj = super().__new__(cls, coord_sys, coords)
obj._coord_sys = coord_sys
obj._coords = coords
return obj
@property
def patch(self):
return self._coord_sys.patch
@property
def manifold(self):
return self._coord_sys.manifold
@property
def dim(self):
return self.manifold.dim
def coords(self, sys=None):
"""
Coordinates of the point in given coordinate system. If coordinate system
is not passed, it returns the coordinates in the coordinate system in which
the poin was defined.
"""
if sys is None:
return self._coords
else:
return self._coord_sys.transform(sys, self._coords)
@property
def free_symbols(self):
return self._coords.free_symbols
class BaseScalarField(Expr):
"""Base scalar field over a manifold for a given coordinate system.
Explanation
===========
A scalar field takes a point as an argument and returns a scalar.
A base scalar field of a coordinate system takes a point and returns one of
the coordinates of that point in the coordinate system in question.
To define a scalar field you need to choose the coordinate system and the
index of the coordinate.
The use of the scalar field after its definition is independent of the
coordinate system in which it was defined, however due to limitations in
the simplification routines you may arrive at more complicated
expression if you use unappropriate coordinate systems.
You can build complicated scalar fields by just building up SymPy
expressions containing ``BaseScalarField`` instances.
Parameters
==========
coord_sys : CoordSystem
index : integer
Examples
========
>>> from sympy import Function, pi
>>> from sympy.diffgeom import BaseScalarField
>>> from sympy.diffgeom.rn import R2_r, R2_p
>>> rho, _ = R2_p.symbols
>>> point = R2_p.point([rho, 0])
>>> fx, fy = R2_r.base_scalars()
>>> ftheta = BaseScalarField(R2_r, 1)
>>> fx(point)
rho
>>> fy(point)
0
>>> (fx**2+fy**2).rcall(point)
rho**2
>>> g = Function('g')
>>> fg = g(ftheta-pi)
>>> fg.rcall(point)
g(-pi)
"""
is_commutative = True
def __new__(cls, coord_sys, index, **kwargs):
index = _sympify(index)
obj = super().__new__(cls, coord_sys, index)
obj._coord_sys = coord_sys
obj._index = index
return obj
@property
def coord_sys(self):
return self.args[0]
@property
def index(self):
return self.args[1]
@property
def patch(self):
return self.coord_sys.patch
@property
def manifold(self):
return self.coord_sys.manifold
@property
def dim(self):
return self.manifold.dim
def __call__(self, *args):
"""Evaluating the field at a point or doing nothing.
If the argument is a ``Point`` instance, the field is evaluated at that
point. The field is returned itself if the argument is any other
object. It is so in order to have working recursive calling mechanics
for all fields (check the ``__call__`` method of ``Expr``).
"""
point = args[0]
if len(args) != 1 or not isinstance(point, Point):
return self
coords = point.coords(self._coord_sys)
# XXX Calling doit is necessary with all the Subs expressions
# XXX Calling simplify is necessary with all the trig expressions
return simplify(coords[self._index]).doit()
# XXX Workaround for limitations on the content of args
free_symbols = set() # type: tSet[Any]
class BaseVectorField(Expr):
r"""Base vector field over a manifold for a given coordinate system.
Explanation
===========
A vector field is an operator taking a scalar field and returning a
directional derivative (which is also a scalar field).
A base vector field is the same type of operator, however the derivation is
specifically done with respect to a chosen coordinate.
To define a base vector field you need to choose the coordinate system and
the index of the coordinate.
The use of the vector field after its definition is independent of the
coordinate system in which it was defined, however due to limitations in the
simplification routines you may arrive at more complicated expression if you
use unappropriate coordinate systems.
Parameters
==========
coord_sys : CoordSystem
index : integer
Examples
========
>>> from sympy import Function
>>> from sympy.diffgeom.rn import R2_p, R2_r
>>> from sympy.diffgeom import BaseVectorField
>>> from sympy import pprint
>>> x, y = R2_r.symbols
>>> rho, theta = R2_p.symbols
>>> fx, fy = R2_r.base_scalars()
>>> point_p = R2_p.point([rho, theta])
>>> point_r = R2_r.point([x, y])
>>> g = Function('g')
>>> s_field = g(fx, fy)
>>> v = BaseVectorField(R2_r, 1)
>>> pprint(v(s_field))
/ d \|
|---(g(x, xi))||
\dxi /|xi=y
>>> pprint(v(s_field).rcall(point_r).doit())
d
--(g(x, y))
dy
>>> pprint(v(s_field).rcall(point_p))
/ d \|
|---(g(rho*cos(theta), xi))||
\dxi /|xi=rho*sin(theta)
"""
is_commutative = False
def __new__(cls, coord_sys, index, **kwargs):
index = _sympify(index)
obj = super().__new__(cls, coord_sys, index)
obj._coord_sys = coord_sys
obj._index = index
return obj
@property
def coord_sys(self):
return self.args[0]
@property
def index(self):
return self.args[1]
@property
def patch(self):
return self.coord_sys.patch
@property
def manifold(self):
return self.coord_sys.manifold
@property
def dim(self):
return self.manifold.dim
def __call__(self, scalar_field):
"""Apply on a scalar field.
The action of a vector field on a scalar field is a directional
differentiation.
If the argument is not a scalar field an error is raised.
"""
if covariant_order(scalar_field) or contravariant_order(scalar_field):
raise ValueError('Only scalar fields can be supplied as arguments to vector fields.')
if scalar_field is None:
return self
base_scalars = list(scalar_field.atoms(BaseScalarField))
# First step: e_x(x+r**2) -> e_x(x) + 2*r*e_x(r)
d_var = self._coord_sys._dummy
# TODO: you need a real dummy function for the next line
d_funcs = [Function('_#_%s' % i)(d_var) for i,
b in enumerate(base_scalars)]
d_result = scalar_field.subs(list(zip(base_scalars, d_funcs)))
d_result = d_result.diff(d_var)
# Second step: e_x(x) -> 1 and e_x(r) -> cos(atan2(x, y))
coords = self._coord_sys.symbols
d_funcs_deriv = [f.diff(d_var) for f in d_funcs]
d_funcs_deriv_sub = []
for b in base_scalars:
jac = self._coord_sys.jacobian(b._coord_sys, coords)
d_funcs_deriv_sub.append(jac[b._index, self._index])
d_result = d_result.subs(list(zip(d_funcs_deriv, d_funcs_deriv_sub)))
# Remove the dummies
result = d_result.subs(list(zip(d_funcs, base_scalars)))
result = result.subs(list(zip(coords, self._coord_sys.coord_functions())))
return result.doit()
def _find_coords(expr):
# Finds CoordinateSystems existing in expr
fields = expr.atoms(BaseScalarField, BaseVectorField)
result = set()
for f in fields:
result.add(f._coord_sys)
return result
class Commutator(Expr):
r"""Commutator of two vector fields.
Explanation
===========
The commutator of two vector fields `v_1` and `v_2` is defined as the
vector field `[v_1, v_2]` that evaluated on each scalar field `f` is equal
to `v_1(v_2(f)) - v_2(v_1(f))`.
Examples
========
>>> from sympy.diffgeom.rn import R2_p, R2_r
>>> from sympy.diffgeom import Commutator
>>> from sympy import simplify
>>> fx, fy = R2_r.base_scalars()
>>> e_x, e_y = R2_r.base_vectors()
>>> e_r = R2_p.base_vector(0)
>>> c_xy = Commutator(e_x, e_y)
>>> c_xr = Commutator(e_x, e_r)
>>> c_xy
0
Unfortunately, the current code is not able to compute everything:
>>> c_xr
Commutator(e_x, e_rho)
>>> simplify(c_xr(fy**2))
-2*cos(theta)*y**2/(x**2 + y**2)
"""
def __new__(cls, v1, v2):
if (covariant_order(v1) or contravariant_order(v1) != 1
or covariant_order(v2) or contravariant_order(v2) != 1):
raise ValueError(
'Only commutators of vector fields are supported.')
if v1 == v2:
return S.Zero
coord_sys = set().union(*[_find_coords(v) for v in (v1, v2)])
if len(coord_sys) == 1:
# Only one coordinate systems is used, hence it is easy enough to
# actually evaluate the commutator.
if all(isinstance(v, BaseVectorField) for v in (v1, v2)):
return S.Zero
bases_1, bases_2 = [list(v.atoms(BaseVectorField))
for v in (v1, v2)]
coeffs_1 = [v1.expand().coeff(b) for b in bases_1]
coeffs_2 = [v2.expand().coeff(b) for b in bases_2]
res = 0
for c1, b1 in zip(coeffs_1, bases_1):
for c2, b2 in zip(coeffs_2, bases_2):
res += c1*b1(c2)*b2 - c2*b2(c1)*b1
return res
else:
obj = super().__new__(cls, v1, v2)
obj._v1 = v1 # deprecated assignment
obj._v2 = v2 # deprecated assignment
return obj
@property
def v1(self):
return self.args[0]
@property
def v2(self):
return self.args[1]
def __call__(self, scalar_field):
"""Apply on a scalar field.
If the argument is not a scalar field an error is raised.
"""
return self.v1(self.v2(scalar_field)) - self.v2(self.v1(scalar_field))
class Differential(Expr):
r"""Return the differential (exterior derivative) of a form field.
Explanation
===========
The differential of a form (i.e. the exterior derivative) has a complicated
definition in the general case.
The differential `df` of the 0-form `f` is defined for any vector field `v`
as `df(v) = v(f)`.
Examples
========
>>> from sympy import Function
>>> from sympy.diffgeom.rn import R2_r
>>> from sympy.diffgeom import Differential
>>> from sympy import pprint
>>> fx, fy = R2_r.base_scalars()
>>> e_x, e_y = R2_r.base_vectors()
>>> g = Function('g')
>>> s_field = g(fx, fy)
>>> dg = Differential(s_field)
>>> dg
d(g(x, y))
>>> pprint(dg(e_x))
/ d \|
|---(g(xi, y))||
\dxi /|xi=x
>>> pprint(dg(e_y))
/ d \|
|---(g(x, xi))||
\dxi /|xi=y
Applying the exterior derivative operator twice always results in:
>>> Differential(dg)
0
"""
is_commutative = False
def __new__(cls, form_field):
if contravariant_order(form_field):
raise ValueError(
'A vector field was supplied as an argument to Differential.')
if isinstance(form_field, Differential):
return S.Zero
else:
obj = super().__new__(cls, form_field)
obj._form_field = form_field # deprecated assignment
return obj
@property
def form_field(self):
return self.args[0]
def __call__(self, *vector_fields):
"""Apply on a list of vector_fields.
Explanation
===========
If the number of vector fields supplied is not equal to 1 + the order of
the form field inside the differential the result is undefined.
For 1-forms (i.e. differentials of scalar fields) the evaluation is
done as `df(v)=v(f)`. However if `v` is ``None`` instead of a vector
field, the differential is returned unchanged. This is done in order to
permit partial contractions for higher forms.
In the general case the evaluation is done by applying the form field
inside the differential on a list with one less elements than the number
of elements in the original list. Lowering the number of vector fields
is achieved through replacing each pair of fields by their
commutator.
If the arguments are not vectors or ``None``s an error is raised.
"""
if any((contravariant_order(a) != 1 or covariant_order(a)) and a is not None
for a in vector_fields):
raise ValueError('The arguments supplied to Differential should be vector fields or Nones.')
k = len(vector_fields)
if k == 1:
if vector_fields[0]:
return vector_fields[0].rcall(self._form_field)
return self
else:
# For higher form it is more complicated:
# Invariant formula:
# https://en.wikipedia.org/wiki/Exterior_derivative#Invariant_formula
# df(v1, ... vn) = +/- vi(f(v1..no i..vn))
# +/- f([vi,vj],v1..no i, no j..vn)
f = self._form_field
v = vector_fields
ret = 0
for i in range(k):
t = v[i].rcall(f.rcall(*v[:i] + v[i + 1:]))
ret += (-1)**i*t
for j in range(i + 1, k):
c = Commutator(v[i], v[j])
if c: # TODO this is ugly - the Commutator can be Zero and
# this causes the next line to fail
t = f.rcall(*(c,) + v[:i] + v[i + 1:j] + v[j + 1:])
ret += (-1)**(i + j)*t
return ret
class TensorProduct(Expr):
"""Tensor product of forms.
Explanation
===========
The tensor product permits the creation of multilinear functionals (i.e.
higher order tensors) out of lower order fields (e.g. 1-forms and vector
fields). However, the higher tensors thus created lack the interesting
features provided by the other type of product, the wedge product, namely
they are not antisymmetric and hence are not form fields.
Examples
========
>>> from sympy.diffgeom.rn import R2_r
>>> from sympy.diffgeom import TensorProduct
>>> fx, fy = R2_r.base_scalars()
>>> e_x, e_y = R2_r.base_vectors()
>>> dx, dy = R2_r.base_oneforms()
>>> TensorProduct(dx, dy)(e_x, e_y)
1
>>> TensorProduct(dx, dy)(e_y, e_x)
0
>>> TensorProduct(dx, fx*dy)(fx*e_x, e_y)
x**2
>>> TensorProduct(e_x, e_y)(fx**2, fy**2)
4*x*y
>>> TensorProduct(e_y, dx)(fy)
dx
You can nest tensor products.
>>> tp1 = TensorProduct(dx, dy)
>>> TensorProduct(tp1, dx)(e_x, e_y, e_x)
1
You can make partial contraction for instance when 'raising an index'.
Putting ``None`` in the second argument of ``rcall`` means that the
respective position in the tensor product is left as it is.
>>> TP = TensorProduct
>>> metric = TP(dx, dx) + 3*TP(dy, dy)
>>> metric.rcall(e_y, None)
3*dy
Or automatically pad the args with ``None`` without specifying them.
>>> metric.rcall(e_y)
3*dy
"""
def __new__(cls, *args):
scalar = Mul(*[m for m in args if covariant_order(m) + contravariant_order(m) == 0])
multifields = [m for m in args if covariant_order(m) + contravariant_order(m)]
if multifields:
if len(multifields) == 1:
return scalar*multifields[0]
return scalar*super().__new__(cls, *multifields)
else:
return scalar
def __call__(self, *fields):
"""Apply on a list of fields.
If the number of input fields supplied is not equal to the order of
the tensor product field, the list of arguments is padded with ``None``'s.
The list of arguments is divided in sublists depending on the order of
the forms inside the tensor product. The sublists are provided as
arguments to these forms and the resulting expressions are given to the
constructor of ``TensorProduct``.
"""
tot_order = covariant_order(self) + contravariant_order(self)
tot_args = len(fields)
if tot_args != tot_order:
fields = list(fields) + [None]*(tot_order - tot_args)
orders = [covariant_order(f) + contravariant_order(f) for f in self._args]
indices = [sum(orders[:i + 1]) for i in range(len(orders) - 1)]
fields = [fields[i:j] for i, j in zip([0] + indices, indices + [None])]
multipliers = [t[0].rcall(*t[1]) for t in zip(self._args, fields)]
return TensorProduct(*multipliers)
class WedgeProduct(TensorProduct):
"""Wedge product of forms.
Explanation
===========
In the context of integration only completely antisymmetric forms make
sense. The wedge product permits the creation of such forms.
Examples
========
>>> from sympy.diffgeom.rn import R2_r
>>> from sympy.diffgeom import WedgeProduct
>>> fx, fy = R2_r.base_scalars()
>>> e_x, e_y = R2_r.base_vectors()
>>> dx, dy = R2_r.base_oneforms()
>>> WedgeProduct(dx, dy)(e_x, e_y)
1
>>> WedgeProduct(dx, dy)(e_y, e_x)
-1
>>> WedgeProduct(dx, fx*dy)(fx*e_x, e_y)
x**2
>>> WedgeProduct(e_x, e_y)(fy, None)
-e_x
You can nest wedge products.
>>> wp1 = WedgeProduct(dx, dy)
>>> WedgeProduct(wp1, dx)(e_x, e_y, e_x)
0
"""
# TODO the calculation of signatures is slow
# TODO you do not need all these permutations (neither the prefactor)
def __call__(self, *fields):
"""Apply on a list of vector_fields.
The expression is rewritten internally in terms of tensor products and evaluated."""
orders = (covariant_order(e) + contravariant_order(e) for e in self.args)
mul = 1/Mul(*(factorial(o) for o in orders))
perms = permutations(fields)
perms_par = (Permutation(
p).signature() for p in permutations(range(len(fields))))
tensor_prod = TensorProduct(*self.args)
return mul*Add(*[tensor_prod(*p[0])*p[1] for p in zip(perms, perms_par)])
class LieDerivative(Expr):
"""Lie derivative with respect to a vector field.
Explanation
===========
The transport operator that defines the Lie derivative is the pushforward of
the field to be derived along the integral curve of the field with respect
to which one derives.
Examples
========
>>> from sympy.diffgeom.rn import R2_r, R2_p
>>> from sympy.diffgeom import (LieDerivative, TensorProduct)
>>> fx, fy = R2_r.base_scalars()
>>> e_x, e_y = R2_r.base_vectors()
>>> e_rho, e_theta = R2_p.base_vectors()
>>> dx, dy = R2_r.base_oneforms()
>>> LieDerivative(e_x, fy)
0
>>> LieDerivative(e_x, fx)
1
>>> LieDerivative(e_x, e_x)
0
The Lie derivative of a tensor field by another tensor field is equal to
their commutator:
>>> LieDerivative(e_x, e_rho)
Commutator(e_x, e_rho)
>>> LieDerivative(e_x + e_y, fx)
1
>>> tp = TensorProduct(dx, dy)
>>> LieDerivative(e_x, tp)
LieDerivative(e_x, TensorProduct(dx, dy))
>>> LieDerivative(e_x, tp)
LieDerivative(e_x, TensorProduct(dx, dy))
"""
def __new__(cls, v_field, expr):
expr_form_ord = covariant_order(expr)
if contravariant_order(v_field) != 1 or covariant_order(v_field):
raise ValueError('Lie derivatives are defined only with respect to'
' vector fields. The supplied argument was not a '
'vector field.')
if expr_form_ord > 0:
obj = super().__new__(cls, v_field, expr)
# deprecated assignments
obj._v_field = v_field
obj._expr = expr
return obj
if expr.atoms(BaseVectorField):
return Commutator(v_field, expr)
else:
return v_field.rcall(expr)
@property
def v_field(self):
return self.args[0]
@property
def expr(self):
return self.args[1]
def __call__(self, *args):
v = self.v_field
expr = self.expr
lead_term = v(expr(*args))
rest = Add(*[Mul(*args[:i] + (Commutator(v, args[i]),) + args[i + 1:])
for i in range(len(args))])
return lead_term - rest
class BaseCovarDerivativeOp(Expr):
"""Covariant derivative operator with respect to a base vector.
Examples
========
>>> from sympy.diffgeom.rn import R2_r
>>> from sympy.diffgeom import BaseCovarDerivativeOp
>>> from sympy.diffgeom import metric_to_Christoffel_2nd, TensorProduct
>>> TP = TensorProduct
>>> fx, fy = R2_r.base_scalars()
>>> e_x, e_y = R2_r.base_vectors()
>>> dx, dy = R2_r.base_oneforms()
>>> ch = metric_to_Christoffel_2nd(TP(dx, dx) + TP(dy, dy))
>>> ch
[[[0, 0], [0, 0]], [[0, 0], [0, 0]]]
>>> cvd = BaseCovarDerivativeOp(R2_r, 0, ch)
>>> cvd(fx)
1
>>> cvd(fx*e_x)
e_x
"""
def __new__(cls, coord_sys, index, christoffel):
index = _sympify(index)
christoffel = ImmutableDenseNDimArray(christoffel)
obj = super().__new__(cls, coord_sys, index, christoffel)
# deprecated assignments
obj._coord_sys = coord_sys
obj._index = index
obj._christoffel = christoffel
return obj
@property
def coord_sys(self):
return self.args[0]
@property
def index(self):
return self.args[1]
@property
def christoffel(self):
return self.args[2]
def __call__(self, field):
"""Apply on a scalar field.
The action of a vector field on a scalar field is a directional
differentiation.
If the argument is not a scalar field the behaviour is undefined.
"""
if covariant_order(field) != 0:
raise NotImplementedError()
field = vectors_in_basis(field, self._coord_sys)
wrt_vector = self._coord_sys.base_vector(self._index)
wrt_scalar = self._coord_sys.coord_function(self._index)
vectors = list(field.atoms(BaseVectorField))
# First step: replace all vectors with something susceptible to
# derivation and do the derivation
# TODO: you need a real dummy function for the next line
d_funcs = [Function('_#_%s' % i)(wrt_scalar) for i,
b in enumerate(vectors)]
d_result = field.subs(list(zip(vectors, d_funcs)))
d_result = wrt_vector(d_result)
# Second step: backsubstitute the vectors in
d_result = d_result.subs(list(zip(d_funcs, vectors)))
# Third step: evaluate the derivatives of the vectors
derivs = []
for v in vectors:
d = Add(*[(self._christoffel[k, wrt_vector._index, v._index]
*v._coord_sys.base_vector(k))
for k in range(v._coord_sys.dim)])
derivs.append(d)
to_subs = [wrt_vector(d) for d in d_funcs]
# XXX: This substitution can fail when there are Dummy symbols and the
# cache is disabled: https://github.com/sympy/sympy/issues/17794
result = d_result.subs(list(zip(to_subs, derivs)))
# Remove the dummies
result = result.subs(list(zip(d_funcs, vectors)))
return result.doit()
class CovarDerivativeOp(Expr):
"""Covariant derivative operator.
Examples
========
>>> from sympy.diffgeom.rn import R2_r
>>> from sympy.diffgeom import CovarDerivativeOp
>>> from sympy.diffgeom import metric_to_Christoffel_2nd, TensorProduct
>>> TP = TensorProduct
>>> fx, fy = R2_r.base_scalars()
>>> e_x, e_y = R2_r.base_vectors()
>>> dx, dy = R2_r.base_oneforms()
>>> ch = metric_to_Christoffel_2nd(TP(dx, dx) + TP(dy, dy))
>>> ch
[[[0, 0], [0, 0]], [[0, 0], [0, 0]]]
>>> cvd = CovarDerivativeOp(fx*e_x, ch)
>>> cvd(fx)
x
>>> cvd(fx*e_x)
x*e_x
"""
def __new__(cls, wrt, christoffel):
if len({v._coord_sys for v in wrt.atoms(BaseVectorField)}) > 1:
raise NotImplementedError()
if contravariant_order(wrt) != 1 or covariant_order(wrt):
raise ValueError('Covariant derivatives are defined only with '
'respect to vector fields. The supplied argument '
'was not a vector field.')
christoffel = ImmutableDenseNDimArray(christoffel)
obj = super().__new__(cls, wrt, christoffel)
# deprecated assigments
obj._wrt = wrt
obj._christoffel = christoffel
return obj
@property
def wrt(self):
return self.args[0]
@property
def christoffel(self):
return self.args[1]
def __call__(self, field):
vectors = list(self._wrt.atoms(BaseVectorField))
base_ops = [BaseCovarDerivativeOp(v._coord_sys, v._index, self._christoffel)
for v in vectors]
return self._wrt.subs(list(zip(vectors, base_ops))).rcall(field)
###############################################################################
# Integral curves on vector fields
###############################################################################
def intcurve_series(vector_field, param, start_point, n=6, coord_sys=None, coeffs=False):
r"""Return the series expansion for an integral curve of the field.
Explanation
===========
Integral curve is a function `\gamma` taking a parameter in `R` to a point
in the manifold. It verifies the equation:
`V(f)\big(\gamma(t)\big) = \frac{d}{dt}f\big(\gamma(t)\big)`
where the given ``vector_field`` is denoted as `V`. This holds for any
value `t` for the parameter and any scalar field `f`.
This equation can also be decomposed of a basis of coordinate functions
`V(f_i)\big(\gamma(t)\big) = \frac{d}{dt}f_i\big(\gamma(t)\big) \quad \forall i`
This function returns a series expansion of `\gamma(t)` in terms of the
coordinate system ``coord_sys``. The equations and expansions are necessarily
done in coordinate-system-dependent way as there is no other way to
represent movement between points on the manifold (i.e. there is no such
thing as a difference of points for a general manifold).
Parameters
==========
vector_field
the vector field for which an integral curve will be given
param
the argument of the function `\gamma` from R to the curve
start_point
the point which corresponds to `\gamma(0)`
n
the order to which to expand
coord_sys
the coordinate system in which to expand
coeffs (default False) - if True return a list of elements of the expansion
Examples
========
Use the predefined R2 manifold:
>>> from sympy.abc import t, x, y
>>> from sympy.diffgeom.rn import R2_p, R2_r
>>> from sympy.diffgeom import intcurve_series
Specify a starting point and a vector field:
>>> start_point = R2_r.point([x, y])
>>> vector_field = R2_r.e_x
Calculate the series:
>>> intcurve_series(vector_field, t, start_point, n=3)
Matrix([
[t + x],
[ y]])
Or get the elements of the expansion in a list:
>>> series = intcurve_series(vector_field, t, start_point, n=3, coeffs=True)
>>> series[0]
Matrix([
[x],
[y]])
>>> series[1]
Matrix([
[t],
[0]])
>>> series[2]
Matrix([
[0],
[0]])
The series in the polar coordinate system:
>>> series = intcurve_series(vector_field, t, start_point,
... n=3, coord_sys=R2_p, coeffs=True)
>>> series[0]
Matrix([
[sqrt(x**2 + y**2)],
[ atan2(y, x)]])
>>> series[1]
Matrix([
[t*x/sqrt(x**2 + y**2)],
[ -t*y/(x**2 + y**2)]])
>>> series[2]
Matrix([
[t**2*(-x**2/(x**2 + y**2)**(3/2) + 1/sqrt(x**2 + y**2))/2],
[ t**2*x*y/(x**2 + y**2)**2]])
See Also
========
intcurve_diffequ
"""
if contravariant_order(vector_field) != 1 or covariant_order(vector_field):
raise ValueError('The supplied field was not a vector field.')
def iter_vfield(scalar_field, i):
"""Return ``vector_field`` called `i` times on ``scalar_field``."""
return reduce(lambda s, v: v.rcall(s), [vector_field, ]*i, scalar_field)
def taylor_terms_per_coord(coord_function):
"""Return the series for one of the coordinates."""
return [param**i*iter_vfield(coord_function, i).rcall(start_point)/factorial(i)
for i in range(n)]
coord_sys = coord_sys if coord_sys else start_point._coord_sys
coord_functions = coord_sys.coord_functions()
taylor_terms = [taylor_terms_per_coord(f) for f in coord_functions]
if coeffs:
return [Matrix(t) for t in zip(*taylor_terms)]
else:
return Matrix([sum(c) for c in taylor_terms])
def intcurve_diffequ(vector_field, param, start_point, coord_sys=None):
r"""Return the differential equation for an integral curve of the field.
Explanation
===========
Integral curve is a function `\gamma` taking a parameter in `R` to a point
in the manifold. It verifies the equation:
`V(f)\big(\gamma(t)\big) = \frac{d}{dt}f\big(\gamma(t)\big)`
where the given ``vector_field`` is denoted as `V`. This holds for any
value `t` for the parameter and any scalar field `f`.
This function returns the differential equation of `\gamma(t)` in terms of the
coordinate system ``coord_sys``. The equations and expansions are necessarily
done in coordinate-system-dependent way as there is no other way to
represent movement between points on the manifold (i.e. there is no such
thing as a difference of points for a general manifold).
Parameters
==========
vector_field
the vector field for which an integral curve will be given
param
the argument of the function `\gamma` from R to the curve
start_point
the point which corresponds to `\gamma(0)`
coord_sys
the coordinate system in which to give the equations
Returns
=======
a tuple of (equations, initial conditions)
Examples
========
Use the predefined R2 manifold:
>>> from sympy.abc import t
>>> from sympy.diffgeom.rn import R2, R2_p, R2_r
>>> from sympy.diffgeom import intcurve_diffequ
Specify a starting point and a vector field:
>>> start_point = R2_r.point([0, 1])
>>> vector_field = -R2.y*R2.e_x + R2.x*R2.e_y
Get the equation:
>>> equations, init_cond = intcurve_diffequ(vector_field, t, start_point)
>>> equations
[f_1(t) + Derivative(f_0(t), t), -f_0(t) + Derivative(f_1(t), t)]
>>> init_cond
[f_0(0), f_1(0) - 1]
The series in the polar coordinate system:
>>> equations, init_cond = intcurve_diffequ(vector_field, t, start_point, R2_p)
>>> equations
[Derivative(f_0(t), t), Derivative(f_1(t), t) - 1]
>>> init_cond
[f_0(0) - 1, f_1(0) - pi/2]
See Also
========
intcurve_series
"""
if contravariant_order(vector_field) != 1 or covariant_order(vector_field):
raise ValueError('The supplied field was not a vector field.')
coord_sys = coord_sys if coord_sys else start_point._coord_sys
gammas = [Function('f_%d' % i)(param) for i in range(
start_point._coord_sys.dim)]
arbitrary_p = Point(coord_sys, gammas)
coord_functions = coord_sys.coord_functions()
equations = [simplify(diff(cf.rcall(arbitrary_p), param) - vector_field.rcall(cf).rcall(arbitrary_p))
for cf in coord_functions]
init_cond = [simplify(cf.rcall(arbitrary_p).subs(param, 0) - cf.rcall(start_point))
for cf in coord_functions]
return equations, init_cond
###############################################################################
# Helpers
###############################################################################
def dummyfy(args, exprs):
# TODO Is this a good idea?
d_args = Matrix([s.as_dummy() for s in args])
reps = dict(zip(args, d_args))
d_exprs = Matrix([_sympify(expr).subs(reps) for expr in exprs])
return d_args, d_exprs
###############################################################################
# Helpers
###############################################################################
def contravariant_order(expr, _strict=False):
"""Return the contravariant order of an expression.
Examples
========
>>> from sympy.diffgeom import contravariant_order
>>> from sympy.diffgeom.rn import R2
>>> from sympy.abc import a
>>> contravariant_order(a)
0
>>> contravariant_order(a*R2.x + 2)
0
>>> contravariant_order(a*R2.x*R2.e_y + R2.e_x)
1
"""
# TODO move some of this to class methods.
# TODO rewrite using the .as_blah_blah methods
if isinstance(expr, Add):
orders = [contravariant_order(e) for e in expr.args]
if len(set(orders)) != 1:
raise ValueError('Misformed expression containing contravariant fields of varying order.')
return orders[0]
elif isinstance(expr, Mul):
orders = [contravariant_order(e) for e in expr.args]
not_zero = [o for o in orders if o != 0]
if len(not_zero) > 1:
raise ValueError('Misformed expression containing multiplication between vectors.')
return 0 if not not_zero else not_zero[0]
elif isinstance(expr, Pow):
if covariant_order(expr.base) or covariant_order(expr.exp):
raise ValueError(
'Misformed expression containing a power of a vector.')
return 0
elif isinstance(expr, BaseVectorField):
return 1
elif isinstance(expr, TensorProduct):
return sum(contravariant_order(a) for a in expr.args)
elif not _strict or expr.atoms(BaseScalarField):
return 0
else: # If it does not contain anything related to the diffgeom module and it is _strict
return -1
def covariant_order(expr, _strict=False):
"""Return the covariant order of an expression.
Examples
========
>>> from sympy.diffgeom import covariant_order
>>> from sympy.diffgeom.rn import R2
>>> from sympy.abc import a
>>> covariant_order(a)
0
>>> covariant_order(a*R2.x + 2)
0
>>> covariant_order(a*R2.x*R2.dy + R2.dx)
1
"""
# TODO move some of this to class methods.
# TODO rewrite using the .as_blah_blah methods
if isinstance(expr, Add):
orders = [covariant_order(e) for e in expr.args]
if len(set(orders)) != 1:
raise ValueError('Misformed expression containing form fields of varying order.')
return orders[0]
elif isinstance(expr, Mul):
orders = [covariant_order(e) for e in expr.args]
not_zero = [o for o in orders if o != 0]
if len(not_zero) > 1:
raise ValueError('Misformed expression containing multiplication between forms.')
return 0 if not not_zero else not_zero[0]
elif isinstance(expr, Pow):
if covariant_order(expr.base) or covariant_order(expr.exp):
raise ValueError(
'Misformed expression containing a power of a form.')
return 0
elif isinstance(expr, Differential):
return covariant_order(*expr.args) + 1
elif isinstance(expr, TensorProduct):
return sum(covariant_order(a) for a in expr.args)
elif not _strict or expr.atoms(BaseScalarField):
return 0
else: # If it does not contain anything related to the diffgeom module and it is _strict
return -1
###############################################################################
# Coordinate transformation functions
###############################################################################
def vectors_in_basis(expr, to_sys):
"""Transform all base vectors in base vectors of a specified coord basis.
While the new base vectors are in the new coordinate system basis, any
coefficients are kept in the old system.
Examples
========
>>> from sympy.diffgeom import vectors_in_basis
>>> from sympy.diffgeom.rn import R2_r, R2_p
>>> vectors_in_basis(R2_r.e_x, R2_p)
-y*e_theta/(x**2 + y**2) + x*e_rho/sqrt(x**2 + y**2)
>>> vectors_in_basis(R2_p.e_r, R2_r)
sin(theta)*e_y + cos(theta)*e_x
"""
vectors = list(expr.atoms(BaseVectorField))
new_vectors = []
for v in vectors:
cs = v._coord_sys
jac = cs.jacobian(to_sys, cs.coord_functions())
new = (jac.T*Matrix(to_sys.base_vectors()))[v._index]
new_vectors.append(new)
return expr.subs(list(zip(vectors, new_vectors)))
###############################################################################
# Coordinate-dependent functions
###############################################################################
def twoform_to_matrix(expr):
"""Return the matrix representing the twoform.
For the twoform `w` return the matrix `M` such that `M[i,j]=w(e_i, e_j)`,
where `e_i` is the i-th base vector field for the coordinate system in
which the expression of `w` is given.
Examples
========
>>> from sympy.diffgeom.rn import R2
>>> from sympy.diffgeom import twoform_to_matrix, TensorProduct
>>> TP = TensorProduct
>>> twoform_to_matrix(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
Matrix([
[1, 0],
[0, 1]])
>>> twoform_to_matrix(R2.x*TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
Matrix([
[x, 0],
[0, 1]])
>>> twoform_to_matrix(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy) - TP(R2.dx, R2.dy)/2)
Matrix([
[ 1, 0],
[-1/2, 1]])
"""
if covariant_order(expr) != 2 or contravariant_order(expr):
raise ValueError('The input expression is not a two-form.')
coord_sys = _find_coords(expr)
if len(coord_sys) != 1:
raise ValueError('The input expression concerns more than one '
'coordinate systems, hence there is no unambiguous '
'way to choose a coordinate system for the matrix.')
coord_sys = coord_sys.pop()
vectors = coord_sys.base_vectors()
expr = expr.expand()
matrix_content = [[expr.rcall(v1, v2) for v1 in vectors]
for v2 in vectors]
return Matrix(matrix_content)
def metric_to_Christoffel_1st(expr):
"""Return the nested list of Christoffel symbols for the given metric.
This returns the Christoffel symbol of first kind that represents the
Levi-Civita connection for the given metric.
Examples
========
>>> from sympy.diffgeom.rn import R2
>>> from sympy.diffgeom import metric_to_Christoffel_1st, TensorProduct
>>> TP = TensorProduct
>>> metric_to_Christoffel_1st(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
[[[0, 0], [0, 0]], [[0, 0], [0, 0]]]
>>> metric_to_Christoffel_1st(R2.x*TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
[[[1/2, 0], [0, 0]], [[0, 0], [0, 0]]]
"""
matrix = twoform_to_matrix(expr)
if not matrix.is_symmetric():
raise ValueError(
'The two-form representing the metric is not symmetric.')
coord_sys = _find_coords(expr).pop()
deriv_matrices = [matrix.applyfunc(d) for d in coord_sys.base_vectors()]
indices = list(range(coord_sys.dim))
christoffel = [[[(deriv_matrices[k][i, j] + deriv_matrices[j][i, k] - deriv_matrices[i][j, k])/2
for k in indices]
for j in indices]
for i in indices]
return ImmutableDenseNDimArray(christoffel)
def metric_to_Christoffel_2nd(expr):
"""Return the nested list of Christoffel symbols for the given metric.
This returns the Christoffel symbol of second kind that represents the
Levi-Civita connection for the given metric.
Examples
========
>>> from sympy.diffgeom.rn import R2
>>> from sympy.diffgeom import metric_to_Christoffel_2nd, TensorProduct
>>> TP = TensorProduct
>>> metric_to_Christoffel_2nd(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
[[[0, 0], [0, 0]], [[0, 0], [0, 0]]]
>>> metric_to_Christoffel_2nd(R2.x*TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
[[[1/(2*x), 0], [0, 0]], [[0, 0], [0, 0]]]
"""
ch_1st = metric_to_Christoffel_1st(expr)
coord_sys = _find_coords(expr).pop()
indices = list(range(coord_sys.dim))
# XXX workaround, inverting a matrix does not work if it contains non
# symbols
#matrix = twoform_to_matrix(expr).inv()
matrix = twoform_to_matrix(expr)
s_fields = set()
for e in matrix:
s_fields.update(e.atoms(BaseScalarField))
s_fields = list(s_fields)
dums = coord_sys.symbols
matrix = matrix.subs(list(zip(s_fields, dums))).inv().subs(list(zip(dums, s_fields)))
# XXX end of workaround
christoffel = [[[Add(*[matrix[i, l]*ch_1st[l, j, k] for l in indices])
for k in indices]
for j in indices]
for i in indices]
return ImmutableDenseNDimArray(christoffel)
def metric_to_Riemann_components(expr):
"""Return the components of the Riemann tensor expressed in a given basis.
Given a metric it calculates the components of the Riemann tensor in the
canonical basis of the coordinate system in which the metric expression is
given.
Examples
========
>>> from sympy import exp
>>> from sympy.diffgeom.rn import R2
>>> from sympy.diffgeom import metric_to_Riemann_components, TensorProduct
>>> TP = TensorProduct
>>> metric_to_Riemann_components(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
[[[[0, 0], [0, 0]], [[0, 0], [0, 0]]], [[[0, 0], [0, 0]], [[0, 0], [0, 0]]]]
>>> non_trivial_metric = exp(2*R2.r)*TP(R2.dr, R2.dr) + \
R2.r**2*TP(R2.dtheta, R2.dtheta)
>>> non_trivial_metric
exp(2*rho)*TensorProduct(drho, drho) + rho**2*TensorProduct(dtheta, dtheta)
>>> riemann = metric_to_Riemann_components(non_trivial_metric)
>>> riemann[0, :, :, :]
[[[0, 0], [0, 0]], [[0, exp(-2*rho)*rho], [-exp(-2*rho)*rho, 0]]]
>>> riemann[1, :, :, :]
[[[0, -1/rho], [1/rho, 0]], [[0, 0], [0, 0]]]
"""
ch_2nd = metric_to_Christoffel_2nd(expr)
coord_sys = _find_coords(expr).pop()
indices = list(range(coord_sys.dim))
deriv_ch = [[[[d(ch_2nd[i, j, k])
for d in coord_sys.base_vectors()]
for k in indices]
for j in indices]
for i in indices]
riemann_a = [[[[deriv_ch[rho][sig][nu][mu] - deriv_ch[rho][sig][mu][nu]
for nu in indices]
for mu in indices]
for sig in indices]
for rho in indices]
riemann_b = [[[[Add(*[ch_2nd[rho, l, mu]*ch_2nd[l, sig, nu] - ch_2nd[rho, l, nu]*ch_2nd[l, sig, mu] for l in indices])
for nu in indices]
for mu in indices]
for sig in indices]
for rho in indices]
riemann = [[[[riemann_a[rho][sig][mu][nu] + riemann_b[rho][sig][mu][nu]
for nu in indices]
for mu in indices]
for sig in indices]
for rho in indices]
return ImmutableDenseNDimArray(riemann)
def metric_to_Ricci_components(expr):
"""Return the components of the Ricci tensor expressed in a given basis.
Given a metric it calculates the components of the Ricci tensor in the
canonical basis of the coordinate system in which the metric expression is
given.
Examples
========
>>> from sympy import exp
>>> from sympy.diffgeom.rn import R2
>>> from sympy.diffgeom import metric_to_Ricci_components, TensorProduct
>>> TP = TensorProduct
>>> metric_to_Ricci_components(TP(R2.dx, R2.dx) + TP(R2.dy, R2.dy))
[[0, 0], [0, 0]]
>>> non_trivial_metric = exp(2*R2.r)*TP(R2.dr, R2.dr) + \
R2.r**2*TP(R2.dtheta, R2.dtheta)
>>> non_trivial_metric
exp(2*rho)*TensorProduct(drho, drho) + rho**2*TensorProduct(dtheta, dtheta)
>>> metric_to_Ricci_components(non_trivial_metric)
[[1/rho, 0], [0, exp(-2*rho)*rho]]
"""
riemann = metric_to_Riemann_components(expr)
coord_sys = _find_coords(expr).pop()
indices = list(range(coord_sys.dim))
ricci = [[Add(*[riemann[k, i, k, j] for k in indices])
for j in indices]
for i in indices]
return ImmutableDenseNDimArray(ricci)
###############################################################################
# Classes for deprecation
###############################################################################
class _deprecated_container:
# This class gives deprecation warning.
# When deprecated features are completely deleted, this should be removed as well.
# See https://github.com/sympy/sympy/pull/19368
def __init__(self, message, data):
super().__init__(data)
self.message = message
def warn(self):
sympy_deprecation_warning(
self.message,
deprecated_since_version="1.7",
active_deprecations_target="deprecated-diffgeom-mutable",
stacklevel=4
)
def __iter__(self):
self.warn()
return super().__iter__()
def __getitem__(self, key):
self.warn()
return super().__getitem__(key)
def __contains__(self, key):
self.warn()
return super().__contains__(key)
class _deprecated_list(_deprecated_container, list):
pass
class _deprecated_dict(_deprecated_container, dict):
pass
# Import at end to avoid cyclic imports
from sympy.simplify.simplify import simplify
|
8201158ed3a5499e8562efcd498f16755c821aff0fa56c6cf5bb0a9803bc30c1 | """
This file contains some classical ciphers and routines
implementing a linear-feedback shift register (LFSR)
and the Diffie-Hellman key exchange.
.. warning::
This module is intended for educational purposes only. Do not use the
functions in this module for real cryptographic applications. If you wish
to encrypt real data, we recommend using something like the `cryptography
<https://cryptography.io/en/latest/>`_ module.
"""
from string import whitespace, ascii_uppercase as uppercase, printable
from functools import reduce
import warnings
from itertools import cycle
from sympy.core import Symbol
from sympy.core.numbers import igcdex, mod_inverse, igcd, Rational
from sympy.core.random import _randrange, _randint
from sympy.matrices import Matrix
from sympy.ntheory import isprime, primitive_root, factorint
from sympy.ntheory import totient as _euler
from sympy.ntheory import reduced_totient as _carmichael
from sympy.ntheory.generate import nextprime
from sympy.ntheory.modular import crt
from sympy.polys.domains import FF
from sympy.polys.polytools import gcd, Poly
from sympy.utilities.misc import as_int, filldedent, translate
from sympy.utilities.iterables import uniq, multiset
class NonInvertibleCipherWarning(RuntimeWarning):
"""A warning raised if the cipher is not invertible."""
def __init__(self, msg):
self.fullMessage = msg
def __str__(self):
return '\n\t' + self.fullMessage
def warn(self, stacklevel=3):
warnings.warn(self, stacklevel=stacklevel)
def AZ(s=None):
"""Return the letters of ``s`` in uppercase. In case more than
one string is passed, each of them will be processed and a list
of upper case strings will be returned.
Examples
========
>>> from sympy.crypto.crypto import AZ
>>> AZ('Hello, world!')
'HELLOWORLD'
>>> AZ('Hello, world!'.split())
['HELLO', 'WORLD']
See Also
========
check_and_join
"""
if not s:
return uppercase
t = isinstance(s, str)
if t:
s = [s]
rv = [check_and_join(i.upper().split(), uppercase, filter=True)
for i in s]
if t:
return rv[0]
return rv
bifid5 = AZ().replace('J', '')
bifid6 = AZ() + '0123456789'
bifid10 = printable
def padded_key(key, symbols):
"""Return a string of the distinct characters of ``symbols`` with
those of ``key`` appearing first. A ValueError is raised if
a) there are duplicate characters in ``symbols`` or
b) there are characters in ``key`` that are not in ``symbols``.
Examples
========
>>> from sympy.crypto.crypto import padded_key
>>> padded_key('PUPPY', 'OPQRSTUVWXY')
'PUYOQRSTVWX'
>>> padded_key('RSA', 'ARTIST')
Traceback (most recent call last):
...
ValueError: duplicate characters in symbols: T
"""
syms = list(uniq(symbols))
if len(syms) != len(symbols):
extra = ''.join(sorted({
i for i in symbols if symbols.count(i) > 1}))
raise ValueError('duplicate characters in symbols: %s' % extra)
extra = set(key) - set(syms)
if extra:
raise ValueError(
'characters in key but not symbols: %s' % ''.join(
sorted(extra)))
key0 = ''.join(list(uniq(key)))
# remove from syms characters in key0
return key0 + translate(''.join(syms), None, key0)
def check_and_join(phrase, symbols=None, filter=None):
"""
Joins characters of ``phrase`` and if ``symbols`` is given, raises
an error if any character in ``phrase`` is not in ``symbols``.
Parameters
==========
phrase
String or list of strings to be returned as a string.
symbols
Iterable of characters allowed in ``phrase``.
If ``symbols`` is ``None``, no checking is performed.
Examples
========
>>> from sympy.crypto.crypto import check_and_join
>>> check_and_join('a phrase')
'a phrase'
>>> check_and_join('a phrase'.upper().split())
'APHRASE'
>>> check_and_join('a phrase!'.upper().split(), 'ARE', filter=True)
'ARAE'
>>> check_and_join('a phrase!'.upper().split(), 'ARE')
Traceback (most recent call last):
...
ValueError: characters in phrase but not symbols: "!HPS"
"""
rv = ''.join(''.join(phrase))
if symbols is not None:
symbols = check_and_join(symbols)
missing = ''.join(list(sorted(set(rv) - set(symbols))))
if missing:
if not filter:
raise ValueError(
'characters in phrase but not symbols: "%s"' % missing)
rv = translate(rv, None, missing)
return rv
def _prep(msg, key, alp, default=None):
if not alp:
if not default:
alp = AZ()
msg = AZ(msg)
key = AZ(key)
else:
alp = default
else:
alp = ''.join(alp)
key = check_and_join(key, alp, filter=True)
msg = check_and_join(msg, alp, filter=True)
return msg, key, alp
def cycle_list(k, n):
"""
Returns the elements of the list ``range(n)`` shifted to the
left by ``k`` (so the list starts with ``k`` (mod ``n``)).
Examples
========
>>> from sympy.crypto.crypto import cycle_list
>>> cycle_list(3, 10)
[3, 4, 5, 6, 7, 8, 9, 0, 1, 2]
"""
k = k % n
return list(range(k, n)) + list(range(k))
######## shift cipher examples ############
def encipher_shift(msg, key, symbols=None):
"""
Performs shift cipher encryption on plaintext msg, and returns the
ciphertext.
Parameters
==========
key : int
The secret key.
msg : str
Plaintext of upper-case letters.
Returns
=======
str
Ciphertext of upper-case letters.
Examples
========
>>> from sympy.crypto.crypto import encipher_shift, decipher_shift
>>> msg = "GONAVYBEATARMY"
>>> ct = encipher_shift(msg, 1); ct
'HPOBWZCFBUBSNZ'
To decipher the shifted text, change the sign of the key:
>>> encipher_shift(ct, -1)
'GONAVYBEATARMY'
There is also a convenience function that does this with the
original key:
>>> decipher_shift(ct, 1)
'GONAVYBEATARMY'
Notes
=====
ALGORITHM:
STEPS:
0. Number the letters of the alphabet from 0, ..., N
1. Compute from the string ``msg`` a list ``L1`` of
corresponding integers.
2. Compute from the list ``L1`` a new list ``L2``, given by
adding ``(k mod 26)`` to each element in ``L1``.
3. Compute from the list ``L2`` a string ``ct`` of
corresponding letters.
The shift cipher is also called the Caesar cipher, after
Julius Caesar, who, according to Suetonius, used it with a
shift of three to protect messages of military significance.
Caesar's nephew Augustus reportedly used a similar cipher, but
with a right shift of 1.
References
==========
.. [1] https://en.wikipedia.org/wiki/Caesar_cipher
.. [2] http://mathworld.wolfram.com/CaesarsMethod.html
See Also
========
decipher_shift
"""
msg, _, A = _prep(msg, '', symbols)
shift = len(A) - key % len(A)
key = A[shift:] + A[:shift]
return translate(msg, key, A)
def decipher_shift(msg, key, symbols=None):
"""
Return the text by shifting the characters of ``msg`` to the
left by the amount given by ``key``.
Examples
========
>>> from sympy.crypto.crypto import encipher_shift, decipher_shift
>>> msg = "GONAVYBEATARMY"
>>> ct = encipher_shift(msg, 1); ct
'HPOBWZCFBUBSNZ'
To decipher the shifted text, change the sign of the key:
>>> encipher_shift(ct, -1)
'GONAVYBEATARMY'
Or use this function with the original key:
>>> decipher_shift(ct, 1)
'GONAVYBEATARMY'
"""
return encipher_shift(msg, -key, symbols)
def encipher_rot13(msg, symbols=None):
"""
Performs the ROT13 encryption on a given plaintext ``msg``.
Explanation
===========
ROT13 is a substitution cipher which substitutes each letter
in the plaintext message for the letter furthest away from it
in the English alphabet.
Equivalently, it is just a Caeser (shift) cipher with a shift
key of 13 (midway point of the alphabet).
References
==========
.. [1] https://en.wikipedia.org/wiki/ROT13
See Also
========
decipher_rot13
encipher_shift
"""
return encipher_shift(msg, 13, symbols)
def decipher_rot13(msg, symbols=None):
"""
Performs the ROT13 decryption on a given plaintext ``msg``.
Explanation
============
``decipher_rot13`` is equivalent to ``encipher_rot13`` as both
``decipher_shift`` with a key of 13 and ``encipher_shift`` key with a
key of 13 will return the same results. Nonetheless,
``decipher_rot13`` has nonetheless been explicitly defined here for
consistency.
Examples
========
>>> from sympy.crypto.crypto import encipher_rot13, decipher_rot13
>>> msg = 'GONAVYBEATARMY'
>>> ciphertext = encipher_rot13(msg);ciphertext
'TBANILORNGNEZL'
>>> decipher_rot13(ciphertext)
'GONAVYBEATARMY'
>>> encipher_rot13(msg) == decipher_rot13(msg)
True
>>> msg == decipher_rot13(ciphertext)
True
"""
return decipher_shift(msg, 13, symbols)
######## affine cipher examples ############
def encipher_affine(msg, key, symbols=None, _inverse=False):
r"""
Performs the affine cipher encryption on plaintext ``msg``, and
returns the ciphertext.
Explanation
===========
Encryption is based on the map `x \rightarrow ax+b` (mod `N`)
where ``N`` is the number of characters in the alphabet.
Decryption is based on the map `x \rightarrow cx+d` (mod `N`),
where `c = a^{-1}` (mod `N`) and `d = -a^{-1}b` (mod `N`).
In particular, for the map to be invertible, we need
`\mathrm{gcd}(a, N) = 1` and an error will be raised if this is
not true.
Parameters
==========
msg : str
Characters that appear in ``symbols``.
a, b : int, int
A pair integers, with ``gcd(a, N) = 1`` (the secret key).
symbols
String of characters (default = uppercase letters).
When no symbols are given, ``msg`` is converted to upper case
letters and all other characters are ignored.
Returns
=======
ct
String of characters (the ciphertext message)
Notes
=====
ALGORITHM:
STEPS:
0. Number the letters of the alphabet from 0, ..., N
1. Compute from the string ``msg`` a list ``L1`` of
corresponding integers.
2. Compute from the list ``L1`` a new list ``L2``, given by
replacing ``x`` by ``a*x + b (mod N)``, for each element
``x`` in ``L1``.
3. Compute from the list ``L2`` a string ``ct`` of
corresponding letters.
This is a straightforward generalization of the shift cipher with
the added complexity of requiring 2 characters to be deciphered in
order to recover the key.
References
==========
.. [1] https://en.wikipedia.org/wiki/Affine_cipher
See Also
========
decipher_affine
"""
msg, _, A = _prep(msg, '', symbols)
N = len(A)
a, b = key
assert gcd(a, N) == 1
if _inverse:
c = mod_inverse(a, N)
d = -b*c
a, b = c, d
B = ''.join([A[(a*i + b) % N] for i in range(N)])
return translate(msg, A, B)
def decipher_affine(msg, key, symbols=None):
r"""
Return the deciphered text that was made from the mapping,
`x \rightarrow ax+b` (mod `N`), where ``N`` is the
number of characters in the alphabet. Deciphering is done by
reciphering with a new key: `x \rightarrow cx+d` (mod `N`),
where `c = a^{-1}` (mod `N`) and `d = -a^{-1}b` (mod `N`).
Examples
========
>>> from sympy.crypto.crypto import encipher_affine, decipher_affine
>>> msg = "GO NAVY BEAT ARMY"
>>> key = (3, 1)
>>> encipher_affine(msg, key)
'TROBMVENBGBALV'
>>> decipher_affine(_, key)
'GONAVYBEATARMY'
See Also
========
encipher_affine
"""
return encipher_affine(msg, key, symbols, _inverse=True)
def encipher_atbash(msg, symbols=None):
r"""
Enciphers a given ``msg`` into its Atbash ciphertext and returns it.
Explanation
===========
Atbash is a substitution cipher originally used to encrypt the Hebrew
alphabet. Atbash works on the principle of mapping each alphabet to its
reverse / counterpart (i.e. a would map to z, b to y etc.)
Atbash is functionally equivalent to the affine cipher with ``a = 25``
and ``b = 25``
See Also
========
decipher_atbash
"""
return encipher_affine(msg, (25, 25), symbols)
def decipher_atbash(msg, symbols=None):
r"""
Deciphers a given ``msg`` using Atbash cipher and returns it.
Explanation
===========
``decipher_atbash`` is functionally equivalent to ``encipher_atbash``.
However, it has still been added as a separate function to maintain
consistency.
Examples
========
>>> from sympy.crypto.crypto import encipher_atbash, decipher_atbash
>>> msg = 'GONAVYBEATARMY'
>>> encipher_atbash(msg)
'TLMZEBYVZGZINB'
>>> decipher_atbash(msg)
'TLMZEBYVZGZINB'
>>> encipher_atbash(msg) == decipher_atbash(msg)
True
>>> msg == encipher_atbash(encipher_atbash(msg))
True
References
==========
.. [1] https://en.wikipedia.org/wiki/Atbash
See Also
========
encipher_atbash
"""
return decipher_affine(msg, (25, 25), symbols)
#################### substitution cipher ###########################
def encipher_substitution(msg, old, new=None):
r"""
Returns the ciphertext obtained by replacing each character that
appears in ``old`` with the corresponding character in ``new``.
If ``old`` is a mapping, then new is ignored and the replacements
defined by ``old`` are used.
Explanation
===========
This is a more general than the affine cipher in that the key can
only be recovered by determining the mapping for each symbol.
Though in practice, once a few symbols are recognized the mappings
for other characters can be quickly guessed.
Examples
========
>>> from sympy.crypto.crypto import encipher_substitution, AZ
>>> old = 'OEYAG'
>>> new = '034^6'
>>> msg = AZ("go navy! beat army!")
>>> ct = encipher_substitution(msg, old, new); ct
'60N^V4B3^T^RM4'
To decrypt a substitution, reverse the last two arguments:
>>> encipher_substitution(ct, new, old)
'GONAVYBEATARMY'
In the special case where ``old`` and ``new`` are a permutation of
order 2 (representing a transposition of characters) their order
is immaterial:
>>> old = 'NAVY'
>>> new = 'ANYV'
>>> encipher = lambda x: encipher_substitution(x, old, new)
>>> encipher('NAVY')
'ANYV'
>>> encipher(_)
'NAVY'
The substitution cipher, in general, is a method
whereby "units" (not necessarily single characters) of plaintext
are replaced with ciphertext according to a regular system.
>>> ords = dict(zip('abc', ['\\%i' % ord(i) for i in 'abc']))
>>> print(encipher_substitution('abc', ords))
\97\98\99
References
==========
.. [1] https://en.wikipedia.org/wiki/Substitution_cipher
"""
return translate(msg, old, new)
######################################################################
#################### Vigenere cipher examples ########################
######################################################################
def encipher_vigenere(msg, key, symbols=None):
"""
Performs the Vigenere cipher encryption on plaintext ``msg``, and
returns the ciphertext.
Examples
========
>>> from sympy.crypto.crypto import encipher_vigenere, AZ
>>> key = "encrypt"
>>> msg = "meet me on monday"
>>> encipher_vigenere(msg, key)
'QRGKKTHRZQEBPR'
Section 1 of the Kryptos sculpture at the CIA headquarters
uses this cipher and also changes the order of the
alphabet [2]_. Here is the first line of that section of
the sculpture:
>>> from sympy.crypto.crypto import decipher_vigenere, padded_key
>>> alp = padded_key('KRYPTOS', AZ())
>>> key = 'PALIMPSEST'
>>> msg = 'EMUFPHZLRFAXYUSDJKZLDKRNSHGNFIVJ'
>>> decipher_vigenere(msg, key, alp)
'BETWEENSUBTLESHADINGANDTHEABSENC'
Explanation
===========
The Vigenere cipher is named after Blaise de Vigenere, a sixteenth
century diplomat and cryptographer, by a historical accident.
Vigenere actually invented a different and more complicated cipher.
The so-called *Vigenere cipher* was actually invented
by Giovan Batista Belaso in 1553.
This cipher was used in the 1800's, for example, during the American
Civil War. The Confederacy used a brass cipher disk to implement the
Vigenere cipher (now on display in the NSA Museum in Fort
Meade) [1]_.
The Vigenere cipher is a generalization of the shift cipher.
Whereas the shift cipher shifts each letter by the same amount
(that amount being the key of the shift cipher) the Vigenere
cipher shifts a letter by an amount determined by the key (which is
a word or phrase known only to the sender and receiver).
For example, if the key was a single letter, such as "C", then the
so-called Vigenere cipher is actually a shift cipher with a
shift of `2` (since "C" is the 2nd letter of the alphabet, if
you start counting at `0`). If the key was a word with two
letters, such as "CA", then the so-called Vigenere cipher will
shift letters in even positions by `2` and letters in odd positions
are left alone (shifted by `0`, since "A" is the 0th letter, if
you start counting at `0`).
ALGORITHM:
INPUT:
``msg``: string of characters that appear in ``symbols``
(the plaintext)
``key``: a string of characters that appear in ``symbols``
(the secret key)
``symbols``: a string of letters defining the alphabet
OUTPUT:
``ct``: string of characters (the ciphertext message)
STEPS:
0. Number the letters of the alphabet from 0, ..., N
1. Compute from the string ``key`` a list ``L1`` of
corresponding integers. Let ``n1 = len(L1)``.
2. Compute from the string ``msg`` a list ``L2`` of
corresponding integers. Let ``n2 = len(L2)``.
3. Break ``L2`` up sequentially into sublists of size
``n1``; the last sublist may be smaller than ``n1``
4. For each of these sublists ``L`` of ``L2``, compute a
new list ``C`` given by ``C[i] = L[i] + L1[i] (mod N)``
to the ``i``-th element in the sublist, for each ``i``.
5. Assemble these lists ``C`` by concatenation into a new
list of length ``n2``.
6. Compute from the new list a string ``ct`` of
corresponding letters.
Once it is known that the key is, say, `n` characters long,
frequency analysis can be applied to every `n`-th letter of
the ciphertext to determine the plaintext. This method is
called *Kasiski examination* (although it was first discovered
by Babbage). If they key is as long as the message and is
comprised of randomly selected characters -- a one-time pad -- the
message is theoretically unbreakable.
The cipher Vigenere actually discovered is an "auto-key" cipher
described as follows.
ALGORITHM:
INPUT:
``key``: a string of letters (the secret key)
``msg``: string of letters (the plaintext message)
OUTPUT:
``ct``: string of upper-case letters (the ciphertext message)
STEPS:
0. Number the letters of the alphabet from 0, ..., N
1. Compute from the string ``msg`` a list ``L2`` of
corresponding integers. Let ``n2 = len(L2)``.
2. Let ``n1`` be the length of the key. Append to the
string ``key`` the first ``n2 - n1`` characters of
the plaintext message. Compute from this string (also of
length ``n2``) a list ``L1`` of integers corresponding
to the letter numbers in the first step.
3. Compute a new list ``C`` given by
``C[i] = L1[i] + L2[i] (mod N)``.
4. Compute from the new list a string ``ct`` of letters
corresponding to the new integers.
To decipher the auto-key ciphertext, the key is used to decipher
the first ``n1`` characters and then those characters become the
key to decipher the next ``n1`` characters, etc...:
>>> m = AZ('go navy, beat army! yes you can'); m
'GONAVYBEATARMYYESYOUCAN'
>>> key = AZ('gold bug'); n1 = len(key); n2 = len(m)
>>> auto_key = key + m[:n2 - n1]; auto_key
'GOLDBUGGONAVYBEATARMYYE'
>>> ct = encipher_vigenere(m, auto_key); ct
'MCYDWSHKOGAMKZCELYFGAYR'
>>> n1 = len(key)
>>> pt = []
>>> while ct:
... part, ct = ct[:n1], ct[n1:]
... pt.append(decipher_vigenere(part, key))
... key = pt[-1]
...
>>> ''.join(pt) == m
True
References
==========
.. [1] https://en.wikipedia.org/wiki/Vigenere_cipher
.. [2] http://web.archive.org/web/20071116100808/
.. [3] http://web.archive.org/web/20071116100808/http://filebox.vt.edu/users/batman/kryptos.html
(short URL: https://goo.gl/ijr22d)
"""
msg, key, A = _prep(msg, key, symbols)
map = {c: i for i, c in enumerate(A)}
key = [map[c] for c in key]
N = len(map)
k = len(key)
rv = []
for i, m in enumerate(msg):
rv.append(A[(map[m] + key[i % k]) % N])
rv = ''.join(rv)
return rv
def decipher_vigenere(msg, key, symbols=None):
"""
Decode using the Vigenere cipher.
Examples
========
>>> from sympy.crypto.crypto import decipher_vigenere
>>> key = "encrypt"
>>> ct = "QRGK kt HRZQE BPR"
>>> decipher_vigenere(ct, key)
'MEETMEONMONDAY'
"""
msg, key, A = _prep(msg, key, symbols)
map = {c: i for i, c in enumerate(A)}
N = len(A) # normally, 26
K = [map[c] for c in key]
n = len(K)
C = [map[c] for c in msg]
rv = ''.join([A[(-K[i % n] + c) % N] for i, c in enumerate(C)])
return rv
#################### Hill cipher ########################
def encipher_hill(msg, key, symbols=None, pad="Q"):
r"""
Return the Hill cipher encryption of ``msg``.
Explanation
===========
The Hill cipher [1]_, invented by Lester S. Hill in the 1920's [2]_,
was the first polygraphic cipher in which it was practical
(though barely) to operate on more than three symbols at once.
The following discussion assumes an elementary knowledge of
matrices.
First, each letter is first encoded as a number starting with 0.
Suppose your message `msg` consists of `n` capital letters, with no
spaces. This may be regarded an `n`-tuple M of elements of
`Z_{26}` (if the letters are those of the English alphabet). A key
in the Hill cipher is a `k x k` matrix `K`, all of whose entries
are in `Z_{26}`, such that the matrix `K` is invertible (i.e., the
linear transformation `K: Z_{N}^k \rightarrow Z_{N}^k`
is one-to-one).
Parameters
==========
msg
Plaintext message of `n` upper-case letters.
key
A `k \times k` invertible matrix `K`, all of whose entries are
in `Z_{26}` (or whatever number of symbols are being used).
pad
Character (default "Q") to use to make length of text be a
multiple of ``k``.
Returns
=======
ct
Ciphertext of upper-case letters.
Notes
=====
ALGORITHM:
STEPS:
0. Number the letters of the alphabet from 0, ..., N
1. Compute from the string ``msg`` a list ``L`` of
corresponding integers. Let ``n = len(L)``.
2. Break the list ``L`` up into ``t = ceiling(n/k)``
sublists ``L_1``, ..., ``L_t`` of size ``k`` (with
the last list "padded" to ensure its size is
``k``).
3. Compute new list ``C_1``, ..., ``C_t`` given by
``C[i] = K*L_i`` (arithmetic is done mod N), for each
``i``.
4. Concatenate these into a list ``C = C_1 + ... + C_t``.
5. Compute from ``C`` a string ``ct`` of corresponding
letters. This has length ``k*t``.
References
==========
.. [1] https://en.wikipedia.org/wiki/Hill_cipher
.. [2] Lester S. Hill, Cryptography in an Algebraic Alphabet,
The American Mathematical Monthly Vol.36, June-July 1929,
pp.306-312.
See Also
========
decipher_hill
"""
assert key.is_square
assert len(pad) == 1
msg, pad, A = _prep(msg, pad, symbols)
map = {c: i for i, c in enumerate(A)}
P = [map[c] for c in msg]
N = len(A)
k = key.cols
n = len(P)
m, r = divmod(n, k)
if r:
P = P + [map[pad]]*(k - r)
m += 1
rv = ''.join([A[c % N] for j in range(m) for c in
list(key*Matrix(k, 1, [P[i]
for i in range(k*j, k*(j + 1))]))])
return rv
def decipher_hill(msg, key, symbols=None):
"""
Deciphering is the same as enciphering but using the inverse of the
key matrix.
Examples
========
>>> from sympy.crypto.crypto import encipher_hill, decipher_hill
>>> from sympy import Matrix
>>> key = Matrix([[1, 2], [3, 5]])
>>> encipher_hill("meet me on monday", key)
'UEQDUEODOCTCWQ'
>>> decipher_hill(_, key)
'MEETMEONMONDAY'
When the length of the plaintext (stripped of invalid characters)
is not a multiple of the key dimension, extra characters will
appear at the end of the enciphered and deciphered text. In order to
decipher the text, those characters must be included in the text to
be deciphered. In the following, the key has a dimension of 4 but
the text is 2 short of being a multiple of 4 so two characters will
be added.
>>> key = Matrix([[1, 1, 1, 2], [0, 1, 1, 0],
... [2, 2, 3, 4], [1, 1, 0, 1]])
>>> msg = "ST"
>>> encipher_hill(msg, key)
'HJEB'
>>> decipher_hill(_, key)
'STQQ'
>>> encipher_hill(msg, key, pad="Z")
'ISPK'
>>> decipher_hill(_, key)
'STZZ'
If the last two characters of the ciphertext were ignored in
either case, the wrong plaintext would be recovered:
>>> decipher_hill("HD", key)
'ORMV'
>>> decipher_hill("IS", key)
'UIKY'
See Also
========
encipher_hill
"""
assert key.is_square
msg, _, A = _prep(msg, '', symbols)
map = {c: i for i, c in enumerate(A)}
C = [map[c] for c in msg]
N = len(A)
k = key.cols
n = len(C)
m, r = divmod(n, k)
if r:
C = C + [0]*(k - r)
m += 1
key_inv = key.inv_mod(N)
rv = ''.join([A[p % N] for j in range(m) for p in
list(key_inv*Matrix(
k, 1, [C[i] for i in range(k*j, k*(j + 1))]))])
return rv
#################### Bifid cipher ########################
def encipher_bifid(msg, key, symbols=None):
r"""
Performs the Bifid cipher encryption on plaintext ``msg``, and
returns the ciphertext.
This is the version of the Bifid cipher that uses an `n \times n`
Polybius square.
Parameters
==========
msg
Plaintext string.
key
Short string for key.
Duplicate characters are ignored and then it is padded with the
characters in ``symbols`` that were not in the short key.
symbols
`n \times n` characters defining the alphabet.
(default is string.printable)
Returns
=======
ciphertext
Ciphertext using Bifid5 cipher without spaces.
See Also
========
decipher_bifid, encipher_bifid5, encipher_bifid6
References
==========
.. [1] https://en.wikipedia.org/wiki/Bifid_cipher
"""
msg, key, A = _prep(msg, key, symbols, bifid10)
long_key = ''.join(uniq(key)) or A
n = len(A)**.5
if n != int(n):
raise ValueError(
'Length of alphabet (%s) is not a square number.' % len(A))
N = int(n)
if len(long_key) < N**2:
long_key = list(long_key) + [x for x in A if x not in long_key]
# the fractionalization
row_col = {ch: divmod(i, N) for i, ch in enumerate(long_key)}
r, c = zip(*[row_col[x] for x in msg])
rc = r + c
ch = {i: ch for ch, i in row_col.items()}
rv = ''.join(ch[i] for i in zip(rc[::2], rc[1::2]))
return rv
def decipher_bifid(msg, key, symbols=None):
r"""
Performs the Bifid cipher decryption on ciphertext ``msg``, and
returns the plaintext.
This is the version of the Bifid cipher that uses the `n \times n`
Polybius square.
Parameters
==========
msg
Ciphertext string.
key
Short string for key.
Duplicate characters are ignored and then it is padded with the
characters in symbols that were not in the short key.
symbols
`n \times n` characters defining the alphabet.
(default=string.printable, a `10 \times 10` matrix)
Returns
=======
deciphered
Deciphered text.
Examples
========
>>> from sympy.crypto.crypto import (
... encipher_bifid, decipher_bifid, AZ)
Do an encryption using the bifid5 alphabet:
>>> alp = AZ().replace('J', '')
>>> ct = AZ("meet me on monday!")
>>> key = AZ("gold bug")
>>> encipher_bifid(ct, key, alp)
'IEILHHFSTSFQYE'
When entering the text or ciphertext, spaces are ignored so it
can be formatted as desired. Re-entering the ciphertext from the
preceding, putting 4 characters per line and padding with an extra
J, does not cause problems for the deciphering:
>>> decipher_bifid('''
... IEILH
... HFSTS
... FQYEJ''', key, alp)
'MEETMEONMONDAY'
When no alphabet is given, all 100 printable characters will be
used:
>>> key = ''
>>> encipher_bifid('hello world!', key)
'bmtwmg-bIo*w'
>>> decipher_bifid(_, key)
'hello world!'
If the key is changed, a different encryption is obtained:
>>> key = 'gold bug'
>>> encipher_bifid('hello world!', 'gold_bug')
'hg2sfuei7t}w'
And if the key used to decrypt the message is not exact, the
original text will not be perfectly obtained:
>>> decipher_bifid(_, 'gold pug')
'heldo~wor6d!'
"""
msg, _, A = _prep(msg, '', symbols, bifid10)
long_key = ''.join(uniq(key)) or A
n = len(A)**.5
if n != int(n):
raise ValueError(
'Length of alphabet (%s) is not a square number.' % len(A))
N = int(n)
if len(long_key) < N**2:
long_key = list(long_key) + [x for x in A if x not in long_key]
# the reverse fractionalization
row_col = {
ch: divmod(i, N) for i, ch in enumerate(long_key)}
rc = [i for c in msg for i in row_col[c]]
n = len(msg)
rc = zip(*(rc[:n], rc[n:]))
ch = {i: ch for ch, i in row_col.items()}
rv = ''.join(ch[i] for i in rc)
return rv
def bifid_square(key):
"""Return characters of ``key`` arranged in a square.
Examples
========
>>> from sympy.crypto.crypto import (
... bifid_square, AZ, padded_key, bifid5)
>>> bifid_square(AZ().replace('J', ''))
Matrix([
[A, B, C, D, E],
[F, G, H, I, K],
[L, M, N, O, P],
[Q, R, S, T, U],
[V, W, X, Y, Z]])
>>> bifid_square(padded_key(AZ('gold bug!'), bifid5))
Matrix([
[G, O, L, D, B],
[U, A, C, E, F],
[H, I, K, M, N],
[P, Q, R, S, T],
[V, W, X, Y, Z]])
See Also
========
padded_key
"""
A = ''.join(uniq(''.join(key)))
n = len(A)**.5
if n != int(n):
raise ValueError(
'Length of alphabet (%s) is not a square number.' % len(A))
n = int(n)
f = lambda i, j: Symbol(A[n*i + j])
rv = Matrix(n, n, f)
return rv
def encipher_bifid5(msg, key):
r"""
Performs the Bifid cipher encryption on plaintext ``msg``, and
returns the ciphertext.
Explanation
===========
This is the version of the Bifid cipher that uses the `5 \times 5`
Polybius square. The letter "J" is ignored so it must be replaced
with something else (traditionally an "I") before encryption.
ALGORITHM: (5x5 case)
STEPS:
0. Create the `5 \times 5` Polybius square ``S`` associated
to ``key`` as follows:
a) moving from left-to-right, top-to-bottom,
place the letters of the key into a `5 \times 5`
matrix,
b) if the key has less than 25 letters, add the
letters of the alphabet not in the key until the
`5 \times 5` square is filled.
1. Create a list ``P`` of pairs of numbers which are the
coordinates in the Polybius square of the letters in
``msg``.
2. Let ``L1`` be the list of all first coordinates of ``P``
(length of ``L1 = n``), let ``L2`` be the list of all
second coordinates of ``P`` (so the length of ``L2``
is also ``n``).
3. Let ``L`` be the concatenation of ``L1`` and ``L2``
(length ``L = 2*n``), except that consecutive numbers
are paired ``(L[2*i], L[2*i + 1])``. You can regard
``L`` as a list of pairs of length ``n``.
4. Let ``C`` be the list of all letters which are of the
form ``S[i, j]``, for all ``(i, j)`` in ``L``. As a
string, this is the ciphertext of ``msg``.
Parameters
==========
msg : str
Plaintext string.
Converted to upper case and filtered of anything but all letters
except J.
key
Short string for key; non-alphabetic letters, J and duplicated
characters are ignored and then, if the length is less than 25
characters, it is padded with other letters of the alphabet
(in alphabetical order).
Returns
=======
ct
Ciphertext (all caps, no spaces).
Examples
========
>>> from sympy.crypto.crypto import (
... encipher_bifid5, decipher_bifid5)
"J" will be omitted unless it is replaced with something else:
>>> round_trip = lambda m, k: \
... decipher_bifid5(encipher_bifid5(m, k), k)
>>> key = 'a'
>>> msg = "JOSIE"
>>> round_trip(msg, key)
'OSIE'
>>> round_trip(msg.replace("J", "I"), key)
'IOSIE'
>>> j = "QIQ"
>>> round_trip(msg.replace("J", j), key).replace(j, "J")
'JOSIE'
Notes
=====
The Bifid cipher was invented around 1901 by Felix Delastelle.
It is a *fractional substitution* cipher, where letters are
replaced by pairs of symbols from a smaller alphabet. The
cipher uses a `5 \times 5` square filled with some ordering of the
alphabet, except that "J" is replaced with "I" (this is a so-called
Polybius square; there is a `6 \times 6` analog if you add back in
"J" and also append onto the usual 26 letter alphabet, the digits
0, 1, ..., 9).
According to Helen Gaines' book *Cryptanalysis*, this type of cipher
was used in the field by the German Army during World War I.
See Also
========
decipher_bifid5, encipher_bifid
"""
msg, key, _ = _prep(msg.upper(), key.upper(), None, bifid5)
key = padded_key(key, bifid5)
return encipher_bifid(msg, '', key)
def decipher_bifid5(msg, key):
r"""
Return the Bifid cipher decryption of ``msg``.
Explanation
===========
This is the version of the Bifid cipher that uses the `5 \times 5`
Polybius square; the letter "J" is ignored unless a ``key`` of
length 25 is used.
Parameters
==========
msg
Ciphertext string.
key
Short string for key; duplicated characters are ignored and if
the length is less then 25 characters, it will be padded with
other letters from the alphabet omitting "J".
Non-alphabetic characters are ignored.
Returns
=======
plaintext
Plaintext from Bifid5 cipher (all caps, no spaces).
Examples
========
>>> from sympy.crypto.crypto import encipher_bifid5, decipher_bifid5
>>> key = "gold bug"
>>> encipher_bifid5('meet me on friday', key)
'IEILEHFSTSFXEE'
>>> encipher_bifid5('meet me on monday', key)
'IEILHHFSTSFQYE'
>>> decipher_bifid5(_, key)
'MEETMEONMONDAY'
"""
msg, key, _ = _prep(msg.upper(), key.upper(), None, bifid5)
key = padded_key(key, bifid5)
return decipher_bifid(msg, '', key)
def bifid5_square(key=None):
r"""
5x5 Polybius square.
Produce the Polybius square for the `5 \times 5` Bifid cipher.
Examples
========
>>> from sympy.crypto.crypto import bifid5_square
>>> bifid5_square("gold bug")
Matrix([
[G, O, L, D, B],
[U, A, C, E, F],
[H, I, K, M, N],
[P, Q, R, S, T],
[V, W, X, Y, Z]])
"""
if not key:
key = bifid5
else:
_, key, _ = _prep('', key.upper(), None, bifid5)
key = padded_key(key, bifid5)
return bifid_square(key)
def encipher_bifid6(msg, key):
r"""
Performs the Bifid cipher encryption on plaintext ``msg``, and
returns the ciphertext.
This is the version of the Bifid cipher that uses the `6 \times 6`
Polybius square.
Parameters
==========
msg
Plaintext string (digits okay).
key
Short string for key (digits okay).
If ``key`` is less than 36 characters long, the square will be
filled with letters A through Z and digits 0 through 9.
Returns
=======
ciphertext
Ciphertext from Bifid cipher (all caps, no spaces).
See Also
========
decipher_bifid6, encipher_bifid
"""
msg, key, _ = _prep(msg.upper(), key.upper(), None, bifid6)
key = padded_key(key, bifid6)
return encipher_bifid(msg, '', key)
def decipher_bifid6(msg, key):
r"""
Performs the Bifid cipher decryption on ciphertext ``msg``, and
returns the plaintext.
This is the version of the Bifid cipher that uses the `6 \times 6`
Polybius square.
Parameters
==========
msg
Ciphertext string (digits okay); converted to upper case
key
Short string for key (digits okay).
If ``key`` is less than 36 characters long, the square will be
filled with letters A through Z and digits 0 through 9.
All letters are converted to uppercase.
Returns
=======
plaintext
Plaintext from Bifid cipher (all caps, no spaces).
Examples
========
>>> from sympy.crypto.crypto import encipher_bifid6, decipher_bifid6
>>> key = "gold bug"
>>> encipher_bifid6('meet me on monday at 8am', key)
'KFKLJJHF5MMMKTFRGPL'
>>> decipher_bifid6(_, key)
'MEETMEONMONDAYAT8AM'
"""
msg, key, _ = _prep(msg.upper(), key.upper(), None, bifid6)
key = padded_key(key, bifid6)
return decipher_bifid(msg, '', key)
def bifid6_square(key=None):
r"""
6x6 Polybius square.
Produces the Polybius square for the `6 \times 6` Bifid cipher.
Assumes alphabet of symbols is "A", ..., "Z", "0", ..., "9".
Examples
========
>>> from sympy.crypto.crypto import bifid6_square
>>> key = "gold bug"
>>> bifid6_square(key)
Matrix([
[G, O, L, D, B, U],
[A, C, E, F, H, I],
[J, K, M, N, P, Q],
[R, S, T, V, W, X],
[Y, Z, 0, 1, 2, 3],
[4, 5, 6, 7, 8, 9]])
"""
if not key:
key = bifid6
else:
_, key, _ = _prep('', key.upper(), None, bifid6)
key = padded_key(key, bifid6)
return bifid_square(key)
#################### RSA #############################
def _decipher_rsa_crt(i, d, factors):
"""Decipher RSA using chinese remainder theorem from the information
of the relatively-prime factors of the modulus.
Parameters
==========
i : integer
Ciphertext
d : integer
The exponent component.
factors : list of relatively-prime integers
The integers given must be coprime and the product must equal
the modulus component of the original RSA key.
Examples
========
How to decrypt RSA with CRT:
>>> from sympy.crypto.crypto import rsa_public_key, rsa_private_key
>>> primes = [61, 53]
>>> e = 17
>>> args = primes + [e]
>>> puk = rsa_public_key(*args)
>>> prk = rsa_private_key(*args)
>>> from sympy.crypto.crypto import encipher_rsa, _decipher_rsa_crt
>>> msg = 65
>>> crt_primes = primes
>>> encrypted = encipher_rsa(msg, puk)
>>> decrypted = _decipher_rsa_crt(encrypted, prk[1], primes)
>>> decrypted
65
"""
moduluses = [pow(i, d, p) for p in factors]
result = crt(factors, moduluses)
if not result:
raise ValueError("CRT failed")
return result[0]
def _rsa_key(*args, public=True, private=True, totient='Euler', index=None, multipower=None):
r"""A private subroutine to generate RSA key
Parameters
==========
public, private : bool, optional
Flag to generate either a public key, a private key.
totient : 'Euler' or 'Carmichael'
Different notation used for totient.
multipower : bool, optional
Flag to bypass warning for multipower RSA.
"""
if len(args) < 2:
return False
if totient not in ('Euler', 'Carmichael'):
raise ValueError(
"The argument totient={} should either be " \
"'Euler', 'Carmichalel'." \
.format(totient))
if totient == 'Euler':
_totient = _euler
else:
_totient = _carmichael
if index is not None:
index = as_int(index)
if totient != 'Carmichael':
raise ValueError(
"Setting the 'index' keyword argument requires totient"
"notation to be specified as 'Carmichael'.")
primes, e = args[:-1], args[-1]
if not all(isprime(p) for p in primes):
new_primes = []
for i in primes:
new_primes.extend(factorint(i, multiple=True))
primes = new_primes
n = reduce(lambda i, j: i*j, primes)
tally = multiset(primes)
if all(v == 1 for v in tally.values()):
multiple = list(tally.keys())
phi = _totient._from_distinct_primes(*multiple)
else:
if not multipower:
NonInvertibleCipherWarning(
'Non-distinctive primes found in the factors {}. '
'The cipher may not be decryptable for some numbers '
'in the complete residue system Z[{}], but the cipher '
'can still be valid if you restrict the domain to be '
'the reduced residue system Z*[{}]. You can pass '
'the flag multipower=True if you want to suppress this '
'warning.'
.format(primes, n, n)
# stacklevel=4 because most users will call a function that
# calls this function
).warn(stacklevel=4)
phi = _totient._from_factors(tally)
if igcd(e, phi) == 1:
if public and not private:
if isinstance(index, int):
e = e % phi
e += index * phi
return n, e
if private and not public:
d = mod_inverse(e, phi)
if isinstance(index, int):
d += index * phi
return n, d
return False
def rsa_public_key(*args, **kwargs):
r"""Return the RSA *public key* pair, `(n, e)`
Parameters
==========
args : naturals
If specified as `p, q, e` where `p` and `q` are distinct primes
and `e` is a desired public exponent of the RSA, `n = p q` and
`e` will be verified against the totient
`\phi(n)` (Euler totient) or `\lambda(n)` (Carmichael totient)
to be `\gcd(e, \phi(n)) = 1` or `\gcd(e, \lambda(n)) = 1`.
If specified as `p_1, p_2, \dots, p_n, e` where
`p_1, p_2, \dots, p_n` are specified as primes,
and `e` is specified as a desired public exponent of the RSA,
it will be able to form a multi-prime RSA, which is a more
generalized form of the popular 2-prime RSA.
It can also be possible to form a single-prime RSA by specifying
the argument as `p, e`, which can be considered a trivial case
of a multiprime RSA.
Furthermore, it can be possible to form a multi-power RSA by
specifying two or more pairs of the primes to be same.
However, unlike the two-distinct prime RSA or multi-prime
RSA, not every numbers in the complete residue system
(`\mathbb{Z}_n`) will be decryptable since the mapping
`\mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}`
will not be bijective.
(Only except for the trivial case when
`e = 1`
or more generally,
.. math::
e \in \left \{ 1 + k \lambda(n)
\mid k \in \mathbb{Z} \land k \geq 0 \right \}
when RSA reduces to the identity.)
However, the RSA can still be decryptable for the numbers in the
reduced residue system (`\mathbb{Z}_n^{\times}`), since the
mapping
`\mathbb{Z}_{n}^{\times} \rightarrow \mathbb{Z}_{n}^{\times}`
can still be bijective.
If you pass a non-prime integer to the arguments
`p_1, p_2, \dots, p_n`, the particular number will be
prime-factored and it will become either a multi-prime RSA or a
multi-power RSA in its canonical form, depending on whether the
product equals its radical or not.
`p_1 p_2 \dots p_n = \text{rad}(p_1 p_2 \dots p_n)`
totient : bool, optional
If ``'Euler'``, it uses Euler's totient `\phi(n)` which is
:meth:`sympy.ntheory.factor_.totient` in SymPy.
If ``'Carmichael'``, it uses Carmichael's totient `\lambda(n)`
which is :meth:`sympy.ntheory.factor_.reduced_totient` in SymPy.
Unlike private key generation, this is a trivial keyword for
public key generation because
`\gcd(e, \phi(n)) = 1 \iff \gcd(e, \lambda(n)) = 1`.
index : nonnegative integer, optional
Returns an arbitrary solution of a RSA public key at the index
specified at `0, 1, 2, \dots`. This parameter needs to be
specified along with ``totient='Carmichael'``.
Similarly to the non-uniquenss of a RSA private key as described
in the ``index`` parameter documentation in
:meth:`rsa_private_key`, RSA public key is also not unique and
there is an infinite number of RSA public exponents which
can behave in the same manner.
From any given RSA public exponent `e`, there are can be an
another RSA public exponent `e + k \lambda(n)` where `k` is an
integer, `\lambda` is a Carmichael's totient function.
However, considering only the positive cases, there can be
a principal solution of a RSA public exponent `e_0` in
`0 < e_0 < \lambda(n)`, and all the other solutions
can be canonicalzed in a form of `e_0 + k \lambda(n)`.
``index`` specifies the `k` notation to yield any possible value
an RSA public key can have.
An example of computing any arbitrary RSA public key:
>>> from sympy.crypto.crypto import rsa_public_key
>>> rsa_public_key(61, 53, 17, totient='Carmichael', index=0)
(3233, 17)
>>> rsa_public_key(61, 53, 17, totient='Carmichael', index=1)
(3233, 797)
>>> rsa_public_key(61, 53, 17, totient='Carmichael', index=2)
(3233, 1577)
multipower : bool, optional
Any pair of non-distinct primes found in the RSA specification
will restrict the domain of the cryptosystem, as noted in the
explanation of the parameter ``args``.
SymPy RSA key generator may give a warning before dispatching it
as a multi-power RSA, however, you can disable the warning if
you pass ``True`` to this keyword.
Returns
=======
(n, e) : int, int
`n` is a product of any arbitrary number of primes given as
the argument.
`e` is relatively prime (coprime) to the Euler totient
`\phi(n)`.
False
Returned if less than two arguments are given, or `e` is
not relatively prime to the modulus.
Examples
========
>>> from sympy.crypto.crypto import rsa_public_key
A public key of a two-prime RSA:
>>> p, q, e = 3, 5, 7
>>> rsa_public_key(p, q, e)
(15, 7)
>>> rsa_public_key(p, q, 30)
False
A public key of a multiprime RSA:
>>> primes = [2, 3, 5, 7, 11, 13]
>>> e = 7
>>> args = primes + [e]
>>> rsa_public_key(*args)
(30030, 7)
Notes
=====
Although the RSA can be generalized over any modulus `n`, using
two large primes had became the most popular specification because a
product of two large primes is usually the hardest to factor
relatively to the digits of `n` can have.
However, it may need further understanding of the time complexities
of each prime-factoring algorithms to verify the claim.
See Also
========
rsa_private_key
encipher_rsa
decipher_rsa
References
==========
.. [1] https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29
.. [2] http://cacr.uwaterloo.ca/techreports/2006/cacr2006-16.pdf
.. [3] https://link.springer.com/content/pdf/10.1007%2FBFb0055738.pdf
.. [4] http://www.itiis.org/digital-library/manuscript/1381
"""
return _rsa_key(*args, public=True, private=False, **kwargs)
def rsa_private_key(*args, **kwargs):
r"""Return the RSA *private key* pair, `(n, d)`
Parameters
==========
args : naturals
The keyword is identical to the ``args`` in
:meth:`rsa_public_key`.
totient : bool, optional
If ``'Euler'``, it uses Euler's totient convention `\phi(n)`
which is :meth:`sympy.ntheory.factor_.totient` in SymPy.
If ``'Carmichael'``, it uses Carmichael's totient convention
`\lambda(n)` which is
:meth:`sympy.ntheory.factor_.reduced_totient` in SymPy.
There can be some output differences for private key generation
as examples below.
Example using Euler's totient:
>>> from sympy.crypto.crypto import rsa_private_key
>>> rsa_private_key(61, 53, 17, totient='Euler')
(3233, 2753)
Example using Carmichael's totient:
>>> from sympy.crypto.crypto import rsa_private_key
>>> rsa_private_key(61, 53, 17, totient='Carmichael')
(3233, 413)
index : nonnegative integer, optional
Returns an arbitrary solution of a RSA private key at the index
specified at `0, 1, 2, \dots`. This parameter needs to be
specified along with ``totient='Carmichael'``.
RSA private exponent is a non-unique solution of
`e d \mod \lambda(n) = 1` and it is possible in any form of
`d + k \lambda(n)`, where `d` is an another
already-computed private exponent, and `\lambda` is a
Carmichael's totient function, and `k` is any integer.
However, considering only the positive cases, there can be
a principal solution of a RSA private exponent `d_0` in
`0 < d_0 < \lambda(n)`, and all the other solutions
can be canonicalzed in a form of `d_0 + k \lambda(n)`.
``index`` specifies the `k` notation to yield any possible value
an RSA private key can have.
An example of computing any arbitrary RSA private key:
>>> from sympy.crypto.crypto import rsa_private_key
>>> rsa_private_key(61, 53, 17, totient='Carmichael', index=0)
(3233, 413)
>>> rsa_private_key(61, 53, 17, totient='Carmichael', index=1)
(3233, 1193)
>>> rsa_private_key(61, 53, 17, totient='Carmichael', index=2)
(3233, 1973)
multipower : bool, optional
The keyword is identical to the ``multipower`` in
:meth:`rsa_public_key`.
Returns
=======
(n, d) : int, int
`n` is a product of any arbitrary number of primes given as
the argument.
`d` is the inverse of `e` (mod `\phi(n)`) where `e` is the
exponent given, and `\phi` is a Euler totient.
False
Returned if less than two arguments are given, or `e` is
not relatively prime to the totient of the modulus.
Examples
========
>>> from sympy.crypto.crypto import rsa_private_key
A private key of a two-prime RSA:
>>> p, q, e = 3, 5, 7
>>> rsa_private_key(p, q, e)
(15, 7)
>>> rsa_private_key(p, q, 30)
False
A private key of a multiprime RSA:
>>> primes = [2, 3, 5, 7, 11, 13]
>>> e = 7
>>> args = primes + [e]
>>> rsa_private_key(*args)
(30030, 823)
See Also
========
rsa_public_key
encipher_rsa
decipher_rsa
References
==========
.. [1] https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29
.. [2] http://cacr.uwaterloo.ca/techreports/2006/cacr2006-16.pdf
.. [3] https://link.springer.com/content/pdf/10.1007%2FBFb0055738.pdf
.. [4] http://www.itiis.org/digital-library/manuscript/1381
"""
return _rsa_key(*args, public=False, private=True, **kwargs)
def _encipher_decipher_rsa(i, key, factors=None):
n, d = key
if not factors:
return pow(i, d, n)
def _is_coprime_set(l):
is_coprime_set = True
for i in range(len(l)):
for j in range(i+1, len(l)):
if igcd(l[i], l[j]) != 1:
is_coprime_set = False
break
return is_coprime_set
prod = reduce(lambda i, j: i*j, factors)
if prod == n and _is_coprime_set(factors):
return _decipher_rsa_crt(i, d, factors)
return _encipher_decipher_rsa(i, key, factors=None)
def encipher_rsa(i, key, factors=None):
r"""Encrypt the plaintext with RSA.
Parameters
==========
i : integer
The plaintext to be encrypted for.
key : (n, e) where n, e are integers
`n` is the modulus of the key and `e` is the exponent of the
key. The encryption is computed by `i^e \bmod n`.
The key can either be a public key or a private key, however,
the message encrypted by a public key can only be decrypted by
a private key, and vice versa, as RSA is an asymmetric
cryptography system.
factors : list of coprime integers
This is identical to the keyword ``factors`` in
:meth:`decipher_rsa`.
Notes
=====
Some specifications may make the RSA not cryptographically
meaningful.
For example, `0`, `1` will remain always same after taking any
number of exponentiation, thus, should be avoided.
Furthermore, if `i^e < n`, `i` may easily be figured out by taking
`e` th root.
And also, specifying the exponent as `1` or in more generalized form
as `1 + k \lambda(n)` where `k` is an nonnegative integer,
`\lambda` is a carmichael totient, the RSA becomes an identity
mapping.
Examples
========
>>> from sympy.crypto.crypto import encipher_rsa
>>> from sympy.crypto.crypto import rsa_public_key, rsa_private_key
Public Key Encryption:
>>> p, q, e = 3, 5, 7
>>> puk = rsa_public_key(p, q, e)
>>> msg = 12
>>> encipher_rsa(msg, puk)
3
Private Key Encryption:
>>> p, q, e = 3, 5, 7
>>> prk = rsa_private_key(p, q, e)
>>> msg = 12
>>> encipher_rsa(msg, prk)
3
Encryption using chinese remainder theorem:
>>> encipher_rsa(msg, prk, factors=[p, q])
3
"""
return _encipher_decipher_rsa(i, key, factors=factors)
def decipher_rsa(i, key, factors=None):
r"""Decrypt the ciphertext with RSA.
Parameters
==========
i : integer
The ciphertext to be decrypted for.
key : (n, d) where n, d are integers
`n` is the modulus of the key and `d` is the exponent of the
key. The decryption is computed by `i^d \bmod n`.
The key can either be a public key or a private key, however,
the message encrypted by a public key can only be decrypted by
a private key, and vice versa, as RSA is an asymmetric
cryptography system.
factors : list of coprime integers
As the modulus `n` created from RSA key generation is composed
of arbitrary prime factors
`n = {p_1}^{k_1}{p_2}^{k_2}\dots{p_n}^{k_n}` where
`p_1, p_2, \dots, p_n` are distinct primes and
`k_1, k_2, \dots, k_n` are positive integers, chinese remainder
theorem can be used to compute `i^d \bmod n` from the
fragmented modulo operations like
.. math::
i^d \bmod {p_1}^{k_1}, i^d \bmod {p_2}^{k_2}, \dots,
i^d \bmod {p_n}^{k_n}
or like
.. math::
i^d \bmod {p_1}^{k_1}{p_2}^{k_2},
i^d \bmod {p_3}^{k_3}, \dots ,
i^d \bmod {p_n}^{k_n}
as long as every moduli does not share any common divisor each
other.
The raw primes used in generating the RSA key pair can be a good
option.
Note that the speed advantage of using this is only viable for
very large cases (Like 2048-bit RSA keys) since the
overhead of using pure Python implementation of
:meth:`sympy.ntheory.modular.crt` may overcompensate the
theoritical speed advantage.
Notes
=====
See the ``Notes`` section in the documentation of
:meth:`encipher_rsa`
Examples
========
>>> from sympy.crypto.crypto import decipher_rsa, encipher_rsa
>>> from sympy.crypto.crypto import rsa_public_key, rsa_private_key
Public Key Encryption and Decryption:
>>> p, q, e = 3, 5, 7
>>> prk = rsa_private_key(p, q, e)
>>> puk = rsa_public_key(p, q, e)
>>> msg = 12
>>> new_msg = encipher_rsa(msg, prk)
>>> new_msg
3
>>> decipher_rsa(new_msg, puk)
12
Private Key Encryption and Decryption:
>>> p, q, e = 3, 5, 7
>>> prk = rsa_private_key(p, q, e)
>>> puk = rsa_public_key(p, q, e)
>>> msg = 12
>>> new_msg = encipher_rsa(msg, puk)
>>> new_msg
3
>>> decipher_rsa(new_msg, prk)
12
Decryption using chinese remainder theorem:
>>> decipher_rsa(new_msg, prk, factors=[p, q])
12
See Also
========
encipher_rsa
"""
return _encipher_decipher_rsa(i, key, factors=factors)
#################### kid krypto (kid RSA) #############################
def kid_rsa_public_key(a, b, A, B):
r"""
Kid RSA is a version of RSA useful to teach grade school children
since it does not involve exponentiation.
Explanation
===========
Alice wants to talk to Bob. Bob generates keys as follows.
Key generation:
* Select positive integers `a, b, A, B` at random.
* Compute `M = a b - 1`, `e = A M + a`, `d = B M + b`,
`n = (e d - 1)//M`.
* The *public key* is `(n, e)`. Bob sends these to Alice.
* The *private key* is `(n, d)`, which Bob keeps secret.
Encryption: If `p` is the plaintext message then the
ciphertext is `c = p e \pmod n`.
Decryption: If `c` is the ciphertext message then the
plaintext is `p = c d \pmod n`.
Examples
========
>>> from sympy.crypto.crypto import kid_rsa_public_key
>>> a, b, A, B = 3, 4, 5, 6
>>> kid_rsa_public_key(a, b, A, B)
(369, 58)
"""
M = a*b - 1
e = A*M + a
d = B*M + b
n = (e*d - 1)//M
return n, e
def kid_rsa_private_key(a, b, A, B):
"""
Compute `M = a b - 1`, `e = A M + a`, `d = B M + b`,
`n = (e d - 1) / M`. The *private key* is `d`, which Bob
keeps secret.
Examples
========
>>> from sympy.crypto.crypto import kid_rsa_private_key
>>> a, b, A, B = 3, 4, 5, 6
>>> kid_rsa_private_key(a, b, A, B)
(369, 70)
"""
M = a*b - 1
e = A*M + a
d = B*M + b
n = (e*d - 1)//M
return n, d
def encipher_kid_rsa(msg, key):
"""
Here ``msg`` is the plaintext and ``key`` is the public key.
Examples
========
>>> from sympy.crypto.crypto import (
... encipher_kid_rsa, kid_rsa_public_key)
>>> msg = 200
>>> a, b, A, B = 3, 4, 5, 6
>>> key = kid_rsa_public_key(a, b, A, B)
>>> encipher_kid_rsa(msg, key)
161
"""
n, e = key
return (msg*e) % n
def decipher_kid_rsa(msg, key):
"""
Here ``msg`` is the plaintext and ``key`` is the private key.
Examples
========
>>> from sympy.crypto.crypto import (
... kid_rsa_public_key, kid_rsa_private_key,
... decipher_kid_rsa, encipher_kid_rsa)
>>> a, b, A, B = 3, 4, 5, 6
>>> d = kid_rsa_private_key(a, b, A, B)
>>> msg = 200
>>> pub = kid_rsa_public_key(a, b, A, B)
>>> pri = kid_rsa_private_key(a, b, A, B)
>>> ct = encipher_kid_rsa(msg, pub)
>>> decipher_kid_rsa(ct, pri)
200
"""
n, d = key
return (msg*d) % n
#################### Morse Code ######################################
morse_char = {
".-": "A", "-...": "B",
"-.-.": "C", "-..": "D",
".": "E", "..-.": "F",
"--.": "G", "....": "H",
"..": "I", ".---": "J",
"-.-": "K", ".-..": "L",
"--": "M", "-.": "N",
"---": "O", ".--.": "P",
"--.-": "Q", ".-.": "R",
"...": "S", "-": "T",
"..-": "U", "...-": "V",
".--": "W", "-..-": "X",
"-.--": "Y", "--..": "Z",
"-----": "0", ".----": "1",
"..---": "2", "...--": "3",
"....-": "4", ".....": "5",
"-....": "6", "--...": "7",
"---..": "8", "----.": "9",
".-.-.-": ".", "--..--": ",",
"---...": ":", "-.-.-.": ";",
"..--..": "?", "-....-": "-",
"..--.-": "_", "-.--.": "(",
"-.--.-": ")", ".----.": "'",
"-...-": "=", ".-.-.": "+",
"-..-.": "/", ".--.-.": "@",
"...-..-": "$", "-.-.--": "!"}
char_morse = {v: k for k, v in morse_char.items()}
def encode_morse(msg, sep='|', mapping=None):
"""
Encodes a plaintext into popular Morse Code with letters
separated by ``sep`` and words by a double ``sep``.
Examples
========
>>> from sympy.crypto.crypto import encode_morse
>>> msg = 'ATTACK RIGHT FLANK'
>>> encode_morse(msg)
'.-|-|-|.-|-.-.|-.-||.-.|..|--.|....|-||..-.|.-..|.-|-.|-.-'
References
==========
.. [1] https://en.wikipedia.org/wiki/Morse_code
"""
mapping = mapping or char_morse
assert sep not in mapping
word_sep = 2*sep
mapping[" "] = word_sep
suffix = msg and msg[-1] in whitespace
# normalize whitespace
msg = (' ' if word_sep else '').join(msg.split())
# omit unmapped chars
chars = set(''.join(msg.split()))
ok = set(mapping.keys())
msg = translate(msg, None, ''.join(chars - ok))
morsestring = []
words = msg.split()
for word in words:
morseword = []
for letter in word:
morseletter = mapping[letter]
morseword.append(morseletter)
word = sep.join(morseword)
morsestring.append(word)
return word_sep.join(morsestring) + (word_sep if suffix else '')
def decode_morse(msg, sep='|', mapping=None):
"""
Decodes a Morse Code with letters separated by ``sep``
(default is '|') and words by `word_sep` (default is '||)
into plaintext.
Examples
========
>>> from sympy.crypto.crypto import decode_morse
>>> mc = '--|---|...-|.||.|.-|...|-'
>>> decode_morse(mc)
'MOVE EAST'
References
==========
.. [1] https://en.wikipedia.org/wiki/Morse_code
"""
mapping = mapping or morse_char
word_sep = 2*sep
characterstring = []
words = msg.strip(word_sep).split(word_sep)
for word in words:
letters = word.split(sep)
chars = [mapping[c] for c in letters]
word = ''.join(chars)
characterstring.append(word)
rv = " ".join(characterstring)
return rv
#################### LFSRs ##########################################
def lfsr_sequence(key, fill, n):
r"""
This function creates an LFSR sequence.
Parameters
==========
key : list
A list of finite field elements, `[c_0, c_1, \ldots, c_k].`
fill : list
The list of the initial terms of the LFSR sequence,
`[x_0, x_1, \ldots, x_k].`
n
Number of terms of the sequence that the function returns.
Returns
=======
L
The LFSR sequence defined by
`x_{n+1} = c_k x_n + \ldots + c_0 x_{n-k}`, for
`n \leq k`.
Notes
=====
S. Golomb [G]_ gives a list of three statistical properties a
sequence of numbers `a = \{a_n\}_{n=1}^\infty`,
`a_n \in \{0,1\}`, should display to be considered
"random". Define the autocorrelation of `a` to be
.. math::
C(k) = C(k,a) = \lim_{N\rightarrow \infty} {1\over N}\sum_{n=1}^N (-1)^{a_n + a_{n+k}}.
In the case where `a` is periodic with period
`P` then this reduces to
.. math::
C(k) = {1\over P}\sum_{n=1}^P (-1)^{a_n + a_{n+k}}.
Assume `a` is periodic with period `P`.
- balance:
.. math::
\left|\sum_{n=1}^P(-1)^{a_n}\right| \leq 1.
- low autocorrelation:
.. math::
C(k) = \left\{ \begin{array}{cc} 1,& k = 0,\\ \epsilon, & k \ne 0. \end{array} \right.
(For sequences satisfying these first two properties, it is known
that `\epsilon = -1/P` must hold.)
- proportional runs property: In each period, half the runs have
length `1`, one-fourth have length `2`, etc.
Moreover, there are as many runs of `1`'s as there are of
`0`'s.
Examples
========
>>> from sympy.crypto.crypto import lfsr_sequence
>>> from sympy.polys.domains import FF
>>> F = FF(2)
>>> fill = [F(1), F(1), F(0), F(1)]
>>> key = [F(1), F(0), F(0), F(1)]
>>> lfsr_sequence(key, fill, 10)
[1 mod 2, 1 mod 2, 0 mod 2, 1 mod 2, 0 mod 2,
1 mod 2, 1 mod 2, 0 mod 2, 0 mod 2, 1 mod 2]
References
==========
.. [G] Solomon Golomb, Shift register sequences, Aegean Park Press,
Laguna Hills, Ca, 1967
"""
if not isinstance(key, list):
raise TypeError("key must be a list")
if not isinstance(fill, list):
raise TypeError("fill must be a list")
p = key[0].mod
F = FF(p)
s = fill
k = len(fill)
L = []
for i in range(n):
s0 = s[:]
L.append(s[0])
s = s[1:k]
x = sum([int(key[i]*s0[i]) for i in range(k)])
s.append(F(x))
return L # use [x.to_int() for x in L] for int version
def lfsr_autocorrelation(L, P, k):
"""
This function computes the LFSR autocorrelation function.
Parameters
==========
L
A periodic sequence of elements of `GF(2)`.
L must have length larger than P.
P
The period of L.
k : int
An integer `k` (`0 < k < P`).
Returns
=======
autocorrelation
The k-th value of the autocorrelation of the LFSR L.
Examples
========
>>> from sympy.crypto.crypto import (
... lfsr_sequence, lfsr_autocorrelation)
>>> from sympy.polys.domains import FF
>>> F = FF(2)
>>> fill = [F(1), F(1), F(0), F(1)]
>>> key = [F(1), F(0), F(0), F(1)]
>>> s = lfsr_sequence(key, fill, 20)
>>> lfsr_autocorrelation(s, 15, 7)
-1/15
>>> lfsr_autocorrelation(s, 15, 0)
1
"""
if not isinstance(L, list):
raise TypeError("L (=%s) must be a list" % L)
P = int(P)
k = int(k)
L0 = L[:P] # slices makes a copy
L1 = L0 + L0[:k]
L2 = [(-1)**(L1[i].to_int() + L1[i + k].to_int()) for i in range(P)]
tot = sum(L2)
return Rational(tot, P)
def lfsr_connection_polynomial(s):
"""
This function computes the LFSR connection polynomial.
Parameters
==========
s
A sequence of elements of even length, with entries in a finite
field.
Returns
=======
C(x)
The connection polynomial of a minimal LFSR yielding s.
This implements the algorithm in section 3 of J. L. Massey's
article [M]_.
Examples
========
>>> from sympy.crypto.crypto import (
... lfsr_sequence, lfsr_connection_polynomial)
>>> from sympy.polys.domains import FF
>>> F = FF(2)
>>> fill = [F(1), F(1), F(0), F(1)]
>>> key = [F(1), F(0), F(0), F(1)]
>>> s = lfsr_sequence(key, fill, 20)
>>> lfsr_connection_polynomial(s)
x**4 + x + 1
>>> fill = [F(1), F(0), F(0), F(1)]
>>> key = [F(1), F(1), F(0), F(1)]
>>> s = lfsr_sequence(key, fill, 20)
>>> lfsr_connection_polynomial(s)
x**3 + 1
>>> fill = [F(1), F(0), F(1)]
>>> key = [F(1), F(1), F(0)]
>>> s = lfsr_sequence(key, fill, 20)
>>> lfsr_connection_polynomial(s)
x**3 + x**2 + 1
>>> fill = [F(1), F(0), F(1)]
>>> key = [F(1), F(0), F(1)]
>>> s = lfsr_sequence(key, fill, 20)
>>> lfsr_connection_polynomial(s)
x**3 + x + 1
References
==========
.. [M] James L. Massey, "Shift-Register Synthesis and BCH Decoding."
IEEE Trans. on Information Theory, vol. 15(1), pp. 122-127,
Jan 1969.
"""
# Initialization:
p = s[0].mod
x = Symbol("x")
C = 1*x**0
B = 1*x**0
m = 1
b = 1*x**0
L = 0
N = 0
while N < len(s):
if L > 0:
dC = Poly(C).degree()
r = min(L + 1, dC + 1)
coeffsC = [C.subs(x, 0)] + [C.coeff(x**i)
for i in range(1, dC + 1)]
d = (s[N].to_int() + sum([coeffsC[i]*s[N - i].to_int()
for i in range(1, r)])) % p
if L == 0:
d = s[N].to_int()*x**0
if d == 0:
m += 1
N += 1
if d > 0:
if 2*L > N:
C = (C - d*((b**(p - 2)) % p)*x**m*B).expand()
m += 1
N += 1
else:
T = C
C = (C - d*((b**(p - 2)) % p)*x**m*B).expand()
L = N + 1 - L
m = 1
b = d
B = T
N += 1
dC = Poly(C).degree()
coeffsC = [C.subs(x, 0)] + [C.coeff(x**i) for i in range(1, dC + 1)]
return sum([coeffsC[i] % p*x**i for i in range(dC + 1)
if coeffsC[i] is not None])
#################### ElGamal #############################
def elgamal_private_key(digit=10, seed=None):
r"""
Return three number tuple as private key.
Explanation
===========
Elgamal encryption is based on the mathmatical problem
called the Discrete Logarithm Problem (DLP). For example,
`a^{b} \equiv c \pmod p`
In general, if ``a`` and ``b`` are known, ``ct`` is easily
calculated. If ``b`` is unknown, it is hard to use
``a`` and ``ct`` to get ``b``.
Parameters
==========
digit : int
Minimum number of binary digits for key.
Returns
=======
tuple : (p, r, d)
p = prime number.
r = primitive root.
d = random number.
Notes
=====
For testing purposes, the ``seed`` parameter may be set to control
the output of this routine. See sympy.core.random._randrange.
Examples
========
>>> from sympy.crypto.crypto import elgamal_private_key
>>> from sympy.ntheory import is_primitive_root, isprime
>>> a, b, _ = elgamal_private_key()
>>> isprime(a)
True
>>> is_primitive_root(b, a)
True
"""
randrange = _randrange(seed)
p = nextprime(2**digit)
return p, primitive_root(p), randrange(2, p)
def elgamal_public_key(key):
r"""
Return three number tuple as public key.
Parameters
==========
key : (p, r, e)
Tuple generated by ``elgamal_private_key``.
Returns
=======
tuple : (p, r, e)
`e = r**d \bmod p`
`d` is a random number in private key.
Examples
========
>>> from sympy.crypto.crypto import elgamal_public_key
>>> elgamal_public_key((1031, 14, 636))
(1031, 14, 212)
"""
p, r, e = key
return p, r, pow(r, e, p)
def encipher_elgamal(i, key, seed=None):
r"""
Encrypt message with public key.
Explanation
===========
``i`` is a plaintext message expressed as an integer.
``key`` is public key (p, r, e). In order to encrypt
a message, a random number ``a`` in ``range(2, p)``
is generated and the encryped message is returned as
`c_{1}` and `c_{2}` where:
`c_{1} \equiv r^{a} \pmod p`
`c_{2} \equiv m e^{a} \pmod p`
Parameters
==========
msg
int of encoded message.
key
Public key.
Returns
=======
tuple : (c1, c2)
Encipher into two number.
Notes
=====
For testing purposes, the ``seed`` parameter may be set to control
the output of this routine. See sympy.core.random._randrange.
Examples
========
>>> from sympy.crypto.crypto import encipher_elgamal, elgamal_private_key, elgamal_public_key
>>> pri = elgamal_private_key(5, seed=[3]); pri
(37, 2, 3)
>>> pub = elgamal_public_key(pri); pub
(37, 2, 8)
>>> msg = 36
>>> encipher_elgamal(msg, pub, seed=[3])
(8, 6)
"""
p, r, e = key
if i < 0 or i >= p:
raise ValueError(
'Message (%s) should be in range(%s)' % (i, p))
randrange = _randrange(seed)
a = randrange(2, p)
return pow(r, a, p), i*pow(e, a, p) % p
def decipher_elgamal(msg, key):
r"""
Decrypt message with private key.
`msg = (c_{1}, c_{2})`
`key = (p, r, d)`
According to extended Eucliden theorem,
`u c_{1}^{d} + p n = 1`
`u \equiv 1/{{c_{1}}^d} \pmod p`
`u c_{2} \equiv \frac{1}{c_{1}^d} c_{2} \equiv \frac{1}{r^{ad}} c_{2} \pmod p`
`\frac{1}{r^{ad}} m e^a \equiv \frac{1}{r^{ad}} m {r^{d a}} \equiv m \pmod p`
Examples
========
>>> from sympy.crypto.crypto import decipher_elgamal
>>> from sympy.crypto.crypto import encipher_elgamal
>>> from sympy.crypto.crypto import elgamal_private_key
>>> from sympy.crypto.crypto import elgamal_public_key
>>> pri = elgamal_private_key(5, seed=[3])
>>> pub = elgamal_public_key(pri); pub
(37, 2, 8)
>>> msg = 17
>>> decipher_elgamal(encipher_elgamal(msg, pub), pri) == msg
True
"""
p, _, d = key
c1, c2 = msg
u = igcdex(c1**d, p)[0]
return u * c2 % p
################ Diffie-Hellman Key Exchange #########################
def dh_private_key(digit=10, seed=None):
r"""
Return three integer tuple as private key.
Explanation
===========
Diffie-Hellman key exchange is based on the mathematical problem
called the Discrete Logarithm Problem (see ElGamal).
Diffie-Hellman key exchange is divided into the following steps:
* Alice and Bob agree on a base that consist of a prime ``p``
and a primitive root of ``p`` called ``g``
* Alice choses a number ``a`` and Bob choses a number ``b`` where
``a`` and ``b`` are random numbers in range `[2, p)`. These are
their private keys.
* Alice then publicly sends Bob `g^{a} \pmod p` while Bob sends
Alice `g^{b} \pmod p`
* They both raise the received value to their secretly chosen
number (``a`` or ``b``) and now have both as their shared key
`g^{ab} \pmod p`
Parameters
==========
digit
Minimum number of binary digits required in key.
Returns
=======
tuple : (p, g, a)
p = prime number.
g = primitive root of p.
a = random number from 2 through p - 1.
Notes
=====
For testing purposes, the ``seed`` parameter may be set to control
the output of this routine. See sympy.core.random._randrange.
Examples
========
>>> from sympy.crypto.crypto import dh_private_key
>>> from sympy.ntheory import isprime, is_primitive_root
>>> p, g, _ = dh_private_key()
>>> isprime(p)
True
>>> is_primitive_root(g, p)
True
>>> p, g, _ = dh_private_key(5)
>>> isprime(p)
True
>>> is_primitive_root(g, p)
True
"""
p = nextprime(2**digit)
g = primitive_root(p)
randrange = _randrange(seed)
a = randrange(2, p)
return p, g, a
def dh_public_key(key):
r"""
Return three number tuple as public key.
This is the tuple that Alice sends to Bob.
Parameters
==========
key : (p, g, a)
A tuple generated by ``dh_private_key``.
Returns
=======
tuple : int, int, int
A tuple of `(p, g, g^a \mod p)` with `p`, `g` and `a` given as
parameters.s
Examples
========
>>> from sympy.crypto.crypto import dh_private_key, dh_public_key
>>> p, g, a = dh_private_key();
>>> _p, _g, x = dh_public_key((p, g, a))
>>> p == _p and g == _g
True
>>> x == pow(g, a, p)
True
"""
p, g, a = key
return p, g, pow(g, a, p)
def dh_shared_key(key, b):
"""
Return an integer that is the shared key.
This is what Bob and Alice can both calculate using the public
keys they received from each other and their private keys.
Parameters
==========
key : (p, g, x)
Tuple `(p, g, x)` generated by ``dh_public_key``.
b
Random number in the range of `2` to `p - 1`
(Chosen by second key exchange member (Bob)).
Returns
=======
int
A shared key.
Examples
========
>>> from sympy.crypto.crypto import (
... dh_private_key, dh_public_key, dh_shared_key)
>>> prk = dh_private_key();
>>> p, g, x = dh_public_key(prk);
>>> sk = dh_shared_key((p, g, x), 1000)
>>> sk == pow(x, 1000, p)
True
"""
p, _, x = key
if 1 >= b or b >= p:
raise ValueError(filldedent('''
Value of b should be greater 1 and less
than prime %s.''' % p))
return pow(x, b, p)
################ Goldwasser-Micali Encryption #########################
def _legendre(a, p):
"""
Returns the legendre symbol of a and p
assuming that p is a prime.
i.e. 1 if a is a quadratic residue mod p
-1 if a is not a quadratic residue mod p
0 if a is divisible by p
Parameters
==========
a : int
The number to test.
p : prime
The prime to test ``a`` against.
Returns
=======
int
Legendre symbol (a / p).
"""
sig = pow(a, (p - 1)//2, p)
if sig == 1:
return 1
elif sig == 0:
return 0
else:
return -1
def _random_coprime_stream(n, seed=None):
randrange = _randrange(seed)
while True:
y = randrange(n)
if gcd(y, n) == 1:
yield y
def gm_private_key(p, q, a=None):
r"""
Check if ``p`` and ``q`` can be used as private keys for
the Goldwasser-Micali encryption. The method works
roughly as follows.
Explanation
===========
#. Pick two large primes $p$ and $q$.
#. Call their product $N$.
#. Given a message as an integer $i$, write $i$ in its bit representation $b_0, \dots, b_n$.
#. For each $k$,
if $b_k = 0$:
let $a_k$ be a random square
(quadratic residue) modulo $p q$
such that ``jacobi_symbol(a, p*q) = 1``
if $b_k = 1$:
let $a_k$ be a random non-square
(non-quadratic residue) modulo $p q$
such that ``jacobi_symbol(a, p*q) = 1``
returns $\left[a_1, a_2, \dots\right]$
$b_k$ can be recovered by checking whether or not
$a_k$ is a residue. And from the $b_k$'s, the message
can be reconstructed.
The idea is that, while ``jacobi_symbol(a, p*q)``
can be easily computed (and when it is equal to $-1$ will
tell you that $a$ is not a square mod $p q$), quadratic
residuosity modulo a composite number is hard to compute
without knowing its factorization.
Moreover, approximately half the numbers coprime to $p q$ have
:func:`~.jacobi_symbol` equal to $1$ . And among those, approximately half
are residues and approximately half are not. This maximizes the
entropy of the code.
Parameters
==========
p, q, a
Initialization variables.
Returns
=======
tuple : (p, q)
The input value ``p`` and ``q``.
Raises
======
ValueError
If ``p`` and ``q`` are not distinct odd primes.
"""
if p == q:
raise ValueError("expected distinct primes, "
"got two copies of %i" % p)
elif not isprime(p) or not isprime(q):
raise ValueError("first two arguments must be prime, "
"got %i of %i" % (p, q))
elif p == 2 or q == 2:
raise ValueError("first two arguments must not be even, "
"got %i of %i" % (p, q))
return p, q
def gm_public_key(p, q, a=None, seed=None):
"""
Compute public keys for ``p`` and ``q``.
Note that in Goldwasser-Micali Encryption,
public keys are randomly selected.
Parameters
==========
p, q, a : int, int, int
Initialization variables.
Returns
=======
tuple : (a, N)
``a`` is the input ``a`` if it is not ``None`` otherwise
some random integer coprime to ``p`` and ``q``.
``N`` is the product of ``p`` and ``q``.
"""
p, q = gm_private_key(p, q)
N = p * q
if a is None:
randrange = _randrange(seed)
while True:
a = randrange(N)
if _legendre(a, p) == _legendre(a, q) == -1:
break
else:
if _legendre(a, p) != -1 or _legendre(a, q) != -1:
return False
return (a, N)
def encipher_gm(i, key, seed=None):
"""
Encrypt integer 'i' using public_key 'key'
Note that gm uses random encryption.
Parameters
==========
i : int
The message to encrypt.
key : (a, N)
The public key.
Returns
=======
list : list of int
The randomized encrypted message.
"""
if i < 0:
raise ValueError(
"message must be a non-negative "
"integer: got %d instead" % i)
a, N = key
bits = []
while i > 0:
bits.append(i % 2)
i //= 2
gen = _random_coprime_stream(N, seed)
rev = reversed(bits)
encode = lambda b: next(gen)**2*pow(a, b) % N
return [ encode(b) for b in rev ]
def decipher_gm(message, key):
"""
Decrypt message 'message' using public_key 'key'.
Parameters
==========
message : list of int
The randomized encrypted message.
key : (p, q)
The private key.
Returns
=======
int
The encrypted message.
"""
p, q = key
res = lambda m, p: _legendre(m, p) > 0
bits = [res(m, p) * res(m, q) for m in message]
m = 0
for b in bits:
m <<= 1
m += not b
return m
########### RailFence Cipher #############
def encipher_railfence(message,rails):
"""
Performs Railfence Encryption on plaintext and returns ciphertext
Examples
========
>>> from sympy.crypto.crypto import encipher_railfence
>>> message = "hello world"
>>> encipher_railfence(message,3)
'horel ollwd'
Parameters
==========
message : string, the message to encrypt.
rails : int, the number of rails.
Returns
=======
The Encrypted string message.
References
==========
.. [1] https://en.wikipedia.org/wiki/Rail_fence_cipher
"""
r = list(range(rails))
p = cycle(r + r[-2:0:-1])
return ''.join(sorted(message, key=lambda i: next(p)))
def decipher_railfence(ciphertext,rails):
"""
Decrypt the message using the given rails
Examples
========
>>> from sympy.crypto.crypto import decipher_railfence
>>> decipher_railfence("horel ollwd",3)
'hello world'
Parameters
==========
message : string, the message to encrypt.
rails : int, the number of rails.
Returns
=======
The Decrypted string message.
"""
r = list(range(rails))
p = cycle(r + r[-2:0:-1])
idx = sorted(range(len(ciphertext)), key=lambda i: next(p))
res = [''] * len(ciphertext)
for i, c in zip(idx, ciphertext):
res[i] = c
return ''.join(res)
################ Blum-Goldwasser cryptosystem #########################
def bg_private_key(p, q):
"""
Check if p and q can be used as private keys for
the Blum-Goldwasser cryptosystem.
Explanation
===========
The three necessary checks for p and q to pass
so that they can be used as private keys:
1. p and q must both be prime
2. p and q must be distinct
3. p and q must be congruent to 3 mod 4
Parameters
==========
p, q
The keys to be checked.
Returns
=======
p, q
Input values.
Raises
======
ValueError
If p and q do not pass the above conditions.
"""
if not isprime(p) or not isprime(q):
raise ValueError("the two arguments must be prime, "
"got %i and %i" %(p, q))
elif p == q:
raise ValueError("the two arguments must be distinct, "
"got two copies of %i. " %p)
elif (p - 3) % 4 != 0 or (q - 3) % 4 != 0:
raise ValueError("the two arguments must be congruent to 3 mod 4, "
"got %i and %i" %(p, q))
return p, q
def bg_public_key(p, q):
"""
Calculates public keys from private keys.
Explanation
===========
The function first checks the validity of
private keys passed as arguments and
then returns their product.
Parameters
==========
p, q
The private keys.
Returns
=======
N
The public key.
"""
p, q = bg_private_key(p, q)
N = p * q
return N
def encipher_bg(i, key, seed=None):
"""
Encrypts the message using public key and seed.
Explanation
===========
ALGORITHM:
1. Encodes i as a string of L bits, m.
2. Select a random element r, where 1 < r < key, and computes
x = r^2 mod key.
3. Use BBS pseudo-random number generator to generate L random bits, b,
using the initial seed as x.
4. Encrypted message, c_i = m_i XOR b_i, 1 <= i <= L.
5. x_L = x^(2^L) mod key.
6. Return (c, x_L)
Parameters
==========
i
Message, a non-negative integer
key
The public key
Returns
=======
Tuple
(encrypted_message, x_L)
Raises
======
ValueError
If i is negative.
"""
if i < 0:
raise ValueError(
"message must be a non-negative "
"integer: got %d instead" % i)
enc_msg = []
while i > 0:
enc_msg.append(i % 2)
i //= 2
enc_msg.reverse()
L = len(enc_msg)
r = _randint(seed)(2, key - 1)
x = r**2 % key
x_L = pow(int(x), int(2**L), int(key))
rand_bits = []
for _ in range(L):
rand_bits.append(x % 2)
x = x**2 % key
encrypt_msg = [m ^ b for (m, b) in zip(enc_msg, rand_bits)]
return (encrypt_msg, x_L)
def decipher_bg(message, key):
"""
Decrypts the message using private keys.
Explanation
===========
ALGORITHM:
1. Let, c be the encrypted message, y the second number received,
and p and q be the private keys.
2. Compute, r_p = y^((p+1)/4 ^ L) mod p and
r_q = y^((q+1)/4 ^ L) mod q.
3. Compute x_0 = (q(q^-1 mod p)r_p + p(p^-1 mod q)r_q) mod N.
4. From, recompute the bits using the BBS generator, as in the
encryption algorithm.
5. Compute original message by XORing c and b.
Parameters
==========
message
Tuple of encrypted message and a non-negative integer.
key
Tuple of private keys.
Returns
=======
orig_msg
The original message
"""
p, q = key
encrypt_msg, y = message
public_key = p * q
L = len(encrypt_msg)
p_t = ((p + 1)/4)**L
q_t = ((q + 1)/4)**L
r_p = pow(int(y), int(p_t), int(p))
r_q = pow(int(y), int(q_t), int(q))
x = (q * mod_inverse(q, p) * r_p + p * mod_inverse(p, q) * r_q) % public_key
orig_bits = []
for _ in range(L):
orig_bits.append(x % 2)
x = x**2 % public_key
orig_msg = 0
for (m, b) in zip(encrypt_msg, orig_bits):
orig_msg = orig_msg * 2
orig_msg += (m ^ b)
return orig_msg
|
0df0110ad3be2bd9cf113e009e34e1697c2de5d7eab43b0840a90f0ae0cef853 | """
The classes used here are for the internal use of assumptions system
only and should not be used anywhere else as these do not possess the
signatures common to SymPy objects. For general use of logic constructs
please refer to sympy.logic classes And, Or, Not, etc.
"""
from itertools import combinations, product, zip_longest
from sympy.assumptions.assume import AppliedPredicate, Predicate
from sympy.core.relational import Eq, Ne, Gt, Lt, Ge, Le
from sympy.core.singleton import S
from sympy.logic.boolalg import Or, And, Not, Xnor
from sympy.logic.boolalg import (Equivalent, ITE, Implies, Nand, Nor, Xor)
class Literal:
"""
The smallest element of a CNF object.
Parameters
==========
lit : Boolean expression
is_Not : bool
Examples
========
>>> from sympy import Q
>>> from sympy.assumptions.cnf import Literal
>>> from sympy.abc import x
>>> Literal(Q.even(x))
Literal(Q.even(x), False)
>>> Literal(~Q.even(x))
Literal(Q.even(x), True)
"""
def __new__(cls, lit, is_Not=False):
if isinstance(lit, Not):
lit = lit.args[0]
is_Not = True
elif isinstance(lit, (AND, OR, Literal)):
return ~lit if is_Not else lit
obj = super().__new__(cls)
obj.lit = lit
obj.is_Not = is_Not
return obj
@property
def arg(self):
return self.lit
def rcall(self, expr):
if callable(self.lit):
lit = self.lit(expr)
else:
try:
lit = self.lit.apply(expr)
except AttributeError:
lit = self.lit.rcall(expr)
return type(self)(lit, self.is_Not)
def __invert__(self):
is_Not = not self.is_Not
return Literal(self.lit, is_Not)
def __str__(self):
return '{}({}, {})'.format(type(self).__name__, self.lit, self.is_Not)
__repr__ = __str__
def __eq__(self, other):
return self.arg == other.arg and self.is_Not == other.is_Not
def __hash__(self):
h = hash((type(self).__name__, self.arg, self.is_Not))
return h
class OR:
"""
A low-level implementation for Or
"""
def __init__(self, *args):
self._args = args
@property
def args(self):
return sorted(self._args, key=str)
def rcall(self, expr):
return type(self)(*[arg.rcall(expr)
for arg in self._args
])
def __invert__(self):
return AND(*[~arg for arg in self._args])
def __hash__(self):
return hash((type(self).__name__,) + tuple(self.args))
def __eq__(self, other):
return self.args == other.args
def __str__(self):
s = '(' + ' | '.join([str(arg) for arg in self.args]) + ')'
return s
__repr__ = __str__
class AND:
"""
A low-level implementation for And
"""
def __init__(self, *args):
self._args = args
def __invert__(self):
return OR(*[~arg for arg in self._args])
@property
def args(self):
return sorted(self._args, key=str)
def rcall(self, expr):
return type(self)(*[arg.rcall(expr)
for arg in self._args
])
def __hash__(self):
return hash((type(self).__name__,) + tuple(self.args))
def __eq__(self, other):
return self.args == other.args
def __str__(self):
s = '('+' & '.join([str(arg) for arg in self.args])+')'
return s
__repr__ = __str__
def to_NNF(expr, composite_map=None):
"""
Generates the Negation Normal Form of any boolean expression in terms
of AND, OR, and Literal objects.
Examples
========
>>> from sympy import Q, Eq
>>> from sympy.assumptions.cnf import to_NNF
>>> from sympy.abc import x, y
>>> expr = Q.even(x) & ~Q.positive(x)
>>> to_NNF(expr)
(Literal(Q.even(x), False) & Literal(Q.positive(x), True))
Supported boolean objects are converted to corresponding predicates.
>>> to_NNF(Eq(x, y))
Literal(Q.eq(x, y), False)
If ``composite_map`` argument is given, ``to_NNF`` decomposes the
specified predicate into a combination of primitive predicates.
>>> cmap = {Q.nonpositive: Q.negative | Q.zero}
>>> to_NNF(Q.nonpositive, cmap)
(Literal(Q.negative, False) | Literal(Q.zero, False))
>>> to_NNF(Q.nonpositive(x), cmap)
(Literal(Q.negative(x), False) | Literal(Q.zero(x), False))
"""
from sympy.assumptions.ask import Q
if composite_map is None:
composite_map = {}
binrelpreds = {Eq: Q.eq, Ne: Q.ne, Gt: Q.gt, Lt: Q.lt, Ge: Q.ge, Le: Q.le}
if type(expr) in binrelpreds:
pred = binrelpreds[type(expr)]
expr = pred(*expr.args)
if isinstance(expr, Not):
arg = expr.args[0]
tmp = to_NNF(arg, composite_map) # Strategy: negate the NNF of expr
return ~tmp
if isinstance(expr, Or):
return OR(*[to_NNF(x, composite_map) for x in Or.make_args(expr)])
if isinstance(expr, And):
return AND(*[to_NNF(x, composite_map) for x in And.make_args(expr)])
if isinstance(expr, Nand):
tmp = AND(*[to_NNF(x, composite_map) for x in expr.args])
return ~tmp
if isinstance(expr, Nor):
tmp = OR(*[to_NNF(x, composite_map) for x in expr.args])
return ~tmp
if isinstance(expr, Xor):
cnfs = []
for i in range(0, len(expr.args) + 1, 2):
for neg in combinations(expr.args, i):
clause = [~to_NNF(s, composite_map) if s in neg else to_NNF(s, composite_map)
for s in expr.args]
cnfs.append(OR(*clause))
return AND(*cnfs)
if isinstance(expr, Xnor):
cnfs = []
for i in range(0, len(expr.args) + 1, 2):
for neg in combinations(expr.args, i):
clause = [~to_NNF(s, composite_map) if s in neg else to_NNF(s, composite_map)
for s in expr.args]
cnfs.append(OR(*clause))
return ~AND(*cnfs)
if isinstance(expr, Implies):
L, R = to_NNF(expr.args[0], composite_map), to_NNF(expr.args[1], composite_map)
return OR(~L, R)
if isinstance(expr, Equivalent):
cnfs = []
for a, b in zip_longest(expr.args, expr.args[1:], fillvalue=expr.args[0]):
a = to_NNF(a, composite_map)
b = to_NNF(b, composite_map)
cnfs.append(OR(~a, b))
return AND(*cnfs)
if isinstance(expr, ITE):
L = to_NNF(expr.args[0], composite_map)
M = to_NNF(expr.args[1], composite_map)
R = to_NNF(expr.args[2], composite_map)
return AND(OR(~L, M), OR(L, R))
if isinstance(expr, AppliedPredicate):
pred, args = expr.function, expr.arguments
newpred = composite_map.get(pred, None)
if newpred is not None:
return to_NNF(newpred.rcall(*args), composite_map)
if isinstance(expr, Predicate):
newpred = composite_map.get(expr, None)
if newpred is not None:
return to_NNF(newpred, composite_map)
return Literal(expr)
def distribute_AND_over_OR(expr):
"""
Distributes AND over OR in the NNF expression.
Returns the result( Conjunctive Normal Form of expression)
as a CNF object.
"""
if not isinstance(expr, (AND, OR)):
tmp = set()
tmp.add(frozenset((expr,)))
return CNF(tmp)
if isinstance(expr, OR):
return CNF.all_or(*[distribute_AND_over_OR(arg)
for arg in expr._args])
if isinstance(expr, AND):
return CNF.all_and(*[distribute_AND_over_OR(arg)
for arg in expr._args])
class CNF:
"""
Class to represent CNF of a Boolean expression.
Consists of set of clauses, which themselves are stored as
frozenset of Literal objects.
Examples
========
>>> from sympy import Q
>>> from sympy.assumptions.cnf import CNF
>>> from sympy.abc import x
>>> cnf = CNF.from_prop(Q.real(x) & ~Q.zero(x))
>>> cnf.clauses
{frozenset({Literal(Q.zero(x), True)}),
frozenset({Literal(Q.negative(x), False),
Literal(Q.positive(x), False), Literal(Q.zero(x), False)})}
"""
def __init__(self, clauses=None):
if not clauses:
clauses = set()
self.clauses = clauses
def add(self, prop):
clauses = CNF.to_CNF(prop).clauses
self.add_clauses(clauses)
def __str__(self):
s = ' & '.join(
['(' + ' | '.join([str(lit) for lit in clause]) +')'
for clause in self.clauses]
)
return s
def extend(self, props):
for p in props:
self.add(p)
return self
def copy(self):
return CNF(set(self.clauses))
def add_clauses(self, clauses):
self.clauses |= clauses
@classmethod
def from_prop(cls, prop):
res = cls()
res.add(prop)
return res
def __iand__(self, other):
self.add_clauses(other.clauses)
return self
def all_predicates(self):
predicates = set()
for c in self.clauses:
predicates |= {arg.lit for arg in c}
return predicates
def _or(self, cnf):
clauses = set()
for a, b in product(self.clauses, cnf.clauses):
tmp = set(a)
for t in b:
tmp.add(t)
clauses.add(frozenset(tmp))
return CNF(clauses)
def _and(self, cnf):
clauses = self.clauses.union(cnf.clauses)
return CNF(clauses)
def _not(self):
clss = list(self.clauses)
ll = set()
for x in clss[-1]:
ll.add(frozenset((~x,)))
ll = CNF(ll)
for rest in clss[:-1]:
p = set()
for x in rest:
p.add(frozenset((~x,)))
ll = ll._or(CNF(p))
return ll
def rcall(self, expr):
clause_list = list()
for clause in self.clauses:
lits = [arg.rcall(expr) for arg in clause]
clause_list.append(OR(*lits))
expr = AND(*clause_list)
return distribute_AND_over_OR(expr)
@classmethod
def all_or(cls, *cnfs):
b = cnfs[0].copy()
for rest in cnfs[1:]:
b = b._or(rest)
return b
@classmethod
def all_and(cls, *cnfs):
b = cnfs[0].copy()
for rest in cnfs[1:]:
b = b._and(rest)
return b
@classmethod
def to_CNF(cls, expr):
from sympy.assumptions.facts import get_composite_predicates
expr = to_NNF(expr, get_composite_predicates())
expr = distribute_AND_over_OR(expr)
return expr
@classmethod
def CNF_to_cnf(cls, cnf):
"""
Converts CNF object to SymPy's boolean expression
retaining the form of expression.
"""
def remove_literal(arg):
return Not(arg.lit) if arg.is_Not else arg.lit
return And(*(Or(*(remove_literal(arg) for arg in clause)) for clause in cnf.clauses))
class EncodedCNF:
"""
Class for encoding the CNF expression.
"""
def __init__(self, data=None, encoding=None):
if not data and not encoding:
data = []
encoding = {}
self.data = data
self.encoding = encoding
self._symbols = list(encoding.keys())
def from_cnf(self, cnf):
self._symbols = list(cnf.all_predicates())
n = len(self._symbols)
self.encoding = dict(zip(self._symbols, range(1, n + 1)))
self.data = [self.encode(clause) for clause in cnf.clauses]
@property
def symbols(self):
return self._symbols
@property
def variables(self):
return range(1, len(self._symbols) + 1)
def copy(self):
new_data = [set(clause) for clause in self.data]
return EncodedCNF(new_data, dict(self.encoding))
def add_prop(self, prop):
cnf = CNF.from_prop(prop)
self.add_from_cnf(cnf)
def add_from_cnf(self, cnf):
clauses = [self.encode(clause) for clause in cnf.clauses]
self.data += clauses
def encode_arg(self, arg):
literal = arg.lit
value = self.encoding.get(literal, None)
if value is None:
n = len(self._symbols)
self._symbols.append(literal)
value = self.encoding[literal] = n + 1
if arg.is_Not:
return -value
else:
return value
def encode(self, clause):
return {self.encode_arg(arg) if not arg.lit == S.false else 0 for arg in clause}
|
77d32bc068b44ad8a7a494fee88144f4b4510d5ab93da5ff0912607aaa6857bd | """
This module contain solvers for all kinds of equations:
- algebraic or transcendental, use solve()
- recurrence, use rsolve()
- differential, use dsolve()
- nonlinear (numerically), use nsolve()
(you will need a good starting point)
"""
from sympy.core import (S, Add, Symbol, Dummy, Expr, Mul)
from sympy.core.assumptions import check_assumptions
from sympy.core.exprtools import factor_terms
from sympy.core.function import (expand_mul, expand_log, Derivative,
AppliedUndef, UndefinedFunction, nfloat,
Function, expand_power_exp, _mexpand, expand,
expand_func)
from sympy.core.logic import fuzzy_not
from sympy.core.numbers import ilcm, Float, Rational, _illegal
from sympy.core.power import integer_log, Pow
from sympy.core.relational import Eq, Ne
from sympy.core.sorting import ordered, default_sort_key
from sympy.core.sympify import sympify, _sympify
from sympy.core.traversal import preorder_traversal
from sympy.logic.boolalg import And, BooleanAtom
from sympy.functions import (log, exp, LambertW, cos, sin, tan, acos, asin, atan,
Abs, re, im, arg, sqrt, atan2)
from sympy.functions.combinatorial.factorials import binomial
from sympy.functions.elementary.hyperbolic import HyperbolicFunction
from sympy.functions.elementary.piecewise import piecewise_fold, Piecewise
from sympy.functions.elementary.trigonometric import TrigonometricFunction
from sympy.integrals.integrals import Integral
from sympy.ntheory.factor_ import divisors
from sympy.simplify import (simplify, collect, powsimp, posify, # type: ignore
powdenest, nsimplify, denom, logcombine, sqrtdenest, fraction,
separatevars)
from sympy.simplify.sqrtdenest import sqrt_depth
from sympy.simplify.fu import TR1, TR2i
from sympy.matrices.common import NonInvertibleMatrixError
from sympy.matrices import Matrix, zeros
from sympy.polys import roots, cancel, factor, Poly
from sympy.polys.polyerrors import GeneratorsNeeded, PolynomialError
from sympy.polys.solvers import sympy_eqs_to_ring, solve_lin_sys
from sympy.utilities.lambdify import lambdify
from sympy.utilities.misc import filldedent, debug
from sympy.utilities.iterables import (connected_components,
generate_bell, uniq, iterable, is_sequence, subsets, flatten)
from sympy.utilities.decorator import conserve_mpmath_dps
from mpmath import findroot
from sympy.solvers.polysys import solve_poly_system
from types import GeneratorType
from collections import defaultdict
from itertools import combinations, product
import warnings
def recast_to_symbols(eqs, symbols):
"""
Return (e, s, d) where e and s are versions of *eqs* and
*symbols* in which any non-Symbol objects in *symbols* have
been replaced with generic Dummy symbols and d is a dictionary
that can be used to restore the original expressions.
Examples
========
>>> from sympy.solvers.solvers import recast_to_symbols
>>> from sympy import symbols, Function
>>> x, y = symbols('x y')
>>> fx = Function('f')(x)
>>> eqs, syms = [fx + 1, x, y], [fx, y]
>>> e, s, d = recast_to_symbols(eqs, syms); (e, s, d)
([_X0 + 1, x, y], [_X0, y], {_X0: f(x)})
The original equations and symbols can be restored using d:
>>> assert [i.xreplace(d) for i in eqs] == eqs
>>> assert [d.get(i, i) for i in s] == syms
"""
if not iterable(eqs) and iterable(symbols):
raise ValueError('Both eqs and symbols must be iterable')
orig = list(symbols)
symbols = list(ordered(symbols))
swap_sym = {}
i = 0
for j, s in enumerate(symbols):
if not isinstance(s, Symbol) and s not in swap_sym:
swap_sym[s] = Dummy('X%d' % i)
i += 1
new_f = []
for i in eqs:
isubs = getattr(i, 'subs', None)
if isubs is not None:
new_f.append(isubs(swap_sym))
else:
new_f.append(i)
restore = {v: k for k, v in swap_sym.items()}
return new_f, [swap_sym.get(i, i) for i in orig], restore
def _ispow(e):
"""Return True if e is a Pow or is exp."""
return isinstance(e, Expr) and (e.is_Pow or isinstance(e, exp))
def _simple_dens(f, symbols):
# when checking if a denominator is zero, we can just check the
# base of powers with nonzero exponents since if the base is zero
# the power will be zero, too. To keep it simple and fast, we
# limit simplification to exponents that are Numbers
dens = set()
for d in denoms(f, symbols):
if d.is_Pow and d.exp.is_Number:
if d.exp.is_zero:
continue # foo**0 is never 0
d = d.base
dens.add(d)
return dens
def denoms(eq, *symbols):
"""
Return (recursively) set of all denominators that appear in *eq*
that contain any symbol in *symbols*; if *symbols* are not
provided then all denominators will be returned.
Examples
========
>>> from sympy.solvers.solvers import denoms
>>> from sympy.abc import x, y, z
>>> denoms(x/y)
{y}
>>> denoms(x/(y*z))
{y, z}
>>> denoms(3/x + y/z)
{x, z}
>>> denoms(x/2 + y/z)
{2, z}
If *symbols* are provided then only denominators containing
those symbols will be returned:
>>> denoms(1/x + 1/y + 1/z, y, z)
{y, z}
"""
pot = preorder_traversal(eq)
dens = set()
for p in pot:
# Here p might be Tuple or Relational
# Expr subtrees (e.g. lhs and rhs) will be traversed after by pot
if not isinstance(p, Expr):
continue
den = denom(p)
if den is S.One:
continue
for d in Mul.make_args(den):
dens.add(d)
if not symbols:
return dens
elif len(symbols) == 1:
if iterable(symbols[0]):
symbols = symbols[0]
return {d for d in dens if any(s in d.free_symbols for s in symbols)}
def checksol(f, symbol, sol=None, **flags):
"""
Checks whether sol is a solution of equation f == 0.
Explanation
===========
Input can be either a single symbol and corresponding value
or a dictionary of symbols and values. When given as a dictionary
and flag ``simplify=True``, the values in the dictionary will be
simplified. *f* can be a single equation or an iterable of equations.
A solution must satisfy all equations in *f* to be considered valid;
if a solution does not satisfy any equation, False is returned; if one or
more checks are inconclusive (and none are False) then None is returned.
Examples
========
>>> from sympy import checksol, symbols
>>> x, y = symbols('x,y')
>>> checksol(x**4 - 1, x, 1)
True
>>> checksol(x**4 - 1, x, 0)
False
>>> checksol(x**2 + y**2 - 5**2, {x: 3, y: 4})
True
To check if an expression is zero using ``checksol()``, pass it
as *f* and send an empty dictionary for *symbol*:
>>> checksol(x**2 + x - x*(x + 1), {})
True
None is returned if ``checksol()`` could not conclude.
flags:
'numerical=True (default)'
do a fast numerical check if ``f`` has only one symbol.
'minimal=True (default is False)'
a very fast, minimal testing.
'warn=True (default is False)'
show a warning if checksol() could not conclude.
'simplify=True (default)'
simplify solution before substituting into function and
simplify the function before trying specific simplifications
'force=True (default is False)'
make positive all symbols without assumptions regarding sign.
"""
from sympy.physics.units import Unit
minimal = flags.get('minimal', False)
if sol is not None:
sol = {symbol: sol}
elif isinstance(symbol, dict):
sol = symbol
else:
msg = 'Expecting (sym, val) or ({sym: val}, None) but got (%s, %s)'
raise ValueError(msg % (symbol, sol))
if iterable(f):
if not f:
raise ValueError('no functions to check')
rv = True
for fi in f:
check = checksol(fi, sol, **flags)
if check:
continue
if check is False:
return False
rv = None # don't return, wait to see if there's a False
return rv
f = _sympify(f)
if f.is_number:
return f.is_zero
if isinstance(f, Poly):
f = f.as_expr()
elif isinstance(f, (Eq, Ne)):
if f.rhs in (S.true, S.false):
f = f.reversed
B, E = f.args
if isinstance(B, BooleanAtom):
f = f.subs(sol)
if not f.is_Boolean:
return
else:
f = f.rewrite(Add, evaluate=False)
if isinstance(f, BooleanAtom):
return bool(f)
elif not f.is_Relational and not f:
return True
illegal = set(_illegal)
if any(sympify(v).atoms() & illegal for k, v in sol.items()):
return False
attempt = -1
numerical = flags.get('numerical', True)
while 1:
attempt += 1
if attempt == 0:
val = f.subs(sol)
if isinstance(val, Mul):
val = val.as_independent(Unit)[0]
if val.atoms() & illegal:
return False
elif attempt == 1:
if not val.is_number:
if not val.is_constant(*list(sol.keys()), simplify=not minimal):
return False
# there are free symbols -- simple expansion might work
_, val = val.as_content_primitive()
val = _mexpand(val.as_numer_denom()[0], recursive=True)
elif attempt == 2:
if minimal:
return
if flags.get('simplify', True):
for k in sol:
sol[k] = simplify(sol[k])
# start over without the failed expanded form, possibly
# with a simplified solution
val = simplify(f.subs(sol))
if flags.get('force', True):
val, reps = posify(val)
# expansion may work now, so try again and check
exval = _mexpand(val, recursive=True)
if exval.is_number:
# we can decide now
val = exval
else:
# if there are no radicals and no functions then this can't be
# zero anymore -- can it?
pot = preorder_traversal(expand_mul(val))
seen = set()
saw_pow_func = False
for p in pot:
if p in seen:
continue
seen.add(p)
if p.is_Pow and not p.exp.is_Integer:
saw_pow_func = True
elif p.is_Function:
saw_pow_func = True
elif isinstance(p, UndefinedFunction):
saw_pow_func = True
if saw_pow_func:
break
if saw_pow_func is False:
return False
if flags.get('force', True):
# don't do a zero check with the positive assumptions in place
val = val.subs(reps)
nz = fuzzy_not(val.is_zero)
if nz is not None:
# issue 5673: nz may be True even when False
# so these are just hacks to keep a false positive
# from being returned
# HACK 1: LambertW (issue 5673)
if val.is_number and val.has(LambertW):
# don't eval this to verify solution since if we got here,
# numerical must be False
return None
# add other HACKs here if necessary, otherwise we assume
# the nz value is correct
return not nz
break
if val.is_Rational:
return val == 0
if numerical and val.is_number:
return (abs(val.n(18).n(12, chop=True)) < 1e-9) is S.true
if flags.get('warn', False):
warnings.warn("\n\tWarning: could not verify solution %s." % sol)
# returns None if it can't conclude
# TODO: improve solution testing
def solve(f, *symbols, **flags):
r"""
Algebraically solves equations and systems of equations.
Explanation
===========
Currently supported:
- polynomial
- transcendental
- piecewise combinations of the above
- systems of linear and polynomial equations
- systems containing relational expressions
- systems implied by undetermined coefficients
Examples
========
The default output varies according to the input and might
be a list (possibly empty), a dictionary, a list of
dictionaries or tuples, or an expression involving relationals.
For specifics regarding different forms of output that may appear, see :ref:`solve_output`.
Let it suffice here to say that to obtain a uniform output from
`solve` use ``dict=True`` or ``set=True`` (see below).
>>> from sympy import solve, Poly, Eq, Matrix, Symbol
>>> from sympy.abc import x, y, z, a, b
The expressions that are passed can be Expr, Equality, or Poly
classes (or lists of the same); a Matrix is considered to be a
list of all the elements of the matrix:
>>> solve(x - 3, x)
[3]
>>> solve(Eq(x, 3), x)
[3]
>>> solve(Poly(x - 3), x)
[3]
>>> solve(Matrix([[x, x + y]]), x, y) == solve([x, x + y], x, y)
True
If no symbols are indicated to be of interest and the equation is
univariate, a list of values is returned; otherwise, the keys in
a dictionary will indicate which (of all the variables used in
the expression(s)) variables and solutions were found:
>>> solve(x**2 - 4)
[-2, 2]
>>> solve((x - a)*(y - b))
[{a: x}, {b: y}]
>>> solve([x - 3, y - 1])
{x: 3, y: 1}
>>> solve([x - 3, y**2 - 1])
[{x: 3, y: -1}, {x: 3, y: 1}]
If you pass symbols for which solutions are sought, the output will vary
depending on the number of symbols you passed, whether you are passing
a list of expressions or not, and whether a linear system was solved.
Uniform output is attained by using ``dict=True`` or ``set=True``.
>>> #### *** feel free to skip to the stars below *** ####
>>> from sympy import TableForm
>>> h = [None, ';|;'.join(['e', 's', 'solve(e, s)', 'solve(e, s, dict=True)',
... 'solve(e, s, set=True)']).split(';')]
>>> t = []
>>> for e, s in [
... (x - y, y),
... (x - y, [x, y]),
... (x**2 - y, [x, y]),
... ([x - 3, y -1], [x, y]),
... ]:
... how = [{}, dict(dict=True), dict(set=True)]
... res = [solve(e, s, **f) for f in how]
... t.append([e, '|', s, '|'] + [res[0], '|', res[1], '|', res[2]])
...
>>> # ******************************************************* #
>>> TableForm(t, headings=h, alignments="<")
e | s | solve(e, s) | solve(e, s, dict=True) | solve(e, s, set=True)
---------------------------------------------------------------------------------------
x - y | y | [x] | [{y: x}] | ([y], {(x,)})
x - y | [x, y] | [(y, y)] | [{x: y}] | ([x, y], {(y, y)})
x**2 - y | [x, y] | [(x, x**2)] | [{y: x**2}] | ([x, y], {(x, x**2)})
[x - 3, y - 1] | [x, y] | {x: 3, y: 1} | [{x: 3, y: 1}] | ([x, y], {(3, 1)})
* If any equation does not depend on the symbol(s) given, it will be
eliminated from the equation set and an answer may be given
implicitly in terms of variables that were not of interest:
>>> solve([x - y, y - 3], x)
{x: y}
When you pass all but one of the free symbols, an attempt
is made to find a single solution based on the method of
undetermined coefficients. If it succeeds, a dictionary of values
is returned. If you want an algebraic solutions for one
or more of the symbols, pass the expression to be solved in a list:
>>> e = a*x + b - 2*x - 3
>>> solve(e, [a, b])
{a: 2, b: 3}
>>> solve([e], [a, b])
{a: -b/x + (2*x + 3)/x}
When there is no solution for any given symbol which will make all
expressions zero, the empty list is returned (or an empty set in
the tuple when ``set=True``):
>>> from sympy import sqrt
>>> solve(3, x)
[]
>>> solve(x - 3, y)
[]
>>> solve(sqrt(x) + 1, x, set=True)
([x], set())
When an object other than a Symbol is given as a symbol, it is
isolated algebraically and an implicit solution may be obtained.
This is mostly provided as a convenience to save you from replacing
the object with a Symbol and solving for that Symbol. It will only
work if the specified object can be replaced with a Symbol using the
subs method:
>>> from sympy import exp, Function
>>> f = Function('f')
>>> solve(f(x) - x, f(x))
[x]
>>> solve(f(x).diff(x) - f(x) - x, f(x).diff(x))
[x + f(x)]
>>> solve(f(x).diff(x) - f(x) - x, f(x))
[-x + Derivative(f(x), x)]
>>> solve(x + exp(x)**2, exp(x), set=True)
([exp(x)], {(-sqrt(-x),), (sqrt(-x),)})
>>> from sympy import Indexed, IndexedBase, Tuple
>>> A = IndexedBase('A')
>>> eqs = Tuple(A[1] + A[2] - 3, A[1] - A[2] + 1)
>>> solve(eqs, eqs.atoms(Indexed))
{A[1]: 1, A[2]: 2}
* To solve for a function within a derivative, use :func:`~.dsolve`.
To solve for a symbol implicitly, use implicit=True:
>>> solve(x + exp(x), x)
[-LambertW(1)]
>>> solve(x + exp(x), x, implicit=True)
[-exp(x)]
It is possible to solve for anything in an expression that can be
replaced with a symbol using :obj:`~sympy.core.basic.Basic.subs`:
>>> solve(x + 2 + sqrt(3), x + 2)
[-sqrt(3)]
>>> solve((x + 2 + sqrt(3), x + 4 + y), y, x + 2)
{y: -2 + sqrt(3), x + 2: -sqrt(3)}
* Nothing heroic is done in this implicit solving so you may end up
with a symbol still in the solution:
>>> eqs = (x*y + 3*y + sqrt(3), x + 4 + y)
>>> solve(eqs, y, x + 2)
{y: -sqrt(3)/(x + 3), x + 2: -2*x/(x + 3) - 6/(x + 3) + sqrt(3)/(x + 3)}
>>> solve(eqs, y*x, x)
{x: -y - 4, x*y: -3*y - sqrt(3)}
* If you attempt to solve for a number, remember that the number
you have obtained does not necessarily mean that the value is
equivalent to the expression obtained:
>>> solve(sqrt(2) - 1, 1)
[sqrt(2)]
>>> solve(x - y + 1, 1) # /!\ -1 is targeted, too
[x/(y - 1)]
>>> [_.subs(z, -1) for _ in solve((x - y + 1).subs(-1, z), 1)]
[-x + y]
**Additional Examples**
``solve()`` with check=True (default) will run through the symbol tags to
eliminate unwanted solutions. If no assumptions are included, all possible
solutions will be returned:
>>> x = Symbol("x")
>>> solve(x**2 - 1)
[-1, 1]
By setting the ``positive`` flag, only one solution will be returned:
>>> pos = Symbol("pos", positive=True)
>>> solve(pos**2 - 1)
[1]
When the solutions are checked, those that make any denominator zero
are automatically excluded. If you do not want to exclude such solutions,
then use the check=False option:
>>> from sympy import sin, limit
>>> solve(sin(x)/x) # 0 is excluded
[pi]
If ``check=False``, then a solution to the numerator being zero is found
but the value of $x = 0$ is a spurious solution since $\sin(x)/x$ has the well
known limit (without discontinuity) of 1 at $x = 0$:
>>> solve(sin(x)/x, check=False)
[0, pi]
In the following case, however, the limit exists and is equal to the
value of $x = 0$ that is excluded when check=True:
>>> eq = x**2*(1/x - z**2/x)
>>> solve(eq, x)
[]
>>> solve(eq, x, check=False)
[0]
>>> limit(eq, x, 0, '-')
0
>>> limit(eq, x, 0, '+')
0
**Solving Relationships**
When one or more expressions passed to ``solve`` is a relational,
a relational result is returned (and the ``dict`` and ``set`` flags
are ignored):
>>> solve(x < 3)
(-oo < x) & (x < 3)
>>> solve([x < 3, x**2 > 4], x)
((-oo < x) & (x < -2)) | ((2 < x) & (x < 3))
>>> solve([x + y - 3, x > 3], x)
(3 < x) & (x < oo) & Eq(x, 3 - y)
Although checking of assumptions on symbols in relationals
is not done, setting assumptions will affect how certain
relationals might automatically simplify:
>>> solve(x**2 > 4)
((-oo < x) & (x < -2)) | ((2 < x) & (x < oo))
>>> r = Symbol('r', real=True)
>>> solve(r**2 > 4)
(2 < r) | (r < -2)
There is currently no algorithm in SymPy that allows you to use
relationships to resolve more than one variable. So the following
does not determine that ``q < 0`` (and trying to solve for ``r``
and ``q`` will raise an error):
>>> from sympy import symbols
>>> r, q = symbols('r, q', real=True)
>>> solve([r + q - 3, r > 3], r)
(3 < r) & Eq(r, 3 - q)
You can directly call the routine that ``solve`` calls
when it encounters a relational: :func:`~.reduce_inequalities`.
It treats Expr like Equality.
>>> from sympy import reduce_inequalities
>>> reduce_inequalities([x**2 - 4])
Eq(x, -2) | Eq(x, 2)
If each relationship contains only one symbol of interest,
the expressions can be processed for multiple symbols:
>>> reduce_inequalities([0 <= x - 1, y < 3], [x, y])
(-oo < y) & (1 <= x) & (x < oo) & (y < 3)
But an error is raised if any relationship has more than one
symbol of interest:
>>> reduce_inequalities([0 <= x*y - 1, y < 3], [x, y])
Traceback (most recent call last):
...
NotImplementedError:
inequality has more than one symbol of interest.
**Disabling High-Order Explicit Solutions**
When solving polynomial expressions, you might not want explicit solutions
(which can be quite long). If the expression is univariate, ``CRootOf``
instances will be returned instead:
>>> solve(x**3 - x + 1)
[-1/((-1/2 - sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)) -
(-1/2 - sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)/3,
-(-1/2 + sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)/3 -
1/((-1/2 + sqrt(3)*I/2)*(3*sqrt(69)/2 + 27/2)**(1/3)),
-(3*sqrt(69)/2 + 27/2)**(1/3)/3 -
1/(3*sqrt(69)/2 + 27/2)**(1/3)]
>>> solve(x**3 - x + 1, cubics=False)
[CRootOf(x**3 - x + 1, 0),
CRootOf(x**3 - x + 1, 1),
CRootOf(x**3 - x + 1, 2)]
If the expression is multivariate, no solution might be returned:
>>> solve(x**3 - x + a, x, cubics=False)
[]
Sometimes solutions will be obtained even when a flag is False because the
expression could be factored. In the following example, the equation can
be factored as the product of a linear and a quadratic factor so explicit
solutions (which did not require solving a cubic expression) are obtained:
>>> eq = x**3 + 3*x**2 + x - 1
>>> solve(eq, cubics=False)
[-1, -1 + sqrt(2), -sqrt(2) - 1]
**Solving Equations Involving Radicals**
Because of SymPy's use of the principle root, some solutions
to radical equations will be missed unless check=False:
>>> from sympy import root
>>> eq = root(x**3 - 3*x**2, 3) + 1 - x
>>> solve(eq)
[]
>>> solve(eq, check=False)
[1/3]
In the above example, there is only a single solution to the
equation. Other expressions will yield spurious roots which
must be checked manually; roots which give a negative argument
to odd-powered radicals will also need special checking:
>>> from sympy import real_root, S
>>> eq = root(x, 3) - root(x, 5) + S(1)/7
>>> solve(eq) # this gives 2 solutions but misses a 3rd
[CRootOf(7*x**5 - 7*x**3 + 1, 1)**15,
CRootOf(7*x**5 - 7*x**3 + 1, 2)**15]
>>> sol = solve(eq, check=False)
>>> [abs(eq.subs(x,i).n(2)) for i in sol]
[0.48, 0.e-110, 0.e-110, 0.052, 0.052]
The first solution is negative so ``real_root`` must be used to see that it
satisfies the expression:
>>> abs(real_root(eq.subs(x, sol[0])).n(2))
0.e-110
If the roots of the equation are not real then more care will be
necessary to find the roots, especially for higher order equations.
Consider the following expression:
>>> expr = root(x, 3) - root(x, 5)
We will construct a known value for this expression at x = 3 by selecting
the 1-th root for each radical:
>>> expr1 = root(x, 3, 1) - root(x, 5, 1)
>>> v = expr1.subs(x, -3)
The ``solve`` function is unable to find any exact roots to this equation:
>>> eq = Eq(expr, v); eq1 = Eq(expr1, v)
>>> solve(eq, check=False), solve(eq1, check=False)
([], [])
The function ``unrad``, however, can be used to get a form of the equation
for which numerical roots can be found:
>>> from sympy.solvers.solvers import unrad
>>> from sympy import nroots
>>> e, (p, cov) = unrad(eq)
>>> pvals = nroots(e)
>>> inversion = solve(cov, x)[0]
>>> xvals = [inversion.subs(p, i) for i in pvals]
Although ``eq`` or ``eq1`` could have been used to find ``xvals``, the
solution can only be verified with ``expr1``:
>>> z = expr - v
>>> [xi.n(chop=1e-9) for xi in xvals if abs(z.subs(x, xi).n()) < 1e-9]
[]
>>> z1 = expr1 - v
>>> [xi.n(chop=1e-9) for xi in xvals if abs(z1.subs(x, xi).n()) < 1e-9]
[-3.0]
Parameters
==========
f :
- a single Expr or Poly that must be zero
- an Equality
- a Relational expression
- a Boolean
- iterable of one or more of the above
symbols : (object(s) to solve for) specified as
- none given (other non-numeric objects will be used)
- single symbol
- denested list of symbols
(e.g., ``solve(f, x, y)``)
- ordered iterable of symbols
(e.g., ``solve(f, [x, y])``)
flags :
dict=True (default is False)
Return list (perhaps empty) of solution mappings.
set=True (default is False)
Return list of symbols and set of tuple(s) of solution(s).
exclude=[] (default)
Do not try to solve for any of the free symbols in exclude;
if expressions are given, the free symbols in them will
be extracted automatically.
check=True (default)
If False, do not do any testing of solutions. This can be
useful if you want to include solutions that make any
denominator zero.
numerical=True (default)
Do a fast numerical check if *f* has only one symbol.
minimal=True (default is False)
A very fast, minimal testing.
warn=True (default is False)
Show a warning if ``checksol()`` could not conclude.
simplify=True (default)
Simplify all but polynomials of order 3 or greater before
returning them and (if check is not False) use the
general simplify function on the solutions and the
expression obtained when they are substituted into the
function which should be zero.
force=True (default is False)
Make positive all symbols without assumptions regarding sign.
rational=True (default)
Recast Floats as Rational; if this option is not used, the
system containing Floats may fail to solve because of issues
with polys. If rational=None, Floats will be recast as
rationals but the answer will be recast as Floats. If the
flag is False then nothing will be done to the Floats.
manual=True (default is False)
Do not use the polys/matrix method to solve a system of
equations, solve them one at a time as you might "manually."
implicit=True (default is False)
Allows ``solve`` to return a solution for a pattern in terms of
other functions that contain that pattern; this is only
needed if the pattern is inside of some invertible function
like cos, exp, ect.
particular=True (default is False)
Instructs ``solve`` to try to find a particular solution to
a linear system with as many zeros as possible; this is very
expensive.
quick=True (default is False; ``particular`` must be True)
Selects a fast heuristic to find a solution with many zeros
whereas a value of False uses the very slow method guaranteed
to find the largest number of zeros possible.
cubics=True (default)
Return explicit solutions when cubic expressions are encountered.
When False, quartics and quintics are disabled, too.
quartics=True (default)
Return explicit solutions when quartic expressions are encountered.
When False, quintics are disabled, too.
quintics=True (default)
Return explicit solutions (if possible) when quintic expressions
are encountered.
See Also
========
rsolve: For solving recurrence relationships
dsolve: For solving differential equations
"""
from .inequalities import reduce_inequalities
# checking/recording flags
###########################################################################
# set solver types explicitly; as soon as one is False
# all the rest will be False
hints = ('cubics', 'quartics', 'quintics')
default = True
for k in hints:
default = flags.setdefault(k, bool(flags.get(k, default)))
# allow solution to contain symbol if True:
implicit = flags.get('implicit', False)
# record desire to see warnings
warn = flags.get('warn', False)
# this flag will be needed for quick exits below, so record
# now -- but don't record `dict` yet since it might change
as_set = flags.get('set', False)
# keeping track of how f was passed
bare_f = not iterable(f)
# check flag usage for particular/quick which should only be used
# with systems of equations
if flags.get('quick', None) is not None:
if not flags.get('particular', None):
raise ValueError('when using `quick`, `particular` should be True')
if flags.get('particular', False) and bare_f:
raise ValueError(filldedent("""
The 'particular/quick' flag is usually used with systems of
equations. Either pass your equation in a list or
consider using a solver like `diophantine` if you are
looking for a solution in integers."""))
# sympify everything, creating list of expressions and list of symbols
###########################################################################
def _sympified_list(w):
return list(map(sympify, w if iterable(w) else [w]))
f, symbols = (_sympified_list(w) for w in [f, symbols])
# preprocess symbol(s)
###########################################################################
ordered_symbols = None # were the symbols in a well defined order?
if not symbols:
# get symbols from equations
symbols = set().union(*[fi.free_symbols for fi in f])
if len(symbols) < len(f):
for fi in f:
pot = preorder_traversal(fi)
for p in pot:
if isinstance(p, AppliedUndef):
if not as_set:
flags['dict'] = True # better show symbols
symbols.add(p)
pot.skip() # don't go any deeper
ordered_symbols = False
symbols = list(ordered(symbols)) # to make it canonical
else:
if len(symbols) == 1 and iterable(symbols[0]):
symbols = symbols[0]
ordered_symbols = symbols and is_sequence(symbols,
include=GeneratorType)
_symbols = list(uniq(symbols))
if len(_symbols) != len(symbols):
ordered_symbols = False
symbols = list(ordered(symbols))
else:
symbols = _symbols
# check for duplicates
if len(symbols) != len(set(symbols)):
raise ValueError('duplicate symbols given')
# remove those not of interest
exclude = flags.pop('exclude', set())
if exclude:
if isinstance(exclude, Expr):
exclude = [exclude]
exclude = set().union(*[e.free_symbols for e in sympify(exclude)])
symbols = [s for s in symbols if s not in exclude]
# preprocess equation(s)
###########################################################################
# automatically ignore True values
if isinstance(f, list):
f = [s for s in f if s is not S.true]
# handle canonicalization of equation types
for i, fi in enumerate(f):
if isinstance(fi, (Eq, Ne)):
if 'ImmutableDenseMatrix' in [type(a).__name__ for a in fi.args]:
fi = fi.lhs - fi.rhs
else:
L, R = fi.args
if isinstance(R, BooleanAtom):
L, R = R, L
if isinstance(L, BooleanAtom):
if isinstance(fi, Ne):
L = ~L
if R.is_Relational:
fi = ~R if L is S.false else R
elif R.is_Symbol:
return L
elif R.is_Boolean and (~R).is_Symbol:
return ~L
else:
raise NotImplementedError(filldedent('''
Unanticipated argument of Eq when other arg
is True or False.
'''))
else:
fi = fi.rewrite(Add, evaluate=False)
f[i] = fi
# *** dispatch and handle as a system of relationals
# **************************************************
if fi.is_Relational:
if len(symbols) != 1:
raise ValueError("can only solve for one symbol at a time")
if warn and symbols[0].assumptions0:
warnings.warn(filldedent("""
\tWarning: assumptions about variable '%s' are
not handled currently.""" % symbols[0]))
return reduce_inequalities(f, symbols=symbols)
# convert Poly to expression
if isinstance(fi, Poly):
f[i] = fi.as_expr()
# rewrite hyperbolics in terms of exp if they have symbols of
# interest
f[i] = f[i].replace(lambda w: isinstance(w, HyperbolicFunction) and \
w.has_free(*symbols), lambda w: w.rewrite(exp))
# if we have a Matrix, we need to iterate over its elements again
if f[i].is_Matrix:
bare_f = False
f.extend(list(f[i]))
f[i] = S.Zero
# if we can split it into real and imaginary parts then do so
freei = f[i].free_symbols
if freei and all(s.is_extended_real or s.is_imaginary for s in freei):
fr, fi = f[i].as_real_imag()
# accept as long as new re, im, arg or atan2 are not introduced
had = f[i].atoms(re, im, arg, atan2)
if fr and fi and fr != fi and not any(
i.atoms(re, im, arg, atan2) - had for i in (fr, fi)):
if bare_f:
bare_f = False
f[i: i + 1] = [fr, fi]
# real/imag handling -----------------------------
if any(isinstance(fi, (bool, BooleanAtom)) for fi in f):
if as_set:
return [], set()
return []
for i, fi in enumerate(f):
# Abs
while True:
was = fi
fi = fi.replace(Abs, lambda arg:
separatevars(Abs(arg)).rewrite(Piecewise) if arg.has(*symbols)
else Abs(arg))
if was == fi:
break
for e in fi.find(Abs):
if e.has(*symbols):
raise NotImplementedError('solving %s when the argument '
'is not real or imaginary.' % e)
# arg
fi = fi.replace(arg, lambda a: arg(a).rewrite(atan2).rewrite(atan))
# save changes
f[i] = fi
# see if re(s) or im(s) appear
freim = [fi for fi in f if fi.has(re, im)]
if freim:
irf = []
for s in symbols:
if s.is_real or s.is_imaginary:
continue # neither re(x) nor im(x) will appear
# if re(s) or im(s) appear, the auxiliary equation must be present
if any(fi.has(re(s), im(s)) for fi in freim):
irf.append((s, re(s) + S.ImaginaryUnit*im(s)))
if irf:
for s, rhs in irf:
f = [fi.xreplace({s: rhs}) for fi in f] + [s - rhs]
symbols.extend([re(s), im(s)])
if bare_f:
bare_f = False
flags['dict'] = True
# end of real/imag handling -----------------------------
# we can solve for non-symbol entities by replacing them with Dummy symbols
f, symbols, swap_sym = recast_to_symbols(f, symbols)
# this set of symbols (perhaps recast) is needed below
symset = set(symbols)
# get rid of equations that have no symbols of interest; we don't
# try to solve them because the user didn't ask and they might be
# hard to solve; this means that solutions may be given in terms
# of the eliminated equations e.g. solve((x-y, y-3), x) -> {x: y}
newf = []
for fi in f:
# let the solver handle equations that..
# - have no symbols but are expressions
# - have symbols of interest
# - have no symbols of interest but are constant
# but when an expression is not constant and has no symbols of
# interest, it can't change what we obtain for a solution from
# the remaining equations so we don't include it; and if it's
# zero it can be removed and if it's not zero, there is no
# solution for the equation set as a whole
#
# The reason for doing this filtering is to allow an answer
# to be obtained to queries like solve((x - y, y), x); without
# this mod the return value is []
ok = False
if fi.free_symbols & symset:
ok = True
else:
if fi.is_number:
if fi.is_Number:
if fi.is_zero:
continue
return []
ok = True
else:
if fi.is_constant():
ok = True
if ok:
newf.append(fi)
if not newf:
if as_set:
return symbols, set()
return []
f = newf
del newf
# mask off any Object that we aren't going to invert: Derivative,
# Integral, etc... so that solving for anything that they contain will
# give an implicit solution
seen = set()
non_inverts = set()
for fi in f:
pot = preorder_traversal(fi)
for p in pot:
if not isinstance(p, Expr) or isinstance(p, Piecewise):
pass
elif (isinstance(p, bool) or
not p.args or
p in symset or
p.is_Add or p.is_Mul or
p.is_Pow and not implicit or
p.is_Function and not implicit) and p.func not in (re, im):
continue
elif p not in seen:
seen.add(p)
if p.free_symbols & symset:
non_inverts.add(p)
else:
continue
pot.skip()
del seen
non_inverts = dict(list(zip(non_inverts, [Dummy() for _ in non_inverts])))
f = [fi.subs(non_inverts) for fi in f]
# Both xreplace and subs are needed below: xreplace to force substitution
# inside Derivative, subs to handle non-straightforward substitutions
non_inverts = [(v, k.xreplace(swap_sym).subs(swap_sym)) for k, v in non_inverts.items()]
# rationalize Floats
floats = False
if flags.get('rational', True) is not False:
for i, fi in enumerate(f):
if fi.has(Float):
floats = True
f[i] = nsimplify(fi, rational=True)
# capture any denominators before rewriting since
# they may disappear after the rewrite, e.g. issue 14779
flags['_denominators'] = _simple_dens(f[0], symbols)
# Any embedded piecewise functions need to be brought out to the
# top level so that the appropriate strategy gets selected.
# However, this is necessary only if one of the piecewise
# functions depends on one of the symbols we are solving for.
def _has_piecewise(e):
if e.is_Piecewise:
return e.has(*symbols)
return any(_has_piecewise(a) for a in e.args)
for i, fi in enumerate(f):
if _has_piecewise(fi):
f[i] = piecewise_fold(fi)
#
# try to get a solution
###########################################################################
if bare_f:
solution = None
if len(symbols) != 1:
solution = _solve_undetermined(f[0], symbols, flags)
if not solution:
solution = _solve(f[0], *symbols, **flags)
else:
linear, solution = _solve_system(f, symbols, **flags)
assert type(solution) is list
assert not solution or type(solution[0]) is dict, solution
#
# postprocessing
###########################################################################
# capture as_dict flag now (as_set already captured)
as_dict = flags.get('dict', False)
# define how solution will get unpacked
tuple_format = lambda s: [tuple([i.get(x, x) for x in symbols]) for i in s]
if as_dict or as_set:
unpack = None
elif bare_f:
if len(symbols) == 1:
unpack = lambda s: [i[symbols[0]] for i in s]
elif len(solution) == 1 and len(solution[0]) == len(symbols):
# undetermined linear coeffs solution
unpack = lambda s: s[0]
elif ordered_symbols:
unpack = tuple_format
else:
unpack = lambda s: s
else:
if solution:
if linear and len(solution) == 1:
# if you want the tuple solution for the linear
# case, use `set=True`
unpack = lambda s: s[0]
elif ordered_symbols:
unpack = tuple_format
else:
unpack = lambda s: s
else:
unpack = None
# Restore masked-off objects
if non_inverts and type(solution) is list:
solution = [{k: v.subs(non_inverts) for k, v in s.items()}
for s in solution]
# Restore original "symbols" if a dictionary is returned.
# This is not necessary for
# - the single univariate equation case
# since the symbol will have been removed from the solution;
# - the nonlinear poly_system since that only supports zero-dimensional
# systems and those results come back as a list
#
# ** unless there were Derivatives with the symbols, but those were handled
# above.
if swap_sym:
symbols = [swap_sym.get(k, k) for k in symbols]
for i, sol in enumerate(solution):
solution[i] = {swap_sym.get(k, k): v.subs(swap_sym)
for k, v in sol.items()}
# Get assumptions about symbols, to filter solutions.
# Note that if assumptions about a solution can't be verified, it is still
# returned.
check = flags.get('check', True)
# restore floats
if floats and solution and flags.get('rational', None) is None:
solution = nfloat(solution, exponent=False)
if check and solution: # assumption checking
warn = flags.get('warn', False)
got_None = [] # solutions for which one or more symbols gave None
no_False = [] # solutions for which no symbols gave False
for sol in solution:
a_None = False
for symb, val in sol.items():
test = check_assumptions(val, **symb.assumptions0)
if test:
continue
if test is False:
break
a_None = True
else:
no_False.append(sol)
if a_None:
got_None.append(sol)
solution = no_False
if warn and got_None:
warnings.warn(filldedent("""
\tWarning: assumptions concerning following solution(s)
cannot be checked:""" + '\n\t' +
', '.join(str(s) for s in got_None)))
#
# done
###########################################################################
if not solution:
if as_set:
return symbols, set()
return []
# make orderings canonical for list of dictionaries
if not as_set: # for set, no point in ordering
solution = [{k: s[k] for k in ordered(s)} for s in solution]
solution.sort(key=default_sort_key)
if not (as_set or as_dict):
return unpack(solution)
if as_dict:
return solution
# set output: (symbols, {t1, t2, ...}) from list of dictionaries;
# include all symbols for those that like a verbose solution
# and to resolve any differences in dictionary keys.
#
# The set results can easily be used to make a verbose dict as
# k, v = solve(eqs, syms, set=True)
# sol = [dict(zip(k,i)) for i in v]
#
if ordered_symbols:
k = symbols # keep preferred order
else:
# just unify the symbols for which solutions were found
k = list(ordered(set(flatten(tuple(i.keys()) for i in solution))))
return k, {tuple([s.get(ki, ki) for ki in k]) for s in solution}
def _solve_undetermined(g, symbols, flags):
"""solve helper to return a list with one dict (solution) else None
A direct call to solve_undetermined_coeffs is more flexible and
can return both multiple solutions and handle more than one independent
variable. Here, we have to be more cautious to keep from solving
something that does not look like an undetermined coeffs system --
to minimize the surprise factor since singularities that cancel are not
prohibited in solve_undetermined_coeffs.
"""
if g.free_symbols - set(symbols):
sol = solve_undetermined_coeffs(g, symbols, **dict(flags, dict=True, set=None))
if len(sol) == 1:
return sol
def _solve(f, *symbols, **flags):
"""Return a checked solution for *f* in terms of one or more of the
symbols in the form of a list of dictionaries.
If no method is implemented to solve the equation, a NotImplementedError
will be raised. In the case that conversion of an expression to a Poly
gives None a ValueError will be raised.
"""
not_impl_msg = "No algorithms are implemented to solve equation %s"
if len(symbols) != 1:
# look for solutions for desired symbols that are independent
# of symbols already solved for, e.g. if we solve for x = y
# then no symbol having x in its solution will be returned.
# First solve for linear symbols (since that is easier and limits
# solution size) and then proceed with symbols appearing
# in a non-linear fashion. Ideally, if one is solving a single
# expression for several symbols, they would have to be
# appear in factors of an expression, but we do not here
# attempt factorization. XXX perhaps handling a Mul
# should come first in this routine whether there is
# one or several symbols.
nonlin_s = []
got_s = set()
rhs_s = set()
result = []
for s in symbols:
xi, v = solve_linear(f, symbols=[s])
if xi == s:
# no need to check but we should simplify if desired
if flags.get('simplify', True):
v = simplify(v)
vfree = v.free_symbols
if vfree & got_s:
# was linear, but has redundant relationship
# e.g. x - y = 0 has y == x is redundant for x == y
# so ignore
continue
rhs_s |= vfree
got_s.add(xi)
result.append({xi: v})
elif xi: # there might be a non-linear solution if xi is not 0
nonlin_s.append(s)
if not nonlin_s:
return result
for s in nonlin_s:
try:
soln = _solve(f, s, **flags)
for sol in soln:
if sol[s].free_symbols & got_s:
# depends on previously solved symbols: ignore
continue
got_s.add(s)
result.append(sol)
except NotImplementedError:
continue
if got_s:
return result
else:
raise NotImplementedError(not_impl_msg % f)
# solve f for a single variable
symbol = symbols[0]
# expand binomials only if it has the unknown symbol
f = f.replace(lambda e: isinstance(e, binomial) and e.has(symbol),
lambda e: expand_func(e))
# checking will be done unless it is turned off before making a
# recursive call; the variables `checkdens` and `check` are
# captured here (for reference below) in case flag value changes
flags['check'] = checkdens = check = flags.pop('check', True)
# build up solutions if f is a Mul
if f.is_Mul:
result = set()
for m in f.args:
if m in {S.NegativeInfinity, S.ComplexInfinity, S.Infinity}:
result = set()
break
soln = _vsolve(m, symbol, **flags)
result.update(set(soln))
result = [{symbol: v} for v in result]
if check:
# all solutions have been checked but now we must
# check that the solutions do not set denominators
# in any factor to zero
dens = flags.get('_denominators', _simple_dens(f, symbols))
result = [s for s in result if
not any(checksol(den, s, **flags) for den in
dens)]
# set flags for quick exit at end; solutions for each
# factor were already checked and simplified
check = False
flags['simplify'] = False
elif f.is_Piecewise:
result = set()
for i, (expr, cond) in enumerate(f.args):
if expr.is_zero:
raise NotImplementedError(
'solve cannot represent interval solutions')
candidates = _vsolve(expr, symbol, **flags)
# the explicit condition for this expr is the current cond
# and none of the previous conditions
args = [~c for _, c in f.args[:i]] + [cond]
cond = And(*args)
for candidate in candidates:
if candidate in result:
# an unconditional value was already there
continue
try:
v = cond.subs(symbol, candidate)
_eval_simplify = getattr(v, '_eval_simplify', None)
if _eval_simplify is not None:
# unconditionally take the simpification of v
v = _eval_simplify(ratio=2, measure=lambda x: 1)
except TypeError:
# incompatible type with condition(s)
continue
if v == False:
continue
if v == True:
result.add(candidate)
else:
result.add(Piecewise(
(candidate, v),
(S.NaN, True)))
# solutions already checked and simplified
# ****************************************
return [{symbol: r} for r in result]
else:
# first see if it really depends on symbol and whether there
# is only a linear solution
f_num, sol = solve_linear(f, symbols=symbols)
if f_num.is_zero or sol is S.NaN:
return []
elif f_num.is_Symbol:
# no need to check but simplify if desired
if flags.get('simplify', True):
sol = simplify(sol)
return [{f_num: sol}]
poly = None
# check for a single Add generator
if not f_num.is_Add:
add_args = [i for i in f_num.atoms(Add)
if symbol in i.free_symbols]
if len(add_args) == 1:
gen = add_args[0]
spart = gen.as_independent(symbol)[1].as_base_exp()[0]
if spart == symbol:
try:
poly = Poly(f_num, spart)
except PolynomialError:
pass
result = False # no solution was obtained
msg = '' # there is no failure message
# Poly is generally robust enough to convert anything to
# a polynomial and tell us the different generators that it
# contains, so we will inspect the generators identified by
# polys to figure out what to do.
# try to identify a single generator that will allow us to solve this
# as a polynomial, followed (perhaps) by a change of variables if the
# generator is not a symbol
try:
if poly is None:
poly = Poly(f_num)
if poly is None:
raise ValueError('could not convert %s to Poly' % f_num)
except GeneratorsNeeded:
simplified_f = simplify(f_num)
if simplified_f != f_num:
return _solve(simplified_f, symbol, **flags)
raise ValueError('expression appears to be a constant')
gens = [g for g in poly.gens if g.has(symbol)]
def _as_base_q(x):
"""Return (b**e, q) for x = b**(p*e/q) where p/q is the leading
Rational of the exponent of x, e.g. exp(-2*x/3) -> (exp(x), 3)
"""
b, e = x.as_base_exp()
if e.is_Rational:
return b, e.q
if not e.is_Mul:
return x, 1
c, ee = e.as_coeff_Mul()
if c.is_Rational and c is not S.One: # c could be a Float
return b**ee, c.q
return x, 1
if len(gens) > 1:
# If there is more than one generator, it could be that the
# generators have the same base but different powers, e.g.
# >>> Poly(exp(x) + 1/exp(x))
# Poly(exp(-x) + exp(x), exp(-x), exp(x), domain='ZZ')
#
# If unrad was not disabled then there should be no rational
# exponents appearing as in
# >>> Poly(sqrt(x) + sqrt(sqrt(x)))
# Poly(sqrt(x) + x**(1/4), sqrt(x), x**(1/4), domain='ZZ')
bases, qs = list(zip(*[_as_base_q(g) for g in gens]))
bases = set(bases)
if len(bases) > 1 or not all(q == 1 for q in qs):
funcs = {b for b in bases if b.is_Function}
trig = {_ for _ in funcs if
isinstance(_, TrigonometricFunction)}
other = funcs - trig
if not other and len(funcs.intersection(trig)) > 1:
newf = None
if f_num.is_Add and len(f_num.args) == 2:
# check for sin(x)**p = cos(x)**p
_args = f_num.args
t = a, b = [i.atoms(Function).intersection(
trig) for i in _args]
if all(len(i) == 1 for i in t):
a, b = [i.pop() for i in t]
if isinstance(a, cos):
a, b = b, a
_args = _args[::-1]
if isinstance(a, sin) and isinstance(b, cos
) and a.args[0] == b.args[0]:
# sin(x) + cos(x) = 0 -> tan(x) + 1 = 0
newf, _d = (TR2i(_args[0]/_args[1]) + 1
).as_numer_denom()
if not _d.is_Number:
newf = None
if newf is None:
newf = TR1(f_num).rewrite(tan)
if newf != f_num:
# don't check the rewritten form --check
# solutions in the un-rewritten form below
flags['check'] = False
result = _solve(newf, symbol, **flags)
flags['check'] = check
# just a simple case - see if replacement of single function
# clears all symbol-dependent functions, e.g.
# log(x) - log(log(x) - 1) - 3 can be solved even though it has
# two generators.
if result is False and funcs:
funcs = list(ordered(funcs)) # put shallowest function first
f1 = funcs[0]
t = Dummy('t')
# perform the substitution
ftry = f_num.subs(f1, t)
# if no Functions left, we can proceed with usual solve
if not ftry.has(symbol):
cv_sols = _solve(ftry, t, **flags)
cv_inv = list(ordered(_vsolve(t - f1, symbol, **flags)))[0]
result = [{symbol: cv_inv.subs(sol)} for sol in cv_sols]
if result is False:
msg = 'multiple generators %s' % gens
else:
# e.g. case where gens are exp(x), exp(-x)
u = bases.pop()
t = Dummy('t')
inv = _vsolve(u - t, symbol, **flags)
if isinstance(u, (Pow, exp)):
# this will be resolved by factor in _tsolve but we might
# as well try a simple expansion here to get things in
# order so something like the following will work now without
# having to factor:
#
# >>> eq = (exp(I*(-x-2))+exp(I*(x+2)))
# >>> eq.subs(exp(x),y) # fails
# exp(I*(-x - 2)) + exp(I*(x + 2))
# >>> eq.expand().subs(exp(x),y) # works
# y**I*exp(2*I) + y**(-I)*exp(-2*I)
def _expand(p):
b, e = p.as_base_exp()
e = expand_mul(e)
return expand_power_exp(b**e)
ftry = f_num.replace(
lambda w: w.is_Pow or isinstance(w, exp),
_expand).subs(u, t)
if not ftry.has(symbol):
soln = _solve(ftry, t, **flags)
result = [{symbol: i.subs(s)} for i in inv for s in soln]
elif len(gens) == 1:
# There is only one generator that we are interested in, but
# there may have been more than one generator identified by
# polys (e.g. for symbols other than the one we are interested
# in) so recast the poly in terms of our generator of interest.
# Also use composite=True with f_num since Poly won't update
# poly as documented in issue 8810.
poly = Poly(f_num, gens[0], composite=True)
# if we aren't on the tsolve-pass, use roots
if not flags.pop('tsolve', False):
soln = None
deg = poly.degree()
flags['tsolve'] = True
hints = ('cubics', 'quartics', 'quintics')
solvers = {h: flags.get(h) for h in hints}
soln = roots(poly, **solvers)
if sum(soln.values()) < deg:
# e.g. roots(32*x**5 + 400*x**4 + 2032*x**3 +
# 5000*x**2 + 6250*x + 3189) -> {}
# so all_roots is used and RootOf instances are
# returned *unless* the system is multivariate
# or high-order EX domain.
try:
soln = poly.all_roots()
except NotImplementedError:
if not flags.get('incomplete', True):
raise NotImplementedError(
filldedent('''
Neither high-order multivariate polynomials
nor sorting of EX-domain polynomials is supported.
If you want to see any results, pass keyword incomplete=True to
solve; to see numerical values of roots
for univariate expressions, use nroots.
'''))
else:
pass
else:
soln = list(soln.keys())
if soln is not None:
u = poly.gen
if u != symbol:
try:
t = Dummy('t')
inv = _vsolve(u - t, symbol, **flags)
soln = {i.subs(t, s) for i in inv for s in soln}
except NotImplementedError:
# perhaps _tsolve can handle f_num
soln = None
else:
check = False # only dens need to be checked
if soln is not None:
if len(soln) > 2:
# if the flag wasn't set then unset it since high-order
# results are quite long. Perhaps one could base this
# decision on a certain critical length of the
# roots. In addition, wester test M2 has an expression
# whose roots can be shown to be real with the
# unsimplified form of the solution whereas only one of
# the simplified forms appears to be real.
flags['simplify'] = flags.get('simplify', False)
if soln is not None:
result = [{symbol: v} for v in soln]
# fallback if above fails
# -----------------------
if result is False:
# try unrad
if flags.pop('_unrad', True):
try:
u = unrad(f_num, symbol)
except (ValueError, NotImplementedError):
u = False
if u:
eq, cov = u
if cov:
isym, ieq = cov
inv = _vsolve(ieq, symbol, **flags)[0]
rv = {inv.subs(xi) for xi in _solve(eq, isym, **flags)}
else:
try:
rv = set(_vsolve(eq, symbol, **flags))
except NotImplementedError:
rv = None
if rv is not None:
result = [{symbol: v} for v in rv]
# if the flag wasn't set then unset it since unrad results
# can be quite long or of very high order
flags['simplify'] = flags.get('simplify', False)
else:
pass # for coverage
# try _tsolve
if result is False:
flags.pop('tsolve', None) # allow tsolve to be used on next pass
try:
soln = _tsolve(f_num, symbol, **flags)
if soln is not None:
result = [{symbol: v} for v in soln]
except PolynomialError:
pass
# ----------- end of fallback ----------------------------
if result is False:
raise NotImplementedError('\n'.join([msg, not_impl_msg % f]))
if flags.get('simplify', True):
result = [{k: d[k].simplify() for k in d} for d in result]
# we just simplified the solution so we now set the flag to
# False so the simplification doesn't happen again in checksol()
flags['simplify'] = False
if checkdens:
# reject any result that makes any denom. affirmatively 0;
# if in doubt, keep it
dens = _simple_dens(f, symbols)
result = [r for r in result if
not any(checksol(d, r, **flags)
for d in dens)]
if check:
# keep only results if the check is not False
result = [r for r in result if
checksol(f_num, r, **flags) is not False]
return result
def _solve_system(exprs, symbols, **flags):
"""return ``(linear, solution)`` where ``linear`` is True
if the system was linear, else False; ``solution``
is a list of dictionaries giving solutions for the symbols
"""
if not exprs:
return False, []
if flags.pop('_split', True):
# Split the system into connected components
V = exprs
symsset = set(symbols)
exprsyms = {e: e.free_symbols & symsset for e in exprs}
E = []
sym_indices = {sym: i for i, sym in enumerate(symbols)}
for n, e1 in enumerate(exprs):
for e2 in exprs[:n]:
# Equations are connected if they share a symbol
if exprsyms[e1] & exprsyms[e2]:
E.append((e1, e2))
G = V, E
subexprs = connected_components(G)
if len(subexprs) > 1:
subsols = []
linear = True
for subexpr in subexprs:
subsyms = set()
for e in subexpr:
subsyms |= exprsyms[e]
subsyms = list(sorted(subsyms, key = lambda x: sym_indices[x]))
flags['_split'] = False # skip split step
_linear, subsol = _solve_system(subexpr, subsyms, **flags)
if linear:
linear = linear and _linear
if not isinstance(subsol, list):
subsol = [subsol]
subsols.append(subsol)
# Full solution is cartesion product of subsystems
sols = []
for soldicts in product(*subsols):
sols.append(dict(item for sd in soldicts
for item in sd.items()))
return linear, sols
polys = []
dens = set()
failed = []
result = []
solved_syms = []
linear = True
manual = flags.get('manual', False)
checkdens = check = flags.get('check', True)
for j, g in enumerate(exprs):
dens.update(_simple_dens(g, symbols))
i, d = _invert(g, *symbols)
if d in symbols:
if linear:
linear = solve_linear(g, 0, [d])[0] == d
g = d - i
g = g.as_numer_denom()[0]
if manual:
failed.append(g)
continue
poly = g.as_poly(*symbols, extension=True)
if poly is not None:
polys.append(poly)
else:
failed.append(g)
if polys:
if all(p.is_linear for p in polys):
n, m = len(polys), len(symbols)
matrix = zeros(n, m + 1)
for i, poly in enumerate(polys):
for monom, coeff in poly.terms():
try:
j = monom.index(1)
matrix[i, j] = coeff
except ValueError:
matrix[i, m] = -coeff
# returns a dictionary ({symbols: values}) or None
if flags.pop('particular', False):
result = minsolve_linear_system(matrix, *symbols, **flags)
else:
result = solve_linear_system(matrix, *symbols, **flags)
result = [result] if result else []
if failed:
if result:
solved_syms = list(result[0].keys()) # there is only one result dict
else:
solved_syms = []
# linear doesn't change
else:
linear = False
if len(symbols) > len(polys):
free = set().union(*[p.free_symbols for p in polys])
free = list(ordered(free.intersection(symbols)))
got_s = set()
result = []
for syms in subsets(free, len(polys)):
try:
# returns [], None or list of tuples
res = solve_poly_system(polys, *syms)
if res:
for r in set(res):
skip = False
for r1 in r:
if got_s and any(ss in r1.free_symbols
for ss in got_s):
# sol depends on previously
# solved symbols: discard it
skip = True
if not skip:
got_s.update(syms)
result.append(dict(list(zip(syms, r))))
except NotImplementedError:
pass
if got_s:
solved_syms = list(got_s)
else:
raise NotImplementedError('no valid subset found')
else:
try:
result = solve_poly_system(polys, *symbols)
if result:
solved_syms = symbols
result = [dict(list(zip(solved_syms, r))) for r in set(result)]
except NotImplementedError:
failed.extend([g.as_expr() for g in polys])
solved_syms = []
# convert None or [] to [{}]
result = result or [{}]
if failed:
linear = False
# For each failed equation, see if we can solve for one of the
# remaining symbols from that equation. If so, we update the
# solution set and continue with the next failed equation,
# repeating until we are done or we get an equation that can't
# be solved.
def _ok_syms(e, sort=False):
rv = e.free_symbols & legal
# Solve first for symbols that have lower degree in the equation.
# Ideally we want to solve firstly for symbols that appear linearly
# with rational coefficients e.g. if e = x*y + z then we should
# solve for z first.
def key(sym):
ep = e.as_poly(sym)
if ep is None:
complexity = (S.Infinity, S.Infinity, S.Infinity)
else:
coeff_syms = ep.LC().free_symbols
complexity = (ep.degree(), len(coeff_syms & rv), len(coeff_syms))
return complexity + (default_sort_key(sym),)
if sort:
rv = sorted(rv, key=key)
return rv
legal = set(symbols) # what we are interested in
# sort so equation with the fewest potential symbols is first
u = Dummy() # used in solution checking
for eq in ordered(failed, lambda _: len(_ok_syms(_))):
newresult = []
bad_results = []
hit = False
for r in result:
got_s = set()
# update eq with everything that is known so far
eq2 = eq.subs(r)
# if check is True then we see if it satisfies this
# equation, otherwise we just accept it
if check and r:
b = checksol(u, u, eq2, minimal=True)
if b is not None:
# this solution is sufficient to know whether
# it is valid or not so we either accept or
# reject it, then continue
if b:
newresult.append(r)
else:
bad_results.append(r)
continue
# search for a symbol amongst those available that
# can be solved for
ok_syms = _ok_syms(eq2, sort=True)
if not ok_syms:
if r:
newresult.append(r)
break # skip as it's independent of desired symbols
for s in ok_syms:
try:
soln = _vsolve(eq2, s, **flags)
except NotImplementedError:
continue
# put each solution in r and append the now-expanded
# result in the new result list; use copy since the
# solution for s is being added in-place
for sol in soln:
if got_s and any(ss in sol.free_symbols for ss in got_s):
# sol depends on previously solved symbols: discard it
continue
rnew = r.copy()
for k, v in r.items():
rnew[k] = v.subs(s, sol)
# and add this new solution
rnew[s] = sol
# check that it is independent of previous solutions
iset = set(rnew.items())
for i in newresult:
if len(i) < len(iset) and not set(i.items()) - iset:
# this is a superset of a known solution that
# is smaller
break
else:
# keep it
newresult.append(rnew)
hit = True
got_s.add(s)
if not hit:
raise NotImplementedError('could not solve %s' % eq2)
else:
result = newresult
for b in bad_results:
if b in result:
result.remove(b)
if not result:
return False, []
# rely on linear/polynomial system solvers to simplify
# XXX the following tests show that the expressions
# returned are not the same as they would be if simplify
# were applied to this:
# sympy/solvers/ode/tests/test_systems/test__classify_linear_system
# sympy/solvers/tests/test_solvers/test_issue_4886
# so the docs should be updated to reflect that or else
# the following should be `bool(failed) or not linear`
default_simplify = bool(failed)
if flags.get('simplify', default_simplify):
for r in result:
for k in r:
r[k] = simplify(r[k])
flags['simplify'] = False # don't need to do so in checksol now
if checkdens:
result = [r for r in result
if not any(checksol(d, r, **flags) for d in dens)]
if check and not linear:
result = [r for r in result
if not any(checksol(e, r, **flags) is False for e in exprs)]
result = [r for r in result if r]
return linear, result
def solve_linear(lhs, rhs=0, symbols=[], exclude=[]):
r"""
Return a tuple derived from ``f = lhs - rhs`` that is one of
the following: ``(0, 1)``, ``(0, 0)``, ``(symbol, solution)``, ``(n, d)``.
Explanation
===========
``(0, 1)`` meaning that ``f`` is independent of the symbols in *symbols*
that are not in *exclude*.
``(0, 0)`` meaning that there is no solution to the equation amongst the
symbols given. If the first element of the tuple is not zero, then the
function is guaranteed to be dependent on a symbol in *symbols*.
``(symbol, solution)`` where symbol appears linearly in the numerator of
``f``, is in *symbols* (if given), and is not in *exclude* (if given). No
simplification is done to ``f`` other than a ``mul=True`` expansion, so the
solution will correspond strictly to a unique solution.
``(n, d)`` where ``n`` and ``d`` are the numerator and denominator of ``f``
when the numerator was not linear in any symbol of interest; ``n`` will
never be a symbol unless a solution for that symbol was found (in which case
the second element is the solution, not the denominator).
Examples
========
>>> from sympy import cancel, Pow
``f`` is independent of the symbols in *symbols* that are not in
*exclude*:
>>> from sympy import cos, sin, solve_linear
>>> from sympy.abc import x, y, z
>>> eq = y*cos(x)**2 + y*sin(x)**2 - y # = y*(1 - 1) = 0
>>> solve_linear(eq)
(0, 1)
>>> eq = cos(x)**2 + sin(x)**2 # = 1
>>> solve_linear(eq)
(0, 1)
>>> solve_linear(x, exclude=[x])
(0, 1)
The variable ``x`` appears as a linear variable in each of the
following:
>>> solve_linear(x + y**2)
(x, -y**2)
>>> solve_linear(1/x - y**2)
(x, y**(-2))
When not linear in ``x`` or ``y`` then the numerator and denominator are
returned:
>>> solve_linear(x**2/y**2 - 3)
(x**2 - 3*y**2, y**2)
If the numerator of the expression is a symbol, then ``(0, 0)`` is
returned if the solution for that symbol would have set any
denominator to 0:
>>> eq = 1/(1/x - 2)
>>> eq.as_numer_denom()
(x, 1 - 2*x)
>>> solve_linear(eq)
(0, 0)
But automatic rewriting may cause a symbol in the denominator to
appear in the numerator so a solution will be returned:
>>> (1/x)**-1
x
>>> solve_linear((1/x)**-1)
(x, 0)
Use an unevaluated expression to avoid this:
>>> solve_linear(Pow(1/x, -1, evaluate=False))
(0, 0)
If ``x`` is allowed to cancel in the following expression, then it
appears to be linear in ``x``, but this sort of cancellation is not
done by ``solve_linear`` so the solution will always satisfy the
original expression without causing a division by zero error.
>>> eq = x**2*(1/x - z**2/x)
>>> solve_linear(cancel(eq))
(x, 0)
>>> solve_linear(eq)
(x**2*(1 - z**2), x)
A list of symbols for which a solution is desired may be given:
>>> solve_linear(x + y + z, symbols=[y])
(y, -x - z)
A list of symbols to ignore may also be given:
>>> solve_linear(x + y + z, exclude=[x])
(y, -x - z)
(A solution for ``y`` is obtained because it is the first variable
from the canonically sorted list of symbols that had a linear
solution.)
"""
if isinstance(lhs, Eq):
if rhs:
raise ValueError(filldedent('''
If lhs is an Equality, rhs must be 0 but was %s''' % rhs))
rhs = lhs.rhs
lhs = lhs.lhs
dens = None
eq = lhs - rhs
n, d = eq.as_numer_denom()
if not n:
return S.Zero, S.One
free = n.free_symbols
if not symbols:
symbols = free
else:
bad = [s for s in symbols if not s.is_Symbol]
if bad:
if len(bad) == 1:
bad = bad[0]
if len(symbols) == 1:
eg = 'solve(%s, %s)' % (eq, symbols[0])
else:
eg = 'solve(%s, *%s)' % (eq, list(symbols))
raise ValueError(filldedent('''
solve_linear only handles symbols, not %s. To isolate
non-symbols use solve, e.g. >>> %s <<<.
''' % (bad, eg)))
symbols = free.intersection(symbols)
symbols = symbols.difference(exclude)
if not symbols:
return S.Zero, S.One
# derivatives are easy to do but tricky to analyze to see if they
# are going to disallow a linear solution, so for simplicity we
# just evaluate the ones that have the symbols of interest
derivs = defaultdict(list)
for der in n.atoms(Derivative):
csym = der.free_symbols & symbols
for c in csym:
derivs[c].append(der)
all_zero = True
for xi in sorted(symbols, key=default_sort_key): # canonical order
# if there are derivatives in this var, calculate them now
if isinstance(derivs[xi], list):
derivs[xi] = {der: der.doit() for der in derivs[xi]}
newn = n.subs(derivs[xi])
dnewn_dxi = newn.diff(xi)
# dnewn_dxi can be nonzero if it survives differentation by any
# of its free symbols
free = dnewn_dxi.free_symbols
if dnewn_dxi and (not free or any(dnewn_dxi.diff(s) for s in free) or free == symbols):
all_zero = False
if dnewn_dxi is S.NaN:
break
if xi not in dnewn_dxi.free_symbols:
vi = -1/dnewn_dxi*(newn.subs(xi, 0))
if dens is None:
dens = _simple_dens(eq, symbols)
if not any(checksol(di, {xi: vi}, minimal=True) is True
for di in dens):
# simplify any trivial integral
irep = [(i, i.doit()) for i in vi.atoms(Integral) if
i.function.is_number]
# do a slight bit of simplification
vi = expand_mul(vi.subs(irep))
return xi, vi
if all_zero:
return S.Zero, S.One
if n.is_Symbol: # no solution for this symbol was found
return S.Zero, S.Zero
return n, d
def minsolve_linear_system(system, *symbols, **flags):
r"""
Find a particular solution to a linear system.
Explanation
===========
In particular, try to find a solution with the minimal possible number
of non-zero variables using a naive algorithm with exponential complexity.
If ``quick=True``, a heuristic is used.
"""
quick = flags.get('quick', False)
# Check if there are any non-zero solutions at all
s0 = solve_linear_system(system, *symbols, **flags)
if not s0 or all(v == 0 for v in s0.values()):
return s0
if quick:
# We just solve the system and try to heuristically find a nice
# solution.
s = solve_linear_system(system, *symbols)
def update(determined, solution):
delete = []
for k, v in solution.items():
solution[k] = v.subs(determined)
if not solution[k].free_symbols:
delete.append(k)
determined[k] = solution[k]
for k in delete:
del solution[k]
determined = {}
update(determined, s)
while s:
# NOTE sort by default_sort_key to get deterministic result
k = max((k for k in s.values()),
key=lambda x: (len(x.free_symbols), default_sort_key(x)))
kfree = k.free_symbols
x = next(reversed(list(ordered(kfree))))
if len(kfree) != 1:
determined[x] = S.Zero
else:
val = _vsolve(k, x, check=False)[0]
if not val and not any(v.subs(x, val) for v in s.values()):
determined[x] = S.One
else:
determined[x] = val
update(determined, s)
return determined
else:
# We try to select n variables which we want to be non-zero.
# All others will be assumed zero. We try to solve the modified system.
# If there is a non-trivial solution, just set the free variables to
# one. If we do this for increasing n, trying all combinations of
# variables, we will find an optimal solution.
# We speed up slightly by starting at one less than the number of
# variables the quick method manages.
N = len(symbols)
bestsol = minsolve_linear_system(system, *symbols, quick=True)
n0 = len([x for x in bestsol.values() if x != 0])
for n in range(n0 - 1, 1, -1):
debug('minsolve: %s' % n)
thissol = None
for nonzeros in combinations(range(N), n):
subm = Matrix([system.col(i).T for i in nonzeros] + [system.col(-1).T]).T
s = solve_linear_system(subm, *[symbols[i] for i in nonzeros])
if s and not all(v == 0 for v in s.values()):
subs = [(symbols[v], S.One) for v in nonzeros]
for k, v in s.items():
s[k] = v.subs(subs)
for sym in symbols:
if sym not in s:
if symbols.index(sym) in nonzeros:
s[sym] = S.One
else:
s[sym] = S.Zero
thissol = s
break
if thissol is None:
break
bestsol = thissol
return bestsol
def solve_linear_system(system, *symbols, **flags):
r"""
Solve system of $N$ linear equations with $M$ variables, which means
both under- and overdetermined systems are supported.
Explanation
===========
The possible number of solutions is zero, one, or infinite. Respectively,
this procedure will return None or a dictionary with solutions. In the
case of underdetermined systems, all arbitrary parameters are skipped.
This may cause a situation in which an empty dictionary is returned.
In that case, all symbols can be assigned arbitrary values.
Input to this function is a $N\times M + 1$ matrix, which means it has
to be in augmented form. If you prefer to enter $N$ equations and $M$
unknowns then use ``solve(Neqs, *Msymbols)`` instead. Note: a local
copy of the matrix is made by this routine so the matrix that is
passed will not be modified.
The algorithm used here is fraction-free Gaussian elimination,
which results, after elimination, in an upper-triangular matrix.
Then solutions are found using back-substitution. This approach
is more efficient and compact than the Gauss-Jordan method.
Examples
========
>>> from sympy import Matrix, solve_linear_system
>>> from sympy.abc import x, y
Solve the following system::
x + 4 y == 2
-2 x + y == 14
>>> system = Matrix(( (1, 4, 2), (-2, 1, 14)))
>>> solve_linear_system(system, x, y)
{x: -6, y: 2}
A degenerate system returns an empty dictionary:
>>> system = Matrix(( (0,0,0), (0,0,0) ))
>>> solve_linear_system(system, x, y)
{}
"""
assert system.shape[1] == len(symbols) + 1
# This is just a wrapper for solve_lin_sys
eqs = list(system * Matrix(symbols + (-1,)))
eqs, ring = sympy_eqs_to_ring(eqs, symbols)
sol = solve_lin_sys(eqs, ring, _raw=False)
if sol is not None:
sol = {sym:val for sym, val in sol.items() if sym != val}
return sol
def solve_undetermined_coeffs(equ, coeffs, *syms, **flags):
r"""
Solve a system of equations in $k$ parameters that is formed by
matching coefficients in variables ``coeffs`` that are on
factors dependent on the remaining variables (or those given
explicitly by ``syms``.
Explanation
===========
The result of this function is a dictionary with symbolic values of those
parameters with respect to coefficients in $q$ -- empty if there
is no solution or coefficients do not appear in the equation -- else
None (if the system was not recognized). If there is more than one
solution, the solutions are passed as a list. The output can be modified using
the same semantics as for `solve` since the flags that are passed are sent
directly to `solve` so, for example the flag ``dict=True`` will always return a list
of solutions as dictionaries.
This function accepts both Equality and Expr class instances.
The solving process is most efficient when symbols are specified
in addition to parameters to be determined, but an attempt to
determine them (if absent) will be made. If an expected solution is not
obtained (and symbols were not specified) try specifying them.
Examples
========
>>> from sympy import Eq, solve_undetermined_coeffs
>>> from sympy.abc import a, b, c, h, p, k, x, y
>>> solve_undetermined_coeffs(Eq(a*x + a + b, x/2), [a, b], x)
{a: 1/2, b: -1/2}
>>> solve_undetermined_coeffs(a - 2, [a])
{a: 2}
The equation can be nonlinear in the symbols:
>>> X, Y, Z = y, x**y, y*x**y
>>> eq = a*X + b*Y + c*Z - X - 2*Y - 3*Z
>>> coeffs = a, b, c
>>> syms = x, y
>>> solve_undetermined_coeffs(eq, coeffs, syms)
{a: 1, b: 2, c: 3}
And the system can be nonlinear in coefficients, too, but if
there is only a single solution, it will be returned as a
dictionary:
>>> eq = a*x**2 + b*x + c - ((x - h)**2 + 4*p*k)/4/p
>>> solve_undetermined_coeffs(eq, (h, p, k), x)
{h: -b/(2*a), k: (4*a*c - b**2)/(4*a), p: 1/(4*a)}
Multiple solutions are always returned in a list:
>>> solve_undetermined_coeffs(a**2*x + b - x, [a, b], x)
[{a: -1, b: 0}, {a: 1, b: 0}]
Using flag ``dict=True`` (in keeping with semantics in :func:`~.solve`)
will force the result to always be a list with any solutions
as elements in that list.
>>> solve_undetermined_coeffs(a*x - 2*x, [a], dict=True)
[{a: 2}]
"""
if not (coeffs and all(i.is_Symbol for i in coeffs)):
raise ValueError('must provide symbols for coeffs')
if isinstance(equ, Eq):
eq = equ.lhs - equ.rhs
else:
eq = equ
ceq = cancel(eq)
xeq = _mexpand(ceq.as_numer_denom()[0], recursive=True)
free = xeq.free_symbols
coeffs = free & set(coeffs)
if not coeffs:
return ([], {}) if flags.get('set', None) else [] # solve(0, x) -> []
if not syms:
# e.g. A*exp(x) + B - (exp(x) + y) separated into parts that
# don't/do depend on coeffs gives
# -(exp(x) + y), A*exp(x) + B
# then see what symbols are common to both
# {x} = {x, A, B} - {x, y}
ind, dep = xeq.as_independent(*coeffs, as_Add=True)
dfree = dep.free_symbols
syms = dfree & ind.free_symbols
if not syms:
# but if the system looks like (a + b)*x + b - c
# then {} = {a, b, x} - c
# so calculate {x} = {a, b, x} - {a, b}
syms = dfree - set(coeffs)
if not syms:
syms = [Dummy()]
else:
if len(syms) == 1 and iterable(syms[0]):
syms = syms[0]
e, s, _ = recast_to_symbols([xeq], syms)
xeq = e[0]
syms = s
# find the functional forms in which symbols appear
gens = set(xeq.as_coefficients_dict(*syms).keys()) - {1}
cset = set(coeffs)
if any(g.has_xfree(cset) for g in gens):
return # a generator contained a coefficient symbol
# make sure we are working with symbols for generators
e, gens, _ = recast_to_symbols([xeq], list(gens))
xeq = e[0]
# collect coefficients in front of generators
system = list(collect(xeq, gens, evaluate=False).values())
# get a solution
soln = solve(system, coeffs, **flags)
# unpack unless told otherwise if length is 1
settings = flags.get('dict', None) or flags.get('set', None)
if type(soln) is dict or settings or len(soln) != 1:
return soln
return soln[0]
def solve_linear_system_LU(matrix, syms):
"""
Solves the augmented matrix system using ``LUsolve`` and returns a
dictionary in which solutions are keyed to the symbols of *syms* as ordered.
Explanation
===========
The matrix must be invertible.
Examples
========
>>> from sympy import Matrix, solve_linear_system_LU
>>> from sympy.abc import x, y, z
>>> solve_linear_system_LU(Matrix([
... [1, 2, 0, 1],
... [3, 2, 2, 1],
... [2, 0, 0, 1]]), [x, y, z])
{x: 1/2, y: 1/4, z: -1/2}
See Also
========
LUsolve
"""
if matrix.rows != matrix.cols - 1:
raise ValueError("Rows should be equal to columns - 1")
A = matrix[:matrix.rows, :matrix.rows]
b = matrix[:, matrix.cols - 1:]
soln = A.LUsolve(b)
solutions = {}
for i in range(soln.rows):
solutions[syms[i]] = soln[i, 0]
return solutions
def det_perm(M):
"""
Return the determinant of *M* by using permutations to select factors.
Explanation
===========
For sizes larger than 8 the number of permutations becomes prohibitively
large, or if there are no symbols in the matrix, it is better to use the
standard determinant routines (e.g., ``M.det()``.)
See Also
========
det_minor
det_quick
"""
args = []
s = True
n = M.rows
list_ = M.flat()
for perm in generate_bell(n):
fac = []
idx = 0
for j in perm:
fac.append(list_[idx + j])
idx += n
term = Mul(*fac) # disaster with unevaluated Mul -- takes forever for n=7
args.append(term if s else -term)
s = not s
return Add(*args)
def det_minor(M):
"""
Return the ``det(M)`` computed from minors without
introducing new nesting in products.
See Also
========
det_perm
det_quick
"""
n = M.rows
if n == 2:
return M[0, 0]*M[1, 1] - M[1, 0]*M[0, 1]
else:
return sum([(1, -1)[i % 2]*Add(*[M[0, i]*d for d in
Add.make_args(det_minor(M.minor_submatrix(0, i)))])
if M[0, i] else S.Zero for i in range(n)])
def det_quick(M, method=None):
"""
Return ``det(M)`` assuming that either
there are lots of zeros or the size of the matrix
is small. If this assumption is not met, then the normal
Matrix.det function will be used with method = ``method``.
See Also
========
det_minor
det_perm
"""
if any(i.has(Symbol) for i in M):
if M.rows < 8 and all(i.has(Symbol) for i in M):
return det_perm(M)
return det_minor(M)
else:
return M.det(method=method) if method else M.det()
def inv_quick(M):
"""Return the inverse of ``M``, assuming that either
there are lots of zeros or the size of the matrix
is small.
"""
if not all(i.is_Number for i in M):
if not any(i.is_Number for i in M):
det = lambda _: det_perm(_)
else:
det = lambda _: det_minor(_)
else:
return M.inv()
n = M.rows
d = det(M)
if d == S.Zero:
raise NonInvertibleMatrixError("Matrix det == 0; not invertible")
ret = zeros(n)
s1 = -1
for i in range(n):
s = s1 = -s1
for j in range(n):
di = det(M.minor_submatrix(i, j))
ret[j, i] = s*di/d
s = -s
return ret
# these are functions that have multiple inverse values per period
multi_inverses = {
sin: lambda x: (asin(x), S.Pi - asin(x)),
cos: lambda x: (acos(x), 2*S.Pi - acos(x)),
}
def _vsolve(e, s, **flags):
"""return list of scalar values for the solution of e for symbol s"""
return [i[s] for i in _solve(e, s, **flags)]
def _tsolve(eq, sym, **flags):
"""
Helper for ``_solve`` that solves a transcendental equation with respect
to the given symbol. Various equations containing powers and logarithms,
can be solved.
There is currently no guarantee that all solutions will be returned or
that a real solution will be favored over a complex one.
Either a list of potential solutions will be returned or None will be
returned (in the case that no method was known to get a solution
for the equation). All other errors (like the inability to cast an
expression as a Poly) are unhandled.
Examples
========
>>> from sympy import log, ordered
>>> from sympy.solvers.solvers import _tsolve as tsolve
>>> from sympy.abc import x
>>> list(ordered(tsolve(3**(2*x + 5) - 4, x)))
[-5/2 + log(2)/log(3), (-5*log(3)/2 + log(2) + I*pi)/log(3)]
>>> tsolve(log(x) + 2*x, x)
[LambertW(2)/2]
"""
if 'tsolve_saw' not in flags:
flags['tsolve_saw'] = []
if eq in flags['tsolve_saw']:
return None
else:
flags['tsolve_saw'].append(eq)
rhs, lhs = _invert(eq, sym)
if lhs == sym:
return [rhs]
try:
if lhs.is_Add:
# it's time to try factoring; powdenest is used
# to try get powers in standard form for better factoring
f = factor(powdenest(lhs - rhs))
if f.is_Mul:
return _vsolve(f, sym, **flags)
if rhs:
f = logcombine(lhs, force=flags.get('force', True))
if f.count(log) != lhs.count(log):
if isinstance(f, log):
return _vsolve(f.args[0] - exp(rhs), sym, **flags)
return _tsolve(f - rhs, sym, **flags)
elif lhs.is_Pow:
if lhs.exp.is_Integer:
if lhs - rhs != eq:
return _vsolve(lhs - rhs, sym, **flags)
if sym not in lhs.exp.free_symbols:
return _vsolve(lhs.base - rhs**(1/lhs.exp), sym, **flags)
# _tsolve calls this with Dummy before passing the actual number in.
if any(t.is_Dummy for t in rhs.free_symbols):
raise NotImplementedError # _tsolve will call here again...
# a ** g(x) == 0
if not rhs:
# f(x)**g(x) only has solutions where f(x) == 0 and g(x) != 0 at
# the same place
sol_base = _vsolve(lhs.base, sym, **flags)
return [s for s in sol_base if lhs.exp.subs(sym, s) != 0] # XXX use checksol here?
# a ** g(x) == b
if not lhs.base.has(sym):
if lhs.base == 0:
return _vsolve(lhs.exp, sym, **flags) if rhs != 0 else []
# Gets most solutions...
if lhs.base == rhs.as_base_exp()[0]:
# handles case when bases are equal
sol = _vsolve(lhs.exp - rhs.as_base_exp()[1], sym, **flags)
else:
# handles cases when bases are not equal and exp
# may or may not be equal
f = exp(log(lhs.base)*lhs.exp) - exp(log(rhs))
sol = _vsolve(f, sym, **flags)
# Check for duplicate solutions
def equal(expr1, expr2):
_ = Dummy()
eq = checksol(expr1 - _, _, expr2)
if eq is None:
if nsimplify(expr1) != nsimplify(expr2):
return False
# they might be coincidentally the same
# so check more rigorously
eq = expr1.equals(expr2) # XXX expensive but necessary?
return eq
# Guess a rational exponent
e_rat = nsimplify(log(abs(rhs))/log(abs(lhs.base)))
e_rat = simplify(posify(e_rat)[0])
n, d = fraction(e_rat)
if expand(lhs.base**n - rhs**d) == 0:
sol = [s for s in sol if not equal(lhs.exp.subs(sym, s), e_rat)]
sol.extend(_vsolve(lhs.exp - e_rat, sym, **flags))
return list(set(sol))
# f(x) ** g(x) == c
else:
sol = []
logform = lhs.exp*log(lhs.base) - log(rhs)
if logform != lhs - rhs:
try:
sol.extend(_vsolve(logform, sym, **flags))
except NotImplementedError:
pass
# Collect possible solutions and check with substitution later.
check = []
if rhs == 1:
# f(x) ** g(x) = 1 -- g(x)=0 or f(x)=+-1
check.extend(_vsolve(lhs.exp, sym, **flags))
check.extend(_vsolve(lhs.base - 1, sym, **flags))
check.extend(_vsolve(lhs.base + 1, sym, **flags))
elif rhs.is_Rational:
for d in (i for i in divisors(abs(rhs.p)) if i != 1):
e, t = integer_log(rhs.p, d)
if not t:
continue # rhs.p != d**b
for s in divisors(abs(rhs.q)):
if s**e== rhs.q:
r = Rational(d, s)
check.extend(_vsolve(lhs.base - r, sym, **flags))
check.extend(_vsolve(lhs.base + r, sym, **flags))
check.extend(_vsolve(lhs.exp - e, sym, **flags))
elif rhs.is_irrational:
b_l, e_l = lhs.base.as_base_exp()
n, d = (e_l*lhs.exp).as_numer_denom()
b, e = sqrtdenest(rhs).as_base_exp()
check = [sqrtdenest(i) for i in (_vsolve(lhs.base - b, sym, **flags))]
check.extend([sqrtdenest(i) for i in (_vsolve(lhs.exp - e, sym, **flags))])
if e_l*d != 1:
check.extend(_vsolve(b_l**n - rhs**(e_l*d), sym, **flags))
for s in check:
ok = checksol(eq, sym, s)
if ok is None:
ok = eq.subs(sym, s).equals(0)
if ok:
sol.append(s)
return list(set(sol))
elif lhs.is_Function and len(lhs.args) == 1:
if lhs.func in multi_inverses:
# sin(x) = 1/3 -> x - asin(1/3) & x - (pi - asin(1/3))
soln = []
for i in multi_inverses[type(lhs)](rhs):
soln.extend(_vsolve(lhs.args[0] - i, sym, **flags))
return list(set(soln))
elif lhs.func == LambertW:
return _vsolve(lhs.args[0] - rhs*exp(rhs), sym, **flags)
rewrite = lhs.rewrite(exp)
if rewrite != lhs:
return _vsolve(rewrite - rhs, sym, **flags)
except NotImplementedError:
pass
# maybe it is a lambert pattern
if flags.pop('bivariate', True):
# lambert forms may need some help being recognized, e.g. changing
# 2**(3*x) + x**3*log(2)**3 + 3*x**2*log(2)**2 + 3*x*log(2) + 1
# to 2**(3*x) + (x*log(2) + 1)**3
# make generator in log have exponent of 1
logs = eq.atoms(log)
spow = min(
{i.exp for j in logs for i in j.atoms(Pow)
if i.base == sym} or {1})
if spow != 1:
p = sym**spow
u = Dummy('bivariate-cov')
ueq = eq.subs(p, u)
if not ueq.has_free(sym):
sol = _vsolve(ueq, u, **flags)
inv = _vsolve(p - u, sym)
return [i.subs(u, s) for i in inv for s in sol]
g = _filtered_gens(eq.as_poly(), sym)
up_or_log = set()
for gi in g:
if isinstance(gi, (exp, log)) or (gi.is_Pow and gi.base == S.Exp1):
up_or_log.add(gi)
elif gi.is_Pow:
gisimp = powdenest(expand_power_exp(gi))
if gisimp.is_Pow and sym in gisimp.exp.free_symbols:
up_or_log.add(gi)
eq_down = expand_log(expand_power_exp(eq)).subs(
dict(list(zip(up_or_log, [0]*len(up_or_log)))))
eq = expand_power_exp(factor(eq_down, deep=True) + (eq - eq_down))
rhs, lhs = _invert(eq, sym)
if lhs.has(sym):
try:
poly = lhs.as_poly()
g = _filtered_gens(poly, sym)
_eq = lhs - rhs
sols = _solve_lambert(_eq, sym, g)
# use a simplified form if it satisfies eq
# and has fewer operations
for n, s in enumerate(sols):
ns = nsimplify(s)
if ns != s and ns.count_ops() <= s.count_ops():
ok = checksol(_eq, sym, ns)
if ok is None:
ok = _eq.subs(sym, ns).equals(0)
if ok:
sols[n] = ns
return sols
except NotImplementedError:
# maybe it's a convoluted function
if len(g) == 2:
try:
gpu = bivariate_type(lhs - rhs, *g)
if gpu is None:
raise NotImplementedError
g, p, u = gpu
flags['bivariate'] = False
inversion = _tsolve(g - u, sym, **flags)
if inversion:
sol = _vsolve(p, u, **flags)
return list({i.subs(u, s)
for i in inversion for s in sol})
except NotImplementedError:
pass
else:
pass
if flags.pop('force', True):
flags['force'] = False
pos, reps = posify(lhs - rhs)
if rhs == S.ComplexInfinity:
return []
for u, s in reps.items():
if s == sym:
break
else:
u = sym
if pos.has(u):
try:
soln = _vsolve(pos, u, **flags)
return [s.subs(reps) for s in soln]
except NotImplementedError:
pass
else:
pass # here for coverage
return # here for coverage
# TODO: option for calculating J numerically
@conserve_mpmath_dps
def nsolve(*args, dict=False, **kwargs):
r"""
Solve a nonlinear equation system numerically: ``nsolve(f, [args,] x0,
modules=['mpmath'], **kwargs)``.
Explanation
===========
``f`` is a vector function of symbolic expressions representing the system.
*args* are the variables. If there is only one variable, this argument can
be omitted. ``x0`` is a starting vector close to a solution.
Use the modules keyword to specify which modules should be used to
evaluate the function and the Jacobian matrix. Make sure to use a module
that supports matrices. For more information on the syntax, please see the
docstring of ``lambdify``.
If the keyword arguments contain ``dict=True`` (default is False) ``nsolve``
will return a list (perhaps empty) of solution mappings. This might be
especially useful if you want to use ``nsolve`` as a fallback to solve since
using the dict argument for both methods produces return values of
consistent type structure. Please note: to keep this consistent with
``solve``, the solution will be returned in a list even though ``nsolve``
(currently at least) only finds one solution at a time.
Overdetermined systems are supported.
Examples
========
>>> from sympy import Symbol, nsolve
>>> import mpmath
>>> mpmath.mp.dps = 15
>>> x1 = Symbol('x1')
>>> x2 = Symbol('x2')
>>> f1 = 3 * x1**2 - 2 * x2**2 - 1
>>> f2 = x1**2 - 2 * x1 + x2**2 + 2 * x2 - 8
>>> print(nsolve((f1, f2), (x1, x2), (-1, 1)))
Matrix([[-1.19287309935246], [1.27844411169911]])
For one-dimensional functions the syntax is simplified:
>>> from sympy import sin, nsolve
>>> from sympy.abc import x
>>> nsolve(sin(x), x, 2)
3.14159265358979
>>> nsolve(sin(x), 2)
3.14159265358979
To solve with higher precision than the default, use the prec argument:
>>> from sympy import cos
>>> nsolve(cos(x) - x, 1)
0.739085133215161
>>> nsolve(cos(x) - x, 1, prec=50)
0.73908513321516064165531208767387340401341175890076
>>> cos(_)
0.73908513321516064165531208767387340401341175890076
To solve for complex roots of real functions, a nonreal initial point
must be specified:
>>> from sympy import I
>>> nsolve(x**2 + 2, I)
1.4142135623731*I
``mpmath.findroot`` is used and you can find their more extensive
documentation, especially concerning keyword parameters and
available solvers. Note, however, that functions which are very
steep near the root, the verification of the solution may fail. In
this case you should use the flag ``verify=False`` and
independently verify the solution.
>>> from sympy import cos, cosh
>>> f = cos(x)*cosh(x) - 1
>>> nsolve(f, 3.14*100)
Traceback (most recent call last):
...
ValueError: Could not find root within given tolerance. (1.39267e+230 > 2.1684e-19)
>>> ans = nsolve(f, 3.14*100, verify=False); ans
312.588469032184
>>> f.subs(x, ans).n(2)
2.1e+121
>>> (f/f.diff(x)).subs(x, ans).n(2)
7.4e-15
One might safely skip the verification if bounds of the root are known
and a bisection method is used:
>>> bounds = lambda i: (3.14*i, 3.14*(i + 1))
>>> nsolve(f, bounds(100), solver='bisect', verify=False)
315.730061685774
Alternatively, a function may be better behaved when the
denominator is ignored. Since this is not always the case, however,
the decision of what function to use is left to the discretion of
the user.
>>> eq = x**2/(1 - x)/(1 - 2*x)**2 - 100
>>> nsolve(eq, 0.46)
Traceback (most recent call last):
...
ValueError: Could not find root within given tolerance. (10000 > 2.1684e-19)
Try another starting point or tweak arguments.
>>> nsolve(eq.as_numer_denom()[0], 0.46)
0.46792545969349058
"""
# there are several other SymPy functions that use method= so
# guard against that here
if 'method' in kwargs:
raise ValueError(filldedent('''
Keyword "method" should not be used in this context. When using
some mpmath solvers directly, the keyword "method" is
used, but when using nsolve (and findroot) the keyword to use is
"solver".'''))
if 'prec' in kwargs:
import mpmath
mpmath.mp.dps = kwargs.pop('prec')
# keyword argument to return result as a dictionary
as_dict = dict
from builtins import dict # to unhide the builtin
# interpret arguments
if len(args) == 3:
f = args[0]
fargs = args[1]
x0 = args[2]
if iterable(fargs) and iterable(x0):
if len(x0) != len(fargs):
raise TypeError('nsolve expected exactly %i guess vectors, got %i'
% (len(fargs), len(x0)))
elif len(args) == 2:
f = args[0]
fargs = None
x0 = args[1]
if iterable(f):
raise TypeError('nsolve expected 3 arguments, got 2')
elif len(args) < 2:
raise TypeError('nsolve expected at least 2 arguments, got %i'
% len(args))
else:
raise TypeError('nsolve expected at most 3 arguments, got %i'
% len(args))
modules = kwargs.get('modules', ['mpmath'])
if iterable(f):
f = list(f)
for i, fi in enumerate(f):
if isinstance(fi, Eq):
f[i] = fi.lhs - fi.rhs
f = Matrix(f).T
if iterable(x0):
x0 = list(x0)
if not isinstance(f, Matrix):
# assume it's a SymPy expression
if isinstance(f, Eq):
f = f.lhs - f.rhs
syms = f.free_symbols
if fargs is None:
fargs = syms.copy().pop()
if not (len(syms) == 1 and (fargs in syms or fargs[0] in syms)):
raise ValueError(filldedent('''
expected a one-dimensional and numerical function'''))
# the function is much better behaved if there is no denominator
# but sending the numerator is left to the user since sometimes
# the function is better behaved when the denominator is present
# e.g., issue 11768
f = lambdify(fargs, f, modules)
x = sympify(findroot(f, x0, **kwargs))
if as_dict:
return [{fargs: x}]
return x
if len(fargs) > f.cols:
raise NotImplementedError(filldedent('''
need at least as many equations as variables'''))
verbose = kwargs.get('verbose', False)
if verbose:
print('f(x):')
print(f)
# derive Jacobian
J = f.jacobian(fargs)
if verbose:
print('J(x):')
print(J)
# create functions
f = lambdify(fargs, f.T, modules)
J = lambdify(fargs, J, modules)
# solve the system numerically
x = findroot(f, x0, J=J, **kwargs)
if as_dict:
return [dict(zip(fargs, [sympify(xi) for xi in x]))]
return Matrix(x)
def _invert(eq, *symbols, **kwargs):
"""
Return tuple (i, d) where ``i`` is independent of *symbols* and ``d``
contains symbols.
Explanation
===========
``i`` and ``d`` are obtained after recursively using algebraic inversion
until an uninvertible ``d`` remains. If there are no free symbols then
``d`` will be zero. Some (but not necessarily all) solutions to the
expression ``i - d`` will be related to the solutions of the original
expression.
Examples
========
>>> from sympy.solvers.solvers import _invert as invert
>>> from sympy import sqrt, cos
>>> from sympy.abc import x, y
>>> invert(x - 3)
(3, x)
>>> invert(3)
(3, 0)
>>> invert(2*cos(x) - 1)
(1/2, cos(x))
>>> invert(sqrt(x) - 3)
(3, sqrt(x))
>>> invert(sqrt(x) + y, x)
(-y, sqrt(x))
>>> invert(sqrt(x) + y, y)
(-sqrt(x), y)
>>> invert(sqrt(x) + y, x, y)
(0, sqrt(x) + y)
If there is more than one symbol in a power's base and the exponent
is not an Integer, then the principal root will be used for the
inversion:
>>> invert(sqrt(x + y) - 2)
(4, x + y)
>>> invert(sqrt(x + y) - 2)
(4, x + y)
If the exponent is an Integer, setting ``integer_power`` to True
will force the principal root to be selected:
>>> invert(x**2 - 4, integer_power=True)
(2, x)
"""
eq = sympify(eq)
if eq.args:
# make sure we are working with flat eq
eq = eq.func(*eq.args)
free = eq.free_symbols
if not symbols:
symbols = free
if not free & set(symbols):
return eq, S.Zero
dointpow = bool(kwargs.get('integer_power', False))
lhs = eq
rhs = S.Zero
while True:
was = lhs
while True:
indep, dep = lhs.as_independent(*symbols)
# dep + indep == rhs
if lhs.is_Add:
# this indicates we have done it all
if indep.is_zero:
break
lhs = dep
rhs -= indep
# dep * indep == rhs
else:
# this indicates we have done it all
if indep is S.One:
break
lhs = dep
rhs /= indep
# collect like-terms in symbols
if lhs.is_Add:
terms = {}
for a in lhs.args:
i, d = a.as_independent(*symbols)
terms.setdefault(d, []).append(i)
if any(len(v) > 1 for v in terms.values()):
args = []
for d, i in terms.items():
if len(i) > 1:
args.append(Add(*i)*d)
else:
args.append(i[0]*d)
lhs = Add(*args)
# if it's a two-term Add with rhs = 0 and two powers we can get the
# dependent terms together, e.g. 3*f(x) + 2*g(x) -> f(x)/g(x) = -2/3
if lhs.is_Add and not rhs and len(lhs.args) == 2 and \
not lhs.is_polynomial(*symbols):
a, b = ordered(lhs.args)
ai, ad = a.as_independent(*symbols)
bi, bd = b.as_independent(*symbols)
if any(_ispow(i) for i in (ad, bd)):
a_base, a_exp = ad.as_base_exp()
b_base, b_exp = bd.as_base_exp()
if a_base == b_base:
# a = -b
lhs = powsimp(powdenest(ad/bd))
rhs = -bi/ai
else:
rat = ad/bd
_lhs = powsimp(ad/bd)
if _lhs != rat:
lhs = _lhs
rhs = -bi/ai
elif ai == -bi:
if isinstance(ad, Function) and ad.func == bd.func:
if len(ad.args) == len(bd.args) == 1:
lhs = ad.args[0] - bd.args[0]
elif len(ad.args) == len(bd.args):
# should be able to solve
# f(x, y) - f(2 - x, 0) == 0 -> x == 1
raise NotImplementedError(
'equal function with more than 1 argument')
else:
raise ValueError(
'function with different numbers of args')
elif lhs.is_Mul and any(_ispow(a) for a in lhs.args):
lhs = powsimp(powdenest(lhs))
if lhs.is_Function:
if hasattr(lhs, 'inverse') and lhs.inverse() is not None and len(lhs.args) == 1:
# -1
# f(x) = g -> x = f (g)
#
# /!\ inverse should not be defined if there are multiple values
# for the function -- these are handled in _tsolve
#
rhs = lhs.inverse()(rhs)
lhs = lhs.args[0]
elif isinstance(lhs, atan2):
y, x = lhs.args
lhs = 2*atan(y/(sqrt(x**2 + y**2) + x))
elif lhs.func == rhs.func:
if len(lhs.args) == len(rhs.args) == 1:
lhs = lhs.args[0]
rhs = rhs.args[0]
elif len(lhs.args) == len(rhs.args):
# should be able to solve
# f(x, y) == f(2, 3) -> x == 2
# f(x, x + y) == f(2, 3) -> x == 2
raise NotImplementedError(
'equal function with more than 1 argument')
else:
raise ValueError(
'function with different numbers of args')
if rhs and lhs.is_Pow and lhs.exp.is_Integer and lhs.exp < 0:
lhs = 1/lhs
rhs = 1/rhs
# base**a = b -> base = b**(1/a) if
# a is an Integer and dointpow=True (this gives real branch of root)
# a is not an Integer and the equation is multivariate and the
# base has more than 1 symbol in it
# The rationale for this is that right now the multi-system solvers
# doesn't try to resolve generators to see, for example, if the whole
# system is written in terms of sqrt(x + y) so it will just fail, so we
# do that step here.
if lhs.is_Pow and (
lhs.exp.is_Integer and dointpow or not lhs.exp.is_Integer and
len(symbols) > 1 and len(lhs.base.free_symbols & set(symbols)) > 1):
rhs = rhs**(1/lhs.exp)
lhs = lhs.base
if lhs == was:
break
return rhs, lhs
def unrad(eq, *syms, **flags):
"""
Remove radicals with symbolic arguments and return (eq, cov),
None, or raise an error.
Explanation
===========
None is returned if there are no radicals to remove.
NotImplementedError is raised if there are radicals and they cannot be
removed or if the relationship between the original symbols and the
change of variable needed to rewrite the system as a polynomial cannot
be solved.
Otherwise the tuple, ``(eq, cov)``, is returned where:
*eq*, ``cov``
*eq* is an equation without radicals (in the symbol(s) of
interest) whose solutions are a superset of the solutions to the
original expression. *eq* might be rewritten in terms of a new
variable; the relationship to the original variables is given by
``cov`` which is a list containing ``v`` and ``v**p - b`` where
``p`` is the power needed to clear the radical and ``b`` is the
radical now expressed as a polynomial in the symbols of interest.
For example, for sqrt(2 - x) the tuple would be
``(c, c**2 - 2 + x)``. The solutions of *eq* will contain
solutions to the original equation (if there are any).
*syms*
An iterable of symbols which, if provided, will limit the focus of
radical removal: only radicals with one or more of the symbols of
interest will be cleared. All free symbols are used if *syms* is not
set.
*flags* are used internally for communication during recursive calls.
Two options are also recognized:
``take``, when defined, is interpreted as a single-argument function
that returns True if a given Pow should be handled.
Radicals can be removed from an expression if:
* All bases of the radicals are the same; a change of variables is
done in this case.
* If all radicals appear in one term of the expression.
* There are only four terms with sqrt() factors or there are less than
four terms having sqrt() factors.
* There are only two terms with radicals.
Examples
========
>>> from sympy.solvers.solvers import unrad
>>> from sympy.abc import x
>>> from sympy import sqrt, Rational, root
>>> unrad(sqrt(x)*x**Rational(1, 3) + 2)
(x**5 - 64, [])
>>> unrad(sqrt(x) + root(x + 1, 3))
(-x**3 + x**2 + 2*x + 1, [])
>>> eq = sqrt(x) + root(x, 3) - 2
>>> unrad(eq)
(_p**3 + _p**2 - 2, [_p, _p**6 - x])
"""
uflags = dict(check=False, simplify=False)
def _cov(p, e):
if cov:
# XXX - uncovered
oldp, olde = cov
if Poly(e, p).degree(p) in (1, 2):
cov[:] = [p, olde.subs(oldp, _vsolve(e, p, **uflags)[0])]
else:
raise NotImplementedError
else:
cov[:] = [p, e]
def _canonical(eq, cov):
if cov:
# change symbol to vanilla so no solutions are eliminated
p, e = cov
rep = {p: Dummy(p.name)}
eq = eq.xreplace(rep)
cov = [p.xreplace(rep), e.xreplace(rep)]
# remove constants and powers of factors since these don't change
# the location of the root; XXX should factor or factor_terms be used?
eq = factor_terms(_mexpand(eq.as_numer_denom()[0], recursive=True), clear=True)
if eq.is_Mul:
args = []
for f in eq.args:
if f.is_number:
continue
if f.is_Pow:
args.append(f.base)
else:
args.append(f)
eq = Mul(*args) # leave as Mul for more efficient solving
# make the sign canonical
margs = list(Mul.make_args(eq))
changed = False
for i, m in enumerate(margs):
if m.could_extract_minus_sign():
margs[i] = -m
changed = True
if changed:
eq = Mul(*margs, evaluate=False)
return eq, cov
def _Q(pow):
# return leading Rational of denominator of Pow's exponent
c = pow.as_base_exp()[1].as_coeff_Mul()[0]
if not c.is_Rational:
return S.One
return c.q
# define the _take method that will determine whether a term is of interest
def _take(d):
# return True if coefficient of any factor's exponent's den is not 1
for pow in Mul.make_args(d):
if not pow.is_Pow:
continue
if _Q(pow) == 1:
continue
if pow.free_symbols & syms:
return True
return False
_take = flags.setdefault('_take', _take)
if isinstance(eq, Eq):
eq = eq.lhs - eq.rhs # XXX legacy Eq as Eqn support
elif not isinstance(eq, Expr):
return
cov, nwas, rpt = [flags.setdefault(k, v) for k, v in
sorted(dict(cov=[], n=None, rpt=0).items())]
# preconditioning
eq = powdenest(factor_terms(eq, radical=True, clear=True))
eq = eq.as_numer_denom()[0]
eq = _mexpand(eq, recursive=True)
if eq.is_number:
return
# see if there are radicals in symbols of interest
syms = set(syms) or eq.free_symbols # _take uses this
poly = eq.as_poly()
gens = [g for g in poly.gens if _take(g)]
if not gens:
return
# recast poly in terms of eigen-gens
poly = eq.as_poly(*gens)
# not a polynomial e.g. 1 + sqrt(x)*exp(sqrt(x)) with gen sqrt(x)
if poly is None:
return
# - an exponent has a symbol of interest (don't handle)
if any(g.exp.has(*syms) for g in gens):
return
def _rads_bases_lcm(poly):
# if all the bases are the same or all the radicals are in one
# term, `lcm` will be the lcm of the denominators of the
# exponents of the radicals
lcm = 1
rads = set()
bases = set()
for g in poly.gens:
q = _Q(g)
if q != 1:
rads.add(g)
lcm = ilcm(lcm, q)
bases.add(g.base)
return rads, bases, lcm
rads, bases, lcm = _rads_bases_lcm(poly)
covsym = Dummy('p', nonnegative=True)
# only keep in syms symbols that actually appear in radicals;
# and update gens
newsyms = set()
for r in rads:
newsyms.update(syms & r.free_symbols)
if newsyms != syms:
syms = newsyms
# get terms together that have common generators
drad = dict(zip(rads, range(len(rads))))
rterms = {(): []}
args = Add.make_args(poly.as_expr())
for t in args:
if _take(t):
common = set(t.as_poly().gens).intersection(rads)
key = tuple(sorted([drad[i] for i in common]))
else:
key = ()
rterms.setdefault(key, []).append(t)
others = Add(*rterms.pop(()))
rterms = [Add(*rterms[k]) for k in rterms.keys()]
# the output will depend on the order terms are processed, so
# make it canonical quickly
rterms = list(reversed(list(ordered(rterms))))
ok = False # we don't have a solution yet
depth = sqrt_depth(eq)
if len(rterms) == 1 and not (rterms[0].is_Add and lcm > 2):
eq = rterms[0]**lcm - ((-others)**lcm)
ok = True
else:
if len(rterms) == 1 and rterms[0].is_Add:
rterms = list(rterms[0].args)
if len(bases) == 1:
b = bases.pop()
if len(syms) > 1:
x = b.free_symbols
else:
x = syms
x = list(ordered(x))[0]
try:
inv = _vsolve(covsym**lcm - b, x, **uflags)
if not inv:
raise NotImplementedError
eq = poly.as_expr().subs(b, covsym**lcm).subs(x, inv[0])
_cov(covsym, covsym**lcm - b)
return _canonical(eq, cov)
except NotImplementedError:
pass
if len(rterms) == 2:
if not others:
eq = rterms[0]**lcm - (-rterms[1])**lcm
ok = True
elif not log(lcm, 2).is_Integer:
# the lcm-is-power-of-two case is handled below
r0, r1 = rterms
if flags.get('_reverse', False):
r1, r0 = r0, r1
i0 = _rads0, _bases0, lcm0 = _rads_bases_lcm(r0.as_poly())
i1 = _rads1, _bases1, lcm1 = _rads_bases_lcm(r1.as_poly())
for reverse in range(2):
if reverse:
i0, i1 = i1, i0
r0, r1 = r1, r0
_rads1, _, lcm1 = i1
_rads1 = Mul(*_rads1)
t1 = _rads1**lcm1
c = covsym**lcm1 - t1
for x in syms:
try:
sol = _vsolve(c, x, **uflags)
if not sol:
raise NotImplementedError
neweq = r0.subs(x, sol[0]) + covsym*r1/_rads1 + \
others
tmp = unrad(neweq, covsym)
if tmp:
eq, newcov = tmp
if newcov:
newp, newc = newcov
_cov(newp, c.subs(covsym,
_vsolve(newc, covsym, **uflags)[0]))
else:
_cov(covsym, c)
else:
eq = neweq
_cov(covsym, c)
ok = True
break
except NotImplementedError:
if reverse:
raise NotImplementedError(
'no successful change of variable found')
else:
pass
if ok:
break
elif len(rterms) == 3:
# two cube roots and another with order less than 5
# (so an analytical solution can be found) or a base
# that matches one of the cube root bases
info = [_rads_bases_lcm(i.as_poly()) for i in rterms]
RAD = 0
BASES = 1
LCM = 2
if info[0][LCM] != 3:
info.append(info.pop(0))
rterms.append(rterms.pop(0))
elif info[1][LCM] != 3:
info.append(info.pop(1))
rterms.append(rterms.pop(1))
if info[0][LCM] == info[1][LCM] == 3:
if info[1][BASES] != info[2][BASES]:
info[0], info[1] = info[1], info[0]
rterms[0], rterms[1] = rterms[1], rterms[0]
if info[1][BASES] == info[2][BASES]:
eq = rterms[0]**3 + (rterms[1] + rterms[2] + others)**3
ok = True
elif info[2][LCM] < 5:
# a*root(A, 3) + b*root(B, 3) + others = c
a, b, c, d, A, B = [Dummy(i) for i in 'abcdAB']
# zz represents the unraded expression into which the
# specifics for this case are substituted
zz = (c - d)*(A**3*a**9 + 3*A**2*B*a**6*b**3 -
3*A**2*a**6*c**3 + 9*A**2*a**6*c**2*d - 9*A**2*a**6*c*d**2 +
3*A**2*a**6*d**3 + 3*A*B**2*a**3*b**6 + 21*A*B*a**3*b**3*c**3 -
63*A*B*a**3*b**3*c**2*d + 63*A*B*a**3*b**3*c*d**2 -
21*A*B*a**3*b**3*d**3 + 3*A*a**3*c**6 - 18*A*a**3*c**5*d +
45*A*a**3*c**4*d**2 - 60*A*a**3*c**3*d**3 + 45*A*a**3*c**2*d**4 -
18*A*a**3*c*d**5 + 3*A*a**3*d**6 + B**3*b**9 - 3*B**2*b**6*c**3 +
9*B**2*b**6*c**2*d - 9*B**2*b**6*c*d**2 + 3*B**2*b**6*d**3 +
3*B*b**3*c**6 - 18*B*b**3*c**5*d + 45*B*b**3*c**4*d**2 -
60*B*b**3*c**3*d**3 + 45*B*b**3*c**2*d**4 - 18*B*b**3*c*d**5 +
3*B*b**3*d**6 - c**9 + 9*c**8*d - 36*c**7*d**2 + 84*c**6*d**3 -
126*c**5*d**4 + 126*c**4*d**5 - 84*c**3*d**6 + 36*c**2*d**7 -
9*c*d**8 + d**9)
def _t(i):
b = Mul(*info[i][RAD])
return cancel(rterms[i]/b), Mul(*info[i][BASES])
aa, AA = _t(0)
bb, BB = _t(1)
cc = -rterms[2]
dd = others
eq = zz.xreplace(dict(zip(
(a, A, b, B, c, d),
(aa, AA, bb, BB, cc, dd))))
ok = True
# handle power-of-2 cases
if not ok:
if log(lcm, 2).is_Integer and (not others and
len(rterms) == 4 or len(rterms) < 4):
def _norm2(a, b):
return a**2 + b**2 + 2*a*b
if len(rterms) == 4:
# (r0+r1)**2 - (r2+r3)**2
r0, r1, r2, r3 = rterms
eq = _norm2(r0, r1) - _norm2(r2, r3)
ok = True
elif len(rterms) == 3:
# (r1+r2)**2 - (r0+others)**2
r0, r1, r2 = rterms
eq = _norm2(r1, r2) - _norm2(r0, others)
ok = True
elif len(rterms) == 2:
# r0**2 - (r1+others)**2
r0, r1 = rterms
eq = r0**2 - _norm2(r1, others)
ok = True
new_depth = sqrt_depth(eq) if ok else depth
rpt += 1 # XXX how many repeats with others unchanging is enough?
if not ok or (
nwas is not None and len(rterms) == nwas and
new_depth is not None and new_depth == depth and
rpt > 3):
raise NotImplementedError('Cannot remove all radicals')
flags.update(dict(cov=cov, n=len(rterms), rpt=rpt))
neq = unrad(eq, *syms, **flags)
if neq:
eq, cov = neq
eq, cov = _canonical(eq, cov)
return eq, cov
# delayed imports
from sympy.solvers.bivariate import (
bivariate_type, _solve_lambert, _filtered_gens)
|
34261bd25153641d16c8477f4f03d095a73175cd380824c0c9d3753936a3409b | from collections import defaultdict, OrderedDict
from itertools import (
chain, combinations, combinations_with_replacement, cycle, islice,
permutations, product
)
# For backwards compatibility
from itertools import product as cartes # noqa: F401
from operator import gt
# this is the logical location of these functions
from sympy.utilities.enumerative import (
multiset_partitions_taocp, list_visitor, MultisetPartitionTraverser)
from sympy.utilities.misc import as_int
from sympy.utilities.decorator import deprecated
def is_palindromic(s, i=0, j=None):
"""
Return True if the sequence is the same from left to right as it
is from right to left in the whole sequence (default) or in the
Python slice ``s[i: j]``; else False.
Examples
========
>>> from sympy.utilities.iterables import is_palindromic
>>> is_palindromic([1, 0, 1])
True
>>> is_palindromic('abcbb')
False
>>> is_palindromic('abcbb', 1)
False
Normal Python slicing is performed in place so there is no need to
create a slice of the sequence for testing:
>>> is_palindromic('abcbb', 1, -1)
True
>>> is_palindromic('abcbb', -4, -1)
True
See Also
========
sympy.ntheory.digits.is_palindromic: tests integers
"""
i, j, _ = slice(i, j).indices(len(s))
m = (j - i)//2
# if length is odd, middle element will be ignored
return all(s[i + k] == s[j - 1 - k] for k in range(m))
def flatten(iterable, levels=None, cls=None): # noqa: F811
"""
Recursively denest iterable containers.
>>> from sympy import flatten
>>> flatten([1, 2, 3])
[1, 2, 3]
>>> flatten([1, 2, [3]])
[1, 2, 3]
>>> flatten([1, [2, 3], [4, 5]])
[1, 2, 3, 4, 5]
>>> flatten([1.0, 2, (1, None)])
[1.0, 2, 1, None]
If you want to denest only a specified number of levels of
nested containers, then set ``levels`` flag to the desired
number of levels::
>>> ls = [[(-2, -1), (1, 2)], [(0, 0)]]
>>> flatten(ls, levels=1)
[(-2, -1), (1, 2), (0, 0)]
If cls argument is specified, it will only flatten instances of that
class, for example:
>>> from sympy import Basic, S
>>> class MyOp(Basic):
... pass
...
>>> flatten([MyOp(S(1), MyOp(S(2), S(3)))], cls=MyOp)
[1, 2, 3]
adapted from https://kogs-www.informatik.uni-hamburg.de/~meine/python_tricks
"""
from sympy.tensor.array import NDimArray
if levels is not None:
if not levels:
return iterable
elif levels > 0:
levels -= 1
else:
raise ValueError(
"expected non-negative number of levels, got %s" % levels)
if cls is None:
reducible = lambda x: is_sequence(x, set)
else:
reducible = lambda x: isinstance(x, cls)
result = []
for el in iterable:
if reducible(el):
if hasattr(el, 'args') and not isinstance(el, NDimArray):
el = el.args
result.extend(flatten(el, levels=levels, cls=cls))
else:
result.append(el)
return result
def unflatten(iter, n=2):
"""Group ``iter`` into tuples of length ``n``. Raise an error if
the length of ``iter`` is not a multiple of ``n``.
"""
if n < 1 or len(iter) % n:
raise ValueError('iter length is not a multiple of %i' % n)
return list(zip(*(iter[i::n] for i in range(n))))
def reshape(seq, how):
"""Reshape the sequence according to the template in ``how``.
Examples
========
>>> from sympy.utilities import reshape
>>> seq = list(range(1, 9))
>>> reshape(seq, [4]) # lists of 4
[[1, 2, 3, 4], [5, 6, 7, 8]]
>>> reshape(seq, (4,)) # tuples of 4
[(1, 2, 3, 4), (5, 6, 7, 8)]
>>> reshape(seq, (2, 2)) # tuples of 4
[(1, 2, 3, 4), (5, 6, 7, 8)]
>>> reshape(seq, (2, [2])) # (i, i, [i, i])
[(1, 2, [3, 4]), (5, 6, [7, 8])]
>>> reshape(seq, ((2,), [2])) # etc....
[((1, 2), [3, 4]), ((5, 6), [7, 8])]
>>> reshape(seq, (1, [2], 1))
[(1, [2, 3], 4), (5, [6, 7], 8)]
>>> reshape(tuple(seq), ([[1], 1, (2,)],))
(([[1], 2, (3, 4)],), ([[5], 6, (7, 8)],))
>>> reshape(tuple(seq), ([1], 1, (2,)))
(([1], 2, (3, 4)), ([5], 6, (7, 8)))
>>> reshape(list(range(12)), [2, [3], {2}, (1, (3,), 1)])
[[0, 1, [2, 3, 4], {5, 6}, (7, (8, 9, 10), 11)]]
"""
m = sum(flatten(how))
n, rem = divmod(len(seq), m)
if m < 0 or rem:
raise ValueError('template must sum to positive number '
'that divides the length of the sequence')
i = 0
container = type(how)
rv = [None]*n
for k in range(len(rv)):
_rv = []
for hi in how:
if isinstance(hi, int):
_rv.extend(seq[i: i + hi])
i += hi
else:
n = sum(flatten(hi))
hi_type = type(hi)
_rv.append(hi_type(reshape(seq[i: i + n], hi)[0]))
i += n
rv[k] = container(_rv)
return type(seq)(rv)
def group(seq, multiple=True):
"""
Splits a sequence into a list of lists of equal, adjacent elements.
Examples
========
>>> from sympy import group
>>> group([1, 1, 1, 2, 2, 3])
[[1, 1, 1], [2, 2], [3]]
>>> group([1, 1, 1, 2, 2, 3], multiple=False)
[(1, 3), (2, 2), (3, 1)]
>>> group([1, 1, 3, 2, 2, 1], multiple=False)
[(1, 2), (3, 1), (2, 2), (1, 1)]
See Also
========
multiset
"""
if not seq:
return []
current, groups = [seq[0]], []
for elem in seq[1:]:
if elem == current[-1]:
current.append(elem)
else:
groups.append(current)
current = [elem]
groups.append(current)
if multiple:
return groups
for i, current in enumerate(groups):
groups[i] = (current[0], len(current))
return groups
def _iproduct2(iterable1, iterable2):
'''Cartesian product of two possibly infinite iterables'''
it1 = iter(iterable1)
it2 = iter(iterable2)
elems1 = []
elems2 = []
sentinel = object()
def append(it, elems):
e = next(it, sentinel)
if e is not sentinel:
elems.append(e)
n = 0
append(it1, elems1)
append(it2, elems2)
while n <= len(elems1) + len(elems2):
for m in range(n-len(elems1)+1, len(elems2)):
yield (elems1[n-m], elems2[m])
n += 1
append(it1, elems1)
append(it2, elems2)
def iproduct(*iterables):
'''
Cartesian product of iterables.
Generator of the Cartesian product of iterables. This is analogous to
itertools.product except that it works with infinite iterables and will
yield any item from the infinite product eventually.
Examples
========
>>> from sympy.utilities.iterables import iproduct
>>> sorted(iproduct([1,2], [3,4]))
[(1, 3), (1, 4), (2, 3), (2, 4)]
With an infinite iterator:
>>> from sympy import S
>>> (3,) in iproduct(S.Integers)
True
>>> (3, 4) in iproduct(S.Integers, S.Integers)
True
.. seealso::
`itertools.product <https://docs.python.org/3/library/itertools.html#itertools.product>`_
'''
if len(iterables) == 0:
yield ()
return
elif len(iterables) == 1:
for e in iterables[0]:
yield (e,)
elif len(iterables) == 2:
yield from _iproduct2(*iterables)
else:
first, others = iterables[0], iterables[1:]
for ef, eo in _iproduct2(first, iproduct(*others)):
yield (ef,) + eo
def multiset(seq):
"""Return the hashable sequence in multiset form with values being the
multiplicity of the item in the sequence.
Examples
========
>>> from sympy.utilities.iterables import multiset
>>> multiset('mississippi')
{'i': 4, 'm': 1, 'p': 2, 's': 4}
See Also
========
group
"""
rv = defaultdict(int)
for s in seq:
rv[s] += 1
return dict(rv)
def ibin(n, bits=None, str=False):
"""Return a list of length ``bits`` corresponding to the binary value
of ``n`` with small bits to the right (last). If bits is omitted, the
length will be the number required to represent ``n``. If the bits are
desired in reversed order, use the ``[::-1]`` slice of the returned list.
If a sequence of all bits-length lists starting from ``[0, 0,..., 0]``
through ``[1, 1, ..., 1]`` are desired, pass a non-integer for bits, e.g.
``'all'``.
If the bit *string* is desired pass ``str=True``.
Examples
========
>>> from sympy.utilities.iterables import ibin
>>> ibin(2)
[1, 0]
>>> ibin(2, 4)
[0, 0, 1, 0]
If all lists corresponding to 0 to 2**n - 1, pass a non-integer
for bits:
>>> bits = 2
>>> for i in ibin(2, 'all'):
... print(i)
(0, 0)
(0, 1)
(1, 0)
(1, 1)
If a bit string is desired of a given length, use str=True:
>>> n = 123
>>> bits = 10
>>> ibin(n, bits, str=True)
'0001111011'
>>> ibin(n, bits, str=True)[::-1] # small bits left
'1101111000'
>>> list(ibin(3, 'all', str=True))
['000', '001', '010', '011', '100', '101', '110', '111']
"""
if n < 0:
raise ValueError("negative numbers are not allowed")
n = as_int(n)
if bits is None:
bits = 0
else:
try:
bits = as_int(bits)
except ValueError:
bits = -1
else:
if n.bit_length() > bits:
raise ValueError(
"`bits` must be >= {}".format(n.bit_length()))
if not str:
if bits >= 0:
return [1 if i == "1" else 0 for i in bin(n)[2:].rjust(bits, "0")]
else:
return variations(range(2), n, repetition=True)
else:
if bits >= 0:
return bin(n)[2:].rjust(bits, "0")
else:
return (bin(i)[2:].rjust(n, "0") for i in range(2**n))
def variations(seq, n, repetition=False):
r"""Returns an iterator over the n-sized variations of ``seq`` (size N).
``repetition`` controls whether items in ``seq`` can appear more than once;
Examples
========
``variations(seq, n)`` will return `\frac{N!}{(N - n)!}` permutations without
repetition of ``seq``'s elements:
>>> from sympy import variations
>>> list(variations([1, 2], 2))
[(1, 2), (2, 1)]
``variations(seq, n, True)`` will return the `N^n` permutations obtained
by allowing repetition of elements:
>>> list(variations([1, 2], 2, repetition=True))
[(1, 1), (1, 2), (2, 1), (2, 2)]
If you ask for more items than are in the set you get the empty set unless
you allow repetitions:
>>> list(variations([0, 1], 3, repetition=False))
[]
>>> list(variations([0, 1], 3, repetition=True))[:4]
[(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1)]
.. seealso::
`itertools.permutations <https://docs.python.org/3/library/itertools.html#itertools.permutations>`_,
`itertools.product <https://docs.python.org/3/library/itertools.html#itertools.product>`_
"""
if not repetition:
seq = tuple(seq)
if len(seq) < n:
return iter(()) # 0 length iterator
return permutations(seq, n)
else:
if n == 0:
return iter(((),)) # yields 1 empty tuple
else:
return product(seq, repeat=n)
def subsets(seq, k=None, repetition=False):
r"""Generates all `k`-subsets (combinations) from an `n`-element set, ``seq``.
A `k`-subset of an `n`-element set is any subset of length exactly `k`. The
number of `k`-subsets of an `n`-element set is given by ``binomial(n, k)``,
whereas there are `2^n` subsets all together. If `k` is ``None`` then all
`2^n` subsets will be returned from shortest to longest.
Examples
========
>>> from sympy import subsets
``subsets(seq, k)`` will return the `\frac{n!}{k!(n - k)!}` `k`-subsets (combinations)
without repetition, i.e. once an item has been removed, it can no
longer be "taken":
>>> list(subsets([1, 2], 2))
[(1, 2)]
>>> list(subsets([1, 2]))
[(), (1,), (2,), (1, 2)]
>>> list(subsets([1, 2, 3], 2))
[(1, 2), (1, 3), (2, 3)]
``subsets(seq, k, repetition=True)`` will return the `\frac{(n - 1 + k)!}{k!(n - 1)!}`
combinations *with* repetition:
>>> list(subsets([1, 2], 2, repetition=True))
[(1, 1), (1, 2), (2, 2)]
If you ask for more items than are in the set you get the empty set unless
you allow repetitions:
>>> list(subsets([0, 1], 3, repetition=False))
[]
>>> list(subsets([0, 1], 3, repetition=True))
[(0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1)]
"""
if k is None:
if not repetition:
return chain.from_iterable((combinations(seq, k)
for k in range(len(seq) + 1)))
else:
return chain.from_iterable((combinations_with_replacement(seq, k)
for k in range(len(seq) + 1)))
else:
if not repetition:
return combinations(seq, k)
else:
return combinations_with_replacement(seq, k)
def filter_symbols(iterator, exclude):
"""
Only yield elements from `iterator` that do not occur in `exclude`.
Parameters
==========
iterator : iterable
iterator to take elements from
exclude : iterable
elements to exclude
Returns
=======
iterator : iterator
filtered iterator
"""
exclude = set(exclude)
for s in iterator:
if s not in exclude:
yield s
def numbered_symbols(prefix='x', cls=None, start=0, exclude=(), *args, **assumptions):
"""
Generate an infinite stream of Symbols consisting of a prefix and
increasing subscripts provided that they do not occur in ``exclude``.
Parameters
==========
prefix : str, optional
The prefix to use. By default, this function will generate symbols of
the form "x0", "x1", etc.
cls : class, optional
The class to use. By default, it uses ``Symbol``, but you can also use ``Wild`` or ``Dummy``.
start : int, optional
The start number. By default, it is 0.
Returns
=======
sym : Symbol
The subscripted symbols.
"""
exclude = set(exclude or [])
if cls is None:
# We can't just make the default cls=Symbol because it isn't
# imported yet.
from sympy.core import Symbol
cls = Symbol
while True:
name = '%s%s' % (prefix, start)
s = cls(name, *args, **assumptions)
if s not in exclude:
yield s
start += 1
def capture(func):
"""Return the printed output of func().
``func`` should be a function without arguments that produces output with
print statements.
>>> from sympy.utilities.iterables import capture
>>> from sympy import pprint
>>> from sympy.abc import x
>>> def foo():
... print('hello world!')
...
>>> 'hello' in capture(foo) # foo, not foo()
True
>>> capture(lambda: pprint(2/x))
'2\\n-\\nx\\n'
"""
from io import StringIO
import sys
stdout = sys.stdout
sys.stdout = file = StringIO()
try:
func()
finally:
sys.stdout = stdout
return file.getvalue()
def sift(seq, keyfunc, binary=False):
"""
Sift the sequence, ``seq`` according to ``keyfunc``.
Returns
=======
When ``binary`` is ``False`` (default), the output is a dictionary
where elements of ``seq`` are stored in a list keyed to the value
of keyfunc for that element. If ``binary`` is True then a tuple
with lists ``T`` and ``F`` are returned where ``T`` is a list
containing elements of seq for which ``keyfunc`` was ``True`` and
``F`` containing those elements for which ``keyfunc`` was ``False``;
a ValueError is raised if the ``keyfunc`` is not binary.
Examples
========
>>> from sympy.utilities import sift
>>> from sympy.abc import x, y
>>> from sympy import sqrt, exp, pi, Tuple
>>> sift(range(5), lambda x: x % 2)
{0: [0, 2, 4], 1: [1, 3]}
sift() returns a defaultdict() object, so any key that has no matches will
give [].
>>> sift([x], lambda x: x.is_commutative)
{True: [x]}
>>> _[False]
[]
Sometimes you will not know how many keys you will get:
>>> sift([sqrt(x), exp(x), (y**x)**2],
... lambda x: x.as_base_exp()[0])
{E: [exp(x)], x: [sqrt(x)], y: [y**(2*x)]}
Sometimes you expect the results to be binary; the
results can be unpacked by setting ``binary`` to True:
>>> sift(range(4), lambda x: x % 2, binary=True)
([1, 3], [0, 2])
>>> sift(Tuple(1, pi), lambda x: x.is_rational, binary=True)
([1], [pi])
A ValueError is raised if the predicate was not actually binary
(which is a good test for the logic where sifting is used and
binary results were expected):
>>> unknown = exp(1) - pi # the rationality of this is unknown
>>> args = Tuple(1, pi, unknown)
>>> sift(args, lambda x: x.is_rational, binary=True)
Traceback (most recent call last):
...
ValueError: keyfunc gave non-binary output
The non-binary sifting shows that there were 3 keys generated:
>>> set(sift(args, lambda x: x.is_rational).keys())
{None, False, True}
If you need to sort the sifted items it might be better to use
``ordered`` which can economically apply multiple sort keys
to a sequence while sorting.
See Also
========
ordered
"""
if not binary:
m = defaultdict(list)
for i in seq:
m[keyfunc(i)].append(i)
return m
sift = F, T = [], []
for i in seq:
try:
sift[keyfunc(i)].append(i)
except (IndexError, TypeError):
raise ValueError('keyfunc gave non-binary output')
return T, F
def take(iter, n):
"""Return ``n`` items from ``iter`` iterator. """
return [ value for _, value in zip(range(n), iter) ]
def dict_merge(*dicts):
"""Merge dictionaries into a single dictionary. """
merged = {}
for dict in dicts:
merged.update(dict)
return merged
def common_prefix(*seqs):
"""Return the subsequence that is a common start of sequences in ``seqs``.
>>> from sympy.utilities.iterables import common_prefix
>>> common_prefix(list(range(3)))
[0, 1, 2]
>>> common_prefix(list(range(3)), list(range(4)))
[0, 1, 2]
>>> common_prefix([1, 2, 3], [1, 2, 5])
[1, 2]
>>> common_prefix([1, 2, 3], [1, 3, 5])
[1]
"""
if not all(seqs):
return []
elif len(seqs) == 1:
return seqs[0]
i = 0
for i in range(min(len(s) for s in seqs)):
if not all(seqs[j][i] == seqs[0][i] for j in range(len(seqs))):
break
else:
i += 1
return seqs[0][:i]
def common_suffix(*seqs):
"""Return the subsequence that is a common ending of sequences in ``seqs``.
>>> from sympy.utilities.iterables import common_suffix
>>> common_suffix(list(range(3)))
[0, 1, 2]
>>> common_suffix(list(range(3)), list(range(4)))
[]
>>> common_suffix([1, 2, 3], [9, 2, 3])
[2, 3]
>>> common_suffix([1, 2, 3], [9, 7, 3])
[3]
"""
if not all(seqs):
return []
elif len(seqs) == 1:
return seqs[0]
i = 0
for i in range(-1, -min(len(s) for s in seqs) - 1, -1):
if not all(seqs[j][i] == seqs[0][i] for j in range(len(seqs))):
break
else:
i -= 1
if i == -1:
return []
else:
return seqs[0][i + 1:]
def prefixes(seq):
"""
Generate all prefixes of a sequence.
Examples
========
>>> from sympy.utilities.iterables import prefixes
>>> list(prefixes([1,2,3,4]))
[[1], [1, 2], [1, 2, 3], [1, 2, 3, 4]]
"""
n = len(seq)
for i in range(n):
yield seq[:i + 1]
def postfixes(seq):
"""
Generate all postfixes of a sequence.
Examples
========
>>> from sympy.utilities.iterables import postfixes
>>> list(postfixes([1,2,3,4]))
[[4], [3, 4], [2, 3, 4], [1, 2, 3, 4]]
"""
n = len(seq)
for i in range(n):
yield seq[n - i - 1:]
def topological_sort(graph, key=None):
r"""
Topological sort of graph's vertices.
Parameters
==========
graph : tuple[list, list[tuple[T, T]]
A tuple consisting of a list of vertices and a list of edges of
a graph to be sorted topologically.
key : callable[T] (optional)
Ordering key for vertices on the same level. By default the natural
(e.g. lexicographic) ordering is used (in this case the base type
must implement ordering relations).
Examples
========
Consider a graph::
+---+ +---+ +---+
| 7 |\ | 5 | | 3 |
+---+ \ +---+ +---+
| _\___/ ____ _/ |
| / \___/ \ / |
V V V V |
+----+ +---+ |
| 11 | | 8 | |
+----+ +---+ |
| | \____ ___/ _ |
| \ \ / / \ |
V \ V V / V V
+---+ \ +---+ | +----+
| 2 | | | 9 | | | 10 |
+---+ | +---+ | +----+
\________/
where vertices are integers. This graph can be encoded using
elementary Python's data structures as follows::
>>> V = [2, 3, 5, 7, 8, 9, 10, 11]
>>> E = [(7, 11), (7, 8), (5, 11), (3, 8), (3, 10),
... (11, 2), (11, 9), (11, 10), (8, 9)]
To compute a topological sort for graph ``(V, E)`` issue::
>>> from sympy.utilities.iterables import topological_sort
>>> topological_sort((V, E))
[3, 5, 7, 8, 11, 2, 9, 10]
If specific tie breaking approach is needed, use ``key`` parameter::
>>> topological_sort((V, E), key=lambda v: -v)
[7, 5, 11, 3, 10, 8, 9, 2]
Only acyclic graphs can be sorted. If the input graph has a cycle,
then ``ValueError`` will be raised::
>>> topological_sort((V, E + [(10, 7)]))
Traceback (most recent call last):
...
ValueError: cycle detected
References
==========
.. [1] https://en.wikipedia.org/wiki/Topological_sorting
"""
V, E = graph
L = []
S = set(V)
E = list(E)
for v, u in E:
S.discard(u)
if key is None:
key = lambda value: value
S = sorted(S, key=key, reverse=True)
while S:
node = S.pop()
L.append(node)
for u, v in list(E):
if u == node:
E.remove((u, v))
for _u, _v in E:
if v == _v:
break
else:
kv = key(v)
for i, s in enumerate(S):
ks = key(s)
if kv > ks:
S.insert(i, v)
break
else:
S.append(v)
if E:
raise ValueError("cycle detected")
else:
return L
def strongly_connected_components(G):
r"""
Strongly connected components of a directed graph in reverse topological
order.
Parameters
==========
graph : tuple[list, list[tuple[T, T]]
A tuple consisting of a list of vertices and a list of edges of
a graph whose strongly connected components are to be found.
Examples
========
Consider a directed graph (in dot notation)::
digraph {
A -> B
A -> C
B -> C
C -> B
B -> D
}
.. graphviz::
digraph {
A -> B
A -> C
B -> C
C -> B
B -> D
}
where vertices are the letters A, B, C and D. This graph can be encoded
using Python's elementary data structures as follows::
>>> V = ['A', 'B', 'C', 'D']
>>> E = [('A', 'B'), ('A', 'C'), ('B', 'C'), ('C', 'B'), ('B', 'D')]
The strongly connected components of this graph can be computed as
>>> from sympy.utilities.iterables import strongly_connected_components
>>> strongly_connected_components((V, E))
[['D'], ['B', 'C'], ['A']]
This also gives the components in reverse topological order.
Since the subgraph containing B and C has a cycle they must be together in
a strongly connected component. A and D are connected to the rest of the
graph but not in a cyclic manner so they appear as their own strongly
connected components.
Notes
=====
The vertices of the graph must be hashable for the data structures used.
If the vertices are unhashable replace them with integer indices.
This function uses Tarjan's algorithm to compute the strongly connected
components in `O(|V|+|E|)` (linear) time.
References
==========
.. [1] https://en.wikipedia.org/wiki/Strongly_connected_component
.. [2] https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm
See Also
========
sympy.utilities.iterables.connected_components
"""
# Map from a vertex to its neighbours
V, E = G
Gmap = {vi: [] for vi in V}
for v1, v2 in E:
Gmap[v1].append(v2)
return _strongly_connected_components(V, Gmap)
def _strongly_connected_components(V, Gmap):
"""More efficient internal routine for strongly_connected_components"""
#
# Here V is an iterable of vertices and Gmap is a dict mapping each vertex
# to a list of neighbours e.g.:
#
# V = [0, 1, 2, 3]
# Gmap = {0: [2, 3], 1: [0]}
#
# For a large graph these data structures can often be created more
# efficiently then those expected by strongly_connected_components() which
# in this case would be
#
# V = [0, 1, 2, 3]
# Gmap = [(0, 2), (0, 3), (1, 0)]
#
# XXX: Maybe this should be the recommended function to use instead...
#
# Non-recursive Tarjan's algorithm:
lowlink = {}
indices = {}
stack = OrderedDict()
callstack = []
components = []
nomore = object()
def start(v):
index = len(stack)
indices[v] = lowlink[v] = index
stack[v] = None
callstack.append((v, iter(Gmap[v])))
def finish(v1):
# Finished a component?
if lowlink[v1] == indices[v1]:
component = [stack.popitem()[0]]
while component[-1] is not v1:
component.append(stack.popitem()[0])
components.append(component[::-1])
v2, _ = callstack.pop()
if callstack:
v1, _ = callstack[-1]
lowlink[v1] = min(lowlink[v1], lowlink[v2])
for v in V:
if v in indices:
continue
start(v)
while callstack:
v1, it1 = callstack[-1]
v2 = next(it1, nomore)
# Finished children of v1?
if v2 is nomore:
finish(v1)
# Recurse on v2
elif v2 not in indices:
start(v2)
elif v2 in stack:
lowlink[v1] = min(lowlink[v1], indices[v2])
# Reverse topological sort order:
return components
def connected_components(G):
r"""
Connected components of an undirected graph or weakly connected components
of a directed graph.
Parameters
==========
graph : tuple[list, list[tuple[T, T]]
A tuple consisting of a list of vertices and a list of edges of
a graph whose connected components are to be found.
Examples
========
Given an undirected graph::
graph {
A -- B
C -- D
}
.. graphviz::
graph {
A -- B
C -- D
}
We can find the connected components using this function if we include
each edge in both directions::
>>> from sympy.utilities.iterables import connected_components
>>> V = ['A', 'B', 'C', 'D']
>>> E = [('A', 'B'), ('B', 'A'), ('C', 'D'), ('D', 'C')]
>>> connected_components((V, E))
[['A', 'B'], ['C', 'D']]
The weakly connected components of a directed graph can found the same
way.
Notes
=====
The vertices of the graph must be hashable for the data structures used.
If the vertices are unhashable replace them with integer indices.
This function uses Tarjan's algorithm to compute the connected components
in `O(|V|+|E|)` (linear) time.
References
==========
.. [1] https://en.wikipedia.org/wiki/Connected_component_(graph_theory)
.. [2] https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm
See Also
========
sympy.utilities.iterables.strongly_connected_components
"""
# Duplicate edges both ways so that the graph is effectively undirected
# and return the strongly connected components:
V, E = G
E_undirected = []
for v1, v2 in E:
E_undirected.extend([(v1, v2), (v2, v1)])
return strongly_connected_components((V, E_undirected))
def rotate_left(x, y):
"""
Left rotates a list x by the number of steps specified
in y.
Examples
========
>>> from sympy.utilities.iterables import rotate_left
>>> a = [0, 1, 2]
>>> rotate_left(a, 1)
[1, 2, 0]
"""
if len(x) == 0:
return []
y = y % len(x)
return x[y:] + x[:y]
def rotate_right(x, y):
"""
Right rotates a list x by the number of steps specified
in y.
Examples
========
>>> from sympy.utilities.iterables import rotate_right
>>> a = [0, 1, 2]
>>> rotate_right(a, 1)
[2, 0, 1]
"""
if len(x) == 0:
return []
y = len(x) - y % len(x)
return x[y:] + x[:y]
def least_rotation(x, key=None):
'''
Returns the number of steps of left rotation required to
obtain lexicographically minimal string/list/tuple, etc.
Examples
========
>>> from sympy.utilities.iterables import least_rotation, rotate_left
>>> a = [3, 1, 5, 1, 2]
>>> least_rotation(a)
3
>>> rotate_left(a, _)
[1, 2, 3, 1, 5]
References
==========
.. [1] https://en.wikipedia.org/wiki/Lexicographically_minimal_string_rotation
'''
from sympy.functions.elementary.miscellaneous import Id
if key is None: key = Id
S = x + x # Concatenate string to it self to avoid modular arithmetic
f = [-1] * len(S) # Failure function
k = 0 # Least rotation of string found so far
for j in range(1,len(S)):
sj = S[j]
i = f[j-k-1]
while i != -1 and sj != S[k+i+1]:
if key(sj) < key(S[k+i+1]):
k = j-i-1
i = f[i]
if sj != S[k+i+1]:
if key(sj) < key(S[k]):
k = j
f[j-k] = -1
else:
f[j-k] = i+1
return k
def multiset_combinations(m, n, g=None):
"""
Return the unique combinations of size ``n`` from multiset ``m``.
Examples
========
>>> from sympy.utilities.iterables import multiset_combinations
>>> from itertools import combinations
>>> [''.join(i) for i in multiset_combinations('baby', 3)]
['abb', 'aby', 'bby']
>>> def count(f, s): return len(list(f(s, 3)))
The number of combinations depends on the number of letters; the
number of unique combinations depends on how the letters are
repeated.
>>> s1 = 'abracadabra'
>>> s2 = 'banana tree'
>>> count(combinations, s1), count(multiset_combinations, s1)
(165, 23)
>>> count(combinations, s2), count(multiset_combinations, s2)
(165, 54)
"""
from sympy.core.sorting import ordered
if g is None:
if isinstance(m, dict):
if any(as_int(v) < 0 for v in m.values()):
raise ValueError('counts cannot be negative')
N = sum(m.values())
if n > N:
return
g = [[k, m[k]] for k in ordered(m)]
else:
m = list(m)
N = len(m)
if n > N:
return
try:
m = multiset(m)
g = [(k, m[k]) for k in ordered(m)]
except TypeError:
m = list(ordered(m))
g = [list(i) for i in group(m, multiple=False)]
del m
else:
# not checking counts since g is intended for internal use
N = sum(v for k, v in g)
if n > N or not n:
yield []
else:
for i, (k, v) in enumerate(g):
if v >= n:
yield [k]*n
v = n - 1
for v in range(min(n, v), 0, -1):
for j in multiset_combinations(None, n - v, g[i + 1:]):
rv = [k]*v + j
if len(rv) == n:
yield rv
def multiset_permutations(m, size=None, g=None):
"""
Return the unique permutations of multiset ``m``.
Examples
========
>>> from sympy.utilities.iterables import multiset_permutations
>>> from sympy import factorial
>>> [''.join(i) for i in multiset_permutations('aab')]
['aab', 'aba', 'baa']
>>> factorial(len('banana'))
720
>>> len(list(multiset_permutations('banana')))
60
"""
from sympy.core.sorting import ordered
if g is None:
if isinstance(m, dict):
if any(as_int(v) < 0 for v in m.values()):
raise ValueError('counts cannot be negative')
g = [[k, m[k]] for k in ordered(m)]
else:
m = list(ordered(m))
g = [list(i) for i in group(m, multiple=False)]
del m
do = [gi for gi in g if gi[1] > 0]
SUM = sum([gi[1] for gi in do])
if not do or size is not None and (size > SUM or size < 1):
if not do and size is None or size == 0:
yield []
return
elif size == 1:
for k, v in do:
yield [k]
elif len(do) == 1:
k, v = do[0]
v = v if size is None else (size if size <= v else 0)
yield [k for i in range(v)]
elif all(v == 1 for k, v in do):
for p in permutations([k for k, v in do], size):
yield list(p)
else:
size = size if size is not None else SUM
for i, (k, v) in enumerate(do):
do[i][1] -= 1
for j in multiset_permutations(None, size - 1, do):
if j:
yield [k] + j
do[i][1] += 1
def _partition(seq, vector, m=None):
"""
Return the partition of seq as specified by the partition vector.
Examples
========
>>> from sympy.utilities.iterables import _partition
>>> _partition('abcde', [1, 0, 1, 2, 0])
[['b', 'e'], ['a', 'c'], ['d']]
Specifying the number of bins in the partition is optional:
>>> _partition('abcde', [1, 0, 1, 2, 0], 3)
[['b', 'e'], ['a', 'c'], ['d']]
The output of _set_partitions can be passed as follows:
>>> output = (3, [1, 0, 1, 2, 0])
>>> _partition('abcde', *output)
[['b', 'e'], ['a', 'c'], ['d']]
See Also
========
combinatorics.partitions.Partition.from_rgs
"""
if m is None:
m = max(vector) + 1
elif isinstance(vector, int): # entered as m, vector
vector, m = m, vector
p = [[] for i in range(m)]
for i, v in enumerate(vector):
p[v].append(seq[i])
return p
def _set_partitions(n):
"""Cycle through all partions of n elements, yielding the
current number of partitions, ``m``, and a mutable list, ``q``
such that ``element[i]`` is in part ``q[i]`` of the partition.
NOTE: ``q`` is modified in place and generally should not be changed
between function calls.
Examples
========
>>> from sympy.utilities.iterables import _set_partitions, _partition
>>> for m, q in _set_partitions(3):
... print('%s %s %s' % (m, q, _partition('abc', q, m)))
1 [0, 0, 0] [['a', 'b', 'c']]
2 [0, 0, 1] [['a', 'b'], ['c']]
2 [0, 1, 0] [['a', 'c'], ['b']]
2 [0, 1, 1] [['a'], ['b', 'c']]
3 [0, 1, 2] [['a'], ['b'], ['c']]
Notes
=====
This algorithm is similar to, and solves the same problem as,
Algorithm 7.2.1.5H, from volume 4A of Knuth's The Art of Computer
Programming. Knuth uses the term "restricted growth string" where
this code refers to a "partition vector". In each case, the meaning is
the same: the value in the ith element of the vector specifies to
which part the ith set element is to be assigned.
At the lowest level, this code implements an n-digit big-endian
counter (stored in the array q) which is incremented (with carries) to
get the next partition in the sequence. A special twist is that a
digit is constrained to be at most one greater than the maximum of all
the digits to the left of it. The array p maintains this maximum, so
that the code can efficiently decide when a digit can be incremented
in place or whether it needs to be reset to 0 and trigger a carry to
the next digit. The enumeration starts with all the digits 0 (which
corresponds to all the set elements being assigned to the same 0th
part), and ends with 0123...n, which corresponds to each set element
being assigned to a different, singleton, part.
This routine was rewritten to use 0-based lists while trying to
preserve the beauty and efficiency of the original algorithm.
References
==========
.. [1] Nijenhuis, Albert and Wilf, Herbert. (1978) Combinatorial Algorithms,
2nd Ed, p 91, algorithm "nexequ". Available online from
https://www.math.upenn.edu/~wilf/website/CombAlgDownld.html (viewed
November 17, 2012).
"""
p = [0]*n
q = [0]*n
nc = 1
yield nc, q
while nc != n:
m = n
while 1:
m -= 1
i = q[m]
if p[i] != 1:
break
q[m] = 0
i += 1
q[m] = i
m += 1
nc += m - n
p[0] += n - m
if i == nc:
p[nc] = 0
nc += 1
p[i - 1] -= 1
p[i] += 1
yield nc, q
def multiset_partitions(multiset, m=None):
"""
Return unique partitions of the given multiset (in list form).
If ``m`` is None, all multisets will be returned, otherwise only
partitions with ``m`` parts will be returned.
If ``multiset`` is an integer, a range [0, 1, ..., multiset - 1]
will be supplied.
Examples
========
>>> from sympy.utilities.iterables import multiset_partitions
>>> list(multiset_partitions([1, 2, 3, 4], 2))
[[[1, 2, 3], [4]], [[1, 2, 4], [3]], [[1, 2], [3, 4]],
[[1, 3, 4], [2]], [[1, 3], [2, 4]], [[1, 4], [2, 3]],
[[1], [2, 3, 4]]]
>>> list(multiset_partitions([1, 2, 3, 4], 1))
[[[1, 2, 3, 4]]]
Only unique partitions are returned and these will be returned in a
canonical order regardless of the order of the input:
>>> a = [1, 2, 2, 1]
>>> ans = list(multiset_partitions(a, 2))
>>> a.sort()
>>> list(multiset_partitions(a, 2)) == ans
True
>>> a = range(3, 1, -1)
>>> (list(multiset_partitions(a)) ==
... list(multiset_partitions(sorted(a))))
True
If m is omitted then all partitions will be returned:
>>> list(multiset_partitions([1, 1, 2]))
[[[1, 1, 2]], [[1, 1], [2]], [[1, 2], [1]], [[1], [1], [2]]]
>>> list(multiset_partitions([1]*3))
[[[1, 1, 1]], [[1], [1, 1]], [[1], [1], [1]]]
Counting
========
The number of partitions of a set is given by the bell number:
>>> from sympy import bell
>>> len(list(multiset_partitions(5))) == bell(5) == 52
True
The number of partitions of length k from a set of size n is given by the
Stirling Number of the 2nd kind:
>>> from sympy.functions.combinatorial.numbers import stirling
>>> stirling(5, 2) == len(list(multiset_partitions(5, 2))) == 15
True
These comments on counting apply to *sets*, not multisets.
Notes
=====
When all the elements are the same in the multiset, the order
of the returned partitions is determined by the ``partitions``
routine. If one is counting partitions then it is better to use
the ``nT`` function.
See Also
========
partitions
sympy.combinatorics.partitions.Partition
sympy.combinatorics.partitions.IntegerPartition
sympy.functions.combinatorial.numbers.nT
"""
# This function looks at the supplied input and dispatches to
# several special-case routines as they apply.
if isinstance(multiset, int):
n = multiset
if m and m > n:
return
multiset = list(range(n))
if m == 1:
yield [multiset[:]]
return
# If m is not None, it can sometimes be faster to use
# MultisetPartitionTraverser.enum_range() even for inputs
# which are sets. Since the _set_partitions code is quite
# fast, this is only advantageous when the overall set
# partitions outnumber those with the desired number of parts
# by a large factor. (At least 60.) Such a switch is not
# currently implemented.
for nc, q in _set_partitions(n):
if m is None or nc == m:
rv = [[] for i in range(nc)]
for i in range(n):
rv[q[i]].append(multiset[i])
yield rv
return
if len(multiset) == 1 and isinstance(multiset, str):
multiset = [multiset]
if not has_variety(multiset):
# Only one component, repeated n times. The resulting
# partitions correspond to partitions of integer n.
n = len(multiset)
if m and m > n:
return
if m == 1:
yield [multiset[:]]
return
x = multiset[:1]
for size, p in partitions(n, m, size=True):
if m is None or size == m:
rv = []
for k in sorted(p):
rv.extend([x*k]*p[k])
yield rv
else:
from sympy.core.sorting import ordered
multiset = list(ordered(multiset))
n = len(multiset)
if m and m > n:
return
if m == 1:
yield [multiset[:]]
return
# Split the information of the multiset into two lists -
# one of the elements themselves, and one (of the same length)
# giving the number of repeats for the corresponding element.
elements, multiplicities = zip(*group(multiset, False))
if len(elements) < len(multiset):
# General case - multiset with more than one distinct element
# and at least one element repeated more than once.
if m:
mpt = MultisetPartitionTraverser()
for state in mpt.enum_range(multiplicities, m-1, m):
yield list_visitor(state, elements)
else:
for state in multiset_partitions_taocp(multiplicities):
yield list_visitor(state, elements)
else:
# Set partitions case - no repeated elements. Pretty much
# same as int argument case above, with same possible, but
# currently unimplemented optimization for some cases when
# m is not None
for nc, q in _set_partitions(n):
if m is None or nc == m:
rv = [[] for i in range(nc)]
for i in range(n):
rv[q[i]].append(i)
yield [[multiset[j] for j in i] for i in rv]
def partitions(n, m=None, k=None, size=False):
"""Generate all partitions of positive integer, n.
Parameters
==========
m : integer (default gives partitions of all sizes)
limits number of parts in partition (mnemonic: m, maximum parts)
k : integer (default gives partitions number from 1 through n)
limits the numbers that are kept in the partition (mnemonic: k, keys)
size : bool (default False, only partition is returned)
when ``True`` then (M, P) is returned where M is the sum of the
multiplicities and P is the generated partition.
Each partition is represented as a dictionary, mapping an integer
to the number of copies of that integer in the partition. For example,
the first partition of 4 returned is {4: 1}, "4: one of them".
Examples
========
>>> from sympy.utilities.iterables import partitions
The numbers appearing in the partition (the key of the returned dict)
are limited with k:
>>> for p in partitions(6, k=2): # doctest: +SKIP
... print(p)
{2: 3}
{1: 2, 2: 2}
{1: 4, 2: 1}
{1: 6}
The maximum number of parts in the partition (the sum of the values in
the returned dict) are limited with m (default value, None, gives
partitions from 1 through n):
>>> for p in partitions(6, m=2): # doctest: +SKIP
... print(p)
...
{6: 1}
{1: 1, 5: 1}
{2: 1, 4: 1}
{3: 2}
References
==========
.. [1] modified from Tim Peter's version to allow for k and m values:
http://code.activestate.com/recipes/218332-generator-for-integer-partitions/
See Also
========
sympy.combinatorics.partitions.Partition
sympy.combinatorics.partitions.IntegerPartition
"""
if (n <= 0 or
m is not None and m < 1 or
k is not None and k < 1 or
m and k and m*k < n):
# the empty set is the only way to handle these inputs
# and returning {} to represent it is consistent with
# the counting convention, e.g. nT(0) == 1.
if size:
yield 0, {}
else:
yield {}
return
if m is None:
m = n
else:
m = min(m, n)
k = min(k or n, n)
n, m, k = as_int(n), as_int(m), as_int(k)
q, r = divmod(n, k)
ms = {k: q}
keys = [k] # ms.keys(), from largest to smallest
if r:
ms[r] = 1
keys.append(r)
room = m - q - bool(r)
if size:
yield sum(ms.values()), ms.copy()
else:
yield ms.copy()
while keys != [1]:
# Reuse any 1's.
if keys[-1] == 1:
del keys[-1]
reuse = ms.pop(1)
room += reuse
else:
reuse = 0
while 1:
# Let i be the smallest key larger than 1. Reuse one
# instance of i.
i = keys[-1]
newcount = ms[i] = ms[i] - 1
reuse += i
if newcount == 0:
del keys[-1], ms[i]
room += 1
# Break the remainder into pieces of size i-1.
i -= 1
q, r = divmod(reuse, i)
need = q + bool(r)
if need > room:
if not keys:
return
continue
ms[i] = q
keys.append(i)
if r:
ms[r] = 1
keys.append(r)
break
room -= need
if size:
yield sum(ms.values()), ms.copy()
else:
yield ms.copy()
def ordered_partitions(n, m=None, sort=True):
"""Generates ordered partitions of integer ``n``.
Parameters
==========
m : integer (default None)
The default value gives partitions of all sizes else only
those with size m. In addition, if ``m`` is not None then
partitions are generated *in place* (see examples).
sort : bool (default True)
Controls whether partitions are
returned in sorted order when ``m`` is not None; when False,
the partitions are returned as fast as possible with elements
sorted, but when m|n the partitions will not be in
ascending lexicographical order.
Examples
========
>>> from sympy.utilities.iterables import ordered_partitions
All partitions of 5 in ascending lexicographical:
>>> for p in ordered_partitions(5):
... print(p)
[1, 1, 1, 1, 1]
[1, 1, 1, 2]
[1, 1, 3]
[1, 2, 2]
[1, 4]
[2, 3]
[5]
Only partitions of 5 with two parts:
>>> for p in ordered_partitions(5, 2):
... print(p)
[1, 4]
[2, 3]
When ``m`` is given, a given list objects will be used more than
once for speed reasons so you will not see the correct partitions
unless you make a copy of each as it is generated:
>>> [p for p in ordered_partitions(7, 3)]
[[1, 1, 1], [1, 1, 1], [1, 1, 1], [2, 2, 2]]
>>> [list(p) for p in ordered_partitions(7, 3)]
[[1, 1, 5], [1, 2, 4], [1, 3, 3], [2, 2, 3]]
When ``n`` is a multiple of ``m``, the elements are still sorted
but the partitions themselves will be *unordered* if sort is False;
the default is to return them in ascending lexicographical order.
>>> for p in ordered_partitions(6, 2):
... print(p)
[1, 5]
[2, 4]
[3, 3]
But if speed is more important than ordering, sort can be set to
False:
>>> for p in ordered_partitions(6, 2, sort=False):
... print(p)
[1, 5]
[3, 3]
[2, 4]
References
==========
.. [1] Generating Integer Partitions, [online],
Available: https://jeromekelleher.net/generating-integer-partitions.html
.. [2] Jerome Kelleher and Barry O'Sullivan, "Generating All
Partitions: A Comparison Of Two Encodings", [online],
Available: https://arxiv.org/pdf/0909.2331v2.pdf
"""
if n < 1 or m is not None and m < 1:
# the empty set is the only way to handle these inputs
# and returning {} to represent it is consistent with
# the counting convention, e.g. nT(0) == 1.
yield []
return
if m is None:
# The list `a`'s leading elements contain the partition in which
# y is the biggest element and x is either the same as y or the
# 2nd largest element; v and w are adjacent element indices
# to which x and y are being assigned, respectively.
a = [1]*n
y = -1
v = n
while v > 0:
v -= 1
x = a[v] + 1
while y >= 2 * x:
a[v] = x
y -= x
v += 1
w = v + 1
while x <= y:
a[v] = x
a[w] = y
yield a[:w + 1]
x += 1
y -= 1
a[v] = x + y
y = a[v] - 1
yield a[:w]
elif m == 1:
yield [n]
elif n == m:
yield [1]*n
else:
# recursively generate partitions of size m
for b in range(1, n//m + 1):
a = [b]*m
x = n - b*m
if not x:
if sort:
yield a
elif not sort and x <= m:
for ax in ordered_partitions(x, sort=False):
mi = len(ax)
a[-mi:] = [i + b for i in ax]
yield a
a[-mi:] = [b]*mi
else:
for mi in range(1, m):
for ax in ordered_partitions(x, mi, sort=True):
a[-mi:] = [i + b for i in ax]
yield a
a[-mi:] = [b]*mi
def binary_partitions(n):
"""
Generates the binary partition of n.
A binary partition consists only of numbers that are
powers of two. Each step reduces a `2^{k+1}` to `2^k` and
`2^k`. Thus 16 is converted to 8 and 8.
Examples
========
>>> from sympy.utilities.iterables import binary_partitions
>>> for i in binary_partitions(5):
... print(i)
...
[4, 1]
[2, 2, 1]
[2, 1, 1, 1]
[1, 1, 1, 1, 1]
References
==========
.. [1] TAOCP 4, section 7.2.1.5, problem 64
"""
from math import ceil, log
power = int(2**(ceil(log(n, 2))))
acc = 0
partition = []
while power:
if acc + power <= n:
partition.append(power)
acc += power
power >>= 1
last_num = len(partition) - 1 - (n & 1)
while last_num >= 0:
yield partition
if partition[last_num] == 2:
partition[last_num] = 1
partition.append(1)
last_num -= 1
continue
partition.append(1)
partition[last_num] >>= 1
x = partition[last_num + 1] = partition[last_num]
last_num += 1
while x > 1:
if x <= len(partition) - last_num - 1:
del partition[-x + 1:]
last_num += 1
partition[last_num] = x
else:
x >>= 1
yield [1]*n
def has_dups(seq):
"""Return True if there are any duplicate elements in ``seq``.
Examples
========
>>> from sympy import has_dups, Dict, Set
>>> has_dups((1, 2, 1))
True
>>> has_dups(range(3))
False
>>> all(has_dups(c) is False for c in (set(), Set(), dict(), Dict()))
True
"""
from sympy.core.containers import Dict
from sympy.sets.sets import Set
if isinstance(seq, (dict, set, Dict, Set)):
return False
unique = set()
try:
return any(True for s in seq if s in unique or unique.add(s))
except TypeError:
return len(seq) != len(list(uniq(seq)))
def has_variety(seq):
"""Return True if there are any different elements in ``seq``.
Examples
========
>>> from sympy import has_variety
>>> has_variety((1, 2, 1))
True
>>> has_variety((1, 1, 1))
False
"""
for i, s in enumerate(seq):
if i == 0:
sentinel = s
else:
if s != sentinel:
return True
return False
def uniq(seq, result=None):
"""
Yield unique elements from ``seq`` as an iterator. The second
parameter ``result`` is used internally; it is not necessary
to pass anything for this.
Note: changing the sequence during iteration will raise a
RuntimeError if the size of the sequence is known; if you pass
an iterator and advance the iterator you will change the
output of this routine but there will be no warning.
Examples
========
>>> from sympy.utilities.iterables import uniq
>>> dat = [1, 4, 1, 5, 4, 2, 1, 2]
>>> type(uniq(dat)) in (list, tuple)
False
>>> list(uniq(dat))
[1, 4, 5, 2]
>>> list(uniq(x for x in dat))
[1, 4, 5, 2]
>>> list(uniq([[1], [2, 1], [1]]))
[[1], [2, 1]]
"""
try:
n = len(seq)
except TypeError:
n = None
def check():
# check that size of seq did not change during iteration;
# if n == None the object won't support size changing, e.g.
# an iterator can't be changed
if n is not None and len(seq) != n:
raise RuntimeError('sequence changed size during iteration')
try:
seen = set()
result = result or []
for i, s in enumerate(seq):
if not (s in seen or seen.add(s)):
yield s
check()
except TypeError:
if s not in result:
yield s
check()
result.append(s)
if hasattr(seq, '__getitem__'):
yield from uniq(seq[i + 1:], result)
else:
yield from uniq(seq, result)
def generate_bell(n):
"""Return permutations of [0, 1, ..., n - 1] such that each permutation
differs from the last by the exchange of a single pair of neighbors.
The ``n!`` permutations are returned as an iterator. In order to obtain
the next permutation from a random starting permutation, use the
``next_trotterjohnson`` method of the Permutation class (which generates
the same sequence in a different manner).
Examples
========
>>> from itertools import permutations
>>> from sympy.utilities.iterables import generate_bell
>>> from sympy import zeros, Matrix
This is the sort of permutation used in the ringing of physical bells,
and does not produce permutations in lexicographical order. Rather, the
permutations differ from each other by exactly one inversion, and the
position at which the swapping occurs varies periodically in a simple
fashion. Consider the first few permutations of 4 elements generated
by ``permutations`` and ``generate_bell``:
>>> list(permutations(range(4)))[:5]
[(0, 1, 2, 3), (0, 1, 3, 2), (0, 2, 1, 3), (0, 2, 3, 1), (0, 3, 1, 2)]
>>> list(generate_bell(4))[:5]
[(0, 1, 2, 3), (0, 1, 3, 2), (0, 3, 1, 2), (3, 0, 1, 2), (3, 0, 2, 1)]
Notice how the 2nd and 3rd lexicographical permutations have 3 elements
out of place whereas each "bell" permutation always has only two
elements out of place relative to the previous permutation (and so the
signature (+/-1) of a permutation is opposite of the signature of the
previous permutation).
How the position of inversion varies across the elements can be seen
by tracing out where the largest number appears in the permutations:
>>> m = zeros(4, 24)
>>> for i, p in enumerate(generate_bell(4)):
... m[:, i] = Matrix([j - 3 for j in list(p)]) # make largest zero
>>> m.print_nonzero('X')
[XXX XXXXXX XXXXXX XXX]
[XX XX XXXX XX XXXX XX XX]
[X XXXX XX XXXX XX XXXX X]
[ XXXXXX XXXXXX XXXXXX ]
See Also
========
sympy.combinatorics.permutations.Permutation.next_trotterjohnson
References
==========
.. [1] https://en.wikipedia.org/wiki/Method_ringing
.. [2] https://stackoverflow.com/questions/4856615/recursive-permutation/4857018
.. [3] http://programminggeeks.com/bell-algorithm-for-permutation/
.. [4] https://en.wikipedia.org/wiki/Steinhaus%E2%80%93Johnson%E2%80%93Trotter_algorithm
.. [5] Generating involutions, derangements, and relatives by ECO
Vincent Vajnovszki, DMTCS vol 1 issue 12, 2010
"""
n = as_int(n)
if n < 1:
raise ValueError('n must be a positive integer')
if n == 1:
yield (0,)
elif n == 2:
yield (0, 1)
yield (1, 0)
elif n == 3:
yield from [(0, 1, 2), (0, 2, 1), (2, 0, 1), (2, 1, 0), (1, 2, 0), (1, 0, 2)]
else:
m = n - 1
op = [0] + [-1]*m
l = list(range(n))
while True:
yield tuple(l)
# find biggest element with op
big = None, -1 # idx, value
for i in range(n):
if op[i] and l[i] > big[1]:
big = i, l[i]
i, _ = big
if i is None:
break # there are no ops left
# swap it with neighbor in the indicated direction
j = i + op[i]
l[i], l[j] = l[j], l[i]
op[i], op[j] = op[j], op[i]
# if it landed at the end or if the neighbor in the same
# direction is bigger then turn off op
if j == 0 or j == m or l[j + op[j]] > l[j]:
op[j] = 0
# any element bigger to the left gets +1 op
for i in range(j):
if l[i] > l[j]:
op[i] = 1
# any element bigger to the right gets -1 op
for i in range(j + 1, n):
if l[i] > l[j]:
op[i] = -1
def generate_involutions(n):
"""
Generates involutions.
An involution is a permutation that when multiplied
by itself equals the identity permutation. In this
implementation the involutions are generated using
Fixed Points.
Alternatively, an involution can be considered as
a permutation that does not contain any cycles with
a length that is greater than two.
Examples
========
>>> from sympy.utilities.iterables import generate_involutions
>>> list(generate_involutions(3))
[(0, 1, 2), (0, 2, 1), (1, 0, 2), (2, 1, 0)]
>>> len(list(generate_involutions(4)))
10
References
==========
.. [1] http://mathworld.wolfram.com/PermutationInvolution.html
"""
idx = list(range(n))
for p in permutations(idx):
for i in idx:
if p[p[i]] != i:
break
else:
yield p
def multiset_derangements(s):
"""Generate derangements of the elements of s *in place*.
Examples
========
>>> from sympy.utilities.iterables import multiset_derangements, uniq
Because the derangements of multisets (not sets) are generated
in place, copies of the return value must be made if a collection
of derangements is desired or else all values will be the same:
>>> list(uniq([i for i in multiset_derangements('1233')]))
[[None, None, None, None]]
>>> [i.copy() for i in multiset_derangements('1233')]
[['3', '3', '1', '2'], ['3', '3', '2', '1']]
>>> [''.join(i) for i in multiset_derangements('1233')]
['3312', '3321']
"""
from sympy.core.sorting import ordered
# create multiset dictionary of hashable elements or else
# remap elements to integers
try:
ms = multiset(s)
except TypeError:
# give each element a canonical integer value
key = dict(enumerate(ordered(uniq(s))))
h = []
for si in s:
for k in key:
if key[k] == si:
h.append(k)
break
for i in multiset_derangements(h):
yield [key[j] for j in i]
return
mx = max(ms.values()) # max repetition of any element
n = len(s) # the number of elements
## special cases
# 1) one element has more than half the total cardinality of s: no
# derangements are possible.
if mx*2 > n:
return
# 2) all elements appear once: singletons
if len(ms) == n:
yield from _set_derangements(s)
return
# find the first element that is repeated the most to place
# in the following two special cases where the selection
# is unambiguous: either there are two elements with multiplicity
# of mx or else there is only one with multiplicity mx
for M in ms:
if ms[M] == mx:
break
inonM = [i for i in range(n) if s[i] != M] # location of non-M
iM = [i for i in range(n) if s[i] == M] # locations of M
rv = [None]*n
# 3) half are the same
if 2*mx == n:
# M goes into non-M locations
for i in inonM:
rv[i] = M
# permutations of non-M go to M locations
for p in multiset_permutations([s[i] for i in inonM]):
for i, pi in zip(iM, p):
rv[i] = pi
yield rv
# clean-up (and encourages proper use of routine)
rv[:] = [None]*n
return
# 4) single repeat covers all but 1 of the non-repeats:
# if there is one repeat then the multiset of the values
# of ms would be {mx: 1, 1: n - mx}, i.e. there would
# be n - mx + 1 values with the condition that n - 2*mx = 1
if n - 2*mx == 1 and len(ms.values()) == n - mx + 1:
for i, i1 in enumerate(inonM):
ifill = inonM[:i] + inonM[i+1:]
for j in ifill:
rv[j] = M
for p in permutations([s[j] for j in ifill]):
rv[i1] = s[i1]
for j, pi in zip(iM, p):
rv[j] = pi
k = i1
for j in iM:
rv[j], rv[k] = rv[k], rv[j]
yield rv
k = j
# clean-up (and encourages proper use of routine)
rv[:] = [None]*n
return
## general case is handled with 3 helpers:
# 1) `finish_derangements` will place the last two elements
# which have arbitrary multiplicities, e.g. for multiset
# {c: 3, a: 2, b: 2}, the last two elements are a and b
# 2) `iopen` will tell where a given element can be placed
# 3) `do` will recursively place elements into subsets of
# valid locations
def finish_derangements():
"""Place the last two elements into the partially completed
derangement, and yield the results.
"""
a = take[1][0] # penultimate element
a_ct = take[1][1]
b = take[0][0] # last element to be placed
b_ct = take[0][1]
# split the indexes of the not-already-assigned elemements of rv into
# three categories
forced_a = [] # positions which must have an a
forced_b = [] # positions which must have a b
open_free = [] # positions which could take either
for i in range(len(s)):
if rv[i] is None:
if s[i] == a:
forced_b.append(i)
elif s[i] == b:
forced_a.append(i)
else:
open_free.append(i)
if len(forced_a) > a_ct or len(forced_b) > b_ct:
# No derangement possible
return
for i in forced_a:
rv[i] = a
for i in forced_b:
rv[i] = b
for a_place in combinations(open_free, a_ct - len(forced_a)):
for a_pos in a_place:
rv[a_pos] = a
for i in open_free:
if rv[i] is None: # anything not in the subset is set to b
rv[i] = b
yield rv
# Clean up/undo the final placements
for i in open_free:
rv[i] = None
# additional cleanup - clear forced_a, forced_b
for i in forced_a:
rv[i] = None
for i in forced_b:
rv[i] = None
def iopen(v):
# return indices at which element v can be placed in rv:
# locations which are not already occupied if that location
# does not already contain v in the same location of s
return [i for i in range(n) if rv[i] is None and s[i] != v]
def do(j):
if j == 1:
# handle the last two elements (regardless of multiplicity)
# with a special method
yield from finish_derangements()
else:
# place the mx elements of M into a subset of places
# into which it can be replaced
M, mx = take[j]
for i in combinations(iopen(M), mx):
# place M
for ii in i:
rv[ii] = M
# recursively place the next element
yield from do(j - 1)
# mark positions where M was placed as once again
# open for placement of other elements
for ii in i:
rv[ii] = None
# process elements in order of canonically decreasing multiplicity
take = sorted(ms.items(), key=lambda x:(x[1], x[0]))
yield from do(len(take) - 1)
rv[:] = [None]*n
def random_derangement(t, choice=None, strict=True):
"""Return a list of elements in which none are in the same positions
as they were originally. If an element fills more than half of the positions
then an error will be raised since no derangement is possible. To obtain
a derangement of as many items as possible--with some of the most numerous
remaining in their original positions--pass `strict=False`. To produce a
pseudorandom derangment, pass a pseudorandom selector like `choice` (see
below).
Examples
========
>>> from sympy.utilities.iterables import random_derangement
>>> t = 'SymPy: a CAS in pure Python'
>>> d = random_derangement(t)
>>> all(i != j for i, j in zip(d, t))
True
A predictable result can be obtained by using a pseudorandom
generator for the choice:
>>> from sympy.core.random import seed, choice as c
>>> seed(1)
>>> d = [''.join(random_derangement(t, c)) for i in range(5)]
>>> assert len(set(d)) != 1 # we got different values
By reseeding, the same sequence can be obtained:
>>> seed(1)
>>> d2 = [''.join(random_derangement(t, c)) for i in range(5)]
>>> assert d == d2
"""
if choice is None:
import secrets
choice = secrets.choice
def shuffle(rv):
'''Knuth shuffle'''
for i in range(len(rv) - 1, 0, -1):
x = choice(rv[:i + 1])
j = rv.index(x)
rv[i], rv[j] = rv[j], rv[i]
def pick(rv, n):
'''shuffle rv and return the first n values
'''
shuffle(rv)
return rv[:n]
ms = multiset(t)
tot = len(t)
ms = sorted(ms.items(), key=lambda x: x[1])
# if there are not enough spaces for the most
# plentiful element to move to then some of them
# will have to stay in place
M, mx = ms[-1]
n = len(t)
xs = 2*mx - tot
if xs > 0:
if strict:
raise ValueError('no derangement possible')
opts = [i for (i, c) in enumerate(t) if c == ms[-1][0]]
pick(opts, xs)
stay = sorted(opts[:xs])
rv = list(t)
for i in reversed(stay):
rv.pop(i)
rv = random_derangement(rv, choice)
for i in stay:
rv.insert(i, ms[-1][0])
return ''.join(rv) if type(t) is str else rv
# the normal derangement calculated from here
if n == len(ms):
# approx 1/3 will succeed
rv = list(t)
while True:
shuffle(rv)
if all(i != j for i,j in zip(rv, t)):
break
else:
# general case
rv = [None]*n
while True:
j = 0
while j > -len(ms): # do most numerous first
j -= 1
e, c = ms[j]
opts = [i for i in range(n) if rv[i] is None and t[i] != e]
if len(opts) < c:
for i in range(n):
rv[i] = None
break # try again
pick(opts, c)
for i in range(c):
rv[opts[i]] = e
else:
return rv
return rv
def _set_derangements(s):
"""
yield derangements of items in ``s`` which are assumed to contain
no repeated elements
"""
if len(s) < 2:
return
if len(s) == 2:
yield [s[1], s[0]]
return
if len(s) == 3:
yield [s[1], s[2], s[0]]
yield [s[2], s[0], s[1]]
return
for p in permutations(s):
if not any(i == j for i, j in zip(p, s)):
yield list(p)
def generate_derangements(s):
"""
Return unique derangements of the elements of iterable ``s``.
Examples
========
>>> from sympy.utilities.iterables import generate_derangements
>>> list(generate_derangements([0, 1, 2]))
[[1, 2, 0], [2, 0, 1]]
>>> list(generate_derangements([0, 1, 2, 2]))
[[2, 2, 0, 1], [2, 2, 1, 0]]
>>> list(generate_derangements([0, 1, 1]))
[]
See Also
========
sympy.functions.combinatorial.factorials.subfactorial
"""
if not has_dups(s):
yield from _set_derangements(s)
else:
for p in multiset_derangements(s):
yield list(p)
def necklaces(n, k, free=False):
"""
A routine to generate necklaces that may (free=True) or may not
(free=False) be turned over to be viewed. The "necklaces" returned
are comprised of ``n`` integers (beads) with ``k`` different
values (colors). Only unique necklaces are returned.
Examples
========
>>> from sympy.utilities.iterables import necklaces, bracelets
>>> def show(s, i):
... return ''.join(s[j] for j in i)
The "unrestricted necklace" is sometimes also referred to as a
"bracelet" (an object that can be turned over, a sequence that can
be reversed) and the term "necklace" is used to imply a sequence
that cannot be reversed. So ACB == ABC for a bracelet (rotate and
reverse) while the two are different for a necklace since rotation
alone cannot make the two sequences the same.
(mnemonic: Bracelets can be viewed Backwards, but Not Necklaces.)
>>> B = [show('ABC', i) for i in bracelets(3, 3)]
>>> N = [show('ABC', i) for i in necklaces(3, 3)]
>>> set(N) - set(B)
{'ACB'}
>>> list(necklaces(4, 2))
[(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 1, 1),
(0, 1, 0, 1), (0, 1, 1, 1), (1, 1, 1, 1)]
>>> [show('.o', i) for i in bracelets(4, 2)]
['....', '...o', '..oo', '.o.o', '.ooo', 'oooo']
References
==========
.. [1] http://mathworld.wolfram.com/Necklace.html
"""
return uniq(minlex(i, directed=not free) for i in
variations(list(range(k)), n, repetition=True))
def bracelets(n, k):
"""Wrapper to necklaces to return a free (unrestricted) necklace."""
return necklaces(n, k, free=True)
def generate_oriented_forest(n):
"""
This algorithm generates oriented forests.
An oriented graph is a directed graph having no symmetric pair of directed
edges. A forest is an acyclic graph, i.e., it has no cycles. A forest can
also be described as a disjoint union of trees, which are graphs in which
any two vertices are connected by exactly one simple path.
Examples
========
>>> from sympy.utilities.iterables import generate_oriented_forest
>>> list(generate_oriented_forest(4))
[[0, 1, 2, 3], [0, 1, 2, 2], [0, 1, 2, 1], [0, 1, 2, 0], \
[0, 1, 1, 1], [0, 1, 1, 0], [0, 1, 0, 1], [0, 1, 0, 0], [0, 0, 0, 0]]
References
==========
.. [1] T. Beyer and S.M. Hedetniemi: constant time generation of
rooted trees, SIAM J. Computing Vol. 9, No. 4, November 1980
.. [2] https://stackoverflow.com/questions/1633833/oriented-forest-taocp-algorithm-in-python
"""
P = list(range(-1, n))
while True:
yield P[1:]
if P[n] > 0:
P[n] = P[P[n]]
else:
for p in range(n - 1, 0, -1):
if P[p] != 0:
target = P[p] - 1
for q in range(p - 1, 0, -1):
if P[q] == target:
break
offset = p - q
for i in range(p, n + 1):
P[i] = P[i - offset]
break
else:
break
def minlex(seq, directed=True, key=None):
r"""
Return the rotation of the sequence in which the lexically smallest
elements appear first, e.g. `cba \rightarrow acb`.
The sequence returned is a tuple, unless the input sequence is a string
in which case a string is returned.
If ``directed`` is False then the smaller of the sequence and the
reversed sequence is returned, e.g. `cba \rightarrow abc`.
If ``key`` is not None then it is used to extract a comparison key from each element in iterable.
Examples
========
>>> from sympy.combinatorics.polyhedron import minlex
>>> minlex((1, 2, 0))
(0, 1, 2)
>>> minlex((1, 0, 2))
(0, 2, 1)
>>> minlex((1, 0, 2), directed=False)
(0, 1, 2)
>>> minlex('11010011000', directed=True)
'00011010011'
>>> minlex('11010011000', directed=False)
'00011001011'
>>> minlex(('bb', 'aaa', 'c', 'a'))
('a', 'bb', 'aaa', 'c')
>>> minlex(('bb', 'aaa', 'c', 'a'), key=len)
('c', 'a', 'bb', 'aaa')
"""
from sympy.functions.elementary.miscellaneous import Id
if key is None: key = Id
best = rotate_left(seq, least_rotation(seq, key=key))
if not directed:
rseq = seq[::-1]
rbest = rotate_left(rseq, least_rotation(rseq, key=key))
best = min(best, rbest, key=key)
# Convert to tuple, unless we started with a string.
return tuple(best) if not isinstance(seq, str) else best
def runs(seq, op=gt):
"""Group the sequence into lists in which successive elements
all compare the same with the comparison operator, ``op``:
op(seq[i + 1], seq[i]) is True from all elements in a run.
Examples
========
>>> from sympy.utilities.iterables import runs
>>> from operator import ge
>>> runs([0, 1, 2, 2, 1, 4, 3, 2, 2])
[[0, 1, 2], [2], [1, 4], [3], [2], [2]]
>>> runs([0, 1, 2, 2, 1, 4, 3, 2, 2], op=ge)
[[0, 1, 2, 2], [1, 4], [3], [2, 2]]
"""
cycles = []
seq = iter(seq)
try:
run = [next(seq)]
except StopIteration:
return []
while True:
try:
ei = next(seq)
except StopIteration:
break
if op(ei, run[-1]):
run.append(ei)
continue
else:
cycles.append(run)
run = [ei]
if run:
cycles.append(run)
return cycles
def kbins(l, k, ordered=None):
"""
Return sequence ``l`` partitioned into ``k`` bins.
Examples
========
The default is to give the items in the same order, but grouped
into k partitions without any reordering:
>>> from sympy.utilities.iterables import kbins
>>> for p in kbins(list(range(5)), 2):
... print(p)
...
[[0], [1, 2, 3, 4]]
[[0, 1], [2, 3, 4]]
[[0, 1, 2], [3, 4]]
[[0, 1, 2, 3], [4]]
The ``ordered`` flag is either None (to give the simple partition
of the elements) or is a 2 digit integer indicating whether the order of
the bins and the order of the items in the bins matters. Given::
A = [[0], [1, 2]]
B = [[1, 2], [0]]
C = [[2, 1], [0]]
D = [[0], [2, 1]]
the following values for ``ordered`` have the shown meanings::
00 means A == B == C == D
01 means A == B
10 means A == D
11 means A == A
>>> for ordered_flag in [None, 0, 1, 10, 11]:
... print('ordered = %s' % ordered_flag)
... for p in kbins(list(range(3)), 2, ordered=ordered_flag):
... print(' %s' % p)
...
ordered = None
[[0], [1, 2]]
[[0, 1], [2]]
ordered = 0
[[0, 1], [2]]
[[0, 2], [1]]
[[0], [1, 2]]
ordered = 1
[[0], [1, 2]]
[[0], [2, 1]]
[[1], [0, 2]]
[[1], [2, 0]]
[[2], [0, 1]]
[[2], [1, 0]]
ordered = 10
[[0, 1], [2]]
[[2], [0, 1]]
[[0, 2], [1]]
[[1], [0, 2]]
[[0], [1, 2]]
[[1, 2], [0]]
ordered = 11
[[0], [1, 2]]
[[0, 1], [2]]
[[0], [2, 1]]
[[0, 2], [1]]
[[1], [0, 2]]
[[1, 0], [2]]
[[1], [2, 0]]
[[1, 2], [0]]
[[2], [0, 1]]
[[2, 0], [1]]
[[2], [1, 0]]
[[2, 1], [0]]
See Also
========
partitions, multiset_partitions
"""
def partition(lista, bins):
# EnricoGiampieri's partition generator from
# https://stackoverflow.com/questions/13131491/
# partition-n-items-into-k-bins-in-python-lazily
if len(lista) == 1 or bins == 1:
yield [lista]
elif len(lista) > 1 and bins > 1:
for i in range(1, len(lista)):
for part in partition(lista[i:], bins - 1):
if len([lista[:i]] + part) == bins:
yield [lista[:i]] + part
if ordered is None:
yield from partition(l, k)
elif ordered == 11:
for pl in multiset_permutations(l):
pl = list(pl)
yield from partition(pl, k)
elif ordered == 00:
yield from multiset_partitions(l, k)
elif ordered == 10:
for p in multiset_partitions(l, k):
for perm in permutations(p):
yield list(perm)
elif ordered == 1:
for kgot, p in partitions(len(l), k, size=True):
if kgot != k:
continue
for li in multiset_permutations(l):
rv = []
i = j = 0
li = list(li)
for size, multiplicity in sorted(p.items()):
for m in range(multiplicity):
j = i + size
rv.append(li[i: j])
i = j
yield rv
else:
raise ValueError(
'ordered must be one of 00, 01, 10 or 11, not %s' % ordered)
def permute_signs(t):
"""Return iterator in which the signs of non-zero elements
of t are permuted.
Examples
========
>>> from sympy.utilities.iterables import permute_signs
>>> list(permute_signs((0, 1, 2)))
[(0, 1, 2), (0, -1, 2), (0, 1, -2), (0, -1, -2)]
"""
for signs in product(*[(1, -1)]*(len(t) - t.count(0))):
signs = list(signs)
yield type(t)([i*signs.pop() if i else i for i in t])
def signed_permutations(t):
"""Return iterator in which the signs of non-zero elements
of t and the order of the elements are permuted.
Examples
========
>>> from sympy.utilities.iterables import signed_permutations
>>> list(signed_permutations((0, 1, 2)))
[(0, 1, 2), (0, -1, 2), (0, 1, -2), (0, -1, -2), (0, 2, 1),
(0, -2, 1), (0, 2, -1), (0, -2, -1), (1, 0, 2), (-1, 0, 2),
(1, 0, -2), (-1, 0, -2), (1, 2, 0), (-1, 2, 0), (1, -2, 0),
(-1, -2, 0), (2, 0, 1), (-2, 0, 1), (2, 0, -1), (-2, 0, -1),
(2, 1, 0), (-2, 1, 0), (2, -1, 0), (-2, -1, 0)]
"""
return (type(t)(i) for j in permutations(t)
for i in permute_signs(j))
def rotations(s, dir=1):
"""Return a generator giving the items in s as list where
each subsequent list has the items rotated to the left (default)
or right (``dir=-1``) relative to the previous list.
Examples
========
>>> from sympy import rotations
>>> list(rotations([1,2,3]))
[[1, 2, 3], [2, 3, 1], [3, 1, 2]]
>>> list(rotations([1,2,3], -1))
[[1, 2, 3], [3, 1, 2], [2, 3, 1]]
"""
seq = list(s)
for i in range(len(seq)):
yield seq
seq = rotate_left(seq, dir)
def roundrobin(*iterables):
"""roundrobin recipe taken from itertools documentation:
https://docs.python.org/3/library/itertools.html#recipes
roundrobin('ABC', 'D', 'EF') --> A D E B F C
Recipe credited to George Sakkis
"""
nexts = cycle(iter(it).__next__ for it in iterables)
pending = len(iterables)
while pending:
try:
for nxt in nexts:
yield nxt()
except StopIteration:
pending -= 1
nexts = cycle(islice(nexts, pending))
class NotIterable:
"""
Use this as mixin when creating a class which is not supposed to
return true when iterable() is called on its instances because
calling list() on the instance, for example, would result in
an infinite loop.
"""
pass
def iterable(i, exclude=(str, dict, NotIterable)):
"""
Return a boolean indicating whether ``i`` is SymPy iterable.
True also indicates that the iterator is finite, e.g. you can
call list(...) on the instance.
When SymPy is working with iterables, it is almost always assuming
that the iterable is not a string or a mapping, so those are excluded
by default. If you want a pure Python definition, make exclude=None. To
exclude multiple items, pass them as a tuple.
You can also set the _iterable attribute to True or False on your class,
which will override the checks here, including the exclude test.
As a rule of thumb, some SymPy functions use this to check if they should
recursively map over an object. If an object is technically iterable in
the Python sense but does not desire this behavior (e.g., because its
iteration is not finite, or because iteration might induce an unwanted
computation), it should disable it by setting the _iterable attribute to False.
See also: is_sequence
Examples
========
>>> from sympy.utilities.iterables import iterable
>>> from sympy import Tuple
>>> things = [[1], (1,), set([1]), Tuple(1), (j for j in [1, 2]), {1:2}, '1', 1]
>>> for i in things:
... print('%s %s' % (iterable(i), type(i)))
True <... 'list'>
True <... 'tuple'>
True <... 'set'>
True <class 'sympy.core.containers.Tuple'>
True <... 'generator'>
False <... 'dict'>
False <... 'str'>
False <... 'int'>
>>> iterable({}, exclude=None)
True
>>> iterable({}, exclude=str)
True
>>> iterable("no", exclude=str)
False
"""
if hasattr(i, '_iterable'):
return i._iterable
try:
iter(i)
except TypeError:
return False
if exclude:
return not isinstance(i, exclude)
return True
def is_sequence(i, include=None):
"""
Return a boolean indicating whether ``i`` is a sequence in the SymPy
sense. If anything that fails the test below should be included as
being a sequence for your application, set 'include' to that object's
type; multiple types should be passed as a tuple of types.
Note: although generators can generate a sequence, they often need special
handling to make sure their elements are captured before the generator is
exhausted, so these are not included by default in the definition of a
sequence.
See also: iterable
Examples
========
>>> from sympy.utilities.iterables import is_sequence
>>> from types import GeneratorType
>>> is_sequence([])
True
>>> is_sequence(set())
False
>>> is_sequence('abc')
False
>>> is_sequence('abc', include=str)
True
>>> generator = (c for c in 'abc')
>>> is_sequence(generator)
False
>>> is_sequence(generator, include=(str, GeneratorType))
True
"""
return (hasattr(i, '__getitem__') and
iterable(i) or
bool(include) and
isinstance(i, include))
@deprecated(
"""
Using postorder_traversal from the sympy.utilities.iterables submodule is
deprecated.
Instead, use postorder_traversal from the top-level sympy namespace, like
sympy.postorder_traversal
""",
deprecated_since_version="1.10",
active_deprecations_target="deprecated-traversal-functions-moved")
def postorder_traversal(node, keys=None):
from sympy.core.traversal import postorder_traversal as _postorder_traversal
return _postorder_traversal(node, keys=keys)
@deprecated(
"""
Using interactive_traversal from the sympy.utilities.iterables submodule
is deprecated.
Instead, use interactive_traversal from the top-level sympy namespace,
like
sympy.interactive_traversal
""",
deprecated_since_version="1.10",
active_deprecations_target="deprecated-traversal-functions-moved")
def interactive_traversal(expr):
from sympy.interactive.traversal import interactive_traversal as _interactive_traversal
return _interactive_traversal(expr)
@deprecated(
"""
Importing default_sort_key from sympy.utilities.iterables is deprecated.
Use from sympy import default_sort_key instead.
""",
deprecated_since_version="1.10",
active_deprecations_target="deprecated-sympy-core-compatibility",
)
def default_sort_key(*args, **kwargs):
from sympy import default_sort_key as _default_sort_key
return _default_sort_key(*args, **kwargs)
@deprecated(
"""
Importing default_sort_key from sympy.utilities.iterables is deprecated.
Use from sympy import default_sort_key instead.
""",
deprecated_since_version="1.10",
active_deprecations_target="deprecated-sympy-core-compatibility",
)
def ordered(*args, **kwargs):
from sympy import ordered as _ordered
return _ordered(*args, **kwargs)
|
7b6dbe113d4ae14cf6e13b39d9262ab1981d037bf931ac5a85e63256b2572dd8 | """
A Printer for generating readable representation of most SymPy classes.
"""
from typing import Any, Dict as tDict
from sympy.core import S, Rational, Pow, Basic, Mul, Number
from sympy.core.mul import _keep_coeff
from sympy.core.relational import Relational
from sympy.core.sorting import default_sort_key
from sympy.core.sympify import SympifyError
from sympy.utilities.iterables import sift
from .precedence import precedence, PRECEDENCE
from .printer import Printer, print_function
from mpmath.libmp import prec_to_dps, to_str as mlib_to_str
class StrPrinter(Printer):
printmethod = "_sympystr"
_default_settings = {
"order": None,
"full_prec": "auto",
"sympy_integers": False,
"abbrev": False,
"perm_cyclic": True,
"min": None,
"max": None,
} # type: tDict[str, Any]
_relationals = {} # type: tDict[str, str]
def parenthesize(self, item, level, strict=False):
if (precedence(item) < level) or ((not strict) and precedence(item) <= level):
return "(%s)" % self._print(item)
else:
return self._print(item)
def stringify(self, args, sep, level=0):
return sep.join([self.parenthesize(item, level) for item in args])
def emptyPrinter(self, expr):
if isinstance(expr, str):
return expr
elif isinstance(expr, Basic):
return repr(expr)
else:
return str(expr)
def _print_Add(self, expr, order=None):
terms = self._as_ordered_terms(expr, order=order)
prec = precedence(expr)
l = []
for term in terms:
t = self._print(term)
if t.startswith('-') and not term.is_Add:
sign = "-"
t = t[1:]
else:
sign = "+"
if precedence(term) < prec or term.is_Add:
l.extend([sign, "(%s)" % t])
else:
l.extend([sign, t])
sign = l.pop(0)
if sign == '+':
sign = ""
return sign + ' '.join(l)
def _print_BooleanTrue(self, expr):
return "True"
def _print_BooleanFalse(self, expr):
return "False"
def _print_Not(self, expr):
return '~%s' %(self.parenthesize(expr.args[0],PRECEDENCE["Not"]))
def _print_And(self, expr):
args = list(expr.args)
for j, i in enumerate(args):
if isinstance(i, Relational) and (
i.canonical.rhs is S.NegativeInfinity):
args.insert(0, args.pop(j))
return self.stringify(args, " & ", PRECEDENCE["BitwiseAnd"])
def _print_Or(self, expr):
return self.stringify(expr.args, " | ", PRECEDENCE["BitwiseOr"])
def _print_Xor(self, expr):
return self.stringify(expr.args, " ^ ", PRECEDENCE["BitwiseXor"])
def _print_AppliedPredicate(self, expr):
return '%s(%s)' % (
self._print(expr.function), self.stringify(expr.arguments, ", "))
def _print_Basic(self, expr):
l = [self._print(o) for o in expr.args]
return expr.__class__.__name__ + "(%s)" % ", ".join(l)
def _print_BlockMatrix(self, B):
if B.blocks.shape == (1, 1):
self._print(B.blocks[0, 0])
return self._print(B.blocks)
def _print_Catalan(self, expr):
return 'Catalan'
def _print_ComplexInfinity(self, expr):
return 'zoo'
def _print_ConditionSet(self, s):
args = tuple([self._print(i) for i in (s.sym, s.condition)])
if s.base_set is S.UniversalSet:
return 'ConditionSet(%s, %s)' % args
args += (self._print(s.base_set),)
return 'ConditionSet(%s, %s, %s)' % args
def _print_Derivative(self, expr):
dexpr = expr.expr
dvars = [i[0] if i[1] == 1 else i for i in expr.variable_count]
return 'Derivative(%s)' % ", ".join(map(lambda arg: self._print(arg), [dexpr] + dvars))
def _print_dict(self, d):
keys = sorted(d.keys(), key=default_sort_key)
items = []
for key in keys:
item = "%s: %s" % (self._print(key), self._print(d[key]))
items.append(item)
return "{%s}" % ", ".join(items)
def _print_Dict(self, expr):
return self._print_dict(expr)
def _print_RandomDomain(self, d):
if hasattr(d, 'as_boolean'):
return 'Domain: ' + self._print(d.as_boolean())
elif hasattr(d, 'set'):
return ('Domain: ' + self._print(d.symbols) + ' in ' +
self._print(d.set))
else:
return 'Domain on ' + self._print(d.symbols)
def _print_Dummy(self, expr):
return '_' + expr.name
def _print_EulerGamma(self, expr):
return 'EulerGamma'
def _print_Exp1(self, expr):
return 'E'
def _print_ExprCondPair(self, expr):
return '(%s, %s)' % (self._print(expr.expr), self._print(expr.cond))
def _print_Function(self, expr):
return expr.func.__name__ + "(%s)" % self.stringify(expr.args, ", ")
def _print_GoldenRatio(self, expr):
return 'GoldenRatio'
def _print_Heaviside(self, expr):
# Same as _print_Function but uses pargs to suppress default 1/2 for
# 2nd args
return expr.func.__name__ + "(%s)" % self.stringify(expr.pargs, ", ")
def _print_TribonacciConstant(self, expr):
return 'TribonacciConstant'
def _print_ImaginaryUnit(self, expr):
return 'I'
def _print_Infinity(self, expr):
return 'oo'
def _print_Integral(self, expr):
def _xab_tostr(xab):
if len(xab) == 1:
return self._print(xab[0])
else:
return self._print((xab[0],) + tuple(xab[1:]))
L = ', '.join([_xab_tostr(l) for l in expr.limits])
return 'Integral(%s, %s)' % (self._print(expr.function), L)
def _print_Interval(self, i):
fin = 'Interval{m}({a}, {b})'
a, b, l, r = i.args
if a.is_infinite and b.is_infinite:
m = ''
elif a.is_infinite and not r:
m = ''
elif b.is_infinite and not l:
m = ''
elif not l and not r:
m = ''
elif l and r:
m = '.open'
elif l:
m = '.Lopen'
else:
m = '.Ropen'
return fin.format(**{'a': a, 'b': b, 'm': m})
def _print_AccumulationBounds(self, i):
return "AccumBounds(%s, %s)" % (self._print(i.min),
self._print(i.max))
def _print_Inverse(self, I):
return "%s**(-1)" % self.parenthesize(I.arg, PRECEDENCE["Pow"])
def _print_Lambda(self, obj):
expr = obj.expr
sig = obj.signature
if len(sig) == 1 and sig[0].is_symbol:
sig = sig[0]
return "Lambda(%s, %s)" % (self._print(sig), self._print(expr))
def _print_LatticeOp(self, expr):
args = sorted(expr.args, key=default_sort_key)
return expr.func.__name__ + "(%s)" % ", ".join(self._print(arg) for arg in args)
def _print_Limit(self, expr):
e, z, z0, dir = expr.args
if str(dir) == "+":
return "Limit(%s, %s, %s)" % tuple(map(self._print, (e, z, z0)))
else:
return "Limit(%s, %s, %s, dir='%s')" % tuple(map(self._print,
(e, z, z0, dir)))
def _print_list(self, expr):
return "[%s]" % self.stringify(expr, ", ")
def _print_List(self, expr):
return self._print_list(expr)
def _print_MatrixBase(self, expr):
return expr._format_str(self)
def _print_MatrixElement(self, expr):
return self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True) \
+ '[%s, %s]' % (self._print(expr.i), self._print(expr.j))
def _print_MatrixSlice(self, expr):
def strslice(x, dim):
x = list(x)
if x[2] == 1:
del x[2]
if x[0] == 0:
x[0] = ''
if x[1] == dim:
x[1] = ''
return ':'.join(map(lambda arg: self._print(arg), x))
return (self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True) + '[' +
strslice(expr.rowslice, expr.parent.rows) + ', ' +
strslice(expr.colslice, expr.parent.cols) + ']')
def _print_DeferredVector(self, expr):
return expr.name
def _print_Mul(self, expr):
prec = precedence(expr)
# Check for unevaluated Mul. In this case we need to make sure the
# identities are visible, multiple Rational factors are not combined
# etc so we display in a straight-forward form that fully preserves all
# args and their order.
args = expr.args
if args[0] is S.One or any(
isinstance(a, Number) or
a.is_Pow and all(ai.is_Integer for ai in a.args)
for a in args[1:]):
d, n = sift(args, lambda x:
isinstance(x, Pow) and bool(x.exp.as_coeff_Mul()[0] < 0),
binary=True)
for i, di in enumerate(d):
if di.exp.is_Number:
e = -di.exp
else:
dargs = list(di.exp.args)
dargs[0] = -dargs[0]
e = Mul._from_args(dargs)
d[i] = Pow(di.base, e, evaluate=False) if e - 1 else di.base
pre = []
# don't parenthesize first factor if negative
if n and not n[0].is_Add and n[0].could_extract_minus_sign():
pre = [self._print(n.pop(0))]
nfactors = pre + [self.parenthesize(a, prec, strict=False)
for a in n]
if not nfactors:
nfactors = ['1']
# don't parenthesize first of denominator unless singleton
if len(d) > 1 and d[0].could_extract_minus_sign():
pre = [self._print(d.pop(0))]
else:
pre = []
dfactors = pre + [self.parenthesize(a, prec, strict=False)
for a in d]
n = '*'.join(nfactors)
d = '*'.join(dfactors)
if len(dfactors) > 1:
return '%s/(%s)' % (n, d)
elif dfactors:
return '%s/%s' % (n, d)
return n
c, e = expr.as_coeff_Mul()
if c < 0:
expr = _keep_coeff(-c, e)
sign = "-"
else:
sign = ""
a = [] # items in the numerator
b = [] # items that are in the denominator (if any)
pow_paren = [] # Will collect all pow with more than one base element and exp = -1
if self.order not in ('old', 'none'):
args = expr.as_ordered_factors()
else:
# use make_args in case expr was something like -x -> x
args = Mul.make_args(expr)
# Gather args for numerator/denominator
def apow(i):
b, e = i.as_base_exp()
eargs = list(Mul.make_args(e))
if eargs[0] is S.NegativeOne:
eargs = eargs[1:]
else:
eargs[0] = -eargs[0]
e = Mul._from_args(eargs)
if isinstance(i, Pow):
return i.func(b, e, evaluate=False)
return i.func(e, evaluate=False)
for item in args:
if (item.is_commutative and
isinstance(item, Pow) and
bool(item.exp.as_coeff_Mul()[0] < 0)):
if item.exp is not S.NegativeOne:
b.append(apow(item))
else:
if (len(item.args[0].args) != 1 and
isinstance(item.base, (Mul, Pow))):
# To avoid situations like #14160
pow_paren.append(item)
b.append(item.base)
elif item.is_Rational and item is not S.Infinity:
if item.p != 1:
a.append(Rational(item.p))
if item.q != 1:
b.append(Rational(item.q))
else:
a.append(item)
a = a or [S.One]
a_str = [self.parenthesize(x, prec, strict=False) for x in a]
b_str = [self.parenthesize(x, prec, strict=False) for x in b]
# To parenthesize Pow with exp = -1 and having more than one Symbol
for item in pow_paren:
if item.base in b:
b_str[b.index(item.base)] = "(%s)" % b_str[b.index(item.base)]
if not b:
return sign + '*'.join(a_str)
elif len(b) == 1:
return sign + '*'.join(a_str) + "/" + b_str[0]
else:
return sign + '*'.join(a_str) + "/(%s)" % '*'.join(b_str)
def _print_MatMul(self, expr):
c, m = expr.as_coeff_mmul()
sign = ""
if c.is_number:
re, im = c.as_real_imag()
if im.is_zero and re.is_negative:
expr = _keep_coeff(-c, m)
sign = "-"
elif re.is_zero and im.is_negative:
expr = _keep_coeff(-c, m)
sign = "-"
return sign + '*'.join(
[self.parenthesize(arg, precedence(expr)) for arg in expr.args]
)
def _print_ElementwiseApplyFunction(self, expr):
return "{}.({})".format(
expr.function,
self._print(expr.expr),
)
def _print_NaN(self, expr):
return 'nan'
def _print_NegativeInfinity(self, expr):
return '-oo'
def _print_Order(self, expr):
if not expr.variables or all(p is S.Zero for p in expr.point):
if len(expr.variables) <= 1:
return 'O(%s)' % self._print(expr.expr)
else:
return 'O(%s)' % self.stringify((expr.expr,) + expr.variables, ', ', 0)
else:
return 'O(%s)' % self.stringify(expr.args, ', ', 0)
def _print_Ordinal(self, expr):
return expr.__str__()
def _print_Cycle(self, expr):
return expr.__str__()
def _print_Permutation(self, expr):
from sympy.combinatorics.permutations import Permutation, Cycle
from sympy.utilities.exceptions import sympy_deprecation_warning
perm_cyclic = Permutation.print_cyclic
if perm_cyclic is not None:
sympy_deprecation_warning(
f"""
Setting Permutation.print_cyclic is deprecated. Instead use
init_printing(perm_cyclic={perm_cyclic}).
""",
deprecated_since_version="1.6",
active_deprecations_target="deprecated-permutation-print_cyclic",
stacklevel=7,
)
else:
perm_cyclic = self._settings.get("perm_cyclic", True)
if perm_cyclic:
if not expr.size:
return '()'
# before taking Cycle notation, see if the last element is
# a singleton and move it to the head of the string
s = Cycle(expr)(expr.size - 1).__repr__()[len('Cycle'):]
last = s.rfind('(')
if not last == 0 and ',' not in s[last:]:
s = s[last:] + s[:last]
s = s.replace(',', '')
return s
else:
s = expr.support()
if not s:
if expr.size < 5:
return 'Permutation(%s)' % self._print(expr.array_form)
return 'Permutation([], size=%s)' % self._print(expr.size)
trim = self._print(expr.array_form[:s[-1] + 1]) + ', size=%s' % self._print(expr.size)
use = full = self._print(expr.array_form)
if len(trim) < len(full):
use = trim
return 'Permutation(%s)' % use
def _print_Subs(self, obj):
expr, old, new = obj.args
if len(obj.point) == 1:
old = old[0]
new = new[0]
return "Subs(%s, %s, %s)" % (
self._print(expr), self._print(old), self._print(new))
def _print_TensorIndex(self, expr):
return expr._print()
def _print_TensorHead(self, expr):
return expr._print()
def _print_Tensor(self, expr):
return expr._print()
def _print_TensMul(self, expr):
# prints expressions like "A(a)", "3*A(a)", "(1+x)*A(a)"
sign, args = expr._get_args_for_traditional_printer()
return sign + "*".join(
[self.parenthesize(arg, precedence(expr)) for arg in args]
)
def _print_TensAdd(self, expr):
return expr._print()
def _print_ArraySymbol(self, expr):
return self._print(expr.name)
def _print_ArrayElement(self, expr):
return "%s[%s]" % (
self.parenthesize(expr.name, PRECEDENCE["Func"], True), ", ".join([self._print(i) for i in expr.indices]))
def _print_PermutationGroup(self, expr):
p = [' %s' % self._print(a) for a in expr.args]
return 'PermutationGroup([\n%s])' % ',\n'.join(p)
def _print_Pi(self, expr):
return 'pi'
def _print_PolyRing(self, ring):
return "Polynomial ring in %s over %s with %s order" % \
(", ".join(map(lambda rs: self._print(rs), ring.symbols)),
self._print(ring.domain), self._print(ring.order))
def _print_FracField(self, field):
return "Rational function field in %s over %s with %s order" % \
(", ".join(map(lambda fs: self._print(fs), field.symbols)),
self._print(field.domain), self._print(field.order))
def _print_FreeGroupElement(self, elm):
return elm.__str__()
def _print_GaussianElement(self, poly):
return "(%s + %s*I)" % (poly.x, poly.y)
def _print_PolyElement(self, poly):
return poly.str(self, PRECEDENCE, "%s**%s", "*")
def _print_FracElement(self, frac):
if frac.denom == 1:
return self._print(frac.numer)
else:
numer = self.parenthesize(frac.numer, PRECEDENCE["Mul"], strict=True)
denom = self.parenthesize(frac.denom, PRECEDENCE["Atom"], strict=True)
return numer + "/" + denom
def _print_Poly(self, expr):
ATOM_PREC = PRECEDENCE["Atom"] - 1
terms, gens = [], [ self.parenthesize(s, ATOM_PREC) for s in expr.gens ]
for monom, coeff in expr.terms():
s_monom = []
for i, e in enumerate(monom):
if e > 0:
if e == 1:
s_monom.append(gens[i])
else:
s_monom.append(gens[i] + "**%d" % e)
s_monom = "*".join(s_monom)
if coeff.is_Add:
if s_monom:
s_coeff = "(" + self._print(coeff) + ")"
else:
s_coeff = self._print(coeff)
else:
if s_monom:
if coeff is S.One:
terms.extend(['+', s_monom])
continue
if coeff is S.NegativeOne:
terms.extend(['-', s_monom])
continue
s_coeff = self._print(coeff)
if not s_monom:
s_term = s_coeff
else:
s_term = s_coeff + "*" + s_monom
if s_term.startswith('-'):
terms.extend(['-', s_term[1:]])
else:
terms.extend(['+', s_term])
if terms[0] in ('-', '+'):
modifier = terms.pop(0)
if modifier == '-':
terms[0] = '-' + terms[0]
format = expr.__class__.__name__ + "(%s, %s"
from sympy.polys.polyerrors import PolynomialError
try:
format += ", modulus=%s" % expr.get_modulus()
except PolynomialError:
format += ", domain='%s'" % expr.get_domain()
format += ")"
for index, item in enumerate(gens):
if len(item) > 2 and (item[:1] == "(" and item[len(item) - 1:] == ")"):
gens[index] = item[1:len(item) - 1]
return format % (' '.join(terms), ', '.join(gens))
def _print_UniversalSet(self, p):
return 'UniversalSet'
def _print_AlgebraicNumber(self, expr):
if expr.is_aliased:
return self._print(expr.as_poly().as_expr())
else:
return self._print(expr.as_expr())
def _print_Pow(self, expr, rational=False):
"""Printing helper function for ``Pow``
Parameters
==========
rational : bool, optional
If ``True``, it will not attempt printing ``sqrt(x)`` or
``x**S.Half`` as ``sqrt``, and will use ``x**(1/2)``
instead.
See examples for additional details
Examples
========
>>> from sympy import sqrt, StrPrinter
>>> from sympy.abc import x
How ``rational`` keyword works with ``sqrt``:
>>> printer = StrPrinter()
>>> printer._print_Pow(sqrt(x), rational=True)
'x**(1/2)'
>>> printer._print_Pow(sqrt(x), rational=False)
'sqrt(x)'
>>> printer._print_Pow(1/sqrt(x), rational=True)
'x**(-1/2)'
>>> printer._print_Pow(1/sqrt(x), rational=False)
'1/sqrt(x)'
Notes
=====
``sqrt(x)`` is canonicalized as ``Pow(x, S.Half)`` in SymPy,
so there is no need of defining a separate printer for ``sqrt``.
Instead, it should be handled here as well.
"""
PREC = precedence(expr)
if expr.exp is S.Half and not rational:
return "sqrt(%s)" % self._print(expr.base)
if expr.is_commutative:
if -expr.exp is S.Half and not rational:
# Note: Don't test "expr.exp == -S.Half" here, because that will
# match -0.5, which we don't want.
return "%s/sqrt(%s)" % tuple(map(lambda arg: self._print(arg), (S.One, expr.base)))
if expr.exp is -S.One:
# Similarly to the S.Half case, don't test with "==" here.
return '%s/%s' % (self._print(S.One),
self.parenthesize(expr.base, PREC, strict=False))
e = self.parenthesize(expr.exp, PREC, strict=False)
if self.printmethod == '_sympyrepr' and expr.exp.is_Rational and expr.exp.q != 1:
# the parenthesized exp should be '(Rational(a, b))' so strip parens,
# but just check to be sure.
if e.startswith('(Rational'):
return '%s**%s' % (self.parenthesize(expr.base, PREC, strict=False), e[1:-1])
return '%s**%s' % (self.parenthesize(expr.base, PREC, strict=False), e)
def _print_UnevaluatedExpr(self, expr):
return self._print(expr.args[0])
def _print_MatPow(self, expr):
PREC = precedence(expr)
return '%s**%s' % (self.parenthesize(expr.base, PREC, strict=False),
self.parenthesize(expr.exp, PREC, strict=False))
def _print_Integer(self, expr):
if self._settings.get("sympy_integers", False):
return "S(%s)" % (expr)
return str(expr.p)
def _print_Integers(self, expr):
return 'Integers'
def _print_Naturals(self, expr):
return 'Naturals'
def _print_Naturals0(self, expr):
return 'Naturals0'
def _print_Rationals(self, expr):
return 'Rationals'
def _print_Reals(self, expr):
return 'Reals'
def _print_Complexes(self, expr):
return 'Complexes'
def _print_EmptySet(self, expr):
return 'EmptySet'
def _print_EmptySequence(self, expr):
return 'EmptySequence'
def _print_int(self, expr):
return str(expr)
def _print_mpz(self, expr):
return str(expr)
def _print_Rational(self, expr):
if expr.q == 1:
return str(expr.p)
else:
if self._settings.get("sympy_integers", False):
return "S(%s)/%s" % (expr.p, expr.q)
return "%s/%s" % (expr.p, expr.q)
def _print_PythonRational(self, expr):
if expr.q == 1:
return str(expr.p)
else:
return "%d/%d" % (expr.p, expr.q)
def _print_Fraction(self, expr):
if expr.denominator == 1:
return str(expr.numerator)
else:
return "%s/%s" % (expr.numerator, expr.denominator)
def _print_mpq(self, expr):
if expr.denominator == 1:
return str(expr.numerator)
else:
return "%s/%s" % (expr.numerator, expr.denominator)
def _print_Float(self, expr):
prec = expr._prec
if prec < 5:
dps = 0
else:
dps = prec_to_dps(expr._prec)
if self._settings["full_prec"] is True:
strip = False
elif self._settings["full_prec"] is False:
strip = True
elif self._settings["full_prec"] == "auto":
strip = self._print_level > 1
low = self._settings["min"] if "min" in self._settings else None
high = self._settings["max"] if "max" in self._settings else None
rv = mlib_to_str(expr._mpf_, dps, strip_zeros=strip, min_fixed=low, max_fixed=high)
if rv.startswith('-.0'):
rv = '-0.' + rv[3:]
elif rv.startswith('.0'):
rv = '0.' + rv[2:]
if rv.startswith('+'):
# e.g., +inf -> inf
rv = rv[1:]
return rv
def _print_Relational(self, expr):
charmap = {
"==": "Eq",
"!=": "Ne",
":=": "Assignment",
'+=': "AddAugmentedAssignment",
"-=": "SubAugmentedAssignment",
"*=": "MulAugmentedAssignment",
"/=": "DivAugmentedAssignment",
"%=": "ModAugmentedAssignment",
}
if expr.rel_op in charmap:
return '%s(%s, %s)' % (charmap[expr.rel_op], self._print(expr.lhs),
self._print(expr.rhs))
return '%s %s %s' % (self.parenthesize(expr.lhs, precedence(expr)),
self._relationals.get(expr.rel_op) or expr.rel_op,
self.parenthesize(expr.rhs, precedence(expr)))
def _print_ComplexRootOf(self, expr):
return "CRootOf(%s, %d)" % (self._print_Add(expr.expr, order='lex'),
expr.index)
def _print_RootSum(self, expr):
args = [self._print_Add(expr.expr, order='lex')]
if expr.fun is not S.IdentityFunction:
args.append(self._print(expr.fun))
return "RootSum(%s)" % ", ".join(args)
def _print_GroebnerBasis(self, basis):
cls = basis.__class__.__name__
exprs = [self._print_Add(arg, order=basis.order) for arg in basis.exprs]
exprs = "[%s]" % ", ".join(exprs)
gens = [ self._print(gen) for gen in basis.gens ]
domain = "domain='%s'" % self._print(basis.domain)
order = "order='%s'" % self._print(basis.order)
args = [exprs] + gens + [domain, order]
return "%s(%s)" % (cls, ", ".join(args))
def _print_set(self, s):
items = sorted(s, key=default_sort_key)
args = ', '.join(self._print(item) for item in items)
if not args:
return "set()"
return '{%s}' % args
def _print_FiniteSet(self, s):
from sympy.sets.sets import FiniteSet
items = sorted(s, key=default_sort_key)
args = ', '.join(self._print(item) for item in items)
if any(item.has(FiniteSet) for item in items):
return 'FiniteSet({})'.format(args)
return '{{{}}}'.format(args)
def _print_Partition(self, s):
items = sorted(s, key=default_sort_key)
args = ', '.join(self._print(arg) for arg in items)
return 'Partition({})'.format(args)
def _print_frozenset(self, s):
if not s:
return "frozenset()"
return "frozenset(%s)" % self._print_set(s)
def _print_Sum(self, expr):
def _xab_tostr(xab):
if len(xab) == 1:
return self._print(xab[0])
else:
return self._print((xab[0],) + tuple(xab[1:]))
L = ', '.join([_xab_tostr(l) for l in expr.limits])
return 'Sum(%s, %s)' % (self._print(expr.function), L)
def _print_Symbol(self, expr):
return expr.name
_print_MatrixSymbol = _print_Symbol
_print_RandomSymbol = _print_Symbol
def _print_Identity(self, expr):
return "I"
def _print_ZeroMatrix(self, expr):
return "0"
def _print_OneMatrix(self, expr):
return "1"
def _print_Predicate(self, expr):
return "Q.%s" % expr.name
def _print_str(self, expr):
return str(expr)
def _print_tuple(self, expr):
if len(expr) == 1:
return "(%s,)" % self._print(expr[0])
else:
return "(%s)" % self.stringify(expr, ", ")
def _print_Tuple(self, expr):
return self._print_tuple(expr)
def _print_Transpose(self, T):
return "%s.T" % self.parenthesize(T.arg, PRECEDENCE["Pow"])
def _print_Uniform(self, expr):
return "Uniform(%s, %s)" % (self._print(expr.a), self._print(expr.b))
def _print_Quantity(self, expr):
if self._settings.get("abbrev", False):
return "%s" % expr.abbrev
return "%s" % expr.name
def _print_Quaternion(self, expr):
s = [self.parenthesize(i, PRECEDENCE["Mul"], strict=True) for i in expr.args]
a = [s[0]] + [i+"*"+j for i, j in zip(s[1:], "ijk")]
return " + ".join(a)
def _print_Dimension(self, expr):
return str(expr)
def _print_Wild(self, expr):
return expr.name + '_'
def _print_WildFunction(self, expr):
return expr.name + '_'
def _print_WildDot(self, expr):
return expr.name
def _print_WildPlus(self, expr):
return expr.name
def _print_WildStar(self, expr):
return expr.name
def _print_Zero(self, expr):
if self._settings.get("sympy_integers", False):
return "S(0)"
return "0"
def _print_DMP(self, p):
try:
if p.ring is not None:
# TODO incorporate order
return self._print(p.ring.to_sympy(p))
except SympifyError:
pass
cls = p.__class__.__name__
rep = self._print(p.rep)
dom = self._print(p.dom)
ring = self._print(p.ring)
return "%s(%s, %s, %s)" % (cls, rep, dom, ring)
def _print_DMF(self, expr):
return self._print_DMP(expr)
def _print_Object(self, obj):
return 'Object("%s")' % obj.name
def _print_IdentityMorphism(self, morphism):
return 'IdentityMorphism(%s)' % morphism.domain
def _print_NamedMorphism(self, morphism):
return 'NamedMorphism(%s, %s, "%s")' % \
(morphism.domain, morphism.codomain, morphism.name)
def _print_Category(self, category):
return 'Category("%s")' % category.name
def _print_Manifold(self, manifold):
return manifold.name.name
def _print_Patch(self, patch):
return patch.name.name
def _print_CoordSystem(self, coords):
return coords.name.name
def _print_BaseScalarField(self, field):
return field._coord_sys.symbols[field._index].name
def _print_BaseVectorField(self, field):
return 'e_%s' % field._coord_sys.symbols[field._index].name
def _print_Differential(self, diff):
field = diff._form_field
if hasattr(field, '_coord_sys'):
return 'd%s' % field._coord_sys.symbols[field._index].name
else:
return 'd(%s)' % self._print(field)
def _print_Tr(self, expr):
#TODO : Handle indices
return "%s(%s)" % ("Tr", self._print(expr.args[0]))
def _print_Str(self, s):
return self._print(s.name)
def _print_AppliedBinaryRelation(self, expr):
rel = expr.function
return '%s(%s, %s)' % (self._print(rel),
self._print(expr.lhs),
self._print(expr.rhs))
@print_function(StrPrinter)
def sstr(expr, **settings):
"""Returns the expression as a string.
For large expressions where speed is a concern, use the setting
order='none'. If abbrev=True setting is used then units are printed in
abbreviated form.
Examples
========
>>> from sympy import symbols, Eq, sstr
>>> a, b = symbols('a b')
>>> sstr(Eq(a + b, 0))
'Eq(a + b, 0)'
"""
p = StrPrinter(settings)
s = p.doprint(expr)
return s
class StrReprPrinter(StrPrinter):
"""(internal) -- see sstrrepr"""
def _print_str(self, s):
return repr(s)
def _print_Str(self, s):
# Str does not to be printed same as str here
return "%s(%s)" % (s.__class__.__name__, self._print(s.name))
@print_function(StrReprPrinter)
def sstrrepr(expr, **settings):
"""return expr in mixed str/repr form
i.e. strings are returned in repr form with quotes, and everything else
is returned in str form.
This function could be useful for hooking into sys.displayhook
"""
p = StrReprPrinter(settings)
s = p.doprint(expr)
return s
|
202c50f1fd9b9a9a5ea6514e25e687cc63a95226f351510cb6866e46067888f8 | """
A Printer which converts an expression into its LaTeX equivalent.
"""
from __future__ import annotations
from typing import Any, Callable, TYPE_CHECKING
import itertools
from sympy.core import Add, Float, Mod, Mul, Number, S, Symbol, Expr
from sympy.core.alphabets import greeks
from sympy.core.containers import Tuple
from sympy.core.function import Function, AppliedUndef, Derivative
from sympy.core.operations import AssocOp
from sympy.core.power import Pow
from sympy.core.sorting import default_sort_key
from sympy.core.sympify import SympifyError
from sympy.logic.boolalg import true, BooleanTrue, BooleanFalse
from sympy.tensor.array import NDimArray
# sympy.printing imports
from sympy.printing.precedence import precedence_traditional
from sympy.printing.printer import Printer, print_function
from sympy.printing.conventions import split_super_sub, requires_partial
from sympy.printing.precedence import precedence, PRECEDENCE
from mpmath.libmp.libmpf import prec_to_dps, to_str as mlib_to_str
from sympy.utilities.iterables import has_variety, sift
import re
if TYPE_CHECKING:
from sympy.vector.basisdependent import BasisDependent
# Hand-picked functions which can be used directly in both LaTeX and MathJax
# Complete list at
# https://docs.mathjax.org/en/latest/tex.html#supported-latex-commands
# This variable only contains those functions which SymPy uses.
accepted_latex_functions = ['arcsin', 'arccos', 'arctan', 'sin', 'cos', 'tan',
'sinh', 'cosh', 'tanh', 'sqrt', 'ln', 'log', 'sec',
'csc', 'cot', 'coth', 're', 'im', 'frac', 'root',
'arg',
]
tex_greek_dictionary = {
'Alpha': r'\mathrm{A}',
'Beta': r'\mathrm{B}',
'Gamma': r'\Gamma',
'Delta': r'\Delta',
'Epsilon': r'\mathrm{E}',
'Zeta': r'\mathrm{Z}',
'Eta': r'\mathrm{H}',
'Theta': r'\Theta',
'Iota': r'\mathrm{I}',
'Kappa': r'\mathrm{K}',
'Lambda': r'\Lambda',
'Mu': r'\mathrm{M}',
'Nu': r'\mathrm{N}',
'Xi': r'\Xi',
'omicron': 'o',
'Omicron': r'\mathrm{O}',
'Pi': r'\Pi',
'Rho': r'\mathrm{P}',
'Sigma': r'\Sigma',
'Tau': r'\mathrm{T}',
'Upsilon': r'\Upsilon',
'Phi': r'\Phi',
'Chi': r'\mathrm{X}',
'Psi': r'\Psi',
'Omega': r'\Omega',
'lamda': r'\lambda',
'Lamda': r'\Lambda',
'khi': r'\chi',
'Khi': r'\mathrm{X}',
'varepsilon': r'\varepsilon',
'varkappa': r'\varkappa',
'varphi': r'\varphi',
'varpi': r'\varpi',
'varrho': r'\varrho',
'varsigma': r'\varsigma',
'vartheta': r'\vartheta',
}
other_symbols = {'aleph', 'beth', 'daleth', 'gimel', 'ell', 'eth', 'hbar',
'hslash', 'mho', 'wp'}
# Variable name modifiers
modifier_dict: dict[str, Callable[[str], str]] = {
# Accents
'mathring': lambda s: r'\mathring{'+s+r'}',
'ddddot': lambda s: r'\ddddot{'+s+r'}',
'dddot': lambda s: r'\dddot{'+s+r'}',
'ddot': lambda s: r'\ddot{'+s+r'}',
'dot': lambda s: r'\dot{'+s+r'}',
'check': lambda s: r'\check{'+s+r'}',
'breve': lambda s: r'\breve{'+s+r'}',
'acute': lambda s: r'\acute{'+s+r'}',
'grave': lambda s: r'\grave{'+s+r'}',
'tilde': lambda s: r'\tilde{'+s+r'}',
'hat': lambda s: r'\hat{'+s+r'}',
'bar': lambda s: r'\bar{'+s+r'}',
'vec': lambda s: r'\vec{'+s+r'}',
'prime': lambda s: "{"+s+"}'",
'prm': lambda s: "{"+s+"}'",
# Faces
'bold': lambda s: r'\boldsymbol{'+s+r'}',
'bm': lambda s: r'\boldsymbol{'+s+r'}',
'cal': lambda s: r'\mathcal{'+s+r'}',
'scr': lambda s: r'\mathscr{'+s+r'}',
'frak': lambda s: r'\mathfrak{'+s+r'}',
# Brackets
'norm': lambda s: r'\left\|{'+s+r'}\right\|',
'avg': lambda s: r'\left\langle{'+s+r'}\right\rangle',
'abs': lambda s: r'\left|{'+s+r'}\right|',
'mag': lambda s: r'\left|{'+s+r'}\right|',
}
greek_letters_set = frozenset(greeks)
_between_two_numbers_p = (
re.compile(r'[0-9][} ]*$'), # search
re.compile(r'[0-9]'), # match
)
def latex_escape(s: str) -> str:
"""
Escape a string such that latex interprets it as plaintext.
We cannot use verbatim easily with mathjax, so escaping is easier.
Rules from https://tex.stackexchange.com/a/34586/41112.
"""
s = s.replace('\\', r'\textbackslash')
for c in '&%$#_{}':
s = s.replace(c, '\\' + c)
s = s.replace('~', r'\textasciitilde')
s = s.replace('^', r'\textasciicircum')
return s
class LatexPrinter(Printer):
printmethod = "_latex"
_default_settings: dict[str, Any] = {
"full_prec": False,
"fold_frac_powers": False,
"fold_func_brackets": False,
"fold_short_frac": None,
"inv_trig_style": "abbreviated",
"itex": False,
"ln_notation": False,
"long_frac_ratio": None,
"mat_delim": "[",
"mat_str": None,
"mode": "plain",
"mul_symbol": None,
"order": None,
"symbol_names": {},
"root_notation": True,
"mat_symbol_style": "plain",
"imaginary_unit": "i",
"gothic_re_im": False,
"decimal_separator": "period",
"perm_cyclic": True,
"parenthesize_super": True,
"min": None,
"max": None,
"diff_operator": "d",
}
def __init__(self, settings=None):
Printer.__init__(self, settings)
if 'mode' in self._settings:
valid_modes = ['inline', 'plain', 'equation',
'equation*']
if self._settings['mode'] not in valid_modes:
raise ValueError("'mode' must be one of 'inline', 'plain', "
"'equation' or 'equation*'")
if self._settings['fold_short_frac'] is None and \
self._settings['mode'] == 'inline':
self._settings['fold_short_frac'] = True
mul_symbol_table = {
None: r" ",
"ldot": r" \,.\, ",
"dot": r" \cdot ",
"times": r" \times "
}
try:
self._settings['mul_symbol_latex'] = \
mul_symbol_table[self._settings['mul_symbol']]
except KeyError:
self._settings['mul_symbol_latex'] = \
self._settings['mul_symbol']
try:
self._settings['mul_symbol_latex_numbers'] = \
mul_symbol_table[self._settings['mul_symbol'] or 'dot']
except KeyError:
if (self._settings['mul_symbol'].strip() in
['', ' ', '\\', '\\,', '\\:', '\\;', '\\quad']):
self._settings['mul_symbol_latex_numbers'] = \
mul_symbol_table['dot']
else:
self._settings['mul_symbol_latex_numbers'] = \
self._settings['mul_symbol']
self._delim_dict = {'(': ')', '[': ']'}
imaginary_unit_table = {
None: r"i",
"i": r"i",
"ri": r"\mathrm{i}",
"ti": r"\text{i}",
"j": r"j",
"rj": r"\mathrm{j}",
"tj": r"\text{j}",
}
imag_unit = self._settings['imaginary_unit']
self._settings['imaginary_unit_latex'] = imaginary_unit_table.get(imag_unit, imag_unit)
diff_operator_table = {
None: r"d",
"d": r"d",
"rd": r"\mathrm{d}",
"td": r"\text{d}",
}
diff_operator = self._settings['diff_operator']
self._settings["diff_operator_latex"] = diff_operator_table.get(diff_operator, diff_operator)
def _add_parens(self, s) -> str:
return r"\left({}\right)".format(s)
# TODO: merge this with the above, which requires a lot of test changes
def _add_parens_lspace(self, s) -> str:
return r"\left( {}\right)".format(s)
def parenthesize(self, item, level, is_neg=False, strict=False) -> str:
prec_val = precedence_traditional(item)
if is_neg and strict:
return self._add_parens(self._print(item))
if (prec_val < level) or ((not strict) and prec_val <= level):
return self._add_parens(self._print(item))
else:
return self._print(item)
def parenthesize_super(self, s):
"""
Protect superscripts in s
If the parenthesize_super option is set, protect with parentheses, else
wrap in braces.
"""
if "^" in s:
if self._settings['parenthesize_super']:
return self._add_parens(s)
else:
return "{{{}}}".format(s)
return s
def doprint(self, expr) -> str:
tex = Printer.doprint(self, expr)
if self._settings['mode'] == 'plain':
return tex
elif self._settings['mode'] == 'inline':
return r"$%s$" % tex
elif self._settings['itex']:
return r"$$%s$$" % tex
else:
env_str = self._settings['mode']
return r"\begin{%s}%s\end{%s}" % (env_str, tex, env_str)
def _needs_brackets(self, expr) -> bool:
"""
Returns True if the expression needs to be wrapped in brackets when
printed, False otherwise. For example: a + b => True; a => False;
10 => False; -10 => True.
"""
return not ((expr.is_Integer and expr.is_nonnegative)
or (expr.is_Atom and (expr is not S.NegativeOne
and expr.is_Rational is False)))
def _needs_function_brackets(self, expr) -> bool:
"""
Returns True if the expression needs to be wrapped in brackets when
passed as an argument to a function, False otherwise. This is a more
liberal version of _needs_brackets, in that many expressions which need
to be wrapped in brackets when added/subtracted/raised to a power do
not need them when passed to a function. Such an example is a*b.
"""
if not self._needs_brackets(expr):
return False
else:
# Muls of the form a*b*c... can be folded
if expr.is_Mul and not self._mul_is_clean(expr):
return True
# Pows which don't need brackets can be folded
elif expr.is_Pow and not self._pow_is_clean(expr):
return True
# Add and Function always need brackets
elif expr.is_Add or expr.is_Function:
return True
else:
return False
def _needs_mul_brackets(self, expr, first=False, last=False) -> bool:
"""
Returns True if the expression needs to be wrapped in brackets when
printed as part of a Mul, False otherwise. This is True for Add,
but also for some container objects that would not need brackets
when appearing last in a Mul, e.g. an Integral. ``last=True``
specifies that this expr is the last to appear in a Mul.
``first=True`` specifies that this expr is the first to appear in
a Mul.
"""
from sympy.concrete.products import Product
from sympy.concrete.summations import Sum
from sympy.integrals.integrals import Integral
if expr.is_Mul:
if not first and expr.could_extract_minus_sign():
return True
elif precedence_traditional(expr) < PRECEDENCE["Mul"]:
return True
elif expr.is_Relational:
return True
if expr.is_Piecewise:
return True
if any(expr.has(x) for x in (Mod,)):
return True
if (not last and
any(expr.has(x) for x in (Integral, Product, Sum))):
return True
return False
def _needs_add_brackets(self, expr) -> bool:
"""
Returns True if the expression needs to be wrapped in brackets when
printed as part of an Add, False otherwise. This is False for most
things.
"""
if expr.is_Relational:
return True
if any(expr.has(x) for x in (Mod,)):
return True
if expr.is_Add:
return True
return False
def _mul_is_clean(self, expr) -> bool:
for arg in expr.args:
if arg.is_Function:
return False
return True
def _pow_is_clean(self, expr) -> bool:
return not self._needs_brackets(expr.base)
def _do_exponent(self, expr: str, exp):
if exp is not None:
return r"\left(%s\right)^{%s}" % (expr, exp)
else:
return expr
def _print_Basic(self, expr):
name = self._deal_with_super_sub(expr.__class__.__name__)
if expr.args:
ls = [self._print(o) for o in expr.args]
s = r"\operatorname{{{}}}\left({}\right)"
return s.format(name, ", ".join(ls))
else:
return r"\text{{{}}}".format(name)
def _print_bool(self, e: bool | BooleanTrue | BooleanFalse):
return r"\text{%s}" % e
_print_BooleanTrue = _print_bool
_print_BooleanFalse = _print_bool
def _print_NoneType(self, e):
return r"\text{%s}" % e
def _print_Add(self, expr, order=None):
terms = self._as_ordered_terms(expr, order=order)
tex = ""
for i, term in enumerate(terms):
if i == 0:
pass
elif term.could_extract_minus_sign():
tex += " - "
term = -term
else:
tex += " + "
term_tex = self._print(term)
if self._needs_add_brackets(term):
term_tex = r"\left(%s\right)" % term_tex
tex += term_tex
return tex
def _print_Cycle(self, expr):
from sympy.combinatorics.permutations import Permutation
if expr.size == 0:
return r"\left( \right)"
expr = Permutation(expr)
expr_perm = expr.cyclic_form
siz = expr.size
if expr.array_form[-1] == siz - 1:
expr_perm = expr_perm + [[siz - 1]]
term_tex = ''
for i in expr_perm:
term_tex += str(i).replace(',', r"\;")
term_tex = term_tex.replace('[', r"\left( ")
term_tex = term_tex.replace(']', r"\right)")
return term_tex
def _print_Permutation(self, expr):
from sympy.combinatorics.permutations import Permutation
from sympy.utilities.exceptions import sympy_deprecation_warning
perm_cyclic = Permutation.print_cyclic
if perm_cyclic is not None:
sympy_deprecation_warning(
f"""
Setting Permutation.print_cyclic is deprecated. Instead use
init_printing(perm_cyclic={perm_cyclic}).
""",
deprecated_since_version="1.6",
active_deprecations_target="deprecated-permutation-print_cyclic",
stacklevel=8,
)
else:
perm_cyclic = self._settings.get("perm_cyclic", True)
if perm_cyclic:
return self._print_Cycle(expr)
if expr.size == 0:
return r"\left( \right)"
lower = [self._print(arg) for arg in expr.array_form]
upper = [self._print(arg) for arg in range(len(lower))]
row1 = " & ".join(upper)
row2 = " & ".join(lower)
mat = r" \\ ".join((row1, row2))
return r"\begin{pmatrix} %s \end{pmatrix}" % mat
def _print_AppliedPermutation(self, expr):
perm, var = expr.args
return r"\sigma_{%s}(%s)" % (self._print(perm), self._print(var))
def _print_Float(self, expr):
# Based off of that in StrPrinter
dps = prec_to_dps(expr._prec)
strip = False if self._settings['full_prec'] else True
low = self._settings["min"] if "min" in self._settings else None
high = self._settings["max"] if "max" in self._settings else None
str_real = mlib_to_str(expr._mpf_, dps, strip_zeros=strip, min_fixed=low, max_fixed=high)
# Must always have a mul symbol (as 2.5 10^{20} just looks odd)
# thus we use the number separator
separator = self._settings['mul_symbol_latex_numbers']
if 'e' in str_real:
(mant, exp) = str_real.split('e')
if exp[0] == '+':
exp = exp[1:]
if self._settings['decimal_separator'] == 'comma':
mant = mant.replace('.','{,}')
return r"%s%s10^{%s}" % (mant, separator, exp)
elif str_real == "+inf":
return r"\infty"
elif str_real == "-inf":
return r"- \infty"
else:
if self._settings['decimal_separator'] == 'comma':
str_real = str_real.replace('.','{,}')
return str_real
def _print_Cross(self, expr):
vec1 = expr._expr1
vec2 = expr._expr2
return r"%s \times %s" % (self.parenthesize(vec1, PRECEDENCE['Mul']),
self.parenthesize(vec2, PRECEDENCE['Mul']))
def _print_Curl(self, expr):
vec = expr._expr
return r"\nabla\times %s" % self.parenthesize(vec, PRECEDENCE['Mul'])
def _print_Divergence(self, expr):
vec = expr._expr
return r"\nabla\cdot %s" % self.parenthesize(vec, PRECEDENCE['Mul'])
def _print_Dot(self, expr):
vec1 = expr._expr1
vec2 = expr._expr2
return r"%s \cdot %s" % (self.parenthesize(vec1, PRECEDENCE['Mul']),
self.parenthesize(vec2, PRECEDENCE['Mul']))
def _print_Gradient(self, expr):
func = expr._expr
return r"\nabla %s" % self.parenthesize(func, PRECEDENCE['Mul'])
def _print_Laplacian(self, expr):
func = expr._expr
return r"\Delta %s" % self.parenthesize(func, PRECEDENCE['Mul'])
def _print_Mul(self, expr: Expr):
from sympy.simplify import fraction
separator: str = self._settings['mul_symbol_latex']
numbersep: str = self._settings['mul_symbol_latex_numbers']
def convert(expr) -> str:
if not expr.is_Mul:
return str(self._print(expr))
else:
if self.order not in ('old', 'none'):
args = expr.as_ordered_factors()
else:
args = list(expr.args)
# If there are quantities or prefixes, append them at the back.
units, nonunits = sift(args, lambda x: (hasattr(x, "_scale_factor") or hasattr(x, "is_physical_constant")) or
(isinstance(x, Pow) and
hasattr(x.base, "is_physical_constant")), binary=True)
prefixes, units = sift(units, lambda x: hasattr(x, "_scale_factor"), binary=True)
return convert_args(nonunits + prefixes + units)
def convert_args(args) -> str:
_tex = last_term_tex = ""
for i, term in enumerate(args):
term_tex = self._print(term)
if not (hasattr(term, "_scale_factor") or hasattr(term, "is_physical_constant")):
if self._needs_mul_brackets(term, first=(i == 0),
last=(i == len(args) - 1)):
term_tex = r"\left(%s\right)" % term_tex
if _between_two_numbers_p[0].search(last_term_tex) and \
_between_two_numbers_p[1].match(str(term)):
# between two numbers
_tex += numbersep
elif _tex:
_tex += separator
elif _tex:
_tex += separator
_tex += term_tex
last_term_tex = term_tex
return _tex
# Check for unevaluated Mul. In this case we need to make sure the
# identities are visible, multiple Rational factors are not combined
# etc so we display in a straight-forward form that fully preserves all
# args and their order.
# XXX: _print_Pow calls this routine with instances of Pow...
if isinstance(expr, Mul):
args = expr.args
if args[0] is S.One or any(isinstance(arg, Number) for arg in args[1:]):
return convert_args(args)
include_parens = False
if expr.could_extract_minus_sign():
expr = -expr
tex = "- "
if expr.is_Add:
tex += "("
include_parens = True
else:
tex = ""
numer, denom = fraction(expr, exact=True)
if denom is S.One and Pow(1, -1, evaluate=False) not in expr.args:
# use the original expression here, since fraction() may have
# altered it when producing numer and denom
tex += convert(expr)
else:
snumer = convert(numer)
sdenom = convert(denom)
ldenom = len(sdenom.split())
ratio = self._settings['long_frac_ratio']
if self._settings['fold_short_frac'] and ldenom <= 2 and \
"^" not in sdenom:
# handle short fractions
if self._needs_mul_brackets(numer, last=False):
tex += r"\left(%s\right) / %s" % (snumer, sdenom)
else:
tex += r"%s / %s" % (snumer, sdenom)
elif ratio is not None and \
len(snumer.split()) > ratio*ldenom:
# handle long fractions
if self._needs_mul_brackets(numer, last=True):
tex += r"\frac{1}{%s}%s\left(%s\right)" \
% (sdenom, separator, snumer)
elif numer.is_Mul:
# split a long numerator
a = S.One
b = S.One
for x in numer.args:
if self._needs_mul_brackets(x, last=False) or \
len(convert(a*x).split()) > ratio*ldenom or \
(b.is_commutative is x.is_commutative is False):
b *= x
else:
a *= x
if self._needs_mul_brackets(b, last=True):
tex += r"\frac{%s}{%s}%s\left(%s\right)" \
% (convert(a), sdenom, separator, convert(b))
else:
tex += r"\frac{%s}{%s}%s%s" \
% (convert(a), sdenom, separator, convert(b))
else:
tex += r"\frac{1}{%s}%s%s" % (sdenom, separator, snumer)
else:
tex += r"\frac{%s}{%s}" % (snumer, sdenom)
if include_parens:
tex += ")"
return tex
def _print_AlgebraicNumber(self, expr):
if expr.is_aliased:
return self._print(expr.as_poly().as_expr())
else:
return self._print(expr.as_expr())
def _print_PrimeIdeal(self, expr):
p = self._print(expr.p)
if expr.is_inert:
return rf'\left({p}\right)'
alpha = self._print(expr.alpha.as_expr())
return rf'\left({p}, {alpha}\right)'
def _print_Pow(self, expr: Pow):
# Treat x**Rational(1,n) as special case
if expr.exp.is_Rational:
p: int = expr.exp.p # type: ignore
q: int = expr.exp.q # type: ignore
if abs(p) == 1 and q != 1 and self._settings['root_notation']:
base = self._print(expr.base)
if q == 2:
tex = r"\sqrt{%s}" % base
elif self._settings['itex']:
tex = r"\root{%d}{%s}" % (q, base)
else:
tex = r"\sqrt[%d]{%s}" % (q, base)
if expr.exp.is_negative:
return r"\frac{1}{%s}" % tex
else:
return tex
elif self._settings['fold_frac_powers'] and q != 1:
base = self.parenthesize(expr.base, PRECEDENCE['Pow'])
# issue #12886: add parentheses for superscripts raised to powers
if expr.base.is_Symbol:
base = self.parenthesize_super(base)
if expr.base.is_Function:
return self._print(expr.base, exp="%s/%s" % (p, q))
return r"%s^{%s/%s}" % (base, p, q)
elif expr.exp.is_negative and expr.base.is_commutative:
# special case for 1^(-x), issue 9216
if expr.base == 1:
return r"%s^{%s}" % (expr.base, expr.exp)
# special case for (1/x)^(-y) and (-1/-x)^(-y), issue 20252
if expr.base.is_Rational:
base_p: int = expr.base.p # type: ignore
base_q: int = expr.base.q # type: ignore
if base_p * base_q == abs(base_q):
if expr.exp == -1:
return r"\frac{1}{\frac{%s}{%s}}" % (base_p, base_q)
else:
return r"\frac{1}{(\frac{%s}{%s})^{%s}}" % (base_p, base_q, abs(expr.exp))
# things like 1/x
return self._print_Mul(expr)
if expr.base.is_Function:
return self._print(expr.base, exp=self._print(expr.exp))
tex = r"%s^{%s}"
return self._helper_print_standard_power(expr, tex)
def _helper_print_standard_power(self, expr, template: str) -> str:
exp = self._print(expr.exp)
# issue #12886: add parentheses around superscripts raised
# to powers
base = self.parenthesize(expr.base, PRECEDENCE['Pow'])
if expr.base.is_Symbol:
base = self.parenthesize_super(base)
elif (isinstance(expr.base, Derivative)
and base.startswith(r'\left(')
and re.match(r'\\left\(\\d?d?dot', base)
and base.endswith(r'\right)')):
# don't use parentheses around dotted derivative
base = base[6: -7] # remove outermost added parens
return template % (base, exp)
def _print_UnevaluatedExpr(self, expr):
return self._print(expr.args[0])
def _print_Sum(self, expr):
if len(expr.limits) == 1:
tex = r"\sum_{%s=%s}^{%s} " % \
tuple([self._print(i) for i in expr.limits[0]])
else:
def _format_ineq(l):
return r"%s \leq %s \leq %s" % \
tuple([self._print(s) for s in (l[1], l[0], l[2])])
tex = r"\sum_{\substack{%s}} " % \
str.join('\\\\', [_format_ineq(l) for l in expr.limits])
if isinstance(expr.function, Add):
tex += r"\left(%s\right)" % self._print(expr.function)
else:
tex += self._print(expr.function)
return tex
def _print_Product(self, expr):
if len(expr.limits) == 1:
tex = r"\prod_{%s=%s}^{%s} " % \
tuple([self._print(i) for i in expr.limits[0]])
else:
def _format_ineq(l):
return r"%s \leq %s \leq %s" % \
tuple([self._print(s) for s in (l[1], l[0], l[2])])
tex = r"\prod_{\substack{%s}} " % \
str.join('\\\\', [_format_ineq(l) for l in expr.limits])
if isinstance(expr.function, Add):
tex += r"\left(%s\right)" % self._print(expr.function)
else:
tex += self._print(expr.function)
return tex
def _print_BasisDependent(self, expr: 'BasisDependent'):
from sympy.vector import Vector
o1: list[str] = []
if expr == expr.zero:
return expr.zero._latex_form
if isinstance(expr, Vector):
items = expr.separate().items()
else:
items = [(0, expr)]
for system, vect in items:
inneritems = list(vect.components.items())
inneritems.sort(key=lambda x: x[0].__str__())
for k, v in inneritems:
if v == 1:
o1.append(' + ' + k._latex_form)
elif v == -1:
o1.append(' - ' + k._latex_form)
else:
arg_str = r'\left(' + self._print(v) + r'\right)'
o1.append(' + ' + arg_str + k._latex_form)
outstr = (''.join(o1))
if outstr[1] != '-':
outstr = outstr[3:]
else:
outstr = outstr[1:]
return outstr
def _print_Indexed(self, expr):
tex_base = self._print(expr.base)
tex = '{'+tex_base+'}'+'_{%s}' % ','.join(
map(self._print, expr.indices))
return tex
def _print_IndexedBase(self, expr):
return self._print(expr.label)
def _print_Idx(self, expr):
label = self._print(expr.label)
if expr.upper is not None:
upper = self._print(expr.upper)
if expr.lower is not None:
lower = self._print(expr.lower)
else:
lower = self._print(S.Zero)
interval = '{lower}\\mathrel{{..}}\\nobreak {upper}'.format(
lower = lower, upper = upper)
return '{{{label}}}_{{{interval}}}'.format(
label = label, interval = interval)
#if no bounds are defined this just prints the label
return label
def _print_Derivative(self, expr):
if requires_partial(expr.expr):
diff_symbol = r'\partial'
else:
diff_symbol = self._settings["diff_operator_latex"]
tex = ""
dim = 0
for x, num in reversed(expr.variable_count):
dim += num
if num == 1:
tex += r"%s %s" % (diff_symbol, self._print(x))
else:
tex += r"%s %s^{%s}" % (diff_symbol,
self.parenthesize_super(self._print(x)),
self._print(num))
if dim == 1:
tex = r"\frac{%s}{%s}" % (diff_symbol, tex)
else:
tex = r"\frac{%s^{%s}}{%s}" % (diff_symbol, self._print(dim), tex)
if any(i.could_extract_minus_sign() for i in expr.args):
return r"%s %s" % (tex, self.parenthesize(expr.expr,
PRECEDENCE["Mul"],
is_neg=True,
strict=True))
return r"%s %s" % (tex, self.parenthesize(expr.expr,
PRECEDENCE["Mul"],
is_neg=False,
strict=True))
def _print_Subs(self, subs):
expr, old, new = subs.args
latex_expr = self._print(expr)
latex_old = (self._print(e) for e in old)
latex_new = (self._print(e) for e in new)
latex_subs = r'\\ '.join(
e[0] + '=' + e[1] for e in zip(latex_old, latex_new))
return r'\left. %s \right|_{\substack{ %s }}' % (latex_expr,
latex_subs)
def _print_Integral(self, expr):
tex, symbols = "", []
diff_symbol = self._settings["diff_operator_latex"]
# Only up to \iiiint exists
if len(expr.limits) <= 4 and all(len(lim) == 1 for lim in expr.limits):
# Use len(expr.limits)-1 so that syntax highlighters don't think
# \" is an escaped quote
tex = r"\i" + "i"*(len(expr.limits) - 1) + "nt"
symbols = [r"\, %s%s" % (diff_symbol, self._print(symbol[0]))
for symbol in expr.limits]
else:
for lim in reversed(expr.limits):
symbol = lim[0]
tex += r"\int"
if len(lim) > 1:
if self._settings['mode'] != 'inline' \
and not self._settings['itex']:
tex += r"\limits"
if len(lim) == 3:
tex += "_{%s}^{%s}" % (self._print(lim[1]),
self._print(lim[2]))
if len(lim) == 2:
tex += "^{%s}" % (self._print(lim[1]))
symbols.insert(0, r"\, %s%s" % (diff_symbol, self._print(symbol)))
return r"%s %s%s" % (tex, self.parenthesize(expr.function,
PRECEDENCE["Mul"],
is_neg=any(i.could_extract_minus_sign() for i in expr.args),
strict=True),
"".join(symbols))
def _print_Limit(self, expr):
e, z, z0, dir = expr.args
tex = r"\lim_{%s \to " % self._print(z)
if str(dir) == '+-' or z0 in (S.Infinity, S.NegativeInfinity):
tex += r"%s}" % self._print(z0)
else:
tex += r"%s^%s}" % (self._print(z0), self._print(dir))
if isinstance(e, AssocOp):
return r"%s\left(%s\right)" % (tex, self._print(e))
else:
return r"%s %s" % (tex, self._print(e))
def _hprint_Function(self, func: str) -> str:
r'''
Logic to decide how to render a function to latex
- if it is a recognized latex name, use the appropriate latex command
- if it is a single letter, excluding sub- and superscripts, just use that letter
- if it is a longer name, then put \operatorname{} around it and be
mindful of undercores in the name
'''
func = self._deal_with_super_sub(func)
superscriptidx = func.find("^")
subscriptidx = func.find("_")
if func in accepted_latex_functions:
name = r"\%s" % func
elif len(func) == 1 or func.startswith('\\') or subscriptidx == 1 or superscriptidx == 1:
name = func
else:
if superscriptidx > 0 and subscriptidx > 0:
name = r"\operatorname{%s}%s" %(
func[:min(subscriptidx,superscriptidx)],
func[min(subscriptidx,superscriptidx):])
elif superscriptidx > 0:
name = r"\operatorname{%s}%s" %(
func[:superscriptidx],
func[superscriptidx:])
elif subscriptidx > 0:
name = r"\operatorname{%s}%s" %(
func[:subscriptidx],
func[subscriptidx:])
else:
name = r"\operatorname{%s}" % func
return name
def _print_Function(self, expr: Function, exp=None) -> str:
r'''
Render functions to LaTeX, handling functions that LaTeX knows about
e.g., sin, cos, ... by using the proper LaTeX command (\sin, \cos, ...).
For single-letter function names, render them as regular LaTeX math
symbols. For multi-letter function names that LaTeX does not know
about, (e.g., Li, sech) use \operatorname{} so that the function name
is rendered in Roman font and LaTeX handles spacing properly.
expr is the expression involving the function
exp is an exponent
'''
func = expr.func.__name__
if hasattr(self, '_print_' + func) and \
not isinstance(expr, AppliedUndef):
return getattr(self, '_print_' + func)(expr, exp)
else:
args = [str(self._print(arg)) for arg in expr.args]
# How inverse trig functions should be displayed, formats are:
# abbreviated: asin, full: arcsin, power: sin^-1
inv_trig_style = self._settings['inv_trig_style']
# If we are dealing with a power-style inverse trig function
inv_trig_power_case = False
# If it is applicable to fold the argument brackets
can_fold_brackets = self._settings['fold_func_brackets'] and \
len(args) == 1 and \
not self._needs_function_brackets(expr.args[0])
inv_trig_table = [
"asin", "acos", "atan",
"acsc", "asec", "acot",
"asinh", "acosh", "atanh",
"acsch", "asech", "acoth",
]
# If the function is an inverse trig function, handle the style
if func in inv_trig_table:
if inv_trig_style == "abbreviated":
pass
elif inv_trig_style == "full":
func = ("ar" if func[-1] == "h" else "arc") + func[1:]
elif inv_trig_style == "power":
func = func[1:]
inv_trig_power_case = True
# Can never fold brackets if we're raised to a power
if exp is not None:
can_fold_brackets = False
if inv_trig_power_case:
if func in accepted_latex_functions:
name = r"\%s^{-1}" % func
else:
name = r"\operatorname{%s}^{-1}" % func
elif exp is not None:
func_tex = self._hprint_Function(func)
func_tex = self.parenthesize_super(func_tex)
name = r'%s^{%s}' % (func_tex, exp)
else:
name = self._hprint_Function(func)
if can_fold_brackets:
if func in accepted_latex_functions:
# Wrap argument safely to avoid parse-time conflicts
# with the function name itself
name += r" {%s}"
else:
name += r"%s"
else:
name += r"{\left(%s \right)}"
if inv_trig_power_case and exp is not None:
name += r"^{%s}" % exp
return name % ",".join(args)
def _print_UndefinedFunction(self, expr):
return self._hprint_Function(str(expr))
def _print_ElementwiseApplyFunction(self, expr):
return r"{%s}_{\circ}\left({%s}\right)" % (
self._print(expr.function),
self._print(expr.expr),
)
@property
def _special_function_classes(self):
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.functions.special.gamma_functions import gamma, lowergamma
from sympy.functions.special.beta_functions import beta
from sympy.functions.special.delta_functions import DiracDelta
from sympy.functions.special.error_functions import Chi
return {KroneckerDelta: r'\delta',
gamma: r'\Gamma',
lowergamma: r'\gamma',
beta: r'\operatorname{B}',
DiracDelta: r'\delta',
Chi: r'\operatorname{Chi}'}
def _print_FunctionClass(self, expr):
for cls in self._special_function_classes:
if issubclass(expr, cls) and expr.__name__ == cls.__name__:
return self._special_function_classes[cls]
return self._hprint_Function(str(expr))
def _print_Lambda(self, expr):
symbols, expr = expr.args
if len(symbols) == 1:
symbols = self._print(symbols[0])
else:
symbols = self._print(tuple(symbols))
tex = r"\left( %s \mapsto %s \right)" % (symbols, self._print(expr))
return tex
def _print_IdentityFunction(self, expr):
return r"\left( x \mapsto x \right)"
def _hprint_variadic_function(self, expr, exp=None) -> str:
args = sorted(expr.args, key=default_sort_key)
texargs = [r"%s" % self._print(symbol) for symbol in args]
tex = r"\%s\left(%s\right)" % (str(expr.func).lower(),
", ".join(texargs))
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
_print_Min = _print_Max = _hprint_variadic_function
def _print_floor(self, expr, exp=None):
tex = r"\left\lfloor{%s}\right\rfloor" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
def _print_ceiling(self, expr, exp=None):
tex = r"\left\lceil{%s}\right\rceil" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
def _print_log(self, expr, exp=None):
if not self._settings["ln_notation"]:
tex = r"\log{\left(%s \right)}" % self._print(expr.args[0])
else:
tex = r"\ln{\left(%s \right)}" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
def _print_Abs(self, expr, exp=None):
tex = r"\left|{%s}\right|" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
def _print_re(self, expr, exp=None):
if self._settings['gothic_re_im']:
tex = r"\Re{%s}" % self.parenthesize(expr.args[0], PRECEDENCE['Atom'])
else:
tex = r"\operatorname{{re}}{{{}}}".format(self.parenthesize(expr.args[0], PRECEDENCE['Atom']))
return self._do_exponent(tex, exp)
def _print_im(self, expr, exp=None):
if self._settings['gothic_re_im']:
tex = r"\Im{%s}" % self.parenthesize(expr.args[0], PRECEDENCE['Atom'])
else:
tex = r"\operatorname{{im}}{{{}}}".format(self.parenthesize(expr.args[0], PRECEDENCE['Atom']))
return self._do_exponent(tex, exp)
def _print_Not(self, e):
from sympy.logic.boolalg import (Equivalent, Implies)
if isinstance(e.args[0], Equivalent):
return self._print_Equivalent(e.args[0], r"\not\Leftrightarrow")
if isinstance(e.args[0], Implies):
return self._print_Implies(e.args[0], r"\not\Rightarrow")
if (e.args[0].is_Boolean):
return r"\neg \left(%s\right)" % self._print(e.args[0])
else:
return r"\neg %s" % self._print(e.args[0])
def _print_LogOp(self, args, char):
arg = args[0]
if arg.is_Boolean and not arg.is_Not:
tex = r"\left(%s\right)" % self._print(arg)
else:
tex = r"%s" % self._print(arg)
for arg in args[1:]:
if arg.is_Boolean and not arg.is_Not:
tex += r" %s \left(%s\right)" % (char, self._print(arg))
else:
tex += r" %s %s" % (char, self._print(arg))
return tex
def _print_And(self, e):
args = sorted(e.args, key=default_sort_key)
return self._print_LogOp(args, r"\wedge")
def _print_Or(self, e):
args = sorted(e.args, key=default_sort_key)
return self._print_LogOp(args, r"\vee")
def _print_Xor(self, e):
args = sorted(e.args, key=default_sort_key)
return self._print_LogOp(args, r"\veebar")
def _print_Implies(self, e, altchar=None):
return self._print_LogOp(e.args, altchar or r"\Rightarrow")
def _print_Equivalent(self, e, altchar=None):
args = sorted(e.args, key=default_sort_key)
return self._print_LogOp(args, altchar or r"\Leftrightarrow")
def _print_conjugate(self, expr, exp=None):
tex = r"\overline{%s}" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
def _print_polar_lift(self, expr, exp=None):
func = r"\operatorname{polar\_lift}"
arg = r"{\left(%s \right)}" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}%s" % (func, exp, arg)
else:
return r"%s%s" % (func, arg)
def _print_ExpBase(self, expr, exp=None):
# TODO should exp_polar be printed differently?
# what about exp_polar(0), exp_polar(1)?
tex = r"e^{%s}" % self._print(expr.args[0])
return self._do_exponent(tex, exp)
def _print_Exp1(self, expr, exp=None):
return "e"
def _print_elliptic_k(self, expr, exp=None):
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"K^{%s}%s" % (exp, tex)
else:
return r"K%s" % tex
def _print_elliptic_f(self, expr, exp=None):
tex = r"\left(%s\middle| %s\right)" % \
(self._print(expr.args[0]), self._print(expr.args[1]))
if exp is not None:
return r"F^{%s}%s" % (exp, tex)
else:
return r"F%s" % tex
def _print_elliptic_e(self, expr, exp=None):
if len(expr.args) == 2:
tex = r"\left(%s\middle| %s\right)" % \
(self._print(expr.args[0]), self._print(expr.args[1]))
else:
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"E^{%s}%s" % (exp, tex)
else:
return r"E%s" % tex
def _print_elliptic_pi(self, expr, exp=None):
if len(expr.args) == 3:
tex = r"\left(%s; %s\middle| %s\right)" % \
(self._print(expr.args[0]), self._print(expr.args[1]),
self._print(expr.args[2]))
else:
tex = r"\left(%s\middle| %s\right)" % \
(self._print(expr.args[0]), self._print(expr.args[1]))
if exp is not None:
return r"\Pi^{%s}%s" % (exp, tex)
else:
return r"\Pi%s" % tex
def _print_beta(self, expr, exp=None):
x = expr.args[0]
# Deal with unevaluated single argument beta
y = expr.args[0] if len(expr.args) == 1 else expr.args[1]
tex = rf"\left({x}, {y}\right)"
if exp is not None:
return r"\operatorname{B}^{%s}%s" % (exp, tex)
else:
return r"\operatorname{B}%s" % tex
def _print_betainc(self, expr, exp=None, operator='B'):
largs = [self._print(arg) for arg in expr.args]
tex = r"\left(%s, %s\right)" % (largs[0], largs[1])
if exp is not None:
return r"\operatorname{%s}_{(%s, %s)}^{%s}%s" % (operator, largs[2], largs[3], exp, tex)
else:
return r"\operatorname{%s}_{(%s, %s)}%s" % (operator, largs[2], largs[3], tex)
def _print_betainc_regularized(self, expr, exp=None):
return self._print_betainc(expr, exp, operator='I')
def _print_uppergamma(self, expr, exp=None):
tex = r"\left(%s, %s\right)" % (self._print(expr.args[0]),
self._print(expr.args[1]))
if exp is not None:
return r"\Gamma^{%s}%s" % (exp, tex)
else:
return r"\Gamma%s" % tex
def _print_lowergamma(self, expr, exp=None):
tex = r"\left(%s, %s\right)" % (self._print(expr.args[0]),
self._print(expr.args[1]))
if exp is not None:
return r"\gamma^{%s}%s" % (exp, tex)
else:
return r"\gamma%s" % tex
def _hprint_one_arg_func(self, expr, exp=None) -> str:
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}%s" % (self._print(expr.func), exp, tex)
else:
return r"%s%s" % (self._print(expr.func), tex)
_print_gamma = _hprint_one_arg_func
def _print_Chi(self, expr, exp=None):
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"\operatorname{Chi}^{%s}%s" % (exp, tex)
else:
return r"\operatorname{Chi}%s" % tex
def _print_expint(self, expr, exp=None):
tex = r"\left(%s\right)" % self._print(expr.args[1])
nu = self._print(expr.args[0])
if exp is not None:
return r"\operatorname{E}_{%s}^{%s}%s" % (nu, exp, tex)
else:
return r"\operatorname{E}_{%s}%s" % (nu, tex)
def _print_fresnels(self, expr, exp=None):
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"S^{%s}%s" % (exp, tex)
else:
return r"S%s" % tex
def _print_fresnelc(self, expr, exp=None):
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"C^{%s}%s" % (exp, tex)
else:
return r"C%s" % tex
def _print_subfactorial(self, expr, exp=None):
tex = r"!%s" % self.parenthesize(expr.args[0], PRECEDENCE["Func"])
if exp is not None:
return r"\left(%s\right)^{%s}" % (tex, exp)
else:
return tex
def _print_factorial(self, expr, exp=None):
tex = r"%s!" % self.parenthesize(expr.args[0], PRECEDENCE["Func"])
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
def _print_factorial2(self, expr, exp=None):
tex = r"%s!!" % self.parenthesize(expr.args[0], PRECEDENCE["Func"])
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
def _print_binomial(self, expr, exp=None):
tex = r"{\binom{%s}{%s}}" % (self._print(expr.args[0]),
self._print(expr.args[1]))
if exp is not None:
return r"%s^{%s}" % (tex, exp)
else:
return tex
def _print_RisingFactorial(self, expr, exp=None):
n, k = expr.args
base = r"%s" % self.parenthesize(n, PRECEDENCE['Func'])
tex = r"{%s}^{\left(%s\right)}" % (base, self._print(k))
return self._do_exponent(tex, exp)
def _print_FallingFactorial(self, expr, exp=None):
n, k = expr.args
sub = r"%s" % self.parenthesize(k, PRECEDENCE['Func'])
tex = r"{\left(%s\right)}_{%s}" % (self._print(n), sub)
return self._do_exponent(tex, exp)
def _hprint_BesselBase(self, expr, exp, sym: str) -> str:
tex = r"%s" % (sym)
need_exp = False
if exp is not None:
if tex.find('^') == -1:
tex = r"%s^{%s}" % (tex, exp)
else:
need_exp = True
tex = r"%s_{%s}\left(%s\right)" % (tex, self._print(expr.order),
self._print(expr.argument))
if need_exp:
tex = self._do_exponent(tex, exp)
return tex
def _hprint_vec(self, vec) -> str:
if not vec:
return ""
s = ""
for i in vec[:-1]:
s += "%s, " % self._print(i)
s += self._print(vec[-1])
return s
def _print_besselj(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'J')
def _print_besseli(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'I')
def _print_besselk(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'K')
def _print_bessely(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'Y')
def _print_yn(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'y')
def _print_jn(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'j')
def _print_hankel1(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'H^{(1)}')
def _print_hankel2(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'H^{(2)}')
def _print_hn1(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'h^{(1)}')
def _print_hn2(self, expr, exp=None):
return self._hprint_BesselBase(expr, exp, 'h^{(2)}')
def _hprint_airy(self, expr, exp=None, notation="") -> str:
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"%s^{%s}%s" % (notation, exp, tex)
else:
return r"%s%s" % (notation, tex)
def _hprint_airy_prime(self, expr, exp=None, notation="") -> str:
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"{%s^\prime}^{%s}%s" % (notation, exp, tex)
else:
return r"%s^\prime%s" % (notation, tex)
def _print_airyai(self, expr, exp=None):
return self._hprint_airy(expr, exp, 'Ai')
def _print_airybi(self, expr, exp=None):
return self._hprint_airy(expr, exp, 'Bi')
def _print_airyaiprime(self, expr, exp=None):
return self._hprint_airy_prime(expr, exp, 'Ai')
def _print_airybiprime(self, expr, exp=None):
return self._hprint_airy_prime(expr, exp, 'Bi')
def _print_hyper(self, expr, exp=None):
tex = r"{{}_{%s}F_{%s}\left(\begin{matrix} %s \\ %s \end{matrix}" \
r"\middle| {%s} \right)}" % \
(self._print(len(expr.ap)), self._print(len(expr.bq)),
self._hprint_vec(expr.ap), self._hprint_vec(expr.bq),
self._print(expr.argument))
if exp is not None:
tex = r"{%s}^{%s}" % (tex, exp)
return tex
def _print_meijerg(self, expr, exp=None):
tex = r"{G_{%s, %s}^{%s, %s}\left(\begin{matrix} %s & %s \\" \
r"%s & %s \end{matrix} \middle| {%s} \right)}" % \
(self._print(len(expr.ap)), self._print(len(expr.bq)),
self._print(len(expr.bm)), self._print(len(expr.an)),
self._hprint_vec(expr.an), self._hprint_vec(expr.aother),
self._hprint_vec(expr.bm), self._hprint_vec(expr.bother),
self._print(expr.argument))
if exp is not None:
tex = r"{%s}^{%s}" % (tex, exp)
return tex
def _print_dirichlet_eta(self, expr, exp=None):
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"\eta^{%s}%s" % (exp, tex)
return r"\eta%s" % tex
def _print_zeta(self, expr, exp=None):
if len(expr.args) == 2:
tex = r"\left(%s, %s\right)" % tuple(map(self._print, expr.args))
else:
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"\zeta^{%s}%s" % (exp, tex)
return r"\zeta%s" % tex
def _print_stieltjes(self, expr, exp=None):
if len(expr.args) == 2:
tex = r"_{%s}\left(%s\right)" % tuple(map(self._print, expr.args))
else:
tex = r"_{%s}" % self._print(expr.args[0])
if exp is not None:
return r"\gamma%s^{%s}" % (tex, exp)
return r"\gamma%s" % tex
def _print_lerchphi(self, expr, exp=None):
tex = r"\left(%s, %s, %s\right)" % tuple(map(self._print, expr.args))
if exp is None:
return r"\Phi%s" % tex
return r"\Phi^{%s}%s" % (exp, tex)
def _print_polylog(self, expr, exp=None):
s, z = map(self._print, expr.args)
tex = r"\left(%s\right)" % z
if exp is None:
return r"\operatorname{Li}_{%s}%s" % (s, tex)
return r"\operatorname{Li}_{%s}^{%s}%s" % (s, exp, tex)
def _print_jacobi(self, expr, exp=None):
n, a, b, x = map(self._print, expr.args)
tex = r"P_{%s}^{\left(%s,%s\right)}\left(%s\right)" % (n, a, b, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (exp)
return tex
def _print_gegenbauer(self, expr, exp=None):
n, a, x = map(self._print, expr.args)
tex = r"C_{%s}^{\left(%s\right)}\left(%s\right)" % (n, a, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (exp)
return tex
def _print_chebyshevt(self, expr, exp=None):
n, x = map(self._print, expr.args)
tex = r"T_{%s}\left(%s\right)" % (n, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (exp)
return tex
def _print_chebyshevu(self, expr, exp=None):
n, x = map(self._print, expr.args)
tex = r"U_{%s}\left(%s\right)" % (n, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (exp)
return tex
def _print_legendre(self, expr, exp=None):
n, x = map(self._print, expr.args)
tex = r"P_{%s}\left(%s\right)" % (n, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (exp)
return tex
def _print_assoc_legendre(self, expr, exp=None):
n, a, x = map(self._print, expr.args)
tex = r"P_{%s}^{\left(%s\right)}\left(%s\right)" % (n, a, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (exp)
return tex
def _print_hermite(self, expr, exp=None):
n, x = map(self._print, expr.args)
tex = r"H_{%s}\left(%s\right)" % (n, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (exp)
return tex
def _print_laguerre(self, expr, exp=None):
n, x = map(self._print, expr.args)
tex = r"L_{%s}\left(%s\right)" % (n, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (exp)
return tex
def _print_assoc_laguerre(self, expr, exp=None):
n, a, x = map(self._print, expr.args)
tex = r"L_{%s}^{\left(%s\right)}\left(%s\right)" % (n, a, x)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (exp)
return tex
def _print_Ynm(self, expr, exp=None):
n, m, theta, phi = map(self._print, expr.args)
tex = r"Y_{%s}^{%s}\left(%s,%s\right)" % (n, m, theta, phi)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (exp)
return tex
def _print_Znm(self, expr, exp=None):
n, m, theta, phi = map(self._print, expr.args)
tex = r"Z_{%s}^{%s}\left(%s,%s\right)" % (n, m, theta, phi)
if exp is not None:
tex = r"\left(" + tex + r"\right)^{%s}" % (exp)
return tex
def __print_mathieu_functions(self, character, args, prime=False, exp=None):
a, q, z = map(self._print, args)
sup = r"^{\prime}" if prime else ""
exp = "" if not exp else "^{%s}" % exp
return r"%s%s\left(%s, %s, %s\right)%s" % (character, sup, a, q, z, exp)
def _print_mathieuc(self, expr, exp=None):
return self.__print_mathieu_functions("C", expr.args, exp=exp)
def _print_mathieus(self, expr, exp=None):
return self.__print_mathieu_functions("S", expr.args, exp=exp)
def _print_mathieucprime(self, expr, exp=None):
return self.__print_mathieu_functions("C", expr.args, prime=True, exp=exp)
def _print_mathieusprime(self, expr, exp=None):
return self.__print_mathieu_functions("S", expr.args, prime=True, exp=exp)
def _print_Rational(self, expr):
if expr.q != 1:
sign = ""
p = expr.p
if expr.p < 0:
sign = "- "
p = -p
if self._settings['fold_short_frac']:
return r"%s%d / %d" % (sign, p, expr.q)
return r"%s\frac{%d}{%d}" % (sign, p, expr.q)
else:
return self._print(expr.p)
def _print_Order(self, expr):
s = self._print(expr.expr)
if expr.point and any(p != S.Zero for p in expr.point) or \
len(expr.variables) > 1:
s += '; '
if len(expr.variables) > 1:
s += self._print(expr.variables)
elif expr.variables:
s += self._print(expr.variables[0])
s += r'\rightarrow '
if len(expr.point) > 1:
s += self._print(expr.point)
else:
s += self._print(expr.point[0])
return r"O\left(%s\right)" % s
def _print_Symbol(self, expr: Symbol, style='plain'):
name: str = self._settings['symbol_names'].get(expr)
if name is not None:
return name
return self._deal_with_super_sub(expr.name, style=style)
_print_RandomSymbol = _print_Symbol
def _deal_with_super_sub(self, string: str, style='plain') -> str:
if '{' in string:
name, supers, subs = string, [], []
else:
name, supers, subs = split_super_sub(string)
name = translate(name)
supers = [translate(sup) for sup in supers]
subs = [translate(sub) for sub in subs]
# apply the style only to the name
if style == 'bold':
name = "\\mathbf{{{}}}".format(name)
# glue all items together:
if supers:
name += "^{%s}" % " ".join(supers)
if subs:
name += "_{%s}" % " ".join(subs)
return name
def _print_Relational(self, expr):
if self._settings['itex']:
gt = r"\gt"
lt = r"\lt"
else:
gt = ">"
lt = "<"
charmap = {
"==": "=",
">": gt,
"<": lt,
">=": r"\geq",
"<=": r"\leq",
"!=": r"\neq",
}
return "%s %s %s" % (self._print(expr.lhs),
charmap[expr.rel_op], self._print(expr.rhs))
def _print_Piecewise(self, expr):
ecpairs = [r"%s & \text{for}\: %s" % (self._print(e), self._print(c))
for e, c in expr.args[:-1]]
if expr.args[-1].cond == true:
ecpairs.append(r"%s & \text{otherwise}" %
self._print(expr.args[-1].expr))
else:
ecpairs.append(r"%s & \text{for}\: %s" %
(self._print(expr.args[-1].expr),
self._print(expr.args[-1].cond)))
tex = r"\begin{cases} %s \end{cases}"
return tex % r" \\".join(ecpairs)
def _print_matrix_contents(self, expr):
lines = []
for line in range(expr.rows): # horrible, should be 'rows'
lines.append(" & ".join([self._print(i) for i in expr[line, :]]))
mat_str = self._settings['mat_str']
if mat_str is None:
if self._settings['mode'] == 'inline':
mat_str = 'smallmatrix'
else:
if (expr.cols <= 10) is True:
mat_str = 'matrix'
else:
mat_str = 'array'
out_str = r'\begin{%MATSTR%}%s\end{%MATSTR%}'
out_str = out_str.replace('%MATSTR%', mat_str)
if mat_str == 'array':
out_str = out_str.replace('%s', '{' + 'c'*expr.cols + '}%s')
return out_str % r"\\".join(lines)
def _print_MatrixBase(self, expr):
out_str = self._print_matrix_contents(expr)
if self._settings['mat_delim']:
left_delim: str = self._settings['mat_delim']
right_delim = self._delim_dict[left_delim]
out_str = r'\left' + left_delim + out_str + \
r'\right' + right_delim
return out_str
def _print_MatrixElement(self, expr):
return self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True)\
+ '_{%s, %s}' % (self._print(expr.i), self._print(expr.j))
def _print_MatrixSlice(self, expr):
def latexslice(x, dim):
x = list(x)
if x[2] == 1:
del x[2]
if x[0] == 0:
x[0] = None
if x[1] == dim:
x[1] = None
return ':'.join(self._print(xi) if xi is not None else '' for xi in x)
return (self.parenthesize(expr.parent, PRECEDENCE["Atom"], strict=True) + r'\left[' +
latexslice(expr.rowslice, expr.parent.rows) + ', ' +
latexslice(expr.colslice, expr.parent.cols) + r'\right]')
def _print_BlockMatrix(self, expr):
return self._print(expr.blocks)
def _print_Transpose(self, expr):
mat = expr.arg
from sympy.matrices import MatrixSymbol, BlockMatrix
if (not isinstance(mat, MatrixSymbol) and
not isinstance(mat, BlockMatrix) and mat.is_MatrixExpr):
return r"\left(%s\right)^{T}" % self._print(mat)
else:
s = self.parenthesize(mat, precedence_traditional(expr), True)
if '^' in s:
return r"\left(%s\right)^{T}" % s
else:
return "%s^{T}" % s
def _print_Trace(self, expr):
mat = expr.arg
return r"\operatorname{tr}\left(%s \right)" % self._print(mat)
def _print_Adjoint(self, expr):
mat = expr.arg
from sympy.matrices import MatrixSymbol, BlockMatrix
if (not isinstance(mat, MatrixSymbol) and
not isinstance(mat, BlockMatrix) and mat.is_MatrixExpr):
return r"\left(%s\right)^{\dagger}" % self._print(mat)
else:
s = self.parenthesize(mat, precedence_traditional(expr), True)
if '^' in s:
return r"\left(%s\right)^{\dagger}" % s
else:
return r"%s^{\dagger}" % s
def _print_MatMul(self, expr):
from sympy import MatMul
# Parenthesize nested MatMul but not other types of Mul objects:
parens = lambda x: self._print(x) if isinstance(x, Mul) and not isinstance(x, MatMul) else \
self.parenthesize(x, precedence_traditional(expr), False)
args = list(expr.args)
if expr.could_extract_minus_sign():
if args[0] == -1:
args = args[1:]
else:
args[0] = -args[0]
return '- ' + ' '.join(map(parens, args))
else:
return ' '.join(map(parens, args))
def _print_Determinant(self, expr):
mat = expr.arg
if mat.is_MatrixExpr:
from sympy.matrices.expressions.blockmatrix import BlockMatrix
if isinstance(mat, BlockMatrix):
return r"\left|{%s}\right|" % self._print_matrix_contents(mat.blocks)
return r"\left|{%s}\right|" % self._print(mat)
return r"\left|{%s}\right|" % self._print_matrix_contents(mat)
def _print_Mod(self, expr, exp=None):
if exp is not None:
return r'\left(%s \bmod %s\right)^{%s}' % \
(self.parenthesize(expr.args[0], PRECEDENCE['Mul'],
strict=True),
self.parenthesize(expr.args[1], PRECEDENCE['Mul'],
strict=True),
exp)
return r'%s \bmod %s' % (self.parenthesize(expr.args[0],
PRECEDENCE['Mul'],
strict=True),
self.parenthesize(expr.args[1],
PRECEDENCE['Mul'],
strict=True))
def _print_HadamardProduct(self, expr):
args = expr.args
prec = PRECEDENCE['Pow']
parens = self.parenthesize
return r' \circ '.join(
map(lambda arg: parens(arg, prec, strict=True), args))
def _print_HadamardPower(self, expr):
if precedence_traditional(expr.exp) < PRECEDENCE["Mul"]:
template = r"%s^{\circ \left({%s}\right)}"
else:
template = r"%s^{\circ {%s}}"
return self._helper_print_standard_power(expr, template)
def _print_KroneckerProduct(self, expr):
args = expr.args
prec = PRECEDENCE['Pow']
parens = self.parenthesize
return r' \otimes '.join(
map(lambda arg: parens(arg, prec, strict=True), args))
def _print_MatPow(self, expr):
base, exp = expr.base, expr.exp
from sympy.matrices import MatrixSymbol
if not isinstance(base, MatrixSymbol) and base.is_MatrixExpr:
return "\\left(%s\\right)^{%s}" % (self._print(base),
self._print(exp))
else:
base_str = self._print(base)
if '^' in base_str:
return r"\left(%s\right)^{%s}" % (base_str, self._print(exp))
else:
return "%s^{%s}" % (base_str, self._print(exp))
def _print_MatrixSymbol(self, expr):
return self._print_Symbol(expr, style=self._settings[
'mat_symbol_style'])
def _print_ZeroMatrix(self, Z):
return "0" if self._settings[
'mat_symbol_style'] == 'plain' else r"\mathbf{0}"
def _print_OneMatrix(self, O):
return "1" if self._settings[
'mat_symbol_style'] == 'plain' else r"\mathbf{1}"
def _print_Identity(self, I):
return r"\mathbb{I}" if self._settings[
'mat_symbol_style'] == 'plain' else r"\mathbf{I}"
def _print_PermutationMatrix(self, P):
perm_str = self._print(P.args[0])
return "P_{%s}" % perm_str
def _print_NDimArray(self, expr: NDimArray):
if expr.rank() == 0:
return self._print(expr[()])
mat_str = self._settings['mat_str']
if mat_str is None:
if self._settings['mode'] == 'inline':
mat_str = 'smallmatrix'
else:
if (expr.rank() == 0) or (expr.shape[-1] <= 10):
mat_str = 'matrix'
else:
mat_str = 'array'
block_str = r'\begin{%MATSTR%}%s\end{%MATSTR%}'
block_str = block_str.replace('%MATSTR%', mat_str)
if mat_str == 'array':
block_str= block_str.replace('%s','{}%s')
if self._settings['mat_delim']:
left_delim: str = self._settings['mat_delim']
right_delim = self._delim_dict[left_delim]
block_str = r'\left' + left_delim + block_str + \
r'\right' + right_delim
if expr.rank() == 0:
return block_str % ""
level_str: list[list[str]] = [[] for i in range(expr.rank() + 1)]
shape_ranges = [list(range(i)) for i in expr.shape]
for outer_i in itertools.product(*shape_ranges):
level_str[-1].append(self._print(expr[outer_i]))
even = True
for back_outer_i in range(expr.rank()-1, -1, -1):
if len(level_str[back_outer_i+1]) < expr.shape[back_outer_i]:
break
if even:
level_str[back_outer_i].append(
r" & ".join(level_str[back_outer_i+1]))
else:
level_str[back_outer_i].append(
block_str % (r"\\".join(level_str[back_outer_i+1])))
if len(level_str[back_outer_i+1]) == 1:
level_str[back_outer_i][-1] = r"\left[" + \
level_str[back_outer_i][-1] + r"\right]"
even = not even
level_str[back_outer_i+1] = []
out_str = level_str[0][0]
if expr.rank() % 2 == 1:
out_str = block_str % out_str
return out_str
def _printer_tensor_indices(self, name, indices, index_map: dict):
out_str = self._print(name)
last_valence = None
prev_map = None
for index in indices:
new_valence = index.is_up
if ((index in index_map) or prev_map) and \
last_valence == new_valence:
out_str += ","
if last_valence != new_valence:
if last_valence is not None:
out_str += "}"
if index.is_up:
out_str += "{}^{"
else:
out_str += "{}_{"
out_str += self._print(index.args[0])
if index in index_map:
out_str += "="
out_str += self._print(index_map[index])
prev_map = True
else:
prev_map = False
last_valence = new_valence
if last_valence is not None:
out_str += "}"
return out_str
def _print_Tensor(self, expr):
name = expr.args[0].args[0]
indices = expr.get_indices()
return self._printer_tensor_indices(name, indices, {})
def _print_TensorElement(self, expr):
name = expr.expr.args[0].args[0]
indices = expr.expr.get_indices()
index_map = expr.index_map
return self._printer_tensor_indices(name, indices, index_map)
def _print_TensMul(self, expr):
# prints expressions like "A(a)", "3*A(a)", "(1+x)*A(a)"
sign, args = expr._get_args_for_traditional_printer()
return sign + "".join(
[self.parenthesize(arg, precedence(expr)) for arg in args]
)
def _print_TensAdd(self, expr):
a = []
args = expr.args
for x in args:
a.append(self.parenthesize(x, precedence(expr)))
a.sort()
s = ' + '.join(a)
s = s.replace('+ -', '- ')
return s
def _print_TensorIndex(self, expr):
return "{}%s{%s}" % (
"^" if expr.is_up else "_",
self._print(expr.args[0])
)
def _print_PartialDerivative(self, expr):
if len(expr.variables) == 1:
return r"\frac{\partial}{\partial {%s}}{%s}" % (
self._print(expr.variables[0]),
self.parenthesize(expr.expr, PRECEDENCE["Mul"], False)
)
else:
return r"\frac{\partial^{%s}}{%s}{%s}" % (
len(expr.variables),
" ".join([r"\partial {%s}" % self._print(i) for i in expr.variables]),
self.parenthesize(expr.expr, PRECEDENCE["Mul"], False)
)
def _print_ArraySymbol(self, expr):
return self._print(expr.name)
def _print_ArrayElement(self, expr):
return "{{%s}_{%s}}" % (
self.parenthesize(expr.name, PRECEDENCE["Func"], True),
", ".join([f"{self._print(i)}" for i in expr.indices]))
def _print_UniversalSet(self, expr):
return r"\mathbb{U}"
def _print_frac(self, expr, exp=None):
if exp is None:
return r"\operatorname{frac}{\left(%s\right)}" % self._print(expr.args[0])
else:
return r"\operatorname{frac}{\left(%s\right)}^{%s}" % (
self._print(expr.args[0]), exp)
def _print_tuple(self, expr):
if self._settings['decimal_separator'] == 'comma':
sep = ";"
elif self._settings['decimal_separator'] == 'period':
sep = ","
else:
raise ValueError('Unknown Decimal Separator')
if len(expr) == 1:
# 1-tuple needs a trailing separator
return self._add_parens_lspace(self._print(expr[0]) + sep)
else:
return self._add_parens_lspace(
(sep + r" \ ").join([self._print(i) for i in expr]))
def _print_TensorProduct(self, expr):
elements = [self._print(a) for a in expr.args]
return r' \otimes '.join(elements)
def _print_WedgeProduct(self, expr):
elements = [self._print(a) for a in expr.args]
return r' \wedge '.join(elements)
def _print_Tuple(self, expr):
return self._print_tuple(expr)
def _print_list(self, expr):
if self._settings['decimal_separator'] == 'comma':
return r"\left[ %s\right]" % \
r"; \ ".join([self._print(i) for i in expr])
elif self._settings['decimal_separator'] == 'period':
return r"\left[ %s\right]" % \
r", \ ".join([self._print(i) for i in expr])
else:
raise ValueError('Unknown Decimal Separator')
def _print_dict(self, d):
keys = sorted(d.keys(), key=default_sort_key)
items = []
for key in keys:
val = d[key]
items.append("%s : %s" % (self._print(key), self._print(val)))
return r"\left\{ %s\right\}" % r", \ ".join(items)
def _print_Dict(self, expr):
return self._print_dict(expr)
def _print_DiracDelta(self, expr, exp=None):
if len(expr.args) == 1 or expr.args[1] == 0:
tex = r"\delta\left(%s\right)" % self._print(expr.args[0])
else:
tex = r"\delta^{\left( %s \right)}\left( %s \right)" % (
self._print(expr.args[1]), self._print(expr.args[0]))
if exp:
tex = r"\left(%s\right)^{%s}" % (tex, exp)
return tex
def _print_SingularityFunction(self, expr, exp=None):
shift = self._print(expr.args[0] - expr.args[1])
power = self._print(expr.args[2])
tex = r"{\left\langle %s \right\rangle}^{%s}" % (shift, power)
if exp is not None:
tex = r"{\left({\langle %s \rangle}^{%s}\right)}^{%s}" % (shift, power, exp)
return tex
def _print_Heaviside(self, expr, exp=None):
pargs = ', '.join(self._print(arg) for arg in expr.pargs)
tex = r"\theta\left(%s\right)" % pargs
if exp:
tex = r"\left(%s\right)^{%s}" % (tex, exp)
return tex
def _print_KroneckerDelta(self, expr, exp=None):
i = self._print(expr.args[0])
j = self._print(expr.args[1])
if expr.args[0].is_Atom and expr.args[1].is_Atom:
tex = r'\delta_{%s %s}' % (i, j)
else:
tex = r'\delta_{%s, %s}' % (i, j)
if exp is not None:
tex = r'\left(%s\right)^{%s}' % (tex, exp)
return tex
def _print_LeviCivita(self, expr, exp=None):
indices = map(self._print, expr.args)
if all(x.is_Atom for x in expr.args):
tex = r'\varepsilon_{%s}' % " ".join(indices)
else:
tex = r'\varepsilon_{%s}' % ", ".join(indices)
if exp:
tex = r'\left(%s\right)^{%s}' % (tex, exp)
return tex
def _print_RandomDomain(self, d):
if hasattr(d, 'as_boolean'):
return '\\text{Domain: }' + self._print(d.as_boolean())
elif hasattr(d, 'set'):
return ('\\text{Domain: }' + self._print(d.symbols) + ' \\in ' +
self._print(d.set))
elif hasattr(d, 'symbols'):
return '\\text{Domain on }' + self._print(d.symbols)
else:
return self._print(None)
def _print_FiniteSet(self, s):
items = sorted(s.args, key=default_sort_key)
return self._print_set(items)
def _print_set(self, s):
items = sorted(s, key=default_sort_key)
if self._settings['decimal_separator'] == 'comma':
items = "; ".join(map(self._print, items))
elif self._settings['decimal_separator'] == 'period':
items = ", ".join(map(self._print, items))
else:
raise ValueError('Unknown Decimal Separator')
return r"\left\{%s\right\}" % items
_print_frozenset = _print_set
def _print_Range(self, s):
def _print_symbolic_range():
# Symbolic Range that cannot be resolved
if s.args[0] == 0:
if s.args[2] == 1:
cont = self._print(s.args[1])
else:
cont = ", ".join(self._print(arg) for arg in s.args)
else:
if s.args[2] == 1:
cont = ", ".join(self._print(arg) for arg in s.args[:2])
else:
cont = ", ".join(self._print(arg) for arg in s.args)
return(f"\\text{{Range}}\\left({cont}\\right)")
dots = object()
if s.start.is_infinite and s.stop.is_infinite:
if s.step.is_positive:
printset = dots, -1, 0, 1, dots
else:
printset = dots, 1, 0, -1, dots
elif s.start.is_infinite:
printset = dots, s[-1] - s.step, s[-1]
elif s.stop.is_infinite:
it = iter(s)
printset = next(it), next(it), dots
elif s.is_empty is not None:
if (s.size < 4) == True:
printset = tuple(s)
elif s.is_iterable:
it = iter(s)
printset = next(it), next(it), dots, s[-1]
else:
return _print_symbolic_range()
else:
return _print_symbolic_range()
return (r"\left\{" +
r", ".join(self._print(el) if el is not dots else r'\ldots' for el in printset) +
r"\right\}")
def __print_number_polynomial(self, expr, letter, exp=None):
if len(expr.args) == 2:
if exp is not None:
return r"%s_{%s}^{%s}\left(%s\right)" % (letter,
self._print(expr.args[0]), exp,
self._print(expr.args[1]))
return r"%s_{%s}\left(%s\right)" % (letter,
self._print(expr.args[0]), self._print(expr.args[1]))
tex = r"%s_{%s}" % (letter, self._print(expr.args[0]))
if exp is not None:
tex = r"%s^{%s}" % (tex, exp)
return tex
def _print_bernoulli(self, expr, exp=None):
return self.__print_number_polynomial(expr, "B", exp)
def _print_genocchi(self, expr, exp=None):
return self.__print_number_polynomial(expr, "G", exp)
def _print_bell(self, expr, exp=None):
if len(expr.args) == 3:
tex1 = r"B_{%s, %s}" % (self._print(expr.args[0]),
self._print(expr.args[1]))
tex2 = r"\left(%s\right)" % r", ".join(self._print(el) for
el in expr.args[2])
if exp is not None:
tex = r"%s^{%s}%s" % (tex1, exp, tex2)
else:
tex = tex1 + tex2
return tex
return self.__print_number_polynomial(expr, "B", exp)
def _print_fibonacci(self, expr, exp=None):
return self.__print_number_polynomial(expr, "F", exp)
def _print_lucas(self, expr, exp=None):
tex = r"L_{%s}" % self._print(expr.args[0])
if exp is not None:
tex = r"%s^{%s}" % (tex, exp)
return tex
def _print_tribonacci(self, expr, exp=None):
return self.__print_number_polynomial(expr, "T", exp)
def _print_SeqFormula(self, s):
dots = object()
if len(s.start.free_symbols) > 0 or len(s.stop.free_symbols) > 0:
return r"\left\{%s\right\}_{%s=%s}^{%s}" % (
self._print(s.formula),
self._print(s.variables[0]),
self._print(s.start),
self._print(s.stop)
)
if s.start is S.NegativeInfinity:
stop = s.stop
printset = (dots, s.coeff(stop - 3), s.coeff(stop - 2),
s.coeff(stop - 1), s.coeff(stop))
elif s.stop is S.Infinity or s.length > 4:
printset = s[:4]
printset.append(dots)
else:
printset = tuple(s)
return (r"\left[" +
r", ".join(self._print(el) if el is not dots else r'\ldots' for el in printset) +
r"\right]")
_print_SeqPer = _print_SeqFormula
_print_SeqAdd = _print_SeqFormula
_print_SeqMul = _print_SeqFormula
def _print_Interval(self, i):
if i.start == i.end:
return r"\left\{%s\right\}" % self._print(i.start)
else:
if i.left_open:
left = '('
else:
left = '['
if i.right_open:
right = ')'
else:
right = ']'
return r"\left%s%s, %s\right%s" % \
(left, self._print(i.start), self._print(i.end), right)
def _print_AccumulationBounds(self, i):
return r"\left\langle %s, %s\right\rangle" % \
(self._print(i.min), self._print(i.max))
def _print_Union(self, u):
prec = precedence_traditional(u)
args_str = [self.parenthesize(i, prec) for i in u.args]
return r" \cup ".join(args_str)
def _print_Complement(self, u):
prec = precedence_traditional(u)
args_str = [self.parenthesize(i, prec) for i in u.args]
return r" \setminus ".join(args_str)
def _print_Intersection(self, u):
prec = precedence_traditional(u)
args_str = [self.parenthesize(i, prec) for i in u.args]
return r" \cap ".join(args_str)
def _print_SymmetricDifference(self, u):
prec = precedence_traditional(u)
args_str = [self.parenthesize(i, prec) for i in u.args]
return r" \triangle ".join(args_str)
def _print_ProductSet(self, p):
prec = precedence_traditional(p)
if len(p.sets) >= 1 and not has_variety(p.sets):
return self.parenthesize(p.sets[0], prec) + "^{%d}" % len(p.sets)
return r" \times ".join(
self.parenthesize(set, prec) for set in p.sets)
def _print_EmptySet(self, e):
return r"\emptyset"
def _print_Naturals(self, n):
return r"\mathbb{N}"
def _print_Naturals0(self, n):
return r"\mathbb{N}_0"
def _print_Integers(self, i):
return r"\mathbb{Z}"
def _print_Rationals(self, i):
return r"\mathbb{Q}"
def _print_Reals(self, i):
return r"\mathbb{R}"
def _print_Complexes(self, i):
return r"\mathbb{C}"
def _print_ImageSet(self, s):
expr = s.lamda.expr
sig = s.lamda.signature
xys = ((self._print(x), self._print(y)) for x, y in zip(sig, s.base_sets))
xinys = r", ".join(r"%s \in %s" % xy for xy in xys)
return r"\left\{%s\; \middle|\; %s\right\}" % (self._print(expr), xinys)
def _print_ConditionSet(self, s):
vars_print = ', '.join([self._print(var) for var in Tuple(s.sym)])
if s.base_set is S.UniversalSet:
return r"\left\{%s\; \middle|\; %s \right\}" % \
(vars_print, self._print(s.condition))
return r"\left\{%s\; \middle|\; %s \in %s \wedge %s \right\}" % (
vars_print,
vars_print,
self._print(s.base_set),
self._print(s.condition))
def _print_PowerSet(self, expr):
arg_print = self._print(expr.args[0])
return r"\mathcal{{P}}\left({}\right)".format(arg_print)
def _print_ComplexRegion(self, s):
vars_print = ', '.join([self._print(var) for var in s.variables])
return r"\left\{%s\; \middle|\; %s \in %s \right\}" % (
self._print(s.expr),
vars_print,
self._print(s.sets))
def _print_Contains(self, e):
return r"%s \in %s" % tuple(self._print(a) for a in e.args)
def _print_FourierSeries(self, s):
if s.an.formula is S.Zero and s.bn.formula is S.Zero:
return self._print(s.a0)
return self._print_Add(s.truncate()) + r' + \ldots'
def _print_FormalPowerSeries(self, s):
return self._print_Add(s.infinite)
def _print_FiniteField(self, expr):
return r"\mathbb{F}_{%s}" % expr.mod
def _print_IntegerRing(self, expr):
return r"\mathbb{Z}"
def _print_RationalField(self, expr):
return r"\mathbb{Q}"
def _print_RealField(self, expr):
return r"\mathbb{R}"
def _print_ComplexField(self, expr):
return r"\mathbb{C}"
def _print_PolynomialRing(self, expr):
domain = self._print(expr.domain)
symbols = ", ".join(map(self._print, expr.symbols))
return r"%s\left[%s\right]" % (domain, symbols)
def _print_FractionField(self, expr):
domain = self._print(expr.domain)
symbols = ", ".join(map(self._print, expr.symbols))
return r"%s\left(%s\right)" % (domain, symbols)
def _print_PolynomialRingBase(self, expr):
domain = self._print(expr.domain)
symbols = ", ".join(map(self._print, expr.symbols))
inv = ""
if not expr.is_Poly:
inv = r"S_<^{-1}"
return r"%s%s\left[%s\right]" % (inv, domain, symbols)
def _print_Poly(self, poly):
cls = poly.__class__.__name__
terms = []
for monom, coeff in poly.terms():
s_monom = ''
for i, exp in enumerate(monom):
if exp > 0:
if exp == 1:
s_monom += self._print(poly.gens[i])
else:
s_monom += self._print(pow(poly.gens[i], exp))
if coeff.is_Add:
if s_monom:
s_coeff = r"\left(%s\right)" % self._print(coeff)
else:
s_coeff = self._print(coeff)
else:
if s_monom:
if coeff is S.One:
terms.extend(['+', s_monom])
continue
if coeff is S.NegativeOne:
terms.extend(['-', s_monom])
continue
s_coeff = self._print(coeff)
if not s_monom:
s_term = s_coeff
else:
s_term = s_coeff + " " + s_monom
if s_term.startswith('-'):
terms.extend(['-', s_term[1:]])
else:
terms.extend(['+', s_term])
if terms[0] in ('-', '+'):
modifier = terms.pop(0)
if modifier == '-':
terms[0] = '-' + terms[0]
expr = ' '.join(terms)
gens = list(map(self._print, poly.gens))
domain = "domain=%s" % self._print(poly.get_domain())
args = ", ".join([expr] + gens + [domain])
if cls in accepted_latex_functions:
tex = r"\%s {\left(%s \right)}" % (cls, args)
else:
tex = r"\operatorname{%s}{\left( %s \right)}" % (cls, args)
return tex
def _print_ComplexRootOf(self, root):
cls = root.__class__.__name__
if cls == "ComplexRootOf":
cls = "CRootOf"
expr = self._print(root.expr)
index = root.index
if cls in accepted_latex_functions:
return r"\%s {\left(%s, %d\right)}" % (cls, expr, index)
else:
return r"\operatorname{%s} {\left(%s, %d\right)}" % (cls, expr,
index)
def _print_RootSum(self, expr):
cls = expr.__class__.__name__
args = [self._print(expr.expr)]
if expr.fun is not S.IdentityFunction:
args.append(self._print(expr.fun))
if cls in accepted_latex_functions:
return r"\%s {\left(%s\right)}" % (cls, ", ".join(args))
else:
return r"\operatorname{%s} {\left(%s\right)}" % (cls,
", ".join(args))
def _print_OrdinalOmega(self, expr):
return r"\omega"
def _print_OmegaPower(self, expr):
exp, mul = expr.args
if mul != 1:
if exp != 1:
return r"{} \omega^{{{}}}".format(mul, exp)
else:
return r"{} \omega".format(mul)
else:
if exp != 1:
return r"\omega^{{{}}}".format(exp)
else:
return r"\omega"
def _print_Ordinal(self, expr):
return " + ".join([self._print(arg) for arg in expr.args])
def _print_PolyElement(self, poly):
mul_symbol = self._settings['mul_symbol_latex']
return poly.str(self, PRECEDENCE, "{%s}^{%d}", mul_symbol)
def _print_FracElement(self, frac):
if frac.denom == 1:
return self._print(frac.numer)
else:
numer = self._print(frac.numer)
denom = self._print(frac.denom)
return r"\frac{%s}{%s}" % (numer, denom)
def _print_euler(self, expr, exp=None):
m, x = (expr.args[0], None) if len(expr.args) == 1 else expr.args
tex = r"E_{%s}" % self._print(m)
if exp is not None:
tex = r"%s^{%s}" % (tex, exp)
if x is not None:
tex = r"%s\left(%s\right)" % (tex, self._print(x))
return tex
def _print_catalan(self, expr, exp=None):
tex = r"C_{%s}" % self._print(expr.args[0])
if exp is not None:
tex = r"%s^{%s}" % (tex, exp)
return tex
def _print_UnifiedTransform(self, expr, s, inverse=False):
return r"\mathcal{{{}}}{}_{{{}}}\left[{}\right]\left({}\right)".format(s, '^{-1}' if inverse else '', self._print(expr.args[1]), self._print(expr.args[0]), self._print(expr.args[2]))
def _print_MellinTransform(self, expr):
return self._print_UnifiedTransform(expr, 'M')
def _print_InverseMellinTransform(self, expr):
return self._print_UnifiedTransform(expr, 'M', True)
def _print_LaplaceTransform(self, expr):
return self._print_UnifiedTransform(expr, 'L')
def _print_InverseLaplaceTransform(self, expr):
return self._print_UnifiedTransform(expr, 'L', True)
def _print_FourierTransform(self, expr):
return self._print_UnifiedTransform(expr, 'F')
def _print_InverseFourierTransform(self, expr):
return self._print_UnifiedTransform(expr, 'F', True)
def _print_SineTransform(self, expr):
return self._print_UnifiedTransform(expr, 'SIN')
def _print_InverseSineTransform(self, expr):
return self._print_UnifiedTransform(expr, 'SIN', True)
def _print_CosineTransform(self, expr):
return self._print_UnifiedTransform(expr, 'COS')
def _print_InverseCosineTransform(self, expr):
return self._print_UnifiedTransform(expr, 'COS', True)
def _print_DMP(self, p):
try:
if p.ring is not None:
# TODO incorporate order
return self._print(p.ring.to_sympy(p))
except SympifyError:
pass
return self._print(repr(p))
def _print_DMF(self, p):
return self._print_DMP(p)
def _print_Object(self, object):
return self._print(Symbol(object.name))
def _print_LambertW(self, expr, exp=None):
arg0 = self._print(expr.args[0])
exp = r"^{%s}" % (exp,) if exp is not None else ""
if len(expr.args) == 1:
result = r"W%s\left(%s\right)" % (exp, arg0)
else:
arg1 = self._print(expr.args[1])
result = "W{0}_{{{1}}}\\left({2}\\right)".format(exp, arg1, arg0)
return result
def _print_Expectation(self, expr):
return r"\operatorname{{E}}\left[{}\right]".format(self._print(expr.args[0]))
def _print_Variance(self, expr):
return r"\operatorname{{Var}}\left({}\right)".format(self._print(expr.args[0]))
def _print_Covariance(self, expr):
return r"\operatorname{{Cov}}\left({}\right)".format(", ".join(self._print(arg) for arg in expr.args))
def _print_Probability(self, expr):
return r"\operatorname{{P}}\left({}\right)".format(self._print(expr.args[0]))
def _print_Morphism(self, morphism):
domain = self._print(morphism.domain)
codomain = self._print(morphism.codomain)
return "%s\\rightarrow %s" % (domain, codomain)
def _print_TransferFunction(self, expr):
num, den = self._print(expr.num), self._print(expr.den)
return r"\frac{%s}{%s}" % (num, den)
def _print_Series(self, expr):
args = list(expr.args)
parens = lambda x: self.parenthesize(x, precedence_traditional(expr),
False)
return ' '.join(map(parens, args))
def _print_MIMOSeries(self, expr):
from sympy.physics.control.lti import MIMOParallel
args = list(expr.args)[::-1]
parens = lambda x: self.parenthesize(x, precedence_traditional(expr),
False) if isinstance(x, MIMOParallel) else self._print(x)
return r"\cdot".join(map(parens, args))
def _print_Parallel(self, expr):
return ' + '.join(map(self._print, expr.args))
def _print_MIMOParallel(self, expr):
return ' + '.join(map(self._print, expr.args))
def _print_Feedback(self, expr):
from sympy.physics.control import TransferFunction, Series
num, tf = expr.sys1, TransferFunction(1, 1, expr.var)
num_arg_list = list(num.args) if isinstance(num, Series) else [num]
den_arg_list = list(expr.sys2.args) if \
isinstance(expr.sys2, Series) else [expr.sys2]
den_term_1 = tf
if isinstance(num, Series) and isinstance(expr.sys2, Series):
den_term_2 = Series(*num_arg_list, *den_arg_list)
elif isinstance(num, Series) and isinstance(expr.sys2, TransferFunction):
if expr.sys2 == tf:
den_term_2 = Series(*num_arg_list)
else:
den_term_2 = tf, Series(*num_arg_list, expr.sys2)
elif isinstance(num, TransferFunction) and isinstance(expr.sys2, Series):
if num == tf:
den_term_2 = Series(*den_arg_list)
else:
den_term_2 = Series(num, *den_arg_list)
else:
if num == tf:
den_term_2 = Series(*den_arg_list)
elif expr.sys2 == tf:
den_term_2 = Series(*num_arg_list)
else:
den_term_2 = Series(*num_arg_list, *den_arg_list)
numer = self._print(num)
denom_1 = self._print(den_term_1)
denom_2 = self._print(den_term_2)
_sign = "+" if expr.sign == -1 else "-"
return r"\frac{%s}{%s %s %s}" % (numer, denom_1, _sign, denom_2)
def _print_MIMOFeedback(self, expr):
from sympy.physics.control import MIMOSeries
inv_mat = self._print(MIMOSeries(expr.sys2, expr.sys1))
sys1 = self._print(expr.sys1)
_sign = "+" if expr.sign == -1 else "-"
return r"\left(I_{\tau} %s %s\right)^{-1} \cdot %s" % (_sign, inv_mat, sys1)
def _print_TransferFunctionMatrix(self, expr):
mat = self._print(expr._expr_mat)
return r"%s_\tau" % mat
def _print_DFT(self, expr):
return r"\text{{{}}}_{{{}}}".format(expr.__class__.__name__, expr.n)
_print_IDFT = _print_DFT
def _print_NamedMorphism(self, morphism):
pretty_name = self._print(Symbol(morphism.name))
pretty_morphism = self._print_Morphism(morphism)
return "%s:%s" % (pretty_name, pretty_morphism)
def _print_IdentityMorphism(self, morphism):
from sympy.categories import NamedMorphism
return self._print_NamedMorphism(NamedMorphism(
morphism.domain, morphism.codomain, "id"))
def _print_CompositeMorphism(self, morphism):
# All components of the morphism have names and it is thus
# possible to build the name of the composite.
component_names_list = [self._print(Symbol(component.name)) for
component in morphism.components]
component_names_list.reverse()
component_names = "\\circ ".join(component_names_list) + ":"
pretty_morphism = self._print_Morphism(morphism)
return component_names + pretty_morphism
def _print_Category(self, morphism):
return r"\mathbf{{{}}}".format(self._print(Symbol(morphism.name)))
def _print_Diagram(self, diagram):
if not diagram.premises:
# This is an empty diagram.
return self._print(S.EmptySet)
latex_result = self._print(diagram.premises)
if diagram.conclusions:
latex_result += "\\Longrightarrow %s" % \
self._print(diagram.conclusions)
return latex_result
def _print_DiagramGrid(self, grid):
latex_result = "\\begin{array}{%s}\n" % ("c" * grid.width)
for i in range(grid.height):
for j in range(grid.width):
if grid[i, j]:
latex_result += latex(grid[i, j])
latex_result += " "
if j != grid.width - 1:
latex_result += "& "
if i != grid.height - 1:
latex_result += "\\\\"
latex_result += "\n"
latex_result += "\\end{array}\n"
return latex_result
def _print_FreeModule(self, M):
return '{{{}}}^{{{}}}'.format(self._print(M.ring), self._print(M.rank))
def _print_FreeModuleElement(self, m):
# Print as row vector for convenience, for now.
return r"\left[ {} \right]".format(",".join(
'{' + self._print(x) + '}' for x in m))
def _print_SubModule(self, m):
return r"\left\langle {} \right\rangle".format(",".join(
'{' + self._print(x) + '}' for x in m.gens))
def _print_ModuleImplementedIdeal(self, m):
return r"\left\langle {} \right\rangle".format(",".join(
'{' + self._print(x) + '}' for [x] in m._module.gens))
def _print_Quaternion(self, expr):
# TODO: This expression is potentially confusing,
# shall we print it as `Quaternion( ... )`?
s = [self.parenthesize(i, PRECEDENCE["Mul"], strict=True)
for i in expr.args]
a = [s[0]] + [i+" "+j for i, j in zip(s[1:], "ijk")]
return " + ".join(a)
def _print_QuotientRing(self, R):
# TODO nicer fractions for few generators...
return r"\frac{{{}}}{{{}}}".format(self._print(R.ring),
self._print(R.base_ideal))
def _print_QuotientRingElement(self, x):
return r"{{{}}} + {{{}}}".format(self._print(x.data),
self._print(x.ring.base_ideal))
def _print_QuotientModuleElement(self, m):
return r"{{{}}} + {{{}}}".format(self._print(m.data),
self._print(m.module.killed_module))
def _print_QuotientModule(self, M):
# TODO nicer fractions for few generators...
return r"\frac{{{}}}{{{}}}".format(self._print(M.base),
self._print(M.killed_module))
def _print_MatrixHomomorphism(self, h):
return r"{{{}}} : {{{}}} \to {{{}}}".format(self._print(h._sympy_matrix()),
self._print(h.domain), self._print(h.codomain))
def _print_Manifold(self, manifold):
string = manifold.name.name
if '{' in string:
name, supers, subs = string, [], []
else:
name, supers, subs = split_super_sub(string)
name = translate(name)
supers = [translate(sup) for sup in supers]
subs = [translate(sub) for sub in subs]
name = r'\text{%s}' % name
if supers:
name += "^{%s}" % " ".join(supers)
if subs:
name += "_{%s}" % " ".join(subs)
return name
def _print_Patch(self, patch):
return r'\text{%s}_{%s}' % (self._print(patch.name), self._print(patch.manifold))
def _print_CoordSystem(self, coordsys):
return r'\text{%s}^{\text{%s}}_{%s}' % (
self._print(coordsys.name), self._print(coordsys.patch.name), self._print(coordsys.manifold)
)
def _print_CovarDerivativeOp(self, cvd):
return r'\mathbb{\nabla}_{%s}' % self._print(cvd._wrt)
def _print_BaseScalarField(self, field):
string = field._coord_sys.symbols[field._index].name
return r'\mathbf{{{}}}'.format(self._print(Symbol(string)))
def _print_BaseVectorField(self, field):
string = field._coord_sys.symbols[field._index].name
return r'\partial_{{{}}}'.format(self._print(Symbol(string)))
def _print_Differential(self, diff):
field = diff._form_field
if hasattr(field, '_coord_sys'):
string = field._coord_sys.symbols[field._index].name
return r'\operatorname{{d}}{}'.format(self._print(Symbol(string)))
else:
string = self._print(field)
return r'\operatorname{{d}}\left({}\right)'.format(string)
def _print_Tr(self, p):
# TODO: Handle indices
contents = self._print(p.args[0])
return r'\operatorname{{tr}}\left({}\right)'.format(contents)
def _print_totient(self, expr, exp=None):
if exp is not None:
return r'\left(\phi\left(%s\right)\right)^{%s}' % \
(self._print(expr.args[0]), exp)
return r'\phi\left(%s\right)' % self._print(expr.args[0])
def _print_reduced_totient(self, expr, exp=None):
if exp is not None:
return r'\left(\lambda\left(%s\right)\right)^{%s}' % \
(self._print(expr.args[0]), exp)
return r'\lambda\left(%s\right)' % self._print(expr.args[0])
def _print_divisor_sigma(self, expr, exp=None):
if len(expr.args) == 2:
tex = r"_%s\left(%s\right)" % tuple(map(self._print,
(expr.args[1], expr.args[0])))
else:
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"\sigma^{%s}%s" % (exp, tex)
return r"\sigma%s" % tex
def _print_udivisor_sigma(self, expr, exp=None):
if len(expr.args) == 2:
tex = r"_%s\left(%s\right)" % tuple(map(self._print,
(expr.args[1], expr.args[0])))
else:
tex = r"\left(%s\right)" % self._print(expr.args[0])
if exp is not None:
return r"\sigma^*^{%s}%s" % (exp, tex)
return r"\sigma^*%s" % tex
def _print_primenu(self, expr, exp=None):
if exp is not None:
return r'\left(\nu\left(%s\right)\right)^{%s}' % \
(self._print(expr.args[0]), exp)
return r'\nu\left(%s\right)' % self._print(expr.args[0])
def _print_primeomega(self, expr, exp=None):
if exp is not None:
return r'\left(\Omega\left(%s\right)\right)^{%s}' % \
(self._print(expr.args[0]), exp)
return r'\Omega\left(%s\right)' % self._print(expr.args[0])
def _print_Str(self, s):
return str(s.name)
def _print_float(self, expr):
return self._print(Float(expr))
def _print_int(self, expr):
return str(expr)
def _print_mpz(self, expr):
return str(expr)
def _print_mpq(self, expr):
return str(expr)
def _print_Predicate(self, expr):
return r"\operatorname{{Q}}_{{\text{{{}}}}}".format(latex_escape(str(expr.name)))
def _print_AppliedPredicate(self, expr):
pred = expr.function
args = expr.arguments
pred_latex = self._print(pred)
args_latex = ', '.join([self._print(a) for a in args])
return '%s(%s)' % (pred_latex, args_latex)
def emptyPrinter(self, expr):
# default to just printing as monospace, like would normally be shown
s = super().emptyPrinter(expr)
return r"\mathtt{\text{%s}}" % latex_escape(s)
def translate(s: str) -> str:
r'''
Check for a modifier ending the string. If present, convert the
modifier to latex and translate the rest recursively.
Given a description of a Greek letter or other special character,
return the appropriate latex.
Let everything else pass as given.
>>> from sympy.printing.latex import translate
>>> translate('alphahatdotprime')
"{\\dot{\\hat{\\alpha}}}'"
'''
# Process the rest
tex = tex_greek_dictionary.get(s)
if tex:
return tex
elif s.lower() in greek_letters_set:
return "\\" + s.lower()
elif s in other_symbols:
return "\\" + s
else:
# Process modifiers, if any, and recurse
for key in sorted(modifier_dict.keys(), key=len, reverse=True):
if s.lower().endswith(key) and len(s) > len(key):
return modifier_dict[key](translate(s[:-len(key)]))
return s
@print_function(LatexPrinter)
def latex(expr, **settings):
r"""Convert the given expression to LaTeX string representation.
Parameters
==========
full_prec: boolean, optional
If set to True, a floating point number is printed with full precision.
fold_frac_powers : boolean, optional
Emit ``^{p/q}`` instead of ``^{\frac{p}{q}}`` for fractional powers.
fold_func_brackets : boolean, optional
Fold function brackets where applicable.
fold_short_frac : boolean, optional
Emit ``p / q`` instead of ``\frac{p}{q}`` when the denominator is
simple enough (at most two terms and no powers). The default value is
``True`` for inline mode, ``False`` otherwise.
inv_trig_style : string, optional
How inverse trig functions should be displayed. Can be one of
``'abbreviated'``, ``'full'``, or ``'power'``. Defaults to
``'abbreviated'``.
itex : boolean, optional
Specifies if itex-specific syntax is used, including emitting
``$$...$$``.
ln_notation : boolean, optional
If set to ``True``, ``\ln`` is used instead of default ``\log``.
long_frac_ratio : float or None, optional
The allowed ratio of the width of the numerator to the width of the
denominator before the printer breaks off long fractions. If ``None``
(the default value), long fractions are not broken up.
mat_delim : string, optional
The delimiter to wrap around matrices. Can be one of ``'['``, ``'('``,
or the empty string ``''``. Defaults to ``'['``.
mat_str : string, optional
Which matrix environment string to emit. ``'smallmatrix'``,
``'matrix'``, ``'array'``, etc. Defaults to ``'smallmatrix'`` for
inline mode, ``'matrix'`` for matrices of no more than 10 columns, and
``'array'`` otherwise.
mode: string, optional
Specifies how the generated code will be delimited. ``mode`` can be one
of ``'plain'``, ``'inline'``, ``'equation'`` or ``'equation*'``. If
``mode`` is set to ``'plain'``, then the resulting code will not be
delimited at all (this is the default). If ``mode`` is set to
``'inline'`` then inline LaTeX ``$...$`` will be used. If ``mode`` is
set to ``'equation'`` or ``'equation*'``, the resulting code will be
enclosed in the ``equation`` or ``equation*`` environment (remember to
import ``amsmath`` for ``equation*``), unless the ``itex`` option is
set. In the latter case, the ``$$...$$`` syntax is used.
mul_symbol : string or None, optional
The symbol to use for multiplication. Can be one of ``None``,
``'ldot'``, ``'dot'``, or ``'times'``.
order: string, optional
Any of the supported monomial orderings (currently ``'lex'``,
``'grlex'``, or ``'grevlex'``), ``'old'``, and ``'none'``. This
parameter does nothing for `~.Mul` objects. Setting order to ``'old'``
uses the compatibility ordering for ``~.Add`` defined in Printer. For
very large expressions, set the ``order`` keyword to ``'none'`` if
speed is a concern.
symbol_names : dictionary of strings mapped to symbols, optional
Dictionary of symbols and the custom strings they should be emitted as.
root_notation : boolean, optional
If set to ``False``, exponents of the form 1/n are printed in fractonal
form. Default is ``True``, to print exponent in root form.
mat_symbol_style : string, optional
Can be either ``'plain'`` (default) or ``'bold'``. If set to
``'bold'``, a `~.MatrixSymbol` A will be printed as ``\mathbf{A}``,
otherwise as ``A``.
imaginary_unit : string, optional
String to use for the imaginary unit. Defined options are ``'i'``
(default) and ``'j'``. Adding ``r`` or ``t`` in front gives ``\mathrm``
or ``\text``, so ``'ri'`` leads to ``\mathrm{i}`` which gives
`\mathrm{i}`.
gothic_re_im : boolean, optional
If set to ``True``, `\Re` and `\Im` is used for ``re`` and ``im``, respectively.
The default is ``False`` leading to `\operatorname{re}` and `\operatorname{im}`.
decimal_separator : string, optional
Specifies what separator to use to separate the whole and fractional parts of a
floating point number as in `2.5` for the default, ``period`` or `2{,}5`
when ``comma`` is specified. Lists, sets, and tuple are printed with semicolon
separating the elements when ``comma`` is chosen. For example, [1; 2; 3] when
``comma`` is chosen and [1,2,3] for when ``period`` is chosen.
parenthesize_super : boolean, optional
If set to ``False``, superscripted expressions will not be parenthesized when
powered. Default is ``True``, which parenthesizes the expression when powered.
min: Integer or None, optional
Sets the lower bound for the exponent to print floating point numbers in
fixed-point format.
max: Integer or None, optional
Sets the upper bound for the exponent to print floating point numbers in
fixed-point format.
diff_operator: string, optional
String to use for differential operator. Default is ``'d'``, to print in italic
form. ``'rd'``, ``'td'`` are shortcuts for ``\mathrm{d}`` and ``\text{d}``.
Notes
=====
Not using a print statement for printing, results in double backslashes for
latex commands since that's the way Python escapes backslashes in strings.
>>> from sympy import latex, Rational
>>> from sympy.abc import tau
>>> latex((2*tau)**Rational(7,2))
'8 \\sqrt{2} \\tau^{\\frac{7}{2}}'
>>> print(latex((2*tau)**Rational(7,2)))
8 \sqrt{2} \tau^{\frac{7}{2}}
Examples
========
>>> from sympy import latex, pi, sin, asin, Integral, Matrix, Rational, log
>>> from sympy.abc import x, y, mu, r, tau
Basic usage:
>>> print(latex((2*tau)**Rational(7,2)))
8 \sqrt{2} \tau^{\frac{7}{2}}
``mode`` and ``itex`` options:
>>> print(latex((2*mu)**Rational(7,2), mode='plain'))
8 \sqrt{2} \mu^{\frac{7}{2}}
>>> print(latex((2*tau)**Rational(7,2), mode='inline'))
$8 \sqrt{2} \tau^{7 / 2}$
>>> print(latex((2*mu)**Rational(7,2), mode='equation*'))
\begin{equation*}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation*}
>>> print(latex((2*mu)**Rational(7,2), mode='equation'))
\begin{equation}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation}
>>> print(latex((2*mu)**Rational(7,2), mode='equation', itex=True))
$$8 \sqrt{2} \mu^{\frac{7}{2}}$$
>>> print(latex((2*mu)**Rational(7,2), mode='plain'))
8 \sqrt{2} \mu^{\frac{7}{2}}
>>> print(latex((2*tau)**Rational(7,2), mode='inline'))
$8 \sqrt{2} \tau^{7 / 2}$
>>> print(latex((2*mu)**Rational(7,2), mode='equation*'))
\begin{equation*}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation*}
>>> print(latex((2*mu)**Rational(7,2), mode='equation'))
\begin{equation}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation}
>>> print(latex((2*mu)**Rational(7,2), mode='equation', itex=True))
$$8 \sqrt{2} \mu^{\frac{7}{2}}$$
Fraction options:
>>> print(latex((2*tau)**Rational(7,2), fold_frac_powers=True))
8 \sqrt{2} \tau^{7/2}
>>> print(latex((2*tau)**sin(Rational(7,2))))
\left(2 \tau\right)^{\sin{\left(\frac{7}{2} \right)}}
>>> print(latex((2*tau)**sin(Rational(7,2)), fold_func_brackets=True))
\left(2 \tau\right)^{\sin {\frac{7}{2}}}
>>> print(latex(3*x**2/y))
\frac{3 x^{2}}{y}
>>> print(latex(3*x**2/y, fold_short_frac=True))
3 x^{2} / y
>>> print(latex(Integral(r, r)/2/pi, long_frac_ratio=2))
\frac{\int r\, dr}{2 \pi}
>>> print(latex(Integral(r, r)/2/pi, long_frac_ratio=0))
\frac{1}{2 \pi} \int r\, dr
Multiplication options:
>>> print(latex((2*tau)**sin(Rational(7,2)), mul_symbol="times"))
\left(2 \times \tau\right)^{\sin{\left(\frac{7}{2} \right)}}
Trig options:
>>> print(latex(asin(Rational(7,2))))
\operatorname{asin}{\left(\frac{7}{2} \right)}
>>> print(latex(asin(Rational(7,2)), inv_trig_style="full"))
\arcsin{\left(\frac{7}{2} \right)}
>>> print(latex(asin(Rational(7,2)), inv_trig_style="power"))
\sin^{-1}{\left(\frac{7}{2} \right)}
Matrix options:
>>> print(latex(Matrix(2, 1, [x, y])))
\left[\begin{matrix}x\\y\end{matrix}\right]
>>> print(latex(Matrix(2, 1, [x, y]), mat_str = "array"))
\left[\begin{array}{c}x\\y\end{array}\right]
>>> print(latex(Matrix(2, 1, [x, y]), mat_delim="("))
\left(\begin{matrix}x\\y\end{matrix}\right)
Custom printing of symbols:
>>> print(latex(x**2, symbol_names={x: 'x_i'}))
x_i^{2}
Logarithms:
>>> print(latex(log(10)))
\log{\left(10 \right)}
>>> print(latex(log(10), ln_notation=True))
\ln{\left(10 \right)}
``latex()`` also supports the builtin container types :class:`list`,
:class:`tuple`, and :class:`dict`:
>>> print(latex([2/x, y], mode='inline'))
$\left[ 2 / x, \ y\right]$
Unsupported types are rendered as monospaced plaintext:
>>> print(latex(int))
\mathtt{\text{<class 'int'>}}
>>> print(latex("plain % text"))
\mathtt{\text{plain \% text}}
See :ref:`printer_method_example` for an example of how to override
this behavior for your own types by implementing ``_latex``.
.. versionchanged:: 1.7.0
Unsupported types no longer have their ``str`` representation treated as valid latex.
"""
return LatexPrinter(settings).doprint(expr)
def print_latex(expr, **settings):
"""Prints LaTeX representation of the given expression. Takes the same
settings as ``latex()``."""
print(latex(expr, **settings))
def multiline_latex(lhs, rhs, terms_per_line=1, environment="align*", use_dots=False, **settings):
r"""
This function generates a LaTeX equation with a multiline right-hand side
in an ``align*``, ``eqnarray`` or ``IEEEeqnarray`` environment.
Parameters
==========
lhs : Expr
Left-hand side of equation
rhs : Expr
Right-hand side of equation
terms_per_line : integer, optional
Number of terms per line to print. Default is 1.
environment : "string", optional
Which LaTeX wnvironment to use for the output. Options are "align*"
(default), "eqnarray", and "IEEEeqnarray".
use_dots : boolean, optional
If ``True``, ``\\dots`` is added to the end of each line. Default is ``False``.
Examples
========
>>> from sympy import multiline_latex, symbols, sin, cos, exp, log, I
>>> x, y, alpha = symbols('x y alpha')
>>> expr = sin(alpha*y) + exp(I*alpha) - cos(log(y))
>>> print(multiline_latex(x, expr))
\begin{align*}
x = & e^{i \alpha} \\
& + \sin{\left(\alpha y \right)} \\
& - \cos{\left(\log{\left(y \right)} \right)}
\end{align*}
Using at most two terms per line:
>>> print(multiline_latex(x, expr, 2))
\begin{align*}
x = & e^{i \alpha} + \sin{\left(\alpha y \right)} \\
& - \cos{\left(\log{\left(y \right)} \right)}
\end{align*}
Using ``eqnarray`` and dots:
>>> print(multiline_latex(x, expr, terms_per_line=2, environment="eqnarray", use_dots=True))
\begin{eqnarray}
x & = & e^{i \alpha} + \sin{\left(\alpha y \right)} \dots\nonumber\\
& & - \cos{\left(\log{\left(y \right)} \right)}
\end{eqnarray}
Using ``IEEEeqnarray``:
>>> print(multiline_latex(x, expr, environment="IEEEeqnarray"))
\begin{IEEEeqnarray}{rCl}
x & = & e^{i \alpha} \nonumber\\
& & + \sin{\left(\alpha y \right)} \nonumber\\
& & - \cos{\left(\log{\left(y \right)} \right)}
\end{IEEEeqnarray}
Notes
=====
All optional parameters from ``latex`` can also be used.
"""
# Based on code from https://github.com/sympy/sympy/issues/3001
l = LatexPrinter(**settings)
if environment == "eqnarray":
result = r'\begin{eqnarray}' + '\n'
first_term = '& = &'
nonumber = r'\nonumber'
end_term = '\n\\end{eqnarray}'
doubleet = True
elif environment == "IEEEeqnarray":
result = r'\begin{IEEEeqnarray}{rCl}' + '\n'
first_term = '& = &'
nonumber = r'\nonumber'
end_term = '\n\\end{IEEEeqnarray}'
doubleet = True
elif environment == "align*":
result = r'\begin{align*}' + '\n'
first_term = '= &'
nonumber = ''
end_term = '\n\\end{align*}'
doubleet = False
else:
raise ValueError("Unknown environment: {}".format(environment))
dots = ''
if use_dots:
dots=r'\dots'
terms = rhs.as_ordered_terms()
n_terms = len(terms)
term_count = 1
for i in range(n_terms):
term = terms[i]
term_start = ''
term_end = ''
sign = '+'
if term_count > terms_per_line:
if doubleet:
term_start = '& & '
else:
term_start = '& '
term_count = 1
if term_count == terms_per_line:
# End of line
if i < n_terms-1:
# There are terms remaining
term_end = dots + nonumber + r'\\' + '\n'
else:
term_end = ''
if term.as_ordered_factors()[0] == -1:
term = -1*term
sign = r'-'
if i == 0: # beginning
if sign == '+':
sign = ''
result += r'{:s} {:s}{:s} {:s} {:s}'.format(l.doprint(lhs),
first_term, sign, l.doprint(term), term_end)
else:
result += r'{:s}{:s} {:s} {:s}'.format(term_start, sign,
l.doprint(term), term_end)
term_count += 1
result += end_term
return result
|
d6848f8c62d89b20e90ed17dfe5eefa31b3ffa682a1ce2e09a539f709a123de8 | from __future__ import annotations
import numbers
import decimal
import fractions
import math
import re as regex
import sys
from functools import lru_cache
from .containers import Tuple
from .sympify import (SympifyError, _sympy_converter, sympify, _convert_numpy_types,
_sympify, _is_numpy_instance)
from .singleton import S, Singleton
from .basic import Basic
from .expr import Expr, AtomicExpr
from .evalf import pure_complex
from .cache import cacheit, clear_cache
from .decorators import _sympifyit
from .logic import fuzzy_not
from .kind import NumberKind
from sympy.external.gmpy import SYMPY_INTS, HAS_GMPY, gmpy
from sympy.multipledispatch import dispatch
import mpmath
import mpmath.libmp as mlib
from mpmath.libmp import bitcount, round_nearest as rnd
from mpmath.libmp.backend import MPZ
from mpmath.libmp import mpf_pow, mpf_pi, mpf_e, phi_fixed
from mpmath.ctx_mp import mpnumeric
from mpmath.libmp.libmpf import (
finf as _mpf_inf, fninf as _mpf_ninf,
fnan as _mpf_nan, fzero, _normalize as mpf_normalize,
prec_to_dps, dps_to_prec)
from sympy.utilities.misc import as_int, debug, filldedent
from .parameters import global_parameters
_LOG2 = math.log(2)
def comp(z1, z2, tol=None):
r"""Return a bool indicating whether the error between z1 and z2
is $\le$ ``tol``.
Examples
========
If ``tol`` is ``None`` then ``True`` will be returned if
:math:`|z1 - z2|\times 10^p \le 5` where $p$ is minimum value of the
decimal precision of each value.
>>> from sympy import comp, pi
>>> pi4 = pi.n(4); pi4
3.142
>>> comp(_, 3.142)
True
>>> comp(pi4, 3.141)
False
>>> comp(pi4, 3.143)
False
A comparison of strings will be made
if ``z1`` is a Number and ``z2`` is a string or ``tol`` is ''.
>>> comp(pi4, 3.1415)
True
>>> comp(pi4, 3.1415, '')
False
When ``tol`` is provided and $z2$ is non-zero and
:math:`|z1| > 1` the error is normalized by :math:`|z1|`:
>>> abs(pi4 - 3.14)/pi4
0.000509791731426756
>>> comp(pi4, 3.14, .001) # difference less than 0.1%
True
>>> comp(pi4, 3.14, .0005) # difference less than 0.1%
False
When :math:`|z1| \le 1` the absolute error is used:
>>> 1/pi4
0.3183
>>> abs(1/pi4 - 0.3183)/(1/pi4)
3.07371499106316e-5
>>> abs(1/pi4 - 0.3183)
9.78393554684764e-6
>>> comp(1/pi4, 0.3183, 1e-5)
True
To see if the absolute error between ``z1`` and ``z2`` is less
than or equal to ``tol``, call this as ``comp(z1 - z2, 0, tol)``
or ``comp(z1 - z2, tol=tol)``:
>>> abs(pi4 - 3.14)
0.00160156249999988
>>> comp(pi4 - 3.14, 0, .002)
True
>>> comp(pi4 - 3.14, 0, .001)
False
"""
if isinstance(z2, str):
if not pure_complex(z1, or_real=True):
raise ValueError('when z2 is a str z1 must be a Number')
return str(z1) == z2
if not z1:
z1, z2 = z2, z1
if not z1:
return True
if not tol:
a, b = z1, z2
if tol == '':
return str(a) == str(b)
if tol is None:
a, b = sympify(a), sympify(b)
if not all(i.is_number for i in (a, b)):
raise ValueError('expecting 2 numbers')
fa = a.atoms(Float)
fb = b.atoms(Float)
if not fa and not fb:
# no floats -- compare exactly
return a == b
# get a to be pure_complex
for _ in range(2):
ca = pure_complex(a, or_real=True)
if not ca:
if fa:
a = a.n(prec_to_dps(min([i._prec for i in fa])))
ca = pure_complex(a, or_real=True)
break
else:
fa, fb = fb, fa
a, b = b, a
cb = pure_complex(b)
if not cb and fb:
b = b.n(prec_to_dps(min([i._prec for i in fb])))
cb = pure_complex(b, or_real=True)
if ca and cb and (ca[1] or cb[1]):
return all(comp(i, j) for i, j in zip(ca, cb))
tol = 10**prec_to_dps(min(a._prec, getattr(b, '_prec', a._prec)))
return int(abs(a - b)*tol) <= 5
diff = abs(z1 - z2)
az1 = abs(z1)
if z2 and az1 > 1:
return diff/az1 <= tol
else:
return diff <= tol
def mpf_norm(mpf, prec):
"""Return the mpf tuple normalized appropriately for the indicated
precision after doing a check to see if zero should be returned or
not when the mantissa is 0. ``mpf_normlize`` always assumes that this
is zero, but it may not be since the mantissa for mpf's values "+inf",
"-inf" and "nan" have a mantissa of zero, too.
Note: this is not intended to validate a given mpf tuple, so sending
mpf tuples that were not created by mpmath may produce bad results. This
is only a wrapper to ``mpf_normalize`` which provides the check for non-
zero mpfs that have a 0 for the mantissa.
"""
sign, man, expt, bc = mpf
if not man:
# hack for mpf_normalize which does not do this;
# it assumes that if man is zero the result is 0
# (see issue 6639)
if not bc:
return fzero
else:
# don't change anything; this should already
# be a well formed mpf tuple
return mpf
# Necessary if mpmath is using the gmpy backend
from mpmath.libmp.backend import MPZ
rv = mpf_normalize(sign, MPZ(man), expt, bc, prec, rnd)
return rv
# TODO: we should use the warnings module
_errdict = {"divide": False}
def seterr(divide=False):
"""
Should SymPy raise an exception on 0/0 or return a nan?
divide == True .... raise an exception
divide == False ... return nan
"""
if _errdict["divide"] != divide:
clear_cache()
_errdict["divide"] = divide
def _as_integer_ratio(p):
neg_pow, man, expt, _ = getattr(p, '_mpf_', mpmath.mpf(p)._mpf_)
p = [1, -1][neg_pow % 2]*man
if expt < 0:
q = 2**-expt
else:
q = 1
p *= 2**expt
return int(p), int(q)
def _decimal_to_Rational_prec(dec):
"""Convert an ordinary decimal instance to a Rational."""
if not dec.is_finite():
raise TypeError("dec must be finite, got %s." % dec)
s, d, e = dec.as_tuple()
prec = len(d)
if e >= 0: # it's an integer
rv = Integer(int(dec))
else:
s = (-1)**s
d = sum([di*10**i for i, di in enumerate(reversed(d))])
rv = Rational(s*d, 10**-e)
return rv, prec
_floatpat = regex.compile(r"[-+]?((\d*\.\d+)|(\d+\.?))")
def _literal_float(f):
"""Return True if n starts like a floating point number."""
return bool(_floatpat.match(f))
# (a,b) -> gcd(a,b)
# TODO caching with decorator, but not to degrade performance
@lru_cache(1024)
def igcd(*args):
"""Computes nonnegative integer greatest common divisor.
Explanation
===========
The algorithm is based on the well known Euclid's algorithm [1]_. To
improve speed, ``igcd()`` has its own caching mechanism.
Examples
========
>>> from sympy import igcd
>>> igcd(2, 4)
2
>>> igcd(5, 10, 15)
5
References
==========
.. [1] https://en.wikipedia.org/wiki/Euclidean_algorithm
"""
if len(args) < 2:
raise TypeError(
'igcd() takes at least 2 arguments (%s given)' % len(args))
args_temp = [abs(as_int(i)) for i in args]
if 1 in args_temp:
return 1
a = args_temp.pop()
if HAS_GMPY: # Using gmpy if present to speed up.
for b in args_temp:
a = gmpy.gcd(a, b) if b else a
return as_int(a)
for b in args_temp:
a = math.gcd(a, b)
return a
igcd2 = math.gcd
def igcd_lehmer(a, b):
r"""Computes greatest common divisor of two integers.
Explanation
===========
Euclid's algorithm for the computation of the greatest
common divisor ``gcd(a, b)`` of two (positive) integers
$a$ and $b$ is based on the division identity
$$ a = q \times b + r$$,
where the quotient $q$ and the remainder $r$ are integers
and $0 \le r < b$. Then each common divisor of $a$ and $b$
divides $r$, and it follows that ``gcd(a, b) == gcd(b, r)``.
The algorithm works by constructing the sequence
r0, r1, r2, ..., where r0 = a, r1 = b, and each rn
is the remainder from the division of the two preceding
elements.
In Python, ``q = a // b`` and ``r = a % b`` are obtained by the
floor division and the remainder operations, respectively.
These are the most expensive arithmetic operations, especially
for large a and b.
Lehmer's algorithm [1]_ is based on the observation that the quotients
``qn = r(n-1) // rn`` are in general small integers even
when a and b are very large. Hence the quotients can be
usually determined from a relatively small number of most
significant bits.
The efficiency of the algorithm is further enhanced by not
computing each long remainder in Euclid's sequence. The remainders
are linear combinations of a and b with integer coefficients
derived from the quotients. The coefficients can be computed
as far as the quotients can be determined from the chosen
most significant parts of a and b. Only then a new pair of
consecutive remainders is computed and the algorithm starts
anew with this pair.
References
==========
.. [1] https://en.wikipedia.org/wiki/Lehmer%27s_GCD_algorithm
"""
a, b = abs(as_int(a)), abs(as_int(b))
if a < b:
a, b = b, a
# The algorithm works by using one or two digit division
# whenever possible. The outer loop will replace the
# pair (a, b) with a pair of shorter consecutive elements
# of the Euclidean gcd sequence until a and b
# fit into two Python (long) int digits.
nbits = 2*sys.int_info.bits_per_digit
while a.bit_length() > nbits and b != 0:
# Quotients are mostly small integers that can
# be determined from most significant bits.
n = a.bit_length() - nbits
x, y = int(a >> n), int(b >> n) # most significant bits
# Elements of the Euclidean gcd sequence are linear
# combinations of a and b with integer coefficients.
# Compute the coefficients of consecutive pairs
# a' = A*a + B*b, b' = C*a + D*b
# using small integer arithmetic as far as possible.
A, B, C, D = 1, 0, 0, 1 # initial values
while True:
# The coefficients alternate in sign while looping.
# The inner loop combines two steps to keep track
# of the signs.
# At this point we have
# A > 0, B <= 0, C <= 0, D > 0,
# x' = x + B <= x < x" = x + A,
# y' = y + C <= y < y" = y + D,
# and
# x'*N <= a' < x"*N, y'*N <= b' < y"*N,
# where N = 2**n.
# Now, if y' > 0, and x"//y' and x'//y" agree,
# then their common value is equal to q = a'//b'.
# In addition,
# x'%y" = x' - q*y" < x" - q*y' = x"%y',
# and
# (x'%y")*N < a'%b' < (x"%y')*N.
# On the other hand, we also have x//y == q,
# and therefore
# x'%y" = x + B - q*(y + D) = x%y + B',
# x"%y' = x + A - q*(y + C) = x%y + A',
# where
# B' = B - q*D < 0, A' = A - q*C > 0.
if y + C <= 0:
break
q = (x + A) // (y + C)
# Now x'//y" <= q, and equality holds if
# x' - q*y" = (x - q*y) + (B - q*D) >= 0.
# This is a minor optimization to avoid division.
x_qy, B_qD = x - q*y, B - q*D
if x_qy + B_qD < 0:
break
# Next step in the Euclidean sequence.
x, y = y, x_qy
A, B, C, D = C, D, A - q*C, B_qD
# At this point the signs of the coefficients
# change and their roles are interchanged.
# A <= 0, B > 0, C > 0, D < 0,
# x' = x + A <= x < x" = x + B,
# y' = y + D < y < y" = y + C.
if y + D <= 0:
break
q = (x + B) // (y + D)
x_qy, A_qC = x - q*y, A - q*C
if x_qy + A_qC < 0:
break
x, y = y, x_qy
A, B, C, D = C, D, A_qC, B - q*D
# Now the conditions on top of the loop
# are again satisfied.
# A > 0, B < 0, C < 0, D > 0.
if B == 0:
# This can only happen when y == 0 in the beginning
# and the inner loop does nothing.
# Long division is forced.
a, b = b, a % b
continue
# Compute new long arguments using the coefficients.
a, b = A*a + B*b, C*a + D*b
# Small divisors. Finish with the standard algorithm.
while b:
a, b = b, a % b
return a
def ilcm(*args):
"""Computes integer least common multiple.
Examples
========
>>> from sympy import ilcm
>>> ilcm(5, 10)
10
>>> ilcm(7, 3)
21
>>> ilcm(5, 10, 15)
30
"""
if len(args) < 2:
raise TypeError(
'ilcm() takes at least 2 arguments (%s given)' % len(args))
if 0 in args:
return 0
a = args[0]
for b in args[1:]:
a = a // igcd(a, b) * b # since gcd(a,b) | a
return a
def igcdex(a, b):
"""Returns x, y, g such that g = x*a + y*b = gcd(a, b).
Examples
========
>>> from sympy.core.numbers import igcdex
>>> igcdex(2, 3)
(-1, 1, 1)
>>> igcdex(10, 12)
(-1, 1, 2)
>>> x, y, g = igcdex(100, 2004)
>>> x, y, g
(-20, 1, 4)
>>> x*100 + y*2004
4
"""
if (not a) and (not b):
return (0, 1, 0)
if not a:
return (0, b//abs(b), abs(b))
if not b:
return (a//abs(a), 0, abs(a))
if a < 0:
a, x_sign = -a, -1
else:
x_sign = 1
if b < 0:
b, y_sign = -b, -1
else:
y_sign = 1
x, y, r, s = 1, 0, 0, 1
while b:
(c, q) = (a % b, a // b)
(a, b, r, s, x, y) = (b, c, x - q*r, y - q*s, r, s)
return (x*x_sign, y*y_sign, a)
def mod_inverse(a, m):
r"""
Return the number $c$ such that, $a \times c = 1 \pmod{m}$
where $c$ has the same sign as $m$. If no such value exists,
a ValueError is raised.
Examples
========
>>> from sympy import mod_inverse, S
Suppose we wish to find multiplicative inverse $x$ of
3 modulo 11. This is the same as finding $x$ such
that $3x = 1 \pmod{11}$. One value of x that satisfies
this congruence is 4. Because $3 \times 4 = 12$ and $12 = 1 \pmod{11}$.
This is the value returned by ``mod_inverse``:
>>> mod_inverse(3, 11)
4
>>> mod_inverse(-3, 11)
7
When there is a common factor between the numerators of
`a` and `m` the inverse does not exist:
>>> mod_inverse(2, 4)
Traceback (most recent call last):
...
ValueError: inverse of 2 mod 4 does not exist
>>> mod_inverse(S(2)/7, S(5)/2)
7/2
References
==========
.. [1] https://en.wikipedia.org/wiki/Modular_multiplicative_inverse
.. [2] https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
"""
c = None
try:
a, m = as_int(a), as_int(m)
if m != 1 and m != -1:
x, _, g = igcdex(a, m)
if g == 1:
c = x % m
except ValueError:
a, m = sympify(a), sympify(m)
if not (a.is_number and m.is_number):
raise TypeError(filldedent('''
Expected numbers for arguments; symbolic `mod_inverse`
is not implemented
but symbolic expressions can be handled with the
similar function,
sympy.polys.polytools.invert'''))
big = (m > 1)
if big not in (S.true, S.false):
raise ValueError('m > 1 did not evaluate; try to simplify %s' % m)
elif big:
c = 1/a
if c is None:
raise ValueError('inverse of %s (mod %s) does not exist' % (a, m))
return c
class Number(AtomicExpr):
"""Represents atomic numbers in SymPy.
Explanation
===========
Floating point numbers are represented by the Float class.
Rational numbers (of any size) are represented by the Rational class.
Integer numbers (of any size) are represented by the Integer class.
Float and Rational are subclasses of Number; Integer is a subclass
of Rational.
For example, ``2/3`` is represented as ``Rational(2, 3)`` which is
a different object from the floating point number obtained with
Python division ``2/3``. Even for numbers that are exactly
represented in binary, there is a difference between how two forms,
such as ``Rational(1, 2)`` and ``Float(0.5)``, are used in SymPy.
The rational form is to be preferred in symbolic computations.
Other kinds of numbers, such as algebraic numbers ``sqrt(2)`` or
complex numbers ``3 + 4*I``, are not instances of Number class as
they are not atomic.
See Also
========
Float, Integer, Rational
"""
is_commutative = True
is_number = True
is_Number = True
__slots__ = ()
# Used to make max(x._prec, y._prec) return x._prec when only x is a float
_prec = -1
kind = NumberKind
def __new__(cls, *obj):
if len(obj) == 1:
obj = obj[0]
if isinstance(obj, Number):
return obj
if isinstance(obj, SYMPY_INTS):
return Integer(obj)
if isinstance(obj, tuple) and len(obj) == 2:
return Rational(*obj)
if isinstance(obj, (float, mpmath.mpf, decimal.Decimal)):
return Float(obj)
if isinstance(obj, str):
_obj = obj.lower() # float('INF') == float('inf')
if _obj == 'nan':
return S.NaN
elif _obj == 'inf':
return S.Infinity
elif _obj == '+inf':
return S.Infinity
elif _obj == '-inf':
return S.NegativeInfinity
val = sympify(obj)
if isinstance(val, Number):
return val
else:
raise ValueError('String "%s" does not denote a Number' % obj)
msg = "expected str|int|long|float|Decimal|Number object but got %r"
raise TypeError(msg % type(obj).__name__)
def could_extract_minus_sign(self):
return bool(self.is_extended_negative)
def invert(self, other, *gens, **args):
from sympy.polys.polytools import invert
if getattr(other, 'is_number', True):
return mod_inverse(self, other)
return invert(self, other, *gens, **args)
def __divmod__(self, other):
from sympy.functions.elementary.complexes import sign
try:
other = Number(other)
if self.is_infinite or S.NaN in (self, other):
return (S.NaN, S.NaN)
except TypeError:
return NotImplemented
if not other:
raise ZeroDivisionError('modulo by zero')
if self.is_Integer and other.is_Integer:
return Tuple(*divmod(self.p, other.p))
elif isinstance(other, Float):
rat = self/Rational(other)
else:
rat = self/other
if other.is_finite:
w = int(rat) if rat >= 0 else int(rat) - 1
r = self - other*w
else:
w = 0 if not self or (sign(self) == sign(other)) else -1
r = other if w else self
return Tuple(w, r)
def __rdivmod__(self, other):
try:
other = Number(other)
except TypeError:
return NotImplemented
return divmod(other, self)
def _as_mpf_val(self, prec):
"""Evaluation of mpf tuple accurate to at least prec bits."""
raise NotImplementedError('%s needs ._as_mpf_val() method' %
(self.__class__.__name__))
def _eval_evalf(self, prec):
return Float._new(self._as_mpf_val(prec), prec)
def _as_mpf_op(self, prec):
prec = max(prec, self._prec)
return self._as_mpf_val(prec), prec
def __float__(self):
return mlib.to_float(self._as_mpf_val(53))
def floor(self):
raise NotImplementedError('%s needs .floor() method' %
(self.__class__.__name__))
def ceiling(self):
raise NotImplementedError('%s needs .ceiling() method' %
(self.__class__.__name__))
def __floor__(self):
return self.floor()
def __ceil__(self):
return self.ceiling()
def _eval_conjugate(self):
return self
def _eval_order(self, *symbols):
from sympy.series.order import Order
# Order(5, x, y) -> Order(1,x,y)
return Order(S.One, *symbols)
def _eval_subs(self, old, new):
if old == -self:
return -new
return self # there is no other possibility
@classmethod
def class_key(cls):
return 1, 0, 'Number'
@cacheit
def sort_key(self, order=None):
return self.class_key(), (0, ()), (), self
@_sympifyit('other', NotImplemented)
def __add__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
if other is S.NaN:
return S.NaN
elif other is S.Infinity:
return S.Infinity
elif other is S.NegativeInfinity:
return S.NegativeInfinity
return AtomicExpr.__add__(self, other)
@_sympifyit('other', NotImplemented)
def __sub__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
if other is S.NaN:
return S.NaN
elif other is S.Infinity:
return S.NegativeInfinity
elif other is S.NegativeInfinity:
return S.Infinity
return AtomicExpr.__sub__(self, other)
@_sympifyit('other', NotImplemented)
def __mul__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
if other is S.NaN:
return S.NaN
elif other is S.Infinity:
if self.is_zero:
return S.NaN
elif self.is_positive:
return S.Infinity
else:
return S.NegativeInfinity
elif other is S.NegativeInfinity:
if self.is_zero:
return S.NaN
elif self.is_positive:
return S.NegativeInfinity
else:
return S.Infinity
elif isinstance(other, Tuple):
return NotImplemented
return AtomicExpr.__mul__(self, other)
@_sympifyit('other', NotImplemented)
def __truediv__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
if other is S.NaN:
return S.NaN
elif other in (S.Infinity, S.NegativeInfinity):
return S.Zero
return AtomicExpr.__truediv__(self, other)
def __eq__(self, other):
raise NotImplementedError('%s needs .__eq__() method' %
(self.__class__.__name__))
def __ne__(self, other):
raise NotImplementedError('%s needs .__ne__() method' %
(self.__class__.__name__))
def __lt__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s < %s" % (self, other))
raise NotImplementedError('%s needs .__lt__() method' %
(self.__class__.__name__))
def __le__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s <= %s" % (self, other))
raise NotImplementedError('%s needs .__le__() method' %
(self.__class__.__name__))
def __gt__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s > %s" % (self, other))
return _sympify(other).__lt__(self)
def __ge__(self, other):
try:
other = _sympify(other)
except SympifyError:
raise TypeError("Invalid comparison %s >= %s" % (self, other))
return _sympify(other).__le__(self)
def __hash__(self):
return super().__hash__()
def is_constant(self, *wrt, **flags):
return True
def as_coeff_mul(self, *deps, rational=True, **kwargs):
# a -> c*t
if self.is_Rational or not rational:
return self, tuple()
elif self.is_negative:
return S.NegativeOne, (-self,)
return S.One, (self,)
def as_coeff_add(self, *deps):
# a -> c + t
if self.is_Rational:
return self, tuple()
return S.Zero, (self,)
def as_coeff_Mul(self, rational=False):
"""Efficiently extract the coefficient of a product. """
if rational and not self.is_Rational:
return S.One, self
return (self, S.One) if self else (S.One, self)
def as_coeff_Add(self, rational=False):
"""Efficiently extract the coefficient of a summation. """
if not rational:
return self, S.Zero
return S.Zero, self
def gcd(self, other):
"""Compute GCD of `self` and `other`. """
from sympy.polys.polytools import gcd
return gcd(self, other)
def lcm(self, other):
"""Compute LCM of `self` and `other`. """
from sympy.polys.polytools import lcm
return lcm(self, other)
def cofactors(self, other):
"""Compute GCD and cofactors of `self` and `other`. """
from sympy.polys.polytools import cofactors
return cofactors(self, other)
class Float(Number):
"""Represent a floating-point number of arbitrary precision.
Examples
========
>>> from sympy import Float
>>> Float(3.5)
3.50000000000000
>>> Float(3)
3.00000000000000
Creating Floats from strings (and Python ``int`` and ``long``
types) will give a minimum precision of 15 digits, but the
precision will automatically increase to capture all digits
entered.
>>> Float(1)
1.00000000000000
>>> Float(10**20)
100000000000000000000.
>>> Float('1e20')
100000000000000000000.
However, *floating-point* numbers (Python ``float`` types) retain
only 15 digits of precision:
>>> Float(1e20)
1.00000000000000e+20
>>> Float(1.23456789123456789)
1.23456789123457
It may be preferable to enter high-precision decimal numbers
as strings:
>>> Float('1.23456789123456789')
1.23456789123456789
The desired number of digits can also be specified:
>>> Float('1e-3', 3)
0.00100
>>> Float(100, 4)
100.0
Float can automatically count significant figures if a null string
is sent for the precision; spaces or underscores are also allowed. (Auto-
counting is only allowed for strings, ints and longs).
>>> Float('123 456 789.123_456', '')
123456789.123456
>>> Float('12e-3', '')
0.012
>>> Float(3, '')
3.
If a number is written in scientific notation, only the digits before the
exponent are considered significant if a decimal appears, otherwise the
"e" signifies only how to move the decimal:
>>> Float('60.e2', '') # 2 digits significant
6.0e+3
>>> Float('60e2', '') # 4 digits significant
6000.
>>> Float('600e-2', '') # 3 digits significant
6.00
Notes
=====
Floats are inexact by their nature unless their value is a binary-exact
value.
>>> approx, exact = Float(.1, 1), Float(.125, 1)
For calculation purposes, evalf needs to be able to change the precision
but this will not increase the accuracy of the inexact value. The
following is the most accurate 5-digit approximation of a value of 0.1
that had only 1 digit of precision:
>>> approx.evalf(5)
0.099609
By contrast, 0.125 is exact in binary (as it is in base 10) and so it
can be passed to Float or evalf to obtain an arbitrary precision with
matching accuracy:
>>> Float(exact, 5)
0.12500
>>> exact.evalf(20)
0.12500000000000000000
Trying to make a high-precision Float from a float is not disallowed,
but one must keep in mind that the *underlying float* (not the apparent
decimal value) is being obtained with high precision. For example, 0.3
does not have a finite binary representation. The closest rational is
the fraction 5404319552844595/2**54. So if you try to obtain a Float of
0.3 to 20 digits of precision you will not see the same thing as 0.3
followed by 19 zeros:
>>> Float(0.3, 20)
0.29999999999999998890
If you want a 20-digit value of the decimal 0.3 (not the floating point
approximation of 0.3) you should send the 0.3 as a string. The underlying
representation is still binary but a higher precision than Python's float
is used:
>>> Float('0.3', 20)
0.30000000000000000000
Although you can increase the precision of an existing Float using Float
it will not increase the accuracy -- the underlying value is not changed:
>>> def show(f): # binary rep of Float
... from sympy import Mul, Pow
... s, m, e, b = f._mpf_
... v = Mul(int(m), Pow(2, int(e), evaluate=False), evaluate=False)
... print('%s at prec=%s' % (v, f._prec))
...
>>> t = Float('0.3', 3)
>>> show(t)
4915/2**14 at prec=13
>>> show(Float(t, 20)) # higher prec, not higher accuracy
4915/2**14 at prec=70
>>> show(Float(t, 2)) # lower prec
307/2**10 at prec=10
The same thing happens when evalf is used on a Float:
>>> show(t.evalf(20))
4915/2**14 at prec=70
>>> show(t.evalf(2))
307/2**10 at prec=10
Finally, Floats can be instantiated with an mpf tuple (n, c, p) to
produce the number (-1)**n*c*2**p:
>>> n, c, p = 1, 5, 0
>>> (-1)**n*c*2**p
-5
>>> Float((1, 5, 0))
-5.00000000000000
An actual mpf tuple also contains the number of bits in c as the last
element of the tuple:
>>> _._mpf_
(1, 5, 0, 3)
This is not needed for instantiation and is not the same thing as the
precision. The mpf tuple and the precision are two separate quantities
that Float tracks.
In SymPy, a Float is a number that can be computed with arbitrary
precision. Although floating point 'inf' and 'nan' are not such
numbers, Float can create these numbers:
>>> Float('-inf')
-oo
>>> _.is_Float
False
Zero in Float only has a single value. Values are not separate for
positive and negative zeroes.
"""
__slots__ = ('_mpf_', '_prec')
_mpf_: tuple[int, int, int, int]
# A Float represents many real numbers,
# both rational and irrational.
is_rational = None
is_irrational = None
is_number = True
is_real = True
is_extended_real = True
is_Float = True
def __new__(cls, num, dps=None, precision=None):
if dps is not None and precision is not None:
raise ValueError('Both decimal and binary precision supplied. '
'Supply only one. ')
if isinstance(num, str):
# Float accepts spaces as digit separators
num = num.replace(' ', '').lower()
if num.startswith('.') and len(num) > 1:
num = '0' + num
elif num.startswith('-.') and len(num) > 2:
num = '-0.' + num[2:]
elif num in ('inf', '+inf'):
return S.Infinity
elif num == '-inf':
return S.NegativeInfinity
elif isinstance(num, float) and num == 0:
num = '0'
elif isinstance(num, float) and num == float('inf'):
return S.Infinity
elif isinstance(num, float) and num == float('-inf'):
return S.NegativeInfinity
elif isinstance(num, float) and math.isnan(num):
return S.NaN
elif isinstance(num, (SYMPY_INTS, Integer)):
num = str(num)
elif num is S.Infinity:
return num
elif num is S.NegativeInfinity:
return num
elif num is S.NaN:
return num
elif _is_numpy_instance(num): # support for numpy datatypes
num = _convert_numpy_types(num)
elif isinstance(num, mpmath.mpf):
if precision is None:
if dps is None:
precision = num.context.prec
num = num._mpf_
if dps is None and precision is None:
dps = 15
if isinstance(num, Float):
return num
if isinstance(num, str) and _literal_float(num):
try:
Num = decimal.Decimal(num)
except decimal.InvalidOperation:
pass
else:
isint = '.' not in num
num, dps = _decimal_to_Rational_prec(Num)
if num.is_Integer and isint:
dps = max(dps, len(str(num).lstrip('-')))
dps = max(15, dps)
precision = dps_to_prec(dps)
elif precision == '' and dps is None or precision is None and dps == '':
if not isinstance(num, str):
raise ValueError('The null string can only be used when '
'the number to Float is passed as a string or an integer.')
ok = None
if _literal_float(num):
try:
Num = decimal.Decimal(num)
except decimal.InvalidOperation:
pass
else:
isint = '.' not in num
num, dps = _decimal_to_Rational_prec(Num)
if num.is_Integer and isint:
dps = max(dps, len(str(num).lstrip('-')))
precision = dps_to_prec(dps)
ok = True
if ok is None:
raise ValueError('string-float not recognized: %s' % num)
# decimal precision(dps) is set and maybe binary precision(precision)
# as well.From here on binary precision is used to compute the Float.
# Hence, if supplied use binary precision else translate from decimal
# precision.
if precision is None or precision == '':
precision = dps_to_prec(dps)
precision = int(precision)
if isinstance(num, float):
_mpf_ = mlib.from_float(num, precision, rnd)
elif isinstance(num, str):
_mpf_ = mlib.from_str(num, precision, rnd)
elif isinstance(num, decimal.Decimal):
if num.is_finite():
_mpf_ = mlib.from_str(str(num), precision, rnd)
elif num.is_nan():
return S.NaN
elif num.is_infinite():
if num > 0:
return S.Infinity
return S.NegativeInfinity
else:
raise ValueError("unexpected decimal value %s" % str(num))
elif isinstance(num, tuple) and len(num) in (3, 4):
if isinstance(num[1], str):
# it's a hexadecimal (coming from a pickled object)
num = list(num)
# If we're loading an object pickled in Python 2 into
# Python 3, we may need to strip a tailing 'L' because
# of a shim for int on Python 3, see issue #13470.
if num[1].endswith('L'):
num[1] = num[1][:-1]
# Strip leading '0x' - gmpy2 only documents such inputs
# with base prefix as valid when the 2nd argument (base) is 0.
# When mpmath uses Sage as the backend, however, it
# ends up including '0x' when preparing the picklable tuple.
# See issue #19690.
if num[1].startswith('0x'):
num[1] = num[1][2:]
# Now we can assume that it is in standard form
num[1] = MPZ(num[1], 16)
_mpf_ = tuple(num)
else:
if len(num) == 4:
# handle normalization hack
return Float._new(num, precision)
else:
if not all((
num[0] in (0, 1),
num[1] >= 0,
all(type(i) in (int, int) for i in num)
)):
raise ValueError('malformed mpf: %s' % (num,))
# don't compute number or else it may
# over/underflow
return Float._new(
(num[0], num[1], num[2], bitcount(num[1])),
precision)
else:
try:
_mpf_ = num._as_mpf_val(precision)
except (NotImplementedError, AttributeError):
_mpf_ = mpmath.mpf(num, prec=precision)._mpf_
return cls._new(_mpf_, precision, zero=False)
@classmethod
def _new(cls, _mpf_, _prec, zero=True):
# special cases
if zero and _mpf_ == fzero:
return S.Zero # Float(0) -> 0.0; Float._new((0,0,0,0)) -> 0
elif _mpf_ == _mpf_nan:
return S.NaN
elif _mpf_ == _mpf_inf:
return S.Infinity
elif _mpf_ == _mpf_ninf:
return S.NegativeInfinity
obj = Expr.__new__(cls)
obj._mpf_ = mpf_norm(_mpf_, _prec)
obj._prec = _prec
return obj
# mpz can't be pickled
def __getnewargs_ex__(self):
return ((mlib.to_pickable(self._mpf_),), {'precision': self._prec})
def _hashable_content(self):
return (self._mpf_, self._prec)
def floor(self):
return Integer(int(mlib.to_int(
mlib.mpf_floor(self._mpf_, self._prec))))
def ceiling(self):
return Integer(int(mlib.to_int(
mlib.mpf_ceil(self._mpf_, self._prec))))
def __floor__(self):
return self.floor()
def __ceil__(self):
return self.ceiling()
@property
def num(self):
return mpmath.mpf(self._mpf_)
def _as_mpf_val(self, prec):
rv = mpf_norm(self._mpf_, prec)
if rv != self._mpf_ and self._prec == prec:
debug(self._mpf_, rv)
return rv
def _as_mpf_op(self, prec):
return self._mpf_, max(prec, self._prec)
def _eval_is_finite(self):
if self._mpf_ in (_mpf_inf, _mpf_ninf):
return False
return True
def _eval_is_infinite(self):
if self._mpf_ in (_mpf_inf, _mpf_ninf):
return True
return False
def _eval_is_integer(self):
return self._mpf_ == fzero
def _eval_is_negative(self):
if self._mpf_ in (_mpf_ninf, _mpf_inf):
return False
return self.num < 0
def _eval_is_positive(self):
if self._mpf_ in (_mpf_ninf, _mpf_inf):
return False
return self.num > 0
def _eval_is_extended_negative(self):
if self._mpf_ == _mpf_ninf:
return True
if self._mpf_ == _mpf_inf:
return False
return self.num < 0
def _eval_is_extended_positive(self):
if self._mpf_ == _mpf_inf:
return True
if self._mpf_ == _mpf_ninf:
return False
return self.num > 0
def _eval_is_zero(self):
return self._mpf_ == fzero
def __bool__(self):
return self._mpf_ != fzero
def __neg__(self):
if not self:
return self
return Float._new(mlib.mpf_neg(self._mpf_), self._prec)
@_sympifyit('other', NotImplemented)
def __add__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
rhs, prec = other._as_mpf_op(self._prec)
return Float._new(mlib.mpf_add(self._mpf_, rhs, prec, rnd), prec)
return Number.__add__(self, other)
@_sympifyit('other', NotImplemented)
def __sub__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
rhs, prec = other._as_mpf_op(self._prec)
return Float._new(mlib.mpf_sub(self._mpf_, rhs, prec, rnd), prec)
return Number.__sub__(self, other)
@_sympifyit('other', NotImplemented)
def __mul__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
rhs, prec = other._as_mpf_op(self._prec)
return Float._new(mlib.mpf_mul(self._mpf_, rhs, prec, rnd), prec)
return Number.__mul__(self, other)
@_sympifyit('other', NotImplemented)
def __truediv__(self, other):
if isinstance(other, Number) and other != 0 and global_parameters.evaluate:
rhs, prec = other._as_mpf_op(self._prec)
return Float._new(mlib.mpf_div(self._mpf_, rhs, prec, rnd), prec)
return Number.__truediv__(self, other)
@_sympifyit('other', NotImplemented)
def __mod__(self, other):
if isinstance(other, Rational) and other.q != 1 and global_parameters.evaluate:
# calculate mod with Rationals, *then* round the result
return Float(Rational.__mod__(Rational(self), other),
precision=self._prec)
if isinstance(other, Float) and global_parameters.evaluate:
r = self/other
if r == int(r):
return Float(0, precision=max(self._prec, other._prec))
if isinstance(other, Number) and global_parameters.evaluate:
rhs, prec = other._as_mpf_op(self._prec)
return Float._new(mlib.mpf_mod(self._mpf_, rhs, prec, rnd), prec)
return Number.__mod__(self, other)
@_sympifyit('other', NotImplemented)
def __rmod__(self, other):
if isinstance(other, Float) and global_parameters.evaluate:
return other.__mod__(self)
if isinstance(other, Number) and global_parameters.evaluate:
rhs, prec = other._as_mpf_op(self._prec)
return Float._new(mlib.mpf_mod(rhs, self._mpf_, prec, rnd), prec)
return Number.__rmod__(self, other)
def _eval_power(self, expt):
"""
expt is symbolic object but not equal to 0, 1
(-p)**r -> exp(r*log(-p)) -> exp(r*(log(p) + I*Pi)) ->
-> p**r*(sin(Pi*r) + cos(Pi*r)*I)
"""
if self == 0:
if expt.is_extended_positive:
return self
if expt.is_extended_negative:
return S.ComplexInfinity
if isinstance(expt, Number):
if isinstance(expt, Integer):
prec = self._prec
return Float._new(
mlib.mpf_pow_int(self._mpf_, expt.p, prec, rnd), prec)
elif isinstance(expt, Rational) and \
expt.p == 1 and expt.q % 2 and self.is_negative:
return Pow(S.NegativeOne, expt, evaluate=False)*(
-self)._eval_power(expt)
expt, prec = expt._as_mpf_op(self._prec)
mpfself = self._mpf_
try:
y = mpf_pow(mpfself, expt, prec, rnd)
return Float._new(y, prec)
except mlib.ComplexResult:
re, im = mlib.mpc_pow(
(mpfself, fzero), (expt, fzero), prec, rnd)
return Float._new(re, prec) + \
Float._new(im, prec)*S.ImaginaryUnit
def __abs__(self):
return Float._new(mlib.mpf_abs(self._mpf_), self._prec)
def __int__(self):
if self._mpf_ == fzero:
return 0
return int(mlib.to_int(self._mpf_)) # uses round_fast = round_down
def __eq__(self, other):
from sympy.logic.boolalg import Boolean
try:
other = _sympify(other)
except SympifyError:
return NotImplemented
if isinstance(other, Boolean):
return False
if other.is_NumberSymbol:
if other.is_irrational:
return False
return other.__eq__(self)
if other.is_Float:
# comparison is exact
# so Float(.1, 3) != Float(.1, 33)
return self._mpf_ == other._mpf_
if other.is_Rational:
return other.__eq__(self)
if other.is_Number:
# numbers should compare at the same precision;
# all _as_mpf_val routines should be sure to abide
# by the request to change the prec if necessary; if
# they don't, the equality test will fail since it compares
# the mpf tuples
ompf = other._as_mpf_val(self._prec)
return bool(mlib.mpf_eq(self._mpf_, ompf))
if not self:
return not other
return False # Float != non-Number
def __ne__(self, other):
return not self == other
def _Frel(self, other, op):
try:
other = _sympify(other)
except SympifyError:
return NotImplemented
if other.is_Rational:
# test self*other.q <?> other.p without losing precision
'''
>>> f = Float(.1,2)
>>> i = 1234567890
>>> (f*i)._mpf_
(0, 471, 18, 9)
>>> mlib.mpf_mul(f._mpf_, mlib.from_int(i))
(0, 505555550955, -12, 39)
'''
smpf = mlib.mpf_mul(self._mpf_, mlib.from_int(other.q))
ompf = mlib.from_int(other.p)
return _sympify(bool(op(smpf, ompf)))
elif other.is_Float:
return _sympify(bool(
op(self._mpf_, other._mpf_)))
elif other.is_comparable and other not in (
S.Infinity, S.NegativeInfinity):
other = other.evalf(prec_to_dps(self._prec))
if other._prec > 1:
if other.is_Number:
return _sympify(bool(
op(self._mpf_, other._as_mpf_val(self._prec))))
def __gt__(self, other):
if isinstance(other, NumberSymbol):
return other.__lt__(self)
rv = self._Frel(other, mlib.mpf_gt)
if rv is None:
return Expr.__gt__(self, other)
return rv
def __ge__(self, other):
if isinstance(other, NumberSymbol):
return other.__le__(self)
rv = self._Frel(other, mlib.mpf_ge)
if rv is None:
return Expr.__ge__(self, other)
return rv
def __lt__(self, other):
if isinstance(other, NumberSymbol):
return other.__gt__(self)
rv = self._Frel(other, mlib.mpf_lt)
if rv is None:
return Expr.__lt__(self, other)
return rv
def __le__(self, other):
if isinstance(other, NumberSymbol):
return other.__ge__(self)
rv = self._Frel(other, mlib.mpf_le)
if rv is None:
return Expr.__le__(self, other)
return rv
def __hash__(self):
return super().__hash__()
def epsilon_eq(self, other, epsilon="1e-15"):
return abs(self - other) < Float(epsilon)
def __format__(self, format_spec):
return format(decimal.Decimal(str(self)), format_spec)
# Add sympify converters
_sympy_converter[float] = _sympy_converter[decimal.Decimal] = Float
# this is here to work nicely in Sage
RealNumber = Float
class Rational(Number):
"""Represents rational numbers (p/q) of any size.
Examples
========
>>> from sympy import Rational, nsimplify, S, pi
>>> Rational(1, 2)
1/2
Rational is unprejudiced in accepting input. If a float is passed, the
underlying value of the binary representation will be returned:
>>> Rational(.5)
1/2
>>> Rational(.2)
3602879701896397/18014398509481984
If the simpler representation of the float is desired then consider
limiting the denominator to the desired value or convert the float to
a string (which is roughly equivalent to limiting the denominator to
10**12):
>>> Rational(str(.2))
1/5
>>> Rational(.2).limit_denominator(10**12)
1/5
An arbitrarily precise Rational is obtained when a string literal is
passed:
>>> Rational("1.23")
123/100
>>> Rational('1e-2')
1/100
>>> Rational(".1")
1/10
>>> Rational('1e-2/3.2')
1/320
The conversion of other types of strings can be handled by
the sympify() function, and conversion of floats to expressions
or simple fractions can be handled with nsimplify:
>>> S('.[3]') # repeating digits in brackets
1/3
>>> S('3**2/10') # general expressions
9/10
>>> nsimplify(.3) # numbers that have a simple form
3/10
But if the input does not reduce to a literal Rational, an error will
be raised:
>>> Rational(pi)
Traceback (most recent call last):
...
TypeError: invalid input: pi
Low-level
---------
Access numerator and denominator as .p and .q:
>>> r = Rational(3, 4)
>>> r
3/4
>>> r.p
3
>>> r.q
4
Note that p and q return integers (not SymPy Integers) so some care
is needed when using them in expressions:
>>> r.p/r.q
0.75
If an unevaluated Rational is desired, ``gcd=1`` can be passed and
this will keep common divisors of the numerator and denominator
from being eliminated. It is not possible, however, to leave a
negative value in the denominator.
>>> Rational(2, 4, gcd=1)
2/4
>>> Rational(2, -4, gcd=1).q
4
See Also
========
sympy.core.sympify.sympify, sympy.simplify.simplify.nsimplify
"""
is_real = True
is_integer = False
is_rational = True
is_number = True
__slots__ = ('p', 'q')
p: int
q: int
is_Rational = True
@cacheit
def __new__(cls, p, q=None, gcd=None):
if q is None:
if isinstance(p, Rational):
return p
if isinstance(p, SYMPY_INTS):
pass
else:
if isinstance(p, (float, Float)):
return Rational(*_as_integer_ratio(p))
if not isinstance(p, str):
try:
p = sympify(p)
except (SympifyError, SyntaxError):
pass # error will raise below
else:
if p.count('/') > 1:
raise TypeError('invalid input: %s' % p)
p = p.replace(' ', '')
pq = p.rsplit('/', 1)
if len(pq) == 2:
p, q = pq
fp = fractions.Fraction(p)
fq = fractions.Fraction(q)
p = fp/fq
try:
p = fractions.Fraction(p)
except ValueError:
pass # error will raise below
else:
return Rational(p.numerator, p.denominator, 1)
if not isinstance(p, Rational):
raise TypeError('invalid input: %s' % p)
q = 1
gcd = 1
if not isinstance(p, SYMPY_INTS):
p = Rational(p)
q *= p.q
p = p.p
else:
p = int(p)
if not isinstance(q, SYMPY_INTS):
q = Rational(q)
p *= q.q
q = q.p
else:
q = int(q)
# p and q are now ints
if q == 0:
if p == 0:
if _errdict["divide"]:
raise ValueError("Indeterminate 0/0")
else:
return S.NaN
return S.ComplexInfinity
if q < 0:
q = -q
p = -p
if not gcd:
gcd = igcd(abs(p), q)
if gcd > 1:
p //= gcd
q //= gcd
if q == 1:
return Integer(p)
if p == 1 and q == 2:
return S.Half
obj = Expr.__new__(cls)
obj.p = p
obj.q = q
return obj
def limit_denominator(self, max_denominator=1000000):
"""Closest Rational to self with denominator at most max_denominator.
Examples
========
>>> from sympy import Rational
>>> Rational('3.141592653589793').limit_denominator(10)
22/7
>>> Rational('3.141592653589793').limit_denominator(100)
311/99
"""
f = fractions.Fraction(self.p, self.q)
return Rational(f.limit_denominator(fractions.Fraction(int(max_denominator))))
def __getnewargs__(self):
return (self.p, self.q)
def _hashable_content(self):
return (self.p, self.q)
def _eval_is_positive(self):
return self.p > 0
def _eval_is_zero(self):
return self.p == 0
def __neg__(self):
return Rational(-self.p, self.q)
@_sympifyit('other', NotImplemented)
def __add__(self, other):
if global_parameters.evaluate:
if isinstance(other, Integer):
return Rational(self.p + self.q*other.p, self.q, 1)
elif isinstance(other, Rational):
#TODO: this can probably be optimized more
return Rational(self.p*other.q + self.q*other.p, self.q*other.q)
elif isinstance(other, Float):
return other + self
else:
return Number.__add__(self, other)
return Number.__add__(self, other)
__radd__ = __add__
@_sympifyit('other', NotImplemented)
def __sub__(self, other):
if global_parameters.evaluate:
if isinstance(other, Integer):
return Rational(self.p - self.q*other.p, self.q, 1)
elif isinstance(other, Rational):
return Rational(self.p*other.q - self.q*other.p, self.q*other.q)
elif isinstance(other, Float):
return -other + self
else:
return Number.__sub__(self, other)
return Number.__sub__(self, other)
@_sympifyit('other', NotImplemented)
def __rsub__(self, other):
if global_parameters.evaluate:
if isinstance(other, Integer):
return Rational(self.q*other.p - self.p, self.q, 1)
elif isinstance(other, Rational):
return Rational(self.q*other.p - self.p*other.q, self.q*other.q)
elif isinstance(other, Float):
return -self + other
else:
return Number.__rsub__(self, other)
return Number.__rsub__(self, other)
@_sympifyit('other', NotImplemented)
def __mul__(self, other):
if global_parameters.evaluate:
if isinstance(other, Integer):
return Rational(self.p*other.p, self.q, igcd(other.p, self.q))
elif isinstance(other, Rational):
return Rational(self.p*other.p, self.q*other.q, igcd(self.p, other.q)*igcd(self.q, other.p))
elif isinstance(other, Float):
return other*self
else:
return Number.__mul__(self, other)
return Number.__mul__(self, other)
__rmul__ = __mul__
@_sympifyit('other', NotImplemented)
def __truediv__(self, other):
if global_parameters.evaluate:
if isinstance(other, Integer):
if self.p and other.p == S.Zero:
return S.ComplexInfinity
else:
return Rational(self.p, self.q*other.p, igcd(self.p, other.p))
elif isinstance(other, Rational):
return Rational(self.p*other.q, self.q*other.p, igcd(self.p, other.p)*igcd(self.q, other.q))
elif isinstance(other, Float):
return self*(1/other)
else:
return Number.__truediv__(self, other)
return Number.__truediv__(self, other)
@_sympifyit('other', NotImplemented)
def __rtruediv__(self, other):
if global_parameters.evaluate:
if isinstance(other, Integer):
return Rational(other.p*self.q, self.p, igcd(self.p, other.p))
elif isinstance(other, Rational):
return Rational(other.p*self.q, other.q*self.p, igcd(self.p, other.p)*igcd(self.q, other.q))
elif isinstance(other, Float):
return other*(1/self)
else:
return Number.__rtruediv__(self, other)
return Number.__rtruediv__(self, other)
@_sympifyit('other', NotImplemented)
def __mod__(self, other):
if global_parameters.evaluate:
if isinstance(other, Rational):
n = (self.p*other.q) // (other.p*self.q)
return Rational(self.p*other.q - n*other.p*self.q, self.q*other.q)
if isinstance(other, Float):
# calculate mod with Rationals, *then* round the answer
return Float(self.__mod__(Rational(other)),
precision=other._prec)
return Number.__mod__(self, other)
return Number.__mod__(self, other)
@_sympifyit('other', NotImplemented)
def __rmod__(self, other):
if isinstance(other, Rational):
return Rational.__mod__(other, self)
return Number.__rmod__(self, other)
def _eval_power(self, expt):
if isinstance(expt, Number):
if isinstance(expt, Float):
return self._eval_evalf(expt._prec)**expt
if expt.is_extended_negative:
# (3/4)**-2 -> (4/3)**2
ne = -expt
if (ne is S.One):
return Rational(self.q, self.p)
if self.is_negative:
return S.NegativeOne**expt*Rational(self.q, -self.p)**ne
else:
return Rational(self.q, self.p)**ne
if expt is S.Infinity: # -oo already caught by test for negative
if self.p > self.q:
# (3/2)**oo -> oo
return S.Infinity
if self.p < -self.q:
# (-3/2)**oo -> oo + I*oo
return S.Infinity + S.Infinity*S.ImaginaryUnit
return S.Zero
if isinstance(expt, Integer):
# (4/3)**2 -> 4**2 / 3**2
return Rational(self.p**expt.p, self.q**expt.p, 1)
if isinstance(expt, Rational):
intpart = expt.p // expt.q
if intpart:
intpart += 1
remfracpart = intpart*expt.q - expt.p
ratfracpart = Rational(remfracpart, expt.q)
if self.p != 1:
return Integer(self.p)**expt*Integer(self.q)**ratfracpart*Rational(1, self.q**intpart, 1)
return Integer(self.q)**ratfracpart*Rational(1, self.q**intpart, 1)
else:
remfracpart = expt.q - expt.p
ratfracpart = Rational(remfracpart, expt.q)
if self.p != 1:
return Integer(self.p)**expt*Integer(self.q)**ratfracpart*Rational(1, self.q, 1)
return Integer(self.q)**ratfracpart*Rational(1, self.q, 1)
if self.is_extended_negative and expt.is_even:
return (-self)**expt
return
def _as_mpf_val(self, prec):
return mlib.from_rational(self.p, self.q, prec, rnd)
def _mpmath_(self, prec, rnd):
return mpmath.make_mpf(mlib.from_rational(self.p, self.q, prec, rnd))
def __abs__(self):
return Rational(abs(self.p), self.q)
def __int__(self):
p, q = self.p, self.q
if p < 0:
return -int(-p//q)
return int(p//q)
def floor(self):
return Integer(self.p // self.q)
def ceiling(self):
return -Integer(-self.p // self.q)
def __floor__(self):
return self.floor()
def __ceil__(self):
return self.ceiling()
def __eq__(self, other):
try:
other = _sympify(other)
except SympifyError:
return NotImplemented
if not isinstance(other, Number):
# S(0) == S.false is False
# S(0) == False is True
return False
if not self:
return not other
if other.is_NumberSymbol:
if other.is_irrational:
return False
return other.__eq__(self)
if other.is_Rational:
# a Rational is always in reduced form so will never be 2/4
# so we can just check equivalence of args
return self.p == other.p and self.q == other.q
if other.is_Float:
# all Floats have a denominator that is a power of 2
# so if self doesn't, it can't be equal to other
if self.q & (self.q - 1):
return False
s, m, t = other._mpf_[:3]
if s:
m = -m
if not t:
# other is an odd integer
if not self.is_Integer or self.is_even:
return False
return m == self.p
from .power import integer_log
if t > 0:
# other is an even integer
if not self.is_Integer:
return False
# does m*2**t == self.p
return self.p and not self.p % m and \
integer_log(self.p//m, 2) == (t, True)
# does non-integer s*m/2**-t = p/q?
if self.is_Integer:
return False
return m == self.p and integer_log(self.q, 2) == (-t, True)
return False
def __ne__(self, other):
return not self == other
def _Rrel(self, other, attr):
# if you want self < other, pass self, other, __gt__
try:
other = _sympify(other)
except SympifyError:
return NotImplemented
if other.is_Number:
op = None
s, o = self, other
if other.is_NumberSymbol:
op = getattr(o, attr)
elif other.is_Float:
op = getattr(o, attr)
elif other.is_Rational:
s, o = Integer(s.p*o.q), Integer(s.q*o.p)
op = getattr(o, attr)
if op:
return op(s)
if o.is_number and o.is_extended_real:
return Integer(s.p), s.q*o
def __gt__(self, other):
rv = self._Rrel(other, '__lt__')
if rv is None:
rv = self, other
elif not isinstance(rv, tuple):
return rv
return Expr.__gt__(*rv)
def __ge__(self, other):
rv = self._Rrel(other, '__le__')
if rv is None:
rv = self, other
elif not isinstance(rv, tuple):
return rv
return Expr.__ge__(*rv)
def __lt__(self, other):
rv = self._Rrel(other, '__gt__')
if rv is None:
rv = self, other
elif not isinstance(rv, tuple):
return rv
return Expr.__lt__(*rv)
def __le__(self, other):
rv = self._Rrel(other, '__ge__')
if rv is None:
rv = self, other
elif not isinstance(rv, tuple):
return rv
return Expr.__le__(*rv)
def __hash__(self):
return super().__hash__()
def factors(self, limit=None, use_trial=True, use_rho=False,
use_pm1=False, verbose=False, visual=False):
"""A wrapper to factorint which return factors of self that are
smaller than limit (or cheap to compute). Special methods of
factoring are disabled by default so that only trial division is used.
"""
from sympy.ntheory.factor_ import factorrat
return factorrat(self, limit=limit, use_trial=use_trial,
use_rho=use_rho, use_pm1=use_pm1,
verbose=verbose).copy()
@property
def numerator(self):
return self.p
@property
def denominator(self):
return self.q
@_sympifyit('other', NotImplemented)
def gcd(self, other):
if isinstance(other, Rational):
if other == S.Zero:
return other
return Rational(
igcd(self.p, other.p),
ilcm(self.q, other.q))
return Number.gcd(self, other)
@_sympifyit('other', NotImplemented)
def lcm(self, other):
if isinstance(other, Rational):
return Rational(
self.p // igcd(self.p, other.p) * other.p,
igcd(self.q, other.q))
return Number.lcm(self, other)
def as_numer_denom(self):
return Integer(self.p), Integer(self.q)
def as_content_primitive(self, radical=False, clear=True):
"""Return the tuple (R, self/R) where R is the positive Rational
extracted from self.
Examples
========
>>> from sympy import S
>>> (S(-3)/2).as_content_primitive()
(3/2, -1)
See docstring of Expr.as_content_primitive for more examples.
"""
if self:
if self.is_positive:
return self, S.One
return -self, S.NegativeOne
return S.One, self
def as_coeff_Mul(self, rational=False):
"""Efficiently extract the coefficient of a product. """
return self, S.One
def as_coeff_Add(self, rational=False):
"""Efficiently extract the coefficient of a summation. """
return self, S.Zero
class Integer(Rational):
"""Represents integer numbers of any size.
Examples
========
>>> from sympy import Integer
>>> Integer(3)
3
If a float or a rational is passed to Integer, the fractional part
will be discarded; the effect is of rounding toward zero.
>>> Integer(3.8)
3
>>> Integer(-3.8)
-3
A string is acceptable input if it can be parsed as an integer:
>>> Integer("9" * 20)
99999999999999999999
It is rarely needed to explicitly instantiate an Integer, because
Python integers are automatically converted to Integer when they
are used in SymPy expressions.
"""
q = 1
is_integer = True
is_number = True
is_Integer = True
__slots__ = ()
def _as_mpf_val(self, prec):
return mlib.from_int(self.p, prec, rnd)
def _mpmath_(self, prec, rnd):
return mpmath.make_mpf(self._as_mpf_val(prec))
@cacheit
def __new__(cls, i):
if isinstance(i, str):
i = i.replace(' ', '')
# whereas we cannot, in general, make a Rational from an
# arbitrary expression, we can make an Integer unambiguously
# (except when a non-integer expression happens to round to
# an integer). So we proceed by taking int() of the input and
# let the int routines determine whether the expression can
# be made into an int or whether an error should be raised.
try:
ival = int(i)
except TypeError:
raise TypeError(
"Argument of Integer should be of numeric type, got %s." % i)
# We only work with well-behaved integer types. This converts, for
# example, numpy.int32 instances.
if ival == 1:
return S.One
if ival == -1:
return S.NegativeOne
if ival == 0:
return S.Zero
obj = Expr.__new__(cls)
obj.p = ival
return obj
def __getnewargs__(self):
return (self.p,)
# Arithmetic operations are here for efficiency
def __int__(self):
return self.p
def floor(self):
return Integer(self.p)
def ceiling(self):
return Integer(self.p)
def __floor__(self):
return self.floor()
def __ceil__(self):
return self.ceiling()
def __neg__(self):
return Integer(-self.p)
def __abs__(self):
if self.p >= 0:
return self
else:
return Integer(-self.p)
def __divmod__(self, other):
if isinstance(other, Integer) and global_parameters.evaluate:
return Tuple(*(divmod(self.p, other.p)))
else:
return Number.__divmod__(self, other)
def __rdivmod__(self, other):
if isinstance(other, int) and global_parameters.evaluate:
return Tuple(*(divmod(other, self.p)))
else:
try:
other = Number(other)
except TypeError:
msg = "unsupported operand type(s) for divmod(): '%s' and '%s'"
oname = type(other).__name__
sname = type(self).__name__
raise TypeError(msg % (oname, sname))
return Number.__divmod__(other, self)
# TODO make it decorator + bytecodehacks?
def __add__(self, other):
if global_parameters.evaluate:
if isinstance(other, int):
return Integer(self.p + other)
elif isinstance(other, Integer):
return Integer(self.p + other.p)
elif isinstance(other, Rational):
return Rational(self.p*other.q + other.p, other.q, 1)
return Rational.__add__(self, other)
else:
return Add(self, other)
def __radd__(self, other):
if global_parameters.evaluate:
if isinstance(other, int):
return Integer(other + self.p)
elif isinstance(other, Rational):
return Rational(other.p + self.p*other.q, other.q, 1)
return Rational.__radd__(self, other)
return Rational.__radd__(self, other)
def __sub__(self, other):
if global_parameters.evaluate:
if isinstance(other, int):
return Integer(self.p - other)
elif isinstance(other, Integer):
return Integer(self.p - other.p)
elif isinstance(other, Rational):
return Rational(self.p*other.q - other.p, other.q, 1)
return Rational.__sub__(self, other)
return Rational.__sub__(self, other)
def __rsub__(self, other):
if global_parameters.evaluate:
if isinstance(other, int):
return Integer(other - self.p)
elif isinstance(other, Rational):
return Rational(other.p - self.p*other.q, other.q, 1)
return Rational.__rsub__(self, other)
return Rational.__rsub__(self, other)
def __mul__(self, other):
if global_parameters.evaluate:
if isinstance(other, int):
return Integer(self.p*other)
elif isinstance(other, Integer):
return Integer(self.p*other.p)
elif isinstance(other, Rational):
return Rational(self.p*other.p, other.q, igcd(self.p, other.q))
return Rational.__mul__(self, other)
return Rational.__mul__(self, other)
def __rmul__(self, other):
if global_parameters.evaluate:
if isinstance(other, int):
return Integer(other*self.p)
elif isinstance(other, Rational):
return Rational(other.p*self.p, other.q, igcd(self.p, other.q))
return Rational.__rmul__(self, other)
return Rational.__rmul__(self, other)
def __mod__(self, other):
if global_parameters.evaluate:
if isinstance(other, int):
return Integer(self.p % other)
elif isinstance(other, Integer):
return Integer(self.p % other.p)
return Rational.__mod__(self, other)
return Rational.__mod__(self, other)
def __rmod__(self, other):
if global_parameters.evaluate:
if isinstance(other, int):
return Integer(other % self.p)
elif isinstance(other, Integer):
return Integer(other.p % self.p)
return Rational.__rmod__(self, other)
return Rational.__rmod__(self, other)
def __eq__(self, other):
if isinstance(other, int):
return (self.p == other)
elif isinstance(other, Integer):
return (self.p == other.p)
return Rational.__eq__(self, other)
def __ne__(self, other):
return not self == other
def __gt__(self, other):
try:
other = _sympify(other)
except SympifyError:
return NotImplemented
if other.is_Integer:
return _sympify(self.p > other.p)
return Rational.__gt__(self, other)
def __lt__(self, other):
try:
other = _sympify(other)
except SympifyError:
return NotImplemented
if other.is_Integer:
return _sympify(self.p < other.p)
return Rational.__lt__(self, other)
def __ge__(self, other):
try:
other = _sympify(other)
except SympifyError:
return NotImplemented
if other.is_Integer:
return _sympify(self.p >= other.p)
return Rational.__ge__(self, other)
def __le__(self, other):
try:
other = _sympify(other)
except SympifyError:
return NotImplemented
if other.is_Integer:
return _sympify(self.p <= other.p)
return Rational.__le__(self, other)
def __hash__(self):
return hash(self.p)
def __index__(self):
return self.p
########################################
def _eval_is_odd(self):
return bool(self.p % 2)
def _eval_power(self, expt):
"""
Tries to do some simplifications on self**expt
Returns None if no further simplifications can be done.
Explanation
===========
When exponent is a fraction (so we have for example a square root),
we try to find a simpler representation by factoring the argument
up to factors of 2**15, e.g.
- sqrt(4) becomes 2
- sqrt(-4) becomes 2*I
- (2**(3+7)*3**(6+7))**Rational(1,7) becomes 6*18**(3/7)
Further simplification would require a special call to factorint on
the argument which is not done here for sake of speed.
"""
from sympy.ntheory.factor_ import perfect_power
if expt is S.Infinity:
if self.p > S.One:
return S.Infinity
# cases -1, 0, 1 are done in their respective classes
return S.Infinity + S.ImaginaryUnit*S.Infinity
if expt is S.NegativeInfinity:
return Rational(1, self, 1)**S.Infinity
if not isinstance(expt, Number):
# simplify when expt is even
# (-2)**k --> 2**k
if self.is_negative and expt.is_even:
return (-self)**expt
if isinstance(expt, Float):
# Rational knows how to exponentiate by a Float
return super()._eval_power(expt)
if not isinstance(expt, Rational):
return
if expt is S.Half and self.is_negative:
# we extract I for this special case since everyone is doing so
return S.ImaginaryUnit*Pow(-self, expt)
if expt.is_negative:
# invert base and change sign on exponent
ne = -expt
if self.is_negative:
return S.NegativeOne**expt*Rational(1, -self, 1)**ne
else:
return Rational(1, self.p, 1)**ne
# see if base is a perfect root, sqrt(4) --> 2
x, xexact = integer_nthroot(abs(self.p), expt.q)
if xexact:
# if it's a perfect root we've finished
result = Integer(x**abs(expt.p))
if self.is_negative:
result *= S.NegativeOne**expt
return result
# The following is an algorithm where we collect perfect roots
# from the factors of base.
# if it's not an nth root, it still might be a perfect power
b_pos = int(abs(self.p))
p = perfect_power(b_pos)
if p is not False:
dict = {p[0]: p[1]}
else:
dict = Integer(b_pos).factors(limit=2**15)
# now process the dict of factors
out_int = 1 # integer part
out_rad = 1 # extracted radicals
sqr_int = 1
sqr_gcd = 0
sqr_dict = {}
for prime, exponent in dict.items():
exponent *= expt.p
# remove multiples of expt.q: (2**12)**(1/10) -> 2*(2**2)**(1/10)
div_e, div_m = divmod(exponent, expt.q)
if div_e > 0:
out_int *= prime**div_e
if div_m > 0:
# see if the reduced exponent shares a gcd with e.q
# (2**2)**(1/10) -> 2**(1/5)
g = igcd(div_m, expt.q)
if g != 1:
out_rad *= Pow(prime, Rational(div_m//g, expt.q//g, 1))
else:
sqr_dict[prime] = div_m
# identify gcd of remaining powers
for p, ex in sqr_dict.items():
if sqr_gcd == 0:
sqr_gcd = ex
else:
sqr_gcd = igcd(sqr_gcd, ex)
if sqr_gcd == 1:
break
for k, v in sqr_dict.items():
sqr_int *= k**(v//sqr_gcd)
if sqr_int == b_pos and out_int == 1 and out_rad == 1:
result = None
else:
result = out_int*out_rad*Pow(sqr_int, Rational(sqr_gcd, expt.q))
if self.is_negative:
result *= Pow(S.NegativeOne, expt)
return result
def _eval_is_prime(self):
from sympy.ntheory.primetest import isprime
return isprime(self)
def _eval_is_composite(self):
if self > 1:
return fuzzy_not(self.is_prime)
else:
return False
def as_numer_denom(self):
return self, S.One
@_sympifyit('other', NotImplemented)
def __floordiv__(self, other):
if not isinstance(other, Expr):
return NotImplemented
if isinstance(other, Integer):
return Integer(self.p // other)
return Integer(divmod(self, other)[0])
def __rfloordiv__(self, other):
return Integer(Integer(other).p // self.p)
# These bitwise operations (__lshift__, __rlshift__, ..., __invert__) are defined
# for Integer only and not for general SymPy expressions. This is to achieve
# compatibility with the numbers.Integral ABC which only defines these operations
# among instances of numbers.Integral. Therefore, these methods check explicitly for
# integer types rather than using sympify because they should not accept arbitrary
# symbolic expressions and there is no symbolic analogue of numbers.Integral's
# bitwise operations.
def __lshift__(self, other):
if isinstance(other, (int, Integer, numbers.Integral)):
return Integer(self.p << int(other))
else:
return NotImplemented
def __rlshift__(self, other):
if isinstance(other, (int, numbers.Integral)):
return Integer(int(other) << self.p)
else:
return NotImplemented
def __rshift__(self, other):
if isinstance(other, (int, Integer, numbers.Integral)):
return Integer(self.p >> int(other))
else:
return NotImplemented
def __rrshift__(self, other):
if isinstance(other, (int, numbers.Integral)):
return Integer(int(other) >> self.p)
else:
return NotImplemented
def __and__(self, other):
if isinstance(other, (int, Integer, numbers.Integral)):
return Integer(self.p & int(other))
else:
return NotImplemented
def __rand__(self, other):
if isinstance(other, (int, numbers.Integral)):
return Integer(int(other) & self.p)
else:
return NotImplemented
def __xor__(self, other):
if isinstance(other, (int, Integer, numbers.Integral)):
return Integer(self.p ^ int(other))
else:
return NotImplemented
def __rxor__(self, other):
if isinstance(other, (int, numbers.Integral)):
return Integer(int(other) ^ self.p)
else:
return NotImplemented
def __or__(self, other):
if isinstance(other, (int, Integer, numbers.Integral)):
return Integer(self.p | int(other))
else:
return NotImplemented
def __ror__(self, other):
if isinstance(other, (int, numbers.Integral)):
return Integer(int(other) | self.p)
else:
return NotImplemented
def __invert__(self):
return Integer(~self.p)
# Add sympify converters
_sympy_converter[int] = Integer
class AlgebraicNumber(Expr):
r"""
Class for representing algebraic numbers in SymPy.
Symbolically, an instance of this class represents an element
$\alpha \in \mathbb{Q}(\theta) \hookrightarrow \mathbb{C}$. That is, the
algebraic number $\alpha$ is represented as an element of a particular
number field $\mathbb{Q}(\theta)$, with a particular embedding of this
field into the complex numbers.
Formally, the primitive element $\theta$ is given by two data points: (1)
its minimal polynomial (which defines $\mathbb{Q}(\theta)$), and (2) a
particular complex number that is a root of this polynomial (which defines
the embedding $\mathbb{Q}(\theta) \hookrightarrow \mathbb{C}$). Finally,
the algebraic number $\alpha$ which we represent is then given by the
coefficients of a polynomial in $\theta$.
"""
__slots__ = ('rep', 'root', 'alias', 'minpoly', '_own_minpoly')
is_AlgebraicNumber = True
is_algebraic = True
is_number = True
kind = NumberKind
# Optional alias symbol is not free.
# Actually, alias should be a Str, but some methods
# expect that it be an instance of Expr.
free_symbols: set[Basic] = set()
def __new__(cls, expr, coeffs=None, alias=None, **args):
r"""
Construct a new algebraic number $\alpha$ belonging to a number field
$k = \mathbb{Q}(\theta)$.
There are four instance attributes to be determined:
=========== ============================================================================
Attribute Type/Meaning
=========== ============================================================================
``root`` :py:class:`~.Expr` for $\theta$ as a complex number
``minpoly`` :py:class:`~.Poly`, the minimal polynomial of $\theta$
``rep`` :py:class:`~sympy.polys.polyclasses.DMP` giving $\alpha$ as poly in $\theta$
``alias`` :py:class:`~.Symbol` for $\theta$, or ``None``
=========== ============================================================================
See Parameters section for how they are determined.
Parameters
==========
expr : :py:class:`~.Expr`, or pair $(m, r)$
There are three distinct modes of construction, depending on what
is passed as *expr*.
**(1)** *expr* is an :py:class:`~.AlgebraicNumber`:
In this case we begin by copying all four instance attributes from
*expr*. If *coeffs* were also given, we compose the two coeff
polynomials (see below). If an *alias* was given, it overrides.
**(2)** *expr* is any other type of :py:class:`~.Expr`:
Then ``root`` will equal *expr*. Therefore it
must express an algebraic quantity, and we will compute its
``minpoly``.
**(3)** *expr* is an ordered pair $(m, r)$ giving the
``minpoly`` $m$, and a ``root`` $r$ thereof, which together
define $\theta$. In this case $m$ may be either a univariate
:py:class:`~.Poly` or any :py:class:`~.Expr` which represents the
same, while $r$ must be some :py:class:`~.Expr` representing a
complex number that is a root of $m$, including both explicit
expressions in radicals, and instances of
:py:class:`~.ComplexRootOf` or :py:class:`~.AlgebraicNumber`.
coeffs : list, :py:class:`~.ANP`, None, optional (default=None)
This defines ``rep``, giving the algebraic number $\alpha$ as a
polynomial in $\theta$.
If a list, the elements should be integers or rational numbers.
If an :py:class:`~.ANP`, we take its coefficients (using its
:py:meth:`~.ANP.to_list()` method). If ``None``, then the list of
coefficients defaults to ``[1, 0]``, meaning that $\alpha = \theta$
is the primitive element of the field.
If *expr* was an :py:class:`~.AlgebraicNumber`, let $g(x)$ be its
``rep`` polynomial, and let $f(x)$ be the polynomial defined by
*coeffs*. Then ``self.rep`` will represent the composition
$(f \circ g)(x)$.
alias : str, :py:class:`~.Symbol`, None, optional (default=None)
This is a way to provide a name for the primitive element. We
described several ways in which the *expr* argument can define the
value of the primitive element, but none of these methods gave it
a name. Here, for example, *alias* could be set as
``Symbol('theta')``, in order to make this symbol appear when
$\alpha$ is printed, or rendered as a polynomial, using the
:py:meth:`~.as_poly()` method.
Examples
========
Recall that we are constructing an algebraic number as a field element
$\alpha \in \mathbb{Q}(\theta)$.
>>> from sympy import AlgebraicNumber, sqrt, CRootOf, S
>>> from sympy.abc import x
Example (1): $\alpha = \theta = \sqrt{2}$
>>> a1 = AlgebraicNumber(sqrt(2))
>>> a1.minpoly_of_element().as_expr(x)
x**2 - 2
>>> a1.evalf(10)
1.414213562
Example (2): $\alpha = 3 \sqrt{2} - 5$, $\theta = \sqrt{2}$. We can
either build on the last example:
>>> a2 = AlgebraicNumber(a1, [3, -5])
>>> a2.as_expr()
-5 + 3*sqrt(2)
or start from scratch:
>>> a2 = AlgebraicNumber(sqrt(2), [3, -5])
>>> a2.as_expr()
-5 + 3*sqrt(2)
Example (3): $\alpha = 6 \sqrt{2} - 11$, $\theta = \sqrt{2}$. Again we
can build on the previous example, and we see that the coeff polys are
composed:
>>> a3 = AlgebraicNumber(a2, [2, -1])
>>> a3.as_expr()
-11 + 6*sqrt(2)
reflecting the fact that $(2x - 1) \circ (3x - 5) = 6x - 11$.
Example (4): $\alpha = \sqrt{2}$, $\theta = \sqrt{2} + \sqrt{3}$. The
easiest way is to use the :py:func:`~.to_number_field()` function:
>>> from sympy import to_number_field
>>> a4 = to_number_field(sqrt(2), sqrt(2) + sqrt(3))
>>> a4.minpoly_of_element().as_expr(x)
x**2 - 2
>>> a4.to_root()
sqrt(2)
>>> a4.primitive_element()
sqrt(2) + sqrt(3)
>>> a4.coeffs()
[1/2, 0, -9/2, 0]
but if you already knew the right coefficients, you could construct it
directly:
>>> a4 = AlgebraicNumber(sqrt(2) + sqrt(3), [S(1)/2, 0, S(-9)/2, 0])
>>> a4.to_root()
sqrt(2)
>>> a4.primitive_element()
sqrt(2) + sqrt(3)
Example (5): Construct the Golden Ratio as an element of the 5th
cyclotomic field, supposing we already know its coefficients. This time
we introduce the alias $\zeta$ for the primitive element of the field:
>>> from sympy import cyclotomic_poly
>>> from sympy.abc import zeta
>>> a5 = AlgebraicNumber(CRootOf(cyclotomic_poly(5), -1),
... [-1, -1, 0, 0], alias=zeta)
>>> a5.as_poly().as_expr()
-zeta**3 - zeta**2
>>> a5.evalf()
1.61803398874989
(The index ``-1`` to ``CRootOf`` selects the complex root with the
largest real and imaginary parts, which in this case is
$\mathrm{e}^{2i\pi/5}$. See :py:class:`~.ComplexRootOf`.)
Example (6): Building on the last example, construct the number
$2 \phi \in \mathbb{Q}(\phi)$, where $\phi$ is the Golden Ratio:
>>> from sympy.abc import phi
>>> a6 = AlgebraicNumber(a5.to_root(), coeffs=[2, 0], alias=phi)
>>> a6.as_poly().as_expr()
2*phi
>>> a6.primitive_element().evalf()
1.61803398874989
Note that we needed to use ``a5.to_root()``, since passing ``a5`` as
the first argument would have constructed the number $2 \phi$ as an
element of the field $\mathbb{Q}(\zeta)$:
>>> a6_wrong = AlgebraicNumber(a5, coeffs=[2, 0])
>>> a6_wrong.as_poly().as_expr()
-2*zeta**3 - 2*zeta**2
>>> a6_wrong.primitive_element().evalf()
0.309016994374947 + 0.951056516295154*I
"""
from sympy.polys.polyclasses import ANP, DMP
from sympy.polys.numberfields import minimal_polynomial
expr = sympify(expr)
rep0 = None
alias0 = None
if isinstance(expr, (tuple, Tuple)):
minpoly, root = expr
if not minpoly.is_Poly:
from sympy.polys.polytools import Poly
minpoly = Poly(minpoly)
elif expr.is_AlgebraicNumber:
minpoly, root, rep0, alias0 = (expr.minpoly, expr.root,
expr.rep, expr.alias)
else:
minpoly, root = minimal_polynomial(
expr, args.get('gen'), polys=True), expr
dom = minpoly.get_domain()
if coeffs is not None:
if not isinstance(coeffs, ANP):
rep = DMP.from_sympy_list(sympify(coeffs), 0, dom)
scoeffs = Tuple(*coeffs)
else:
rep = DMP.from_list(coeffs.to_list(), 0, dom)
scoeffs = Tuple(*coeffs.to_list())
else:
rep = DMP.from_list([1, 0], 0, dom)
scoeffs = Tuple(1, 0)
if rep0 is not None:
from sympy.polys.densetools import dup_compose
c = dup_compose(rep.rep, rep0.rep, dom)
rep = DMP.from_list(c, 0, dom)
scoeffs = Tuple(*c)
if rep.degree() >= minpoly.degree():
rep = rep.rem(minpoly.rep)
sargs = (root, scoeffs)
alias = alias or alias0
if alias is not None:
from .symbol import Symbol
if not isinstance(alias, Symbol):
alias = Symbol(alias)
sargs = sargs + (alias,)
obj = Expr.__new__(cls, *sargs)
obj.rep = rep
obj.root = root
obj.alias = alias
obj.minpoly = minpoly
obj._own_minpoly = None
return obj
def __hash__(self):
return super().__hash__()
def _eval_evalf(self, prec):
return self.as_expr()._evalf(prec)
@property
def is_aliased(self):
"""Returns ``True`` if ``alias`` was set. """
return self.alias is not None
def as_poly(self, x=None):
"""Create a Poly instance from ``self``. """
from sympy.polys.polytools import Poly, PurePoly
if x is not None:
return Poly.new(self.rep, x)
else:
if self.alias is not None:
return Poly.new(self.rep, self.alias)
else:
from .symbol import Dummy
return PurePoly.new(self.rep, Dummy('x'))
def as_expr(self, x=None):
"""Create a Basic expression from ``self``. """
return self.as_poly(x or self.root).as_expr().expand()
def coeffs(self):
"""Returns all SymPy coefficients of an algebraic number. """
return [ self.rep.dom.to_sympy(c) for c in self.rep.all_coeffs() ]
def native_coeffs(self):
"""Returns all native coefficients of an algebraic number. """
return self.rep.all_coeffs()
def to_algebraic_integer(self):
"""Convert ``self`` to an algebraic integer. """
from sympy.polys.polytools import Poly
f = self.minpoly
if f.LC() == 1:
return self
coeff = f.LC()**(f.degree() - 1)
poly = f.compose(Poly(f.gen/f.LC()))
minpoly = poly*coeff
root = f.LC()*self.root
return AlgebraicNumber((minpoly, root), self.coeffs())
def _eval_simplify(self, **kwargs):
from sympy.polys.rootoftools import CRootOf
from sympy.polys import minpoly
measure, ratio = kwargs['measure'], kwargs['ratio']
for r in [r for r in self.minpoly.all_roots() if r.func != CRootOf]:
if minpoly(self.root - r).is_Symbol:
# use the matching root if it's simpler
if measure(r) < ratio*measure(self.root):
return AlgebraicNumber(r)
return self
def field_element(self, coeffs):
r"""
Form another element of the same number field.
Explanation
===========
If we represent $\alpha \in \mathbb{Q}(\theta)$, form another element
$\beta \in \mathbb{Q}(\theta)$ of the same number field.
Parameters
==========
coeffs : list, :py:class:`~.ANP`
Like the *coeffs* arg to the class
:py:meth:`constructor<.AlgebraicNumber.__new__>`, defines the
new element as a polynomial in the primitive element.
If a list, the elements should be integers or rational numbers.
If an :py:class:`~.ANP`, we take its coefficients (using its
:py:meth:`~.ANP.to_list()` method).
Examples
========
>>> from sympy import AlgebraicNumber, sqrt
>>> a = AlgebraicNumber(sqrt(5), [-1, 1])
>>> b = a.field_element([3, 2])
>>> print(a)
1 - sqrt(5)
>>> print(b)
2 + 3*sqrt(5)
>>> print(b.primitive_element() == a.primitive_element())
True
See Also
========
.AlgebraicNumber.__new__()
"""
return AlgebraicNumber(
(self.minpoly, self.root), coeffs=coeffs, alias=self.alias)
@property
def is_primitive_element(self):
r"""
Say whether this algebraic number $\alpha \in \mathbb{Q}(\theta)$ is
equal to the primitive element $\theta$ for its field.
"""
c = self.coeffs()
# Second case occurs if self.minpoly is linear:
return c == [1, 0] or c == [self.root]
def primitive_element(self):
r"""
Get the primitive element $\theta$ for the number field
$\mathbb{Q}(\theta)$ to which this algebraic number $\alpha$ belongs.
Returns
=======
AlgebraicNumber
"""
if self.is_primitive_element:
return self
return self.field_element([1, 0])
def to_primitive_element(self, radicals=True):
r"""
Convert ``self`` to an :py:class:`~.AlgebraicNumber` instance that is
equal to its own primitive element.
Explanation
===========
If we represent $\alpha \in \mathbb{Q}(\theta)$, $\alpha \neq \theta$,
construct a new :py:class:`~.AlgebraicNumber` that represents
$\alpha \in \mathbb{Q}(\alpha)$.
Examples
========
>>> from sympy import sqrt, to_number_field
>>> from sympy.abc import x
>>> a = to_number_field(sqrt(2), sqrt(2) + sqrt(3))
The :py:class:`~.AlgebraicNumber` ``a`` represents the number
$\sqrt{2}$ in the field $\mathbb{Q}(\sqrt{2} + \sqrt{3})$. Rendering
``a`` as a polynomial,
>>> a.as_poly().as_expr(x)
x**3/2 - 9*x/2
reflects the fact that $\sqrt{2} = \theta^3/2 - 9 \theta/2$, where
$\theta = \sqrt{2} + \sqrt{3}$.
``a`` is not equal to its own primitive element. Its minpoly
>>> a.minpoly.as_poly().as_expr(x)
x**4 - 10*x**2 + 1
is that of $\theta$.
Converting to a primitive element,
>>> a_prim = a.to_primitive_element()
>>> a_prim.minpoly.as_poly().as_expr(x)
x**2 - 2
we obtain an :py:class:`~.AlgebraicNumber` whose ``minpoly`` is that of
the number itself.
Parameters
==========
radicals : boolean, optional (default=True)
If ``True``, then we will try to return an
:py:class:`~.AlgebraicNumber` whose ``root`` is an expression
in radicals. If that is not possible (or if *radicals* is
``False``), ``root`` will be a :py:class:`~.ComplexRootOf`.
Returns
=======
AlgebraicNumber
See Also
========
is_primitive_element
"""
if self.is_primitive_element:
return self
m = self.minpoly_of_element()
r = self.to_root(radicals=radicals)
return AlgebraicNumber((m, r))
def minpoly_of_element(self):
r"""
Compute the minimal polynomial for this algebraic number.
Explanation
===========
Recall that we represent an element $\alpha \in \mathbb{Q}(\theta)$.
Our instance attribute ``self.minpoly`` is the minimal polynomial for
our primitive element $\theta$. This method computes the minimal
polynomial for $\alpha$.
"""
if self._own_minpoly is None:
if self.is_primitive_element:
self._own_minpoly = self.minpoly
else:
from sympy.polys.numberfields.minpoly import minpoly
theta = self.primitive_element()
self._own_minpoly = minpoly(self.as_expr(theta), polys=True)
return self._own_minpoly
def to_root(self, radicals=True, minpoly=None):
"""
Convert to an :py:class:`~.Expr` that is not an
:py:class:`~.AlgebraicNumber`, specifically, either a
:py:class:`~.ComplexRootOf`, or, optionally and where possible, an
expression in radicals.
Parameters
==========
radicals : boolean, optional (default=True)
If ``True``, then we will try to return the root as an expression
in radicals. If that is not possible, we will return a
:py:class:`~.ComplexRootOf`.
minpoly : :py:class:`~.Poly`
If the minimal polynomial for `self` has been pre-computed, it can
be passed in order to save time.
"""
if self.is_primitive_element and not isinstance(self.root, AlgebraicNumber):
return self.root
m = minpoly or self.minpoly_of_element()
roots = m.all_roots(radicals=radicals)
if len(roots) == 1:
return roots[0]
ex = self.as_expr()
for b in roots:
if m.same_root(b, ex):
return b
class RationalConstant(Rational):
"""
Abstract base class for rationals with specific behaviors
Derived classes must define class attributes p and q and should probably all
be singletons.
"""
__slots__ = ()
def __new__(cls):
return AtomicExpr.__new__(cls)
class IntegerConstant(Integer):
__slots__ = ()
def __new__(cls):
return AtomicExpr.__new__(cls)
class Zero(IntegerConstant, metaclass=Singleton):
"""The number zero.
Zero is a singleton, and can be accessed by ``S.Zero``
Examples
========
>>> from sympy import S, Integer
>>> Integer(0) is S.Zero
True
>>> 1/S.Zero
zoo
References
==========
.. [1] https://en.wikipedia.org/wiki/Zero
"""
p = 0
q = 1
is_positive = False
is_negative = False
is_zero = True
is_number = True
is_comparable = True
__slots__ = ()
def __getnewargs__(self):
return ()
@staticmethod
def __abs__():
return S.Zero
@staticmethod
def __neg__():
return S.Zero
def _eval_power(self, expt):
if expt.is_extended_positive:
return self
if expt.is_extended_negative:
return S.ComplexInfinity
if expt.is_extended_real is False:
return S.NaN
if expt.is_zero:
return S.One
# infinities are already handled with pos and neg
# tests above; now throw away leading numbers on Mul
# exponent since 0**-x = zoo**x even when x == 0
coeff, terms = expt.as_coeff_Mul()
if coeff.is_negative:
return S.ComplexInfinity**terms
if coeff is not S.One: # there is a Number to discard
return self**terms
def _eval_order(self, *symbols):
# Order(0,x) -> 0
return self
def __bool__(self):
return False
class One(IntegerConstant, metaclass=Singleton):
"""The number one.
One is a singleton, and can be accessed by ``S.One``.
Examples
========
>>> from sympy import S, Integer
>>> Integer(1) is S.One
True
References
==========
.. [1] https://en.wikipedia.org/wiki/1_%28number%29
"""
is_number = True
is_positive = True
p = 1
q = 1
__slots__ = ()
def __getnewargs__(self):
return ()
@staticmethod
def __abs__():
return S.One
@staticmethod
def __neg__():
return S.NegativeOne
def _eval_power(self, expt):
return self
def _eval_order(self, *symbols):
return
@staticmethod
def factors(limit=None, use_trial=True, use_rho=False, use_pm1=False,
verbose=False, visual=False):
if visual:
return S.One
else:
return {}
class NegativeOne(IntegerConstant, metaclass=Singleton):
"""The number negative one.
NegativeOne is a singleton, and can be accessed by ``S.NegativeOne``.
Examples
========
>>> from sympy import S, Integer
>>> Integer(-1) is S.NegativeOne
True
See Also
========
One
References
==========
.. [1] https://en.wikipedia.org/wiki/%E2%88%921_%28number%29
"""
is_number = True
p = -1
q = 1
__slots__ = ()
def __getnewargs__(self):
return ()
@staticmethod
def __abs__():
return S.One
@staticmethod
def __neg__():
return S.One
def _eval_power(self, expt):
if expt.is_odd:
return S.NegativeOne
if expt.is_even:
return S.One
if isinstance(expt, Number):
if isinstance(expt, Float):
return Float(-1.0)**expt
if expt is S.NaN:
return S.NaN
if expt in (S.Infinity, S.NegativeInfinity):
return S.NaN
if expt is S.Half:
return S.ImaginaryUnit
if isinstance(expt, Rational):
if expt.q == 2:
return S.ImaginaryUnit**Integer(expt.p)
i, r = divmod(expt.p, expt.q)
if i:
return self**i*self**Rational(r, expt.q)
return
class Half(RationalConstant, metaclass=Singleton):
"""The rational number 1/2.
Half is a singleton, and can be accessed by ``S.Half``.
Examples
========
>>> from sympy import S, Rational
>>> Rational(1, 2) is S.Half
True
References
==========
.. [1] https://en.wikipedia.org/wiki/One_half
"""
is_number = True
p = 1
q = 2
__slots__ = ()
def __getnewargs__(self):
return ()
@staticmethod
def __abs__():
return S.Half
class Infinity(Number, metaclass=Singleton):
r"""Positive infinite quantity.
Explanation
===========
In real analysis the symbol `\infty` denotes an unbounded
limit: `x\to\infty` means that `x` grows without bound.
Infinity is often used not only to define a limit but as a value
in the affinely extended real number system. Points labeled `+\infty`
and `-\infty` can be added to the topological space of the real numbers,
producing the two-point compactification of the real numbers. Adding
algebraic properties to this gives us the extended real numbers.
Infinity is a singleton, and can be accessed by ``S.Infinity``,
or can be imported as ``oo``.
Examples
========
>>> from sympy import oo, exp, limit, Symbol
>>> 1 + oo
oo
>>> 42/oo
0
>>> x = Symbol('x')
>>> limit(exp(x), x, oo)
oo
See Also
========
NegativeInfinity, NaN
References
==========
.. [1] https://en.wikipedia.org/wiki/Infinity
"""
is_commutative = True
is_number = True
is_complex = False
is_extended_real = True
is_infinite = True
is_comparable = True
is_extended_positive = True
is_prime = False
__slots__ = ()
def __new__(cls):
return AtomicExpr.__new__(cls)
def _latex(self, printer):
return r"\infty"
def _eval_subs(self, old, new):
if self == old:
return new
def _eval_evalf(self, prec=None):
return Float('inf')
def evalf(self, prec=None, **options):
return self._eval_evalf(prec)
@_sympifyit('other', NotImplemented)
def __add__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
if other in (S.NegativeInfinity, S.NaN):
return S.NaN
return self
return Number.__add__(self, other)
__radd__ = __add__
@_sympifyit('other', NotImplemented)
def __sub__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
if other in (S.Infinity, S.NaN):
return S.NaN
return self
return Number.__sub__(self, other)
@_sympifyit('other', NotImplemented)
def __rsub__(self, other):
return (-self).__add__(other)
@_sympifyit('other', NotImplemented)
def __mul__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
if other.is_zero or other is S.NaN:
return S.NaN
if other.is_extended_positive:
return self
return S.NegativeInfinity
return Number.__mul__(self, other)
__rmul__ = __mul__
@_sympifyit('other', NotImplemented)
def __truediv__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
if other is S.Infinity or \
other is S.NegativeInfinity or \
other is S.NaN:
return S.NaN
if other.is_extended_nonnegative:
return self
return S.NegativeInfinity
return Number.__truediv__(self, other)
def __abs__(self):
return S.Infinity
def __neg__(self):
return S.NegativeInfinity
def _eval_power(self, expt):
"""
``expt`` is symbolic object but not equal to 0 or 1.
================ ======= ==============================
Expression Result Notes
================ ======= ==============================
``oo ** nan`` ``nan``
``oo ** -p`` ``0`` ``p`` is number, ``oo``
================ ======= ==============================
See Also
========
Pow
NaN
NegativeInfinity
"""
if expt.is_extended_positive:
return S.Infinity
if expt.is_extended_negative:
return S.Zero
if expt is S.NaN:
return S.NaN
if expt is S.ComplexInfinity:
return S.NaN
if expt.is_extended_real is False and expt.is_number:
from sympy.functions.elementary.complexes import re
expt_real = re(expt)
if expt_real.is_positive:
return S.ComplexInfinity
if expt_real.is_negative:
return S.Zero
if expt_real.is_zero:
return S.NaN
return self**expt.evalf()
def _as_mpf_val(self, prec):
return mlib.finf
def __hash__(self):
return super().__hash__()
def __eq__(self, other):
return other is S.Infinity or other == float('inf')
def __ne__(self, other):
return other is not S.Infinity and other != float('inf')
__gt__ = Expr.__gt__
__ge__ = Expr.__ge__
__lt__ = Expr.__lt__
__le__ = Expr.__le__
@_sympifyit('other', NotImplemented)
def __mod__(self, other):
if not isinstance(other, Expr):
return NotImplemented
return S.NaN
__rmod__ = __mod__
def floor(self):
return self
def ceiling(self):
return self
oo = S.Infinity
class NegativeInfinity(Number, metaclass=Singleton):
"""Negative infinite quantity.
NegativeInfinity is a singleton, and can be accessed
by ``S.NegativeInfinity``.
See Also
========
Infinity
"""
is_extended_real = True
is_complex = False
is_commutative = True
is_infinite = True
is_comparable = True
is_extended_negative = True
is_number = True
is_prime = False
__slots__ = ()
def __new__(cls):
return AtomicExpr.__new__(cls)
def _latex(self, printer):
return r"-\infty"
def _eval_subs(self, old, new):
if self == old:
return new
def _eval_evalf(self, prec=None):
return Float('-inf')
def evalf(self, prec=None, **options):
return self._eval_evalf(prec)
@_sympifyit('other', NotImplemented)
def __add__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
if other in (S.Infinity, S.NaN):
return S.NaN
return self
return Number.__add__(self, other)
__radd__ = __add__
@_sympifyit('other', NotImplemented)
def __sub__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
if other in (S.NegativeInfinity, S.NaN):
return S.NaN
return self
return Number.__sub__(self, other)
@_sympifyit('other', NotImplemented)
def __rsub__(self, other):
return (-self).__add__(other)
@_sympifyit('other', NotImplemented)
def __mul__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
if other.is_zero or other is S.NaN:
return S.NaN
if other.is_extended_positive:
return self
return S.Infinity
return Number.__mul__(self, other)
__rmul__ = __mul__
@_sympifyit('other', NotImplemented)
def __truediv__(self, other):
if isinstance(other, Number) and global_parameters.evaluate:
if other is S.Infinity or \
other is S.NegativeInfinity or \
other is S.NaN:
return S.NaN
if other.is_extended_nonnegative:
return self
return S.Infinity
return Number.__truediv__(self, other)
def __abs__(self):
return S.Infinity
def __neg__(self):
return S.Infinity
def _eval_power(self, expt):
"""
``expt`` is symbolic object but not equal to 0 or 1.
================ ======= ==============================
Expression Result Notes
================ ======= ==============================
``(-oo) ** nan`` ``nan``
``(-oo) ** oo`` ``nan``
``(-oo) ** -oo`` ``nan``
``(-oo) ** e`` ``oo`` ``e`` is positive even integer
``(-oo) ** o`` ``-oo`` ``o`` is positive odd integer
================ ======= ==============================
See Also
========
Infinity
Pow
NaN
"""
if expt.is_number:
if expt is S.NaN or \
expt is S.Infinity or \
expt is S.NegativeInfinity:
return S.NaN
if isinstance(expt, Integer) and expt.is_extended_positive:
if expt.is_odd:
return S.NegativeInfinity
else:
return S.Infinity
inf_part = S.Infinity**expt
s_part = S.NegativeOne**expt
if inf_part == 0 and s_part.is_finite:
return inf_part
if (inf_part is S.ComplexInfinity and
s_part.is_finite and not s_part.is_zero):
return S.ComplexInfinity
return s_part*inf_part
def _as_mpf_val(self, prec):
return mlib.fninf
def __hash__(self):
return super().__hash__()
def __eq__(self, other):
return other is S.NegativeInfinity or other == float('-inf')
def __ne__(self, other):
return other is not S.NegativeInfinity and other != float('-inf')
__gt__ = Expr.__gt__
__ge__ = Expr.__ge__
__lt__ = Expr.__lt__
__le__ = Expr.__le__
@_sympifyit('other', NotImplemented)
def __mod__(self, other):
if not isinstance(other, Expr):
return NotImplemented
return S.NaN
__rmod__ = __mod__
def floor(self):
return self
def ceiling(self):
return self
def as_powers_dict(self):
return {S.NegativeOne: 1, S.Infinity: 1}
class NaN(Number, metaclass=Singleton):
"""
Not a Number.
Explanation
===========
This serves as a place holder for numeric values that are indeterminate.
Most operations on NaN, produce another NaN. Most indeterminate forms,
such as ``0/0`` or ``oo - oo` produce NaN. Two exceptions are ``0**0``
and ``oo**0``, which all produce ``1`` (this is consistent with Python's
float).
NaN is loosely related to floating point nan, which is defined in the
IEEE 754 floating point standard, and corresponds to the Python
``float('nan')``. Differences are noted below.
NaN is mathematically not equal to anything else, even NaN itself. This
explains the initially counter-intuitive results with ``Eq`` and ``==`` in
the examples below.
NaN is not comparable so inequalities raise a TypeError. This is in
contrast with floating point nan where all inequalities are false.
NaN is a singleton, and can be accessed by ``S.NaN``, or can be imported
as ``nan``.
Examples
========
>>> from sympy import nan, S, oo, Eq
>>> nan is S.NaN
True
>>> oo - oo
nan
>>> nan + 1
nan
>>> Eq(nan, nan) # mathematical equality
False
>>> nan == nan # structural equality
True
References
==========
.. [1] https://en.wikipedia.org/wiki/NaN
"""
is_commutative = True
is_extended_real = None
is_real = None
is_rational = None
is_algebraic = None
is_transcendental = None
is_integer = None
is_comparable = False
is_finite = None
is_zero = None
is_prime = None
is_positive = None
is_negative = None
is_number = True
__slots__ = ()
def __new__(cls):
return AtomicExpr.__new__(cls)
def _latex(self, printer):
return r"\text{NaN}"
def __neg__(self):
return self
@_sympifyit('other', NotImplemented)
def __add__(self, other):
return self
@_sympifyit('other', NotImplemented)
def __sub__(self, other):
return self
@_sympifyit('other', NotImplemented)
def __mul__(self, other):
return self
@_sympifyit('other', NotImplemented)
def __truediv__(self, other):
return self
def floor(self):
return self
def ceiling(self):
return self
def _as_mpf_val(self, prec):
return _mpf_nan
def __hash__(self):
return super().__hash__()
def __eq__(self, other):
# NaN is structurally equal to another NaN
return other is S.NaN
def __ne__(self, other):
return other is not S.NaN
# Expr will _sympify and raise TypeError
__gt__ = Expr.__gt__
__ge__ = Expr.__ge__
__lt__ = Expr.__lt__
__le__ = Expr.__le__
nan = S.NaN
@dispatch(NaN, Expr) # type:ignore
def _eval_is_eq(a, b): # noqa:F811
return False
class ComplexInfinity(AtomicExpr, metaclass=Singleton):
r"""Complex infinity.
Explanation
===========
In complex analysis the symbol `\tilde\infty`, called "complex
infinity", represents a quantity with infinite magnitude, but
undetermined complex phase.
ComplexInfinity is a singleton, and can be accessed by
``S.ComplexInfinity``, or can be imported as ``zoo``.
Examples
========
>>> from sympy import zoo
>>> zoo + 42
zoo
>>> 42/zoo
0
>>> zoo + zoo
nan
>>> zoo*zoo
zoo
See Also
========
Infinity
"""
is_commutative = True
is_infinite = True
is_number = True
is_prime = False
is_complex = False
is_extended_real = False
kind = NumberKind
__slots__ = ()
def __new__(cls):
return AtomicExpr.__new__(cls)
def _latex(self, printer):
return r"\tilde{\infty}"
@staticmethod
def __abs__():
return S.Infinity
def floor(self):
return self
def ceiling(self):
return self
@staticmethod
def __neg__():
return S.ComplexInfinity
def _eval_power(self, expt):
if expt is S.ComplexInfinity:
return S.NaN
if isinstance(expt, Number):
if expt.is_zero:
return S.NaN
else:
if expt.is_positive:
return S.ComplexInfinity
else:
return S.Zero
zoo = S.ComplexInfinity
class NumberSymbol(AtomicExpr):
is_commutative = True
is_finite = True
is_number = True
__slots__ = ()
is_NumberSymbol = True
kind = NumberKind
def __new__(cls):
return AtomicExpr.__new__(cls)
def approximation(self, number_cls):
""" Return an interval with number_cls endpoints
that contains the value of NumberSymbol.
If not implemented, then return None.
"""
def _eval_evalf(self, prec):
return Float._new(self._as_mpf_val(prec), prec)
def __eq__(self, other):
try:
other = _sympify(other)
except SympifyError:
return NotImplemented
if self is other:
return True
if other.is_Number and self.is_irrational:
return False
return False # NumberSymbol != non-(Number|self)
def __ne__(self, other):
return not self == other
def __le__(self, other):
if self is other:
return S.true
return Expr.__le__(self, other)
def __ge__(self, other):
if self is other:
return S.true
return Expr.__ge__(self, other)
def __int__(self):
# subclass with appropriate return value
raise NotImplementedError
def __hash__(self):
return super().__hash__()
class Exp1(NumberSymbol, metaclass=Singleton):
r"""The `e` constant.
Explanation
===========
The transcendental number `e = 2.718281828\ldots` is the base of the
natural logarithm and of the exponential function, `e = \exp(1)`.
Sometimes called Euler's number or Napier's constant.
Exp1 is a singleton, and can be accessed by ``S.Exp1``,
or can be imported as ``E``.
Examples
========
>>> from sympy import exp, log, E
>>> E is exp(1)
True
>>> log(E)
1
References
==========
.. [1] https://en.wikipedia.org/wiki/E_%28mathematical_constant%29
"""
is_real = True
is_positive = True
is_negative = False # XXX Forces is_negative/is_nonnegative
is_irrational = True
is_number = True
is_algebraic = False
is_transcendental = True
__slots__ = ()
def _latex(self, printer):
return r"e"
@staticmethod
def __abs__():
return S.Exp1
def __int__(self):
return 2
def _as_mpf_val(self, prec):
return mpf_e(prec)
def approximation_interval(self, number_cls):
if issubclass(number_cls, Integer):
return (Integer(2), Integer(3))
elif issubclass(number_cls, Rational):
pass
def _eval_power(self, expt):
if global_parameters.exp_is_pow:
return self._eval_power_exp_is_pow(expt)
else:
from sympy.functions.elementary.exponential import exp
return exp(expt)
def _eval_power_exp_is_pow(self, arg):
if arg.is_Number:
if arg is oo:
return oo
elif arg == -oo:
return S.Zero
from sympy.functions.elementary.exponential import log
if isinstance(arg, log):
return arg.args[0]
# don't autoexpand Pow or Mul (see the issue 3351):
elif not arg.is_Add:
Ioo = I*oo
if arg in [Ioo, -Ioo]:
return nan
coeff = arg.coeff(pi*I)
if coeff:
if (2*coeff).is_integer:
if coeff.is_even:
return S.One
elif coeff.is_odd:
return S.NegativeOne
elif (coeff + S.Half).is_even:
return -I
elif (coeff + S.Half).is_odd:
return I
elif coeff.is_Rational:
ncoeff = coeff % 2 # restrict to [0, 2pi)
if ncoeff > 1: # restrict to (-pi, pi]
ncoeff -= 2
if ncoeff != coeff:
return S.Exp1**(ncoeff*S.Pi*S.ImaginaryUnit)
# Warning: code in risch.py will be very sensitive to changes
# in this (see DifferentialExtension).
# look for a single log factor
coeff, terms = arg.as_coeff_Mul()
# but it can't be multiplied by oo
if coeff in (oo, -oo):
return
coeffs, log_term = [coeff], None
for term in Mul.make_args(terms):
if isinstance(term, log):
if log_term is None:
log_term = term.args[0]
else:
return
elif term.is_comparable:
coeffs.append(term)
else:
return
return log_term**Mul(*coeffs) if log_term else None
elif arg.is_Add:
out = []
add = []
argchanged = False
for a in arg.args:
if a is S.One:
add.append(a)
continue
newa = self**a
if isinstance(newa, Pow) and newa.base is self:
if newa.exp != a:
add.append(newa.exp)
argchanged = True
else:
add.append(a)
else:
out.append(newa)
if out or argchanged:
return Mul(*out)*Pow(self, Add(*add), evaluate=False)
elif arg.is_Matrix:
return arg.exp()
def _eval_rewrite_as_sin(self, **kwargs):
from sympy.functions.elementary.trigonometric import sin
return sin(I + S.Pi/2) - I*sin(I)
def _eval_rewrite_as_cos(self, **kwargs):
from sympy.functions.elementary.trigonometric import cos
return cos(I) + I*cos(I + S.Pi/2)
E = S.Exp1
class Pi(NumberSymbol, metaclass=Singleton):
r"""The `\pi` constant.
Explanation
===========
The transcendental number `\pi = 3.141592654\ldots` represents the ratio
of a circle's circumference to its diameter, the area of the unit circle,
the half-period of trigonometric functions, and many other things
in mathematics.
Pi is a singleton, and can be accessed by ``S.Pi``, or can
be imported as ``pi``.
Examples
========
>>> from sympy import S, pi, oo, sin, exp, integrate, Symbol
>>> S.Pi
pi
>>> pi > 3
True
>>> pi.is_irrational
True
>>> x = Symbol('x')
>>> sin(x + 2*pi)
sin(x)
>>> integrate(exp(-x**2), (x, -oo, oo))
sqrt(pi)
References
==========
.. [1] https://en.wikipedia.org/wiki/Pi
"""
is_real = True
is_positive = True
is_negative = False
is_irrational = True
is_number = True
is_algebraic = False
is_transcendental = True
__slots__ = ()
def _latex(self, printer):
return r"\pi"
@staticmethod
def __abs__():
return S.Pi
def __int__(self):
return 3
def _as_mpf_val(self, prec):
return mpf_pi(prec)
def approximation_interval(self, number_cls):
if issubclass(number_cls, Integer):
return (Integer(3), Integer(4))
elif issubclass(number_cls, Rational):
return (Rational(223, 71, 1), Rational(22, 7, 1))
pi = S.Pi
class GoldenRatio(NumberSymbol, metaclass=Singleton):
r"""The golden ratio, `\phi`.
Explanation
===========
`\phi = \frac{1 + \sqrt{5}}{2}` is an algebraic number. Two quantities
are in the golden ratio if their ratio is the same as the ratio of
their sum to the larger of the two quantities, i.e. their maximum.
GoldenRatio is a singleton, and can be accessed by ``S.GoldenRatio``.
Examples
========
>>> from sympy import S
>>> S.GoldenRatio > 1
True
>>> S.GoldenRatio.expand(func=True)
1/2 + sqrt(5)/2
>>> S.GoldenRatio.is_irrational
True
References
==========
.. [1] https://en.wikipedia.org/wiki/Golden_ratio
"""
is_real = True
is_positive = True
is_negative = False
is_irrational = True
is_number = True
is_algebraic = True
is_transcendental = False
__slots__ = ()
def _latex(self, printer):
return r"\phi"
def __int__(self):
return 1
def _as_mpf_val(self, prec):
# XXX track down why this has to be increased
rv = mlib.from_man_exp(phi_fixed(prec + 10), -prec - 10)
return mpf_norm(rv, prec)
def _eval_expand_func(self, **hints):
from sympy.functions.elementary.miscellaneous import sqrt
return S.Half + S.Half*sqrt(5)
def approximation_interval(self, number_cls):
if issubclass(number_cls, Integer):
return (S.One, Rational(2))
elif issubclass(number_cls, Rational):
pass
_eval_rewrite_as_sqrt = _eval_expand_func
class TribonacciConstant(NumberSymbol, metaclass=Singleton):
r"""The tribonacci constant.
Explanation
===========
The tribonacci numbers are like the Fibonacci numbers, but instead
of starting with two predetermined terms, the sequence starts with
three predetermined terms and each term afterwards is the sum of the
preceding three terms.
The tribonacci constant is the ratio toward which adjacent tribonacci
numbers tend. It is a root of the polynomial `x^3 - x^2 - x - 1 = 0`,
and also satisfies the equation `x + x^{-3} = 2`.
TribonacciConstant is a singleton, and can be accessed
by ``S.TribonacciConstant``.
Examples
========
>>> from sympy import S
>>> S.TribonacciConstant > 1
True
>>> S.TribonacciConstant.expand(func=True)
1/3 + (19 - 3*sqrt(33))**(1/3)/3 + (3*sqrt(33) + 19)**(1/3)/3
>>> S.TribonacciConstant.is_irrational
True
>>> S.TribonacciConstant.n(20)
1.8392867552141611326
References
==========
.. [1] https://en.wikipedia.org/wiki/Generalizations_of_Fibonacci_numbers#Tribonacci_numbers
"""
is_real = True
is_positive = True
is_negative = False
is_irrational = True
is_number = True
is_algebraic = True
is_transcendental = False
__slots__ = ()
def _latex(self, printer):
return r"\text{TribonacciConstant}"
def __int__(self):
return 1
def _eval_evalf(self, prec):
rv = self._eval_expand_func(function=True)._eval_evalf(prec + 4)
return Float(rv, precision=prec)
def _eval_expand_func(self, **hints):
from sympy.functions.elementary.miscellaneous import cbrt, sqrt
return (1 + cbrt(19 - 3*sqrt(33)) + cbrt(19 + 3*sqrt(33))) / 3
def approximation_interval(self, number_cls):
if issubclass(number_cls, Integer):
return (S.One, Rational(2))
elif issubclass(number_cls, Rational):
pass
_eval_rewrite_as_sqrt = _eval_expand_func
class EulerGamma(NumberSymbol, metaclass=Singleton):
r"""The Euler-Mascheroni constant.
Explanation
===========
`\gamma = 0.5772157\ldots` (also called Euler's constant) is a mathematical
constant recurring in analysis and number theory. It is defined as the
limiting difference between the harmonic series and the
natural logarithm:
.. math:: \gamma = \lim\limits_{n\to\infty}
\left(\sum\limits_{k=1}^n\frac{1}{k} - \ln n\right)
EulerGamma is a singleton, and can be accessed by ``S.EulerGamma``.
Examples
========
>>> from sympy import S
>>> S.EulerGamma.is_irrational
>>> S.EulerGamma > 0
True
>>> S.EulerGamma > 1
False
References
==========
.. [1] https://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant
"""
is_real = True
is_positive = True
is_negative = False
is_irrational = None
is_number = True
__slots__ = ()
def _latex(self, printer):
return r"\gamma"
def __int__(self):
return 0
def _as_mpf_val(self, prec):
# XXX track down why this has to be increased
v = mlib.libhyper.euler_fixed(prec + 10)
rv = mlib.from_man_exp(v, -prec - 10)
return mpf_norm(rv, prec)
def approximation_interval(self, number_cls):
if issubclass(number_cls, Integer):
return (S.Zero, S.One)
elif issubclass(number_cls, Rational):
return (S.Half, Rational(3, 5, 1))
class Catalan(NumberSymbol, metaclass=Singleton):
r"""Catalan's constant.
Explanation
===========
$G = 0.91596559\ldots$ is given by the infinite series
.. math:: G = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^2}
Catalan is a singleton, and can be accessed by ``S.Catalan``.
Examples
========
>>> from sympy import S
>>> S.Catalan.is_irrational
>>> S.Catalan > 0
True
>>> S.Catalan > 1
False
References
==========
.. [1] https://en.wikipedia.org/wiki/Catalan%27s_constant
"""
is_real = True
is_positive = True
is_negative = False
is_irrational = None
is_number = True
__slots__ = ()
def __int__(self):
return 0
def _as_mpf_val(self, prec):
# XXX track down why this has to be increased
v = mlib.catalan_fixed(prec + 10)
rv = mlib.from_man_exp(v, -prec - 10)
return mpf_norm(rv, prec)
def approximation_interval(self, number_cls):
if issubclass(number_cls, Integer):
return (S.Zero, S.One)
elif issubclass(number_cls, Rational):
return (Rational(9, 10, 1), S.One)
def _eval_rewrite_as_Sum(self, k_sym=None, symbols=None):
if (k_sym is not None) or (symbols is not None):
return self
from .symbol import Dummy
from sympy.concrete.summations import Sum
k = Dummy('k', integer=True, nonnegative=True)
return Sum(S.NegativeOne**k / (2*k+1)**2, (k, 0, S.Infinity))
def _latex(self, printer):
return "G"
class ImaginaryUnit(AtomicExpr, metaclass=Singleton):
r"""The imaginary unit, `i = \sqrt{-1}`.
I is a singleton, and can be accessed by ``S.I``, or can be
imported as ``I``.
Examples
========
>>> from sympy import I, sqrt
>>> sqrt(-1)
I
>>> I*I
-1
>>> 1/I
-I
References
==========
.. [1] https://en.wikipedia.org/wiki/Imaginary_unit
"""
is_commutative = True
is_imaginary = True
is_finite = True
is_number = True
is_algebraic = True
is_transcendental = False
kind = NumberKind
__slots__ = ()
def _latex(self, printer):
return printer._settings['imaginary_unit_latex']
@staticmethod
def __abs__():
return S.One
def _eval_evalf(self, prec):
return self
def _eval_conjugate(self):
return -S.ImaginaryUnit
def _eval_power(self, expt):
"""
b is I = sqrt(-1)
e is symbolic object but not equal to 0, 1
I**r -> (-1)**(r/2) -> exp(r/2*Pi*I) -> sin(Pi*r/2) + cos(Pi*r/2)*I, r is decimal
I**0 mod 4 -> 1
I**1 mod 4 -> I
I**2 mod 4 -> -1
I**3 mod 4 -> -I
"""
if isinstance(expt, Integer):
expt = expt % 4
if expt == 0:
return S.One
elif expt == 1:
return S.ImaginaryUnit
elif expt == 2:
return S.NegativeOne
elif expt == 3:
return -S.ImaginaryUnit
if isinstance(expt, Rational):
i, r = divmod(expt, 2)
rv = Pow(S.ImaginaryUnit, r, evaluate=False)
if i % 2:
return Mul(S.NegativeOne, rv, evaluate=False)
return rv
def as_base_exp(self):
return S.NegativeOne, S.Half
@property
def _mpc_(self):
return (Float(0)._mpf_, Float(1)._mpf_)
I = S.ImaginaryUnit
@dispatch(Tuple, Number) # type:ignore
def _eval_is_eq(self, other): # noqa: F811
return False
def sympify_fractions(f):
return Rational(f.numerator, f.denominator, 1)
_sympy_converter[fractions.Fraction] = sympify_fractions
if HAS_GMPY:
def sympify_mpz(x):
return Integer(int(x))
# XXX: The sympify_mpq function here was never used because it is
# overridden by the other sympify_mpq function below. Maybe it should just
# be removed or maybe it should be used for something...
def sympify_mpq(x):
return Rational(int(x.numerator), int(x.denominator))
_sympy_converter[type(gmpy.mpz(1))] = sympify_mpz
_sympy_converter[type(gmpy.mpq(1, 2))] = sympify_mpq
def sympify_mpmath_mpq(x):
p, q = x._mpq_
return Rational(p, q, 1)
_sympy_converter[type(mpmath.rational.mpq(1, 2))] = sympify_mpmath_mpq
def sympify_mpmath(x):
return Expr._from_mpmath(x, x.context.prec)
_sympy_converter[mpnumeric] = sympify_mpmath
def sympify_complex(a):
real, imag = list(map(sympify, (a.real, a.imag)))
return real + S.ImaginaryUnit*imag
_sympy_converter[complex] = sympify_complex
from .power import Pow, integer_nthroot
from .mul import Mul
Mul.identity = One()
from .add import Add
Add.identity = Zero()
def _register_classes():
numbers.Number.register(Number)
numbers.Real.register(Float)
numbers.Rational.register(Rational)
numbers.Integral.register(Integer)
_register_classes()
_illegal = (S.NaN, S.Infinity, S.NegativeInfinity, S.ComplexInfinity)
|
77c3f6ac3162570a78250e22b6de3d5a7907983b753cc0bfd79057f8c9326087 | """Algorithms for computing symbolic roots of polynomials. """
import math
from functools import reduce
from sympy.core import S, I, pi
from sympy.core.exprtools import factor_terms
from sympy.core.function import _mexpand
from sympy.core.logic import fuzzy_not
from sympy.core.mul import expand_2arg, Mul
from sympy.core.numbers import Rational, igcd, comp
from sympy.core.power import Pow
from sympy.core.relational import Eq
from sympy.core.sorting import ordered
from sympy.core.symbol import Dummy, Symbol, symbols
from sympy.core.sympify import sympify
from sympy.functions import exp, im, cos, acos, Piecewise
from sympy.functions.elementary.miscellaneous import root, sqrt
from sympy.ntheory import divisors, isprime, nextprime
from sympy.polys.domains import EX
from sympy.polys.polyerrors import (PolynomialError, GeneratorsNeeded,
DomainError, UnsolvableFactorError)
from sympy.polys.polyquinticconst import PolyQuintic
from sympy.polys.polytools import Poly, cancel, factor, gcd_list, discriminant
from sympy.polys.rationaltools import together
from sympy.polys.specialpolys import cyclotomic_poly
from sympy.utilities import public
from sympy.utilities.misc import filldedent
z = Symbol('z') # importing from abc cause O to be lost as clashing symbol
def roots_linear(f):
"""Returns a list of roots of a linear polynomial."""
r = -f.nth(0)/f.nth(1)
dom = f.get_domain()
if not dom.is_Numerical:
if dom.is_Composite:
r = factor(r)
else:
from sympy.simplify.simplify import simplify
r = simplify(r)
return [r]
def roots_quadratic(f):
"""Returns a list of roots of a quadratic polynomial. If the domain is ZZ
then the roots will be sorted with negatives coming before positives.
The ordering will be the same for any numerical coefficients as long as
the assumptions tested are correct, otherwise the ordering will not be
sorted (but will be canonical).
"""
a, b, c = f.all_coeffs()
dom = f.get_domain()
def _sqrt(d):
# remove squares from square root since both will be represented
# in the results; a similar thing is happening in roots() but
# must be duplicated here because not all quadratics are binomials
co = []
other = []
for di in Mul.make_args(d):
if di.is_Pow and di.exp.is_Integer and di.exp % 2 == 0:
co.append(Pow(di.base, di.exp//2))
else:
other.append(di)
if co:
d = Mul(*other)
co = Mul(*co)
return co*sqrt(d)
return sqrt(d)
def _simplify(expr):
if dom.is_Composite:
return factor(expr)
else:
from sympy.simplify.simplify import simplify
return simplify(expr)
if c is S.Zero:
r0, r1 = S.Zero, -b/a
if not dom.is_Numerical:
r1 = _simplify(r1)
elif r1.is_negative:
r0, r1 = r1, r0
elif b is S.Zero:
r = -c/a
if not dom.is_Numerical:
r = _simplify(r)
R = _sqrt(r)
r0 = -R
r1 = R
else:
d = b**2 - 4*a*c
A = 2*a
B = -b/A
if not dom.is_Numerical:
d = _simplify(d)
B = _simplify(B)
D = factor_terms(_sqrt(d)/A)
r0 = B - D
r1 = B + D
if a.is_negative:
r0, r1 = r1, r0
elif not dom.is_Numerical:
r0, r1 = [expand_2arg(i) for i in (r0, r1)]
return [r0, r1]
def roots_cubic(f, trig=False):
"""Returns a list of roots of a cubic polynomial.
References
==========
[1] https://en.wikipedia.org/wiki/Cubic_function, General formula for roots,
(accessed November 17, 2014).
"""
if trig:
a, b, c, d = f.all_coeffs()
p = (3*a*c - b**2)/(3*a**2)
q = (2*b**3 - 9*a*b*c + 27*a**2*d)/(27*a**3)
D = 18*a*b*c*d - 4*b**3*d + b**2*c**2 - 4*a*c**3 - 27*a**2*d**2
if (D > 0) == True:
rv = []
for k in range(3):
rv.append(2*sqrt(-p/3)*cos(acos(q/p*sqrt(-3/p)*Rational(3, 2))/3 - k*pi*Rational(2, 3)))
return [i - b/3/a for i in rv]
# a*x**3 + b*x**2 + c*x + d -> x**3 + a*x**2 + b*x + c
_, a, b, c = f.monic().all_coeffs()
if c is S.Zero:
x1, x2 = roots([1, a, b], multiple=True)
return [x1, S.Zero, x2]
# x**3 + a*x**2 + b*x + c -> u**3 + p*u + q
p = b - a**2/3
q = c - a*b/3 + 2*a**3/27
pon3 = p/3
aon3 = a/3
u1 = None
if p is S.Zero:
if q is S.Zero:
return [-aon3]*3
u1 = -root(q, 3) if q.is_positive else root(-q, 3)
elif q is S.Zero:
y1, y2 = roots([1, 0, p], multiple=True)
return [tmp - aon3 for tmp in [y1, S.Zero, y2]]
elif q.is_real and q.is_negative:
u1 = -root(-q/2 + sqrt(q**2/4 + pon3**3), 3)
coeff = I*sqrt(3)/2
if u1 is None:
u1 = S.One
u2 = Rational(-1, 2) + coeff
u3 = Rational(-1, 2) - coeff
b, c, d = a, b, c # a, b, c, d = S.One, a, b, c
D0 = b**2 - 3*c # b**2 - 3*a*c
D1 = 2*b**3 - 9*b*c + 27*d # 2*b**3 - 9*a*b*c + 27*a**2*d
C = root((D1 + sqrt(D1**2 - 4*D0**3))/2, 3)
return [-(b + uk*C + D0/C/uk)/3 for uk in [u1, u2, u3]] # -(b + uk*C + D0/C/uk)/3/a
u2 = u1*(Rational(-1, 2) + coeff)
u3 = u1*(Rational(-1, 2) - coeff)
if p is S.Zero:
return [u1 - aon3, u2 - aon3, u3 - aon3]
soln = [
-u1 + pon3/u1 - aon3,
-u2 + pon3/u2 - aon3,
-u3 + pon3/u3 - aon3
]
return soln
def _roots_quartic_euler(p, q, r, a):
"""
Descartes-Euler solution of the quartic equation
Parameters
==========
p, q, r: coefficients of ``x**4 + p*x**2 + q*x + r``
a: shift of the roots
Notes
=====
This is a helper function for ``roots_quartic``.
Look for solutions of the form ::
``x1 = sqrt(R) - sqrt(A + B*sqrt(R))``
``x2 = -sqrt(R) - sqrt(A - B*sqrt(R))``
``x3 = -sqrt(R) + sqrt(A - B*sqrt(R))``
``x4 = sqrt(R) + sqrt(A + B*sqrt(R))``
To satisfy the quartic equation one must have
``p = -2*(R + A); q = -4*B*R; r = (R - A)**2 - B**2*R``
so that ``R`` must satisfy the Descartes-Euler resolvent equation
``64*R**3 + 32*p*R**2 + (4*p**2 - 16*r)*R - q**2 = 0``
If the resolvent does not have a rational solution, return None;
in that case it is likely that the Ferrari method gives a simpler
solution.
Examples
========
>>> from sympy import S
>>> from sympy.polys.polyroots import _roots_quartic_euler
>>> p, q, r = -S(64)/5, -S(512)/125, -S(1024)/3125
>>> _roots_quartic_euler(p, q, r, S(0))[0]
-sqrt(32*sqrt(5)/125 + 16/5) + 4*sqrt(5)/5
"""
# solve the resolvent equation
x = Dummy('x')
eq = 64*x**3 + 32*p*x**2 + (4*p**2 - 16*r)*x - q**2
xsols = list(roots(Poly(eq, x), cubics=False).keys())
xsols = [sol for sol in xsols if sol.is_rational and sol.is_nonzero]
if not xsols:
return None
R = max(xsols)
c1 = sqrt(R)
B = -q*c1/(4*R)
A = -R - p/2
c2 = sqrt(A + B)
c3 = sqrt(A - B)
return [c1 - c2 - a, -c1 - c3 - a, -c1 + c3 - a, c1 + c2 - a]
def roots_quartic(f):
r"""
Returns a list of roots of a quartic polynomial.
There are many references for solving quartic expressions available [1-5].
This reviewer has found that many of them require one to select from among
2 or more possible sets of solutions and that some solutions work when one
is searching for real roots but do not work when searching for complex roots
(though this is not always stated clearly). The following routine has been
tested and found to be correct for 0, 2 or 4 complex roots.
The quasisymmetric case solution [6] looks for quartics that have the form
`x**4 + A*x**3 + B*x**2 + C*x + D = 0` where `(C/A)**2 = D`.
Although no general solution that is always applicable for all
coefficients is known to this reviewer, certain conditions are tested
to determine the simplest 4 expressions that can be returned:
1) `f = c + a*(a**2/8 - b/2) == 0`
2) `g = d - a*(a*(3*a**2/256 - b/16) + c/4) = 0`
3) if `f != 0` and `g != 0` and `p = -d + a*c/4 - b**2/12` then
a) `p == 0`
b) `p != 0`
Examples
========
>>> from sympy import Poly
>>> from sympy.polys.polyroots import roots_quartic
>>> r = roots_quartic(Poly('x**4-6*x**3+17*x**2-26*x+20'))
>>> # 4 complex roots: 1+-I*sqrt(3), 2+-I
>>> sorted(str(tmp.evalf(n=2)) for tmp in r)
['1.0 + 1.7*I', '1.0 - 1.7*I', '2.0 + 1.0*I', '2.0 - 1.0*I']
References
==========
1. http://mathforum.org/dr.math/faq/faq.cubic.equations.html
2. https://en.wikipedia.org/wiki/Quartic_function#Summary_of_Ferrari.27s_method
3. http://planetmath.org/encyclopedia/GaloisTheoreticDerivationOfTheQuarticFormula.html
4. http://staff.bath.ac.uk/masjhd/JHD-CA.pdf
5. http://www.albmath.org/files/Math_5713.pdf
6. http://www.statemaster.com/encyclopedia/Quartic-equation
7. eqworld.ipmnet.ru/en/solutions/ae/ae0108.pdf
"""
_, a, b, c, d = f.monic().all_coeffs()
if not d:
return [S.Zero] + roots([1, a, b, c], multiple=True)
elif (c/a)**2 == d:
x, m = f.gen, c/a
g = Poly(x**2 + a*x + b - 2*m, x)
z1, z2 = roots_quadratic(g)
h1 = Poly(x**2 - z1*x + m, x)
h2 = Poly(x**2 - z2*x + m, x)
r1 = roots_quadratic(h1)
r2 = roots_quadratic(h2)
return r1 + r2
else:
a2 = a**2
e = b - 3*a2/8
f = _mexpand(c + a*(a2/8 - b/2))
aon4 = a/4
g = _mexpand(d - aon4*(a*(3*a2/64 - b/4) + c))
if f.is_zero:
y1, y2 = [sqrt(tmp) for tmp in
roots([1, e, g], multiple=True)]
return [tmp - aon4 for tmp in [-y1, -y2, y1, y2]]
if g.is_zero:
y = [S.Zero] + roots([1, 0, e, f], multiple=True)
return [tmp - aon4 for tmp in y]
else:
# Descartes-Euler method, see [7]
sols = _roots_quartic_euler(e, f, g, aon4)
if sols:
return sols
# Ferrari method, see [1, 2]
p = -e**2/12 - g
q = -e**3/108 + e*g/3 - f**2/8
TH = Rational(1, 3)
def _ans(y):
w = sqrt(e + 2*y)
arg1 = 3*e + 2*y
arg2 = 2*f/w
ans = []
for s in [-1, 1]:
root = sqrt(-(arg1 + s*arg2))
for t in [-1, 1]:
ans.append((s*w - t*root)/2 - aon4)
return ans
# whether a Piecewise is returned or not
# depends on knowing p, so try to put
# in a simple form
p = _mexpand(p)
# p == 0 case
y1 = e*Rational(-5, 6) - q**TH
if p.is_zero:
return _ans(y1)
# if p != 0 then u below is not 0
root = sqrt(q**2/4 + p**3/27)
r = -q/2 + root # or -q/2 - root
u = r**TH # primary root of solve(x**3 - r, x)
y2 = e*Rational(-5, 6) + u - p/u/3
if fuzzy_not(p.is_zero):
return _ans(y2)
# sort it out once they know the values of the coefficients
return [Piecewise((a1, Eq(p, 0)), (a2, True))
for a1, a2 in zip(_ans(y1), _ans(y2))]
def roots_binomial(f):
"""Returns a list of roots of a binomial polynomial. If the domain is ZZ
then the roots will be sorted with negatives coming before positives.
The ordering will be the same for any numerical coefficients as long as
the assumptions tested are correct, otherwise the ordering will not be
sorted (but will be canonical).
"""
n = f.degree()
a, b = f.nth(n), f.nth(0)
base = -cancel(b/a)
alpha = root(base, n)
if alpha.is_number:
alpha = alpha.expand(complex=True)
# define some parameters that will allow us to order the roots.
# If the domain is ZZ this is guaranteed to return roots sorted
# with reals before non-real roots and non-real sorted according
# to real part and imaginary part, e.g. -1, 1, -1 + I, 2 - I
neg = base.is_negative
even = n % 2 == 0
if neg:
if even == True and (base + 1).is_positive:
big = True
else:
big = False
# get the indices in the right order so the computed
# roots will be sorted when the domain is ZZ
ks = []
imax = n//2
if even:
ks.append(imax)
imax -= 1
if not neg:
ks.append(0)
for i in range(imax, 0, -1):
if neg:
ks.extend([i, -i])
else:
ks.extend([-i, i])
if neg:
ks.append(0)
if big:
for i in range(0, len(ks), 2):
pair = ks[i: i + 2]
pair = list(reversed(pair))
# compute the roots
roots, d = [], 2*I*pi/n
for k in ks:
zeta = exp(k*d).expand(complex=True)
roots.append((alpha*zeta).expand(power_base=False))
return roots
def _inv_totient_estimate(m):
"""
Find ``(L, U)`` such that ``L <= phi^-1(m) <= U``.
Examples
========
>>> from sympy.polys.polyroots import _inv_totient_estimate
>>> _inv_totient_estimate(192)
(192, 840)
>>> _inv_totient_estimate(400)
(400, 1750)
"""
primes = [ d + 1 for d in divisors(m) if isprime(d + 1) ]
a, b = 1, 1
for p in primes:
a *= p
b *= p - 1
L = m
U = int(math.ceil(m*(float(a)/b)))
P = p = 2
primes = []
while P <= U:
p = nextprime(p)
primes.append(p)
P *= p
P //= p
b = 1
for p in primes[:-1]:
b *= p - 1
U = int(math.ceil(m*(float(P)/b)))
return L, U
def roots_cyclotomic(f, factor=False):
"""Compute roots of cyclotomic polynomials. """
L, U = _inv_totient_estimate(f.degree())
for n in range(L, U + 1):
g = cyclotomic_poly(n, f.gen, polys=True)
if f.expr == g.expr:
break
else: # pragma: no cover
raise RuntimeError("failed to find index of a cyclotomic polynomial")
roots = []
if not factor:
# get the indices in the right order so the computed
# roots will be sorted
h = n//2
ks = [i for i in range(1, n + 1) if igcd(i, n) == 1]
ks.sort(key=lambda x: (x, -1) if x <= h else (abs(x - n), 1))
d = 2*I*pi/n
for k in reversed(ks):
roots.append(exp(k*d).expand(complex=True))
else:
g = Poly(f, extension=root(-1, n))
for h, _ in ordered(g.factor_list()[1]):
roots.append(-h.TC())
return roots
def roots_quintic(f):
"""
Calculate exact roots of a solvable irreducible quintic with rational coefficients.
Return an empty list if the quintic is reducible or not solvable.
"""
result = []
coeff_5, coeff_4, p_, q_, r_, s_ = f.all_coeffs()
if not all(coeff.is_Rational for coeff in (coeff_5, coeff_4, p_, q_, r_, s_)):
return result
if coeff_5 != 1:
f = Poly(f / coeff_5)
_, coeff_4, p_, q_, r_, s_ = f.all_coeffs()
# Cancel coeff_4 to form x^5 + px^3 + qx^2 + rx + s
if coeff_4:
p = p_ - 2*coeff_4*coeff_4/5
q = q_ - 3*coeff_4*p_/5 + 4*coeff_4**3/25
r = r_ - 2*coeff_4*q_/5 + 3*coeff_4**2*p_/25 - 3*coeff_4**4/125
s = s_ - coeff_4*r_/5 + coeff_4**2*q_/25 - coeff_4**3*p_/125 + 4*coeff_4**5/3125
x = f.gen
f = Poly(x**5 + p*x**3 + q*x**2 + r*x + s)
else:
p, q, r, s = p_, q_, r_, s_
quintic = PolyQuintic(f)
# Eqn standardized. Algo for solving starts here
if not f.is_irreducible:
return result
f20 = quintic.f20
# Check if f20 has linear factors over domain Z
if f20.is_irreducible:
return result
# Now, we know that f is solvable
for _factor in f20.factor_list()[1]:
if _factor[0].is_linear:
theta = _factor[0].root(0)
break
d = discriminant(f)
delta = sqrt(d)
# zeta = a fifth root of unity
zeta1, zeta2, zeta3, zeta4 = quintic.zeta
T = quintic.T(theta, d)
tol = S(1e-10)
alpha = T[1] + T[2]*delta
alpha_bar = T[1] - T[2]*delta
beta = T[3] + T[4]*delta
beta_bar = T[3] - T[4]*delta
disc = alpha**2 - 4*beta
disc_bar = alpha_bar**2 - 4*beta_bar
l0 = quintic.l0(theta)
Stwo = S(2)
l1 = _quintic_simplify((-alpha + sqrt(disc)) / Stwo)
l4 = _quintic_simplify((-alpha - sqrt(disc)) / Stwo)
l2 = _quintic_simplify((-alpha_bar + sqrt(disc_bar)) / Stwo)
l3 = _quintic_simplify((-alpha_bar - sqrt(disc_bar)) / Stwo)
order = quintic.order(theta, d)
test = (order*delta.n()) - ( (l1.n() - l4.n())*(l2.n() - l3.n()) )
# Comparing floats
if not comp(test, 0, tol):
l2, l3 = l3, l2
# Now we have correct order of l's
R1 = l0 + l1*zeta1 + l2*zeta2 + l3*zeta3 + l4*zeta4
R2 = l0 + l3*zeta1 + l1*zeta2 + l4*zeta3 + l2*zeta4
R3 = l0 + l2*zeta1 + l4*zeta2 + l1*zeta3 + l3*zeta4
R4 = l0 + l4*zeta1 + l3*zeta2 + l2*zeta3 + l1*zeta4
Res = [None, [None]*5, [None]*5, [None]*5, [None]*5]
Res_n = [None, [None]*5, [None]*5, [None]*5, [None]*5]
# Simplifying improves performance a lot for exact expressions
R1 = _quintic_simplify(R1)
R2 = _quintic_simplify(R2)
R3 = _quintic_simplify(R3)
R4 = _quintic_simplify(R4)
# hard-coded results for [factor(i) for i in _vsolve(x**5 - a - I*b, x)]
x0 = z**(S(1)/5)
x1 = sqrt(2)
x2 = sqrt(5)
x3 = sqrt(5 - x2)
x4 = I*x2
x5 = x4 + I
x6 = I*x0/4
x7 = x1*sqrt(x2 + 5)
sol = [x0, -x6*(x1*x3 - x5), x6*(x1*x3 + x5), -x6*(x4 + x7 - I), x6*(-x4 + x7 + I)]
R1 = R1.as_real_imag()
R2 = R2.as_real_imag()
R3 = R3.as_real_imag()
R4 = R4.as_real_imag()
for i, s in enumerate(sol):
Res[1][i] = _quintic_simplify(s.xreplace({z: R1[0] + I*R1[1]}))
Res[2][i] = _quintic_simplify(s.xreplace({z: R2[0] + I*R2[1]}))
Res[3][i] = _quintic_simplify(s.xreplace({z: R3[0] + I*R3[1]}))
Res[4][i] = _quintic_simplify(s.xreplace({z: R4[0] + I*R4[1]}))
for i in range(1, 5):
for j in range(5):
Res_n[i][j] = Res[i][j].n()
Res[i][j] = _quintic_simplify(Res[i][j])
r1 = Res[1][0]
r1_n = Res_n[1][0]
for i in range(5):
if comp(im(r1_n*Res_n[4][i]), 0, tol):
r4 = Res[4][i]
break
# Now we have various Res values. Each will be a list of five
# values. We have to pick one r value from those five for each Res
u, v = quintic.uv(theta, d)
testplus = (u + v*delta*sqrt(5)).n()
testminus = (u - v*delta*sqrt(5)).n()
# Evaluated numbers suffixed with _n
# We will use evaluated numbers for calculation. Much faster.
r4_n = r4.n()
r2 = r3 = None
for i in range(5):
r2temp_n = Res_n[2][i]
for j in range(5):
# Again storing away the exact number and using
# evaluated numbers in computations
r3temp_n = Res_n[3][j]
if (comp((r1_n*r2temp_n**2 + r4_n*r3temp_n**2 - testplus).n(), 0, tol) and
comp((r3temp_n*r1_n**2 + r2temp_n*r4_n**2 - testminus).n(), 0, tol)):
r2 = Res[2][i]
r3 = Res[3][j]
break
if r2 is not None:
break
else:
return [] # fall back to normal solve
# Now, we have r's so we can get roots
x1 = (r1 + r2 + r3 + r4)/5
x2 = (r1*zeta4 + r2*zeta3 + r3*zeta2 + r4*zeta1)/5
x3 = (r1*zeta3 + r2*zeta1 + r3*zeta4 + r4*zeta2)/5
x4 = (r1*zeta2 + r2*zeta4 + r3*zeta1 + r4*zeta3)/5
x5 = (r1*zeta1 + r2*zeta2 + r3*zeta3 + r4*zeta4)/5
result = [x1, x2, x3, x4, x5]
# Now check if solutions are distinct
saw = set()
for r in result:
r = r.n(2)
if r in saw:
# Roots were identical. Abort, return []
# and fall back to usual solve
return []
saw.add(r)
# Restore to original equation where coeff_4 is nonzero
if coeff_4:
result = [x - coeff_4 / 5 for x in result]
return result
def _quintic_simplify(expr):
from sympy.simplify.simplify import powsimp
expr = powsimp(expr)
expr = cancel(expr)
return together(expr)
def _integer_basis(poly):
"""Compute coefficient basis for a polynomial over integers.
Returns the integer ``div`` such that substituting ``x = div*y``
``p(x) = m*q(y)`` where the coefficients of ``q`` are smaller
than those of ``p``.
For example ``x**5 + 512*x + 1024 = 0``
with ``div = 4`` becomes ``y**5 + 2*y + 1 = 0``
Returns the integer ``div`` or ``None`` if there is no possible scaling.
Examples
========
>>> from sympy.polys import Poly
>>> from sympy.abc import x
>>> from sympy.polys.polyroots import _integer_basis
>>> p = Poly(x**5 + 512*x + 1024, x, domain='ZZ')
>>> _integer_basis(p)
4
"""
monoms, coeffs = list(zip(*poly.terms()))
monoms, = list(zip(*monoms))
coeffs = list(map(abs, coeffs))
if coeffs[0] < coeffs[-1]:
coeffs = list(reversed(coeffs))
n = monoms[0]
monoms = [n - i for i in reversed(monoms)]
else:
return None
monoms = monoms[:-1]
coeffs = coeffs[:-1]
# Special case for two-term polynominals
if len(monoms) == 1:
r = Pow(coeffs[0], S.One/monoms[0])
if r.is_Integer:
return int(r)
else:
return None
divs = reversed(divisors(gcd_list(coeffs))[1:])
try:
div = next(divs)
except StopIteration:
return None
while True:
for monom, coeff in zip(monoms, coeffs):
if coeff % div**monom != 0:
try:
div = next(divs)
except StopIteration:
return None
else:
break
else:
return div
def preprocess_roots(poly):
"""Try to get rid of symbolic coefficients from ``poly``. """
coeff = S.One
poly_func = poly.func
try:
_, poly = poly.clear_denoms(convert=True)
except DomainError:
return coeff, poly
poly = poly.primitive()[1]
poly = poly.retract()
# TODO: This is fragile. Figure out how to make this independent of construct_domain().
if poly.get_domain().is_Poly and all(c.is_term for c in poly.rep.coeffs()):
poly = poly.inject()
strips = list(zip(*poly.monoms()))
gens = list(poly.gens[1:])
base, strips = strips[0], strips[1:]
for gen, strip in zip(list(gens), strips):
reverse = False
if strip[0] < strip[-1]:
strip = reversed(strip)
reverse = True
ratio = None
for a, b in zip(base, strip):
if not a and not b:
continue
elif not a or not b:
break
elif b % a != 0:
break
else:
_ratio = b // a
if ratio is None:
ratio = _ratio
elif ratio != _ratio:
break
else:
if reverse:
ratio = -ratio
poly = poly.eval(gen, 1)
coeff *= gen**(-ratio)
gens.remove(gen)
if gens:
poly = poly.eject(*gens)
if poly.is_univariate and poly.get_domain().is_ZZ:
basis = _integer_basis(poly)
if basis is not None:
n = poly.degree()
def func(k, coeff):
return coeff//basis**(n - k[0])
poly = poly.termwise(func)
coeff *= basis
if not isinstance(poly, poly_func):
poly = poly_func(poly)
return coeff, poly
@public
def roots(f, *gens,
auto=True,
cubics=True,
trig=False,
quartics=True,
quintics=False,
multiple=False,
filter=None,
predicate=None,
strict=False,
**flags):
"""
Computes symbolic roots of a univariate polynomial.
Given a univariate polynomial f with symbolic coefficients (or
a list of the polynomial's coefficients), returns a dictionary
with its roots and their multiplicities.
Only roots expressible via radicals will be returned. To get
a complete set of roots use RootOf class or numerical methods
instead. By default cubic and quartic formulas are used in
the algorithm. To disable them because of unreadable output
set ``cubics=False`` or ``quartics=False`` respectively. If cubic
roots are real but are expressed in terms of complex numbers
(casus irreducibilis [1]) the ``trig`` flag can be set to True to
have the solutions returned in terms of cosine and inverse cosine
functions.
To get roots from a specific domain set the ``filter`` flag with
one of the following specifiers: Z, Q, R, I, C. By default all
roots are returned (this is equivalent to setting ``filter='C'``).
By default a dictionary is returned giving a compact result in
case of multiple roots. However to get a list containing all
those roots set the ``multiple`` flag to True; the list will
have identical roots appearing next to each other in the result.
(For a given Poly, the all_roots method will give the roots in
sorted numerical order.)
If the ``strict`` flag is True, ``UnsolvableFactorError`` will be
raised if the roots found are known to be incomplete (because
some roots are not expressible in radicals).
Examples
========
>>> from sympy import Poly, roots, degree
>>> from sympy.abc import x, y
>>> roots(x**2 - 1, x)
{-1: 1, 1: 1}
>>> p = Poly(x**2-1, x)
>>> roots(p)
{-1: 1, 1: 1}
>>> p = Poly(x**2-y, x, y)
>>> roots(Poly(p, x))
{-sqrt(y): 1, sqrt(y): 1}
>>> roots(x**2 - y, x)
{-sqrt(y): 1, sqrt(y): 1}
>>> roots([1, 0, -1])
{-1: 1, 1: 1}
``roots`` will only return roots expressible in radicals. If
the given polynomial has some or all of its roots inexpressible in
radicals, the result of ``roots`` will be incomplete or empty
respectively.
Example where result is incomplete:
>>> roots((x-1)*(x**5-x+1), x)
{1: 1}
In this case, the polynomial has an unsolvable quintic factor
whose roots cannot be expressed by radicals. The polynomial has a
rational root (due to the factor `(x-1)`), which is returned since
``roots`` always finds all rational roots.
Example where result is empty:
>>> roots(x**7-3*x**2+1, x)
{}
Here, the polynomial has no roots expressible in radicals, so
``roots`` returns an empty dictionary.
The result produced by ``roots`` is complete if and only if the
sum of the multiplicity of each root is equal to the degree of
the polynomial. If strict=True, UnsolvableFactorError will be
raised if the result is incomplete.
The result can be be checked for completeness as follows:
>>> f = x**3-2*x**2+1
>>> sum(roots(f, x).values()) == degree(f, x)
True
>>> f = (x-1)*(x**5-x+1)
>>> sum(roots(f, x).values()) == degree(f, x)
False
References
==========
.. [1] https://en.wikipedia.org/wiki/Cubic_function#Trigonometric_.28and_hyperbolic.29_method
"""
from sympy.polys.polytools import to_rational_coeffs
flags = dict(flags)
if isinstance(f, list):
if gens:
raise ValueError('redundant generators given')
x = Dummy('x')
poly, i = {}, len(f) - 1
for coeff in f:
poly[i], i = sympify(coeff), i - 1
f = Poly(poly, x, field=True)
else:
try:
F = Poly(f, *gens, **flags)
if not isinstance(f, Poly) and not F.gen.is_Symbol:
raise PolynomialError("generator must be a Symbol")
f = F
except GeneratorsNeeded:
if multiple:
return []
else:
return {}
else:
n = f.degree()
if f.length() == 2 and n > 2:
# check for foo**n in constant if dep is c*gen**m
con, dep = f.as_expr().as_independent(*f.gens)
fcon = -(-con).factor()
if fcon != con:
con = fcon
bases = []
for i in Mul.make_args(con):
if i.is_Pow:
b, e = i.as_base_exp()
if e.is_Integer and b.is_Add:
bases.append((b, Dummy(positive=True)))
if bases:
rv = roots(Poly((dep + con).xreplace(dict(bases)),
*f.gens), *F.gens,
auto=auto,
cubics=cubics,
trig=trig,
quartics=quartics,
quintics=quintics,
multiple=multiple,
filter=filter,
predicate=predicate,
**flags)
return {factor_terms(k.xreplace(
{v: k for k, v in bases})
): v for k, v in rv.items()}
if f.is_multivariate:
raise PolynomialError('multivariate polynomials are not supported')
def _update_dict(result, zeros, currentroot, k):
if currentroot == S.Zero:
if S.Zero in zeros:
zeros[S.Zero] += k
else:
zeros[S.Zero] = k
if currentroot in result:
result[currentroot] += k
else:
result[currentroot] = k
def _try_decompose(f):
"""Find roots using functional decomposition. """
factors, roots = f.decompose(), []
for currentroot in _try_heuristics(factors[0]):
roots.append(currentroot)
for currentfactor in factors[1:]:
previous, roots = list(roots), []
for currentroot in previous:
g = currentfactor - Poly(currentroot, f.gen)
for currentroot in _try_heuristics(g):
roots.append(currentroot)
return roots
def _try_heuristics(f):
"""Find roots using formulas and some tricks. """
if f.is_ground:
return []
if f.is_monomial:
return [S.Zero]*f.degree()
if f.length() == 2:
if f.degree() == 1:
return list(map(cancel, roots_linear(f)))
else:
return roots_binomial(f)
result = []
for i in [-1, 1]:
if not f.eval(i):
f = f.quo(Poly(f.gen - i, f.gen))
result.append(i)
break
n = f.degree()
if n == 1:
result += list(map(cancel, roots_linear(f)))
elif n == 2:
result += list(map(cancel, roots_quadratic(f)))
elif f.is_cyclotomic:
result += roots_cyclotomic(f)
elif n == 3 and cubics:
result += roots_cubic(f, trig=trig)
elif n == 4 and quartics:
result += roots_quartic(f)
elif n == 5 and quintics:
result += roots_quintic(f)
return result
# Convert the generators to symbols
dumgens = symbols('x:%d' % len(f.gens), cls=Dummy)
f = f.per(f.rep, dumgens)
(k,), f = f.terms_gcd()
if not k:
zeros = {}
else:
zeros = {S.Zero: k}
coeff, f = preprocess_roots(f)
if auto and f.get_domain().is_Ring:
f = f.to_field()
# Use EX instead of ZZ_I or QQ_I
if f.get_domain().is_QQ_I:
f = f.per(f.rep.convert(EX))
rescale_x = None
translate_x = None
result = {}
if not f.is_ground:
dom = f.get_domain()
if not dom.is_Exact and dom.is_Numerical:
for r in f.nroots():
_update_dict(result, zeros, r, 1)
elif f.degree() == 1:
_update_dict(result, zeros, roots_linear(f)[0], 1)
elif f.length() == 2:
roots_fun = roots_quadratic if f.degree() == 2 else roots_binomial
for r in roots_fun(f):
_update_dict(result, zeros, r, 1)
else:
_, factors = Poly(f.as_expr()).factor_list()
if len(factors) == 1 and f.degree() == 2:
for r in roots_quadratic(f):
_update_dict(result, zeros, r, 1)
else:
if len(factors) == 1 and factors[0][1] == 1:
if f.get_domain().is_EX:
res = to_rational_coeffs(f)
if res:
if res[0] is None:
translate_x, f = res[2:]
else:
rescale_x, f = res[1], res[-1]
result = roots(f)
if not result:
for currentroot in _try_decompose(f):
_update_dict(result, zeros, currentroot, 1)
else:
for r in _try_heuristics(f):
_update_dict(result, zeros, r, 1)
else:
for currentroot in _try_decompose(f):
_update_dict(result, zeros, currentroot, 1)
else:
for currentfactor, k in factors:
for r in _try_heuristics(Poly(currentfactor, f.gen, field=True)):
_update_dict(result, zeros, r, k)
if coeff is not S.One:
_result, result, = result, {}
for currentroot, k in _result.items():
result[coeff*currentroot] = k
if filter not in [None, 'C']:
handlers = {
'Z': lambda r: r.is_Integer,
'Q': lambda r: r.is_Rational,
'R': lambda r: all(a.is_real for a in r.as_numer_denom()),
'I': lambda r: r.is_imaginary,
}
try:
query = handlers[filter]
except KeyError:
raise ValueError("Invalid filter: %s" % filter)
for zero in dict(result).keys():
if not query(zero):
del result[zero]
if predicate is not None:
for zero in dict(result).keys():
if not predicate(zero):
del result[zero]
if rescale_x:
result1 = {}
for k, v in result.items():
result1[k*rescale_x] = v
result = result1
if translate_x:
result1 = {}
for k, v in result.items():
result1[k + translate_x] = v
result = result1
# adding zero roots after non-trivial roots have been translated
result.update(zeros)
if strict and sum(result.values()) < f.degree():
raise UnsolvableFactorError(filldedent('''
Strict mode: some factors cannot be solved in radicals, so
a complete list of solutions cannot be returned. Call
roots with strict=False to get solutions expressible in
radicals (if there are any).
'''))
if not multiple:
return result
else:
zeros = []
for zero in ordered(result):
zeros.extend([zero]*result[zero])
return zeros
def root_factors(f, *gens, filter=None, **args):
"""
Returns all factors of a univariate polynomial.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.polys.polyroots import root_factors
>>> root_factors(x**2 - y, x)
[x - sqrt(y), x + sqrt(y)]
"""
args = dict(args)
F = Poly(f, *gens, **args)
if not F.is_Poly:
return [f]
if F.is_multivariate:
raise ValueError('multivariate polynomials are not supported')
x = F.gens[0]
zeros = roots(F, filter=filter)
if not zeros:
factors = [F]
else:
factors, N = [], 0
for r, n in ordered(zeros.items()):
factors, N = factors + [Poly(x - r, x)]*n, N + n
if N < F.degree():
G = reduce(lambda p, q: p*q, factors)
factors.append(F.quo(G))
if not isinstance(f, Poly):
factors = [ f.as_expr() for f in factors ]
return factors
|
f219e58233f55d8708c9b8276d9b5e25d6e9df48438187eb8574bb7107dffda7 | """Sparse polynomial rings. """
from typing import Any, Dict as tDict
from operator import add, mul, lt, le, gt, ge
from functools import reduce
from types import GeneratorType
from sympy.core.expr import Expr
from sympy.core.numbers import igcd, oo
from sympy.core.symbol import Symbol, symbols as _symbols
from sympy.core.sympify import CantSympify, sympify
from sympy.ntheory.multinomial import multinomial_coefficients
from sympy.polys.compatibility import IPolys
from sympy.polys.constructor import construct_domain
from sympy.polys.densebasic import dmp_to_dict, dmp_from_dict
from sympy.polys.domains.domainelement import DomainElement
from sympy.polys.domains.polynomialring import PolynomialRing
from sympy.polys.heuristicgcd import heugcd
from sympy.polys.monomials import MonomialOps
from sympy.polys.orderings import lex
from sympy.polys.polyerrors import (
CoercionFailed, GeneratorsError,
ExactQuotientFailed, MultivariatePolynomialError)
from sympy.polys.polyoptions import (Domain as DomainOpt,
Order as OrderOpt, build_options)
from sympy.polys.polyutils import (expr_from_dict, _dict_reorder,
_parallel_dict_from_expr)
from sympy.printing.defaults import DefaultPrinting
from sympy.utilities import public
from sympy.utilities.iterables import is_sequence
from sympy.utilities.magic import pollute
@public
def ring(symbols, domain, order=lex):
"""Construct a polynomial ring returning ``(ring, x_1, ..., x_n)``.
Parameters
==========
symbols : str
Symbol/Expr or sequence of str, Symbol/Expr (non-empty)
domain : :class:`~.Domain` or coercible
order : :class:`~.MonomialOrder` or coercible, optional, defaults to ``lex``
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.orderings import lex
>>> R, x, y, z = ring("x,y,z", ZZ, lex)
>>> R
Polynomial ring in x, y, z over ZZ with lex order
>>> x + y + z
x + y + z
>>> type(_)
<class 'sympy.polys.rings.PolyElement'>
"""
_ring = PolyRing(symbols, domain, order)
return (_ring,) + _ring.gens
@public
def xring(symbols, domain, order=lex):
"""Construct a polynomial ring returning ``(ring, (x_1, ..., x_n))``.
Parameters
==========
symbols : str
Symbol/Expr or sequence of str, Symbol/Expr (non-empty)
domain : :class:`~.Domain` or coercible
order : :class:`~.MonomialOrder` or coercible, optional, defaults to ``lex``
Examples
========
>>> from sympy.polys.rings import xring
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.orderings import lex
>>> R, (x, y, z) = xring("x,y,z", ZZ, lex)
>>> R
Polynomial ring in x, y, z over ZZ with lex order
>>> x + y + z
x + y + z
>>> type(_)
<class 'sympy.polys.rings.PolyElement'>
"""
_ring = PolyRing(symbols, domain, order)
return (_ring, _ring.gens)
@public
def vring(symbols, domain, order=lex):
"""Construct a polynomial ring and inject ``x_1, ..., x_n`` into the global namespace.
Parameters
==========
symbols : str
Symbol/Expr or sequence of str, Symbol/Expr (non-empty)
domain : :class:`~.Domain` or coercible
order : :class:`~.MonomialOrder` or coercible, optional, defaults to ``lex``
Examples
========
>>> from sympy.polys.rings import vring
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.orderings import lex
>>> vring("x,y,z", ZZ, lex)
Polynomial ring in x, y, z over ZZ with lex order
>>> x + y + z # noqa:
x + y + z
>>> type(_)
<class 'sympy.polys.rings.PolyElement'>
"""
_ring = PolyRing(symbols, domain, order)
pollute([ sym.name for sym in _ring.symbols ], _ring.gens)
return _ring
@public
def sring(exprs, *symbols, **options):
"""Construct a ring deriving generators and domain from options and input expressions.
Parameters
==========
exprs : :class:`~.Expr` or sequence of :class:`~.Expr` (sympifiable)
symbols : sequence of :class:`~.Symbol`/:class:`~.Expr`
options : keyword arguments understood by :class:`~.Options`
Examples
========
>>> from sympy import sring, symbols
>>> x, y, z = symbols("x,y,z")
>>> R, f = sring(x + 2*y + 3*z)
>>> R
Polynomial ring in x, y, z over ZZ with lex order
>>> f
x + 2*y + 3*z
>>> type(_)
<class 'sympy.polys.rings.PolyElement'>
"""
single = False
if not is_sequence(exprs):
exprs, single = [exprs], True
exprs = list(map(sympify, exprs))
opt = build_options(symbols, options)
# TODO: rewrite this so that it doesn't use expand() (see poly()).
reps, opt = _parallel_dict_from_expr(exprs, opt)
if opt.domain is None:
coeffs = sum([ list(rep.values()) for rep in reps ], [])
opt.domain, coeffs_dom = construct_domain(coeffs, opt=opt)
coeff_map = dict(zip(coeffs, coeffs_dom))
reps = [{m: coeff_map[c] for m, c in rep.items()} for rep in reps]
_ring = PolyRing(opt.gens, opt.domain, opt.order)
polys = list(map(_ring.from_dict, reps))
if single:
return (_ring, polys[0])
else:
return (_ring, polys)
def _parse_symbols(symbols):
if isinstance(symbols, str):
return _symbols(symbols, seq=True) if symbols else ()
elif isinstance(symbols, Expr):
return (symbols,)
elif is_sequence(symbols):
if all(isinstance(s, str) for s in symbols):
return _symbols(symbols)
elif all(isinstance(s, Expr) for s in symbols):
return symbols
raise GeneratorsError("expected a string, Symbol or expression or a non-empty sequence of strings, Symbols or expressions")
_ring_cache = {} # type: tDict[Any, Any]
class PolyRing(DefaultPrinting, IPolys):
"""Multivariate distributed polynomial ring. """
def __new__(cls, symbols, domain, order=lex):
symbols = tuple(_parse_symbols(symbols))
ngens = len(symbols)
domain = DomainOpt.preprocess(domain)
order = OrderOpt.preprocess(order)
_hash_tuple = (cls.__name__, symbols, ngens, domain, order)
obj = _ring_cache.get(_hash_tuple)
if obj is None:
if domain.is_Composite and set(symbols) & set(domain.symbols):
raise GeneratorsError("polynomial ring and it's ground domain share generators")
obj = object.__new__(cls)
obj._hash_tuple = _hash_tuple
obj._hash = hash(_hash_tuple)
obj.dtype = type("PolyElement", (PolyElement,), {"ring": obj})
obj.symbols = symbols
obj.ngens = ngens
obj.domain = domain
obj.order = order
obj.zero_monom = (0,)*ngens
obj.gens = obj._gens()
obj._gens_set = set(obj.gens)
obj._one = [(obj.zero_monom, domain.one)]
if ngens:
# These expect monomials in at least one variable
codegen = MonomialOps(ngens)
obj.monomial_mul = codegen.mul()
obj.monomial_pow = codegen.pow()
obj.monomial_mulpow = codegen.mulpow()
obj.monomial_ldiv = codegen.ldiv()
obj.monomial_div = codegen.div()
obj.monomial_lcm = codegen.lcm()
obj.monomial_gcd = codegen.gcd()
else:
monunit = lambda a, b: ()
obj.monomial_mul = monunit
obj.monomial_pow = monunit
obj.monomial_mulpow = lambda a, b, c: ()
obj.monomial_ldiv = monunit
obj.monomial_div = monunit
obj.monomial_lcm = monunit
obj.monomial_gcd = monunit
if order is lex:
obj.leading_expv = max
else:
obj.leading_expv = lambda f: max(f, key=order)
for symbol, generator in zip(obj.symbols, obj.gens):
if isinstance(symbol, Symbol):
name = symbol.name
if not hasattr(obj, name):
setattr(obj, name, generator)
_ring_cache[_hash_tuple] = obj
return obj
def _gens(self):
"""Return a list of polynomial generators. """
one = self.domain.one
_gens = []
for i in range(self.ngens):
expv = self.monomial_basis(i)
poly = self.zero
poly[expv] = one
_gens.append(poly)
return tuple(_gens)
def __getnewargs__(self):
return (self.symbols, self.domain, self.order)
def __getstate__(self):
state = self.__dict__.copy()
del state["leading_expv"]
for key, value in state.items():
if key.startswith("monomial_"):
del state[key]
return state
def __hash__(self):
return self._hash
def __eq__(self, other):
return isinstance(other, PolyRing) and \
(self.symbols, self.domain, self.ngens, self.order) == \
(other.symbols, other.domain, other.ngens, other.order)
def __ne__(self, other):
return not self == other
def clone(self, symbols=None, domain=None, order=None):
return self.__class__(symbols or self.symbols, domain or self.domain, order or self.order)
def monomial_basis(self, i):
"""Return the ith-basis element. """
basis = [0]*self.ngens
basis[i] = 1
return tuple(basis)
@property
def zero(self):
return self.dtype()
@property
def one(self):
return self.dtype(self._one)
def domain_new(self, element, orig_domain=None):
return self.domain.convert(element, orig_domain)
def ground_new(self, coeff):
return self.term_new(self.zero_monom, coeff)
def term_new(self, monom, coeff):
coeff = self.domain_new(coeff)
poly = self.zero
if coeff:
poly[monom] = coeff
return poly
def ring_new(self, element):
if isinstance(element, PolyElement):
if self == element.ring:
return element
elif isinstance(self.domain, PolynomialRing) and self.domain.ring == element.ring:
return self.ground_new(element)
else:
raise NotImplementedError("conversion")
elif isinstance(element, str):
raise NotImplementedError("parsing")
elif isinstance(element, dict):
return self.from_dict(element)
elif isinstance(element, list):
try:
return self.from_terms(element)
except ValueError:
return self.from_list(element)
elif isinstance(element, Expr):
return self.from_expr(element)
else:
return self.ground_new(element)
__call__ = ring_new
def from_dict(self, element, orig_domain=None):
domain_new = self.domain_new
poly = self.zero
for monom, coeff in element.items():
coeff = domain_new(coeff, orig_domain)
if coeff:
poly[monom] = coeff
return poly
def from_terms(self, element, orig_domain=None):
return self.from_dict(dict(element), orig_domain)
def from_list(self, element):
return self.from_dict(dmp_to_dict(element, self.ngens-1, self.domain))
def _rebuild_expr(self, expr, mapping):
domain = self.domain
def _rebuild(expr):
generator = mapping.get(expr)
if generator is not None:
return generator
elif expr.is_Add:
return reduce(add, list(map(_rebuild, expr.args)))
elif expr.is_Mul:
return reduce(mul, list(map(_rebuild, expr.args)))
else:
# XXX: Use as_base_exp() to handle Pow(x, n) and also exp(n)
# XXX: E can be a generator e.g. sring([exp(2)]) -> ZZ[E]
base, exp = expr.as_base_exp()
if exp.is_Integer and exp > 1:
return _rebuild(base)**int(exp)
else:
return self.ground_new(domain.convert(expr))
return _rebuild(sympify(expr))
def from_expr(self, expr):
mapping = dict(list(zip(self.symbols, self.gens)))
try:
poly = self._rebuild_expr(expr, mapping)
except CoercionFailed:
raise ValueError("expected an expression convertible to a polynomial in %s, got %s" % (self, expr))
else:
return self.ring_new(poly)
def index(self, gen):
"""Compute index of ``gen`` in ``self.gens``. """
if gen is None:
if self.ngens:
i = 0
else:
i = -1 # indicate impossible choice
elif isinstance(gen, int):
i = gen
if 0 <= i and i < self.ngens:
pass
elif -self.ngens <= i and i <= -1:
i = -i - 1
else:
raise ValueError("invalid generator index: %s" % gen)
elif isinstance(gen, self.dtype):
try:
i = self.gens.index(gen)
except ValueError:
raise ValueError("invalid generator: %s" % gen)
elif isinstance(gen, str):
try:
i = self.symbols.index(gen)
except ValueError:
raise ValueError("invalid generator: %s" % gen)
else:
raise ValueError("expected a polynomial generator, an integer, a string or None, got %s" % gen)
return i
def drop(self, *gens):
"""Remove specified generators from this ring. """
indices = set(map(self.index, gens))
symbols = [ s for i, s in enumerate(self.symbols) if i not in indices ]
if not symbols:
return self.domain
else:
return self.clone(symbols=symbols)
def __getitem__(self, key):
symbols = self.symbols[key]
if not symbols:
return self.domain
else:
return self.clone(symbols=symbols)
def to_ground(self):
# TODO: should AlgebraicField be a Composite domain?
if self.domain.is_Composite or hasattr(self.domain, 'domain'):
return self.clone(domain=self.domain.domain)
else:
raise ValueError("%s is not a composite domain" % self.domain)
def to_domain(self):
return PolynomialRing(self)
def to_field(self):
from sympy.polys.fields import FracField
return FracField(self.symbols, self.domain, self.order)
@property
def is_univariate(self):
return len(self.gens) == 1
@property
def is_multivariate(self):
return len(self.gens) > 1
def add(self, *objs):
"""
Add a sequence of polynomials or containers of polynomials.
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> R, x = ring("x", ZZ)
>>> R.add([ x**2 + 2*i + 3 for i in range(4) ])
4*x**2 + 24
>>> _.factor_list()
(4, [(x**2 + 6, 1)])
"""
p = self.zero
for obj in objs:
if is_sequence(obj, include=GeneratorType):
p += self.add(*obj)
else:
p += obj
return p
def mul(self, *objs):
"""
Multiply a sequence of polynomials or containers of polynomials.
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> R, x = ring("x", ZZ)
>>> R.mul([ x**2 + 2*i + 3 for i in range(4) ])
x**8 + 24*x**6 + 206*x**4 + 744*x**2 + 945
>>> _.factor_list()
(1, [(x**2 + 3, 1), (x**2 + 5, 1), (x**2 + 7, 1), (x**2 + 9, 1)])
"""
p = self.one
for obj in objs:
if is_sequence(obj, include=GeneratorType):
p *= self.mul(*obj)
else:
p *= obj
return p
def drop_to_ground(self, *gens):
r"""
Remove specified generators from the ring and inject them into
its domain.
"""
indices = set(map(self.index, gens))
symbols = [s for i, s in enumerate(self.symbols) if i not in indices]
gens = [gen for i, gen in enumerate(self.gens) if i not in indices]
if not symbols:
return self
else:
return self.clone(symbols=symbols, domain=self.drop(*gens))
def compose(self, other):
"""Add the generators of ``other`` to ``self``"""
if self != other:
syms = set(self.symbols).union(set(other.symbols))
return self.clone(symbols=list(syms))
else:
return self
def add_gens(self, symbols):
"""Add the elements of ``symbols`` as generators to ``self``"""
syms = set(self.symbols).union(set(symbols))
return self.clone(symbols=list(syms))
class PolyElement(DomainElement, DefaultPrinting, CantSympify, dict):
"""Element of multivariate distributed polynomial ring. """
def new(self, init):
return self.__class__(init)
def parent(self):
return self.ring.to_domain()
def __getnewargs__(self):
return (self.ring, list(self.iterterms()))
_hash = None
def __hash__(self):
# XXX: This computes a hash of a dictionary, but currently we don't
# protect dictionary from being changed so any use site modifications
# will make hashing go wrong. Use this feature with caution until we
# figure out how to make a safe API without compromising speed of this
# low-level class.
_hash = self._hash
if _hash is None:
self._hash = _hash = hash((self.ring, frozenset(self.items())))
return _hash
def copy(self):
"""Return a copy of polynomial self.
Polynomials are mutable; if one is interested in preserving
a polynomial, and one plans to use inplace operations, one
can copy the polynomial. This method makes a shallow copy.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.rings import ring
>>> R, x, y = ring('x, y', ZZ)
>>> p = (x + y)**2
>>> p1 = p.copy()
>>> p2 = p
>>> p[R.zero_monom] = 3
>>> p
x**2 + 2*x*y + y**2 + 3
>>> p1
x**2 + 2*x*y + y**2
>>> p2
x**2 + 2*x*y + y**2 + 3
"""
return self.new(self)
def set_ring(self, new_ring):
if self.ring == new_ring:
return self
elif self.ring.symbols != new_ring.symbols:
terms = list(zip(*_dict_reorder(self, self.ring.symbols, new_ring.symbols)))
return new_ring.from_terms(terms, self.ring.domain)
else:
return new_ring.from_dict(self, self.ring.domain)
def as_expr(self, *symbols):
if symbols and len(symbols) != self.ring.ngens:
raise ValueError("not enough symbols, expected %s got %s" % (self.ring.ngens, len(symbols)))
else:
symbols = self.ring.symbols
return expr_from_dict(self.as_expr_dict(), *symbols)
def as_expr_dict(self):
to_sympy = self.ring.domain.to_sympy
return {monom: to_sympy(coeff) for monom, coeff in self.iterterms()}
def clear_denoms(self):
domain = self.ring.domain
if not domain.is_Field or not domain.has_assoc_Ring:
return domain.one, self
ground_ring = domain.get_ring()
common = ground_ring.one
lcm = ground_ring.lcm
denom = domain.denom
for coeff in self.values():
common = lcm(common, denom(coeff))
poly = self.new([ (k, v*common) for k, v in self.items() ])
return common, poly
def strip_zero(self):
"""Eliminate monomials with zero coefficient. """
for k, v in list(self.items()):
if not v:
del self[k]
def __eq__(p1, p2):
"""Equality test for polynomials.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.rings import ring
>>> _, x, y = ring('x, y', ZZ)
>>> p1 = (x + y)**2 + (x - y)**2
>>> p1 == 4*x*y
False
>>> p1 == 2*(x**2 + y**2)
True
"""
if not p2:
return not p1
elif isinstance(p2, PolyElement) and p2.ring == p1.ring:
return dict.__eq__(p1, p2)
elif len(p1) > 1:
return False
else:
return p1.get(p1.ring.zero_monom) == p2
def __ne__(p1, p2):
return not p1 == p2
def almosteq(p1, p2, tolerance=None):
"""Approximate equality test for polynomials. """
ring = p1.ring
if isinstance(p2, ring.dtype):
if set(p1.keys()) != set(p2.keys()):
return False
almosteq = ring.domain.almosteq
for k in p1.keys():
if not almosteq(p1[k], p2[k], tolerance):
return False
return True
elif len(p1) > 1:
return False
else:
try:
p2 = ring.domain.convert(p2)
except CoercionFailed:
return False
else:
return ring.domain.almosteq(p1.const(), p2, tolerance)
def sort_key(self):
return (len(self), self.terms())
def _cmp(p1, p2, op):
if isinstance(p2, p1.ring.dtype):
return op(p1.sort_key(), p2.sort_key())
else:
return NotImplemented
def __lt__(p1, p2):
return p1._cmp(p2, lt)
def __le__(p1, p2):
return p1._cmp(p2, le)
def __gt__(p1, p2):
return p1._cmp(p2, gt)
def __ge__(p1, p2):
return p1._cmp(p2, ge)
def _drop(self, gen):
ring = self.ring
i = ring.index(gen)
if ring.ngens == 1:
return i, ring.domain
else:
symbols = list(ring.symbols)
del symbols[i]
return i, ring.clone(symbols=symbols)
def drop(self, gen):
i, ring = self._drop(gen)
if self.ring.ngens == 1:
if self.is_ground:
return self.coeff(1)
else:
raise ValueError("Cannot drop %s" % gen)
else:
poly = ring.zero
for k, v in self.items():
if k[i] == 0:
K = list(k)
del K[i]
poly[tuple(K)] = v
else:
raise ValueError("Cannot drop %s" % gen)
return poly
def _drop_to_ground(self, gen):
ring = self.ring
i = ring.index(gen)
symbols = list(ring.symbols)
del symbols[i]
return i, ring.clone(symbols=symbols, domain=ring[i])
def drop_to_ground(self, gen):
if self.ring.ngens == 1:
raise ValueError("Cannot drop only generator to ground")
i, ring = self._drop_to_ground(gen)
poly = ring.zero
gen = ring.domain.gens[0]
for monom, coeff in self.iterterms():
mon = monom[:i] + monom[i+1:]
if mon not in poly:
poly[mon] = (gen**monom[i]).mul_ground(coeff)
else:
poly[mon] += (gen**monom[i]).mul_ground(coeff)
return poly
def to_dense(self):
return dmp_from_dict(self, self.ring.ngens-1, self.ring.domain)
def to_dict(self):
return dict(self)
def str(self, printer, precedence, exp_pattern, mul_symbol):
if not self:
return printer._print(self.ring.domain.zero)
prec_mul = precedence["Mul"]
prec_atom = precedence["Atom"]
ring = self.ring
symbols = ring.symbols
ngens = ring.ngens
zm = ring.zero_monom
sexpvs = []
for expv, coeff in self.terms():
negative = ring.domain.is_negative(coeff)
sign = " - " if negative else " + "
sexpvs.append(sign)
if expv == zm:
scoeff = printer._print(coeff)
if negative and scoeff.startswith("-"):
scoeff = scoeff[1:]
else:
if negative:
coeff = -coeff
if coeff != self.ring.one:
scoeff = printer.parenthesize(coeff, prec_mul, strict=True)
else:
scoeff = ''
sexpv = []
for i in range(ngens):
exp = expv[i]
if not exp:
continue
symbol = printer.parenthesize(symbols[i], prec_atom, strict=True)
if exp != 1:
if exp != int(exp) or exp < 0:
sexp = printer.parenthesize(exp, prec_atom, strict=False)
else:
sexp = exp
sexpv.append(exp_pattern % (symbol, sexp))
else:
sexpv.append('%s' % symbol)
if scoeff:
sexpv = [scoeff] + sexpv
sexpvs.append(mul_symbol.join(sexpv))
if sexpvs[0] in [" + ", " - "]:
head = sexpvs.pop(0)
if head == " - ":
sexpvs.insert(0, "-")
return "".join(sexpvs)
@property
def is_generator(self):
return self in self.ring._gens_set
@property
def is_ground(self):
return not self or (len(self) == 1 and self.ring.zero_monom in self)
@property
def is_monomial(self):
return not self or (len(self) == 1 and self.LC == 1)
@property
def is_term(self):
return len(self) <= 1
@property
def is_negative(self):
return self.ring.domain.is_negative(self.LC)
@property
def is_positive(self):
return self.ring.domain.is_positive(self.LC)
@property
def is_nonnegative(self):
return self.ring.domain.is_nonnegative(self.LC)
@property
def is_nonpositive(self):
return self.ring.domain.is_nonpositive(self.LC)
@property
def is_zero(f):
return not f
@property
def is_one(f):
return f == f.ring.one
@property
def is_monic(f):
return f.ring.domain.is_one(f.LC)
@property
def is_primitive(f):
return f.ring.domain.is_one(f.content())
@property
def is_linear(f):
return all(sum(monom) <= 1 for monom in f.itermonoms())
@property
def is_quadratic(f):
return all(sum(monom) <= 2 for monom in f.itermonoms())
@property
def is_squarefree(f):
if not f.ring.ngens:
return True
return f.ring.dmp_sqf_p(f)
@property
def is_irreducible(f):
if not f.ring.ngens:
return True
return f.ring.dmp_irreducible_p(f)
@property
def is_cyclotomic(f):
if f.ring.is_univariate:
return f.ring.dup_cyclotomic_p(f)
else:
raise MultivariatePolynomialError("cyclotomic polynomial")
def __neg__(self):
return self.new([ (monom, -coeff) for monom, coeff in self.iterterms() ])
def __pos__(self):
return self
def __add__(p1, p2):
"""Add two polynomials.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.rings import ring
>>> _, x, y = ring('x, y', ZZ)
>>> (x + y)**2 + (x - y)**2
2*x**2 + 2*y**2
"""
if not p2:
return p1.copy()
ring = p1.ring
if isinstance(p2, ring.dtype):
p = p1.copy()
get = p.get
zero = ring.domain.zero
for k, v in p2.items():
v = get(k, zero) + v
if v:
p[k] = v
else:
del p[k]
return p
elif isinstance(p2, PolyElement):
if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
pass
elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
return p2.__radd__(p1)
else:
return NotImplemented
try:
cp2 = ring.domain_new(p2)
except CoercionFailed:
return NotImplemented
else:
p = p1.copy()
if not cp2:
return p
zm = ring.zero_monom
if zm not in p1.keys():
p[zm] = cp2
else:
if p2 == -p[zm]:
del p[zm]
else:
p[zm] += cp2
return p
def __radd__(p1, n):
p = p1.copy()
if not n:
return p
ring = p1.ring
try:
n = ring.domain_new(n)
except CoercionFailed:
return NotImplemented
else:
zm = ring.zero_monom
if zm not in p1.keys():
p[zm] = n
else:
if n == -p[zm]:
del p[zm]
else:
p[zm] += n
return p
def __sub__(p1, p2):
"""Subtract polynomial p2 from p1.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.rings import ring
>>> _, x, y = ring('x, y', ZZ)
>>> p1 = x + y**2
>>> p2 = x*y + y**2
>>> p1 - p2
-x*y + x
"""
if not p2:
return p1.copy()
ring = p1.ring
if isinstance(p2, ring.dtype):
p = p1.copy()
get = p.get
zero = ring.domain.zero
for k, v in p2.items():
v = get(k, zero) - v
if v:
p[k] = v
else:
del p[k]
return p
elif isinstance(p2, PolyElement):
if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
pass
elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
return p2.__rsub__(p1)
else:
return NotImplemented
try:
p2 = ring.domain_new(p2)
except CoercionFailed:
return NotImplemented
else:
p = p1.copy()
zm = ring.zero_monom
if zm not in p1.keys():
p[zm] = -p2
else:
if p2 == p[zm]:
del p[zm]
else:
p[zm] -= p2
return p
def __rsub__(p1, n):
"""n - p1 with n convertible to the coefficient domain.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.rings import ring
>>> _, x, y = ring('x, y', ZZ)
>>> p = x + y
>>> 4 - p
-x - y + 4
"""
ring = p1.ring
try:
n = ring.domain_new(n)
except CoercionFailed:
return NotImplemented
else:
p = ring.zero
for expv in p1:
p[expv] = -p1[expv]
p += n
return p
def __mul__(p1, p2):
"""Multiply two polynomials.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> _, x, y = ring('x, y', QQ)
>>> p1 = x + y
>>> p2 = x - y
>>> p1*p2
x**2 - y**2
"""
ring = p1.ring
p = ring.zero
if not p1 or not p2:
return p
elif isinstance(p2, ring.dtype):
get = p.get
zero = ring.domain.zero
monomial_mul = ring.monomial_mul
p2it = list(p2.items())
for exp1, v1 in p1.items():
for exp2, v2 in p2it:
exp = monomial_mul(exp1, exp2)
p[exp] = get(exp, zero) + v1*v2
p.strip_zero()
return p
elif isinstance(p2, PolyElement):
if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
pass
elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
return p2.__rmul__(p1)
else:
return NotImplemented
try:
p2 = ring.domain_new(p2)
except CoercionFailed:
return NotImplemented
else:
for exp1, v1 in p1.items():
v = v1*p2
if v:
p[exp1] = v
return p
def __rmul__(p1, p2):
"""p2 * p1 with p2 in the coefficient domain of p1.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.rings import ring
>>> _, x, y = ring('x, y', ZZ)
>>> p = x + y
>>> 4 * p
4*x + 4*y
"""
p = p1.ring.zero
if not p2:
return p
try:
p2 = p.ring.domain_new(p2)
except CoercionFailed:
return NotImplemented
else:
for exp1, v1 in p1.items():
v = p2*v1
if v:
p[exp1] = v
return p
def __pow__(self, n):
"""raise polynomial to power `n`
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.rings import ring
>>> _, x, y = ring('x, y', ZZ)
>>> p = x + y**2
>>> p**3
x**3 + 3*x**2*y**2 + 3*x*y**4 + y**6
"""
ring = self.ring
if not n:
if self:
return ring.one
else:
raise ValueError("0**0")
elif len(self) == 1:
monom, coeff = list(self.items())[0]
p = ring.zero
if coeff == 1:
p[ring.monomial_pow(monom, n)] = coeff
else:
p[ring.monomial_pow(monom, n)] = coeff**n
return p
# For ring series, we need negative and rational exponent support only
# with monomials.
n = int(n)
if n < 0:
raise ValueError("Negative exponent")
elif n == 1:
return self.copy()
elif n == 2:
return self.square()
elif n == 3:
return self*self.square()
elif len(self) <= 5: # TODO: use an actual density measure
return self._pow_multinomial(n)
else:
return self._pow_generic(n)
def _pow_generic(self, n):
p = self.ring.one
c = self
while True:
if n & 1:
p = p*c
n -= 1
if not n:
break
c = c.square()
n = n // 2
return p
def _pow_multinomial(self, n):
multinomials = multinomial_coefficients(len(self), n).items()
monomial_mulpow = self.ring.monomial_mulpow
zero_monom = self.ring.zero_monom
terms = self.items()
zero = self.ring.domain.zero
poly = self.ring.zero
for multinomial, multinomial_coeff in multinomials:
product_monom = zero_monom
product_coeff = multinomial_coeff
for exp, (monom, coeff) in zip(multinomial, terms):
if exp:
product_monom = monomial_mulpow(product_monom, monom, exp)
product_coeff *= coeff**exp
monom = tuple(product_monom)
coeff = product_coeff
coeff = poly.get(monom, zero) + coeff
if coeff:
poly[monom] = coeff
elif monom in poly:
del poly[monom]
return poly
def square(self):
"""square of a polynomial
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y = ring('x, y', ZZ)
>>> p = x + y**2
>>> p.square()
x**2 + 2*x*y**2 + y**4
"""
ring = self.ring
p = ring.zero
get = p.get
keys = list(self.keys())
zero = ring.domain.zero
monomial_mul = ring.monomial_mul
for i in range(len(keys)):
k1 = keys[i]
pk = self[k1]
for j in range(i):
k2 = keys[j]
exp = monomial_mul(k1, k2)
p[exp] = get(exp, zero) + pk*self[k2]
p = p.imul_num(2)
get = p.get
for k, v in self.items():
k2 = monomial_mul(k, k)
p[k2] = get(k2, zero) + v**2
p.strip_zero()
return p
def __divmod__(p1, p2):
ring = p1.ring
if not p2:
raise ZeroDivisionError("polynomial division")
elif isinstance(p2, ring.dtype):
return p1.div(p2)
elif isinstance(p2, PolyElement):
if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
pass
elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
return p2.__rdivmod__(p1)
else:
return NotImplemented
try:
p2 = ring.domain_new(p2)
except CoercionFailed:
return NotImplemented
else:
return (p1.quo_ground(p2), p1.rem_ground(p2))
def __rdivmod__(p1, p2):
return NotImplemented
def __mod__(p1, p2):
ring = p1.ring
if not p2:
raise ZeroDivisionError("polynomial division")
elif isinstance(p2, ring.dtype):
return p1.rem(p2)
elif isinstance(p2, PolyElement):
if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
pass
elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
return p2.__rmod__(p1)
else:
return NotImplemented
try:
p2 = ring.domain_new(p2)
except CoercionFailed:
return NotImplemented
else:
return p1.rem_ground(p2)
def __rmod__(p1, p2):
return NotImplemented
def __truediv__(p1, p2):
ring = p1.ring
if not p2:
raise ZeroDivisionError("polynomial division")
elif isinstance(p2, ring.dtype):
if p2.is_monomial:
return p1*(p2**(-1))
else:
return p1.quo(p2)
elif isinstance(p2, PolyElement):
if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
pass
elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
return p2.__rtruediv__(p1)
else:
return NotImplemented
try:
p2 = ring.domain_new(p2)
except CoercionFailed:
return NotImplemented
else:
return p1.quo_ground(p2)
def __rtruediv__(p1, p2):
return NotImplemented
__floordiv__ = __truediv__
__rfloordiv__ = __rtruediv__
# TODO: use // (__floordiv__) for exquo()?
def _term_div(self):
zm = self.ring.zero_monom
domain = self.ring.domain
domain_quo = domain.quo
monomial_div = self.ring.monomial_div
if domain.is_Field:
def term_div(a_lm_a_lc, b_lm_b_lc):
a_lm, a_lc = a_lm_a_lc
b_lm, b_lc = b_lm_b_lc
if b_lm == zm: # apparently this is a very common case
monom = a_lm
else:
monom = monomial_div(a_lm, b_lm)
if monom is not None:
return monom, domain_quo(a_lc, b_lc)
else:
return None
else:
def term_div(a_lm_a_lc, b_lm_b_lc):
a_lm, a_lc = a_lm_a_lc
b_lm, b_lc = b_lm_b_lc
if b_lm == zm: # apparently this is a very common case
monom = a_lm
else:
monom = monomial_div(a_lm, b_lm)
if not (monom is None or a_lc % b_lc):
return monom, domain_quo(a_lc, b_lc)
else:
return None
return term_div
def div(self, fv):
"""Division algorithm, see [CLO] p64.
fv array of polynomials
return qv, r such that
self = sum(fv[i]*qv[i]) + r
All polynomials are required not to be Laurent polynomials.
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y = ring('x, y', ZZ)
>>> f = x**3
>>> f0 = x - y**2
>>> f1 = x - y
>>> qv, r = f.div((f0, f1))
>>> qv[0]
x**2 + x*y**2 + y**4
>>> qv[1]
0
>>> r
y**6
"""
ring = self.ring
ret_single = False
if isinstance(fv, PolyElement):
ret_single = True
fv = [fv]
if not all(fv):
raise ZeroDivisionError("polynomial division")
if not self:
if ret_single:
return ring.zero, ring.zero
else:
return [], ring.zero
for f in fv:
if f.ring != ring:
raise ValueError('self and f must have the same ring')
s = len(fv)
qv = [ring.zero for i in range(s)]
p = self.copy()
r = ring.zero
term_div = self._term_div()
expvs = [fx.leading_expv() for fx in fv]
while p:
i = 0
divoccurred = 0
while i < s and divoccurred == 0:
expv = p.leading_expv()
term = term_div((expv, p[expv]), (expvs[i], fv[i][expvs[i]]))
if term is not None:
expv1, c = term
qv[i] = qv[i]._iadd_monom((expv1, c))
p = p._iadd_poly_monom(fv[i], (expv1, -c))
divoccurred = 1
else:
i += 1
if not divoccurred:
expv = p.leading_expv()
r = r._iadd_monom((expv, p[expv]))
del p[expv]
if expv == ring.zero_monom:
r += p
if ret_single:
if not qv:
return ring.zero, r
else:
return qv[0], r
else:
return qv, r
def rem(self, G):
f = self
if isinstance(G, PolyElement):
G = [G]
if not all(G):
raise ZeroDivisionError("polynomial division")
ring = f.ring
domain = ring.domain
zero = domain.zero
monomial_mul = ring.monomial_mul
r = ring.zero
term_div = f._term_div()
ltf = f.LT
f = f.copy()
get = f.get
while f:
for g in G:
tq = term_div(ltf, g.LT)
if tq is not None:
m, c = tq
for mg, cg in g.iterterms():
m1 = monomial_mul(mg, m)
c1 = get(m1, zero) - c*cg
if not c1:
del f[m1]
else:
f[m1] = c1
ltm = f.leading_expv()
if ltm is not None:
ltf = ltm, f[ltm]
break
else:
ltm, ltc = ltf
if ltm in r:
r[ltm] += ltc
else:
r[ltm] = ltc
del f[ltm]
ltm = f.leading_expv()
if ltm is not None:
ltf = ltm, f[ltm]
return r
def quo(f, G):
return f.div(G)[0]
def exquo(f, G):
q, r = f.div(G)
if not r:
return q
else:
raise ExactQuotientFailed(f, G)
def _iadd_monom(self, mc):
"""add to self the monomial coeff*x0**i0*x1**i1*...
unless self is a generator -- then just return the sum of the two.
mc is a tuple, (monom, coeff), where monomial is (i0, i1, ...)
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y = ring('x, y', ZZ)
>>> p = x**4 + 2*y
>>> m = (1, 2)
>>> p1 = p._iadd_monom((m, 5))
>>> p1
x**4 + 5*x*y**2 + 2*y
>>> p1 is p
True
>>> p = x
>>> p1 = p._iadd_monom((m, 5))
>>> p1
5*x*y**2 + x
>>> p1 is p
False
"""
if self in self.ring._gens_set:
cpself = self.copy()
else:
cpself = self
expv, coeff = mc
c = cpself.get(expv)
if c is None:
cpself[expv] = coeff
else:
c += coeff
if c:
cpself[expv] = c
else:
del cpself[expv]
return cpself
def _iadd_poly_monom(self, p2, mc):
"""add to self the product of (p)*(coeff*x0**i0*x1**i1*...)
unless self is a generator -- then just return the sum of the two.
mc is a tuple, (monom, coeff), where monomial is (i0, i1, ...)
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y, z = ring('x, y, z', ZZ)
>>> p1 = x**4 + 2*y
>>> p2 = y + z
>>> m = (1, 2, 3)
>>> p1 = p1._iadd_poly_monom(p2, (m, 3))
>>> p1
x**4 + 3*x*y**3*z**3 + 3*x*y**2*z**4 + 2*y
"""
p1 = self
if p1 in p1.ring._gens_set:
p1 = p1.copy()
(m, c) = mc
get = p1.get
zero = p1.ring.domain.zero
monomial_mul = p1.ring.monomial_mul
for k, v in p2.items():
ka = monomial_mul(k, m)
coeff = get(ka, zero) + v*c
if coeff:
p1[ka] = coeff
else:
del p1[ka]
return p1
def degree(f, x=None):
"""
The leading degree in ``x`` or the main variable.
Note that the degree of 0 is negative infinity (the SymPy object -oo).
"""
i = f.ring.index(x)
if not f:
return -oo
elif i < 0:
return 0
else:
return max([ monom[i] for monom in f.itermonoms() ])
def degrees(f):
"""
A tuple containing leading degrees in all variables.
Note that the degree of 0 is negative infinity (the SymPy object -oo)
"""
if not f:
return (-oo,)*f.ring.ngens
else:
return tuple(map(max, list(zip(*f.itermonoms()))))
def tail_degree(f, x=None):
"""
The tail degree in ``x`` or the main variable.
Note that the degree of 0 is negative infinity (the SymPy object -oo)
"""
i = f.ring.index(x)
if not f:
return -oo
elif i < 0:
return 0
else:
return min([ monom[i] for monom in f.itermonoms() ])
def tail_degrees(f):
"""
A tuple containing tail degrees in all variables.
Note that the degree of 0 is negative infinity (the SymPy object -oo)
"""
if not f:
return (-oo,)*f.ring.ngens
else:
return tuple(map(min, list(zip(*f.itermonoms()))))
def leading_expv(self):
"""Leading monomial tuple according to the monomial ordering.
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y, z = ring('x, y, z', ZZ)
>>> p = x**4 + x**3*y + x**2*z**2 + z**7
>>> p.leading_expv()
(4, 0, 0)
"""
if self:
return self.ring.leading_expv(self)
else:
return None
def _get_coeff(self, expv):
return self.get(expv, self.ring.domain.zero)
def coeff(self, element):
"""
Returns the coefficient that stands next to the given monomial.
Parameters
==========
element : PolyElement (with ``is_monomial = True``) or 1
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y, z = ring("x,y,z", ZZ)
>>> f = 3*x**2*y - x*y*z + 7*z**3 + 23
>>> f.coeff(x**2*y)
3
>>> f.coeff(x*y)
0
>>> f.coeff(1)
23
"""
if element == 1:
return self._get_coeff(self.ring.zero_monom)
elif isinstance(element, self.ring.dtype):
terms = list(element.iterterms())
if len(terms) == 1:
monom, coeff = terms[0]
if coeff == self.ring.domain.one:
return self._get_coeff(monom)
raise ValueError("expected a monomial, got %s" % element)
def const(self):
"""Returns the constant coeffcient. """
return self._get_coeff(self.ring.zero_monom)
@property
def LC(self):
return self._get_coeff(self.leading_expv())
@property
def LM(self):
expv = self.leading_expv()
if expv is None:
return self.ring.zero_monom
else:
return expv
def leading_monom(self):
"""
Leading monomial as a polynomial element.
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y = ring('x, y', ZZ)
>>> (3*x*y + y**2).leading_monom()
x*y
"""
p = self.ring.zero
expv = self.leading_expv()
if expv:
p[expv] = self.ring.domain.one
return p
@property
def LT(self):
expv = self.leading_expv()
if expv is None:
return (self.ring.zero_monom, self.ring.domain.zero)
else:
return (expv, self._get_coeff(expv))
def leading_term(self):
"""Leading term as a polynomial element.
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y = ring('x, y', ZZ)
>>> (3*x*y + y**2).leading_term()
3*x*y
"""
p = self.ring.zero
expv = self.leading_expv()
if expv is not None:
p[expv] = self[expv]
return p
def _sorted(self, seq, order):
if order is None:
order = self.ring.order
else:
order = OrderOpt.preprocess(order)
if order is lex:
return sorted(seq, key=lambda monom: monom[0], reverse=True)
else:
return sorted(seq, key=lambda monom: order(monom[0]), reverse=True)
def coeffs(self, order=None):
"""Ordered list of polynomial coefficients.
Parameters
==========
order : :class:`~.MonomialOrder` or coercible, optional
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.orderings import lex, grlex
>>> _, x, y = ring("x, y", ZZ, lex)
>>> f = x*y**7 + 2*x**2*y**3
>>> f.coeffs()
[2, 1]
>>> f.coeffs(grlex)
[1, 2]
"""
return [ coeff for _, coeff in self.terms(order) ]
def monoms(self, order=None):
"""Ordered list of polynomial monomials.
Parameters
==========
order : :class:`~.MonomialOrder` or coercible, optional
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.orderings import lex, grlex
>>> _, x, y = ring("x, y", ZZ, lex)
>>> f = x*y**7 + 2*x**2*y**3
>>> f.monoms()
[(2, 3), (1, 7)]
>>> f.monoms(grlex)
[(1, 7), (2, 3)]
"""
return [ monom for monom, _ in self.terms(order) ]
def terms(self, order=None):
"""Ordered list of polynomial terms.
Parameters
==========
order : :class:`~.MonomialOrder` or coercible, optional
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.orderings import lex, grlex
>>> _, x, y = ring("x, y", ZZ, lex)
>>> f = x*y**7 + 2*x**2*y**3
>>> f.terms()
[((2, 3), 2), ((1, 7), 1)]
>>> f.terms(grlex)
[((1, 7), 1), ((2, 3), 2)]
"""
return self._sorted(list(self.items()), order)
def itercoeffs(self):
"""Iterator over coefficients of a polynomial. """
return iter(self.values())
def itermonoms(self):
"""Iterator over monomials of a polynomial. """
return iter(self.keys())
def iterterms(self):
"""Iterator over terms of a polynomial. """
return iter(self.items())
def listcoeffs(self):
"""Unordered list of polynomial coefficients. """
return list(self.values())
def listmonoms(self):
"""Unordered list of polynomial monomials. """
return list(self.keys())
def listterms(self):
"""Unordered list of polynomial terms. """
return list(self.items())
def imul_num(p, c):
"""multiply inplace the polynomial p by an element in the
coefficient ring, provided p is not one of the generators;
else multiply not inplace
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y = ring('x, y', ZZ)
>>> p = x + y**2
>>> p1 = p.imul_num(3)
>>> p1
3*x + 3*y**2
>>> p1 is p
True
>>> p = x
>>> p1 = p.imul_num(3)
>>> p1
3*x
>>> p1 is p
False
"""
if p in p.ring._gens_set:
return p*c
if not c:
p.clear()
return
for exp in p:
p[exp] *= c
return p
def content(f):
"""Returns GCD of polynomial's coefficients. """
domain = f.ring.domain
cont = domain.zero
gcd = domain.gcd
for coeff in f.itercoeffs():
cont = gcd(cont, coeff)
return cont
def primitive(f):
"""Returns content and a primitive polynomial. """
cont = f.content()
return cont, f.quo_ground(cont)
def monic(f):
"""Divides all coefficients by the leading coefficient. """
if not f:
return f
else:
return f.quo_ground(f.LC)
def mul_ground(f, x):
if not x:
return f.ring.zero
terms = [ (monom, coeff*x) for monom, coeff in f.iterterms() ]
return f.new(terms)
def mul_monom(f, monom):
monomial_mul = f.ring.monomial_mul
terms = [ (monomial_mul(f_monom, monom), f_coeff) for f_monom, f_coeff in f.items() ]
return f.new(terms)
def mul_term(f, term):
monom, coeff = term
if not f or not coeff:
return f.ring.zero
elif monom == f.ring.zero_monom:
return f.mul_ground(coeff)
monomial_mul = f.ring.monomial_mul
terms = [ (monomial_mul(f_monom, monom), f_coeff*coeff) for f_monom, f_coeff in f.items() ]
return f.new(terms)
def quo_ground(f, x):
domain = f.ring.domain
if not x:
raise ZeroDivisionError('polynomial division')
if not f or x == domain.one:
return f
if domain.is_Field:
quo = domain.quo
terms = [ (monom, quo(coeff, x)) for monom, coeff in f.iterterms() ]
else:
terms = [ (monom, coeff // x) for monom, coeff in f.iterterms() if not (coeff % x) ]
return f.new(terms)
def quo_term(f, term):
monom, coeff = term
if not coeff:
raise ZeroDivisionError("polynomial division")
elif not f:
return f.ring.zero
elif monom == f.ring.zero_monom:
return f.quo_ground(coeff)
term_div = f._term_div()
terms = [ term_div(t, term) for t in f.iterterms() ]
return f.new([ t for t in terms if t is not None ])
def trunc_ground(f, p):
if f.ring.domain.is_ZZ:
terms = []
for monom, coeff in f.iterterms():
coeff = coeff % p
if coeff > p // 2:
coeff = coeff - p
terms.append((monom, coeff))
else:
terms = [ (monom, coeff % p) for monom, coeff in f.iterterms() ]
poly = f.new(terms)
poly.strip_zero()
return poly
rem_ground = trunc_ground
def extract_ground(self, g):
f = self
fc = f.content()
gc = g.content()
gcd = f.ring.domain.gcd(fc, gc)
f = f.quo_ground(gcd)
g = g.quo_ground(gcd)
return gcd, f, g
def _norm(f, norm_func):
if not f:
return f.ring.domain.zero
else:
ground_abs = f.ring.domain.abs
return norm_func([ ground_abs(coeff) for coeff in f.itercoeffs() ])
def max_norm(f):
return f._norm(max)
def l1_norm(f):
return f._norm(sum)
def deflate(f, *G):
ring = f.ring
polys = [f] + list(G)
J = [0]*ring.ngens
for p in polys:
for monom in p.itermonoms():
for i, m in enumerate(monom):
J[i] = igcd(J[i], m)
for i, b in enumerate(J):
if not b:
J[i] = 1
J = tuple(J)
if all(b == 1 for b in J):
return J, polys
H = []
for p in polys:
h = ring.zero
for I, coeff in p.iterterms():
N = [ i // j for i, j in zip(I, J) ]
h[tuple(N)] = coeff
H.append(h)
return J, H
def inflate(f, J):
poly = f.ring.zero
for I, coeff in f.iterterms():
N = [ i*j for i, j in zip(I, J) ]
poly[tuple(N)] = coeff
return poly
def lcm(self, g):
f = self
domain = f.ring.domain
if not domain.is_Field:
fc, f = f.primitive()
gc, g = g.primitive()
c = domain.lcm(fc, gc)
h = (f*g).quo(f.gcd(g))
if not domain.is_Field:
return h.mul_ground(c)
else:
return h.monic()
def gcd(f, g):
return f.cofactors(g)[0]
def cofactors(f, g):
if not f and not g:
zero = f.ring.zero
return zero, zero, zero
elif not f:
h, cff, cfg = f._gcd_zero(g)
return h, cff, cfg
elif not g:
h, cfg, cff = g._gcd_zero(f)
return h, cff, cfg
elif len(f) == 1:
h, cff, cfg = f._gcd_monom(g)
return h, cff, cfg
elif len(g) == 1:
h, cfg, cff = g._gcd_monom(f)
return h, cff, cfg
J, (f, g) = f.deflate(g)
h, cff, cfg = f._gcd(g)
return (h.inflate(J), cff.inflate(J), cfg.inflate(J))
def _gcd_zero(f, g):
one, zero = f.ring.one, f.ring.zero
if g.is_nonnegative:
return g, zero, one
else:
return -g, zero, -one
def _gcd_monom(f, g):
ring = f.ring
ground_gcd = ring.domain.gcd
ground_quo = ring.domain.quo
monomial_gcd = ring.monomial_gcd
monomial_ldiv = ring.monomial_ldiv
mf, cf = list(f.iterterms())[0]
_mgcd, _cgcd = mf, cf
for mg, cg in g.iterterms():
_mgcd = monomial_gcd(_mgcd, mg)
_cgcd = ground_gcd(_cgcd, cg)
h = f.new([(_mgcd, _cgcd)])
cff = f.new([(monomial_ldiv(mf, _mgcd), ground_quo(cf, _cgcd))])
cfg = f.new([(monomial_ldiv(mg, _mgcd), ground_quo(cg, _cgcd)) for mg, cg in g.iterterms()])
return h, cff, cfg
def _gcd(f, g):
ring = f.ring
if ring.domain.is_QQ:
return f._gcd_QQ(g)
elif ring.domain.is_ZZ:
return f._gcd_ZZ(g)
else: # TODO: don't use dense representation (port PRS algorithms)
return ring.dmp_inner_gcd(f, g)
def _gcd_ZZ(f, g):
return heugcd(f, g)
def _gcd_QQ(self, g):
f = self
ring = f.ring
new_ring = ring.clone(domain=ring.domain.get_ring())
cf, f = f.clear_denoms()
cg, g = g.clear_denoms()
f = f.set_ring(new_ring)
g = g.set_ring(new_ring)
h, cff, cfg = f._gcd_ZZ(g)
h = h.set_ring(ring)
c, h = h.LC, h.monic()
cff = cff.set_ring(ring).mul_ground(ring.domain.quo(c, cf))
cfg = cfg.set_ring(ring).mul_ground(ring.domain.quo(c, cg))
return h, cff, cfg
def cancel(self, g):
"""
Cancel common factors in a rational function ``f/g``.
Examples
========
>>> from sympy.polys import ring, ZZ
>>> R, x,y = ring("x,y", ZZ)
>>> (2*x**2 - 2).cancel(x**2 - 2*x + 1)
(2*x + 2, x - 1)
"""
f = self
ring = f.ring
if not f:
return f, ring.one
domain = ring.domain
if not (domain.is_Field and domain.has_assoc_Ring):
_, p, q = f.cofactors(g)
else:
new_ring = ring.clone(domain=domain.get_ring())
cq, f = f.clear_denoms()
cp, g = g.clear_denoms()
f = f.set_ring(new_ring)
g = g.set_ring(new_ring)
_, p, q = f.cofactors(g)
_, cp, cq = new_ring.domain.cofactors(cp, cq)
p = p.set_ring(ring)
q = q.set_ring(ring)
p = p.mul_ground(cp)
q = q.mul_ground(cq)
# Make canonical with respect to sign or quadrant in the case of ZZ_I
# or QQ_I. This ensures that the LC of the denominator is canonical by
# multiplying top and bottom by a unit of the ring.
u = q.canonical_unit()
if u == domain.one:
p, q = p, q
elif u == -domain.one:
p, q = -p, -q
else:
p = p.mul_ground(u)
q = q.mul_ground(u)
return p, q
def canonical_unit(f):
domain = f.ring.domain
return domain.canonical_unit(f.LC)
def diff(f, x):
"""Computes partial derivative in ``x``.
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y = ring("x,y", ZZ)
>>> p = x + x**2*y**3
>>> p.diff(x)
2*x*y**3 + 1
"""
ring = f.ring
i = ring.index(x)
m = ring.monomial_basis(i)
g = ring.zero
for expv, coeff in f.iterterms():
if expv[i]:
e = ring.monomial_ldiv(expv, m)
g[e] = ring.domain_new(coeff*expv[i])
return g
def __call__(f, *values):
if 0 < len(values) <= f.ring.ngens:
return f.evaluate(list(zip(f.ring.gens, values)))
else:
raise ValueError("expected at least 1 and at most %s values, got %s" % (f.ring.ngens, len(values)))
def evaluate(self, x, a=None):
f = self
if isinstance(x, list) and a is None:
(X, a), x = x[0], x[1:]
f = f.evaluate(X, a)
if not x:
return f
else:
x = [ (Y.drop(X), a) for (Y, a) in x ]
return f.evaluate(x)
ring = f.ring
i = ring.index(x)
a = ring.domain.convert(a)
if ring.ngens == 1:
result = ring.domain.zero
for (n,), coeff in f.iterterms():
result += coeff*a**n
return result
else:
poly = ring.drop(x).zero
for monom, coeff in f.iterterms():
n, monom = monom[i], monom[:i] + monom[i+1:]
coeff = coeff*a**n
if monom in poly:
coeff = coeff + poly[monom]
if coeff:
poly[monom] = coeff
else:
del poly[monom]
else:
if coeff:
poly[monom] = coeff
return poly
def subs(self, x, a=None):
f = self
if isinstance(x, list) and a is None:
for X, a in x:
f = f.subs(X, a)
return f
ring = f.ring
i = ring.index(x)
a = ring.domain.convert(a)
if ring.ngens == 1:
result = ring.domain.zero
for (n,), coeff in f.iterterms():
result += coeff*a**n
return ring.ground_new(result)
else:
poly = ring.zero
for monom, coeff in f.iterterms():
n, monom = monom[i], monom[:i] + (0,) + monom[i+1:]
coeff = coeff*a**n
if monom in poly:
coeff = coeff + poly[monom]
if coeff:
poly[monom] = coeff
else:
del poly[monom]
else:
if coeff:
poly[monom] = coeff
return poly
def compose(f, x, a=None):
ring = f.ring
poly = ring.zero
gens_map = dict(zip(ring.gens, range(ring.ngens)))
if a is not None:
replacements = [(x, a)]
else:
if isinstance(x, list):
replacements = list(x)
elif isinstance(x, dict):
replacements = sorted(list(x.items()), key=lambda k: gens_map[k[0]])
else:
raise ValueError("expected a generator, value pair a sequence of such pairs")
for k, (x, g) in enumerate(replacements):
replacements[k] = (gens_map[x], ring.ring_new(g))
for monom, coeff in f.iterterms():
monom = list(monom)
subpoly = ring.one
for i, g in replacements:
n, monom[i] = monom[i], 0
if n:
subpoly *= g**n
subpoly = subpoly.mul_term((tuple(monom), coeff))
poly += subpoly
return poly
# TODO: following methods should point to polynomial
# representation independent algorithm implementations.
def pdiv(f, g):
return f.ring.dmp_pdiv(f, g)
def prem(f, g):
return f.ring.dmp_prem(f, g)
def pquo(f, g):
return f.ring.dmp_quo(f, g)
def pexquo(f, g):
return f.ring.dmp_exquo(f, g)
def half_gcdex(f, g):
return f.ring.dmp_half_gcdex(f, g)
def gcdex(f, g):
return f.ring.dmp_gcdex(f, g)
def subresultants(f, g):
return f.ring.dmp_subresultants(f, g)
def resultant(f, g):
return f.ring.dmp_resultant(f, g)
def discriminant(f):
return f.ring.dmp_discriminant(f)
def decompose(f):
if f.ring.is_univariate:
return f.ring.dup_decompose(f)
else:
raise MultivariatePolynomialError("polynomial decomposition")
def shift(f, a):
if f.ring.is_univariate:
return f.ring.dup_shift(f, a)
else:
raise MultivariatePolynomialError("polynomial shift")
def sturm(f):
if f.ring.is_univariate:
return f.ring.dup_sturm(f)
else:
raise MultivariatePolynomialError("sturm sequence")
def gff_list(f):
return f.ring.dmp_gff_list(f)
def sqf_norm(f):
return f.ring.dmp_sqf_norm(f)
def sqf_part(f):
return f.ring.dmp_sqf_part(f)
def sqf_list(f, all=False):
return f.ring.dmp_sqf_list(f, all=all)
def factor_list(f):
return f.ring.dmp_factor_list(f)
|
b935356e97d0a9dc2e7794d17d1093c1b3c525cb8b9ae6497e82d01ce3e3fa62 | import re
import fnmatch
message_unicode_B = \
"File contains a unicode character : %s, line %s. " \
"But not in the whitelist. " \
"Add the file to the whitelist in " + __file__
message_unicode_D = \
"File does not contain a unicode character : %s." \
"but is in the whitelist. " \
"Remove the file from the whitelist in " + __file__
encoding_header_re = re.compile(
r'^[ \t\f]*#.*?coding[:=][ \t]*([-_.a-zA-Z0-9]+)')
# Whitelist pattern for files which can have unicode.
unicode_whitelist = [
# Author names can include non-ASCII characters
r'*/bin/authors_update.py',
r'*/bin/mailmap_check.py',
# These files have functions and test functions for unicode input and
# output.
r'*/sympy/testing/tests/test_code_quality.py',
r'*/sympy/physics/vector/tests/test_printing.py',
r'*/physics/quantum/tests/test_printing.py',
r'*/sympy/vector/tests/test_printing.py',
r'*/sympy/parsing/tests/test_sympy_parser.py',
r'*/sympy/printing/pretty/tests/test_pretty.py',
r'*/sympy/printing/tests/test_conventions.py',
r'*/sympy/printing/tests/test_preview.py',
r'*/liealgebras/type_g.py',
r'*/liealgebras/weyl_group.py',
r'*/liealgebras/tests/test_type_G.py',
# wigner.py and polarization.py have unicode doctests. These probably
# don't need to be there but some of the examples that are there are
# pretty ugly without use_unicode (matrices need to be wrapped across
# multiple lines etc)
r'*/sympy/physics/wigner.py',
r'*/sympy/physics/optics/polarization.py',
# joint.py uses some unicode for variable names in the docstrings
r'*/sympy/physics/mechanics/joint.py',
]
unicode_strict_whitelist = [
r'*/sympy/parsing/latex/_antlr/__init__.py',
# test_mathematica.py uses some unicode for testing Greek characters are working #24055
r'*/sympy/parsing/tests/test_mathematica.py',
]
def _test_this_file_encoding(
fname, test_file,
unicode_whitelist=unicode_whitelist,
unicode_strict_whitelist=unicode_strict_whitelist):
"""Test helper function for unicode test
The test may have to operate on filewise manner, so it had moved
to a separate process.
"""
has_unicode = False
is_in_whitelist = False
is_in_strict_whitelist = False
for patt in unicode_whitelist:
if fnmatch.fnmatch(fname, patt):
is_in_whitelist = True
break
for patt in unicode_strict_whitelist:
if fnmatch.fnmatch(fname, patt):
is_in_strict_whitelist = True
is_in_whitelist = True
break
if is_in_whitelist:
for idx, line in enumerate(test_file):
try:
line.encode(encoding='ascii')
except (UnicodeEncodeError, UnicodeDecodeError):
has_unicode = True
if not has_unicode and not is_in_strict_whitelist:
assert False, message_unicode_D % fname
else:
for idx, line in enumerate(test_file):
try:
line.encode(encoding='ascii')
except (UnicodeEncodeError, UnicodeDecodeError):
assert False, message_unicode_B % (fname, idx + 1)
|
463b29ca91818602588d2447cce30e66f08ee1563a9df66b95541237e6d48b9f | """
This is our testing framework.
Goals:
* it should be compatible with py.test and operate very similarly
(or identically)
* does not require any external dependencies
* preferably all the functionality should be in this file only
* no magic, just import the test file and execute the test functions, that's it
* portable
"""
import os
import sys
import platform
import inspect
import traceback
import pdb
import re
import linecache
import time
from fnmatch import fnmatch
from timeit import default_timer as clock
import doctest as pdoctest # avoid clashing with our doctest() function
from doctest import DocTestFinder, DocTestRunner
import random
import subprocess
import shutil
import signal
import stat
import tempfile
import warnings
from contextlib import contextmanager
from inspect import unwrap
from sympy.core.cache import clear_cache
from sympy.external import import_module
from sympy.external.gmpy import GROUND_TYPES, HAS_GMPY
IS_WINDOWS = (os.name == 'nt')
ON_TRAVIS = os.getenv('TRAVIS_BUILD_NUMBER', None)
# emperically generated list of the proportion of time spent running
# an even split of tests. This should periodically be regenerated.
# A list of [.6, .1, .3] would mean that if the tests are evenly split
# into '1/3', '2/3', '3/3', the first split would take 60% of the time,
# the second 10% and the third 30%. These lists are normalized to sum
# to 1, so [60, 10, 30] has the same behavior as [6, 1, 3] or [.6, .1, .3].
#
# This list can be generated with the code:
# from time import time
# import sympy
# import os
# os.environ["TRAVIS_BUILD_NUMBER"] = '2' # Mock travis to get more correct densities
# delays, num_splits = [], 30
# for i in range(1, num_splits + 1):
# tic = time()
# sympy.test(split='{}/{}'.format(i, num_splits), time_balance=False) # Add slow=True for slow tests
# delays.append(time() - tic)
# tot = sum(delays)
# print([round(x / tot, 4) for x in delays])
SPLIT_DENSITY = [
0.0059, 0.0027, 0.0068, 0.0011, 0.0006,
0.0058, 0.0047, 0.0046, 0.004, 0.0257,
0.0017, 0.0026, 0.004, 0.0032, 0.0016,
0.0015, 0.0004, 0.0011, 0.0016, 0.0014,
0.0077, 0.0137, 0.0217, 0.0074, 0.0043,
0.0067, 0.0236, 0.0004, 0.1189, 0.0142,
0.0234, 0.0003, 0.0003, 0.0047, 0.0006,
0.0013, 0.0004, 0.0008, 0.0007, 0.0006,
0.0139, 0.0013, 0.0007, 0.0051, 0.002,
0.0004, 0.0005, 0.0213, 0.0048, 0.0016,
0.0012, 0.0014, 0.0024, 0.0015, 0.0004,
0.0005, 0.0007, 0.011, 0.0062, 0.0015,
0.0021, 0.0049, 0.0006, 0.0006, 0.0011,
0.0006, 0.0019, 0.003, 0.0044, 0.0054,
0.0057, 0.0049, 0.0016, 0.0006, 0.0009,
0.0006, 0.0012, 0.0006, 0.0149, 0.0532,
0.0076, 0.0041, 0.0024, 0.0135, 0.0081,
0.2209, 0.0459, 0.0438, 0.0488, 0.0137,
0.002, 0.0003, 0.0008, 0.0039, 0.0024,
0.0005, 0.0004, 0.003, 0.056, 0.0026]
SPLIT_DENSITY_SLOW = [0.0086, 0.0004, 0.0568, 0.0003, 0.0032, 0.0005, 0.0004, 0.0013, 0.0016, 0.0648, 0.0198, 0.1285, 0.098, 0.0005, 0.0064, 0.0003, 0.0004, 0.0026, 0.0007, 0.0051, 0.0089, 0.0024, 0.0033, 0.0057, 0.0005, 0.0003, 0.001, 0.0045, 0.0091, 0.0006, 0.0005, 0.0321, 0.0059, 0.1105, 0.216, 0.1489, 0.0004, 0.0003, 0.0006, 0.0483]
class Skipped(Exception):
pass
class TimeOutError(Exception):
pass
class DependencyError(Exception):
pass
def _indent(s, indent=4):
"""
Add the given number of space characters to the beginning of
every non-blank line in ``s``, and return the result.
If the string ``s`` is Unicode, it is encoded using the stdout
encoding and the ``backslashreplace`` error handler.
"""
# This regexp matches the start of non-blank lines:
return re.sub('(?m)^(?!$)', indent*' ', s)
pdoctest._indent = _indent # type: ignore
# override reporter to maintain windows and python3
def _report_failure(self, out, test, example, got):
"""
Report that the given example failed.
"""
s = self._checker.output_difference(example, got, self.optionflags)
s = s.encode('raw_unicode_escape').decode('utf8', 'ignore')
out(self._failure_header(test, example) + s)
if IS_WINDOWS:
DocTestRunner.report_failure = _report_failure # type: ignore
def convert_to_native_paths(lst):
"""
Converts a list of '/' separated paths into a list of
native (os.sep separated) paths and converts to lowercase
if the system is case insensitive.
"""
newlst = []
for i, rv in enumerate(lst):
rv = os.path.join(*rv.split("/"))
# on windows the slash after the colon is dropped
if sys.platform == "win32":
pos = rv.find(':')
if pos != -1:
if rv[pos + 1] != '\\':
rv = rv[:pos + 1] + '\\' + rv[pos + 1:]
newlst.append(os.path.normcase(rv))
return newlst
def get_sympy_dir():
"""
Returns the root SymPy directory and set the global value
indicating whether the system is case sensitive or not.
"""
this_file = os.path.abspath(__file__)
sympy_dir = os.path.join(os.path.dirname(this_file), "..", "..")
sympy_dir = os.path.normpath(sympy_dir)
return os.path.normcase(sympy_dir)
def setup_pprint():
from sympy.interactive.printing import init_printing
from sympy.printing.pretty.pretty import pprint_use_unicode
import sympy.interactive.printing as interactive_printing
# force pprint to be in ascii mode in doctests
use_unicode_prev = pprint_use_unicode(False)
# hook our nice, hash-stable strprinter
init_printing(pretty_print=False)
# Prevent init_printing() in doctests from affecting other doctests
interactive_printing.NO_GLOBAL = True
return use_unicode_prev
@contextmanager
def raise_on_deprecated():
"""Context manager to make DeprecationWarning raise an error
This is to catch SymPyDeprecationWarning from library code while running
tests and doctests. It is important to use this context manager around
each individual test/doctest in case some tests modify the warning
filters.
"""
with warnings.catch_warnings():
warnings.filterwarnings('error', '.*', DeprecationWarning, module='sympy.*')
yield
def run_in_subprocess_with_hash_randomization(
function, function_args=(),
function_kwargs=None, command=sys.executable,
module='sympy.testing.runtests', force=False):
"""
Run a function in a Python subprocess with hash randomization enabled.
If hash randomization is not supported by the version of Python given, it
returns False. Otherwise, it returns the exit value of the command. The
function is passed to sys.exit(), so the return value of the function will
be the return value.
The environment variable PYTHONHASHSEED is used to seed Python's hash
randomization. If it is set, this function will return False, because
starting a new subprocess is unnecessary in that case. If it is not set,
one is set at random, and the tests are run. Note that if this
environment variable is set when Python starts, hash randomization is
automatically enabled. To force a subprocess to be created even if
PYTHONHASHSEED is set, pass ``force=True``. This flag will not force a
subprocess in Python versions that do not support hash randomization (see
below), because those versions of Python do not support the ``-R`` flag.
``function`` should be a string name of a function that is importable from
the module ``module``, like "_test". The default for ``module`` is
"sympy.testing.runtests". ``function_args`` and ``function_kwargs``
should be a repr-able tuple and dict, respectively. The default Python
command is sys.executable, which is the currently running Python command.
This function is necessary because the seed for hash randomization must be
set by the environment variable before Python starts. Hence, in order to
use a predetermined seed for tests, we must start Python in a separate
subprocess.
Hash randomization was added in the minor Python versions 2.6.8, 2.7.3,
3.1.5, and 3.2.3, and is enabled by default in all Python versions after
and including 3.3.0.
Examples
========
>>> from sympy.testing.runtests import (
... run_in_subprocess_with_hash_randomization)
>>> # run the core tests in verbose mode
>>> run_in_subprocess_with_hash_randomization("_test",
... function_args=("core",),
... function_kwargs={'verbose': True}) # doctest: +SKIP
# Will return 0 if sys.executable supports hash randomization and tests
# pass, 1 if they fail, and False if it does not support hash
# randomization.
"""
cwd = get_sympy_dir()
# Note, we must return False everywhere, not None, as subprocess.call will
# sometimes return None.
# First check if the Python version supports hash randomization
# If it does not have this support, it won't recognize the -R flag
p = subprocess.Popen([command, "-RV"], stdout=subprocess.PIPE,
stderr=subprocess.STDOUT, cwd=cwd)
p.communicate()
if p.returncode != 0:
return False
hash_seed = os.getenv("PYTHONHASHSEED")
if not hash_seed:
os.environ["PYTHONHASHSEED"] = str(random.randrange(2**32))
else:
if not force:
return False
function_kwargs = function_kwargs or {}
# Now run the command
commandstring = ("import sys; from %s import %s;sys.exit(%s(*%s, **%s))" %
(module, function, function, repr(function_args),
repr(function_kwargs)))
try:
p = subprocess.Popen([command, "-R", "-c", commandstring], cwd=cwd)
p.communicate()
except KeyboardInterrupt:
p.wait()
finally:
# Put the environment variable back, so that it reads correctly for
# the current Python process.
if hash_seed is None:
del os.environ["PYTHONHASHSEED"]
else:
os.environ["PYTHONHASHSEED"] = hash_seed
return p.returncode
def run_all_tests(test_args=(), test_kwargs=None,
doctest_args=(), doctest_kwargs=None,
examples_args=(), examples_kwargs=None):
"""
Run all tests.
Right now, this runs the regular tests (bin/test), the doctests
(bin/doctest), and the examples (examples/all.py).
This is what ``setup.py test`` uses.
You can pass arguments and keyword arguments to the test functions that
support them (for now, test, doctest, and the examples). See the
docstrings of those functions for a description of the available options.
For example, to run the solvers tests with colors turned off:
>>> from sympy.testing.runtests import run_all_tests
>>> run_all_tests(test_args=("solvers",),
... test_kwargs={"colors:False"}) # doctest: +SKIP
"""
tests_successful = True
test_kwargs = test_kwargs or {}
doctest_kwargs = doctest_kwargs or {}
examples_kwargs = examples_kwargs or {'quiet': True}
try:
# Regular tests
if not test(*test_args, **test_kwargs):
# some regular test fails, so set the tests_successful
# flag to false and continue running the doctests
tests_successful = False
# Doctests
print()
if not doctest(*doctest_args, **doctest_kwargs):
tests_successful = False
# Examples
print()
sys.path.append("examples") # examples/all.py
from all import run_examples # type: ignore
if not run_examples(*examples_args, **examples_kwargs):
tests_successful = False
if tests_successful:
return
else:
# Return nonzero exit code
sys.exit(1)
except KeyboardInterrupt:
print()
print("DO *NOT* COMMIT!")
sys.exit(1)
def test(*paths, subprocess=True, rerun=0, **kwargs):
"""
Run tests in the specified test_*.py files.
Tests in a particular test_*.py file are run if any of the given strings
in ``paths`` matches a part of the test file's path. If ``paths=[]``,
tests in all test_*.py files are run.
Notes:
- If sort=False, tests are run in random order (not default).
- Paths can be entered in native system format or in unix,
forward-slash format.
- Files that are on the blacklist can be tested by providing
their path; they are only excluded if no paths are given.
**Explanation of test results**
====== ===============================================================
Output Meaning
====== ===============================================================
. passed
F failed
X XPassed (expected to fail but passed)
f XFAILed (expected to fail and indeed failed)
s skipped
w slow
T timeout (e.g., when ``--timeout`` is used)
K KeyboardInterrupt (when running the slow tests with ``--slow``,
you can interrupt one of them without killing the test runner)
====== ===============================================================
Colors have no additional meaning and are used just to facilitate
interpreting the output.
Examples
========
>>> import sympy
Run all tests:
>>> sympy.test() # doctest: +SKIP
Run one file:
>>> sympy.test("sympy/core/tests/test_basic.py") # doctest: +SKIP
>>> sympy.test("_basic") # doctest: +SKIP
Run all tests in sympy/functions/ and some particular file:
>>> sympy.test("sympy/core/tests/test_basic.py",
... "sympy/functions") # doctest: +SKIP
Run all tests in sympy/core and sympy/utilities:
>>> sympy.test("/core", "/util") # doctest: +SKIP
Run specific test from a file:
>>> sympy.test("sympy/core/tests/test_basic.py",
... kw="test_equality") # doctest: +SKIP
Run specific test from any file:
>>> sympy.test(kw="subs") # doctest: +SKIP
Run the tests with verbose mode on:
>>> sympy.test(verbose=True) # doctest: +SKIP
Do not sort the test output:
>>> sympy.test(sort=False) # doctest: +SKIP
Turn on post-mortem pdb:
>>> sympy.test(pdb=True) # doctest: +SKIP
Turn off colors:
>>> sympy.test(colors=False) # doctest: +SKIP
Force colors, even when the output is not to a terminal (this is useful,
e.g., if you are piping to ``less -r`` and you still want colors)
>>> sympy.test(force_colors=False) # doctest: +SKIP
The traceback verboseness can be set to "short" or "no" (default is
"short")
>>> sympy.test(tb='no') # doctest: +SKIP
The ``split`` option can be passed to split the test run into parts. The
split currently only splits the test files, though this may change in the
future. ``split`` should be a string of the form 'a/b', which will run
part ``a`` of ``b``. For instance, to run the first half of the test suite:
>>> sympy.test(split='1/2') # doctest: +SKIP
The ``time_balance`` option can be passed in conjunction with ``split``.
If ``time_balance=True`` (the default for ``sympy.test``), SymPy will attempt
to split the tests such that each split takes equal time. This heuristic
for balancing is based on pre-recorded test data.
>>> sympy.test(split='1/2', time_balance=True) # doctest: +SKIP
You can disable running the tests in a separate subprocess using
``subprocess=False``. This is done to support seeding hash randomization,
which is enabled by default in the Python versions where it is supported.
If subprocess=False, hash randomization is enabled/disabled according to
whether it has been enabled or not in the calling Python process.
However, even if it is enabled, the seed cannot be printed unless it is
called from a new Python process.
Hash randomization was added in the minor Python versions 2.6.8, 2.7.3,
3.1.5, and 3.2.3, and is enabled by default in all Python versions after
and including 3.3.0.
If hash randomization is not supported ``subprocess=False`` is used
automatically.
>>> sympy.test(subprocess=False) # doctest: +SKIP
To set the hash randomization seed, set the environment variable
``PYTHONHASHSEED`` before running the tests. This can be done from within
Python using
>>> import os
>>> os.environ['PYTHONHASHSEED'] = '42' # doctest: +SKIP
Or from the command line using
$ PYTHONHASHSEED=42 ./bin/test
If the seed is not set, a random seed will be chosen.
Note that to reproduce the same hash values, you must use both the same seed
as well as the same architecture (32-bit vs. 64-bit).
"""
# count up from 0, do not print 0
print_counter = lambda i : (print("rerun %d" % (rerun-i))
if rerun-i else None)
if subprocess:
# loop backwards so last i is 0
for i in range(rerun, -1, -1):
print_counter(i)
ret = run_in_subprocess_with_hash_randomization("_test",
function_args=paths, function_kwargs=kwargs)
if ret is False:
break
val = not bool(ret)
# exit on the first failure or if done
if not val or i == 0:
return val
# rerun even if hash randomization is not supported
for i in range(rerun, -1, -1):
print_counter(i)
val = not bool(_test(*paths, **kwargs))
if not val or i == 0:
return val
def _test(*paths,
verbose=False, tb="short", kw=None, pdb=False, colors=True,
force_colors=False, sort=True, seed=None, timeout=False,
fail_on_timeout=False, slow=False, enhance_asserts=False, split=None,
time_balance=True, blacklist=('sympy/integrals/rubi/rubi_tests/tests',),
fast_threshold=None, slow_threshold=None):
"""
Internal function that actually runs the tests.
All keyword arguments from ``test()`` are passed to this function except for
``subprocess``.
Returns 0 if tests passed and 1 if they failed. See the docstring of
``test()`` for more information.
"""
kw = kw or ()
# ensure that kw is a tuple
if isinstance(kw, str):
kw = (kw,)
post_mortem = pdb
if seed is None:
seed = random.randrange(100000000)
if ON_TRAVIS and timeout is False:
# Travis times out if no activity is seen for 10 minutes.
timeout = 595
fail_on_timeout = True
if ON_TRAVIS:
# pyglet does not work on Travis
blacklist = list(blacklist) + ['sympy/plotting/pygletplot/tests']
blacklist = convert_to_native_paths(blacklist)
r = PyTestReporter(verbose=verbose, tb=tb, colors=colors,
force_colors=force_colors, split=split)
t = SymPyTests(r, kw, post_mortem, seed,
fast_threshold=fast_threshold,
slow_threshold=slow_threshold)
test_files = t.get_test_files('sympy')
not_blacklisted = [f for f in test_files
if not any(b in f for b in blacklist)]
if len(paths) == 0:
matched = not_blacklisted
else:
paths = convert_to_native_paths(paths)
matched = []
for f in not_blacklisted:
basename = os.path.basename(f)
for p in paths:
if p in f or fnmatch(basename, p):
matched.append(f)
break
density = None
if time_balance:
if slow:
density = SPLIT_DENSITY_SLOW
else:
density = SPLIT_DENSITY
if split:
matched = split_list(matched, split, density=density)
t._testfiles.extend(matched)
return int(not t.test(sort=sort, timeout=timeout, slow=slow,
enhance_asserts=enhance_asserts, fail_on_timeout=fail_on_timeout))
def doctest(*paths, subprocess=True, rerun=0, **kwargs):
r"""
Runs doctests in all \*.py files in the SymPy directory which match
any of the given strings in ``paths`` or all tests if paths=[].
Notes:
- Paths can be entered in native system format or in unix,
forward-slash format.
- Files that are on the blacklist can be tested by providing
their path; they are only excluded if no paths are given.
Examples
========
>>> import sympy
Run all tests:
>>> sympy.doctest() # doctest: +SKIP
Run one file:
>>> sympy.doctest("sympy/core/basic.py") # doctest: +SKIP
>>> sympy.doctest("polynomial.rst") # doctest: +SKIP
Run all tests in sympy/functions/ and some particular file:
>>> sympy.doctest("/functions", "basic.py") # doctest: +SKIP
Run any file having polynomial in its name, doc/src/modules/polynomial.rst,
sympy/functions/special/polynomials.py, and sympy/polys/polynomial.py:
>>> sympy.doctest("polynomial") # doctest: +SKIP
The ``split`` option can be passed to split the test run into parts. The
split currently only splits the test files, though this may change in the
future. ``split`` should be a string of the form 'a/b', which will run
part ``a`` of ``b``. Note that the regular doctests and the Sphinx
doctests are split independently. For instance, to run the first half of
the test suite:
>>> sympy.doctest(split='1/2') # doctest: +SKIP
The ``subprocess`` and ``verbose`` options are the same as with the function
``test()`` (see the docstring of that function for more information) except
that ``verbose`` may also be set equal to ``2`` in order to print
individual doctest lines, as they are being tested.
"""
# count up from 0, do not print 0
print_counter = lambda i : (print("rerun %d" % (rerun-i))
if rerun-i else None)
if subprocess:
# loop backwards so last i is 0
for i in range(rerun, -1, -1):
print_counter(i)
ret = run_in_subprocess_with_hash_randomization("_doctest",
function_args=paths, function_kwargs=kwargs)
if ret is False:
break
val = not bool(ret)
# exit on the first failure or if done
if not val or i == 0:
return val
# rerun even if hash randomization is not supported
for i in range(rerun, -1, -1):
print_counter(i)
val = not bool(_doctest(*paths, **kwargs))
if not val or i == 0:
return val
def _get_doctest_blacklist():
'''Get the default blacklist for the doctests'''
blacklist = []
blacklist.extend([
"doc/src/modules/plotting.rst", # generates live plots
"doc/src/modules/physics/mechanics/autolev_parser.rst",
"sympy/codegen/array_utils.py", # raises deprecation warning
"sympy/core/compatibility.py", # backwards compatibility shim, importing it triggers a deprecation warning
"sympy/core/trace.py", # backwards compatibility shim, importing it triggers a deprecation warning
"sympy/galgebra.py", # no longer part of SymPy
"sympy/integrals/rubi/rubi.py",
"sympy/parsing/autolev/_antlr/autolevlexer.py", # generated code
"sympy/parsing/autolev/_antlr/autolevlistener.py", # generated code
"sympy/parsing/autolev/_antlr/autolevparser.py", # generated code
"sympy/parsing/latex/_antlr/latexlexer.py", # generated code
"sympy/parsing/latex/_antlr/latexparser.py", # generated code
"sympy/plotting/pygletplot/__init__.py", # crashes on some systems
"sympy/plotting/pygletplot/plot.py", # crashes on some systems
"sympy/printing/ccode.py", # backwards compatibility shim, importing it breaks the codegen doctests
"sympy/printing/cxxcode.py", # backwards compatibility shim, importing it breaks the codegen doctests
"sympy/printing/fcode.py", # backwards compatibility shim, importing it breaks the codegen doctests
"sympy/testing/randtest.py", # backwards compatibility shim, importing it triggers a deprecation warning
"sympy/this.py", # prints text
])
# autolev parser tests
num = 12
for i in range (1, num+1):
blacklist.append("sympy/parsing/autolev/test-examples/ruletest" + str(i) + ".py")
blacklist.extend(["sympy/parsing/autolev/test-examples/pydy-example-repo/mass_spring_damper.py",
"sympy/parsing/autolev/test-examples/pydy-example-repo/chaos_pendulum.py",
"sympy/parsing/autolev/test-examples/pydy-example-repo/double_pendulum.py",
"sympy/parsing/autolev/test-examples/pydy-example-repo/non_min_pendulum.py"])
if import_module('numpy') is None:
blacklist.extend([
"sympy/plotting/experimental_lambdify.py",
"sympy/plotting/plot_implicit.py",
"examples/advanced/autowrap_integrators.py",
"examples/advanced/autowrap_ufuncify.py",
"examples/intermediate/sample.py",
"examples/intermediate/mplot2d.py",
"examples/intermediate/mplot3d.py",
"doc/src/modules/numeric-computation.rst"
])
else:
if import_module('matplotlib') is None:
blacklist.extend([
"examples/intermediate/mplot2d.py",
"examples/intermediate/mplot3d.py"
])
else:
# Use a non-windowed backend, so that the tests work on Travis
import matplotlib
matplotlib.use('Agg')
if ON_TRAVIS or import_module('pyglet') is None:
blacklist.extend(["sympy/plotting/pygletplot"])
if import_module('aesara') is None:
blacklist.extend([
"sympy/printing/aesaracode.py",
"doc/src/modules/numeric-computation.rst",
])
if import_module('cupy') is None:
blacklist.extend([
"doc/src/modules/numeric-computation.rst",
])
if import_module('jax') is None:
blacklist.extend([
"doc/src/modules/numeric-computation.rst",
])
if import_module('antlr4') is None:
blacklist.extend([
"sympy/parsing/autolev/__init__.py",
"sympy/parsing/latex/_parse_latex_antlr.py",
])
if import_module('lfortran') is None:
#throws ImportError when lfortran not installed
blacklist.extend([
"sympy/parsing/sym_expr.py",
])
if import_module("scipy") is None:
# throws ModuleNotFoundError when scipy not installed
blacklist.extend(
["doc/src/guides/solving/solve-numerically.md",]
)
# disabled because of doctest failures in asmeurer's bot
blacklist.extend([
"sympy/utilities/autowrap.py",
"examples/advanced/autowrap_integrators.py",
"examples/advanced/autowrap_ufuncify.py"
])
# blacklist these modules until issue 4840 is resolved
blacklist.extend([
"sympy/conftest.py", # Depends on pytest
"sympy/testing/benchmarking.py",
])
# These are deprecated stubs to be removed:
blacklist.extend([
"sympy/utilities/benchmarking.py",
"sympy/utilities/tmpfiles.py",
"sympy/utilities/pytest.py",
"sympy/utilities/runtests.py",
"sympy/utilities/quality_unicode.py",
"sympy/utilities/randtest.py",
])
blacklist = convert_to_native_paths(blacklist)
return blacklist
def _doctest(*paths, **kwargs):
"""
Internal function that actually runs the doctests.
All keyword arguments from ``doctest()`` are passed to this function
except for ``subprocess``.
Returns 0 if tests passed and 1 if they failed. See the docstrings of
``doctest()`` and ``test()`` for more information.
"""
from sympy.printing.pretty.pretty import pprint_use_unicode
normal = kwargs.get("normal", False)
verbose = kwargs.get("verbose", False)
colors = kwargs.get("colors", True)
force_colors = kwargs.get("force_colors", False)
blacklist = kwargs.get("blacklist", [])
split = kwargs.get('split', None)
blacklist.extend(_get_doctest_blacklist())
# Use a non-windowed backend, so that the tests work on Travis
if import_module('matplotlib') is not None:
import matplotlib
matplotlib.use('Agg')
# Disable warnings for external modules
import sympy.external
sympy.external.importtools.WARN_OLD_VERSION = False
sympy.external.importtools.WARN_NOT_INSTALLED = False
# Disable showing up of plots
from sympy.plotting.plot import unset_show
unset_show()
r = PyTestReporter(verbose, split=split, colors=colors,\
force_colors=force_colors)
t = SymPyDocTests(r, normal)
test_files = t.get_test_files('sympy')
test_files.extend(t.get_test_files('examples', init_only=False))
not_blacklisted = [f for f in test_files
if not any(b in f for b in blacklist)]
if len(paths) == 0:
matched = not_blacklisted
else:
# take only what was requested...but not blacklisted items
# and allow for partial match anywhere or fnmatch of name
paths = convert_to_native_paths(paths)
matched = []
for f in not_blacklisted:
basename = os.path.basename(f)
for p in paths:
if p in f or fnmatch(basename, p):
matched.append(f)
break
matched.sort()
if split:
matched = split_list(matched, split)
t._testfiles.extend(matched)
# run the tests and record the result for this *py portion of the tests
if t._testfiles:
failed = not t.test()
else:
failed = False
# N.B.
# --------------------------------------------------------------------
# Here we test *.rst and *.md files at or below doc/src. Code from these
# must be self supporting in terms of imports since there is no importing
# of necessary modules by doctest.testfile. If you try to pass *.py files
# through this they might fail because they will lack the needed imports
# and smarter parsing that can be done with source code.
#
test_files_rst = t.get_test_files('doc/src', '*.rst', init_only=False)
test_files_md = t.get_test_files('doc/src', '*.md', init_only=False)
test_files = test_files_rst + test_files_md
test_files.sort()
not_blacklisted = [f for f in test_files
if not any(b in f for b in blacklist)]
if len(paths) == 0:
matched = not_blacklisted
else:
# Take only what was requested as long as it's not on the blacklist.
# Paths were already made native in *py tests so don't repeat here.
# There's no chance of having a *py file slip through since we
# only have *rst files in test_files.
matched = []
for f in not_blacklisted:
basename = os.path.basename(f)
for p in paths:
if p in f or fnmatch(basename, p):
matched.append(f)
break
if split:
matched = split_list(matched, split)
first_report = True
for rst_file in matched:
if not os.path.isfile(rst_file):
continue
old_displayhook = sys.displayhook
try:
use_unicode_prev = setup_pprint()
out = sympytestfile(
rst_file, module_relative=False, encoding='utf-8',
optionflags=pdoctest.ELLIPSIS | pdoctest.NORMALIZE_WHITESPACE |
pdoctest.IGNORE_EXCEPTION_DETAIL)
finally:
# make sure we return to the original displayhook in case some
# doctest has changed that
sys.displayhook = old_displayhook
# The NO_GLOBAL flag overrides the no_global flag to init_printing
# if True
import sympy.interactive.printing as interactive_printing
interactive_printing.NO_GLOBAL = False
pprint_use_unicode(use_unicode_prev)
rstfailed, tested = out
if tested:
failed = rstfailed or failed
if first_report:
first_report = False
msg = 'rst/md doctests start'
if not t._testfiles:
r.start(msg=msg)
else:
r.write_center(msg)
print()
# use as the id, everything past the first 'sympy'
file_id = rst_file[rst_file.find('sympy') + len('sympy') + 1:]
print(file_id, end=" ")
# get at least the name out so it is know who is being tested
wid = r.terminal_width - len(file_id) - 1 # update width
test_file = '[%s]' % (tested)
report = '[%s]' % (rstfailed or 'OK')
print(''.join(
[test_file, ' '*(wid - len(test_file) - len(report)), report])
)
# the doctests for *py will have printed this message already if there was
# a failure, so now only print it if there was intervening reporting by
# testing the *rst as evidenced by first_report no longer being True.
if not first_report and failed:
print()
print("DO *NOT* COMMIT!")
return int(failed)
sp = re.compile(r'([0-9]+)/([1-9][0-9]*)')
def split_list(l, split, density=None):
"""
Splits a list into part a of b
split should be a string of the form 'a/b'. For instance, '1/3' would give
the split one of three.
If the length of the list is not divisible by the number of splits, the
last split will have more items.
`density` may be specified as a list. If specified,
tests will be balanced so that each split has as equal-as-possible
amount of mass according to `density`.
>>> from sympy.testing.runtests import split_list
>>> a = list(range(10))
>>> split_list(a, '1/3')
[0, 1, 2]
>>> split_list(a, '2/3')
[3, 4, 5]
>>> split_list(a, '3/3')
[6, 7, 8, 9]
"""
m = sp.match(split)
if not m:
raise ValueError("split must be a string of the form a/b where a and b are ints")
i, t = map(int, m.groups())
if not density:
return l[(i - 1)*len(l)//t : i*len(l)//t]
# normalize density
tot = sum(density)
density = [x / tot for x in density]
def density_inv(x):
"""Interpolate the inverse to the cumulative
distribution function given by density"""
if x <= 0:
return 0
if x >= sum(density):
return 1
# find the first time the cumulative sum surpasses x
# and linearly interpolate
cumm = 0
for i, d in enumerate(density):
cumm += d
if cumm >= x:
break
frac = (d - (cumm - x)) / d
return (i + frac) / len(density)
lower_frac = density_inv((i - 1) / t)
higher_frac = density_inv(i / t)
return l[int(lower_frac*len(l)) : int(higher_frac*len(l))]
from collections import namedtuple
SymPyTestResults = namedtuple('SymPyTestResults', 'failed attempted')
def sympytestfile(filename, module_relative=True, name=None, package=None,
globs=None, verbose=None, report=True, optionflags=0,
extraglobs=None, raise_on_error=False,
parser=pdoctest.DocTestParser(), encoding=None):
"""
Test examples in the given file. Return (#failures, #tests).
Optional keyword arg ``module_relative`` specifies how filenames
should be interpreted:
- If ``module_relative`` is True (the default), then ``filename``
specifies a module-relative path. By default, this path is
relative to the calling module's directory; but if the
``package`` argument is specified, then it is relative to that
package. To ensure os-independence, ``filename`` should use
"/" characters to separate path segments, and should not
be an absolute path (i.e., it may not begin with "/").
- If ``module_relative`` is False, then ``filename`` specifies an
os-specific path. The path may be absolute or relative (to
the current working directory).
Optional keyword arg ``name`` gives the name of the test; by default
use the file's basename.
Optional keyword argument ``package`` is a Python package or the
name of a Python package whose directory should be used as the
base directory for a module relative filename. If no package is
specified, then the calling module's directory is used as the base
directory for module relative filenames. It is an error to
specify ``package`` if ``module_relative`` is False.
Optional keyword arg ``globs`` gives a dict to be used as the globals
when executing examples; by default, use {}. A copy of this dict
is actually used for each docstring, so that each docstring's
examples start with a clean slate.
Optional keyword arg ``extraglobs`` gives a dictionary that should be
merged into the globals that are used to execute examples. By
default, no extra globals are used.
Optional keyword arg ``verbose`` prints lots of stuff if true, prints
only failures if false; by default, it's true iff "-v" is in sys.argv.
Optional keyword arg ``report`` prints a summary at the end when true,
else prints nothing at the end. In verbose mode, the summary is
detailed, else very brief (in fact, empty if all tests passed).
Optional keyword arg ``optionflags`` or's together module constants,
and defaults to 0. Possible values (see the docs for details):
- DONT_ACCEPT_TRUE_FOR_1
- DONT_ACCEPT_BLANKLINE
- NORMALIZE_WHITESPACE
- ELLIPSIS
- SKIP
- IGNORE_EXCEPTION_DETAIL
- REPORT_UDIFF
- REPORT_CDIFF
- REPORT_NDIFF
- REPORT_ONLY_FIRST_FAILURE
Optional keyword arg ``raise_on_error`` raises an exception on the
first unexpected exception or failure. This allows failures to be
post-mortem debugged.
Optional keyword arg ``parser`` specifies a DocTestParser (or
subclass) that should be used to extract tests from the files.
Optional keyword arg ``encoding`` specifies an encoding that should
be used to convert the file to unicode.
Advanced tomfoolery: testmod runs methods of a local instance of
class doctest.Tester, then merges the results into (or creates)
global Tester instance doctest.master. Methods of doctest.master
can be called directly too, if you want to do something unusual.
Passing report=0 to testmod is especially useful then, to delay
displaying a summary. Invoke doctest.master.summarize(verbose)
when you're done fiddling.
"""
if package and not module_relative:
raise ValueError("Package may only be specified for module-"
"relative paths.")
# Relativize the path
text, filename = pdoctest._load_testfile(
filename, package, module_relative, encoding)
# If no name was given, then use the file's name.
if name is None:
name = os.path.basename(filename)
# Assemble the globals.
if globs is None:
globs = {}
else:
globs = globs.copy()
if extraglobs is not None:
globs.update(extraglobs)
if '__name__' not in globs:
globs['__name__'] = '__main__'
if raise_on_error:
runner = pdoctest.DebugRunner(verbose=verbose, optionflags=optionflags)
else:
runner = SymPyDocTestRunner(verbose=verbose, optionflags=optionflags)
runner._checker = SymPyOutputChecker()
# Read the file, convert it to a test, and run it.
test = parser.get_doctest(text, globs, name, filename, 0)
runner.run(test)
if report:
runner.summarize()
if pdoctest.master is None:
pdoctest.master = runner
else:
pdoctest.master.merge(runner)
return SymPyTestResults(runner.failures, runner.tries)
class SymPyTests:
def __init__(self, reporter, kw="", post_mortem=False,
seed=None, fast_threshold=None, slow_threshold=None):
self._post_mortem = post_mortem
self._kw = kw
self._count = 0
self._root_dir = get_sympy_dir()
self._reporter = reporter
self._reporter.root_dir(self._root_dir)
self._testfiles = []
self._seed = seed if seed is not None else random.random()
# Defaults in seconds, from human / UX design limits
# http://www.nngroup.com/articles/response-times-3-important-limits/
#
# These defaults are *NOT* set in stone as we are measuring different
# things, so others feel free to come up with a better yardstick :)
if fast_threshold:
self._fast_threshold = float(fast_threshold)
else:
self._fast_threshold = 8
if slow_threshold:
self._slow_threshold = float(slow_threshold)
else:
self._slow_threshold = 10
def test(self, sort=False, timeout=False, slow=False,
enhance_asserts=False, fail_on_timeout=False):
"""
Runs the tests returning True if all tests pass, otherwise False.
If sort=False run tests in random order.
"""
if sort:
self._testfiles.sort()
elif slow:
pass
else:
random.seed(self._seed)
random.shuffle(self._testfiles)
self._reporter.start(self._seed)
for f in self._testfiles:
try:
self.test_file(f, sort, timeout, slow,
enhance_asserts, fail_on_timeout)
except KeyboardInterrupt:
print(" interrupted by user")
self._reporter.finish()
raise
return self._reporter.finish()
def _enhance_asserts(self, source):
from ast import (NodeTransformer, Compare, Name, Store, Load, Tuple,
Assign, BinOp, Str, Mod, Assert, parse, fix_missing_locations)
ops = {"Eq": '==', "NotEq": '!=', "Lt": '<', "LtE": '<=',
"Gt": '>', "GtE": '>=', "Is": 'is', "IsNot": 'is not',
"In": 'in', "NotIn": 'not in'}
class Transform(NodeTransformer):
def visit_Assert(self, stmt):
if isinstance(stmt.test, Compare):
compare = stmt.test
values = [compare.left] + compare.comparators
names = [ "_%s" % i for i, _ in enumerate(values) ]
names_store = [ Name(n, Store()) for n in names ]
names_load = [ Name(n, Load()) for n in names ]
target = Tuple(names_store, Store())
value = Tuple(values, Load())
assign = Assign([target], value)
new_compare = Compare(names_load[0], compare.ops, names_load[1:])
msg_format = "\n%s " + "\n%s ".join([ ops[op.__class__.__name__] for op in compare.ops ]) + "\n%s"
msg = BinOp(Str(msg_format), Mod(), Tuple(names_load, Load()))
test = Assert(new_compare, msg, lineno=stmt.lineno, col_offset=stmt.col_offset)
return [assign, test]
else:
return stmt
tree = parse(source)
new_tree = Transform().visit(tree)
return fix_missing_locations(new_tree)
def test_file(self, filename, sort=True, timeout=False, slow=False,
enhance_asserts=False, fail_on_timeout=False):
reporter = self._reporter
funcs = []
try:
gl = {'__file__': filename}
try:
open_file = lambda: open(filename, encoding="utf8")
with open_file() as f:
source = f.read()
if self._kw:
for l in source.splitlines():
if l.lstrip().startswith('def '):
if any(l.lower().find(k.lower()) != -1 for k in self._kw):
break
else:
return
if enhance_asserts:
try:
source = self._enhance_asserts(source)
except ImportError:
pass
code = compile(source, filename, "exec", flags=0, dont_inherit=True)
exec(code, gl)
except (SystemExit, KeyboardInterrupt):
raise
except ImportError:
reporter.import_error(filename, sys.exc_info())
return
except Exception:
reporter.test_exception(sys.exc_info())
clear_cache()
self._count += 1
random.seed(self._seed)
disabled = gl.get("disabled", False)
if not disabled:
# we need to filter only those functions that begin with 'test_'
# We have to be careful about decorated functions. As long as
# the decorator uses functools.wraps, we can detect it.
funcs = []
for f in gl:
if (f.startswith("test_") and (inspect.isfunction(gl[f])
or inspect.ismethod(gl[f]))):
func = gl[f]
# Handle multiple decorators
while hasattr(func, '__wrapped__'):
func = func.__wrapped__
if inspect.getsourcefile(func) == filename:
funcs.append(gl[f])
if slow:
funcs = [f for f in funcs if getattr(f, '_slow', False)]
# Sorting of XFAILed functions isn't fixed yet :-(
funcs.sort(key=lambda x: inspect.getsourcelines(x)[1])
i = 0
while i < len(funcs):
if inspect.isgeneratorfunction(funcs[i]):
# some tests can be generators, that return the actual
# test functions. We unpack it below:
f = funcs.pop(i)
for fg in f():
func = fg[0]
args = fg[1:]
fgw = lambda: func(*args)
funcs.insert(i, fgw)
i += 1
else:
i += 1
# drop functions that are not selected with the keyword expression:
funcs = [x for x in funcs if self.matches(x)]
if not funcs:
return
except Exception:
reporter.entering_filename(filename, len(funcs))
raise
reporter.entering_filename(filename, len(funcs))
if not sort:
random.shuffle(funcs)
for f in funcs:
start = time.time()
reporter.entering_test(f)
try:
if getattr(f, '_slow', False) and not slow:
raise Skipped("Slow")
with raise_on_deprecated():
if timeout:
self._timeout(f, timeout, fail_on_timeout)
else:
random.seed(self._seed)
f()
except KeyboardInterrupt:
if getattr(f, '_slow', False):
reporter.test_skip("KeyboardInterrupt")
else:
raise
except Exception:
if timeout:
signal.alarm(0) # Disable the alarm. It could not be handled before.
t, v, tr = sys.exc_info()
if t is AssertionError:
reporter.test_fail((t, v, tr))
if self._post_mortem:
pdb.post_mortem(tr)
elif t.__name__ == "Skipped":
reporter.test_skip(v)
elif t.__name__ == "XFail":
reporter.test_xfail()
elif t.__name__ == "XPass":
reporter.test_xpass(v)
else:
reporter.test_exception((t, v, tr))
if self._post_mortem:
pdb.post_mortem(tr)
else:
reporter.test_pass()
taken = time.time() - start
if taken > self._slow_threshold:
filename = os.path.relpath(filename, reporter._root_dir)
reporter.slow_test_functions.append(
(filename + "::" + f.__name__, taken))
if getattr(f, '_slow', False) and slow:
if taken < self._fast_threshold:
filename = os.path.relpath(filename, reporter._root_dir)
reporter.fast_test_functions.append(
(filename + "::" + f.__name__, taken))
reporter.leaving_filename()
def _timeout(self, function, timeout, fail_on_timeout):
def callback(x, y):
signal.alarm(0)
if fail_on_timeout:
raise TimeOutError("Timed out after %d seconds" % timeout)
else:
raise Skipped("Timeout")
signal.signal(signal.SIGALRM, callback)
signal.alarm(timeout) # Set an alarm with a given timeout
function()
signal.alarm(0) # Disable the alarm
def matches(self, x):
"""
Does the keyword expression self._kw match "x"? Returns True/False.
Always returns True if self._kw is "".
"""
if not self._kw:
return True
for kw in self._kw:
if x.__name__.lower().find(kw.lower()) != -1:
return True
return False
def get_test_files(self, dir, pat='test_*.py'):
"""
Returns the list of test_*.py (default) files at or below directory
``dir`` relative to the SymPy home directory.
"""
dir = os.path.join(self._root_dir, convert_to_native_paths([dir])[0])
g = []
for path, folders, files in os.walk(dir):
g.extend([os.path.join(path, f) for f in files if fnmatch(f, pat)])
return sorted([os.path.normcase(gi) for gi in g])
class SymPyDocTests:
def __init__(self, reporter, normal):
self._count = 0
self._root_dir = get_sympy_dir()
self._reporter = reporter
self._reporter.root_dir(self._root_dir)
self._normal = normal
self._testfiles = []
def test(self):
"""
Runs the tests and returns True if all tests pass, otherwise False.
"""
self._reporter.start()
for f in self._testfiles:
try:
self.test_file(f)
except KeyboardInterrupt:
print(" interrupted by user")
self._reporter.finish()
raise
return self._reporter.finish()
def test_file(self, filename):
clear_cache()
from io import StringIO
import sympy.interactive.printing as interactive_printing
from sympy.printing.pretty.pretty import pprint_use_unicode
rel_name = filename[len(self._root_dir) + 1:]
dirname, file = os.path.split(filename)
module = rel_name.replace(os.sep, '.')[:-3]
if rel_name.startswith("examples"):
# Examples files do not have __init__.py files,
# So we have to temporarily extend sys.path to import them
sys.path.insert(0, dirname)
module = file[:-3] # remove ".py"
try:
module = pdoctest._normalize_module(module)
tests = SymPyDocTestFinder().find(module)
except (SystemExit, KeyboardInterrupt):
raise
except ImportError:
self._reporter.import_error(filename, sys.exc_info())
return
finally:
if rel_name.startswith("examples"):
del sys.path[0]
tests = [test for test in tests if len(test.examples) > 0]
# By default tests are sorted by alphabetical order by function name.
# We sort by line number so one can edit the file sequentially from
# bottom to top. However, if there are decorated functions, their line
# numbers will be too large and for now one must just search for these
# by text and function name.
tests.sort(key=lambda x: -x.lineno)
if not tests:
return
self._reporter.entering_filename(filename, len(tests))
for test in tests:
assert len(test.examples) != 0
if self._reporter._verbose:
self._reporter.write("\n{} ".format(test.name))
# check if there are external dependencies which need to be met
if '_doctest_depends_on' in test.globs:
try:
self._check_dependencies(**test.globs['_doctest_depends_on'])
except DependencyError as e:
self._reporter.test_skip(v=str(e))
continue
runner = SymPyDocTestRunner(verbose=self._reporter._verbose==2,
optionflags=pdoctest.ELLIPSIS |
pdoctest.NORMALIZE_WHITESPACE |
pdoctest.IGNORE_EXCEPTION_DETAIL)
runner._checker = SymPyOutputChecker()
old = sys.stdout
new = old if self._reporter._verbose==2 else StringIO()
sys.stdout = new
# If the testing is normal, the doctests get importing magic to
# provide the global namespace. If not normal (the default) then
# then must run on their own; all imports must be explicit within
# a function's docstring. Once imported that import will be
# available to the rest of the tests in a given function's
# docstring (unless clear_globs=True below).
if not self._normal:
test.globs = {}
# if this is uncommented then all the test would get is what
# comes by default with a "from sympy import *"
#exec('from sympy import *') in test.globs
old_displayhook = sys.displayhook
use_unicode_prev = setup_pprint()
try:
f, t = runner.run(test,
out=new.write, clear_globs=False)
except KeyboardInterrupt:
raise
finally:
sys.stdout = old
if f > 0:
self._reporter.doctest_fail(test.name, new.getvalue())
else:
self._reporter.test_pass()
sys.displayhook = old_displayhook
interactive_printing.NO_GLOBAL = False
pprint_use_unicode(use_unicode_prev)
self._reporter.leaving_filename()
def get_test_files(self, dir, pat='*.py', init_only=True):
r"""
Returns the list of \*.py files (default) from which docstrings
will be tested which are at or below directory ``dir``. By default,
only those that have an __init__.py in their parent directory
and do not start with ``test_`` will be included.
"""
def importable(x):
"""
Checks if given pathname x is an importable module by checking for
__init__.py file.
Returns True/False.
Currently we only test if the __init__.py file exists in the
directory with the file "x" (in theory we should also test all the
parent dirs).
"""
init_py = os.path.join(os.path.dirname(x), "__init__.py")
return os.path.exists(init_py)
dir = os.path.join(self._root_dir, convert_to_native_paths([dir])[0])
g = []
for path, folders, files in os.walk(dir):
g.extend([os.path.join(path, f) for f in files
if not f.startswith('test_') and fnmatch(f, pat)])
if init_only:
# skip files that are not importable (i.e. missing __init__.py)
g = [x for x in g if importable(x)]
return [os.path.normcase(gi) for gi in g]
def _check_dependencies(self,
executables=(),
modules=(),
disable_viewers=(),
python_version=(3, 5)):
"""
Checks if the dependencies for the test are installed.
Raises ``DependencyError`` it at least one dependency is not installed.
"""
for executable in executables:
if not shutil.which(executable):
raise DependencyError("Could not find %s" % executable)
for module in modules:
if module == 'matplotlib':
matplotlib = import_module(
'matplotlib',
import_kwargs={'fromlist':
['pyplot', 'cm', 'collections']},
min_module_version='1.0.0', catch=(RuntimeError,))
if matplotlib is None:
raise DependencyError("Could not import matplotlib")
else:
if not import_module(module):
raise DependencyError("Could not import %s" % module)
if disable_viewers:
tempdir = tempfile.mkdtemp()
os.environ['PATH'] = '%s:%s' % (tempdir, os.environ['PATH'])
vw = ('#!/usr/bin/env python3\n'
'import sys\n'
'if len(sys.argv) <= 1:\n'
' exit("wrong number of args")\n')
for viewer in disable_viewers:
with open(os.path.join(tempdir, viewer), 'w') as fh:
fh.write(vw)
# make the file executable
os.chmod(os.path.join(tempdir, viewer),
stat.S_IREAD | stat.S_IWRITE | stat.S_IXUSR)
if python_version:
if sys.version_info < python_version:
raise DependencyError("Requires Python >= " + '.'.join(map(str, python_version)))
if 'pyglet' in modules:
# monkey-patch pyglet s.t. it does not open a window during
# doctesting
import pyglet
class DummyWindow:
def __init__(self, *args, **kwargs):
self.has_exit = True
self.width = 600
self.height = 400
def set_vsync(self, x):
pass
def switch_to(self):
pass
def push_handlers(self, x):
pass
def close(self):
pass
pyglet.window.Window = DummyWindow
class SymPyDocTestFinder(DocTestFinder):
"""
A class used to extract the DocTests that are relevant to a given
object, from its docstring and the docstrings of its contained
objects. Doctests can currently be extracted from the following
object types: modules, functions, classes, methods, staticmethods,
classmethods, and properties.
Modified from doctest's version to look harder for code that
appears comes from a different module. For example, the @vectorize
decorator makes it look like functions come from multidimensional.py
even though their code exists elsewhere.
"""
def _find(self, tests, obj, name, module, source_lines, globs, seen):
"""
Find tests for the given object and any contained objects, and
add them to ``tests``.
"""
if self._verbose:
print('Finding tests in %s' % name)
# If we've already processed this object, then ignore it.
if id(obj) in seen:
return
seen[id(obj)] = 1
# Make sure we don't run doctests for classes outside of sympy, such
# as in numpy or scipy.
if inspect.isclass(obj):
if obj.__module__.split('.')[0] != 'sympy':
return
# Find a test for this object, and add it to the list of tests.
test = self._get_test(obj, name, module, globs, source_lines)
if test is not None:
tests.append(test)
if not self._recurse:
return
# Look for tests in a module's contained objects.
if inspect.ismodule(obj):
for rawname, val in obj.__dict__.items():
# Recurse to functions & classes.
if inspect.isfunction(val) or inspect.isclass(val):
# Make sure we don't run doctests functions or classes
# from different modules
if val.__module__ != module.__name__:
continue
assert self._from_module(module, val), \
"%s is not in module %s (rawname %s)" % (val, module, rawname)
try:
valname = '%s.%s' % (name, rawname)
self._find(tests, val, valname, module,
source_lines, globs, seen)
except KeyboardInterrupt:
raise
# Look for tests in a module's __test__ dictionary.
for valname, val in getattr(obj, '__test__', {}).items():
if not isinstance(valname, str):
raise ValueError("SymPyDocTestFinder.find: __test__ keys "
"must be strings: %r" %
(type(valname),))
if not (inspect.isfunction(val) or inspect.isclass(val) or
inspect.ismethod(val) or inspect.ismodule(val) or
isinstance(val, str)):
raise ValueError("SymPyDocTestFinder.find: __test__ values "
"must be strings, functions, methods, "
"classes, or modules: %r" %
(type(val),))
valname = '%s.__test__.%s' % (name, valname)
self._find(tests, val, valname, module, source_lines,
globs, seen)
# Look for tests in a class's contained objects.
if inspect.isclass(obj):
for valname, val in obj.__dict__.items():
# Special handling for staticmethod/classmethod.
if isinstance(val, staticmethod):
val = getattr(obj, valname)
if isinstance(val, classmethod):
val = getattr(obj, valname).__func__
# Recurse to methods, properties, and nested classes.
if ((inspect.isfunction(unwrap(val)) or
inspect.isclass(val) or
isinstance(val, property)) and
self._from_module(module, val)):
# Make sure we don't run doctests functions or classes
# from different modules
if isinstance(val, property):
if hasattr(val.fget, '__module__'):
if val.fget.__module__ != module.__name__:
continue
else:
if val.__module__ != module.__name__:
continue
assert self._from_module(module, val), \
"%s is not in module %s (valname %s)" % (
val, module, valname)
valname = '%s.%s' % (name, valname)
self._find(tests, val, valname, module, source_lines,
globs, seen)
def _get_test(self, obj, name, module, globs, source_lines):
"""
Return a DocTest for the given object, if it defines a docstring;
otherwise, return None.
"""
lineno = None
# Extract the object's docstring. If it does not have one,
# then return None (no test for this object).
if isinstance(obj, str):
# obj is a string in the case for objects in the polys package.
# Note that source_lines is a binary string (compiled polys
# modules), which can't be handled by _find_lineno so determine
# the line number here.
docstring = obj
matches = re.findall(r"line \d+", name)
assert len(matches) == 1, \
"string '%s' does not contain lineno " % name
# NOTE: this is not the exact linenumber but its better than no
# lineno ;)
lineno = int(matches[0][5:])
else:
try:
if obj.__doc__ is None:
docstring = ''
else:
docstring = obj.__doc__
if not isinstance(docstring, str):
docstring = str(docstring)
except (TypeError, AttributeError):
docstring = ''
# Don't bother if the docstring is empty.
if self._exclude_empty and not docstring:
return None
# check that properties have a docstring because _find_lineno
# assumes it
if isinstance(obj, property):
if obj.fget.__doc__ is None:
return None
# Find the docstring's location in the file.
if lineno is None:
obj = unwrap(obj)
# handling of properties is not implemented in _find_lineno so do
# it here
if hasattr(obj, 'func_closure') and obj.func_closure is not None:
tobj = obj.func_closure[0].cell_contents
elif isinstance(obj, property):
tobj = obj.fget
else:
tobj = obj
lineno = self._find_lineno(tobj, source_lines)
if lineno is None:
return None
# Return a DocTest for this object.
if module is None:
filename = None
else:
filename = getattr(module, '__file__', module.__name__)
if filename[-4:] in (".pyc", ".pyo"):
filename = filename[:-1]
globs['_doctest_depends_on'] = getattr(obj, '_doctest_depends_on', {})
return self._parser.get_doctest(docstring, globs, name,
filename, lineno)
class SymPyDocTestRunner(DocTestRunner):
"""
A class used to run DocTest test cases, and accumulate statistics.
The ``run`` method is used to process a single DocTest case. It
returns a tuple ``(f, t)``, where ``t`` is the number of test cases
tried, and ``f`` is the number of test cases that failed.
Modified from the doctest version to not reset the sys.displayhook (see
issue 5140).
See the docstring of the original DocTestRunner for more information.
"""
def run(self, test, compileflags=None, out=None, clear_globs=True):
"""
Run the examples in ``test``, and display the results using the
writer function ``out``.
The examples are run in the namespace ``test.globs``. If
``clear_globs`` is true (the default), then this namespace will
be cleared after the test runs, to help with garbage
collection. If you would like to examine the namespace after
the test completes, then use ``clear_globs=False``.
``compileflags`` gives the set of flags that should be used by
the Python compiler when running the examples. If not
specified, then it will default to the set of future-import
flags that apply to ``globs``.
The output of each example is checked using
``SymPyDocTestRunner.check_output``, and the results are
formatted by the ``SymPyDocTestRunner.report_*`` methods.
"""
self.test = test
# Remove ``` from the end of example, which may appear in Markdown
# files
for example in test.examples:
example.want = example.want.replace('```\n', '')
example.exc_msg = example.exc_msg and example.exc_msg.replace('```\n', '')
if compileflags is None:
compileflags = pdoctest._extract_future_flags(test.globs)
save_stdout = sys.stdout
if out is None:
out = save_stdout.write
sys.stdout = self._fakeout
# Patch pdb.set_trace to restore sys.stdout during interactive
# debugging (so it's not still redirected to self._fakeout).
# Note that the interactive output will go to *our*
# save_stdout, even if that's not the real sys.stdout; this
# allows us to write test cases for the set_trace behavior.
save_set_trace = pdb.set_trace
self.debugger = pdoctest._OutputRedirectingPdb(save_stdout)
self.debugger.reset()
pdb.set_trace = self.debugger.set_trace
# Patch linecache.getlines, so we can see the example's source
# when we're inside the debugger.
self.save_linecache_getlines = pdoctest.linecache.getlines
linecache.getlines = self.__patched_linecache_getlines
# Fail for deprecation warnings
with raise_on_deprecated():
try:
return self.__run(test, compileflags, out)
finally:
sys.stdout = save_stdout
pdb.set_trace = save_set_trace
linecache.getlines = self.save_linecache_getlines
if clear_globs:
test.globs.clear()
# We have to override the name mangled methods.
monkeypatched_methods = [
'patched_linecache_getlines',
'run',
'record_outcome'
]
for method in monkeypatched_methods:
oldname = '_DocTestRunner__' + method
newname = '_SymPyDocTestRunner__' + method
setattr(SymPyDocTestRunner, newname, getattr(DocTestRunner, oldname))
class SymPyOutputChecker(pdoctest.OutputChecker):
"""
Compared to the OutputChecker from the stdlib our OutputChecker class
supports numerical comparison of floats occurring in the output of the
doctest examples
"""
def __init__(self):
# NOTE OutputChecker is an old-style class with no __init__ method,
# so we can't call the base class version of __init__ here
got_floats = r'(\d+\.\d*|\.\d+)'
# floats in the 'want' string may contain ellipses
want_floats = got_floats + r'(\.{3})?'
front_sep = r'\s|\+|\-|\*|,'
back_sep = front_sep + r'|j|e'
fbeg = r'^%s(?=%s|$)' % (got_floats, back_sep)
fmidend = r'(?<=%s)%s(?=%s|$)' % (front_sep, got_floats, back_sep)
self.num_got_rgx = re.compile(r'(%s|%s)' %(fbeg, fmidend))
fbeg = r'^%s(?=%s|$)' % (want_floats, back_sep)
fmidend = r'(?<=%s)%s(?=%s|$)' % (front_sep, want_floats, back_sep)
self.num_want_rgx = re.compile(r'(%s|%s)' %(fbeg, fmidend))
def check_output(self, want, got, optionflags):
"""
Return True iff the actual output from an example (`got`)
matches the expected output (`want`). These strings are
always considered to match if they are identical; but
depending on what option flags the test runner is using,
several non-exact match types are also possible. See the
documentation for `TestRunner` for more information about
option flags.
"""
# Handle the common case first, for efficiency:
# if they're string-identical, always return true.
if got == want:
return True
# TODO parse integers as well ?
# Parse floats and compare them. If some of the parsed floats contain
# ellipses, skip the comparison.
matches = self.num_got_rgx.finditer(got)
numbers_got = [match.group(1) for match in matches] # list of strs
matches = self.num_want_rgx.finditer(want)
numbers_want = [match.group(1) for match in matches] # list of strs
if len(numbers_got) != len(numbers_want):
return False
if len(numbers_got) > 0:
nw_ = []
for ng, nw in zip(numbers_got, numbers_want):
if '...' in nw:
nw_.append(ng)
continue
else:
nw_.append(nw)
if abs(float(ng)-float(nw)) > 1e-5:
return False
got = self.num_got_rgx.sub(r'%s', got)
got = got % tuple(nw_)
# <BLANKLINE> can be used as a special sequence to signify a
# blank line, unless the DONT_ACCEPT_BLANKLINE flag is used.
if not (optionflags & pdoctest.DONT_ACCEPT_BLANKLINE):
# Replace <BLANKLINE> in want with a blank line.
want = re.sub(r'(?m)^%s\s*?$' % re.escape(pdoctest.BLANKLINE_MARKER),
'', want)
# If a line in got contains only spaces, then remove the
# spaces.
got = re.sub(r'(?m)^\s*?$', '', got)
if got == want:
return True
# This flag causes doctest to ignore any differences in the
# contents of whitespace strings. Note that this can be used
# in conjunction with the ELLIPSIS flag.
if optionflags & pdoctest.NORMALIZE_WHITESPACE:
got = ' '.join(got.split())
want = ' '.join(want.split())
if got == want:
return True
# The ELLIPSIS flag says to let the sequence "..." in `want`
# match any substring in `got`.
if optionflags & pdoctest.ELLIPSIS:
if pdoctest._ellipsis_match(want, got):
return True
# We didn't find any match; return false.
return False
class Reporter:
"""
Parent class for all reporters.
"""
pass
class PyTestReporter(Reporter):
"""
Py.test like reporter. Should produce output identical to py.test.
"""
def __init__(self, verbose=False, tb="short", colors=True,
force_colors=False, split=None):
self._verbose = verbose
self._tb_style = tb
self._colors = colors
self._force_colors = force_colors
self._xfailed = 0
self._xpassed = []
self._failed = []
self._failed_doctest = []
self._passed = 0
self._skipped = 0
self._exceptions = []
self._terminal_width = None
self._default_width = 80
self._split = split
self._active_file = ''
self._active_f = None
# TODO: Should these be protected?
self.slow_test_functions = []
self.fast_test_functions = []
# this tracks the x-position of the cursor (useful for positioning
# things on the screen), without the need for any readline library:
self._write_pos = 0
self._line_wrap = False
def root_dir(self, dir):
self._root_dir = dir
@property
def terminal_width(self):
if self._terminal_width is not None:
return self._terminal_width
def findout_terminal_width():
if sys.platform == "win32":
# Windows support is based on:
#
# http://code.activestate.com/recipes/
# 440694-determine-size-of-console-window-on-windows/
from ctypes import windll, create_string_buffer
h = windll.kernel32.GetStdHandle(-12)
csbi = create_string_buffer(22)
res = windll.kernel32.GetConsoleScreenBufferInfo(h, csbi)
if res:
import struct
(_, _, _, _, _, left, _, right, _, _, _) = \
struct.unpack("hhhhHhhhhhh", csbi.raw)
return right - left
else:
return self._default_width
if hasattr(sys.stdout, 'isatty') and not sys.stdout.isatty():
return self._default_width # leave PIPEs alone
try:
process = subprocess.Popen(['stty', '-a'],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
stdout, stderr = process.communicate()
stdout = stdout.decode("utf-8")
except OSError:
pass
else:
# We support the following output formats from stty:
#
# 1) Linux -> columns 80
# 2) OS X -> 80 columns
# 3) Solaris -> columns = 80
re_linux = r"columns\s+(?P<columns>\d+);"
re_osx = r"(?P<columns>\d+)\s*columns;"
re_solaris = r"columns\s+=\s+(?P<columns>\d+);"
for regex in (re_linux, re_osx, re_solaris):
match = re.search(regex, stdout)
if match is not None:
columns = match.group('columns')
try:
width = int(columns)
except ValueError:
pass
if width != 0:
return width
return self._default_width
width = findout_terminal_width()
self._terminal_width = width
return width
def write(self, text, color="", align="left", width=None,
force_colors=False):
"""
Prints a text on the screen.
It uses sys.stdout.write(), so no readline library is necessary.
Parameters
==========
color : choose from the colors below, "" means default color
align : "left"/"right", "left" is a normal print, "right" is aligned on
the right-hand side of the screen, filled with spaces if
necessary
width : the screen width
"""
color_templates = (
("Black", "0;30"),
("Red", "0;31"),
("Green", "0;32"),
("Brown", "0;33"),
("Blue", "0;34"),
("Purple", "0;35"),
("Cyan", "0;36"),
("LightGray", "0;37"),
("DarkGray", "1;30"),
("LightRed", "1;31"),
("LightGreen", "1;32"),
("Yellow", "1;33"),
("LightBlue", "1;34"),
("LightPurple", "1;35"),
("LightCyan", "1;36"),
("White", "1;37"),
)
colors = {}
for name, value in color_templates:
colors[name] = value
c_normal = '\033[0m'
c_color = '\033[%sm'
if width is None:
width = self.terminal_width
if align == "right":
if self._write_pos + len(text) > width:
# we don't fit on the current line, create a new line
self.write("\n")
self.write(" "*(width - self._write_pos - len(text)))
if not self._force_colors and hasattr(sys.stdout, 'isatty') and not \
sys.stdout.isatty():
# the stdout is not a terminal, this for example happens if the
# output is piped to less, e.g. "bin/test | less". In this case,
# the terminal control sequences would be printed verbatim, so
# don't use any colors.
color = ""
elif sys.platform == "win32":
# Windows consoles don't support ANSI escape sequences
color = ""
elif not self._colors:
color = ""
if self._line_wrap:
if text[0] != "\n":
sys.stdout.write("\n")
# Avoid UnicodeEncodeError when printing out test failures
if IS_WINDOWS:
text = text.encode('raw_unicode_escape').decode('utf8', 'ignore')
elif not sys.stdout.encoding.lower().startswith('utf'):
text = text.encode(sys.stdout.encoding, 'backslashreplace'
).decode(sys.stdout.encoding)
if color == "":
sys.stdout.write(text)
else:
sys.stdout.write("%s%s%s" %
(c_color % colors[color], text, c_normal))
sys.stdout.flush()
l = text.rfind("\n")
if l == -1:
self._write_pos += len(text)
else:
self._write_pos = len(text) - l - 1
self._line_wrap = self._write_pos >= width
self._write_pos %= width
def write_center(self, text, delim="="):
width = self.terminal_width
if text != "":
text = " %s " % text
idx = (width - len(text)) // 2
t = delim*idx + text + delim*(width - idx - len(text))
self.write(t + "\n")
def write_exception(self, e, val, tb):
# remove the first item, as that is always runtests.py
tb = tb.tb_next
t = traceback.format_exception(e, val, tb)
self.write("".join(t))
def start(self, seed=None, msg="test process starts"):
self.write_center(msg)
executable = sys.executable
v = tuple(sys.version_info)
python_version = "%s.%s.%s-%s-%s" % v
implementation = platform.python_implementation()
if implementation == 'PyPy':
implementation += " %s.%s.%s-%s-%s" % sys.pypy_version_info
self.write("executable: %s (%s) [%s]\n" %
(executable, python_version, implementation))
from sympy.utilities.misc import ARCH
self.write("architecture: %s\n" % ARCH)
from sympy.core.cache import USE_CACHE
self.write("cache: %s\n" % USE_CACHE)
version = ''
if GROUND_TYPES =='gmpy':
if HAS_GMPY == 1:
import gmpy
elif HAS_GMPY == 2:
import gmpy2 as gmpy
version = gmpy.version()
self.write("ground types: %s %s\n" % (GROUND_TYPES, version))
numpy = import_module('numpy')
self.write("numpy: %s\n" % (None if not numpy else numpy.__version__))
if seed is not None:
self.write("random seed: %d\n" % seed)
from sympy.utilities.misc import HASH_RANDOMIZATION
self.write("hash randomization: ")
hash_seed = os.getenv("PYTHONHASHSEED") or '0'
if HASH_RANDOMIZATION and (hash_seed == "random" or int(hash_seed)):
self.write("on (PYTHONHASHSEED=%s)\n" % hash_seed)
else:
self.write("off\n")
if self._split:
self.write("split: %s\n" % self._split)
self.write('\n')
self._t_start = clock()
def finish(self):
self._t_end = clock()
self.write("\n")
global text, linelen
text = "tests finished: %d passed, " % self._passed
linelen = len(text)
def add_text(mytext):
global text, linelen
"""Break new text if too long."""
if linelen + len(mytext) > self.terminal_width:
text += '\n'
linelen = 0
text += mytext
linelen += len(mytext)
if len(self._failed) > 0:
add_text("%d failed, " % len(self._failed))
if len(self._failed_doctest) > 0:
add_text("%d failed, " % len(self._failed_doctest))
if self._skipped > 0:
add_text("%d skipped, " % self._skipped)
if self._xfailed > 0:
add_text("%d expected to fail, " % self._xfailed)
if len(self._xpassed) > 0:
add_text("%d expected to fail but passed, " % len(self._xpassed))
if len(self._exceptions) > 0:
add_text("%d exceptions, " % len(self._exceptions))
add_text("in %.2f seconds" % (self._t_end - self._t_start))
if self.slow_test_functions:
self.write_center('slowest tests', '_')
sorted_slow = sorted(self.slow_test_functions, key=lambda r: r[1])
for slow_func_name, taken in sorted_slow:
print('%s - Took %.3f seconds' % (slow_func_name, taken))
if self.fast_test_functions:
self.write_center('unexpectedly fast tests', '_')
sorted_fast = sorted(self.fast_test_functions,
key=lambda r: r[1])
for fast_func_name, taken in sorted_fast:
print('%s - Took %.3f seconds' % (fast_func_name, taken))
if len(self._xpassed) > 0:
self.write_center("xpassed tests", "_")
for e in self._xpassed:
self.write("%s: %s\n" % (e[0], e[1]))
self.write("\n")
if self._tb_style != "no" and len(self._exceptions) > 0:
for e in self._exceptions:
filename, f, (t, val, tb) = e
self.write_center("", "_")
if f is None:
s = "%s" % filename
else:
s = "%s:%s" % (filename, f.__name__)
self.write_center(s, "_")
self.write_exception(t, val, tb)
self.write("\n")
if self._tb_style != "no" and len(self._failed) > 0:
for e in self._failed:
filename, f, (t, val, tb) = e
self.write_center("", "_")
self.write_center("%s:%s" % (filename, f.__name__), "_")
self.write_exception(t, val, tb)
self.write("\n")
if self._tb_style != "no" and len(self._failed_doctest) > 0:
for e in self._failed_doctest:
filename, msg = e
self.write_center("", "_")
self.write_center("%s" % filename, "_")
self.write(msg)
self.write("\n")
self.write_center(text)
ok = len(self._failed) == 0 and len(self._exceptions) == 0 and \
len(self._failed_doctest) == 0
if not ok:
self.write("DO *NOT* COMMIT!\n")
return ok
def entering_filename(self, filename, n):
rel_name = filename[len(self._root_dir) + 1:]
self._active_file = rel_name
self._active_file_error = False
self.write(rel_name)
self.write("[%d] " % n)
def leaving_filename(self):
self.write(" ")
if self._active_file_error:
self.write("[FAIL]", "Red", align="right")
else:
self.write("[OK]", "Green", align="right")
self.write("\n")
if self._verbose:
self.write("\n")
def entering_test(self, f):
self._active_f = f
if self._verbose:
self.write("\n" + f.__name__ + " ")
def test_xfail(self):
self._xfailed += 1
self.write("f", "Green")
def test_xpass(self, v):
message = str(v)
self._xpassed.append((self._active_file, message))
self.write("X", "Green")
def test_fail(self, exc_info):
self._failed.append((self._active_file, self._active_f, exc_info))
self.write("F", "Red")
self._active_file_error = True
def doctest_fail(self, name, error_msg):
# the first line contains "******", remove it:
error_msg = "\n".join(error_msg.split("\n")[1:])
self._failed_doctest.append((name, error_msg))
self.write("F", "Red")
self._active_file_error = True
def test_pass(self, char="."):
self._passed += 1
if self._verbose:
self.write("ok", "Green")
else:
self.write(char, "Green")
def test_skip(self, v=None):
char = "s"
self._skipped += 1
if v is not None:
message = str(v)
if message == "KeyboardInterrupt":
char = "K"
elif message == "Timeout":
char = "T"
elif message == "Slow":
char = "w"
if self._verbose:
if v is not None:
self.write(message + ' ', "Blue")
else:
self.write(" - ", "Blue")
self.write(char, "Blue")
def test_exception(self, exc_info):
self._exceptions.append((self._active_file, self._active_f, exc_info))
if exc_info[0] is TimeOutError:
self.write("T", "Red")
else:
self.write("E", "Red")
self._active_file_error = True
def import_error(self, filename, exc_info):
self._exceptions.append((filename, None, exc_info))
rel_name = filename[len(self._root_dir) + 1:]
self.write(rel_name)
self.write("[?] Failed to import", "Red")
self.write(" ")
self.write("[FAIL]", "Red", align="right")
self.write("\n")
|
c037494c2f67aa63ac763c5ee58216f7b13774a960ffead739ec0e7fc0321b7f | import re
import typing
from itertools import product
from typing import Any, Dict as tDict, Tuple as tTuple, List, Optional, Union as tUnion, Callable
import sympy
from sympy import Mul, Add, Pow, log, exp, sqrt, cos, sin, tan, asin, acos, acot, asec, acsc, sinh, cosh, tanh, asinh, \
acosh, atanh, acoth, asech, acsch, expand, im, flatten, polylog, cancel, expand_trig, sign, simplify, \
UnevaluatedExpr, S, atan, atan2, Mod, Max, Min, rf, Ei, Si, Ci, airyai, airyaiprime, airybi, primepi, prime, \
isprime, cot, sec, csc, csch, sech, coth, Function, I, pi, Tuple, GreaterThan, StrictGreaterThan, StrictLessThan, \
LessThan, Equality, Or, And, Lambda, Integer, Dummy, symbols
from sympy.core.sympify import sympify, _sympify
from sympy.functions.special.bessel import airybiprime
from sympy.functions.special.error_functions import li
from sympy.utilities.exceptions import sympy_deprecation_warning
def mathematica(s, additional_translations=None):
sympy_deprecation_warning(
"""The ``mathematica`` function for the Mathematica parser is now
deprecated. Use ``parse_mathematica`` instead.
The parameter ``additional_translation`` can be replaced by SymPy's
.replace( ) or .subs( ) methods on the output expression instead.""",
deprecated_since_version="1.11",
active_deprecations_target="mathematica-parser-new",
)
parser = MathematicaParser(additional_translations)
return sympify(parser._parse_old(s))
def parse_mathematica(s):
"""
Translate a string containing a Wolfram Mathematica expression to a SymPy
expression.
If the translator is unable to find a suitable SymPy expression, the
``FullForm`` of the Mathematica expression will be output, using SymPy
``Function`` objects as nodes of the syntax tree.
Examples
========
>>> from sympy.parsing.mathematica import parse_mathematica
>>> parse_mathematica("Sin[x]^2 Tan[y]")
sin(x)**2*tan(y)
>>> e = parse_mathematica("F[7,5,3]")
>>> e
F(7, 5, 3)
>>> from sympy import Function, Max, Min
>>> e.replace(Function("F"), lambda *x: Max(*x)*Min(*x))
21
Both standard input form and Mathematica full form are supported:
>>> parse_mathematica("x*(a + b)")
x*(a + b)
>>> parse_mathematica("Times[x, Plus[a, b]]")
x*(a + b)
To get a matrix from Wolfram's code:
>>> m = parse_mathematica("{{a, b}, {c, d}}")
>>> m
((a, b), (c, d))
>>> from sympy import Matrix
>>> Matrix(m)
Matrix([
[a, b],
[c, d]])
If the translation into equivalent SymPy expressions fails, an SymPy
expression equivalent to Wolfram Mathematica's "FullForm" will be created:
>>> parse_mathematica("x_.")
Optional(Pattern(x, Blank()))
>>> parse_mathematica("Plus @@ {x, y, z}")
Apply(Plus, (x, y, z))
>>> parse_mathematica("f[x_, 3] := x^3 /; x > 0")
SetDelayed(f(Pattern(x, Blank()), 3), Condition(x**3, x > 0))
"""
parser = MathematicaParser()
return parser.parse(s)
def _parse_Function(*args):
if len(args) == 1:
arg = args[0]
Slot = Function("Slot")
slots = arg.atoms(Slot)
numbers = [a.args[0] for a in slots]
number_of_arguments = max(numbers)
if isinstance(number_of_arguments, Integer):
variables = symbols(f"dummy0:{number_of_arguments}", cls=Dummy)
return Lambda(variables, arg.xreplace({Slot(i+1): v for i, v in enumerate(variables)}))
return Lambda((), arg)
elif len(args) == 2:
variables = args[0]
body = args[1]
return Lambda(variables, body)
else:
raise SyntaxError("Function node expects 1 or 2 arguments")
def _deco(cls):
cls._initialize_class()
return cls
@_deco
class MathematicaParser:
"""
An instance of this class converts a string of a Wolfram Mathematica
expression to a SymPy expression.
The main parser acts internally in three stages:
1. tokenizer: tokenizes the Mathematica expression and adds the missing *
operators. Handled by ``_from_mathematica_to_tokens(...)``
2. full form list: sort the list of strings output by the tokenizer into a
syntax tree of nested lists and strings, equivalent to Mathematica's
``FullForm`` expression output. This is handled by the function
``_from_tokens_to_fullformlist(...)``.
3. SymPy expression: the syntax tree expressed as full form list is visited
and the nodes with equivalent classes in SymPy are replaced. Unknown
syntax tree nodes are cast to SymPy ``Function`` objects. This is
handled by ``_from_fullformlist_to_sympy(...)``.
"""
# left: Mathematica, right: SymPy
CORRESPONDENCES = {
'Sqrt[x]': 'sqrt(x)',
'Exp[x]': 'exp(x)',
'Log[x]': 'log(x)',
'Log[x,y]': 'log(y,x)',
'Log2[x]': 'log(x,2)',
'Log10[x]': 'log(x,10)',
'Mod[x,y]': 'Mod(x,y)',
'Max[*x]': 'Max(*x)',
'Min[*x]': 'Min(*x)',
'Pochhammer[x,y]':'rf(x,y)',
'ArcTan[x,y]':'atan2(y,x)',
'ExpIntegralEi[x]': 'Ei(x)',
'SinIntegral[x]': 'Si(x)',
'CosIntegral[x]': 'Ci(x)',
'AiryAi[x]': 'airyai(x)',
'AiryAiPrime[x]': 'airyaiprime(x)',
'AiryBi[x]' :'airybi(x)',
'AiryBiPrime[x]' :'airybiprime(x)',
'LogIntegral[x]':' li(x)',
'PrimePi[x]': 'primepi(x)',
'Prime[x]': 'prime(x)',
'PrimeQ[x]': 'isprime(x)'
}
# trigonometric, e.t.c.
for arc, tri, h in product(('', 'Arc'), (
'Sin', 'Cos', 'Tan', 'Cot', 'Sec', 'Csc'), ('', 'h')):
fm = arc + tri + h + '[x]'
if arc: # arc func
fs = 'a' + tri.lower() + h + '(x)'
else: # non-arc func
fs = tri.lower() + h + '(x)'
CORRESPONDENCES.update({fm: fs})
REPLACEMENTS = {
' ': '',
'^': '**',
'{': '[',
'}': ']',
}
RULES = {
# a single whitespace to '*'
'whitespace': (
re.compile(r'''
(?:(?<=[a-zA-Z\d])|(?<=\d\.)) # a letter or a number
\s+ # any number of whitespaces
(?:(?=[a-zA-Z\d])|(?=\.\d)) # a letter or a number
''', re.VERBOSE),
'*'),
# add omitted '*' character
'add*_1': (
re.compile(r'''
(?:(?<=[])\d])|(?<=\d\.)) # ], ) or a number
# ''
(?=[(a-zA-Z]) # ( or a single letter
''', re.VERBOSE),
'*'),
# add omitted '*' character (variable letter preceding)
'add*_2': (
re.compile(r'''
(?<=[a-zA-Z]) # a letter
\( # ( as a character
(?=.) # any characters
''', re.VERBOSE),
'*('),
# convert 'Pi' to 'pi'
'Pi': (
re.compile(r'''
(?:
\A|(?<=[^a-zA-Z])
)
Pi # 'Pi' is 3.14159... in Mathematica
(?=[^a-zA-Z])
''', re.VERBOSE),
'pi'),
}
# Mathematica function name pattern
FM_PATTERN = re.compile(r'''
(?:
\A|(?<=[^a-zA-Z]) # at the top or a non-letter
)
[A-Z][a-zA-Z\d]* # Function
(?=\[) # [ as a character
''', re.VERBOSE)
# list or matrix pattern (for future usage)
ARG_MTRX_PATTERN = re.compile(r'''
\{.*\}
''', re.VERBOSE)
# regex string for function argument pattern
ARGS_PATTERN_TEMPLATE = r'''
(?:
\A|(?<=[^a-zA-Z])
)
{arguments} # model argument like x, y,...
(?=[^a-zA-Z])
'''
# will contain transformed CORRESPONDENCES dictionary
TRANSLATIONS = {} # type: tDict[tTuple[str, int], tDict[str, Any]]
# cache for a raw users' translation dictionary
cache_original = {} # type: tDict[tTuple[str, int], tDict[str, Any]]
# cache for a compiled users' translation dictionary
cache_compiled = {} # type: tDict[tTuple[str, int], tDict[str, Any]]
@classmethod
def _initialize_class(cls):
# get a transformed CORRESPONDENCES dictionary
d = cls._compile_dictionary(cls.CORRESPONDENCES)
cls.TRANSLATIONS.update(d)
def __init__(self, additional_translations=None):
self.translations = {}
# update with TRANSLATIONS (class constant)
self.translations.update(self.TRANSLATIONS)
if additional_translations is None:
additional_translations = {}
# check the latest added translations
if self.__class__.cache_original != additional_translations:
if not isinstance(additional_translations, dict):
raise ValueError('The argument must be dict type')
# get a transformed additional_translations dictionary
d = self._compile_dictionary(additional_translations)
# update cache
self.__class__.cache_original = additional_translations
self.__class__.cache_compiled = d
# merge user's own translations
self.translations.update(self.__class__.cache_compiled)
@classmethod
def _compile_dictionary(cls, dic):
# for return
d = {}
for fm, fs in dic.items():
# check function form
cls._check_input(fm)
cls._check_input(fs)
# uncover '*' hiding behind a whitespace
fm = cls._apply_rules(fm, 'whitespace')
fs = cls._apply_rules(fs, 'whitespace')
# remove whitespace(s)
fm = cls._replace(fm, ' ')
fs = cls._replace(fs, ' ')
# search Mathematica function name
m = cls.FM_PATTERN.search(fm)
# if no-hit
if m is None:
err = "'{f}' function form is invalid.".format(f=fm)
raise ValueError(err)
# get Mathematica function name like 'Log'
fm_name = m.group()
# get arguments of Mathematica function
args, end = cls._get_args(m)
# function side check. (e.g.) '2*Func[x]' is invalid.
if m.start() != 0 or end != len(fm):
err = "'{f}' function form is invalid.".format(f=fm)
raise ValueError(err)
# check the last argument's 1st character
if args[-1][0] == '*':
key_arg = '*'
else:
key_arg = len(args)
key = (fm_name, key_arg)
# convert '*x' to '\\*x' for regex
re_args = [x if x[0] != '*' else '\\' + x for x in args]
# for regex. Example: (?:(x|y|z))
xyz = '(?:(' + '|'.join(re_args) + '))'
# string for regex compile
patStr = cls.ARGS_PATTERN_TEMPLATE.format(arguments=xyz)
pat = re.compile(patStr, re.VERBOSE)
# update dictionary
d[key] = {}
d[key]['fs'] = fs # SymPy function template
d[key]['args'] = args # args are ['x', 'y'] for example
d[key]['pat'] = pat
return d
def _convert_function(self, s):
'''Parse Mathematica function to SymPy one'''
# compiled regex object
pat = self.FM_PATTERN
scanned = '' # converted string
cur = 0 # position cursor
while True:
m = pat.search(s)
if m is None:
# append the rest of string
scanned += s
break
# get Mathematica function name
fm = m.group()
# get arguments, and the end position of fm function
args, end = self._get_args(m)
# the start position of fm function
bgn = m.start()
# convert Mathematica function to SymPy one
s = self._convert_one_function(s, fm, args, bgn, end)
# update cursor
cur = bgn
# append converted part
scanned += s[:cur]
# shrink s
s = s[cur:]
return scanned
def _convert_one_function(self, s, fm, args, bgn, end):
# no variable-length argument
if (fm, len(args)) in self.translations:
key = (fm, len(args))
# x, y,... model arguments
x_args = self.translations[key]['args']
# make CORRESPONDENCES between model arguments and actual ones
d = {k: v for k, v in zip(x_args, args)}
# with variable-length argument
elif (fm, '*') in self.translations:
key = (fm, '*')
# x, y,..*args (model arguments)
x_args = self.translations[key]['args']
# make CORRESPONDENCES between model arguments and actual ones
d = {}
for i, x in enumerate(x_args):
if x[0] == '*':
d[x] = ','.join(args[i:])
break
d[x] = args[i]
# out of self.translations
else:
err = "'{f}' is out of the whitelist.".format(f=fm)
raise ValueError(err)
# template string of converted function
template = self.translations[key]['fs']
# regex pattern for x_args
pat = self.translations[key]['pat']
scanned = ''
cur = 0
while True:
m = pat.search(template)
if m is None:
scanned += template
break
# get model argument
x = m.group()
# get a start position of the model argument
xbgn = m.start()
# add the corresponding actual argument
scanned += template[:xbgn] + d[x]
# update cursor to the end of the model argument
cur = m.end()
# shrink template
template = template[cur:]
# update to swapped string
s = s[:bgn] + scanned + s[end:]
return s
@classmethod
def _get_args(cls, m):
'''Get arguments of a Mathematica function'''
s = m.string # whole string
anc = m.end() + 1 # pointing the first letter of arguments
square, curly = [], [] # stack for brakets
args = []
# current cursor
cur = anc
for i, c in enumerate(s[anc:], anc):
# extract one argument
if c == ',' and (not square) and (not curly):
args.append(s[cur:i]) # add an argument
cur = i + 1 # move cursor
# handle list or matrix (for future usage)
if c == '{':
curly.append(c)
elif c == '}':
curly.pop()
# seek corresponding ']' with skipping irrevant ones
if c == '[':
square.append(c)
elif c == ']':
if square:
square.pop()
else: # empty stack
args.append(s[cur:i])
break
# the next position to ']' bracket (the function end)
func_end = i + 1
return args, func_end
@classmethod
def _replace(cls, s, bef):
aft = cls.REPLACEMENTS[bef]
s = s.replace(bef, aft)
return s
@classmethod
def _apply_rules(cls, s, bef):
pat, aft = cls.RULES[bef]
return pat.sub(aft, s)
@classmethod
def _check_input(cls, s):
for bracket in (('[', ']'), ('{', '}'), ('(', ')')):
if s.count(bracket[0]) != s.count(bracket[1]):
err = "'{f}' function form is invalid.".format(f=s)
raise ValueError(err)
if '{' in s:
err = "Currently list is not supported."
raise ValueError(err)
def _parse_old(self, s):
# input check
self._check_input(s)
# uncover '*' hiding behind a whitespace
s = self._apply_rules(s, 'whitespace')
# remove whitespace(s)
s = self._replace(s, ' ')
# add omitted '*' character
s = self._apply_rules(s, 'add*_1')
s = self._apply_rules(s, 'add*_2')
# translate function
s = self._convert_function(s)
# '^' to '**'
s = self._replace(s, '^')
# 'Pi' to 'pi'
s = self._apply_rules(s, 'Pi')
# '{', '}' to '[', ']', respectively
# s = cls._replace(s, '{') # currently list is not taken into account
# s = cls._replace(s, '}')
return s
def parse(self, s):
s2 = self._from_mathematica_to_tokens(s)
s3 = self._from_tokens_to_fullformlist(s2)
s4 = self._from_fullformlist_to_sympy(s3)
return s4
INFIX = "Infix"
PREFIX = "Prefix"
POSTFIX = "Postfix"
FLAT = "Flat"
RIGHT = "Right"
LEFT = "Left"
_mathematica_op_precedence: List[tTuple[str, Optional[str], tDict[str, tUnion[str, Callable]]]] = [
(POSTFIX, None, {";": lambda x: x + ["Null"] if isinstance(x, list) and x and x[0] == "CompoundExpression" else ["CompoundExpression", x, "Null"]}),
(INFIX, FLAT, {";": "CompoundExpression"}),
(INFIX, RIGHT, {"=": "Set", ":=": "SetDelayed", "+=": "AddTo", "-=": "SubtractFrom", "*=": "TimesBy", "/=": "DivideBy"}),
(INFIX, LEFT, {"//": lambda x, y: [x, y]}),
(POSTFIX, None, {"&": "Function"}),
(INFIX, LEFT, {"/.": "ReplaceAll"}),
(INFIX, RIGHT, {"->": "Rule", ":>": "RuleDelayed"}),
(INFIX, LEFT, {"/;": "Condition"}),
(INFIX, FLAT, {"|": "Alternatives"}),
(POSTFIX, None, {"..": "Repeated", "...": "RepeatedNull"}),
(INFIX, FLAT, {"||": "Or"}),
(INFIX, FLAT, {"&&": "And"}),
(PREFIX, None, {"!": "Not"}),
(INFIX, FLAT, {"===": "SameQ", "=!=": "UnsameQ"}),
(INFIX, FLAT, {"==": "Equal", "!=": "Unequal", "<=": "LessEqual", "<": "Less", ">=": "GreaterEqual", ">": "Greater"}),
(INFIX, None, {";;": "Span"}),
(INFIX, FLAT, {"+": "Plus", "-": "Plus"}),
(INFIX, FLAT, {"*": "Times", "/": "Times"}),
(INFIX, FLAT, {".": "Dot"}),
(PREFIX, None, {"-": lambda x: MathematicaParser._get_neg(x),
"+": lambda x: x}),
(INFIX, RIGHT, {"^": "Power"}),
(INFIX, RIGHT, {"@@": "Apply", "/@": "Map", "//@": "MapAll", "@@@": lambda x, y: ["Apply", x, y, ["List", "1"]]}),
(POSTFIX, None, {"'": "Derivative", "!": "Factorial", "!!": "Factorial2", "--": "Decrement"}),
(INFIX, None, {"[": lambda x, y: [x, *y], "[[": lambda x, y: ["Part", x, *y]}),
(PREFIX, None, {"{": lambda x: ["List", *x], "(": lambda x: x[0]}),
(INFIX, None, {"?": "PatternTest"}),
(POSTFIX, None, {
"_": lambda x: ["Pattern", x, ["Blank"]],
"_.": lambda x: ["Optional", ["Pattern", x, ["Blank"]]],
"__": lambda x: ["Pattern", x, ["BlankSequence"]],
"___": lambda x: ["Pattern", x, ["BlankNullSequence"]],
}),
(INFIX, None, {"_": lambda x, y: ["Pattern", x, ["Blank", y]]}),
(PREFIX, None, {"#": "Slot", "##": "SlotSequence"}),
]
_missing_arguments_default = {
"#": lambda: ["Slot", "1"],
"##": lambda: ["SlotSequence", "1"],
}
_literal = r"[A-Za-z][A-Za-z0-9]*"
_number = r"(?:[0-9]+(?:\.[0-9]*)?|\.[0-9]+)"
_enclosure_open = ["(", "[", "[[", "{"]
_enclosure_close = [")", "]", "]]", "}"]
@classmethod
def _get_neg(cls, x):
return f"-{x}" if isinstance(x, str) and re.match(MathematicaParser._number, x) else ["Times", "-1", x]
@classmethod
def _get_inv(cls, x):
return ["Power", x, "-1"]
_regex_tokenizer = None
def _get_tokenizer(self):
if self._regex_tokenizer is not None:
# Check if the regular expression has already been compiled:
return self._regex_tokenizer
tokens = [self._literal, self._number]
tokens_escape = self._enclosure_open[:] + self._enclosure_close[:]
for typ, strat, symdict in self._mathematica_op_precedence:
for k in symdict:
tokens_escape.append(k)
tokens_escape.sort(key=lambda x: -len(x))
tokens.extend(map(re.escape, tokens_escape))
tokens.append(",")
tokens.append("\n")
tokenizer = re.compile("(" + "|".join(tokens) + ")")
self._regex_tokenizer = tokenizer
return self._regex_tokenizer
def _from_mathematica_to_tokens(self, code: str):
tokenizer = self._get_tokenizer()
# Find strings:
code_splits: List[typing.Union[str, list]] = []
while True:
string_start = code.find("\"")
if string_start == -1:
if len(code) > 0:
code_splits.append(code)
break
match_end = re.search(r'(?<!\\)"', code[string_start+1:])
if match_end is None:
raise SyntaxError('mismatch in string " " expression')
string_end = string_start + match_end.start() + 1
if string_start > 0:
code_splits.append(code[:string_start])
code_splits.append(["_Str", code[string_start+1:string_end].replace('\\"', '"')])
code = code[string_end+1:]
# Remove comments:
for i, code_split in enumerate(code_splits):
if isinstance(code_split, list):
continue
while True:
pos_comment_start = code_split.find("(*")
if pos_comment_start == -1:
break
pos_comment_end = code_split.find("*)")
if pos_comment_end == -1 or pos_comment_end < pos_comment_start:
raise SyntaxError("mismatch in comment (* *) code")
code_split = code_split[:pos_comment_start] + code_split[pos_comment_end+2:]
code_splits[i] = code_split
# Tokenize the input strings with a regular expression:
token_lists = [tokenizer.findall(i) if isinstance(i, str) and i.isascii() else [i] for i in code_splits]
tokens = [j for i in token_lists for j in i]
# Remove newlines at the beginning
while tokens and tokens[0] == "\n":
tokens.pop(0)
# Remove newlines at the end
while tokens and tokens[-1] == "\n":
tokens.pop(-1)
return tokens
def _is_op(self, token: tUnion[str, list]) -> bool:
if isinstance(token, list):
return False
if re.match(self._literal, token):
return False
if re.match("-?" + self._number, token):
return False
return True
def _is_valid_star1(self, token: tUnion[str, list]) -> bool:
if token in (")", "}"):
return True
return not self._is_op(token)
def _is_valid_star2(self, token: tUnion[str, list]) -> bool:
if token in ("(", "{"):
return True
return not self._is_op(token)
def _from_tokens_to_fullformlist(self, tokens: list):
stack: List[list] = [[]]
open_seq = []
pointer: int = 0
while pointer < len(tokens):
token = tokens[pointer]
if token in self._enclosure_open:
stack[-1].append(token)
open_seq.append(token)
stack.append([])
elif token == ",":
if len(stack[-1]) == 0 and stack[-2][-1] == open_seq[-1]:
raise SyntaxError("%s cannot be followed by comma ," % open_seq[-1])
stack[-1] = self._parse_after_braces(stack[-1])
stack.append([])
elif token in self._enclosure_close:
ind = self._enclosure_close.index(token)
if self._enclosure_open[ind] != open_seq[-1]:
unmatched_enclosure = SyntaxError("unmatched enclosure")
if token == "]]" and open_seq[-1] == "[":
if open_seq[-2] == "[":
# These two lines would be logically correct, but are
# unnecessary:
# token = "]"
# tokens[pointer] = "]"
tokens.insert(pointer+1, "]")
elif open_seq[-2] == "[[":
if tokens[pointer+1] == "]":
tokens[pointer+1] = "]]"
elif tokens[pointer+1] == "]]":
tokens[pointer+1] = "]]"
tokens.insert(pointer+2, "]")
else:
raise unmatched_enclosure
else:
raise unmatched_enclosure
if len(stack[-1]) == 0 and stack[-2][-1] == "(":
raise SyntaxError("( ) not valid syntax")
last_stack = self._parse_after_braces(stack[-1], True)
stack[-1] = last_stack
new_stack_element = []
while stack[-1][-1] != open_seq[-1]:
new_stack_element.append(stack.pop())
new_stack_element.reverse()
if open_seq[-1] == "(" and len(new_stack_element) != 1:
raise SyntaxError("( must be followed by one expression, %i detected" % len(new_stack_element))
stack[-1].append(new_stack_element)
open_seq.pop(-1)
else:
stack[-1].append(token)
pointer += 1
assert len(stack) == 1
return self._parse_after_braces(stack[0])
def _util_remove_newlines(self, lines: list, tokens: list, inside_enclosure: bool):
pointer = 0
size = len(tokens)
while pointer < size:
token = tokens[pointer]
if token == "\n":
if inside_enclosure:
# Ignore newlines inside enclosures
tokens.pop(pointer)
size -= 1
continue
if pointer == 0:
tokens.pop(0)
size -= 1
continue
if pointer > 1:
try:
prev_expr = self._parse_after_braces(tokens[:pointer], inside_enclosure)
except SyntaxError:
tokens.pop(pointer)
size -= 1
continue
else:
prev_expr = tokens[0]
if len(prev_expr) > 0 and prev_expr[0] == "CompoundExpression":
lines.extend(prev_expr[1:])
else:
lines.append(prev_expr)
for i in range(pointer):
tokens.pop(0)
size -= pointer
pointer = 0
continue
pointer += 1
def _util_add_missing_asterisks(self, tokens: list):
size: int = len(tokens)
pointer: int = 0
while pointer < size:
if (pointer > 0 and
self._is_valid_star1(tokens[pointer - 1]) and
self._is_valid_star2(tokens[pointer])):
# This is a trick to add missing * operators in the expression,
# `"*" in op_dict` makes sure the precedence level is the same as "*",
# while `not self._is_op( ... )` makes sure this and the previous
# expression are not operators.
if tokens[pointer] == "(":
# ( has already been processed by now, replace:
tokens[pointer] = "*"
tokens[pointer + 1] = tokens[pointer + 1][0]
else:
tokens.insert(pointer, "*")
pointer += 1
size += 1
pointer += 1
def _parse_after_braces(self, tokens: list, inside_enclosure: bool = False):
op_dict: dict
changed: bool = False
lines: list = []
self._util_remove_newlines(lines, tokens, inside_enclosure)
for op_type, grouping_strat, op_dict in reversed(self._mathematica_op_precedence):
if "*" in op_dict:
self._util_add_missing_asterisks(tokens)
size: int = len(tokens)
pointer: int = 0
while pointer < size:
token = tokens[pointer]
if isinstance(token, str) and token in op_dict:
op_name: tUnion[str, Callable] = op_dict[token]
node: list
first_index: int
if isinstance(op_name, str):
node = [op_name]
first_index = 1
else:
node = []
first_index = 0
if token in ("+", "-") and op_type == self.PREFIX and pointer > 0 and not self._is_op(tokens[pointer - 1]):
# Make sure that PREFIX + - don't match expressions like a + b or a - b,
# the INFIX + - are supposed to match that expression:
pointer += 1
continue
if op_type == self.INFIX:
if pointer == 0 or pointer == size - 1 or self._is_op(tokens[pointer - 1]) or self._is_op(tokens[pointer + 1]):
pointer += 1
continue
changed = True
tokens[pointer] = node
if op_type == self.INFIX:
arg1 = tokens.pop(pointer-1)
arg2 = tokens.pop(pointer)
if token == "/":
arg2 = self._get_inv(arg2)
elif token == "-":
arg2 = self._get_neg(arg2)
pointer -= 1
size -= 2
node.append(arg1)
node_p = node
if grouping_strat == self.FLAT:
while pointer + 2 < size and self._check_op_compatible(tokens[pointer+1], token):
node_p.append(arg2)
other_op = tokens.pop(pointer+1)
arg2 = tokens.pop(pointer+1)
if other_op == "/":
arg2 = self._get_inv(arg2)
elif other_op == "-":
arg2 = self._get_neg(arg2)
size -= 2
node_p.append(arg2)
elif grouping_strat == self.RIGHT:
while pointer + 2 < size and tokens[pointer+1] == token:
node_p.append([op_name, arg2])
node_p = node_p[-1]
tokens.pop(pointer+1)
arg2 = tokens.pop(pointer+1)
size -= 2
node_p.append(arg2)
elif grouping_strat == self.LEFT:
while pointer + 1 < size and tokens[pointer+1] == token:
if isinstance(op_name, str):
node_p[first_index] = [op_name, node_p[first_index], arg2]
else:
node_p[first_index] = op_name(node_p[first_index], arg2)
tokens.pop(pointer+1)
arg2 = tokens.pop(pointer+1)
size -= 2
node_p.append(arg2)
else:
node.append(arg2)
elif op_type == self.PREFIX:
assert grouping_strat is None
if pointer == size - 1 or self._is_op(tokens[pointer + 1]):
tokens[pointer] = self._missing_arguments_default[token]()
else:
node.append(tokens.pop(pointer+1))
size -= 1
elif op_type == self.POSTFIX:
assert grouping_strat is None
if pointer == 0 or self._is_op(tokens[pointer - 1]):
tokens[pointer] = self._missing_arguments_default[token]()
else:
node.append(tokens.pop(pointer-1))
pointer -= 1
size -= 1
if isinstance(op_name, Callable): # type: ignore
op_call: Callable = typing.cast(Callable, op_name)
new_node = op_call(*node)
node.clear()
if isinstance(new_node, list):
node.extend(new_node)
else:
tokens[pointer] = new_node
pointer += 1
if len(tokens) > 1 or (len(lines) == 0 and len(tokens) == 0):
if changed:
# Trick to deal with cases in which an operator with lower
# precedence should be transformed before an operator of higher
# precedence. Such as in the case of `#&[x]` (that is
# equivalent to `Lambda(d_, d_)(x)` in SymPy). In this case the
# operator `&` has lower precedence than `[`, but needs to be
# evaluated first because otherwise `# (&[x])` is not a valid
# expression:
return self._parse_after_braces(tokens, inside_enclosure)
raise SyntaxError("unable to create a single AST for the expression")
if len(lines) > 0:
if tokens[0] and tokens[0][0] == "CompoundExpression":
tokens = tokens[0][1:]
compound_expression = ["CompoundExpression", *lines, *tokens]
return compound_expression
return tokens[0]
def _check_op_compatible(self, op1: str, op2: str):
if op1 == op2:
return True
muldiv = {"*", "/"}
addsub = {"+", "-"}
if op1 in muldiv and op2 in muldiv:
return True
if op1 in addsub and op2 in addsub:
return True
return False
def _from_fullform_to_fullformlist(self, wmexpr: str):
"""
Parses FullForm[Downvalues[]] generated by Mathematica
"""
out: list = []
stack = [out]
generator = re.finditer(r'[\[\],]', wmexpr)
last_pos = 0
for match in generator:
if match is None:
break
position = match.start()
last_expr = wmexpr[last_pos:position].replace(',', '').replace(']', '').replace('[', '').strip()
if match.group() == ',':
if last_expr != '':
stack[-1].append(last_expr)
elif match.group() == ']':
if last_expr != '':
stack[-1].append(last_expr)
stack.pop()
elif match.group() == '[':
stack[-1].append([last_expr])
stack.append(stack[-1][-1])
last_pos = match.end()
return out[0]
def _from_fullformlist_to_fullformsympy(self, pylist: list):
from sympy import Function, Symbol
def converter(expr):
if isinstance(expr, list):
if len(expr) > 0:
head = expr[0]
args = [converter(arg) for arg in expr[1:]]
return Function(head)(*args)
else:
raise ValueError("Empty list of expressions")
elif isinstance(expr, str):
return Symbol(expr)
else:
return _sympify(expr)
return converter(pylist)
_node_conversions = dict(
Times=Mul,
Plus=Add,
Power=Pow,
Log=lambda *a: log(*reversed(a)),
Log2=lambda x: log(x, 2),
Log10=lambda x: log(x, 10),
Exp=exp,
Sqrt=sqrt,
Sin=sin,
Cos=cos,
Tan=tan,
Cot=cot,
Sec=sec,
Csc=csc,
ArcSin=asin,
ArcCos=acos,
ArcTan=lambda *a: atan2(*reversed(a)) if len(a) == 2 else atan(*a),
ArcCot=acot,
ArcSec=asec,
ArcCsc=acsc,
Sinh=sinh,
Cosh=cosh,
Tanh=tanh,
Coth=coth,
Sech=sech,
Csch=csch,
ArcSinh=asinh,
ArcCosh=acosh,
ArcTanh=atanh,
ArcCoth=acoth,
ArcSech=asech,
ArcCsch=acsch,
Expand=expand,
Im=im,
Re=sympy.re,
Flatten=flatten,
Polylog=polylog,
Cancel=cancel,
# Gamma=gamma,
TrigExpand=expand_trig,
Sign=sign,
Simplify=simplify,
Defer=UnevaluatedExpr,
Identity=S,
# Sum=Sum_doit,
# Module=With,
# Block=With,
Null=lambda *a: S.Zero,
Mod=Mod,
Max=Max,
Min=Min,
Pochhammer=rf,
ExpIntegralEi=Ei,
SinIntegral=Si,
CosIntegral=Ci,
AiryAi=airyai,
AiryAiPrime=airyaiprime,
AiryBi=airybi,
AiryBiPrime=airybiprime,
LogIntegral=li,
PrimePi=primepi,
Prime=prime,
PrimeQ=isprime,
List=Tuple,
Greater=StrictGreaterThan,
GreaterEqual=GreaterThan,
Less=StrictLessThan,
LessEqual=LessThan,
Equal=Equality,
Or=Or,
And=And,
Function=_parse_Function,
)
_atom_conversions = {
"I": I,
"Pi": pi,
}
def _from_fullformlist_to_sympy(self, full_form_list):
def recurse(expr):
if isinstance(expr, list):
if isinstance(expr[0], list):
head = recurse(expr[0])
else:
head = self._node_conversions.get(expr[0], Function(expr[0]))
return head(*list(recurse(arg) for arg in expr[1:]))
else:
return self._atom_conversions.get(expr, sympify(expr))
return recurse(full_form_list)
def _from_fullformsympy_to_sympy(self, mform):
expr = mform
for mma_form, sympy_node in self._node_conversions.items():
expr = expr.replace(Function(mma_form), sympy_node)
return expr
|
2ff37db81b07660d2087f85d8ea8adc80856b2b9b2790d954296a14e7156131a | """Transform a string with Python-like source code into SymPy expression. """
from tokenize import (generate_tokens, untokenize, TokenError,
NUMBER, STRING, NAME, OP, ENDMARKER, ERRORTOKEN, NEWLINE)
from keyword import iskeyword
import ast
import unicodedata
from io import StringIO
import builtins
import types
from typing import Tuple as tTuple, Dict as tDict, Any, Callable, \
List, Optional, Union as tUnion
from sympy.assumptions.ask import AssumptionKeys
from sympy.core.basic import Basic
from sympy.core import Symbol
from sympy.core.function import Function
from sympy.utilities.misc import func_name
from sympy.functions.elementary.miscellaneous import Max, Min
null = ''
TOKEN = tTuple[int, str]
DICT = tDict[str, Any]
TRANS = Callable[[List[TOKEN], DICT, DICT], List[TOKEN]]
def _token_splittable(token_name: str) -> bool:
"""
Predicate for whether a token name can be split into multiple tokens.
A token is splittable if it does not contain an underscore character and
it is not the name of a Greek letter. This is used to implicitly convert
expressions like 'xyz' into 'x*y*z'.
"""
if '_' in token_name:
return False
try:
return not unicodedata.lookup('GREEK SMALL LETTER ' + token_name)
except KeyError:
return len(token_name) > 1
def _token_callable(token: TOKEN, local_dict: DICT, global_dict: DICT, nextToken=None):
"""
Predicate for whether a token name represents a callable function.
Essentially wraps ``callable``, but looks up the token name in the
locals and globals.
"""
func = local_dict.get(token[1])
if not func:
func = global_dict.get(token[1])
return callable(func) and not isinstance(func, Symbol)
def _add_factorial_tokens(name: str, result: List[TOKEN]) -> List[TOKEN]:
if result == [] or result[-1][1] == '(':
raise TokenError()
beginning = [(NAME, name), (OP, '(')]
end = [(OP, ')')]
diff = 0
length = len(result)
for index, token in enumerate(result[::-1]):
toknum, tokval = token
i = length - index - 1
if tokval == ')':
diff += 1
elif tokval == '(':
diff -= 1
if diff == 0:
if i - 1 >= 0 and result[i - 1][0] == NAME:
return result[:i - 1] + beginning + result[i - 1:] + end
else:
return result[:i] + beginning + result[i:] + end
return result
class ParenthesisGroup(List[TOKEN]):
"""List of tokens representing an expression in parentheses."""
pass
class AppliedFunction:
"""
A group of tokens representing a function and its arguments.
`exponent` is for handling the shorthand sin^2, ln^2, etc.
"""
def __init__(self, function: TOKEN, args: ParenthesisGroup, exponent=None):
if exponent is None:
exponent = []
self.function = function
self.args = args
self.exponent = exponent
self.items = ['function', 'args', 'exponent']
def expand(self) -> List[TOKEN]:
"""Return a list of tokens representing the function"""
return [self.function, *self.args]
def __getitem__(self, index):
return getattr(self, self.items[index])
def __repr__(self):
return "AppliedFunction(%s, %s, %s)" % (self.function, self.args,
self.exponent)
def _flatten(result: List[tUnion[TOKEN, AppliedFunction]]):
result2: List[TOKEN] = []
for tok in result:
if isinstance(tok, AppliedFunction):
result2.extend(tok.expand())
else:
result2.append(tok)
return result2
def _group_parentheses(recursor: TRANS):
def _inner(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
"""Group tokens between parentheses with ParenthesisGroup.
Also processes those tokens recursively.
"""
result: List[tUnion[TOKEN, ParenthesisGroup]] = []
stacks: List[ParenthesisGroup] = []
stacklevel = 0
for token in tokens:
if token[0] == OP:
if token[1] == '(':
stacks.append(ParenthesisGroup([]))
stacklevel += 1
elif token[1] == ')':
stacks[-1].append(token)
stack = stacks.pop()
if len(stacks) > 0:
# We don't recurse here since the upper-level stack
# would reprocess these tokens
stacks[-1].extend(stack)
else:
# Recurse here to handle nested parentheses
# Strip off the outer parentheses to avoid an infinite loop
inner = stack[1:-1]
inner = recursor(inner,
local_dict,
global_dict)
parenGroup = [stack[0]] + inner + [stack[-1]]
result.append(ParenthesisGroup(parenGroup))
stacklevel -= 1
continue
if stacklevel:
stacks[-1].append(token)
else:
result.append(token)
if stacklevel:
raise TokenError("Mismatched parentheses")
return result
return _inner
def _apply_functions(tokens: List[tUnion[TOKEN, ParenthesisGroup]], local_dict: DICT, global_dict: DICT):
"""Convert a NAME token + ParenthesisGroup into an AppliedFunction.
Note that ParenthesisGroups, if not applied to any function, are
converted back into lists of tokens.
"""
result: List[tUnion[TOKEN, AppliedFunction]] = []
symbol = None
for tok in tokens:
if isinstance(tok, ParenthesisGroup):
if symbol and _token_callable(symbol, local_dict, global_dict):
result[-1] = AppliedFunction(symbol, tok)
symbol = None
else:
result.extend(tok)
elif tok[0] == NAME:
symbol = tok
result.append(tok)
else:
symbol = None
result.append(tok)
return result
def _implicit_multiplication(tokens: List[tUnion[TOKEN, AppliedFunction]], local_dict: DICT, global_dict: DICT):
"""Implicitly adds '*' tokens.
Cases:
- Two AppliedFunctions next to each other ("sin(x)cos(x)")
- AppliedFunction next to an open parenthesis ("sin x (cos x + 1)")
- A close parenthesis next to an AppliedFunction ("(x+2)sin x")\
- A close parenthesis next to an open parenthesis ("(x+2)(x+3)")
- AppliedFunction next to an implicitly applied function ("sin(x)cos x")
"""
result: List[tUnion[TOKEN, AppliedFunction]] = []
skip = False
for tok, nextTok in zip(tokens, tokens[1:]):
result.append(tok)
if skip:
skip = False
continue
if tok[0] == OP and tok[1] == '.' and nextTok[0] == NAME:
# Dotted name. Do not do implicit multiplication
skip = True
continue
if isinstance(tok, AppliedFunction):
if isinstance(nextTok, AppliedFunction):
result.append((OP, '*'))
elif nextTok == (OP, '('):
# Applied function followed by an open parenthesis
if tok.function[1] == "Function":
tok.function = (tok.function[0], 'Symbol')
result.append((OP, '*'))
elif nextTok[0] == NAME:
# Applied function followed by implicitly applied function
result.append((OP, '*'))
else:
if tok == (OP, ')'):
if isinstance(nextTok, AppliedFunction):
# Close parenthesis followed by an applied function
result.append((OP, '*'))
elif nextTok[0] == NAME:
# Close parenthesis followed by an implicitly applied function
result.append((OP, '*'))
elif nextTok == (OP, '('):
# Close parenthesis followed by an open parenthesis
result.append((OP, '*'))
elif tok[0] == NAME and not _token_callable(tok, local_dict, global_dict):
if isinstance(nextTok, AppliedFunction) or \
(nextTok[0] == NAME and _token_callable(nextTok, local_dict, global_dict)):
# Constant followed by (implicitly applied) function
result.append((OP, '*'))
elif nextTok == (OP, '('):
# Constant followed by parenthesis
result.append((OP, '*'))
elif nextTok[0] == NAME:
# Constant followed by constant
result.append((OP, '*'))
if tokens:
result.append(tokens[-1])
return result
def _implicit_application(tokens: List[tUnion[TOKEN, AppliedFunction]], local_dict: DICT, global_dict: DICT):
"""Adds parentheses as needed after functions."""
result: List[tUnion[TOKEN, AppliedFunction]] = []
appendParen = 0 # number of closing parentheses to add
skip = 0 # number of tokens to delay before adding a ')' (to
# capture **, ^, etc.)
exponentSkip = False # skipping tokens before inserting parentheses to
# work with function exponentiation
for tok, nextTok in zip(tokens, tokens[1:]):
result.append(tok)
if (tok[0] == NAME and nextTok[0] not in [OP, ENDMARKER, NEWLINE]):
if _token_callable(tok, local_dict, global_dict, nextTok): # type: ignore
result.append((OP, '('))
appendParen += 1
# name followed by exponent - function exponentiation
elif (tok[0] == NAME and nextTok[0] == OP and nextTok[1] == '**'):
if _token_callable(tok, local_dict, global_dict): # type: ignore
exponentSkip = True
elif exponentSkip:
# if the last token added was an applied function (i.e. the
# power of the function exponent) OR a multiplication (as
# implicit multiplication would have added an extraneous
# multiplication)
if (isinstance(tok, AppliedFunction)
or (tok[0] == OP and tok[1] == '*')):
# don't add anything if the next token is a multiplication
# or if there's already a parenthesis (if parenthesis, still
# stop skipping tokens)
if not (nextTok[0] == OP and nextTok[1] == '*'):
if not(nextTok[0] == OP and nextTok[1] == '('):
result.append((OP, '('))
appendParen += 1
exponentSkip = False
elif appendParen:
if nextTok[0] == OP and nextTok[1] in ('^', '**', '*'):
skip = 1
continue
if skip:
skip -= 1
continue
result.append((OP, ')'))
appendParen -= 1
if tokens:
result.append(tokens[-1])
if appendParen:
result.extend([(OP, ')')] * appendParen)
return result
def function_exponentiation(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
"""Allows functions to be exponentiated, e.g. ``cos**2(x)``.
Examples
========
>>> from sympy.parsing.sympy_parser import (parse_expr,
... standard_transformations, function_exponentiation)
>>> transformations = standard_transformations + (function_exponentiation,)
>>> parse_expr('sin**4(x)', transformations=transformations)
sin(x)**4
"""
result: List[TOKEN] = []
exponent: List[TOKEN] = []
consuming_exponent = False
level = 0
for tok, nextTok in zip(tokens, tokens[1:]):
if tok[0] == NAME and nextTok[0] == OP and nextTok[1] == '**':
if _token_callable(tok, local_dict, global_dict):
consuming_exponent = True
elif consuming_exponent:
if tok[0] == NAME and tok[1] == 'Function':
tok = (NAME, 'Symbol')
exponent.append(tok)
# only want to stop after hitting )
if tok[0] == nextTok[0] == OP and tok[1] == ')' and nextTok[1] == '(':
consuming_exponent = False
# if implicit multiplication was used, we may have )*( instead
if tok[0] == nextTok[0] == OP and tok[1] == '*' and nextTok[1] == '(':
consuming_exponent = False
del exponent[-1]
continue
elif exponent and not consuming_exponent:
if tok[0] == OP:
if tok[1] == '(':
level += 1
elif tok[1] == ')':
level -= 1
if level == 0:
result.append(tok)
result.extend(exponent)
exponent = []
continue
result.append(tok)
if tokens:
result.append(tokens[-1])
if exponent:
result.extend(exponent)
return result
def split_symbols_custom(predicate: Callable[[str], bool]):
"""Creates a transformation that splits symbol names.
``predicate`` should return True if the symbol name is to be split.
For instance, to retain the default behavior but avoid splitting certain
symbol names, a predicate like this would work:
>>> from sympy.parsing.sympy_parser import (parse_expr, _token_splittable,
... standard_transformations, implicit_multiplication,
... split_symbols_custom)
>>> def can_split(symbol):
... if symbol not in ('list', 'of', 'unsplittable', 'names'):
... return _token_splittable(symbol)
... return False
...
>>> transformation = split_symbols_custom(can_split)
>>> parse_expr('unsplittable', transformations=standard_transformations +
... (transformation, implicit_multiplication))
unsplittable
"""
def _split_symbols(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
result: List[TOKEN] = []
split = False
split_previous=False
for tok in tokens:
if split_previous:
# throw out closing parenthesis of Symbol that was split
split_previous=False
continue
split_previous=False
if tok[0] == NAME and tok[1] in ['Symbol', 'Function']:
split = True
elif split and tok[0] == NAME:
symbol = tok[1][1:-1]
if predicate(symbol):
tok_type = result[-2][1] # Symbol or Function
del result[-2:] # Get rid of the call to Symbol
i = 0
while i < len(symbol):
char = symbol[i]
if char in local_dict or char in global_dict:
result.append((NAME, "%s" % char))
elif char.isdigit():
chars = [char]
for i in range(i + 1, len(symbol)):
if not symbol[i].isdigit():
i -= 1
break
chars.append(symbol[i])
char = ''.join(chars)
result.extend([(NAME, 'Number'), (OP, '('),
(NAME, "'%s'" % char), (OP, ')')])
else:
use = tok_type if i == len(symbol) else 'Symbol'
result.extend([(NAME, use), (OP, '('),
(NAME, "'%s'" % char), (OP, ')')])
i += 1
# Set split_previous=True so will skip
# the closing parenthesis of the original Symbol
split = False
split_previous = True
continue
else:
split = False
result.append(tok)
return result
return _split_symbols
#: Splits symbol names for implicit multiplication.
#:
#: Intended to let expressions like ``xyz`` be parsed as ``x*y*z``. Does not
#: split Greek character names, so ``theta`` will *not* become
#: ``t*h*e*t*a``. Generally this should be used with
#: ``implicit_multiplication``.
split_symbols = split_symbols_custom(_token_splittable)
def implicit_multiplication(tokens: List[TOKEN], local_dict: DICT,
global_dict: DICT) -> List[TOKEN]:
"""Makes the multiplication operator optional in most cases.
Use this before :func:`implicit_application`, otherwise expressions like
``sin 2x`` will be parsed as ``x * sin(2)`` rather than ``sin(2*x)``.
Examples
========
>>> from sympy.parsing.sympy_parser import (parse_expr,
... standard_transformations, implicit_multiplication)
>>> transformations = standard_transformations + (implicit_multiplication,)
>>> parse_expr('3 x y', transformations=transformations)
3*x*y
"""
# These are interdependent steps, so we don't expose them separately
res1 = _group_parentheses(implicit_multiplication)(tokens, local_dict, global_dict)
res2 = _apply_functions(res1, local_dict, global_dict)
res3 = _implicit_multiplication(res2, local_dict, global_dict)
result = _flatten(res3)
return result
def implicit_application(tokens: List[TOKEN], local_dict: DICT,
global_dict: DICT) -> List[TOKEN]:
"""Makes parentheses optional in some cases for function calls.
Use this after :func:`implicit_multiplication`, otherwise expressions
like ``sin 2x`` will be parsed as ``x * sin(2)`` rather than
``sin(2*x)``.
Examples
========
>>> from sympy.parsing.sympy_parser import (parse_expr,
... standard_transformations, implicit_application)
>>> transformations = standard_transformations + (implicit_application,)
>>> parse_expr('cot z + csc z', transformations=transformations)
cot(z) + csc(z)
"""
res1 = _group_parentheses(implicit_application)(tokens, local_dict, global_dict)
res2 = _apply_functions(res1, local_dict, global_dict)
res3 = _implicit_application(res2, local_dict, global_dict)
result = _flatten(res3)
return result
def implicit_multiplication_application(result: List[TOKEN], local_dict: DICT,
global_dict: DICT) -> List[TOKEN]:
"""Allows a slightly relaxed syntax.
- Parentheses for single-argument method calls are optional.
- Multiplication is implicit.
- Symbol names can be split (i.e. spaces are not needed between
symbols).
- Functions can be exponentiated.
Examples
========
>>> from sympy.parsing.sympy_parser import (parse_expr,
... standard_transformations, implicit_multiplication_application)
>>> parse_expr("10sin**2 x**2 + 3xyz + tan theta",
... transformations=(standard_transformations +
... (implicit_multiplication_application,)))
3*x*y*z + 10*sin(x**2)**2 + tan(theta)
"""
for step in (split_symbols, implicit_multiplication,
implicit_application, function_exponentiation):
result = step(result, local_dict, global_dict)
return result
def auto_symbol(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
"""Inserts calls to ``Symbol``/``Function`` for undefined variables."""
result: List[TOKEN] = []
prevTok = (-1, '')
tokens.append((-1, '')) # so zip traverses all tokens
for tok, nextTok in zip(tokens, tokens[1:]):
tokNum, tokVal = tok
nextTokNum, nextTokVal = nextTok
if tokNum == NAME:
name = tokVal
if (name in ['True', 'False', 'None']
or iskeyword(name)
# Don't convert attribute access
or (prevTok[0] == OP and prevTok[1] == '.')
# Don't convert keyword arguments
or (prevTok[0] == OP and prevTok[1] in ('(', ',')
and nextTokNum == OP and nextTokVal == '=')
# the name has already been defined
or name in local_dict and local_dict[name] is not null):
result.append((NAME, name))
continue
elif name in local_dict:
local_dict.setdefault(null, set()).add(name)
if nextTokVal == '(':
local_dict[name] = Function(name)
else:
local_dict[name] = Symbol(name)
result.append((NAME, name))
continue
elif name in global_dict:
obj = global_dict[name]
if isinstance(obj, (AssumptionKeys, Basic, type)) or callable(obj):
result.append((NAME, name))
continue
result.extend([
(NAME, 'Symbol' if nextTokVal != '(' else 'Function'),
(OP, '('),
(NAME, repr(str(name))),
(OP, ')'),
])
else:
result.append((tokNum, tokVal))
prevTok = (tokNum, tokVal)
return result
def lambda_notation(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
"""Substitutes "lambda" with its SymPy equivalent Lambda().
However, the conversion does not take place if only "lambda"
is passed because that is a syntax error.
"""
result: List[TOKEN] = []
flag = False
toknum, tokval = tokens[0]
tokLen = len(tokens)
if toknum == NAME and tokval == 'lambda':
if tokLen == 2 or tokLen == 3 and tokens[1][0] == NEWLINE:
# In Python 3.6.7+, inputs without a newline get NEWLINE added to
# the tokens
result.extend(tokens)
elif tokLen > 2:
result.extend([
(NAME, 'Lambda'),
(OP, '('),
(OP, '('),
(OP, ')'),
(OP, ')'),
])
for tokNum, tokVal in tokens[1:]:
if tokNum == OP and tokVal == ':':
tokVal = ','
flag = True
if not flag and tokNum == OP and tokVal in ('*', '**'):
raise TokenError("Starred arguments in lambda not supported")
if flag:
result.insert(-1, (tokNum, tokVal))
else:
result.insert(-2, (tokNum, tokVal))
else:
result.extend(tokens)
return result
def factorial_notation(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
"""Allows standard notation for factorial."""
result: List[TOKEN] = []
nfactorial = 0
for toknum, tokval in tokens:
if toknum == ERRORTOKEN:
op = tokval
if op == '!':
nfactorial += 1
else:
nfactorial = 0
result.append((OP, op))
else:
if nfactorial == 1:
result = _add_factorial_tokens('factorial', result)
elif nfactorial == 2:
result = _add_factorial_tokens('factorial2', result)
elif nfactorial > 2:
raise TokenError
nfactorial = 0
result.append((toknum, tokval))
return result
def convert_xor(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
"""Treats XOR, ``^``, as exponentiation, ``**``."""
result: List[TOKEN] = []
for toknum, tokval in tokens:
if toknum == OP:
if tokval == '^':
result.append((OP, '**'))
else:
result.append((toknum, tokval))
else:
result.append((toknum, tokval))
return result
def repeated_decimals(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
"""
Allows 0.2[1] notation to represent the repeated decimal 0.2111... (19/90)
Run this before auto_number.
"""
result: List[TOKEN] = []
def is_digit(s):
return all(i in '0123456789_' for i in s)
# num will running match any DECIMAL [ INTEGER ]
num: List[TOKEN] = []
for toknum, tokval in tokens:
if toknum == NUMBER:
if (not num and '.' in tokval and 'e' not in tokval.lower() and
'j' not in tokval.lower()):
num.append((toknum, tokval))
elif is_digit(tokval)and len(num) == 2:
num.append((toknum, tokval))
elif is_digit(tokval) and len(num) == 3 and is_digit(num[-1][1]):
# Python 2 tokenizes 00123 as '00', '123'
# Python 3 tokenizes 01289 as '012', '89'
num.append((toknum, tokval))
else:
num = []
elif toknum == OP:
if tokval == '[' and len(num) == 1:
num.append((OP, tokval))
elif tokval == ']' and len(num) >= 3:
num.append((OP, tokval))
elif tokval == '.' and not num:
# handle .[1]
num.append((NUMBER, '0.'))
else:
num = []
else:
num = []
result.append((toknum, tokval))
if num and num[-1][1] == ']':
# pre.post[repetend] = a + b/c + d/e where a = pre, b/c = post,
# and d/e = repetend
result = result[:-len(num)]
pre, post = num[0][1].split('.')
repetend = num[2][1]
if len(num) == 5:
repetend += num[3][1]
pre = pre.replace('_', '')
post = post.replace('_', '')
repetend = repetend.replace('_', '')
zeros = '0'*len(post)
post, repetends = [w.lstrip('0') for w in [post, repetend]]
# or else interpreted as octal
a = pre or '0'
b, c = post or '0', '1' + zeros
d, e = repetends, ('9'*len(repetend)) + zeros
seq = [
(OP, '('),
(NAME, 'Integer'),
(OP, '('),
(NUMBER, a),
(OP, ')'),
(OP, '+'),
(NAME, 'Rational'),
(OP, '('),
(NUMBER, b),
(OP, ','),
(NUMBER, c),
(OP, ')'),
(OP, '+'),
(NAME, 'Rational'),
(OP, '('),
(NUMBER, d),
(OP, ','),
(NUMBER, e),
(OP, ')'),
(OP, ')'),
]
result.extend(seq)
num = []
return result
def auto_number(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
"""
Converts numeric literals to use SymPy equivalents.
Complex numbers use ``I``, integer literals use ``Integer``, and float
literals use ``Float``.
"""
result: List[TOKEN] = []
for toknum, tokval in tokens:
if toknum == NUMBER:
number = tokval
postfix = []
if number.endswith('j') or number.endswith('J'):
number = number[:-1]
postfix = [(OP, '*'), (NAME, 'I')]
if '.' in number or (('e' in number or 'E' in number) and
not (number.startswith('0x') or number.startswith('0X'))):
seq = [(NAME, 'Float'), (OP, '('),
(NUMBER, repr(str(number))), (OP, ')')]
else:
seq = [(NAME, 'Integer'), (OP, '('), (
NUMBER, number), (OP, ')')]
result.extend(seq + postfix)
else:
result.append((toknum, tokval))
return result
def rationalize(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
"""Converts floats into ``Rational``. Run AFTER ``auto_number``."""
result: List[TOKEN] = []
passed_float = False
for toknum, tokval in tokens:
if toknum == NAME:
if tokval == 'Float':
passed_float = True
tokval = 'Rational'
result.append((toknum, tokval))
elif passed_float == True and toknum == NUMBER:
passed_float = False
result.append((STRING, tokval))
else:
result.append((toknum, tokval))
return result
def _transform_equals_sign(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
"""Transforms the equals sign ``=`` to instances of Eq.
This is a helper function for ``convert_equals_signs``.
Works with expressions containing one equals sign and no
nesting. Expressions like ``(1=2)=False`` will not work with this
and should be used with ``convert_equals_signs``.
Examples: 1=2 to Eq(1,2)
1*2=x to Eq(1*2, x)
This does not deal with function arguments yet.
"""
result: List[TOKEN] = []
if (OP, "=") in tokens:
result.append((NAME, "Eq"))
result.append((OP, "("))
for token in tokens:
if token == (OP, "="):
result.append((OP, ","))
continue
result.append(token)
result.append((OP, ")"))
else:
result = tokens
return result
def convert_equals_signs(tokens: List[TOKEN], local_dict: DICT,
global_dict: DICT) -> List[TOKEN]:
""" Transforms all the equals signs ``=`` to instances of Eq.
Parses the equals signs in the expression and replaces them with
appropriate Eq instances. Also works with nested equals signs.
Does not yet play well with function arguments.
For example, the expression ``(x=y)`` is ambiguous and can be interpreted
as x being an argument to a function and ``convert_equals_signs`` will not
work for this.
See also
========
convert_equality_operators
Examples
========
>>> from sympy.parsing.sympy_parser import (parse_expr,
... standard_transformations, convert_equals_signs)
>>> parse_expr("1*2=x", transformations=(
... standard_transformations + (convert_equals_signs,)))
Eq(2, x)
>>> parse_expr("(1*2=x)=False", transformations=(
... standard_transformations + (convert_equals_signs,)))
Eq(Eq(2, x), False)
"""
res1 = _group_parentheses(convert_equals_signs)(tokens, local_dict, global_dict)
res2 = _apply_functions(res1, local_dict, global_dict)
res3 = _transform_equals_sign(res2, local_dict, global_dict)
result = _flatten(res3)
return result
#: Standard transformations for :func:`parse_expr`.
#: Inserts calls to :class:`~.Symbol`, :class:`~.Integer`, and other SymPy
#: datatypes and allows the use of standard factorial notation (e.g. ``x!``).
standard_transformations: tTuple[TRANS, ...] \
= (lambda_notation, auto_symbol, repeated_decimals, auto_number,
factorial_notation)
def stringify_expr(s: str, local_dict: DICT, global_dict: DICT,
transformations: tTuple[TRANS, ...]) -> str:
"""
Converts the string ``s`` to Python code, in ``local_dict``
Generally, ``parse_expr`` should be used.
"""
tokens = []
input_code = StringIO(s.strip())
for toknum, tokval, _, _, _ in generate_tokens(input_code.readline):
tokens.append((toknum, tokval))
for transform in transformations:
tokens = transform(tokens, local_dict, global_dict)
return untokenize(tokens)
def eval_expr(code, local_dict: DICT, global_dict: DICT):
"""
Evaluate Python code generated by ``stringify_expr``.
Generally, ``parse_expr`` should be used.
"""
expr = eval(
code, global_dict, local_dict) # take local objects in preference
return expr
def parse_expr(s: str, local_dict: Optional[DICT] = None,
transformations: tUnion[tTuple[TRANS, ...], str] \
= standard_transformations,
global_dict: Optional[DICT] = None, evaluate=True):
"""Converts the string ``s`` to a SymPy expression, in ``local_dict``
Parameters
==========
s : str
The string to parse.
local_dict : dict, optional
A dictionary of local variables to use when parsing.
global_dict : dict, optional
A dictionary of global variables. By default, this is initialized
with ``from sympy import *``; provide this parameter to override
this behavior (for instance, to parse ``"Q & S"``).
transformations : tuple or str
A tuple of transformation functions used to modify the tokens of the
parsed expression before evaluation. The default transformations
convert numeric literals into their SymPy equivalents, convert
undefined variables into SymPy symbols, and allow the use of standard
mathematical factorial notation (e.g. ``x!``). Selection via
string is available (see below).
evaluate : bool, optional
When False, the order of the arguments will remain as they were in the
string and automatic simplification that would normally occur is
suppressed. (see examples)
Examples
========
>>> from sympy.parsing.sympy_parser import parse_expr
>>> parse_expr("1/2")
1/2
>>> type(_)
<class 'sympy.core.numbers.Half'>
>>> from sympy.parsing.sympy_parser import standard_transformations,\\
... implicit_multiplication_application
>>> transformations = (standard_transformations +
... (implicit_multiplication_application,))
>>> parse_expr("2x", transformations=transformations)
2*x
When evaluate=False, some automatic simplifications will not occur:
>>> parse_expr("2**3"), parse_expr("2**3", evaluate=False)
(8, 2**3)
In addition the order of the arguments will not be made canonical.
This feature allows one to tell exactly how the expression was entered:
>>> a = parse_expr('1 + x', evaluate=False)
>>> b = parse_expr('x + 1', evaluate=0)
>>> a == b
False
>>> a.args
(1, x)
>>> b.args
(x, 1)
Note, however, that when these expressions are printed they will
appear the same:
>>> assert str(a) == str(b)
As a convenience, transformations can be seen by printing ``transformations``:
>>> from sympy.parsing.sympy_parser import transformations
>>> print(transformations)
0: lambda_notation
1: auto_symbol
2: repeated_decimals
3: auto_number
4: factorial_notation
5: implicit_multiplication_application
6: convert_xor
7: implicit_application
8: implicit_multiplication
9: convert_equals_signs
10: function_exponentiation
11: rationalize
The ``T`` object provides a way to select these transformations:
>>> from sympy.parsing.sympy_parser import T
If you print it, you will see the same list as shown above.
>>> str(T) == str(transformations)
True
Standard slicing will return a tuple of transformations:
>>> T[:5] == standard_transformations
True
So ``T`` can be used to specify the parsing transformations:
>>> parse_expr("2x", transformations=T[:5])
Traceback (most recent call last):
...
SyntaxError: invalid syntax
>>> parse_expr("2x", transformations=T[:6])
2*x
>>> parse_expr('.3', transformations=T[3, 11])
3/10
>>> parse_expr('.3x', transformations=T[:])
3*x/10
As a further convenience, strings 'implicit' and 'all' can be used
to select 0-5 and all the transformations, respectively.
>>> parse_expr('.3x', transformations='all')
3*x/10
See Also
========
stringify_expr, eval_expr, standard_transformations,
implicit_multiplication_application
"""
if local_dict is None:
local_dict = {}
elif not isinstance(local_dict, dict):
raise TypeError('expecting local_dict to be a dict')
elif null in local_dict:
raise ValueError('cannot use "" in local_dict')
if global_dict is None:
global_dict = {}
exec('from sympy import *', global_dict)
builtins_dict = vars(builtins)
for name, obj in builtins_dict.items():
if isinstance(obj, types.BuiltinFunctionType):
global_dict[name] = obj
global_dict['max'] = Max
global_dict['min'] = Min
elif not isinstance(global_dict, dict):
raise TypeError('expecting global_dict to be a dict')
transformations = transformations or ()
if isinstance(transformations, str):
if transformations == 'all':
_transformations = T[:]
elif transformations == 'implicit':
_transformations = T[:6]
else:
raise ValueError('unknown transformation group name')
else:
_transformations = transformations
code = stringify_expr(s, local_dict, global_dict, _transformations)
if not evaluate:
code = compile(evaluateFalse(code), '<string>', 'eval')
try:
rv = eval_expr(code, local_dict, global_dict)
# restore neutral definitions for names
for i in local_dict.pop(null, ()):
local_dict[i] = null
return rv
except Exception as e:
# restore neutral definitions for names
for i in local_dict.pop(null, ()):
local_dict[i] = null
raise e from ValueError(f"Error from parse_expr with transformed code: {code!r}")
def evaluateFalse(s: str):
"""
Replaces operators with the SymPy equivalent and sets evaluate=False.
"""
node = ast.parse(s)
transformed_node = EvaluateFalseTransformer().visit(node)
# node is a Module, we want an Expression
transformed_node = ast.Expression(transformed_node.body[0].value)
return ast.fix_missing_locations(transformed_node)
class EvaluateFalseTransformer(ast.NodeTransformer):
operators = {
ast.Add: 'Add',
ast.Mult: 'Mul',
ast.Pow: 'Pow',
ast.Sub: 'Add',
ast.Div: 'Mul',
ast.BitOr: 'Or',
ast.BitAnd: 'And',
ast.BitXor: 'Not',
}
functions = (
'Abs', 'im', 're', 'sign', 'arg', 'conjugate',
'acos', 'acot', 'acsc', 'asec', 'asin', 'atan',
'acosh', 'acoth', 'acsch', 'asech', 'asinh', 'atanh',
'cos', 'cot', 'csc', 'sec', 'sin', 'tan',
'cosh', 'coth', 'csch', 'sech', 'sinh', 'tanh',
'exp', 'ln', 'log', 'sqrt', 'cbrt',
)
def flatten(self, args, func):
result = []
for arg in args:
if isinstance(arg, ast.Call):
arg_func = arg.func
if isinstance(arg_func, ast.Call):
arg_func = arg_func.func
if arg_func.id == func:
result.extend(self.flatten(arg.args, func))
else:
result.append(arg)
else:
result.append(arg)
return result
def visit_BinOp(self, node):
if node.op.__class__ in self.operators:
sympy_class = self.operators[node.op.__class__]
right = self.visit(node.right)
left = self.visit(node.left)
rev = False
if isinstance(node.op, ast.Sub):
right = ast.Call(
func=ast.Name(id='Mul', ctx=ast.Load()),
args=[ast.UnaryOp(op=ast.USub(), operand=ast.Num(1)), right],
keywords=[ast.keyword(arg='evaluate', value=ast.NameConstant(value=False, ctx=ast.Load()))],
starargs=None,
kwargs=None
)
elif isinstance(node.op, ast.Div):
if isinstance(node.left, ast.UnaryOp):
left, right = right, left
rev = True
left = ast.Call(
func=ast.Name(id='Pow', ctx=ast.Load()),
args=[left, ast.UnaryOp(op=ast.USub(), operand=ast.Num(1))],
keywords=[ast.keyword(arg='evaluate', value=ast.NameConstant(value=False, ctx=ast.Load()))],
starargs=None,
kwargs=None
)
else:
right = ast.Call(
func=ast.Name(id='Pow', ctx=ast.Load()),
args=[right, ast.UnaryOp(op=ast.USub(), operand=ast.Num(1))],
keywords=[ast.keyword(arg='evaluate', value=ast.NameConstant(value=False, ctx=ast.Load()))],
starargs=None,
kwargs=None
)
if rev: # undo reversal
left, right = right, left
new_node = ast.Call(
func=ast.Name(id=sympy_class, ctx=ast.Load()),
args=[left, right],
keywords=[ast.keyword(arg='evaluate', value=ast.NameConstant(value=False, ctx=ast.Load()))],
starargs=None,
kwargs=None
)
if sympy_class in ('Add', 'Mul'):
# Denest Add or Mul as appropriate
new_node.args = self.flatten(new_node.args, sympy_class)
return new_node
return node
def visit_Call(self, node):
new_node = self.generic_visit(node)
if isinstance(node.func, ast.Name) and node.func.id in self.functions:
new_node.keywords.append(ast.keyword(arg='evaluate', value=ast.NameConstant(value=False, ctx=ast.Load())))
return new_node
_transformation = { # items can be added but never re-ordered
0: lambda_notation,
1: auto_symbol,
2: repeated_decimals,
3: auto_number,
4: factorial_notation,
5: implicit_multiplication_application,
6: convert_xor,
7: implicit_application,
8: implicit_multiplication,
9: convert_equals_signs,
10: function_exponentiation,
11: rationalize}
transformations = '\n'.join('%s: %s' % (i, func_name(f)) for i, f in _transformation.items())
class _T():
"""class to retrieve transformations from a given slice
EXAMPLES
========
>>> from sympy.parsing.sympy_parser import T, standard_transformations
>>> assert T[:5] == standard_transformations
"""
def __init__(self):
self.N = len(_transformation)
def __str__(self):
return transformations
def __getitem__(self, t):
if not type(t) is tuple:
t = (t,)
i = []
for ti in t:
if type(ti) is int:
i.append(range(self.N)[ti])
elif type(ti) is slice:
i.extend(range(*ti.indices(self.N)))
else:
raise TypeError('unexpected slice arg')
return tuple([_transformation[_] for _ in i])
T = _T()
|
2bc3fd140759afa51f40a6193bd4e584352a51ddd8b0c7a45c2b0acb61e1698d | from sympy.core import S, pi, Rational
from sympy.functions import assoc_laguerre, sqrt, exp, factorial, factorial2
def R_nl(n, l, nu, r):
"""
Returns the radial wavefunction R_{nl} for a 3d isotropic harmonic
oscillator.
Parameters
==========
n :
The "nodal" quantum number. Corresponds to the number of nodes in
the wavefunction. ``n >= 0``
l :
The quantum number for orbital angular momentum.
nu :
mass-scaled frequency: nu = m*omega/(2*hbar) where `m` is the mass
and `omega` the frequency of the oscillator.
(in atomic units ``nu == omega/2``)
r :
Radial coordinate.
Examples
========
>>> from sympy.physics.sho import R_nl
>>> from sympy.abc import r, nu, l
>>> R_nl(0, 0, 1, r)
2*2**(3/4)*exp(-r**2)/pi**(1/4)
>>> R_nl(1, 0, 1, r)
4*2**(1/4)*sqrt(3)*(3/2 - 2*r**2)*exp(-r**2)/(3*pi**(1/4))
l, nu and r may be symbolic:
>>> R_nl(0, 0, nu, r)
2*2**(3/4)*sqrt(nu**(3/2))*exp(-nu*r**2)/pi**(1/4)
>>> R_nl(0, l, 1, r)
r**l*sqrt(2**(l + 3/2)*2**(l + 2)/factorial2(2*l + 1))*exp(-r**2)/pi**(1/4)
The normalization of the radial wavefunction is:
>>> from sympy import Integral, oo
>>> Integral(R_nl(0, 0, 1, r)**2*r**2, (r, 0, oo)).n()
1.00000000000000
>>> Integral(R_nl(1, 0, 1, r)**2*r**2, (r, 0, oo)).n()
1.00000000000000
>>> Integral(R_nl(1, 1, 1, r)**2*r**2, (r, 0, oo)).n()
1.00000000000000
"""
n, l, nu, r = map(S, [n, l, nu, r])
# formula uses n >= 1 (instead of nodal n >= 0)
n = n + 1
C = sqrt(
((2*nu)**(l + Rational(3, 2))*2**(n + l + 1)*factorial(n - 1))/
(sqrt(pi)*(factorial2(2*n + 2*l - 1)))
)
return C*r**(l)*exp(-nu*r**2)*assoc_laguerre(n - 1, l + S.Half, 2*nu*r**2)
def E_nl(n, l, hw):
"""
Returns the Energy of an isotropic harmonic oscillator.
Parameters
==========
n :
The "nodal" quantum number.
l :
The orbital angular momentum.
hw :
The harmonic oscillator parameter.
Notes
=====
The unit of the returned value matches the unit of hw, since the energy is
calculated as:
E_nl = (2*n + l + 3/2)*hw
Examples
========
>>> from sympy.physics.sho import E_nl
>>> from sympy import symbols
>>> x, y, z = symbols('x, y, z')
>>> E_nl(x, y, z)
z*(2*x + y + 3/2)
"""
return (2*n + l + Rational(3, 2))*hw
|
6577a652c6bf6f4acbb4f55352480091943511cbb67886716a23524975b43c39 | from sympy.core import S, pi, Rational
from sympy.functions import hermite, sqrt, exp, factorial, Abs
from sympy.physics.quantum.constants import hbar
def psi_n(n, x, m, omega):
"""
Returns the wavefunction psi_{n} for the One-dimensional harmonic oscillator.
Parameters
==========
n :
the "nodal" quantum number. Corresponds to the number of nodes in the
wavefunction. ``n >= 0``
x :
x coordinate.
m :
Mass of the particle.
omega :
Angular frequency of the oscillator.
Examples
========
>>> from sympy.physics.qho_1d import psi_n
>>> from sympy.abc import m, x, omega
>>> psi_n(0, x, m, omega)
(m*omega)**(1/4)*exp(-m*omega*x**2/(2*hbar))/(hbar**(1/4)*pi**(1/4))
"""
# sympify arguments
n, x, m, omega = map(S, [n, x, m, omega])
nu = m * omega / hbar
# normalization coefficient
C = (nu/pi)**Rational(1, 4) * sqrt(1/(2**n*factorial(n)))
return C * exp(-nu* x**2 /2) * hermite(n, sqrt(nu)*x)
def E_n(n, omega):
"""
Returns the Energy of the One-dimensional harmonic oscillator.
Parameters
==========
n :
The "nodal" quantum number.
omega :
The harmonic oscillator angular frequency.
Notes
=====
The unit of the returned value matches the unit of hw, since the energy is
calculated as:
E_n = hbar * omega*(n + 1/2)
Examples
========
>>> from sympy.physics.qho_1d import E_n
>>> from sympy.abc import x, omega
>>> E_n(x, omega)
hbar*omega*(x + 1/2)
"""
return hbar * omega * (n + S.Half)
def coherent_state(n, alpha):
"""
Returns <n|alpha> for the coherent states of 1D harmonic oscillator.
See https://en.wikipedia.org/wiki/Coherent_states
Parameters
==========
n :
The "nodal" quantum number.
alpha :
The eigen value of annihilation operator.
"""
return exp(- Abs(alpha)**2/2)*(alpha**n)/sqrt(factorial(n))
|
8b71fa8a937087229e74f4f0e99a0c33289a3a82625a76078fb3b813b78ae94e | """
This module defines tensors with abstract index notation.
The abstract index notation has been first formalized by Penrose.
Tensor indices are formal objects, with a tensor type; there is no
notion of index range, it is only possible to assign the dimension,
used to trace the Kronecker delta; the dimension can be a Symbol.
The Einstein summation convention is used.
The covariant indices are indicated with a minus sign in front of the index.
For instance the tensor ``t = p(a)*A(b,c)*q(-c)`` has the index ``c``
contracted.
A tensor expression ``t`` can be called; called with its
indices in sorted order it is equal to itself:
in the above example ``t(a, b) == t``;
one can call ``t`` with different indices; ``t(c, d) == p(c)*A(d,a)*q(-a)``.
The contracted indices are dummy indices, internally they have no name,
the indices being represented by a graph-like structure.
Tensors are put in canonical form using ``canon_bp``, which uses
the Butler-Portugal algorithm for canonicalization using the monoterm
symmetries of the tensors.
If there is a (anti)symmetric metric, the indices can be raised and
lowered when the tensor is put in canonical form.
"""
from typing import Any, Dict as tDict, List, Set as tSet, Tuple as tTuple
from functools import reduce
from math import prod
from abc import abstractmethod, ABCMeta
from collections import defaultdict
import operator
import itertools
from sympy.core.numbers import (Integer, Rational)
from sympy.combinatorics import Permutation
from sympy.combinatorics.tensor_can import get_symmetric_group_sgs, \
bsgs_direct_product, canonicalize, riemann_bsgs
from sympy.core import Basic, Expr, sympify, Add, Mul, S
from sympy.core.assumptions import ManagedProperties
from sympy.core.containers import Tuple, Dict
from sympy.core.sorting import default_sort_key
from sympy.core.symbol import Symbol, symbols
from sympy.core.sympify import CantSympify, _sympify
from sympy.core.operations import AssocOp
from sympy.external.gmpy import SYMPY_INTS
from sympy.matrices import eye
from sympy.utilities.exceptions import (sympy_deprecation_warning,
SymPyDeprecationWarning,
ignore_warnings)
from sympy.utilities.decorator import memoize_property, deprecated
def deprecate_data():
sympy_deprecation_warning(
"""
The data attribute of TensorIndexType is deprecated. Use The
replace_with_arrays() method instead.
""",
deprecated_since_version="1.4",
active_deprecations_target="deprecated-tensorindextype-attrs",
stacklevel=4,
)
def deprecate_fun_eval():
sympy_deprecation_warning(
"""
The Tensor.fun_eval() method is deprecated. Use
Tensor.substitute_indices() instead.
""",
deprecated_since_version="1.5",
active_deprecations_target="deprecated-tensor-fun-eval",
stacklevel=4,
)
def deprecate_call():
sympy_deprecation_warning(
"""
Calling a tensor like Tensor(*indices) is deprecated. Use
Tensor.substitute_indices() instead.
""",
deprecated_since_version="1.5",
active_deprecations_target="deprecated-tensor-fun-eval",
stacklevel=4,
)
class _IndexStructure(CantSympify):
"""
This class handles the indices (free and dummy ones). It contains the
algorithms to manage the dummy indices replacements and contractions of
free indices under multiplications of tensor expressions, as well as stuff
related to canonicalization sorting, getting the permutation of the
expression and so on. It also includes tools to get the ``TensorIndex``
objects corresponding to the given index structure.
"""
def __init__(self, free, dum, index_types, indices, canon_bp=False):
self.free = free
self.dum = dum
self.index_types = index_types
self.indices = indices
self._ext_rank = len(self.free) + 2*len(self.dum)
self.dum.sort(key=lambda x: x[0])
@staticmethod
def from_indices(*indices):
"""
Create a new ``_IndexStructure`` object from a list of ``indices``.
Explanation
===========
``indices`` ``TensorIndex`` objects, the indices. Contractions are
detected upon construction.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, _IndexStructure
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> m0, m1, m2, m3 = tensor_indices('m0,m1,m2,m3', Lorentz)
>>> _IndexStructure.from_indices(m0, m1, -m1, m3)
_IndexStructure([(m0, 0), (m3, 3)], [(1, 2)], [Lorentz, Lorentz, Lorentz, Lorentz])
"""
free, dum = _IndexStructure._free_dum_from_indices(*indices)
index_types = [i.tensor_index_type for i in indices]
indices = _IndexStructure._replace_dummy_names(indices, free, dum)
return _IndexStructure(free, dum, index_types, indices)
@staticmethod
def from_components_free_dum(components, free, dum):
index_types = []
for component in components:
index_types.extend(component.index_types)
indices = _IndexStructure.generate_indices_from_free_dum_index_types(free, dum, index_types)
return _IndexStructure(free, dum, index_types, indices)
@staticmethod
def _free_dum_from_indices(*indices):
"""
Convert ``indices`` into ``free``, ``dum`` for single component tensor.
Explanation
===========
``free`` list of tuples ``(index, pos, 0)``,
where ``pos`` is the position of index in
the list of indices formed by the component tensors
``dum`` list of tuples ``(pos_contr, pos_cov, 0, 0)``
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, \
_IndexStructure
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> m0, m1, m2, m3 = tensor_indices('m0,m1,m2,m3', Lorentz)
>>> _IndexStructure._free_dum_from_indices(m0, m1, -m1, m3)
([(m0, 0), (m3, 3)], [(1, 2)])
"""
n = len(indices)
if n == 1:
return [(indices[0], 0)], []
# find the positions of the free indices and of the dummy indices
free = [True]*len(indices)
index_dict = {}
dum = []
for i, index in enumerate(indices):
name = index.name
typ = index.tensor_index_type
contr = index.is_up
if (name, typ) in index_dict:
# found a pair of dummy indices
is_contr, pos = index_dict[(name, typ)]
# check consistency and update free
if is_contr:
if contr:
raise ValueError('two equal contravariant indices in slots %d and %d' %(pos, i))
else:
free[pos] = False
free[i] = False
else:
if contr:
free[pos] = False
free[i] = False
else:
raise ValueError('two equal covariant indices in slots %d and %d' %(pos, i))
if contr:
dum.append((i, pos))
else:
dum.append((pos, i))
else:
index_dict[(name, typ)] = index.is_up, i
free = [(index, i) for i, index in enumerate(indices) if free[i]]
free.sort()
return free, dum
def get_indices(self):
"""
Get a list of indices, creating new tensor indices to complete dummy indices.
"""
return self.indices[:]
@staticmethod
def generate_indices_from_free_dum_index_types(free, dum, index_types):
indices = [None]*(len(free)+2*len(dum))
for idx, pos in free:
indices[pos] = idx
generate_dummy_name = _IndexStructure._get_generator_for_dummy_indices(free)
for pos1, pos2 in dum:
typ1 = index_types[pos1]
indname = generate_dummy_name(typ1)
indices[pos1] = TensorIndex(indname, typ1, True)
indices[pos2] = TensorIndex(indname, typ1, False)
return _IndexStructure._replace_dummy_names(indices, free, dum)
@staticmethod
def _get_generator_for_dummy_indices(free):
cdt = defaultdict(int)
# if the free indices have names with dummy_name, start with an
# index higher than those for the dummy indices
# to avoid name collisions
for indx, ipos in free:
if indx.name.split('_')[0] == indx.tensor_index_type.dummy_name:
cdt[indx.tensor_index_type] = max(cdt[indx.tensor_index_type], int(indx.name.split('_')[1]) + 1)
def dummy_name_gen(tensor_index_type):
nd = str(cdt[tensor_index_type])
cdt[tensor_index_type] += 1
return tensor_index_type.dummy_name + '_' + nd
return dummy_name_gen
@staticmethod
def _replace_dummy_names(indices, free, dum):
dum.sort(key=lambda x: x[0])
new_indices = [ind for ind in indices]
assert len(indices) == len(free) + 2*len(dum)
generate_dummy_name = _IndexStructure._get_generator_for_dummy_indices(free)
for ipos1, ipos2 in dum:
typ1 = new_indices[ipos1].tensor_index_type
indname = generate_dummy_name(typ1)
new_indices[ipos1] = TensorIndex(indname, typ1, True)
new_indices[ipos2] = TensorIndex(indname, typ1, False)
return new_indices
def get_free_indices(self): # type: () -> List[TensorIndex]
"""
Get a list of free indices.
"""
# get sorted indices according to their position:
free = sorted(self.free, key=lambda x: x[1])
return [i[0] for i in free]
def __str__(self):
return "_IndexStructure({}, {}, {})".format(self.free, self.dum, self.index_types)
def __repr__(self):
return self.__str__()
def _get_sorted_free_indices_for_canon(self):
sorted_free = self.free[:]
sorted_free.sort(key=lambda x: x[0])
return sorted_free
def _get_sorted_dum_indices_for_canon(self):
return sorted(self.dum, key=lambda x: x[0])
def _get_lexicographically_sorted_index_types(self):
permutation = self.indices_canon_args()[0]
index_types = [None]*self._ext_rank
for i, it in enumerate(self.index_types):
index_types[permutation(i)] = it
return index_types
def _get_lexicographically_sorted_indices(self):
permutation = self.indices_canon_args()[0]
indices = [None]*self._ext_rank
for i, it in enumerate(self.indices):
indices[permutation(i)] = it
return indices
def perm2tensor(self, g, is_canon_bp=False):
"""
Returns a ``_IndexStructure`` instance corresponding to the permutation ``g``.
Explanation
===========
``g`` permutation corresponding to the tensor in the representation
used in canonicalization
``is_canon_bp`` if True, then ``g`` is the permutation
corresponding to the canonical form of the tensor
"""
sorted_free = [i[0] for i in self._get_sorted_free_indices_for_canon()]
lex_index_types = self._get_lexicographically_sorted_index_types()
lex_indices = self._get_lexicographically_sorted_indices()
nfree = len(sorted_free)
rank = self._ext_rank
dum = [[None]*2 for i in range((rank - nfree)//2)]
free = []
index_types = [None]*rank
indices = [None]*rank
for i in range(rank):
gi = g[i]
index_types[i] = lex_index_types[gi]
indices[i] = lex_indices[gi]
if gi < nfree:
ind = sorted_free[gi]
assert index_types[i] == sorted_free[gi].tensor_index_type
free.append((ind, i))
else:
j = gi - nfree
idum, cov = divmod(j, 2)
if cov:
dum[idum][1] = i
else:
dum[idum][0] = i
dum = [tuple(x) for x in dum]
return _IndexStructure(free, dum, index_types, indices)
def indices_canon_args(self):
"""
Returns ``(g, dummies, msym, v)``, the entries of ``canonicalize``
See ``canonicalize`` in ``tensor_can.py`` in combinatorics module.
"""
# to be called after sorted_components
from sympy.combinatorics.permutations import _af_new
n = self._ext_rank
g = [None]*n + [n, n+1]
# Converts the symmetry of the metric into msym from .canonicalize()
# method in the combinatorics module
def metric_symmetry_to_msym(metric):
if metric is None:
return None
sym = metric.symmetry
if sym == TensorSymmetry.fully_symmetric(2):
return 0
if sym == TensorSymmetry.fully_symmetric(-2):
return 1
return None
# ordered indices: first the free indices, ordered by types
# then the dummy indices, ordered by types and contravariant before
# covariant
# g[position in tensor] = position in ordered indices
for i, (indx, ipos) in enumerate(self._get_sorted_free_indices_for_canon()):
g[ipos] = i
pos = len(self.free)
j = len(self.free)
dummies = []
prev = None
a = []
msym = []
for ipos1, ipos2 in self._get_sorted_dum_indices_for_canon():
g[ipos1] = j
g[ipos2] = j + 1
j += 2
typ = self.index_types[ipos1]
if typ != prev:
if a:
dummies.append(a)
a = [pos, pos + 1]
prev = typ
msym.append(metric_symmetry_to_msym(typ.metric))
else:
a.extend([pos, pos + 1])
pos += 2
if a:
dummies.append(a)
return _af_new(g), dummies, msym
def components_canon_args(components):
numtyp = []
prev = None
for t in components:
if t == prev:
numtyp[-1][1] += 1
else:
prev = t
numtyp.append([prev, 1])
v = []
for h, n in numtyp:
if h.comm in (0, 1):
comm = h.comm
else:
comm = TensorManager.get_comm(h.comm, h.comm)
v.append((h.symmetry.base, h.symmetry.generators, n, comm))
return v
class _TensorDataLazyEvaluator(CantSympify):
"""
EXPERIMENTAL: do not rely on this class, it may change without deprecation
warnings in future versions of SymPy.
Explanation
===========
This object contains the logic to associate components data to a tensor
expression. Components data are set via the ``.data`` property of tensor
expressions, is stored inside this class as a mapping between the tensor
expression and the ``ndarray``.
Computations are executed lazily: whereas the tensor expressions can have
contractions, tensor products, and additions, components data are not
computed until they are accessed by reading the ``.data`` property
associated to the tensor expression.
"""
_substitutions_dict = {} # type: tDict[Any, Any]
_substitutions_dict_tensmul = {} # type: tDict[Any, Any]
def __getitem__(self, key):
dat = self._get(key)
if dat is None:
return None
from .array import NDimArray
if not isinstance(dat, NDimArray):
return dat
if dat.rank() == 0:
return dat[()]
elif dat.rank() == 1 and len(dat) == 1:
return dat[0]
return dat
def _get(self, key):
"""
Retrieve ``data`` associated with ``key``.
Explanation
===========
This algorithm looks into ``self._substitutions_dict`` for all
``TensorHead`` in the ``TensExpr`` (or just ``TensorHead`` if key is a
TensorHead instance). It reconstructs the components data that the
tensor expression should have by performing on components data the
operations that correspond to the abstract tensor operations applied.
Metric tensor is handled in a different manner: it is pre-computed in
``self._substitutions_dict_tensmul``.
"""
if key in self._substitutions_dict:
return self._substitutions_dict[key]
if isinstance(key, TensorHead):
return None
if isinstance(key, Tensor):
# special case to handle metrics. Metric tensors cannot be
# constructed through contraction by the metric, their
# components show if they are a matrix or its inverse.
signature = tuple([i.is_up for i in key.get_indices()])
srch = (key.component,) + signature
if srch in self._substitutions_dict_tensmul:
return self._substitutions_dict_tensmul[srch]
array_list = [self.data_from_tensor(key)]
return self.data_contract_dum(array_list, key.dum, key.ext_rank)
if isinstance(key, TensMul):
tensmul_args = key.args
if len(tensmul_args) == 1 and len(tensmul_args[0].components) == 1:
# special case to handle metrics. Metric tensors cannot be
# constructed through contraction by the metric, their
# components show if they are a matrix or its inverse.
signature = tuple([i.is_up for i in tensmul_args[0].get_indices()])
srch = (tensmul_args[0].components[0],) + signature
if srch in self._substitutions_dict_tensmul:
return self._substitutions_dict_tensmul[srch]
#data_list = [self.data_from_tensor(i) for i in tensmul_args if isinstance(i, TensExpr)]
data_list = [self.data_from_tensor(i) if isinstance(i, Tensor) else i.data for i in tensmul_args if isinstance(i, TensExpr)]
coeff = prod([i for i in tensmul_args if not isinstance(i, TensExpr)])
if all(i is None for i in data_list):
return None
if any(i is None for i in data_list):
raise ValueError("Mixing tensors with associated components "\
"data with tensors without components data")
data_result = self.data_contract_dum(data_list, key.dum, key.ext_rank)
return coeff*data_result
if isinstance(key, TensAdd):
data_list = []
free_args_list = []
for arg in key.args:
if isinstance(arg, TensExpr):
data_list.append(arg.data)
free_args_list.append([x[0] for x in arg.free])
else:
data_list.append(arg)
free_args_list.append([])
if all(i is None for i in data_list):
return None
if any(i is None for i in data_list):
raise ValueError("Mixing tensors with associated components "\
"data with tensors without components data")
sum_list = []
from .array import permutedims
for data, free_args in zip(data_list, free_args_list):
if len(free_args) < 2:
sum_list.append(data)
else:
free_args_pos = {y: x for x, y in enumerate(free_args)}
axes = [free_args_pos[arg] for arg in key.free_args]
sum_list.append(permutedims(data, axes))
return reduce(lambda x, y: x+y, sum_list)
return None
@staticmethod
def data_contract_dum(ndarray_list, dum, ext_rank):
from .array import tensorproduct, tensorcontraction, MutableDenseNDimArray
arrays = list(map(MutableDenseNDimArray, ndarray_list))
prodarr = tensorproduct(*arrays)
return tensorcontraction(prodarr, *dum)
def data_tensorhead_from_tensmul(self, data, tensmul, tensorhead):
"""
This method is used when assigning components data to a ``TensMul``
object, it converts components data to a fully contravariant ndarray,
which is then stored according to the ``TensorHead`` key.
"""
if data is None:
return None
return self._correct_signature_from_indices(
data,
tensmul.get_indices(),
tensmul.free,
tensmul.dum,
True)
def data_from_tensor(self, tensor):
"""
This method corrects the components data to the right signature
(covariant/contravariant) using the metric associated with each
``TensorIndexType``.
"""
tensorhead = tensor.component
if tensorhead.data is None:
return None
return self._correct_signature_from_indices(
tensorhead.data,
tensor.get_indices(),
tensor.free,
tensor.dum)
def _assign_data_to_tensor_expr(self, key, data):
if isinstance(key, TensAdd):
raise ValueError('cannot assign data to TensAdd')
# here it is assumed that `key` is a `TensMul` instance.
if len(key.components) != 1:
raise ValueError('cannot assign data to TensMul with multiple components')
tensorhead = key.components[0]
newdata = self.data_tensorhead_from_tensmul(data, key, tensorhead)
return tensorhead, newdata
def _check_permutations_on_data(self, tens, data):
from .array import permutedims
from .array.arrayop import Flatten
if isinstance(tens, TensorHead):
rank = tens.rank
generators = tens.symmetry.generators
elif isinstance(tens, Tensor):
rank = tens.rank
generators = tens.components[0].symmetry.generators
elif isinstance(tens, TensorIndexType):
rank = tens.metric.rank
generators = tens.metric.symmetry.generators
# Every generator is a permutation, check that by permuting the array
# by that permutation, the array will be the same, except for a
# possible sign change if the permutation admits it.
for gener in generators:
sign_change = +1 if (gener(rank) == rank) else -1
data_swapped = data
last_data = data
permute_axes = list(map(gener, range(rank)))
# the order of a permutation is the number of times to get the
# identity by applying that permutation.
for i in range(gener.order()-1):
data_swapped = permutedims(data_swapped, permute_axes)
# if any value in the difference array is non-zero, raise an error:
if any(Flatten(last_data - sign_change*data_swapped)):
raise ValueError("Component data symmetry structure error")
last_data = data_swapped
def __setitem__(self, key, value):
"""
Set the components data of a tensor object/expression.
Explanation
===========
Components data are transformed to the all-contravariant form and stored
with the corresponding ``TensorHead`` object. If a ``TensorHead`` object
cannot be uniquely identified, it will raise an error.
"""
data = _TensorDataLazyEvaluator.parse_data(value)
self._check_permutations_on_data(key, data)
# TensorHead and TensorIndexType can be assigned data directly, while
# TensMul must first convert data to a fully contravariant form, and
# assign it to its corresponding TensorHead single component.
if not isinstance(key, (TensorHead, TensorIndexType)):
key, data = self._assign_data_to_tensor_expr(key, data)
if isinstance(key, TensorHead):
for dim, indextype in zip(data.shape, key.index_types):
if indextype.data is None:
raise ValueError("index type {} has no components data"\
" associated (needed to raise/lower index)".format(indextype))
if not indextype.dim.is_number:
continue
if dim != indextype.dim:
raise ValueError("wrong dimension of ndarray")
self._substitutions_dict[key] = data
def __delitem__(self, key):
del self._substitutions_dict[key]
def __contains__(self, key):
return key in self._substitutions_dict
def add_metric_data(self, metric, data):
"""
Assign data to the ``metric`` tensor. The metric tensor behaves in an
anomalous way when raising and lowering indices.
Explanation
===========
A fully covariant metric is the inverse transpose of the fully
contravariant metric (it is meant matrix inverse). If the metric is
symmetric, the transpose is not necessary and mixed
covariant/contravariant metrics are Kronecker deltas.
"""
# hard assignment, data should not be added to `TensorHead` for metric:
# the problem with `TensorHead` is that the metric is anomalous, i.e.
# raising and lowering the index means considering the metric or its
# inverse, this is not the case for other tensors.
self._substitutions_dict_tensmul[metric, True, True] = data
inverse_transpose = self.inverse_transpose_matrix(data)
# in symmetric spaces, the transpose is the same as the original matrix,
# the full covariant metric tensor is the inverse transpose, so this
# code will be able to handle non-symmetric metrics.
self._substitutions_dict_tensmul[metric, False, False] = inverse_transpose
# now mixed cases, these are identical to the unit matrix if the metric
# is symmetric.
m = data.tomatrix()
invt = inverse_transpose.tomatrix()
self._substitutions_dict_tensmul[metric, True, False] = m * invt
self._substitutions_dict_tensmul[metric, False, True] = invt * m
@staticmethod
def _flip_index_by_metric(data, metric, pos):
from .array import tensorproduct, tensorcontraction
mdim = metric.rank()
ddim = data.rank()
if pos == 0:
data = tensorcontraction(
tensorproduct(
metric,
data
),
(1, mdim+pos)
)
else:
data = tensorcontraction(
tensorproduct(
data,
metric
),
(pos, ddim)
)
return data
@staticmethod
def inverse_matrix(ndarray):
m = ndarray.tomatrix().inv()
return _TensorDataLazyEvaluator.parse_data(m)
@staticmethod
def inverse_transpose_matrix(ndarray):
m = ndarray.tomatrix().inv().T
return _TensorDataLazyEvaluator.parse_data(m)
@staticmethod
def _correct_signature_from_indices(data, indices, free, dum, inverse=False):
"""
Utility function to correct the values inside the components data
ndarray according to whether indices are covariant or contravariant.
It uses the metric matrix to lower values of covariant indices.
"""
# change the ndarray values according covariantness/contravariantness of the indices
# use the metric
for i, indx in enumerate(indices):
if not indx.is_up and not inverse:
data = _TensorDataLazyEvaluator._flip_index_by_metric(data, indx.tensor_index_type.data, i)
elif not indx.is_up and inverse:
data = _TensorDataLazyEvaluator._flip_index_by_metric(
data,
_TensorDataLazyEvaluator.inverse_matrix(indx.tensor_index_type.data),
i
)
return data
@staticmethod
def _sort_data_axes(old, new):
from .array import permutedims
new_data = old.data.copy()
old_free = [i[0] for i in old.free]
new_free = [i[0] for i in new.free]
for i in range(len(new_free)):
for j in range(i, len(old_free)):
if old_free[j] == new_free[i]:
old_free[i], old_free[j] = old_free[j], old_free[i]
new_data = permutedims(new_data, (i, j))
break
return new_data
@staticmethod
def add_rearrange_tensmul_parts(new_tensmul, old_tensmul):
def sorted_compo():
return _TensorDataLazyEvaluator._sort_data_axes(old_tensmul, new_tensmul)
_TensorDataLazyEvaluator._substitutions_dict[new_tensmul] = sorted_compo()
@staticmethod
def parse_data(data):
"""
Transform ``data`` to array. The parameter ``data`` may
contain data in various formats, e.g. nested lists, SymPy ``Matrix``,
and so on.
Examples
========
>>> from sympy.tensor.tensor import _TensorDataLazyEvaluator
>>> _TensorDataLazyEvaluator.parse_data([1, 3, -6, 12])
[1, 3, -6, 12]
>>> _TensorDataLazyEvaluator.parse_data([[1, 2], [4, 7]])
[[1, 2], [4, 7]]
"""
from .array import MutableDenseNDimArray
if not isinstance(data, MutableDenseNDimArray):
if len(data) == 2 and hasattr(data[0], '__call__'):
data = MutableDenseNDimArray(data[0], data[1])
else:
data = MutableDenseNDimArray(data)
return data
_tensor_data_substitution_dict = _TensorDataLazyEvaluator()
class _TensorManager:
"""
Class to manage tensor properties.
Notes
=====
Tensors belong to tensor commutation groups; each group has a label
``comm``; there are predefined labels:
``0`` tensors commuting with any other tensor
``1`` tensors anticommuting among themselves
``2`` tensors not commuting, apart with those with ``comm=0``
Other groups can be defined using ``set_comm``; tensors in those
groups commute with those with ``comm=0``; by default they
do not commute with any other group.
"""
def __init__(self):
self._comm_init()
def _comm_init(self):
self._comm = [{} for i in range(3)]
for i in range(3):
self._comm[0][i] = 0
self._comm[i][0] = 0
self._comm[1][1] = 1
self._comm[2][1] = None
self._comm[1][2] = None
self._comm_symbols2i = {0:0, 1:1, 2:2}
self._comm_i2symbol = {0:0, 1:1, 2:2}
@property
def comm(self):
return self._comm
def comm_symbols2i(self, i):
"""
Get the commutation group number corresponding to ``i``.
``i`` can be a symbol or a number or a string.
If ``i`` is not already defined its commutation group number
is set.
"""
if i not in self._comm_symbols2i:
n = len(self._comm)
self._comm.append({})
self._comm[n][0] = 0
self._comm[0][n] = 0
self._comm_symbols2i[i] = n
self._comm_i2symbol[n] = i
return n
return self._comm_symbols2i[i]
def comm_i2symbol(self, i):
"""
Returns the symbol corresponding to the commutation group number.
"""
return self._comm_i2symbol[i]
def set_comm(self, i, j, c):
"""
Set the commutation parameter ``c`` for commutation groups ``i, j``.
Parameters
==========
i, j : symbols representing commutation groups
c : group commutation number
Notes
=====
``i, j`` can be symbols, strings or numbers,
apart from ``0, 1`` and ``2`` which are reserved respectively
for commuting, anticommuting tensors and tensors not commuting
with any other group apart with the commuting tensors.
For the remaining cases, use this method to set the commutation rules;
by default ``c=None``.
The group commutation number ``c`` is assigned in correspondence
to the group commutation symbols; it can be
0 commuting
1 anticommuting
None no commutation property
Examples
========
``G`` and ``GH`` do not commute with themselves and commute with
each other; A is commuting.
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, TensorManager, TensorSymmetry
>>> Lorentz = TensorIndexType('Lorentz')
>>> i0,i1,i2,i3,i4 = tensor_indices('i0:5', Lorentz)
>>> A = TensorHead('A', [Lorentz])
>>> G = TensorHead('G', [Lorentz], TensorSymmetry.no_symmetry(1), 'Gcomm')
>>> GH = TensorHead('GH', [Lorentz], TensorSymmetry.no_symmetry(1), 'GHcomm')
>>> TensorManager.set_comm('Gcomm', 'GHcomm', 0)
>>> (GH(i1)*G(i0)).canon_bp()
G(i0)*GH(i1)
>>> (G(i1)*G(i0)).canon_bp()
G(i1)*G(i0)
>>> (G(i1)*A(i0)).canon_bp()
A(i0)*G(i1)
"""
if c not in (0, 1, None):
raise ValueError('`c` can assume only the values 0, 1 or None')
if i not in self._comm_symbols2i:
n = len(self._comm)
self._comm.append({})
self._comm[n][0] = 0
self._comm[0][n] = 0
self._comm_symbols2i[i] = n
self._comm_i2symbol[n] = i
if j not in self._comm_symbols2i:
n = len(self._comm)
self._comm.append({})
self._comm[0][n] = 0
self._comm[n][0] = 0
self._comm_symbols2i[j] = n
self._comm_i2symbol[n] = j
ni = self._comm_symbols2i[i]
nj = self._comm_symbols2i[j]
self._comm[ni][nj] = c
self._comm[nj][ni] = c
def set_comms(self, *args):
"""
Set the commutation group numbers ``c`` for symbols ``i, j``.
Parameters
==========
args : sequence of ``(i, j, c)``
"""
for i, j, c in args:
self.set_comm(i, j, c)
def get_comm(self, i, j):
"""
Return the commutation parameter for commutation group numbers ``i, j``
see ``_TensorManager.set_comm``
"""
return self._comm[i].get(j, 0 if i == 0 or j == 0 else None)
def clear(self):
"""
Clear the TensorManager.
"""
self._comm_init()
TensorManager = _TensorManager()
class TensorIndexType(Basic):
"""
A TensorIndexType is characterized by its name and its metric.
Parameters
==========
name : name of the tensor type
dummy_name : name of the head of dummy indices
dim : dimension, it can be a symbol or an integer or ``None``
eps_dim : dimension of the epsilon tensor
metric_symmetry : integer that denotes metric symmetry or ``None`` for no metric
metric_name : string with the name of the metric tensor
Attributes
==========
``metric`` : the metric tensor
``delta`` : ``Kronecker delta``
``epsilon`` : the ``Levi-Civita epsilon`` tensor
``data`` : (deprecated) a property to add ``ndarray`` values, to work in a specified basis.
Notes
=====
The possible values of the ``metric_symmetry`` parameter are:
``1`` : metric tensor is fully symmetric
``0`` : metric tensor possesses no index symmetry
``-1`` : metric tensor is fully antisymmetric
``None``: there is no metric tensor (metric equals to ``None``)
The metric is assumed to be symmetric by default. It can also be set
to a custom tensor by the ``.set_metric()`` method.
If there is a metric the metric is used to raise and lower indices.
In the case of non-symmetric metric, the following raising and
lowering conventions will be adopted:
``psi(a) = g(a, b)*psi(-b); chi(-a) = chi(b)*g(-b, -a)``
From these it is easy to find:
``g(-a, b) = delta(-a, b)``
where ``delta(-a, b) = delta(b, -a)`` is the ``Kronecker delta``
(see ``TensorIndex`` for the conventions on indices).
For antisymmetric metrics there is also the following equality:
``g(a, -b) = -delta(a, -b)``
If there is no metric it is not possible to raise or lower indices;
e.g. the index of the defining representation of ``SU(N)``
is 'covariant' and the conjugate representation is
'contravariant'; for ``N > 2`` they are linearly independent.
``eps_dim`` is by default equal to ``dim``, if the latter is an integer;
else it can be assigned (for use in naive dimensional regularization);
if ``eps_dim`` is not an integer ``epsilon`` is ``None``.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> Lorentz.metric
metric(Lorentz,Lorentz)
"""
def __new__(cls, name, dummy_name=None, dim=None, eps_dim=None,
metric_symmetry=1, metric_name='metric', **kwargs):
if 'dummy_fmt' in kwargs:
dummy_fmt = kwargs['dummy_fmt']
sympy_deprecation_warning(
f"""
The dummy_fmt keyword to TensorIndexType is deprecated. Use
dummy_name={dummy_fmt} instead.
""",
deprecated_since_version="1.5",
active_deprecations_target="deprecated-tensorindextype-dummy-fmt",
)
dummy_name = dummy_fmt
if isinstance(name, str):
name = Symbol(name)
if dummy_name is None:
dummy_name = str(name)[0]
if isinstance(dummy_name, str):
dummy_name = Symbol(dummy_name)
if dim is None:
dim = Symbol("dim_" + dummy_name.name)
else:
dim = sympify(dim)
if eps_dim is None:
eps_dim = dim
else:
eps_dim = sympify(eps_dim)
metric_symmetry = sympify(metric_symmetry)
if isinstance(metric_name, str):
metric_name = Symbol(metric_name)
if 'metric' in kwargs:
SymPyDeprecationWarning(
"""
The 'metric' keyword argument to TensorIndexType is
deprecated. Use the 'metric_symmetry' keyword argument or the
TensorIndexType.set_metric() method instead.
""",
deprecated_since_version="1.5",
active_deprecations_target="deprecated-tensorindextype-metric",
)
metric = kwargs.get('metric')
if metric is not None:
if metric in (True, False, 0, 1):
metric_name = 'metric'
#metric_antisym = metric
else:
metric_name = metric.name
#metric_antisym = metric.antisym
if metric:
metric_symmetry = -1
else:
metric_symmetry = 1
obj = Basic.__new__(cls, name, dummy_name, dim, eps_dim,
metric_symmetry, metric_name)
obj._autogenerated = []
return obj
@property
def name(self):
return self.args[0].name
@property
def dummy_name(self):
return self.args[1].name
@property
def dim(self):
return self.args[2]
@property
def eps_dim(self):
return self.args[3]
@memoize_property
def metric(self):
metric_symmetry = self.args[4]
metric_name = self.args[5]
if metric_symmetry is None:
return None
if metric_symmetry == 0:
symmetry = TensorSymmetry.no_symmetry(2)
elif metric_symmetry == 1:
symmetry = TensorSymmetry.fully_symmetric(2)
elif metric_symmetry == -1:
symmetry = TensorSymmetry.fully_symmetric(-2)
return TensorHead(metric_name, [self]*2, symmetry)
@memoize_property
def delta(self):
return TensorHead('KD', [self]*2, TensorSymmetry.fully_symmetric(2))
@memoize_property
def epsilon(self):
if not isinstance(self.eps_dim, (SYMPY_INTS, Integer)):
return None
symmetry = TensorSymmetry.fully_symmetric(-self.eps_dim)
return TensorHead('Eps', [self]*self.eps_dim, symmetry)
def set_metric(self, tensor):
self._metric = tensor
def __lt__(self, other):
return self.name < other.name
def __str__(self):
return self.name
__repr__ = __str__
# Everything below this line is deprecated
@property
def data(self):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
return _tensor_data_substitution_dict[self]
@data.setter
def data(self, data):
deprecate_data()
# This assignment is a bit controversial, should metric components be assigned
# to the metric only or also to the TensorIndexType object? The advantage here
# is the ability to assign a 1D array and transform it to a 2D diagonal array.
from .array import MutableDenseNDimArray
data = _TensorDataLazyEvaluator.parse_data(data)
if data.rank() > 2:
raise ValueError("data have to be of rank 1 (diagonal metric) or 2.")
if data.rank() == 1:
if self.dim.is_number:
nda_dim = data.shape[0]
if nda_dim != self.dim:
raise ValueError("Dimension mismatch")
dim = data.shape[0]
newndarray = MutableDenseNDimArray.zeros(dim, dim)
for i, val in enumerate(data):
newndarray[i, i] = val
data = newndarray
dim1, dim2 = data.shape
if dim1 != dim2:
raise ValueError("Non-square matrix tensor.")
if self.dim.is_number:
if self.dim != dim1:
raise ValueError("Dimension mismatch")
_tensor_data_substitution_dict[self] = data
_tensor_data_substitution_dict.add_metric_data(self.metric, data)
with ignore_warnings(SymPyDeprecationWarning):
delta = self.get_kronecker_delta()
i1 = TensorIndex('i1', self)
i2 = TensorIndex('i2', self)
with ignore_warnings(SymPyDeprecationWarning):
delta(i1, -i2).data = _TensorDataLazyEvaluator.parse_data(eye(dim1))
@data.deleter
def data(self):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
if self.metric in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self.metric]
@deprecated(
"""
The TensorIndexType.get_kronecker_delta() method is deprecated. Use
the TensorIndexType.delta attribute instead.
""",
deprecated_since_version="1.5",
active_deprecations_target="deprecated-tensorindextype-methods",
)
def get_kronecker_delta(self):
sym2 = TensorSymmetry(get_symmetric_group_sgs(2))
delta = TensorHead('KD', [self]*2, sym2)
return delta
@deprecated(
"""
The TensorIndexType.get_epsilon() method is deprecated. Use
the TensorIndexType.epsilon attribute instead.
""",
deprecated_since_version="1.5",
active_deprecations_target="deprecated-tensorindextype-methods",
)
def get_epsilon(self):
if not isinstance(self._eps_dim, (SYMPY_INTS, Integer)):
return None
sym = TensorSymmetry(get_symmetric_group_sgs(self._eps_dim, 1))
epsilon = TensorHead('Eps', [self]*self._eps_dim, sym)
return epsilon
def _components_data_full_destroy(self):
"""
EXPERIMENTAL: do not rely on this API method.
This destroys components data associated to the ``TensorIndexType``, if
any, specifically:
* metric tensor data
* Kronecker tensor data
"""
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
def delete_tensmul_data(key):
if key in _tensor_data_substitution_dict._substitutions_dict_tensmul:
del _tensor_data_substitution_dict._substitutions_dict_tensmul[key]
# delete metric data:
delete_tensmul_data((self.metric, True, True))
delete_tensmul_data((self.metric, True, False))
delete_tensmul_data((self.metric, False, True))
delete_tensmul_data((self.metric, False, False))
# delete delta tensor data:
delta = self.get_kronecker_delta()
if delta in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[delta]
class TensorIndex(Basic):
"""
Represents a tensor index
Parameters
==========
name : name of the index, or ``True`` if you want it to be automatically assigned
tensor_index_type : ``TensorIndexType`` of the index
is_up : flag for contravariant index (is_up=True by default)
Attributes
==========
``name``
``tensor_index_type``
``is_up``
Notes
=====
Tensor indices are contracted with the Einstein summation convention.
An index can be in contravariant or in covariant form; in the latter
case it is represented prepending a ``-`` to the index name. Adding
``-`` to a covariant (is_up=False) index makes it contravariant.
Dummy indices have a name with head given by
``tensor_inde_type.dummy_name`` with underscore and a number.
Similar to ``symbols`` multiple contravariant indices can be created
at once using ``tensor_indices(s, typ)``, where ``s`` is a string
of names.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, TensorIndex, TensorHead, tensor_indices
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> mu = TensorIndex('mu', Lorentz, is_up=False)
>>> nu, rho = tensor_indices('nu, rho', Lorentz)
>>> A = TensorHead('A', [Lorentz, Lorentz])
>>> A(mu, nu)
A(-mu, nu)
>>> A(-mu, -rho)
A(mu, -rho)
>>> A(mu, -mu)
A(-L_0, L_0)
"""
def __new__(cls, name, tensor_index_type, is_up=True):
if isinstance(name, str):
name_symbol = Symbol(name)
elif isinstance(name, Symbol):
name_symbol = name
elif name is True:
name = "_i{}".format(len(tensor_index_type._autogenerated))
name_symbol = Symbol(name)
tensor_index_type._autogenerated.append(name_symbol)
else:
raise ValueError("invalid name")
is_up = sympify(is_up)
return Basic.__new__(cls, name_symbol, tensor_index_type, is_up)
@property
def name(self):
return self.args[0].name
@property
def tensor_index_type(self):
return self.args[1]
@property
def is_up(self):
return self.args[2]
def _print(self):
s = self.name
if not self.is_up:
s = '-%s' % s
return s
def __lt__(self, other):
return ((self.tensor_index_type, self.name) <
(other.tensor_index_type, other.name))
def __neg__(self):
t1 = TensorIndex(self.name, self.tensor_index_type,
(not self.is_up))
return t1
def tensor_indices(s, typ):
"""
Returns list of tensor indices given their names and their types.
Parameters
==========
s : string of comma separated names of indices
typ : ``TensorIndexType`` of the indices
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> a, b, c, d = tensor_indices('a,b,c,d', Lorentz)
"""
if isinstance(s, str):
a = [x.name for x in symbols(s, seq=True)]
else:
raise ValueError('expecting a string')
tilist = [TensorIndex(i, typ) for i in a]
if len(tilist) == 1:
return tilist[0]
return tilist
class TensorSymmetry(Basic):
"""
Monoterm symmetry of a tensor (i.e. any symmetric or anti-symmetric
index permutation). For the relevant terminology see ``tensor_can.py``
section of the combinatorics module.
Parameters
==========
bsgs : tuple ``(base, sgs)`` BSGS of the symmetry of the tensor
Attributes
==========
``base`` : base of the BSGS
``generators`` : generators of the BSGS
``rank`` : rank of the tensor
Notes
=====
A tensor can have an arbitrary monoterm symmetry provided by its BSGS.
Multiterm symmetries, like the cyclic symmetry of the Riemann tensor
(i.e., Bianchi identity), are not covered. See combinatorics module for
information on how to generate BSGS for a general index permutation group.
Simple symmetries can be generated using built-in methods.
See Also
========
sympy.combinatorics.tensor_can.get_symmetric_group_sgs
Examples
========
Define a symmetric tensor of rank 2
>>> from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, get_symmetric_group_sgs, TensorHead
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> sym = TensorSymmetry(get_symmetric_group_sgs(2))
>>> T = TensorHead('T', [Lorentz]*2, sym)
Note, that the same can also be done using built-in TensorSymmetry methods
>>> sym2 = TensorSymmetry.fully_symmetric(2)
>>> sym == sym2
True
"""
def __new__(cls, *args, **kw_args):
if len(args) == 1:
base, generators = args[0]
elif len(args) == 2:
base, generators = args
else:
raise TypeError("bsgs required, either two separate parameters or one tuple")
if not isinstance(base, Tuple):
base = Tuple(*base)
if not isinstance(generators, Tuple):
generators = Tuple(*generators)
return Basic.__new__(cls, base, generators, **kw_args)
@property
def base(self):
return self.args[0]
@property
def generators(self):
return self.args[1]
@property
def rank(self):
return self.generators[0].size - 2
@classmethod
def fully_symmetric(cls, rank):
"""
Returns a fully symmetric (antisymmetric if ``rank``<0)
TensorSymmetry object for ``abs(rank)`` indices.
"""
if rank > 0:
bsgs = get_symmetric_group_sgs(rank, False)
elif rank < 0:
bsgs = get_symmetric_group_sgs(-rank, True)
elif rank == 0:
bsgs = ([], [Permutation(1)])
return TensorSymmetry(bsgs)
@classmethod
def direct_product(cls, *args):
"""
Returns a TensorSymmetry object that is being a direct product of
fully (anti-)symmetric index permutation groups.
Notes
=====
Some examples for different values of ``(*args)``:
``(1)`` vector, equivalent to ``TensorSymmetry.fully_symmetric(1)``
``(2)`` tensor with 2 symmetric indices, equivalent to ``.fully_symmetric(2)``
``(-2)`` tensor with 2 antisymmetric indices, equivalent to ``.fully_symmetric(-2)``
``(2, -2)`` tensor with the first 2 indices commuting and the last 2 anticommuting
``(1, 1, 1)`` tensor with 3 indices without any symmetry
"""
base, sgs = [], [Permutation(1)]
for arg in args:
if arg > 0:
bsgs2 = get_symmetric_group_sgs(arg, False)
elif arg < 0:
bsgs2 = get_symmetric_group_sgs(-arg, True)
else:
continue
base, sgs = bsgs_direct_product(base, sgs, *bsgs2)
return TensorSymmetry(base, sgs)
@classmethod
def riemann(cls):
"""
Returns a monotorem symmetry of the Riemann tensor
"""
return TensorSymmetry(riemann_bsgs)
@classmethod
def no_symmetry(cls, rank):
"""
TensorSymmetry object for ``rank`` indices with no symmetry
"""
return TensorSymmetry([], [Permutation(rank+1)])
@deprecated(
"""
The tensorsymmetry() function is deprecated. Use the TensorSymmetry
constructor instead.
""",
deprecated_since_version="1.5",
active_deprecations_target="deprecated-tensorsymmetry",
)
def tensorsymmetry(*args):
"""
Returns a ``TensorSymmetry`` object. This method is deprecated, use
``TensorSymmetry.direct_product()`` or ``.riemann()`` instead.
Explanation
===========
One can represent a tensor with any monoterm slot symmetry group
using a BSGS.
``args`` can be a BSGS
``args[0]`` base
``args[1]`` sgs
Usually tensors are in (direct products of) representations
of the symmetric group;
``args`` can be a list of lists representing the shapes of Young tableaux
Notes
=====
For instance:
``[[1]]`` vector
``[[1]*n]`` symmetric tensor of rank ``n``
``[[n]]`` antisymmetric tensor of rank ``n``
``[[2, 2]]`` monoterm slot symmetry of the Riemann tensor
``[[1],[1]]`` vector*vector
``[[2],[1],[1]`` (antisymmetric tensor)*vector*vector
Notice that with the shape ``[2, 2]`` we associate only the monoterm
symmetries of the Riemann tensor; this is an abuse of notation,
since the shape ``[2, 2]`` corresponds usually to the irreducible
representation characterized by the monoterm symmetries and by the
cyclic symmetry.
"""
from sympy.combinatorics import Permutation
def tableau2bsgs(a):
if len(a) == 1:
# antisymmetric vector
n = a[0]
bsgs = get_symmetric_group_sgs(n, 1)
else:
if all(x == 1 for x in a):
# symmetric vector
n = len(a)
bsgs = get_symmetric_group_sgs(n)
elif a == [2, 2]:
bsgs = riemann_bsgs
else:
raise NotImplementedError
return bsgs
if not args:
return TensorSymmetry(Tuple(), Tuple(Permutation(1)))
if len(args) == 2 and isinstance(args[1][0], Permutation):
return TensorSymmetry(args)
base, sgs = tableau2bsgs(args[0])
for a in args[1:]:
basex, sgsx = tableau2bsgs(a)
base, sgs = bsgs_direct_product(base, sgs, basex, sgsx)
return TensorSymmetry(Tuple(base, sgs))
@deprecated(
"TensorType is deprecated. Use tensor_heads() instead.",
deprecated_since_version="1.5",
active_deprecations_target="deprecated-tensortype",
)
class TensorType(Basic):
"""
Class of tensor types. Deprecated, use tensor_heads() instead.
Parameters
==========
index_types : list of ``TensorIndexType`` of the tensor indices
symmetry : ``TensorSymmetry`` of the tensor
Attributes
==========
``index_types``
``symmetry``
``types`` : list of ``TensorIndexType`` without repetitions
"""
is_commutative = False
def __new__(cls, index_types, symmetry, **kw_args):
assert symmetry.rank == len(index_types)
obj = Basic.__new__(cls, Tuple(*index_types), symmetry, **kw_args)
return obj
@property
def index_types(self):
return self.args[0]
@property
def symmetry(self):
return self.args[1]
@property
def types(self):
return sorted(set(self.index_types), key=lambda x: x.name)
def __str__(self):
return 'TensorType(%s)' % ([str(x) for x in self.index_types])
def __call__(self, s, comm=0):
"""
Return a TensorHead object or a list of TensorHead objects.
Parameters
==========
s : name or string of names.
comm : Commutation group.
see ``_TensorManager.set_comm``
"""
if isinstance(s, str):
names = [x.name for x in symbols(s, seq=True)]
else:
raise ValueError('expecting a string')
if len(names) == 1:
return TensorHead(names[0], self.index_types, self.symmetry, comm)
else:
return [TensorHead(name, self.index_types, self.symmetry, comm) for name in names]
@deprecated(
"""
The tensorhead() function is deprecated. Use tensor_heads() instead.
""",
deprecated_since_version="1.5",
active_deprecations_target="deprecated-tensorhead",
)
def tensorhead(name, typ, sym=None, comm=0):
"""
Function generating tensorhead(s). This method is deprecated,
use TensorHead constructor or tensor_heads() instead.
Parameters
==========
name : name or sequence of names (as in ``symbols``)
typ : index types
sym : same as ``*args`` in ``tensorsymmetry``
comm : commutation group number
see ``_TensorManager.set_comm``
"""
if sym is None:
sym = [[1] for i in range(len(typ))]
with ignore_warnings(SymPyDeprecationWarning):
sym = tensorsymmetry(*sym)
return TensorHead(name, typ, sym, comm)
class TensorHead(Basic):
"""
Tensor head of the tensor.
Parameters
==========
name : name of the tensor
index_types : list of TensorIndexType
symmetry : TensorSymmetry of the tensor
comm : commutation group number
Attributes
==========
``name``
``index_types``
``rank`` : total number of indices
``symmetry``
``comm`` : commutation group
Notes
=====
Similar to ``symbols`` multiple TensorHeads can be created using
``tensorhead(s, typ, sym=None, comm=0)`` function, where ``s``
is the string of names and ``sym`` is the monoterm tensor symmetry
(see ``tensorsymmetry``).
A ``TensorHead`` belongs to a commutation group, defined by a
symbol on number ``comm`` (see ``_TensorManager.set_comm``);
tensors in a commutation group have the same commutation properties;
by default ``comm`` is ``0``, the group of the commuting tensors.
Examples
========
Define a fully antisymmetric tensor of rank 2:
>>> from sympy.tensor.tensor import TensorIndexType, TensorHead, TensorSymmetry
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> asym2 = TensorSymmetry.fully_symmetric(-2)
>>> A = TensorHead('A', [Lorentz, Lorentz], asym2)
Examples with ndarray values, the components data assigned to the
``TensorHead`` object are assumed to be in a fully-contravariant
representation. In case it is necessary to assign components data which
represents the values of a non-fully covariant tensor, see the other
examples.
>>> from sympy.tensor.tensor import tensor_indices
>>> from sympy import diag
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> i0, i1 = tensor_indices('i0:2', Lorentz)
Specify a replacement dictionary to keep track of the arrays to use for
replacements in the tensorial expression. The ``TensorIndexType`` is
associated to the metric used for contractions (in fully covariant form):
>>> repl = {Lorentz: diag(1, -1, -1, -1)}
Let's see some examples of working with components with the electromagnetic
tensor:
>>> from sympy import symbols
>>> Ex, Ey, Ez, Bx, By, Bz = symbols('E_x E_y E_z B_x B_y B_z')
>>> c = symbols('c', positive=True)
Let's define `F`, an antisymmetric tensor:
>>> F = TensorHead('F', [Lorentz, Lorentz], asym2)
Let's update the dictionary to contain the matrix to use in the
replacements:
>>> repl.update({F(-i0, -i1): [
... [0, Ex/c, Ey/c, Ez/c],
... [-Ex/c, 0, -Bz, By],
... [-Ey/c, Bz, 0, -Bx],
... [-Ez/c, -By, Bx, 0]]})
Now it is possible to retrieve the contravariant form of the Electromagnetic
tensor:
>>> F(i0, i1).replace_with_arrays(repl, [i0, i1])
[[0, -E_x/c, -E_y/c, -E_z/c], [E_x/c, 0, -B_z, B_y], [E_y/c, B_z, 0, -B_x], [E_z/c, -B_y, B_x, 0]]
and the mixed contravariant-covariant form:
>>> F(i0, -i1).replace_with_arrays(repl, [i0, -i1])
[[0, E_x/c, E_y/c, E_z/c], [E_x/c, 0, B_z, -B_y], [E_y/c, -B_z, 0, B_x], [E_z/c, B_y, -B_x, 0]]
Energy-momentum of a particle may be represented as:
>>> from sympy import symbols
>>> P = TensorHead('P', [Lorentz], TensorSymmetry.no_symmetry(1))
>>> E, px, py, pz = symbols('E p_x p_y p_z', positive=True)
>>> repl.update({P(i0): [E, px, py, pz]})
The contravariant and covariant components are, respectively:
>>> P(i0).replace_with_arrays(repl, [i0])
[E, p_x, p_y, p_z]
>>> P(-i0).replace_with_arrays(repl, [-i0])
[E, -p_x, -p_y, -p_z]
The contraction of a 1-index tensor by itself:
>>> expr = P(i0)*P(-i0)
>>> expr.replace_with_arrays(repl, [])
E**2 - p_x**2 - p_y**2 - p_z**2
"""
is_commutative = False
def __new__(cls, name, index_types, symmetry=None, comm=0):
if isinstance(name, str):
name_symbol = Symbol(name)
elif isinstance(name, Symbol):
name_symbol = name
else:
raise ValueError("invalid name")
if symmetry is None:
symmetry = TensorSymmetry.no_symmetry(len(index_types))
else:
assert symmetry.rank == len(index_types)
obj = Basic.__new__(cls, name_symbol, Tuple(*index_types), symmetry)
obj.comm = TensorManager.comm_symbols2i(comm)
return obj
@property
def name(self):
return self.args[0].name
@property
def index_types(self):
return list(self.args[1])
@property
def symmetry(self):
return self.args[2]
@property
def rank(self):
return len(self.index_types)
def __lt__(self, other):
return (self.name, self.index_types) < (other.name, other.index_types)
def commutes_with(self, other):
"""
Returns ``0`` if ``self`` and ``other`` commute, ``1`` if they anticommute.
Returns ``None`` if ``self`` and ``other`` neither commute nor anticommute.
"""
r = TensorManager.get_comm(self.comm, other.comm)
return r
def _print(self):
return '%s(%s)' %(self.name, ','.join([str(x) for x in self.index_types]))
def __call__(self, *indices, **kw_args):
"""
Returns a tensor with indices.
Explanation
===========
There is a special behavior in case of indices denoted by ``True``,
they are considered auto-matrix indices, their slots are automatically
filled, and confer to the tensor the behavior of a matrix or vector
upon multiplication with another tensor containing auto-matrix indices
of the same ``TensorIndexType``. This means indices get summed over the
same way as in matrix multiplication. For matrix behavior, define two
auto-matrix indices, for vector behavior define just one.
Indices can also be strings, in which case the attribute
``index_types`` is used to convert them to proper ``TensorIndex``.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorSymmetry, TensorHead
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> a, b = tensor_indices('a,b', Lorentz)
>>> A = TensorHead('A', [Lorentz]*2, TensorSymmetry.no_symmetry(2))
>>> t = A(a, -b)
>>> t
A(a, -b)
"""
updated_indices = []
for idx, typ in zip(indices, self.index_types):
if isinstance(idx, str):
idx = idx.strip().replace(" ", "")
if idx.startswith('-'):
updated_indices.append(TensorIndex(idx[1:], typ,
is_up=False))
else:
updated_indices.append(TensorIndex(idx, typ))
else:
updated_indices.append(idx)
updated_indices += indices[len(updated_indices):]
tensor = Tensor(self, updated_indices, **kw_args)
return tensor.doit()
# Everything below this line is deprecated
def __pow__(self, other):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
if self.data is None:
raise ValueError("No power on abstract tensors.")
from .array import tensorproduct, tensorcontraction
metrics = [_.data for _ in self.index_types]
marray = self.data
marraydim = marray.rank()
for metric in metrics:
marray = tensorproduct(marray, metric, marray)
marray = tensorcontraction(marray, (0, marraydim), (marraydim+1, marraydim+2))
return marray ** (other * S.Half)
@property
def data(self):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
return _tensor_data_substitution_dict[self]
@data.setter
def data(self, data):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
_tensor_data_substitution_dict[self] = data
@data.deleter
def data(self):
deprecate_data()
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
def __iter__(self):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
return self.data.__iter__()
def _components_data_full_destroy(self):
"""
EXPERIMENTAL: do not rely on this API method.
Destroy components data associated to the ``TensorHead`` object, this
checks for attached components data, and destroys components data too.
"""
# do not garbage collect Kronecker tensor (it should be done by
# ``TensorIndexType`` garbage collection)
deprecate_data()
if self.name == "KD":
return
# the data attached to a tensor must be deleted only by the TensorHead
# destructor. If the TensorHead is deleted, it means that there are no
# more instances of that tensor anywhere.
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
def tensor_heads(s, index_types, symmetry=None, comm=0):
"""
Returns a sequence of TensorHeads from a string `s`
"""
if isinstance(s, str):
names = [x.name for x in symbols(s, seq=True)]
else:
raise ValueError('expecting a string')
thlist = [TensorHead(name, index_types, symmetry, comm) for name in names]
if len(thlist) == 1:
return thlist[0]
return thlist
class _TensorMetaclass(ManagedProperties, ABCMeta):
pass
class TensExpr(Expr, metaclass=_TensorMetaclass):
"""
Abstract base class for tensor expressions
Notes
=====
A tensor expression is an expression formed by tensors;
currently the sums of tensors are distributed.
A ``TensExpr`` can be a ``TensAdd`` or a ``TensMul``.
``TensMul`` objects are formed by products of component tensors,
and include a coefficient, which is a SymPy expression.
In the internal representation contracted indices are represented
by ``(ipos1, ipos2, icomp1, icomp2)``, where ``icomp1`` is the position
of the component tensor with contravariant index, ``ipos1`` is the
slot which the index occupies in that component tensor.
Contracted indices are therefore nameless in the internal representation.
"""
_op_priority = 12.0
is_commutative = False
def __neg__(self):
return self*S.NegativeOne
def __abs__(self):
raise NotImplementedError
def __add__(self, other):
return TensAdd(self, other).doit()
def __radd__(self, other):
return TensAdd(other, self).doit()
def __sub__(self, other):
return TensAdd(self, -other).doit()
def __rsub__(self, other):
return TensAdd(other, -self).doit()
def __mul__(self, other):
"""
Multiply two tensors using Einstein summation convention.
Explanation
===========
If the two tensors have an index in common, one contravariant
and the other covariant, in their product the indices are summed
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> g = Lorentz.metric
>>> p, q = tensor_heads('p,q', [Lorentz])
>>> t1 = p(m0)
>>> t2 = q(-m0)
>>> t1*t2
p(L_0)*q(-L_0)
"""
return TensMul(self, other).doit()
def __rmul__(self, other):
return TensMul(other, self).doit()
def __truediv__(self, other):
other = _sympify(other)
if isinstance(other, TensExpr):
raise ValueError('cannot divide by a tensor')
return TensMul(self, S.One/other).doit()
def __rtruediv__(self, other):
raise ValueError('cannot divide by a tensor')
def __pow__(self, other):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
if self.data is None:
raise ValueError("No power without ndarray data.")
from .array import tensorproduct, tensorcontraction
free = self.free
marray = self.data
mdim = marray.rank()
for metric in free:
marray = tensorcontraction(
tensorproduct(
marray,
metric[0].tensor_index_type.data,
marray),
(0, mdim), (mdim+1, mdim+2)
)
return marray ** (other * S.Half)
def __rpow__(self, other):
raise NotImplementedError
@property
@abstractmethod
def nocoeff(self):
raise NotImplementedError("abstract method")
@property
@abstractmethod
def coeff(self):
raise NotImplementedError("abstract method")
@abstractmethod
def get_indices(self):
raise NotImplementedError("abstract method")
@abstractmethod
def get_free_indices(self): # type: () -> List[TensorIndex]
raise NotImplementedError("abstract method")
@abstractmethod
def _replace_indices(self, repl): # type: (tDict[TensorIndex, TensorIndex]) -> TensExpr
raise NotImplementedError("abstract method")
def fun_eval(self, *index_tuples):
deprecate_fun_eval()
return self.substitute_indices(*index_tuples)
def get_matrix(self):
"""
DEPRECATED: do not use.
Returns ndarray components data as a matrix, if components data are
available and ndarray dimension does not exceed 2.
"""
from sympy.matrices.dense import Matrix
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
if 0 < self.rank <= 2:
rows = self.data.shape[0]
columns = self.data.shape[1] if self.rank == 2 else 1
if self.rank == 2:
mat_list = [] * rows
for i in range(rows):
mat_list.append([])
for j in range(columns):
mat_list[i].append(self[i, j])
else:
mat_list = [None] * rows
for i in range(rows):
mat_list[i] = self[i]
return Matrix(mat_list)
else:
raise NotImplementedError(
"missing multidimensional reduction to matrix.")
@staticmethod
def _get_indices_permutation(indices1, indices2):
return [indices1.index(i) for i in indices2]
def expand(self, **hints):
return _expand(self, **hints).doit()
def _expand(self, **kwargs):
return self
def _get_free_indices_set(self):
indset = set()
for arg in self.args:
if isinstance(arg, TensExpr):
indset.update(arg._get_free_indices_set())
return indset
def _get_dummy_indices_set(self):
indset = set()
for arg in self.args:
if isinstance(arg, TensExpr):
indset.update(arg._get_dummy_indices_set())
return indset
def _get_indices_set(self):
indset = set()
for arg in self.args:
if isinstance(arg, TensExpr):
indset.update(arg._get_indices_set())
return indset
@property
def _iterate_dummy_indices(self):
dummy_set = self._get_dummy_indices_set()
def recursor(expr, pos):
if isinstance(expr, TensorIndex):
if expr in dummy_set:
yield (expr, pos)
elif isinstance(expr, (Tuple, TensExpr)):
for p, arg in enumerate(expr.args):
yield from recursor(arg, pos+(p,))
return recursor(self, ())
@property
def _iterate_free_indices(self):
free_set = self._get_free_indices_set()
def recursor(expr, pos):
if isinstance(expr, TensorIndex):
if expr in free_set:
yield (expr, pos)
elif isinstance(expr, (Tuple, TensExpr)):
for p, arg in enumerate(expr.args):
yield from recursor(arg, pos+(p,))
return recursor(self, ())
@property
def _iterate_indices(self):
def recursor(expr, pos):
if isinstance(expr, TensorIndex):
yield (expr, pos)
elif isinstance(expr, (Tuple, TensExpr)):
for p, arg in enumerate(expr.args):
yield from recursor(arg, pos+(p,))
return recursor(self, ())
@staticmethod
def _contract_and_permute_with_metric(metric, array, pos, dim):
# TODO: add possibility of metric after (spinors)
from .array import tensorcontraction, tensorproduct, permutedims
array = tensorcontraction(tensorproduct(metric, array), (1, 2+pos))
permu = list(range(dim))
permu[0], permu[pos] = permu[pos], permu[0]
return permutedims(array, permu)
@staticmethod
def _match_indices_with_other_tensor(array, free_ind1, free_ind2, replacement_dict):
from .array import permutedims
index_types1 = [i.tensor_index_type for i in free_ind1]
# Check if variance of indices needs to be fixed:
pos2up = []
pos2down = []
free2remaining = free_ind2[:]
for pos1, index1 in enumerate(free_ind1):
if index1 in free2remaining:
pos2 = free2remaining.index(index1)
free2remaining[pos2] = None
continue
if -index1 in free2remaining:
pos2 = free2remaining.index(-index1)
free2remaining[pos2] = None
free_ind2[pos2] = index1
if index1.is_up:
pos2up.append(pos2)
else:
pos2down.append(pos2)
else:
index2 = free2remaining[pos1]
if index2 is None:
raise ValueError("incompatible indices: %s and %s" % (free_ind1, free_ind2))
free2remaining[pos1] = None
free_ind2[pos1] = index1
if index1.is_up ^ index2.is_up:
if index1.is_up:
pos2up.append(pos1)
else:
pos2down.append(pos1)
if len(set(free_ind1) & set(free_ind2)) < len(free_ind1):
raise ValueError("incompatible indices: %s and %s" % (free_ind1, free_ind2))
# Raise indices:
for pos in pos2up:
index_type_pos = index_types1[pos] # type: TensorIndexType
if index_type_pos not in replacement_dict:
raise ValueError("No metric provided to lower index")
metric = replacement_dict[index_type_pos]
metric_inverse = _TensorDataLazyEvaluator.inverse_matrix(metric)
array = TensExpr._contract_and_permute_with_metric(metric_inverse, array, pos, len(free_ind1))
# Lower indices:
for pos in pos2down:
index_type_pos = index_types1[pos] # type: TensorIndexType
if index_type_pos not in replacement_dict:
raise ValueError("No metric provided to lower index")
metric = replacement_dict[index_type_pos]
array = TensExpr._contract_and_permute_with_metric(metric, array, pos, len(free_ind1))
if free_ind1:
permutation = TensExpr._get_indices_permutation(free_ind2, free_ind1)
array = permutedims(array, permutation)
if hasattr(array, "rank") and array.rank() == 0:
array = array[()]
return free_ind2, array
def replace_with_arrays(self, replacement_dict, indices=None):
"""
Replace the tensorial expressions with arrays. The final array will
correspond to the N-dimensional array with indices arranged according
to ``indices``.
Parameters
==========
replacement_dict
dictionary containing the replacement rules for tensors.
indices
the index order with respect to which the array is read. The
original index order will be used if no value is passed.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices
>>> from sympy.tensor.tensor import TensorHead
>>> from sympy import symbols, diag
>>> L = TensorIndexType("L")
>>> i, j = tensor_indices("i j", L)
>>> A = TensorHead("A", [L])
>>> A(i).replace_with_arrays({A(i): [1, 2]}, [i])
[1, 2]
Since 'indices' is optional, we can also call replace_with_arrays by
this way if no specific index order is needed:
>>> A(i).replace_with_arrays({A(i): [1, 2]})
[1, 2]
>>> expr = A(i)*A(j)
>>> expr.replace_with_arrays({A(i): [1, 2]})
[[1, 2], [2, 4]]
For contractions, specify the metric of the ``TensorIndexType``, which
in this case is ``L``, in its covariant form:
>>> expr = A(i)*A(-i)
>>> expr.replace_with_arrays({A(i): [1, 2], L: diag(1, -1)})
-3
Symmetrization of an array:
>>> H = TensorHead("H", [L, L])
>>> a, b, c, d = symbols("a b c d")
>>> expr = H(i, j)/2 + H(j, i)/2
>>> expr.replace_with_arrays({H(i, j): [[a, b], [c, d]]})
[[a, b/2 + c/2], [b/2 + c/2, d]]
Anti-symmetrization of an array:
>>> expr = H(i, j)/2 - H(j, i)/2
>>> repl = {H(i, j): [[a, b], [c, d]]}
>>> expr.replace_with_arrays(repl)
[[0, b/2 - c/2], [-b/2 + c/2, 0]]
The same expression can be read as the transpose by inverting ``i`` and
``j``:
>>> expr.replace_with_arrays(repl, [j, i])
[[0, -b/2 + c/2], [b/2 - c/2, 0]]
"""
from .array import Array
indices = indices or []
remap = {k.args[0] if k.is_up else -k.args[0]: k for k in self.get_free_indices()}
for i, index in enumerate(indices):
if isinstance(index, (Symbol, Mul)):
if index in remap:
indices[i] = remap[index]
else:
indices[i] = -remap[-index]
replacement_dict = {tensor: Array(array) for tensor, array in replacement_dict.items()}
# Check dimensions of replaced arrays:
for tensor, array in replacement_dict.items():
if isinstance(tensor, TensorIndexType):
expected_shape = [tensor.dim for i in range(2)]
else:
expected_shape = [index_type.dim for index_type in tensor.index_types]
if len(expected_shape) != array.rank() or (not all(dim1 == dim2 if
dim1.is_number else True for dim1, dim2 in zip(expected_shape,
array.shape))):
raise ValueError("shapes for tensor %s expected to be %s, "\
"replacement array shape is %s" % (tensor, expected_shape,
array.shape))
ret_indices, array = self._extract_data(replacement_dict)
last_indices, array = self._match_indices_with_other_tensor(array, indices, ret_indices, replacement_dict)
return array
def _check_add_Sum(self, expr, index_symbols):
from sympy.concrete.summations import Sum
indices = self.get_indices()
dum = self.dum
sum_indices = [ (index_symbols[i], 0,
indices[i].tensor_index_type.dim-1) for i, j in dum]
if sum_indices:
expr = Sum(expr, *sum_indices)
return expr
def _expand_partial_derivative(self):
# simply delegate the _expand_partial_derivative() to
# its arguments to expand a possibly found PartialDerivative
return self.func(*[
a._expand_partial_derivative()
if isinstance(a, TensExpr) else a
for a in self.args])
class TensAdd(TensExpr, AssocOp):
"""
Sum of tensors.
Parameters
==========
free_args : list of the free indices
Attributes
==========
``args`` : tuple of addends
``rank`` : rank of the tensor
``free_args`` : list of the free indices in sorted order
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_heads, tensor_indices
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> a, b = tensor_indices('a,b', Lorentz)
>>> p, q = tensor_heads('p,q', [Lorentz])
>>> t = p(a) + q(a); t
p(a) + q(a)
Examples with components data added to the tensor expression:
>>> from sympy import symbols, diag
>>> x, y, z, t = symbols("x y z t")
>>> repl = {}
>>> repl[Lorentz] = diag(1, -1, -1, -1)
>>> repl[p(a)] = [1, 2, 3, 4]
>>> repl[q(a)] = [x, y, z, t]
The following are: 2**2 - 3**2 - 2**2 - 7**2 ==> -58
>>> expr = p(a) + q(a)
>>> expr.replace_with_arrays(repl, [a])
[x + 1, y + 2, z + 3, t + 4]
"""
def __new__(cls, *args, **kw_args):
args = [_sympify(x) for x in args if x]
args = TensAdd._tensAdd_flatten(args)
args.sort(key=default_sort_key)
if not args:
return S.Zero
if len(args) == 1:
return args[0]
return Basic.__new__(cls, *args, **kw_args)
@property
def coeff(self):
return S.One
@property
def nocoeff(self):
return self
def get_free_indices(self): # type: () -> List[TensorIndex]
return self.free_indices
def _replace_indices(self, repl): # type: (tDict[TensorIndex, TensorIndex]) -> TensExpr
newargs = [arg._replace_indices(repl) if isinstance(arg, TensExpr) else arg for arg in self.args]
return self.func(*newargs)
@memoize_property
def rank(self):
if isinstance(self.args[0], TensExpr):
return self.args[0].rank
else:
return 0
@memoize_property
def free_args(self):
if isinstance(self.args[0], TensExpr):
return self.args[0].free_args
else:
return []
@memoize_property
def free_indices(self):
if isinstance(self.args[0], TensExpr):
return self.args[0].get_free_indices()
else:
return set()
def doit(self, **hints):
deep = hints.get('deep', True)
if deep:
args = [arg.doit(**hints) for arg in self.args]
else:
args = self.args
if not args:
return S.Zero
if len(args) == 1 and not isinstance(args[0], TensExpr):
return args[0]
# now check that all addends have the same indices:
TensAdd._tensAdd_check(args)
# if TensAdd has only 1 element in its `args`:
if len(args) == 1: # and isinstance(args[0], TensMul):
return args[0]
# Remove zeros:
args = [x for x in args if x]
# if there are no more args (i.e. have cancelled out),
# just return zero:
if not args:
return S.Zero
if len(args) == 1:
return args[0]
# Collect terms appearing more than once, differing by their coefficients:
args = TensAdd._tensAdd_collect_terms(args)
# collect canonicalized terms
def sort_key(t):
if not isinstance(t, TensExpr):
return [], [], []
if hasattr(t, "_index_structure") and hasattr(t, "components"):
x = get_index_structure(t)
return t.components, x.free, x.dum
return [], [], []
args.sort(key=sort_key)
if not args:
return S.Zero
# it there is only a component tensor return it
if len(args) == 1:
return args[0]
obj = self.func(*args)
return obj
@staticmethod
def _tensAdd_flatten(args):
# flatten TensAdd, coerce terms which are not tensors to tensors
a = []
for x in args:
if isinstance(x, (Add, TensAdd)):
a.extend(list(x.args))
else:
a.append(x)
args = [x for x in a if x.coeff]
return args
@staticmethod
def _tensAdd_check(args):
# check that all addends have the same free indices
def get_indices_set(x): # type: (Expr) -> tSet[TensorIndex]
if isinstance(x, TensExpr):
return set(x.get_free_indices())
return set()
indices0 = get_indices_set(args[0]) # type: tSet[TensorIndex]
list_indices = [get_indices_set(arg) for arg in args[1:]] # type: List[tSet[TensorIndex]]
if not all(x == indices0 for x in list_indices):
raise ValueError('all tensors must have the same indices')
@staticmethod
def _tensAdd_collect_terms(args):
# collect TensMul terms differing at most by their coefficient
terms_dict = defaultdict(list)
scalars = S.Zero
if isinstance(args[0], TensExpr):
free_indices = set(args[0].get_free_indices())
else:
free_indices = set()
for arg in args:
if not isinstance(arg, TensExpr):
if free_indices != set():
raise ValueError("wrong valence")
scalars += arg
continue
if free_indices != set(arg.get_free_indices()):
raise ValueError("wrong valence")
# TODO: what is the part which is not a coeff?
# needs an implementation similar to .as_coeff_Mul()
terms_dict[arg.nocoeff].append(arg.coeff)
new_args = [TensMul(Add(*coeff), t).doit() for t, coeff in terms_dict.items() if Add(*coeff) != 0]
if isinstance(scalars, Add):
new_args = list(scalars.args) + new_args
elif scalars != 0:
new_args = [scalars] + new_args
return new_args
def get_indices(self):
indices = []
for arg in self.args:
indices.extend([i for i in get_indices(arg) if i not in indices])
return indices
def _expand(self, **hints):
return TensAdd(*[_expand(i, **hints) for i in self.args])
def __call__(self, *indices):
deprecate_call()
free_args = self.free_args
indices = list(indices)
if [x.tensor_index_type for x in indices] != [x.tensor_index_type for x in free_args]:
raise ValueError('incompatible types')
if indices == free_args:
return self
index_tuples = list(zip(free_args, indices))
a = [x.func(*x.substitute_indices(*index_tuples).args) for x in self.args]
res = TensAdd(*a).doit()
return res
def canon_bp(self):
"""
Canonicalize using the Butler-Portugal algorithm for canonicalization
under monoterm symmetries.
"""
expr = self.expand()
args = [canon_bp(x) for x in expr.args]
res = TensAdd(*args).doit()
return res
def equals(self, other):
other = _sympify(other)
if isinstance(other, TensMul) and other.coeff == 0:
return all(x.coeff == 0 for x in self.args)
if isinstance(other, TensExpr):
if self.rank != other.rank:
return False
if isinstance(other, TensAdd):
if set(self.args) != set(other.args):
return False
else:
return True
t = self - other
if not isinstance(t, TensExpr):
return t == 0
else:
if isinstance(t, TensMul):
return t.coeff == 0
else:
return all(x.coeff == 0 for x in t.args)
def __getitem__(self, item):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
return self.data[item]
def contract_delta(self, delta):
args = [x.contract_delta(delta) for x in self.args]
t = TensAdd(*args).doit()
return canon_bp(t)
def contract_metric(self, g):
"""
Raise or lower indices with the metric ``g``.
Parameters
==========
g : metric
contract_all : if True, eliminate all ``g`` which are contracted
Notes
=====
see the ``TensorIndexType`` docstring for the contraction conventions
"""
args = [contract_metric(x, g) for x in self.args]
t = TensAdd(*args).doit()
return canon_bp(t)
def substitute_indices(self, *index_tuples):
new_args = []
for arg in self.args:
if isinstance(arg, TensExpr):
arg = arg.substitute_indices(*index_tuples)
new_args.append(arg)
return TensAdd(*new_args).doit()
def _print(self):
a = []
args = self.args
for x in args:
a.append(str(x))
s = ' + '.join(a)
s = s.replace('+ -', '- ')
return s
def _extract_data(self, replacement_dict):
from sympy.tensor.array import Array, permutedims
args_indices, arrays = zip(*[
arg._extract_data(replacement_dict) if
isinstance(arg, TensExpr) else ([], arg) for arg in self.args
])
arrays = [Array(i) for i in arrays]
ref_indices = args_indices[0]
for i in range(1, len(args_indices)):
indices = args_indices[i]
array = arrays[i]
permutation = TensMul._get_indices_permutation(indices, ref_indices)
arrays[i] = permutedims(array, permutation)
return ref_indices, sum(arrays, Array.zeros(*array.shape))
@property
def data(self):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
return _tensor_data_substitution_dict[self.expand()]
@data.setter
def data(self, data):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
_tensor_data_substitution_dict[self] = data
@data.deleter
def data(self):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
def __iter__(self):
deprecate_data()
if not self.data:
raise ValueError("No iteration on abstract tensors")
return self.data.flatten().__iter__()
def _eval_rewrite_as_Indexed(self, *args):
return Add.fromiter(args)
def _eval_partial_derivative(self, s):
# Evaluation like Add
list_addends = []
for a in self.args:
if isinstance(a, TensExpr):
list_addends.append(a._eval_partial_derivative(s))
# do not call diff if s is no symbol
elif s._diff_wrt:
list_addends.append(a._eval_derivative(s))
return self.func(*list_addends)
class Tensor(TensExpr):
"""
Base tensor class, i.e. this represents a tensor, the single unit to be
put into an expression.
Explanation
===========
This object is usually created from a ``TensorHead``, by attaching indices
to it. Indices preceded by a minus sign are considered contravariant,
otherwise covariant.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead
>>> Lorentz = TensorIndexType("Lorentz", dummy_name="L")
>>> mu, nu = tensor_indices('mu nu', Lorentz)
>>> A = TensorHead("A", [Lorentz, Lorentz])
>>> A(mu, -nu)
A(mu, -nu)
>>> A(mu, -mu)
A(L_0, -L_0)
It is also possible to use symbols instead of inidices (appropriate indices
are then generated automatically).
>>> from sympy import Symbol
>>> x = Symbol('x')
>>> A(x, mu)
A(x, mu)
>>> A(x, -x)
A(L_0, -L_0)
"""
is_commutative = False
_index_structure = None # type: _IndexStructure
args: tTuple[TensorHead, Tuple]
def __new__(cls, tensor_head, indices, *, is_canon_bp=False, **kw_args):
indices = cls._parse_indices(tensor_head, indices)
obj = Basic.__new__(cls, tensor_head, Tuple(*indices), **kw_args)
obj._index_structure = _IndexStructure.from_indices(*indices)
obj._free = obj._index_structure.free[:]
obj._dum = obj._index_structure.dum[:]
obj._ext_rank = obj._index_structure._ext_rank
obj._coeff = S.One
obj._nocoeff = obj
obj._component = tensor_head
obj._components = [tensor_head]
if tensor_head.rank != len(indices):
raise ValueError("wrong number of indices")
obj.is_canon_bp = is_canon_bp
obj._index_map = Tensor._build_index_map(indices, obj._index_structure)
return obj
@property
def free(self):
return self._free
@property
def dum(self):
return self._dum
@property
def ext_rank(self):
return self._ext_rank
@property
def coeff(self):
return self._coeff
@property
def nocoeff(self):
return self._nocoeff
@property
def component(self):
return self._component
@property
def components(self):
return self._components
@property
def head(self):
return self.args[0]
@property
def indices(self):
return self.args[1]
@property
def free_indices(self):
return set(self._index_structure.get_free_indices())
@property
def index_types(self):
return self.head.index_types
@property
def rank(self):
return len(self.free_indices)
@staticmethod
def _build_index_map(indices, index_structure):
index_map = {}
for idx in indices:
index_map[idx] = (indices.index(idx),)
return index_map
def doit(self, **hints):
args, indices, free, dum = TensMul._tensMul_contract_indices([self])
return args[0]
@staticmethod
def _parse_indices(tensor_head, indices):
if not isinstance(indices, (tuple, list, Tuple)):
raise TypeError("indices should be an array, got %s" % type(indices))
indices = list(indices)
for i, index in enumerate(indices):
if isinstance(index, Symbol):
indices[i] = TensorIndex(index, tensor_head.index_types[i], True)
elif isinstance(index, Mul):
c, e = index.as_coeff_Mul()
if c == -1 and isinstance(e, Symbol):
indices[i] = TensorIndex(e, tensor_head.index_types[i], False)
else:
raise ValueError("index not understood: %s" % index)
elif not isinstance(index, TensorIndex):
raise TypeError("wrong type for index: %s is %s" % (index, type(index)))
return indices
def _set_new_index_structure(self, im, is_canon_bp=False):
indices = im.get_indices()
return self._set_indices(*indices, is_canon_bp=is_canon_bp)
def _set_indices(self, *indices, is_canon_bp=False, **kw_args):
if len(indices) != self.ext_rank:
raise ValueError("indices length mismatch")
return self.func(self.args[0], indices, is_canon_bp=is_canon_bp).doit()
def _get_free_indices_set(self):
return {i[0] for i in self._index_structure.free}
def _get_dummy_indices_set(self):
dummy_pos = set(itertools.chain(*self._index_structure.dum))
return {idx for i, idx in enumerate(self.args[1]) if i in dummy_pos}
def _get_indices_set(self):
return set(self.args[1].args)
@property
def free_in_args(self):
return [(ind, pos, 0) for ind, pos in self.free]
@property
def dum_in_args(self):
return [(p1, p2, 0, 0) for p1, p2 in self.dum]
@property
def free_args(self):
return sorted([x[0] for x in self.free])
def commutes_with(self, other):
"""
:param other:
:return:
0 commute
1 anticommute
None neither commute nor anticommute
"""
if not isinstance(other, TensExpr):
return 0
elif isinstance(other, Tensor):
return self.component.commutes_with(other.component)
return NotImplementedError
def perm2tensor(self, g, is_canon_bp=False):
"""
Returns the tensor corresponding to the permutation ``g``.
For further details, see the method in ``TIDS`` with the same name.
"""
return perm2tensor(self, g, is_canon_bp)
def canon_bp(self):
if self.is_canon_bp:
return self
expr = self.expand()
g, dummies, msym = expr._index_structure.indices_canon_args()
v = components_canon_args([expr.component])
can = canonicalize(g, dummies, msym, *v)
if can == 0:
return S.Zero
tensor = self.perm2tensor(can, True)
return tensor
def split(self):
return [self]
def _expand(self, **kwargs):
return self
def sorted_components(self):
return self
def get_indices(self): # type: () -> List[TensorIndex]
"""
Get a list of indices, corresponding to those of the tensor.
"""
return list(self.args[1])
def get_free_indices(self): # type: () -> List[TensorIndex]
"""
Get a list of free indices, corresponding to those of the tensor.
"""
return self._index_structure.get_free_indices()
def _replace_indices(self, repl): # type: (tDict[TensorIndex, TensorIndex]) -> Tensor
# TODO: this could be optimized by only swapping the indices
# instead of visiting the whole expression tree:
return self.xreplace(repl)
def as_base_exp(self):
return self, S.One
def substitute_indices(self, *index_tuples):
"""
Return a tensor with free indices substituted according to ``index_tuples``.
``index_types`` list of tuples ``(old_index, new_index)``.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads, TensorSymmetry
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> i, j, k, l = tensor_indices('i,j,k,l', Lorentz)
>>> A, B = tensor_heads('A,B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
>>> t = A(i, k)*B(-k, -j); t
A(i, L_0)*B(-L_0, -j)
>>> t.substitute_indices((i, k),(-j, l))
A(k, L_0)*B(-L_0, l)
"""
indices = []
for index in self.indices:
for ind_old, ind_new in index_tuples:
if (index.name == ind_old.name and index.tensor_index_type ==
ind_old.tensor_index_type):
if index.is_up == ind_old.is_up:
indices.append(ind_new)
else:
indices.append(-ind_new)
break
else:
indices.append(index)
return self.head(*indices)
def __call__(self, *indices):
deprecate_call()
free_args = self.free_args
indices = list(indices)
if [x.tensor_index_type for x in indices] != [x.tensor_index_type for x in free_args]:
raise ValueError('incompatible types')
if indices == free_args:
return self
t = self.substitute_indices(*list(zip(free_args, indices)))
# object is rebuilt in order to make sure that all contracted indices
# get recognized as dummies, but only if there are contracted indices.
if len({i if i.is_up else -i for i in indices}) != len(indices):
return t.func(*t.args)
return t
# TODO: put this into TensExpr?
def __iter__(self):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
return self.data.__iter__()
# TODO: put this into TensExpr?
def __getitem__(self, item):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
return self.data[item]
def _extract_data(self, replacement_dict):
from .array import Array
for k, v in replacement_dict.items():
if isinstance(k, Tensor) and k.args[0] == self.args[0]:
other = k
array = v
break
else:
raise ValueError("%s not found in %s" % (self, replacement_dict))
# TODO: inefficient, this should be done at root level only:
replacement_dict = {k: Array(v) for k, v in replacement_dict.items()}
array = Array(array)
dum1 = self.dum
dum2 = other.dum
if len(dum2) > 0:
for pair in dum2:
# allow `dum2` if the contained values are also in `dum1`.
if pair not in dum1:
raise NotImplementedError("%s with contractions is not implemented" % other)
# Remove elements in `dum2` from `dum1`:
dum1 = [pair for pair in dum1 if pair not in dum2]
if len(dum1) > 0:
indices1 = self.get_indices()
indices2 = other.get_indices()
repl = {}
for p1, p2 in dum1:
repl[indices2[p2]] = -indices2[p1]
for pos in (p1, p2):
if indices1[pos].is_up ^ indices2[pos].is_up:
metric = replacement_dict[indices1[pos].tensor_index_type]
if indices1[pos].is_up:
metric = _TensorDataLazyEvaluator.inverse_matrix(metric)
array = self._contract_and_permute_with_metric(metric, array, pos, len(indices2))
other = other.xreplace(repl).doit()
array = _TensorDataLazyEvaluator.data_contract_dum([array], dum1, len(indices2))
free_ind1 = self.get_free_indices()
free_ind2 = other.get_free_indices()
return self._match_indices_with_other_tensor(array, free_ind1, free_ind2, replacement_dict)
@property
def data(self):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
return _tensor_data_substitution_dict[self]
@data.setter
def data(self, data):
deprecate_data()
# TODO: check data compatibility with properties of tensor.
with ignore_warnings(SymPyDeprecationWarning):
_tensor_data_substitution_dict[self] = data
@data.deleter
def data(self):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
if self.metric in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self.metric]
def _print(self):
indices = [str(ind) for ind in self.indices]
component = self.component
if component.rank > 0:
return ('%s(%s)' % (component.name, ', '.join(indices)))
else:
return ('%s' % component.name)
def equals(self, other):
if other == 0:
return self.coeff == 0
other = _sympify(other)
if not isinstance(other, TensExpr):
assert not self.components
return S.One == other
def _get_compar_comp(self):
t = self.canon_bp()
r = (t.coeff, tuple(t.components), \
tuple(sorted(t.free)), tuple(sorted(t.dum)))
return r
return _get_compar_comp(self) == _get_compar_comp(other)
def contract_metric(self, g):
# if metric is not the same, ignore this step:
if self.component != g:
return self
# in case there are free components, do not perform anything:
if len(self.free) != 0:
return self
#antisym = g.index_types[0].metric_antisym
if g.symmetry == TensorSymmetry.fully_symmetric(-2):
antisym = 1
elif g.symmetry == TensorSymmetry.fully_symmetric(2):
antisym = 0
elif g.symmetry == TensorSymmetry.no_symmetry(2):
antisym = None
else:
raise NotImplementedError
sign = S.One
typ = g.index_types[0]
if not antisym:
# g(i, -i)
sign = sign*typ.dim
else:
# g(i, -i)
sign = sign*typ.dim
dp0, dp1 = self.dum[0]
if dp0 < dp1:
# g(i, -i) = -D with antisymmetric metric
sign = -sign
return sign
def contract_delta(self, metric):
return self.contract_metric(metric)
def _eval_rewrite_as_Indexed(self, tens, indices):
from sympy.tensor.indexed import Indexed
# TODO: replace .args[0] with .name:
index_symbols = [i.args[0] for i in self.get_indices()]
expr = Indexed(tens.args[0], *index_symbols)
return self._check_add_Sum(expr, index_symbols)
def _eval_partial_derivative(self, s): # type: (Tensor) -> Expr
if not isinstance(s, Tensor):
return S.Zero
else:
# @a_i/@a_k = delta_i^k
# @a_i/@a^k = g_ij delta^j_k
# @a^i/@a^k = delta^i_k
# @a^i/@a_k = g^ij delta_j^k
# TODO: if there is no metric present, the derivative should be zero?
if self.head != s.head:
return S.Zero
# if heads are the same, provide delta and/or metric products
# for every free index pair in the appropriate tensor
# assumed that the free indices are in proper order
# A contravariante index in the derivative becomes covariant
# after performing the derivative and vice versa
kronecker_delta_list = [1]
# not guarantee a correct index order
for (count, (iself, iother)) in enumerate(zip(self.get_free_indices(), s.get_free_indices())):
if iself.tensor_index_type != iother.tensor_index_type:
raise ValueError("index types not compatible")
else:
tensor_index_type = iself.tensor_index_type
tensor_metric = tensor_index_type.metric
dummy = TensorIndex("d_" + str(count), tensor_index_type,
is_up=iself.is_up)
if iself.is_up == iother.is_up:
kroneckerdelta = tensor_index_type.delta(iself, -iother)
else:
kroneckerdelta = (
TensMul(tensor_metric(iself, dummy),
tensor_index_type.delta(-dummy, -iother))
)
kronecker_delta_list.append(kroneckerdelta)
return TensMul.fromiter(kronecker_delta_list).doit()
# doit necessary to rename dummy indices accordingly
class TensMul(TensExpr, AssocOp):
"""
Product of tensors.
Parameters
==========
coeff : SymPy coefficient of the tensor
args
Attributes
==========
``components`` : list of ``TensorHead`` of the component tensors
``types`` : list of nonrepeated ``TensorIndexType``
``free`` : list of ``(ind, ipos, icomp)``, see Notes
``dum`` : list of ``(ipos1, ipos2, icomp1, icomp2)``, see Notes
``ext_rank`` : rank of the tensor counting the dummy indices
``rank`` : rank of the tensor
``coeff`` : SymPy coefficient of the tensor
``free_args`` : list of the free indices in sorted order
``is_canon_bp`` : ``True`` if the tensor in in canonical form
Notes
=====
``args[0]`` list of ``TensorHead`` of the component tensors.
``args[1]`` list of ``(ind, ipos, icomp)``
where ``ind`` is a free index, ``ipos`` is the slot position
of ``ind`` in the ``icomp``-th component tensor.
``args[2]`` list of tuples representing dummy indices.
``(ipos1, ipos2, icomp1, icomp2)`` indicates that the contravariant
dummy index is the ``ipos1``-th slot position in the ``icomp1``-th
component tensor; the corresponding covariant index is
in the ``ipos2`` slot position in the ``icomp2``-th component tensor.
"""
identity = S.One
_index_structure = None # type: _IndexStructure
def __new__(cls, *args, **kw_args):
is_canon_bp = kw_args.get('is_canon_bp', False)
args = list(map(_sympify, args))
# Flatten:
args = [i for arg in args for i in (arg.args if isinstance(arg, (TensMul, Mul)) else [arg])]
args, indices, free, dum = TensMul._tensMul_contract_indices(args, replace_indices=False)
# Data for indices:
index_types = [i.tensor_index_type for i in indices]
index_structure = _IndexStructure(free, dum, index_types, indices, canon_bp=is_canon_bp)
obj = TensExpr.__new__(cls, *args)
obj._indices = indices
obj._index_types = index_types[:]
obj._index_structure = index_structure
obj._free = index_structure.free[:]
obj._dum = index_structure.dum[:]
obj._free_indices = {x[0] for x in obj.free}
obj._rank = len(obj.free)
obj._ext_rank = len(obj._index_structure.free) + 2*len(obj._index_structure.dum)
obj._coeff = S.One
obj._is_canon_bp = is_canon_bp
return obj
index_types = property(lambda self: self._index_types)
free = property(lambda self: self._free)
dum = property(lambda self: self._dum)
free_indices = property(lambda self: self._free_indices)
rank = property(lambda self: self._rank)
ext_rank = property(lambda self: self._ext_rank)
@staticmethod
def _indices_to_free_dum(args_indices):
free2pos1 = {}
free2pos2 = {}
dummy_data = []
indices = []
# Notation for positions (to better understand the code):
# `pos1`: position in the `args`.
# `pos2`: position in the indices.
# Example:
# A(i, j)*B(k, m, n)*C(p)
# `pos1` of `n` is 1 because it's in `B` (second `args` of TensMul).
# `pos2` of `n` is 4 because it's the fifth overall index.
# Counter for the index position wrt the whole expression:
pos2 = 0
for pos1, arg_indices in enumerate(args_indices):
for index_pos, index in enumerate(arg_indices):
if not isinstance(index, TensorIndex):
raise TypeError("expected TensorIndex")
if -index in free2pos1:
# Dummy index detected:
other_pos1 = free2pos1.pop(-index)
other_pos2 = free2pos2.pop(-index)
if index.is_up:
dummy_data.append((index, pos1, other_pos1, pos2, other_pos2))
else:
dummy_data.append((-index, other_pos1, pos1, other_pos2, pos2))
indices.append(index)
elif index in free2pos1:
raise ValueError("Repeated index: %s" % index)
else:
free2pos1[index] = pos1
free2pos2[index] = pos2
indices.append(index)
pos2 += 1
free = [(i, p) for (i, p) in free2pos2.items()]
free_names = [i.name for i in free2pos2.keys()]
dummy_data.sort(key=lambda x: x[3])
return indices, free, free_names, dummy_data
@staticmethod
def _dummy_data_to_dum(dummy_data):
return [(p2a, p2b) for (i, p1a, p1b, p2a, p2b) in dummy_data]
@staticmethod
def _tensMul_contract_indices(args, replace_indices=True):
replacements = [{} for _ in args]
#_index_order = all(_has_index_order(arg) for arg in args)
args_indices = [get_indices(arg) for arg in args]
indices, free, free_names, dummy_data = TensMul._indices_to_free_dum(args_indices)
cdt = defaultdict(int)
def dummy_name_gen(tensor_index_type):
nd = str(cdt[tensor_index_type])
cdt[tensor_index_type] += 1
return tensor_index_type.dummy_name + '_' + nd
if replace_indices:
for old_index, pos1cov, pos1contra, pos2cov, pos2contra in dummy_data:
index_type = old_index.tensor_index_type
while True:
dummy_name = dummy_name_gen(index_type)
if dummy_name not in free_names:
break
dummy = TensorIndex(dummy_name, index_type, True)
replacements[pos1cov][old_index] = dummy
replacements[pos1contra][-old_index] = -dummy
indices[pos2cov] = dummy
indices[pos2contra] = -dummy
args = [
arg._replace_indices(repl) if isinstance(arg, TensExpr) else arg
for arg, repl in zip(args, replacements)]
dum = TensMul._dummy_data_to_dum(dummy_data)
return args, indices, free, dum
@staticmethod
def _get_components_from_args(args):
"""
Get a list of ``Tensor`` objects having the same ``TIDS`` if multiplied
by one another.
"""
components = []
for arg in args:
if not isinstance(arg, TensExpr):
continue
if isinstance(arg, TensAdd):
continue
components.extend(arg.components)
return components
@staticmethod
def _rebuild_tensors_list(args, index_structure):
indices = index_structure.get_indices()
#tensors = [None for i in components] # pre-allocate list
ind_pos = 0
for i, arg in enumerate(args):
if not isinstance(arg, TensExpr):
continue
prev_pos = ind_pos
ind_pos += arg.ext_rank
args[i] = Tensor(arg.component, indices[prev_pos:ind_pos])
def doit(self, **hints):
is_canon_bp = self._is_canon_bp
deep = hints.get('deep', True)
if deep:
args = [arg.doit(**hints) for arg in self.args]
else:
args = self.args
args = [arg for arg in args if arg != self.identity]
# Extract non-tensor coefficients:
coeff = reduce(lambda a, b: a*b, [arg for arg in args if not isinstance(arg, TensExpr)], S.One)
args = [arg for arg in args if isinstance(arg, TensExpr)]
if len(args) == 0:
return coeff
if coeff != self.identity:
args = [coeff] + args
if coeff == 0:
return S.Zero
if len(args) == 1:
return args[0]
args, indices, free, dum = TensMul._tensMul_contract_indices(args)
# Data for indices:
index_types = [i.tensor_index_type for i in indices]
index_structure = _IndexStructure(free, dum, index_types, indices, canon_bp=is_canon_bp)
obj = self.func(*args)
obj._index_types = index_types
obj._index_structure = index_structure
obj._ext_rank = len(obj._index_structure.free) + 2*len(obj._index_structure.dum)
obj._coeff = coeff
obj._is_canon_bp = is_canon_bp
return obj
# TODO: this method should be private
# TODO: should this method be renamed _from_components_free_dum ?
@staticmethod
def from_data(coeff, components, free, dum, **kw_args):
return TensMul(coeff, *TensMul._get_tensors_from_components_free_dum(components, free, dum), **kw_args).doit()
@staticmethod
def _get_tensors_from_components_free_dum(components, free, dum):
"""
Get a list of ``Tensor`` objects by distributing ``free`` and ``dum`` indices on the ``components``.
"""
index_structure = _IndexStructure.from_components_free_dum(components, free, dum)
indices = index_structure.get_indices()
tensors = [None for i in components] # pre-allocate list
# distribute indices on components to build a list of tensors:
ind_pos = 0
for i, component in enumerate(components):
prev_pos = ind_pos
ind_pos += component.rank
tensors[i] = Tensor(component, indices[prev_pos:ind_pos])
return tensors
def _get_free_indices_set(self):
return {i[0] for i in self.free}
def _get_dummy_indices_set(self):
dummy_pos = set(itertools.chain(*self.dum))
return {idx for i, idx in enumerate(self._index_structure.get_indices()) if i in dummy_pos}
def _get_position_offset_for_indices(self):
arg_offset = [None for i in range(self.ext_rank)]
counter = 0
for i, arg in enumerate(self.args):
if not isinstance(arg, TensExpr):
continue
for j in range(arg.ext_rank):
arg_offset[j + counter] = counter
counter += arg.ext_rank
return arg_offset
@property
def free_args(self):
return sorted([x[0] for x in self.free])
@property
def components(self):
return self._get_components_from_args(self.args)
@property
def free_in_args(self):
arg_offset = self._get_position_offset_for_indices()
argpos = self._get_indices_to_args_pos()
return [(ind, pos-arg_offset[pos], argpos[pos]) for (ind, pos) in self.free]
@property
def coeff(self):
# return Mul.fromiter([c for c in self.args if not isinstance(c, TensExpr)])
return self._coeff
@property
def nocoeff(self):
return self.func(*[t for t in self.args if isinstance(t, TensExpr)]).doit()
@property
def dum_in_args(self):
arg_offset = self._get_position_offset_for_indices()
argpos = self._get_indices_to_args_pos()
return [(p1-arg_offset[p1], p2-arg_offset[p2], argpos[p1], argpos[p2]) for p1, p2 in self.dum]
def equals(self, other):
if other == 0:
return self.coeff == 0
other = _sympify(other)
if not isinstance(other, TensExpr):
assert not self.components
return self.coeff == other
return self.canon_bp() == other.canon_bp()
def get_indices(self):
"""
Returns the list of indices of the tensor.
Explanation
===========
The indices are listed in the order in which they appear in the
component tensors.
The dummy indices are given a name which does not collide with
the names of the free indices.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> g = Lorentz.metric
>>> p, q = tensor_heads('p,q', [Lorentz])
>>> t = p(m1)*g(m0,m2)
>>> t.get_indices()
[m1, m0, m2]
>>> t2 = p(m1)*g(-m1, m2)
>>> t2.get_indices()
[L_0, -L_0, m2]
"""
return self._indices
def get_free_indices(self): # type: () -> List[TensorIndex]
"""
Returns the list of free indices of the tensor.
Explanation
===========
The indices are listed in the order in which they appear in the
component tensors.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> g = Lorentz.metric
>>> p, q = tensor_heads('p,q', [Lorentz])
>>> t = p(m1)*g(m0,m2)
>>> t.get_free_indices()
[m1, m0, m2]
>>> t2 = p(m1)*g(-m1, m2)
>>> t2.get_free_indices()
[m2]
"""
return self._index_structure.get_free_indices()
def _replace_indices(self, repl): # type: (tDict[TensorIndex, TensorIndex]) -> TensExpr
return self.func(*[arg._replace_indices(repl) if isinstance(arg, TensExpr) else arg for arg in self.args])
def split(self):
"""
Returns a list of tensors, whose product is ``self``.
Explanation
===========
Dummy indices contracted among different tensor components
become free indices with the same name as the one used to
represent the dummy indices.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads, TensorSymmetry
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> a, b, c, d = tensor_indices('a,b,c,d', Lorentz)
>>> A, B = tensor_heads('A,B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
>>> t = A(a,b)*B(-b,c)
>>> t
A(a, L_0)*B(-L_0, c)
>>> t.split()
[A(a, L_0), B(-L_0, c)]
"""
if self.args == ():
return [self]
splitp = []
res = 1
for arg in self.args:
if isinstance(arg, Tensor):
splitp.append(res*arg)
res = 1
else:
res *= arg
return splitp
def _expand(self, **hints):
# TODO: temporary solution, in the future this should be linked to
# `Expr.expand`.
args = [_expand(arg, **hints) for arg in self.args]
args1 = [arg.args if isinstance(arg, (Add, TensAdd)) else (arg,) for arg in args]
return TensAdd(*[
TensMul(*i) for i in itertools.product(*args1)]
)
def __neg__(self):
return TensMul(S.NegativeOne, self, is_canon_bp=self._is_canon_bp).doit()
def __getitem__(self, item):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
return self.data[item]
def _get_args_for_traditional_printer(self):
args = list(self.args)
if (self.coeff < 0) == True:
# expressions like "-A(a)"
sign = "-"
if self.coeff == S.NegativeOne:
args = args[1:]
else:
args[0] = -args[0]
else:
sign = ""
return sign, args
def _sort_args_for_sorted_components(self):
"""
Returns the ``args`` sorted according to the components commutation
properties.
Explanation
===========
The sorting is done taking into account the commutation group
of the component tensors.
"""
cv = [arg for arg in self.args if isinstance(arg, TensExpr)]
sign = 1
n = len(cv) - 1
for i in range(n):
for j in range(n, i, -1):
c = cv[j-1].commutes_with(cv[j])
# if `c` is `None`, it does neither commute nor anticommute, skip:
if c not in (0, 1):
continue
typ1 = sorted(set(cv[j-1].component.index_types), key=lambda x: x.name)
typ2 = sorted(set(cv[j].component.index_types), key=lambda x: x.name)
if (typ1, cv[j-1].component.name) > (typ2, cv[j].component.name):
cv[j-1], cv[j] = cv[j], cv[j-1]
# if `c` is 1, the anticommute, so change sign:
if c:
sign = -sign
coeff = sign * self.coeff
if coeff != 1:
return [coeff] + cv
return cv
def sorted_components(self):
"""
Returns a tensor product with sorted components.
"""
return TensMul(*self._sort_args_for_sorted_components()).doit()
def perm2tensor(self, g, is_canon_bp=False):
"""
Returns the tensor corresponding to the permutation ``g``
For further details, see the method in ``TIDS`` with the same name.
"""
return perm2tensor(self, g, is_canon_bp=is_canon_bp)
def canon_bp(self):
"""
Canonicalize using the Butler-Portugal algorithm for canonicalization
under monoterm symmetries.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, TensorSymmetry
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> A = TensorHead('A', [Lorentz]*2, TensorSymmetry.fully_symmetric(-2))
>>> t = A(m0,-m1)*A(m1,-m0)
>>> t.canon_bp()
-A(L_0, L_1)*A(-L_0, -L_1)
>>> t = A(m0,-m1)*A(m1,-m2)*A(m2,-m0)
>>> t.canon_bp()
0
"""
if self._is_canon_bp:
return self
expr = self.expand()
if isinstance(expr, TensAdd):
return expr.canon_bp()
if not expr.components:
return expr
t = expr.sorted_components()
g, dummies, msym = t._index_structure.indices_canon_args()
v = components_canon_args(t.components)
can = canonicalize(g, dummies, msym, *v)
if can == 0:
return S.Zero
tmul = t.perm2tensor(can, True)
return tmul
def contract_delta(self, delta):
t = self.contract_metric(delta)
return t
def _get_indices_to_args_pos(self):
"""
Get a dict mapping the index position to TensMul's argument number.
"""
pos_map = {}
pos_counter = 0
for arg_i, arg in enumerate(self.args):
if not isinstance(arg, TensExpr):
continue
assert isinstance(arg, Tensor)
for i in range(arg.ext_rank):
pos_map[pos_counter] = arg_i
pos_counter += 1
return pos_map
def contract_metric(self, g):
"""
Raise or lower indices with the metric ``g``.
Parameters
==========
g : metric
Notes
=====
See the ``TensorIndexType`` docstring for the contraction conventions.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> g = Lorentz.metric
>>> p, q = tensor_heads('p,q', [Lorentz])
>>> t = p(m0)*q(m1)*g(-m0, -m1)
>>> t.canon_bp()
metric(L_0, L_1)*p(-L_0)*q(-L_1)
>>> t.contract_metric(g).canon_bp()
p(L_0)*q(-L_0)
"""
expr = self.expand()
if self != expr:
expr = expr.canon_bp()
return expr.contract_metric(g)
pos_map = self._get_indices_to_args_pos()
args = list(self.args)
#antisym = g.index_types[0].metric_antisym
if g.symmetry == TensorSymmetry.fully_symmetric(-2):
antisym = 1
elif g.symmetry == TensorSymmetry.fully_symmetric(2):
antisym = 0
elif g.symmetry == TensorSymmetry.no_symmetry(2):
antisym = None
else:
raise NotImplementedError
# list of positions of the metric ``g`` inside ``args``
gpos = [i for i, x in enumerate(self.args) if isinstance(x, Tensor) and x.component == g]
if not gpos:
return self
# Sign is either 1 or -1, to correct the sign after metric contraction
# (for spinor indices).
sign = 1
dum = self.dum[:]
free = self.free[:]
elim = set()
for gposx in gpos:
if gposx in elim:
continue
free1 = [x for x in free if pos_map[x[1]] == gposx]
dum1 = [x for x in dum if pos_map[x[0]] == gposx or pos_map[x[1]] == gposx]
if not dum1:
continue
elim.add(gposx)
# subs with the multiplication neutral element, that is, remove it:
args[gposx] = 1
if len(dum1) == 2:
if not antisym:
dum10, dum11 = dum1
if pos_map[dum10[1]] == gposx:
# the index with pos p0 contravariant
p0 = dum10[0]
else:
# the index with pos p0 is covariant
p0 = dum10[1]
if pos_map[dum11[1]] == gposx:
# the index with pos p1 is contravariant
p1 = dum11[0]
else:
# the index with pos p1 is covariant
p1 = dum11[1]
dum.append((p0, p1))
else:
dum10, dum11 = dum1
# change the sign to bring the indices of the metric to contravariant
# form; change the sign if dum10 has the metric index in position 0
if pos_map[dum10[1]] == gposx:
# the index with pos p0 is contravariant
p0 = dum10[0]
if dum10[1] == 1:
sign = -sign
else:
# the index with pos p0 is covariant
p0 = dum10[1]
if dum10[0] == 0:
sign = -sign
if pos_map[dum11[1]] == gposx:
# the index with pos p1 is contravariant
p1 = dum11[0]
sign = -sign
else:
# the index with pos p1 is covariant
p1 = dum11[1]
dum.append((p0, p1))
elif len(dum1) == 1:
if not antisym:
dp0, dp1 = dum1[0]
if pos_map[dp0] == pos_map[dp1]:
# g(i, -i)
typ = g.index_types[0]
sign = sign*typ.dim
else:
# g(i0, i1)*p(-i1)
if pos_map[dp0] == gposx:
p1 = dp1
else:
p1 = dp0
ind, p = free1[0]
free.append((ind, p1))
else:
dp0, dp1 = dum1[0]
if pos_map[dp0] == pos_map[dp1]:
# g(i, -i)
typ = g.index_types[0]
sign = sign*typ.dim
if dp0 < dp1:
# g(i, -i) = -D with antisymmetric metric
sign = -sign
else:
# g(i0, i1)*p(-i1)
if pos_map[dp0] == gposx:
p1 = dp1
if dp0 == 0:
sign = -sign
else:
p1 = dp0
ind, p = free1[0]
free.append((ind, p1))
dum = [x for x in dum if x not in dum1]
free = [x for x in free if x not in free1]
# shift positions:
shift = 0
shifts = [0]*len(args)
for i in range(len(args)):
if i in elim:
shift += 2
continue
shifts[i] = shift
free = [(ind, p - shifts[pos_map[p]]) for (ind, p) in free if pos_map[p] not in elim]
dum = [(p0 - shifts[pos_map[p0]], p1 - shifts[pos_map[p1]]) for i, (p0, p1) in enumerate(dum) if pos_map[p0] not in elim and pos_map[p1] not in elim]
res = sign*TensMul(*args).doit()
if not isinstance(res, TensExpr):
return res
im = _IndexStructure.from_components_free_dum(res.components, free, dum)
return res._set_new_index_structure(im)
def _set_new_index_structure(self, im, is_canon_bp=False):
indices = im.get_indices()
return self._set_indices(*indices, is_canon_bp=is_canon_bp)
def _set_indices(self, *indices, is_canon_bp=False, **kw_args):
if len(indices) != self.ext_rank:
raise ValueError("indices length mismatch")
args = list(self.args)[:]
pos = 0
for i, arg in enumerate(args):
if not isinstance(arg, TensExpr):
continue
assert isinstance(arg, Tensor)
ext_rank = arg.ext_rank
args[i] = arg._set_indices(*indices[pos:pos+ext_rank])
pos += ext_rank
return TensMul(*args, is_canon_bp=is_canon_bp).doit()
@staticmethod
def _index_replacement_for_contract_metric(args, free, dum):
for arg in args:
if not isinstance(arg, TensExpr):
continue
assert isinstance(arg, Tensor)
def substitute_indices(self, *index_tuples):
new_args = []
for arg in self.args:
if isinstance(arg, TensExpr):
arg = arg.substitute_indices(*index_tuples)
new_args.append(arg)
return TensMul(*new_args).doit()
def __call__(self, *indices):
deprecate_call()
free_args = self.free_args
indices = list(indices)
if [x.tensor_index_type for x in indices] != [x.tensor_index_type for x in free_args]:
raise ValueError('incompatible types')
if indices == free_args:
return self
t = self.substitute_indices(*list(zip(free_args, indices)))
# object is rebuilt in order to make sure that all contracted indices
# get recognized as dummies, but only if there are contracted indices.
if len({i if i.is_up else -i for i in indices}) != len(indices):
return t.func(*t.args)
return t
def _extract_data(self, replacement_dict):
args_indices, arrays = zip(*[arg._extract_data(replacement_dict) for arg in self.args if isinstance(arg, TensExpr)])
coeff = reduce(operator.mul, [a for a in self.args if not isinstance(a, TensExpr)], S.One)
indices, free, free_names, dummy_data = TensMul._indices_to_free_dum(args_indices)
dum = TensMul._dummy_data_to_dum(dummy_data)
ext_rank = self.ext_rank
free.sort(key=lambda x: x[1])
free_indices = [i[0] for i in free]
return free_indices, coeff*_TensorDataLazyEvaluator.data_contract_dum(arrays, dum, ext_rank)
@property
def data(self):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
dat = _tensor_data_substitution_dict[self.expand()]
return dat
@data.setter
def data(self, data):
deprecate_data()
raise ValueError("Not possible to set component data to a tensor expression")
@data.deleter
def data(self):
deprecate_data()
raise ValueError("Not possible to delete component data to a tensor expression")
def __iter__(self):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
if self.data is None:
raise ValueError("No iteration on abstract tensors")
return self.data.__iter__()
def _eval_rewrite_as_Indexed(self, *args):
from sympy.concrete.summations import Sum
index_symbols = [i.args[0] for i in self.get_indices()]
args = [arg.args[0] if isinstance(arg, Sum) else arg for arg in args]
expr = Mul.fromiter(args)
return self._check_add_Sum(expr, index_symbols)
def _eval_partial_derivative(self, s):
# Evaluation like Mul
terms = []
for i, arg in enumerate(self.args):
# checking whether some tensor instance is differentiated
# or some other thing is necessary, but ugly
if isinstance(arg, TensExpr):
d = arg._eval_partial_derivative(s)
else:
# do not call diff is s is no symbol
if s._diff_wrt:
d = arg._eval_derivative(s)
else:
d = S.Zero
if d:
terms.append(TensMul.fromiter(self.args[:i] + (d,) + self.args[i + 1:]))
return TensAdd.fromiter(terms)
class TensorElement(TensExpr):
"""
Tensor with evaluated components.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, TensorHead, TensorSymmetry
>>> from sympy import symbols
>>> L = TensorIndexType("L")
>>> i, j, k = symbols("i j k")
>>> A = TensorHead("A", [L, L], TensorSymmetry.fully_symmetric(2))
>>> A(i, j).get_free_indices()
[i, j]
If we want to set component ``i`` to a specific value, use the
``TensorElement`` class:
>>> from sympy.tensor.tensor import TensorElement
>>> te = TensorElement(A(i, j), {i: 2})
As index ``i`` has been accessed (``{i: 2}`` is the evaluation of its 3rd
element), the free indices will only contain ``j``:
>>> te.get_free_indices()
[j]
"""
def __new__(cls, expr, index_map):
if not isinstance(expr, Tensor):
# remap
if not isinstance(expr, TensExpr):
raise TypeError("%s is not a tensor expression" % expr)
return expr.func(*[TensorElement(arg, index_map) for arg in expr.args])
expr_free_indices = expr.get_free_indices()
name_translation = {i.args[0]: i for i in expr_free_indices}
index_map = {name_translation.get(index, index): value for index, value in index_map.items()}
index_map = {index: value for index, value in index_map.items() if index in expr_free_indices}
if len(index_map) == 0:
return expr
free_indices = [i for i in expr_free_indices if i not in index_map.keys()]
index_map = Dict(index_map)
obj = TensExpr.__new__(cls, expr, index_map)
obj._free_indices = free_indices
return obj
@property
def free(self):
return [(index, i) for i, index in enumerate(self.get_free_indices())]
@property
def dum(self):
# TODO: inherit dummies from expr
return []
@property
def expr(self):
return self._args[0]
@property
def index_map(self):
return self._args[1]
@property
def coeff(self):
return S.One
@property
def nocoeff(self):
return self
def get_free_indices(self):
return self._free_indices
def _replace_indices(self, repl): # type: (tDict[TensorIndex, TensorIndex]) -> TensExpr
# TODO: can be improved:
return self.xreplace(repl)
def get_indices(self):
return self.get_free_indices()
def _extract_data(self, replacement_dict):
ret_indices, array = self.expr._extract_data(replacement_dict)
index_map = self.index_map
slice_tuple = tuple(index_map.get(i, slice(None)) for i in ret_indices)
ret_indices = [i for i in ret_indices if i not in index_map]
array = array.__getitem__(slice_tuple)
return ret_indices, array
def canon_bp(p):
"""
Butler-Portugal canonicalization. See ``tensor_can.py`` from the
combinatorics module for the details.
"""
if isinstance(p, TensExpr):
return p.canon_bp()
return p
def tensor_mul(*a):
"""
product of tensors
"""
if not a:
return TensMul.from_data(S.One, [], [], [])
t = a[0]
for tx in a[1:]:
t = t*tx
return t
def riemann_cyclic_replace(t_r):
"""
replace Riemann tensor with an equivalent expression
``R(m,n,p,q) -> 2/3*R(m,n,p,q) - 1/3*R(m,q,n,p) + 1/3*R(m,p,n,q)``
"""
free = sorted(t_r.free, key=lambda x: x[1])
m, n, p, q = [x[0] for x in free]
t0 = t_r*Rational(2, 3)
t1 = -t_r.substitute_indices((m,m),(n,q),(p,n),(q,p))*Rational(1, 3)
t2 = t_r.substitute_indices((m,m),(n,p),(p,n),(q,q))*Rational(1, 3)
t3 = t0 + t1 + t2
return t3
def riemann_cyclic(t2):
"""
Replace each Riemann tensor with an equivalent expression
satisfying the cyclic identity.
This trick is discussed in the reference guide to Cadabra.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, riemann_cyclic, TensorSymmetry
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> i, j, k, l = tensor_indices('i,j,k,l', Lorentz)
>>> R = TensorHead('R', [Lorentz]*4, TensorSymmetry.riemann())
>>> t = R(i,j,k,l)*(R(-i,-j,-k,-l) - 2*R(-i,-k,-j,-l))
>>> riemann_cyclic(t)
0
"""
t2 = t2.expand()
if isinstance(t2, (TensMul, Tensor)):
args = [t2]
else:
args = t2.args
a1 = [x.split() for x in args]
a2 = [[riemann_cyclic_replace(tx) for tx in y] for y in a1]
a3 = [tensor_mul(*v) for v in a2]
t3 = TensAdd(*a3).doit()
if not t3:
return t3
else:
return canon_bp(t3)
def get_lines(ex, index_type):
"""
Returns ``(lines, traces, rest)`` for an index type,
where ``lines`` is the list of list of positions of a matrix line,
``traces`` is the list of list of traced matrix lines,
``rest`` is the rest of the elements ot the tensor.
"""
def _join_lines(a):
i = 0
while i < len(a):
x = a[i]
xend = x[-1]
xstart = x[0]
hit = True
while hit:
hit = False
for j in range(i + 1, len(a)):
if j >= len(a):
break
if a[j][0] == xend:
hit = True
x.extend(a[j][1:])
xend = x[-1]
a.pop(j)
continue
if a[j][0] == xstart:
hit = True
a[i] = reversed(a[j][1:]) + x
x = a[i]
xstart = a[i][0]
a.pop(j)
continue
if a[j][-1] == xend:
hit = True
x.extend(reversed(a[j][:-1]))
xend = x[-1]
a.pop(j)
continue
if a[j][-1] == xstart:
hit = True
a[i] = a[j][:-1] + x
x = a[i]
xstart = x[0]
a.pop(j)
continue
i += 1
return a
arguments = ex.args
dt = {}
for c in ex.args:
if not isinstance(c, TensExpr):
continue
if c in dt:
continue
index_types = c.index_types
a = []
for i in range(len(index_types)):
if index_types[i] is index_type:
a.append(i)
if len(a) > 2:
raise ValueError('at most two indices of type %s allowed' % index_type)
if len(a) == 2:
dt[c] = a
#dum = ex.dum
lines = []
traces = []
traces1 = []
#indices_to_args_pos = ex._get_indices_to_args_pos()
# TODO: add a dum_to_components_map ?
for p0, p1, c0, c1 in ex.dum_in_args:
if arguments[c0] not in dt:
continue
if c0 == c1:
traces.append([c0])
continue
ta0 = dt[arguments[c0]]
ta1 = dt[arguments[c1]]
if p0 not in ta0:
continue
if ta0.index(p0) == ta1.index(p1):
# case gamma(i,s0,-s1) in c0, gamma(j,-s0,s2) in c1;
# to deal with this case one could add to the position
# a flag for transposition;
# one could write [(c0, False), (c1, True)]
raise NotImplementedError
# if p0 == ta0[1] then G in pos c0 is mult on the right by G in c1
# if p0 == ta0[0] then G in pos c1 is mult on the right by G in c0
ta0 = dt[arguments[c0]]
b0, b1 = (c0, c1) if p0 == ta0[1] else (c1, c0)
lines1 = lines[:]
for line in lines:
if line[-1] == b0:
if line[0] == b1:
n = line.index(min(line))
traces1.append(line)
traces.append(line[n:] + line[:n])
else:
line.append(b1)
break
elif line[0] == b1:
line.insert(0, b0)
break
else:
lines1.append([b0, b1])
lines = [x for x in lines1 if x not in traces1]
lines = _join_lines(lines)
rest = []
for line in lines:
for y in line:
rest.append(y)
for line in traces:
for y in line:
rest.append(y)
rest = [x for x in range(len(arguments)) if x not in rest]
return lines, traces, rest
def get_free_indices(t):
if not isinstance(t, TensExpr):
return ()
return t.get_free_indices()
def get_indices(t):
if not isinstance(t, TensExpr):
return ()
return t.get_indices()
def get_index_structure(t):
if isinstance(t, TensExpr):
return t._index_structure
return _IndexStructure([], [], [], [])
def get_coeff(t):
if isinstance(t, Tensor):
return S.One
if isinstance(t, TensMul):
return t.coeff
if isinstance(t, TensExpr):
raise ValueError("no coefficient associated to this tensor expression")
return t
def contract_metric(t, g):
if isinstance(t, TensExpr):
return t.contract_metric(g)
return t
def perm2tensor(t, g, is_canon_bp=False):
"""
Returns the tensor corresponding to the permutation ``g``
For further details, see the method in ``TIDS`` with the same name.
"""
if not isinstance(t, TensExpr):
return t
elif isinstance(t, (Tensor, TensMul)):
nim = get_index_structure(t).perm2tensor(g, is_canon_bp=is_canon_bp)
res = t._set_new_index_structure(nim, is_canon_bp=is_canon_bp)
if g[-1] != len(g) - 1:
return -res
return res
raise NotImplementedError()
def substitute_indices(t, *index_tuples):
if not isinstance(t, TensExpr):
return t
return t.substitute_indices(*index_tuples)
def _expand(expr, **kwargs):
if isinstance(expr, TensExpr):
return expr._expand(**kwargs)
else:
return expr.expand(**kwargs)
|
74b89cfb608ca4f5c8b4bb090a3214ad10c48a8fa61f60dcbb71f4360468dc3a | r"""Module that defines indexed objects.
The classes ``IndexedBase``, ``Indexed``, and ``Idx`` represent a
matrix element ``M[i, j]`` as in the following diagram::
1) The Indexed class represents the entire indexed object.
|
___|___
' '
M[i, j]
/ \__\______
| |
| |
| 2) The Idx class represents indices; each Idx can
| optionally contain information about its range.
|
3) IndexedBase represents the 'stem' of an indexed object, here `M`.
The stem used by itself is usually taken to represent the entire
array.
There can be any number of indices on an Indexed object. No
transformation properties are implemented in these Base objects, but
implicit contraction of repeated indices is supported.
Note that the support for complicated (i.e. non-atomic) integer
expressions as indices is limited. (This should be improved in
future releases.)
Examples
========
To express the above matrix element example you would write:
>>> from sympy import symbols, IndexedBase, Idx
>>> M = IndexedBase('M')
>>> i, j = symbols('i j', cls=Idx)
>>> M[i, j]
M[i, j]
Repeated indices in a product implies a summation, so to express a
matrix-vector product in terms of Indexed objects:
>>> x = IndexedBase('x')
>>> M[i, j]*x[j]
M[i, j]*x[j]
If the indexed objects will be converted to component based arrays, e.g.
with the code printers or the autowrap framework, you also need to provide
(symbolic or numerical) dimensions. This can be done by passing an
optional shape parameter to IndexedBase upon construction:
>>> dim1, dim2 = symbols('dim1 dim2', integer=True)
>>> A = IndexedBase('A', shape=(dim1, 2*dim1, dim2))
>>> A.shape
(dim1, 2*dim1, dim2)
>>> A[i, j, 3].shape
(dim1, 2*dim1, dim2)
If an IndexedBase object has no shape information, it is assumed that the
array is as large as the ranges of its indices:
>>> n, m = symbols('n m', integer=True)
>>> i = Idx('i', m)
>>> j = Idx('j', n)
>>> M[i, j].shape
(m, n)
>>> M[i, j].ranges
[(0, m - 1), (0, n - 1)]
The above can be compared with the following:
>>> A[i, 2, j].shape
(dim1, 2*dim1, dim2)
>>> A[i, 2, j].ranges
[(0, m - 1), None, (0, n - 1)]
To analyze the structure of indexed expressions, you can use the methods
get_indices() and get_contraction_structure():
>>> from sympy.tensor import get_indices, get_contraction_structure
>>> get_indices(A[i, j, j])
({i}, {})
>>> get_contraction_structure(A[i, j, j])
{(j,): {A[i, j, j]}}
See the appropriate docstrings for a detailed explanation of the output.
"""
# TODO: (some ideas for improvement)
#
# o test and guarantee numpy compatibility
# - implement full support for broadcasting
# - strided arrays
#
# o more functions to analyze indexed expressions
# - identify standard constructs, e.g matrix-vector product in a subexpression
#
# o functions to generate component based arrays (numpy and sympy.Matrix)
# - generate a single array directly from Indexed
# - convert simple sub-expressions
#
# o sophisticated indexing (possibly in subclasses to preserve simplicity)
# - Idx with range smaller than dimension of Indexed
# - Idx with stepsize != 1
# - Idx with step determined by function call
from collections.abc import Iterable
from sympy.core.numbers import Number
from sympy.core.assumptions import StdFactKB
from sympy.core import Expr, Tuple, sympify, S
from sympy.core.symbol import _filter_assumptions, Symbol
from sympy.core.logic import fuzzy_bool, fuzzy_not
from sympy.core.sympify import _sympify
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.multipledispatch import dispatch
from sympy.utilities.iterables import is_sequence, NotIterable
from sympy.utilities.misc import filldedent
class IndexException(Exception):
pass
class Indexed(Expr):
"""Represents a mathematical object with indices.
>>> from sympy import Indexed, IndexedBase, Idx, symbols
>>> i, j = symbols('i j', cls=Idx)
>>> Indexed('A', i, j)
A[i, j]
It is recommended that ``Indexed`` objects be created by indexing ``IndexedBase``:
``IndexedBase('A')[i, j]`` instead of ``Indexed(IndexedBase('A'), i, j)``.
>>> A = IndexedBase('A')
>>> a_ij = A[i, j] # Prefer this,
>>> b_ij = Indexed(A, i, j) # over this.
>>> a_ij == b_ij
True
"""
is_commutative = True
is_Indexed = True
is_symbol = True
is_Atom = True
def __new__(cls, base, *args, **kw_args):
from sympy.tensor.array.ndim_array import NDimArray
from sympy.matrices.matrices import MatrixBase
if not args:
raise IndexException("Indexed needs at least one index.")
if isinstance(base, (str, Symbol)):
base = IndexedBase(base)
elif not hasattr(base, '__getitem__') and not isinstance(base, IndexedBase):
raise TypeError(filldedent("""
The base can only be replaced with a string, Symbol,
IndexedBase or an object with a method for getting
items (i.e. an object with a `__getitem__` method).
"""))
args = list(map(sympify, args))
if isinstance(base, (NDimArray, Iterable, Tuple, MatrixBase)) and all(i.is_number for i in args):
if len(args) == 1:
return base[args[0]]
else:
return base[args]
base = _sympify(base)
obj = Expr.__new__(cls, base, *args, **kw_args)
try:
IndexedBase._set_assumptions(obj, base.assumptions0)
except AttributeError:
IndexedBase._set_assumptions(obj, {})
return obj
def _hashable_content(self):
return super()._hashable_content() + tuple(sorted(self.assumptions0.items()))
@property
def name(self):
return str(self)
@property
def _diff_wrt(self):
"""Allow derivatives with respect to an ``Indexed`` object."""
return True
def _eval_derivative(self, wrt):
from sympy.tensor.array.ndim_array import NDimArray
if isinstance(wrt, Indexed) and wrt.base == self.base:
if len(self.indices) != len(wrt.indices):
msg = "Different # of indices: d({!s})/d({!s})".format(self,
wrt)
raise IndexException(msg)
result = S.One
for index1, index2 in zip(self.indices, wrt.indices):
result *= KroneckerDelta(index1, index2)
return result
elif isinstance(self.base, NDimArray):
from sympy.tensor.array import derive_by_array
return Indexed(derive_by_array(self.base, wrt), *self.args[1:])
else:
if Tuple(self.indices).has(wrt):
return S.NaN
return S.Zero
@property
def assumptions0(self):
return {k: v for k, v in self._assumptions.items() if v is not None}
@property
def base(self):
"""Returns the ``IndexedBase`` of the ``Indexed`` object.
Examples
========
>>> from sympy import Indexed, IndexedBase, Idx, symbols
>>> i, j = symbols('i j', cls=Idx)
>>> Indexed('A', i, j).base
A
>>> B = IndexedBase('B')
>>> B == B[i, j].base
True
"""
return self.args[0]
@property
def indices(self):
"""
Returns the indices of the ``Indexed`` object.
Examples
========
>>> from sympy import Indexed, Idx, symbols
>>> i, j = symbols('i j', cls=Idx)
>>> Indexed('A', i, j).indices
(i, j)
"""
return self.args[1:]
@property
def rank(self):
"""
Returns the rank of the ``Indexed`` object.
Examples
========
>>> from sympy import Indexed, Idx, symbols
>>> i, j, k, l, m = symbols('i:m', cls=Idx)
>>> Indexed('A', i, j).rank
2
>>> q = Indexed('A', i, j, k, l, m)
>>> q.rank
5
>>> q.rank == len(q.indices)
True
"""
return len(self.args) - 1
@property
def shape(self):
"""Returns a list with dimensions of each index.
Dimensions is a property of the array, not of the indices. Still, if
the ``IndexedBase`` does not define a shape attribute, it is assumed
that the ranges of the indices correspond to the shape of the array.
>>> from sympy import IndexedBase, Idx, symbols
>>> n, m = symbols('n m', integer=True)
>>> i = Idx('i', m)
>>> j = Idx('j', m)
>>> A = IndexedBase('A', shape=(n, n))
>>> B = IndexedBase('B')
>>> A[i, j].shape
(n, n)
>>> B[i, j].shape
(m, m)
"""
if self.base.shape:
return self.base.shape
sizes = []
for i in self.indices:
upper = getattr(i, 'upper', None)
lower = getattr(i, 'lower', None)
if None in (upper, lower):
raise IndexException(filldedent("""
Range is not defined for all indices in: %s""" % self))
try:
size = upper - lower + 1
except TypeError:
raise IndexException(filldedent("""
Shape cannot be inferred from Idx with
undefined range: %s""" % self))
sizes.append(size)
return Tuple(*sizes)
@property
def ranges(self):
"""Returns a list of tuples with lower and upper range of each index.
If an index does not define the data members upper and lower, the
corresponding slot in the list contains ``None`` instead of a tuple.
Examples
========
>>> from sympy import Indexed,Idx, symbols
>>> Indexed('A', Idx('i', 2), Idx('j', 4), Idx('k', 8)).ranges
[(0, 1), (0, 3), (0, 7)]
>>> Indexed('A', Idx('i', 3), Idx('j', 3), Idx('k', 3)).ranges
[(0, 2), (0, 2), (0, 2)]
>>> x, y, z = symbols('x y z', integer=True)
>>> Indexed('A', x, y, z).ranges
[None, None, None]
"""
ranges = []
sentinel = object()
for i in self.indices:
upper = getattr(i, 'upper', sentinel)
lower = getattr(i, 'lower', sentinel)
if sentinel not in (upper, lower):
ranges.append((lower, upper))
else:
ranges.append(None)
return ranges
def _sympystr(self, p):
indices = list(map(p.doprint, self.indices))
return "%s[%s]" % (p.doprint(self.base), ", ".join(indices))
@property
def free_symbols(self):
base_free_symbols = self.base.free_symbols
indices_free_symbols = {
fs for i in self.indices for fs in i.free_symbols}
if base_free_symbols:
return {self} | base_free_symbols | indices_free_symbols
else:
return indices_free_symbols
@property
def expr_free_symbols(self):
from sympy.utilities.exceptions import sympy_deprecation_warning
sympy_deprecation_warning("""
The expr_free_symbols property is deprecated. Use free_symbols to get
the free symbols of an expression.
""",
deprecated_since_version="1.9",
active_deprecations_target="deprecated-expr-free-symbols")
return {self}
class IndexedBase(Expr, NotIterable):
"""Represent the base or stem of an indexed object
The IndexedBase class represent an array that contains elements. The main purpose
of this class is to allow the convenient creation of objects of the Indexed
class. The __getitem__ method of IndexedBase returns an instance of
Indexed. Alone, without indices, the IndexedBase class can be used as a
notation for e.g. matrix equations, resembling what you could do with the
Symbol class. But, the IndexedBase class adds functionality that is not
available for Symbol instances:
- An IndexedBase object can optionally store shape information. This can
be used in to check array conformance and conditions for numpy
broadcasting. (TODO)
- An IndexedBase object implements syntactic sugar that allows easy symbolic
representation of array operations, using implicit summation of
repeated indices.
- The IndexedBase object symbolizes a mathematical structure equivalent
to arrays, and is recognized as such for code generation and automatic
compilation and wrapping.
>>> from sympy.tensor import IndexedBase, Idx
>>> from sympy import symbols
>>> A = IndexedBase('A'); A
A
>>> type(A)
<class 'sympy.tensor.indexed.IndexedBase'>
When an IndexedBase object receives indices, it returns an array with named
axes, represented by an Indexed object:
>>> i, j = symbols('i j', integer=True)
>>> A[i, j, 2]
A[i, j, 2]
>>> type(A[i, j, 2])
<class 'sympy.tensor.indexed.Indexed'>
The IndexedBase constructor takes an optional shape argument. If given,
it overrides any shape information in the indices. (But not the index
ranges!)
>>> m, n, o, p = symbols('m n o p', integer=True)
>>> i = Idx('i', m)
>>> j = Idx('j', n)
>>> A[i, j].shape
(m, n)
>>> B = IndexedBase('B', shape=(o, p))
>>> B[i, j].shape
(o, p)
Assumptions can be specified with keyword arguments the same way as for Symbol:
>>> A_real = IndexedBase('A', real=True)
>>> A_real.is_real
True
>>> A != A_real
True
Assumptions can also be inherited if a Symbol is used to initialize the IndexedBase:
>>> I = symbols('I', integer=True)
>>> C_inherit = IndexedBase(I)
>>> C_explicit = IndexedBase('I', integer=True)
>>> C_inherit == C_explicit
True
"""
is_commutative = True
is_symbol = True
is_Atom = True
@staticmethod
def _set_assumptions(obj, assumptions):
"""Set assumptions on obj, making sure to apply consistent values."""
tmp_asm_copy = assumptions.copy()
is_commutative = fuzzy_bool(assumptions.get('commutative', True))
assumptions['commutative'] = is_commutative
obj._assumptions = StdFactKB(assumptions)
obj._assumptions._generator = tmp_asm_copy # Issue #8873
def __new__(cls, label, shape=None, *, offset=S.Zero, strides=None, **kw_args):
from sympy.matrices.matrices import MatrixBase
from sympy.tensor.array.ndim_array import NDimArray
assumptions, kw_args = _filter_assumptions(kw_args)
if isinstance(label, str):
label = Symbol(label, **assumptions)
elif isinstance(label, Symbol):
assumptions = label._merge(assumptions)
elif isinstance(label, (MatrixBase, NDimArray)):
return label
elif isinstance(label, Iterable):
return _sympify(label)
else:
label = _sympify(label)
if is_sequence(shape):
shape = Tuple(*shape)
elif shape is not None:
shape = Tuple(shape)
if shape is not None:
obj = Expr.__new__(cls, label, shape)
else:
obj = Expr.__new__(cls, label)
obj._shape = shape
obj._offset = offset
obj._strides = strides
obj._name = str(label)
IndexedBase._set_assumptions(obj, assumptions)
return obj
@property
def name(self):
return self._name
def _hashable_content(self):
return super()._hashable_content() + tuple(sorted(self.assumptions0.items()))
@property
def assumptions0(self):
return {k: v for k, v in self._assumptions.items() if v is not None}
def __getitem__(self, indices, **kw_args):
if is_sequence(indices):
# Special case needed because M[*my_tuple] is a syntax error.
if self.shape and len(self.shape) != len(indices):
raise IndexException("Rank mismatch.")
return Indexed(self, *indices, **kw_args)
else:
if self.shape and len(self.shape) != 1:
raise IndexException("Rank mismatch.")
return Indexed(self, indices, **kw_args)
@property
def shape(self):
"""Returns the shape of the ``IndexedBase`` object.
Examples
========
>>> from sympy import IndexedBase, Idx
>>> from sympy.abc import x, y
>>> IndexedBase('A', shape=(x, y)).shape
(x, y)
Note: If the shape of the ``IndexedBase`` is specified, it will override
any shape information given by the indices.
>>> A = IndexedBase('A', shape=(x, y))
>>> B = IndexedBase('B')
>>> i = Idx('i', 2)
>>> j = Idx('j', 1)
>>> A[i, j].shape
(x, y)
>>> B[i, j].shape
(2, 1)
"""
return self._shape
@property
def strides(self):
"""Returns the strided scheme for the ``IndexedBase`` object.
Normally this is a tuple denoting the number of
steps to take in the respective dimension when traversing
an array. For code generation purposes strides='C' and
strides='F' can also be used.
strides='C' would mean that code printer would unroll
in row-major order and 'F' means unroll in column major
order.
"""
return self._strides
@property
def offset(self):
"""Returns the offset for the ``IndexedBase`` object.
This is the value added to the resulting index when the
2D Indexed object is unrolled to a 1D form. Used in code
generation.
Examples
==========
>>> from sympy.printing import ccode
>>> from sympy.tensor import IndexedBase, Idx
>>> from sympy import symbols
>>> l, m, n, o = symbols('l m n o', integer=True)
>>> A = IndexedBase('A', strides=(l, m, n), offset=o)
>>> i, j, k = map(Idx, 'ijk')
>>> ccode(A[i, j, k])
'A[l*i + m*j + n*k + o]'
"""
return self._offset
@property
def label(self):
"""Returns the label of the ``IndexedBase`` object.
Examples
========
>>> from sympy import IndexedBase
>>> from sympy.abc import x, y
>>> IndexedBase('A', shape=(x, y)).label
A
"""
return self.args[0]
def _sympystr(self, p):
return p.doprint(self.label)
class Idx(Expr):
"""Represents an integer index as an ``Integer`` or integer expression.
There are a number of ways to create an ``Idx`` object. The constructor
takes two arguments:
``label``
An integer or a symbol that labels the index.
``range``
Optionally you can specify a range as either
* ``Symbol`` or integer: This is interpreted as a dimension. Lower and
upper bounds are set to ``0`` and ``range - 1``, respectively.
* ``tuple``: The two elements are interpreted as the lower and upper
bounds of the range, respectively.
Note: bounds of the range are assumed to be either integer or infinite (oo
and -oo are allowed to specify an unbounded range). If ``n`` is given as a
bound, then ``n.is_integer`` must not return false.
For convenience, if the label is given as a string it is automatically
converted to an integer symbol. (Note: this conversion is not done for
range or dimension arguments.)
Examples
========
>>> from sympy import Idx, symbols, oo
>>> n, i, L, U = symbols('n i L U', integer=True)
If a string is given for the label an integer ``Symbol`` is created and the
bounds are both ``None``:
>>> idx = Idx('qwerty'); idx
qwerty
>>> idx.lower, idx.upper
(None, None)
Both upper and lower bounds can be specified:
>>> idx = Idx(i, (L, U)); idx
i
>>> idx.lower, idx.upper
(L, U)
When only a single bound is given it is interpreted as the dimension
and the lower bound defaults to 0:
>>> idx = Idx(i, n); idx.lower, idx.upper
(0, n - 1)
>>> idx = Idx(i, 4); idx.lower, idx.upper
(0, 3)
>>> idx = Idx(i, oo); idx.lower, idx.upper
(0, oo)
"""
is_integer = True
is_finite = True
is_real = True
is_symbol = True
is_Atom = True
_diff_wrt = True
def __new__(cls, label, range=None, **kw_args):
if isinstance(label, str):
label = Symbol(label, integer=True)
label, range = list(map(sympify, (label, range)))
if label.is_Number:
if not label.is_integer:
raise TypeError("Index is not an integer number.")
return label
if not label.is_integer:
raise TypeError("Idx object requires an integer label.")
elif is_sequence(range):
if len(range) != 2:
raise ValueError(filldedent("""
Idx range tuple must have length 2, but got %s""" % len(range)))
for bound in range:
if (bound.is_integer is False and bound is not S.Infinity
and bound is not S.NegativeInfinity):
raise TypeError("Idx object requires integer bounds.")
args = label, Tuple(*range)
elif isinstance(range, Expr):
if range is not S.Infinity and fuzzy_not(range.is_integer):
raise TypeError("Idx object requires an integer dimension.")
args = label, Tuple(0, range - 1)
elif range:
raise TypeError(filldedent("""
The range must be an ordered iterable or
integer SymPy expression."""))
else:
args = label,
obj = Expr.__new__(cls, *args, **kw_args)
obj._assumptions["finite"] = True
obj._assumptions["real"] = True
return obj
@property
def label(self):
"""Returns the label (Integer or integer expression) of the Idx object.
Examples
========
>>> from sympy import Idx, Symbol
>>> x = Symbol('x', integer=True)
>>> Idx(x).label
x
>>> j = Symbol('j', integer=True)
>>> Idx(j).label
j
>>> Idx(j + 1).label
j + 1
"""
return self.args[0]
@property
def lower(self):
"""Returns the lower bound of the ``Idx``.
Examples
========
>>> from sympy import Idx
>>> Idx('j', 2).lower
0
>>> Idx('j', 5).lower
0
>>> Idx('j').lower is None
True
"""
try:
return self.args[1][0]
except IndexError:
return
@property
def upper(self):
"""Returns the upper bound of the ``Idx``.
Examples
========
>>> from sympy import Idx
>>> Idx('j', 2).upper
1
>>> Idx('j', 5).upper
4
>>> Idx('j').upper is None
True
"""
try:
return self.args[1][1]
except IndexError:
return
def _sympystr(self, p):
return p.doprint(self.label)
@property
def name(self):
return self.label.name if self.label.is_Symbol else str(self.label)
@property
def free_symbols(self):
return {self}
@dispatch(Idx, Idx)
def _eval_is_ge(lhs, rhs): # noqa:F811
other_upper = rhs if rhs.upper is None else rhs.upper
other_lower = rhs if rhs.lower is None else rhs.lower
if lhs.lower is not None and (lhs.lower >= other_upper) == True:
return True
if lhs.upper is not None and (lhs.upper < other_lower) == True:
return False
return None
@dispatch(Idx, Number) # type:ignore
def _eval_is_ge(lhs, rhs): # noqa:F811
other_upper = rhs
other_lower = rhs
if lhs.lower is not None and (lhs.lower >= other_upper) == True:
return True
if lhs.upper is not None and (lhs.upper < other_lower) == True:
return False
return None
@dispatch(Number, Idx) # type:ignore
def _eval_is_ge(lhs, rhs): # noqa:F811
other_upper = lhs
other_lower = lhs
if rhs.upper is not None and (rhs.upper <= other_lower) == True:
return True
if rhs.lower is not None and (rhs.lower > other_upper) == True:
return False
return None
|
a032b914dd977da324e4e9304b28ab5767d5f41524b61378f288b5ae49b7a76b | """
Boolean algebra module for SymPy
"""
from collections import defaultdict
from itertools import chain, combinations, product, permutations
from sympy.core.add import Add
from sympy.core.basic import Basic
from sympy.core.cache import cacheit
from sympy.core.containers import Tuple
from sympy.core.decorators import sympify_method_args, sympify_return
from sympy.core.function import Application, Derivative
from sympy.core.kind import BooleanKind, NumberKind
from sympy.core.numbers import Number
from sympy.core.operations import LatticeOp
from sympy.core.singleton import Singleton, S
from sympy.core.sorting import ordered
from sympy.core.sympify import _sympy_converter, _sympify, sympify
from sympy.utilities.iterables import sift, ibin
from sympy.utilities.misc import filldedent
def as_Boolean(e):
"""Like ``bool``, return the Boolean value of an expression, e,
which can be any instance of :py:class:`~.Boolean` or ``bool``.
Examples
========
>>> from sympy import true, false, nan
>>> from sympy.logic.boolalg import as_Boolean
>>> from sympy.abc import x
>>> as_Boolean(0) is false
True
>>> as_Boolean(1) is true
True
>>> as_Boolean(x)
x
>>> as_Boolean(2)
Traceback (most recent call last):
...
TypeError: expecting bool or Boolean, not `2`.
>>> as_Boolean(nan)
Traceback (most recent call last):
...
TypeError: expecting bool or Boolean, not `nan`.
"""
from sympy.core.symbol import Symbol
if e == True:
return true
if e == False:
return false
if isinstance(e, Symbol):
z = e.is_zero
if z is None:
return e
return false if z else true
if isinstance(e, Boolean):
return e
raise TypeError('expecting bool or Boolean, not `%s`.' % e)
@sympify_method_args
class Boolean(Basic):
"""A Boolean object is an object for which logic operations make sense."""
__slots__ = ()
kind = BooleanKind
@sympify_return([('other', 'Boolean')], NotImplemented)
def __and__(self, other):
return And(self, other)
__rand__ = __and__
@sympify_return([('other', 'Boolean')], NotImplemented)
def __or__(self, other):
return Or(self, other)
__ror__ = __or__
def __invert__(self):
"""Overloading for ~"""
return Not(self)
@sympify_return([('other', 'Boolean')], NotImplemented)
def __rshift__(self, other):
return Implies(self, other)
@sympify_return([('other', 'Boolean')], NotImplemented)
def __lshift__(self, other):
return Implies(other, self)
__rrshift__ = __lshift__
__rlshift__ = __rshift__
@sympify_return([('other', 'Boolean')], NotImplemented)
def __xor__(self, other):
return Xor(self, other)
__rxor__ = __xor__
def equals(self, other):
"""
Returns ``True`` if the given formulas have the same truth table.
For two formulas to be equal they must have the same literals.
Examples
========
>>> from sympy.abc import A, B, C
>>> from sympy import And, Or, Not
>>> (A >> B).equals(~B >> ~A)
True
>>> Not(And(A, B, C)).equals(And(Not(A), Not(B), Not(C)))
False
>>> Not(And(A, Not(A))).equals(Or(B, Not(B)))
False
"""
from sympy.logic.inference import satisfiable
from sympy.core.relational import Relational
if self.has(Relational) or other.has(Relational):
raise NotImplementedError('handling of relationals')
return self.atoms() == other.atoms() and \
not satisfiable(Not(Equivalent(self, other)))
def to_nnf(self, simplify=True):
# override where necessary
return self
def as_set(self):
"""
Rewrites Boolean expression in terms of real sets.
Examples
========
>>> from sympy import Symbol, Eq, Or, And
>>> x = Symbol('x', real=True)
>>> Eq(x, 0).as_set()
{0}
>>> (x > 0).as_set()
Interval.open(0, oo)
>>> And(-2 < x, x < 2).as_set()
Interval.open(-2, 2)
>>> Or(x < -2, 2 < x).as_set()
Union(Interval.open(-oo, -2), Interval.open(2, oo))
"""
from sympy.calculus.util import periodicity
from sympy.core.relational import Relational
free = self.free_symbols
if len(free) == 1:
x = free.pop()
if x.kind is NumberKind:
reps = {}
for r in self.atoms(Relational):
if periodicity(r, x) not in (0, None):
s = r._eval_as_set()
if s in (S.EmptySet, S.UniversalSet, S.Reals):
reps[r] = s.as_relational(x)
continue
raise NotImplementedError(filldedent('''
as_set is not implemented for relationals
with periodic solutions
'''))
new = self.subs(reps)
if new.func != self.func:
return new.as_set() # restart with new obj
else:
return new._eval_as_set()
return self._eval_as_set()
else:
raise NotImplementedError("Sorry, as_set has not yet been"
" implemented for multivariate"
" expressions")
@property
def binary_symbols(self):
from sympy.core.relational import Eq, Ne
return set().union(*[i.binary_symbols for i in self.args
if i.is_Boolean or i.is_Symbol
or isinstance(i, (Eq, Ne))])
def _eval_refine(self, assumptions):
from sympy.assumptions import ask
ret = ask(self, assumptions)
if ret is True:
return true
elif ret is False:
return false
return None
class BooleanAtom(Boolean):
"""
Base class of :py:class:`~.BooleanTrue` and :py:class:`~.BooleanFalse`.
"""
is_Boolean = True
is_Atom = True
_op_priority = 11 # higher than Expr
def simplify(self, *a, **kw):
return self
def expand(self, *a, **kw):
return self
@property
def canonical(self):
return self
def _noop(self, other=None):
raise TypeError('BooleanAtom not allowed in this context.')
__add__ = _noop
__radd__ = _noop
__sub__ = _noop
__rsub__ = _noop
__mul__ = _noop
__rmul__ = _noop
__pow__ = _noop
__rpow__ = _noop
__truediv__ = _noop
__rtruediv__ = _noop
__mod__ = _noop
__rmod__ = _noop
_eval_power = _noop
# /// drop when Py2 is no longer supported
def __lt__(self, other):
raise TypeError(filldedent('''
A Boolean argument can only be used in
Eq and Ne; all other relationals expect
real expressions.
'''))
__le__ = __lt__
__gt__ = __lt__
__ge__ = __lt__
# \\\
def _eval_simplify(self, **kwargs):
return self
class BooleanTrue(BooleanAtom, metaclass=Singleton):
"""
SymPy version of ``True``, a singleton that can be accessed via ``S.true``.
This is the SymPy version of ``True``, for use in the logic module. The
primary advantage of using ``true`` instead of ``True`` is that shorthand Boolean
operations like ``~`` and ``>>`` will work as expected on this class, whereas with
True they act bitwise on 1. Functions in the logic module will return this
class when they evaluate to true.
Notes
=====
There is liable to be some confusion as to when ``True`` should
be used and when ``S.true`` should be used in various contexts
throughout SymPy. An important thing to remember is that
``sympify(True)`` returns ``S.true``. This means that for the most
part, you can just use ``True`` and it will automatically be converted
to ``S.true`` when necessary, similar to how you can generally use 1
instead of ``S.One``.
The rule of thumb is:
"If the boolean in question can be replaced by an arbitrary symbolic
``Boolean``, like ``Or(x, y)`` or ``x > 1``, use ``S.true``.
Otherwise, use ``True``"
In other words, use ``S.true`` only on those contexts where the
boolean is being used as a symbolic representation of truth.
For example, if the object ends up in the ``.args`` of any expression,
then it must necessarily be ``S.true`` instead of ``True``, as
elements of ``.args`` must be ``Basic``. On the other hand,
``==`` is not a symbolic operation in SymPy, since it always returns
``True`` or ``False``, and does so in terms of structural equality
rather than mathematical, so it should return ``True``. The assumptions
system should use ``True`` and ``False``. Aside from not satisfying
the above rule of thumb, the assumptions system uses a three-valued logic
(``True``, ``False``, ``None``), whereas ``S.true`` and ``S.false``
represent a two-valued logic. When in doubt, use ``True``.
"``S.true == True is True``."
While "``S.true is True``" is ``False``, "``S.true == True``"
is ``True``, so if there is any doubt over whether a function or
expression will return ``S.true`` or ``True``, just use ``==``
instead of ``is`` to do the comparison, and it will work in either
case. Finally, for boolean flags, it's better to just use ``if x``
instead of ``if x is True``. To quote PEP 8:
Do not compare boolean values to ``True`` or ``False``
using ``==``.
* Yes: ``if greeting:``
* No: ``if greeting == True:``
* Worse: ``if greeting is True:``
Examples
========
>>> from sympy import sympify, true, false, Or
>>> sympify(True)
True
>>> _ is True, _ is true
(False, True)
>>> Or(true, false)
True
>>> _ is true
True
Python operators give a boolean result for true but a
bitwise result for True
>>> ~true, ~True
(False, -2)
>>> true >> true, True >> True
(True, 0)
Python operators give a boolean result for true but a
bitwise result for True
>>> ~true, ~True
(False, -2)
>>> true >> true, True >> True
(True, 0)
See Also
========
sympy.logic.boolalg.BooleanFalse
"""
def __bool__(self):
return True
def __hash__(self):
return hash(True)
def __eq__(self, other):
if other is True:
return True
if other is False:
return False
return super().__eq__(other)
@property
def negated(self):
return false
def as_set(self):
"""
Rewrite logic operators and relationals in terms of real sets.
Examples
========
>>> from sympy import true
>>> true.as_set()
UniversalSet
"""
return S.UniversalSet
class BooleanFalse(BooleanAtom, metaclass=Singleton):
"""
SymPy version of ``False``, a singleton that can be accessed via ``S.false``.
This is the SymPy version of ``False``, for use in the logic module. The
primary advantage of using ``false`` instead of ``False`` is that shorthand
Boolean operations like ``~`` and ``>>`` will work as expected on this class,
whereas with ``False`` they act bitwise on 0. Functions in the logic module
will return this class when they evaluate to false.
Notes
======
See the notes section in :py:class:`sympy.logic.boolalg.BooleanTrue`
Examples
========
>>> from sympy import sympify, true, false, Or
>>> sympify(False)
False
>>> _ is False, _ is false
(False, True)
>>> Or(true, false)
True
>>> _ is true
True
Python operators give a boolean result for false but a
bitwise result for False
>>> ~false, ~False
(True, -1)
>>> false >> false, False >> False
(True, 0)
See Also
========
sympy.logic.boolalg.BooleanTrue
"""
def __bool__(self):
return False
def __hash__(self):
return hash(False)
def __eq__(self, other):
if other is True:
return False
if other is False:
return True
return super().__eq__(other)
@property
def negated(self):
return true
def as_set(self):
"""
Rewrite logic operators and relationals in terms of real sets.
Examples
========
>>> from sympy import false
>>> false.as_set()
EmptySet
"""
return S.EmptySet
true = BooleanTrue()
false = BooleanFalse()
# We want S.true and S.false to work, rather than S.BooleanTrue and
# S.BooleanFalse, but making the class and instance names the same causes some
# major issues (like the inability to import the class directly from this
# file).
S.true = true
S.false = false
_sympy_converter[bool] = lambda x: true if x else false
class BooleanFunction(Application, Boolean):
"""Boolean function is a function that lives in a boolean space
It is used as base class for :py:class:`~.And`, :py:class:`~.Or`,
:py:class:`~.Not`, etc.
"""
is_Boolean = True
def _eval_simplify(self, **kwargs):
rv = simplify_univariate(self)
if not isinstance(rv, BooleanFunction):
return rv.simplify(**kwargs)
rv = rv.func(*[a.simplify(**kwargs) for a in rv.args])
return simplify_logic(rv)
def simplify(self, **kwargs):
from sympy.simplify.simplify import simplify
return simplify(self, **kwargs)
def __lt__(self, other):
raise TypeError(filldedent('''
A Boolean argument can only be used in
Eq and Ne; all other relationals expect
real expressions.
'''))
__le__ = __lt__
__ge__ = __lt__
__gt__ = __lt__
@classmethod
def binary_check_and_simplify(self, *args):
from sympy.core.relational import Relational, Eq, Ne
args = [as_Boolean(i) for i in args]
bin_syms = set().union(*[i.binary_symbols for i in args])
rel = set().union(*[i.atoms(Relational) for i in args])
reps = {}
for x in bin_syms:
for r in rel:
if x in bin_syms and x in r.free_symbols:
if isinstance(r, (Eq, Ne)):
if not (
true in r.args or
false in r.args):
reps[r] = false
else:
raise TypeError(filldedent('''
Incompatible use of binary symbol `%s` as a
real variable in `%s`
''' % (x, r)))
return [i.subs(reps) for i in args]
def to_nnf(self, simplify=True):
return self._to_nnf(*self.args, simplify=simplify)
def to_anf(self, deep=True):
return self._to_anf(*self.args, deep=deep)
@classmethod
def _to_nnf(cls, *args, **kwargs):
simplify = kwargs.get('simplify', True)
argset = set()
for arg in args:
if not is_literal(arg):
arg = arg.to_nnf(simplify)
if simplify:
if isinstance(arg, cls):
arg = arg.args
else:
arg = (arg,)
for a in arg:
if Not(a) in argset:
return cls.zero
argset.add(a)
else:
argset.add(arg)
return cls(*argset)
@classmethod
def _to_anf(cls, *args, **kwargs):
deep = kwargs.get('deep', True)
argset = set()
for arg in args:
if deep:
if not is_literal(arg) or isinstance(arg, Not):
arg = arg.to_anf(deep=deep)
argset.add(arg)
else:
argset.add(arg)
return cls(*argset, remove_true=False)
# the diff method below is copied from Expr class
def diff(self, *symbols, **assumptions):
assumptions.setdefault("evaluate", True)
return Derivative(self, *symbols, **assumptions)
def _eval_derivative(self, x):
if x in self.binary_symbols:
from sympy.core.relational import Eq
from sympy.functions.elementary.piecewise import Piecewise
return Piecewise(
(0, Eq(self.subs(x, 0), self.subs(x, 1))),
(1, True))
elif x in self.free_symbols:
# not implemented, see https://www.encyclopediaofmath.org/
# index.php/Boolean_differential_calculus
pass
else:
return S.Zero
class And(LatticeOp, BooleanFunction):
"""
Logical AND function.
It evaluates its arguments in order, returning false immediately
when an argument is false and true if they are all true.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy import And
>>> x & y
x & y
Notes
=====
The ``&`` operator is provided as a convenience, but note that its use
here is different from its normal use in Python, which is bitwise
and. Hence, ``And(a, b)`` and ``a & b`` will produce different results if
``a`` and ``b`` are integers.
>>> And(x, y).subs(x, 1)
y
"""
zero = false
identity = true
nargs = None
@classmethod
def _new_args_filter(cls, args):
args = BooleanFunction.binary_check_and_simplify(*args)
args = LatticeOp._new_args_filter(args, And)
newargs = []
rel = set()
for x in ordered(args):
if x.is_Relational:
c = x.canonical
if c in rel:
continue
elif c.negated.canonical in rel:
return [false]
else:
rel.add(c)
newargs.append(x)
return newargs
def _eval_subs(self, old, new):
args = []
bad = None
for i in self.args:
try:
i = i.subs(old, new)
except TypeError:
# store TypeError
if bad is None:
bad = i
continue
if i == False:
return false
elif i != True:
args.append(i)
if bad is not None:
# let it raise
bad.subs(old, new)
# If old is And, replace the parts of the arguments with new if all
# are there
if isinstance(old, And):
old_set = set(old.args)
if old_set.issubset(args):
args = set(args) - old_set
args.add(new)
return self.func(*args)
def _eval_simplify(self, **kwargs):
from sympy.core.relational import Equality, Relational
from sympy.solvers.solveset import linear_coeffs
# standard simplify
rv = super()._eval_simplify(**kwargs)
if not isinstance(rv, And):
return rv
# simplify args that are equalities involving
# symbols so x == 0 & x == y -> x==0 & y == 0
Rel, nonRel = sift(rv.args, lambda i: isinstance(i, Relational),
binary=True)
if not Rel:
return rv
eqs, other = sift(Rel, lambda i: isinstance(i, Equality), binary=True)
measure = kwargs['measure']
if eqs:
ratio = kwargs['ratio']
reps = {}
sifted = {}
# group by length of free symbols
sifted = sift(ordered([
(i.free_symbols, i) for i in eqs]),
lambda x: len(x[0]))
eqs = []
nonlineqs = []
while 1 in sifted:
for free, e in sifted.pop(1):
x = free.pop()
if (e.lhs != x or x in e.rhs.free_symbols) and x not in reps:
try:
m, b = linear_coeffs(
e.rewrite(Add, evaluate=False), x)
enew = e.func(x, -b/m)
if measure(enew) <= ratio*measure(e):
e = enew
else:
eqs.append(e)
continue
except ValueError:
pass
if x in reps:
eqs.append(e.subs(x, reps[x]))
elif e.lhs == x and x not in e.rhs.free_symbols:
reps[x] = e.rhs
eqs.append(e)
else:
# x is not yet identified, but may be later
nonlineqs.append(e)
resifted = defaultdict(list)
for k in sifted:
for f, e in sifted[k]:
e = e.xreplace(reps)
f = e.free_symbols
resifted[len(f)].append((f, e))
sifted = resifted
for k in sifted:
eqs.extend([e for f, e in sifted[k]])
nonlineqs = [ei.subs(reps) for ei in nonlineqs]
other = [ei.subs(reps) for ei in other]
rv = rv.func(*([i.canonical for i in (eqs + nonlineqs + other)] + nonRel))
patterns = _simplify_patterns_and()
threeterm_patterns = _simplify_patterns_and3()
return _apply_patternbased_simplification(rv, patterns,
measure, false,
threeterm_patterns=threeterm_patterns)
def _eval_as_set(self):
from sympy.sets.sets import Intersection
return Intersection(*[arg.as_set() for arg in self.args])
def _eval_rewrite_as_Nor(self, *args, **kwargs):
return Nor(*[Not(arg) for arg in self.args])
def to_anf(self, deep=True):
if deep:
result = And._to_anf(*self.args, deep=deep)
return distribute_xor_over_and(result)
return self
class Or(LatticeOp, BooleanFunction):
"""
Logical OR function
It evaluates its arguments in order, returning true immediately
when an argument is true, and false if they are all false.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy import Or
>>> x | y
x | y
Notes
=====
The ``|`` operator is provided as a convenience, but note that its use
here is different from its normal use in Python, which is bitwise
or. Hence, ``Or(a, b)`` and ``a | b`` will return different things if
``a`` and ``b`` are integers.
>>> Or(x, y).subs(x, 0)
y
"""
zero = true
identity = false
@classmethod
def _new_args_filter(cls, args):
newargs = []
rel = []
args = BooleanFunction.binary_check_and_simplify(*args)
for x in args:
if x.is_Relational:
c = x.canonical
if c in rel:
continue
nc = c.negated.canonical
if any(r == nc for r in rel):
return [true]
rel.append(c)
newargs.append(x)
return LatticeOp._new_args_filter(newargs, Or)
def _eval_subs(self, old, new):
args = []
bad = None
for i in self.args:
try:
i = i.subs(old, new)
except TypeError:
# store TypeError
if bad is None:
bad = i
continue
if i == True:
return true
elif i != False:
args.append(i)
if bad is not None:
# let it raise
bad.subs(old, new)
# If old is Or, replace the parts of the arguments with new if all
# are there
if isinstance(old, Or):
old_set = set(old.args)
if old_set.issubset(args):
args = set(args) - old_set
args.add(new)
return self.func(*args)
def _eval_as_set(self):
from sympy.sets.sets import Union
return Union(*[arg.as_set() for arg in self.args])
def _eval_rewrite_as_Nand(self, *args, **kwargs):
return Nand(*[Not(arg) for arg in self.args])
def _eval_simplify(self, **kwargs):
from sympy.core.relational import Le, Ge, Eq
lege = self.atoms(Le, Ge)
if lege:
reps = {i: self.func(
Eq(i.lhs, i.rhs), i.strict) for i in lege}
return self.xreplace(reps)._eval_simplify(**kwargs)
# standard simplify
rv = super()._eval_simplify(**kwargs)
if not isinstance(rv, Or):
return rv
patterns = _simplify_patterns_or()
return _apply_patternbased_simplification(rv, patterns,
kwargs['measure'], true)
def to_anf(self, deep=True):
args = range(1, len(self.args) + 1)
args = (combinations(self.args, j) for j in args)
args = chain.from_iterable(args) # powerset
args = (And(*arg) for arg in args)
args = map(lambda x: to_anf(x, deep=deep) if deep else x, args)
return Xor(*list(args), remove_true=False)
class Not(BooleanFunction):
"""
Logical Not function (negation)
Returns ``true`` if the statement is ``false`` or ``False``.
Returns ``false`` if the statement is ``true`` or ``True``.
Examples
========
>>> from sympy import Not, And, Or
>>> from sympy.abc import x, A, B
>>> Not(True)
False
>>> Not(False)
True
>>> Not(And(True, False))
True
>>> Not(Or(True, False))
False
>>> Not(And(And(True, x), Or(x, False)))
~x
>>> ~x
~x
>>> Not(And(Or(A, B), Or(~A, ~B)))
~((A | B) & (~A | ~B))
Notes
=====
- The ``~`` operator is provided as a convenience, but note that its use
here is different from its normal use in Python, which is bitwise
not. In particular, ``~a`` and ``Not(a)`` will be different if ``a`` is
an integer. Furthermore, since bools in Python subclass from ``int``,
``~True`` is the same as ``~1`` which is ``-2``, which has a boolean
value of True. To avoid this issue, use the SymPy boolean types
``true`` and ``false``.
>>> from sympy import true
>>> ~True
-2
>>> ~true
False
"""
is_Not = True
@classmethod
def eval(cls, arg):
if isinstance(arg, Number) or arg in (True, False):
return false if arg else true
if arg.is_Not:
return arg.args[0]
# Simplify Relational objects.
if arg.is_Relational:
return arg.negated
def _eval_as_set(self):
"""
Rewrite logic operators and relationals in terms of real sets.
Examples
========
>>> from sympy import Not, Symbol
>>> x = Symbol('x')
>>> Not(x > 0).as_set()
Interval(-oo, 0)
"""
return self.args[0].as_set().complement(S.Reals)
def to_nnf(self, simplify=True):
if is_literal(self):
return self
expr = self.args[0]
func, args = expr.func, expr.args
if func == And:
return Or._to_nnf(*[Not(arg) for arg in args], simplify=simplify)
if func == Or:
return And._to_nnf(*[Not(arg) for arg in args], simplify=simplify)
if func == Implies:
a, b = args
return And._to_nnf(a, Not(b), simplify=simplify)
if func == Equivalent:
return And._to_nnf(Or(*args), Or(*[Not(arg) for arg in args]),
simplify=simplify)
if func == Xor:
result = []
for i in range(1, len(args)+1, 2):
for neg in combinations(args, i):
clause = [Not(s) if s in neg else s for s in args]
result.append(Or(*clause))
return And._to_nnf(*result, simplify=simplify)
if func == ITE:
a, b, c = args
return And._to_nnf(Or(a, Not(c)), Or(Not(a), Not(b)), simplify=simplify)
raise ValueError("Illegal operator %s in expression" % func)
def to_anf(self, deep=True):
return Xor._to_anf(true, self.args[0], deep=deep)
class Xor(BooleanFunction):
"""
Logical XOR (exclusive OR) function.
Returns True if an odd number of the arguments are True and the rest are
False.
Returns False if an even number of the arguments are True and the rest are
False.
Examples
========
>>> from sympy.logic.boolalg import Xor
>>> from sympy import symbols
>>> x, y = symbols('x y')
>>> Xor(True, False)
True
>>> Xor(True, True)
False
>>> Xor(True, False, True, True, False)
True
>>> Xor(True, False, True, False)
False
>>> x ^ y
x ^ y
Notes
=====
The ``^`` operator is provided as a convenience, but note that its use
here is different from its normal use in Python, which is bitwise xor. In
particular, ``a ^ b`` and ``Xor(a, b)`` will be different if ``a`` and
``b`` are integers.
>>> Xor(x, y).subs(y, 0)
x
"""
def __new__(cls, *args, remove_true=True, **kwargs):
argset = set()
obj = super().__new__(cls, *args, **kwargs)
for arg in obj._args:
if isinstance(arg, Number) or arg in (True, False):
if arg:
arg = true
else:
continue
if isinstance(arg, Xor):
for a in arg.args:
argset.remove(a) if a in argset else argset.add(a)
elif arg in argset:
argset.remove(arg)
else:
argset.add(arg)
rel = [(r, r.canonical, r.negated.canonical)
for r in argset if r.is_Relational]
odd = False # is number of complimentary pairs odd? start 0 -> False
remove = []
for i, (r, c, nc) in enumerate(rel):
for j in range(i + 1, len(rel)):
rj, cj = rel[j][:2]
if cj == nc:
odd = ~odd
break
elif cj == c:
break
else:
continue
remove.append((r, rj))
if odd:
argset.remove(true) if true in argset else argset.add(true)
for a, b in remove:
argset.remove(a)
argset.remove(b)
if len(argset) == 0:
return false
elif len(argset) == 1:
return argset.pop()
elif True in argset and remove_true:
argset.remove(True)
return Not(Xor(*argset))
else:
obj._args = tuple(ordered(argset))
obj._argset = frozenset(argset)
return obj
# XXX: This should be cached on the object rather than using cacheit
# Maybe it can be computed in __new__?
@property # type: ignore
@cacheit
def args(self):
return tuple(ordered(self._argset))
def to_nnf(self, simplify=True):
args = []
for i in range(0, len(self.args)+1, 2):
for neg in combinations(self.args, i):
clause = [Not(s) if s in neg else s for s in self.args]
args.append(Or(*clause))
return And._to_nnf(*args, simplify=simplify)
def _eval_rewrite_as_Or(self, *args, **kwargs):
a = self.args
return Or(*[_convert_to_varsSOP(x, self.args)
for x in _get_odd_parity_terms(len(a))])
def _eval_rewrite_as_And(self, *args, **kwargs):
a = self.args
return And(*[_convert_to_varsPOS(x, self.args)
for x in _get_even_parity_terms(len(a))])
def _eval_simplify(self, **kwargs):
# as standard simplify uses simplify_logic which writes things as
# And and Or, we only simplify the partial expressions before using
# patterns
rv = self.func(*[a.simplify(**kwargs) for a in self.args])
if not isinstance(rv, Xor): # This shouldn't really happen here
return rv
patterns = _simplify_patterns_xor()
return _apply_patternbased_simplification(rv, patterns,
kwargs['measure'], None)
def _eval_subs(self, old, new):
# If old is Xor, replace the parts of the arguments with new if all
# are there
if isinstance(old, Xor):
old_set = set(old.args)
if old_set.issubset(self.args):
args = set(self.args) - old_set
args.add(new)
return self.func(*args)
class Nand(BooleanFunction):
"""
Logical NAND function.
It evaluates its arguments in order, giving True immediately if any
of them are False, and False if they are all True.
Returns True if any of the arguments are False
Returns False if all arguments are True
Examples
========
>>> from sympy.logic.boolalg import Nand
>>> from sympy import symbols
>>> x, y = symbols('x y')
>>> Nand(False, True)
True
>>> Nand(True, True)
False
>>> Nand(x, y)
~(x & y)
"""
@classmethod
def eval(cls, *args):
return Not(And(*args))
class Nor(BooleanFunction):
"""
Logical NOR function.
It evaluates its arguments in order, giving False immediately if any
of them are True, and True if they are all False.
Returns False if any argument is True
Returns True if all arguments are False
Examples
========
>>> from sympy.logic.boolalg import Nor
>>> from sympy import symbols
>>> x, y = symbols('x y')
>>> Nor(True, False)
False
>>> Nor(True, True)
False
>>> Nor(False, True)
False
>>> Nor(False, False)
True
>>> Nor(x, y)
~(x | y)
"""
@classmethod
def eval(cls, *args):
return Not(Or(*args))
class Xnor(BooleanFunction):
"""
Logical XNOR function.
Returns False if an odd number of the arguments are True and the rest are
False.
Returns True if an even number of the arguments are True and the rest are
False.
Examples
========
>>> from sympy.logic.boolalg import Xnor
>>> from sympy import symbols
>>> x, y = symbols('x y')
>>> Xnor(True, False)
False
>>> Xnor(True, True)
True
>>> Xnor(True, False, True, True, False)
False
>>> Xnor(True, False, True, False)
True
"""
@classmethod
def eval(cls, *args):
return Not(Xor(*args))
class Implies(BooleanFunction):
r"""
Logical implication.
A implies B is equivalent to if A then B. Mathematically, it is written
as `A \Rightarrow B` and is equivalent to `\neg A \vee B` or ``~A | B``.
Accepts two Boolean arguments; A and B.
Returns False if A is True and B is False
Returns True otherwise.
Examples
========
>>> from sympy.logic.boolalg import Implies
>>> from sympy import symbols
>>> x, y = symbols('x y')
>>> Implies(True, False)
False
>>> Implies(False, False)
True
>>> Implies(True, True)
True
>>> Implies(False, True)
True
>>> x >> y
Implies(x, y)
>>> y << x
Implies(x, y)
Notes
=====
The ``>>`` and ``<<`` operators are provided as a convenience, but note
that their use here is different from their normal use in Python, which is
bit shifts. Hence, ``Implies(a, b)`` and ``a >> b`` will return different
things if ``a`` and ``b`` are integers. In particular, since Python
considers ``True`` and ``False`` to be integers, ``True >> True`` will be
the same as ``1 >> 1``, i.e., 0, which has a truth value of False. To
avoid this issue, use the SymPy objects ``true`` and ``false``.
>>> from sympy import true, false
>>> True >> False
1
>>> true >> false
False
"""
@classmethod
def eval(cls, *args):
try:
newargs = []
for x in args:
if isinstance(x, Number) or x in (0, 1):
newargs.append(bool(x))
else:
newargs.append(x)
A, B = newargs
except ValueError:
raise ValueError(
"%d operand(s) used for an Implies "
"(pairs are required): %s" % (len(args), str(args)))
if A in (True, False) or B in (True, False):
return Or(Not(A), B)
elif A == B:
return true
elif A.is_Relational and B.is_Relational:
if A.canonical == B.canonical:
return true
if A.negated.canonical == B.canonical:
return B
else:
return Basic.__new__(cls, *args)
def to_nnf(self, simplify=True):
a, b = self.args
return Or._to_nnf(Not(a), b, simplify=simplify)
def to_anf(self, deep=True):
a, b = self.args
return Xor._to_anf(true, a, And(a, b), deep=deep)
class Equivalent(BooleanFunction):
"""
Equivalence relation.
``Equivalent(A, B)`` is True iff A and B are both True or both False.
Returns True if all of the arguments are logically equivalent.
Returns False otherwise.
For two arguments, this is equivalent to :py:class:`~.Xnor`.
Examples
========
>>> from sympy.logic.boolalg import Equivalent, And
>>> from sympy.abc import x
>>> Equivalent(False, False, False)
True
>>> Equivalent(True, False, False)
False
>>> Equivalent(x, And(x, True))
True
"""
def __new__(cls, *args, **options):
from sympy.core.relational import Relational
args = [_sympify(arg) for arg in args]
argset = set(args)
for x in args:
if isinstance(x, Number) or x in [True, False]: # Includes 0, 1
argset.discard(x)
argset.add(bool(x))
rel = []
for r in argset:
if isinstance(r, Relational):
rel.append((r, r.canonical, r.negated.canonical))
remove = []
for i, (r, c, nc) in enumerate(rel):
for j in range(i + 1, len(rel)):
rj, cj = rel[j][:2]
if cj == nc:
return false
elif cj == c:
remove.append((r, rj))
break
for a, b in remove:
argset.remove(a)
argset.remove(b)
argset.add(True)
if len(argset) <= 1:
return true
if True in argset:
argset.discard(True)
return And(*argset)
if False in argset:
argset.discard(False)
return And(*[Not(arg) for arg in argset])
_args = frozenset(argset)
obj = super().__new__(cls, _args)
obj._argset = _args
return obj
# XXX: This should be cached on the object rather than using cacheit
# Maybe it can be computed in __new__?
@property # type: ignore
@cacheit
def args(self):
return tuple(ordered(self._argset))
def to_nnf(self, simplify=True):
args = []
for a, b in zip(self.args, self.args[1:]):
args.append(Or(Not(a), b))
args.append(Or(Not(self.args[-1]), self.args[0]))
return And._to_nnf(*args, simplify=simplify)
def to_anf(self, deep=True):
a = And(*self.args)
b = And(*[to_anf(Not(arg), deep=False) for arg in self.args])
b = distribute_xor_over_and(b)
return Xor._to_anf(a, b, deep=deep)
class ITE(BooleanFunction):
"""
If-then-else clause.
``ITE(A, B, C)`` evaluates and returns the result of B if A is true
else it returns the result of C. All args must be Booleans.
From a logic gate perspective, ITE corresponds to a 2-to-1 multiplexer,
where A is the select signal.
Examples
========
>>> from sympy.logic.boolalg import ITE, And, Xor, Or
>>> from sympy.abc import x, y, z
>>> ITE(True, False, True)
False
>>> ITE(Or(True, False), And(True, True), Xor(True, True))
True
>>> ITE(x, y, z)
ITE(x, y, z)
>>> ITE(True, x, y)
x
>>> ITE(False, x, y)
y
>>> ITE(x, y, y)
y
Trying to use non-Boolean args will generate a TypeError:
>>> ITE(True, [], ())
Traceback (most recent call last):
...
TypeError: expecting bool, Boolean or ITE, not `[]`
"""
def __new__(cls, *args, **kwargs):
from sympy.core.relational import Eq, Ne
if len(args) != 3:
raise ValueError('expecting exactly 3 args')
a, b, c = args
# check use of binary symbols
if isinstance(a, (Eq, Ne)):
# in this context, we can evaluate the Eq/Ne
# if one arg is a binary symbol and the other
# is true/false
b, c = map(as_Boolean, (b, c))
bin_syms = set().union(*[i.binary_symbols for i in (b, c)])
if len(set(a.args) - bin_syms) == 1:
# one arg is a binary_symbols
_a = a
if a.lhs is true:
a = a.rhs
elif a.rhs is true:
a = a.lhs
elif a.lhs is false:
a = Not(a.rhs)
elif a.rhs is false:
a = Not(a.lhs)
else:
# binary can only equal True or False
a = false
if isinstance(_a, Ne):
a = Not(a)
else:
a, b, c = BooleanFunction.binary_check_and_simplify(
a, b, c)
rv = None
if kwargs.get('evaluate', True):
rv = cls.eval(a, b, c)
if rv is None:
rv = BooleanFunction.__new__(cls, a, b, c, evaluate=False)
return rv
@classmethod
def eval(cls, *args):
from sympy.core.relational import Eq, Ne
# do the args give a singular result?
a, b, c = args
if isinstance(a, (Ne, Eq)):
_a = a
if true in a.args:
a = a.lhs if a.rhs is true else a.rhs
elif false in a.args:
a = Not(a.lhs) if a.rhs is false else Not(a.rhs)
else:
_a = None
if _a is not None and isinstance(_a, Ne):
a = Not(a)
if a is true:
return b
if a is false:
return c
if b == c:
return b
else:
# or maybe the results allow the answer to be expressed
# in terms of the condition
if b is true and c is false:
return a
if b is false and c is true:
return Not(a)
if [a, b, c] != args:
return cls(a, b, c, evaluate=False)
def to_nnf(self, simplify=True):
a, b, c = self.args
return And._to_nnf(Or(Not(a), b), Or(a, c), simplify=simplify)
def _eval_as_set(self):
return self.to_nnf().as_set()
def _eval_rewrite_as_Piecewise(self, *args, **kwargs):
from sympy.functions.elementary.piecewise import Piecewise
return Piecewise((args[1], args[0]), (args[2], True))
class Exclusive(BooleanFunction):
"""
True if only one or no argument is true.
``Exclusive(A, B, C)`` is equivalent to ``~(A & B) & ~(A & C) & ~(B & C)``.
For two arguments, this is equivalent to :py:class:`~.Xor`.
Examples
========
>>> from sympy.logic.boolalg import Exclusive
>>> Exclusive(False, False, False)
True
>>> Exclusive(False, True, False)
True
>>> Exclusive(False, True, True)
False
"""
@classmethod
def eval(cls, *args):
and_args = []
for a, b in combinations(args, 2):
and_args.append(Not(And(a, b)))
return And(*and_args)
# end class definitions. Some useful methods
def conjuncts(expr):
"""Return a list of the conjuncts in ``expr``.
Examples
========
>>> from sympy.logic.boolalg import conjuncts
>>> from sympy.abc import A, B
>>> conjuncts(A & B)
frozenset({A, B})
>>> conjuncts(A | B)
frozenset({A | B})
"""
return And.make_args(expr)
def disjuncts(expr):
"""Return a list of the disjuncts in ``expr``.
Examples
========
>>> from sympy.logic.boolalg import disjuncts
>>> from sympy.abc import A, B
>>> disjuncts(A | B)
frozenset({A, B})
>>> disjuncts(A & B)
frozenset({A & B})
"""
return Or.make_args(expr)
def distribute_and_over_or(expr):
"""
Given a sentence ``expr`` consisting of conjunctions and disjunctions
of literals, return an equivalent sentence in CNF.
Examples
========
>>> from sympy.logic.boolalg import distribute_and_over_or, And, Or, Not
>>> from sympy.abc import A, B, C
>>> distribute_and_over_or(Or(A, And(Not(B), Not(C))))
(A | ~B) & (A | ~C)
"""
return _distribute((expr, And, Or))
def distribute_or_over_and(expr):
"""
Given a sentence ``expr`` consisting of conjunctions and disjunctions
of literals, return an equivalent sentence in DNF.
Note that the output is NOT simplified.
Examples
========
>>> from sympy.logic.boolalg import distribute_or_over_and, And, Or, Not
>>> from sympy.abc import A, B, C
>>> distribute_or_over_and(And(Or(Not(A), B), C))
(B & C) | (C & ~A)
"""
return _distribute((expr, Or, And))
def distribute_xor_over_and(expr):
"""
Given a sentence ``expr`` consisting of conjunction and
exclusive disjunctions of literals, return an
equivalent exclusive disjunction.
Note that the output is NOT simplified.
Examples
========
>>> from sympy.logic.boolalg import distribute_xor_over_and, And, Xor, Not
>>> from sympy.abc import A, B, C
>>> distribute_xor_over_and(And(Xor(Not(A), B), C))
(B & C) ^ (C & ~A)
"""
return _distribute((expr, Xor, And))
def _distribute(info):
"""
Distributes ``info[1]`` over ``info[2]`` with respect to ``info[0]``.
"""
if isinstance(info[0], info[2]):
for arg in info[0].args:
if isinstance(arg, info[1]):
conj = arg
break
else:
return info[0]
rest = info[2](*[a for a in info[0].args if a is not conj])
return info[1](*list(map(_distribute,
[(info[2](c, rest), info[1], info[2])
for c in conj.args])), remove_true=False)
elif isinstance(info[0], info[1]):
return info[1](*list(map(_distribute,
[(x, info[1], info[2])
for x in info[0].args])),
remove_true=False)
else:
return info[0]
def to_anf(expr, deep=True):
r"""
Converts expr to Algebraic Normal Form (ANF).
ANF is a canonical normal form, which means that two
equivalent formulas will convert to the same ANF.
A logical expression is in ANF if it has the form
.. math:: 1 \oplus a \oplus b \oplus ab \oplus abc
i.e. it can be:
- purely true,
- purely false,
- conjunction of variables,
- exclusive disjunction.
The exclusive disjunction can only contain true, variables
or conjunction of variables. No negations are permitted.
If ``deep`` is ``False``, arguments of the boolean
expression are considered variables, i.e. only the
top-level expression is converted to ANF.
Examples
========
>>> from sympy.logic.boolalg import And, Or, Not, Implies, Equivalent
>>> from sympy.logic.boolalg import to_anf
>>> from sympy.abc import A, B, C
>>> to_anf(Not(A))
A ^ True
>>> to_anf(And(Or(A, B), Not(C)))
A ^ B ^ (A & B) ^ (A & C) ^ (B & C) ^ (A & B & C)
>>> to_anf(Implies(Not(A), Equivalent(B, C)), deep=False)
True ^ ~A ^ (~A & (Equivalent(B, C)))
"""
expr = sympify(expr)
if is_anf(expr):
return expr
return expr.to_anf(deep=deep)
def to_nnf(expr, simplify=True):
"""
Converts ``expr`` to Negation Normal Form (NNF).
A logical expression is in NNF if it
contains only :py:class:`~.And`, :py:class:`~.Or` and :py:class:`~.Not`,
and :py:class:`~.Not` is applied only to literals.
If ``simplify`` is ``True``, the result contains no redundant clauses.
Examples
========
>>> from sympy.abc import A, B, C, D
>>> from sympy.logic.boolalg import Not, Equivalent, to_nnf
>>> to_nnf(Not((~A & ~B) | (C & D)))
(A | B) & (~C | ~D)
>>> to_nnf(Equivalent(A >> B, B >> A))
(A | ~B | (A & ~B)) & (B | ~A | (B & ~A))
"""
if is_nnf(expr, simplify):
return expr
return expr.to_nnf(simplify)
def to_cnf(expr, simplify=False, force=False):
"""
Convert a propositional logical sentence ``expr`` to conjunctive normal
form: ``((A | ~B | ...) & (B | C | ...) & ...)``.
If ``simplify`` is ``True``, ``expr`` is evaluated to its simplest CNF
form using the Quine-McCluskey algorithm; this may take a long
time. If there are more than 8 variables the ``force`` flag must be set
to ``True`` to simplify (default is ``False``).
Examples
========
>>> from sympy.logic.boolalg import to_cnf
>>> from sympy.abc import A, B, D
>>> to_cnf(~(A | B) | D)
(D | ~A) & (D | ~B)
>>> to_cnf((A | B) & (A | ~A), True)
A | B
"""
expr = sympify(expr)
if not isinstance(expr, BooleanFunction):
return expr
if simplify:
if not force and len(_find_predicates(expr)) > 8:
raise ValueError(filldedent('''
To simplify a logical expression with more
than 8 variables may take a long time and requires
the use of `force=True`.'''))
return simplify_logic(expr, 'cnf', True, force=force)
# Don't convert unless we have to
if is_cnf(expr):
return expr
expr = eliminate_implications(expr)
res = distribute_and_over_or(expr)
return res
def to_dnf(expr, simplify=False, force=False):
"""
Convert a propositional logical sentence ``expr`` to disjunctive normal
form: ``((A & ~B & ...) | (B & C & ...) | ...)``.
If ``simplify`` is ``True``, ``expr`` is evaluated to its simplest DNF form using
the Quine-McCluskey algorithm; this may take a long
time. If there are more than 8 variables, the ``force`` flag must be set to
``True`` to simplify (default is ``False``).
Examples
========
>>> from sympy.logic.boolalg import to_dnf
>>> from sympy.abc import A, B, C
>>> to_dnf(B & (A | C))
(A & B) | (B & C)
>>> to_dnf((A & B) | (A & ~B) | (B & C) | (~B & C), True)
A | C
"""
expr = sympify(expr)
if not isinstance(expr, BooleanFunction):
return expr
if simplify:
if not force and len(_find_predicates(expr)) > 8:
raise ValueError(filldedent('''
To simplify a logical expression with more
than 8 variables may take a long time and requires
the use of `force=True`.'''))
return simplify_logic(expr, 'dnf', True, force=force)
# Don't convert unless we have to
if is_dnf(expr):
return expr
expr = eliminate_implications(expr)
return distribute_or_over_and(expr)
def is_anf(expr):
r"""
Checks if ``expr`` is in Algebraic Normal Form (ANF).
A logical expression is in ANF if it has the form
.. math:: 1 \oplus a \oplus b \oplus ab \oplus abc
i.e. it is purely true, purely false, conjunction of
variables or exclusive disjunction. The exclusive
disjunction can only contain true, variables or
conjunction of variables. No negations are permitted.
Examples
========
>>> from sympy.logic.boolalg import And, Not, Xor, true, is_anf
>>> from sympy.abc import A, B, C
>>> is_anf(true)
True
>>> is_anf(A)
True
>>> is_anf(And(A, B, C))
True
>>> is_anf(Xor(A, Not(B)))
False
"""
expr = sympify(expr)
if is_literal(expr) and not isinstance(expr, Not):
return True
if isinstance(expr, And):
for arg in expr.args:
if not arg.is_Symbol:
return False
return True
elif isinstance(expr, Xor):
for arg in expr.args:
if isinstance(arg, And):
for a in arg.args:
if not a.is_Symbol:
return False
elif is_literal(arg):
if isinstance(arg, Not):
return False
else:
return False
return True
else:
return False
def is_nnf(expr, simplified=True):
"""
Checks if ``expr`` is in Negation Normal Form (NNF).
A logical expression is in NNF if it
contains only :py:class:`~.And`, :py:class:`~.Or` and :py:class:`~.Not`,
and :py:class:`~.Not` is applied only to literals.
If ``simplified`` is ``True``, checks if result contains no redundant clauses.
Examples
========
>>> from sympy.abc import A, B, C
>>> from sympy.logic.boolalg import Not, is_nnf
>>> is_nnf(A & B | ~C)
True
>>> is_nnf((A | ~A) & (B | C))
False
>>> is_nnf((A | ~A) & (B | C), False)
True
>>> is_nnf(Not(A & B) | C)
False
>>> is_nnf((A >> B) & (B >> A))
False
"""
expr = sympify(expr)
if is_literal(expr):
return True
stack = [expr]
while stack:
expr = stack.pop()
if expr.func in (And, Or):
if simplified:
args = expr.args
for arg in args:
if Not(arg) in args:
return False
stack.extend(expr.args)
elif not is_literal(expr):
return False
return True
def is_cnf(expr):
"""
Test whether or not an expression is in conjunctive normal form.
Examples
========
>>> from sympy.logic.boolalg import is_cnf
>>> from sympy.abc import A, B, C
>>> is_cnf(A | B | C)
True
>>> is_cnf(A & B & C)
True
>>> is_cnf((A & B) | C)
False
"""
return _is_form(expr, And, Or)
def is_dnf(expr):
"""
Test whether or not an expression is in disjunctive normal form.
Examples
========
>>> from sympy.logic.boolalg import is_dnf
>>> from sympy.abc import A, B, C
>>> is_dnf(A | B | C)
True
>>> is_dnf(A & B & C)
True
>>> is_dnf((A & B) | C)
True
>>> is_dnf(A & (B | C))
False
"""
return _is_form(expr, Or, And)
def _is_form(expr, function1, function2):
"""
Test whether or not an expression is of the required form.
"""
expr = sympify(expr)
vals = function1.make_args(expr) if isinstance(expr, function1) else [expr]
for lit in vals:
if isinstance(lit, function2):
vals2 = function2.make_args(lit) if isinstance(lit, function2) else [lit]
for l in vals2:
if is_literal(l) is False:
return False
elif is_literal(lit) is False:
return False
return True
def eliminate_implications(expr):
"""
Change :py:class:`~.Implies` and :py:class:`~.Equivalent` into
:py:class:`~.And`, :py:class:`~.Or`, and :py:class:`~.Not`.
That is, return an expression that is equivalent to ``expr``, but has only
``&``, ``|``, and ``~`` as logical
operators.
Examples
========
>>> from sympy.logic.boolalg import Implies, Equivalent, \
eliminate_implications
>>> from sympy.abc import A, B, C
>>> eliminate_implications(Implies(A, B))
B | ~A
>>> eliminate_implications(Equivalent(A, B))
(A | ~B) & (B | ~A)
>>> eliminate_implications(Equivalent(A, B, C))
(A | ~C) & (B | ~A) & (C | ~B)
"""
return to_nnf(expr, simplify=False)
def is_literal(expr):
"""
Returns True if expr is a literal, else False.
Examples
========
>>> from sympy import Or, Q
>>> from sympy.abc import A, B
>>> from sympy.logic.boolalg import is_literal
>>> is_literal(A)
True
>>> is_literal(~A)
True
>>> is_literal(Q.zero(A))
True
>>> is_literal(A + B)
True
>>> is_literal(Or(A, B))
False
"""
from sympy.assumptions import AppliedPredicate
if isinstance(expr, Not):
return is_literal(expr.args[0])
elif expr in (True, False) or isinstance(expr, AppliedPredicate) or expr.is_Atom:
return True
elif not isinstance(expr, BooleanFunction) and all(
(isinstance(expr, AppliedPredicate) or a.is_Atom) for a in expr.args):
return True
return False
def to_int_repr(clauses, symbols):
"""
Takes clauses in CNF format and puts them into an integer representation.
Examples
========
>>> from sympy.logic.boolalg import to_int_repr
>>> from sympy.abc import x, y
>>> to_int_repr([x | y, y], [x, y]) == [{1, 2}, {2}]
True
"""
# Convert the symbol list into a dict
symbols = dict(zip(symbols, range(1, len(symbols) + 1)))
def append_symbol(arg, symbols):
if isinstance(arg, Not):
return -symbols[arg.args[0]]
else:
return symbols[arg]
return [{append_symbol(arg, symbols) for arg in Or.make_args(c)}
for c in clauses]
def term_to_integer(term):
"""
Return an integer corresponding to the base-2 digits given by *term*.
Parameters
==========
term : a string or list of ones and zeros
Examples
========
>>> from sympy.logic.boolalg import term_to_integer
>>> term_to_integer([1, 0, 0])
4
>>> term_to_integer('100')
4
"""
return int(''.join(list(map(str, list(term)))), 2)
integer_to_term = ibin # XXX could delete?
def truth_table(expr, variables, input=True):
"""
Return a generator of all possible configurations of the input variables,
and the result of the boolean expression for those values.
Parameters
==========
expr : Boolean expression
variables : list of variables
input : bool (default ``True``)
Indicates whether to return the input combinations.
Examples
========
>>> from sympy.logic.boolalg import truth_table
>>> from sympy.abc import x,y
>>> table = truth_table(x >> y, [x, y])
>>> for t in table:
... print('{0} -> {1}'.format(*t))
[0, 0] -> True
[0, 1] -> True
[1, 0] -> False
[1, 1] -> True
>>> table = truth_table(x | y, [x, y])
>>> list(table)
[([0, 0], False), ([0, 1], True), ([1, 0], True), ([1, 1], True)]
If ``input`` is ``False``, ``truth_table`` returns only a list of truth values.
In this case, the corresponding input values of variables can be
deduced from the index of a given output.
>>> from sympy.utilities.iterables import ibin
>>> vars = [y, x]
>>> values = truth_table(x >> y, vars, input=False)
>>> values = list(values)
>>> values
[True, False, True, True]
>>> for i, value in enumerate(values):
... print('{0} -> {1}'.format(list(zip(
... vars, ibin(i, len(vars)))), value))
[(y, 0), (x, 0)] -> True
[(y, 0), (x, 1)] -> False
[(y, 1), (x, 0)] -> True
[(y, 1), (x, 1)] -> True
"""
variables = [sympify(v) for v in variables]
expr = sympify(expr)
if not isinstance(expr, BooleanFunction) and not is_literal(expr):
return
table = product((0, 1), repeat=len(variables))
for term in table:
value = expr.xreplace(dict(zip(variables, term)))
if input:
yield list(term), value
else:
yield value
def _check_pair(minterm1, minterm2):
"""
Checks if a pair of minterms differs by only one bit. If yes, returns
index, else returns `-1`.
"""
# Early termination seems to be faster than list comprehension,
# at least for large examples.
index = -1
for x, i in enumerate(minterm1): # zip(minterm1, minterm2) is slower
if i != minterm2[x]:
if index == -1:
index = x
else:
return -1
return index
def _convert_to_varsSOP(minterm, variables):
"""
Converts a term in the expansion of a function from binary to its
variable form (for SOP).
"""
temp = [variables[n] if val == 1 else Not(variables[n])
for n, val in enumerate(minterm) if val != 3]
return And(*temp)
def _convert_to_varsPOS(maxterm, variables):
"""
Converts a term in the expansion of a function from binary to its
variable form (for POS).
"""
temp = [variables[n] if val == 0 else Not(variables[n])
for n, val in enumerate(maxterm) if val != 3]
return Or(*temp)
def _convert_to_varsANF(term, variables):
"""
Converts a term in the expansion of a function from binary to its
variable form (for ANF).
Parameters
==========
term : list of 1's and 0's (complementation patter)
variables : list of variables
"""
temp = [variables[n] for n, t in enumerate(term) if t == 1]
if not temp:
return true
return And(*temp)
def _get_odd_parity_terms(n):
"""
Returns a list of lists, with all possible combinations of n zeros and ones
with an odd number of ones.
"""
return [e for e in [ibin(i, n) for i in range(2**n)] if sum(e) % 2 == 1]
def _get_even_parity_terms(n):
"""
Returns a list of lists, with all possible combinations of n zeros and ones
with an even number of ones.
"""
return [e for e in [ibin(i, n) for i in range(2**n)] if sum(e) % 2 == 0]
def _simplified_pairs(terms):
"""
Reduces a set of minterms, if possible, to a simplified set of minterms
with one less variable in the terms using QM method.
"""
if not terms:
return []
simplified_terms = []
todo = list(range(len(terms)))
# Count number of ones as _check_pair can only potentially match if there
# is at most a difference of a single one
termdict = defaultdict(list)
for n, term in enumerate(terms):
ones = sum([1 for t in term if t == 1])
termdict[ones].append(n)
variables = len(terms[0])
for k in range(variables):
for i in termdict[k]:
for j in termdict[k+1]:
index = _check_pair(terms[i], terms[j])
if index != -1:
# Mark terms handled
todo[i] = todo[j] = None
# Copy old term
newterm = terms[i][:]
# Set differing position to don't care
newterm[index] = 3
# Add if not already there
if newterm not in simplified_terms:
simplified_terms.append(newterm)
if simplified_terms:
# Further simplifications only among the new terms
simplified_terms = _simplified_pairs(simplified_terms)
# Add remaining, non-simplified, terms
simplified_terms.extend([terms[i] for i in todo if i is not None])
return simplified_terms
def _rem_redundancy(l1, terms):
"""
After the truth table has been sufficiently simplified, use the prime
implicant table method to recognize and eliminate redundant pairs,
and return the essential arguments.
"""
if not terms:
return []
nterms = len(terms)
nl1 = len(l1)
# Create dominating matrix
dommatrix = [[0]*nl1 for n in range(nterms)]
colcount = [0]*nl1
rowcount = [0]*nterms
for primei, prime in enumerate(l1):
for termi, term in enumerate(terms):
# Check prime implicant covering term
if all(t == 3 or t == mt for t, mt in zip(prime, term)):
dommatrix[termi][primei] = 1
colcount[primei] += 1
rowcount[termi] += 1
# Keep track if anything changed
anythingchanged = True
# Then, go again
while anythingchanged:
anythingchanged = False
for rowi in range(nterms):
# Still non-dominated?
if rowcount[rowi]:
row = dommatrix[rowi]
for row2i in range(nterms):
# Still non-dominated?
if rowi != row2i and rowcount[rowi] and (rowcount[rowi] <= rowcount[row2i]):
row2 = dommatrix[row2i]
if all(row2[n] >= row[n] for n in range(nl1)):
# row2 dominating row, remove row2
rowcount[row2i] = 0
anythingchanged = True
for primei, prime in enumerate(row2):
if prime:
# Make corresponding entry 0
dommatrix[row2i][primei] = 0
colcount[primei] -= 1
colcache = {}
for coli in range(nl1):
# Still non-dominated?
if colcount[coli]:
if coli in colcache:
col = colcache[coli]
else:
col = [dommatrix[i][coli] for i in range(nterms)]
colcache[coli] = col
for col2i in range(nl1):
# Still non-dominated?
if coli != col2i and colcount[col2i] and (colcount[coli] >= colcount[col2i]):
if col2i in colcache:
col2 = colcache[col2i]
else:
col2 = [dommatrix[i][col2i] for i in range(nterms)]
colcache[col2i] = col2
if all(col[n] >= col2[n] for n in range(nterms)):
# col dominating col2, remove col2
colcount[col2i] = 0
anythingchanged = True
for termi, term in enumerate(col2):
if term and dommatrix[termi][col2i]:
# Make corresponding entry 0
dommatrix[termi][col2i] = 0
rowcount[termi] -= 1
if not anythingchanged:
# Heuristically select the prime implicant covering most terms
maxterms = 0
bestcolidx = -1
for coli in range(nl1):
s = colcount[coli]
if s > maxterms:
bestcolidx = coli
maxterms = s
# In case we found a prime implicant covering at least two terms
if bestcolidx != -1 and maxterms > 1:
for primei, prime in enumerate(l1):
if primei != bestcolidx:
for termi, term in enumerate(colcache[bestcolidx]):
if term and dommatrix[termi][primei]:
# Make corresponding entry 0
dommatrix[termi][primei] = 0
anythingchanged = True
rowcount[termi] -= 1
colcount[primei] -= 1
return [l1[i] for i in range(nl1) if colcount[i]]
def _input_to_binlist(inputlist, variables):
binlist = []
bits = len(variables)
for val in inputlist:
if isinstance(val, int):
binlist.append(ibin(val, bits))
elif isinstance(val, dict):
nonspecvars = list(variables)
for key in val.keys():
nonspecvars.remove(key)
for t in product((0, 1), repeat=len(nonspecvars)):
d = dict(zip(nonspecvars, t))
d.update(val)
binlist.append([d[v] for v in variables])
elif isinstance(val, (list, tuple)):
if len(val) != bits:
raise ValueError("Each term must contain {bits} bits as there are"
"\n{bits} variables (or be an integer)."
"".format(bits=bits))
binlist.append(list(val))
else:
raise TypeError("A term list can only contain lists,"
" ints or dicts.")
return binlist
def SOPform(variables, minterms, dontcares=None):
"""
The SOPform function uses simplified_pairs and a redundant group-
eliminating algorithm to convert the list of all input combos that
generate '1' (the minterms) into the smallest sum-of-products form.
The variables must be given as the first argument.
Return a logical :py:class:`~.Or` function (i.e., the "sum of products" or
"SOP" form) that gives the desired outcome. If there are inputs that can
be ignored, pass them as a list, too.
The result will be one of the (perhaps many) functions that satisfy
the conditions.
Examples
========
>>> from sympy.logic import SOPform
>>> from sympy import symbols
>>> w, x, y, z = symbols('w x y z')
>>> minterms = [[0, 0, 0, 1], [0, 0, 1, 1],
... [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1]]
>>> dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]]
>>> SOPform([w, x, y, z], minterms, dontcares)
(y & z) | (~w & ~x)
The terms can also be represented as integers:
>>> minterms = [1, 3, 7, 11, 15]
>>> dontcares = [0, 2, 5]
>>> SOPform([w, x, y, z], minterms, dontcares)
(y & z) | (~w & ~x)
They can also be specified using dicts, which does not have to be fully
specified:
>>> minterms = [{w: 0, x: 1}, {y: 1, z: 1, x: 0}]
>>> SOPform([w, x, y, z], minterms)
(x & ~w) | (y & z & ~x)
Or a combination:
>>> minterms = [4, 7, 11, [1, 1, 1, 1]]
>>> dontcares = [{w : 0, x : 0, y: 0}, 5]
>>> SOPform([w, x, y, z], minterms, dontcares)
(w & y & z) | (~w & ~y) | (x & z & ~w)
See also
========
POSform
References
==========
.. [1] https://en.wikipedia.org/wiki/Quine-McCluskey_algorithm
.. [2] https://en.wikipedia.org/wiki/Don%27t-care_term
"""
if not minterms:
return false
variables = tuple(map(sympify, variables))
minterms = _input_to_binlist(minterms, variables)
dontcares = _input_to_binlist((dontcares or []), variables)
for d in dontcares:
if d in minterms:
raise ValueError('%s in minterms is also in dontcares' % d)
return _sop_form(variables, minterms, dontcares)
def _sop_form(variables, minterms, dontcares):
new = _simplified_pairs(minterms + dontcares)
essential = _rem_redundancy(new, minterms)
return Or(*[_convert_to_varsSOP(x, variables) for x in essential])
def POSform(variables, minterms, dontcares=None):
"""
The POSform function uses simplified_pairs and a redundant-group
eliminating algorithm to convert the list of all input combinations
that generate '1' (the minterms) into the smallest product-of-sums form.
The variables must be given as the first argument.
Return a logical :py:class:`~.And` function (i.e., the "product of sums"
or "POS" form) that gives the desired outcome. If there are inputs that can
be ignored, pass them as a list, too.
The result will be one of the (perhaps many) functions that satisfy
the conditions.
Examples
========
>>> from sympy.logic import POSform
>>> from sympy import symbols
>>> w, x, y, z = symbols('w x y z')
>>> minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1],
... [1, 0, 1, 1], [1, 1, 1, 1]]
>>> dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]]
>>> POSform([w, x, y, z], minterms, dontcares)
z & (y | ~w)
The terms can also be represented as integers:
>>> minterms = [1, 3, 7, 11, 15]
>>> dontcares = [0, 2, 5]
>>> POSform([w, x, y, z], minterms, dontcares)
z & (y | ~w)
They can also be specified using dicts, which does not have to be fully
specified:
>>> minterms = [{w: 0, x: 1}, {y: 1, z: 1, x: 0}]
>>> POSform([w, x, y, z], minterms)
(x | y) & (x | z) & (~w | ~x)
Or a combination:
>>> minterms = [4, 7, 11, [1, 1, 1, 1]]
>>> dontcares = [{w : 0, x : 0, y: 0}, 5]
>>> POSform([w, x, y, z], minterms, dontcares)
(w | x) & (y | ~w) & (z | ~y)
See also
========
SOPform
References
==========
.. [1] https://en.wikipedia.org/wiki/Quine-McCluskey_algorithm
.. [2] https://en.wikipedia.org/wiki/Don%27t-care_term
"""
if not minterms:
return false
variables = tuple(map(sympify, variables))
minterms = _input_to_binlist(minterms, variables)
dontcares = _input_to_binlist((dontcares or []), variables)
for d in dontcares:
if d in minterms:
raise ValueError('%s in minterms is also in dontcares' % d)
maxterms = []
for t in product((0, 1), repeat=len(variables)):
t = list(t)
if (t not in minterms) and (t not in dontcares):
maxterms.append(t)
new = _simplified_pairs(maxterms + dontcares)
essential = _rem_redundancy(new, maxterms)
return And(*[_convert_to_varsPOS(x, variables) for x in essential])
def ANFform(variables, truthvalues):
"""
The ANFform function converts the list of truth values to
Algebraic Normal Form (ANF).
The variables must be given as the first argument.
Return True, False, logical :py:class:`~.And` funciton (i.e., the
"Zhegalkin monomial") or logical :py:class:`~.Xor` function (i.e.,
the "Zhegalkin polynomial"). When True and False
are represented by 1 and 0, respectively, then
:py:class:`~.And` is multiplication and :py:class:`~.Xor` is addition.
Formally a "Zhegalkin monomial" is the product (logical
And) of a finite set of distinct variables, including
the empty set whose product is denoted 1 (True).
A "Zhegalkin polynomial" is the sum (logical Xor) of a
set of Zhegalkin monomials, with the empty set denoted
by 0 (False).
Parameters
==========
variables : list of variables
truthvalues : list of 1's and 0's (result column of truth table)
Examples
========
>>> from sympy.logic.boolalg import ANFform
>>> from sympy.abc import x, y
>>> ANFform([x], [1, 0])
x ^ True
>>> ANFform([x, y], [0, 1, 1, 1])
x ^ y ^ (x & y)
References
==========
.. [1] https://en.wikipedia.org/wiki/Zhegalkin_polynomial
"""
n_vars = len(variables)
n_values = len(truthvalues)
if n_values != 2 ** n_vars:
raise ValueError("The number of truth values must be equal to 2^%d, "
"got %d" % (n_vars, n_values))
variables = tuple(map(sympify, variables))
coeffs = anf_coeffs(truthvalues)
terms = []
for i, t in enumerate(product((0, 1), repeat=n_vars)):
if coeffs[i] == 1:
terms.append(t)
return Xor(*[_convert_to_varsANF(x, variables) for x in terms],
remove_true=False)
def anf_coeffs(truthvalues):
"""
Convert a list of truth values of some boolean expression
to the list of coefficients of the polynomial mod 2 (exclusive
disjunction) representing the boolean expression in ANF
(i.e., the "Zhegalkin polynomial").
There are `2^n` possible Zhegalkin monomials in `n` variables, since
each monomial is fully specified by the presence or absence of
each variable.
We can enumerate all the monomials. For example, boolean
function with four variables ``(a, b, c, d)`` can contain
up to `2^4 = 16` monomials. The 13-th monomial is the
product ``a & b & d``, because 13 in binary is 1, 1, 0, 1.
A given monomial's presence or absence in a polynomial corresponds
to that monomial's coefficient being 1 or 0 respectively.
Examples
========
>>> from sympy.logic.boolalg import anf_coeffs, bool_monomial, Xor
>>> from sympy.abc import a, b, c
>>> truthvalues = [0, 1, 1, 0, 0, 1, 0, 1]
>>> coeffs = anf_coeffs(truthvalues)
>>> coeffs
[0, 1, 1, 0, 0, 0, 1, 0]
>>> polynomial = Xor(*[
... bool_monomial(k, [a, b, c])
... for k, coeff in enumerate(coeffs) if coeff == 1
... ])
>>> polynomial
b ^ c ^ (a & b)
"""
s = '{:b}'.format(len(truthvalues))
n = len(s) - 1
if len(truthvalues) != 2**n:
raise ValueError("The number of truth values must be a power of two, "
"got %d" % len(truthvalues))
coeffs = [[v] for v in truthvalues]
for i in range(n):
tmp = []
for j in range(2 ** (n-i-1)):
tmp.append(coeffs[2*j] +
list(map(lambda x, y: x^y, coeffs[2*j], coeffs[2*j+1])))
coeffs = tmp
return coeffs[0]
def bool_minterm(k, variables):
"""
Return the k-th minterm.
Minterms are numbered by a binary encoding of the complementation
pattern of the variables. This convention assigns the value 1 to
the direct form and 0 to the complemented form.
Parameters
==========
k : int or list of 1's and 0's (complementation patter)
variables : list of variables
Examples
========
>>> from sympy.logic.boolalg import bool_minterm
>>> from sympy.abc import x, y, z
>>> bool_minterm([1, 0, 1], [x, y, z])
x & z & ~y
>>> bool_minterm(6, [x, y, z])
x & y & ~z
References
==========
.. [1] https://en.wikipedia.org/wiki/Canonical_normal_form#Indexing_minterms
"""
if isinstance(k, int):
k = ibin(k, len(variables))
variables = tuple(map(sympify, variables))
return _convert_to_varsSOP(k, variables)
def bool_maxterm(k, variables):
"""
Return the k-th maxterm.
Each maxterm is assigned an index based on the opposite
conventional binary encoding used for minterms. The maxterm
convention assigns the value 0 to the direct form and 1 to
the complemented form.
Parameters
==========
k : int or list of 1's and 0's (complementation pattern)
variables : list of variables
Examples
========
>>> from sympy.logic.boolalg import bool_maxterm
>>> from sympy.abc import x, y, z
>>> bool_maxterm([1, 0, 1], [x, y, z])
y | ~x | ~z
>>> bool_maxterm(6, [x, y, z])
z | ~x | ~y
References
==========
.. [1] https://en.wikipedia.org/wiki/Canonical_normal_form#Indexing_maxterms
"""
if isinstance(k, int):
k = ibin(k, len(variables))
variables = tuple(map(sympify, variables))
return _convert_to_varsPOS(k, variables)
def bool_monomial(k, variables):
"""
Return the k-th monomial.
Monomials are numbered by a binary encoding of the presence and
absences of the variables. This convention assigns the value
1 to the presence of variable and 0 to the absence of variable.
Each boolean function can be uniquely represented by a
Zhegalkin Polynomial (Algebraic Normal Form). The Zhegalkin
Polynomial of the boolean function with `n` variables can contain
up to `2^n` monomials. We can enumarate all the monomials.
Each monomial is fully specified by the presence or absence
of each variable.
For example, boolean function with four variables ``(a, b, c, d)``
can contain up to `2^4 = 16` monomials. The 13-th monomial is the
product ``a & b & d``, because 13 in binary is 1, 1, 0, 1.
Parameters
==========
k : int or list of 1's and 0's
variables : list of variables
Examples
========
>>> from sympy.logic.boolalg import bool_monomial
>>> from sympy.abc import x, y, z
>>> bool_monomial([1, 0, 1], [x, y, z])
x & z
>>> bool_monomial(6, [x, y, z])
x & y
"""
if isinstance(k, int):
k = ibin(k, len(variables))
variables = tuple(map(sympify, variables))
return _convert_to_varsANF(k, variables)
def _find_predicates(expr):
"""Helper to find logical predicates in BooleanFunctions.
A logical predicate is defined here as anything within a BooleanFunction
that is not a BooleanFunction itself.
"""
if not isinstance(expr, BooleanFunction):
return {expr}
return set().union(*(map(_find_predicates, expr.args)))
def simplify_logic(expr, form=None, deep=True, force=False, dontcare=None):
"""
This function simplifies a boolean function to its simplified version
in SOP or POS form. The return type is an :py:class:`~.Or` or
:py:class:`~.And` object in SymPy.
Parameters
==========
expr : Boolean expression
form : string (``'cnf'`` or ``'dnf'``) or ``None`` (default).
If ``'cnf'`` or ``'dnf'``, the simplest expression in the corresponding
normal form is returned; if ``None``, the answer is returned
according to the form with fewest args (in CNF by default).
deep : bool (default ``True``)
Indicates whether to recursively simplify any
non-boolean functions contained within the input.
force : bool (default ``False``)
As the simplifications require exponential time in the number
of variables, there is by default a limit on expressions with
8 variables. When the expression has more than 8 variables
only symbolical simplification (controlled by ``deep``) is
made. By setting ``force`` to ``True``, this limit is removed. Be
aware that this can lead to very long simplification times.
dontcare : Boolean expression
Optimize expression under the assumption that inputs where this
expression is true are don't care. This is useful in e.g. Piecewise
conditions, where later conditions do not need to consider inputs that
are convered by previous conditions. For example, if a previous
condition is ``And(A, B)``, the simplification of expr can be made
with don't cares for ``And(A, B)``.
Examples
========
>>> from sympy.logic import simplify_logic
>>> from sympy.abc import x, y, z
>>> b = (~x & ~y & ~z) | ( ~x & ~y & z)
>>> simplify_logic(b)
~x & ~y
>>> simplify_logic(x | y, dontcare=y)
x
References
==========
.. [1] https://en.wikipedia.org/wiki/Don%27t-care_term
"""
if form not in (None, 'cnf', 'dnf'):
raise ValueError("form can be cnf or dnf only")
expr = sympify(expr)
# check for quick exit if form is given: right form and all args are
# literal and do not involve Not
if form:
form_ok = False
if form == 'cnf':
form_ok = is_cnf(expr)
elif form == 'dnf':
form_ok = is_dnf(expr)
if form_ok and all(is_literal(a)
for a in expr.args):
return expr
from sympy.core.relational import Relational
if deep:
variables = expr.atoms(Relational)
from sympy.simplify.simplify import simplify
s = tuple(map(simplify, variables))
expr = expr.xreplace(dict(zip(variables, s)))
if not isinstance(expr, BooleanFunction):
return expr
# Replace Relationals with Dummys to possibly
# reduce the number of variables
repl = {}
undo = {}
from sympy.core.symbol import Dummy
variables = expr.atoms(Relational)
if dontcare is not None:
dontcare = sympify(dontcare)
variables.update(dontcare.atoms(Relational))
while variables:
var = variables.pop()
if var.is_Relational:
d = Dummy()
undo[d] = var
repl[var] = d
nvar = var.negated
if nvar in variables:
repl[nvar] = Not(d)
variables.remove(nvar)
expr = expr.xreplace(repl)
if dontcare is not None:
dontcare = dontcare.xreplace(repl)
# Get new variables after replacing
variables = _find_predicates(expr)
if not force and len(variables) > 8:
return expr.xreplace(undo)
if dontcare is not None:
# Add variables from dontcare
dcvariables = _find_predicates(dontcare)
variables.update(dcvariables)
# if too many restore to variables only
if not force and len(variables) > 8:
variables = _find_predicates(expr)
dontcare = None
# group into constants and variable values
c, v = sift(ordered(variables), lambda x: x in (True, False), binary=True)
variables = c + v
# standardize constants to be 1 or 0 in keeping with truthtable
c = [1 if i == True else 0 for i in c]
truthtable = _get_truthtable(v, expr, c)
if dontcare is not None:
dctruthtable = _get_truthtable(v, dontcare, c)
truthtable = [t for t in truthtable if t not in dctruthtable]
else:
dctruthtable = []
big = len(truthtable) >= (2 ** (len(variables) - 1))
if form == 'dnf' or form is None and big:
return _sop_form(variables, truthtable, dctruthtable).xreplace(undo)
return POSform(variables, truthtable, dctruthtable).xreplace(undo)
def _get_truthtable(variables, expr, const):
""" Return a list of all combinations leading to a True result for ``expr``.
"""
_variables = variables.copy()
def _get_tt(inputs):
if _variables:
v = _variables.pop()
tab = [[i[0].xreplace({v: false}), [0] + i[1]] for i in inputs if i[0] is not false]
tab.extend([[i[0].xreplace({v: true}), [1] + i[1]] for i in inputs if i[0] is not false])
return _get_tt(tab)
return inputs
res = [const + k[1] for k in _get_tt([[expr, []]]) if k[0]]
if res == [[]]:
return []
else:
return res
def _finger(eq):
"""
Assign a 5-item fingerprint to each symbol in the equation:
[
# of times it appeared as a Symbol;
# of times it appeared as a Not(symbol);
# of times it appeared as a Symbol in an And or Or;
# of times it appeared as a Not(Symbol) in an And or Or;
a sorted tuple of tuples, (i, j, k), where i is the number of arguments
in an And or Or with which it appeared as a Symbol, and j is
the number of arguments that were Not(Symbol); k is the number
of times that (i, j) was seen.
]
Examples
========
>>> from sympy.logic.boolalg import _finger as finger
>>> from sympy import And, Or, Not, Xor, to_cnf, symbols
>>> from sympy.abc import a, b, x, y
>>> eq = Or(And(Not(y), a), And(Not(y), b), And(x, y))
>>> dict(finger(eq))
{(0, 0, 1, 0, ((2, 0, 1),)): [x],
(0, 0, 1, 0, ((2, 1, 1),)): [a, b],
(0, 0, 1, 2, ((2, 0, 1),)): [y]}
>>> dict(finger(x & ~y))
{(0, 1, 0, 0, ()): [y], (1, 0, 0, 0, ()): [x]}
In the following, the (5, 2, 6) means that there were 6 Or
functions in which a symbol appeared as itself amongst 5 arguments in
which there were also 2 negated symbols, e.g. ``(a0 | a1 | a2 | ~a3 | ~a4)``
is counted once for a0, a1 and a2.
>>> dict(finger(to_cnf(Xor(*symbols('a:5')))))
{(0, 0, 8, 8, ((5, 0, 1), (5, 2, 6), (5, 4, 1))): [a0, a1, a2, a3, a4]}
The equation must not have more than one level of nesting:
>>> dict(finger(And(Or(x, y), y)))
{(0, 0, 1, 0, ((2, 0, 1),)): [x], (1, 0, 1, 0, ((2, 0, 1),)): [y]}
>>> dict(finger(And(Or(x, And(a, x)), y)))
Traceback (most recent call last):
...
NotImplementedError: unexpected level of nesting
So y and x have unique fingerprints, but a and b do not.
"""
f = eq.free_symbols
d = dict(list(zip(f, [[0]*4 + [defaultdict(int)] for fi in f])))
for a in eq.args:
if a.is_Symbol:
d[a][0] += 1
elif a.is_Not:
d[a.args[0]][1] += 1
else:
o = len(a.args), sum(isinstance(ai, Not) for ai in a.args)
for ai in a.args:
if ai.is_Symbol:
d[ai][2] += 1
d[ai][-1][o] += 1
elif ai.is_Not:
d[ai.args[0]][3] += 1
else:
raise NotImplementedError('unexpected level of nesting')
inv = defaultdict(list)
for k, v in ordered(iter(d.items())):
v[-1] = tuple(sorted([i + (j,) for i, j in v[-1].items()]))
inv[tuple(v)].append(k)
return inv
def bool_map(bool1, bool2):
"""
Return the simplified version of *bool1*, and the mapping of variables
that makes the two expressions *bool1* and *bool2* represent the same
logical behaviour for some correspondence between the variables
of each.
If more than one mappings of this sort exist, one of them
is returned.
For example, ``And(x, y)`` is logically equivalent to ``And(a, b)`` for
the mapping ``{x: a, y: b}`` or ``{x: b, y: a}``.
If no such mapping exists, return ``False``.
Examples
========
>>> from sympy import SOPform, bool_map, Or, And, Not, Xor
>>> from sympy.abc import w, x, y, z, a, b, c, d
>>> function1 = SOPform([x, z, y],[[1, 0, 1], [0, 0, 1]])
>>> function2 = SOPform([a, b, c],[[1, 0, 1], [1, 0, 0]])
>>> bool_map(function1, function2)
(y & ~z, {y: a, z: b})
The results are not necessarily unique, but they are canonical. Here,
``(w, z)`` could be ``(a, d)`` or ``(d, a)``:
>>> eq = Or(And(Not(y), w), And(Not(y), z), And(x, y))
>>> eq2 = Or(And(Not(c), a), And(Not(c), d), And(b, c))
>>> bool_map(eq, eq2)
((x & y) | (w & ~y) | (z & ~y), {w: a, x: b, y: c, z: d})
>>> eq = And(Xor(a, b), c, And(c,d))
>>> bool_map(eq, eq.subs(c, x))
(c & d & (a | b) & (~a | ~b), {a: a, b: b, c: d, d: x})
"""
def match(function1, function2):
"""Return the mapping that equates variables between two
simplified boolean expressions if possible.
By "simplified" we mean that a function has been denested
and is either an And (or an Or) whose arguments are either
symbols (x), negated symbols (Not(x)), or Or (or an And) whose
arguments are only symbols or negated symbols. For example,
``And(x, Not(y), Or(w, Not(z)))``.
Basic.match is not robust enough (see issue 4835) so this is
a workaround that is valid for simplified boolean expressions
"""
# do some quick checks
if function1.__class__ != function2.__class__:
return None # maybe simplification makes them the same?
if len(function1.args) != len(function2.args):
return None # maybe simplification makes them the same?
if function1.is_Symbol:
return {function1: function2}
# get the fingerprint dictionaries
f1 = _finger(function1)
f2 = _finger(function2)
# more quick checks
if len(f1) != len(f2):
return False
# assemble the match dictionary if possible
matchdict = {}
for k in f1.keys():
if k not in f2:
return False
if len(f1[k]) != len(f2[k]):
return False
for i, x in enumerate(f1[k]):
matchdict[x] = f2[k][i]
return matchdict
a = simplify_logic(bool1)
b = simplify_logic(bool2)
m = match(a, b)
if m:
return a, m
return m
def _apply_patternbased_simplification(rv, patterns, measure,
dominatingvalue,
replacementvalue=None,
threeterm_patterns=None):
"""
Replace patterns of Relational
Parameters
==========
rv : Expr
Boolean expression
patterns : tuple
Tuple of tuples, with (pattern to simplify, simplified pattern) with
two terms.
measure : function
Simplification measure.
dominatingvalue : Boolean or ``None``
The dominating value for the function of consideration.
For example, for :py:class:`~.And` ``S.false`` is dominating.
As soon as one expression is ``S.false`` in :py:class:`~.And`,
the whole expression is ``S.false``.
replacementvalue : Boolean or ``None``, optional
The resulting value for the whole expression if one argument
evaluates to ``dominatingvalue``.
For example, for :py:class:`~.Nand` ``S.false`` is dominating, but
in this case the resulting value is ``S.true``. Default is ``None``.
If ``replacementvalue`` is ``None`` and ``dominatingvalue`` is not
``None``, ``replacementvalue = dominatingvalue``.
threeterm_patterns : tuple, optional
Tuple of tuples, with (pattern to simplify, simplified pattern) with
three terms.
"""
from sympy.core.relational import Relational, _canonical
if replacementvalue is None and dominatingvalue is not None:
replacementvalue = dominatingvalue
# Use replacement patterns for Relationals
Rel, nonRel = sift(rv.args, lambda i: isinstance(i, Relational),
binary=True)
if len(Rel) <= 1:
return rv
Rel, nonRealRel = sift(Rel, lambda i: not any(s.is_real is False
for s in i.free_symbols),
binary=True)
Rel = [i.canonical for i in Rel]
if threeterm_patterns and len(Rel) >= 3:
Rel = _apply_patternbased_threeterm_simplification(Rel,
threeterm_patterns, rv.func, dominatingvalue,
replacementvalue, measure)
Rel = _apply_patternbased_twoterm_simplification(Rel, patterns,
rv.func, dominatingvalue, replacementvalue, measure)
rv = rv.func(*([_canonical(i) for i in ordered(Rel)]
+ nonRel + nonRealRel))
return rv
def _apply_patternbased_twoterm_simplification(Rel, patterns, func,
dominatingvalue,
replacementvalue,
measure):
""" Apply pattern-based two-term simplification."""
from sympy.functions.elementary.miscellaneous import Min, Max
from sympy.core.relational import Ge, Gt, _Inequality
changed = True
while changed and len(Rel) >= 2:
changed = False
# Use only < or <=
Rel = [r.reversed if isinstance(r, (Ge, Gt)) else r for r in Rel]
# Sort based on ordered
Rel = list(ordered(Rel))
# Eq and Ne must be tested reversed as well
rtmp = [(r, ) if isinstance(r, _Inequality) else (r, r.reversed) for r in Rel]
# Create a list of possible replacements
results = []
# Try all combinations of possibly reversed relational
for ((i, pi), (j, pj)) in combinations(enumerate(rtmp), 2):
for pattern, simp in patterns:
res = []
for p1, p2 in product(pi, pj):
# use SymPy matching
oldexpr = Tuple(p1, p2)
tmpres = oldexpr.match(pattern)
if tmpres:
res.append((tmpres, oldexpr))
if res:
for tmpres, oldexpr in res:
# we have a matching, compute replacement
np = simp.xreplace(tmpres)
if np == dominatingvalue:
# if dominatingvalue, the whole expression
# will be replacementvalue
return [replacementvalue]
# add replacement
if not isinstance(np, ITE) and not np.has(Min, Max):
# We only want to use ITE and Min/Max replacements if
# they simplify to a relational
costsaving = measure(func(*oldexpr.args)) - measure(np)
if costsaving > 0:
results.append((costsaving, ([i, j], np)))
if results:
# Sort results based on complexity
results = list(reversed(sorted(results,
key=lambda pair: pair[0])))
# Replace the one providing most simplification
replacement = results[0][1]
idx, newrel = replacement
idx.sort()
# Remove the old relationals
for index in reversed(idx):
del Rel[index]
if dominatingvalue is None or newrel != Not(dominatingvalue):
# Insert the new one (no need to insert a value that will
# not affect the result)
if newrel.func == func:
for a in newrel.args:
Rel.append(a)
else:
Rel.append(newrel)
# We did change something so try again
changed = True
return Rel
def _apply_patternbased_threeterm_simplification(Rel, patterns, func,
dominatingvalue,
replacementvalue,
measure):
""" Apply pattern-based three-term simplification."""
from sympy.functions.elementary.miscellaneous import Min, Max
from sympy.core.relational import Le, Lt, _Inequality
changed = True
while changed and len(Rel) >= 3:
changed = False
# Use only > or >=
Rel = [r.reversed if isinstance(r, (Le, Lt)) else r for r in Rel]
# Sort based on ordered
Rel = list(ordered(Rel))
# Create a list of possible replacements
results = []
# Eq and Ne must be tested reversed as well
rtmp = [(r, ) if isinstance(r, _Inequality) else (r, r.reversed) for r in Rel]
# Try all combinations of possibly reversed relational
for ((i, pi), (j, pj), (k, pk)) in permutations(enumerate(rtmp), 3):
for pattern, simp in patterns:
res = []
for p1, p2, p3 in product(pi, pj, pk):
# use SymPy matching
oldexpr = Tuple(p1, p2, p3)
tmpres = oldexpr.match(pattern)
if tmpres:
res.append((tmpres, oldexpr))
if res:
for tmpres, oldexpr in res:
# we have a matching, compute replacement
np = simp.xreplace(tmpres)
if np == dominatingvalue:
# if dominatingvalue, the whole expression
# will be replacementvalue
return [replacementvalue]
# add replacement
if not isinstance(np, ITE) and not np.has(Min, Max):
# We only want to use ITE and Min/Max replacements if
# they simplify to a relational
costsaving = measure(func(*oldexpr.args)) - measure(np)
if costsaving > 0:
results.append((costsaving, ([i, j, k], np)))
if results:
# Sort results based on complexity
results = list(reversed(sorted(results,
key=lambda pair: pair[0])))
# Replace the one providing most simplification
replacement = results[0][1]
idx, newrel = replacement
idx.sort()
# Remove the old relationals
for index in reversed(idx):
del Rel[index]
if dominatingvalue is None or newrel != Not(dominatingvalue):
# Insert the new one (no need to insert a value that will
# not affect the result)
if newrel.func == func:
for a in newrel.args:
Rel.append(a)
else:
Rel.append(newrel)
# We did change something so try again
changed = True
return Rel
@cacheit
def _simplify_patterns_and():
""" Two-term patterns for And."""
from sympy.core import Wild
from sympy.core.relational import Eq, Ne, Ge, Gt, Le, Lt
from sympy.functions.elementary.complexes import Abs
from sympy.functions.elementary.miscellaneous import Min, Max
a = Wild('a')
b = Wild('b')
c = Wild('c')
# Relationals patterns should be in alphabetical order
# (pattern1, pattern2, simplified)
# Do not use Ge, Gt
_matchers_and = ((Tuple(Eq(a, b), Lt(a, b)), false),
#(Tuple(Eq(a, b), Lt(b, a)), S.false),
#(Tuple(Le(b, a), Lt(a, b)), S.false),
#(Tuple(Lt(b, a), Le(a, b)), S.false),
(Tuple(Lt(b, a), Lt(a, b)), false),
(Tuple(Eq(a, b), Le(b, a)), Eq(a, b)),
#(Tuple(Eq(a, b), Le(a, b)), Eq(a, b)),
#(Tuple(Le(b, a), Lt(b, a)), Gt(a, b)),
(Tuple(Le(b, a), Le(a, b)), Eq(a, b)),
#(Tuple(Le(b, a), Ne(a, b)), Gt(a, b)),
#(Tuple(Lt(b, a), Ne(a, b)), Gt(a, b)),
(Tuple(Le(a, b), Lt(a, b)), Lt(a, b)),
(Tuple(Le(a, b), Ne(a, b)), Lt(a, b)),
(Tuple(Lt(a, b), Ne(a, b)), Lt(a, b)),
# Sign
(Tuple(Eq(a, b), Eq(a, -b)), And(Eq(a, S.Zero), Eq(b, S.Zero))),
# Min/Max/ITE
(Tuple(Le(b, a), Le(c, a)), Ge(a, Max(b, c))),
(Tuple(Le(b, a), Lt(c, a)), ITE(b > c, Ge(a, b), Gt(a, c))),
(Tuple(Lt(b, a), Lt(c, a)), Gt(a, Max(b, c))),
(Tuple(Le(a, b), Le(a, c)), Le(a, Min(b, c))),
(Tuple(Le(a, b), Lt(a, c)), ITE(b < c, Le(a, b), Lt(a, c))),
(Tuple(Lt(a, b), Lt(a, c)), Lt(a, Min(b, c))),
(Tuple(Le(a, b), Le(c, a)), ITE(Eq(b, c), Eq(a, b), ITE(b < c, false, And(Le(a, b), Ge(a, c))))),
(Tuple(Le(c, a), Le(a, b)), ITE(Eq(b, c), Eq(a, b), ITE(b < c, false, And(Le(a, b), Ge(a, c))))),
(Tuple(Lt(a, b), Lt(c, a)), ITE(b < c, false, And(Lt(a, b), Gt(a, c)))),
(Tuple(Lt(c, a), Lt(a, b)), ITE(b < c, false, And(Lt(a, b), Gt(a, c)))),
(Tuple(Le(a, b), Lt(c, a)), ITE(b <= c, false, And(Le(a, b), Gt(a, c)))),
(Tuple(Le(c, a), Lt(a, b)), ITE(b <= c, false, And(Lt(a, b), Ge(a, c)))),
(Tuple(Eq(a, b), Eq(a, c)), ITE(Eq(b, c), Eq(a, b), false)),
(Tuple(Lt(a, b), Lt(-b, a)), ITE(b > 0, Lt(Abs(a), b), false)),
(Tuple(Le(a, b), Le(-b, a)), ITE(b >= 0, Le(Abs(a), b), false)),
)
return _matchers_and
@cacheit
def _simplify_patterns_and3():
""" Three-term patterns for And."""
from sympy.core import Wild
from sympy.core.relational import Eq, Ge, Gt
a = Wild('a')
b = Wild('b')
c = Wild('c')
# Relationals patterns should be in alphabetical order
# (pattern1, pattern2, pattern3, simplified)
# Do not use Le, Lt
_matchers_and = ((Tuple(Ge(a, b), Ge(b, c), Gt(c, a)), false),
(Tuple(Ge(a, b), Gt(b, c), Gt(c, a)), false),
(Tuple(Gt(a, b), Gt(b, c), Gt(c, a)), false),
# (Tuple(Ge(c, a), Gt(a, b), Gt(b, c)), S.false),
# Lower bound relations
# Commented out combinations that does not simplify
(Tuple(Ge(a, b), Ge(a, c), Ge(b, c)), And(Ge(a, b), Ge(b, c))),
(Tuple(Ge(a, b), Ge(a, c), Gt(b, c)), And(Ge(a, b), Gt(b, c))),
# (Tuple(Ge(a, b), Gt(a, c), Ge(b, c)), And(Ge(a, b), Ge(b, c))),
(Tuple(Ge(a, b), Gt(a, c), Gt(b, c)), And(Ge(a, b), Gt(b, c))),
# (Tuple(Gt(a, b), Ge(a, c), Ge(b, c)), And(Gt(a, b), Ge(b, c))),
(Tuple(Ge(a, c), Gt(a, b), Gt(b, c)), And(Gt(a, b), Gt(b, c))),
(Tuple(Ge(b, c), Gt(a, b), Gt(a, c)), And(Gt(a, b), Ge(b, c))),
(Tuple(Gt(a, b), Gt(a, c), Gt(b, c)), And(Gt(a, b), Gt(b, c))),
# Upper bound relations
# Commented out combinations that does not simplify
(Tuple(Ge(b, a), Ge(c, a), Ge(b, c)), And(Ge(c, a), Ge(b, c))),
(Tuple(Ge(b, a), Ge(c, a), Gt(b, c)), And(Ge(c, a), Gt(b, c))),
# (Tuple(Ge(b, a), Gt(c, a), Ge(b, c)), And(Gt(c, a), Ge(b, c))),
(Tuple(Ge(b, a), Gt(c, a), Gt(b, c)), And(Gt(c, a), Gt(b, c))),
# (Tuple(Gt(b, a), Ge(c, a), Ge(b, c)), And(Ge(c, a), Ge(b, c))),
(Tuple(Ge(c, a), Gt(b, a), Gt(b, c)), And(Ge(c, a), Gt(b, c))),
(Tuple(Ge(b, c), Gt(b, a), Gt(c, a)), And(Gt(c, a), Ge(b, c))),
(Tuple(Gt(b, a), Gt(c, a), Gt(b, c)), And(Gt(c, a), Gt(b, c))),
# Circular relation
(Tuple(Ge(a, b), Ge(b, c), Ge(c, a)), And(Eq(a, b), Eq(b, c))),
)
return _matchers_and
@cacheit
def _simplify_patterns_or():
""" Two-term patterns for Or."""
from sympy.core import Wild
from sympy.core.relational import Eq, Ne, Ge, Gt, Le, Lt
from sympy.functions.elementary.complexes import Abs
from sympy.functions.elementary.miscellaneous import Min, Max
a = Wild('a')
b = Wild('b')
c = Wild('c')
# Relationals patterns should be in alphabetical order
# (pattern1, pattern2, simplified)
# Do not use Ge, Gt
_matchers_or = ((Tuple(Le(b, a), Le(a, b)), true),
#(Tuple(Le(b, a), Lt(a, b)), true),
(Tuple(Le(b, a), Ne(a, b)), true),
#(Tuple(Le(a, b), Lt(b, a)), true),
#(Tuple(Le(a, b), Ne(a, b)), true),
#(Tuple(Eq(a, b), Le(b, a)), Ge(a, b)),
#(Tuple(Eq(a, b), Lt(b, a)), Ge(a, b)),
(Tuple(Eq(a, b), Le(a, b)), Le(a, b)),
(Tuple(Eq(a, b), Lt(a, b)), Le(a, b)),
#(Tuple(Le(b, a), Lt(b, a)), Ge(a, b)),
(Tuple(Lt(b, a), Lt(a, b)), Ne(a, b)),
(Tuple(Lt(b, a), Ne(a, b)), Ne(a, b)),
(Tuple(Le(a, b), Lt(a, b)), Le(a, b)),
#(Tuple(Lt(a, b), Ne(a, b)), Ne(a, b)),
(Tuple(Eq(a, b), Ne(a, c)), ITE(Eq(b, c), true, Ne(a, c))),
(Tuple(Ne(a, b), Ne(a, c)), ITE(Eq(b, c), Ne(a, b), true)),
# Min/Max/ITE
(Tuple(Le(b, a), Le(c, a)), Ge(a, Min(b, c))),
#(Tuple(Ge(b, a), Ge(c, a)), Ge(Min(b, c), a)),
(Tuple(Le(b, a), Lt(c, a)), ITE(b > c, Lt(c, a), Le(b, a))),
(Tuple(Lt(b, a), Lt(c, a)), Gt(a, Min(b, c))),
#(Tuple(Gt(b, a), Gt(c, a)), Gt(Min(b, c), a)),
(Tuple(Le(a, b), Le(a, c)), Le(a, Max(b, c))),
#(Tuple(Le(b, a), Le(c, a)), Le(Max(b, c), a)),
(Tuple(Le(a, b), Lt(a, c)), ITE(b >= c, Le(a, b), Lt(a, c))),
(Tuple(Lt(a, b), Lt(a, c)), Lt(a, Max(b, c))),
#(Tuple(Lt(b, a), Lt(c, a)), Lt(Max(b, c), a)),
(Tuple(Le(a, b), Le(c, a)), ITE(b >= c, true, Or(Le(a, b), Ge(a, c)))),
(Tuple(Le(c, a), Le(a, b)), ITE(b >= c, true, Or(Le(a, b), Ge(a, c)))),
(Tuple(Lt(a, b), Lt(c, a)), ITE(b > c, true, Or(Lt(a, b), Gt(a, c)))),
(Tuple(Lt(c, a), Lt(a, b)), ITE(b > c, true, Or(Lt(a, b), Gt(a, c)))),
(Tuple(Le(a, b), Lt(c, a)), ITE(b >= c, true, Or(Le(a, b), Gt(a, c)))),
(Tuple(Le(c, a), Lt(a, b)), ITE(b >= c, true, Or(Lt(a, b), Ge(a, c)))),
(Tuple(Lt(b, a), Lt(a, -b)), ITE(b >= 0, Gt(Abs(a), b), true)),
(Tuple(Le(b, a), Le(a, -b)), ITE(b > 0, Ge(Abs(a), b), true)),
)
return _matchers_or
@cacheit
def _simplify_patterns_xor():
""" Two-term patterns for Xor."""
from sympy.functions.elementary.miscellaneous import Min, Max
from sympy.core import Wild
from sympy.core.relational import Eq, Ne, Ge, Gt, Le, Lt
a = Wild('a')
b = Wild('b')
c = Wild('c')
# Relationals patterns should be in alphabetical order
# (pattern1, pattern2, simplified)
# Do not use Ge, Gt
_matchers_xor = (#(Tuple(Le(b, a), Lt(a, b)), true),
#(Tuple(Lt(b, a), Le(a, b)), true),
#(Tuple(Eq(a, b), Le(b, a)), Gt(a, b)),
#(Tuple(Eq(a, b), Lt(b, a)), Ge(a, b)),
(Tuple(Eq(a, b), Le(a, b)), Lt(a, b)),
(Tuple(Eq(a, b), Lt(a, b)), Le(a, b)),
(Tuple(Le(a, b), Lt(a, b)), Eq(a, b)),
(Tuple(Le(a, b), Le(b, a)), Ne(a, b)),
(Tuple(Le(b, a), Ne(a, b)), Le(a, b)),
# (Tuple(Lt(b, a), Lt(a, b)), Ne(a, b)),
(Tuple(Lt(b, a), Ne(a, b)), Lt(a, b)),
# (Tuple(Le(a, b), Lt(a, b)), Eq(a, b)),
# (Tuple(Le(a, b), Ne(a, b)), Ge(a, b)),
# (Tuple(Lt(a, b), Ne(a, b)), Gt(a, b)),
# Min/Max/ITE
(Tuple(Le(b, a), Le(c, a)),
And(Ge(a, Min(b, c)), Lt(a, Max(b, c)))),
(Tuple(Le(b, a), Lt(c, a)),
ITE(b > c, And(Gt(a, c), Lt(a, b)),
And(Ge(a, b), Le(a, c)))),
(Tuple(Lt(b, a), Lt(c, a)),
And(Gt(a, Min(b, c)), Le(a, Max(b, c)))),
(Tuple(Le(a, b), Le(a, c)),
And(Le(a, Max(b, c)), Gt(a, Min(b, c)))),
(Tuple(Le(a, b), Lt(a, c)),
ITE(b < c, And(Lt(a, c), Gt(a, b)),
And(Le(a, b), Ge(a, c)))),
(Tuple(Lt(a, b), Lt(a, c)),
And(Lt(a, Max(b, c)), Ge(a, Min(b, c)))),
)
return _matchers_xor
def simplify_univariate(expr):
"""return a simplified version of univariate boolean expression, else ``expr``"""
from sympy.functions.elementary.piecewise import Piecewise
from sympy.core.relational import Eq, Ne
if not isinstance(expr, BooleanFunction):
return expr
if expr.atoms(Eq, Ne):
return expr
c = expr
free = c.free_symbols
if len(free) != 1:
return c
x = free.pop()
ok, i = Piecewise((0, c), evaluate=False
)._intervals(x, err_on_Eq=True)
if not ok:
return c
if not i:
return false
args = []
for a, b, _, _ in i:
if a is S.NegativeInfinity:
if b is S.Infinity:
c = true
else:
if c.subs(x, b) == True:
c = (x <= b)
else:
c = (x < b)
else:
incl_a = (c.subs(x, a) == True)
incl_b = (c.subs(x, b) == True)
if incl_a and incl_b:
if b.is_infinite:
c = (x >= a)
else:
c = And(a <= x, x <= b)
elif incl_a:
c = And(a <= x, x < b)
elif incl_b:
if b.is_infinite:
c = (x > a)
else:
c = And(a < x, x <= b)
else:
c = And(a < x, x < b)
args.append(c)
return Or(*args)
# Classes corresponding to logic gates
# Used in gateinputcount method
BooleanGates = (And, Or, Xor, Nand, Nor, Not, Xnor, ITE)
def gateinputcount(expr):
"""
Return the total number of inputs for the logic gates realizing the
Boolean expression.
Returns
=======
int
Number of gate inputs
Note
====
Not all Boolean functions count as gate here, only those that are
considered to be standard gates. These are: :py:class:`~.And`,
:py:class:`~.Or`, :py:class:`~.Xor`, :py:class:`~.Not`, and
:py:class:`~.ITE` (multiplexer). :py:class:`~.Nand`, :py:class:`~.Nor`,
and :py:class:`~.Xnor` will be evaluated to ``Not(And())`` etc.
Examples
========
>>> from sympy.logic import And, Or, Nand, Not, gateinputcount
>>> from sympy.abc import x, y, z
>>> expr = And(x, y)
>>> gateinputcount(expr)
2
>>> gateinputcount(Or(expr, z))
4
Note that ``Nand`` is automatically evaluated to ``Not(And())`` so
>>> gateinputcount(Nand(x, y, z))
4
>>> gateinputcount(Not(And(x, y, z)))
4
Although this can be avoided by using ``evaluate=False``
>>> gateinputcount(Nand(x, y, z, evaluate=False))
3
Also note that a comparison will count as a Boolean variable:
>>> gateinputcount(And(x > z, y >= 2))
2
As will a symbol:
>>> gateinputcount(x)
0
"""
if not isinstance(expr, Boolean):
raise TypeError("Expression must be Boolean")
if isinstance(expr, BooleanGates):
return len(expr.args) + sum(gateinputcount(x) for x in expr.args)
return 0
|
4e1fb072b1b9b1fa2ebe58bfbc41f78050e081fac67a966639eed31549e87c0a | """
Basic methods common to all matrices to be used
when creating more advanced matrices (e.g., matrices over rings,
etc.).
"""
from collections import defaultdict
from collections.abc import Iterable
from inspect import isfunction
from functools import reduce
from sympy.assumptions.refine import refine
from sympy.core import SympifyError, Add
from sympy.core.basic import Atom
from sympy.core.decorators import call_highest_priority
from sympy.core.kind import Kind, NumberKind
from sympy.core.logic import fuzzy_and, FuzzyBool
from sympy.core.mod import Mod
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.core.sympify import sympify
from sympy.functions.elementary.complexes import Abs, re, im
from .utilities import _dotprodsimp, _simplify
from sympy.polys.polytools import Poly
from sympy.utilities.exceptions import sympy_deprecation_warning
from sympy.utilities.iterables import flatten, is_sequence
from sympy.utilities.misc import as_int, filldedent
from sympy.tensor.array import NDimArray
from .utilities import _get_intermediate_simp_bool
class MatrixError(Exception):
pass
class ShapeError(ValueError, MatrixError):
"""Wrong matrix shape"""
pass
class NonSquareMatrixError(ShapeError):
pass
class NonInvertibleMatrixError(ValueError, MatrixError):
"""The matrix in not invertible (division by multidimensional zero error)."""
pass
class NonPositiveDefiniteMatrixError(ValueError, MatrixError):
"""The matrix is not a positive-definite matrix."""
pass
class MatrixRequired:
"""All subclasses of matrix objects must implement the
required matrix properties listed here."""
rows = None # type: int
cols = None # type: int
_simplify = None
@classmethod
def _new(cls, *args, **kwargs):
"""`_new` must, at minimum, be callable as
`_new(rows, cols, mat) where mat is a flat list of the
elements of the matrix."""
raise NotImplementedError("Subclasses must implement this.")
def __eq__(self, other):
raise NotImplementedError("Subclasses must implement this.")
def __getitem__(self, key):
"""Implementations of __getitem__ should accept ints, in which
case the matrix is indexed as a flat list, tuples (i,j) in which
case the (i,j) entry is returned, slices, or mixed tuples (a,b)
where a and b are any combination of slices and integers."""
raise NotImplementedError("Subclasses must implement this.")
def __len__(self):
"""The total number of entries in the matrix."""
raise NotImplementedError("Subclasses must implement this.")
@property
def shape(self):
raise NotImplementedError("Subclasses must implement this.")
class MatrixShaping(MatrixRequired):
"""Provides basic matrix shaping and extracting of submatrices"""
def _eval_col_del(self, col):
def entry(i, j):
return self[i, j] if j < col else self[i, j + 1]
return self._new(self.rows, self.cols - 1, entry)
def _eval_col_insert(self, pos, other):
def entry(i, j):
if j < pos:
return self[i, j]
elif pos <= j < pos + other.cols:
return other[i, j - pos]
return self[i, j - other.cols]
return self._new(self.rows, self.cols + other.cols, entry)
def _eval_col_join(self, other):
rows = self.rows
def entry(i, j):
if i < rows:
return self[i, j]
return other[i - rows, j]
return classof(self, other)._new(self.rows + other.rows, self.cols,
entry)
def _eval_extract(self, rowsList, colsList):
mat = list(self)
cols = self.cols
indices = (i * cols + j for i in rowsList for j in colsList)
return self._new(len(rowsList), len(colsList),
list(mat[i] for i in indices))
def _eval_get_diag_blocks(self):
sub_blocks = []
def recurse_sub_blocks(M):
i = 1
while i <= M.shape[0]:
if i == 1:
to_the_right = M[0, i:]
to_the_bottom = M[i:, 0]
else:
to_the_right = M[:i, i:]
to_the_bottom = M[i:, :i]
if any(to_the_right) or any(to_the_bottom):
i += 1
continue
else:
sub_blocks.append(M[:i, :i])
if M.shape == M[:i, :i].shape:
return
else:
recurse_sub_blocks(M[i:, i:])
return
recurse_sub_blocks(self)
return sub_blocks
def _eval_row_del(self, row):
def entry(i, j):
return self[i, j] if i < row else self[i + 1, j]
return self._new(self.rows - 1, self.cols, entry)
def _eval_row_insert(self, pos, other):
entries = list(self)
insert_pos = pos * self.cols
entries[insert_pos:insert_pos] = list(other)
return self._new(self.rows + other.rows, self.cols, entries)
def _eval_row_join(self, other):
cols = self.cols
def entry(i, j):
if j < cols:
return self[i, j]
return other[i, j - cols]
return classof(self, other)._new(self.rows, self.cols + other.cols,
entry)
def _eval_tolist(self):
return [list(self[i,:]) for i in range(self.rows)]
def _eval_todok(self):
dok = {}
rows, cols = self.shape
for i in range(rows):
for j in range(cols):
val = self[i, j]
if val != self.zero:
dok[i, j] = val
return dok
def _eval_vec(self):
rows = self.rows
def entry(n, _):
# we want to read off the columns first
j = n // rows
i = n - j * rows
return self[i, j]
return self._new(len(self), 1, entry)
def _eval_vech(self, diagonal):
c = self.cols
v = []
if diagonal:
for j in range(c):
for i in range(j, c):
v.append(self[i, j])
else:
for j in range(c):
for i in range(j + 1, c):
v.append(self[i, j])
return self._new(len(v), 1, v)
def col_del(self, col):
"""Delete the specified column."""
if col < 0:
col += self.cols
if not 0 <= col < self.cols:
raise IndexError("Column {} is out of range.".format(col))
return self._eval_col_del(col)
def col_insert(self, pos, other):
"""Insert one or more columns at the given column position.
Examples
========
>>> from sympy import zeros, ones
>>> M = zeros(3)
>>> V = ones(3, 1)
>>> M.col_insert(1, V)
Matrix([
[0, 1, 0, 0],
[0, 1, 0, 0],
[0, 1, 0, 0]])
See Also
========
col
row_insert
"""
# Allows you to build a matrix even if it is null matrix
if not self:
return type(self)(other)
pos = as_int(pos)
if pos < 0:
pos = self.cols + pos
if pos < 0:
pos = 0
elif pos > self.cols:
pos = self.cols
if self.rows != other.rows:
raise ShapeError(
"The matrices have incompatible number of rows ({} and {})"
.format(self.rows, other.rows))
return self._eval_col_insert(pos, other)
def col_join(self, other):
"""Concatenates two matrices along self's last and other's first row.
Examples
========
>>> from sympy import zeros, ones
>>> M = zeros(3)
>>> V = ones(1, 3)
>>> M.col_join(V)
Matrix([
[0, 0, 0],
[0, 0, 0],
[0, 0, 0],
[1, 1, 1]])
See Also
========
col
row_join
"""
# A null matrix can always be stacked (see #10770)
if self.rows == 0 and self.cols != other.cols:
return self._new(0, other.cols, []).col_join(other)
if self.cols != other.cols:
raise ShapeError(
"The matrices have incompatible number of columns ({} and {})"
.format(self.cols, other.cols))
return self._eval_col_join(other)
def col(self, j):
"""Elementary column selector.
Examples
========
>>> from sympy import eye
>>> eye(2).col(0)
Matrix([
[1],
[0]])
See Also
========
row
col_del
col_join
col_insert
"""
return self[:, j]
def extract(self, rowsList, colsList):
r"""Return a submatrix by specifying a list of rows and columns.
Negative indices can be given. All indices must be in the range
$-n \le i < n$ where $n$ is the number of rows or columns.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(4, 3, range(12))
>>> m
Matrix([
[0, 1, 2],
[3, 4, 5],
[6, 7, 8],
[9, 10, 11]])
>>> m.extract([0, 1, 3], [0, 1])
Matrix([
[0, 1],
[3, 4],
[9, 10]])
Rows or columns can be repeated:
>>> m.extract([0, 0, 1], [-1])
Matrix([
[2],
[2],
[5]])
Every other row can be taken by using range to provide the indices:
>>> m.extract(range(0, m.rows, 2), [-1])
Matrix([
[2],
[8]])
RowsList or colsList can also be a list of booleans, in which case
the rows or columns corresponding to the True values will be selected:
>>> m.extract([0, 1, 2, 3], [True, False, True])
Matrix([
[0, 2],
[3, 5],
[6, 8],
[9, 11]])
"""
if not is_sequence(rowsList) or not is_sequence(colsList):
raise TypeError("rowsList and colsList must be iterable")
# ensure rowsList and colsList are lists of integers
if rowsList and all(isinstance(i, bool) for i in rowsList):
rowsList = [index for index, item in enumerate(rowsList) if item]
if colsList and all(isinstance(i, bool) for i in colsList):
colsList = [index for index, item in enumerate(colsList) if item]
# ensure everything is in range
rowsList = [a2idx(k, self.rows) for k in rowsList]
colsList = [a2idx(k, self.cols) for k in colsList]
return self._eval_extract(rowsList, colsList)
def get_diag_blocks(self):
"""Obtains the square sub-matrices on the main diagonal of a square matrix.
Useful for inverting symbolic matrices or solving systems of
linear equations which may be decoupled by having a block diagonal
structure.
Examples
========
>>> from sympy import Matrix
>>> from sympy.abc import x, y, z
>>> A = Matrix([[1, 3, 0, 0], [y, z*z, 0, 0], [0, 0, x, 0], [0, 0, 0, 0]])
>>> a1, a2, a3 = A.get_diag_blocks()
>>> a1
Matrix([
[1, 3],
[y, z**2]])
>>> a2
Matrix([[x]])
>>> a3
Matrix([[0]])
"""
return self._eval_get_diag_blocks()
@classmethod
def hstack(cls, *args):
"""Return a matrix formed by joining args horizontally (i.e.
by repeated application of row_join).
Examples
========
>>> from sympy import Matrix, eye
>>> Matrix.hstack(eye(2), 2*eye(2))
Matrix([
[1, 0, 2, 0],
[0, 1, 0, 2]])
"""
if len(args) == 0:
return cls._new()
kls = type(args[0])
return reduce(kls.row_join, args)
def reshape(self, rows, cols):
"""Reshape the matrix. Total number of elements must remain the same.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(2, 3, lambda i, j: 1)
>>> m
Matrix([
[1, 1, 1],
[1, 1, 1]])
>>> m.reshape(1, 6)
Matrix([[1, 1, 1, 1, 1, 1]])
>>> m.reshape(3, 2)
Matrix([
[1, 1],
[1, 1],
[1, 1]])
"""
if self.rows * self.cols != rows * cols:
raise ValueError("Invalid reshape parameters %d %d" % (rows, cols))
return self._new(rows, cols, lambda i, j: self[i * cols + j])
def row_del(self, row):
"""Delete the specified row."""
if row < 0:
row += self.rows
if not 0 <= row < self.rows:
raise IndexError("Row {} is out of range.".format(row))
return self._eval_row_del(row)
def row_insert(self, pos, other):
"""Insert one or more rows at the given row position.
Examples
========
>>> from sympy import zeros, ones
>>> M = zeros(3)
>>> V = ones(1, 3)
>>> M.row_insert(1, V)
Matrix([
[0, 0, 0],
[1, 1, 1],
[0, 0, 0],
[0, 0, 0]])
See Also
========
row
col_insert
"""
# Allows you to build a matrix even if it is null matrix
if not self:
return self._new(other)
pos = as_int(pos)
if pos < 0:
pos = self.rows + pos
if pos < 0:
pos = 0
elif pos > self.rows:
pos = self.rows
if self.cols != other.cols:
raise ShapeError(
"The matrices have incompatible number of columns ({} and {})"
.format(self.cols, other.cols))
return self._eval_row_insert(pos, other)
def row_join(self, other):
"""Concatenates two matrices along self's last and rhs's first column
Examples
========
>>> from sympy import zeros, ones
>>> M = zeros(3)
>>> V = ones(3, 1)
>>> M.row_join(V)
Matrix([
[0, 0, 0, 1],
[0, 0, 0, 1],
[0, 0, 0, 1]])
See Also
========
row
col_join
"""
# A null matrix can always be stacked (see #10770)
if self.cols == 0 and self.rows != other.rows:
return self._new(other.rows, 0, []).row_join(other)
if self.rows != other.rows:
raise ShapeError(
"The matrices have incompatible number of rows ({} and {})"
.format(self.rows, other.rows))
return self._eval_row_join(other)
def diagonal(self, k=0):
"""Returns the kth diagonal of self. The main diagonal
corresponds to `k=0`; diagonals above and below correspond to
`k > 0` and `k < 0`, respectively. The values of `self[i, j]`
for which `j - i = k`, are returned in order of increasing
`i + j`, starting with `i + j = |k|`.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(3, 3, lambda i, j: j - i); m
Matrix([
[ 0, 1, 2],
[-1, 0, 1],
[-2, -1, 0]])
>>> _.diagonal()
Matrix([[0, 0, 0]])
>>> m.diagonal(1)
Matrix([[1, 1]])
>>> m.diagonal(-2)
Matrix([[-2]])
Even though the diagonal is returned as a Matrix, the element
retrieval can be done with a single index:
>>> Matrix.diag(1, 2, 3).diagonal()[1] # instead of [0, 1]
2
See Also
========
diag - to create a diagonal matrix
"""
rv = []
k = as_int(k)
r = 0 if k > 0 else -k
c = 0 if r else k
while True:
if r == self.rows or c == self.cols:
break
rv.append(self[r, c])
r += 1
c += 1
if not rv:
raise ValueError(filldedent('''
The %s diagonal is out of range [%s, %s]''' % (
k, 1 - self.rows, self.cols - 1)))
return self._new(1, len(rv), rv)
def row(self, i):
"""Elementary row selector.
Examples
========
>>> from sympy import eye
>>> eye(2).row(0)
Matrix([[1, 0]])
See Also
========
col
row_del
row_join
row_insert
"""
return self[i, :]
@property
def shape(self):
"""The shape (dimensions) of the matrix as the 2-tuple (rows, cols).
Examples
========
>>> from sympy import zeros
>>> M = zeros(2, 3)
>>> M.shape
(2, 3)
>>> M.rows
2
>>> M.cols
3
"""
return (self.rows, self.cols)
def todok(self):
"""Return the matrix as dictionary of keys.
Examples
========
>>> from sympy import Matrix
>>> M = Matrix.eye(3)
>>> M.todok()
{(0, 0): 1, (1, 1): 1, (2, 2): 1}
"""
return self._eval_todok()
def tolist(self):
"""Return the Matrix as a nested Python list.
Examples
========
>>> from sympy import Matrix, ones
>>> m = Matrix(3, 3, range(9))
>>> m
Matrix([
[0, 1, 2],
[3, 4, 5],
[6, 7, 8]])
>>> m.tolist()
[[0, 1, 2], [3, 4, 5], [6, 7, 8]]
>>> ones(3, 0).tolist()
[[], [], []]
When there are no rows then it will not be possible to tell how
many columns were in the original matrix:
>>> ones(0, 3).tolist()
[]
"""
if not self.rows:
return []
if not self.cols:
return [[] for i in range(self.rows)]
return self._eval_tolist()
def todod(M):
"""Returns matrix as dict of dicts containing non-zero elements of the Matrix
Examples
========
>>> from sympy import Matrix
>>> A = Matrix([[0, 1],[0, 3]])
>>> A
Matrix([
[0, 1],
[0, 3]])
>>> A.todod()
{0: {1: 1}, 1: {1: 3}}
"""
rowsdict = {}
Mlol = M.tolist()
for i, Mi in enumerate(Mlol):
row = {j: Mij for j, Mij in enumerate(Mi) if Mij}
if row:
rowsdict[i] = row
return rowsdict
def vec(self):
"""Return the Matrix converted into a one column matrix by stacking columns
Examples
========
>>> from sympy import Matrix
>>> m=Matrix([[1, 3], [2, 4]])
>>> m
Matrix([
[1, 3],
[2, 4]])
>>> m.vec()
Matrix([
[1],
[2],
[3],
[4]])
See Also
========
vech
"""
return self._eval_vec()
def vech(self, diagonal=True, check_symmetry=True):
"""Reshapes the matrix into a column vector by stacking the
elements in the lower triangle.
Parameters
==========
diagonal : bool, optional
If ``True``, it includes the diagonal elements.
check_symmetry : bool, optional
If ``True``, it checks whether the matrix is symmetric.
Examples
========
>>> from sympy import Matrix
>>> m=Matrix([[1, 2], [2, 3]])
>>> m
Matrix([
[1, 2],
[2, 3]])
>>> m.vech()
Matrix([
[1],
[2],
[3]])
>>> m.vech(diagonal=False)
Matrix([[2]])
Notes
=====
This should work for symmetric matrices and ``vech`` can
represent symmetric matrices in vector form with less size than
``vec``.
See Also
========
vec
"""
if not self.is_square:
raise NonSquareMatrixError
if check_symmetry and not self.is_symmetric():
raise ValueError("The matrix is not symmetric.")
return self._eval_vech(diagonal)
@classmethod
def vstack(cls, *args):
"""Return a matrix formed by joining args vertically (i.e.
by repeated application of col_join).
Examples
========
>>> from sympy import Matrix, eye
>>> Matrix.vstack(eye(2), 2*eye(2))
Matrix([
[1, 0],
[0, 1],
[2, 0],
[0, 2]])
"""
if len(args) == 0:
return cls._new()
kls = type(args[0])
return reduce(kls.col_join, args)
class MatrixSpecial(MatrixRequired):
"""Construction of special matrices"""
@classmethod
def _eval_diag(cls, rows, cols, diag_dict):
"""diag_dict is a defaultdict containing
all the entries of the diagonal matrix."""
def entry(i, j):
return diag_dict[(i, j)]
return cls._new(rows, cols, entry)
@classmethod
def _eval_eye(cls, rows, cols):
vals = [cls.zero]*(rows*cols)
vals[::cols+1] = [cls.one]*min(rows, cols)
return cls._new(rows, cols, vals, copy=False)
@classmethod
def _eval_jordan_block(cls, rows, cols, eigenvalue, band='upper'):
if band == 'lower':
def entry(i, j):
if i == j:
return eigenvalue
elif j + 1 == i:
return cls.one
return cls.zero
else:
def entry(i, j):
if i == j:
return eigenvalue
elif i + 1 == j:
return cls.one
return cls.zero
return cls._new(rows, cols, entry)
@classmethod
def _eval_ones(cls, rows, cols):
def entry(i, j):
return cls.one
return cls._new(rows, cols, entry)
@classmethod
def _eval_zeros(cls, rows, cols):
return cls._new(rows, cols, [cls.zero]*(rows*cols), copy=False)
@classmethod
def _eval_wilkinson(cls, n):
def entry(i, j):
return cls.one if i + 1 == j else cls.zero
D = cls._new(2*n + 1, 2*n + 1, entry)
wminus = cls.diag([i for i in range(-n, n + 1)], unpack=True) + D + D.T
wplus = abs(cls.diag([i for i in range(-n, n + 1)], unpack=True)) + D + D.T
return wminus, wplus
@classmethod
def diag(kls, *args, strict=False, unpack=True, rows=None, cols=None, **kwargs):
"""Returns a matrix with the specified diagonal.
If matrices are passed, a block-diagonal matrix
is created (i.e. the "direct sum" of the matrices).
kwargs
======
rows : rows of the resulting matrix; computed if
not given.
cols : columns of the resulting matrix; computed if
not given.
cls : class for the resulting matrix
unpack : bool which, when True (default), unpacks a single
sequence rather than interpreting it as a Matrix.
strict : bool which, when False (default), allows Matrices to
have variable-length rows.
Examples
========
>>> from sympy import Matrix
>>> Matrix.diag(1, 2, 3)
Matrix([
[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])
The current default is to unpack a single sequence. If this is
not desired, set `unpack=False` and it will be interpreted as
a matrix.
>>> Matrix.diag([1, 2, 3]) == Matrix.diag(1, 2, 3)
True
When more than one element is passed, each is interpreted as
something to put on the diagonal. Lists are converted to
matrices. Filling of the diagonal always continues from
the bottom right hand corner of the previous item: this
will create a block-diagonal matrix whether the matrices
are square or not.
>>> col = [1, 2, 3]
>>> row = [[4, 5]]
>>> Matrix.diag(col, row)
Matrix([
[1, 0, 0],
[2, 0, 0],
[3, 0, 0],
[0, 4, 5]])
When `unpack` is False, elements within a list need not all be
of the same length. Setting `strict` to True would raise a
ValueError for the following:
>>> Matrix.diag([[1, 2, 3], [4, 5], [6]], unpack=False)
Matrix([
[1, 2, 3],
[4, 5, 0],
[6, 0, 0]])
The type of the returned matrix can be set with the ``cls``
keyword.
>>> from sympy import ImmutableMatrix
>>> from sympy.utilities.misc import func_name
>>> func_name(Matrix.diag(1, cls=ImmutableMatrix))
'ImmutableDenseMatrix'
A zero dimension matrix can be used to position the start of
the filling at the start of an arbitrary row or column:
>>> from sympy import ones
>>> r2 = ones(0, 2)
>>> Matrix.diag(r2, 1, 2)
Matrix([
[0, 0, 1, 0],
[0, 0, 0, 2]])
See Also
========
eye
diagonal - to extract a diagonal
.dense.diag
.expressions.blockmatrix.BlockMatrix
.sparsetools.banded - to create multi-diagonal matrices
"""
from sympy.matrices.matrices import MatrixBase
from sympy.matrices.dense import Matrix
from sympy.matrices import SparseMatrix
klass = kwargs.get('cls', kls)
if unpack and len(args) == 1 and is_sequence(args[0]) and \
not isinstance(args[0], MatrixBase):
args = args[0]
# fill a default dict with the diagonal entries
diag_entries = defaultdict(int)
rmax = cmax = 0 # keep track of the biggest index seen
for m in args:
if isinstance(m, list):
if strict:
# if malformed, Matrix will raise an error
_ = Matrix(m)
r, c = _.shape
m = _.tolist()
else:
r, c, smat = SparseMatrix._handle_creation_inputs(m)
for (i, j), _ in smat.items():
diag_entries[(i + rmax, j + cmax)] = _
m = [] # to skip process below
elif hasattr(m, 'shape'): # a Matrix
# convert to list of lists
r, c = m.shape
m = m.tolist()
else: # in this case, we're a single value
diag_entries[(rmax, cmax)] = m
rmax += 1
cmax += 1
continue
# process list of lists
for i, mi in enumerate(m):
for j, _ in enumerate(mi):
diag_entries[(i + rmax, j + cmax)] = _
rmax += r
cmax += c
if rows is None:
rows, cols = cols, rows
if rows is None:
rows, cols = rmax, cmax
else:
cols = rows if cols is None else cols
if rows < rmax or cols < cmax:
raise ValueError(filldedent('''
The constructed matrix is {} x {} but a size of {} x {}
was specified.'''.format(rmax, cmax, rows, cols)))
return klass._eval_diag(rows, cols, diag_entries)
@classmethod
def eye(kls, rows, cols=None, **kwargs):
"""Returns an identity matrix.
Args
====
rows : rows of the matrix
cols : cols of the matrix (if None, cols=rows)
kwargs
======
cls : class of the returned matrix
"""
if cols is None:
cols = rows
if rows < 0 or cols < 0:
raise ValueError("Cannot create a {} x {} matrix. "
"Both dimensions must be positive".format(rows, cols))
klass = kwargs.get('cls', kls)
rows, cols = as_int(rows), as_int(cols)
return klass._eval_eye(rows, cols)
@classmethod
def jordan_block(kls, size=None, eigenvalue=None, *, band='upper', **kwargs):
"""Returns a Jordan block
Parameters
==========
size : Integer, optional
Specifies the shape of the Jordan block matrix.
eigenvalue : Number or Symbol
Specifies the value for the main diagonal of the matrix.
.. note::
The keyword ``eigenval`` is also specified as an alias
of this keyword, but it is not recommended to use.
We may deprecate the alias in later release.
band : 'upper' or 'lower', optional
Specifies the position of the off-diagonal to put `1` s on.
cls : Matrix, optional
Specifies the matrix class of the output form.
If it is not specified, the class type where the method is
being executed on will be returned.
rows, cols : Integer, optional
Specifies the shape of the Jordan block matrix. See Notes
section for the details of how these key works.
.. deprecated:: 1.4
The rows and cols parameters are deprecated and will be
removed in a future version.
Returns
=======
Matrix
A Jordan block matrix.
Raises
======
ValueError
If insufficient arguments are given for matrix size
specification, or no eigenvalue is given.
Examples
========
Creating a default Jordan block:
>>> from sympy import Matrix
>>> from sympy.abc import x
>>> Matrix.jordan_block(4, x)
Matrix([
[x, 1, 0, 0],
[0, x, 1, 0],
[0, 0, x, 1],
[0, 0, 0, x]])
Creating an alternative Jordan block matrix where `1` is on
lower off-diagonal:
>>> Matrix.jordan_block(4, x, band='lower')
Matrix([
[x, 0, 0, 0],
[1, x, 0, 0],
[0, 1, x, 0],
[0, 0, 1, x]])
Creating a Jordan block with keyword arguments
>>> Matrix.jordan_block(size=4, eigenvalue=x)
Matrix([
[x, 1, 0, 0],
[0, x, 1, 0],
[0, 0, x, 1],
[0, 0, 0, x]])
Notes
=====
.. deprecated:: 1.4
This feature is deprecated and will be removed in a future
version.
The keyword arguments ``size``, ``rows``, ``cols`` relates to
the Jordan block size specifications.
If you want to create a square Jordan block, specify either
one of the three arguments.
If you want to create a rectangular Jordan block, specify
``rows`` and ``cols`` individually.
+--------------------------------+---------------------+
| Arguments Given | Matrix Shape |
+----------+----------+----------+----------+----------+
| size | rows | cols | rows | cols |
+==========+==========+==========+==========+==========+
| size | Any | size | size |
+----------+----------+----------+----------+----------+
| | None | ValueError |
| +----------+----------+----------+----------+
| None | rows | None | rows | rows |
| +----------+----------+----------+----------+
| | None | cols | cols | cols |
+ +----------+----------+----------+----------+
| | rows | cols | rows | cols |
+----------+----------+----------+----------+----------+
References
==========
.. [1] https://en.wikipedia.org/wiki/Jordan_matrix
"""
if 'rows' in kwargs or 'cols' in kwargs:
msg = """
The 'rows' and 'cols' keywords to Matrix.jordan_block() are
deprecated. Use the 'size' parameter instead.
"""
if 'rows' in kwargs and 'cols' in kwargs:
msg += f"""\
To get a non-square Jordan block matrix use a more generic
banded matrix constructor, like
def entry(i, j):
if i == j:
return eigenvalue
elif {"i + 1 == j" if band == 'upper' else "j + 1 == i"}:
return 1
return 0
Matrix({kwargs['rows']}, {kwargs['cols']}, entry)
"""
sympy_deprecation_warning(msg, deprecated_since_version="1.4",
active_deprecations_target="deprecated-matrix-jordan_block-rows-cols")
klass = kwargs.pop('cls', kls)
rows = kwargs.pop('rows', None)
cols = kwargs.pop('cols', None)
eigenval = kwargs.get('eigenval', None)
if eigenvalue is None and eigenval is None:
raise ValueError("Must supply an eigenvalue")
elif eigenvalue != eigenval and None not in (eigenval, eigenvalue):
raise ValueError(
"Inconsistent values are given: 'eigenval'={}, "
"'eigenvalue'={}".format(eigenval, eigenvalue))
else:
if eigenval is not None:
eigenvalue = eigenval
if (size, rows, cols) == (None, None, None):
raise ValueError("Must supply a matrix size")
if size is not None:
rows, cols = size, size
elif rows is not None and cols is None:
cols = rows
elif cols is not None and rows is None:
rows = cols
rows, cols = as_int(rows), as_int(cols)
return klass._eval_jordan_block(rows, cols, eigenvalue, band)
@classmethod
def ones(kls, rows, cols=None, **kwargs):
"""Returns a matrix of ones.
Args
====
rows : rows of the matrix
cols : cols of the matrix (if None, cols=rows)
kwargs
======
cls : class of the returned matrix
"""
if cols is None:
cols = rows
klass = kwargs.get('cls', kls)
rows, cols = as_int(rows), as_int(cols)
return klass._eval_ones(rows, cols)
@classmethod
def zeros(kls, rows, cols=None, **kwargs):
"""Returns a matrix of zeros.
Args
====
rows : rows of the matrix
cols : cols of the matrix (if None, cols=rows)
kwargs
======
cls : class of the returned matrix
"""
if cols is None:
cols = rows
if rows < 0 or cols < 0:
raise ValueError("Cannot create a {} x {} matrix. "
"Both dimensions must be positive".format(rows, cols))
klass = kwargs.get('cls', kls)
rows, cols = as_int(rows), as_int(cols)
return klass._eval_zeros(rows, cols)
@classmethod
def companion(kls, poly):
"""Returns a companion matrix of a polynomial.
Examples
========
>>> from sympy import Matrix, Poly, Symbol, symbols
>>> x = Symbol('x')
>>> c0, c1, c2, c3, c4 = symbols('c0:5')
>>> p = Poly(c0 + c1*x + c2*x**2 + c3*x**3 + c4*x**4 + x**5, x)
>>> Matrix.companion(p)
Matrix([
[0, 0, 0, 0, -c0],
[1, 0, 0, 0, -c1],
[0, 1, 0, 0, -c2],
[0, 0, 1, 0, -c3],
[0, 0, 0, 1, -c4]])
"""
poly = kls._sympify(poly)
if not isinstance(poly, Poly):
raise ValueError("{} must be a Poly instance.".format(poly))
if not poly.is_monic:
raise ValueError("{} must be a monic polynomial.".format(poly))
if not poly.is_univariate:
raise ValueError(
"{} must be a univariate polynomial.".format(poly))
size = poly.degree()
if not size >= 1:
raise ValueError(
"{} must have degree not less than 1.".format(poly))
coeffs = poly.all_coeffs()
def entry(i, j):
if j == size - 1:
return -coeffs[-1 - i]
elif i == j + 1:
return kls.one
return kls.zero
return kls._new(size, size, entry)
@classmethod
def wilkinson(kls, n, **kwargs):
"""Returns two square Wilkinson Matrix of size 2*n + 1
$W_{2n + 1}^-, W_{2n + 1}^+ =$ Wilkinson(n)
Examples
========
>>> from sympy import Matrix
>>> wminus, wplus = Matrix.wilkinson(3)
>>> wminus
Matrix([
[-3, 1, 0, 0, 0, 0, 0],
[ 1, -2, 1, 0, 0, 0, 0],
[ 0, 1, -1, 1, 0, 0, 0],
[ 0, 0, 1, 0, 1, 0, 0],
[ 0, 0, 0, 1, 1, 1, 0],
[ 0, 0, 0, 0, 1, 2, 1],
[ 0, 0, 0, 0, 0, 1, 3]])
>>> wplus
Matrix([
[3, 1, 0, 0, 0, 0, 0],
[1, 2, 1, 0, 0, 0, 0],
[0, 1, 1, 1, 0, 0, 0],
[0, 0, 1, 0, 1, 0, 0],
[0, 0, 0, 1, 1, 1, 0],
[0, 0, 0, 0, 1, 2, 1],
[0, 0, 0, 0, 0, 1, 3]])
References
==========
.. [1] https://blogs.mathworks.com/cleve/2013/04/15/wilkinsons-matrices-2/
.. [2] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Claredon Press, Oxford, 1965, 662 pp.
"""
klass = kwargs.get('cls', kls)
n = as_int(n)
return klass._eval_wilkinson(n)
class MatrixProperties(MatrixRequired):
"""Provides basic properties of a matrix."""
def _eval_atoms(self, *types):
result = set()
for i in self:
result.update(i.atoms(*types))
return result
def _eval_free_symbols(self):
return set().union(*(i.free_symbols for i in self if i))
def _eval_has(self, *patterns):
return any(a.has(*patterns) for a in self)
def _eval_is_anti_symmetric(self, simpfunc):
if not all(simpfunc(self[i, j] + self[j, i]).is_zero for i in range(self.rows) for j in range(self.cols)):
return False
return True
def _eval_is_diagonal(self):
for i in range(self.rows):
for j in range(self.cols):
if i != j and self[i, j]:
return False
return True
# _eval_is_hermitian is called by some general SymPy
# routines and has a different *args signature. Make
# sure the names don't clash by adding `_matrix_` in name.
def _eval_is_matrix_hermitian(self, simpfunc):
mat = self._new(self.rows, self.cols, lambda i, j: simpfunc(self[i, j] - self[j, i].conjugate()))
return mat.is_zero_matrix
def _eval_is_Identity(self) -> FuzzyBool:
def dirac(i, j):
if i == j:
return 1
return 0
return all(self[i, j] == dirac(i, j)
for i in range(self.rows)
for j in range(self.cols))
def _eval_is_lower_hessenberg(self):
return all(self[i, j].is_zero
for i in range(self.rows)
for j in range(i + 2, self.cols))
def _eval_is_lower(self):
return all(self[i, j].is_zero
for i in range(self.rows)
for j in range(i + 1, self.cols))
def _eval_is_symbolic(self):
return self.has(Symbol)
def _eval_is_symmetric(self, simpfunc):
mat = self._new(self.rows, self.cols, lambda i, j: simpfunc(self[i, j] - self[j, i]))
return mat.is_zero_matrix
def _eval_is_zero_matrix(self):
if any(i.is_zero == False for i in self):
return False
if any(i.is_zero is None for i in self):
return None
return True
def _eval_is_upper_hessenberg(self):
return all(self[i, j].is_zero
for i in range(2, self.rows)
for j in range(min(self.cols, (i - 1))))
def _eval_values(self):
return [i for i in self if not i.is_zero]
def _has_positive_diagonals(self):
diagonal_entries = (self[i, i] for i in range(self.rows))
return fuzzy_and(x.is_positive for x in diagonal_entries)
def _has_nonnegative_diagonals(self):
diagonal_entries = (self[i, i] for i in range(self.rows))
return fuzzy_and(x.is_nonnegative for x in diagonal_entries)
def atoms(self, *types):
"""Returns the atoms that form the current object.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy import Matrix
>>> Matrix([[x]])
Matrix([[x]])
>>> _.atoms()
{x}
>>> Matrix([[x, y], [y, x]])
Matrix([
[x, y],
[y, x]])
>>> _.atoms()
{x, y}
"""
types = tuple(t if isinstance(t, type) else type(t) for t in types)
if not types:
types = (Atom,)
return self._eval_atoms(*types)
@property
def free_symbols(self):
"""Returns the free symbols within the matrix.
Examples
========
>>> from sympy.abc import x
>>> from sympy import Matrix
>>> Matrix([[x], [1]]).free_symbols
{x}
"""
return self._eval_free_symbols()
def has(self, *patterns):
"""Test whether any subexpression matches any of the patterns.
Examples
========
>>> from sympy import Matrix, SparseMatrix, Float
>>> from sympy.abc import x, y
>>> A = Matrix(((1, x), (0.2, 3)))
>>> B = SparseMatrix(((1, x), (0.2, 3)))
>>> A.has(x)
True
>>> A.has(y)
False
>>> A.has(Float)
True
>>> B.has(x)
True
>>> B.has(y)
False
>>> B.has(Float)
True
"""
return self._eval_has(*patterns)
def is_anti_symmetric(self, simplify=True):
"""Check if matrix M is an antisymmetric matrix,
that is, M is a square matrix with all M[i, j] == -M[j, i].
When ``simplify=True`` (default), the sum M[i, j] + M[j, i] is
simplified before testing to see if it is zero. By default,
the SymPy simplify function is used. To use a custom function
set simplify to a function that accepts a single argument which
returns a simplified expression. To skip simplification, set
simplify to False but note that although this will be faster,
it may induce false negatives.
Examples
========
>>> from sympy import Matrix, symbols
>>> m = Matrix(2, 2, [0, 1, -1, 0])
>>> m
Matrix([
[ 0, 1],
[-1, 0]])
>>> m.is_anti_symmetric()
True
>>> x, y = symbols('x y')
>>> m = Matrix(2, 3, [0, 0, x, -y, 0, 0])
>>> m
Matrix([
[ 0, 0, x],
[-y, 0, 0]])
>>> m.is_anti_symmetric()
False
>>> from sympy.abc import x, y
>>> m = Matrix(3, 3, [0, x**2 + 2*x + 1, y,
... -(x + 1)**2, 0, x*y,
... -y, -x*y, 0])
Simplification of matrix elements is done by default so even
though two elements which should be equal and opposite would not
pass an equality test, the matrix is still reported as
anti-symmetric:
>>> m[0, 1] == -m[1, 0]
False
>>> m.is_anti_symmetric()
True
If ``simplify=False`` is used for the case when a Matrix is already
simplified, this will speed things up. Here, we see that without
simplification the matrix does not appear anti-symmetric:
>>> m.is_anti_symmetric(simplify=False)
False
But if the matrix were already expanded, then it would appear
anti-symmetric and simplification in the is_anti_symmetric routine
is not needed:
>>> m = m.expand()
>>> m.is_anti_symmetric(simplify=False)
True
"""
# accept custom simplification
simpfunc = simplify
if not isfunction(simplify):
simpfunc = _simplify if simplify else lambda x: x
if not self.is_square:
return False
return self._eval_is_anti_symmetric(simpfunc)
def is_diagonal(self):
"""Check if matrix is diagonal,
that is matrix in which the entries outside the main diagonal are all zero.
Examples
========
>>> from sympy import Matrix, diag
>>> m = Matrix(2, 2, [1, 0, 0, 2])
>>> m
Matrix([
[1, 0],
[0, 2]])
>>> m.is_diagonal()
True
>>> m = Matrix(2, 2, [1, 1, 0, 2])
>>> m
Matrix([
[1, 1],
[0, 2]])
>>> m.is_diagonal()
False
>>> m = diag(1, 2, 3)
>>> m
Matrix([
[1, 0, 0],
[0, 2, 0],
[0, 0, 3]])
>>> m.is_diagonal()
True
See Also
========
is_lower
is_upper
sympy.matrices.matrices.MatrixEigen.is_diagonalizable
diagonalize
"""
return self._eval_is_diagonal()
@property
def is_weakly_diagonally_dominant(self):
r"""Tests if the matrix is row weakly diagonally dominant.
Explanation
===========
A $n, n$ matrix $A$ is row weakly diagonally dominant if
.. math::
\left|A_{i, i}\right| \ge \sum_{j = 0, j \neq i}^{n-1}
\left|A_{i, j}\right| \quad {\text{for all }}
i \in \{ 0, ..., n-1 \}
Examples
========
>>> from sympy import Matrix
>>> A = Matrix([[3, -2, 1], [1, -3, 2], [-1, 2, 4]])
>>> A.is_weakly_diagonally_dominant
True
>>> A = Matrix([[-2, 2, 1], [1, 3, 2], [1, -2, 0]])
>>> A.is_weakly_diagonally_dominant
False
>>> A = Matrix([[-4, 2, 1], [1, 6, 2], [1, -2, 5]])
>>> A.is_weakly_diagonally_dominant
True
Notes
=====
If you want to test whether a matrix is column diagonally
dominant, you can apply the test after transposing the matrix.
"""
if not self.is_square:
return False
rows, cols = self.shape
def test_row(i):
summation = self.zero
for j in range(cols):
if i != j:
summation += Abs(self[i, j])
return (Abs(self[i, i]) - summation).is_nonnegative
return fuzzy_and(test_row(i) for i in range(rows))
@property
def is_strongly_diagonally_dominant(self):
r"""Tests if the matrix is row strongly diagonally dominant.
Explanation
===========
A $n, n$ matrix $A$ is row strongly diagonally dominant if
.. math::
\left|A_{i, i}\right| > \sum_{j = 0, j \neq i}^{n-1}
\left|A_{i, j}\right| \quad {\text{for all }}
i \in \{ 0, ..., n-1 \}
Examples
========
>>> from sympy import Matrix
>>> A = Matrix([[3, -2, 1], [1, -3, 2], [-1, 2, 4]])
>>> A.is_strongly_diagonally_dominant
False
>>> A = Matrix([[-2, 2, 1], [1, 3, 2], [1, -2, 0]])
>>> A.is_strongly_diagonally_dominant
False
>>> A = Matrix([[-4, 2, 1], [1, 6, 2], [1, -2, 5]])
>>> A.is_strongly_diagonally_dominant
True
Notes
=====
If you want to test whether a matrix is column diagonally
dominant, you can apply the test after transposing the matrix.
"""
if not self.is_square:
return False
rows, cols = self.shape
def test_row(i):
summation = self.zero
for j in range(cols):
if i != j:
summation += Abs(self[i, j])
return (Abs(self[i, i]) - summation).is_positive
return fuzzy_and(test_row(i) for i in range(rows))
@property
def is_hermitian(self):
"""Checks if the matrix is Hermitian.
In a Hermitian matrix element i,j is the complex conjugate of
element j,i.
Examples
========
>>> from sympy import Matrix
>>> from sympy import I
>>> from sympy.abc import x
>>> a = Matrix([[1, I], [-I, 1]])
>>> a
Matrix([
[ 1, I],
[-I, 1]])
>>> a.is_hermitian
True
>>> a[0, 0] = 2*I
>>> a.is_hermitian
False
>>> a[0, 0] = x
>>> a.is_hermitian
>>> a[0, 1] = a[1, 0]*I
>>> a.is_hermitian
False
"""
if not self.is_square:
return False
return self._eval_is_matrix_hermitian(_simplify)
@property
def is_Identity(self) -> FuzzyBool:
if not self.is_square:
return False
return self._eval_is_Identity()
@property
def is_lower_hessenberg(self):
r"""Checks if the matrix is in the lower-Hessenberg form.
The lower hessenberg matrix has zero entries
above the first superdiagonal.
Examples
========
>>> from sympy import Matrix
>>> a = Matrix([[1, 2, 0, 0], [5, 2, 3, 0], [3, 4, 3, 7], [5, 6, 1, 1]])
>>> a
Matrix([
[1, 2, 0, 0],
[5, 2, 3, 0],
[3, 4, 3, 7],
[5, 6, 1, 1]])
>>> a.is_lower_hessenberg
True
See Also
========
is_upper_hessenberg
is_lower
"""
return self._eval_is_lower_hessenberg()
@property
def is_lower(self):
"""Check if matrix is a lower triangular matrix. True can be returned
even if the matrix is not square.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(2, 2, [1, 0, 0, 1])
>>> m
Matrix([
[1, 0],
[0, 1]])
>>> m.is_lower
True
>>> m = Matrix(4, 3, [0, 0, 0, 2, 0, 0, 1, 4, 0, 6, 6, 5])
>>> m
Matrix([
[0, 0, 0],
[2, 0, 0],
[1, 4, 0],
[6, 6, 5]])
>>> m.is_lower
True
>>> from sympy.abc import x, y
>>> m = Matrix(2, 2, [x**2 + y, y**2 + x, 0, x + y])
>>> m
Matrix([
[x**2 + y, x + y**2],
[ 0, x + y]])
>>> m.is_lower
False
See Also
========
is_upper
is_diagonal
is_lower_hessenberg
"""
return self._eval_is_lower()
@property
def is_square(self):
"""Checks if a matrix is square.
A matrix is square if the number of rows equals the number of columns.
The empty matrix is square by definition, since the number of rows and
the number of columns are both zero.
Examples
========
>>> from sympy import Matrix
>>> a = Matrix([[1, 2, 3], [4, 5, 6]])
>>> b = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> c = Matrix([])
>>> a.is_square
False
>>> b.is_square
True
>>> c.is_square
True
"""
return self.rows == self.cols
def is_symbolic(self):
"""Checks if any elements contain Symbols.
Examples
========
>>> from sympy import Matrix
>>> from sympy.abc import x, y
>>> M = Matrix([[x, y], [1, 0]])
>>> M.is_symbolic()
True
"""
return self._eval_is_symbolic()
def is_symmetric(self, simplify=True):
"""Check if matrix is symmetric matrix,
that is square matrix and is equal to its transpose.
By default, simplifications occur before testing symmetry.
They can be skipped using 'simplify=False'; while speeding things a bit,
this may however induce false negatives.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(2, 2, [0, 1, 1, 2])
>>> m
Matrix([
[0, 1],
[1, 2]])
>>> m.is_symmetric()
True
>>> m = Matrix(2, 2, [0, 1, 2, 0])
>>> m
Matrix([
[0, 1],
[2, 0]])
>>> m.is_symmetric()
False
>>> m = Matrix(2, 3, [0, 0, 0, 0, 0, 0])
>>> m
Matrix([
[0, 0, 0],
[0, 0, 0]])
>>> m.is_symmetric()
False
>>> from sympy.abc import x, y
>>> m = Matrix(3, 3, [1, x**2 + 2*x + 1, y, (x + 1)**2, 2, 0, y, 0, 3])
>>> m
Matrix([
[ 1, x**2 + 2*x + 1, y],
[(x + 1)**2, 2, 0],
[ y, 0, 3]])
>>> m.is_symmetric()
True
If the matrix is already simplified, you may speed-up is_symmetric()
test by using 'simplify=False'.
>>> bool(m.is_symmetric(simplify=False))
False
>>> m1 = m.expand()
>>> m1.is_symmetric(simplify=False)
True
"""
simpfunc = simplify
if not isfunction(simplify):
simpfunc = _simplify if simplify else lambda x: x
if not self.is_square:
return False
return self._eval_is_symmetric(simpfunc)
@property
def is_upper_hessenberg(self):
"""Checks if the matrix is the upper-Hessenberg form.
The upper hessenberg matrix has zero entries
below the first subdiagonal.
Examples
========
>>> from sympy import Matrix
>>> a = Matrix([[1, 4, 2, 3], [3, 4, 1, 7], [0, 2, 3, 4], [0, 0, 1, 3]])
>>> a
Matrix([
[1, 4, 2, 3],
[3, 4, 1, 7],
[0, 2, 3, 4],
[0, 0, 1, 3]])
>>> a.is_upper_hessenberg
True
See Also
========
is_lower_hessenberg
is_upper
"""
return self._eval_is_upper_hessenberg()
@property
def is_upper(self):
"""Check if matrix is an upper triangular matrix. True can be returned
even if the matrix is not square.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(2, 2, [1, 0, 0, 1])
>>> m
Matrix([
[1, 0],
[0, 1]])
>>> m.is_upper
True
>>> m = Matrix(4, 3, [5, 1, 9, 0, 4, 6, 0, 0, 5, 0, 0, 0])
>>> m
Matrix([
[5, 1, 9],
[0, 4, 6],
[0, 0, 5],
[0, 0, 0]])
>>> m.is_upper
True
>>> m = Matrix(2, 3, [4, 2, 5, 6, 1, 1])
>>> m
Matrix([
[4, 2, 5],
[6, 1, 1]])
>>> m.is_upper
False
See Also
========
is_lower
is_diagonal
is_upper_hessenberg
"""
return all(self[i, j].is_zero
for i in range(1, self.rows)
for j in range(min(i, self.cols)))
@property
def is_zero_matrix(self):
"""Checks if a matrix is a zero matrix.
A matrix is zero if every element is zero. A matrix need not be square
to be considered zero. The empty matrix is zero by the principle of
vacuous truth. For a matrix that may or may not be zero (e.g.
contains a symbol), this will be None
Examples
========
>>> from sympy import Matrix, zeros
>>> from sympy.abc import x
>>> a = Matrix([[0, 0], [0, 0]])
>>> b = zeros(3, 4)
>>> c = Matrix([[0, 1], [0, 0]])
>>> d = Matrix([])
>>> e = Matrix([[x, 0], [0, 0]])
>>> a.is_zero_matrix
True
>>> b.is_zero_matrix
True
>>> c.is_zero_matrix
False
>>> d.is_zero_matrix
True
>>> e.is_zero_matrix
"""
return self._eval_is_zero_matrix()
def values(self):
"""Return non-zero values of self."""
return self._eval_values()
class MatrixOperations(MatrixRequired):
"""Provides basic matrix shape and elementwise
operations. Should not be instantiated directly."""
def _eval_adjoint(self):
return self.transpose().conjugate()
def _eval_applyfunc(self, f):
out = self._new(self.rows, self.cols, [f(x) for x in self])
return out
def _eval_as_real_imag(self): # type: ignore
return (self.applyfunc(re), self.applyfunc(im))
def _eval_conjugate(self):
return self.applyfunc(lambda x: x.conjugate())
def _eval_permute_cols(self, perm):
# apply the permutation to a list
mapping = list(perm)
def entry(i, j):
return self[i, mapping[j]]
return self._new(self.rows, self.cols, entry)
def _eval_permute_rows(self, perm):
# apply the permutation to a list
mapping = list(perm)
def entry(i, j):
return self[mapping[i], j]
return self._new(self.rows, self.cols, entry)
def _eval_trace(self):
return sum(self[i, i] for i in range(self.rows))
def _eval_transpose(self):
return self._new(self.cols, self.rows, lambda i, j: self[j, i])
def adjoint(self):
"""Conjugate transpose or Hermitian conjugation."""
return self._eval_adjoint()
def applyfunc(self, f):
"""Apply a function to each element of the matrix.
Examples
========
>>> from sympy import Matrix
>>> m = Matrix(2, 2, lambda i, j: i*2+j)
>>> m
Matrix([
[0, 1],
[2, 3]])
>>> m.applyfunc(lambda i: 2*i)
Matrix([
[0, 2],
[4, 6]])
"""
if not callable(f):
raise TypeError("`f` must be callable.")
return self._eval_applyfunc(f)
def as_real_imag(self, deep=True, **hints):
"""Returns a tuple containing the (real, imaginary) part of matrix."""
# XXX: Ignoring deep and hints...
return self._eval_as_real_imag()
def conjugate(self):
"""Return the by-element conjugation.
Examples
========
>>> from sympy import SparseMatrix, I
>>> a = SparseMatrix(((1, 2 + I), (3, 4), (I, -I)))
>>> a
Matrix([
[1, 2 + I],
[3, 4],
[I, -I]])
>>> a.C
Matrix([
[ 1, 2 - I],
[ 3, 4],
[-I, I]])
See Also
========
transpose: Matrix transposition
H: Hermite conjugation
sympy.matrices.matrices.MatrixBase.D: Dirac conjugation
"""
return self._eval_conjugate()
def doit(self, **hints):
return self.applyfunc(lambda x: x.doit(**hints))
def evalf(self, n=15, subs=None, maxn=100, chop=False, strict=False, quad=None, verbose=False):
"""Apply evalf() to each element of self."""
options = {'subs':subs, 'maxn':maxn, 'chop':chop, 'strict':strict,
'quad':quad, 'verbose':verbose}
return self.applyfunc(lambda i: i.evalf(n, **options))
def expand(self, deep=True, modulus=None, power_base=True, power_exp=True,
mul=True, log=True, multinomial=True, basic=True, **hints):
"""Apply core.function.expand to each entry of the matrix.
Examples
========
>>> from sympy.abc import x
>>> from sympy import Matrix
>>> Matrix(1, 1, [x*(x+1)])
Matrix([[x*(x + 1)]])
>>> _.expand()
Matrix([[x**2 + x]])
"""
return self.applyfunc(lambda x: x.expand(
deep, modulus, power_base, power_exp, mul, log, multinomial, basic,
**hints))
@property
def H(self):
"""Return Hermite conjugate.
Examples
========
>>> from sympy import Matrix, I
>>> m = Matrix((0, 1 + I, 2, 3))
>>> m
Matrix([
[ 0],
[1 + I],
[ 2],
[ 3]])
>>> m.H
Matrix([[0, 1 - I, 2, 3]])
See Also
========
conjugate: By-element conjugation
sympy.matrices.matrices.MatrixBase.D: Dirac conjugation
"""
return self.T.C
def permute(self, perm, orientation='rows', direction='forward'):
r"""Permute the rows or columns of a matrix by the given list of
swaps.
Parameters
==========
perm : Permutation, list, or list of lists
A representation for the permutation.
If it is ``Permutation``, it is used directly with some
resizing with respect to the matrix size.
If it is specified as list of lists,
(e.g., ``[[0, 1], [0, 2]]``), then the permutation is formed
from applying the product of cycles. The direction how the
cyclic product is applied is described in below.
If it is specified as a list, the list should represent
an array form of a permutation. (e.g., ``[1, 2, 0]``) which
would would form the swapping function
`0 \mapsto 1, 1 \mapsto 2, 2\mapsto 0`.
orientation : 'rows', 'cols'
A flag to control whether to permute the rows or the columns
direction : 'forward', 'backward'
A flag to control whether to apply the permutations from
the start of the list first, or from the back of the list
first.
For example, if the permutation specification is
``[[0, 1], [0, 2]]``,
If the flag is set to ``'forward'``, the cycle would be
formed as `0 \mapsto 2, 2 \mapsto 1, 1 \mapsto 0`.
If the flag is set to ``'backward'``, the cycle would be
formed as `0 \mapsto 1, 1 \mapsto 2, 2 \mapsto 0`.
If the argument ``perm`` is not in a form of list of lists,
this flag takes no effect.
Examples
========
>>> from sympy import eye
>>> M = eye(3)
>>> M.permute([[0, 1], [0, 2]], orientation='rows', direction='forward')
Matrix([
[0, 0, 1],
[1, 0, 0],
[0, 1, 0]])
>>> from sympy import eye
>>> M = eye(3)
>>> M.permute([[0, 1], [0, 2]], orientation='rows', direction='backward')
Matrix([
[0, 1, 0],
[0, 0, 1],
[1, 0, 0]])
Notes
=====
If a bijective function
`\sigma : \mathbb{N}_0 \rightarrow \mathbb{N}_0` denotes the
permutation.
If the matrix `A` is the matrix to permute, represented as
a horizontal or a vertical stack of vectors:
.. math::
A =
\begin{bmatrix}
a_0 \\ a_1 \\ \vdots \\ a_{n-1}
\end{bmatrix} =
\begin{bmatrix}
\alpha_0 & \alpha_1 & \cdots & \alpha_{n-1}
\end{bmatrix}
If the matrix `B` is the result, the permutation of matrix rows
is defined as:
.. math::
B := \begin{bmatrix}
a_{\sigma(0)} \\ a_{\sigma(1)} \\ \vdots \\ a_{\sigma(n-1)}
\end{bmatrix}
And the permutation of matrix columns is defined as:
.. math::
B := \begin{bmatrix}
\alpha_{\sigma(0)} & \alpha_{\sigma(1)} &
\cdots & \alpha_{\sigma(n-1)}
\end{bmatrix}
"""
from sympy.combinatorics import Permutation
# allow british variants and `columns`
if direction == 'forwards':
direction = 'forward'
if direction == 'backwards':
direction = 'backward'
if orientation == 'columns':
orientation = 'cols'
if direction not in ('forward', 'backward'):
raise TypeError("direction='{}' is an invalid kwarg. "
"Try 'forward' or 'backward'".format(direction))
if orientation not in ('rows', 'cols'):
raise TypeError("orientation='{}' is an invalid kwarg. "
"Try 'rows' or 'cols'".format(orientation))
if not isinstance(perm, (Permutation, Iterable)):
raise ValueError(
"{} must be a list, a list of lists, "
"or a SymPy permutation object.".format(perm))
# ensure all swaps are in range
max_index = self.rows if orientation == 'rows' else self.cols
if not all(0 <= t <= max_index for t in flatten(list(perm))):
raise IndexError("`swap` indices out of range.")
if perm and not isinstance(perm, Permutation) and \
isinstance(perm[0], Iterable):
if direction == 'forward':
perm = list(reversed(perm))
perm = Permutation(perm, size=max_index+1)
else:
perm = Permutation(perm, size=max_index+1)
if orientation == 'rows':
return self._eval_permute_rows(perm)
if orientation == 'cols':
return self._eval_permute_cols(perm)
def permute_cols(self, swaps, direction='forward'):
"""Alias for
``self.permute(swaps, orientation='cols', direction=direction)``
See Also
========
permute
"""
return self.permute(swaps, orientation='cols', direction=direction)
def permute_rows(self, swaps, direction='forward'):
"""Alias for
``self.permute(swaps, orientation='rows', direction=direction)``
See Also
========
permute
"""
return self.permute(swaps, orientation='rows', direction=direction)
def refine(self, assumptions=True):
"""Apply refine to each element of the matrix.
Examples
========
>>> from sympy import Symbol, Matrix, Abs, sqrt, Q
>>> x = Symbol('x')
>>> Matrix([[Abs(x)**2, sqrt(x**2)],[sqrt(x**2), Abs(x)**2]])
Matrix([
[ Abs(x)**2, sqrt(x**2)],
[sqrt(x**2), Abs(x)**2]])
>>> _.refine(Q.real(x))
Matrix([
[ x**2, Abs(x)],
[Abs(x), x**2]])
"""
return self.applyfunc(lambda x: refine(x, assumptions))
def replace(self, F, G, map=False, simultaneous=True, exact=None):
"""Replaces Function F in Matrix entries with Function G.
Examples
========
>>> from sympy import symbols, Function, Matrix
>>> F, G = symbols('F, G', cls=Function)
>>> M = Matrix(2, 2, lambda i, j: F(i+j)) ; M
Matrix([
[F(0), F(1)],
[F(1), F(2)]])
>>> N = M.replace(F,G)
>>> N
Matrix([
[G(0), G(1)],
[G(1), G(2)]])
"""
return self.applyfunc(
lambda x: x.replace(F, G, map=map, simultaneous=simultaneous, exact=exact))
def rot90(self, k=1):
"""Rotates Matrix by 90 degrees
Parameters
==========
k : int
Specifies how many times the matrix is rotated by 90 degrees
(clockwise when positive, counter-clockwise when negative).
Examples
========
>>> from sympy import Matrix, symbols
>>> A = Matrix(2, 2, symbols('a:d'))
>>> A
Matrix([
[a, b],
[c, d]])
Rotating the matrix clockwise one time:
>>> A.rot90(1)
Matrix([
[c, a],
[d, b]])
Rotating the matrix anticlockwise two times:
>>> A.rot90(-2)
Matrix([
[d, c],
[b, a]])
"""
mod = k%4
if mod == 0:
return self
if mod == 1:
return self[::-1, ::].T
if mod == 2:
return self[::-1, ::-1]
if mod == 3:
return self[::, ::-1].T
def simplify(self, **kwargs):
"""Apply simplify to each element of the matrix.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy import SparseMatrix, sin, cos
>>> SparseMatrix(1, 1, [x*sin(y)**2 + x*cos(y)**2])
Matrix([[x*sin(y)**2 + x*cos(y)**2]])
>>> _.simplify()
Matrix([[x]])
"""
return self.applyfunc(lambda x: x.simplify(**kwargs))
def subs(self, *args, **kwargs): # should mirror core.basic.subs
"""Return a new matrix with subs applied to each entry.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy import SparseMatrix, Matrix
>>> SparseMatrix(1, 1, [x])
Matrix([[x]])
>>> _.subs(x, y)
Matrix([[y]])
>>> Matrix(_).subs(y, x)
Matrix([[x]])
"""
if len(args) == 1 and not isinstance(args[0], (dict, set)) and iter(args[0]) and not is_sequence(args[0]):
args = (list(args[0]),)
return self.applyfunc(lambda x: x.subs(*args, **kwargs))
def trace(self):
"""
Returns the trace of a square matrix i.e. the sum of the
diagonal elements.
Examples
========
>>> from sympy import Matrix
>>> A = Matrix(2, 2, [1, 2, 3, 4])
>>> A.trace()
5
"""
if self.rows != self.cols:
raise NonSquareMatrixError()
return self._eval_trace()
def transpose(self):
"""
Returns the transpose of the matrix.
Examples
========
>>> from sympy import Matrix
>>> A = Matrix(2, 2, [1, 2, 3, 4])
>>> A.transpose()
Matrix([
[1, 3],
[2, 4]])
>>> from sympy import Matrix, I
>>> m=Matrix(((1, 2+I), (3, 4)))
>>> m
Matrix([
[1, 2 + I],
[3, 4]])
>>> m.transpose()
Matrix([
[ 1, 3],
[2 + I, 4]])
>>> m.T == m.transpose()
True
See Also
========
conjugate: By-element conjugation
"""
return self._eval_transpose()
@property
def T(self):
'''Matrix transposition'''
return self.transpose()
@property
def C(self):
'''By-element conjugation'''
return self.conjugate()
def n(self, *args, **kwargs):
"""Apply evalf() to each element of self."""
return self.evalf(*args, **kwargs)
def xreplace(self, rule): # should mirror core.basic.xreplace
"""Return a new matrix with xreplace applied to each entry.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy import SparseMatrix, Matrix
>>> SparseMatrix(1, 1, [x])
Matrix([[x]])
>>> _.xreplace({x: y})
Matrix([[y]])
>>> Matrix(_).xreplace({y: x})
Matrix([[x]])
"""
return self.applyfunc(lambda x: x.xreplace(rule))
def _eval_simplify(self, **kwargs):
# XXX: We can't use self.simplify here as mutable subclasses will
# override simplify and have it return None
return MatrixOperations.simplify(self, **kwargs)
def _eval_trigsimp(self, **opts):
from sympy.simplify.trigsimp import trigsimp
return self.applyfunc(lambda x: trigsimp(x, **opts))
def upper_triangular(self, k=0):
"""returns the elements on and above the kth diagonal of a matrix.
If k is not specified then simply returns upper-triangular portion
of a matrix
Examples
========
>>> from sympy import ones
>>> A = ones(4)
>>> A.upper_triangular()
Matrix([
[1, 1, 1, 1],
[0, 1, 1, 1],
[0, 0, 1, 1],
[0, 0, 0, 1]])
>>> A.upper_triangular(2)
Matrix([
[0, 0, 1, 1],
[0, 0, 0, 1],
[0, 0, 0, 0],
[0, 0, 0, 0]])
>>> A.upper_triangular(-1)
Matrix([
[1, 1, 1, 1],
[1, 1, 1, 1],
[0, 1, 1, 1],
[0, 0, 1, 1]])
"""
def entry(i, j):
return self[i, j] if i + k <= j else self.zero
return self._new(self.rows, self.cols, entry)
def lower_triangular(self, k=0):
"""returns the elements on and below the kth diagonal of a matrix.
If k is not specified then simply returns lower-triangular portion
of a matrix
Examples
========
>>> from sympy import ones
>>> A = ones(4)
>>> A.lower_triangular()
Matrix([
[1, 0, 0, 0],
[1, 1, 0, 0],
[1, 1, 1, 0],
[1, 1, 1, 1]])
>>> A.lower_triangular(-2)
Matrix([
[0, 0, 0, 0],
[0, 0, 0, 0],
[1, 0, 0, 0],
[1, 1, 0, 0]])
>>> A.lower_triangular(1)
Matrix([
[1, 1, 0, 0],
[1, 1, 1, 0],
[1, 1, 1, 1],
[1, 1, 1, 1]])
"""
def entry(i, j):
return self[i, j] if i + k >= j else self.zero
return self._new(self.rows, self.cols, entry)
class MatrixArithmetic(MatrixRequired):
"""Provides basic matrix arithmetic operations.
Should not be instantiated directly."""
_op_priority = 10.01
def _eval_Abs(self):
return self._new(self.rows, self.cols, lambda i, j: Abs(self[i, j]))
def _eval_add(self, other):
return self._new(self.rows, self.cols,
lambda i, j: self[i, j] + other[i, j])
def _eval_matrix_mul(self, other):
def entry(i, j):
vec = [self[i,k]*other[k,j] for k in range(self.cols)]
try:
return Add(*vec)
except (TypeError, SympifyError):
# Some matrices don't work with `sum` or `Add`
# They don't work with `sum` because `sum` tries to add `0`
# Fall back to a safe way to multiply if the `Add` fails.
return reduce(lambda a, b: a + b, vec)
return self._new(self.rows, other.cols, entry)
def _eval_matrix_mul_elementwise(self, other):
return self._new(self.rows, self.cols, lambda i, j: self[i,j]*other[i,j])
def _eval_matrix_rmul(self, other):
def entry(i, j):
return sum(other[i,k]*self[k,j] for k in range(other.cols))
return self._new(other.rows, self.cols, entry)
def _eval_pow_by_recursion(self, num):
if num == 1:
return self
if num % 2 == 1:
a, b = self, self._eval_pow_by_recursion(num - 1)
else:
a = b = self._eval_pow_by_recursion(num // 2)
return a.multiply(b)
def _eval_pow_by_cayley(self, exp):
from sympy.discrete.recurrences import linrec_coeffs
row = self.shape[0]
p = self.charpoly()
coeffs = (-p).all_coeffs()[1:]
coeffs = linrec_coeffs(coeffs, exp)
new_mat = self.eye(row)
ans = self.zeros(row)
for i in range(row):
ans += coeffs[i]*new_mat
new_mat *= self
return ans
def _eval_pow_by_recursion_dotprodsimp(self, num, prevsimp=None):
if prevsimp is None:
prevsimp = [True]*len(self)
if num == 1:
return self
if num % 2 == 1:
a, b = self, self._eval_pow_by_recursion_dotprodsimp(num - 1,
prevsimp=prevsimp)
else:
a = b = self._eval_pow_by_recursion_dotprodsimp(num // 2,
prevsimp=prevsimp)
m = a.multiply(b, dotprodsimp=False)
lenm = len(m)
elems = [None]*lenm
for i in range(lenm):
if prevsimp[i]:
elems[i], prevsimp[i] = _dotprodsimp(m[i], withsimp=True)
else:
elems[i] = m[i]
return m._new(m.rows, m.cols, elems)
def _eval_scalar_mul(self, other):
return self._new(self.rows, self.cols, lambda i, j: self[i,j]*other)
def _eval_scalar_rmul(self, other):
return self._new(self.rows, self.cols, lambda i, j: other*self[i,j])
def _eval_Mod(self, other):
return self._new(self.rows, self.cols, lambda i, j: Mod(self[i, j], other))
# Python arithmetic functions
def __abs__(self):
"""Returns a new matrix with entry-wise absolute values."""
return self._eval_Abs()
@call_highest_priority('__radd__')
def __add__(self, other):
"""Return self + other, raising ShapeError if shapes do not match."""
if isinstance(other, NDimArray): # Matrix and array addition is currently not implemented
return NotImplemented
other = _matrixify(other)
# matrix-like objects can have shapes. This is
# our first sanity check.
if hasattr(other, 'shape'):
if self.shape != other.shape:
raise ShapeError("Matrix size mismatch: %s + %s" % (
self.shape, other.shape))
# honest SymPy matrices defer to their class's routine
if getattr(other, 'is_Matrix', False):
# call the highest-priority class's _eval_add
a, b = self, other
if a.__class__ != classof(a, b):
b, a = a, b
return a._eval_add(b)
# Matrix-like objects can be passed to CommonMatrix routines directly.
if getattr(other, 'is_MatrixLike', False):
return MatrixArithmetic._eval_add(self, other)
raise TypeError('cannot add %s and %s' % (type(self), type(other)))
@call_highest_priority('__rtruediv__')
def __truediv__(self, other):
return self * (self.one / other)
@call_highest_priority('__rmatmul__')
def __matmul__(self, other):
other = _matrixify(other)
if not getattr(other, 'is_Matrix', False) and not getattr(other, 'is_MatrixLike', False):
return NotImplemented
return self.__mul__(other)
def __mod__(self, other):
return self.applyfunc(lambda x: x % other)
@call_highest_priority('__rmul__')
def __mul__(self, other):
"""Return self*other where other is either a scalar or a matrix
of compatible dimensions.
Examples
========
>>> from sympy import Matrix
>>> A = Matrix([[1, 2, 3], [4, 5, 6]])
>>> 2*A == A*2 == Matrix([[2, 4, 6], [8, 10, 12]])
True
>>> B = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> A*B
Matrix([
[30, 36, 42],
[66, 81, 96]])
>>> B*A
Traceback (most recent call last):
...
ShapeError: Matrices size mismatch.
>>>
See Also
========
matrix_multiply_elementwise
"""
return self.multiply(other)
def multiply(self, other, dotprodsimp=None):
"""Same as __mul__() but with optional simplification.
Parameters
==========
dotprodsimp : bool, optional
Specifies whether intermediate term algebraic simplification is used
during matrix multiplications to control expression blowup and thus
speed up calculation. Default is off.
"""
isimpbool = _get_intermediate_simp_bool(False, dotprodsimp)
other = _matrixify(other)
# matrix-like objects can have shapes. This is
# our first sanity check. Double check other is not explicitly not a Matrix.
if (hasattr(other, 'shape') and len(other.shape) == 2 and
(getattr(other, 'is_Matrix', True) or
getattr(other, 'is_MatrixLike', True))):
if self.shape[1] != other.shape[0]:
raise ShapeError("Matrix size mismatch: %s * %s." % (
self.shape, other.shape))
# honest SymPy matrices defer to their class's routine
if getattr(other, 'is_Matrix', False):
m = self._eval_matrix_mul(other)
if isimpbool:
return m._new(m.rows, m.cols, [_dotprodsimp(e) for e in m])
return m
# Matrix-like objects can be passed to CommonMatrix routines directly.
if getattr(other, 'is_MatrixLike', False):
return MatrixArithmetic._eval_matrix_mul(self, other)
# if 'other' is not iterable then scalar multiplication.
if not isinstance(other, Iterable):
try:
return self._eval_scalar_mul(other)
except TypeError:
pass
return NotImplemented
def multiply_elementwise(self, other):
"""Return the Hadamard product (elementwise product) of A and B
Examples
========
>>> from sympy import Matrix
>>> A = Matrix([[0, 1, 2], [3, 4, 5]])
>>> B = Matrix([[1, 10, 100], [100, 10, 1]])
>>> A.multiply_elementwise(B)
Matrix([
[ 0, 10, 200],
[300, 40, 5]])
See Also
========
sympy.matrices.matrices.MatrixBase.cross
sympy.matrices.matrices.MatrixBase.dot
multiply
"""
if self.shape != other.shape:
raise ShapeError("Matrix shapes must agree {} != {}".format(self.shape, other.shape))
return self._eval_matrix_mul_elementwise(other)
def __neg__(self):
return self._eval_scalar_mul(-1)
@call_highest_priority('__rpow__')
def __pow__(self, exp):
"""Return self**exp a scalar or symbol."""
return self.pow(exp)
def pow(self, exp, method=None):
r"""Return self**exp a scalar or symbol.
Parameters
==========
method : multiply, mulsimp, jordan, cayley
If multiply then it returns exponentiation using recursion.
If jordan then Jordan form exponentiation will be used.
If cayley then the exponentiation is done using Cayley-Hamilton
theorem.
If mulsimp then the exponentiation is done using recursion
with dotprodsimp. This specifies whether intermediate term
algebraic simplification is used during naive matrix power to
control expression blowup and thus speed up calculation.
If None, then it heuristically decides which method to use.
"""
if method is not None and method not in ['multiply', 'mulsimp', 'jordan', 'cayley']:
raise TypeError('No such method')
if self.rows != self.cols:
raise NonSquareMatrixError()
a = self
jordan_pow = getattr(a, '_matrix_pow_by_jordan_blocks', None)
exp = sympify(exp)
if exp.is_zero:
return a._new(a.rows, a.cols, lambda i, j: int(i == j))
if exp == 1:
return a
diagonal = getattr(a, 'is_diagonal', None)
if diagonal is not None and diagonal():
return a._new(a.rows, a.cols, lambda i, j: a[i,j]**exp if i == j else 0)
if exp.is_Number and exp % 1 == 0:
if a.rows == 1:
return a._new([[a[0]**exp]])
if exp < 0:
exp = -exp
a = a.inv()
# When certain conditions are met,
# Jordan block algorithm is faster than
# computation by recursion.
if method == 'jordan':
try:
return jordan_pow(exp)
except MatrixError:
if method == 'jordan':
raise
elif method == 'cayley':
if not exp.is_Number or exp % 1 != 0:
raise ValueError("cayley method is only valid for integer powers")
return a._eval_pow_by_cayley(exp)
elif method == "mulsimp":
if not exp.is_Number or exp % 1 != 0:
raise ValueError("mulsimp method is only valid for integer powers")
return a._eval_pow_by_recursion_dotprodsimp(exp)
elif method == "multiply":
if not exp.is_Number or exp % 1 != 0:
raise ValueError("multiply method is only valid for integer powers")
return a._eval_pow_by_recursion(exp)
elif method is None and exp.is_Number and exp % 1 == 0:
# Decide heuristically which method to apply
if a.rows == 2 and exp > 100000:
return jordan_pow(exp)
elif _get_intermediate_simp_bool(True, None):
return a._eval_pow_by_recursion_dotprodsimp(exp)
elif exp > 10000:
return a._eval_pow_by_cayley(exp)
else:
return a._eval_pow_by_recursion(exp)
if jordan_pow:
try:
return jordan_pow(exp)
except NonInvertibleMatrixError:
# Raised by jordan_pow on zero determinant matrix unless exp is
# definitely known to be a non-negative integer.
# Here we raise if n is definitely not a non-negative integer
# but otherwise we can leave this as an unevaluated MatPow.
if exp.is_integer is False or exp.is_nonnegative is False:
raise
from sympy.matrices.expressions import MatPow
return MatPow(a, exp)
@call_highest_priority('__add__')
def __radd__(self, other):
return self + other
@call_highest_priority('__matmul__')
def __rmatmul__(self, other):
other = _matrixify(other)
if not getattr(other, 'is_Matrix', False) and not getattr(other, 'is_MatrixLike', False):
return NotImplemented
return self.__rmul__(other)
@call_highest_priority('__mul__')
def __rmul__(self, other):
return self.rmultiply(other)
def rmultiply(self, other, dotprodsimp=None):
"""Same as __rmul__() but with optional simplification.
Parameters
==========
dotprodsimp : bool, optional
Specifies whether intermediate term algebraic simplification is used
during matrix multiplications to control expression blowup and thus
speed up calculation. Default is off.
"""
isimpbool = _get_intermediate_simp_bool(False, dotprodsimp)
other = _matrixify(other)
# matrix-like objects can have shapes. This is
# our first sanity check. Double check other is not explicitly not a Matrix.
if (hasattr(other, 'shape') and len(other.shape) == 2 and
(getattr(other, 'is_Matrix', True) or
getattr(other, 'is_MatrixLike', True))):
if self.shape[0] != other.shape[1]:
raise ShapeError("Matrix size mismatch.")
# honest SymPy matrices defer to their class's routine
if getattr(other, 'is_Matrix', False):
m = self._eval_matrix_rmul(other)
if isimpbool:
return m._new(m.rows, m.cols, [_dotprodsimp(e) for e in m])
return m
# Matrix-like objects can be passed to CommonMatrix routines directly.
if getattr(other, 'is_MatrixLike', False):
return MatrixArithmetic._eval_matrix_rmul(self, other)
# if 'other' is not iterable then scalar multiplication.
if not isinstance(other, Iterable):
try:
return self._eval_scalar_rmul(other)
except TypeError:
pass
return NotImplemented
@call_highest_priority('__sub__')
def __rsub__(self, a):
return (-self) + a
@call_highest_priority('__rsub__')
def __sub__(self, a):
return self + (-a)
class MatrixCommon(MatrixArithmetic, MatrixOperations, MatrixProperties,
MatrixSpecial, MatrixShaping):
"""All common matrix operations including basic arithmetic, shaping,
and special matrices like `zeros`, and `eye`."""
_diff_wrt = True # type: bool
class _MinimalMatrix:
"""Class providing the minimum functionality
for a matrix-like object and implementing every method
required for a `MatrixRequired`. This class does not have everything
needed to become a full-fledged SymPy object, but it will satisfy the
requirements of anything inheriting from `MatrixRequired`. If you wish
to make a specialized matrix type, make sure to implement these
methods and properties with the exception of `__init__` and `__repr__`
which are included for convenience."""
is_MatrixLike = True
_sympify = staticmethod(sympify)
_class_priority = 3
zero = S.Zero
one = S.One
is_Matrix = True
is_MatrixExpr = False
@classmethod
def _new(cls, *args, **kwargs):
return cls(*args, **kwargs)
def __init__(self, rows, cols=None, mat=None, copy=False):
if isfunction(mat):
# if we passed in a function, use that to populate the indices
mat = list(mat(i, j) for i in range(rows) for j in range(cols))
if cols is None and mat is None:
mat = rows
rows, cols = getattr(mat, 'shape', (rows, cols))
try:
# if we passed in a list of lists, flatten it and set the size
if cols is None and mat is None:
mat = rows
cols = len(mat[0])
rows = len(mat)
mat = [x for l in mat for x in l]
except (IndexError, TypeError):
pass
self.mat = tuple(self._sympify(x) for x in mat)
self.rows, self.cols = rows, cols
if self.rows is None or self.cols is None:
raise NotImplementedError("Cannot initialize matrix with given parameters")
def __getitem__(self, key):
def _normalize_slices(row_slice, col_slice):
"""Ensure that row_slice and col_slice do not have
`None` in their arguments. Any integers are converted
to slices of length 1"""
if not isinstance(row_slice, slice):
row_slice = slice(row_slice, row_slice + 1, None)
row_slice = slice(*row_slice.indices(self.rows))
if not isinstance(col_slice, slice):
col_slice = slice(col_slice, col_slice + 1, None)
col_slice = slice(*col_slice.indices(self.cols))
return (row_slice, col_slice)
def _coord_to_index(i, j):
"""Return the index in _mat corresponding
to the (i,j) position in the matrix. """
return i * self.cols + j
if isinstance(key, tuple):
i, j = key
if isinstance(i, slice) or isinstance(j, slice):
# if the coordinates are not slices, make them so
# and expand the slices so they don't contain `None`
i, j = _normalize_slices(i, j)
rowsList, colsList = list(range(self.rows))[i], \
list(range(self.cols))[j]
indices = (i * self.cols + j for i in rowsList for j in
colsList)
return self._new(len(rowsList), len(colsList),
list(self.mat[i] for i in indices))
# if the key is a tuple of ints, change
# it to an array index
key = _coord_to_index(i, j)
return self.mat[key]
def __eq__(self, other):
try:
classof(self, other)
except TypeError:
return False
return (
self.shape == other.shape and list(self) == list(other))
def __len__(self):
return self.rows*self.cols
def __repr__(self):
return "_MinimalMatrix({}, {}, {})".format(self.rows, self.cols,
self.mat)
@property
def shape(self):
return (self.rows, self.cols)
class _CastableMatrix: # this is needed here ONLY FOR TESTS.
def as_mutable(self):
return self
def as_immutable(self):
return self
class _MatrixWrapper:
"""Wrapper class providing the minimum functionality for a matrix-like
object: .rows, .cols, .shape, indexability, and iterability. CommonMatrix
math operations should work on matrix-like objects. This one is intended for
matrix-like objects which use the same indexing format as SymPy with respect
to returning matrix elements instead of rows for non-tuple indexes.
"""
is_Matrix = False # needs to be here because of __getattr__
is_MatrixLike = True
def __init__(self, mat, shape):
self.mat = mat
self.shape = shape
self.rows, self.cols = shape
def __getitem__(self, key):
if isinstance(key, tuple):
return sympify(self.mat.__getitem__(key))
return sympify(self.mat.__getitem__((key // self.rows, key % self.cols)))
def __iter__(self): # supports numpy.matrix and numpy.array
mat = self.mat
cols = self.cols
return iter(sympify(mat[r, c]) for r in range(self.rows) for c in range(cols))
class MatrixKind(Kind):
"""
Kind for all matrices in SymPy.
Basic class for this kind is ``MatrixBase`` and ``MatrixExpr``,
but any expression representing the matrix can have this.
Parameters
==========
element_kind : Kind
Kind of the element. Default is
:class:`sympy.core.kind.NumberKind`,
which means that the matrix contains only numbers.
Examples
========
Any instance of matrix class has ``MatrixKind``:
>>> from sympy import MatrixSymbol
>>> A = MatrixSymbol('A', 2,2)
>>> A.kind
MatrixKind(NumberKind)
Although expression representing a matrix may be not instance of
matrix class, it will have ``MatrixKind`` as well:
>>> from sympy import MatrixExpr, Integral
>>> from sympy.abc import x
>>> intM = Integral(A, x)
>>> isinstance(intM, MatrixExpr)
False
>>> intM.kind
MatrixKind(NumberKind)
Use ``isinstance()`` to check for ``MatrixKind`` without specifying
the element kind. Use ``is`` with specifying the element kind:
>>> from sympy import Matrix
>>> from sympy.core import NumberKind
>>> from sympy.matrices import MatrixKind
>>> M = Matrix([1, 2])
>>> isinstance(M.kind, MatrixKind)
True
>>> M.kind is MatrixKind(NumberKind)
True
See Also
========
sympy.core.kind.NumberKind
sympy.core.kind.UndefinedKind
sympy.core.containers.TupleKind
sympy.sets.sets.SetKind
"""
def __new__(cls, element_kind=NumberKind):
obj = super().__new__(cls, element_kind)
obj.element_kind = element_kind
return obj
def __repr__(self):
return "MatrixKind(%s)" % self.element_kind
def _matrixify(mat):
"""If `mat` is a Matrix or is matrix-like,
return a Matrix or MatrixWrapper object. Otherwise
`mat` is passed through without modification."""
if getattr(mat, 'is_Matrix', False) or getattr(mat, 'is_MatrixLike', False):
return mat
if not(getattr(mat, 'is_Matrix', True) or getattr(mat, 'is_MatrixLike', True)):
return mat
shape = None
if hasattr(mat, 'shape'): # numpy, scipy.sparse
if len(mat.shape) == 2:
shape = mat.shape
elif hasattr(mat, 'rows') and hasattr(mat, 'cols'): # mpmath
shape = (mat.rows, mat.cols)
if shape:
return _MatrixWrapper(mat, shape)
return mat
def a2idx(j, n=None):
"""Return integer after making positive and validating against n."""
if not isinstance(j, int):
jindex = getattr(j, '__index__', None)
if jindex is not None:
j = jindex()
else:
raise IndexError("Invalid index a[%r]" % (j,))
if n is not None:
if j < 0:
j += n
if not (j >= 0 and j < n):
raise IndexError("Index out of range: a[%s]" % (j,))
return int(j)
def classof(A, B):
"""
Get the type of the result when combining matrices of different types.
Currently the strategy is that immutability is contagious.
Examples
========
>>> from sympy import Matrix, ImmutableMatrix
>>> from sympy.matrices.common import classof
>>> M = Matrix([[1, 2], [3, 4]]) # a Mutable Matrix
>>> IM = ImmutableMatrix([[1, 2], [3, 4]])
>>> classof(M, IM)
<class 'sympy.matrices.immutable.ImmutableDenseMatrix'>
"""
priority_A = getattr(A, '_class_priority', None)
priority_B = getattr(B, '_class_priority', None)
if None not in (priority_A, priority_B):
if A._class_priority > B._class_priority:
return A.__class__
else:
return B.__class__
try:
import numpy
except ImportError:
pass
else:
if isinstance(A, numpy.ndarray):
return B.__class__
if isinstance(B, numpy.ndarray):
return A.__class__
raise TypeError("Incompatible classes %s, %s" % (A.__class__, B.__class__))
|
d635f1005b25da2bd7953f52b0638ceecd6ebd2d94284b96ccd600fdb4ed4ba5 | from sympy.core import S
from sympy.core.relational import Eq, Ne
from sympy.logic.boolalg import BooleanFunction
from sympy.utilities.misc import func_name
from .sets import Set
class Contains(BooleanFunction):
"""
Asserts that x is an element of the set S.
Examples
========
>>> from sympy import Symbol, Integer, S, Contains
>>> Contains(Integer(2), S.Integers)
True
>>> Contains(Integer(-2), S.Naturals)
False
>>> i = Symbol('i', integer=True)
>>> Contains(i, S.Naturals)
Contains(i, Naturals)
References
==========
.. [1] https://en.wikipedia.org/wiki/Element_%28mathematics%29
"""
@classmethod
def eval(cls, x, s):
if not isinstance(s, Set):
raise TypeError('expecting Set, not %s' % func_name(s))
ret = s.contains(x)
if not isinstance(ret, Contains) and (
ret in (S.true, S.false) or isinstance(ret, Set)):
return ret
@property
def binary_symbols(self):
return set().union(*[i.binary_symbols
for i in self.args[1].args
if i.is_Boolean or i.is_Symbol or
isinstance(i, (Eq, Ne))])
def as_set(self):
return self.args[1]
|
da4449d1846bb0329a77c437e145ddcb894e5462a1e8bbcbe8ba243d50d937c0 | """Implicit plotting module for SymPy.
Explanation
===========
The module implements a data series called ImplicitSeries which is used by
``Plot`` class to plot implicit plots for different backends. The module,
by default, implements plotting using interval arithmetic. It switches to a
fall back algorithm if the expression cannot be plotted using interval arithmetic.
It is also possible to specify to use the fall back algorithm for all plots.
Boolean combinations of expressions cannot be plotted by the fall back
algorithm.
See Also
========
sympy.plotting.plot
References
==========
.. [1] Jeffrey Allen Tupper. Reliable Two-Dimensional Graphing Methods for
Mathematical Formulae with Two Free Variables.
.. [2] Jeffrey Allen Tupper. Graphing Equations with Generalized Interval
Arithmetic. Master's thesis. University of Toronto, 1996
"""
from .plot import BaseSeries, Plot
from .experimental_lambdify import experimental_lambdify, vectorized_lambdify
from .intervalmath import interval
from sympy.core.relational import (Equality, GreaterThan, LessThan,
Relational, StrictLessThan, StrictGreaterThan)
from sympy.core.containers import Tuple
from sympy.core.relational import Eq
from sympy.core.symbol import (Dummy, Symbol)
from sympy.core.sympify import sympify
from sympy.external import import_module
from sympy.logic.boolalg import BooleanFunction
from sympy.polys.polyutils import _sort_gens
from sympy.utilities.decorator import doctest_depends_on
from sympy.utilities.iterables import flatten
import warnings
class ImplicitSeries(BaseSeries):
""" Representation for Implicit plot """
is_implicit = True
def __init__(self, expr, var_start_end_x, var_start_end_y,
has_equality, use_interval_math, depth, nb_of_points,
line_color):
super().__init__()
self.expr = sympify(expr)
self.label = self.expr
self.var_x = sympify(var_start_end_x[0])
self.start_x = float(var_start_end_x[1])
self.end_x = float(var_start_end_x[2])
self.var_y = sympify(var_start_end_y[0])
self.start_y = float(var_start_end_y[1])
self.end_y = float(var_start_end_y[2])
self.get_points = self.get_raster
self.has_equality = has_equality # If the expression has equality, i.e.
#Eq, Greaterthan, LessThan.
self.nb_of_points = nb_of_points
self.use_interval_math = use_interval_math
self.depth = 4 + depth
self.line_color = line_color
def __str__(self):
return ('Implicit equation: %s for '
'%s over %s and %s over %s') % (
str(self.expr),
str(self.var_x),
str((self.start_x, self.end_x)),
str(self.var_y),
str((self.start_y, self.end_y)))
def get_raster(self):
func = experimental_lambdify((self.var_x, self.var_y), self.expr,
use_interval=True)
xinterval = interval(self.start_x, self.end_x)
yinterval = interval(self.start_y, self.end_y)
try:
func(xinterval, yinterval)
except AttributeError:
# XXX: AttributeError("'list' object has no attribute 'is_real'")
# That needs fixing somehow - we shouldn't be catching
# AttributeError here.
if self.use_interval_math:
warnings.warn("Adaptive meshing could not be applied to the"
" expression. Using uniform meshing.", stacklevel=7)
self.use_interval_math = False
if self.use_interval_math:
return self._get_raster_interval(func)
else:
return self._get_meshes_grid()
def _get_raster_interval(self, func):
""" Uses interval math to adaptively mesh and obtain the plot"""
k = self.depth
interval_list = []
#Create initial 32 divisions
np = import_module('numpy')
xsample = np.linspace(self.start_x, self.end_x, 33)
ysample = np.linspace(self.start_y, self.end_y, 33)
#Add a small jitter so that there are no false positives for equality.
# Ex: y==x becomes True for x interval(1, 2) and y interval(1, 2)
#which will draw a rectangle.
jitterx = (np.random.rand(
len(xsample)) * 2 - 1) * (self.end_x - self.start_x) / 2**20
jittery = (np.random.rand(
len(ysample)) * 2 - 1) * (self.end_y - self.start_y) / 2**20
xsample += jitterx
ysample += jittery
xinter = [interval(x1, x2) for x1, x2 in zip(xsample[:-1],
xsample[1:])]
yinter = [interval(y1, y2) for y1, y2 in zip(ysample[:-1],
ysample[1:])]
interval_list = [[x, y] for x in xinter for y in yinter]
plot_list = []
#recursive call refinepixels which subdivides the intervals which are
#neither True nor False according to the expression.
def refine_pixels(interval_list):
""" Evaluates the intervals and subdivides the interval if the
expression is partially satisfied."""
temp_interval_list = []
plot_list = []
for intervals in interval_list:
#Convert the array indices to x and y values
intervalx = intervals[0]
intervaly = intervals[1]
func_eval = func(intervalx, intervaly)
#The expression is valid in the interval. Change the contour
#array values to 1.
if func_eval[1] is False or func_eval[0] is False:
pass
elif func_eval == (True, True):
plot_list.append([intervalx, intervaly])
elif func_eval[1] is None or func_eval[0] is None:
#Subdivide
avgx = intervalx.mid
avgy = intervaly.mid
a = interval(intervalx.start, avgx)
b = interval(avgx, intervalx.end)
c = interval(intervaly.start, avgy)
d = interval(avgy, intervaly.end)
temp_interval_list.append([a, c])
temp_interval_list.append([a, d])
temp_interval_list.append([b, c])
temp_interval_list.append([b, d])
return temp_interval_list, plot_list
while k >= 0 and len(interval_list):
interval_list, plot_list_temp = refine_pixels(interval_list)
plot_list.extend(plot_list_temp)
k = k - 1
#Check whether the expression represents an equality
#If it represents an equality, then none of the intervals
#would have satisfied the expression due to floating point
#differences. Add all the undecided values to the plot.
if self.has_equality:
for intervals in interval_list:
intervalx = intervals[0]
intervaly = intervals[1]
func_eval = func(intervalx, intervaly)
if func_eval[1] and func_eval[0] is not False:
plot_list.append([intervalx, intervaly])
return plot_list, 'fill'
def _get_meshes_grid(self):
"""Generates the mesh for generating a contour.
In the case of equality, ``contour`` function of matplotlib can
be used. In other cases, matplotlib's ``contourf`` is used.
"""
equal = False
if isinstance(self.expr, Equality):
expr = self.expr.lhs - self.expr.rhs
equal = True
elif isinstance(self.expr, (GreaterThan, StrictGreaterThan)):
expr = self.expr.lhs - self.expr.rhs
elif isinstance(self.expr, (LessThan, StrictLessThan)):
expr = self.expr.rhs - self.expr.lhs
else:
raise NotImplementedError("The expression is not supported for "
"plotting in uniform meshed plot.")
np = import_module('numpy')
xarray = np.linspace(self.start_x, self.end_x, self.nb_of_points)
yarray = np.linspace(self.start_y, self.end_y, self.nb_of_points)
x_grid, y_grid = np.meshgrid(xarray, yarray)
func = vectorized_lambdify((self.var_x, self.var_y), expr)
z_grid = func(x_grid, y_grid)
z_grid[np.ma.where(z_grid < 0)] = -1
z_grid[np.ma.where(z_grid > 0)] = 1
if equal:
return xarray, yarray, z_grid, 'contour'
else:
return xarray, yarray, z_grid, 'contourf'
@doctest_depends_on(modules=('matplotlib',))
def plot_implicit(expr, x_var=None, y_var=None, adaptive=True, depth=0,
points=300, line_color="blue", show=True, **kwargs):
"""A plot function to plot implicit equations / inequalities.
Arguments
=========
- expr : The equation / inequality that is to be plotted.
- x_var (optional) : symbol to plot on x-axis or tuple giving symbol
and range as ``(symbol, xmin, xmax)``
- y_var (optional) : symbol to plot on y-axis or tuple giving symbol
and range as ``(symbol, ymin, ymax)``
If neither ``x_var`` nor ``y_var`` are given then the free symbols in the
expression will be assigned in the order they are sorted.
The following keyword arguments can also be used:
- ``adaptive`` Boolean. The default value is set to True. It has to be
set to False if you want to use a mesh grid.
- ``depth`` integer. The depth of recursion for adaptive mesh grid.
Default value is 0. Takes value in the range (0, 4).
- ``points`` integer. The number of points if adaptive mesh grid is not
used. Default value is 300.
- ``show`` Boolean. Default value is True. If set to False, the plot will
not be shown. See ``Plot`` for further information.
- ``title`` string. The title for the plot.
- ``xlabel`` string. The label for the x-axis
- ``ylabel`` string. The label for the y-axis
Aesthetics options:
- ``line_color``: float or string. Specifies the color for the plot.
See ``Plot`` to see how to set color for the plots.
Default value is "Blue"
plot_implicit, by default, uses interval arithmetic to plot functions. If
the expression cannot be plotted using interval arithmetic, it defaults to
a generating a contour using a mesh grid of fixed number of points. By
setting adaptive to False, you can force plot_implicit to use the mesh
grid. The mesh grid method can be effective when adaptive plotting using
interval arithmetic, fails to plot with small line width.
Examples
========
Plot expressions:
.. plot::
:context: reset
:format: doctest
:include-source: True
>>> from sympy import plot_implicit, symbols, Eq, And
>>> x, y = symbols('x y')
Without any ranges for the symbols in the expression:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> p1 = plot_implicit(Eq(x**2 + y**2, 5))
With the range for the symbols:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> p2 = plot_implicit(
... Eq(x**2 + y**2, 3), (x, -3, 3), (y, -3, 3))
With depth of recursion as argument:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> p3 = plot_implicit(
... Eq(x**2 + y**2, 5), (x, -4, 4), (y, -4, 4), depth = 2)
Using mesh grid and not using adaptive meshing:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> p4 = plot_implicit(
... Eq(x**2 + y**2, 5), (x, -5, 5), (y, -2, 2),
... adaptive=False)
Using mesh grid without using adaptive meshing with number of points
specified:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> p5 = plot_implicit(
... Eq(x**2 + y**2, 5), (x, -5, 5), (y, -2, 2),
... adaptive=False, points=400)
Plotting regions:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> p6 = plot_implicit(y > x**2)
Plotting Using boolean conjunctions:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> p7 = plot_implicit(And(y > x, y > -x))
When plotting an expression with a single variable (y - 1, for example),
specify the x or the y variable explicitly:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> p8 = plot_implicit(y - 1, y_var=y)
>>> p9 = plot_implicit(x - 1, x_var=x)
"""
has_equality = False # Represents whether the expression contains an Equality,
#GreaterThan or LessThan
def arg_expand(bool_expr):
"""
Recursively expands the arguments of an Boolean Function
"""
for arg in bool_expr.args:
if isinstance(arg, BooleanFunction):
arg_expand(arg)
elif isinstance(arg, Relational):
arg_list.append(arg)
arg_list = []
if isinstance(expr, BooleanFunction):
arg_expand(expr)
#Check whether there is an equality in the expression provided.
if any(isinstance(e, (Equality, GreaterThan, LessThan))
for e in arg_list):
has_equality = True
elif not isinstance(expr, Relational):
expr = Eq(expr, 0)
has_equality = True
elif isinstance(expr, (Equality, GreaterThan, LessThan)):
has_equality = True
xyvar = [i for i in (x_var, y_var) if i is not None]
free_symbols = expr.free_symbols
range_symbols = Tuple(*flatten(xyvar)).free_symbols
undeclared = free_symbols - range_symbols
if len(free_symbols & range_symbols) > 2:
raise NotImplementedError("Implicit plotting is not implemented for "
"more than 2 variables")
#Create default ranges if the range is not provided.
default_range = Tuple(-5, 5)
def _range_tuple(s):
if isinstance(s, Symbol):
return Tuple(s) + default_range
if len(s) == 3:
return Tuple(*s)
raise ValueError('symbol or `(symbol, min, max)` expected but got %s' % s)
if len(xyvar) == 0:
xyvar = list(_sort_gens(free_symbols))
var_start_end_x = _range_tuple(xyvar[0])
x = var_start_end_x[0]
if len(xyvar) != 2:
if x in undeclared or not undeclared:
xyvar.append(Dummy('f(%s)' % x.name))
else:
xyvar.append(undeclared.pop())
var_start_end_y = _range_tuple(xyvar[1])
#Check whether the depth is greater than 4 or less than 0.
if depth > 4:
depth = 4
elif depth < 0:
depth = 0
series_argument = ImplicitSeries(expr, var_start_end_x, var_start_end_y,
has_equality, adaptive, depth,
points, line_color)
#set the x and y limits
kwargs['xlim'] = tuple(float(x) for x in var_start_end_x[1:])
kwargs['ylim'] = tuple(float(y) for y in var_start_end_y[1:])
# set the x and y labels
kwargs.setdefault('xlabel', var_start_end_x[0])
kwargs.setdefault('ylabel', var_start_end_y[0])
p = Plot(series_argument, **kwargs)
if show:
p.show()
return p
|
7058d497c225aa724841544b241c6191594b88b13317e3f9c5d3b8701bbcc743 | from typing import Tuple as tTuple
from sympy.core.add import Add
from sympy.core.cache import cacheit
from sympy.core.expr import Expr
from sympy.core.function import Function, ArgumentIndexError, PoleError, expand_mul
from sympy.core.logic import fuzzy_not, fuzzy_or, FuzzyBool, fuzzy_and
from sympy.core.mod import Mod
from sympy.core.numbers import igcdex, Rational, pi, Integer, Float
from sympy.core.relational import Ne, Eq
from sympy.core.singleton import S
from sympy.core.symbol import Symbol, Dummy
from sympy.core.sympify import sympify
from sympy.functions.combinatorial.factorials import factorial, RisingFactorial
from sympy.functions.combinatorial.numbers import bernoulli, euler
from sympy.functions.elementary.complexes import arg as arg_f, im, re
from sympy.functions.elementary.exponential import log, exp
from sympy.functions.elementary.integers import floor
from sympy.functions.elementary.miscellaneous import sqrt, Min, Max
from sympy.functions.elementary.piecewise import Piecewise
from sympy.logic.boolalg import And
from sympy.ntheory import factorint
from sympy.polys.specialpolys import symmetric_poly
from sympy.utilities.iterables import numbered_symbols
###############################################################################
########################## UTILITIES ##########################################
###############################################################################
def _imaginary_unit_as_coefficient(arg):
""" Helper to extract symbolic coefficient for imaginary unit """
if isinstance(arg, Float):
return None
else:
return arg.as_coefficient(S.ImaginaryUnit)
###############################################################################
########################## TRIGONOMETRIC FUNCTIONS ############################
###############################################################################
class TrigonometricFunction(Function):
"""Base class for trigonometric functions. """
unbranched = True
_singularities = (S.ComplexInfinity,)
def _eval_is_rational(self):
s = self.func(*self.args)
if s.func == self.func:
if s.args[0].is_rational and fuzzy_not(s.args[0].is_zero):
return False
else:
return s.is_rational
def _eval_is_algebraic(self):
s = self.func(*self.args)
if s.func == self.func:
if fuzzy_not(self.args[0].is_zero) and self.args[0].is_algebraic:
return False
pi_coeff = _pi_coeff(self.args[0])
if pi_coeff is not None and pi_coeff.is_rational:
return True
else:
return s.is_algebraic
def _eval_expand_complex(self, deep=True, **hints):
re_part, im_part = self.as_real_imag(deep=deep, **hints)
return re_part + im_part*S.ImaginaryUnit
def _as_real_imag(self, deep=True, **hints):
if self.args[0].is_extended_real:
if deep:
hints['complex'] = False
return (self.args[0].expand(deep, **hints), S.Zero)
else:
return (self.args[0], S.Zero)
if deep:
re, im = self.args[0].expand(deep, **hints).as_real_imag()
else:
re, im = self.args[0].as_real_imag()
return (re, im)
def _period(self, general_period, symbol=None):
f = expand_mul(self.args[0])
if symbol is None:
symbol = tuple(f.free_symbols)[0]
if not f.has(symbol):
return S.Zero
if f == symbol:
return general_period
if symbol in f.free_symbols:
if f.is_Mul:
g, h = f.as_independent(symbol)
if h == symbol:
return general_period/abs(g)
if f.is_Add:
a, h = f.as_independent(symbol)
g, h = h.as_independent(symbol, as_Add=False)
if h == symbol:
return general_period/abs(g)
raise NotImplementedError("Use the periodicity function instead.")
@cacheit
def _table2():
# If nested sqrt's are worse than un-evaluation
# you can require q to be in (1, 2, 3, 4, 6, 12)
# q <= 12, q=15, q=20, q=24, q=30, q=40, q=60, q=120 return
# expressions with 2 or fewer sqrt nestings.
return {
12: (3, 4),
20: (4, 5),
30: (5, 6),
15: (6, 10),
24: (6, 8),
40: (8, 10),
60: (20, 30),
120: (40, 60)
}
def _peeloff_pi(arg):
r"""
Split ARG into two parts, a "rest" and a multiple of $\pi$.
This assumes ARG to be an Add.
The multiple of $\pi$ returned in the second position is always a Rational.
Examples
========
>>> from sympy.functions.elementary.trigonometric import _peeloff_pi
>>> from sympy import pi
>>> from sympy.abc import x, y
>>> _peeloff_pi(x + pi/2)
(x, 1/2)
>>> _peeloff_pi(x + 2*pi/3 + pi*y)
(x + pi*y + pi/6, 1/2)
"""
pi_coeff = S.Zero
rest_terms = []
for a in Add.make_args(arg):
K = a.coeff(pi)
if K and K.is_rational:
pi_coeff += K
else:
rest_terms.append(a)
if pi_coeff is S.Zero:
return arg, S.Zero
m1 = (pi_coeff % S.Half)
m2 = pi_coeff - m1
if m2.is_integer or ((2*m2).is_integer and m2.is_even is False):
return Add(*(rest_terms + [m1*pi])), m2
return arg, S.Zero
def _pi_coeff(arg, cycles=1):
r"""
When arg is a Number times $\pi$ (e.g. $3\pi/2$) then return the Number
normalized to be in the range $[0, 2]$, else `None`.
When an even multiple of $\pi$ is encountered, if it is multiplying
something with known parity then the multiple is returned as 0 otherwise
as 2.
Examples
========
>>> from sympy.functions.elementary.trigonometric import _pi_coeff
>>> from sympy import pi, Dummy
>>> from sympy.abc import x
>>> _pi_coeff(3*x*pi)
3*x
>>> _pi_coeff(11*pi/7)
11/7
>>> _pi_coeff(-11*pi/7)
3/7
>>> _pi_coeff(4*pi)
0
>>> _pi_coeff(5*pi)
1
>>> _pi_coeff(5.0*pi)
1
>>> _pi_coeff(5.5*pi)
3/2
>>> _pi_coeff(2 + pi)
>>> _pi_coeff(2*Dummy(integer=True)*pi)
2
>>> _pi_coeff(2*Dummy(even=True)*pi)
0
"""
if arg is pi:
return S.One
elif not arg:
return S.Zero
elif arg.is_Mul:
cx = arg.coeff(pi)
if cx:
c, x = cx.as_coeff_Mul() # pi is not included as coeff
if c.is_Float:
# recast exact binary fractions to Rationals
f = abs(c) % 1
if f != 0:
p = -int(round(log(f, 2).evalf()))
m = 2**p
cm = c*m
i = int(cm)
if i == cm:
c = Rational(i, m)
cx = c*x
else:
c = Rational(int(c))
cx = c*x
if x.is_integer:
c2 = c % 2
if c2 == 1:
return x
elif not c2:
if x.is_even is not None: # known parity
return S.Zero
return Integer(2)
else:
return c2*x
return cx
elif arg.is_zero:
return S.Zero
@cacheit
def _cospi257():
""" Express cos(pi/257) explicitly as a function of radicals
Based upon the equations in
http://math.stackexchange.com/questions/516142/how-does-cos2-pi-257-look-like-in-real-radicals
See also https://r-knott.surrey.ac.uk/Fibonacci/simpleTrig.html
"""
def f1(a, b):
return (a + sqrt(a**2 + b))/2, (a - sqrt(a**2 + b))/2
def f2(a, b):
return (a - sqrt(a**2 + b))/2
t1, t2 = f1(-1, 256)
z1, z3 = f1(t1, 64)
z2, z4 = f1(t2, 64)
y1, y5 = f1(z1, 4*(5 + t1 + 2*z1))
y6, y2 = f1(z2, 4*(5 + t2 + 2*z2))
y3, y7 = f1(z3, 4*(5 + t1 + 2*z3))
y8, y4 = f1(z4, 4*(5 + t2 + 2*z4))
x1, x9 = f1(y1, -4*(t1 + y1 + y3 + 2*y6))
x2, x10 = f1(y2, -4*(t2 + y2 + y4 + 2*y7))
x3, x11 = f1(y3, -4*(t1 + y3 + y5 + 2*y8))
x4, x12 = f1(y4, -4*(t2 + y4 + y6 + 2*y1))
x5, x13 = f1(y5, -4*(t1 + y5 + y7 + 2*y2))
x6, x14 = f1(y6, -4*(t2 + y6 + y8 + 2*y3))
x15, x7 = f1(y7, -4*(t1 + y7 + y1 + 2*y4))
x8, x16 = f1(y8, -4*(t2 + y8 + y2 + 2*y5))
v1 = f2(x1, -4*(x1 + x2 + x3 + x6))
v2 = f2(x2, -4*(x2 + x3 + x4 + x7))
v3 = f2(x8, -4*(x8 + x9 + x10 + x13))
v4 = f2(x9, -4*(x9 + x10 + x11 + x14))
v5 = f2(x10, -4*(x10 + x11 + x12 + x15))
v6 = f2(x16, -4*(x16 + x1 + x2 + x5))
u1 = -f2(-v1, -4*(v2 + v3))
u2 = -f2(-v4, -4*(v5 + v6))
w1 = -2*f2(-u1, -4*u2)
return sqrt(sqrt(2)*sqrt(w1 + 4)/8 + S.Half)
@cacheit
def _cos_sqrt_cst_table_some():
return {
3: S.Half,
5: (sqrt(5) + 1) / 4,
17: sqrt((15 + sqrt(17)) / 32 + sqrt(2) * (sqrt(17 - sqrt(17)) +
sqrt(sqrt(2) * (-8 * sqrt(17 + sqrt(17)) - (1 - sqrt(17))
* sqrt(17 - sqrt(17))) + 6 * sqrt(17) + 34)) / 32),
257: _cospi257()
# 65537 is the only other known Fermat prime and the very
# large expression is intentionally omitted from SymPy; see
# https://r-knott.surrey.ac.uk/Fibonacci/simpleTrig.html
}
class sin(TrigonometricFunction):
r"""
The sine function.
Returns the sine of x (measured in radians).
Explanation
===========
This function will evaluate automatically in the
case $x/\pi$ is some rational number [4]_. For example,
if $x$ is a multiple of $\pi$, $\pi/2$, $\pi/3$, $\pi/4$, and $\pi/6$.
Examples
========
>>> from sympy import sin, pi
>>> from sympy.abc import x
>>> sin(x**2).diff(x)
2*x*cos(x**2)
>>> sin(1).diff(x)
0
>>> sin(pi)
0
>>> sin(pi/2)
1
>>> sin(pi/6)
1/2
>>> sin(pi/12)
-sqrt(2)/4 + sqrt(6)/4
See Also
========
csc, cos, sec, tan, cot
asin, acsc, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigonometric_functions
.. [2] http://dlmf.nist.gov/4.14
.. [3] http://functions.wolfram.com/ElementaryFunctions/Sin
.. [4] http://mathworld.wolfram.com/TrigonometryAngles.html
"""
def period(self, symbol=None):
return self._period(2*pi, symbol)
def fdiff(self, argindex=1):
if argindex == 1:
return cos(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
from sympy.calculus.accumulationbounds import AccumBounds
from sympy.sets.setexpr import SetExpr
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg.is_zero:
return S.Zero
elif arg in (S.Infinity, S.NegativeInfinity):
return AccumBounds(-1, 1)
if arg is S.ComplexInfinity:
return S.NaN
if isinstance(arg, AccumBounds):
from sympy.sets.sets import FiniteSet
min, max = arg.min, arg.max
d = floor(min/(2*pi))
if min is not S.NegativeInfinity:
min = min - d*2*pi
if max is not S.Infinity:
max = max - d*2*pi
if AccumBounds(min, max).intersection(FiniteSet(pi/2, pi*Rational(5, 2))) \
is not S.EmptySet and \
AccumBounds(min, max).intersection(FiniteSet(pi*Rational(3, 2),
pi*Rational(7, 2))) is not S.EmptySet:
return AccumBounds(-1, 1)
elif AccumBounds(min, max).intersection(FiniteSet(pi/2, pi*Rational(5, 2))) \
is not S.EmptySet:
return AccumBounds(Min(sin(min), sin(max)), 1)
elif AccumBounds(min, max).intersection(FiniteSet(pi*Rational(3, 2), pi*Rational(8, 2))) \
is not S.EmptySet:
return AccumBounds(-1, Max(sin(min), sin(max)))
else:
return AccumBounds(Min(sin(min), sin(max)),
Max(sin(min), sin(max)))
elif isinstance(arg, SetExpr):
return arg._eval_func(cls)
if arg.could_extract_minus_sign():
return -cls(-arg)
i_coeff = _imaginary_unit_as_coefficient(arg)
if i_coeff is not None:
from sympy.functions.elementary.hyperbolic import sinh
return S.ImaginaryUnit*sinh(i_coeff)
pi_coeff = _pi_coeff(arg)
if pi_coeff is not None:
if pi_coeff.is_integer:
return S.Zero
if (2*pi_coeff).is_integer:
# is_even-case handled above as then pi_coeff.is_integer,
# so check if known to be not even
if pi_coeff.is_even is False:
return S.NegativeOne**(pi_coeff - S.Half)
if not pi_coeff.is_Rational:
narg = pi_coeff*pi
if narg != arg:
return cls(narg)
return None
# https://github.com/sympy/sympy/issues/6048
# transform a sine to a cosine, to avoid redundant code
if pi_coeff.is_Rational:
x = pi_coeff % 2
if x > 1:
return -cls((x % 1)*pi)
if 2*x > 1:
return cls((1 - x)*pi)
narg = ((pi_coeff + Rational(3, 2)) % 2)*pi
result = cos(narg)
if not isinstance(result, cos):
return result
if pi_coeff*pi != arg:
return cls(pi_coeff*pi)
return None
if arg.is_Add:
x, m = _peeloff_pi(arg)
if m:
m = m*pi
return sin(m)*cos(x) + cos(m)*sin(x)
if arg.is_zero:
return S.Zero
if isinstance(arg, asin):
return arg.args[0]
if isinstance(arg, atan):
x = arg.args[0]
return x/sqrt(1 + x**2)
if isinstance(arg, atan2):
y, x = arg.args
return y/sqrt(x**2 + y**2)
if isinstance(arg, acos):
x = arg.args[0]
return sqrt(1 - x**2)
if isinstance(arg, acot):
x = arg.args[0]
return 1/(sqrt(1 + 1/x**2)*x)
if isinstance(arg, acsc):
x = arg.args[0]
return 1/x
if isinstance(arg, asec):
x = arg.args[0]
return sqrt(1 - 1/x**2)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) > 2:
p = previous_terms[-2]
return -p*x**2/(n*(n - 1))
else:
return S.NegativeOne**(n//2)*x**n/factorial(n)
def _eval_nseries(self, x, n, logx, cdir=0):
arg = self.args[0]
if logx is not None:
arg = arg.subs(log(x), logx)
if arg.subs(x, 0).has(S.NaN, S.ComplexInfinity):
raise PoleError("Cannot expand %s around 0" % (self))
return Function._eval_nseries(self, x, n=n, logx=logx, cdir=cdir)
def _eval_rewrite_as_exp(self, arg, **kwargs):
from sympy.functions.elementary.hyperbolic import HyperbolicFunction
I = S.ImaginaryUnit
if isinstance(arg, (TrigonometricFunction, HyperbolicFunction)):
arg = arg.func(arg.args[0]).rewrite(exp)
return (exp(arg*I) - exp(-arg*I))/(2*I)
def _eval_rewrite_as_Pow(self, arg, **kwargs):
if isinstance(arg, log):
I = S.ImaginaryUnit
x = arg.args[0]
return I*x**-I/2 - I*x**I /2
def _eval_rewrite_as_cos(self, arg, **kwargs):
return cos(arg - pi/2, evaluate=False)
def _eval_rewrite_as_tan(self, arg, **kwargs):
tan_half = tan(S.Half*arg)
return 2*tan_half/(1 + tan_half**2)
def _eval_rewrite_as_sincos(self, arg, **kwargs):
return sin(arg)*cos(arg)/cos(arg)
def _eval_rewrite_as_cot(self, arg, **kwargs):
cot_half = cot(S.Half*arg)
return Piecewise((0, And(Eq(im(arg), 0), Eq(Mod(arg, pi), 0))),
(2*cot_half/(1 + cot_half**2), True))
def _eval_rewrite_as_pow(self, arg, **kwargs):
return self.rewrite(cos).rewrite(pow)
def _eval_rewrite_as_sqrt(self, arg, **kwargs):
return self.rewrite(cos).rewrite(sqrt)
def _eval_rewrite_as_csc(self, arg, **kwargs):
return 1/csc(arg)
def _eval_rewrite_as_sec(self, arg, **kwargs):
return 1/sec(arg - pi/2, evaluate=False)
def _eval_rewrite_as_sinc(self, arg, **kwargs):
return arg*sinc(arg)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
from sympy.functions.elementary.hyperbolic import cosh, sinh
re, im = self._as_real_imag(deep=deep, **hints)
return (sin(re)*cosh(im), cos(re)*sinh(im))
def _eval_expand_trig(self, **hints):
from sympy.functions.special.polynomials import chebyshevt, chebyshevu
arg = self.args[0]
x = None
if arg.is_Add: # TODO, implement more if deep stuff here
# TODO: Do this more efficiently for more than two terms
x, y = arg.as_two_terms()
sx = sin(x, evaluate=False)._eval_expand_trig()
sy = sin(y, evaluate=False)._eval_expand_trig()
cx = cos(x, evaluate=False)._eval_expand_trig()
cy = cos(y, evaluate=False)._eval_expand_trig()
return sx*cy + sy*cx
elif arg.is_Mul:
n, x = arg.as_coeff_Mul(rational=True)
if n.is_Integer: # n will be positive because of .eval
# canonicalization
# See http://mathworld.wolfram.com/Multiple-AngleFormulas.html
if n.is_odd:
return S.NegativeOne**((n - 1)/2)*chebyshevt(n, sin(x))
else:
return expand_mul(S.NegativeOne**(n/2 - 1)*cos(x)*
chebyshevu(n - 1, sin(x)), deep=False)
pi_coeff = _pi_coeff(arg)
if pi_coeff is not None:
if pi_coeff.is_Rational:
return self.rewrite(sqrt)
return sin(arg)
def _eval_as_leading_term(self, x, logx=None, cdir=0):
from sympy.calculus.accumulationbounds import AccumBounds
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
n = x0/pi
if n.is_integer:
lt = (arg - n*pi).as_leading_term(x)
return (S.NegativeOne**n)*lt
if x0 is S.ComplexInfinity:
x0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+')
if x0 in [S.Infinity, S.NegativeInfinity]:
return AccumBounds(-1, 1)
return self.func(x0) if x0.is_finite else self
def _eval_is_extended_real(self):
if self.args[0].is_extended_real:
return True
def _eval_is_finite(self):
arg = self.args[0]
if arg.is_extended_real:
return True
def _eval_is_zero(self):
rest, pi_mult = _peeloff_pi(self.args[0])
if rest.is_zero:
return pi_mult.is_integer
def _eval_is_complex(self):
if self.args[0].is_extended_real \
or self.args[0].is_complex:
return True
class cos(TrigonometricFunction):
"""
The cosine function.
Returns the cosine of x (measured in radians).
Explanation
===========
See :func:`sin` for notes about automatic evaluation.
Examples
========
>>> from sympy import cos, pi
>>> from sympy.abc import x
>>> cos(x**2).diff(x)
-2*x*sin(x**2)
>>> cos(1).diff(x)
0
>>> cos(pi)
-1
>>> cos(pi/2)
0
>>> cos(2*pi/3)
-1/2
>>> cos(pi/12)
sqrt(2)/4 + sqrt(6)/4
See Also
========
sin, csc, sec, tan, cot
asin, acsc, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigonometric_functions
.. [2] http://dlmf.nist.gov/4.14
.. [3] http://functions.wolfram.com/ElementaryFunctions/Cos
"""
def period(self, symbol=None):
return self._period(2*pi, symbol)
def fdiff(self, argindex=1):
if argindex == 1:
return -sin(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
from sympy.functions.special.polynomials import chebyshevt
from sympy.calculus.accumulationbounds import AccumBounds
from sympy.sets.setexpr import SetExpr
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg.is_zero:
return S.One
elif arg in (S.Infinity, S.NegativeInfinity):
# In this case it is better to return AccumBounds(-1, 1)
# rather than returning S.NaN, since AccumBounds(-1, 1)
# preserves the information that sin(oo) is between
# -1 and 1, where S.NaN does not do that.
return AccumBounds(-1, 1)
if arg is S.ComplexInfinity:
return S.NaN
if isinstance(arg, AccumBounds):
return sin(arg + pi/2)
elif isinstance(arg, SetExpr):
return arg._eval_func(cls)
if arg.is_extended_real and arg.is_finite is False:
return AccumBounds(-1, 1)
if arg.could_extract_minus_sign():
return cls(-arg)
i_coeff = _imaginary_unit_as_coefficient(arg)
if i_coeff is not None:
from sympy.functions.elementary.hyperbolic import cosh
return cosh(i_coeff)
pi_coeff = _pi_coeff(arg)
if pi_coeff is not None:
if pi_coeff.is_integer:
return (S.NegativeOne)**pi_coeff
if (2*pi_coeff).is_integer:
# is_even-case handled above as then pi_coeff.is_integer,
# so check if known to be not even
if pi_coeff.is_even is False:
return S.Zero
if not pi_coeff.is_Rational:
narg = pi_coeff*pi
if narg != arg:
return cls(narg)
return None
# cosine formula #####################
# https://github.com/sympy/sympy/issues/6048
# explicit calculations are performed for
# cos(k pi/n) for n = 8,10,12,15,20,24,30,40,60,120
# Some other exact values like cos(k pi/240) can be
# calculated using a partial-fraction decomposition
# by calling cos( X ).rewrite(sqrt)
if pi_coeff.is_Rational:
q = pi_coeff.q
p = pi_coeff.p % (2*q)
if p > q:
narg = (pi_coeff - 1)*pi
return -cls(narg)
if 2*p > q:
narg = (1 - pi_coeff)*pi
return -cls(narg)
# If nested sqrt's are worse than un-evaluation
# you can require q to be in (1, 2, 3, 4, 6, 12)
# q <= 12, q=15, q=20, q=24, q=30, q=40, q=60, q=120 return
# expressions with 2 or fewer sqrt nestings.
table2 = _table2()
if q in table2:
a, b = table2[q]
a, b = p*pi/a, p*pi/b
nvala, nvalb = cls(a), cls(b)
if None in (nvala, nvalb):
return None
return nvala*nvalb + cls(pi/2 - a)*cls(pi/2 - b)
if q > 12:
return None
cst_table_some = {
3: S.Half,
5: (sqrt(5) + 1) / 4,
}
if q in cst_table_some:
cts = cst_table_some[pi_coeff.q]
return chebyshevt(pi_coeff.p, cts).expand()
if 0 == q % 2:
narg = (pi_coeff*2)*pi
nval = cls(narg)
if None == nval:
return None
x = (2*pi_coeff + 1)/2
sign_cos = (-1)**((-1 if x < 0 else 1)*int(abs(x)))
return sign_cos*sqrt( (1 + nval)/2 )
return None
if arg.is_Add:
x, m = _peeloff_pi(arg)
if m:
m = m*pi
return cos(m)*cos(x) - sin(m)*sin(x)
if arg.is_zero:
return S.One
if isinstance(arg, acos):
return arg.args[0]
if isinstance(arg, atan):
x = arg.args[0]
return 1/sqrt(1 + x**2)
if isinstance(arg, atan2):
y, x = arg.args
return x/sqrt(x**2 + y**2)
if isinstance(arg, asin):
x = arg.args[0]
return sqrt(1 - x ** 2)
if isinstance(arg, acot):
x = arg.args[0]
return 1/sqrt(1 + 1/x**2)
if isinstance(arg, acsc):
x = arg.args[0]
return sqrt(1 - 1/x**2)
if isinstance(arg, asec):
x = arg.args[0]
return 1/x
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 1:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) > 2:
p = previous_terms[-2]
return -p*x**2/(n*(n - 1))
else:
return S.NegativeOne**(n//2)*x**n/factorial(n)
def _eval_nseries(self, x, n, logx, cdir=0):
arg = self.args[0]
if logx is not None:
arg = arg.subs(log(x), logx)
if arg.subs(x, 0).has(S.NaN, S.ComplexInfinity):
raise PoleError("Cannot expand %s around 0" % (self))
return Function._eval_nseries(self, x, n=n, logx=logx, cdir=cdir)
def _eval_rewrite_as_exp(self, arg, **kwargs):
I = S.ImaginaryUnit
from sympy.functions.elementary.hyperbolic import HyperbolicFunction
if isinstance(arg, (TrigonometricFunction, HyperbolicFunction)):
arg = arg.func(arg.args[0]).rewrite(exp)
return (exp(arg*I) + exp(-arg*I))/2
def _eval_rewrite_as_Pow(self, arg, **kwargs):
if isinstance(arg, log):
I = S.ImaginaryUnit
x = arg.args[0]
return x**I/2 + x**-I/2
def _eval_rewrite_as_sin(self, arg, **kwargs):
return sin(arg + pi/2, evaluate=False)
def _eval_rewrite_as_tan(self, arg, **kwargs):
tan_half = tan(S.Half*arg)**2
return (1 - tan_half)/(1 + tan_half)
def _eval_rewrite_as_sincos(self, arg, **kwargs):
return sin(arg)*cos(arg)/sin(arg)
def _eval_rewrite_as_cot(self, arg, **kwargs):
cot_half = cot(S.Half*arg)**2
return Piecewise((1, And(Eq(im(arg), 0), Eq(Mod(arg, 2*pi), 0))),
((cot_half - 1)/(cot_half + 1), True))
def _eval_rewrite_as_pow(self, arg, **kwargs):
return self._eval_rewrite_as_sqrt(arg)
def _eval_rewrite_as_sqrt(self, arg, **kwargs):
from sympy.functions.special.polynomials import chebyshevt
def migcdex(x):
# recursive calcuation of gcd and linear combination
# for a sequence of integers.
# Given (x1, x2, x3)
# Returns (y1, y1, y3, g)
# such that g is the gcd and x1*y1+x2*y2+x3*y3 - g = 0
# Note, that this is only one such linear combination.
if len(x) == 1:
return (1, x[0])
if len(x) == 2:
return igcdex(x[0], x[-1])
g = migcdex(x[1:])
u, v, h = igcdex(x[0], g[-1])
return tuple([u] + [v*i for i in g[0:-1] ] + [h])
def ipartfrac(r, factors=None):
if isinstance(r, int):
return r
if not isinstance(r, Rational):
raise TypeError("r is not rational")
n = r.q
if 2 > r.q*r.q:
return r.q
if None == factors:
a = [n//x**y for x, y in factorint(r.q).items()]
else:
a = [n//x for x in factors]
if len(a) == 1:
return [ r ]
h = migcdex(a)
ans = [ r.p*Rational(i*j, r.q) for i, j in zip(h[:-1], a) ]
assert r == sum(ans)
return ans
pi_coeff = _pi_coeff(arg)
if pi_coeff is None:
return None
if pi_coeff.is_integer:
# it was unevaluated
return self.func(pi_coeff*pi)
if not pi_coeff.is_Rational:
return None
cst_table_some = _cos_sqrt_cst_table_some()
if pi_coeff.q in cst_table_some:
rv = chebyshevt(pi_coeff.p, cst_table_some[pi_coeff.q])
if pi_coeff.q < 257:
rv = rv.expand()
return rv
if not pi_coeff.q % 2: # recursively remove factors of 2
pico2 = pi_coeff*2
nval = cos(pico2*pi).rewrite(sqrt)
x = (pico2 + 1)/2
sign_cos = -1 if int(x) % 2 else 1
return sign_cos*sqrt( (1 + nval)/2 )
def _fermatCoords(n):
# if n can be factored in terms of Fermat primes with
# multiplicity of each being 1, return those primes, else
# False
primes = []
for p_i in cst_table_some:
quotient, remainder = divmod(n, p_i)
if remainder == 0:
n = quotient
primes.append(p_i)
if n == 1:
return tuple(primes)
return False
FC = _fermatCoords(pi_coeff.q)
if FC:
decomp = ipartfrac(pi_coeff, FC)
X = [(x[1], x[0]*pi) for x in zip(decomp, numbered_symbols('z'))]
pcls = cos(sum([x[0] for x in X]))._eval_expand_trig().subs(X)
return pcls.rewrite(sqrt)
else:
decomp = ipartfrac(pi_coeff)
X = [(x[1], x[0]*pi) for x in zip(decomp, numbered_symbols('z'))]
pcls = cos(sum([x[0] for x in X]))._eval_expand_trig().subs(X)
return pcls
def _eval_rewrite_as_sec(self, arg, **kwargs):
return 1/sec(arg)
def _eval_rewrite_as_csc(self, arg, **kwargs):
return 1/sec(arg).rewrite(csc)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
from sympy.functions.elementary.hyperbolic import cosh, sinh
re, im = self._as_real_imag(deep=deep, **hints)
return (cos(re)*cosh(im), -sin(re)*sinh(im))
def _eval_expand_trig(self, **hints):
from sympy.functions.special.polynomials import chebyshevt
arg = self.args[0]
x = None
if arg.is_Add: # TODO: Do this more efficiently for more than two terms
x, y = arg.as_two_terms()
sx = sin(x, evaluate=False)._eval_expand_trig()
sy = sin(y, evaluate=False)._eval_expand_trig()
cx = cos(x, evaluate=False)._eval_expand_trig()
cy = cos(y, evaluate=False)._eval_expand_trig()
return cx*cy - sx*sy
elif arg.is_Mul:
coeff, terms = arg.as_coeff_Mul(rational=True)
if coeff.is_Integer:
return chebyshevt(coeff, cos(terms))
pi_coeff = _pi_coeff(arg)
if pi_coeff is not None:
if pi_coeff.is_Rational:
return self.rewrite(sqrt)
return cos(arg)
def _eval_as_leading_term(self, x, logx=None, cdir=0):
from sympy.calculus.accumulationbounds import AccumBounds
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
n = (x0 + pi/2)/pi
if n.is_integer:
lt = (arg - n*pi + pi/2).as_leading_term(x)
return (S.NegativeOne**n)*lt
if x0 is S.ComplexInfinity:
x0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+')
if x0 in [S.Infinity, S.NegativeInfinity]:
return AccumBounds(-1, 1)
return self.func(x0) if x0.is_finite else self
def _eval_is_extended_real(self):
if self.args[0].is_extended_real:
return True
def _eval_is_finite(self):
arg = self.args[0]
if arg.is_extended_real:
return True
def _eval_is_complex(self):
if self.args[0].is_extended_real \
or self.args[0].is_complex:
return True
def _eval_is_zero(self):
rest, pi_mult = _peeloff_pi(self.args[0])
if pi_mult:
return fuzzy_and([(pi_mult - S.Half).is_integer, rest.is_zero])
else:
return rest.is_zero
class tan(TrigonometricFunction):
"""
The tangent function.
Returns the tangent of x (measured in radians).
Explanation
===========
See :class:`sin` for notes about automatic evaluation.
Examples
========
>>> from sympy import tan, pi
>>> from sympy.abc import x
>>> tan(x**2).diff(x)
2*x*(tan(x**2)**2 + 1)
>>> tan(1).diff(x)
0
>>> tan(pi/8).expand()
-1 + sqrt(2)
See Also
========
sin, csc, cos, sec, cot
asin, acsc, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigonometric_functions
.. [2] http://dlmf.nist.gov/4.14
.. [3] http://functions.wolfram.com/ElementaryFunctions/Tan
"""
def period(self, symbol=None):
return self._period(pi, symbol)
def fdiff(self, argindex=1):
if argindex == 1:
return S.One + self**2
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return atan
@classmethod
def eval(cls, arg):
from sympy.calculus.accumulationbounds import AccumBounds
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg.is_zero:
return S.Zero
elif arg in (S.Infinity, S.NegativeInfinity):
return AccumBounds(S.NegativeInfinity, S.Infinity)
if arg is S.ComplexInfinity:
return S.NaN
if isinstance(arg, AccumBounds):
min, max = arg.min, arg.max
d = floor(min/pi)
if min is not S.NegativeInfinity:
min = min - d*pi
if max is not S.Infinity:
max = max - d*pi
from sympy.sets.sets import FiniteSet
if AccumBounds(min, max).intersection(FiniteSet(pi/2, pi*Rational(3, 2))):
return AccumBounds(S.NegativeInfinity, S.Infinity)
else:
return AccumBounds(tan(min), tan(max))
if arg.could_extract_minus_sign():
return -cls(-arg)
i_coeff = _imaginary_unit_as_coefficient(arg)
if i_coeff is not None:
from sympy.functions.elementary.hyperbolic import tanh
return S.ImaginaryUnit*tanh(i_coeff)
pi_coeff = _pi_coeff(arg, 2)
if pi_coeff is not None:
if pi_coeff.is_integer:
return S.Zero
if not pi_coeff.is_Rational:
narg = pi_coeff*pi
if narg != arg:
return cls(narg)
return None
if pi_coeff.is_Rational:
q = pi_coeff.q
p = pi_coeff.p % q
# ensure simplified results are returned for n*pi/5, n*pi/10
table10 = {
1: sqrt(1 - 2*sqrt(5)/5),
2: sqrt(5 - 2*sqrt(5)),
3: sqrt(1 + 2*sqrt(5)/5),
4: sqrt(5 + 2*sqrt(5))
}
if q in (5, 10):
n = 10*p/q
if n > 5:
n = 10 - n
return -table10[n]
else:
return table10[n]
if not pi_coeff.q % 2:
narg = pi_coeff*pi*2
cresult, sresult = cos(narg), cos(narg - pi/2)
if not isinstance(cresult, cos) \
and not isinstance(sresult, cos):
if sresult == 0:
return S.ComplexInfinity
return 1/sresult - cresult/sresult
table2 = _table2()
if q in table2:
a, b = table2[q]
nvala, nvalb = cls(p*pi/a), cls(p*pi/b)
if None in (nvala, nvalb):
return None
return (nvala - nvalb)/(1 + nvala*nvalb)
narg = ((pi_coeff + S.Half) % 1 - S.Half)*pi
# see cos() to specify which expressions should be
# expanded automatically in terms of radicals
cresult, sresult = cos(narg), cos(narg - pi/2)
if not isinstance(cresult, cos) \
and not isinstance(sresult, cos):
if cresult == 0:
return S.ComplexInfinity
return (sresult/cresult)
if narg != arg:
return cls(narg)
if arg.is_Add:
x, m = _peeloff_pi(arg)
if m:
tanm = tan(m*pi)
if tanm is S.ComplexInfinity:
return -cot(x)
else: # tanm == 0
return tan(x)
if arg.is_zero:
return S.Zero
if isinstance(arg, atan):
return arg.args[0]
if isinstance(arg, atan2):
y, x = arg.args
return y/x
if isinstance(arg, asin):
x = arg.args[0]
return x/sqrt(1 - x**2)
if isinstance(arg, acos):
x = arg.args[0]
return sqrt(1 - x**2)/x
if isinstance(arg, acot):
x = arg.args[0]
return 1/x
if isinstance(arg, acsc):
x = arg.args[0]
return 1/(sqrt(1 - 1/x**2)*x)
if isinstance(arg, asec):
x = arg.args[0]
return sqrt(1 - 1/x**2)*x
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
a, b = ((n - 1)//2), 2**(n + 1)
B = bernoulli(n + 1)
F = factorial(n + 1)
return S.NegativeOne**a*b*(b - 1)*B/F*x**n
def _eval_nseries(self, x, n, logx, cdir=0):
i = self.args[0].limit(x, 0)*2/pi
if i and i.is_Integer:
return self.rewrite(cos)._eval_nseries(x, n=n, logx=logx)
return Function._eval_nseries(self, x, n=n, logx=logx)
def _eval_rewrite_as_Pow(self, arg, **kwargs):
if isinstance(arg, log):
I = S.ImaginaryUnit
x = arg.args[0]
return I*(x**-I - x**I)/(x**-I + x**I)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
re, im = self._as_real_imag(deep=deep, **hints)
if im:
from sympy.functions.elementary.hyperbolic import cosh, sinh
denom = cos(2*re) + cosh(2*im)
return (sin(2*re)/denom, sinh(2*im)/denom)
else:
return (self.func(re), S.Zero)
def _eval_expand_trig(self, **hints):
arg = self.args[0]
x = None
if arg.is_Add:
n = len(arg.args)
TX = []
for x in arg.args:
tx = tan(x, evaluate=False)._eval_expand_trig()
TX.append(tx)
Yg = numbered_symbols('Y')
Y = [ next(Yg) for i in range(n) ]
p = [0, 0]
for i in range(n + 1):
p[1 - i % 2] += symmetric_poly(i, Y)*(-1)**((i % 4)//2)
return (p[0]/p[1]).subs(list(zip(Y, TX)))
elif arg.is_Mul:
coeff, terms = arg.as_coeff_Mul(rational=True)
if coeff.is_Integer and coeff > 1:
I = S.ImaginaryUnit
z = Symbol('dummy', real=True)
P = ((1 + I*z)**coeff).expand()
return (im(P)/re(P)).subs([(z, tan(terms))])
return tan(arg)
def _eval_rewrite_as_exp(self, arg, **kwargs):
I = S.ImaginaryUnit
from sympy.functions.elementary.hyperbolic import HyperbolicFunction
if isinstance(arg, (TrigonometricFunction, HyperbolicFunction)):
arg = arg.func(arg.args[0]).rewrite(exp)
neg_exp, pos_exp = exp(-arg*I), exp(arg*I)
return I*(neg_exp - pos_exp)/(neg_exp + pos_exp)
def _eval_rewrite_as_sin(self, x, **kwargs):
return 2*sin(x)**2/sin(2*x)
def _eval_rewrite_as_cos(self, x, **kwargs):
return cos(x - pi/2, evaluate=False)/cos(x)
def _eval_rewrite_as_sincos(self, arg, **kwargs):
return sin(arg)/cos(arg)
def _eval_rewrite_as_cot(self, arg, **kwargs):
return 1/cot(arg)
def _eval_rewrite_as_sec(self, arg, **kwargs):
sin_in_sec_form = sin(arg).rewrite(sec)
cos_in_sec_form = cos(arg).rewrite(sec)
return sin_in_sec_form/cos_in_sec_form
def _eval_rewrite_as_csc(self, arg, **kwargs):
sin_in_csc_form = sin(arg).rewrite(csc)
cos_in_csc_form = cos(arg).rewrite(csc)
return sin_in_csc_form/cos_in_csc_form
def _eval_rewrite_as_pow(self, arg, **kwargs):
y = self.rewrite(cos).rewrite(pow)
if y.has(cos):
return None
return y
def _eval_rewrite_as_sqrt(self, arg, **kwargs):
y = self.rewrite(cos).rewrite(sqrt)
if y.has(cos):
return None
return y
def _eval_as_leading_term(self, x, logx=None, cdir=0):
from sympy.calculus.accumulationbounds import AccumBounds
from sympy.functions.elementary.complexes import re
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
n = 2*x0/pi
if n.is_integer:
lt = (arg - n*pi/2).as_leading_term(x)
return lt if n.is_even else -1/lt
if x0 is S.ComplexInfinity:
x0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+')
if x0 in (S.Infinity, S.NegativeInfinity):
return AccumBounds(S.NegativeInfinity, S.Infinity)
return self.func(x0) if x0.is_finite else self
def _eval_is_extended_real(self):
# FIXME: currently tan(pi/2) return zoo
return self.args[0].is_extended_real
def _eval_is_real(self):
arg = self.args[0]
if arg.is_real and (arg/pi - S.Half).is_integer is False:
return True
def _eval_is_finite(self):
arg = self.args[0]
if arg.is_real and (arg/pi - S.Half).is_integer is False:
return True
if arg.is_imaginary:
return True
def _eval_is_zero(self):
rest, pi_mult = _peeloff_pi(self.args[0])
if rest.is_zero:
return pi_mult.is_integer
def _eval_is_complex(self):
arg = self.args[0]
if arg.is_real and (arg/pi - S.Half).is_integer is False:
return True
class cot(TrigonometricFunction):
"""
The cotangent function.
Returns the cotangent of x (measured in radians).
Explanation
===========
See :class:`sin` for notes about automatic evaluation.
Examples
========
>>> from sympy import cot, pi
>>> from sympy.abc import x
>>> cot(x**2).diff(x)
2*x*(-cot(x**2)**2 - 1)
>>> cot(1).diff(x)
0
>>> cot(pi/12)
sqrt(3) + 2
See Also
========
sin, csc, cos, sec, tan
asin, acsc, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigonometric_functions
.. [2] http://dlmf.nist.gov/4.14
.. [3] http://functions.wolfram.com/ElementaryFunctions/Cot
"""
def period(self, symbol=None):
return self._period(pi, symbol)
def fdiff(self, argindex=1):
if argindex == 1:
return S.NegativeOne - self**2
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return acot
@classmethod
def eval(cls, arg):
from sympy.calculus.accumulationbounds import AccumBounds
if arg.is_Number:
if arg is S.NaN:
return S.NaN
if arg.is_zero:
return S.ComplexInfinity
elif arg in (S.Infinity, S.NegativeInfinity):
return AccumBounds(S.NegativeInfinity, S.Infinity)
if arg is S.ComplexInfinity:
return S.NaN
if isinstance(arg, AccumBounds):
return -tan(arg + pi/2)
if arg.could_extract_minus_sign():
return -cls(-arg)
i_coeff = _imaginary_unit_as_coefficient(arg)
if i_coeff is not None:
from sympy.functions.elementary.hyperbolic import coth
return -S.ImaginaryUnit*coth(i_coeff)
pi_coeff = _pi_coeff(arg, 2)
if pi_coeff is not None:
if pi_coeff.is_integer:
return S.ComplexInfinity
if not pi_coeff.is_Rational:
narg = pi_coeff*pi
if narg != arg:
return cls(narg)
return None
if pi_coeff.is_Rational:
if pi_coeff.q in (5, 10):
return tan(pi/2 - arg)
if pi_coeff.q > 2 and not pi_coeff.q % 2:
narg = pi_coeff*pi*2
cresult, sresult = cos(narg), cos(narg - pi/2)
if not isinstance(cresult, cos) \
and not isinstance(sresult, cos):
return 1/sresult + cresult/sresult
q = pi_coeff.q
p = pi_coeff.p % q
table2 = _table2()
if q in table2:
a, b = table2[q]
nvala, nvalb = cls(p*pi/a), cls(p*pi/b)
if None in (nvala, nvalb):
return None
return (1 + nvala*nvalb)/(nvalb - nvala)
narg = (((pi_coeff + S.Half) % 1) - S.Half)*pi
# see cos() to specify which expressions should be
# expanded automatically in terms of radicals
cresult, sresult = cos(narg), cos(narg - pi/2)
if not isinstance(cresult, cos) \
and not isinstance(sresult, cos):
if sresult == 0:
return S.ComplexInfinity
return cresult/sresult
if narg != arg:
return cls(narg)
if arg.is_Add:
x, m = _peeloff_pi(arg)
if m:
cotm = cot(m*pi)
if cotm is S.ComplexInfinity:
return cot(x)
else: # cotm == 0
return -tan(x)
if arg.is_zero:
return S.ComplexInfinity
if isinstance(arg, acot):
return arg.args[0]
if isinstance(arg, atan):
x = arg.args[0]
return 1/x
if isinstance(arg, atan2):
y, x = arg.args
return x/y
if isinstance(arg, asin):
x = arg.args[0]
return sqrt(1 - x**2)/x
if isinstance(arg, acos):
x = arg.args[0]
return x/sqrt(1 - x**2)
if isinstance(arg, acsc):
x = arg.args[0]
return sqrt(1 - 1/x**2)*x
if isinstance(arg, asec):
x = arg.args[0]
return 1/(sqrt(1 - 1/x**2)*x)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n == 0:
return 1/sympify(x)
elif n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
B = bernoulli(n + 1)
F = factorial(n + 1)
return S.NegativeOne**((n + 1)//2)*2**(n + 1)*B/F*x**n
def _eval_nseries(self, x, n, logx, cdir=0):
i = self.args[0].limit(x, 0)/pi
if i and i.is_Integer:
return self.rewrite(cos)._eval_nseries(x, n=n, logx=logx)
return self.rewrite(tan)._eval_nseries(x, n=n, logx=logx)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
re, im = self._as_real_imag(deep=deep, **hints)
if im:
from sympy.functions.elementary.hyperbolic import cosh, sinh
denom = cos(2*re) - cosh(2*im)
return (-sin(2*re)/denom, sinh(2*im)/denom)
else:
return (self.func(re), S.Zero)
def _eval_rewrite_as_exp(self, arg, **kwargs):
from sympy.functions.elementary.hyperbolic import HyperbolicFunction
I = S.ImaginaryUnit
if isinstance(arg, (TrigonometricFunction, HyperbolicFunction)):
arg = arg.func(arg.args[0]).rewrite(exp)
neg_exp, pos_exp = exp(-arg*I), exp(arg*I)
return I*(pos_exp + neg_exp)/(pos_exp - neg_exp)
def _eval_rewrite_as_Pow(self, arg, **kwargs):
if isinstance(arg, log):
I = S.ImaginaryUnit
x = arg.args[0]
return -I*(x**-I + x**I)/(x**-I - x**I)
def _eval_rewrite_as_sin(self, x, **kwargs):
return sin(2*x)/(2*(sin(x)**2))
def _eval_rewrite_as_cos(self, x, **kwargs):
return cos(x)/cos(x - pi/2, evaluate=False)
def _eval_rewrite_as_sincos(self, arg, **kwargs):
return cos(arg)/sin(arg)
def _eval_rewrite_as_tan(self, arg, **kwargs):
return 1/tan(arg)
def _eval_rewrite_as_sec(self, arg, **kwargs):
cos_in_sec_form = cos(arg).rewrite(sec)
sin_in_sec_form = sin(arg).rewrite(sec)
return cos_in_sec_form/sin_in_sec_form
def _eval_rewrite_as_csc(self, arg, **kwargs):
cos_in_csc_form = cos(arg).rewrite(csc)
sin_in_csc_form = sin(arg).rewrite(csc)
return cos_in_csc_form/sin_in_csc_form
def _eval_rewrite_as_pow(self, arg, **kwargs):
y = self.rewrite(cos).rewrite(pow)
if y.has(cos):
return None
return y
def _eval_rewrite_as_sqrt(self, arg, **kwargs):
y = self.rewrite(cos).rewrite(sqrt)
if y.has(cos):
return None
return y
def _eval_as_leading_term(self, x, logx=None, cdir=0):
from sympy.calculus.accumulationbounds import AccumBounds
from sympy.functions.elementary.complexes import re
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
n = 2*x0/pi
if n.is_integer:
lt = (arg - n*pi/2).as_leading_term(x)
return 1/lt if n.is_even else -lt
if x0 is S.ComplexInfinity:
x0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+')
if x0 in (S.Infinity, S.NegativeInfinity):
return AccumBounds(S.NegativeInfinity, S.Infinity)
return self.func(x0) if x0.is_finite else self
def _eval_is_extended_real(self):
return self.args[0].is_extended_real
def _eval_expand_trig(self, **hints):
arg = self.args[0]
x = None
if arg.is_Add:
n = len(arg.args)
CX = []
for x in arg.args:
cx = cot(x, evaluate=False)._eval_expand_trig()
CX.append(cx)
Yg = numbered_symbols('Y')
Y = [ next(Yg) for i in range(n) ]
p = [0, 0]
for i in range(n, -1, -1):
p[(n - i) % 2] += symmetric_poly(i, Y)*(-1)**(((n - i) % 4)//2)
return (p[0]/p[1]).subs(list(zip(Y, CX)))
elif arg.is_Mul:
coeff, terms = arg.as_coeff_Mul(rational=True)
if coeff.is_Integer and coeff > 1:
I = S.ImaginaryUnit
z = Symbol('dummy', real=True)
P = ((z + I)**coeff).expand()
return (re(P)/im(P)).subs([(z, cot(terms))])
return cot(arg) # XXX sec and csc return 1/cos and 1/sin
def _eval_is_finite(self):
arg = self.args[0]
if arg.is_real and (arg/pi).is_integer is False:
return True
if arg.is_imaginary:
return True
def _eval_is_real(self):
arg = self.args[0]
if arg.is_real and (arg/pi).is_integer is False:
return True
def _eval_is_complex(self):
arg = self.args[0]
if arg.is_real and (arg/pi).is_integer is False:
return True
def _eval_is_zero(self):
rest, pimult = _peeloff_pi(self.args[0])
if pimult and rest.is_zero:
return (pimult - S.Half).is_integer
def _eval_subs(self, old, new):
arg = self.args[0]
argnew = arg.subs(old, new)
if arg != argnew and (argnew/pi).is_integer:
return S.ComplexInfinity
return cot(argnew)
class ReciprocalTrigonometricFunction(TrigonometricFunction):
"""Base class for reciprocal functions of trigonometric functions. """
_reciprocal_of = None # mandatory, to be defined in subclass
_singularities = (S.ComplexInfinity,)
# _is_even and _is_odd are used for correct evaluation of csc(-x), sec(-x)
# TODO refactor into TrigonometricFunction common parts of
# trigonometric functions eval() like even/odd, func(x+2*k*pi), etc.
# optional, to be defined in subclasses:
_is_even = None # type: FuzzyBool
_is_odd = None # type: FuzzyBool
@classmethod
def eval(cls, arg):
if arg.could_extract_minus_sign():
if cls._is_even:
return cls(-arg)
if cls._is_odd:
return -cls(-arg)
pi_coeff = _pi_coeff(arg)
if (pi_coeff is not None
and not (2*pi_coeff).is_integer
and pi_coeff.is_Rational):
q = pi_coeff.q
p = pi_coeff.p % (2*q)
if p > q:
narg = (pi_coeff - 1)*pi
return -cls(narg)
if 2*p > q:
narg = (1 - pi_coeff)*pi
if cls._is_odd:
return cls(narg)
elif cls._is_even:
return -cls(narg)
if hasattr(arg, 'inverse') and arg.inverse() == cls:
return arg.args[0]
t = cls._reciprocal_of.eval(arg)
if t is None:
return t
elif any(isinstance(i, cos) for i in (t, -t)):
return (1/t).rewrite(sec)
elif any(isinstance(i, sin) for i in (t, -t)):
return (1/t).rewrite(csc)
else:
return 1/t
def _call_reciprocal(self, method_name, *args, **kwargs):
# Calls method_name on _reciprocal_of
o = self._reciprocal_of(self.args[0])
return getattr(o, method_name)(*args, **kwargs)
def _calculate_reciprocal(self, method_name, *args, **kwargs):
# If calling method_name on _reciprocal_of returns a value != None
# then return the reciprocal of that value
t = self._call_reciprocal(method_name, *args, **kwargs)
return 1/t if t is not None else t
def _rewrite_reciprocal(self, method_name, arg):
# Special handling for rewrite functions. If reciprocal rewrite returns
# unmodified expression, then return None
t = self._call_reciprocal(method_name, arg)
if t is not None and t != self._reciprocal_of(arg):
return 1/t
def _period(self, symbol):
f = expand_mul(self.args[0])
return self._reciprocal_of(f).period(symbol)
def fdiff(self, argindex=1):
return -self._calculate_reciprocal("fdiff", argindex)/self**2
def _eval_rewrite_as_exp(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_exp", arg)
def _eval_rewrite_as_Pow(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_Pow", arg)
def _eval_rewrite_as_sin(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_sin", arg)
def _eval_rewrite_as_cos(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_cos", arg)
def _eval_rewrite_as_tan(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_tan", arg)
def _eval_rewrite_as_pow(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_pow", arg)
def _eval_rewrite_as_sqrt(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_sqrt", arg)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
return (1/self._reciprocal_of(self.args[0])).as_real_imag(deep,
**hints)
def _eval_expand_trig(self, **hints):
return self._calculate_reciprocal("_eval_expand_trig", **hints)
def _eval_is_extended_real(self):
return self._reciprocal_of(self.args[0])._eval_is_extended_real()
def _eval_as_leading_term(self, x, logx=None, cdir=0):
return (1/self._reciprocal_of(self.args[0]))._eval_as_leading_term(x)
def _eval_is_finite(self):
return (1/self._reciprocal_of(self.args[0])).is_finite
def _eval_nseries(self, x, n, logx, cdir=0):
return (1/self._reciprocal_of(self.args[0]))._eval_nseries(x, n, logx)
class sec(ReciprocalTrigonometricFunction):
"""
The secant function.
Returns the secant of x (measured in radians).
Explanation
===========
See :class:`sin` for notes about automatic evaluation.
Examples
========
>>> from sympy import sec
>>> from sympy.abc import x
>>> sec(x**2).diff(x)
2*x*tan(x**2)*sec(x**2)
>>> sec(1).diff(x)
0
See Also
========
sin, csc, cos, tan, cot
asin, acsc, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigonometric_functions
.. [2] http://dlmf.nist.gov/4.14
.. [3] http://functions.wolfram.com/ElementaryFunctions/Sec
"""
_reciprocal_of = cos
_is_even = True
def period(self, symbol=None):
return self._period(symbol)
def _eval_rewrite_as_cot(self, arg, **kwargs):
cot_half_sq = cot(arg/2)**2
return (cot_half_sq + 1)/(cot_half_sq - 1)
def _eval_rewrite_as_cos(self, arg, **kwargs):
return (1/cos(arg))
def _eval_rewrite_as_sincos(self, arg, **kwargs):
return sin(arg)/(cos(arg)*sin(arg))
def _eval_rewrite_as_sin(self, arg, **kwargs):
return (1/cos(arg).rewrite(sin))
def _eval_rewrite_as_tan(self, arg, **kwargs):
return (1/cos(arg).rewrite(tan))
def _eval_rewrite_as_csc(self, arg, **kwargs):
return csc(pi/2 - arg, evaluate=False)
def fdiff(self, argindex=1):
if argindex == 1:
return tan(self.args[0])*sec(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
def _eval_is_complex(self):
arg = self.args[0]
if arg.is_complex and (arg/pi - S.Half).is_integer is False:
return True
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
# Reference Formula:
# http://functions.wolfram.com/ElementaryFunctions/Sec/06/01/02/01/
if n < 0 or n % 2 == 1:
return S.Zero
else:
x = sympify(x)
k = n//2
return S.NegativeOne**k*euler(2*k)/factorial(2*k)*x**(2*k)
def _eval_as_leading_term(self, x, logx=None, cdir=0):
from sympy.calculus.accumulationbounds import AccumBounds
from sympy.functions.elementary.complexes import re
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
n = (x0 + pi/2)/pi
if n.is_integer:
lt = (arg - n*pi + pi/2).as_leading_term(x)
return (S.NegativeOne**n)/lt
if x0 is S.ComplexInfinity:
x0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+')
if x0 in (S.Infinity, S.NegativeInfinity):
return AccumBounds(S.NegativeInfinity, S.Infinity)
return self.func(x0) if x0.is_finite else self
class csc(ReciprocalTrigonometricFunction):
"""
The cosecant function.
Returns the cosecant of x (measured in radians).
Explanation
===========
See :func:`sin` for notes about automatic evaluation.
Examples
========
>>> from sympy import csc
>>> from sympy.abc import x
>>> csc(x**2).diff(x)
-2*x*cot(x**2)*csc(x**2)
>>> csc(1).diff(x)
0
See Also
========
sin, cos, sec, tan, cot
asin, acsc, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigonometric_functions
.. [2] http://dlmf.nist.gov/4.14
.. [3] http://functions.wolfram.com/ElementaryFunctions/Csc
"""
_reciprocal_of = sin
_is_odd = True
def period(self, symbol=None):
return self._period(symbol)
def _eval_rewrite_as_sin(self, arg, **kwargs):
return (1/sin(arg))
def _eval_rewrite_as_sincos(self, arg, **kwargs):
return cos(arg)/(sin(arg)*cos(arg))
def _eval_rewrite_as_cot(self, arg, **kwargs):
cot_half = cot(arg/2)
return (1 + cot_half**2)/(2*cot_half)
def _eval_rewrite_as_cos(self, arg, **kwargs):
return 1/sin(arg).rewrite(cos)
def _eval_rewrite_as_sec(self, arg, **kwargs):
return sec(pi/2 - arg, evaluate=False)
def _eval_rewrite_as_tan(self, arg, **kwargs):
return (1/sin(arg).rewrite(tan))
def fdiff(self, argindex=1):
if argindex == 1:
return -cot(self.args[0])*csc(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
def _eval_is_complex(self):
arg = self.args[0]
if arg.is_real and (arg/pi).is_integer is False:
return True
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n == 0:
return 1/sympify(x)
elif n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
k = n//2 + 1
return (S.NegativeOne**(k - 1)*2*(2**(2*k - 1) - 1)*
bernoulli(2*k)*x**(2*k - 1)/factorial(2*k))
def _eval_as_leading_term(self, x, logx=None, cdir=0):
from sympy.calculus.accumulationbounds import AccumBounds
from sympy.functions.elementary.complexes import re
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
n = x0/pi
if n.is_integer:
lt = (arg - n*pi).as_leading_term(x)
return (S.NegativeOne**n)/lt
if x0 is S.ComplexInfinity:
x0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+')
if x0 in (S.Infinity, S.NegativeInfinity):
return AccumBounds(S.NegativeInfinity, S.Infinity)
return self.func(x0) if x0.is_finite else self
class sinc(Function):
r"""
Represents an unnormalized sinc function:
.. math::
\operatorname{sinc}(x) =
\begin{cases}
\frac{\sin x}{x} & \qquad x \neq 0 \\
1 & \qquad x = 0
\end{cases}
Examples
========
>>> from sympy import sinc, oo, jn
>>> from sympy.abc import x
>>> sinc(x)
sinc(x)
* Automated Evaluation
>>> sinc(0)
1
>>> sinc(oo)
0
* Differentiation
>>> sinc(x).diff()
cos(x)/x - sin(x)/x**2
* Series Expansion
>>> sinc(x).series()
1 - x**2/6 + x**4/120 + O(x**6)
* As zero'th order spherical Bessel Function
>>> sinc(x).rewrite(jn)
jn(0, x)
See also
========
sin
References
==========
.. [1] https://en.wikipedia.org/wiki/Sinc_function
"""
_singularities = (S.ComplexInfinity,)
def fdiff(self, argindex=1):
x = self.args[0]
if argindex == 1:
# We would like to return the Piecewise here, but Piecewise.diff
# currently can't handle removable singularities, meaning things
# like sinc(x).diff(x, 2) give the wrong answer at x = 0. See
# https://github.com/sympy/sympy/issues/11402.
#
# return Piecewise(((x*cos(x) - sin(x))/x**2, Ne(x, S.Zero)), (S.Zero, S.true))
return cos(x)/x - sin(x)/x**2
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
if arg.is_zero:
return S.One
if arg.is_Number:
if arg in [S.Infinity, S.NegativeInfinity]:
return S.Zero
elif arg is S.NaN:
return S.NaN
if arg is S.ComplexInfinity:
return S.NaN
if arg.could_extract_minus_sign():
return cls(-arg)
pi_coeff = _pi_coeff(arg)
if pi_coeff is not None:
if pi_coeff.is_integer:
if fuzzy_not(arg.is_zero):
return S.Zero
elif (2*pi_coeff).is_integer:
return S.NegativeOne**(pi_coeff - S.Half)/arg
def _eval_nseries(self, x, n, logx, cdir=0):
x = self.args[0]
return (sin(x)/x)._eval_nseries(x, n, logx)
def _eval_rewrite_as_jn(self, arg, **kwargs):
from sympy.functions.special.bessel import jn
return jn(0, arg)
def _eval_rewrite_as_sin(self, arg, **kwargs):
return Piecewise((sin(arg)/arg, Ne(arg, S.Zero)), (S.One, S.true))
def _eval_is_zero(self):
if self.args[0].is_infinite:
return True
rest, pi_mult = _peeloff_pi(self.args[0])
if rest.is_zero:
return fuzzy_and([pi_mult.is_integer, pi_mult.is_nonzero])
if rest.is_Number and pi_mult.is_integer:
return False
def _eval_is_real(self):
if self.args[0].is_extended_real or self.args[0].is_imaginary:
return True
_eval_is_finite = _eval_is_real
###############################################################################
########################### TRIGONOMETRIC INVERSES ############################
###############################################################################
class InverseTrigonometricFunction(Function):
"""Base class for inverse trigonometric functions."""
_singularities = (S.One, S.NegativeOne, S.Zero, S.ComplexInfinity) # type: tTuple[Expr, ...]
@staticmethod
@cacheit
def _asin_table():
# Only keys with could_extract_minus_sign() == False
# are actually needed.
return {
sqrt(3)/2: pi/3,
sqrt(2)/2: pi/4,
1/sqrt(2): pi/4,
sqrt((5 - sqrt(5))/8): pi/5,
sqrt(2)*sqrt(5 - sqrt(5))/4: pi/5,
sqrt((5 + sqrt(5))/8): pi*Rational(2, 5),
sqrt(2)*sqrt(5 + sqrt(5))/4: pi*Rational(2, 5),
S.Half: pi/6,
sqrt(2 - sqrt(2))/2: pi/8,
sqrt(S.Half - sqrt(2)/4): pi/8,
sqrt(2 + sqrt(2))/2: pi*Rational(3, 8),
sqrt(S.Half + sqrt(2)/4): pi*Rational(3, 8),
(sqrt(5) - 1)/4: pi/10,
(1 - sqrt(5))/4: -pi/10,
(sqrt(5) + 1)/4: pi*Rational(3, 10),
sqrt(6)/4 - sqrt(2)/4: pi/12,
-sqrt(6)/4 + sqrt(2)/4: -pi/12,
(sqrt(3) - 1)/sqrt(8): pi/12,
(1 - sqrt(3))/sqrt(8): -pi/12,
sqrt(6)/4 + sqrt(2)/4: pi*Rational(5, 12),
(1 + sqrt(3))/sqrt(8): pi*Rational(5, 12)
}
@staticmethod
@cacheit
def _atan_table():
# Only keys with could_extract_minus_sign() == False
# are actually needed.
return {
sqrt(3)/3: pi/6,
1/sqrt(3): pi/6,
sqrt(3): pi/3,
sqrt(2) - 1: pi/8,
1 - sqrt(2): -pi/8,
1 + sqrt(2): pi*Rational(3, 8),
sqrt(5 - 2*sqrt(5)): pi/5,
sqrt(5 + 2*sqrt(5)): pi*Rational(2, 5),
sqrt(1 - 2*sqrt(5)/5): pi/10,
sqrt(1 + 2*sqrt(5)/5): pi*Rational(3, 10),
2 - sqrt(3): pi/12,
-2 + sqrt(3): -pi/12,
2 + sqrt(3): pi*Rational(5, 12)
}
@staticmethod
@cacheit
def _acsc_table():
# Keys for which could_extract_minus_sign()
# will obviously return True are omitted.
return {
2*sqrt(3)/3: pi/3,
sqrt(2): pi/4,
sqrt(2 + 2*sqrt(5)/5): pi/5,
1/sqrt(Rational(5, 8) - sqrt(5)/8): pi/5,
sqrt(2 - 2*sqrt(5)/5): pi*Rational(2, 5),
1/sqrt(Rational(5, 8) + sqrt(5)/8): pi*Rational(2, 5),
2: pi/6,
sqrt(4 + 2*sqrt(2)): pi/8,
2/sqrt(2 - sqrt(2)): pi/8,
sqrt(4 - 2*sqrt(2)): pi*Rational(3, 8),
2/sqrt(2 + sqrt(2)): pi*Rational(3, 8),
1 + sqrt(5): pi/10,
sqrt(5) - 1: pi*Rational(3, 10),
-(sqrt(5) - 1): pi*Rational(-3, 10),
sqrt(6) + sqrt(2): pi/12,
sqrt(6) - sqrt(2): pi*Rational(5, 12),
-(sqrt(6) - sqrt(2)): pi*Rational(-5, 12)
}
class asin(InverseTrigonometricFunction):
r"""
The inverse sine function.
Returns the arcsine of x in radians.
Explanation
===========
``asin(x)`` will evaluate automatically in the cases
$x \in \{\infty, -\infty, 0, 1, -1\}$ and for some instances when the
result is a rational multiple of $\pi$ (see the ``eval`` class method).
A purely imaginary argument will lead to an asinh expression.
Examples
========
>>> from sympy import asin, oo
>>> asin(1)
pi/2
>>> asin(-1)
-pi/2
>>> asin(-oo)
oo*I
>>> asin(oo)
-oo*I
See Also
========
sin, csc, cos, sec, tan, cot
acsc, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
.. [2] http://dlmf.nist.gov/4.23
.. [3] http://functions.wolfram.com/ElementaryFunctions/ArcSin
"""
def fdiff(self, argindex=1):
if argindex == 1:
return 1/sqrt(1 - self.args[0]**2)
else:
raise ArgumentIndexError(self, argindex)
def _eval_is_rational(self):
s = self.func(*self.args)
if s.func == self.func:
if s.args[0].is_rational:
return False
else:
return s.is_rational
def _eval_is_positive(self):
return self._eval_is_extended_real() and self.args[0].is_positive
def _eval_is_negative(self):
return self._eval_is_extended_real() and self.args[0].is_negative
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.NegativeInfinity*S.ImaginaryUnit
elif arg is S.NegativeInfinity:
return S.Infinity*S.ImaginaryUnit
elif arg.is_zero:
return S.Zero
elif arg is S.One:
return pi/2
elif arg is S.NegativeOne:
return -pi/2
if arg is S.ComplexInfinity:
return S.ComplexInfinity
if arg.could_extract_minus_sign():
return -cls(-arg)
if arg.is_number:
asin_table = cls._asin_table()
if arg in asin_table:
return asin_table[arg]
i_coeff = _imaginary_unit_as_coefficient(arg)
if i_coeff is not None:
from sympy.functions.elementary.hyperbolic import asinh
return S.ImaginaryUnit*asinh(i_coeff)
if arg.is_zero:
return S.Zero
if isinstance(arg, sin):
ang = arg.args[0]
if ang.is_comparable:
ang %= 2*pi # restrict to [0,2*pi)
if ang > pi: # restrict to (-pi,pi]
ang = pi - ang
# restrict to [-pi/2,pi/2]
if ang > pi/2:
ang = pi - ang
if ang < -pi/2:
ang = -pi - ang
return ang
if isinstance(arg, cos): # acos(x) + asin(x) = pi/2
ang = arg.args[0]
if ang.is_comparable:
return pi/2 - acos(arg)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) >= 2 and n > 2:
p = previous_terms[-2]
return p*(n - 2)**2/(n*(n - 1))*x**2
else:
k = (n - 1) // 2
R = RisingFactorial(S.Half, k)
F = factorial(k)
return R/F*x**n/n
def _eval_as_leading_term(self, x, logx=None, cdir=0): # asin
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
if x0.is_zero:
return arg.as_leading_term(x)
# Handling branch points
if x0 in (-S.One, S.One, S.ComplexInfinity):
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand()
# Handling points lying on branch cuts (-oo, -1) U (1, oo)
if (1 - x0**2).is_negative:
ndir = arg.dir(x, cdir if cdir else 1)
if im(ndir).is_negative:
if x0.is_negative:
return -pi - self.func(x0)
elif im(ndir).is_positive:
if x0.is_positive:
return pi - self.func(x0)
else:
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand()
return self.func(x0)
def _eval_nseries(self, x, n, logx, cdir=0): # asin
from sympy.series.order import O
arg0 = self.args[0].subs(x, 0)
# Handling branch points
if arg0 is S.One:
t = Dummy('t', positive=True)
ser = asin(S.One - t**2).rewrite(log).nseries(t, 0, 2*n)
arg1 = S.One - self.args[0]
f = arg1.as_leading_term(x)
g = (arg1 - f)/ f
if not g.is_meromorphic(x, 0): # cannot be expanded
return O(1) if n == 0 else pi/2 + O(sqrt(x))
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
res = (res1.removeO()*sqrt(f)).expand()
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
if arg0 is S.NegativeOne:
t = Dummy('t', positive=True)
ser = asin(S.NegativeOne + t**2).rewrite(log).nseries(t, 0, 2*n)
arg1 = S.One + self.args[0]
f = arg1.as_leading_term(x)
g = (arg1 - f)/ f
if not g.is_meromorphic(x, 0): # cannot be expanded
return O(1) if n == 0 else -pi/2 + O(sqrt(x))
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
res = (res1.removeO()*sqrt(f)).expand()
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
res = Function._eval_nseries(self, x, n=n, logx=logx)
if arg0 is S.ComplexInfinity:
return res
# Handling points lying on branch cuts (-oo, -1) U (1, oo)
if (1 - arg0**2).is_negative:
ndir = self.args[0].dir(x, cdir if cdir else 1)
if im(ndir).is_negative:
if arg0.is_negative:
return -pi - res
elif im(ndir).is_positive:
if arg0.is_positive:
return pi - res
else:
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
return res
def _eval_rewrite_as_acos(self, x, **kwargs):
return pi/2 - acos(x)
def _eval_rewrite_as_atan(self, x, **kwargs):
return 2*atan(x/(1 + sqrt(1 - x**2)))
def _eval_rewrite_as_log(self, x, **kwargs):
return -S.ImaginaryUnit*log(S.ImaginaryUnit*x + sqrt(1 - x**2))
_eval_rewrite_as_tractable = _eval_rewrite_as_log
def _eval_rewrite_as_acot(self, arg, **kwargs):
return 2*acot((1 + sqrt(1 - arg**2))/arg)
def _eval_rewrite_as_asec(self, arg, **kwargs):
return pi/2 - asec(1/arg)
def _eval_rewrite_as_acsc(self, arg, **kwargs):
return acsc(1/arg)
def _eval_is_extended_real(self):
x = self.args[0]
return x.is_extended_real and (1 - abs(x)).is_nonnegative
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return sin
class acos(InverseTrigonometricFunction):
r"""
The inverse cosine function.
Returns the arc cosine of x (measured in radians).
Examples
========
``acos(x)`` will evaluate automatically in the cases
$x \in \{\infty, -\infty, 0, 1, -1\}$ and for some instances when
the result is a rational multiple of $\pi$ (see the eval class method).
``acos(zoo)`` evaluates to ``zoo``
(see note in :class:`sympy.functions.elementary.trigonometric.asec`)
A purely imaginary argument will be rewritten to asinh.
Examples
========
>>> from sympy import acos, oo
>>> acos(1)
0
>>> acos(0)
pi/2
>>> acos(oo)
oo*I
See Also
========
sin, csc, cos, sec, tan, cot
asin, acsc, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
.. [2] http://dlmf.nist.gov/4.23
.. [3] http://functions.wolfram.com/ElementaryFunctions/ArcCos
"""
def fdiff(self, argindex=1):
if argindex == 1:
return -1/sqrt(1 - self.args[0]**2)
else:
raise ArgumentIndexError(self, argindex)
def _eval_is_rational(self):
s = self.func(*self.args)
if s.func == self.func:
if s.args[0].is_rational:
return False
else:
return s.is_rational
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Infinity*S.ImaginaryUnit
elif arg is S.NegativeInfinity:
return S.NegativeInfinity*S.ImaginaryUnit
elif arg.is_zero:
return pi/2
elif arg is S.One:
return S.Zero
elif arg is S.NegativeOne:
return pi
if arg is S.ComplexInfinity:
return S.ComplexInfinity
if arg.is_number:
asin_table = cls._asin_table()
if arg in asin_table:
return pi/2 - asin_table[arg]
elif -arg in asin_table:
return pi/2 + asin_table[-arg]
i_coeff = _imaginary_unit_as_coefficient(arg)
if i_coeff is not None:
return pi/2 - asin(arg)
if isinstance(arg, cos):
ang = arg.args[0]
if ang.is_comparable:
ang %= 2*pi # restrict to [0,2*pi)
if ang > pi: # restrict to [0,pi]
ang = 2*pi - ang
return ang
if isinstance(arg, sin): # acos(x) + asin(x) = pi/2
ang = arg.args[0]
if ang.is_comparable:
return pi/2 - asin(arg)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n == 0:
return pi/2
elif n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) >= 2 and n > 2:
p = previous_terms[-2]
return p*(n - 2)**2/(n*(n - 1))*x**2
else:
k = (n - 1) // 2
R = RisingFactorial(S.Half, k)
F = factorial(k)
return -R/F*x**n/n
def _eval_as_leading_term(self, x, logx=None, cdir=0): # acos
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
# Handling branch points
if x0 == 1:
return sqrt(2)*sqrt((S.One - arg).as_leading_term(x))
if x0 in (-S.One, S.ComplexInfinity):
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
# Handling points lying on branch cuts (-oo, -1) U (1, oo)
if (1 - x0**2).is_negative:
ndir = arg.dir(x, cdir if cdir else 1)
if im(ndir).is_negative:
if x0.is_negative:
return 2*pi - self.func(x0)
elif im(ndir).is_positive:
if x0.is_positive:
return -self.func(x0)
else:
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand()
return self.func(x0)
def _eval_is_extended_real(self):
x = self.args[0]
return x.is_extended_real and (1 - abs(x)).is_nonnegative
def _eval_is_nonnegative(self):
return self._eval_is_extended_real()
def _eval_nseries(self, x, n, logx, cdir=0): # acos
from sympy.series.order import O
arg0 = self.args[0].subs(x, 0)
# Handling branch points
if arg0 is S.One:
t = Dummy('t', positive=True)
ser = acos(S.One - t**2).rewrite(log).nseries(t, 0, 2*n)
arg1 = S.One - self.args[0]
f = arg1.as_leading_term(x)
g = (arg1 - f)/ f
if not g.is_meromorphic(x, 0): # cannot be expanded
return O(1) if n == 0 else O(sqrt(x))
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
res = (res1.removeO()*sqrt(f)).expand()
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
if arg0 is S.NegativeOne:
t = Dummy('t', positive=True)
ser = acos(S.NegativeOne + t**2).rewrite(log).nseries(t, 0, 2*n)
arg1 = S.One + self.args[0]
f = arg1.as_leading_term(x)
g = (arg1 - f)/ f
if not g.is_meromorphic(x, 0): # cannot be expanded
return O(1) if n == 0 else pi + O(sqrt(x))
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
res = (res1.removeO()*sqrt(f)).expand()
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
res = Function._eval_nseries(self, x, n=n, logx=logx)
if arg0 is S.ComplexInfinity:
return res
# Handling points lying on branch cuts (-oo, -1) U (1, oo)
if (1 - arg0**2).is_negative:
ndir = self.args[0].dir(x, cdir if cdir else 1)
if im(ndir).is_negative:
if arg0.is_negative:
return 2*pi - res
elif im(ndir).is_positive:
if arg0.is_positive:
return -res
else:
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
return res
def _eval_rewrite_as_log(self, x, **kwargs):
return pi/2 + S.ImaginaryUnit*\
log(S.ImaginaryUnit*x + sqrt(1 - x**2))
_eval_rewrite_as_tractable = _eval_rewrite_as_log
def _eval_rewrite_as_asin(self, x, **kwargs):
return pi/2 - asin(x)
def _eval_rewrite_as_atan(self, x, **kwargs):
return atan(sqrt(1 - x**2)/x) + (pi/2)*(1 - x*sqrt(1/x**2))
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return cos
def _eval_rewrite_as_acot(self, arg, **kwargs):
return pi/2 - 2*acot((1 + sqrt(1 - arg**2))/arg)
def _eval_rewrite_as_asec(self, arg, **kwargs):
return asec(1/arg)
def _eval_rewrite_as_acsc(self, arg, **kwargs):
return pi/2 - acsc(1/arg)
def _eval_conjugate(self):
z = self.args[0]
r = self.func(self.args[0].conjugate())
if z.is_extended_real is False:
return r
elif z.is_extended_real and (z + 1).is_nonnegative and (z - 1).is_nonpositive:
return r
class atan(InverseTrigonometricFunction):
r"""
The inverse tangent function.
Returns the arc tangent of x (measured in radians).
Explanation
===========
``atan(x)`` will evaluate automatically in the cases
$x \in \{\infty, -\infty, 0, 1, -1\}$ and for some instances when the
result is a rational multiple of $\pi$ (see the eval class method).
Examples
========
>>> from sympy import atan, oo
>>> atan(0)
0
>>> atan(1)
pi/4
>>> atan(oo)
pi/2
See Also
========
sin, csc, cos, sec, tan, cot
asin, acsc, acos, asec, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
.. [2] http://dlmf.nist.gov/4.23
.. [3] http://functions.wolfram.com/ElementaryFunctions/ArcTan
"""
args: tTuple[Expr]
_singularities = (S.ImaginaryUnit, -S.ImaginaryUnit)
def fdiff(self, argindex=1):
if argindex == 1:
return 1/(1 + self.args[0]**2)
else:
raise ArgumentIndexError(self, argindex)
def _eval_is_rational(self):
s = self.func(*self.args)
if s.func == self.func:
if s.args[0].is_rational:
return False
else:
return s.is_rational
def _eval_is_positive(self):
return self.args[0].is_extended_positive
def _eval_is_nonnegative(self):
return self.args[0].is_extended_nonnegative
def _eval_is_zero(self):
return self.args[0].is_zero
def _eval_is_real(self):
return self.args[0].is_extended_real
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return pi/2
elif arg is S.NegativeInfinity:
return -pi/2
elif arg.is_zero:
return S.Zero
elif arg is S.One:
return pi/4
elif arg is S.NegativeOne:
return -pi/4
if arg is S.ComplexInfinity:
from sympy.calculus.accumulationbounds import AccumBounds
return AccumBounds(-pi/2, pi/2)
if arg.could_extract_minus_sign():
return -cls(-arg)
if arg.is_number:
atan_table = cls._atan_table()
if arg in atan_table:
return atan_table[arg]
i_coeff = _imaginary_unit_as_coefficient(arg)
if i_coeff is not None:
from sympy.functions.elementary.hyperbolic import atanh
return S.ImaginaryUnit*atanh(i_coeff)
if arg.is_zero:
return S.Zero
if isinstance(arg, tan):
ang = arg.args[0]
if ang.is_comparable:
ang %= pi # restrict to [0,pi)
if ang > pi/2: # restrict to [-pi/2,pi/2]
ang -= pi
return ang
if isinstance(arg, cot): # atan(x) + acot(x) = pi/2
ang = arg.args[0]
if ang.is_comparable:
ang = pi/2 - acot(arg)
if ang > pi/2: # restrict to [-pi/2,pi/2]
ang -= pi
return ang
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
return S.NegativeOne**((n - 1)//2)*x**n/n
def _eval_as_leading_term(self, x, logx=None, cdir=0): # atan
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
if x0.is_zero:
return arg.as_leading_term(x)
# Handling branch points
if x0 in (-S.ImaginaryUnit, S.ImaginaryUnit, S.ComplexInfinity):
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand()
# Handling points lying on branch cuts (-I*oo, -I) U (I, I*oo)
if (1 + x0**2).is_negative:
ndir = arg.dir(x, cdir if cdir else 1)
if re(ndir).is_negative:
if im(x0).is_positive:
return self.func(x0) - pi
elif re(ndir).is_positive:
if im(x0).is_negative:
return self.func(x0) + pi
else:
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand()
return self.func(x0)
def _eval_nseries(self, x, n, logx, cdir=0): # atan
arg0 = self.args[0].subs(x, 0)
# Handling branch points
if arg0 in (S.ImaginaryUnit, S.NegativeOne*S.ImaginaryUnit):
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
res = Function._eval_nseries(self, x, n=n, logx=logx)
ndir = self.args[0].dir(x, cdir if cdir else 1)
if arg0 is S.ComplexInfinity:
if re(ndir) > 0:
return res - pi
return res
# Handling points lying on branch cuts (-I*oo, -I) U (I, I*oo)
if (1 + arg0**2).is_negative:
if re(ndir).is_negative:
if im(arg0).is_positive:
return res - pi
elif re(ndir).is_positive:
if im(arg0).is_negative:
return res + pi
else:
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
return res
def _eval_rewrite_as_log(self, x, **kwargs):
return S.ImaginaryUnit/2*(log(S.One - S.ImaginaryUnit*x)
- log(S.One + S.ImaginaryUnit*x))
_eval_rewrite_as_tractable = _eval_rewrite_as_log
def _eval_aseries(self, n, args0, x, logx):
if args0[0] is S.Infinity:
return (pi/2 - atan(1/self.args[0]))._eval_nseries(x, n, logx)
elif args0[0] is S.NegativeInfinity:
return (-pi/2 - atan(1/self.args[0]))._eval_nseries(x, n, logx)
else:
return super()._eval_aseries(n, args0, x, logx)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return tan
def _eval_rewrite_as_asin(self, arg, **kwargs):
return sqrt(arg**2)/arg*(pi/2 - asin(1/sqrt(1 + arg**2)))
def _eval_rewrite_as_acos(self, arg, **kwargs):
return sqrt(arg**2)/arg*acos(1/sqrt(1 + arg**2))
def _eval_rewrite_as_acot(self, arg, **kwargs):
return acot(1/arg)
def _eval_rewrite_as_asec(self, arg, **kwargs):
return sqrt(arg**2)/arg*asec(sqrt(1 + arg**2))
def _eval_rewrite_as_acsc(self, arg, **kwargs):
return sqrt(arg**2)/arg*(pi/2 - acsc(sqrt(1 + arg**2)))
class acot(InverseTrigonometricFunction):
r"""
The inverse cotangent function.
Returns the arc cotangent of x (measured in radians).
Explanation
===========
``acot(x)`` will evaluate automatically in the cases
$x \in \{\infty, -\infty, \tilde{\infty}, 0, 1, -1\}$
and for some instances when the result is a rational multiple of $\pi$
(see the eval class method).
A purely imaginary argument will lead to an ``acoth`` expression.
``acot(x)`` has a branch cut along $(-i, i)$, hence it is discontinuous
at 0. Its range for real $x$ is $(-\frac{\pi}{2}, \frac{\pi}{2}]$.
Examples
========
>>> from sympy import acot, sqrt
>>> acot(0)
pi/2
>>> acot(1)
pi/4
>>> acot(sqrt(3) - 2)
-5*pi/12
See Also
========
sin, csc, cos, sec, tan, cot
asin, acsc, acos, asec, atan, atan2
References
==========
.. [1] http://dlmf.nist.gov/4.23
.. [2] http://functions.wolfram.com/ElementaryFunctions/ArcCot
"""
_singularities = (S.ImaginaryUnit, -S.ImaginaryUnit)
def fdiff(self, argindex=1):
if argindex == 1:
return -1/(1 + self.args[0]**2)
else:
raise ArgumentIndexError(self, argindex)
def _eval_is_rational(self):
s = self.func(*self.args)
if s.func == self.func:
if s.args[0].is_rational:
return False
else:
return s.is_rational
def _eval_is_positive(self):
return self.args[0].is_nonnegative
def _eval_is_negative(self):
return self.args[0].is_negative
def _eval_is_extended_real(self):
return self.args[0].is_extended_real
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Zero
elif arg is S.NegativeInfinity:
return S.Zero
elif arg.is_zero:
return pi/ 2
elif arg is S.One:
return pi/4
elif arg is S.NegativeOne:
return -pi/4
if arg is S.ComplexInfinity:
return S.Zero
if arg.could_extract_minus_sign():
return -cls(-arg)
if arg.is_number:
atan_table = cls._atan_table()
if arg in atan_table:
ang = pi/2 - atan_table[arg]
if ang > pi/2: # restrict to (-pi/2,pi/2]
ang -= pi
return ang
i_coeff = _imaginary_unit_as_coefficient(arg)
if i_coeff is not None:
from sympy.functions.elementary.hyperbolic import acoth
return -S.ImaginaryUnit*acoth(i_coeff)
if arg.is_zero:
return pi*S.Half
if isinstance(arg, cot):
ang = arg.args[0]
if ang.is_comparable:
ang %= pi # restrict to [0,pi)
if ang > pi/2: # restrict to (-pi/2,pi/2]
ang -= pi;
return ang
if isinstance(arg, tan): # atan(x) + acot(x) = pi/2
ang = arg.args[0]
if ang.is_comparable:
ang = pi/2 - atan(arg)
if ang > pi/2: # restrict to (-pi/2,pi/2]
ang -= pi
return ang
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n == 0:
return pi/2 # FIX THIS
elif n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
return S.NegativeOne**((n + 1)//2)*x**n/n
def _eval_as_leading_term(self, x, logx=None, cdir=0): # acot
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
if x0 is S.ComplexInfinity:
return (1/arg).as_leading_term(x)
# Handling branch points
if x0 in (-S.ImaginaryUnit, S.ImaginaryUnit, S.Zero):
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand()
# Handling points lying on branch cuts [-I, I]
if x0.is_imaginary and (1 + x0**2).is_positive:
ndir = arg.dir(x, cdir if cdir else 1)
if re(ndir).is_positive:
if im(x0).is_positive:
return self.func(x0) + pi
elif re(ndir).is_negative:
if im(x0).is_negative:
return self.func(x0) - pi
else:
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand()
return self.func(x0)
def _eval_nseries(self, x, n, logx, cdir=0): # acot
arg0 = self.args[0].subs(x, 0)
# Handling branch points
if arg0 in (S.ImaginaryUnit, S.NegativeOne*S.ImaginaryUnit):
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
res = Function._eval_nseries(self, x, n=n, logx=logx)
if arg0 is S.ComplexInfinity:
return res
ndir = self.args[0].dir(x, cdir if cdir else 1)
if arg0.is_zero:
if re(ndir) < 0:
return res - pi
return res
# Handling points lying on branch cuts [-I, I]
if arg0.is_imaginary and (1 + arg0**2).is_positive:
if re(ndir).is_positive:
if im(arg0).is_positive:
return res + pi
elif re(ndir).is_negative:
if im(arg0).is_negative:
return res - pi
else:
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
return res
def _eval_aseries(self, n, args0, x, logx):
if args0[0] is S.Infinity:
return (pi/2 - acot(1/self.args[0]))._eval_nseries(x, n, logx)
elif args0[0] is S.NegativeInfinity:
return (pi*Rational(3, 2) - acot(1/self.args[0]))._eval_nseries(x, n, logx)
else:
return super(atan, self)._eval_aseries(n, args0, x, logx)
def _eval_rewrite_as_log(self, x, **kwargs):
return S.ImaginaryUnit/2*(log(1 - S.ImaginaryUnit/x)
- log(1 + S.ImaginaryUnit/x))
_eval_rewrite_as_tractable = _eval_rewrite_as_log
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return cot
def _eval_rewrite_as_asin(self, arg, **kwargs):
return (arg*sqrt(1/arg**2)*
(pi/2 - asin(sqrt(-arg**2)/sqrt(-arg**2 - 1))))
def _eval_rewrite_as_acos(self, arg, **kwargs):
return arg*sqrt(1/arg**2)*acos(sqrt(-arg**2)/sqrt(-arg**2 - 1))
def _eval_rewrite_as_atan(self, arg, **kwargs):
return atan(1/arg)
def _eval_rewrite_as_asec(self, arg, **kwargs):
return arg*sqrt(1/arg**2)*asec(sqrt((1 + arg**2)/arg**2))
def _eval_rewrite_as_acsc(self, arg, **kwargs):
return arg*sqrt(1/arg**2)*(pi/2 - acsc(sqrt((1 + arg**2)/arg**2)))
class asec(InverseTrigonometricFunction):
r"""
The inverse secant function.
Returns the arc secant of x (measured in radians).
Explanation
===========
``asec(x)`` will evaluate automatically in the cases
$x \in \{\infty, -\infty, 0, 1, -1\}$ and for some instances when the
result is a rational multiple of $\pi$ (see the eval class method).
``asec(x)`` has branch cut in the interval $[-1, 1]$. For complex arguments,
it can be defined [4]_ as
.. math::
\operatorname{sec^{-1}}(z) = -i\frac{\log\left(\sqrt{1 - z^2} + 1\right)}{z}
At ``x = 0``, for positive branch cut, the limit evaluates to ``zoo``. For
negative branch cut, the limit
.. math::
\lim_{z \to 0}-i\frac{\log\left(-\sqrt{1 - z^2} + 1\right)}{z}
simplifies to :math:`-i\log\left(z/2 + O\left(z^3\right)\right)` which
ultimately evaluates to ``zoo``.
As ``acos(x) = asec(1/x)``, a similar argument can be given for
``acos(x)``.
Examples
========
>>> from sympy import asec, oo
>>> asec(1)
0
>>> asec(-1)
pi
>>> asec(0)
zoo
>>> asec(-oo)
pi/2
See Also
========
sin, csc, cos, sec, tan, cot
asin, acsc, acos, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
.. [2] http://dlmf.nist.gov/4.23
.. [3] http://functions.wolfram.com/ElementaryFunctions/ArcSec
.. [4] http://reference.wolfram.com/language/ref/ArcSec.html
"""
@classmethod
def eval(cls, arg):
if arg.is_zero:
return S.ComplexInfinity
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.One:
return S.Zero
elif arg is S.NegativeOne:
return pi
if arg in [S.Infinity, S.NegativeInfinity, S.ComplexInfinity]:
return pi/2
if arg.is_number:
acsc_table = cls._acsc_table()
if arg in acsc_table:
return pi/2 - acsc_table[arg]
elif -arg in acsc_table:
return pi/2 + acsc_table[-arg]
if arg.is_infinite:
return pi/2
if isinstance(arg, sec):
ang = arg.args[0]
if ang.is_comparable:
ang %= 2*pi # restrict to [0,2*pi)
if ang > pi: # restrict to [0,pi]
ang = 2*pi - ang
return ang
if isinstance(arg, csc): # asec(x) + acsc(x) = pi/2
ang = arg.args[0]
if ang.is_comparable:
return pi/2 - acsc(arg)
def fdiff(self, argindex=1):
if argindex == 1:
return 1/(self.args[0]**2*sqrt(1 - 1/self.args[0]**2))
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return sec
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n == 0:
return S.ImaginaryUnit*log(2 / x)
elif n < 0 or n % 2 == 1:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) > 2 and n > 2:
p = previous_terms[-2]
return p * ((n - 1)*(n-2)) * x**2/(4 * (n//2)**2)
else:
k = n // 2
R = RisingFactorial(S.Half, k) * n
F = factorial(k) * n // 2 * n // 2
return -S.ImaginaryUnit * R / F * x**n / 4
def _eval_as_leading_term(self, x, logx=None, cdir=0): # asec
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
# Handling branch points
if x0 == 1:
return sqrt(2)*sqrt((arg - S.One).as_leading_term(x))
if x0 in (-S.One, S.Zero):
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
# Handling points lying on branch cuts (-1, 1)
if x0.is_real and (1 - x0**2).is_positive:
ndir = arg.dir(x, cdir if cdir else 1)
if im(ndir).is_negative:
if x0.is_positive:
return -self.func(x0)
elif im(ndir).is_positive:
if x0.is_negative:
return 2*pi - self.func(x0)
else:
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand()
return self.func(x0)
def _eval_nseries(self, x, n, logx, cdir=0): # asec
from sympy.series.order import O
arg0 = self.args[0].subs(x, 0)
# Handling branch points
if arg0 is S.One:
t = Dummy('t', positive=True)
ser = asec(S.One + t**2).rewrite(log).nseries(t, 0, 2*n)
arg1 = S.NegativeOne + self.args[0]
f = arg1.as_leading_term(x)
g = (arg1 - f)/ f
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
res = (res1.removeO()*sqrt(f)).expand()
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
if arg0 is S.NegativeOne:
t = Dummy('t', positive=True)
ser = asec(S.NegativeOne - t**2).rewrite(log).nseries(t, 0, 2*n)
arg1 = S.NegativeOne - self.args[0]
f = arg1.as_leading_term(x)
g = (arg1 - f)/ f
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
res = (res1.removeO()*sqrt(f)).expand()
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
res = Function._eval_nseries(self, x, n=n, logx=logx)
if arg0 is S.ComplexInfinity:
return res
# Handling points lying on branch cuts (-1, 1)
if arg0.is_real and (1 - arg0**2).is_positive:
ndir = self.args[0].dir(x, cdir if cdir else 1)
if im(ndir).is_negative:
if arg0.is_positive:
return -res
elif im(ndir).is_positive:
if arg0.is_negative:
return 2*pi - res
else:
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
return res
def _eval_is_extended_real(self):
x = self.args[0]
if x.is_extended_real is False:
return False
return fuzzy_or(((x - 1).is_nonnegative, (-x - 1).is_nonnegative))
def _eval_rewrite_as_log(self, arg, **kwargs):
return pi/2 + S.ImaginaryUnit*log(S.ImaginaryUnit/arg + sqrt(1 - 1/arg**2))
_eval_rewrite_as_tractable = _eval_rewrite_as_log
def _eval_rewrite_as_asin(self, arg, **kwargs):
return pi/2 - asin(1/arg)
def _eval_rewrite_as_acos(self, arg, **kwargs):
return acos(1/arg)
def _eval_rewrite_as_atan(self, x, **kwargs):
sx2x = sqrt(x**2)/x
return pi/2*(1 - sx2x) + sx2x*atan(sqrt(x**2 - 1))
def _eval_rewrite_as_acot(self, x, **kwargs):
sx2x = sqrt(x**2)/x
return pi/2*(1 - sx2x) + sx2x*acot(1/sqrt(x**2 - 1))
def _eval_rewrite_as_acsc(self, arg, **kwargs):
return pi/2 - acsc(arg)
class acsc(InverseTrigonometricFunction):
r"""
The inverse cosecant function.
Returns the arc cosecant of x (measured in radians).
Explanation
===========
``acsc(x)`` will evaluate automatically in the cases
$x \in \{\infty, -\infty, 0, 1, -1\}$` and for some instances when the
result is a rational multiple of $\pi$ (see the ``eval`` class method).
Examples
========
>>> from sympy import acsc, oo
>>> acsc(1)
pi/2
>>> acsc(-1)
-pi/2
>>> acsc(oo)
0
>>> acsc(-oo) == acsc(oo)
True
>>> acsc(0)
zoo
See Also
========
sin, csc, cos, sec, tan, cot
asin, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
.. [2] http://dlmf.nist.gov/4.23
.. [3] http://functions.wolfram.com/ElementaryFunctions/ArcCsc
"""
@classmethod
def eval(cls, arg):
if arg.is_zero:
return S.ComplexInfinity
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.One:
return pi/2
elif arg is S.NegativeOne:
return -pi/2
if arg in [S.Infinity, S.NegativeInfinity, S.ComplexInfinity]:
return S.Zero
if arg.could_extract_minus_sign():
return -cls(-arg)
if arg.is_infinite:
return S.Zero
if arg.is_number:
acsc_table = cls._acsc_table()
if arg in acsc_table:
return acsc_table[arg]
if isinstance(arg, csc):
ang = arg.args[0]
if ang.is_comparable:
ang %= 2*pi # restrict to [0,2*pi)
if ang > pi: # restrict to (-pi,pi]
ang = pi - ang
# restrict to [-pi/2,pi/2]
if ang > pi/2:
ang = pi - ang
if ang < -pi/2:
ang = -pi - ang
return ang
if isinstance(arg, sec): # asec(x) + acsc(x) = pi/2
ang = arg.args[0]
if ang.is_comparable:
return pi/2 - asec(arg)
def fdiff(self, argindex=1):
if argindex == 1:
return -1/(self.args[0]**2*sqrt(1 - 1/self.args[0]**2))
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return csc
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n == 0:
return pi/2 - S.ImaginaryUnit*log(2) + S.ImaginaryUnit*log(x)
elif n < 0 or n % 2 == 1:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) > 2 and n > 2:
p = previous_terms[-2]
return p * ((n - 1)*(n-2)) * x**2/(4 * (n//2)**2)
else:
k = n // 2
R = RisingFactorial(S.Half, k) * n
F = factorial(k) * n // 2 * n // 2
return S.ImaginaryUnit * R / F * x**n / 4
def _eval_as_leading_term(self, x, logx=None, cdir=0): # acsc
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
# Handling branch points
if x0 in (-S.One, S.One, S.Zero):
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand()
if x0 is S.ComplexInfinity:
return (1/arg).as_leading_term(x)
# Handling points lying on branch cuts (-1, 1)
if x0.is_real and (1 - x0**2).is_positive:
ndir = arg.dir(x, cdir if cdir else 1)
if im(ndir).is_negative:
if x0.is_positive:
return pi - self.func(x0)
elif im(ndir).is_positive:
if x0.is_negative:
return -pi - self.func(x0)
else:
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand()
return self.func(x0)
def _eval_nseries(self, x, n, logx, cdir=0): # acsc
from sympy.series.order import O
arg0 = self.args[0].subs(x, 0)
# Handling branch points
if arg0 is S.One:
t = Dummy('t', positive=True)
ser = acsc(S.One + t**2).rewrite(log).nseries(t, 0, 2*n)
arg1 = S.NegativeOne + self.args[0]
f = arg1.as_leading_term(x)
g = (arg1 - f)/ f
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
res = (res1.removeO()*sqrt(f)).expand()
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
if arg0 is S.NegativeOne:
t = Dummy('t', positive=True)
ser = acsc(S.NegativeOne - t**2).rewrite(log).nseries(t, 0, 2*n)
arg1 = S.NegativeOne - self.args[0]
f = arg1.as_leading_term(x)
g = (arg1 - f)/ f
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
res = (res1.removeO()*sqrt(f)).expand()
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
res = Function._eval_nseries(self, x, n=n, logx=logx)
if arg0 is S.ComplexInfinity:
return res
# Handling points lying on branch cuts (-1, 1)
if arg0.is_real and (1 - arg0**2).is_positive:
ndir = self.args[0].dir(x, cdir if cdir else 1)
if im(ndir).is_negative:
if arg0.is_positive:
return pi - res
elif im(ndir).is_positive:
if arg0.is_negative:
return -pi - res
else:
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
return res
def _eval_rewrite_as_log(self, arg, **kwargs):
return -S.ImaginaryUnit*log(S.ImaginaryUnit/arg + sqrt(1 - 1/arg**2))
_eval_rewrite_as_tractable = _eval_rewrite_as_log
def _eval_rewrite_as_asin(self, arg, **kwargs):
return asin(1/arg)
def _eval_rewrite_as_acos(self, arg, **kwargs):
return pi/2 - acos(1/arg)
def _eval_rewrite_as_atan(self, x, **kwargs):
return sqrt(x**2)/x*(pi/2 - atan(sqrt(x**2 - 1)))
def _eval_rewrite_as_acot(self, arg, **kwargs):
return sqrt(arg**2)/arg*(pi/2 - acot(1/sqrt(arg**2 - 1)))
def _eval_rewrite_as_asec(self, arg, **kwargs):
return pi/2 - asec(arg)
class atan2(InverseTrigonometricFunction):
r"""
The function ``atan2(y, x)`` computes `\operatorname{atan}(y/x)` taking
two arguments `y` and `x`. Signs of both `y` and `x` are considered to
determine the appropriate quadrant of `\operatorname{atan}(y/x)`.
The range is `(-\pi, \pi]`. The complete definition reads as follows:
.. math::
\operatorname{atan2}(y, x) =
\begin{cases}
\arctan\left(\frac y x\right) & \qquad x > 0 \\
\arctan\left(\frac y x\right) + \pi& \qquad y \ge 0, x < 0 \\
\arctan\left(\frac y x\right) - \pi& \qquad y < 0, x < 0 \\
+\frac{\pi}{2} & \qquad y > 0, x = 0 \\
-\frac{\pi}{2} & \qquad y < 0, x = 0 \\
\text{undefined} & \qquad y = 0, x = 0
\end{cases}
Attention: Note the role reversal of both arguments. The `y`-coordinate
is the first argument and the `x`-coordinate the second.
If either `x` or `y` is complex:
.. math::
\operatorname{atan2}(y, x) =
-i\log\left(\frac{x + iy}{\sqrt{x^2 + y^2}}\right)
Examples
========
Going counter-clock wise around the origin we find the
following angles:
>>> from sympy import atan2
>>> atan2(0, 1)
0
>>> atan2(1, 1)
pi/4
>>> atan2(1, 0)
pi/2
>>> atan2(1, -1)
3*pi/4
>>> atan2(0, -1)
pi
>>> atan2(-1, -1)
-3*pi/4
>>> atan2(-1, 0)
-pi/2
>>> atan2(-1, 1)
-pi/4
which are all correct. Compare this to the results of the ordinary
`\operatorname{atan}` function for the point `(x, y) = (-1, 1)`
>>> from sympy import atan, S
>>> atan(S(1)/-1)
-pi/4
>>> atan2(1, -1)
3*pi/4
where only the `\operatorname{atan2}` function reurns what we expect.
We can differentiate the function with respect to both arguments:
>>> from sympy import diff
>>> from sympy.abc import x, y
>>> diff(atan2(y, x), x)
-y/(x**2 + y**2)
>>> diff(atan2(y, x), y)
x/(x**2 + y**2)
We can express the `\operatorname{atan2}` function in terms of
complex logarithms:
>>> from sympy import log
>>> atan2(y, x).rewrite(log)
-I*log((x + I*y)/sqrt(x**2 + y**2))
and in terms of `\operatorname(atan)`:
>>> from sympy import atan
>>> atan2(y, x).rewrite(atan)
Piecewise((2*atan(y/(x + sqrt(x**2 + y**2))), Ne(y, 0)), (pi, re(x) < 0), (0, Ne(x, 0)), (nan, True))
but note that this form is undefined on the negative real axis.
See Also
========
sin, csc, cos, sec, tan, cot
asin, acsc, acos, asec, atan, acot
References
==========
.. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
.. [2] https://en.wikipedia.org/wiki/Atan2
.. [3] http://functions.wolfram.com/ElementaryFunctions/ArcTan2
"""
@classmethod
def eval(cls, y, x):
from sympy.functions.special.delta_functions import Heaviside
if x is S.NegativeInfinity:
if y.is_zero:
# Special case y = 0 because we define Heaviside(0) = 1/2
return pi
return 2*pi*(Heaviside(re(y))) - pi
elif x is S.Infinity:
return S.Zero
elif x.is_imaginary and y.is_imaginary and x.is_number and y.is_number:
x = im(x)
y = im(y)
if x.is_extended_real and y.is_extended_real:
if x.is_positive:
return atan(y/x)
elif x.is_negative:
if y.is_negative:
return atan(y/x) - pi
elif y.is_nonnegative:
return atan(y/x) + pi
elif x.is_zero:
if y.is_positive:
return pi/2
elif y.is_negative:
return -pi/2
elif y.is_zero:
return S.NaN
if y.is_zero:
if x.is_extended_nonzero:
return pi*(S.One - Heaviside(x))
if x.is_number:
return Piecewise((pi, re(x) < 0),
(0, Ne(x, 0)),
(S.NaN, True))
if x.is_number and y.is_number:
return -S.ImaginaryUnit*log(
(x + S.ImaginaryUnit*y)/sqrt(x**2 + y**2))
def _eval_rewrite_as_log(self, y, x, **kwargs):
return -S.ImaginaryUnit*log((x + S.ImaginaryUnit*y)/sqrt(x**2 + y**2))
def _eval_rewrite_as_atan(self, y, x, **kwargs):
return Piecewise((2*atan(y/(x + sqrt(x**2 + y**2))), Ne(y, 0)),
(pi, re(x) < 0),
(0, Ne(x, 0)),
(S.NaN, True))
def _eval_rewrite_as_arg(self, y, x, **kwargs):
if x.is_extended_real and y.is_extended_real:
return arg_f(x + y*S.ImaginaryUnit)
n = x + S.ImaginaryUnit*y
d = x**2 + y**2
return arg_f(n/sqrt(d)) - S.ImaginaryUnit*log(abs(n)/sqrt(abs(d)))
def _eval_is_extended_real(self):
return self.args[0].is_extended_real and self.args[1].is_extended_real
def _eval_conjugate(self):
return self.func(self.args[0].conjugate(), self.args[1].conjugate())
def fdiff(self, argindex):
y, x = self.args
if argindex == 1:
# Diff wrt y
return x/(x**2 + y**2)
elif argindex == 2:
# Diff wrt x
return -y/(x**2 + y**2)
else:
raise ArgumentIndexError(self, argindex)
def _eval_evalf(self, prec):
y, x = self.args
if x.is_extended_real and y.is_extended_real:
return super()._eval_evalf(prec)
|
5b7f7c9ac1ec5a59780c8c31bd49c6b234ca2390f4fd90982d70b34a20bec9e5 | from itertools import product
from typing import Tuple as tTuple
from sympy.core.add import Add
from sympy.core.cache import cacheit
from sympy.core.expr import Expr
from sympy.core.function import (Function, ArgumentIndexError, expand_log,
expand_mul, FunctionClass, PoleError, expand_multinomial, expand_complex)
from sympy.core.logic import fuzzy_and, fuzzy_not, fuzzy_or
from sympy.core.mul import Mul
from sympy.core.numbers import Integer, Rational, pi, I, ImaginaryUnit
from sympy.core.parameters import global_parameters
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.core.symbol import Wild, Dummy
from sympy.core.sympify import sympify
from sympy.functions.combinatorial.factorials import factorial
from sympy.functions.elementary.complexes import arg, unpolarify, im, re, Abs
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.ntheory import multiplicity, perfect_power
from sympy.ntheory.factor_ import factorint
# NOTE IMPORTANT
# The series expansion code in this file is an important part of the gruntz
# algorithm for determining limits. _eval_nseries has to return a generalized
# power series with coefficients in C(log(x), log).
# In more detail, the result of _eval_nseries(self, x, n) must be
# c_0*x**e_0 + ... (finitely many terms)
# where e_i are numbers (not necessarily integers) and c_i involve only
# numbers, the function log, and log(x). [This also means it must not contain
# log(x(1+p)), this *has* to be expanded to log(x)+log(1+p) if x.is_positive and
# p.is_positive.]
class ExpBase(Function):
unbranched = True
_singularities = (S.ComplexInfinity,)
@property
def kind(self):
return self.exp.kind
def inverse(self, argindex=1):
"""
Returns the inverse function of ``exp(x)``.
"""
return log
def as_numer_denom(self):
"""
Returns this with a positive exponent as a 2-tuple (a fraction).
Examples
========
>>> from sympy import exp
>>> from sympy.abc import x
>>> exp(-x).as_numer_denom()
(1, exp(x))
>>> exp(x).as_numer_denom()
(exp(x), 1)
"""
# this should be the same as Pow.as_numer_denom wrt
# exponent handling
exp = self.exp
neg_exp = exp.is_negative
if not neg_exp and not (-exp).is_negative:
neg_exp = exp.could_extract_minus_sign()
if neg_exp:
return S.One, self.func(-exp)
return self, S.One
@property
def exp(self):
"""
Returns the exponent of the function.
"""
return self.args[0]
def as_base_exp(self):
"""
Returns the 2-tuple (base, exponent).
"""
return self.func(1), Mul(*self.args)
def _eval_adjoint(self):
return self.func(self.exp.adjoint())
def _eval_conjugate(self):
return self.func(self.exp.conjugate())
def _eval_transpose(self):
return self.func(self.exp.transpose())
def _eval_is_finite(self):
arg = self.exp
if arg.is_infinite:
if arg.is_extended_negative:
return True
if arg.is_extended_positive:
return False
if arg.is_finite:
return True
def _eval_is_rational(self):
s = self.func(*self.args)
if s.func == self.func:
z = s.exp.is_zero
if z:
return True
elif s.exp.is_rational and fuzzy_not(z):
return False
else:
return s.is_rational
def _eval_is_zero(self):
return self.exp is S.NegativeInfinity
def _eval_power(self, other):
"""exp(arg)**e -> exp(arg*e) if assumptions allow it.
"""
b, e = self.as_base_exp()
return Pow._eval_power(Pow(b, e, evaluate=False), other)
def _eval_expand_power_exp(self, **hints):
from sympy.concrete.products import Product
from sympy.concrete.summations import Sum
arg = self.args[0]
if arg.is_Add and arg.is_commutative:
return Mul.fromiter(self.func(x) for x in arg.args)
elif isinstance(arg, Sum) and arg.is_commutative:
return Product(self.func(arg.function), *arg.limits)
return self.func(arg)
class exp_polar(ExpBase):
r"""
Represent a *polar number* (see g-function Sphinx documentation).
Explanation
===========
``exp_polar`` represents the function
`Exp: \mathbb{C} \rightarrow \mathcal{S}`, sending the complex number
`z = a + bi` to the polar number `r = exp(a), \theta = b`. It is one of
the main functions to construct polar numbers.
Examples
========
>>> from sympy import exp_polar, pi, I, exp
The main difference is that polar numbers do not "wrap around" at `2 \pi`:
>>> exp(2*pi*I)
1
>>> exp_polar(2*pi*I)
exp_polar(2*I*pi)
apart from that they behave mostly like classical complex numbers:
>>> exp_polar(2)*exp_polar(3)
exp_polar(5)
See Also
========
sympy.simplify.powsimp.powsimp
polar_lift
periodic_argument
principal_branch
"""
is_polar = True
is_comparable = False # cannot be evalf'd
def _eval_Abs(self): # Abs is never a polar number
return exp(re(self.args[0]))
def _eval_evalf(self, prec):
""" Careful! any evalf of polar numbers is flaky """
i = im(self.args[0])
try:
bad = (i <= -pi or i > pi)
except TypeError:
bad = True
if bad:
return self # cannot evalf for this argument
res = exp(self.args[0])._eval_evalf(prec)
if i > 0 and im(res) < 0:
# i ~ pi, but exp(I*i) evaluated to argument slightly bigger than pi
return re(res)
return res
def _eval_power(self, other):
return self.func(self.args[0]*other)
def _eval_is_extended_real(self):
if self.args[0].is_extended_real:
return True
def as_base_exp(self):
# XXX exp_polar(0) is special!
if self.args[0] == 0:
return self, S.One
return ExpBase.as_base_exp(self)
class ExpMeta(FunctionClass):
def __instancecheck__(cls, instance):
if exp in instance.__class__.__mro__:
return True
return isinstance(instance, Pow) and instance.base is S.Exp1
class exp(ExpBase, metaclass=ExpMeta):
"""
The exponential function, :math:`e^x`.
Examples
========
>>> from sympy import exp, I, pi
>>> from sympy.abc import x
>>> exp(x)
exp(x)
>>> exp(x).diff(x)
exp(x)
>>> exp(I*pi)
-1
Parameters
==========
arg : Expr
See Also
========
log
"""
def fdiff(self, argindex=1):
"""
Returns the first derivative of this function.
"""
if argindex == 1:
return self
else:
raise ArgumentIndexError(self, argindex)
def _eval_refine(self, assumptions):
from sympy.assumptions import ask, Q
arg = self.args[0]
if arg.is_Mul:
Ioo = I*S.Infinity
if arg in [Ioo, -Ioo]:
return S.NaN
coeff = arg.as_coefficient(pi*I)
if coeff:
if ask(Q.integer(2*coeff)):
if ask(Q.even(coeff)):
return S.One
elif ask(Q.odd(coeff)):
return S.NegativeOne
elif ask(Q.even(coeff + S.Half)):
return -I
elif ask(Q.odd(coeff + S.Half)):
return I
@classmethod
def eval(cls, arg):
from sympy.calculus import AccumBounds
from sympy.matrices.matrices import MatrixBase
from sympy.sets.setexpr import SetExpr
from sympy.simplify.simplify import logcombine
if isinstance(arg, MatrixBase):
return arg.exp()
elif global_parameters.exp_is_pow:
return Pow(S.Exp1, arg)
elif arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg.is_zero:
return S.One
elif arg is S.One:
return S.Exp1
elif arg is S.Infinity:
return S.Infinity
elif arg is S.NegativeInfinity:
return S.Zero
elif arg is S.ComplexInfinity:
return S.NaN
elif isinstance(arg, log):
return arg.args[0]
elif isinstance(arg, AccumBounds):
return AccumBounds(exp(arg.min), exp(arg.max))
elif isinstance(arg, SetExpr):
return arg._eval_func(cls)
elif arg.is_Mul:
coeff = arg.as_coefficient(pi*I)
if coeff:
if (2*coeff).is_integer:
if coeff.is_even:
return S.One
elif coeff.is_odd:
return S.NegativeOne
elif (coeff + S.Half).is_even:
return -I
elif (coeff + S.Half).is_odd:
return I
elif coeff.is_Rational:
ncoeff = coeff % 2 # restrict to [0, 2pi)
if ncoeff > 1: # restrict to (-pi, pi]
ncoeff -= 2
if ncoeff != coeff:
return cls(ncoeff*pi*I)
# Warning: code in risch.py will be very sensitive to changes
# in this (see DifferentialExtension).
# look for a single log factor
coeff, terms = arg.as_coeff_Mul()
# but it can't be multiplied by oo
if coeff in [S.NegativeInfinity, S.Infinity]:
if terms.is_number:
if coeff is S.NegativeInfinity:
terms = -terms
if re(terms).is_zero and terms is not S.Zero:
return S.NaN
if re(terms).is_positive and im(terms) is not S.Zero:
return S.ComplexInfinity
if re(terms).is_negative:
return S.Zero
return None
coeffs, log_term = [coeff], None
for term in Mul.make_args(terms):
term_ = logcombine(term)
if isinstance(term_, log):
if log_term is None:
log_term = term_.args[0]
else:
return None
elif term.is_comparable:
coeffs.append(term)
else:
return None
return log_term**Mul(*coeffs) if log_term else None
elif arg.is_Add:
out = []
add = []
argchanged = False
for a in arg.args:
if a is S.One:
add.append(a)
continue
newa = cls(a)
if isinstance(newa, cls):
if newa.args[0] != a:
add.append(newa.args[0])
argchanged = True
else:
add.append(a)
else:
out.append(newa)
if out or argchanged:
return Mul(*out)*cls(Add(*add), evaluate=False)
if arg.is_zero:
return S.One
@property
def base(self):
"""
Returns the base of the exponential function.
"""
return S.Exp1
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
"""
Calculates the next term in the Taylor series expansion.
"""
if n < 0:
return S.Zero
if n == 0:
return S.One
x = sympify(x)
if previous_terms:
p = previous_terms[-1]
if p is not None:
return p * x / n
return x**n/factorial(n)
def as_real_imag(self, deep=True, **hints):
"""
Returns this function as a 2-tuple representing a complex number.
Examples
========
>>> from sympy import exp, I
>>> from sympy.abc import x
>>> exp(x).as_real_imag()
(exp(re(x))*cos(im(x)), exp(re(x))*sin(im(x)))
>>> exp(1).as_real_imag()
(E, 0)
>>> exp(I).as_real_imag()
(cos(1), sin(1))
>>> exp(1+I).as_real_imag()
(E*cos(1), E*sin(1))
See Also
========
sympy.functions.elementary.complexes.re
sympy.functions.elementary.complexes.im
"""
from sympy.functions.elementary.trigonometric import cos, sin
re, im = self.args[0].as_real_imag()
if deep:
re = re.expand(deep, **hints)
im = im.expand(deep, **hints)
cos, sin = cos(im), sin(im)
return (exp(re)*cos, exp(re)*sin)
def _eval_subs(self, old, new):
# keep processing of power-like args centralized in Pow
if old.is_Pow: # handle (exp(3*log(x))).subs(x**2, z) -> z**(3/2)
old = exp(old.exp*log(old.base))
elif old is S.Exp1 and new.is_Function:
old = exp
if isinstance(old, exp) or old is S.Exp1:
f = lambda a: Pow(*a.as_base_exp(), evaluate=False) if (
a.is_Pow or isinstance(a, exp)) else a
return Pow._eval_subs(f(self), f(old), new)
if old is exp and not new.is_Function:
return new**self.exp._subs(old, new)
return Function._eval_subs(self, old, new)
def _eval_is_extended_real(self):
if self.args[0].is_extended_real:
return True
elif self.args[0].is_imaginary:
arg2 = -S(2) * I * self.args[0] / pi
return arg2.is_even
def _eval_is_complex(self):
def complex_extended_negative(arg):
yield arg.is_complex
yield arg.is_extended_negative
return fuzzy_or(complex_extended_negative(self.args[0]))
def _eval_is_algebraic(self):
if (self.exp / pi / I).is_rational:
return True
if fuzzy_not(self.exp.is_zero):
if self.exp.is_algebraic:
return False
elif (self.exp / pi).is_rational:
return False
def _eval_is_extended_positive(self):
if self.exp.is_extended_real:
return self.args[0] is not S.NegativeInfinity
elif self.exp.is_imaginary:
arg2 = -I * self.args[0] / pi
return arg2.is_even
def _eval_nseries(self, x, n, logx, cdir=0):
# NOTE Please see the comment at the beginning of this file, labelled
# IMPORTANT.
from sympy.functions.elementary.complexes import sign
from sympy.functions.elementary.integers import ceiling
from sympy.series.limits import limit
from sympy.series.order import Order
from sympy.simplify.powsimp import powsimp
arg = self.exp
arg_series = arg._eval_nseries(x, n=n, logx=logx)
if arg_series.is_Order:
return 1 + arg_series
arg0 = limit(arg_series.removeO(), x, 0)
if arg0 is S.NegativeInfinity:
return Order(x**n, x)
if arg0 is S.Infinity:
return self
# checking for indecisiveness/ sign terms in arg0
if any(isinstance(arg, (sign, ImaginaryUnit)) for arg in arg0.args):
return self
t = Dummy("t")
nterms = n
try:
cf = Order(arg.as_leading_term(x, logx=logx), x).getn()
except (NotImplementedError, PoleError):
cf = 0
if cf and cf > 0:
nterms = ceiling(n/cf)
exp_series = exp(t)._taylor(t, nterms)
r = exp(arg0)*exp_series.subs(t, arg_series - arg0)
rep = {logx: log(x)} if logx is not None else {}
if r.subs(rep) == self:
return r
if cf and cf > 1:
r += Order((arg_series - arg0)**n, x)/x**((cf-1)*n)
else:
r += Order((arg_series - arg0)**n, x)
r = r.expand()
r = powsimp(r, deep=True, combine='exp')
# powsimp may introduce unexpanded (-1)**Rational; see PR #17201
simplerat = lambda x: x.is_Rational and x.q in [3, 4, 6]
w = Wild('w', properties=[simplerat])
r = r.replace(S.NegativeOne**w, expand_complex(S.NegativeOne**w))
return r
def _taylor(self, x, n):
l = []
g = None
for i in range(n):
g = self.taylor_term(i, self.args[0], g)
g = g.nseries(x, n=n)
l.append(g.removeO())
return Add(*l)
def _eval_as_leading_term(self, x, logx=None, cdir=0):
from sympy.calculus.util import AccumBounds
arg = self.args[0].cancel().as_leading_term(x, logx=logx)
arg0 = arg.subs(x, 0)
if arg is S.NaN:
return S.NaN
if isinstance(arg0, AccumBounds):
# This check addresses a corner case involving AccumBounds.
# if isinstance(arg, AccumBounds) is True, then arg0 can either be 0,
# AccumBounds(-oo, 0) or AccumBounds(-oo, oo).
# Check out function: test_issue_18473() in test_exponential.py and
# test_limits.py for more information.
if re(cdir) < S.Zero:
return exp(-arg0)
return exp(arg0)
if arg0 is S.NaN:
arg0 = arg.limit(x, 0)
if arg0.is_infinite is False:
return exp(arg0)
raise PoleError("Cannot expand %s around 0" % (self))
def _eval_rewrite_as_sin(self, arg, **kwargs):
from sympy.functions.elementary.trigonometric import sin
return sin(I*arg + pi/2) - I*sin(I*arg)
def _eval_rewrite_as_cos(self, arg, **kwargs):
from sympy.functions.elementary.trigonometric import cos
return cos(I*arg) + I*cos(I*arg + pi/2)
def _eval_rewrite_as_tanh(self, arg, **kwargs):
from sympy.functions.elementary.hyperbolic import tanh
return (1 + tanh(arg/2))/(1 - tanh(arg/2))
def _eval_rewrite_as_sqrt(self, arg, **kwargs):
from sympy.functions.elementary.trigonometric import sin, cos
if arg.is_Mul:
coeff = arg.coeff(pi*I)
if coeff and coeff.is_number:
cosine, sine = cos(pi*coeff), sin(pi*coeff)
if not isinstance(cosine, cos) and not isinstance (sine, sin):
return cosine + I*sine
def _eval_rewrite_as_Pow(self, arg, **kwargs):
if arg.is_Mul:
logs = [a for a in arg.args if isinstance(a, log) and len(a.args) == 1]
if logs:
return Pow(logs[0].args[0], arg.coeff(logs[0]))
def match_real_imag(expr):
r"""
Try to match expr with $a + Ib$ for real $a$ and $b$.
``match_real_imag`` returns a tuple containing the real and imaginary
parts of expr or ``(None, None)`` if direct matching is not possible. Contrary
to :func:`~.re()`, :func:`~.im()``, and ``as_real_imag()``, this helper will not force things
by returning expressions themselves containing ``re()`` or ``im()`` and it
does not expand its argument either.
"""
r_, i_ = expr.as_independent(I, as_Add=True)
if i_ == 0 and r_.is_real:
return (r_, i_)
i_ = i_.as_coefficient(I)
if i_ and i_.is_real and r_.is_real:
return (r_, i_)
else:
return (None, None) # simpler to check for than None
class log(Function):
r"""
The natural logarithm function `\ln(x)` or `\log(x)`.
Explanation
===========
Logarithms are taken with the natural base, `e`. To get
a logarithm of a different base ``b``, use ``log(x, b)``,
which is essentially short-hand for ``log(x)/log(b)``.
``log`` represents the principal branch of the natural
logarithm. As such it has a branch cut along the negative
real axis and returns values having a complex argument in
`(-\pi, \pi]`.
Examples
========
>>> from sympy import log, sqrt, S, I
>>> log(8, 2)
3
>>> log(S(8)/3, 2)
-log(3)/log(2) + 3
>>> log(-1 + I*sqrt(3))
log(2) + 2*I*pi/3
See Also
========
exp
"""
args: tTuple[Expr]
_singularities = (S.Zero, S.ComplexInfinity)
def fdiff(self, argindex=1):
"""
Returns the first derivative of the function.
"""
if argindex == 1:
return 1/self.args[0]
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
r"""
Returns `e^x`, the inverse function of `\log(x)`.
"""
return exp
@classmethod
def eval(cls, arg, base=None):
from sympy.calculus import AccumBounds
from sympy.sets.setexpr import SetExpr
arg = sympify(arg)
if base is not None:
base = sympify(base)
if base == 1:
if arg == 1:
return S.NaN
else:
return S.ComplexInfinity
try:
# handle extraction of powers of the base now
# or else expand_log in Mul would have to handle this
n = multiplicity(base, arg)
if n:
return n + log(arg / base**n) / log(base)
else:
return log(arg)/log(base)
except ValueError:
pass
if base is not S.Exp1:
return cls(arg)/cls(base)
else:
return cls(arg)
if arg.is_Number:
if arg.is_zero:
return S.ComplexInfinity
elif arg is S.One:
return S.Zero
elif arg is S.Infinity:
return S.Infinity
elif arg is S.NegativeInfinity:
return S.Infinity
elif arg is S.NaN:
return S.NaN
elif arg.is_Rational and arg.p == 1:
return -cls(arg.q)
if arg.is_Pow and arg.base is S.Exp1 and arg.exp.is_extended_real:
return arg.exp
if isinstance(arg, exp) and arg.exp.is_extended_real:
return arg.exp
elif isinstance(arg, exp) and arg.exp.is_number:
r_, i_ = match_real_imag(arg.exp)
if i_ and i_.is_comparable:
i_ %= 2*pi
if i_ > pi:
i_ -= 2*pi
return r_ + expand_mul(i_ * I, deep=False)
elif isinstance(arg, exp_polar):
return unpolarify(arg.exp)
elif isinstance(arg, AccumBounds):
if arg.min.is_positive:
return AccumBounds(log(arg.min), log(arg.max))
elif arg.min.is_zero:
return AccumBounds(S.NegativeInfinity, log(arg.max))
else:
return S.NaN
elif isinstance(arg, SetExpr):
return arg._eval_func(cls)
if arg.is_number:
if arg.is_negative:
return pi * I + cls(-arg)
elif arg is S.ComplexInfinity:
return S.ComplexInfinity
elif arg is S.Exp1:
return S.One
if arg.is_zero:
return S.ComplexInfinity
# don't autoexpand Pow or Mul (see the issue 3351):
if not arg.is_Add:
coeff = arg.as_coefficient(I)
if coeff is not None:
if coeff is S.Infinity:
return S.Infinity
elif coeff is S.NegativeInfinity:
return S.Infinity
elif coeff.is_Rational:
if coeff.is_nonnegative:
return pi * I * S.Half + cls(coeff)
else:
return -pi * I * S.Half + cls(-coeff)
if arg.is_number and arg.is_algebraic:
# Match arg = coeff*(r_ + i_*I) with coeff>0, r_ and i_ real.
coeff, arg_ = arg.as_independent(I, as_Add=False)
if coeff.is_negative:
coeff *= -1
arg_ *= -1
arg_ = expand_mul(arg_, deep=False)
r_, i_ = arg_.as_independent(I, as_Add=True)
i_ = i_.as_coefficient(I)
if coeff.is_real and i_ and i_.is_real and r_.is_real:
if r_.is_zero:
if i_.is_positive:
return pi * I * S.Half + cls(coeff * i_)
elif i_.is_negative:
return -pi * I * S.Half + cls(coeff * -i_)
else:
from sympy.simplify import ratsimp
# Check for arguments involving rational multiples of pi
t = (i_/r_).cancel()
t1 = (-t).cancel()
atan_table = _log_atan_table()
if t in atan_table:
modulus = ratsimp(coeff * Abs(arg_))
if r_.is_positive:
return cls(modulus) + I * atan_table[t]
else:
return cls(modulus) + I * (atan_table[t] - pi)
elif t1 in atan_table:
modulus = ratsimp(coeff * Abs(arg_))
if r_.is_positive:
return cls(modulus) + I * (-atan_table[t1])
else:
return cls(modulus) + I * (pi - atan_table[t1])
def as_base_exp(self):
"""
Returns this function in the form (base, exponent).
"""
return self, S.One
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms): # of log(1+x)
r"""
Returns the next term in the Taylor series expansion of `\log(1+x)`.
"""
from sympy.simplify.powsimp import powsimp
if n < 0:
return S.Zero
x = sympify(x)
if n == 0:
return x
if previous_terms:
p = previous_terms[-1]
if p is not None:
return powsimp((-n) * p * x / (n + 1), deep=True, combine='exp')
return (1 - 2*(n % 2)) * x**(n + 1)/(n + 1)
def _eval_expand_log(self, deep=True, **hints):
from sympy.concrete import Sum, Product
force = hints.get('force', False)
factor = hints.get('factor', False)
if (len(self.args) == 2):
return expand_log(self.func(*self.args), deep=deep, force=force)
arg = self.args[0]
if arg.is_Integer:
# remove perfect powers
p = perfect_power(arg)
logarg = None
coeff = 1
if p is not False:
arg, coeff = p
logarg = self.func(arg)
# expand as product of its prime factors if factor=True
if factor:
p = factorint(arg)
if arg not in p.keys():
logarg = sum(n*log(val) for val, n in p.items())
if logarg is not None:
return coeff*logarg
elif arg.is_Rational:
return log(arg.p) - log(arg.q)
elif arg.is_Mul:
expr = []
nonpos = []
for x in arg.args:
if force or x.is_positive or x.is_polar:
a = self.func(x)
if isinstance(a, log):
expr.append(self.func(x)._eval_expand_log(**hints))
else:
expr.append(a)
elif x.is_negative:
a = self.func(-x)
expr.append(a)
nonpos.append(S.NegativeOne)
else:
nonpos.append(x)
return Add(*expr) + log(Mul(*nonpos))
elif arg.is_Pow or isinstance(arg, exp):
if force or (arg.exp.is_extended_real and (arg.base.is_positive or ((arg.exp+1)
.is_positive and (arg.exp-1).is_nonpositive))) or arg.base.is_polar:
b = arg.base
e = arg.exp
a = self.func(b)
if isinstance(a, log):
return unpolarify(e) * a._eval_expand_log(**hints)
else:
return unpolarify(e) * a
elif isinstance(arg, Product):
if force or arg.function.is_positive:
return Sum(log(arg.function), *arg.limits)
return self.func(arg)
def _eval_simplify(self, **kwargs):
from sympy.simplify.simplify import expand_log, simplify, inversecombine
if len(self.args) == 2: # it's unevaluated
return simplify(self.func(*self.args), **kwargs)
expr = self.func(simplify(self.args[0], **kwargs))
if kwargs['inverse']:
expr = inversecombine(expr)
expr = expand_log(expr, deep=True)
return min([expr, self], key=kwargs['measure'])
def as_real_imag(self, deep=True, **hints):
"""
Returns this function as a complex coordinate.
Examples
========
>>> from sympy import I, log
>>> from sympy.abc import x
>>> log(x).as_real_imag()
(log(Abs(x)), arg(x))
>>> log(I).as_real_imag()
(0, pi/2)
>>> log(1 + I).as_real_imag()
(log(sqrt(2)), pi/4)
>>> log(I*x).as_real_imag()
(log(Abs(x)), arg(I*x))
"""
sarg = self.args[0]
if deep:
sarg = self.args[0].expand(deep, **hints)
sarg_abs = Abs(sarg)
if sarg_abs == sarg:
return self, S.Zero
sarg_arg = arg(sarg)
if hints.get('log', False): # Expand the log
hints['complex'] = False
return (log(sarg_abs).expand(deep, **hints), sarg_arg)
else:
return log(sarg_abs), sarg_arg
def _eval_is_rational(self):
s = self.func(*self.args)
if s.func == self.func:
if (self.args[0] - 1).is_zero:
return True
if s.args[0].is_rational and fuzzy_not((self.args[0] - 1).is_zero):
return False
else:
return s.is_rational
def _eval_is_algebraic(self):
s = self.func(*self.args)
if s.func == self.func:
if (self.args[0] - 1).is_zero:
return True
elif fuzzy_not((self.args[0] - 1).is_zero):
if self.args[0].is_algebraic:
return False
else:
return s.is_algebraic
def _eval_is_extended_real(self):
return self.args[0].is_extended_positive
def _eval_is_complex(self):
z = self.args[0]
return fuzzy_and([z.is_complex, fuzzy_not(z.is_zero)])
def _eval_is_finite(self):
arg = self.args[0]
if arg.is_zero:
return False
return arg.is_finite
def _eval_is_extended_positive(self):
return (self.args[0] - 1).is_extended_positive
def _eval_is_zero(self):
return (self.args[0] - 1).is_zero
def _eval_is_extended_nonnegative(self):
return (self.args[0] - 1).is_extended_nonnegative
def _eval_nseries(self, x, n, logx, cdir=0):
# NOTE Please see the comment at the beginning of this file, labelled
# IMPORTANT.
from sympy.series.order import Order
from sympy.simplify.simplify import logcombine
from sympy.core.symbol import Dummy
if self.args[0] == x:
return log(x) if logx is None else logx
arg = self.args[0]
t = Dummy('t', positive=True)
if cdir == 0:
cdir = 1
z = arg.subs(x, cdir*t)
k, l = Wild("k"), Wild("l")
r = z.match(k*t**l)
if r is not None:
k, l = r[k], r[l]
if l != 0 and not l.has(t) and not k.has(t):
r = l*log(x) if logx is None else l*logx
r += log(k) - l*log(cdir) # XXX true regardless of assumptions?
return r
def coeff_exp(term, x):
coeff, exp = S.One, S.Zero
for factor in Mul.make_args(term):
if factor.has(x):
base, exp = factor.as_base_exp()
if base != x:
try:
return term.leadterm(x)
except ValueError:
return term, S.Zero
else:
coeff *= factor
return coeff, exp
# TODO new and probably slow
try:
a, b = z.leadterm(t, logx=logx, cdir=1)
except (ValueError, NotImplementedError, PoleError):
s = z._eval_nseries(t, n=n, logx=logx, cdir=1)
while s.is_Order:
n += 1
s = z._eval_nseries(t, n=n, logx=logx, cdir=1)
try:
a, b = s.removeO().leadterm(t, cdir=1)
except ValueError:
a, b = s.removeO().as_leading_term(t, cdir=1), S.Zero
p = (z/(a*t**b) - 1)._eval_nseries(t, n=n, logx=logx, cdir=1)
if p.has(exp):
p = logcombine(p)
if isinstance(p, Order):
n = p.getn()
_, d = coeff_exp(p, t)
logx = log(x) if logx is None else logx
if not d.is_positive:
res = log(a) - b*log(cdir) + b*logx
_res = res
logflags = dict(deep=True, log=True, mul=False, power_exp=False,
power_base=False, multinomial=False, basic=False, force=True,
factor=False)
expr = self.expand(**logflags)
if (not a.could_extract_minus_sign() and
logx.could_extract_minus_sign()):
_res = _res.subs(-logx, -log(x)).expand(**logflags)
else:
_res = _res.subs(logx, log(x)).expand(**logflags)
if _res == expr:
return res
return res + Order(x**n, x)
def mul(d1, d2):
res = {}
for e1, e2 in product(d1, d2):
ex = e1 + e2
if ex < n:
res[ex] = res.get(ex, S.Zero) + d1[e1]*d2[e2]
return res
pterms = {}
for term in Add.make_args(p.removeO()):
co1, e1 = coeff_exp(term, t)
pterms[e1] = pterms.get(e1, S.Zero) + co1
k = S.One
terms = {}
pk = pterms
while k*d < n:
coeff = -S.NegativeOne**k/k
for ex in pk:
_ = terms.get(ex, S.Zero) + coeff*pk[ex]
terms[ex] = _.nsimplify()
pk = mul(pk, pterms)
k += S.One
res = log(a) - b*log(cdir) + b*logx
for ex in terms:
res += terms[ex]*t**(ex)
if a.is_negative and im(z) != 0:
from sympy.functions.special.delta_functions import Heaviside
for i, term in enumerate(z.lseries(t)):
if not term.is_real or i == 5:
break
if i < 5:
coeff, _ = term.as_coeff_exponent(t)
res += -2*I*pi*Heaviside(-im(coeff), 0)
res = res.subs(t, x/cdir)
return res + Order(x**n, x)
def _eval_as_leading_term(self, x, logx=None, cdir=0):
# NOTE
# Refer https://github.com/sympy/sympy/pull/23592 for more information
# on each of the following steps involved in this method.
arg0 = self.args[0].together()
# STEP 1
t = Dummy('t', positive=True)
if cdir == 0:
cdir = 1
z = arg0.subs(x, cdir*t)
# STEP 2
try:
c, e = z.leadterm(t, logx=logx, cdir=1)
except ValueError:
arg = arg0.as_leading_term(x, logx=logx, cdir=cdir)
return log(arg)
if c.has(t):
c = c.subs(t, x/cdir)
if e != 0:
raise PoleError("Cannot expand %s around 0" % (self))
return log(c)
# STEP 3
if c == S.One and e == S.Zero:
return (arg0 - S.One).as_leading_term(x, logx=logx)
# STEP 4
res = log(c) - e*log(cdir)
logx = log(x) if logx is None else logx
res += e*logx
# STEP 5
if c.is_negative and im(z) != 0:
from sympy.functions.special.delta_functions import Heaviside
for i, term in enumerate(z.lseries(t)):
if not term.is_real or i == 5:
break
if i < 5:
coeff, _ = term.as_coeff_exponent(t)
res += -2*I*pi*Heaviside(-im(coeff), 0)
return res
class LambertW(Function):
r"""
The Lambert W function $W(z)$ is defined as the inverse
function of $w \exp(w)$ [1]_.
Explanation
===========
In other words, the value of $W(z)$ is such that $z = W(z) \exp(W(z))$
for any complex number $z$. The Lambert W function is a multivalued
function with infinitely many branches $W_k(z)$, indexed by
$k \in \mathbb{Z}$. Each branch gives a different solution $w$
of the equation $z = w \exp(w)$.
The Lambert W function has two partially real branches: the
principal branch ($k = 0$) is real for real $z > -1/e$, and the
$k = -1$ branch is real for $-1/e < z < 0$. All branches except
$k = 0$ have a logarithmic singularity at $z = 0$.
Examples
========
>>> from sympy import LambertW
>>> LambertW(1.2)
0.635564016364870
>>> LambertW(1.2, -1).n()
-1.34747534407696 - 4.41624341514535*I
>>> LambertW(-1).is_real
False
References
==========
.. [1] https://en.wikipedia.org/wiki/Lambert_W_function
"""
_singularities = (-Pow(S.Exp1, -1, evaluate=False), S.ComplexInfinity)
@classmethod
def eval(cls, x, k=None):
if k == S.Zero:
return cls(x)
elif k is None:
k = S.Zero
if k.is_zero:
if x.is_zero:
return S.Zero
if x is S.Exp1:
return S.One
if x == -1/S.Exp1:
return S.NegativeOne
if x == -log(2)/2:
return -log(2)
if x == 2*log(2):
return log(2)
if x == -pi/2:
return I*pi/2
if x == exp(1 + S.Exp1):
return S.Exp1
if x is S.Infinity:
return S.Infinity
if x.is_zero:
return S.Zero
if fuzzy_not(k.is_zero):
if x.is_zero:
return S.NegativeInfinity
if k is S.NegativeOne:
if x == -pi/2:
return -I*pi/2
elif x == -1/S.Exp1:
return S.NegativeOne
elif x == -2*exp(-2):
return -Integer(2)
def fdiff(self, argindex=1):
"""
Return the first derivative of this function.
"""
x = self.args[0]
if len(self.args) == 1:
if argindex == 1:
return LambertW(x)/(x*(1 + LambertW(x)))
else:
k = self.args[1]
if argindex == 1:
return LambertW(x, k)/(x*(1 + LambertW(x, k)))
raise ArgumentIndexError(self, argindex)
def _eval_is_extended_real(self):
x = self.args[0]
if len(self.args) == 1:
k = S.Zero
else:
k = self.args[1]
if k.is_zero:
if (x + 1/S.Exp1).is_positive:
return True
elif (x + 1/S.Exp1).is_nonpositive:
return False
elif (k + 1).is_zero:
if x.is_negative and (x + 1/S.Exp1).is_positive:
return True
elif x.is_nonpositive or (x + 1/S.Exp1).is_nonnegative:
return False
elif fuzzy_not(k.is_zero) and fuzzy_not((k + 1).is_zero):
if x.is_extended_real:
return False
def _eval_is_finite(self):
return self.args[0].is_finite
def _eval_is_algebraic(self):
s = self.func(*self.args)
if s.func == self.func:
if fuzzy_not(self.args[0].is_zero) and self.args[0].is_algebraic:
return False
else:
return s.is_algebraic
def _eval_as_leading_term(self, x, logx=None, cdir=0):
if len(self.args) == 1:
arg = self.args[0]
arg0 = arg.subs(x, 0).cancel()
if not arg0.is_zero:
return self.func(arg0)
return arg.as_leading_term(x)
def _eval_nseries(self, x, n, logx, cdir=0):
if len(self.args) == 1:
from sympy.functions.elementary.integers import ceiling
from sympy.series.order import Order
arg = self.args[0].nseries(x, n=n, logx=logx)
lt = arg.as_leading_term(x, logx=logx)
lte = 1
if lt.is_Pow:
lte = lt.exp
if ceiling(n/lte) >= 1:
s = Add(*[(-S.One)**(k - 1)*Integer(k)**(k - 2)/
factorial(k - 1)*arg**k for k in range(1, ceiling(n/lte))])
s = expand_multinomial(s)
else:
s = S.Zero
return s + Order(x**n, x)
return super()._eval_nseries(x, n, logx)
def _eval_is_zero(self):
x = self.args[0]
if len(self.args) == 1:
return x.is_zero
else:
return fuzzy_and([x.is_zero, self.args[1].is_zero])
@cacheit
def _log_atan_table():
return {
# first quadrant only
sqrt(3): pi / 3,
1: pi / 4,
sqrt(5 - 2 * sqrt(5)): pi / 5,
sqrt(2) * sqrt(5 - sqrt(5)) / (1 + sqrt(5)): pi / 5,
sqrt(5 + 2 * sqrt(5)): pi * Rational(2, 5),
sqrt(2) * sqrt(sqrt(5) + 5) / (-1 + sqrt(5)): pi * Rational(2, 5),
sqrt(3) / 3: pi / 6,
sqrt(2) - 1: pi / 8,
sqrt(2 - sqrt(2)) / sqrt(sqrt(2) + 2): pi / 8,
sqrt(2) + 1: pi * Rational(3, 8),
sqrt(sqrt(2) + 2) / sqrt(2 - sqrt(2)): pi * Rational(3, 8),
sqrt(1 - 2 * sqrt(5) / 5): pi / 10,
(-sqrt(2) + sqrt(10)) / (2 * sqrt(sqrt(5) + 5)): pi / 10,
sqrt(1 + 2 * sqrt(5) / 5): pi * Rational(3, 10),
(sqrt(2) + sqrt(10)) / (2 * sqrt(5 - sqrt(5))): pi * Rational(3, 10),
2 - sqrt(3): pi / 12,
(-1 + sqrt(3)) / (1 + sqrt(3)): pi / 12,
2 + sqrt(3): pi * Rational(5, 12),
(1 + sqrt(3)) / (-1 + sqrt(3)): pi * Rational(5, 12)
}
|
e7335d8395bbd63b4ad99ec506a81da1aa58638236b4ebdf5661a279e10598ef | from sympy.core import S, sympify, cacheit
from sympy.core.add import Add
from sympy.core.function import Function, ArgumentIndexError
from sympy.core.logic import fuzzy_or, fuzzy_and, FuzzyBool
from sympy.core.numbers import I, pi, Rational
from sympy.core.symbol import Dummy
from sympy.functions.combinatorial.factorials import (binomial, factorial,
RisingFactorial)
from sympy.functions.combinatorial.numbers import bernoulli, euler, nC
from sympy.functions.elementary.complexes import Abs, im, re
from sympy.functions.elementary.exponential import exp, log, match_real_imag
from sympy.functions.elementary.integers import floor
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (
acos, acot, asin, atan, cos, cot, csc, sec, sin, tan,
_imaginary_unit_as_coefficient)
from sympy.polys.specialpolys import symmetric_poly
def _rewrite_hyperbolics_as_exp(expr):
return expr.xreplace({h: h.rewrite(exp)
for h in expr.atoms(HyperbolicFunction)})
@cacheit
def _acosh_table():
return {
I: log(I*(1 + sqrt(2))),
-I: log(-I*(1 + sqrt(2))),
S.Half: pi/3,
Rational(-1, 2): pi*Rational(2, 3),
sqrt(2)/2: pi/4,
-sqrt(2)/2: pi*Rational(3, 4),
1/sqrt(2): pi/4,
-1/sqrt(2): pi*Rational(3, 4),
sqrt(3)/2: pi/6,
-sqrt(3)/2: pi*Rational(5, 6),
(sqrt(3) - 1)/sqrt(2**3): pi*Rational(5, 12),
-(sqrt(3) - 1)/sqrt(2**3): pi*Rational(7, 12),
sqrt(2 + sqrt(2))/2: pi/8,
-sqrt(2 + sqrt(2))/2: pi*Rational(7, 8),
sqrt(2 - sqrt(2))/2: pi*Rational(3, 8),
-sqrt(2 - sqrt(2))/2: pi*Rational(5, 8),
(1 + sqrt(3))/(2*sqrt(2)): pi/12,
-(1 + sqrt(3))/(2*sqrt(2)): pi*Rational(11, 12),
(sqrt(5) + 1)/4: pi/5,
-(sqrt(5) + 1)/4: pi*Rational(4, 5)
}
@cacheit
def _acsch_table():
return {
I: -pi / 2,
I*(sqrt(2) + sqrt(6)): -pi / 12,
I*(1 + sqrt(5)): -pi / 10,
I*2 / sqrt(2 - sqrt(2)): -pi / 8,
I*2: -pi / 6,
I*sqrt(2 + 2/sqrt(5)): -pi / 5,
I*sqrt(2): -pi / 4,
I*(sqrt(5)-1): -3*pi / 10,
I*2 / sqrt(3): -pi / 3,
I*2 / sqrt(2 + sqrt(2)): -3*pi / 8,
I*sqrt(2 - 2/sqrt(5)): -2*pi / 5,
I*(sqrt(6) - sqrt(2)): -5*pi / 12,
S(2): -I*log((1+sqrt(5))/2),
}
@cacheit
def _asech_table():
return {
I: - (pi*I / 2) + log(1 + sqrt(2)),
-I: (pi*I / 2) + log(1 + sqrt(2)),
(sqrt(6) - sqrt(2)): pi / 12,
(sqrt(2) - sqrt(6)): 11*pi / 12,
sqrt(2 - 2/sqrt(5)): pi / 10,
-sqrt(2 - 2/sqrt(5)): 9*pi / 10,
2 / sqrt(2 + sqrt(2)): pi / 8,
-2 / sqrt(2 + sqrt(2)): 7*pi / 8,
2 / sqrt(3): pi / 6,
-2 / sqrt(3): 5*pi / 6,
(sqrt(5) - 1): pi / 5,
(1 - sqrt(5)): 4*pi / 5,
sqrt(2): pi / 4,
-sqrt(2): 3*pi / 4,
sqrt(2 + 2/sqrt(5)): 3*pi / 10,
-sqrt(2 + 2/sqrt(5)): 7*pi / 10,
S(2): pi / 3,
-S(2): 2*pi / 3,
sqrt(2*(2 + sqrt(2))): 3*pi / 8,
-sqrt(2*(2 + sqrt(2))): 5*pi / 8,
(1 + sqrt(5)): 2*pi / 5,
(-1 - sqrt(5)): 3*pi / 5,
(sqrt(6) + sqrt(2)): 5*pi / 12,
(-sqrt(6) - sqrt(2)): 7*pi / 12,
I*S.Infinity: -pi*I / 2,
I*S.NegativeInfinity: pi*I / 2,
}
###############################################################################
########################### HYPERBOLIC FUNCTIONS ##############################
###############################################################################
class HyperbolicFunction(Function):
"""
Base class for hyperbolic functions.
See Also
========
sinh, cosh, tanh, coth
"""
unbranched = True
def _peeloff_ipi(arg):
r"""
Split ARG into two parts, a "rest" and a multiple of $I\pi$.
This assumes ARG to be an ``Add``.
The multiple of $I\pi$ returned in the second position is always a ``Rational``.
Examples
========
>>> from sympy.functions.elementary.hyperbolic import _peeloff_ipi as peel
>>> from sympy import pi, I
>>> from sympy.abc import x, y
>>> peel(x + I*pi/2)
(x, 1/2)
>>> peel(x + I*2*pi/3 + I*pi*y)
(x + I*pi*y + I*pi/6, 1/2)
"""
ipi = pi*I
for a in Add.make_args(arg):
if a == ipi:
K = S.One
break
elif a.is_Mul:
K, p = a.as_two_terms()
if p == ipi and K.is_Rational:
break
else:
return arg, S.Zero
m1 = (K % S.Half)
m2 = K - m1
return arg - m2*ipi, m2
class sinh(HyperbolicFunction):
r"""
``sinh(x)`` is the hyperbolic sine of ``x``.
The hyperbolic sine function is $\frac{e^x - e^{-x}}{2}$.
Examples
========
>>> from sympy import sinh
>>> from sympy.abc import x
>>> sinh(x)
sinh(x)
See Also
========
cosh, tanh, asinh
"""
def fdiff(self, argindex=1):
"""
Returns the first derivative of this function.
"""
if argindex == 1:
return cosh(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return asinh
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Infinity
elif arg is S.NegativeInfinity:
return S.NegativeInfinity
elif arg.is_zero:
return S.Zero
elif arg.is_negative:
return -cls(-arg)
else:
if arg is S.ComplexInfinity:
return S.NaN
i_coeff = _imaginary_unit_as_coefficient(arg)
if i_coeff is not None:
return I * sin(i_coeff)
else:
if arg.could_extract_minus_sign():
return -cls(-arg)
if arg.is_Add:
x, m = _peeloff_ipi(arg)
if m:
m = m*pi*I
return sinh(m)*cosh(x) + cosh(m)*sinh(x)
if arg.is_zero:
return S.Zero
if arg.func == asinh:
return arg.args[0]
if arg.func == acosh:
x = arg.args[0]
return sqrt(x - 1) * sqrt(x + 1)
if arg.func == atanh:
x = arg.args[0]
return x/sqrt(1 - x**2)
if arg.func == acoth:
x = arg.args[0]
return 1/(sqrt(x - 1) * sqrt(x + 1))
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
"""
Returns the next term in the Taylor series expansion.
"""
if n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) > 2:
p = previous_terms[-2]
return p * x**2 / (n*(n - 1))
else:
return x**(n) / factorial(n)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
"""
Returns this function as a complex coordinate.
"""
if self.args[0].is_extended_real:
if deep:
hints['complex'] = False
return (self.expand(deep, **hints), S.Zero)
else:
return (self, S.Zero)
if deep:
re, im = self.args[0].expand(deep, **hints).as_real_imag()
else:
re, im = self.args[0].as_real_imag()
return (sinh(re)*cos(im), cosh(re)*sin(im))
def _eval_expand_complex(self, deep=True, **hints):
re_part, im_part = self.as_real_imag(deep=deep, **hints)
return re_part + im_part*I
def _eval_expand_trig(self, deep=True, **hints):
if deep:
arg = self.args[0].expand(deep, **hints)
else:
arg = self.args[0]
x = None
if arg.is_Add: # TODO, implement more if deep stuff here
x, y = arg.as_two_terms()
else:
coeff, terms = arg.as_coeff_Mul(rational=True)
if coeff is not S.One and coeff.is_Integer and terms is not S.One:
x = terms
y = (coeff - 1)*x
if x is not None:
return (sinh(x)*cosh(y) + sinh(y)*cosh(x)).expand(trig=True)
return sinh(arg)
def _eval_rewrite_as_tractable(self, arg, limitvar=None, **kwargs):
return (exp(arg) - exp(-arg)) / 2
def _eval_rewrite_as_exp(self, arg, **kwargs):
return (exp(arg) - exp(-arg)) / 2
def _eval_rewrite_as_sin(self, arg, **kwargs):
return -I * sin(I * arg)
def _eval_rewrite_as_csc(self, arg, **kwargs):
return -I / csc(I * arg)
def _eval_rewrite_as_cosh(self, arg, **kwargs):
return -I*cosh(arg + pi*I/2)
def _eval_rewrite_as_tanh(self, arg, **kwargs):
tanh_half = tanh(S.Half*arg)
return 2*tanh_half/(1 - tanh_half**2)
def _eval_rewrite_as_coth(self, arg, **kwargs):
coth_half = coth(S.Half*arg)
return 2*coth_half/(coth_half**2 - 1)
def _eval_rewrite_as_csch(self, arg, **kwargs):
return 1 / csch(arg)
def _eval_as_leading_term(self, x, logx=None, cdir=0):
arg = self.args[0].as_leading_term(x, logx=logx, cdir=cdir)
arg0 = arg.subs(x, 0)
if arg0 is S.NaN:
arg0 = arg.limit(x, 0, dir='-' if cdir.is_negative else '+')
if arg0.is_zero:
return arg
elif arg0.is_finite:
return self.func(arg0)
else:
return self
def _eval_is_real(self):
arg = self.args[0]
if arg.is_real:
return True
# if `im` is of the form n*pi
# else, check if it is a number
re, im = arg.as_real_imag()
return (im%pi).is_zero
def _eval_is_extended_real(self):
if self.args[0].is_extended_real:
return True
def _eval_is_positive(self):
if self.args[0].is_extended_real:
return self.args[0].is_positive
def _eval_is_negative(self):
if self.args[0].is_extended_real:
return self.args[0].is_negative
def _eval_is_finite(self):
arg = self.args[0]
return arg.is_finite
def _eval_is_zero(self):
rest, ipi_mult = _peeloff_ipi(self.args[0])
if rest.is_zero:
return ipi_mult.is_integer
class cosh(HyperbolicFunction):
r"""
``cosh(x)`` is the hyperbolic cosine of ``x``.
The hyperbolic cosine function is $\frac{e^x + e^{-x}}{2}$.
Examples
========
>>> from sympy import cosh
>>> from sympy.abc import x
>>> cosh(x)
cosh(x)
See Also
========
sinh, tanh, acosh
"""
def fdiff(self, argindex=1):
if argindex == 1:
return sinh(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
from sympy.functions.elementary.trigonometric import cos
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Infinity
elif arg is S.NegativeInfinity:
return S.Infinity
elif arg.is_zero:
return S.One
elif arg.is_negative:
return cls(-arg)
else:
if arg is S.ComplexInfinity:
return S.NaN
i_coeff = _imaginary_unit_as_coefficient(arg)
if i_coeff is not None:
return cos(i_coeff)
else:
if arg.could_extract_minus_sign():
return cls(-arg)
if arg.is_Add:
x, m = _peeloff_ipi(arg)
if m:
m = m*pi*I
return cosh(m)*cosh(x) + sinh(m)*sinh(x)
if arg.is_zero:
return S.One
if arg.func == asinh:
return sqrt(1 + arg.args[0]**2)
if arg.func == acosh:
return arg.args[0]
if arg.func == atanh:
return 1/sqrt(1 - arg.args[0]**2)
if arg.func == acoth:
x = arg.args[0]
return x/(sqrt(x - 1) * sqrt(x + 1))
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 1:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) > 2:
p = previous_terms[-2]
return p * x**2 / (n*(n - 1))
else:
return x**(n)/factorial(n)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
if self.args[0].is_extended_real:
if deep:
hints['complex'] = False
return (self.expand(deep, **hints), S.Zero)
else:
return (self, S.Zero)
if deep:
re, im = self.args[0].expand(deep, **hints).as_real_imag()
else:
re, im = self.args[0].as_real_imag()
return (cosh(re)*cos(im), sinh(re)*sin(im))
def _eval_expand_complex(self, deep=True, **hints):
re_part, im_part = self.as_real_imag(deep=deep, **hints)
return re_part + im_part*I
def _eval_expand_trig(self, deep=True, **hints):
if deep:
arg = self.args[0].expand(deep, **hints)
else:
arg = self.args[0]
x = None
if arg.is_Add: # TODO, implement more if deep stuff here
x, y = arg.as_two_terms()
else:
coeff, terms = arg.as_coeff_Mul(rational=True)
if coeff is not S.One and coeff.is_Integer and terms is not S.One:
x = terms
y = (coeff - 1)*x
if x is not None:
return (cosh(x)*cosh(y) + sinh(x)*sinh(y)).expand(trig=True)
return cosh(arg)
def _eval_rewrite_as_tractable(self, arg, limitvar=None, **kwargs):
return (exp(arg) + exp(-arg)) / 2
def _eval_rewrite_as_exp(self, arg, **kwargs):
return (exp(arg) + exp(-arg)) / 2
def _eval_rewrite_as_cos(self, arg, **kwargs):
return cos(I * arg)
def _eval_rewrite_as_sec(self, arg, **kwargs):
return 1 / sec(I * arg)
def _eval_rewrite_as_sinh(self, arg, **kwargs):
return -I*sinh(arg + pi*I/2)
def _eval_rewrite_as_tanh(self, arg, **kwargs):
tanh_half = tanh(S.Half*arg)**2
return (1 + tanh_half)/(1 - tanh_half)
def _eval_rewrite_as_coth(self, arg, **kwargs):
coth_half = coth(S.Half*arg)**2
return (coth_half + 1)/(coth_half - 1)
def _eval_rewrite_as_sech(self, arg, **kwargs):
return 1 / sech(arg)
def _eval_as_leading_term(self, x, logx=None, cdir=0):
arg = self.args[0].as_leading_term(x, logx=logx, cdir=cdir)
arg0 = arg.subs(x, 0)
if arg0 is S.NaN:
arg0 = arg.limit(x, 0, dir='-' if cdir.is_negative else '+')
if arg0.is_zero:
return S.One
elif arg0.is_finite:
return self.func(arg0)
else:
return self
def _eval_is_real(self):
arg = self.args[0]
# `cosh(x)` is real for real OR purely imaginary `x`
if arg.is_real or arg.is_imaginary:
return True
# cosh(a+ib) = cos(b)*cosh(a) + i*sin(b)*sinh(a)
# the imaginary part can be an expression like n*pi
# if not, check if the imaginary part is a number
re, im = arg.as_real_imag()
return (im%pi).is_zero
def _eval_is_positive(self):
# cosh(x+I*y) = cos(y)*cosh(x) + I*sin(y)*sinh(x)
# cosh(z) is positive iff it is real and the real part is positive.
# So we need sin(y)*sinh(x) = 0 which gives x=0 or y=n*pi
# Case 1 (y=n*pi): cosh(z) = (-1)**n * cosh(x) -> positive for n even
# Case 2 (x=0): cosh(z) = cos(y) -> positive when cos(y) is positive
z = self.args[0]
x, y = z.as_real_imag()
ymod = y % (2*pi)
yzero = ymod.is_zero
# shortcut if ymod is zero
if yzero:
return True
xzero = x.is_zero
# shortcut x is not zero
if xzero is False:
return yzero
return fuzzy_or([
# Case 1:
yzero,
# Case 2:
fuzzy_and([
xzero,
fuzzy_or([ymod < pi/2, ymod > 3*pi/2])
])
])
def _eval_is_nonnegative(self):
z = self.args[0]
x, y = z.as_real_imag()
ymod = y % (2*pi)
yzero = ymod.is_zero
# shortcut if ymod is zero
if yzero:
return True
xzero = x.is_zero
# shortcut x is not zero
if xzero is False:
return yzero
return fuzzy_or([
# Case 1:
yzero,
# Case 2:
fuzzy_and([
xzero,
fuzzy_or([ymod <= pi/2, ymod >= 3*pi/2])
])
])
def _eval_is_finite(self):
arg = self.args[0]
return arg.is_finite
def _eval_is_zero(self):
rest, ipi_mult = _peeloff_ipi(self.args[0])
if ipi_mult and rest.is_zero:
return (ipi_mult - S.Half).is_integer
class tanh(HyperbolicFunction):
r"""
``tanh(x)`` is the hyperbolic tangent of ``x``.
The hyperbolic tangent function is $\frac{\sinh(x)}{\cosh(x)}$.
Examples
========
>>> from sympy import tanh
>>> from sympy.abc import x
>>> tanh(x)
tanh(x)
See Also
========
sinh, cosh, atanh
"""
def fdiff(self, argindex=1):
if argindex == 1:
return S.One - tanh(self.args[0])**2
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return atanh
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.One
elif arg is S.NegativeInfinity:
return S.NegativeOne
elif arg.is_zero:
return S.Zero
elif arg.is_negative:
return -cls(-arg)
else:
if arg is S.ComplexInfinity:
return S.NaN
i_coeff = _imaginary_unit_as_coefficient(arg)
if i_coeff is not None:
if i_coeff.could_extract_minus_sign():
return -I * tan(-i_coeff)
return I * tan(i_coeff)
else:
if arg.could_extract_minus_sign():
return -cls(-arg)
if arg.is_Add:
x, m = _peeloff_ipi(arg)
if m:
tanhm = tanh(m*pi*I)
if tanhm is S.ComplexInfinity:
return coth(x)
else: # tanhm == 0
return tanh(x)
if arg.is_zero:
return S.Zero
if arg.func == asinh:
x = arg.args[0]
return x/sqrt(1 + x**2)
if arg.func == acosh:
x = arg.args[0]
return sqrt(x - 1) * sqrt(x + 1) / x
if arg.func == atanh:
return arg.args[0]
if arg.func == acoth:
return 1/arg.args[0]
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
a = 2**(n + 1)
B = bernoulli(n + 1)
F = factorial(n + 1)
return a*(a - 1) * B/F * x**n
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
if self.args[0].is_extended_real:
if deep:
hints['complex'] = False
return (self.expand(deep, **hints), S.Zero)
else:
return (self, S.Zero)
if deep:
re, im = self.args[0].expand(deep, **hints).as_real_imag()
else:
re, im = self.args[0].as_real_imag()
denom = sinh(re)**2 + cos(im)**2
return (sinh(re)*cosh(re)/denom, sin(im)*cos(im)/denom)
def _eval_expand_trig(self, **hints):
arg = self.args[0]
if arg.is_Add:
n = len(arg.args)
TX = [tanh(x, evaluate=False)._eval_expand_trig()
for x in arg.args]
p = [0, 0] # [den, num]
for i in range(n + 1):
p[i % 2] += symmetric_poly(i, TX)
return p[1]/p[0]
elif arg.is_Mul:
coeff, terms = arg.as_coeff_Mul()
if coeff.is_Integer and coeff > 1:
T = tanh(terms)
n = [nC(range(coeff), k)*T**k for k in range(1, coeff + 1, 2)]
d = [nC(range(coeff), k)*T**k for k in range(0, coeff + 1, 2)]
return Add(*n)/Add(*d)
return tanh(arg)
def _eval_rewrite_as_tractable(self, arg, limitvar=None, **kwargs):
neg_exp, pos_exp = exp(-arg), exp(arg)
return (pos_exp - neg_exp)/(pos_exp + neg_exp)
def _eval_rewrite_as_exp(self, arg, **kwargs):
neg_exp, pos_exp = exp(-arg), exp(arg)
return (pos_exp - neg_exp)/(pos_exp + neg_exp)
def _eval_rewrite_as_tan(self, arg, **kwargs):
return -I * tan(I * arg)
def _eval_rewrite_as_cot(self, arg, **kwargs):
return -I / cot(I * arg)
def _eval_rewrite_as_sinh(self, arg, **kwargs):
return I*sinh(arg)/sinh(pi*I/2 - arg)
def _eval_rewrite_as_cosh(self, arg, **kwargs):
return I*cosh(pi*I/2 - arg)/cosh(arg)
def _eval_rewrite_as_coth(self, arg, **kwargs):
return 1/coth(arg)
def _eval_as_leading_term(self, x, logx=None, cdir=0):
from sympy.series.order import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return arg
else:
return self.func(arg)
def _eval_is_real(self):
arg = self.args[0]
if arg.is_real:
return True
re, im = arg.as_real_imag()
# if denom = 0, tanh(arg) = zoo
if re == 0 and im % pi == pi/2:
return None
# check if im is of the form n*pi/2 to make sin(2*im) = 0
# if not, im could be a number, return False in that case
return (im % (pi/2)).is_zero
def _eval_is_extended_real(self):
if self.args[0].is_extended_real:
return True
def _eval_is_positive(self):
if self.args[0].is_extended_real:
return self.args[0].is_positive
def _eval_is_negative(self):
if self.args[0].is_extended_real:
return self.args[0].is_negative
def _eval_is_finite(self):
arg = self.args[0]
re, im = arg.as_real_imag()
denom = cos(im)**2 + sinh(re)**2
if denom == 0:
return False
elif denom.is_number:
return True
if arg.is_extended_real:
return True
def _eval_is_zero(self):
arg = self.args[0]
if arg.is_zero:
return True
class coth(HyperbolicFunction):
r"""
``coth(x)`` is the hyperbolic cotangent of ``x``.
The hyperbolic cotangent function is $\frac{\cosh(x)}{\sinh(x)}$.
Examples
========
>>> from sympy import coth
>>> from sympy.abc import x
>>> coth(x)
coth(x)
See Also
========
sinh, cosh, acoth
"""
def fdiff(self, argindex=1):
if argindex == 1:
return -1/sinh(self.args[0])**2
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return acoth
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.One
elif arg is S.NegativeInfinity:
return S.NegativeOne
elif arg.is_zero:
return S.ComplexInfinity
elif arg.is_negative:
return -cls(-arg)
else:
if arg is S.ComplexInfinity:
return S.NaN
i_coeff = _imaginary_unit_as_coefficient(arg)
if i_coeff is not None:
if i_coeff.could_extract_minus_sign():
return I * cot(-i_coeff)
return -I * cot(i_coeff)
else:
if arg.could_extract_minus_sign():
return -cls(-arg)
if arg.is_Add:
x, m = _peeloff_ipi(arg)
if m:
cothm = coth(m*pi*I)
if cothm is S.ComplexInfinity:
return coth(x)
else: # cothm == 0
return tanh(x)
if arg.is_zero:
return S.ComplexInfinity
if arg.func == asinh:
x = arg.args[0]
return sqrt(1 + x**2)/x
if arg.func == acosh:
x = arg.args[0]
return x/(sqrt(x - 1) * sqrt(x + 1))
if arg.func == atanh:
return 1/arg.args[0]
if arg.func == acoth:
return arg.args[0]
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n == 0:
return 1 / sympify(x)
elif n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
B = bernoulli(n + 1)
F = factorial(n + 1)
return 2**(n + 1) * B/F * x**n
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
from sympy.functions.elementary.trigonometric import (cos, sin)
if self.args[0].is_extended_real:
if deep:
hints['complex'] = False
return (self.expand(deep, **hints), S.Zero)
else:
return (self, S.Zero)
if deep:
re, im = self.args[0].expand(deep, **hints).as_real_imag()
else:
re, im = self.args[0].as_real_imag()
denom = sinh(re)**2 + sin(im)**2
return (sinh(re)*cosh(re)/denom, -sin(im)*cos(im)/denom)
def _eval_rewrite_as_tractable(self, arg, limitvar=None, **kwargs):
neg_exp, pos_exp = exp(-arg), exp(arg)
return (pos_exp + neg_exp)/(pos_exp - neg_exp)
def _eval_rewrite_as_exp(self, arg, **kwargs):
neg_exp, pos_exp = exp(-arg), exp(arg)
return (pos_exp + neg_exp)/(pos_exp - neg_exp)
def _eval_rewrite_as_sinh(self, arg, **kwargs):
return -I*sinh(pi*I/2 - arg)/sinh(arg)
def _eval_rewrite_as_cosh(self, arg, **kwargs):
return -I*cosh(arg)/cosh(pi*I/2 - arg)
def _eval_rewrite_as_tanh(self, arg, **kwargs):
return 1/tanh(arg)
def _eval_is_positive(self):
if self.args[0].is_extended_real:
return self.args[0].is_positive
def _eval_is_negative(self):
if self.args[0].is_extended_real:
return self.args[0].is_negative
def _eval_as_leading_term(self, x, logx=None, cdir=0):
from sympy.series.order import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return 1/arg
else:
return self.func(arg)
def _eval_expand_trig(self, **hints):
arg = self.args[0]
if arg.is_Add:
CX = [coth(x, evaluate=False)._eval_expand_trig() for x in arg.args]
p = [[], []]
n = len(arg.args)
for i in range(n, -1, -1):
p[(n - i) % 2].append(symmetric_poly(i, CX))
return Add(*p[0])/Add(*p[1])
elif arg.is_Mul:
coeff, x = arg.as_coeff_Mul(rational=True)
if coeff.is_Integer and coeff > 1:
c = coth(x, evaluate=False)
p = [[], []]
for i in range(coeff, -1, -1):
p[(coeff - i) % 2].append(binomial(coeff, i)*c**i)
return Add(*p[0])/Add(*p[1])
return coth(arg)
class ReciprocalHyperbolicFunction(HyperbolicFunction):
"""Base class for reciprocal functions of hyperbolic functions. """
#To be defined in class
_reciprocal_of = None
_is_even = None # type: FuzzyBool
_is_odd = None # type: FuzzyBool
@classmethod
def eval(cls, arg):
if arg.could_extract_minus_sign():
if cls._is_even:
return cls(-arg)
if cls._is_odd:
return -cls(-arg)
t = cls._reciprocal_of.eval(arg)
if hasattr(arg, 'inverse') and arg.inverse() == cls:
return arg.args[0]
return 1/t if t is not None else t
def _call_reciprocal(self, method_name, *args, **kwargs):
# Calls method_name on _reciprocal_of
o = self._reciprocal_of(self.args[0])
return getattr(o, method_name)(*args, **kwargs)
def _calculate_reciprocal(self, method_name, *args, **kwargs):
# If calling method_name on _reciprocal_of returns a value != None
# then return the reciprocal of that value
t = self._call_reciprocal(method_name, *args, **kwargs)
return 1/t if t is not None else t
def _rewrite_reciprocal(self, method_name, arg):
# Special handling for rewrite functions. If reciprocal rewrite returns
# unmodified expression, then return None
t = self._call_reciprocal(method_name, arg)
if t is not None and t != self._reciprocal_of(arg):
return 1/t
def _eval_rewrite_as_exp(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_exp", arg)
def _eval_rewrite_as_tractable(self, arg, limitvar=None, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_tractable", arg)
def _eval_rewrite_as_tanh(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_tanh", arg)
def _eval_rewrite_as_coth(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_coth", arg)
def as_real_imag(self, deep = True, **hints):
return (1 / self._reciprocal_of(self.args[0])).as_real_imag(deep, **hints)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def _eval_expand_complex(self, deep=True, **hints):
re_part, im_part = self.as_real_imag(deep=True, **hints)
return re_part + I*im_part
def _eval_expand_trig(self, **hints):
return self._calculate_reciprocal("_eval_expand_trig", **hints)
def _eval_as_leading_term(self, x, logx=None, cdir=0):
return (1/self._reciprocal_of(self.args[0]))._eval_as_leading_term(x)
def _eval_is_extended_real(self):
return self._reciprocal_of(self.args[0]).is_extended_real
def _eval_is_finite(self):
return (1/self._reciprocal_of(self.args[0])).is_finite
class csch(ReciprocalHyperbolicFunction):
r"""
``csch(x)`` is the hyperbolic cosecant of ``x``.
The hyperbolic cosecant function is $\frac{2}{e^x - e^{-x}}$
Examples
========
>>> from sympy import csch
>>> from sympy.abc import x
>>> csch(x)
csch(x)
See Also
========
sinh, cosh, tanh, sech, asinh, acosh
"""
_reciprocal_of = sinh
_is_odd = True
def fdiff(self, argindex=1):
"""
Returns the first derivative of this function
"""
if argindex == 1:
return -coth(self.args[0]) * csch(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
"""
Returns the next term in the Taylor series expansion
"""
if n == 0:
return 1/sympify(x)
elif n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
B = bernoulli(n + 1)
F = factorial(n + 1)
return 2 * (1 - 2**n) * B/F * x**n
def _eval_rewrite_as_sin(self, arg, **kwargs):
return I / sin(I * arg)
def _eval_rewrite_as_csc(self, arg, **kwargs):
return I * csc(I * arg)
def _eval_rewrite_as_cosh(self, arg, **kwargs):
return I / cosh(arg + I * pi / 2)
def _eval_rewrite_as_sinh(self, arg, **kwargs):
return 1 / sinh(arg)
def _eval_is_positive(self):
if self.args[0].is_extended_real:
return self.args[0].is_positive
def _eval_is_negative(self):
if self.args[0].is_extended_real:
return self.args[0].is_negative
class sech(ReciprocalHyperbolicFunction):
r"""
``sech(x)`` is the hyperbolic secant of ``x``.
The hyperbolic secant function is $\frac{2}{e^x + e^{-x}}$
Examples
========
>>> from sympy import sech
>>> from sympy.abc import x
>>> sech(x)
sech(x)
See Also
========
sinh, cosh, tanh, coth, csch, asinh, acosh
"""
_reciprocal_of = cosh
_is_even = True
def fdiff(self, argindex=1):
if argindex == 1:
return - tanh(self.args[0])*sech(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 1:
return S.Zero
else:
x = sympify(x)
return euler(n) / factorial(n) * x**(n)
def _eval_rewrite_as_cos(self, arg, **kwargs):
return 1 / cos(I * arg)
def _eval_rewrite_as_sec(self, arg, **kwargs):
return sec(I * arg)
def _eval_rewrite_as_sinh(self, arg, **kwargs):
return I / sinh(arg + I * pi /2)
def _eval_rewrite_as_cosh(self, arg, **kwargs):
return 1 / cosh(arg)
def _eval_is_positive(self):
if self.args[0].is_extended_real:
return True
###############################################################################
############################# HYPERBOLIC INVERSES #############################
###############################################################################
class InverseHyperbolicFunction(Function):
"""Base class for inverse hyperbolic functions."""
pass
class asinh(InverseHyperbolicFunction):
"""
``asinh(x)`` is the inverse hyperbolic sine of ``x``.
The inverse hyperbolic sine function.
Examples
========
>>> from sympy import asinh
>>> from sympy.abc import x
>>> asinh(x).diff(x)
1/sqrt(x**2 + 1)
>>> asinh(1)
log(1 + sqrt(2))
See Also
========
acosh, atanh, sinh
"""
def fdiff(self, argindex=1):
if argindex == 1:
return 1/sqrt(self.args[0]**2 + 1)
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Infinity
elif arg is S.NegativeInfinity:
return S.NegativeInfinity
elif arg.is_zero:
return S.Zero
elif arg is S.One:
return log(sqrt(2) + 1)
elif arg is S.NegativeOne:
return log(sqrt(2) - 1)
elif arg.is_negative:
return -cls(-arg)
else:
if arg is S.ComplexInfinity:
return S.ComplexInfinity
if arg.is_zero:
return S.Zero
i_coeff = _imaginary_unit_as_coefficient(arg)
if i_coeff is not None:
return I * asin(i_coeff)
else:
if arg.could_extract_minus_sign():
return -cls(-arg)
if isinstance(arg, sinh) and arg.args[0].is_number:
z = arg.args[0]
if z.is_real:
return z
r, i = match_real_imag(z)
if r is not None and i is not None:
f = floor((i + pi/2)/pi)
m = z - I*pi*f
even = f.is_even
if even is True:
return m
elif even is False:
return -m
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) >= 2 and n > 2:
p = previous_terms[-2]
return -p * (n - 2)**2/(n*(n - 1)) * x**2
else:
k = (n - 1) // 2
R = RisingFactorial(S.Half, k)
F = factorial(k)
return S.NegativeOne**k * R / F * x**n / n
def _eval_as_leading_term(self, x, logx=None, cdir=0): # asinh
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
if x0.is_zero:
return arg.as_leading_term(x)
# Handling branch points
if x0 in (-I, I, S.ComplexInfinity):
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
# Handling points lying on branch cuts (-I*oo, -I) U (I, I*oo)
if (1 + x0**2).is_negative:
ndir = arg.dir(x, cdir if cdir else 1)
if re(ndir).is_positive:
if im(x0).is_negative:
return -self.func(x0) - I*pi
elif re(ndir).is_negative:
if im(x0).is_positive:
return -self.func(x0) + I*pi
else:
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
return self.func(x0)
def _eval_nseries(self, x, n, logx, cdir=0): # asinh
arg = self.args[0]
arg0 = arg.subs(x, 0)
# Handling branch points
if arg0 in (I, -I):
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
res = Function._eval_nseries(self, x, n=n, logx=logx)
if arg0 is S.ComplexInfinity:
return res
# Handling points lying on branch cuts (-I*oo, -I) U (I, I*oo)
if (1 + arg0**2).is_negative:
ndir = arg.dir(x, cdir if cdir else 1)
if re(ndir).is_positive:
if im(arg0).is_negative:
return -res - I*pi
elif re(ndir).is_negative:
if im(arg0).is_positive:
return -res + I*pi
else:
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
return res
def _eval_rewrite_as_log(self, x, **kwargs):
return log(x + sqrt(x**2 + 1))
_eval_rewrite_as_tractable = _eval_rewrite_as_log
def _eval_rewrite_as_atanh(self, x, **kwargs):
return atanh(x/sqrt(1 + x**2))
def _eval_rewrite_as_acosh(self, x, **kwargs):
ix = I*x
return I*(sqrt(1 - ix)/sqrt(ix - 1) * acosh(ix) - pi/2)
def _eval_rewrite_as_asin(self, x, **kwargs):
return -I * asin(I * x)
def _eval_rewrite_as_acos(self, x, **kwargs):
return I * acos(I * x) - I*pi/2
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return sinh
def _eval_is_zero(self):
return self.args[0].is_zero
class acosh(InverseHyperbolicFunction):
"""
``acosh(x)`` is the inverse hyperbolic cosine of ``x``.
The inverse hyperbolic cosine function.
Examples
========
>>> from sympy import acosh
>>> from sympy.abc import x
>>> acosh(x).diff(x)
1/(sqrt(x - 1)*sqrt(x + 1))
>>> acosh(1)
0
See Also
========
asinh, atanh, cosh
"""
def fdiff(self, argindex=1):
if argindex == 1:
arg = self.args[0]
return 1/(sqrt(arg - 1)*sqrt(arg + 1))
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Infinity
elif arg is S.NegativeInfinity:
return S.Infinity
elif arg.is_zero:
return pi*I / 2
elif arg is S.One:
return S.Zero
elif arg is S.NegativeOne:
return pi*I
if arg.is_number:
cst_table = _acosh_table()
if arg in cst_table:
if arg.is_extended_real:
return cst_table[arg]*I
return cst_table[arg]
if arg is S.ComplexInfinity:
return S.ComplexInfinity
if arg == I*S.Infinity:
return S.Infinity + I*pi/2
if arg == -I*S.Infinity:
return S.Infinity - I*pi/2
if arg.is_zero:
return pi*I*S.Half
if isinstance(arg, cosh) and arg.args[0].is_number:
z = arg.args[0]
if z.is_real:
return Abs(z)
r, i = match_real_imag(z)
if r is not None and i is not None:
f = floor(i/pi)
m = z - I*pi*f
even = f.is_even
if even is True:
if r.is_nonnegative:
return m
elif r.is_negative:
return -m
elif even is False:
m -= I*pi
if r.is_nonpositive:
return -m
elif r.is_positive:
return m
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n == 0:
return I*pi/2
elif n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) >= 2 and n > 2:
p = previous_terms[-2]
return p * (n - 2)**2/(n*(n - 1)) * x**2
else:
k = (n - 1) // 2
R = RisingFactorial(S.Half, k)
F = factorial(k)
return -R / F * I * x**n / n
def _eval_as_leading_term(self, x, logx=None, cdir=0): # acosh
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
# Handling branch points
if x0 in (-S.One, S.Zero, S.One, S.ComplexInfinity):
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
# Handling points lying on branch cuts (-oo, 1)
if (x0 - 1).is_negative:
ndir = arg.dir(x, cdir if cdir else 1)
if im(ndir).is_negative:
if (x0 + 1).is_negative:
return self.func(x0) - 2*I*pi
return -self.func(x0)
elif not im(ndir).is_positive:
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
return self.func(x0)
def _eval_nseries(self, x, n, logx, cdir=0): # acosh
arg = self.args[0]
arg0 = arg.subs(x, 0)
# Handling branch points
if arg0 in (S.One, S.NegativeOne):
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
res = Function._eval_nseries(self, x, n=n, logx=logx)
if arg0 is S.ComplexInfinity:
return res
# Handling points lying on branch cuts (-oo, 1)
if (arg0 - 1).is_negative:
ndir = arg.dir(x, cdir if cdir else 1)
if im(ndir).is_negative:
if (arg0 + 1).is_negative:
return res - 2*I*pi
return -res
elif not im(ndir).is_positive:
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
return res
def _eval_rewrite_as_log(self, x, **kwargs):
return log(x + sqrt(x + 1) * sqrt(x - 1))
_eval_rewrite_as_tractable = _eval_rewrite_as_log
def _eval_rewrite_as_acos(self, x, **kwargs):
return sqrt(x - 1)/sqrt(1 - x) * acos(x)
def _eval_rewrite_as_asin(self, x, **kwargs):
return sqrt(x - 1)/sqrt(1 - x) * (pi/2 - asin(x))
def _eval_rewrite_as_asinh(self, x, **kwargs):
return sqrt(x - 1)/sqrt(1 - x) * (pi/2 + I*asinh(I*x))
def _eval_rewrite_as_atanh(self, x, **kwargs):
sxm1 = sqrt(x - 1)
s1mx = sqrt(1 - x)
sx2m1 = sqrt(x**2 - 1)
return (pi/2*sxm1/s1mx*(1 - x * sqrt(1/x**2)) +
sxm1*sqrt(x + 1)/sx2m1 * atanh(sx2m1/x))
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return cosh
def _eval_is_zero(self):
if (self.args[0] - 1).is_zero:
return True
class atanh(InverseHyperbolicFunction):
"""
``atanh(x)`` is the inverse hyperbolic tangent of ``x``.
The inverse hyperbolic tangent function.
Examples
========
>>> from sympy import atanh
>>> from sympy.abc import x
>>> atanh(x).diff(x)
1/(1 - x**2)
See Also
========
asinh, acosh, tanh
"""
def fdiff(self, argindex=1):
if argindex == 1:
return 1/(1 - self.args[0]**2)
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg.is_zero:
return S.Zero
elif arg is S.One:
return S.Infinity
elif arg is S.NegativeOne:
return S.NegativeInfinity
elif arg is S.Infinity:
return -I * atan(arg)
elif arg is S.NegativeInfinity:
return I * atan(-arg)
elif arg.is_negative:
return -cls(-arg)
else:
if arg is S.ComplexInfinity:
from sympy.calculus.accumulationbounds import AccumBounds
return I*AccumBounds(-pi/2, pi/2)
i_coeff = _imaginary_unit_as_coefficient(arg)
if i_coeff is not None:
return I * atan(i_coeff)
else:
if arg.could_extract_minus_sign():
return -cls(-arg)
if arg.is_zero:
return S.Zero
if isinstance(arg, tanh) and arg.args[0].is_number:
z = arg.args[0]
if z.is_real:
return z
r, i = match_real_imag(z)
if r is not None and i is not None:
f = floor(2*i/pi)
even = f.is_even
m = z - I*f*pi/2
if even is True:
return m
elif even is False:
return m - I*pi/2
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
return x**n / n
def _eval_as_leading_term(self, x, logx=None, cdir=0): # atanh
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
if x0.is_zero:
return arg.as_leading_term(x)
# Handling branch points
if x0 in (-S.One, S.One, S.ComplexInfinity):
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
# Handling points lying on branch cuts (-oo, -1] U [1, oo)
if (1 - x0**2).is_negative:
ndir = arg.dir(x, cdir if cdir else 1)
if im(ndir).is_negative:
if x0.is_negative:
return self.func(x0) - I*pi
elif im(ndir).is_positive:
if x0.is_positive:
return self.func(x0) + I*pi
else:
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
return self.func(x0)
def _eval_nseries(self, x, n, logx, cdir=0): # atanh
arg = self.args[0]
arg0 = arg.subs(x, 0)
# Handling branch points
if arg0 in (S.One, S.NegativeOne):
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
res = Function._eval_nseries(self, x, n=n, logx=logx)
if arg0 is S.ComplexInfinity:
return res
# Handling points lying on branch cuts (-oo, -1] U [1, oo)
if (1 - arg0**2).is_negative:
ndir = arg.dir(x, cdir if cdir else 1)
if im(ndir).is_negative:
if arg0.is_negative:
return res - I*pi
elif im(ndir).is_positive:
if arg0.is_positive:
return res + I*pi
else:
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
return res
def _eval_rewrite_as_log(self, x, **kwargs):
return (log(1 + x) - log(1 - x)) / 2
_eval_rewrite_as_tractable = _eval_rewrite_as_log
def _eval_rewrite_as_asinh(self, x, **kwargs):
f = sqrt(1/(x**2 - 1))
return (pi*x/(2*sqrt(-x**2)) -
sqrt(-x)*sqrt(1 - x**2)/sqrt(x)*f*asinh(f))
def _eval_is_zero(self):
if self.args[0].is_zero:
return True
def _eval_is_imaginary(self):
return self.args[0].is_imaginary
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return tanh
class acoth(InverseHyperbolicFunction):
"""
``acoth(x)`` is the inverse hyperbolic cotangent of ``x``.
The inverse hyperbolic cotangent function.
Examples
========
>>> from sympy import acoth
>>> from sympy.abc import x
>>> acoth(x).diff(x)
1/(1 - x**2)
See Also
========
asinh, acosh, coth
"""
def fdiff(self, argindex=1):
if argindex == 1:
return 1/(1 - self.args[0]**2)
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Zero
elif arg is S.NegativeInfinity:
return S.Zero
elif arg.is_zero:
return pi*I / 2
elif arg is S.One:
return S.Infinity
elif arg is S.NegativeOne:
return S.NegativeInfinity
elif arg.is_negative:
return -cls(-arg)
else:
if arg is S.ComplexInfinity:
return S.Zero
i_coeff = _imaginary_unit_as_coefficient(arg)
if i_coeff is not None:
return -I * acot(i_coeff)
else:
if arg.could_extract_minus_sign():
return -cls(-arg)
if arg.is_zero:
return pi*I*S.Half
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n == 0:
return -I*pi/2
elif n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
return x**n / n
def _eval_as_leading_term(self, x, logx=None, cdir=0): # acoth
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
if x0 is S.ComplexInfinity:
return (1/arg).as_leading_term(x)
# Handling branch points
if x0 in (-S.One, S.One, S.Zero):
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
# Handling points lying on branch cuts [-1, 1]
if x0.is_real and (1 - x0**2).is_positive:
ndir = arg.dir(x, cdir if cdir else 1)
if im(ndir).is_negative:
if x0.is_positive:
return self.func(x0) + I*pi
elif im(ndir).is_positive:
if x0.is_negative:
return self.func(x0) - I*pi
else:
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
return self.func(x0)
def _eval_nseries(self, x, n, logx, cdir=0): # acoth
arg = self.args[0]
arg0 = arg.subs(x, 0)
# Handling branch points
if arg0 in (S.One, S.NegativeOne):
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
res = Function._eval_nseries(self, x, n=n, logx=logx)
if arg0 is S.ComplexInfinity:
return res
# Handling points lying on branch cuts [-1, 1]
if arg0.is_real and (1 - arg0**2).is_positive:
ndir = arg.dir(x, cdir if cdir else 1)
if im(ndir).is_negative:
if arg0.is_positive:
return res + I*pi
elif im(ndir).is_positive:
if arg0.is_negative:
return res - I*pi
else:
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
return res
def _eval_rewrite_as_log(self, x, **kwargs):
return (log(1 + 1/x) - log(1 - 1/x)) / 2
_eval_rewrite_as_tractable = _eval_rewrite_as_log
def _eval_rewrite_as_atanh(self, x, **kwargs):
return atanh(1/x)
def _eval_rewrite_as_asinh(self, x, **kwargs):
return (pi*I/2*(sqrt((x - 1)/x)*sqrt(x/(x - 1)) - sqrt(1 + 1/x)*sqrt(x/(x + 1))) +
x*sqrt(1/x**2)*asinh(sqrt(1/(x**2 - 1))))
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return coth
class asech(InverseHyperbolicFunction):
"""
``asech(x)`` is the inverse hyperbolic secant of ``x``.
The inverse hyperbolic secant function.
Examples
========
>>> from sympy import asech, sqrt, S
>>> from sympy.abc import x
>>> asech(x).diff(x)
-1/(x*sqrt(1 - x**2))
>>> asech(1).diff(x)
0
>>> asech(1)
0
>>> asech(S(2))
I*pi/3
>>> asech(-sqrt(2))
3*I*pi/4
>>> asech((sqrt(6) - sqrt(2)))
I*pi/12
See Also
========
asinh, atanh, cosh, acoth
References
==========
.. [1] https://en.wikipedia.org/wiki/Hyperbolic_function
.. [2] http://dlmf.nist.gov/4.37
.. [3] http://functions.wolfram.com/ElementaryFunctions/ArcSech/
"""
def fdiff(self, argindex=1):
if argindex == 1:
z = self.args[0]
return -1/(z*sqrt(1 - z**2))
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return pi*I / 2
elif arg is S.NegativeInfinity:
return pi*I / 2
elif arg.is_zero:
return S.Infinity
elif arg is S.One:
return S.Zero
elif arg is S.NegativeOne:
return pi*I
if arg.is_number:
cst_table = _asech_table()
if arg in cst_table:
if arg.is_extended_real:
return cst_table[arg]*I
return cst_table[arg]
if arg is S.ComplexInfinity:
from sympy.calculus.accumulationbounds import AccumBounds
return I*AccumBounds(-pi/2, pi/2)
if arg.is_zero:
return S.Infinity
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n == 0:
return log(2 / x)
elif n < 0 or n % 2 == 1:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) > 2 and n > 2:
p = previous_terms[-2]
return p * ((n - 1)*(n-2)) * x**2/(4 * (n//2)**2)
else:
k = n // 2
R = RisingFactorial(S.Half, k) * n
F = factorial(k) * n // 2 * n // 2
return -1 * R / F * x**n / 4
def _eval_as_leading_term(self, x, logx=None, cdir=0): # asech
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
# Handling branch points
if x0 in (-S.One, S.Zero, S.One, S.ComplexInfinity):
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
# Handling points lying on branch cuts (-oo, 0] U (1, oo)
if x0.is_negative or (1 - x0).is_negative:
ndir = arg.dir(x, cdir if cdir else 1)
if im(ndir).is_positive:
if x0.is_positive or (x0 + 1).is_negative:
return -self.func(x0)
return self.func(x0) - 2*I*pi
elif not im(ndir).is_negative:
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
return self.func(x0)
def _eval_nseries(self, x, n, logx, cdir=0): # asech
from sympy.series.order import O
arg = self.args[0]
arg0 = arg.subs(x, 0)
# Handling branch points
if arg0 is S.One:
t = Dummy('t', positive=True)
ser = asech(S.One - t**2).rewrite(log).nseries(t, 0, 2*n)
arg1 = S.One - self.args[0]
f = arg1.as_leading_term(x)
g = (arg1 - f)/ f
if not g.is_meromorphic(x, 0): # cannot be expanded
return O(1) if n == 0 else O(sqrt(x))
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
res = (res1.removeO()*sqrt(f)).expand()
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
if arg0 is S.NegativeOne:
t = Dummy('t', positive=True)
ser = asech(S.NegativeOne + t**2).rewrite(log).nseries(t, 0, 2*n)
arg1 = S.One + self.args[0]
f = arg1.as_leading_term(x)
g = (arg1 - f)/ f
if not g.is_meromorphic(x, 0): # cannot be expanded
return O(1) if n == 0 else I*pi + O(sqrt(x))
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
res = (res1.removeO()*sqrt(f)).expand()
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
res = Function._eval_nseries(self, x, n=n, logx=logx)
if arg0 is S.ComplexInfinity:
return res
# Handling points lying on branch cuts (-oo, 0] U (1, oo)
if arg0.is_negative or (1 - arg0).is_negative:
ndir = arg.dir(x, cdir if cdir else 1)
if im(ndir).is_positive:
if arg0.is_positive or (arg0 + 1).is_negative:
return -res
return res - 2*I*pi
elif not im(ndir).is_negative:
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
return res
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return sech
def _eval_rewrite_as_log(self, arg, **kwargs):
return log(1/arg + sqrt(1/arg - 1) * sqrt(1/arg + 1))
_eval_rewrite_as_tractable = _eval_rewrite_as_log
def _eval_rewrite_as_acosh(self, arg, **kwargs):
return acosh(1/arg)
def _eval_rewrite_as_asinh(self, arg, **kwargs):
return sqrt(1/arg - 1)/sqrt(1 - 1/arg)*(I*asinh(I/arg)
+ pi*S.Half)
def _eval_rewrite_as_atanh(self, x, **kwargs):
return (I*pi*(1 - sqrt(x)*sqrt(1/x) - I/2*sqrt(-x)/sqrt(x) - I/2*sqrt(x**2)/sqrt(-x**2))
+ sqrt(1/(x + 1))*sqrt(x + 1)*atanh(sqrt(1 - x**2)))
def _eval_rewrite_as_acsch(self, x, **kwargs):
return sqrt(1/x - 1)/sqrt(1 - 1/x)*(pi/2 - I*acsch(I*x))
class acsch(InverseHyperbolicFunction):
"""
``acsch(x)`` is the inverse hyperbolic cosecant of ``x``.
The inverse hyperbolic cosecant function.
Examples
========
>>> from sympy import acsch, sqrt, I
>>> from sympy.abc import x
>>> acsch(x).diff(x)
-1/(x**2*sqrt(1 + x**(-2)))
>>> acsch(1).diff(x)
0
>>> acsch(1)
log(1 + sqrt(2))
>>> acsch(I)
-I*pi/2
>>> acsch(-2*I)
I*pi/6
>>> acsch(I*(sqrt(6) - sqrt(2)))
-5*I*pi/12
See Also
========
asinh
References
==========
.. [1] https://en.wikipedia.org/wiki/Hyperbolic_function
.. [2] http://dlmf.nist.gov/4.37
.. [3] http://functions.wolfram.com/ElementaryFunctions/ArcCsch/
"""
def fdiff(self, argindex=1):
if argindex == 1:
z = self.args[0]
return -1/(z**2*sqrt(1 + 1/z**2))
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Zero
elif arg is S.NegativeInfinity:
return S.Zero
elif arg.is_zero:
return S.ComplexInfinity
elif arg is S.One:
return log(1 + sqrt(2))
elif arg is S.NegativeOne:
return - log(1 + sqrt(2))
if arg.is_number:
cst_table = _acsch_table()
if arg in cst_table:
return cst_table[arg]*I
if arg is S.ComplexInfinity:
return S.Zero
if arg.is_infinite:
return S.Zero
if arg.is_zero:
return S.ComplexInfinity
if arg.could_extract_minus_sign():
return -cls(-arg)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n == 0:
return log(2 / x)
elif n < 0 or n % 2 == 1:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) > 2 and n > 2:
p = previous_terms[-2]
return -p * ((n - 1)*(n-2)) * x**2/(4 * (n//2)**2)
else:
k = n // 2
R = RisingFactorial(S.Half, k) * n
F = factorial(k) * n // 2 * n // 2
return S.NegativeOne**(k +1) * R / F * x**n / 4
def _eval_as_leading_term(self, x, logx=None, cdir=0): # acsch
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
# Handling branch points
if x0 in (-I, I, S.Zero):
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
if x0 is S.ComplexInfinity:
return (1/arg).as_leading_term(x)
# Handling points lying on branch cuts (-I, I)
if x0.is_imaginary and (1 + x0**2).is_positive:
ndir = arg.dir(x, cdir if cdir else 1)
if re(ndir).is_positive:
if im(x0).is_positive:
return -self.func(x0) - I*pi
elif re(ndir).is_negative:
if im(x0).is_negative:
return -self.func(x0) + I*pi
else:
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
return self.func(x0)
def _eval_nseries(self, x, n, logx, cdir=0): # acsch
from sympy.series.order import O
arg = self.args[0]
arg0 = arg.subs(x, 0)
# Handling branch points
if arg0 is I:
t = Dummy('t', positive=True)
ser = acsch(I + t**2).rewrite(log).nseries(t, 0, 2*n)
arg1 = -I + self.args[0]
f = arg1.as_leading_term(x)
g = (arg1 - f)/ f
if not g.is_meromorphic(x, 0): # cannot be expanded
return O(1) if n == 0 else -I*pi/2 + O(sqrt(x))
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
res = (res1.removeO()*sqrt(f)).expand()
res = ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
return res
if arg0 == S.NegativeOne*I:
t = Dummy('t', positive=True)
ser = acsch(-I + t**2).rewrite(log).nseries(t, 0, 2*n)
arg1 = I + self.args[0]
f = arg1.as_leading_term(x)
g = (arg1 - f)/ f
if not g.is_meromorphic(x, 0): # cannot be expanded
return O(1) if n == 0 else I*pi/2 + O(sqrt(x))
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
res = (res1.removeO()*sqrt(f)).expand()
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
res = Function._eval_nseries(self, x, n=n, logx=logx)
if arg0 is S.ComplexInfinity:
return res
# Handling points lying on branch cuts (-I, I)
if arg0.is_imaginary and (1 + arg0**2).is_positive:
ndir = self.args[0].dir(x, cdir if cdir else 1)
if re(ndir).is_positive:
if im(arg0).is_positive:
return -res - I*pi
elif re(ndir).is_negative:
if im(arg0).is_negative:
return -res + I*pi
else:
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
return res
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return csch
def _eval_rewrite_as_log(self, arg, **kwargs):
return log(1/arg + sqrt(1/arg**2 + 1))
_eval_rewrite_as_tractable = _eval_rewrite_as_log
def _eval_rewrite_as_asinh(self, arg, **kwargs):
return asinh(1/arg)
def _eval_rewrite_as_acosh(self, arg, **kwargs):
return I*(sqrt(1 - I/arg)/sqrt(I/arg - 1)*
acosh(I/arg) - pi*S.Half)
def _eval_rewrite_as_atanh(self, arg, **kwargs):
arg2 = arg**2
arg2p1 = arg2 + 1
return sqrt(-arg2)/arg*(pi*S.Half -
sqrt(-arg2p1**2)/arg2p1*atanh(sqrt(arg2p1)))
def _eval_is_zero(self):
return self.args[0].is_infinite
|
c30c8477011a4f2a6cfd93c403aebb5bb6ff54b758c1a67671d136bdde5de4d2 | from typing import Tuple as tTuple
from sympy.core import S, Add, Mul, sympify, Symbol, Dummy, Basic
from sympy.core.expr import Expr
from sympy.core.exprtools import factor_terms
from sympy.core.function import (Function, Derivative, ArgumentIndexError,
AppliedUndef, expand_mul)
from sympy.core.logic import fuzzy_not, fuzzy_or
from sympy.core.numbers import pi, I, oo
from sympy.core.power import Pow
from sympy.core.relational import Eq
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.piecewise import Piecewise
###############################################################################
######################### REAL and IMAGINARY PARTS ############################
###############################################################################
class re(Function):
"""
Returns real part of expression. This function performs only
elementary analysis and so it will fail to decompose properly
more complicated expressions. If completely simplified result
is needed then use ``Basic.as_real_imag()`` or perform complex
expansion on instance of this function.
Examples
========
>>> from sympy import re, im, I, E, symbols
>>> x, y = symbols('x y', real=True)
>>> re(2*E)
2*E
>>> re(2*I + 17)
17
>>> re(2*I)
0
>>> re(im(x) + x*I + 2)
2
>>> re(5 + I + 2)
7
Parameters
==========
arg : Expr
Real or complex expression.
Returns
=======
expr : Expr
Real part of expression.
See Also
========
im
"""
args: tTuple[Expr]
is_extended_real = True
unbranched = True # implicitly works on the projection to C
_singularities = True # non-holomorphic
@classmethod
def eval(cls, arg):
if arg is S.NaN:
return S.NaN
elif arg is S.ComplexInfinity:
return S.NaN
elif arg.is_extended_real:
return arg
elif arg.is_imaginary or (I*arg).is_extended_real:
return S.Zero
elif arg.is_Matrix:
return arg.as_real_imag()[0]
elif arg.is_Function and isinstance(arg, conjugate):
return re(arg.args[0])
else:
included, reverted, excluded = [], [], []
args = Add.make_args(arg)
for term in args:
coeff = term.as_coefficient(I)
if coeff is not None:
if not coeff.is_extended_real:
reverted.append(coeff)
elif not term.has(I) and term.is_extended_real:
excluded.append(term)
else:
# Try to do some advanced expansion. If
# impossible, don't try to do re(arg) again
# (because this is what we are trying to do now).
real_imag = term.as_real_imag(ignore=arg)
if real_imag:
excluded.append(real_imag[0])
else:
included.append(term)
if len(args) != len(included):
a, b, c = (Add(*xs) for xs in [included, reverted, excluded])
return cls(a) - im(b) + c
def as_real_imag(self, deep=True, **hints):
"""
Returns the real number with a zero imaginary part.
"""
return (self, S.Zero)
def _eval_derivative(self, x):
if x.is_extended_real or self.args[0].is_extended_real:
return re(Derivative(self.args[0], x, evaluate=True))
if x.is_imaginary or self.args[0].is_imaginary:
return -I \
* im(Derivative(self.args[0], x, evaluate=True))
def _eval_rewrite_as_im(self, arg, **kwargs):
return self.args[0] - I*im(self.args[0])
def _eval_is_algebraic(self):
return self.args[0].is_algebraic
def _eval_is_zero(self):
# is_imaginary implies nonzero
return fuzzy_or([self.args[0].is_imaginary, self.args[0].is_zero])
def _eval_is_finite(self):
if self.args[0].is_finite:
return True
def _eval_is_complex(self):
if self.args[0].is_finite:
return True
class im(Function):
"""
Returns imaginary part of expression. This function performs only
elementary analysis and so it will fail to decompose properly more
complicated expressions. If completely simplified result is needed then
use ``Basic.as_real_imag()`` or perform complex expansion on instance of
this function.
Examples
========
>>> from sympy import re, im, E, I
>>> from sympy.abc import x, y
>>> im(2*E)
0
>>> im(2*I + 17)
2
>>> im(x*I)
re(x)
>>> im(re(x) + y)
im(y)
>>> im(2 + 3*I)
3
Parameters
==========
arg : Expr
Real or complex expression.
Returns
=======
expr : Expr
Imaginary part of expression.
See Also
========
re
"""
args: tTuple[Expr]
is_extended_real = True
unbranched = True # implicitly works on the projection to C
_singularities = True # non-holomorphic
@classmethod
def eval(cls, arg):
if arg is S.NaN:
return S.NaN
elif arg is S.ComplexInfinity:
return S.NaN
elif arg.is_extended_real:
return S.Zero
elif arg.is_imaginary or (I*arg).is_extended_real:
return -I * arg
elif arg.is_Matrix:
return arg.as_real_imag()[1]
elif arg.is_Function and isinstance(arg, conjugate):
return -im(arg.args[0])
else:
included, reverted, excluded = [], [], []
args = Add.make_args(arg)
for term in args:
coeff = term.as_coefficient(I)
if coeff is not None:
if not coeff.is_extended_real:
reverted.append(coeff)
else:
excluded.append(coeff)
elif term.has(I) or not term.is_extended_real:
# Try to do some advanced expansion. If
# impossible, don't try to do im(arg) again
# (because this is what we are trying to do now).
real_imag = term.as_real_imag(ignore=arg)
if real_imag:
excluded.append(real_imag[1])
else:
included.append(term)
if len(args) != len(included):
a, b, c = (Add(*xs) for xs in [included, reverted, excluded])
return cls(a) + re(b) + c
def as_real_imag(self, deep=True, **hints):
"""
Return the imaginary part with a zero real part.
"""
return (self, S.Zero)
def _eval_derivative(self, x):
if x.is_extended_real or self.args[0].is_extended_real:
return im(Derivative(self.args[0], x, evaluate=True))
if x.is_imaginary or self.args[0].is_imaginary:
return -I \
* re(Derivative(self.args[0], x, evaluate=True))
def _eval_rewrite_as_re(self, arg, **kwargs):
return -I*(self.args[0] - re(self.args[0]))
def _eval_is_algebraic(self):
return self.args[0].is_algebraic
def _eval_is_zero(self):
return self.args[0].is_extended_real
def _eval_is_finite(self):
if self.args[0].is_finite:
return True
def _eval_is_complex(self):
if self.args[0].is_finite:
return True
###############################################################################
############### SIGN, ABSOLUTE VALUE, ARGUMENT and CONJUGATION ################
###############################################################################
class sign(Function):
"""
Returns the complex sign of an expression:
Explanation
===========
If the expression is real the sign will be:
* $1$ if expression is positive
* $0$ if expression is equal to zero
* $-1$ if expression is negative
If the expression is imaginary the sign will be:
* $I$ if im(expression) is positive
* $-I$ if im(expression) is negative
Otherwise an unevaluated expression will be returned. When evaluated, the
result (in general) will be ``cos(arg(expr)) + I*sin(arg(expr))``.
Examples
========
>>> from sympy import sign, I
>>> sign(-1)
-1
>>> sign(0)
0
>>> sign(-3*I)
-I
>>> sign(1 + I)
sign(1 + I)
>>> _.evalf()
0.707106781186548 + 0.707106781186548*I
Parameters
==========
arg : Expr
Real or imaginary expression.
Returns
=======
expr : Expr
Complex sign of expression.
See Also
========
Abs, conjugate
"""
is_complex = True
_singularities = True
def doit(self, **hints):
s = super().doit()
if s == self and self.args[0].is_zero is False:
return self.args[0] / Abs(self.args[0])
return s
@classmethod
def eval(cls, arg):
# handle what we can
if arg.is_Mul:
c, args = arg.as_coeff_mul()
unk = []
s = sign(c)
for a in args:
if a.is_extended_negative:
s = -s
elif a.is_extended_positive:
pass
else:
if a.is_imaginary:
ai = im(a)
if ai.is_comparable: # i.e. a = I*real
s *= I
if ai.is_extended_negative:
# can't use sign(ai) here since ai might not be
# a Number
s = -s
else:
unk.append(a)
else:
unk.append(a)
if c is S.One and len(unk) == len(args):
return None
return s * cls(arg._new_rawargs(*unk))
if arg is S.NaN:
return S.NaN
if arg.is_zero: # it may be an Expr that is zero
return S.Zero
if arg.is_extended_positive:
return S.One
if arg.is_extended_negative:
return S.NegativeOne
if arg.is_Function:
if isinstance(arg, sign):
return arg
if arg.is_imaginary:
if arg.is_Pow and arg.exp is S.Half:
# we catch this because non-trivial sqrt args are not expanded
# e.g. sqrt(1-sqrt(2)) --x--> to I*sqrt(sqrt(2) - 1)
return I
arg2 = -I * arg
if arg2.is_extended_positive:
return I
if arg2.is_extended_negative:
return -I
def _eval_Abs(self):
if fuzzy_not(self.args[0].is_zero):
return S.One
def _eval_conjugate(self):
return sign(conjugate(self.args[0]))
def _eval_derivative(self, x):
if self.args[0].is_extended_real:
from sympy.functions.special.delta_functions import DiracDelta
return 2 * Derivative(self.args[0], x, evaluate=True) \
* DiracDelta(self.args[0])
elif self.args[0].is_imaginary:
from sympy.functions.special.delta_functions import DiracDelta
return 2 * Derivative(self.args[0], x, evaluate=True) \
* DiracDelta(-I * self.args[0])
def _eval_is_nonnegative(self):
if self.args[0].is_nonnegative:
return True
def _eval_is_nonpositive(self):
if self.args[0].is_nonpositive:
return True
def _eval_is_imaginary(self):
return self.args[0].is_imaginary
def _eval_is_integer(self):
return self.args[0].is_extended_real
def _eval_is_zero(self):
return self.args[0].is_zero
def _eval_power(self, other):
if (
fuzzy_not(self.args[0].is_zero) and
other.is_integer and
other.is_even
):
return S.One
def _eval_nseries(self, x, n, logx, cdir=0):
arg0 = self.args[0]
x0 = arg0.subs(x, 0)
if x0 != 0:
return self.func(x0)
if cdir != 0:
cdir = arg0.dir(x, cdir)
return -S.One if re(cdir) < 0 else S.One
def _eval_rewrite_as_Piecewise(self, arg, **kwargs):
if arg.is_extended_real:
return Piecewise((1, arg > 0), (-1, arg < 0), (0, True))
def _eval_rewrite_as_Heaviside(self, arg, **kwargs):
from sympy.functions.special.delta_functions import Heaviside
if arg.is_extended_real:
return Heaviside(arg) * 2 - 1
def _eval_rewrite_as_Abs(self, arg, **kwargs):
return Piecewise((0, Eq(arg, 0)), (arg / Abs(arg), True))
def _eval_simplify(self, **kwargs):
return self.func(factor_terms(self.args[0])) # XXX include doit?
class Abs(Function):
"""
Return the absolute value of the argument.
Explanation
===========
This is an extension of the built-in function ``abs()`` to accept symbolic
values. If you pass a SymPy expression to the built-in ``abs()``, it will
pass it automatically to ``Abs()``.
Examples
========
>>> from sympy import Abs, Symbol, S, I
>>> Abs(-1)
1
>>> x = Symbol('x', real=True)
>>> Abs(-x)
Abs(x)
>>> Abs(x**2)
x**2
>>> abs(-x) # The Python built-in
Abs(x)
>>> Abs(3*x + 2*I)
sqrt(9*x**2 + 4)
>>> Abs(8*I)
8
Note that the Python built-in will return either an Expr or int depending on
the argument::
>>> type(abs(-1))
<... 'int'>
>>> type(abs(S.NegativeOne))
<class 'sympy.core.numbers.One'>
Abs will always return a SymPy object.
Parameters
==========
arg : Expr
Real or complex expression.
Returns
=======
expr : Expr
Absolute value returned can be an expression or integer depending on
input arg.
See Also
========
sign, conjugate
"""
args: tTuple[Expr]
is_extended_real = True
is_extended_negative = False
is_extended_nonnegative = True
unbranched = True
_singularities = True # non-holomorphic
def fdiff(self, argindex=1):
"""
Get the first derivative of the argument to Abs().
"""
if argindex == 1:
return sign(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
from sympy.simplify.simplify import signsimp
if hasattr(arg, '_eval_Abs'):
obj = arg._eval_Abs()
if obj is not None:
return obj
if not isinstance(arg, Expr):
raise TypeError("Bad argument type for Abs(): %s" % type(arg))
# handle what we can
arg = signsimp(arg, evaluate=False)
n, d = arg.as_numer_denom()
if d.free_symbols and not n.free_symbols:
return cls(n)/cls(d)
if arg.is_Mul:
known = []
unk = []
for t in arg.args:
if t.is_Pow and t.exp.is_integer and t.exp.is_negative:
bnew = cls(t.base)
if isinstance(bnew, cls):
unk.append(t)
else:
known.append(Pow(bnew, t.exp))
else:
tnew = cls(t)
if isinstance(tnew, cls):
unk.append(t)
else:
known.append(tnew)
known = Mul(*known)
unk = cls(Mul(*unk), evaluate=False) if unk else S.One
return known*unk
if arg is S.NaN:
return S.NaN
if arg is S.ComplexInfinity:
return oo
from sympy.functions.elementary.exponential import exp, log
if arg.is_Pow:
base, exponent = arg.as_base_exp()
if base.is_extended_real:
if exponent.is_integer:
if exponent.is_even:
return arg
if base is S.NegativeOne:
return S.One
return Abs(base)**exponent
if base.is_extended_nonnegative:
return base**re(exponent)
if base.is_extended_negative:
return (-base)**re(exponent)*exp(-pi*im(exponent))
return
elif not base.has(Symbol): # complex base
# express base**exponent as exp(exponent*log(base))
a, b = log(base).as_real_imag()
z = a + I*b
return exp(re(exponent*z))
if isinstance(arg, exp):
return exp(re(arg.args[0]))
if isinstance(arg, AppliedUndef):
if arg.is_positive:
return arg
elif arg.is_negative:
return -arg
return
if arg.is_Add and arg.has(oo, S.NegativeInfinity):
if any(a.is_infinite for a in arg.as_real_imag()):
return oo
if arg.is_zero:
return S.Zero
if arg.is_extended_nonnegative:
return arg
if arg.is_extended_nonpositive:
return -arg
if arg.is_imaginary:
arg2 = -I * arg
if arg2.is_extended_nonnegative:
return arg2
if arg.is_extended_real:
return
# reject result if all new conjugates are just wrappers around
# an expression that was already in the arg
conj = signsimp(arg.conjugate(), evaluate=False)
new_conj = conj.atoms(conjugate) - arg.atoms(conjugate)
if new_conj and all(arg.has(i.args[0]) for i in new_conj):
return
if arg != conj and arg != -conj:
ignore = arg.atoms(Abs)
abs_free_arg = arg.xreplace({i: Dummy(real=True) for i in ignore})
unk = [a for a in abs_free_arg.free_symbols if a.is_extended_real is None]
if not unk or not all(conj.has(conjugate(u)) for u in unk):
return sqrt(expand_mul(arg*conj))
def _eval_is_real(self):
if self.args[0].is_finite:
return True
def _eval_is_integer(self):
if self.args[0].is_extended_real:
return self.args[0].is_integer
def _eval_is_extended_nonzero(self):
return fuzzy_not(self._args[0].is_zero)
def _eval_is_zero(self):
return self._args[0].is_zero
def _eval_is_extended_positive(self):
return fuzzy_not(self._args[0].is_zero)
def _eval_is_rational(self):
if self.args[0].is_extended_real:
return self.args[0].is_rational
def _eval_is_even(self):
if self.args[0].is_extended_real:
return self.args[0].is_even
def _eval_is_odd(self):
if self.args[0].is_extended_real:
return self.args[0].is_odd
def _eval_is_algebraic(self):
return self.args[0].is_algebraic
def _eval_power(self, exponent):
if self.args[0].is_extended_real and exponent.is_integer:
if exponent.is_even:
return self.args[0]**exponent
elif exponent is not S.NegativeOne and exponent.is_Integer:
return self.args[0]**(exponent - 1)*self
return
def _eval_nseries(self, x, n, logx, cdir=0):
from sympy.functions.elementary.exponential import log
direction = self.args[0].leadterm(x)[0]
if direction.has(log(x)):
direction = direction.subs(log(x), logx)
s = self.args[0]._eval_nseries(x, n=n, logx=logx)
return (sign(direction)*s).expand()
def _eval_derivative(self, x):
if self.args[0].is_extended_real or self.args[0].is_imaginary:
return Derivative(self.args[0], x, evaluate=True) \
* sign(conjugate(self.args[0]))
rv = (re(self.args[0]) * Derivative(re(self.args[0]), x,
evaluate=True) + im(self.args[0]) * Derivative(im(self.args[0]),
x, evaluate=True)) / Abs(self.args[0])
return rv.rewrite(sign)
def _eval_rewrite_as_Heaviside(self, arg, **kwargs):
# Note this only holds for real arg (since Heaviside is not defined
# for complex arguments).
from sympy.functions.special.delta_functions import Heaviside
if arg.is_extended_real:
return arg*(Heaviside(arg) - Heaviside(-arg))
def _eval_rewrite_as_Piecewise(self, arg, **kwargs):
if arg.is_extended_real:
return Piecewise((arg, arg >= 0), (-arg, True))
elif arg.is_imaginary:
return Piecewise((I*arg, I*arg >= 0), (-I*arg, True))
def _eval_rewrite_as_sign(self, arg, **kwargs):
return arg/sign(arg)
def _eval_rewrite_as_conjugate(self, arg, **kwargs):
return sqrt(arg*conjugate(arg))
class arg(Function):
r"""
Returns the argument (in radians) of a complex number. The argument is
evaluated in consistent convention with ``atan2`` where the branch-cut is
taken along the negative real axis and ``arg(z)`` is in the interval
$(-\pi,\pi]$. For a positive number, the argument is always 0; the
argument of a negative number is $\pi$; and the argument of 0
is undefined and returns ``nan``. So the ``arg`` function will never nest
greater than 3 levels since at the 4th application, the result must be
nan; for a real number, nan is returned on the 3rd application.
Examples
========
>>> from sympy import arg, I, sqrt, Dummy
>>> from sympy.abc import x
>>> arg(2.0)
0
>>> arg(I)
pi/2
>>> arg(sqrt(2) + I*sqrt(2))
pi/4
>>> arg(sqrt(3)/2 + I/2)
pi/6
>>> arg(4 + 3*I)
atan(3/4)
>>> arg(0.8 + 0.6*I)
0.643501108793284
>>> arg(arg(arg(arg(x))))
nan
>>> real = Dummy(real=True)
>>> arg(arg(arg(real)))
nan
Parameters
==========
arg : Expr
Real or complex expression.
Returns
=======
value : Expr
Returns arc tangent of arg measured in radians.
"""
is_extended_real = True
is_real = True
is_finite = True
_singularities = True # non-holomorphic
@classmethod
def eval(cls, arg):
a = arg
for i in range(3):
if isinstance(a, cls):
a = a.args[0]
else:
if i == 2 and a.is_extended_real:
return S.NaN
break
else:
return S.NaN
from sympy.functions.elementary.exponential import exp_polar
if isinstance(arg, exp_polar):
return periodic_argument(arg, oo)
if not arg.is_Atom:
c, arg_ = factor_terms(arg).as_coeff_Mul()
if arg_.is_Mul:
arg_ = Mul(*[a if (sign(a) not in (-1, 1)) else
sign(a) for a in arg_.args])
arg_ = sign(c)*arg_
else:
arg_ = arg
if any(i.is_extended_positive is None for i in arg_.atoms(AppliedUndef)):
return
from sympy.functions.elementary.trigonometric import atan2
x, y = arg_.as_real_imag()
rv = atan2(y, x)
if rv.is_number:
return rv
if arg_ != arg:
return cls(arg_, evaluate=False)
def _eval_derivative(self, t):
x, y = self.args[0].as_real_imag()
return (x * Derivative(y, t, evaluate=True) - y *
Derivative(x, t, evaluate=True)) / (x**2 + y**2)
def _eval_rewrite_as_atan2(self, arg, **kwargs):
from sympy.functions.elementary.trigonometric import atan2
x, y = self.args[0].as_real_imag()
return atan2(y, x)
class conjugate(Function):
"""
Returns the *complex conjugate* [1]_ of an argument.
In mathematics, the complex conjugate of a complex number
is given by changing the sign of the imaginary part.
Thus, the conjugate of the complex number
:math:`a + ib` (where $a$ and $b$ are real numbers) is :math:`a - ib`
Examples
========
>>> from sympy import conjugate, I
>>> conjugate(2)
2
>>> conjugate(I)
-I
>>> conjugate(3 + 2*I)
3 - 2*I
>>> conjugate(5 - I)
5 + I
Parameters
==========
arg : Expr
Real or complex expression.
Returns
=======
arg : Expr
Complex conjugate of arg as real, imaginary or mixed expression.
See Also
========
sign, Abs
References
==========
.. [1] https://en.wikipedia.org/wiki/Complex_conjugation
"""
_singularities = True # non-holomorphic
@classmethod
def eval(cls, arg):
obj = arg._eval_conjugate()
if obj is not None:
return obj
def inverse(self):
return conjugate
def _eval_Abs(self):
return Abs(self.args[0], evaluate=True)
def _eval_adjoint(self):
return transpose(self.args[0])
def _eval_conjugate(self):
return self.args[0]
def _eval_derivative(self, x):
if x.is_real:
return conjugate(Derivative(self.args[0], x, evaluate=True))
elif x.is_imaginary:
return -conjugate(Derivative(self.args[0], x, evaluate=True))
def _eval_transpose(self):
return adjoint(self.args[0])
def _eval_is_algebraic(self):
return self.args[0].is_algebraic
class transpose(Function):
"""
Linear map transposition.
Examples
========
>>> from sympy import transpose, Matrix, MatrixSymbol
>>> A = MatrixSymbol('A', 25, 9)
>>> transpose(A)
A.T
>>> B = MatrixSymbol('B', 9, 22)
>>> transpose(B)
B.T
>>> transpose(A*B)
B.T*A.T
>>> M = Matrix([[4, 5], [2, 1], [90, 12]])
>>> M
Matrix([
[ 4, 5],
[ 2, 1],
[90, 12]])
>>> transpose(M)
Matrix([
[4, 2, 90],
[5, 1, 12]])
Parameters
==========
arg : Matrix
Matrix or matrix expression to take the transpose of.
Returns
=======
value : Matrix
Transpose of arg.
"""
@classmethod
def eval(cls, arg):
obj = arg._eval_transpose()
if obj is not None:
return obj
def _eval_adjoint(self):
return conjugate(self.args[0])
def _eval_conjugate(self):
return adjoint(self.args[0])
def _eval_transpose(self):
return self.args[0]
class adjoint(Function):
"""
Conjugate transpose or Hermite conjugation.
Examples
========
>>> from sympy import adjoint, MatrixSymbol
>>> A = MatrixSymbol('A', 10, 5)
>>> adjoint(A)
Adjoint(A)
Parameters
==========
arg : Matrix
Matrix or matrix expression to take the adjoint of.
Returns
=======
value : Matrix
Represents the conjugate transpose or Hermite
conjugation of arg.
"""
@classmethod
def eval(cls, arg):
obj = arg._eval_adjoint()
if obj is not None:
return obj
obj = arg._eval_transpose()
if obj is not None:
return conjugate(obj)
def _eval_adjoint(self):
return self.args[0]
def _eval_conjugate(self):
return transpose(self.args[0])
def _eval_transpose(self):
return conjugate(self.args[0])
def _latex(self, printer, exp=None, *args):
arg = printer._print(self.args[0])
tex = r'%s^{\dagger}' % arg
if exp:
tex = r'\left(%s\right)^{%s}' % (tex, exp)
return tex
def _pretty(self, printer, *args):
from sympy.printing.pretty.stringpict import prettyForm
pform = printer._print(self.args[0], *args)
if printer._use_unicode:
pform = pform**prettyForm('\N{DAGGER}')
else:
pform = pform**prettyForm('+')
return pform
###############################################################################
############### HANDLING OF POLAR NUMBERS #####################################
###############################################################################
class polar_lift(Function):
"""
Lift argument to the Riemann surface of the logarithm, using the
standard branch.
Examples
========
>>> from sympy import Symbol, polar_lift, I
>>> p = Symbol('p', polar=True)
>>> x = Symbol('x')
>>> polar_lift(4)
4*exp_polar(0)
>>> polar_lift(-4)
4*exp_polar(I*pi)
>>> polar_lift(-I)
exp_polar(-I*pi/2)
>>> polar_lift(I + 2)
polar_lift(2 + I)
>>> polar_lift(4*x)
4*polar_lift(x)
>>> polar_lift(4*p)
4*p
Parameters
==========
arg : Expr
Real or complex expression.
See Also
========
sympy.functions.elementary.exponential.exp_polar
periodic_argument
"""
is_polar = True
is_comparable = False # Cannot be evalf'd.
@classmethod
def eval(cls, arg):
from sympy.functions.elementary.complexes import arg as argument
if arg.is_number:
ar = argument(arg)
# In general we want to affirm that something is known,
# e.g. `not ar.has(argument) and not ar.has(atan)`
# but for now we will just be more restrictive and
# see that it has evaluated to one of the known values.
if ar in (0, pi/2, -pi/2, pi):
from sympy.functions.elementary.exponential import exp_polar
return exp_polar(I*ar)*abs(arg)
if arg.is_Mul:
args = arg.args
else:
args = [arg]
included = []
excluded = []
positive = []
for arg in args:
if arg.is_polar:
included += [arg]
elif arg.is_positive:
positive += [arg]
else:
excluded += [arg]
if len(excluded) < len(args):
if excluded:
return Mul(*(included + positive))*polar_lift(Mul(*excluded))
elif included:
return Mul(*(included + positive))
else:
from sympy.functions.elementary.exponential import exp_polar
return Mul(*positive)*exp_polar(0)
def _eval_evalf(self, prec):
""" Careful! any evalf of polar numbers is flaky """
return self.args[0]._eval_evalf(prec)
def _eval_Abs(self):
return Abs(self.args[0], evaluate=True)
class periodic_argument(Function):
r"""
Represent the argument on a quotient of the Riemann surface of the
logarithm. That is, given a period $P$, always return a value in
$(-P/2, P/2]$, by using $\exp(PI) = 1$.
Examples
========
>>> from sympy import exp_polar, periodic_argument
>>> from sympy import I, pi
>>> periodic_argument(exp_polar(10*I*pi), 2*pi)
0
>>> periodic_argument(exp_polar(5*I*pi), 4*pi)
pi
>>> from sympy import exp_polar, periodic_argument
>>> from sympy import I, pi
>>> periodic_argument(exp_polar(5*I*pi), 2*pi)
pi
>>> periodic_argument(exp_polar(5*I*pi), 3*pi)
-pi
>>> periodic_argument(exp_polar(5*I*pi), pi)
0
Parameters
==========
ar : Expr
A polar number.
period : Expr
The period $P$.
See Also
========
sympy.functions.elementary.exponential.exp_polar
polar_lift : Lift argument to the Riemann surface of the logarithm
principal_branch
"""
@classmethod
def _getunbranched(cls, ar):
from sympy.functions.elementary.exponential import exp_polar, log
if ar.is_Mul:
args = ar.args
else:
args = [ar]
unbranched = 0
for a in args:
if not a.is_polar:
unbranched += arg(a)
elif isinstance(a, exp_polar):
unbranched += a.exp.as_real_imag()[1]
elif a.is_Pow:
re, im = a.exp.as_real_imag()
unbranched += re*unbranched_argument(
a.base) + im*log(abs(a.base))
elif isinstance(a, polar_lift):
unbranched += arg(a.args[0])
else:
return None
return unbranched
@classmethod
def eval(cls, ar, period):
# Our strategy is to evaluate the argument on the Riemann surface of the
# logarithm, and then reduce.
# NOTE evidently this means it is a rather bad idea to use this with
# period != 2*pi and non-polar numbers.
if not period.is_extended_positive:
return None
if period == oo and isinstance(ar, principal_branch):
return periodic_argument(*ar.args)
if isinstance(ar, polar_lift) and period >= 2*pi:
return periodic_argument(ar.args[0], period)
if ar.is_Mul:
newargs = [x for x in ar.args if not x.is_positive]
if len(newargs) != len(ar.args):
return periodic_argument(Mul(*newargs), period)
unbranched = cls._getunbranched(ar)
if unbranched is None:
return None
from sympy.functions.elementary.trigonometric import atan, atan2
if unbranched.has(periodic_argument, atan2, atan):
return None
if period == oo:
return unbranched
if period != oo:
from sympy.functions.elementary.integers import ceiling
n = ceiling(unbranched/period - S.Half)*period
if not n.has(ceiling):
return unbranched - n
def _eval_evalf(self, prec):
z, period = self.args
if period == oo:
unbranched = periodic_argument._getunbranched(z)
if unbranched is None:
return self
return unbranched._eval_evalf(prec)
ub = periodic_argument(z, oo)._eval_evalf(prec)
from sympy.functions.elementary.integers import ceiling
return (ub - ceiling(ub/period - S.Half)*period)._eval_evalf(prec)
def unbranched_argument(arg):
'''
Returns periodic argument of arg with period as infinity.
Examples
========
>>> from sympy import exp_polar, unbranched_argument
>>> from sympy import I, pi
>>> unbranched_argument(exp_polar(15*I*pi))
15*pi
>>> unbranched_argument(exp_polar(7*I*pi))
7*pi
See also
========
periodic_argument
'''
return periodic_argument(arg, oo)
class principal_branch(Function):
"""
Represent a polar number reduced to its principal branch on a quotient
of the Riemann surface of the logarithm.
Explanation
===========
This is a function of two arguments. The first argument is a polar
number `z`, and the second one a positive real number or infinity, `p`.
The result is ``z mod exp_polar(I*p)``.
Examples
========
>>> from sympy import exp_polar, principal_branch, oo, I, pi
>>> from sympy.abc import z
>>> principal_branch(z, oo)
z
>>> principal_branch(exp_polar(2*pi*I)*3, 2*pi)
3*exp_polar(0)
>>> principal_branch(exp_polar(2*pi*I)*3*z, 2*pi)
3*principal_branch(z, 2*pi)
Parameters
==========
x : Expr
A polar number.
period : Expr
Positive real number or infinity.
See Also
========
sympy.functions.elementary.exponential.exp_polar
polar_lift : Lift argument to the Riemann surface of the logarithm
periodic_argument
"""
is_polar = True
is_comparable = False # cannot always be evalf'd
@classmethod
def eval(self, x, period):
from sympy.functions.elementary.exponential import exp_polar
if isinstance(x, polar_lift):
return principal_branch(x.args[0], period)
if period == oo:
return x
ub = periodic_argument(x, oo)
barg = periodic_argument(x, period)
if ub != barg and not ub.has(periodic_argument) \
and not barg.has(periodic_argument):
pl = polar_lift(x)
def mr(expr):
if not isinstance(expr, Symbol):
return polar_lift(expr)
return expr
pl = pl.replace(polar_lift, mr)
# Recompute unbranched argument
ub = periodic_argument(pl, oo)
if not pl.has(polar_lift):
if ub != barg:
res = exp_polar(I*(barg - ub))*pl
else:
res = pl
if not res.is_polar and not res.has(exp_polar):
res *= exp_polar(0)
return res
if not x.free_symbols:
c, m = x, ()
else:
c, m = x.as_coeff_mul(*x.free_symbols)
others = []
for y in m:
if y.is_positive:
c *= y
else:
others += [y]
m = tuple(others)
arg = periodic_argument(c, period)
if arg.has(periodic_argument):
return None
if arg.is_number and (unbranched_argument(c) != arg or
(arg == 0 and m != () and c != 1)):
if arg == 0:
return abs(c)*principal_branch(Mul(*m), period)
return principal_branch(exp_polar(I*arg)*Mul(*m), period)*abs(c)
if arg.is_number and ((abs(arg) < period/2) == True or arg == period/2) \
and m == ():
return exp_polar(arg*I)*abs(c)
def _eval_evalf(self, prec):
z, period = self.args
p = periodic_argument(z, period)._eval_evalf(prec)
if abs(p) > pi or p == -pi:
return self # Cannot evalf for this argument.
from sympy.functions.elementary.exponential import exp
return (abs(z)*exp(I*p))._eval_evalf(prec)
def _polarify(eq, lift, pause=False):
from sympy.integrals.integrals import Integral
if eq.is_polar:
return eq
if eq.is_number and not pause:
return polar_lift(eq)
if isinstance(eq, Symbol) and not pause and lift:
return polar_lift(eq)
elif eq.is_Atom:
return eq
elif eq.is_Add:
r = eq.func(*[_polarify(arg, lift, pause=True) for arg in eq.args])
if lift:
return polar_lift(r)
return r
elif eq.is_Pow and eq.base == S.Exp1:
return eq.func(S.Exp1, _polarify(eq.exp, lift, pause=False))
elif eq.is_Function:
return eq.func(*[_polarify(arg, lift, pause=False) for arg in eq.args])
elif isinstance(eq, Integral):
# Don't lift the integration variable
func = _polarify(eq.function, lift, pause=pause)
limits = []
for limit in eq.args[1:]:
var = _polarify(limit[0], lift=False, pause=pause)
rest = _polarify(limit[1:], lift=lift, pause=pause)
limits.append((var,) + rest)
return Integral(*((func,) + tuple(limits)))
else:
return eq.func(*[_polarify(arg, lift, pause=pause)
if isinstance(arg, Expr) else arg for arg in eq.args])
def polarify(eq, subs=True, lift=False):
"""
Turn all numbers in eq into their polar equivalents (under the standard
choice of argument).
Note that no attempt is made to guess a formal convention of adding
polar numbers, expressions like $1 + x$ will generally not be altered.
Note also that this function does not promote ``exp(x)`` to ``exp_polar(x)``.
If ``subs`` is ``True``, all symbols which are not already polar will be
substituted for polar dummies; in this case the function behaves much
like :func:`~.posify`.
If ``lift`` is ``True``, both addition statements and non-polar symbols are
changed to their ``polar_lift()``ed versions.
Note that ``lift=True`` implies ``subs=False``.
Examples
========
>>> from sympy import polarify, sin, I
>>> from sympy.abc import x, y
>>> expr = (-x)**y
>>> expr.expand()
(-x)**y
>>> polarify(expr)
((_x*exp_polar(I*pi))**_y, {_x: x, _y: y})
>>> polarify(expr)[0].expand()
_x**_y*exp_polar(_y*I*pi)
>>> polarify(x, lift=True)
polar_lift(x)
>>> polarify(x*(1+y), lift=True)
polar_lift(x)*polar_lift(y + 1)
Adds are treated carefully:
>>> polarify(1 + sin((1 + I)*x))
(sin(_x*polar_lift(1 + I)) + 1, {_x: x})
"""
if lift:
subs = False
eq = _polarify(sympify(eq), lift)
if not subs:
return eq
reps = {s: Dummy(s.name, polar=True) for s in eq.free_symbols}
eq = eq.subs(reps)
return eq, {r: s for s, r in reps.items()}
def _unpolarify(eq, exponents_only, pause=False):
if not isinstance(eq, Basic) or eq.is_Atom:
return eq
if not pause:
from sympy.functions.elementary.exponential import exp, exp_polar
if isinstance(eq, exp_polar):
return exp(_unpolarify(eq.exp, exponents_only))
if isinstance(eq, principal_branch) and eq.args[1] == 2*pi:
return _unpolarify(eq.args[0], exponents_only)
if (
eq.is_Add or eq.is_Mul or eq.is_Boolean or
eq.is_Relational and (
eq.rel_op in ('==', '!=') and 0 in eq.args or
eq.rel_op not in ('==', '!='))
):
return eq.func(*[_unpolarify(x, exponents_only) for x in eq.args])
if isinstance(eq, polar_lift):
return _unpolarify(eq.args[0], exponents_only)
if eq.is_Pow:
expo = _unpolarify(eq.exp, exponents_only)
base = _unpolarify(eq.base, exponents_only,
not (expo.is_integer and not pause))
return base**expo
if eq.is_Function and getattr(eq.func, 'unbranched', False):
return eq.func(*[_unpolarify(x, exponents_only, exponents_only)
for x in eq.args])
return eq.func(*[_unpolarify(x, exponents_only, True) for x in eq.args])
def unpolarify(eq, subs=None, exponents_only=False):
"""
If `p` denotes the projection from the Riemann surface of the logarithm to
the complex line, return a simplified version `eq'` of `eq` such that
`p(eq') = p(eq)`.
Also apply the substitution subs in the end. (This is a convenience, since
``unpolarify``, in a certain sense, undoes :func:`polarify`.)
Examples
========
>>> from sympy import unpolarify, polar_lift, sin, I
>>> unpolarify(polar_lift(I + 2))
2 + I
>>> unpolarify(sin(polar_lift(I + 7)))
sin(7 + I)
"""
if isinstance(eq, bool):
return eq
eq = sympify(eq)
if subs is not None:
return unpolarify(eq.subs(subs))
changed = True
pause = False
if exponents_only:
pause = True
while changed:
changed = False
res = _unpolarify(eq, exponents_only, pause)
if res != eq:
changed = True
eq = res
if isinstance(res, bool):
return res
# Finally, replacing Exp(0) by 1 is always correct.
# So is polar_lift(0) -> 0.
from sympy.functions.elementary.exponential import exp_polar
return res.subs({exp_polar(0): 1, polar_lift(0): 0})
|
79be15a4701c69749f10e222acf963ed2d2bad0833f848a95060b3064e5dd876 | """Hypergeometric and Meijer G-functions"""
from functools import reduce
from sympy.core import S, ilcm, Mod
from sympy.core.add import Add
from sympy.core.expr import Expr
from sympy.core.function import Function, Derivative, ArgumentIndexError
from sympy.core.containers import Tuple
from sympy.core.mul import Mul
from sympy.core.numbers import I, pi, oo, zoo
from sympy.core.relational import Ne
from sympy.core.sorting import default_sort_key
from sympy.core.symbol import Dummy
from sympy.functions import (sqrt, exp, log, sin, cos, asin, atan,
sinh, cosh, asinh, acosh, atanh, acoth)
from sympy.functions import factorial, RisingFactorial
from sympy.functions.elementary.complexes import Abs, re, unpolarify
from sympy.functions.elementary.exponential import exp_polar
from sympy.functions.elementary.integers import ceiling
from sympy.functions.elementary.piecewise import Piecewise
from sympy.logic.boolalg import (And, Or)
class TupleArg(Tuple):
def limit(self, x, xlim, dir='+'):
""" Compute limit x->xlim.
"""
from sympy.series.limits import limit
return TupleArg(*[limit(f, x, xlim, dir) for f in self.args])
# TODO should __new__ accept **options?
# TODO should constructors should check if parameters are sensible?
def _prep_tuple(v):
"""
Turn an iterable argument *v* into a tuple and unpolarify, since both
hypergeometric and meijer g-functions are unbranched in their parameters.
Examples
========
>>> from sympy.functions.special.hyper import _prep_tuple
>>> _prep_tuple([1, 2, 3])
(1, 2, 3)
>>> _prep_tuple((4, 5))
(4, 5)
>>> _prep_tuple((7, 8, 9))
(7, 8, 9)
"""
return TupleArg(*[unpolarify(x) for x in v])
class TupleParametersBase(Function):
""" Base class that takes care of differentiation, when some of
the arguments are actually tuples. """
# This is not deduced automatically since there are Tuples as arguments.
is_commutative = True
def _eval_derivative(self, s):
try:
res = 0
if self.args[0].has(s) or self.args[1].has(s):
for i, p in enumerate(self._diffargs):
m = self._diffargs[i].diff(s)
if m != 0:
res += self.fdiff((1, i))*m
return res + self.fdiff(3)*self.args[2].diff(s)
except (ArgumentIndexError, NotImplementedError):
return Derivative(self, s)
class hyper(TupleParametersBase):
r"""
The generalized hypergeometric function is defined by a series where
the ratios of successive terms are a rational function of the summation
index. When convergent, it is continued analytically to the largest
possible domain.
Explanation
===========
The hypergeometric function depends on two vectors of parameters, called
the numerator parameters $a_p$, and the denominator parameters
$b_q$. It also has an argument $z$. The series definition is
.. math ::
{}_pF_q\left(\begin{matrix} a_1, \cdots, a_p \\ b_1, \cdots, b_q \end{matrix}
\middle| z \right)
= \sum_{n=0}^\infty \frac{(a_1)_n \cdots (a_p)_n}{(b_1)_n \cdots (b_q)_n}
\frac{z^n}{n!},
where $(a)_n = (a)(a+1)\cdots(a+n-1)$ denotes the rising factorial.
If one of the $b_q$ is a non-positive integer then the series is
undefined unless one of the $a_p$ is a larger (i.e., smaller in
magnitude) non-positive integer. If none of the $b_q$ is a
non-positive integer and one of the $a_p$ is a non-positive
integer, then the series reduces to a polynomial. To simplify the
following discussion, we assume that none of the $a_p$ or
$b_q$ is a non-positive integer. For more details, see the
references.
The series converges for all $z$ if $p \le q$, and thus
defines an entire single-valued function in this case. If $p =
q+1$ the series converges for $|z| < 1$, and can be continued
analytically into a half-plane. If $p > q+1$ the series is
divergent for all $z$.
Please note the hypergeometric function constructor currently does *not*
check if the parameters actually yield a well-defined function.
Examples
========
The parameters $a_p$ and $b_q$ can be passed as arbitrary
iterables, for example:
>>> from sympy import hyper
>>> from sympy.abc import x, n, a
>>> hyper((1, 2, 3), [3, 4], x)
hyper((1, 2, 3), (3, 4), x)
There is also pretty printing (it looks better using Unicode):
>>> from sympy import pprint
>>> pprint(hyper((1, 2, 3), [3, 4], x), use_unicode=False)
_
|_ /1, 2, 3 | \
| | | x|
3 2 \ 3, 4 | /
The parameters must always be iterables, even if they are vectors of
length one or zero:
>>> hyper((1, ), [], x)
hyper((1,), (), x)
But of course they may be variables (but if they depend on $x$ then you
should not expect much implemented functionality):
>>> hyper((n, a), (n**2,), x)
hyper((n, a), (n**2,), x)
The hypergeometric function generalizes many named special functions.
The function ``hyperexpand()`` tries to express a hypergeometric function
using named special functions. For example:
>>> from sympy import hyperexpand
>>> hyperexpand(hyper([], [], x))
exp(x)
You can also use ``expand_func()``:
>>> from sympy import expand_func
>>> expand_func(x*hyper([1, 1], [2], -x))
log(x + 1)
More examples:
>>> from sympy import S
>>> hyperexpand(hyper([], [S(1)/2], -x**2/4))
cos(x)
>>> hyperexpand(x*hyper([S(1)/2, S(1)/2], [S(3)/2], x**2))
asin(x)
We can also sometimes ``hyperexpand()`` parametric functions:
>>> from sympy.abc import a
>>> hyperexpand(hyper([-a], [], x))
(1 - x)**a
See Also
========
sympy.simplify.hyperexpand
gamma
meijerg
References
==========
.. [1] Luke, Y. L. (1969), The Special Functions and Their Approximations,
Volume 1
.. [2] https://en.wikipedia.org/wiki/Generalized_hypergeometric_function
"""
def __new__(cls, ap, bq, z, **kwargs):
# TODO should we check convergence conditions?
return Function.__new__(cls, _prep_tuple(ap), _prep_tuple(bq), z, **kwargs)
@classmethod
def eval(cls, ap, bq, z):
if len(ap) <= len(bq) or (len(ap) == len(bq) + 1 and (Abs(z) <= 1) == True):
nz = unpolarify(z)
if z != nz:
return hyper(ap, bq, nz)
def fdiff(self, argindex=3):
if argindex != 3:
raise ArgumentIndexError(self, argindex)
nap = Tuple(*[a + 1 for a in self.ap])
nbq = Tuple(*[b + 1 for b in self.bq])
fac = Mul(*self.ap)/Mul(*self.bq)
return fac*hyper(nap, nbq, self.argument)
def _eval_expand_func(self, **hints):
from sympy.functions.special.gamma_functions import gamma
from sympy.simplify.hyperexpand import hyperexpand
if len(self.ap) == 2 and len(self.bq) == 1 and self.argument == 1:
a, b = self.ap
c = self.bq[0]
return gamma(c)*gamma(c - a - b)/gamma(c - a)/gamma(c - b)
return hyperexpand(self)
def _eval_rewrite_as_Sum(self, ap, bq, z, **kwargs):
from sympy.concrete.summations import Sum
n = Dummy("n", integer=True)
rfap = [RisingFactorial(a, n) for a in ap]
rfbq = [RisingFactorial(b, n) for b in bq]
coeff = Mul(*rfap) / Mul(*rfbq)
return Piecewise((Sum(coeff * z**n / factorial(n), (n, 0, oo)),
self.convergence_statement), (self, True))
def _eval_as_leading_term(self, x, logx=None, cdir=0):
arg = self.args[2]
x0 = arg.subs(x, 0)
if x0 is S.NaN:
x0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+')
if x0 is S.Zero:
return S.One
return super()._eval_as_leading_term(x, logx=logx, cdir=cdir)
def _eval_nseries(self, x, n, logx, cdir=0):
from sympy.series.order import Order
arg = self.args[2]
x0 = arg.limit(x, 0)
ap = self.args[0]
bq = self.args[1]
if x0 != 0:
return super()._eval_nseries(x, n, logx)
terms = []
for i in range(n):
num = Mul(*[RisingFactorial(a, i) for a in ap])
den = Mul(*[RisingFactorial(b, i) for b in bq])
terms.append(((num/den) * (arg**i)) / factorial(i))
return (Add(*terms) + Order(x**n,x))
@property
def argument(self):
""" Argument of the hypergeometric function. """
return self.args[2]
@property
def ap(self):
""" Numerator parameters of the hypergeometric function. """
return Tuple(*self.args[0])
@property
def bq(self):
""" Denominator parameters of the hypergeometric function. """
return Tuple(*self.args[1])
@property
def _diffargs(self):
return self.ap + self.bq
@property
def eta(self):
""" A quantity related to the convergence of the series. """
return sum(self.ap) - sum(self.bq)
@property
def radius_of_convergence(self):
"""
Compute the radius of convergence of the defining series.
Explanation
===========
Note that even if this is not ``oo``, the function may still be
evaluated outside of the radius of convergence by analytic
continuation. But if this is zero, then the function is not actually
defined anywhere else.
Examples
========
>>> from sympy import hyper
>>> from sympy.abc import z
>>> hyper((1, 2), [3], z).radius_of_convergence
1
>>> hyper((1, 2, 3), [4], z).radius_of_convergence
0
>>> hyper((1, 2), (3, 4), z).radius_of_convergence
oo
"""
if any(a.is_integer and (a <= 0) == True for a in self.ap + self.bq):
aints = [a for a in self.ap if a.is_Integer and (a <= 0) == True]
bints = [a for a in self.bq if a.is_Integer and (a <= 0) == True]
if len(aints) < len(bints):
return S.Zero
popped = False
for b in bints:
cancelled = False
while aints:
a = aints.pop()
if a >= b:
cancelled = True
break
popped = True
if not cancelled:
return S.Zero
if aints or popped:
# There are still non-positive numerator parameters.
# This is a polynomial.
return oo
if len(self.ap) == len(self.bq) + 1:
return S.One
elif len(self.ap) <= len(self.bq):
return oo
else:
return S.Zero
@property
def convergence_statement(self):
""" Return a condition on z under which the series converges. """
R = self.radius_of_convergence
if R == 0:
return False
if R == oo:
return True
# The special functions and their approximations, page 44
e = self.eta
z = self.argument
c1 = And(re(e) < 0, abs(z) <= 1)
c2 = And(0 <= re(e), re(e) < 1, abs(z) <= 1, Ne(z, 1))
c3 = And(re(e) >= 1, abs(z) < 1)
return Or(c1, c2, c3)
def _eval_simplify(self, **kwargs):
from sympy.simplify.hyperexpand import hyperexpand
return hyperexpand(self)
class meijerg(TupleParametersBase):
r"""
The Meijer G-function is defined by a Mellin-Barnes type integral that
resembles an inverse Mellin transform. It generalizes the hypergeometric
functions.
Explanation
===========
The Meijer G-function depends on four sets of parameters. There are
"*numerator parameters*"
$a_1, \ldots, a_n$ and $a_{n+1}, \ldots, a_p$, and there are
"*denominator parameters*"
$b_1, \ldots, b_m$ and $b_{m+1}, \ldots, b_q$.
Confusingly, it is traditionally denoted as follows (note the position
of $m$, $n$, $p$, $q$, and how they relate to the lengths of the four
parameter vectors):
.. math ::
G_{p,q}^{m,n} \left(\begin{matrix}a_1, \cdots, a_n & a_{n+1}, \cdots, a_p \\
b_1, \cdots, b_m & b_{m+1}, \cdots, b_q
\end{matrix} \middle| z \right).
However, in SymPy the four parameter vectors are always available
separately (see examples), so that there is no need to keep track of the
decorating sub- and super-scripts on the G symbol.
The G function is defined as the following integral:
.. math ::
\frac{1}{2 \pi i} \int_L \frac{\prod_{j=1}^m \Gamma(b_j - s)
\prod_{j=1}^n \Gamma(1 - a_j + s)}{\prod_{j=m+1}^q \Gamma(1- b_j +s)
\prod_{j=n+1}^p \Gamma(a_j - s)} z^s \mathrm{d}s,
where $\Gamma(z)$ is the gamma function. There are three possible
contours which we will not describe in detail here (see the references).
If the integral converges along more than one of them, the definitions
agree. The contours all separate the poles of $\Gamma(1-a_j+s)$
from the poles of $\Gamma(b_k-s)$, so in particular the G function
is undefined if $a_j - b_k \in \mathbb{Z}_{>0}$ for some
$j \le n$ and $k \le m$.
The conditions under which one of the contours yields a convergent integral
are complicated and we do not state them here, see the references.
Please note currently the Meijer G-function constructor does *not* check any
convergence conditions.
Examples
========
You can pass the parameters either as four separate vectors:
>>> from sympy import meijerg, Tuple, pprint
>>> from sympy.abc import x, a
>>> pprint(meijerg((1, 2), (a, 4), (5,), [], x), use_unicode=False)
__1, 2 /1, 2 a, 4 | \
/__ | | x|
\_|4, 1 \ 5 | /
Or as two nested vectors:
>>> pprint(meijerg([(1, 2), (3, 4)], ([5], Tuple()), x), use_unicode=False)
__1, 2 /1, 2 3, 4 | \
/__ | | x|
\_|4, 1 \ 5 | /
As with the hypergeometric function, the parameters may be passed as
arbitrary iterables. Vectors of length zero and one also have to be
passed as iterables. The parameters need not be constants, but if they
depend on the argument then not much implemented functionality should be
expected.
All the subvectors of parameters are available:
>>> from sympy import pprint
>>> g = meijerg([1], [2], [3], [4], x)
>>> pprint(g, use_unicode=False)
__1, 1 /1 2 | \
/__ | | x|
\_|2, 2 \3 4 | /
>>> g.an
(1,)
>>> g.ap
(1, 2)
>>> g.aother
(2,)
>>> g.bm
(3,)
>>> g.bq
(3, 4)
>>> g.bother
(4,)
The Meijer G-function generalizes the hypergeometric functions.
In some cases it can be expressed in terms of hypergeometric functions,
using Slater's theorem. For example:
>>> from sympy import hyperexpand
>>> from sympy.abc import a, b, c
>>> hyperexpand(meijerg([a], [], [c], [b], x), allow_hyper=True)
x**c*gamma(-a + c + 1)*hyper((-a + c + 1,),
(-b + c + 1,), -x)/gamma(-b + c + 1)
Thus the Meijer G-function also subsumes many named functions as special
cases. You can use ``expand_func()`` or ``hyperexpand()`` to (try to)
rewrite a Meijer G-function in terms of named special functions. For
example:
>>> from sympy import expand_func, S
>>> expand_func(meijerg([[],[]], [[0],[]], -x))
exp(x)
>>> hyperexpand(meijerg([[],[]], [[S(1)/2],[0]], (x/2)**2))
sin(x)/sqrt(pi)
See Also
========
hyper
sympy.simplify.hyperexpand
References
==========
.. [1] Luke, Y. L. (1969), The Special Functions and Their Approximations,
Volume 1
.. [2] https://en.wikipedia.org/wiki/Meijer_G-function
"""
def __new__(cls, *args, **kwargs):
if len(args) == 5:
args = [(args[0], args[1]), (args[2], args[3]), args[4]]
if len(args) != 3:
raise TypeError("args must be either as, as', bs, bs', z or "
"as, bs, z")
def tr(p):
if len(p) != 2:
raise TypeError("wrong argument")
return TupleArg(_prep_tuple(p[0]), _prep_tuple(p[1]))
arg0, arg1 = tr(args[0]), tr(args[1])
if Tuple(arg0, arg1).has(oo, zoo, -oo):
raise ValueError("G-function parameters must be finite")
if any((a - b).is_Integer and a - b > 0
for a in arg0[0] for b in arg1[0]):
raise ValueError("no parameter a1, ..., an may differ from "
"any b1, ..., bm by a positive integer")
# TODO should we check convergence conditions?
return Function.__new__(cls, arg0, arg1, args[2], **kwargs)
def fdiff(self, argindex=3):
if argindex != 3:
return self._diff_wrt_parameter(argindex[1])
if len(self.an) >= 1:
a = list(self.an)
a[0] -= 1
G = meijerg(a, self.aother, self.bm, self.bother, self.argument)
return 1/self.argument * ((self.an[0] - 1)*self + G)
elif len(self.bm) >= 1:
b = list(self.bm)
b[0] += 1
G = meijerg(self.an, self.aother, b, self.bother, self.argument)
return 1/self.argument * (self.bm[0]*self - G)
else:
return S.Zero
def _diff_wrt_parameter(self, idx):
# Differentiation wrt a parameter can only be done in very special
# cases. In particular, if we want to differentiate with respect to
# `a`, all other gamma factors have to reduce to rational functions.
#
# Let MT denote mellin transform. Suppose T(-s) is the gamma factor
# appearing in the definition of G. Then
#
# MT(log(z)G(z)) = d/ds T(s) = d/da T(s) + ...
#
# Thus d/da G(z) = log(z)G(z) - ...
# The ... can be evaluated as a G function under the above conditions,
# the formula being most easily derived by using
#
# d Gamma(s + n) Gamma(s + n) / 1 1 1 \
# -- ------------ = ------------ | - + ---- + ... + --------- |
# ds Gamma(s) Gamma(s) \ s s + 1 s + n - 1 /
#
# which follows from the difference equation of the digamma function.
# (There is a similar equation for -n instead of +n).
# We first figure out how to pair the parameters.
an = list(self.an)
ap = list(self.aother)
bm = list(self.bm)
bq = list(self.bother)
if idx < len(an):
an.pop(idx)
else:
idx -= len(an)
if idx < len(ap):
ap.pop(idx)
else:
idx -= len(ap)
if idx < len(bm):
bm.pop(idx)
else:
bq.pop(idx - len(bm))
pairs1 = []
pairs2 = []
for l1, l2, pairs in [(an, bq, pairs1), (ap, bm, pairs2)]:
while l1:
x = l1.pop()
found = None
for i, y in enumerate(l2):
if not Mod((x - y).simplify(), 1):
found = i
break
if found is None:
raise NotImplementedError('Derivative not expressible '
'as G-function?')
y = l2[i]
l2.pop(i)
pairs.append((x, y))
# Now build the result.
res = log(self.argument)*self
for a, b in pairs1:
sign = 1
n = a - b
base = b
if n < 0:
sign = -1
n = b - a
base = a
for k in range(n):
res -= sign*meijerg(self.an + (base + k + 1,), self.aother,
self.bm, self.bother + (base + k + 0,),
self.argument)
for a, b in pairs2:
sign = 1
n = b - a
base = a
if n < 0:
sign = -1
n = a - b
base = b
for k in range(n):
res -= sign*meijerg(self.an, self.aother + (base + k + 1,),
self.bm + (base + k + 0,), self.bother,
self.argument)
return res
def get_period(self):
"""
Return a number $P$ such that $G(x*exp(I*P)) == G(x)$.
Examples
========
>>> from sympy import meijerg, pi, S
>>> from sympy.abc import z
>>> meijerg([1], [], [], [], z).get_period()
2*pi
>>> meijerg([pi], [], [], [], z).get_period()
oo
>>> meijerg([1, 2], [], [], [], z).get_period()
oo
>>> meijerg([1,1], [2], [1, S(1)/2, S(1)/3], [1], z).get_period()
12*pi
"""
# This follows from slater's theorem.
def compute(l):
# first check that no two differ by an integer
for i, b in enumerate(l):
if not b.is_Rational:
return oo
for j in range(i + 1, len(l)):
if not Mod((b - l[j]).simplify(), 1):
return oo
return reduce(ilcm, (x.q for x in l), 1)
beta = compute(self.bm)
alpha = compute(self.an)
p, q = len(self.ap), len(self.bq)
if p == q:
if oo in (alpha, beta):
return oo
return 2*pi*ilcm(alpha, beta)
elif p < q:
return 2*pi*beta
else:
return 2*pi*alpha
def _eval_expand_func(self, **hints):
from sympy.simplify.hyperexpand import hyperexpand
return hyperexpand(self)
def _eval_evalf(self, prec):
# The default code is insufficient for polar arguments.
# mpmath provides an optional argument "r", which evaluates
# G(z**(1/r)). I am not sure what its intended use is, but we hijack it
# here in the following way: to evaluate at a number z of |argument|
# less than (say) n*pi, we put r=1/n, compute z' = root(z, n)
# (carefully so as not to loose the branch information), and evaluate
# G(z'**(1/r)) = G(z'**n) = G(z).
import mpmath
znum = self.argument._eval_evalf(prec)
if znum.has(exp_polar):
znum, branch = znum.as_coeff_mul(exp_polar)
if len(branch) != 1:
return
branch = branch[0].args[0]/I
else:
branch = S.Zero
n = ceiling(abs(branch/pi)) + 1
znum = znum**(S.One/n)*exp(I*branch / n)
# Convert all args to mpf or mpc
try:
[z, r, ap, bq] = [arg._to_mpmath(prec)
for arg in [znum, 1/n, self.args[0], self.args[1]]]
except ValueError:
return
with mpmath.workprec(prec):
v = mpmath.meijerg(ap, bq, z, r)
return Expr._from_mpmath(v, prec)
def _eval_as_leading_term(self, x, logx=None, cdir=0):
from sympy.simplify.hyperexpand import hyperexpand
return hyperexpand(self).as_leading_term(x, logx=logx, cdir=cdir)
def integrand(self, s):
""" Get the defining integrand D(s). """
from sympy.functions.special.gamma_functions import gamma
return self.argument**s \
* Mul(*(gamma(b - s) for b in self.bm)) \
* Mul(*(gamma(1 - a + s) for a in self.an)) \
/ Mul(*(gamma(1 - b + s) for b in self.bother)) \
/ Mul(*(gamma(a - s) for a in self.aother))
@property
def argument(self):
""" Argument of the Meijer G-function. """
return self.args[2]
@property
def an(self):
""" First set of numerator parameters. """
return Tuple(*self.args[0][0])
@property
def ap(self):
""" Combined numerator parameters. """
return Tuple(*(self.args[0][0] + self.args[0][1]))
@property
def aother(self):
""" Second set of numerator parameters. """
return Tuple(*self.args[0][1])
@property
def bm(self):
""" First set of denominator parameters. """
return Tuple(*self.args[1][0])
@property
def bq(self):
""" Combined denominator parameters. """
return Tuple(*(self.args[1][0] + self.args[1][1]))
@property
def bother(self):
""" Second set of denominator parameters. """
return Tuple(*self.args[1][1])
@property
def _diffargs(self):
return self.ap + self.bq
@property
def nu(self):
""" A quantity related to the convergence region of the integral,
c.f. references. """
return sum(self.bq) - sum(self.ap)
@property
def delta(self):
""" A quantity related to the convergence region of the integral,
c.f. references. """
return len(self.bm) + len(self.an) - S(len(self.ap) + len(self.bq))/2
@property
def is_number(self):
""" Returns true if expression has numeric data only. """
return not self.free_symbols
class HyperRep(Function):
"""
A base class for "hyper representation functions".
This is used exclusively in ``hyperexpand()``, but fits more logically here.
pFq is branched at 1 if p == q+1. For use with slater-expansion, we want
define an "analytic continuation" to all polar numbers, which is
continuous on circles and on the ray t*exp_polar(I*pi). Moreover, we want
a "nice" expression for the various cases.
This base class contains the core logic, concrete derived classes only
supply the actual functions.
"""
@classmethod
def eval(cls, *args):
newargs = tuple(map(unpolarify, args[:-1])) + args[-1:]
if args != newargs:
return cls(*newargs)
@classmethod
def _expr_small(cls, x):
""" An expression for F(x) which holds for |x| < 1. """
raise NotImplementedError
@classmethod
def _expr_small_minus(cls, x):
""" An expression for F(-x) which holds for |x| < 1. """
raise NotImplementedError
@classmethod
def _expr_big(cls, x, n):
""" An expression for F(exp_polar(2*I*pi*n)*x), |x| > 1. """
raise NotImplementedError
@classmethod
def _expr_big_minus(cls, x, n):
""" An expression for F(exp_polar(2*I*pi*n + pi*I)*x), |x| > 1. """
raise NotImplementedError
def _eval_rewrite_as_nonrep(self, *args, **kwargs):
x, n = self.args[-1].extract_branch_factor(allow_half=True)
minus = False
newargs = self.args[:-1] + (x,)
if not n.is_Integer:
minus = True
n -= S.Half
newerargs = newargs + (n,)
if minus:
small = self._expr_small_minus(*newargs)
big = self._expr_big_minus(*newerargs)
else:
small = self._expr_small(*newargs)
big = self._expr_big(*newerargs)
if big == small:
return small
return Piecewise((big, abs(x) > 1), (small, True))
def _eval_rewrite_as_nonrepsmall(self, *args, **kwargs):
x, n = self.args[-1].extract_branch_factor(allow_half=True)
args = self.args[:-1] + (x,)
if not n.is_Integer:
return self._expr_small_minus(*args)
return self._expr_small(*args)
class HyperRep_power1(HyperRep):
""" Return a representative for hyper([-a], [], z) == (1 - z)**a. """
@classmethod
def _expr_small(cls, a, x):
return (1 - x)**a
@classmethod
def _expr_small_minus(cls, a, x):
return (1 + x)**a
@classmethod
def _expr_big(cls, a, x, n):
if a.is_integer:
return cls._expr_small(a, x)
return (x - 1)**a*exp((2*n - 1)*pi*I*a)
@classmethod
def _expr_big_minus(cls, a, x, n):
if a.is_integer:
return cls._expr_small_minus(a, x)
return (1 + x)**a*exp(2*n*pi*I*a)
class HyperRep_power2(HyperRep):
""" Return a representative for hyper([a, a - 1/2], [2*a], z). """
@classmethod
def _expr_small(cls, a, x):
return 2**(2*a - 1)*(1 + sqrt(1 - x))**(1 - 2*a)
@classmethod
def _expr_small_minus(cls, a, x):
return 2**(2*a - 1)*(1 + sqrt(1 + x))**(1 - 2*a)
@classmethod
def _expr_big(cls, a, x, n):
sgn = -1
if n.is_odd:
sgn = 1
n -= 1
return 2**(2*a - 1)*(1 + sgn*I*sqrt(x - 1))**(1 - 2*a) \
*exp(-2*n*pi*I*a)
@classmethod
def _expr_big_minus(cls, a, x, n):
sgn = 1
if n.is_odd:
sgn = -1
return sgn*2**(2*a - 1)*(sqrt(1 + x) + sgn)**(1 - 2*a)*exp(-2*pi*I*a*n)
class HyperRep_log1(HyperRep):
""" Represent -z*hyper([1, 1], [2], z) == log(1 - z). """
@classmethod
def _expr_small(cls, x):
return log(1 - x)
@classmethod
def _expr_small_minus(cls, x):
return log(1 + x)
@classmethod
def _expr_big(cls, x, n):
return log(x - 1) + (2*n - 1)*pi*I
@classmethod
def _expr_big_minus(cls, x, n):
return log(1 + x) + 2*n*pi*I
class HyperRep_atanh(HyperRep):
""" Represent hyper([1/2, 1], [3/2], z) == atanh(sqrt(z))/sqrt(z). """
@classmethod
def _expr_small(cls, x):
return atanh(sqrt(x))/sqrt(x)
def _expr_small_minus(cls, x):
return atan(sqrt(x))/sqrt(x)
def _expr_big(cls, x, n):
if n.is_even:
return (acoth(sqrt(x)) + I*pi/2)/sqrt(x)
else:
return (acoth(sqrt(x)) - I*pi/2)/sqrt(x)
def _expr_big_minus(cls, x, n):
if n.is_even:
return atan(sqrt(x))/sqrt(x)
else:
return (atan(sqrt(x)) - pi)/sqrt(x)
class HyperRep_asin1(HyperRep):
""" Represent hyper([1/2, 1/2], [3/2], z) == asin(sqrt(z))/sqrt(z). """
@classmethod
def _expr_small(cls, z):
return asin(sqrt(z))/sqrt(z)
@classmethod
def _expr_small_minus(cls, z):
return asinh(sqrt(z))/sqrt(z)
@classmethod
def _expr_big(cls, z, n):
return S.NegativeOne**n*((S.Half - n)*pi/sqrt(z) + I*acosh(sqrt(z))/sqrt(z))
@classmethod
def _expr_big_minus(cls, z, n):
return S.NegativeOne**n*(asinh(sqrt(z))/sqrt(z) + n*pi*I/sqrt(z))
class HyperRep_asin2(HyperRep):
""" Represent hyper([1, 1], [3/2], z) == asin(sqrt(z))/sqrt(z)/sqrt(1-z). """
# TODO this can be nicer
@classmethod
def _expr_small(cls, z):
return HyperRep_asin1._expr_small(z) \
/HyperRep_power1._expr_small(S.Half, z)
@classmethod
def _expr_small_minus(cls, z):
return HyperRep_asin1._expr_small_minus(z) \
/HyperRep_power1._expr_small_minus(S.Half, z)
@classmethod
def _expr_big(cls, z, n):
return HyperRep_asin1._expr_big(z, n) \
/HyperRep_power1._expr_big(S.Half, z, n)
@classmethod
def _expr_big_minus(cls, z, n):
return HyperRep_asin1._expr_big_minus(z, n) \
/HyperRep_power1._expr_big_minus(S.Half, z, n)
class HyperRep_sqrts1(HyperRep):
""" Return a representative for hyper([-a, 1/2 - a], [1/2], z). """
@classmethod
def _expr_small(cls, a, z):
return ((1 - sqrt(z))**(2*a) + (1 + sqrt(z))**(2*a))/2
@classmethod
def _expr_small_minus(cls, a, z):
return (1 + z)**a*cos(2*a*atan(sqrt(z)))
@classmethod
def _expr_big(cls, a, z, n):
if n.is_even:
return ((sqrt(z) + 1)**(2*a)*exp(2*pi*I*n*a) +
(sqrt(z) - 1)**(2*a)*exp(2*pi*I*(n - 1)*a))/2
else:
n -= 1
return ((sqrt(z) - 1)**(2*a)*exp(2*pi*I*a*(n + 1)) +
(sqrt(z) + 1)**(2*a)*exp(2*pi*I*a*n))/2
@classmethod
def _expr_big_minus(cls, a, z, n):
if n.is_even:
return (1 + z)**a*exp(2*pi*I*n*a)*cos(2*a*atan(sqrt(z)))
else:
return (1 + z)**a*exp(2*pi*I*n*a)*cos(2*a*atan(sqrt(z)) - 2*pi*a)
class HyperRep_sqrts2(HyperRep):
""" Return a representative for
sqrt(z)/2*[(1-sqrt(z))**2a - (1 + sqrt(z))**2a]
== -2*z/(2*a+1) d/dz hyper([-a - 1/2, -a], [1/2], z)"""
@classmethod
def _expr_small(cls, a, z):
return sqrt(z)*((1 - sqrt(z))**(2*a) - (1 + sqrt(z))**(2*a))/2
@classmethod
def _expr_small_minus(cls, a, z):
return sqrt(z)*(1 + z)**a*sin(2*a*atan(sqrt(z)))
@classmethod
def _expr_big(cls, a, z, n):
if n.is_even:
return sqrt(z)/2*((sqrt(z) - 1)**(2*a)*exp(2*pi*I*a*(n - 1)) -
(sqrt(z) + 1)**(2*a)*exp(2*pi*I*a*n))
else:
n -= 1
return sqrt(z)/2*((sqrt(z) - 1)**(2*a)*exp(2*pi*I*a*(n + 1)) -
(sqrt(z) + 1)**(2*a)*exp(2*pi*I*a*n))
def _expr_big_minus(cls, a, z, n):
if n.is_even:
return (1 + z)**a*exp(2*pi*I*n*a)*sqrt(z)*sin(2*a*atan(sqrt(z)))
else:
return (1 + z)**a*exp(2*pi*I*n*a)*sqrt(z) \
*sin(2*a*atan(sqrt(z)) - 2*pi*a)
class HyperRep_log2(HyperRep):
""" Represent log(1/2 + sqrt(1 - z)/2) == -z/4*hyper([3/2, 1, 1], [2, 2], z) """
@classmethod
def _expr_small(cls, z):
return log(S.Half + sqrt(1 - z)/2)
@classmethod
def _expr_small_minus(cls, z):
return log(S.Half + sqrt(1 + z)/2)
@classmethod
def _expr_big(cls, z, n):
if n.is_even:
return (n - S.Half)*pi*I + log(sqrt(z)/2) + I*asin(1/sqrt(z))
else:
return (n - S.Half)*pi*I + log(sqrt(z)/2) - I*asin(1/sqrt(z))
def _expr_big_minus(cls, z, n):
if n.is_even:
return pi*I*n + log(S.Half + sqrt(1 + z)/2)
else:
return pi*I*n + log(sqrt(1 + z)/2 - S.Half)
class HyperRep_cosasin(HyperRep):
""" Represent hyper([a, -a], [1/2], z) == cos(2*a*asin(sqrt(z))). """
# Note there are many alternative expressions, e.g. as powers of a sum of
# square roots.
@classmethod
def _expr_small(cls, a, z):
return cos(2*a*asin(sqrt(z)))
@classmethod
def _expr_small_minus(cls, a, z):
return cosh(2*a*asinh(sqrt(z)))
@classmethod
def _expr_big(cls, a, z, n):
return cosh(2*a*acosh(sqrt(z)) + a*pi*I*(2*n - 1))
@classmethod
def _expr_big_minus(cls, a, z, n):
return cosh(2*a*asinh(sqrt(z)) + 2*a*pi*I*n)
class HyperRep_sinasin(HyperRep):
""" Represent 2*a*z*hyper([1 - a, 1 + a], [3/2], z)
== sqrt(z)/sqrt(1-z)*sin(2*a*asin(sqrt(z))) """
@classmethod
def _expr_small(cls, a, z):
return sqrt(z)/sqrt(1 - z)*sin(2*a*asin(sqrt(z)))
@classmethod
def _expr_small_minus(cls, a, z):
return -sqrt(z)/sqrt(1 + z)*sinh(2*a*asinh(sqrt(z)))
@classmethod
def _expr_big(cls, a, z, n):
return -1/sqrt(1 - 1/z)*sinh(2*a*acosh(sqrt(z)) + a*pi*I*(2*n - 1))
@classmethod
def _expr_big_minus(cls, a, z, n):
return -1/sqrt(1 + 1/z)*sinh(2*a*asinh(sqrt(z)) + 2*a*pi*I*n)
class appellf1(Function):
r"""
This is the Appell hypergeometric function of two variables as:
.. math ::
F_1(a,b_1,b_2,c,x,y) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}
\frac{(a)_{m+n} (b_1)_m (b_2)_n}{(c)_{m+n}}
\frac{x^m y^n}{m! n!}.
Examples
========
>>> from sympy import appellf1, symbols
>>> x, y, a, b1, b2, c = symbols('x y a b1 b2 c')
>>> appellf1(2., 1., 6., 4., 5., 6.)
0.0063339426292673
>>> appellf1(12., 12., 6., 4., 0.5, 0.12)
172870711.659936
>>> appellf1(40, 2, 6, 4, 15, 60)
appellf1(40, 2, 6, 4, 15, 60)
>>> appellf1(20., 12., 10., 3., 0.5, 0.12)
15605338197184.4
>>> appellf1(40, 2, 6, 4, x, y)
appellf1(40, 2, 6, 4, x, y)
>>> appellf1(a, b1, b2, c, x, y)
appellf1(a, b1, b2, c, x, y)
References
==========
.. [1] https://en.wikipedia.org/wiki/Appell_series
.. [2] http://functions.wolfram.com/HypergeometricFunctions/AppellF1/
"""
@classmethod
def eval(cls, a, b1, b2, c, x, y):
if default_sort_key(b1) > default_sort_key(b2):
b1, b2 = b2, b1
x, y = y, x
return cls(a, b1, b2, c, x, y)
elif b1 == b2 and default_sort_key(x) > default_sort_key(y):
x, y = y, x
return cls(a, b1, b2, c, x, y)
if x == 0 and y == 0:
return S.One
def fdiff(self, argindex=5):
a, b1, b2, c, x, y = self.args
if argindex == 5:
return (a*b1/c)*appellf1(a + 1, b1 + 1, b2, c + 1, x, y)
elif argindex == 6:
return (a*b2/c)*appellf1(a + 1, b1, b2 + 1, c + 1, x, y)
elif argindex in (1, 2, 3, 4):
return Derivative(self, self.args[argindex-1])
else:
raise ArgumentIndexError(self, argindex)
|
eea9a62ca408879861b30da3bbfb090e48c2e7dc5884f696af0c197c286d4db7 | from math import prod
from sympy.core import Add, S, Dummy, expand_func
from sympy.core.expr import Expr
from sympy.core.function import Function, ArgumentIndexError, PoleError
from sympy.core.logic import fuzzy_and, fuzzy_not
from sympy.core.numbers import Rational, pi, oo, I
from sympy.core.power import Pow
from sympy.functions.special.zeta_functions import zeta
from sympy.functions.special.error_functions import erf, erfc, Ei
from sympy.functions.elementary.complexes import re, unpolarify
from sympy.functions.elementary.exponential import exp, log
from sympy.functions.elementary.integers import ceiling, floor
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import sin, cos, cot
from sympy.functions.combinatorial.numbers import bernoulli, harmonic
from sympy.functions.combinatorial.factorials import factorial, rf, RisingFactorial
from sympy.utilities.misc import as_int
from mpmath import mp, workprec
from mpmath.libmp.libmpf import prec_to_dps
def intlike(n):
try:
as_int(n, strict=False)
return True
except ValueError:
return False
###############################################################################
############################ COMPLETE GAMMA FUNCTION ##########################
###############################################################################
class gamma(Function):
r"""
The gamma function
.. math::
\Gamma(x) := \int^{\infty}_{0} t^{x-1} e^{-t} \mathrm{d}t.
Explanation
===========
The ``gamma`` function implements the function which passes through the
values of the factorial function (i.e., $\Gamma(n) = (n - 1)!$ when n is
an integer). More generally, $\Gamma(z)$ is defined in the whole complex
plane except at the negative integers where there are simple poles.
Examples
========
>>> from sympy import S, I, pi, gamma
>>> from sympy.abc import x
Several special values are known:
>>> gamma(1)
1
>>> gamma(4)
6
>>> gamma(S(3)/2)
sqrt(pi)/2
The ``gamma`` function obeys the mirror symmetry:
>>> from sympy import conjugate
>>> conjugate(gamma(x))
gamma(conjugate(x))
Differentiation with respect to $x$ is supported:
>>> from sympy import diff
>>> diff(gamma(x), x)
gamma(x)*polygamma(0, x)
Series expansion is also supported:
>>> from sympy import series
>>> series(gamma(x), x, 0, 3)
1/x - EulerGamma + x*(EulerGamma**2/2 + pi**2/12) + x**2*(-EulerGamma*pi**2/12 - zeta(3)/3 - EulerGamma**3/6) + O(x**3)
We can numerically evaluate the ``gamma`` function to arbitrary precision
on the whole complex plane:
>>> gamma(pi).evalf(40)
2.288037795340032417959588909060233922890
>>> gamma(1+I).evalf(20)
0.49801566811835604271 - 0.15494982830181068512*I
See Also
========
lowergamma: Lower incomplete gamma function.
uppergamma: Upper incomplete gamma function.
polygamma: Polygamma function.
loggamma: Log Gamma function.
digamma: Digamma function.
trigamma: Trigamma function.
beta: Euler Beta function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Gamma_function
.. [2] http://dlmf.nist.gov/5
.. [3] http://mathworld.wolfram.com/GammaFunction.html
.. [4] http://functions.wolfram.com/GammaBetaErf/Gamma/
"""
unbranched = True
_singularities = (S.ComplexInfinity,)
def fdiff(self, argindex=1):
if argindex == 1:
return self.func(self.args[0])*polygamma(0, self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is oo:
return oo
elif intlike(arg):
if arg.is_positive:
return factorial(arg - 1)
else:
return S.ComplexInfinity
elif arg.is_Rational:
if arg.q == 2:
n = abs(arg.p) // arg.q
if arg.is_positive:
k, coeff = n, S.One
else:
n = k = n + 1
if n & 1 == 0:
coeff = S.One
else:
coeff = S.NegativeOne
coeff *= prod(range(3, 2*k, 2))
if arg.is_positive:
return coeff*sqrt(pi) / 2**n
else:
return 2**n*sqrt(pi) / coeff
def _eval_expand_func(self, **hints):
arg = self.args[0]
if arg.is_Rational:
if abs(arg.p) > arg.q:
x = Dummy('x')
n = arg.p // arg.q
p = arg.p - n*arg.q
return self.func(x + n)._eval_expand_func().subs(x, Rational(p, arg.q))
if arg.is_Add:
coeff, tail = arg.as_coeff_add()
if coeff and coeff.q != 1:
intpart = floor(coeff)
tail = (coeff - intpart,) + tail
coeff = intpart
tail = arg._new_rawargs(*tail, reeval=False)
return self.func(tail)*RisingFactorial(tail, coeff)
return self.func(*self.args)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def _eval_is_real(self):
x = self.args[0]
if x.is_nonpositive and x.is_integer:
return False
if intlike(x) and x <= 0:
return False
if x.is_positive or x.is_noninteger:
return True
def _eval_is_positive(self):
x = self.args[0]
if x.is_positive:
return True
elif x.is_noninteger:
return floor(x).is_even
def _eval_rewrite_as_tractable(self, z, limitvar=None, **kwargs):
return exp(loggamma(z))
def _eval_rewrite_as_factorial(self, z, **kwargs):
return factorial(z - 1)
def _eval_nseries(self, x, n, logx, cdir=0):
x0 = self.args[0].limit(x, 0)
if not (x0.is_Integer and x0 <= 0):
return super()._eval_nseries(x, n, logx)
t = self.args[0] - x0
return (self.func(t + 1)/rf(self.args[0], -x0 + 1))._eval_nseries(x, n, logx)
def _eval_as_leading_term(self, x, logx=None, cdir=0):
arg = self.args[0]
x0 = arg.subs(x, 0)
if x0.is_integer and x0.is_nonpositive:
n = -x0
res = S.NegativeOne**n/self.func(n + 1)
return res/(arg + n).as_leading_term(x)
elif not x0.is_infinite:
return self.func(x0)
raise PoleError()
###############################################################################
################## LOWER and UPPER INCOMPLETE GAMMA FUNCTIONS #################
###############################################################################
class lowergamma(Function):
r"""
The lower incomplete gamma function.
Explanation
===========
It can be defined as the meromorphic continuation of
.. math::
\gamma(s, x) := \int_0^x t^{s-1} e^{-t} \mathrm{d}t = \Gamma(s) - \Gamma(s, x).
This can be shown to be the same as
.. math::
\gamma(s, x) = \frac{x^s}{s} {}_1F_1\left({s \atop s+1} \middle| -x\right),
where ${}_1F_1$ is the (confluent) hypergeometric function.
Examples
========
>>> from sympy import lowergamma, S
>>> from sympy.abc import s, x
>>> lowergamma(s, x)
lowergamma(s, x)
>>> lowergamma(3, x)
-2*(x**2/2 + x + 1)*exp(-x) + 2
>>> lowergamma(-S(1)/2, x)
-2*sqrt(pi)*erf(sqrt(x)) - 2*exp(-x)/sqrt(x)
See Also
========
gamma: Gamma function.
uppergamma: Upper incomplete gamma function.
polygamma: Polygamma function.
loggamma: Log Gamma function.
digamma: Digamma function.
trigamma: Trigamma function.
beta: Euler Beta function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Incomplete_gamma_function#Lower_incomplete_Gamma_function
.. [2] Abramowitz, Milton; Stegun, Irene A., eds. (1965), Chapter 6,
Section 5, Handbook of Mathematical Functions with Formulas, Graphs,
and Mathematical Tables
.. [3] http://dlmf.nist.gov/8
.. [4] http://functions.wolfram.com/GammaBetaErf/Gamma2/
.. [5] http://functions.wolfram.com/GammaBetaErf/Gamma3/
"""
def fdiff(self, argindex=2):
from sympy.functions.special.hyper import meijerg
if argindex == 2:
a, z = self.args
return exp(-unpolarify(z))*z**(a - 1)
elif argindex == 1:
a, z = self.args
return gamma(a)*digamma(a) - log(z)*uppergamma(a, z) \
- meijerg([], [1, 1], [0, 0, a], [], z)
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, a, x):
# For lack of a better place, we use this one to extract branching
# information. The following can be
# found in the literature (c/f references given above), albeit scattered:
# 1) For fixed x != 0, lowergamma(s, x) is an entire function of s
# 2) For fixed positive integers s, lowergamma(s, x) is an entire
# function of x.
# 3) For fixed non-positive integers s,
# lowergamma(s, exp(I*2*pi*n)*x) =
# 2*pi*I*n*(-1)**(-s)/factorial(-s) + lowergamma(s, x)
# (this follows from lowergamma(s, x).diff(x) = x**(s-1)*exp(-x)).
# 4) For fixed non-integral s,
# lowergamma(s, x) = x**s*gamma(s)*lowergamma_unbranched(s, x),
# where lowergamma_unbranched(s, x) is an entire function (in fact
# of both s and x), i.e.
# lowergamma(s, exp(2*I*pi*n)*x) = exp(2*pi*I*n*a)*lowergamma(a, x)
if x is S.Zero:
return S.Zero
nx, n = x.extract_branch_factor()
if a.is_integer and a.is_positive:
nx = unpolarify(x)
if nx != x:
return lowergamma(a, nx)
elif a.is_integer and a.is_nonpositive:
if n != 0:
return 2*pi*I*n*S.NegativeOne**(-a)/factorial(-a) + lowergamma(a, nx)
elif n != 0:
return exp(2*pi*I*n*a)*lowergamma(a, nx)
# Special values.
if a.is_Number:
if a is S.One:
return S.One - exp(-x)
elif a is S.Half:
return sqrt(pi)*erf(sqrt(x))
elif a.is_Integer or (2*a).is_Integer:
b = a - 1
if b.is_positive:
if a.is_integer:
return factorial(b) - exp(-x) * factorial(b) * Add(*[x ** k / factorial(k) for k in range(a)])
else:
return gamma(a)*(lowergamma(S.Half, x)/sqrt(pi) - exp(-x)*Add(*[x**(k - S.Half)/gamma(S.Half + k) for k in range(1, a + S.Half)]))
if not a.is_Integer:
return S.NegativeOne**(S.Half - a)*pi*erf(sqrt(x))/gamma(1 - a) + exp(-x)*Add(*[x**(k + a - 1)*gamma(a)/gamma(a + k) for k in range(1, Rational(3, 2) - a)])
if x.is_zero:
return S.Zero
def _eval_evalf(self, prec):
if all(x.is_number for x in self.args):
a = self.args[0]._to_mpmath(prec)
z = self.args[1]._to_mpmath(prec)
with workprec(prec):
res = mp.gammainc(a, 0, z)
return Expr._from_mpmath(res, prec)
else:
return self
def _eval_conjugate(self):
x = self.args[1]
if x not in (S.Zero, S.NegativeInfinity):
return self.func(self.args[0].conjugate(), x.conjugate())
def _eval_is_meromorphic(self, x, a):
# By https://en.wikipedia.org/wiki/Incomplete_gamma_function#Holomorphic_extension,
# lowergamma(s, z) = z**s*gamma(s)*gammastar(s, z),
# where gammastar(s, z) is holomorphic for all s and z.
# Hence the singularities of lowergamma are z = 0 (branch
# point) and nonpositive integer values of s (poles of gamma(s)).
s, z = self.args
args_merom = fuzzy_and([z._eval_is_meromorphic(x, a),
s._eval_is_meromorphic(x, a)])
if not args_merom:
return args_merom
z0 = z.subs(x, a)
if s.is_integer:
return fuzzy_and([s.is_positive, z0.is_finite])
s0 = s.subs(x, a)
return fuzzy_and([s0.is_finite, z0.is_finite, fuzzy_not(z0.is_zero)])
def _eval_aseries(self, n, args0, x, logx):
from sympy.series.order import O
s, z = self.args
if args0[0] is oo and not z.has(x):
coeff = z**s*exp(-z)
sum_expr = sum(z**k/rf(s, k + 1) for k in range(n - 1))
o = O(z**s*s**(-n))
return coeff*sum_expr + o
return super()._eval_aseries(n, args0, x, logx)
def _eval_rewrite_as_uppergamma(self, s, x, **kwargs):
return gamma(s) - uppergamma(s, x)
def _eval_rewrite_as_expint(self, s, x, **kwargs):
from sympy.functions.special.error_functions import expint
if s.is_integer and s.is_nonpositive:
return self
return self.rewrite(uppergamma).rewrite(expint)
def _eval_is_zero(self):
x = self.args[1]
if x.is_zero:
return True
class uppergamma(Function):
r"""
The upper incomplete gamma function.
Explanation
===========
It can be defined as the meromorphic continuation of
.. math::
\Gamma(s, x) := \int_x^\infty t^{s-1} e^{-t} \mathrm{d}t = \Gamma(s) - \gamma(s, x).
where $\gamma(s, x)$ is the lower incomplete gamma function,
:class:`lowergamma`. This can be shown to be the same as
.. math::
\Gamma(s, x) = \Gamma(s) - \frac{x^s}{s} {}_1F_1\left({s \atop s+1} \middle| -x\right),
where ${}_1F_1$ is the (confluent) hypergeometric function.
The upper incomplete gamma function is also essentially equivalent to the
generalized exponential integral:
.. math::
\operatorname{E}_{n}(x) = \int_{1}^{\infty}{\frac{e^{-xt}}{t^n} \, dt} = x^{n-1}\Gamma(1-n,x).
Examples
========
>>> from sympy import uppergamma, S
>>> from sympy.abc import s, x
>>> uppergamma(s, x)
uppergamma(s, x)
>>> uppergamma(3, x)
2*(x**2/2 + x + 1)*exp(-x)
>>> uppergamma(-S(1)/2, x)
-2*sqrt(pi)*erfc(sqrt(x)) + 2*exp(-x)/sqrt(x)
>>> uppergamma(-2, x)
expint(3, x)/x**2
See Also
========
gamma: Gamma function.
lowergamma: Lower incomplete gamma function.
polygamma: Polygamma function.
loggamma: Log Gamma function.
digamma: Digamma function.
trigamma: Trigamma function.
beta: Euler Beta function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Incomplete_gamma_function#Upper_incomplete_Gamma_function
.. [2] Abramowitz, Milton; Stegun, Irene A., eds. (1965), Chapter 6,
Section 5, Handbook of Mathematical Functions with Formulas, Graphs,
and Mathematical Tables
.. [3] http://dlmf.nist.gov/8
.. [4] http://functions.wolfram.com/GammaBetaErf/Gamma2/
.. [5] http://functions.wolfram.com/GammaBetaErf/Gamma3/
.. [6] https://en.wikipedia.org/wiki/Exponential_integral#Relation_with_other_functions
"""
def fdiff(self, argindex=2):
from sympy.functions.special.hyper import meijerg
if argindex == 2:
a, z = self.args
return -exp(-unpolarify(z))*z**(a - 1)
elif argindex == 1:
a, z = self.args
return uppergamma(a, z)*log(z) + meijerg([], [1, 1], [0, 0, a], [], z)
else:
raise ArgumentIndexError(self, argindex)
def _eval_evalf(self, prec):
if all(x.is_number for x in self.args):
a = self.args[0]._to_mpmath(prec)
z = self.args[1]._to_mpmath(prec)
with workprec(prec):
res = mp.gammainc(a, z, mp.inf)
return Expr._from_mpmath(res, prec)
return self
@classmethod
def eval(cls, a, z):
from sympy.functions.special.error_functions import expint
if z.is_Number:
if z is S.NaN:
return S.NaN
elif z is oo:
return S.Zero
elif z.is_zero:
if re(a).is_positive:
return gamma(a)
# We extract branching information here. C/f lowergamma.
nx, n = z.extract_branch_factor()
if a.is_integer and a.is_positive:
nx = unpolarify(z)
if z != nx:
return uppergamma(a, nx)
elif a.is_integer and a.is_nonpositive:
if n != 0:
return -2*pi*I*n*S.NegativeOne**(-a)/factorial(-a) + uppergamma(a, nx)
elif n != 0:
return gamma(a)*(1 - exp(2*pi*I*n*a)) + exp(2*pi*I*n*a)*uppergamma(a, nx)
# Special values.
if a.is_Number:
if a is S.Zero and z.is_positive:
return -Ei(-z)
elif a is S.One:
return exp(-z)
elif a is S.Half:
return sqrt(pi)*erfc(sqrt(z))
elif a.is_Integer or (2*a).is_Integer:
b = a - 1
if b.is_positive:
if a.is_integer:
return exp(-z) * factorial(b) * Add(*[z**k / factorial(k)
for k in range(a)])
else:
return (gamma(a) * erfc(sqrt(z)) +
S.NegativeOne**(a - S(3)/2) * exp(-z) * sqrt(z)
* Add(*[gamma(-S.Half - k) * (-z)**k / gamma(1-a)
for k in range(a - S.Half)]))
elif b.is_Integer:
return expint(-b, z)*unpolarify(z)**(b + 1)
if not a.is_Integer:
return (S.NegativeOne**(S.Half - a) * pi*erfc(sqrt(z))/gamma(1-a)
- z**a * exp(-z) * Add(*[z**k * gamma(a) / gamma(a+k+1)
for k in range(S.Half - a)]))
if a.is_zero and z.is_positive:
return -Ei(-z)
if z.is_zero and re(a).is_positive:
return gamma(a)
def _eval_conjugate(self):
z = self.args[1]
if z not in (S.Zero, S.NegativeInfinity):
return self.func(self.args[0].conjugate(), z.conjugate())
def _eval_is_meromorphic(self, x, a):
return lowergamma._eval_is_meromorphic(self, x, a)
def _eval_rewrite_as_lowergamma(self, s, x, **kwargs):
return gamma(s) - lowergamma(s, x)
def _eval_rewrite_as_tractable(self, s, x, **kwargs):
return exp(loggamma(s)) - lowergamma(s, x)
def _eval_rewrite_as_expint(self, s, x, **kwargs):
from sympy.functions.special.error_functions import expint
return expint(1 - s, x)*x**s
###############################################################################
###################### POLYGAMMA and LOGGAMMA FUNCTIONS #######################
###############################################################################
class polygamma(Function):
r"""
The function ``polygamma(n, z)`` returns ``log(gamma(z)).diff(n + 1)``.
Explanation
===========
It is a meromorphic function on $\mathbb{C}$ and defined as the $(n+1)$-th
derivative of the logarithm of the gamma function:
.. math::
\psi^{(n)} (z) := \frac{\mathrm{d}^{n+1}}{\mathrm{d} z^{n+1}} \log\Gamma(z).
For `n` not a nonnegative integer the generalization by Espinosa and Moll [5]_
is used:
.. math:: \psi(s,z) = \frac{\zeta'(s+1, z) + (\gamma + \psi(-s)) \zeta(s+1, z)}
{\Gamma(-s)}
Examples
========
Several special values are known:
>>> from sympy import S, polygamma
>>> polygamma(0, 1)
-EulerGamma
>>> polygamma(0, 1/S(2))
-2*log(2) - EulerGamma
>>> polygamma(0, 1/S(3))
-log(3) - sqrt(3)*pi/6 - EulerGamma - log(sqrt(3))
>>> polygamma(0, 1/S(4))
-pi/2 - log(4) - log(2) - EulerGamma
>>> polygamma(0, 2)
1 - EulerGamma
>>> polygamma(0, 23)
19093197/5173168 - EulerGamma
>>> from sympy import oo, I
>>> polygamma(0, oo)
oo
>>> polygamma(0, -oo)
oo
>>> polygamma(0, I*oo)
oo
>>> polygamma(0, -I*oo)
oo
Differentiation with respect to $x$ is supported:
>>> from sympy import Symbol, diff
>>> x = Symbol("x")
>>> diff(polygamma(0, x), x)
polygamma(1, x)
>>> diff(polygamma(0, x), x, 2)
polygamma(2, x)
>>> diff(polygamma(0, x), x, 3)
polygamma(3, x)
>>> diff(polygamma(1, x), x)
polygamma(2, x)
>>> diff(polygamma(1, x), x, 2)
polygamma(3, x)
>>> diff(polygamma(2, x), x)
polygamma(3, x)
>>> diff(polygamma(2, x), x, 2)
polygamma(4, x)
>>> n = Symbol("n")
>>> diff(polygamma(n, x), x)
polygamma(n + 1, x)
>>> diff(polygamma(n, x), x, 2)
polygamma(n + 2, x)
We can rewrite ``polygamma`` functions in terms of harmonic numbers:
>>> from sympy import harmonic
>>> polygamma(0, x).rewrite(harmonic)
harmonic(x - 1) - EulerGamma
>>> polygamma(2, x).rewrite(harmonic)
2*harmonic(x - 1, 3) - 2*zeta(3)
>>> ni = Symbol("n", integer=True)
>>> polygamma(ni, x).rewrite(harmonic)
(-1)**(n + 1)*(-harmonic(x - 1, n + 1) + zeta(n + 1))*factorial(n)
See Also
========
gamma: Gamma function.
lowergamma: Lower incomplete gamma function.
uppergamma: Upper incomplete gamma function.
loggamma: Log Gamma function.
digamma: Digamma function.
trigamma: Trigamma function.
beta: Euler Beta function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Polygamma_function
.. [2] http://mathworld.wolfram.com/PolygammaFunction.html
.. [3] http://functions.wolfram.com/GammaBetaErf/PolyGamma/
.. [4] http://functions.wolfram.com/GammaBetaErf/PolyGamma2/
.. [5] O. Espinosa and V. Moll, "A generalized polygamma function",
*Integral Transforms and Special Functions* (2004), 101-115.
"""
@classmethod
def eval(cls, n, z):
if n is S.NaN or z is S.NaN:
return S.NaN
elif z is oo:
return oo if n.is_zero else S.Zero
elif z.is_Integer and z.is_nonpositive:
return S.ComplexInfinity
elif n is S.NegativeOne:
return loggamma(z) - log(2*pi) / 2
elif n.is_zero:
if z is -oo or z.extract_multiplicatively(I) in (oo, -oo):
return oo
elif z.is_Integer:
return harmonic(z-1) - S.EulerGamma
elif z.is_Rational:
# TODO n == 1 also can do some rational z
p, q = z.as_numer_denom()
# only expand for small denominators to avoid creating long expressions
if q <= 6:
return expand_func(polygamma(S.Zero, z, evaluate=False))
elif n.is_integer and n.is_nonnegative:
nz = unpolarify(z)
if z != nz:
return polygamma(n, nz)
if z.is_Integer:
return S.NegativeOne**(n+1) * factorial(n) * zeta(n+1, z)
elif z is S.Half:
return S.NegativeOne**(n+1) * factorial(n) * (2**(n+1)-1) * zeta(n+1)
def _eval_is_real(self):
if self.args[0].is_positive and self.args[1].is_positive:
return True
def _eval_is_complex(self):
z = self.args[1]
is_negative_integer = fuzzy_and([z.is_negative, z.is_integer])
return fuzzy_and([z.is_complex, fuzzy_not(is_negative_integer)])
def _eval_is_positive(self):
n, z = self.args
if n.is_positive:
if n.is_odd and z.is_real:
return True
if n.is_even and z.is_positive:
return False
def _eval_is_negative(self):
n, z = self.args
if n.is_positive:
if n.is_even and z.is_positive:
return True
if n.is_odd and z.is_real:
return False
def _eval_expand_func(self, **hints):
n, z = self.args
if n.is_Integer and n.is_nonnegative:
if z.is_Add:
coeff = z.args[0]
if coeff.is_Integer:
e = -(n + 1)
if coeff > 0:
tail = Add(*[Pow(
z - i, e) for i in range(1, int(coeff) + 1)])
else:
tail = -Add(*[Pow(
z + i, e) for i in range(int(-coeff))])
return polygamma(n, z - coeff) + S.NegativeOne**n*factorial(n)*tail
elif z.is_Mul:
coeff, z = z.as_two_terms()
if coeff.is_Integer and coeff.is_positive:
tail = [polygamma(n, z + Rational(
i, coeff)) for i in range(int(coeff))]
if n == 0:
return Add(*tail)/coeff + log(coeff)
else:
return Add(*tail)/coeff**(n + 1)
z *= coeff
if n == 0 and z.is_Rational:
p, q = z.as_numer_denom()
# Reference:
# Values of the polygamma functions at rational arguments, J. Choi, 2007
part_1 = -S.EulerGamma - pi * cot(p * pi / q) / 2 - log(q) + Add(
*[cos(2 * k * pi * p / q) * log(2 * sin(k * pi / q)) for k in range(1, q)])
if z > 0:
n = floor(z)
z0 = z - n
return part_1 + Add(*[1 / (z0 + k) for k in range(n)])
elif z < 0:
n = floor(1 - z)
z0 = z + n
return part_1 - Add(*[1 / (z0 - 1 - k) for k in range(n)])
if n == -1:
return loggamma(z) - log(2*pi) / 2
if n.is_integer is False or n.is_nonnegative is False:
s = Dummy("s")
dzt = zeta(s, z).diff(s).subs(s, n+1)
return (dzt + (S.EulerGamma + digamma(-n)) * zeta(n+1, z)) / gamma(-n)
return polygamma(n, z)
def _eval_rewrite_as_zeta(self, n, z, **kwargs):
if n.is_integer and n.is_positive:
return S.NegativeOne**(n + 1)*factorial(n)*zeta(n + 1, z)
def _eval_rewrite_as_harmonic(self, n, z, **kwargs):
if n.is_integer:
if n.is_zero:
return harmonic(z - 1) - S.EulerGamma
else:
return S.NegativeOne**(n+1) * factorial(n) * (zeta(n+1) - harmonic(z-1, n+1))
def _eval_as_leading_term(self, x, logx=None, cdir=0):
from sympy.series.order import Order
n, z = [a.as_leading_term(x) for a in self.args]
o = Order(z, x)
if n == 0 and o.contains(1/x):
logx = log(x) if logx is None else logx
return o.getn() * logx
else:
return self.func(n, z)
def fdiff(self, argindex=2):
if argindex == 2:
n, z = self.args[:2]
return polygamma(n + 1, z)
else:
raise ArgumentIndexError(self, argindex)
def _eval_aseries(self, n, args0, x, logx):
from sympy.series.order import Order
if args0[1] != oo or not \
(self.args[0].is_Integer and self.args[0].is_nonnegative):
return super()._eval_aseries(n, args0, x, logx)
z = self.args[1]
N = self.args[0]
if N == 0:
# digamma function series
# Abramowitz & Stegun, p. 259, 6.3.18
r = log(z) - 1/(2*z)
o = None
if n < 2:
o = Order(1/z, x)
else:
m = ceiling((n + 1)//2)
l = [bernoulli(2*k) / (2*k*z**(2*k)) for k in range(1, m)]
r -= Add(*l)
o = Order(1/z**n, x)
return r._eval_nseries(x, n, logx) + o
else:
# proper polygamma function
# Abramowitz & Stegun, p. 260, 6.4.10
# We return terms to order higher than O(x**n) on purpose
# -- otherwise we would not be able to return any terms for
# quite a long time!
fac = gamma(N)
e0 = fac + N*fac/(2*z)
m = ceiling((n + 1)//2)
for k in range(1, m):
fac = fac*(2*k + N - 1)*(2*k + N - 2) / ((2*k)*(2*k - 1))
e0 += bernoulli(2*k)*fac/z**(2*k)
o = Order(1/z**(2*m), x)
if n == 0:
o = Order(1/z, x)
elif n == 1:
o = Order(1/z**2, x)
r = e0._eval_nseries(z, n, logx) + o
return (-1 * (-1/z)**N * r)._eval_nseries(x, n, logx)
def _eval_evalf(self, prec):
if not all(i.is_number for i in self.args):
return
s = self.args[0]._to_mpmath(prec+12)
z = self.args[1]._to_mpmath(prec+12)
if mp.isint(z) and z <= 0:
return S.ComplexInfinity
with workprec(prec+12):
if mp.isint(s) and s >= 0:
res = mp.polygamma(s, z)
else:
zt = mp.zeta(s+1, z)
dzt = mp.zeta(s+1, z, 1)
res = (dzt + (mp.euler + mp.digamma(-s)) * zt) * mp.rgamma(-s)
return Expr._from_mpmath(res, prec)
class loggamma(Function):
r"""
The ``loggamma`` function implements the logarithm of the
gamma function (i.e., $\log\Gamma(x)$).
Examples
========
Several special values are known. For numerical integral
arguments we have:
>>> from sympy import loggamma
>>> loggamma(-2)
oo
>>> loggamma(0)
oo
>>> loggamma(1)
0
>>> loggamma(2)
0
>>> loggamma(3)
log(2)
And for symbolic values:
>>> from sympy import Symbol
>>> n = Symbol("n", integer=True, positive=True)
>>> loggamma(n)
log(gamma(n))
>>> loggamma(-n)
oo
For half-integral values:
>>> from sympy import S
>>> loggamma(S(5)/2)
log(3*sqrt(pi)/4)
>>> loggamma(n/2)
log(2**(1 - n)*sqrt(pi)*gamma(n)/gamma(n/2 + 1/2))
And general rational arguments:
>>> from sympy import expand_func
>>> L = loggamma(S(16)/3)
>>> expand_func(L).doit()
-5*log(3) + loggamma(1/3) + log(4) + log(7) + log(10) + log(13)
>>> L = loggamma(S(19)/4)
>>> expand_func(L).doit()
-4*log(4) + loggamma(3/4) + log(3) + log(7) + log(11) + log(15)
>>> L = loggamma(S(23)/7)
>>> expand_func(L).doit()
-3*log(7) + log(2) + loggamma(2/7) + log(9) + log(16)
The ``loggamma`` function has the following limits towards infinity:
>>> from sympy import oo
>>> loggamma(oo)
oo
>>> loggamma(-oo)
zoo
The ``loggamma`` function obeys the mirror symmetry
if $x \in \mathbb{C} \setminus \{-\infty, 0\}$:
>>> from sympy.abc import x
>>> from sympy import conjugate
>>> conjugate(loggamma(x))
loggamma(conjugate(x))
Differentiation with respect to $x$ is supported:
>>> from sympy import diff
>>> diff(loggamma(x), x)
polygamma(0, x)
Series expansion is also supported:
>>> from sympy import series
>>> series(loggamma(x), x, 0, 4).cancel()
-log(x) - EulerGamma*x + pi**2*x**2/12 - x**3*zeta(3)/3 + O(x**4)
We can numerically evaluate the ``loggamma`` function
to arbitrary precision on the whole complex plane:
>>> from sympy import I
>>> loggamma(5).evalf(30)
3.17805383034794561964694160130
>>> loggamma(I).evalf(20)
-0.65092319930185633889 - 1.8724366472624298171*I
See Also
========
gamma: Gamma function.
lowergamma: Lower incomplete gamma function.
uppergamma: Upper incomplete gamma function.
polygamma: Polygamma function.
digamma: Digamma function.
trigamma: Trigamma function.
beta: Euler Beta function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Gamma_function
.. [2] http://dlmf.nist.gov/5
.. [3] http://mathworld.wolfram.com/LogGammaFunction.html
.. [4] http://functions.wolfram.com/GammaBetaErf/LogGamma/
"""
@classmethod
def eval(cls, z):
if z.is_integer:
if z.is_nonpositive:
return oo
elif z.is_positive:
return log(gamma(z))
elif z.is_rational:
p, q = z.as_numer_denom()
# Half-integral values:
if p.is_positive and q == 2:
return log(sqrt(pi) * 2**(1 - p) * gamma(p) / gamma((p + 1)*S.Half))
if z is oo:
return oo
elif abs(z) is oo:
return S.ComplexInfinity
if z is S.NaN:
return S.NaN
def _eval_expand_func(self, **hints):
from sympy.concrete.summations import Sum
z = self.args[0]
if z.is_Rational:
p, q = z.as_numer_denom()
# General rational arguments (u + p/q)
# Split z as n + p/q with p < q
n = p // q
p = p - n*q
if p.is_positive and q.is_positive and p < q:
k = Dummy("k")
if n.is_positive:
return loggamma(p / q) - n*log(q) + Sum(log((k - 1)*q + p), (k, 1, n))
elif n.is_negative:
return loggamma(p / q) - n*log(q) + pi*I*n - Sum(log(k*q - p), (k, 1, -n))
elif n.is_zero:
return loggamma(p / q)
return self
def _eval_nseries(self, x, n, logx=None, cdir=0):
x0 = self.args[0].limit(x, 0)
if x0.is_zero:
f = self._eval_rewrite_as_intractable(*self.args)
return f._eval_nseries(x, n, logx)
return super()._eval_nseries(x, n, logx)
def _eval_aseries(self, n, args0, x, logx):
from sympy.series.order import Order
if args0[0] != oo:
return super()._eval_aseries(n, args0, x, logx)
z = self.args[0]
r = log(z)*(z - S.Half) - z + log(2*pi)/2
l = [bernoulli(2*k) / (2*k*(2*k - 1)*z**(2*k - 1)) for k in range(1, n)]
o = None
if n == 0:
o = Order(1, x)
else:
o = Order(1/z**n, x)
# It is very inefficient to first add the order and then do the nseries
return (r + Add(*l))._eval_nseries(x, n, logx) + o
def _eval_rewrite_as_intractable(self, z, **kwargs):
return log(gamma(z))
def _eval_is_real(self):
z = self.args[0]
if z.is_positive:
return True
elif z.is_nonpositive:
return False
def _eval_conjugate(self):
z = self.args[0]
if z not in (S.Zero, S.NegativeInfinity):
return self.func(z.conjugate())
def fdiff(self, argindex=1):
if argindex == 1:
return polygamma(0, self.args[0])
else:
raise ArgumentIndexError(self, argindex)
class digamma(Function):
r"""
The ``digamma`` function is the first derivative of the ``loggamma``
function
.. math::
\psi(x) := \frac{\mathrm{d}}{\mathrm{d} z} \log\Gamma(z)
= \frac{\Gamma'(z)}{\Gamma(z) }.
In this case, ``digamma(z) = polygamma(0, z)``.
Examples
========
>>> from sympy import digamma
>>> digamma(0)
zoo
>>> from sympy import Symbol
>>> z = Symbol('z')
>>> digamma(z)
polygamma(0, z)
To retain ``digamma`` as it is:
>>> digamma(0, evaluate=False)
digamma(0)
>>> digamma(z, evaluate=False)
digamma(z)
See Also
========
gamma: Gamma function.
lowergamma: Lower incomplete gamma function.
uppergamma: Upper incomplete gamma function.
polygamma: Polygamma function.
loggamma: Log Gamma function.
trigamma: Trigamma function.
beta: Euler Beta function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Digamma_function
.. [2] http://mathworld.wolfram.com/DigammaFunction.html
.. [3] http://functions.wolfram.com/GammaBetaErf/PolyGamma2/
"""
def _eval_evalf(self, prec):
z = self.args[0]
nprec = prec_to_dps(prec)
return polygamma(0, z).evalf(n=nprec)
def fdiff(self, argindex=1):
z = self.args[0]
return polygamma(0, z).fdiff()
def _eval_is_real(self):
z = self.args[0]
return polygamma(0, z).is_real
def _eval_is_positive(self):
z = self.args[0]
return polygamma(0, z).is_positive
def _eval_is_negative(self):
z = self.args[0]
return polygamma(0, z).is_negative
def _eval_aseries(self, n, args0, x, logx):
as_polygamma = self.rewrite(polygamma)
args0 = [S.Zero,] + args0
return as_polygamma._eval_aseries(n, args0, x, logx)
@classmethod
def eval(cls, z):
return polygamma(0, z)
def _eval_expand_func(self, **hints):
z = self.args[0]
return polygamma(0, z).expand(func=True)
def _eval_rewrite_as_harmonic(self, z, **kwargs):
return harmonic(z - 1) - S.EulerGamma
def _eval_rewrite_as_polygamma(self, z, **kwargs):
return polygamma(0, z)
def _eval_as_leading_term(self, x, logx=None, cdir=0):
z = self.args[0]
return polygamma(0, z).as_leading_term(x)
class trigamma(Function):
r"""
The ``trigamma`` function is the second derivative of the ``loggamma``
function
.. math::
\psi^{(1)}(z) := \frac{\mathrm{d}^{2}}{\mathrm{d} z^{2}} \log\Gamma(z).
In this case, ``trigamma(z) = polygamma(1, z)``.
Examples
========
>>> from sympy import trigamma
>>> trigamma(0)
zoo
>>> from sympy import Symbol
>>> z = Symbol('z')
>>> trigamma(z)
polygamma(1, z)
To retain ``trigamma`` as it is:
>>> trigamma(0, evaluate=False)
trigamma(0)
>>> trigamma(z, evaluate=False)
trigamma(z)
See Also
========
gamma: Gamma function.
lowergamma: Lower incomplete gamma function.
uppergamma: Upper incomplete gamma function.
polygamma: Polygamma function.
loggamma: Log Gamma function.
digamma: Digamma function.
beta: Euler Beta function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigamma_function
.. [2] http://mathworld.wolfram.com/TrigammaFunction.html
.. [3] http://functions.wolfram.com/GammaBetaErf/PolyGamma2/
"""
def _eval_evalf(self, prec):
z = self.args[0]
nprec = prec_to_dps(prec)
return polygamma(1, z).evalf(n=nprec)
def fdiff(self, argindex=1):
z = self.args[0]
return polygamma(1, z).fdiff()
def _eval_is_real(self):
z = self.args[0]
return polygamma(1, z).is_real
def _eval_is_positive(self):
z = self.args[0]
return polygamma(1, z).is_positive
def _eval_is_negative(self):
z = self.args[0]
return polygamma(1, z).is_negative
def _eval_aseries(self, n, args0, x, logx):
as_polygamma = self.rewrite(polygamma)
args0 = [S.One,] + args0
return as_polygamma._eval_aseries(n, args0, x, logx)
@classmethod
def eval(cls, z):
return polygamma(1, z)
def _eval_expand_func(self, **hints):
z = self.args[0]
return polygamma(1, z).expand(func=True)
def _eval_rewrite_as_zeta(self, z, **kwargs):
return zeta(2, z)
def _eval_rewrite_as_polygamma(self, z, **kwargs):
return polygamma(1, z)
def _eval_rewrite_as_harmonic(self, z, **kwargs):
return -harmonic(z - 1, 2) + pi**2 / 6
def _eval_as_leading_term(self, x, logx=None, cdir=0):
z = self.args[0]
return polygamma(1, z).as_leading_term(x)
###############################################################################
##################### COMPLETE MULTIVARIATE GAMMA FUNCTION ####################
###############################################################################
class multigamma(Function):
r"""
The multivariate gamma function is a generalization of the gamma function
.. math::
\Gamma_p(z) = \pi^{p(p-1)/4}\prod_{k=1}^p \Gamma[z + (1 - k)/2].
In a special case, ``multigamma(x, 1) = gamma(x)``.
Examples
========
>>> from sympy import S, multigamma
>>> from sympy import Symbol
>>> x = Symbol('x')
>>> p = Symbol('p', positive=True, integer=True)
>>> multigamma(x, p)
pi**(p*(p - 1)/4)*Product(gamma(-_k/2 + x + 1/2), (_k, 1, p))
Several special values are known:
>>> multigamma(1, 1)
1
>>> multigamma(4, 1)
6
>>> multigamma(S(3)/2, 1)
sqrt(pi)/2
Writing ``multigamma`` in terms of the ``gamma`` function:
>>> multigamma(x, 1)
gamma(x)
>>> multigamma(x, 2)
sqrt(pi)*gamma(x)*gamma(x - 1/2)
>>> multigamma(x, 3)
pi**(3/2)*gamma(x)*gamma(x - 1)*gamma(x - 1/2)
Parameters
==========
p : order or dimension of the multivariate gamma function
See Also
========
gamma, lowergamma, uppergamma, polygamma, loggamma, digamma, trigamma,
beta
References
==========
.. [1] https://en.wikipedia.org/wiki/Multivariate_gamma_function
"""
unbranched = True
def fdiff(self, argindex=2):
from sympy.concrete.summations import Sum
if argindex == 2:
x, p = self.args
k = Dummy("k")
return self.func(x, p)*Sum(polygamma(0, x + (1 - k)/2), (k, 1, p))
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, x, p):
from sympy.concrete.products import Product
if p.is_positive is False or p.is_integer is False:
raise ValueError('Order parameter p must be positive integer.')
k = Dummy("k")
return (pi**(p*(p - 1)/4)*Product(gamma(x + (1 - k)/2),
(k, 1, p))).doit()
def _eval_conjugate(self):
x, p = self.args
return self.func(x.conjugate(), p)
def _eval_is_real(self):
x, p = self.args
y = 2*x
if y.is_integer and (y <= (p - 1)) is True:
return False
if intlike(y) and (y <= (p - 1)):
return False
if y > (p - 1) or y.is_noninteger:
return True
|
d91c10f9e30014147277f43aef12ec045d7c478823a23ea4538d0ba2c04acfa4 | from sympy.core import S
from sympy.core.function import Function, ArgumentIndexError
from sympy.core.symbol import Dummy
from sympy.functions.special.gamma_functions import gamma, digamma
from sympy.functions.combinatorial.numbers import catalan
from sympy.functions.elementary.complexes import conjugate
# See mpmath #569 and SymPy #20569
def betainc_mpmath_fix(a, b, x1, x2, reg=0):
from mpmath import betainc, mpf
if x1 == x2:
return mpf(0)
else:
return betainc(a, b, x1, x2, reg)
###############################################################################
############################ COMPLETE BETA FUNCTION ##########################
###############################################################################
class beta(Function):
r"""
The beta integral is called the Eulerian integral of the first kind by
Legendre:
.. math::
\mathrm{B}(x,y) \int^{1}_{0} t^{x-1} (1-t)^{y-1} \mathrm{d}t.
Explanation
===========
The Beta function or Euler's first integral is closely associated
with the gamma function. The Beta function is often used in probability
theory and mathematical statistics. It satisfies properties like:
.. math::
\mathrm{B}(a,1) = \frac{1}{a} \\
\mathrm{B}(a,b) = \mathrm{B}(b,a) \\
\mathrm{B}(a,b) = \frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}
Therefore for integral values of $a$ and $b$:
.. math::
\mathrm{B} = \frac{(a-1)! (b-1)!}{(a+b-1)!}
A special case of the Beta function when `x = y` is the
Central Beta function. It satisfies properties like:
.. math::
\mathrm{B}(x) = 2^{1 - 2x}\mathrm{B}(x, \frac{1}{2})
\mathrm{B}(x) = 2^{1 - 2x} cos(\pi x) \mathrm{B}(\frac{1}{2} - x, x)
\mathrm{B}(x) = \int_{0}^{1} \frac{t^x}{(1 + t)^{2x}} dt
\mathrm{B}(x) = \frac{2}{x} \prod_{n = 1}^{\infty} \frac{n(n + 2x)}{(n + x)^2}
Examples
========
>>> from sympy import I, pi
>>> from sympy.abc import x, y
The Beta function obeys the mirror symmetry:
>>> from sympy import beta, conjugate
>>> conjugate(beta(x, y))
beta(conjugate(x), conjugate(y))
Differentiation with respect to both $x$ and $y$ is supported:
>>> from sympy import beta, diff
>>> diff(beta(x, y), x)
(polygamma(0, x) - polygamma(0, x + y))*beta(x, y)
>>> diff(beta(x, y), y)
(polygamma(0, y) - polygamma(0, x + y))*beta(x, y)
>>> diff(beta(x), x)
2*(polygamma(0, x) - polygamma(0, 2*x))*beta(x, x)
We can numerically evaluate the Beta function to
arbitrary precision for any complex numbers x and y:
>>> from sympy import beta
>>> beta(pi).evalf(40)
0.02671848900111377452242355235388489324562
>>> beta(1 + I).evalf(20)
-0.2112723729365330143 - 0.7655283165378005676*I
See Also
========
gamma: Gamma function.
uppergamma: Upper incomplete gamma function.
lowergamma: Lower incomplete gamma function.
polygamma: Polygamma function.
loggamma: Log Gamma function.
digamma: Digamma function.
trigamma: Trigamma function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Beta_function
.. [2] http://mathworld.wolfram.com/BetaFunction.html
.. [3] http://dlmf.nist.gov/5.12
"""
unbranched = True
def fdiff(self, argindex):
x, y = self.args
if argindex == 1:
# Diff wrt x
return beta(x, y)*(digamma(x) - digamma(x + y))
elif argindex == 2:
# Diff wrt y
return beta(x, y)*(digamma(y) - digamma(x + y))
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, x, y=None):
if y is None:
return beta(x, x)
if x.is_Number and y.is_Number:
return beta(x, y, evaluate=False).doit()
def doit(self, **hints):
x = xold = self.args[0]
# Deal with unevaluated single argument beta
single_argument = len(self.args) == 1
y = yold = self.args[0] if single_argument else self.args[1]
if hints.get('deep', True):
x = x.doit(**hints)
y = y.doit(**hints)
if y.is_zero or x.is_zero:
return S.ComplexInfinity
if y is S.One:
return 1/x
if x is S.One:
return 1/y
if y == x + 1:
return 1/(x*y*catalan(x))
s = x + y
if (s.is_integer and s.is_negative and x.is_integer is False and
y.is_integer is False):
return S.Zero
if x == xold and y == yold and not single_argument:
return self
return beta(x, y)
def _eval_expand_func(self, **hints):
x, y = self.args
return gamma(x)*gamma(y) / gamma(x + y)
def _eval_is_real(self):
return self.args[0].is_real and self.args[1].is_real
def _eval_conjugate(self):
return self.func(self.args[0].conjugate(), self.args[1].conjugate())
def _eval_rewrite_as_gamma(self, x, y, piecewise=True, **kwargs):
return self._eval_expand_func(**kwargs)
def _eval_rewrite_as_Integral(self, x, y, **kwargs):
from sympy.integrals.integrals import Integral
t = Dummy('t')
return Integral(t**(x - 1)*(1 - t)**(y - 1), (t, 0, 1))
###############################################################################
########################## INCOMPLETE BETA FUNCTION ###########################
###############################################################################
class betainc(Function):
r"""
The Generalized Incomplete Beta function is defined as
.. math::
\mathrm{B}_{(x_1, x_2)}(a, b) = \int_{x_1}^{x_2} t^{a - 1} (1 - t)^{b - 1} dt
The Incomplete Beta function is a special case
of the Generalized Incomplete Beta function :
.. math:: \mathrm{B}_z (a, b) = \mathrm{B}_{(0, z)}(a, b)
The Incomplete Beta function satisfies :
.. math:: \mathrm{B}_z (a, b) = (-1)^a \mathrm{B}_{\frac{z}{z - 1}} (a, 1 - a - b)
The Beta function is a special case of the Incomplete Beta function :
.. math:: \mathrm{B}(a, b) = \mathrm{B}_{1}(a, b)
Examples
========
>>> from sympy import betainc, symbols, conjugate
>>> a, b, x, x1, x2 = symbols('a b x x1 x2')
The Generalized Incomplete Beta function is given by:
>>> betainc(a, b, x1, x2)
betainc(a, b, x1, x2)
The Incomplete Beta function can be obtained as follows:
>>> betainc(a, b, 0, x)
betainc(a, b, 0, x)
The Incomplete Beta function obeys the mirror symmetry:
>>> conjugate(betainc(a, b, x1, x2))
betainc(conjugate(a), conjugate(b), conjugate(x1), conjugate(x2))
We can numerically evaluate the Incomplete Beta function to
arbitrary precision for any complex numbers a, b, x1 and x2:
>>> from sympy import betainc, I
>>> betainc(2, 3, 4, 5).evalf(10)
56.08333333
>>> betainc(0.75, 1 - 4*I, 0, 2 + 3*I).evalf(25)
0.2241657956955709603655887 + 0.3619619242700451992411724*I
The Generalized Incomplete Beta function can be expressed
in terms of the Generalized Hypergeometric function.
>>> from sympy import hyper
>>> betainc(a, b, x1, x2).rewrite(hyper)
(-x1**a*hyper((a, 1 - b), (a + 1,), x1) + x2**a*hyper((a, 1 - b), (a + 1,), x2))/a
See Also
========
beta: Beta function
hyper: Generalized Hypergeometric function
References
==========
.. [1] https://en.wikipedia.org/wiki/Beta_function#Incomplete_beta_function
.. [2] https://dlmf.nist.gov/8.17
.. [3] https://functions.wolfram.com/GammaBetaErf/Beta4/
.. [4] https://functions.wolfram.com/GammaBetaErf/BetaRegularized4/02/
"""
nargs = 4
unbranched = True
def fdiff(self, argindex):
a, b, x1, x2 = self.args
if argindex == 3:
# Diff wrt x1
return -(1 - x1)**(b - 1)*x1**(a - 1)
elif argindex == 4:
# Diff wrt x2
return (1 - x2)**(b - 1)*x2**(a - 1)
else:
raise ArgumentIndexError(self, argindex)
def _eval_mpmath(self):
return betainc_mpmath_fix, self.args
def _eval_is_real(self):
if all(arg.is_real for arg in self.args):
return True
def _eval_conjugate(self):
return self.func(*map(conjugate, self.args))
def _eval_rewrite_as_Integral(self, a, b, x1, x2, **kwargs):
from sympy.integrals.integrals import Integral
t = Dummy('t')
return Integral(t**(a - 1)*(1 - t)**(b - 1), (t, x1, x2))
def _eval_rewrite_as_hyper(self, a, b, x1, x2, **kwargs):
from sympy.functions.special.hyper import hyper
return (x2**a * hyper((a, 1 - b), (a + 1,), x2) - x1**a * hyper((a, 1 - b), (a + 1,), x1)) / a
###############################################################################
#################### REGULARIZED INCOMPLETE BETA FUNCTION #####################
###############################################################################
class betainc_regularized(Function):
r"""
The Generalized Regularized Incomplete Beta function is given by
.. math::
\mathrm{I}_{(x_1, x_2)}(a, b) = \frac{\mathrm{B}_{(x_1, x_2)}(a, b)}{\mathrm{B}(a, b)}
The Regularized Incomplete Beta function is a special case
of the Generalized Regularized Incomplete Beta function :
.. math:: \mathrm{I}_z (a, b) = \mathrm{I}_{(0, z)}(a, b)
The Regularized Incomplete Beta function is the cumulative distribution
function of the beta distribution.
Examples
========
>>> from sympy import betainc_regularized, symbols, conjugate
>>> a, b, x, x1, x2 = symbols('a b x x1 x2')
The Generalized Regularized Incomplete Beta
function is given by:
>>> betainc_regularized(a, b, x1, x2)
betainc_regularized(a, b, x1, x2)
The Regularized Incomplete Beta function
can be obtained as follows:
>>> betainc_regularized(a, b, 0, x)
betainc_regularized(a, b, 0, x)
The Regularized Incomplete Beta function
obeys the mirror symmetry:
>>> conjugate(betainc_regularized(a, b, x1, x2))
betainc_regularized(conjugate(a), conjugate(b), conjugate(x1), conjugate(x2))
We can numerically evaluate the Regularized Incomplete Beta function
to arbitrary precision for any complex numbers a, b, x1 and x2:
>>> from sympy import betainc_regularized, pi, E
>>> betainc_regularized(1, 2, 0, 0.25).evalf(10)
0.4375000000
>>> betainc_regularized(pi, E, 0, 1).evalf(5)
1.00000
The Generalized Regularized Incomplete Beta function can be
expressed in terms of the Generalized Hypergeometric function.
>>> from sympy import hyper
>>> betainc_regularized(a, b, x1, x2).rewrite(hyper)
(-x1**a*hyper((a, 1 - b), (a + 1,), x1) + x2**a*hyper((a, 1 - b), (a + 1,), x2))/(a*beta(a, b))
See Also
========
beta: Beta function
hyper: Generalized Hypergeometric function
References
==========
.. [1] https://en.wikipedia.org/wiki/Beta_function#Incomplete_beta_function
.. [2] https://dlmf.nist.gov/8.17
.. [3] https://functions.wolfram.com/GammaBetaErf/Beta4/
.. [4] https://functions.wolfram.com/GammaBetaErf/BetaRegularized4/02/
"""
nargs = 4
unbranched = True
def __new__(cls, a, b, x1, x2):
return Function.__new__(cls, a, b, x1, x2)
def _eval_mpmath(self):
return betainc_mpmath_fix, (*self.args, S(1))
def fdiff(self, argindex):
a, b, x1, x2 = self.args
if argindex == 3:
# Diff wrt x1
return -(1 - x1)**(b - 1)*x1**(a - 1) / beta(a, b)
elif argindex == 4:
# Diff wrt x2
return (1 - x2)**(b - 1)*x2**(a - 1) / beta(a, b)
else:
raise ArgumentIndexError(self, argindex)
def _eval_is_real(self):
if all(arg.is_real for arg in self.args):
return True
def _eval_conjugate(self):
return self.func(*map(conjugate, self.args))
def _eval_rewrite_as_Integral(self, a, b, x1, x2, **kwargs):
from sympy.integrals.integrals import Integral
t = Dummy('t')
integrand = t**(a - 1)*(1 - t)**(b - 1)
expr = Integral(integrand, (t, x1, x2))
return expr / Integral(integrand, (t, 0, 1))
def _eval_rewrite_as_hyper(self, a, b, x1, x2, **kwargs):
from sympy.functions.special.hyper import hyper
expr = (x2**a * hyper((a, 1 - b), (a + 1,), x2) - x1**a * hyper((a, 1 - b), (a + 1,), x1)) / a
return expr / beta(a, b)
|
afe0b477692a7ff9f3a5e41761ecc26ef2fead9fb63b68c7c563771da998d8ee | """ Riemann zeta and related function. """
from sympy.core.add import Add
from sympy.core.cache import cacheit
from sympy.core.function import ArgumentIndexError, expand_mul, Function
from sympy.core.numbers import pi, I, Integer
from sympy.core.relational import Eq
from sympy.core.singleton import S
from sympy.core.symbol import Dummy
from sympy.core.sympify import sympify
from sympy.functions.combinatorial.numbers import bernoulli, factorial, genocchi, harmonic
from sympy.functions.elementary.complexes import re, unpolarify, Abs, polar_lift
from sympy.functions.elementary.exponential import log, exp_polar, exp
from sympy.functions.elementary.integers import ceiling, floor
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.piecewise import Piecewise
from sympy.polys.polytools import Poly
###############################################################################
###################### LERCH TRANSCENDENT #####################################
###############################################################################
class lerchphi(Function):
r"""
Lerch transcendent (Lerch phi function).
Explanation
===========
For $\operatorname{Re}(a) > 0$, $|z| < 1$ and $s \in \mathbb{C}$, the
Lerch transcendent is defined as
.. math :: \Phi(z, s, a) = \sum_{n=0}^\infty \frac{z^n}{(n + a)^s},
where the standard branch of the argument is used for $n + a$,
and by analytic continuation for other values of the parameters.
A commonly used related function is the Lerch zeta function, defined by
.. math:: L(q, s, a) = \Phi(e^{2\pi i q}, s, a).
**Analytic Continuation and Branching Behavior**
It can be shown that
.. math:: \Phi(z, s, a) = z\Phi(z, s, a+1) + a^{-s}.
This provides the analytic continuation to $\operatorname{Re}(a) \le 0$.
Assume now $\operatorname{Re}(a) > 0$. The integral representation
.. math:: \Phi_0(z, s, a) = \int_0^\infty \frac{t^{s-1} e^{-at}}{1 - ze^{-t}}
\frac{\mathrm{d}t}{\Gamma(s)}
provides an analytic continuation to $\mathbb{C} - [1, \infty)$.
Finally, for $x \in (1, \infty)$ we find
.. math:: \lim_{\epsilon \to 0^+} \Phi_0(x + i\epsilon, s, a)
-\lim_{\epsilon \to 0^+} \Phi_0(x - i\epsilon, s, a)
= \frac{2\pi i \log^{s-1}{x}}{x^a \Gamma(s)},
using the standard branch for both $\log{x}$ and
$\log{\log{x}}$ (a branch of $\log{\log{x}}$ is needed to
evaluate $\log{x}^{s-1}$).
This concludes the analytic continuation. The Lerch transcendent is thus
branched at $z \in \{0, 1, \infty\}$ and
$a \in \mathbb{Z}_{\le 0}$. For fixed $z, a$ outside these
branch points, it is an entire function of $s$.
Examples
========
The Lerch transcendent is a fairly general function, for this reason it does
not automatically evaluate to simpler functions. Use ``expand_func()`` to
achieve this.
If $z=1$, the Lerch transcendent reduces to the Hurwitz zeta function:
>>> from sympy import lerchphi, expand_func
>>> from sympy.abc import z, s, a
>>> expand_func(lerchphi(1, s, a))
zeta(s, a)
More generally, if $z$ is a root of unity, the Lerch transcendent
reduces to a sum of Hurwitz zeta functions:
>>> expand_func(lerchphi(-1, s, a))
zeta(s, a/2)/2**s - zeta(s, a/2 + 1/2)/2**s
If $a=1$, the Lerch transcendent reduces to the polylogarithm:
>>> expand_func(lerchphi(z, s, 1))
polylog(s, z)/z
More generally, if $a$ is rational, the Lerch transcendent reduces
to a sum of polylogarithms:
>>> from sympy import S
>>> expand_func(lerchphi(z, s, S(1)/2))
2**(s - 1)*(polylog(s, sqrt(z))/sqrt(z) -
polylog(s, sqrt(z)*exp_polar(I*pi))/sqrt(z))
>>> expand_func(lerchphi(z, s, S(3)/2))
-2**s/z + 2**(s - 1)*(polylog(s, sqrt(z))/sqrt(z) -
polylog(s, sqrt(z)*exp_polar(I*pi))/sqrt(z))/z
The derivatives with respect to $z$ and $a$ can be computed in
closed form:
>>> lerchphi(z, s, a).diff(z)
(-a*lerchphi(z, s, a) + lerchphi(z, s - 1, a))/z
>>> lerchphi(z, s, a).diff(a)
-s*lerchphi(z, s + 1, a)
See Also
========
polylog, zeta
References
==========
.. [1] Bateman, H.; Erdelyi, A. (1953), Higher Transcendental Functions,
Vol. I, New York: McGraw-Hill. Section 1.11.
.. [2] http://dlmf.nist.gov/25.14
.. [3] https://en.wikipedia.org/wiki/Lerch_transcendent
"""
def _eval_expand_func(self, **hints):
z, s, a = self.args
if z == 1:
return zeta(s, a)
if s.is_Integer and s <= 0:
t = Dummy('t')
p = Poly((t + a)**(-s), t)
start = 1/(1 - t)
res = S.Zero
for c in reversed(p.all_coeffs()):
res += c*start
start = t*start.diff(t)
return res.subs(t, z)
if a.is_Rational:
# See section 18 of
# Kelly B. Roach. Hypergeometric Function Representations.
# In: Proceedings of the 1997 International Symposium on Symbolic and
# Algebraic Computation, pages 205-211, New York, 1997. ACM.
# TODO should something be polarified here?
add = S.Zero
mul = S.One
# First reduce a to the interaval (0, 1]
if a > 1:
n = floor(a)
if n == a:
n -= 1
a -= n
mul = z**(-n)
add = Add(*[-z**(k - n)/(a + k)**s for k in range(n)])
elif a <= 0:
n = floor(-a) + 1
a += n
mul = z**n
add = Add(*[z**(n - 1 - k)/(a - k - 1)**s for k in range(n)])
m, n = S([a.p, a.q])
zet = exp_polar(2*pi*I/n)
root = z**(1/n)
up_zet = unpolarify(zet)
addargs = []
for k in range(n):
p = polylog(s, zet**k*root)
if isinstance(p, polylog):
p = p._eval_expand_func(**hints)
addargs.append(p/(up_zet**k*root)**m)
return add + mul*n**(s - 1)*Add(*addargs)
# TODO use minpoly instead of ad-hoc methods when issue 5888 is fixed
if isinstance(z, exp) and (z.args[0]/(pi*I)).is_Rational or z in [-1, I, -I]:
# TODO reference?
if z == -1:
p, q = S([1, 2])
elif z == I:
p, q = S([1, 4])
elif z == -I:
p, q = S([-1, 4])
else:
arg = z.args[0]/(2*pi*I)
p, q = S([arg.p, arg.q])
return Add(*[exp(2*pi*I*k*p/q)/q**s*zeta(s, (k + a)/q)
for k in range(q)])
return lerchphi(z, s, a)
def fdiff(self, argindex=1):
z, s, a = self.args
if argindex == 3:
return -s*lerchphi(z, s + 1, a)
elif argindex == 1:
return (lerchphi(z, s - 1, a) - a*lerchphi(z, s, a))/z
else:
raise ArgumentIndexError
def _eval_rewrite_helper(self, target):
res = self._eval_expand_func()
if res.has(target):
return res
else:
return self
def _eval_rewrite_as_zeta(self, z, s, a, **kwargs):
return self._eval_rewrite_helper(zeta)
def _eval_rewrite_as_polylog(self, z, s, a, **kwargs):
return self._eval_rewrite_helper(polylog)
###############################################################################
###################### POLYLOGARITHM ##########################################
###############################################################################
class polylog(Function):
r"""
Polylogarithm function.
Explanation
===========
For $|z| < 1$ and $s \in \mathbb{C}$, the polylogarithm is
defined by
.. math:: \operatorname{Li}_s(z) = \sum_{n=1}^\infty \frac{z^n}{n^s},
where the standard branch of the argument is used for $n$. It admits
an analytic continuation which is branched at $z=1$ (notably not on the
sheet of initial definition), $z=0$ and $z=\infty$.
The name polylogarithm comes from the fact that for $s=1$, the
polylogarithm is related to the ordinary logarithm (see examples), and that
.. math:: \operatorname{Li}_{s+1}(z) =
\int_0^z \frac{\operatorname{Li}_s(t)}{t} \mathrm{d}t.
The polylogarithm is a special case of the Lerch transcendent:
.. math:: \operatorname{Li}_{s}(z) = z \Phi(z, s, 1).
Examples
========
For $z \in \{0, 1, -1\}$, the polylogarithm is automatically expressed
using other functions:
>>> from sympy import polylog
>>> from sympy.abc import s
>>> polylog(s, 0)
0
>>> polylog(s, 1)
zeta(s)
>>> polylog(s, -1)
-dirichlet_eta(s)
If $s$ is a negative integer, $0$ or $1$, the polylogarithm can be
expressed using elementary functions. This can be done using
``expand_func()``:
>>> from sympy import expand_func
>>> from sympy.abc import z
>>> expand_func(polylog(1, z))
-log(1 - z)
>>> expand_func(polylog(0, z))
z/(1 - z)
The derivative with respect to $z$ can be computed in closed form:
>>> polylog(s, z).diff(z)
polylog(s - 1, z)/z
The polylogarithm can be expressed in terms of the lerch transcendent:
>>> from sympy import lerchphi
>>> polylog(s, z).rewrite(lerchphi)
z*lerchphi(z, s, 1)
See Also
========
zeta, lerchphi
"""
@classmethod
def eval(cls, s, z):
if z.is_number:
if z is S.One:
return zeta(s)
elif z is S.NegativeOne:
return -dirichlet_eta(s)
elif z is S.Zero:
return S.Zero
elif s == 2:
dilogtable = _dilogtable()
if z in dilogtable:
return dilogtable[z]
if z.is_zero:
return S.Zero
# Make an effort to determine if z is 1 to avoid replacing into
# expression with singularity
zone = z.equals(S.One)
if zone:
return zeta(s)
elif zone is False:
# For s = 0 or -1 use explicit formulas to evaluate, but
# automatically expanding polylog(1, z) to -log(1-z) seems
# undesirable for summation methods based on hypergeometric
# functions
if s is S.Zero:
return z/(1 - z)
elif s is S.NegativeOne:
return z/(1 - z)**2
if s.is_zero:
return z/(1 - z)
# polylog is branched, but not over the unit disk
if z.has(exp_polar, polar_lift) and (zone or (Abs(z) <= S.One) == True):
return cls(s, unpolarify(z))
def fdiff(self, argindex=1):
s, z = self.args
if argindex == 2:
return polylog(s - 1, z)/z
raise ArgumentIndexError
def _eval_rewrite_as_lerchphi(self, s, z, **kwargs):
return z*lerchphi(z, s, 1)
def _eval_expand_func(self, **hints):
s, z = self.args
if s == 1:
return -log(1 - z)
if s.is_Integer and s <= 0:
u = Dummy('u')
start = u/(1 - u)
for _ in range(-s):
start = u*start.diff(u)
return expand_mul(start).subs(u, z)
return polylog(s, z)
def _eval_is_zero(self):
z = self.args[1]
if z.is_zero:
return True
def _eval_nseries(self, x, n, logx, cdir=0):
from sympy.series.order import Order
nu, z = self.args
z0 = z.subs(x, 0)
if z0 is S.NaN:
z0 = z.limit(x, 0, dir='-' if re(cdir).is_negative else '+')
if z0.is_zero:
# In case of powers less than 1, number of terms need to be computed
# separately to avoid repeated callings of _eval_nseries with wrong n
try:
_, exp = z.leadterm(x)
except (ValueError, NotImplementedError):
return self
if exp.is_positive:
newn = ceiling(n/exp)
o = Order(x**n, x)
r = z._eval_nseries(x, n, logx, cdir).removeO()
if r is S.Zero:
return o
term = r
s = [term]
for k in range(2, newn):
term *= r
s.append(term/k**nu)
return Add(*s) + o
return super(polylog, self)._eval_nseries(x, n, logx, cdir)
###############################################################################
###################### HURWITZ GENERALIZED ZETA FUNCTION ######################
###############################################################################
class zeta(Function):
r"""
Hurwitz zeta function (or Riemann zeta function).
Explanation
===========
For $\operatorname{Re}(a) > 0$ and $\operatorname{Re}(s) > 1$, this
function is defined as
.. math:: \zeta(s, a) = \sum_{n=0}^\infty \frac{1}{(n + a)^s},
where the standard choice of argument for $n + a$ is used. For fixed
$a$ not a nonpositive integer the Hurwitz zeta function admits a
meromorphic continuation to all of $\mathbb{C}$; it is an unbranched
function with a simple pole at $s = 1$.
The Hurwitz zeta function is a special case of the Lerch transcendent:
.. math:: \zeta(s, a) = \Phi(1, s, a).
This formula defines an analytic continuation for all possible values of
$s$ and $a$ (also $\operatorname{Re}(a) < 0$), see the documentation of
:class:`lerchphi` for a description of the branching behavior.
If no value is passed for $a$ a default value of $a = 1$ is assumed,
yielding the Riemann zeta function.
Examples
========
For $a = 1$ the Hurwitz zeta function reduces to the famous Riemann
zeta function:
.. math:: \zeta(s, 1) = \zeta(s) = \sum_{n=1}^\infty \frac{1}{n^s}.
>>> from sympy import zeta
>>> from sympy.abc import s
>>> zeta(s, 1)
zeta(s)
>>> zeta(s)
zeta(s)
The Riemann zeta function can also be expressed using the Dirichlet eta
function:
>>> from sympy import dirichlet_eta
>>> zeta(s).rewrite(dirichlet_eta)
dirichlet_eta(s)/(1 - 2**(1 - s))
The Riemann zeta function at nonnegative even and negative integer
values is related to the Bernoulli numbers and polynomials:
>>> zeta(2)
pi**2/6
>>> zeta(4)
pi**4/90
>>> zeta(0)
-1/2
>>> zeta(-1)
-1/12
>>> zeta(-4)
0
The specific formulae are:
.. math:: \zeta(2n) = -\frac{(2\pi i)^{2n} B_{2n}}{2(2n)!}
.. math:: \zeta(-n,a) = -\frac{B_{n+1}(a)}{n+1}
No closed-form expressions are known at positive odd integers, but
numerical evaluation is possible:
>>> zeta(3).n()
1.20205690315959
The derivative of $\zeta(s, a)$ with respect to $a$ can be computed:
>>> from sympy.abc import a
>>> zeta(s, a).diff(a)
-s*zeta(s + 1, a)
However the derivative with respect to $s$ has no useful closed form
expression:
>>> zeta(s, a).diff(s)
Derivative(zeta(s, a), s)
The Hurwitz zeta function can be expressed in terms of the Lerch
transcendent, :class:`~.lerchphi`:
>>> from sympy import lerchphi
>>> zeta(s, a).rewrite(lerchphi)
lerchphi(1, s, a)
See Also
========
dirichlet_eta, lerchphi, polylog
References
==========
.. [1] http://dlmf.nist.gov/25.11
.. [2] https://en.wikipedia.org/wiki/Hurwitz_zeta_function
"""
@classmethod
def eval(cls, s, a=None):
if a is S.One:
return cls(s)
elif s is S.NaN or a is S.NaN:
return S.NaN
elif s is S.One:
return S.ComplexInfinity
elif s is S.Infinity:
return S.One
elif a is S.Infinity:
return S.Zero
sint = s.is_Integer
if a is None:
a = S.One
if sint and s.is_nonpositive:
return bernoulli(1-s, a) / (s-1)
elif a is S.One:
if sint and s.is_even:
return -(2*pi*I)**s * bernoulli(s) / (2*factorial(s))
elif sint and a.is_Integer and a.is_positive:
return cls(s) - harmonic(a-1, s)
elif a.is_Integer and a.is_nonpositive and \
(s.is_integer is False or s.is_nonpositive is False):
return S.NaN
def _eval_rewrite_as_bernoulli(self, s, a=1, **kwargs):
if a == 1 and s.is_integer and s.is_nonnegative and s.is_even:
return -(2*pi*I)**s * bernoulli(s) / (2*factorial(s))
return bernoulli(1-s, a) / (s-1)
def _eval_rewrite_as_dirichlet_eta(self, s, a=1, **kwargs):
if a != 1:
return self
s = self.args[0]
return dirichlet_eta(s)/(1 - 2**(1 - s))
def _eval_rewrite_as_lerchphi(self, s, a=1, **kwargs):
return lerchphi(1, s, a)
def _eval_is_finite(self):
arg_is_one = (self.args[0] - 1).is_zero
if arg_is_one is not None:
return not arg_is_one
def _eval_expand_func(self, **hints):
s = self.args[0]
a = self.args[1] if len(self.args) > 1 else S.One
if a.is_integer:
if a.is_positive:
return zeta(s) - harmonic(a-1, s)
if a.is_nonpositive and (s.is_integer is False or
s.is_nonpositive is False):
return S.NaN
return self
def fdiff(self, argindex=1):
if len(self.args) == 2:
s, a = self.args
else:
s, a = self.args + (1,)
if argindex == 2:
return -s*zeta(s + 1, a)
else:
raise ArgumentIndexError
def _eval_as_leading_term(self, x, logx=None, cdir=0):
if len(self.args) == 2:
s, a = self.args
else:
s, a = self.args + (S.One,)
try:
c, e = a.leadterm(x)
except NotImplementedError:
return self
if e.is_negative and not s.is_positive:
raise NotImplementedError
return super(zeta, self)._eval_as_leading_term(x, logx, cdir)
class dirichlet_eta(Function):
r"""
Dirichlet eta function.
Explanation
===========
For $\operatorname{Re}(s) > 0$ and $0 < x \le 1$, this function is defined as
.. math:: \eta(s, a) = \sum_{n=0}^\infty \frac{(-1)^n}{(n+a)^s}.
It admits a unique analytic continuation to all of $\mathbb{C}$ for any
fixed $a$ not a nonpositive integer. It is an entire, unbranched function.
It can be expressed using the Hurwitz zeta function as
.. math:: \eta(s, a) = \zeta(s,a) - 2^{1-s} \zeta\left(s, \frac{a+1}{2}\right)
and using the generalized Genocchi function as
.. math:: \eta(s, a) = \frac{G(1-s, a)}{2(s-1)}.
In both cases the limiting value of $\log2 - \psi(a) + \psi\left(\frac{a+1}{2}\right)$
is used when $s = 1$.
Examples
========
>>> from sympy import dirichlet_eta, zeta
>>> from sympy.abc import s
>>> dirichlet_eta(s).rewrite(zeta)
Piecewise((log(2), Eq(s, 1)), ((1 - 2**(1 - s))*zeta(s), True))
See Also
========
zeta
References
==========
.. [1] https://en.wikipedia.org/wiki/Dirichlet_eta_function
.. [2] Peter Luschny, "An introduction to the Bernoulli function",
https://arxiv.org/abs/2009.06743
"""
@classmethod
def eval(cls, s, a=None):
if a is S.One:
return cls(s)
if a is None:
if s == 1:
return log(2)
z = zeta(s)
if not z.has(zeta):
return (1 - 2**(1-s)) * z
return
elif s == 1:
from sympy.functions.special.gamma_functions import digamma
return log(2) - digamma(a) + digamma((a+1)/2)
z1 = zeta(s, a)
z2 = zeta(s, (a+1)/2)
if not z1.has(zeta) and not z2.has(zeta):
return z1 - 2**(1-s) * z2
def _eval_rewrite_as_zeta(self, s, a=1, **kwargs):
from sympy.functions.special.gamma_functions import digamma
if a == 1:
return Piecewise((log(2), Eq(s, 1)), ((1 - 2**(1-s)) * zeta(s), True))
return Piecewise((log(2) - digamma(a) + digamma((a+1)/2), Eq(s, 1)),
(zeta(s, a) - 2**(1-s) * zeta(s, (a+1)/2), True))
def _eval_rewrite_as_genocchi(self, s, a=S.One, **kwargs):
from sympy.functions.special.gamma_functions import digamma
return Piecewise((log(2) - digamma(a) + digamma((a+1)/2), Eq(s, 1)),
(genocchi(1-s, a) / (2 * (s-1)), True))
def _eval_evalf(self, prec):
if all(i.is_number for i in self.args):
return self.rewrite(zeta)._eval_evalf(prec)
class riemann_xi(Function):
r"""
Riemann Xi function.
Examples
========
The Riemann Xi function is closely related to the Riemann zeta function.
The zeros of Riemann Xi function are precisely the non-trivial zeros
of the zeta function.
>>> from sympy import riemann_xi, zeta
>>> from sympy.abc import s
>>> riemann_xi(s).rewrite(zeta)
s*(s - 1)*gamma(s/2)*zeta(s)/(2*pi**(s/2))
References
==========
.. [1] https://en.wikipedia.org/wiki/Riemann_Xi_function
"""
@classmethod
def eval(cls, s):
from sympy.functions.special.gamma_functions import gamma
z = zeta(s)
if s in (S.Zero, S.One):
return S.Half
if not isinstance(z, zeta):
return s*(s - 1)*gamma(s/2)*z/(2*pi**(s/2))
def _eval_rewrite_as_zeta(self, s, **kwargs):
from sympy.functions.special.gamma_functions import gamma
return s*(s - 1)*gamma(s/2)*zeta(s)/(2*pi**(s/2))
class stieltjes(Function):
r"""
Represents Stieltjes constants, $\gamma_{k}$ that occur in
Laurent Series expansion of the Riemann zeta function.
Examples
========
>>> from sympy import stieltjes
>>> from sympy.abc import n, m
>>> stieltjes(n)
stieltjes(n)
The zero'th stieltjes constant:
>>> stieltjes(0)
EulerGamma
>>> stieltjes(0, 1)
EulerGamma
For generalized stieltjes constants:
>>> stieltjes(n, m)
stieltjes(n, m)
Constants are only defined for integers >= 0:
>>> stieltjes(-1)
zoo
References
==========
.. [1] https://en.wikipedia.org/wiki/Stieltjes_constants
"""
@classmethod
def eval(cls, n, a=None):
if a is not None:
a = sympify(a)
if a is S.NaN:
return S.NaN
if a.is_Integer and a.is_nonpositive:
return S.ComplexInfinity
if n.is_Number:
if n is S.NaN:
return S.NaN
elif n < 0:
return S.ComplexInfinity
elif not n.is_Integer:
return S.ComplexInfinity
elif n is S.Zero and a in [None, 1]:
return S.EulerGamma
if n.is_extended_negative:
return S.ComplexInfinity
if n.is_zero and a in [None, 1]:
return S.EulerGamma
if n.is_integer == False:
return S.ComplexInfinity
@cacheit
def _dilogtable():
return {
S.Half: pi**2/12 - log(2)**2/2,
Integer(2) : pi**2/4 - I*pi*log(2),
-(sqrt(5) - 1)/2 : -pi**2/15 + log((sqrt(5)-1)/2)**2/2,
-(sqrt(5) + 1)/2 : -pi**2/10 - log((sqrt(5)+1)/2)**2,
(3 - sqrt(5))/2 : pi**2/15 - log((sqrt(5)-1)/2)**2,
(sqrt(5) - 1)/2 : pi**2/10 - log((sqrt(5)-1)/2)**2,
I : I*S.Catalan - pi**2/48,
-I : -I*S.Catalan - pi**2/48,
1 - I : pi**2/16 - I*S.Catalan - pi*I/4*log(2),
1 + I : pi**2/16 + I*S.Catalan + pi*I/4*log(2),
(1 - I)/2 : -log(2)**2/8 + pi*I*log(2)/8 + 5*pi**2/96 - I*S.Catalan
}
|
e720c7bf040dd7a612d0bec2d248f7e17237a34abefe4e0e831214468ffd4994 | from sympy.core import S, oo, diff
from sympy.core.function import Function, ArgumentIndexError
from sympy.core.logic import fuzzy_not
from sympy.core.relational import Eq
from sympy.functions.elementary.complexes import im
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.special.delta_functions import Heaviside
###############################################################################
############################# SINGULARITY FUNCTION ############################
###############################################################################
class SingularityFunction(Function):
r"""
Singularity functions are a class of discontinuous functions.
Explanation
===========
Singularity functions take a variable, an offset, and an exponent as
arguments. These functions are represented using Macaulay brackets as:
SingularityFunction(x, a, n) := <x - a>^n
The singularity function will automatically evaluate to
``Derivative(DiracDelta(x - a), x, -n - 1)`` if ``n < 0``
and ``(x - a)**n*Heaviside(x - a)`` if ``n >= 0``.
Examples
========
>>> from sympy import SingularityFunction, diff, Piecewise, DiracDelta, Heaviside, Symbol
>>> from sympy.abc import x, a, n
>>> SingularityFunction(x, a, n)
SingularityFunction(x, a, n)
>>> y = Symbol('y', positive=True)
>>> n = Symbol('n', nonnegative=True)
>>> SingularityFunction(y, -10, n)
(y + 10)**n
>>> y = Symbol('y', negative=True)
>>> SingularityFunction(y, 10, n)
0
>>> SingularityFunction(x, 4, -1).subs(x, 4)
oo
>>> SingularityFunction(x, 10, -2).subs(x, 10)
oo
>>> SingularityFunction(4, 1, 5)
243
>>> diff(SingularityFunction(x, 1, 5) + SingularityFunction(x, 1, 4), x)
4*SingularityFunction(x, 1, 3) + 5*SingularityFunction(x, 1, 4)
>>> diff(SingularityFunction(x, 4, 0), x, 2)
SingularityFunction(x, 4, -2)
>>> SingularityFunction(x, 4, 5).rewrite(Piecewise)
Piecewise(((x - 4)**5, x > 4), (0, True))
>>> expr = SingularityFunction(x, a, n)
>>> y = Symbol('y', positive=True)
>>> n = Symbol('n', nonnegative=True)
>>> expr.subs({x: y, a: -10, n: n})
(y + 10)**n
The methods ``rewrite(DiracDelta)``, ``rewrite(Heaviside)``, and
``rewrite('HeavisideDiracDelta')`` returns the same output. One can use any
of these methods according to their choice.
>>> expr = SingularityFunction(x, 4, 5) + SingularityFunction(x, -3, -1) - SingularityFunction(x, 0, -2)
>>> expr.rewrite(Heaviside)
(x - 4)**5*Heaviside(x - 4) + DiracDelta(x + 3) - DiracDelta(x, 1)
>>> expr.rewrite(DiracDelta)
(x - 4)**5*Heaviside(x - 4) + DiracDelta(x + 3) - DiracDelta(x, 1)
>>> expr.rewrite('HeavisideDiracDelta')
(x - 4)**5*Heaviside(x - 4) + DiracDelta(x + 3) - DiracDelta(x, 1)
See Also
========
DiracDelta, Heaviside
References
==========
.. [1] https://en.wikipedia.org/wiki/Singularity_function
"""
is_real = True
def fdiff(self, argindex=1):
"""
Returns the first derivative of a DiracDelta Function.
Explanation
===========
The difference between ``diff()`` and ``fdiff()`` is: ``diff()`` is the
user-level function and ``fdiff()`` is an object method. ``fdiff()`` is
a convenience method available in the ``Function`` class. It returns
the derivative of the function without considering the chain rule.
``diff(function, x)`` calls ``Function._eval_derivative`` which in turn
calls ``fdiff()`` internally to compute the derivative of the function.
"""
if argindex == 1:
x, a, n = self.args
if n in (S.Zero, S.NegativeOne):
return self.func(x, a, n-1)
elif n.is_positive:
return n*self.func(x, a, n-1)
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, variable, offset, exponent):
"""
Returns a simplified form or a value of Singularity Function depending
on the argument passed by the object.
Explanation
===========
The ``eval()`` method is automatically called when the
``SingularityFunction`` class is about to be instantiated and it
returns either some simplified instance or the unevaluated instance
depending on the argument passed. In other words, ``eval()`` method is
not needed to be called explicitly, it is being called and evaluated
once the object is called.
Examples
========
>>> from sympy import SingularityFunction, Symbol, nan
>>> from sympy.abc import x, a, n
>>> SingularityFunction(x, a, n)
SingularityFunction(x, a, n)
>>> SingularityFunction(5, 3, 2)
4
>>> SingularityFunction(x, a, nan)
nan
>>> SingularityFunction(x, 3, 0).subs(x, 3)
1
>>> SingularityFunction(4, 1, 5)
243
>>> x = Symbol('x', positive = True)
>>> a = Symbol('a', negative = True)
>>> n = Symbol('n', nonnegative = True)
>>> SingularityFunction(x, a, n)
(-a + x)**n
>>> x = Symbol('x', negative = True)
>>> a = Symbol('a', positive = True)
>>> SingularityFunction(x, a, n)
0
"""
x = variable
a = offset
n = exponent
shift = (x - a)
if fuzzy_not(im(shift).is_zero):
raise ValueError("Singularity Functions are defined only for Real Numbers.")
if fuzzy_not(im(n).is_zero):
raise ValueError("Singularity Functions are not defined for imaginary exponents.")
if shift is S.NaN or n is S.NaN:
return S.NaN
if (n + 2).is_negative:
raise ValueError("Singularity Functions are not defined for exponents less than -2.")
if shift.is_extended_negative:
return S.Zero
if n.is_nonnegative and shift.is_extended_nonnegative:
return (x - a)**n
if n in (S.NegativeOne, -2):
if shift.is_negative or shift.is_extended_positive:
return S.Zero
if shift.is_zero:
return oo
def _eval_rewrite_as_Piecewise(self, *args, **kwargs):
'''
Converts a Singularity Function expression into its Piecewise form.
'''
x, a, n = self.args
if n in (S.NegativeOne, S(-2)):
return Piecewise((oo, Eq((x - a), 0)), (0, True))
elif n.is_nonnegative:
return Piecewise(((x - a)**n, (x - a) > 0), (0, True))
def _eval_rewrite_as_Heaviside(self, *args, **kwargs):
'''
Rewrites a Singularity Function expression using Heavisides and DiracDeltas.
'''
x, a, n = self.args
if n == -2:
return diff(Heaviside(x - a), x.free_symbols.pop(), 2)
if n == -1:
return diff(Heaviside(x - a), x.free_symbols.pop(), 1)
if n.is_nonnegative:
return (x - a)**n*Heaviside(x - a)
def _eval_as_leading_term(self, x, logx=None, cdir=0):
z, a, n = self.args
shift = (z - a).subs(x, 0)
if n < 0:
return S.Zero
elif n.is_zero and shift.is_zero:
return S.Zero if cdir == -1 else S.One
elif shift.is_positive:
return shift**n
return S.Zero
def _eval_nseries(self, x, n, logx=None, cdir=0):
z, a, n = self.args
shift = (z - a).subs(x, 0)
if n < 0:
return S.Zero
elif n.is_zero and shift.is_zero:
return S.Zero if cdir == -1 else S.One
elif shift.is_positive:
return ((z - a)**n)._eval_nseries(x, n, logx=logx, cdir=cdir)
return S.Zero
_eval_rewrite_as_DiracDelta = _eval_rewrite_as_Heaviside
_eval_rewrite_as_HeavisideDiracDelta = _eval_rewrite_as_Heaviside
|
fc361c9a03f502091475e74ab1f7ce87ccd2264aa85bb80c72168f8952b740f8 | from functools import wraps
from sympy.core import S
from sympy.core.add import Add
from sympy.core.cache import cacheit
from sympy.core.expr import Expr
from sympy.core.function import Function, ArgumentIndexError, _mexpand
from sympy.core.logic import fuzzy_or, fuzzy_not
from sympy.core.numbers import Rational, pi, I
from sympy.core.power import Pow
from sympy.core.symbol import Dummy, Wild
from sympy.core.sympify import sympify
from sympy.functions.combinatorial.factorials import factorial
from sympy.functions.elementary.trigonometric import sin, cos, csc, cot
from sympy.functions.elementary.integers import ceiling
from sympy.functions.elementary.exponential import exp, log
from sympy.functions.elementary.miscellaneous import cbrt, sqrt, root
from sympy.functions.elementary.complexes import (Abs, re, im, polar_lift, unpolarify)
from sympy.functions.special.gamma_functions import gamma, digamma, uppergamma
from sympy.functions.special.hyper import hyper
from sympy.polys.orthopolys import spherical_bessel_fn
from mpmath import mp, workprec
# TODO
# o Scorer functions G1 and G2
# o Asymptotic expansions
# These are possible, e.g. for fixed order, but since the bessel type
# functions are oscillatory they are not actually tractable at
# infinity, so this is not particularly useful right now.
# o Nicer series expansions.
# o More rewriting.
# o Add solvers to ode.py (or rather add solvers for the hypergeometric equation).
class BesselBase(Function):
"""
Abstract base class for Bessel-type functions.
This class is meant to reduce code duplication.
All Bessel-type functions can 1) be differentiated, with the derivatives
expressed in terms of similar functions, and 2) be rewritten in terms
of other Bessel-type functions.
Here, Bessel-type functions are assumed to have one complex parameter.
To use this base class, define class attributes ``_a`` and ``_b`` such that
``2*F_n' = -_a*F_{n+1} + b*F_{n-1}``.
"""
@property
def order(self):
""" The order of the Bessel-type function. """
return self.args[0]
@property
def argument(self):
""" The argument of the Bessel-type function. """
return self.args[1]
@classmethod
def eval(cls, nu, z):
return
def fdiff(self, argindex=2):
if argindex != 2:
raise ArgumentIndexError(self, argindex)
return (self._b/2 * self.__class__(self.order - 1, self.argument) -
self._a/2 * self.__class__(self.order + 1, self.argument))
def _eval_conjugate(self):
z = self.argument
if z.is_extended_negative is False:
return self.__class__(self.order.conjugate(), z.conjugate())
def _eval_is_meromorphic(self, x, a):
nu, z = self.order, self.argument
if nu.has(x):
return False
if not z._eval_is_meromorphic(x, a):
return None
z0 = z.subs(x, a)
if nu.is_integer:
if isinstance(self, (besselj, besseli, hn1, hn2, jn, yn)) or not nu.is_zero:
return fuzzy_not(z0.is_infinite)
return fuzzy_not(fuzzy_or([z0.is_zero, z0.is_infinite]))
def _eval_expand_func(self, **hints):
nu, z, f = self.order, self.argument, self.__class__
if nu.is_real:
if (nu - 1).is_positive:
return (-self._a*self._b*f(nu - 2, z)._eval_expand_func() +
2*self._a*(nu - 1)*f(nu - 1, z)._eval_expand_func()/z)
elif (nu + 1).is_negative:
return (2*self._b*(nu + 1)*f(nu + 1, z)._eval_expand_func()/z -
self._a*self._b*f(nu + 2, z)._eval_expand_func())
return self
def _eval_simplify(self, **kwargs):
from sympy.simplify.simplify import besselsimp
return besselsimp(self)
class besselj(BesselBase):
r"""
Bessel function of the first kind.
Explanation
===========
The Bessel $J$ function of order $\nu$ is defined to be the function
satisfying Bessel's differential equation
.. math ::
z^2 \frac{\mathrm{d}^2 w}{\mathrm{d}z^2}
+ z \frac{\mathrm{d}w}{\mathrm{d}z} + (z^2 - \nu^2) w = 0,
with Laurent expansion
.. math ::
J_\nu(z) = z^\nu \left(\frac{1}{\Gamma(\nu + 1) 2^\nu} + O(z^2) \right),
if $\nu$ is not a negative integer. If $\nu=-n \in \mathbb{Z}_{<0}$
*is* a negative integer, then the definition is
.. math ::
J_{-n}(z) = (-1)^n J_n(z).
Examples
========
Create a Bessel function object:
>>> from sympy import besselj, jn
>>> from sympy.abc import z, n
>>> b = besselj(n, z)
Differentiate it:
>>> b.diff(z)
besselj(n - 1, z)/2 - besselj(n + 1, z)/2
Rewrite in terms of spherical Bessel functions:
>>> b.rewrite(jn)
sqrt(2)*sqrt(z)*jn(n - 1/2, z)/sqrt(pi)
Access the parameter and argument:
>>> b.order
n
>>> b.argument
z
See Also
========
bessely, besseli, besselk
References
==========
.. [1] Abramowitz, Milton; Stegun, Irene A., eds. (1965), "Chapter 9",
Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables
.. [2] Luke, Y. L. (1969), The Special Functions and Their
Approximations, Volume 1
.. [3] https://en.wikipedia.org/wiki/Bessel_function
.. [4] http://functions.wolfram.com/Bessel-TypeFunctions/BesselJ/
"""
_a = S.One
_b = S.One
@classmethod
def eval(cls, nu, z):
if z.is_zero:
if nu.is_zero:
return S.One
elif (nu.is_integer and nu.is_zero is False) or re(nu).is_positive:
return S.Zero
elif re(nu).is_negative and not (nu.is_integer is True):
return S.ComplexInfinity
elif nu.is_imaginary:
return S.NaN
if z in (S.Infinity, S.NegativeInfinity):
return S.Zero
if z.could_extract_minus_sign():
return (z)**nu*(-z)**(-nu)*besselj(nu, -z)
if nu.is_integer:
if nu.could_extract_minus_sign():
return S.NegativeOne**(-nu)*besselj(-nu, z)
newz = z.extract_multiplicatively(I)
if newz: # NOTE we don't want to change the function if z==0
return I**(nu)*besseli(nu, newz)
# branch handling:
if nu.is_integer:
newz = unpolarify(z)
if newz != z:
return besselj(nu, newz)
else:
newz, n = z.extract_branch_factor()
if n != 0:
return exp(2*n*pi*nu*I)*besselj(nu, newz)
nnu = unpolarify(nu)
if nu != nnu:
return besselj(nnu, z)
def _eval_rewrite_as_besseli(self, nu, z, **kwargs):
return exp(I*pi*nu/2)*besseli(nu, polar_lift(-I)*z)
def _eval_rewrite_as_bessely(self, nu, z, **kwargs):
if nu.is_integer is False:
return csc(pi*nu)*bessely(-nu, z) - cot(pi*nu)*bessely(nu, z)
def _eval_rewrite_as_jn(self, nu, z, **kwargs):
return sqrt(2*z/pi)*jn(nu - S.Half, self.argument)
def _eval_as_leading_term(self, x, logx=None, cdir=0):
nu, z = self.args
try:
arg = z.as_leading_term(x)
except NotImplementedError:
return self
c, e = arg.as_coeff_exponent(x)
if e.is_positive:
return arg**nu/(2**nu*gamma(nu + 1))
elif e.is_negative:
cdir = 1 if cdir == 0 else cdir
sign = c*cdir**e
if not sign.is_negative:
# Refer Abramowitz and Stegun 1965, p. 364 for more information on
# asymptotic approximation of besselj function.
return sqrt(2)*cos(z - pi*(2*nu + 1)/4)/sqrt(pi*z)
return self
return super(besselj, self)._eval_as_leading_term(x, logx, cdir)
def _eval_is_extended_real(self):
nu, z = self.args
if nu.is_integer and z.is_extended_real:
return True
def _eval_nseries(self, x, n, logx, cdir=0):
# Refer https://functions.wolfram.com/Bessel-TypeFunctions/BesselJ/06/01/04/01/01/0003/
# for more information on nseries expansion of besselj function.
from sympy.series.order import Order
nu, z = self.args
# In case of powers less than 1, number of terms need to be computed
# separately to avoid repeated callings of _eval_nseries with wrong n
try:
_, exp = z.leadterm(x)
except (ValueError, NotImplementedError):
return self
if exp.is_positive:
newn = ceiling(n/exp)
o = Order(x**n, x)
r = (z/2)._eval_nseries(x, n, logx, cdir).removeO()
if r is S.Zero:
return o
t = (_mexpand(r**2) + o).removeO()
term = r**nu/gamma(nu + 1)
s = [term]
for k in range(1, (newn + 1)//2):
term *= -t/(k*(nu + k))
term = (_mexpand(term) + o).removeO()
s.append(term)
return Add(*s) + o
return super(besselj, self)._eval_nseries(x, n, logx, cdir)
class bessely(BesselBase):
r"""
Bessel function of the second kind.
Explanation
===========
The Bessel $Y$ function of order $\nu$ is defined as
.. math ::
Y_\nu(z) = \lim_{\mu \to \nu} \frac{J_\mu(z) \cos(\pi \mu)
- J_{-\mu}(z)}{\sin(\pi \mu)},
where $J_\mu(z)$ is the Bessel function of the first kind.
It is a solution to Bessel's equation, and linearly independent from
$J_\nu$.
Examples
========
>>> from sympy import bessely, yn
>>> from sympy.abc import z, n
>>> b = bessely(n, z)
>>> b.diff(z)
bessely(n - 1, z)/2 - bessely(n + 1, z)/2
>>> b.rewrite(yn)
sqrt(2)*sqrt(z)*yn(n - 1/2, z)/sqrt(pi)
See Also
========
besselj, besseli, besselk
References
==========
.. [1] http://functions.wolfram.com/Bessel-TypeFunctions/BesselY/
"""
_a = S.One
_b = S.One
@classmethod
def eval(cls, nu, z):
if z.is_zero:
if nu.is_zero:
return S.NegativeInfinity
elif re(nu).is_zero is False:
return S.ComplexInfinity
elif re(nu).is_zero:
return S.NaN
if z in (S.Infinity, S.NegativeInfinity):
return S.Zero
if z == I*S.Infinity:
return exp(I*pi*(nu + 1)/2) * S.Infinity
if z == I*S.NegativeInfinity:
return exp(-I*pi*(nu + 1)/2) * S.Infinity
if nu.is_integer:
if nu.could_extract_minus_sign():
return S.NegativeOne**(-nu)*bessely(-nu, z)
def _eval_rewrite_as_besselj(self, nu, z, **kwargs):
if nu.is_integer is False:
return csc(pi*nu)*(cos(pi*nu)*besselj(nu, z) - besselj(-nu, z))
def _eval_rewrite_as_besseli(self, nu, z, **kwargs):
aj = self._eval_rewrite_as_besselj(*self.args)
if aj:
return aj.rewrite(besseli)
def _eval_rewrite_as_yn(self, nu, z, **kwargs):
return sqrt(2*z/pi) * yn(nu - S.Half, self.argument)
def _eval_as_leading_term(self, x, logx=None, cdir=0):
nu, z = self.args
try:
arg = z.as_leading_term(x)
except NotImplementedError:
return self
c, e = arg.as_coeff_exponent(x)
if e.is_positive:
term_one = ((2/pi)*log(z/2)*besselj(nu, z))
term_two = -(z/2)**(-nu)*factorial(nu - 1)/pi if (nu).is_positive else S.Zero
term_three = -(z/2)**nu/(pi*factorial(nu))*(digamma(nu + 1) - S.EulerGamma)
arg = Add(*[term_one, term_two, term_three]).as_leading_term(x, logx=logx)
return arg
elif e.is_negative:
cdir = 1 if cdir == 0 else cdir
sign = c*cdir**e
if not sign.is_negative:
# Refer Abramowitz and Stegun 1965, p. 364 for more information on
# asymptotic approximation of bessely function.
return sqrt(2)*(-sin(pi*nu/2 - z + pi/4) + 3*cos(pi*nu/2 - z + pi/4)/(8*z))*sqrt(1/z)/sqrt(pi)
return self
return super(bessely, self)._eval_as_leading_term(x, logx, cdir)
def _eval_is_extended_real(self):
nu, z = self.args
if nu.is_integer and z.is_positive:
return True
def _eval_nseries(self, x, n, logx, cdir=0):
# Refer https://functions.wolfram.com/Bessel-TypeFunctions/BesselY/06/01/04/01/02/0008/
# for more information on nseries expansion of bessely function.
from sympy.series.order import Order
nu, z = self.args
# In case of powers less than 1, number of terms need to be computed
# separately to avoid repeated callings of _eval_nseries with wrong n
try:
_, exp = z.leadterm(x)
except (ValueError, NotImplementedError):
return self
if exp.is_positive and nu.is_integer:
newn = ceiling(n/exp)
bn = besselj(nu, z)
a = ((2/pi)*log(z/2)*bn)._eval_nseries(x, n, logx, cdir)
b, c = [], []
o = Order(x**n, x)
r = (z/2)._eval_nseries(x, n, logx, cdir).removeO()
if r is S.Zero:
return o
t = (_mexpand(r**2) + o).removeO()
if nu > S.Zero:
term = r**(-nu)*factorial(nu - 1)/pi
b.append(term)
for k in range(1, nu):
denom = (nu - k)*k
if denom == S.Zero:
term *= t/k
else:
term *= t/denom
term = (_mexpand(term) + o).removeO()
b.append(term)
p = r**nu/(pi*factorial(nu))
term = p*(digamma(nu + 1) - S.EulerGamma)
c.append(term)
for k in range(1, (newn + 1)//2):
p *= -t/(k*(k + nu))
p = (_mexpand(p) + o).removeO()
term = p*(digamma(k + nu + 1) + digamma(k + 1))
c.append(term)
return a - Add(*b) - Add(*c) # Order term comes from a
return super(bessely, self)._eval_nseries(x, n, logx, cdir)
class besseli(BesselBase):
r"""
Modified Bessel function of the first kind.
Explanation
===========
The Bessel $I$ function is a solution to the modified Bessel equation
.. math ::
z^2 \frac{\mathrm{d}^2 w}{\mathrm{d}z^2}
+ z \frac{\mathrm{d}w}{\mathrm{d}z} + (z^2 + \nu^2)^2 w = 0.
It can be defined as
.. math ::
I_\nu(z) = i^{-\nu} J_\nu(iz),
where $J_\nu(z)$ is the Bessel function of the first kind.
Examples
========
>>> from sympy import besseli
>>> from sympy.abc import z, n
>>> besseli(n, z).diff(z)
besseli(n - 1, z)/2 + besseli(n + 1, z)/2
See Also
========
besselj, bessely, besselk
References
==========
.. [1] http://functions.wolfram.com/Bessel-TypeFunctions/BesselI/
"""
_a = -S.One
_b = S.One
@classmethod
def eval(cls, nu, z):
if z.is_zero:
if nu.is_zero:
return S.One
elif (nu.is_integer and nu.is_zero is False) or re(nu).is_positive:
return S.Zero
elif re(nu).is_negative and not (nu.is_integer is True):
return S.ComplexInfinity
elif nu.is_imaginary:
return S.NaN
if im(z) in (S.Infinity, S.NegativeInfinity):
return S.Zero
if z is S.Infinity:
return S.Infinity
if z is S.NegativeInfinity:
return (-1)**nu*S.Infinity
if z.could_extract_minus_sign():
return (z)**nu*(-z)**(-nu)*besseli(nu, -z)
if nu.is_integer:
if nu.could_extract_minus_sign():
return besseli(-nu, z)
newz = z.extract_multiplicatively(I)
if newz: # NOTE we don't want to change the function if z==0
return I**(-nu)*besselj(nu, -newz)
# branch handling:
if nu.is_integer:
newz = unpolarify(z)
if newz != z:
return besseli(nu, newz)
else:
newz, n = z.extract_branch_factor()
if n != 0:
return exp(2*n*pi*nu*I)*besseli(nu, newz)
nnu = unpolarify(nu)
if nu != nnu:
return besseli(nnu, z)
def _eval_rewrite_as_besselj(self, nu, z, **kwargs):
return exp(-I*pi*nu/2)*besselj(nu, polar_lift(I)*z)
def _eval_rewrite_as_bessely(self, nu, z, **kwargs):
aj = self._eval_rewrite_as_besselj(*self.args)
if aj:
return aj.rewrite(bessely)
def _eval_rewrite_as_jn(self, nu, z, **kwargs):
return self._eval_rewrite_as_besselj(*self.args).rewrite(jn)
def _eval_is_extended_real(self):
nu, z = self.args
if nu.is_integer and z.is_extended_real:
return True
def _eval_as_leading_term(self, x, logx=None, cdir=0):
nu, z = self.args
try:
arg = z.as_leading_term(x)
except NotImplementedError:
return self
c, e = arg.as_coeff_exponent(x)
if e.is_positive:
return arg**nu/(2**nu*gamma(nu + 1))
elif e.is_negative:
cdir = 1 if cdir == 0 else cdir
sign = c*cdir**e
if not sign.is_negative:
# Refer Abramowitz and Stegun 1965, p. 377 for more information on
# asymptotic approximation of besseli function.
return exp(z)/sqrt(2*pi*z)
return self
return super(besseli, self)._eval_as_leading_term(x, logx, cdir)
def _eval_nseries(self, x, n, logx, cdir=0):
# Refer https://functions.wolfram.com/Bessel-TypeFunctions/BesselI/06/01/04/01/01/0003/
# for more information on nseries expansion of besseli function.
from sympy.series.order import Order
nu, z = self.args
# In case of powers less than 1, number of terms need to be computed
# separately to avoid repeated callings of _eval_nseries with wrong n
try:
_, exp = z.leadterm(x)
except (ValueError, NotImplementedError):
return self
if exp.is_positive:
newn = ceiling(n/exp)
o = Order(x**n, x)
r = (z/2)._eval_nseries(x, n, logx, cdir).removeO()
if r is S.Zero:
return o
t = (_mexpand(r**2) + o).removeO()
term = r**nu/gamma(nu + 1)
s = [term]
for k in range(1, (newn + 1)//2):
term *= t/(k*(nu + k))
term = (_mexpand(term) + o).removeO()
s.append(term)
return Add(*s) + o
return super(besseli, self)._eval_nseries(x, n, logx, cdir)
class besselk(BesselBase):
r"""
Modified Bessel function of the second kind.
Explanation
===========
The Bessel $K$ function of order $\nu$ is defined as
.. math ::
K_\nu(z) = \lim_{\mu \to \nu} \frac{\pi}{2}
\frac{I_{-\mu}(z) -I_\mu(z)}{\sin(\pi \mu)},
where $I_\mu(z)$ is the modified Bessel function of the first kind.
It is a solution of the modified Bessel equation, and linearly independent
from $Y_\nu$.
Examples
========
>>> from sympy import besselk
>>> from sympy.abc import z, n
>>> besselk(n, z).diff(z)
-besselk(n - 1, z)/2 - besselk(n + 1, z)/2
See Also
========
besselj, besseli, bessely
References
==========
.. [1] http://functions.wolfram.com/Bessel-TypeFunctions/BesselK/
"""
_a = S.One
_b = -S.One
@classmethod
def eval(cls, nu, z):
if z.is_zero:
if nu.is_zero:
return S.Infinity
elif re(nu).is_zero is False:
return S.ComplexInfinity
elif re(nu).is_zero:
return S.NaN
if z in (S.Infinity, I*S.Infinity, I*S.NegativeInfinity):
return S.Zero
if nu.is_integer:
if nu.could_extract_minus_sign():
return besselk(-nu, z)
def _eval_rewrite_as_besseli(self, nu, z, **kwargs):
if nu.is_integer is False:
return pi*csc(pi*nu)*(besseli(-nu, z) - besseli(nu, z))/2
def _eval_rewrite_as_besselj(self, nu, z, **kwargs):
ai = self._eval_rewrite_as_besseli(*self.args)
if ai:
return ai.rewrite(besselj)
def _eval_rewrite_as_bessely(self, nu, z, **kwargs):
aj = self._eval_rewrite_as_besselj(*self.args)
if aj:
return aj.rewrite(bessely)
def _eval_rewrite_as_yn(self, nu, z, **kwargs):
ay = self._eval_rewrite_as_bessely(*self.args)
if ay:
return ay.rewrite(yn)
def _eval_is_extended_real(self):
nu, z = self.args
if nu.is_integer and z.is_positive:
return True
def _eval_as_leading_term(self, x, logx=None, cdir=0):
nu, z = self.args
try:
arg = z.as_leading_term(x)
except NotImplementedError:
return self
_, e = arg.as_coeff_exponent(x)
if e.is_positive:
term_one = ((-1)**(nu -1)*log(z/2)*besseli(nu, z))
term_two = (z/2)**(-nu)*factorial(nu - 1)/2 if (nu).is_positive else S.Zero
term_three = (-1)**nu*(z/2)**nu/(2*factorial(nu))*(digamma(nu + 1) - S.EulerGamma)
arg = Add(*[term_one, term_two, term_three]).as_leading_term(x, logx=logx)
return arg
elif e.is_negative:
# Refer Abramowitz and Stegun 1965, p. 378 for more information on
# asymptotic approximation of besselk function.
return sqrt(pi)*exp(-z)/sqrt(2*z)
return super(besselk, self)._eval_as_leading_term(x, logx, cdir)
def _eval_nseries(self, x, n, logx, cdir=0):
# Refer https://functions.wolfram.com/Bessel-TypeFunctions/BesselK/06/01/04/01/02/0008/
# for more information on nseries expansion of besselk function.
from sympy.series.order import Order
nu, z = self.args
# In case of powers less than 1, number of terms need to be computed
# separately to avoid repeated callings of _eval_nseries with wrong n
try:
_, exp = z.leadterm(x)
except (ValueError, NotImplementedError):
return self
if exp.is_positive and nu.is_integer:
newn = ceiling(n/exp)
bn = besseli(nu, z)
a = ((-1)**(nu - 1)*log(z/2)*bn)._eval_nseries(x, n, logx, cdir)
b, c = [], []
o = Order(x**n, x)
r = (z/2)._eval_nseries(x, n, logx, cdir).removeO()
if r is S.Zero:
return o
t = (_mexpand(r**2) + o).removeO()
if nu > S.Zero:
term = r**(-nu)*factorial(nu - 1)/2
b.append(term)
for k in range(1, nu):
denom = (k - nu)*k
if denom == S.Zero:
term *= t/k
else:
term *= t/denom
term = (_mexpand(term) + o).removeO()
b.append(term)
p = r**nu*(-1)**nu/(2*factorial(nu))
term = p*(digamma(nu + 1) - S.EulerGamma)
c.append(term)
for k in range(1, (newn + 1)//2):
p *= t/(k*(k + nu))
p = (_mexpand(p) + o).removeO()
term = p*(digamma(k + nu + 1) + digamma(k + 1))
c.append(term)
return a + Add(*b) + Add(*c) # Order term comes from a
return super(besselk, self)._eval_nseries(x, n, logx, cdir)
class hankel1(BesselBase):
r"""
Hankel function of the first kind.
Explanation
===========
This function is defined as
.. math ::
H_\nu^{(1)} = J_\nu(z) + iY_\nu(z),
where $J_\nu(z)$ is the Bessel function of the first kind, and
$Y_\nu(z)$ is the Bessel function of the second kind.
It is a solution to Bessel's equation.
Examples
========
>>> from sympy import hankel1
>>> from sympy.abc import z, n
>>> hankel1(n, z).diff(z)
hankel1(n - 1, z)/2 - hankel1(n + 1, z)/2
See Also
========
hankel2, besselj, bessely
References
==========
.. [1] http://functions.wolfram.com/Bessel-TypeFunctions/HankelH1/
"""
_a = S.One
_b = S.One
def _eval_conjugate(self):
z = self.argument
if z.is_extended_negative is False:
return hankel2(self.order.conjugate(), z.conjugate())
class hankel2(BesselBase):
r"""
Hankel function of the second kind.
Explanation
===========
This function is defined as
.. math ::
H_\nu^{(2)} = J_\nu(z) - iY_\nu(z),
where $J_\nu(z)$ is the Bessel function of the first kind, and
$Y_\nu(z)$ is the Bessel function of the second kind.
It is a solution to Bessel's equation, and linearly independent from
$H_\nu^{(1)}$.
Examples
========
>>> from sympy import hankel2
>>> from sympy.abc import z, n
>>> hankel2(n, z).diff(z)
hankel2(n - 1, z)/2 - hankel2(n + 1, z)/2
See Also
========
hankel1, besselj, bessely
References
==========
.. [1] http://functions.wolfram.com/Bessel-TypeFunctions/HankelH2/
"""
_a = S.One
_b = S.One
def _eval_conjugate(self):
z = self.argument
if z.is_extended_negative is False:
return hankel1(self.order.conjugate(), z.conjugate())
def assume_integer_order(fn):
@wraps(fn)
def g(self, nu, z):
if nu.is_integer:
return fn(self, nu, z)
return g
class SphericalBesselBase(BesselBase):
"""
Base class for spherical Bessel functions.
These are thin wrappers around ordinary Bessel functions,
since spherical Bessel functions differ from the ordinary
ones just by a slight change in order.
To use this class, define the ``_eval_evalf()`` and ``_expand()`` methods.
"""
def _expand(self, **hints):
""" Expand self into a polynomial. Nu is guaranteed to be Integer. """
raise NotImplementedError('expansion')
def _eval_expand_func(self, **hints):
if self.order.is_Integer:
return self._expand(**hints)
return self
def fdiff(self, argindex=2):
if argindex != 2:
raise ArgumentIndexError(self, argindex)
return self.__class__(self.order - 1, self.argument) - \
self * (self.order + 1)/self.argument
def _jn(n, z):
return (spherical_bessel_fn(n, z)*sin(z) +
S.NegativeOne**(n + 1)*spherical_bessel_fn(-n - 1, z)*cos(z))
def _yn(n, z):
# (-1)**(n + 1) * _jn(-n - 1, z)
return (S.NegativeOne**(n + 1) * spherical_bessel_fn(-n - 1, z)*sin(z) -
spherical_bessel_fn(n, z)*cos(z))
class jn(SphericalBesselBase):
r"""
Spherical Bessel function of the first kind.
Explanation
===========
This function is a solution to the spherical Bessel equation
.. math ::
z^2 \frac{\mathrm{d}^2 w}{\mathrm{d}z^2}
+ 2z \frac{\mathrm{d}w}{\mathrm{d}z} + (z^2 - \nu(\nu + 1)) w = 0.
It can be defined as
.. math ::
j_\nu(z) = \sqrt{\frac{\pi}{2z}} J_{\nu + \frac{1}{2}}(z),
where $J_\nu(z)$ is the Bessel function of the first kind.
The spherical Bessel functions of integral order are
calculated using the formula:
.. math:: j_n(z) = f_n(z) \sin{z} + (-1)^{n+1} f_{-n-1}(z) \cos{z},
where the coefficients $f_n(z)$ are available as
:func:`sympy.polys.orthopolys.spherical_bessel_fn`.
Examples
========
>>> from sympy import Symbol, jn, sin, cos, expand_func, besselj, bessely
>>> z = Symbol("z")
>>> nu = Symbol("nu", integer=True)
>>> print(expand_func(jn(0, z)))
sin(z)/z
>>> expand_func(jn(1, z)) == sin(z)/z**2 - cos(z)/z
True
>>> expand_func(jn(3, z))
(-6/z**2 + 15/z**4)*sin(z) + (1/z - 15/z**3)*cos(z)
>>> jn(nu, z).rewrite(besselj)
sqrt(2)*sqrt(pi)*sqrt(1/z)*besselj(nu + 1/2, z)/2
>>> jn(nu, z).rewrite(bessely)
(-1)**nu*sqrt(2)*sqrt(pi)*sqrt(1/z)*bessely(-nu - 1/2, z)/2
>>> jn(2, 5.2+0.3j).evalf(20)
0.099419756723640344491 - 0.054525080242173562897*I
See Also
========
besselj, bessely, besselk, yn
References
==========
.. [1] http://dlmf.nist.gov/10.47
"""
@classmethod
def eval(cls, nu, z):
if z.is_zero:
if nu.is_zero:
return S.One
elif nu.is_integer:
if nu.is_positive:
return S.Zero
else:
return S.ComplexInfinity
if z in (S.NegativeInfinity, S.Infinity):
return S.Zero
def _eval_rewrite_as_besselj(self, nu, z, **kwargs):
return sqrt(pi/(2*z)) * besselj(nu + S.Half, z)
def _eval_rewrite_as_bessely(self, nu, z, **kwargs):
return S.NegativeOne**nu * sqrt(pi/(2*z)) * bessely(-nu - S.Half, z)
def _eval_rewrite_as_yn(self, nu, z, **kwargs):
return S.NegativeOne**(nu) * yn(-nu - 1, z)
def _expand(self, **hints):
return _jn(self.order, self.argument)
def _eval_evalf(self, prec):
if self.order.is_Integer:
return self.rewrite(besselj)._eval_evalf(prec)
class yn(SphericalBesselBase):
r"""
Spherical Bessel function of the second kind.
Explanation
===========
This function is another solution to the spherical Bessel equation, and
linearly independent from $j_n$. It can be defined as
.. math ::
y_\nu(z) = \sqrt{\frac{\pi}{2z}} Y_{\nu + \frac{1}{2}}(z),
where $Y_\nu(z)$ is the Bessel function of the second kind.
For integral orders $n$, $y_n$ is calculated using the formula:
.. math:: y_n(z) = (-1)^{n+1} j_{-n-1}(z)
Examples
========
>>> from sympy import Symbol, yn, sin, cos, expand_func, besselj, bessely
>>> z = Symbol("z")
>>> nu = Symbol("nu", integer=True)
>>> print(expand_func(yn(0, z)))
-cos(z)/z
>>> expand_func(yn(1, z)) == -cos(z)/z**2-sin(z)/z
True
>>> yn(nu, z).rewrite(besselj)
(-1)**(nu + 1)*sqrt(2)*sqrt(pi)*sqrt(1/z)*besselj(-nu - 1/2, z)/2
>>> yn(nu, z).rewrite(bessely)
sqrt(2)*sqrt(pi)*sqrt(1/z)*bessely(nu + 1/2, z)/2
>>> yn(2, 5.2+0.3j).evalf(20)
0.18525034196069722536 + 0.014895573969924817587*I
See Also
========
besselj, bessely, besselk, jn
References
==========
.. [1] http://dlmf.nist.gov/10.47
"""
@assume_integer_order
def _eval_rewrite_as_besselj(self, nu, z, **kwargs):
return S.NegativeOne**(nu+1) * sqrt(pi/(2*z)) * besselj(-nu - S.Half, z)
@assume_integer_order
def _eval_rewrite_as_bessely(self, nu, z, **kwargs):
return sqrt(pi/(2*z)) * bessely(nu + S.Half, z)
def _eval_rewrite_as_jn(self, nu, z, **kwargs):
return S.NegativeOne**(nu + 1) * jn(-nu - 1, z)
def _expand(self, **hints):
return _yn(self.order, self.argument)
def _eval_evalf(self, prec):
if self.order.is_Integer:
return self.rewrite(bessely)._eval_evalf(prec)
class SphericalHankelBase(SphericalBesselBase):
@assume_integer_order
def _eval_rewrite_as_besselj(self, nu, z, **kwargs):
# jn +- I*yn
# jn as beeselj: sqrt(pi/(2*z)) * besselj(nu + S.Half, z)
# yn as besselj: (-1)**(nu+1) * sqrt(pi/(2*z)) * besselj(-nu - S.Half, z)
hks = self._hankel_kind_sign
return sqrt(pi/(2*z))*(besselj(nu + S.Half, z) +
hks*I*S.NegativeOne**(nu+1)*besselj(-nu - S.Half, z))
@assume_integer_order
def _eval_rewrite_as_bessely(self, nu, z, **kwargs):
# jn +- I*yn
# jn as bessely: (-1)**nu * sqrt(pi/(2*z)) * bessely(-nu - S.Half, z)
# yn as bessely: sqrt(pi/(2*z)) * bessely(nu + S.Half, z)
hks = self._hankel_kind_sign
return sqrt(pi/(2*z))*(S.NegativeOne**nu*bessely(-nu - S.Half, z) +
hks*I*bessely(nu + S.Half, z))
def _eval_rewrite_as_yn(self, nu, z, **kwargs):
hks = self._hankel_kind_sign
return jn(nu, z).rewrite(yn) + hks*I*yn(nu, z)
def _eval_rewrite_as_jn(self, nu, z, **kwargs):
hks = self._hankel_kind_sign
return jn(nu, z) + hks*I*yn(nu, z).rewrite(jn)
def _eval_expand_func(self, **hints):
if self.order.is_Integer:
return self._expand(**hints)
else:
nu = self.order
z = self.argument
hks = self._hankel_kind_sign
return jn(nu, z) + hks*I*yn(nu, z)
def _expand(self, **hints):
n = self.order
z = self.argument
hks = self._hankel_kind_sign
# fully expanded version
# return ((fn(n, z) * sin(z) +
# (-1)**(n + 1) * fn(-n - 1, z) * cos(z)) + # jn
# (hks * I * (-1)**(n + 1) *
# (fn(-n - 1, z) * hk * I * sin(z) +
# (-1)**(-n) * fn(n, z) * I * cos(z))) # +-I*yn
# )
return (_jn(n, z) + hks*I*_yn(n, z)).expand()
def _eval_evalf(self, prec):
if self.order.is_Integer:
return self.rewrite(besselj)._eval_evalf(prec)
class hn1(SphericalHankelBase):
r"""
Spherical Hankel function of the first kind.
Explanation
===========
This function is defined as
.. math:: h_\nu^(1)(z) = j_\nu(z) + i y_\nu(z),
where $j_\nu(z)$ and $y_\nu(z)$ are the spherical
Bessel function of the first and second kinds.
For integral orders $n$, $h_n^(1)$ is calculated using the formula:
.. math:: h_n^(1)(z) = j_{n}(z) + i (-1)^{n+1} j_{-n-1}(z)
Examples
========
>>> from sympy import Symbol, hn1, hankel1, expand_func, yn, jn
>>> z = Symbol("z")
>>> nu = Symbol("nu", integer=True)
>>> print(expand_func(hn1(nu, z)))
jn(nu, z) + I*yn(nu, z)
>>> print(expand_func(hn1(0, z)))
sin(z)/z - I*cos(z)/z
>>> print(expand_func(hn1(1, z)))
-I*sin(z)/z - cos(z)/z + sin(z)/z**2 - I*cos(z)/z**2
>>> hn1(nu, z).rewrite(jn)
(-1)**(nu + 1)*I*jn(-nu - 1, z) + jn(nu, z)
>>> hn1(nu, z).rewrite(yn)
(-1)**nu*yn(-nu - 1, z) + I*yn(nu, z)
>>> hn1(nu, z).rewrite(hankel1)
sqrt(2)*sqrt(pi)*sqrt(1/z)*hankel1(nu, z)/2
See Also
========
hn2, jn, yn, hankel1, hankel2
References
==========
.. [1] http://dlmf.nist.gov/10.47
"""
_hankel_kind_sign = S.One
@assume_integer_order
def _eval_rewrite_as_hankel1(self, nu, z, **kwargs):
return sqrt(pi/(2*z))*hankel1(nu, z)
class hn2(SphericalHankelBase):
r"""
Spherical Hankel function of the second kind.
Explanation
===========
This function is defined as
.. math:: h_\nu^(2)(z) = j_\nu(z) - i y_\nu(z),
where $j_\nu(z)$ and $y_\nu(z)$ are the spherical
Bessel function of the first and second kinds.
For integral orders $n$, $h_n^(2)$ is calculated using the formula:
.. math:: h_n^(2)(z) = j_{n} - i (-1)^{n+1} j_{-n-1}(z)
Examples
========
>>> from sympy import Symbol, hn2, hankel2, expand_func, jn, yn
>>> z = Symbol("z")
>>> nu = Symbol("nu", integer=True)
>>> print(expand_func(hn2(nu, z)))
jn(nu, z) - I*yn(nu, z)
>>> print(expand_func(hn2(0, z)))
sin(z)/z + I*cos(z)/z
>>> print(expand_func(hn2(1, z)))
I*sin(z)/z - cos(z)/z + sin(z)/z**2 + I*cos(z)/z**2
>>> hn2(nu, z).rewrite(hankel2)
sqrt(2)*sqrt(pi)*sqrt(1/z)*hankel2(nu, z)/2
>>> hn2(nu, z).rewrite(jn)
-(-1)**(nu + 1)*I*jn(-nu - 1, z) + jn(nu, z)
>>> hn2(nu, z).rewrite(yn)
(-1)**nu*yn(-nu - 1, z) - I*yn(nu, z)
See Also
========
hn1, jn, yn, hankel1, hankel2
References
==========
.. [1] http://dlmf.nist.gov/10.47
"""
_hankel_kind_sign = -S.One
@assume_integer_order
def _eval_rewrite_as_hankel2(self, nu, z, **kwargs):
return sqrt(pi/(2*z))*hankel2(nu, z)
def jn_zeros(n, k, method="sympy", dps=15):
"""
Zeros of the spherical Bessel function of the first kind.
Explanation
===========
This returns an array of zeros of $jn$ up to the $k$-th zero.
* method = "sympy": uses `mpmath.besseljzero
<http://mpmath.org/doc/current/functions/bessel.html#mpmath.besseljzero>`_
* method = "scipy": uses the
`SciPy's sph_jn <http://docs.scipy.org/doc/scipy/reference/generated/scipy.special.jn_zeros.html>`_
and
`newton <http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.newton.html>`_
to find all
roots, which is faster than computing the zeros using a general
numerical solver, but it requires SciPy and only works with low
precision floating point numbers. (The function used with
method="sympy" is a recent addition to mpmath; before that a general
solver was used.)
Examples
========
>>> from sympy import jn_zeros
>>> jn_zeros(2, 4, dps=5)
[5.7635, 9.095, 12.323, 15.515]
See Also
========
jn, yn, besselj, besselk, bessely
Parameters
==========
n : integer
order of Bessel function
k : integer
number of zeros to return
"""
from math import pi as math_pi
if method == "sympy":
from mpmath import besseljzero
from mpmath.libmp.libmpf import dps_to_prec
prec = dps_to_prec(dps)
return [Expr._from_mpmath(besseljzero(S(n + 0.5)._to_mpmath(prec),
int(l)), prec)
for l in range(1, k + 1)]
elif method == "scipy":
from scipy.optimize import newton
try:
from scipy.special import spherical_jn
f = lambda x: spherical_jn(n, x)
except ImportError:
from scipy.special import sph_jn
f = lambda x: sph_jn(n, x)[0][-1]
else:
raise NotImplementedError("Unknown method.")
def solver(f, x):
if method == "scipy":
root = newton(f, x)
else:
raise NotImplementedError("Unknown method.")
return root
# we need to approximate the position of the first root:
root = n + math_pi
# determine the first root exactly:
root = solver(f, root)
roots = [root]
for i in range(k - 1):
# estimate the position of the next root using the last root + pi:
root = solver(f, root + math_pi)
roots.append(root)
return roots
class AiryBase(Function):
"""
Abstract base class for Airy functions.
This class is meant to reduce code duplication.
"""
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def _eval_is_extended_real(self):
return self.args[0].is_extended_real
def as_real_imag(self, deep=True, **hints):
z = self.args[0]
zc = z.conjugate()
f = self.func
u = (f(z)+f(zc))/2
v = I*(f(zc)-f(z))/2
return u, v
def _eval_expand_complex(self, deep=True, **hints):
re_part, im_part = self.as_real_imag(deep=deep, **hints)
return re_part + im_part*I
class airyai(AiryBase):
r"""
The Airy function $\operatorname{Ai}$ of the first kind.
Explanation
===========
The Airy function $\operatorname{Ai}(z)$ is defined to be the function
satisfying Airy's differential equation
.. math::
\frac{\mathrm{d}^2 w(z)}{\mathrm{d}z^2} - z w(z) = 0.
Equivalently, for real $z$
.. math::
\operatorname{Ai}(z) := \frac{1}{\pi}
\int_0^\infty \cos\left(\frac{t^3}{3} + z t\right) \mathrm{d}t.
Examples
========
Create an Airy function object:
>>> from sympy import airyai
>>> from sympy.abc import z
>>> airyai(z)
airyai(z)
Several special values are known:
>>> airyai(0)
3**(1/3)/(3*gamma(2/3))
>>> from sympy import oo
>>> airyai(oo)
0
>>> airyai(-oo)
0
The Airy function obeys the mirror symmetry:
>>> from sympy import conjugate
>>> conjugate(airyai(z))
airyai(conjugate(z))
Differentiation with respect to $z$ is supported:
>>> from sympy import diff
>>> diff(airyai(z), z)
airyaiprime(z)
>>> diff(airyai(z), z, 2)
z*airyai(z)
Series expansion is also supported:
>>> from sympy import series
>>> series(airyai(z), z, 0, 3)
3**(5/6)*gamma(1/3)/(6*pi) - 3**(1/6)*z*gamma(2/3)/(2*pi) + O(z**3)
We can numerically evaluate the Airy function to arbitrary precision
on the whole complex plane:
>>> airyai(-2).evalf(50)
0.22740742820168557599192443603787379946077222541710
Rewrite $\operatorname{Ai}(z)$ in terms of hypergeometric functions:
>>> from sympy import hyper
>>> airyai(z).rewrite(hyper)
-3**(2/3)*z*hyper((), (4/3,), z**3/9)/(3*gamma(1/3)) + 3**(1/3)*hyper((), (2/3,), z**3/9)/(3*gamma(2/3))
See Also
========
airybi: Airy function of the second kind.
airyaiprime: Derivative of the Airy function of the first kind.
airybiprime: Derivative of the Airy function of the second kind.
References
==========
.. [1] https://en.wikipedia.org/wiki/Airy_function
.. [2] http://dlmf.nist.gov/9
.. [3] http://www.encyclopediaofmath.org/index.php/Airy_functions
.. [4] http://mathworld.wolfram.com/AiryFunctions.html
"""
nargs = 1
unbranched = True
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Zero
elif arg is S.NegativeInfinity:
return S.Zero
elif arg.is_zero:
return S.One / (3**Rational(2, 3) * gamma(Rational(2, 3)))
if arg.is_zero:
return S.One / (3**Rational(2, 3) * gamma(Rational(2, 3)))
def fdiff(self, argindex=1):
if argindex == 1:
return airyaiprime(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) > 1:
p = previous_terms[-1]
return ((cbrt(3)*x)**(-n)*(cbrt(3)*x)**(n + 1)*sin(pi*(n*Rational(2, 3) + Rational(4, 3)))*factorial(n) *
gamma(n/3 + Rational(2, 3))/(sin(pi*(n*Rational(2, 3) + Rational(2, 3)))*factorial(n + 1)*gamma(n/3 + Rational(1, 3))) * p)
else:
return (S.One/(3**Rational(2, 3)*pi) * gamma((n+S.One)/S(3)) * sin(Rational(2, 3)*pi*(n+S.One)) /
factorial(n) * (cbrt(3)*x)**n)
def _eval_rewrite_as_besselj(self, z, **kwargs):
ot = Rational(1, 3)
tt = Rational(2, 3)
a = Pow(-z, Rational(3, 2))
if re(z).is_negative:
return ot*sqrt(-z) * (besselj(-ot, tt*a) + besselj(ot, tt*a))
def _eval_rewrite_as_besseli(self, z, **kwargs):
ot = Rational(1, 3)
tt = Rational(2, 3)
a = Pow(z, Rational(3, 2))
if re(z).is_positive:
return ot*sqrt(z) * (besseli(-ot, tt*a) - besseli(ot, tt*a))
else:
return ot*(Pow(a, ot)*besseli(-ot, tt*a) - z*Pow(a, -ot)*besseli(ot, tt*a))
def _eval_rewrite_as_hyper(self, z, **kwargs):
pf1 = S.One / (3**Rational(2, 3)*gamma(Rational(2, 3)))
pf2 = z / (root(3, 3)*gamma(Rational(1, 3)))
return pf1 * hyper([], [Rational(2, 3)], z**3/9) - pf2 * hyper([], [Rational(4, 3)], z**3/9)
def _eval_expand_func(self, **hints):
arg = self.args[0]
symbs = arg.free_symbols
if len(symbs) == 1:
z = symbs.pop()
c = Wild("c", exclude=[z])
d = Wild("d", exclude=[z])
m = Wild("m", exclude=[z])
n = Wild("n", exclude=[z])
M = arg.match(c*(d*z**n)**m)
if M is not None:
m = M[m]
# The transformation is given by 03.05.16.0001.01
# http://functions.wolfram.com/Bessel-TypeFunctions/AiryAi/16/01/01/0001/
if (3*m).is_integer:
c = M[c]
d = M[d]
n = M[n]
pf = (d * z**n)**m / (d**m * z**(m*n))
newarg = c * d**m * z**(m*n)
return S.Half * ((pf + S.One)*airyai(newarg) - (pf - S.One)/sqrt(3)*airybi(newarg))
class airybi(AiryBase):
r"""
The Airy function $\operatorname{Bi}$ of the second kind.
Explanation
===========
The Airy function $\operatorname{Bi}(z)$ is defined to be the function
satisfying Airy's differential equation
.. math::
\frac{\mathrm{d}^2 w(z)}{\mathrm{d}z^2} - z w(z) = 0.
Equivalently, for real $z$
.. math::
\operatorname{Bi}(z) := \frac{1}{\pi}
\int_0^\infty
\exp\left(-\frac{t^3}{3} + z t\right)
+ \sin\left(\frac{t^3}{3} + z t\right) \mathrm{d}t.
Examples
========
Create an Airy function object:
>>> from sympy import airybi
>>> from sympy.abc import z
>>> airybi(z)
airybi(z)
Several special values are known:
>>> airybi(0)
3**(5/6)/(3*gamma(2/3))
>>> from sympy import oo
>>> airybi(oo)
oo
>>> airybi(-oo)
0
The Airy function obeys the mirror symmetry:
>>> from sympy import conjugate
>>> conjugate(airybi(z))
airybi(conjugate(z))
Differentiation with respect to $z$ is supported:
>>> from sympy import diff
>>> diff(airybi(z), z)
airybiprime(z)
>>> diff(airybi(z), z, 2)
z*airybi(z)
Series expansion is also supported:
>>> from sympy import series
>>> series(airybi(z), z, 0, 3)
3**(1/3)*gamma(1/3)/(2*pi) + 3**(2/3)*z*gamma(2/3)/(2*pi) + O(z**3)
We can numerically evaluate the Airy function to arbitrary precision
on the whole complex plane:
>>> airybi(-2).evalf(50)
-0.41230258795639848808323405461146104203453483447240
Rewrite $\operatorname{Bi}(z)$ in terms of hypergeometric functions:
>>> from sympy import hyper
>>> airybi(z).rewrite(hyper)
3**(1/6)*z*hyper((), (4/3,), z**3/9)/gamma(1/3) + 3**(5/6)*hyper((), (2/3,), z**3/9)/(3*gamma(2/3))
See Also
========
airyai: Airy function of the first kind.
airyaiprime: Derivative of the Airy function of the first kind.
airybiprime: Derivative of the Airy function of the second kind.
References
==========
.. [1] https://en.wikipedia.org/wiki/Airy_function
.. [2] http://dlmf.nist.gov/9
.. [3] http://www.encyclopediaofmath.org/index.php/Airy_functions
.. [4] http://mathworld.wolfram.com/AiryFunctions.html
"""
nargs = 1
unbranched = True
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Infinity
elif arg is S.NegativeInfinity:
return S.Zero
elif arg.is_zero:
return S.One / (3**Rational(1, 6) * gamma(Rational(2, 3)))
if arg.is_zero:
return S.One / (3**Rational(1, 6) * gamma(Rational(2, 3)))
def fdiff(self, argindex=1):
if argindex == 1:
return airybiprime(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) > 1:
p = previous_terms[-1]
return (cbrt(3)*x * Abs(sin(Rational(2, 3)*pi*(n + S.One))) * factorial((n - S.One)/S(3)) /
((n + S.One) * Abs(cos(Rational(2, 3)*pi*(n + S.Half))) * factorial((n - 2)/S(3))) * p)
else:
return (S.One/(root(3, 6)*pi) * gamma((n + S.One)/S(3)) * Abs(sin(Rational(2, 3)*pi*(n + S.One))) /
factorial(n) * (cbrt(3)*x)**n)
def _eval_rewrite_as_besselj(self, z, **kwargs):
ot = Rational(1, 3)
tt = Rational(2, 3)
a = Pow(-z, Rational(3, 2))
if re(z).is_negative:
return sqrt(-z/3) * (besselj(-ot, tt*a) - besselj(ot, tt*a))
def _eval_rewrite_as_besseli(self, z, **kwargs):
ot = Rational(1, 3)
tt = Rational(2, 3)
a = Pow(z, Rational(3, 2))
if re(z).is_positive:
return sqrt(z)/sqrt(3) * (besseli(-ot, tt*a) + besseli(ot, tt*a))
else:
b = Pow(a, ot)
c = Pow(a, -ot)
return sqrt(ot)*(b*besseli(-ot, tt*a) + z*c*besseli(ot, tt*a))
def _eval_rewrite_as_hyper(self, z, **kwargs):
pf1 = S.One / (root(3, 6)*gamma(Rational(2, 3)))
pf2 = z*root(3, 6) / gamma(Rational(1, 3))
return pf1 * hyper([], [Rational(2, 3)], z**3/9) + pf2 * hyper([], [Rational(4, 3)], z**3/9)
def _eval_expand_func(self, **hints):
arg = self.args[0]
symbs = arg.free_symbols
if len(symbs) == 1:
z = symbs.pop()
c = Wild("c", exclude=[z])
d = Wild("d", exclude=[z])
m = Wild("m", exclude=[z])
n = Wild("n", exclude=[z])
M = arg.match(c*(d*z**n)**m)
if M is not None:
m = M[m]
# The transformation is given by 03.06.16.0001.01
# http://functions.wolfram.com/Bessel-TypeFunctions/AiryBi/16/01/01/0001/
if (3*m).is_integer:
c = M[c]
d = M[d]
n = M[n]
pf = (d * z**n)**m / (d**m * z**(m*n))
newarg = c * d**m * z**(m*n)
return S.Half * (sqrt(3)*(S.One - pf)*airyai(newarg) + (S.One + pf)*airybi(newarg))
class airyaiprime(AiryBase):
r"""
The derivative $\operatorname{Ai}^\prime$ of the Airy function of the first
kind.
Explanation
===========
The Airy function $\operatorname{Ai}^\prime(z)$ is defined to be the
function
.. math::
\operatorname{Ai}^\prime(z) := \frac{\mathrm{d} \operatorname{Ai}(z)}{\mathrm{d} z}.
Examples
========
Create an Airy function object:
>>> from sympy import airyaiprime
>>> from sympy.abc import z
>>> airyaiprime(z)
airyaiprime(z)
Several special values are known:
>>> airyaiprime(0)
-3**(2/3)/(3*gamma(1/3))
>>> from sympy import oo
>>> airyaiprime(oo)
0
The Airy function obeys the mirror symmetry:
>>> from sympy import conjugate
>>> conjugate(airyaiprime(z))
airyaiprime(conjugate(z))
Differentiation with respect to $z$ is supported:
>>> from sympy import diff
>>> diff(airyaiprime(z), z)
z*airyai(z)
>>> diff(airyaiprime(z), z, 2)
z*airyaiprime(z) + airyai(z)
Series expansion is also supported:
>>> from sympy import series
>>> series(airyaiprime(z), z, 0, 3)
-3**(2/3)/(3*gamma(1/3)) + 3**(1/3)*z**2/(6*gamma(2/3)) + O(z**3)
We can numerically evaluate the Airy function to arbitrary precision
on the whole complex plane:
>>> airyaiprime(-2).evalf(50)
0.61825902074169104140626429133247528291577794512415
Rewrite $\operatorname{Ai}^\prime(z)$ in terms of hypergeometric functions:
>>> from sympy import hyper
>>> airyaiprime(z).rewrite(hyper)
3**(1/3)*z**2*hyper((), (5/3,), z**3/9)/(6*gamma(2/3)) - 3**(2/3)*hyper((), (1/3,), z**3/9)/(3*gamma(1/3))
See Also
========
airyai: Airy function of the first kind.
airybi: Airy function of the second kind.
airybiprime: Derivative of the Airy function of the second kind.
References
==========
.. [1] https://en.wikipedia.org/wiki/Airy_function
.. [2] http://dlmf.nist.gov/9
.. [3] http://www.encyclopediaofmath.org/index.php/Airy_functions
.. [4] http://mathworld.wolfram.com/AiryFunctions.html
"""
nargs = 1
unbranched = True
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Zero
if arg.is_zero:
return S.NegativeOne / (3**Rational(1, 3) * gamma(Rational(1, 3)))
def fdiff(self, argindex=1):
if argindex == 1:
return self.args[0]*airyai(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
def _eval_evalf(self, prec):
z = self.args[0]._to_mpmath(prec)
with workprec(prec):
res = mp.airyai(z, derivative=1)
return Expr._from_mpmath(res, prec)
def _eval_rewrite_as_besselj(self, z, **kwargs):
tt = Rational(2, 3)
a = Pow(-z, Rational(3, 2))
if re(z).is_negative:
return z/3 * (besselj(-tt, tt*a) - besselj(tt, tt*a))
def _eval_rewrite_as_besseli(self, z, **kwargs):
ot = Rational(1, 3)
tt = Rational(2, 3)
a = tt * Pow(z, Rational(3, 2))
if re(z).is_positive:
return z/3 * (besseli(tt, a) - besseli(-tt, a))
else:
a = Pow(z, Rational(3, 2))
b = Pow(a, tt)
c = Pow(a, -tt)
return ot * (z**2*c*besseli(tt, tt*a) - b*besseli(-ot, tt*a))
def _eval_rewrite_as_hyper(self, z, **kwargs):
pf1 = z**2 / (2*3**Rational(2, 3)*gamma(Rational(2, 3)))
pf2 = 1 / (root(3, 3)*gamma(Rational(1, 3)))
return pf1 * hyper([], [Rational(5, 3)], z**3/9) - pf2 * hyper([], [Rational(1, 3)], z**3/9)
def _eval_expand_func(self, **hints):
arg = self.args[0]
symbs = arg.free_symbols
if len(symbs) == 1:
z = symbs.pop()
c = Wild("c", exclude=[z])
d = Wild("d", exclude=[z])
m = Wild("m", exclude=[z])
n = Wild("n", exclude=[z])
M = arg.match(c*(d*z**n)**m)
if M is not None:
m = M[m]
# The transformation is in principle
# given by 03.07.16.0001.01 but note
# that there is an error in this formula.
# http://functions.wolfram.com/Bessel-TypeFunctions/AiryAiPrime/16/01/01/0001/
if (3*m).is_integer:
c = M[c]
d = M[d]
n = M[n]
pf = (d**m * z**(n*m)) / (d * z**n)**m
newarg = c * d**m * z**(n*m)
return S.Half * ((pf + S.One)*airyaiprime(newarg) + (pf - S.One)/sqrt(3)*airybiprime(newarg))
class airybiprime(AiryBase):
r"""
The derivative $\operatorname{Bi}^\prime$ of the Airy function of the first
kind.
Explanation
===========
The Airy function $\operatorname{Bi}^\prime(z)$ is defined to be the
function
.. math::
\operatorname{Bi}^\prime(z) := \frac{\mathrm{d} \operatorname{Bi}(z)}{\mathrm{d} z}.
Examples
========
Create an Airy function object:
>>> from sympy import airybiprime
>>> from sympy.abc import z
>>> airybiprime(z)
airybiprime(z)
Several special values are known:
>>> airybiprime(0)
3**(1/6)/gamma(1/3)
>>> from sympy import oo
>>> airybiprime(oo)
oo
>>> airybiprime(-oo)
0
The Airy function obeys the mirror symmetry:
>>> from sympy import conjugate
>>> conjugate(airybiprime(z))
airybiprime(conjugate(z))
Differentiation with respect to $z$ is supported:
>>> from sympy import diff
>>> diff(airybiprime(z), z)
z*airybi(z)
>>> diff(airybiprime(z), z, 2)
z*airybiprime(z) + airybi(z)
Series expansion is also supported:
>>> from sympy import series
>>> series(airybiprime(z), z, 0, 3)
3**(1/6)/gamma(1/3) + 3**(5/6)*z**2/(6*gamma(2/3)) + O(z**3)
We can numerically evaluate the Airy function to arbitrary precision
on the whole complex plane:
>>> airybiprime(-2).evalf(50)
0.27879516692116952268509756941098324140300059345163
Rewrite $\operatorname{Bi}^\prime(z)$ in terms of hypergeometric functions:
>>> from sympy import hyper
>>> airybiprime(z).rewrite(hyper)
3**(5/6)*z**2*hyper((), (5/3,), z**3/9)/(6*gamma(2/3)) + 3**(1/6)*hyper((), (1/3,), z**3/9)/gamma(1/3)
See Also
========
airyai: Airy function of the first kind.
airybi: Airy function of the second kind.
airyaiprime: Derivative of the Airy function of the first kind.
References
==========
.. [1] https://en.wikipedia.org/wiki/Airy_function
.. [2] http://dlmf.nist.gov/9
.. [3] http://www.encyclopediaofmath.org/index.php/Airy_functions
.. [4] http://mathworld.wolfram.com/AiryFunctions.html
"""
nargs = 1
unbranched = True
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Infinity
elif arg is S.NegativeInfinity:
return S.Zero
elif arg.is_zero:
return 3**Rational(1, 6) / gamma(Rational(1, 3))
if arg.is_zero:
return 3**Rational(1, 6) / gamma(Rational(1, 3))
def fdiff(self, argindex=1):
if argindex == 1:
return self.args[0]*airybi(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
def _eval_evalf(self, prec):
z = self.args[0]._to_mpmath(prec)
with workprec(prec):
res = mp.airybi(z, derivative=1)
return Expr._from_mpmath(res, prec)
def _eval_rewrite_as_besselj(self, z, **kwargs):
tt = Rational(2, 3)
a = tt * Pow(-z, Rational(3, 2))
if re(z).is_negative:
return -z/sqrt(3) * (besselj(-tt, a) + besselj(tt, a))
def _eval_rewrite_as_besseli(self, z, **kwargs):
ot = Rational(1, 3)
tt = Rational(2, 3)
a = tt * Pow(z, Rational(3, 2))
if re(z).is_positive:
return z/sqrt(3) * (besseli(-tt, a) + besseli(tt, a))
else:
a = Pow(z, Rational(3, 2))
b = Pow(a, tt)
c = Pow(a, -tt)
return sqrt(ot) * (b*besseli(-tt, tt*a) + z**2*c*besseli(tt, tt*a))
def _eval_rewrite_as_hyper(self, z, **kwargs):
pf1 = z**2 / (2*root(3, 6)*gamma(Rational(2, 3)))
pf2 = root(3, 6) / gamma(Rational(1, 3))
return pf1 * hyper([], [Rational(5, 3)], z**3/9) + pf2 * hyper([], [Rational(1, 3)], z**3/9)
def _eval_expand_func(self, **hints):
arg = self.args[0]
symbs = arg.free_symbols
if len(symbs) == 1:
z = symbs.pop()
c = Wild("c", exclude=[z])
d = Wild("d", exclude=[z])
m = Wild("m", exclude=[z])
n = Wild("n", exclude=[z])
M = arg.match(c*(d*z**n)**m)
if M is not None:
m = M[m]
# The transformation is in principle
# given by 03.08.16.0001.01 but note
# that there is an error in this formula.
# http://functions.wolfram.com/Bessel-TypeFunctions/AiryBiPrime/16/01/01/0001/
if (3*m).is_integer:
c = M[c]
d = M[d]
n = M[n]
pf = (d**m * z**(n*m)) / (d * z**n)**m
newarg = c * d**m * z**(n*m)
return S.Half * (sqrt(3)*(pf - S.One)*airyaiprime(newarg) + (pf + S.One)*airybiprime(newarg))
class marcumq(Function):
r"""
The Marcum Q-function.
Explanation
===========
The Marcum Q-function is defined by the meromorphic continuation of
.. math::
Q_m(a, b) = a^{- m + 1} \int_{b}^{\infty} x^{m} e^{- \frac{a^{2}}{2} - \frac{x^{2}}{2}} I_{m - 1}\left(a x\right)\, dx
Examples
========
>>> from sympy import marcumq
>>> from sympy.abc import m, a, b
>>> marcumq(m, a, b)
marcumq(m, a, b)
Special values:
>>> marcumq(m, 0, b)
uppergamma(m, b**2/2)/gamma(m)
>>> marcumq(0, 0, 0)
0
>>> marcumq(0, a, 0)
1 - exp(-a**2/2)
>>> marcumq(1, a, a)
1/2 + exp(-a**2)*besseli(0, a**2)/2
>>> marcumq(2, a, a)
1/2 + exp(-a**2)*besseli(0, a**2)/2 + exp(-a**2)*besseli(1, a**2)
Differentiation with respect to $a$ and $b$ is supported:
>>> from sympy import diff
>>> diff(marcumq(m, a, b), a)
a*(-marcumq(m, a, b) + marcumq(m + 1, a, b))
>>> diff(marcumq(m, a, b), b)
-a**(1 - m)*b**m*exp(-a**2/2 - b**2/2)*besseli(m - 1, a*b)
References
==========
.. [1] https://en.wikipedia.org/wiki/Marcum_Q-function
.. [2] http://mathworld.wolfram.com/MarcumQ-Function.html
"""
@classmethod
def eval(cls, m, a, b):
if a is S.Zero:
if m is S.Zero and b is S.Zero:
return S.Zero
return uppergamma(m, b**2 * S.Half) / gamma(m)
if m is S.Zero and b is S.Zero:
return 1 - 1 / exp(a**2 * S.Half)
if a == b:
if m is S.One:
return (1 + exp(-a**2) * besseli(0, a**2))*S.Half
if m == 2:
return S.Half + S.Half * exp(-a**2) * besseli(0, a**2) + exp(-a**2) * besseli(1, a**2)
if a.is_zero:
if m.is_zero and b.is_zero:
return S.Zero
return uppergamma(m, b**2*S.Half) / gamma(m)
if m.is_zero and b.is_zero:
return 1 - 1 / exp(a**2*S.Half)
def fdiff(self, argindex=2):
m, a, b = self.args
if argindex == 2:
return a * (-marcumq(m, a, b) + marcumq(1+m, a, b))
elif argindex == 3:
return (-b**m / a**(m-1)) * exp(-(a**2 + b**2)/2) * besseli(m-1, a*b)
else:
raise ArgumentIndexError(self, argindex)
def _eval_rewrite_as_Integral(self, m, a, b, **kwargs):
from sympy.integrals.integrals import Integral
x = kwargs.get('x', Dummy('x'))
return a ** (1 - m) * \
Integral(x**m * exp(-(x**2 + a**2)/2) * besseli(m-1, a*x), [x, b, S.Infinity])
def _eval_rewrite_as_Sum(self, m, a, b, **kwargs):
from sympy.concrete.summations import Sum
k = kwargs.get('k', Dummy('k'))
return exp(-(a**2 + b**2) / 2) * Sum((a/b)**k * besseli(k, a*b), [k, 1-m, S.Infinity])
def _eval_rewrite_as_besseli(self, m, a, b, **kwargs):
if a == b:
if m == 1:
return (1 + exp(-a**2) * besseli(0, a**2)) / 2
if m.is_Integer and m >= 2:
s = sum([besseli(i, a**2) for i in range(1, m)])
return S.Half + exp(-a**2) * besseli(0, a**2) / 2 + exp(-a**2) * s
def _eval_is_zero(self):
if all(arg.is_zero for arg in self.args):
return True
|
ee264dd5e851b0ba0f1094a9d5694e4bcf8a45402084e865106d9fb5034598ca | """ This module contains various functions that are special cases
of incomplete gamma functions. It should probably be renamed. """
from sympy.core import EulerGamma # Must be imported from core, not core.numbers
from sympy.core.add import Add
from sympy.core.cache import cacheit
from sympy.core.function import Function, ArgumentIndexError, expand_mul
from sympy.core.numbers import I, pi, Rational
from sympy.core.relational import is_eq
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.core.sympify import sympify
from sympy.functions.combinatorial.factorials import factorial, factorial2, RisingFactorial
from sympy.functions.elementary.complexes import polar_lift, re, unpolarify
from sympy.functions.elementary.integers import ceiling, floor
from sympy.functions.elementary.miscellaneous import sqrt, root
from sympy.functions.elementary.exponential import exp, log, exp_polar
from sympy.functions.elementary.hyperbolic import cosh, sinh
from sympy.functions.elementary.trigonometric import cos, sin, sinc
from sympy.functions.special.hyper import hyper, meijerg
# TODO series expansions
# TODO see the "Note:" in Ei
# Helper function
def real_to_real_as_real_imag(self, deep=True, **hints):
if self.args[0].is_extended_real:
if deep:
hints['complex'] = False
return (self.expand(deep, **hints), S.Zero)
else:
return (self, S.Zero)
if deep:
x, y = self.args[0].expand(deep, **hints).as_real_imag()
else:
x, y = self.args[0].as_real_imag()
re = (self.func(x + I*y) + self.func(x - I*y))/2
im = (self.func(x + I*y) - self.func(x - I*y))/(2*I)
return (re, im)
###############################################################################
################################ ERROR FUNCTION ###############################
###############################################################################
class erf(Function):
r"""
The Gauss error function.
Explanation
===========
This function is defined as:
.. math ::
\mathrm{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} \mathrm{d}t.
Examples
========
>>> from sympy import I, oo, erf
>>> from sympy.abc import z
Several special values are known:
>>> erf(0)
0
>>> erf(oo)
1
>>> erf(-oo)
-1
>>> erf(I*oo)
oo*I
>>> erf(-I*oo)
-oo*I
In general one can pull out factors of -1 and $I$ from the argument:
>>> erf(-z)
-erf(z)
The error function obeys the mirror symmetry:
>>> from sympy import conjugate
>>> conjugate(erf(z))
erf(conjugate(z))
Differentiation with respect to $z$ is supported:
>>> from sympy import diff
>>> diff(erf(z), z)
2*exp(-z**2)/sqrt(pi)
We can numerically evaluate the error function to arbitrary precision
on the whole complex plane:
>>> erf(4).evalf(30)
0.999999984582742099719981147840
>>> erf(-4*I).evalf(30)
-1296959.73071763923152794095062*I
See Also
========
erfc: Complementary error function.
erfi: Imaginary error function.
erf2: Two-argument error function.
erfinv: Inverse error function.
erfcinv: Inverse Complementary error function.
erf2inv: Inverse two-argument error function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Error_function
.. [2] http://dlmf.nist.gov/7
.. [3] http://mathworld.wolfram.com/Erf.html
.. [4] http://functions.wolfram.com/GammaBetaErf/Erf
"""
unbranched = True
def fdiff(self, argindex=1):
if argindex == 1:
return 2*exp(-self.args[0]**2)/sqrt(pi)
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return erfinv
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.One
elif arg is S.NegativeInfinity:
return S.NegativeOne
elif arg.is_zero:
return S.Zero
if isinstance(arg, erfinv):
return arg.args[0]
if isinstance(arg, erfcinv):
return S.One - arg.args[0]
if arg.is_zero:
return S.Zero
# Only happens with unevaluated erf2inv
if isinstance(arg, erf2inv) and arg.args[0].is_zero:
return arg.args[1]
# Try to pull out factors of I
t = arg.extract_multiplicatively(I)
if t in (S.Infinity, S.NegativeInfinity):
return arg
# Try to pull out factors of -1
if arg.could_extract_minus_sign():
return -cls(-arg)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
k = floor((n - 1)/S(2))
if len(previous_terms) > 2:
return -previous_terms[-2] * x**2 * (n - 2)/(n*k)
else:
return 2*S.NegativeOne**k * x**n/(n*factorial(k)*sqrt(pi))
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def _eval_is_real(self):
return self.args[0].is_extended_real
def _eval_is_finite(self):
if self.args[0].is_finite:
return True
else:
return self.args[0].is_extended_real
def _eval_is_zero(self):
return self.args[0].is_zero
def _eval_rewrite_as_uppergamma(self, z, **kwargs):
from sympy.functions.special.gamma_functions import uppergamma
return sqrt(z**2)/z*(S.One - uppergamma(S.Half, z**2)/sqrt(pi))
def _eval_rewrite_as_fresnels(self, z, **kwargs):
arg = (S.One - I)*z/sqrt(pi)
return (S.One + I)*(fresnelc(arg) - I*fresnels(arg))
def _eval_rewrite_as_fresnelc(self, z, **kwargs):
arg = (S.One - I)*z/sqrt(pi)
return (S.One + I)*(fresnelc(arg) - I*fresnels(arg))
def _eval_rewrite_as_meijerg(self, z, **kwargs):
return z/sqrt(pi)*meijerg([S.Half], [], [0], [Rational(-1, 2)], z**2)
def _eval_rewrite_as_hyper(self, z, **kwargs):
return 2*z/sqrt(pi)*hyper([S.Half], [3*S.Half], -z**2)
def _eval_rewrite_as_expint(self, z, **kwargs):
return sqrt(z**2)/z - z*expint(S.Half, z**2)/sqrt(pi)
def _eval_rewrite_as_tractable(self, z, limitvar=None, **kwargs):
from sympy.series.limits import limit
if limitvar:
lim = limit(z, limitvar, S.Infinity)
if lim is S.NegativeInfinity:
return S.NegativeOne + _erfs(-z)*exp(-z**2)
return S.One - _erfs(z)*exp(-z**2)
def _eval_rewrite_as_erfc(self, z, **kwargs):
return S.One - erfc(z)
def _eval_rewrite_as_erfi(self, z, **kwargs):
return -I*erfi(I*z)
def _eval_as_leading_term(self, x, logx=None, cdir=0):
arg = self.args[0].as_leading_term(x, logx=logx, cdir=cdir)
arg0 = arg.subs(x, 0)
if arg0 is S.ComplexInfinity:
arg0 = arg.limit(x, 0, dir='-' if cdir == -1 else '+')
if x in arg.free_symbols and arg0.is_zero:
return 2*arg/sqrt(pi)
else:
return self.func(arg0)
def _eval_aseries(self, n, args0, x, logx):
from sympy.series.order import Order
point = args0[0]
if point in [S.Infinity, S.NegativeInfinity]:
z = self.args[0]
try:
_, ex = z.leadterm(x)
except (ValueError, NotImplementedError):
return self
ex = -ex # as x->1/x for aseries
if ex.is_positive:
newn = ceiling(n/ex)
s = [S.NegativeOne**k * factorial2(2*k - 1) / (z**(2*k + 1) * 2**k)
for k in range(newn)] + [Order(1/z**newn, x)]
return S.One - (exp(-z**2)/sqrt(pi)) * Add(*s)
return super(erf, self)._eval_aseries(n, args0, x, logx)
as_real_imag = real_to_real_as_real_imag
class erfc(Function):
r"""
Complementary Error Function.
Explanation
===========
The function is defined as:
.. math ::
\mathrm{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^\infty e^{-t^2} \mathrm{d}t
Examples
========
>>> from sympy import I, oo, erfc
>>> from sympy.abc import z
Several special values are known:
>>> erfc(0)
1
>>> erfc(oo)
0
>>> erfc(-oo)
2
>>> erfc(I*oo)
-oo*I
>>> erfc(-I*oo)
oo*I
The error function obeys the mirror symmetry:
>>> from sympy import conjugate
>>> conjugate(erfc(z))
erfc(conjugate(z))
Differentiation with respect to $z$ is supported:
>>> from sympy import diff
>>> diff(erfc(z), z)
-2*exp(-z**2)/sqrt(pi)
It also follows
>>> erfc(-z)
2 - erfc(z)
We can numerically evaluate the complementary error function to arbitrary
precision on the whole complex plane:
>>> erfc(4).evalf(30)
0.0000000154172579002800188521596734869
>>> erfc(4*I).evalf(30)
1.0 - 1296959.73071763923152794095062*I
See Also
========
erf: Gaussian error function.
erfi: Imaginary error function.
erf2: Two-argument error function.
erfinv: Inverse error function.
erfcinv: Inverse Complementary error function.
erf2inv: Inverse two-argument error function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Error_function
.. [2] http://dlmf.nist.gov/7
.. [3] http://mathworld.wolfram.com/Erfc.html
.. [4] http://functions.wolfram.com/GammaBetaErf/Erfc
"""
unbranched = True
def fdiff(self, argindex=1):
if argindex == 1:
return -2*exp(-self.args[0]**2)/sqrt(pi)
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return erfcinv
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Zero
elif arg.is_zero:
return S.One
if isinstance(arg, erfinv):
return S.One - arg.args[0]
if isinstance(arg, erfcinv):
return arg.args[0]
if arg.is_zero:
return S.One
# Try to pull out factors of I
t = arg.extract_multiplicatively(I)
if t in (S.Infinity, S.NegativeInfinity):
return -arg
# Try to pull out factors of -1
if arg.could_extract_minus_sign():
return 2 - cls(-arg)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n == 0:
return S.One
elif n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
k = floor((n - 1)/S(2))
if len(previous_terms) > 2:
return -previous_terms[-2] * x**2 * (n - 2)/(n*k)
else:
return -2*S.NegativeOne**k * x**n/(n*factorial(k)*sqrt(pi))
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def _eval_is_real(self):
return self.args[0].is_extended_real
def _eval_rewrite_as_tractable(self, z, limitvar=None, **kwargs):
return self.rewrite(erf).rewrite("tractable", deep=True, limitvar=limitvar)
def _eval_rewrite_as_erf(self, z, **kwargs):
return S.One - erf(z)
def _eval_rewrite_as_erfi(self, z, **kwargs):
return S.One + I*erfi(I*z)
def _eval_rewrite_as_fresnels(self, z, **kwargs):
arg = (S.One - I)*z/sqrt(pi)
return S.One - (S.One + I)*(fresnelc(arg) - I*fresnels(arg))
def _eval_rewrite_as_fresnelc(self, z, **kwargs):
arg = (S.One-I)*z/sqrt(pi)
return S.One - (S.One + I)*(fresnelc(arg) - I*fresnels(arg))
def _eval_rewrite_as_meijerg(self, z, **kwargs):
return S.One - z/sqrt(pi)*meijerg([S.Half], [], [0], [Rational(-1, 2)], z**2)
def _eval_rewrite_as_hyper(self, z, **kwargs):
return S.One - 2*z/sqrt(pi)*hyper([S.Half], [3*S.Half], -z**2)
def _eval_rewrite_as_uppergamma(self, z, **kwargs):
from sympy.functions.special.gamma_functions import uppergamma
return S.One - sqrt(z**2)/z*(S.One - uppergamma(S.Half, z**2)/sqrt(pi))
def _eval_rewrite_as_expint(self, z, **kwargs):
return S.One - sqrt(z**2)/z + z*expint(S.Half, z**2)/sqrt(pi)
def _eval_expand_func(self, **hints):
return self.rewrite(erf)
def _eval_as_leading_term(self, x, logx=None, cdir=0):
arg = self.args[0].as_leading_term(x, logx=logx, cdir=cdir)
arg0 = arg.subs(x, 0)
if arg0 is S.ComplexInfinity:
arg0 = arg.limit(x, 0, dir='-' if cdir == -1 else '+')
if arg0.is_zero:
return S.One
else:
return self.func(arg0)
as_real_imag = real_to_real_as_real_imag
def _eval_aseries(self, n, args0, x, logx):
return S.One - erf(*self.args)._eval_aseries(n, args0, x, logx)
class erfi(Function):
r"""
Imaginary error function.
Explanation
===========
The function erfi is defined as:
.. math ::
\mathrm{erfi}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{t^2} \mathrm{d}t
Examples
========
>>> from sympy import I, oo, erfi
>>> from sympy.abc import z
Several special values are known:
>>> erfi(0)
0
>>> erfi(oo)
oo
>>> erfi(-oo)
-oo
>>> erfi(I*oo)
I
>>> erfi(-I*oo)
-I
In general one can pull out factors of -1 and $I$ from the argument:
>>> erfi(-z)
-erfi(z)
>>> from sympy import conjugate
>>> conjugate(erfi(z))
erfi(conjugate(z))
Differentiation with respect to $z$ is supported:
>>> from sympy import diff
>>> diff(erfi(z), z)
2*exp(z**2)/sqrt(pi)
We can numerically evaluate the imaginary error function to arbitrary
precision on the whole complex plane:
>>> erfi(2).evalf(30)
18.5648024145755525987042919132
>>> erfi(-2*I).evalf(30)
-0.995322265018952734162069256367*I
See Also
========
erf: Gaussian error function.
erfc: Complementary error function.
erf2: Two-argument error function.
erfinv: Inverse error function.
erfcinv: Inverse Complementary error function.
erf2inv: Inverse two-argument error function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Error_function
.. [2] http://mathworld.wolfram.com/Erfi.html
.. [3] http://functions.wolfram.com/GammaBetaErf/Erfi
"""
unbranched = True
def fdiff(self, argindex=1):
if argindex == 1:
return 2*exp(self.args[0]**2)/sqrt(pi)
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, z):
if z.is_Number:
if z is S.NaN:
return S.NaN
elif z.is_zero:
return S.Zero
elif z is S.Infinity:
return S.Infinity
if z.is_zero:
return S.Zero
# Try to pull out factors of -1
if z.could_extract_minus_sign():
return -cls(-z)
# Try to pull out factors of I
nz = z.extract_multiplicatively(I)
if nz is not None:
if nz is S.Infinity:
return I
if isinstance(nz, erfinv):
return I*nz.args[0]
if isinstance(nz, erfcinv):
return I*(S.One - nz.args[0])
# Only happens with unevaluated erf2inv
if isinstance(nz, erf2inv) and nz.args[0].is_zero:
return I*nz.args[1]
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
k = floor((n - 1)/S(2))
if len(previous_terms) > 2:
return previous_terms[-2] * x**2 * (n - 2)/(n*k)
else:
return 2 * x**n/(n*factorial(k)*sqrt(pi))
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def _eval_is_extended_real(self):
return self.args[0].is_extended_real
def _eval_is_zero(self):
return self.args[0].is_zero
def _eval_rewrite_as_tractable(self, z, limitvar=None, **kwargs):
return self.rewrite(erf).rewrite("tractable", deep=True, limitvar=limitvar)
def _eval_rewrite_as_erf(self, z, **kwargs):
return -I*erf(I*z)
def _eval_rewrite_as_erfc(self, z, **kwargs):
return I*erfc(I*z) - I
def _eval_rewrite_as_fresnels(self, z, **kwargs):
arg = (S.One + I)*z/sqrt(pi)
return (S.One - I)*(fresnelc(arg) - I*fresnels(arg))
def _eval_rewrite_as_fresnelc(self, z, **kwargs):
arg = (S.One + I)*z/sqrt(pi)
return (S.One - I)*(fresnelc(arg) - I*fresnels(arg))
def _eval_rewrite_as_meijerg(self, z, **kwargs):
return z/sqrt(pi)*meijerg([S.Half], [], [0], [Rational(-1, 2)], -z**2)
def _eval_rewrite_as_hyper(self, z, **kwargs):
return 2*z/sqrt(pi)*hyper([S.Half], [3*S.Half], z**2)
def _eval_rewrite_as_uppergamma(self, z, **kwargs):
from sympy.functions.special.gamma_functions import uppergamma
return sqrt(-z**2)/z*(uppergamma(S.Half, -z**2)/sqrt(pi) - S.One)
def _eval_rewrite_as_expint(self, z, **kwargs):
return sqrt(-z**2)/z - z*expint(S.Half, -z**2)/sqrt(pi)
def _eval_expand_func(self, **hints):
return self.rewrite(erf)
as_real_imag = real_to_real_as_real_imag
def _eval_as_leading_term(self, x, logx=None, cdir=0):
arg = self.args[0].as_leading_term(x, logx=logx, cdir=cdir)
arg0 = arg.subs(x, 0)
if x in arg.free_symbols and arg0.is_zero:
return 2*arg/sqrt(pi)
elif arg0.is_finite:
return self.func(arg0)
return self.func(arg)
def _eval_aseries(self, n, args0, x, logx):
from sympy.series.order import Order
point = args0[0]
if point is S.Infinity:
z = self.args[0]
s = [factorial2(2*k - 1) / (2**k * z**(2*k + 1))
for k in range(n)] + [Order(1/z**n, x)]
return -I + (exp(z**2)/sqrt(pi)) * Add(*s)
return super(erfi, self)._eval_aseries(n, args0, x, logx)
class erf2(Function):
r"""
Two-argument error function.
Explanation
===========
This function is defined as:
.. math ::
\mathrm{erf2}(x, y) = \frac{2}{\sqrt{\pi}} \int_x^y e^{-t^2} \mathrm{d}t
Examples
========
>>> from sympy import oo, erf2
>>> from sympy.abc import x, y
Several special values are known:
>>> erf2(0, 0)
0
>>> erf2(x, x)
0
>>> erf2(x, oo)
1 - erf(x)
>>> erf2(x, -oo)
-erf(x) - 1
>>> erf2(oo, y)
erf(y) - 1
>>> erf2(-oo, y)
erf(y) + 1
In general one can pull out factors of -1:
>>> erf2(-x, -y)
-erf2(x, y)
The error function obeys the mirror symmetry:
>>> from sympy import conjugate
>>> conjugate(erf2(x, y))
erf2(conjugate(x), conjugate(y))
Differentiation with respect to $x$, $y$ is supported:
>>> from sympy import diff
>>> diff(erf2(x, y), x)
-2*exp(-x**2)/sqrt(pi)
>>> diff(erf2(x, y), y)
2*exp(-y**2)/sqrt(pi)
See Also
========
erf: Gaussian error function.
erfc: Complementary error function.
erfi: Imaginary error function.
erfinv: Inverse error function.
erfcinv: Inverse Complementary error function.
erf2inv: Inverse two-argument error function.
References
==========
.. [1] http://functions.wolfram.com/GammaBetaErf/Erf2/
"""
def fdiff(self, argindex):
x, y = self.args
if argindex == 1:
return -2*exp(-x**2)/sqrt(pi)
elif argindex == 2:
return 2*exp(-y**2)/sqrt(pi)
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, x, y):
chk = (S.Infinity, S.NegativeInfinity, S.Zero)
if x is S.NaN or y is S.NaN:
return S.NaN
elif x == y:
return S.Zero
elif x in chk or y in chk:
return erf(y) - erf(x)
if isinstance(y, erf2inv) and y.args[0] == x:
return y.args[1]
if x.is_zero or y.is_zero or x.is_extended_real and x.is_infinite or \
y.is_extended_real and y.is_infinite:
return erf(y) - erf(x)
#Try to pull out -1 factor
sign_x = x.could_extract_minus_sign()
sign_y = y.could_extract_minus_sign()
if (sign_x and sign_y):
return -cls(-x, -y)
elif (sign_x or sign_y):
return erf(y)-erf(x)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate(), self.args[1].conjugate())
def _eval_is_extended_real(self):
return self.args[0].is_extended_real and self.args[1].is_extended_real
def _eval_rewrite_as_erf(self, x, y, **kwargs):
return erf(y) - erf(x)
def _eval_rewrite_as_erfc(self, x, y, **kwargs):
return erfc(x) - erfc(y)
def _eval_rewrite_as_erfi(self, x, y, **kwargs):
return I*(erfi(I*x)-erfi(I*y))
def _eval_rewrite_as_fresnels(self, x, y, **kwargs):
return erf(y).rewrite(fresnels) - erf(x).rewrite(fresnels)
def _eval_rewrite_as_fresnelc(self, x, y, **kwargs):
return erf(y).rewrite(fresnelc) - erf(x).rewrite(fresnelc)
def _eval_rewrite_as_meijerg(self, x, y, **kwargs):
return erf(y).rewrite(meijerg) - erf(x).rewrite(meijerg)
def _eval_rewrite_as_hyper(self, x, y, **kwargs):
return erf(y).rewrite(hyper) - erf(x).rewrite(hyper)
def _eval_rewrite_as_uppergamma(self, x, y, **kwargs):
from sympy.functions.special.gamma_functions import uppergamma
return (sqrt(y**2)/y*(S.One - uppergamma(S.Half, y**2)/sqrt(pi)) -
sqrt(x**2)/x*(S.One - uppergamma(S.Half, x**2)/sqrt(pi)))
def _eval_rewrite_as_expint(self, x, y, **kwargs):
return erf(y).rewrite(expint) - erf(x).rewrite(expint)
def _eval_expand_func(self, **hints):
return self.rewrite(erf)
def _eval_is_zero(self):
return is_eq(*self.args)
class erfinv(Function):
r"""
Inverse Error Function. The erfinv function is defined as:
.. math ::
\mathrm{erf}(x) = y \quad \Rightarrow \quad \mathrm{erfinv}(y) = x
Examples
========
>>> from sympy import erfinv
>>> from sympy.abc import x
Several special values are known:
>>> erfinv(0)
0
>>> erfinv(1)
oo
Differentiation with respect to $x$ is supported:
>>> from sympy import diff
>>> diff(erfinv(x), x)
sqrt(pi)*exp(erfinv(x)**2)/2
We can numerically evaluate the inverse error function to arbitrary
precision on [-1, 1]:
>>> erfinv(0.2).evalf(30)
0.179143454621291692285822705344
See Also
========
erf: Gaussian error function.
erfc: Complementary error function.
erfi: Imaginary error function.
erf2: Two-argument error function.
erfcinv: Inverse Complementary error function.
erf2inv: Inverse two-argument error function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Error_function#Inverse_functions
.. [2] http://functions.wolfram.com/GammaBetaErf/InverseErf/
"""
def fdiff(self, argindex =1):
if argindex == 1:
return sqrt(pi)*exp(self.func(self.args[0])**2)*S.Half
else :
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return erf
@classmethod
def eval(cls, z):
if z is S.NaN:
return S.NaN
elif z is S.NegativeOne:
return S.NegativeInfinity
elif z.is_zero:
return S.Zero
elif z is S.One:
return S.Infinity
if isinstance(z, erf) and z.args[0].is_extended_real:
return z.args[0]
if z.is_zero:
return S.Zero
# Try to pull out factors of -1
nz = z.extract_multiplicatively(-1)
if nz is not None and (isinstance(nz, erf) and (nz.args[0]).is_extended_real):
return -nz.args[0]
def _eval_rewrite_as_erfcinv(self, z, **kwargs):
return erfcinv(1-z)
def _eval_is_zero(self):
return self.args[0].is_zero
class erfcinv (Function):
r"""
Inverse Complementary Error Function. The erfcinv function is defined as:
.. math ::
\mathrm{erfc}(x) = y \quad \Rightarrow \quad \mathrm{erfcinv}(y) = x
Examples
========
>>> from sympy import erfcinv
>>> from sympy.abc import x
Several special values are known:
>>> erfcinv(1)
0
>>> erfcinv(0)
oo
Differentiation with respect to $x$ is supported:
>>> from sympy import diff
>>> diff(erfcinv(x), x)
-sqrt(pi)*exp(erfcinv(x)**2)/2
See Also
========
erf: Gaussian error function.
erfc: Complementary error function.
erfi: Imaginary error function.
erf2: Two-argument error function.
erfinv: Inverse error function.
erf2inv: Inverse two-argument error function.
References
==========
.. [1] https://en.wikipedia.org/wiki/Error_function#Inverse_functions
.. [2] http://functions.wolfram.com/GammaBetaErf/InverseErfc/
"""
def fdiff(self, argindex =1):
if argindex == 1:
return -sqrt(pi)*exp(self.func(self.args[0])**2)*S.Half
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return erfc
@classmethod
def eval(cls, z):
if z is S.NaN:
return S.NaN
elif z.is_zero:
return S.Infinity
elif z is S.One:
return S.Zero
elif z == 2:
return S.NegativeInfinity
if z.is_zero:
return S.Infinity
def _eval_rewrite_as_erfinv(self, z, **kwargs):
return erfinv(1-z)
def _eval_is_zero(self):
return (self.args[0] - 1).is_zero
def _eval_is_infinite(self):
return self.args[0].is_zero
class erf2inv(Function):
r"""
Two-argument Inverse error function. The erf2inv function is defined as:
.. math ::
\mathrm{erf2}(x, w) = y \quad \Rightarrow \quad \mathrm{erf2inv}(x, y) = w
Examples
========
>>> from sympy import erf2inv, oo
>>> from sympy.abc import x, y
Several special values are known:
>>> erf2inv(0, 0)
0
>>> erf2inv(1, 0)
1
>>> erf2inv(0, 1)
oo
>>> erf2inv(0, y)
erfinv(y)
>>> erf2inv(oo, y)
erfcinv(-y)
Differentiation with respect to $x$ and $y$ is supported:
>>> from sympy import diff
>>> diff(erf2inv(x, y), x)
exp(-x**2 + erf2inv(x, y)**2)
>>> diff(erf2inv(x, y), y)
sqrt(pi)*exp(erf2inv(x, y)**2)/2
See Also
========
erf: Gaussian error function.
erfc: Complementary error function.
erfi: Imaginary error function.
erf2: Two-argument error function.
erfinv: Inverse error function.
erfcinv: Inverse complementary error function.
References
==========
.. [1] http://functions.wolfram.com/GammaBetaErf/InverseErf2/
"""
def fdiff(self, argindex):
x, y = self.args
if argindex == 1:
return exp(self.func(x,y)**2-x**2)
elif argindex == 2:
return sqrt(pi)*S.Half*exp(self.func(x,y)**2)
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, x, y):
if x is S.NaN or y is S.NaN:
return S.NaN
elif x.is_zero and y.is_zero:
return S.Zero
elif x.is_zero and y is S.One:
return S.Infinity
elif x is S.One and y.is_zero:
return S.One
elif x.is_zero:
return erfinv(y)
elif x is S.Infinity:
return erfcinv(-y)
elif y.is_zero:
return x
elif y is S.Infinity:
return erfinv(x)
if x.is_zero:
if y.is_zero:
return S.Zero
else:
return erfinv(y)
if y.is_zero:
return x
def _eval_is_zero(self):
x, y = self.args
if x.is_zero and y.is_zero:
return True
###############################################################################
#################### EXPONENTIAL INTEGRALS ####################################
###############################################################################
class Ei(Function):
r"""
The classical exponential integral.
Explanation
===========
For use in SymPy, this function is defined as
.. math:: \operatorname{Ei}(x) = \sum_{n=1}^\infty \frac{x^n}{n\, n!}
+ \log(x) + \gamma,
where $\gamma$ is the Euler-Mascheroni constant.
If $x$ is a polar number, this defines an analytic function on the
Riemann surface of the logarithm. Otherwise this defines an analytic
function in the cut plane $\mathbb{C} \setminus (-\infty, 0]$.
**Background**
The name exponential integral comes from the following statement:
.. math:: \operatorname{Ei}(x) = \int_{-\infty}^x \frac{e^t}{t} \mathrm{d}t
If the integral is interpreted as a Cauchy principal value, this statement
holds for $x > 0$ and $\operatorname{Ei}(x)$ as defined above.
Examples
========
>>> from sympy import Ei, polar_lift, exp_polar, I, pi
>>> from sympy.abc import x
>>> Ei(-1)
Ei(-1)
This yields a real value:
>>> Ei(-1).n(chop=True)
-0.219383934395520
On the other hand the analytic continuation is not real:
>>> Ei(polar_lift(-1)).n(chop=True)
-0.21938393439552 + 3.14159265358979*I
The exponential integral has a logarithmic branch point at the origin:
>>> Ei(x*exp_polar(2*I*pi))
Ei(x) + 2*I*pi
Differentiation is supported:
>>> Ei(x).diff(x)
exp(x)/x
The exponential integral is related to many other special functions.
For example:
>>> from sympy import expint, Shi
>>> Ei(x).rewrite(expint)
-expint(1, x*exp_polar(I*pi)) - I*pi
>>> Ei(x).rewrite(Shi)
Chi(x) + Shi(x)
See Also
========
expint: Generalised exponential integral.
E1: Special case of the generalised exponential integral.
li: Logarithmic integral.
Li: Offset logarithmic integral.
Si: Sine integral.
Ci: Cosine integral.
Shi: Hyperbolic sine integral.
Chi: Hyperbolic cosine integral.
uppergamma: Upper incomplete gamma function.
References
==========
.. [1] http://dlmf.nist.gov/6.6
.. [2] https://en.wikipedia.org/wiki/Exponential_integral
.. [3] Abramowitz & Stegun, section 5: http://people.math.sfu.ca/~cbm/aands/page_228.htm
"""
@classmethod
def eval(cls, z):
if z.is_zero:
return S.NegativeInfinity
elif z is S.Infinity:
return S.Infinity
elif z is S.NegativeInfinity:
return S.Zero
if z.is_zero:
return S.NegativeInfinity
nz, n = z.extract_branch_factor()
if n:
return Ei(nz) + 2*I*pi*n
def fdiff(self, argindex=1):
arg = unpolarify(self.args[0])
if argindex == 1:
return exp(arg)/arg
else:
raise ArgumentIndexError(self, argindex)
def _eval_evalf(self, prec):
if (self.args[0]/polar_lift(-1)).is_positive:
return Function._eval_evalf(self, prec) + (I*pi)._eval_evalf(prec)
return Function._eval_evalf(self, prec)
def _eval_rewrite_as_uppergamma(self, z, **kwargs):
from sympy.functions.special.gamma_functions import uppergamma
# XXX this does not currently work usefully because uppergamma
# immediately turns into expint
return -uppergamma(0, polar_lift(-1)*z) - I*pi
def _eval_rewrite_as_expint(self, z, **kwargs):
return -expint(1, polar_lift(-1)*z) - I*pi
def _eval_rewrite_as_li(self, z, **kwargs):
if isinstance(z, log):
return li(z.args[0])
# TODO:
# Actually it only holds that:
# Ei(z) = li(exp(z))
# for -pi < imag(z) <= pi
return li(exp(z))
def _eval_rewrite_as_Si(self, z, **kwargs):
if z.is_negative:
return Shi(z) + Chi(z) - I*pi
else:
return Shi(z) + Chi(z)
_eval_rewrite_as_Ci = _eval_rewrite_as_Si
_eval_rewrite_as_Chi = _eval_rewrite_as_Si
_eval_rewrite_as_Shi = _eval_rewrite_as_Si
def _eval_rewrite_as_tractable(self, z, limitvar=None, **kwargs):
return exp(z) * _eis(z)
def _eval_as_leading_term(self, x, logx=None, cdir=0):
from sympy import re
x0 = self.args[0].limit(x, 0)
arg = self.args[0].as_leading_term(x, cdir=cdir)
cdir = arg.dir(x, cdir)
if x0.is_zero:
c, e = arg.as_coeff_exponent(x)
logx = log(x) if logx is None else logx
return log(c) + e*logx + EulerGamma - (
I*pi if re(cdir).is_negative else S.Zero)
return super()._eval_as_leading_term(x, logx=logx, cdir=cdir)
def _eval_nseries(self, x, n, logx, cdir=0):
x0 = self.args[0].limit(x, 0)
if x0.is_zero:
f = self._eval_rewrite_as_Si(*self.args)
return f._eval_nseries(x, n, logx)
return super()._eval_nseries(x, n, logx)
def _eval_aseries(self, n, args0, x, logx):
from sympy.series.order import Order
point = args0[0]
if point is S.Infinity:
z = self.args[0]
s = [factorial(k) / (z)**k for k in range(n)] + \
[Order(1/z**n, x)]
return (exp(z)/z) * Add(*s)
return super(Ei, self)._eval_aseries(n, args0, x, logx)
class expint(Function):
r"""
Generalized exponential integral.
Explanation
===========
This function is defined as
.. math:: \operatorname{E}_\nu(z) = z^{\nu - 1} \Gamma(1 - \nu, z),
where $\Gamma(1 - \nu, z)$ is the upper incomplete gamma function
(``uppergamma``).
Hence for $z$ with positive real part we have
.. math:: \operatorname{E}_\nu(z)
= \int_1^\infty \frac{e^{-zt}}{t^\nu} \mathrm{d}t,
which explains the name.
The representation as an incomplete gamma function provides an analytic
continuation for $\operatorname{E}_\nu(z)$. If $\nu$ is a
non-positive integer, the exponential integral is thus an unbranched
function of $z$, otherwise there is a branch point at the origin.
Refer to the incomplete gamma function documentation for details of the
branching behavior.
Examples
========
>>> from sympy import expint, S
>>> from sympy.abc import nu, z
Differentiation is supported. Differentiation with respect to $z$ further
explains the name: for integral orders, the exponential integral is an
iterated integral of the exponential function.
>>> expint(nu, z).diff(z)
-expint(nu - 1, z)
Differentiation with respect to $\nu$ has no classical expression:
>>> expint(nu, z).diff(nu)
-z**(nu - 1)*meijerg(((), (1, 1)), ((0, 0, 1 - nu), ()), z)
At non-postive integer orders, the exponential integral reduces to the
exponential function:
>>> expint(0, z)
exp(-z)/z
>>> expint(-1, z)
exp(-z)/z + exp(-z)/z**2
At half-integers it reduces to error functions:
>>> expint(S(1)/2, z)
sqrt(pi)*erfc(sqrt(z))/sqrt(z)
At positive integer orders it can be rewritten in terms of exponentials
and ``expint(1, z)``. Use ``expand_func()`` to do this:
>>> from sympy import expand_func
>>> expand_func(expint(5, z))
z**4*expint(1, z)/24 + (-z**3 + z**2 - 2*z + 6)*exp(-z)/24
The generalised exponential integral is essentially equivalent to the
incomplete gamma function:
>>> from sympy import uppergamma
>>> expint(nu, z).rewrite(uppergamma)
z**(nu - 1)*uppergamma(1 - nu, z)
As such it is branched at the origin:
>>> from sympy import exp_polar, pi, I
>>> expint(4, z*exp_polar(2*pi*I))
I*pi*z**3/3 + expint(4, z)
>>> expint(nu, z*exp_polar(2*pi*I))
z**(nu - 1)*(exp(2*I*pi*nu) - 1)*gamma(1 - nu) + expint(nu, z)
See Also
========
Ei: Another related function called exponential integral.
E1: The classical case, returns expint(1, z).
li: Logarithmic integral.
Li: Offset logarithmic integral.
Si: Sine integral.
Ci: Cosine integral.
Shi: Hyperbolic sine integral.
Chi: Hyperbolic cosine integral.
uppergamma
References
==========
.. [1] http://dlmf.nist.gov/8.19
.. [2] http://functions.wolfram.com/GammaBetaErf/ExpIntegralE/
.. [3] https://en.wikipedia.org/wiki/Exponential_integral
"""
@classmethod
def eval(cls, nu, z):
from sympy.functions.special.gamma_functions import (gamma, uppergamma)
nu2 = unpolarify(nu)
if nu != nu2:
return expint(nu2, z)
if nu.is_Integer and nu <= 0 or (not nu.is_Integer and (2*nu).is_Integer):
return unpolarify(expand_mul(z**(nu - 1)*uppergamma(1 - nu, z)))
# Extract branching information. This can be deduced from what is
# explained in lowergamma.eval().
z, n = z.extract_branch_factor()
if n is S.Zero:
return
if nu.is_integer:
if not nu > 0:
return
return expint(nu, z) \
- 2*pi*I*n*S.NegativeOne**(nu - 1)/factorial(nu - 1)*unpolarify(z)**(nu - 1)
else:
return (exp(2*I*pi*nu*n) - 1)*z**(nu - 1)*gamma(1 - nu) + expint(nu, z)
def fdiff(self, argindex):
nu, z = self.args
if argindex == 1:
return -z**(nu - 1)*meijerg([], [1, 1], [0, 0, 1 - nu], [], z)
elif argindex == 2:
return -expint(nu - 1, z)
else:
raise ArgumentIndexError(self, argindex)
def _eval_rewrite_as_uppergamma(self, nu, z, **kwargs):
from sympy.functions.special.gamma_functions import uppergamma
return z**(nu - 1)*uppergamma(1 - nu, z)
def _eval_rewrite_as_Ei(self, nu, z, **kwargs):
if nu == 1:
return -Ei(z*exp_polar(-I*pi)) - I*pi
elif nu.is_Integer and nu > 1:
# DLMF, 8.19.7
x = -unpolarify(z)
return x**(nu - 1)/factorial(nu - 1)*E1(z).rewrite(Ei) + \
exp(x)/factorial(nu - 1) * \
Add(*[factorial(nu - k - 2)*x**k for k in range(nu - 1)])
else:
return self
def _eval_expand_func(self, **hints):
return self.rewrite(Ei).rewrite(expint, **hints)
def _eval_rewrite_as_Si(self, nu, z, **kwargs):
if nu != 1:
return self
return Shi(z) - Chi(z)
_eval_rewrite_as_Ci = _eval_rewrite_as_Si
_eval_rewrite_as_Chi = _eval_rewrite_as_Si
_eval_rewrite_as_Shi = _eval_rewrite_as_Si
def _eval_nseries(self, x, n, logx, cdir=0):
if not self.args[0].has(x):
nu = self.args[0]
if nu == 1:
f = self._eval_rewrite_as_Si(*self.args)
return f._eval_nseries(x, n, logx)
elif nu.is_Integer and nu > 1:
f = self._eval_rewrite_as_Ei(*self.args)
return f._eval_nseries(x, n, logx)
return super()._eval_nseries(x, n, logx)
def _eval_aseries(self, n, args0, x, logx):
from sympy.series.order import Order
point = args0[1]
nu = self.args[0]
if point is S.Infinity:
z = self.args[1]
s = [S.NegativeOne**k * RisingFactorial(nu, k) / z**k for k in range(n)] + [Order(1/z**n, x)]
return (exp(-z)/z) * Add(*s)
return super(expint, self)._eval_aseries(n, args0, x, logx)
def E1(z):
"""
Classical case of the generalized exponential integral.
Explanation
===========
This is equivalent to ``expint(1, z)``.
Examples
========
>>> from sympy import E1
>>> E1(0)
expint(1, 0)
>>> E1(5)
expint(1, 5)
See Also
========
Ei: Exponential integral.
expint: Generalised exponential integral.
li: Logarithmic integral.
Li: Offset logarithmic integral.
Si: Sine integral.
Ci: Cosine integral.
Shi: Hyperbolic sine integral.
Chi: Hyperbolic cosine integral.
"""
return expint(1, z)
class li(Function):
r"""
The classical logarithmic integral.
Explanation
===========
For use in SymPy, this function is defined as
.. math:: \operatorname{li}(x) = \int_0^x \frac{1}{\log(t)} \mathrm{d}t \,.
Examples
========
>>> from sympy import I, oo, li
>>> from sympy.abc import z
Several special values are known:
>>> li(0)
0
>>> li(1)
-oo
>>> li(oo)
oo
Differentiation with respect to $z$ is supported:
>>> from sympy import diff
>>> diff(li(z), z)
1/log(z)
Defining the ``li`` function via an integral:
>>> from sympy import integrate
>>> integrate(li(z))
z*li(z) - Ei(2*log(z))
>>> integrate(li(z),z)
z*li(z) - Ei(2*log(z))
The logarithmic integral can also be defined in terms of ``Ei``:
>>> from sympy import Ei
>>> li(z).rewrite(Ei)
Ei(log(z))
>>> diff(li(z).rewrite(Ei), z)
1/log(z)
We can numerically evaluate the logarithmic integral to arbitrary precision
on the whole complex plane (except the singular points):
>>> li(2).evalf(30)
1.04516378011749278484458888919
>>> li(2*I).evalf(30)
1.0652795784357498247001125598 + 3.08346052231061726610939702133*I
We can even compute Soldner's constant by the help of mpmath:
>>> from mpmath import findroot
>>> findroot(li, 2)
1.45136923488338
Further transformations include rewriting ``li`` in terms of
the trigonometric integrals ``Si``, ``Ci``, ``Shi`` and ``Chi``:
>>> from sympy import Si, Ci, Shi, Chi
>>> li(z).rewrite(Si)
-log(I*log(z)) - log(1/log(z))/2 + log(log(z))/2 + Ci(I*log(z)) + Shi(log(z))
>>> li(z).rewrite(Ci)
-log(I*log(z)) - log(1/log(z))/2 + log(log(z))/2 + Ci(I*log(z)) + Shi(log(z))
>>> li(z).rewrite(Shi)
-log(1/log(z))/2 + log(log(z))/2 + Chi(log(z)) - Shi(log(z))
>>> li(z).rewrite(Chi)
-log(1/log(z))/2 + log(log(z))/2 + Chi(log(z)) - Shi(log(z))
See Also
========
Li: Offset logarithmic integral.
Ei: Exponential integral.
expint: Generalised exponential integral.
E1: Special case of the generalised exponential integral.
Si: Sine integral.
Ci: Cosine integral.
Shi: Hyperbolic sine integral.
Chi: Hyperbolic cosine integral.
References
==========
.. [1] https://en.wikipedia.org/wiki/Logarithmic_integral
.. [2] http://mathworld.wolfram.com/LogarithmicIntegral.html
.. [3] http://dlmf.nist.gov/6
.. [4] http://mathworld.wolfram.com/SoldnersConstant.html
"""
@classmethod
def eval(cls, z):
if z.is_zero:
return S.Zero
elif z is S.One:
return S.NegativeInfinity
elif z is S.Infinity:
return S.Infinity
if z.is_zero:
return S.Zero
def fdiff(self, argindex=1):
arg = self.args[0]
if argindex == 1:
return S.One / log(arg)
else:
raise ArgumentIndexError(self, argindex)
def _eval_conjugate(self):
z = self.args[0]
# Exclude values on the branch cut (-oo, 0)
if not z.is_extended_negative:
return self.func(z.conjugate())
def _eval_rewrite_as_Li(self, z, **kwargs):
return Li(z) + li(2)
def _eval_rewrite_as_Ei(self, z, **kwargs):
return Ei(log(z))
def _eval_rewrite_as_uppergamma(self, z, **kwargs):
from sympy.functions.special.gamma_functions import uppergamma
return (-uppergamma(0, -log(z)) +
S.Half*(log(log(z)) - log(S.One/log(z))) - log(-log(z)))
def _eval_rewrite_as_Si(self, z, **kwargs):
return (Ci(I*log(z)) - I*Si(I*log(z)) -
S.Half*(log(S.One/log(z)) - log(log(z))) - log(I*log(z)))
_eval_rewrite_as_Ci = _eval_rewrite_as_Si
def _eval_rewrite_as_Shi(self, z, **kwargs):
return (Chi(log(z)) - Shi(log(z)) - S.Half*(log(S.One/log(z)) - log(log(z))))
_eval_rewrite_as_Chi = _eval_rewrite_as_Shi
def _eval_rewrite_as_hyper(self, z, **kwargs):
return (log(z)*hyper((1, 1), (2, 2), log(z)) +
S.Half*(log(log(z)) - log(S.One/log(z))) + EulerGamma)
def _eval_rewrite_as_meijerg(self, z, **kwargs):
return (-log(-log(z)) - S.Half*(log(S.One/log(z)) - log(log(z)))
- meijerg(((), (1,)), ((0, 0), ()), -log(z)))
def _eval_rewrite_as_tractable(self, z, limitvar=None, **kwargs):
return z * _eis(log(z))
def _eval_nseries(self, x, n, logx, cdir=0):
z = self.args[0]
s = [(log(z))**k / (factorial(k) * k) for k in range(1, n)]
return EulerGamma + log(log(z)) + Add(*s)
def _eval_is_zero(self):
z = self.args[0]
if z.is_zero:
return True
class Li(Function):
r"""
The offset logarithmic integral.
Explanation
===========
For use in SymPy, this function is defined as
.. math:: \operatorname{Li}(x) = \operatorname{li}(x) - \operatorname{li}(2)
Examples
========
>>> from sympy import Li
>>> from sympy.abc import z
The following special value is known:
>>> Li(2)
0
Differentiation with respect to $z$ is supported:
>>> from sympy import diff
>>> diff(Li(z), z)
1/log(z)
The shifted logarithmic integral can be written in terms of $li(z)$:
>>> from sympy import li
>>> Li(z).rewrite(li)
li(z) - li(2)
We can numerically evaluate the logarithmic integral to arbitrary precision
on the whole complex plane (except the singular points):
>>> Li(2).evalf(30)
0
>>> Li(4).evalf(30)
1.92242131492155809316615998938
See Also
========
li: Logarithmic integral.
Ei: Exponential integral.
expint: Generalised exponential integral.
E1: Special case of the generalised exponential integral.
Si: Sine integral.
Ci: Cosine integral.
Shi: Hyperbolic sine integral.
Chi: Hyperbolic cosine integral.
References
==========
.. [1] https://en.wikipedia.org/wiki/Logarithmic_integral
.. [2] http://mathworld.wolfram.com/LogarithmicIntegral.html
.. [3] http://dlmf.nist.gov/6
"""
@classmethod
def eval(cls, z):
if z is S.Infinity:
return S.Infinity
elif z == S(2):
return S.Zero
def fdiff(self, argindex=1):
arg = self.args[0]
if argindex == 1:
return S.One / log(arg)
else:
raise ArgumentIndexError(self, argindex)
def _eval_evalf(self, prec):
return self.rewrite(li).evalf(prec)
def _eval_rewrite_as_li(self, z, **kwargs):
return li(z) - li(2)
def _eval_rewrite_as_tractable(self, z, limitvar=None, **kwargs):
return self.rewrite(li).rewrite("tractable", deep=True)
def _eval_nseries(self, x, n, logx, cdir=0):
f = self._eval_rewrite_as_li(*self.args)
return f._eval_nseries(x, n, logx)
###############################################################################
#################### TRIGONOMETRIC INTEGRALS ##################################
###############################################################################
class TrigonometricIntegral(Function):
""" Base class for trigonometric integrals. """
@classmethod
def eval(cls, z):
if z is S.Zero:
return cls._atzero
elif z is S.Infinity:
return cls._atinf()
elif z is S.NegativeInfinity:
return cls._atneginf()
if z.is_zero:
return cls._atzero
nz = z.extract_multiplicatively(polar_lift(I))
if nz is None and cls._trigfunc(0) == 0:
nz = z.extract_multiplicatively(I)
if nz is not None:
return cls._Ifactor(nz, 1)
nz = z.extract_multiplicatively(polar_lift(-I))
if nz is not None:
return cls._Ifactor(nz, -1)
nz = z.extract_multiplicatively(polar_lift(-1))
if nz is None and cls._trigfunc(0) == 0:
nz = z.extract_multiplicatively(-1)
if nz is not None:
return cls._minusfactor(nz)
nz, n = z.extract_branch_factor()
if n == 0 and nz == z:
return
return 2*pi*I*n*cls._trigfunc(0) + cls(nz)
def fdiff(self, argindex=1):
arg = unpolarify(self.args[0])
if argindex == 1:
return self._trigfunc(arg)/arg
else:
raise ArgumentIndexError(self, argindex)
def _eval_rewrite_as_Ei(self, z, **kwargs):
return self._eval_rewrite_as_expint(z).rewrite(Ei)
def _eval_rewrite_as_uppergamma(self, z, **kwargs):
from sympy.functions.special.gamma_functions import uppergamma
return self._eval_rewrite_as_expint(z).rewrite(uppergamma)
def _eval_nseries(self, x, n, logx, cdir=0):
# NOTE this is fairly inefficient
n += 1
if self.args[0].subs(x, 0) != 0:
return super()._eval_nseries(x, n, logx)
baseseries = self._trigfunc(x)._eval_nseries(x, n, logx)
if self._trigfunc(0) != 0:
baseseries -= 1
baseseries = baseseries.replace(Pow, lambda t, n: t**n/n, simultaneous=False)
if self._trigfunc(0) != 0:
baseseries += EulerGamma + log(x)
return baseseries.subs(x, self.args[0])._eval_nseries(x, n, logx)
class Si(TrigonometricIntegral):
r"""
Sine integral.
Explanation
===========
This function is defined by
.. math:: \operatorname{Si}(z) = \int_0^z \frac{\sin{t}}{t} \mathrm{d}t.
It is an entire function.
Examples
========
>>> from sympy import Si
>>> from sympy.abc import z
The sine integral is an antiderivative of $sin(z)/z$:
>>> Si(z).diff(z)
sin(z)/z
It is unbranched:
>>> from sympy import exp_polar, I, pi
>>> Si(z*exp_polar(2*I*pi))
Si(z)
Sine integral behaves much like ordinary sine under multiplication by ``I``:
>>> Si(I*z)
I*Shi(z)
>>> Si(-z)
-Si(z)
It can also be expressed in terms of exponential integrals, but beware
that the latter is branched:
>>> from sympy import expint
>>> Si(z).rewrite(expint)
-I*(-expint(1, z*exp_polar(-I*pi/2))/2 +
expint(1, z*exp_polar(I*pi/2))/2) + pi/2
It can be rewritten in the form of sinc function (by definition):
>>> from sympy import sinc
>>> Si(z).rewrite(sinc)
Integral(sinc(t), (t, 0, z))
See Also
========
Ci: Cosine integral.
Shi: Hyperbolic sine integral.
Chi: Hyperbolic cosine integral.
Ei: Exponential integral.
expint: Generalised exponential integral.
sinc: unnormalized sinc function
E1: Special case of the generalised exponential integral.
li: Logarithmic integral.
Li: Offset logarithmic integral.
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigonometric_integral
"""
_trigfunc = sin
_atzero = S.Zero
@classmethod
def _atinf(cls):
return pi*S.Half
@classmethod
def _atneginf(cls):
return -pi*S.Half
@classmethod
def _minusfactor(cls, z):
return -Si(z)
@classmethod
def _Ifactor(cls, z, sign):
return I*Shi(z)*sign
def _eval_rewrite_as_expint(self, z, **kwargs):
# XXX should we polarify z?
return pi/2 + (E1(polar_lift(I)*z) - E1(polar_lift(-I)*z))/2/I
def _eval_rewrite_as_sinc(self, z, **kwargs):
from sympy.integrals.integrals import Integral
t = Symbol('t', Dummy=True)
return Integral(sinc(t), (t, 0, z))
def _eval_aseries(self, n, args0, x, logx):
from sympy.series.order import Order
point = args0[0]
# Expansion at oo
if point is S.Infinity:
z = self.args[0]
p = [S.NegativeOne**k * factorial(2*k) / z**(2*k)
for k in range(int((n - 1)/2))] + [Order(1/z**n, x)]
q = [S.NegativeOne**k * factorial(2*k + 1) / z**(2*k + 1)
for k in range(int(n/2) - 1)] + [Order(1/z**n, x)]
return pi/2 - (cos(z)/z)*Add(*p) - (sin(z)/z)*Add(*q)
# All other points are not handled
return super(Si, self)._eval_aseries(n, args0, x, logx)
def _eval_is_zero(self):
z = self.args[0]
if z.is_zero:
return True
class Ci(TrigonometricIntegral):
r"""
Cosine integral.
Explanation
===========
This function is defined for positive $x$ by
.. math:: \operatorname{Ci}(x) = \gamma + \log{x}
+ \int_0^x \frac{\cos{t} - 1}{t} \mathrm{d}t
= -\int_x^\infty \frac{\cos{t}}{t} \mathrm{d}t,
where $\gamma$ is the Euler-Mascheroni constant.
We have
.. math:: \operatorname{Ci}(z) =
-\frac{\operatorname{E}_1\left(e^{i\pi/2} z\right)
+ \operatorname{E}_1\left(e^{-i \pi/2} z\right)}{2}
which holds for all polar $z$ and thus provides an analytic
continuation to the Riemann surface of the logarithm.
The formula also holds as stated
for $z \in \mathbb{C}$ with $\Re(z) > 0$.
By lifting to the principal branch, we obtain an analytic function on the
cut complex plane.
Examples
========
>>> from sympy import Ci
>>> from sympy.abc import z
The cosine integral is a primitive of $\cos(z)/z$:
>>> Ci(z).diff(z)
cos(z)/z
It has a logarithmic branch point at the origin:
>>> from sympy import exp_polar, I, pi
>>> Ci(z*exp_polar(2*I*pi))
Ci(z) + 2*I*pi
The cosine integral behaves somewhat like ordinary $\cos$ under
multiplication by $i$:
>>> from sympy import polar_lift
>>> Ci(polar_lift(I)*z)
Chi(z) + I*pi/2
>>> Ci(polar_lift(-1)*z)
Ci(z) + I*pi
It can also be expressed in terms of exponential integrals:
>>> from sympy import expint
>>> Ci(z).rewrite(expint)
-expint(1, z*exp_polar(-I*pi/2))/2 - expint(1, z*exp_polar(I*pi/2))/2
See Also
========
Si: Sine integral.
Shi: Hyperbolic sine integral.
Chi: Hyperbolic cosine integral.
Ei: Exponential integral.
expint: Generalised exponential integral.
E1: Special case of the generalised exponential integral.
li: Logarithmic integral.
Li: Offset logarithmic integral.
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigonometric_integral
"""
_trigfunc = cos
_atzero = S.ComplexInfinity
@classmethod
def _atinf(cls):
return S.Zero
@classmethod
def _atneginf(cls):
return I*pi
@classmethod
def _minusfactor(cls, z):
return Ci(z) + I*pi
@classmethod
def _Ifactor(cls, z, sign):
return Chi(z) + I*pi/2*sign
def _eval_rewrite_as_expint(self, z, **kwargs):
return -(E1(polar_lift(I)*z) + E1(polar_lift(-I)*z))/2
def _eval_as_leading_term(self, x, logx=None, cdir=0):
arg = self.args[0].as_leading_term(x, logx=logx, cdir=cdir)
arg0 = arg.subs(x, 0)
if arg0 is S.NaN:
arg0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+')
if arg0.is_zero:
c, e = arg.as_coeff_exponent(x)
logx = log(x) if logx is None else logx
return log(c) + e*logx + EulerGamma
elif arg0.is_finite:
return self.func(arg0)
else:
return self
def _eval_aseries(self, n, args0, x, logx):
from sympy.series.order import Order
point = args0[0]
# Expansion at oo
if point is S.Infinity:
z = self.args[0]
p = [S.NegativeOne**k * factorial(2*k) / z**(2*k)
for k in range(int((n - 1)/2))] + [Order(1/z**n, x)]
q = [S.NegativeOne**k * factorial(2*k + 1) / z**(2*k + 1)
for k in range(int(n/2) - 1)] + [Order(1/z**n, x)]
return (sin(z)/z)*Add(*p) - (cos(z)/z)*Add(*q)
# All other points are not handled
return super(Ci, self)._eval_aseries(n, args0, x, logx)
class Shi(TrigonometricIntegral):
r"""
Sinh integral.
Explanation
===========
This function is defined by
.. math:: \operatorname{Shi}(z) = \int_0^z \frac{\sinh{t}}{t} \mathrm{d}t.
It is an entire function.
Examples
========
>>> from sympy import Shi
>>> from sympy.abc import z
The Sinh integral is a primitive of $\sinh(z)/z$:
>>> Shi(z).diff(z)
sinh(z)/z
It is unbranched:
>>> from sympy import exp_polar, I, pi
>>> Shi(z*exp_polar(2*I*pi))
Shi(z)
The $\sinh$ integral behaves much like ordinary $\sinh$ under
multiplication by $i$:
>>> Shi(I*z)
I*Si(z)
>>> Shi(-z)
-Shi(z)
It can also be expressed in terms of exponential integrals, but beware
that the latter is branched:
>>> from sympy import expint
>>> Shi(z).rewrite(expint)
expint(1, z)/2 - expint(1, z*exp_polar(I*pi))/2 - I*pi/2
See Also
========
Si: Sine integral.
Ci: Cosine integral.
Chi: Hyperbolic cosine integral.
Ei: Exponential integral.
expint: Generalised exponential integral.
E1: Special case of the generalised exponential integral.
li: Logarithmic integral.
Li: Offset logarithmic integral.
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigonometric_integral
"""
_trigfunc = sinh
_atzero = S.Zero
@classmethod
def _atinf(cls):
return S.Infinity
@classmethod
def _atneginf(cls):
return S.NegativeInfinity
@classmethod
def _minusfactor(cls, z):
return -Shi(z)
@classmethod
def _Ifactor(cls, z, sign):
return I*Si(z)*sign
def _eval_rewrite_as_expint(self, z, **kwargs):
# XXX should we polarify z?
return (E1(z) - E1(exp_polar(I*pi)*z))/2 - I*pi/2
def _eval_is_zero(self):
z = self.args[0]
if z.is_zero:
return True
def _eval_as_leading_term(self, x, logx=None, cdir=0):
arg = self.args[0].as_leading_term(x)
arg0 = arg.subs(x, 0)
if arg0 is S.NaN:
arg0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+')
if arg0.is_zero:
return arg
elif not arg0.is_infinite:
return self.func(arg0)
else:
return self
class Chi(TrigonometricIntegral):
r"""
Cosh integral.
Explanation
===========
This function is defined for positive $x$ by
.. math:: \operatorname{Chi}(x) = \gamma + \log{x}
+ \int_0^x \frac{\cosh{t} - 1}{t} \mathrm{d}t,
where $\gamma$ is the Euler-Mascheroni constant.
We have
.. math:: \operatorname{Chi}(z) = \operatorname{Ci}\left(e^{i \pi/2}z\right)
- i\frac{\pi}{2},
which holds for all polar $z$ and thus provides an analytic
continuation to the Riemann surface of the logarithm.
By lifting to the principal branch we obtain an analytic function on the
cut complex plane.
Examples
========
>>> from sympy import Chi
>>> from sympy.abc import z
The $\cosh$ integral is a primitive of $\cosh(z)/z$:
>>> Chi(z).diff(z)
cosh(z)/z
It has a logarithmic branch point at the origin:
>>> from sympy import exp_polar, I, pi
>>> Chi(z*exp_polar(2*I*pi))
Chi(z) + 2*I*pi
The $\cosh$ integral behaves somewhat like ordinary $\cosh$ under
multiplication by $i$:
>>> from sympy import polar_lift
>>> Chi(polar_lift(I)*z)
Ci(z) + I*pi/2
>>> Chi(polar_lift(-1)*z)
Chi(z) + I*pi
It can also be expressed in terms of exponential integrals:
>>> from sympy import expint
>>> Chi(z).rewrite(expint)
-expint(1, z)/2 - expint(1, z*exp_polar(I*pi))/2 - I*pi/2
See Also
========
Si: Sine integral.
Ci: Cosine integral.
Shi: Hyperbolic sine integral.
Ei: Exponential integral.
expint: Generalised exponential integral.
E1: Special case of the generalised exponential integral.
li: Logarithmic integral.
Li: Offset logarithmic integral.
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigonometric_integral
"""
_trigfunc = cosh
_atzero = S.ComplexInfinity
@classmethod
def _atinf(cls):
return S.Infinity
@classmethod
def _atneginf(cls):
return S.Infinity
@classmethod
def _minusfactor(cls, z):
return Chi(z) + I*pi
@classmethod
def _Ifactor(cls, z, sign):
return Ci(z) + I*pi/2*sign
def _eval_rewrite_as_expint(self, z, **kwargs):
return -I*pi/2 - (E1(z) + E1(exp_polar(I*pi)*z))/2
def _eval_as_leading_term(self, x, logx=None, cdir=0):
arg = self.args[0].as_leading_term(x, logx=logx, cdir=cdir)
arg0 = arg.subs(x, 0)
if arg0 is S.NaN:
arg0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+')
if arg0.is_zero:
c, e = arg.as_coeff_exponent(x)
logx = log(x) if logx is None else logx
return log(c) + e*logx + EulerGamma
elif arg0.is_finite:
return self.func(arg0)
else:
return self
###############################################################################
#################### FRESNEL INTEGRALS ########################################
###############################################################################
class FresnelIntegral(Function):
""" Base class for the Fresnel integrals."""
unbranched = True
@classmethod
def eval(cls, z):
# Values at positive infinities signs
# if any were extracted automatically
if z is S.Infinity:
return S.Half
# Value at zero
if z.is_zero:
return S.Zero
# Try to pull out factors of -1 and I
prefact = S.One
newarg = z
changed = False
nz = newarg.extract_multiplicatively(-1)
if nz is not None:
prefact = -prefact
newarg = nz
changed = True
nz = newarg.extract_multiplicatively(I)
if nz is not None:
prefact = cls._sign*I*prefact
newarg = nz
changed = True
if changed:
return prefact*cls(newarg)
def fdiff(self, argindex=1):
if argindex == 1:
return self._trigfunc(S.Half*pi*self.args[0]**2)
else:
raise ArgumentIndexError(self, argindex)
def _eval_is_extended_real(self):
return self.args[0].is_extended_real
_eval_is_finite = _eval_is_extended_real
def _eval_is_zero(self):
return self.args[0].is_zero
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
as_real_imag = real_to_real_as_real_imag
class fresnels(FresnelIntegral):
r"""
Fresnel integral S.
Explanation
===========
This function is defined by
.. math:: \operatorname{S}(z) = \int_0^z \sin{\frac{\pi}{2} t^2} \mathrm{d}t.
It is an entire function.
Examples
========
>>> from sympy import I, oo, fresnels
>>> from sympy.abc import z
Several special values are known:
>>> fresnels(0)
0
>>> fresnels(oo)
1/2
>>> fresnels(-oo)
-1/2
>>> fresnels(I*oo)
-I/2
>>> fresnels(-I*oo)
I/2
In general one can pull out factors of -1 and $i$ from the argument:
>>> fresnels(-z)
-fresnels(z)
>>> fresnels(I*z)
-I*fresnels(z)
The Fresnel S integral obeys the mirror symmetry
$\overline{S(z)} = S(\bar{z})$:
>>> from sympy import conjugate
>>> conjugate(fresnels(z))
fresnels(conjugate(z))
Differentiation with respect to $z$ is supported:
>>> from sympy import diff
>>> diff(fresnels(z), z)
sin(pi*z**2/2)
Defining the Fresnel functions via an integral:
>>> from sympy import integrate, pi, sin, expand_func
>>> integrate(sin(pi*z**2/2), z)
3*fresnels(z)*gamma(3/4)/(4*gamma(7/4))
>>> expand_func(integrate(sin(pi*z**2/2), z))
fresnels(z)
We can numerically evaluate the Fresnel integral to arbitrary precision
on the whole complex plane:
>>> fresnels(2).evalf(30)
0.343415678363698242195300815958
>>> fresnels(-2*I).evalf(30)
0.343415678363698242195300815958*I
See Also
========
fresnelc: Fresnel cosine integral.
References
==========
.. [1] https://en.wikipedia.org/wiki/Fresnel_integral
.. [2] http://dlmf.nist.gov/7
.. [3] http://mathworld.wolfram.com/FresnelIntegrals.html
.. [4] http://functions.wolfram.com/GammaBetaErf/FresnelS
.. [5] The converging factors for the fresnel integrals
by John W. Wrench Jr. and Vicki Alley
"""
_trigfunc = sin
_sign = -S.One
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) > 1:
p = previous_terms[-1]
return (-pi**2*x**4*(4*n - 1)/(8*n*(2*n + 1)*(4*n + 3))) * p
else:
return x**3 * (-x**4)**n * (S(2)**(-2*n - 1)*pi**(2*n + 1)) / ((4*n + 3)*factorial(2*n + 1))
def _eval_rewrite_as_erf(self, z, **kwargs):
return (S.One + I)/4 * (erf((S.One + I)/2*sqrt(pi)*z) - I*erf((S.One - I)/2*sqrt(pi)*z))
def _eval_rewrite_as_hyper(self, z, **kwargs):
return pi*z**3/6 * hyper([Rational(3, 4)], [Rational(3, 2), Rational(7, 4)], -pi**2*z**4/16)
def _eval_rewrite_as_meijerg(self, z, **kwargs):
return (pi*z**Rational(9, 4) / (sqrt(2)*(z**2)**Rational(3, 4)*(-z)**Rational(3, 4))
* meijerg([], [1], [Rational(3, 4)], [Rational(1, 4), 0], -pi**2*z**4/16))
def _eval_as_leading_term(self, x, logx=None, cdir=0):
from sympy.series.order import Order
arg = self.args[0].as_leading_term(x, logx=logx, cdir=cdir)
arg0 = arg.subs(x, 0)
if arg0 is S.ComplexInfinity:
arg0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+')
if arg0.is_zero:
return pi*arg**3/6
elif arg0 in [S.Infinity, S.NegativeInfinity]:
s = 1 if arg0 is S.Infinity else -1
return s*S.Half + Order(x, x)
else:
return self.func(arg0)
def _eval_aseries(self, n, args0, x, logx):
from sympy.series.order import Order
point = args0[0]
# Expansion at oo and -oo
if point in [S.Infinity, -S.Infinity]:
z = self.args[0]
# expansion of S(x) = S1(x*sqrt(pi/2)), see reference[5] page 1-8
# as only real infinities are dealt with, sin and cos are O(1)
p = [S.NegativeOne**k * factorial(4*k + 1) /
(2**(2*k + 2) * z**(4*k + 3) * 2**(2*k)*factorial(2*k))
for k in range(0, n) if 4*k + 3 < n]
q = [1/(2*z)] + [S.NegativeOne**k * factorial(4*k - 1) /
(2**(2*k + 1) * z**(4*k + 1) * 2**(2*k - 1)*factorial(2*k - 1))
for k in range(1, n) if 4*k + 1 < n]
p = [-sqrt(2/pi)*t for t in p]
q = [-sqrt(2/pi)*t for t in q]
s = 1 if point is S.Infinity else -1
# The expansion at oo is 1/2 + some odd powers of z
# To get the expansion at -oo, replace z by -z and flip the sign
# The result -1/2 + the same odd powers of z as before.
return s*S.Half + (sin(z**2)*Add(*p) + cos(z**2)*Add(*q)
).subs(x, sqrt(2/pi)*x) + Order(1/z**n, x)
# All other points are not handled
return super()._eval_aseries(n, args0, x, logx)
class fresnelc(FresnelIntegral):
r"""
Fresnel integral C.
Explanation
===========
This function is defined by
.. math:: \operatorname{C}(z) = \int_0^z \cos{\frac{\pi}{2} t^2} \mathrm{d}t.
It is an entire function.
Examples
========
>>> from sympy import I, oo, fresnelc
>>> from sympy.abc import z
Several special values are known:
>>> fresnelc(0)
0
>>> fresnelc(oo)
1/2
>>> fresnelc(-oo)
-1/2
>>> fresnelc(I*oo)
I/2
>>> fresnelc(-I*oo)
-I/2
In general one can pull out factors of -1 and $i$ from the argument:
>>> fresnelc(-z)
-fresnelc(z)
>>> fresnelc(I*z)
I*fresnelc(z)
The Fresnel C integral obeys the mirror symmetry
$\overline{C(z)} = C(\bar{z})$:
>>> from sympy import conjugate
>>> conjugate(fresnelc(z))
fresnelc(conjugate(z))
Differentiation with respect to $z$ is supported:
>>> from sympy import diff
>>> diff(fresnelc(z), z)
cos(pi*z**2/2)
Defining the Fresnel functions via an integral:
>>> from sympy import integrate, pi, cos, expand_func
>>> integrate(cos(pi*z**2/2), z)
fresnelc(z)*gamma(1/4)/(4*gamma(5/4))
>>> expand_func(integrate(cos(pi*z**2/2), z))
fresnelc(z)
We can numerically evaluate the Fresnel integral to arbitrary precision
on the whole complex plane:
>>> fresnelc(2).evalf(30)
0.488253406075340754500223503357
>>> fresnelc(-2*I).evalf(30)
-0.488253406075340754500223503357*I
See Also
========
fresnels: Fresnel sine integral.
References
==========
.. [1] https://en.wikipedia.org/wiki/Fresnel_integral
.. [2] http://dlmf.nist.gov/7
.. [3] http://mathworld.wolfram.com/FresnelIntegrals.html
.. [4] http://functions.wolfram.com/GammaBetaErf/FresnelC
.. [5] The converging factors for the fresnel integrals
by John W. Wrench Jr. and Vicki Alley
"""
_trigfunc = cos
_sign = S.One
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) > 1:
p = previous_terms[-1]
return (-pi**2*x**4*(4*n - 3)/(8*n*(2*n - 1)*(4*n + 1))) * p
else:
return x * (-x**4)**n * (S(2)**(-2*n)*pi**(2*n)) / ((4*n + 1)*factorial(2*n))
def _eval_rewrite_as_erf(self, z, **kwargs):
return (S.One - I)/4 * (erf((S.One + I)/2*sqrt(pi)*z) + I*erf((S.One - I)/2*sqrt(pi)*z))
def _eval_rewrite_as_hyper(self, z, **kwargs):
return z * hyper([Rational(1, 4)], [S.Half, Rational(5, 4)], -pi**2*z**4/16)
def _eval_rewrite_as_meijerg(self, z, **kwargs):
return (pi*z**Rational(3, 4) / (sqrt(2)*root(z**2, 4)*root(-z, 4))
* meijerg([], [1], [Rational(1, 4)], [Rational(3, 4), 0], -pi**2*z**4/16))
def _eval_as_leading_term(self, x, logx=None, cdir=0):
from sympy.series.order import Order
arg = self.args[0].as_leading_term(x, logx=logx, cdir=cdir)
arg0 = arg.subs(x, 0)
if arg0 is S.ComplexInfinity:
arg0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+')
if arg0.is_zero:
return arg
elif arg0 in [S.Infinity, S.NegativeInfinity]:
s = 1 if arg0 is S.Infinity else -1
return s*S.Half + Order(x, x)
else:
return self.func(arg0)
def _eval_aseries(self, n, args0, x, logx):
from sympy.series.order import Order
point = args0[0]
# Expansion at oo
if point in [S.Infinity, -S.Infinity]:
z = self.args[0]
# expansion of C(x) = C1(x*sqrt(pi/2)), see reference[5] page 1-8
# as only real infinities are dealt with, sin and cos are O(1)
p = [S.NegativeOne**k * factorial(4*k + 1) /
(2**(2*k + 2) * z**(4*k + 3) * 2**(2*k)*factorial(2*k))
for k in range(n) if 4*k + 3 < n]
q = [1/(2*z)] + [S.NegativeOne**k * factorial(4*k - 1) /
(2**(2*k + 1) * z**(4*k + 1) * 2**(2*k - 1)*factorial(2*k - 1))
for k in range(1, n) if 4*k + 1 < n]
p = [-sqrt(2/pi)*t for t in p]
q = [ sqrt(2/pi)*t for t in q]
s = 1 if point is S.Infinity else -1
# The expansion at oo is 1/2 + some odd powers of z
# To get the expansion at -oo, replace z by -z and flip the sign
# The result -1/2 + the same odd powers of z as before.
return s*S.Half + (cos(z**2)*Add(*p) + sin(z**2)*Add(*q)
).subs(x, sqrt(2/pi)*x) + Order(1/z**n, x)
# All other points are not handled
return super()._eval_aseries(n, args0, x, logx)
###############################################################################
#################### HELPER FUNCTIONS #########################################
###############################################################################
class _erfs(Function):
"""
Helper function to make the $\\mathrm{erf}(z)$ function
tractable for the Gruntz algorithm.
"""
@classmethod
def eval(cls, arg):
if arg.is_zero:
return S.One
def _eval_aseries(self, n, args0, x, logx):
from sympy.series.order import Order
point = args0[0]
# Expansion at oo
if point is S.Infinity:
z = self.args[0]
l = [1/sqrt(pi) * factorial(2*k)*(-S(
4))**(-k)/factorial(k) * (1/z)**(2*k + 1) for k in range(n)]
o = Order(1/z**(2*n + 1), x)
# It is very inefficient to first add the order and then do the nseries
return (Add(*l))._eval_nseries(x, n, logx) + o
# Expansion at I*oo
t = point.extract_multiplicatively(I)
if t is S.Infinity:
z = self.args[0]
# TODO: is the series really correct?
l = [1/sqrt(pi) * factorial(2*k)*(-S(
4))**(-k)/factorial(k) * (1/z)**(2*k + 1) for k in range(n)]
o = Order(1/z**(2*n + 1), x)
# It is very inefficient to first add the order and then do the nseries
return (Add(*l))._eval_nseries(x, n, logx) + o
# All other points are not handled
return super()._eval_aseries(n, args0, x, logx)
def fdiff(self, argindex=1):
if argindex == 1:
z = self.args[0]
return -2/sqrt(pi) + 2*z*_erfs(z)
else:
raise ArgumentIndexError(self, argindex)
def _eval_rewrite_as_intractable(self, z, **kwargs):
return (S.One - erf(z))*exp(z**2)
class _eis(Function):
"""
Helper function to make the $\\mathrm{Ei}(z)$ and $\\mathrm{li}(z)$
functions tractable for the Gruntz algorithm.
"""
def _eval_aseries(self, n, args0, x, logx):
from sympy.series.order import Order
if args0[0] != S.Infinity:
return super(_erfs, self)._eval_aseries(n, args0, x, logx)
z = self.args[0]
l = [factorial(k) * (1/z)**(k + 1) for k in range(n)]
o = Order(1/z**(n + 1), x)
# It is very inefficient to first add the order and then do the nseries
return (Add(*l))._eval_nseries(x, n, logx) + o
def fdiff(self, argindex=1):
if argindex == 1:
z = self.args[0]
return S.One / z - _eis(z)
else:
raise ArgumentIndexError(self, argindex)
def _eval_rewrite_as_intractable(self, z, **kwargs):
return exp(-z)*Ei(z)
def _eval_as_leading_term(self, x, logx=None, cdir=0):
x0 = self.args[0].limit(x, 0)
if x0.is_zero:
f = self._eval_rewrite_as_intractable(*self.args)
return f._eval_as_leading_term(x, logx=logx, cdir=cdir)
return super()._eval_as_leading_term(x, logx=logx, cdir=cdir)
def _eval_nseries(self, x, n, logx, cdir=0):
x0 = self.args[0].limit(x, 0)
if x0.is_zero:
f = self._eval_rewrite_as_intractable(*self.args)
return f._eval_nseries(x, n, logx)
return super()._eval_nseries(x, n, logx)
|
cb17e0bbec2634478c7da1400620c7626b99a59ba9f454e9d1961eae573a8617 | from sympy.core.function import (diff, expand_func)
from sympy.core.numbers import I, Rational, pi
from sympy.core.singleton import S
from sympy.core.symbol import (Dummy, symbols)
from sympy.functions.combinatorial.numbers import catalan
from sympy.functions.elementary.complexes import conjugate
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.special.beta_functions import (beta, betainc, betainc_regularized)
from sympy.functions.special.gamma_functions import gamma, polygamma
from sympy.functions.special.hyper import hyper
from sympy.integrals.integrals import Integral
from sympy.core.function import ArgumentIndexError
from sympy.core.expr import unchanged
from sympy.testing.pytest import raises
def test_beta():
x, y = symbols('x y')
t = Dummy('t')
assert unchanged(beta, x, y)
assert unchanged(beta, x, x)
assert beta(5, -3).is_real == True
assert beta(3, y).is_real is None
assert expand_func(beta(x, y)) == gamma(x)*gamma(y)/gamma(x + y)
assert expand_func(beta(x, y) - beta(y, x)) == 0 # Symmetric
assert expand_func(beta(x, y)) == expand_func(beta(x, y + 1) + beta(x + 1, y)).simplify()
assert diff(beta(x, y), x) == beta(x, y)*(polygamma(0, x) - polygamma(0, x + y))
assert diff(beta(x, y), y) == beta(x, y)*(polygamma(0, y) - polygamma(0, x + y))
assert conjugate(beta(x, y)) == beta(conjugate(x), conjugate(y))
raises(ArgumentIndexError, lambda: beta(x, y).fdiff(3))
assert beta(x, y).rewrite(gamma) == gamma(x)*gamma(y)/gamma(x + y)
assert beta(x).rewrite(gamma) == gamma(x)**2/gamma(2*x)
assert beta(x, y).rewrite(Integral).dummy_eq(Integral(t**(x - 1) * (1 - t)**(y - 1), (t, 0, 1)))
assert beta(Rational(-19, 10), Rational(-1, 10)) == S.Zero
assert beta(Rational(-19, 10), Rational(-9, 10)) == \
800*2**(S(4)/5)*sqrt(pi)*gamma(S.One/10)/(171*gamma(-S(7)/5))
assert beta(Rational(19, 10), Rational(29, 10)) == 100/(551*catalan(Rational(19, 10)))
assert beta(1, 0) == S.ComplexInfinity
assert beta(0, 1) == S.ComplexInfinity
assert beta(2, 3) == S.One/12
assert unchanged(beta, x, x + 1)
assert unchanged(beta, x, 1)
assert unchanged(beta, 1, y)
assert beta(x, x + 1).doit() == 1/(x*(x+1)*catalan(x))
assert beta(1, y).doit() == 1/y
assert beta(x, 1).doit() == 1/x
assert beta(Rational(-19, 10), Rational(-1, 10), evaluate=False).doit() == S.Zero
assert beta(2) == beta(2, 2)
assert beta(x, evaluate=False) != beta(x, x)
assert beta(x, evaluate=False).doit() == beta(x, x)
def test_betainc():
a, b, x1, x2 = symbols('a b x1 x2')
assert unchanged(betainc, a, b, x1, x2)
assert unchanged(betainc, a, b, 0, x1)
assert betainc(1, 2, 0, -5).is_real == True
assert betainc(1, 2, 0, x2).is_real is None
assert conjugate(betainc(I, 2, 3 - I, 1 + 4*I)) == betainc(-I, 2, 3 + I, 1 - 4*I)
assert betainc(a, b, 0, 1).rewrite(Integral).dummy_eq(beta(a, b).rewrite(Integral))
assert betainc(1, 2, 0, x2).rewrite(hyper) == x2*hyper((1, -1), (2,), x2)
assert betainc(1, 2, 3, 3).evalf() == 0
def test_betainc_regularized():
a, b, x1, x2 = symbols('a b x1 x2')
assert unchanged(betainc_regularized, a, b, x1, x2)
assert unchanged(betainc_regularized, a, b, 0, x1)
assert betainc_regularized(3, 5, 0, -1).is_real == True
assert betainc_regularized(3, 5, 0, x2).is_real is None
assert conjugate(betainc_regularized(3*I, 1, 2 + I, 1 + 2*I)) == betainc_regularized(-3*I, 1, 2 - I, 1 - 2*I)
assert betainc_regularized(a, b, 0, 1).rewrite(Integral) == 1
assert betainc_regularized(1, 2, x1, x2).rewrite(hyper) == 2*x2*hyper((1, -1), (2,), x2) - 2*x1*hyper((1, -1), (2,), x1)
assert betainc_regularized(4, 1, 5, 5).evalf() == 0
|
b92d662dff72c34e76e62576e83bbe7078ac22ee1ef95c469aa787961b532321 | from sympy.core.add import Add
from sympy.core.assumptions import check_assumptions
from sympy.core.containers import Tuple
from sympy.core.exprtools import factor_terms
from sympy.core.function import _mexpand
from sympy.core.mul import Mul
from sympy.core.numbers import Rational
from sympy.core.numbers import igcdex, ilcm, igcd
from sympy.core.power import integer_nthroot, isqrt
from sympy.core.relational import Eq
from sympy.core.singleton import S
from sympy.core.sorting import default_sort_key, ordered
from sympy.core.symbol import Symbol, symbols
from sympy.core.sympify import _sympify
from sympy.functions.elementary.complexes import sign
from sympy.functions.elementary.integers import floor
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.matrices.dense import MutableDenseMatrix as Matrix
from sympy.ntheory.factor_ import (
divisors, factorint, multiplicity, perfect_power)
from sympy.ntheory.generate import nextprime
from sympy.ntheory.primetest import is_square, isprime
from sympy.ntheory.residue_ntheory import sqrt_mod
from sympy.polys.polyerrors import GeneratorsNeeded
from sympy.polys.polytools import Poly, factor_list
from sympy.simplify.simplify import signsimp
from sympy.solvers.solveset import solveset_real
from sympy.utilities import numbered_symbols
from sympy.utilities.misc import as_int, filldedent
from sympy.utilities.iterables import (is_sequence, subsets, permute_signs,
signed_permutations, ordered_partitions)
# these are imported with 'from sympy.solvers.diophantine import *
__all__ = ['diophantine', 'classify_diop']
class DiophantineSolutionSet(set):
"""
Container for a set of solutions to a particular diophantine equation.
The base representation is a set of tuples representing each of the solutions.
Parameters
==========
symbols : list
List of free symbols in the original equation.
parameters: list
List of parameters to be used in the solution.
Examples
========
Adding solutions:
>>> from sympy.solvers.diophantine.diophantine import DiophantineSolutionSet
>>> from sympy.abc import x, y, t, u
>>> s1 = DiophantineSolutionSet([x, y], [t, u])
>>> s1
set()
>>> s1.add((2, 3))
>>> s1.add((-1, u))
>>> s1
{(-1, u), (2, 3)}
>>> s2 = DiophantineSolutionSet([x, y], [t, u])
>>> s2.add((3, 4))
>>> s1.update(*s2)
>>> s1
{(-1, u), (2, 3), (3, 4)}
Conversion of solutions into dicts:
>>> list(s1.dict_iterator())
[{x: -1, y: u}, {x: 2, y: 3}, {x: 3, y: 4}]
Substituting values:
>>> s3 = DiophantineSolutionSet([x, y], [t, u])
>>> s3.add((t**2, t + u))
>>> s3
{(t**2, t + u)}
>>> s3.subs({t: 2, u: 3})
{(4, 5)}
>>> s3.subs(t, -1)
{(1, u - 1)}
>>> s3.subs(t, 3)
{(9, u + 3)}
Evaluation at specific values. Positional arguments are given in the same order as the parameters:
>>> s3(-2, 3)
{(4, 1)}
>>> s3(5)
{(25, u + 5)}
>>> s3(None, 2)
{(t**2, t + 2)}
"""
def __init__(self, symbols_seq, parameters):
super().__init__()
if not is_sequence(symbols_seq):
raise ValueError("Symbols must be given as a sequence.")
if not is_sequence(parameters):
raise ValueError("Parameters must be given as a sequence.")
self.symbols = tuple(symbols_seq)
self.parameters = tuple(parameters)
def add(self, solution):
if len(solution) != len(self.symbols):
raise ValueError("Solution should have a length of %s, not %s" % (len(self.symbols), len(solution)))
super().add(Tuple(*solution))
def update(self, *solutions):
for solution in solutions:
self.add(solution)
def dict_iterator(self):
for solution in ordered(self):
yield dict(zip(self.symbols, solution))
def subs(self, *args, **kwargs):
result = DiophantineSolutionSet(self.symbols, self.parameters)
for solution in self:
result.add(solution.subs(*args, **kwargs))
return result
def __call__(self, *args):
if len(args) > len(self.parameters):
raise ValueError("Evaluation should have at most %s values, not %s" % (len(self.parameters), len(args)))
rep = {p: v for p, v in zip(self.parameters, args) if v is not None}
return self.subs(rep)
class DiophantineEquationType:
"""
Internal representation of a particular diophantine equation type.
Parameters
==========
equation :
The diophantine equation that is being solved.
free_symbols : list (optional)
The symbols being solved for.
Attributes
==========
total_degree :
The maximum of the degrees of all terms in the equation
homogeneous :
Does the equation contain a term of degree 0
homogeneous_order :
Does the equation contain any coefficient that is in the symbols being solved for
dimension :
The number of symbols being solved for
"""
name = None # type: str
def __init__(self, equation, free_symbols=None):
self.equation = _sympify(equation).expand(force=True)
if free_symbols is not None:
self.free_symbols = free_symbols
else:
self.free_symbols = list(self.equation.free_symbols)
self.free_symbols.sort(key=default_sort_key)
if not self.free_symbols:
raise ValueError('equation should have 1 or more free symbols')
self.coeff = self.equation.as_coefficients_dict()
if not all(_is_int(c) for c in self.coeff.values()):
raise TypeError("Coefficients should be Integers")
self.total_degree = Poly(self.equation).total_degree()
self.homogeneous = 1 not in self.coeff
self.homogeneous_order = not (set(self.coeff) & set(self.free_symbols))
self.dimension = len(self.free_symbols)
self._parameters = None
def matches(self):
"""
Determine whether the given equation can be matched to the particular equation type.
"""
return False
@property
def n_parameters(self):
return self.dimension
@property
def parameters(self):
if self._parameters is None:
self._parameters = symbols('t_:%i' % (self.n_parameters,), integer=True)
return self._parameters
def solve(self, parameters=None, limit=None) -> DiophantineSolutionSet:
raise NotImplementedError('No solver has been written for %s.' % self.name)
def pre_solve(self, parameters=None):
if not self.matches():
raise ValueError("This equation does not match the %s equation type." % self.name)
if parameters is not None:
if len(parameters) != self.n_parameters:
raise ValueError("Expected %s parameter(s) but got %s" % (self.n_parameters, len(parameters)))
self._parameters = parameters
class Univariate(DiophantineEquationType):
"""
Representation of a univariate diophantine equation.
A univariate diophantine equation is an equation of the form
`a_{0} + a_{1}x + a_{2}x^2 + .. + a_{n}x^n = 0` where `a_{1}, a_{2}, ..a_{n}` are
integer constants and `x` is an integer variable.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import Univariate
>>> from sympy.abc import x
>>> Univariate((x - 2)*(x - 3)**2).solve() # solves equation (x - 2)*(x - 3)**2 == 0
{(2,), (3,)}
"""
name = 'univariate'
def matches(self):
return self.dimension == 1
def solve(self, parameters=None, limit=None):
self.pre_solve(parameters)
result = DiophantineSolutionSet(self.free_symbols, parameters=self.parameters)
for i in solveset_real(self.equation, self.free_symbols[0]).intersect(S.Integers):
result.add((i,))
return result
class Linear(DiophantineEquationType):
"""
Representation of a linear diophantine equation.
A linear diophantine equation is an equation of the form `a_{1}x_{1} +
a_{2}x_{2} + .. + a_{n}x_{n} = 0` where `a_{1}, a_{2}, ..a_{n}` are
integer constants and `x_{1}, x_{2}, ..x_{n}` are integer variables.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import Linear
>>> from sympy.abc import x, y, z
>>> l1 = Linear(2*x - 3*y - 5)
>>> l1.matches() # is this equation linear
True
>>> l1.solve() # solves equation 2*x - 3*y - 5 == 0
{(3*t_0 - 5, 2*t_0 - 5)}
Here x = -3*t_0 - 5 and y = -2*t_0 - 5
>>> Linear(2*x - 3*y - 4*z -3).solve()
{(t_0, 2*t_0 + 4*t_1 + 3, -t_0 - 3*t_1 - 3)}
"""
name = 'linear'
def matches(self):
return self.total_degree == 1
def solve(self, parameters=None, limit=None):
self.pre_solve(parameters)
coeff = self.coeff
var = self.free_symbols
if 1 in coeff:
# negate coeff[] because input is of the form: ax + by + c == 0
# but is used as: ax + by == -c
c = -coeff[1]
else:
c = 0
result = DiophantineSolutionSet(var, parameters=self.parameters)
params = result.parameters
if len(var) == 1:
q, r = divmod(c, coeff[var[0]])
if not r:
result.add((q,))
return result
else:
return result
'''
base_solution_linear() can solve diophantine equations of the form:
a*x + b*y == c
We break down multivariate linear diophantine equations into a
series of bivariate linear diophantine equations which can then
be solved individually by base_solution_linear().
Consider the following:
a_0*x_0 + a_1*x_1 + a_2*x_2 == c
which can be re-written as:
a_0*x_0 + g_0*y_0 == c
where
g_0 == gcd(a_1, a_2)
and
y == (a_1*x_1)/g_0 + (a_2*x_2)/g_0
This leaves us with two binary linear diophantine equations.
For the first equation:
a == a_0
b == g_0
c == c
For the second:
a == a_1/g_0
b == a_2/g_0
c == the solution we find for y_0 in the first equation.
The arrays A and B are the arrays of integers used for
'a' and 'b' in each of the n-1 bivariate equations we solve.
'''
A = [coeff[v] for v in var]
B = []
if len(var) > 2:
B.append(igcd(A[-2], A[-1]))
A[-2] = A[-2] // B[0]
A[-1] = A[-1] // B[0]
for i in range(len(A) - 3, 0, -1):
gcd = igcd(B[0], A[i])
B[0] = B[0] // gcd
A[i] = A[i] // gcd
B.insert(0, gcd)
B.append(A[-1])
'''
Consider the trivariate linear equation:
4*x_0 + 6*x_1 + 3*x_2 == 2
This can be re-written as:
4*x_0 + 3*y_0 == 2
where
y_0 == 2*x_1 + x_2
(Note that gcd(3, 6) == 3)
The complete integral solution to this equation is:
x_0 == 2 + 3*t_0
y_0 == -2 - 4*t_0
where 't_0' is any integer.
Now that we have a solution for 'x_0', find 'x_1' and 'x_2':
2*x_1 + x_2 == -2 - 4*t_0
We can then solve for '-2' and '-4' independently,
and combine the results:
2*x_1a + x_2a == -2
x_1a == 0 + t_0
x_2a == -2 - 2*t_0
2*x_1b + x_2b == -4*t_0
x_1b == 0*t_0 + t_1
x_2b == -4*t_0 - 2*t_1
==>
x_1 == t_0 + t_1
x_2 == -2 - 6*t_0 - 2*t_1
where 't_0' and 't_1' are any integers.
Note that:
4*(2 + 3*t_0) + 6*(t_0 + t_1) + 3*(-2 - 6*t_0 - 2*t_1) == 2
for any integral values of 't_0', 't_1'; as required.
This method is generalised for many variables, below.
'''
solutions = []
for Ai, Bi in zip(A, B):
tot_x, tot_y = [], []
for j, arg in enumerate(Add.make_args(c)):
if arg.is_Integer:
# example: 5 -> k = 5
k, p = arg, S.One
pnew = params[0]
else: # arg is a Mul or Symbol
# example: 3*t_1 -> k = 3
# example: t_0 -> k = 1
k, p = arg.as_coeff_Mul()
pnew = params[params.index(p) + 1]
sol = sol_x, sol_y = base_solution_linear(k, Ai, Bi, pnew)
if p is S.One:
if None in sol:
return result
else:
# convert a + b*pnew -> a*p + b*pnew
if isinstance(sol_x, Add):
sol_x = sol_x.args[0]*p + sol_x.args[1]
if isinstance(sol_y, Add):
sol_y = sol_y.args[0]*p + sol_y.args[1]
tot_x.append(sol_x)
tot_y.append(sol_y)
solutions.append(Add(*tot_x))
c = Add(*tot_y)
solutions.append(c)
result.add(solutions)
return result
class BinaryQuadratic(DiophantineEquationType):
"""
Representation of a binary quadratic diophantine equation.
A binary quadratic diophantine equation is an equation of the
form `Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0`, where `A, B, C, D, E,
F` are integer constants and `x` and `y` are integer variables.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.solvers.diophantine.diophantine import BinaryQuadratic
>>> b1 = BinaryQuadratic(x**3 + y**2 + 1)
>>> b1.matches()
False
>>> b2 = BinaryQuadratic(x**2 + y**2 + 2*x + 2*y + 2)
>>> b2.matches()
True
>>> b2.solve()
{(-1, -1)}
References
==========
.. [1] Methods to solve Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0, [online],
Available: http://www.alpertron.com.ar/METHODS.HTM
.. [2] Solving the equation ax^2+ bxy + cy^2 + dx + ey + f= 0, [online],
Available: https://web.archive.org/web/20160323033111/http://www.jpr2718.org/ax2p.pdf
"""
name = 'binary_quadratic'
def matches(self):
return self.total_degree == 2 and self.dimension == 2
def solve(self, parameters=None, limit=None) -> DiophantineSolutionSet:
self.pre_solve(parameters)
var = self.free_symbols
coeff = self.coeff
x, y = var
A = coeff[x**2]
B = coeff[x*y]
C = coeff[y**2]
D = coeff[x]
E = coeff[y]
F = coeff[S.One]
A, B, C, D, E, F = [as_int(i) for i in _remove_gcd(A, B, C, D, E, F)]
# (1) Simple-Hyperbolic case: A = C = 0, B != 0
# In this case equation can be converted to (Bx + E)(By + D) = DE - BF
# We consider two cases; DE - BF = 0 and DE - BF != 0
# More details, http://www.alpertron.com.ar/METHODS.HTM#SHyperb
result = DiophantineSolutionSet(var, self.parameters)
t, u = result.parameters
discr = B**2 - 4*A*C
if A == 0 and C == 0 and B != 0:
if D*E - B*F == 0:
q, r = divmod(E, B)
if not r:
result.add((-q, t))
q, r = divmod(D, B)
if not r:
result.add((t, -q))
else:
div = divisors(D*E - B*F)
div = div + [-term for term in div]
for d in div:
x0, r = divmod(d - E, B)
if not r:
q, r = divmod(D*E - B*F, d)
if not r:
y0, r = divmod(q - D, B)
if not r:
result.add((x0, y0))
# (2) Parabolic case: B**2 - 4*A*C = 0
# There are two subcases to be considered in this case.
# sqrt(c)D - sqrt(a)E = 0 and sqrt(c)D - sqrt(a)E != 0
# More Details, http://www.alpertron.com.ar/METHODS.HTM#Parabol
elif discr == 0:
if A == 0:
s = BinaryQuadratic(self.equation, free_symbols=[y, x]).solve(parameters=[t, u])
for soln in s:
result.add((soln[1], soln[0]))
else:
g = sign(A)*igcd(A, C)
a = A // g
c = C // g
e = sign(B / A)
sqa = isqrt(a)
sqc = isqrt(c)
_c = e*sqc*D - sqa*E
if not _c:
z = Symbol("z", real=True)
eq = sqa*g*z**2 + D*z + sqa*F
roots = solveset_real(eq, z).intersect(S.Integers)
for root in roots:
ans = diop_solve(sqa*x + e*sqc*y - root)
result.add((ans[0], ans[1]))
elif _is_int(c):
solve_x = lambda u: -e*sqc*g*_c*t**2 - (E + 2*e*sqc*g*u)*t \
- (e*sqc*g*u**2 + E*u + e*sqc*F) // _c
solve_y = lambda u: sqa*g*_c*t**2 + (D + 2*sqa*g*u)*t \
+ (sqa*g*u**2 + D*u + sqa*F) // _c
for z0 in range(0, abs(_c)):
# Check if the coefficients of y and x obtained are integers or not
if (divisible(sqa*g*z0**2 + D*z0 + sqa*F, _c) and
divisible(e*sqc*g*z0**2 + E*z0 + e*sqc*F, _c)):
result.add((solve_x(z0), solve_y(z0)))
# (3) Method used when B**2 - 4*A*C is a square, is described in p. 6 of the below paper
# by John P. Robertson.
# https://web.archive.org/web/20160323033111/http://www.jpr2718.org/ax2p.pdf
elif is_square(discr):
if A != 0:
r = sqrt(discr)
u, v = symbols("u, v", integer=True)
eq = _mexpand(
4*A*r*u*v + 4*A*D*(B*v + r*u + r*v - B*u) +
2*A*4*A*E*(u - v) + 4*A*r*4*A*F)
solution = diop_solve(eq, t)
for s0, t0 in solution:
num = B*t0 + r*s0 + r*t0 - B*s0
x_0 = S(num) / (4*A*r)
y_0 = S(s0 - t0) / (2*r)
if isinstance(s0, Symbol) or isinstance(t0, Symbol):
if len(check_param(x_0, y_0, 4*A*r, parameters)) > 0:
ans = check_param(x_0, y_0, 4*A*r, parameters)
result.update(*ans)
elif x_0.is_Integer and y_0.is_Integer:
if is_solution_quad(var, coeff, x_0, y_0):
result.add((x_0, y_0))
else:
s = BinaryQuadratic(self.equation, free_symbols=var[::-1]).solve(parameters=[t, u]) # Interchange x and y
while s:
result.add(s.pop()[::-1]) # and solution <--------+
# (4) B**2 - 4*A*C > 0 and B**2 - 4*A*C not a square or B**2 - 4*A*C < 0
else:
P, Q = _transformation_to_DN(var, coeff)
D, N = _find_DN(var, coeff)
solns_pell = diop_DN(D, N)
if D < 0:
for x0, y0 in solns_pell:
for x in [-x0, x0]:
for y in [-y0, y0]:
s = P*Matrix([x, y]) + Q
try:
result.add([as_int(_) for _ in s])
except ValueError:
pass
else:
# In this case equation can be transformed into a Pell equation
solns_pell = set(solns_pell)
for X, Y in list(solns_pell):
solns_pell.add((-X, -Y))
a = diop_DN(D, 1)
T = a[0][0]
U = a[0][1]
if all(_is_int(_) for _ in P[:4] + Q[:2]):
for r, s in solns_pell:
_a = (r + s*sqrt(D))*(T + U*sqrt(D))**t
_b = (r - s*sqrt(D))*(T - U*sqrt(D))**t
x_n = _mexpand(S(_a + _b) / 2)
y_n = _mexpand(S(_a - _b) / (2*sqrt(D)))
s = P*Matrix([x_n, y_n]) + Q
result.add(s)
else:
L = ilcm(*[_.q for _ in P[:4] + Q[:2]])
k = 1
T_k = T
U_k = U
while (T_k - 1) % L != 0 or U_k % L != 0:
T_k, U_k = T_k*T + D*U_k*U, T_k*U + U_k*T
k += 1
for X, Y in solns_pell:
for i in range(k):
if all(_is_int(_) for _ in P*Matrix([X, Y]) + Q):
_a = (X + sqrt(D)*Y)*(T_k + sqrt(D)*U_k)**t
_b = (X - sqrt(D)*Y)*(T_k - sqrt(D)*U_k)**t
Xt = S(_a + _b) / 2
Yt = S(_a - _b) / (2*sqrt(D))
s = P*Matrix([Xt, Yt]) + Q
result.add(s)
X, Y = X*T + D*U*Y, X*U + Y*T
return result
class InhomogeneousTernaryQuadratic(DiophantineEquationType):
"""
Representation of an inhomogeneous ternary quadratic.
No solver is currently implemented for this equation type.
"""
name = 'inhomogeneous_ternary_quadratic'
def matches(self):
if not (self.total_degree == 2 and self.dimension == 3):
return False
if not self.homogeneous:
return False
return not self.homogeneous_order
class HomogeneousTernaryQuadraticNormal(DiophantineEquationType):
"""
Representation of a homogeneous ternary quadratic normal diophantine equation.
Examples
========
>>> from sympy.abc import x, y, z
>>> from sympy.solvers.diophantine.diophantine import HomogeneousTernaryQuadraticNormal
>>> HomogeneousTernaryQuadraticNormal(4*x**2 - 5*y**2 + z**2).solve()
{(1, 2, 4)}
"""
name = 'homogeneous_ternary_quadratic_normal'
def matches(self):
if not (self.total_degree == 2 and self.dimension == 3):
return False
if not self.homogeneous:
return False
if not self.homogeneous_order:
return False
nonzero = [k for k in self.coeff if self.coeff[k]]
return len(nonzero) == 3 and all(i**2 in nonzero for i in self.free_symbols)
def solve(self, parameters=None, limit=None) -> DiophantineSolutionSet:
self.pre_solve(parameters)
var = self.free_symbols
coeff = self.coeff
x, y, z = var
a = coeff[x**2]
b = coeff[y**2]
c = coeff[z**2]
(sqf_of_a, sqf_of_b, sqf_of_c), (a_1, b_1, c_1), (a_2, b_2, c_2) = \
sqf_normal(a, b, c, steps=True)
A = -a_2*c_2
B = -b_2*c_2
result = DiophantineSolutionSet(var, parameters=self.parameters)
# If following two conditions are satisfied then there are no solutions
if A < 0 and B < 0:
return result
if (
sqrt_mod(-b_2*c_2, a_2) is None or
sqrt_mod(-c_2*a_2, b_2) is None or
sqrt_mod(-a_2*b_2, c_2) is None):
return result
z_0, x_0, y_0 = descent(A, B)
z_0, q = _rational_pq(z_0, abs(c_2))
x_0 *= q
y_0 *= q
x_0, y_0, z_0 = _remove_gcd(x_0, y_0, z_0)
# Holzer reduction
if sign(a) == sign(b):
x_0, y_0, z_0 = holzer(x_0, y_0, z_0, abs(a_2), abs(b_2), abs(c_2))
elif sign(a) == sign(c):
x_0, z_0, y_0 = holzer(x_0, z_0, y_0, abs(a_2), abs(c_2), abs(b_2))
else:
y_0, z_0, x_0 = holzer(y_0, z_0, x_0, abs(b_2), abs(c_2), abs(a_2))
x_0 = reconstruct(b_1, c_1, x_0)
y_0 = reconstruct(a_1, c_1, y_0)
z_0 = reconstruct(a_1, b_1, z_0)
sq_lcm = ilcm(sqf_of_a, sqf_of_b, sqf_of_c)
x_0 = abs(x_0*sq_lcm // sqf_of_a)
y_0 = abs(y_0*sq_lcm // sqf_of_b)
z_0 = abs(z_0*sq_lcm // sqf_of_c)
result.add(_remove_gcd(x_0, y_0, z_0))
return result
class HomogeneousTernaryQuadratic(DiophantineEquationType):
"""
Representation of a homogeneous ternary quadratic diophantine equation.
Examples
========
>>> from sympy.abc import x, y, z
>>> from sympy.solvers.diophantine.diophantine import HomogeneousTernaryQuadratic
>>> HomogeneousTernaryQuadratic(x**2 + y**2 - 3*z**2 + x*y).solve()
{(-1, 2, 1)}
>>> HomogeneousTernaryQuadratic(3*x**2 + y**2 - 3*z**2 + 5*x*y + y*z).solve()
{(3, 12, 13)}
"""
name = 'homogeneous_ternary_quadratic'
def matches(self):
if not (self.total_degree == 2 and self.dimension == 3):
return False
if not self.homogeneous:
return False
if not self.homogeneous_order:
return False
nonzero = [k for k in self.coeff if self.coeff[k]]
return not (len(nonzero) == 3 and all(i**2 in nonzero for i in self.free_symbols))
def solve(self, parameters=None, limit=None):
self.pre_solve(parameters)
_var = self.free_symbols
coeff = self.coeff
x, y, z = _var
var = [x, y, z]
# Equations of the form B*x*y + C*z*x + E*y*z = 0 and At least two of the
# coefficients A, B, C are non-zero.
# There are infinitely many solutions for the equation.
# Ex: (0, 0, t), (0, t, 0), (t, 0, 0)
# Equation can be re-written as y*(B*x + E*z) = -C*x*z and we can find rather
# unobvious solutions. Set y = -C and B*x + E*z = x*z. The latter can be solved by
# using methods for binary quadratic diophantine equations. Let's select the
# solution which minimizes |x| + |z|
result = DiophantineSolutionSet(var, parameters=self.parameters)
def unpack_sol(sol):
if len(sol) > 0:
return list(sol)[0]
return None, None, None
if not any(coeff[i**2] for i in var):
if coeff[x*z]:
sols = diophantine(coeff[x*y]*x + coeff[y*z]*z - x*z)
s = sols.pop()
min_sum = abs(s[0]) + abs(s[1])
for r in sols:
m = abs(r[0]) + abs(r[1])
if m < min_sum:
s = r
min_sum = m
result.add(_remove_gcd(s[0], -coeff[x*z], s[1]))
return result
else:
var[0], var[1] = _var[1], _var[0]
y_0, x_0, z_0 = unpack_sol(_diop_ternary_quadratic(var, coeff))
if x_0 is not None:
result.add((x_0, y_0, z_0))
return result
if coeff[x**2] == 0:
# If the coefficient of x is zero change the variables
if coeff[y**2] == 0:
var[0], var[2] = _var[2], _var[0]
z_0, y_0, x_0 = unpack_sol(_diop_ternary_quadratic(var, coeff))
else:
var[0], var[1] = _var[1], _var[0]
y_0, x_0, z_0 = unpack_sol(_diop_ternary_quadratic(var, coeff))
else:
if coeff[x*y] or coeff[x*z]:
# Apply the transformation x --> X - (B*y + C*z)/(2*A)
A = coeff[x**2]
B = coeff[x*y]
C = coeff[x*z]
D = coeff[y**2]
E = coeff[y*z]
F = coeff[z**2]
_coeff = {}
_coeff[x**2] = 4*A**2
_coeff[y**2] = 4*A*D - B**2
_coeff[z**2] = 4*A*F - C**2
_coeff[y*z] = 4*A*E - 2*B*C
_coeff[x*y] = 0
_coeff[x*z] = 0
x_0, y_0, z_0 = unpack_sol(_diop_ternary_quadratic(var, _coeff))
if x_0 is None:
return result
p, q = _rational_pq(B*y_0 + C*z_0, 2*A)
x_0, y_0, z_0 = x_0*q - p, y_0*q, z_0*q
elif coeff[z*y] != 0:
if coeff[y**2] == 0:
if coeff[z**2] == 0:
# Equations of the form A*x**2 + E*yz = 0.
A = coeff[x**2]
E = coeff[y*z]
b, a = _rational_pq(-E, A)
x_0, y_0, z_0 = b, a, b
else:
# Ax**2 + E*y*z + F*z**2 = 0
var[0], var[2] = _var[2], _var[0]
z_0, y_0, x_0 = unpack_sol(_diop_ternary_quadratic(var, coeff))
else:
# A*x**2 + D*y**2 + E*y*z + F*z**2 = 0, C may be zero
var[0], var[1] = _var[1], _var[0]
y_0, x_0, z_0 = unpack_sol(_diop_ternary_quadratic(var, coeff))
else:
# Ax**2 + D*y**2 + F*z**2 = 0, C may be zero
x_0, y_0, z_0 = unpack_sol(_diop_ternary_quadratic_normal(var, coeff))
if x_0 is None:
return result
result.add(_remove_gcd(x_0, y_0, z_0))
return result
class InhomogeneousGeneralQuadratic(DiophantineEquationType):
"""
Representation of an inhomogeneous general quadratic.
No solver is currently implemented for this equation type.
"""
name = 'inhomogeneous_general_quadratic'
def matches(self):
if not (self.total_degree == 2 and self.dimension >= 3):
return False
if not self.homogeneous_order:
return True
else:
# there may be Pow keys like x**2 or Mul keys like x*y
if any(k.is_Mul for k in self.coeff): # cross terms
return not self.homogeneous
return False
class HomogeneousGeneralQuadratic(DiophantineEquationType):
"""
Representation of a homogeneous general quadratic.
No solver is currently implemented for this equation type.
"""
name = 'homogeneous_general_quadratic'
def matches(self):
if not (self.total_degree == 2 and self.dimension >= 3):
return False
if not self.homogeneous_order:
return False
else:
# there may be Pow keys like x**2 or Mul keys like x*y
if any(k.is_Mul for k in self.coeff): # cross terms
return self.homogeneous
return False
class GeneralSumOfSquares(DiophantineEquationType):
r"""
Representation of the diophantine equation
`x_{1}^2 + x_{2}^2 + . . . + x_{n}^2 - k = 0`.
Details
=======
When `n = 3` if `k = 4^a(8m + 7)` for some `a, m \in Z` then there will be
no solutions. Refer [1]_ for more details.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import GeneralSumOfSquares
>>> from sympy.abc import a, b, c, d, e
>>> GeneralSumOfSquares(a**2 + b**2 + c**2 + d**2 + e**2 - 2345).solve()
{(15, 22, 22, 24, 24)}
By default only 1 solution is returned. Use the `limit` keyword for more:
>>> sorted(GeneralSumOfSquares(a**2 + b**2 + c**2 + d**2 + e**2 - 2345).solve(limit=3))
[(15, 22, 22, 24, 24), (16, 19, 24, 24, 24), (16, 20, 22, 23, 26)]
References
==========
.. [1] Representing an integer as a sum of three squares, [online],
Available:
http://www.proofwiki.org/wiki/Integer_as_Sum_of_Three_Squares
"""
name = 'general_sum_of_squares'
def matches(self):
if not (self.total_degree == 2 and self.dimension >= 3):
return False
if not self.homogeneous_order:
return False
if any(k.is_Mul for k in self.coeff):
return False
return all(self.coeff[k] == 1 for k in self.coeff if k != 1)
def solve(self, parameters=None, limit=1):
self.pre_solve(parameters)
var = self.free_symbols
k = -int(self.coeff[1])
n = self.dimension
result = DiophantineSolutionSet(var, parameters=self.parameters)
if k < 0 or limit < 1:
return result
signs = [-1 if x.is_nonpositive else 1 for x in var]
negs = signs.count(-1) != 0
took = 0
for t in sum_of_squares(k, n, zeros=True):
if negs:
result.add([signs[i]*j for i, j in enumerate(t)])
else:
result.add(t)
took += 1
if took == limit:
break
return result
class GeneralPythagorean(DiophantineEquationType):
"""
Representation of the general pythagorean equation,
`a_{1}^2x_{1}^2 + a_{2}^2x_{2}^2 + . . . + a_{n}^2x_{n}^2 - a_{n + 1}^2x_{n + 1}^2 = 0`.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import GeneralPythagorean
>>> from sympy.abc import a, b, c, d, e, x, y, z, t
>>> GeneralPythagorean(a**2 + b**2 + c**2 - d**2).solve()
{(t_0**2 + t_1**2 - t_2**2, 2*t_0*t_2, 2*t_1*t_2, t_0**2 + t_1**2 + t_2**2)}
>>> GeneralPythagorean(9*a**2 - 4*b**2 + 16*c**2 + 25*d**2 + e**2).solve(parameters=[x, y, z, t])
{(-10*t**2 + 10*x**2 + 10*y**2 + 10*z**2, 15*t**2 + 15*x**2 + 15*y**2 + 15*z**2, 15*t*x, 12*t*y, 60*t*z)}
"""
name = 'general_pythagorean'
def matches(self):
if not (self.total_degree == 2 and self.dimension >= 3):
return False
if not self.homogeneous_order:
return False
if any(k.is_Mul for k in self.coeff):
return False
if all(self.coeff[k] == 1 for k in self.coeff if k != 1):
return False
if not all(is_square(abs(self.coeff[k])) for k in self.coeff):
return False
# all but one has the same sign
# e.g. 4*x**2 + y**2 - 4*z**2
return abs(sum(sign(self.coeff[k]) for k in self.coeff)) == self.dimension - 2
@property
def n_parameters(self):
return self.dimension - 1
def solve(self, parameters=None, limit=1):
self.pre_solve(parameters)
coeff = self.coeff
var = self.free_symbols
n = self.dimension
if sign(coeff[var[0] ** 2]) + sign(coeff[var[1] ** 2]) + sign(coeff[var[2] ** 2]) < 0:
for key in coeff.keys():
coeff[key] = -coeff[key]
result = DiophantineSolutionSet(var, parameters=self.parameters)
index = 0
for i, v in enumerate(var):
if sign(coeff[v ** 2]) == -1:
index = i
m = result.parameters
ith = sum(m_i ** 2 for m_i in m)
L = [ith - 2 * m[n - 2] ** 2]
L.extend([2 * m[i] * m[n - 2] for i in range(n - 2)])
sol = L[:index] + [ith] + L[index:]
lcm = 1
for i, v in enumerate(var):
if i == index or (index > 0 and i == 0) or (index == 0 and i == 1):
lcm = ilcm(lcm, sqrt(abs(coeff[v ** 2])))
else:
s = sqrt(coeff[v ** 2])
lcm = ilcm(lcm, s if _odd(s) else s // 2)
for i, v in enumerate(var):
sol[i] = (lcm * sol[i]) / sqrt(abs(coeff[v ** 2]))
result.add(sol)
return result
class CubicThue(DiophantineEquationType):
"""
Representation of a cubic Thue diophantine equation.
A cubic Thue diophantine equation is a polynomial of the form
`f(x, y) = r` of degree 3, where `x` and `y` are integers
and `r` is a rational number.
No solver is currently implemented for this equation type.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.solvers.diophantine.diophantine import CubicThue
>>> c1 = CubicThue(x**3 + y**2 + 1)
>>> c1.matches()
True
"""
name = 'cubic_thue'
def matches(self):
return self.total_degree == 3 and self.dimension == 2
class GeneralSumOfEvenPowers(DiophantineEquationType):
"""
Representation of the diophantine equation
`x_{1}^e + x_{2}^e + . . . + x_{n}^e - k = 0`
where `e` is an even, integer power.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import GeneralSumOfEvenPowers
>>> from sympy.abc import a, b
>>> GeneralSumOfEvenPowers(a**4 + b**4 - (2**4 + 3**4)).solve()
{(2, 3)}
"""
name = 'general_sum_of_even_powers'
def matches(self):
if not self.total_degree > 3:
return False
if self.total_degree % 2 != 0:
return False
if not all(k.is_Pow and k.exp == self.total_degree for k in self.coeff if k != 1):
return False
return all(self.coeff[k] == 1 for k in self.coeff if k != 1)
def solve(self, parameters=None, limit=1):
self.pre_solve(parameters)
var = self.free_symbols
coeff = self.coeff
p = None
for q in coeff.keys():
if q.is_Pow and coeff[q]:
p = q.exp
k = len(var)
n = -coeff[1]
result = DiophantineSolutionSet(var, parameters=self.parameters)
if n < 0 or limit < 1:
return result
sign = [-1 if x.is_nonpositive else 1 for x in var]
negs = sign.count(-1) != 0
took = 0
for t in power_representation(n, p, k):
if negs:
result.add([sign[i]*j for i, j in enumerate(t)])
else:
result.add(t)
took += 1
if took == limit:
break
return result
# these types are known (but not necessarily handled)
# note that order is important here (in the current solver state)
all_diop_classes = [
Linear,
Univariate,
BinaryQuadratic,
InhomogeneousTernaryQuadratic,
HomogeneousTernaryQuadraticNormal,
HomogeneousTernaryQuadratic,
InhomogeneousGeneralQuadratic,
HomogeneousGeneralQuadratic,
GeneralSumOfSquares,
GeneralPythagorean,
CubicThue,
GeneralSumOfEvenPowers,
]
diop_known = {diop_class.name for diop_class in all_diop_classes}
def _is_int(i):
try:
as_int(i)
return True
except ValueError:
pass
def _sorted_tuple(*i):
return tuple(sorted(i))
def _remove_gcd(*x):
try:
g = igcd(*x)
except ValueError:
fx = list(filter(None, x))
if len(fx) < 2:
return x
g = igcd(*[i.as_content_primitive()[0] for i in fx])
except TypeError:
raise TypeError('_remove_gcd(a,b,c) or _remove_gcd(*container)')
if g == 1:
return x
return tuple([i//g for i in x])
def _rational_pq(a, b):
# return `(numer, denom)` for a/b; sign in numer and gcd removed
return _remove_gcd(sign(b)*a, abs(b))
def _nint_or_floor(p, q):
# return nearest int to p/q; in case of tie return floor(p/q)
w, r = divmod(p, q)
if abs(r) <= abs(q)//2:
return w
return w + 1
def _odd(i):
return i % 2 != 0
def _even(i):
return i % 2 == 0
def diophantine(eq, param=symbols("t", integer=True), syms=None,
permute=False):
"""
Simplify the solution procedure of diophantine equation ``eq`` by
converting it into a product of terms which should equal zero.
Explanation
===========
For example, when solving, `x^2 - y^2 = 0` this is treated as
`(x + y)(x - y) = 0` and `x + y = 0` and `x - y = 0` are solved
independently and combined. Each term is solved by calling
``diop_solve()``. (Although it is possible to call ``diop_solve()``
directly, one must be careful to pass an equation in the correct
form and to interpret the output correctly; ``diophantine()`` is
the public-facing function to use in general.)
Output of ``diophantine()`` is a set of tuples. The elements of the
tuple are the solutions for each variable in the equation and
are arranged according to the alphabetic ordering of the variables.
e.g. For an equation with two variables, `a` and `b`, the first
element of the tuple is the solution for `a` and the second for `b`.
Usage
=====
``diophantine(eq, t, syms)``: Solve the diophantine
equation ``eq``.
``t`` is the optional parameter to be used by ``diop_solve()``.
``syms`` is an optional list of symbols which determines the
order of the elements in the returned tuple.
By default, only the base solution is returned. If ``permute`` is set to
True then permutations of the base solution and/or permutations of the
signs of the values will be returned when applicable.
Examples
========
>>> from sympy import diophantine
>>> from sympy.abc import a, b
>>> eq = a**4 + b**4 - (2**4 + 3**4)
>>> diophantine(eq)
{(2, 3)}
>>> diophantine(eq, permute=True)
{(-3, -2), (-3, 2), (-2, -3), (-2, 3), (2, -3), (2, 3), (3, -2), (3, 2)}
Details
=======
``eq`` should be an expression which is assumed to be zero.
``t`` is the parameter to be used in the solution.
Examples
========
>>> from sympy.abc import x, y, z
>>> diophantine(x**2 - y**2)
{(t_0, -t_0), (t_0, t_0)}
>>> diophantine(x*(2*x + 3*y - z))
{(0, n1, n2), (t_0, t_1, 2*t_0 + 3*t_1)}
>>> diophantine(x**2 + 3*x*y + 4*x)
{(0, n1), (3*t_0 - 4, -t_0)}
See Also
========
diop_solve()
sympy.utilities.iterables.permute_signs
sympy.utilities.iterables.signed_permutations
"""
eq = _sympify(eq)
if isinstance(eq, Eq):
eq = eq.lhs - eq.rhs
try:
var = list(eq.expand(force=True).free_symbols)
var.sort(key=default_sort_key)
if syms:
if not is_sequence(syms):
raise TypeError(
'syms should be given as a sequence, e.g. a list')
syms = [i for i in syms if i in var]
if syms != var:
dict_sym_index = dict(zip(syms, range(len(syms))))
return {tuple([t[dict_sym_index[i]] for i in var])
for t in diophantine(eq, param, permute=permute)}
n, d = eq.as_numer_denom()
if n.is_number:
return set()
if not d.is_number:
dsol = diophantine(d)
good = diophantine(n) - dsol
return {s for s in good if _mexpand(d.subs(zip(var, s)))}
else:
eq = n
eq = factor_terms(eq)
assert not eq.is_number
eq = eq.as_independent(*var, as_Add=False)[1]
p = Poly(eq)
assert not any(g.is_number for g in p.gens)
eq = p.as_expr()
assert eq.is_polynomial()
except (GeneratorsNeeded, AssertionError):
raise TypeError(filldedent('''
Equation should be a polynomial with Rational coefficients.'''))
# permute only sign
do_permute_signs = False
# permute sign and values
do_permute_signs_var = False
# permute few signs
permute_few_signs = False
try:
# if we know that factoring should not be attempted, skip
# the factoring step
v, c, t = classify_diop(eq)
# check for permute sign
if permute:
len_var = len(v)
permute_signs_for = [
GeneralSumOfSquares.name,
GeneralSumOfEvenPowers.name]
permute_signs_check = [
HomogeneousTernaryQuadratic.name,
HomogeneousTernaryQuadraticNormal.name,
BinaryQuadratic.name]
if t in permute_signs_for:
do_permute_signs_var = True
elif t in permute_signs_check:
# if all the variables in eq have even powers
# then do_permute_sign = True
if len_var == 3:
var_mul = list(subsets(v, 2))
# here var_mul is like [(x, y), (x, z), (y, z)]
xy_coeff = True
x_coeff = True
var1_mul_var2 = map(lambda a: a[0]*a[1], var_mul)
# if coeff(y*z), coeff(y*x), coeff(x*z) is not 0 then
# `xy_coeff` => True and do_permute_sign => False.
# Means no permuted solution.
for v1_mul_v2 in var1_mul_var2:
try:
coeff = c[v1_mul_v2]
except KeyError:
coeff = 0
xy_coeff = bool(xy_coeff) and bool(coeff)
var_mul = list(subsets(v, 1))
# here var_mul is like [(x,), (y, )]
for v1 in var_mul:
try:
coeff = c[v1[0]]
except KeyError:
coeff = 0
x_coeff = bool(x_coeff) and bool(coeff)
if not any((xy_coeff, x_coeff)):
# means only x**2, y**2, z**2, const is present
do_permute_signs = True
elif not x_coeff:
permute_few_signs = True
elif len_var == 2:
var_mul = list(subsets(v, 2))
# here var_mul is like [(x, y)]
xy_coeff = True
x_coeff = True
var1_mul_var2 = map(lambda x: x[0]*x[1], var_mul)
for v1_mul_v2 in var1_mul_var2:
try:
coeff = c[v1_mul_v2]
except KeyError:
coeff = 0
xy_coeff = bool(xy_coeff) and bool(coeff)
var_mul = list(subsets(v, 1))
# here var_mul is like [(x,), (y, )]
for v1 in var_mul:
try:
coeff = c[v1[0]]
except KeyError:
coeff = 0
x_coeff = bool(x_coeff) and bool(coeff)
if not any((xy_coeff, x_coeff)):
# means only x**2, y**2 and const is present
# so we can get more soln by permuting this soln.
do_permute_signs = True
elif not x_coeff:
# when coeff(x), coeff(y) is not present then signs of
# x, y can be permuted such that their sign are same
# as sign of x*y.
# e.g 1. (x_val,y_val)=> (x_val,y_val), (-x_val,-y_val)
# 2. (-x_vall, y_val)=> (-x_val,y_val), (x_val,-y_val)
permute_few_signs = True
if t == 'general_sum_of_squares':
# trying to factor such expressions will sometimes hang
terms = [(eq, 1)]
else:
raise TypeError
except (TypeError, NotImplementedError):
fl = factor_list(eq)
if fl[0].is_Rational and fl[0] != 1:
return diophantine(eq/fl[0], param=param, syms=syms, permute=permute)
terms = fl[1]
sols = set()
for term in terms:
base, _ = term
var_t, _, eq_type = classify_diop(base, _dict=False)
_, base = signsimp(base, evaluate=False).as_coeff_Mul()
solution = diop_solve(base, param)
if eq_type in [
Linear.name,
HomogeneousTernaryQuadratic.name,
HomogeneousTernaryQuadraticNormal.name,
GeneralPythagorean.name]:
sols.add(merge_solution(var, var_t, solution))
elif eq_type in [
BinaryQuadratic.name,
GeneralSumOfSquares.name,
GeneralSumOfEvenPowers.name,
Univariate.name]:
for sol in solution:
sols.add(merge_solution(var, var_t, sol))
else:
raise NotImplementedError('unhandled type: %s' % eq_type)
# remove null merge results
if () in sols:
sols.remove(())
null = tuple([0]*len(var))
# if there is no solution, return trivial solution
if not sols and eq.subs(zip(var, null)).is_zero:
sols.add(null)
final_soln = set()
for sol in sols:
if all(_is_int(s) for s in sol):
if do_permute_signs:
permuted_sign = set(permute_signs(sol))
final_soln.update(permuted_sign)
elif permute_few_signs:
lst = list(permute_signs(sol))
lst = list(filter(lambda x: x[0]*x[1] == sol[1]*sol[0], lst))
permuted_sign = set(lst)
final_soln.update(permuted_sign)
elif do_permute_signs_var:
permuted_sign_var = set(signed_permutations(sol))
final_soln.update(permuted_sign_var)
else:
final_soln.add(sol)
else:
final_soln.add(sol)
return final_soln
def merge_solution(var, var_t, solution):
"""
This is used to construct the full solution from the solutions of sub
equations.
Explanation
===========
For example when solving the equation `(x - y)(x^2 + y^2 - z^2) = 0`,
solutions for each of the equations `x - y = 0` and `x^2 + y^2 - z^2` are
found independently. Solutions for `x - y = 0` are `(x, y) = (t, t)`. But
we should introduce a value for z when we output the solution for the
original equation. This function converts `(t, t)` into `(t, t, n_{1})`
where `n_{1}` is an integer parameter.
"""
sol = []
if None in solution:
return ()
solution = iter(solution)
params = numbered_symbols("n", integer=True, start=1)
for v in var:
if v in var_t:
sol.append(next(solution))
else:
sol.append(next(params))
for val, symb in zip(sol, var):
if check_assumptions(val, **symb.assumptions0) is False:
return tuple()
return tuple(sol)
def _diop_solve(eq, params=None):
for diop_type in all_diop_classes:
if diop_type(eq).matches():
return diop_type(eq).solve(parameters=params)
def diop_solve(eq, param=symbols("t", integer=True)):
"""
Solves the diophantine equation ``eq``.
Explanation
===========
Unlike ``diophantine()``, factoring of ``eq`` is not attempted. Uses
``classify_diop()`` to determine the type of the equation and calls
the appropriate solver function.
Use of ``diophantine()`` is recommended over other helper functions.
``diop_solve()`` can return either a set or a tuple depending on the
nature of the equation.
Usage
=====
``diop_solve(eq, t)``: Solve diophantine equation, ``eq`` using ``t``
as a parameter if needed.
Details
=======
``eq`` should be an expression which is assumed to be zero.
``t`` is a parameter to be used in the solution.
Examples
========
>>> from sympy.solvers.diophantine import diop_solve
>>> from sympy.abc import x, y, z, w
>>> diop_solve(2*x + 3*y - 5)
(3*t_0 - 5, 5 - 2*t_0)
>>> diop_solve(4*x + 3*y - 4*z + 5)
(t_0, 8*t_0 + 4*t_1 + 5, 7*t_0 + 3*t_1 + 5)
>>> diop_solve(x + 3*y - 4*z + w - 6)
(t_0, t_0 + t_1, 6*t_0 + 5*t_1 + 4*t_2 - 6, 5*t_0 + 4*t_1 + 3*t_2 - 6)
>>> diop_solve(x**2 + y**2 - 5)
{(-2, -1), (-2, 1), (-1, -2), (-1, 2), (1, -2), (1, 2), (2, -1), (2, 1)}
See Also
========
diophantine()
"""
var, coeff, eq_type = classify_diop(eq, _dict=False)
if eq_type == Linear.name:
return diop_linear(eq, param)
elif eq_type == BinaryQuadratic.name:
return diop_quadratic(eq, param)
elif eq_type == HomogeneousTernaryQuadratic.name:
return diop_ternary_quadratic(eq, parameterize=True)
elif eq_type == HomogeneousTernaryQuadraticNormal.name:
return diop_ternary_quadratic_normal(eq, parameterize=True)
elif eq_type == GeneralPythagorean.name:
return diop_general_pythagorean(eq, param)
elif eq_type == Univariate.name:
return diop_univariate(eq)
elif eq_type == GeneralSumOfSquares.name:
return diop_general_sum_of_squares(eq, limit=S.Infinity)
elif eq_type == GeneralSumOfEvenPowers.name:
return diop_general_sum_of_even_powers(eq, limit=S.Infinity)
if eq_type is not None and eq_type not in diop_known:
raise ValueError(filldedent('''
Alhough this type of equation was identified, it is not yet
handled. It should, however, be listed in `diop_known` at the
top of this file. Developers should see comments at the end of
`classify_diop`.
''')) # pragma: no cover
else:
raise NotImplementedError(
'No solver has been written for %s.' % eq_type)
def classify_diop(eq, _dict=True):
# docstring supplied externally
matched = False
diop_type = None
for diop_class in all_diop_classes:
diop_type = diop_class(eq)
if diop_type.matches():
matched = True
break
if matched:
return diop_type.free_symbols, dict(diop_type.coeff) if _dict else diop_type.coeff, diop_type.name
# new diop type instructions
# --------------------------
# if this error raises and the equation *can* be classified,
# * it should be identified in the if-block above
# * the type should be added to the diop_known
# if a solver can be written for it,
# * a dedicated handler should be written (e.g. diop_linear)
# * it should be passed to that handler in diop_solve
raise NotImplementedError(filldedent('''
This equation is not yet recognized or else has not been
simplified sufficiently to put it in a form recognized by
diop_classify().'''))
classify_diop.func_doc = ( # type: ignore
'''
Helper routine used by diop_solve() to find information about ``eq``.
Explanation
===========
Returns a tuple containing the type of the diophantine equation
along with the variables (free symbols) and their coefficients.
Variables are returned as a list and coefficients are returned
as a dict with the key being the respective term and the constant
term is keyed to 1. The type is one of the following:
* %s
Usage
=====
``classify_diop(eq)``: Return variables, coefficients and type of the
``eq``.
Details
=======
``eq`` should be an expression which is assumed to be zero.
``_dict`` is for internal use: when True (default) a dict is returned,
otherwise a defaultdict which supplies 0 for missing keys is returned.
Examples
========
>>> from sympy.solvers.diophantine import classify_diop
>>> from sympy.abc import x, y, z, w, t
>>> classify_diop(4*x + 6*y - 4)
([x, y], {1: -4, x: 4, y: 6}, 'linear')
>>> classify_diop(x + 3*y -4*z + 5)
([x, y, z], {1: 5, x: 1, y: 3, z: -4}, 'linear')
>>> classify_diop(x**2 + y**2 - x*y + x + 5)
([x, y], {1: 5, x: 1, x**2: 1, y**2: 1, x*y: -1}, 'binary_quadratic')
''' % ('\n * '.join(sorted(diop_known))))
def diop_linear(eq, param=symbols("t", integer=True)):
"""
Solves linear diophantine equations.
A linear diophantine equation is an equation of the form `a_{1}x_{1} +
a_{2}x_{2} + .. + a_{n}x_{n} = 0` where `a_{1}, a_{2}, ..a_{n}` are
integer constants and `x_{1}, x_{2}, ..x_{n}` are integer variables.
Usage
=====
``diop_linear(eq)``: Returns a tuple containing solutions to the
diophantine equation ``eq``. Values in the tuple is arranged in the same
order as the sorted variables.
Details
=======
``eq`` is a linear diophantine equation which is assumed to be zero.
``param`` is the parameter to be used in the solution.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import diop_linear
>>> from sympy.abc import x, y, z
>>> diop_linear(2*x - 3*y - 5) # solves equation 2*x - 3*y - 5 == 0
(3*t_0 - 5, 2*t_0 - 5)
Here x = -3*t_0 - 5 and y = -2*t_0 - 5
>>> diop_linear(2*x - 3*y - 4*z -3)
(t_0, 2*t_0 + 4*t_1 + 3, -t_0 - 3*t_1 - 3)
See Also
========
diop_quadratic(), diop_ternary_quadratic(), diop_general_pythagorean(),
diop_general_sum_of_squares()
"""
var, coeff, diop_type = classify_diop(eq, _dict=False)
if diop_type == Linear.name:
parameters = None
if param is not None:
parameters = symbols('%s_0:%i' % (param, len(var)), integer=True)
result = Linear(eq).solve(parameters=parameters)
if param is None:
result = result(*[0]*len(result.parameters))
if len(result) > 0:
return list(result)[0]
else:
return tuple([None]*len(result.parameters))
def base_solution_linear(c, a, b, t=None):
"""
Return the base solution for the linear equation, `ax + by = c`.
Explanation
===========
Used by ``diop_linear()`` to find the base solution of a linear
Diophantine equation. If ``t`` is given then the parametrized solution is
returned.
Usage
=====
``base_solution_linear(c, a, b, t)``: ``a``, ``b``, ``c`` are coefficients
in `ax + by = c` and ``t`` is the parameter to be used in the solution.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import base_solution_linear
>>> from sympy.abc import t
>>> base_solution_linear(5, 2, 3) # equation 2*x + 3*y = 5
(-5, 5)
>>> base_solution_linear(0, 5, 7) # equation 5*x + 7*y = 0
(0, 0)
>>> base_solution_linear(5, 2, 3, t) # equation 2*x + 3*y = 5
(3*t - 5, 5 - 2*t)
>>> base_solution_linear(0, 5, 7, t) # equation 5*x + 7*y = 0
(7*t, -5*t)
"""
a, b, c = _remove_gcd(a, b, c)
if c == 0:
if t is not None:
if b < 0:
t = -t
return (b*t, -a*t)
else:
return (0, 0)
else:
x0, y0, d = igcdex(abs(a), abs(b))
x0 *= sign(a)
y0 *= sign(b)
if divisible(c, d):
if t is not None:
if b < 0:
t = -t
return (c*x0 + b*t, c*y0 - a*t)
else:
return (c*x0, c*y0)
else:
return (None, None)
def diop_univariate(eq):
"""
Solves a univariate diophantine equations.
Explanation
===========
A univariate diophantine equation is an equation of the form
`a_{0} + a_{1}x + a_{2}x^2 + .. + a_{n}x^n = 0` where `a_{1}, a_{2}, ..a_{n}` are
integer constants and `x` is an integer variable.
Usage
=====
``diop_univariate(eq)``: Returns a set containing solutions to the
diophantine equation ``eq``.
Details
=======
``eq`` is a univariate diophantine equation which is assumed to be zero.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import diop_univariate
>>> from sympy.abc import x
>>> diop_univariate((x - 2)*(x - 3)**2) # solves equation (x - 2)*(x - 3)**2 == 0
{(2,), (3,)}
"""
var, coeff, diop_type = classify_diop(eq, _dict=False)
if diop_type == Univariate.name:
return {(int(i),) for i in solveset_real(
eq, var[0]).intersect(S.Integers)}
def divisible(a, b):
"""
Returns `True` if ``a`` is divisible by ``b`` and `False` otherwise.
"""
return not a % b
def diop_quadratic(eq, param=symbols("t", integer=True)):
"""
Solves quadratic diophantine equations.
i.e. equations of the form `Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0`. Returns a
set containing the tuples `(x, y)` which contains the solutions. If there
are no solutions then `(None, None)` is returned.
Usage
=====
``diop_quadratic(eq, param)``: ``eq`` is a quadratic binary diophantine
equation. ``param`` is used to indicate the parameter to be used in the
solution.
Details
=======
``eq`` should be an expression which is assumed to be zero.
``param`` is a parameter to be used in the solution.
Examples
========
>>> from sympy.abc import x, y, t
>>> from sympy.solvers.diophantine.diophantine import diop_quadratic
>>> diop_quadratic(x**2 + y**2 + 2*x + 2*y + 2, t)
{(-1, -1)}
References
==========
.. [1] Methods to solve Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0, [online],
Available: http://www.alpertron.com.ar/METHODS.HTM
.. [2] Solving the equation ax^2+ bxy + cy^2 + dx + ey + f= 0, [online],
Available: https://web.archive.org/web/20160323033111/http://www.jpr2718.org/ax2p.pdf
See Also
========
diop_linear(), diop_ternary_quadratic(), diop_general_sum_of_squares(),
diop_general_pythagorean()
"""
var, coeff, diop_type = classify_diop(eq, _dict=False)
if diop_type == BinaryQuadratic.name:
if param is not None:
parameters = [param, Symbol("u", integer=True)]
else:
parameters = None
return set(BinaryQuadratic(eq).solve(parameters=parameters))
def is_solution_quad(var, coeff, u, v):
"""
Check whether `(u, v)` is solution to the quadratic binary diophantine
equation with the variable list ``var`` and coefficient dictionary
``coeff``.
Not intended for use by normal users.
"""
reps = dict(zip(var, (u, v)))
eq = Add(*[j*i.xreplace(reps) for i, j in coeff.items()])
return _mexpand(eq) == 0
def diop_DN(D, N, t=symbols("t", integer=True)):
"""
Solves the equation `x^2 - Dy^2 = N`.
Explanation
===========
Mainly concerned with the case `D > 0, D` is not a perfect square,
which is the same as the generalized Pell equation. The LMM
algorithm [1]_ is used to solve this equation.
Returns one solution tuple, (`x, y)` for each class of the solutions.
Other solutions of the class can be constructed according to the
values of ``D`` and ``N``.
Usage
=====
``diop_DN(D, N, t)``: D and N are integers as in `x^2 - Dy^2 = N` and
``t`` is the parameter to be used in the solutions.
Details
=======
``D`` and ``N`` correspond to D and N in the equation.
``t`` is the parameter to be used in the solutions.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import diop_DN
>>> diop_DN(13, -4) # Solves equation x**2 - 13*y**2 = -4
[(3, 1), (393, 109), (36, 10)]
The output can be interpreted as follows: There are three fundamental
solutions to the equation `x^2 - 13y^2 = -4` given by (3, 1), (393, 109)
and (36, 10). Each tuple is in the form (x, y), i.e. solution (3, 1) means
that `x = 3` and `y = 1`.
>>> diop_DN(986, 1) # Solves equation x**2 - 986*y**2 = 1
[(49299, 1570)]
See Also
========
find_DN(), diop_bf_DN()
References
==========
.. [1] Solving the generalized Pell equation x**2 - D*y**2 = N, John P.
Robertson, July 31, 2004, Pages 16 - 17. [online], Available:
https://web.archive.org/web/20160323033128/http://www.jpr2718.org/pell.pdf
"""
if D < 0:
if N == 0:
return [(0, 0)]
elif N < 0:
return []
elif N > 0:
sol = []
for d in divisors(square_factor(N)):
sols = cornacchia(1, -D, N // d**2)
if sols:
for x, y in sols:
sol.append((d*x, d*y))
if D == -1:
sol.append((d*y, d*x))
return sol
elif D == 0:
if N < 0:
return []
if N == 0:
return [(0, t)]
sN, _exact = integer_nthroot(N, 2)
if _exact:
return [(sN, t)]
else:
return []
else: # D > 0
sD, _exact = integer_nthroot(D, 2)
if _exact:
if N == 0:
return [(sD*t, t)]
else:
sol = []
for y in range(floor(sign(N)*(N - 1)/(2*sD)) + 1):
try:
sq, _exact = integer_nthroot(D*y**2 + N, 2)
except ValueError:
_exact = False
if _exact:
sol.append((sq, y))
return sol
elif 1 < N**2 < D:
# It is much faster to call `_special_diop_DN`.
return _special_diop_DN(D, N)
else:
if N == 0:
return [(0, 0)]
elif abs(N) == 1:
pqa = PQa(0, 1, D)
j = 0
G = []
B = []
for i in pqa:
a = i[2]
G.append(i[5])
B.append(i[4])
if j != 0 and a == 2*sD:
break
j = j + 1
if _odd(j):
if N == -1:
x = G[j - 1]
y = B[j - 1]
else:
count = j
while count < 2*j - 1:
i = next(pqa)
G.append(i[5])
B.append(i[4])
count += 1
x = G[count]
y = B[count]
else:
if N == 1:
x = G[j - 1]
y = B[j - 1]
else:
return []
return [(x, y)]
else:
fs = []
sol = []
div = divisors(N)
for d in div:
if divisible(N, d**2):
fs.append(d)
for f in fs:
m = N // f**2
zs = sqrt_mod(D, abs(m), all_roots=True)
zs = [i for i in zs if i <= abs(m) // 2 ]
if abs(m) != 2:
zs = zs + [-i for i in zs if i] # omit dupl 0
for z in zs:
pqa = PQa(z, abs(m), D)
j = 0
G = []
B = []
for i in pqa:
G.append(i[5])
B.append(i[4])
if j != 0 and abs(i[1]) == 1:
r = G[j-1]
s = B[j-1]
if r**2 - D*s**2 == m:
sol.append((f*r, f*s))
elif diop_DN(D, -1) != []:
a = diop_DN(D, -1)
sol.append((f*(r*a[0][0] + a[0][1]*s*D), f*(r*a[0][1] + s*a[0][0])))
break
j = j + 1
if j == length(z, abs(m), D):
break
return sol
def _special_diop_DN(D, N):
"""
Solves the equation `x^2 - Dy^2 = N` for the special case where
`1 < N**2 < D` and `D` is not a perfect square.
It is better to call `diop_DN` rather than this function, as
the former checks the condition `1 < N**2 < D`, and calls the latter only
if appropriate.
Usage
=====
WARNING: Internal method. Do not call directly!
``_special_diop_DN(D, N)``: D and N are integers as in `x^2 - Dy^2 = N`.
Details
=======
``D`` and ``N`` correspond to D and N in the equation.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import _special_diop_DN
>>> _special_diop_DN(13, -3) # Solves equation x**2 - 13*y**2 = -3
[(7, 2), (137, 38)]
The output can be interpreted as follows: There are two fundamental
solutions to the equation `x^2 - 13y^2 = -3` given by (7, 2) and
(137, 38). Each tuple is in the form (x, y), i.e. solution (7, 2) means
that `x = 7` and `y = 2`.
>>> _special_diop_DN(2445, -20) # Solves equation x**2 - 2445*y**2 = -20
[(445, 9), (17625560, 356454), (698095554475, 14118073569)]
See Also
========
diop_DN()
References
==========
.. [1] Section 4.4.4 of the following book:
Quadratic Diophantine Equations, T. Andreescu and D. Andrica,
Springer, 2015.
"""
# The following assertion was removed for efficiency, with the understanding
# that this method is not called directly. The parent method, `diop_DN`
# is responsible for performing the appropriate checks.
#
# assert (1 < N**2 < D) and (not integer_nthroot(D, 2)[1])
sqrt_D = sqrt(D)
F = [(N, 1)]
f = 2
while True:
f2 = f**2
if f2 > abs(N):
break
n, r = divmod(N, f2)
if r == 0:
F.append((n, f))
f += 1
P = 0
Q = 1
G0, G1 = 0, 1
B0, B1 = 1, 0
solutions = []
i = 0
while True:
a = floor((P + sqrt_D) / Q)
P = a*Q - P
Q = (D - P**2) // Q
G2 = a*G1 + G0
B2 = a*B1 + B0
for n, f in F:
if G2**2 - D*B2**2 == n:
solutions.append((f*G2, f*B2))
i += 1
if Q == 1 and i % 2 == 0:
break
G0, G1 = G1, G2
B0, B1 = B1, B2
return solutions
def cornacchia(a, b, m):
r"""
Solves `ax^2 + by^2 = m` where `\gcd(a, b) = 1 = gcd(a, m)` and `a, b > 0`.
Explanation
===========
Uses the algorithm due to Cornacchia. The method only finds primitive
solutions, i.e. ones with `\gcd(x, y) = 1`. So this method cannot be used to
find the solutions of `x^2 + y^2 = 20` since the only solution to former is
`(x, y) = (4, 2)` and it is not primitive. When `a = b`, only the
solutions with `x \leq y` are found. For more details, see the References.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import cornacchia
>>> cornacchia(2, 3, 35) # equation 2x**2 + 3y**2 = 35
{(2, 3), (4, 1)}
>>> cornacchia(1, 1, 25) # equation x**2 + y**2 = 25
{(4, 3)}
References
===========
.. [1] A. Nitaj, "L'algorithme de Cornacchia"
.. [2] Solving the diophantine equation ax**2 + by**2 = m by Cornacchia's
method, [online], Available:
http://www.numbertheory.org/php/cornacchia.html
See Also
========
sympy.utilities.iterables.signed_permutations
"""
sols = set()
a1 = igcdex(a, m)[0]
v = sqrt_mod(-b*a1, m, all_roots=True)
if not v:
return None
for t in v:
if t < m // 2:
continue
u, r = t, m
while True:
u, r = r, u % r
if a*r**2 < m:
break
m1 = m - a*r**2
if m1 % b == 0:
m1 = m1 // b
s, _exact = integer_nthroot(m1, 2)
if _exact:
if a == b and r < s:
r, s = s, r
sols.add((int(r), int(s)))
return sols
def PQa(P_0, Q_0, D):
r"""
Returns useful information needed to solve the Pell equation.
Explanation
===========
There are six sequences of integers defined related to the continued
fraction representation of `\\frac{P + \sqrt{D}}{Q}`, namely {`P_{i}`},
{`Q_{i}`}, {`a_{i}`},{`A_{i}`}, {`B_{i}`}, {`G_{i}`}. ``PQa()`` Returns
these values as a 6-tuple in the same order as mentioned above. Refer [1]_
for more detailed information.
Usage
=====
``PQa(P_0, Q_0, D)``: ``P_0``, ``Q_0`` and ``D`` are integers corresponding
to `P_{0}`, `Q_{0}` and `D` in the continued fraction
`\\frac{P_{0} + \sqrt{D}}{Q_{0}}`.
Also it's assumed that `P_{0}^2 == D mod(|Q_{0}|)` and `D` is square free.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import PQa
>>> pqa = PQa(13, 4, 5) # (13 + sqrt(5))/4
>>> next(pqa) # (P_0, Q_0, a_0, A_0, B_0, G_0)
(13, 4, 3, 3, 1, -1)
>>> next(pqa) # (P_1, Q_1, a_1, A_1, B_1, G_1)
(-1, 1, 1, 4, 1, 3)
References
==========
.. [1] Solving the generalized Pell equation x^2 - Dy^2 = N, John P.
Robertson, July 31, 2004, Pages 4 - 8. https://web.archive.org/web/20160323033128/http://www.jpr2718.org/pell.pdf
"""
A_i_2 = B_i_1 = 0
A_i_1 = B_i_2 = 1
G_i_2 = -P_0
G_i_1 = Q_0
P_i = P_0
Q_i = Q_0
while True:
a_i = floor((P_i + sqrt(D))/Q_i)
A_i = a_i*A_i_1 + A_i_2
B_i = a_i*B_i_1 + B_i_2
G_i = a_i*G_i_1 + G_i_2
yield P_i, Q_i, a_i, A_i, B_i, G_i
A_i_1, A_i_2 = A_i, A_i_1
B_i_1, B_i_2 = B_i, B_i_1
G_i_1, G_i_2 = G_i, G_i_1
P_i = a_i*Q_i - P_i
Q_i = (D - P_i**2)/Q_i
def diop_bf_DN(D, N, t=symbols("t", integer=True)):
r"""
Uses brute force to solve the equation, `x^2 - Dy^2 = N`.
Explanation
===========
Mainly concerned with the generalized Pell equation which is the case when
`D > 0, D` is not a perfect square. For more information on the case refer
[1]_. Let `(t, u)` be the minimal positive solution of the equation
`x^2 - Dy^2 = 1`. Then this method requires
`\sqrt{\\frac{\mid N \mid (t \pm 1)}{2D}}` to be small.
Usage
=====
``diop_bf_DN(D, N, t)``: ``D`` and ``N`` are coefficients in
`x^2 - Dy^2 = N` and ``t`` is the parameter to be used in the solutions.
Details
=======
``D`` and ``N`` correspond to D and N in the equation.
``t`` is the parameter to be used in the solutions.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import diop_bf_DN
>>> diop_bf_DN(13, -4)
[(3, 1), (-3, 1), (36, 10)]
>>> diop_bf_DN(986, 1)
[(49299, 1570)]
See Also
========
diop_DN()
References
==========
.. [1] Solving the generalized Pell equation x**2 - D*y**2 = N, John P.
Robertson, July 31, 2004, Page 15. https://web.archive.org/web/20160323033128/http://www.jpr2718.org/pell.pdf
"""
D = as_int(D)
N = as_int(N)
sol = []
a = diop_DN(D, 1)
u = a[0][0]
if abs(N) == 1:
return diop_DN(D, N)
elif N > 1:
L1 = 0
L2 = integer_nthroot(int(N*(u - 1)/(2*D)), 2)[0] + 1
elif N < -1:
L1, _exact = integer_nthroot(-int(N/D), 2)
if not _exact:
L1 += 1
L2 = integer_nthroot(-int(N*(u + 1)/(2*D)), 2)[0] + 1
else: # N = 0
if D < 0:
return [(0, 0)]
elif D == 0:
return [(0, t)]
else:
sD, _exact = integer_nthroot(D, 2)
if _exact:
return [(sD*t, t), (-sD*t, t)]
else:
return [(0, 0)]
for y in range(L1, L2):
try:
x, _exact = integer_nthroot(N + D*y**2, 2)
except ValueError:
_exact = False
if _exact:
sol.append((x, y))
if not equivalent(x, y, -x, y, D, N):
sol.append((-x, y))
return sol
def equivalent(u, v, r, s, D, N):
"""
Returns True if two solutions `(u, v)` and `(r, s)` of `x^2 - Dy^2 = N`
belongs to the same equivalence class and False otherwise.
Explanation
===========
Two solutions `(u, v)` and `(r, s)` to the above equation fall to the same
equivalence class iff both `(ur - Dvs)` and `(us - vr)` are divisible by
`N`. See reference [1]_. No test is performed to test whether `(u, v)` and
`(r, s)` are actually solutions to the equation. User should take care of
this.
Usage
=====
``equivalent(u, v, r, s, D, N)``: `(u, v)` and `(r, s)` are two solutions
of the equation `x^2 - Dy^2 = N` and all parameters involved are integers.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import equivalent
>>> equivalent(18, 5, -18, -5, 13, -1)
True
>>> equivalent(3, 1, -18, 393, 109, -4)
False
References
==========
.. [1] Solving the generalized Pell equation x**2 - D*y**2 = N, John P.
Robertson, July 31, 2004, Page 12. https://web.archive.org/web/20160323033128/http://www.jpr2718.org/pell.pdf
"""
return divisible(u*r - D*v*s, N) and divisible(u*s - v*r, N)
def length(P, Q, D):
r"""
Returns the (length of aperiodic part + length of periodic part) of
continued fraction representation of `\\frac{P + \sqrt{D}}{Q}`.
It is important to remember that this does NOT return the length of the
periodic part but the sum of the lengths of the two parts as mentioned
above.
Usage
=====
``length(P, Q, D)``: ``P``, ``Q`` and ``D`` are integers corresponding to
the continued fraction `\\frac{P + \sqrt{D}}{Q}`.
Details
=======
``P``, ``D`` and ``Q`` corresponds to P, D and Q in the continued fraction,
`\\frac{P + \sqrt{D}}{Q}`.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import length
>>> length(-2, 4, 5) # (-2 + sqrt(5))/4
3
>>> length(-5, 4, 17) # (-5 + sqrt(17))/4
4
See Also
========
sympy.ntheory.continued_fraction.continued_fraction_periodic
"""
from sympy.ntheory.continued_fraction import continued_fraction_periodic
v = continued_fraction_periodic(P, Q, D)
if isinstance(v[-1], list):
rpt = len(v[-1])
nonrpt = len(v) - 1
else:
rpt = 0
nonrpt = len(v)
return rpt + nonrpt
def transformation_to_DN(eq):
"""
This function transforms general quadratic,
`ax^2 + bxy + cy^2 + dx + ey + f = 0`
to more easy to deal with `X^2 - DY^2 = N` form.
Explanation
===========
This is used to solve the general quadratic equation by transforming it to
the latter form. Refer to [1]_ for more detailed information on the
transformation. This function returns a tuple (A, B) where A is a 2 X 2
matrix and B is a 2 X 1 matrix such that,
Transpose([x y]) = A * Transpose([X Y]) + B
Usage
=====
``transformation_to_DN(eq)``: where ``eq`` is the quadratic to be
transformed.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.solvers.diophantine.diophantine import transformation_to_DN
>>> A, B = transformation_to_DN(x**2 - 3*x*y - y**2 - 2*y + 1)
>>> A
Matrix([
[1/26, 3/26],
[ 0, 1/13]])
>>> B
Matrix([
[-6/13],
[-4/13]])
A, B returned are such that Transpose((x y)) = A * Transpose((X Y)) + B.
Substituting these values for `x` and `y` and a bit of simplifying work
will give an equation of the form `x^2 - Dy^2 = N`.
>>> from sympy.abc import X, Y
>>> from sympy import Matrix, simplify
>>> u = (A*Matrix([X, Y]) + B)[0] # Transformation for x
>>> u
X/26 + 3*Y/26 - 6/13
>>> v = (A*Matrix([X, Y]) + B)[1] # Transformation for y
>>> v
Y/13 - 4/13
Next we will substitute these formulas for `x` and `y` and do
``simplify()``.
>>> eq = simplify((x**2 - 3*x*y - y**2 - 2*y + 1).subs(zip((x, y), (u, v))))
>>> eq
X**2/676 - Y**2/52 + 17/13
By multiplying the denominator appropriately, we can get a Pell equation
in the standard form.
>>> eq * 676
X**2 - 13*Y**2 + 884
If only the final equation is needed, ``find_DN()`` can be used.
See Also
========
find_DN()
References
==========
.. [1] Solving the equation ax^2 + bxy + cy^2 + dx + ey + f = 0,
John P.Robertson, May 8, 2003, Page 7 - 11.
https://web.archive.org/web/20160323033111/http://www.jpr2718.org/ax2p.pdf
"""
var, coeff, diop_type = classify_diop(eq, _dict=False)
if diop_type == BinaryQuadratic.name:
return _transformation_to_DN(var, coeff)
def _transformation_to_DN(var, coeff):
x, y = var
a = coeff[x**2]
b = coeff[x*y]
c = coeff[y**2]
d = coeff[x]
e = coeff[y]
f = coeff[1]
a, b, c, d, e, f = [as_int(i) for i in _remove_gcd(a, b, c, d, e, f)]
X, Y = symbols("X, Y", integer=True)
if b:
B, C = _rational_pq(2*a, b)
A, T = _rational_pq(a, B**2)
# eq_1 = A*B*X**2 + B*(c*T - A*C**2)*Y**2 + d*T*X + (B*e*T - d*T*C)*Y + f*T*B
coeff = {X**2: A*B, X*Y: 0, Y**2: B*(c*T - A*C**2), X: d*T, Y: B*e*T - d*T*C, 1: f*T*B}
A_0, B_0 = _transformation_to_DN([X, Y], coeff)
return Matrix(2, 2, [S.One/B, -S(C)/B, 0, 1])*A_0, Matrix(2, 2, [S.One/B, -S(C)/B, 0, 1])*B_0
else:
if d:
B, C = _rational_pq(2*a, d)
A, T = _rational_pq(a, B**2)
# eq_2 = A*X**2 + c*T*Y**2 + e*T*Y + f*T - A*C**2
coeff = {X**2: A, X*Y: 0, Y**2: c*T, X: 0, Y: e*T, 1: f*T - A*C**2}
A_0, B_0 = _transformation_to_DN([X, Y], coeff)
return Matrix(2, 2, [S.One/B, 0, 0, 1])*A_0, Matrix(2, 2, [S.One/B, 0, 0, 1])*B_0 + Matrix([-S(C)/B, 0])
else:
if e:
B, C = _rational_pq(2*c, e)
A, T = _rational_pq(c, B**2)
# eq_3 = a*T*X**2 + A*Y**2 + f*T - A*C**2
coeff = {X**2: a*T, X*Y: 0, Y**2: A, X: 0, Y: 0, 1: f*T - A*C**2}
A_0, B_0 = _transformation_to_DN([X, Y], coeff)
return Matrix(2, 2, [1, 0, 0, S.One/B])*A_0, Matrix(2, 2, [1, 0, 0, S.One/B])*B_0 + Matrix([0, -S(C)/B])
else:
# TODO: pre-simplification: Not necessary but may simplify
# the equation.
return Matrix(2, 2, [S.One/a, 0, 0, 1]), Matrix([0, 0])
def find_DN(eq):
"""
This function returns a tuple, `(D, N)` of the simplified form,
`x^2 - Dy^2 = N`, corresponding to the general quadratic,
`ax^2 + bxy + cy^2 + dx + ey + f = 0`.
Solving the general quadratic is then equivalent to solving the equation
`X^2 - DY^2 = N` and transforming the solutions by using the transformation
matrices returned by ``transformation_to_DN()``.
Usage
=====
``find_DN(eq)``: where ``eq`` is the quadratic to be transformed.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.solvers.diophantine.diophantine import find_DN
>>> find_DN(x**2 - 3*x*y - y**2 - 2*y + 1)
(13, -884)
Interpretation of the output is that we get `X^2 -13Y^2 = -884` after
transforming `x^2 - 3xy - y^2 - 2y + 1` using the transformation returned
by ``transformation_to_DN()``.
See Also
========
transformation_to_DN()
References
==========
.. [1] Solving the equation ax^2 + bxy + cy^2 + dx + ey + f = 0,
John P.Robertson, May 8, 2003, Page 7 - 11.
https://web.archive.org/web/20160323033111/http://www.jpr2718.org/ax2p.pdf
"""
var, coeff, diop_type = classify_diop(eq, _dict=False)
if diop_type == BinaryQuadratic.name:
return _find_DN(var, coeff)
def _find_DN(var, coeff):
x, y = var
X, Y = symbols("X, Y", integer=True)
A, B = _transformation_to_DN(var, coeff)
u = (A*Matrix([X, Y]) + B)[0]
v = (A*Matrix([X, Y]) + B)[1]
eq = x**2*coeff[x**2] + x*y*coeff[x*y] + y**2*coeff[y**2] + x*coeff[x] + y*coeff[y] + coeff[1]
simplified = _mexpand(eq.subs(zip((x, y), (u, v))))
coeff = simplified.as_coefficients_dict()
return -coeff[Y**2]/coeff[X**2], -coeff[1]/coeff[X**2]
def check_param(x, y, a, params):
"""
If there is a number modulo ``a`` such that ``x`` and ``y`` are both
integers, then return a parametric representation for ``x`` and ``y``
else return (None, None).
Here ``x`` and ``y`` are functions of ``t``.
"""
from sympy.simplify.simplify import clear_coefficients
if x.is_number and not x.is_Integer:
return DiophantineSolutionSet([x, y], parameters=params)
if y.is_number and not y.is_Integer:
return DiophantineSolutionSet([x, y], parameters=params)
m, n = symbols("m, n", integer=True)
c, p = (m*x + n*y).as_content_primitive()
if a % c.q:
return DiophantineSolutionSet([x, y], parameters=params)
# clear_coefficients(mx + b, R)[1] -> (R - b)/m
eq = clear_coefficients(x, m)[1] - clear_coefficients(y, n)[1]
junk, eq = eq.as_content_primitive()
return _diop_solve(eq, params=params)
def diop_ternary_quadratic(eq, parameterize=False):
"""
Solves the general quadratic ternary form,
`ax^2 + by^2 + cz^2 + fxy + gyz + hxz = 0`.
Returns a tuple `(x, y, z)` which is a base solution for the above
equation. If there are no solutions, `(None, None, None)` is returned.
Usage
=====
``diop_ternary_quadratic(eq)``: Return a tuple containing a basic solution
to ``eq``.
Details
=======
``eq`` should be an homogeneous expression of degree two in three variables
and it is assumed to be zero.
Examples
========
>>> from sympy.abc import x, y, z
>>> from sympy.solvers.diophantine.diophantine import diop_ternary_quadratic
>>> diop_ternary_quadratic(x**2 + 3*y**2 - z**2)
(1, 0, 1)
>>> diop_ternary_quadratic(4*x**2 + 5*y**2 - z**2)
(1, 0, 2)
>>> diop_ternary_quadratic(45*x**2 - 7*y**2 - 8*x*y - z**2)
(28, 45, 105)
>>> diop_ternary_quadratic(x**2 - 49*y**2 - z**2 + 13*z*y -8*x*y)
(9, 1, 5)
"""
var, coeff, diop_type = classify_diop(eq, _dict=False)
if diop_type in (
HomogeneousTernaryQuadratic.name,
HomogeneousTernaryQuadraticNormal.name):
sol = _diop_ternary_quadratic(var, coeff)
if len(sol) > 0:
x_0, y_0, z_0 = list(sol)[0]
else:
x_0, y_0, z_0 = None, None, None
if parameterize:
return _parametrize_ternary_quadratic(
(x_0, y_0, z_0), var, coeff)
return x_0, y_0, z_0
def _diop_ternary_quadratic(_var, coeff):
eq = sum([i*coeff[i] for i in coeff])
if HomogeneousTernaryQuadratic(eq).matches():
return HomogeneousTernaryQuadratic(eq, free_symbols=_var).solve()
elif HomogeneousTernaryQuadraticNormal(eq).matches():
return HomogeneousTernaryQuadraticNormal(eq, free_symbols=_var).solve()
def transformation_to_normal(eq):
"""
Returns the transformation Matrix that converts a general ternary
quadratic equation ``eq`` (`ax^2 + by^2 + cz^2 + dxy + eyz + fxz`)
to a form without cross terms: `ax^2 + by^2 + cz^2 = 0`. This is
not used in solving ternary quadratics; it is only implemented for
the sake of completeness.
"""
var, coeff, diop_type = classify_diop(eq, _dict=False)
if diop_type in (
"homogeneous_ternary_quadratic",
"homogeneous_ternary_quadratic_normal"):
return _transformation_to_normal(var, coeff)
def _transformation_to_normal(var, coeff):
_var = list(var) # copy
x, y, z = var
if not any(coeff[i**2] for i in var):
# https://math.stackexchange.com/questions/448051/transform-quadratic-ternary-form-to-normal-form/448065#448065
a = coeff[x*y]
b = coeff[y*z]
c = coeff[x*z]
swap = False
if not a: # b can't be 0 or else there aren't 3 vars
swap = True
a, b = b, a
T = Matrix(((1, 1, -b/a), (1, -1, -c/a), (0, 0, 1)))
if swap:
T.row_swap(0, 1)
T.col_swap(0, 1)
return T
if coeff[x**2] == 0:
# If the coefficient of x is zero change the variables
if coeff[y**2] == 0:
_var[0], _var[2] = var[2], var[0]
T = _transformation_to_normal(_var, coeff)
T.row_swap(0, 2)
T.col_swap(0, 2)
return T
else:
_var[0], _var[1] = var[1], var[0]
T = _transformation_to_normal(_var, coeff)
T.row_swap(0, 1)
T.col_swap(0, 1)
return T
# Apply the transformation x --> X - (B*Y + C*Z)/(2*A)
if coeff[x*y] != 0 or coeff[x*z] != 0:
A = coeff[x**2]
B = coeff[x*y]
C = coeff[x*z]
D = coeff[y**2]
E = coeff[y*z]
F = coeff[z**2]
_coeff = {}
_coeff[x**2] = 4*A**2
_coeff[y**2] = 4*A*D - B**2
_coeff[z**2] = 4*A*F - C**2
_coeff[y*z] = 4*A*E - 2*B*C
_coeff[x*y] = 0
_coeff[x*z] = 0
T_0 = _transformation_to_normal(_var, _coeff)
return Matrix(3, 3, [1, S(-B)/(2*A), S(-C)/(2*A), 0, 1, 0, 0, 0, 1])*T_0
elif coeff[y*z] != 0:
if coeff[y**2] == 0:
if coeff[z**2] == 0:
# Equations of the form A*x**2 + E*yz = 0.
# Apply transformation y -> Y + Z ans z -> Y - Z
return Matrix(3, 3, [1, 0, 0, 0, 1, 1, 0, 1, -1])
else:
# Ax**2 + E*y*z + F*z**2 = 0
_var[0], _var[2] = var[2], var[0]
T = _transformation_to_normal(_var, coeff)
T.row_swap(0, 2)
T.col_swap(0, 2)
return T
else:
# A*x**2 + D*y**2 + E*y*z + F*z**2 = 0, F may be zero
_var[0], _var[1] = var[1], var[0]
T = _transformation_to_normal(_var, coeff)
T.row_swap(0, 1)
T.col_swap(0, 1)
return T
else:
return Matrix.eye(3)
def parametrize_ternary_quadratic(eq):
"""
Returns the parametrized general solution for the ternary quadratic
equation ``eq`` which has the form
`ax^2 + by^2 + cz^2 + fxy + gyz + hxz = 0`.
Examples
========
>>> from sympy import Tuple, ordered
>>> from sympy.abc import x, y, z
>>> from sympy.solvers.diophantine.diophantine import parametrize_ternary_quadratic
The parametrized solution may be returned with three parameters:
>>> parametrize_ternary_quadratic(2*x**2 + y**2 - 2*z**2)
(p**2 - 2*q**2, -2*p**2 + 4*p*q - 4*p*r - 4*q**2, p**2 - 4*p*q + 2*q**2 - 4*q*r)
There might also be only two parameters:
>>> parametrize_ternary_quadratic(4*x**2 + 2*y**2 - 3*z**2)
(2*p**2 - 3*q**2, -4*p**2 + 12*p*q - 6*q**2, 4*p**2 - 8*p*q + 6*q**2)
Notes
=====
Consider ``p`` and ``q`` in the previous 2-parameter
solution and observe that more than one solution can be represented
by a given pair of parameters. If `p` and ``q`` are not coprime, this is
trivially true since the common factor will also be a common factor of the
solution values. But it may also be true even when ``p`` and
``q`` are coprime:
>>> sol = Tuple(*_)
>>> p, q = ordered(sol.free_symbols)
>>> sol.subs([(p, 3), (q, 2)])
(6, 12, 12)
>>> sol.subs([(q, 1), (p, 1)])
(-1, 2, 2)
>>> sol.subs([(q, 0), (p, 1)])
(2, -4, 4)
>>> sol.subs([(q, 1), (p, 0)])
(-3, -6, 6)
Except for sign and a common factor, these are equivalent to
the solution of (1, 2, 2).
References
==========
.. [1] The algorithmic resolution of Diophantine equations, Nigel P. Smart,
London Mathematical Society Student Texts 41, Cambridge University
Press, Cambridge, 1998.
"""
var, coeff, diop_type = classify_diop(eq, _dict=False)
if diop_type in (
"homogeneous_ternary_quadratic",
"homogeneous_ternary_quadratic_normal"):
x_0, y_0, z_0 = list(_diop_ternary_quadratic(var, coeff))[0]
return _parametrize_ternary_quadratic(
(x_0, y_0, z_0), var, coeff)
def _parametrize_ternary_quadratic(solution, _var, coeff):
# called for a*x**2 + b*y**2 + c*z**2 + d*x*y + e*y*z + f*x*z = 0
assert 1 not in coeff
x_0, y_0, z_0 = solution
v = list(_var) # copy
if x_0 is None:
return (None, None, None)
if solution.count(0) >= 2:
# if there are 2 zeros the equation reduces
# to k*X**2 == 0 where X is x, y, or z so X must
# be zero, too. So there is only the trivial
# solution.
return (None, None, None)
if x_0 == 0:
v[0], v[1] = v[1], v[0]
y_p, x_p, z_p = _parametrize_ternary_quadratic(
(y_0, x_0, z_0), v, coeff)
return x_p, y_p, z_p
x, y, z = v
r, p, q = symbols("r, p, q", integer=True)
eq = sum(k*v for k, v in coeff.items())
eq_1 = _mexpand(eq.subs(zip(
(x, y, z), (r*x_0, r*y_0 + p, r*z_0 + q))))
A, B = eq_1.as_independent(r, as_Add=True)
x = A*x_0
y = (A*y_0 - _mexpand(B/r*p))
z = (A*z_0 - _mexpand(B/r*q))
return _remove_gcd(x, y, z)
def diop_ternary_quadratic_normal(eq, parameterize=False):
"""
Solves the quadratic ternary diophantine equation,
`ax^2 + by^2 + cz^2 = 0`.
Explanation
===========
Here the coefficients `a`, `b`, and `c` should be non zero. Otherwise the
equation will be a quadratic binary or univariate equation. If solvable,
returns a tuple `(x, y, z)` that satisfies the given equation. If the
equation does not have integer solutions, `(None, None, None)` is returned.
Usage
=====
``diop_ternary_quadratic_normal(eq)``: where ``eq`` is an equation of the form
`ax^2 + by^2 + cz^2 = 0`.
Examples
========
>>> from sympy.abc import x, y, z
>>> from sympy.solvers.diophantine.diophantine import diop_ternary_quadratic_normal
>>> diop_ternary_quadratic_normal(x**2 + 3*y**2 - z**2)
(1, 0, 1)
>>> diop_ternary_quadratic_normal(4*x**2 + 5*y**2 - z**2)
(1, 0, 2)
>>> diop_ternary_quadratic_normal(34*x**2 - 3*y**2 - 301*z**2)
(4, 9, 1)
"""
var, coeff, diop_type = classify_diop(eq, _dict=False)
if diop_type == HomogeneousTernaryQuadraticNormal.name:
sol = _diop_ternary_quadratic_normal(var, coeff)
if len(sol) > 0:
x_0, y_0, z_0 = list(sol)[0]
else:
x_0, y_0, z_0 = None, None, None
if parameterize:
return _parametrize_ternary_quadratic(
(x_0, y_0, z_0), var, coeff)
return x_0, y_0, z_0
def _diop_ternary_quadratic_normal(var, coeff):
eq = sum([i * coeff[i] for i in coeff])
return HomogeneousTernaryQuadraticNormal(eq, free_symbols=var).solve()
def sqf_normal(a, b, c, steps=False):
"""
Return `a', b', c'`, the coefficients of the square-free normal
form of `ax^2 + by^2 + cz^2 = 0`, where `a', b', c'` are pairwise
prime. If `steps` is True then also return three tuples:
`sq`, `sqf`, and `(a', b', c')` where `sq` contains the square
factors of `a`, `b` and `c` after removing the `gcd(a, b, c)`;
`sqf` contains the values of `a`, `b` and `c` after removing
both the `gcd(a, b, c)` and the square factors.
The solutions for `ax^2 + by^2 + cz^2 = 0` can be
recovered from the solutions of `a'x^2 + b'y^2 + c'z^2 = 0`.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import sqf_normal
>>> sqf_normal(2 * 3**2 * 5, 2 * 5 * 11, 2 * 7**2 * 11)
(11, 1, 5)
>>> sqf_normal(2 * 3**2 * 5, 2 * 5 * 11, 2 * 7**2 * 11, True)
((3, 1, 7), (5, 55, 11), (11, 1, 5))
References
==========
.. [1] Legendre's Theorem, Legrange's Descent,
http://public.csusm.edu/aitken_html/notes/legendre.pdf
See Also
========
reconstruct()
"""
ABC = _remove_gcd(a, b, c)
sq = tuple(square_factor(i) for i in ABC)
sqf = A, B, C = tuple([i//j**2 for i,j in zip(ABC, sq)])
pc = igcd(A, B)
A /= pc
B /= pc
pa = igcd(B, C)
B /= pa
C /= pa
pb = igcd(A, C)
A /= pb
B /= pb
A *= pa
B *= pb
C *= pc
if steps:
return (sq, sqf, (A, B, C))
else:
return A, B, C
def square_factor(a):
r"""
Returns an integer `c` s.t. `a = c^2k, \ c,k \in Z`. Here `k` is square
free. `a` can be given as an integer or a dictionary of factors.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import square_factor
>>> square_factor(24)
2
>>> square_factor(-36*3)
6
>>> square_factor(1)
1
>>> square_factor({3: 2, 2: 1, -1: 1}) # -18
3
See Also
========
sympy.ntheory.factor_.core
"""
f = a if isinstance(a, dict) else factorint(a)
return Mul(*[p**(e//2) for p, e in f.items()])
def reconstruct(A, B, z):
"""
Reconstruct the `z` value of an equivalent solution of `ax^2 + by^2 + cz^2`
from the `z` value of a solution of the square-free normal form of the
equation, `a'*x^2 + b'*y^2 + c'*z^2`, where `a'`, `b'` and `c'` are square
free and `gcd(a', b', c') == 1`.
"""
f = factorint(igcd(A, B))
for p, e in f.items():
if e != 1:
raise ValueError('a and b should be square-free')
z *= p
return z
def ldescent(A, B):
"""
Return a non-trivial solution to `w^2 = Ax^2 + By^2` using
Lagrange's method; return None if there is no such solution.
.
Here, `A \\neq 0` and `B \\neq 0` and `A` and `B` are square free. Output a
tuple `(w_0, x_0, y_0)` which is a solution to the above equation.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import ldescent
>>> ldescent(1, 1) # w^2 = x^2 + y^2
(1, 1, 0)
>>> ldescent(4, -7) # w^2 = 4x^2 - 7y^2
(2, -1, 0)
This means that `x = -1, y = 0` and `w = 2` is a solution to the equation
`w^2 = 4x^2 - 7y^2`
>>> ldescent(5, -1) # w^2 = 5x^2 - y^2
(2, 1, -1)
References
==========
.. [1] The algorithmic resolution of Diophantine equations, Nigel P. Smart,
London Mathematical Society Student Texts 41, Cambridge University
Press, Cambridge, 1998.
.. [2] Efficient Solution of Rational Conices, J. E. Cremona and D. Rusin,
[online], Available:
https://nottingham-repository.worktribe.com/output/1023265/efficient-solution-of-rational-conics
"""
if abs(A) > abs(B):
w, y, x = ldescent(B, A)
return w, x, y
if A == 1:
return (1, 1, 0)
if B == 1:
return (1, 0, 1)
if B == -1: # and A == -1
return
r = sqrt_mod(A, B)
Q = (r**2 - A) // B
if Q == 0:
B_0 = 1
d = 0
else:
div = divisors(Q)
B_0 = None
for i in div:
sQ, _exact = integer_nthroot(abs(Q) // i, 2)
if _exact:
B_0, d = sign(Q)*i, sQ
break
if B_0 is not None:
W, X, Y = ldescent(A, B_0)
return _remove_gcd((-A*X + r*W), (r*X - W), Y*(B_0*d))
def descent(A, B):
"""
Returns a non-trivial solution, (x, y, z), to `x^2 = Ay^2 + Bz^2`
using Lagrange's descent method with lattice-reduction. `A` and `B`
are assumed to be valid for such a solution to exist.
This is faster than the normal Lagrange's descent algorithm because
the Gaussian reduction is used.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import descent
>>> descent(3, 1) # x**2 = 3*y**2 + z**2
(1, 0, 1)
`(x, y, z) = (1, 0, 1)` is a solution to the above equation.
>>> descent(41, -113)
(-16, -3, 1)
References
==========
.. [1] Efficient Solution of Rational Conices, J. E. Cremona and D. Rusin,
Mathematics of Computation, Volume 00, Number 0.
"""
if abs(A) > abs(B):
x, y, z = descent(B, A)
return x, z, y
if B == 1:
return (1, 0, 1)
if A == 1:
return (1, 1, 0)
if B == -A:
return (0, 1, 1)
if B == A:
x, z, y = descent(-1, A)
return (A*y, z, x)
w = sqrt_mod(A, B)
x_0, z_0 = gaussian_reduce(w, A, B)
t = (x_0**2 - A*z_0**2) // B
t_2 = square_factor(t)
t_1 = t // t_2**2
x_1, z_1, y_1 = descent(A, t_1)
return _remove_gcd(x_0*x_1 + A*z_0*z_1, z_0*x_1 + x_0*z_1, t_1*t_2*y_1)
def gaussian_reduce(w, a, b):
r"""
Returns a reduced solution `(x, z)` to the congruence
`X^2 - aZ^2 \equiv 0 \ (mod \ b)` so that `x^2 + |a|z^2` is minimal.
Details
=======
Here ``w`` is a solution of the congruence `x^2 \equiv a \ (mod \ b)`
References
==========
.. [1] Gaussian lattice Reduction [online]. Available:
http://home.ie.cuhk.edu.hk/~wkshum/wordpress/?p=404
.. [2] Efficient Solution of Rational Conices, J. E. Cremona and D. Rusin,
Mathematics of Computation, Volume 00, Number 0.
"""
u = (0, 1)
v = (1, 0)
if dot(u, v, w, a, b) < 0:
v = (-v[0], -v[1])
if norm(u, w, a, b) < norm(v, w, a, b):
u, v = v, u
while norm(u, w, a, b) > norm(v, w, a, b):
k = dot(u, v, w, a, b) // dot(v, v, w, a, b)
u, v = v, (u[0]- k*v[0], u[1]- k*v[1])
u, v = v, u
if dot(u, v, w, a, b) < dot(v, v, w, a, b)/2 or norm((u[0]-v[0], u[1]-v[1]), w, a, b) > norm(v, w, a, b):
c = v
else:
c = (u[0] - v[0], u[1] - v[1])
return c[0]*w + b*c[1], c[0]
def dot(u, v, w, a, b):
r"""
Returns a special dot product of the vectors `u = (u_{1}, u_{2})` and
`v = (v_{1}, v_{2})` which is defined in order to reduce solution of
the congruence equation `X^2 - aZ^2 \equiv 0 \ (mod \ b)`.
"""
u_1, u_2 = u
v_1, v_2 = v
return (w*u_1 + b*u_2)*(w*v_1 + b*v_2) + abs(a)*u_1*v_1
def norm(u, w, a, b):
r"""
Returns the norm of the vector `u = (u_{1}, u_{2})` under the dot product
defined by `u \cdot v = (wu_{1} + bu_{2})(w*v_{1} + bv_{2}) + |a|*u_{1}*v_{1}`
where `u = (u_{1}, u_{2})` and `v = (v_{1}, v_{2})`.
"""
u_1, u_2 = u
return sqrt(dot((u_1, u_2), (u_1, u_2), w, a, b))
def holzer(x, y, z, a, b, c):
r"""
Simplify the solution `(x, y, z)` of the equation
`ax^2 + by^2 = cz^2` with `a, b, c > 0` and `z^2 \geq \mid ab \mid` to
a new reduced solution `(x', y', z')` such that `z'^2 \leq \mid ab \mid`.
The algorithm is an interpretation of Mordell's reduction as described
on page 8 of Cremona and Rusin's paper [1]_ and the work of Mordell in
reference [2]_.
References
==========
.. [1] Efficient Solution of Rational Conices, J. E. Cremona and D. Rusin,
Mathematics of Computation, Volume 00, Number 0.
.. [2] Diophantine Equations, L. J. Mordell, page 48.
"""
if _odd(c):
k = 2*c
else:
k = c//2
small = a*b*c
step = 0
while True:
t1, t2, t3 = a*x**2, b*y**2, c*z**2
# check that it's a solution
if t1 + t2 != t3:
if step == 0:
raise ValueError('bad starting solution')
break
x_0, y_0, z_0 = x, y, z
if max(t1, t2, t3) <= small:
# Holzer condition
break
uv = u, v = base_solution_linear(k, y_0, -x_0)
if None in uv:
break
p, q = -(a*u*x_0 + b*v*y_0), c*z_0
r = Rational(p, q)
if _even(c):
w = _nint_or_floor(p, q)
assert abs(w - r) <= S.Half
else:
w = p//q # floor
if _odd(a*u + b*v + c*w):
w += 1
assert abs(w - r) <= S.One
A = (a*u**2 + b*v**2 + c*w**2)
B = (a*u*x_0 + b*v*y_0 + c*w*z_0)
x = Rational(x_0*A - 2*u*B, k)
y = Rational(y_0*A - 2*v*B, k)
z = Rational(z_0*A - 2*w*B, k)
assert all(i.is_Integer for i in (x, y, z))
step += 1
return tuple([int(i) for i in (x_0, y_0, z_0)])
def diop_general_pythagorean(eq, param=symbols("m", integer=True)):
"""
Solves the general pythagorean equation,
`a_{1}^2x_{1}^2 + a_{2}^2x_{2}^2 + . . . + a_{n}^2x_{n}^2 - a_{n + 1}^2x_{n + 1}^2 = 0`.
Returns a tuple which contains a parametrized solution to the equation,
sorted in the same order as the input variables.
Usage
=====
``diop_general_pythagorean(eq, param)``: where ``eq`` is a general
pythagorean equation which is assumed to be zero and ``param`` is the base
parameter used to construct other parameters by subscripting.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import diop_general_pythagorean
>>> from sympy.abc import a, b, c, d, e
>>> diop_general_pythagorean(a**2 + b**2 + c**2 - d**2)
(m1**2 + m2**2 - m3**2, 2*m1*m3, 2*m2*m3, m1**2 + m2**2 + m3**2)
>>> diop_general_pythagorean(9*a**2 - 4*b**2 + 16*c**2 + 25*d**2 + e**2)
(10*m1**2 + 10*m2**2 + 10*m3**2 - 10*m4**2, 15*m1**2 + 15*m2**2 + 15*m3**2 + 15*m4**2, 15*m1*m4, 12*m2*m4, 60*m3*m4)
"""
var, coeff, diop_type = classify_diop(eq, _dict=False)
if diop_type == GeneralPythagorean.name:
if param is None:
params = None
else:
params = symbols('%s1:%i' % (param, len(var)), integer=True)
return list(GeneralPythagorean(eq).solve(parameters=params))[0]
def diop_general_sum_of_squares(eq, limit=1):
r"""
Solves the equation `x_{1}^2 + x_{2}^2 + . . . + x_{n}^2 - k = 0`.
Returns at most ``limit`` number of solutions.
Usage
=====
``general_sum_of_squares(eq, limit)`` : Here ``eq`` is an expression which
is assumed to be zero. Also, ``eq`` should be in the form,
`x_{1}^2 + x_{2}^2 + . . . + x_{n}^2 - k = 0`.
Details
=======
When `n = 3` if `k = 4^a(8m + 7)` for some `a, m \in Z` then there will be
no solutions. Refer to [1]_ for more details.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import diop_general_sum_of_squares
>>> from sympy.abc import a, b, c, d, e
>>> diop_general_sum_of_squares(a**2 + b**2 + c**2 + d**2 + e**2 - 2345)
{(15, 22, 22, 24, 24)}
Reference
=========
.. [1] Representing an integer as a sum of three squares, [online],
Available:
http://www.proofwiki.org/wiki/Integer_as_Sum_of_Three_Squares
"""
var, coeff, diop_type = classify_diop(eq, _dict=False)
if diop_type == GeneralSumOfSquares.name:
return set(GeneralSumOfSquares(eq).solve(limit=limit))
def diop_general_sum_of_even_powers(eq, limit=1):
"""
Solves the equation `x_{1}^e + x_{2}^e + . . . + x_{n}^e - k = 0`
where `e` is an even, integer power.
Returns at most ``limit`` number of solutions.
Usage
=====
``general_sum_of_even_powers(eq, limit)`` : Here ``eq`` is an expression which
is assumed to be zero. Also, ``eq`` should be in the form,
`x_{1}^e + x_{2}^e + . . . + x_{n}^e - k = 0`.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import diop_general_sum_of_even_powers
>>> from sympy.abc import a, b
>>> diop_general_sum_of_even_powers(a**4 + b**4 - (2**4 + 3**4))
{(2, 3)}
See Also
========
power_representation
"""
var, coeff, diop_type = classify_diop(eq, _dict=False)
if diop_type == GeneralSumOfEvenPowers.name:
return set(GeneralSumOfEvenPowers(eq).solve(limit=limit))
## Functions below this comment can be more suitably grouped under
## an Additive number theory module rather than the Diophantine
## equation module.
def partition(n, k=None, zeros=False):
"""
Returns a generator that can be used to generate partitions of an integer
`n`.
Explanation
===========
A partition of `n` is a set of positive integers which add up to `n`. For
example, partitions of 3 are 3, 1 + 2, 1 + 1 + 1. A partition is returned
as a tuple. If ``k`` equals None, then all possible partitions are returned
irrespective of their size, otherwise only the partitions of size ``k`` are
returned. If the ``zero`` parameter is set to True then a suitable
number of zeros are added at the end of every partition of size less than
``k``.
``zero`` parameter is considered only if ``k`` is not None. When the
partitions are over, the last `next()` call throws the ``StopIteration``
exception, so this function should always be used inside a try - except
block.
Details
=======
``partition(n, k)``: Here ``n`` is a positive integer and ``k`` is the size
of the partition which is also positive integer.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import partition
>>> f = partition(5)
>>> next(f)
(1, 1, 1, 1, 1)
>>> next(f)
(1, 1, 1, 2)
>>> g = partition(5, 3)
>>> next(g)
(1, 1, 3)
>>> next(g)
(1, 2, 2)
>>> g = partition(5, 3, zeros=True)
>>> next(g)
(0, 0, 5)
"""
if not zeros or k is None:
for i in ordered_partitions(n, k):
yield tuple(i)
else:
for m in range(1, k + 1):
for i in ordered_partitions(n, m):
i = tuple(i)
yield (0,)*(k - len(i)) + i
def prime_as_sum_of_two_squares(p):
"""
Represent a prime `p` as a unique sum of two squares; this can
only be done if the prime is congruent to 1 mod 4.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import prime_as_sum_of_two_squares
>>> prime_as_sum_of_two_squares(7) # can't be done
>>> prime_as_sum_of_two_squares(5)
(1, 2)
Reference
=========
.. [1] Representing a number as a sum of four squares, [online],
Available: http://schorn.ch/lagrange.html
See Also
========
sum_of_squares()
"""
if not p % 4 == 1:
return
if p % 8 == 5:
b = 2
else:
b = 3
while pow(b, (p - 1) // 2, p) == 1:
b = nextprime(b)
b = pow(b, (p - 1) // 4, p)
a = p
while b**2 > p:
a, b = b, a % b
return (int(a % b), int(b)) # convert from long
def sum_of_three_squares(n):
r"""
Returns a 3-tuple $(a, b, c)$ such that $a^2 + b^2 + c^2 = n$ and
$a, b, c \geq 0$.
Returns None if $n = 4^a(8m + 7)$ for some `a, m \in \mathbb{Z}`. See
[1]_ for more details.
Usage
=====
``sum_of_three_squares(n)``: Here ``n`` is a non-negative integer.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import sum_of_three_squares
>>> sum_of_three_squares(44542)
(18, 37, 207)
References
==========
.. [1] Representing a number as a sum of three squares, [online],
Available: http://schorn.ch/lagrange.html
See Also
========
sum_of_squares()
"""
special = {1:(1, 0, 0), 2:(1, 1, 0), 3:(1, 1, 1), 10: (1, 3, 0), 34: (3, 3, 4), 58:(3, 7, 0),
85:(6, 7, 0), 130:(3, 11, 0), 214:(3, 6, 13), 226:(8, 9, 9), 370:(8, 9, 15),
526:(6, 7, 21), 706:(15, 15, 16), 730:(1, 27, 0), 1414:(6, 17, 33), 1906:(13, 21, 36),
2986: (21, 32, 39), 9634: (56, 57, 57)}
v = 0
if n == 0:
return (0, 0, 0)
v = multiplicity(4, n)
n //= 4**v
if n % 8 == 7:
return
if n in special.keys():
x, y, z = special[n]
return _sorted_tuple(2**v*x, 2**v*y, 2**v*z)
s, _exact = integer_nthroot(n, 2)
if _exact:
return (2**v*s, 0, 0)
x = None
if n % 8 == 3:
s = s if _odd(s) else s - 1
for x in range(s, -1, -2):
N = (n - x**2) // 2
if isprime(N):
y, z = prime_as_sum_of_two_squares(N)
return _sorted_tuple(2**v*x, 2**v*(y + z), 2**v*abs(y - z))
return
if n % 8 in (2, 6):
s = s if _odd(s) else s - 1
else:
s = s - 1 if _odd(s) else s
for x in range(s, -1, -2):
N = n - x**2
if isprime(N):
y, z = prime_as_sum_of_two_squares(N)
return _sorted_tuple(2**v*x, 2**v*y, 2**v*z)
def sum_of_four_squares(n):
r"""
Returns a 4-tuple `(a, b, c, d)` such that `a^2 + b^2 + c^2 + d^2 = n`.
Here `a, b, c, d \geq 0`.
Usage
=====
``sum_of_four_squares(n)``: Here ``n`` is a non-negative integer.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import sum_of_four_squares
>>> sum_of_four_squares(3456)
(8, 8, 32, 48)
>>> sum_of_four_squares(1294585930293)
(0, 1234, 2161, 1137796)
References
==========
.. [1] Representing a number as a sum of four squares, [online],
Available: http://schorn.ch/lagrange.html
See Also
========
sum_of_squares()
"""
if n == 0:
return (0, 0, 0, 0)
v = multiplicity(4, n)
n //= 4**v
if n % 8 == 7:
d = 2
n = n - 4
elif n % 8 in (2, 6):
d = 1
n = n - 1
else:
d = 0
x, y, z = sum_of_three_squares(n)
return _sorted_tuple(2**v*d, 2**v*x, 2**v*y, 2**v*z)
def power_representation(n, p, k, zeros=False):
r"""
Returns a generator for finding k-tuples of integers,
`(n_{1}, n_{2}, . . . n_{k})`, such that
`n = n_{1}^p + n_{2}^p + . . . n_{k}^p`.
Usage
=====
``power_representation(n, p, k, zeros)``: Represent non-negative number
``n`` as a sum of ``k`` ``p``\ th powers. If ``zeros`` is true, then the
solutions is allowed to contain zeros.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import power_representation
Represent 1729 as a sum of two cubes:
>>> f = power_representation(1729, 3, 2)
>>> next(f)
(9, 10)
>>> next(f)
(1, 12)
If the flag `zeros` is True, the solution may contain tuples with
zeros; any such solutions will be generated after the solutions
without zeros:
>>> list(power_representation(125, 2, 3, zeros=True))
[(5, 6, 8), (3, 4, 10), (0, 5, 10), (0, 2, 11)]
For even `p` the `permute_sign` function can be used to get all
signed values:
>>> from sympy.utilities.iterables import permute_signs
>>> list(permute_signs((1, 12)))
[(1, 12), (-1, 12), (1, -12), (-1, -12)]
All possible signed permutations can also be obtained:
>>> from sympy.utilities.iterables import signed_permutations
>>> list(signed_permutations((1, 12)))
[(1, 12), (-1, 12), (1, -12), (-1, -12), (12, 1), (-12, 1), (12, -1), (-12, -1)]
"""
n, p, k = [as_int(i) for i in (n, p, k)]
if n < 0:
if p % 2:
for t in power_representation(-n, p, k, zeros):
yield tuple(-i for i in t)
return
if p < 1 or k < 1:
raise ValueError(filldedent('''
Expecting positive integers for `(p, k)`, but got `(%s, %s)`'''
% (p, k)))
if n == 0:
if zeros:
yield (0,)*k
return
if k == 1:
if p == 1:
yield (n,)
else:
be = perfect_power(n)
if be:
b, e = be
d, r = divmod(e, p)
if not r:
yield (b**d,)
return
if p == 1:
for t in partition(n, k, zeros=zeros):
yield t
return
if p == 2:
feasible = _can_do_sum_of_squares(n, k)
if not feasible:
return
if not zeros and n > 33 and k >= 5 and k <= n and n - k in (
13, 10, 7, 5, 4, 2, 1):
'''Todd G. Will, "When Is n^2 a Sum of k Squares?", [online].
Available: https://www.maa.org/sites/default/files/Will-MMz-201037918.pdf'''
return
if feasible is not True: # it's prime and k == 2
yield prime_as_sum_of_two_squares(n)
return
if k == 2 and p > 2:
be = perfect_power(n)
if be and be[1] % p == 0:
return # Fermat: a**n + b**n = c**n has no solution for n > 2
if n >= k:
a = integer_nthroot(n - (k - 1), p)[0]
for t in pow_rep_recursive(a, k, n, [], p):
yield tuple(reversed(t))
if zeros:
a = integer_nthroot(n, p)[0]
for i in range(1, k):
for t in pow_rep_recursive(a, i, n, [], p):
yield tuple(reversed(t + (0,)*(k - i)))
sum_of_powers = power_representation
def pow_rep_recursive(n_i, k, n_remaining, terms, p):
# Invalid arguments
if n_i <= 0 or k <= 0:
return
# No solutions may exist
if n_remaining < k:
return
if k * pow(n_i, p) < n_remaining:
return
if k == 0 and n_remaining == 0:
yield tuple(terms)
elif k == 1:
# next_term^p must equal to n_remaining
next_term, exact = integer_nthroot(n_remaining, p)
if exact and next_term <= n_i:
yield tuple(terms + [next_term])
return
else:
# TODO: Fall back to diop_DN when k = 2
if n_i >= 1 and k > 0:
for next_term in range(1, n_i + 1):
residual = n_remaining - pow(next_term, p)
if residual < 0:
break
yield from pow_rep_recursive(next_term, k - 1, residual, terms + [next_term], p)
def sum_of_squares(n, k, zeros=False):
"""Return a generator that yields the k-tuples of nonnegative
values, the squares of which sum to n. If zeros is False (default)
then the solution will not contain zeros. The nonnegative
elements of a tuple are sorted.
* If k == 1 and n is square, (n,) is returned.
* If k == 2 then n can only be written as a sum of squares if
every prime in the factorization of n that has the form
4*k + 3 has an even multiplicity. If n is prime then
it can only be written as a sum of two squares if it is
in the form 4*k + 1.
* if k == 3 then n can be written as a sum of squares if it does
not have the form 4**m*(8*k + 7).
* all integers can be written as the sum of 4 squares.
* if k > 4 then n can be partitioned and each partition can
be written as a sum of 4 squares; if n is not evenly divisible
by 4 then n can be written as a sum of squares only if the
an additional partition can be written as sum of squares.
For example, if k = 6 then n is partitioned into two parts,
the first being written as a sum of 4 squares and the second
being written as a sum of 2 squares -- which can only be
done if the condition above for k = 2 can be met, so this will
automatically reject certain partitions of n.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import sum_of_squares
>>> list(sum_of_squares(25, 2))
[(3, 4)]
>>> list(sum_of_squares(25, 2, True))
[(3, 4), (0, 5)]
>>> list(sum_of_squares(25, 4))
[(1, 2, 2, 4)]
See Also
========
sympy.utilities.iterables.signed_permutations
"""
yield from power_representation(n, 2, k, zeros)
def _can_do_sum_of_squares(n, k):
"""Return True if n can be written as the sum of k squares,
False if it cannot, or 1 if ``k == 2`` and ``n`` is prime (in which
case it *can* be written as a sum of two squares). A False
is returned only if it cannot be written as ``k``-squares, even
if 0s are allowed.
"""
if k < 1:
return False
if n < 0:
return False
if n == 0:
return True
if k == 1:
return is_square(n)
if k == 2:
if n in (1, 2):
return True
if isprime(n):
if n % 4 == 1:
return 1 # signal that it was prime
return False
else:
f = factorint(n)
for p, m in f.items():
# we can proceed iff no prime factor in the form 4*k + 3
# has an odd multiplicity
if (p % 4 == 3) and m % 2:
return False
return True
if k == 3:
if (n//4**multiplicity(4, n)) % 8 == 7:
return False
# every number can be written as a sum of 4 squares; for k > 4 partitions
# can be 0
return True
|
3a236640b6cf2005510e91421ba1c62ff6ab56457bd8436d6116ca6bca12daf6 | from sympy.assumptions.ask import (Q, ask)
from sympy.core.add import Add
from sympy.core.containers import Tuple
from sympy.core.function import (Derivative, Function, diff)
from sympy.core.mul import Mul
from sympy.core import (GoldenRatio, TribonacciConstant)
from sympy.core.numbers import (E, Float, I, Rational, oo, pi)
from sympy.core.relational import (Eq, Gt, Lt, Ne)
from sympy.core.singleton import S
from sympy.core.symbol import (Dummy, Symbol, Wild, symbols)
from sympy.core.sympify import sympify
from sympy.functions.combinatorial.factorials import binomial
from sympy.functions.elementary.complexes import (Abs, arg, conjugate, im, re)
from sympy.functions.elementary.exponential import (LambertW, exp, log)
from sympy.functions.elementary.hyperbolic import (atanh, cosh, sinh, tanh)
from sympy.functions.elementary.miscellaneous import (cbrt, root, sqrt)
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import (acos, asin, atan, atan2, cos, sec, sin, tan)
from sympy.functions.special.error_functions import (erf, erfc, erfcinv, erfinv)
from sympy.integrals.integrals import Integral
from sympy.logic.boolalg import (And, Or)
from sympy.matrices.dense import Matrix
from sympy.matrices import SparseMatrix
from sympy.polys.polytools import Poly
from sympy.printing.str import sstr
from sympy.simplify.radsimp import denom
from sympy.solvers.solvers import (nsolve, solve, solve_linear)
from sympy.core.function import nfloat
from sympy.solvers import solve_linear_system, solve_linear_system_LU, \
solve_undetermined_coeffs
from sympy.solvers.bivariate import _filtered_gens, _solve_lambert, _lambert
from sympy.solvers.solvers import _invert, unrad, checksol, posify, _ispow, \
det_quick, det_perm, det_minor, _simple_dens, denoms
from sympy.physics.units import cm
from sympy.polys.rootoftools import CRootOf
from sympy.testing.pytest import slow, XFAIL, SKIP, raises
from sympy.core.random import verify_numerically as tn
from sympy.abc import a, b, c, d, e, k, h, p, x, y, z, t, q, m, R
def NS(e, n=15, **options):
return sstr(sympify(e).evalf(n, **options), full_prec=True)
def test_swap_back():
f, g = map(Function, 'fg')
fx, gx = f(x), g(x)
assert solve([fx + y - 2, fx - gx - 5], fx, y, gx) == \
{fx: gx + 5, y: -gx - 3}
assert solve(fx + gx*x - 2, [fx, gx], dict=True) == [{fx: 2, gx: 0}]
assert solve(fx + gx**2*x - y, [fx, gx], dict=True) == [{fx: y, gx: 0}]
assert solve([f(1) - 2, x + 2], dict=True) == [{x: -2, f(1): 2}]
def guess_solve_strategy(eq, symbol):
try:
solve(eq, symbol)
return True
except (TypeError, NotImplementedError):
return False
def test_guess_poly():
# polynomial equations
assert guess_solve_strategy( S(4), x ) # == GS_POLY
assert guess_solve_strategy( x, x ) # == GS_POLY
assert guess_solve_strategy( x + a, x ) # == GS_POLY
assert guess_solve_strategy( 2*x, x ) # == GS_POLY
assert guess_solve_strategy( x + sqrt(2), x) # == GS_POLY
assert guess_solve_strategy( x + 2**Rational(1, 4), x) # == GS_POLY
assert guess_solve_strategy( x**2 + 1, x ) # == GS_POLY
assert guess_solve_strategy( x**2 - 1, x ) # == GS_POLY
assert guess_solve_strategy( x*y + y, x ) # == GS_POLY
assert guess_solve_strategy( x*exp(y) + y, x) # == GS_POLY
assert guess_solve_strategy(
(x - y**3)/(y**2*sqrt(1 - y**2)), x) # == GS_POLY
def test_guess_poly_cv():
# polynomial equations via a change of variable
assert guess_solve_strategy( sqrt(x) + 1, x ) # == GS_POLY_CV_1
assert guess_solve_strategy(
x**Rational(1, 3) + sqrt(x) + 1, x ) # == GS_POLY_CV_1
assert guess_solve_strategy( 4*x*(1 - sqrt(x)), x ) # == GS_POLY_CV_1
# polynomial equation multiplying both sides by x**n
assert guess_solve_strategy( x + 1/x + y, x ) # == GS_POLY_CV_2
def test_guess_rational_cv():
# rational functions
assert guess_solve_strategy( (x + 1)/(x**2 + 2), x) # == GS_RATIONAL
assert guess_solve_strategy(
(x - y**3)/(y**2*sqrt(1 - y**2)), y) # == GS_RATIONAL_CV_1
# rational functions via the change of variable y -> x**n
assert guess_solve_strategy( (sqrt(x) + 1)/(x**Rational(1, 3) + sqrt(x) + 1), x ) \
#== GS_RATIONAL_CV_1
def test_guess_transcendental():
#transcendental functions
assert guess_solve_strategy( exp(x) + 1, x ) # == GS_TRANSCENDENTAL
assert guess_solve_strategy( 2*cos(x) - y, x ) # == GS_TRANSCENDENTAL
assert guess_solve_strategy(
exp(x) + exp(-x) - y, x ) # == GS_TRANSCENDENTAL
assert guess_solve_strategy(3**x - 10, x) # == GS_TRANSCENDENTAL
assert guess_solve_strategy(-3**x + 10, x) # == GS_TRANSCENDENTAL
assert guess_solve_strategy(a*x**b - y, x) # == GS_TRANSCENDENTAL
def test_solve_args():
# equation container, issue 5113
ans = {x: -3, y: 1}
eqs = (x + 5*y - 2, -3*x + 6*y - 15)
assert all(solve(container(eqs), x, y) == ans for container in
(tuple, list, set, frozenset))
assert solve(Tuple(*eqs), x, y) == ans
# implicit symbol to solve for
assert set(solve(x**2 - 4)) == {S(2), -S(2)}
assert solve([x + y - 3, x - y - 5]) == {x: 4, y: -1}
assert solve(x - exp(x), x, implicit=True) == [exp(x)]
# no symbol to solve for
assert solve(42) == solve(42, x) == []
assert solve([1, 2]) == []
assert solve([sqrt(2)],[x]) == []
# duplicate symbols raises
raises(ValueError, lambda: solve((x - 3, y + 2), x, y, x))
raises(ValueError, lambda: solve(x, x, x))
# no error in exclude
assert solve(x, x, exclude=[y, y]) == [0]
# duplicate symbols raises
raises(ValueError, lambda: solve((x - 3, y + 2), x, y, x))
raises(ValueError, lambda: solve(x, x, x))
# no error in exclude
assert solve(x, x, exclude=[y, y]) == [0]
# unordered symbols
# only 1
assert solve(y - 3, {y}) == [3]
# more than 1
assert solve(y - 3, {x, y}) == [{y: 3}]
# multiple symbols: take the first linear solution+
# - return as tuple with values for all requested symbols
assert solve(x + y - 3, [x, y]) == [(3 - y, y)]
# - unless dict is True
assert solve(x + y - 3, [x, y], dict=True) == [{x: 3 - y}]
# - or no symbols are given
assert solve(x + y - 3) == [{x: 3 - y}]
# multiple symbols might represent an undetermined coefficients system
assert solve(a + b*x - 2, [a, b]) == {a: 2, b: 0}
assert solve((a + b)*x + b - c, [a, b]) == {a: -c, b: c}
eq = a*x**2 + b*x + c - ((x - h)**2 + 4*p*k)/4/p
# - check that flags are obeyed
sol = solve(eq, [h, p, k], exclude=[a, b, c])
assert sol == {h: -b/(2*a), k: (4*a*c - b**2)/(4*a), p: 1/(4*a)}
assert solve(eq, [h, p, k], dict=True) == [sol]
assert solve(eq, [h, p, k], set=True) == \
([h, p, k], {(-b/(2*a), 1/(4*a), (4*a*c - b**2)/(4*a))})
# issue 23889 - polysys not simplified
assert solve(eq, [h, p, k], exclude=[a, b, c], simplify=False) == \
{h: -b/(2*a), k: (4*a*c - b**2)/(4*a), p: 1/(4*a)}
# but this only happens when system has a single solution
args = (a + b)*x - b**2 + 2, a, b
assert solve(*args) == [((b**2 - b*x - 2)/x, b)]
# and if the system has a solution; the following doesn't so
# an algebraic solution is returned
assert solve(a*x + b**2/(x + 4) - 3*x - 4/x, a, b, dict=True) == \
[{a: (-b**2*x + 3*x**3 + 12*x**2 + 4*x + 16)/(x**2*(x + 4))}]
# failed single equation
assert solve(1/(1/x - y + exp(y))) == []
raises(
NotImplementedError, lambda: solve(exp(x) + sin(x) + exp(y) + sin(y)))
# failed system
# -- when no symbols given, 1 fails
assert solve([y, exp(x) + x]) == [{x: -LambertW(1), y: 0}]
# both fail
assert solve(
(exp(x) - x, exp(y) - y)) == [{x: -LambertW(-1), y: -LambertW(-1)}]
# -- when symbols given
assert solve([y, exp(x) + x], x, y) == [(-LambertW(1), 0)]
# symbol is a number
assert solve(x**2 - pi, pi) == [x**2]
# no equations
assert solve([], [x]) == []
# nonlinear systen
assert solve((x**2 - 4, y - 2), x, y) == [(-2, 2), (2, 2)]
assert solve((x**2 - 4, y - 2), y, x) == [(2, -2), (2, 2)]
assert solve((x**2 - 4 + z, y - 2 - z), a, z, y, x, set=True
) == ([a, z, y, x], {
(a, z, z + 2, -sqrt(4 - z)),
(a, z, z + 2, sqrt(4 - z))})
# overdetermined system
# - nonlinear
assert solve([(x + y)**2 - 4, x + y - 2]) == [{x: -y + 2}]
# - linear
assert solve((x + y - 2, 2*x + 2*y - 4)) == {x: -y + 2}
# When one or more args are Boolean
assert solve(Eq(x**2, 0.0)) == [0] # issue 19048
assert solve([True, Eq(x, 0)], [x], dict=True) == [{x: 0}]
assert solve([Eq(x, x), Eq(x, 0), Eq(x, x+1)], [x], dict=True) == []
assert not solve([Eq(x, x+1), x < 2], x)
assert solve([Eq(x, 0), x+1<2]) == Eq(x, 0)
assert solve([Eq(x, x), Eq(x, x+1)], x) == []
assert solve(True, x) == []
assert solve([x - 1, False], [x], set=True) == ([], set())
assert solve([-y*(x + y - 1)/2, (y - 1)/x/y + 1/y],
set=True, check=False) == ([x, y], {(1 - y, y), (x, 0)})
# ordering should be canonical, fastest to order by keys instead
# of by size
assert list(solve((y - 1, x - sqrt(3)*z)).keys()) == [x, y]
# as set always returns as symbols, set even if no solution
assert solve([x - 1, x], (y, x), set=True) == ([y, x], set())
assert solve([x - 1, x], {y, x}, set=True) == ([x, y], set())
def test_solve_polynomial1():
assert solve(3*x - 2, x) == [Rational(2, 3)]
assert solve(Eq(3*x, 2), x) == [Rational(2, 3)]
assert set(solve(x**2 - 1, x)) == {-S.One, S.One}
assert set(solve(Eq(x**2, 1), x)) == {-S.One, S.One}
assert solve(x - y**3, x) == [y**3]
rx = root(x, 3)
assert solve(x - y**3, y) == [
rx, -rx/2 - sqrt(3)*I*rx/2, -rx/2 + sqrt(3)*I*rx/2]
a11, a12, a21, a22, b1, b2 = symbols('a11,a12,a21,a22,b1,b2')
assert solve([a11*x + a12*y - b1, a21*x + a22*y - b2], x, y) == \
{
x: (a22*b1 - a12*b2)/(a11*a22 - a12*a21),
y: (a11*b2 - a21*b1)/(a11*a22 - a12*a21),
}
solution = {x: S.Zero, y: S.Zero}
assert solve((x - y, x + y), x, y ) == solution
assert solve((x - y, x + y), (x, y)) == solution
assert solve((x - y, x + y), [x, y]) == solution
assert set(solve(x**3 - 15*x - 4, x)) == {
-2 + 3**S.Half,
S(4),
-2 - 3**S.Half
}
assert set(solve((x**2 - 1)**2 - a, x)) == \
{sqrt(1 + sqrt(a)), -sqrt(1 + sqrt(a)),
sqrt(1 - sqrt(a)), -sqrt(1 - sqrt(a))}
def test_solve_polynomial2():
assert solve(4, x) == []
def test_solve_polynomial_cv_1a():
"""
Test for solving on equations that can be converted to a polynomial equation
using the change of variable y -> x**Rational(p, q)
"""
assert solve( sqrt(x) - 1, x) == [1]
assert solve( sqrt(x) - 2, x) == [4]
assert solve( x**Rational(1, 4) - 2, x) == [16]
assert solve( x**Rational(1, 3) - 3, x) == [27]
assert solve(sqrt(x) + x**Rational(1, 3) + x**Rational(1, 4), x) == [0]
def test_solve_polynomial_cv_1b():
assert set(solve(4*x*(1 - a*sqrt(x)), x)) == {S.Zero, 1/a**2}
assert set(solve(x*(root(x, 3) - 3), x)) == {S.Zero, S(27)}
def test_solve_polynomial_cv_2():
"""
Test for solving on equations that can be converted to a polynomial equation
multiplying both sides of the equation by x**m
"""
assert solve(x + 1/x - 1, x) in \
[[ S.Half + I*sqrt(3)/2, S.Half - I*sqrt(3)/2],
[ S.Half - I*sqrt(3)/2, S.Half + I*sqrt(3)/2]]
def test_quintics_1():
f = x**5 - 110*x**3 - 55*x**2 + 2310*x + 979
s = solve(f, check=False)
for r in s:
res = f.subs(x, r.n()).n()
assert tn(res, 0)
f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20
s = solve(f)
for r in s:
assert r.func == CRootOf
# if one uses solve to get the roots of a polynomial that has a CRootOf
# solution, make sure that the use of nfloat during the solve process
# doesn't fail. Note: if you want numerical solutions to a polynomial
# it is *much* faster to use nroots to get them than to solve the
# equation only to get RootOf solutions which are then numerically
# evaluated. So for eq = x**5 + 3*x + 7 do Poly(eq).nroots() rather
# than [i.n() for i in solve(eq)] to get the numerical roots of eq.
assert nfloat(solve(x**5 + 3*x**3 + 7)[0], exponent=False) == \
CRootOf(x**5 + 3*x**3 + 7, 0).n()
def test_quintics_2():
f = x**5 + 15*x + 12
s = solve(f, check=False)
for r in s:
res = f.subs(x, r.n()).n()
assert tn(res, 0)
f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20
s = solve(f)
for r in s:
assert r.func == CRootOf
assert solve(x**5 - 6*x**3 - 6*x**2 + x - 6) == [
CRootOf(x**5 - 6*x**3 - 6*x**2 + x - 6, 0),
CRootOf(x**5 - 6*x**3 - 6*x**2 + x - 6, 1),
CRootOf(x**5 - 6*x**3 - 6*x**2 + x - 6, 2),
CRootOf(x**5 - 6*x**3 - 6*x**2 + x - 6, 3),
CRootOf(x**5 - 6*x**3 - 6*x**2 + x - 6, 4)]
def test_quintics_3():
y = x**5 + x**3 - 2**Rational(1, 3)
assert solve(y) == solve(-y) == []
def test_highorder_poly():
# just testing that the uniq generator is unpacked
sol = solve(x**6 - 2*x + 2)
assert all(isinstance(i, CRootOf) for i in sol) and len(sol) == 6
def test_solve_rational():
"""Test solve for rational functions"""
assert solve( ( x - y**3 )/( (y**2)*sqrt(1 - y**2) ), x) == [y**3]
def test_solve_conjugate():
"""Test solve for simple conjugate functions"""
assert solve(conjugate(x) -3 + I) == [3 + I]
def test_solve_nonlinear():
assert solve(x**2 - y**2, x, y, dict=True) == [{x: -y}, {x: y}]
assert solve(x**2 - y**2/exp(x), y, x, dict=True) == [{y: -x*sqrt(exp(x))},
{y: x*sqrt(exp(x))}]
def test_issue_8666():
x = symbols('x')
assert solve(Eq(x**2 - 1/(x**2 - 4), 4 - 1/(x**2 - 4)), x) == []
assert solve(Eq(x + 1/x, 1/x), x) == []
def test_issue_7228():
assert solve(4**(2*(x**2) + 2*x) - 8, x) == [Rational(-3, 2), S.Half]
def test_issue_7190():
assert solve(log(x-3) + log(x+3), x) == [sqrt(10)]
def test_issue_21004():
x = symbols('x')
f = x/sqrt(x**2+1)
f_diff = f.diff(x)
assert solve(f_diff, x) == []
def test_linear_system():
x, y, z, t, n = symbols('x, y, z, t, n')
assert solve([x - 1, x - y, x - 2*y, y - 1], [x, y]) == []
assert solve([x - 1, x - y, x - 2*y, x - 1], [x, y]) == []
assert solve([x - 1, x - 1, x - y, x - 2*y], [x, y]) == []
assert solve([x + 5*y - 2, -3*x + 6*y - 15], x, y) == {x: -3, y: 1}
M = Matrix([[0, 0, n*(n + 1), (n + 1)**2, 0],
[n + 1, n + 1, -2*n - 1, -(n + 1), 0],
[-1, 0, 1, 0, 0]])
assert solve_linear_system(M, x, y, z, t) == \
{x: t*(-n-1)/n, y: 0, z: t*(-n-1)/n}
assert solve([x + y + z + t, -z - t], x, y, z, t) == {x: -y, z: -t}
@XFAIL
def test_linear_system_xfail():
# https://github.com/sympy/sympy/issues/6420
M = Matrix([[0, 15.0, 10.0, 700.0],
[1, 1, 1, 100.0],
[0, 10.0, 5.0, 200.0],
[-5.0, 0, 0, 0 ]])
assert solve_linear_system(M, x, y, z) == {x: 0, y: -60.0, z: 160.0}
def test_linear_system_function():
a = Function('a')
assert solve([a(0, 0) + a(0, 1) + a(1, 0) + a(1, 1), -a(1, 0) - a(1, 1)],
a(0, 0), a(0, 1), a(1, 0), a(1, 1)) == {a(1, 0): -a(1, 1), a(0, 0): -a(0, 1)}
def test_linear_system_symbols_doesnt_hang_1():
def _mk_eqs(wy):
# Equations for fitting a wy*2 - 1 degree polynomial between two points,
# at end points derivatives are known up to order: wy - 1
order = 2*wy - 1
x, x0, x1 = symbols('x, x0, x1', real=True)
y0s = symbols('y0_:{}'.format(wy), real=True)
y1s = symbols('y1_:{}'.format(wy), real=True)
c = symbols('c_:{}'.format(order+1), real=True)
expr = sum([coeff*x**o for o, coeff in enumerate(c)])
eqs = []
for i in range(wy):
eqs.append(expr.diff(x, i).subs({x: x0}) - y0s[i])
eqs.append(expr.diff(x, i).subs({x: x1}) - y1s[i])
return eqs, c
#
# The purpose of this test is just to see that these calls don't hang. The
# expressions returned are complicated so are not included here. Testing
# their correctness takes longer than solving the system.
#
for n in range(1, 7+1):
eqs, c = _mk_eqs(n)
solve(eqs, c)
def test_linear_system_symbols_doesnt_hang_2():
M = Matrix([
[66, 24, 39, 50, 88, 40, 37, 96, 16, 65, 31, 11, 37, 72, 16, 19, 55, 37, 28, 76],
[10, 93, 34, 98, 59, 44, 67, 74, 74, 94, 71, 61, 60, 23, 6, 2, 57, 8, 29, 78],
[19, 91, 57, 13, 64, 65, 24, 53, 77, 34, 85, 58, 87, 39, 39, 7, 36, 67, 91, 3],
[74, 70, 15, 53, 68, 43, 86, 83, 81, 72, 25, 46, 67, 17, 59, 25, 78, 39, 63, 6],
[69, 40, 67, 21, 67, 40, 17, 13, 93, 44, 46, 89, 62, 31, 30, 38, 18, 20, 12, 81],
[50, 22, 74, 76, 34, 45, 19, 76, 28, 28, 11, 99, 97, 82, 8, 46, 99, 57, 68, 35],
[58, 18, 45, 88, 10, 64, 9, 34, 90, 82, 17, 41, 43, 81, 45, 83, 22, 88, 24, 39],
[42, 21, 70, 68, 6, 33, 64, 81, 83, 15, 86, 75, 86, 17, 77, 34, 62, 72, 20, 24],
[ 7, 8, 2, 72, 71, 52, 96, 5, 32, 51, 31, 36, 79, 88, 25, 77, 29, 26, 33, 13],
[19, 31, 30, 85, 81, 39, 63, 28, 19, 12, 16, 49, 37, 66, 38, 13, 3, 71, 61, 51],
[29, 82, 80, 49, 26, 85, 1, 37, 2, 74, 54, 82, 26, 47, 54, 9, 35, 0, 99, 40],
[15, 49, 82, 91, 93, 57, 45, 25, 45, 97, 15, 98, 48, 52, 66, 24, 62, 54, 97, 37],
[62, 23, 73, 53, 52, 86, 28, 38, 0, 74, 92, 38, 97, 70, 71, 29, 26, 90, 67, 45],
[ 2, 32, 23, 24, 71, 37, 25, 71, 5, 41, 97, 65, 93, 13, 65, 45, 25, 88, 69, 50],
[40, 56, 1, 29, 79, 98, 79, 62, 37, 28, 45, 47, 3, 1, 32, 74, 98, 35, 84, 32],
[33, 15, 87, 79, 65, 9, 14, 63, 24, 19, 46, 28, 74, 20, 29, 96, 84, 91, 93, 1],
[97, 18, 12, 52, 1, 2, 50, 14, 52, 76, 19, 82, 41, 73, 51, 79, 13, 3, 82, 96],
[40, 28, 52, 10, 10, 71, 56, 78, 82, 5, 29, 48, 1, 26, 16, 18, 50, 76, 86, 52],
[38, 89, 83, 43, 29, 52, 90, 77, 57, 0, 67, 20, 81, 88, 48, 96, 88, 58, 14, 3]])
syms = x0,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18 = symbols('x:19')
sol = {
x0: -S(1967374186044955317099186851240896179)/3166636564687820453598895768302256588,
x1: -S(84268280268757263347292368432053826)/791659141171955113399723942075564147,
x2: -S(229962957341664730974463872411844965)/1583318282343910226799447884151128294,
x3: S(990156781744251750886760432229180537)/6333273129375640907197791536604513176,
x4: -S(2169830351210066092046760299593096265)/18999819388126922721593374609813539528,
x5: S(4680868883477577389628494526618745355)/9499909694063461360796687304906769764,
x6: -S(1590820774344371990683178396480879213)/3166636564687820453598895768302256588,
x7: -S(54104723404825537735226491634383072)/339282489073695048599881689460956063,
x8: S(3182076494196560075964847771774733847)/6333273129375640907197791536604513176,
x9: -S(10870817431029210431989147852497539675)/18999819388126922721593374609813539528,
x10: -S(13118019242576506476316318268573312603)/18999819388126922721593374609813539528,
x11: -S(5173852969886775824855781403820641259)/4749954847031730680398343652453384882,
x12: S(4261112042731942783763341580651820563)/4749954847031730680398343652453384882,
x13: -S(821833082694661608993818117038209051)/6333273129375640907197791536604513176,
x14: S(906881575107250690508618713632090559)/904753304196520129599684505229216168,
x15: -S(732162528717458388995329317371283987)/6333273129375640907197791536604513176,
x16: S(4524215476705983545537087360959896817)/9499909694063461360796687304906769764,
x17: -S(3898571347562055611881270844646055217)/6333273129375640907197791536604513176,
x18: S(7513502486176995632751685137907442269)/18999819388126922721593374609813539528
}
eqs = list(M * Matrix(syms + (1,)))
assert solve(eqs, syms) == sol
y = Symbol('y')
eqs = list(y * M * Matrix(syms + (1,)))
assert solve(eqs, syms) == sol
def test_linear_systemLU():
n = Symbol('n')
M = Matrix([[1, 2, 0, 1], [1, 3, 2*n, 1], [4, -1, n**2, 1]])
assert solve_linear_system_LU(M, [x, y, z]) == {z: -3/(n**2 + 18*n),
x: 1 - 12*n/(n**2 + 18*n),
y: 6*n/(n**2 + 18*n)}
# Note: multiple solutions exist for some of these equations, so the tests
# should be expected to break if the implementation of the solver changes
# in such a way that a different branch is chosen
@slow
def test_solve_transcendental():
from sympy.abc import a, b
assert solve(exp(x) - 3, x) == [log(3)]
assert set(solve((a*x + b)*(exp(x) - 3), x)) == {-b/a, log(3)}
assert solve(cos(x) - y, x) == [-acos(y) + 2*pi, acos(y)]
assert solve(2*cos(x) - y, x) == [-acos(y/2) + 2*pi, acos(y/2)]
assert solve(Eq(cos(x), sin(x)), x) == [pi/4]
assert set(solve(exp(x) + exp(-x) - y, x)) in [{
log(y/2 - sqrt(y**2 - 4)/2),
log(y/2 + sqrt(y**2 - 4)/2),
}, {
log(y - sqrt(y**2 - 4)) - log(2),
log(y + sqrt(y**2 - 4)) - log(2)},
{
log(y/2 - sqrt((y - 2)*(y + 2))/2),
log(y/2 + sqrt((y - 2)*(y + 2))/2)}]
assert solve(exp(x) - 3, x) == [log(3)]
assert solve(Eq(exp(x), 3), x) == [log(3)]
assert solve(log(x) - 3, x) == [exp(3)]
assert solve(sqrt(3*x) - 4, x) == [Rational(16, 3)]
assert solve(3**(x + 2), x) == []
assert solve(3**(2 - x), x) == []
assert solve(x + 2**x, x) == [-LambertW(log(2))/log(2)]
assert solve(2*x + 5 + log(3*x - 2), x) == \
[Rational(2, 3) + LambertW(2*exp(Rational(-19, 3))/3)/2]
assert solve(3*x + log(4*x), x) == [LambertW(Rational(3, 4))/3]
assert set(solve((2*x + 8)*(8 + exp(x)), x)) == {S(-4), log(8) + pi*I}
eq = 2*exp(3*x + 4) - 3
ans = solve(eq, x) # this generated a failure in flatten
assert len(ans) == 3 and all(eq.subs(x, a).n(chop=True) == 0 for a in ans)
assert solve(2*log(3*x + 4) - 3, x) == [(exp(Rational(3, 2)) - 4)/3]
assert solve(exp(x) + 1, x) == [pi*I]
eq = 2*(3*x + 4)**5 - 6*7**(3*x + 9)
result = solve(eq, x)
x0 = -log(2401)
x1 = 3**Rational(1, 5)
x2 = log(7**(7*x1/20))
x3 = sqrt(2)
x4 = sqrt(5)
x5 = x3*sqrt(x4 - 5)
x6 = x4 + 1
x7 = 1/(3*log(7))
x8 = -x4
x9 = x3*sqrt(x8 - 5)
x10 = x8 + 1
ans = [x7*(x0 - 5*LambertW(x2*(-x5 + x6))),
x7*(x0 - 5*LambertW(x2*(x5 + x6))),
x7*(x0 - 5*LambertW(x2*(x10 - x9))),
x7*(x0 - 5*LambertW(x2*(x10 + x9))),
x7*(x0 - 5*LambertW(-log(7**(7*x1/5))))]
assert result == ans, result
# it works if expanded, too
assert solve(eq.expand(), x) == result
assert solve(z*cos(x) - y, x) == [-acos(y/z) + 2*pi, acos(y/z)]
assert solve(z*cos(2*x) - y, x) == [-acos(y/z)/2 + pi, acos(y/z)/2]
assert solve(z*cos(sin(x)) - y, x) == [
pi - asin(acos(y/z)), asin(acos(y/z) - 2*pi) + pi,
-asin(acos(y/z) - 2*pi), asin(acos(y/z))]
assert solve(z*cos(x), x) == [pi/2, pi*Rational(3, 2)]
# issue 4508
assert solve(y - b*x/(a + x), x) in [[-a*y/(y - b)], [a*y/(b - y)]]
assert solve(y - b*exp(a/x), x) == [a/log(y/b)]
# issue 4507
assert solve(y - b/(1 + a*x), x) in [[(b - y)/(a*y)], [-((y - b)/(a*y))]]
# issue 4506
assert solve(y - a*x**b, x) == [(y/a)**(1/b)]
# issue 4505
assert solve(z**x - y, x) == [log(y)/log(z)]
# issue 4504
assert solve(2**x - 10, x) == [1 + log(5)/log(2)]
# issue 6744
assert solve(x*y) == [{x: 0}, {y: 0}]
assert solve([x*y]) == [{x: 0}, {y: 0}]
assert solve(x**y - 1) == [{x: 1}, {y: 0}]
assert solve([x**y - 1]) == [{x: 1}, {y: 0}]
assert solve(x*y*(x**2 - y**2)) == [{x: 0}, {x: -y}, {x: y}, {y: 0}]
assert solve([x*y*(x**2 - y**2)]) == [{x: 0}, {x: -y}, {x: y}, {y: 0}]
# issue 4739
assert solve(exp(log(5)*x) - 2**x, x) == [0]
# issue 14791
assert solve(exp(log(5)*x) - exp(log(2)*x), x) == [0]
f = Function('f')
assert solve(y*f(log(5)*x) - y*f(log(2)*x), x) == [0]
assert solve(f(x) - f(0), x) == [0]
assert solve(f(x) - f(2 - x), x) == [1]
raises(NotImplementedError, lambda: solve(f(x, y) - f(1, 2), x))
raises(NotImplementedError, lambda: solve(f(x, y) - f(2 - x, 2), x))
raises(ValueError, lambda: solve(f(x, y) - f(1 - x), x))
raises(ValueError, lambda: solve(f(x, y) - f(1), x))
# misc
# make sure that the right variables is picked up in tsolve
# shouldn't generate a GeneratorsNeeded error in _tsolve when the NaN is generated
# for eq_down. Actual answers, as determined numerically are approx. +/- 0.83
raises(NotImplementedError, lambda:
solve(sinh(x)*sinh(sinh(x)) + cosh(x)*cosh(sinh(x)) - 3))
# watch out for recursive loop in tsolve
raises(NotImplementedError, lambda: solve((x + 2)**y*x - 3, x))
# issue 7245
assert solve(sin(sqrt(x))) == [0, pi**2]
# issue 7602
a, b = symbols('a, b', real=True, negative=False)
assert str(solve(Eq(a, 0.5 - cos(pi*b)/2), b)) == \
'[2.0 - 0.318309886183791*acos(1.0 - 2.0*a), 0.318309886183791*acos(1.0 - 2.0*a)]'
# issue 15325
assert solve(y**(1/x) - z, x) == [log(y)/log(z)]
def test_solve_for_functions_derivatives():
t = Symbol('t')
x = Function('x')(t)
y = Function('y')(t)
a11, a12, a21, a22, b1, b2 = symbols('a11,a12,a21,a22,b1,b2')
soln = solve([a11*x + a12*y - b1, a21*x + a22*y - b2], x, y)
assert soln == {
x: (a22*b1 - a12*b2)/(a11*a22 - a12*a21),
y: (a11*b2 - a21*b1)/(a11*a22 - a12*a21),
}
assert solve(x - 1, x) == [1]
assert solve(3*x - 2, x) == [Rational(2, 3)]
soln = solve([a11*x.diff(t) + a12*y.diff(t) - b1, a21*x.diff(t) +
a22*y.diff(t) - b2], x.diff(t), y.diff(t))
assert soln == { y.diff(t): (a11*b2 - a21*b1)/(a11*a22 - a12*a21),
x.diff(t): (a22*b1 - a12*b2)/(a11*a22 - a12*a21) }
assert solve(x.diff(t) - 1, x.diff(t)) == [1]
assert solve(3*x.diff(t) - 2, x.diff(t)) == [Rational(2, 3)]
eqns = {3*x - 1, 2*y - 4}
assert solve(eqns, {x, y}) == { x: Rational(1, 3), y: 2 }
x = Symbol('x')
f = Function('f')
F = x**2 + f(x)**2 - 4*x - 1
assert solve(F.diff(x), diff(f(x), x)) == [(-x + 2)/f(x)]
# Mixed cased with a Symbol and a Function
x = Symbol('x')
y = Function('y')(t)
soln = solve([a11*x + a12*y.diff(t) - b1, a21*x +
a22*y.diff(t) - b2], x, y.diff(t))
assert soln == { y.diff(t): (a11*b2 - a21*b1)/(a11*a22 - a12*a21),
x: (a22*b1 - a12*b2)/(a11*a22 - a12*a21) }
# issue 13263
x = Symbol('x')
f = Function('f')
soln = solve([f(x).diff(x) + f(x).diff(x, 2) - 1, f(x).diff(x) - f(x).diff(x, 2)],
f(x).diff(x), f(x).diff(x, 2))
assert soln == { f(x).diff(x, 2): 1/2, f(x).diff(x): 1/2 }
soln = solve([f(x).diff(x, 2) + f(x).diff(x, 3) - 1, 1 - f(x).diff(x, 2) -
f(x).diff(x, 3), 1 - f(x).diff(x,3)], f(x).diff(x, 2), f(x).diff(x, 3))
assert soln == { f(x).diff(x, 2): 0, f(x).diff(x, 3): 1 }
def test_issue_3725():
f = Function('f')
F = x**2 + f(x)**2 - 4*x - 1
e = F.diff(x)
assert solve(e, f(x).diff(x)) in [[(2 - x)/f(x)], [-((x - 2)/f(x))]]
def test_issue_3870():
a, b, c, d = symbols('a b c d')
A = Matrix(2, 2, [a, b, c, d])
B = Matrix(2, 2, [0, 2, -3, 0])
C = Matrix(2, 2, [1, 2, 3, 4])
assert solve(A*B - C, [a, b, c, d]) == {a: 1, b: Rational(-1, 3), c: 2, d: -1}
assert solve([A*B - C], [a, b, c, d]) == {a: 1, b: Rational(-1, 3), c: 2, d: -1}
assert solve(Eq(A*B, C), [a, b, c, d]) == {a: 1, b: Rational(-1, 3), c: 2, d: -1}
assert solve([A*B - B*A], [a, b, c, d]) == {a: d, b: Rational(-2, 3)*c}
assert solve([A*C - C*A], [a, b, c, d]) == {a: d - c, b: Rational(2, 3)*c}
assert solve([A*B - B*A, A*C - C*A], [a, b, c, d]) == {a: d, b: 0, c: 0}
assert solve([Eq(A*B, B*A)], [a, b, c, d]) == {a: d, b: Rational(-2, 3)*c}
assert solve([Eq(A*C, C*A)], [a, b, c, d]) == {a: d - c, b: Rational(2, 3)*c}
assert solve([Eq(A*B, B*A), Eq(A*C, C*A)], [a, b, c, d]) == {a: d, b: 0, c: 0}
def test_solve_linear():
w = Wild('w')
assert solve_linear(x, x) == (0, 1)
assert solve_linear(x, exclude=[x]) == (0, 1)
assert solve_linear(x, symbols=[w]) == (0, 1)
assert solve_linear(x, y - 2*x) in [(x, y/3), (y, 3*x)]
assert solve_linear(x, y - 2*x, exclude=[x]) == (y, 3*x)
assert solve_linear(3*x - y, 0) in [(x, y/3), (y, 3*x)]
assert solve_linear(3*x - y, 0, [x]) == (x, y/3)
assert solve_linear(3*x - y, 0, [y]) == (y, 3*x)
assert solve_linear(x**2/y, 1) == (y, x**2)
assert solve_linear(w, x) in [(w, x), (x, w)]
assert solve_linear(cos(x)**2 + sin(x)**2 + 2 + y) == \
(y, -2 - cos(x)**2 - sin(x)**2)
assert solve_linear(cos(x)**2 + sin(x)**2 + 2 + y, symbols=[x]) == (0, 1)
assert solve_linear(Eq(x, 3)) == (x, 3)
assert solve_linear(1/(1/x - 2)) == (0, 0)
assert solve_linear((x + 1)*exp(-x), symbols=[x]) == (x, -1)
assert solve_linear((x + 1)*exp(x), symbols=[x]) == ((x + 1)*exp(x), 1)
assert solve_linear(x*exp(-x**2), symbols=[x]) == (x, 0)
assert solve_linear(0**x - 1) == (0**x - 1, 1)
assert solve_linear(1 + 1/(x - 1)) == (x, 0)
eq = y*cos(x)**2 + y*sin(x)**2 - y # = y*(1 - 1) = 0
assert solve_linear(eq) == (0, 1)
eq = cos(x)**2 + sin(x)**2 # = 1
assert solve_linear(eq) == (0, 1)
raises(ValueError, lambda: solve_linear(Eq(x, 3), 3))
def test_solve_undetermined_coeffs():
assert solve_undetermined_coeffs(
a*x**2 + b*x**2 + b*x + 2*c*x + c + 1, [a, b, c], x
) == {a: -2, b: 2, c: -1}
# Test that rational functions work
assert solve_undetermined_coeffs(a/x + b/(x + 1)
- (2*x + 1)/(x**2 + x), [a, b], x) == {a: 1, b: 1}
# Test cancellation in rational functions
assert solve_undetermined_coeffs(
((c + 1)*a*x**2 + (c + 1)*b*x**2 +
(c + 1)*b*x + (c + 1)*2*c*x + (c + 1)**2)/(c + 1),
[a, b, c], x) == \
{a: -2, b: 2, c: -1}
# multivariate
X, Y, Z = y, x**y, y*x**y
eq = a*X + b*Y + c*Z - X - 2*Y - 3*Z
coeffs = a, b, c
syms = x, y
assert solve_undetermined_coeffs(eq, coeffs) == {
a: 1, b: 2, c: 3}
assert solve_undetermined_coeffs(eq, coeffs, syms) == {
a: 1, b: 2, c: 3}
assert solve_undetermined_coeffs(eq, coeffs, *syms) == {
a: 1, b: 2, c: 3}
# check output format
assert solve_undetermined_coeffs(a*x + a - 2, [a]) == []
assert solve_undetermined_coeffs(a**2*x - 4*x, [a]) == [
{a: -2}, {a: 2}]
assert solve_undetermined_coeffs(0, [a]) == []
assert solve_undetermined_coeffs(0, [a], dict=True) == []
assert solve_undetermined_coeffs(0, [a], set=True) == ([], {})
assert solve_undetermined_coeffs(1, [a]) == []
abeq = a*x - 2*x + b - 3
s = {b, a}
assert solve_undetermined_coeffs(abeq, s, x) == {a: 2, b: 3}
assert solve_undetermined_coeffs(abeq, s, x, set=True) == ([a, b], {(2, 3)})
assert solve_undetermined_coeffs(sin(a*x) - sin(2*x), (a,)) is None
assert solve_undetermined_coeffs(a*x + b*x - 2*x, (a, b)) == {a: 2 - b}
def test_solve_inequalities():
x = Symbol('x')
sol = And(S.Zero < x, x < oo)
assert solve(x + 1 > 1) == sol
assert solve([x + 1 > 1]) == sol
assert solve([x + 1 > 1], x) == sol
assert solve([x + 1 > 1], [x]) == sol
system = [Lt(x**2 - 2, 0), Gt(x**2 - 1, 0)]
assert solve(system) == \
And(Or(And(Lt(-sqrt(2), x), Lt(x, -1)),
And(Lt(1, x), Lt(x, sqrt(2)))), Eq(0, 0))
x = Symbol('x', real=True)
system = [Lt(x**2 - 2, 0), Gt(x**2 - 1, 0)]
assert solve(system) == \
Or(And(Lt(-sqrt(2), x), Lt(x, -1)), And(Lt(1, x), Lt(x, sqrt(2))))
# issues 6627, 3448
assert solve((x - 3)/(x - 2) < 0, x) == And(Lt(2, x), Lt(x, 3))
assert solve(x/(x + 1) > 1, x) == And(Lt(-oo, x), Lt(x, -1))
assert solve(sin(x) > S.Half) == And(pi/6 < x, x < pi*Rational(5, 6))
assert solve(Eq(False, x < 1)) == (S.One <= x) & (x < oo)
assert solve(Eq(True, x < 1)) == (-oo < x) & (x < 1)
assert solve(Eq(x < 1, False)) == (S.One <= x) & (x < oo)
assert solve(Eq(x < 1, True)) == (-oo < x) & (x < 1)
assert solve(Eq(False, x)) == False
assert solve(Eq(0, x)) == [0]
assert solve(Eq(True, x)) == True
assert solve(Eq(1, x)) == [1]
assert solve(Eq(False, ~x)) == True
assert solve(Eq(True, ~x)) == False
assert solve(Ne(True, x)) == False
assert solve(Ne(1, x)) == (x > -oo) & (x < oo) & Ne(x, 1)
def test_issue_4793():
assert solve(1/x) == []
assert solve(x*(1 - 5/x)) == [5]
assert solve(x + sqrt(x) - 2) == [1]
assert solve(-(1 + x)/(2 + x)**2 + 1/(2 + x)) == []
assert solve(-x**2 - 2*x + (x + 1)**2 - 1) == []
assert solve((x/(x + 1) + 3)**(-2)) == []
assert solve(x/sqrt(x**2 + 1), x) == [0]
assert solve(exp(x) - y, x) == [log(y)]
assert solve(exp(x)) == []
assert solve(x**2 + x + sin(y)**2 + cos(y)**2 - 1, x) in [[0, -1], [-1, 0]]
eq = 4*3**(5*x + 2) - 7
ans = solve(eq, x)
assert len(ans) == 5 and all(eq.subs(x, a).n(chop=True) == 0 for a in ans)
assert solve(log(x**2) - y**2/exp(x), x, y, set=True) == (
[x, y],
{(x, sqrt(exp(x) * log(x ** 2))), (x, -sqrt(exp(x) * log(x ** 2)))})
assert solve(x**2*z**2 - z**2*y**2) == [{x: -y}, {x: y}, {z: 0}]
assert solve((x - 1)/(1 + 1/(x - 1))) == []
assert solve(x**(y*z) - x, x) == [1]
raises(NotImplementedError, lambda: solve(log(x) - exp(x), x))
raises(NotImplementedError, lambda: solve(2**x - exp(x) - 3))
def test_PR1964():
# issue 5171
assert solve(sqrt(x)) == solve(sqrt(x**3)) == [0]
assert solve(sqrt(x - 1)) == [1]
# issue 4462
a = Symbol('a')
assert solve(-3*a/sqrt(x), x) == []
# issue 4486
assert solve(2*x/(x + 2) - 1, x) == [2]
# issue 4496
assert set(solve((x**2/(7 - x)).diff(x))) == {S.Zero, S(14)}
# issue 4695
f = Function('f')
assert solve((3 - 5*x/f(x))*f(x), f(x)) == [x*Rational(5, 3)]
# issue 4497
assert solve(1/root(5 + x, 5) - 9, x) == [Rational(-295244, 59049)]
assert solve(sqrt(x) + sqrt(sqrt(x)) - 4) == [(Rational(-1, 2) + sqrt(17)/2)**4]
assert set(solve(Poly(sqrt(exp(x)) + sqrt(exp(-x)) - 4))) in \
[
{log((-sqrt(3) + 2)**2), log((sqrt(3) + 2)**2)},
{2*log(-sqrt(3) + 2), 2*log(sqrt(3) + 2)},
{log(-4*sqrt(3) + 7), log(4*sqrt(3) + 7)},
]
assert set(solve(Poly(exp(x) + exp(-x) - 4))) == \
{log(-sqrt(3) + 2), log(sqrt(3) + 2)}
assert set(solve(x**y + x**(2*y) - 1, x)) == \
{(Rational(-1, 2) + sqrt(5)/2)**(1/y), (Rational(-1, 2) - sqrt(5)/2)**(1/y)}
assert solve(exp(x/y)*exp(-z/y) - 2, y) == [(x - z)/log(2)]
assert solve(
x**z*y**z - 2, z) in [[log(2)/(log(x) + log(y))], [log(2)/(log(x*y))]]
# if you do inversion too soon then multiple roots (as for the following)
# will be missed, e.g. if exp(3*x) = exp(3) -> 3*x = 3
E = S.Exp1
assert solve(exp(3*x) - exp(3), x) in [
[1, log(E*(Rational(-1, 2) - sqrt(3)*I/2)), log(E*(Rational(-1, 2) + sqrt(3)*I/2))],
[1, log(-E/2 - sqrt(3)*E*I/2), log(-E/2 + sqrt(3)*E*I/2)],
]
# coverage test
p = Symbol('p', positive=True)
assert solve((1/p + 1)**(p + 1)) == []
def test_issue_5197():
x = Symbol('x', real=True)
assert solve(x**2 + 1, x) == []
n = Symbol('n', integer=True, positive=True)
assert solve((n - 1)*(n + 2)*(2*n - 1), n) == [1]
x = Symbol('x', positive=True)
y = Symbol('y')
assert solve([x + 5*y - 2, -3*x + 6*y - 15], x, y) == []
# not {x: -3, y: 1} b/c x is positive
# The solution following should not contain (-sqrt(2), sqrt(2))
assert solve([(x + y), 2 - y**2], x, y) == [(sqrt(2), -sqrt(2))]
y = Symbol('y', positive=True)
# The solution following should not contain {y: -x*exp(x/2)}
assert solve(x**2 - y**2/exp(x), y, x, dict=True) == [{y: x*exp(x/2)}]
x, y, z = symbols('x y z', positive=True)
assert solve(z**2*x**2 - z**2*y**2/exp(x), y, x, z, dict=True) == [{y: x*exp(x/2)}]
def test_checking():
assert set(
solve(x*(x - y/x), x, check=False)) == {sqrt(y), S.Zero, -sqrt(y)}
assert set(solve(x*(x - y/x), x, check=True)) == {sqrt(y), -sqrt(y)}
# {x: 0, y: 4} sets denominator to 0 in the following so system should return None
assert solve((1/(1/x + 2), 1/(y - 3) - 1)) == []
# 0 sets denominator of 1/x to zero so None is returned
assert solve(1/(1/x + 2)) == []
def test_issue_4671_4463_4467():
assert solve(sqrt(x**2 - 1) - 2) in ([sqrt(5), -sqrt(5)],
[-sqrt(5), sqrt(5)])
assert solve((2**exp(y**2/x) + 2)/(x**2 + 15), y) == [
-sqrt(x*log(1 + I*pi/log(2))), sqrt(x*log(1 + I*pi/log(2)))]
C1, C2 = symbols('C1 C2')
f = Function('f')
assert solve(C1 + C2/x**2 - exp(-f(x)), f(x)) == [log(x**2/(C1*x**2 + C2))]
a = Symbol('a')
E = S.Exp1
assert solve(1 - log(a + 4*x**2), x) in (
[-sqrt(-a + E)/2, sqrt(-a + E)/2],
[sqrt(-a + E)/2, -sqrt(-a + E)/2]
)
assert solve(log(a**(-3) - x**2)/a, x) in (
[-sqrt(-1 + a**(-3)), sqrt(-1 + a**(-3))],
[sqrt(-1 + a**(-3)), -sqrt(-1 + a**(-3))],)
assert solve(1 - log(a + 4*x**2), x) in (
[-sqrt(-a + E)/2, sqrt(-a + E)/2],
[sqrt(-a + E)/2, -sqrt(-a + E)/2],)
assert solve((a**2 + 1)*(sin(a*x) + cos(a*x)), x) == [-pi/(4*a)]
assert solve(3 - (sinh(a*x) + cosh(a*x)), x) == [log(3)/a]
assert set(solve(3 - (sinh(a*x) + cosh(a*x)**2), x)) == \
{log(-2 + sqrt(5))/a, log(-sqrt(2) + 1)/a,
log(-sqrt(5) - 2)/a, log(1 + sqrt(2))/a}
assert solve(atan(x) - 1) == [tan(1)]
def test_issue_5132():
r, t = symbols('r,t')
assert set(solve([r - x**2 - y**2, tan(t) - y/x], [x, y])) == \
{(
-sqrt(r*cos(t)**2), -1*sqrt(r*cos(t)**2)*tan(t)),
(sqrt(r*cos(t)**2), sqrt(r*cos(t)**2)*tan(t))}
assert solve([exp(x) - sin(y), 1/y - 3], [x, y]) == \
[(log(sin(Rational(1, 3))), Rational(1, 3))]
assert solve([exp(x) - sin(y), 1/exp(y) - 3], [x, y]) == \
[(log(-sin(log(3))), -log(3))]
assert set(solve([exp(x) - sin(y), y**2 - 4], [x, y])) == \
{(log(-sin(2)), -S(2)), (log(sin(2)), S(2))}
eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3]
assert solve(eqs, set=True) == \
([y, z], {
(-log(3), sqrt(-exp(2*x) - sin(log(3)))),
(-log(3), -sqrt(-exp(2*x) - sin(log(3))))})
assert solve(eqs, x, z, set=True) == (
[x, z],
{(x, sqrt(-exp(2*x) + sin(y))), (x, -sqrt(-exp(2*x) + sin(y)))})
assert set(solve(eqs, x, y)) == \
{
(log(-sqrt(-z**2 - sin(log(3)))), -log(3)),
(log(-z**2 - sin(log(3)))/2, -log(3))}
assert set(solve(eqs, y, z)) == \
{
(-log(3), -sqrt(-exp(2*x) - sin(log(3)))),
(-log(3), sqrt(-exp(2*x) - sin(log(3))))}
eqs = [exp(x)**2 - sin(y) + z, 1/exp(y) - 3]
assert solve(eqs, set=True) == ([y, z], {
(-log(3), -exp(2*x) - sin(log(3)))})
assert solve(eqs, x, z, set=True) == (
[x, z], {(x, -exp(2*x) + sin(y))})
assert set(solve(eqs, x, y)) == {
(log(-sqrt(-z - sin(log(3)))), -log(3)),
(log(-z - sin(log(3)))/2, -log(3))}
assert solve(eqs, z, y) == \
[(-exp(2*x) - sin(log(3)), -log(3))]
assert solve((sqrt(x**2 + y**2) - sqrt(10), x + y - 4), set=True) == (
[x, y], {(S.One, S(3)), (S(3), S.One)})
assert set(solve((sqrt(x**2 + y**2) - sqrt(10), x + y - 4), x, y)) == \
{(S.One, S(3)), (S(3), S.One)}
def test_issue_5335():
lam, a0, conc = symbols('lam a0 conc')
a = 0.005
b = 0.743436700916726
eqs = [lam + 2*y - a0*(1 - x/2)*x - a*x/2*x,
a0*(1 - x/2)*x - 1*y - b*y,
x + y - conc]
sym = [x, y, a0]
# there are 4 solutions obtained manually but only two are valid
assert len(solve(eqs, sym, manual=True, minimal=True)) == 2
assert len(solve(eqs, sym)) == 2 # cf below with rational=False
@SKIP("Hangs")
def _test_issue_5335_float():
# gives ZeroDivisionError: polynomial division
lam, a0, conc = symbols('lam a0 conc')
a = 0.005
b = 0.743436700916726
eqs = [lam + 2*y - a0*(1 - x/2)*x - a*x/2*x,
a0*(1 - x/2)*x - 1*y - b*y,
x + y - conc]
sym = [x, y, a0]
assert len(solve(eqs, sym, rational=False)) == 2
def test_issue_5767():
assert set(solve([x**2 + y + 4], [x])) == \
{(-sqrt(-y - 4),), (sqrt(-y - 4),)}
def test_polysys():
assert set(solve([x**2 + 2/y - 2, x + y - 3], [x, y])) == \
{(S.One, S(2)), (1 + sqrt(5), 2 - sqrt(5)),
(1 - sqrt(5), 2 + sqrt(5))}
assert solve([x**2 + y - 2, x**2 + y]) == []
# the ordering should be whatever the user requested
assert solve([x**2 + y - 3, x - y - 4], (x, y)) != solve([x**2 +
y - 3, x - y - 4], (y, x))
@slow
def test_unrad1():
raises(NotImplementedError, lambda:
unrad(sqrt(x) + sqrt(x + 1) + sqrt(1 - sqrt(x)) + 3))
raises(NotImplementedError, lambda:
unrad(sqrt(x) + (x + 1)**Rational(1, 3) + 2*sqrt(y)))
s = symbols('s', cls=Dummy)
# checkers to deal with possibility of answer coming
# back with a sign change (cf issue 5203)
def check(rv, ans):
assert bool(rv[1]) == bool(ans[1])
if ans[1]:
return s_check(rv, ans)
e = rv[0].expand()
a = ans[0].expand()
return e in [a, -a] and rv[1] == ans[1]
def s_check(rv, ans):
# get the dummy
rv = list(rv)
d = rv[0].atoms(Dummy)
reps = list(zip(d, [s]*len(d)))
# replace s with this dummy
rv = (rv[0].subs(reps).expand(), [rv[1][0].subs(reps), rv[1][1].subs(reps)])
ans = (ans[0].subs(reps).expand(), [ans[1][0].subs(reps), ans[1][1].subs(reps)])
return str(rv[0]) in [str(ans[0]), str(-ans[0])] and \
str(rv[1]) == str(ans[1])
assert unrad(1) is None
assert check(unrad(sqrt(x)),
(x, []))
assert check(unrad(sqrt(x) + 1),
(x - 1, []))
assert check(unrad(sqrt(x) + root(x, 3) + 2),
(s**3 + s**2 + 2, [s, s**6 - x]))
assert check(unrad(sqrt(x)*root(x, 3) + 2),
(x**5 - 64, []))
assert check(unrad(sqrt(x) + (x + 1)**Rational(1, 3)),
(x**3 - (x + 1)**2, []))
assert check(unrad(sqrt(x) + sqrt(x + 1) + sqrt(2*x)),
(-2*sqrt(2)*x - 2*x + 1, []))
assert check(unrad(sqrt(x) + sqrt(x + 1) + 2),
(16*x - 9, []))
assert check(unrad(sqrt(x) + sqrt(x + 1) + sqrt(1 - x)),
(5*x**2 - 4*x, []))
assert check(unrad(a*sqrt(x) + b*sqrt(x) + c*sqrt(y) + d*sqrt(y)),
((a*sqrt(x) + b*sqrt(x))**2 - (c*sqrt(y) + d*sqrt(y))**2, []))
assert check(unrad(sqrt(x) + sqrt(1 - x)),
(2*x - 1, []))
assert check(unrad(sqrt(x) + sqrt(1 - x) - 3),
(x**2 - x + 16, []))
assert check(unrad(sqrt(x) + sqrt(1 - x) + sqrt(2 + x)),
(5*x**2 - 2*x + 1, []))
assert unrad(sqrt(x) + sqrt(1 - x) + sqrt(2 + x) - 3) in [
(25*x**4 + 376*x**3 + 1256*x**2 - 2272*x + 784, []),
(25*x**8 - 476*x**6 + 2534*x**4 - 1468*x**2 + 169, [])]
assert unrad(sqrt(x) + sqrt(1 - x) + sqrt(2 + x) - sqrt(1 - 2*x)) == \
(41*x**4 + 40*x**3 + 232*x**2 - 160*x + 16, []) # orig root at 0.487
assert check(unrad(sqrt(x) + sqrt(x + 1)), (S.One, []))
eq = sqrt(x) + sqrt(x + 1) + sqrt(1 - sqrt(x))
assert check(unrad(eq),
(16*x**2 - 9*x, []))
assert set(solve(eq, check=False)) == {S.Zero, Rational(9, 16)}
assert solve(eq) == []
# but this one really does have those solutions
assert set(solve(sqrt(x) - sqrt(x + 1) + sqrt(1 - sqrt(x)))) == \
{S.Zero, Rational(9, 16)}
assert check(unrad(sqrt(x) + root(x + 1, 3) + 2*sqrt(y), y),
(S('2*sqrt(x)*(x + 1)**(1/3) + x - 4*y + (x + 1)**(2/3)'), []))
assert check(unrad(sqrt(x/(1 - x)) + (x + 1)**Rational(1, 3)),
(x**5 - x**4 - x**3 + 2*x**2 + x - 1, []))
assert check(unrad(sqrt(x/(1 - x)) + 2*sqrt(y), y),
(4*x*y + x - 4*y, []))
assert check(unrad(sqrt(x)*sqrt(1 - x) + 2, x),
(x**2 - x + 4, []))
# http://tutorial.math.lamar.edu/
# Classes/Alg/SolveRadicalEqns.aspx#Solve_Rad_Ex2_a
assert solve(Eq(x, sqrt(x + 6))) == [3]
assert solve(Eq(x + sqrt(x - 4), 4)) == [4]
assert solve(Eq(1, x + sqrt(2*x - 3))) == []
assert set(solve(Eq(sqrt(5*x + 6) - 2, x))) == {-S.One, S(2)}
assert set(solve(Eq(sqrt(2*x - 1) - sqrt(x - 4), 2))) == {S(5), S(13)}
assert solve(Eq(sqrt(x + 7) + 2, sqrt(3 - x))) == [-6]
# http://www.purplemath.com/modules/solverad.htm
assert solve((2*x - 5)**Rational(1, 3) - 3) == [16]
assert set(solve(x + 1 - root(x**4 + 4*x**3 - x, 4))) == \
{Rational(-1, 2), Rational(-1, 3)}
assert set(solve(sqrt(2*x**2 - 7) - (3 - x))) == {-S(8), S(2)}
assert solve(sqrt(2*x + 9) - sqrt(x + 1) - sqrt(x + 4)) == [0]
assert solve(sqrt(x + 4) + sqrt(2*x - 1) - 3*sqrt(x - 1)) == [5]
assert solve(sqrt(x)*sqrt(x - 7) - 12) == [16]
assert solve(sqrt(x - 3) + sqrt(x) - 3) == [4]
assert solve(sqrt(9*x**2 + 4) - (3*x + 2)) == [0]
assert solve(sqrt(x) - 2 - 5) == [49]
assert solve(sqrt(x - 3) - sqrt(x) - 3) == []
assert solve(sqrt(x - 1) - x + 7) == [10]
assert solve(sqrt(x - 2) - 5) == [27]
assert solve(sqrt(17*x - sqrt(x**2 - 5)) - 7) == [3]
assert solve(sqrt(x) - sqrt(x - 1) + sqrt(sqrt(x))) == []
# don't posify the expression in unrad and do use _mexpand
z = sqrt(2*x + 1)/sqrt(x) - sqrt(2 + 1/x)
p = posify(z)[0]
assert solve(p) == []
assert solve(z) == []
assert solve(z + 6*I) == [Rational(-1, 11)]
assert solve(p + 6*I) == []
# issue 8622
assert unrad(root(x + 1, 5) - root(x, 3)) == (
-(x**5 - x**3 - 3*x**2 - 3*x - 1), [])
# issue #8679
assert check(unrad(x + root(x, 3) + root(x, 3)**2 + sqrt(y), x),
(s**3 + s**2 + s + sqrt(y), [s, s**3 - x]))
# for coverage
assert check(unrad(sqrt(x) + root(x, 3) + y),
(s**3 + s**2 + y, [s, s**6 - x]))
assert solve(sqrt(x) + root(x, 3) - 2) == [1]
raises(NotImplementedError, lambda:
solve(sqrt(x) + root(x, 3) + root(x + 1, 5) - 2))
# fails through a different code path
raises(NotImplementedError, lambda: solve(-sqrt(2) + cosh(x)/x))
# unrad some
assert solve(sqrt(x + root(x, 3))+root(x - y, 5), y) == [
x + (x**Rational(1, 3) + x)**Rational(5, 2)]
assert check(unrad(sqrt(x) - root(x + 1, 3)*sqrt(x + 2) + 2),
(s**10 + 8*s**8 + 24*s**6 - 12*s**5 - 22*s**4 - 160*s**3 - 212*s**2 -
192*s - 56, [s, s**2 - x]))
e = root(x + 1, 3) + root(x, 3)
assert unrad(e) == (2*x + 1, [])
eq = (sqrt(x) + sqrt(x + 1) + sqrt(1 - x) - 6*sqrt(5)/5)
assert check(unrad(eq),
(15625*x**4 + 173000*x**3 + 355600*x**2 - 817920*x + 331776, []))
assert check(unrad(root(x, 4) + root(x, 4)**3 - 1),
(s**3 + s - 1, [s, s**4 - x]))
assert check(unrad(root(x, 2) + root(x, 2)**3 - 1),
(x**3 + 2*x**2 + x - 1, []))
assert unrad(x**0.5) is None
assert check(unrad(t + root(x + y, 5) + root(x + y, 5)**3),
(s**3 + s + t, [s, s**5 - x - y]))
assert check(unrad(x + root(x + y, 5) + root(x + y, 5)**3, y),
(s**3 + s + x, [s, s**5 - x - y]))
assert check(unrad(x + root(x + y, 5) + root(x + y, 5)**3, x),
(s**5 + s**3 + s - y, [s, s**5 - x - y]))
assert check(unrad(root(x - 1, 3) + root(x + 1, 5) + root(2, 5)),
(s**5 + 5*2**Rational(1, 5)*s**4 + s**3 + 10*2**Rational(2, 5)*s**3 +
10*2**Rational(3, 5)*s**2 + 5*2**Rational(4, 5)*s + 4, [s, s**3 - x + 1]))
raises(NotImplementedError, lambda:
unrad((root(x, 2) + root(x, 3) + root(x, 4)).subs(x, x**5 - x + 1)))
# the simplify flag should be reset to False for unrad results;
# if it's not then this next test will take a long time
assert solve(root(x, 3) + root(x, 5) - 2) == [1]
eq = (sqrt(x) + sqrt(x + 1) + sqrt(1 - x) - 6*sqrt(5)/5)
assert check(unrad(eq),
((5*x - 4)*(3125*x**3 + 37100*x**2 + 100800*x - 82944), []))
ans = S('''
[4/5, -1484/375 + 172564/(140625*(114*sqrt(12657)/78125 +
12459439/52734375)**(1/3)) +
4*(114*sqrt(12657)/78125 + 12459439/52734375)**(1/3)]''')
assert solve(eq) == ans
# duplicate radical handling
assert check(unrad(sqrt(x + root(x + 1, 3)) - root(x + 1, 3) - 2),
(s**3 - s**2 - 3*s - 5, [s, s**3 - x - 1]))
# cov post-processing
e = root(x**2 + 1, 3) - root(x**2 - 1, 5) - 2
assert check(unrad(e),
(s**5 - 10*s**4 + 39*s**3 - 80*s**2 + 80*s - 30,
[s, s**3 - x**2 - 1]))
e = sqrt(x + root(x + 1, 2)) - root(x + 1, 3) - 2
assert check(unrad(e),
(s**6 - 2*s**5 - 7*s**4 - 3*s**3 + 26*s**2 + 40*s + 25,
[s, s**3 - x - 1]))
assert check(unrad(e, _reverse=True),
(s**6 - 14*s**5 + 73*s**4 - 187*s**3 + 276*s**2 - 228*s + 89,
[s, s**2 - x - sqrt(x + 1)]))
# this one needs r0, r1 reversal to work
assert check(unrad(sqrt(x + sqrt(root(x, 3) - 1)) - root(x, 6) - 2),
(s**12 - 2*s**8 - 8*s**7 - 8*s**6 + s**4 + 8*s**3 + 23*s**2 +
32*s + 17, [s, s**6 - x]))
# why does this pass
assert unrad(root(cosh(x), 3)/x*root(x + 1, 5) - 1) == (
-(x**15 - x**3*cosh(x)**5 - 3*x**2*cosh(x)**5 - 3*x*cosh(x)**5
- cosh(x)**5), [])
# and this fail?
#assert unrad(sqrt(cosh(x)/x) + root(x + 1, 3)*sqrt(x) - 1) == (
# -s**6 + 6*s**5 - 15*s**4 + 20*s**3 - 15*s**2 + 6*s + x**5 +
# 2*x**4 + x**3 - 1, [s, s**2 - cosh(x)/x])
# watch for symbols in exponents
assert unrad(S('(x+y)**(2*y/3) + (x+y)**(1/3) + 1')) is None
assert check(unrad(S('(x+y)**(2*y/3) + (x+y)**(1/3) + 1'), x),
(s**(2*y) + s + 1, [s, s**3 - x - y]))
# should _Q be so lenient?
assert unrad(x**(S.Half/y) + y, x) == (x**(1/y) - y**2, [])
# This tests two things: that if full unrad is attempted and fails
# the solution should still be found; also it tests that the use of
# composite
assert len(solve(sqrt(y)*x + x**3 - 1, x)) == 3
assert len(solve(-512*y**3 + 1344*(x + 2)**Rational(1, 3)*y**2 -
1176*(x + 2)**Rational(2, 3)*y - 169*x + 686, y, _unrad=False)) == 3
# watch out for when the cov doesn't involve the symbol of interest
eq = S('-x + (7*y/8 - (27*x/2 + 27*sqrt(x**2)/2)**(1/3)/3)**3 - 1')
assert solve(eq, y) == [
2**(S(2)/3)*(27*x + 27*sqrt(x**2))**(S(1)/3)*S(4)/21 + (512*x/343 +
S(512)/343)**(S(1)/3)*(-S(1)/2 - sqrt(3)*I/2), 2**(S(2)/3)*(27*x +
27*sqrt(x**2))**(S(1)/3)*S(4)/21 + (512*x/343 +
S(512)/343)**(S(1)/3)*(-S(1)/2 + sqrt(3)*I/2), 2**(S(2)/3)*(27*x +
27*sqrt(x**2))**(S(1)/3)*S(4)/21 + (512*x/343 + S(512)/343)**(S(1)/3)]
eq = root(x + 1, 3) - (root(x, 3) + root(x, 5))
assert check(unrad(eq),
(3*s**13 + 3*s**11 + s**9 - 1, [s, s**15 - x]))
assert check(unrad(eq - 2),
(3*s**13 + 3*s**11 + 6*s**10 + s**9 + 12*s**8 + 6*s**6 + 12*s**5 +
12*s**3 + 7, [s, s**15 - x]))
assert check(unrad(root(x, 3) - root(x + 1, 4)/2 + root(x + 2, 3)),
(s*(4096*s**9 + 960*s**8 + 48*s**7 - s**6 - 1728),
[s, s**4 - x - 1])) # orig expr has two real roots: -1, -.389
assert check(unrad(root(x, 3) + root(x + 1, 4) - root(x + 2, 3)/2),
(343*s**13 + 2904*s**12 + 1344*s**11 + 512*s**10 - 1323*s**9 -
3024*s**8 - 1728*s**7 + 1701*s**5 + 216*s**4 - 729*s, [s, s**4 - x -
1])) # orig expr has one real root: -0.048
assert check(unrad(root(x, 3)/2 - root(x + 1, 4) + root(x + 2, 3)),
(729*s**13 - 216*s**12 + 1728*s**11 - 512*s**10 + 1701*s**9 -
3024*s**8 + 1344*s**7 + 1323*s**5 - 2904*s**4 + 343*s, [s, s**4 - x -
1])) # orig expr has 2 real roots: -0.91, -0.15
assert check(unrad(root(x, 3)/2 - root(x + 1, 4) + root(x + 2, 3) - 2),
(729*s**13 + 1242*s**12 + 18496*s**10 + 129701*s**9 + 388602*s**8 +
453312*s**7 - 612864*s**6 - 3337173*s**5 - 6332418*s**4 - 7134912*s**3
- 5064768*s**2 - 2111913*s - 398034, [s, s**4 - x - 1]))
# orig expr has 1 real root: 19.53
ans = solve(sqrt(x) + sqrt(x + 1) -
sqrt(1 - x) - sqrt(2 + x))
assert len(ans) == 1 and NS(ans[0])[:4] == '0.73'
# the fence optimization problem
# https://github.com/sympy/sympy/issues/4793#issuecomment-36994519
F = Symbol('F')
eq = F - (2*x + 2*y + sqrt(x**2 + y**2))
ans = F*Rational(2, 7) - sqrt(2)*F/14
X = solve(eq, x, check=False)
for xi in reversed(X): # reverse since currently, ans is the 2nd one
Y = solve((x*y).subs(x, xi).diff(y), y, simplify=False, check=False)
if any((a - ans).expand().is_zero for a in Y):
break
else:
assert None # no answer was found
assert solve(sqrt(x + 1) + root(x, 3) - 2) == S('''
[(-11/(9*(47/54 + sqrt(93)/6)**(1/3)) + 1/3 + (47/54 +
sqrt(93)/6)**(1/3))**3]''')
assert solve(sqrt(sqrt(x + 1)) + x**Rational(1, 3) - 2) == S('''
[(-sqrt(-2*(-1/16 + sqrt(6913)/16)**(1/3) + 6/(-1/16 +
sqrt(6913)/16)**(1/3) + 17/2 + 121/(4*sqrt(-6/(-1/16 +
sqrt(6913)/16)**(1/3) + 2*(-1/16 + sqrt(6913)/16)**(1/3) + 17/4)))/2 +
sqrt(-6/(-1/16 + sqrt(6913)/16)**(1/3) + 2*(-1/16 +
sqrt(6913)/16)**(1/3) + 17/4)/2 + 9/4)**3]''')
assert solve(sqrt(x) + root(sqrt(x) + 1, 3) - 2) == S('''
[(-(81/2 + 3*sqrt(741)/2)**(1/3)/3 + (81/2 + 3*sqrt(741)/2)**(-1/3) +
2)**2]''')
eq = S('''
-x + (1/2 - sqrt(3)*I/2)*(3*x**3/2 - x*(3*x**2 - 34)/2 + sqrt((-3*x**3
+ x*(3*x**2 - 34) + 90)**2/4 - 39304/27) - 45)**(1/3) + 34/(3*(1/2 -
sqrt(3)*I/2)*(3*x**3/2 - x*(3*x**2 - 34)/2 + sqrt((-3*x**3 + x*(3*x**2
- 34) + 90)**2/4 - 39304/27) - 45)**(1/3))''')
assert check(unrad(eq),
(s*-(-s**6 + sqrt(3)*s**6*I - 153*2**Rational(2, 3)*3**Rational(1, 3)*s**4 +
51*12**Rational(1, 3)*s**4 - 102*2**Rational(2, 3)*3**Rational(5, 6)*s**4*I - 1620*s**3 +
1620*sqrt(3)*s**3*I + 13872*18**Rational(1, 3)*s**2 - 471648 +
471648*sqrt(3)*I), [s, s**3 - 306*x - sqrt(3)*sqrt(31212*x**2 -
165240*x + 61484) + 810]))
assert solve(eq) == [] # not other code errors
eq = root(x, 3) - root(y, 3) + root(x, 5)
assert check(unrad(eq),
(s**15 + 3*s**13 + 3*s**11 + s**9 - y, [s, s**15 - x]))
eq = root(x, 3) + root(y, 3) + root(x*y, 4)
assert check(unrad(eq),
(s*y*(-s**12 - 3*s**11*y - 3*s**10*y**2 - s**9*y**3 -
3*s**8*y**2 + 21*s**7*y**3 - 3*s**6*y**4 - 3*s**4*y**4 -
3*s**3*y**5 - y**6), [s, s**4 - x*y]))
raises(NotImplementedError,
lambda: unrad(root(x, 3) + root(y, 3) + root(x*y, 5)))
# Test unrad with an Equality
eq = Eq(-x**(S(1)/5) + x**(S(1)/3), -3**(S(1)/3) - (-1)**(S(3)/5)*3**(S(1)/5))
assert check(unrad(eq),
(-s**5 + s**3 - 3**(S(1)/3) - (-1)**(S(3)/5)*3**(S(1)/5), [s, s**15 - x]))
# make sure buried radicals are exposed
s = sqrt(x) - 1
assert unrad(s**2 - s**3) == (x**3 - 6*x**2 + 9*x - 4, [])
# make sure numerators which are already polynomial are rejected
assert unrad((x/(x + 1) + 3)**(-2), x) is None
# https://github.com/sympy/sympy/issues/23707
eq = sqrt(x - y)*exp(t*sqrt(x - y)) - exp(t*sqrt(x - y))
assert solve(eq, y) == [x - 1]
assert unrad(eq) is None
@slow
def test_unrad_slow():
# this has roots with multiplicity > 1; there should be no
# repeats in roots obtained, however
eq = (sqrt(1 + sqrt(1 - 4*x**2)) - x*(1 + sqrt(1 + 2*sqrt(1 - 4*x**2))))
assert solve(eq) == [S.Half]
@XFAIL
def test_unrad_fail():
# this only works if we check real_root(eq.subs(x, Rational(1, 3)))
# but checksol doesn't work like that
assert solve(root(x**3 - 3*x**2, 3) + 1 - x) == [Rational(1, 3)]
assert solve(root(x + 1, 3) + root(x**2 - 2, 5) + 1) == [
-1, -1 + CRootOf(x**5 + x**4 + 5*x**3 + 8*x**2 + 10*x + 5, 0)**3]
def test_checksol():
x, y, r, t = symbols('x, y, r, t')
eq = r - x**2 - y**2
dict_var_soln = {y: - sqrt(r) / sqrt(tan(t)**2 + 1),
x: -sqrt(r)*tan(t)/sqrt(tan(t)**2 + 1)}
assert checksol(eq, dict_var_soln) == True
assert checksol(Eq(x, False), {x: False}) is True
assert checksol(Ne(x, False), {x: False}) is False
assert checksol(Eq(x < 1, True), {x: 0}) is True
assert checksol(Eq(x < 1, True), {x: 1}) is False
assert checksol(Eq(x < 1, False), {x: 1}) is True
assert checksol(Eq(x < 1, False), {x: 0}) is False
assert checksol(Eq(x + 1, x**2 + 1), {x: 1}) is True
assert checksol([x - 1, x**2 - 1], x, 1) is True
assert checksol([x - 1, x**2 - 2], x, 1) is False
assert checksol(Poly(x**2 - 1), x, 1) is True
assert checksol(0, {}) is True
assert checksol([1e-10, x - 2], x, 2) is False
assert checksol([0.5, 0, x], x, 0) is False
assert checksol(y, x, 2) is False
assert checksol(x+1e-10, x, 0, numerical=True) is True
assert checksol(x+1e-10, x, 0, numerical=False) is False
assert checksol(exp(92*x), {x: log(sqrt(2)/2)}) is False
assert checksol(exp(92*x), {x: log(sqrt(2)/2) + I*pi}) is False
assert checksol(1/x**5, x, 1000) is False
raises(ValueError, lambda: checksol(x, 1))
raises(ValueError, lambda: checksol([], x, 1))
def test__invert():
assert _invert(x - 2) == (2, x)
assert _invert(2) == (2, 0)
assert _invert(exp(1/x) - 3, x) == (1/log(3), x)
assert _invert(exp(1/x + a/x) - 3, x) == ((a + 1)/log(3), x)
assert _invert(a, x) == (a, 0)
def test_issue_4463():
assert solve(-a*x + 2*x*log(x), x) == [exp(a/2)]
assert solve(x**x) == []
assert solve(x**x - 2) == [exp(LambertW(log(2)))]
assert solve(((x - 3)*(x - 2))**((x - 3)*(x - 4))) == [2]
@slow
def test_issue_5114_solvers():
a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r = symbols('a:r')
# there is no 'a' in the equation set but this is how the
# problem was originally posed
syms = a, b, c, f, h, k, n
eqs = [b + r/d - c/d,
c*(1/d + 1/e + 1/g) - f/g - r/d,
f*(1/g + 1/i + 1/j) - c/g - h/i,
h*(1/i + 1/l + 1/m) - f/i - k/m,
k*(1/m + 1/o + 1/p) - h/m - n/p,
n*(1/p + 1/q) - k/p]
assert len(solve(eqs, syms, manual=True, check=False, simplify=False)) == 1
def test_issue_5849():
#
# XXX: This system does not have a solution for most values of the
# parameters. Generally solve returns the empty set for systems that are
# generically inconsistent.
#
I1, I2, I3, I4, I5, I6 = symbols('I1:7')
dI1, dI4, dQ2, dQ4, Q2, Q4 = symbols('dI1,dI4,dQ2,dQ4,Q2,Q4')
e = (
I1 - I2 - I3,
I3 - I4 - I5,
I4 + I5 - I6,
-I1 + I2 + I6,
-2*I1 - 2*I3 - 2*I5 - 3*I6 - dI1/2 + 12,
-I4 + dQ4,
-I2 + dQ2,
2*I3 + 2*I5 + 3*I6 - Q2,
I4 - 2*I5 + 2*Q4 + dI4
)
ans = [{
I1: I2 + I3,
dI1: -4*I2 - 8*I3 - 4*I5 - 6*I6 + 24,
I4: I3 - I5,
dQ4: I3 - I5,
Q4: -I3/2 + 3*I5/2 - dI4/2,
dQ2: I2,
Q2: 2*I3 + 2*I5 + 3*I6}]
v = I1, I4, Q2, Q4, dI1, dI4, dQ2, dQ4
assert solve(e, *v, manual=True, check=False, dict=True) == ans
assert solve(e, *v, manual=True, check=False) == [
tuple([a.get(i, i) for i in v]) for a in ans]
assert solve(e, *v, manual=True) == []
assert solve(e, *v) == []
# the matrix solver (tested below) doesn't like this because it produces
# a zero row in the matrix. Is this related to issue 4551?
assert [ei.subs(
ans[0]) for ei in e] == [0, 0, I3 - I6, -I3 + I6, 0, 0, 0, 0, 0]
def test_issue_5849_matrix():
'''Same as test_issue_5849 but solved with the matrix solver.
A solution only exists if I3 == I6 which is not generically true,
but `solve` does not return conditions under which the solution is
valid, only a solution that is canonical and consistent with the input.
'''
# a simple example with the same issue
# assert solve([x+y+z, x+y], [x, y]) == {x: y}
# the longer example
I1, I2, I3, I4, I5, I6 = symbols('I1:7')
dI1, dI4, dQ2, dQ4, Q2, Q4 = symbols('dI1,dI4,dQ2,dQ4,Q2,Q4')
e = (
I1 - I2 - I3,
I3 - I4 - I5,
I4 + I5 - I6,
-I1 + I2 + I6,
-2*I1 - 2*I3 - 2*I5 - 3*I6 - dI1/2 + 12,
-I4 + dQ4,
-I2 + dQ2,
2*I3 + 2*I5 + 3*I6 - Q2,
I4 - 2*I5 + 2*Q4 + dI4
)
assert solve(e, I1, I4, Q2, Q4, dI1, dI4, dQ2, dQ4) == []
def test_issue_21882():
a, b, c, d, f, g, k = unknowns = symbols('a, b, c, d, f, g, k')
equations = [
-k*a + b + 5*f/6 + 2*c/9 + 5*d/6 + 4*a/3,
-k*f + 4*f/3 + d/2,
-k*d + f/6 + d,
13*b/18 + 13*c/18 + 13*a/18,
-k*c + b/2 + 20*c/9 + a,
-k*b + b + c/18 + a/6,
5*b/3 + c/3 + a,
2*b/3 + 2*c + 4*a/3,
-g,
]
answer = [
{a: 0, f: 0, b: 0, d: 0, c: 0, g: 0},
{a: 0, f: -d, b: 0, k: S(5)/6, c: 0, g: 0},
{a: -2*c, f: 0, b: c, d: 0, k: S(13)/18, g: 0}]
# but not {a: 0, f: 0, b: 0, k: S(3)/2, c: 0, d: 0, g: 0}
# since this is already covered by the first solution
got = solve(equations, unknowns, dict=True)
assert got == answer, (got,answer)
def test_issue_5901():
f, g, h = map(Function, 'fgh')
a = Symbol('a')
D = Derivative(f(x), x)
G = Derivative(g(a), a)
assert solve(f(x) + f(x).diff(x), f(x)) == \
[-D]
assert solve(f(x) - 3, f(x)) == \
[3]
assert solve(f(x) - 3*f(x).diff(x), f(x)) == \
[3*D]
assert solve([f(x) - 3*f(x).diff(x)], f(x)) == \
{f(x): 3*D}
assert solve([f(x) - 3*f(x).diff(x), f(x)**2 - y + 4], f(x), y) == \
[(3*D, 9*D**2 + 4)]
assert solve(-f(a)**2*g(a)**2 + f(a)**2*h(a)**2 + g(a).diff(a),
h(a), g(a), set=True) == \
([h(a), g(a)], {
(-sqrt(f(a)**2*g(a)**2 - G)/f(a), g(a)),
(sqrt(f(a)**2*g(a)**2 - G)/f(a), g(a))}), solve(-f(a)**2*g(a)**2 + f(a)**2*h(a)**2 + g(a).diff(a),
h(a), g(a), set=True)
args = [[f(x).diff(x, 2)*(f(x) + g(x)), 2 - g(x)**2], f(x), g(x)]
assert solve(*args, set=True)[1] == \
{(-sqrt(2), sqrt(2)), (sqrt(2), -sqrt(2))}
eqs = [f(x)**2 + g(x) - 2*f(x).diff(x), g(x)**2 - 4]
assert solve(eqs, f(x), g(x), set=True) == \
([f(x), g(x)], {
(-sqrt(2*D - 2), S(2)),
(sqrt(2*D - 2), S(2)),
(-sqrt(2*D + 2), -S(2)),
(sqrt(2*D + 2), -S(2))})
# the underlying problem was in solve_linear that was not masking off
# anything but a Mul or Add; it now raises an error if it gets anything
# but a symbol and solve handles the substitutions necessary so solve_linear
# won't make this error
raises(
ValueError, lambda: solve_linear(f(x) + f(x).diff(x), symbols=[f(x)]))
assert solve_linear(f(x) + f(x).diff(x), symbols=[x]) == \
(f(x) + Derivative(f(x), x), 1)
assert solve_linear(f(x) + Integral(x, (x, y)), symbols=[x]) == \
(f(x) + Integral(x, (x, y)), 1)
assert solve_linear(f(x) + Integral(x, (x, y)) + x, symbols=[x]) == \
(x + f(x) + Integral(x, (x, y)), 1)
assert solve_linear(f(y) + Integral(x, (x, y)) + x, symbols=[x]) == \
(x, -f(y) - Integral(x, (x, y)))
assert solve_linear(x - f(x)/a + (f(x) - 1)/a, symbols=[x]) == \
(x, 1/a)
assert solve_linear(x + Derivative(2*x, x)) == \
(x, -2)
assert solve_linear(x + Integral(x, y), symbols=[x]) == \
(x, 0)
assert solve_linear(x + Integral(x, y) - 2, symbols=[x]) == \
(x, 2/(y + 1))
assert set(solve(x + exp(x)**2, exp(x))) == \
{-sqrt(-x), sqrt(-x)}
assert solve(x + exp(x), x, implicit=True) == \
[-exp(x)]
assert solve(cos(x) - sin(x), x, implicit=True) == []
assert solve(x - sin(x), x, implicit=True) == \
[sin(x)]
assert solve(x**2 + x - 3, x, implicit=True) == \
[-x**2 + 3]
assert solve(x**2 + x - 3, x**2, implicit=True) == \
[-x + 3]
def test_issue_5912():
assert set(solve(x**2 - x - 0.1, rational=True)) == \
{S.Half + sqrt(35)/10, -sqrt(35)/10 + S.Half}
ans = solve(x**2 - x - 0.1, rational=False)
assert len(ans) == 2 and all(a.is_Number for a in ans)
ans = solve(x**2 - x - 0.1)
assert len(ans) == 2 and all(a.is_Number for a in ans)
def test_float_handling():
def test(e1, e2):
return len(e1.atoms(Float)) == len(e2.atoms(Float))
assert solve(x - 0.5, rational=True)[0].is_Rational
assert solve(x - 0.5, rational=False)[0].is_Float
assert solve(x - S.Half, rational=False)[0].is_Rational
assert solve(x - 0.5, rational=None)[0].is_Float
assert solve(x - S.Half, rational=None)[0].is_Rational
assert test(nfloat(1 + 2*x), 1.0 + 2.0*x)
for contain in [list, tuple, set]:
ans = nfloat(contain([1 + 2*x]))
assert type(ans) is contain and test(list(ans)[0], 1.0 + 2.0*x)
k, v = list(nfloat({2*x: [1 + 2*x]}).items())[0]
assert test(k, 2*x) and test(v[0], 1.0 + 2.0*x)
assert test(nfloat(cos(2*x)), cos(2.0*x))
assert test(nfloat(3*x**2), 3.0*x**2)
assert test(nfloat(3*x**2, exponent=True), 3.0*x**2.0)
assert test(nfloat(exp(2*x)), exp(2.0*x))
assert test(nfloat(x/3), x/3.0)
assert test(nfloat(x**4 + 2*x + cos(Rational(1, 3)) + 1),
x**4 + 2.0*x + 1.94495694631474)
# don't call nfloat if there is no solution
tot = 100 + c + z + t
assert solve(((.7 + c)/tot - .6, (.2 + z)/tot - .3, t/tot - .1)) == []
def test_check_assumptions():
x = symbols('x', positive=True)
assert solve(x**2 - 1) == [1]
def test_issue_6056():
assert solve(tanh(x + 3)*tanh(x - 3) - 1) == []
assert solve(tanh(x - 1)*tanh(x + 1) + 1) == \
[I*pi*Rational(-3, 4), -I*pi/4, I*pi/4, I*pi*Rational(3, 4)]
assert solve((tanh(x + 3)*tanh(x - 3) + 1)**2) == \
[I*pi*Rational(-3, 4), -I*pi/4, I*pi/4, I*pi*Rational(3, 4)]
def test_issue_5673():
eq = -x + exp(exp(LambertW(log(x)))*LambertW(log(x)))
assert checksol(eq, x, 2) is True
assert checksol(eq, x, 2, numerical=False) is None
def test_exclude():
R, C, Ri, Vout, V1, Vminus, Vplus, s = \
symbols('R, C, Ri, Vout, V1, Vminus, Vplus, s')
Rf = symbols('Rf', positive=True) # to eliminate Rf = 0 soln
eqs = [C*V1*s + Vplus*(-2*C*s - 1/R),
Vminus*(-1/Ri - 1/Rf) + Vout/Rf,
C*Vplus*s + V1*(-C*s - 1/R) + Vout/R,
-Vminus + Vplus]
assert solve(eqs, exclude=s*C*R) == [
{
Rf: Ri*(C*R*s + 1)**2/(C*R*s),
Vminus: Vplus,
V1: 2*Vplus + Vplus/(C*R*s),
Vout: C*R*Vplus*s + 3*Vplus + Vplus/(C*R*s)},
{
Vplus: 0,
Vminus: 0,
V1: 0,
Vout: 0},
]
# TODO: Investigate why currently solution [0] is preferred over [1].
assert solve(eqs, exclude=[Vplus, s, C]) in [[{
Vminus: Vplus,
V1: Vout/2 + Vplus/2 + sqrt((Vout - 5*Vplus)*(Vout - Vplus))/2,
R: (Vout - 3*Vplus - sqrt(Vout**2 - 6*Vout*Vplus + 5*Vplus**2))/(2*C*Vplus*s),
Rf: Ri*(Vout - Vplus)/Vplus,
}, {
Vminus: Vplus,
V1: Vout/2 + Vplus/2 - sqrt((Vout - 5*Vplus)*(Vout - Vplus))/2,
R: (Vout - 3*Vplus + sqrt(Vout**2 - 6*Vout*Vplus + 5*Vplus**2))/(2*C*Vplus*s),
Rf: Ri*(Vout - Vplus)/Vplus,
}], [{
Vminus: Vplus,
Vout: (V1**2 - V1*Vplus - Vplus**2)/(V1 - 2*Vplus),
Rf: Ri*(V1 - Vplus)**2/(Vplus*(V1 - 2*Vplus)),
R: Vplus/(C*s*(V1 - 2*Vplus)),
}]]
def test_high_order_roots():
s = x**5 + 4*x**3 + 3*x**2 + Rational(7, 4)
assert set(solve(s)) == set(Poly(s*4, domain='ZZ').all_roots())
def test_minsolve_linear_system():
pqt = dict(quick=True, particular=True)
pqf = dict(quick=False, particular=True)
assert solve([x + y - 5, 2*x - y - 1], **pqt) == {x: 2, y: 3}
assert solve([x + y - 5, 2*x - y - 1], **pqf) == {x: 2, y: 3}
def count(dic):
return len([x for x in dic.values() if x == 0])
assert count(solve([x + y + z, y + z + a + t], **pqt)) == 3
assert count(solve([x + y + z, y + z + a + t], **pqf)) == 3
assert count(solve([x + y + z, y + z + a], **pqt)) == 1
assert count(solve([x + y + z, y + z + a], **pqf)) == 2
# issue 22718
A = Matrix([
[ 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0],
[ 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, -1, -1, 0, 0],
[-1, -1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 1, 0, 1],
[ 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, -1, 0, -1, 0],
[-1, 0, -1, 0, 0, -1, 0, 0, 0, 0, 1, 0, 1, 1],
[-1, 0, 0, -1, 0, 0, -1, 0, 0, 0, -1, 0, 0, -1],
[ 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, -1, -1, 0],
[ 0, -1, -1, 0, 0, 0, 0, -1, 0, 0, 0, 1, 1, 1],
[ 0, -1, 0, -1, 0, 0, 0, 0, -1, 0, 0, -1, 0, -1],
[ 0, 0, -1, -1, 0, 0, 0, 0, 0, -1, 0, 0, -1, -1],
[ 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0],
[ 0, 0, 0, 0, -1, -1, 0, -1, 0, 0, 0, 0, 0, 0]])
v = Matrix(symbols("v:14", integer=True))
B = Matrix([[2], [-2], [0], [0], [0], [0], [0], [0], [0],
[0], [0], [0]])
eqs = A@v-B
assert solve(eqs) == []
assert solve(eqs, particular=True) == [] # assumption violated
assert all(v for v in solve([x + y + z, y + z + a]).values())
for _q in (True, False):
assert not all(v for v in solve(
[x + y + z, y + z + a], quick=_q,
particular=True).values())
# raise error if quick used w/o particular=True
raises(ValueError, lambda: solve([x + 1], quick=_q))
raises(ValueError, lambda: solve([x + 1], quick=_q, particular=False))
# and give a good error message if someone tries to use
# particular with a single equation
raises(ValueError, lambda: solve(x + 1, particular=True))
def test_real_roots():
# cf. issue 6650
x = Symbol('x', real=True)
assert len(solve(x**5 + x**3 + 1)) == 1
def test_issue_6528():
eqs = [
327600995*x**2 - 37869137*x + 1809975124*y**2 - 9998905626,
895613949*x**2 - 273830224*x*y + 530506983*y**2 - 10000000000]
# two expressions encountered are > 1400 ops long so if this hangs
# it is likely because simplification is being done
assert len(solve(eqs, y, x, check=False)) == 4
def test_overdetermined():
x = symbols('x', real=True)
eqs = [Abs(4*x - 7) - 5, Abs(3 - 8*x) - 1]
assert solve(eqs, x) == [(S.Half,)]
assert solve(eqs, x, manual=True) == [(S.Half,)]
assert solve(eqs, x, manual=True, check=False) == [(S.Half,), (S(3),)]
def test_issue_6605():
x = symbols('x')
assert solve(4**(x/2) - 2**(x/3)) == [0, 3*I*pi/log(2)]
# while the first one passed, this one failed
x = symbols('x', real=True)
assert solve(5**(x/2) - 2**(x/3)) == [0]
b = sqrt(6)*sqrt(log(2))/sqrt(log(5))
assert solve(5**(x/2) - 2**(3/x)) == [-b, b]
def test__ispow():
assert _ispow(x**2)
assert not _ispow(x)
assert not _ispow(True)
def test_issue_6644():
eq = -sqrt((m - q)**2 + (-m/(2*q) + S.Half)**2) + sqrt((-m**2/2 - sqrt(
4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2 + (m**2/2 - m - sqrt(
4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2)
sol = solve(eq, q, simplify=False, check=False)
assert len(sol) == 5
def test_issue_6752():
assert solve([a**2 + a, a - b], [a, b]) == [(-1, -1), (0, 0)]
assert solve([a**2 + a*c, a - b], [a, b]) == [(0, 0), (-c, -c)]
def test_issue_6792():
assert solve(x*(x - 1)**2*(x + 1)*(x**6 - x + 1)) == [
-1, 0, 1, CRootOf(x**6 - x + 1, 0), CRootOf(x**6 - x + 1, 1),
CRootOf(x**6 - x + 1, 2), CRootOf(x**6 - x + 1, 3),
CRootOf(x**6 - x + 1, 4), CRootOf(x**6 - x + 1, 5)]
def test_issues_6819_6820_6821_6248_8692():
# issue 6821
x, y = symbols('x y', real=True)
assert solve(abs(x + 3) - 2*abs(x - 3)) == [1, 9]
assert solve([abs(x) - 2, arg(x) - pi], x) == [(-2,)]
assert set(solve(abs(x - 7) - 8)) == {-S.One, S(15)}
# issue 8692
assert solve(Eq(Abs(x + 1) + Abs(x**2 - 7), 9), x) == [
Rational(-1, 2) + sqrt(61)/2, -sqrt(69)/2 + S.Half]
# issue 7145
assert solve(2*abs(x) - abs(x - 1)) == [-1, Rational(1, 3)]
x = symbols('x')
assert solve([re(x) - 1, im(x) - 2], x) == [
{re(x): 1, x: 1 + 2*I, im(x): 2}]
# check for 'dict' handling of solution
eq = sqrt(re(x)**2 + im(x)**2) - 3
assert solve(eq) == solve(eq, x)
i = symbols('i', imaginary=True)
assert solve(abs(i) - 3) == [-3*I, 3*I]
raises(NotImplementedError, lambda: solve(abs(x) - 3))
w = symbols('w', integer=True)
assert solve(2*x**w - 4*y**w, w) == solve((x/y)**w - 2, w)
x, y = symbols('x y', real=True)
assert solve(x + y*I + 3) == {y: 0, x: -3}
# issue 2642
assert solve(x*(1 + I)) == [0]
x, y = symbols('x y', imaginary=True)
assert solve(x + y*I + 3 + 2*I) == {x: -2*I, y: 3*I}
x = symbols('x', real=True)
assert solve(x + y + 3 + 2*I) == {x: -3, y: -2*I}
# issue 6248
f = Function('f')
assert solve(f(x + 1) - f(2*x - 1)) == [2]
assert solve(log(x + 1) - log(2*x - 1)) == [2]
x = symbols('x')
assert solve(2**x + 4**x) == [I*pi/log(2)]
def test_issue_14607():
# issue 14607
s, tau_c, tau_1, tau_2, phi, K = symbols(
's, tau_c, tau_1, tau_2, phi, K')
target = (s**2*tau_1*tau_2 + s*tau_1 + s*tau_2 + 1)/(K*s*(-phi + tau_c))
K_C, tau_I, tau_D = symbols('K_C, tau_I, tau_D',
positive=True, nonzero=True)
PID = K_C*(1 + 1/(tau_I*s) + tau_D*s)
eq = (target - PID).together()
eq *= denom(eq).simplify()
eq = Poly(eq, s)
c = eq.coeffs()
vars = [K_C, tau_I, tau_D]
s = solve(c, vars, dict=True)
assert len(s) == 1
knownsolution = {K_C: -(tau_1 + tau_2)/(K*(phi - tau_c)),
tau_I: tau_1 + tau_2,
tau_D: tau_1*tau_2/(tau_1 + tau_2)}
for var in vars:
assert s[0][var].simplify() == knownsolution[var].simplify()
def test_lambert_multivariate():
from sympy.abc import x, y
assert _filtered_gens(Poly(x + 1/x + exp(x) + y), x) == {x, exp(x)}
assert _lambert(x, x) == []
assert solve((x**2 - 2*x + 1).subs(x, log(x) + 3*x)) == [LambertW(3*S.Exp1)/3]
assert solve((x**2 - 2*x + 1).subs(x, (log(x) + 3*x)**2 - 1)) == \
[LambertW(3*exp(-sqrt(2)))/3, LambertW(3*exp(sqrt(2)))/3]
assert solve((x**2 - 2*x - 2).subs(x, log(x) + 3*x)) == \
[LambertW(3*exp(1 - sqrt(3)))/3, LambertW(3*exp(1 + sqrt(3)))/3]
eq = (x*exp(x) - 3).subs(x, x*exp(x))
assert solve(eq) == [LambertW(3*exp(-LambertW(3)))]
# coverage test
raises(NotImplementedError, lambda: solve(x - sin(x)*log(y - x), x))
ans = [3, -3*LambertW(-log(3)/3)/log(3)] # 3 and 2.478...
assert solve(x**3 - 3**x, x) == ans
assert set(solve(3*log(x) - x*log(3))) == set(ans)
assert solve(LambertW(2*x) - y, x) == [y*exp(y)/2]
@XFAIL
def test_other_lambert():
assert solve(3*sin(x) - x*sin(3), x) == [3]
assert set(solve(x**a - a**x), x) == {
a, -a*LambertW(-log(a)/a)/log(a)}
@slow
def test_lambert_bivariate():
# tests passing current implementation
assert solve((x**2 + x)*exp(x**2 + x) - 1) == [
Rational(-1, 2) + sqrt(1 + 4*LambertW(1))/2,
Rational(-1, 2) - sqrt(1 + 4*LambertW(1))/2]
assert solve((x**2 + x)*exp((x**2 + x)*2) - 1) == [
Rational(-1, 2) + sqrt(1 + 2*LambertW(2))/2,
Rational(-1, 2) - sqrt(1 + 2*LambertW(2))/2]
assert solve(a/x + exp(x/2), x) == [2*LambertW(-a/2)]
assert solve((a/x + exp(x/2)).diff(x), x) == \
[4*LambertW(-sqrt(2)*sqrt(a)/4), 4*LambertW(sqrt(2)*sqrt(a)/4)]
assert solve((1/x + exp(x/2)).diff(x), x) == \
[4*LambertW(-sqrt(2)/4),
4*LambertW(sqrt(2)/4), # nsimplifies as 2*2**(141/299)*3**(206/299)*5**(205/299)*7**(37/299)/21
4*LambertW(-sqrt(2)/4, -1)]
assert solve(x*log(x) + 3*x + 1, x) == \
[exp(-3 + LambertW(-exp(3)))]
assert solve(-x**2 + 2**x, x) == [2, 4, -2*LambertW(log(2)/2)/log(2)]
assert solve(x**2 - 2**x, x) == [2, 4, -2*LambertW(log(2)/2)/log(2)]
ans = solve(3*x + 5 + 2**(-5*x + 3), x)
assert len(ans) == 1 and ans[0].expand() == \
Rational(-5, 3) + LambertW(-10240*root(2, 3)*log(2)/3)/(5*log(2))
assert solve(5*x - 1 + 3*exp(2 - 7*x), x) == \
[Rational(1, 5) + LambertW(-21*exp(Rational(3, 5))/5)/7]
assert solve((log(x) + x).subs(x, x**2 + 1)) == [
-I*sqrt(-LambertW(1) + 1), sqrt(-1 + LambertW(1))]
# check collection
ax = a**(3*x + 5)
ans = solve(3*log(ax) + b*log(ax) + ax, x)
x0 = 1/log(a)
x1 = sqrt(3)*I
x2 = b + 3
x3 = x2*LambertW(1/x2)/a**5
x4 = x3**Rational(1, 3)/2
assert ans == [
x0*log(x4*(-x1 - 1)),
x0*log(x4*(x1 - 1)),
x0*log(x3)/3]
x1 = LambertW(Rational(1, 3))
x2 = a**(-5)
x3 = -3**Rational(1, 3)
x4 = 3**Rational(5, 6)*I
x5 = x1**Rational(1, 3)*x2**Rational(1, 3)/2
ans = solve(3*log(ax) + ax, x)
assert ans == [
x0*log(3*x1*x2)/3,
x0*log(x5*(x3 - x4)),
x0*log(x5*(x3 + x4))]
# coverage
p = symbols('p', positive=True)
eq = 4*2**(2*p + 3) - 2*p - 3
assert _solve_lambert(eq, p, _filtered_gens(Poly(eq), p)) == [
Rational(-3, 2) - LambertW(-4*log(2))/(2*log(2))]
assert set(solve(3**cos(x) - cos(x)**3)) == {
acos(3), acos(-3*LambertW(-log(3)/3)/log(3))}
# should give only one solution after using `uniq`
assert solve(2*log(x) - 2*log(z) + log(z + log(x) + log(z)), x) == [
exp(-z + LambertW(2*z**4*exp(2*z))/2)/z]
# cases when p != S.One
# issue 4271
ans = solve((a/x + exp(x/2)).diff(x, 2), x)
x0 = (-a)**Rational(1, 3)
x1 = sqrt(3)*I
x2 = x0/6
assert ans == [
6*LambertW(x0/3),
6*LambertW(x2*(-x1 - 1)),
6*LambertW(x2*(x1 - 1))]
assert solve((1/x + exp(x/2)).diff(x, 2), x) == \
[6*LambertW(Rational(-1, 3)), 6*LambertW(Rational(1, 6) - sqrt(3)*I/6), \
6*LambertW(Rational(1, 6) + sqrt(3)*I/6), 6*LambertW(Rational(-1, 3), -1)]
assert solve(x**2 - y**2/exp(x), x, y, dict=True) == \
[{x: 2*LambertW(-y/2)}, {x: 2*LambertW(y/2)}]
# this is slow but not exceedingly slow
assert solve((x**3)**(x/2) + pi/2, x) == [
exp(LambertW(-2*log(2)/3 + 2*log(pi)/3 + I*pi*Rational(2, 3)))]
# issue 23253
assert solve((1/log(sqrt(x) + 2)**2 - 1/x)) == [
(LambertW(-exp(-2), -1) + 2)**2]
assert solve((1/log(1/sqrt(x) + 2)**2 - x)) == [
(LambertW(-exp(-2), -1) + 2)**-2]
assert solve((1/log(x**2 + 2)**2 - x**-4)) == [
-I*sqrt(2 - LambertW(exp(2))),
-I*sqrt(LambertW(-exp(-2)) + 2),
sqrt(-2 - LambertW(-exp(-2))),
sqrt(-2 + LambertW(exp(2))),
-sqrt(-2 - LambertW(-exp(-2), -1)),
sqrt(-2 - LambertW(-exp(-2), -1))]
def test_rewrite_trig():
assert solve(sin(x) + tan(x)) == [0, -pi, pi, 2*pi]
assert solve(sin(x) + sec(x)) == [
-2*atan(Rational(-1, 2) + sqrt(2)*sqrt(1 - sqrt(3)*I)/2 + sqrt(3)*I/2),
2*atan(S.Half - sqrt(2)*sqrt(1 + sqrt(3)*I)/2 + sqrt(3)*I/2), 2*atan(S.Half
+ sqrt(2)*sqrt(1 + sqrt(3)*I)/2 + sqrt(3)*I/2), 2*atan(S.Half -
sqrt(3)*I/2 + sqrt(2)*sqrt(1 - sqrt(3)*I)/2)]
assert solve(sinh(x) + tanh(x)) == [0, I*pi]
# issue 6157
assert solve(2*sin(x) - cos(x), x) == [atan(S.Half)]
@XFAIL
def test_rewrite_trigh():
# if this import passes then the test below should also pass
from sympy.functions.elementary.hyperbolic import sech
assert solve(sinh(x) + sech(x)) == [
2*atanh(Rational(-1, 2) + sqrt(5)/2 - sqrt(-2*sqrt(5) + 2)/2),
2*atanh(Rational(-1, 2) + sqrt(5)/2 + sqrt(-2*sqrt(5) + 2)/2),
2*atanh(-sqrt(5)/2 - S.Half + sqrt(2 + 2*sqrt(5))/2),
2*atanh(-sqrt(2 + 2*sqrt(5))/2 - sqrt(5)/2 - S.Half)]
def test_uselogcombine():
eq = z - log(x) + log(y/(x*(-1 + y**2/x**2)))
assert solve(eq, x, force=True) == [-sqrt(y*(y - exp(z))), sqrt(y*(y - exp(z)))]
assert solve(log(x + 3) + log(1 + 3/x) - 3) in [
[-3 + sqrt(-12 + exp(3))*exp(Rational(3, 2))/2 + exp(3)/2,
-sqrt(-12 + exp(3))*exp(Rational(3, 2))/2 - 3 + exp(3)/2],
[-3 + sqrt(-36 + (-exp(3) + 6)**2)/2 + exp(3)/2,
-3 - sqrt(-36 + (-exp(3) + 6)**2)/2 + exp(3)/2],
]
assert solve(log(exp(2*x) + 1) + log(-tanh(x) + 1) - log(2)) == []
def test_atan2():
assert solve(atan2(x, 2) - pi/3, x) == [2*sqrt(3)]
def test_errorinverses():
assert solve(erf(x) - y, x) == [erfinv(y)]
assert solve(erfinv(x) - y, x) == [erf(y)]
assert solve(erfc(x) - y, x) == [erfcinv(y)]
assert solve(erfcinv(x) - y, x) == [erfc(y)]
def test_issue_2725():
R = Symbol('R')
eq = sqrt(2)*R*sqrt(1/(R + 1)) + (R + 1)*(sqrt(2)*sqrt(1/(R + 1)) - 1)
sol = solve(eq, R, set=True)[1]
assert sol == {(Rational(5, 3) + (Rational(-1, 2) - sqrt(3)*I/2)*(Rational(251, 27) +
sqrt(111)*I/9)**Rational(1, 3) + 40/(9*((Rational(-1, 2) - sqrt(3)*I/2)*(Rational(251, 27) +
sqrt(111)*I/9)**Rational(1, 3))),), (Rational(5, 3) + 40/(9*(Rational(251, 27) +
sqrt(111)*I/9)**Rational(1, 3)) + (Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3),)}
def test_issue_5114_6611():
# See that it doesn't hang; this solves in about 2 seconds.
# Also check that the solution is relatively small.
# Note: the system in issue 6611 solves in about 5 seconds and has
# an op-count of 138336 (with simplify=False).
b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r = symbols('b:r')
eqs = Matrix([
[b - c/d + r/d], [c*(1/g + 1/e + 1/d) - f/g - r/d],
[-c/g + f*(1/j + 1/i + 1/g) - h/i], [-f/i + h*(1/m + 1/l + 1/i) - k/m],
[-h/m + k*(1/p + 1/o + 1/m) - n/p], [-k/p + n*(1/q + 1/p)]])
v = Matrix([f, h, k, n, b, c])
ans = solve(list(eqs), list(v), simplify=False)
# If time is taken to simplify then then 2617 below becomes
# 1168 and the time is about 50 seconds instead of 2.
assert sum([s.count_ops() for s in ans.values()]) <= 3270
def test_det_quick():
m = Matrix(3, 3, symbols('a:9'))
assert m.det() == det_quick(m) # calls det_perm
m[0, 0] = 1
assert m.det() == det_quick(m) # calls det_minor
m = Matrix(3, 3, list(range(9)))
assert m.det() == det_quick(m) # defaults to .det()
# make sure they work with Sparse
s = SparseMatrix(2, 2, (1, 2, 1, 4))
assert det_perm(s) == det_minor(s) == s.det()
def test_real_imag_splitting():
a, b = symbols('a b', real=True)
assert solve(sqrt(a**2 + b**2) - 3, a) == \
[-sqrt(-b**2 + 9), sqrt(-b**2 + 9)]
a, b = symbols('a b', imaginary=True)
assert solve(sqrt(a**2 + b**2) - 3, a) == []
def test_issue_7110():
y = -2*x**3 + 4*x**2 - 2*x + 5
assert any(ask(Q.real(i)) for i in solve(y))
def test_units():
assert solve(1/x - 1/(2*cm)) == [2*cm]
def test_issue_7547():
A, B, V = symbols('A,B,V')
eq1 = Eq(630.26*(V - 39.0)*V*(V + 39) - A + B, 0)
eq2 = Eq(B, 1.36*10**8*(V - 39))
eq3 = Eq(A, 5.75*10**5*V*(V + 39.0))
sol = Matrix(nsolve(Tuple(eq1, eq2, eq3), [A, B, V], (0, 0, 0)))
assert str(sol) == str(Matrix(
[['4442890172.68209'],
['4289299466.1432'],
['70.5389666628177']]))
def test_issue_7895():
r = symbols('r', real=True)
assert solve(sqrt(r) - 2) == [4]
def test_issue_2777():
# the equations represent two circles
x, y = symbols('x y', real=True)
e1, e2 = sqrt(x**2 + y**2) - 10, sqrt(y**2 + (-x + 10)**2) - 3
a, b = Rational(191, 20), 3*sqrt(391)/20
ans = [(a, -b), (a, b)]
assert solve((e1, e2), (x, y)) == ans
assert solve((e1, e2/(x - a)), (x, y)) == []
# make the 2nd circle's radius be -3
e2 += 6
assert solve((e1, e2), (x, y)) == []
assert solve((e1, e2), (x, y), check=False) == ans
def test_issue_7322():
number = 5.62527e-35
assert solve(x - number, x)[0] == number
def test_nsolve():
raises(ValueError, lambda: nsolve(x, (-1, 1), method='bisect'))
raises(TypeError, lambda: nsolve((x - y + 3,x + y,z - y),(x,y,z),(-50,50)))
raises(TypeError, lambda: nsolve((x + y, x - y), (0, 1)))
@slow
def test_high_order_multivariate():
assert len(solve(a*x**3 - x + 1, x)) == 3
assert len(solve(a*x**4 - x + 1, x)) == 4
assert solve(a*x**5 - x + 1, x) == [] # incomplete solution allowed
raises(NotImplementedError, lambda:
solve(a*x**5 - x + 1, x, incomplete=False))
# result checking must always consider the denominator and CRootOf
# must be checked, too
d = x**5 - x + 1
assert solve(d*(1 + 1/d)) == [CRootOf(d + 1, i) for i in range(5)]
d = x - 1
assert solve(d*(2 + 1/d)) == [S.Half]
def test_base_0_exp_0():
assert solve(0**x - 1) == [0]
assert solve(0**(x - 2) - 1) == [2]
assert solve(S('x*(1/x**0 - x)', evaluate=False)) == \
[0, 1]
def test__simple_dens():
assert _simple_dens(1/x**0, [x]) == set()
assert _simple_dens(1/x**y, [x]) == {x**y}
assert _simple_dens(1/root(x, 3), [x]) == {x}
def test_issue_8755():
# This tests two things: that if full unrad is attempted and fails
# the solution should still be found; also it tests the use of
# keyword `composite`.
assert len(solve(sqrt(y)*x + x**3 - 1, x)) == 3
assert len(solve(-512*y**3 + 1344*(x + 2)**Rational(1, 3)*y**2 -
1176*(x + 2)**Rational(2, 3)*y - 169*x + 686, y, _unrad=False)) == 3
@slow
def test_issue_8828():
x1 = 0
y1 = -620
r1 = 920
x2 = 126
y2 = 276
x3 = 51
y3 = 205
r3 = 104
v = x, y, z
f1 = (x - x1)**2 + (y - y1)**2 - (r1 - z)**2
f2 = (x - x2)**2 + (y - y2)**2 - z**2
f3 = (x - x3)**2 + (y - y3)**2 - (r3 - z)**2
F = f1,f2,f3
g1 = sqrt((x - x1)**2 + (y - y1)**2) + z - r1
g2 = f2
g3 = sqrt((x - x3)**2 + (y - y3)**2) + z - r3
G = g1,g2,g3
A = solve(F, v)
B = solve(G, v)
C = solve(G, v, manual=True)
p, q, r = [{tuple(i.evalf(2) for i in j) for j in R} for R in [A, B, C]]
assert p == q == r
@slow
def test_issue_2840_8155():
assert solve(sin(3*x) + sin(6*x)) == [
0, pi*Rational(-5, 3), pi*Rational(-4, 3), -pi, pi*Rational(-2, 3),
pi*Rational(-4, 9), -pi/3, pi*Rational(-2, 9), pi*Rational(2, 9),
pi/3, pi*Rational(4, 9), pi*Rational(2, 3), pi, pi*Rational(4, 3),
pi*Rational(14, 9), pi*Rational(5, 3), pi*Rational(16, 9), 2*pi,
-2*I*log(-(-1)**Rational(1, 9)), -2*I*log(-(-1)**Rational(2, 9)),
-2*I*log(-sin(pi/18) - I*cos(pi/18)),
-2*I*log(-sin(pi/18) + I*cos(pi/18)),
-2*I*log(sin(pi/18) - I*cos(pi/18)),
-2*I*log(sin(pi/18) + I*cos(pi/18))]
assert solve(2*sin(x) - 2*sin(2*x)) == [
0, pi*Rational(-5, 3), -pi, -pi/3, pi/3, pi, pi*Rational(5, 3)]
def test_issue_9567():
assert solve(1 + 1/(x - 1)) == [0]
def test_issue_11538():
assert solve(x + E) == [-E]
assert solve(x**2 + E) == [-I*sqrt(E), I*sqrt(E)]
assert solve(x**3 + 2*E) == [
-cbrt(2 * E),
cbrt(2)*cbrt(E)/2 - cbrt(2)*sqrt(3)*I*cbrt(E)/2,
cbrt(2)*cbrt(E)/2 + cbrt(2)*sqrt(3)*I*cbrt(E)/2]
assert solve([x + 4, y + E], x, y) == {x: -4, y: -E}
assert solve([x**2 + 4, y + E], x, y) == [
(-2*I, -E), (2*I, -E)]
e1 = x - y**3 + 4
e2 = x + y + 4 + 4 * E
assert len(solve([e1, e2], x, y)) == 3
@slow
def test_issue_12114():
a, b, c, d, e, f, g = symbols('a,b,c,d,e,f,g')
terms = [1 + a*b + d*e, 1 + a*c + d*f, 1 + b*c + e*f,
g - a**2 - d**2, g - b**2 - e**2, g - c**2 - f**2]
sol = solve(terms, [a, b, c, d, e, f, g], dict=True)
s = sqrt(-f**2 - 1)
s2 = sqrt(2 - f**2)
s3 = sqrt(6 - 3*f**2)
s4 = sqrt(3)*f
s5 = sqrt(3)*s2
assert sol == [
{a: -s, b: -s, c: -s, d: f, e: f, g: -1},
{a: s, b: s, c: s, d: f, e: f, g: -1},
{a: -s4/2 - s2/2, b: s4/2 - s2/2, c: s2,
d: -f/2 + s3/2, e: -f/2 - s5/2, g: 2},
{a: -s4/2 + s2/2, b: s4/2 + s2/2, c: -s2,
d: -f/2 - s3/2, e: -f/2 + s5/2, g: 2},
{a: s4/2 - s2/2, b: -s4/2 - s2/2, c: s2,
d: -f/2 - s3/2, e: -f/2 + s5/2, g: 2},
{a: s4/2 + s2/2, b: -s4/2 + s2/2, c: -s2,
d: -f/2 + s3/2, e: -f/2 - s5/2, g: 2}]
def test_inf():
assert solve(1 - oo*x) == []
assert solve(oo*x, x) == []
assert solve(oo*x - oo, x) == []
def test_issue_12448():
f = Function('f')
fun = [f(i) for i in range(15)]
sym = symbols('x:15')
reps = dict(zip(fun, sym))
(x, y, z), c = sym[:3], sym[3:]
ssym = solve([c[4*i]*x + c[4*i + 1]*y + c[4*i + 2]*z + c[4*i + 3]
for i in range(3)], (x, y, z))
(x, y, z), c = fun[:3], fun[3:]
sfun = solve([c[4*i]*x + c[4*i + 1]*y + c[4*i + 2]*z + c[4*i + 3]
for i in range(3)], (x, y, z))
assert sfun[fun[0]].xreplace(reps).count_ops() == \
ssym[sym[0]].count_ops()
def test_denoms():
assert denoms(x/2 + 1/y) == {2, y}
assert denoms(x/2 + 1/y, y) == {y}
assert denoms(x/2 + 1/y, [y]) == {y}
assert denoms(1/x + 1/y + 1/z, [x, y]) == {x, y}
assert denoms(1/x + 1/y + 1/z, x, y) == {x, y}
assert denoms(1/x + 1/y + 1/z, {x, y}) == {x, y}
def test_issue_12476():
x0, x1, x2, x3, x4, x5 = symbols('x0 x1 x2 x3 x4 x5')
eqns = [x0**2 - x0, x0*x1 - x1, x0*x2 - x2, x0*x3 - x3, x0*x4 - x4, x0*x5 - x5,
x0*x1 - x1, -x0/3 + x1**2 - 2*x2/3, x1*x2 - x1/3 - x2/3 - x3/3,
x1*x3 - x2/3 - x3/3 - x4/3, x1*x4 - 2*x3/3 - x5/3, x1*x5 - x4, x0*x2 - x2,
x1*x2 - x1/3 - x2/3 - x3/3, -x0/6 - x1/6 + x2**2 - x2/6 - x3/3 - x4/6,
-x1/6 + x2*x3 - x2/3 - x3/6 - x4/6 - x5/6, x2*x4 - x2/3 - x3/3 - x4/3,
x2*x5 - x3, x0*x3 - x3, x1*x3 - x2/3 - x3/3 - x4/3,
-x1/6 + x2*x3 - x2/3 - x3/6 - x4/6 - x5/6,
-x0/6 - x1/6 - x2/6 + x3**2 - x3/3 - x4/6, -x1/3 - x2/3 + x3*x4 - x3/3,
-x2 + x3*x5, x0*x4 - x4, x1*x4 - 2*x3/3 - x5/3, x2*x4 - x2/3 - x3/3 - x4/3,
-x1/3 - x2/3 + x3*x4 - x3/3, -x0/3 - 2*x2/3 + x4**2, -x1 + x4*x5, x0*x5 - x5,
x1*x5 - x4, x2*x5 - x3, -x2 + x3*x5, -x1 + x4*x5, -x0 + x5**2, x0 - 1]
sols = [{x0: 1, x3: Rational(1, 6), x2: Rational(1, 6), x4: Rational(-2, 3), x1: Rational(-2, 3), x5: 1},
{x0: 1, x3: S.Half, x2: Rational(-1, 2), x4: 0, x1: 0, x5: -1},
{x0: 1, x3: Rational(-1, 3), x2: Rational(-1, 3), x4: Rational(1, 3), x1: Rational(1, 3), x5: 1},
{x0: 1, x3: 1, x2: 1, x4: 1, x1: 1, x5: 1},
{x0: 1, x3: Rational(-1, 3), x2: Rational(1, 3), x4: sqrt(5)/3, x1: -sqrt(5)/3, x5: -1},
{x0: 1, x3: Rational(-1, 3), x2: Rational(1, 3), x4: -sqrt(5)/3, x1: sqrt(5)/3, x5: -1}]
assert solve(eqns) == sols
def test_issue_13849():
t = symbols('t')
assert solve((t*(sqrt(5) + sqrt(2)) - sqrt(2), t), t) == []
def test_issue_14860():
from sympy.physics.units import newton, kilo
assert solve(8*kilo*newton + x + y, x) == [-8000*newton - y]
def test_issue_14721():
k, h, a, b = symbols(':4')
assert solve([
-1 + (-k + 1)**2/b**2 + (-h - 1)**2/a**2,
-1 + (-k + 1)**2/b**2 + (-h + 1)**2/a**2,
h, k + 2], h, k, a, b) == [
(0, -2, -b*sqrt(1/(b**2 - 9)), b),
(0, -2, b*sqrt(1/(b**2 - 9)), b)]
assert solve([
h, h/a + 1/b**2 - 2, -h/2 + 1/b**2 - 2], a, h, b) == [
(a, 0, -sqrt(2)/2), (a, 0, sqrt(2)/2)]
assert solve((a + b**2 - 1, a + b**2 - 2)) == []
def test_issue_14779():
x = symbols('x', real=True)
assert solve(sqrt(x**4 - 130*x**2 + 1089) + sqrt(x**4 - 130*x**2
+ 3969) - 96*Abs(x)/x,x) == [sqrt(130)]
def test_issue_15307():
assert solve((y - 2, Mul(x + 3,x - 2, evaluate=False))) == \
[{x: -3, y: 2}, {x: 2, y: 2}]
assert solve((y - 2, Mul(3, x - 2, evaluate=False))) == \
{x: 2, y: 2}
assert solve((y - 2, Add(x + 4, x - 2, evaluate=False))) == \
{x: -1, y: 2}
eq1 = Eq(12513*x + 2*y - 219093, -5726*x - y)
eq2 = Eq(-2*x + 8, 2*x - 40)
assert solve([eq1, eq2]) == {x:12, y:75}
def test_issue_15415():
assert solve(x - 3, x) == [3]
assert solve([x - 3], x) == {x:3}
assert solve(Eq(y + 3*x**2/2, y + 3*x), y) == []
assert solve([Eq(y + 3*x**2/2, y + 3*x)], y) == []
assert solve([Eq(y + 3*x**2/2, y + 3*x), Eq(x, 1)], y) == []
@slow
def test_issue_15731():
# f(x)**g(x)=c
assert solve(Eq((x**2 - 7*x + 11)**(x**2 - 13*x + 42), 1)) == [2, 3, 4, 5, 6, 7]
assert solve((x)**(x + 4) - 4) == [-2]
assert solve((-x)**(-x + 4) - 4) == [2]
assert solve((x**2 - 6)**(x**2 - 2) - 4) == [-2, 2]
assert solve((x**2 - 2*x - 1)**(x**2 - 3) - 1/(1 - 2*sqrt(2))) == [sqrt(2)]
assert solve(x**(x + S.Half) - 4*sqrt(2)) == [S(2)]
assert solve((x**2 + 1)**x - 25) == [2]
assert solve(x**(2/x) - 2) == [2, 4]
assert solve((x/2)**(2/x) - sqrt(2)) == [4, 8]
assert solve(x**(x + S.Half) - Rational(9, 4)) == [Rational(3, 2)]
# a**g(x)=c
assert solve((-sqrt(sqrt(2)))**x - 2) == [4, log(2)/(log(2**Rational(1, 4)) + I*pi)]
assert solve((sqrt(2))**x - sqrt(sqrt(2))) == [S.Half]
assert solve((-sqrt(2))**x + 2*(sqrt(2))) == [3,
(3*log(2)**2 + 4*pi**2 - 4*I*pi*log(2))/(log(2)**2 + 4*pi**2)]
assert solve((sqrt(2))**x - 2*(sqrt(2))) == [3]
assert solve(I**x + 1) == [2]
assert solve((1 + I)**x - 2*I) == [2]
assert solve((sqrt(2) + sqrt(3))**x - (2*sqrt(6) + 5)**Rational(1, 3)) == [Rational(2, 3)]
# bases of both sides are equal
b = Symbol('b')
assert solve(b**x - b**2, x) == [2]
assert solve(b**x - 1/b, x) == [-1]
assert solve(b**x - b, x) == [1]
b = Symbol('b', positive=True)
assert solve(b**x - b**2, x) == [2]
assert solve(b**x - 1/b, x) == [-1]
def test_issue_10933():
assert solve(x**4 + y*(x + 0.1), x) # doesn't fail
assert solve(I*x**4 + x**3 + x**2 + 1.) # doesn't fail
def test_Abs_handling():
x = symbols('x', real=True)
assert solve(abs(x/y), x) == [0]
def test_issue_7982():
x = Symbol('x')
# Test that no exception happens
assert solve([2*x**2 + 5*x + 20 <= 0, x >= 1.5], x) is S.false
# From #8040
assert solve([x**3 - 8.08*x**2 - 56.48*x/5 - 106 >= 0, x - 1 <= 0], [x]) is S.false
def test_issue_14645():
x, y = symbols('x y')
assert solve([x*y - x - y, x*y - x - y], [x, y]) == [(y/(y - 1), y)]
def test_issue_12024():
x, y = symbols('x y')
assert solve(Piecewise((0.0, x < 0.1), (x, x >= 0.1)) - y) == \
[{y: Piecewise((0.0, x < 0.1), (x, True))}]
def test_issue_17452():
assert solve((7**x)**x + pi, x) == [-sqrt(log(pi) + I*pi)/sqrt(log(7)),
sqrt(log(pi) + I*pi)/sqrt(log(7))]
assert solve(x**(x/11) + pi/11, x) == [exp(LambertW(-11*log(11) + 11*log(pi) + 11*I*pi))]
def test_issue_17799():
assert solve(-erf(x**(S(1)/3))**pi + I, x) == []
def test_issue_17650():
x = Symbol('x', real=True)
assert solve(abs(abs(x**2 - 1) - x) - x) == [1, -1 + sqrt(2), 1 + sqrt(2)]
def test_issue_17882():
eq = -8*x**2/(9*(x**2 - 1)**(S(4)/3)) + 4/(3*(x**2 - 1)**(S(1)/3))
assert unrad(eq) is None
def test_issue_17949():
assert solve(exp(+x+x**2), x) == []
assert solve(exp(-x+x**2), x) == []
assert solve(exp(+x-x**2), x) == []
assert solve(exp(-x-x**2), x) == []
def test_issue_10993():
assert solve(Eq(binomial(x, 2), 3)) == [-2, 3]
assert solve(Eq(pow(x, 2) + binomial(x, 3), x)) == [-4, 0, 1]
assert solve(Eq(binomial(x, 2), 0)) == [0, 1]
assert solve(a+binomial(x, 3), a) == [-binomial(x, 3)]
assert solve(x-binomial(a, 3) + binomial(y, 2) + sin(a), x) == [-sin(a) + binomial(a, 3) - binomial(y, 2)]
assert solve((x+1)-binomial(x+1, 3), x) == [-2, -1, 3]
def test_issue_11553():
eq1 = x + y + 1
eq2 = x + GoldenRatio
assert solve([eq1, eq2], x, y) == {x: -GoldenRatio, y: -1 + GoldenRatio}
eq3 = x + 2 + TribonacciConstant
assert solve([eq1, eq3], x, y) == {x: -2 - TribonacciConstant, y: 1 + TribonacciConstant}
def test_issue_19113_19102():
t = S(1)/3
solve(cos(x)**5-sin(x)**5)
assert solve(4*cos(x)**3 - 2*sin(x)**3) == [
atan(2**(t)), -atan(2**(t)*(1 - sqrt(3)*I)/2),
-atan(2**(t)*(1 + sqrt(3)*I)/2)]
h = S.Half
assert solve(cos(x)**2 + sin(x)) == [
2*atan(-h + sqrt(5)/2 + sqrt(2)*sqrt(1 - sqrt(5))/2),
-2*atan(h + sqrt(5)/2 + sqrt(2)*sqrt(1 + sqrt(5))/2),
-2*atan(-sqrt(5)/2 + h + sqrt(2)*sqrt(1 - sqrt(5))/2),
-2*atan(-sqrt(2)*sqrt(1 + sqrt(5))/2 + h + sqrt(5)/2)]
assert solve(3*cos(x) - sin(x)) == [atan(3)]
def test_issue_19509():
a = S(3)/4
b = S(5)/8
c = sqrt(5)/8
d = sqrt(5)/4
assert solve(1/(x -1)**5 - 1) == [2,
-d + a - sqrt(-b + c),
-d + a + sqrt(-b + c),
d + a - sqrt(-b - c),
d + a + sqrt(-b - c)]
def test_issue_20747():
THT, HT, DBH, dib, c0, c1, c2, c3, c4 = symbols('THT HT DBH dib c0 c1 c2 c3 c4')
f = DBH*c3 + THT*c4 + c2
rhs = 1 - ((HT - 1)/(THT - 1))**c1*(1 - exp(c0/f))
eq = dib - DBH*(c0 - f*log(rhs))
term = ((1 - exp((DBH*c0 - dib)/(DBH*(DBH*c3 + THT*c4 + c2))))
/ (1 - exp(c0/(DBH*c3 + THT*c4 + c2))))
sol = [THT*term**(1/c1) - term**(1/c1) + 1]
assert solve(eq, HT) == sol
def test_issue_20902():
f = (t / ((1 + t) ** 2))
assert solve(f.subs({t: 3 * x + 2}).diff(x) > 0, x) == (S(-1) < x) & (x < S(-1)/3)
assert solve(f.subs({t: 3 * x + 3}).diff(x) > 0, x) == (S(-4)/3 < x) & (x < S(-2)/3)
assert solve(f.subs({t: 3 * x + 4}).diff(x) > 0, x) == (S(-5)/3 < x) & (x < S(-1))
assert solve(f.subs({t: 3 * x + 2}).diff(x) > 0, x) == (S(-1) < x) & (x < S(-1)/3)
def test_issue_21034():
a = symbols('a', real=True)
system = [x - cosh(cos(4)), y - sinh(cos(a)), z - tanh(x)]
# constants inside hyperbolic functions should not be rewritten in terms of exp
assert solve(system, x, y, z) == [(cosh(cos(4)), sinh(cos(a)), tanh(cosh(cos(4))))]
# but if the variable of interest is present in a hyperbolic function,
# then it should be rewritten in terms of exp and solved further
newsystem = [(exp(x) - exp(-x)) - tanh(x)*(exp(x) + exp(-x)) + x - 5]
assert solve(newsystem, x) == {x: 5}
def test_issue_4886():
z = a*sqrt(R**2*a**2 + R**2*b**2 - c**2)/(a**2 + b**2)
t = b*c/(a**2 + b**2)
sol = [((b*(t - z) - c)/(-a), t - z), ((b*(t + z) - c)/(-a), t + z)]
assert solve([x**2 + y**2 - R**2, a*x + b*y - c], x, y) == sol
def test_issue_6819():
a, b, c, d = symbols('a b c d', positive=True)
assert solve(a*b**x - c*d**x, x) == [log(c/a)/log(b/d)]
def test_issue_17454():
x = Symbol('x')
assert solve((1 - x - I)**4, x) == [1 - I]
def test_issue_21852():
solution = [21 - 21*sqrt(2)/2]
assert solve(2*x + sqrt(2*x**2) - 21) == solution
def test_issue_21942():
eq = -d + (a*c**(1 - e) + b**(1 - e)*(1 - a))**(1/(1 - e))
sol = solve(eq, c, simplify=False, check=False)
assert sol == [((a*b**(1 - e) - b**(1 - e) +
d**(1 - e))/a)**(1/(1 - e))]
def test_solver_flags():
root = solve(x**5 + x**2 - x - 1, cubics=False)
rad = solve(x**5 + x**2 - x - 1, cubics=True)
assert root != rad
def test_issue_22768():
eq = 2*x**3 - 16*(y - 1)**6*z**3
assert solve(eq.expand(), x, simplify=False
) == [2*z*(y - 1)**2, z*(-1 + sqrt(3)*I)*(y - 1)**2,
-z*(1 + sqrt(3)*I)*(y - 1)**2]
def test_issue_22717():
assert solve((-y**2 + log(y**2/x) + 2, -2*x*y + 2*x/y)) == [
{y: -1, x: E}, {y: 1, x: E}]
def test_issue_10169():
eq = S(-8*a - x**5*(a + b + c + e) - x**4*(4*a - 2**Rational(3,4)*c + 4*c +
d + 2**Rational(3,4)*e + 4*e + k) - x**3*(-4*2**Rational(3,4)*c + sqrt(2)*c -
2**Rational(3,4)*d + 4*d + sqrt(2)*e + 4*2**Rational(3,4)*e + 2**Rational(3,4)*k + 4*k) -
x**2*(4*sqrt(2)*c - 4*2**Rational(3,4)*d + sqrt(2)*d + 4*sqrt(2)*e +
sqrt(2)*k + 4*2**Rational(3,4)*k) - x*(2*a + 2*b + 4*sqrt(2)*d +
4*sqrt(2)*k) + 5)
assert solve_undetermined_coeffs(eq, [a, b, c, d, e, k], x) == {
a: Rational(5,8),
b: Rational(-5,1032),
c: Rational(-40,129) - 5*2**Rational(3,4)/129 + 5*2**Rational(1,4)/1032,
d: -20*2**Rational(3,4)/129 - 10*sqrt(2)/129 - 5*2**Rational(1,4)/258,
e: Rational(-40,129) - 5*2**Rational(1,4)/1032 + 5*2**Rational(3,4)/129,
k: -10*sqrt(2)/129 + 5*2**Rational(1,4)/258 + 20*2**Rational(3,4)/129
}
def test_solve_undetermined_coeffs_issue_23927():
A, B, r, phi = symbols('A, B, r, phi')
eq = Eq(A*sin(t) + B*cos(t), r*sin(t - phi)).rewrite(Add).expand(trig=True)
soln = solve_undetermined_coeffs(eq, (r, phi), t)
assert soln == [{
phi: 2*atan((A - sqrt(A**2 + B**2))/B),
r: (-A**2 + A*sqrt(A**2 + B**2) - B**2)/(A - sqrt(A**2 + B**2))
}, {
phi: 2*atan((A + sqrt(A**2 + B**2))/B),
r: (A**2 + A*sqrt(A**2 + B**2) + B**2)/(A + sqrt(A**2 + B**2))/-1
}]
|
ac4afe0b2924037bff2f0e76f10ac1fe9a36672d0c451a66ac7d4dc69e809476 | # Tests that require installed backends go into
# sympy/test_external/test_autowrap
import os
import tempfile
import shutil
from io import StringIO
from sympy.core import symbols, Eq
from sympy.utilities.autowrap import (autowrap, binary_function,
CythonCodeWrapper, UfuncifyCodeWrapper, CodeWrapper)
from sympy.utilities.codegen import (
CCodeGen, C99CodeGen, CodeGenArgumentListError, make_routine
)
from sympy.testing.pytest import raises
from sympy.testing.tmpfiles import TmpFileManager
def get_string(dump_fn, routines, prefix="file", **kwargs):
"""Wrapper for dump_fn. dump_fn writes its results to a stream object and
this wrapper returns the contents of that stream as a string. This
auxiliary function is used by many tests below.
The header and the empty lines are not generator to facilitate the
testing of the output.
"""
output = StringIO()
dump_fn(routines, output, prefix, **kwargs)
source = output.getvalue()
output.close()
return source
def test_cython_wrapper_scalar_function():
x, y, z = symbols('x,y,z')
expr = (x + y)*z
routine = make_routine("test", expr)
code_gen = CythonCodeWrapper(CCodeGen())
source = get_string(code_gen.dump_pyx, [routine])
expected = (
"cdef extern from 'file.h':\n"
" double test(double x, double y, double z)\n"
"\n"
"def test_c(double x, double y, double z):\n"
"\n"
" return test(x, y, z)")
assert source == expected
def test_cython_wrapper_outarg():
from sympy.core.relational import Equality
x, y, z = symbols('x,y,z')
code_gen = CythonCodeWrapper(C99CodeGen())
routine = make_routine("test", Equality(z, x + y))
source = get_string(code_gen.dump_pyx, [routine])
expected = (
"cdef extern from 'file.h':\n"
" void test(double x, double y, double *z)\n"
"\n"
"def test_c(double x, double y):\n"
"\n"
" cdef double z = 0\n"
" test(x, y, &z)\n"
" return z")
assert source == expected
def test_cython_wrapper_inoutarg():
from sympy.core.relational import Equality
x, y, z = symbols('x,y,z')
code_gen = CythonCodeWrapper(C99CodeGen())
routine = make_routine("test", Equality(z, x + y + z))
source = get_string(code_gen.dump_pyx, [routine])
expected = (
"cdef extern from 'file.h':\n"
" void test(double x, double y, double *z)\n"
"\n"
"def test_c(double x, double y, double z):\n"
"\n"
" test(x, y, &z)\n"
" return z")
assert source == expected
def test_cython_wrapper_compile_flags():
from sympy.core.relational import Equality
x, y, z = symbols('x,y,z')
routine = make_routine("test", Equality(z, x + y))
code_gen = CythonCodeWrapper(CCodeGen())
expected = """\
try:
from setuptools import setup
from setuptools import Extension
except ImportError:
from distutils.core import setup
from distutils.extension import Extension
from Cython.Build import cythonize
cy_opts = {'compiler_directives': {'language_level': '3'}}
ext_mods = [Extension(
'wrapper_module_%(num)s', ['wrapper_module_%(num)s.pyx', 'wrapped_code_%(num)s.c'],
include_dirs=[],
library_dirs=[],
libraries=[],
extra_compile_args=['-std=c99'],
extra_link_args=[]
)]
setup(ext_modules=cythonize(ext_mods, **cy_opts))
""" % {'num': CodeWrapper._module_counter}
temp_dir = tempfile.mkdtemp()
TmpFileManager.tmp_folder(temp_dir)
setup_file_path = os.path.join(temp_dir, 'setup.py')
code_gen._prepare_files(routine, build_dir=temp_dir)
with open(setup_file_path) as f:
setup_text = f.read()
assert setup_text == expected
code_gen = CythonCodeWrapper(CCodeGen(),
include_dirs=['/usr/local/include', '/opt/booger/include'],
library_dirs=['/user/local/lib'],
libraries=['thelib', 'nilib'],
extra_compile_args=['-slow-math'],
extra_link_args=['-lswamp', '-ltrident'],
cythonize_options={'compiler_directives': {'boundscheck': False}}
)
expected = """\
try:
from setuptools import setup
from setuptools import Extension
except ImportError:
from distutils.core import setup
from distutils.extension import Extension
from Cython.Build import cythonize
cy_opts = {'compiler_directives': {'boundscheck': False}}
ext_mods = [Extension(
'wrapper_module_%(num)s', ['wrapper_module_%(num)s.pyx', 'wrapped_code_%(num)s.c'],
include_dirs=['/usr/local/include', '/opt/booger/include'],
library_dirs=['/user/local/lib'],
libraries=['thelib', 'nilib'],
extra_compile_args=['-slow-math', '-std=c99'],
extra_link_args=['-lswamp', '-ltrident']
)]
setup(ext_modules=cythonize(ext_mods, **cy_opts))
""" % {'num': CodeWrapper._module_counter}
code_gen._prepare_files(routine, build_dir=temp_dir)
with open(setup_file_path) as f:
setup_text = f.read()
assert setup_text == expected
expected = """\
try:
from setuptools import setup
from setuptools import Extension
except ImportError:
from distutils.core import setup
from distutils.extension import Extension
from Cython.Build import cythonize
cy_opts = {'compiler_directives': {'boundscheck': False}}
import numpy as np
ext_mods = [Extension(
'wrapper_module_%(num)s', ['wrapper_module_%(num)s.pyx', 'wrapped_code_%(num)s.c'],
include_dirs=['/usr/local/include', '/opt/booger/include', np.get_include()],
library_dirs=['/user/local/lib'],
libraries=['thelib', 'nilib'],
extra_compile_args=['-slow-math', '-std=c99'],
extra_link_args=['-lswamp', '-ltrident']
)]
setup(ext_modules=cythonize(ext_mods, **cy_opts))
""" % {'num': CodeWrapper._module_counter}
code_gen._need_numpy = True
code_gen._prepare_files(routine, build_dir=temp_dir)
with open(setup_file_path) as f:
setup_text = f.read()
assert setup_text == expected
TmpFileManager.cleanup()
def test_cython_wrapper_unique_dummyvars():
from sympy.core.relational import Equality
from sympy.core.symbol import Dummy
x, y, z = Dummy('x'), Dummy('y'), Dummy('z')
x_id, y_id, z_id = [str(d.dummy_index) for d in [x, y, z]]
expr = Equality(z, x + y)
routine = make_routine("test", expr)
code_gen = CythonCodeWrapper(CCodeGen())
source = get_string(code_gen.dump_pyx, [routine])
expected_template = (
"cdef extern from 'file.h':\n"
" void test(double x_{x_id}, double y_{y_id}, double *z_{z_id})\n"
"\n"
"def test_c(double x_{x_id}, double y_{y_id}):\n"
"\n"
" cdef double z_{z_id} = 0\n"
" test(x_{x_id}, y_{y_id}, &z_{z_id})\n"
" return z_{z_id}")
expected = expected_template.format(x_id=x_id, y_id=y_id, z_id=z_id)
assert source == expected
def test_autowrap_dummy():
x, y, z = symbols('x y z')
# Uses DummyWrapper to test that codegen works as expected
f = autowrap(x + y, backend='dummy')
assert f() == str(x + y)
assert f.args == "x, y"
assert f.returns == "nameless"
f = autowrap(Eq(z, x + y), backend='dummy')
assert f() == str(x + y)
assert f.args == "x, y"
assert f.returns == "z"
f = autowrap(Eq(z, x + y + z), backend='dummy')
assert f() == str(x + y + z)
assert f.args == "x, y, z"
assert f.returns == "z"
def test_autowrap_args():
x, y, z = symbols('x y z')
raises(CodeGenArgumentListError, lambda: autowrap(Eq(z, x + y),
backend='dummy', args=[x]))
f = autowrap(Eq(z, x + y), backend='dummy', args=[y, x])
assert f() == str(x + y)
assert f.args == "y, x"
assert f.returns == "z"
raises(CodeGenArgumentListError, lambda: autowrap(Eq(z, x + y + z),
backend='dummy', args=[x, y]))
f = autowrap(Eq(z, x + y + z), backend='dummy', args=[y, x, z])
assert f() == str(x + y + z)
assert f.args == "y, x, z"
assert f.returns == "z"
f = autowrap(Eq(z, x + y + z), backend='dummy', args=(y, x, z))
assert f() == str(x + y + z)
assert f.args == "y, x, z"
assert f.returns == "z"
def test_autowrap_store_files():
x, y = symbols('x y')
tmp = tempfile.mkdtemp()
TmpFileManager.tmp_folder(tmp)
f = autowrap(x + y, backend='dummy', tempdir=tmp)
assert f() == str(x + y)
assert os.access(tmp, os.F_OK)
TmpFileManager.cleanup()
def test_autowrap_store_files_issue_gh12939():
x, y = symbols('x y')
tmp = './tmp'
saved_cwd = os.getcwd()
temp_cwd = tempfile.mkdtemp()
try:
os.chdir(temp_cwd)
f = autowrap(x + y, backend='dummy', tempdir=tmp)
assert f() == str(x + y)
assert os.access(tmp, os.F_OK)
finally:
os.chdir(saved_cwd)
shutil.rmtree(temp_cwd)
def test_binary_function():
x, y = symbols('x y')
f = binary_function('f', x + y, backend='dummy')
assert f._imp_() == str(x + y)
def test_ufuncify_source():
x, y, z = symbols('x,y,z')
code_wrapper = UfuncifyCodeWrapper(C99CodeGen("ufuncify"))
routine = make_routine("test", x + y + z)
source = get_string(code_wrapper.dump_c, [routine])
expected = """\
#include "Python.h"
#include "math.h"
#include "numpy/ndarraytypes.h"
#include "numpy/ufuncobject.h"
#include "numpy/halffloat.h"
#include "file.h"
static PyMethodDef wrapper_module_%(num)sMethods[] = {
{NULL, NULL, 0, NULL}
};
static void test_ufunc(char **args, npy_intp *dimensions, npy_intp* steps, void* data)
{
npy_intp i;
npy_intp n = dimensions[0];
char *in0 = args[0];
char *in1 = args[1];
char *in2 = args[2];
char *out0 = args[3];
npy_intp in0_step = steps[0];
npy_intp in1_step = steps[1];
npy_intp in2_step = steps[2];
npy_intp out0_step = steps[3];
for (i = 0; i < n; i++) {
*((double *)out0) = test(*(double *)in0, *(double *)in1, *(double *)in2);
in0 += in0_step;
in1 += in1_step;
in2 += in2_step;
out0 += out0_step;
}
}
PyUFuncGenericFunction test_funcs[1] = {&test_ufunc};
static char test_types[4] = {NPY_DOUBLE, NPY_DOUBLE, NPY_DOUBLE, NPY_DOUBLE};
static void *test_data[1] = {NULL};
#if PY_VERSION_HEX >= 0x03000000
static struct PyModuleDef moduledef = {
PyModuleDef_HEAD_INIT,
"wrapper_module_%(num)s",
NULL,
-1,
wrapper_module_%(num)sMethods,
NULL,
NULL,
NULL,
NULL
};
PyMODINIT_FUNC PyInit_wrapper_module_%(num)s(void)
{
PyObject *m, *d;
PyObject *ufunc0;
m = PyModule_Create(&moduledef);
if (!m) {
return NULL;
}
import_array();
import_umath();
d = PyModule_GetDict(m);
ufunc0 = PyUFunc_FromFuncAndData(test_funcs, test_data, test_types, 1, 3, 1,
PyUFunc_None, "wrapper_module_%(num)s", "Created in SymPy with Ufuncify", 0);
PyDict_SetItemString(d, "test", ufunc0);
Py_DECREF(ufunc0);
return m;
}
#else
PyMODINIT_FUNC initwrapper_module_%(num)s(void)
{
PyObject *m, *d;
PyObject *ufunc0;
m = Py_InitModule("wrapper_module_%(num)s", wrapper_module_%(num)sMethods);
if (m == NULL) {
return;
}
import_array();
import_umath();
d = PyModule_GetDict(m);
ufunc0 = PyUFunc_FromFuncAndData(test_funcs, test_data, test_types, 1, 3, 1,
PyUFunc_None, "wrapper_module_%(num)s", "Created in SymPy with Ufuncify", 0);
PyDict_SetItemString(d, "test", ufunc0);
Py_DECREF(ufunc0);
}
#endif""" % {'num': CodeWrapper._module_counter}
assert source == expected
def test_ufuncify_source_multioutput():
x, y, z = symbols('x,y,z')
var_symbols = (x, y, z)
expr = x + y**3 + 10*z**2
code_wrapper = UfuncifyCodeWrapper(C99CodeGen("ufuncify"))
routines = [make_routine("func{}".format(i), expr.diff(var_symbols[i]), var_symbols) for i in range(len(var_symbols))]
source = get_string(code_wrapper.dump_c, routines, funcname='multitest')
expected = """\
#include "Python.h"
#include "math.h"
#include "numpy/ndarraytypes.h"
#include "numpy/ufuncobject.h"
#include "numpy/halffloat.h"
#include "file.h"
static PyMethodDef wrapper_module_%(num)sMethods[] = {
{NULL, NULL, 0, NULL}
};
static void multitest_ufunc(char **args, npy_intp *dimensions, npy_intp* steps, void* data)
{
npy_intp i;
npy_intp n = dimensions[0];
char *in0 = args[0];
char *in1 = args[1];
char *in2 = args[2];
char *out0 = args[3];
char *out1 = args[4];
char *out2 = args[5];
npy_intp in0_step = steps[0];
npy_intp in1_step = steps[1];
npy_intp in2_step = steps[2];
npy_intp out0_step = steps[3];
npy_intp out1_step = steps[4];
npy_intp out2_step = steps[5];
for (i = 0; i < n; i++) {
*((double *)out0) = func0(*(double *)in0, *(double *)in1, *(double *)in2);
*((double *)out1) = func1(*(double *)in0, *(double *)in1, *(double *)in2);
*((double *)out2) = func2(*(double *)in0, *(double *)in1, *(double *)in2);
in0 += in0_step;
in1 += in1_step;
in2 += in2_step;
out0 += out0_step;
out1 += out1_step;
out2 += out2_step;
}
}
PyUFuncGenericFunction multitest_funcs[1] = {&multitest_ufunc};
static char multitest_types[6] = {NPY_DOUBLE, NPY_DOUBLE, NPY_DOUBLE, NPY_DOUBLE, NPY_DOUBLE, NPY_DOUBLE};
static void *multitest_data[1] = {NULL};
#if PY_VERSION_HEX >= 0x03000000
static struct PyModuleDef moduledef = {
PyModuleDef_HEAD_INIT,
"wrapper_module_%(num)s",
NULL,
-1,
wrapper_module_%(num)sMethods,
NULL,
NULL,
NULL,
NULL
};
PyMODINIT_FUNC PyInit_wrapper_module_%(num)s(void)
{
PyObject *m, *d;
PyObject *ufunc0;
m = PyModule_Create(&moduledef);
if (!m) {
return NULL;
}
import_array();
import_umath();
d = PyModule_GetDict(m);
ufunc0 = PyUFunc_FromFuncAndData(multitest_funcs, multitest_data, multitest_types, 1, 3, 3,
PyUFunc_None, "wrapper_module_%(num)s", "Created in SymPy with Ufuncify", 0);
PyDict_SetItemString(d, "multitest", ufunc0);
Py_DECREF(ufunc0);
return m;
}
#else
PyMODINIT_FUNC initwrapper_module_%(num)s(void)
{
PyObject *m, *d;
PyObject *ufunc0;
m = Py_InitModule("wrapper_module_%(num)s", wrapper_module_%(num)sMethods);
if (m == NULL) {
return;
}
import_array();
import_umath();
d = PyModule_GetDict(m);
ufunc0 = PyUFunc_FromFuncAndData(multitest_funcs, multitest_data, multitest_types, 1, 3, 3,
PyUFunc_None, "wrapper_module_%(num)s", "Created in SymPy with Ufuncify", 0);
PyDict_SetItemString(d, "multitest", ufunc0);
Py_DECREF(ufunc0);
}
#endif""" % {'num': CodeWrapper._module_counter}
assert source == expected
|
edcaa6c788591da52b01d190e4534509177ee114f30980fb18b22ded4fe102c3 | from sympy import MatAdd
from sympy.algebras.quaternion import Quaternion
from sympy.assumptions.ask import Q
from sympy.calculus.accumulationbounds import AccumBounds
from sympy.combinatorics.partitions import Partition
from sympy.concrete.summations import (Sum, summation)
from sympy.core.add import Add
from sympy.core.containers import (Dict, Tuple)
from sympy.core.expr import UnevaluatedExpr, Expr
from sympy.core.function import (Derivative, Function, Lambda, Subs, WildFunction)
from sympy.core.mul import Mul
from sympy.core import (Catalan, EulerGamma, GoldenRatio, TribonacciConstant)
from sympy.core.numbers import (E, Float, I, Integer, Rational, nan, oo, pi, zoo)
from sympy.core.parameters import _exp_is_pow
from sympy.core.power import Pow
from sympy.core.relational import (Eq, Rel, Ne)
from sympy.core.singleton import S
from sympy.core.symbol import (Dummy, Symbol, Wild, symbols)
from sympy.functions.combinatorial.factorials import (factorial, factorial2, subfactorial)
from sympy.functions.elementary.complexes import Abs
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (cos, sin)
from sympy.functions.special.delta_functions import Heaviside
from sympy.functions.special.zeta_functions import zeta
from sympy.integrals.integrals import Integral
from sympy.logic.boolalg import (Equivalent, false, true, Xor)
from sympy.matrices.dense import Matrix
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.matrices.expressions.slice import MatrixSlice
from sympy.matrices import SparseMatrix
from sympy.polys.polytools import factor
from sympy.series.limits import Limit
from sympy.series.order import O
from sympy.sets.sets import (Complement, FiniteSet, Interval, SymmetricDifference)
from sympy.external import import_module
from sympy.physics.control.lti import TransferFunction, Series, Parallel, \
Feedback, TransferFunctionMatrix, MIMOSeries, MIMOParallel, MIMOFeedback
from sympy.physics.units import second, joule
from sympy.polys import (Poly, rootof, RootSum, groebner, ring, field, ZZ, QQ,
ZZ_I, QQ_I, lex, grlex)
from sympy.geometry import Point, Circle, Polygon, Ellipse, Triangle
from sympy.tensor import NDimArray
from sympy.tensor.array.expressions.array_expressions import ArraySymbol, ArrayElement
from sympy.testing.pytest import raises, warns_deprecated_sympy
from sympy.printing import sstr, sstrrepr, StrPrinter
from sympy.physics.quantum.trace import Tr
x, y, z, w, t = symbols('x,y,z,w,t')
d = Dummy('d')
def test_printmethod():
class R(Abs):
def _sympystr(self, printer):
return "foo(%s)" % printer._print(self.args[0])
assert sstr(R(x)) == "foo(x)"
class R(Abs):
def _sympystr(self, printer):
return "foo"
assert sstr(R(x)) == "foo"
def test_Abs():
assert str(Abs(x)) == "Abs(x)"
assert str(Abs(Rational(1, 6))) == "1/6"
assert str(Abs(Rational(-1, 6))) == "1/6"
def test_Add():
assert str(x + y) == "x + y"
assert str(x + 1) == "x + 1"
assert str(x + x**2) == "x**2 + x"
assert str(Add(0, 1, evaluate=False)) == "0 + 1"
assert str(Add(0, 0, 1, evaluate=False)) == "0 + 0 + 1"
assert str(1.0*x) == "1.0*x"
assert str(5 + x + y + x*y + x**2 + y**2) == "x**2 + x*y + x + y**2 + y + 5"
assert str(1 + x + x**2/2 + x**3/3) == "x**3/3 + x**2/2 + x + 1"
assert str(2*x - 7*x**2 + 2 + 3*y) == "-7*x**2 + 2*x + 3*y + 2"
assert str(x - y) == "x - y"
assert str(2 - x) == "2 - x"
assert str(x - 2) == "x - 2"
assert str(x - y - z - w) == "-w + x - y - z"
assert str(x - z*y**2*z*w) == "-w*y**2*z**2 + x"
assert str(x - 1*y*x*y) == "-x*y**2 + x"
assert str(sin(x).series(x, 0, 15)) == "x - x**3/6 + x**5/120 - x**7/5040 + x**9/362880 - x**11/39916800 + x**13/6227020800 + O(x**15)"
assert str(Add(Add(-w, x, evaluate=False), Add(-y, z, evaluate=False), evaluate=False)) == "(-w + x) + (-y + z)"
assert str(Add(Add(-x, -y, evaluate=False), -z, evaluate=False)) == "-z + (-x - y)"
assert str(Add(Add(Add(-x, -y, evaluate=False), -z, evaluate=False), -t, evaluate=False)) == "-t + (-z + (-x - y))"
def test_Catalan():
assert str(Catalan) == "Catalan"
def test_ComplexInfinity():
assert str(zoo) == "zoo"
def test_Derivative():
assert str(Derivative(x, y)) == "Derivative(x, y)"
assert str(Derivative(x**2, x, evaluate=False)) == "Derivative(x**2, x)"
assert str(Derivative(
x**2/y, x, y, evaluate=False)) == "Derivative(x**2/y, x, y)"
def test_dict():
assert str({1: 1 + x}) == sstr({1: 1 + x}) == "{1: x + 1}"
assert str({1: x**2, 2: y*x}) in ("{1: x**2, 2: x*y}", "{2: x*y, 1: x**2}")
assert sstr({1: x**2, 2: y*x}) == "{1: x**2, 2: x*y}"
def test_Dict():
assert str(Dict({1: 1 + x})) == sstr({1: 1 + x}) == "{1: x + 1}"
assert str(Dict({1: x**2, 2: y*x})) in (
"{1: x**2, 2: x*y}", "{2: x*y, 1: x**2}")
assert sstr(Dict({1: x**2, 2: y*x})) == "{1: x**2, 2: x*y}"
def test_Dummy():
assert str(d) == "_d"
assert str(d + x) == "_d + x"
def test_EulerGamma():
assert str(EulerGamma) == "EulerGamma"
def test_Exp():
assert str(E) == "E"
with _exp_is_pow(True):
assert str(exp(x)) == "E**x"
def test_factorial():
n = Symbol('n', integer=True)
assert str(factorial(-2)) == "zoo"
assert str(factorial(0)) == "1"
assert str(factorial(7)) == "5040"
assert str(factorial(n)) == "factorial(n)"
assert str(factorial(2*n)) == "factorial(2*n)"
assert str(factorial(factorial(n))) == 'factorial(factorial(n))'
assert str(factorial(factorial2(n))) == 'factorial(factorial2(n))'
assert str(factorial2(factorial(n))) == 'factorial2(factorial(n))'
assert str(factorial2(factorial2(n))) == 'factorial2(factorial2(n))'
assert str(subfactorial(3)) == "2"
assert str(subfactorial(n)) == "subfactorial(n)"
assert str(subfactorial(2*n)) == "subfactorial(2*n)"
def test_Function():
f = Function('f')
fx = f(x)
w = WildFunction('w')
assert str(f) == "f"
assert str(fx) == "f(x)"
assert str(w) == "w_"
def test_Geometry():
assert sstr(Point(0, 0)) == 'Point2D(0, 0)'
assert sstr(Circle(Point(0, 0), 3)) == 'Circle(Point2D(0, 0), 3)'
assert sstr(Ellipse(Point(1, 2), 3, 4)) == 'Ellipse(Point2D(1, 2), 3, 4)'
assert sstr(Triangle(Point(1, 1), Point(7, 8), Point(0, -1))) == \
'Triangle(Point2D(1, 1), Point2D(7, 8), Point2D(0, -1))'
assert sstr(Polygon(Point(5, 6), Point(-2, -3), Point(0, 0), Point(4, 7))) == \
'Polygon(Point2D(5, 6), Point2D(-2, -3), Point2D(0, 0), Point2D(4, 7))'
assert sstr(Triangle(Point(0, 0), Point(1, 0), Point(0, 1)), sympy_integers=True) == \
'Triangle(Point2D(S(0), S(0)), Point2D(S(1), S(0)), Point2D(S(0), S(1)))'
assert sstr(Ellipse(Point(1, 2), 3, 4), sympy_integers=True) == \
'Ellipse(Point2D(S(1), S(2)), S(3), S(4))'
def test_GoldenRatio():
assert str(GoldenRatio) == "GoldenRatio"
def test_Heaviside():
assert str(Heaviside(x)) == str(Heaviside(x, S.Half)) == "Heaviside(x)"
assert str(Heaviside(x, 1)) == "Heaviside(x, 1)"
def test_TribonacciConstant():
assert str(TribonacciConstant) == "TribonacciConstant"
def test_ImaginaryUnit():
assert str(I) == "I"
def test_Infinity():
assert str(oo) == "oo"
assert str(oo*I) == "oo*I"
def test_Integer():
assert str(Integer(-1)) == "-1"
assert str(Integer(1)) == "1"
assert str(Integer(-3)) == "-3"
assert str(Integer(0)) == "0"
assert str(Integer(25)) == "25"
def test_Integral():
assert str(Integral(sin(x), y)) == "Integral(sin(x), y)"
assert str(Integral(sin(x), (y, 0, 1))) == "Integral(sin(x), (y, 0, 1))"
def test_Interval():
n = (S.NegativeInfinity, 1, 2, S.Infinity)
for i in range(len(n)):
for j in range(i + 1, len(n)):
for l in (True, False):
for r in (True, False):
ival = Interval(n[i], n[j], l, r)
assert S(str(ival)) == ival
def test_AccumBounds():
a = Symbol('a', real=True)
assert str(AccumBounds(0, a)) == "AccumBounds(0, a)"
assert str(AccumBounds(0, 1)) == "AccumBounds(0, 1)"
def test_Lambda():
assert str(Lambda(d, d**2)) == "Lambda(_d, _d**2)"
# issue 2908
assert str(Lambda((), 1)) == "Lambda((), 1)"
assert str(Lambda((), x)) == "Lambda((), x)"
assert str(Lambda((x, y), x+y)) == "Lambda((x, y), x + y)"
assert str(Lambda(((x, y),), x+y)) == "Lambda(((x, y),), x + y)"
def test_Limit():
assert str(Limit(sin(x)/x, x, y)) == "Limit(sin(x)/x, x, y)"
assert str(Limit(1/x, x, 0)) == "Limit(1/x, x, 0)"
assert str(
Limit(sin(x)/x, x, y, dir="-")) == "Limit(sin(x)/x, x, y, dir='-')"
def test_list():
assert str([x]) == sstr([x]) == "[x]"
assert str([x**2, x*y + 1]) == sstr([x**2, x*y + 1]) == "[x**2, x*y + 1]"
assert str([x**2, [y + x]]) == sstr([x**2, [y + x]]) == "[x**2, [x + y]]"
def test_Matrix_str():
M = Matrix([[x**+1, 1], [y, x + y]])
assert str(M) == "Matrix([[x, 1], [y, x + y]])"
assert sstr(M) == "Matrix([\n[x, 1],\n[y, x + y]])"
M = Matrix([[1]])
assert str(M) == sstr(M) == "Matrix([[1]])"
M = Matrix([[1, 2]])
assert str(M) == sstr(M) == "Matrix([[1, 2]])"
M = Matrix()
assert str(M) == sstr(M) == "Matrix(0, 0, [])"
M = Matrix(0, 1, lambda i, j: 0)
assert str(M) == sstr(M) == "Matrix(0, 1, [])"
def test_Mul():
assert str(x/y) == "x/y"
assert str(y/x) == "y/x"
assert str(x/y/z) == "x/(y*z)"
assert str((x + 1)/(y + 2)) == "(x + 1)/(y + 2)"
assert str(2*x/3) == '2*x/3'
assert str(-2*x/3) == '-2*x/3'
assert str(-1.0*x) == '-1.0*x'
assert str(1.0*x) == '1.0*x'
assert str(Mul(0, 1, evaluate=False)) == '0*1'
assert str(Mul(1, 0, evaluate=False)) == '1*0'
assert str(Mul(1, 1, evaluate=False)) == '1*1'
assert str(Mul(1, 1, 1, evaluate=False)) == '1*1*1'
assert str(Mul(1, 2, evaluate=False)) == '1*2'
assert str(Mul(1, S.Half, evaluate=False)) == '1*(1/2)'
assert str(Mul(1, 1, S.Half, evaluate=False)) == '1*1*(1/2)'
assert str(Mul(1, 1, 2, 3, x, evaluate=False)) == '1*1*2*3*x'
assert str(Mul(1, -1, evaluate=False)) == '1*(-1)'
assert str(Mul(-1, 1, evaluate=False)) == '-1*1'
assert str(Mul(4, 3, 2, 1, 0, y, x, evaluate=False)) == '4*3*2*1*0*y*x'
assert str(Mul(4, 3, 2, 1+z, 0, y, x, evaluate=False)) == '4*3*2*(z + 1)*0*y*x'
assert str(Mul(Rational(2, 3), Rational(5, 7), evaluate=False)) == '(2/3)*(5/7)'
# For issue 14160
assert str(Mul(-2, x, Pow(Mul(y,y,evaluate=False), -1, evaluate=False),
evaluate=False)) == '-2*x/(y*y)'
# issue 21537
assert str(Mul(x, Pow(1/y, -1, evaluate=False), evaluate=False)) == 'x/(1/y)'
# Issue 24108
from sympy.core.parameters import evaluate
with evaluate(False):
assert str(Mul(Pow(Integer(2), Integer(-1)), Add(Integer(-1), Mul(Integer(-1), Integer(1))))) == "(-1 - 1*1)/2"
class CustomClass1(Expr):
is_commutative = True
class CustomClass2(Expr):
is_commutative = True
cc1 = CustomClass1()
cc2 = CustomClass2()
assert str(Rational(2)*cc1) == '2*CustomClass1()'
assert str(cc1*Rational(2)) == '2*CustomClass1()'
assert str(cc1*Float("1.5")) == '1.5*CustomClass1()'
assert str(cc2*Rational(2)) == '2*CustomClass2()'
assert str(cc2*Rational(2)*cc1) == '2*CustomClass1()*CustomClass2()'
assert str(cc1*Rational(2)*cc2) == '2*CustomClass1()*CustomClass2()'
def test_NaN():
assert str(nan) == "nan"
def test_NegativeInfinity():
assert str(-oo) == "-oo"
def test_Order():
assert str(O(x)) == "O(x)"
assert str(O(x**2)) == "O(x**2)"
assert str(O(x*y)) == "O(x*y, x, y)"
assert str(O(x, x)) == "O(x)"
assert str(O(x, (x, 0))) == "O(x)"
assert str(O(x, (x, oo))) == "O(x, (x, oo))"
assert str(O(x, x, y)) == "O(x, x, y)"
assert str(O(x, x, y)) == "O(x, x, y)"
assert str(O(x, (x, oo), (y, oo))) == "O(x, (x, oo), (y, oo))"
def test_Permutation_Cycle():
from sympy.combinatorics import Permutation, Cycle
# general principle: economically, canonically show all moved elements
# and the size of the permutation.
for p, s in [
(Cycle(),
'()'),
(Cycle(2),
'(2)'),
(Cycle(2, 1),
'(1 2)'),
(Cycle(1, 2)(5)(6, 7)(10),
'(1 2)(6 7)(10)'),
(Cycle(3, 4)(1, 2)(3, 4),
'(1 2)(4)'),
]:
assert sstr(p) == s
for p, s in [
(Permutation([]),
'Permutation([])'),
(Permutation([], size=1),
'Permutation([0])'),
(Permutation([], size=2),
'Permutation([0, 1])'),
(Permutation([], size=10),
'Permutation([], size=10)'),
(Permutation([1, 0, 2]),
'Permutation([1, 0, 2])'),
(Permutation([1, 0, 2, 3, 4, 5]),
'Permutation([1, 0], size=6)'),
(Permutation([1, 0, 2, 3, 4, 5], size=10),
'Permutation([1, 0], size=10)'),
]:
assert sstr(p, perm_cyclic=False) == s
for p, s in [
(Permutation([]),
'()'),
(Permutation([], size=1),
'(0)'),
(Permutation([], size=2),
'(1)'),
(Permutation([], size=10),
'(9)'),
(Permutation([1, 0, 2]),
'(2)(0 1)'),
(Permutation([1, 0, 2, 3, 4, 5]),
'(5)(0 1)'),
(Permutation([1, 0, 2, 3, 4, 5], size=10),
'(9)(0 1)'),
(Permutation([0, 1, 3, 2, 4, 5], size=10),
'(9)(2 3)'),
]:
assert sstr(p) == s
with warns_deprecated_sympy():
old_print_cyclic = Permutation.print_cyclic
Permutation.print_cyclic = False
assert sstr(Permutation([1, 0, 2])) == 'Permutation([1, 0, 2])'
Permutation.print_cyclic = old_print_cyclic
def test_Pi():
assert str(pi) == "pi"
def test_Poly():
assert str(Poly(0, x)) == "Poly(0, x, domain='ZZ')"
assert str(Poly(1, x)) == "Poly(1, x, domain='ZZ')"
assert str(Poly(x, x)) == "Poly(x, x, domain='ZZ')"
assert str(Poly(2*x + 1, x)) == "Poly(2*x + 1, x, domain='ZZ')"
assert str(Poly(2*x - 1, x)) == "Poly(2*x - 1, x, domain='ZZ')"
assert str(Poly(-1, x)) == "Poly(-1, x, domain='ZZ')"
assert str(Poly(-x, x)) == "Poly(-x, x, domain='ZZ')"
assert str(Poly(-2*x + 1, x)) == "Poly(-2*x + 1, x, domain='ZZ')"
assert str(Poly(-2*x - 1, x)) == "Poly(-2*x - 1, x, domain='ZZ')"
assert str(Poly(x - 1, x)) == "Poly(x - 1, x, domain='ZZ')"
assert str(Poly(2*x + x**5, x)) == "Poly(x**5 + 2*x, x, domain='ZZ')"
assert str(Poly(3**(2*x), 3**x)) == "Poly((3**x)**2, 3**x, domain='ZZ')"
assert str(Poly((x**2)**x)) == "Poly(((x**2)**x), (x**2)**x, domain='ZZ')"
assert str(Poly((x + y)**3, (x + y), expand=False)
) == "Poly((x + y)**3, x + y, domain='ZZ')"
assert str(Poly((x - 1)**2, (x - 1), expand=False)
) == "Poly((x - 1)**2, x - 1, domain='ZZ')"
assert str(
Poly(x**2 + 1 + y, x)) == "Poly(x**2 + y + 1, x, domain='ZZ[y]')"
assert str(
Poly(x**2 - 1 + y, x)) == "Poly(x**2 + y - 1, x, domain='ZZ[y]')"
assert str(Poly(x**2 + I*x, x)) == "Poly(x**2 + I*x, x, domain='ZZ_I')"
assert str(Poly(x**2 - I*x, x)) == "Poly(x**2 - I*x, x, domain='ZZ_I')"
assert str(Poly(-x*y*z + x*y - 1, x, y, z)
) == "Poly(-x*y*z + x*y - 1, x, y, z, domain='ZZ')"
assert str(Poly(-w*x**21*y**7*z + (1 + w)*z**3 - 2*x*z + 1, x, y, z)) == \
"Poly(-w*x**21*y**7*z - 2*x*z + (w + 1)*z**3 + 1, x, y, z, domain='ZZ[w]')"
assert str(Poly(x**2 + 1, x, modulus=2)) == "Poly(x**2 + 1, x, modulus=2)"
assert str(Poly(2*x**2 + 3*x + 4, x, modulus=17)) == "Poly(2*x**2 + 3*x + 4, x, modulus=17)"
def test_PolyRing():
assert str(ring("x", ZZ, lex)[0]) == "Polynomial ring in x over ZZ with lex order"
assert str(ring("x,y", QQ, grlex)[0]) == "Polynomial ring in x, y over QQ with grlex order"
assert str(ring("x,y,z", ZZ["t"], lex)[0]) == "Polynomial ring in x, y, z over ZZ[t] with lex order"
def test_FracField():
assert str(field("x", ZZ, lex)[0]) == "Rational function field in x over ZZ with lex order"
assert str(field("x,y", QQ, grlex)[0]) == "Rational function field in x, y over QQ with grlex order"
assert str(field("x,y,z", ZZ["t"], lex)[0]) == "Rational function field in x, y, z over ZZ[t] with lex order"
def test_PolyElement():
Ruv, u,v = ring("u,v", ZZ)
Rxyz, x,y,z = ring("x,y,z", Ruv)
Rx_zzi, xz = ring("x", ZZ_I)
assert str(x - x) == "0"
assert str(x - 1) == "x - 1"
assert str(x + 1) == "x + 1"
assert str(x**2) == "x**2"
assert str(x**(-2)) == "x**(-2)"
assert str(x**QQ(1, 2)) == "x**(1/2)"
assert str((u**2 + 3*u*v + 1)*x**2*y + u + 1) == "(u**2 + 3*u*v + 1)*x**2*y + u + 1"
assert str((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x) == "(u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x"
assert str((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x + 1) == "(u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x + 1"
assert str((-u**2 + 3*u*v - 1)*x**2*y - (u + 1)*x - 1) == "-(u**2 - 3*u*v + 1)*x**2*y - (u + 1)*x - 1"
assert str(-(v**2 + v + 1)*x + 3*u*v + 1) == "-(v**2 + v + 1)*x + 3*u*v + 1"
assert str(-(v**2 + v + 1)*x - 3*u*v + 1) == "-(v**2 + v + 1)*x - 3*u*v + 1"
assert str((1+I)*xz + 2) == "(1 + 1*I)*x + (2 + 0*I)"
def test_FracElement():
Fuv, u,v = field("u,v", ZZ)
Fxyzt, x,y,z,t = field("x,y,z,t", Fuv)
Rx_zzi, xz = field("x", QQ_I)
i = QQ_I(0, 1)
assert str(x - x) == "0"
assert str(x - 1) == "x - 1"
assert str(x + 1) == "x + 1"
assert str(x/3) == "x/3"
assert str(x/z) == "x/z"
assert str(x*y/z) == "x*y/z"
assert str(x/(z*t)) == "x/(z*t)"
assert str(x*y/(z*t)) == "x*y/(z*t)"
assert str((x - 1)/y) == "(x - 1)/y"
assert str((x + 1)/y) == "(x + 1)/y"
assert str((-x - 1)/y) == "(-x - 1)/y"
assert str((x + 1)/(y*z)) == "(x + 1)/(y*z)"
assert str(-y/(x + 1)) == "-y/(x + 1)"
assert str(y*z/(x + 1)) == "y*z/(x + 1)"
assert str(((u + 1)*x*y + 1)/((v - 1)*z - 1)) == "((u + 1)*x*y + 1)/((v - 1)*z - 1)"
assert str(((u + 1)*x*y + 1)/((v - 1)*z - t*u*v - 1)) == "((u + 1)*x*y + 1)/((v - 1)*z - u*v*t - 1)"
assert str((1+i)/xz) == "(1 + 1*I)/x"
assert str(((1+i)*xz - i)/xz) == "((1 + 1*I)*x + (0 + -1*I))/x"
def test_GaussianInteger():
assert str(ZZ_I(1, 0)) == "1"
assert str(ZZ_I(-1, 0)) == "-1"
assert str(ZZ_I(0, 1)) == "I"
assert str(ZZ_I(0, -1)) == "-I"
assert str(ZZ_I(0, 2)) == "2*I"
assert str(ZZ_I(0, -2)) == "-2*I"
assert str(ZZ_I(1, 1)) == "1 + I"
assert str(ZZ_I(-1, -1)) == "-1 - I"
assert str(ZZ_I(-1, -2)) == "-1 - 2*I"
def test_GaussianRational():
assert str(QQ_I(1, 0)) == "1"
assert str(QQ_I(QQ(2, 3), 0)) == "2/3"
assert str(QQ_I(0, QQ(2, 3))) == "2*I/3"
assert str(QQ_I(QQ(1, 2), QQ(-2, 3))) == "1/2 - 2*I/3"
def test_Pow():
assert str(x**-1) == "1/x"
assert str(x**-2) == "x**(-2)"
assert str(x**2) == "x**2"
assert str((x + y)**-1) == "1/(x + y)"
assert str((x + y)**-2) == "(x + y)**(-2)"
assert str((x + y)**2) == "(x + y)**2"
assert str((x + y)**(1 + x)) == "(x + y)**(x + 1)"
assert str(x**Rational(1, 3)) == "x**(1/3)"
assert str(1/x**Rational(1, 3)) == "x**(-1/3)"
assert str(sqrt(sqrt(x))) == "x**(1/4)"
# not the same as x**-1
assert str(x**-1.0) == 'x**(-1.0)'
# see issue #2860
assert str(Pow(S(2), -1.0, evaluate=False)) == '2**(-1.0)'
def test_sqrt():
assert str(sqrt(x)) == "sqrt(x)"
assert str(sqrt(x**2)) == "sqrt(x**2)"
assert str(1/sqrt(x)) == "1/sqrt(x)"
assert str(1/sqrt(x**2)) == "1/sqrt(x**2)"
assert str(y/sqrt(x)) == "y/sqrt(x)"
assert str(x**0.5) == "x**0.5"
assert str(1/x**0.5) == "x**(-0.5)"
def test_Rational():
n1 = Rational(1, 4)
n2 = Rational(1, 3)
n3 = Rational(2, 4)
n4 = Rational(2, -4)
n5 = Rational(0)
n7 = Rational(3)
n8 = Rational(-3)
assert str(n1*n2) == "1/12"
assert str(n1*n2) == "1/12"
assert str(n3) == "1/2"
assert str(n1*n3) == "1/8"
assert str(n1 + n3) == "3/4"
assert str(n1 + n2) == "7/12"
assert str(n1 + n4) == "-1/4"
assert str(n4*n4) == "1/4"
assert str(n4 + n2) == "-1/6"
assert str(n4 + n5) == "-1/2"
assert str(n4*n5) == "0"
assert str(n3 + n4) == "0"
assert str(n1**n7) == "1/64"
assert str(n2**n7) == "1/27"
assert str(n2**n8) == "27"
assert str(n7**n8) == "1/27"
assert str(Rational("-25")) == "-25"
assert str(Rational("1.25")) == "5/4"
assert str(Rational("-2.6e-2")) == "-13/500"
assert str(S("25/7")) == "25/7"
assert str(S("-123/569")) == "-123/569"
assert str(S("0.1[23]", rational=1)) == "61/495"
assert str(S("5.1[666]", rational=1)) == "31/6"
assert str(S("-5.1[666]", rational=1)) == "-31/6"
assert str(S("0.[9]", rational=1)) == "1"
assert str(S("-0.[9]", rational=1)) == "-1"
assert str(sqrt(Rational(1, 4))) == "1/2"
assert str(sqrt(Rational(1, 36))) == "1/6"
assert str((123**25) ** Rational(1, 25)) == "123"
assert str((123**25 + 1)**Rational(1, 25)) != "123"
assert str((123**25 - 1)**Rational(1, 25)) != "123"
assert str((123**25 - 1)**Rational(1, 25)) != "122"
assert str(sqrt(Rational(81, 36))**3) == "27/8"
assert str(1/sqrt(Rational(81, 36))**3) == "8/27"
assert str(sqrt(-4)) == str(2*I)
assert str(2**Rational(1, 10**10)) == "2**(1/10000000000)"
assert sstr(Rational(2, 3), sympy_integers=True) == "S(2)/3"
x = Symbol("x")
assert sstr(x**Rational(2, 3), sympy_integers=True) == "x**(S(2)/3)"
assert sstr(Eq(x, Rational(2, 3)), sympy_integers=True) == "Eq(x, S(2)/3)"
assert sstr(Limit(x, x, Rational(7, 2)), sympy_integers=True) == \
"Limit(x, x, S(7)/2)"
def test_Float():
# NOTE dps is the whole number of decimal digits
assert str(Float('1.23', dps=1 + 2)) == '1.23'
assert str(Float('1.23456789', dps=1 + 8)) == '1.23456789'
assert str(
Float('1.234567890123456789', dps=1 + 18)) == '1.234567890123456789'
assert str(pi.evalf(1 + 2)) == '3.14'
assert str(pi.evalf(1 + 14)) == '3.14159265358979'
assert str(pi.evalf(1 + 64)) == ('3.141592653589793238462643383279'
'5028841971693993751058209749445923')
assert str(pi.round(-1)) == '0.0'
assert str((pi**400 - (pi**400).round(1)).n(2)) == '-0.e+88'
assert sstr(Float("100"), full_prec=False, min=-2, max=2) == '1.0e+2'
assert sstr(Float("100"), full_prec=False, min=-2, max=3) == '100.0'
assert sstr(Float("0.1"), full_prec=False, min=-2, max=3) == '0.1'
assert sstr(Float("0.099"), min=-2, max=3) == '9.90000000000000e-2'
def test_Relational():
assert str(Rel(x, y, "<")) == "x < y"
assert str(Rel(x + y, y, "==")) == "Eq(x + y, y)"
assert str(Rel(x, y, "!=")) == "Ne(x, y)"
assert str(Eq(x, 1) | Eq(x, 2)) == "Eq(x, 1) | Eq(x, 2)"
assert str(Ne(x, 1) & Ne(x, 2)) == "Ne(x, 1) & Ne(x, 2)"
def test_AppliedBinaryRelation():
assert str(Q.eq(x, y)) == "Q.eq(x, y)"
assert str(Q.ne(x, y)) == "Q.ne(x, y)"
def test_CRootOf():
assert str(rootof(x**5 + 2*x - 1, 0)) == "CRootOf(x**5 + 2*x - 1, 0)"
def test_RootSum():
f = x**5 + 2*x - 1
assert str(
RootSum(f, Lambda(z, z), auto=False)) == "RootSum(x**5 + 2*x - 1)"
assert str(RootSum(f, Lambda(
z, z**2), auto=False)) == "RootSum(x**5 + 2*x - 1, Lambda(z, z**2))"
def test_GroebnerBasis():
assert str(groebner(
[], x, y)) == "GroebnerBasis([], x, y, domain='ZZ', order='lex')"
F = [x**2 - 3*y - x + 1, y**2 - 2*x + y - 1]
assert str(groebner(F, order='grlex')) == \
"GroebnerBasis([x**2 - x - 3*y + 1, y**2 - 2*x + y - 1], x, y, domain='ZZ', order='grlex')"
assert str(groebner(F, order='lex')) == \
"GroebnerBasis([2*x - y**2 - y + 1, y**4 + 2*y**3 - 3*y**2 - 16*y + 7], x, y, domain='ZZ', order='lex')"
def test_set():
assert sstr(set()) == 'set()'
assert sstr(frozenset()) == 'frozenset()'
assert sstr({1}) == '{1}'
assert sstr(frozenset([1])) == 'frozenset({1})'
assert sstr({1, 2, 3}) == '{1, 2, 3}'
assert sstr(frozenset([1, 2, 3])) == 'frozenset({1, 2, 3})'
assert sstr(
{1, x, x**2, x**3, x**4}) == '{1, x, x**2, x**3, x**4}'
assert sstr(
frozenset([1, x, x**2, x**3, x**4])) == 'frozenset({1, x, x**2, x**3, x**4})'
def test_SparseMatrix():
M = SparseMatrix([[x**+1, 1], [y, x + y]])
assert str(M) == "Matrix([[x, 1], [y, x + y]])"
assert sstr(M) == "Matrix([\n[x, 1],\n[y, x + y]])"
def test_Sum():
assert str(summation(cos(3*z), (z, x, y))) == "Sum(cos(3*z), (z, x, y))"
assert str(Sum(x*y**2, (x, -2, 2), (y, -5, 5))) == \
"Sum(x*y**2, (x, -2, 2), (y, -5, 5))"
def test_Symbol():
assert str(y) == "y"
assert str(x) == "x"
e = x
assert str(e) == "x"
def test_tuple():
assert str((x,)) == sstr((x,)) == "(x,)"
assert str((x + y, 1 + x)) == sstr((x + y, 1 + x)) == "(x + y, x + 1)"
assert str((x + y, (
1 + x, x**2))) == sstr((x + y, (1 + x, x**2))) == "(x + y, (x + 1, x**2))"
def test_Series_str():
tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y)
tf2 = TransferFunction(x - y, x + y, y)
tf3 = TransferFunction(t*x**2 - t**w*x + w, t - y, y)
assert str(Series(tf1, tf2)) == \
"Series(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y))"
assert str(Series(tf1, tf2, tf3)) == \
"Series(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y), TransferFunction(t*x**2 - t**w*x + w, t - y, y))"
assert str(Series(-tf2, tf1)) == \
"Series(TransferFunction(-x + y, x + y, y), TransferFunction(x*y**2 - z, -t**3 + y**3, y))"
def test_MIMOSeries_str():
tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y)
tf2 = TransferFunction(x - y, x + y, y)
tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]])
tfm_2 = TransferFunctionMatrix([[tf2, tf1], [tf1, tf2]])
assert str(MIMOSeries(tfm_1, tfm_2)) == \
"MIMOSeries(TransferFunctionMatrix(((TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y)), "\
"(TransferFunction(x - y, x + y, y), TransferFunction(x*y**2 - z, -t**3 + y**3, y)))), "\
"TransferFunctionMatrix(((TransferFunction(x - y, x + y, y), TransferFunction(x*y**2 - z, -t**3 + y**3, y)), "\
"(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y)))))"
def test_TransferFunction_str():
tf1 = TransferFunction(x - 1, x + 1, x)
assert str(tf1) == "TransferFunction(x - 1, x + 1, x)"
tf2 = TransferFunction(x + 1, 2 - y, x)
assert str(tf2) == "TransferFunction(x + 1, 2 - y, x)"
tf3 = TransferFunction(y, y**2 + 2*y + 3, y)
assert str(tf3) == "TransferFunction(y, y**2 + 2*y + 3, y)"
def test_Parallel_str():
tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y)
tf2 = TransferFunction(x - y, x + y, y)
tf3 = TransferFunction(t*x**2 - t**w*x + w, t - y, y)
assert str(Parallel(tf1, tf2)) == \
"Parallel(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y))"
assert str(Parallel(tf1, tf2, tf3)) == \
"Parallel(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y), TransferFunction(t*x**2 - t**w*x + w, t - y, y))"
assert str(Parallel(-tf2, tf1)) == \
"Parallel(TransferFunction(-x + y, x + y, y), TransferFunction(x*y**2 - z, -t**3 + y**3, y))"
def test_MIMOParallel_str():
tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y)
tf2 = TransferFunction(x - y, x + y, y)
tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]])
tfm_2 = TransferFunctionMatrix([[tf2, tf1], [tf1, tf2]])
assert str(MIMOParallel(tfm_1, tfm_2)) == \
"MIMOParallel(TransferFunctionMatrix(((TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y)), "\
"(TransferFunction(x - y, x + y, y), TransferFunction(x*y**2 - z, -t**3 + y**3, y)))), "\
"TransferFunctionMatrix(((TransferFunction(x - y, x + y, y), TransferFunction(x*y**2 - z, -t**3 + y**3, y)), "\
"(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y)))))"
def test_Feedback_str():
tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y)
tf2 = TransferFunction(x - y, x + y, y)
tf3 = TransferFunction(t*x**2 - t**w*x + w, t - y, y)
assert str(Feedback(tf1*tf2, tf3)) == \
"Feedback(Series(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y)), " \
"TransferFunction(t*x**2 - t**w*x + w, t - y, y), -1)"
assert str(Feedback(tf1, TransferFunction(1, 1, y), 1)) == \
"Feedback(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(1, 1, y), 1)"
def test_MIMOFeedback_str():
tf1 = TransferFunction(x**2 - y**3, y - z, x)
tf2 = TransferFunction(y - x, z + y, x)
tfm_1 = TransferFunctionMatrix([[tf2, tf1], [tf1, tf2]])
tfm_2 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]])
assert (str(MIMOFeedback(tfm_1, tfm_2)) \
== "MIMOFeedback(TransferFunctionMatrix(((TransferFunction(-x + y, y + z, x), TransferFunction(x**2 - y**3, y - z, x))," \
" (TransferFunction(x**2 - y**3, y - z, x), TransferFunction(-x + y, y + z, x)))), " \
"TransferFunctionMatrix(((TransferFunction(x**2 - y**3, y - z, x), " \
"TransferFunction(-x + y, y + z, x)), (TransferFunction(-x + y, y + z, x), TransferFunction(x**2 - y**3, y - z, x)))), -1)")
assert (str(MIMOFeedback(tfm_1, tfm_2, 1)) \
== "MIMOFeedback(TransferFunctionMatrix(((TransferFunction(-x + y, y + z, x), TransferFunction(x**2 - y**3, y - z, x)), " \
"(TransferFunction(x**2 - y**3, y - z, x), TransferFunction(-x + y, y + z, x)))), " \
"TransferFunctionMatrix(((TransferFunction(x**2 - y**3, y - z, x), TransferFunction(-x + y, y + z, x)), "\
"(TransferFunction(-x + y, y + z, x), TransferFunction(x**2 - y**3, y - z, x)))), 1)")
def test_TransferFunctionMatrix_str():
tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y)
tf2 = TransferFunction(x - y, x + y, y)
tf3 = TransferFunction(t*x**2 - t**w*x + w, t - y, y)
assert str(TransferFunctionMatrix([[tf1], [tf2]])) == \
"TransferFunctionMatrix(((TransferFunction(x*y**2 - z, -t**3 + y**3, y),), (TransferFunction(x - y, x + y, y),)))"
assert str(TransferFunctionMatrix([[tf1, tf2], [tf3, tf2]])) == \
"TransferFunctionMatrix(((TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y)), (TransferFunction(t*x**2 - t**w*x + w, t - y, y), TransferFunction(x - y, x + y, y))))"
def test_Quaternion_str_printer():
q = Quaternion(x, y, z, t)
assert str(q) == "x + y*i + z*j + t*k"
q = Quaternion(x,y,z,x*t)
assert str(q) == "x + y*i + z*j + t*x*k"
q = Quaternion(x,y,z,x+t)
assert str(q) == "x + y*i + z*j + (t + x)*k"
def test_Quantity_str():
assert sstr(second, abbrev=True) == "s"
assert sstr(joule, abbrev=True) == "J"
assert str(second) == "second"
assert str(joule) == "joule"
def test_wild_str():
# Check expressions containing Wild not causing infinite recursion
w = Wild('x')
assert str(w + 1) == 'x_ + 1'
assert str(exp(2**w) + 5) == 'exp(2**x_) + 5'
assert str(3*w + 1) == '3*x_ + 1'
assert str(1/w + 1) == '1 + 1/x_'
assert str(w**2 + 1) == 'x_**2 + 1'
assert str(1/(1 - w)) == '1/(1 - x_)'
def test_wild_matchpy():
from sympy.utilities.matchpy_connector import WildDot, WildPlus, WildStar
matchpy = import_module("matchpy")
if matchpy is None:
return
wd = WildDot('w_')
wp = WildPlus('w__')
ws = WildStar('w___')
assert str(wd) == 'w_'
assert str(wp) == 'w__'
assert str(ws) == 'w___'
assert str(wp/ws + 2**wd) == '2**w_ + w__/w___'
assert str(sin(wd)*cos(wp)*sqrt(ws)) == 'sqrt(w___)*sin(w_)*cos(w__)'
def test_zeta():
assert str(zeta(3)) == "zeta(3)"
def test_issue_3101():
e = x - y
a = str(e)
b = str(e)
assert a == b
def test_issue_3103():
e = -2*sqrt(x) - y/sqrt(x)/2
assert str(e) not in ["(-2)*x**1/2(-1/2)*x**(-1/2)*y",
"-2*x**1/2(-1/2)*x**(-1/2)*y", "-2*x**1/2-1/2*x**-1/2*w"]
assert str(e) == "-2*sqrt(x) - y/(2*sqrt(x))"
def test_issue_4021():
e = Integral(x, x) + 1
assert str(e) == 'Integral(x, x) + 1'
def test_sstrrepr():
assert sstr('abc') == 'abc'
assert sstrrepr('abc') == "'abc'"
e = ['a', 'b', 'c', x]
assert sstr(e) == "[a, b, c, x]"
assert sstrrepr(e) == "['a', 'b', 'c', x]"
def test_infinity():
assert sstr(oo*I) == "oo*I"
def test_full_prec():
assert sstr(S("0.3"), full_prec=True) == "0.300000000000000"
assert sstr(S("0.3"), full_prec="auto") == "0.300000000000000"
assert sstr(S("0.3"), full_prec=False) == "0.3"
assert sstr(S("0.3")*x, full_prec=True) in [
"0.300000000000000*x",
"x*0.300000000000000"
]
assert sstr(S("0.3")*x, full_prec="auto") in [
"0.3*x",
"x*0.3"
]
assert sstr(S("0.3")*x, full_prec=False) in [
"0.3*x",
"x*0.3"
]
def test_noncommutative():
A, B, C = symbols('A,B,C', commutative=False)
assert sstr(A*B*C**-1) == "A*B*C**(-1)"
assert sstr(C**-1*A*B) == "C**(-1)*A*B"
assert sstr(A*C**-1*B) == "A*C**(-1)*B"
assert sstr(sqrt(A)) == "sqrt(A)"
assert sstr(1/sqrt(A)) == "A**(-1/2)"
def test_empty_printer():
str_printer = StrPrinter()
assert str_printer.emptyPrinter("foo") == "foo"
assert str_printer.emptyPrinter(x*y) == "x*y"
assert str_printer.emptyPrinter(32) == "32"
def test_settings():
raises(TypeError, lambda: sstr(S(4), method="garbage"))
def test_RandomDomain():
from sympy.stats import Normal, Die, Exponential, pspace, where
X = Normal('x1', 0, 1)
assert str(where(X > 0)) == "Domain: (0 < x1) & (x1 < oo)"
D = Die('d1', 6)
assert str(where(D > 4)) == "Domain: Eq(d1, 5) | Eq(d1, 6)"
A = Exponential('a', 1)
B = Exponential('b', 1)
assert str(pspace(Tuple(A, B)).domain) == "Domain: (0 <= a) & (0 <= b) & (a < oo) & (b < oo)"
def test_FiniteSet():
assert str(FiniteSet(*range(1, 51))) == (
'{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,'
' 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,'
' 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50}'
)
assert str(FiniteSet(*range(1, 6))) == '{1, 2, 3, 4, 5}'
assert str(FiniteSet(*[x*y, x**2])) == '{x**2, x*y}'
assert str(FiniteSet(FiniteSet(FiniteSet(x, y), 5), FiniteSet(x,y), 5)
) == 'FiniteSet(5, FiniteSet(5, {x, y}), {x, y})'
def test_Partition():
assert str(Partition(FiniteSet(x, y), {z})) == 'Partition({z}, {x, y})'
def test_UniversalSet():
assert str(S.UniversalSet) == 'UniversalSet'
def test_PrettyPoly():
F = QQ.frac_field(x, y)
R = QQ[x, y]
assert sstr(F.convert(x/(x + y))) == sstr(x/(x + y))
assert sstr(R.convert(x + y)) == sstr(x + y)
def test_categories():
from sympy.categories import (Object, NamedMorphism,
IdentityMorphism, Category)
A = Object("A")
B = Object("B")
f = NamedMorphism(A, B, "f")
id_A = IdentityMorphism(A)
K = Category("K")
assert str(A) == 'Object("A")'
assert str(f) == 'NamedMorphism(Object("A"), Object("B"), "f")'
assert str(id_A) == 'IdentityMorphism(Object("A"))'
assert str(K) == 'Category("K")'
def test_Tr():
A, B = symbols('A B', commutative=False)
t = Tr(A*B)
assert str(t) == 'Tr(A*B)'
def test_issue_6387():
assert str(factor(-3.0*z + 3)) == '-3.0*(1.0*z - 1.0)'
def test_MatMul_MatAdd():
X, Y = MatrixSymbol("X", 2, 2), MatrixSymbol("Y", 2, 2)
assert str(2*(X + Y)) == "2*X + 2*Y"
assert str(I*X) == "I*X"
assert str(-I*X) == "-I*X"
assert str((1 + I)*X) == '(1 + I)*X'
assert str(-(1 + I)*X) == '(-1 - I)*X'
assert str(MatAdd(MatAdd(X, Y), MatAdd(X, Y))) == '(X + Y) + (X + Y)'
def test_MatrixSlice():
n = Symbol('n', integer=True)
X = MatrixSymbol('X', n, n)
Y = MatrixSymbol('Y', 10, 10)
Z = MatrixSymbol('Z', 10, 10)
assert str(MatrixSlice(X, (None, None, None), (None, None, None))) == 'X[:, :]'
assert str(X[x:x + 1, y:y + 1]) == 'X[x:x + 1, y:y + 1]'
assert str(X[x:x + 1:2, y:y + 1:2]) == 'X[x:x + 1:2, y:y + 1:2]'
assert str(X[:x, y:]) == 'X[:x, y:]'
assert str(X[:x, y:]) == 'X[:x, y:]'
assert str(X[x:, :y]) == 'X[x:, :y]'
assert str(X[x:y, z:w]) == 'X[x:y, z:w]'
assert str(X[x:y:t, w:t:x]) == 'X[x:y:t, w:t:x]'
assert str(X[x::y, t::w]) == 'X[x::y, t::w]'
assert str(X[:x:y, :t:w]) == 'X[:x:y, :t:w]'
assert str(X[::x, ::y]) == 'X[::x, ::y]'
assert str(MatrixSlice(X, (0, None, None), (0, None, None))) == 'X[:, :]'
assert str(MatrixSlice(X, (None, n, None), (None, n, None))) == 'X[:, :]'
assert str(MatrixSlice(X, (0, n, None), (0, n, None))) == 'X[:, :]'
assert str(MatrixSlice(X, (0, n, 2), (0, n, 2))) == 'X[::2, ::2]'
assert str(X[1:2:3, 4:5:6]) == 'X[1:2:3, 4:5:6]'
assert str(X[1:3:5, 4:6:8]) == 'X[1:3:5, 4:6:8]'
assert str(X[1:10:2]) == 'X[1:10:2, :]'
assert str(Y[:5, 1:9:2]) == 'Y[:5, 1:9:2]'
assert str(Y[:5, 1:10:2]) == 'Y[:5, 1::2]'
assert str(Y[5, :5:2]) == 'Y[5:6, :5:2]'
assert str(X[0:1, 0:1]) == 'X[:1, :1]'
assert str(X[0:1:2, 0:1:2]) == 'X[:1:2, :1:2]'
assert str((Y + Z)[2:, 2:]) == '(Y + Z)[2:, 2:]'
def test_true_false():
assert str(true) == repr(true) == sstr(true) == "True"
assert str(false) == repr(false) == sstr(false) == "False"
def test_Equivalent():
assert str(Equivalent(y, x)) == "Equivalent(x, y)"
def test_Xor():
assert str(Xor(y, x, evaluate=False)) == "x ^ y"
def test_Complement():
assert str(Complement(S.Reals, S.Naturals)) == 'Complement(Reals, Naturals)'
def test_SymmetricDifference():
assert str(SymmetricDifference(Interval(2, 3), Interval(3, 4),evaluate=False)) == \
'SymmetricDifference(Interval(2, 3), Interval(3, 4))'
def test_UnevaluatedExpr():
a, b = symbols("a b")
expr1 = 2*UnevaluatedExpr(a+b)
assert str(expr1) == "2*(a + b)"
def test_MatrixElement_printing():
# test cases for issue #11821
A = MatrixSymbol("A", 1, 3)
B = MatrixSymbol("B", 1, 3)
C = MatrixSymbol("C", 1, 3)
assert(str(A[0, 0]) == "A[0, 0]")
assert(str(3 * A[0, 0]) == "3*A[0, 0]")
F = C[0, 0].subs(C, A - B)
assert str(F) == "(A - B)[0, 0]"
def test_MatrixSymbol_printing():
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
assert str(A - A*B - B) == "A - A*B - B"
assert str(A*B - (A+B)) == "-A + A*B - B"
assert str(A**(-1)) == "A**(-1)"
assert str(A**3) == "A**3"
def test_MatrixExpressions():
n = Symbol('n', integer=True)
X = MatrixSymbol('X', n, n)
assert str(X) == "X"
# Apply function elementwise (`ElementwiseApplyFunc`):
expr = (X.T*X).applyfunc(sin)
assert str(expr) == 'Lambda(_d, sin(_d)).(X.T*X)'
lamda = Lambda(x, 1/x)
expr = (n*X).applyfunc(lamda)
assert str(expr) == 'Lambda(x, 1/x).(n*X)'
def test_Subs_printing():
assert str(Subs(x, (x,), (1,))) == 'Subs(x, x, 1)'
assert str(Subs(x + y, (x, y), (1, 2))) == 'Subs(x + y, (x, y), (1, 2))'
def test_issue_15716():
e = Integral(factorial(x), (x, -oo, oo))
assert e.as_terms() == ([(e, ((1.0, 0.0), (1,), ()))], [e])
def test_str_special_matrices():
from sympy.matrices import Identity, ZeroMatrix, OneMatrix
assert str(Identity(4)) == 'I'
assert str(ZeroMatrix(2, 2)) == '0'
assert str(OneMatrix(2, 2)) == '1'
def test_issue_14567():
assert factorial(Sum(-1, (x, 0, 0))) + y # doesn't raise an error
def test_issue_21823():
assert str(Partition([1, 2])) == 'Partition({1, 2})'
assert str(Partition({1, 2})) == 'Partition({1, 2})'
def test_issue_22689():
assert str(Mul(Pow(x,-2, evaluate=False), Pow(3,-1,evaluate=False), evaluate=False)) == "1/(x**2*3)"
def test_issue_21119_21460():
ss = lambda x: str(S(x, evaluate=False))
assert ss('4/2') == '4/2'
assert ss('4/-2') == '4/(-2)'
assert ss('-4/2') == '-4/2'
assert ss('-4/-2') == '-4/(-2)'
assert ss('-2*3/-1') == '-2*3/(-1)'
assert ss('-2*3/-1/2') == '-2*3/(-1*2)'
assert ss('4/2/1') == '4/(2*1)'
assert ss('-2/-1/2') == '-2/(-1*2)'
assert ss('2*3*4**(-2*3)') == '2*3/4**(2*3)'
assert ss('2*3*1*4**(-2*3)') == '2*3*1/4**(2*3)'
def test_Str():
from sympy.core.symbol import Str
assert str(Str('x')) == 'x'
assert sstrrepr(Str('x')) == "Str('x')"
def test_diffgeom():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField
x,y = symbols('x y', real=True)
m = Manifold('M', 2)
assert str(m) == "M"
p = Patch('P', m)
assert str(p) == "P"
rect = CoordSystem('rect', p, [x, y])
assert str(rect) == "rect"
b = BaseScalarField(rect, 0)
assert str(b) == "x"
def test_NDimArray():
assert sstr(NDimArray(1.0), full_prec=True) == '1.00000000000000'
assert sstr(NDimArray(1.0), full_prec=False) == '1.0'
assert sstr(NDimArray([1.0, 2.0]), full_prec=True) == '[1.00000000000000, 2.00000000000000]'
assert sstr(NDimArray([1.0, 2.0]), full_prec=False) == '[1.0, 2.0]'
def test_Predicate():
assert sstr(Q.even) == 'Q.even'
def test_AppliedPredicate():
assert sstr(Q.even(x)) == 'Q.even(x)'
def test_printing_str_array_expressions():
assert sstr(ArraySymbol("A", (2, 3, 4))) == "A"
assert sstr(ArrayElement("A", (2, 1/(1-x), 0))) == "A[2, 1/(1 - x), 0]"
M = MatrixSymbol("M", 3, 3)
N = MatrixSymbol("N", 3, 3)
assert sstr(ArrayElement(M*N, [x, 0])) == "(M*N)[x, 0]"
|
9bc501c6e96e1747c46282d238c33bf55b70844ce4a888a8baeeafb1a6751b87 | from sympy import MatAdd, MatMul, Array
from sympy.algebras.quaternion import Quaternion
from sympy.calculus.accumulationbounds import AccumBounds
from sympy.combinatorics.permutations import Cycle, Permutation, AppliedPermutation
from sympy.concrete.products import Product
from sympy.concrete.summations import Sum
from sympy.core.containers import Tuple, Dict
from sympy.core.expr import UnevaluatedExpr
from sympy.core.function import (Derivative, Function, Lambda, Subs, diff)
from sympy.core.mod import Mod
from sympy.core.mul import Mul
from sympy.core.numbers import (AlgebraicNumber, Float, I, Integer, Rational, oo, pi)
from sympy.core.parameters import evaluate
from sympy.core.power import Pow
from sympy.core.relational import Eq, Ne
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, Wild, symbols)
from sympy.functions.combinatorial.factorials import (FallingFactorial, RisingFactorial, binomial, factorial, factorial2, subfactorial)
from sympy.functions.combinatorial.numbers import bernoulli, bell, catalan, euler, genocchi, lucas, fibonacci, tribonacci
from sympy.functions.elementary.complexes import (Abs, arg, conjugate, im, polar_lift, re)
from sympy.functions.elementary.exponential import (LambertW, exp, log)
from sympy.functions.elementary.hyperbolic import (asinh, coth)
from sympy.functions.elementary.integers import (ceiling, floor, frac)
from sympy.functions.elementary.miscellaneous import (Max, Min, root, sqrt)
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import (acsc, asin, cos, cot, sin, tan)
from sympy.functions.special.beta_functions import beta
from sympy.functions.special.delta_functions import (DiracDelta, Heaviside)
from sympy.functions.special.elliptic_integrals import (elliptic_e, elliptic_f, elliptic_k, elliptic_pi)
from sympy.functions.special.error_functions import (Chi, Ci, Ei, Shi, Si, expint)
from sympy.functions.special.gamma_functions import (gamma, uppergamma)
from sympy.functions.special.hyper import (hyper, meijerg)
from sympy.functions.special.mathieu_functions import (mathieuc, mathieucprime, mathieus, mathieusprime)
from sympy.functions.special.polynomials import (assoc_laguerre, assoc_legendre, chebyshevt, chebyshevu, gegenbauer, hermite, jacobi, laguerre, legendre)
from sympy.functions.special.singularity_functions import SingularityFunction
from sympy.functions.special.spherical_harmonics import (Ynm, Znm)
from sympy.functions.special.tensor_functions import (KroneckerDelta, LeviCivita)
from sympy.functions.special.zeta_functions import (dirichlet_eta, lerchphi, polylog, stieltjes, zeta)
from sympy.integrals.integrals import Integral
from sympy.integrals.transforms import (CosineTransform, FourierTransform, InverseCosineTransform, InverseFourierTransform, InverseLaplaceTransform, InverseMellinTransform, InverseSineTransform, LaplaceTransform, MellinTransform, SineTransform)
from sympy.logic import Implies
from sympy.logic.boolalg import (And, Or, Xor, Equivalent, false, Not, true)
from sympy.matrices.dense import Matrix
from sympy.matrices.expressions.kronecker import KroneckerProduct
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.matrices.expressions.permutation import PermutationMatrix
from sympy.matrices.expressions.slice import MatrixSlice
from sympy.physics.control.lti import TransferFunction, Series, Parallel, Feedback, TransferFunctionMatrix, MIMOSeries, MIMOParallel, MIMOFeedback
from sympy.ntheory.factor_ import (divisor_sigma, primenu, primeomega, reduced_totient, totient, udivisor_sigma)
from sympy.physics.quantum import Commutator, Operator
from sympy.physics.quantum.trace import Tr
from sympy.physics.units import meter, gibibyte, gram, microgram, second, milli, micro
from sympy.polys.domains.integerring import ZZ
from sympy.polys.fields import field
from sympy.polys.polytools import Poly
from sympy.polys.rings import ring
from sympy.polys.rootoftools import (RootSum, rootof)
from sympy.series.formal import fps
from sympy.series.fourier import fourier_series
from sympy.series.limits import Limit
from sympy.series.order import Order
from sympy.series.sequences import (SeqAdd, SeqFormula, SeqMul, SeqPer)
from sympy.sets.conditionset import ConditionSet
from sympy.sets.contains import Contains
from sympy.sets.fancysets import (ComplexRegion, ImageSet, Range)
from sympy.sets.ordinals import Ordinal, OrdinalOmega, OmegaPower
from sympy.sets.powerset import PowerSet
from sympy.sets.sets import (FiniteSet, Interval, Union, Intersection, Complement, SymmetricDifference, ProductSet)
from sympy.sets.setexpr import SetExpr
from sympy.stats.crv_types import Normal
from sympy.stats.symbolic_probability import (Covariance, Expectation,
Probability, Variance)
from sympy.tensor.array import (ImmutableDenseNDimArray,
ImmutableSparseNDimArray,
MutableSparseNDimArray,
MutableDenseNDimArray,
tensorproduct)
from sympy.tensor.array.expressions.array_expressions import ArraySymbol, ArrayElement
from sympy.tensor.indexed import (Idx, Indexed, IndexedBase)
from sympy.tensor.toperators import PartialDerivative
from sympy.vector import CoordSys3D, Cross, Curl, Dot, Divergence, Gradient, Laplacian
from sympy.testing.pytest import (XFAIL, raises, _both_exp_pow,
warns_deprecated_sympy)
from sympy.printing.latex import (latex, translate, greek_letters_set,
tex_greek_dictionary, multiline_latex,
latex_escape, LatexPrinter)
import sympy as sym
from sympy.abc import mu, tau
class lowergamma(sym.lowergamma):
pass # testing notation inheritance by a subclass with same name
x, y, z, t, w, a, b, c, s, p = symbols('x y z t w a b c s p')
k, m, n = symbols('k m n', integer=True)
def test_printmethod():
class R(Abs):
def _latex(self, printer):
return "foo(%s)" % printer._print(self.args[0])
assert latex(R(x)) == r"foo(x)"
class R(Abs):
def _latex(self, printer):
return "foo"
assert latex(R(x)) == r"foo"
def test_latex_basic():
assert latex(1 + x) == r"x + 1"
assert latex(x**2) == r"x^{2}"
assert latex(x**(1 + x)) == r"x^{x + 1}"
assert latex(x**3 + x + 1 + x**2) == r"x^{3} + x^{2} + x + 1"
assert latex(2*x*y) == r"2 x y"
assert latex(2*x*y, mul_symbol='dot') == r"2 \cdot x \cdot y"
assert latex(3*x**2*y, mul_symbol='\\,') == r"3\,x^{2}\,y"
assert latex(1.5*3**x, mul_symbol='\\,') == r"1.5 \cdot 3^{x}"
assert latex(x**S.Half**5) == r"\sqrt[32]{x}"
assert latex(Mul(S.Half, x**2, -5, evaluate=False)) == r"\frac{1}{2} x^{2} \left(-5\right)"
assert latex(Mul(S.Half, x**2, 5, evaluate=False)) == r"\frac{1}{2} x^{2} \cdot 5"
assert latex(Mul(-5, -5, evaluate=False)) == r"\left(-5\right) \left(-5\right)"
assert latex(Mul(5, -5, evaluate=False)) == r"5 \left(-5\right)"
assert latex(Mul(S.Half, -5, S.Half, evaluate=False)) == r"\frac{1}{2} \left(-5\right) \frac{1}{2}"
assert latex(Mul(5, I, 5, evaluate=False)) == r"5 i 5"
assert latex(Mul(5, I, -5, evaluate=False)) == r"5 i \left(-5\right)"
assert latex(Mul(0, 1, evaluate=False)) == r'0 \cdot 1'
assert latex(Mul(1, 0, evaluate=False)) == r'1 \cdot 0'
assert latex(Mul(1, 1, evaluate=False)) == r'1 \cdot 1'
assert latex(Mul(-1, 1, evaluate=False)) == r'\left(-1\right) 1'
assert latex(Mul(1, 1, 1, evaluate=False)) == r'1 \cdot 1 \cdot 1'
assert latex(Mul(1, 2, evaluate=False)) == r'1 \cdot 2'
assert latex(Mul(1, S.Half, evaluate=False)) == r'1 \cdot \frac{1}{2}'
assert latex(Mul(1, 1, S.Half, evaluate=False)) == \
r'1 \cdot 1 \cdot \frac{1}{2}'
assert latex(Mul(1, 1, 2, 3, x, evaluate=False)) == \
r'1 \cdot 1 \cdot 2 \cdot 3 x'
assert latex(Mul(1, -1, evaluate=False)) == r'1 \left(-1\right)'
assert latex(Mul(4, 3, 2, 1, 0, y, x, evaluate=False)) == \
r'4 \cdot 3 \cdot 2 \cdot 1 \cdot 0 y x'
assert latex(Mul(4, 3, 2, 1+z, 0, y, x, evaluate=False)) == \
r'4 \cdot 3 \cdot 2 \left(z + 1\right) 0 y x'
assert latex(Mul(Rational(2, 3), Rational(5, 7), evaluate=False)) == \
r'\frac{2}{3} \cdot \frac{5}{7}'
assert latex(1/x) == r"\frac{1}{x}"
assert latex(1/x, fold_short_frac=True) == r"1 / x"
assert latex(-S(3)/2) == r"- \frac{3}{2}"
assert latex(-S(3)/2, fold_short_frac=True) == r"- 3 / 2"
assert latex(1/x**2) == r"\frac{1}{x^{2}}"
assert latex(1/(x + y)/2) == r"\frac{1}{2 \left(x + y\right)}"
assert latex(x/2) == r"\frac{x}{2}"
assert latex(x/2, fold_short_frac=True) == r"x / 2"
assert latex((x + y)/(2*x)) == r"\frac{x + y}{2 x}"
assert latex((x + y)/(2*x), fold_short_frac=True) == \
r"\left(x + y\right) / 2 x"
assert latex((x + y)/(2*x), long_frac_ratio=0) == \
r"\frac{1}{2 x} \left(x + y\right)"
assert latex((x + y)/x) == r"\frac{x + y}{x}"
assert latex((x + y)/x, long_frac_ratio=3) == r"\frac{x + y}{x}"
assert latex((2*sqrt(2)*x)/3) == r"\frac{2 \sqrt{2} x}{3}"
assert latex((2*sqrt(2)*x)/3, long_frac_ratio=2) == \
r"\frac{2 x}{3} \sqrt{2}"
assert latex(binomial(x, y)) == r"{\binom{x}{y}}"
x_star = Symbol('x^*')
f = Function('f')
assert latex(x_star**2) == r"\left(x^{*}\right)^{2}"
assert latex(x_star**2, parenthesize_super=False) == r"{x^{*}}^{2}"
assert latex(Derivative(f(x_star), x_star,2)) == r"\frac{d^{2}}{d \left(x^{*}\right)^{2}} f{\left(x^{*} \right)}"
assert latex(Derivative(f(x_star), x_star,2), parenthesize_super=False) == r"\frac{d^{2}}{d {x^{*}}^{2}} f{\left(x^{*} \right)}"
assert latex(2*Integral(x, x)/3) == r"\frac{2 \int x\, dx}{3}"
assert latex(2*Integral(x, x)/3, fold_short_frac=True) == \
r"\left(2 \int x\, dx\right) / 3"
assert latex(sqrt(x)) == r"\sqrt{x}"
assert latex(x**Rational(1, 3)) == r"\sqrt[3]{x}"
assert latex(x**Rational(1, 3), root_notation=False) == r"x^{\frac{1}{3}}"
assert latex(sqrt(x)**3) == r"x^{\frac{3}{2}}"
assert latex(sqrt(x), itex=True) == r"\sqrt{x}"
assert latex(x**Rational(1, 3), itex=True) == r"\root{3}{x}"
assert latex(sqrt(x)**3, itex=True) == r"x^{\frac{3}{2}}"
assert latex(x**Rational(3, 4)) == r"x^{\frac{3}{4}}"
assert latex(x**Rational(3, 4), fold_frac_powers=True) == r"x^{3/4}"
assert latex((x + 1)**Rational(3, 4)) == \
r"\left(x + 1\right)^{\frac{3}{4}}"
assert latex((x + 1)**Rational(3, 4), fold_frac_powers=True) == \
r"\left(x + 1\right)^{3/4}"
assert latex(AlgebraicNumber(sqrt(2))) == r"\sqrt{2}"
assert latex(AlgebraicNumber(sqrt(2), [3, -7])) == r"-7 + 3 \sqrt{2}"
assert latex(AlgebraicNumber(sqrt(2), alias='alpha')) == r"\alpha"
assert latex(AlgebraicNumber(sqrt(2), [3, -7], alias='alpha')) == \
r"3 \alpha - 7"
assert latex(AlgebraicNumber(2**(S(1)/3), [1, 3, -7], alias='beta')) == \
r"\beta^{2} + 3 \beta - 7"
k = ZZ.cyclotomic_field(5)
assert latex(k.ext.field_element([1, 2, 3, 4])) == \
r"\zeta^{3} + 2 \zeta^{2} + 3 \zeta + 4"
assert latex(k.ext.field_element([1, 2, 3, 4]), order='old') == \
r"4 + 3 \zeta + 2 \zeta^{2} + \zeta^{3}"
assert latex(k.primes_above(19)[0]) == \
r"\left(19, \zeta^{2} + 5 \zeta + 1\right)"
assert latex(k.primes_above(19)[0], order='old') == \
r"\left(19, 1 + 5 \zeta + \zeta^{2}\right)"
assert latex(k.primes_above(7)[0]) == r"\left(7\right)"
assert latex(1.5e20*x) == r"1.5 \cdot 10^{20} x"
assert latex(1.5e20*x, mul_symbol='dot') == r"1.5 \cdot 10^{20} \cdot x"
assert latex(1.5e20*x, mul_symbol='times') == \
r"1.5 \times 10^{20} \times x"
assert latex(1/sin(x)) == r"\frac{1}{\sin{\left(x \right)}}"
assert latex(sin(x)**-1) == r"\frac{1}{\sin{\left(x \right)}}"
assert latex(sin(x)**Rational(3, 2)) == \
r"\sin^{\frac{3}{2}}{\left(x \right)}"
assert latex(sin(x)**Rational(3, 2), fold_frac_powers=True) == \
r"\sin^{3/2}{\left(x \right)}"
assert latex(~x) == r"\neg x"
assert latex(x & y) == r"x \wedge y"
assert latex(x & y & z) == r"x \wedge y \wedge z"
assert latex(x | y) == r"x \vee y"
assert latex(x | y | z) == r"x \vee y \vee z"
assert latex((x & y) | z) == r"z \vee \left(x \wedge y\right)"
assert latex(Implies(x, y)) == r"x \Rightarrow y"
assert latex(~(x >> ~y)) == r"x \not\Rightarrow \neg y"
assert latex(Implies(Or(x,y), z)) == r"\left(x \vee y\right) \Rightarrow z"
assert latex(Implies(z, Or(x,y))) == r"z \Rightarrow \left(x \vee y\right)"
assert latex(~(x & y)) == r"\neg \left(x \wedge y\right)"
assert latex(~x, symbol_names={x: "x_i"}) == r"\neg x_i"
assert latex(x & y, symbol_names={x: "x_i", y: "y_i"}) == \
r"x_i \wedge y_i"
assert latex(x & y & z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \
r"x_i \wedge y_i \wedge z_i"
assert latex(x | y, symbol_names={x: "x_i", y: "y_i"}) == r"x_i \vee y_i"
assert latex(x | y | z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \
r"x_i \vee y_i \vee z_i"
assert latex((x & y) | z, symbol_names={x: "x_i", y: "y_i", z: "z_i"}) == \
r"z_i \vee \left(x_i \wedge y_i\right)"
assert latex(Implies(x, y), symbol_names={x: "x_i", y: "y_i"}) == \
r"x_i \Rightarrow y_i"
assert latex(Pow(Rational(1, 3), -1, evaluate=False)) == r"\frac{1}{\frac{1}{3}}"
assert latex(Pow(Rational(1, 3), -2, evaluate=False)) == r"\frac{1}{(\frac{1}{3})^{2}}"
assert latex(Pow(Integer(1)/100, -1, evaluate=False)) == r"\frac{1}{\frac{1}{100}}"
p = Symbol('p', positive=True)
assert latex(exp(-p)*log(p)) == r"e^{- p} \log{\left(p \right)}"
def test_latex_builtins():
assert latex(True) == r"\text{True}"
assert latex(False) == r"\text{False}"
assert latex(None) == r"\text{None}"
assert latex(true) == r"\text{True}"
assert latex(false) == r'\text{False}'
def test_latex_SingularityFunction():
assert latex(SingularityFunction(x, 4, 5)) == \
r"{\left\langle x - 4 \right\rangle}^{5}"
assert latex(SingularityFunction(x, -3, 4)) == \
r"{\left\langle x + 3 \right\rangle}^{4}"
assert latex(SingularityFunction(x, 0, 4)) == \
r"{\left\langle x \right\rangle}^{4}"
assert latex(SingularityFunction(x, a, n)) == \
r"{\left\langle - a + x \right\rangle}^{n}"
assert latex(SingularityFunction(x, 4, -2)) == \
r"{\left\langle x - 4 \right\rangle}^{-2}"
assert latex(SingularityFunction(x, 4, -1)) == \
r"{\left\langle x - 4 \right\rangle}^{-1}"
assert latex(SingularityFunction(x, 4, 5)**3) == \
r"{\left({\langle x - 4 \rangle}^{5}\right)}^{3}"
assert latex(SingularityFunction(x, -3, 4)**3) == \
r"{\left({\langle x + 3 \rangle}^{4}\right)}^{3}"
assert latex(SingularityFunction(x, 0, 4)**3) == \
r"{\left({\langle x \rangle}^{4}\right)}^{3}"
assert latex(SingularityFunction(x, a, n)**3) == \
r"{\left({\langle - a + x \rangle}^{n}\right)}^{3}"
assert latex(SingularityFunction(x, 4, -2)**3) == \
r"{\left({\langle x - 4 \rangle}^{-2}\right)}^{3}"
assert latex((SingularityFunction(x, 4, -1)**3)**3) == \
r"{\left({\langle x - 4 \rangle}^{-1}\right)}^{9}"
def test_latex_cycle():
assert latex(Cycle(1, 2, 4)) == r"\left( 1\; 2\; 4\right)"
assert latex(Cycle(1, 2)(4, 5, 6)) == \
r"\left( 1\; 2\right)\left( 4\; 5\; 6\right)"
assert latex(Cycle()) == r"\left( \right)"
def test_latex_permutation():
assert latex(Permutation(1, 2, 4)) == r"\left( 1\; 2\; 4\right)"
assert latex(Permutation(1, 2)(4, 5, 6)) == \
r"\left( 1\; 2\right)\left( 4\; 5\; 6\right)"
assert latex(Permutation()) == r"\left( \right)"
assert latex(Permutation(2, 4)*Permutation(5)) == \
r"\left( 2\; 4\right)\left( 5\right)"
assert latex(Permutation(5)) == r"\left( 5\right)"
assert latex(Permutation(0, 1), perm_cyclic=False) == \
r"\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}"
assert latex(Permutation(0, 1)(2, 3), perm_cyclic=False) == \
r"\begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 0 & 3 & 2 \end{pmatrix}"
assert latex(Permutation(), perm_cyclic=False) == \
r"\left( \right)"
with warns_deprecated_sympy():
old_print_cyclic = Permutation.print_cyclic
Permutation.print_cyclic = False
assert latex(Permutation(0, 1)(2, 3)) == \
r"\begin{pmatrix} 0 & 1 & 2 & 3 \\ 1 & 0 & 3 & 2 \end{pmatrix}"
Permutation.print_cyclic = old_print_cyclic
def test_latex_Float():
assert latex(Float(1.0e100)) == r"1.0 \cdot 10^{100}"
assert latex(Float(1.0e-100)) == r"1.0 \cdot 10^{-100}"
assert latex(Float(1.0e-100), mul_symbol="times") == \
r"1.0 \times 10^{-100}"
assert latex(Float('10000.0'), full_prec=False, min=-2, max=2) == \
r"1.0 \cdot 10^{4}"
assert latex(Float('10000.0'), full_prec=False, min=-2, max=4) == \
r"1.0 \cdot 10^{4}"
assert latex(Float('10000.0'), full_prec=False, min=-2, max=5) == \
r"10000.0"
assert latex(Float('0.099999'), full_prec=True, min=-2, max=5) == \
r"9.99990000000000 \cdot 10^{-2}"
def test_latex_vector_expressions():
A = CoordSys3D('A')
assert latex(Cross(A.i, A.j*A.x*3+A.k)) == \
r"\mathbf{\hat{i}_{A}} \times \left(\left(3 \mathbf{{x}_{A}}\right)\mathbf{\hat{j}_{A}} + \mathbf{\hat{k}_{A}}\right)"
assert latex(Cross(A.i, A.j)) == \
r"\mathbf{\hat{i}_{A}} \times \mathbf{\hat{j}_{A}}"
assert latex(x*Cross(A.i, A.j)) == \
r"x \left(\mathbf{\hat{i}_{A}} \times \mathbf{\hat{j}_{A}}\right)"
assert latex(Cross(x*A.i, A.j)) == \
r'- \mathbf{\hat{j}_{A}} \times \left(\left(x\right)\mathbf{\hat{i}_{A}}\right)'
assert latex(Curl(3*A.x*A.j)) == \
r"\nabla\times \left(\left(3 \mathbf{{x}_{A}}\right)\mathbf{\hat{j}_{A}}\right)"
assert latex(Curl(3*A.x*A.j+A.i)) == \
r"\nabla\times \left(\mathbf{\hat{i}_{A}} + \left(3 \mathbf{{x}_{A}}\right)\mathbf{\hat{j}_{A}}\right)"
assert latex(Curl(3*x*A.x*A.j)) == \
r"\nabla\times \left(\left(3 \mathbf{{x}_{A}} x\right)\mathbf{\hat{j}_{A}}\right)"
assert latex(x*Curl(3*A.x*A.j)) == \
r"x \left(\nabla\times \left(\left(3 \mathbf{{x}_{A}}\right)\mathbf{\hat{j}_{A}}\right)\right)"
assert latex(Divergence(3*A.x*A.j+A.i)) == \
r"\nabla\cdot \left(\mathbf{\hat{i}_{A}} + \left(3 \mathbf{{x}_{A}}\right)\mathbf{\hat{j}_{A}}\right)"
assert latex(Divergence(3*A.x*A.j)) == \
r"\nabla\cdot \left(\left(3 \mathbf{{x}_{A}}\right)\mathbf{\hat{j}_{A}}\right)"
assert latex(x*Divergence(3*A.x*A.j)) == \
r"x \left(\nabla\cdot \left(\left(3 \mathbf{{x}_{A}}\right)\mathbf{\hat{j}_{A}}\right)\right)"
assert latex(Dot(A.i, A.j*A.x*3+A.k)) == \
r"\mathbf{\hat{i}_{A}} \cdot \left(\left(3 \mathbf{{x}_{A}}\right)\mathbf{\hat{j}_{A}} + \mathbf{\hat{k}_{A}}\right)"
assert latex(Dot(A.i, A.j)) == \
r"\mathbf{\hat{i}_{A}} \cdot \mathbf{\hat{j}_{A}}"
assert latex(Dot(x*A.i, A.j)) == \
r"\mathbf{\hat{j}_{A}} \cdot \left(\left(x\right)\mathbf{\hat{i}_{A}}\right)"
assert latex(x*Dot(A.i, A.j)) == \
r"x \left(\mathbf{\hat{i}_{A}} \cdot \mathbf{\hat{j}_{A}}\right)"
assert latex(Gradient(A.x)) == r"\nabla \mathbf{{x}_{A}}"
assert latex(Gradient(A.x + 3*A.y)) == \
r"\nabla \left(\mathbf{{x}_{A}} + 3 \mathbf{{y}_{A}}\right)"
assert latex(x*Gradient(A.x)) == r"x \left(\nabla \mathbf{{x}_{A}}\right)"
assert latex(Gradient(x*A.x)) == r"\nabla \left(\mathbf{{x}_{A}} x\right)"
assert latex(Laplacian(A.x)) == r"\Delta \mathbf{{x}_{A}}"
assert latex(Laplacian(A.x + 3*A.y)) == \
r"\Delta \left(\mathbf{{x}_{A}} + 3 \mathbf{{y}_{A}}\right)"
assert latex(x*Laplacian(A.x)) == r"x \left(\Delta \mathbf{{x}_{A}}\right)"
assert latex(Laplacian(x*A.x)) == r"\Delta \left(\mathbf{{x}_{A}} x\right)"
def test_latex_symbols():
Gamma, lmbda, rho = symbols('Gamma, lambda, rho')
tau, Tau, TAU, taU = symbols('tau, Tau, TAU, taU')
assert latex(tau) == r"\tau"
assert latex(Tau) == r"\mathrm{T}"
assert latex(TAU) == r"\tau"
assert latex(taU) == r"\tau"
# Check that all capitalized greek letters are handled explicitly
capitalized_letters = {l.capitalize() for l in greek_letters_set}
assert len(capitalized_letters - set(tex_greek_dictionary.keys())) == 0
assert latex(Gamma + lmbda) == r"\Gamma + \lambda"
assert latex(Gamma * lmbda) == r"\Gamma \lambda"
assert latex(Symbol('q1')) == r"q_{1}"
assert latex(Symbol('q21')) == r"q_{21}"
assert latex(Symbol('epsilon0')) == r"\epsilon_{0}"
assert latex(Symbol('omega1')) == r"\omega_{1}"
assert latex(Symbol('91')) == r"91"
assert latex(Symbol('alpha_new')) == r"\alpha_{new}"
assert latex(Symbol('C^orig')) == r"C^{orig}"
assert latex(Symbol('x^alpha')) == r"x^{\alpha}"
assert latex(Symbol('beta^alpha')) == r"\beta^{\alpha}"
assert latex(Symbol('e^Alpha')) == r"e^{\mathrm{A}}"
assert latex(Symbol('omega_alpha^beta')) == r"\omega^{\beta}_{\alpha}"
assert latex(Symbol('omega') ** Symbol('beta')) == r"\omega^{\beta}"
@XFAIL
def test_latex_symbols_failing():
rho, mass, volume = symbols('rho, mass, volume')
assert latex(
volume * rho == mass) == r"\rho \mathrm{volume} = \mathrm{mass}"
assert latex(volume / mass * rho == 1) == \
r"\rho \mathrm{volume} {\mathrm{mass}}^{(-1)} = 1"
assert latex(mass**3 * volume**3) == \
r"{\mathrm{mass}}^{3} \cdot {\mathrm{volume}}^{3}"
@_both_exp_pow
def test_latex_functions():
assert latex(exp(x)) == r"e^{x}"
assert latex(exp(1) + exp(2)) == r"e + e^{2}"
f = Function('f')
assert latex(f(x)) == r'f{\left(x \right)}'
assert latex(f) == r'f'
g = Function('g')
assert latex(g(x, y)) == r'g{\left(x,y \right)}'
assert latex(g) == r'g'
h = Function('h')
assert latex(h(x, y, z)) == r'h{\left(x,y,z \right)}'
assert latex(h) == r'h'
Li = Function('Li')
assert latex(Li) == r'\operatorname{Li}'
assert latex(Li(x)) == r'\operatorname{Li}{\left(x \right)}'
mybeta = Function('beta')
# not to be confused with the beta function
assert latex(mybeta(x, y, z)) == r"\beta{\left(x,y,z \right)}"
assert latex(beta(x, y)) == r'\operatorname{B}\left(x, y\right)'
assert latex(beta(x, evaluate=False)) == r'\operatorname{B}\left(x, x\right)'
assert latex(beta(x, y)**2) == r'\operatorname{B}^{2}\left(x, y\right)'
assert latex(mybeta(x)) == r"\beta{\left(x \right)}"
assert latex(mybeta) == r"\beta"
g = Function('gamma')
# not to be confused with the gamma function
assert latex(g(x, y, z)) == r"\gamma{\left(x,y,z \right)}"
assert latex(g(x)) == r"\gamma{\left(x \right)}"
assert latex(g) == r"\gamma"
a_1 = Function('a_1')
assert latex(a_1) == r"a_{1}"
assert latex(a_1(x)) == r"a_{1}{\left(x \right)}"
assert latex(Function('a_1')) == r"a_{1}"
# Issue #16925
# multi letter function names
# > simple
assert latex(Function('ab')) == r"\operatorname{ab}"
assert latex(Function('ab1')) == r"\operatorname{ab}_{1}"
assert latex(Function('ab12')) == r"\operatorname{ab}_{12}"
assert latex(Function('ab_1')) == r"\operatorname{ab}_{1}"
assert latex(Function('ab_12')) == r"\operatorname{ab}_{12}"
assert latex(Function('ab_c')) == r"\operatorname{ab}_{c}"
assert latex(Function('ab_cd')) == r"\operatorname{ab}_{cd}"
# > with argument
assert latex(Function('ab')(Symbol('x'))) == r"\operatorname{ab}{\left(x \right)}"
assert latex(Function('ab1')(Symbol('x'))) == r"\operatorname{ab}_{1}{\left(x \right)}"
assert latex(Function('ab12')(Symbol('x'))) == r"\operatorname{ab}_{12}{\left(x \right)}"
assert latex(Function('ab_1')(Symbol('x'))) == r"\operatorname{ab}_{1}{\left(x \right)}"
assert latex(Function('ab_c')(Symbol('x'))) == r"\operatorname{ab}_{c}{\left(x \right)}"
assert latex(Function('ab_cd')(Symbol('x'))) == r"\operatorname{ab}_{cd}{\left(x \right)}"
# > with power
# does not work on functions without brackets
# > with argument and power combined
assert latex(Function('ab')()**2) == r"\operatorname{ab}^{2}{\left( \right)}"
assert latex(Function('ab1')()**2) == r"\operatorname{ab}_{1}^{2}{\left( \right)}"
assert latex(Function('ab12')()**2) == r"\operatorname{ab}_{12}^{2}{\left( \right)}"
assert latex(Function('ab_1')()**2) == r"\operatorname{ab}_{1}^{2}{\left( \right)}"
assert latex(Function('ab_12')()**2) == r"\operatorname{ab}_{12}^{2}{\left( \right)}"
assert latex(Function('ab')(Symbol('x'))**2) == r"\operatorname{ab}^{2}{\left(x \right)}"
assert latex(Function('ab1')(Symbol('x'))**2) == r"\operatorname{ab}_{1}^{2}{\left(x \right)}"
assert latex(Function('ab12')(Symbol('x'))**2) == r"\operatorname{ab}_{12}^{2}{\left(x \right)}"
assert latex(Function('ab_1')(Symbol('x'))**2) == r"\operatorname{ab}_{1}^{2}{\left(x \right)}"
assert latex(Function('ab_12')(Symbol('x'))**2) == \
r"\operatorname{ab}_{12}^{2}{\left(x \right)}"
# single letter function names
# > simple
assert latex(Function('a')) == r"a"
assert latex(Function('a1')) == r"a_{1}"
assert latex(Function('a12')) == r"a_{12}"
assert latex(Function('a_1')) == r"a_{1}"
assert latex(Function('a_12')) == r"a_{12}"
# > with argument
assert latex(Function('a')()) == r"a{\left( \right)}"
assert latex(Function('a1')()) == r"a_{1}{\left( \right)}"
assert latex(Function('a12')()) == r"a_{12}{\left( \right)}"
assert latex(Function('a_1')()) == r"a_{1}{\left( \right)}"
assert latex(Function('a_12')()) == r"a_{12}{\left( \right)}"
# > with power
# does not work on functions without brackets
# > with argument and power combined
assert latex(Function('a')()**2) == r"a^{2}{\left( \right)}"
assert latex(Function('a1')()**2) == r"a_{1}^{2}{\left( \right)}"
assert latex(Function('a12')()**2) == r"a_{12}^{2}{\left( \right)}"
assert latex(Function('a_1')()**2) == r"a_{1}^{2}{\left( \right)}"
assert latex(Function('a_12')()**2) == r"a_{12}^{2}{\left( \right)}"
assert latex(Function('a')(Symbol('x'))**2) == r"a^{2}{\left(x \right)}"
assert latex(Function('a1')(Symbol('x'))**2) == r"a_{1}^{2}{\left(x \right)}"
assert latex(Function('a12')(Symbol('x'))**2) == r"a_{12}^{2}{\left(x \right)}"
assert latex(Function('a_1')(Symbol('x'))**2) == r"a_{1}^{2}{\left(x \right)}"
assert latex(Function('a_12')(Symbol('x'))**2) == r"a_{12}^{2}{\left(x \right)}"
assert latex(Function('a')()**32) == r"a^{32}{\left( \right)}"
assert latex(Function('a1')()**32) == r"a_{1}^{32}{\left( \right)}"
assert latex(Function('a12')()**32) == r"a_{12}^{32}{\left( \right)}"
assert latex(Function('a_1')()**32) == r"a_{1}^{32}{\left( \right)}"
assert latex(Function('a_12')()**32) == r"a_{12}^{32}{\left( \right)}"
assert latex(Function('a')(Symbol('x'))**32) == r"a^{32}{\left(x \right)}"
assert latex(Function('a1')(Symbol('x'))**32) == r"a_{1}^{32}{\left(x \right)}"
assert latex(Function('a12')(Symbol('x'))**32) == r"a_{12}^{32}{\left(x \right)}"
assert latex(Function('a_1')(Symbol('x'))**32) == r"a_{1}^{32}{\left(x \right)}"
assert latex(Function('a_12')(Symbol('x'))**32) == r"a_{12}^{32}{\left(x \right)}"
assert latex(Function('a')()**a) == r"a^{a}{\left( \right)}"
assert latex(Function('a1')()**a) == r"a_{1}^{a}{\left( \right)}"
assert latex(Function('a12')()**a) == r"a_{12}^{a}{\left( \right)}"
assert latex(Function('a_1')()**a) == r"a_{1}^{a}{\left( \right)}"
assert latex(Function('a_12')()**a) == r"a_{12}^{a}{\left( \right)}"
assert latex(Function('a')(Symbol('x'))**a) == r"a^{a}{\left(x \right)}"
assert latex(Function('a1')(Symbol('x'))**a) == r"a_{1}^{a}{\left(x \right)}"
assert latex(Function('a12')(Symbol('x'))**a) == r"a_{12}^{a}{\left(x \right)}"
assert latex(Function('a_1')(Symbol('x'))**a) == r"a_{1}^{a}{\left(x \right)}"
assert latex(Function('a_12')(Symbol('x'))**a) == r"a_{12}^{a}{\left(x \right)}"
ab = Symbol('ab')
assert latex(Function('a')()**ab) == r"a^{ab}{\left( \right)}"
assert latex(Function('a1')()**ab) == r"a_{1}^{ab}{\left( \right)}"
assert latex(Function('a12')()**ab) == r"a_{12}^{ab}{\left( \right)}"
assert latex(Function('a_1')()**ab) == r"a_{1}^{ab}{\left( \right)}"
assert latex(Function('a_12')()**ab) == r"a_{12}^{ab}{\left( \right)}"
assert latex(Function('a')(Symbol('x'))**ab) == r"a^{ab}{\left(x \right)}"
assert latex(Function('a1')(Symbol('x'))**ab) == r"a_{1}^{ab}{\left(x \right)}"
assert latex(Function('a12')(Symbol('x'))**ab) == r"a_{12}^{ab}{\left(x \right)}"
assert latex(Function('a_1')(Symbol('x'))**ab) == r"a_{1}^{ab}{\left(x \right)}"
assert latex(Function('a_12')(Symbol('x'))**ab) == r"a_{12}^{ab}{\left(x \right)}"
assert latex(Function('a^12')(x)) == R"a^{12}{\left(x \right)}"
assert latex(Function('a^12')(x) ** ab) == R"\left(a^{12}\right)^{ab}{\left(x \right)}"
assert latex(Function('a__12')(x)) == R"a^{12}{\left(x \right)}"
assert latex(Function('a__12')(x) ** ab) == R"\left(a^{12}\right)^{ab}{\left(x \right)}"
assert latex(Function('a_1__1_2')(x)) == R"a^{1}_{1 2}{\left(x \right)}"
# issue 5868
omega1 = Function('omega1')
assert latex(omega1) == r"\omega_{1}"
assert latex(omega1(x)) == r"\omega_{1}{\left(x \right)}"
assert latex(sin(x)) == r"\sin{\left(x \right)}"
assert latex(sin(x), fold_func_brackets=True) == r"\sin {x}"
assert latex(sin(2*x**2), fold_func_brackets=True) == \
r"\sin {2 x^{2}}"
assert latex(sin(x**2), fold_func_brackets=True) == \
r"\sin {x^{2}}"
assert latex(asin(x)**2) == r"\operatorname{asin}^{2}{\left(x \right)}"
assert latex(asin(x)**2, inv_trig_style="full") == \
r"\arcsin^{2}{\left(x \right)}"
assert latex(asin(x)**2, inv_trig_style="power") == \
r"\sin^{-1}{\left(x \right)}^{2}"
assert latex(asin(x**2), inv_trig_style="power",
fold_func_brackets=True) == \
r"\sin^{-1} {x^{2}}"
assert latex(acsc(x), inv_trig_style="full") == \
r"\operatorname{arccsc}{\left(x \right)}"
assert latex(asinh(x), inv_trig_style="full") == \
r"\operatorname{arsinh}{\left(x \right)}"
assert latex(factorial(k)) == r"k!"
assert latex(factorial(-k)) == r"\left(- k\right)!"
assert latex(factorial(k)**2) == r"k!^{2}"
assert latex(subfactorial(k)) == r"!k"
assert latex(subfactorial(-k)) == r"!\left(- k\right)"
assert latex(subfactorial(k)**2) == r"\left(!k\right)^{2}"
assert latex(factorial2(k)) == r"k!!"
assert latex(factorial2(-k)) == r"\left(- k\right)!!"
assert latex(factorial2(k)**2) == r"k!!^{2}"
assert latex(binomial(2, k)) == r"{\binom{2}{k}}"
assert latex(binomial(2, k)**2) == r"{\binom{2}{k}}^{2}"
assert latex(FallingFactorial(3, k)) == r"{\left(3\right)}_{k}"
assert latex(RisingFactorial(3, k)) == r"{3}^{\left(k\right)}"
assert latex(floor(x)) == r"\left\lfloor{x}\right\rfloor"
assert latex(ceiling(x)) == r"\left\lceil{x}\right\rceil"
assert latex(frac(x)) == r"\operatorname{frac}{\left(x\right)}"
assert latex(floor(x)**2) == r"\left\lfloor{x}\right\rfloor^{2}"
assert latex(ceiling(x)**2) == r"\left\lceil{x}\right\rceil^{2}"
assert latex(frac(x)**2) == r"\operatorname{frac}{\left(x\right)}^{2}"
assert latex(Min(x, 2, x**3)) == r"\min\left(2, x, x^{3}\right)"
assert latex(Min(x, y)**2) == r"\min\left(x, y\right)^{2}"
assert latex(Max(x, 2, x**3)) == r"\max\left(2, x, x^{3}\right)"
assert latex(Max(x, y)**2) == r"\max\left(x, y\right)^{2}"
assert latex(Abs(x)) == r"\left|{x}\right|"
assert latex(Abs(x)**2) == r"\left|{x}\right|^{2}"
assert latex(re(x)) == r"\operatorname{re}{\left(x\right)}"
assert latex(re(x + y)) == \
r"\operatorname{re}{\left(x\right)} + \operatorname{re}{\left(y\right)}"
assert latex(im(x)) == r"\operatorname{im}{\left(x\right)}"
assert latex(conjugate(x)) == r"\overline{x}"
assert latex(conjugate(x)**2) == r"\overline{x}^{2}"
assert latex(conjugate(x**2)) == r"\overline{x}^{2}"
assert latex(gamma(x)) == r"\Gamma\left(x\right)"
w = Wild('w')
assert latex(gamma(w)) == r"\Gamma\left(w\right)"
assert latex(Order(x)) == r"O\left(x\right)"
assert latex(Order(x, x)) == r"O\left(x\right)"
assert latex(Order(x, (x, 0))) == r"O\left(x\right)"
assert latex(Order(x, (x, oo))) == r"O\left(x; x\rightarrow \infty\right)"
assert latex(Order(x - y, (x, y))) == \
r"O\left(x - y; x\rightarrow y\right)"
assert latex(Order(x, x, y)) == \
r"O\left(x; \left( x, \ y\right)\rightarrow \left( 0, \ 0\right)\right)"
assert latex(Order(x, x, y)) == \
r"O\left(x; \left( x, \ y\right)\rightarrow \left( 0, \ 0\right)\right)"
assert latex(Order(x, (x, oo), (y, oo))) == \
r"O\left(x; \left( x, \ y\right)\rightarrow \left( \infty, \ \infty\right)\right)"
assert latex(lowergamma(x, y)) == r'\gamma\left(x, y\right)'
assert latex(lowergamma(x, y)**2) == r'\gamma^{2}\left(x, y\right)'
assert latex(uppergamma(x, y)) == r'\Gamma\left(x, y\right)'
assert latex(uppergamma(x, y)**2) == r'\Gamma^{2}\left(x, y\right)'
assert latex(cot(x)) == r'\cot{\left(x \right)}'
assert latex(coth(x)) == r'\coth{\left(x \right)}'
assert latex(re(x)) == r'\operatorname{re}{\left(x\right)}'
assert latex(im(x)) == r'\operatorname{im}{\left(x\right)}'
assert latex(root(x, y)) == r'x^{\frac{1}{y}}'
assert latex(arg(x)) == r'\arg{\left(x \right)}'
assert latex(zeta(x)) == r"\zeta\left(x\right)"
assert latex(zeta(x)**2) == r"\zeta^{2}\left(x\right)"
assert latex(zeta(x, y)) == r"\zeta\left(x, y\right)"
assert latex(zeta(x, y)**2) == r"\zeta^{2}\left(x, y\right)"
assert latex(dirichlet_eta(x)) == r"\eta\left(x\right)"
assert latex(dirichlet_eta(x)**2) == r"\eta^{2}\left(x\right)"
assert latex(polylog(x, y)) == r"\operatorname{Li}_{x}\left(y\right)"
assert latex(
polylog(x, y)**2) == r"\operatorname{Li}_{x}^{2}\left(y\right)"
assert latex(lerchphi(x, y, n)) == r"\Phi\left(x, y, n\right)"
assert latex(lerchphi(x, y, n)**2) == r"\Phi^{2}\left(x, y, n\right)"
assert latex(stieltjes(x)) == r"\gamma_{x}"
assert latex(stieltjes(x)**2) == r"\gamma_{x}^{2}"
assert latex(stieltjes(x, y)) == r"\gamma_{x}\left(y\right)"
assert latex(stieltjes(x, y)**2) == r"\gamma_{x}\left(y\right)^{2}"
assert latex(elliptic_k(z)) == r"K\left(z\right)"
assert latex(elliptic_k(z)**2) == r"K^{2}\left(z\right)"
assert latex(elliptic_f(x, y)) == r"F\left(x\middle| y\right)"
assert latex(elliptic_f(x, y)**2) == r"F^{2}\left(x\middle| y\right)"
assert latex(elliptic_e(x, y)) == r"E\left(x\middle| y\right)"
assert latex(elliptic_e(x, y)**2) == r"E^{2}\left(x\middle| y\right)"
assert latex(elliptic_e(z)) == r"E\left(z\right)"
assert latex(elliptic_e(z)**2) == r"E^{2}\left(z\right)"
assert latex(elliptic_pi(x, y, z)) == r"\Pi\left(x; y\middle| z\right)"
assert latex(elliptic_pi(x, y, z)**2) == \
r"\Pi^{2}\left(x; y\middle| z\right)"
assert latex(elliptic_pi(x, y)) == r"\Pi\left(x\middle| y\right)"
assert latex(elliptic_pi(x, y)**2) == r"\Pi^{2}\left(x\middle| y\right)"
assert latex(Ei(x)) == r'\operatorname{Ei}{\left(x \right)}'
assert latex(Ei(x)**2) == r'\operatorname{Ei}^{2}{\left(x \right)}'
assert latex(expint(x, y)) == r'\operatorname{E}_{x}\left(y\right)'
assert latex(expint(x, y)**2) == r'\operatorname{E}_{x}^{2}\left(y\right)'
assert latex(Shi(x)**2) == r'\operatorname{Shi}^{2}{\left(x \right)}'
assert latex(Si(x)**2) == r'\operatorname{Si}^{2}{\left(x \right)}'
assert latex(Ci(x)**2) == r'\operatorname{Ci}^{2}{\left(x \right)}'
assert latex(Chi(x)**2) == r'\operatorname{Chi}^{2}\left(x\right)'
assert latex(Chi(x)) == r'\operatorname{Chi}\left(x\right)'
assert latex(jacobi(n, a, b, x)) == \
r'P_{n}^{\left(a,b\right)}\left(x\right)'
assert latex(jacobi(n, a, b, x)**2) == \
r'\left(P_{n}^{\left(a,b\right)}\left(x\right)\right)^{2}'
assert latex(gegenbauer(n, a, x)) == \
r'C_{n}^{\left(a\right)}\left(x\right)'
assert latex(gegenbauer(n, a, x)**2) == \
r'\left(C_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
assert latex(chebyshevt(n, x)) == r'T_{n}\left(x\right)'
assert latex(chebyshevt(n, x)**2) == \
r'\left(T_{n}\left(x\right)\right)^{2}'
assert latex(chebyshevu(n, x)) == r'U_{n}\left(x\right)'
assert latex(chebyshevu(n, x)**2) == \
r'\left(U_{n}\left(x\right)\right)^{2}'
assert latex(legendre(n, x)) == r'P_{n}\left(x\right)'
assert latex(legendre(n, x)**2) == r'\left(P_{n}\left(x\right)\right)^{2}'
assert latex(assoc_legendre(n, a, x)) == \
r'P_{n}^{\left(a\right)}\left(x\right)'
assert latex(assoc_legendre(n, a, x)**2) == \
r'\left(P_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
assert latex(laguerre(n, x)) == r'L_{n}\left(x\right)'
assert latex(laguerre(n, x)**2) == r'\left(L_{n}\left(x\right)\right)^{2}'
assert latex(assoc_laguerre(n, a, x)) == \
r'L_{n}^{\left(a\right)}\left(x\right)'
assert latex(assoc_laguerre(n, a, x)**2) == \
r'\left(L_{n}^{\left(a\right)}\left(x\right)\right)^{2}'
assert latex(hermite(n, x)) == r'H_{n}\left(x\right)'
assert latex(hermite(n, x)**2) == r'\left(H_{n}\left(x\right)\right)^{2}'
theta = Symbol("theta", real=True)
phi = Symbol("phi", real=True)
assert latex(Ynm(n, m, theta, phi)) == r'Y_{n}^{m}\left(\theta,\phi\right)'
assert latex(Ynm(n, m, theta, phi)**3) == \
r'\left(Y_{n}^{m}\left(\theta,\phi\right)\right)^{3}'
assert latex(Znm(n, m, theta, phi)) == r'Z_{n}^{m}\left(\theta,\phi\right)'
assert latex(Znm(n, m, theta, phi)**3) == \
r'\left(Z_{n}^{m}\left(\theta,\phi\right)\right)^{3}'
# Test latex printing of function names with "_"
assert latex(polar_lift(0)) == \
r"\operatorname{polar\_lift}{\left(0 \right)}"
assert latex(polar_lift(0)**3) == \
r"\operatorname{polar\_lift}^{3}{\left(0 \right)}"
assert latex(totient(n)) == r'\phi\left(n\right)'
assert latex(totient(n) ** 2) == r'\left(\phi\left(n\right)\right)^{2}'
assert latex(reduced_totient(n)) == r'\lambda\left(n\right)'
assert latex(reduced_totient(n) ** 2) == \
r'\left(\lambda\left(n\right)\right)^{2}'
assert latex(divisor_sigma(x)) == r"\sigma\left(x\right)"
assert latex(divisor_sigma(x)**2) == r"\sigma^{2}\left(x\right)"
assert latex(divisor_sigma(x, y)) == r"\sigma_y\left(x\right)"
assert latex(divisor_sigma(x, y)**2) == r"\sigma^{2}_y\left(x\right)"
assert latex(udivisor_sigma(x)) == r"\sigma^*\left(x\right)"
assert latex(udivisor_sigma(x)**2) == r"\sigma^*^{2}\left(x\right)"
assert latex(udivisor_sigma(x, y)) == r"\sigma^*_y\left(x\right)"
assert latex(udivisor_sigma(x, y)**2) == r"\sigma^*^{2}_y\left(x\right)"
assert latex(primenu(n)) == r'\nu\left(n\right)'
assert latex(primenu(n) ** 2) == r'\left(\nu\left(n\right)\right)^{2}'
assert latex(primeomega(n)) == r'\Omega\left(n\right)'
assert latex(primeomega(n) ** 2) == \
r'\left(\Omega\left(n\right)\right)^{2}'
assert latex(LambertW(n)) == r'W\left(n\right)'
assert latex(LambertW(n, -1)) == r'W_{-1}\left(n\right)'
assert latex(LambertW(n, k)) == r'W_{k}\left(n\right)'
assert latex(LambertW(n) * LambertW(n)) == r"W^{2}\left(n\right)"
assert latex(Pow(LambertW(n), 2)) == r"W^{2}\left(n\right)"
assert latex(LambertW(n)**k) == r"W^{k}\left(n\right)"
assert latex(LambertW(n, k)**p) == r"W^{p}_{k}\left(n\right)"
assert latex(Mod(x, 7)) == r'x \bmod 7'
assert latex(Mod(x + 1, 7)) == r'\left(x + 1\right) \bmod 7'
assert latex(Mod(7, x + 1)) == r'7 \bmod \left(x + 1\right)'
assert latex(Mod(2 * x, 7)) == r'2 x \bmod 7'
assert latex(Mod(7, 2 * x)) == r'7 \bmod 2 x'
assert latex(Mod(x, 7) + 1) == r'\left(x \bmod 7\right) + 1'
assert latex(2 * Mod(x, 7)) == r'2 \left(x \bmod 7\right)'
assert latex(Mod(7, 2 * x)**n) == r'\left(7 \bmod 2 x\right)^{n}'
# some unknown function name should get rendered with \operatorname
fjlkd = Function('fjlkd')
assert latex(fjlkd(x)) == r'\operatorname{fjlkd}{\left(x \right)}'
# even when it is referred to without an argument
assert latex(fjlkd) == r'\operatorname{fjlkd}'
# test that notation passes to subclasses of the same name only
def test_function_subclass_different_name():
class mygamma(gamma):
pass
assert latex(mygamma) == r"\operatorname{mygamma}"
assert latex(mygamma(x)) == r"\operatorname{mygamma}{\left(x \right)}"
def test_hyper_printing():
from sympy.abc import x, z
assert latex(meijerg(Tuple(pi, pi, x), Tuple(1),
(0, 1), Tuple(1, 2, 3/pi), z)) == \
r'{G_{4, 5}^{2, 3}\left(\begin{matrix} \pi, \pi, x & 1 \\0, 1 & 1, 2, '\
r'\frac{3}{\pi} \end{matrix} \middle| {z} \right)}'
assert latex(meijerg(Tuple(), Tuple(1), (0,), Tuple(), z)) == \
r'{G_{1, 1}^{1, 0}\left(\begin{matrix} & 1 \\0 & \end{matrix} \middle| {z} \right)}'
assert latex(hyper((x, 2), (3,), z)) == \
r'{{}_{2}F_{1}\left(\begin{matrix} x, 2 ' \
r'\\ 3 \end{matrix}\middle| {z} \right)}'
assert latex(hyper(Tuple(), Tuple(1), z)) == \
r'{{}_{0}F_{1}\left(\begin{matrix} ' \
r'\\ 1 \end{matrix}\middle| {z} \right)}'
def test_latex_bessel():
from sympy.functions.special.bessel import (besselj, bessely, besseli,
besselk, hankel1, hankel2,
jn, yn, hn1, hn2)
from sympy.abc import z
assert latex(besselj(n, z**2)**k) == r'J^{k}_{n}\left(z^{2}\right)'
assert latex(bessely(n, z)) == r'Y_{n}\left(z\right)'
assert latex(besseli(n, z)) == r'I_{n}\left(z\right)'
assert latex(besselk(n, z)) == r'K_{n}\left(z\right)'
assert latex(hankel1(n, z**2)**2) == \
r'\left(H^{(1)}_{n}\left(z^{2}\right)\right)^{2}'
assert latex(hankel2(n, z)) == r'H^{(2)}_{n}\left(z\right)'
assert latex(jn(n, z)) == r'j_{n}\left(z\right)'
assert latex(yn(n, z)) == r'y_{n}\left(z\right)'
assert latex(hn1(n, z)) == r'h^{(1)}_{n}\left(z\right)'
assert latex(hn2(n, z)) == r'h^{(2)}_{n}\left(z\right)'
def test_latex_fresnel():
from sympy.functions.special.error_functions import (fresnels, fresnelc)
from sympy.abc import z
assert latex(fresnels(z)) == r'S\left(z\right)'
assert latex(fresnelc(z)) == r'C\left(z\right)'
assert latex(fresnels(z)**2) == r'S^{2}\left(z\right)'
assert latex(fresnelc(z)**2) == r'C^{2}\left(z\right)'
def test_latex_brackets():
assert latex((-1)**x) == r"\left(-1\right)^{x}"
def test_latex_indexed():
Psi_symbol = Symbol('Psi_0', complex=True, real=False)
Psi_indexed = IndexedBase(Symbol('Psi', complex=True, real=False))
symbol_latex = latex(Psi_symbol * conjugate(Psi_symbol))
indexed_latex = latex(Psi_indexed[0] * conjugate(Psi_indexed[0]))
# \\overline{{\\Psi}_{0}} {\\Psi}_{0} vs. \\Psi_{0} \\overline{\\Psi_{0}}
assert symbol_latex == r'\Psi_{0} \overline{\Psi_{0}}'
assert indexed_latex == r'\overline{{\Psi}_{0}} {\Psi}_{0}'
# Symbol('gamma') gives r'\gamma'
interval = '\\mathrel{..}\\nobreak '
assert latex(Indexed('x1', Symbol('i'))) == r'{x_{1}}_{i}'
assert latex(Indexed('x2', Idx('i'))) == r'{x_{2}}_{i}'
assert latex(Indexed('x3', Idx('i', Symbol('N')))) == r'{x_{3}}_{{i}_{0'+interval+'N - 1}}'
assert latex(Indexed('x3', Idx('i', Symbol('N')+1))) == r'{x_{3}}_{{i}_{0'+interval+'N}}'
assert latex(Indexed('x4', Idx('i', (Symbol('a'),Symbol('b'))))) == r'{x_{4}}_{{i}_{a'+interval+'b}}'
assert latex(IndexedBase('gamma')) == r'\gamma'
assert latex(IndexedBase('a b')) == r'a b'
assert latex(IndexedBase('a_b')) == r'a_{b}'
def test_latex_derivatives():
# regular "d" for ordinary derivatives
assert latex(diff(x**3, x, evaluate=False)) == \
r"\frac{d}{d x} x^{3}"
assert latex(diff(sin(x) + x**2, x, evaluate=False)) == \
r"\frac{d}{d x} \left(x^{2} + \sin{\left(x \right)}\right)"
assert latex(diff(diff(sin(x) + x**2, x, evaluate=False), evaluate=False))\
== \
r"\frac{d^{2}}{d x^{2}} \left(x^{2} + \sin{\left(x \right)}\right)"
assert latex(diff(diff(diff(sin(x) + x**2, x, evaluate=False), evaluate=False), evaluate=False)) == \
r"\frac{d^{3}}{d x^{3}} \left(x^{2} + \sin{\left(x \right)}\right)"
# \partial for partial derivatives
assert latex(diff(sin(x * y), x, evaluate=False)) == \
r"\frac{\partial}{\partial x} \sin{\left(x y \right)}"
assert latex(diff(sin(x * y) + x**2, x, evaluate=False)) == \
r"\frac{\partial}{\partial x} \left(x^{2} + \sin{\left(x y \right)}\right)"
assert latex(diff(diff(sin(x*y) + x**2, x, evaluate=False), x, evaluate=False)) == \
r"\frac{\partial^{2}}{\partial x^{2}} \left(x^{2} + \sin{\left(x y \right)}\right)"
assert latex(diff(diff(diff(sin(x*y) + x**2, x, evaluate=False), x, evaluate=False), x, evaluate=False)) == \
r"\frac{\partial^{3}}{\partial x^{3}} \left(x^{2} + \sin{\left(x y \right)}\right)"
# mixed partial derivatives
f = Function("f")
assert latex(diff(diff(f(x, y), x, evaluate=False), y, evaluate=False)) == \
r"\frac{\partial^{2}}{\partial y\partial x} " + latex(f(x, y))
assert latex(diff(diff(diff(f(x, y), x, evaluate=False), x, evaluate=False), y, evaluate=False)) == \
r"\frac{\partial^{3}}{\partial y\partial x^{2}} " + latex(f(x, y))
# for negative nested Derivative
assert latex(diff(-diff(y**2,x,evaluate=False),x,evaluate=False)) == r'\frac{d}{d x} \left(- \frac{d}{d x} y^{2}\right)'
assert latex(diff(diff(-diff(diff(y,x,evaluate=False),x,evaluate=False),x,evaluate=False),x,evaluate=False)) == \
r'\frac{d^{2}}{d x^{2}} \left(- \frac{d^{2}}{d x^{2}} y\right)'
# use ordinary d when one of the variables has been integrated out
assert latex(diff(Integral(exp(-x*y), (x, 0, oo)), y, evaluate=False)) == \
r"\frac{d}{d y} \int\limits_{0}^{\infty} e^{- x y}\, dx"
# Derivative wrapped in power:
assert latex(diff(x, x, evaluate=False)**2) == \
r"\left(\frac{d}{d x} x\right)^{2}"
assert latex(diff(f(x), x)**2) == \
r"\left(\frac{d}{d x} f{\left(x \right)}\right)^{2}"
assert latex(diff(f(x), (x, n))) == \
r"\frac{d^{n}}{d x^{n}} f{\left(x \right)}"
x1 = Symbol('x1')
x2 = Symbol('x2')
assert latex(diff(f(x1, x2), x1)) == r'\frac{\partial}{\partial x_{1}} f{\left(x_{1},x_{2} \right)}'
n1 = Symbol('n1')
assert latex(diff(f(x), (x, n1))) == r'\frac{d^{n_{1}}}{d x^{n_{1}}} f{\left(x \right)}'
n2 = Symbol('n2')
assert latex(diff(f(x), (x, Max(n1, n2)))) == \
r'\frac{d^{\max\left(n_{1}, n_{2}\right)}}{d x^{\max\left(n_{1}, n_{2}\right)}} f{\left(x \right)}'
# set diff operator
assert latex(diff(f(x), x), diff_operator="rd") == r'\frac{\mathrm{d}}{\mathrm{d} x} f{\left(x \right)}'
def test_latex_subs():
assert latex(Subs(x*y, (x, y), (1, 2))) == r'\left. x y \right|_{\substack{ x=1\\ y=2 }}'
def test_latex_integrals():
assert latex(Integral(log(x), x)) == r"\int \log{\left(x \right)}\, dx"
assert latex(Integral(x**2, (x, 0, 1))) == \
r"\int\limits_{0}^{1} x^{2}\, dx"
assert latex(Integral(x**2, (x, 10, 20))) == \
r"\int\limits_{10}^{20} x^{2}\, dx"
assert latex(Integral(y*x**2, (x, 0, 1), y)) == \
r"\int\int\limits_{0}^{1} x^{2} y\, dx\, dy"
assert latex(Integral(y*x**2, (x, 0, 1), y), mode='equation*') == \
r"\begin{equation*}\int\int\limits_{0}^{1} x^{2} y\, dx\, dy\end{equation*}"
assert latex(Integral(y*x**2, (x, 0, 1), y), mode='equation*', itex=True) \
== r"$$\int\int_{0}^{1} x^{2} y\, dx\, dy$$"
assert latex(Integral(x, (x, 0))) == r"\int\limits^{0} x\, dx"
assert latex(Integral(x*y, x, y)) == r"\iint x y\, dx\, dy"
assert latex(Integral(x*y*z, x, y, z)) == r"\iiint x y z\, dx\, dy\, dz"
assert latex(Integral(x*y*z*t, x, y, z, t)) == \
r"\iiiint t x y z\, dx\, dy\, dz\, dt"
assert latex(Integral(x, x, x, x, x, x, x)) == \
r"\int\int\int\int\int\int x\, dx\, dx\, dx\, dx\, dx\, dx"
assert latex(Integral(x, x, y, (z, 0, 1))) == \
r"\int\limits_{0}^{1}\int\int x\, dx\, dy\, dz"
# for negative nested Integral
assert latex(Integral(-Integral(y**2,x),x)) == \
r'\int \left(- \int y^{2}\, dx\right)\, dx'
assert latex(Integral(-Integral(-Integral(y,x),x),x)) == \
r'\int \left(- \int \left(- \int y\, dx\right)\, dx\right)\, dx'
# fix issue #10806
assert latex(Integral(z, z)**2) == r"\left(\int z\, dz\right)^{2}"
assert latex(Integral(x + z, z)) == r"\int \left(x + z\right)\, dz"
assert latex(Integral(x+z/2, z)) == \
r"\int \left(x + \frac{z}{2}\right)\, dz"
assert latex(Integral(x**y, z)) == r"\int x^{y}\, dz"
# set diff operator
assert latex(Integral(x, x), diff_operator="rd") == r'\int x\, \mathrm{d}x'
assert latex(Integral(x, (x, 0, 1)), diff_operator="rd") == r'\int\limits_{0}^{1} x\, \mathrm{d}x'
def test_latex_sets():
for s in (frozenset, set):
assert latex(s([x*y, x**2])) == r"\left\{x^{2}, x y\right\}"
assert latex(s(range(1, 6))) == r"\left\{1, 2, 3, 4, 5\right\}"
assert latex(s(range(1, 13))) == \
r"\left\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\right\}"
s = FiniteSet
assert latex(s(*[x*y, x**2])) == r"\left\{x^{2}, x y\right\}"
assert latex(s(*range(1, 6))) == r"\left\{1, 2, 3, 4, 5\right\}"
assert latex(s(*range(1, 13))) == \
r"\left\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\right\}"
def test_latex_SetExpr():
iv = Interval(1, 3)
se = SetExpr(iv)
assert latex(se) == r"SetExpr\left(\left[1, 3\right]\right)"
def test_latex_Range():
assert latex(Range(1, 51)) == r'\left\{1, 2, \ldots, 50\right\}'
assert latex(Range(1, 4)) == r'\left\{1, 2, 3\right\}'
assert latex(Range(0, 3, 1)) == r'\left\{0, 1, 2\right\}'
assert latex(Range(0, 30, 1)) == r'\left\{0, 1, \ldots, 29\right\}'
assert latex(Range(30, 1, -1)) == r'\left\{30, 29, \ldots, 2\right\}'
assert latex(Range(0, oo, 2)) == r'\left\{0, 2, \ldots\right\}'
assert latex(Range(oo, -2, -2)) == r'\left\{\ldots, 2, 0\right\}'
assert latex(Range(-2, -oo, -1)) == r'\left\{-2, -3, \ldots\right\}'
assert latex(Range(-oo, oo)) == r'\left\{\ldots, -1, 0, 1, \ldots\right\}'
assert latex(Range(oo, -oo, -1)) == r'\left\{\ldots, 1, 0, -1, \ldots\right\}'
a, b, c = symbols('a:c')
assert latex(Range(a, b, c)) == r'\text{Range}\left(a, b, c\right)'
assert latex(Range(a, 10, 1)) == r'\text{Range}\left(a, 10\right)'
assert latex(Range(0, b, 1)) == r'\text{Range}\left(b\right)'
assert latex(Range(0, 10, c)) == r'\text{Range}\left(0, 10, c\right)'
i = Symbol('i', integer=True)
n = Symbol('n', negative=True, integer=True)
p = Symbol('p', positive=True, integer=True)
assert latex(Range(i, i + 3)) == r'\left\{i, i + 1, i + 2\right\}'
assert latex(Range(-oo, n, 2)) == r'\left\{\ldots, n - 4, n - 2\right\}'
assert latex(Range(p, oo)) == r'\left\{p, p + 1, \ldots\right\}'
# The following will work if __iter__ is improved
# assert latex(Range(-3, p + 7)) == r'\left\{-3, -2, \ldots, p + 6\right\}'
# Must have integer assumptions
assert latex(Range(a, a + 3)) == r'\text{Range}\left(a, a + 3\right)'
def test_latex_sequences():
s1 = SeqFormula(a**2, (0, oo))
s2 = SeqPer((1, 2))
latex_str = r'\left[0, 1, 4, 9, \ldots\right]'
assert latex(s1) == latex_str
latex_str = r'\left[1, 2, 1, 2, \ldots\right]'
assert latex(s2) == latex_str
s3 = SeqFormula(a**2, (0, 2))
s4 = SeqPer((1, 2), (0, 2))
latex_str = r'\left[0, 1, 4\right]'
assert latex(s3) == latex_str
latex_str = r'\left[1, 2, 1\right]'
assert latex(s4) == latex_str
s5 = SeqFormula(a**2, (-oo, 0))
s6 = SeqPer((1, 2), (-oo, 0))
latex_str = r'\left[\ldots, 9, 4, 1, 0\right]'
assert latex(s5) == latex_str
latex_str = r'\left[\ldots, 2, 1, 2, 1\right]'
assert latex(s6) == latex_str
latex_str = r'\left[1, 3, 5, 11, \ldots\right]'
assert latex(SeqAdd(s1, s2)) == latex_str
latex_str = r'\left[1, 3, 5\right]'
assert latex(SeqAdd(s3, s4)) == latex_str
latex_str = r'\left[\ldots, 11, 5, 3, 1\right]'
assert latex(SeqAdd(s5, s6)) == latex_str
latex_str = r'\left[0, 2, 4, 18, \ldots\right]'
assert latex(SeqMul(s1, s2)) == latex_str
latex_str = r'\left[0, 2, 4\right]'
assert latex(SeqMul(s3, s4)) == latex_str
latex_str = r'\left[\ldots, 18, 4, 2, 0\right]'
assert latex(SeqMul(s5, s6)) == latex_str
# Sequences with symbolic limits, issue 12629
s7 = SeqFormula(a**2, (a, 0, x))
latex_str = r'\left\{a^{2}\right\}_{a=0}^{x}'
assert latex(s7) == latex_str
b = Symbol('b')
s8 = SeqFormula(b*a**2, (a, 0, 2))
latex_str = r'\left[0, b, 4 b\right]'
assert latex(s8) == latex_str
def test_latex_FourierSeries():
latex_str = \
r'2 \sin{\left(x \right)} - \sin{\left(2 x \right)} + \frac{2 \sin{\left(3 x \right)}}{3} + \ldots'
assert latex(fourier_series(x, (x, -pi, pi))) == latex_str
def test_latex_FormalPowerSeries():
latex_str = r'\sum_{k=1}^{\infty} - \frac{\left(-1\right)^{- k} x^{k}}{k}'
assert latex(fps(log(1 + x))) == latex_str
def test_latex_intervals():
a = Symbol('a', real=True)
assert latex(Interval(0, 0)) == r"\left\{0\right\}"
assert latex(Interval(0, a)) == r"\left[0, a\right]"
assert latex(Interval(0, a, False, False)) == r"\left[0, a\right]"
assert latex(Interval(0, a, True, False)) == r"\left(0, a\right]"
assert latex(Interval(0, a, False, True)) == r"\left[0, a\right)"
assert latex(Interval(0, a, True, True)) == r"\left(0, a\right)"
def test_latex_AccumuBounds():
a = Symbol('a', real=True)
assert latex(AccumBounds(0, 1)) == r"\left\langle 0, 1\right\rangle"
assert latex(AccumBounds(0, a)) == r"\left\langle 0, a\right\rangle"
assert latex(AccumBounds(a + 1, a + 2)) == \
r"\left\langle a + 1, a + 2\right\rangle"
def test_latex_emptyset():
assert latex(S.EmptySet) == r"\emptyset"
def test_latex_universalset():
assert latex(S.UniversalSet) == r"\mathbb{U}"
def test_latex_commutator():
A = Operator('A')
B = Operator('B')
comm = Commutator(B, A)
assert latex(comm.doit()) == r"- (A B - B A)"
def test_latex_union():
assert latex(Union(Interval(0, 1), Interval(2, 3))) == \
r"\left[0, 1\right] \cup \left[2, 3\right]"
assert latex(Union(Interval(1, 1), Interval(2, 2), Interval(3, 4))) == \
r"\left\{1, 2\right\} \cup \left[3, 4\right]"
def test_latex_intersection():
assert latex(Intersection(Interval(0, 1), Interval(x, y))) == \
r"\left[0, 1\right] \cap \left[x, y\right]"
def test_latex_symmetric_difference():
assert latex(SymmetricDifference(Interval(2, 5), Interval(4, 7),
evaluate=False)) == \
r'\left[2, 5\right] \triangle \left[4, 7\right]'
def test_latex_Complement():
assert latex(Complement(S.Reals, S.Naturals)) == \
r"\mathbb{R} \setminus \mathbb{N}"
def test_latex_productset():
line = Interval(0, 1)
bigline = Interval(0, 10)
fset = FiniteSet(1, 2, 3)
assert latex(line**2) == r"%s^{2}" % latex(line)
assert latex(line**10) == r"%s^{10}" % latex(line)
assert latex((line * bigline * fset).flatten()) == r"%s \times %s \times %s" % (
latex(line), latex(bigline), latex(fset))
def test_latex_powerset():
fset = FiniteSet(1, 2, 3)
assert latex(PowerSet(fset)) == r'\mathcal{P}\left(\left\{1, 2, 3\right\}\right)'
def test_latex_ordinals():
w = OrdinalOmega()
assert latex(w) == r"\omega"
wp = OmegaPower(2, 3)
assert latex(wp) == r'3 \omega^{2}'
assert latex(Ordinal(wp, OmegaPower(1, 1))) == r'3 \omega^{2} + \omega'
assert latex(Ordinal(OmegaPower(2, 1), OmegaPower(1, 2))) == r'\omega^{2} + 2 \omega'
def test_set_operators_parenthesis():
a, b, c, d = symbols('a:d')
A = FiniteSet(a)
B = FiniteSet(b)
C = FiniteSet(c)
D = FiniteSet(d)
U1 = Union(A, B, evaluate=False)
U2 = Union(C, D, evaluate=False)
I1 = Intersection(A, B, evaluate=False)
I2 = Intersection(C, D, evaluate=False)
C1 = Complement(A, B, evaluate=False)
C2 = Complement(C, D, evaluate=False)
D1 = SymmetricDifference(A, B, evaluate=False)
D2 = SymmetricDifference(C, D, evaluate=False)
# XXX ProductSet does not support evaluate keyword
P1 = ProductSet(A, B)
P2 = ProductSet(C, D)
assert latex(Intersection(A, U2, evaluate=False)) == \
r'\left\{a\right\} \cap ' \
r'\left(\left\{c\right\} \cup \left\{d\right\}\right)'
assert latex(Intersection(U1, U2, evaluate=False)) == \
r'\left(\left\{a\right\} \cup \left\{b\right\}\right) ' \
r'\cap \left(\left\{c\right\} \cup \left\{d\right\}\right)'
assert latex(Intersection(C1, C2, evaluate=False)) == \
r'\left(\left\{a\right\} \setminus ' \
r'\left\{b\right\}\right) \cap \left(\left\{c\right\} ' \
r'\setminus \left\{d\right\}\right)'
assert latex(Intersection(D1, D2, evaluate=False)) == \
r'\left(\left\{a\right\} \triangle ' \
r'\left\{b\right\}\right) \cap \left(\left\{c\right\} ' \
r'\triangle \left\{d\right\}\right)'
assert latex(Intersection(P1, P2, evaluate=False)) == \
r'\left(\left\{a\right\} \times \left\{b\right\}\right) ' \
r'\cap \left(\left\{c\right\} \times ' \
r'\left\{d\right\}\right)'
assert latex(Union(A, I2, evaluate=False)) == \
r'\left\{a\right\} \cup ' \
r'\left(\left\{c\right\} \cap \left\{d\right\}\right)'
assert latex(Union(I1, I2, evaluate=False)) == \
r'\left(\left\{a\right\} \cap \left\{b\right\}\right) ' \
r'\cup \left(\left\{c\right\} \cap \left\{d\right\}\right)'
assert latex(Union(C1, C2, evaluate=False)) == \
r'\left(\left\{a\right\} \setminus ' \
r'\left\{b\right\}\right) \cup \left(\left\{c\right\} ' \
r'\setminus \left\{d\right\}\right)'
assert latex(Union(D1, D2, evaluate=False)) == \
r'\left(\left\{a\right\} \triangle ' \
r'\left\{b\right\}\right) \cup \left(\left\{c\right\} ' \
r'\triangle \left\{d\right\}\right)'
assert latex(Union(P1, P2, evaluate=False)) == \
r'\left(\left\{a\right\} \times \left\{b\right\}\right) ' \
r'\cup \left(\left\{c\right\} \times ' \
r'\left\{d\right\}\right)'
assert latex(Complement(A, C2, evaluate=False)) == \
r'\left\{a\right\} \setminus \left(\left\{c\right\} ' \
r'\setminus \left\{d\right\}\right)'
assert latex(Complement(U1, U2, evaluate=False)) == \
r'\left(\left\{a\right\} \cup \left\{b\right\}\right) ' \
r'\setminus \left(\left\{c\right\} \cup ' \
r'\left\{d\right\}\right)'
assert latex(Complement(I1, I2, evaluate=False)) == \
r'\left(\left\{a\right\} \cap \left\{b\right\}\right) ' \
r'\setminus \left(\left\{c\right\} \cap ' \
r'\left\{d\right\}\right)'
assert latex(Complement(D1, D2, evaluate=False)) == \
r'\left(\left\{a\right\} \triangle ' \
r'\left\{b\right\}\right) \setminus ' \
r'\left(\left\{c\right\} \triangle \left\{d\right\}\right)'
assert latex(Complement(P1, P2, evaluate=False)) == \
r'\left(\left\{a\right\} \times \left\{b\right\}\right) '\
r'\setminus \left(\left\{c\right\} \times '\
r'\left\{d\right\}\right)'
assert latex(SymmetricDifference(A, D2, evaluate=False)) == \
r'\left\{a\right\} \triangle \left(\left\{c\right\} ' \
r'\triangle \left\{d\right\}\right)'
assert latex(SymmetricDifference(U1, U2, evaluate=False)) == \
r'\left(\left\{a\right\} \cup \left\{b\right\}\right) ' \
r'\triangle \left(\left\{c\right\} \cup ' \
r'\left\{d\right\}\right)'
assert latex(SymmetricDifference(I1, I2, evaluate=False)) == \
r'\left(\left\{a\right\} \cap \left\{b\right\}\right) ' \
r'\triangle \left(\left\{c\right\} \cap ' \
r'\left\{d\right\}\right)'
assert latex(SymmetricDifference(C1, C2, evaluate=False)) == \
r'\left(\left\{a\right\} \setminus ' \
r'\left\{b\right\}\right) \triangle ' \
r'\left(\left\{c\right\} \setminus \left\{d\right\}\right)'
assert latex(SymmetricDifference(P1, P2, evaluate=False)) == \
r'\left(\left\{a\right\} \times \left\{b\right\}\right) ' \
r'\triangle \left(\left\{c\right\} \times ' \
r'\left\{d\right\}\right)'
# XXX This can be incorrect since cartesian product is not associative
assert latex(ProductSet(A, P2).flatten()) == \
r'\left\{a\right\} \times \left\{c\right\} \times ' \
r'\left\{d\right\}'
assert latex(ProductSet(U1, U2)) == \
r'\left(\left\{a\right\} \cup \left\{b\right\}\right) ' \
r'\times \left(\left\{c\right\} \cup ' \
r'\left\{d\right\}\right)'
assert latex(ProductSet(I1, I2)) == \
r'\left(\left\{a\right\} \cap \left\{b\right\}\right) ' \
r'\times \left(\left\{c\right\} \cap ' \
r'\left\{d\right\}\right)'
assert latex(ProductSet(C1, C2)) == \
r'\left(\left\{a\right\} \setminus ' \
r'\left\{b\right\}\right) \times \left(\left\{c\right\} ' \
r'\setminus \left\{d\right\}\right)'
assert latex(ProductSet(D1, D2)) == \
r'\left(\left\{a\right\} \triangle ' \
r'\left\{b\right\}\right) \times \left(\left\{c\right\} ' \
r'\triangle \left\{d\right\}\right)'
def test_latex_Complexes():
assert latex(S.Complexes) == r"\mathbb{C}"
def test_latex_Naturals():
assert latex(S.Naturals) == r"\mathbb{N}"
def test_latex_Naturals0():
assert latex(S.Naturals0) == r"\mathbb{N}_0"
def test_latex_Integers():
assert latex(S.Integers) == r"\mathbb{Z}"
def test_latex_ImageSet():
x = Symbol('x')
assert latex(ImageSet(Lambda(x, x**2), S.Naturals)) == \
r"\left\{x^{2}\; \middle|\; x \in \mathbb{N}\right\}"
y = Symbol('y')
imgset = ImageSet(Lambda((x, y), x + y), {1, 2, 3}, {3, 4})
assert latex(imgset) == \
r"\left\{x + y\; \middle|\; x \in \left\{1, 2, 3\right\}, y \in \left\{3, 4\right\}\right\}"
imgset = ImageSet(Lambda(((x, y),), x + y), ProductSet({1, 2, 3}, {3, 4}))
assert latex(imgset) == \
r"\left\{x + y\; \middle|\; \left( x, \ y\right) \in \left\{1, 2, 3\right\} \times \left\{3, 4\right\}\right\}"
def test_latex_ConditionSet():
x = Symbol('x')
assert latex(ConditionSet(x, Eq(x**2, 1), S.Reals)) == \
r"\left\{x\; \middle|\; x \in \mathbb{R} \wedge x^{2} = 1 \right\}"
assert latex(ConditionSet(x, Eq(x**2, 1), S.UniversalSet)) == \
r"\left\{x\; \middle|\; x^{2} = 1 \right\}"
def test_latex_ComplexRegion():
assert latex(ComplexRegion(Interval(3, 5)*Interval(4, 6))) == \
r"\left\{x + y i\; \middle|\; x, y \in \left[3, 5\right] \times \left[4, 6\right] \right\}"
assert latex(ComplexRegion(Interval(0, 1)*Interval(0, 2*pi), polar=True)) == \
r"\left\{r \left(i \sin{\left(\theta \right)} + \cos{\left(\theta "\
r"\right)}\right)\; \middle|\; r, \theta \in \left[0, 1\right] \times \left[0, 2 \pi\right) \right\}"
def test_latex_Contains():
x = Symbol('x')
assert latex(Contains(x, S.Naturals)) == r"x \in \mathbb{N}"
def test_latex_sum():
assert latex(Sum(x*y**2, (x, -2, 2), (y, -5, 5))) == \
r"\sum_{\substack{-2 \leq x \leq 2\\-5 \leq y \leq 5}} x y^{2}"
assert latex(Sum(x**2, (x, -2, 2))) == \
r"\sum_{x=-2}^{2} x^{2}"
assert latex(Sum(x**2 + y, (x, -2, 2))) == \
r"\sum_{x=-2}^{2} \left(x^{2} + y\right)"
assert latex(Sum(x**2 + y, (x, -2, 2))**2) == \
r"\left(\sum_{x=-2}^{2} \left(x^{2} + y\right)\right)^{2}"
def test_latex_product():
assert latex(Product(x*y**2, (x, -2, 2), (y, -5, 5))) == \
r"\prod_{\substack{-2 \leq x \leq 2\\-5 \leq y \leq 5}} x y^{2}"
assert latex(Product(x**2, (x, -2, 2))) == \
r"\prod_{x=-2}^{2} x^{2}"
assert latex(Product(x**2 + y, (x, -2, 2))) == \
r"\prod_{x=-2}^{2} \left(x^{2} + y\right)"
assert latex(Product(x, (x, -2, 2))**2) == \
r"\left(\prod_{x=-2}^{2} x\right)^{2}"
def test_latex_limits():
assert latex(Limit(x, x, oo)) == r"\lim_{x \to \infty} x"
# issue 8175
f = Function('f')
assert latex(Limit(f(x), x, 0)) == r"\lim_{x \to 0^+} f{\left(x \right)}"
assert latex(Limit(f(x), x, 0, "-")) == \
r"\lim_{x \to 0^-} f{\left(x \right)}"
# issue #10806
assert latex(Limit(f(x), x, 0)**2) == \
r"\left(\lim_{x \to 0^+} f{\left(x \right)}\right)^{2}"
# bi-directional limit
assert latex(Limit(f(x), x, 0, dir='+-')) == \
r"\lim_{x \to 0} f{\left(x \right)}"
def test_latex_log():
assert latex(log(x)) == r"\log{\left(x \right)}"
assert latex(log(x), ln_notation=True) == r"\ln{\left(x \right)}"
assert latex(log(x) + log(y)) == \
r"\log{\left(x \right)} + \log{\left(y \right)}"
assert latex(log(x) + log(y), ln_notation=True) == \
r"\ln{\left(x \right)} + \ln{\left(y \right)}"
assert latex(pow(log(x), x)) == r"\log{\left(x \right)}^{x}"
assert latex(pow(log(x), x), ln_notation=True) == \
r"\ln{\left(x \right)}^{x}"
def test_issue_3568():
beta = Symbol(r'\beta')
y = beta + x
assert latex(y) in [r'\beta + x', r'x + \beta']
beta = Symbol(r'beta')
y = beta + x
assert latex(y) in [r'\beta + x', r'x + \beta']
def test_latex():
assert latex((2*tau)**Rational(7, 2)) == r"8 \sqrt{2} \tau^{\frac{7}{2}}"
assert latex((2*mu)**Rational(7, 2), mode='equation*') == \
r"\begin{equation*}8 \sqrt{2} \mu^{\frac{7}{2}}\end{equation*}"
assert latex((2*mu)**Rational(7, 2), mode='equation', itex=True) == \
r"$$8 \sqrt{2} \mu^{\frac{7}{2}}$$"
assert latex([2/x, y]) == r"\left[ \frac{2}{x}, \ y\right]"
def test_latex_dict():
d = {Rational(1): 1, x**2: 2, x: 3, x**3: 4}
assert latex(d) == \
r'\left\{ 1 : 1, \ x : 3, \ x^{2} : 2, \ x^{3} : 4\right\}'
D = Dict(d)
assert latex(D) == \
r'\left\{ 1 : 1, \ x : 3, \ x^{2} : 2, \ x^{3} : 4\right\}'
def test_latex_list():
ll = [Symbol('omega1'), Symbol('a'), Symbol('alpha')]
assert latex(ll) == r'\left[ \omega_{1}, \ a, \ \alpha\right]'
def test_latex_NumberSymbols():
assert latex(S.Catalan) == "G"
assert latex(S.EulerGamma) == r"\gamma"
assert latex(S.Exp1) == "e"
assert latex(S.GoldenRatio) == r"\phi"
assert latex(S.Pi) == r"\pi"
assert latex(S.TribonacciConstant) == r"\text{TribonacciConstant}"
def test_latex_rational():
# tests issue 3973
assert latex(-Rational(1, 2)) == r"- \frac{1}{2}"
assert latex(Rational(-1, 2)) == r"- \frac{1}{2}"
assert latex(Rational(1, -2)) == r"- \frac{1}{2}"
assert latex(-Rational(-1, 2)) == r"\frac{1}{2}"
assert latex(-Rational(1, 2)*x) == r"- \frac{x}{2}"
assert latex(-Rational(1, 2)*x + Rational(-2, 3)*y) == \
r"- \frac{x}{2} - \frac{2 y}{3}"
def test_latex_inverse():
# tests issue 4129
assert latex(1/x) == r"\frac{1}{x}"
assert latex(1/(x + y)) == r"\frac{1}{x + y}"
def test_latex_DiracDelta():
assert latex(DiracDelta(x)) == r"\delta\left(x\right)"
assert latex(DiracDelta(x)**2) == r"\left(\delta\left(x\right)\right)^{2}"
assert latex(DiracDelta(x, 0)) == r"\delta\left(x\right)"
assert latex(DiracDelta(x, 5)) == \
r"\delta^{\left( 5 \right)}\left( x \right)"
assert latex(DiracDelta(x, 5)**2) == \
r"\left(\delta^{\left( 5 \right)}\left( x \right)\right)^{2}"
def test_latex_Heaviside():
assert latex(Heaviside(x)) == r"\theta\left(x\right)"
assert latex(Heaviside(x)**2) == r"\left(\theta\left(x\right)\right)^{2}"
def test_latex_KroneckerDelta():
assert latex(KroneckerDelta(x, y)) == r"\delta_{x y}"
assert latex(KroneckerDelta(x, y + 1)) == r"\delta_{x, y + 1}"
# issue 6578
assert latex(KroneckerDelta(x + 1, y)) == r"\delta_{y, x + 1}"
assert latex(Pow(KroneckerDelta(x, y), 2, evaluate=False)) == \
r"\left(\delta_{x y}\right)^{2}"
def test_latex_LeviCivita():
assert latex(LeviCivita(x, y, z)) == r"\varepsilon_{x y z}"
assert latex(LeviCivita(x, y, z)**2) == \
r"\left(\varepsilon_{x y z}\right)^{2}"
assert latex(LeviCivita(x, y, z + 1)) == r"\varepsilon_{x, y, z + 1}"
assert latex(LeviCivita(x, y + 1, z)) == r"\varepsilon_{x, y + 1, z}"
assert latex(LeviCivita(x + 1, y, z)) == r"\varepsilon_{x + 1, y, z}"
def test_mode():
expr = x + y
assert latex(expr) == r'x + y'
assert latex(expr, mode='plain') == r'x + y'
assert latex(expr, mode='inline') == r'$x + y$'
assert latex(
expr, mode='equation*') == r'\begin{equation*}x + y\end{equation*}'
assert latex(
expr, mode='equation') == r'\begin{equation}x + y\end{equation}'
raises(ValueError, lambda: latex(expr, mode='foo'))
def test_latex_mathieu():
assert latex(mathieuc(x, y, z)) == r"C\left(x, y, z\right)"
assert latex(mathieus(x, y, z)) == r"S\left(x, y, z\right)"
assert latex(mathieuc(x, y, z)**2) == r"C\left(x, y, z\right)^{2}"
assert latex(mathieus(x, y, z)**2) == r"S\left(x, y, z\right)^{2}"
assert latex(mathieucprime(x, y, z)) == r"C^{\prime}\left(x, y, z\right)"
assert latex(mathieusprime(x, y, z)) == r"S^{\prime}\left(x, y, z\right)"
assert latex(mathieucprime(x, y, z)**2) == r"C^{\prime}\left(x, y, z\right)^{2}"
assert latex(mathieusprime(x, y, z)**2) == r"S^{\prime}\left(x, y, z\right)^{2}"
def test_latex_Piecewise():
p = Piecewise((x, x < 1), (x**2, True))
assert latex(p) == r"\begin{cases} x & \text{for}\: x < 1 \\x^{2} &" \
r" \text{otherwise} \end{cases}"
assert latex(p, itex=True) == \
r"\begin{cases} x & \text{for}\: x \lt 1 \\x^{2} &" \
r" \text{otherwise} \end{cases}"
p = Piecewise((x, x < 0), (0, x >= 0))
assert latex(p) == r'\begin{cases} x & \text{for}\: x < 0 \\0 &' \
r' \text{otherwise} \end{cases}'
A, B = symbols("A B", commutative=False)
p = Piecewise((A**2, Eq(A, B)), (A*B, True))
s = r"\begin{cases} A^{2} & \text{for}\: A = B \\A B & \text{otherwise} \end{cases}"
assert latex(p) == s
assert latex(A*p) == r"A \left(%s\right)" % s
assert latex(p*A) == r"\left(%s\right) A" % s
assert latex(Piecewise((x, x < 1), (x**2, x < 2))) == \
r'\begin{cases} x & ' \
r'\text{for}\: x < 1 \\x^{2} & \text{for}\: x < 2 \end{cases}'
def test_latex_Matrix():
M = Matrix([[1 + x, y], [y, x - 1]])
assert latex(M) == \
r'\left[\begin{matrix}x + 1 & y\\y & x - 1\end{matrix}\right]'
assert latex(M, mode='inline') == \
r'$\left[\begin{smallmatrix}x + 1 & y\\' \
r'y & x - 1\end{smallmatrix}\right]$'
assert latex(M, mat_str='array') == \
r'\left[\begin{array}{cc}x + 1 & y\\y & x - 1\end{array}\right]'
assert latex(M, mat_str='bmatrix') == \
r'\left[\begin{bmatrix}x + 1 & y\\y & x - 1\end{bmatrix}\right]'
assert latex(M, mat_delim=None, mat_str='bmatrix') == \
r'\begin{bmatrix}x + 1 & y\\y & x - 1\end{bmatrix}'
M2 = Matrix(1, 11, range(11))
assert latex(M2) == \
r'\left[\begin{array}{ccccccccccc}' \
r'0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}\right]'
def test_latex_matrix_with_functions():
t = symbols('t')
theta1 = symbols('theta1', cls=Function)
M = Matrix([[sin(theta1(t)), cos(theta1(t))],
[cos(theta1(t).diff(t)), sin(theta1(t).diff(t))]])
expected = (r'\left[\begin{matrix}\sin{\left('
r'\theta_{1}{\left(t \right)} \right)} & '
r'\cos{\left(\theta_{1}{\left(t \right)} \right)'
r'}\\\cos{\left(\frac{d}{d t} \theta_{1}{\left(t '
r'\right)} \right)} & \sin{\left(\frac{d}{d t} '
r'\theta_{1}{\left(t \right)} \right'
r')}\end{matrix}\right]')
assert latex(M) == expected
def test_latex_NDimArray():
x, y, z, w = symbols("x y z w")
for ArrayType in (ImmutableDenseNDimArray, ImmutableSparseNDimArray,
MutableDenseNDimArray, MutableSparseNDimArray):
# Basic: scalar array
M = ArrayType(x)
assert latex(M) == r"x"
M = ArrayType([[1 / x, y], [z, w]])
M1 = ArrayType([1 / x, y, z])
M2 = tensorproduct(M1, M)
M3 = tensorproduct(M, M)
assert latex(M) == \
r'\left[\begin{matrix}\frac{1}{x} & y\\z & w\end{matrix}\right]'
assert latex(M1) == \
r"\left[\begin{matrix}\frac{1}{x} & y & z\end{matrix}\right]"
assert latex(M2) == \
r"\left[\begin{matrix}" \
r"\left[\begin{matrix}\frac{1}{x^{2}} & \frac{y}{x}\\\frac{z}{x} & \frac{w}{x}\end{matrix}\right] & " \
r"\left[\begin{matrix}\frac{y}{x} & y^{2}\\y z & w y\end{matrix}\right] & " \
r"\left[\begin{matrix}\frac{z}{x} & y z\\z^{2} & w z\end{matrix}\right]" \
r"\end{matrix}\right]"
assert latex(M3) == \
r"""\left[\begin{matrix}"""\
r"""\left[\begin{matrix}\frac{1}{x^{2}} & \frac{y}{x}\\\frac{z}{x} & \frac{w}{x}\end{matrix}\right] & """\
r"""\left[\begin{matrix}\frac{y}{x} & y^{2}\\y z & w y\end{matrix}\right]\\"""\
r"""\left[\begin{matrix}\frac{z}{x} & y z\\z^{2} & w z\end{matrix}\right] & """\
r"""\left[\begin{matrix}\frac{w}{x} & w y\\w z & w^{2}\end{matrix}\right]"""\
r"""\end{matrix}\right]"""
Mrow = ArrayType([[x, y, 1/z]])
Mcolumn = ArrayType([[x], [y], [1/z]])
Mcol2 = ArrayType([Mcolumn.tolist()])
assert latex(Mrow) == \
r"\left[\left[\begin{matrix}x & y & \frac{1}{z}\end{matrix}\right]\right]"
assert latex(Mcolumn) == \
r"\left[\begin{matrix}x\\y\\\frac{1}{z}\end{matrix}\right]"
assert latex(Mcol2) == \
r'\left[\begin{matrix}\left[\begin{matrix}x\\y\\\frac{1}{z}\end{matrix}\right]\end{matrix}\right]'
def test_latex_mul_symbol():
assert latex(4*4**x, mul_symbol='times') == r"4 \times 4^{x}"
assert latex(4*4**x, mul_symbol='dot') == r"4 \cdot 4^{x}"
assert latex(4*4**x, mul_symbol='ldot') == r"4 \,.\, 4^{x}"
assert latex(4*x, mul_symbol='times') == r"4 \times x"
assert latex(4*x, mul_symbol='dot') == r"4 \cdot x"
assert latex(4*x, mul_symbol='ldot') == r"4 \,.\, x"
def test_latex_issue_4381():
y = 4*4**log(2)
assert latex(y) == r'4 \cdot 4^{\log{\left(2 \right)}}'
assert latex(1/y) == r'\frac{1}{4 \cdot 4^{\log{\left(2 \right)}}}'
def test_latex_issue_4576():
assert latex(Symbol("beta_13_2")) == r"\beta_{13 2}"
assert latex(Symbol("beta_132_20")) == r"\beta_{132 20}"
assert latex(Symbol("beta_13")) == r"\beta_{13}"
assert latex(Symbol("x_a_b")) == r"x_{a b}"
assert latex(Symbol("x_1_2_3")) == r"x_{1 2 3}"
assert latex(Symbol("x_a_b1")) == r"x_{a b1}"
assert latex(Symbol("x_a_1")) == r"x_{a 1}"
assert latex(Symbol("x_1_a")) == r"x_{1 a}"
assert latex(Symbol("x_1^aa")) == r"x^{aa}_{1}"
assert latex(Symbol("x_1__aa")) == r"x^{aa}_{1}"
assert latex(Symbol("x_11^a")) == r"x^{a}_{11}"
assert latex(Symbol("x_11__a")) == r"x^{a}_{11}"
assert latex(Symbol("x_a_a_a_a")) == r"x_{a a a a}"
assert latex(Symbol("x_a_a^a^a")) == r"x^{a a}_{a a}"
assert latex(Symbol("x_a_a__a__a")) == r"x^{a a}_{a a}"
assert latex(Symbol("alpha_11")) == r"\alpha_{11}"
assert latex(Symbol("alpha_11_11")) == r"\alpha_{11 11}"
assert latex(Symbol("alpha_alpha")) == r"\alpha_{\alpha}"
assert latex(Symbol("alpha^aleph")) == r"\alpha^{\aleph}"
assert latex(Symbol("alpha__aleph")) == r"\alpha^{\aleph}"
def test_latex_pow_fraction():
x = Symbol('x')
# Testing exp
assert r'e^{-x}' in latex(exp(-x)/2).replace(' ', '') # Remove Whitespace
# Testing e^{-x} in case future changes alter behavior of muls or fracs
# In particular current output is \frac{1}{2}e^{- x} but perhaps this will
# change to \frac{e^{-x}}{2}
# Testing general, non-exp, power
assert r'3^{-x}' in latex(3**-x/2).replace(' ', '')
def test_noncommutative():
A, B, C = symbols('A,B,C', commutative=False)
assert latex(A*B*C**-1) == r"A B C^{-1}"
assert latex(C**-1*A*B) == r"C^{-1} A B"
assert latex(A*C**-1*B) == r"A C^{-1} B"
def test_latex_order():
expr = x**3 + x**2*y + y**4 + 3*x*y**3
assert latex(expr, order='lex') == r"x^{3} + x^{2} y + 3 x y^{3} + y^{4}"
assert latex(
expr, order='rev-lex') == r"y^{4} + 3 x y^{3} + x^{2} y + x^{3}"
assert latex(expr, order='none') == r"x^{3} + y^{4} + y x^{2} + 3 x y^{3}"
def test_latex_Lambda():
assert latex(Lambda(x, x + 1)) == r"\left( x \mapsto x + 1 \right)"
assert latex(Lambda((x, y), x + 1)) == r"\left( \left( x, \ y\right) \mapsto x + 1 \right)"
assert latex(Lambda(x, x)) == r"\left( x \mapsto x \right)"
def test_latex_PolyElement():
Ruv, u, v = ring("u,v", ZZ)
Rxyz, x, y, z = ring("x,y,z", Ruv)
assert latex(x - x) == r"0"
assert latex(x - 1) == r"x - 1"
assert latex(x + 1) == r"x + 1"
assert latex((u**2 + 3*u*v + 1)*x**2*y + u + 1) == \
r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + u + 1"
assert latex((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x) == \
r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + \left(u + 1\right) x"
assert latex((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x + 1) == \
r"\left({u}^{2} + 3 u v + 1\right) {x}^{2} y + \left(u + 1\right) x + 1"
assert latex((-u**2 + 3*u*v - 1)*x**2*y - (u + 1)*x - 1) == \
r"-\left({u}^{2} - 3 u v + 1\right) {x}^{2} y - \left(u + 1\right) x - 1"
assert latex(-(v**2 + v + 1)*x + 3*u*v + 1) == \
r"-\left({v}^{2} + v + 1\right) x + 3 u v + 1"
assert latex(-(v**2 + v + 1)*x - 3*u*v + 1) == \
r"-\left({v}^{2} + v + 1\right) x - 3 u v + 1"
def test_latex_FracElement():
Fuv, u, v = field("u,v", ZZ)
Fxyzt, x, y, z, t = field("x,y,z,t", Fuv)
assert latex(x - x) == r"0"
assert latex(x - 1) == r"x - 1"
assert latex(x + 1) == r"x + 1"
assert latex(x/3) == r"\frac{x}{3}"
assert latex(x/z) == r"\frac{x}{z}"
assert latex(x*y/z) == r"\frac{x y}{z}"
assert latex(x/(z*t)) == r"\frac{x}{z t}"
assert latex(x*y/(z*t)) == r"\frac{x y}{z t}"
assert latex((x - 1)/y) == r"\frac{x - 1}{y}"
assert latex((x + 1)/y) == r"\frac{x + 1}{y}"
assert latex((-x - 1)/y) == r"\frac{-x - 1}{y}"
assert latex((x + 1)/(y*z)) == r"\frac{x + 1}{y z}"
assert latex(-y/(x + 1)) == r"\frac{-y}{x + 1}"
assert latex(y*z/(x + 1)) == r"\frac{y z}{x + 1}"
assert latex(((u + 1)*x*y + 1)/((v - 1)*z - 1)) == \
r"\frac{\left(u + 1\right) x y + 1}{\left(v - 1\right) z - 1}"
assert latex(((u + 1)*x*y + 1)/((v - 1)*z - t*u*v - 1)) == \
r"\frac{\left(u + 1\right) x y + 1}{\left(v - 1\right) z - u v t - 1}"
def test_latex_Poly():
assert latex(Poly(x**2 + 2 * x, x)) == \
r"\operatorname{Poly}{\left( x^{2} + 2 x, x, domain=\mathbb{Z} \right)}"
assert latex(Poly(x/y, x)) == \
r"\operatorname{Poly}{\left( \frac{1}{y} x, x, domain=\mathbb{Z}\left(y\right) \right)}"
assert latex(Poly(2.0*x + y)) == \
r"\operatorname{Poly}{\left( 2.0 x + 1.0 y, x, y, domain=\mathbb{R} \right)}"
def test_latex_Poly_order():
assert latex(Poly([a, 1, b, 2, c, 3], x)) == \
r'\operatorname{Poly}{\left( a x^{5} + x^{4} + b x^{3} + 2 x^{2} + c'\
r' x + 3, x, domain=\mathbb{Z}\left[a, b, c\right] \right)}'
assert latex(Poly([a, 1, b+c, 2, 3], x)) == \
r'\operatorname{Poly}{\left( a x^{4} + x^{3} + \left(b + c\right) '\
r'x^{2} + 2 x + 3, x, domain=\mathbb{Z}\left[a, b, c\right] \right)}'
assert latex(Poly(a*x**3 + x**2*y - x*y - c*y**3 - b*x*y**2 + y - a*x + b,
(x, y))) == \
r'\operatorname{Poly}{\left( a x^{3} + x^{2}y - b xy^{2} - xy - '\
r'a x - c y^{3} + y + b, x, y, domain=\mathbb{Z}\left[a, b, c\right] \right)}'
def test_latex_ComplexRootOf():
assert latex(rootof(x**5 + x + 3, 0)) == \
r"\operatorname{CRootOf} {\left(x^{5} + x + 3, 0\right)}"
def test_latex_RootSum():
assert latex(RootSum(x**5 + x + 3, sin)) == \
r"\operatorname{RootSum} {\left(x^{5} + x + 3, \left( x \mapsto \sin{\left(x \right)} \right)\right)}"
def test_settings():
raises(TypeError, lambda: latex(x*y, method="garbage"))
def test_latex_numbers():
assert latex(catalan(n)) == r"C_{n}"
assert latex(catalan(n)**2) == r"C_{n}^{2}"
assert latex(bernoulli(n)) == r"B_{n}"
assert latex(bernoulli(n, x)) == r"B_{n}\left(x\right)"
assert latex(bernoulli(n)**2) == r"B_{n}^{2}"
assert latex(bernoulli(n, x)**2) == r"B_{n}^{2}\left(x\right)"
assert latex(genocchi(n)) == r"G_{n}"
assert latex(genocchi(n, x)) == r"G_{n}\left(x\right)"
assert latex(genocchi(n)**2) == r"G_{n}^{2}"
assert latex(genocchi(n, x)**2) == r"G_{n}^{2}\left(x\right)"
assert latex(bell(n)) == r"B_{n}"
assert latex(bell(n, x)) == r"B_{n}\left(x\right)"
assert latex(bell(n, m, (x, y))) == r"B_{n, m}\left(x, y\right)"
assert latex(bell(n)**2) == r"B_{n}^{2}"
assert latex(bell(n, x)**2) == r"B_{n}^{2}\left(x\right)"
assert latex(bell(n, m, (x, y))**2) == r"B_{n, m}^{2}\left(x, y\right)"
assert latex(fibonacci(n)) == r"F_{n}"
assert latex(fibonacci(n, x)) == r"F_{n}\left(x\right)"
assert latex(fibonacci(n)**2) == r"F_{n}^{2}"
assert latex(fibonacci(n, x)**2) == r"F_{n}^{2}\left(x\right)"
assert latex(lucas(n)) == r"L_{n}"
assert latex(lucas(n)**2) == r"L_{n}^{2}"
assert latex(tribonacci(n)) == r"T_{n}"
assert latex(tribonacci(n, x)) == r"T_{n}\left(x\right)"
assert latex(tribonacci(n)**2) == r"T_{n}^{2}"
assert latex(tribonacci(n, x)**2) == r"T_{n}^{2}\left(x\right)"
def test_latex_euler():
assert latex(euler(n)) == r"E_{n}"
assert latex(euler(n, x)) == r"E_{n}\left(x\right)"
assert latex(euler(n, x)**2) == r"E_{n}^{2}\left(x\right)"
def test_lamda():
assert latex(Symbol('lamda')) == r"\lambda"
assert latex(Symbol('Lamda')) == r"\Lambda"
def test_custom_symbol_names():
x = Symbol('x')
y = Symbol('y')
assert latex(x) == r"x"
assert latex(x, symbol_names={x: "x_i"}) == r"x_i"
assert latex(x + y, symbol_names={x: "x_i"}) == r"x_i + y"
assert latex(x**2, symbol_names={x: "x_i"}) == r"x_i^{2}"
assert latex(x + y, symbol_names={x: "x_i", y: "y_j"}) == r"x_i + y_j"
def test_matAdd():
C = MatrixSymbol('C', 5, 5)
B = MatrixSymbol('B', 5, 5)
n = symbols("n")
h = MatrixSymbol("h", 1, 1)
assert latex(C - 2*B) in [r'- 2 B + C', r'C -2 B']
assert latex(C + 2*B) in [r'2 B + C', r'C + 2 B']
assert latex(B - 2*C) in [r'B - 2 C', r'- 2 C + B']
assert latex(B + 2*C) in [r'B + 2 C', r'2 C + B']
assert latex(n * h - (-h + h.T) * (h + h.T)) == 'n h - \\left(- h + h^{T}\\right) \\left(h + h^{T}\\right)'
assert latex(MatAdd(MatAdd(h, h), MatAdd(h, h))) == '\\left(h + h\\right) + \\left(h + h\\right)'
assert latex(MatMul(MatMul(h, h), MatMul(h, h))) == '\\left(h h\\right) \\left(h h\\right)'
def test_matMul():
A = MatrixSymbol('A', 5, 5)
B = MatrixSymbol('B', 5, 5)
x = Symbol('x')
assert latex(2*A) == r'2 A'
assert latex(2*x*A) == r'2 x A'
assert latex(-2*A) == r'- 2 A'
assert latex(1.5*A) == r'1.5 A'
assert latex(sqrt(2)*A) == r'\sqrt{2} A'
assert latex(-sqrt(2)*A) == r'- \sqrt{2} A'
assert latex(2*sqrt(2)*x*A) == r'2 \sqrt{2} x A'
assert latex(-2*A*(A + 2*B)) in [r'- 2 A \left(A + 2 B\right)',
r'- 2 A \left(2 B + A\right)']
def test_latex_MatrixSlice():
n = Symbol('n', integer=True)
x, y, z, w, t, = symbols('x y z w t')
X = MatrixSymbol('X', n, n)
Y = MatrixSymbol('Y', 10, 10)
Z = MatrixSymbol('Z', 10, 10)
assert latex(MatrixSlice(X, (None, None, None), (None, None, None))) == r'X\left[:, :\right]'
assert latex(X[x:x + 1, y:y + 1]) == r'X\left[x:x + 1, y:y + 1\right]'
assert latex(X[x:x + 1:2, y:y + 1:2]) == r'X\left[x:x + 1:2, y:y + 1:2\right]'
assert latex(X[:x, y:]) == r'X\left[:x, y:\right]'
assert latex(X[:x, y:]) == r'X\left[:x, y:\right]'
assert latex(X[x:, :y]) == r'X\left[x:, :y\right]'
assert latex(X[x:y, z:w]) == r'X\left[x:y, z:w\right]'
assert latex(X[x:y:t, w:t:x]) == r'X\left[x:y:t, w:t:x\right]'
assert latex(X[x::y, t::w]) == r'X\left[x::y, t::w\right]'
assert latex(X[:x:y, :t:w]) == r'X\left[:x:y, :t:w\right]'
assert latex(X[::x, ::y]) == r'X\left[::x, ::y\right]'
assert latex(MatrixSlice(X, (0, None, None), (0, None, None))) == r'X\left[:, :\right]'
assert latex(MatrixSlice(X, (None, n, None), (None, n, None))) == r'X\left[:, :\right]'
assert latex(MatrixSlice(X, (0, n, None), (0, n, None))) == r'X\left[:, :\right]'
assert latex(MatrixSlice(X, (0, n, 2), (0, n, 2))) == r'X\left[::2, ::2\right]'
assert latex(X[1:2:3, 4:5:6]) == r'X\left[1:2:3, 4:5:6\right]'
assert latex(X[1:3:5, 4:6:8]) == r'X\left[1:3:5, 4:6:8\right]'
assert latex(X[1:10:2]) == r'X\left[1:10:2, :\right]'
assert latex(Y[:5, 1:9:2]) == r'Y\left[:5, 1:9:2\right]'
assert latex(Y[:5, 1:10:2]) == r'Y\left[:5, 1::2\right]'
assert latex(Y[5, :5:2]) == r'Y\left[5:6, :5:2\right]'
assert latex(X[0:1, 0:1]) == r'X\left[:1, :1\right]'
assert latex(X[0:1:2, 0:1:2]) == r'X\left[:1:2, :1:2\right]'
assert latex((Y + Z)[2:, 2:]) == r'\left(Y + Z\right)\left[2:, 2:\right]'
def test_latex_RandomDomain():
from sympy.stats import Normal, Die, Exponential, pspace, where
from sympy.stats.rv import RandomDomain
X = Normal('x1', 0, 1)
assert latex(where(X > 0)) == r"\text{Domain: }0 < x_{1} \wedge x_{1} < \infty"
D = Die('d1', 6)
assert latex(where(D > 4)) == r"\text{Domain: }d_{1} = 5 \vee d_{1} = 6"
A = Exponential('a', 1)
B = Exponential('b', 1)
assert latex(
pspace(Tuple(A, B)).domain) == \
r"\text{Domain: }0 \leq a \wedge 0 \leq b \wedge a < \infty \wedge b < \infty"
assert latex(RandomDomain(FiniteSet(x), FiniteSet(1, 2))) == \
r'\text{Domain: }\left\{x\right\} \in \left\{1, 2\right\}'
def test_PrettyPoly():
from sympy.polys.domains import QQ
F = QQ.frac_field(x, y)
R = QQ[x, y]
assert latex(F.convert(x/(x + y))) == latex(x/(x + y))
assert latex(R.convert(x + y)) == latex(x + y)
def test_integral_transforms():
x = Symbol("x")
k = Symbol("k")
f = Function("f")
a = Symbol("a")
b = Symbol("b")
assert latex(MellinTransform(f(x), x, k)) == \
r"\mathcal{M}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
assert latex(InverseMellinTransform(f(k), k, x, a, b)) == \
r"\mathcal{M}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
assert latex(LaplaceTransform(f(x), x, k)) == \
r"\mathcal{L}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
assert latex(InverseLaplaceTransform(f(k), k, x, (a, b))) == \
r"\mathcal{L}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
assert latex(FourierTransform(f(x), x, k)) == \
r"\mathcal{F}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
assert latex(InverseFourierTransform(f(k), k, x)) == \
r"\mathcal{F}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
assert latex(CosineTransform(f(x), x, k)) == \
r"\mathcal{COS}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
assert latex(InverseCosineTransform(f(k), k, x)) == \
r"\mathcal{COS}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
assert latex(SineTransform(f(x), x, k)) == \
r"\mathcal{SIN}_{x}\left[f{\left(x \right)}\right]\left(k\right)"
assert latex(InverseSineTransform(f(k), k, x)) == \
r"\mathcal{SIN}^{-1}_{k}\left[f{\left(k \right)}\right]\left(x\right)"
def test_PolynomialRingBase():
from sympy.polys.domains import QQ
assert latex(QQ.old_poly_ring(x, y)) == r"\mathbb{Q}\left[x, y\right]"
assert latex(QQ.old_poly_ring(x, y, order="ilex")) == \
r"S_<^{-1}\mathbb{Q}\left[x, y\right]"
def test_categories():
from sympy.categories import (Object, IdentityMorphism,
NamedMorphism, Category, Diagram,
DiagramGrid)
A1 = Object("A1")
A2 = Object("A2")
A3 = Object("A3")
f1 = NamedMorphism(A1, A2, "f1")
f2 = NamedMorphism(A2, A3, "f2")
id_A1 = IdentityMorphism(A1)
K1 = Category("K1")
assert latex(A1) == r"A_{1}"
assert latex(f1) == r"f_{1}:A_{1}\rightarrow A_{2}"
assert latex(id_A1) == r"id:A_{1}\rightarrow A_{1}"
assert latex(f2*f1) == r"f_{2}\circ f_{1}:A_{1}\rightarrow A_{3}"
assert latex(K1) == r"\mathbf{K_{1}}"
d = Diagram()
assert latex(d) == r"\emptyset"
d = Diagram({f1: "unique", f2: S.EmptySet})
assert latex(d) == r"\left\{ f_{2}\circ f_{1}:A_{1}" \
r"\rightarrow A_{3} : \emptyset, \ id:A_{1}\rightarrow " \
r"A_{1} : \emptyset, \ id:A_{2}\rightarrow A_{2} : " \
r"\emptyset, \ id:A_{3}\rightarrow A_{3} : \emptyset, " \
r"\ f_{1}:A_{1}\rightarrow A_{2} : \left\{unique\right\}, " \
r"\ f_{2}:A_{2}\rightarrow A_{3} : \emptyset\right\}"
d = Diagram({f1: "unique", f2: S.EmptySet}, {f2 * f1: "unique"})
assert latex(d) == r"\left\{ f_{2}\circ f_{1}:A_{1}" \
r"\rightarrow A_{3} : \emptyset, \ id:A_{1}\rightarrow " \
r"A_{1} : \emptyset, \ id:A_{2}\rightarrow A_{2} : " \
r"\emptyset, \ id:A_{3}\rightarrow A_{3} : \emptyset, " \
r"\ f_{1}:A_{1}\rightarrow A_{2} : \left\{unique\right\}," \
r" \ f_{2}:A_{2}\rightarrow A_{3} : \emptyset\right\}" \
r"\Longrightarrow \left\{ f_{2}\circ f_{1}:A_{1}" \
r"\rightarrow A_{3} : \left\{unique\right\}\right\}"
# A linear diagram.
A = Object("A")
B = Object("B")
C = Object("C")
f = NamedMorphism(A, B, "f")
g = NamedMorphism(B, C, "g")
d = Diagram([f, g])
grid = DiagramGrid(d)
assert latex(grid) == r"\begin{array}{cc}" + "\n" \
r"A & B \\" + "\n" \
r" & C " + "\n" \
r"\end{array}" + "\n"
def test_Modules():
from sympy.polys.domains import QQ
from sympy.polys.agca import homomorphism
R = QQ.old_poly_ring(x, y)
F = R.free_module(2)
M = F.submodule([x, y], [1, x**2])
assert latex(F) == r"{\mathbb{Q}\left[x, y\right]}^{2}"
assert latex(M) == \
r"\left\langle {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle"
I = R.ideal(x**2, y)
assert latex(I) == r"\left\langle {x^{2}},{y} \right\rangle"
Q = F / M
assert latex(Q) == \
r"\frac{{\mathbb{Q}\left[x, y\right]}^{2}}{\left\langle {\left[ {x},"\
r"{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle}"
assert latex(Q.submodule([1, x**3/2], [2, y])) == \
r"\left\langle {{\left[ {1},{\frac{x^{3}}{2}} \right]} + {\left"\
r"\langle {\left[ {x},{y} \right]},{\left[ {1},{x^{2}} \right]} "\
r"\right\rangle}},{{\left[ {2},{y} \right]} + {\left\langle {\left[ "\
r"{x},{y} \right]},{\left[ {1},{x^{2}} \right]} \right\rangle}} \right\rangle"
h = homomorphism(QQ.old_poly_ring(x).free_module(2),
QQ.old_poly_ring(x).free_module(2), [0, 0])
assert latex(h) == \
r"{\left[\begin{matrix}0 & 0\\0 & 0\end{matrix}\right]} : "\
r"{{\mathbb{Q}\left[x\right]}^{2}} \to {{\mathbb{Q}\left[x\right]}^{2}}"
def test_QuotientRing():
from sympy.polys.domains import QQ
R = QQ.old_poly_ring(x)/[x**2 + 1]
assert latex(R) == \
r"\frac{\mathbb{Q}\left[x\right]}{\left\langle {x^{2} + 1} \right\rangle}"
assert latex(R.one) == r"{1} + {\left\langle {x^{2} + 1} \right\rangle}"
def test_Tr():
#TODO: Handle indices
A, B = symbols('A B', commutative=False)
t = Tr(A*B)
assert latex(t) == r'\operatorname{tr}\left(A B\right)'
def test_Determinant():
from sympy.matrices import Determinant, Inverse, BlockMatrix, OneMatrix, ZeroMatrix
m = Matrix(((1, 2), (3, 4)))
assert latex(Determinant(m)) == '\\left|{\\begin{matrix}1 & 2\\\\3 & 4\\end{matrix}}\\right|'
assert latex(Determinant(Inverse(m))) == \
'\\left|{\\left[\\begin{matrix}1 & 2\\\\3 & 4\\end{matrix}\\right]^{-1}}\\right|'
X = MatrixSymbol('X', 2, 2)
assert latex(Determinant(X)) == '\\left|{X}\\right|'
assert latex(Determinant(X + m)) == \
'\\left|{\\left[\\begin{matrix}1 & 2\\\\3 & 4\\end{matrix}\\right] + X}\\right|'
assert latex(Determinant(BlockMatrix(((OneMatrix(2, 2), X),
(m, ZeroMatrix(2, 2)))))) == \
'\\left|{\\begin{matrix}1 & X\\\\\\left[\\begin{matrix}1 & 2\\\\3 & 4\\end{matrix}\\right] & 0\\end{matrix}}\\right|'
def test_Adjoint():
from sympy.matrices import Adjoint, Inverse, Transpose
X = MatrixSymbol('X', 2, 2)
Y = MatrixSymbol('Y', 2, 2)
assert latex(Adjoint(X)) == r'X^{\dagger}'
assert latex(Adjoint(X + Y)) == r'\left(X + Y\right)^{\dagger}'
assert latex(Adjoint(X) + Adjoint(Y)) == r'X^{\dagger} + Y^{\dagger}'
assert latex(Adjoint(X*Y)) == r'\left(X Y\right)^{\dagger}'
assert latex(Adjoint(Y)*Adjoint(X)) == r'Y^{\dagger} X^{\dagger}'
assert latex(Adjoint(X**2)) == r'\left(X^{2}\right)^{\dagger}'
assert latex(Adjoint(X)**2) == r'\left(X^{\dagger}\right)^{2}'
assert latex(Adjoint(Inverse(X))) == r'\left(X^{-1}\right)^{\dagger}'
assert latex(Inverse(Adjoint(X))) == r'\left(X^{\dagger}\right)^{-1}'
assert latex(Adjoint(Transpose(X))) == r'\left(X^{T}\right)^{\dagger}'
assert latex(Transpose(Adjoint(X))) == r'\left(X^{\dagger}\right)^{T}'
assert latex(Transpose(Adjoint(X) + Y)) == r'\left(X^{\dagger} + Y\right)^{T}'
m = Matrix(((1, 2), (3, 4)))
assert latex(Adjoint(m)) == '\\left[\\begin{matrix}1 & 2\\\\3 & 4\\end{matrix}\\right]^{\\dagger}'
assert latex(Adjoint(m+X)) == \
'\\left(\\left[\\begin{matrix}1 & 2\\\\3 & 4\\end{matrix}\\right] + X\\right)^{\\dagger}'
from sympy.matrices import BlockMatrix, OneMatrix, ZeroMatrix
assert latex(Adjoint(BlockMatrix(((OneMatrix(2, 2), X),
(m, ZeroMatrix(2, 2)))))) == \
'\\left[\\begin{matrix}1 & X\\\\\\left[\\begin{matrix}1 & 2\\\\3 & 4\\end{matrix}\\right] & 0\\end{matrix}\\right]^{\\dagger}'
# Issue 20959
Mx = MatrixSymbol('M^x', 2, 2)
assert latex(Adjoint(Mx)) == r'\left(M^{x}\right)^{\dagger}'
def test_Transpose():
from sympy.matrices import Transpose, MatPow, HadamardPower
X = MatrixSymbol('X', 2, 2)
Y = MatrixSymbol('Y', 2, 2)
assert latex(Transpose(X)) == r'X^{T}'
assert latex(Transpose(X + Y)) == r'\left(X + Y\right)^{T}'
assert latex(Transpose(HadamardPower(X, 2))) == r'\left(X^{\circ {2}}\right)^{T}'
assert latex(HadamardPower(Transpose(X), 2)) == r'\left(X^{T}\right)^{\circ {2}}'
assert latex(Transpose(MatPow(X, 2))) == r'\left(X^{2}\right)^{T}'
assert latex(MatPow(Transpose(X), 2)) == r'\left(X^{T}\right)^{2}'
m = Matrix(((1, 2), (3, 4)))
assert latex(Transpose(m)) == '\\left[\\begin{matrix}1 & 2\\\\3 & 4\\end{matrix}\\right]^{T}'
assert latex(Transpose(m+X)) == \
'\\left(\\left[\\begin{matrix}1 & 2\\\\3 & 4\\end{matrix}\\right] + X\\right)^{T}'
from sympy.matrices import BlockMatrix, OneMatrix, ZeroMatrix
assert latex(Transpose(BlockMatrix(((OneMatrix(2, 2), X),
(m, ZeroMatrix(2, 2)))))) == \
'\\left[\\begin{matrix}1 & X\\\\\\left[\\begin{matrix}1 & 2\\\\3 & 4\\end{matrix}\\right] & 0\\end{matrix}\\right]^{T}'
# Issue 20959
Mx = MatrixSymbol('M^x', 2, 2)
assert latex(Transpose(Mx)) == r'\left(M^{x}\right)^{T}'
def test_Hadamard():
from sympy.matrices import HadamardProduct, HadamardPower
from sympy.matrices.expressions import MatAdd, MatMul, MatPow
X = MatrixSymbol('X', 2, 2)
Y = MatrixSymbol('Y', 2, 2)
assert latex(HadamardProduct(X, Y*Y)) == r'X \circ Y^{2}'
assert latex(HadamardProduct(X, Y)*Y) == r'\left(X \circ Y\right) Y'
assert latex(HadamardPower(X, 2)) == r'X^{\circ {2}}'
assert latex(HadamardPower(X, -1)) == r'X^{\circ \left({-1}\right)}'
assert latex(HadamardPower(MatAdd(X, Y), 2)) == \
r'\left(X + Y\right)^{\circ {2}}'
assert latex(HadamardPower(MatMul(X, Y), 2)) == \
r'\left(X Y\right)^{\circ {2}}'
assert latex(HadamardPower(MatPow(X, -1), -1)) == \
r'\left(X^{-1}\right)^{\circ \left({-1}\right)}'
assert latex(MatPow(HadamardPower(X, -1), -1)) == \
r'\left(X^{\circ \left({-1}\right)}\right)^{-1}'
assert latex(HadamardPower(X, n+1)) == \
r'X^{\circ \left({n + 1}\right)}'
def test_MatPow():
from sympy.matrices.expressions import MatPow
X = MatrixSymbol('X', 2, 2)
Y = MatrixSymbol('Y', 2, 2)
assert latex(MatPow(X, 2)) == 'X^{2}'
assert latex(MatPow(X*X, 2)) == '\\left(X^{2}\\right)^{2}'
assert latex(MatPow(X*Y, 2)) == '\\left(X Y\\right)^{2}'
assert latex(MatPow(X + Y, 2)) == '\\left(X + Y\\right)^{2}'
assert latex(MatPow(X + X, 2)) == '\\left(2 X\\right)^{2}'
# Issue 20959
Mx = MatrixSymbol('M^x', 2, 2)
assert latex(MatPow(Mx, 2)) == r'\left(M^{x}\right)^{2}'
def test_ElementwiseApplyFunction():
X = MatrixSymbol('X', 2, 2)
expr = (X.T*X).applyfunc(sin)
assert latex(expr) == r"{\left( d \mapsto \sin{\left(d \right)} \right)}_{\circ}\left({X^{T} X}\right)"
expr = X.applyfunc(Lambda(x, 1/x))
assert latex(expr) == r'{\left( x \mapsto \frac{1}{x} \right)}_{\circ}\left({X}\right)'
def test_ZeroMatrix():
from sympy.matrices.expressions.special import ZeroMatrix
assert latex(ZeroMatrix(1, 1), mat_symbol_style='plain') == r"0"
assert latex(ZeroMatrix(1, 1), mat_symbol_style='bold') == r"\mathbf{0}"
def test_OneMatrix():
from sympy.matrices.expressions.special import OneMatrix
assert latex(OneMatrix(3, 4), mat_symbol_style='plain') == r"1"
assert latex(OneMatrix(3, 4), mat_symbol_style='bold') == r"\mathbf{1}"
def test_Identity():
from sympy.matrices.expressions.special import Identity
assert latex(Identity(1), mat_symbol_style='plain') == r"\mathbb{I}"
assert latex(Identity(1), mat_symbol_style='bold') == r"\mathbf{I}"
def test_latex_DFT_IDFT():
from sympy.matrices.expressions.fourier import DFT, IDFT
assert latex(DFT(13)) == r"\text{DFT}_{13}"
assert latex(IDFT(x)) == r"\text{IDFT}_{x}"
def test_boolean_args_order():
syms = symbols('a:f')
expr = And(*syms)
assert latex(expr) == r'a \wedge b \wedge c \wedge d \wedge e \wedge f'
expr = Or(*syms)
assert latex(expr) == r'a \vee b \vee c \vee d \vee e \vee f'
expr = Equivalent(*syms)
assert latex(expr) == \
r'a \Leftrightarrow b \Leftrightarrow c \Leftrightarrow d \Leftrightarrow e \Leftrightarrow f'
expr = Xor(*syms)
assert latex(expr) == \
r'a \veebar b \veebar c \veebar d \veebar e \veebar f'
def test_imaginary():
i = sqrt(-1)
assert latex(i) == r'i'
def test_builtins_without_args():
assert latex(sin) == r'\sin'
assert latex(cos) == r'\cos'
assert latex(tan) == r'\tan'
assert latex(log) == r'\log'
assert latex(Ei) == r'\operatorname{Ei}'
assert latex(zeta) == r'\zeta'
def test_latex_greek_functions():
# bug because capital greeks that have roman equivalents should not use
# \Alpha, \Beta, \Eta, etc.
s = Function('Alpha')
assert latex(s) == r'\mathrm{A}'
assert latex(s(x)) == r'\mathrm{A}{\left(x \right)}'
s = Function('Beta')
assert latex(s) == r'\mathrm{B}'
s = Function('Eta')
assert latex(s) == r'\mathrm{H}'
assert latex(s(x)) == r'\mathrm{H}{\left(x \right)}'
# bug because sympy.core.numbers.Pi is special
p = Function('Pi')
# assert latex(p(x)) == r'\Pi{\left(x \right)}'
assert latex(p) == r'\Pi'
# bug because not all greeks are included
c = Function('chi')
assert latex(c(x)) == r'\chi{\left(x \right)}'
assert latex(c) == r'\chi'
def test_translate():
s = 'Alpha'
assert translate(s) == r'\mathrm{A}'
s = 'Beta'
assert translate(s) == r'\mathrm{B}'
s = 'Eta'
assert translate(s) == r'\mathrm{H}'
s = 'omicron'
assert translate(s) == r'o'
s = 'Pi'
assert translate(s) == r'\Pi'
s = 'pi'
assert translate(s) == r'\pi'
s = 'LamdaHatDOT'
assert translate(s) == r'\dot{\hat{\Lambda}}'
def test_other_symbols():
from sympy.printing.latex import other_symbols
for s in other_symbols:
assert latex(symbols(s)) == r"" "\\" + s
def test_modifiers():
# Test each modifier individually in the simplest case
# (with funny capitalizations)
assert latex(symbols("xMathring")) == r"\mathring{x}"
assert latex(symbols("xCheck")) == r"\check{x}"
assert latex(symbols("xBreve")) == r"\breve{x}"
assert latex(symbols("xAcute")) == r"\acute{x}"
assert latex(symbols("xGrave")) == r"\grave{x}"
assert latex(symbols("xTilde")) == r"\tilde{x}"
assert latex(symbols("xPrime")) == r"{x}'"
assert latex(symbols("xddDDot")) == r"\ddddot{x}"
assert latex(symbols("xDdDot")) == r"\dddot{x}"
assert latex(symbols("xDDot")) == r"\ddot{x}"
assert latex(symbols("xBold")) == r"\boldsymbol{x}"
assert latex(symbols("xnOrM")) == r"\left\|{x}\right\|"
assert latex(symbols("xAVG")) == r"\left\langle{x}\right\rangle"
assert latex(symbols("xHat")) == r"\hat{x}"
assert latex(symbols("xDot")) == r"\dot{x}"
assert latex(symbols("xBar")) == r"\bar{x}"
assert latex(symbols("xVec")) == r"\vec{x}"
assert latex(symbols("xAbs")) == r"\left|{x}\right|"
assert latex(symbols("xMag")) == r"\left|{x}\right|"
assert latex(symbols("xPrM")) == r"{x}'"
assert latex(symbols("xBM")) == r"\boldsymbol{x}"
# Test strings that are *only* the names of modifiers
assert latex(symbols("Mathring")) == r"Mathring"
assert latex(symbols("Check")) == r"Check"
assert latex(symbols("Breve")) == r"Breve"
assert latex(symbols("Acute")) == r"Acute"
assert latex(symbols("Grave")) == r"Grave"
assert latex(symbols("Tilde")) == r"Tilde"
assert latex(symbols("Prime")) == r"Prime"
assert latex(symbols("DDot")) == r"\dot{D}"
assert latex(symbols("Bold")) == r"Bold"
assert latex(symbols("NORm")) == r"NORm"
assert latex(symbols("AVG")) == r"AVG"
assert latex(symbols("Hat")) == r"Hat"
assert latex(symbols("Dot")) == r"Dot"
assert latex(symbols("Bar")) == r"Bar"
assert latex(symbols("Vec")) == r"Vec"
assert latex(symbols("Abs")) == r"Abs"
assert latex(symbols("Mag")) == r"Mag"
assert latex(symbols("PrM")) == r"PrM"
assert latex(symbols("BM")) == r"BM"
assert latex(symbols("hbar")) == r"\hbar"
# Check a few combinations
assert latex(symbols("xvecdot")) == r"\dot{\vec{x}}"
assert latex(symbols("xDotVec")) == r"\vec{\dot{x}}"
assert latex(symbols("xHATNorm")) == r"\left\|{\hat{x}}\right\|"
# Check a couple big, ugly combinations
assert latex(symbols('xMathringBm_yCheckPRM__zbreveAbs')) == \
r"\boldsymbol{\mathring{x}}^{\left|{\breve{z}}\right|}_{{\check{y}}'}"
assert latex(symbols('alphadothat_nVECDOT__tTildePrime')) == \
r"\hat{\dot{\alpha}}^{{\tilde{t}}'}_{\dot{\vec{n}}}"
def test_greek_symbols():
assert latex(Symbol('alpha')) == r'\alpha'
assert latex(Symbol('beta')) == r'\beta'
assert latex(Symbol('gamma')) == r'\gamma'
assert latex(Symbol('delta')) == r'\delta'
assert latex(Symbol('epsilon')) == r'\epsilon'
assert latex(Symbol('zeta')) == r'\zeta'
assert latex(Symbol('eta')) == r'\eta'
assert latex(Symbol('theta')) == r'\theta'
assert latex(Symbol('iota')) == r'\iota'
assert latex(Symbol('kappa')) == r'\kappa'
assert latex(Symbol('lambda')) == r'\lambda'
assert latex(Symbol('mu')) == r'\mu'
assert latex(Symbol('nu')) == r'\nu'
assert latex(Symbol('xi')) == r'\xi'
assert latex(Symbol('omicron')) == r'o'
assert latex(Symbol('pi')) == r'\pi'
assert latex(Symbol('rho')) == r'\rho'
assert latex(Symbol('sigma')) == r'\sigma'
assert latex(Symbol('tau')) == r'\tau'
assert latex(Symbol('upsilon')) == r'\upsilon'
assert latex(Symbol('phi')) == r'\phi'
assert latex(Symbol('chi')) == r'\chi'
assert latex(Symbol('psi')) == r'\psi'
assert latex(Symbol('omega')) == r'\omega'
assert latex(Symbol('Alpha')) == r'\mathrm{A}'
assert latex(Symbol('Beta')) == r'\mathrm{B}'
assert latex(Symbol('Gamma')) == r'\Gamma'
assert latex(Symbol('Delta')) == r'\Delta'
assert latex(Symbol('Epsilon')) == r'\mathrm{E}'
assert latex(Symbol('Zeta')) == r'\mathrm{Z}'
assert latex(Symbol('Eta')) == r'\mathrm{H}'
assert latex(Symbol('Theta')) == r'\Theta'
assert latex(Symbol('Iota')) == r'\mathrm{I}'
assert latex(Symbol('Kappa')) == r'\mathrm{K}'
assert latex(Symbol('Lambda')) == r'\Lambda'
assert latex(Symbol('Mu')) == r'\mathrm{M}'
assert latex(Symbol('Nu')) == r'\mathrm{N}'
assert latex(Symbol('Xi')) == r'\Xi'
assert latex(Symbol('Omicron')) == r'\mathrm{O}'
assert latex(Symbol('Pi')) == r'\Pi'
assert latex(Symbol('Rho')) == r'\mathrm{P}'
assert latex(Symbol('Sigma')) == r'\Sigma'
assert latex(Symbol('Tau')) == r'\mathrm{T}'
assert latex(Symbol('Upsilon')) == r'\Upsilon'
assert latex(Symbol('Phi')) == r'\Phi'
assert latex(Symbol('Chi')) == r'\mathrm{X}'
assert latex(Symbol('Psi')) == r'\Psi'
assert latex(Symbol('Omega')) == r'\Omega'
assert latex(Symbol('varepsilon')) == r'\varepsilon'
assert latex(Symbol('varkappa')) == r'\varkappa'
assert latex(Symbol('varphi')) == r'\varphi'
assert latex(Symbol('varpi')) == r'\varpi'
assert latex(Symbol('varrho')) == r'\varrho'
assert latex(Symbol('varsigma')) == r'\varsigma'
assert latex(Symbol('vartheta')) == r'\vartheta'
def test_fancyset_symbols():
assert latex(S.Rationals) == r'\mathbb{Q}'
assert latex(S.Naturals) == r'\mathbb{N}'
assert latex(S.Naturals0) == r'\mathbb{N}_0'
assert latex(S.Integers) == r'\mathbb{Z}'
assert latex(S.Reals) == r'\mathbb{R}'
assert latex(S.Complexes) == r'\mathbb{C}'
@XFAIL
def test_builtin_without_args_mismatched_names():
assert latex(CosineTransform) == r'\mathcal{COS}'
def test_builtin_no_args():
assert latex(Chi) == r'\operatorname{Chi}'
assert latex(beta) == r'\operatorname{B}'
assert latex(gamma) == r'\Gamma'
assert latex(KroneckerDelta) == r'\delta'
assert latex(DiracDelta) == r'\delta'
assert latex(lowergamma) == r'\gamma'
def test_issue_6853():
p = Function('Pi')
assert latex(p(x)) == r"\Pi{\left(x \right)}"
def test_Mul():
e = Mul(-2, x + 1, evaluate=False)
assert latex(e) == r'- 2 \left(x + 1\right)'
e = Mul(2, x + 1, evaluate=False)
assert latex(e) == r'2 \left(x + 1\right)'
e = Mul(S.Half, x + 1, evaluate=False)
assert latex(e) == r'\frac{x + 1}{2}'
e = Mul(y, x + 1, evaluate=False)
assert latex(e) == r'y \left(x + 1\right)'
e = Mul(-y, x + 1, evaluate=False)
assert latex(e) == r'- y \left(x + 1\right)'
e = Mul(-2, x + 1)
assert latex(e) == r'- 2 x - 2'
e = Mul(2, x + 1)
assert latex(e) == r'2 x + 2'
def test_Pow():
e = Pow(2, 2, evaluate=False)
assert latex(e) == r'2^{2}'
assert latex(x**(Rational(-1, 3))) == r'\frac{1}{\sqrt[3]{x}}'
x2 = Symbol(r'x^2')
assert latex(x2**2) == r'\left(x^{2}\right)^{2}'
def test_issue_7180():
assert latex(Equivalent(x, y)) == r"x \Leftrightarrow y"
assert latex(Not(Equivalent(x, y))) == r"x \not\Leftrightarrow y"
def test_issue_8409():
assert latex(S.Half**n) == r"\left(\frac{1}{2}\right)^{n}"
def test_issue_8470():
from sympy.parsing.sympy_parser import parse_expr
e = parse_expr("-B*A", evaluate=False)
assert latex(e) == r"A \left(- B\right)"
def test_issue_15439():
x = MatrixSymbol('x', 2, 2)
y = MatrixSymbol('y', 2, 2)
assert latex((x * y).subs(y, -y)) == r"x \left(- y\right)"
assert latex((x * y).subs(y, -2*y)) == r"x \left(- 2 y\right)"
assert latex((x * y).subs(x, -x)) == r"\left(- x\right) y"
def test_issue_2934():
assert latex(Symbol(r'\frac{a_1}{b_1}')) == r'\frac{a_1}{b_1}'
def test_issue_10489():
latexSymbolWithBrace = r'C_{x_{0}}'
s = Symbol(latexSymbolWithBrace)
assert latex(s) == latexSymbolWithBrace
assert latex(cos(s)) == r'\cos{\left(C_{x_{0}} \right)}'
def test_issue_12886():
m__1, l__1 = symbols('m__1, l__1')
assert latex(m__1**2 + l__1**2) == \
r'\left(l^{1}\right)^{2} + \left(m^{1}\right)^{2}'
def test_issue_13559():
from sympy.parsing.sympy_parser import parse_expr
expr = parse_expr('5/1', evaluate=False)
assert latex(expr) == r"\frac{5}{1}"
def test_issue_13651():
expr = c + Mul(-1, a + b, evaluate=False)
assert latex(expr) == r"c - \left(a + b\right)"
def test_latex_UnevaluatedExpr():
x = symbols("x")
he = UnevaluatedExpr(1/x)
assert latex(he) == latex(1/x) == r"\frac{1}{x}"
assert latex(he**2) == r"\left(\frac{1}{x}\right)^{2}"
assert latex(he + 1) == r"1 + \frac{1}{x}"
assert latex(x*he) == r"x \frac{1}{x}"
def test_MatrixElement_printing():
# test cases for issue #11821
A = MatrixSymbol("A", 1, 3)
B = MatrixSymbol("B", 1, 3)
C = MatrixSymbol("C", 1, 3)
assert latex(A[0, 0]) == r"A_{0, 0}"
assert latex(3 * A[0, 0]) == r"3 A_{0, 0}"
F = C[0, 0].subs(C, A - B)
assert latex(F) == r"\left(A - B\right)_{0, 0}"
i, j, k = symbols("i j k")
M = MatrixSymbol("M", k, k)
N = MatrixSymbol("N", k, k)
assert latex((M*N)[i, j]) == \
r'\sum_{i_{1}=0}^{k - 1} M_{i, i_{1}} N_{i_{1}, j}'
def test_MatrixSymbol_printing():
# test cases for issue #14237
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
C = MatrixSymbol("C", 3, 3)
assert latex(-A) == r"- A"
assert latex(A - A*B - B) == r"A - A B - B"
assert latex(-A*B - A*B*C - B) == r"- A B - A B C - B"
def test_KroneckerProduct_printing():
A = MatrixSymbol('A', 3, 3)
B = MatrixSymbol('B', 2, 2)
assert latex(KroneckerProduct(A, B)) == r'A \otimes B'
def test_Series_printing():
tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y)
tf2 = TransferFunction(x - y, x + y, y)
tf3 = TransferFunction(t*x**2 - t**w*x + w, t - y, y)
assert latex(Series(tf1, tf2)) == \
r'\left(\frac{x y^{2} - z}{- t^{3} + y^{3}}\right) \left(\frac{x - y}{x + y}\right)'
assert latex(Series(tf1, tf2, tf3)) == \
r'\left(\frac{x y^{2} - z}{- t^{3} + y^{3}}\right) \left(\frac{x - y}{x + y}\right) \left(\frac{t x^{2} - t^{w} x + w}{t - y}\right)'
assert latex(Series(-tf2, tf1)) == \
r'\left(\frac{- x + y}{x + y}\right) \left(\frac{x y^{2} - z}{- t^{3} + y^{3}}\right)'
M_1 = Matrix([[5/s], [5/(2*s)]])
T_1 = TransferFunctionMatrix.from_Matrix(M_1, s)
M_2 = Matrix([[5, 6*s**3]])
T_2 = TransferFunctionMatrix.from_Matrix(M_2, s)
# Brackets
assert latex(T_1*(T_2 + T_2)) == \
r'\left[\begin{matrix}\frac{5}{s}\\\frac{5}{2 s}\end{matrix}\right]_\tau\cdot\left(\left[\begin{matrix}\frac{5}{1} &' \
r' \frac{6 s^{3}}{1}\end{matrix}\right]_\tau + \left[\begin{matrix}\frac{5}{1} & \frac{6 s^{3}}{1}\end{matrix}\right]_\tau\right)' \
== latex(MIMOSeries(MIMOParallel(T_2, T_2), T_1))
# No Brackets
M_3 = Matrix([[5, 6], [6, 5/s]])
T_3 = TransferFunctionMatrix.from_Matrix(M_3, s)
assert latex(T_1*T_2 + T_3) == r'\left[\begin{matrix}\frac{5}{s}\\\frac{5}{2 s}\end{matrix}\right]_\tau\cdot\left[\begin{matrix}' \
r'\frac{5}{1} & \frac{6 s^{3}}{1}\end{matrix}\right]_\tau + \left[\begin{matrix}\frac{5}{1} & \frac{6}{1}\\\frac{6}{1} & ' \
r'\frac{5}{s}\end{matrix}\right]_\tau' == latex(MIMOParallel(MIMOSeries(T_2, T_1), T_3))
def test_TransferFunction_printing():
tf1 = TransferFunction(x - 1, x + 1, x)
assert latex(tf1) == r"\frac{x - 1}{x + 1}"
tf2 = TransferFunction(x + 1, 2 - y, x)
assert latex(tf2) == r"\frac{x + 1}{2 - y}"
tf3 = TransferFunction(y, y**2 + 2*y + 3, y)
assert latex(tf3) == r"\frac{y}{y^{2} + 2 y + 3}"
def test_Parallel_printing():
tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y)
tf2 = TransferFunction(x - y, x + y, y)
assert latex(Parallel(tf1, tf2)) == \
r'\frac{x y^{2} - z}{- t^{3} + y^{3}} + \frac{x - y}{x + y}'
assert latex(Parallel(-tf2, tf1)) == \
r'\frac{- x + y}{x + y} + \frac{x y^{2} - z}{- t^{3} + y^{3}}'
M_1 = Matrix([[5, 6], [6, 5/s]])
T_1 = TransferFunctionMatrix.from_Matrix(M_1, s)
M_2 = Matrix([[5/s, 6], [6, 5/(s - 1)]])
T_2 = TransferFunctionMatrix.from_Matrix(M_2, s)
M_3 = Matrix([[6, 5/(s*(s - 1))], [5, 6]])
T_3 = TransferFunctionMatrix.from_Matrix(M_3, s)
assert latex(T_1 + T_2 + T_3) == r'\left[\begin{matrix}\frac{5}{1} & \frac{6}{1}\\\frac{6}{1} & \frac{5}{s}\end{matrix}\right]' \
r'_\tau + \left[\begin{matrix}\frac{5}{s} & \frac{6}{1}\\\frac{6}{1} & \frac{5}{s - 1}\end{matrix}\right]_\tau + \left[\begin{matrix}' \
r'\frac{6}{1} & \frac{5}{s \left(s - 1\right)}\\\frac{5}{1} & \frac{6}{1}\end{matrix}\right]_\tau' \
== latex(MIMOParallel(T_1, T_2, T_3)) == latex(MIMOParallel(T_1, MIMOParallel(T_2, T_3))) == latex(MIMOParallel(MIMOParallel(T_1, T_2), T_3))
def test_TransferFunctionMatrix_printing():
tf1 = TransferFunction(p, p + x, p)
tf2 = TransferFunction(-s + p, p + s, p)
tf3 = TransferFunction(p, y**2 + 2*y + 3, p)
assert latex(TransferFunctionMatrix([[tf1], [tf2]])) == \
r'\left[\begin{matrix}\frac{p}{p + x}\\\frac{p - s}{p + s}\end{matrix}\right]_\tau'
assert latex(TransferFunctionMatrix([[tf1, tf2], [tf3, -tf1]])) == \
r'\left[\begin{matrix}\frac{p}{p + x} & \frac{p - s}{p + s}\\\frac{p}{y^{2} + 2 y + 3} & \frac{\left(-1\right) p}{p + x}\end{matrix}\right]_\tau'
def test_Feedback_printing():
tf1 = TransferFunction(p, p + x, p)
tf2 = TransferFunction(-s + p, p + s, p)
# Negative Feedback (Default)
assert latex(Feedback(tf1, tf2)) == \
r'\frac{\frac{p}{p + x}}{\frac{1}{1} + \left(\frac{p}{p + x}\right) \left(\frac{p - s}{p + s}\right)}'
assert latex(Feedback(tf1*tf2, TransferFunction(1, 1, p))) == \
r'\frac{\left(\frac{p}{p + x}\right) \left(\frac{p - s}{p + s}\right)}{\frac{1}{1} + \left(\frac{p}{p + x}\right) \left(\frac{p - s}{p + s}\right)}'
# Positive Feedback
assert latex(Feedback(tf1, tf2, 1)) == \
r'\frac{\frac{p}{p + x}}{\frac{1}{1} - \left(\frac{p}{p + x}\right) \left(\frac{p - s}{p + s}\right)}'
assert latex(Feedback(tf1*tf2, sign=1)) == \
r'\frac{\left(\frac{p}{p + x}\right) \left(\frac{p - s}{p + s}\right)}{\frac{1}{1} - \left(\frac{p}{p + x}\right) \left(\frac{p - s}{p + s}\right)}'
def test_MIMOFeedback_printing():
tf1 = TransferFunction(1, s, s)
tf2 = TransferFunction(s, s**2 - 1, s)
tf3 = TransferFunction(s, s - 1, s)
tf4 = TransferFunction(s**2, s**2 - 1, s)
tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf3, tf4]])
tfm_2 = TransferFunctionMatrix([[tf4, tf3], [tf2, tf1]])
# Negative Feedback (Default)
assert latex(MIMOFeedback(tfm_1, tfm_2)) == \
r'\left(I_{\tau} + \left[\begin{matrix}\frac{1}{s} & \frac{s}{s^{2} - 1}\\\frac{s}{s - 1} & \frac{s^{2}}{s^{2} - 1}\end{matrix}\right]_\tau\cdot\left[' \
r'\begin{matrix}\frac{s^{2}}{s^{2} - 1} & \frac{s}{s - 1}\\\frac{s}{s^{2} - 1} & \frac{1}{s}\end{matrix}\right]_\tau\right)^{-1} \cdot \left[\begin{matrix}' \
r'\frac{1}{s} & \frac{s}{s^{2} - 1}\\\frac{s}{s - 1} & \frac{s^{2}}{s^{2} - 1}\end{matrix}\right]_\tau'
# Positive Feedback
assert latex(MIMOFeedback(tfm_1*tfm_2, tfm_1, 1)) == \
r'\left(I_{\tau} - \left[\begin{matrix}\frac{1}{s} & \frac{s}{s^{2} - 1}\\\frac{s}{s - 1} & \frac{s^{2}}{s^{2} - 1}\end{matrix}\right]_\tau\cdot\left' \
r'[\begin{matrix}\frac{s^{2}}{s^{2} - 1} & \frac{s}{s - 1}\\\frac{s}{s^{2} - 1} & \frac{1}{s}\end{matrix}\right]_\tau\cdot\left[\begin{matrix}\frac{1}{s} & \frac{s}{s^{2} - 1}' \
r'\\\frac{s}{s - 1} & \frac{s^{2}}{s^{2} - 1}\end{matrix}\right]_\tau\right)^{-1} \cdot \left[\begin{matrix}\frac{1}{s} & \frac{s}{s^{2} - 1}' \
r'\\\frac{s}{s - 1} & \frac{s^{2}}{s^{2} - 1}\end{matrix}\right]_\tau\cdot\left[\begin{matrix}\frac{s^{2}}{s^{2} - 1} & \frac{s}{s - 1}\\\frac{s}{s^{2} - 1}' \
r' & \frac{1}{s}\end{matrix}\right]_\tau'
def test_Quaternion_latex_printing():
q = Quaternion(x, y, z, t)
assert latex(q) == r"x + y i + z j + t k"
q = Quaternion(x, y, z, x*t)
assert latex(q) == r"x + y i + z j + t x k"
q = Quaternion(x, y, z, x + t)
assert latex(q) == r"x + y i + z j + \left(t + x\right) k"
def test_TensorProduct_printing():
from sympy.tensor.functions import TensorProduct
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
assert latex(TensorProduct(A, B)) == r"A \otimes B"
def test_WedgeProduct_printing():
from sympy.diffgeom.rn import R2
from sympy.diffgeom import WedgeProduct
wp = WedgeProduct(R2.dx, R2.dy)
assert latex(wp) == r"\operatorname{d}x \wedge \operatorname{d}y"
def test_issue_9216():
expr_1 = Pow(1, -1, evaluate=False)
assert latex(expr_1) == r"1^{-1}"
expr_2 = Pow(1, Pow(1, -1, evaluate=False), evaluate=False)
assert latex(expr_2) == r"1^{1^{-1}}"
expr_3 = Pow(3, -2, evaluate=False)
assert latex(expr_3) == r"\frac{1}{9}"
expr_4 = Pow(1, -2, evaluate=False)
assert latex(expr_4) == r"1^{-2}"
def test_latex_printer_tensor():
from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, tensor_heads
L = TensorIndexType("L")
i, j, k, l = tensor_indices("i j k l", L)
i0 = tensor_indices("i_0", L)
A, B, C, D = tensor_heads("A B C D", [L])
H = TensorHead("H", [L, L])
K = TensorHead("K", [L, L, L, L])
assert latex(i) == r"{}^{i}"
assert latex(-i) == r"{}_{i}"
expr = A(i)
assert latex(expr) == r"A{}^{i}"
expr = A(i0)
assert latex(expr) == r"A{}^{i_{0}}"
expr = A(-i)
assert latex(expr) == r"A{}_{i}"
expr = -3*A(i)
assert latex(expr) == r"-3A{}^{i}"
expr = K(i, j, -k, -i0)
assert latex(expr) == r"K{}^{ij}{}_{ki_{0}}"
expr = K(i, -j, -k, i0)
assert latex(expr) == r"K{}^{i}{}_{jk}{}^{i_{0}}"
expr = K(i, -j, k, -i0)
assert latex(expr) == r"K{}^{i}{}_{j}{}^{k}{}_{i_{0}}"
expr = H(i, -j)
assert latex(expr) == r"H{}^{i}{}_{j}"
expr = H(i, j)
assert latex(expr) == r"H{}^{ij}"
expr = H(-i, -j)
assert latex(expr) == r"H{}_{ij}"
expr = (1+x)*A(i)
assert latex(expr) == r"\left(x + 1\right)A{}^{i}"
expr = H(i, -i)
assert latex(expr) == r"H{}^{L_{0}}{}_{L_{0}}"
expr = H(i, -j)*A(j)*B(k)
assert latex(expr) == r"H{}^{i}{}_{L_{0}}A{}^{L_{0}}B{}^{k}"
expr = A(i) + 3*B(i)
assert latex(expr) == r"3B{}^{i} + A{}^{i}"
# Test ``TensorElement``:
from sympy.tensor.tensor import TensorElement
expr = TensorElement(K(i, j, k, l), {i: 3, k: 2})
assert latex(expr) == r'K{}^{i=3,j,k=2,l}'
expr = TensorElement(K(i, j, k, l), {i: 3})
assert latex(expr) == r'K{}^{i=3,jkl}'
expr = TensorElement(K(i, -j, k, l), {i: 3, k: 2})
assert latex(expr) == r'K{}^{i=3}{}_{j}{}^{k=2,l}'
expr = TensorElement(K(i, -j, k, -l), {i: 3, k: 2})
assert latex(expr) == r'K{}^{i=3}{}_{j}{}^{k=2}{}_{l}'
expr = TensorElement(K(i, j, -k, -l), {i: 3, -k: 2})
assert latex(expr) == r'K{}^{i=3,j}{}_{k=2,l}'
expr = TensorElement(K(i, j, -k, -l), {i: 3})
assert latex(expr) == r'K{}^{i=3,j}{}_{kl}'
expr = PartialDerivative(A(i), A(i))
assert latex(expr) == r"\frac{\partial}{\partial {A{}^{L_{0}}}}{A{}^{L_{0}}}"
expr = PartialDerivative(A(-i), A(-j))
assert latex(expr) == r"\frac{\partial}{\partial {A{}_{j}}}{A{}_{i}}"
expr = PartialDerivative(K(i, j, -k, -l), A(m), A(-n))
assert latex(expr) == r"\frac{\partial^{2}}{\partial {A{}^{m}} \partial {A{}_{n}}}{K{}^{ij}{}_{kl}}"
expr = PartialDerivative(B(-i) + A(-i), A(-j), A(-n))
assert latex(expr) == r"\frac{\partial^{2}}{\partial {A{}_{j}} \partial {A{}_{n}}}{\left(A{}_{i} + B{}_{i}\right)}"
expr = PartialDerivative(3*A(-i), A(-j), A(-n))
assert latex(expr) == r"\frac{\partial^{2}}{\partial {A{}_{j}} \partial {A{}_{n}}}{\left(3A{}_{i}\right)}"
def test_multiline_latex():
a, b, c, d, e, f = symbols('a b c d e f')
expr = -a + 2*b -3*c +4*d -5*e
expected = r"\begin{eqnarray}" + "\n"\
r"f & = &- a \nonumber\\" + "\n"\
r"& & + 2 b \nonumber\\" + "\n"\
r"& & - 3 c \nonumber\\" + "\n"\
r"& & + 4 d \nonumber\\" + "\n"\
r"& & - 5 e " + "\n"\
r"\end{eqnarray}"
assert multiline_latex(f, expr, environment="eqnarray") == expected
expected2 = r'\begin{eqnarray}' + '\n'\
r'f & = &- a + 2 b \nonumber\\' + '\n'\
r'& & - 3 c + 4 d \nonumber\\' + '\n'\
r'& & - 5 e ' + '\n'\
r'\end{eqnarray}'
assert multiline_latex(f, expr, 2, environment="eqnarray") == expected2
expected3 = r'\begin{eqnarray}' + '\n'\
r'f & = &- a + 2 b - 3 c \nonumber\\'+ '\n'\
r'& & + 4 d - 5 e ' + '\n'\
r'\end{eqnarray}'
assert multiline_latex(f, expr, 3, environment="eqnarray") == expected3
expected3dots = r'\begin{eqnarray}' + '\n'\
r'f & = &- a + 2 b - 3 c \dots\nonumber\\'+ '\n'\
r'& & + 4 d - 5 e ' + '\n'\
r'\end{eqnarray}'
assert multiline_latex(f, expr, 3, environment="eqnarray", use_dots=True) == expected3dots
expected3align = r'\begin{align*}' + '\n'\
r'f = &- a + 2 b - 3 c \\'+ '\n'\
r'& + 4 d - 5 e ' + '\n'\
r'\end{align*}'
assert multiline_latex(f, expr, 3) == expected3align
assert multiline_latex(f, expr, 3, environment='align*') == expected3align
expected2ieee = r'\begin{IEEEeqnarray}{rCl}' + '\n'\
r'f & = &- a + 2 b \nonumber\\' + '\n'\
r'& & - 3 c + 4 d \nonumber\\' + '\n'\
r'& & - 5 e ' + '\n'\
r'\end{IEEEeqnarray}'
assert multiline_latex(f, expr, 2, environment="IEEEeqnarray") == expected2ieee
raises(ValueError, lambda: multiline_latex(f, expr, environment="foo"))
def test_issue_15353():
a, x = symbols('a x')
# Obtained from nonlinsolve([(sin(a*x)),cos(a*x)],[x,a])
sol = ConditionSet(
Tuple(x, a), Eq(sin(a*x), 0) & Eq(cos(a*x), 0), S.Complexes**2)
assert latex(sol) == \
r'\left\{\left( x, \ a\right)\; \middle|\; \left( x, \ a\right) \in ' \
r'\mathbb{C}^{2} \wedge \sin{\left(a x \right)} = 0 \wedge ' \
r'\cos{\left(a x \right)} = 0 \right\}'
def test_latex_symbolic_probability():
mu = symbols("mu")
sigma = symbols("sigma", positive=True)
X = Normal("X", mu, sigma)
assert latex(Expectation(X)) == r'\operatorname{E}\left[X\right]'
assert latex(Variance(X)) == r'\operatorname{Var}\left(X\right)'
assert latex(Probability(X > 0)) == r'\operatorname{P}\left(X > 0\right)'
Y = Normal("Y", mu, sigma)
assert latex(Covariance(X, Y)) == r'\operatorname{Cov}\left(X, Y\right)'
def test_trace():
# Issue 15303
from sympy.matrices.expressions.trace import trace
A = MatrixSymbol("A", 2, 2)
assert latex(trace(A)) == r"\operatorname{tr}\left(A \right)"
assert latex(trace(A**2)) == r"\operatorname{tr}\left(A^{2} \right)"
def test_print_basic():
# Issue 15303
from sympy.core.basic import Basic
from sympy.core.expr import Expr
# dummy class for testing printing where the function is not
# implemented in latex.py
class UnimplementedExpr(Expr):
def __new__(cls, e):
return Basic.__new__(cls, e)
# dummy function for testing
def unimplemented_expr(expr):
return UnimplementedExpr(expr).doit()
# override class name to use superscript / subscript
def unimplemented_expr_sup_sub(expr):
result = UnimplementedExpr(expr)
result.__class__.__name__ = 'UnimplementedExpr_x^1'
return result
assert latex(unimplemented_expr(x)) == r'\operatorname{UnimplementedExpr}\left(x\right)'
assert latex(unimplemented_expr(x**2)) == \
r'\operatorname{UnimplementedExpr}\left(x^{2}\right)'
assert latex(unimplemented_expr_sup_sub(x)) == \
r'\operatorname{UnimplementedExpr^{1}_{x}}\left(x\right)'
def test_MatrixSymbol_bold():
# Issue #15871
from sympy.matrices.expressions.trace import trace
A = MatrixSymbol("A", 2, 2)
assert latex(trace(A), mat_symbol_style='bold') == \
r"\operatorname{tr}\left(\mathbf{A} \right)"
assert latex(trace(A), mat_symbol_style='plain') == \
r"\operatorname{tr}\left(A \right)"
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
C = MatrixSymbol("C", 3, 3)
assert latex(-A, mat_symbol_style='bold') == r"- \mathbf{A}"
assert latex(A - A*B - B, mat_symbol_style='bold') == \
r"\mathbf{A} - \mathbf{A} \mathbf{B} - \mathbf{B}"
assert latex(-A*B - A*B*C - B, mat_symbol_style='bold') == \
r"- \mathbf{A} \mathbf{B} - \mathbf{A} \mathbf{B} \mathbf{C} - \mathbf{B}"
A_k = MatrixSymbol("A_k", 3, 3)
assert latex(A_k, mat_symbol_style='bold') == r"\mathbf{A}_{k}"
A = MatrixSymbol(r"\nabla_k", 3, 3)
assert latex(A, mat_symbol_style='bold') == r"\mathbf{\nabla}_{k}"
def test_AppliedPermutation():
p = Permutation(0, 1, 2)
x = Symbol('x')
assert latex(AppliedPermutation(p, x)) == \
r'\sigma_{\left( 0\; 1\; 2\right)}(x)'
def test_PermutationMatrix():
p = Permutation(0, 1, 2)
assert latex(PermutationMatrix(p)) == r'P_{\left( 0\; 1\; 2\right)}'
p = Permutation(0, 3)(1, 2)
assert latex(PermutationMatrix(p)) == \
r'P_{\left( 0\; 3\right)\left( 1\; 2\right)}'
def test_issue_21758():
from sympy.functions.elementary.piecewise import piecewise_fold
from sympy.series.fourier import FourierSeries
x = Symbol('x')
k, n = symbols('k n')
fo = FourierSeries(x, (x, -pi, pi), (0, SeqFormula(0, (k, 1, oo)), SeqFormula(
Piecewise((-2*pi*cos(n*pi)/n + 2*sin(n*pi)/n**2, (n > -oo) & (n < oo) & Ne(n, 0)),
(0, True))*sin(n*x)/pi, (n, 1, oo))))
assert latex(piecewise_fold(fo)) == '\\begin{cases} 2 \\sin{\\left(x \\right)}' \
' - \\sin{\\left(2 x \\right)} + \\frac{2 \\sin{\\left(3 x \\right)}}{3} +' \
' \\ldots & \\text{for}\\: n > -\\infty \\wedge n < \\infty \\wedge ' \
'n \\neq 0 \\\\0 & \\text{otherwise} \\end{cases}'
assert latex(FourierSeries(x, (x, -pi, pi), (0, SeqFormula(0, (k, 1, oo)),
SeqFormula(0, (n, 1, oo))))) == '0'
def test_imaginary_unit():
assert latex(1 + I) == r'1 + i'
assert latex(1 + I, imaginary_unit='i') == r'1 + i'
assert latex(1 + I, imaginary_unit='j') == r'1 + j'
assert latex(1 + I, imaginary_unit='foo') == r'1 + foo'
assert latex(I, imaginary_unit="ti") == r'\text{i}'
assert latex(I, imaginary_unit="tj") == r'\text{j}'
def test_text_re_im():
assert latex(im(x), gothic_re_im=True) == r'\Im{\left(x\right)}'
assert latex(im(x), gothic_re_im=False) == r'\operatorname{im}{\left(x\right)}'
assert latex(re(x), gothic_re_im=True) == r'\Re{\left(x\right)}'
assert latex(re(x), gothic_re_im=False) == r'\operatorname{re}{\left(x\right)}'
def test_latex_diffgeom():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential
from sympy.diffgeom.rn import R2
x,y = symbols('x y', real=True)
m = Manifold('M', 2)
assert latex(m) == r'\text{M}'
p = Patch('P', m)
assert latex(p) == r'\text{P}_{\text{M}}'
rect = CoordSystem('rect', p, [x, y])
assert latex(rect) == r'\text{rect}^{\text{P}}_{\text{M}}'
b = BaseScalarField(rect, 0)
assert latex(b) == r'\mathbf{x}'
g = Function('g')
s_field = g(R2.x, R2.y)
assert latex(Differential(s_field)) == \
r'\operatorname{d}\left(g{\left(\mathbf{x},\mathbf{y} \right)}\right)'
def test_unit_printing():
assert latex(5*meter) == r'5 \text{m}'
assert latex(3*gibibyte) == r'3 \text{gibibyte}'
assert latex(4*microgram/second) == r'\frac{4 \mu\text{g}}{\text{s}}'
assert latex(4*micro*gram/second) == r'\frac{4 \mu \text{g}}{\text{s}}'
assert latex(5*milli*meter) == r'5 \text{m} \text{m}'
assert latex(milli) == r'\text{m}'
def test_issue_17092():
x_star = Symbol('x^*')
assert latex(Derivative(x_star, x_star,2)) == r'\frac{d^{2}}{d \left(x^{*}\right)^{2}} x^{*}'
def test_latex_decimal_separator():
x, y, z, t = symbols('x y z t')
k, m, n = symbols('k m n', integer=True)
f, g, h = symbols('f g h', cls=Function)
# comma decimal_separator
assert(latex([1, 2.3, 4.5], decimal_separator='comma') == r'\left[ 1; \ 2{,}3; \ 4{,}5\right]')
assert(latex(FiniteSet(1, 2.3, 4.5), decimal_separator='comma') == r'\left\{1; 2{,}3; 4{,}5\right\}')
assert(latex((1, 2.3, 4.6), decimal_separator = 'comma') == r'\left( 1; \ 2{,}3; \ 4{,}6\right)')
assert(latex((1,), decimal_separator='comma') == r'\left( 1;\right)')
# period decimal_separator
assert(latex([1, 2.3, 4.5], decimal_separator='period') == r'\left[ 1, \ 2.3, \ 4.5\right]' )
assert(latex(FiniteSet(1, 2.3, 4.5), decimal_separator='period') == r'\left\{1, 2.3, 4.5\right\}')
assert(latex((1, 2.3, 4.6), decimal_separator = 'period') == r'\left( 1, \ 2.3, \ 4.6\right)')
assert(latex((1,), decimal_separator='period') == r'\left( 1,\right)')
# default decimal_separator
assert(latex([1, 2.3, 4.5]) == r'\left[ 1, \ 2.3, \ 4.5\right]')
assert(latex(FiniteSet(1, 2.3, 4.5)) == r'\left\{1, 2.3, 4.5\right\}')
assert(latex((1, 2.3, 4.6)) == r'\left( 1, \ 2.3, \ 4.6\right)')
assert(latex((1,)) == r'\left( 1,\right)')
assert(latex(Mul(3.4,5.3), decimal_separator = 'comma') == r'18{,}02')
assert(latex(3.4*5.3, decimal_separator = 'comma') == r'18{,}02')
x = symbols('x')
y = symbols('y')
z = symbols('z')
assert(latex(x*5.3 + 2**y**3.4 + 4.5 + z, decimal_separator = 'comma') == r'2^{y^{3{,}4}} + 5{,}3 x + z + 4{,}5')
assert(latex(0.987, decimal_separator='comma') == r'0{,}987')
assert(latex(S(0.987), decimal_separator='comma') == r'0{,}987')
assert(latex(.3, decimal_separator='comma') == r'0{,}3')
assert(latex(S(.3), decimal_separator='comma') == r'0{,}3')
assert(latex(5.8*10**(-7), decimal_separator='comma') == r'5{,}8 \cdot 10^{-7}')
assert(latex(S(5.7)*10**(-7), decimal_separator='comma') == r'5{,}7 \cdot 10^{-7}')
assert(latex(S(5.7*10**(-7)), decimal_separator='comma') == r'5{,}7 \cdot 10^{-7}')
x = symbols('x')
assert(latex(1.2*x+3.4, decimal_separator='comma') == r'1{,}2 x + 3{,}4')
assert(latex(FiniteSet(1, 2.3, 4.5), decimal_separator='period') == r'\left\{1, 2.3, 4.5\right\}')
# Error Handling tests
raises(ValueError, lambda: latex([1,2.3,4.5], decimal_separator='non_existing_decimal_separator_in_list'))
raises(ValueError, lambda: latex(FiniteSet(1,2.3,4.5), decimal_separator='non_existing_decimal_separator_in_set'))
raises(ValueError, lambda: latex((1,2.3,4.5), decimal_separator='non_existing_decimal_separator_in_tuple'))
def test_Str():
from sympy.core.symbol import Str
assert str(Str('x')) == r'x'
def test_latex_escape():
assert latex_escape(r"~^\&%$#_{}") == "".join([
r'\textasciitilde',
r'\textasciicircum',
r'\textbackslash',
r'\&',
r'\%',
r'\$',
r'\#',
r'\_',
r'\{',
r'\}',
])
def test_emptyPrinter():
class MyObject:
def __repr__(self):
return "<MyObject with {...}>"
# unknown objects are monospaced
assert latex(MyObject()) == r"\mathtt{\text{<MyObject with \{...\}>}}"
# even if they are nested within other objects
assert latex((MyObject(),)) == r"\left( \mathtt{\text{<MyObject with \{...\}>}},\right)"
def test_global_settings():
import inspect
# settings should be visible in the signature of `latex`
assert inspect.signature(latex).parameters['imaginary_unit'].default == r'i'
assert latex(I) == r'i'
try:
# but changing the defaults...
LatexPrinter.set_global_settings(imaginary_unit='j')
# ... should change the signature
assert inspect.signature(latex).parameters['imaginary_unit'].default == r'j'
assert latex(I) == r'j'
finally:
# there's no public API to undo this, but we need to make sure we do
# so as not to impact other tests
del LatexPrinter._global_settings['imaginary_unit']
# check we really did undo it
assert inspect.signature(latex).parameters['imaginary_unit'].default == r'i'
assert latex(I) == r'i'
def test_pickleable():
# this tests that the _PrintFunction instance is pickleable
import pickle
assert pickle.loads(pickle.dumps(latex)) is latex
def test_printing_latex_array_expressions():
assert latex(ArraySymbol("A", (2, 3, 4))) == "A"
assert latex(ArrayElement("A", (2, 1/(1-x), 0))) == "{{A}_{2, \\frac{1}{1 - x}, 0}}"
M = MatrixSymbol("M", 3, 3)
N = MatrixSymbol("N", 3, 3)
assert latex(ArrayElement(M*N, [x, 0])) == "{{\\left(M N\\right)}_{x, 0}}"
def test_Array():
arr = Array(range(10))
assert latex(arr) == r'\left[\begin{matrix}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{matrix}\right]'
arr = Array(range(11))
# added empty arguments {}
assert latex(arr) == r'\left[\begin{array}{}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}\right]'
def test_latex_with_unevaluated():
with evaluate(False):
assert latex(a * a) == r"a a"
|
e3fb2a9de7ffdf4ea5416b0bac4723a495cae298608c528e2b15c3fceaa3b66d | """Tests for algorithms for computing symbolic roots of polynomials. """
from sympy.core.numbers import (I, Rational, pi)
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, Wild, symbols)
from sympy.functions.elementary.complexes import (conjugate, im, re)
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.miscellaneous import (root, sqrt)
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import (acos, cos, sin)
from sympy.polys.domains.integerring import ZZ
from sympy.sets.sets import Interval
from sympy.simplify.powsimp import powsimp
from sympy.polys import Poly, cyclotomic_poly, intervals, nroots, rootof
from sympy.polys.polyroots import (root_factors, roots_linear,
roots_quadratic, roots_cubic, roots_quartic, roots_quintic,
roots_cyclotomic, roots_binomial, preprocess_roots, roots)
from sympy.polys.orthopolys import legendre_poly
from sympy.polys.polyerrors import PolynomialError, \
UnsolvableFactorError
from sympy.polys.polyutils import _nsort
from sympy.testing.pytest import raises, slow
from sympy.core.random import verify_numerically
import mpmath
from itertools import product
a, b, c, d, e, q, t, x, y, z = symbols('a,b,c,d,e,q,t,x,y,z')
def _check(roots):
# this is the desired invariant for roots returned
# by all_roots. It is trivially true for linear
# polynomials.
nreal = sum([1 if i.is_real else 0 for i in roots])
assert list(sorted(roots[:nreal])) == list(roots[:nreal])
for ix in range(nreal, len(roots), 2):
if not (
roots[ix + 1] == roots[ix] or
roots[ix + 1] == conjugate(roots[ix])):
return False
return True
def test_roots_linear():
assert roots_linear(Poly(2*x + 1, x)) == [Rational(-1, 2)]
def test_roots_quadratic():
assert roots_quadratic(Poly(2*x**2, x)) == [0, 0]
assert roots_quadratic(Poly(2*x**2 + 3*x, x)) == [Rational(-3, 2), 0]
assert roots_quadratic(Poly(2*x**2 + 3, x)) == [-I*sqrt(6)/2, I*sqrt(6)/2]
assert roots_quadratic(Poly(2*x**2 + 4*x + 3, x)) == [-1 - I*sqrt(2)/2, -1 + I*sqrt(2)/2]
_check(Poly(2*x**2 + 4*x + 3, x).all_roots())
f = x**2 + (2*a*e + 2*c*e)/(a - c)*x + (d - b + a*e**2 - c*e**2)/(a - c)
assert roots_quadratic(Poly(f, x)) == \
[-e*(a + c)/(a - c) - sqrt(a*b + c*d - a*d - b*c + 4*a*c*e**2)/(a - c),
-e*(a + c)/(a - c) + sqrt(a*b + c*d - a*d - b*c + 4*a*c*e**2)/(a - c)]
# check for simplification
f = Poly(y*x**2 - 2*x - 2*y, x)
assert roots_quadratic(f) == \
[-sqrt(2*y**2 + 1)/y + 1/y, sqrt(2*y**2 + 1)/y + 1/y]
f = Poly(x**2 + (-y**2 - 2)*x + y**2 + 1, x)
assert roots_quadratic(f) == \
[1,y**2 + 1]
f = Poly(sqrt(2)*x**2 - 1, x)
r = roots_quadratic(f)
assert r == _nsort(r)
# issue 8255
f = Poly(-24*x**2 - 180*x + 264)
assert [w.n(2) for w in f.all_roots(radicals=True)] == \
[w.n(2) for w in f.all_roots(radicals=False)]
for _a, _b, _c in product((-2, 2), (-2, 2), (0, -1)):
f = Poly(_a*x**2 + _b*x + _c)
roots = roots_quadratic(f)
assert roots == _nsort(roots)
def test_issue_7724():
eq = Poly(x**4*I + x**2 + I, x)
assert roots(eq) == {
sqrt(I/2 + sqrt(5)*I/2): 1,
sqrt(-sqrt(5)*I/2 + I/2): 1,
-sqrt(I/2 + sqrt(5)*I/2): 1,
-sqrt(-sqrt(5)*I/2 + I/2): 1}
def test_issue_8438():
p = Poly([1, y, -2, -3], x).as_expr()
roots = roots_cubic(Poly(p, x), x)
z = Rational(-3, 2) - I*7/2 # this will fail in code given in commit msg
post = [r.subs(y, z) for r in roots]
assert set(post) == \
set(roots_cubic(Poly(p.subs(y, z), x)))
# /!\ if p is not made an expression, this is *very* slow
assert all(p.subs({y: z, x: i}).n(2, chop=True) == 0 for i in post)
def test_issue_8285():
roots = (Poly(4*x**8 - 1, x)*Poly(x**2 + 1)).all_roots()
assert _check(roots)
f = Poly(x**4 + 5*x**2 + 6, x)
ro = [rootof(f, i) for i in range(4)]
roots = Poly(x**4 + 5*x**2 + 6, x).all_roots()
assert roots == ro
assert _check(roots)
# more than 2 complex roots from which to identify the
# imaginary ones
roots = Poly(2*x**8 - 1).all_roots()
assert _check(roots)
assert len(Poly(2*x**10 - 1).all_roots()) == 10 # doesn't fail
def test_issue_8289():
roots = (Poly(x**2 + 2)*Poly(x**4 + 2)).all_roots()
assert _check(roots)
roots = Poly(x**6 + 3*x**3 + 2, x).all_roots()
assert _check(roots)
roots = Poly(x**6 - x + 1).all_roots()
assert _check(roots)
# all imaginary roots with multiplicity of 2
roots = Poly(x**4 + 4*x**2 + 4, x).all_roots()
assert _check(roots)
def test_issue_14291():
assert Poly(((x - 1)**2 + 1)*((x - 1)**2 + 2)*(x - 1)
).all_roots() == [1, 1 - I, 1 + I, 1 - sqrt(2)*I, 1 + sqrt(2)*I]
p = x**4 + 10*x**2 + 1
ans = [rootof(p, i) for i in range(4)]
assert Poly(p).all_roots() == ans
_check(ans)
def test_issue_13340():
eq = Poly(y**3 + exp(x)*y + x, y, domain='EX')
roots_d = roots(eq)
assert len(roots_d) == 3
def test_issue_14522():
eq = Poly(x**4 + x**3*(16 + 32*I) + x**2*(-285 + 386*I) + x*(-2824 - 448*I) - 2058 - 6053*I, x)
roots_eq = roots(eq)
assert all(eq(r) == 0 for r in roots_eq)
def test_issue_15076():
sol = roots_quartic(Poly(t**4 - 6*t**2 + t/x - 3, t))
assert sol[0].has(x)
def test_issue_16589():
eq = Poly(x**4 - 8*sqrt(2)*x**3 + 4*x**3 - 64*sqrt(2)*x**2 + 1024*x, x)
roots_eq = roots(eq)
assert 0 in roots_eq
def test_roots_cubic():
assert roots_cubic(Poly(2*x**3, x)) == [0, 0, 0]
assert roots_cubic(Poly(x**3 - 3*x**2 + 3*x - 1, x)) == [1, 1, 1]
# valid for arbitrary y (issue 21263)
r = root(y, 3)
assert roots_cubic(Poly(x**3 - y, x)) == [r,
r*(-S.Half + sqrt(3)*I/2),
r*(-S.Half - sqrt(3)*I/2)]
# simpler form when y is negative
assert roots_cubic(Poly(x**3 - -1, x)) == \
[-1, S.Half - I*sqrt(3)/2, S.Half + I*sqrt(3)/2]
assert roots_cubic(Poly(2*x**3 - 3*x**2 - 3*x - 1, x))[0] == \
S.Half + 3**Rational(1, 3)/2 + 3**Rational(2, 3)/2
eq = -x**3 + 2*x**2 + 3*x - 2
assert roots(eq, trig=True, multiple=True) == \
roots_cubic(Poly(eq, x), trig=True) == [
Rational(2, 3) + 2*sqrt(13)*cos(acos(8*sqrt(13)/169)/3)/3,
-2*sqrt(13)*sin(-acos(8*sqrt(13)/169)/3 + pi/6)/3 + Rational(2, 3),
-2*sqrt(13)*cos(-acos(8*sqrt(13)/169)/3 + pi/3)/3 + Rational(2, 3),
]
def test_roots_quartic():
assert roots_quartic(Poly(x**4, x)) == [0, 0, 0, 0]
assert roots_quartic(Poly(x**4 + x**3, x)) in [
[-1, 0, 0, 0],
[0, -1, 0, 0],
[0, 0, -1, 0],
[0, 0, 0, -1]
]
assert roots_quartic(Poly(x**4 - x**3, x)) in [
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]
]
lhs = roots_quartic(Poly(x**4 + x, x))
rhs = [S.Half + I*sqrt(3)/2, S.Half - I*sqrt(3)/2, S.Zero, -S.One]
assert sorted(lhs, key=hash) == sorted(rhs, key=hash)
# test of all branches of roots quartic
for i, (a, b, c, d) in enumerate([(1, 2, 3, 0),
(3, -7, -9, 9),
(1, 2, 3, 4),
(1, 2, 3, 4),
(-7, -3, 3, -6),
(-3, 5, -6, -4),
(6, -5, -10, -3)]):
if i == 2:
c = -a*(a**2/S(8) - b/S(2))
elif i == 3:
d = a*(a*(a**2*Rational(3, 256) - b/S(16)) + c/S(4))
eq = x**4 + a*x**3 + b*x**2 + c*x + d
ans = roots_quartic(Poly(eq, x))
assert all(eq.subs(x, ai).n(chop=True) == 0 for ai in ans)
# not all symbolic quartics are unresolvable
eq = Poly(q*x + q/4 + x**4 + x**3 + 2*x**2 - Rational(1, 3), x)
sol = roots_quartic(eq)
assert all(verify_numerically(eq.subs(x, i), 0) for i in sol)
z = symbols('z', negative=True)
eq = x**4 + 2*x**3 + 3*x**2 + x*(z + 11) + 5
zans = roots_quartic(Poly(eq, x))
assert all([verify_numerically(eq.subs(((x, i), (z, -1))), 0) for i in zans])
# but some are (see also issue 4989)
# it's ok if the solution is not Piecewise, but the tests below should pass
eq = Poly(y*x**4 + x**3 - x + z, x)
ans = roots_quartic(eq)
assert all(type(i) == Piecewise for i in ans)
reps = (
dict(y=Rational(-1, 3), z=Rational(-1, 4)), # 4 real
dict(y=Rational(-1, 3), z=Rational(-1, 2)), # 2 real
dict(y=Rational(-1, 3), z=-2)) # 0 real
for rep in reps:
sol = roots_quartic(Poly(eq.subs(rep), x))
assert all([verify_numerically(w.subs(rep) - s, 0) for w, s in zip(ans, sol)])
def test_issue_21287():
assert not any(isinstance(i, Piecewise) for i in roots_quartic(
Poly(x**4 - x**2*(3 + 5*I) + 2*x*(-1 + I) - 1 + 3*I, x)))
def test_roots_quintic():
eqs = (x**5 - 2,
(x/2 + 1)**5 - 5*(x/2 + 1) + 12,
x**5 - 110*x**3 - 55*x**2 + 2310*x + 979)
for eq in eqs:
roots = roots_quintic(Poly(eq))
assert len(roots) == 5
assert all(eq.subs(x, r.n(10)).n(chop = 1e-5) == 0 for r in roots)
def test_roots_cyclotomic():
assert roots_cyclotomic(cyclotomic_poly(1, x, polys=True)) == [1]
assert roots_cyclotomic(cyclotomic_poly(2, x, polys=True)) == [-1]
assert roots_cyclotomic(cyclotomic_poly(
3, x, polys=True)) == [Rational(-1, 2) - I*sqrt(3)/2, Rational(-1, 2) + I*sqrt(3)/2]
assert roots_cyclotomic(cyclotomic_poly(4, x, polys=True)) == [-I, I]
assert roots_cyclotomic(cyclotomic_poly(
6, x, polys=True)) == [S.Half - I*sqrt(3)/2, S.Half + I*sqrt(3)/2]
assert roots_cyclotomic(cyclotomic_poly(7, x, polys=True)) == [
-cos(pi/7) - I*sin(pi/7),
-cos(pi/7) + I*sin(pi/7),
-cos(pi*Rational(3, 7)) - I*sin(pi*Rational(3, 7)),
-cos(pi*Rational(3, 7)) + I*sin(pi*Rational(3, 7)),
cos(pi*Rational(2, 7)) - I*sin(pi*Rational(2, 7)),
cos(pi*Rational(2, 7)) + I*sin(pi*Rational(2, 7)),
]
assert roots_cyclotomic(cyclotomic_poly(8, x, polys=True)) == [
-sqrt(2)/2 - I*sqrt(2)/2,
-sqrt(2)/2 + I*sqrt(2)/2,
sqrt(2)/2 - I*sqrt(2)/2,
sqrt(2)/2 + I*sqrt(2)/2,
]
assert roots_cyclotomic(cyclotomic_poly(12, x, polys=True)) == [
-sqrt(3)/2 - I/2,
-sqrt(3)/2 + I/2,
sqrt(3)/2 - I/2,
sqrt(3)/2 + I/2,
]
assert roots_cyclotomic(
cyclotomic_poly(1, x, polys=True), factor=True) == [1]
assert roots_cyclotomic(
cyclotomic_poly(2, x, polys=True), factor=True) == [-1]
assert roots_cyclotomic(cyclotomic_poly(3, x, polys=True), factor=True) == \
[-root(-1, 3), -1 + root(-1, 3)]
assert roots_cyclotomic(cyclotomic_poly(4, x, polys=True), factor=True) == \
[-I, I]
assert roots_cyclotomic(cyclotomic_poly(5, x, polys=True), factor=True) == \
[-root(-1, 5), -root(-1, 5)**3, root(-1, 5)**2, -1 - root(-1, 5)**2 + root(-1, 5) + root(-1, 5)**3]
assert roots_cyclotomic(cyclotomic_poly(6, x, polys=True), factor=True) == \
[1 - root(-1, 3), root(-1, 3)]
def test_roots_binomial():
assert roots_binomial(Poly(5*x, x)) == [0]
assert roots_binomial(Poly(5*x**4, x)) == [0, 0, 0, 0]
assert roots_binomial(Poly(5*x + 2, x)) == [Rational(-2, 5)]
A = 10**Rational(3, 4)/10
assert roots_binomial(Poly(5*x**4 + 2, x)) == \
[-A - A*I, -A + A*I, A - A*I, A + A*I]
_check(roots_binomial(Poly(x**8 - 2)))
a1 = Symbol('a1', nonnegative=True)
b1 = Symbol('b1', nonnegative=True)
r0 = roots_quadratic(Poly(a1*x**2 + b1, x))
r1 = roots_binomial(Poly(a1*x**2 + b1, x))
assert powsimp(r0[0]) == powsimp(r1[0])
assert powsimp(r0[1]) == powsimp(r1[1])
for a, b, s, n in product((1, 2), (1, 2), (-1, 1), (2, 3, 4, 5)):
if a == b and a != 1: # a == b == 1 is sufficient
continue
p = Poly(a*x**n + s*b)
ans = roots_binomial(p)
assert ans == _nsort(ans)
# issue 8813
assert roots(Poly(2*x**3 - 16*y**3, x)) == {
2*y*(Rational(-1, 2) - sqrt(3)*I/2): 1,
2*y: 1,
2*y*(Rational(-1, 2) + sqrt(3)*I/2): 1}
def test_roots_preprocessing():
f = a*y*x**2 + y - b
coeff, poly = preprocess_roots(Poly(f, x))
assert coeff == 1
assert poly == Poly(a*y*x**2 + y - b, x)
f = c**3*x**3 + c**2*x**2 + c*x + a
coeff, poly = preprocess_roots(Poly(f, x))
assert coeff == 1/c
assert poly == Poly(x**3 + x**2 + x + a, x)
f = c**3*x**3 + c**2*x**2 + a
coeff, poly = preprocess_roots(Poly(f, x))
assert coeff == 1/c
assert poly == Poly(x**3 + x**2 + a, x)
f = c**3*x**3 + c*x + a
coeff, poly = preprocess_roots(Poly(f, x))
assert coeff == 1/c
assert poly == Poly(x**3 + x + a, x)
f = c**3*x**3 + a
coeff, poly = preprocess_roots(Poly(f, x))
assert coeff == 1/c
assert poly == Poly(x**3 + a, x)
E, F, J, L = symbols("E,F,J,L")
f = -21601054687500000000*E**8*J**8/L**16 + \
508232812500000000*F*x*E**7*J**7/L**14 - \
4269543750000000*E**6*F**2*J**6*x**2/L**12 + \
16194716250000*E**5*F**3*J**5*x**3/L**10 - \
27633173750*E**4*F**4*J**4*x**4/L**8 + \
14840215*E**3*F**5*J**3*x**5/L**6 + \
54794*E**2*F**6*J**2*x**6/(5*L**4) - \
1153*E*J*F**7*x**7/(80*L**2) + \
633*F**8*x**8/160000
coeff, poly = preprocess_roots(Poly(f, x))
assert coeff == 20*E*J/(F*L**2)
assert poly == 633*x**8 - 115300*x**7 + 4383520*x**6 + 296804300*x**5 - 27633173750*x**4 + \
809735812500*x**3 - 10673859375000*x**2 + 63529101562500*x - 135006591796875
f = Poly(-y**2 + x**2*exp(x), y, domain=ZZ[x, exp(x)])
g = Poly(-y**2 + exp(x), y, domain=ZZ[exp(x)])
assert preprocess_roots(f) == (x, g)
def test_roots0():
assert roots(1, x) == {}
assert roots(x, x) == {S.Zero: 1}
assert roots(x**9, x) == {S.Zero: 9}
assert roots(((x - 2)*(x + 3)*(x - 4)).expand(), x) == {-S(3): 1, S(2): 1, S(4): 1}
assert roots(2*x + 1, x) == {Rational(-1, 2): 1}
assert roots((2*x + 1)**2, x) == {Rational(-1, 2): 2}
assert roots((2*x + 1)**5, x) == {Rational(-1, 2): 5}
assert roots((2*x + 1)**10, x) == {Rational(-1, 2): 10}
assert roots(x**4 - 1, x) == {I: 1, S.One: 1, -S.One: 1, -I: 1}
assert roots((x**4 - 1)**2, x) == {I: 2, S.One: 2, -S.One: 2, -I: 2}
assert roots(((2*x - 3)**2).expand(), x) == {Rational( 3, 2): 2}
assert roots(((2*x + 3)**2).expand(), x) == {Rational(-3, 2): 2}
assert roots(((2*x - 3)**3).expand(), x) == {Rational( 3, 2): 3}
assert roots(((2*x + 3)**3).expand(), x) == {Rational(-3, 2): 3}
assert roots(((2*x - 3)**5).expand(), x) == {Rational( 3, 2): 5}
assert roots(((2*x + 3)**5).expand(), x) == {Rational(-3, 2): 5}
assert roots(((a*x - b)**5).expand(), x) == { b/a: 5}
assert roots(((a*x + b)**5).expand(), x) == {-b/a: 5}
assert roots(x**2 + (-a - 1)*x + a, x) == {a: 1, S.One: 1}
assert roots(x**4 - 2*x**2 + 1, x) == {S.One: 2, S.NegativeOne: 2}
assert roots(x**6 - 4*x**4 + 4*x**3 - x**2, x) == \
{S.One: 2, -1 - sqrt(2): 1, S.Zero: 2, -1 + sqrt(2): 1}
assert roots(x**8 - 1, x) == {
sqrt(2)/2 + I*sqrt(2)/2: 1,
sqrt(2)/2 - I*sqrt(2)/2: 1,
-sqrt(2)/2 + I*sqrt(2)/2: 1,
-sqrt(2)/2 - I*sqrt(2)/2: 1,
S.One: 1, -S.One: 1, I: 1, -I: 1
}
f = -2016*x**2 - 5616*x**3 - 2056*x**4 + 3324*x**5 + 2176*x**6 - \
224*x**7 - 384*x**8 - 64*x**9
assert roots(f) == {S.Zero: 2, -S(2): 2, S(2): 1, Rational(-7, 2): 1,
Rational(-3, 2): 1, Rational(-1, 2): 1, Rational(3, 2): 1}
assert roots((a + b + c)*x - (a + b + c + d), x) == {(a + b + c + d)/(a + b + c): 1}
assert roots(x**3 + x**2 - x + 1, x, cubics=False) == {}
assert roots(((x - 2)*(
x + 3)*(x - 4)).expand(), x, cubics=False) == {-S(3): 1, S(2): 1, S(4): 1}
assert roots(((x - 2)*(x + 3)*(x - 4)*(x - 5)).expand(), x, cubics=False) == \
{-S(3): 1, S(2): 1, S(4): 1, S(5): 1}
assert roots(x**3 + 2*x**2 + 4*x + 8, x) == {-S(2): 1, -2*I: 1, 2*I: 1}
assert roots(x**3 + 2*x**2 + 4*x + 8, x, cubics=True) == \
{-2*I: 1, 2*I: 1, -S(2): 1}
assert roots((x**2 - x)*(x**3 + 2*x**2 + 4*x + 8), x ) == \
{S.One: 1, S.Zero: 1, -S(2): 1, -2*I: 1, 2*I: 1}
r1_2, r1_3 = S.Half, Rational(1, 3)
x0 = (3*sqrt(33) + 19)**r1_3
x1 = 4/x0/3
x2 = x0/3
x3 = sqrt(3)*I/2
x4 = x3 - r1_2
x5 = -x3 - r1_2
assert roots(x**3 + x**2 - x + 1, x, cubics=True) == {
-x1 - x2 - r1_3: 1,
-x1/x4 - x2*x4 - r1_3: 1,
-x1/x5 - x2*x5 - r1_3: 1,
}
f = (x**2 + 2*x + 3).subs(x, 2*x**2 + 3*x).subs(x, 5*x - 4)
r13_20, r1_20 = [ Rational(*r)
for r in ((13, 20), (1, 20)) ]
s2 = sqrt(2)
assert roots(f, x) == {
r13_20 + r1_20*sqrt(1 - 8*I*s2): 1,
r13_20 - r1_20*sqrt(1 - 8*I*s2): 1,
r13_20 + r1_20*sqrt(1 + 8*I*s2): 1,
r13_20 - r1_20*sqrt(1 + 8*I*s2): 1,
}
f = x**4 + x**3 + x**2 + x + 1
r1_4, r1_8, r5_8 = [ Rational(*r) for r in ((1, 4), (1, 8), (5, 8)) ]
assert roots(f, x) == {
-r1_4 + r1_4*5**r1_2 + I*(r5_8 + r1_8*5**r1_2)**r1_2: 1,
-r1_4 + r1_4*5**r1_2 - I*(r5_8 + r1_8*5**r1_2)**r1_2: 1,
-r1_4 - r1_4*5**r1_2 + I*(r5_8 - r1_8*5**r1_2)**r1_2: 1,
-r1_4 - r1_4*5**r1_2 - I*(r5_8 - r1_8*5**r1_2)**r1_2: 1,
}
f = z**3 + (-2 - y)*z**2 + (1 + 2*y - 2*x**2)*z - y + 2*x**2
assert roots(f, z) == {
S.One: 1,
S.Half + S.Half*y + S.Half*sqrt(1 - 2*y + y**2 + 8*x**2): 1,
S.Half + S.Half*y - S.Half*sqrt(1 - 2*y + y**2 + 8*x**2): 1,
}
assert roots(a*b*c*x**3 + 2*x**2 + 4*x + 8, x, cubics=False) == {}
assert roots(a*b*c*x**3 + 2*x**2 + 4*x + 8, x, cubics=True) != {}
assert roots(x**4 - 1, x, filter='Z') == {S.One: 1, -S.One: 1}
assert roots(x**4 - 1, x, filter='I') == {I: 1, -I: 1}
assert roots((x - 1)*(x + 1), x) == {S.One: 1, -S.One: 1}
assert roots(
(x - 1)*(x + 1), x, predicate=lambda r: r.is_positive) == {S.One: 1}
assert roots(x**4 - 1, x, filter='Z', multiple=True) == [-S.One, S.One]
assert roots(x**4 - 1, x, filter='I', multiple=True) == [I, -I]
ar, br = symbols('a, b', real=True)
p = x**2*(ar-br)**2 + 2*x*(br-ar) + 1
assert roots(p, x, filter='R') == {1/(ar - br): 2}
assert roots(x**3, x, multiple=True) == [S.Zero, S.Zero, S.Zero]
assert roots(1234, x, multiple=True) == []
f = x**6 - x**5 + x**4 - x**3 + x**2 - x + 1
assert roots(f) == {
-I*sin(pi/7) + cos(pi/7): 1,
-I*sin(pi*Rational(2, 7)) - cos(pi*Rational(2, 7)): 1,
-I*sin(pi*Rational(3, 7)) + cos(pi*Rational(3, 7)): 1,
I*sin(pi/7) + cos(pi/7): 1,
I*sin(pi*Rational(2, 7)) - cos(pi*Rational(2, 7)): 1,
I*sin(pi*Rational(3, 7)) + cos(pi*Rational(3, 7)): 1,
}
g = ((x**2 + 1)*f**2).expand()
assert roots(g) == {
-I*sin(pi/7) + cos(pi/7): 2,
-I*sin(pi*Rational(2, 7)) - cos(pi*Rational(2, 7)): 2,
-I*sin(pi*Rational(3, 7)) + cos(pi*Rational(3, 7)): 2,
I*sin(pi/7) + cos(pi/7): 2,
I*sin(pi*Rational(2, 7)) - cos(pi*Rational(2, 7)): 2,
I*sin(pi*Rational(3, 7)) + cos(pi*Rational(3, 7)): 2,
-I: 1, I: 1,
}
r = roots(x**3 + 40*x + 64)
real_root = [rx for rx in r if rx.is_real][0]
cr = 108 + 6*sqrt(1074)
assert real_root == -2*root(cr, 3)/3 + 20/root(cr, 3)
eq = Poly((7 + 5*sqrt(2))*x**3 + (-6 - 4*sqrt(2))*x**2 + (-sqrt(2) - 1)*x + 2, x, domain='EX')
assert roots(eq) == {-1 + sqrt(2): 1, -2 + 2*sqrt(2): 1, -sqrt(2) + 1: 1}
eq = Poly(41*x**5 + 29*sqrt(2)*x**5 - 153*x**4 - 108*sqrt(2)*x**4 +
175*x**3 + 125*sqrt(2)*x**3 - 45*x**2 - 30*sqrt(2)*x**2 - 26*sqrt(2)*x -
26*x + 24, x, domain='EX')
assert roots(eq) == {-sqrt(2) + 1: 1, -2 + 2*sqrt(2): 1, -1 + sqrt(2): 1,
-4 + 4*sqrt(2): 1, -3 + 3*sqrt(2): 1}
eq = Poly(x**3 - 2*x**2 + 6*sqrt(2)*x**2 - 8*sqrt(2)*x + 23*x - 14 +
14*sqrt(2), x, domain='EX')
assert roots(eq) == {-2*sqrt(2) + 2: 1, -2*sqrt(2) + 1: 1, -2*sqrt(2) - 1: 1}
assert roots(Poly((x + sqrt(2))**3 - 7, x, domain='EX')) == \
{-sqrt(2) + root(7, 3)*(-S.Half - sqrt(3)*I/2): 1,
-sqrt(2) + root(7, 3)*(-S.Half + sqrt(3)*I/2): 1,
-sqrt(2) + root(7, 3): 1}
def test_roots_slow():
"""Just test that calculating these roots does not hang. """
a, b, c, d, x = symbols("a,b,c,d,x")
f1 = x**2*c + (a/b) + x*c*d - a
f2 = x**2*(a + b*(c - d)*a) + x*a*b*c/(b*d - d) + (a*d - c/d)
assert list(roots(f1, x).values()) == [1, 1]
assert list(roots(f2, x).values()) == [1, 1]
(zz, yy, xx, zy, zx, yx, k) = symbols("zz,yy,xx,zy,zx,yx,k")
e1 = (zz - k)*(yy - k)*(xx - k) + zy*yx*zx + zx - zy - yx
e2 = (zz - k)*yx*yx + zx*(yy - k)*zx + zy*zy*(xx - k)
assert list(roots(e1 - e2, k).values()) == [1, 1, 1]
f = x**3 + 2*x**2 + 8
R = list(roots(f).keys())
assert not any(i for i in [f.subs(x, ri).n(chop=True) for ri in R])
def test_roots_inexact():
R1 = roots(x**2 + x + 1, x, multiple=True)
R2 = roots(x**2 + x + 1.0, x, multiple=True)
for r1, r2 in zip(R1, R2):
assert abs(r1 - r2) < 1e-12
f = x**4 + 3.0*sqrt(2.0)*x**3 - (78.0 + 24.0*sqrt(3.0))*x**2 \
+ 144.0*(2*sqrt(3.0) + 9.0)
R1 = roots(f, multiple=True)
R2 = (-12.7530479110482, -3.85012393732929,
4.89897948556636, 7.46155167569183)
for r1, r2 in zip(R1, R2):
assert abs(r1 - r2) < 1e-10
def test_roots_preprocessed():
E, F, J, L = symbols("E,F,J,L")
f = -21601054687500000000*E**8*J**8/L**16 + \
508232812500000000*F*x*E**7*J**7/L**14 - \
4269543750000000*E**6*F**2*J**6*x**2/L**12 + \
16194716250000*E**5*F**3*J**5*x**3/L**10 - \
27633173750*E**4*F**4*J**4*x**4/L**8 + \
14840215*E**3*F**5*J**3*x**5/L**6 + \
54794*E**2*F**6*J**2*x**6/(5*L**4) - \
1153*E*J*F**7*x**7/(80*L**2) + \
633*F**8*x**8/160000
assert roots(f, x) == {}
R1 = roots(f.evalf(), x, multiple=True)
R2 = [-1304.88375606366, 97.1168816800648, 186.946430171876, 245.526792947065,
503.441004174773, 791.549343830097, 1273.16678129348, 1850.10650616851]
w = Wild('w')
p = w*E*J/(F*L**2)
assert len(R1) == len(R2)
for r1, r2 in zip(R1, R2):
match = r1.match(p)
assert match is not None and abs(match[w] - r2) < 1e-10
def test_roots_strict():
assert roots(x**2 - 2*x + 1, strict=False) == {1: 2}
assert roots(x**2 - 2*x + 1, strict=True) == {1: 2}
assert roots(x**6 - 2*x**5 - x**2 + 3*x - 2, strict=False) == {2: 1}
raises(UnsolvableFactorError, lambda: roots(x**6 - 2*x**5 - x**2 + 3*x - 2, strict=True))
def test_roots_mixed():
f = -1936 - 5056*x - 7592*x**2 + 2704*x**3 - 49*x**4
_re, _im = intervals(f, all=True)
_nroots = nroots(f)
_sroots = roots(f, multiple=True)
_re = [ Interval(a, b) for (a, b), _ in _re ]
_im = [ Interval(re(a), re(b))*Interval(im(a), im(b)) for (a, b),
_ in _im ]
_intervals = _re + _im
_sroots = [ r.evalf() for r in _sroots ]
_nroots = sorted(_nroots, key=lambda x: x.sort_key())
_sroots = sorted(_sroots, key=lambda x: x.sort_key())
for _roots in (_nroots, _sroots):
for i, r in zip(_intervals, _roots):
if r.is_real:
assert r in i
else:
assert (re(r), im(r)) in i
def test_root_factors():
assert root_factors(Poly(1, x)) == [Poly(1, x)]
assert root_factors(Poly(x, x)) == [Poly(x, x)]
assert root_factors(x**2 - 1, x) == [x + 1, x - 1]
assert root_factors(x**2 - y, x) == [x - sqrt(y), x + sqrt(y)]
assert root_factors((x**4 - 1)**2) == \
[x + 1, x + 1, x - 1, x - 1, x - I, x - I, x + I, x + I]
assert root_factors(Poly(x**4 - 1, x), filter='Z') == \
[Poly(x + 1, x), Poly(x - 1, x), Poly(x**2 + 1, x)]
assert root_factors(8*x**2 + 12*x**4 + 6*x**6 + x**8, x, filter='Q') == \
[x, x, x**6 + 6*x**4 + 12*x**2 + 8]
@slow
def test_nroots1():
n = 64
p = legendre_poly(n, x, polys=True)
raises(mpmath.mp.NoConvergence, lambda: p.nroots(n=3, maxsteps=5))
roots = p.nroots(n=3)
# The order of roots matters. They are ordered from smallest to the
# largest.
assert [str(r) for r in roots] == \
['-0.999', '-0.996', '-0.991', '-0.983', '-0.973', '-0.961',
'-0.946', '-0.930', '-0.911', '-0.889', '-0.866', '-0.841',
'-0.813', '-0.784', '-0.753', '-0.720', '-0.685', '-0.649',
'-0.611', '-0.572', '-0.531', '-0.489', '-0.446', '-0.402',
'-0.357', '-0.311', '-0.265', '-0.217', '-0.170', '-0.121',
'-0.0730', '-0.0243', '0.0243', '0.0730', '0.121', '0.170',
'0.217', '0.265', '0.311', '0.357', '0.402', '0.446', '0.489',
'0.531', '0.572', '0.611', '0.649', '0.685', '0.720', '0.753',
'0.784', '0.813', '0.841', '0.866', '0.889', '0.911', '0.930',
'0.946', '0.961', '0.973', '0.983', '0.991', '0.996', '0.999']
def test_nroots2():
p = Poly(x**5 + 3*x + 1, x)
roots = p.nroots(n=3)
# The order of roots matters. The roots are ordered by their real
# components (if they agree, then by their imaginary components),
# with real roots appearing first.
assert [str(r) for r in roots] == \
['-0.332', '-0.839 - 0.944*I', '-0.839 + 0.944*I',
'1.01 - 0.937*I', '1.01 + 0.937*I']
roots = p.nroots(n=5)
assert [str(r) for r in roots] == \
['-0.33199', '-0.83907 - 0.94385*I', '-0.83907 + 0.94385*I',
'1.0051 - 0.93726*I', '1.0051 + 0.93726*I']
def test_roots_composite():
assert len(roots(Poly(y**3 + y**2*sqrt(x) + y + x, y, composite=True))) == 3
def test_issue_19113():
eq = cos(x)**3 - cos(x) + 1
raises(PolynomialError, lambda: roots(eq))
def test_issue_17454():
assert roots([1, -3*(-4 - 4*I)**2/8 + 12*I, 0], multiple=True) == [0, 0]
def test_issue_20913():
assert Poly(x + 9671406556917067856609794, x).real_roots() == [-9671406556917067856609794]
assert Poly(x**3 + 4, x).real_roots() == [-2**(S(2)/3)]
def test_issue_22768():
e = Rational(1, 3)
r = (-1/a)**e*(a + 1)**(5*e)
assert roots(Poly(a*x**3 + (a + 1)**5, x)) == {
r: 1,
-r*(1 + sqrt(3)*I)/2: 1,
r*(-1 + sqrt(3)*I)/2: 1}
|
c0fc1354e94436428eee90d2914d0fb62dcdb38d52378326908ca86f1f741e99 | from sympy.testing.pytest import raises, XFAIL
from sympy.external import import_module
from sympy.concrete.products import Product
from sympy.concrete.summations import Sum
from sympy.core.add import Add
from sympy.core.function import (Derivative, Function)
from sympy.core.mul import Mul
from sympy.core.numbers import (E, oo)
from sympy.core.power import Pow
from sympy.core.relational import (GreaterThan, LessThan, StrictGreaterThan, StrictLessThan, Unequality)
from sympy.core.symbol import Symbol
from sympy.functions.combinatorial.factorials import (binomial, factorial)
from sympy.functions.elementary.complexes import (Abs, conjugate)
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.elementary.integers import (ceiling, floor)
from sympy.functions.elementary.miscellaneous import (root, sqrt)
from sympy.functions.elementary.trigonometric import (asin, cos, csc, sec, sin, tan)
from sympy.integrals.integrals import Integral
from sympy.series.limits import Limit
from sympy.core.relational import Eq, Ne, Lt, Le, Gt, Ge
from sympy.physics.quantum.state import Bra, Ket
from sympy.abc import x, y, z, a, b, c, t, k, n
antlr4 = import_module("antlr4")
# disable tests if antlr4-python3-runtime is not present
if not antlr4:
disabled = True
theta = Symbol('theta')
f = Function('f')
# shorthand definitions
def _Add(a, b):
return Add(a, b, evaluate=False)
def _Mul(a, b):
return Mul(a, b, evaluate=False)
def _Pow(a, b):
return Pow(a, b, evaluate=False)
def _Sqrt(a):
return sqrt(a, evaluate=False)
def _Conjugate(a):
return conjugate(a, evaluate=False)
def _Abs(a):
return Abs(a, evaluate=False)
def _factorial(a):
return factorial(a, evaluate=False)
def _exp(a):
return exp(a, evaluate=False)
def _log(a, b):
return log(a, b, evaluate=False)
def _binomial(n, k):
return binomial(n, k, evaluate=False)
def test_import():
from sympy.parsing.latex._build_latex_antlr import (
build_parser,
check_antlr_version,
dir_latex_antlr
)
# XXX: It would be better to come up with a test for these...
del build_parser, check_antlr_version, dir_latex_antlr
# These LaTeX strings should parse to the corresponding SymPy expression
GOOD_PAIRS = [
(r"0", 0),
(r"1", 1),
(r"-3.14", -3.14),
(r"(-7.13)(1.5)", _Mul(-7.13, 1.5)),
(r"x", x),
(r"2x", 2*x),
(r"x^2", x**2),
(r"x^\frac{1}{2}", _Pow(x, _Pow(2, -1))),
(r"x^{3 + 1}", x**_Add(3, 1)),
(r"-c", -c),
(r"a \cdot b", a * b),
(r"a / b", a / b),
(r"a \div b", a / b),
(r"a + b", a + b),
(r"a + b - a", _Add(a+b, -a)),
(r"a^2 + b^2 = c^2", Eq(a**2 + b**2, c**2)),
(r"(x + y) z", _Mul(_Add(x, y), z)),
(r"a'b+ab'", _Add(_Mul(Symbol("a'"), b), _Mul(a, Symbol("b'")))),
(r"y''_1", Symbol("y_{1}''")),
(r"y_1''", Symbol("y_{1}''")),
(r"\left(x + y\right) z", _Mul(_Add(x, y), z)),
(r"\left( x + y\right ) z", _Mul(_Add(x, y), z)),
(r"\left( x + y\right ) z", _Mul(_Add(x, y), z)),
(r"\left[x + y\right] z", _Mul(_Add(x, y), z)),
(r"\left\{x + y\right\} z", _Mul(_Add(x, y), z)),
(r"1+1", _Add(1, 1)),
(r"0+1", _Add(0, 1)),
(r"1*2", _Mul(1, 2)),
(r"0*1", _Mul(0, 1)),
(r"1 \times 2 ", _Mul(1, 2)),
(r"x = y", Eq(x, y)),
(r"x \neq y", Ne(x, y)),
(r"x < y", Lt(x, y)),
(r"x > y", Gt(x, y)),
(r"x \leq y", Le(x, y)),
(r"x \geq y", Ge(x, y)),
(r"x \le y", Le(x, y)),
(r"x \ge y", Ge(x, y)),
(r"\lfloor x \rfloor", floor(x)),
(r"\lceil x \rceil", ceiling(x)),
(r"\langle x |", Bra('x')),
(r"| x \rangle", Ket('x')),
(r"\sin \theta", sin(theta)),
(r"\sin(\theta)", sin(theta)),
(r"\sin^{-1} a", asin(a)),
(r"\sin a \cos b", _Mul(sin(a), cos(b))),
(r"\sin \cos \theta", sin(cos(theta))),
(r"\sin(\cos \theta)", sin(cos(theta))),
(r"\frac{a}{b}", a / b),
(r"\dfrac{a}{b}", a / b),
(r"\tfrac{a}{b}", a / b),
(r"\frac12", _Pow(2, -1)),
(r"\frac12y", _Mul(_Pow(2, -1), y)),
(r"\frac1234", _Mul(_Pow(2, -1), 34)),
(r"\frac2{3}", _Mul(2, _Pow(3, -1))),
(r"\frac{\sin{x}}2", _Mul(sin(x), _Pow(2, -1))),
(r"\frac{a + b}{c}", _Mul(a + b, _Pow(c, -1))),
(r"\frac{7}{3}", _Mul(7, _Pow(3, -1))),
(r"(\csc x)(\sec y)", csc(x)*sec(y)),
(r"\lim_{x \to 3} a", Limit(a, x, 3)),
(r"\lim_{x \rightarrow 3} a", Limit(a, x, 3)),
(r"\lim_{x \Rightarrow 3} a", Limit(a, x, 3)),
(r"\lim_{x \longrightarrow 3} a", Limit(a, x, 3)),
(r"\lim_{x \Longrightarrow 3} a", Limit(a, x, 3)),
(r"\lim_{x \to 3^{+}} a", Limit(a, x, 3, dir='+')),
(r"\lim_{x \to 3^{-}} a", Limit(a, x, 3, dir='-')),
(r"\lim_{x \to 3^+} a", Limit(a, x, 3, dir='+')),
(r"\lim_{x \to 3^-} a", Limit(a, x, 3, dir='-')),
(r"\infty", oo),
(r"\lim_{x \to \infty} \frac{1}{x}", Limit(_Pow(x, -1), x, oo)),
(r"\frac{d}{dx} x", Derivative(x, x)),
(r"\frac{d}{dt} x", Derivative(x, t)),
(r"f(x)", f(x)),
(r"f(x, y)", f(x, y)),
(r"f(x, y, z)", f(x, y, z)),
(r"f'_1(x)", Function("f_{1}'")(x)),
(r"f_{1}''(x+y)", Function("f_{1}''")(x+y)),
(r"\frac{d f(x)}{dx}", Derivative(f(x), x)),
(r"\frac{d\theta(x)}{dx}", Derivative(Function('theta')(x), x)),
(r"x \neq y", Unequality(x, y)),
(r"|x|", _Abs(x)),
(r"||x||", _Abs(Abs(x))),
(r"|x||y|", _Abs(x)*_Abs(y)),
(r"||x||y||", _Abs(_Abs(x)*_Abs(y))),
(r"\pi^{|xy|}", Symbol('pi')**_Abs(x*y)),
(r"\int x dx", Integral(x, x)),
(r"\int x d\theta", Integral(x, theta)),
(r"\int (x^2 - y)dx", Integral(x**2 - y, x)),
(r"\int x + a dx", Integral(_Add(x, a), x)),
(r"\int da", Integral(1, a)),
(r"\int_0^7 dx", Integral(1, (x, 0, 7))),
(r"\int\limits_{0}^{1} x dx", Integral(x, (x, 0, 1))),
(r"\int_a^b x dx", Integral(x, (x, a, b))),
(r"\int^b_a x dx", Integral(x, (x, a, b))),
(r"\int_{a}^b x dx", Integral(x, (x, a, b))),
(r"\int^{b}_a x dx", Integral(x, (x, a, b))),
(r"\int_{a}^{b} x dx", Integral(x, (x, a, b))),
(r"\int^{b}_{a} x dx", Integral(x, (x, a, b))),
(r"\int_{f(a)}^{f(b)} f(z) dz", Integral(f(z), (z, f(a), f(b)))),
(r"\int (x+a)", Integral(_Add(x, a), x)),
(r"\int a + b + c dx", Integral(_Add(_Add(a, b), c), x)),
(r"\int \frac{dz}{z}", Integral(Pow(z, -1), z)),
(r"\int \frac{3 dz}{z}", Integral(3*Pow(z, -1), z)),
(r"\int \frac{1}{x} dx", Integral(Pow(x, -1), x)),
(r"\int \frac{1}{a} + \frac{1}{b} dx",
Integral(_Add(_Pow(a, -1), Pow(b, -1)), x)),
(r"\int \frac{3 \cdot d\theta}{\theta}",
Integral(3*_Pow(theta, -1), theta)),
(r"\int \frac{1}{x} + 1 dx", Integral(_Add(_Pow(x, -1), 1), x)),
(r"x_0", Symbol('x_{0}')),
(r"x_{1}", Symbol('x_{1}')),
(r"x_a", Symbol('x_{a}')),
(r"x_{b}", Symbol('x_{b}')),
(r"h_\theta", Symbol('h_{theta}')),
(r"h_{\theta}", Symbol('h_{theta}')),
(r"h_{\theta}(x_0, x_1)",
Function('h_{theta}')(Symbol('x_{0}'), Symbol('x_{1}'))),
(r"x!", _factorial(x)),
(r"100!", _factorial(100)),
(r"\theta!", _factorial(theta)),
(r"(x + 1)!", _factorial(_Add(x, 1))),
(r"(x!)!", _factorial(_factorial(x))),
(r"x!!!", _factorial(_factorial(_factorial(x)))),
(r"5!7!", _Mul(_factorial(5), _factorial(7))),
(r"\sqrt{x}", sqrt(x)),
(r"\sqrt{x + b}", sqrt(_Add(x, b))),
(r"\sqrt[3]{\sin x}", root(sin(x), 3)),
(r"\sqrt[y]{\sin x}", root(sin(x), y)),
(r"\sqrt[\theta]{\sin x}", root(sin(x), theta)),
(r"\sqrt{\frac{12}{6}}", _Sqrt(_Mul(12, _Pow(6, -1)))),
(r"\overline{z}", _Conjugate(z)),
(r"\overline{\overline{z}}", _Conjugate(_Conjugate(z))),
(r"\overline{x + y}", _Conjugate(_Add(x, y))),
(r"\overline{x} + \overline{y}", _Conjugate(x) + _Conjugate(y)),
(r"x < y", StrictLessThan(x, y)),
(r"x \leq y", LessThan(x, y)),
(r"x > y", StrictGreaterThan(x, y)),
(r"x \geq y", GreaterThan(x, y)),
(r"\mathit{x}", Symbol('x')),
(r"\mathit{test}", Symbol('test')),
(r"\mathit{TEST}", Symbol('TEST')),
(r"\mathit{HELLO world}", Symbol('HELLO world')),
(r"\sum_{k = 1}^{3} c", Sum(c, (k, 1, 3))),
(r"\sum_{k = 1}^3 c", Sum(c, (k, 1, 3))),
(r"\sum^{3}_{k = 1} c", Sum(c, (k, 1, 3))),
(r"\sum^3_{k = 1} c", Sum(c, (k, 1, 3))),
(r"\sum_{k = 1}^{10} k^2", Sum(k**2, (k, 1, 10))),
(r"\sum_{n = 0}^{\infty} \frac{1}{n!}",
Sum(_Pow(_factorial(n), -1), (n, 0, oo))),
(r"\prod_{a = b}^{c} x", Product(x, (a, b, c))),
(r"\prod_{a = b}^c x", Product(x, (a, b, c))),
(r"\prod^{c}_{a = b} x", Product(x, (a, b, c))),
(r"\prod^c_{a = b} x", Product(x, (a, b, c))),
(r"\exp x", _exp(x)),
(r"\exp(x)", _exp(x)),
(r"\lg x", _log(x, 10)),
(r"\ln x", _log(x, E)),
(r"\ln xy", _log(x*y, E)),
(r"\log x", _log(x, E)),
(r"\log xy", _log(x*y, E)),
(r"\log_{2} x", _log(x, 2)),
(r"\log_{a} x", _log(x, a)),
(r"\log_{11} x", _log(x, 11)),
(r"\log_{a^2} x", _log(x, _Pow(a, 2))),
(r"[x]", x),
(r"[a + b]", _Add(a, b)),
(r"\frac{d}{dx} [ \tan x ]", Derivative(tan(x), x)),
(r"\binom{n}{k}", _binomial(n, k)),
(r"\tbinom{n}{k}", _binomial(n, k)),
(r"\dbinom{n}{k}", _binomial(n, k)),
(r"\binom{n}{0}", _binomial(n, 0)),
(r"x^\binom{n}{k}", _Pow(x, _binomial(n, k))),
(r"a \, b", _Mul(a, b)),
(r"a \thinspace b", _Mul(a, b)),
(r"a \: b", _Mul(a, b)),
(r"a \medspace b", _Mul(a, b)),
(r"a \; b", _Mul(a, b)),
(r"a \thickspace b", _Mul(a, b)),
(r"a \quad b", _Mul(a, b)),
(r"a \qquad b", _Mul(a, b)),
(r"a \! b", _Mul(a, b)),
(r"a \negthinspace b", _Mul(a, b)),
(r"a \negmedspace b", _Mul(a, b)),
(r"a \negthickspace b", _Mul(a, b)),
(r"\int x \, dx", Integral(x, x)),
(r"\log_2 x", _log(x, 2)),
(r"\log_a x", _log(x, a)),
(r"5^0 - 4^0", _Add(_Pow(5, 0), _Mul(-1, _Pow(4, 0)))),
(r"3x - 1", _Add(_Mul(3, x), -1))
]
def test_parseable():
from sympy.parsing.latex import parse_latex
for latex_str, sympy_expr in GOOD_PAIRS:
assert parse_latex(latex_str) == sympy_expr, latex_str
# These bad LaTeX strings should raise a LaTeXParsingError when parsed
BAD_STRINGS = [
r"(",
r")",
r"\frac{d}{dx}",
r"(\frac{d}{dx})",
r"\sqrt{}",
r"\sqrt",
r"\overline{}",
r"\overline",
r"{",
r"}",
r"\mathit{x + y}",
r"\mathit{21}",
r"\frac{2}{}",
r"\frac{}{2}",
r"\int",
r"!",
r"!0",
r"_",
r"^",
r"|",
r"||x|",
r"()",
r"((((((((((((((((()))))))))))))))))",
r"-",
r"\frac{d}{dx} + \frac{d}{dt}",
r"f(x,,y)",
r"f(x,y,",
r"\sin^x",
r"\cos^2",
r"@",
r"#",
r"$",
r"%",
r"&",
r"*",
r"" "\\",
r"~",
r"\frac{(2 + x}{1 - x)}",
]
def test_not_parseable():
from sympy.parsing.latex import parse_latex, LaTeXParsingError
for latex_str in BAD_STRINGS:
with raises(LaTeXParsingError):
parse_latex(latex_str)
# At time of migration from latex2sympy, should fail but doesn't
FAILING_BAD_STRINGS = [
r"\cos 1 \cos",
r"f(,",
r"f()",
r"a \div \div b",
r"a \cdot \cdot b",
r"a // b",
r"a +",
r"1.1.1",
r"1 +",
r"a / b /",
]
@XFAIL
def test_failing_not_parseable():
from sympy.parsing.latex import parse_latex, LaTeXParsingError
for latex_str in FAILING_BAD_STRINGS:
with raises(LaTeXParsingError):
parse_latex(latex_str)
|
99af5833e0ad8b884c8636729b944c19a7acc5a5a48baa76f5044e278a12b381 | from sympy import sin, Function, symbols, Dummy, Lambda, cos
from sympy.parsing.mathematica import parse_mathematica, MathematicaParser
from sympy.core.sympify import sympify
from sympy.abc import n, w, x, y, z
from sympy.testing.pytest import raises
def test_mathematica():
d = {
'- 6x': '-6*x',
'Sin[x]^2': 'sin(x)**2',
'2(x-1)': '2*(x-1)',
'3y+8': '3*y+8',
'ArcSin[2x+9(4-x)^2]/x': 'asin(2*x+9*(4-x)**2)/x',
'x+y': 'x+y',
'355/113': '355/113',
'2.718281828': '2.718281828',
'Cos(1/2 * Ο)': 'Cos(Ο/2)',
'Sin[12]': 'sin(12)',
'Exp[Log[4]]': 'exp(log(4))',
'(x+1)(x+3)': '(x+1)*(x+3)',
'Cos[ArcCos[3.6]]': 'cos(acos(3.6))',
'Cos[x]==Sin[y]': 'Eq(cos(x), sin(y))',
'2*Sin[x+y]': '2*sin(x+y)',
'Sin[x]+Cos[y]': 'sin(x)+cos(y)',
'Sin[Cos[x]]': 'sin(cos(x))',
'2*Sqrt[x+y]': '2*sqrt(x+y)', # Test case from the issue 4259
'+Sqrt[2]': 'sqrt(2)',
'-Sqrt[2]': '-sqrt(2)',
'-1/Sqrt[2]': '-1/sqrt(2)',
'-(1/Sqrt[3])': '-(1/sqrt(3))',
'1/(2*Sqrt[5])': '1/(2*sqrt(5))',
'Mod[5,3]': 'Mod(5,3)',
'-Mod[5,3]': '-Mod(5,3)',
'(x+1)y': '(x+1)*y',
'x(y+1)': 'x*(y+1)',
'Sin[x]Cos[y]': 'sin(x)*cos(y)',
'Sin[x]^2Cos[y]^2': 'sin(x)**2*cos(y)**2',
'Cos[x]^2(1 - Cos[y]^2)': 'cos(x)**2*(1-cos(y)**2)',
'x y': 'x*y',
'x y': 'x*y',
'2 x': '2*x',
'x 8': 'x*8',
'2 8': '2*8',
'4.x': '4.*x',
'4. 3': '4.*3',
'4. 3.': '4.*3.',
'1 2 3': '1*2*3',
' - 2 * Sqrt[ 2 3 * ( 1 + 5 ) ] ': '-2*sqrt(2*3*(1+5))',
'Log[2,4]': 'log(4,2)',
'Log[Log[2,4],4]': 'log(4,log(4,2))',
'Exp[Sqrt[2]^2Log[2, 8]]': 'exp(sqrt(2)**2*log(8,2))',
'ArcSin[Cos[0]]': 'asin(cos(0))',
'Log2[16]': 'log(16,2)',
'Max[1,-2,3,-4]': 'Max(1,-2,3,-4)',
'Min[1,-2,3]': 'Min(1,-2,3)',
'Exp[I Pi/2]': 'exp(I*pi/2)',
'ArcTan[x,y]': 'atan2(y,x)',
'Pochhammer[x,y]': 'rf(x,y)',
'ExpIntegralEi[x]': 'Ei(x)',
'SinIntegral[x]': 'Si(x)',
'CosIntegral[x]': 'Ci(x)',
'AiryAi[x]': 'airyai(x)',
'AiryAiPrime[5]': 'airyaiprime(5)',
'AiryBi[x]': 'airybi(x)',
'AiryBiPrime[7]': 'airybiprime(7)',
'LogIntegral[4]': ' li(4)',
'PrimePi[7]': 'primepi(7)',
'Prime[5]': 'prime(5)',
'PrimeQ[5]': 'isprime(5)'
}
for e in d:
assert parse_mathematica(e) == sympify(d[e])
# The parsed form of this expression should not evaluate the Lambda object:
assert parse_mathematica("Sin[#]^2 + Cos[#]^2 &[x]") == sin(x)**2 + cos(x)**2
d1, d2, d3 = symbols("d1:4", cls=Dummy)
assert parse_mathematica("Sin[#] + Cos[#3] &").dummy_eq(Lambda((d1, d2, d3), sin(d1) + cos(d3)))
assert parse_mathematica("Sin[#^2] &").dummy_eq(Lambda(d1, sin(d1**2)))
assert parse_mathematica("Function[x, x^3]") == Lambda(x, x**3)
assert parse_mathematica("Function[{x, y}, x^2 + y^2]") == Lambda((x, y), x**2 + y**2)
def test_parser_mathematica_tokenizer():
parser = MathematicaParser()
chain = lambda expr: parser._from_tokens_to_fullformlist(parser._from_mathematica_to_tokens(expr))
# Basic patterns
assert chain("x") == "x"
assert chain("42") == "42"
assert chain(".2") == ".2"
assert chain("+x") == "x"
assert chain("-1") == "-1"
assert chain("- 3") == "-3"
assert chain("Ξ±") == "Ξ±"
assert chain("+Sin[x]") == ["Sin", "x"]
assert chain("-Sin[x]") == ["Times", "-1", ["Sin", "x"]]
assert chain("x(a+1)") == ["Times", "x", ["Plus", "a", "1"]]
assert chain("(x)") == "x"
assert chain("(+x)") == "x"
assert chain("-a") == ["Times", "-1", "a"]
assert chain("(-x)") == ["Times", "-1", "x"]
assert chain("(x + y)") == ["Plus", "x", "y"]
assert chain("3 + 4") == ["Plus", "3", "4"]
assert chain("a - 3") == ["Plus", "a", "-3"]
assert chain("a - b") == ["Plus", "a", ["Times", "-1", "b"]]
assert chain("7 * 8") == ["Times", "7", "8"]
assert chain("a + b*c") == ["Plus", "a", ["Times", "b", "c"]]
assert chain("a + b* c* d + 2 * e") == ["Plus", "a", ["Times", "b", "c", "d"], ["Times", "2", "e"]]
assert chain("a / b") == ["Times", "a", ["Power", "b", "-1"]]
# Missing asterisk (*) patterns:
assert chain("x y") == ["Times", "x", "y"]
assert chain("3 4") == ["Times", "3", "4"]
assert chain("a[b] c") == ["Times", ["a", "b"], "c"]
assert chain("(x) (y)") == ["Times", "x", "y"]
assert chain("3 (a)") == ["Times", "3", "a"]
assert chain("(a) b") == ["Times", "a", "b"]
assert chain("4.2") == "4.2"
assert chain("4 2") == ["Times", "4", "2"]
assert chain("4 2") == ["Times", "4", "2"]
assert chain("3 . 4") == ["Dot", "3", "4"]
assert chain("4. 2") == ["Times", "4.", "2"]
assert chain("x.y") == ["Dot", "x", "y"]
assert chain("4.y") == ["Times", "4.", "y"]
assert chain("4 .y") == ["Dot", "4", "y"]
assert chain("x.4") == ["Times", "x", ".4"]
assert chain("x0.3") == ["Times", "x0", ".3"]
assert chain("x. 4") == ["Dot", "x", "4"]
# Comments
assert chain("a (* +b *) + c") == ["Plus", "a", "c"]
assert chain("a (* + b *) + (**)c (* +d *) + e") == ["Plus", "a", "c", "e"]
assert chain("""a + (*
+ b
*) c + (* d
*) e
""") == ["Plus", "a", "c", "e"]
# Operators couples + and -, * and / are mutually associative:
# (i.e. expression gets flattened when mixing these operators)
assert chain("a*b/c") == ["Times", "a", "b", ["Power", "c", "-1"]]
assert chain("a/b*c") == ["Times", "a", ["Power", "b", "-1"], "c"]
assert chain("a+b-c") == ["Plus", "a", "b", ["Times", "-1", "c"]]
assert chain("a-b+c") == ["Plus", "a", ["Times", "-1", "b"], "c"]
assert chain("-a + b -c ") == ["Plus", ["Times", "-1", "a"], "b", ["Times", "-1", "c"]]
assert chain("a/b/c*d") == ["Times", "a", ["Power", "b", "-1"], ["Power", "c", "-1"], "d"]
assert chain("a/b/c") == ["Times", "a", ["Power", "b", "-1"], ["Power", "c", "-1"]]
assert chain("a-b-c") == ["Plus", "a", ["Times", "-1", "b"], ["Times", "-1", "c"]]
assert chain("1/a") == ["Times", "1", ["Power", "a", "-1"]]
assert chain("1/a/b") == ["Times", "1", ["Power", "a", "-1"], ["Power", "b", "-1"]]
assert chain("-1/a*b") == ["Times", "-1", ["Power", "a", "-1"], "b"]
# Enclosures of various kinds, i.e. ( ) [ ] [[ ]] { }
assert chain("(a + b) + c") == ["Plus", ["Plus", "a", "b"], "c"]
assert chain(" a + (b + c) + d ") == ["Plus", "a", ["Plus", "b", "c"], "d"]
assert chain("a * (b + c)") == ["Times", "a", ["Plus", "b", "c"]]
assert chain("a b (c d)") == ["Times", "a", "b", ["Times", "c", "d"]]
assert chain("{a, b, 2, c}") == ["List", "a", "b", "2", "c"]
assert chain("{a, {b, c}}") == ["List", "a", ["List", "b", "c"]]
assert chain("{{a}}") == ["List", ["List", "a"]]
assert chain("a[b, c]") == ["a", "b", "c"]
assert chain("a[[b, c]]") == ["Part", "a", "b", "c"]
assert chain("a[b[c]]") == ["a", ["b", "c"]]
assert chain("a[[b, c[[d, {e,f}]]]]") == ["Part", "a", "b", ["Part", "c", "d", ["List", "e", "f"]]]
assert chain("a[b[[c,d]]]") == ["a", ["Part", "b", "c", "d"]]
assert chain("a[[b[c]]]") == ["Part", "a", ["b", "c"]]
assert chain("a[[b[[c]]]]") == ["Part", "a", ["Part", "b", "c"]]
assert chain("a[[b[c[[d]]]]]") == ["Part", "a", ["b", ["Part", "c", "d"]]]
assert chain("a[b[[c[d]]]]") == ["a", ["Part", "b", ["c", "d"]]]
assert chain("x[[a+1, b+2, c+3]]") == ["Part", "x", ["Plus", "a", "1"], ["Plus", "b", "2"], ["Plus", "c", "3"]]
assert chain("x[a+1, b+2, c+3]") == ["x", ["Plus", "a", "1"], ["Plus", "b", "2"], ["Plus", "c", "3"]]
assert chain("{a+1, b+2, c+3}") == ["List", ["Plus", "a", "1"], ["Plus", "b", "2"], ["Plus", "c", "3"]]
# Flat operator:
assert chain("a*b*c*d*e") == ["Times", "a", "b", "c", "d", "e"]
assert chain("a +b + c+ d+e") == ["Plus", "a", "b", "c", "d", "e"]
# Right priority operator:
assert chain("a^b") == ["Power", "a", "b"]
assert chain("a^b^c") == ["Power", "a", ["Power", "b", "c"]]
assert chain("a^b^c^d") == ["Power", "a", ["Power", "b", ["Power", "c", "d"]]]
# Left priority operator:
assert chain("a/.b") == ["ReplaceAll", "a", "b"]
assert chain("a/.b/.c/.d") == ["ReplaceAll", ["ReplaceAll", ["ReplaceAll", "a", "b"], "c"], "d"]
assert chain("a//b") == ["a", "b"]
assert chain("a//b//c") == [["a", "b"], "c"]
assert chain("a//b//c//d") == [[["a", "b"], "c"], "d"]
# Compound expressions
assert chain("a;b") == ["CompoundExpression", "a", "b"]
assert chain("a;") == ["CompoundExpression", "a", "Null"]
assert chain("a;b;") == ["CompoundExpression", "a", "b", "Null"]
assert chain("a[b;c]") == ["a", ["CompoundExpression", "b", "c"]]
assert chain("a[b,c;d,e]") == ["a", "b", ["CompoundExpression", "c", "d"], "e"]
assert chain("a[b,c;,d]") == ["a", "b", ["CompoundExpression", "c", "Null"], "d"]
# New lines
assert chain("a\nb\n") == ["CompoundExpression", "a", "b"]
assert chain("a\n\nb\n (c \nd) \n") == ["CompoundExpression", "a", "b", ["Times", "c", "d"]]
assert chain("\na; b\nc") == ["CompoundExpression", "a", "b", "c"]
assert chain("a + \nb\n") == ["Plus", "a", "b"]
assert chain("a\nb; c; d\n e; (f \n g); h + \n i") == ["CompoundExpression", "a", "b", "c", "d", "e", ["Times", "f", "g"], ["Plus", "h", "i"]]
assert chain("\n{\na\nb; c; d\n e (f \n g); h + \n i\n\n}\n") == ["List", ["CompoundExpression", ["Times", "a", "b"], "c", ["Times", "d", "e", ["Times", "f", "g"]], ["Plus", "h", "i"]]]
# Patterns
assert chain("y_") == ["Pattern", "y", ["Blank"]]
assert chain("y_.") == ["Optional", ["Pattern", "y", ["Blank"]]]
assert chain("y__") == ["Pattern", "y", ["BlankSequence"]]
assert chain("y___") == ["Pattern", "y", ["BlankNullSequence"]]
assert chain("a[b_.,c_]") == ["a", ["Optional", ["Pattern", "b", ["Blank"]]], ["Pattern", "c", ["Blank"]]]
assert chain("b_. c") == ["Times", ["Optional", ["Pattern", "b", ["Blank"]]], "c"]
# Slots for lambda functions
assert chain("#") == ["Slot", "1"]
assert chain("#3") == ["Slot", "3"]
assert chain("#n") == ["Slot", "n"]
assert chain("##") == ["SlotSequence", "1"]
assert chain("##a") == ["SlotSequence", "a"]
# Lambda functions
assert chain("x&") == ["Function", "x"]
assert chain("#&") == ["Function", ["Slot", "1"]]
assert chain("#+3&") == ["Function", ["Plus", ["Slot", "1"], "3"]]
assert chain("#1 + #2&") == ["Function", ["Plus", ["Slot", "1"], ["Slot", "2"]]]
assert chain("# + #&") == ["Function", ["Plus", ["Slot", "1"], ["Slot", "1"]]]
assert chain("#&[x]") == [["Function", ["Slot", "1"]], "x"]
assert chain("#1 + #2 & [x, y]") == [["Function", ["Plus", ["Slot", "1"], ["Slot", "2"]]], "x", "y"]
assert chain("#1^2#2^3&") == ["Function", ["Times", ["Power", ["Slot", "1"], "2"], ["Power", ["Slot", "2"], "3"]]]
# Strings inside Mathematica expressions:
assert chain('"abc"') == ["_Str", "abc"]
assert chain('"a\\"b"') == ["_Str", 'a"b']
# This expression does not make sense mathematically, it's just testing the parser:
assert chain('x + "abc" ^ 3') == ["Plus", "x", ["Power", ["_Str", "abc"], "3"]]
assert chain('"a (* b *) c"') == ["_Str", "a (* b *) c"]
assert chain('"a" (* b *) ') == ["_Str", "a"]
assert chain('"a [ b] "') == ["_Str", "a [ b] "]
raises(SyntaxError, lambda: chain('"'))
raises(SyntaxError, lambda: chain('"\\"'))
raises(SyntaxError, lambda: chain('"abc'))
raises(SyntaxError, lambda: chain('"abc\\"def'))
# Invalid expressions:
raises(SyntaxError, lambda: chain("(,"))
raises(SyntaxError, lambda: chain("()"))
raises(SyntaxError, lambda: chain("a (* b"))
def test_parser_mathematica_exp_alt():
parser = MathematicaParser()
convert_chain2 = lambda expr: parser._from_fullformlist_to_fullformsympy(parser._from_fullform_to_fullformlist(expr))
convert_chain3 = lambda expr: parser._from_fullformsympy_to_sympy(convert_chain2(expr))
Sin, Times, Plus, Power = symbols("Sin Times Plus Power", cls=Function)
full_form1 = "Sin[Times[x, y]]"
full_form2 = "Plus[Times[x, y], z]"
full_form3 = "Sin[Times[x, Plus[y, z], Power[w, n]]]]"
assert parser._from_fullform_to_fullformlist(full_form1) == ["Sin", ["Times", "x", "y"]]
assert parser._from_fullform_to_fullformlist(full_form2) == ["Plus", ["Times", "x", "y"], "z"]
assert parser._from_fullform_to_fullformlist(full_form3) == ["Sin", ["Times", "x", ["Plus", "y", "z"], ["Power", "w", "n"]]]
assert convert_chain2(full_form1) == Sin(Times(x, y))
assert convert_chain2(full_form2) == Plus(Times(x, y), z)
assert convert_chain2(full_form3) == Sin(Times(x, Plus(y, z), Power(w, n)))
assert convert_chain3(full_form1) == sin(x*y)
assert convert_chain3(full_form2) == x*y + z
assert convert_chain3(full_form3) == sin(x*(y + z)*w**n)
|
6fd8486a5b8951dd55d97200a757ab6a4e94f9cf82c0ac832c7d5491842ebca1 | from importlib.metadata import version
from sympy.external import import_module
autolevparser = import_module('sympy.parsing.autolev._antlr.autolevparser',
import_kwargs={'fromlist': ['AutolevParser']})
autolevlexer = import_module('sympy.parsing.autolev._antlr.autolevlexer',
import_kwargs={'fromlist': ['AutolevLexer']})
autolevlistener = import_module('sympy.parsing.autolev._antlr.autolevlistener',
import_kwargs={'fromlist': ['AutolevListener']})
AutolevParser = getattr(autolevparser, 'AutolevParser', None)
AutolevLexer = getattr(autolevlexer, 'AutolevLexer', None)
AutolevListener = getattr(autolevlistener, 'AutolevListener', None)
def parse_autolev(autolev_code, include_numeric):
antlr4 = import_module('antlr4')
if not antlr4 or not version('antlr4-python3-runtime').startswith('4.11'):
raise ImportError("Autolev parsing requires the antlr4 Python package,"
" provided by pip (antlr4-python3-runtime)"
" conda (antlr-python-runtime), version 4.11")
try:
l = autolev_code.readlines()
input_stream = antlr4.InputStream("".join(l))
except Exception:
input_stream = antlr4.InputStream(autolev_code)
if AutolevListener:
from ._listener_autolev_antlr import MyListener
lexer = AutolevLexer(input_stream)
token_stream = antlr4.CommonTokenStream(lexer)
parser = AutolevParser(token_stream)
tree = parser.prog()
my_listener = MyListener(include_numeric)
walker = antlr4.ParseTreeWalker()
walker.walk(my_listener, tree)
return "".join(my_listener.output_code)
|
70626c1aefa56e7b2d6359c9b0b09e93af120cf9316875122517fed57a33917c | # Ported from latex2sympy by @augustt198
# https://github.com/augustt198/latex2sympy
# See license in LICENSE.txt
from importlib.metadata import version
import sympy
from sympy.external import import_module
from sympy.printing.str import StrPrinter
from sympy.physics.quantum.state import Bra, Ket
from .errors import LaTeXParsingError
LaTeXParser = LaTeXLexer = MathErrorListener = None
try:
LaTeXParser = import_module('sympy.parsing.latex._antlr.latexparser',
import_kwargs={'fromlist': ['LaTeXParser']}).LaTeXParser
LaTeXLexer = import_module('sympy.parsing.latex._antlr.latexlexer',
import_kwargs={'fromlist': ['LaTeXLexer']}).LaTeXLexer
except Exception:
pass
ErrorListener = import_module('antlr4.error.ErrorListener',
warn_not_installed=True,
import_kwargs={'fromlist': ['ErrorListener']}
)
if ErrorListener:
class MathErrorListener(ErrorListener.ErrorListener): # type: ignore
def __init__(self, src):
super(ErrorListener.ErrorListener, self).__init__()
self.src = src
def syntaxError(self, recog, symbol, line, col, msg, e):
fmt = "%s\n%s\n%s"
marker = "~" * col + "^"
if msg.startswith("missing"):
err = fmt % (msg, self.src, marker)
elif msg.startswith("no viable"):
err = fmt % ("I expected something else here", self.src, marker)
elif msg.startswith("mismatched"):
names = LaTeXParser.literalNames
expected = [
names[i] for i in e.getExpectedTokens() if i < len(names)
]
if len(expected) < 10:
expected = " ".join(expected)
err = (fmt % ("I expected one of these: " + expected, self.src,
marker))
else:
err = (fmt % ("I expected something else here", self.src,
marker))
else:
err = fmt % ("I don't understand this", self.src, marker)
raise LaTeXParsingError(err)
def parse_latex(sympy):
antlr4 = import_module('antlr4')
if None in [antlr4, MathErrorListener] or \
not version('antlr4-python3-runtime').startswith('4.11'):
raise ImportError("LaTeX parsing requires the antlr4 Python package,"
" provided by pip (antlr4-python3-runtime) or"
" conda (antlr-python-runtime), version 4.11")
matherror = MathErrorListener(sympy)
stream = antlr4.InputStream(sympy)
lex = LaTeXLexer(stream)
lex.removeErrorListeners()
lex.addErrorListener(matherror)
tokens = antlr4.CommonTokenStream(lex)
parser = LaTeXParser(tokens)
# remove default console error listener
parser.removeErrorListeners()
parser.addErrorListener(matherror)
relation = parser.math().relation()
expr = convert_relation(relation)
return expr
def convert_relation(rel):
if rel.expr():
return convert_expr(rel.expr())
lh = convert_relation(rel.relation(0))
rh = convert_relation(rel.relation(1))
if rel.LT():
return sympy.StrictLessThan(lh, rh)
elif rel.LTE():
return sympy.LessThan(lh, rh)
elif rel.GT():
return sympy.StrictGreaterThan(lh, rh)
elif rel.GTE():
return sympy.GreaterThan(lh, rh)
elif rel.EQUAL():
return sympy.Eq(lh, rh)
elif rel.NEQ():
return sympy.Ne(lh, rh)
def convert_expr(expr):
return convert_add(expr.additive())
def convert_add(add):
if add.ADD():
lh = convert_add(add.additive(0))
rh = convert_add(add.additive(1))
return sympy.Add(lh, rh, evaluate=False)
elif add.SUB():
lh = convert_add(add.additive(0))
rh = convert_add(add.additive(1))
if hasattr(rh, "is_Atom") and rh.is_Atom:
return sympy.Add(lh, -1 * rh, evaluate=False)
return sympy.Add(lh, sympy.Mul(-1, rh, evaluate=False), evaluate=False)
else:
return convert_mp(add.mp())
def convert_mp(mp):
if hasattr(mp, 'mp'):
mp_left = mp.mp(0)
mp_right = mp.mp(1)
else:
mp_left = mp.mp_nofunc(0)
mp_right = mp.mp_nofunc(1)
if mp.MUL() or mp.CMD_TIMES() or mp.CMD_CDOT():
lh = convert_mp(mp_left)
rh = convert_mp(mp_right)
return sympy.Mul(lh, rh, evaluate=False)
elif mp.DIV() or mp.CMD_DIV() or mp.COLON():
lh = convert_mp(mp_left)
rh = convert_mp(mp_right)
return sympy.Mul(lh, sympy.Pow(rh, -1, evaluate=False), evaluate=False)
else:
if hasattr(mp, 'unary'):
return convert_unary(mp.unary())
else:
return convert_unary(mp.unary_nofunc())
def convert_unary(unary):
if hasattr(unary, 'unary'):
nested_unary = unary.unary()
else:
nested_unary = unary.unary_nofunc()
if hasattr(unary, 'postfix_nofunc'):
first = unary.postfix()
tail = unary.postfix_nofunc()
postfix = [first] + tail
else:
postfix = unary.postfix()
if unary.ADD():
return convert_unary(nested_unary)
elif unary.SUB():
numabs = convert_unary(nested_unary)
# Use Integer(-n) instead of Mul(-1, n)
return -numabs
elif postfix:
return convert_postfix_list(postfix)
def convert_postfix_list(arr, i=0):
if i >= len(arr):
raise LaTeXParsingError("Index out of bounds")
res = convert_postfix(arr[i])
if isinstance(res, sympy.Expr):
if i == len(arr) - 1:
return res # nothing to multiply by
else:
if i > 0:
left = convert_postfix(arr[i - 1])
right = convert_postfix(arr[i + 1])
if isinstance(left, sympy.Expr) and isinstance(
right, sympy.Expr):
left_syms = convert_postfix(arr[i - 1]).atoms(sympy.Symbol)
right_syms = convert_postfix(arr[i + 1]).atoms(
sympy.Symbol)
# if the left and right sides contain no variables and the
# symbol in between is 'x', treat as multiplication.
if not (left_syms or right_syms) and str(res) == 'x':
return convert_postfix_list(arr, i + 1)
# multiply by next
return sympy.Mul(
res, convert_postfix_list(arr, i + 1), evaluate=False)
else: # must be derivative
wrt = res[0]
if i == len(arr) - 1:
raise LaTeXParsingError("Expected expression for derivative")
else:
expr = convert_postfix_list(arr, i + 1)
return sympy.Derivative(expr, wrt)
def do_subs(expr, at):
if at.expr():
at_expr = convert_expr(at.expr())
syms = at_expr.atoms(sympy.Symbol)
if len(syms) == 0:
return expr
elif len(syms) > 0:
sym = next(iter(syms))
return expr.subs(sym, at_expr)
elif at.equality():
lh = convert_expr(at.equality().expr(0))
rh = convert_expr(at.equality().expr(1))
return expr.subs(lh, rh)
def convert_postfix(postfix):
if hasattr(postfix, 'exp'):
exp_nested = postfix.exp()
else:
exp_nested = postfix.exp_nofunc()
exp = convert_exp(exp_nested)
for op in postfix.postfix_op():
if op.BANG():
if isinstance(exp, list):
raise LaTeXParsingError("Cannot apply postfix to derivative")
exp = sympy.factorial(exp, evaluate=False)
elif op.eval_at():
ev = op.eval_at()
at_b = None
at_a = None
if ev.eval_at_sup():
at_b = do_subs(exp, ev.eval_at_sup())
if ev.eval_at_sub():
at_a = do_subs(exp, ev.eval_at_sub())
if at_b is not None and at_a is not None:
exp = sympy.Add(at_b, -1 * at_a, evaluate=False)
elif at_b is not None:
exp = at_b
elif at_a is not None:
exp = at_a
return exp
def convert_exp(exp):
if hasattr(exp, 'exp'):
exp_nested = exp.exp()
else:
exp_nested = exp.exp_nofunc()
if exp_nested:
base = convert_exp(exp_nested)
if isinstance(base, list):
raise LaTeXParsingError("Cannot raise derivative to power")
if exp.atom():
exponent = convert_atom(exp.atom())
elif exp.expr():
exponent = convert_expr(exp.expr())
return sympy.Pow(base, exponent, evaluate=False)
else:
if hasattr(exp, 'comp'):
return convert_comp(exp.comp())
else:
return convert_comp(exp.comp_nofunc())
def convert_comp(comp):
if comp.group():
return convert_expr(comp.group().expr())
elif comp.abs_group():
return sympy.Abs(convert_expr(comp.abs_group().expr()), evaluate=False)
elif comp.atom():
return convert_atom(comp.atom())
elif comp.floor():
return convert_floor(comp.floor())
elif comp.ceil():
return convert_ceil(comp.ceil())
elif comp.func():
return convert_func(comp.func())
def convert_atom(atom):
if atom.LETTER():
sname = atom.LETTER().getText()
if atom.subexpr():
if atom.subexpr().expr(): # subscript is expr
subscript = convert_expr(atom.subexpr().expr())
else: # subscript is atom
subscript = convert_atom(atom.subexpr().atom())
sname += '_{' + StrPrinter().doprint(subscript) + '}'
if atom.SINGLE_QUOTES():
sname += atom.SINGLE_QUOTES().getText() # put after subscript for easy identify
return sympy.Symbol(sname)
elif atom.SYMBOL():
s = atom.SYMBOL().getText()[1:]
if s == "infty":
return sympy.oo
else:
if atom.subexpr():
subscript = None
if atom.subexpr().expr(): # subscript is expr
subscript = convert_expr(atom.subexpr().expr())
else: # subscript is atom
subscript = convert_atom(atom.subexpr().atom())
subscriptName = StrPrinter().doprint(subscript)
s += '_{' + subscriptName + '}'
return sympy.Symbol(s)
elif atom.number():
s = atom.number().getText().replace(",", "")
return sympy.Number(s)
elif atom.DIFFERENTIAL():
var = get_differential_var(atom.DIFFERENTIAL())
return sympy.Symbol('d' + var.name)
elif atom.mathit():
text = rule2text(atom.mathit().mathit_text())
return sympy.Symbol(text)
elif atom.frac():
return convert_frac(atom.frac())
elif atom.binom():
return convert_binom(atom.binom())
elif atom.bra():
val = convert_expr(atom.bra().expr())
return Bra(val)
elif atom.ket():
val = convert_expr(atom.ket().expr())
return Ket(val)
def rule2text(ctx):
stream = ctx.start.getInputStream()
# starting index of starting token
startIdx = ctx.start.start
# stopping index of stopping token
stopIdx = ctx.stop.stop
return stream.getText(startIdx, stopIdx)
def convert_frac(frac):
diff_op = False
partial_op = False
if frac.lower and frac.upper:
lower_itv = frac.lower.getSourceInterval()
lower_itv_len = lower_itv[1] - lower_itv[0] + 1
if (frac.lower.start == frac.lower.stop
and frac.lower.start.type == LaTeXLexer.DIFFERENTIAL):
wrt = get_differential_var_str(frac.lower.start.text)
diff_op = True
elif (lower_itv_len == 2 and frac.lower.start.type == LaTeXLexer.SYMBOL
and frac.lower.start.text == '\\partial'
and (frac.lower.stop.type == LaTeXLexer.LETTER
or frac.lower.stop.type == LaTeXLexer.SYMBOL)):
partial_op = True
wrt = frac.lower.stop.text
if frac.lower.stop.type == LaTeXLexer.SYMBOL:
wrt = wrt[1:]
if diff_op or partial_op:
wrt = sympy.Symbol(wrt)
if (diff_op and frac.upper.start == frac.upper.stop
and frac.upper.start.type == LaTeXLexer.LETTER
and frac.upper.start.text == 'd'):
return [wrt]
elif (partial_op and frac.upper.start == frac.upper.stop
and frac.upper.start.type == LaTeXLexer.SYMBOL
and frac.upper.start.text == '\\partial'):
return [wrt]
upper_text = rule2text(frac.upper)
expr_top = None
if diff_op and upper_text.startswith('d'):
expr_top = parse_latex(upper_text[1:])
elif partial_op and frac.upper.start.text == '\\partial':
expr_top = parse_latex(upper_text[len('\\partial'):])
if expr_top:
return sympy.Derivative(expr_top, wrt)
if frac.upper:
expr_top = convert_expr(frac.upper)
else:
expr_top = sympy.Number(frac.upperd.text)
if frac.lower:
expr_bot = convert_expr(frac.lower)
else:
expr_bot = sympy.Number(frac.lowerd.text)
inverse_denom = sympy.Pow(expr_bot, -1, evaluate=False)
if expr_top == 1:
return inverse_denom
else:
return sympy.Mul(expr_top, inverse_denom, evaluate=False)
def convert_binom(binom):
expr_n = convert_expr(binom.n)
expr_k = convert_expr(binom.k)
return sympy.binomial(expr_n, expr_k, evaluate=False)
def convert_floor(floor):
val = convert_expr(floor.val)
return sympy.floor(val, evaluate=False)
def convert_ceil(ceil):
val = convert_expr(ceil.val)
return sympy.ceiling(val, evaluate=False)
def convert_func(func):
if func.func_normal():
if func.L_PAREN(): # function called with parenthesis
arg = convert_func_arg(func.func_arg())
else:
arg = convert_func_arg(func.func_arg_noparens())
name = func.func_normal().start.text[1:]
# change arc<trig> -> a<trig>
if name in [
"arcsin", "arccos", "arctan", "arccsc", "arcsec", "arccot"
]:
name = "a" + name[3:]
expr = getattr(sympy.functions, name)(arg, evaluate=False)
if name in ["arsinh", "arcosh", "artanh"]:
name = "a" + name[2:]
expr = getattr(sympy.functions, name)(arg, evaluate=False)
if name == "exp":
expr = sympy.exp(arg, evaluate=False)
if name in ("log", "lg", "ln"):
if func.subexpr():
if func.subexpr().expr():
base = convert_expr(func.subexpr().expr())
else:
base = convert_atom(func.subexpr().atom())
elif name == "lg": # ISO 80000-2:2019
base = 10
elif name in ("ln", "log"): # SymPy's latex printer prints ln as log by default
base = sympy.E
expr = sympy.log(arg, base, evaluate=False)
func_pow = None
should_pow = True
if func.supexpr():
if func.supexpr().expr():
func_pow = convert_expr(func.supexpr().expr())
else:
func_pow = convert_atom(func.supexpr().atom())
if name in [
"sin", "cos", "tan", "csc", "sec", "cot", "sinh", "cosh",
"tanh"
]:
if func_pow == -1:
name = "a" + name
should_pow = False
expr = getattr(sympy.functions, name)(arg, evaluate=False)
if func_pow and should_pow:
expr = sympy.Pow(expr, func_pow, evaluate=False)
return expr
elif func.LETTER() or func.SYMBOL():
if func.LETTER():
fname = func.LETTER().getText()
elif func.SYMBOL():
fname = func.SYMBOL().getText()[1:]
fname = str(fname) # can't be unicode
if func.subexpr():
if func.subexpr().expr(): # subscript is expr
subscript = convert_expr(func.subexpr().expr())
else: # subscript is atom
subscript = convert_atom(func.subexpr().atom())
subscriptName = StrPrinter().doprint(subscript)
fname += '_{' + subscriptName + '}'
if func.SINGLE_QUOTES():
fname += func.SINGLE_QUOTES().getText()
input_args = func.args()
output_args = []
while input_args.args(): # handle multiple arguments to function
output_args.append(convert_expr(input_args.expr()))
input_args = input_args.args()
output_args.append(convert_expr(input_args.expr()))
return sympy.Function(fname)(*output_args)
elif func.FUNC_INT():
return handle_integral(func)
elif func.FUNC_SQRT():
expr = convert_expr(func.base)
if func.root:
r = convert_expr(func.root)
return sympy.root(expr, r, evaluate=False)
else:
return sympy.sqrt(expr, evaluate=False)
elif func.FUNC_OVERLINE():
expr = convert_expr(func.base)
return sympy.conjugate(expr, evaluate=False)
elif func.FUNC_SUM():
return handle_sum_or_prod(func, "summation")
elif func.FUNC_PROD():
return handle_sum_or_prod(func, "product")
elif func.FUNC_LIM():
return handle_limit(func)
def convert_func_arg(arg):
if hasattr(arg, 'expr'):
return convert_expr(arg.expr())
else:
return convert_mp(arg.mp_nofunc())
def handle_integral(func):
if func.additive():
integrand = convert_add(func.additive())
elif func.frac():
integrand = convert_frac(func.frac())
else:
integrand = 1
int_var = None
if func.DIFFERENTIAL():
int_var = get_differential_var(func.DIFFERENTIAL())
else:
for sym in integrand.atoms(sympy.Symbol):
s = str(sym)
if len(s) > 1 and s[0] == 'd':
if s[1] == '\\':
int_var = sympy.Symbol(s[2:])
else:
int_var = sympy.Symbol(s[1:])
int_sym = sym
if int_var:
integrand = integrand.subs(int_sym, 1)
else:
# Assume dx by default
int_var = sympy.Symbol('x')
if func.subexpr():
if func.subexpr().atom():
lower = convert_atom(func.subexpr().atom())
else:
lower = convert_expr(func.subexpr().expr())
if func.supexpr().atom():
upper = convert_atom(func.supexpr().atom())
else:
upper = convert_expr(func.supexpr().expr())
return sympy.Integral(integrand, (int_var, lower, upper))
else:
return sympy.Integral(integrand, int_var)
def handle_sum_or_prod(func, name):
val = convert_mp(func.mp())
iter_var = convert_expr(func.subeq().equality().expr(0))
start = convert_expr(func.subeq().equality().expr(1))
if func.supexpr().expr(): # ^{expr}
end = convert_expr(func.supexpr().expr())
else: # ^atom
end = convert_atom(func.supexpr().atom())
if name == "summation":
return sympy.Sum(val, (iter_var, start, end))
elif name == "product":
return sympy.Product(val, (iter_var, start, end))
def handle_limit(func):
sub = func.limit_sub()
if sub.LETTER():
var = sympy.Symbol(sub.LETTER().getText())
elif sub.SYMBOL():
var = sympy.Symbol(sub.SYMBOL().getText()[1:])
else:
var = sympy.Symbol('x')
if sub.SUB():
direction = "-"
else:
direction = "+"
approaching = convert_expr(sub.expr())
content = convert_mp(func.mp())
return sympy.Limit(content, var, approaching, direction)
def get_differential_var(d):
text = get_differential_var_str(d.getText())
return sympy.Symbol(text)
def get_differential_var_str(text):
for i in range(1, len(text)):
c = text[i]
if not (c == " " or c == "\r" or c == "\n" or c == "\t"):
idx = i
break
text = text[idx:]
if text[0] == "\\":
text = text[1:]
return text
|
2bb1c5ffee5d532008bf5ffb1a48539b1a9209a9c4842a73246f1f6b20040774 | # *** GENERATED BY `setup.py antlr`, DO NOT EDIT BY HAND ***
#
# Generated with antlr4
# antlr4 is licensed under the BSD-3-Clause License
# https://github.com/antlr/antlr4/blob/master/LICENSE.txt
from antlr4 import *
from io import StringIO
import sys
if sys.version_info[1] > 5:
from typing import TextIO
else:
from typing.io import TextIO
def serializedATN():
return [
4,0,49,393,6,-1,2,0,7,0,2,1,7,1,2,2,7,2,2,3,7,3,2,4,7,4,2,5,7,5,
2,6,7,6,2,7,7,7,2,8,7,8,2,9,7,9,2,10,7,10,2,11,7,11,2,12,7,12,2,
13,7,13,2,14,7,14,2,15,7,15,2,16,7,16,2,17,7,17,2,18,7,18,2,19,7,
19,2,20,7,20,2,21,7,21,2,22,7,22,2,23,7,23,2,24,7,24,2,25,7,25,2,
26,7,26,2,27,7,27,2,28,7,28,2,29,7,29,2,30,7,30,2,31,7,31,2,32,7,
32,2,33,7,33,2,34,7,34,2,35,7,35,2,36,7,36,2,37,7,37,2,38,7,38,2,
39,7,39,2,40,7,40,2,41,7,41,2,42,7,42,2,43,7,43,2,44,7,44,2,45,7,
45,2,46,7,46,2,47,7,47,2,48,7,48,2,49,7,49,2,50,7,50,1,0,1,0,1,1,
1,1,1,2,1,2,1,3,1,3,1,3,1,4,1,4,1,4,1,5,1,5,1,5,1,6,1,6,1,6,1,7,
1,7,1,7,1,8,1,8,1,8,1,9,1,9,1,10,1,10,1,11,1,11,1,12,1,12,1,13,1,
13,1,14,1,14,1,15,1,15,1,16,1,16,1,17,1,17,1,18,1,18,1,19,1,19,1,
20,1,20,1,21,1,21,1,21,1,22,1,22,1,22,1,22,1,23,1,23,1,24,1,24,1,
25,1,25,1,26,1,26,1,26,1,26,1,26,1,27,1,27,1,27,1,27,1,27,1,27,1,
27,1,27,1,28,1,28,1,28,1,28,1,28,1,28,3,28,184,8,28,1,29,1,29,1,
29,1,29,1,29,1,29,1,29,1,30,1,30,1,30,1,30,1,30,1,31,1,31,1,31,1,
31,1,31,1,31,1,31,1,31,1,31,1,31,1,31,1,32,1,32,1,32,1,32,1,32,1,
32,1,32,1,33,1,33,1,33,1,33,1,33,1,33,1,33,1,33,1,33,1,33,1,34,1,
34,1,34,1,34,1,34,1,34,3,34,232,8,34,1,35,1,35,1,35,1,35,1,35,1,
35,3,35,240,8,35,1,36,1,36,1,36,1,36,1,36,1,36,1,36,1,36,1,36,3,
36,251,8,36,1,37,1,37,1,37,1,37,1,37,1,37,3,37,259,8,37,1,38,1,38,
1,38,1,38,1,38,1,38,1,38,1,38,1,38,3,38,270,8,38,1,39,1,39,1,39,
1,39,1,39,1,39,1,39,1,39,1,39,1,39,3,39,282,8,39,1,40,1,40,1,40,
1,40,1,40,1,40,1,40,1,40,1,40,1,40,1,41,1,41,1,41,1,41,1,41,1,41,
1,41,1,41,1,41,3,41,303,8,41,1,42,1,42,1,42,1,42,1,42,1,42,1,42,
1,42,1,42,1,42,1,42,1,42,1,42,1,42,1,42,3,42,320,8,42,1,43,5,43,
323,8,43,10,43,12,43,326,9,43,1,44,1,44,1,45,4,45,331,8,45,11,45,
12,45,332,1,46,4,46,336,8,46,11,46,12,46,337,1,46,1,46,5,46,342,
8,46,10,46,12,46,345,9,46,1,46,1,46,4,46,349,8,46,11,46,12,46,350,
3,46,353,8,46,1,47,1,47,1,47,1,47,1,47,1,47,1,47,1,47,1,47,3,47,
364,8,47,1,48,1,48,5,48,368,8,48,10,48,12,48,371,9,48,1,48,3,48,
374,8,48,1,48,1,48,1,48,1,48,1,49,1,49,5,49,382,8,49,10,49,12,49,
385,9,49,1,50,4,50,388,8,50,11,50,12,50,389,1,50,1,50,1,369,0,51,
1,1,3,2,5,3,7,4,9,5,11,6,13,7,15,8,17,9,19,10,21,11,23,12,25,13,
27,14,29,15,31,16,33,17,35,18,37,19,39,20,41,21,43,22,45,23,47,24,
49,25,51,26,53,27,55,28,57,29,59,30,61,31,63,32,65,33,67,34,69,35,
71,36,73,37,75,38,77,39,79,40,81,41,83,42,85,43,87,0,89,0,91,44,
93,45,95,46,97,47,99,48,101,49,1,0,24,2,0,77,77,109,109,2,0,65,65,
97,97,2,0,83,83,115,115,2,0,73,73,105,105,2,0,78,78,110,110,2,0,
69,69,101,101,2,0,82,82,114,114,2,0,84,84,116,116,2,0,80,80,112,
112,2,0,85,85,117,117,2,0,79,79,111,111,2,0,86,86,118,118,2,0,89,
89,121,121,2,0,67,67,99,99,2,0,68,68,100,100,2,0,87,87,119,119,2,
0,70,70,102,102,2,0,66,66,98,98,2,0,76,76,108,108,2,0,71,71,103,
103,1,0,48,57,2,0,65,90,97,122,4,0,48,57,65,90,95,95,97,122,4,0,
9,10,13,13,32,32,38,38,410,0,1,1,0,0,0,0,3,1,0,0,0,0,5,1,0,0,0,0,
7,1,0,0,0,0,9,1,0,0,0,0,11,1,0,0,0,0,13,1,0,0,0,0,15,1,0,0,0,0,17,
1,0,0,0,0,19,1,0,0,0,0,21,1,0,0,0,0,23,1,0,0,0,0,25,1,0,0,0,0,27,
1,0,0,0,0,29,1,0,0,0,0,31,1,0,0,0,0,33,1,0,0,0,0,35,1,0,0,0,0,37,
1,0,0,0,0,39,1,0,0,0,0,41,1,0,0,0,0,43,1,0,0,0,0,45,1,0,0,0,0,47,
1,0,0,0,0,49,1,0,0,0,0,51,1,0,0,0,0,53,1,0,0,0,0,55,1,0,0,0,0,57,
1,0,0,0,0,59,1,0,0,0,0,61,1,0,0,0,0,63,1,0,0,0,0,65,1,0,0,0,0,67,
1,0,0,0,0,69,1,0,0,0,0,71,1,0,0,0,0,73,1,0,0,0,0,75,1,0,0,0,0,77,
1,0,0,0,0,79,1,0,0,0,0,81,1,0,0,0,0,83,1,0,0,0,0,85,1,0,0,0,0,91,
1,0,0,0,0,93,1,0,0,0,0,95,1,0,0,0,0,97,1,0,0,0,0,99,1,0,0,0,0,101,
1,0,0,0,1,103,1,0,0,0,3,105,1,0,0,0,5,107,1,0,0,0,7,109,1,0,0,0,
9,112,1,0,0,0,11,115,1,0,0,0,13,118,1,0,0,0,15,121,1,0,0,0,17,124,
1,0,0,0,19,127,1,0,0,0,21,129,1,0,0,0,23,131,1,0,0,0,25,133,1,0,
0,0,27,135,1,0,0,0,29,137,1,0,0,0,31,139,1,0,0,0,33,141,1,0,0,0,
35,143,1,0,0,0,37,145,1,0,0,0,39,147,1,0,0,0,41,149,1,0,0,0,43,151,
1,0,0,0,45,154,1,0,0,0,47,158,1,0,0,0,49,160,1,0,0,0,51,162,1,0,
0,0,53,164,1,0,0,0,55,169,1,0,0,0,57,177,1,0,0,0,59,185,1,0,0,0,
61,192,1,0,0,0,63,197,1,0,0,0,65,208,1,0,0,0,67,215,1,0,0,0,69,225,
1,0,0,0,71,233,1,0,0,0,73,241,1,0,0,0,75,252,1,0,0,0,77,260,1,0,
0,0,79,271,1,0,0,0,81,283,1,0,0,0,83,293,1,0,0,0,85,304,1,0,0,0,
87,324,1,0,0,0,89,327,1,0,0,0,91,330,1,0,0,0,93,352,1,0,0,0,95,363,
1,0,0,0,97,365,1,0,0,0,99,379,1,0,0,0,101,387,1,0,0,0,103,104,5,
91,0,0,104,2,1,0,0,0,105,106,5,93,0,0,106,4,1,0,0,0,107,108,5,61,
0,0,108,6,1,0,0,0,109,110,5,43,0,0,110,111,5,61,0,0,111,8,1,0,0,
0,112,113,5,45,0,0,113,114,5,61,0,0,114,10,1,0,0,0,115,116,5,58,
0,0,116,117,5,61,0,0,117,12,1,0,0,0,118,119,5,42,0,0,119,120,5,61,
0,0,120,14,1,0,0,0,121,122,5,47,0,0,122,123,5,61,0,0,123,16,1,0,
0,0,124,125,5,94,0,0,125,126,5,61,0,0,126,18,1,0,0,0,127,128,5,44,
0,0,128,20,1,0,0,0,129,130,5,39,0,0,130,22,1,0,0,0,131,132,5,40,
0,0,132,24,1,0,0,0,133,134,5,41,0,0,134,26,1,0,0,0,135,136,5,123,
0,0,136,28,1,0,0,0,137,138,5,125,0,0,138,30,1,0,0,0,139,140,5,58,
0,0,140,32,1,0,0,0,141,142,5,43,0,0,142,34,1,0,0,0,143,144,5,45,
0,0,144,36,1,0,0,0,145,146,5,59,0,0,146,38,1,0,0,0,147,148,5,46,
0,0,148,40,1,0,0,0,149,150,5,62,0,0,150,42,1,0,0,0,151,152,5,48,
0,0,152,153,5,62,0,0,153,44,1,0,0,0,154,155,5,49,0,0,155,156,5,62,
0,0,156,157,5,62,0,0,157,46,1,0,0,0,158,159,5,94,0,0,159,48,1,0,
0,0,160,161,5,42,0,0,161,50,1,0,0,0,162,163,5,47,0,0,163,52,1,0,
0,0,164,165,7,0,0,0,165,166,7,1,0,0,166,167,7,2,0,0,167,168,7,2,
0,0,168,54,1,0,0,0,169,170,7,3,0,0,170,171,7,4,0,0,171,172,7,5,0,
0,172,173,7,6,0,0,173,174,7,7,0,0,174,175,7,3,0,0,175,176,7,1,0,
0,176,56,1,0,0,0,177,178,7,3,0,0,178,179,7,4,0,0,179,180,7,8,0,0,
180,181,7,9,0,0,181,183,7,7,0,0,182,184,7,2,0,0,183,182,1,0,0,0,
183,184,1,0,0,0,184,58,1,0,0,0,185,186,7,10,0,0,186,187,7,9,0,0,
187,188,7,7,0,0,188,189,7,8,0,0,189,190,7,9,0,0,190,191,7,7,0,0,
191,60,1,0,0,0,192,193,7,2,0,0,193,194,7,1,0,0,194,195,7,11,0,0,
195,196,7,5,0,0,196,62,1,0,0,0,197,198,7,9,0,0,198,199,7,4,0,0,199,
200,7,3,0,0,200,201,7,7,0,0,201,202,7,2,0,0,202,203,7,12,0,0,203,
204,7,2,0,0,204,205,7,7,0,0,205,206,7,5,0,0,206,207,7,0,0,0,207,
64,1,0,0,0,208,209,7,5,0,0,209,210,7,4,0,0,210,211,7,13,0,0,211,
212,7,10,0,0,212,213,7,14,0,0,213,214,7,5,0,0,214,66,1,0,0,0,215,
216,7,4,0,0,216,217,7,5,0,0,217,218,7,15,0,0,218,219,7,7,0,0,219,
220,7,10,0,0,220,221,7,4,0,0,221,222,7,3,0,0,222,223,7,1,0,0,223,
224,7,4,0,0,224,68,1,0,0,0,225,226,7,16,0,0,226,227,7,6,0,0,227,
228,7,1,0,0,228,229,7,0,0,0,229,231,7,5,0,0,230,232,7,2,0,0,231,
230,1,0,0,0,231,232,1,0,0,0,232,70,1,0,0,0,233,234,7,17,0,0,234,
235,7,10,0,0,235,236,7,14,0,0,236,237,7,3,0,0,237,239,7,5,0,0,238,
240,7,2,0,0,239,238,1,0,0,0,239,240,1,0,0,0,240,72,1,0,0,0,241,242,
7,8,0,0,242,243,7,1,0,0,243,244,7,6,0,0,244,245,7,7,0,0,245,246,
7,3,0,0,246,247,7,13,0,0,247,248,7,18,0,0,248,250,7,5,0,0,249,251,
7,2,0,0,250,249,1,0,0,0,250,251,1,0,0,0,251,74,1,0,0,0,252,253,7,
8,0,0,253,254,7,10,0,0,254,255,7,3,0,0,255,256,7,4,0,0,256,258,7,
7,0,0,257,259,7,2,0,0,258,257,1,0,0,0,258,259,1,0,0,0,259,76,1,0,
0,0,260,261,7,13,0,0,261,262,7,10,0,0,262,263,7,4,0,0,263,264,7,
2,0,0,264,265,7,7,0,0,265,266,7,1,0,0,266,267,7,4,0,0,267,269,7,
7,0,0,268,270,7,2,0,0,269,268,1,0,0,0,269,270,1,0,0,0,270,78,1,0,
0,0,271,272,7,2,0,0,272,273,7,8,0,0,273,274,7,5,0,0,274,275,7,13,
0,0,275,276,7,3,0,0,276,277,7,16,0,0,277,278,7,3,0,0,278,279,7,5,
0,0,279,281,7,14,0,0,280,282,7,2,0,0,281,280,1,0,0,0,281,282,1,0,
0,0,282,80,1,0,0,0,283,284,7,3,0,0,284,285,7,0,0,0,285,286,7,1,0,
0,286,287,7,19,0,0,287,288,7,3,0,0,288,289,7,4,0,0,289,290,7,1,0,
0,290,291,7,6,0,0,291,292,7,12,0,0,292,82,1,0,0,0,293,294,7,11,0,
0,294,295,7,1,0,0,295,296,7,6,0,0,296,297,7,3,0,0,297,298,7,1,0,
0,298,299,7,17,0,0,299,300,7,18,0,0,300,302,7,5,0,0,301,303,7,2,
0,0,302,301,1,0,0,0,302,303,1,0,0,0,303,84,1,0,0,0,304,305,7,0,0,
0,305,306,7,10,0,0,306,307,7,7,0,0,307,308,7,3,0,0,308,309,7,10,
0,0,309,310,7,4,0,0,310,311,7,11,0,0,311,312,7,1,0,0,312,313,7,6,
0,0,313,314,7,3,0,0,314,315,7,1,0,0,315,316,7,17,0,0,316,317,7,18,
0,0,317,319,7,5,0,0,318,320,7,2,0,0,319,318,1,0,0,0,319,320,1,0,
0,0,320,86,1,0,0,0,321,323,5,39,0,0,322,321,1,0,0,0,323,326,1,0,
0,0,324,322,1,0,0,0,324,325,1,0,0,0,325,88,1,0,0,0,326,324,1,0,0,
0,327,328,7,20,0,0,328,90,1,0,0,0,329,331,7,20,0,0,330,329,1,0,0,
0,331,332,1,0,0,0,332,330,1,0,0,0,332,333,1,0,0,0,333,92,1,0,0,0,
334,336,3,89,44,0,335,334,1,0,0,0,336,337,1,0,0,0,337,335,1,0,0,
0,337,338,1,0,0,0,338,339,1,0,0,0,339,343,5,46,0,0,340,342,3,89,
44,0,341,340,1,0,0,0,342,345,1,0,0,0,343,341,1,0,0,0,343,344,1,0,
0,0,344,353,1,0,0,0,345,343,1,0,0,0,346,348,5,46,0,0,347,349,3,89,
44,0,348,347,1,0,0,0,349,350,1,0,0,0,350,348,1,0,0,0,350,351,1,0,
0,0,351,353,1,0,0,0,352,335,1,0,0,0,352,346,1,0,0,0,353,94,1,0,0,
0,354,355,3,93,46,0,355,356,5,69,0,0,356,357,3,91,45,0,357,364,1,
0,0,0,358,359,3,93,46,0,359,360,5,69,0,0,360,361,5,45,0,0,361,362,
3,91,45,0,362,364,1,0,0,0,363,354,1,0,0,0,363,358,1,0,0,0,364,96,
1,0,0,0,365,369,5,37,0,0,366,368,9,0,0,0,367,366,1,0,0,0,368,371,
1,0,0,0,369,370,1,0,0,0,369,367,1,0,0,0,370,373,1,0,0,0,371,369,
1,0,0,0,372,374,5,13,0,0,373,372,1,0,0,0,373,374,1,0,0,0,374,375,
1,0,0,0,375,376,5,10,0,0,376,377,1,0,0,0,377,378,6,48,0,0,378,98,
1,0,0,0,379,383,7,21,0,0,380,382,7,22,0,0,381,380,1,0,0,0,382,385,
1,0,0,0,383,381,1,0,0,0,383,384,1,0,0,0,384,100,1,0,0,0,385,383,
1,0,0,0,386,388,7,23,0,0,387,386,1,0,0,0,388,389,1,0,0,0,389,387,
1,0,0,0,389,390,1,0,0,0,390,391,1,0,0,0,391,392,6,50,0,0,392,102,
1,0,0,0,21,0,183,231,239,250,258,269,281,302,319,324,332,337,343,
350,352,363,369,373,383,389,1,6,0,0
]
class AutolevLexer(Lexer):
atn = ATNDeserializer().deserialize(serializedATN())
decisionsToDFA = [ DFA(ds, i) for i, ds in enumerate(atn.decisionToState) ]
T__0 = 1
T__1 = 2
T__2 = 3
T__3 = 4
T__4 = 5
T__5 = 6
T__6 = 7
T__7 = 8
T__8 = 9
T__9 = 10
T__10 = 11
T__11 = 12
T__12 = 13
T__13 = 14
T__14 = 15
T__15 = 16
T__16 = 17
T__17 = 18
T__18 = 19
T__19 = 20
T__20 = 21
T__21 = 22
T__22 = 23
T__23 = 24
T__24 = 25
T__25 = 26
Mass = 27
Inertia = 28
Input = 29
Output = 30
Save = 31
UnitSystem = 32
Encode = 33
Newtonian = 34
Frames = 35
Bodies = 36
Particles = 37
Points = 38
Constants = 39
Specifieds = 40
Imaginary = 41
Variables = 42
MotionVariables = 43
INT = 44
FLOAT = 45
EXP = 46
LINE_COMMENT = 47
ID = 48
WS = 49
channelNames = [ u"DEFAULT_TOKEN_CHANNEL", u"HIDDEN" ]
modeNames = [ "DEFAULT_MODE" ]
literalNames = [ "<INVALID>",
"'['", "']'", "'='", "'+='", "'-='", "':='", "'*='", "'/='",
"'^='", "','", "'''", "'('", "')'", "'{'", "'}'", "':'", "'+'",
"'-'", "';'", "'.'", "'>'", "'0>'", "'1>>'", "'^'", "'*'", "'/'" ]
symbolicNames = [ "<INVALID>",
"Mass", "Inertia", "Input", "Output", "Save", "UnitSystem",
"Encode", "Newtonian", "Frames", "Bodies", "Particles", "Points",
"Constants", "Specifieds", "Imaginary", "Variables", "MotionVariables",
"INT", "FLOAT", "EXP", "LINE_COMMENT", "ID", "WS" ]
ruleNames = [ "T__0", "T__1", "T__2", "T__3", "T__4", "T__5", "T__6",
"T__7", "T__8", "T__9", "T__10", "T__11", "T__12", "T__13",
"T__14", "T__15", "T__16", "T__17", "T__18", "T__19",
"T__20", "T__21", "T__22", "T__23", "T__24", "T__25",
"Mass", "Inertia", "Input", "Output", "Save", "UnitSystem",
"Encode", "Newtonian", "Frames", "Bodies", "Particles",
"Points", "Constants", "Specifieds", "Imaginary", "Variables",
"MotionVariables", "DIFF", "DIGIT", "INT", "FLOAT", "EXP",
"LINE_COMMENT", "ID", "WS" ]
grammarFileName = "Autolev.g4"
def __init__(self, input=None, output:TextIO = sys.stdout):
super().__init__(input, output)
self.checkVersion("4.11.1")
self._interp = LexerATNSimulator(self, self.atn, self.decisionsToDFA, PredictionContextCache())
self._actions = None
self._predicates = None
|
059609ec892ead19a6e384b9d29629ffd2470a34fc7ebd70e477a4b0010f8ed8 | # *** GENERATED BY `setup.py antlr`, DO NOT EDIT BY HAND ***
#
# Generated with antlr4
# antlr4 is licensed under the BSD-3-Clause License
# https://github.com/antlr/antlr4/blob/master/LICENSE.txt
from antlr4 import *
from io import StringIO
import sys
if sys.version_info[1] > 5:
from typing import TextIO
else:
from typing.io import TextIO
def serializedATN():
return [
4,1,49,431,2,0,7,0,2,1,7,1,2,2,7,2,2,3,7,3,2,4,7,4,2,5,7,5,2,6,7,
6,2,7,7,7,2,8,7,8,2,9,7,9,2,10,7,10,2,11,7,11,2,12,7,12,2,13,7,13,
2,14,7,14,2,15,7,15,2,16,7,16,2,17,7,17,2,18,7,18,2,19,7,19,2,20,
7,20,2,21,7,21,2,22,7,22,2,23,7,23,2,24,7,24,2,25,7,25,2,26,7,26,
2,27,7,27,1,0,4,0,58,8,0,11,0,12,0,59,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,3,1,69,8,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,
3,2,84,8,2,1,2,1,2,1,2,3,2,89,8,2,1,3,1,3,1,4,1,4,1,4,5,4,96,8,4,
10,4,12,4,99,9,4,1,5,4,5,102,8,5,11,5,12,5,103,1,6,1,6,1,6,1,6,1,
6,5,6,111,8,6,10,6,12,6,114,9,6,3,6,116,8,6,1,6,1,6,1,6,1,6,1,6,
1,6,5,6,124,8,6,10,6,12,6,127,9,6,3,6,129,8,6,1,6,3,6,132,8,6,1,
7,1,7,1,7,1,7,5,7,138,8,7,10,7,12,7,141,9,7,1,8,1,8,1,8,1,8,1,8,
1,8,1,8,1,8,1,8,1,8,5,8,153,8,8,10,8,12,8,156,9,8,1,8,1,8,5,8,160,
8,8,10,8,12,8,163,9,8,3,8,165,8,8,1,9,1,9,1,9,1,9,1,9,1,9,3,9,173,
8,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,5,9,183,8,9,10,9,12,9,186,9,
9,1,9,3,9,189,8,9,1,9,1,9,1,9,3,9,194,8,9,1,9,3,9,197,8,9,1,9,5,
9,200,8,9,10,9,12,9,203,9,9,1,9,1,9,3,9,207,8,9,1,10,1,10,1,10,1,
10,1,10,1,10,1,10,1,10,5,10,217,8,10,10,10,12,10,220,9,10,1,10,1,
10,1,11,1,11,1,11,1,11,5,11,228,8,11,10,11,12,11,231,9,11,1,12,1,
12,1,12,1,12,1,13,1,13,1,13,1,13,1,13,3,13,242,8,13,1,13,1,13,4,
13,246,8,13,11,13,12,13,247,1,14,1,14,1,14,1,14,5,14,254,8,14,10,
14,12,14,257,9,14,1,14,1,14,1,15,1,15,1,15,1,15,3,15,265,8,15,1,
15,1,15,3,15,269,8,15,1,16,1,16,1,16,1,16,1,16,3,16,276,8,16,1,17,
1,17,3,17,280,8,17,1,18,1,18,1,18,1,18,5,18,286,8,18,10,18,12,18,
289,9,18,1,19,1,19,1,19,1,19,5,19,295,8,19,10,19,12,19,298,9,19,
1,20,1,20,3,20,302,8,20,1,21,1,21,1,21,1,21,3,21,308,8,21,1,22,1,
22,1,22,1,22,5,22,314,8,22,10,22,12,22,317,9,22,1,23,1,23,3,23,321,
8,23,1,24,1,24,1,24,1,24,1,24,1,24,5,24,329,8,24,10,24,12,24,332,
9,24,1,24,1,24,3,24,336,8,24,1,24,1,24,1,24,1,24,1,25,1,25,1,25,
1,25,1,25,1,25,1,25,1,25,5,25,350,8,25,10,25,12,25,353,9,25,3,25,
355,8,25,1,26,1,26,4,26,359,8,26,11,26,12,26,360,1,26,1,26,3,26,
365,8,26,1,27,1,27,1,27,1,27,1,27,1,27,1,27,1,27,5,27,375,8,27,10,
27,12,27,378,9,27,1,27,1,27,1,27,1,27,1,27,1,27,5,27,386,8,27,10,
27,12,27,389,9,27,1,27,1,27,1,27,1,27,1,27,1,27,1,27,1,27,1,27,3,
27,400,8,27,1,27,1,27,5,27,404,8,27,10,27,12,27,407,9,27,3,27,409,
8,27,1,27,1,27,1,27,1,27,1,27,1,27,1,27,1,27,1,27,1,27,1,27,1,27,
1,27,1,27,1,27,5,27,426,8,27,10,27,12,27,429,9,27,1,27,0,1,54,28,
0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,
46,48,50,52,54,0,7,1,0,3,9,1,0,27,28,1,0,17,18,2,0,10,10,19,19,1,
0,44,45,2,0,44,46,48,48,1,0,25,26,483,0,57,1,0,0,0,2,68,1,0,0,0,
4,88,1,0,0,0,6,90,1,0,0,0,8,92,1,0,0,0,10,101,1,0,0,0,12,131,1,0,
0,0,14,133,1,0,0,0,16,164,1,0,0,0,18,166,1,0,0,0,20,208,1,0,0,0,
22,223,1,0,0,0,24,232,1,0,0,0,26,236,1,0,0,0,28,249,1,0,0,0,30,268,
1,0,0,0,32,275,1,0,0,0,34,277,1,0,0,0,36,281,1,0,0,0,38,290,1,0,
0,0,40,299,1,0,0,0,42,303,1,0,0,0,44,309,1,0,0,0,46,318,1,0,0,0,
48,322,1,0,0,0,50,354,1,0,0,0,52,364,1,0,0,0,54,408,1,0,0,0,56,58,
3,2,1,0,57,56,1,0,0,0,58,59,1,0,0,0,59,57,1,0,0,0,59,60,1,0,0,0,
60,1,1,0,0,0,61,69,3,14,7,0,62,69,3,12,6,0,63,69,3,32,16,0,64,69,
3,22,11,0,65,69,3,26,13,0,66,69,3,4,2,0,67,69,3,34,17,0,68,61,1,
0,0,0,68,62,1,0,0,0,68,63,1,0,0,0,68,64,1,0,0,0,68,65,1,0,0,0,68,
66,1,0,0,0,68,67,1,0,0,0,69,3,1,0,0,0,70,71,3,52,26,0,71,72,3,6,
3,0,72,73,3,54,27,0,73,89,1,0,0,0,74,75,5,48,0,0,75,76,5,1,0,0,76,
77,3,8,4,0,77,78,5,2,0,0,78,79,3,6,3,0,79,80,3,54,27,0,80,89,1,0,
0,0,81,83,5,48,0,0,82,84,3,10,5,0,83,82,1,0,0,0,83,84,1,0,0,0,84,
85,1,0,0,0,85,86,3,6,3,0,86,87,3,54,27,0,87,89,1,0,0,0,88,70,1,0,
0,0,88,74,1,0,0,0,88,81,1,0,0,0,89,5,1,0,0,0,90,91,7,0,0,0,91,7,
1,0,0,0,92,97,3,54,27,0,93,94,5,10,0,0,94,96,3,54,27,0,95,93,1,0,
0,0,96,99,1,0,0,0,97,95,1,0,0,0,97,98,1,0,0,0,98,9,1,0,0,0,99,97,
1,0,0,0,100,102,5,11,0,0,101,100,1,0,0,0,102,103,1,0,0,0,103,101,
1,0,0,0,103,104,1,0,0,0,104,11,1,0,0,0,105,106,5,48,0,0,106,115,
5,12,0,0,107,112,3,54,27,0,108,109,5,10,0,0,109,111,3,54,27,0,110,
108,1,0,0,0,111,114,1,0,0,0,112,110,1,0,0,0,112,113,1,0,0,0,113,
116,1,0,0,0,114,112,1,0,0,0,115,107,1,0,0,0,115,116,1,0,0,0,116,
117,1,0,0,0,117,132,5,13,0,0,118,119,7,1,0,0,119,128,5,12,0,0,120,
125,5,48,0,0,121,122,5,10,0,0,122,124,5,48,0,0,123,121,1,0,0,0,124,
127,1,0,0,0,125,123,1,0,0,0,125,126,1,0,0,0,126,129,1,0,0,0,127,
125,1,0,0,0,128,120,1,0,0,0,128,129,1,0,0,0,129,130,1,0,0,0,130,
132,5,13,0,0,131,105,1,0,0,0,131,118,1,0,0,0,132,13,1,0,0,0,133,
134,3,16,8,0,134,139,3,18,9,0,135,136,5,10,0,0,136,138,3,18,9,0,
137,135,1,0,0,0,138,141,1,0,0,0,139,137,1,0,0,0,139,140,1,0,0,0,
140,15,1,0,0,0,141,139,1,0,0,0,142,165,5,34,0,0,143,165,5,35,0,0,
144,165,5,36,0,0,145,165,5,37,0,0,146,165,5,38,0,0,147,165,5,39,
0,0,148,165,5,40,0,0,149,165,5,41,0,0,150,154,5,42,0,0,151,153,5,
11,0,0,152,151,1,0,0,0,153,156,1,0,0,0,154,152,1,0,0,0,154,155,1,
0,0,0,155,165,1,0,0,0,156,154,1,0,0,0,157,161,5,43,0,0,158,160,5,
11,0,0,159,158,1,0,0,0,160,163,1,0,0,0,161,159,1,0,0,0,161,162,1,
0,0,0,162,165,1,0,0,0,163,161,1,0,0,0,164,142,1,0,0,0,164,143,1,
0,0,0,164,144,1,0,0,0,164,145,1,0,0,0,164,146,1,0,0,0,164,147,1,
0,0,0,164,148,1,0,0,0,164,149,1,0,0,0,164,150,1,0,0,0,164,157,1,
0,0,0,165,17,1,0,0,0,166,172,5,48,0,0,167,168,5,14,0,0,168,169,5,
44,0,0,169,170,5,10,0,0,170,171,5,44,0,0,171,173,5,15,0,0,172,167,
1,0,0,0,172,173,1,0,0,0,173,188,1,0,0,0,174,175,5,14,0,0,175,176,
5,44,0,0,176,177,5,16,0,0,177,184,5,44,0,0,178,179,5,10,0,0,179,
180,5,44,0,0,180,181,5,16,0,0,181,183,5,44,0,0,182,178,1,0,0,0,183,
186,1,0,0,0,184,182,1,0,0,0,184,185,1,0,0,0,185,187,1,0,0,0,186,
184,1,0,0,0,187,189,5,15,0,0,188,174,1,0,0,0,188,189,1,0,0,0,189,
193,1,0,0,0,190,191,5,14,0,0,191,192,5,44,0,0,192,194,5,15,0,0,193,
190,1,0,0,0,193,194,1,0,0,0,194,196,1,0,0,0,195,197,7,2,0,0,196,
195,1,0,0,0,196,197,1,0,0,0,197,201,1,0,0,0,198,200,5,11,0,0,199,
198,1,0,0,0,200,203,1,0,0,0,201,199,1,0,0,0,201,202,1,0,0,0,202,
206,1,0,0,0,203,201,1,0,0,0,204,205,5,3,0,0,205,207,3,54,27,0,206,
204,1,0,0,0,206,207,1,0,0,0,207,19,1,0,0,0,208,209,5,14,0,0,209,
210,5,44,0,0,210,211,5,16,0,0,211,218,5,44,0,0,212,213,5,10,0,0,
213,214,5,44,0,0,214,215,5,16,0,0,215,217,5,44,0,0,216,212,1,0,0,
0,217,220,1,0,0,0,218,216,1,0,0,0,218,219,1,0,0,0,219,221,1,0,0,
0,220,218,1,0,0,0,221,222,5,15,0,0,222,21,1,0,0,0,223,224,5,27,0,
0,224,229,3,24,12,0,225,226,5,10,0,0,226,228,3,24,12,0,227,225,1,
0,0,0,228,231,1,0,0,0,229,227,1,0,0,0,229,230,1,0,0,0,230,23,1,0,
0,0,231,229,1,0,0,0,232,233,5,48,0,0,233,234,5,3,0,0,234,235,3,54,
27,0,235,25,1,0,0,0,236,237,5,28,0,0,237,241,5,48,0,0,238,239,5,
12,0,0,239,240,5,48,0,0,240,242,5,13,0,0,241,238,1,0,0,0,241,242,
1,0,0,0,242,245,1,0,0,0,243,244,5,10,0,0,244,246,3,54,27,0,245,243,
1,0,0,0,246,247,1,0,0,0,247,245,1,0,0,0,247,248,1,0,0,0,248,27,1,
0,0,0,249,250,5,1,0,0,250,255,3,54,27,0,251,252,7,3,0,0,252,254,
3,54,27,0,253,251,1,0,0,0,254,257,1,0,0,0,255,253,1,0,0,0,255,256,
1,0,0,0,256,258,1,0,0,0,257,255,1,0,0,0,258,259,5,2,0,0,259,29,1,
0,0,0,260,261,5,48,0,0,261,262,5,48,0,0,262,264,5,3,0,0,263,265,
7,4,0,0,264,263,1,0,0,0,264,265,1,0,0,0,265,269,1,0,0,0,266,269,
5,45,0,0,267,269,5,44,0,0,268,260,1,0,0,0,268,266,1,0,0,0,268,267,
1,0,0,0,269,31,1,0,0,0,270,276,3,36,18,0,271,276,3,38,19,0,272,276,
3,44,22,0,273,276,3,48,24,0,274,276,3,50,25,0,275,270,1,0,0,0,275,
271,1,0,0,0,275,272,1,0,0,0,275,273,1,0,0,0,275,274,1,0,0,0,276,
33,1,0,0,0,277,279,5,48,0,0,278,280,7,5,0,0,279,278,1,0,0,0,279,
280,1,0,0,0,280,35,1,0,0,0,281,282,5,32,0,0,282,287,5,48,0,0,283,
284,5,10,0,0,284,286,5,48,0,0,285,283,1,0,0,0,286,289,1,0,0,0,287,
285,1,0,0,0,287,288,1,0,0,0,288,37,1,0,0,0,289,287,1,0,0,0,290,291,
5,29,0,0,291,296,3,42,21,0,292,293,5,10,0,0,293,295,3,42,21,0,294,
292,1,0,0,0,295,298,1,0,0,0,296,294,1,0,0,0,296,297,1,0,0,0,297,
39,1,0,0,0,298,296,1,0,0,0,299,301,5,48,0,0,300,302,3,10,5,0,301,
300,1,0,0,0,301,302,1,0,0,0,302,41,1,0,0,0,303,304,3,40,20,0,304,
305,5,3,0,0,305,307,3,54,27,0,306,308,3,54,27,0,307,306,1,0,0,0,
307,308,1,0,0,0,308,43,1,0,0,0,309,310,5,30,0,0,310,315,3,46,23,
0,311,312,5,10,0,0,312,314,3,46,23,0,313,311,1,0,0,0,314,317,1,0,
0,0,315,313,1,0,0,0,315,316,1,0,0,0,316,45,1,0,0,0,317,315,1,0,0,
0,318,320,3,54,27,0,319,321,3,54,27,0,320,319,1,0,0,0,320,321,1,
0,0,0,321,47,1,0,0,0,322,323,5,48,0,0,323,335,3,12,6,0,324,325,5,
1,0,0,325,330,3,30,15,0,326,327,5,10,0,0,327,329,3,30,15,0,328,326,
1,0,0,0,329,332,1,0,0,0,330,328,1,0,0,0,330,331,1,0,0,0,331,333,
1,0,0,0,332,330,1,0,0,0,333,334,5,2,0,0,334,336,1,0,0,0,335,324,
1,0,0,0,335,336,1,0,0,0,336,337,1,0,0,0,337,338,5,48,0,0,338,339,
5,20,0,0,339,340,5,48,0,0,340,49,1,0,0,0,341,342,5,31,0,0,342,343,
5,48,0,0,343,344,5,20,0,0,344,355,5,48,0,0,345,346,5,33,0,0,346,
351,5,48,0,0,347,348,5,10,0,0,348,350,5,48,0,0,349,347,1,0,0,0,350,
353,1,0,0,0,351,349,1,0,0,0,351,352,1,0,0,0,352,355,1,0,0,0,353,
351,1,0,0,0,354,341,1,0,0,0,354,345,1,0,0,0,355,51,1,0,0,0,356,358,
5,48,0,0,357,359,5,21,0,0,358,357,1,0,0,0,359,360,1,0,0,0,360,358,
1,0,0,0,360,361,1,0,0,0,361,365,1,0,0,0,362,365,5,22,0,0,363,365,
5,23,0,0,364,356,1,0,0,0,364,362,1,0,0,0,364,363,1,0,0,0,365,53,
1,0,0,0,366,367,6,27,-1,0,367,409,5,46,0,0,368,369,5,18,0,0,369,
409,3,54,27,12,370,409,5,45,0,0,371,409,5,44,0,0,372,376,5,48,0,
0,373,375,5,11,0,0,374,373,1,0,0,0,375,378,1,0,0,0,376,374,1,0,0,
0,376,377,1,0,0,0,377,409,1,0,0,0,378,376,1,0,0,0,379,409,3,52,26,
0,380,381,5,48,0,0,381,382,5,1,0,0,382,387,3,54,27,0,383,384,5,10,
0,0,384,386,3,54,27,0,385,383,1,0,0,0,386,389,1,0,0,0,387,385,1,
0,0,0,387,388,1,0,0,0,388,390,1,0,0,0,389,387,1,0,0,0,390,391,5,
2,0,0,391,409,1,0,0,0,392,409,3,12,6,0,393,409,3,28,14,0,394,395,
5,12,0,0,395,396,3,54,27,0,396,397,5,13,0,0,397,409,1,0,0,0,398,
400,5,48,0,0,399,398,1,0,0,0,399,400,1,0,0,0,400,401,1,0,0,0,401,
405,3,20,10,0,402,404,5,11,0,0,403,402,1,0,0,0,404,407,1,0,0,0,405,
403,1,0,0,0,405,406,1,0,0,0,406,409,1,0,0,0,407,405,1,0,0,0,408,
366,1,0,0,0,408,368,1,0,0,0,408,370,1,0,0,0,408,371,1,0,0,0,408,
372,1,0,0,0,408,379,1,0,0,0,408,380,1,0,0,0,408,392,1,0,0,0,408,
393,1,0,0,0,408,394,1,0,0,0,408,399,1,0,0,0,409,427,1,0,0,0,410,
411,10,16,0,0,411,412,5,24,0,0,412,426,3,54,27,17,413,414,10,15,
0,0,414,415,7,6,0,0,415,426,3,54,27,16,416,417,10,14,0,0,417,418,
7,2,0,0,418,426,3,54,27,15,419,420,10,3,0,0,420,421,5,3,0,0,421,
426,3,54,27,4,422,423,10,2,0,0,423,424,5,16,0,0,424,426,3,54,27,
3,425,410,1,0,0,0,425,413,1,0,0,0,425,416,1,0,0,0,425,419,1,0,0,
0,425,422,1,0,0,0,426,429,1,0,0,0,427,425,1,0,0,0,427,428,1,0,0,
0,428,55,1,0,0,0,429,427,1,0,0,0,50,59,68,83,88,97,103,112,115,125,
128,131,139,154,161,164,172,184,188,193,196,201,206,218,229,241,
247,255,264,268,275,279,287,296,301,307,315,320,330,335,351,354,
360,364,376,387,399,405,408,425,427
]
class AutolevParser ( Parser ):
grammarFileName = "Autolev.g4"
atn = ATNDeserializer().deserialize(serializedATN())
decisionsToDFA = [ DFA(ds, i) for i, ds in enumerate(atn.decisionToState) ]
sharedContextCache = PredictionContextCache()
literalNames = [ "<INVALID>", "'['", "']'", "'='", "'+='", "'-='", "':='",
"'*='", "'/='", "'^='", "','", "'''", "'('", "')'",
"'{'", "'}'", "':'", "'+'", "'-'", "';'", "'.'", "'>'",
"'0>'", "'1>>'", "'^'", "'*'", "'/'" ]
symbolicNames = [ "<INVALID>", "<INVALID>", "<INVALID>", "<INVALID>",
"<INVALID>", "<INVALID>", "<INVALID>", "<INVALID>",
"<INVALID>", "<INVALID>", "<INVALID>", "<INVALID>",
"<INVALID>", "<INVALID>", "<INVALID>", "<INVALID>",
"<INVALID>", "<INVALID>", "<INVALID>", "<INVALID>",
"<INVALID>", "<INVALID>", "<INVALID>", "<INVALID>",
"<INVALID>", "<INVALID>", "<INVALID>", "Mass", "Inertia",
"Input", "Output", "Save", "UnitSystem", "Encode",
"Newtonian", "Frames", "Bodies", "Particles", "Points",
"Constants", "Specifieds", "Imaginary", "Variables",
"MotionVariables", "INT", "FLOAT", "EXP", "LINE_COMMENT",
"ID", "WS" ]
RULE_prog = 0
RULE_stat = 1
RULE_assignment = 2
RULE_equals = 3
RULE_index = 4
RULE_diff = 5
RULE_functionCall = 6
RULE_varDecl = 7
RULE_varType = 8
RULE_varDecl2 = 9
RULE_ranges = 10
RULE_massDecl = 11
RULE_massDecl2 = 12
RULE_inertiaDecl = 13
RULE_matrix = 14
RULE_matrixInOutput = 15
RULE_codeCommands = 16
RULE_settings = 17
RULE_units = 18
RULE_inputs = 19
RULE_id_diff = 20
RULE_inputs2 = 21
RULE_outputs = 22
RULE_outputs2 = 23
RULE_codegen = 24
RULE_commands = 25
RULE_vec = 26
RULE_expr = 27
ruleNames = [ "prog", "stat", "assignment", "equals", "index", "diff",
"functionCall", "varDecl", "varType", "varDecl2", "ranges",
"massDecl", "massDecl2", "inertiaDecl", "matrix", "matrixInOutput",
"codeCommands", "settings", "units", "inputs", "id_diff",
"inputs2", "outputs", "outputs2", "codegen", "commands",
"vec", "expr" ]
EOF = Token.EOF
T__0=1
T__1=2
T__2=3
T__3=4
T__4=5
T__5=6
T__6=7
T__7=8
T__8=9
T__9=10
T__10=11
T__11=12
T__12=13
T__13=14
T__14=15
T__15=16
T__16=17
T__17=18
T__18=19
T__19=20
T__20=21
T__21=22
T__22=23
T__23=24
T__24=25
T__25=26
Mass=27
Inertia=28
Input=29
Output=30
Save=31
UnitSystem=32
Encode=33
Newtonian=34
Frames=35
Bodies=36
Particles=37
Points=38
Constants=39
Specifieds=40
Imaginary=41
Variables=42
MotionVariables=43
INT=44
FLOAT=45
EXP=46
LINE_COMMENT=47
ID=48
WS=49
def __init__(self, input:TokenStream, output:TextIO = sys.stdout):
super().__init__(input, output)
self.checkVersion("4.11.1")
self._interp = ParserATNSimulator(self, self.atn, self.decisionsToDFA, self.sharedContextCache)
self._predicates = None
class ProgContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def stat(self, i:int=None):
if i is None:
return self.getTypedRuleContexts(AutolevParser.StatContext)
else:
return self.getTypedRuleContext(AutolevParser.StatContext,i)
def getRuleIndex(self):
return AutolevParser.RULE_prog
def enterRule(self, listener:ParseTreeListener):
if hasattr( listener, "enterProg" ):
listener.enterProg(self)
def exitRule(self, listener:ParseTreeListener):
if hasattr( listener, "exitProg" ):
listener.exitProg(self)
def prog(self):
localctx = AutolevParser.ProgContext(self, self._ctx, self.state)
self.enterRule(localctx, 0, self.RULE_prog)
self._la = 0 # Token type
try:
self.enterOuterAlt(localctx, 1)
self.state = 57
self._errHandler.sync(self)
_la = self._input.LA(1)
while True:
self.state = 56
self.stat()
self.state = 59
self._errHandler.sync(self)
_la = self._input.LA(1)
if not (((_la) & ~0x3f) == 0 and ((1 << _la) & 299067041120256) != 0):
break
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class StatContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def varDecl(self):
return self.getTypedRuleContext(AutolevParser.VarDeclContext,0)
def functionCall(self):
return self.getTypedRuleContext(AutolevParser.FunctionCallContext,0)
def codeCommands(self):
return self.getTypedRuleContext(AutolevParser.CodeCommandsContext,0)
def massDecl(self):
return self.getTypedRuleContext(AutolevParser.MassDeclContext,0)
def inertiaDecl(self):
return self.getTypedRuleContext(AutolevParser.InertiaDeclContext,0)
def assignment(self):
return self.getTypedRuleContext(AutolevParser.AssignmentContext,0)
def settings(self):
return self.getTypedRuleContext(AutolevParser.SettingsContext,0)
def getRuleIndex(self):
return AutolevParser.RULE_stat
def enterRule(self, listener:ParseTreeListener):
if hasattr( listener, "enterStat" ):
listener.enterStat(self)
def exitRule(self, listener:ParseTreeListener):
if hasattr( listener, "exitStat" ):
listener.exitStat(self)
def stat(self):
localctx = AutolevParser.StatContext(self, self._ctx, self.state)
self.enterRule(localctx, 2, self.RULE_stat)
try:
self.state = 68
self._errHandler.sync(self)
la_ = self._interp.adaptivePredict(self._input,1,self._ctx)
if la_ == 1:
self.enterOuterAlt(localctx, 1)
self.state = 61
self.varDecl()
pass
elif la_ == 2:
self.enterOuterAlt(localctx, 2)
self.state = 62
self.functionCall()
pass
elif la_ == 3:
self.enterOuterAlt(localctx, 3)
self.state = 63
self.codeCommands()
pass
elif la_ == 4:
self.enterOuterAlt(localctx, 4)
self.state = 64
self.massDecl()
pass
elif la_ == 5:
self.enterOuterAlt(localctx, 5)
self.state = 65
self.inertiaDecl()
pass
elif la_ == 6:
self.enterOuterAlt(localctx, 6)
self.state = 66
self.assignment()
pass
elif la_ == 7:
self.enterOuterAlt(localctx, 7)
self.state = 67
self.settings()
pass
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class AssignmentContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def getRuleIndex(self):
return AutolevParser.RULE_assignment
def copyFrom(self, ctx:ParserRuleContext):
super().copyFrom(ctx)
class VecAssignContext(AssignmentContext):
def __init__(self, parser, ctx:ParserRuleContext): # actually a AutolevParser.AssignmentContext
super().__init__(parser)
self.copyFrom(ctx)
def vec(self):
return self.getTypedRuleContext(AutolevParser.VecContext,0)
def equals(self):
return self.getTypedRuleContext(AutolevParser.EqualsContext,0)
def expr(self):
return self.getTypedRuleContext(AutolevParser.ExprContext,0)
def enterRule(self, listener:ParseTreeListener):
if hasattr( listener, "enterVecAssign" ):
listener.enterVecAssign(self)
def exitRule(self, listener:ParseTreeListener):
if hasattr( listener, "exitVecAssign" ):
listener.exitVecAssign(self)
class RegularAssignContext(AssignmentContext):
def __init__(self, parser, ctx:ParserRuleContext): # actually a AutolevParser.AssignmentContext
super().__init__(parser)
self.copyFrom(ctx)
def ID(self):
return self.getToken(AutolevParser.ID, 0)
def equals(self):
return self.getTypedRuleContext(AutolevParser.EqualsContext,0)
def expr(self):
return self.getTypedRuleContext(AutolevParser.ExprContext,0)
def diff(self):
return self.getTypedRuleContext(AutolevParser.DiffContext,0)
def enterRule(self, listener:ParseTreeListener):
if hasattr( listener, "enterRegularAssign" ):
listener.enterRegularAssign(self)
def exitRule(self, listener:ParseTreeListener):
if hasattr( listener, "exitRegularAssign" ):
listener.exitRegularAssign(self)
class IndexAssignContext(AssignmentContext):
def __init__(self, parser, ctx:ParserRuleContext): # actually a AutolevParser.AssignmentContext
super().__init__(parser)
self.copyFrom(ctx)
def ID(self):
return self.getToken(AutolevParser.ID, 0)
def index(self):
return self.getTypedRuleContext(AutolevParser.IndexContext,0)
def equals(self):
return self.getTypedRuleContext(AutolevParser.EqualsContext,0)
def expr(self):
return self.getTypedRuleContext(AutolevParser.ExprContext,0)
def enterRule(self, listener:ParseTreeListener):
if hasattr( listener, "enterIndexAssign" ):
listener.enterIndexAssign(self)
def exitRule(self, listener:ParseTreeListener):
if hasattr( listener, "exitIndexAssign" ):
listener.exitIndexAssign(self)
def assignment(self):
localctx = AutolevParser.AssignmentContext(self, self._ctx, self.state)
self.enterRule(localctx, 4, self.RULE_assignment)
self._la = 0 # Token type
try:
self.state = 88
self._errHandler.sync(self)
la_ = self._interp.adaptivePredict(self._input,3,self._ctx)
if la_ == 1:
localctx = AutolevParser.VecAssignContext(self, localctx)
self.enterOuterAlt(localctx, 1)
self.state = 70
self.vec()
self.state = 71
self.equals()
self.state = 72
self.expr(0)
pass
elif la_ == 2:
localctx = AutolevParser.IndexAssignContext(self, localctx)
self.enterOuterAlt(localctx, 2)
self.state = 74
self.match(AutolevParser.ID)
self.state = 75
self.match(AutolevParser.T__0)
self.state = 76
self.index()
self.state = 77
self.match(AutolevParser.T__1)
self.state = 78
self.equals()
self.state = 79
self.expr(0)
pass
elif la_ == 3:
localctx = AutolevParser.RegularAssignContext(self, localctx)
self.enterOuterAlt(localctx, 3)
self.state = 81
self.match(AutolevParser.ID)
self.state = 83
self._errHandler.sync(self)
_la = self._input.LA(1)
if _la==11:
self.state = 82
self.diff()
self.state = 85
self.equals()
self.state = 86
self.expr(0)
pass
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class EqualsContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def getRuleIndex(self):
return AutolevParser.RULE_equals
def enterRule(self, listener:ParseTreeListener):
if hasattr( listener, "enterEquals" ):
listener.enterEquals(self)
def exitRule(self, listener:ParseTreeListener):
if hasattr( listener, "exitEquals" ):
listener.exitEquals(self)
def equals(self):
localctx = AutolevParser.EqualsContext(self, self._ctx, self.state)
self.enterRule(localctx, 6, self.RULE_equals)
self._la = 0 # Token type
try:
self.enterOuterAlt(localctx, 1)
self.state = 90
_la = self._input.LA(1)
if not(((_la) & ~0x3f) == 0 and ((1 << _la) & 1016) != 0):
self._errHandler.recoverInline(self)
else:
self._errHandler.reportMatch(self)
self.consume()
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class IndexContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def expr(self, i:int=None):
if i is None:
return self.getTypedRuleContexts(AutolevParser.ExprContext)
else:
return self.getTypedRuleContext(AutolevParser.ExprContext,i)
def getRuleIndex(self):
return AutolevParser.RULE_index
def enterRule(self, listener:ParseTreeListener):
if hasattr( listener, "enterIndex" ):
listener.enterIndex(self)
def exitRule(self, listener:ParseTreeListener):
if hasattr( listener, "exitIndex" ):
listener.exitIndex(self)
def index(self):
localctx = AutolevParser.IndexContext(self, self._ctx, self.state)
self.enterRule(localctx, 8, self.RULE_index)
self._la = 0 # Token type
try:
self.enterOuterAlt(localctx, 1)
self.state = 92
self.expr(0)
self.state = 97
self._errHandler.sync(self)
_la = self._input.LA(1)
while _la==10:
self.state = 93
self.match(AutolevParser.T__9)
self.state = 94
self.expr(0)
self.state = 99
self._errHandler.sync(self)
_la = self._input.LA(1)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class DiffContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def getRuleIndex(self):
return AutolevParser.RULE_diff
def enterRule(self, listener:ParseTreeListener):
if hasattr( listener, "enterDiff" ):
listener.enterDiff(self)
def exitRule(self, listener:ParseTreeListener):
if hasattr( listener, "exitDiff" ):
listener.exitDiff(self)
def diff(self):
localctx = AutolevParser.DiffContext(self, self._ctx, self.state)
self.enterRule(localctx, 10, self.RULE_diff)
self._la = 0 # Token type
try:
self.enterOuterAlt(localctx, 1)
self.state = 101
self._errHandler.sync(self)
_la = self._input.LA(1)
while True:
self.state = 100
self.match(AutolevParser.T__10)
self.state = 103
self._errHandler.sync(self)
_la = self._input.LA(1)
if not (_la==11):
break
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class FunctionCallContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def ID(self, i:int=None):
if i is None:
return self.getTokens(AutolevParser.ID)
else:
return self.getToken(AutolevParser.ID, i)
def expr(self, i:int=None):
if i is None:
return self.getTypedRuleContexts(AutolevParser.ExprContext)
else:
return self.getTypedRuleContext(AutolevParser.ExprContext,i)
def Mass(self):
return self.getToken(AutolevParser.Mass, 0)
def Inertia(self):
return self.getToken(AutolevParser.Inertia, 0)
def getRuleIndex(self):
return AutolevParser.RULE_functionCall
def enterRule(self, listener:ParseTreeListener):
if hasattr( listener, "enterFunctionCall" ):
listener.enterFunctionCall(self)
def exitRule(self, listener:ParseTreeListener):
if hasattr( listener, "exitFunctionCall" ):
listener.exitFunctionCall(self)
def functionCall(self):
localctx = AutolevParser.FunctionCallContext(self, self._ctx, self.state)
self.enterRule(localctx, 12, self.RULE_functionCall)
self._la = 0 # Token type
try:
self.state = 131
self._errHandler.sync(self)
token = self._input.LA(1)
if token in [48]:
self.enterOuterAlt(localctx, 1)
self.state = 105
self.match(AutolevParser.ID)
self.state = 106
self.match(AutolevParser.T__11)
self.state = 115
self._errHandler.sync(self)
_la = self._input.LA(1)
if ((_la) & ~0x3f) == 0 and ((1 << _la) & 404620694540290) != 0:
self.state = 107
self.expr(0)
self.state = 112
self._errHandler.sync(self)
_la = self._input.LA(1)
while _la==10:
self.state = 108
self.match(AutolevParser.T__9)
self.state = 109
self.expr(0)
self.state = 114
self._errHandler.sync(self)
_la = self._input.LA(1)
self.state = 117
self.match(AutolevParser.T__12)
pass
elif token in [27, 28]:
self.enterOuterAlt(localctx, 2)
self.state = 118
_la = self._input.LA(1)
if not(_la==27 or _la==28):
self._errHandler.recoverInline(self)
else:
self._errHandler.reportMatch(self)
self.consume()
self.state = 119
self.match(AutolevParser.T__11)
self.state = 128
self._errHandler.sync(self)
_la = self._input.LA(1)
if _la==48:
self.state = 120
self.match(AutolevParser.ID)
self.state = 125
self._errHandler.sync(self)
_la = self._input.LA(1)
while _la==10:
self.state = 121
self.match(AutolevParser.T__9)
self.state = 122
self.match(AutolevParser.ID)
self.state = 127
self._errHandler.sync(self)
_la = self._input.LA(1)
self.state = 130
self.match(AutolevParser.T__12)
pass
else:
raise NoViableAltException(self)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class VarDeclContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def varType(self):
return self.getTypedRuleContext(AutolevParser.VarTypeContext,0)
def varDecl2(self, i:int=None):
if i is None:
return self.getTypedRuleContexts(AutolevParser.VarDecl2Context)
else:
return self.getTypedRuleContext(AutolevParser.VarDecl2Context,i)
def getRuleIndex(self):
return AutolevParser.RULE_varDecl
def enterRule(self, listener:ParseTreeListener):
if hasattr( listener, "enterVarDecl" ):
listener.enterVarDecl(self)
def exitRule(self, listener:ParseTreeListener):
if hasattr( listener, "exitVarDecl" ):
listener.exitVarDecl(self)
def varDecl(self):
localctx = AutolevParser.VarDeclContext(self, self._ctx, self.state)
self.enterRule(localctx, 14, self.RULE_varDecl)
self._la = 0 # Token type
try:
self.enterOuterAlt(localctx, 1)
self.state = 133
self.varType()
self.state = 134
self.varDecl2()
self.state = 139
self._errHandler.sync(self)
_la = self._input.LA(1)
while _la==10:
self.state = 135
self.match(AutolevParser.T__9)
self.state = 136
self.varDecl2()
self.state = 141
self._errHandler.sync(self)
_la = self._input.LA(1)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class VarTypeContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def Newtonian(self):
return self.getToken(AutolevParser.Newtonian, 0)
def Frames(self):
return self.getToken(AutolevParser.Frames, 0)
def Bodies(self):
return self.getToken(AutolevParser.Bodies, 0)
def Particles(self):
return self.getToken(AutolevParser.Particles, 0)
def Points(self):
return self.getToken(AutolevParser.Points, 0)
def Constants(self):
return self.getToken(AutolevParser.Constants, 0)
def Specifieds(self):
return self.getToken(AutolevParser.Specifieds, 0)
def Imaginary(self):
return self.getToken(AutolevParser.Imaginary, 0)
def Variables(self):
return self.getToken(AutolevParser.Variables, 0)
def MotionVariables(self):
return self.getToken(AutolevParser.MotionVariables, 0)
def getRuleIndex(self):
return AutolevParser.RULE_varType
def enterRule(self, listener:ParseTreeListener):
if hasattr( listener, "enterVarType" ):
listener.enterVarType(self)
def exitRule(self, listener:ParseTreeListener):
if hasattr( listener, "exitVarType" ):
listener.exitVarType(self)
def varType(self):
localctx = AutolevParser.VarTypeContext(self, self._ctx, self.state)
self.enterRule(localctx, 16, self.RULE_varType)
self._la = 0 # Token type
try:
self.state = 164
self._errHandler.sync(self)
token = self._input.LA(1)
if token in [34]:
self.enterOuterAlt(localctx, 1)
self.state = 142
self.match(AutolevParser.Newtonian)
pass
elif token in [35]:
self.enterOuterAlt(localctx, 2)
self.state = 143
self.match(AutolevParser.Frames)
pass
elif token in [36]:
self.enterOuterAlt(localctx, 3)
self.state = 144
self.match(AutolevParser.Bodies)
pass
elif token in [37]:
self.enterOuterAlt(localctx, 4)
self.state = 145
self.match(AutolevParser.Particles)
pass
elif token in [38]:
self.enterOuterAlt(localctx, 5)
self.state = 146
self.match(AutolevParser.Points)
pass
elif token in [39]:
self.enterOuterAlt(localctx, 6)
self.state = 147
self.match(AutolevParser.Constants)
pass
elif token in [40]:
self.enterOuterAlt(localctx, 7)
self.state = 148
self.match(AutolevParser.Specifieds)
pass
elif token in [41]:
self.enterOuterAlt(localctx, 8)
self.state = 149
self.match(AutolevParser.Imaginary)
pass
elif token in [42]:
self.enterOuterAlt(localctx, 9)
self.state = 150
self.match(AutolevParser.Variables)
self.state = 154
self._errHandler.sync(self)
_la = self._input.LA(1)
while _la==11:
self.state = 151
self.match(AutolevParser.T__10)
self.state = 156
self._errHandler.sync(self)
_la = self._input.LA(1)
pass
elif token in [43]:
self.enterOuterAlt(localctx, 10)
self.state = 157
self.match(AutolevParser.MotionVariables)
self.state = 161
self._errHandler.sync(self)
_la = self._input.LA(1)
while _la==11:
self.state = 158
self.match(AutolevParser.T__10)
self.state = 163
self._errHandler.sync(self)
_la = self._input.LA(1)
pass
else:
raise NoViableAltException(self)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class VarDecl2Context(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def ID(self):
return self.getToken(AutolevParser.ID, 0)
def INT(self, i:int=None):
if i is None:
return self.getTokens(AutolevParser.INT)
else:
return self.getToken(AutolevParser.INT, i)
def expr(self):
return self.getTypedRuleContext(AutolevParser.ExprContext,0)
def getRuleIndex(self):
return AutolevParser.RULE_varDecl2
def enterRule(self, listener:ParseTreeListener):
if hasattr( listener, "enterVarDecl2" ):
listener.enterVarDecl2(self)
def exitRule(self, listener:ParseTreeListener):
if hasattr( listener, "exitVarDecl2" ):
listener.exitVarDecl2(self)
def varDecl2(self):
localctx = AutolevParser.VarDecl2Context(self, self._ctx, self.state)
self.enterRule(localctx, 18, self.RULE_varDecl2)
self._la = 0 # Token type
try:
self.enterOuterAlt(localctx, 1)
self.state = 166
self.match(AutolevParser.ID)
self.state = 172
self._errHandler.sync(self)
la_ = self._interp.adaptivePredict(self._input,15,self._ctx)
if la_ == 1:
self.state = 167
self.match(AutolevParser.T__13)
self.state = 168
self.match(AutolevParser.INT)
self.state = 169
self.match(AutolevParser.T__9)
self.state = 170
self.match(AutolevParser.INT)
self.state = 171
self.match(AutolevParser.T__14)
self.state = 188
self._errHandler.sync(self)
la_ = self._interp.adaptivePredict(self._input,17,self._ctx)
if la_ == 1:
self.state = 174
self.match(AutolevParser.T__13)
self.state = 175
self.match(AutolevParser.INT)
self.state = 176
self.match(AutolevParser.T__15)
self.state = 177
self.match(AutolevParser.INT)
self.state = 184
self._errHandler.sync(self)
_la = self._input.LA(1)
while _la==10:
self.state = 178
self.match(AutolevParser.T__9)
self.state = 179
self.match(AutolevParser.INT)
self.state = 180
self.match(AutolevParser.T__15)
self.state = 181
self.match(AutolevParser.INT)
self.state = 186
self._errHandler.sync(self)
_la = self._input.LA(1)
self.state = 187
self.match(AutolevParser.T__14)
self.state = 193
self._errHandler.sync(self)
_la = self._input.LA(1)
if _la==14:
self.state = 190
self.match(AutolevParser.T__13)
self.state = 191
self.match(AutolevParser.INT)
self.state = 192
self.match(AutolevParser.T__14)
self.state = 196
self._errHandler.sync(self)
_la = self._input.LA(1)
if _la==17 or _la==18:
self.state = 195
_la = self._input.LA(1)
if not(_la==17 or _la==18):
self._errHandler.recoverInline(self)
else:
self._errHandler.reportMatch(self)
self.consume()
self.state = 201
self._errHandler.sync(self)
_la = self._input.LA(1)
while _la==11:
self.state = 198
self.match(AutolevParser.T__10)
self.state = 203
self._errHandler.sync(self)
_la = self._input.LA(1)
self.state = 206
self._errHandler.sync(self)
_la = self._input.LA(1)
if _la==3:
self.state = 204
self.match(AutolevParser.T__2)
self.state = 205
self.expr(0)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class RangesContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def INT(self, i:int=None):
if i is None:
return self.getTokens(AutolevParser.INT)
else:
return self.getToken(AutolevParser.INT, i)
def getRuleIndex(self):
return AutolevParser.RULE_ranges
def enterRule(self, listener:ParseTreeListener):
if hasattr( listener, "enterRanges" ):
listener.enterRanges(self)
def exitRule(self, listener:ParseTreeListener):
if hasattr( listener, "exitRanges" ):
listener.exitRanges(self)
def ranges(self):
localctx = AutolevParser.RangesContext(self, self._ctx, self.state)
self.enterRule(localctx, 20, self.RULE_ranges)
self._la = 0 # Token type
try:
self.enterOuterAlt(localctx, 1)
self.state = 208
self.match(AutolevParser.T__13)
self.state = 209
self.match(AutolevParser.INT)
self.state = 210
self.match(AutolevParser.T__15)
self.state = 211
self.match(AutolevParser.INT)
self.state = 218
self._errHandler.sync(self)
_la = self._input.LA(1)
while _la==10:
self.state = 212
self.match(AutolevParser.T__9)
self.state = 213
self.match(AutolevParser.INT)
self.state = 214
self.match(AutolevParser.T__15)
self.state = 215
self.match(AutolevParser.INT)
self.state = 220
self._errHandler.sync(self)
_la = self._input.LA(1)
self.state = 221
self.match(AutolevParser.T__14)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class MassDeclContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def Mass(self):
return self.getToken(AutolevParser.Mass, 0)
def massDecl2(self, i:int=None):
if i is None:
return self.getTypedRuleContexts(AutolevParser.MassDecl2Context)
else:
return self.getTypedRuleContext(AutolevParser.MassDecl2Context,i)
def getRuleIndex(self):
return AutolevParser.RULE_massDecl
def enterRule(self, listener:ParseTreeListener):
if hasattr( listener, "enterMassDecl" ):
listener.enterMassDecl(self)
def exitRule(self, listener:ParseTreeListener):
if hasattr( listener, "exitMassDecl" ):
listener.exitMassDecl(self)
def massDecl(self):
localctx = AutolevParser.MassDeclContext(self, self._ctx, self.state)
self.enterRule(localctx, 22, self.RULE_massDecl)
self._la = 0 # Token type
try:
self.enterOuterAlt(localctx, 1)
self.state = 223
self.match(AutolevParser.Mass)
self.state = 224
self.massDecl2()
self.state = 229
self._errHandler.sync(self)
_la = self._input.LA(1)
while _la==10:
self.state = 225
self.match(AutolevParser.T__9)
self.state = 226
self.massDecl2()
self.state = 231
self._errHandler.sync(self)
_la = self._input.LA(1)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class MassDecl2Context(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def ID(self):
return self.getToken(AutolevParser.ID, 0)
def expr(self):
return self.getTypedRuleContext(AutolevParser.ExprContext,0)
def getRuleIndex(self):
return AutolevParser.RULE_massDecl2
def enterRule(self, listener:ParseTreeListener):
if hasattr( listener, "enterMassDecl2" ):
listener.enterMassDecl2(self)
def exitRule(self, listener:ParseTreeListener):
if hasattr( listener, "exitMassDecl2" ):
listener.exitMassDecl2(self)
def massDecl2(self):
localctx = AutolevParser.MassDecl2Context(self, self._ctx, self.state)
self.enterRule(localctx, 24, self.RULE_massDecl2)
try:
self.enterOuterAlt(localctx, 1)
self.state = 232
self.match(AutolevParser.ID)
self.state = 233
self.match(AutolevParser.T__2)
self.state = 234
self.expr(0)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class InertiaDeclContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def Inertia(self):
return self.getToken(AutolevParser.Inertia, 0)
def ID(self, i:int=None):
if i is None:
return self.getTokens(AutolevParser.ID)
else:
return self.getToken(AutolevParser.ID, i)
def expr(self, i:int=None):
if i is None:
return self.getTypedRuleContexts(AutolevParser.ExprContext)
else:
return self.getTypedRuleContext(AutolevParser.ExprContext,i)
def getRuleIndex(self):
return AutolevParser.RULE_inertiaDecl
def enterRule(self, listener:ParseTreeListener):
if hasattr( listener, "enterInertiaDecl" ):
listener.enterInertiaDecl(self)
def exitRule(self, listener:ParseTreeListener):
if hasattr( listener, "exitInertiaDecl" ):
listener.exitInertiaDecl(self)
def inertiaDecl(self):
localctx = AutolevParser.InertiaDeclContext(self, self._ctx, self.state)
self.enterRule(localctx, 26, self.RULE_inertiaDecl)
self._la = 0 # Token type
try:
self.enterOuterAlt(localctx, 1)
self.state = 236
self.match(AutolevParser.Inertia)
self.state = 237
self.match(AutolevParser.ID)
self.state = 241
self._errHandler.sync(self)
_la = self._input.LA(1)
if _la==12:
self.state = 238
self.match(AutolevParser.T__11)
self.state = 239
self.match(AutolevParser.ID)
self.state = 240
self.match(AutolevParser.T__12)
self.state = 245
self._errHandler.sync(self)
_la = self._input.LA(1)
while True:
self.state = 243
self.match(AutolevParser.T__9)
self.state = 244
self.expr(0)
self.state = 247
self._errHandler.sync(self)
_la = self._input.LA(1)
if not (_la==10):
break
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class MatrixContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def expr(self, i:int=None):
if i is None:
return self.getTypedRuleContexts(AutolevParser.ExprContext)
else:
return self.getTypedRuleContext(AutolevParser.ExprContext,i)
def getRuleIndex(self):
return AutolevParser.RULE_matrix
def enterRule(self, listener:ParseTreeListener):
if hasattr( listener, "enterMatrix" ):
listener.enterMatrix(self)
def exitRule(self, listener:ParseTreeListener):
if hasattr( listener, "exitMatrix" ):
listener.exitMatrix(self)
def matrix(self):
localctx = AutolevParser.MatrixContext(self, self._ctx, self.state)
self.enterRule(localctx, 28, self.RULE_matrix)
self._la = 0 # Token type
try:
self.enterOuterAlt(localctx, 1)
self.state = 249
self.match(AutolevParser.T__0)
self.state = 250
self.expr(0)
self.state = 255
self._errHandler.sync(self)
_la = self._input.LA(1)
while _la==10 or _la==19:
self.state = 251
_la = self._input.LA(1)
if not(_la==10 or _la==19):
self._errHandler.recoverInline(self)
else:
self._errHandler.reportMatch(self)
self.consume()
self.state = 252
self.expr(0)
self.state = 257
self._errHandler.sync(self)
_la = self._input.LA(1)
self.state = 258
self.match(AutolevParser.T__1)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class MatrixInOutputContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def ID(self, i:int=None):
if i is None:
return self.getTokens(AutolevParser.ID)
else:
return self.getToken(AutolevParser.ID, i)
def FLOAT(self):
return self.getToken(AutolevParser.FLOAT, 0)
def INT(self):
return self.getToken(AutolevParser.INT, 0)
def getRuleIndex(self):
return AutolevParser.RULE_matrixInOutput
def enterRule(self, listener:ParseTreeListener):
if hasattr( listener, "enterMatrixInOutput" ):
listener.enterMatrixInOutput(self)
def exitRule(self, listener:ParseTreeListener):
if hasattr( listener, "exitMatrixInOutput" ):
listener.exitMatrixInOutput(self)
def matrixInOutput(self):
localctx = AutolevParser.MatrixInOutputContext(self, self._ctx, self.state)
self.enterRule(localctx, 30, self.RULE_matrixInOutput)
self._la = 0 # Token type
try:
self.state = 268
self._errHandler.sync(self)
token = self._input.LA(1)
if token in [48]:
self.enterOuterAlt(localctx, 1)
self.state = 260
self.match(AutolevParser.ID)
self.state = 261
self.match(AutolevParser.ID)
self.state = 262
self.match(AutolevParser.T__2)
self.state = 264
self._errHandler.sync(self)
_la = self._input.LA(1)
if _la==44 or _la==45:
self.state = 263
_la = self._input.LA(1)
if not(_la==44 or _la==45):
self._errHandler.recoverInline(self)
else:
self._errHandler.reportMatch(self)
self.consume()
pass
elif token in [45]:
self.enterOuterAlt(localctx, 2)
self.state = 266
self.match(AutolevParser.FLOAT)
pass
elif token in [44]:
self.enterOuterAlt(localctx, 3)
self.state = 267
self.match(AutolevParser.INT)
pass
else:
raise NoViableAltException(self)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class CodeCommandsContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def units(self):
return self.getTypedRuleContext(AutolevParser.UnitsContext,0)
def inputs(self):
return self.getTypedRuleContext(AutolevParser.InputsContext,0)
def outputs(self):
return self.getTypedRuleContext(AutolevParser.OutputsContext,0)
def codegen(self):
return self.getTypedRuleContext(AutolevParser.CodegenContext,0)
def commands(self):
return self.getTypedRuleContext(AutolevParser.CommandsContext,0)
def getRuleIndex(self):
return AutolevParser.RULE_codeCommands
def enterRule(self, listener:ParseTreeListener):
if hasattr( listener, "enterCodeCommands" ):
listener.enterCodeCommands(self)
def exitRule(self, listener:ParseTreeListener):
if hasattr( listener, "exitCodeCommands" ):
listener.exitCodeCommands(self)
def codeCommands(self):
localctx = AutolevParser.CodeCommandsContext(self, self._ctx, self.state)
self.enterRule(localctx, 32, self.RULE_codeCommands)
try:
self.state = 275
self._errHandler.sync(self)
token = self._input.LA(1)
if token in [32]:
self.enterOuterAlt(localctx, 1)
self.state = 270
self.units()
pass
elif token in [29]:
self.enterOuterAlt(localctx, 2)
self.state = 271
self.inputs()
pass
elif token in [30]:
self.enterOuterAlt(localctx, 3)
self.state = 272
self.outputs()
pass
elif token in [48]:
self.enterOuterAlt(localctx, 4)
self.state = 273
self.codegen()
pass
elif token in [31, 33]:
self.enterOuterAlt(localctx, 5)
self.state = 274
self.commands()
pass
else:
raise NoViableAltException(self)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class SettingsContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def ID(self, i:int=None):
if i is None:
return self.getTokens(AutolevParser.ID)
else:
return self.getToken(AutolevParser.ID, i)
def EXP(self):
return self.getToken(AutolevParser.EXP, 0)
def FLOAT(self):
return self.getToken(AutolevParser.FLOAT, 0)
def INT(self):
return self.getToken(AutolevParser.INT, 0)
def getRuleIndex(self):
return AutolevParser.RULE_settings
def enterRule(self, listener:ParseTreeListener):
if hasattr( listener, "enterSettings" ):
listener.enterSettings(self)
def exitRule(self, listener:ParseTreeListener):
if hasattr( listener, "exitSettings" ):
listener.exitSettings(self)
def settings(self):
localctx = AutolevParser.SettingsContext(self, self._ctx, self.state)
self.enterRule(localctx, 34, self.RULE_settings)
self._la = 0 # Token type
try:
self.enterOuterAlt(localctx, 1)
self.state = 277
self.match(AutolevParser.ID)
self.state = 279
self._errHandler.sync(self)
la_ = self._interp.adaptivePredict(self._input,30,self._ctx)
if la_ == 1:
self.state = 278
_la = self._input.LA(1)
if not(((_la) & ~0x3f) == 0 and ((1 << _la) & 404620279021568) != 0):
self._errHandler.recoverInline(self)
else:
self._errHandler.reportMatch(self)
self.consume()
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class UnitsContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def UnitSystem(self):
return self.getToken(AutolevParser.UnitSystem, 0)
def ID(self, i:int=None):
if i is None:
return self.getTokens(AutolevParser.ID)
else:
return self.getToken(AutolevParser.ID, i)
def getRuleIndex(self):
return AutolevParser.RULE_units
def enterRule(self, listener:ParseTreeListener):
if hasattr( listener, "enterUnits" ):
listener.enterUnits(self)
def exitRule(self, listener:ParseTreeListener):
if hasattr( listener, "exitUnits" ):
listener.exitUnits(self)
def units(self):
localctx = AutolevParser.UnitsContext(self, self._ctx, self.state)
self.enterRule(localctx, 36, self.RULE_units)
self._la = 0 # Token type
try:
self.enterOuterAlt(localctx, 1)
self.state = 281
self.match(AutolevParser.UnitSystem)
self.state = 282
self.match(AutolevParser.ID)
self.state = 287
self._errHandler.sync(self)
_la = self._input.LA(1)
while _la==10:
self.state = 283
self.match(AutolevParser.T__9)
self.state = 284
self.match(AutolevParser.ID)
self.state = 289
self._errHandler.sync(self)
_la = self._input.LA(1)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class InputsContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def Input(self):
return self.getToken(AutolevParser.Input, 0)
def inputs2(self, i:int=None):
if i is None:
return self.getTypedRuleContexts(AutolevParser.Inputs2Context)
else:
return self.getTypedRuleContext(AutolevParser.Inputs2Context,i)
def getRuleIndex(self):
return AutolevParser.RULE_inputs
def enterRule(self, listener:ParseTreeListener):
if hasattr( listener, "enterInputs" ):
listener.enterInputs(self)
def exitRule(self, listener:ParseTreeListener):
if hasattr( listener, "exitInputs" ):
listener.exitInputs(self)
def inputs(self):
localctx = AutolevParser.InputsContext(self, self._ctx, self.state)
self.enterRule(localctx, 38, self.RULE_inputs)
self._la = 0 # Token type
try:
self.enterOuterAlt(localctx, 1)
self.state = 290
self.match(AutolevParser.Input)
self.state = 291
self.inputs2()
self.state = 296
self._errHandler.sync(self)
_la = self._input.LA(1)
while _la==10:
self.state = 292
self.match(AutolevParser.T__9)
self.state = 293
self.inputs2()
self.state = 298
self._errHandler.sync(self)
_la = self._input.LA(1)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class Id_diffContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def ID(self):
return self.getToken(AutolevParser.ID, 0)
def diff(self):
return self.getTypedRuleContext(AutolevParser.DiffContext,0)
def getRuleIndex(self):
return AutolevParser.RULE_id_diff
def enterRule(self, listener:ParseTreeListener):
if hasattr( listener, "enterId_diff" ):
listener.enterId_diff(self)
def exitRule(self, listener:ParseTreeListener):
if hasattr( listener, "exitId_diff" ):
listener.exitId_diff(self)
def id_diff(self):
localctx = AutolevParser.Id_diffContext(self, self._ctx, self.state)
self.enterRule(localctx, 40, self.RULE_id_diff)
self._la = 0 # Token type
try:
self.enterOuterAlt(localctx, 1)
self.state = 299
self.match(AutolevParser.ID)
self.state = 301
self._errHandler.sync(self)
_la = self._input.LA(1)
if _la==11:
self.state = 300
self.diff()
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class Inputs2Context(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def id_diff(self):
return self.getTypedRuleContext(AutolevParser.Id_diffContext,0)
def expr(self, i:int=None):
if i is None:
return self.getTypedRuleContexts(AutolevParser.ExprContext)
else:
return self.getTypedRuleContext(AutolevParser.ExprContext,i)
def getRuleIndex(self):
return AutolevParser.RULE_inputs2
def enterRule(self, listener:ParseTreeListener):
if hasattr( listener, "enterInputs2" ):
listener.enterInputs2(self)
def exitRule(self, listener:ParseTreeListener):
if hasattr( listener, "exitInputs2" ):
listener.exitInputs2(self)
def inputs2(self):
localctx = AutolevParser.Inputs2Context(self, self._ctx, self.state)
self.enterRule(localctx, 42, self.RULE_inputs2)
try:
self.enterOuterAlt(localctx, 1)
self.state = 303
self.id_diff()
self.state = 304
self.match(AutolevParser.T__2)
self.state = 305
self.expr(0)
self.state = 307
self._errHandler.sync(self)
la_ = self._interp.adaptivePredict(self._input,34,self._ctx)
if la_ == 1:
self.state = 306
self.expr(0)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class OutputsContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def Output(self):
return self.getToken(AutolevParser.Output, 0)
def outputs2(self, i:int=None):
if i is None:
return self.getTypedRuleContexts(AutolevParser.Outputs2Context)
else:
return self.getTypedRuleContext(AutolevParser.Outputs2Context,i)
def getRuleIndex(self):
return AutolevParser.RULE_outputs
def enterRule(self, listener:ParseTreeListener):
if hasattr( listener, "enterOutputs" ):
listener.enterOutputs(self)
def exitRule(self, listener:ParseTreeListener):
if hasattr( listener, "exitOutputs" ):
listener.exitOutputs(self)
def outputs(self):
localctx = AutolevParser.OutputsContext(self, self._ctx, self.state)
self.enterRule(localctx, 44, self.RULE_outputs)
self._la = 0 # Token type
try:
self.enterOuterAlt(localctx, 1)
self.state = 309
self.match(AutolevParser.Output)
self.state = 310
self.outputs2()
self.state = 315
self._errHandler.sync(self)
_la = self._input.LA(1)
while _la==10:
self.state = 311
self.match(AutolevParser.T__9)
self.state = 312
self.outputs2()
self.state = 317
self._errHandler.sync(self)
_la = self._input.LA(1)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class Outputs2Context(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def expr(self, i:int=None):
if i is None:
return self.getTypedRuleContexts(AutolevParser.ExprContext)
else:
return self.getTypedRuleContext(AutolevParser.ExprContext,i)
def getRuleIndex(self):
return AutolevParser.RULE_outputs2
def enterRule(self, listener:ParseTreeListener):
if hasattr( listener, "enterOutputs2" ):
listener.enterOutputs2(self)
def exitRule(self, listener:ParseTreeListener):
if hasattr( listener, "exitOutputs2" ):
listener.exitOutputs2(self)
def outputs2(self):
localctx = AutolevParser.Outputs2Context(self, self._ctx, self.state)
self.enterRule(localctx, 46, self.RULE_outputs2)
try:
self.enterOuterAlt(localctx, 1)
self.state = 318
self.expr(0)
self.state = 320
self._errHandler.sync(self)
la_ = self._interp.adaptivePredict(self._input,36,self._ctx)
if la_ == 1:
self.state = 319
self.expr(0)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class CodegenContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def ID(self, i:int=None):
if i is None:
return self.getTokens(AutolevParser.ID)
else:
return self.getToken(AutolevParser.ID, i)
def functionCall(self):
return self.getTypedRuleContext(AutolevParser.FunctionCallContext,0)
def matrixInOutput(self, i:int=None):
if i is None:
return self.getTypedRuleContexts(AutolevParser.MatrixInOutputContext)
else:
return self.getTypedRuleContext(AutolevParser.MatrixInOutputContext,i)
def getRuleIndex(self):
return AutolevParser.RULE_codegen
def enterRule(self, listener:ParseTreeListener):
if hasattr( listener, "enterCodegen" ):
listener.enterCodegen(self)
def exitRule(self, listener:ParseTreeListener):
if hasattr( listener, "exitCodegen" ):
listener.exitCodegen(self)
def codegen(self):
localctx = AutolevParser.CodegenContext(self, self._ctx, self.state)
self.enterRule(localctx, 48, self.RULE_codegen)
self._la = 0 # Token type
try:
self.enterOuterAlt(localctx, 1)
self.state = 322
self.match(AutolevParser.ID)
self.state = 323
self.functionCall()
self.state = 335
self._errHandler.sync(self)
_la = self._input.LA(1)
if _la==1:
self.state = 324
self.match(AutolevParser.T__0)
self.state = 325
self.matrixInOutput()
self.state = 330
self._errHandler.sync(self)
_la = self._input.LA(1)
while _la==10:
self.state = 326
self.match(AutolevParser.T__9)
self.state = 327
self.matrixInOutput()
self.state = 332
self._errHandler.sync(self)
_la = self._input.LA(1)
self.state = 333
self.match(AutolevParser.T__1)
self.state = 337
self.match(AutolevParser.ID)
self.state = 338
self.match(AutolevParser.T__19)
self.state = 339
self.match(AutolevParser.ID)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class CommandsContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def Save(self):
return self.getToken(AutolevParser.Save, 0)
def ID(self, i:int=None):
if i is None:
return self.getTokens(AutolevParser.ID)
else:
return self.getToken(AutolevParser.ID, i)
def Encode(self):
return self.getToken(AutolevParser.Encode, 0)
def getRuleIndex(self):
return AutolevParser.RULE_commands
def enterRule(self, listener:ParseTreeListener):
if hasattr( listener, "enterCommands" ):
listener.enterCommands(self)
def exitRule(self, listener:ParseTreeListener):
if hasattr( listener, "exitCommands" ):
listener.exitCommands(self)
def commands(self):
localctx = AutolevParser.CommandsContext(self, self._ctx, self.state)
self.enterRule(localctx, 50, self.RULE_commands)
self._la = 0 # Token type
try:
self.state = 354
self._errHandler.sync(self)
token = self._input.LA(1)
if token in [31]:
self.enterOuterAlt(localctx, 1)
self.state = 341
self.match(AutolevParser.Save)
self.state = 342
self.match(AutolevParser.ID)
self.state = 343
self.match(AutolevParser.T__19)
self.state = 344
self.match(AutolevParser.ID)
pass
elif token in [33]:
self.enterOuterAlt(localctx, 2)
self.state = 345
self.match(AutolevParser.Encode)
self.state = 346
self.match(AutolevParser.ID)
self.state = 351
self._errHandler.sync(self)
_la = self._input.LA(1)
while _la==10:
self.state = 347
self.match(AutolevParser.T__9)
self.state = 348
self.match(AutolevParser.ID)
self.state = 353
self._errHandler.sync(self)
_la = self._input.LA(1)
pass
else:
raise NoViableAltException(self)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class VecContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def ID(self):
return self.getToken(AutolevParser.ID, 0)
def getRuleIndex(self):
return AutolevParser.RULE_vec
def enterRule(self, listener:ParseTreeListener):
if hasattr( listener, "enterVec" ):
listener.enterVec(self)
def exitRule(self, listener:ParseTreeListener):
if hasattr( listener, "exitVec" ):
listener.exitVec(self)
def vec(self):
localctx = AutolevParser.VecContext(self, self._ctx, self.state)
self.enterRule(localctx, 52, self.RULE_vec)
try:
self.state = 364
self._errHandler.sync(self)
token = self._input.LA(1)
if token in [48]:
self.enterOuterAlt(localctx, 1)
self.state = 356
self.match(AutolevParser.ID)
self.state = 358
self._errHandler.sync(self)
_alt = 1
while _alt!=2 and _alt!=ATN.INVALID_ALT_NUMBER:
if _alt == 1:
self.state = 357
self.match(AutolevParser.T__20)
else:
raise NoViableAltException(self)
self.state = 360
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,41,self._ctx)
pass
elif token in [22]:
self.enterOuterAlt(localctx, 2)
self.state = 362
self.match(AutolevParser.T__21)
pass
elif token in [23]:
self.enterOuterAlt(localctx, 3)
self.state = 363
self.match(AutolevParser.T__22)
pass
else:
raise NoViableAltException(self)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class ExprContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def getRuleIndex(self):
return AutolevParser.RULE_expr
def copyFrom(self, ctx:ParserRuleContext):
super().copyFrom(ctx)
class ParensContext(ExprContext):
def __init__(self, parser, ctx:ParserRuleContext): # actually a AutolevParser.ExprContext
super().__init__(parser)
self.copyFrom(ctx)
def expr(self):
return self.getTypedRuleContext(AutolevParser.ExprContext,0)
def enterRule(self, listener:ParseTreeListener):
if hasattr( listener, "enterParens" ):
listener.enterParens(self)
def exitRule(self, listener:ParseTreeListener):
if hasattr( listener, "exitParens" ):
listener.exitParens(self)
class VectorOrDyadicContext(ExprContext):
def __init__(self, parser, ctx:ParserRuleContext): # actually a AutolevParser.ExprContext
super().__init__(parser)
self.copyFrom(ctx)
def vec(self):
return self.getTypedRuleContext(AutolevParser.VecContext,0)
def enterRule(self, listener:ParseTreeListener):
if hasattr( listener, "enterVectorOrDyadic" ):
listener.enterVectorOrDyadic(self)
def exitRule(self, listener:ParseTreeListener):
if hasattr( listener, "exitVectorOrDyadic" ):
listener.exitVectorOrDyadic(self)
class ExponentContext(ExprContext):
def __init__(self, parser, ctx:ParserRuleContext): # actually a AutolevParser.ExprContext
super().__init__(parser)
self.copyFrom(ctx)
def expr(self, i:int=None):
if i is None:
return self.getTypedRuleContexts(AutolevParser.ExprContext)
else:
return self.getTypedRuleContext(AutolevParser.ExprContext,i)
def enterRule(self, listener:ParseTreeListener):
if hasattr( listener, "enterExponent" ):
listener.enterExponent(self)
def exitRule(self, listener:ParseTreeListener):
if hasattr( listener, "exitExponent" ):
listener.exitExponent(self)
class MulDivContext(ExprContext):
def __init__(self, parser, ctx:ParserRuleContext): # actually a AutolevParser.ExprContext
super().__init__(parser)
self.copyFrom(ctx)
def expr(self, i:int=None):
if i is None:
return self.getTypedRuleContexts(AutolevParser.ExprContext)
else:
return self.getTypedRuleContext(AutolevParser.ExprContext,i)
def enterRule(self, listener:ParseTreeListener):
if hasattr( listener, "enterMulDiv" ):
listener.enterMulDiv(self)
def exitRule(self, listener:ParseTreeListener):
if hasattr( listener, "exitMulDiv" ):
listener.exitMulDiv(self)
class AddSubContext(ExprContext):
def __init__(self, parser, ctx:ParserRuleContext): # actually a AutolevParser.ExprContext
super().__init__(parser)
self.copyFrom(ctx)
def expr(self, i:int=None):
if i is None:
return self.getTypedRuleContexts(AutolevParser.ExprContext)
else:
return self.getTypedRuleContext(AutolevParser.ExprContext,i)
def enterRule(self, listener:ParseTreeListener):
if hasattr( listener, "enterAddSub" ):
listener.enterAddSub(self)
def exitRule(self, listener:ParseTreeListener):
if hasattr( listener, "exitAddSub" ):
listener.exitAddSub(self)
class FloatContext(ExprContext):
def __init__(self, parser, ctx:ParserRuleContext): # actually a AutolevParser.ExprContext
super().__init__(parser)
self.copyFrom(ctx)
def FLOAT(self):
return self.getToken(AutolevParser.FLOAT, 0)
def enterRule(self, listener:ParseTreeListener):
if hasattr( listener, "enterFloat" ):
listener.enterFloat(self)
def exitRule(self, listener:ParseTreeListener):
if hasattr( listener, "exitFloat" ):
listener.exitFloat(self)
class IntContext(ExprContext):
def __init__(self, parser, ctx:ParserRuleContext): # actually a AutolevParser.ExprContext
super().__init__(parser)
self.copyFrom(ctx)
def INT(self):
return self.getToken(AutolevParser.INT, 0)
def enterRule(self, listener:ParseTreeListener):
if hasattr( listener, "enterInt" ):
listener.enterInt(self)
def exitRule(self, listener:ParseTreeListener):
if hasattr( listener, "exitInt" ):
listener.exitInt(self)
class IdEqualsExprContext(ExprContext):
def __init__(self, parser, ctx:ParserRuleContext): # actually a AutolevParser.ExprContext
super().__init__(parser)
self.copyFrom(ctx)
def expr(self, i:int=None):
if i is None:
return self.getTypedRuleContexts(AutolevParser.ExprContext)
else:
return self.getTypedRuleContext(AutolevParser.ExprContext,i)
def enterRule(self, listener:ParseTreeListener):
if hasattr( listener, "enterIdEqualsExpr" ):
listener.enterIdEqualsExpr(self)
def exitRule(self, listener:ParseTreeListener):
if hasattr( listener, "exitIdEqualsExpr" ):
listener.exitIdEqualsExpr(self)
class NegativeOneContext(ExprContext):
def __init__(self, parser, ctx:ParserRuleContext): # actually a AutolevParser.ExprContext
super().__init__(parser)
self.copyFrom(ctx)
def expr(self):
return self.getTypedRuleContext(AutolevParser.ExprContext,0)
def enterRule(self, listener:ParseTreeListener):
if hasattr( listener, "enterNegativeOne" ):
listener.enterNegativeOne(self)
def exitRule(self, listener:ParseTreeListener):
if hasattr( listener, "exitNegativeOne" ):
listener.exitNegativeOne(self)
class FunctionContext(ExprContext):
def __init__(self, parser, ctx:ParserRuleContext): # actually a AutolevParser.ExprContext
super().__init__(parser)
self.copyFrom(ctx)
def functionCall(self):
return self.getTypedRuleContext(AutolevParser.FunctionCallContext,0)
def enterRule(self, listener:ParseTreeListener):
if hasattr( listener, "enterFunction" ):
listener.enterFunction(self)
def exitRule(self, listener:ParseTreeListener):
if hasattr( listener, "exitFunction" ):
listener.exitFunction(self)
class RangessContext(ExprContext):
def __init__(self, parser, ctx:ParserRuleContext): # actually a AutolevParser.ExprContext
super().__init__(parser)
self.copyFrom(ctx)
def ranges(self):
return self.getTypedRuleContext(AutolevParser.RangesContext,0)
def ID(self):
return self.getToken(AutolevParser.ID, 0)
def enterRule(self, listener:ParseTreeListener):
if hasattr( listener, "enterRangess" ):
listener.enterRangess(self)
def exitRule(self, listener:ParseTreeListener):
if hasattr( listener, "exitRangess" ):
listener.exitRangess(self)
class ColonContext(ExprContext):
def __init__(self, parser, ctx:ParserRuleContext): # actually a AutolevParser.ExprContext
super().__init__(parser)
self.copyFrom(ctx)
def expr(self, i:int=None):
if i is None:
return self.getTypedRuleContexts(AutolevParser.ExprContext)
else:
return self.getTypedRuleContext(AutolevParser.ExprContext,i)
def enterRule(self, listener:ParseTreeListener):
if hasattr( listener, "enterColon" ):
listener.enterColon(self)
def exitRule(self, listener:ParseTreeListener):
if hasattr( listener, "exitColon" ):
listener.exitColon(self)
class IdContext(ExprContext):
def __init__(self, parser, ctx:ParserRuleContext): # actually a AutolevParser.ExprContext
super().__init__(parser)
self.copyFrom(ctx)
def ID(self):
return self.getToken(AutolevParser.ID, 0)
def enterRule(self, listener:ParseTreeListener):
if hasattr( listener, "enterId" ):
listener.enterId(self)
def exitRule(self, listener:ParseTreeListener):
if hasattr( listener, "exitId" ):
listener.exitId(self)
class ExpContext(ExprContext):
def __init__(self, parser, ctx:ParserRuleContext): # actually a AutolevParser.ExprContext
super().__init__(parser)
self.copyFrom(ctx)
def EXP(self):
return self.getToken(AutolevParser.EXP, 0)
def enterRule(self, listener:ParseTreeListener):
if hasattr( listener, "enterExp" ):
listener.enterExp(self)
def exitRule(self, listener:ParseTreeListener):
if hasattr( listener, "exitExp" ):
listener.exitExp(self)
class MatricesContext(ExprContext):
def __init__(self, parser, ctx:ParserRuleContext): # actually a AutolevParser.ExprContext
super().__init__(parser)
self.copyFrom(ctx)
def matrix(self):
return self.getTypedRuleContext(AutolevParser.MatrixContext,0)
def enterRule(self, listener:ParseTreeListener):
if hasattr( listener, "enterMatrices" ):
listener.enterMatrices(self)
def exitRule(self, listener:ParseTreeListener):
if hasattr( listener, "exitMatrices" ):
listener.exitMatrices(self)
class IndexingContext(ExprContext):
def __init__(self, parser, ctx:ParserRuleContext): # actually a AutolevParser.ExprContext
super().__init__(parser)
self.copyFrom(ctx)
def ID(self):
return self.getToken(AutolevParser.ID, 0)
def expr(self, i:int=None):
if i is None:
return self.getTypedRuleContexts(AutolevParser.ExprContext)
else:
return self.getTypedRuleContext(AutolevParser.ExprContext,i)
def enterRule(self, listener:ParseTreeListener):
if hasattr( listener, "enterIndexing" ):
listener.enterIndexing(self)
def exitRule(self, listener:ParseTreeListener):
if hasattr( listener, "exitIndexing" ):
listener.exitIndexing(self)
def expr(self, _p:int=0):
_parentctx = self._ctx
_parentState = self.state
localctx = AutolevParser.ExprContext(self, self._ctx, _parentState)
_prevctx = localctx
_startState = 54
self.enterRecursionRule(localctx, 54, self.RULE_expr, _p)
self._la = 0 # Token type
try:
self.enterOuterAlt(localctx, 1)
self.state = 408
self._errHandler.sync(self)
la_ = self._interp.adaptivePredict(self._input,47,self._ctx)
if la_ == 1:
localctx = AutolevParser.ExpContext(self, localctx)
self._ctx = localctx
_prevctx = localctx
self.state = 367
self.match(AutolevParser.EXP)
pass
elif la_ == 2:
localctx = AutolevParser.NegativeOneContext(self, localctx)
self._ctx = localctx
_prevctx = localctx
self.state = 368
self.match(AutolevParser.T__17)
self.state = 369
self.expr(12)
pass
elif la_ == 3:
localctx = AutolevParser.FloatContext(self, localctx)
self._ctx = localctx
_prevctx = localctx
self.state = 370
self.match(AutolevParser.FLOAT)
pass
elif la_ == 4:
localctx = AutolevParser.IntContext(self, localctx)
self._ctx = localctx
_prevctx = localctx
self.state = 371
self.match(AutolevParser.INT)
pass
elif la_ == 5:
localctx = AutolevParser.IdContext(self, localctx)
self._ctx = localctx
_prevctx = localctx
self.state = 372
self.match(AutolevParser.ID)
self.state = 376
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,43,self._ctx)
while _alt!=2 and _alt!=ATN.INVALID_ALT_NUMBER:
if _alt==1:
self.state = 373
self.match(AutolevParser.T__10)
self.state = 378
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,43,self._ctx)
pass
elif la_ == 6:
localctx = AutolevParser.VectorOrDyadicContext(self, localctx)
self._ctx = localctx
_prevctx = localctx
self.state = 379
self.vec()
pass
elif la_ == 7:
localctx = AutolevParser.IndexingContext(self, localctx)
self._ctx = localctx
_prevctx = localctx
self.state = 380
self.match(AutolevParser.ID)
self.state = 381
self.match(AutolevParser.T__0)
self.state = 382
self.expr(0)
self.state = 387
self._errHandler.sync(self)
_la = self._input.LA(1)
while _la==10:
self.state = 383
self.match(AutolevParser.T__9)
self.state = 384
self.expr(0)
self.state = 389
self._errHandler.sync(self)
_la = self._input.LA(1)
self.state = 390
self.match(AutolevParser.T__1)
pass
elif la_ == 8:
localctx = AutolevParser.FunctionContext(self, localctx)
self._ctx = localctx
_prevctx = localctx
self.state = 392
self.functionCall()
pass
elif la_ == 9:
localctx = AutolevParser.MatricesContext(self, localctx)
self._ctx = localctx
_prevctx = localctx
self.state = 393
self.matrix()
pass
elif la_ == 10:
localctx = AutolevParser.ParensContext(self, localctx)
self._ctx = localctx
_prevctx = localctx
self.state = 394
self.match(AutolevParser.T__11)
self.state = 395
self.expr(0)
self.state = 396
self.match(AutolevParser.T__12)
pass
elif la_ == 11:
localctx = AutolevParser.RangessContext(self, localctx)
self._ctx = localctx
_prevctx = localctx
self.state = 399
self._errHandler.sync(self)
_la = self._input.LA(1)
if _la==48:
self.state = 398
self.match(AutolevParser.ID)
self.state = 401
self.ranges()
self.state = 405
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,46,self._ctx)
while _alt!=2 and _alt!=ATN.INVALID_ALT_NUMBER:
if _alt==1:
self.state = 402
self.match(AutolevParser.T__10)
self.state = 407
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,46,self._ctx)
pass
self._ctx.stop = self._input.LT(-1)
self.state = 427
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,49,self._ctx)
while _alt!=2 and _alt!=ATN.INVALID_ALT_NUMBER:
if _alt==1:
if self._parseListeners is not None:
self.triggerExitRuleEvent()
_prevctx = localctx
self.state = 425
self._errHandler.sync(self)
la_ = self._interp.adaptivePredict(self._input,48,self._ctx)
if la_ == 1:
localctx = AutolevParser.ExponentContext(self, AutolevParser.ExprContext(self, _parentctx, _parentState))
self.pushNewRecursionContext(localctx, _startState, self.RULE_expr)
self.state = 410
if not self.precpred(self._ctx, 16):
from antlr4.error.Errors import FailedPredicateException
raise FailedPredicateException(self, "self.precpred(self._ctx, 16)")
self.state = 411
self.match(AutolevParser.T__23)
self.state = 412
self.expr(17)
pass
elif la_ == 2:
localctx = AutolevParser.MulDivContext(self, AutolevParser.ExprContext(self, _parentctx, _parentState))
self.pushNewRecursionContext(localctx, _startState, self.RULE_expr)
self.state = 413
if not self.precpred(self._ctx, 15):
from antlr4.error.Errors import FailedPredicateException
raise FailedPredicateException(self, "self.precpred(self._ctx, 15)")
self.state = 414
_la = self._input.LA(1)
if not(_la==25 or _la==26):
self._errHandler.recoverInline(self)
else:
self._errHandler.reportMatch(self)
self.consume()
self.state = 415
self.expr(16)
pass
elif la_ == 3:
localctx = AutolevParser.AddSubContext(self, AutolevParser.ExprContext(self, _parentctx, _parentState))
self.pushNewRecursionContext(localctx, _startState, self.RULE_expr)
self.state = 416
if not self.precpred(self._ctx, 14):
from antlr4.error.Errors import FailedPredicateException
raise FailedPredicateException(self, "self.precpred(self._ctx, 14)")
self.state = 417
_la = self._input.LA(1)
if not(_la==17 or _la==18):
self._errHandler.recoverInline(self)
else:
self._errHandler.reportMatch(self)
self.consume()
self.state = 418
self.expr(15)
pass
elif la_ == 4:
localctx = AutolevParser.IdEqualsExprContext(self, AutolevParser.ExprContext(self, _parentctx, _parentState))
self.pushNewRecursionContext(localctx, _startState, self.RULE_expr)
self.state = 419
if not self.precpred(self._ctx, 3):
from antlr4.error.Errors import FailedPredicateException
raise FailedPredicateException(self, "self.precpred(self._ctx, 3)")
self.state = 420
self.match(AutolevParser.T__2)
self.state = 421
self.expr(4)
pass
elif la_ == 5:
localctx = AutolevParser.ColonContext(self, AutolevParser.ExprContext(self, _parentctx, _parentState))
self.pushNewRecursionContext(localctx, _startState, self.RULE_expr)
self.state = 422
if not self.precpred(self._ctx, 2):
from antlr4.error.Errors import FailedPredicateException
raise FailedPredicateException(self, "self.precpred(self._ctx, 2)")
self.state = 423
self.match(AutolevParser.T__15)
self.state = 424
self.expr(3)
pass
self.state = 429
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,49,self._ctx)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.unrollRecursionContexts(_parentctx)
return localctx
def sempred(self, localctx:RuleContext, ruleIndex:int, predIndex:int):
if self._predicates == None:
self._predicates = dict()
self._predicates[27] = self.expr_sempred
pred = self._predicates.get(ruleIndex, None)
if pred is None:
raise Exception("No predicate with index:" + str(ruleIndex))
else:
return pred(localctx, predIndex)
def expr_sempred(self, localctx:ExprContext, predIndex:int):
if predIndex == 0:
return self.precpred(self._ctx, 16)
if predIndex == 1:
return self.precpred(self._ctx, 15)
if predIndex == 2:
return self.precpred(self._ctx, 14)
if predIndex == 3:
return self.precpred(self._ctx, 3)
if predIndex == 4:
return self.precpred(self._ctx, 2)
|
6358666355462f9153492953a13450c9d3e7c9a2cb372d660d25b1efa1da6303 | # *** GENERATED BY `setup.py antlr`, DO NOT EDIT BY HAND ***
#
# Generated from ../LaTeX.g4, derived from latex2sympy
# latex2sympy is licensed under the MIT license
# https://github.com/augustt198/latex2sympy/blob/master/LICENSE.txt
#
# Generated with antlr4
# antlr4 is licensed under the BSD-3-Clause License
# https://github.com/antlr/antlr4/blob/master/LICENSE.txt
from antlr4 import *
from io import StringIO
import sys
if sys.version_info[1] > 5:
from typing import TextIO
else:
from typing.io import TextIO
def serializedATN():
return [
4,0,91,911,6,-1,2,0,7,0,2,1,7,1,2,2,7,2,2,3,7,3,2,4,7,4,2,5,7,5,
2,6,7,6,2,7,7,7,2,8,7,8,2,9,7,9,2,10,7,10,2,11,7,11,2,12,7,12,2,
13,7,13,2,14,7,14,2,15,7,15,2,16,7,16,2,17,7,17,2,18,7,18,2,19,7,
19,2,20,7,20,2,21,7,21,2,22,7,22,2,23,7,23,2,24,7,24,2,25,7,25,2,
26,7,26,2,27,7,27,2,28,7,28,2,29,7,29,2,30,7,30,2,31,7,31,2,32,7,
32,2,33,7,33,2,34,7,34,2,35,7,35,2,36,7,36,2,37,7,37,2,38,7,38,2,
39,7,39,2,40,7,40,2,41,7,41,2,42,7,42,2,43,7,43,2,44,7,44,2,45,7,
45,2,46,7,46,2,47,7,47,2,48,7,48,2,49,7,49,2,50,7,50,2,51,7,51,2,
52,7,52,2,53,7,53,2,54,7,54,2,55,7,55,2,56,7,56,2,57,7,57,2,58,7,
58,2,59,7,59,2,60,7,60,2,61,7,61,2,62,7,62,2,63,7,63,2,64,7,64,2,
65,7,65,2,66,7,66,2,67,7,67,2,68,7,68,2,69,7,69,2,70,7,70,2,71,7,
71,2,72,7,72,2,73,7,73,2,74,7,74,2,75,7,75,2,76,7,76,2,77,7,77,2,
78,7,78,2,79,7,79,2,80,7,80,2,81,7,81,2,82,7,82,2,83,7,83,2,84,7,
84,2,85,7,85,2,86,7,86,2,87,7,87,2,88,7,88,2,89,7,89,2,90,7,90,2,
91,7,91,1,0,1,0,1,1,1,1,1,2,4,2,191,8,2,11,2,12,2,192,1,2,1,2,1,
3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,3,3,209,8,3,1,3,1,
3,1,4,1,4,1,4,1,4,1,4,1,4,1,4,1,4,1,4,1,4,1,4,3,4,224,8,4,1,4,1,
4,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,3,5,241,8,
5,1,5,1,5,1,6,1,6,1,6,1,6,1,6,1,6,1,6,1,6,1,7,1,7,1,7,1,7,1,7,1,
7,1,7,1,7,1,7,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,8,1,
8,1,8,1,8,3,8,277,8,8,1,8,1,8,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,
9,1,9,1,9,1,9,1,9,1,9,1,9,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,
1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,11,1,11,1,11,1,11,
1,11,1,11,1,11,1,11,1,12,1,12,1,12,1,12,1,12,1,12,1,12,1,12,1,12,
1,13,1,13,1,13,1,13,1,13,1,13,1,13,1,13,1,13,1,13,1,13,1,13,1,13,
1,13,1,13,1,13,1,13,1,13,1,13,1,13,1,13,1,13,1,13,1,13,1,13,1,13,
1,13,1,13,1,13,1,13,1,13,1,13,1,13,1,13,1,13,1,13,1,13,1,13,1,13,
1,13,1,13,1,13,1,13,1,13,1,13,1,13,1,13,1,13,1,13,1,13,1,13,3,13,
381,8,13,1,13,1,13,1,14,1,14,1,15,1,15,1,16,1,16,1,17,1,17,1,18,
1,18,1,19,1,19,1,20,1,20,1,21,1,21,1,22,1,22,1,22,1,23,1,23,1,23,
1,24,1,24,1,25,1,25,1,26,1,26,1,27,1,27,1,27,1,27,1,27,1,27,1,27,
1,27,1,28,1,28,1,28,1,28,1,28,1,28,1,28,1,29,1,29,1,29,1,29,1,29,
1,29,1,29,1,29,1,30,1,30,1,30,1,30,1,30,1,30,1,30,1,30,1,31,1,31,
1,31,1,31,1,31,1,32,1,32,1,32,1,32,1,32,1,32,1,32,1,32,1,32,1,32,
1,32,1,32,1,32,1,32,1,32,1,32,1,32,1,32,1,32,1,32,1,32,1,32,1,32,
1,32,1,32,1,32,1,32,1,32,1,32,1,32,1,32,1,32,1,32,1,32,1,32,1,32,
1,32,1,32,1,32,1,32,1,32,1,32,1,32,1,32,1,32,1,32,1,32,1,32,1,32,
1,32,1,32,1,32,1,32,1,32,1,32,3,32,504,8,32,1,33,1,33,1,33,1,33,
1,33,1,33,1,33,1,33,1,33,1,33,1,33,1,33,1,33,1,33,1,33,3,33,521,
8,33,1,34,1,34,1,34,1,34,1,34,1,35,1,35,1,35,1,35,1,35,1,35,1,36,
1,36,1,36,1,36,1,36,1,37,1,37,1,37,1,37,1,37,1,38,1,38,1,38,1,38,
1,39,1,39,1,39,1,39,1,40,1,40,1,40,1,40,1,40,1,41,1,41,1,41,1,41,
1,41,1,42,1,42,1,42,1,42,1,42,1,43,1,43,1,43,1,43,1,43,1,44,1,44,
1,44,1,44,1,44,1,45,1,45,1,45,1,45,1,45,1,46,1,46,1,46,1,46,1,46,
1,46,1,46,1,46,1,47,1,47,1,47,1,47,1,47,1,47,1,47,1,47,1,48,1,48,
1,48,1,48,1,48,1,48,1,48,1,48,1,49,1,49,1,49,1,49,1,49,1,49,1,49,
1,49,1,50,1,50,1,50,1,50,1,50,1,50,1,50,1,50,1,51,1,51,1,51,1,51,
1,51,1,51,1,51,1,51,1,52,1,52,1,52,1,52,1,52,1,52,1,53,1,53,1,53,
1,53,1,53,1,53,1,54,1,54,1,54,1,54,1,54,1,54,1,55,1,55,1,55,1,55,
1,55,1,55,1,55,1,55,1,56,1,56,1,56,1,56,1,56,1,56,1,56,1,56,1,57,
1,57,1,57,1,57,1,57,1,57,1,57,1,57,1,58,1,58,1,58,1,58,1,58,1,58,
1,58,1,58,1,59,1,59,1,59,1,59,1,59,1,59,1,59,1,59,1,60,1,60,1,60,
1,60,1,60,1,60,1,60,1,61,1,61,1,61,1,61,1,61,1,61,1,61,1,62,1,62,
1,62,1,62,1,62,1,62,1,63,1,63,1,63,1,63,1,63,1,63,1,63,1,63,1,63,
1,63,1,64,1,64,1,64,1,64,1,64,1,64,1,64,1,65,1,65,1,65,1,65,1,65,
1,65,1,66,1,66,1,66,1,66,1,66,1,67,1,67,1,67,1,67,1,67,1,67,1,67,
1,67,1,67,1,67,1,67,1,67,1,67,1,67,1,67,1,67,1,67,3,67,753,8,67,
1,68,1,68,1,68,1,68,1,68,1,68,1,68,1,69,1,69,1,69,1,69,1,69,1,69,
1,69,1,69,1,70,1,70,1,70,1,70,1,70,1,70,1,70,1,70,1,71,1,71,1,71,
1,71,1,71,1,71,1,71,1,71,1,72,1,72,1,73,1,73,1,74,1,74,1,75,1,75,
1,76,1,76,5,76,796,8,76,10,76,12,76,799,9,76,1,76,1,76,1,76,4,76,
804,8,76,11,76,12,76,805,3,76,808,8,76,1,77,1,77,1,78,1,78,1,79,
1,79,5,79,816,8,79,10,79,12,79,819,9,79,3,79,821,8,79,1,79,1,79,
1,79,5,79,826,8,79,10,79,12,79,829,9,79,1,79,3,79,832,8,79,3,79,
834,8,79,1,80,1,80,1,80,1,80,1,80,1,81,1,81,1,82,1,82,1,82,1,82,
1,82,1,82,1,82,1,82,1,82,3,82,852,8,82,1,83,1,83,1,83,1,83,1,83,
1,83,1,84,1,84,1,84,1,84,1,84,1,84,1,84,1,84,1,84,1,84,1,85,1,85,
1,86,1,86,1,86,1,86,1,86,1,86,1,86,1,86,1,86,3,86,881,8,86,1,87,
1,87,1,87,1,87,1,87,1,87,1,88,1,88,1,88,1,88,1,88,1,88,1,88,1,88,
1,88,1,88,1,89,1,89,1,90,4,90,902,8,90,11,90,12,90,903,1,91,1,91,
4,91,908,8,91,11,91,12,91,909,3,797,817,827,0,92,1,1,3,2,5,3,7,4,
9,5,11,6,13,7,15,8,17,9,19,10,21,11,23,12,25,13,27,14,29,15,31,16,
33,17,35,18,37,19,39,20,41,21,43,22,45,23,47,24,49,25,51,26,53,27,
55,28,57,29,59,30,61,31,63,32,65,33,67,34,69,35,71,36,73,37,75,38,
77,39,79,40,81,41,83,42,85,43,87,44,89,45,91,46,93,47,95,48,97,49,
99,50,101,51,103,52,105,53,107,54,109,55,111,56,113,57,115,58,117,
59,119,60,121,61,123,62,125,63,127,64,129,65,131,66,133,67,135,68,
137,69,139,70,141,71,143,72,145,73,147,74,149,75,151,0,153,76,155,
77,157,78,159,79,161,80,163,81,165,82,167,83,169,84,171,85,173,86,
175,87,177,88,179,89,181,90,183,91,1,0,3,3,0,9,10,13,13,32,32,2,
0,65,90,97,122,1,0,48,57,949,0,1,1,0,0,0,0,3,1,0,0,0,0,5,1,0,0,0,
0,7,1,0,0,0,0,9,1,0,0,0,0,11,1,0,0,0,0,13,1,0,0,0,0,15,1,0,0,0,0,
17,1,0,0,0,0,19,1,0,0,0,0,21,1,0,0,0,0,23,1,0,0,0,0,25,1,0,0,0,0,
27,1,0,0,0,0,29,1,0,0,0,0,31,1,0,0,0,0,33,1,0,0,0,0,35,1,0,0,0,0,
37,1,0,0,0,0,39,1,0,0,0,0,41,1,0,0,0,0,43,1,0,0,0,0,45,1,0,0,0,0,
47,1,0,0,0,0,49,1,0,0,0,0,51,1,0,0,0,0,53,1,0,0,0,0,55,1,0,0,0,0,
57,1,0,0,0,0,59,1,0,0,0,0,61,1,0,0,0,0,63,1,0,0,0,0,65,1,0,0,0,0,
67,1,0,0,0,0,69,1,0,0,0,0,71,1,0,0,0,0,73,1,0,0,0,0,75,1,0,0,0,0,
77,1,0,0,0,0,79,1,0,0,0,0,81,1,0,0,0,0,83,1,0,0,0,0,85,1,0,0,0,0,
87,1,0,0,0,0,89,1,0,0,0,0,91,1,0,0,0,0,93,1,0,0,0,0,95,1,0,0,0,0,
97,1,0,0,0,0,99,1,0,0,0,0,101,1,0,0,0,0,103,1,0,0,0,0,105,1,0,0,
0,0,107,1,0,0,0,0,109,1,0,0,0,0,111,1,0,0,0,0,113,1,0,0,0,0,115,
1,0,0,0,0,117,1,0,0,0,0,119,1,0,0,0,0,121,1,0,0,0,0,123,1,0,0,0,
0,125,1,0,0,0,0,127,1,0,0,0,0,129,1,0,0,0,0,131,1,0,0,0,0,133,1,
0,0,0,0,135,1,0,0,0,0,137,1,0,0,0,0,139,1,0,0,0,0,141,1,0,0,0,0,
143,1,0,0,0,0,145,1,0,0,0,0,147,1,0,0,0,0,149,1,0,0,0,0,153,1,0,
0,0,0,155,1,0,0,0,0,157,1,0,0,0,0,159,1,0,0,0,0,161,1,0,0,0,0,163,
1,0,0,0,0,165,1,0,0,0,0,167,1,0,0,0,0,169,1,0,0,0,0,171,1,0,0,0,
0,173,1,0,0,0,0,175,1,0,0,0,0,177,1,0,0,0,0,179,1,0,0,0,0,181,1,
0,0,0,0,183,1,0,0,0,1,185,1,0,0,0,3,187,1,0,0,0,5,190,1,0,0,0,7,
208,1,0,0,0,9,223,1,0,0,0,11,240,1,0,0,0,13,244,1,0,0,0,15,252,1,
0,0,0,17,276,1,0,0,0,19,280,1,0,0,0,21,295,1,0,0,0,23,312,1,0,0,
0,25,320,1,0,0,0,27,380,1,0,0,0,29,384,1,0,0,0,31,386,1,0,0,0,33,
388,1,0,0,0,35,390,1,0,0,0,37,392,1,0,0,0,39,394,1,0,0,0,41,396,
1,0,0,0,43,398,1,0,0,0,45,400,1,0,0,0,47,403,1,0,0,0,49,406,1,0,
0,0,51,408,1,0,0,0,53,410,1,0,0,0,55,412,1,0,0,0,57,420,1,0,0,0,
59,427,1,0,0,0,61,435,1,0,0,0,63,443,1,0,0,0,65,503,1,0,0,0,67,520,
1,0,0,0,69,522,1,0,0,0,71,527,1,0,0,0,73,533,1,0,0,0,75,538,1,0,
0,0,77,543,1,0,0,0,79,547,1,0,0,0,81,551,1,0,0,0,83,556,1,0,0,0,
85,561,1,0,0,0,87,566,1,0,0,0,89,571,1,0,0,0,91,576,1,0,0,0,93,581,
1,0,0,0,95,589,1,0,0,0,97,597,1,0,0,0,99,605,1,0,0,0,101,613,1,0,
0,0,103,621,1,0,0,0,105,629,1,0,0,0,107,635,1,0,0,0,109,641,1,0,
0,0,111,647,1,0,0,0,113,655,1,0,0,0,115,663,1,0,0,0,117,671,1,0,
0,0,119,679,1,0,0,0,121,687,1,0,0,0,123,694,1,0,0,0,125,701,1,0,
0,0,127,707,1,0,0,0,129,717,1,0,0,0,131,724,1,0,0,0,133,730,1,0,
0,0,135,752,1,0,0,0,137,754,1,0,0,0,139,761,1,0,0,0,141,769,1,0,
0,0,143,777,1,0,0,0,145,785,1,0,0,0,147,787,1,0,0,0,149,789,1,0,
0,0,151,791,1,0,0,0,153,793,1,0,0,0,155,809,1,0,0,0,157,811,1,0,
0,0,159,833,1,0,0,0,161,835,1,0,0,0,163,840,1,0,0,0,165,851,1,0,
0,0,167,853,1,0,0,0,169,859,1,0,0,0,171,869,1,0,0,0,173,880,1,0,
0,0,175,882,1,0,0,0,177,888,1,0,0,0,179,898,1,0,0,0,181,901,1,0,
0,0,183,905,1,0,0,0,185,186,5,44,0,0,186,2,1,0,0,0,187,188,5,46,
0,0,188,4,1,0,0,0,189,191,7,0,0,0,190,189,1,0,0,0,191,192,1,0,0,
0,192,190,1,0,0,0,192,193,1,0,0,0,193,194,1,0,0,0,194,195,6,2,0,
0,195,6,1,0,0,0,196,197,5,92,0,0,197,209,5,44,0,0,198,199,5,92,0,
0,199,200,5,116,0,0,200,201,5,104,0,0,201,202,5,105,0,0,202,203,
5,110,0,0,203,204,5,115,0,0,204,205,5,112,0,0,205,206,5,97,0,0,206,
207,5,99,0,0,207,209,5,101,0,0,208,196,1,0,0,0,208,198,1,0,0,0,209,
210,1,0,0,0,210,211,6,3,0,0,211,8,1,0,0,0,212,213,5,92,0,0,213,224,
5,58,0,0,214,215,5,92,0,0,215,216,5,109,0,0,216,217,5,101,0,0,217,
218,5,100,0,0,218,219,5,115,0,0,219,220,5,112,0,0,220,221,5,97,0,
0,221,222,5,99,0,0,222,224,5,101,0,0,223,212,1,0,0,0,223,214,1,0,
0,0,224,225,1,0,0,0,225,226,6,4,0,0,226,10,1,0,0,0,227,228,5,92,
0,0,228,241,5,59,0,0,229,230,5,92,0,0,230,231,5,116,0,0,231,232,
5,104,0,0,232,233,5,105,0,0,233,234,5,99,0,0,234,235,5,107,0,0,235,
236,5,115,0,0,236,237,5,112,0,0,237,238,5,97,0,0,238,239,5,99,0,
0,239,241,5,101,0,0,240,227,1,0,0,0,240,229,1,0,0,0,241,242,1,0,
0,0,242,243,6,5,0,0,243,12,1,0,0,0,244,245,5,92,0,0,245,246,5,113,
0,0,246,247,5,117,0,0,247,248,5,97,0,0,248,249,5,100,0,0,249,250,
1,0,0,0,250,251,6,6,0,0,251,14,1,0,0,0,252,253,5,92,0,0,253,254,
5,113,0,0,254,255,5,113,0,0,255,256,5,117,0,0,256,257,5,97,0,0,257,
258,5,100,0,0,258,259,1,0,0,0,259,260,6,7,0,0,260,16,1,0,0,0,261,
262,5,92,0,0,262,277,5,33,0,0,263,264,5,92,0,0,264,265,5,110,0,0,
265,266,5,101,0,0,266,267,5,103,0,0,267,268,5,116,0,0,268,269,5,
104,0,0,269,270,5,105,0,0,270,271,5,110,0,0,271,272,5,115,0,0,272,
273,5,112,0,0,273,274,5,97,0,0,274,275,5,99,0,0,275,277,5,101,0,
0,276,261,1,0,0,0,276,263,1,0,0,0,277,278,1,0,0,0,278,279,6,8,0,
0,279,18,1,0,0,0,280,281,5,92,0,0,281,282,5,110,0,0,282,283,5,101,
0,0,283,284,5,103,0,0,284,285,5,109,0,0,285,286,5,101,0,0,286,287,
5,100,0,0,287,288,5,115,0,0,288,289,5,112,0,0,289,290,5,97,0,0,290,
291,5,99,0,0,291,292,5,101,0,0,292,293,1,0,0,0,293,294,6,9,0,0,294,
20,1,0,0,0,295,296,5,92,0,0,296,297,5,110,0,0,297,298,5,101,0,0,
298,299,5,103,0,0,299,300,5,116,0,0,300,301,5,104,0,0,301,302,5,
105,0,0,302,303,5,99,0,0,303,304,5,107,0,0,304,305,5,115,0,0,305,
306,5,112,0,0,306,307,5,97,0,0,307,308,5,99,0,0,308,309,5,101,0,
0,309,310,1,0,0,0,310,311,6,10,0,0,311,22,1,0,0,0,312,313,5,92,0,
0,313,314,5,108,0,0,314,315,5,101,0,0,315,316,5,102,0,0,316,317,
5,116,0,0,317,318,1,0,0,0,318,319,6,11,0,0,319,24,1,0,0,0,320,321,
5,92,0,0,321,322,5,114,0,0,322,323,5,105,0,0,323,324,5,103,0,0,324,
325,5,104,0,0,325,326,5,116,0,0,326,327,1,0,0,0,327,328,6,12,0,0,
328,26,1,0,0,0,329,330,5,92,0,0,330,331,5,118,0,0,331,332,5,114,
0,0,332,333,5,117,0,0,333,334,5,108,0,0,334,381,5,101,0,0,335,336,
5,92,0,0,336,337,5,118,0,0,337,338,5,99,0,0,338,339,5,101,0,0,339,
340,5,110,0,0,340,341,5,116,0,0,341,342,5,101,0,0,342,381,5,114,
0,0,343,344,5,92,0,0,344,345,5,118,0,0,345,346,5,98,0,0,346,347,
5,111,0,0,347,381,5,120,0,0,348,349,5,92,0,0,349,350,5,118,0,0,350,
351,5,115,0,0,351,352,5,107,0,0,352,353,5,105,0,0,353,381,5,112,
0,0,354,355,5,92,0,0,355,356,5,118,0,0,356,357,5,115,0,0,357,358,
5,112,0,0,358,359,5,97,0,0,359,360,5,99,0,0,360,381,5,101,0,0,361,
362,5,92,0,0,362,363,5,104,0,0,363,364,5,102,0,0,364,365,5,105,0,
0,365,381,5,108,0,0,366,367,5,92,0,0,367,381,5,42,0,0,368,369,5,
92,0,0,369,381,5,45,0,0,370,371,5,92,0,0,371,381,5,46,0,0,372,373,
5,92,0,0,373,381,5,47,0,0,374,375,5,92,0,0,375,381,5,34,0,0,376,
377,5,92,0,0,377,381,5,40,0,0,378,379,5,92,0,0,379,381,5,61,0,0,
380,329,1,0,0,0,380,335,1,0,0,0,380,343,1,0,0,0,380,348,1,0,0,0,
380,354,1,0,0,0,380,361,1,0,0,0,380,366,1,0,0,0,380,368,1,0,0,0,
380,370,1,0,0,0,380,372,1,0,0,0,380,374,1,0,0,0,380,376,1,0,0,0,
380,378,1,0,0,0,381,382,1,0,0,0,382,383,6,13,0,0,383,28,1,0,0,0,
384,385,5,43,0,0,385,30,1,0,0,0,386,387,5,45,0,0,387,32,1,0,0,0,
388,389,5,42,0,0,389,34,1,0,0,0,390,391,5,47,0,0,391,36,1,0,0,0,
392,393,5,40,0,0,393,38,1,0,0,0,394,395,5,41,0,0,395,40,1,0,0,0,
396,397,5,123,0,0,397,42,1,0,0,0,398,399,5,125,0,0,399,44,1,0,0,
0,400,401,5,92,0,0,401,402,5,123,0,0,402,46,1,0,0,0,403,404,5,92,
0,0,404,405,5,125,0,0,405,48,1,0,0,0,406,407,5,91,0,0,407,50,1,0,
0,0,408,409,5,93,0,0,409,52,1,0,0,0,410,411,5,124,0,0,411,54,1,0,
0,0,412,413,5,92,0,0,413,414,5,114,0,0,414,415,5,105,0,0,415,416,
5,103,0,0,416,417,5,104,0,0,417,418,5,116,0,0,418,419,5,124,0,0,
419,56,1,0,0,0,420,421,5,92,0,0,421,422,5,108,0,0,422,423,5,101,
0,0,423,424,5,102,0,0,424,425,5,116,0,0,425,426,5,124,0,0,426,58,
1,0,0,0,427,428,5,92,0,0,428,429,5,108,0,0,429,430,5,97,0,0,430,
431,5,110,0,0,431,432,5,103,0,0,432,433,5,108,0,0,433,434,5,101,
0,0,434,60,1,0,0,0,435,436,5,92,0,0,436,437,5,114,0,0,437,438,5,
97,0,0,438,439,5,110,0,0,439,440,5,103,0,0,440,441,5,108,0,0,441,
442,5,101,0,0,442,62,1,0,0,0,443,444,5,92,0,0,444,445,5,108,0,0,
445,446,5,105,0,0,446,447,5,109,0,0,447,64,1,0,0,0,448,449,5,92,
0,0,449,450,5,116,0,0,450,504,5,111,0,0,451,452,5,92,0,0,452,453,
5,114,0,0,453,454,5,105,0,0,454,455,5,103,0,0,455,456,5,104,0,0,
456,457,5,116,0,0,457,458,5,97,0,0,458,459,5,114,0,0,459,460,5,114,
0,0,460,461,5,111,0,0,461,504,5,119,0,0,462,463,5,92,0,0,463,464,
5,82,0,0,464,465,5,105,0,0,465,466,5,103,0,0,466,467,5,104,0,0,467,
468,5,116,0,0,468,469,5,97,0,0,469,470,5,114,0,0,470,471,5,114,0,
0,471,472,5,111,0,0,472,504,5,119,0,0,473,474,5,92,0,0,474,475,5,
108,0,0,475,476,5,111,0,0,476,477,5,110,0,0,477,478,5,103,0,0,478,
479,5,114,0,0,479,480,5,105,0,0,480,481,5,103,0,0,481,482,5,104,
0,0,482,483,5,116,0,0,483,484,5,97,0,0,484,485,5,114,0,0,485,486,
5,114,0,0,486,487,5,111,0,0,487,504,5,119,0,0,488,489,5,92,0,0,489,
490,5,76,0,0,490,491,5,111,0,0,491,492,5,110,0,0,492,493,5,103,0,
0,493,494,5,114,0,0,494,495,5,105,0,0,495,496,5,103,0,0,496,497,
5,104,0,0,497,498,5,116,0,0,498,499,5,97,0,0,499,500,5,114,0,0,500,
501,5,114,0,0,501,502,5,111,0,0,502,504,5,119,0,0,503,448,1,0,0,
0,503,451,1,0,0,0,503,462,1,0,0,0,503,473,1,0,0,0,503,488,1,0,0,
0,504,66,1,0,0,0,505,506,5,92,0,0,506,507,5,105,0,0,507,508,5,110,
0,0,508,521,5,116,0,0,509,510,5,92,0,0,510,511,5,105,0,0,511,512,
5,110,0,0,512,513,5,116,0,0,513,514,5,92,0,0,514,515,5,108,0,0,515,
516,5,105,0,0,516,517,5,109,0,0,517,518,5,105,0,0,518,519,5,116,
0,0,519,521,5,115,0,0,520,505,1,0,0,0,520,509,1,0,0,0,521,68,1,0,
0,0,522,523,5,92,0,0,523,524,5,115,0,0,524,525,5,117,0,0,525,526,
5,109,0,0,526,70,1,0,0,0,527,528,5,92,0,0,528,529,5,112,0,0,529,
530,5,114,0,0,530,531,5,111,0,0,531,532,5,100,0,0,532,72,1,0,0,0,
533,534,5,92,0,0,534,535,5,101,0,0,535,536,5,120,0,0,536,537,5,112,
0,0,537,74,1,0,0,0,538,539,5,92,0,0,539,540,5,108,0,0,540,541,5,
111,0,0,541,542,5,103,0,0,542,76,1,0,0,0,543,544,5,92,0,0,544,545,
5,108,0,0,545,546,5,103,0,0,546,78,1,0,0,0,547,548,5,92,0,0,548,
549,5,108,0,0,549,550,5,110,0,0,550,80,1,0,0,0,551,552,5,92,0,0,
552,553,5,115,0,0,553,554,5,105,0,0,554,555,5,110,0,0,555,82,1,0,
0,0,556,557,5,92,0,0,557,558,5,99,0,0,558,559,5,111,0,0,559,560,
5,115,0,0,560,84,1,0,0,0,561,562,5,92,0,0,562,563,5,116,0,0,563,
564,5,97,0,0,564,565,5,110,0,0,565,86,1,0,0,0,566,567,5,92,0,0,567,
568,5,99,0,0,568,569,5,115,0,0,569,570,5,99,0,0,570,88,1,0,0,0,571,
572,5,92,0,0,572,573,5,115,0,0,573,574,5,101,0,0,574,575,5,99,0,
0,575,90,1,0,0,0,576,577,5,92,0,0,577,578,5,99,0,0,578,579,5,111,
0,0,579,580,5,116,0,0,580,92,1,0,0,0,581,582,5,92,0,0,582,583,5,
97,0,0,583,584,5,114,0,0,584,585,5,99,0,0,585,586,5,115,0,0,586,
587,5,105,0,0,587,588,5,110,0,0,588,94,1,0,0,0,589,590,5,92,0,0,
590,591,5,97,0,0,591,592,5,114,0,0,592,593,5,99,0,0,593,594,5,99,
0,0,594,595,5,111,0,0,595,596,5,115,0,0,596,96,1,0,0,0,597,598,5,
92,0,0,598,599,5,97,0,0,599,600,5,114,0,0,600,601,5,99,0,0,601,602,
5,116,0,0,602,603,5,97,0,0,603,604,5,110,0,0,604,98,1,0,0,0,605,
606,5,92,0,0,606,607,5,97,0,0,607,608,5,114,0,0,608,609,5,99,0,0,
609,610,5,99,0,0,610,611,5,115,0,0,611,612,5,99,0,0,612,100,1,0,
0,0,613,614,5,92,0,0,614,615,5,97,0,0,615,616,5,114,0,0,616,617,
5,99,0,0,617,618,5,115,0,0,618,619,5,101,0,0,619,620,5,99,0,0,620,
102,1,0,0,0,621,622,5,92,0,0,622,623,5,97,0,0,623,624,5,114,0,0,
624,625,5,99,0,0,625,626,5,99,0,0,626,627,5,111,0,0,627,628,5,116,
0,0,628,104,1,0,0,0,629,630,5,92,0,0,630,631,5,115,0,0,631,632,5,
105,0,0,632,633,5,110,0,0,633,634,5,104,0,0,634,106,1,0,0,0,635,
636,5,92,0,0,636,637,5,99,0,0,637,638,5,111,0,0,638,639,5,115,0,
0,639,640,5,104,0,0,640,108,1,0,0,0,641,642,5,92,0,0,642,643,5,116,
0,0,643,644,5,97,0,0,644,645,5,110,0,0,645,646,5,104,0,0,646,110,
1,0,0,0,647,648,5,92,0,0,648,649,5,97,0,0,649,650,5,114,0,0,650,
651,5,115,0,0,651,652,5,105,0,0,652,653,5,110,0,0,653,654,5,104,
0,0,654,112,1,0,0,0,655,656,5,92,0,0,656,657,5,97,0,0,657,658,5,
114,0,0,658,659,5,99,0,0,659,660,5,111,0,0,660,661,5,115,0,0,661,
662,5,104,0,0,662,114,1,0,0,0,663,664,5,92,0,0,664,665,5,97,0,0,
665,666,5,114,0,0,666,667,5,116,0,0,667,668,5,97,0,0,668,669,5,110,
0,0,669,670,5,104,0,0,670,116,1,0,0,0,671,672,5,92,0,0,672,673,5,
108,0,0,673,674,5,102,0,0,674,675,5,108,0,0,675,676,5,111,0,0,676,
677,5,111,0,0,677,678,5,114,0,0,678,118,1,0,0,0,679,680,5,92,0,0,
680,681,5,114,0,0,681,682,5,102,0,0,682,683,5,108,0,0,683,684,5,
111,0,0,684,685,5,111,0,0,685,686,5,114,0,0,686,120,1,0,0,0,687,
688,5,92,0,0,688,689,5,108,0,0,689,690,5,99,0,0,690,691,5,101,0,
0,691,692,5,105,0,0,692,693,5,108,0,0,693,122,1,0,0,0,694,695,5,
92,0,0,695,696,5,114,0,0,696,697,5,99,0,0,697,698,5,101,0,0,698,
699,5,105,0,0,699,700,5,108,0,0,700,124,1,0,0,0,701,702,5,92,0,0,
702,703,5,115,0,0,703,704,5,113,0,0,704,705,5,114,0,0,705,706,5,
116,0,0,706,126,1,0,0,0,707,708,5,92,0,0,708,709,5,111,0,0,709,710,
5,118,0,0,710,711,5,101,0,0,711,712,5,114,0,0,712,713,5,108,0,0,
713,714,5,105,0,0,714,715,5,110,0,0,715,716,5,101,0,0,716,128,1,
0,0,0,717,718,5,92,0,0,718,719,5,116,0,0,719,720,5,105,0,0,720,721,
5,109,0,0,721,722,5,101,0,0,722,723,5,115,0,0,723,130,1,0,0,0,724,
725,5,92,0,0,725,726,5,99,0,0,726,727,5,100,0,0,727,728,5,111,0,
0,728,729,5,116,0,0,729,132,1,0,0,0,730,731,5,92,0,0,731,732,5,100,
0,0,732,733,5,105,0,0,733,734,5,118,0,0,734,134,1,0,0,0,735,736,
5,92,0,0,736,737,5,102,0,0,737,738,5,114,0,0,738,739,5,97,0,0,739,
753,5,99,0,0,740,741,5,92,0,0,741,742,5,100,0,0,742,743,5,102,0,
0,743,744,5,114,0,0,744,745,5,97,0,0,745,753,5,99,0,0,746,747,5,
92,0,0,747,748,5,116,0,0,748,749,5,102,0,0,749,750,5,114,0,0,750,
751,5,97,0,0,751,753,5,99,0,0,752,735,1,0,0,0,752,740,1,0,0,0,752,
746,1,0,0,0,753,136,1,0,0,0,754,755,5,92,0,0,755,756,5,98,0,0,756,
757,5,105,0,0,757,758,5,110,0,0,758,759,5,111,0,0,759,760,5,109,
0,0,760,138,1,0,0,0,761,762,5,92,0,0,762,763,5,100,0,0,763,764,5,
98,0,0,764,765,5,105,0,0,765,766,5,110,0,0,766,767,5,111,0,0,767,
768,5,109,0,0,768,140,1,0,0,0,769,770,5,92,0,0,770,771,5,116,0,0,
771,772,5,98,0,0,772,773,5,105,0,0,773,774,5,110,0,0,774,775,5,111,
0,0,775,776,5,109,0,0,776,142,1,0,0,0,777,778,5,92,0,0,778,779,5,
109,0,0,779,780,5,97,0,0,780,781,5,116,0,0,781,782,5,104,0,0,782,
783,5,105,0,0,783,784,5,116,0,0,784,144,1,0,0,0,785,786,5,95,0,0,
786,146,1,0,0,0,787,788,5,94,0,0,788,148,1,0,0,0,789,790,5,58,0,
0,790,150,1,0,0,0,791,792,7,0,0,0,792,152,1,0,0,0,793,797,5,100,
0,0,794,796,3,151,75,0,795,794,1,0,0,0,796,799,1,0,0,0,797,798,1,
0,0,0,797,795,1,0,0,0,798,807,1,0,0,0,799,797,1,0,0,0,800,808,7,
1,0,0,801,803,5,92,0,0,802,804,7,1,0,0,803,802,1,0,0,0,804,805,1,
0,0,0,805,803,1,0,0,0,805,806,1,0,0,0,806,808,1,0,0,0,807,800,1,
0,0,0,807,801,1,0,0,0,808,154,1,0,0,0,809,810,7,1,0,0,810,156,1,
0,0,0,811,812,7,2,0,0,812,158,1,0,0,0,813,817,5,38,0,0,814,816,3,
151,75,0,815,814,1,0,0,0,816,819,1,0,0,0,817,818,1,0,0,0,817,815,
1,0,0,0,818,821,1,0,0,0,819,817,1,0,0,0,820,813,1,0,0,0,820,821,
1,0,0,0,821,822,1,0,0,0,822,834,5,61,0,0,823,831,5,61,0,0,824,826,
3,151,75,0,825,824,1,0,0,0,826,829,1,0,0,0,827,828,1,0,0,0,827,825,
1,0,0,0,828,830,1,0,0,0,829,827,1,0,0,0,830,832,5,38,0,0,831,827,
1,0,0,0,831,832,1,0,0,0,832,834,1,0,0,0,833,820,1,0,0,0,833,823,
1,0,0,0,834,160,1,0,0,0,835,836,5,92,0,0,836,837,5,110,0,0,837,838,
5,101,0,0,838,839,5,113,0,0,839,162,1,0,0,0,840,841,5,60,0,0,841,
164,1,0,0,0,842,843,5,92,0,0,843,844,5,108,0,0,844,845,5,101,0,0,
845,852,5,113,0,0,846,847,5,92,0,0,847,848,5,108,0,0,848,852,5,101,
0,0,849,852,3,167,83,0,850,852,3,169,84,0,851,842,1,0,0,0,851,846,
1,0,0,0,851,849,1,0,0,0,851,850,1,0,0,0,852,166,1,0,0,0,853,854,
5,92,0,0,854,855,5,108,0,0,855,856,5,101,0,0,856,857,5,113,0,0,857,
858,5,113,0,0,858,168,1,0,0,0,859,860,5,92,0,0,860,861,5,108,0,0,
861,862,5,101,0,0,862,863,5,113,0,0,863,864,5,115,0,0,864,865,5,
108,0,0,865,866,5,97,0,0,866,867,5,110,0,0,867,868,5,116,0,0,868,
170,1,0,0,0,869,870,5,62,0,0,870,172,1,0,0,0,871,872,5,92,0,0,872,
873,5,103,0,0,873,874,5,101,0,0,874,881,5,113,0,0,875,876,5,92,0,
0,876,877,5,103,0,0,877,881,5,101,0,0,878,881,3,175,87,0,879,881,
3,177,88,0,880,871,1,0,0,0,880,875,1,0,0,0,880,878,1,0,0,0,880,879,
1,0,0,0,881,174,1,0,0,0,882,883,5,92,0,0,883,884,5,103,0,0,884,885,
5,101,0,0,885,886,5,113,0,0,886,887,5,113,0,0,887,176,1,0,0,0,888,
889,5,92,0,0,889,890,5,103,0,0,890,891,5,101,0,0,891,892,5,113,0,
0,892,893,5,115,0,0,893,894,5,108,0,0,894,895,5,97,0,0,895,896,5,
110,0,0,896,897,5,116,0,0,897,178,1,0,0,0,898,899,5,33,0,0,899,180,
1,0,0,0,900,902,5,39,0,0,901,900,1,0,0,0,902,903,1,0,0,0,903,901,
1,0,0,0,903,904,1,0,0,0,904,182,1,0,0,0,905,907,5,92,0,0,906,908,
7,1,0,0,907,906,1,0,0,0,908,909,1,0,0,0,909,907,1,0,0,0,909,910,
1,0,0,0,910,184,1,0,0,0,22,0,192,208,223,240,276,380,503,520,752,
797,805,807,817,820,827,831,833,851,880,903,909,1,6,0,0
]
class LaTeXLexer(Lexer):
atn = ATNDeserializer().deserialize(serializedATN())
decisionsToDFA = [ DFA(ds, i) for i, ds in enumerate(atn.decisionToState) ]
T__0 = 1
T__1 = 2
WS = 3
THINSPACE = 4
MEDSPACE = 5
THICKSPACE = 6
QUAD = 7
QQUAD = 8
NEGTHINSPACE = 9
NEGMEDSPACE = 10
NEGTHICKSPACE = 11
CMD_LEFT = 12
CMD_RIGHT = 13
IGNORE = 14
ADD = 15
SUB = 16
MUL = 17
DIV = 18
L_PAREN = 19
R_PAREN = 20
L_BRACE = 21
R_BRACE = 22
L_BRACE_LITERAL = 23
R_BRACE_LITERAL = 24
L_BRACKET = 25
R_BRACKET = 26
BAR = 27
R_BAR = 28
L_BAR = 29
L_ANGLE = 30
R_ANGLE = 31
FUNC_LIM = 32
LIM_APPROACH_SYM = 33
FUNC_INT = 34
FUNC_SUM = 35
FUNC_PROD = 36
FUNC_EXP = 37
FUNC_LOG = 38
FUNC_LG = 39
FUNC_LN = 40
FUNC_SIN = 41
FUNC_COS = 42
FUNC_TAN = 43
FUNC_CSC = 44
FUNC_SEC = 45
FUNC_COT = 46
FUNC_ARCSIN = 47
FUNC_ARCCOS = 48
FUNC_ARCTAN = 49
FUNC_ARCCSC = 50
FUNC_ARCSEC = 51
FUNC_ARCCOT = 52
FUNC_SINH = 53
FUNC_COSH = 54
FUNC_TANH = 55
FUNC_ARSINH = 56
FUNC_ARCOSH = 57
FUNC_ARTANH = 58
L_FLOOR = 59
R_FLOOR = 60
L_CEIL = 61
R_CEIL = 62
FUNC_SQRT = 63
FUNC_OVERLINE = 64
CMD_TIMES = 65
CMD_CDOT = 66
CMD_DIV = 67
CMD_FRAC = 68
CMD_BINOM = 69
CMD_DBINOM = 70
CMD_TBINOM = 71
CMD_MATHIT = 72
UNDERSCORE = 73
CARET = 74
COLON = 75
DIFFERENTIAL = 76
LETTER = 77
DIGIT = 78
EQUAL = 79
NEQ = 80
LT = 81
LTE = 82
LTE_Q = 83
LTE_S = 84
GT = 85
GTE = 86
GTE_Q = 87
GTE_S = 88
BANG = 89
SINGLE_QUOTES = 90
SYMBOL = 91
channelNames = [ u"DEFAULT_TOKEN_CHANNEL", u"HIDDEN" ]
modeNames = [ "DEFAULT_MODE" ]
literalNames = [ "<INVALID>",
"','", "'.'", "'\\quad'", "'\\qquad'", "'\\negmedspace'", "'\\negthickspace'",
"'\\left'", "'\\right'", "'+'", "'-'", "'*'", "'/'", "'('",
"')'", "'{'", "'}'", "'\\{'", "'\\}'", "'['", "']'", "'|'",
"'\\right|'", "'\\left|'", "'\\langle'", "'\\rangle'", "'\\lim'",
"'\\sum'", "'\\prod'", "'\\exp'", "'\\log'", "'\\lg'", "'\\ln'",
"'\\sin'", "'\\cos'", "'\\tan'", "'\\csc'", "'\\sec'", "'\\cot'",
"'\\arcsin'", "'\\arccos'", "'\\arctan'", "'\\arccsc'", "'\\arcsec'",
"'\\arccot'", "'\\sinh'", "'\\cosh'", "'\\tanh'", "'\\arsinh'",
"'\\arcosh'", "'\\artanh'", "'\\lfloor'", "'\\rfloor'", "'\\lceil'",
"'\\rceil'", "'\\sqrt'", "'\\overline'", "'\\times'", "'\\cdot'",
"'\\div'", "'\\binom'", "'\\dbinom'", "'\\tbinom'", "'\\mathit'",
"'_'", "'^'", "':'", "'\\neq'", "'<'", "'\\leqq'", "'\\leqslant'",
"'>'", "'\\geqq'", "'\\geqslant'", "'!'" ]
symbolicNames = [ "<INVALID>",
"WS", "THINSPACE", "MEDSPACE", "THICKSPACE", "QUAD", "QQUAD",
"NEGTHINSPACE", "NEGMEDSPACE", "NEGTHICKSPACE", "CMD_LEFT",
"CMD_RIGHT", "IGNORE", "ADD", "SUB", "MUL", "DIV", "L_PAREN",
"R_PAREN", "L_BRACE", "R_BRACE", "L_BRACE_LITERAL", "R_BRACE_LITERAL",
"L_BRACKET", "R_BRACKET", "BAR", "R_BAR", "L_BAR", "L_ANGLE",
"R_ANGLE", "FUNC_LIM", "LIM_APPROACH_SYM", "FUNC_INT", "FUNC_SUM",
"FUNC_PROD", "FUNC_EXP", "FUNC_LOG", "FUNC_LG", "FUNC_LN", "FUNC_SIN",
"FUNC_COS", "FUNC_TAN", "FUNC_CSC", "FUNC_SEC", "FUNC_COT",
"FUNC_ARCSIN", "FUNC_ARCCOS", "FUNC_ARCTAN", "FUNC_ARCCSC",
"FUNC_ARCSEC", "FUNC_ARCCOT", "FUNC_SINH", "FUNC_COSH", "FUNC_TANH",
"FUNC_ARSINH", "FUNC_ARCOSH", "FUNC_ARTANH", "L_FLOOR", "R_FLOOR",
"L_CEIL", "R_CEIL", "FUNC_SQRT", "FUNC_OVERLINE", "CMD_TIMES",
"CMD_CDOT", "CMD_DIV", "CMD_FRAC", "CMD_BINOM", "CMD_DBINOM",
"CMD_TBINOM", "CMD_MATHIT", "UNDERSCORE", "CARET", "COLON",
"DIFFERENTIAL", "LETTER", "DIGIT", "EQUAL", "NEQ", "LT", "LTE",
"LTE_Q", "LTE_S", "GT", "GTE", "GTE_Q", "GTE_S", "BANG", "SINGLE_QUOTES",
"SYMBOL" ]
ruleNames = [ "T__0", "T__1", "WS", "THINSPACE", "MEDSPACE", "THICKSPACE",
"QUAD", "QQUAD", "NEGTHINSPACE", "NEGMEDSPACE", "NEGTHICKSPACE",
"CMD_LEFT", "CMD_RIGHT", "IGNORE", "ADD", "SUB", "MUL",
"DIV", "L_PAREN", "R_PAREN", "L_BRACE", "R_BRACE", "L_BRACE_LITERAL",
"R_BRACE_LITERAL", "L_BRACKET", "R_BRACKET", "BAR", "R_BAR",
"L_BAR", "L_ANGLE", "R_ANGLE", "FUNC_LIM", "LIM_APPROACH_SYM",
"FUNC_INT", "FUNC_SUM", "FUNC_PROD", "FUNC_EXP", "FUNC_LOG",
"FUNC_LG", "FUNC_LN", "FUNC_SIN", "FUNC_COS", "FUNC_TAN",
"FUNC_CSC", "FUNC_SEC", "FUNC_COT", "FUNC_ARCSIN", "FUNC_ARCCOS",
"FUNC_ARCTAN", "FUNC_ARCCSC", "FUNC_ARCSEC", "FUNC_ARCCOT",
"FUNC_SINH", "FUNC_COSH", "FUNC_TANH", "FUNC_ARSINH",
"FUNC_ARCOSH", "FUNC_ARTANH", "L_FLOOR", "R_FLOOR", "L_CEIL",
"R_CEIL", "FUNC_SQRT", "FUNC_OVERLINE", "CMD_TIMES", "CMD_CDOT",
"CMD_DIV", "CMD_FRAC", "CMD_BINOM", "CMD_DBINOM", "CMD_TBINOM",
"CMD_MATHIT", "UNDERSCORE", "CARET", "COLON", "WS_CHAR",
"DIFFERENTIAL", "LETTER", "DIGIT", "EQUAL", "NEQ", "LT",
"LTE", "LTE_Q", "LTE_S", "GT", "GTE", "GTE_Q", "GTE_S",
"BANG", "SINGLE_QUOTES", "SYMBOL" ]
grammarFileName = "LaTeX.g4"
def __init__(self, input=None, output:TextIO = sys.stdout):
super().__init__(input, output)
self.checkVersion("4.11.1")
self._interp = LexerATNSimulator(self, self.atn, self.decisionsToDFA, PredictionContextCache())
self._actions = None
self._predicates = None
|
66fa27a6f4d2def2d2395a5ab3cf0cdc27cd9d484f503b0208f3e4e300585061 | # *** GENERATED BY `setup.py antlr`, DO NOT EDIT BY HAND ***
#
# Generated from ../LaTeX.g4, derived from latex2sympy
# latex2sympy is licensed under the MIT license
# https://github.com/augustt198/latex2sympy/blob/master/LICENSE.txt
#
# Generated with antlr4
# antlr4 is licensed under the BSD-3-Clause License
# https://github.com/antlr/antlr4/blob/master/LICENSE.txt
from antlr4 import *
from io import StringIO
import sys
if sys.version_info[1] > 5:
from typing import TextIO
else:
from typing.io import TextIO
def serializedATN():
return [
4,1,91,522,2,0,7,0,2,1,7,1,2,2,7,2,2,3,7,3,2,4,7,4,2,5,7,5,2,6,7,
6,2,7,7,7,2,8,7,8,2,9,7,9,2,10,7,10,2,11,7,11,2,12,7,12,2,13,7,13,
2,14,7,14,2,15,7,15,2,16,7,16,2,17,7,17,2,18,7,18,2,19,7,19,2,20,
7,20,2,21,7,21,2,22,7,22,2,23,7,23,2,24,7,24,2,25,7,25,2,26,7,26,
2,27,7,27,2,28,7,28,2,29,7,29,2,30,7,30,2,31,7,31,2,32,7,32,2,33,
7,33,2,34,7,34,2,35,7,35,2,36,7,36,2,37,7,37,2,38,7,38,2,39,7,39,
2,40,7,40,1,0,1,0,1,1,1,1,1,1,1,1,1,1,1,1,5,1,91,8,1,10,1,12,1,94,
9,1,1,2,1,2,1,2,1,2,1,3,1,3,1,4,1,4,1,4,1,4,1,4,1,4,5,4,108,8,4,
10,4,12,4,111,9,4,1,5,1,5,1,5,1,5,1,5,1,5,5,5,119,8,5,10,5,12,5,
122,9,5,1,6,1,6,1,6,1,6,1,6,1,6,5,6,130,8,6,10,6,12,6,133,9,6,1,
7,1,7,1,7,4,7,138,8,7,11,7,12,7,139,3,7,142,8,7,1,8,1,8,1,8,1,8,
5,8,148,8,8,10,8,12,8,151,9,8,3,8,153,8,8,1,9,1,9,5,9,157,8,9,10,
9,12,9,160,9,9,1,10,1,10,5,10,164,8,10,10,10,12,10,167,9,10,1,11,
1,11,3,11,171,8,11,1,12,1,12,1,12,1,12,1,12,1,12,3,12,179,8,12,1,
13,1,13,1,13,1,13,3,13,185,8,13,1,13,1,13,1,14,1,14,1,14,1,14,3,
14,193,8,14,1,14,1,14,1,15,1,15,1,15,1,15,1,15,1,15,1,15,1,15,1,
15,1,15,3,15,207,8,15,1,15,3,15,210,8,15,5,15,212,8,15,10,15,12,
15,215,9,15,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,3,
16,227,8,16,1,16,3,16,230,8,16,5,16,232,8,16,10,16,12,16,235,9,16,
1,17,1,17,1,17,1,17,1,17,1,17,3,17,243,8,17,1,18,1,18,1,18,1,18,
1,18,3,18,250,8,18,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,1,19,
1,19,1,19,1,19,1,19,1,19,1,19,1,19,3,19,268,8,19,1,20,1,20,1,20,
1,20,1,21,4,21,275,8,21,11,21,12,21,276,1,21,1,21,1,21,1,21,5,21,
283,8,21,10,21,12,21,286,9,21,1,21,1,21,4,21,290,8,21,11,21,12,21,
291,3,21,294,8,21,1,22,1,22,3,22,298,8,22,1,22,3,22,301,8,22,1,22,
3,22,304,8,22,1,22,3,22,307,8,22,3,22,309,8,22,1,22,1,22,1,22,1,
22,1,22,1,22,1,22,3,22,318,8,22,1,23,1,23,1,23,1,23,1,24,1,24,1,
24,1,24,1,25,1,25,1,25,1,25,1,25,1,26,5,26,334,8,26,10,26,12,26,
337,9,26,1,27,1,27,1,27,1,27,1,27,1,27,3,27,345,8,27,1,27,1,27,1,
27,1,27,1,27,3,27,352,8,27,1,28,1,28,1,28,1,28,1,28,1,28,1,28,1,
28,1,29,1,29,1,29,1,29,1,30,1,30,1,30,1,30,1,31,1,31,1,32,1,32,3,
32,374,8,32,1,32,3,32,377,8,32,1,32,3,32,380,8,32,1,32,3,32,383,
8,32,3,32,385,8,32,1,32,1,32,1,32,1,32,1,32,3,32,392,8,32,1,32,1,
32,3,32,396,8,32,1,32,3,32,399,8,32,1,32,3,32,402,8,32,1,32,3,32,
405,8,32,3,32,407,8,32,1,32,1,32,1,32,1,32,1,32,1,32,1,32,1,32,1,
32,1,32,1,32,3,32,420,8,32,1,32,3,32,423,8,32,1,32,1,32,1,32,3,32,
428,8,32,1,32,1,32,1,32,1,32,1,32,3,32,435,8,32,1,32,1,32,1,32,1,
32,1,32,1,32,1,32,1,32,1,32,1,32,1,32,1,32,1,32,1,32,1,32,1,32,3,
32,453,8,32,1,32,1,32,1,32,1,32,1,32,1,32,3,32,461,8,32,1,33,1,33,
1,33,1,33,1,33,3,33,468,8,33,1,34,1,34,1,34,1,34,1,34,1,34,1,34,
1,34,1,34,1,34,1,34,3,34,481,8,34,3,34,483,8,34,1,34,1,34,1,35,1,
35,1,35,1,35,1,35,3,35,492,8,35,1,36,1,36,1,37,1,37,1,37,1,37,1,
37,1,37,3,37,502,8,37,1,38,1,38,1,38,1,38,1,38,1,38,3,38,510,8,38,
1,39,1,39,1,39,1,39,1,39,1,40,1,40,1,40,1,40,1,40,1,40,0,6,2,8,10,
12,30,32,41,0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,
38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,
0,9,2,0,79,82,85,86,1,0,15,16,3,0,17,18,65,67,75,75,2,0,77,77,91,
91,1,0,27,28,2,0,27,27,29,29,1,0,69,71,1,0,37,58,1,0,35,36,563,0,
82,1,0,0,0,2,84,1,0,0,0,4,95,1,0,0,0,6,99,1,0,0,0,8,101,1,0,0,0,
10,112,1,0,0,0,12,123,1,0,0,0,14,141,1,0,0,0,16,152,1,0,0,0,18,154,
1,0,0,0,20,161,1,0,0,0,22,170,1,0,0,0,24,172,1,0,0,0,26,180,1,0,
0,0,28,188,1,0,0,0,30,196,1,0,0,0,32,216,1,0,0,0,34,242,1,0,0,0,
36,249,1,0,0,0,38,267,1,0,0,0,40,269,1,0,0,0,42,274,1,0,0,0,44,317,
1,0,0,0,46,319,1,0,0,0,48,323,1,0,0,0,50,327,1,0,0,0,52,335,1,0,
0,0,54,338,1,0,0,0,56,353,1,0,0,0,58,361,1,0,0,0,60,365,1,0,0,0,
62,369,1,0,0,0,64,460,1,0,0,0,66,467,1,0,0,0,68,469,1,0,0,0,70,491,
1,0,0,0,72,493,1,0,0,0,74,495,1,0,0,0,76,503,1,0,0,0,78,511,1,0,
0,0,80,516,1,0,0,0,82,83,3,2,1,0,83,1,1,0,0,0,84,85,6,1,-1,0,85,
86,3,6,3,0,86,92,1,0,0,0,87,88,10,2,0,0,88,89,7,0,0,0,89,91,3,2,
1,3,90,87,1,0,0,0,91,94,1,0,0,0,92,90,1,0,0,0,92,93,1,0,0,0,93,3,
1,0,0,0,94,92,1,0,0,0,95,96,3,6,3,0,96,97,5,79,0,0,97,98,3,6,3,0,
98,5,1,0,0,0,99,100,3,8,4,0,100,7,1,0,0,0,101,102,6,4,-1,0,102,103,
3,10,5,0,103,109,1,0,0,0,104,105,10,2,0,0,105,106,7,1,0,0,106,108,
3,8,4,3,107,104,1,0,0,0,108,111,1,0,0,0,109,107,1,0,0,0,109,110,
1,0,0,0,110,9,1,0,0,0,111,109,1,0,0,0,112,113,6,5,-1,0,113,114,3,
14,7,0,114,120,1,0,0,0,115,116,10,2,0,0,116,117,7,2,0,0,117,119,
3,10,5,3,118,115,1,0,0,0,119,122,1,0,0,0,120,118,1,0,0,0,120,121,
1,0,0,0,121,11,1,0,0,0,122,120,1,0,0,0,123,124,6,6,-1,0,124,125,
3,16,8,0,125,131,1,0,0,0,126,127,10,2,0,0,127,128,7,2,0,0,128,130,
3,12,6,3,129,126,1,0,0,0,130,133,1,0,0,0,131,129,1,0,0,0,131,132,
1,0,0,0,132,13,1,0,0,0,133,131,1,0,0,0,134,135,7,1,0,0,135,142,3,
14,7,0,136,138,3,18,9,0,137,136,1,0,0,0,138,139,1,0,0,0,139,137,
1,0,0,0,139,140,1,0,0,0,140,142,1,0,0,0,141,134,1,0,0,0,141,137,
1,0,0,0,142,15,1,0,0,0,143,144,7,1,0,0,144,153,3,16,8,0,145,149,
3,18,9,0,146,148,3,20,10,0,147,146,1,0,0,0,148,151,1,0,0,0,149,147,
1,0,0,0,149,150,1,0,0,0,150,153,1,0,0,0,151,149,1,0,0,0,152,143,
1,0,0,0,152,145,1,0,0,0,153,17,1,0,0,0,154,158,3,30,15,0,155,157,
3,22,11,0,156,155,1,0,0,0,157,160,1,0,0,0,158,156,1,0,0,0,158,159,
1,0,0,0,159,19,1,0,0,0,160,158,1,0,0,0,161,165,3,32,16,0,162,164,
3,22,11,0,163,162,1,0,0,0,164,167,1,0,0,0,165,163,1,0,0,0,165,166,
1,0,0,0,166,21,1,0,0,0,167,165,1,0,0,0,168,171,5,89,0,0,169,171,
3,24,12,0,170,168,1,0,0,0,170,169,1,0,0,0,171,23,1,0,0,0,172,178,
5,27,0,0,173,179,3,28,14,0,174,179,3,26,13,0,175,176,3,28,14,0,176,
177,3,26,13,0,177,179,1,0,0,0,178,173,1,0,0,0,178,174,1,0,0,0,178,
175,1,0,0,0,179,25,1,0,0,0,180,181,5,73,0,0,181,184,5,21,0,0,182,
185,3,6,3,0,183,185,3,4,2,0,184,182,1,0,0,0,184,183,1,0,0,0,185,
186,1,0,0,0,186,187,5,22,0,0,187,27,1,0,0,0,188,189,5,74,0,0,189,
192,5,21,0,0,190,193,3,6,3,0,191,193,3,4,2,0,192,190,1,0,0,0,192,
191,1,0,0,0,193,194,1,0,0,0,194,195,5,22,0,0,195,29,1,0,0,0,196,
197,6,15,-1,0,197,198,3,34,17,0,198,213,1,0,0,0,199,200,10,2,0,0,
200,206,5,74,0,0,201,207,3,44,22,0,202,203,5,21,0,0,203,204,3,6,
3,0,204,205,5,22,0,0,205,207,1,0,0,0,206,201,1,0,0,0,206,202,1,0,
0,0,207,209,1,0,0,0,208,210,3,74,37,0,209,208,1,0,0,0,209,210,1,
0,0,0,210,212,1,0,0,0,211,199,1,0,0,0,212,215,1,0,0,0,213,211,1,
0,0,0,213,214,1,0,0,0,214,31,1,0,0,0,215,213,1,0,0,0,216,217,6,16,
-1,0,217,218,3,36,18,0,218,233,1,0,0,0,219,220,10,2,0,0,220,226,
5,74,0,0,221,227,3,44,22,0,222,223,5,21,0,0,223,224,3,6,3,0,224,
225,5,22,0,0,225,227,1,0,0,0,226,221,1,0,0,0,226,222,1,0,0,0,227,
229,1,0,0,0,228,230,3,74,37,0,229,228,1,0,0,0,229,230,1,0,0,0,230,
232,1,0,0,0,231,219,1,0,0,0,232,235,1,0,0,0,233,231,1,0,0,0,233,
234,1,0,0,0,234,33,1,0,0,0,235,233,1,0,0,0,236,243,3,38,19,0,237,
243,3,40,20,0,238,243,3,64,32,0,239,243,3,44,22,0,240,243,3,58,29,
0,241,243,3,60,30,0,242,236,1,0,0,0,242,237,1,0,0,0,242,238,1,0,
0,0,242,239,1,0,0,0,242,240,1,0,0,0,242,241,1,0,0,0,243,35,1,0,0,
0,244,250,3,38,19,0,245,250,3,40,20,0,246,250,3,44,22,0,247,250,
3,58,29,0,248,250,3,60,30,0,249,244,1,0,0,0,249,245,1,0,0,0,249,
246,1,0,0,0,249,247,1,0,0,0,249,248,1,0,0,0,250,37,1,0,0,0,251,252,
5,19,0,0,252,253,3,6,3,0,253,254,5,20,0,0,254,268,1,0,0,0,255,256,
5,25,0,0,256,257,3,6,3,0,257,258,5,26,0,0,258,268,1,0,0,0,259,260,
5,21,0,0,260,261,3,6,3,0,261,262,5,22,0,0,262,268,1,0,0,0,263,264,
5,23,0,0,264,265,3,6,3,0,265,266,5,24,0,0,266,268,1,0,0,0,267,251,
1,0,0,0,267,255,1,0,0,0,267,259,1,0,0,0,267,263,1,0,0,0,268,39,1,
0,0,0,269,270,5,27,0,0,270,271,3,6,3,0,271,272,5,27,0,0,272,41,1,
0,0,0,273,275,5,78,0,0,274,273,1,0,0,0,275,276,1,0,0,0,276,274,1,
0,0,0,276,277,1,0,0,0,277,284,1,0,0,0,278,279,5,1,0,0,279,280,5,
78,0,0,280,281,5,78,0,0,281,283,5,78,0,0,282,278,1,0,0,0,283,286,
1,0,0,0,284,282,1,0,0,0,284,285,1,0,0,0,285,293,1,0,0,0,286,284,
1,0,0,0,287,289,5,2,0,0,288,290,5,78,0,0,289,288,1,0,0,0,290,291,
1,0,0,0,291,289,1,0,0,0,291,292,1,0,0,0,292,294,1,0,0,0,293,287,
1,0,0,0,293,294,1,0,0,0,294,43,1,0,0,0,295,308,7,3,0,0,296,298,3,
74,37,0,297,296,1,0,0,0,297,298,1,0,0,0,298,300,1,0,0,0,299,301,
5,90,0,0,300,299,1,0,0,0,300,301,1,0,0,0,301,309,1,0,0,0,302,304,
5,90,0,0,303,302,1,0,0,0,303,304,1,0,0,0,304,306,1,0,0,0,305,307,
3,74,37,0,306,305,1,0,0,0,306,307,1,0,0,0,307,309,1,0,0,0,308,297,
1,0,0,0,308,303,1,0,0,0,309,318,1,0,0,0,310,318,3,42,21,0,311,318,
5,76,0,0,312,318,3,50,25,0,313,318,3,54,27,0,314,318,3,56,28,0,315,
318,3,46,23,0,316,318,3,48,24,0,317,295,1,0,0,0,317,310,1,0,0,0,
317,311,1,0,0,0,317,312,1,0,0,0,317,313,1,0,0,0,317,314,1,0,0,0,
317,315,1,0,0,0,317,316,1,0,0,0,318,45,1,0,0,0,319,320,5,30,0,0,
320,321,3,6,3,0,321,322,7,4,0,0,322,47,1,0,0,0,323,324,7,5,0,0,324,
325,3,6,3,0,325,326,5,31,0,0,326,49,1,0,0,0,327,328,5,72,0,0,328,
329,5,21,0,0,329,330,3,52,26,0,330,331,5,22,0,0,331,51,1,0,0,0,332,
334,5,77,0,0,333,332,1,0,0,0,334,337,1,0,0,0,335,333,1,0,0,0,335,
336,1,0,0,0,336,53,1,0,0,0,337,335,1,0,0,0,338,344,5,68,0,0,339,
345,5,78,0,0,340,341,5,21,0,0,341,342,3,6,3,0,342,343,5,22,0,0,343,
345,1,0,0,0,344,339,1,0,0,0,344,340,1,0,0,0,345,351,1,0,0,0,346,
352,5,78,0,0,347,348,5,21,0,0,348,349,3,6,3,0,349,350,5,22,0,0,350,
352,1,0,0,0,351,346,1,0,0,0,351,347,1,0,0,0,352,55,1,0,0,0,353,354,
7,6,0,0,354,355,5,21,0,0,355,356,3,6,3,0,356,357,5,22,0,0,357,358,
5,21,0,0,358,359,3,6,3,0,359,360,5,22,0,0,360,57,1,0,0,0,361,362,
5,59,0,0,362,363,3,6,3,0,363,364,5,60,0,0,364,59,1,0,0,0,365,366,
5,61,0,0,366,367,3,6,3,0,367,368,5,62,0,0,368,61,1,0,0,0,369,370,
7,7,0,0,370,63,1,0,0,0,371,384,3,62,31,0,372,374,3,74,37,0,373,372,
1,0,0,0,373,374,1,0,0,0,374,376,1,0,0,0,375,377,3,76,38,0,376,375,
1,0,0,0,376,377,1,0,0,0,377,385,1,0,0,0,378,380,3,76,38,0,379,378,
1,0,0,0,379,380,1,0,0,0,380,382,1,0,0,0,381,383,3,74,37,0,382,381,
1,0,0,0,382,383,1,0,0,0,383,385,1,0,0,0,384,373,1,0,0,0,384,379,
1,0,0,0,385,391,1,0,0,0,386,387,5,19,0,0,387,388,3,70,35,0,388,389,
5,20,0,0,389,392,1,0,0,0,390,392,3,72,36,0,391,386,1,0,0,0,391,390,
1,0,0,0,392,461,1,0,0,0,393,406,7,3,0,0,394,396,3,74,37,0,395,394,
1,0,0,0,395,396,1,0,0,0,396,398,1,0,0,0,397,399,5,90,0,0,398,397,
1,0,0,0,398,399,1,0,0,0,399,407,1,0,0,0,400,402,5,90,0,0,401,400,
1,0,0,0,401,402,1,0,0,0,402,404,1,0,0,0,403,405,3,74,37,0,404,403,
1,0,0,0,404,405,1,0,0,0,405,407,1,0,0,0,406,395,1,0,0,0,406,401,
1,0,0,0,407,408,1,0,0,0,408,409,5,19,0,0,409,410,3,66,33,0,410,411,
5,20,0,0,411,461,1,0,0,0,412,419,5,34,0,0,413,414,3,74,37,0,414,
415,3,76,38,0,415,420,1,0,0,0,416,417,3,76,38,0,417,418,3,74,37,
0,418,420,1,0,0,0,419,413,1,0,0,0,419,416,1,0,0,0,419,420,1,0,0,
0,420,427,1,0,0,0,421,423,3,8,4,0,422,421,1,0,0,0,422,423,1,0,0,
0,423,424,1,0,0,0,424,428,5,76,0,0,425,428,3,54,27,0,426,428,3,8,
4,0,427,422,1,0,0,0,427,425,1,0,0,0,427,426,1,0,0,0,428,461,1,0,
0,0,429,434,5,63,0,0,430,431,5,25,0,0,431,432,3,6,3,0,432,433,5,
26,0,0,433,435,1,0,0,0,434,430,1,0,0,0,434,435,1,0,0,0,435,436,1,
0,0,0,436,437,5,21,0,0,437,438,3,6,3,0,438,439,5,22,0,0,439,461,
1,0,0,0,440,441,5,64,0,0,441,442,5,21,0,0,442,443,3,6,3,0,443,444,
5,22,0,0,444,461,1,0,0,0,445,452,7,8,0,0,446,447,3,78,39,0,447,448,
3,76,38,0,448,453,1,0,0,0,449,450,3,76,38,0,450,451,3,78,39,0,451,
453,1,0,0,0,452,446,1,0,0,0,452,449,1,0,0,0,453,454,1,0,0,0,454,
455,3,10,5,0,455,461,1,0,0,0,456,457,5,32,0,0,457,458,3,68,34,0,
458,459,3,10,5,0,459,461,1,0,0,0,460,371,1,0,0,0,460,393,1,0,0,0,
460,412,1,0,0,0,460,429,1,0,0,0,460,440,1,0,0,0,460,445,1,0,0,0,
460,456,1,0,0,0,461,65,1,0,0,0,462,463,3,6,3,0,463,464,5,1,0,0,464,
465,3,66,33,0,465,468,1,0,0,0,466,468,3,6,3,0,467,462,1,0,0,0,467,
466,1,0,0,0,468,67,1,0,0,0,469,470,5,73,0,0,470,471,5,21,0,0,471,
472,7,3,0,0,472,473,5,33,0,0,473,482,3,6,3,0,474,480,5,74,0,0,475,
476,5,21,0,0,476,477,7,1,0,0,477,481,5,22,0,0,478,481,5,15,0,0,479,
481,5,16,0,0,480,475,1,0,0,0,480,478,1,0,0,0,480,479,1,0,0,0,481,
483,1,0,0,0,482,474,1,0,0,0,482,483,1,0,0,0,483,484,1,0,0,0,484,
485,5,22,0,0,485,69,1,0,0,0,486,492,3,6,3,0,487,488,3,6,3,0,488,
489,5,1,0,0,489,490,3,70,35,0,490,492,1,0,0,0,491,486,1,0,0,0,491,
487,1,0,0,0,492,71,1,0,0,0,493,494,3,12,6,0,494,73,1,0,0,0,495,501,
5,73,0,0,496,502,3,44,22,0,497,498,5,21,0,0,498,499,3,6,3,0,499,
500,5,22,0,0,500,502,1,0,0,0,501,496,1,0,0,0,501,497,1,0,0,0,502,
75,1,0,0,0,503,509,5,74,0,0,504,510,3,44,22,0,505,506,5,21,0,0,506,
507,3,6,3,0,507,508,5,22,0,0,508,510,1,0,0,0,509,504,1,0,0,0,509,
505,1,0,0,0,510,77,1,0,0,0,511,512,5,73,0,0,512,513,5,21,0,0,513,
514,3,4,2,0,514,515,5,22,0,0,515,79,1,0,0,0,516,517,5,73,0,0,517,
518,5,21,0,0,518,519,3,4,2,0,519,520,5,22,0,0,520,81,1,0,0,0,59,
92,109,120,131,139,141,149,152,158,165,170,178,184,192,206,209,213,
226,229,233,242,249,267,276,284,291,293,297,300,303,306,308,317,
335,344,351,373,376,379,382,384,391,395,398,401,404,406,419,422,
427,434,452,460,467,480,482,491,501,509
]
class LaTeXParser ( Parser ):
grammarFileName = "LaTeX.g4"
atn = ATNDeserializer().deserialize(serializedATN())
decisionsToDFA = [ DFA(ds, i) for i, ds in enumerate(atn.decisionToState) ]
sharedContextCache = PredictionContextCache()
literalNames = [ "<INVALID>", "','", "'.'", "<INVALID>", "<INVALID>",
"<INVALID>", "<INVALID>", "'\\quad'", "'\\qquad'",
"<INVALID>", "'\\negmedspace'", "'\\negthickspace'",
"'\\left'", "'\\right'", "<INVALID>", "'+'", "'-'",
"'*'", "'/'", "'('", "')'", "'{'", "'}'", "'\\{'",
"'\\}'", "'['", "']'", "'|'", "'\\right|'", "'\\left|'",
"'\\langle'", "'\\rangle'", "'\\lim'", "<INVALID>",
"<INVALID>", "'\\sum'", "'\\prod'", "'\\exp'", "'\\log'",
"'\\lg'", "'\\ln'", "'\\sin'", "'\\cos'", "'\\tan'",
"'\\csc'", "'\\sec'", "'\\cot'", "'\\arcsin'", "'\\arccos'",
"'\\arctan'", "'\\arccsc'", "'\\arcsec'", "'\\arccot'",
"'\\sinh'", "'\\cosh'", "'\\tanh'", "'\\arsinh'", "'\\arcosh'",
"'\\artanh'", "'\\lfloor'", "'\\rfloor'", "'\\lceil'",
"'\\rceil'", "'\\sqrt'", "'\\overline'", "'\\times'",
"'\\cdot'", "'\\div'", "<INVALID>", "'\\binom'", "'\\dbinom'",
"'\\tbinom'", "'\\mathit'", "'_'", "'^'", "':'", "<INVALID>",
"<INVALID>", "<INVALID>", "<INVALID>", "'\\neq'", "'<'",
"<INVALID>", "'\\leqq'", "'\\leqslant'", "'>'", "<INVALID>",
"'\\geqq'", "'\\geqslant'", "'!'" ]
symbolicNames = [ "<INVALID>", "<INVALID>", "<INVALID>", "WS", "THINSPACE",
"MEDSPACE", "THICKSPACE", "QUAD", "QQUAD", "NEGTHINSPACE",
"NEGMEDSPACE", "NEGTHICKSPACE", "CMD_LEFT", "CMD_RIGHT",
"IGNORE", "ADD", "SUB", "MUL", "DIV", "L_PAREN", "R_PAREN",
"L_BRACE", "R_BRACE", "L_BRACE_LITERAL", "R_BRACE_LITERAL",
"L_BRACKET", "R_BRACKET", "BAR", "R_BAR", "L_BAR",
"L_ANGLE", "R_ANGLE", "FUNC_LIM", "LIM_APPROACH_SYM",
"FUNC_INT", "FUNC_SUM", "FUNC_PROD", "FUNC_EXP", "FUNC_LOG",
"FUNC_LG", "FUNC_LN", "FUNC_SIN", "FUNC_COS", "FUNC_TAN",
"FUNC_CSC", "FUNC_SEC", "FUNC_COT", "FUNC_ARCSIN",
"FUNC_ARCCOS", "FUNC_ARCTAN", "FUNC_ARCCSC", "FUNC_ARCSEC",
"FUNC_ARCCOT", "FUNC_SINH", "FUNC_COSH", "FUNC_TANH",
"FUNC_ARSINH", "FUNC_ARCOSH", "FUNC_ARTANH", "L_FLOOR",
"R_FLOOR", "L_CEIL", "R_CEIL", "FUNC_SQRT", "FUNC_OVERLINE",
"CMD_TIMES", "CMD_CDOT", "CMD_DIV", "CMD_FRAC", "CMD_BINOM",
"CMD_DBINOM", "CMD_TBINOM", "CMD_MATHIT", "UNDERSCORE",
"CARET", "COLON", "DIFFERENTIAL", "LETTER", "DIGIT",
"EQUAL", "NEQ", "LT", "LTE", "LTE_Q", "LTE_S", "GT",
"GTE", "GTE_Q", "GTE_S", "BANG", "SINGLE_QUOTES",
"SYMBOL" ]
RULE_math = 0
RULE_relation = 1
RULE_equality = 2
RULE_expr = 3
RULE_additive = 4
RULE_mp = 5
RULE_mp_nofunc = 6
RULE_unary = 7
RULE_unary_nofunc = 8
RULE_postfix = 9
RULE_postfix_nofunc = 10
RULE_postfix_op = 11
RULE_eval_at = 12
RULE_eval_at_sub = 13
RULE_eval_at_sup = 14
RULE_exp = 15
RULE_exp_nofunc = 16
RULE_comp = 17
RULE_comp_nofunc = 18
RULE_group = 19
RULE_abs_group = 20
RULE_number = 21
RULE_atom = 22
RULE_bra = 23
RULE_ket = 24
RULE_mathit = 25
RULE_mathit_text = 26
RULE_frac = 27
RULE_binom = 28
RULE_floor = 29
RULE_ceil = 30
RULE_func_normal = 31
RULE_func = 32
RULE_args = 33
RULE_limit_sub = 34
RULE_func_arg = 35
RULE_func_arg_noparens = 36
RULE_subexpr = 37
RULE_supexpr = 38
RULE_subeq = 39
RULE_supeq = 40
ruleNames = [ "math", "relation", "equality", "expr", "additive", "mp",
"mp_nofunc", "unary", "unary_nofunc", "postfix", "postfix_nofunc",
"postfix_op", "eval_at", "eval_at_sub", "eval_at_sup",
"exp", "exp_nofunc", "comp", "comp_nofunc", "group",
"abs_group", "number", "atom", "bra", "ket", "mathit",
"mathit_text", "frac", "binom", "floor", "ceil", "func_normal",
"func", "args", "limit_sub", "func_arg", "func_arg_noparens",
"subexpr", "supexpr", "subeq", "supeq" ]
EOF = Token.EOF
T__0=1
T__1=2
WS=3
THINSPACE=4
MEDSPACE=5
THICKSPACE=6
QUAD=7
QQUAD=8
NEGTHINSPACE=9
NEGMEDSPACE=10
NEGTHICKSPACE=11
CMD_LEFT=12
CMD_RIGHT=13
IGNORE=14
ADD=15
SUB=16
MUL=17
DIV=18
L_PAREN=19
R_PAREN=20
L_BRACE=21
R_BRACE=22
L_BRACE_LITERAL=23
R_BRACE_LITERAL=24
L_BRACKET=25
R_BRACKET=26
BAR=27
R_BAR=28
L_BAR=29
L_ANGLE=30
R_ANGLE=31
FUNC_LIM=32
LIM_APPROACH_SYM=33
FUNC_INT=34
FUNC_SUM=35
FUNC_PROD=36
FUNC_EXP=37
FUNC_LOG=38
FUNC_LG=39
FUNC_LN=40
FUNC_SIN=41
FUNC_COS=42
FUNC_TAN=43
FUNC_CSC=44
FUNC_SEC=45
FUNC_COT=46
FUNC_ARCSIN=47
FUNC_ARCCOS=48
FUNC_ARCTAN=49
FUNC_ARCCSC=50
FUNC_ARCSEC=51
FUNC_ARCCOT=52
FUNC_SINH=53
FUNC_COSH=54
FUNC_TANH=55
FUNC_ARSINH=56
FUNC_ARCOSH=57
FUNC_ARTANH=58
L_FLOOR=59
R_FLOOR=60
L_CEIL=61
R_CEIL=62
FUNC_SQRT=63
FUNC_OVERLINE=64
CMD_TIMES=65
CMD_CDOT=66
CMD_DIV=67
CMD_FRAC=68
CMD_BINOM=69
CMD_DBINOM=70
CMD_TBINOM=71
CMD_MATHIT=72
UNDERSCORE=73
CARET=74
COLON=75
DIFFERENTIAL=76
LETTER=77
DIGIT=78
EQUAL=79
NEQ=80
LT=81
LTE=82
LTE_Q=83
LTE_S=84
GT=85
GTE=86
GTE_Q=87
GTE_S=88
BANG=89
SINGLE_QUOTES=90
SYMBOL=91
def __init__(self, input:TokenStream, output:TextIO = sys.stdout):
super().__init__(input, output)
self.checkVersion("4.11.1")
self._interp = ParserATNSimulator(self, self.atn, self.decisionsToDFA, self.sharedContextCache)
self._predicates = None
class MathContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def relation(self):
return self.getTypedRuleContext(LaTeXParser.RelationContext,0)
def getRuleIndex(self):
return LaTeXParser.RULE_math
def math(self):
localctx = LaTeXParser.MathContext(self, self._ctx, self.state)
self.enterRule(localctx, 0, self.RULE_math)
try:
self.enterOuterAlt(localctx, 1)
self.state = 82
self.relation(0)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class RelationContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def expr(self):
return self.getTypedRuleContext(LaTeXParser.ExprContext,0)
def relation(self, i:int=None):
if i is None:
return self.getTypedRuleContexts(LaTeXParser.RelationContext)
else:
return self.getTypedRuleContext(LaTeXParser.RelationContext,i)
def EQUAL(self):
return self.getToken(LaTeXParser.EQUAL, 0)
def LT(self):
return self.getToken(LaTeXParser.LT, 0)
def LTE(self):
return self.getToken(LaTeXParser.LTE, 0)
def GT(self):
return self.getToken(LaTeXParser.GT, 0)
def GTE(self):
return self.getToken(LaTeXParser.GTE, 0)
def NEQ(self):
return self.getToken(LaTeXParser.NEQ, 0)
def getRuleIndex(self):
return LaTeXParser.RULE_relation
def relation(self, _p:int=0):
_parentctx = self._ctx
_parentState = self.state
localctx = LaTeXParser.RelationContext(self, self._ctx, _parentState)
_prevctx = localctx
_startState = 2
self.enterRecursionRule(localctx, 2, self.RULE_relation, _p)
self._la = 0 # Token type
try:
self.enterOuterAlt(localctx, 1)
self.state = 85
self.expr()
self._ctx.stop = self._input.LT(-1)
self.state = 92
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,0,self._ctx)
while _alt!=2 and _alt!=ATN.INVALID_ALT_NUMBER:
if _alt==1:
if self._parseListeners is not None:
self.triggerExitRuleEvent()
_prevctx = localctx
localctx = LaTeXParser.RelationContext(self, _parentctx, _parentState)
self.pushNewRecursionContext(localctx, _startState, self.RULE_relation)
self.state = 87
if not self.precpred(self._ctx, 2):
from antlr4.error.Errors import FailedPredicateException
raise FailedPredicateException(self, "self.precpred(self._ctx, 2)")
self.state = 88
_la = self._input.LA(1)
if not((((_la - 79)) & ~0x3f) == 0 and ((1 << (_la - 79)) & 207) != 0):
self._errHandler.recoverInline(self)
else:
self._errHandler.reportMatch(self)
self.consume()
self.state = 89
self.relation(3)
self.state = 94
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,0,self._ctx)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.unrollRecursionContexts(_parentctx)
return localctx
class EqualityContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def expr(self, i:int=None):
if i is None:
return self.getTypedRuleContexts(LaTeXParser.ExprContext)
else:
return self.getTypedRuleContext(LaTeXParser.ExprContext,i)
def EQUAL(self):
return self.getToken(LaTeXParser.EQUAL, 0)
def getRuleIndex(self):
return LaTeXParser.RULE_equality
def equality(self):
localctx = LaTeXParser.EqualityContext(self, self._ctx, self.state)
self.enterRule(localctx, 4, self.RULE_equality)
try:
self.enterOuterAlt(localctx, 1)
self.state = 95
self.expr()
self.state = 96
self.match(LaTeXParser.EQUAL)
self.state = 97
self.expr()
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class ExprContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def additive(self):
return self.getTypedRuleContext(LaTeXParser.AdditiveContext,0)
def getRuleIndex(self):
return LaTeXParser.RULE_expr
def expr(self):
localctx = LaTeXParser.ExprContext(self, self._ctx, self.state)
self.enterRule(localctx, 6, self.RULE_expr)
try:
self.enterOuterAlt(localctx, 1)
self.state = 99
self.additive(0)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class AdditiveContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def mp(self):
return self.getTypedRuleContext(LaTeXParser.MpContext,0)
def additive(self, i:int=None):
if i is None:
return self.getTypedRuleContexts(LaTeXParser.AdditiveContext)
else:
return self.getTypedRuleContext(LaTeXParser.AdditiveContext,i)
def ADD(self):
return self.getToken(LaTeXParser.ADD, 0)
def SUB(self):
return self.getToken(LaTeXParser.SUB, 0)
def getRuleIndex(self):
return LaTeXParser.RULE_additive
def additive(self, _p:int=0):
_parentctx = self._ctx
_parentState = self.state
localctx = LaTeXParser.AdditiveContext(self, self._ctx, _parentState)
_prevctx = localctx
_startState = 8
self.enterRecursionRule(localctx, 8, self.RULE_additive, _p)
self._la = 0 # Token type
try:
self.enterOuterAlt(localctx, 1)
self.state = 102
self.mp(0)
self._ctx.stop = self._input.LT(-1)
self.state = 109
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,1,self._ctx)
while _alt!=2 and _alt!=ATN.INVALID_ALT_NUMBER:
if _alt==1:
if self._parseListeners is not None:
self.triggerExitRuleEvent()
_prevctx = localctx
localctx = LaTeXParser.AdditiveContext(self, _parentctx, _parentState)
self.pushNewRecursionContext(localctx, _startState, self.RULE_additive)
self.state = 104
if not self.precpred(self._ctx, 2):
from antlr4.error.Errors import FailedPredicateException
raise FailedPredicateException(self, "self.precpred(self._ctx, 2)")
self.state = 105
_la = self._input.LA(1)
if not(_la==15 or _la==16):
self._errHandler.recoverInline(self)
else:
self._errHandler.reportMatch(self)
self.consume()
self.state = 106
self.additive(3)
self.state = 111
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,1,self._ctx)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.unrollRecursionContexts(_parentctx)
return localctx
class MpContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def unary(self):
return self.getTypedRuleContext(LaTeXParser.UnaryContext,0)
def mp(self, i:int=None):
if i is None:
return self.getTypedRuleContexts(LaTeXParser.MpContext)
else:
return self.getTypedRuleContext(LaTeXParser.MpContext,i)
def MUL(self):
return self.getToken(LaTeXParser.MUL, 0)
def CMD_TIMES(self):
return self.getToken(LaTeXParser.CMD_TIMES, 0)
def CMD_CDOT(self):
return self.getToken(LaTeXParser.CMD_CDOT, 0)
def DIV(self):
return self.getToken(LaTeXParser.DIV, 0)
def CMD_DIV(self):
return self.getToken(LaTeXParser.CMD_DIV, 0)
def COLON(self):
return self.getToken(LaTeXParser.COLON, 0)
def getRuleIndex(self):
return LaTeXParser.RULE_mp
def mp(self, _p:int=0):
_parentctx = self._ctx
_parentState = self.state
localctx = LaTeXParser.MpContext(self, self._ctx, _parentState)
_prevctx = localctx
_startState = 10
self.enterRecursionRule(localctx, 10, self.RULE_mp, _p)
self._la = 0 # Token type
try:
self.enterOuterAlt(localctx, 1)
self.state = 113
self.unary()
self._ctx.stop = self._input.LT(-1)
self.state = 120
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,2,self._ctx)
while _alt!=2 and _alt!=ATN.INVALID_ALT_NUMBER:
if _alt==1:
if self._parseListeners is not None:
self.triggerExitRuleEvent()
_prevctx = localctx
localctx = LaTeXParser.MpContext(self, _parentctx, _parentState)
self.pushNewRecursionContext(localctx, _startState, self.RULE_mp)
self.state = 115
if not self.precpred(self._ctx, 2):
from antlr4.error.Errors import FailedPredicateException
raise FailedPredicateException(self, "self.precpred(self._ctx, 2)")
self.state = 116
_la = self._input.LA(1)
if not((((_la - 17)) & ~0x3f) == 0 and ((1 << (_la - 17)) & 290200700988686339) != 0):
self._errHandler.recoverInline(self)
else:
self._errHandler.reportMatch(self)
self.consume()
self.state = 117
self.mp(3)
self.state = 122
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,2,self._ctx)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.unrollRecursionContexts(_parentctx)
return localctx
class Mp_nofuncContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def unary_nofunc(self):
return self.getTypedRuleContext(LaTeXParser.Unary_nofuncContext,0)
def mp_nofunc(self, i:int=None):
if i is None:
return self.getTypedRuleContexts(LaTeXParser.Mp_nofuncContext)
else:
return self.getTypedRuleContext(LaTeXParser.Mp_nofuncContext,i)
def MUL(self):
return self.getToken(LaTeXParser.MUL, 0)
def CMD_TIMES(self):
return self.getToken(LaTeXParser.CMD_TIMES, 0)
def CMD_CDOT(self):
return self.getToken(LaTeXParser.CMD_CDOT, 0)
def DIV(self):
return self.getToken(LaTeXParser.DIV, 0)
def CMD_DIV(self):
return self.getToken(LaTeXParser.CMD_DIV, 0)
def COLON(self):
return self.getToken(LaTeXParser.COLON, 0)
def getRuleIndex(self):
return LaTeXParser.RULE_mp_nofunc
def mp_nofunc(self, _p:int=0):
_parentctx = self._ctx
_parentState = self.state
localctx = LaTeXParser.Mp_nofuncContext(self, self._ctx, _parentState)
_prevctx = localctx
_startState = 12
self.enterRecursionRule(localctx, 12, self.RULE_mp_nofunc, _p)
self._la = 0 # Token type
try:
self.enterOuterAlt(localctx, 1)
self.state = 124
self.unary_nofunc()
self._ctx.stop = self._input.LT(-1)
self.state = 131
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,3,self._ctx)
while _alt!=2 and _alt!=ATN.INVALID_ALT_NUMBER:
if _alt==1:
if self._parseListeners is not None:
self.triggerExitRuleEvent()
_prevctx = localctx
localctx = LaTeXParser.Mp_nofuncContext(self, _parentctx, _parentState)
self.pushNewRecursionContext(localctx, _startState, self.RULE_mp_nofunc)
self.state = 126
if not self.precpred(self._ctx, 2):
from antlr4.error.Errors import FailedPredicateException
raise FailedPredicateException(self, "self.precpred(self._ctx, 2)")
self.state = 127
_la = self._input.LA(1)
if not((((_la - 17)) & ~0x3f) == 0 and ((1 << (_la - 17)) & 290200700988686339) != 0):
self._errHandler.recoverInline(self)
else:
self._errHandler.reportMatch(self)
self.consume()
self.state = 128
self.mp_nofunc(3)
self.state = 133
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,3,self._ctx)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.unrollRecursionContexts(_parentctx)
return localctx
class UnaryContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def unary(self):
return self.getTypedRuleContext(LaTeXParser.UnaryContext,0)
def ADD(self):
return self.getToken(LaTeXParser.ADD, 0)
def SUB(self):
return self.getToken(LaTeXParser.SUB, 0)
def postfix(self, i:int=None):
if i is None:
return self.getTypedRuleContexts(LaTeXParser.PostfixContext)
else:
return self.getTypedRuleContext(LaTeXParser.PostfixContext,i)
def getRuleIndex(self):
return LaTeXParser.RULE_unary
def unary(self):
localctx = LaTeXParser.UnaryContext(self, self._ctx, self.state)
self.enterRule(localctx, 14, self.RULE_unary)
self._la = 0 # Token type
try:
self.state = 141
self._errHandler.sync(self)
token = self._input.LA(1)
if token in [15, 16]:
self.enterOuterAlt(localctx, 1)
self.state = 134
_la = self._input.LA(1)
if not(_la==15 or _la==16):
self._errHandler.recoverInline(self)
else:
self._errHandler.reportMatch(self)
self.consume()
self.state = 135
self.unary()
pass
elif token in [19, 21, 23, 25, 27, 29, 30, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 63, 64, 68, 69, 70, 71, 72, 76, 77, 78, 91]:
self.enterOuterAlt(localctx, 2)
self.state = 137
self._errHandler.sync(self)
_alt = 1
while _alt!=2 and _alt!=ATN.INVALID_ALT_NUMBER:
if _alt == 1:
self.state = 136
self.postfix()
else:
raise NoViableAltException(self)
self.state = 139
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,4,self._ctx)
pass
else:
raise NoViableAltException(self)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class Unary_nofuncContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def unary_nofunc(self):
return self.getTypedRuleContext(LaTeXParser.Unary_nofuncContext,0)
def ADD(self):
return self.getToken(LaTeXParser.ADD, 0)
def SUB(self):
return self.getToken(LaTeXParser.SUB, 0)
def postfix(self):
return self.getTypedRuleContext(LaTeXParser.PostfixContext,0)
def postfix_nofunc(self, i:int=None):
if i is None:
return self.getTypedRuleContexts(LaTeXParser.Postfix_nofuncContext)
else:
return self.getTypedRuleContext(LaTeXParser.Postfix_nofuncContext,i)
def getRuleIndex(self):
return LaTeXParser.RULE_unary_nofunc
def unary_nofunc(self):
localctx = LaTeXParser.Unary_nofuncContext(self, self._ctx, self.state)
self.enterRule(localctx, 16, self.RULE_unary_nofunc)
self._la = 0 # Token type
try:
self.state = 152
self._errHandler.sync(self)
token = self._input.LA(1)
if token in [15, 16]:
self.enterOuterAlt(localctx, 1)
self.state = 143
_la = self._input.LA(1)
if not(_la==15 or _la==16):
self._errHandler.recoverInline(self)
else:
self._errHandler.reportMatch(self)
self.consume()
self.state = 144
self.unary_nofunc()
pass
elif token in [19, 21, 23, 25, 27, 29, 30, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 63, 64, 68, 69, 70, 71, 72, 76, 77, 78, 91]:
self.enterOuterAlt(localctx, 2)
self.state = 145
self.postfix()
self.state = 149
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,6,self._ctx)
while _alt!=2 and _alt!=ATN.INVALID_ALT_NUMBER:
if _alt==1:
self.state = 146
self.postfix_nofunc()
self.state = 151
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,6,self._ctx)
pass
else:
raise NoViableAltException(self)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class PostfixContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def exp(self):
return self.getTypedRuleContext(LaTeXParser.ExpContext,0)
def postfix_op(self, i:int=None):
if i is None:
return self.getTypedRuleContexts(LaTeXParser.Postfix_opContext)
else:
return self.getTypedRuleContext(LaTeXParser.Postfix_opContext,i)
def getRuleIndex(self):
return LaTeXParser.RULE_postfix
def postfix(self):
localctx = LaTeXParser.PostfixContext(self, self._ctx, self.state)
self.enterRule(localctx, 18, self.RULE_postfix)
try:
self.enterOuterAlt(localctx, 1)
self.state = 154
self.exp(0)
self.state = 158
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,8,self._ctx)
while _alt!=2 and _alt!=ATN.INVALID_ALT_NUMBER:
if _alt==1:
self.state = 155
self.postfix_op()
self.state = 160
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,8,self._ctx)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class Postfix_nofuncContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def exp_nofunc(self):
return self.getTypedRuleContext(LaTeXParser.Exp_nofuncContext,0)
def postfix_op(self, i:int=None):
if i is None:
return self.getTypedRuleContexts(LaTeXParser.Postfix_opContext)
else:
return self.getTypedRuleContext(LaTeXParser.Postfix_opContext,i)
def getRuleIndex(self):
return LaTeXParser.RULE_postfix_nofunc
def postfix_nofunc(self):
localctx = LaTeXParser.Postfix_nofuncContext(self, self._ctx, self.state)
self.enterRule(localctx, 20, self.RULE_postfix_nofunc)
try:
self.enterOuterAlt(localctx, 1)
self.state = 161
self.exp_nofunc(0)
self.state = 165
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,9,self._ctx)
while _alt!=2 and _alt!=ATN.INVALID_ALT_NUMBER:
if _alt==1:
self.state = 162
self.postfix_op()
self.state = 167
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,9,self._ctx)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class Postfix_opContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def BANG(self):
return self.getToken(LaTeXParser.BANG, 0)
def eval_at(self):
return self.getTypedRuleContext(LaTeXParser.Eval_atContext,0)
def getRuleIndex(self):
return LaTeXParser.RULE_postfix_op
def postfix_op(self):
localctx = LaTeXParser.Postfix_opContext(self, self._ctx, self.state)
self.enterRule(localctx, 22, self.RULE_postfix_op)
try:
self.state = 170
self._errHandler.sync(self)
token = self._input.LA(1)
if token in [89]:
self.enterOuterAlt(localctx, 1)
self.state = 168
self.match(LaTeXParser.BANG)
pass
elif token in [27]:
self.enterOuterAlt(localctx, 2)
self.state = 169
self.eval_at()
pass
else:
raise NoViableAltException(self)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class Eval_atContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def BAR(self):
return self.getToken(LaTeXParser.BAR, 0)
def eval_at_sup(self):
return self.getTypedRuleContext(LaTeXParser.Eval_at_supContext,0)
def eval_at_sub(self):
return self.getTypedRuleContext(LaTeXParser.Eval_at_subContext,0)
def getRuleIndex(self):
return LaTeXParser.RULE_eval_at
def eval_at(self):
localctx = LaTeXParser.Eval_atContext(self, self._ctx, self.state)
self.enterRule(localctx, 24, self.RULE_eval_at)
try:
self.enterOuterAlt(localctx, 1)
self.state = 172
self.match(LaTeXParser.BAR)
self.state = 178
self._errHandler.sync(self)
la_ = self._interp.adaptivePredict(self._input,11,self._ctx)
if la_ == 1:
self.state = 173
self.eval_at_sup()
pass
elif la_ == 2:
self.state = 174
self.eval_at_sub()
pass
elif la_ == 3:
self.state = 175
self.eval_at_sup()
self.state = 176
self.eval_at_sub()
pass
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class Eval_at_subContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def UNDERSCORE(self):
return self.getToken(LaTeXParser.UNDERSCORE, 0)
def L_BRACE(self):
return self.getToken(LaTeXParser.L_BRACE, 0)
def R_BRACE(self):
return self.getToken(LaTeXParser.R_BRACE, 0)
def expr(self):
return self.getTypedRuleContext(LaTeXParser.ExprContext,0)
def equality(self):
return self.getTypedRuleContext(LaTeXParser.EqualityContext,0)
def getRuleIndex(self):
return LaTeXParser.RULE_eval_at_sub
def eval_at_sub(self):
localctx = LaTeXParser.Eval_at_subContext(self, self._ctx, self.state)
self.enterRule(localctx, 26, self.RULE_eval_at_sub)
try:
self.enterOuterAlt(localctx, 1)
self.state = 180
self.match(LaTeXParser.UNDERSCORE)
self.state = 181
self.match(LaTeXParser.L_BRACE)
self.state = 184
self._errHandler.sync(self)
la_ = self._interp.adaptivePredict(self._input,12,self._ctx)
if la_ == 1:
self.state = 182
self.expr()
pass
elif la_ == 2:
self.state = 183
self.equality()
pass
self.state = 186
self.match(LaTeXParser.R_BRACE)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class Eval_at_supContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def CARET(self):
return self.getToken(LaTeXParser.CARET, 0)
def L_BRACE(self):
return self.getToken(LaTeXParser.L_BRACE, 0)
def R_BRACE(self):
return self.getToken(LaTeXParser.R_BRACE, 0)
def expr(self):
return self.getTypedRuleContext(LaTeXParser.ExprContext,0)
def equality(self):
return self.getTypedRuleContext(LaTeXParser.EqualityContext,0)
def getRuleIndex(self):
return LaTeXParser.RULE_eval_at_sup
def eval_at_sup(self):
localctx = LaTeXParser.Eval_at_supContext(self, self._ctx, self.state)
self.enterRule(localctx, 28, self.RULE_eval_at_sup)
try:
self.enterOuterAlt(localctx, 1)
self.state = 188
self.match(LaTeXParser.CARET)
self.state = 189
self.match(LaTeXParser.L_BRACE)
self.state = 192
self._errHandler.sync(self)
la_ = self._interp.adaptivePredict(self._input,13,self._ctx)
if la_ == 1:
self.state = 190
self.expr()
pass
elif la_ == 2:
self.state = 191
self.equality()
pass
self.state = 194
self.match(LaTeXParser.R_BRACE)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class ExpContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def comp(self):
return self.getTypedRuleContext(LaTeXParser.CompContext,0)
def exp(self):
return self.getTypedRuleContext(LaTeXParser.ExpContext,0)
def CARET(self):
return self.getToken(LaTeXParser.CARET, 0)
def atom(self):
return self.getTypedRuleContext(LaTeXParser.AtomContext,0)
def L_BRACE(self):
return self.getToken(LaTeXParser.L_BRACE, 0)
def expr(self):
return self.getTypedRuleContext(LaTeXParser.ExprContext,0)
def R_BRACE(self):
return self.getToken(LaTeXParser.R_BRACE, 0)
def subexpr(self):
return self.getTypedRuleContext(LaTeXParser.SubexprContext,0)
def getRuleIndex(self):
return LaTeXParser.RULE_exp
def exp(self, _p:int=0):
_parentctx = self._ctx
_parentState = self.state
localctx = LaTeXParser.ExpContext(self, self._ctx, _parentState)
_prevctx = localctx
_startState = 30
self.enterRecursionRule(localctx, 30, self.RULE_exp, _p)
try:
self.enterOuterAlt(localctx, 1)
self.state = 197
self.comp()
self._ctx.stop = self._input.LT(-1)
self.state = 213
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,16,self._ctx)
while _alt!=2 and _alt!=ATN.INVALID_ALT_NUMBER:
if _alt==1:
if self._parseListeners is not None:
self.triggerExitRuleEvent()
_prevctx = localctx
localctx = LaTeXParser.ExpContext(self, _parentctx, _parentState)
self.pushNewRecursionContext(localctx, _startState, self.RULE_exp)
self.state = 199
if not self.precpred(self._ctx, 2):
from antlr4.error.Errors import FailedPredicateException
raise FailedPredicateException(self, "self.precpred(self._ctx, 2)")
self.state = 200
self.match(LaTeXParser.CARET)
self.state = 206
self._errHandler.sync(self)
token = self._input.LA(1)
if token in [27, 29, 30, 68, 69, 70, 71, 72, 76, 77, 78, 91]:
self.state = 201
self.atom()
pass
elif token in [21]:
self.state = 202
self.match(LaTeXParser.L_BRACE)
self.state = 203
self.expr()
self.state = 204
self.match(LaTeXParser.R_BRACE)
pass
else:
raise NoViableAltException(self)
self.state = 209
self._errHandler.sync(self)
la_ = self._interp.adaptivePredict(self._input,15,self._ctx)
if la_ == 1:
self.state = 208
self.subexpr()
self.state = 215
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,16,self._ctx)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.unrollRecursionContexts(_parentctx)
return localctx
class Exp_nofuncContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def comp_nofunc(self):
return self.getTypedRuleContext(LaTeXParser.Comp_nofuncContext,0)
def exp_nofunc(self):
return self.getTypedRuleContext(LaTeXParser.Exp_nofuncContext,0)
def CARET(self):
return self.getToken(LaTeXParser.CARET, 0)
def atom(self):
return self.getTypedRuleContext(LaTeXParser.AtomContext,0)
def L_BRACE(self):
return self.getToken(LaTeXParser.L_BRACE, 0)
def expr(self):
return self.getTypedRuleContext(LaTeXParser.ExprContext,0)
def R_BRACE(self):
return self.getToken(LaTeXParser.R_BRACE, 0)
def subexpr(self):
return self.getTypedRuleContext(LaTeXParser.SubexprContext,0)
def getRuleIndex(self):
return LaTeXParser.RULE_exp_nofunc
def exp_nofunc(self, _p:int=0):
_parentctx = self._ctx
_parentState = self.state
localctx = LaTeXParser.Exp_nofuncContext(self, self._ctx, _parentState)
_prevctx = localctx
_startState = 32
self.enterRecursionRule(localctx, 32, self.RULE_exp_nofunc, _p)
try:
self.enterOuterAlt(localctx, 1)
self.state = 217
self.comp_nofunc()
self._ctx.stop = self._input.LT(-1)
self.state = 233
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,19,self._ctx)
while _alt!=2 and _alt!=ATN.INVALID_ALT_NUMBER:
if _alt==1:
if self._parseListeners is not None:
self.triggerExitRuleEvent()
_prevctx = localctx
localctx = LaTeXParser.Exp_nofuncContext(self, _parentctx, _parentState)
self.pushNewRecursionContext(localctx, _startState, self.RULE_exp_nofunc)
self.state = 219
if not self.precpred(self._ctx, 2):
from antlr4.error.Errors import FailedPredicateException
raise FailedPredicateException(self, "self.precpred(self._ctx, 2)")
self.state = 220
self.match(LaTeXParser.CARET)
self.state = 226
self._errHandler.sync(self)
token = self._input.LA(1)
if token in [27, 29, 30, 68, 69, 70, 71, 72, 76, 77, 78, 91]:
self.state = 221
self.atom()
pass
elif token in [21]:
self.state = 222
self.match(LaTeXParser.L_BRACE)
self.state = 223
self.expr()
self.state = 224
self.match(LaTeXParser.R_BRACE)
pass
else:
raise NoViableAltException(self)
self.state = 229
self._errHandler.sync(self)
la_ = self._interp.adaptivePredict(self._input,18,self._ctx)
if la_ == 1:
self.state = 228
self.subexpr()
self.state = 235
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,19,self._ctx)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.unrollRecursionContexts(_parentctx)
return localctx
class CompContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def group(self):
return self.getTypedRuleContext(LaTeXParser.GroupContext,0)
def abs_group(self):
return self.getTypedRuleContext(LaTeXParser.Abs_groupContext,0)
def func(self):
return self.getTypedRuleContext(LaTeXParser.FuncContext,0)
def atom(self):
return self.getTypedRuleContext(LaTeXParser.AtomContext,0)
def floor(self):
return self.getTypedRuleContext(LaTeXParser.FloorContext,0)
def ceil(self):
return self.getTypedRuleContext(LaTeXParser.CeilContext,0)
def getRuleIndex(self):
return LaTeXParser.RULE_comp
def comp(self):
localctx = LaTeXParser.CompContext(self, self._ctx, self.state)
self.enterRule(localctx, 34, self.RULE_comp)
try:
self.state = 242
self._errHandler.sync(self)
la_ = self._interp.adaptivePredict(self._input,20,self._ctx)
if la_ == 1:
self.enterOuterAlt(localctx, 1)
self.state = 236
self.group()
pass
elif la_ == 2:
self.enterOuterAlt(localctx, 2)
self.state = 237
self.abs_group()
pass
elif la_ == 3:
self.enterOuterAlt(localctx, 3)
self.state = 238
self.func()
pass
elif la_ == 4:
self.enterOuterAlt(localctx, 4)
self.state = 239
self.atom()
pass
elif la_ == 5:
self.enterOuterAlt(localctx, 5)
self.state = 240
self.floor()
pass
elif la_ == 6:
self.enterOuterAlt(localctx, 6)
self.state = 241
self.ceil()
pass
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class Comp_nofuncContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def group(self):
return self.getTypedRuleContext(LaTeXParser.GroupContext,0)
def abs_group(self):
return self.getTypedRuleContext(LaTeXParser.Abs_groupContext,0)
def atom(self):
return self.getTypedRuleContext(LaTeXParser.AtomContext,0)
def floor(self):
return self.getTypedRuleContext(LaTeXParser.FloorContext,0)
def ceil(self):
return self.getTypedRuleContext(LaTeXParser.CeilContext,0)
def getRuleIndex(self):
return LaTeXParser.RULE_comp_nofunc
def comp_nofunc(self):
localctx = LaTeXParser.Comp_nofuncContext(self, self._ctx, self.state)
self.enterRule(localctx, 36, self.RULE_comp_nofunc)
try:
self.state = 249
self._errHandler.sync(self)
la_ = self._interp.adaptivePredict(self._input,21,self._ctx)
if la_ == 1:
self.enterOuterAlt(localctx, 1)
self.state = 244
self.group()
pass
elif la_ == 2:
self.enterOuterAlt(localctx, 2)
self.state = 245
self.abs_group()
pass
elif la_ == 3:
self.enterOuterAlt(localctx, 3)
self.state = 246
self.atom()
pass
elif la_ == 4:
self.enterOuterAlt(localctx, 4)
self.state = 247
self.floor()
pass
elif la_ == 5:
self.enterOuterAlt(localctx, 5)
self.state = 248
self.ceil()
pass
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class GroupContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def L_PAREN(self):
return self.getToken(LaTeXParser.L_PAREN, 0)
def expr(self):
return self.getTypedRuleContext(LaTeXParser.ExprContext,0)
def R_PAREN(self):
return self.getToken(LaTeXParser.R_PAREN, 0)
def L_BRACKET(self):
return self.getToken(LaTeXParser.L_BRACKET, 0)
def R_BRACKET(self):
return self.getToken(LaTeXParser.R_BRACKET, 0)
def L_BRACE(self):
return self.getToken(LaTeXParser.L_BRACE, 0)
def R_BRACE(self):
return self.getToken(LaTeXParser.R_BRACE, 0)
def L_BRACE_LITERAL(self):
return self.getToken(LaTeXParser.L_BRACE_LITERAL, 0)
def R_BRACE_LITERAL(self):
return self.getToken(LaTeXParser.R_BRACE_LITERAL, 0)
def getRuleIndex(self):
return LaTeXParser.RULE_group
def group(self):
localctx = LaTeXParser.GroupContext(self, self._ctx, self.state)
self.enterRule(localctx, 38, self.RULE_group)
try:
self.state = 267
self._errHandler.sync(self)
token = self._input.LA(1)
if token in [19]:
self.enterOuterAlt(localctx, 1)
self.state = 251
self.match(LaTeXParser.L_PAREN)
self.state = 252
self.expr()
self.state = 253
self.match(LaTeXParser.R_PAREN)
pass
elif token in [25]:
self.enterOuterAlt(localctx, 2)
self.state = 255
self.match(LaTeXParser.L_BRACKET)
self.state = 256
self.expr()
self.state = 257
self.match(LaTeXParser.R_BRACKET)
pass
elif token in [21]:
self.enterOuterAlt(localctx, 3)
self.state = 259
self.match(LaTeXParser.L_BRACE)
self.state = 260
self.expr()
self.state = 261
self.match(LaTeXParser.R_BRACE)
pass
elif token in [23]:
self.enterOuterAlt(localctx, 4)
self.state = 263
self.match(LaTeXParser.L_BRACE_LITERAL)
self.state = 264
self.expr()
self.state = 265
self.match(LaTeXParser.R_BRACE_LITERAL)
pass
else:
raise NoViableAltException(self)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class Abs_groupContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def BAR(self, i:int=None):
if i is None:
return self.getTokens(LaTeXParser.BAR)
else:
return self.getToken(LaTeXParser.BAR, i)
def expr(self):
return self.getTypedRuleContext(LaTeXParser.ExprContext,0)
def getRuleIndex(self):
return LaTeXParser.RULE_abs_group
def abs_group(self):
localctx = LaTeXParser.Abs_groupContext(self, self._ctx, self.state)
self.enterRule(localctx, 40, self.RULE_abs_group)
try:
self.enterOuterAlt(localctx, 1)
self.state = 269
self.match(LaTeXParser.BAR)
self.state = 270
self.expr()
self.state = 271
self.match(LaTeXParser.BAR)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class NumberContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def DIGIT(self, i:int=None):
if i is None:
return self.getTokens(LaTeXParser.DIGIT)
else:
return self.getToken(LaTeXParser.DIGIT, i)
def getRuleIndex(self):
return LaTeXParser.RULE_number
def number(self):
localctx = LaTeXParser.NumberContext(self, self._ctx, self.state)
self.enterRule(localctx, 42, self.RULE_number)
try:
self.enterOuterAlt(localctx, 1)
self.state = 274
self._errHandler.sync(self)
_alt = 1
while _alt!=2 and _alt!=ATN.INVALID_ALT_NUMBER:
if _alt == 1:
self.state = 273
self.match(LaTeXParser.DIGIT)
else:
raise NoViableAltException(self)
self.state = 276
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,23,self._ctx)
self.state = 284
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,24,self._ctx)
while _alt!=2 and _alt!=ATN.INVALID_ALT_NUMBER:
if _alt==1:
self.state = 278
self.match(LaTeXParser.T__0)
self.state = 279
self.match(LaTeXParser.DIGIT)
self.state = 280
self.match(LaTeXParser.DIGIT)
self.state = 281
self.match(LaTeXParser.DIGIT)
self.state = 286
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,24,self._ctx)
self.state = 293
self._errHandler.sync(self)
la_ = self._interp.adaptivePredict(self._input,26,self._ctx)
if la_ == 1:
self.state = 287
self.match(LaTeXParser.T__1)
self.state = 289
self._errHandler.sync(self)
_alt = 1
while _alt!=2 and _alt!=ATN.INVALID_ALT_NUMBER:
if _alt == 1:
self.state = 288
self.match(LaTeXParser.DIGIT)
else:
raise NoViableAltException(self)
self.state = 291
self._errHandler.sync(self)
_alt = self._interp.adaptivePredict(self._input,25,self._ctx)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class AtomContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def LETTER(self):
return self.getToken(LaTeXParser.LETTER, 0)
def SYMBOL(self):
return self.getToken(LaTeXParser.SYMBOL, 0)
def subexpr(self):
return self.getTypedRuleContext(LaTeXParser.SubexprContext,0)
def SINGLE_QUOTES(self):
return self.getToken(LaTeXParser.SINGLE_QUOTES, 0)
def number(self):
return self.getTypedRuleContext(LaTeXParser.NumberContext,0)
def DIFFERENTIAL(self):
return self.getToken(LaTeXParser.DIFFERENTIAL, 0)
def mathit(self):
return self.getTypedRuleContext(LaTeXParser.MathitContext,0)
def frac(self):
return self.getTypedRuleContext(LaTeXParser.FracContext,0)
def binom(self):
return self.getTypedRuleContext(LaTeXParser.BinomContext,0)
def bra(self):
return self.getTypedRuleContext(LaTeXParser.BraContext,0)
def ket(self):
return self.getTypedRuleContext(LaTeXParser.KetContext,0)
def getRuleIndex(self):
return LaTeXParser.RULE_atom
def atom(self):
localctx = LaTeXParser.AtomContext(self, self._ctx, self.state)
self.enterRule(localctx, 44, self.RULE_atom)
self._la = 0 # Token type
try:
self.state = 317
self._errHandler.sync(self)
token = self._input.LA(1)
if token in [77, 91]:
self.enterOuterAlt(localctx, 1)
self.state = 295
_la = self._input.LA(1)
if not(_la==77 or _la==91):
self._errHandler.recoverInline(self)
else:
self._errHandler.reportMatch(self)
self.consume()
self.state = 308
self._errHandler.sync(self)
la_ = self._interp.adaptivePredict(self._input,31,self._ctx)
if la_ == 1:
self.state = 297
self._errHandler.sync(self)
la_ = self._interp.adaptivePredict(self._input,27,self._ctx)
if la_ == 1:
self.state = 296
self.subexpr()
self.state = 300
self._errHandler.sync(self)
la_ = self._interp.adaptivePredict(self._input,28,self._ctx)
if la_ == 1:
self.state = 299
self.match(LaTeXParser.SINGLE_QUOTES)
pass
elif la_ == 2:
self.state = 303
self._errHandler.sync(self)
la_ = self._interp.adaptivePredict(self._input,29,self._ctx)
if la_ == 1:
self.state = 302
self.match(LaTeXParser.SINGLE_QUOTES)
self.state = 306
self._errHandler.sync(self)
la_ = self._interp.adaptivePredict(self._input,30,self._ctx)
if la_ == 1:
self.state = 305
self.subexpr()
pass
pass
elif token in [78]:
self.enterOuterAlt(localctx, 2)
self.state = 310
self.number()
pass
elif token in [76]:
self.enterOuterAlt(localctx, 3)
self.state = 311
self.match(LaTeXParser.DIFFERENTIAL)
pass
elif token in [72]:
self.enterOuterAlt(localctx, 4)
self.state = 312
self.mathit()
pass
elif token in [68]:
self.enterOuterAlt(localctx, 5)
self.state = 313
self.frac()
pass
elif token in [69, 70, 71]:
self.enterOuterAlt(localctx, 6)
self.state = 314
self.binom()
pass
elif token in [30]:
self.enterOuterAlt(localctx, 7)
self.state = 315
self.bra()
pass
elif token in [27, 29]:
self.enterOuterAlt(localctx, 8)
self.state = 316
self.ket()
pass
else:
raise NoViableAltException(self)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class BraContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def L_ANGLE(self):
return self.getToken(LaTeXParser.L_ANGLE, 0)
def expr(self):
return self.getTypedRuleContext(LaTeXParser.ExprContext,0)
def R_BAR(self):
return self.getToken(LaTeXParser.R_BAR, 0)
def BAR(self):
return self.getToken(LaTeXParser.BAR, 0)
def getRuleIndex(self):
return LaTeXParser.RULE_bra
def bra(self):
localctx = LaTeXParser.BraContext(self, self._ctx, self.state)
self.enterRule(localctx, 46, self.RULE_bra)
self._la = 0 # Token type
try:
self.enterOuterAlt(localctx, 1)
self.state = 319
self.match(LaTeXParser.L_ANGLE)
self.state = 320
self.expr()
self.state = 321
_la = self._input.LA(1)
if not(_la==27 or _la==28):
self._errHandler.recoverInline(self)
else:
self._errHandler.reportMatch(self)
self.consume()
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class KetContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def expr(self):
return self.getTypedRuleContext(LaTeXParser.ExprContext,0)
def R_ANGLE(self):
return self.getToken(LaTeXParser.R_ANGLE, 0)
def L_BAR(self):
return self.getToken(LaTeXParser.L_BAR, 0)
def BAR(self):
return self.getToken(LaTeXParser.BAR, 0)
def getRuleIndex(self):
return LaTeXParser.RULE_ket
def ket(self):
localctx = LaTeXParser.KetContext(self, self._ctx, self.state)
self.enterRule(localctx, 48, self.RULE_ket)
self._la = 0 # Token type
try:
self.enterOuterAlt(localctx, 1)
self.state = 323
_la = self._input.LA(1)
if not(_la==27 or _la==29):
self._errHandler.recoverInline(self)
else:
self._errHandler.reportMatch(self)
self.consume()
self.state = 324
self.expr()
self.state = 325
self.match(LaTeXParser.R_ANGLE)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class MathitContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def CMD_MATHIT(self):
return self.getToken(LaTeXParser.CMD_MATHIT, 0)
def L_BRACE(self):
return self.getToken(LaTeXParser.L_BRACE, 0)
def mathit_text(self):
return self.getTypedRuleContext(LaTeXParser.Mathit_textContext,0)
def R_BRACE(self):
return self.getToken(LaTeXParser.R_BRACE, 0)
def getRuleIndex(self):
return LaTeXParser.RULE_mathit
def mathit(self):
localctx = LaTeXParser.MathitContext(self, self._ctx, self.state)
self.enterRule(localctx, 50, self.RULE_mathit)
try:
self.enterOuterAlt(localctx, 1)
self.state = 327
self.match(LaTeXParser.CMD_MATHIT)
self.state = 328
self.match(LaTeXParser.L_BRACE)
self.state = 329
self.mathit_text()
self.state = 330
self.match(LaTeXParser.R_BRACE)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class Mathit_textContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def LETTER(self, i:int=None):
if i is None:
return self.getTokens(LaTeXParser.LETTER)
else:
return self.getToken(LaTeXParser.LETTER, i)
def getRuleIndex(self):
return LaTeXParser.RULE_mathit_text
def mathit_text(self):
localctx = LaTeXParser.Mathit_textContext(self, self._ctx, self.state)
self.enterRule(localctx, 52, self.RULE_mathit_text)
self._la = 0 # Token type
try:
self.enterOuterAlt(localctx, 1)
self.state = 335
self._errHandler.sync(self)
_la = self._input.LA(1)
while _la==77:
self.state = 332
self.match(LaTeXParser.LETTER)
self.state = 337
self._errHandler.sync(self)
_la = self._input.LA(1)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class FracContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
self.upperd = None # Token
self.upper = None # ExprContext
self.lowerd = None # Token
self.lower = None # ExprContext
def CMD_FRAC(self):
return self.getToken(LaTeXParser.CMD_FRAC, 0)
def L_BRACE(self, i:int=None):
if i is None:
return self.getTokens(LaTeXParser.L_BRACE)
else:
return self.getToken(LaTeXParser.L_BRACE, i)
def R_BRACE(self, i:int=None):
if i is None:
return self.getTokens(LaTeXParser.R_BRACE)
else:
return self.getToken(LaTeXParser.R_BRACE, i)
def DIGIT(self, i:int=None):
if i is None:
return self.getTokens(LaTeXParser.DIGIT)
else:
return self.getToken(LaTeXParser.DIGIT, i)
def expr(self, i:int=None):
if i is None:
return self.getTypedRuleContexts(LaTeXParser.ExprContext)
else:
return self.getTypedRuleContext(LaTeXParser.ExprContext,i)
def getRuleIndex(self):
return LaTeXParser.RULE_frac
def frac(self):
localctx = LaTeXParser.FracContext(self, self._ctx, self.state)
self.enterRule(localctx, 54, self.RULE_frac)
try:
self.enterOuterAlt(localctx, 1)
self.state = 338
self.match(LaTeXParser.CMD_FRAC)
self.state = 344
self._errHandler.sync(self)
token = self._input.LA(1)
if token in [78]:
self.state = 339
localctx.upperd = self.match(LaTeXParser.DIGIT)
pass
elif token in [21]:
self.state = 340
self.match(LaTeXParser.L_BRACE)
self.state = 341
localctx.upper = self.expr()
self.state = 342
self.match(LaTeXParser.R_BRACE)
pass
else:
raise NoViableAltException(self)
self.state = 351
self._errHandler.sync(self)
token = self._input.LA(1)
if token in [78]:
self.state = 346
localctx.lowerd = self.match(LaTeXParser.DIGIT)
pass
elif token in [21]:
self.state = 347
self.match(LaTeXParser.L_BRACE)
self.state = 348
localctx.lower = self.expr()
self.state = 349
self.match(LaTeXParser.R_BRACE)
pass
else:
raise NoViableAltException(self)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class BinomContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
self.n = None # ExprContext
self.k = None # ExprContext
def L_BRACE(self, i:int=None):
if i is None:
return self.getTokens(LaTeXParser.L_BRACE)
else:
return self.getToken(LaTeXParser.L_BRACE, i)
def R_BRACE(self, i:int=None):
if i is None:
return self.getTokens(LaTeXParser.R_BRACE)
else:
return self.getToken(LaTeXParser.R_BRACE, i)
def CMD_BINOM(self):
return self.getToken(LaTeXParser.CMD_BINOM, 0)
def CMD_DBINOM(self):
return self.getToken(LaTeXParser.CMD_DBINOM, 0)
def CMD_TBINOM(self):
return self.getToken(LaTeXParser.CMD_TBINOM, 0)
def expr(self, i:int=None):
if i is None:
return self.getTypedRuleContexts(LaTeXParser.ExprContext)
else:
return self.getTypedRuleContext(LaTeXParser.ExprContext,i)
def getRuleIndex(self):
return LaTeXParser.RULE_binom
def binom(self):
localctx = LaTeXParser.BinomContext(self, self._ctx, self.state)
self.enterRule(localctx, 56, self.RULE_binom)
self._la = 0 # Token type
try:
self.enterOuterAlt(localctx, 1)
self.state = 353
_la = self._input.LA(1)
if not((((_la - 69)) & ~0x3f) == 0 and ((1 << (_la - 69)) & 7) != 0):
self._errHandler.recoverInline(self)
else:
self._errHandler.reportMatch(self)
self.consume()
self.state = 354
self.match(LaTeXParser.L_BRACE)
self.state = 355
localctx.n = self.expr()
self.state = 356
self.match(LaTeXParser.R_BRACE)
self.state = 357
self.match(LaTeXParser.L_BRACE)
self.state = 358
localctx.k = self.expr()
self.state = 359
self.match(LaTeXParser.R_BRACE)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class FloorContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
self.val = None # ExprContext
def L_FLOOR(self):
return self.getToken(LaTeXParser.L_FLOOR, 0)
def R_FLOOR(self):
return self.getToken(LaTeXParser.R_FLOOR, 0)
def expr(self):
return self.getTypedRuleContext(LaTeXParser.ExprContext,0)
def getRuleIndex(self):
return LaTeXParser.RULE_floor
def floor(self):
localctx = LaTeXParser.FloorContext(self, self._ctx, self.state)
self.enterRule(localctx, 58, self.RULE_floor)
try:
self.enterOuterAlt(localctx, 1)
self.state = 361
self.match(LaTeXParser.L_FLOOR)
self.state = 362
localctx.val = self.expr()
self.state = 363
self.match(LaTeXParser.R_FLOOR)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class CeilContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
self.val = None # ExprContext
def L_CEIL(self):
return self.getToken(LaTeXParser.L_CEIL, 0)
def R_CEIL(self):
return self.getToken(LaTeXParser.R_CEIL, 0)
def expr(self):
return self.getTypedRuleContext(LaTeXParser.ExprContext,0)
def getRuleIndex(self):
return LaTeXParser.RULE_ceil
def ceil(self):
localctx = LaTeXParser.CeilContext(self, self._ctx, self.state)
self.enterRule(localctx, 60, self.RULE_ceil)
try:
self.enterOuterAlt(localctx, 1)
self.state = 365
self.match(LaTeXParser.L_CEIL)
self.state = 366
localctx.val = self.expr()
self.state = 367
self.match(LaTeXParser.R_CEIL)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class Func_normalContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def FUNC_EXP(self):
return self.getToken(LaTeXParser.FUNC_EXP, 0)
def FUNC_LOG(self):
return self.getToken(LaTeXParser.FUNC_LOG, 0)
def FUNC_LG(self):
return self.getToken(LaTeXParser.FUNC_LG, 0)
def FUNC_LN(self):
return self.getToken(LaTeXParser.FUNC_LN, 0)
def FUNC_SIN(self):
return self.getToken(LaTeXParser.FUNC_SIN, 0)
def FUNC_COS(self):
return self.getToken(LaTeXParser.FUNC_COS, 0)
def FUNC_TAN(self):
return self.getToken(LaTeXParser.FUNC_TAN, 0)
def FUNC_CSC(self):
return self.getToken(LaTeXParser.FUNC_CSC, 0)
def FUNC_SEC(self):
return self.getToken(LaTeXParser.FUNC_SEC, 0)
def FUNC_COT(self):
return self.getToken(LaTeXParser.FUNC_COT, 0)
def FUNC_ARCSIN(self):
return self.getToken(LaTeXParser.FUNC_ARCSIN, 0)
def FUNC_ARCCOS(self):
return self.getToken(LaTeXParser.FUNC_ARCCOS, 0)
def FUNC_ARCTAN(self):
return self.getToken(LaTeXParser.FUNC_ARCTAN, 0)
def FUNC_ARCCSC(self):
return self.getToken(LaTeXParser.FUNC_ARCCSC, 0)
def FUNC_ARCSEC(self):
return self.getToken(LaTeXParser.FUNC_ARCSEC, 0)
def FUNC_ARCCOT(self):
return self.getToken(LaTeXParser.FUNC_ARCCOT, 0)
def FUNC_SINH(self):
return self.getToken(LaTeXParser.FUNC_SINH, 0)
def FUNC_COSH(self):
return self.getToken(LaTeXParser.FUNC_COSH, 0)
def FUNC_TANH(self):
return self.getToken(LaTeXParser.FUNC_TANH, 0)
def FUNC_ARSINH(self):
return self.getToken(LaTeXParser.FUNC_ARSINH, 0)
def FUNC_ARCOSH(self):
return self.getToken(LaTeXParser.FUNC_ARCOSH, 0)
def FUNC_ARTANH(self):
return self.getToken(LaTeXParser.FUNC_ARTANH, 0)
def getRuleIndex(self):
return LaTeXParser.RULE_func_normal
def func_normal(self):
localctx = LaTeXParser.Func_normalContext(self, self._ctx, self.state)
self.enterRule(localctx, 62, self.RULE_func_normal)
self._la = 0 # Token type
try:
self.enterOuterAlt(localctx, 1)
self.state = 369
_la = self._input.LA(1)
if not(((_la) & ~0x3f) == 0 and ((1 << _la) & 576460614864470016) != 0):
self._errHandler.recoverInline(self)
else:
self._errHandler.reportMatch(self)
self.consume()
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class FuncContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
self.root = None # ExprContext
self.base = None # ExprContext
def func_normal(self):
return self.getTypedRuleContext(LaTeXParser.Func_normalContext,0)
def L_PAREN(self):
return self.getToken(LaTeXParser.L_PAREN, 0)
def func_arg(self):
return self.getTypedRuleContext(LaTeXParser.Func_argContext,0)
def R_PAREN(self):
return self.getToken(LaTeXParser.R_PAREN, 0)
def func_arg_noparens(self):
return self.getTypedRuleContext(LaTeXParser.Func_arg_noparensContext,0)
def subexpr(self):
return self.getTypedRuleContext(LaTeXParser.SubexprContext,0)
def supexpr(self):
return self.getTypedRuleContext(LaTeXParser.SupexprContext,0)
def args(self):
return self.getTypedRuleContext(LaTeXParser.ArgsContext,0)
def LETTER(self):
return self.getToken(LaTeXParser.LETTER, 0)
def SYMBOL(self):
return self.getToken(LaTeXParser.SYMBOL, 0)
def SINGLE_QUOTES(self):
return self.getToken(LaTeXParser.SINGLE_QUOTES, 0)
def FUNC_INT(self):
return self.getToken(LaTeXParser.FUNC_INT, 0)
def DIFFERENTIAL(self):
return self.getToken(LaTeXParser.DIFFERENTIAL, 0)
def frac(self):
return self.getTypedRuleContext(LaTeXParser.FracContext,0)
def additive(self):
return self.getTypedRuleContext(LaTeXParser.AdditiveContext,0)
def FUNC_SQRT(self):
return self.getToken(LaTeXParser.FUNC_SQRT, 0)
def L_BRACE(self):
return self.getToken(LaTeXParser.L_BRACE, 0)
def R_BRACE(self):
return self.getToken(LaTeXParser.R_BRACE, 0)
def expr(self, i:int=None):
if i is None:
return self.getTypedRuleContexts(LaTeXParser.ExprContext)
else:
return self.getTypedRuleContext(LaTeXParser.ExprContext,i)
def L_BRACKET(self):
return self.getToken(LaTeXParser.L_BRACKET, 0)
def R_BRACKET(self):
return self.getToken(LaTeXParser.R_BRACKET, 0)
def FUNC_OVERLINE(self):
return self.getToken(LaTeXParser.FUNC_OVERLINE, 0)
def mp(self):
return self.getTypedRuleContext(LaTeXParser.MpContext,0)
def FUNC_SUM(self):
return self.getToken(LaTeXParser.FUNC_SUM, 0)
def FUNC_PROD(self):
return self.getToken(LaTeXParser.FUNC_PROD, 0)
def subeq(self):
return self.getTypedRuleContext(LaTeXParser.SubeqContext,0)
def FUNC_LIM(self):
return self.getToken(LaTeXParser.FUNC_LIM, 0)
def limit_sub(self):
return self.getTypedRuleContext(LaTeXParser.Limit_subContext,0)
def getRuleIndex(self):
return LaTeXParser.RULE_func
def func(self):
localctx = LaTeXParser.FuncContext(self, self._ctx, self.state)
self.enterRule(localctx, 64, self.RULE_func)
self._la = 0 # Token type
try:
self.state = 460
self._errHandler.sync(self)
token = self._input.LA(1)
if token in [37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58]:
self.enterOuterAlt(localctx, 1)
self.state = 371
self.func_normal()
self.state = 384
self._errHandler.sync(self)
la_ = self._interp.adaptivePredict(self._input,40,self._ctx)
if la_ == 1:
self.state = 373
self._errHandler.sync(self)
_la = self._input.LA(1)
if _la==73:
self.state = 372
self.subexpr()
self.state = 376
self._errHandler.sync(self)
_la = self._input.LA(1)
if _la==74:
self.state = 375
self.supexpr()
pass
elif la_ == 2:
self.state = 379
self._errHandler.sync(self)
_la = self._input.LA(1)
if _la==74:
self.state = 378
self.supexpr()
self.state = 382
self._errHandler.sync(self)
_la = self._input.LA(1)
if _la==73:
self.state = 381
self.subexpr()
pass
self.state = 391
self._errHandler.sync(self)
la_ = self._interp.adaptivePredict(self._input,41,self._ctx)
if la_ == 1:
self.state = 386
self.match(LaTeXParser.L_PAREN)
self.state = 387
self.func_arg()
self.state = 388
self.match(LaTeXParser.R_PAREN)
pass
elif la_ == 2:
self.state = 390
self.func_arg_noparens()
pass
pass
elif token in [77, 91]:
self.enterOuterAlt(localctx, 2)
self.state = 393
_la = self._input.LA(1)
if not(_la==77 or _la==91):
self._errHandler.recoverInline(self)
else:
self._errHandler.reportMatch(self)
self.consume()
self.state = 406
self._errHandler.sync(self)
la_ = self._interp.adaptivePredict(self._input,46,self._ctx)
if la_ == 1:
self.state = 395
self._errHandler.sync(self)
_la = self._input.LA(1)
if _la==73:
self.state = 394
self.subexpr()
self.state = 398
self._errHandler.sync(self)
_la = self._input.LA(1)
if _la==90:
self.state = 397
self.match(LaTeXParser.SINGLE_QUOTES)
pass
elif la_ == 2:
self.state = 401
self._errHandler.sync(self)
_la = self._input.LA(1)
if _la==90:
self.state = 400
self.match(LaTeXParser.SINGLE_QUOTES)
self.state = 404
self._errHandler.sync(self)
_la = self._input.LA(1)
if _la==73:
self.state = 403
self.subexpr()
pass
self.state = 408
self.match(LaTeXParser.L_PAREN)
self.state = 409
self.args()
self.state = 410
self.match(LaTeXParser.R_PAREN)
pass
elif token in [34]:
self.enterOuterAlt(localctx, 3)
self.state = 412
self.match(LaTeXParser.FUNC_INT)
self.state = 419
self._errHandler.sync(self)
token = self._input.LA(1)
if token in [73]:
self.state = 413
self.subexpr()
self.state = 414
self.supexpr()
pass
elif token in [74]:
self.state = 416
self.supexpr()
self.state = 417
self.subexpr()
pass
elif token in [15, 16, 19, 21, 23, 25, 27, 29, 30, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 63, 64, 68, 69, 70, 71, 72, 76, 77, 78, 91]:
pass
else:
pass
self.state = 427
self._errHandler.sync(self)
la_ = self._interp.adaptivePredict(self._input,49,self._ctx)
if la_ == 1:
self.state = 422
self._errHandler.sync(self)
la_ = self._interp.adaptivePredict(self._input,48,self._ctx)
if la_ == 1:
self.state = 421
self.additive(0)
self.state = 424
self.match(LaTeXParser.DIFFERENTIAL)
pass
elif la_ == 2:
self.state = 425
self.frac()
pass
elif la_ == 3:
self.state = 426
self.additive(0)
pass
pass
elif token in [63]:
self.enterOuterAlt(localctx, 4)
self.state = 429
self.match(LaTeXParser.FUNC_SQRT)
self.state = 434
self._errHandler.sync(self)
_la = self._input.LA(1)
if _la==25:
self.state = 430
self.match(LaTeXParser.L_BRACKET)
self.state = 431
localctx.root = self.expr()
self.state = 432
self.match(LaTeXParser.R_BRACKET)
self.state = 436
self.match(LaTeXParser.L_BRACE)
self.state = 437
localctx.base = self.expr()
self.state = 438
self.match(LaTeXParser.R_BRACE)
pass
elif token in [64]:
self.enterOuterAlt(localctx, 5)
self.state = 440
self.match(LaTeXParser.FUNC_OVERLINE)
self.state = 441
self.match(LaTeXParser.L_BRACE)
self.state = 442
localctx.base = self.expr()
self.state = 443
self.match(LaTeXParser.R_BRACE)
pass
elif token in [35, 36]:
self.enterOuterAlt(localctx, 6)
self.state = 445
_la = self._input.LA(1)
if not(_la==35 or _la==36):
self._errHandler.recoverInline(self)
else:
self._errHandler.reportMatch(self)
self.consume()
self.state = 452
self._errHandler.sync(self)
token = self._input.LA(1)
if token in [73]:
self.state = 446
self.subeq()
self.state = 447
self.supexpr()
pass
elif token in [74]:
self.state = 449
self.supexpr()
self.state = 450
self.subeq()
pass
else:
raise NoViableAltException(self)
self.state = 454
self.mp(0)
pass
elif token in [32]:
self.enterOuterAlt(localctx, 7)
self.state = 456
self.match(LaTeXParser.FUNC_LIM)
self.state = 457
self.limit_sub()
self.state = 458
self.mp(0)
pass
else:
raise NoViableAltException(self)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class ArgsContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def expr(self):
return self.getTypedRuleContext(LaTeXParser.ExprContext,0)
def args(self):
return self.getTypedRuleContext(LaTeXParser.ArgsContext,0)
def getRuleIndex(self):
return LaTeXParser.RULE_args
def args(self):
localctx = LaTeXParser.ArgsContext(self, self._ctx, self.state)
self.enterRule(localctx, 66, self.RULE_args)
try:
self.state = 467
self._errHandler.sync(self)
la_ = self._interp.adaptivePredict(self._input,53,self._ctx)
if la_ == 1:
self.enterOuterAlt(localctx, 1)
self.state = 462
self.expr()
self.state = 463
self.match(LaTeXParser.T__0)
self.state = 464
self.args()
pass
elif la_ == 2:
self.enterOuterAlt(localctx, 2)
self.state = 466
self.expr()
pass
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class Limit_subContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def UNDERSCORE(self):
return self.getToken(LaTeXParser.UNDERSCORE, 0)
def L_BRACE(self, i:int=None):
if i is None:
return self.getTokens(LaTeXParser.L_BRACE)
else:
return self.getToken(LaTeXParser.L_BRACE, i)
def LIM_APPROACH_SYM(self):
return self.getToken(LaTeXParser.LIM_APPROACH_SYM, 0)
def expr(self):
return self.getTypedRuleContext(LaTeXParser.ExprContext,0)
def R_BRACE(self, i:int=None):
if i is None:
return self.getTokens(LaTeXParser.R_BRACE)
else:
return self.getToken(LaTeXParser.R_BRACE, i)
def LETTER(self):
return self.getToken(LaTeXParser.LETTER, 0)
def SYMBOL(self):
return self.getToken(LaTeXParser.SYMBOL, 0)
def CARET(self):
return self.getToken(LaTeXParser.CARET, 0)
def ADD(self):
return self.getToken(LaTeXParser.ADD, 0)
def SUB(self):
return self.getToken(LaTeXParser.SUB, 0)
def getRuleIndex(self):
return LaTeXParser.RULE_limit_sub
def limit_sub(self):
localctx = LaTeXParser.Limit_subContext(self, self._ctx, self.state)
self.enterRule(localctx, 68, self.RULE_limit_sub)
self._la = 0 # Token type
try:
self.enterOuterAlt(localctx, 1)
self.state = 469
self.match(LaTeXParser.UNDERSCORE)
self.state = 470
self.match(LaTeXParser.L_BRACE)
self.state = 471
_la = self._input.LA(1)
if not(_la==77 or _la==91):
self._errHandler.recoverInline(self)
else:
self._errHandler.reportMatch(self)
self.consume()
self.state = 472
self.match(LaTeXParser.LIM_APPROACH_SYM)
self.state = 473
self.expr()
self.state = 482
self._errHandler.sync(self)
_la = self._input.LA(1)
if _la==74:
self.state = 474
self.match(LaTeXParser.CARET)
self.state = 480
self._errHandler.sync(self)
token = self._input.LA(1)
if token in [21]:
self.state = 475
self.match(LaTeXParser.L_BRACE)
self.state = 476
_la = self._input.LA(1)
if not(_la==15 or _la==16):
self._errHandler.recoverInline(self)
else:
self._errHandler.reportMatch(self)
self.consume()
self.state = 477
self.match(LaTeXParser.R_BRACE)
pass
elif token in [15]:
self.state = 478
self.match(LaTeXParser.ADD)
pass
elif token in [16]:
self.state = 479
self.match(LaTeXParser.SUB)
pass
else:
raise NoViableAltException(self)
self.state = 484
self.match(LaTeXParser.R_BRACE)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class Func_argContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def expr(self):
return self.getTypedRuleContext(LaTeXParser.ExprContext,0)
def func_arg(self):
return self.getTypedRuleContext(LaTeXParser.Func_argContext,0)
def getRuleIndex(self):
return LaTeXParser.RULE_func_arg
def func_arg(self):
localctx = LaTeXParser.Func_argContext(self, self._ctx, self.state)
self.enterRule(localctx, 70, self.RULE_func_arg)
try:
self.state = 491
self._errHandler.sync(self)
la_ = self._interp.adaptivePredict(self._input,56,self._ctx)
if la_ == 1:
self.enterOuterAlt(localctx, 1)
self.state = 486
self.expr()
pass
elif la_ == 2:
self.enterOuterAlt(localctx, 2)
self.state = 487
self.expr()
self.state = 488
self.match(LaTeXParser.T__0)
self.state = 489
self.func_arg()
pass
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class Func_arg_noparensContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def mp_nofunc(self):
return self.getTypedRuleContext(LaTeXParser.Mp_nofuncContext,0)
def getRuleIndex(self):
return LaTeXParser.RULE_func_arg_noparens
def func_arg_noparens(self):
localctx = LaTeXParser.Func_arg_noparensContext(self, self._ctx, self.state)
self.enterRule(localctx, 72, self.RULE_func_arg_noparens)
try:
self.enterOuterAlt(localctx, 1)
self.state = 493
self.mp_nofunc(0)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class SubexprContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def UNDERSCORE(self):
return self.getToken(LaTeXParser.UNDERSCORE, 0)
def atom(self):
return self.getTypedRuleContext(LaTeXParser.AtomContext,0)
def L_BRACE(self):
return self.getToken(LaTeXParser.L_BRACE, 0)
def expr(self):
return self.getTypedRuleContext(LaTeXParser.ExprContext,0)
def R_BRACE(self):
return self.getToken(LaTeXParser.R_BRACE, 0)
def getRuleIndex(self):
return LaTeXParser.RULE_subexpr
def subexpr(self):
localctx = LaTeXParser.SubexprContext(self, self._ctx, self.state)
self.enterRule(localctx, 74, self.RULE_subexpr)
try:
self.enterOuterAlt(localctx, 1)
self.state = 495
self.match(LaTeXParser.UNDERSCORE)
self.state = 501
self._errHandler.sync(self)
token = self._input.LA(1)
if token in [27, 29, 30, 68, 69, 70, 71, 72, 76, 77, 78, 91]:
self.state = 496
self.atom()
pass
elif token in [21]:
self.state = 497
self.match(LaTeXParser.L_BRACE)
self.state = 498
self.expr()
self.state = 499
self.match(LaTeXParser.R_BRACE)
pass
else:
raise NoViableAltException(self)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class SupexprContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def CARET(self):
return self.getToken(LaTeXParser.CARET, 0)
def atom(self):
return self.getTypedRuleContext(LaTeXParser.AtomContext,0)
def L_BRACE(self):
return self.getToken(LaTeXParser.L_BRACE, 0)
def expr(self):
return self.getTypedRuleContext(LaTeXParser.ExprContext,0)
def R_BRACE(self):
return self.getToken(LaTeXParser.R_BRACE, 0)
def getRuleIndex(self):
return LaTeXParser.RULE_supexpr
def supexpr(self):
localctx = LaTeXParser.SupexprContext(self, self._ctx, self.state)
self.enterRule(localctx, 76, self.RULE_supexpr)
try:
self.enterOuterAlt(localctx, 1)
self.state = 503
self.match(LaTeXParser.CARET)
self.state = 509
self._errHandler.sync(self)
token = self._input.LA(1)
if token in [27, 29, 30, 68, 69, 70, 71, 72, 76, 77, 78, 91]:
self.state = 504
self.atom()
pass
elif token in [21]:
self.state = 505
self.match(LaTeXParser.L_BRACE)
self.state = 506
self.expr()
self.state = 507
self.match(LaTeXParser.R_BRACE)
pass
else:
raise NoViableAltException(self)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class SubeqContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def UNDERSCORE(self):
return self.getToken(LaTeXParser.UNDERSCORE, 0)
def L_BRACE(self):
return self.getToken(LaTeXParser.L_BRACE, 0)
def equality(self):
return self.getTypedRuleContext(LaTeXParser.EqualityContext,0)
def R_BRACE(self):
return self.getToken(LaTeXParser.R_BRACE, 0)
def getRuleIndex(self):
return LaTeXParser.RULE_subeq
def subeq(self):
localctx = LaTeXParser.SubeqContext(self, self._ctx, self.state)
self.enterRule(localctx, 78, self.RULE_subeq)
try:
self.enterOuterAlt(localctx, 1)
self.state = 511
self.match(LaTeXParser.UNDERSCORE)
self.state = 512
self.match(LaTeXParser.L_BRACE)
self.state = 513
self.equality()
self.state = 514
self.match(LaTeXParser.R_BRACE)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
class SupeqContext(ParserRuleContext):
__slots__ = 'parser'
def __init__(self, parser, parent:ParserRuleContext=None, invokingState:int=-1):
super().__init__(parent, invokingState)
self.parser = parser
def UNDERSCORE(self):
return self.getToken(LaTeXParser.UNDERSCORE, 0)
def L_BRACE(self):
return self.getToken(LaTeXParser.L_BRACE, 0)
def equality(self):
return self.getTypedRuleContext(LaTeXParser.EqualityContext,0)
def R_BRACE(self):
return self.getToken(LaTeXParser.R_BRACE, 0)
def getRuleIndex(self):
return LaTeXParser.RULE_supeq
def supeq(self):
localctx = LaTeXParser.SupeqContext(self, self._ctx, self.state)
self.enterRule(localctx, 80, self.RULE_supeq)
try:
self.enterOuterAlt(localctx, 1)
self.state = 516
self.match(LaTeXParser.UNDERSCORE)
self.state = 517
self.match(LaTeXParser.L_BRACE)
self.state = 518
self.equality()
self.state = 519
self.match(LaTeXParser.R_BRACE)
except RecognitionException as re:
localctx.exception = re
self._errHandler.reportError(self, re)
self._errHandler.recover(self, re)
finally:
self.exitRule()
return localctx
def sempred(self, localctx:RuleContext, ruleIndex:int, predIndex:int):
if self._predicates == None:
self._predicates = dict()
self._predicates[1] = self.relation_sempred
self._predicates[4] = self.additive_sempred
self._predicates[5] = self.mp_sempred
self._predicates[6] = self.mp_nofunc_sempred
self._predicates[15] = self.exp_sempred
self._predicates[16] = self.exp_nofunc_sempred
pred = self._predicates.get(ruleIndex, None)
if pred is None:
raise Exception("No predicate with index:" + str(ruleIndex))
else:
return pred(localctx, predIndex)
def relation_sempred(self, localctx:RelationContext, predIndex:int):
if predIndex == 0:
return self.precpred(self._ctx, 2)
def additive_sempred(self, localctx:AdditiveContext, predIndex:int):
if predIndex == 1:
return self.precpred(self._ctx, 2)
def mp_sempred(self, localctx:MpContext, predIndex:int):
if predIndex == 2:
return self.precpred(self._ctx, 2)
def mp_nofunc_sempred(self, localctx:Mp_nofuncContext, predIndex:int):
if predIndex == 3:
return self.precpred(self._ctx, 2)
def exp_sempred(self, localctx:ExpContext, predIndex:int):
if predIndex == 4:
return self.precpred(self._ctx, 2)
def exp_nofunc_sempred(self, localctx:Exp_nofuncContext, predIndex:int):
if predIndex == 5:
return self.precpred(self._ctx, 2)
|
b81a72db4dfb4f56c2c59b22168200cc742bbb6622d8e9bc3c50ed742ab935ab | """Abstract tensor product."""
from sympy.core.add import Add
from sympy.core.expr import Expr
from sympy.core.mul import Mul
from sympy.core.power import Pow
from sympy.core.sympify import sympify
from sympy.matrices.dense import MutableDenseMatrix as Matrix
from sympy.printing.pretty.stringpict import prettyForm
from sympy.physics.quantum.qexpr import QuantumError
from sympy.physics.quantum.dagger import Dagger
from sympy.physics.quantum.commutator import Commutator
from sympy.physics.quantum.anticommutator import AntiCommutator
from sympy.physics.quantum.state import Ket, Bra
from sympy.physics.quantum.matrixutils import (
numpy_ndarray,
scipy_sparse_matrix,
matrix_tensor_product
)
from sympy.physics.quantum.trace import Tr
__all__ = [
'TensorProduct',
'tensor_product_simp'
]
#-----------------------------------------------------------------------------
# Tensor product
#-----------------------------------------------------------------------------
_combined_printing = False
def combined_tensor_printing(combined):
"""Set flag controlling whether tensor products of states should be
printed as a combined bra/ket or as an explicit tensor product of different
bra/kets. This is a global setting for all TensorProduct class instances.
Parameters
----------
combine : bool
When true, tensor product states are combined into one ket/bra, and
when false explicit tensor product notation is used between each
ket/bra.
"""
global _combined_printing
_combined_printing = combined
class TensorProduct(Expr):
"""The tensor product of two or more arguments.
For matrices, this uses ``matrix_tensor_product`` to compute the Kronecker
or tensor product matrix. For other objects a symbolic ``TensorProduct``
instance is returned. The tensor product is a non-commutative
multiplication that is used primarily with operators and states in quantum
mechanics.
Currently, the tensor product distinguishes between commutative and
non-commutative arguments. Commutative arguments are assumed to be scalars
and are pulled out in front of the ``TensorProduct``. Non-commutative
arguments remain in the resulting ``TensorProduct``.
Parameters
==========
args : tuple
A sequence of the objects to take the tensor product of.
Examples
========
Start with a simple tensor product of SymPy matrices::
>>> from sympy import Matrix
>>> from sympy.physics.quantum import TensorProduct
>>> m1 = Matrix([[1,2],[3,4]])
>>> m2 = Matrix([[1,0],[0,1]])
>>> TensorProduct(m1, m2)
Matrix([
[1, 0, 2, 0],
[0, 1, 0, 2],
[3, 0, 4, 0],
[0, 3, 0, 4]])
>>> TensorProduct(m2, m1)
Matrix([
[1, 2, 0, 0],
[3, 4, 0, 0],
[0, 0, 1, 2],
[0, 0, 3, 4]])
We can also construct tensor products of non-commutative symbols:
>>> from sympy import Symbol
>>> A = Symbol('A',commutative=False)
>>> B = Symbol('B',commutative=False)
>>> tp = TensorProduct(A, B)
>>> tp
AxB
We can take the dagger of a tensor product (note the order does NOT reverse
like the dagger of a normal product):
>>> from sympy.physics.quantum import Dagger
>>> Dagger(tp)
Dagger(A)xDagger(B)
Expand can be used to distribute a tensor product across addition:
>>> C = Symbol('C',commutative=False)
>>> tp = TensorProduct(A+B,C)
>>> tp
(A + B)xC
>>> tp.expand(tensorproduct=True)
AxC + BxC
"""
is_commutative = False
def __new__(cls, *args):
if isinstance(args[0], (Matrix, numpy_ndarray, scipy_sparse_matrix)):
return matrix_tensor_product(*args)
c_part, new_args = cls.flatten(sympify(args))
c_part = Mul(*c_part)
if len(new_args) == 0:
return c_part
elif len(new_args) == 1:
return c_part * new_args[0]
else:
tp = Expr.__new__(cls, *new_args)
return c_part * tp
@classmethod
def flatten(cls, args):
# TODO: disallow nested TensorProducts.
c_part = []
nc_parts = []
for arg in args:
cp, ncp = arg.args_cnc()
c_part.extend(list(cp))
nc_parts.append(Mul._from_args(ncp))
return c_part, nc_parts
def _eval_adjoint(self):
return TensorProduct(*[Dagger(i) for i in self.args])
def _eval_rewrite(self, rule, args, **hints):
return TensorProduct(*args).expand(tensorproduct=True)
def _sympystr(self, printer, *args):
length = len(self.args)
s = ''
for i in range(length):
if isinstance(self.args[i], (Add, Pow, Mul)):
s = s + '('
s = s + printer._print(self.args[i])
if isinstance(self.args[i], (Add, Pow, Mul)):
s = s + ')'
if i != length - 1:
s = s + 'x'
return s
def _pretty(self, printer, *args):
if (_combined_printing and
(all(isinstance(arg, Ket) for arg in self.args) or
all(isinstance(arg, Bra) for arg in self.args))):
length = len(self.args)
pform = printer._print('', *args)
for i in range(length):
next_pform = printer._print('', *args)
length_i = len(self.args[i].args)
for j in range(length_i):
part_pform = printer._print(self.args[i].args[j], *args)
next_pform = prettyForm(*next_pform.right(part_pform))
if j != length_i - 1:
next_pform = prettyForm(*next_pform.right(', '))
if len(self.args[i].args) > 1:
next_pform = prettyForm(
*next_pform.parens(left='{', right='}'))
pform = prettyForm(*pform.right(next_pform))
if i != length - 1:
pform = prettyForm(*pform.right(',' + ' '))
pform = prettyForm(*pform.left(self.args[0].lbracket))
pform = prettyForm(*pform.right(self.args[0].rbracket))
return pform
length = len(self.args)
pform = printer._print('', *args)
for i in range(length):
next_pform = printer._print(self.args[i], *args)
if isinstance(self.args[i], (Add, Mul)):
next_pform = prettyForm(
*next_pform.parens(left='(', right=')')
)
pform = prettyForm(*pform.right(next_pform))
if i != length - 1:
if printer._use_unicode:
pform = prettyForm(*pform.right('\N{N-ARY CIRCLED TIMES OPERATOR}' + ' '))
else:
pform = prettyForm(*pform.right('x' + ' '))
return pform
def _latex(self, printer, *args):
if (_combined_printing and
(all(isinstance(arg, Ket) for arg in self.args) or
all(isinstance(arg, Bra) for arg in self.args))):
def _label_wrap(label, nlabels):
return label if nlabels == 1 else r"\left\{%s\right\}" % label
s = r", ".join([_label_wrap(arg._print_label_latex(printer, *args),
len(arg.args)) for arg in self.args])
return r"{%s%s%s}" % (self.args[0].lbracket_latex, s,
self.args[0].rbracket_latex)
length = len(self.args)
s = ''
for i in range(length):
if isinstance(self.args[i], (Add, Mul)):
s = s + '\\left('
# The extra {} brackets are needed to get matplotlib's latex
# rendered to render this properly.
s = s + '{' + printer._print(self.args[i], *args) + '}'
if isinstance(self.args[i], (Add, Mul)):
s = s + '\\right)'
if i != length - 1:
s = s + '\\otimes '
return s
def doit(self, **hints):
return TensorProduct(*[item.doit(**hints) for item in self.args])
def _eval_expand_tensorproduct(self, **hints):
"""Distribute TensorProducts across addition."""
args = self.args
add_args = []
for i in range(len(args)):
if isinstance(args[i], Add):
for aa in args[i].args:
tp = TensorProduct(*args[:i] + (aa,) + args[i + 1:])
c_part, nc_part = tp.args_cnc()
# Check for TensorProduct object: is the one object in nc_part, if any:
# (Note: any other object type to be expanded must be added here)
if len(nc_part) == 1 and isinstance(nc_part[0], TensorProduct):
nc_part = (nc_part[0]._eval_expand_tensorproduct(), )
add_args.append(Mul(*c_part)*Mul(*nc_part))
break
if add_args:
return Add(*add_args)
else:
return self
def _eval_trace(self, **kwargs):
indices = kwargs.get('indices', None)
exp = tensor_product_simp(self)
if indices is None or len(indices) == 0:
return Mul(*[Tr(arg).doit() for arg in exp.args])
else:
return Mul(*[Tr(value).doit() if idx in indices else value
for idx, value in enumerate(exp.args)])
def tensor_product_simp_Mul(e):
"""Simplify a Mul with TensorProducts.
Current the main use of this is to simplify a ``Mul`` of ``TensorProduct``s
to a ``TensorProduct`` of ``Muls``. It currently only works for relatively
simple cases where the initial ``Mul`` only has scalars and raw
``TensorProduct``s, not ``Add``, ``Pow``, ``Commutator``s of
``TensorProduct``s.
Parameters
==========
e : Expr
A ``Mul`` of ``TensorProduct``s to be simplified.
Returns
=======
e : Expr
A ``TensorProduct`` of ``Mul``s.
Examples
========
This is an example of the type of simplification that this function
performs::
>>> from sympy.physics.quantum.tensorproduct import \
tensor_product_simp_Mul, TensorProduct
>>> from sympy import Symbol
>>> A = Symbol('A',commutative=False)
>>> B = Symbol('B',commutative=False)
>>> C = Symbol('C',commutative=False)
>>> D = Symbol('D',commutative=False)
>>> e = TensorProduct(A,B)*TensorProduct(C,D)
>>> e
AxB*CxD
>>> tensor_product_simp_Mul(e)
(A*C)x(B*D)
"""
# TODO: This won't work with Muls that have other composites of
# TensorProducts, like an Add, Commutator, etc.
# TODO: This only works for the equivalent of single Qbit gates.
if not isinstance(e, Mul):
return e
c_part, nc_part = e.args_cnc()
n_nc = len(nc_part)
if n_nc == 0:
return e
elif n_nc == 1:
if isinstance(nc_part[0], Pow):
return Mul(*c_part) * tensor_product_simp_Pow(nc_part[0])
return e
elif e.has(TensorProduct):
current = nc_part[0]
if not isinstance(current, TensorProduct):
if isinstance(current, Pow):
if isinstance(current.base, TensorProduct):
current = tensor_product_simp_Pow(current)
else:
raise TypeError('TensorProduct expected, got: %r' % current)
n_terms = len(current.args)
new_args = list(current.args)
for next in nc_part[1:]:
# TODO: check the hilbert spaces of next and current here.
if isinstance(next, TensorProduct):
if n_terms != len(next.args):
raise QuantumError(
'TensorProducts of different lengths: %r and %r' %
(current, next)
)
for i in range(len(new_args)):
new_args[i] = new_args[i] * next.args[i]
else:
if isinstance(next, Pow):
if isinstance(next.base, TensorProduct):
new_tp = tensor_product_simp_Pow(next)
for i in range(len(new_args)):
new_args[i] = new_args[i] * new_tp.args[i]
else:
raise TypeError('TensorProduct expected, got: %r' % next)
else:
raise TypeError('TensorProduct expected, got: %r' % next)
current = next
return Mul(*c_part) * TensorProduct(*new_args)
elif e.has(Pow):
new_args = [ tensor_product_simp_Pow(nc) for nc in nc_part ]
return tensor_product_simp_Mul(Mul(*c_part) * TensorProduct(*new_args))
else:
return e
def tensor_product_simp_Pow(e):
"""Evaluates ``Pow`` expressions whose base is ``TensorProduct``"""
if not isinstance(e, Pow):
return e
if isinstance(e.base, TensorProduct):
return TensorProduct(*[ b**e.exp for b in e.base.args])
else:
return e
def tensor_product_simp(e, **hints):
"""Try to simplify and combine TensorProducts.
In general this will try to pull expressions inside of ``TensorProducts``.
It currently only works for relatively simple cases where the products have
only scalars, raw ``TensorProducts``, not ``Add``, ``Pow``, ``Commutators``
of ``TensorProducts``. It is best to see what it does by showing examples.
Examples
========
>>> from sympy.physics.quantum import tensor_product_simp
>>> from sympy.physics.quantum import TensorProduct
>>> from sympy import Symbol
>>> A = Symbol('A',commutative=False)
>>> B = Symbol('B',commutative=False)
>>> C = Symbol('C',commutative=False)
>>> D = Symbol('D',commutative=False)
First see what happens to products of tensor products:
>>> e = TensorProduct(A,B)*TensorProduct(C,D)
>>> e
AxB*CxD
>>> tensor_product_simp(e)
(A*C)x(B*D)
This is the core logic of this function, and it works inside, powers, sums,
commutators and anticommutators as well:
>>> tensor_product_simp(e**2)
(A*C)x(B*D)**2
"""
if isinstance(e, Add):
return Add(*[tensor_product_simp(arg) for arg in e.args])
elif isinstance(e, Pow):
if isinstance(e.base, TensorProduct):
return tensor_product_simp_Pow(e)
else:
return tensor_product_simp(e.base) ** e.exp
elif isinstance(e, Mul):
return tensor_product_simp_Mul(e)
elif isinstance(e, Commutator):
return Commutator(*[tensor_product_simp(arg) for arg in e.args])
elif isinstance(e, AntiCommutator):
return AntiCommutator(*[tensor_product_simp(arg) for arg in e.args])
else:
return e
|
acbbae77bbde026280d0e44fda881a9f8332746013674a9a458fa59de8d51314 | """Dirac notation for states."""
from sympy.core.cache import cacheit
from sympy.core.containers import Tuple
from sympy.core.expr import Expr
from sympy.core.function import Function
from sympy.core.numbers import oo
from sympy.core.singleton import S
from sympy.functions.elementary.complexes import conjugate
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.integrals.integrals import integrate
from sympy.printing.pretty.stringpict import stringPict
from sympy.physics.quantum.qexpr import QExpr, dispatch_method
__all__ = [
'KetBase',
'BraBase',
'StateBase',
'State',
'Ket',
'Bra',
'TimeDepState',
'TimeDepBra',
'TimeDepKet',
'OrthogonalKet',
'OrthogonalBra',
'OrthogonalState',
'Wavefunction'
]
#-----------------------------------------------------------------------------
# States, bras and kets.
#-----------------------------------------------------------------------------
# ASCII brackets
_lbracket = "<"
_rbracket = ">"
_straight_bracket = "|"
# Unicode brackets
# MATHEMATICAL ANGLE BRACKETS
_lbracket_ucode = "\N{MATHEMATICAL LEFT ANGLE BRACKET}"
_rbracket_ucode = "\N{MATHEMATICAL RIGHT ANGLE BRACKET}"
# LIGHT VERTICAL BAR
_straight_bracket_ucode = "\N{LIGHT VERTICAL BAR}"
# Other options for unicode printing of <, > and | for Dirac notation.
# LEFT-POINTING ANGLE BRACKET
# _lbracket = "\u2329"
# _rbracket = "\u232A"
# LEFT ANGLE BRACKET
# _lbracket = "\u3008"
# _rbracket = "\u3009"
# VERTICAL LINE
# _straight_bracket = "\u007C"
class StateBase(QExpr):
"""Abstract base class for general abstract states in quantum mechanics.
All other state classes defined will need to inherit from this class. It
carries the basic structure for all other states such as dual, _eval_adjoint
and label.
This is an abstract base class and you should not instantiate it directly,
instead use State.
"""
@classmethod
def _operators_to_state(self, ops, **options):
""" Returns the eigenstate instance for the passed operators.
This method should be overridden in subclasses. It will handle being
passed either an Operator instance or set of Operator instances. It
should return the corresponding state INSTANCE or simply raise a
NotImplementedError. See cartesian.py for an example.
"""
raise NotImplementedError("Cannot map operators to states in this class. Method not implemented!")
def _state_to_operators(self, op_classes, **options):
""" Returns the operators which this state instance is an eigenstate
of.
This method should be overridden in subclasses. It will be called on
state instances and be passed the operator classes that we wish to make
into instances. The state instance will then transform the classes
appropriately, or raise a NotImplementedError if it cannot return
operator instances. See cartesian.py for examples,
"""
raise NotImplementedError(
"Cannot map this state to operators. Method not implemented!")
@property
def operators(self):
"""Return the operator(s) that this state is an eigenstate of"""
from .operatorset import state_to_operators # import internally to avoid circular import errors
return state_to_operators(self)
def _enumerate_state(self, num_states, **options):
raise NotImplementedError("Cannot enumerate this state!")
def _represent_default_basis(self, **options):
return self._represent(basis=self.operators)
#-------------------------------------------------------------------------
# Dagger/dual
#-------------------------------------------------------------------------
@property
def dual(self):
"""Return the dual state of this one."""
return self.dual_class()._new_rawargs(self.hilbert_space, *self.args)
@classmethod
def dual_class(self):
"""Return the class used to construct the dual."""
raise NotImplementedError(
'dual_class must be implemented in a subclass'
)
def _eval_adjoint(self):
"""Compute the dagger of this state using the dual."""
return self.dual
#-------------------------------------------------------------------------
# Printing
#-------------------------------------------------------------------------
def _pretty_brackets(self, height, use_unicode=True):
# Return pretty printed brackets for the state
# Ideally, this could be done by pform.parens but it does not support the angled < and >
# Setup for unicode vs ascii
if use_unicode:
lbracket, rbracket = getattr(self, 'lbracket_ucode', ""), getattr(self, 'rbracket_ucode', "")
slash, bslash, vert = '\N{BOX DRAWINGS LIGHT DIAGONAL UPPER RIGHT TO LOWER LEFT}', \
'\N{BOX DRAWINGS LIGHT DIAGONAL UPPER LEFT TO LOWER RIGHT}', \
'\N{BOX DRAWINGS LIGHT VERTICAL}'
else:
lbracket, rbracket = getattr(self, 'lbracket', ""), getattr(self, 'rbracket', "")
slash, bslash, vert = '/', '\\', '|'
# If height is 1, just return brackets
if height == 1:
return stringPict(lbracket), stringPict(rbracket)
# Make height even
height += (height % 2)
brackets = []
for bracket in lbracket, rbracket:
# Create left bracket
if bracket in {_lbracket, _lbracket_ucode}:
bracket_args = [ ' ' * (height//2 - i - 1) +
slash for i in range(height // 2)]
bracket_args.extend(
[' ' * i + bslash for i in range(height // 2)])
# Create right bracket
elif bracket in {_rbracket, _rbracket_ucode}:
bracket_args = [ ' ' * i + bslash for i in range(height // 2)]
bracket_args.extend([ ' ' * (
height//2 - i - 1) + slash for i in range(height // 2)])
# Create straight bracket
elif bracket in {_straight_bracket, _straight_bracket_ucode}:
bracket_args = [vert] * height
else:
raise ValueError(bracket)
brackets.append(
stringPict('\n'.join(bracket_args), baseline=height//2))
return brackets
def _sympystr(self, printer, *args):
contents = self._print_contents(printer, *args)
return '%s%s%s' % (getattr(self, 'lbracket', ""), contents, getattr(self, 'rbracket', ""))
def _pretty(self, printer, *args):
from sympy.printing.pretty.stringpict import prettyForm
# Get brackets
pform = self._print_contents_pretty(printer, *args)
lbracket, rbracket = self._pretty_brackets(
pform.height(), printer._use_unicode)
# Put together state
pform = prettyForm(*pform.left(lbracket))
pform = prettyForm(*pform.right(rbracket))
return pform
def _latex(self, printer, *args):
contents = self._print_contents_latex(printer, *args)
# The extra {} brackets are needed to get matplotlib's latex
# rendered to render this properly.
return '{%s%s%s}' % (getattr(self, 'lbracket_latex', ""), contents, getattr(self, 'rbracket_latex', ""))
class KetBase(StateBase):
"""Base class for Kets.
This class defines the dual property and the brackets for printing. This is
an abstract base class and you should not instantiate it directly, instead
use Ket.
"""
lbracket = _straight_bracket
rbracket = _rbracket
lbracket_ucode = _straight_bracket_ucode
rbracket_ucode = _rbracket_ucode
lbracket_latex = r'\left|'
rbracket_latex = r'\right\rangle '
@classmethod
def default_args(self):
return ("psi",)
@classmethod
def dual_class(self):
return BraBase
def __mul__(self, other):
"""KetBase*other"""
from sympy.physics.quantum.operator import OuterProduct
if isinstance(other, BraBase):
return OuterProduct(self, other)
else:
return Expr.__mul__(self, other)
def __rmul__(self, other):
"""other*KetBase"""
from sympy.physics.quantum.innerproduct import InnerProduct
if isinstance(other, BraBase):
return InnerProduct(other, self)
else:
return Expr.__rmul__(self, other)
#-------------------------------------------------------------------------
# _eval_* methods
#-------------------------------------------------------------------------
def _eval_innerproduct(self, bra, **hints):
"""Evaluate the inner product between this ket and a bra.
This is called to compute <bra|ket>, where the ket is ``self``.
This method will dispatch to sub-methods having the format::
``def _eval_innerproduct_BraClass(self, **hints):``
Subclasses should define these methods (one for each BraClass) to
teach the ket how to take inner products with bras.
"""
return dispatch_method(self, '_eval_innerproduct', bra, **hints)
def _apply_from_right_to(self, op, **options):
"""Apply an Operator to this Ket as Operator*Ket
This method will dispatch to methods having the format::
``def _apply_from_right_to_OperatorName(op, **options):``
Subclasses should define these methods (one for each OperatorName) to
teach the Ket how to implement OperatorName*Ket
Parameters
==========
op : Operator
The Operator that is acting on the Ket as op*Ket
options : dict
A dict of key/value pairs that control how the operator is applied
to the Ket.
"""
return dispatch_method(self, '_apply_from_right_to', op, **options)
class BraBase(StateBase):
"""Base class for Bras.
This class defines the dual property and the brackets for printing. This
is an abstract base class and you should not instantiate it directly,
instead use Bra.
"""
lbracket = _lbracket
rbracket = _straight_bracket
lbracket_ucode = _lbracket_ucode
rbracket_ucode = _straight_bracket_ucode
lbracket_latex = r'\left\langle '
rbracket_latex = r'\right|'
@classmethod
def _operators_to_state(self, ops, **options):
state = self.dual_class()._operators_to_state(ops, **options)
return state.dual
def _state_to_operators(self, op_classes, **options):
return self.dual._state_to_operators(op_classes, **options)
def _enumerate_state(self, num_states, **options):
dual_states = self.dual._enumerate_state(num_states, **options)
return [x.dual for x in dual_states]
@classmethod
def default_args(self):
return self.dual_class().default_args()
@classmethod
def dual_class(self):
return KetBase
def __mul__(self, other):
"""BraBase*other"""
from sympy.physics.quantum.innerproduct import InnerProduct
if isinstance(other, KetBase):
return InnerProduct(self, other)
else:
return Expr.__mul__(self, other)
def __rmul__(self, other):
"""other*BraBase"""
from sympy.physics.quantum.operator import OuterProduct
if isinstance(other, KetBase):
return OuterProduct(other, self)
else:
return Expr.__rmul__(self, other)
def _represent(self, **options):
"""A default represent that uses the Ket's version."""
from sympy.physics.quantum.dagger import Dagger
return Dagger(self.dual._represent(**options))
class State(StateBase):
"""General abstract quantum state used as a base class for Ket and Bra."""
pass
class Ket(State, KetBase):
"""A general time-independent Ket in quantum mechanics.
Inherits from State and KetBase. This class should be used as the base
class for all physical, time-independent Kets in a system. This class
and its subclasses will be the main classes that users will use for
expressing Kets in Dirac notation [1]_.
Parameters
==========
args : tuple
The list of numbers or parameters that uniquely specify the
ket. This will usually be its symbol or its quantum numbers. For
time-dependent state, this will include the time.
Examples
========
Create a simple Ket and looking at its properties::
>>> from sympy.physics.quantum import Ket
>>> from sympy import symbols, I
>>> k = Ket('psi')
>>> k
|psi>
>>> k.hilbert_space
H
>>> k.is_commutative
False
>>> k.label
(psi,)
Ket's know about their associated bra::
>>> k.dual
<psi|
>>> k.dual_class()
<class 'sympy.physics.quantum.state.Bra'>
Take a linear combination of two kets::
>>> k0 = Ket(0)
>>> k1 = Ket(1)
>>> 2*I*k0 - 4*k1
2*I*|0> - 4*|1>
Compound labels are passed as tuples::
>>> n, m = symbols('n,m')
>>> k = Ket(n,m)
>>> k
|nm>
References
==========
.. [1] https://en.wikipedia.org/wiki/Bra-ket_notation
"""
@classmethod
def dual_class(self):
return Bra
class Bra(State, BraBase):
"""A general time-independent Bra in quantum mechanics.
Inherits from State and BraBase. A Bra is the dual of a Ket [1]_. This
class and its subclasses will be the main classes that users will use for
expressing Bras in Dirac notation.
Parameters
==========
args : tuple
The list of numbers or parameters that uniquely specify the
ket. This will usually be its symbol or its quantum numbers. For
time-dependent state, this will include the time.
Examples
========
Create a simple Bra and look at its properties::
>>> from sympy.physics.quantum import Bra
>>> from sympy import symbols, I
>>> b = Bra('psi')
>>> b
<psi|
>>> b.hilbert_space
H
>>> b.is_commutative
False
Bra's know about their dual Ket's::
>>> b.dual
|psi>
>>> b.dual_class()
<class 'sympy.physics.quantum.state.Ket'>
Like Kets, Bras can have compound labels and be manipulated in a similar
manner::
>>> n, m = symbols('n,m')
>>> b = Bra(n,m) - I*Bra(m,n)
>>> b
-I*<mn| + <nm|
Symbols in a Bra can be substituted using ``.subs``::
>>> b.subs(n,m)
<mm| - I*<mm|
References
==========
.. [1] https://en.wikipedia.org/wiki/Bra-ket_notation
"""
@classmethod
def dual_class(self):
return Ket
#-----------------------------------------------------------------------------
# Time dependent states, bras and kets.
#-----------------------------------------------------------------------------
class TimeDepState(StateBase):
"""Base class for a general time-dependent quantum state.
This class is used as a base class for any time-dependent state. The main
difference between this class and the time-independent state is that this
class takes a second argument that is the time in addition to the usual
label argument.
Parameters
==========
args : tuple
The list of numbers or parameters that uniquely specify the ket. This
will usually be its symbol or its quantum numbers. For time-dependent
state, this will include the time as the final argument.
"""
#-------------------------------------------------------------------------
# Initialization
#-------------------------------------------------------------------------
@classmethod
def default_args(self):
return ("psi", "t")
#-------------------------------------------------------------------------
# Properties
#-------------------------------------------------------------------------
@property
def label(self):
"""The label of the state."""
return self.args[:-1]
@property
def time(self):
"""The time of the state."""
return self.args[-1]
#-------------------------------------------------------------------------
# Printing
#-------------------------------------------------------------------------
def _print_time(self, printer, *args):
return printer._print(self.time, *args)
_print_time_repr = _print_time
_print_time_latex = _print_time
def _print_time_pretty(self, printer, *args):
pform = printer._print(self.time, *args)
return pform
def _print_contents(self, printer, *args):
label = self._print_label(printer, *args)
time = self._print_time(printer, *args)
return '%s;%s' % (label, time)
def _print_label_repr(self, printer, *args):
label = self._print_sequence(self.label, ',', printer, *args)
time = self._print_time_repr(printer, *args)
return '%s,%s' % (label, time)
def _print_contents_pretty(self, printer, *args):
label = self._print_label_pretty(printer, *args)
time = self._print_time_pretty(printer, *args)
return printer._print_seq((label, time), delimiter=';')
def _print_contents_latex(self, printer, *args):
label = self._print_sequence(
self.label, self._label_separator, printer, *args)
time = self._print_time_latex(printer, *args)
return '%s;%s' % (label, time)
class TimeDepKet(TimeDepState, KetBase):
"""General time-dependent Ket in quantum mechanics.
This inherits from ``TimeDepState`` and ``KetBase`` and is the main class
that should be used for Kets that vary with time. Its dual is a
``TimeDepBra``.
Parameters
==========
args : tuple
The list of numbers or parameters that uniquely specify the ket. This
will usually be its symbol or its quantum numbers. For time-dependent
state, this will include the time as the final argument.
Examples
========
Create a TimeDepKet and look at its attributes::
>>> from sympy.physics.quantum import TimeDepKet
>>> k = TimeDepKet('psi', 't')
>>> k
|psi;t>
>>> k.time
t
>>> k.label
(psi,)
>>> k.hilbert_space
H
TimeDepKets know about their dual bra::
>>> k.dual
<psi;t|
>>> k.dual_class()
<class 'sympy.physics.quantum.state.TimeDepBra'>
"""
@classmethod
def dual_class(self):
return TimeDepBra
class TimeDepBra(TimeDepState, BraBase):
"""General time-dependent Bra in quantum mechanics.
This inherits from TimeDepState and BraBase and is the main class that
should be used for Bras that vary with time. Its dual is a TimeDepBra.
Parameters
==========
args : tuple
The list of numbers or parameters that uniquely specify the ket. This
will usually be its symbol or its quantum numbers. For time-dependent
state, this will include the time as the final argument.
Examples
========
>>> from sympy.physics.quantum import TimeDepBra
>>> b = TimeDepBra('psi', 't')
>>> b
<psi;t|
>>> b.time
t
>>> b.label
(psi,)
>>> b.hilbert_space
H
>>> b.dual
|psi;t>
"""
@classmethod
def dual_class(self):
return TimeDepKet
class OrthogonalState(State, StateBase):
"""General abstract quantum state used as a base class for Ket and Bra."""
pass
class OrthogonalKet(OrthogonalState, KetBase):
"""Orthogonal Ket in quantum mechanics.
The inner product of two states with different labels will give zero,
states with the same label will give one.
>>> from sympy.physics.quantum import OrthogonalBra, OrthogonalKet
>>> from sympy.abc import m, n
>>> (OrthogonalBra(n)*OrthogonalKet(n)).doit()
1
>>> (OrthogonalBra(n)*OrthogonalKet(n+1)).doit()
0
>>> (OrthogonalBra(n)*OrthogonalKet(m)).doit()
<n|m>
"""
@classmethod
def dual_class(self):
return OrthogonalBra
def _eval_innerproduct(self, bra, **hints):
if len(self.args) != len(bra.args):
raise ValueError('Cannot multiply a ket that has a different number of labels.')
for arg, bra_arg in zip(self.args, bra.args):
diff = arg - bra_arg
diff = diff.expand()
is_zero = diff.is_zero
if is_zero is False:
return 0
if is_zero is None:
return None
return 1
class OrthogonalBra(OrthogonalState, BraBase):
"""Orthogonal Bra in quantum mechanics.
"""
@classmethod
def dual_class(self):
return OrthogonalKet
class Wavefunction(Function):
"""Class for representations in continuous bases
This class takes an expression and coordinates in its constructor. It can
be used to easily calculate normalizations and probabilities.
Parameters
==========
expr : Expr
The expression representing the functional form of the w.f.
coords : Symbol or tuple
The coordinates to be integrated over, and their bounds
Examples
========
Particle in a box, specifying bounds in the more primitive way of using
Piecewise:
>>> from sympy import Symbol, Piecewise, pi, N
>>> from sympy.functions import sqrt, sin
>>> from sympy.physics.quantum.state import Wavefunction
>>> x = Symbol('x', real=True)
>>> n = 1
>>> L = 1
>>> g = Piecewise((0, x < 0), (0, x > L), (sqrt(2//L)*sin(n*pi*x/L), True))
>>> f = Wavefunction(g, x)
>>> f.norm
1
>>> f.is_normalized
True
>>> p = f.prob()
>>> p(0)
0
>>> p(L)
0
>>> p(0.5)
2
>>> p(0.85*L)
2*sin(0.85*pi)**2
>>> N(p(0.85*L))
0.412214747707527
Additionally, you can specify the bounds of the function and the indices in
a more compact way:
>>> from sympy import symbols, pi, diff
>>> from sympy.functions import sqrt, sin
>>> from sympy.physics.quantum.state import Wavefunction
>>> x, L = symbols('x,L', positive=True)
>>> n = symbols('n', integer=True, positive=True)
>>> g = sqrt(2/L)*sin(n*pi*x/L)
>>> f = Wavefunction(g, (x, 0, L))
>>> f.norm
1
>>> f(L+1)
0
>>> f(L-1)
sqrt(2)*sin(pi*n*(L - 1)/L)/sqrt(L)
>>> f(-1)
0
>>> f(0.85)
sqrt(2)*sin(0.85*pi*n/L)/sqrt(L)
>>> f(0.85, n=1, L=1)
sqrt(2)*sin(0.85*pi)
>>> f.is_commutative
False
All arguments are automatically sympified, so you can define the variables
as strings rather than symbols:
>>> expr = x**2
>>> f = Wavefunction(expr, 'x')
>>> type(f.variables[0])
<class 'sympy.core.symbol.Symbol'>
Derivatives of Wavefunctions will return Wavefunctions:
>>> diff(f, x)
Wavefunction(2*x, x)
"""
#Any passed tuples for coordinates and their bounds need to be
#converted to Tuples before Function's constructor is called, to
#avoid errors from calling is_Float in the constructor
def __new__(cls, *args, **options):
new_args = [None for i in args]
ct = 0
for arg in args:
if isinstance(arg, tuple):
new_args[ct] = Tuple(*arg)
else:
new_args[ct] = arg
ct += 1
return super().__new__(cls, *new_args, **options)
def __call__(self, *args, **options):
var = self.variables
if len(args) != len(var):
raise NotImplementedError(
"Incorrect number of arguments to function!")
ct = 0
#If the passed value is outside the specified bounds, return 0
for v in var:
lower, upper = self.limits[v]
#Do the comparison to limits only if the passed symbol is actually
#a symbol present in the limits;
#Had problems with a comparison of x > L
if isinstance(args[ct], Expr) and \
not (lower in args[ct].free_symbols
or upper in args[ct].free_symbols):
continue
if (args[ct] < lower) == True or (args[ct] > upper) == True:
return S.Zero
ct += 1
expr = self.expr
#Allows user to make a call like f(2, 4, m=1, n=1)
for symbol in list(expr.free_symbols):
if str(symbol) in options.keys():
val = options[str(symbol)]
expr = expr.subs(symbol, val)
return expr.subs(zip(var, args))
def _eval_derivative(self, symbol):
expr = self.expr
deriv = expr._eval_derivative(symbol)
return Wavefunction(deriv, *self.args[1:])
def _eval_conjugate(self):
return Wavefunction(conjugate(self.expr), *self.args[1:])
def _eval_transpose(self):
return self
@property
def free_symbols(self):
return self.expr.free_symbols
@property
def is_commutative(self):
"""
Override Function's is_commutative so that order is preserved in
represented expressions
"""
return False
@classmethod
def eval(self, *args):
return None
@property
def variables(self):
"""
Return the coordinates which the wavefunction depends on
Examples
========
>>> from sympy.physics.quantum.state import Wavefunction
>>> from sympy import symbols
>>> x,y = symbols('x,y')
>>> f = Wavefunction(x*y, x, y)
>>> f.variables
(x, y)
>>> g = Wavefunction(x*y, x)
>>> g.variables
(x,)
"""
var = [g[0] if isinstance(g, Tuple) else g for g in self._args[1:]]
return tuple(var)
@property
def limits(self):
"""
Return the limits of the coordinates which the w.f. depends on If no
limits are specified, defaults to ``(-oo, oo)``.
Examples
========
>>> from sympy.physics.quantum.state import Wavefunction
>>> from sympy import symbols
>>> x, y = symbols('x, y')
>>> f = Wavefunction(x**2, (x, 0, 1))
>>> f.limits
{x: (0, 1)}
>>> f = Wavefunction(x**2, x)
>>> f.limits
{x: (-oo, oo)}
>>> f = Wavefunction(x**2 + y**2, x, (y, -1, 2))
>>> f.limits
{x: (-oo, oo), y: (-1, 2)}
"""
limits = [(g[1], g[2]) if isinstance(g, Tuple) else (-oo, oo)
for g in self._args[1:]]
return dict(zip(self.variables, tuple(limits)))
@property
def expr(self):
"""
Return the expression which is the functional form of the Wavefunction
Examples
========
>>> from sympy.physics.quantum.state import Wavefunction
>>> from sympy import symbols
>>> x, y = symbols('x, y')
>>> f = Wavefunction(x**2, x)
>>> f.expr
x**2
"""
return self._args[0]
@property
def is_normalized(self):
"""
Returns true if the Wavefunction is properly normalized
Examples
========
>>> from sympy import symbols, pi
>>> from sympy.functions import sqrt, sin
>>> from sympy.physics.quantum.state import Wavefunction
>>> x, L = symbols('x,L', positive=True)
>>> n = symbols('n', integer=True, positive=True)
>>> g = sqrt(2/L)*sin(n*pi*x/L)
>>> f = Wavefunction(g, (x, 0, L))
>>> f.is_normalized
True
"""
return (self.norm == 1.0)
@property # type: ignore
@cacheit
def norm(self):
"""
Return the normalization of the specified functional form.
This function integrates over the coordinates of the Wavefunction, with
the bounds specified.
Examples
========
>>> from sympy import symbols, pi
>>> from sympy.functions import sqrt, sin
>>> from sympy.physics.quantum.state import Wavefunction
>>> x, L = symbols('x,L', positive=True)
>>> n = symbols('n', integer=True, positive=True)
>>> g = sqrt(2/L)*sin(n*pi*x/L)
>>> f = Wavefunction(g, (x, 0, L))
>>> f.norm
1
>>> g = sin(n*pi*x/L)
>>> f = Wavefunction(g, (x, 0, L))
>>> f.norm
sqrt(2)*sqrt(L)/2
"""
exp = self.expr*conjugate(self.expr)
var = self.variables
limits = self.limits
for v in var:
curr_limits = limits[v]
exp = integrate(exp, (v, curr_limits[0], curr_limits[1]))
return sqrt(exp)
def normalize(self):
"""
Return a normalized version of the Wavefunction
Examples
========
>>> from sympy import symbols, pi
>>> from sympy.functions import sin
>>> from sympy.physics.quantum.state import Wavefunction
>>> x = symbols('x', real=True)
>>> L = symbols('L', positive=True)
>>> n = symbols('n', integer=True, positive=True)
>>> g = sin(n*pi*x/L)
>>> f = Wavefunction(g, (x, 0, L))
>>> f.normalize()
Wavefunction(sqrt(2)*sin(pi*n*x/L)/sqrt(L), (x, 0, L))
"""
const = self.norm
if const is oo:
raise NotImplementedError("The function is not normalizable!")
else:
return Wavefunction((const)**(-1)*self.expr, *self.args[1:])
def prob(self):
r"""
Return the absolute magnitude of the w.f., `|\psi(x)|^2`
Examples
========
>>> from sympy import symbols, pi
>>> from sympy.functions import sin
>>> from sympy.physics.quantum.state import Wavefunction
>>> x, L = symbols('x,L', real=True)
>>> n = symbols('n', integer=True)
>>> g = sin(n*pi*x/L)
>>> f = Wavefunction(g, (x, 0, L))
>>> f.prob()
Wavefunction(sin(pi*n*x/L)**2, x)
"""
return Wavefunction(self.expr*conjugate(self.expr), *self.variables)
|
b51fe908761c4afa4e77b7e8e59ed6e58609630c20d03e1cf4890eda7d7d1206 | """An implementation of gates that act on qubits.
Gates are unitary operators that act on the space of qubits.
Medium Term Todo:
* Optimize Gate._apply_operators_Qubit to remove the creation of many
intermediate Qubit objects.
* Add commutation relationships to all operators and use this in gate_sort.
* Fix gate_sort and gate_simp.
* Get multi-target UGates plotting properly.
* Get UGate to work with either sympy/numpy matrices and output either
format. This should also use the matrix slots.
"""
from itertools import chain
import random
from sympy.core.add import Add
from sympy.core.containers import Tuple
from sympy.core.mul import Mul
from sympy.core.numbers import (I, Integer)
from sympy.core.power import Pow
from sympy.core.numbers import Number
from sympy.core.singleton import S as _S
from sympy.core.sorting import default_sort_key
from sympy.core.sympify import _sympify
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.printing.pretty.stringpict import prettyForm, stringPict
from sympy.physics.quantum.anticommutator import AntiCommutator
from sympy.physics.quantum.commutator import Commutator
from sympy.physics.quantum.qexpr import QuantumError
from sympy.physics.quantum.hilbert import ComplexSpace
from sympy.physics.quantum.operator import (UnitaryOperator, Operator,
HermitianOperator)
from sympy.physics.quantum.matrixutils import matrix_tensor_product, matrix_eye
from sympy.physics.quantum.matrixcache import matrix_cache
from sympy.matrices.matrices import MatrixBase
from sympy.utilities.iterables import is_sequence
__all__ = [
'Gate',
'CGate',
'UGate',
'OneQubitGate',
'TwoQubitGate',
'IdentityGate',
'HadamardGate',
'XGate',
'YGate',
'ZGate',
'TGate',
'PhaseGate',
'SwapGate',
'CNotGate',
# Aliased gate names
'CNOT',
'SWAP',
'H',
'X',
'Y',
'Z',
'T',
'S',
'Phase',
'normalized',
'gate_sort',
'gate_simp',
'random_circuit',
'CPHASE',
'CGateS',
]
#-----------------------------------------------------------------------------
# Gate Super-Classes
#-----------------------------------------------------------------------------
_normalized = True
def _max(*args, **kwargs):
if "key" not in kwargs:
kwargs["key"] = default_sort_key
return max(*args, **kwargs)
def _min(*args, **kwargs):
if "key" not in kwargs:
kwargs["key"] = default_sort_key
return min(*args, **kwargs)
def normalized(normalize):
r"""Set flag controlling normalization of Hadamard gates by `1/\sqrt{2}`.
This is a global setting that can be used to simplify the look of various
expressions, by leaving off the leading `1/\sqrt{2}` of the Hadamard gate.
Parameters
----------
normalize : bool
Should the Hadamard gate include the `1/\sqrt{2}` normalization factor?
When True, the Hadamard gate will have the `1/\sqrt{2}`. When False, the
Hadamard gate will not have this factor.
"""
global _normalized
_normalized = normalize
def _validate_targets_controls(tandc):
tandc = list(tandc)
# Check for integers
for bit in tandc:
if not bit.is_Integer and not bit.is_Symbol:
raise TypeError('Integer expected, got: %r' % tandc[bit])
# Detect duplicates
if len(set(tandc)) != len(tandc):
raise QuantumError(
'Target/control qubits in a gate cannot be duplicated'
)
class Gate(UnitaryOperator):
"""Non-controlled unitary gate operator that acts on qubits.
This is a general abstract gate that needs to be subclassed to do anything
useful.
Parameters
----------
label : tuple, int
A list of the target qubits (as ints) that the gate will apply to.
Examples
========
"""
_label_separator = ','
gate_name = 'G'
gate_name_latex = 'G'
#-------------------------------------------------------------------------
# Initialization/creation
#-------------------------------------------------------------------------
@classmethod
def _eval_args(cls, args):
args = Tuple(*UnitaryOperator._eval_args(args))
_validate_targets_controls(args)
return args
@classmethod
def _eval_hilbert_space(cls, args):
"""This returns the smallest possible Hilbert space."""
return ComplexSpace(2)**(_max(args) + 1)
#-------------------------------------------------------------------------
# Properties
#-------------------------------------------------------------------------
@property
def nqubits(self):
"""The total number of qubits this gate acts on.
For controlled gate subclasses this includes both target and control
qubits, so that, for examples the CNOT gate acts on 2 qubits.
"""
return len(self.targets)
@property
def min_qubits(self):
"""The minimum number of qubits this gate needs to act on."""
return _max(self.targets) + 1
@property
def targets(self):
"""A tuple of target qubits."""
return self.label
@property
def gate_name_plot(self):
return r'$%s$' % self.gate_name_latex
#-------------------------------------------------------------------------
# Gate methods
#-------------------------------------------------------------------------
def get_target_matrix(self, format='sympy'):
"""The matrix represenation of the target part of the gate.
Parameters
----------
format : str
The format string ('sympy','numpy', etc.)
"""
raise NotImplementedError(
'get_target_matrix is not implemented in Gate.')
#-------------------------------------------------------------------------
# Apply
#-------------------------------------------------------------------------
def _apply_operator_IntQubit(self, qubits, **options):
"""Redirect an apply from IntQubit to Qubit"""
return self._apply_operator_Qubit(qubits, **options)
def _apply_operator_Qubit(self, qubits, **options):
"""Apply this gate to a Qubit."""
# Check number of qubits this gate acts on.
if qubits.nqubits < self.min_qubits:
raise QuantumError(
'Gate needs a minimum of %r qubits to act on, got: %r' %
(self.min_qubits, qubits.nqubits)
)
# If the controls are not met, just return
if isinstance(self, CGate):
if not self.eval_controls(qubits):
return qubits
targets = self.targets
target_matrix = self.get_target_matrix(format='sympy')
# Find which column of the target matrix this applies to.
column_index = 0
n = 1
for target in targets:
column_index += n*qubits[target]
n = n << 1
column = target_matrix[:, int(column_index)]
# Now apply each column element to the qubit.
result = 0
for index in range(column.rows):
# TODO: This can be optimized to reduce the number of Qubit
# creations. We should simply manipulate the raw list of qubit
# values and then build the new Qubit object once.
# Make a copy of the incoming qubits.
new_qubit = qubits.__class__(*qubits.args)
# Flip the bits that need to be flipped.
for bit, target in enumerate(targets):
if new_qubit[target] != (index >> bit) & 1:
new_qubit = new_qubit.flip(target)
# The value in that row and column times the flipped-bit qubit
# is the result for that part.
result += column[index]*new_qubit
return result
#-------------------------------------------------------------------------
# Represent
#-------------------------------------------------------------------------
def _represent_default_basis(self, **options):
return self._represent_ZGate(None, **options)
def _represent_ZGate(self, basis, **options):
format = options.get('format', 'sympy')
nqubits = options.get('nqubits', 0)
if nqubits == 0:
raise QuantumError(
'The number of qubits must be given as nqubits.')
# Make sure we have enough qubits for the gate.
if nqubits < self.min_qubits:
raise QuantumError(
'The number of qubits %r is too small for the gate.' % nqubits
)
target_matrix = self.get_target_matrix(format)
targets = self.targets
if isinstance(self, CGate):
controls = self.controls
else:
controls = []
m = represent_zbasis(
controls, targets, target_matrix, nqubits, format
)
return m
#-------------------------------------------------------------------------
# Print methods
#-------------------------------------------------------------------------
def _sympystr(self, printer, *args):
label = self._print_label(printer, *args)
return '%s(%s)' % (self.gate_name, label)
def _pretty(self, printer, *args):
a = stringPict(self.gate_name)
b = self._print_label_pretty(printer, *args)
return self._print_subscript_pretty(a, b)
def _latex(self, printer, *args):
label = self._print_label(printer, *args)
return '%s_{%s}' % (self.gate_name_latex, label)
def plot_gate(self, axes, gate_idx, gate_grid, wire_grid):
raise NotImplementedError('plot_gate is not implemented.')
class CGate(Gate):
"""A general unitary gate with control qubits.
A general control gate applies a target gate to a set of targets if all
of the control qubits have a particular values (set by
``CGate.control_value``).
Parameters
----------
label : tuple
The label in this case has the form (controls, gate), where controls
is a tuple/list of control qubits (as ints) and gate is a ``Gate``
instance that is the target operator.
Examples
========
"""
gate_name = 'C'
gate_name_latex = 'C'
# The values this class controls for.
control_value = _S.One
simplify_cgate = False
#-------------------------------------------------------------------------
# Initialization
#-------------------------------------------------------------------------
@classmethod
def _eval_args(cls, args):
# _eval_args has the right logic for the controls argument.
controls = args[0]
gate = args[1]
if not is_sequence(controls):
controls = (controls,)
controls = UnitaryOperator._eval_args(controls)
_validate_targets_controls(chain(controls, gate.targets))
return (Tuple(*controls), gate)
@classmethod
def _eval_hilbert_space(cls, args):
"""This returns the smallest possible Hilbert space."""
return ComplexSpace(2)**_max(_max(args[0]) + 1, args[1].min_qubits)
#-------------------------------------------------------------------------
# Properties
#-------------------------------------------------------------------------
@property
def nqubits(self):
"""The total number of qubits this gate acts on.
For controlled gate subclasses this includes both target and control
qubits, so that, for examples the CNOT gate acts on 2 qubits.
"""
return len(self.targets) + len(self.controls)
@property
def min_qubits(self):
"""The minimum number of qubits this gate needs to act on."""
return _max(_max(self.controls), _max(self.targets)) + 1
@property
def targets(self):
"""A tuple of target qubits."""
return self.gate.targets
@property
def controls(self):
"""A tuple of control qubits."""
return tuple(self.label[0])
@property
def gate(self):
"""The non-controlled gate that will be applied to the targets."""
return self.label[1]
#-------------------------------------------------------------------------
# Gate methods
#-------------------------------------------------------------------------
def get_target_matrix(self, format='sympy'):
return self.gate.get_target_matrix(format)
def eval_controls(self, qubit):
"""Return True/False to indicate if the controls are satisfied."""
return all(qubit[bit] == self.control_value for bit in self.controls)
def decompose(self, **options):
"""Decompose the controlled gate into CNOT and single qubits gates."""
if len(self.controls) == 1:
c = self.controls[0]
t = self.gate.targets[0]
if isinstance(self.gate, YGate):
g1 = PhaseGate(t)
g2 = CNotGate(c, t)
g3 = PhaseGate(t)
g4 = ZGate(t)
return g1*g2*g3*g4
if isinstance(self.gate, ZGate):
g1 = HadamardGate(t)
g2 = CNotGate(c, t)
g3 = HadamardGate(t)
return g1*g2*g3
else:
return self
#-------------------------------------------------------------------------
# Print methods
#-------------------------------------------------------------------------
def _print_label(self, printer, *args):
controls = self._print_sequence(self.controls, ',', printer, *args)
gate = printer._print(self.gate, *args)
return '(%s),%s' % (controls, gate)
def _pretty(self, printer, *args):
controls = self._print_sequence_pretty(
self.controls, ',', printer, *args)
gate = printer._print(self.gate)
gate_name = stringPict(self.gate_name)
first = self._print_subscript_pretty(gate_name, controls)
gate = self._print_parens_pretty(gate)
final = prettyForm(*first.right(gate))
return final
def _latex(self, printer, *args):
controls = self._print_sequence(self.controls, ',', printer, *args)
gate = printer._print(self.gate, *args)
return r'%s_{%s}{\left(%s\right)}' % \
(self.gate_name_latex, controls, gate)
def plot_gate(self, circ_plot, gate_idx):
"""
Plot the controlled gate. If *simplify_cgate* is true, simplify
C-X and C-Z gates into their more familiar forms.
"""
min_wire = int(_min(chain(self.controls, self.targets)))
max_wire = int(_max(chain(self.controls, self.targets)))
circ_plot.control_line(gate_idx, min_wire, max_wire)
for c in self.controls:
circ_plot.control_point(gate_idx, int(c))
if self.simplify_cgate:
if self.gate.gate_name == 'X':
self.gate.plot_gate_plus(circ_plot, gate_idx)
elif self.gate.gate_name == 'Z':
circ_plot.control_point(gate_idx, self.targets[0])
else:
self.gate.plot_gate(circ_plot, gate_idx)
else:
self.gate.plot_gate(circ_plot, gate_idx)
#-------------------------------------------------------------------------
# Miscellaneous
#-------------------------------------------------------------------------
def _eval_dagger(self):
if isinstance(self.gate, HermitianOperator):
return self
else:
return Gate._eval_dagger(self)
def _eval_inverse(self):
if isinstance(self.gate, HermitianOperator):
return self
else:
return Gate._eval_inverse(self)
def _eval_power(self, exp):
if isinstance(self.gate, HermitianOperator):
if exp == -1:
return Gate._eval_power(self, exp)
elif abs(exp) % 2 == 0:
return self*(Gate._eval_inverse(self))
else:
return self
else:
return Gate._eval_power(self, exp)
class CGateS(CGate):
"""Version of CGate that allows gate simplifications.
I.e. cnot looks like an oplus, cphase has dots, etc.
"""
simplify_cgate=True
class UGate(Gate):
"""General gate specified by a set of targets and a target matrix.
Parameters
----------
label : tuple
A tuple of the form (targets, U), where targets is a tuple of the
target qubits and U is a unitary matrix with dimension of
len(targets).
"""
gate_name = 'U'
gate_name_latex = 'U'
#-------------------------------------------------------------------------
# Initialization
#-------------------------------------------------------------------------
@classmethod
def _eval_args(cls, args):
targets = args[0]
if not is_sequence(targets):
targets = (targets,)
targets = Gate._eval_args(targets)
_validate_targets_controls(targets)
mat = args[1]
if not isinstance(mat, MatrixBase):
raise TypeError('Matrix expected, got: %r' % mat)
#make sure this matrix is of a Basic type
mat = _sympify(mat)
dim = 2**len(targets)
if not all(dim == shape for shape in mat.shape):
raise IndexError(
'Number of targets must match the matrix size: %r %r' %
(targets, mat)
)
return (targets, mat)
@classmethod
def _eval_hilbert_space(cls, args):
"""This returns the smallest possible Hilbert space."""
return ComplexSpace(2)**(_max(args[0]) + 1)
#-------------------------------------------------------------------------
# Properties
#-------------------------------------------------------------------------
@property
def targets(self):
"""A tuple of target qubits."""
return tuple(self.label[0])
#-------------------------------------------------------------------------
# Gate methods
#-------------------------------------------------------------------------
def get_target_matrix(self, format='sympy'):
"""The matrix rep. of the target part of the gate.
Parameters
----------
format : str
The format string ('sympy','numpy', etc.)
"""
return self.label[1]
#-------------------------------------------------------------------------
# Print methods
#-------------------------------------------------------------------------
def _pretty(self, printer, *args):
targets = self._print_sequence_pretty(
self.targets, ',', printer, *args)
gate_name = stringPict(self.gate_name)
return self._print_subscript_pretty(gate_name, targets)
def _latex(self, printer, *args):
targets = self._print_sequence(self.targets, ',', printer, *args)
return r'%s_{%s}' % (self.gate_name_latex, targets)
def plot_gate(self, circ_plot, gate_idx):
circ_plot.one_qubit_box(
self.gate_name_plot,
gate_idx, int(self.targets[0])
)
class OneQubitGate(Gate):
"""A single qubit unitary gate base class."""
nqubits = _S.One
def plot_gate(self, circ_plot, gate_idx):
circ_plot.one_qubit_box(
self.gate_name_plot,
gate_idx, int(self.targets[0])
)
def _eval_commutator(self, other, **hints):
if isinstance(other, OneQubitGate):
if self.targets != other.targets or self.__class__ == other.__class__:
return _S.Zero
return Operator._eval_commutator(self, other, **hints)
def _eval_anticommutator(self, other, **hints):
if isinstance(other, OneQubitGate):
if self.targets != other.targets or self.__class__ == other.__class__:
return Integer(2)*self*other
return Operator._eval_anticommutator(self, other, **hints)
class TwoQubitGate(Gate):
"""A two qubit unitary gate base class."""
nqubits = Integer(2)
#-----------------------------------------------------------------------------
# Single Qubit Gates
#-----------------------------------------------------------------------------
class IdentityGate(OneQubitGate):
"""The single qubit identity gate.
Parameters
----------
target : int
The target qubit this gate will apply to.
Examples
========
"""
gate_name = '1'
gate_name_latex = '1'
def get_target_matrix(self, format='sympy'):
return matrix_cache.get_matrix('eye2', format)
def _eval_commutator(self, other, **hints):
return _S.Zero
def _eval_anticommutator(self, other, **hints):
return Integer(2)*other
class HadamardGate(HermitianOperator, OneQubitGate):
"""The single qubit Hadamard gate.
Parameters
----------
target : int
The target qubit this gate will apply to.
Examples
========
>>> from sympy import sqrt
>>> from sympy.physics.quantum.qubit import Qubit
>>> from sympy.physics.quantum.gate import HadamardGate
>>> from sympy.physics.quantum.qapply import qapply
>>> qapply(HadamardGate(0)*Qubit('1'))
sqrt(2)*|0>/2 - sqrt(2)*|1>/2
>>> # Hadamard on bell state, applied on 2 qubits.
>>> psi = 1/sqrt(2)*(Qubit('00')+Qubit('11'))
>>> qapply(HadamardGate(0)*HadamardGate(1)*psi)
sqrt(2)*|00>/2 + sqrt(2)*|11>/2
"""
gate_name = 'H'
gate_name_latex = 'H'
def get_target_matrix(self, format='sympy'):
if _normalized:
return matrix_cache.get_matrix('H', format)
else:
return matrix_cache.get_matrix('Hsqrt2', format)
def _eval_commutator_XGate(self, other, **hints):
return I*sqrt(2)*YGate(self.targets[0])
def _eval_commutator_YGate(self, other, **hints):
return I*sqrt(2)*(ZGate(self.targets[0]) - XGate(self.targets[0]))
def _eval_commutator_ZGate(self, other, **hints):
return -I*sqrt(2)*YGate(self.targets[0])
def _eval_anticommutator_XGate(self, other, **hints):
return sqrt(2)*IdentityGate(self.targets[0])
def _eval_anticommutator_YGate(self, other, **hints):
return _S.Zero
def _eval_anticommutator_ZGate(self, other, **hints):
return sqrt(2)*IdentityGate(self.targets[0])
class XGate(HermitianOperator, OneQubitGate):
"""The single qubit X, or NOT, gate.
Parameters
----------
target : int
The target qubit this gate will apply to.
Examples
========
"""
gate_name = 'X'
gate_name_latex = 'X'
def get_target_matrix(self, format='sympy'):
return matrix_cache.get_matrix('X', format)
def plot_gate(self, circ_plot, gate_idx):
OneQubitGate.plot_gate(self,circ_plot,gate_idx)
def plot_gate_plus(self, circ_plot, gate_idx):
circ_plot.not_point(
gate_idx, int(self.label[0])
)
def _eval_commutator_YGate(self, other, **hints):
return Integer(2)*I*ZGate(self.targets[0])
def _eval_anticommutator_XGate(self, other, **hints):
return Integer(2)*IdentityGate(self.targets[0])
def _eval_anticommutator_YGate(self, other, **hints):
return _S.Zero
def _eval_anticommutator_ZGate(self, other, **hints):
return _S.Zero
class YGate(HermitianOperator, OneQubitGate):
"""The single qubit Y gate.
Parameters
----------
target : int
The target qubit this gate will apply to.
Examples
========
"""
gate_name = 'Y'
gate_name_latex = 'Y'
def get_target_matrix(self, format='sympy'):
return matrix_cache.get_matrix('Y', format)
def _eval_commutator_ZGate(self, other, **hints):
return Integer(2)*I*XGate(self.targets[0])
def _eval_anticommutator_YGate(self, other, **hints):
return Integer(2)*IdentityGate(self.targets[0])
def _eval_anticommutator_ZGate(self, other, **hints):
return _S.Zero
class ZGate(HermitianOperator, OneQubitGate):
"""The single qubit Z gate.
Parameters
----------
target : int
The target qubit this gate will apply to.
Examples
========
"""
gate_name = 'Z'
gate_name_latex = 'Z'
def get_target_matrix(self, format='sympy'):
return matrix_cache.get_matrix('Z', format)
def _eval_commutator_XGate(self, other, **hints):
return Integer(2)*I*YGate(self.targets[0])
def _eval_anticommutator_YGate(self, other, **hints):
return _S.Zero
class PhaseGate(OneQubitGate):
"""The single qubit phase, or S, gate.
This gate rotates the phase of the state by pi/2 if the state is ``|1>`` and
does nothing if the state is ``|0>``.
Parameters
----------
target : int
The target qubit this gate will apply to.
Examples
========
"""
gate_name = 'S'
gate_name_latex = 'S'
def get_target_matrix(self, format='sympy'):
return matrix_cache.get_matrix('S', format)
def _eval_commutator_ZGate(self, other, **hints):
return _S.Zero
def _eval_commutator_TGate(self, other, **hints):
return _S.Zero
class TGate(OneQubitGate):
"""The single qubit pi/8 gate.
This gate rotates the phase of the state by pi/4 if the state is ``|1>`` and
does nothing if the state is ``|0>``.
Parameters
----------
target : int
The target qubit this gate will apply to.
Examples
========
"""
gate_name = 'T'
gate_name_latex = 'T'
def get_target_matrix(self, format='sympy'):
return matrix_cache.get_matrix('T', format)
def _eval_commutator_ZGate(self, other, **hints):
return _S.Zero
def _eval_commutator_PhaseGate(self, other, **hints):
return _S.Zero
# Aliases for gate names.
H = HadamardGate
X = XGate
Y = YGate
Z = ZGate
T = TGate
Phase = S = PhaseGate
#-----------------------------------------------------------------------------
# 2 Qubit Gates
#-----------------------------------------------------------------------------
class CNotGate(HermitianOperator, CGate, TwoQubitGate):
"""Two qubit controlled-NOT.
This gate performs the NOT or X gate on the target qubit if the control
qubits all have the value 1.
Parameters
----------
label : tuple
A tuple of the form (control, target).
Examples
========
>>> from sympy.physics.quantum.gate import CNOT
>>> from sympy.physics.quantum.qapply import qapply
>>> from sympy.physics.quantum.qubit import Qubit
>>> c = CNOT(1,0)
>>> qapply(c*Qubit('10')) # note that qubits are indexed from right to left
|11>
"""
gate_name = 'CNOT'
gate_name_latex = r'\text{CNOT}'
simplify_cgate = True
#-------------------------------------------------------------------------
# Initialization
#-------------------------------------------------------------------------
@classmethod
def _eval_args(cls, args):
args = Gate._eval_args(args)
return args
@classmethod
def _eval_hilbert_space(cls, args):
"""This returns the smallest possible Hilbert space."""
return ComplexSpace(2)**(_max(args) + 1)
#-------------------------------------------------------------------------
# Properties
#-------------------------------------------------------------------------
@property
def min_qubits(self):
"""The minimum number of qubits this gate needs to act on."""
return _max(self.label) + 1
@property
def targets(self):
"""A tuple of target qubits."""
return (self.label[1],)
@property
def controls(self):
"""A tuple of control qubits."""
return (self.label[0],)
@property
def gate(self):
"""The non-controlled gate that will be applied to the targets."""
return XGate(self.label[1])
#-------------------------------------------------------------------------
# Properties
#-------------------------------------------------------------------------
# The default printing of Gate works better than those of CGate, so we
# go around the overridden methods in CGate.
def _print_label(self, printer, *args):
return Gate._print_label(self, printer, *args)
def _pretty(self, printer, *args):
return Gate._pretty(self, printer, *args)
def _latex(self, printer, *args):
return Gate._latex(self, printer, *args)
#-------------------------------------------------------------------------
# Commutator/AntiCommutator
#-------------------------------------------------------------------------
def _eval_commutator_ZGate(self, other, **hints):
"""[CNOT(i, j), Z(i)] == 0."""
if self.controls[0] == other.targets[0]:
return _S.Zero
else:
raise NotImplementedError('Commutator not implemented: %r' % other)
def _eval_commutator_TGate(self, other, **hints):
"""[CNOT(i, j), T(i)] == 0."""
return self._eval_commutator_ZGate(other, **hints)
def _eval_commutator_PhaseGate(self, other, **hints):
"""[CNOT(i, j), S(i)] == 0."""
return self._eval_commutator_ZGate(other, **hints)
def _eval_commutator_XGate(self, other, **hints):
"""[CNOT(i, j), X(j)] == 0."""
if self.targets[0] == other.targets[0]:
return _S.Zero
else:
raise NotImplementedError('Commutator not implemented: %r' % other)
def _eval_commutator_CNotGate(self, other, **hints):
"""[CNOT(i, j), CNOT(i,k)] == 0."""
if self.controls[0] == other.controls[0]:
return _S.Zero
else:
raise NotImplementedError('Commutator not implemented: %r' % other)
class SwapGate(TwoQubitGate):
"""Two qubit SWAP gate.
This gate swap the values of the two qubits.
Parameters
----------
label : tuple
A tuple of the form (target1, target2).
Examples
========
"""
gate_name = 'SWAP'
gate_name_latex = r'\text{SWAP}'
def get_target_matrix(self, format='sympy'):
return matrix_cache.get_matrix('SWAP', format)
def decompose(self, **options):
"""Decompose the SWAP gate into CNOT gates."""
i, j = self.targets[0], self.targets[1]
g1 = CNotGate(i, j)
g2 = CNotGate(j, i)
return g1*g2*g1
def plot_gate(self, circ_plot, gate_idx):
min_wire = int(_min(self.targets))
max_wire = int(_max(self.targets))
circ_plot.control_line(gate_idx, min_wire, max_wire)
circ_plot.swap_point(gate_idx, min_wire)
circ_plot.swap_point(gate_idx, max_wire)
def _represent_ZGate(self, basis, **options):
"""Represent the SWAP gate in the computational basis.
The following representation is used to compute this:
SWAP = |1><1|x|1><1| + |0><0|x|0><0| + |1><0|x|0><1| + |0><1|x|1><0|
"""
format = options.get('format', 'sympy')
targets = [int(t) for t in self.targets]
min_target = _min(targets)
max_target = _max(targets)
nqubits = options.get('nqubits', self.min_qubits)
op01 = matrix_cache.get_matrix('op01', format)
op10 = matrix_cache.get_matrix('op10', format)
op11 = matrix_cache.get_matrix('op11', format)
op00 = matrix_cache.get_matrix('op00', format)
eye2 = matrix_cache.get_matrix('eye2', format)
result = None
for i, j in ((op01, op10), (op10, op01), (op00, op00), (op11, op11)):
product = nqubits*[eye2]
product[nqubits - min_target - 1] = i
product[nqubits - max_target - 1] = j
new_result = matrix_tensor_product(*product)
if result is None:
result = new_result
else:
result = result + new_result
return result
# Aliases for gate names.
CNOT = CNotGate
SWAP = SwapGate
def CPHASE(a,b): return CGateS((a,),Z(b))
#-----------------------------------------------------------------------------
# Represent
#-----------------------------------------------------------------------------
def represent_zbasis(controls, targets, target_matrix, nqubits, format='sympy'):
"""Represent a gate with controls, targets and target_matrix.
This function does the low-level work of representing gates as matrices
in the standard computational basis (ZGate). Currently, we support two
main cases:
1. One target qubit and no control qubits.
2. One target qubits and multiple control qubits.
For the base of multiple controls, we use the following expression [1]:
1_{2**n} + (|1><1|)^{(n-1)} x (target-matrix - 1_{2})
Parameters
----------
controls : list, tuple
A sequence of control qubits.
targets : list, tuple
A sequence of target qubits.
target_matrix : sympy.Matrix, numpy.matrix, scipy.sparse
The matrix form of the transformation to be performed on the target
qubits. The format of this matrix must match that passed into
the `format` argument.
nqubits : int
The total number of qubits used for the representation.
format : str
The format of the final matrix ('sympy', 'numpy', 'scipy.sparse').
Examples
========
References
----------
[1] http://www.johnlapeyre.com/qinf/qinf_html/node6.html.
"""
controls = [int(x) for x in controls]
targets = [int(x) for x in targets]
nqubits = int(nqubits)
# This checks for the format as well.
op11 = matrix_cache.get_matrix('op11', format)
eye2 = matrix_cache.get_matrix('eye2', format)
# Plain single qubit case
if len(controls) == 0 and len(targets) == 1:
product = []
bit = targets[0]
# Fill product with [I1,Gate,I2] such that the unitaries,
# I, cause the gate to be applied to the correct Qubit
if bit != nqubits - 1:
product.append(matrix_eye(2**(nqubits - bit - 1), format=format))
product.append(target_matrix)
if bit != 0:
product.append(matrix_eye(2**bit, format=format))
return matrix_tensor_product(*product)
# Single target, multiple controls.
elif len(targets) == 1 and len(controls) >= 1:
target = targets[0]
# Build the non-trivial part.
product2 = []
for i in range(nqubits):
product2.append(matrix_eye(2, format=format))
for control in controls:
product2[nqubits - 1 - control] = op11
product2[nqubits - 1 - target] = target_matrix - eye2
return matrix_eye(2**nqubits, format=format) + \
matrix_tensor_product(*product2)
# Multi-target, multi-control is not yet implemented.
else:
raise NotImplementedError(
'The representation of multi-target, multi-control gates '
'is not implemented.'
)
#-----------------------------------------------------------------------------
# Gate manipulation functions.
#-----------------------------------------------------------------------------
def gate_simp(circuit):
"""Simplifies gates symbolically
It first sorts gates using gate_sort. It then applies basic
simplification rules to the circuit, e.g., XGate**2 = Identity
"""
# Bubble sort out gates that commute.
circuit = gate_sort(circuit)
# Do simplifications by subing a simplification into the first element
# which can be simplified. We recursively call gate_simp with new circuit
# as input more simplifications exist.
if isinstance(circuit, Add):
return sum(gate_simp(t) for t in circuit.args)
elif isinstance(circuit, Mul):
circuit_args = circuit.args
elif isinstance(circuit, Pow):
b, e = circuit.as_base_exp()
circuit_args = (gate_simp(b)**e,)
else:
return circuit
# Iterate through each element in circuit, simplify if possible.
for i in range(len(circuit_args)):
# H,X,Y or Z squared is 1.
# T**2 = S, S**2 = Z
if isinstance(circuit_args[i], Pow):
if isinstance(circuit_args[i].base,
(HadamardGate, XGate, YGate, ZGate)) \
and isinstance(circuit_args[i].exp, Number):
# Build a new circuit taking replacing the
# H,X,Y,Z squared with one.
newargs = (circuit_args[:i] +
(circuit_args[i].base**(circuit_args[i].exp % 2),) +
circuit_args[i + 1:])
# Recursively simplify the new circuit.
circuit = gate_simp(Mul(*newargs))
break
elif isinstance(circuit_args[i].base, PhaseGate):
# Build a new circuit taking old circuit but splicing
# in simplification.
newargs = circuit_args[:i]
# Replace PhaseGate**2 with ZGate.
newargs = newargs + (ZGate(circuit_args[i].base.args[0])**
(Integer(circuit_args[i].exp/2)), circuit_args[i].base**
(circuit_args[i].exp % 2))
# Append the last elements.
newargs = newargs + circuit_args[i + 1:]
# Recursively simplify the new circuit.
circuit = gate_simp(Mul(*newargs))
break
elif isinstance(circuit_args[i].base, TGate):
# Build a new circuit taking all the old elements.
newargs = circuit_args[:i]
# Put an Phasegate in place of any TGate**2.
newargs = newargs + (PhaseGate(circuit_args[i].base.args[0])**
Integer(circuit_args[i].exp/2), circuit_args[i].base**
(circuit_args[i].exp % 2))
# Append the last elements.
newargs = newargs + circuit_args[i + 1:]
# Recursively simplify the new circuit.
circuit = gate_simp(Mul(*newargs))
break
return circuit
def gate_sort(circuit):
"""Sorts the gates while keeping track of commutation relations
This function uses a bubble sort to rearrange the order of gate
application. Keeps track of Quantum computations special commutation
relations (e.g. things that apply to the same Qubit do not commute with
each other)
circuit is the Mul of gates that are to be sorted.
"""
# Make sure we have an Add or Mul.
if isinstance(circuit, Add):
return sum(gate_sort(t) for t in circuit.args)
if isinstance(circuit, Pow):
return gate_sort(circuit.base)**circuit.exp
elif isinstance(circuit, Gate):
return circuit
if not isinstance(circuit, Mul):
return circuit
changes = True
while changes:
changes = False
circ_array = circuit.args
for i in range(len(circ_array) - 1):
# Go through each element and switch ones that are in wrong order
if isinstance(circ_array[i], (Gate, Pow)) and \
isinstance(circ_array[i + 1], (Gate, Pow)):
# If we have a Pow object, look at only the base
first_base, first_exp = circ_array[i].as_base_exp()
second_base, second_exp = circ_array[i + 1].as_base_exp()
# Use SymPy's hash based sorting. This is not mathematical
# sorting, but is rather based on comparing hashes of objects.
# See Basic.compare for details.
if first_base.compare(second_base) > 0:
if Commutator(first_base, second_base).doit() == 0:
new_args = (circuit.args[:i] + (circuit.args[i + 1],) +
(circuit.args[i],) + circuit.args[i + 2:])
circuit = Mul(*new_args)
changes = True
break
if AntiCommutator(first_base, second_base).doit() == 0:
new_args = (circuit.args[:i] + (circuit.args[i + 1],) +
(circuit.args[i],) + circuit.args[i + 2:])
sign = _S.NegativeOne**(first_exp*second_exp)
circuit = sign*Mul(*new_args)
changes = True
break
return circuit
#-----------------------------------------------------------------------------
# Utility functions
#-----------------------------------------------------------------------------
def random_circuit(ngates, nqubits, gate_space=(X, Y, Z, S, T, H, CNOT, SWAP)):
"""Return a random circuit of ngates and nqubits.
This uses an equally weighted sample of (X, Y, Z, S, T, H, CNOT, SWAP)
gates.
Parameters
----------
ngates : int
The number of gates in the circuit.
nqubits : int
The number of qubits in the circuit.
gate_space : tuple
A tuple of the gate classes that will be used in the circuit.
Repeating gate classes multiple times in this tuple will increase
the frequency they appear in the random circuit.
"""
qubit_space = range(nqubits)
result = []
for i in range(ngates):
g = random.choice(gate_space)
if g == CNotGate or g == SwapGate:
qubits = random.sample(qubit_space, 2)
g = g(*qubits)
else:
qubit = random.choice(qubit_space)
g = g(qubit)
result.append(g)
return Mul(*result)
def zx_basis_transform(self, format='sympy'):
"""Transformation matrix from Z to X basis."""
return matrix_cache.get_matrix('ZX', format)
def zy_basis_transform(self, format='sympy'):
"""Transformation matrix from Z to Y basis."""
return matrix_cache.get_matrix('ZY', format)
|
f6e9a54a99baa4aa29947ee14511dbbb0be4bdd33df00f4618d67ac9e3497ffa | """Fermionic quantum operators."""
from sympy.core.numbers import Integer
from sympy.core.singleton import S
from sympy.physics.quantum import Operator
from sympy.physics.quantum import HilbertSpace, Ket, Bra
from sympy.functions.special.tensor_functions import KroneckerDelta
__all__ = [
'FermionOp',
'FermionFockKet',
'FermionFockBra'
]
class FermionOp(Operator):
"""A fermionic operator that satisfies {c, Dagger(c)} == 1.
Parameters
==========
name : str
A string that labels the fermionic mode.
annihilation : bool
A bool that indicates if the fermionic operator is an annihilation
(True, default value) or creation operator (False)
Examples
========
>>> from sympy.physics.quantum import Dagger, AntiCommutator
>>> from sympy.physics.quantum.fermion import FermionOp
>>> c = FermionOp("c")
>>> AntiCommutator(c, Dagger(c)).doit()
1
"""
@property
def name(self):
return self.args[0]
@property
def is_annihilation(self):
return bool(self.args[1])
@classmethod
def default_args(self):
return ("c", True)
def __new__(cls, *args, **hints):
if not len(args) in [1, 2]:
raise ValueError('1 or 2 parameters expected, got %s' % args)
if len(args) == 1:
args = (args[0], S.One)
if len(args) == 2:
args = (args[0], Integer(args[1]))
return Operator.__new__(cls, *args)
def _eval_commutator_FermionOp(self, other, **hints):
if 'independent' in hints and hints['independent']:
# [c, d] = 0
return S.Zero
return None
def _eval_anticommutator_FermionOp(self, other, **hints):
if self.name == other.name:
# {a^\dagger, a} = 1
if not self.is_annihilation and other.is_annihilation:
return S.One
elif 'independent' in hints and hints['independent']:
# {c, d} = 2 * c * d, because [c, d] = 0 for independent operators
return 2 * self * other
return None
def _eval_anticommutator_BosonOp(self, other, **hints):
# because fermions and bosons commute
return 2 * self * other
def _eval_commutator_BosonOp(self, other, **hints):
return S.Zero
def _eval_adjoint(self):
return FermionOp(str(self.name), not self.is_annihilation)
def _print_contents_latex(self, printer, *args):
if self.is_annihilation:
return r'{%s}' % str(self.name)
else:
return r'{{%s}^\dagger}' % str(self.name)
def _print_contents(self, printer, *args):
if self.is_annihilation:
return r'%s' % str(self.name)
else:
return r'Dagger(%s)' % str(self.name)
def _print_contents_pretty(self, printer, *args):
from sympy.printing.pretty.stringpict import prettyForm
pform = printer._print(self.args[0], *args)
if self.is_annihilation:
return pform
else:
return pform**prettyForm('\N{DAGGER}')
class FermionFockKet(Ket):
"""Fock state ket for a fermionic mode.
Parameters
==========
n : Number
The Fock state number.
"""
def __new__(cls, n):
if n not in (0, 1):
raise ValueError("n must be 0 or 1")
return Ket.__new__(cls, n)
@property
def n(self):
return self.label[0]
@classmethod
def dual_class(self):
return FermionFockBra
@classmethod
def _eval_hilbert_space(cls, label):
return HilbertSpace()
def _eval_innerproduct_FermionFockBra(self, bra, **hints):
return KroneckerDelta(self.n, bra.n)
def _apply_from_right_to_FermionOp(self, op, **options):
if op.is_annihilation:
if self.n == 1:
return FermionFockKet(0)
else:
return S.Zero
else:
if self.n == 0:
return FermionFockKet(1)
else:
return S.Zero
class FermionFockBra(Bra):
"""Fock state bra for a fermionic mode.
Parameters
==========
n : Number
The Fock state number.
"""
def __new__(cls, n):
if n not in (0, 1):
raise ValueError("n must be 0 or 1")
return Bra.__new__(cls, n)
@property
def n(self):
return self.label[0]
@classmethod
def dual_class(self):
return FermionFockKet
|
7041fc75c3d7ba7a209c0a5cebd63a4d2251319eb73f6d0da3ab41db1187ca74 | """Bosonic quantum operators."""
from sympy.core.mul import Mul
from sympy.core.numbers import Integer
from sympy.core.singleton import S
from sympy.functions.elementary.complexes import conjugate
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.physics.quantum import Operator
from sympy.physics.quantum import HilbertSpace, FockSpace, Ket, Bra, IdentityOperator
from sympy.functions.special.tensor_functions import KroneckerDelta
__all__ = [
'BosonOp',
'BosonFockKet',
'BosonFockBra',
'BosonCoherentKet',
'BosonCoherentBra'
]
class BosonOp(Operator):
"""A bosonic operator that satisfies [a, Dagger(a)] == 1.
Parameters
==========
name : str
A string that labels the bosonic mode.
annihilation : bool
A bool that indicates if the bosonic operator is an annihilation (True,
default value) or creation operator (False)
Examples
========
>>> from sympy.physics.quantum import Dagger, Commutator
>>> from sympy.physics.quantum.boson import BosonOp
>>> a = BosonOp("a")
>>> Commutator(a, Dagger(a)).doit()
1
"""
@property
def name(self):
return self.args[0]
@property
def is_annihilation(self):
return bool(self.args[1])
@classmethod
def default_args(self):
return ("a", True)
def __new__(cls, *args, **hints):
if not len(args) in [1, 2]:
raise ValueError('1 or 2 parameters expected, got %s' % args)
if len(args) == 1:
args = (args[0], S.One)
if len(args) == 2:
args = (args[0], Integer(args[1]))
return Operator.__new__(cls, *args)
def _eval_commutator_BosonOp(self, other, **hints):
if self.name == other.name:
# [a^\dagger, a] = -1
if not self.is_annihilation and other.is_annihilation:
return S.NegativeOne
elif 'independent' in hints and hints['independent']:
# [a, b] = 0
return S.Zero
return None
def _eval_commutator_FermionOp(self, other, **hints):
return S.Zero
def _eval_anticommutator_BosonOp(self, other, **hints):
if 'independent' in hints and hints['independent']:
# {a, b} = 2 * a * b, because [a, b] = 0
return 2 * self * other
return None
def _eval_adjoint(self):
return BosonOp(str(self.name), not self.is_annihilation)
def __mul__(self, other):
if other == IdentityOperator(2):
return self
if isinstance(other, Mul):
args1 = tuple(arg for arg in other.args if arg.is_commutative)
args2 = tuple(arg for arg in other.args if not arg.is_commutative)
x = self
for y in args2:
x = x * y
return Mul(*args1) * x
return Mul(self, other)
def _print_contents_latex(self, printer, *args):
if self.is_annihilation:
return r'{%s}' % str(self.name)
else:
return r'{{%s}^\dagger}' % str(self.name)
def _print_contents(self, printer, *args):
if self.is_annihilation:
return r'%s' % str(self.name)
else:
return r'Dagger(%s)' % str(self.name)
def _print_contents_pretty(self, printer, *args):
from sympy.printing.pretty.stringpict import prettyForm
pform = printer._print(self.args[0], *args)
if self.is_annihilation:
return pform
else:
return pform**prettyForm('\N{DAGGER}')
class BosonFockKet(Ket):
"""Fock state ket for a bosonic mode.
Parameters
==========
n : Number
The Fock state number.
"""
def __new__(cls, n):
return Ket.__new__(cls, n)
@property
def n(self):
return self.label[0]
@classmethod
def dual_class(self):
return BosonFockBra
@classmethod
def _eval_hilbert_space(cls, label):
return FockSpace()
def _eval_innerproduct_BosonFockBra(self, bra, **hints):
return KroneckerDelta(self.n, bra.n)
def _apply_from_right_to_BosonOp(self, op, **options):
if op.is_annihilation:
return sqrt(self.n) * BosonFockKet(self.n - 1)
else:
return sqrt(self.n + 1) * BosonFockKet(self.n + 1)
class BosonFockBra(Bra):
"""Fock state bra for a bosonic mode.
Parameters
==========
n : Number
The Fock state number.
"""
def __new__(cls, n):
return Bra.__new__(cls, n)
@property
def n(self):
return self.label[0]
@classmethod
def dual_class(self):
return BosonFockKet
@classmethod
def _eval_hilbert_space(cls, label):
return FockSpace()
class BosonCoherentKet(Ket):
"""Coherent state ket for a bosonic mode.
Parameters
==========
alpha : Number, Symbol
The complex amplitude of the coherent state.
"""
def __new__(cls, alpha):
return Ket.__new__(cls, alpha)
@property
def alpha(self):
return self.label[0]
@classmethod
def dual_class(self):
return BosonCoherentBra
@classmethod
def _eval_hilbert_space(cls, label):
return HilbertSpace()
def _eval_innerproduct_BosonCoherentBra(self, bra, **hints):
if self.alpha == bra.alpha:
return S.One
else:
return exp(-(abs(self.alpha)**2 + abs(bra.alpha)**2 - 2 * conjugate(bra.alpha) * self.alpha)/2)
def _apply_from_right_to_BosonOp(self, op, **options):
if op.is_annihilation:
return self.alpha * self
else:
return None
class BosonCoherentBra(Bra):
"""Coherent state bra for a bosonic mode.
Parameters
==========
alpha : Number, Symbol
The complex amplitude of the coherent state.
"""
def __new__(cls, alpha):
return Bra.__new__(cls, alpha)
@property
def alpha(self):
return self.label[0]
@classmethod
def dual_class(self):
return BosonCoherentKet
def _apply_operator_BosonOp(self, op, **options):
if not op.is_annihilation:
return self.alpha * self
else:
return None
|
973c561475eac4a5918982bdf500a8f73b951bd7955e207cbc5c9aed3beb5714 | """Pauli operators and states"""
from sympy.core.add import Add
from sympy.core.mul import Mul
from sympy.core.numbers import I
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.functions.elementary.exponential import exp
from sympy.physics.quantum import Operator, Ket, Bra
from sympy.physics.quantum import ComplexSpace
from sympy.matrices import Matrix
from sympy.functions.special.tensor_functions import KroneckerDelta
__all__ = [
'SigmaX', 'SigmaY', 'SigmaZ', 'SigmaMinus', 'SigmaPlus', 'SigmaZKet',
'SigmaZBra', 'qsimplify_pauli'
]
class SigmaOpBase(Operator):
"""Pauli sigma operator, base class"""
@property
def name(self):
return self.args[0]
@property
def use_name(self):
return bool(self.args[0]) is not False
@classmethod
def default_args(self):
return (False,)
def __new__(cls, *args, **hints):
return Operator.__new__(cls, *args, **hints)
def _eval_commutator_BosonOp(self, other, **hints):
return S.Zero
class SigmaX(SigmaOpBase):
"""Pauli sigma x operator
Parameters
==========
name : str
An optional string that labels the operator. Pauli operators with
different names commute.
Examples
========
>>> from sympy.physics.quantum import represent
>>> from sympy.physics.quantum.pauli import SigmaX
>>> sx = SigmaX()
>>> sx
SigmaX()
>>> represent(sx)
Matrix([
[0, 1],
[1, 0]])
"""
def __new__(cls, *args, **hints):
return SigmaOpBase.__new__(cls, *args, **hints)
def _eval_commutator_SigmaY(self, other, **hints):
if self.name != other.name:
return S.Zero
else:
return 2 * I * SigmaZ(self.name)
def _eval_commutator_SigmaZ(self, other, **hints):
if self.name != other.name:
return S.Zero
else:
return - 2 * I * SigmaY(self.name)
def _eval_commutator_BosonOp(self, other, **hints):
return S.Zero
def _eval_anticommutator_SigmaY(self, other, **hints):
return S.Zero
def _eval_anticommutator_SigmaZ(self, other, **hints):
return S.Zero
def _eval_adjoint(self):
return self
def _print_contents_latex(self, printer, *args):
if self.use_name:
return r'{\sigma_x^{(%s)}}' % str(self.name)
else:
return r'{\sigma_x}'
def _print_contents(self, printer, *args):
return 'SigmaX()'
def _eval_power(self, e):
if e.is_Integer and e.is_positive:
return SigmaX(self.name).__pow__(int(e) % 2)
def _represent_default_basis(self, **options):
format = options.get('format', 'sympy')
if format == 'sympy':
return Matrix([[0, 1], [1, 0]])
else:
raise NotImplementedError('Representation in format ' +
format + ' not implemented.')
class SigmaY(SigmaOpBase):
"""Pauli sigma y operator
Parameters
==========
name : str
An optional string that labels the operator. Pauli operators with
different names commute.
Examples
========
>>> from sympy.physics.quantum import represent
>>> from sympy.physics.quantum.pauli import SigmaY
>>> sy = SigmaY()
>>> sy
SigmaY()
>>> represent(sy)
Matrix([
[0, -I],
[I, 0]])
"""
def __new__(cls, *args, **hints):
return SigmaOpBase.__new__(cls, *args)
def _eval_commutator_SigmaZ(self, other, **hints):
if self.name != other.name:
return S.Zero
else:
return 2 * I * SigmaX(self.name)
def _eval_commutator_SigmaX(self, other, **hints):
if self.name != other.name:
return S.Zero
else:
return - 2 * I * SigmaZ(self.name)
def _eval_anticommutator_SigmaX(self, other, **hints):
return S.Zero
def _eval_anticommutator_SigmaZ(self, other, **hints):
return S.Zero
def _eval_adjoint(self):
return self
def _print_contents_latex(self, printer, *args):
if self.use_name:
return r'{\sigma_y^{(%s)}}' % str(self.name)
else:
return r'{\sigma_y}'
def _print_contents(self, printer, *args):
return 'SigmaY()'
def _eval_power(self, e):
if e.is_Integer and e.is_positive:
return SigmaY(self.name).__pow__(int(e) % 2)
def _represent_default_basis(self, **options):
format = options.get('format', 'sympy')
if format == 'sympy':
return Matrix([[0, -I], [I, 0]])
else:
raise NotImplementedError('Representation in format ' +
format + ' not implemented.')
class SigmaZ(SigmaOpBase):
"""Pauli sigma z operator
Parameters
==========
name : str
An optional string that labels the operator. Pauli operators with
different names commute.
Examples
========
>>> from sympy.physics.quantum import represent
>>> from sympy.physics.quantum.pauli import SigmaZ
>>> sz = SigmaZ()
>>> sz ** 3
SigmaZ()
>>> represent(sz)
Matrix([
[1, 0],
[0, -1]])
"""
def __new__(cls, *args, **hints):
return SigmaOpBase.__new__(cls, *args)
def _eval_commutator_SigmaX(self, other, **hints):
if self.name != other.name:
return S.Zero
else:
return 2 * I * SigmaY(self.name)
def _eval_commutator_SigmaY(self, other, **hints):
if self.name != other.name:
return S.Zero
else:
return - 2 * I * SigmaX(self.name)
def _eval_anticommutator_SigmaX(self, other, **hints):
return S.Zero
def _eval_anticommutator_SigmaY(self, other, **hints):
return S.Zero
def _eval_adjoint(self):
return self
def _print_contents_latex(self, printer, *args):
if self.use_name:
return r'{\sigma_z^{(%s)}}' % str(self.name)
else:
return r'{\sigma_z}'
def _print_contents(self, printer, *args):
return 'SigmaZ()'
def _eval_power(self, e):
if e.is_Integer and e.is_positive:
return SigmaZ(self.name).__pow__(int(e) % 2)
def _represent_default_basis(self, **options):
format = options.get('format', 'sympy')
if format == 'sympy':
return Matrix([[1, 0], [0, -1]])
else:
raise NotImplementedError('Representation in format ' +
format + ' not implemented.')
class SigmaMinus(SigmaOpBase):
"""Pauli sigma minus operator
Parameters
==========
name : str
An optional string that labels the operator. Pauli operators with
different names commute.
Examples
========
>>> from sympy.physics.quantum import represent, Dagger
>>> from sympy.physics.quantum.pauli import SigmaMinus
>>> sm = SigmaMinus()
>>> sm
SigmaMinus()
>>> Dagger(sm)
SigmaPlus()
>>> represent(sm)
Matrix([
[0, 0],
[1, 0]])
"""
def __new__(cls, *args, **hints):
return SigmaOpBase.__new__(cls, *args)
def _eval_commutator_SigmaX(self, other, **hints):
if self.name != other.name:
return S.Zero
else:
return -SigmaZ(self.name)
def _eval_commutator_SigmaY(self, other, **hints):
if self.name != other.name:
return S.Zero
else:
return I * SigmaZ(self.name)
def _eval_commutator_SigmaZ(self, other, **hints):
return 2 * self
def _eval_commutator_SigmaMinus(self, other, **hints):
return SigmaZ(self.name)
def _eval_anticommutator_SigmaZ(self, other, **hints):
return S.Zero
def _eval_anticommutator_SigmaX(self, other, **hints):
return S.One
def _eval_anticommutator_SigmaY(self, other, **hints):
return I * S.NegativeOne
def _eval_anticommutator_SigmaPlus(self, other, **hints):
return S.One
def _eval_adjoint(self):
return SigmaPlus(self.name)
def _eval_power(self, e):
if e.is_Integer and e.is_positive:
return S.Zero
def _print_contents_latex(self, printer, *args):
if self.use_name:
return r'{\sigma_-^{(%s)}}' % str(self.name)
else:
return r'{\sigma_-}'
def _print_contents(self, printer, *args):
return 'SigmaMinus()'
def _represent_default_basis(self, **options):
format = options.get('format', 'sympy')
if format == 'sympy':
return Matrix([[0, 0], [1, 0]])
else:
raise NotImplementedError('Representation in format ' +
format + ' not implemented.')
class SigmaPlus(SigmaOpBase):
"""Pauli sigma plus operator
Parameters
==========
name : str
An optional string that labels the operator. Pauli operators with
different names commute.
Examples
========
>>> from sympy.physics.quantum import represent, Dagger
>>> from sympy.physics.quantum.pauli import SigmaPlus
>>> sp = SigmaPlus()
>>> sp
SigmaPlus()
>>> Dagger(sp)
SigmaMinus()
>>> represent(sp)
Matrix([
[0, 1],
[0, 0]])
"""
def __new__(cls, *args, **hints):
return SigmaOpBase.__new__(cls, *args)
def _eval_commutator_SigmaX(self, other, **hints):
if self.name != other.name:
return S.Zero
else:
return SigmaZ(self.name)
def _eval_commutator_SigmaY(self, other, **hints):
if self.name != other.name:
return S.Zero
else:
return I * SigmaZ(self.name)
def _eval_commutator_SigmaZ(self, other, **hints):
if self.name != other.name:
return S.Zero
else:
return -2 * self
def _eval_commutator_SigmaMinus(self, other, **hints):
return SigmaZ(self.name)
def _eval_anticommutator_SigmaZ(self, other, **hints):
return S.Zero
def _eval_anticommutator_SigmaX(self, other, **hints):
return S.One
def _eval_anticommutator_SigmaY(self, other, **hints):
return I
def _eval_anticommutator_SigmaMinus(self, other, **hints):
return S.One
def _eval_adjoint(self):
return SigmaMinus(self.name)
def _eval_mul(self, other):
return self * other
def _eval_power(self, e):
if e.is_Integer and e.is_positive:
return S.Zero
def _print_contents_latex(self, printer, *args):
if self.use_name:
return r'{\sigma_+^{(%s)}}' % str(self.name)
else:
return r'{\sigma_+}'
def _print_contents(self, printer, *args):
return 'SigmaPlus()'
def _represent_default_basis(self, **options):
format = options.get('format', 'sympy')
if format == 'sympy':
return Matrix([[0, 1], [0, 0]])
else:
raise NotImplementedError('Representation in format ' +
format + ' not implemented.')
class SigmaZKet(Ket):
"""Ket for a two-level system quantum system.
Parameters
==========
n : Number
The state number (0 or 1).
"""
def __new__(cls, n):
if n not in (0, 1):
raise ValueError("n must be 0 or 1")
return Ket.__new__(cls, n)
@property
def n(self):
return self.label[0]
@classmethod
def dual_class(self):
return SigmaZBra
@classmethod
def _eval_hilbert_space(cls, label):
return ComplexSpace(2)
def _eval_innerproduct_SigmaZBra(self, bra, **hints):
return KroneckerDelta(self.n, bra.n)
def _apply_from_right_to_SigmaZ(self, op, **options):
if self.n == 0:
return self
else:
return S.NegativeOne * self
def _apply_from_right_to_SigmaX(self, op, **options):
return SigmaZKet(1) if self.n == 0 else SigmaZKet(0)
def _apply_from_right_to_SigmaY(self, op, **options):
return I * SigmaZKet(1) if self.n == 0 else (-I) * SigmaZKet(0)
def _apply_from_right_to_SigmaMinus(self, op, **options):
if self.n == 0:
return SigmaZKet(1)
else:
return S.Zero
def _apply_from_right_to_SigmaPlus(self, op, **options):
if self.n == 0:
return S.Zero
else:
return SigmaZKet(0)
def _represent_default_basis(self, **options):
format = options.get('format', 'sympy')
if format == 'sympy':
return Matrix([[1], [0]]) if self.n == 0 else Matrix([[0], [1]])
else:
raise NotImplementedError('Representation in format ' +
format + ' not implemented.')
class SigmaZBra(Bra):
"""Bra for a two-level quantum system.
Parameters
==========
n : Number
The state number (0 or 1).
"""
def __new__(cls, n):
if n not in (0, 1):
raise ValueError("n must be 0 or 1")
return Bra.__new__(cls, n)
@property
def n(self):
return self.label[0]
@classmethod
def dual_class(self):
return SigmaZKet
def _qsimplify_pauli_product(a, b):
"""
Internal helper function for simplifying products of Pauli operators.
"""
if not (isinstance(a, SigmaOpBase) and isinstance(b, SigmaOpBase)):
return Mul(a, b)
if a.name != b.name:
# Pauli matrices with different labels commute; sort by name
if a.name < b.name:
return Mul(a, b)
else:
return Mul(b, a)
elif isinstance(a, SigmaX):
if isinstance(b, SigmaX):
return S.One
if isinstance(b, SigmaY):
return I * SigmaZ(a.name)
if isinstance(b, SigmaZ):
return - I * SigmaY(a.name)
if isinstance(b, SigmaMinus):
return (S.Half + SigmaZ(a.name)/2)
if isinstance(b, SigmaPlus):
return (S.Half - SigmaZ(a.name)/2)
elif isinstance(a, SigmaY):
if isinstance(b, SigmaX):
return - I * SigmaZ(a.name)
if isinstance(b, SigmaY):
return S.One
if isinstance(b, SigmaZ):
return I * SigmaX(a.name)
if isinstance(b, SigmaMinus):
return -I * (S.One + SigmaZ(a.name))/2
if isinstance(b, SigmaPlus):
return I * (S.One - SigmaZ(a.name))/2
elif isinstance(a, SigmaZ):
if isinstance(b, SigmaX):
return I * SigmaY(a.name)
if isinstance(b, SigmaY):
return - I * SigmaX(a.name)
if isinstance(b, SigmaZ):
return S.One
if isinstance(b, SigmaMinus):
return - SigmaMinus(a.name)
if isinstance(b, SigmaPlus):
return SigmaPlus(a.name)
elif isinstance(a, SigmaMinus):
if isinstance(b, SigmaX):
return (S.One - SigmaZ(a.name))/2
if isinstance(b, SigmaY):
return - I * (S.One - SigmaZ(a.name))/2
if isinstance(b, SigmaZ):
# (SigmaX(a.name) - I * SigmaY(a.name))/2
return SigmaMinus(b.name)
if isinstance(b, SigmaMinus):
return S.Zero
if isinstance(b, SigmaPlus):
return S.Half - SigmaZ(a.name)/2
elif isinstance(a, SigmaPlus):
if isinstance(b, SigmaX):
return (S.One + SigmaZ(a.name))/2
if isinstance(b, SigmaY):
return I * (S.One + SigmaZ(a.name))/2
if isinstance(b, SigmaZ):
#-(SigmaX(a.name) + I * SigmaY(a.name))/2
return -SigmaPlus(a.name)
if isinstance(b, SigmaMinus):
return (S.One + SigmaZ(a.name))/2
if isinstance(b, SigmaPlus):
return S.Zero
else:
return a * b
def qsimplify_pauli(e):
"""
Simplify an expression that includes products of pauli operators.
Parameters
==========
e : expression
An expression that contains products of Pauli operators that is
to be simplified.
Examples
========
>>> from sympy.physics.quantum.pauli import SigmaX, SigmaY
>>> from sympy.physics.quantum.pauli import qsimplify_pauli
>>> sx, sy = SigmaX(), SigmaY()
>>> sx * sy
SigmaX()*SigmaY()
>>> qsimplify_pauli(sx * sy)
I*SigmaZ()
"""
if isinstance(e, Operator):
return e
if isinstance(e, (Add, Pow, exp)):
t = type(e)
return t(*(qsimplify_pauli(arg) for arg in e.args))
if isinstance(e, Mul):
c, nc = e.args_cnc()
nc_s = []
while nc:
curr = nc.pop(0)
while (len(nc) and
isinstance(curr, SigmaOpBase) and
isinstance(nc[0], SigmaOpBase) and
curr.name == nc[0].name):
x = nc.pop(0)
y = _qsimplify_pauli_product(curr, x)
c1, nc1 = y.args_cnc()
curr = Mul(*nc1)
c = c + c1
nc_s.append(curr)
return Mul(*c) * Mul(*nc_s)
return e
|
13a847d30ee93076973a2c53dc55a4701266e7a6288bc07ddf079d81c1f75d06 | """Logic for applying operators to states.
Todo:
* Sometimes the final result needs to be expanded, we should do this by hand.
"""
from sympy.core.add import Add
from sympy.core.mul import Mul
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.core.sympify import sympify
from sympy.physics.quantum.anticommutator import AntiCommutator
from sympy.physics.quantum.commutator import Commutator
from sympy.physics.quantum.dagger import Dagger
from sympy.physics.quantum.innerproduct import InnerProduct
from sympy.physics.quantum.operator import OuterProduct, Operator
from sympy.physics.quantum.state import State, KetBase, BraBase, Wavefunction
from sympy.physics.quantum.tensorproduct import TensorProduct
__all__ = [
'qapply'
]
#-----------------------------------------------------------------------------
# Main code
#-----------------------------------------------------------------------------
def qapply(e, **options):
"""Apply operators to states in a quantum expression.
Parameters
==========
e : Expr
The expression containing operators and states. This expression tree
will be walked to find operators acting on states symbolically.
options : dict
A dict of key/value pairs that determine how the operator actions
are carried out.
The following options are valid:
* ``dagger``: try to apply Dagger operators to the left
(default: False).
* ``ip_doit``: call ``.doit()`` in inner products when they are
encountered (default: True).
Returns
=======
e : Expr
The original expression, but with the operators applied to states.
Examples
========
>>> from sympy.physics.quantum import qapply, Ket, Bra
>>> b = Bra('b')
>>> k = Ket('k')
>>> A = k * b
>>> A
|k><b|
>>> qapply(A * b.dual / (b * b.dual))
|k>
>>> qapply(k.dual * A / (k.dual * k), dagger=True)
<b|
>>> qapply(k.dual * A / (k.dual * k))
<k|*|k><b|/<k|k>
"""
from sympy.physics.quantum.density import Density
dagger = options.get('dagger', False)
if e == 0:
return S.Zero
# This may be a bit aggressive but ensures that everything gets expanded
# to its simplest form before trying to apply operators. This includes
# things like (A+B+C)*|a> and A*(|a>+|b>) and all Commutators and
# TensorProducts. The only problem with this is that if we can't apply
# all the Operators, we have just expanded everything.
# TODO: don't expand the scalars in front of each Mul.
e = e.expand(commutator=True, tensorproduct=True)
# If we just have a raw ket, return it.
if isinstance(e, KetBase):
return e
# We have an Add(a, b, c, ...) and compute
# Add(qapply(a), qapply(b), ...)
elif isinstance(e, Add):
result = 0
for arg in e.args:
result += qapply(arg, **options)
return result.expand()
# For a Density operator call qapply on its state
elif isinstance(e, Density):
new_args = [(qapply(state, **options), prob) for (state,
prob) in e.args]
return Density(*new_args)
# For a raw TensorProduct, call qapply on its args.
elif isinstance(e, TensorProduct):
return TensorProduct(*[qapply(t, **options) for t in e.args])
# For a Pow, call qapply on its base.
elif isinstance(e, Pow):
return qapply(e.base, **options)**e.exp
# We have a Mul where there might be actual operators to apply to kets.
elif isinstance(e, Mul):
c_part, nc_part = e.args_cnc()
c_mul = Mul(*c_part)
nc_mul = Mul(*nc_part)
if isinstance(nc_mul, Mul):
result = c_mul*qapply_Mul(nc_mul, **options)
else:
result = c_mul*qapply(nc_mul, **options)
if result == e and dagger:
return Dagger(qapply_Mul(Dagger(e), **options))
else:
return result
# In all other cases (State, Operator, Pow, Commutator, InnerProduct,
# OuterProduct) we won't ever have operators to apply to kets.
else:
return e
def qapply_Mul(e, **options):
ip_doit = options.get('ip_doit', True)
args = list(e.args)
# If we only have 0 or 1 args, we have nothing to do and return.
if len(args) <= 1 or not isinstance(e, Mul):
return e
rhs = args.pop()
lhs = args.pop()
# Make sure we have two non-commutative objects before proceeding.
if (not isinstance(rhs, Wavefunction) and sympify(rhs).is_commutative) or \
(not isinstance(lhs, Wavefunction) and sympify(lhs).is_commutative):
return e
# For a Pow with an integer exponent, apply one of them and reduce the
# exponent by one.
if isinstance(lhs, Pow) and lhs.exp.is_Integer:
args.append(lhs.base**(lhs.exp - 1))
lhs = lhs.base
# Pull OuterProduct apart
if isinstance(lhs, OuterProduct):
args.append(lhs.ket)
lhs = lhs.bra
# Call .doit() on Commutator/AntiCommutator.
if isinstance(lhs, (Commutator, AntiCommutator)):
comm = lhs.doit()
if isinstance(comm, Add):
return qapply(
e.func(*(args + [comm.args[0], rhs])) +
e.func(*(args + [comm.args[1], rhs])),
**options
)
else:
return qapply(e.func(*args)*comm*rhs, **options)
# Apply tensor products of operators to states
if isinstance(lhs, TensorProduct) and all(isinstance(arg, (Operator, State, Mul, Pow)) or arg == 1 for arg in lhs.args) and \
isinstance(rhs, TensorProduct) and all(isinstance(arg, (Operator, State, Mul, Pow)) or arg == 1 for arg in rhs.args) and \
len(lhs.args) == len(rhs.args):
result = TensorProduct(*[qapply(lhs.args[n]*rhs.args[n], **options) for n in range(len(lhs.args))]).expand(tensorproduct=True)
return qapply_Mul(e.func(*args), **options)*result
# Now try to actually apply the operator and build an inner product.
try:
result = lhs._apply_operator(rhs, **options)
except (NotImplementedError, AttributeError):
try:
result = rhs._apply_from_right_to(lhs, **options)
except (NotImplementedError, AttributeError):
if isinstance(lhs, BraBase) and isinstance(rhs, KetBase):
result = InnerProduct(lhs, rhs)
if ip_doit:
result = result.doit()
else:
result = None
# TODO: I may need to expand before returning the final result.
if result == 0:
return S.Zero
elif result is None:
if len(args) == 0:
# We had two args to begin with so args=[].
return e
else:
return qapply_Mul(e.func(*(args + [lhs])), **options)*rhs
elif isinstance(result, InnerProduct):
return result*qapply_Mul(e.func(*args), **options)
else: # result is a scalar times a Mul, Add or TensorProduct
return qapply(e.func(*args)*result, **options)
|
7aa41b9ac3ce66769dd1a1f7dba37f15f6595adcece0822f6ee8307e42e51ed4 | from sympy.core.backend import Symbol
from sympy.physics.vector import Point, Vector, ReferenceFrame, Dyadic
from sympy.physics.mechanics import RigidBody, Particle, inertia
__all__ = ['Body']
# XXX: We use type:ignore because the classes RigidBody and Particle have
# inconsistent parallel axis methods that take different numbers of arguments.
class Body(RigidBody, Particle): # type: ignore
"""
Body is a common representation of either a RigidBody or a Particle SymPy
object depending on what is passed in during initialization. If a mass is
passed in and central_inertia is left as None, the Particle object is
created. Otherwise a RigidBody object will be created.
Explanation
===========
The attributes that Body possesses will be the same as a Particle instance
or a Rigid Body instance depending on which was created. Additional
attributes are listed below.
Attributes
==========
name : string
The body's name
masscenter : Point
The point which represents the center of mass of the rigid body
frame : ReferenceFrame
The reference frame which the body is fixed in
mass : Sympifyable
The body's mass
inertia : (Dyadic, Point)
The body's inertia around its center of mass. This attribute is specific
to the rigid body form of Body and is left undefined for the Particle
form
loads : iterable
This list contains information on the different loads acting on the
Body. Forces are listed as a (point, vector) tuple and torques are
listed as (reference frame, vector) tuples.
Parameters
==========
name : String
Defines the name of the body. It is used as the base for defining
body specific properties.
masscenter : Point, optional
A point that represents the center of mass of the body or particle.
If no point is given, a point is generated.
mass : Sympifyable, optional
A Sympifyable object which represents the mass of the body. If no
mass is passed, one is generated.
frame : ReferenceFrame, optional
The ReferenceFrame that represents the reference frame of the body.
If no frame is given, a frame is generated.
central_inertia : Dyadic, optional
Central inertia dyadic of the body. If none is passed while creating
RigidBody, a default inertia is generated.
Examples
========
Default behaviour. This results in the creation of a RigidBody object for
which the mass, mass center, frame and inertia attributes are given default
values. ::
>>> from sympy.physics.mechanics import Body
>>> body = Body('name_of_body')
This next example demonstrates the code required to specify all of the
values of the Body object. Note this will also create a RigidBody version of
the Body object. ::
>>> from sympy import Symbol
>>> from sympy.physics.mechanics import ReferenceFrame, Point, inertia
>>> from sympy.physics.mechanics import Body
>>> mass = Symbol('mass')
>>> masscenter = Point('masscenter')
>>> frame = ReferenceFrame('frame')
>>> ixx = Symbol('ixx')
>>> body_inertia = inertia(frame, ixx, 0, 0)
>>> body = Body('name_of_body', masscenter, mass, frame, body_inertia)
The minimal code required to create a Particle version of the Body object
involves simply passing in a name and a mass. ::
>>> from sympy import Symbol
>>> from sympy.physics.mechanics import Body
>>> mass = Symbol('mass')
>>> body = Body('name_of_body', mass=mass)
The Particle version of the Body object can also receive a masscenter point
and a reference frame, just not an inertia.
"""
def __init__(self, name, masscenter=None, mass=None, frame=None,
central_inertia=None):
self.name = name
self._loads = []
if frame is None:
frame = ReferenceFrame(name + '_frame')
if masscenter is None:
masscenter = Point(name + '_masscenter')
if central_inertia is None and mass is None:
ixx = Symbol(name + '_ixx')
iyy = Symbol(name + '_iyy')
izz = Symbol(name + '_izz')
izx = Symbol(name + '_izx')
ixy = Symbol(name + '_ixy')
iyz = Symbol(name + '_iyz')
_inertia = (inertia(frame, ixx, iyy, izz, ixy, iyz, izx),
masscenter)
else:
_inertia = (central_inertia, masscenter)
if mass is None:
_mass = Symbol(name + '_mass')
else:
_mass = mass
masscenter.set_vel(frame, 0)
# If user passes masscenter and mass then a particle is created
# otherwise a rigidbody. As a result a body may or may not have inertia.
if central_inertia is None and mass is not None:
self.frame = frame
self.masscenter = masscenter
Particle.__init__(self, name, masscenter, _mass)
self._central_inertia = Dyadic(0)
else:
RigidBody.__init__(self, name, masscenter, frame, _mass, _inertia)
@property
def loads(self):
return self._loads
@property
def x(self):
"""The basis Vector for the Body, in the x direction."""
return self.frame.x
@property
def y(self):
"""The basis Vector for the Body, in the y direction."""
return self.frame.y
@property
def z(self):
"""The basis Vector for the Body, in the z direction."""
return self.frame.z
@property
def inertia(self):
"""The body's inertia about a point; stored as (Dyadic, Point)."""
if self.is_rigidbody:
return RigidBody.inertia.fget(self)
return (self.central_inertia, self.masscenter)
@inertia.setter
def inertia(self, I):
RigidBody.inertia.fset(self, I)
@property
def is_rigidbody(self):
if hasattr(self, '_inertia'):
return True
return False
def kinetic_energy(self, frame):
"""Kinetic energy of the body.
Parameters
==========
frame : ReferenceFrame or Body
The Body's angular velocity and the velocity of it's mass
center are typically defined with respect to an inertial frame but
any relevant frame in which the velocities are known can be supplied.
Examples
========
>>> from sympy.physics.mechanics import Body, ReferenceFrame, Point
>>> from sympy import symbols
>>> m, v, r, omega = symbols('m v r omega')
>>> N = ReferenceFrame('N')
>>> O = Point('O')
>>> P = Body('P', masscenter=O, mass=m)
>>> P.masscenter.set_vel(N, v * N.y)
>>> P.kinetic_energy(N)
m*v**2/2
>>> N = ReferenceFrame('N')
>>> b = ReferenceFrame('b')
>>> b.set_ang_vel(N, omega * b.x)
>>> P = Point('P')
>>> P.set_vel(N, v * N.x)
>>> B = Body('B', masscenter=P, frame=b)
>>> B.kinetic_energy(N)
B_ixx*omega**2/2 + B_mass*v**2/2
See Also
========
sympy.physics.mechanics : Particle, RigidBody
"""
if isinstance(frame, Body):
frame = Body.frame
if self.is_rigidbody:
return RigidBody(self.name, self.masscenter, self.frame, self.mass,
(self.central_inertia, self.masscenter)).kinetic_energy(frame)
return Particle(self.name, self.masscenter, self.mass).kinetic_energy(frame)
def apply_force(self, force, point=None, reaction_body=None, reaction_point=None):
"""Add force to the body(s).
Explanation
===========
Applies the force on self or equal and oppposite forces on
self and other body if both are given on the desried point on the bodies.
The force applied on other body is taken opposite of self, i.e, -force.
Parameters
==========
force: Vector
The force to be applied.
point: Point, optional
The point on self on which force is applied.
By default self's masscenter.
reaction_body: Body, optional
Second body on which equal and opposite force
is to be applied.
reaction_point : Point, optional
The point on other body on which equal and opposite
force is applied. By default masscenter of other body.
Example
=======
>>> from sympy import symbols
>>> from sympy.physics.mechanics import Body, Point, dynamicsymbols
>>> m, g = symbols('m g')
>>> B = Body('B')
>>> force1 = m*g*B.z
>>> B.apply_force(force1) #Applying force on B's masscenter
>>> B.loads
[(B_masscenter, g*m*B_frame.z)]
We can also remove some part of force from any point on the body by
adding the opposite force to the body on that point.
>>> f1, f2 = dynamicsymbols('f1 f2')
>>> P = Point('P') #Considering point P on body B
>>> B.apply_force(f1*B.x + f2*B.y, P)
>>> B.loads
[(B_masscenter, g*m*B_frame.z), (P, f1(t)*B_frame.x + f2(t)*B_frame.y)]
Let's remove f1 from point P on body B.
>>> B.apply_force(-f1*B.x, P)
>>> B.loads
[(B_masscenter, g*m*B_frame.z), (P, f2(t)*B_frame.y)]
To further demonstrate the use of ``apply_force`` attribute,
consider two bodies connected through a spring.
>>> from sympy.physics.mechanics import Body, dynamicsymbols
>>> N = Body('N') #Newtonion Frame
>>> x = dynamicsymbols('x')
>>> B1 = Body('B1')
>>> B2 = Body('B2')
>>> spring_force = x*N.x
Now let's apply equal and opposite spring force to the bodies.
>>> P1 = Point('P1')
>>> P2 = Point('P2')
>>> B1.apply_force(spring_force, point=P1, reaction_body=B2, reaction_point=P2)
We can check the loads(forces) applied to bodies now.
>>> B1.loads
[(P1, x(t)*N_frame.x)]
>>> B2.loads
[(P2, - x(t)*N_frame.x)]
Notes
=====
If a new force is applied to a body on a point which already has some
force applied on it, then the new force is added to the already applied
force on that point.
"""
if not isinstance(point, Point):
if point is None:
point = self.masscenter # masscenter
else:
raise TypeError("Force must be applied to a point on the body.")
if not isinstance(force, Vector):
raise TypeError("Force must be a vector.")
if reaction_body is not None:
reaction_body.apply_force(-force, point=reaction_point)
for load in self._loads:
if point in load:
force += load[1]
self._loads.remove(load)
break
self._loads.append((point, force))
def apply_torque(self, torque, reaction_body=None):
"""Add torque to the body(s).
Explanation
===========
Applies the torque on self or equal and oppposite torquess on
self and other body if both are given.
The torque applied on other body is taken opposite of self,
i.e, -torque.
Parameters
==========
torque: Vector
The torque to be applied.
reaction_body: Body, optional
Second body on which equal and opposite torque
is to be applied.
Example
=======
>>> from sympy import symbols
>>> from sympy.physics.mechanics import Body, dynamicsymbols
>>> t = symbols('t')
>>> B = Body('B')
>>> torque1 = t*B.z
>>> B.apply_torque(torque1)
>>> B.loads
[(B_frame, t*B_frame.z)]
We can also remove some part of torque from the body by
adding the opposite torque to the body.
>>> t1, t2 = dynamicsymbols('t1 t2')
>>> B.apply_torque(t1*B.x + t2*B.y)
>>> B.loads
[(B_frame, t1(t)*B_frame.x + t2(t)*B_frame.y + t*B_frame.z)]
Let's remove t1 from Body B.
>>> B.apply_torque(-t1*B.x)
>>> B.loads
[(B_frame, t2(t)*B_frame.y + t*B_frame.z)]
To further demonstrate the use, let us consider two bodies such that
a torque `T` is acting on one body, and `-T` on the other.
>>> from sympy.physics.mechanics import Body, dynamicsymbols
>>> N = Body('N') #Newtonion frame
>>> B1 = Body('B1')
>>> B2 = Body('B2')
>>> v = dynamicsymbols('v')
>>> T = v*N.y #Torque
Now let's apply equal and opposite torque to the bodies.
>>> B1.apply_torque(T, B2)
We can check the loads (torques) applied to bodies now.
>>> B1.loads
[(B1_frame, v(t)*N_frame.y)]
>>> B2.loads
[(B2_frame, - v(t)*N_frame.y)]
Notes
=====
If a new torque is applied on body which already has some torque applied on it,
then the new torque is added to the previous torque about the body's frame.
"""
if not isinstance(torque, Vector):
raise TypeError("A Vector must be supplied to add torque.")
if reaction_body is not None:
reaction_body.apply_torque(-torque)
for load in self._loads:
if self.frame in load:
torque += load[1]
self._loads.remove(load)
break
self._loads.append((self.frame, torque))
def clear_loads(self):
"""
Clears the Body's loads list.
Example
=======
>>> from sympy.physics.mechanics import Body
>>> B = Body('B')
>>> force = B.x + B.y
>>> B.apply_force(force)
>>> B.loads
[(B_masscenter, B_frame.x + B_frame.y)]
>>> B.clear_loads()
>>> B.loads
[]
"""
self._loads = []
def remove_load(self, about=None):
"""
Remove load about a point or frame.
Parameters
==========
about : Point or ReferenceFrame, optional
The point about which force is applied,
and is to be removed.
If about is None, then the torque about
self's frame is removed.
Example
=======
>>> from sympy.physics.mechanics import Body, Point
>>> B = Body('B')
>>> P = Point('P')
>>> f1 = B.x
>>> f2 = B.y
>>> B.apply_force(f1)
>>> B.apply_force(f2, P)
>>> B.loads
[(B_masscenter, B_frame.x), (P, B_frame.y)]
>>> B.remove_load(P)
>>> B.loads
[(B_masscenter, B_frame.x)]
"""
if about is not None:
if not isinstance(about, Point):
raise TypeError('Load is applied about Point or ReferenceFrame.')
else:
about = self.frame
for load in self._loads:
if about in load:
self._loads.remove(load)
break
def masscenter_vel(self, body):
"""
Returns the velocity of the mass center with respect to the provided
rigid body or reference frame.
Parameters
==========
body: Body or ReferenceFrame
The rigid body or reference frame to calculate the velocity in.
Example
=======
>>> from sympy.physics.mechanics import Body
>>> A = Body('A')
>>> B = Body('B')
>>> A.masscenter.set_vel(B.frame, 5*B.frame.x)
>>> A.masscenter_vel(B)
5*B_frame.x
>>> A.masscenter_vel(B.frame)
5*B_frame.x
"""
if isinstance(body, ReferenceFrame):
frame=body
elif isinstance(body, Body):
frame = body.frame
return self.masscenter.vel(frame)
def ang_vel_in(self, body):
"""
Returns this body's angular velocity with respect to the provided
rigid body or reference frame.
Parameters
==========
body: Body or ReferenceFrame
The rigid body or reference frame to calculate the angular velocity in.
Example
=======
>>> from sympy.physics.mechanics import Body, ReferenceFrame
>>> A = Body('A')
>>> N = ReferenceFrame('N')
>>> B = Body('B', frame=N)
>>> A.frame.set_ang_vel(N, 5*N.x)
>>> A.ang_vel_in(B)
5*N.x
>>> A.ang_vel_in(N)
5*N.x
"""
if isinstance(body, ReferenceFrame):
frame=body
elif isinstance(body, Body):
frame = body.frame
return self.frame.ang_vel_in(frame)
def dcm(self, body):
"""
Returns the direction cosine matrix of this body relative to the
provided rigid body or reference frame.
Parameters
==========
body: Body or ReferenceFrame
The rigid body or reference frame to calculate the dcm.
Example
=======
>>> from sympy.physics.mechanics import Body
>>> A = Body('A')
>>> B = Body('B')
>>> A.frame.orient_axis(B.frame, B.frame.x, 5)
>>> A.dcm(B)
Matrix([
[1, 0, 0],
[0, cos(5), sin(5)],
[0, -sin(5), cos(5)]])
>>> A.dcm(B.frame)
Matrix([
[1, 0, 0],
[0, cos(5), sin(5)],
[0, -sin(5), cos(5)]])
"""
if isinstance(body, ReferenceFrame):
frame=body
elif isinstance(body, Body):
frame = body.frame
return self.frame.dcm(frame)
def parallel_axis(self, point, frame=None):
"""Returns the inertia dyadic of the body with respect to another
point.
Parameters
==========
point : sympy.physics.vector.Point
The point to express the inertia dyadic about.
frame : sympy.physics.vector.ReferenceFrame
The reference frame used to construct the dyadic.
Returns
=======
inertia : sympy.physics.vector.Dyadic
The inertia dyadic of the rigid body expressed about the provided
point.
Example
=======
>>> from sympy.physics.mechanics import Body
>>> A = Body('A')
>>> P = A.masscenter.locatenew('point', 3 * A.x + 5 * A.y)
>>> A.parallel_axis(P).to_matrix(A.frame)
Matrix([
[A_ixx + 25*A_mass, A_ixy - 15*A_mass, A_izx],
[A_ixy - 15*A_mass, A_iyy + 9*A_mass, A_iyz],
[ A_izx, A_iyz, A_izz + 34*A_mass]])
"""
if self.is_rigidbody:
return RigidBody.parallel_axis(self, point, frame)
return Particle.parallel_axis(self, point, frame)
|
e7b5c73ce645df2dbe74b72b7f01021208c5b615187909dc99fb7719960ac8e6 | __all__ = [
'vector',
'CoordinateSym', 'ReferenceFrame', 'Dyadic', 'Vector', 'Point', 'cross',
'dot', 'express', 'time_derivative', 'outer', 'kinematic_equations',
'get_motion_params', 'partial_velocity', 'dynamicsymbols', 'vprint',
'vsstrrepr', 'vsprint', 'vpprint', 'vlatex', 'init_vprinting', 'curl',
'divergence', 'gradient', 'is_conservative', 'is_solenoidal',
'scalar_potential', 'scalar_potential_difference',
'KanesMethod',
'RigidBody',
'inertia', 'inertia_of_point_mass', 'linear_momentum', 'angular_momentum',
'kinetic_energy', 'potential_energy', 'Lagrangian', 'mechanics_printing',
'mprint', 'msprint', 'mpprint', 'mlatex', 'msubs', 'find_dynamicsymbols',
'Particle',
'LagrangesMethod',
'Linearizer',
'Body',
'SymbolicSystem',
'PinJoint', 'PrismaticJoint', 'CylindricalJoint', 'PlanarJoint',
'SphericalJoint', 'WeldJoint',
'JointsMethod'
]
from sympy.physics import vector
from sympy.physics.vector import (CoordinateSym, ReferenceFrame, Dyadic, Vector, Point,
cross, dot, express, time_derivative, outer, kinematic_equations,
get_motion_params, partial_velocity, dynamicsymbols, vprint,
vsstrrepr, vsprint, vpprint, vlatex, init_vprinting, curl, divergence,
gradient, is_conservative, is_solenoidal, scalar_potential,
scalar_potential_difference)
from .kane import KanesMethod
from .rigidbody import RigidBody
from .functions import (inertia, inertia_of_point_mass, linear_momentum,
angular_momentum, kinetic_energy, potential_energy, Lagrangian,
mechanics_printing, mprint, msprint, mpprint, mlatex, msubs,
find_dynamicsymbols)
from .particle import Particle
from .lagrange import LagrangesMethod
from .linearize import Linearizer
from .body import Body
from .system import SymbolicSystem
from .jointsmethod import JointsMethod
from .joint import (PinJoint, PrismaticJoint, CylindricalJoint, PlanarJoint,
SphericalJoint, WeldJoint)
|
2fe8a644de33042b455da8e3c90e3eda978c50bab2b026d5114abaf49a506e00 | from sympy.core.backend import zeros, Matrix, diff, eye
from sympy.core.sorting import default_sort_key
from sympy.physics.vector import (ReferenceFrame, dynamicsymbols,
partial_velocity)
from sympy.physics.mechanics.method import _Methods
from sympy.physics.mechanics.particle import Particle
from sympy.physics.mechanics.rigidbody import RigidBody
from sympy.physics.mechanics.functions import (
msubs, find_dynamicsymbols, _f_list_parser, _validate_coordinates)
from sympy.physics.mechanics.linearize import Linearizer
from sympy.utilities.iterables import iterable
__all__ = ['KanesMethod']
class KanesMethod(_Methods):
r"""Kane's method object.
Explanation
===========
This object is used to do the "book-keeping" as you go through and form
equations of motion in the way Kane presents in:
Kane, T., Levinson, D. Dynamics Theory and Applications. 1985 McGraw-Hill
The attributes are for equations in the form [M] udot = forcing.
Attributes
==========
q, u : Matrix
Matrices of the generalized coordinates and speeds
bodies : iterable
Iterable of Point and RigidBody objects in the system.
loads : iterable
Iterable of (Point, vector) or (ReferenceFrame, vector) tuples
describing the forces on the system.
auxiliary_eqs : Matrix
If applicable, the set of auxiliary Kane's
equations used to solve for non-contributing
forces.
mass_matrix : Matrix
The system's dynamics mass matrix: [k_d; k_dnh]
forcing : Matrix
The system's dynamics forcing vector: -[f_d; f_dnh]
mass_matrix_kin : Matrix
The "mass matrix" for kinematic differential equations: k_kqdot
forcing_kin : Matrix
The forcing vector for kinematic differential equations: -(k_ku*u + f_k)
mass_matrix_full : Matrix
The "mass matrix" for the u's and q's with dynamics and kinematics
forcing_full : Matrix
The "forcing vector" for the u's and q's with dynamics and kinematics
explicit_kinematics : bool
Boolean whether the mass matrices and forcing vectors should use the
explicit form (default) or implicit form for kinematics.
See the notes for more details.
Notes
=====
The mass matrices and forcing vectors related to kinematic equations
are given in the explicit form by default. In other words, the kinematic
mass matrix is $\mathbf{k_{k\dot{q}}} = \mathbf{I}$.
In order to get the implicit form of those matrices/vectors, you can set the
``explicit_kinematics`` attribute to ``False``. So $\mathbf{k_{k\dot{q}}}$ is not
necessarily an identity matrix. This can provide more compact equations for
non-simple kinematics (see #22626).
Examples
========
This is a simple example for a one degree of freedom translational
spring-mass-damper.
In this example, we first need to do the kinematics.
This involves creating generalized speeds and coordinates and their
derivatives.
Then we create a point and set its velocity in a frame.
>>> from sympy import symbols
>>> from sympy.physics.mechanics import dynamicsymbols, ReferenceFrame
>>> from sympy.physics.mechanics import Point, Particle, KanesMethod
>>> q, u = dynamicsymbols('q u')
>>> qd, ud = dynamicsymbols('q u', 1)
>>> m, c, k = symbols('m c k')
>>> N = ReferenceFrame('N')
>>> P = Point('P')
>>> P.set_vel(N, u * N.x)
Next we need to arrange/store information in the way that KanesMethod
requires. The kinematic differential equations need to be stored in a
dict. A list of forces/torques must be constructed, where each entry in
the list is a (Point, Vector) or (ReferenceFrame, Vector) tuple, where the
Vectors represent the Force or Torque.
Next a particle needs to be created, and it needs to have a point and mass
assigned to it.
Finally, a list of all bodies and particles needs to be created.
>>> kd = [qd - u]
>>> FL = [(P, (-k * q - c * u) * N.x)]
>>> pa = Particle('pa', P, m)
>>> BL = [pa]
Finally we can generate the equations of motion.
First we create the KanesMethod object and supply an inertial frame,
coordinates, generalized speeds, and the kinematic differential equations.
Additional quantities such as configuration and motion constraints,
dependent coordinates and speeds, and auxiliary speeds are also supplied
here (see the online documentation).
Next we form FR* and FR to complete: Fr + Fr* = 0.
We have the equations of motion at this point.
It makes sense to rearrange them though, so we calculate the mass matrix and
the forcing terms, for E.o.M. in the form: [MM] udot = forcing, where MM is
the mass matrix, udot is a vector of the time derivatives of the
generalized speeds, and forcing is a vector representing "forcing" terms.
>>> KM = KanesMethod(N, q_ind=[q], u_ind=[u], kd_eqs=kd)
>>> (fr, frstar) = KM.kanes_equations(BL, FL)
>>> MM = KM.mass_matrix
>>> forcing = KM.forcing
>>> rhs = MM.inv() * forcing
>>> rhs
Matrix([[(-c*u(t) - k*q(t))/m]])
>>> KM.linearize(A_and_B=True)[0]
Matrix([
[ 0, 1],
[-k/m, -c/m]])
Please look at the documentation pages for more information on how to
perform linearization and how to deal with dependent coordinates & speeds,
and how do deal with bringing non-contributing forces into evidence.
"""
def __init__(self, frame, q_ind, u_ind, kd_eqs=None, q_dependent=None,
configuration_constraints=None, u_dependent=None,
velocity_constraints=None, acceleration_constraints=None,
u_auxiliary=None, bodies=None, forcelist=None, explicit_kinematics=True):
"""Please read the online documentation. """
if not q_ind:
q_ind = [dynamicsymbols('dummy_q')]
kd_eqs = [dynamicsymbols('dummy_kd')]
if not isinstance(frame, ReferenceFrame):
raise TypeError('An inertial ReferenceFrame must be supplied')
self._inertial = frame
self._fr = None
self._frstar = None
self._forcelist = forcelist
self._bodylist = bodies
self.explicit_kinematics = explicit_kinematics
self._initialize_vectors(q_ind, q_dependent, u_ind, u_dependent,
u_auxiliary)
_validate_coordinates(self.q, self.u)
self._initialize_kindiffeq_matrices(kd_eqs)
self._initialize_constraint_matrices(configuration_constraints,
velocity_constraints, acceleration_constraints)
def _initialize_vectors(self, q_ind, q_dep, u_ind, u_dep, u_aux):
"""Initialize the coordinate and speed vectors."""
none_handler = lambda x: Matrix(x) if x else Matrix()
# Initialize generalized coordinates
q_dep = none_handler(q_dep)
if not iterable(q_ind):
raise TypeError('Generalized coordinates must be an iterable.')
if not iterable(q_dep):
raise TypeError('Dependent coordinates must be an iterable.')
q_ind = Matrix(q_ind)
self._qdep = q_dep
self._q = Matrix([q_ind, q_dep])
self._qdot = self.q.diff(dynamicsymbols._t)
# Initialize generalized speeds
u_dep = none_handler(u_dep)
if not iterable(u_ind):
raise TypeError('Generalized speeds must be an iterable.')
if not iterable(u_dep):
raise TypeError('Dependent speeds must be an iterable.')
u_ind = Matrix(u_ind)
self._udep = u_dep
self._u = Matrix([u_ind, u_dep])
self._udot = self.u.diff(dynamicsymbols._t)
self._uaux = none_handler(u_aux)
def _initialize_constraint_matrices(self, config, vel, acc):
"""Initializes constraint matrices."""
# Define vector dimensions
o = len(self.u)
m = len(self._udep)
p = o - m
none_handler = lambda x: Matrix(x) if x else Matrix()
# Initialize configuration constraints
config = none_handler(config)
if len(self._qdep) != len(config):
raise ValueError('There must be an equal number of dependent '
'coordinates and configuration constraints.')
self._f_h = none_handler(config)
# Initialize velocity and acceleration constraints
vel = none_handler(vel)
acc = none_handler(acc)
if len(vel) != m:
raise ValueError('There must be an equal number of dependent '
'speeds and velocity constraints.')
if acc and (len(acc) != m):
raise ValueError('There must be an equal number of dependent '
'speeds and acceleration constraints.')
if vel:
u_zero = {i: 0 for i in self.u}
udot_zero = {i: 0 for i in self._udot}
# When calling kanes_equations, another class instance will be
# created if auxiliary u's are present. In this case, the
# computation of kinetic differential equation matrices will be
# skipped as this was computed during the original KanesMethod
# object, and the qd_u_map will not be available.
if self._qdot_u_map is not None:
vel = msubs(vel, self._qdot_u_map)
self._f_nh = msubs(vel, u_zero)
self._k_nh = (vel - self._f_nh).jacobian(self.u)
# If no acceleration constraints given, calculate them.
if not acc:
_f_dnh = (self._k_nh.diff(dynamicsymbols._t) * self.u +
self._f_nh.diff(dynamicsymbols._t))
if self._qdot_u_map is not None:
_f_dnh = msubs(_f_dnh, self._qdot_u_map)
self._f_dnh = _f_dnh
self._k_dnh = self._k_nh
else:
if self._qdot_u_map is not None:
acc = msubs(acc, self._qdot_u_map)
self._f_dnh = msubs(acc, udot_zero)
self._k_dnh = (acc - self._f_dnh).jacobian(self._udot)
# Form of non-holonomic constraints is B*u + C = 0.
# We partition B into independent and dependent columns:
# Ars is then -B_dep.inv() * B_ind, and it relates dependent speeds
# to independent speeds as: udep = Ars*uind, neglecting the C term.
B_ind = self._k_nh[:, :p]
B_dep = self._k_nh[:, p:o]
self._Ars = -B_dep.LUsolve(B_ind)
else:
self._f_nh = Matrix()
self._k_nh = Matrix()
self._f_dnh = Matrix()
self._k_dnh = Matrix()
self._Ars = Matrix()
def _initialize_kindiffeq_matrices(self, kdeqs):
"""Initialize the kinematic differential equation matrices.
Parameters
==========
kdeqs : sequence of sympy expressions
Kinematic differential equations in the form of f(u,q',q,t) where
f() = 0. The equations have to be linear in the generalized
coordinates and generalized speeds.
"""
if kdeqs:
if len(self.q) != len(kdeqs):
raise ValueError('There must be an equal number of kinematic '
'differential equations and coordinates.')
u = self.u
qdot = self._qdot
kdeqs = Matrix(kdeqs)
u_zero = {ui: 0 for ui in u}
uaux_zero = {uai: 0 for uai in self._uaux}
qdot_zero = {qdi: 0 for qdi in qdot}
# Extract the linear coefficient matrices as per the following
# equation:
#
# k_ku(q,t)*u(t) + k_kqdot(q,t)*q'(t) + f_k(q,t) = 0
#
k_ku = kdeqs.jacobian(u)
k_kqdot = kdeqs.jacobian(qdot)
f_k = kdeqs.xreplace(u_zero).xreplace(qdot_zero)
# The kinematic differential equations should be linear in both q'
# and u, so check for u and q' in the components.
dy_syms = find_dynamicsymbols(k_ku.row_join(k_kqdot).row_join(f_k))
nonlin_vars = [vari for vari in u[:] + qdot[:] if vari in dy_syms]
if nonlin_vars:
msg = ('The provided kinematic differential equations are '
'nonlinear in {}. They must be linear in the '
'generalized speeds and derivatives of the generalized '
'coordinates.')
raise ValueError(msg.format(nonlin_vars))
self._f_k_implicit = f_k.xreplace(uaux_zero)
self._k_ku_implicit = k_ku.xreplace(uaux_zero)
self._k_kqdot_implicit = k_kqdot
# Solve for q'(t) such that the coefficient matrices are now in
# this form:
#
# k_kqdot^-1*k_ku*u(t) + I*q'(t) + k_kqdot^-1*f_k = 0
#
# NOTE : Solving the kinematic differential equations here is not
# necessary and prevents the equations from being provided in fully
# implicit form.
f_k_explicit = k_kqdot.LUsolve(f_k)
k_ku_explicit = k_kqdot.LUsolve(k_ku)
self._qdot_u_map = dict(zip(qdot, -(k_ku_explicit*u + f_k_explicit)))
self._f_k = f_k_explicit.xreplace(uaux_zero)
self._k_ku = k_ku_explicit.xreplace(uaux_zero)
self._k_kqdot = eye(len(qdot))
else:
self._qdot_u_map = None
self._f_k_implicit = self._f_k = Matrix()
self._k_ku_implicit = self._k_ku = Matrix()
self._k_kqdot_implicit = self._k_kqdot = Matrix()
def _form_fr(self, fl):
"""Form the generalized active force."""
if fl is not None and (len(fl) == 0 or not iterable(fl)):
raise ValueError('Force pairs must be supplied in an '
'non-empty iterable or None.')
N = self._inertial
# pull out relevant velocities for constructing partial velocities
vel_list, f_list = _f_list_parser(fl, N)
vel_list = [msubs(i, self._qdot_u_map) for i in vel_list]
f_list = [msubs(i, self._qdot_u_map) for i in f_list]
# Fill Fr with dot product of partial velocities and forces
o = len(self.u)
b = len(f_list)
FR = zeros(o, 1)
partials = partial_velocity(vel_list, self.u, N)
for i in range(o):
FR[i] = sum(partials[j][i] & f_list[j] for j in range(b))
# In case there are dependent speeds
if self._udep:
p = o - len(self._udep)
FRtilde = FR[:p, 0]
FRold = FR[p:o, 0]
FRtilde += self._Ars.T * FRold
FR = FRtilde
self._forcelist = fl
self._fr = FR
return FR
def _form_frstar(self, bl):
"""Form the generalized inertia force."""
if not iterable(bl):
raise TypeError('Bodies must be supplied in an iterable.')
t = dynamicsymbols._t
N = self._inertial
# Dicts setting things to zero
udot_zero = {i: 0 for i in self._udot}
uaux_zero = {i: 0 for i in self._uaux}
uauxdot = [diff(i, t) for i in self._uaux]
uauxdot_zero = {i: 0 for i in uauxdot}
# Dictionary of q' and q'' to u and u'
q_ddot_u_map = {k.diff(t): v.diff(t) for (k, v) in
self._qdot_u_map.items()}
q_ddot_u_map.update(self._qdot_u_map)
# Fill up the list of partials: format is a list with num elements
# equal to number of entries in body list. Each of these elements is a
# list - either of length 1 for the translational components of
# particles or of length 2 for the translational and rotational
# components of rigid bodies. The inner most list is the list of
# partial velocities.
def get_partial_velocity(body):
if isinstance(body, RigidBody):
vlist = [body.masscenter.vel(N), body.frame.ang_vel_in(N)]
elif isinstance(body, Particle):
vlist = [body.point.vel(N),]
else:
raise TypeError('The body list may only contain either '
'RigidBody or Particle as list elements.')
v = [msubs(vel, self._qdot_u_map) for vel in vlist]
return partial_velocity(v, self.u, N)
partials = [get_partial_velocity(body) for body in bl]
# Compute fr_star in two components:
# fr_star = -(MM*u' + nonMM)
o = len(self.u)
MM = zeros(o, o)
nonMM = zeros(o, 1)
zero_uaux = lambda expr: msubs(expr, uaux_zero)
zero_udot_uaux = lambda expr: msubs(msubs(expr, udot_zero), uaux_zero)
for i, body in enumerate(bl):
if isinstance(body, RigidBody):
M = zero_uaux(body.mass)
I = zero_uaux(body.central_inertia)
vel = zero_uaux(body.masscenter.vel(N))
omega = zero_uaux(body.frame.ang_vel_in(N))
acc = zero_udot_uaux(body.masscenter.acc(N))
inertial_force = (M.diff(t) * vel + M * acc)
inertial_torque = zero_uaux((I.dt(body.frame) & omega) +
msubs(I & body.frame.ang_acc_in(N), udot_zero) +
(omega ^ (I & omega)))
for j in range(o):
tmp_vel = zero_uaux(partials[i][0][j])
tmp_ang = zero_uaux(I & partials[i][1][j])
for k in range(o):
# translational
MM[j, k] += M * (tmp_vel & partials[i][0][k])
# rotational
MM[j, k] += (tmp_ang & partials[i][1][k])
nonMM[j] += inertial_force & partials[i][0][j]
nonMM[j] += inertial_torque & partials[i][1][j]
else:
M = zero_uaux(body.mass)
vel = zero_uaux(body.point.vel(N))
acc = zero_udot_uaux(body.point.acc(N))
inertial_force = (M.diff(t) * vel + M * acc)
for j in range(o):
temp = zero_uaux(partials[i][0][j])
for k in range(o):
MM[j, k] += M * (temp & partials[i][0][k])
nonMM[j] += inertial_force & partials[i][0][j]
# Compose fr_star out of MM and nonMM
MM = zero_uaux(msubs(MM, q_ddot_u_map))
nonMM = msubs(msubs(nonMM, q_ddot_u_map),
udot_zero, uauxdot_zero, uaux_zero)
fr_star = -(MM * msubs(Matrix(self._udot), uauxdot_zero) + nonMM)
# If there are dependent speeds, we need to find fr_star_tilde
if self._udep:
p = o - len(self._udep)
fr_star_ind = fr_star[:p, 0]
fr_star_dep = fr_star[p:o, 0]
fr_star = fr_star_ind + (self._Ars.T * fr_star_dep)
# Apply the same to MM
MMi = MM[:p, :]
MMd = MM[p:o, :]
MM = MMi + (self._Ars.T * MMd)
self._bodylist = bl
self._frstar = fr_star
self._k_d = MM
self._f_d = -msubs(self._fr + self._frstar, udot_zero)
return fr_star
def to_linearizer(self):
"""Returns an instance of the Linearizer class, initiated from the
data in the KanesMethod class. This may be more desirable than using
the linearize class method, as the Linearizer object will allow more
efficient recalculation (i.e. about varying operating points)."""
if (self._fr is None) or (self._frstar is None):
raise ValueError('Need to compute Fr, Fr* first.')
# Get required equation components. The Kane's method class breaks
# these into pieces. Need to reassemble
f_c = self._f_h
if self._f_nh and self._k_nh:
f_v = self._f_nh + self._k_nh*Matrix(self.u)
else:
f_v = Matrix()
if self._f_dnh and self._k_dnh:
f_a = self._f_dnh + self._k_dnh*Matrix(self._udot)
else:
f_a = Matrix()
# Dicts to sub to zero, for splitting up expressions
u_zero = {i: 0 for i in self.u}
ud_zero = {i: 0 for i in self._udot}
qd_zero = {i: 0 for i in self._qdot}
qd_u_zero = {i: 0 for i in Matrix([self._qdot, self.u])}
# Break the kinematic differential eqs apart into f_0 and f_1
f_0 = msubs(self._f_k, u_zero) + self._k_kqdot*Matrix(self._qdot)
f_1 = msubs(self._f_k, qd_zero) + self._k_ku*Matrix(self.u)
# Break the dynamic differential eqs into f_2 and f_3
f_2 = msubs(self._frstar, qd_u_zero)
f_3 = msubs(self._frstar, ud_zero) + self._fr
f_4 = zeros(len(f_2), 1)
# Get the required vector components
q = self.q
u = self.u
if self._qdep:
q_i = q[:-len(self._qdep)]
else:
q_i = q
q_d = self._qdep
if self._udep:
u_i = u[:-len(self._udep)]
else:
u_i = u
u_d = self._udep
# Form dictionary to set auxiliary speeds & their derivatives to 0.
uaux = self._uaux
uauxdot = uaux.diff(dynamicsymbols._t)
uaux_zero = {i: 0 for i in Matrix([uaux, uauxdot])}
# Checking for dynamic symbols outside the dynamic differential
# equations; throws error if there is.
sym_list = set(Matrix([q, self._qdot, u, self._udot, uaux, uauxdot]))
if any(find_dynamicsymbols(i, sym_list) for i in [self._k_kqdot,
self._k_ku, self._f_k, self._k_dnh, self._f_dnh, self._k_d]):
raise ValueError('Cannot have dynamicsymbols outside dynamic \
forcing vector.')
# Find all other dynamic symbols, forming the forcing vector r.
# Sort r to make it canonical.
r = list(find_dynamicsymbols(msubs(self._f_d, uaux_zero), sym_list))
r.sort(key=default_sort_key)
# Check for any derivatives of variables in r that are also found in r.
for i in r:
if diff(i, dynamicsymbols._t) in r:
raise ValueError('Cannot have derivatives of specified \
quantities when linearizing forcing terms.')
return Linearizer(f_0, f_1, f_2, f_3, f_4, f_c, f_v, f_a, q, u, q_i,
q_d, u_i, u_d, r)
# TODO : Remove `new_method` after 1.1 has been released.
def linearize(self, *, new_method=None, **kwargs):
""" Linearize the equations of motion about a symbolic operating point.
Explanation
===========
If kwarg A_and_B is False (default), returns M, A, B, r for the
linearized form, M*[q', u']^T = A*[q_ind, u_ind]^T + B*r.
If kwarg A_and_B is True, returns A, B, r for the linearized form
dx = A*x + B*r, where x = [q_ind, u_ind]^T. Note that this is
computationally intensive if there are many symbolic parameters. For
this reason, it may be more desirable to use the default A_and_B=False,
returning M, A, and B. Values may then be substituted in to these
matrices, and the state space form found as
A = P.T*M.inv()*A, B = P.T*M.inv()*B, where P = Linearizer.perm_mat.
In both cases, r is found as all dynamicsymbols in the equations of
motion that are not part of q, u, q', or u'. They are sorted in
canonical form.
The operating points may be also entered using the ``op_point`` kwarg.
This takes a dictionary of {symbol: value}, or a an iterable of such
dictionaries. The values may be numeric or symbolic. The more values
you can specify beforehand, the faster this computation will run.
For more documentation, please see the ``Linearizer`` class."""
linearizer = self.to_linearizer()
result = linearizer.linearize(**kwargs)
return result + (linearizer.r,)
def kanes_equations(self, bodies=None, loads=None):
""" Method to form Kane's equations, Fr + Fr* = 0.
Explanation
===========
Returns (Fr, Fr*). In the case where auxiliary generalized speeds are
present (say, s auxiliary speeds, o generalized speeds, and m motion
constraints) the length of the returned vectors will be o - m + s in
length. The first o - m equations will be the constrained Kane's
equations, then the s auxiliary Kane's equations. These auxiliary
equations can be accessed with the auxiliary_eqs property.
Parameters
==========
bodies : iterable
An iterable of all RigidBody's and Particle's in the system.
A system must have at least one body.
loads : iterable
Takes in an iterable of (Particle, Vector) or (ReferenceFrame, Vector)
tuples which represent the force at a point or torque on a frame.
Must be either a non-empty iterable of tuples or None which corresponds
to a system with no constraints.
"""
if bodies is None:
bodies = self.bodies
if loads is None and self._forcelist is not None:
loads = self._forcelist
if loads == []:
loads = None
if not self._k_kqdot:
raise AttributeError('Create an instance of KanesMethod with '
'kinematic differential equations to use this method.')
fr = self._form_fr(loads)
frstar = self._form_frstar(bodies)
if self._uaux:
if not self._udep:
km = KanesMethod(self._inertial, self.q, self._uaux,
u_auxiliary=self._uaux)
else:
km = KanesMethod(self._inertial, self.q, self._uaux,
u_auxiliary=self._uaux, u_dependent=self._udep,
velocity_constraints=(self._k_nh * self.u +
self._f_nh),
acceleration_constraints=(self._k_dnh * self._udot +
self._f_dnh)
)
km._qdot_u_map = self._qdot_u_map
self._km = km
fraux = km._form_fr(loads)
frstaraux = km._form_frstar(bodies)
self._aux_eq = fraux + frstaraux
self._fr = fr.col_join(fraux)
self._frstar = frstar.col_join(frstaraux)
return (self._fr, self._frstar)
def _form_eoms(self):
fr, frstar = self.kanes_equations(self.bodylist, self.forcelist)
return fr + frstar
def rhs(self, inv_method=None):
"""Returns the system's equations of motion in first order form. The
output is the right hand side of::
x' = |q'| =: f(q, u, r, p, t)
|u'|
The right hand side is what is needed by most numerical ODE
integrators.
Parameters
==========
inv_method : str
The specific sympy inverse matrix calculation method to use. For a
list of valid methods, see
:meth:`~sympy.matrices.matrices.MatrixBase.inv`
"""
rhs = zeros(len(self.q) + len(self.u), 1)
kdes = self.kindiffdict()
for i, q_i in enumerate(self.q):
rhs[i] = kdes[q_i.diff()]
if inv_method is None:
rhs[len(self.q):, 0] = self.mass_matrix.LUsolve(self.forcing)
else:
rhs[len(self.q):, 0] = (self.mass_matrix.inv(inv_method,
try_block_diag=True) *
self.forcing)
return rhs
def kindiffdict(self):
"""Returns a dictionary mapping q' to u."""
if not self._qdot_u_map:
raise AttributeError('Create an instance of KanesMethod with '
'kinematic differential equations to use this method.')
return self._qdot_u_map
@property
def auxiliary_eqs(self):
"""A matrix containing the auxiliary equations."""
if not self._fr or not self._frstar:
raise ValueError('Need to compute Fr, Fr* first.')
if not self._uaux:
raise ValueError('No auxiliary speeds have been declared.')
return self._aux_eq
@property
def mass_matrix_kin(self):
r"""The kinematic "mass matrix" $\mathbf{k_{k\dot{q}}}$ of the system."""
return self._k_kqdot if self.explicit_kinematics else self._k_kqdot_implicit
@property
def forcing_kin(self):
"""The kinematic "forcing vector" of the system."""
if self.explicit_kinematics:
return -(self._k_ku * Matrix(self.u) + self._f_k)
else:
return -(self._k_ku_implicit * Matrix(self.u) + self._f_k_implicit)
@property
def mass_matrix(self):
"""The mass matrix of the system."""
if not self._fr or not self._frstar:
raise ValueError('Need to compute Fr, Fr* first.')
return Matrix([self._k_d, self._k_dnh])
@property
def forcing(self):
"""The forcing vector of the system."""
if not self._fr or not self._frstar:
raise ValueError('Need to compute Fr, Fr* first.')
return -Matrix([self._f_d, self._f_dnh])
@property
def mass_matrix_full(self):
"""The mass matrix of the system, augmented by the kinematic
differential equations in explicit or implicit form."""
if not self._fr or not self._frstar:
raise ValueError('Need to compute Fr, Fr* first.')
o, n = len(self.u), len(self.q)
return (self.mass_matrix_kin.row_join(zeros(n, o))).col_join(
zeros(o, n).row_join(self.mass_matrix))
@property
def forcing_full(self):
"""The forcing vector of the system, augmented by the kinematic
differential equations in explicit or implicit form."""
return Matrix([self.forcing_kin, self.forcing])
@property
def q(self):
return self._q
@property
def u(self):
return self._u
@property
def bodylist(self):
return self._bodylist
@property
def forcelist(self):
return self._forcelist
@property
def bodies(self):
return self._bodylist
@property
def loads(self):
return self._forcelist
|
908965704f1b605703d5bff6264d544968da19acca63122640034203f3c02b6c | from sympy.utilities import dict_merge
from sympy.utilities.iterables import iterable
from sympy.physics.vector import (Dyadic, Vector, ReferenceFrame,
Point, dynamicsymbols)
from sympy.physics.vector.printing import (vprint, vsprint, vpprint, vlatex,
init_vprinting)
from sympy.physics.mechanics.particle import Particle
from sympy.physics.mechanics.rigidbody import RigidBody
from sympy.simplify.simplify import simplify
from sympy.core.backend import (Matrix, sympify, Mul, Derivative, sin, cos,
tan, AppliedUndef, S)
__all__ = ['inertia',
'inertia_of_point_mass',
'linear_momentum',
'angular_momentum',
'kinetic_energy',
'potential_energy',
'Lagrangian',
'mechanics_printing',
'mprint',
'msprint',
'mpprint',
'mlatex',
'msubs',
'find_dynamicsymbols']
# These are functions that we've moved and renamed during extracting the
# basic vector calculus code from the mechanics packages.
mprint = vprint
msprint = vsprint
mpprint = vpprint
mlatex = vlatex
def mechanics_printing(**kwargs):
"""
Initializes time derivative printing for all SymPy objects in
mechanics module.
"""
init_vprinting(**kwargs)
mechanics_printing.__doc__ = init_vprinting.__doc__
def inertia(frame, ixx, iyy, izz, ixy=0, iyz=0, izx=0):
"""Simple way to create inertia Dyadic object.
Explanation
===========
If you do not know what a Dyadic is, just treat this like the inertia
tensor. Then, do the easy thing and define it in a body-fixed frame.
Parameters
==========
frame : ReferenceFrame
The frame the inertia is defined in
ixx : Sympifyable
the xx element in the inertia dyadic
iyy : Sympifyable
the yy element in the inertia dyadic
izz : Sympifyable
the zz element in the inertia dyadic
ixy : Sympifyable
the xy element in the inertia dyadic
iyz : Sympifyable
the yz element in the inertia dyadic
izx : Sympifyable
the zx element in the inertia dyadic
Examples
========
>>> from sympy.physics.mechanics import ReferenceFrame, inertia
>>> N = ReferenceFrame('N')
>>> inertia(N, 1, 2, 3)
(N.x|N.x) + 2*(N.y|N.y) + 3*(N.z|N.z)
"""
if not isinstance(frame, ReferenceFrame):
raise TypeError('Need to define the inertia in a frame')
ixx = sympify(ixx)
ixy = sympify(ixy)
iyy = sympify(iyy)
iyz = sympify(iyz)
izx = sympify(izx)
izz = sympify(izz)
ol = ixx * (frame.x | frame.x)
ol += ixy * (frame.x | frame.y)
ol += izx * (frame.x | frame.z)
ol += ixy * (frame.y | frame.x)
ol += iyy * (frame.y | frame.y)
ol += iyz * (frame.y | frame.z)
ol += izx * (frame.z | frame.x)
ol += iyz * (frame.z | frame.y)
ol += izz * (frame.z | frame.z)
return ol
def inertia_of_point_mass(mass, pos_vec, frame):
"""Inertia dyadic of a point mass relative to point O.
Parameters
==========
mass : Sympifyable
Mass of the point mass
pos_vec : Vector
Position from point O to point mass
frame : ReferenceFrame
Reference frame to express the dyadic in
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.mechanics import ReferenceFrame, inertia_of_point_mass
>>> N = ReferenceFrame('N')
>>> r, m = symbols('r m')
>>> px = r * N.x
>>> inertia_of_point_mass(m, px, N)
m*r**2*(N.y|N.y) + m*r**2*(N.z|N.z)
"""
return mass * (((frame.x | frame.x) + (frame.y | frame.y) +
(frame.z | frame.z)) * (pos_vec & pos_vec) -
(pos_vec | pos_vec))
def linear_momentum(frame, *body):
"""Linear momentum of the system.
Explanation
===========
This function returns the linear momentum of a system of Particle's and/or
RigidBody's. The linear momentum of a system is equal to the vector sum of
the linear momentum of its constituents. Consider a system, S, comprised of
a rigid body, A, and a particle, P. The linear momentum of the system, L,
is equal to the vector sum of the linear momentum of the particle, L1, and
the linear momentum of the rigid body, L2, i.e.
L = L1 + L2
Parameters
==========
frame : ReferenceFrame
The frame in which linear momentum is desired.
body1, body2, body3... : Particle and/or RigidBody
The body (or bodies) whose linear momentum is required.
Examples
========
>>> from sympy.physics.mechanics import Point, Particle, ReferenceFrame
>>> from sympy.physics.mechanics import RigidBody, outer, linear_momentum
>>> N = ReferenceFrame('N')
>>> P = Point('P')
>>> P.set_vel(N, 10 * N.x)
>>> Pa = Particle('Pa', P, 1)
>>> Ac = Point('Ac')
>>> Ac.set_vel(N, 25 * N.y)
>>> I = outer(N.x, N.x)
>>> A = RigidBody('A', Ac, N, 20, (I, Ac))
>>> linear_momentum(N, A, Pa)
10*N.x + 500*N.y
"""
if not isinstance(frame, ReferenceFrame):
raise TypeError('Please specify a valid ReferenceFrame')
else:
linear_momentum_sys = Vector(0)
for e in body:
if isinstance(e, (RigidBody, Particle)):
linear_momentum_sys += e.linear_momentum(frame)
else:
raise TypeError('*body must have only Particle or RigidBody')
return linear_momentum_sys
def angular_momentum(point, frame, *body):
"""Angular momentum of a system.
Explanation
===========
This function returns the angular momentum of a system of Particle's and/or
RigidBody's. The angular momentum of such a system is equal to the vector
sum of the angular momentum of its constituents. Consider a system, S,
comprised of a rigid body, A, and a particle, P. The angular momentum of
the system, H, is equal to the vector sum of the angular momentum of the
particle, H1, and the angular momentum of the rigid body, H2, i.e.
H = H1 + H2
Parameters
==========
point : Point
The point about which angular momentum of the system is desired.
frame : ReferenceFrame
The frame in which angular momentum is desired.
body1, body2, body3... : Particle and/or RigidBody
The body (or bodies) whose angular momentum is required.
Examples
========
>>> from sympy.physics.mechanics import Point, Particle, ReferenceFrame
>>> from sympy.physics.mechanics import RigidBody, outer, angular_momentum
>>> N = ReferenceFrame('N')
>>> O = Point('O')
>>> O.set_vel(N, 0 * N.x)
>>> P = O.locatenew('P', 1 * N.x)
>>> P.set_vel(N, 10 * N.x)
>>> Pa = Particle('Pa', P, 1)
>>> Ac = O.locatenew('Ac', 2 * N.y)
>>> Ac.set_vel(N, 5 * N.y)
>>> a = ReferenceFrame('a')
>>> a.set_ang_vel(N, 10 * N.z)
>>> I = outer(N.z, N.z)
>>> A = RigidBody('A', Ac, a, 20, (I, Ac))
>>> angular_momentum(O, N, Pa, A)
10*N.z
"""
if not isinstance(frame, ReferenceFrame):
raise TypeError('Please enter a valid ReferenceFrame')
if not isinstance(point, Point):
raise TypeError('Please specify a valid Point')
else:
angular_momentum_sys = Vector(0)
for e in body:
if isinstance(e, (RigidBody, Particle)):
angular_momentum_sys += e.angular_momentum(point, frame)
else:
raise TypeError('*body must have only Particle or RigidBody')
return angular_momentum_sys
def kinetic_energy(frame, *body):
"""Kinetic energy of a multibody system.
Explanation
===========
This function returns the kinetic energy of a system of Particle's and/or
RigidBody's. The kinetic energy of such a system is equal to the sum of
the kinetic energies of its constituents. Consider a system, S, comprising
a rigid body, A, and a particle, P. The kinetic energy of the system, T,
is equal to the vector sum of the kinetic energy of the particle, T1, and
the kinetic energy of the rigid body, T2, i.e.
T = T1 + T2
Kinetic energy is a scalar.
Parameters
==========
frame : ReferenceFrame
The frame in which the velocity or angular velocity of the body is
defined.
body1, body2, body3... : Particle and/or RigidBody
The body (or bodies) whose kinetic energy is required.
Examples
========
>>> from sympy.physics.mechanics import Point, Particle, ReferenceFrame
>>> from sympy.physics.mechanics import RigidBody, outer, kinetic_energy
>>> N = ReferenceFrame('N')
>>> O = Point('O')
>>> O.set_vel(N, 0 * N.x)
>>> P = O.locatenew('P', 1 * N.x)
>>> P.set_vel(N, 10 * N.x)
>>> Pa = Particle('Pa', P, 1)
>>> Ac = O.locatenew('Ac', 2 * N.y)
>>> Ac.set_vel(N, 5 * N.y)
>>> a = ReferenceFrame('a')
>>> a.set_ang_vel(N, 10 * N.z)
>>> I = outer(N.z, N.z)
>>> A = RigidBody('A', Ac, a, 20, (I, Ac))
>>> kinetic_energy(N, Pa, A)
350
"""
if not isinstance(frame, ReferenceFrame):
raise TypeError('Please enter a valid ReferenceFrame')
ke_sys = S.Zero
for e in body:
if isinstance(e, (RigidBody, Particle)):
ke_sys += e.kinetic_energy(frame)
else:
raise TypeError('*body must have only Particle or RigidBody')
return ke_sys
def potential_energy(*body):
"""Potential energy of a multibody system.
Explanation
===========
This function returns the potential energy of a system of Particle's and/or
RigidBody's. The potential energy of such a system is equal to the sum of
the potential energy of its constituents. Consider a system, S, comprising
a rigid body, A, and a particle, P. The potential energy of the system, V,
is equal to the vector sum of the potential energy of the particle, V1, and
the potential energy of the rigid body, V2, i.e.
V = V1 + V2
Potential energy is a scalar.
Parameters
==========
body1, body2, body3... : Particle and/or RigidBody
The body (or bodies) whose potential energy is required.
Examples
========
>>> from sympy.physics.mechanics import Point, Particle, ReferenceFrame
>>> from sympy.physics.mechanics import RigidBody, outer, potential_energy
>>> from sympy import symbols
>>> M, m, g, h = symbols('M m g h')
>>> N = ReferenceFrame('N')
>>> O = Point('O')
>>> O.set_vel(N, 0 * N.x)
>>> P = O.locatenew('P', 1 * N.x)
>>> Pa = Particle('Pa', P, m)
>>> Ac = O.locatenew('Ac', 2 * N.y)
>>> a = ReferenceFrame('a')
>>> I = outer(N.z, N.z)
>>> A = RigidBody('A', Ac, a, M, (I, Ac))
>>> Pa.potential_energy = m * g * h
>>> A.potential_energy = M * g * h
>>> potential_energy(Pa, A)
M*g*h + g*h*m
"""
pe_sys = S.Zero
for e in body:
if isinstance(e, (RigidBody, Particle)):
pe_sys += e.potential_energy
else:
raise TypeError('*body must have only Particle or RigidBody')
return pe_sys
def gravity(acceleration, *bodies):
"""
Returns a list of gravity forces given the acceleration
due to gravity and any number of particles or rigidbodies.
Example
=======
>>> from sympy.physics.mechanics import ReferenceFrame, Point, Particle, outer, RigidBody
>>> from sympy.physics.mechanics.functions import gravity
>>> from sympy import symbols
>>> N = ReferenceFrame('N')
>>> m, M, g = symbols('m M g')
>>> F1, F2 = symbols('F1 F2')
>>> po = Point('po')
>>> pa = Particle('pa', po, m)
>>> A = ReferenceFrame('A')
>>> P = Point('P')
>>> I = outer(A.x, A.x)
>>> B = RigidBody('B', P, A, M, (I, P))
>>> forceList = [(po, F1), (P, F2)]
>>> forceList.extend(gravity(g*N.y, pa, B))
>>> forceList
[(po, F1), (P, F2), (po, g*m*N.y), (P, M*g*N.y)]
"""
gravity_force = []
if not bodies:
raise TypeError("No bodies(instances of Particle or Rigidbody) were passed.")
for e in bodies:
point = getattr(e, 'masscenter', None)
if point is None:
point = e.point
gravity_force.append((point, e.mass*acceleration))
return gravity_force
def center_of_mass(point, *bodies):
"""
Returns the position vector from the given point to the center of mass
of the given bodies(particles or rigidbodies).
Example
=======
>>> from sympy import symbols, S
>>> from sympy.physics.vector import Point
>>> from sympy.physics.mechanics import Particle, ReferenceFrame, RigidBody, outer
>>> from sympy.physics.mechanics.functions import center_of_mass
>>> a = ReferenceFrame('a')
>>> m = symbols('m', real=True)
>>> p1 = Particle('p1', Point('p1_pt'), S(1))
>>> p2 = Particle('p2', Point('p2_pt'), S(2))
>>> p3 = Particle('p3', Point('p3_pt'), S(3))
>>> p4 = Particle('p4', Point('p4_pt'), m)
>>> b_f = ReferenceFrame('b_f')
>>> b_cm = Point('b_cm')
>>> mb = symbols('mb')
>>> b = RigidBody('b', b_cm, b_f, mb, (outer(b_f.x, b_f.x), b_cm))
>>> p2.point.set_pos(p1.point, a.x)
>>> p3.point.set_pos(p1.point, a.x + a.y)
>>> p4.point.set_pos(p1.point, a.y)
>>> b.masscenter.set_pos(p1.point, a.y + a.z)
>>> point_o=Point('o')
>>> point_o.set_pos(p1.point, center_of_mass(p1.point, p1, p2, p3, p4, b))
>>> expr = 5/(m + mb + 6)*a.x + (m + mb + 3)/(m + mb + 6)*a.y + mb/(m + mb + 6)*a.z
>>> point_o.pos_from(p1.point)
5/(m + mb + 6)*a.x + (m + mb + 3)/(m + mb + 6)*a.y + mb/(m + mb + 6)*a.z
"""
if not bodies:
raise TypeError("No bodies(instances of Particle or Rigidbody) were passed.")
total_mass = 0
vec = Vector(0)
for i in bodies:
total_mass += i.mass
masscenter = getattr(i, 'masscenter', None)
if masscenter is None:
masscenter = i.point
vec += i.mass*masscenter.pos_from(point)
return vec/total_mass
def Lagrangian(frame, *body):
"""Lagrangian of a multibody system.
Explanation
===========
This function returns the Lagrangian of a system of Particle's and/or
RigidBody's. The Lagrangian of such a system is equal to the difference
between the kinetic energies and potential energies of its constituents. If
T and V are the kinetic and potential energies of a system then it's
Lagrangian, L, is defined as
L = T - V
The Lagrangian is a scalar.
Parameters
==========
frame : ReferenceFrame
The frame in which the velocity or angular velocity of the body is
defined to determine the kinetic energy.
body1, body2, body3... : Particle and/or RigidBody
The body (or bodies) whose Lagrangian is required.
Examples
========
>>> from sympy.physics.mechanics import Point, Particle, ReferenceFrame
>>> from sympy.physics.mechanics import RigidBody, outer, Lagrangian
>>> from sympy import symbols
>>> M, m, g, h = symbols('M m g h')
>>> N = ReferenceFrame('N')
>>> O = Point('O')
>>> O.set_vel(N, 0 * N.x)
>>> P = O.locatenew('P', 1 * N.x)
>>> P.set_vel(N, 10 * N.x)
>>> Pa = Particle('Pa', P, 1)
>>> Ac = O.locatenew('Ac', 2 * N.y)
>>> Ac.set_vel(N, 5 * N.y)
>>> a = ReferenceFrame('a')
>>> a.set_ang_vel(N, 10 * N.z)
>>> I = outer(N.z, N.z)
>>> A = RigidBody('A', Ac, a, 20, (I, Ac))
>>> Pa.potential_energy = m * g * h
>>> A.potential_energy = M * g * h
>>> Lagrangian(N, Pa, A)
-M*g*h - g*h*m + 350
"""
if not isinstance(frame, ReferenceFrame):
raise TypeError('Please supply a valid ReferenceFrame')
for e in body:
if not isinstance(e, (RigidBody, Particle)):
raise TypeError('*body must have only Particle or RigidBody')
return kinetic_energy(frame, *body) - potential_energy(*body)
def find_dynamicsymbols(expression, exclude=None, reference_frame=None):
"""Find all dynamicsymbols in expression.
Explanation
===========
If the optional ``exclude`` kwarg is used, only dynamicsymbols
not in the iterable ``exclude`` are returned.
If we intend to apply this function on a vector, the optional
``reference_frame`` is also used to inform about the corresponding frame
with respect to which the dynamic symbols of the given vector is to be
determined.
Parameters
==========
expression : SymPy expression
exclude : iterable of dynamicsymbols, optional
reference_frame : ReferenceFrame, optional
The frame with respect to which the dynamic symbols of the
given vector is to be determined.
Examples
========
>>> from sympy.physics.mechanics import dynamicsymbols, find_dynamicsymbols
>>> from sympy.physics.mechanics import ReferenceFrame
>>> x, y = dynamicsymbols('x, y')
>>> expr = x + x.diff()*y
>>> find_dynamicsymbols(expr)
{x(t), y(t), Derivative(x(t), t)}
>>> find_dynamicsymbols(expr, exclude=[x, y])
{Derivative(x(t), t)}
>>> a, b, c = dynamicsymbols('a, b, c')
>>> A = ReferenceFrame('A')
>>> v = a * A.x + b * A.y + c * A.z
>>> find_dynamicsymbols(v, reference_frame=A)
{a(t), b(t), c(t)}
"""
t_set = {dynamicsymbols._t}
if exclude:
if iterable(exclude):
exclude_set = set(exclude)
else:
raise TypeError("exclude kwarg must be iterable")
else:
exclude_set = set()
if isinstance(expression, Vector):
if reference_frame is None:
raise ValueError("You must provide reference_frame when passing a "
"vector expression, got %s." % reference_frame)
else:
expression = expression.to_matrix(reference_frame)
return {i for i in expression.atoms(AppliedUndef, Derivative) if
i.free_symbols == t_set} - exclude_set
def msubs(expr, *sub_dicts, smart=False, **kwargs):
"""A custom subs for use on expressions derived in physics.mechanics.
Traverses the expression tree once, performing the subs found in sub_dicts.
Terms inside ``Derivative`` expressions are ignored:
Examples
========
>>> from sympy.physics.mechanics import dynamicsymbols, msubs
>>> x = dynamicsymbols('x')
>>> msubs(x.diff() + x, {x: 1})
Derivative(x(t), t) + 1
Note that sub_dicts can be a single dictionary, or several dictionaries:
>>> x, y, z = dynamicsymbols('x, y, z')
>>> sub1 = {x: 1, y: 2}
>>> sub2 = {z: 3, x.diff(): 4}
>>> msubs(x.diff() + x + y + z, sub1, sub2)
10
If smart=True (default False), also checks for conditions that may result
in ``nan``, but if simplified would yield a valid expression. For example:
>>> from sympy import sin, tan
>>> (sin(x)/tan(x)).subs(x, 0)
nan
>>> msubs(sin(x)/tan(x), {x: 0}, smart=True)
1
It does this by first replacing all ``tan`` with ``sin/cos``. Then each
node is traversed. If the node is a fraction, subs is first evaluated on
the denominator. If this results in 0, simplification of the entire
fraction is attempted. Using this selective simplification, only
subexpressions that result in 1/0 are targeted, resulting in faster
performance.
"""
sub_dict = dict_merge(*sub_dicts)
if smart:
func = _smart_subs
elif hasattr(expr, 'msubs'):
return expr.msubs(sub_dict)
else:
func = lambda expr, sub_dict: _crawl(expr, _sub_func, sub_dict)
if isinstance(expr, (Matrix, Vector, Dyadic)):
return expr.applyfunc(lambda x: func(x, sub_dict))
else:
return func(expr, sub_dict)
def _crawl(expr, func, *args, **kwargs):
"""Crawl the expression tree, and apply func to every node."""
val = func(expr, *args, **kwargs)
if val is not None:
return val
new_args = (_crawl(arg, func, *args, **kwargs) for arg in expr.args)
return expr.func(*new_args)
def _sub_func(expr, sub_dict):
"""Perform direct matching substitution, ignoring derivatives."""
if expr in sub_dict:
return sub_dict[expr]
elif not expr.args or expr.is_Derivative:
return expr
def _tan_repl_func(expr):
"""Replace tan with sin/cos."""
if isinstance(expr, tan):
return sin(*expr.args) / cos(*expr.args)
elif not expr.args or expr.is_Derivative:
return expr
def _smart_subs(expr, sub_dict):
"""Performs subs, checking for conditions that may result in `nan` or
`oo`, and attempts to simplify them out.
The expression tree is traversed twice, and the following steps are
performed on each expression node:
- First traverse:
Replace all `tan` with `sin/cos`.
- Second traverse:
If node is a fraction, check if the denominator evaluates to 0.
If so, attempt to simplify it out. Then if node is in sub_dict,
sub in the corresponding value.
"""
expr = _crawl(expr, _tan_repl_func)
def _recurser(expr, sub_dict):
# Decompose the expression into num, den
num, den = _fraction_decomp(expr)
if den != 1:
# If there is a non trivial denominator, we need to handle it
denom_subbed = _recurser(den, sub_dict)
if denom_subbed.evalf() == 0:
# If denom is 0 after this, attempt to simplify the bad expr
expr = simplify(expr)
else:
# Expression won't result in nan, find numerator
num_subbed = _recurser(num, sub_dict)
return num_subbed / denom_subbed
# We have to crawl the tree manually, because `expr` may have been
# modified in the simplify step. First, perform subs as normal:
val = _sub_func(expr, sub_dict)
if val is not None:
return val
new_args = (_recurser(arg, sub_dict) for arg in expr.args)
return expr.func(*new_args)
return _recurser(expr, sub_dict)
def _fraction_decomp(expr):
"""Return num, den such that expr = num/den."""
if not isinstance(expr, Mul):
return expr, 1
num = []
den = []
for a in expr.args:
if a.is_Pow and a.args[1] < 0:
den.append(1 / a)
else:
num.append(a)
if not den:
return expr, 1
num = Mul(*num)
den = Mul(*den)
return num, den
def _f_list_parser(fl, ref_frame):
"""Parses the provided forcelist composed of items
of the form (obj, force).
Returns a tuple containing:
vel_list: The velocity (ang_vel for Frames, vel for Points) in
the provided reference frame.
f_list: The forces.
Used internally in the KanesMethod and LagrangesMethod classes.
"""
def flist_iter():
for pair in fl:
obj, force = pair
if isinstance(obj, ReferenceFrame):
yield obj.ang_vel_in(ref_frame), force
elif isinstance(obj, Point):
yield obj.vel(ref_frame), force
else:
raise TypeError('First entry in each forcelist pair must '
'be a point or frame.')
if not fl:
vel_list, f_list = (), ()
else:
unzip = lambda l: list(zip(*l)) if l[0] else [(), ()]
vel_list, f_list = unzip(list(flist_iter()))
return vel_list, f_list
def _validate_coordinates(coordinates=None, speeds=None, check_duplicates=True,
is_dynamicsymbols=True):
# Convert input to iterables
if coordinates is None:
coordinates = []
elif not iterable(coordinates):
coordinates = [coordinates]
if speeds is None:
speeds = []
elif not iterable(speeds):
speeds = [speeds]
if check_duplicates: # Check for duplicates
if len(coordinates) != len(set(coordinates)):
raise ValueError('Duplicate generalized coordinates found, all '
'generalized coordinates should be unique.')
if len(speeds) != len(set(speeds)):
raise ValueError('Duplicate generalized speeds found, all '
'generalized speeds should be unique.')
if is_dynamicsymbols: # Check whether all coordinates are dynamicsymbols
for coordinate in coordinates:
if not isinstance(coordinate, (AppliedUndef, Derivative)):
raise ValueError(f'Generalized coordinate "{coordinate}" is not'
f' a dynamicsymbol.')
for speed in speeds:
if not isinstance(speed, (AppliedUndef, Derivative)):
raise ValueError(f'Generalized speed "{speed}" is not a '
f'dynamicsymbol.')
|
304c47c72971eb12a98ce49d185e8c18280fbf93ee9b33b1ff08587871a84eaa | # coding=utf-8
from abc import ABC, abstractmethod
from sympy.core.backend import pi, AppliedUndef, Derivative, Matrix
from sympy.physics.mechanics.body import Body
from sympy.physics.mechanics.functions import _validate_coordinates
from sympy.physics.vector import (Vector, dynamicsymbols, cross, Point,
ReferenceFrame)
from sympy.utilities.iterables import iterable
from sympy.utilities.exceptions import sympy_deprecation_warning
__all__ = ['Joint', 'PinJoint', 'PrismaticJoint', 'CylindricalJoint',
'PlanarJoint', 'SphericalJoint', 'WeldJoint']
class Joint(ABC):
"""Abstract base class for all specific joints.
Explanation
===========
A joint subtracts degrees of freedom from a body. This is the base class
for all specific joints and holds all common methods acting as an interface
for all joints. Custom joint can be created by inheriting Joint class and
defining all abstract functions.
The abstract methods are:
- ``_generate_coordinates``
- ``_generate_speeds``
- ``_orient_frames``
- ``_set_angular_velocity``
- ``_set_linear_velocity``
Parameters
==========
name : string
A unique name for the joint.
parent : Body
The parent body of joint.
child : Body
The child body of joint.
coordinates : iterable of dynamicsymbols, optional
Generalized coordinates of the joint.
speeds : iterable of dynamicsymbols, optional
Generalized speeds of joint.
parent_point : Point or Vector, optional
Attachment point where the joint is fixed to the parent body. If a
vector is provided, then the attachment point is computed by adding the
vector to the body's mass center. The default value is the parent's mass
center.
child_point : Point or Vector, optional
Attachment point where the joint is fixed to the child body. If a
vector is provided, then the attachment point is computed by adding the
vector to the body's mass center. The default value is the child's mass
center.
parent_axis : Vector, optional
.. deprecated:: 1.12
Axis fixed in the parent body which aligns with an axis fixed in the
child body. The default is the x axis of parent's reference frame.
For more information on this deprecation, see
:ref:`deprecated-mechanics-joint-axis`.
child_axis : Vector, optional
.. deprecated:: 1.12
Axis fixed in the child body which aligns with an axis fixed in the
parent body. The default is the x axis of child's reference frame.
For more information on this deprecation, see
:ref:`deprecated-mechanics-joint-axis`.
parent_interframe : ReferenceFrame, optional
Intermediate frame of the parent body with respect to which the joint
transformation is formulated. If a Vector is provided then an interframe
is created which aligns its X axis with the given vector. The default
value is the parent's own frame.
child_interframe : ReferenceFrame, optional
Intermediate frame of the child body with respect to which the joint
transformation is formulated. If a Vector is provided then an interframe
is created which aligns its X axis with the given vector. The default
value is the child's own frame.
parent_joint_pos : Point or Vector, optional
.. deprecated:: 1.12
This argument is replaced by parent_point and will be removed in a
future version.
See :ref:`deprecated-mechanics-joint-pos` for more information.
child_joint_pos : Point or Vector, optional
.. deprecated:: 1.12
This argument is replaced by child_point and will be removed in a
future version.
See :ref:`deprecated-mechanics-joint-pos` for more information.
Attributes
==========
name : string
The joint's name.
parent : Body
The joint's parent body.
child : Body
The joint's child body.
coordinates : Matrix
Matrix of the joint's generalized coordinates.
speeds : Matrix
Matrix of the joint's generalized speeds.
parent_point : Point
Attachment point where the joint is fixed to the parent body.
child_point : Point
Attachment point where the joint is fixed to the child body.
parent_axis : Vector
The axis fixed in the parent frame that represents the joint.
child_axis : Vector
The axis fixed in the child frame that represents the joint.
parent_interframe : ReferenceFrame
Intermediate frame of the parent body with respect to which the joint
transformation is formulated.
child_interframe : ReferenceFrame
Intermediate frame of the child body with respect to which the joint
transformation is formulated.
kdes : Matrix
Kinematical differential equations of the joint.
Notes
=====
When providing a vector as the intermediate frame, a new intermediate frame
is created which aligns its X axis with the provided vector. This is done
with a single fixed rotation about a rotation axis. This rotation axis is
determined by taking the cross product of the ``body.x`` axis with the
provided vector. In the case where the provided vector is in the ``-body.x``
direction, the rotation is done about the ``body.y`` axis.
"""
def __init__(self, name, parent, child, coordinates=None, speeds=None,
parent_point=None, child_point=None, parent_axis=None,
child_axis=None, parent_interframe=None, child_interframe=None,
parent_joint_pos=None, child_joint_pos=None):
if not isinstance(name, str):
raise TypeError('Supply a valid name.')
self._name = name
if not isinstance(parent, Body):
raise TypeError('Parent must be an instance of Body.')
self._parent = parent
if not isinstance(child, Body):
raise TypeError('Parent must be an instance of Body.')
self._child = child
self._coordinates = self._generate_coordinates(coordinates)
self._speeds = self._generate_speeds(speeds)
_validate_coordinates(self.coordinates, self.speeds)
self._kdes = self._generate_kdes()
self._parent_axis = self._axis(parent_axis, parent.frame)
self._child_axis = self._axis(child_axis, child.frame)
if parent_joint_pos is not None or child_joint_pos is not None:
sympy_deprecation_warning(
"""
The parent_joint_pos and child_joint_pos arguments for the Joint
classes are deprecated. Instead use parent_point and child_point.
""",
deprecated_since_version="1.12",
active_deprecations_target="deprecated-mechanics-joint-pos",
stacklevel=4
)
if parent_point is None:
parent_point = parent_joint_pos
if child_point is None:
child_point = child_joint_pos
self._parent_point = self._locate_joint_pos(parent, parent_point)
self._child_point = self._locate_joint_pos(child, child_point)
if parent_axis is not None or child_axis is not None:
sympy_deprecation_warning(
"""
The parent_axis and child_axis arguments for the Joint classes
are deprecated. Instead use parent_interframe, child_interframe.
""",
deprecated_since_version="1.12",
active_deprecations_target="deprecated-mechanics-joint-axis",
stacklevel=4
)
if parent_interframe is None:
parent_interframe = parent_axis
if child_interframe is None:
child_interframe = child_axis
self._parent_interframe = self._locate_joint_frame(parent,
parent_interframe)
self._child_interframe = self._locate_joint_frame(child,
child_interframe)
self._orient_frames()
self._set_angular_velocity()
self._set_linear_velocity()
def __str__(self):
return self.name
def __repr__(self):
return self.__str__()
@property
def name(self):
"""Name of the joint."""
return self._name
@property
def parent(self):
"""Parent body of Joint."""
return self._parent
@property
def child(self):
"""Child body of Joint."""
return self._child
@property
def coordinates(self):
"""Matrix of the joint's generalized coordinates."""
return self._coordinates
@property
def speeds(self):
"""Matrix of the joint's generalized speeds."""
return self._speeds
@property
def kdes(self):
"""Kinematical differential equations of the joint."""
return self._kdes
@property
def parent_axis(self):
"""The axis of parent frame."""
# Will be removed with `deprecated-mechanics-joint-axis`
return self._parent_axis
@property
def child_axis(self):
"""The axis of child frame."""
# Will be removed with `deprecated-mechanics-joint-axis`
return self._child_axis
@property
def parent_point(self):
"""Attachment point where the joint is fixed to the parent body."""
return self._parent_point
@property
def child_point(self):
"""Attachment point where the joint is fixed to the child body."""
return self._child_point
@property
def parent_interframe(self):
return self._parent_interframe
@property
def child_interframe(self):
return self._child_interframe
@abstractmethod
def _generate_coordinates(self, coordinates):
"""Generate Matrix of the joint's generalized coordinates."""
pass
@abstractmethod
def _generate_speeds(self, speeds):
"""Generate Matrix of the joint's generalized speeds."""
pass
@abstractmethod
def _orient_frames(self):
"""Orient frames as per the joint."""
pass
@abstractmethod
def _set_angular_velocity(self):
"""Set angular velocity of the joint related frames."""
pass
@abstractmethod
def _set_linear_velocity(self):
"""Set velocity of related points to the joint."""
pass
@staticmethod
def _to_vector(matrix, frame):
"""Converts a matrix to a vector in the given frame."""
return Vector([(matrix, frame)])
@staticmethod
def _axis(ax, *frames):
"""Check whether an axis is fixed in one of the frames."""
if ax is None:
ax = frames[0].x
return ax
if not isinstance(ax, Vector):
raise TypeError("Axis must be a Vector.")
ref_frame = None # Find a body in which the axis can be expressed
for frame in frames:
try:
ax.to_matrix(frame)
except ValueError:
pass
else:
ref_frame = frame
break
if ref_frame is None:
raise ValueError("Axis cannot be expressed in one of the body's "
"frames.")
if not ax.dt(ref_frame) == 0:
raise ValueError('Axis cannot be time-varying when viewed from the '
'associated body.')
return ax
@staticmethod
def _choose_rotation_axis(frame, axis):
components = axis.to_matrix(frame)
x, y, z = components[0], components[1], components[2]
if x != 0:
if y != 0:
if z != 0:
return cross(axis, frame.x)
if z != 0:
return frame.y
return frame.z
else:
if y != 0:
return frame.x
return frame.y
@staticmethod
def _create_aligned_interframe(frame, align_axis, frame_axis=None,
frame_name=None):
"""
Returns an intermediate frame, where the ``frame_axis`` defined in
``frame`` is aligned with ``axis``. By default this means that the X
axis will be aligned with ``axis``.
Parameters
==========
frame : Body or ReferenceFrame
The body or reference frame with respect to which the intermediate
frame is oriented.
align_axis : Vector
The vector with respect to which the intermediate frame will be
aligned.
frame_axis : Vector
The vector of the frame which should get aligned with ``axis``. The
default is the X axis of the frame.
frame_name : string
Name of the to be created intermediate frame. The default adds
"_int_frame" to the name of ``frame``.
Example
=======
An intermediate frame, where the X axis of the parent becomes aligned
with ``parent.y + parent.z`` can be created as follows:
>>> from sympy.physics.mechanics.joint import Joint
>>> from sympy.physics.mechanics import Body
>>> parent = Body('parent')
>>> parent_interframe = Joint._create_aligned_interframe(
... parent, parent.y + parent.z)
>>> parent_interframe
parent_int_frame
>>> parent.dcm(parent_interframe)
Matrix([
[ 0, -sqrt(2)/2, -sqrt(2)/2],
[sqrt(2)/2, 1/2, -1/2],
[sqrt(2)/2, -1/2, 1/2]])
>>> (parent.y + parent.z).express(parent_interframe)
sqrt(2)*parent_int_frame.x
Notes
=====
The direction cosine matrix between the given frame and intermediate
frame is formed using a simple rotation about an axis that is normal to
both ``align_axis`` and ``frame_axis``. In general, the normal axis is
formed by crossing the ``frame_axis`` with the ``align_axis``. The
exception is if the axes are parallel with opposite directions, in which
case the rotation vector is chosen using the rules in the following
table with the vectors expressed in the given frame:
.. list-table::
:header-rows: 1
* - ``align_axis``
- ``frame_axis``
- ``rotation_axis``
* - ``-x``
- ``x``
- ``z``
* - ``-y``
- ``y``
- ``x``
* - ``-z``
- ``z``
- ``y``
* - ``-x-y``
- ``x+y``
- ``z``
* - ``-y-z``
- ``y+z``
- ``x``
* - ``-x-z``
- ``x+z``
- ``y``
* - ``-x-y-z``
- ``x+y+z``
- ``(x+y+z) Γ x``
"""
if isinstance(frame, Body):
frame = frame.frame
if frame_axis is None:
frame_axis = frame.x
if frame_name is None:
if frame.name[-6:] == '_frame':
frame_name = f'{frame.name[:-6]}_int_frame'
else:
frame_name = f'{frame.name}_int_frame'
angle = frame_axis.angle_between(align_axis)
rotation_axis = cross(frame_axis, align_axis)
if rotation_axis == Vector(0) and angle == 0:
return frame
if angle == pi:
rotation_axis = Joint._choose_rotation_axis(frame, align_axis)
int_frame = ReferenceFrame(frame_name)
int_frame.orient_axis(frame, rotation_axis, angle)
int_frame.set_ang_vel(frame, 0 * rotation_axis)
return int_frame
def _generate_kdes(self):
"""Generate kinematical differential equations."""
kdes = []
t = dynamicsymbols._t
for i in range(len(self.coordinates)):
kdes.append(-self.coordinates[i].diff(t) + self.speeds[i])
return Matrix(kdes)
def _locate_joint_pos(self, body, joint_pos):
"""Returns the attachment point of a body."""
if joint_pos is None:
return body.masscenter
if not isinstance(joint_pos, (Point, Vector)):
raise TypeError('Attachment point must be a Point or Vector.')
if isinstance(joint_pos, Vector):
point_name = f'{self.name}_{body.name}_joint'
joint_pos = body.masscenter.locatenew(point_name, joint_pos)
if not joint_pos.pos_from(body.masscenter).dt(body.frame) == 0:
raise ValueError('Attachment point must be fixed to the associated '
'body.')
return joint_pos
def _locate_joint_frame(self, body, interframe):
"""Returns the attachment frame of a body."""
if interframe is None:
return body.frame
if isinstance(interframe, Vector):
interframe = Joint._create_aligned_interframe(
body, interframe,
frame_name=f'{self.name}_{body.name}_int_frame')
elif not isinstance(interframe, ReferenceFrame):
raise TypeError('Interframe must be a ReferenceFrame.')
if not interframe.ang_vel_in(body.frame) == 0:
raise ValueError(f'Interframe {interframe} is not fixed to body '
f'{body}.')
body.masscenter.set_vel(interframe, 0) # Fixate interframe to body
return interframe
def _fill_coordinate_list(self, coordinates, n_coords, label='q', offset=0,
number_single=False):
"""Helper method for _generate_coordinates and _generate_speeds.
Parameters
==========
coordinates : iterable
Iterable of coordinates or speeds that have been provided.
n_coords : Integer
Number of coordinates that should be returned.
label : String, optional
Coordinate type either 'q' (coordinates) or 'u' (speeds). The
Default is 'q'.
offset : Integer
Count offset when creating new dynamicsymbols. The default is 0.
number_single : Boolean
Boolean whether if n_coords == 1, number should still be used. The
default is False.
"""
def create_symbol(number):
if n_coords == 1 and not number_single:
return dynamicsymbols(f'{label}_{self.name}')
return dynamicsymbols(f'{label}{number}_{self.name}')
name = 'generalized coordinate' if label == 'q' else 'generalized speed'
generated_coordinates = []
if coordinates is None:
coordinates = []
elif not iterable(coordinates):
coordinates = [coordinates]
if not (len(coordinates) == 0 or len(coordinates) == n_coords):
raise ValueError(f'Expected {n_coords} {name}s, instead got '
f'{len(coordinates)} {name}s.')
# Supports more iterables, also Matrix
for i, coord in enumerate(coordinates):
if coord is None:
generated_coordinates.append(create_symbol(i + offset))
elif isinstance(coord, (AppliedUndef, Derivative)):
generated_coordinates.append(coord)
else:
raise TypeError(f'The {name} {coord} should have been a '
f'dynamicsymbol.')
for i in range(len(coordinates) + offset, n_coords + offset):
generated_coordinates.append(create_symbol(i))
return Matrix(generated_coordinates)
class PinJoint(Joint):
"""Pin (Revolute) Joint.
.. image:: PinJoint.svg
Explanation
===========
A pin joint is defined such that the joint rotation axis is fixed in both
the child and parent and the location of the joint is relative to the mass
center of each body. The child rotates an angle, ΞΈ, from the parent about
the rotation axis and has a simple angular speed, Ο, relative to the
parent. The direction cosine matrix between the child interframe and
parent interframe is formed using a simple rotation about the joint axis.
The page on the joints framework gives a more detailed explanation of the
intermediate frames.
Parameters
==========
name : string
A unique name for the joint.
parent : Body
The parent body of joint.
child : Body
The child body of joint.
coordinates : dynamicsymbol, optional
Generalized coordinates of the joint.
speeds : dynamicsymbol, optional
Generalized speeds of joint.
parent_point : Point or Vector, optional
Attachment point where the joint is fixed to the parent body. If a
vector is provided, then the attachment point is computed by adding the
vector to the body's mass center. The default value is the parent's mass
center.
child_point : Point or Vector, optional
Attachment point where the joint is fixed to the child body. If a
vector is provided, then the attachment point is computed by adding the
vector to the body's mass center. The default value is the child's mass
center.
parent_axis : Vector, optional
.. deprecated:: 1.12
Axis fixed in the parent body which aligns with an axis fixed in the
child body. The default is the x axis of parent's reference frame.
For more information on this deprecation, see
:ref:`deprecated-mechanics-joint-axis`.
child_axis : Vector, optional
.. deprecated:: 1.12
Axis fixed in the child body which aligns with an axis fixed in the
parent body. The default is the x axis of child's reference frame.
For more information on this deprecation, see
:ref:`deprecated-mechanics-joint-axis`.
parent_interframe : ReferenceFrame, optional
Intermediate frame of the parent body with respect to which the joint
transformation is formulated. If a Vector is provided then an interframe
is created which aligns its X axis with the given vector. The default
value is the parent's own frame.
child_interframe : ReferenceFrame, optional
Intermediate frame of the child body with respect to which the joint
transformation is formulated. If a Vector is provided then an interframe
is created which aligns its X axis with the given vector. The default
value is the child's own frame.
joint_axis : Vector
The axis about which the rotation occurs. Note that the components
of this axis are the same in the parent_interframe and child_interframe.
parent_joint_pos : Point or Vector, optional
.. deprecated:: 1.12
This argument is replaced by parent_point and will be removed in a
future version.
See :ref:`deprecated-mechanics-joint-pos` for more information.
child_joint_pos : Point or Vector, optional
.. deprecated:: 1.12
This argument is replaced by child_point and will be removed in a
future version.
See :ref:`deprecated-mechanics-joint-pos` for more information.
Attributes
==========
name : string
The joint's name.
parent : Body
The joint's parent body.
child : Body
The joint's child body.
coordinates : Matrix
Matrix of the joint's generalized coordinates. The default value is
``dynamicsymbols(f'q_{joint.name}')``.
speeds : Matrix
Matrix of the joint's generalized speeds. The default value is
``dynamicsymbols(f'u_{joint.name}')``.
parent_point : Point
Attachment point where the joint is fixed to the parent body.
child_point : Point
Attachment point where the joint is fixed to the child body.
parent_axis : Vector
The axis fixed in the parent frame that represents the joint.
child_axis : Vector
The axis fixed in the child frame that represents the joint.
parent_interframe : ReferenceFrame
Intermediate frame of the parent body with respect to which the joint
transformation is formulated.
child_interframe : ReferenceFrame
Intermediate frame of the child body with respect to which the joint
transformation is formulated.
joint_axis : Vector
The axis about which the rotation occurs. Note that the components of
this axis are the same in the parent_interframe and child_interframe.
kdes : Matrix
Kinematical differential equations of the joint.
Examples
=========
A single pin joint is created from two bodies and has the following basic
attributes:
>>> from sympy.physics.mechanics import Body, PinJoint
>>> parent = Body('P')
>>> parent
P
>>> child = Body('C')
>>> child
C
>>> joint = PinJoint('PC', parent, child)
>>> joint
PinJoint: PC parent: P child: C
>>> joint.name
'PC'
>>> joint.parent
P
>>> joint.child
C
>>> joint.parent_point
P_masscenter
>>> joint.child_point
C_masscenter
>>> joint.parent_axis
P_frame.x
>>> joint.child_axis
C_frame.x
>>> joint.coordinates
Matrix([[q_PC(t)]])
>>> joint.speeds
Matrix([[u_PC(t)]])
>>> joint.child.frame.ang_vel_in(joint.parent.frame)
u_PC(t)*P_frame.x
>>> joint.child.frame.dcm(joint.parent.frame)
Matrix([
[1, 0, 0],
[0, cos(q_PC(t)), sin(q_PC(t))],
[0, -sin(q_PC(t)), cos(q_PC(t))]])
>>> joint.child_point.pos_from(joint.parent_point)
0
To further demonstrate the use of the pin joint, the kinematics of simple
double pendulum that rotates about the Z axis of each connected body can be
created as follows.
>>> from sympy import symbols, trigsimp
>>> from sympy.physics.mechanics import Body, PinJoint
>>> l1, l2 = symbols('l1 l2')
First create bodies to represent the fixed ceiling and one to represent
each pendulum bob.
>>> ceiling = Body('C')
>>> upper_bob = Body('U')
>>> lower_bob = Body('L')
The first joint will connect the upper bob to the ceiling by a distance of
``l1`` and the joint axis will be about the Z axis for each body.
>>> ceiling_joint = PinJoint('P1', ceiling, upper_bob,
... child_point=-l1*upper_bob.frame.x,
... joint_axis=ceiling.frame.z)
The second joint will connect the lower bob to the upper bob by a distance
of ``l2`` and the joint axis will also be about the Z axis for each body.
>>> pendulum_joint = PinJoint('P2', upper_bob, lower_bob,
... child_point=-l2*lower_bob.frame.x,
... joint_axis=upper_bob.frame.z)
Once the joints are established the kinematics of the connected bodies can
be accessed. First the direction cosine matrices of pendulum link relative
to the ceiling are found:
>>> upper_bob.frame.dcm(ceiling.frame)
Matrix([
[ cos(q_P1(t)), sin(q_P1(t)), 0],
[-sin(q_P1(t)), cos(q_P1(t)), 0],
[ 0, 0, 1]])
>>> trigsimp(lower_bob.frame.dcm(ceiling.frame))
Matrix([
[ cos(q_P1(t) + q_P2(t)), sin(q_P1(t) + q_P2(t)), 0],
[-sin(q_P1(t) + q_P2(t)), cos(q_P1(t) + q_P2(t)), 0],
[ 0, 0, 1]])
The position of the lower bob's masscenter is found with:
>>> lower_bob.masscenter.pos_from(ceiling.masscenter)
l1*U_frame.x + l2*L_frame.x
The angular velocities of the two pendulum links can be computed with
respect to the ceiling.
>>> upper_bob.frame.ang_vel_in(ceiling.frame)
u_P1(t)*C_frame.z
>>> lower_bob.frame.ang_vel_in(ceiling.frame)
u_P1(t)*C_frame.z + u_P2(t)*U_frame.z
And finally, the linear velocities of the two pendulum bobs can be computed
with respect to the ceiling.
>>> upper_bob.masscenter.vel(ceiling.frame)
l1*u_P1(t)*U_frame.y
>>> lower_bob.masscenter.vel(ceiling.frame)
l1*u_P1(t)*U_frame.y + l2*(u_P1(t) + u_P2(t))*L_frame.y
"""
def __init__(self, name, parent, child, coordinates=None, speeds=None,
parent_point=None, child_point=None, parent_axis=None,
child_axis=None, parent_interframe=None, child_interframe=None,
joint_axis=None, parent_joint_pos=None, child_joint_pos=None):
self._joint_axis = joint_axis
super().__init__(name, parent, child, coordinates, speeds, parent_point,
child_point, parent_axis, child_axis,
parent_interframe, child_interframe, parent_joint_pos,
child_joint_pos)
def __str__(self):
return (f'PinJoint: {self.name} parent: {self.parent} '
f'child: {self.child}')
@property
def joint_axis(self):
"""Axis about which the child rotates with respect to the parent."""
return self._joint_axis
def _generate_coordinates(self, coordinate):
return self._fill_coordinate_list(coordinate, 1, 'q')
def _generate_speeds(self, speed):
return self._fill_coordinate_list(speed, 1, 'u')
def _orient_frames(self):
self._joint_axis = self._axis(self.joint_axis, self.parent_interframe)
self.child_interframe.orient_axis(
self.parent_interframe, self.joint_axis, self.coordinates[0])
def _set_angular_velocity(self):
self.child_interframe.set_ang_vel(self.parent_interframe, self.speeds[
0] * self.joint_axis.normalize())
def _set_linear_velocity(self):
self.child_point.set_pos(self.parent_point, 0)
self.parent_point.set_vel(self.parent.frame, 0)
self.child_point.set_vel(self.child.frame, 0)
self.child.masscenter.v2pt_theory(self.parent_point,
self.parent.frame, self.child.frame)
class PrismaticJoint(Joint):
"""Prismatic (Sliding) Joint.
.. image:: PrismaticJoint.svg
Explanation
===========
It is defined such that the child body translates with respect to the parent
body along the body-fixed joint axis. The location of the joint is defined
by two points, one in each body, which coincide when the generalized
coordinate is zero. The direction cosine matrix between the
parent_interframe and child_interframe is the identity matrix. Therefore,
the direction cosine matrix between the parent and child frames is fully
defined by the definition of the intermediate frames. The page on the joints
framework gives a more detailed explanation of the intermediate frames.
Parameters
==========
name : string
A unique name for the joint.
parent : Body
The parent body of joint.
child : Body
The child body of joint.
coordinates : dynamicsymbol, optional
Generalized coordinates of the joint. The default value is
``dynamicsymbols(f'q_{joint.name}')``.
speeds : dynamicsymbol, optional
Generalized speeds of joint. The default value is
``dynamicsymbols(f'u_{joint.name}')``.
parent_point : Point or Vector, optional
Attachment point where the joint is fixed to the parent body. If a
vector is provided, then the attachment point is computed by adding the
vector to the body's mass center. The default value is the parent's mass
center.
child_point : Point or Vector, optional
Attachment point where the joint is fixed to the child body. If a
vector is provided, then the attachment point is computed by adding the
vector to the body's mass center. The default value is the child's mass
center.
parent_axis : Vector, optional
.. deprecated:: 1.12
Axis fixed in the parent body which aligns with an axis fixed in the
child body. The default is the x axis of parent's reference frame.
For more information on this deprecation, see
:ref:`deprecated-mechanics-joint-axis`.
child_axis : Vector, optional
.. deprecated:: 1.12
Axis fixed in the child body which aligns with an axis fixed in the
parent body. The default is the x axis of child's reference frame.
For more information on this deprecation, see
:ref:`deprecated-mechanics-joint-axis`.
parent_interframe : ReferenceFrame, optional
Intermediate frame of the parent body with respect to which the joint
transformation is formulated. If a Vector is provided then an interframe
is created which aligns its X axis with the given vector. The default
value is the parent's own frame.
child_interframe : ReferenceFrame, optional
Intermediate frame of the child body with respect to which the joint
transformation is formulated. If a Vector is provided then an interframe
is created which aligns its X axis with the given vector. The default
value is the child's own frame.
joint_axis : Vector
The axis along which the translation occurs. Note that the components
of this axis are the same in the parent_interframe and child_interframe.
parent_joint_pos : Point or Vector, optional
.. deprecated:: 1.12
This argument is replaced by parent_point and will be removed in a
future version.
See :ref:`deprecated-mechanics-joint-pos` for more information.
child_joint_pos : Point or Vector, optional
.. deprecated:: 1.12
This argument is replaced by child_point and will be removed in a
future version.
See :ref:`deprecated-mechanics-joint-pos` for more information.
Attributes
==========
name : string
The joint's name.
parent : Body
The joint's parent body.
child : Body
The joint's child body.
coordinates : Matrix
Matrix of the joint's generalized coordinates.
speeds : Matrix
Matrix of the joint's generalized speeds.
parent_point : Point
Attachment point where the joint is fixed to the parent body.
child_point : Point
Attachment point where the joint is fixed to the child body.
parent_axis : Vector
The axis fixed in the parent frame that represents the joint.
child_axis : Vector
The axis fixed in the child frame that represents the joint.
parent_interframe : ReferenceFrame
Intermediate frame of the parent body with respect to which the joint
transformation is formulated.
child_interframe : ReferenceFrame
Intermediate frame of the child body with respect to which the joint
transformation is formulated.
kdes : Matrix
Kinematical differential equations of the joint.
Examples
=========
A single prismatic joint is created from two bodies and has the following
basic attributes:
>>> from sympy.physics.mechanics import Body, PrismaticJoint
>>> parent = Body('P')
>>> parent
P
>>> child = Body('C')
>>> child
C
>>> joint = PrismaticJoint('PC', parent, child)
>>> joint
PrismaticJoint: PC parent: P child: C
>>> joint.name
'PC'
>>> joint.parent
P
>>> joint.child
C
>>> joint.parent_point
P_masscenter
>>> joint.child_point
C_masscenter
>>> joint.parent_axis
P_frame.x
>>> joint.child_axis
C_frame.x
>>> joint.coordinates
Matrix([[q_PC(t)]])
>>> joint.speeds
Matrix([[u_PC(t)]])
>>> joint.child.frame.ang_vel_in(joint.parent.frame)
0
>>> joint.child.frame.dcm(joint.parent.frame)
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
>>> joint.child_point.pos_from(joint.parent_point)
q_PC(t)*P_frame.x
To further demonstrate the use of the prismatic joint, the kinematics of two
masses sliding, one moving relative to a fixed body and the other relative
to the moving body. about the X axis of each connected body can be created
as follows.
>>> from sympy.physics.mechanics import PrismaticJoint, Body
First create bodies to represent the fixed ceiling and one to represent
a particle.
>>> wall = Body('W')
>>> Part1 = Body('P1')
>>> Part2 = Body('P2')
The first joint will connect the particle to the ceiling and the
joint axis will be about the X axis for each body.
>>> J1 = PrismaticJoint('J1', wall, Part1)
The second joint will connect the second particle to the first particle
and the joint axis will also be about the X axis for each body.
>>> J2 = PrismaticJoint('J2', Part1, Part2)
Once the joint is established the kinematics of the connected bodies can
be accessed. First the direction cosine matrices of Part relative
to the ceiling are found:
>>> Part1.dcm(wall)
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
>>> Part2.dcm(wall)
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
The position of the particles' masscenter is found with:
>>> Part1.masscenter.pos_from(wall.masscenter)
q_J1(t)*W_frame.x
>>> Part2.masscenter.pos_from(wall.masscenter)
q_J1(t)*W_frame.x + q_J2(t)*P1_frame.x
The angular velocities of the two particle links can be computed with
respect to the ceiling.
>>> Part1.ang_vel_in(wall)
0
>>> Part2.ang_vel_in(wall)
0
And finally, the linear velocities of the two particles can be computed
with respect to the ceiling.
>>> Part1.masscenter_vel(wall)
u_J1(t)*W_frame.x
>>> Part2.masscenter.vel(wall.frame)
u_J1(t)*W_frame.x + Derivative(q_J2(t), t)*P1_frame.x
"""
def __init__(self, name, parent, child, coordinates=None, speeds=None,
parent_point=None, child_point=None, parent_axis=None,
child_axis=None, parent_interframe=None, child_interframe=None,
joint_axis=None, parent_joint_pos=None, child_joint_pos=None):
self._joint_axis = joint_axis
super().__init__(name, parent, child, coordinates, speeds, parent_point,
child_point, parent_axis, child_axis,
parent_interframe, child_interframe, parent_joint_pos,
child_joint_pos)
def __str__(self):
return (f'PrismaticJoint: {self.name} parent: {self.parent} '
f'child: {self.child}')
@property
def joint_axis(self):
"""Axis along which the child translates with respect to the parent."""
return self._joint_axis
def _generate_coordinates(self, coordinate):
return self._fill_coordinate_list(coordinate, 1, 'q')
def _generate_speeds(self, speed):
return self._fill_coordinate_list(speed, 1, 'u')
def _orient_frames(self):
self._joint_axis = self._axis(self.joint_axis, self.parent_interframe)
self.child_interframe.orient_axis(
self.parent_interframe, self.joint_axis, 0)
def _set_angular_velocity(self):
self.child_interframe.set_ang_vel(self.parent_interframe, 0)
def _set_linear_velocity(self):
axis = self.joint_axis.normalize()
self.child_point.set_pos(self.parent_point, self.coordinates[0] * axis)
self.parent_point.set_vel(self.parent.frame, 0)
self.child_point.set_vel(self.child.frame, 0)
self.child_point.set_vel(self.parent.frame, self.speeds[0] * axis)
self.child.masscenter.set_vel(self.parent.frame, self.speeds[0] * axis)
class CylindricalJoint(Joint):
"""Cylindrical Joint.
.. image:: CylindricalJoint.svg
:align: center
:width: 600
Explanation
===========
A cylindrical joint is defined such that the child body both rotates about
and translates along the body-fixed joint axis with respect to the parent
body. The joint axis is both the rotation axis and translation axis. The
location of the joint is defined by two points, one in each body, which
coincide when the generalized coordinate corresponding to the translation is
zero. The direction cosine matrix between the child interframe and parent
interframe is formed using a simple rotation about the joint axis. The page
on the joints framework gives a more detailed explanation of the
intermediate frames.
Parameters
==========
name : string
A unique name for the joint.
parent : Body
The parent body of joint.
child : Body
The child body of joint.
rotation_coordinate : dynamicsymbol, optional
Generalized coordinate corresponding to the rotation angle. The default
value is ``dynamicsymbols(f'q0_{joint.name}')``.
translation_coordinate : dynamicsymbol, optional
Generalized coordinate corresponding to the translation distance. The
default value is ``dynamicsymbols(f'q1_{joint.name}')``.
rotation_speed : dynamicsymbol, optional
Generalized speed corresponding to the angular velocity. The default
value is ``dynamicsymbols(f'u0_{joint.name}')``.
translation_speed : dynamicsymbol, optional
Generalized speed corresponding to the translation velocity. The default
value is ``dynamicsymbols(f'u1_{joint.name}')``.
parent_point : Point or Vector, optional
Attachment point where the joint is fixed to the parent body. If a
vector is provided, then the attachment point is computed by adding the
vector to the body's mass center. The default value is the parent's mass
center.
child_point : Point or Vector, optional
Attachment point where the joint is fixed to the child body. If a
vector is provided, then the attachment point is computed by adding the
vector to the body's mass center. The default value is the child's mass
center.
parent_interframe : ReferenceFrame, optional
Intermediate frame of the parent body with respect to which the joint
transformation is formulated. If a Vector is provided then an interframe
is created which aligns its X axis with the given vector. The default
value is the parent's own frame.
child_interframe : ReferenceFrame, optional
Intermediate frame of the child body with respect to which the joint
transformation is formulated. If a Vector is provided then an interframe
is created which aligns its X axis with the given vector. The default
value is the child's own frame.
joint_axis : Vector, optional
The rotation as well as translation axis. Note that the components of
this axis are the same in the parent_interframe and child_interframe.
Attributes
==========
name : string
The joint's name.
parent : Body
The joint's parent body.
child : Body
The joint's child body.
rotation_coordinate : dynamicsymbol
Generalized coordinate corresponding to the rotation angle.
translation_coordinate : dynamicsymbol
Generalized coordinate corresponding to the translation distance.
rotation_speed : dynamicsymbol
Generalized speed corresponding to the angular velocity.
translation_speed : dynamicsymbol
Generalized speed corresponding to the translation velocity.
coordinates : Matrix
Matrix of the joint's generalized coordinates.
speeds : Matrix
Matrix of the joint's generalized speeds.
parent_point : Point
Attachment point where the joint is fixed to the parent body.
child_point : Point
Attachment point where the joint is fixed to the child body.
parent_interframe : ReferenceFrame
Intermediate frame of the parent body with respect to which the joint
transformation is formulated.
child_interframe : ReferenceFrame
Intermediate frame of the child body with respect to which the joint
transformation is formulated.
kdes : Matrix
Kinematical differential equations of the joint.
joint_axis : Vector
The axis of rotation and translation.
Examples
=========
A single cylindrical joint is created between two bodies and has the
following basic attributes:
>>> from sympy.physics.mechanics import Body, CylindricalJoint
>>> parent = Body('P')
>>> parent
P
>>> child = Body('C')
>>> child
C
>>> joint = CylindricalJoint('PC', parent, child)
>>> joint
CylindricalJoint: PC parent: P child: C
>>> joint.name
'PC'
>>> joint.parent
P
>>> joint.child
C
>>> joint.parent_point
P_masscenter
>>> joint.child_point
C_masscenter
>>> joint.parent_axis
P_frame.x
>>> joint.child_axis
C_frame.x
>>> joint.coordinates
Matrix([
[q0_PC(t)],
[q1_PC(t)]])
>>> joint.speeds
Matrix([
[u0_PC(t)],
[u1_PC(t)]])
>>> joint.child.frame.ang_vel_in(joint.parent.frame)
u0_PC(t)*P_frame.x
>>> joint.child.frame.dcm(joint.parent.frame)
Matrix([
[1, 0, 0],
[0, cos(q0_PC(t)), sin(q0_PC(t))],
[0, -sin(q0_PC(t)), cos(q0_PC(t))]])
>>> joint.child_point.pos_from(joint.parent_point)
q1_PC(t)*P_frame.x
>>> child.masscenter.vel(parent.frame)
u1_PC(t)*P_frame.x
To further demonstrate the use of the cylindrical joint, the kinematics of
two cylindral joints perpendicular to each other can be created as follows.
>>> from sympy import symbols
>>> from sympy.physics.mechanics import Body, CylindricalJoint
>>> r, l, w = symbols('r l w')
First create bodies to represent the fixed floor with a fixed pole on it.
The second body represents a freely moving tube around that pole. The third
body represents a solid flag freely translating along and rotating around
the Y axis of the tube.
>>> floor = Body('floor')
>>> tube = Body('tube')
>>> flag = Body('flag')
The first joint will connect the first tube to the floor with it translating
along and rotating around the Z axis of both bodies.
>>> floor_joint = CylindricalJoint('C1', floor, tube, joint_axis=floor.z)
The second joint will connect the tube perpendicular to the flag along the Y
axis of both the tube and the flag, with the joint located at a distance
``r`` from the tube's center of mass and a combination of the distances
``l`` and ``w`` from the flag's center of mass.
>>> flag_joint = CylindricalJoint('C2', tube, flag,
... parent_point=r * tube.y,
... child_point=-w * flag.y + l * flag.z,
... joint_axis=tube.y)
Once the joints are established the kinematics of the connected bodies can
be accessed. First the direction cosine matrices of both the body and the
flag relative to the floor are found:
>>> tube.dcm(floor)
Matrix([
[ cos(q0_C1(t)), sin(q0_C1(t)), 0],
[-sin(q0_C1(t)), cos(q0_C1(t)), 0],
[ 0, 0, 1]])
>>> flag.dcm(floor)
Matrix([
[cos(q0_C1(t))*cos(q0_C2(t)), sin(q0_C1(t))*cos(q0_C2(t)), -sin(q0_C2(t))],
[ -sin(q0_C1(t)), cos(q0_C1(t)), 0],
[sin(q0_C2(t))*cos(q0_C1(t)), sin(q0_C1(t))*sin(q0_C2(t)), cos(q0_C2(t))]])
The position of the flag's center of mass is found with:
>>> flag.masscenter.pos_from(floor.masscenter)
q1_C1(t)*floor_frame.z + (r + q1_C2(t))*tube_frame.y + w*flag_frame.y - l*flag_frame.z
The angular velocities of the two tubes can be computed with respect to the
floor.
>>> tube.ang_vel_in(floor)
u0_C1(t)*floor_frame.z
>>> flag.ang_vel_in(floor)
u0_C1(t)*floor_frame.z + u0_C2(t)*tube_frame.y
Finally, the linear velocities of the two tube centers of mass can be
computed with respect to the floor, while expressed in the tube's frame.
>>> tube.masscenter.vel(floor.frame).to_matrix(tube.frame)
Matrix([
[ 0],
[ 0],
[u1_C1(t)]])
>>> flag.masscenter.vel(floor.frame).to_matrix(tube.frame).simplify()
Matrix([
[-l*u0_C2(t)*cos(q0_C2(t)) - r*u0_C1(t) - w*u0_C1(t) - q1_C2(t)*u0_C1(t)],
[ -l*u0_C1(t)*sin(q0_C2(t)) + Derivative(q1_C2(t), t)],
[ l*u0_C2(t)*sin(q0_C2(t)) + u1_C1(t)]])
"""
def __init__(self, name, parent, child, rotation_coordinate=None,
translation_coordinate=None, rotation_speed=None,
translation_speed=None, parent_point=None, child_point=None,
parent_interframe=None, child_interframe=None,
joint_axis=None):
self._joint_axis = joint_axis
coordinates = (rotation_coordinate, translation_coordinate)
speeds = (rotation_speed, translation_speed)
super().__init__(name, parent, child, coordinates, speeds,
parent_point, child_point,
parent_interframe=parent_interframe,
child_interframe=child_interframe)
def __str__(self):
return (f'CylindricalJoint: {self.name} parent: {self.parent} '
f'child: {self.child}')
@property
def joint_axis(self):
"""Axis about and along which the rotation and translation occurs."""
return self._joint_axis
@property
def rotation_coordinate(self):
"""Generalized coordinate corresponding to the rotation angle."""
return self.coordinates[0]
@property
def translation_coordinate(self):
"""Generalized coordinate corresponding to the translation distance."""
return self.coordinates[1]
@property
def rotation_speed(self):
"""Generalized speed corresponding to the angular velocity."""
return self.speeds[0]
@property
def translation_speed(self):
"""Generalized speed corresponding to the translation velocity."""
return self.speeds[1]
def _generate_coordinates(self, coordinates):
return self._fill_coordinate_list(coordinates, 2, 'q')
def _generate_speeds(self, speeds):
return self._fill_coordinate_list(speeds, 2, 'u')
def _orient_frames(self):
self._joint_axis = self._axis(self.joint_axis, self.parent_interframe)
self.child_interframe.orient_axis(
self.parent_interframe, self.joint_axis, self.rotation_coordinate)
def _set_angular_velocity(self):
self.child_interframe.set_ang_vel(
self.parent_interframe,
self.rotation_speed * self.joint_axis.normalize())
def _set_linear_velocity(self):
self.child_point.set_pos(
self.parent_point,
self.translation_coordinate * self.joint_axis.normalize())
self.parent_point.set_vel(self.parent.frame, 0)
self.child_point.set_vel(self.child.frame, 0)
self.child_point.set_vel(
self.parent.frame,
self.translation_speed * self.joint_axis.normalize())
self.child.masscenter.v2pt_theory(self.child_point, self.parent.frame,
self.child_interframe)
class PlanarJoint(Joint):
"""Planar Joint.
.. image:: PlanarJoint.svg
:align: center
:width: 800
Explanation
===========
A planar joint is defined such that the child body translates over a fixed
plane of the parent body as well as rotate about the rotation axis, which
is perpendicular to that plane. The origin of this plane is the
``parent_point`` and the plane is spanned by two nonparallel planar vectors.
The location of the ``child_point`` is based on the planar vectors
($\\vec{v}_1$, $\\vec{v}_2$) and generalized coordinates ($q_1$, $q_2$),
i.e. $\\vec{r} = q_1 \\hat{v}_1 + q_2 \\hat{v}_2$. The direction cosine
matrix between the ``child_interframe`` and ``parent_interframe`` is formed
using a simple rotation ($q_0$) about the rotation axis.
In order to simplify the definition of the ``PlanarJoint``, the
``rotation_axis`` and ``planar_vectors`` are set to be the unit vectors of
the ``parent_interframe`` according to the table below. This ensures that
you can only define these vectors by creating a separate frame and supplying
that as the interframe. If you however would only like to supply the normals
of the plane with respect to the parent and child bodies, then you can also
supply those to the ``parent_interframe`` and ``child_interframe``
arguments. An example of both of these cases is in the examples section
below and the page on the joints framework provides a more detailed
explanation of the intermediate frames.
.. list-table::
* - ``rotation_axis``
- ``parent_interframe.x``
* - ``planar_vectors[0]``
- ``parent_interframe.y``
* - ``planar_vectors[1]``
- ``parent_interframe.z``
Parameters
==========
name : string
A unique name for the joint.
parent : Body
The parent body of joint.
child : Body
The child body of joint.
rotation_coordinate : dynamicsymbol, optional
Generalized coordinate corresponding to the rotation angle. The default
value is ``dynamicsymbols(f'q0_{joint.name}')``.
planar_coordinates : iterable of dynamicsymbols, optional
Two generalized coordinates used for the planar translation. The default
value is ``dynamicsymbols(f'q1_{joint.name} q2_{joint.name}')``.
rotation_speed : dynamicsymbol, optional
Generalized speed corresponding to the angular velocity. The default
value is ``dynamicsymbols(f'u0_{joint.name}')``.
planar_speeds : dynamicsymbols, optional
Two generalized speeds used for the planar translation velocity. The
default value is ``dynamicsymbols(f'u1_{joint.name} u2_{joint.name}')``.
parent_point : Point or Vector, optional
Attachment point where the joint is fixed to the parent body. If a
vector is provided, then the attachment point is computed by adding the
vector to the body's mass center. The default value is the parent's mass
center.
child_point : Point or Vector, optional
Attachment point where the joint is fixed to the child body. If a
vector is provided, then the attachment point is computed by adding the
vector to the body's mass center. The default value is the child's mass
center.
parent_interframe : ReferenceFrame, optional
Intermediate frame of the parent body with respect to which the joint
transformation is formulated. If a Vector is provided then an interframe
is created which aligns its X axis with the given vector. The default
value is the parent's own frame.
child_interframe : ReferenceFrame, optional
Intermediate frame of the child body with respect to which the joint
transformation is formulated. If a Vector is provided then an interframe
is created which aligns its X axis with the given vector. The default
value is the child's own frame.
Attributes
==========
name : string
The joint's name.
parent : Body
The joint's parent body.
child : Body
The joint's child body.
rotation_coordinate : dynamicsymbol
Generalized coordinate corresponding to the rotation angle.
planar_coordinates : Matrix
Two generalized coordinates used for the planar translation.
rotation_speed : dynamicsymbol
Generalized speed corresponding to the angular velocity.
planar_speeds : Matrix
Two generalized speeds used for the planar translation velocity.
coordinates : Matrix
Matrix of the joint's generalized coordinates.
speeds : Matrix
Matrix of the joint's generalized speeds.
parent_point : Point
Attachment point where the joint is fixed to the parent body.
child_point : Point
Attachment point where the joint is fixed to the child body.
parent_interframe : ReferenceFrame
Intermediate frame of the parent body with respect to which the joint
transformation is formulated.
child_interframe : ReferenceFrame
Intermediate frame of the child body with respect to which the joint
transformation is formulated.
kdes : Matrix
Kinematical differential equations of the joint.
rotation_axis : Vector
The axis about which the rotation occurs.
planar_vectors : list
The vectors that describe the planar translation directions.
Examples
=========
A single planar joint is created between two bodies and has the following
basic attributes:
>>> from sympy.physics.mechanics import Body, PlanarJoint
>>> parent = Body('P')
>>> parent
P
>>> child = Body('C')
>>> child
C
>>> joint = PlanarJoint('PC', parent, child)
>>> joint
PlanarJoint: PC parent: P child: C
>>> joint.name
'PC'
>>> joint.parent
P
>>> joint.child
C
>>> joint.parent_point
P_masscenter
>>> joint.child_point
C_masscenter
>>> joint.rotation_axis
P_frame.x
>>> joint.planar_vectors
[P_frame.y, P_frame.z]
>>> joint.rotation_coordinate
q0_PC(t)
>>> joint.planar_coordinates
Matrix([
[q1_PC(t)],
[q2_PC(t)]])
>>> joint.coordinates
Matrix([
[q0_PC(t)],
[q1_PC(t)],
[q2_PC(t)]])
>>> joint.rotation_speed
u0_PC(t)
>>> joint.planar_speeds
Matrix([
[u1_PC(t)],
[u2_PC(t)]])
>>> joint.speeds
Matrix([
[u0_PC(t)],
[u1_PC(t)],
[u2_PC(t)]])
>>> joint.child.frame.ang_vel_in(joint.parent.frame)
u0_PC(t)*P_frame.x
>>> joint.child.frame.dcm(joint.parent.frame)
Matrix([
[1, 0, 0],
[0, cos(q0_PC(t)), sin(q0_PC(t))],
[0, -sin(q0_PC(t)), cos(q0_PC(t))]])
>>> joint.child_point.pos_from(joint.parent_point)
q1_PC(t)*P_frame.y + q2_PC(t)*P_frame.z
>>> child.masscenter.vel(parent.frame)
u1_PC(t)*P_frame.y + u2_PC(t)*P_frame.z
To further demonstrate the use of the planar joint, the kinematics of a
block sliding on a slope, can be created as follows.
>>> from sympy import symbols
>>> from sympy.physics.mechanics import PlanarJoint, Body, ReferenceFrame
>>> a, d, h = symbols('a d h')
First create bodies to represent the slope and the block.
>>> ground = Body('G')
>>> block = Body('B')
To define the slope you can either define the plane by specifying the
``planar_vectors`` or/and the ``rotation_axis``. However it is advisable to
create a rotated intermediate frame, so that the ``parent_vectors`` and
``rotation_axis`` will be the unit vectors of this intermediate frame.
>>> slope = ReferenceFrame('A')
>>> slope.orient_axis(ground.frame, ground.y, a)
The planar joint can be created using these bodies and intermediate frame.
We can specify the origin of the slope to be ``d`` above the slope's center
of mass and the block's center of mass to be a distance ``h`` above the
slope's surface. Note that we can specify the normal of the plane using the
rotation axis argument.
>>> joint = PlanarJoint('PC', ground, block, parent_point=d * ground.x,
... child_point=-h * block.x, parent_interframe=slope)
Once the joint is established the kinematics of the bodies can be accessed.
First the ``rotation_axis``, which is normal to the plane and the
``plane_vectors``, can be found.
>>> joint.rotation_axis
A.x
>>> joint.planar_vectors
[A.y, A.z]
The direction cosine matrix of the block with respect to the ground can be
found with:
>>> block.dcm(ground)
Matrix([
[ cos(a), 0, -sin(a)],
[sin(a)*sin(q0_PC(t)), cos(q0_PC(t)), sin(q0_PC(t))*cos(a)],
[sin(a)*cos(q0_PC(t)), -sin(q0_PC(t)), cos(a)*cos(q0_PC(t))]])
The angular velocity of the block can be computed with respect to the
ground.
>>> block.ang_vel_in(ground)
u0_PC(t)*A.x
The position of the block's center of mass can be found with:
>>> block.masscenter.pos_from(ground.masscenter)
d*G_frame.x + h*B_frame.x + q1_PC(t)*A.y + q2_PC(t)*A.z
Finally, the linear velocity of the block's center of mass can be
computed with respect to the ground.
>>> block.masscenter.vel(ground.frame)
u1_PC(t)*A.y + u2_PC(t)*A.z
In some cases it could be your preference to only define the normals of the
plane with respect to both bodies. This can most easily be done by supplying
vectors to the ``interframe`` arguments. What will happen in this case is
that an interframe will be created with its ``x`` axis aligned with the
provided vector. For a further explanation of how this is done see the notes
of the ``Joint`` class. In the code below, the above example (with the block
on the slope) is recreated by supplying vectors to the interframe arguments.
Note that the previously described option is however more computationally
efficient, because the algorithm now has to compute the rotation angle
between the provided vector and the 'x' axis.
>>> from sympy import symbols, cos, sin
>>> from sympy.physics.mechanics import PlanarJoint, Body
>>> a, d, h = symbols('a d h')
>>> ground = Body('G')
>>> block = Body('B')
>>> joint = PlanarJoint(
... 'PC', ground, block, parent_point=d * ground.x,
... child_point=-h * block.x, child_interframe=block.x,
... parent_interframe=cos(a) * ground.x + sin(a) * ground.z)
>>> block.dcm(ground).simplify()
Matrix([
[ cos(a), 0, sin(a)],
[-sin(a)*sin(q0_PC(t)), cos(q0_PC(t)), sin(q0_PC(t))*cos(a)],
[-sin(a)*cos(q0_PC(t)), -sin(q0_PC(t)), cos(a)*cos(q0_PC(t))]])
"""
def __init__(self, name, parent, child, rotation_coordinate=None,
planar_coordinates=None, rotation_speed=None,
planar_speeds=None, parent_point=None, child_point=None,
parent_interframe=None, child_interframe=None):
# A ready to merge implementation of setting the planar_vectors and
# rotation_axis was added and removed in PR #24046
coordinates = (rotation_coordinate, planar_coordinates)
speeds = (rotation_speed, planar_speeds)
super().__init__(name, parent, child, coordinates, speeds,
parent_point, child_point,
parent_interframe=parent_interframe,
child_interframe=child_interframe)
def __str__(self):
return (f'PlanarJoint: {self.name} parent: {self.parent} '
f'child: {self.child}')
@property
def rotation_coordinate(self):
"""Generalized coordinate corresponding to the rotation angle."""
return self.coordinates[0]
@property
def planar_coordinates(self):
"""Two generalized coordinates used for the planar translation."""
return self.coordinates[1:, 0]
@property
def rotation_speed(self):
"""Generalized speed corresponding to the angular velocity."""
return self.speeds[0]
@property
def planar_speeds(self):
"""Two generalized speeds used for the planar translation velocity."""
return self.speeds[1:, 0]
@property
def rotation_axis(self):
"""The axis about which the rotation occurs."""
return self.parent_interframe.x
@property
def planar_vectors(self):
"""The vectors that describe the planar translation directions."""
return [self.parent_interframe.y, self.parent_interframe.z]
def _generate_coordinates(self, coordinates):
rotation_speed = self._fill_coordinate_list(coordinates[0], 1, 'q',
number_single=True)
planar_speeds = self._fill_coordinate_list(coordinates[1], 2, 'q', 1)
return rotation_speed.col_join(planar_speeds)
def _generate_speeds(self, speeds):
rotation_speed = self._fill_coordinate_list(speeds[0], 1, 'u',
number_single=True)
planar_speeds = self._fill_coordinate_list(speeds[1], 2, 'u', 1)
return rotation_speed.col_join(planar_speeds)
def _orient_frames(self):
self.child_interframe.orient_axis(
self.parent_interframe, self.rotation_axis,
self.rotation_coordinate)
def _set_angular_velocity(self):
self.child_interframe.set_ang_vel(
self.parent_interframe,
self.rotation_speed * self.rotation_axis)
def _set_linear_velocity(self):
self.child_point.set_pos(
self.parent_point,
self.planar_coordinates[0] * self.planar_vectors[0] +
self.planar_coordinates[1] * self.planar_vectors[1])
self.parent_point.set_vel(self.parent_interframe, 0)
self.child_point.set_vel(self.child_interframe, 0)
self.child_point.set_vel(
self.parent.frame, self.planar_speeds[0] * self.planar_vectors[0] +
self.planar_speeds[1] * self.planar_vectors[1])
self.child.masscenter.v2pt_theory(self.child_point, self.parent.frame,
self.child.frame)
class SphericalJoint(Joint):
"""Spherical (Ball-and-Socket) Joint.
.. image:: SphericalJoint.svg
:align: center
:width: 600
Explanation
===========
A spherical joint is defined such that the child body is free to rotate in
any direction, without allowing a translation of the ``child_point``. As can
also be seen in the image, the ``parent_point`` and ``child_point`` are
fixed on top of each other, i.e. the ``joint_point``. This rotation is
defined using the :func:`parent_interframe.orient(child_interframe,
rot_type, amounts, rot_order)
<sympy.physics.vector.frame.ReferenceFrame.orient>` method. The default
rotation consists of three relative rotations, i.e. body-fixed rotations.
Based on the direction cosine matrix following from these rotations, the
angular velocity is computed based on the generalized coordinates and
generalized speeds.
Parameters
==========
name : string
A unique name for the joint.
parent : Body
The parent body of joint.
child : Body
The child body of joint.
coordinates: iterable of dynamicsymbols, optional
Generalized coordinates of the joint.
speeds : iterable of dynamicsymbols, optional
Generalized speeds of joint.
parent_point : Point or Vector, optional
Attachment point where the joint is fixed to the parent body. If a
vector is provided, then the attachment point is computed by adding the
vector to the body's mass center. The default value is the parent's mass
center.
child_point : Point or Vector, optional
Attachment point where the joint is fixed to the child body. If a
vector is provided, then the attachment point is computed by adding the
vector to the body's mass center. The default value is the child's mass
center.
parent_interframe : ReferenceFrame, optional
Intermediate frame of the parent body with respect to which the joint
transformation is formulated. If a Vector is provided then an interframe
is created which aligns its X axis with the given vector. The default
value is the parent's own frame.
child_interframe : ReferenceFrame, optional
Intermediate frame of the child body with respect to which the joint
transformation is formulated. If a Vector is provided then an interframe
is created which aligns its X axis with the given vector. The default
value is the child's own frame.
rot_type : str, optional
The method used to generate the direction cosine matrix. Supported
methods are:
- ``'Body'``: three successive rotations about new intermediate axes,
also called "Euler and Tait-Bryan angles"
- ``'Space'``: three successive rotations about the parent frames' unit
vectors
The default method is ``'Body'``.
amounts :
Expressions defining the rotation angles or direction cosine matrix.
These must match the ``rot_type``. See examples below for details. The
input types are:
- ``'Body'``: 3-tuple of expressions, symbols, or functions
- ``'Space'``: 3-tuple of expressions, symbols, or functions
The default amounts are the given ``coordinates``.
rot_order : str or int, optional
If applicable, the order of the successive of rotations. The string
``'123'`` and integer ``123`` are equivalent, for example. Required for
``'Body'`` and ``'Space'``. The default value is ``123``.
Attributes
==========
name : string
The joint's name.
parent : Body
The joint's parent body.
child : Body
The joint's child body.
coordinates : Matrix
Matrix of the joint's generalized coordinates.
speeds : Matrix
Matrix of the joint's generalized speeds.
parent_point : Point
Attachment point where the joint is fixed to the parent body.
child_point : Point
Attachment point where the joint is fixed to the child body.
parent_interframe : ReferenceFrame
Intermediate frame of the parent body with respect to which the joint
transformation is formulated.
child_interframe : ReferenceFrame
Intermediate frame of the child body with respect to which the joint
transformation is formulated.
kdes : Matrix
Kinematical differential equations of the joint.
Examples
=========
A single spherical joint is created from two bodies and has the following
basic attributes:
>>> from sympy.physics.mechanics import Body, SphericalJoint
>>> parent = Body('P')
>>> parent
P
>>> child = Body('C')
>>> child
C
>>> joint = SphericalJoint('PC', parent, child)
>>> joint
SphericalJoint: PC parent: P child: C
>>> joint.name
'PC'
>>> joint.parent
P
>>> joint.child
C
>>> joint.parent_point
P_masscenter
>>> joint.child_point
C_masscenter
>>> joint.parent_interframe
P_frame
>>> joint.child_interframe
C_frame
>>> joint.coordinates
Matrix([
[q0_PC(t)],
[q1_PC(t)],
[q2_PC(t)]])
>>> joint.speeds
Matrix([
[u0_PC(t)],
[u1_PC(t)],
[u2_PC(t)]])
>>> child.frame.ang_vel_in(parent.frame).to_matrix(child.frame)
Matrix([
[ u0_PC(t)*cos(q1_PC(t))*cos(q2_PC(t)) + u1_PC(t)*sin(q2_PC(t))],
[-u0_PC(t)*sin(q2_PC(t))*cos(q1_PC(t)) + u1_PC(t)*cos(q2_PC(t))],
[ u0_PC(t)*sin(q1_PC(t)) + u2_PC(t)]])
>>> child.frame.x.to_matrix(parent.frame)
Matrix([
[ cos(q1_PC(t))*cos(q2_PC(t))],
[sin(q0_PC(t))*sin(q1_PC(t))*cos(q2_PC(t)) + sin(q2_PC(t))*cos(q0_PC(t))],
[sin(q0_PC(t))*sin(q2_PC(t)) - sin(q1_PC(t))*cos(q0_PC(t))*cos(q2_PC(t))]])
>>> joint.child_point.pos_from(joint.parent_point)
0
To further demonstrate the use of the spherical joint, the kinematics of a
spherical joint with a ZXZ rotation can be created as follows.
>>> from sympy import symbols
>>> from sympy.physics.mechanics import Body, SphericalJoint
>>> l1 = symbols('l1')
First create bodies to represent the fixed floor and a pendulum bob.
>>> floor = Body('F')
>>> bob = Body('B')
The joint will connect the bob to the floor, with the joint located at a
distance of ``l1`` from the child's center of mass and the rotation set to a
body-fixed ZXZ rotation.
>>> joint = SphericalJoint('S', floor, bob, child_point=l1 * bob.y,
... rot_type='body', rot_order='ZXZ')
Now that the joint is established, the kinematics of the connected body can
be accessed.
The position of the bob's masscenter is found with:
>>> bob.masscenter.pos_from(floor.masscenter)
- l1*B_frame.y
The angular velocities of the pendulum link can be computed with respect to
the floor.
>>> bob.frame.ang_vel_in(floor.frame).to_matrix(
... floor.frame).simplify()
Matrix([
[u1_S(t)*cos(q0_S(t)) + u2_S(t)*sin(q0_S(t))*sin(q1_S(t))],
[u1_S(t)*sin(q0_S(t)) - u2_S(t)*sin(q1_S(t))*cos(q0_S(t))],
[ u0_S(t) + u2_S(t)*cos(q1_S(t))]])
Finally, the linear velocity of the bob's center of mass can be computed.
>>> bob.masscenter.vel(floor.frame).to_matrix(bob.frame)
Matrix([
[ l1*(u0_S(t)*cos(q1_S(t)) + u2_S(t))],
[ 0],
[-l1*(u0_S(t)*sin(q1_S(t))*sin(q2_S(t)) + u1_S(t)*cos(q2_S(t)))]])
"""
def __init__(self, name, parent, child, coordinates=None, speeds=None,
parent_point=None, child_point=None, parent_interframe=None,
child_interframe=None, rot_type='BODY', amounts=None,
rot_order=123):
self._rot_type = rot_type
self._amounts = amounts
self._rot_order = rot_order
super().__init__(name, parent, child, coordinates, speeds,
parent_point, child_point,
parent_interframe=parent_interframe,
child_interframe=child_interframe)
def __str__(self):
return (f'SphericalJoint: {self.name} parent: {self.parent} '
f'child: {self.child}')
def _generate_coordinates(self, coordinates):
return self._fill_coordinate_list(coordinates, 3, 'q')
def _generate_speeds(self, speeds):
return self._fill_coordinate_list(speeds, len(self.coordinates), 'u')
def _orient_frames(self):
supported_rot_types = ('BODY', 'SPACE')
if self._rot_type.upper() not in supported_rot_types:
raise NotImplementedError(
f'Rotation type "{self._rot_type}" is not implemented. '
f'Implemented rotation types are: {supported_rot_types}')
amounts = self.coordinates if self._amounts is None else self._amounts
self.child_interframe.orient(self.parent_interframe, self._rot_type,
amounts, self._rot_order)
def _set_angular_velocity(self):
t = dynamicsymbols._t
vel = self.child_interframe.ang_vel_in(self.parent_interframe).xreplace(
{q.diff(t): u for q, u in zip(self.coordinates, self.speeds)}
)
self.child_interframe.set_ang_vel(self.parent_interframe, vel)
def _set_linear_velocity(self):
self.child_point.set_pos(self.parent_point, 0)
self.parent_point.set_vel(self.parent.frame, 0)
self.child_point.set_vel(self.child.frame, 0)
self.child.masscenter.v2pt_theory(self.parent_point, self.parent.frame,
self.child.frame)
class WeldJoint(Joint):
"""Weld Joint.
.. image:: WeldJoint.svg
:align: center
:width: 500
Explanation
===========
A weld joint is defined such that there is no relative motion between the
child and parent bodies. The direction cosine matrix between the attachment
frame (``parent_interframe`` and ``child_interframe``) is the identity
matrix and the attachment points (``parent_point`` and ``child_point``) are
coincident. The page on the joints framework gives a more detailed
explanation of the intermediate frames.
Parameters
==========
name : string
A unique name for the joint.
parent : Body
The parent body of joint.
child : Body
The child body of joint.
parent_point : Point or Vector, optional
Attachment point where the joint is fixed to the parent body. If a
vector is provided, then the attachment point is computed by adding the
vector to the body's mass center. The default value is the parent's mass
center.
child_point : Point or Vector, optional
Attachment point where the joint is fixed to the child body. If a
vector is provided, then the attachment point is computed by adding the
vector to the body's mass center. The default value is the child's mass
center.
parent_interframe : ReferenceFrame, optional
Intermediate frame of the parent body with respect to which the joint
transformation is formulated. If a Vector is provided then an interframe
is created which aligns its X axis with the given vector. The default
value is the parent's own frame.
child_interframe : ReferenceFrame, optional
Intermediate frame of the child body with respect to which the joint
transformation is formulated. If a Vector is provided then an interframe
is created which aligns its X axis with the given vector. The default
value is the child's own frame.
Attributes
==========
name : string
The joint's name.
parent : Body
The joint's parent body.
child : Body
The joint's child body.
coordinates : Matrix
Matrix of the joint's generalized coordinates. The default value is
``dynamicsymbols(f'q_{joint.name}')``.
speeds : Matrix
Matrix of the joint's generalized speeds. The default value is
``dynamicsymbols(f'u_{joint.name}')``.
parent_point : Point
Attachment point where the joint is fixed to the parent body.
child_point : Point
Attachment point where the joint is fixed to the child body.
parent_interframe : ReferenceFrame
Intermediate frame of the parent body with respect to which the joint
transformation is formulated.
child_interframe : ReferenceFrame
Intermediate frame of the child body with respect to which the joint
transformation is formulated.
kdes : Matrix
Kinematical differential equations of the joint.
Examples
=========
A single weld joint is created from two bodies and has the following basic
attributes:
>>> from sympy.physics.mechanics import Body, WeldJoint
>>> parent = Body('P')
>>> parent
P
>>> child = Body('C')
>>> child
C
>>> joint = WeldJoint('PC', parent, child)
>>> joint
WeldJoint: PC parent: P child: C
>>> joint.name
'PC'
>>> joint.parent
P
>>> joint.child
C
>>> joint.parent_point
P_masscenter
>>> joint.child_point
C_masscenter
>>> joint.coordinates
Matrix(0, 0, [])
>>> joint.speeds
Matrix(0, 0, [])
>>> joint.child.frame.ang_vel_in(joint.parent.frame)
0
>>> joint.child.frame.dcm(joint.parent.frame)
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
>>> joint.child_point.pos_from(joint.parent_point)
0
To further demonstrate the use of the weld joint, two relatively-fixed
bodies rotated by a quarter turn about the Y axis can be created as follows:
>>> from sympy import symbols, pi
>>> from sympy.physics.mechanics import ReferenceFrame, Body, WeldJoint
>>> l1, l2 = symbols('l1 l2')
First create the bodies to represent the parent and rotated child body.
>>> parent = Body('P')
>>> child = Body('C')
Next the intermediate frame specifying the fixed rotation with respect to
the parent can be created.
>>> rotated_frame = ReferenceFrame('Pr')
>>> rotated_frame.orient_axis(parent.frame, parent.y, pi / 2)
The weld between the parent body and child body is located at a distance
``l1`` from the parent's center of mass in the X direction and ``l2`` from
the child's center of mass in the child's negative X direction.
>>> weld = WeldJoint('weld', parent, child, parent_point=l1 * parent.x,
... child_point=-l2 * child.x,
... parent_interframe=rotated_frame)
Now that the joint has been established, the kinematics of the bodies can be
accessed. The direction cosine matrix of the child body with respect to the
parent can be found:
>>> child.dcm(parent)
Matrix([
[0, 0, -1],
[0, 1, 0],
[1, 0, 0]])
As can also been seen from the direction cosine matrix, the parent X axis is
aligned with the child's Z axis:
>>> parent.x == child.z
True
The position of the child's center of mass with respect to the parent's
center of mass can be found with:
>>> child.masscenter.pos_from(parent.masscenter)
l1*P_frame.x + l2*C_frame.x
The angular velocity of the child with respect to the parent is 0 as one
would expect.
>>> child.ang_vel_in(parent)
0
"""
def __init__(self, name, parent, child, parent_point=None, child_point=None,
parent_interframe=None, child_interframe=None):
super().__init__(name, parent, child, [], [], parent_point,
child_point, parent_interframe=parent_interframe,
child_interframe=child_interframe)
self._kdes = Matrix(1, 0, []).T # Removes stackability problems #10770
def __str__(self):
return (f'WeldJoint: {self.name} parent: {self.parent} '
f'child: {self.child}')
def _generate_coordinates(self, coordinate):
return Matrix()
def _generate_speeds(self, speed):
return Matrix()
def _orient_frames(self):
self.child_interframe.orient_axis(self.parent_interframe,
self.parent_interframe.x, 0)
def _set_angular_velocity(self):
self.child_interframe.set_ang_vel(self.parent_interframe, 0)
def _set_linear_velocity(self):
self.child_point.set_pos(self.parent_point, 0)
self.parent_point.set_vel(self.parent.frame, 0)
self.child_point.set_vel(self.child.frame, 0)
self.child.masscenter.set_vel(self.parent.frame, 0)
|
fc1336ab67ae0718958fee4e54c3a4bb3bbd0f4d7630fe400ba2e73843706d7d | from sympy.core.backend import diff, zeros, Matrix, eye, sympify
from sympy.core.sorting import default_sort_key
from sympy.physics.vector import dynamicsymbols, ReferenceFrame
from sympy.physics.mechanics.method import _Methods
from sympy.physics.mechanics.functions import (
find_dynamicsymbols, msubs, _f_list_parser, _validate_coordinates)
from sympy.physics.mechanics.linearize import Linearizer
from sympy.utilities.iterables import iterable
__all__ = ['LagrangesMethod']
class LagrangesMethod(_Methods):
"""Lagrange's method object.
Explanation
===========
This object generates the equations of motion in a two step procedure. The
first step involves the initialization of LagrangesMethod by supplying the
Lagrangian and the generalized coordinates, at the bare minimum. If there
are any constraint equations, they can be supplied as keyword arguments.
The Lagrange multipliers are automatically generated and are equal in
number to the constraint equations. Similarly any non-conservative forces
can be supplied in an iterable (as described below and also shown in the
example) along with a ReferenceFrame. This is also discussed further in the
__init__ method.
Attributes
==========
q, u : Matrix
Matrices of the generalized coordinates and speeds
loads : iterable
Iterable of (Point, vector) or (ReferenceFrame, vector) tuples
describing the forces on the system.
bodies : iterable
Iterable containing the rigid bodies and particles of the system.
mass_matrix : Matrix
The system's mass matrix
forcing : Matrix
The system's forcing vector
mass_matrix_full : Matrix
The "mass matrix" for the qdot's, qdoubledot's, and the
lagrange multipliers (lam)
forcing_full : Matrix
The forcing vector for the qdot's, qdoubledot's and
lagrange multipliers (lam)
Examples
========
This is a simple example for a one degree of freedom translational
spring-mass-damper.
In this example, we first need to do the kinematics.
This involves creating generalized coordinates and their derivatives.
Then we create a point and set its velocity in a frame.
>>> from sympy.physics.mechanics import LagrangesMethod, Lagrangian
>>> from sympy.physics.mechanics import ReferenceFrame, Particle, Point
>>> from sympy.physics.mechanics import dynamicsymbols
>>> from sympy import symbols
>>> q = dynamicsymbols('q')
>>> qd = dynamicsymbols('q', 1)
>>> m, k, b = symbols('m k b')
>>> N = ReferenceFrame('N')
>>> P = Point('P')
>>> P.set_vel(N, qd * N.x)
We need to then prepare the information as required by LagrangesMethod to
generate equations of motion.
First we create the Particle, which has a point attached to it.
Following this the lagrangian is created from the kinetic and potential
energies.
Then, an iterable of nonconservative forces/torques must be constructed,
where each item is a (Point, Vector) or (ReferenceFrame, Vector) tuple,
with the Vectors representing the nonconservative forces or torques.
>>> Pa = Particle('Pa', P, m)
>>> Pa.potential_energy = k * q**2 / 2.0
>>> L = Lagrangian(N, Pa)
>>> fl = [(P, -b * qd * N.x)]
Finally we can generate the equations of motion.
First we create the LagrangesMethod object. To do this one must supply
the Lagrangian, and the generalized coordinates. The constraint equations,
the forcelist, and the inertial frame may also be provided, if relevant.
Next we generate Lagrange's equations of motion, such that:
Lagrange's equations of motion = 0.
We have the equations of motion at this point.
>>> l = LagrangesMethod(L, [q], forcelist = fl, frame = N)
>>> print(l.form_lagranges_equations())
Matrix([[b*Derivative(q(t), t) + 1.0*k*q(t) + m*Derivative(q(t), (t, 2))]])
We can also solve for the states using the 'rhs' method.
>>> print(l.rhs())
Matrix([[Derivative(q(t), t)], [(-b*Derivative(q(t), t) - 1.0*k*q(t))/m]])
Please refer to the docstrings on each method for more details.
"""
def __init__(self, Lagrangian, qs, forcelist=None, bodies=None, frame=None,
hol_coneqs=None, nonhol_coneqs=None):
"""Supply the following for the initialization of LagrangesMethod.
Lagrangian : Sympifyable
qs : array_like
The generalized coordinates
hol_coneqs : array_like, optional
The holonomic constraint equations
nonhol_coneqs : array_like, optional
The nonholonomic constraint equations
forcelist : iterable, optional
Takes an iterable of (Point, Vector) or (ReferenceFrame, Vector)
tuples which represent the force at a point or torque on a frame.
This feature is primarily to account for the nonconservative forces
and/or moments.
bodies : iterable, optional
Takes an iterable containing the rigid bodies and particles of the
system.
frame : ReferenceFrame, optional
Supply the inertial frame. This is used to determine the
generalized forces due to non-conservative forces.
"""
self._L = Matrix([sympify(Lagrangian)])
self.eom = None
self._m_cd = Matrix() # Mass Matrix of differentiated coneqs
self._m_d = Matrix() # Mass Matrix of dynamic equations
self._f_cd = Matrix() # Forcing part of the diff coneqs
self._f_d = Matrix() # Forcing part of the dynamic equations
self.lam_coeffs = Matrix() # The coeffecients of the multipliers
forcelist = forcelist if forcelist else []
if not iterable(forcelist):
raise TypeError('Force pairs must be supplied in an iterable.')
self._forcelist = forcelist
if frame and not isinstance(frame, ReferenceFrame):
raise TypeError('frame must be a valid ReferenceFrame')
self._bodies = bodies
self.inertial = frame
self.lam_vec = Matrix()
self._term1 = Matrix()
self._term2 = Matrix()
self._term3 = Matrix()
self._term4 = Matrix()
# Creating the qs, qdots and qdoubledots
if not iterable(qs):
raise TypeError('Generalized coordinates must be an iterable')
self._q = Matrix(qs)
self._qdots = self.q.diff(dynamicsymbols._t)
self._qdoubledots = self._qdots.diff(dynamicsymbols._t)
_validate_coordinates(self.q)
mat_build = lambda x: Matrix(x) if x else Matrix()
hol_coneqs = mat_build(hol_coneqs)
nonhol_coneqs = mat_build(nonhol_coneqs)
self.coneqs = Matrix([hol_coneqs.diff(dynamicsymbols._t),
nonhol_coneqs])
self._hol_coneqs = hol_coneqs
def form_lagranges_equations(self):
"""Method to form Lagrange's equations of motion.
Returns a vector of equations of motion using Lagrange's equations of
the second kind.
"""
qds = self._qdots
qdd_zero = {i: 0 for i in self._qdoubledots}
n = len(self.q)
# Internally we represent the EOM as four terms:
# EOM = term1 - term2 - term3 - term4 = 0
# First term
self._term1 = self._L.jacobian(qds)
self._term1 = self._term1.diff(dynamicsymbols._t).T
# Second term
self._term2 = self._L.jacobian(self.q).T
# Third term
if self.coneqs:
coneqs = self.coneqs
m = len(coneqs)
# Creating the multipliers
self.lam_vec = Matrix(dynamicsymbols('lam1:' + str(m + 1)))
self.lam_coeffs = -coneqs.jacobian(qds)
self._term3 = self.lam_coeffs.T * self.lam_vec
# Extracting the coeffecients of the qdds from the diff coneqs
diffconeqs = coneqs.diff(dynamicsymbols._t)
self._m_cd = diffconeqs.jacobian(self._qdoubledots)
# The remaining terms i.e. the 'forcing' terms in diff coneqs
self._f_cd = -diffconeqs.subs(qdd_zero)
else:
self._term3 = zeros(n, 1)
# Fourth term
if self.forcelist:
N = self.inertial
self._term4 = zeros(n, 1)
for i, qd in enumerate(qds):
flist = zip(*_f_list_parser(self.forcelist, N))
self._term4[i] = sum(v.diff(qd, N) & f for (v, f) in flist)
else:
self._term4 = zeros(n, 1)
# Form the dynamic mass and forcing matrices
without_lam = self._term1 - self._term2 - self._term4
self._m_d = without_lam.jacobian(self._qdoubledots)
self._f_d = -without_lam.subs(qdd_zero)
# Form the EOM
self.eom = without_lam - self._term3
return self.eom
def _form_eoms(self):
return self.form_lagranges_equations()
@property
def mass_matrix(self):
"""Returns the mass matrix, which is augmented by the Lagrange
multipliers, if necessary.
Explanation
===========
If the system is described by 'n' generalized coordinates and there are
no constraint equations then an n X n matrix is returned.
If there are 'n' generalized coordinates and 'm' constraint equations
have been supplied during initialization then an n X (n+m) matrix is
returned. The (n + m - 1)th and (n + m)th columns contain the
coefficients of the Lagrange multipliers.
"""
if self.eom is None:
raise ValueError('Need to compute the equations of motion first')
if self.coneqs:
return (self._m_d).row_join(self.lam_coeffs.T)
else:
return self._m_d
@property
def mass_matrix_full(self):
"""Augments the coefficients of qdots to the mass_matrix."""
if self.eom is None:
raise ValueError('Need to compute the equations of motion first')
n = len(self.q)
m = len(self.coneqs)
row1 = eye(n).row_join(zeros(n, n + m))
row2 = zeros(n, n).row_join(self.mass_matrix)
if self.coneqs:
row3 = zeros(m, n).row_join(self._m_cd).row_join(zeros(m, m))
return row1.col_join(row2).col_join(row3)
else:
return row1.col_join(row2)
@property
def forcing(self):
"""Returns the forcing vector from 'lagranges_equations' method."""
if self.eom is None:
raise ValueError('Need to compute the equations of motion first')
return self._f_d
@property
def forcing_full(self):
"""Augments qdots to the forcing vector above."""
if self.eom is None:
raise ValueError('Need to compute the equations of motion first')
if self.coneqs:
return self._qdots.col_join(self.forcing).col_join(self._f_cd)
else:
return self._qdots.col_join(self.forcing)
def to_linearizer(self, q_ind=None, qd_ind=None, q_dep=None, qd_dep=None):
"""Returns an instance of the Linearizer class, initiated from the
data in the LagrangesMethod class. This may be more desirable than using
the linearize class method, as the Linearizer object will allow more
efficient recalculation (i.e. about varying operating points).
Parameters
==========
q_ind, qd_ind : array_like, optional
The independent generalized coordinates and speeds.
q_dep, qd_dep : array_like, optional
The dependent generalized coordinates and speeds.
"""
# Compose vectors
t = dynamicsymbols._t
q = self.q
u = self._qdots
ud = u.diff(t)
# Get vector of lagrange multipliers
lams = self.lam_vec
mat_build = lambda x: Matrix(x) if x else Matrix()
q_i = mat_build(q_ind)
q_d = mat_build(q_dep)
u_i = mat_build(qd_ind)
u_d = mat_build(qd_dep)
# Compose general form equations
f_c = self._hol_coneqs
f_v = self.coneqs
f_a = f_v.diff(t)
f_0 = u
f_1 = -u
f_2 = self._term1
f_3 = -(self._term2 + self._term4)
f_4 = -self._term3
# Check that there are an appropriate number of independent and
# dependent coordinates
if len(q_d) != len(f_c) or len(u_d) != len(f_v):
raise ValueError(("Must supply {:} dependent coordinates, and " +
"{:} dependent speeds").format(len(f_c), len(f_v)))
if set(Matrix([q_i, q_d])) != set(q):
raise ValueError("Must partition q into q_ind and q_dep, with " +
"no extra or missing symbols.")
if set(Matrix([u_i, u_d])) != set(u):
raise ValueError("Must partition qd into qd_ind and qd_dep, " +
"with no extra or missing symbols.")
# Find all other dynamic symbols, forming the forcing vector r.
# Sort r to make it canonical.
insyms = set(Matrix([q, u, ud, lams]))
r = list(find_dynamicsymbols(f_3, insyms))
r.sort(key=default_sort_key)
# Check for any derivatives of variables in r that are also found in r.
for i in r:
if diff(i, dynamicsymbols._t) in r:
raise ValueError('Cannot have derivatives of specified \
quantities when linearizing forcing terms.')
return Linearizer(f_0, f_1, f_2, f_3, f_4, f_c, f_v, f_a, q, u, q_i,
q_d, u_i, u_d, r, lams)
def linearize(self, q_ind=None, qd_ind=None, q_dep=None, qd_dep=None,
**kwargs):
"""Linearize the equations of motion about a symbolic operating point.
Explanation
===========
If kwarg A_and_B is False (default), returns M, A, B, r for the
linearized form, M*[q', u']^T = A*[q_ind, u_ind]^T + B*r.
If kwarg A_and_B is True, returns A, B, r for the linearized form
dx = A*x + B*r, where x = [q_ind, u_ind]^T. Note that this is
computationally intensive if there are many symbolic parameters. For
this reason, it may be more desirable to use the default A_and_B=False,
returning M, A, and B. Values may then be substituted in to these
matrices, and the state space form found as
A = P.T*M.inv()*A, B = P.T*M.inv()*B, where P = Linearizer.perm_mat.
In both cases, r is found as all dynamicsymbols in the equations of
motion that are not part of q, u, q', or u'. They are sorted in
canonical form.
The operating points may be also entered using the ``op_point`` kwarg.
This takes a dictionary of {symbol: value}, or a an iterable of such
dictionaries. The values may be numeric or symbolic. The more values
you can specify beforehand, the faster this computation will run.
For more documentation, please see the ``Linearizer`` class."""
linearizer = self.to_linearizer(q_ind, qd_ind, q_dep, qd_dep)
result = linearizer.linearize(**kwargs)
return result + (linearizer.r,)
def solve_multipliers(self, op_point=None, sol_type='dict'):
"""Solves for the values of the lagrange multipliers symbolically at
the specified operating point.
Parameters
==========
op_point : dict or iterable of dicts, optional
Point at which to solve at. The operating point is specified as
a dictionary or iterable of dictionaries of {symbol: value}. The
value may be numeric or symbolic itself.
sol_type : str, optional
Solution return type. Valid options are:
- 'dict': A dict of {symbol : value} (default)
- 'Matrix': An ordered column matrix of the solution
"""
# Determine number of multipliers
k = len(self.lam_vec)
if k == 0:
raise ValueError("System has no lagrange multipliers to solve for.")
# Compose dict of operating conditions
if isinstance(op_point, dict):
op_point_dict = op_point
elif iterable(op_point):
op_point_dict = {}
for op in op_point:
op_point_dict.update(op)
elif op_point is None:
op_point_dict = {}
else:
raise TypeError("op_point must be either a dictionary or an "
"iterable of dictionaries.")
# Compose the system to be solved
mass_matrix = self.mass_matrix.col_join(-self.lam_coeffs.row_join(
zeros(k, k)))
force_matrix = self.forcing.col_join(self._f_cd)
# Sub in the operating point
mass_matrix = msubs(mass_matrix, op_point_dict)
force_matrix = msubs(force_matrix, op_point_dict)
# Solve for the multipliers
sol_list = mass_matrix.LUsolve(-force_matrix)[-k:]
if sol_type == 'dict':
return dict(zip(self.lam_vec, sol_list))
elif sol_type == 'Matrix':
return Matrix(sol_list)
else:
raise ValueError("Unknown sol_type {:}.".format(sol_type))
def rhs(self, inv_method=None, **kwargs):
"""Returns equations that can be solved numerically.
Parameters
==========
inv_method : str
The specific sympy inverse matrix calculation method to use. For a
list of valid methods, see
:meth:`~sympy.matrices.matrices.MatrixBase.inv`
"""
if inv_method is None:
self._rhs = self.mass_matrix_full.LUsolve(self.forcing_full)
else:
self._rhs = (self.mass_matrix_full.inv(inv_method,
try_block_diag=True) * self.forcing_full)
return self._rhs
@property
def q(self):
return self._q
@property
def u(self):
return self._qdots
@property
def bodies(self):
return self._bodies
@property
def forcelist(self):
return self._forcelist
@property
def loads(self):
return self._forcelist
|
fc8ce616d7227f673f01a4166dc3ac848eca7bbfca5229c6bc756f135c853bfb | """
Unit system for physical quantities; include definition of constants.
"""
from typing import Dict as tDict, Set as tSet
from sympy.core.add import Add
from sympy.core.function import (Derivative, Function)
from sympy.core.mul import Mul
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.physics.units.dimensions import _QuantityMapper
from sympy.physics.units.quantities import Quantity
from .dimensions import Dimension
class UnitSystem(_QuantityMapper):
"""
UnitSystem represents a coherent set of units.
A unit system is basically a dimension system with notions of scales. Many
of the methods are defined in the same way.
It is much better if all base units have a symbol.
"""
_unit_systems = {} # type: tDict[str, UnitSystem]
def __init__(self, base_units, units=(), name="", descr="", dimension_system=None, derived_units: tDict[Dimension, Quantity]={}):
UnitSystem._unit_systems[name] = self
self.name = name
self.descr = descr
self._base_units = base_units
self._dimension_system = dimension_system
self._units = tuple(set(base_units) | set(units))
self._base_units = tuple(base_units)
self._derived_units = derived_units
super().__init__()
def __str__(self):
"""
Return the name of the system.
If it does not exist, then it makes a list of symbols (or names) of
the base dimensions.
"""
if self.name != "":
return self.name
else:
return "UnitSystem((%s))" % ", ".join(
str(d) for d in self._base_units)
def __repr__(self):
return '<UnitSystem: %s>' % repr(self._base_units)
def extend(self, base, units=(), name="", description="", dimension_system=None, derived_units: tDict[Dimension, Quantity]={}):
"""Extend the current system into a new one.
Take the base and normal units of the current system to merge
them to the base and normal units given in argument.
If not provided, name and description are overridden by empty strings.
"""
base = self._base_units + tuple(base)
units = self._units + tuple(units)
return UnitSystem(base, units, name, description, dimension_system, {**self._derived_units, **derived_units})
def get_dimension_system(self):
return self._dimension_system
def get_quantity_dimension(self, unit):
qdm = self.get_dimension_system()._quantity_dimension_map
if unit in qdm:
return qdm[unit]
return super().get_quantity_dimension(unit)
def get_quantity_scale_factor(self, unit):
qsfm = self.get_dimension_system()._quantity_scale_factors
if unit in qsfm:
return qsfm[unit]
return super().get_quantity_scale_factor(unit)
@staticmethod
def get_unit_system(unit_system):
if isinstance(unit_system, UnitSystem):
return unit_system
if unit_system not in UnitSystem._unit_systems:
raise ValueError(
"Unit system is not supported. Currently"
"supported unit systems are {}".format(
", ".join(sorted(UnitSystem._unit_systems))
)
)
return UnitSystem._unit_systems[unit_system]
@staticmethod
def get_default_unit_system():
return UnitSystem._unit_systems["SI"]
@property
def dim(self):
"""
Give the dimension of the system.
That is return the number of units forming the basis.
"""
return len(self._base_units)
@property
def is_consistent(self):
"""
Check if the underlying dimension system is consistent.
"""
# test is performed in DimensionSystem
return self.get_dimension_system().is_consistent
@property
def derived_units(self) -> tDict[Dimension, Quantity]:
return self._derived_units
def get_dimensional_expr(self, expr):
from sympy.physics.units import Quantity
if isinstance(expr, Mul):
return Mul(*[self.get_dimensional_expr(i) for i in expr.args])
elif isinstance(expr, Pow):
return self.get_dimensional_expr(expr.base) ** expr.exp
elif isinstance(expr, Add):
return self.get_dimensional_expr(expr.args[0])
elif isinstance(expr, Derivative):
dim = self.get_dimensional_expr(expr.expr)
for independent, count in expr.variable_count:
dim /= self.get_dimensional_expr(independent)**count
return dim
elif isinstance(expr, Function):
args = [self.get_dimensional_expr(arg) for arg in expr.args]
if all(i == 1 for i in args):
return S.One
return expr.func(*args)
elif isinstance(expr, Quantity):
return self.get_quantity_dimension(expr).name
return S.One
def _collect_factor_and_dimension(self, expr):
"""
Return tuple with scale factor expression and dimension expression.
"""
from sympy.physics.units import Quantity
if isinstance(expr, Quantity):
return expr.scale_factor, expr.dimension
elif isinstance(expr, Mul):
factor = 1
dimension = Dimension(1)
for arg in expr.args:
arg_factor, arg_dim = self._collect_factor_and_dimension(arg)
factor *= arg_factor
dimension *= arg_dim
return factor, dimension
elif isinstance(expr, Pow):
factor, dim = self._collect_factor_and_dimension(expr.base)
exp_factor, exp_dim = self._collect_factor_and_dimension(expr.exp)
if self.get_dimension_system().is_dimensionless(exp_dim):
exp_dim = 1
return factor ** exp_factor, dim ** (exp_factor * exp_dim)
elif isinstance(expr, Add):
factor, dim = self._collect_factor_and_dimension(expr.args[0])
for addend in expr.args[1:]:
addend_factor, addend_dim = \
self._collect_factor_and_dimension(addend)
if dim != addend_dim:
raise ValueError(
'Dimension of "{}" is {}, '
'but it should be {}'.format(
addend, addend_dim, dim))
factor += addend_factor
return factor, dim
elif isinstance(expr, Derivative):
factor, dim = self._collect_factor_and_dimension(expr.args[0])
for independent, count in expr.variable_count:
ifactor, idim = self._collect_factor_and_dimension(independent)
factor /= ifactor**count
dim /= idim**count
return factor, dim
elif isinstance(expr, Function):
fds = [self._collect_factor_and_dimension(arg) for arg in expr.args]
dims = [Dimension(1) if self.get_dimension_system().is_dimensionless(d[1]) else d[1] for d in fds]
return (expr.func(*(f[0] for f in fds)), *dims)
elif isinstance(expr, Dimension):
return S.One, expr
else:
return expr, Dimension(1)
def get_units_non_prefixed(self) -> tSet[Quantity]:
"""
Return the units of the system that do not have a prefix.
"""
return set(filter(lambda u: not u.is_prefixed and not u.is_physical_constant, self._units))
|
dc54624be408f84699f5b877c50610505642f0e0e0872e98e743a9b26a972d04 | from sympy.core.backend import (diff, expand, sin, cos, sympify, eye, zeros,
ImmutableMatrix as Matrix, MatrixBase)
from sympy.core.symbol import Symbol
from sympy.simplify.trigsimp import trigsimp
from sympy.physics.vector.vector import Vector, _check_vector
from sympy.utilities.misc import translate
from warnings import warn
__all__ = ['CoordinateSym', 'ReferenceFrame']
class CoordinateSym(Symbol):
"""
A coordinate symbol/base scalar associated wrt a Reference Frame.
Ideally, users should not instantiate this class. Instances of
this class must only be accessed through the corresponding frame
as 'frame[index]'.
CoordinateSyms having the same frame and index parameters are equal
(even though they may be instantiated separately).
Parameters
==========
name : string
The display name of the CoordinateSym
frame : ReferenceFrame
The reference frame this base scalar belongs to
index : 0, 1 or 2
The index of the dimension denoted by this coordinate variable
Examples
========
>>> from sympy.physics.vector import ReferenceFrame, CoordinateSym
>>> A = ReferenceFrame('A')
>>> A[1]
A_y
>>> type(A[0])
<class 'sympy.physics.vector.frame.CoordinateSym'>
>>> a_y = CoordinateSym('a_y', A, 1)
>>> a_y == A[1]
True
"""
def __new__(cls, name, frame, index):
# We can't use the cached Symbol.__new__ because this class depends on
# frame and index, which are not passed to Symbol.__xnew__.
assumptions = {}
super()._sanitize(assumptions, cls)
obj = super().__xnew__(cls, name, **assumptions)
_check_frame(frame)
if index not in range(0, 3):
raise ValueError("Invalid index specified")
obj._id = (frame, index)
return obj
@property
def frame(self):
return self._id[0]
def __eq__(self, other):
# Check if the other object is a CoordinateSym of the same frame and
# same index
if isinstance(other, CoordinateSym):
if other._id == self._id:
return True
return False
def __ne__(self, other):
return not self == other
def __hash__(self):
return tuple((self._id[0].__hash__(), self._id[1])).__hash__()
class ReferenceFrame:
"""A reference frame in classical mechanics.
ReferenceFrame is a class used to represent a reference frame in classical
mechanics. It has a standard basis of three unit vectors in the frame's
x, y, and z directions.
It also can have a rotation relative to a parent frame; this rotation is
defined by a direction cosine matrix relating this frame's basis vectors to
the parent frame's basis vectors. It can also have an angular velocity
vector, defined in another frame.
"""
_count = 0
def __init__(self, name, indices=None, latexs=None, variables=None):
"""ReferenceFrame initialization method.
A ReferenceFrame has a set of orthonormal basis vectors, along with
orientations relative to other ReferenceFrames and angular velocities
relative to other ReferenceFrames.
Parameters
==========
indices : tuple of str
Enables the reference frame's basis unit vectors to be accessed by
Python's square bracket indexing notation using the provided three
indice strings and alters the printing of the unit vectors to
reflect this choice.
latexs : tuple of str
Alters the LaTeX printing of the reference frame's basis unit
vectors to the provided three valid LaTeX strings.
Examples
========
>>> from sympy.physics.vector import ReferenceFrame, vlatex
>>> N = ReferenceFrame('N')
>>> N.x
N.x
>>> O = ReferenceFrame('O', indices=('1', '2', '3'))
>>> O.x
O['1']
>>> O['1']
O['1']
>>> P = ReferenceFrame('P', latexs=('A1', 'A2', 'A3'))
>>> vlatex(P.x)
'A1'
``symbols()`` can be used to create multiple Reference Frames in one
step, for example:
>>> from sympy.physics.vector import ReferenceFrame
>>> from sympy import symbols
>>> A, B, C = symbols('A B C', cls=ReferenceFrame)
>>> D, E = symbols('D E', cls=ReferenceFrame, indices=('1', '2', '3'))
>>> A[0]
A_x
>>> D.x
D['1']
>>> E.y
E['2']
>>> type(A) == type(D)
True
"""
if not isinstance(name, str):
raise TypeError('Need to supply a valid name')
# The if statements below are for custom printing of basis-vectors for
# each frame.
# First case, when custom indices are supplied
if indices is not None:
if not isinstance(indices, (tuple, list)):
raise TypeError('Supply the indices as a list')
if len(indices) != 3:
raise ValueError('Supply 3 indices')
for i in indices:
if not isinstance(i, str):
raise TypeError('Indices must be strings')
self.str_vecs = [(name + '[\'' + indices[0] + '\']'),
(name + '[\'' + indices[1] + '\']'),
(name + '[\'' + indices[2] + '\']')]
self.pretty_vecs = [(name.lower() + "_" + indices[0]),
(name.lower() + "_" + indices[1]),
(name.lower() + "_" + indices[2])]
self.latex_vecs = [(r"\mathbf{\hat{%s}_{%s}}" % (name.lower(),
indices[0])),
(r"\mathbf{\hat{%s}_{%s}}" % (name.lower(),
indices[1])),
(r"\mathbf{\hat{%s}_{%s}}" % (name.lower(),
indices[2]))]
self.indices = indices
# Second case, when no custom indices are supplied
else:
self.str_vecs = [(name + '.x'), (name + '.y'), (name + '.z')]
self.pretty_vecs = [name.lower() + "_x",
name.lower() + "_y",
name.lower() + "_z"]
self.latex_vecs = [(r"\mathbf{\hat{%s}_x}" % name.lower()),
(r"\mathbf{\hat{%s}_y}" % name.lower()),
(r"\mathbf{\hat{%s}_z}" % name.lower())]
self.indices = ['x', 'y', 'z']
# Different step, for custom latex basis vectors
if latexs is not None:
if not isinstance(latexs, (tuple, list)):
raise TypeError('Supply the indices as a list')
if len(latexs) != 3:
raise ValueError('Supply 3 indices')
for i in latexs:
if not isinstance(i, str):
raise TypeError('Latex entries must be strings')
self.latex_vecs = latexs
self.name = name
self._var_dict = {}
# The _dcm_dict dictionary will only store the dcms of adjacent
# parent-child relationships. The _dcm_cache dictionary will store
# calculated dcm along with all content of _dcm_dict for faster
# retrieval of dcms.
self._dcm_dict = {}
self._dcm_cache = {}
self._ang_vel_dict = {}
self._ang_acc_dict = {}
self._dlist = [self._dcm_dict, self._ang_vel_dict, self._ang_acc_dict]
self._cur = 0
self._x = Vector([(Matrix([1, 0, 0]), self)])
self._y = Vector([(Matrix([0, 1, 0]), self)])
self._z = Vector([(Matrix([0, 0, 1]), self)])
# Associate coordinate symbols wrt this frame
if variables is not None:
if not isinstance(variables, (tuple, list)):
raise TypeError('Supply the variable names as a list/tuple')
if len(variables) != 3:
raise ValueError('Supply 3 variable names')
for i in variables:
if not isinstance(i, str):
raise TypeError('Variable names must be strings')
else:
variables = [name + '_x', name + '_y', name + '_z']
self.varlist = (CoordinateSym(variables[0], self, 0),
CoordinateSym(variables[1], self, 1),
CoordinateSym(variables[2], self, 2))
ReferenceFrame._count += 1
self.index = ReferenceFrame._count
def __getitem__(self, ind):
"""
Returns basis vector for the provided index, if the index is a string.
If the index is a number, returns the coordinate variable correspon-
-ding to that index.
"""
if not isinstance(ind, str):
if ind < 3:
return self.varlist[ind]
else:
raise ValueError("Invalid index provided")
if self.indices[0] == ind:
return self.x
if self.indices[1] == ind:
return self.y
if self.indices[2] == ind:
return self.z
else:
raise ValueError('Not a defined index')
def __iter__(self):
return iter([self.x, self.y, self.z])
def __str__(self):
"""Returns the name of the frame. """
return self.name
__repr__ = __str__
def _dict_list(self, other, num):
"""Returns an inclusive list of reference frames that connect this
reference frame to the provided reference frame.
Parameters
==========
other : ReferenceFrame
The other reference frame to look for a connecting relationship to.
num : integer
``0``, ``1``, and ``2`` will look for orientation, angular
velocity, and angular acceleration relationships between the two
frames, respectively.
Returns
=======
list
Inclusive list of reference frames that connect this reference
frame to the other reference frame.
Examples
========
>>> from sympy.physics.vector import ReferenceFrame
>>> A = ReferenceFrame('A')
>>> B = ReferenceFrame('B')
>>> C = ReferenceFrame('C')
>>> D = ReferenceFrame('D')
>>> B.orient_axis(A, A.x, 1.0)
>>> C.orient_axis(B, B.x, 1.0)
>>> D.orient_axis(C, C.x, 1.0)
>>> D._dict_list(A, 0)
[D, C, B, A]
Raises
======
ValueError
When no path is found between the two reference frames or ``num``
is an incorrect value.
"""
connect_type = {0: 'orientation',
1: 'angular velocity',
2: 'angular acceleration'}
if num not in connect_type.keys():
raise ValueError('Valid values for num are 0, 1, or 2.')
possible_connecting_paths = [[self]]
oldlist = [[]]
while possible_connecting_paths != oldlist:
oldlist = possible_connecting_paths[:] # make a copy
for frame_list in possible_connecting_paths:
frames_adjacent_to_last = frame_list[-1]._dlist[num].keys()
for adjacent_frame in frames_adjacent_to_last:
if adjacent_frame not in frame_list:
connecting_path = frame_list + [adjacent_frame]
if connecting_path not in possible_connecting_paths:
possible_connecting_paths.append(connecting_path)
for connecting_path in oldlist:
if connecting_path[-1] != other:
possible_connecting_paths.remove(connecting_path)
possible_connecting_paths.sort(key=len)
if len(possible_connecting_paths) != 0:
return possible_connecting_paths[0] # selects the shortest path
msg = 'No connecting {} path found between {} and {}.'
raise ValueError(msg.format(connect_type[num], self.name, other.name))
def _w_diff_dcm(self, otherframe):
"""Angular velocity from time differentiating the DCM. """
from sympy.physics.vector.functions import dynamicsymbols
dcm2diff = otherframe.dcm(self)
diffed = dcm2diff.diff(dynamicsymbols._t)
angvelmat = diffed * dcm2diff.T
w1 = trigsimp(expand(angvelmat[7]), recursive=True)
w2 = trigsimp(expand(angvelmat[2]), recursive=True)
w3 = trigsimp(expand(angvelmat[3]), recursive=True)
return Vector([(Matrix([w1, w2, w3]), otherframe)])
def variable_map(self, otherframe):
"""
Returns a dictionary which expresses the coordinate variables
of this frame in terms of the variables of otherframe.
If Vector.simp is True, returns a simplified version of the mapped
values. Else, returns them without simplification.
Simplification of the expressions may take time.
Parameters
==========
otherframe : ReferenceFrame
The other frame to map the variables to
Examples
========
>>> from sympy.physics.vector import ReferenceFrame, dynamicsymbols
>>> A = ReferenceFrame('A')
>>> q = dynamicsymbols('q')
>>> B = A.orientnew('B', 'Axis', [q, A.z])
>>> A.variable_map(B)
{A_x: B_x*cos(q(t)) - B_y*sin(q(t)), A_y: B_x*sin(q(t)) + B_y*cos(q(t)), A_z: B_z}
"""
_check_frame(otherframe)
if (otherframe, Vector.simp) in self._var_dict:
return self._var_dict[(otherframe, Vector.simp)]
else:
vars_matrix = self.dcm(otherframe) * Matrix(otherframe.varlist)
mapping = {}
for i, x in enumerate(self):
if Vector.simp:
mapping[self.varlist[i]] = trigsimp(vars_matrix[i],
method='fu')
else:
mapping[self.varlist[i]] = vars_matrix[i]
self._var_dict[(otherframe, Vector.simp)] = mapping
return mapping
def ang_acc_in(self, otherframe):
"""Returns the angular acceleration Vector of the ReferenceFrame.
Effectively returns the Vector:
``N_alpha_B``
which represent the angular acceleration of B in N, where B is self,
and N is otherframe.
Parameters
==========
otherframe : ReferenceFrame
The ReferenceFrame which the angular acceleration is returned in.
Examples
========
>>> from sympy.physics.vector import ReferenceFrame
>>> N = ReferenceFrame('N')
>>> A = ReferenceFrame('A')
>>> V = 10 * N.x
>>> A.set_ang_acc(N, V)
>>> A.ang_acc_in(N)
10*N.x
"""
_check_frame(otherframe)
if otherframe in self._ang_acc_dict:
return self._ang_acc_dict[otherframe]
else:
return self.ang_vel_in(otherframe).dt(otherframe)
def ang_vel_in(self, otherframe):
"""Returns the angular velocity Vector of the ReferenceFrame.
Effectively returns the Vector:
^N omega ^B
which represent the angular velocity of B in N, where B is self, and
N is otherframe.
Parameters
==========
otherframe : ReferenceFrame
The ReferenceFrame which the angular velocity is returned in.
Examples
========
>>> from sympy.physics.vector import ReferenceFrame
>>> N = ReferenceFrame('N')
>>> A = ReferenceFrame('A')
>>> V = 10 * N.x
>>> A.set_ang_vel(N, V)
>>> A.ang_vel_in(N)
10*N.x
"""
_check_frame(otherframe)
flist = self._dict_list(otherframe, 1)
outvec = Vector(0)
for i in range(len(flist) - 1):
outvec += flist[i]._ang_vel_dict[flist[i + 1]]
return outvec
def dcm(self, otherframe):
r"""Returns the direction cosine matrix of this reference frame
relative to the provided reference frame.
The returned matrix can be used to express the orthogonal unit vectors
of this frame in terms of the orthogonal unit vectors of
``otherframe``.
Parameters
==========
otherframe : ReferenceFrame
The reference frame which the direction cosine matrix of this frame
is formed relative to.
Examples
========
The following example rotates the reference frame A relative to N by a
simple rotation and then calculates the direction cosine matrix of N
relative to A.
>>> from sympy import symbols, sin, cos
>>> from sympy.physics.vector import ReferenceFrame
>>> q1 = symbols('q1')
>>> N = ReferenceFrame('N')
>>> A = ReferenceFrame('A')
>>> A.orient_axis(N, q1, N.x)
>>> N.dcm(A)
Matrix([
[1, 0, 0],
[0, cos(q1), -sin(q1)],
[0, sin(q1), cos(q1)]])
The second row of the above direction cosine matrix represents the
``N.y`` unit vector in N expressed in A. Like so:
>>> Ny = 0*A.x + cos(q1)*A.y - sin(q1)*A.z
Thus, expressing ``N.y`` in A should return the same result:
>>> N.y.express(A)
cos(q1)*A.y - sin(q1)*A.z
Notes
=====
It is important to know what form of the direction cosine matrix is
returned. If ``B.dcm(A)`` is called, it means the "direction cosine
matrix of B rotated relative to A". This is the matrix
:math:`{}^B\mathbf{C}^A` shown in the following relationship:
.. math::
\begin{bmatrix}
\hat{\mathbf{b}}_1 \\
\hat{\mathbf{b}}_2 \\
\hat{\mathbf{b}}_3
\end{bmatrix}
=
{}^B\mathbf{C}^A
\begin{bmatrix}
\hat{\mathbf{a}}_1 \\
\hat{\mathbf{a}}_2 \\
\hat{\mathbf{a}}_3
\end{bmatrix}.
:math:`{}^B\mathbf{C}^A` is the matrix that expresses the B unit
vectors in terms of the A unit vectors.
"""
_check_frame(otherframe)
# Check if the dcm wrt that frame has already been calculated
if otherframe in self._dcm_cache:
return self._dcm_cache[otherframe]
flist = self._dict_list(otherframe, 0)
outdcm = eye(3)
for i in range(len(flist) - 1):
outdcm = outdcm * flist[i]._dcm_dict[flist[i + 1]]
# After calculation, store the dcm in dcm cache for faster future
# retrieval
self._dcm_cache[otherframe] = outdcm
otherframe._dcm_cache[self] = outdcm.T
return outdcm
def _dcm(self, parent, parent_orient):
# If parent.oreint(self) is already defined,then
# update the _dcm_dict of parent while over write
# all content of self._dcm_dict and self._dcm_cache
# with new dcm relation.
# Else update _dcm_cache and _dcm_dict of both
# self and parent.
frames = self._dcm_cache.keys()
dcm_dict_del = []
dcm_cache_del = []
if parent in frames:
for frame in frames:
if frame in self._dcm_dict:
dcm_dict_del += [frame]
dcm_cache_del += [frame]
# Reset the _dcm_cache of this frame, and remove it from the
# _dcm_caches of the frames it is linked to. Also remove it from
# the _dcm_dict of its parent
for frame in dcm_dict_del:
del frame._dcm_dict[self]
for frame in dcm_cache_del:
del frame._dcm_cache[self]
# Reset the _dcm_dict
self._dcm_dict = self._dlist[0] = {}
# Reset the _dcm_cache
self._dcm_cache = {}
else:
# Check for loops and raise warning accordingly.
visited = []
queue = list(frames)
cont = True # Flag to control queue loop.
while queue and cont:
node = queue.pop(0)
if node not in visited:
visited.append(node)
neighbors = node._dcm_dict.keys()
for neighbor in neighbors:
if neighbor == parent:
warn('Loops are defined among the orientation of '
'frames. This is likely not desired and may '
'cause errors in your calculations.')
cont = False
break
queue.append(neighbor)
# Add the dcm relationship to _dcm_dict
self._dcm_dict.update({parent: parent_orient.T})
parent._dcm_dict.update({self: parent_orient})
# Update the dcm cache
self._dcm_cache.update({parent: parent_orient.T})
parent._dcm_cache.update({self: parent_orient})
def orient_axis(self, parent, axis, angle):
"""Sets the orientation of this reference frame with respect to a
parent reference frame by rotating through an angle about an axis fixed
in the parent reference frame.
Parameters
==========
parent : ReferenceFrame
Reference frame that this reference frame will be rotated relative
to.
axis : Vector
Vector fixed in the parent frame about about which this frame is
rotated. It need not be a unit vector and the rotation follows the
right hand rule.
angle : sympifiable
Angle in radians by which it the frame is to be rotated.
Warns
======
UserWarning
If the orientation creates a kinematic loop.
Examples
========
Setup variables for the examples:
>>> from sympy import symbols
>>> from sympy.physics.vector import ReferenceFrame
>>> q1 = symbols('q1')
>>> N = ReferenceFrame('N')
>>> B = ReferenceFrame('B')
>>> B.orient_axis(N, N.x, q1)
The ``orient_axis()`` method generates a direction cosine matrix and
its transpose which defines the orientation of B relative to N and vice
versa. Once orient is called, ``dcm()`` outputs the appropriate
direction cosine matrix:
>>> B.dcm(N)
Matrix([
[1, 0, 0],
[0, cos(q1), sin(q1)],
[0, -sin(q1), cos(q1)]])
>>> N.dcm(B)
Matrix([
[1, 0, 0],
[0, cos(q1), -sin(q1)],
[0, sin(q1), cos(q1)]])
The following two lines show that the sense of the rotation can be
defined by negating the vector direction or the angle. Both lines
produce the same result.
>>> B.orient_axis(N, -N.x, q1)
>>> B.orient_axis(N, N.x, -q1)
"""
from sympy.physics.vector.functions import dynamicsymbols
_check_frame(parent)
if not isinstance(axis, Vector) and isinstance(angle, Vector):
axis, angle = angle, axis
axis = _check_vector(axis)
theta = sympify(angle)
if not axis.dt(parent) == 0:
raise ValueError('Axis cannot be time-varying.')
unit_axis = axis.express(parent).normalize()
unit_col = unit_axis.args[0][0]
parent_orient_axis = (
(eye(3) - unit_col * unit_col.T) * cos(theta) +
Matrix([[0, -unit_col[2], unit_col[1]],
[unit_col[2], 0, -unit_col[0]],
[-unit_col[1], unit_col[0], 0]]) *
sin(theta) + unit_col * unit_col.T)
self._dcm(parent, parent_orient_axis)
thetad = (theta).diff(dynamicsymbols._t)
wvec = thetad*axis.express(parent).normalize()
self._ang_vel_dict.update({parent: wvec})
parent._ang_vel_dict.update({self: -wvec})
self._var_dict = {}
def orient_explicit(self, parent, dcm):
"""Sets the orientation of this reference frame relative to a parent
reference frame by explicitly setting the direction cosine matrix.
Parameters
==========
parent : ReferenceFrame
Reference frame that this reference frame will be rotated relative
to.
dcm : Matrix, shape(3, 3)
Direction cosine matrix that specifies the relative rotation
between the two reference frames.
Warns
======
UserWarning
If the orientation creates a kinematic loop.
Examples
========
Setup variables for the examples:
>>> from sympy import symbols, Matrix, sin, cos
>>> from sympy.physics.vector import ReferenceFrame
>>> q1 = symbols('q1')
>>> A = ReferenceFrame('A')
>>> B = ReferenceFrame('B')
>>> N = ReferenceFrame('N')
A simple rotation of ``A`` relative to ``N`` about ``N.x`` is defined
by the following direction cosine matrix:
>>> dcm = Matrix([[1, 0, 0],
... [0, cos(q1), -sin(q1)],
... [0, sin(q1), cos(q1)]])
>>> A.orient_explicit(N, dcm)
>>> A.dcm(N)
Matrix([
[1, 0, 0],
[0, cos(q1), sin(q1)],
[0, -sin(q1), cos(q1)]])
This is equivalent to using ``orient_axis()``:
>>> B.orient_axis(N, N.x, q1)
>>> B.dcm(N)
Matrix([
[1, 0, 0],
[0, cos(q1), sin(q1)],
[0, -sin(q1), cos(q1)]])
**Note carefully that** ``N.dcm(B)`` **(the transpose) would be passed
into** ``orient_explicit()`` **for** ``A.dcm(N)`` **to match**
``B.dcm(N)``:
>>> A.orient_explicit(N, N.dcm(B))
>>> A.dcm(N)
Matrix([
[1, 0, 0],
[0, cos(q1), sin(q1)],
[0, -sin(q1), cos(q1)]])
"""
_check_frame(parent)
# amounts must be a Matrix type object
# (e.g. sympy.matrices.dense.MutableDenseMatrix).
if not isinstance(dcm, MatrixBase):
raise TypeError("Amounts must be a SymPy Matrix type object.")
parent_orient_dcm = dcm
self._dcm(parent, parent_orient_dcm)
wvec = self._w_diff_dcm(parent)
self._ang_vel_dict.update({parent: wvec})
parent._ang_vel_dict.update({self: -wvec})
self._var_dict = {}
def _rot(self, axis, angle):
"""DCM for simple axis 1,2,or 3 rotations."""
if axis == 1:
return Matrix([[1, 0, 0],
[0, cos(angle), -sin(angle)],
[0, sin(angle), cos(angle)]])
elif axis == 2:
return Matrix([[cos(angle), 0, sin(angle)],
[0, 1, 0],
[-sin(angle), 0, cos(angle)]])
elif axis == 3:
return Matrix([[cos(angle), -sin(angle), 0],
[sin(angle), cos(angle), 0],
[0, 0, 1]])
def _parse_consecutive_rotations(self, angles, rotation_order):
"""Helper for orient_body_fixed and orient_space_fixed.
Parameters
==========
angles : 3-tuple of sympifiable
Three angles in radians used for the successive rotations.
rotation_order : 3 character string or 3 digit integer
Order of the rotations. The order can be specified by the strings
``'XZX'``, ``'131'``, or the integer ``131``. There are 12 unique
valid rotation orders.
Returns
=======
amounts : list
List of sympifiables corresponding to the rotation angles.
rot_order : list
List of integers corresponding to the axis of rotation.
rot_matrices : list
List of DCM around the given axis with corresponding magnitude.
"""
amounts = list(angles)
for i, v in enumerate(amounts):
if not isinstance(v, Vector):
amounts[i] = sympify(v)
approved_orders = ('123', '231', '312', '132', '213', '321', '121',
'131', '212', '232', '313', '323', '')
# make sure XYZ => 123
rot_order = translate(str(rotation_order), 'XYZxyz', '123123')
if rot_order not in approved_orders:
raise TypeError('The rotation order is not a valid order.')
rot_order = [int(r) for r in rot_order]
if not (len(amounts) == 3 & len(rot_order) == 3):
raise TypeError('Body orientation takes 3 values & 3 orders')
rot_matrices = [self._rot(order, amount)
for (order, amount) in zip(rot_order, amounts)]
return amounts, rot_order, rot_matrices
def orient_body_fixed(self, parent, angles, rotation_order):
"""Rotates this reference frame relative to the parent reference frame
by right hand rotating through three successive body fixed simple axis
rotations. Each subsequent axis of rotation is about the "body fixed"
unit vectors of a new intermediate reference frame. This type of
rotation is also referred to rotating through the `Euler and Tait-Bryan
Angles`_.
.. _Euler and Tait-Bryan Angles: https://en.wikipedia.org/wiki/Euler_angles
The computed angular velocity in this method is by default expressed in
the child's frame, so it is most preferable to use ``u1 * child.x + u2 *
child.y + u3 * child.z`` as generalized speeds.
Parameters
==========
parent : ReferenceFrame
Reference frame that this reference frame will be rotated relative
to.
angles : 3-tuple of sympifiable
Three angles in radians used for the successive rotations.
rotation_order : 3 character string or 3 digit integer
Order of the rotations about each intermediate reference frames'
unit vectors. The Euler rotation about the X, Z', X'' axes can be
specified by the strings ``'XZX'``, ``'131'``, or the integer
``131``. There are 12 unique valid rotation orders (6 Euler and 6
Tait-Bryan): zxz, xyx, yzy, zyz, xzx, yxy, xyz, yzx, zxy, xzy, zyx,
and yxz.
Warns
======
UserWarning
If the orientation creates a kinematic loop.
Examples
========
Setup variables for the examples:
>>> from sympy import symbols
>>> from sympy.physics.vector import ReferenceFrame
>>> q1, q2, q3 = symbols('q1, q2, q3')
>>> N = ReferenceFrame('N')
>>> B = ReferenceFrame('B')
>>> B1 = ReferenceFrame('B1')
>>> B2 = ReferenceFrame('B2')
>>> B3 = ReferenceFrame('B3')
For example, a classic Euler Angle rotation can be done by:
>>> B.orient_body_fixed(N, (q1, q2, q3), 'XYX')
>>> B.dcm(N)
Matrix([
[ cos(q2), sin(q1)*sin(q2), -sin(q2)*cos(q1)],
[sin(q2)*sin(q3), -sin(q1)*sin(q3)*cos(q2) + cos(q1)*cos(q3), sin(q1)*cos(q3) + sin(q3)*cos(q1)*cos(q2)],
[sin(q2)*cos(q3), -sin(q1)*cos(q2)*cos(q3) - sin(q3)*cos(q1), -sin(q1)*sin(q3) + cos(q1)*cos(q2)*cos(q3)]])
This rotates reference frame B relative to reference frame N through
``q1`` about ``N.x``, then rotates B again through ``q2`` about
``B.y``, and finally through ``q3`` about ``B.x``. It is equivalent to
three successive ``orient_axis()`` calls:
>>> B1.orient_axis(N, N.x, q1)
>>> B2.orient_axis(B1, B1.y, q2)
>>> B3.orient_axis(B2, B2.x, q3)
>>> B3.dcm(N)
Matrix([
[ cos(q2), sin(q1)*sin(q2), -sin(q2)*cos(q1)],
[sin(q2)*sin(q3), -sin(q1)*sin(q3)*cos(q2) + cos(q1)*cos(q3), sin(q1)*cos(q3) + sin(q3)*cos(q1)*cos(q2)],
[sin(q2)*cos(q3), -sin(q1)*cos(q2)*cos(q3) - sin(q3)*cos(q1), -sin(q1)*sin(q3) + cos(q1)*cos(q2)*cos(q3)]])
Acceptable rotation orders are of length 3, expressed in as a string
``'XYZ'`` or ``'123'`` or integer ``123``. Rotations about an axis
twice in a row are prohibited.
>>> B.orient_body_fixed(N, (q1, q2, 0), 'ZXZ')
>>> B.orient_body_fixed(N, (q1, q2, 0), '121')
>>> B.orient_body_fixed(N, (q1, q2, q3), 123)
"""
from sympy.physics.vector.functions import dynamicsymbols
_check_frame(parent)
amounts, rot_order, rot_matrices = self._parse_consecutive_rotations(
angles, rotation_order)
self._dcm(parent, rot_matrices[0] * rot_matrices[1] * rot_matrices[2])
rot_vecs = [zeros(3, 1) for _ in range(3)]
for i, order in enumerate(rot_order):
rot_vecs[i][order - 1] = amounts[i].diff(dynamicsymbols._t)
u1, u2, u3 = rot_vecs[2] + rot_matrices[2].T * (
rot_vecs[1] + rot_matrices[1].T * rot_vecs[0])
wvec = u1 * self.x + u2 * self.y + u3 * self.z # There is a double -
self._ang_vel_dict.update({parent: wvec})
parent._ang_vel_dict.update({self: -wvec})
self._var_dict = {}
def orient_space_fixed(self, parent, angles, rotation_order):
"""Rotates this reference frame relative to the parent reference frame
by right hand rotating through three successive space fixed simple axis
rotations. Each subsequent axis of rotation is about the "space fixed"
unit vectors of the parent reference frame.
The computed angular velocity in this method is by default expressed in
the child's frame, so it is most preferable to use ``u1 * child.x + u2 *
child.y + u3 * child.z`` as generalized speeds.
Parameters
==========
parent : ReferenceFrame
Reference frame that this reference frame will be rotated relative
to.
angles : 3-tuple of sympifiable
Three angles in radians used for the successive rotations.
rotation_order : 3 character string or 3 digit integer
Order of the rotations about the parent reference frame's unit
vectors. The order can be specified by the strings ``'XZX'``,
``'131'``, or the integer ``131``. There are 12 unique valid
rotation orders.
Warns
======
UserWarning
If the orientation creates a kinematic loop.
Examples
========
Setup variables for the examples:
>>> from sympy import symbols
>>> from sympy.physics.vector import ReferenceFrame
>>> q1, q2, q3 = symbols('q1, q2, q3')
>>> N = ReferenceFrame('N')
>>> B = ReferenceFrame('B')
>>> B1 = ReferenceFrame('B1')
>>> B2 = ReferenceFrame('B2')
>>> B3 = ReferenceFrame('B3')
>>> B.orient_space_fixed(N, (q1, q2, q3), '312')
>>> B.dcm(N)
Matrix([
[ sin(q1)*sin(q2)*sin(q3) + cos(q1)*cos(q3), sin(q1)*cos(q2), sin(q1)*sin(q2)*cos(q3) - sin(q3)*cos(q1)],
[-sin(q1)*cos(q3) + sin(q2)*sin(q3)*cos(q1), cos(q1)*cos(q2), sin(q1)*sin(q3) + sin(q2)*cos(q1)*cos(q3)],
[ sin(q3)*cos(q2), -sin(q2), cos(q2)*cos(q3)]])
is equivalent to:
>>> B1.orient_axis(N, N.z, q1)
>>> B2.orient_axis(B1, N.x, q2)
>>> B3.orient_axis(B2, N.y, q3)
>>> B3.dcm(N).simplify()
Matrix([
[ sin(q1)*sin(q2)*sin(q3) + cos(q1)*cos(q3), sin(q1)*cos(q2), sin(q1)*sin(q2)*cos(q3) - sin(q3)*cos(q1)],
[-sin(q1)*cos(q3) + sin(q2)*sin(q3)*cos(q1), cos(q1)*cos(q2), sin(q1)*sin(q3) + sin(q2)*cos(q1)*cos(q3)],
[ sin(q3)*cos(q2), -sin(q2), cos(q2)*cos(q3)]])
It is worth noting that space-fixed and body-fixed rotations are
related by the order of the rotations, i.e. the reverse order of body
fixed will give space fixed and vice versa.
>>> B.orient_space_fixed(N, (q1, q2, q3), '231')
>>> B.dcm(N)
Matrix([
[cos(q1)*cos(q2), sin(q1)*sin(q3) + sin(q2)*cos(q1)*cos(q3), -sin(q1)*cos(q3) + sin(q2)*sin(q3)*cos(q1)],
[ -sin(q2), cos(q2)*cos(q3), sin(q3)*cos(q2)],
[sin(q1)*cos(q2), sin(q1)*sin(q2)*cos(q3) - sin(q3)*cos(q1), sin(q1)*sin(q2)*sin(q3) + cos(q1)*cos(q3)]])
>>> B.orient_body_fixed(N, (q3, q2, q1), '132')
>>> B.dcm(N)
Matrix([
[cos(q1)*cos(q2), sin(q1)*sin(q3) + sin(q2)*cos(q1)*cos(q3), -sin(q1)*cos(q3) + sin(q2)*sin(q3)*cos(q1)],
[ -sin(q2), cos(q2)*cos(q3), sin(q3)*cos(q2)],
[sin(q1)*cos(q2), sin(q1)*sin(q2)*cos(q3) - sin(q3)*cos(q1), sin(q1)*sin(q2)*sin(q3) + cos(q1)*cos(q3)]])
"""
from sympy.physics.vector.functions import dynamicsymbols
_check_frame(parent)
amounts, rot_order, rot_matrices = self._parse_consecutive_rotations(
angles, rotation_order)
self._dcm(parent, rot_matrices[2] * rot_matrices[1] * rot_matrices[0])
rot_vecs = [zeros(3, 1) for _ in range(3)]
for i, order in enumerate(rot_order):
rot_vecs[i][order - 1] = amounts[i].diff(dynamicsymbols._t)
u1, u2, u3 = rot_vecs[0] + rot_matrices[0].T * (
rot_vecs[1] + rot_matrices[1].T * rot_vecs[2])
wvec = u1 * self.x + u2 * self.y + u3 * self.z # There is a double -
self._ang_vel_dict.update({parent: wvec})
parent._ang_vel_dict.update({self: -wvec})
self._var_dict = {}
def orient_quaternion(self, parent, numbers):
"""Sets the orientation of this reference frame relative to a parent
reference frame via an orientation quaternion. An orientation
quaternion is defined as a finite rotation a unit vector, ``(lambda_x,
lambda_y, lambda_z)``, by an angle ``theta``. The orientation
quaternion is described by four parameters:
- ``q0 = cos(theta/2)``
- ``q1 = lambda_x*sin(theta/2)``
- ``q2 = lambda_y*sin(theta/2)``
- ``q3 = lambda_z*sin(theta/2)``
See `Quaternions and Spatial Rotation
<https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation>`_ on
Wikipedia for more information.
Parameters
==========
parent : ReferenceFrame
Reference frame that this reference frame will be rotated relative
to.
numbers : 4-tuple of sympifiable
The four quaternion scalar numbers as defined above: ``q0``,
``q1``, ``q2``, ``q3``.
Warns
======
UserWarning
If the orientation creates a kinematic loop.
Examples
========
Setup variables for the examples:
>>> from sympy import symbols
>>> from sympy.physics.vector import ReferenceFrame
>>> q0, q1, q2, q3 = symbols('q0 q1 q2 q3')
>>> N = ReferenceFrame('N')
>>> B = ReferenceFrame('B')
Set the orientation:
>>> B.orient_quaternion(N, (q0, q1, q2, q3))
>>> B.dcm(N)
Matrix([
[q0**2 + q1**2 - q2**2 - q3**2, 2*q0*q3 + 2*q1*q2, -2*q0*q2 + 2*q1*q3],
[ -2*q0*q3 + 2*q1*q2, q0**2 - q1**2 + q2**2 - q3**2, 2*q0*q1 + 2*q2*q3],
[ 2*q0*q2 + 2*q1*q3, -2*q0*q1 + 2*q2*q3, q0**2 - q1**2 - q2**2 + q3**2]])
"""
from sympy.physics.vector.functions import dynamicsymbols
_check_frame(parent)
numbers = list(numbers)
for i, v in enumerate(numbers):
if not isinstance(v, Vector):
numbers[i] = sympify(v)
if not (isinstance(numbers, (list, tuple)) & (len(numbers) == 4)):
raise TypeError('Amounts are a list or tuple of length 4')
q0, q1, q2, q3 = numbers
parent_orient_quaternion = (
Matrix([[q0**2 + q1**2 - q2**2 - q3**2,
2 * (q1 * q2 - q0 * q3),
2 * (q0 * q2 + q1 * q3)],
[2 * (q1 * q2 + q0 * q3),
q0**2 - q1**2 + q2**2 - q3**2,
2 * (q2 * q3 - q0 * q1)],
[2 * (q1 * q3 - q0 * q2),
2 * (q0 * q1 + q2 * q3),
q0**2 - q1**2 - q2**2 + q3**2]]))
self._dcm(parent, parent_orient_quaternion)
t = dynamicsymbols._t
q0, q1, q2, q3 = numbers
q0d = diff(q0, t)
q1d = diff(q1, t)
q2d = diff(q2, t)
q3d = diff(q3, t)
w1 = 2 * (q1d * q0 + q2d * q3 - q3d * q2 - q0d * q1)
w2 = 2 * (q2d * q0 + q3d * q1 - q1d * q3 - q0d * q2)
w3 = 2 * (q3d * q0 + q1d * q2 - q2d * q1 - q0d * q3)
wvec = Vector([(Matrix([w1, w2, w3]), self)])
self._ang_vel_dict.update({parent: wvec})
parent._ang_vel_dict.update({self: -wvec})
self._var_dict = {}
def orient(self, parent, rot_type, amounts, rot_order=''):
"""Sets the orientation of this reference frame relative to another
(parent) reference frame.
.. note:: It is now recommended to use the ``.orient_axis,
.orient_body_fixed, .orient_space_fixed, .orient_quaternion``
methods for the different rotation types.
Parameters
==========
parent : ReferenceFrame
Reference frame that this reference frame will be rotated relative
to.
rot_type : str
The method used to generate the direction cosine matrix. Supported
methods are:
- ``'Axis'``: simple rotations about a single common axis
- ``'DCM'``: for setting the direction cosine matrix directly
- ``'Body'``: three successive rotations about new intermediate
axes, also called "Euler and Tait-Bryan angles"
- ``'Space'``: three successive rotations about the parent
frames' unit vectors
- ``'Quaternion'``: rotations defined by four parameters which
result in a singularity free direction cosine matrix
amounts :
Expressions defining the rotation angles or direction cosine
matrix. These must match the ``rot_type``. See examples below for
details. The input types are:
- ``'Axis'``: 2-tuple (expr/sym/func, Vector)
- ``'DCM'``: Matrix, shape(3,3)
- ``'Body'``: 3-tuple of expressions, symbols, or functions
- ``'Space'``: 3-tuple of expressions, symbols, or functions
- ``'Quaternion'``: 4-tuple of expressions, symbols, or
functions
rot_order : str or int, optional
If applicable, the order of the successive of rotations. The string
``'123'`` and integer ``123`` are equivalent, for example. Required
for ``'Body'`` and ``'Space'``.
Warns
======
UserWarning
If the orientation creates a kinematic loop.
"""
_check_frame(parent)
approved_orders = ('123', '231', '312', '132', '213', '321', '121',
'131', '212', '232', '313', '323', '')
rot_order = translate(str(rot_order), 'XYZxyz', '123123')
rot_type = rot_type.upper()
if rot_order not in approved_orders:
raise TypeError('The supplied order is not an approved type')
if rot_type == 'AXIS':
self.orient_axis(parent, amounts[1], amounts[0])
elif rot_type == 'DCM':
self.orient_explicit(parent, amounts)
elif rot_type == 'BODY':
self.orient_body_fixed(parent, amounts, rot_order)
elif rot_type == 'SPACE':
self.orient_space_fixed(parent, amounts, rot_order)
elif rot_type == 'QUATERNION':
self.orient_quaternion(parent, amounts)
else:
raise NotImplementedError('That is not an implemented rotation')
def orientnew(self, newname, rot_type, amounts, rot_order='',
variables=None, indices=None, latexs=None):
r"""Returns a new reference frame oriented with respect to this
reference frame.
See ``ReferenceFrame.orient()`` for detailed examples of how to orient
reference frames.
Parameters
==========
newname : str
Name for the new reference frame.
rot_type : str
The method used to generate the direction cosine matrix. Supported
methods are:
- ``'Axis'``: simple rotations about a single common axis
- ``'DCM'``: for setting the direction cosine matrix directly
- ``'Body'``: three successive rotations about new intermediate
axes, also called "Euler and Tait-Bryan angles"
- ``'Space'``: three successive rotations about the parent
frames' unit vectors
- ``'Quaternion'``: rotations defined by four parameters which
result in a singularity free direction cosine matrix
amounts :
Expressions defining the rotation angles or direction cosine
matrix. These must match the ``rot_type``. See examples below for
details. The input types are:
- ``'Axis'``: 2-tuple (expr/sym/func, Vector)
- ``'DCM'``: Matrix, shape(3,3)
- ``'Body'``: 3-tuple of expressions, symbols, or functions
- ``'Space'``: 3-tuple of expressions, symbols, or functions
- ``'Quaternion'``: 4-tuple of expressions, symbols, or
functions
rot_order : str or int, optional
If applicable, the order of the successive of rotations. The string
``'123'`` and integer ``123`` are equivalent, for example. Required
for ``'Body'`` and ``'Space'``.
indices : tuple of str
Enables the reference frame's basis unit vectors to be accessed by
Python's square bracket indexing notation using the provided three
indice strings and alters the printing of the unit vectors to
reflect this choice.
latexs : tuple of str
Alters the LaTeX printing of the reference frame's basis unit
vectors to the provided three valid LaTeX strings.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.vector import ReferenceFrame, vlatex
>>> q0, q1, q2, q3 = symbols('q0 q1 q2 q3')
>>> N = ReferenceFrame('N')
Create a new reference frame A rotated relative to N through a simple
rotation.
>>> A = N.orientnew('A', 'Axis', (q0, N.x))
Create a new reference frame B rotated relative to N through body-fixed
rotations.
>>> B = N.orientnew('B', 'Body', (q1, q2, q3), '123')
Create a new reference frame C rotated relative to N through a simple
rotation with unique indices and LaTeX printing.
>>> C = N.orientnew('C', 'Axis', (q0, N.x), indices=('1', '2', '3'),
... latexs=(r'\hat{\mathbf{c}}_1',r'\hat{\mathbf{c}}_2',
... r'\hat{\mathbf{c}}_3'))
>>> C['1']
C['1']
>>> print(vlatex(C['1']))
\hat{\mathbf{c}}_1
"""
newframe = self.__class__(newname, variables=variables,
indices=indices, latexs=latexs)
approved_orders = ('123', '231', '312', '132', '213', '321', '121',
'131', '212', '232', '313', '323', '')
rot_order = translate(str(rot_order), 'XYZxyz', '123123')
rot_type = rot_type.upper()
if rot_order not in approved_orders:
raise TypeError('The supplied order is not an approved type')
if rot_type == 'AXIS':
newframe.orient_axis(self, amounts[1], amounts[0])
elif rot_type == 'DCM':
newframe.orient_explicit(self, amounts)
elif rot_type == 'BODY':
newframe.orient_body_fixed(self, amounts, rot_order)
elif rot_type == 'SPACE':
newframe.orient_space_fixed(self, amounts, rot_order)
elif rot_type == 'QUATERNION':
newframe.orient_quaternion(self, amounts)
else:
raise NotImplementedError('That is not an implemented rotation')
return newframe
def set_ang_acc(self, otherframe, value):
"""Define the angular acceleration Vector in a ReferenceFrame.
Defines the angular acceleration of this ReferenceFrame, in another.
Angular acceleration can be defined with respect to multiple different
ReferenceFrames. Care must be taken to not create loops which are
inconsistent.
Parameters
==========
otherframe : ReferenceFrame
A ReferenceFrame to define the angular acceleration in
value : Vector
The Vector representing angular acceleration
Examples
========
>>> from sympy.physics.vector import ReferenceFrame
>>> N = ReferenceFrame('N')
>>> A = ReferenceFrame('A')
>>> V = 10 * N.x
>>> A.set_ang_acc(N, V)
>>> A.ang_acc_in(N)
10*N.x
"""
if value == 0:
value = Vector(0)
value = _check_vector(value)
_check_frame(otherframe)
self._ang_acc_dict.update({otherframe: value})
otherframe._ang_acc_dict.update({self: -value})
def set_ang_vel(self, otherframe, value):
"""Define the angular velocity vector in a ReferenceFrame.
Defines the angular velocity of this ReferenceFrame, in another.
Angular velocity can be defined with respect to multiple different
ReferenceFrames. Care must be taken to not create loops which are
inconsistent.
Parameters
==========
otherframe : ReferenceFrame
A ReferenceFrame to define the angular velocity in
value : Vector
The Vector representing angular velocity
Examples
========
>>> from sympy.physics.vector import ReferenceFrame
>>> N = ReferenceFrame('N')
>>> A = ReferenceFrame('A')
>>> V = 10 * N.x
>>> A.set_ang_vel(N, V)
>>> A.ang_vel_in(N)
10*N.x
"""
if value == 0:
value = Vector(0)
value = _check_vector(value)
_check_frame(otherframe)
self._ang_vel_dict.update({otherframe: value})
otherframe._ang_vel_dict.update({self: -value})
@property
def x(self):
"""The basis Vector for the ReferenceFrame, in the x direction. """
return self._x
@property
def y(self):
"""The basis Vector for the ReferenceFrame, in the y direction. """
return self._y
@property
def z(self):
"""The basis Vector for the ReferenceFrame, in the z direction. """
return self._z
def partial_velocity(self, frame, *gen_speeds):
"""Returns the partial angular velocities of this frame in the given
frame with respect to one or more provided generalized speeds.
Parameters
==========
frame : ReferenceFrame
The frame with which the angular velocity is defined in.
gen_speeds : functions of time
The generalized speeds.
Returns
=======
partial_velocities : tuple of Vector
The partial angular velocity vectors corresponding to the provided
generalized speeds.
Examples
========
>>> from sympy.physics.vector import ReferenceFrame, dynamicsymbols
>>> N = ReferenceFrame('N')
>>> A = ReferenceFrame('A')
>>> u1, u2 = dynamicsymbols('u1, u2')
>>> A.set_ang_vel(N, u1 * A.x + u2 * N.y)
>>> A.partial_velocity(N, u1)
A.x
>>> A.partial_velocity(N, u1, u2)
(A.x, N.y)
"""
partials = [self.ang_vel_in(frame).diff(speed, frame, var_in_dcm=False)
for speed in gen_speeds]
if len(partials) == 1:
return partials[0]
else:
return tuple(partials)
def _check_frame(other):
from .vector import VectorTypeError
if not isinstance(other, ReferenceFrame):
raise VectorTypeError(other, ReferenceFrame('A'))
|
988ad988e5577ad1ad2a42f197c2e569fd99f5ca167a77fa24aac2961e16f325 | #!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
The module implements routines to model the polarization of optical fields
and can be used to calculate the effects of polarization optical elements on
the fields.
- Jones vectors.
- Stokes vectors.
- Jones matrices.
- Mueller matrices.
Examples
========
We calculate a generic Jones vector:
>>> from sympy import symbols, pprint, zeros, simplify
>>> from sympy.physics.optics.polarization import (jones_vector, stokes_vector,
... half_wave_retarder, polarizing_beam_splitter, jones_2_stokes)
>>> psi, chi, p, I0 = symbols("psi, chi, p, I0", real=True)
>>> x0 = jones_vector(psi, chi)
>>> pprint(x0, use_unicode=True)
β‘-β
β
sin(Ο)β
sin(Ο) + cos(Ο)β
cos(Ο)β€
β’ β₯
β£β
β
sin(Ο)β
cos(Ο) + sin(Ο)β
cos(Ο) β¦
And the more general Stokes vector:
>>> s0 = stokes_vector(psi, chi, p, I0)
>>> pprint(s0, use_unicode=True)
β‘ Iβ β€
β’ β₯
β’Iββ
pβ
cos(2β
Ο)β
cos(2β
Ο)β₯
β’ β₯
β’Iββ
pβ
sin(2β
Ο)β
cos(2β
Ο)β₯
β’ β₯
β£ Iββ
pβ
sin(2β
Ο) β¦
We calculate how the Jones vector is modified by a half-wave plate:
>>> alpha = symbols("alpha", real=True)
>>> HWP = half_wave_retarder(alpha)
>>> x1 = simplify(HWP*x0)
We calculate the very common operation of passing a beam through a half-wave
plate and then through a polarizing beam-splitter. We do this by putting this
Jones vector as the first entry of a two-Jones-vector state that is transformed
by a 4x4 Jones matrix modelling the polarizing beam-splitter to get the
transmitted and reflected Jones vectors:
>>> PBS = polarizing_beam_splitter()
>>> X1 = zeros(4, 1)
>>> X1[:2, :] = x1
>>> X2 = PBS*X1
>>> transmitted_port = X2[:2, :]
>>> reflected_port = X2[2:, :]
This allows us to calculate how the power in both ports depends on the initial
polarization:
>>> transmitted_power = jones_2_stokes(transmitted_port)[0]
>>> reflected_power = jones_2_stokes(reflected_port)[0]
>>> print(transmitted_power)
cos(-2*alpha + chi + psi)**2/2 + cos(2*alpha + chi - psi)**2/2
>>> print(reflected_power)
sin(-2*alpha + chi + psi)**2/2 + sin(2*alpha + chi - psi)**2/2
Please see the description of the individual functions for further
details and examples.
References
==========
.. [1] https://en.wikipedia.org/wiki/Jones_calculus
.. [2] https://en.wikipedia.org/wiki/Mueller_calculus
.. [3] https://en.wikipedia.org/wiki/Stokes_parameters
"""
from sympy.core.numbers import (I, pi)
from sympy.functions.elementary.complexes import (Abs, im, re)
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (cos, sin)
from sympy.matrices.dense import Matrix
from sympy.simplify.simplify import simplify
from sympy.physics.quantum import TensorProduct
def jones_vector(psi, chi):
"""A Jones vector corresponding to a polarization ellipse with `psi` tilt,
and `chi` circularity.
Parameters
==========
psi : numeric type or SymPy Symbol
The tilt of the polarization relative to the `x` axis.
chi : numeric type or SymPy Symbol
The angle adjacent to the mayor axis of the polarization ellipse.
Returns
=======
Matrix :
A Jones vector.
Examples
========
The axes on the PoincarΓ© sphere.
>>> from sympy import pprint, symbols, pi
>>> from sympy.physics.optics.polarization import jones_vector
>>> psi, chi = symbols("psi, chi", real=True)
A general Jones vector.
>>> pprint(jones_vector(psi, chi), use_unicode=True)
β‘-β
β
sin(Ο)β
sin(Ο) + cos(Ο)β
cos(Ο)β€
β’ β₯
β£β
β
sin(Ο)β
cos(Ο) + sin(Ο)β
cos(Ο) β¦
Horizontal polarization.
>>> pprint(jones_vector(0, 0), use_unicode=True)
β‘1β€
β’ β₯
β£0β¦
Vertical polarization.
>>> pprint(jones_vector(pi/2, 0), use_unicode=True)
β‘0β€
β’ β₯
β£1β¦
Diagonal polarization.
>>> pprint(jones_vector(pi/4, 0), use_unicode=True)
β‘β2β€
β’βββ₯
β’2 β₯
β’ β₯
β’β2β₯
β’βββ₯
β£2 β¦
Anti-diagonal polarization.
>>> pprint(jones_vector(-pi/4, 0), use_unicode=True)
β‘ β2 β€
β’ ββ β₯
β’ 2 β₯
β’ β₯
β’-β2 β₯
β’βββββ₯
β£ 2 β¦
Right-hand circular polarization.
>>> pprint(jones_vector(0, pi/4), use_unicode=True)
β‘ β2 β€
β’ ββ β₯
β’ 2 β₯
β’ β₯
β’β2β
β
β₯
β’βββββ₯
β£ 2 β¦
Left-hand circular polarization.
>>> pprint(jones_vector(0, -pi/4), use_unicode=True)
β‘ β2 β€
β’ ββ β₯
β’ 2 β₯
β’ β₯
β’-β2β
β
β₯
β’βββββββ₯
β£ 2 β¦
"""
return Matrix([-I*sin(chi)*sin(psi) + cos(chi)*cos(psi),
I*sin(chi)*cos(psi) + sin(psi)*cos(chi)])
def stokes_vector(psi, chi, p=1, I=1):
"""A Stokes vector corresponding to a polarization ellipse with ``psi``
tilt, and ``chi`` circularity.
Parameters
==========
psi : numeric type or SymPy Symbol
The tilt of the polarization relative to the ``x`` axis.
chi : numeric type or SymPy Symbol
The angle adjacent to the mayor axis of the polarization ellipse.
p : numeric type or SymPy Symbol
The degree of polarization.
I : numeric type or SymPy Symbol
The intensity of the field.
Returns
=======
Matrix :
A Stokes vector.
Examples
========
The axes on the PoincarΓ© sphere.
>>> from sympy import pprint, symbols, pi
>>> from sympy.physics.optics.polarization import stokes_vector
>>> psi, chi, p, I = symbols("psi, chi, p, I", real=True)
>>> pprint(stokes_vector(psi, chi, p, I), use_unicode=True)
β‘ I β€
β’ β₯
β’Iβ
pβ
cos(2β
Ο)β
cos(2β
Ο)β₯
β’ β₯
β’Iβ
pβ
sin(2β
Ο)β
cos(2β
Ο)β₯
β’ β₯
β£ Iβ
pβ
sin(2β
Ο) β¦
Horizontal polarization
>>> pprint(stokes_vector(0, 0), use_unicode=True)
β‘1β€
β’ β₯
β’1β₯
β’ β₯
β’0β₯
β’ β₯
β£0β¦
Vertical polarization
>>> pprint(stokes_vector(pi/2, 0), use_unicode=True)
β‘1 β€
β’ β₯
β’-1β₯
β’ β₯
β’0 β₯
β’ β₯
β£0 β¦
Diagonal polarization
>>> pprint(stokes_vector(pi/4, 0), use_unicode=True)
β‘1β€
β’ β₯
β’0β₯
β’ β₯
β’1β₯
β’ β₯
β£0β¦
Anti-diagonal polarization
>>> pprint(stokes_vector(-pi/4, 0), use_unicode=True)
β‘1 β€
β’ β₯
β’0 β₯
β’ β₯
β’-1β₯
β’ β₯
β£0 β¦
Right-hand circular polarization
>>> pprint(stokes_vector(0, pi/4), use_unicode=True)
β‘1β€
β’ β₯
β’0β₯
β’ β₯
β’0β₯
β’ β₯
β£1β¦
Left-hand circular polarization
>>> pprint(stokes_vector(0, -pi/4), use_unicode=True)
β‘1 β€
β’ β₯
β’0 β₯
β’ β₯
β’0 β₯
β’ β₯
β£-1β¦
Unpolarized light
>>> pprint(stokes_vector(0, 0, 0), use_unicode=True)
β‘1β€
β’ β₯
β’0β₯
β’ β₯
β’0β₯
β’ β₯
β£0β¦
"""
S0 = I
S1 = I*p*cos(2*psi)*cos(2*chi)
S2 = I*p*sin(2*psi)*cos(2*chi)
S3 = I*p*sin(2*chi)
return Matrix([S0, S1, S2, S3])
def jones_2_stokes(e):
"""Return the Stokes vector for a Jones vector ``e``.
Parameters
==========
e : SymPy Matrix
A Jones vector.
Returns
=======
SymPy Matrix
A Jones vector.
Examples
========
The axes on the PoincarΓ© sphere.
>>> from sympy import pprint, pi
>>> from sympy.physics.optics.polarization import jones_vector
>>> from sympy.physics.optics.polarization import jones_2_stokes
>>> H = jones_vector(0, 0)
>>> V = jones_vector(pi/2, 0)
>>> D = jones_vector(pi/4, 0)
>>> A = jones_vector(-pi/4, 0)
>>> R = jones_vector(0, pi/4)
>>> L = jones_vector(0, -pi/4)
>>> pprint([jones_2_stokes(e) for e in [H, V, D, A, R, L]],
... use_unicode=True)
β‘β‘1β€ β‘1 β€ β‘1β€ β‘1 β€ β‘1β€ β‘1 β€β€
β’β’ β₯ β’ β₯ β’ β₯ β’ β₯ β’ β₯ β’ β₯β₯
β’β’1β₯ β’-1β₯ β’0β₯ β’0 β₯ β’0β₯ β’0 β₯β₯
β’β’ β₯, β’ β₯, β’ β₯, β’ β₯, β’ β₯, β’ β₯β₯
β’β’0β₯ β’0 β₯ β’1β₯ β’-1β₯ β’0β₯ β’0 β₯β₯
β’β’ β₯ β’ β₯ β’ β₯ β’ β₯ β’ β₯ β’ β₯β₯
β£β£0β¦ β£0 β¦ β£0β¦ β£0 β¦ β£1β¦ β£-1β¦β¦
"""
ex, ey = e
return Matrix([Abs(ex)**2 + Abs(ey)**2,
Abs(ex)**2 - Abs(ey)**2,
2*re(ex*ey.conjugate()),
-2*im(ex*ey.conjugate())])
def linear_polarizer(theta=0):
"""A linear polarizer Jones matrix with transmission axis at
an angle ``theta``.
Parameters
==========
theta : numeric type or SymPy Symbol
The angle of the transmission axis relative to the horizontal plane.
Returns
=======
SymPy Matrix
A Jones matrix representing the polarizer.
Examples
========
A generic polarizer.
>>> from sympy import pprint, symbols
>>> from sympy.physics.optics.polarization import linear_polarizer
>>> theta = symbols("theta", real=True)
>>> J = linear_polarizer(theta)
>>> pprint(J, use_unicode=True)
β‘ 2 β€
β’ cos (ΞΈ) sin(ΞΈ)β
cos(ΞΈ)β₯
β’ β₯
β’ 2 β₯
β£sin(ΞΈ)β
cos(ΞΈ) sin (ΞΈ) β¦
"""
M = Matrix([[cos(theta)**2, sin(theta)*cos(theta)],
[sin(theta)*cos(theta), sin(theta)**2]])
return M
def phase_retarder(theta=0, delta=0):
"""A phase retarder Jones matrix with retardance ``delta`` at angle ``theta``.
Parameters
==========
theta : numeric type or SymPy Symbol
The angle of the fast axis relative to the horizontal plane.
delta : numeric type or SymPy Symbol
The phase difference between the fast and slow axes of the
transmitted light.
Returns
=======
SymPy Matrix :
A Jones matrix representing the retarder.
Examples
========
A generic retarder.
>>> from sympy import pprint, symbols
>>> from sympy.physics.optics.polarization import phase_retarder
>>> theta, delta = symbols("theta, delta", real=True)
>>> R = phase_retarder(theta, delta)
>>> pprint(R, use_unicode=True)
β‘ -β
β
Ξ΄ -β
β
Ξ΄ β€
β’ βββββ βββββ β₯
β’β β
β
Ξ΄ 2 2 β 2 β β
β
Ξ΄β 2 β₯
β’ββ― β
sin (ΞΈ) + cos (ΞΈ)β β
β― β1 - β― β β
β― β
sin(ΞΈ)β
cos(ΞΈ)β₯
β’ β₯
β’ -β
β
Ξ΄ -β
β
Ξ΄ β₯
β’ βββββ ββββββ₯
β’β β
β
Ξ΄β 2 β β
β
Ξ΄ 2 2 β 2 β₯
β£β1 - β― β β
β― β
sin(ΞΈ)β
cos(ΞΈ) ββ― β
cos (ΞΈ) + sin (ΞΈ)β β
β― β¦
"""
R = Matrix([[cos(theta)**2 + exp(I*delta)*sin(theta)**2,
(1-exp(I*delta))*cos(theta)*sin(theta)],
[(1-exp(I*delta))*cos(theta)*sin(theta),
sin(theta)**2 + exp(I*delta)*cos(theta)**2]])
return R*exp(-I*delta/2)
def half_wave_retarder(theta):
"""A half-wave retarder Jones matrix at angle ``theta``.
Parameters
==========
theta : numeric type or SymPy Symbol
The angle of the fast axis relative to the horizontal plane.
Returns
=======
SymPy Matrix
A Jones matrix representing the retarder.
Examples
========
A generic half-wave plate.
>>> from sympy import pprint, symbols
>>> from sympy.physics.optics.polarization import half_wave_retarder
>>> theta= symbols("theta", real=True)
>>> HWP = half_wave_retarder(theta)
>>> pprint(HWP, use_unicode=True)
β‘ β 2 2 β β€
β’-β
β
β- sin (ΞΈ) + cos (ΞΈ)β -2β
β
β
sin(ΞΈ)β
cos(ΞΈ) β₯
β’ β₯
β’ β 2 2 ββ₯
β£ -2β
β
β
sin(ΞΈ)β
cos(ΞΈ) -β
β
βsin (ΞΈ) - cos (ΞΈ)β β¦
"""
return phase_retarder(theta, pi)
def quarter_wave_retarder(theta):
"""A quarter-wave retarder Jones matrix at angle ``theta``.
Parameters
==========
theta : numeric type or SymPy Symbol
The angle of the fast axis relative to the horizontal plane.
Returns
=======
SymPy Matrix
A Jones matrix representing the retarder.
Examples
========
A generic quarter-wave plate.
>>> from sympy import pprint, symbols
>>> from sympy.physics.optics.polarization import quarter_wave_retarder
>>> theta= symbols("theta", real=True)
>>> QWP = quarter_wave_retarder(theta)
>>> pprint(QWP, use_unicode=True)
β‘ -β
β
Ο -β
β
Ο β€
β’ βββββ βββββ β₯
β’β 2 2 β 4 4 β₯
β’ββ
β
sin (ΞΈ) + cos (ΞΈ)β β
β― (1 - β
)β
β― β
sin(ΞΈ)β
cos(ΞΈ)β₯
β’ β₯
β’ -β
β
Ο -β
β
Ο β₯
β’ βββββ ββββββ₯
β’ 4 β 2 2 β 4 β₯
β£(1 - β
)β
β― β
sin(ΞΈ)β
cos(ΞΈ) βsin (ΞΈ) + β
β
cos (ΞΈ)β β
β― β¦
"""
return phase_retarder(theta, pi/2)
def transmissive_filter(T):
"""An attenuator Jones matrix with transmittance ``T``.
Parameters
==========
T : numeric type or SymPy Symbol
The transmittance of the attenuator.
Returns
=======
SymPy Matrix
A Jones matrix representing the filter.
Examples
========
A generic filter.
>>> from sympy import pprint, symbols
>>> from sympy.physics.optics.polarization import transmissive_filter
>>> T = symbols("T", real=True)
>>> NDF = transmissive_filter(T)
>>> pprint(NDF, use_unicode=True)
β‘βT 0 β€
β’ β₯
β£0 βTβ¦
"""
return Matrix([[sqrt(T), 0], [0, sqrt(T)]])
def reflective_filter(R):
"""A reflective filter Jones matrix with reflectance ``R``.
Parameters
==========
R : numeric type or SymPy Symbol
The reflectance of the filter.
Returns
=======
SymPy Matrix
A Jones matrix representing the filter.
Examples
========
A generic filter.
>>> from sympy import pprint, symbols
>>> from sympy.physics.optics.polarization import reflective_filter
>>> R = symbols("R", real=True)
>>> pprint(reflective_filter(R), use_unicode=True)
β‘βR 0 β€
β’ β₯
β£0 -βRβ¦
"""
return Matrix([[sqrt(R), 0], [0, -sqrt(R)]])
def mueller_matrix(J):
"""The Mueller matrix corresponding to Jones matrix `J`.
Parameters
==========
J : SymPy Matrix
A Jones matrix.
Returns
=======
SymPy Matrix
The corresponding Mueller matrix.
Examples
========
Generic optical components.
>>> from sympy import pprint, symbols
>>> from sympy.physics.optics.polarization import (mueller_matrix,
... linear_polarizer, half_wave_retarder, quarter_wave_retarder)
>>> theta = symbols("theta", real=True)
A linear_polarizer
>>> pprint(mueller_matrix(linear_polarizer(theta)), use_unicode=True)
β‘ cos(2β
ΞΈ) sin(2β
ΞΈ) β€
β’ 1/2 ββββββββ ββββββββ 0β₯
β’ 2 2 β₯
β’ β₯
β’cos(2β
ΞΈ) cos(4β
ΞΈ) 1 sin(4β
ΞΈ) β₯
β’ββββββββ ββββββββ + β ββββββββ 0β₯
β’ 2 4 4 4 β₯
β’ β₯
β’sin(2β
ΞΈ) sin(4β
ΞΈ) 1 cos(4β
ΞΈ) β₯
β’ββββββββ ββββββββ β - ββββββββ 0β₯
β’ 2 4 4 4 β₯
β’ β₯
β£ 0 0 0 0β¦
A half-wave plate
>>> pprint(mueller_matrix(half_wave_retarder(theta)), use_unicode=True)
β‘1 0 0 0 β€
β’ β₯
β’ 4 2 β₯
β’0 8β
sin (ΞΈ) - 8β
sin (ΞΈ) + 1 sin(4β
ΞΈ) 0 β₯
β’ β₯
β’ 4 2 β₯
β’0 sin(4β
ΞΈ) - 8β
sin (ΞΈ) + 8β
sin (ΞΈ) - 1 0 β₯
β’ β₯
β£0 0 0 -1β¦
A quarter-wave plate
>>> pprint(mueller_matrix(quarter_wave_retarder(theta)), use_unicode=True)
β‘1 0 0 0 β€
β’ β₯
β’ cos(4β
ΞΈ) 1 sin(4β
ΞΈ) β₯
β’0 ββββββββ + β ββββββββ -sin(2β
ΞΈ)β₯
β’ 2 2 2 β₯
β’ β₯
β’ sin(4β
ΞΈ) 1 cos(4β
ΞΈ) β₯
β’0 ββββββββ β - ββββββββ cos(2β
ΞΈ) β₯
β’ 2 2 2 β₯
β’ β₯
β£0 sin(2β
ΞΈ) -cos(2β
ΞΈ) 0 β¦
"""
A = Matrix([[1, 0, 0, 1],
[1, 0, 0, -1],
[0, 1, 1, 0],
[0, -I, I, 0]])
return simplify(A*TensorProduct(J, J.conjugate())*A.inv())
def polarizing_beam_splitter(Tp=1, Rs=1, Ts=0, Rp=0, phia=0, phib=0):
r"""A polarizing beam splitter Jones matrix at angle `theta`.
Parameters
==========
J : SymPy Matrix
A Jones matrix.
Tp : numeric type or SymPy Symbol
The transmissivity of the P-polarized component.
Rs : numeric type or SymPy Symbol
The reflectivity of the S-polarized component.
Ts : numeric type or SymPy Symbol
The transmissivity of the S-polarized component.
Rp : numeric type or SymPy Symbol
The reflectivity of the P-polarized component.
phia : numeric type or SymPy Symbol
The phase difference between transmitted and reflected component for
output mode a.
phib : numeric type or SymPy Symbol
The phase difference between transmitted and reflected component for
output mode b.
Returns
=======
SymPy Matrix
A 4x4 matrix representing the PBS. This matrix acts on a 4x1 vector
whose first two entries are the Jones vector on one of the PBS ports,
and the last two entries the Jones vector on the other port.
Examples
========
Generic polarizing beam-splitter.
>>> from sympy import pprint, symbols
>>> from sympy.physics.optics.polarization import polarizing_beam_splitter
>>> Ts, Rs, Tp, Rp = symbols(r"Ts, Rs, Tp, Rp", positive=True)
>>> phia, phib = symbols("phi_a, phi_b", real=True)
>>> PBS = polarizing_beam_splitter(Tp, Rs, Ts, Rp, phia, phib)
>>> pprint(PBS, use_unicode=False)
[ ____ ____ ]
[ \/ Tp 0 I*\/ Rp 0 ]
[ ]
[ ____ ____ I*phi_a]
[ 0 \/ Ts 0 -I*\/ Rs *e ]
[ ]
[ ____ ____ ]
[I*\/ Rp 0 \/ Tp 0 ]
[ ]
[ ____ I*phi_b ____ ]
[ 0 -I*\/ Rs *e 0 \/ Ts ]
"""
PBS = Matrix([[sqrt(Tp), 0, I*sqrt(Rp), 0],
[0, sqrt(Ts), 0, -I*sqrt(Rs)*exp(I*phia)],
[I*sqrt(Rp), 0, sqrt(Tp), 0],
[0, -I*sqrt(Rs)*exp(I*phib), 0, sqrt(Ts)]])
return PBS
|
Subsets and Splits