hash
stringlengths 64
64
| content
stringlengths 0
1.51M
|
---|---|
022dbf37ea549879e024ddeeb2231334eea47cb5855506b758e7addd585e844f | """Logic expressions handling
NOTE
----
at present this is mainly needed for facts.py, feel free however to improve
this stuff for general purpose.
"""
from __future__ import annotations
from typing import Optional
# Type of a fuzzy bool
FuzzyBool = Optional[bool]
def _torf(args):
"""Return True if all args are True, False if they
are all False, else None.
>>> from sympy.core.logic import _torf
>>> _torf((True, True))
True
>>> _torf((False, False))
False
>>> _torf((True, False))
"""
sawT = sawF = False
for a in args:
if a is True:
if sawF:
return
sawT = True
elif a is False:
if sawT:
return
sawF = True
else:
return
return sawT
def _fuzzy_group(args, quick_exit=False):
"""Return True if all args are True, None if there is any None else False
unless ``quick_exit`` is True (then return None as soon as a second False
is seen.
``_fuzzy_group`` is like ``fuzzy_and`` except that it is more
conservative in returning a False, waiting to make sure that all
arguments are True or False and returning None if any arguments are
None. It also has the capability of permiting only a single False and
returning None if more than one is seen. For example, the presence of a
single transcendental amongst rationals would indicate that the group is
no longer rational; but a second transcendental in the group would make the
determination impossible.
Examples
========
>>> from sympy.core.logic import _fuzzy_group
By default, multiple Falses mean the group is broken:
>>> _fuzzy_group([False, False, True])
False
If multiple Falses mean the group status is unknown then set
`quick_exit` to True so None can be returned when the 2nd False is seen:
>>> _fuzzy_group([False, False, True], quick_exit=True)
But if only a single False is seen then the group is known to
be broken:
>>> _fuzzy_group([False, True, True], quick_exit=True)
False
"""
saw_other = False
for a in args:
if a is True:
continue
if a is None:
return
if quick_exit and saw_other:
return
saw_other = True
return not saw_other
def fuzzy_bool(x):
"""Return True, False or None according to x.
Whereas bool(x) returns True or False, fuzzy_bool allows
for the None value and non-false values (which become None), too.
Examples
========
>>> from sympy.core.logic import fuzzy_bool
>>> from sympy.abc import x
>>> fuzzy_bool(x), fuzzy_bool(None)
(None, None)
>>> bool(x), bool(None)
(True, False)
"""
if x is None:
return None
if x in (True, False):
return bool(x)
def fuzzy_and(args):
"""Return True (all True), False (any False) or None.
Examples
========
>>> from sympy.core.logic import fuzzy_and
>>> from sympy import Dummy
If you had a list of objects to test the commutivity of
and you want the fuzzy_and logic applied, passing an
iterator will allow the commutativity to only be computed
as many times as necessary. With this list, False can be
returned after analyzing the first symbol:
>>> syms = [Dummy(commutative=False), Dummy()]
>>> fuzzy_and(s.is_commutative for s in syms)
False
That False would require less work than if a list of pre-computed
items was sent:
>>> fuzzy_and([s.is_commutative for s in syms])
False
"""
rv = True
for ai in args:
ai = fuzzy_bool(ai)
if ai is False:
return False
if rv: # this will stop updating if a None is ever trapped
rv = ai
return rv
def fuzzy_not(v):
"""
Not in fuzzy logic
Return None if `v` is None else `not v`.
Examples
========
>>> from sympy.core.logic import fuzzy_not
>>> fuzzy_not(True)
False
>>> fuzzy_not(None)
>>> fuzzy_not(False)
True
"""
if v is None:
return v
else:
return not v
def fuzzy_or(args):
"""
Or in fuzzy logic. Returns True (any True), False (all False), or None
See the docstrings of fuzzy_and and fuzzy_not for more info. fuzzy_or is
related to the two by the standard De Morgan's law.
>>> from sympy.core.logic import fuzzy_or
>>> fuzzy_or([True, False])
True
>>> fuzzy_or([True, None])
True
>>> fuzzy_or([False, False])
False
>>> print(fuzzy_or([False, None]))
None
"""
rv = False
for ai in args:
ai = fuzzy_bool(ai)
if ai is True:
return True
if rv is False: # this will stop updating if a None is ever trapped
rv = ai
return rv
def fuzzy_xor(args):
"""Return None if any element of args is not True or False, else
True (if there are an odd number of True elements), else False."""
t = f = 0
for a in args:
ai = fuzzy_bool(a)
if ai:
t += 1
elif ai is False:
f += 1
else:
return
return t % 2 == 1
def fuzzy_nand(args):
"""Return False if all args are True, True if they are all False,
else None."""
return fuzzy_not(fuzzy_and(args))
class Logic:
"""Logical expression"""
# {} 'op' -> LogicClass
op_2class: dict[str, type[Logic]] = {}
def __new__(cls, *args):
obj = object.__new__(cls)
obj.args = args
return obj
def __getnewargs__(self):
return self.args
def __hash__(self):
return hash((type(self).__name__,) + tuple(self.args))
def __eq__(a, b):
if not isinstance(b, type(a)):
return False
else:
return a.args == b.args
def __ne__(a, b):
if not isinstance(b, type(a)):
return True
else:
return a.args != b.args
def __lt__(self, other):
if self.__cmp__(other) == -1:
return True
return False
def __cmp__(self, other):
if type(self) is not type(other):
a = str(type(self))
b = str(type(other))
else:
a = self.args
b = other.args
return (a > b) - (a < b)
def __str__(self):
return '%s(%s)' % (self.__class__.__name__,
', '.join(str(a) for a in self.args))
__repr__ = __str__
@staticmethod
def fromstring(text):
"""Logic from string with space around & and | but none after !.
e.g.
!a & b | c
"""
lexpr = None # current logical expression
schedop = None # scheduled operation
for term in text.split():
# operation symbol
if term in '&|':
if schedop is not None:
raise ValueError(
'double op forbidden: "%s %s"' % (term, schedop))
if lexpr is None:
raise ValueError(
'%s cannot be in the beginning of expression' % term)
schedop = term
continue
if '&' in term or '|' in term:
raise ValueError('& and | must have space around them')
if term[0] == '!':
if len(term) == 1:
raise ValueError('do not include space after "!"')
term = Not(term[1:])
# already scheduled operation, e.g. '&'
if schedop:
lexpr = Logic.op_2class[schedop](lexpr, term)
schedop = None
continue
# this should be atom
if lexpr is not None:
raise ValueError(
'missing op between "%s" and "%s"' % (lexpr, term))
lexpr = term
# let's check that we ended up in correct state
if schedop is not None:
raise ValueError('premature end-of-expression in "%s"' % text)
if lexpr is None:
raise ValueError('"%s" is empty' % text)
# everything looks good now
return lexpr
class AndOr_Base(Logic):
def __new__(cls, *args):
bargs = []
for a in args:
if a == cls.op_x_notx:
return a
elif a == (not cls.op_x_notx):
continue # skip this argument
bargs.append(a)
args = sorted(set(cls.flatten(bargs)), key=hash)
for a in args:
if Not(a) in args:
return cls.op_x_notx
if len(args) == 1:
return args.pop()
elif len(args) == 0:
return not cls.op_x_notx
return Logic.__new__(cls, *args)
@classmethod
def flatten(cls, args):
# quick-n-dirty flattening for And and Or
args_queue = list(args)
res = []
while True:
try:
arg = args_queue.pop(0)
except IndexError:
break
if isinstance(arg, Logic):
if isinstance(arg, cls):
args_queue.extend(arg.args)
continue
res.append(arg)
args = tuple(res)
return args
class And(AndOr_Base):
op_x_notx = False
def _eval_propagate_not(self):
# !(a&b&c ...) == !a | !b | !c ...
return Or(*[Not(a) for a in self.args])
# (a|b|...) & c == (a&c) | (b&c) | ...
def expand(self):
# first locate Or
for i, arg in enumerate(self.args):
if isinstance(arg, Or):
arest = self.args[:i] + self.args[i + 1:]
orterms = [And(*(arest + (a,))) for a in arg.args]
for j in range(len(orterms)):
if isinstance(orterms[j], Logic):
orterms[j] = orterms[j].expand()
res = Or(*orterms)
return res
return self
class Or(AndOr_Base):
op_x_notx = True
def _eval_propagate_not(self):
# !(a|b|c ...) == !a & !b & !c ...
return And(*[Not(a) for a in self.args])
class Not(Logic):
def __new__(cls, arg):
if isinstance(arg, str):
return Logic.__new__(cls, arg)
elif isinstance(arg, bool):
return not arg
elif isinstance(arg, Not):
return arg.args[0]
elif isinstance(arg, Logic):
# XXX this is a hack to expand right from the beginning
arg = arg._eval_propagate_not()
return arg
else:
raise ValueError('Not: unknown argument %r' % (arg,))
@property
def arg(self):
return self.args[0]
Logic.op_2class['&'] = And
Logic.op_2class['|'] = Or
Logic.op_2class['!'] = Not
|
558da7c5894bfef3f9b17cd3075572e3b972d37bf00b9b442533602f61e1a035 | from typing import Tuple as tTuple
from collections import defaultdict
from functools import cmp_to_key, reduce
from itertools import product
import operator
from .sympify import sympify
from .basic import Basic
from .singleton import S
from .operations import AssocOp, AssocOpDispatcher
from .cache import cacheit
from .logic import fuzzy_not, _fuzzy_group
from .expr import Expr
from .parameters import global_parameters
from .kind import KindDispatcher
from .traversal import bottom_up
from sympy.utilities.iterables import sift
# internal marker to indicate:
# "there are still non-commutative objects -- don't forget to process them"
class NC_Marker:
is_Order = False
is_Mul = False
is_Number = False
is_Poly = False
is_commutative = False
# Key for sorting commutative args in canonical order
_args_sortkey = cmp_to_key(Basic.compare)
def _mulsort(args):
# in-place sorting of args
args.sort(key=_args_sortkey)
def _unevaluated_Mul(*args):
"""Return a well-formed unevaluated Mul: Numbers are collected and
put in slot 0, any arguments that are Muls will be flattened, and args
are sorted. Use this when args have changed but you still want to return
an unevaluated Mul.
Examples
========
>>> from sympy.core.mul import _unevaluated_Mul as uMul
>>> from sympy import S, sqrt, Mul
>>> from sympy.abc import x
>>> a = uMul(*[S(3.0), x, S(2)])
>>> a.args[0]
6.00000000000000
>>> a.args[1]
x
Two unevaluated Muls with the same arguments will
always compare as equal during testing:
>>> m = uMul(sqrt(2), sqrt(3))
>>> m == uMul(sqrt(3), sqrt(2))
True
>>> u = Mul(sqrt(3), sqrt(2), evaluate=False)
>>> m == uMul(u)
True
>>> m == Mul(*m.args)
False
"""
args = list(args)
newargs = []
ncargs = []
co = S.One
while args:
a = args.pop()
if a.is_Mul:
c, nc = a.args_cnc()
args.extend(c)
if nc:
ncargs.append(Mul._from_args(nc))
elif a.is_Number:
co *= a
else:
newargs.append(a)
_mulsort(newargs)
if co is not S.One:
newargs.insert(0, co)
if ncargs:
newargs.append(Mul._from_args(ncargs))
return Mul._from_args(newargs)
class Mul(Expr, AssocOp):
"""
Expression representing multiplication operation for algebraic field.
.. deprecated:: 1.7
Using arguments that aren't subclasses of :class:`~.Expr` in core
operators (:class:`~.Mul`, :class:`~.Add`, and :class:`~.Pow`) is
deprecated. See :ref:`non-expr-args-deprecated` for details.
Every argument of ``Mul()`` must be ``Expr``. Infix operator ``*``
on most scalar objects in SymPy calls this class.
Another use of ``Mul()`` is to represent the structure of abstract
multiplication so that its arguments can be substituted to return
different class. Refer to examples section for this.
``Mul()`` evaluates the argument unless ``evaluate=False`` is passed.
The evaluation logic includes:
1. Flattening
``Mul(x, Mul(y, z))`` -> ``Mul(x, y, z)``
2. Identity removing
``Mul(x, 1, y)`` -> ``Mul(x, y)``
3. Exponent collecting by ``.as_base_exp()``
``Mul(x, x**2)`` -> ``Pow(x, 3)``
4. Term sorting
``Mul(y, x, 2)`` -> ``Mul(2, x, y)``
Since multiplication can be vector space operation, arguments may
have the different :obj:`sympy.core.kind.Kind()`. Kind of the
resulting object is automatically inferred.
Examples
========
>>> from sympy import Mul
>>> from sympy.abc import x, y
>>> Mul(x, 1)
x
>>> Mul(x, x)
x**2
If ``evaluate=False`` is passed, result is not evaluated.
>>> Mul(1, 2, evaluate=False)
1*2
>>> Mul(x, x, evaluate=False)
x*x
``Mul()`` also represents the general structure of multiplication
operation.
>>> from sympy import MatrixSymbol
>>> A = MatrixSymbol('A', 2,2)
>>> expr = Mul(x,y).subs({y:A})
>>> expr
x*A
>>> type(expr)
<class 'sympy.matrices.expressions.matmul.MatMul'>
See Also
========
MatMul
"""
__slots__ = ()
args: tTuple[Expr]
is_Mul = True
_args_type = Expr
_kind_dispatcher = KindDispatcher("Mul_kind_dispatcher", commutative=True)
@property
def kind(self):
arg_kinds = (a.kind for a in self.args)
return self._kind_dispatcher(*arg_kinds)
def could_extract_minus_sign(self):
if self == (-self):
return False # e.g. zoo*x == -zoo*x
c = self.args[0]
return c.is_Number and c.is_extended_negative
def __neg__(self):
c, args = self.as_coeff_mul()
if args[0] is not S.ComplexInfinity:
c = -c
if c is not S.One:
if args[0].is_Number:
args = list(args)
if c is S.NegativeOne:
args[0] = -args[0]
else:
args[0] *= c
else:
args = (c,) + args
return self._from_args(args, self.is_commutative)
@classmethod
def flatten(cls, seq):
"""Return commutative, noncommutative and order arguments by
combining related terms.
Notes
=====
* In an expression like ``a*b*c``, Python process this through SymPy
as ``Mul(Mul(a, b), c)``. This can have undesirable consequences.
- Sometimes terms are not combined as one would like:
{c.f. https://github.com/sympy/sympy/issues/4596}
>>> from sympy import Mul, sqrt
>>> from sympy.abc import x, y, z
>>> 2*(x + 1) # this is the 2-arg Mul behavior
2*x + 2
>>> y*(x + 1)*2
2*y*(x + 1)
>>> 2*(x + 1)*y # 2-arg result will be obtained first
y*(2*x + 2)
>>> Mul(2, x + 1, y) # all 3 args simultaneously processed
2*y*(x + 1)
>>> 2*((x + 1)*y) # parentheses can control this behavior
2*y*(x + 1)
Powers with compound bases may not find a single base to
combine with unless all arguments are processed at once.
Post-processing may be necessary in such cases.
{c.f. https://github.com/sympy/sympy/issues/5728}
>>> a = sqrt(x*sqrt(y))
>>> a**3
(x*sqrt(y))**(3/2)
>>> Mul(a,a,a)
(x*sqrt(y))**(3/2)
>>> a*a*a
x*sqrt(y)*sqrt(x*sqrt(y))
>>> _.subs(a.base, z).subs(z, a.base)
(x*sqrt(y))**(3/2)
- If more than two terms are being multiplied then all the
previous terms will be re-processed for each new argument.
So if each of ``a``, ``b`` and ``c`` were :class:`Mul`
expression, then ``a*b*c`` (or building up the product
with ``*=``) will process all the arguments of ``a`` and
``b`` twice: once when ``a*b`` is computed and again when
``c`` is multiplied.
Using ``Mul(a, b, c)`` will process all arguments once.
* The results of Mul are cached according to arguments, so flatten
will only be called once for ``Mul(a, b, c)``. If you can
structure a calculation so the arguments are most likely to be
repeats then this can save time in computing the answer. For
example, say you had a Mul, M, that you wished to divide by ``d[i]``
and multiply by ``n[i]`` and you suspect there are many repeats
in ``n``. It would be better to compute ``M*n[i]/d[i]`` rather
than ``M/d[i]*n[i]`` since every time n[i] is a repeat, the
product, ``M*n[i]`` will be returned without flattening -- the
cached value will be returned. If you divide by the ``d[i]``
first (and those are more unique than the ``n[i]``) then that will
create a new Mul, ``M/d[i]`` the args of which will be traversed
again when it is multiplied by ``n[i]``.
{c.f. https://github.com/sympy/sympy/issues/5706}
This consideration is moot if the cache is turned off.
NB
--
The validity of the above notes depends on the implementation
details of Mul and flatten which may change at any time. Therefore,
you should only consider them when your code is highly performance
sensitive.
Removal of 1 from the sequence is already handled by AssocOp.__new__.
"""
from sympy.calculus.accumulationbounds import AccumBounds
from sympy.matrices.expressions import MatrixExpr
rv = None
if len(seq) == 2:
a, b = seq
if b.is_Rational:
a, b = b, a
seq = [a, b]
assert a is not S.One
if not a.is_zero and a.is_Rational:
r, b = b.as_coeff_Mul()
if b.is_Add:
if r is not S.One: # 2-arg hack
# leave the Mul as a Mul?
ar = a*r
if ar is S.One:
arb = b
else:
arb = cls(a*r, b, evaluate=False)
rv = [arb], [], None
elif global_parameters.distribute and b.is_commutative:
newb = Add(*[_keep_coeff(a, bi) for bi in b.args])
rv = [newb], [], None
if rv:
return rv
# apply associativity, separate commutative part of seq
c_part = [] # out: commutative factors
nc_part = [] # out: non-commutative factors
nc_seq = []
coeff = S.One # standalone term
# e.g. 3 * ...
c_powers = [] # (base,exp) n
# e.g. (x,n) for x
num_exp = [] # (num-base, exp) y
# e.g. (3, y) for ... * 3 * ...
neg1e = S.Zero # exponent on -1 extracted from Number-based Pow and I
pnum_rat = {} # (num-base, Rat-exp) 1/2
# e.g. (3, 1/2) for ... * 3 * ...
order_symbols = None
# --- PART 1 ---
#
# "collect powers and coeff":
#
# o coeff
# o c_powers
# o num_exp
# o neg1e
# o pnum_rat
#
# NOTE: this is optimized for all-objects-are-commutative case
for o in seq:
# O(x)
if o.is_Order:
o, order_symbols = o.as_expr_variables(order_symbols)
# Mul([...])
if o.is_Mul:
if o.is_commutative:
seq.extend(o.args) # XXX zerocopy?
else:
# NCMul can have commutative parts as well
for q in o.args:
if q.is_commutative:
seq.append(q)
else:
nc_seq.append(q)
# append non-commutative marker, so we don't forget to
# process scheduled non-commutative objects
seq.append(NC_Marker)
continue
# 3
elif o.is_Number:
if o is S.NaN or coeff is S.ComplexInfinity and o.is_zero:
# we know for sure the result will be nan
return [S.NaN], [], None
elif coeff.is_Number or isinstance(coeff, AccumBounds): # it could be zoo
coeff *= o
if coeff is S.NaN:
# we know for sure the result will be nan
return [S.NaN], [], None
continue
elif isinstance(o, AccumBounds):
coeff = o.__mul__(coeff)
continue
elif o is S.ComplexInfinity:
if not coeff:
# 0 * zoo = NaN
return [S.NaN], [], None
coeff = S.ComplexInfinity
continue
elif o is S.ImaginaryUnit:
neg1e += S.Half
continue
elif o.is_commutative:
# e
# o = b
b, e = o.as_base_exp()
# y
# 3
if o.is_Pow:
if b.is_Number:
# get all the factors with numeric base so they can be
# combined below, but don't combine negatives unless
# the exponent is an integer
if e.is_Rational:
if e.is_Integer:
coeff *= Pow(b, e) # it is an unevaluated power
continue
elif e.is_negative: # also a sign of an unevaluated power
seq.append(Pow(b, e))
continue
elif b.is_negative:
neg1e += e
b = -b
if b is not S.One:
pnum_rat.setdefault(b, []).append(e)
continue
elif b.is_positive or e.is_integer:
num_exp.append((b, e))
continue
c_powers.append((b, e))
# NON-COMMUTATIVE
# TODO: Make non-commutative exponents not combine automatically
else:
if o is not NC_Marker:
nc_seq.append(o)
# process nc_seq (if any)
while nc_seq:
o = nc_seq.pop(0)
if not nc_part:
nc_part.append(o)
continue
# b c b+c
# try to combine last terms: a * a -> a
o1 = nc_part.pop()
b1, e1 = o1.as_base_exp()
b2, e2 = o.as_base_exp()
new_exp = e1 + e2
# Only allow powers to combine if the new exponent is
# not an Add. This allow things like a**2*b**3 == a**5
# if a.is_commutative == False, but prohibits
# a**x*a**y and x**a*x**b from combining (x,y commute).
if b1 == b2 and (not new_exp.is_Add):
o12 = b1 ** new_exp
# now o12 could be a commutative object
if o12.is_commutative:
seq.append(o12)
continue
else:
nc_seq.insert(0, o12)
else:
nc_part.extend([o1, o])
# We do want a combined exponent if it would not be an Add, such as
# y 2y 3y
# x * x -> x
# We determine if two exponents have the same term by using
# as_coeff_Mul.
#
# Unfortunately, this isn't smart enough to consider combining into
# exponents that might already be adds, so things like:
# z - y y
# x * x will be left alone. This is because checking every possible
# combination can slow things down.
# gather exponents of common bases...
def _gather(c_powers):
common_b = {} # b:e
for b, e in c_powers:
co = e.as_coeff_Mul()
common_b.setdefault(b, {}).setdefault(
co[1], []).append(co[0])
for b, d in common_b.items():
for di, li in d.items():
d[di] = Add(*li)
new_c_powers = []
for b, e in common_b.items():
new_c_powers.extend([(b, c*t) for t, c in e.items()])
return new_c_powers
# in c_powers
c_powers = _gather(c_powers)
# and in num_exp
num_exp = _gather(num_exp)
# --- PART 2 ---
#
# o process collected powers (x**0 -> 1; x**1 -> x; otherwise Pow)
# o combine collected powers (2**x * 3**x -> 6**x)
# with numeric base
# ................................
# now we have:
# - coeff:
# - c_powers: (b, e)
# - num_exp: (2, e)
# - pnum_rat: {(1/3, [1/3, 2/3, 1/4])}
# 0 1
# x -> 1 x -> x
# this should only need to run twice; if it fails because
# it needs to be run more times, perhaps this should be
# changed to a "while True" loop -- the only reason it
# isn't such now is to allow a less-than-perfect result to
# be obtained rather than raising an error or entering an
# infinite loop
for i in range(2):
new_c_powers = []
changed = False
for b, e in c_powers:
if e.is_zero:
# canceling out infinities yields NaN
if (b.is_Add or b.is_Mul) and any(infty in b.args
for infty in (S.ComplexInfinity, S.Infinity,
S.NegativeInfinity)):
return [S.NaN], [], None
continue
if e is S.One:
if b.is_Number:
coeff *= b
continue
p = b
if e is not S.One:
p = Pow(b, e)
# check to make sure that the base doesn't change
# after exponentiation; to allow for unevaluated
# Pow, we only do so if b is not already a Pow
if p.is_Pow and not b.is_Pow:
bi = b
b, e = p.as_base_exp()
if b != bi:
changed = True
c_part.append(p)
new_c_powers.append((b, e))
# there might have been a change, but unless the base
# matches some other base, there is nothing to do
if changed and len({
b for b, e in new_c_powers}) != len(new_c_powers):
# start over again
c_part = []
c_powers = _gather(new_c_powers)
else:
break
# x x x
# 2 * 3 -> 6
inv_exp_dict = {} # exp:Mul(num-bases) x x
# e.g. x:6 for ... * 2 * 3 * ...
for b, e in num_exp:
inv_exp_dict.setdefault(e, []).append(b)
for e, b in inv_exp_dict.items():
inv_exp_dict[e] = cls(*b)
c_part.extend([Pow(b, e) for e, b in inv_exp_dict.items() if e])
# b, e -> e' = sum(e), b
# {(1/5, [1/3]), (1/2, [1/12, 1/4]} -> {(1/3, [1/5, 1/2])}
comb_e = {}
for b, e in pnum_rat.items():
comb_e.setdefault(Add(*e), []).append(b)
del pnum_rat
# process them, reducing exponents to values less than 1
# and updating coeff if necessary else adding them to
# num_rat for further processing
num_rat = []
for e, b in comb_e.items():
b = cls(*b)
if e.q == 1:
coeff *= Pow(b, e)
continue
if e.p > e.q:
e_i, ep = divmod(e.p, e.q)
coeff *= Pow(b, e_i)
e = Rational(ep, e.q)
num_rat.append((b, e))
del comb_e
# extract gcd of bases in num_rat
# 2**(1/3)*6**(1/4) -> 2**(1/3+1/4)*3**(1/4)
pnew = defaultdict(list)
i = 0 # steps through num_rat which may grow
while i < len(num_rat):
bi, ei = num_rat[i]
grow = []
for j in range(i + 1, len(num_rat)):
bj, ej = num_rat[j]
g = bi.gcd(bj)
if g is not S.One:
# 4**r1*6**r2 -> 2**(r1+r2) * 2**r1 * 3**r2
# this might have a gcd with something else
e = ei + ej
if e.q == 1:
coeff *= Pow(g, e)
else:
if e.p > e.q:
e_i, ep = divmod(e.p, e.q) # change e in place
coeff *= Pow(g, e_i)
e = Rational(ep, e.q)
grow.append((g, e))
# update the jth item
num_rat[j] = (bj/g, ej)
# update bi that we are checking with
bi = bi/g
if bi is S.One:
break
if bi is not S.One:
obj = Pow(bi, ei)
if obj.is_Number:
coeff *= obj
else:
# changes like sqrt(12) -> 2*sqrt(3)
for obj in Mul.make_args(obj):
if obj.is_Number:
coeff *= obj
else:
assert obj.is_Pow
bi, ei = obj.args
pnew[ei].append(bi)
num_rat.extend(grow)
i += 1
# combine bases of the new powers
for e, b in pnew.items():
pnew[e] = cls(*b)
# handle -1 and I
if neg1e:
# treat I as (-1)**(1/2) and compute -1's total exponent
p, q = neg1e.as_numer_denom()
# if the integer part is odd, extract -1
n, p = divmod(p, q)
if n % 2:
coeff = -coeff
# if it's a multiple of 1/2 extract I
if q == 2:
c_part.append(S.ImaginaryUnit)
elif p:
# see if there is any positive base this power of
# -1 can join
neg1e = Rational(p, q)
for e, b in pnew.items():
if e == neg1e and b.is_positive:
pnew[e] = -b
break
else:
# keep it separate; we've already evaluated it as
# much as possible so evaluate=False
c_part.append(Pow(S.NegativeOne, neg1e, evaluate=False))
# add all the pnew powers
c_part.extend([Pow(b, e) for e, b in pnew.items()])
# oo, -oo
if coeff in (S.Infinity, S.NegativeInfinity):
def _handle_for_oo(c_part, coeff_sign):
new_c_part = []
for t in c_part:
if t.is_extended_positive:
continue
if t.is_extended_negative:
coeff_sign *= -1
continue
new_c_part.append(t)
return new_c_part, coeff_sign
c_part, coeff_sign = _handle_for_oo(c_part, 1)
nc_part, coeff_sign = _handle_for_oo(nc_part, coeff_sign)
coeff *= coeff_sign
# zoo
if coeff is S.ComplexInfinity:
# zoo might be
# infinite_real + bounded_im
# bounded_real + infinite_im
# infinite_real + infinite_im
# and non-zero real or imaginary will not change that status.
c_part = [c for c in c_part if not (fuzzy_not(c.is_zero) and
c.is_extended_real is not None)]
nc_part = [c for c in nc_part if not (fuzzy_not(c.is_zero) and
c.is_extended_real is not None)]
# 0
elif coeff.is_zero:
# we know for sure the result will be 0 except the multiplicand
# is infinity or a matrix
if any(isinstance(c, MatrixExpr) for c in nc_part):
return [coeff], nc_part, order_symbols
if any(c.is_finite == False for c in c_part):
return [S.NaN], [], order_symbols
return [coeff], [], order_symbols
# check for straggling Numbers that were produced
_new = []
for i in c_part:
if i.is_Number:
coeff *= i
else:
_new.append(i)
c_part = _new
# order commutative part canonically
_mulsort(c_part)
# current code expects coeff to be always in slot-0
if coeff is not S.One:
c_part.insert(0, coeff)
# we are done
if (global_parameters.distribute and not nc_part and len(c_part) == 2 and
c_part[0].is_Number and c_part[0].is_finite and c_part[1].is_Add):
# 2*(1+a) -> 2 + 2 * a
coeff = c_part[0]
c_part = [Add(*[coeff*f for f in c_part[1].args])]
return c_part, nc_part, order_symbols
def _eval_power(self, e):
# don't break up NC terms: (A*B)**3 != A**3*B**3, it is A*B*A*B*A*B
cargs, nc = self.args_cnc(split_1=False)
if e.is_Integer:
return Mul(*[Pow(b, e, evaluate=False) for b in cargs]) * \
Pow(Mul._from_args(nc), e, evaluate=False)
if e.is_Rational and e.q == 2:
if self.is_imaginary:
a = self.as_real_imag()[1]
if a.is_Rational:
from .power import integer_nthroot
n, d = abs(a/2).as_numer_denom()
n, t = integer_nthroot(n, 2)
if t:
d, t = integer_nthroot(d, 2)
if t:
from sympy.functions.elementary.complexes import sign
r = sympify(n)/d
return _unevaluated_Mul(r**e.p, (1 + sign(a)*S.ImaginaryUnit)**e.p)
p = Pow(self, e, evaluate=False)
if e.is_Rational or e.is_Float:
return p._eval_expand_power_base()
return p
@classmethod
def class_key(cls):
return 3, 0, cls.__name__
def _eval_evalf(self, prec):
c, m = self.as_coeff_Mul()
if c is S.NegativeOne:
if m.is_Mul:
rv = -AssocOp._eval_evalf(m, prec)
else:
mnew = m._eval_evalf(prec)
if mnew is not None:
m = mnew
rv = -m
else:
rv = AssocOp._eval_evalf(self, prec)
if rv.is_number:
return rv.expand()
return rv
@property
def _mpc_(self):
"""
Convert self to an mpmath mpc if possible
"""
from .numbers import Float
im_part, imag_unit = self.as_coeff_Mul()
if imag_unit is not S.ImaginaryUnit:
# ValueError may seem more reasonable but since it's a @property,
# we need to use AttributeError to keep from confusing things like
# hasattr.
raise AttributeError("Cannot convert Mul to mpc. Must be of the form Number*I")
return (Float(0)._mpf_, Float(im_part)._mpf_)
@cacheit
def as_two_terms(self):
"""Return head and tail of self.
This is the most efficient way to get the head and tail of an
expression.
- if you want only the head, use self.args[0];
- if you want to process the arguments of the tail then use
self.as_coef_mul() which gives the head and a tuple containing
the arguments of the tail when treated as a Mul.
- if you want the coefficient when self is treated as an Add
then use self.as_coeff_add()[0]
Examples
========
>>> from sympy.abc import x, y
>>> (3*x*y).as_two_terms()
(3, x*y)
"""
args = self.args
if len(args) == 1:
return S.One, self
elif len(args) == 2:
return args
else:
return args[0], self._new_rawargs(*args[1:])
@cacheit
def as_coeff_mul(self, *deps, rational=True, **kwargs):
if deps:
l1, l2 = sift(self.args, lambda x: x.has(*deps), binary=True)
return self._new_rawargs(*l2), tuple(l1)
args = self.args
if args[0].is_Number:
if not rational or args[0].is_Rational:
return args[0], args[1:]
elif args[0].is_extended_negative:
return S.NegativeOne, (-args[0],) + args[1:]
return S.One, args
def as_coeff_Mul(self, rational=False):
"""
Efficiently extract the coefficient of a product.
"""
coeff, args = self.args[0], self.args[1:]
if coeff.is_Number:
if not rational or coeff.is_Rational:
if len(args) == 1:
return coeff, args[0]
else:
return coeff, self._new_rawargs(*args)
elif coeff.is_extended_negative:
return S.NegativeOne, self._new_rawargs(*((-coeff,) + args))
return S.One, self
def as_real_imag(self, deep=True, **hints):
from sympy.functions.elementary.complexes import Abs, im, re
other = []
coeffr = []
coeffi = []
addterms = S.One
for a in self.args:
r, i = a.as_real_imag()
if i.is_zero:
coeffr.append(r)
elif r.is_zero:
coeffi.append(i*S.ImaginaryUnit)
elif a.is_commutative:
aconj = a.conjugate() if other else None
# search for complex conjugate pairs:
for i, x in enumerate(other):
if x == aconj:
coeffr.append(Abs(x)**2)
del other[i]
break
else:
if a.is_Add:
addterms *= a
else:
other.append(a)
else:
other.append(a)
m = self.func(*other)
if hints.get('ignore') == m:
return
if len(coeffi) % 2:
imco = im(coeffi.pop(0))
# all other pairs make a real factor; they will be
# put into reco below
else:
imco = S.Zero
reco = self.func(*(coeffr + coeffi))
r, i = (reco*re(m), reco*im(m))
if addterms == 1:
if m == 1:
if imco.is_zero:
return (reco, S.Zero)
else:
return (S.Zero, reco*imco)
if imco is S.Zero:
return (r, i)
return (-imco*i, imco*r)
from .function import expand_mul
addre, addim = expand_mul(addterms, deep=False).as_real_imag()
if imco is S.Zero:
return (r*addre - i*addim, i*addre + r*addim)
else:
r, i = -imco*i, imco*r
return (r*addre - i*addim, r*addim + i*addre)
@staticmethod
def _expandsums(sums):
"""
Helper function for _eval_expand_mul.
sums must be a list of instances of Basic.
"""
L = len(sums)
if L == 1:
return sums[0].args
terms = []
left = Mul._expandsums(sums[:L//2])
right = Mul._expandsums(sums[L//2:])
terms = [Mul(a, b) for a in left for b in right]
added = Add(*terms)
return Add.make_args(added) # it may have collapsed down to one term
def _eval_expand_mul(self, **hints):
from sympy.simplify.radsimp import fraction
# Handle things like 1/(x*(x + 1)), which are automatically converted
# to 1/x*1/(x + 1)
expr = self
n, d = fraction(expr)
if d.is_Mul:
n, d = [i._eval_expand_mul(**hints) if i.is_Mul else i
for i in (n, d)]
expr = n/d
if not expr.is_Mul:
return expr
plain, sums, rewrite = [], [], False
for factor in expr.args:
if factor.is_Add:
sums.append(factor)
rewrite = True
else:
if factor.is_commutative:
plain.append(factor)
else:
sums.append(Basic(factor)) # Wrapper
if not rewrite:
return expr
else:
plain = self.func(*plain)
if sums:
deep = hints.get("deep", False)
terms = self.func._expandsums(sums)
args = []
for term in terms:
t = self.func(plain, term)
if t.is_Mul and any(a.is_Add for a in t.args) and deep:
t = t._eval_expand_mul()
args.append(t)
return Add(*args)
else:
return plain
@cacheit
def _eval_derivative(self, s):
args = list(self.args)
terms = []
for i in range(len(args)):
d = args[i].diff(s)
if d:
# Note: reduce is used in step of Mul as Mul is unable to
# handle subtypes and operation priority:
terms.append(reduce(lambda x, y: x*y, (args[:i] + [d] + args[i + 1:]), S.One))
return Add.fromiter(terms)
@cacheit
def _eval_derivative_n_times(self, s, n):
from .function import AppliedUndef
from .symbol import Symbol, symbols, Dummy
if not isinstance(s, (AppliedUndef, Symbol)):
# other types of s may not be well behaved, e.g.
# (cos(x)*sin(y)).diff([[x, y, z]])
return super()._eval_derivative_n_times(s, n)
from .numbers import Integer
args = self.args
m = len(args)
if isinstance(n, (int, Integer)):
# https://en.wikipedia.org/wiki/General_Leibniz_rule#More_than_two_factors
terms = []
from sympy.ntheory.multinomial import multinomial_coefficients_iterator
for kvals, c in multinomial_coefficients_iterator(m, n):
p = Mul(*[arg.diff((s, k)) for k, arg in zip(kvals, args)])
terms.append(c * p)
return Add(*terms)
from sympy.concrete.summations import Sum
from sympy.functions.combinatorial.factorials import factorial
from sympy.functions.elementary.miscellaneous import Max
kvals = symbols("k1:%i" % m, cls=Dummy)
klast = n - sum(kvals)
nfact = factorial(n)
e, l = (# better to use the multinomial?
nfact/prod(map(factorial, kvals))/factorial(klast)*\
Mul(*[args[t].diff((s, kvals[t])) for t in range(m-1)])*\
args[-1].diff((s, Max(0, klast))),
[(k, 0, n) for k in kvals])
return Sum(e, *l)
def _eval_difference_delta(self, n, step):
from sympy.series.limitseq import difference_delta as dd
arg0 = self.args[0]
rest = Mul(*self.args[1:])
return (arg0.subs(n, n + step) * dd(rest, n, step) + dd(arg0, n, step) *
rest)
def _matches_simple(self, expr, repl_dict):
# handle (w*3).matches('x*5') -> {w: x*5/3}
coeff, terms = self.as_coeff_Mul()
terms = Mul.make_args(terms)
if len(terms) == 1:
newexpr = self.__class__._combine_inverse(expr, coeff)
return terms[0].matches(newexpr, repl_dict)
return
def matches(self, expr, repl_dict=None, old=False):
expr = sympify(expr)
if self.is_commutative and expr.is_commutative:
return self._matches_commutative(expr, repl_dict, old)
elif self.is_commutative is not expr.is_commutative:
return None
# Proceed only if both both expressions are non-commutative
c1, nc1 = self.args_cnc()
c2, nc2 = expr.args_cnc()
c1, c2 = [c or [1] for c in [c1, c2]]
# TODO: Should these be self.func?
comm_mul_self = Mul(*c1)
comm_mul_expr = Mul(*c2)
repl_dict = comm_mul_self.matches(comm_mul_expr, repl_dict, old)
# If the commutative arguments didn't match and aren't equal, then
# then the expression as a whole doesn't match
if not repl_dict and c1 != c2:
return None
# Now match the non-commutative arguments, expanding powers to
# multiplications
nc1 = Mul._matches_expand_pows(nc1)
nc2 = Mul._matches_expand_pows(nc2)
repl_dict = Mul._matches_noncomm(nc1, nc2, repl_dict)
return repl_dict or None
@staticmethod
def _matches_expand_pows(arg_list):
new_args = []
for arg in arg_list:
if arg.is_Pow and arg.exp > 0:
new_args.extend([arg.base] * arg.exp)
else:
new_args.append(arg)
return new_args
@staticmethod
def _matches_noncomm(nodes, targets, repl_dict=None):
"""Non-commutative multiplication matcher.
`nodes` is a list of symbols within the matcher multiplication
expression, while `targets` is a list of arguments in the
multiplication expression being matched against.
"""
if repl_dict is None:
repl_dict = {}
else:
repl_dict = repl_dict.copy()
# List of possible future states to be considered
agenda = []
# The current matching state, storing index in nodes and targets
state = (0, 0)
node_ind, target_ind = state
# Mapping between wildcard indices and the index ranges they match
wildcard_dict = {}
while target_ind < len(targets) and node_ind < len(nodes):
node = nodes[node_ind]
if node.is_Wild:
Mul._matches_add_wildcard(wildcard_dict, state)
states_matches = Mul._matches_new_states(wildcard_dict, state,
nodes, targets)
if states_matches:
new_states, new_matches = states_matches
agenda.extend(new_states)
if new_matches:
for match in new_matches:
repl_dict[match] = new_matches[match]
if not agenda:
return None
else:
state = agenda.pop()
node_ind, target_ind = state
return repl_dict
@staticmethod
def _matches_add_wildcard(dictionary, state):
node_ind, target_ind = state
if node_ind in dictionary:
begin, end = dictionary[node_ind]
dictionary[node_ind] = (begin, target_ind)
else:
dictionary[node_ind] = (target_ind, target_ind)
@staticmethod
def _matches_new_states(dictionary, state, nodes, targets):
node_ind, target_ind = state
node = nodes[node_ind]
target = targets[target_ind]
# Don't advance at all if we've exhausted the targets but not the nodes
if target_ind >= len(targets) - 1 and node_ind < len(nodes) - 1:
return None
if node.is_Wild:
match_attempt = Mul._matches_match_wilds(dictionary, node_ind,
nodes, targets)
if match_attempt:
# If the same node has been matched before, don't return
# anything if the current match is diverging from the previous
# match
other_node_inds = Mul._matches_get_other_nodes(dictionary,
nodes, node_ind)
for ind in other_node_inds:
other_begin, other_end = dictionary[ind]
curr_begin, curr_end = dictionary[node_ind]
other_targets = targets[other_begin:other_end + 1]
current_targets = targets[curr_begin:curr_end + 1]
for curr, other in zip(current_targets, other_targets):
if curr != other:
return None
# A wildcard node can match more than one target, so only the
# target index is advanced
new_state = [(node_ind, target_ind + 1)]
# Only move on to the next node if there is one
if node_ind < len(nodes) - 1:
new_state.append((node_ind + 1, target_ind + 1))
return new_state, match_attempt
else:
# If we're not at a wildcard, then make sure we haven't exhausted
# nodes but not targets, since in this case one node can only match
# one target
if node_ind >= len(nodes) - 1 and target_ind < len(targets) - 1:
return None
match_attempt = node.matches(target)
if match_attempt:
return [(node_ind + 1, target_ind + 1)], match_attempt
elif node == target:
return [(node_ind + 1, target_ind + 1)], None
else:
return None
@staticmethod
def _matches_match_wilds(dictionary, wildcard_ind, nodes, targets):
"""Determine matches of a wildcard with sub-expression in `target`."""
wildcard = nodes[wildcard_ind]
begin, end = dictionary[wildcard_ind]
terms = targets[begin:end + 1]
# TODO: Should this be self.func?
mult = Mul(*terms) if len(terms) > 1 else terms[0]
return wildcard.matches(mult)
@staticmethod
def _matches_get_other_nodes(dictionary, nodes, node_ind):
"""Find other wildcards that may have already been matched."""
ind_node = nodes[node_ind]
return [ind for ind in dictionary if nodes[ind] == ind_node]
@staticmethod
def _combine_inverse(lhs, rhs):
"""
Returns lhs/rhs, but treats arguments like symbols, so things
like oo/oo return 1 (instead of a nan) and ``I`` behaves like
a symbol instead of sqrt(-1).
"""
from sympy.simplify.simplify import signsimp
from .symbol import Dummy
if lhs == rhs:
return S.One
def check(l, r):
if l.is_Float and r.is_comparable:
# if both objects are added to 0 they will share the same "normalization"
# and are more likely to compare the same. Since Add(foo, 0) will not allow
# the 0 to pass, we use __add__ directly.
return l.__add__(0) == r.evalf().__add__(0)
return False
if check(lhs, rhs) or check(rhs, lhs):
return S.One
if any(i.is_Pow or i.is_Mul for i in (lhs, rhs)):
# gruntz and limit wants a literal I to not combine
# with a power of -1
d = Dummy('I')
_i = {S.ImaginaryUnit: d}
i_ = {d: S.ImaginaryUnit}
a = lhs.xreplace(_i).as_powers_dict()
b = rhs.xreplace(_i).as_powers_dict()
blen = len(b)
for bi in tuple(b.keys()):
if bi in a:
a[bi] -= b.pop(bi)
if not a[bi]:
a.pop(bi)
if len(b) != blen:
lhs = Mul(*[k**v for k, v in a.items()]).xreplace(i_)
rhs = Mul(*[k**v for k, v in b.items()]).xreplace(i_)
rv = lhs/rhs
srv = signsimp(rv)
return srv if srv.is_Number else rv
def as_powers_dict(self):
d = defaultdict(int)
for term in self.args:
for b, e in term.as_powers_dict().items():
d[b] += e
return d
def as_numer_denom(self):
# don't use _from_args to rebuild the numerators and denominators
# as the order is not guaranteed to be the same once they have
# been separated from each other
numers, denoms = list(zip(*[f.as_numer_denom() for f in self.args]))
return self.func(*numers), self.func(*denoms)
def as_base_exp(self):
e1 = None
bases = []
nc = 0
for m in self.args:
b, e = m.as_base_exp()
if not b.is_commutative:
nc += 1
if e1 is None:
e1 = e
elif e != e1 or nc > 1:
return self, S.One
bases.append(b)
return self.func(*bases), e1
def _eval_is_polynomial(self, syms):
return all(term._eval_is_polynomial(syms) for term in self.args)
def _eval_is_rational_function(self, syms):
return all(term._eval_is_rational_function(syms) for term in self.args)
def _eval_is_meromorphic(self, x, a):
return _fuzzy_group((arg.is_meromorphic(x, a) for arg in self.args),
quick_exit=True)
def _eval_is_algebraic_expr(self, syms):
return all(term._eval_is_algebraic_expr(syms) for term in self.args)
_eval_is_commutative = lambda self: _fuzzy_group(
a.is_commutative for a in self.args)
def _eval_is_complex(self):
comp = _fuzzy_group(a.is_complex for a in self.args)
if comp is False:
if any(a.is_infinite for a in self.args):
if any(a.is_zero is not False for a in self.args):
return None
return False
return comp
def _eval_is_finite(self):
if all(a.is_finite for a in self.args):
return True
if any(a.is_infinite for a in self.args):
if all(a.is_zero is False for a in self.args):
return False
def _eval_is_infinite(self):
if any(a.is_infinite for a in self.args):
if any(a.is_zero for a in self.args):
return S.NaN.is_infinite
if any(a.is_zero is None for a in self.args):
return None
return True
def _eval_is_rational(self):
r = _fuzzy_group((a.is_rational for a in self.args), quick_exit=True)
if r:
return r
elif r is False:
# All args except one are rational
if all(a.is_zero is False for a in self.args):
return False
def _eval_is_algebraic(self):
r = _fuzzy_group((a.is_algebraic for a in self.args), quick_exit=True)
if r:
return r
elif r is False:
# All args except one are algebraic
if all(a.is_zero is False for a in self.args):
return False
def _eval_is_zero(self):
zero = infinite = False
for a in self.args:
z = a.is_zero
if z:
if infinite:
return # 0*oo is nan and nan.is_zero is None
zero = True
else:
if not a.is_finite:
if zero:
return # 0*oo is nan and nan.is_zero is None
infinite = True
if zero is False and z is None: # trap None
zero = None
return zero
# without involving odd/even checks this code would suffice:
#_eval_is_integer = lambda self: _fuzzy_group(
# (a.is_integer for a in self.args), quick_exit=True)
def _eval_is_integer(self):
from sympy.ntheory.factor_ import trailing
is_rational = self._eval_is_rational()
if is_rational is False:
return False
numerators = []
denominators = []
unknown = False
for a in self.args:
hit = False
if a.is_integer:
if abs(a) is not S.One:
numerators.append(a)
elif a.is_Rational:
n, d = a.as_numer_denom()
if abs(n) is not S.One:
numerators.append(n)
if d is not S.One:
denominators.append(d)
elif a.is_Pow:
b, e = a.as_base_exp()
if not b.is_integer or not e.is_integer:
hit = unknown = True
if e.is_negative:
denominators.append(2 if a is S.Half else
Pow(a, S.NegativeOne))
elif not hit:
# int b and pos int e: a = b**e is integer
assert not e.is_positive
# for rational self and e equal to zero: a = b**e is 1
assert not e.is_zero
return # sign of e unknown -> self.is_integer unknown
else:
# x**2, 2**x, or x**y with x and y int-unknown -> unknown
return
else:
return
if not denominators and not unknown:
return True
allodd = lambda x: all(i.is_odd for i in x)
alleven = lambda x: all(i.is_even for i in x)
anyeven = lambda x: any(i.is_even for i in x)
from .relational import is_gt
if not numerators and denominators and all(
is_gt(_, S.One) for _ in denominators):
return False
elif unknown:
return
elif allodd(numerators) and anyeven(denominators):
return False
elif anyeven(numerators) and denominators == [2]:
return True
elif alleven(numerators) and allodd(denominators
) and (Mul(*denominators, evaluate=False) - 1
).is_positive:
return False
if len(denominators) == 1:
d = denominators[0]
if d.is_Integer and d.is_even:
# if minimal power of 2 in num vs den is not
# negative then we have an integer
if (Add(*[i.as_base_exp()[1] for i in
numerators if i.is_even]) - trailing(d.p)
).is_nonnegative:
return True
if len(numerators) == 1:
n = numerators[0]
if n.is_Integer and n.is_even:
# if minimal power of 2 in den vs num is positive
# then we have have a non-integer
if (Add(*[i.as_base_exp()[1] for i in
denominators if i.is_even]) - trailing(n.p)
).is_positive:
return False
def _eval_is_polar(self):
has_polar = any(arg.is_polar for arg in self.args)
return has_polar and \
all(arg.is_polar or arg.is_positive for arg in self.args)
def _eval_is_extended_real(self):
return self._eval_real_imag(True)
def _eval_real_imag(self, real):
zero = False
t_not_re_im = None
for t in self.args:
if (t.is_complex or t.is_infinite) is False and t.is_extended_real is False:
return False
elif t.is_imaginary: # I
real = not real
elif t.is_extended_real: # 2
if not zero:
z = t.is_zero
if not z and zero is False:
zero = z
elif z:
if all(a.is_finite for a in self.args):
return True
return
elif t.is_extended_real is False:
# symbolic or literal like `2 + I` or symbolic imaginary
if t_not_re_im:
return # complex terms might cancel
t_not_re_im = t
elif t.is_imaginary is False: # symbolic like `2` or `2 + I`
if t_not_re_im:
return # complex terms might cancel
t_not_re_im = t
else:
return
if t_not_re_im:
if t_not_re_im.is_extended_real is False:
if real: # like 3
return zero # 3*(smthng like 2 + I or i) is not real
if t_not_re_im.is_imaginary is False: # symbolic 2 or 2 + I
if not real: # like I
return zero # I*(smthng like 2 or 2 + I) is not real
elif zero is False:
return real # can't be trumped by 0
elif real:
return real # doesn't matter what zero is
def _eval_is_imaginary(self):
if all(a.is_zero is False and a.is_finite for a in self.args):
return self._eval_real_imag(False)
def _eval_is_hermitian(self):
return self._eval_herm_antiherm(True)
def _eval_is_antihermitian(self):
return self._eval_herm_antiherm(False)
def _eval_herm_antiherm(self, herm):
for t in self.args:
if t.is_hermitian is None or t.is_antihermitian is None:
return
if t.is_hermitian:
continue
elif t.is_antihermitian:
herm = not herm
else:
return
if herm is not False:
return herm
is_zero = self._eval_is_zero()
if is_zero:
return True
elif is_zero is False:
return herm
def _eval_is_irrational(self):
for t in self.args:
a = t.is_irrational
if a:
others = list(self.args)
others.remove(t)
if all((x.is_rational and fuzzy_not(x.is_zero)) is True for x in others):
return True
return
if a is None:
return
if all(x.is_real for x in self.args):
return False
def _eval_is_extended_positive(self):
"""Return True if self is positive, False if not, and None if it
cannot be determined.
Explanation
===========
This algorithm is non-recursive and works by keeping track of the
sign which changes when a negative or nonpositive is encountered.
Whether a nonpositive or nonnegative is seen is also tracked since
the presence of these makes it impossible to return True, but
possible to return False if the end result is nonpositive. e.g.
pos * neg * nonpositive -> pos or zero -> None is returned
pos * neg * nonnegative -> neg or zero -> False is returned
"""
return self._eval_pos_neg(1)
def _eval_pos_neg(self, sign):
saw_NON = saw_NOT = False
for t in self.args:
if t.is_extended_positive:
continue
elif t.is_extended_negative:
sign = -sign
elif t.is_zero:
if all(a.is_finite for a in self.args):
return False
return
elif t.is_extended_nonpositive:
sign = -sign
saw_NON = True
elif t.is_extended_nonnegative:
saw_NON = True
# FIXME: is_positive/is_negative is False doesn't take account of
# Symbol('x', infinite=True, extended_real=True) which has
# e.g. is_positive is False but has uncertain sign.
elif t.is_positive is False:
sign = -sign
if saw_NOT:
return
saw_NOT = True
elif t.is_negative is False:
if saw_NOT:
return
saw_NOT = True
else:
return
if sign == 1 and saw_NON is False and saw_NOT is False:
return True
if sign < 0:
return False
def _eval_is_extended_negative(self):
return self._eval_pos_neg(-1)
def _eval_is_odd(self):
is_integer = self._eval_is_integer()
if is_integer is not True:
return is_integer
from sympy.simplify.radsimp import fraction
n, d = fraction(self)
if d.is_Integer and d.is_even:
from sympy.ntheory.factor_ import trailing
# if minimal power of 2 in num vs den is
# positive then we have an even number
if (Add(*[i.as_base_exp()[1] for i in
Mul.make_args(n) if i.is_even]) - trailing(d.p)
).is_positive:
return False
return
r, acc = True, 1
for t in self.args:
if abs(t) is S.One:
continue
if t.is_even:
return False
if r is False:
pass
elif acc != 1 and (acc + t).is_odd:
r = False
elif t.is_even is None:
r = None
acc = t
return r
def _eval_is_even(self):
from sympy.simplify.radsimp import fraction
n, d = fraction(self)
if n.is_Integer and n.is_even:
# if minimal power of 2 in den vs num is not
# negative then this is not an integer and
# can't be even
from sympy.ntheory.factor_ import trailing
if (Add(*[i.as_base_exp()[1] for i in
Mul.make_args(d) if i.is_even]) - trailing(n.p)
).is_nonnegative:
return False
def _eval_is_composite(self):
"""
Here we count the number of arguments that have a minimum value
greater than two.
If there are more than one of such a symbol then the result is composite.
Else, the result cannot be determined.
"""
number_of_args = 0 # count of symbols with minimum value greater than one
for arg in self.args:
if not (arg.is_integer and arg.is_positive):
return None
if (arg-1).is_positive:
number_of_args += 1
if number_of_args > 1:
return True
def _eval_subs(self, old, new):
from sympy.functions.elementary.complexes import sign
from sympy.ntheory.factor_ import multiplicity
from sympy.simplify.powsimp import powdenest
from sympy.simplify.radsimp import fraction
if not old.is_Mul:
return None
# try keep replacement literal so -2*x doesn't replace 4*x
if old.args[0].is_Number and old.args[0] < 0:
if self.args[0].is_Number:
if self.args[0] < 0:
return self._subs(-old, -new)
return None
def base_exp(a):
# if I and -1 are in a Mul, they get both end up with
# a -1 base (see issue 6421); all we want here are the
# true Pow or exp separated into base and exponent
from sympy.functions.elementary.exponential import exp
if a.is_Pow or isinstance(a, exp):
return a.as_base_exp()
return a, S.One
def breakup(eq):
"""break up powers of eq when treated as a Mul:
b**(Rational*e) -> b**e, Rational
commutatives come back as a dictionary {b**e: Rational}
noncommutatives come back as a list [(b**e, Rational)]
"""
(c, nc) = (defaultdict(int), list())
for a in Mul.make_args(eq):
a = powdenest(a)
(b, e) = base_exp(a)
if e is not S.One:
(co, _) = e.as_coeff_mul()
b = Pow(b, e/co)
e = co
if a.is_commutative:
c[b] += e
else:
nc.append([b, e])
return (c, nc)
def rejoin(b, co):
"""
Put rational back with exponent; in general this is not ok, but
since we took it from the exponent for analysis, it's ok to put
it back.
"""
(b, e) = base_exp(b)
return Pow(b, e*co)
def ndiv(a, b):
"""if b divides a in an extractive way (like 1/4 divides 1/2
but not vice versa, and 2/5 does not divide 1/3) then return
the integer number of times it divides, else return 0.
"""
if not b.q % a.q or not a.q % b.q:
return int(a/b)
return 0
# give Muls in the denominator a chance to be changed (see issue 5651)
# rv will be the default return value
rv = None
n, d = fraction(self)
self2 = self
if d is not S.One:
self2 = n._subs(old, new)/d._subs(old, new)
if not self2.is_Mul:
return self2._subs(old, new)
if self2 != self:
rv = self2
# Now continue with regular substitution.
# handle the leading coefficient and use it to decide if anything
# should even be started; we always know where to find the Rational
# so it's a quick test
co_self = self2.args[0]
co_old = old.args[0]
co_xmul = None
if co_old.is_Rational and co_self.is_Rational:
# if coeffs are the same there will be no updating to do
# below after breakup() step; so skip (and keep co_xmul=None)
if co_old != co_self:
co_xmul = co_self.extract_multiplicatively(co_old)
elif co_old.is_Rational:
return rv
# break self and old into factors
(c, nc) = breakup(self2)
(old_c, old_nc) = breakup(old)
# update the coefficients if we had an extraction
# e.g. if co_self were 2*(3/35*x)**2 and co_old = 3/5
# then co_self in c is replaced by (3/5)**2 and co_residual
# is 2*(1/7)**2
if co_xmul and co_xmul.is_Rational and abs(co_old) != 1:
mult = S(multiplicity(abs(co_old), co_self))
c.pop(co_self)
if co_old in c:
c[co_old] += mult
else:
c[co_old] = mult
co_residual = co_self/co_old**mult
else:
co_residual = 1
# do quick tests to see if we can't succeed
ok = True
if len(old_nc) > len(nc):
# more non-commutative terms
ok = False
elif len(old_c) > len(c):
# more commutative terms
ok = False
elif {i[0] for i in old_nc}.difference({i[0] for i in nc}):
# unmatched non-commutative bases
ok = False
elif set(old_c).difference(set(c)):
# unmatched commutative terms
ok = False
elif any(sign(c[b]) != sign(old_c[b]) for b in old_c):
# differences in sign
ok = False
if not ok:
return rv
if not old_c:
cdid = None
else:
rat = []
for (b, old_e) in old_c.items():
c_e = c[b]
rat.append(ndiv(c_e, old_e))
if not rat[-1]:
return rv
cdid = min(rat)
if not old_nc:
ncdid = None
for i in range(len(nc)):
nc[i] = rejoin(*nc[i])
else:
ncdid = 0 # number of nc replacements we did
take = len(old_nc) # how much to look at each time
limit = cdid or S.Infinity # max number that we can take
failed = [] # failed terms will need subs if other terms pass
i = 0
while limit and i + take <= len(nc):
hit = False
# the bases must be equivalent in succession, and
# the powers must be extractively compatible on the
# first and last factor but equal in between.
rat = []
for j in range(take):
if nc[i + j][0] != old_nc[j][0]:
break
elif j == 0:
rat.append(ndiv(nc[i + j][1], old_nc[j][1]))
elif j == take - 1:
rat.append(ndiv(nc[i + j][1], old_nc[j][1]))
elif nc[i + j][1] != old_nc[j][1]:
break
else:
rat.append(1)
j += 1
else:
ndo = min(rat)
if ndo:
if take == 1:
if cdid:
ndo = min(cdid, ndo)
nc[i] = Pow(new, ndo)*rejoin(nc[i][0],
nc[i][1] - ndo*old_nc[0][1])
else:
ndo = 1
# the left residual
l = rejoin(nc[i][0], nc[i][1] - ndo*
old_nc[0][1])
# eliminate all middle terms
mid = new
# the right residual (which may be the same as the middle if take == 2)
ir = i + take - 1
r = (nc[ir][0], nc[ir][1] - ndo*
old_nc[-1][1])
if r[1]:
if i + take < len(nc):
nc[i:i + take] = [l*mid, r]
else:
r = rejoin(*r)
nc[i:i + take] = [l*mid*r]
else:
# there was nothing left on the right
nc[i:i + take] = [l*mid]
limit -= ndo
ncdid += ndo
hit = True
if not hit:
# do the subs on this failing factor
failed.append(i)
i += 1
else:
if not ncdid:
return rv
# although we didn't fail, certain nc terms may have
# failed so we rebuild them after attempting a partial
# subs on them
failed.extend(range(i, len(nc)))
for i in failed:
nc[i] = rejoin(*nc[i]).subs(old, new)
# rebuild the expression
if cdid is None:
do = ncdid
elif ncdid is None:
do = cdid
else:
do = min(ncdid, cdid)
margs = []
for b in c:
if b in old_c:
# calculate the new exponent
e = c[b] - old_c[b]*do
margs.append(rejoin(b, e))
else:
margs.append(rejoin(b.subs(old, new), c[b]))
if cdid and not ncdid:
# in case we are replacing commutative with non-commutative,
# we want the new term to come at the front just like the
# rest of this routine
margs = [Pow(new, cdid)] + margs
return co_residual*self2.func(*margs)*self2.func(*nc)
def _eval_nseries(self, x, n, logx, cdir=0):
from .function import PoleError
from sympy.functions.elementary.integers import ceiling
from sympy.series.order import Order
def coeff_exp(term, x):
lt = term.as_coeff_exponent(x)
if lt[0].has(x):
try:
lt = term.leadterm(x)
except ValueError:
return term, S.Zero
return lt
ords = []
try:
for t in self.args:
coeff, exp = t.leadterm(x)
if not coeff.has(x):
ords.append((t, exp))
else:
raise ValueError
n0 = sum(t[1] for t in ords if t[1].is_number)
facs = []
for t, m in ords:
n1 = ceiling(n - n0 + (m if m.is_number else 0))
s = t.nseries(x, n=n1, logx=logx, cdir=cdir)
ns = s.getn()
if ns is not None:
if ns < n1: # less than expected
n -= n1 - ns # reduce n
facs.append(s)
except (ValueError, NotImplementedError, TypeError, AttributeError, PoleError):
n0 = sympify(sum(t[1] for t in ords if t[1].is_number))
if n0.is_nonnegative:
n0 = S.Zero
facs = [t.nseries(x, n=ceiling(n-n0), logx=logx, cdir=cdir) for t in self.args]
from sympy.simplify.powsimp import powsimp
res = powsimp(self.func(*facs).expand(), combine='exp', deep=True)
if res.has(Order):
res += Order(x**n, x)
return res
res = S.Zero
ords2 = [Add.make_args(factor) for factor in facs]
for fac in product(*ords2):
ords3 = [coeff_exp(term, x) for term in fac]
coeffs, powers = zip(*ords3)
power = sum(powers)
if (power - n).is_negative:
res += Mul(*coeffs)*(x**power)
def max_degree(e, x):
if e is x:
return S.One
if e.is_Atom:
return S.Zero
if e.is_Add:
return max(max_degree(a, x) for a in e.args)
if e.is_Mul:
return Add(*[max_degree(a, x) for a in e.args])
if e.is_Pow:
return max_degree(e.base, x)*e.exp
return S.Zero
if self.is_polynomial(x):
from sympy.polys.polyerrors import PolynomialError
from sympy.polys.polytools import degree
try:
if max_degree(self, x) >= n or degree(self, x) != degree(res, x):
res += Order(x**n, x)
except PolynomialError:
pass
else:
return res
if res != self:
if (self - res).subs(x, 0) == S.Zero and n > 0:
lt = self._eval_as_leading_term(x, logx=logx, cdir=cdir)
if lt == S.Zero:
return res
res += Order(x**n, x)
return res
def _eval_as_leading_term(self, x, logx=None, cdir=0):
return self.func(*[t.as_leading_term(x, logx=logx, cdir=cdir) for t in self.args])
def _eval_conjugate(self):
return self.func(*[t.conjugate() for t in self.args])
def _eval_transpose(self):
return self.func(*[t.transpose() for t in self.args[::-1]])
def _eval_adjoint(self):
return self.func(*[t.adjoint() for t in self.args[::-1]])
def as_content_primitive(self, radical=False, clear=True):
"""Return the tuple (R, self/R) where R is the positive Rational
extracted from self.
Examples
========
>>> from sympy import sqrt
>>> (-3*sqrt(2)*(2 - 2*sqrt(2))).as_content_primitive()
(6, -sqrt(2)*(1 - sqrt(2)))
See docstring of Expr.as_content_primitive for more examples.
"""
coef = S.One
args = []
for a in self.args:
c, p = a.as_content_primitive(radical=radical, clear=clear)
coef *= c
if p is not S.One:
args.append(p)
# don't use self._from_args here to reconstruct args
# since there may be identical args now that should be combined
# e.g. (2+2*x)*(3+3*x) should be (6, (1 + x)**2) not (6, (1+x)*(1+x))
return coef, self.func(*args)
def as_ordered_factors(self, order=None):
"""Transform an expression into an ordered list of factors.
Examples
========
>>> from sympy import sin, cos
>>> from sympy.abc import x, y
>>> (2*x*y*sin(x)*cos(x)).as_ordered_factors()
[2, x, y, sin(x), cos(x)]
"""
cpart, ncpart = self.args_cnc()
cpart.sort(key=lambda expr: expr.sort_key(order=order))
return cpart + ncpart
@property
def _sorted_args(self):
return tuple(self.as_ordered_factors())
mul = AssocOpDispatcher('mul')
def prod(a, start=1):
"""Return product of elements of a. Start with int 1 so if only
ints are included then an int result is returned.
Examples
========
>>> from sympy import prod, S
>>> prod(range(3))
0
>>> type(_) is int
True
>>> prod([S(2), 3])
6
>>> _.is_Integer
True
You can start the product at something other than 1:
>>> prod([1, 2], 3)
6
"""
return reduce(operator.mul, a, start)
def _keep_coeff(coeff, factors, clear=True, sign=False):
"""Return ``coeff*factors`` unevaluated if necessary.
If ``clear`` is False, do not keep the coefficient as a factor
if it can be distributed on a single factor such that one or
more terms will still have integer coefficients.
If ``sign`` is True, allow a coefficient of -1 to remain factored out.
Examples
========
>>> from sympy.core.mul import _keep_coeff
>>> from sympy.abc import x, y
>>> from sympy import S
>>> _keep_coeff(S.Half, x + 2)
(x + 2)/2
>>> _keep_coeff(S.Half, x + 2, clear=False)
x/2 + 1
>>> _keep_coeff(S.Half, (x + 2)*y, clear=False)
y*(x + 2)/2
>>> _keep_coeff(S(-1), x + y)
-x - y
>>> _keep_coeff(S(-1), x + y, sign=True)
-(x + y)
"""
if not coeff.is_Number:
if factors.is_Number:
factors, coeff = coeff, factors
else:
return coeff*factors
if factors is S.One:
return coeff
if coeff is S.One:
return factors
elif coeff is S.NegativeOne and not sign:
return -factors
elif factors.is_Add:
if not clear and coeff.is_Rational and coeff.q != 1:
args = [i.as_coeff_Mul() for i in factors.args]
args = [(_keep_coeff(c, coeff), m) for c, m in args]
if any(c.is_Integer for c, _ in args):
return Add._from_args([Mul._from_args(
i[1:] if i[0] == 1 else i) for i in args])
return Mul(coeff, factors, evaluate=False)
elif factors.is_Mul:
margs = list(factors.args)
if margs[0].is_Number:
margs[0] *= coeff
if margs[0] == 1:
margs.pop(0)
else:
margs.insert(0, coeff)
return Mul._from_args(margs)
else:
m = coeff*factors
if m.is_Number and not factors.is_Number:
m = Mul._from_args((coeff, factors))
return m
def expand_2arg(e):
def do(e):
if e.is_Mul:
c, r = e.as_coeff_Mul()
if c.is_Number and r.is_Add:
return _unevaluated_Add(*[c*ri for ri in r.args])
return e
return bottom_up(e, do)
from .numbers import Rational
from .power import Pow
from .add import Add, _unevaluated_Add
|
32b3f50995872b53dd93c0488854547aa9eb02c9ea49f6cef85d155672503195 | """Tools for setting up interactive sessions. """
from sympy.external.gmpy import GROUND_TYPES
from sympy.external.importtools import version_tuple
from sympy.interactive.printing import init_printing
from sympy.utilities.misc import ARCH
preexec_source = """\
from sympy import *
x, y, z, t = symbols('x y z t')
k, m, n = symbols('k m n', integer=True)
f, g, h = symbols('f g h', cls=Function)
init_printing()
"""
verbose_message = """\
These commands were executed:
%(source)s
Documentation can be found at https://docs.sympy.org/%(version)s
"""
no_ipython = """\
Could not locate IPython. Having IPython installed is greatly recommended.
See http://ipython.scipy.org for more details. If you use Debian/Ubuntu,
just install the 'ipython' package and start isympy again.
"""
def _make_message(ipython=True, quiet=False, source=None):
"""Create a banner for an interactive session. """
from sympy import __version__ as sympy_version
from sympy import SYMPY_DEBUG
import sys
import os
if quiet:
return ""
python_version = "%d.%d.%d" % sys.version_info[:3]
if ipython:
shell_name = "IPython"
else:
shell_name = "Python"
info = ['ground types: %s' % GROUND_TYPES]
cache = os.getenv('SYMPY_USE_CACHE')
if cache is not None and cache.lower() == 'no':
info.append('cache: off')
if SYMPY_DEBUG:
info.append('debugging: on')
args = shell_name, sympy_version, python_version, ARCH, ', '.join(info)
message = "%s console for SymPy %s (Python %s-%s) (%s)\n" % args
if source is None:
source = preexec_source
_source = ""
for line in source.split('\n')[:-1]:
if not line:
_source += '\n'
else:
_source += '>>> ' + line + '\n'
doc_version = sympy_version
if 'dev' in doc_version:
doc_version = "dev"
else:
doc_version = "%s/" % doc_version
message += '\n' + verbose_message % {'source': _source,
'version': doc_version}
return message
def int_to_Integer(s):
"""
Wrap integer literals with Integer.
This is based on the decistmt example from
http://docs.python.org/library/tokenize.html.
Only integer literals are converted. Float literals are left alone.
Examples
========
>>> from sympy import Integer # noqa: F401
>>> from sympy.interactive.session import int_to_Integer
>>> s = '1.2 + 1/2 - 0x12 + a1'
>>> int_to_Integer(s)
'1.2 +Integer (1 )/Integer (2 )-Integer (0x12 )+a1 '
>>> s = 'print (1/2)'
>>> int_to_Integer(s)
'print (Integer (1 )/Integer (2 ))'
>>> exec(s)
0.5
>>> exec(int_to_Integer(s))
1/2
"""
from tokenize import generate_tokens, untokenize, NUMBER, NAME, OP
from io import StringIO
def _is_int(num):
"""
Returns true if string value num (with token NUMBER) represents an integer.
"""
# XXX: Is there something in the standard library that will do this?
if '.' in num or 'j' in num.lower() or 'e' in num.lower():
return False
return True
result = []
g = generate_tokens(StringIO(s).readline) # tokenize the string
for toknum, tokval, _, _, _ in g:
if toknum == NUMBER and _is_int(tokval): # replace NUMBER tokens
result.extend([
(NAME, 'Integer'),
(OP, '('),
(NUMBER, tokval),
(OP, ')')
])
else:
result.append((toknum, tokval))
return untokenize(result)
def enable_automatic_int_sympification(shell):
"""
Allow IPython to automatically convert integer literals to Integer.
"""
import ast
old_run_cell = shell.run_cell
def my_run_cell(cell, *args, **kwargs):
try:
# Check the cell for syntax errors. This way, the syntax error
# will show the original input, not the transformed input. The
# downside here is that IPython magic like %timeit will not work
# with transformed input (but on the other hand, IPython magic
# that doesn't expect transformed input will continue to work).
ast.parse(cell)
except SyntaxError:
pass
else:
cell = int_to_Integer(cell)
return old_run_cell(cell, *args, **kwargs)
shell.run_cell = my_run_cell
def enable_automatic_symbols(shell):
"""Allow IPython to automatically create symbols (``isympy -a``). """
# XXX: This should perhaps use tokenize, like int_to_Integer() above.
# This would avoid re-executing the code, which can lead to subtle
# issues. For example:
#
# In [1]: a = 1
#
# In [2]: for i in range(10):
# ...: a += 1
# ...:
#
# In [3]: a
# Out[3]: 11
#
# In [4]: a = 1
#
# In [5]: for i in range(10):
# ...: a += 1
# ...: print b
# ...:
# b
# b
# b
# b
# b
# b
# b
# b
# b
# b
#
# In [6]: a
# Out[6]: 12
#
# Note how the for loop is executed again because `b` was not defined, but `a`
# was already incremented once, so the result is that it is incremented
# multiple times.
import re
re_nameerror = re.compile(
"name '(?P<symbol>[A-Za-z_][A-Za-z0-9_]*)' is not defined")
def _handler(self, etype, value, tb, tb_offset=None):
"""Handle :exc:`NameError` exception and allow injection of missing symbols. """
if etype is NameError and tb.tb_next and not tb.tb_next.tb_next:
match = re_nameerror.match(str(value))
if match is not None:
# XXX: Make sure Symbol is in scope. Otherwise you'll get infinite recursion.
self.run_cell("%(symbol)s = Symbol('%(symbol)s')" %
{'symbol': match.group("symbol")}, store_history=False)
try:
code = self.user_ns['In'][-1]
except (KeyError, IndexError):
pass
else:
self.run_cell(code, store_history=False)
return None
finally:
self.run_cell("del %s" % match.group("symbol"),
store_history=False)
stb = self.InteractiveTB.structured_traceback(
etype, value, tb, tb_offset=tb_offset)
self._showtraceback(etype, value, stb)
shell.set_custom_exc((NameError,), _handler)
def init_ipython_session(shell=None, argv=[], auto_symbols=False, auto_int_to_Integer=False):
"""Construct new IPython session. """
import IPython
if version_tuple(IPython.__version__) >= version_tuple('0.11'):
if not shell:
# use an app to parse the command line, and init config
# IPython 1.0 deprecates the frontend module, so we import directly
# from the terminal module to prevent a deprecation message from being
# shown.
if version_tuple(IPython.__version__) >= version_tuple('1.0'):
from IPython.terminal import ipapp
else:
from IPython.frontend.terminal import ipapp
app = ipapp.TerminalIPythonApp()
# don't draw IPython banner during initialization:
app.display_banner = False
app.initialize(argv)
shell = app.shell
if auto_symbols:
enable_automatic_symbols(shell)
if auto_int_to_Integer:
enable_automatic_int_sympification(shell)
return shell
else:
from IPython.Shell import make_IPython
return make_IPython(argv)
def init_python_session():
"""Construct new Python session. """
from code import InteractiveConsole
class SymPyConsole(InteractiveConsole):
"""An interactive console with readline support. """
def __init__(self):
ns_locals = {}
InteractiveConsole.__init__(self, locals=ns_locals)
try:
import rlcompleter
import readline
except ImportError:
pass
else:
import os
import atexit
readline.set_completer(rlcompleter.Completer(ns_locals).complete)
readline.parse_and_bind('tab: complete')
if hasattr(readline, 'read_history_file'):
history = os.path.expanduser('~/.sympy-history')
try:
readline.read_history_file(history)
except OSError:
pass
atexit.register(readline.write_history_file, history)
return SymPyConsole()
def init_session(ipython=None, pretty_print=True, order=None,
use_unicode=None, use_latex=None, quiet=False, auto_symbols=False,
auto_int_to_Integer=False, str_printer=None, pretty_printer=None,
latex_printer=None, argv=[]):
"""
Initialize an embedded IPython or Python session. The IPython session is
initiated with the --pylab option, without the numpy imports, so that
matplotlib plotting can be interactive.
Parameters
==========
pretty_print: boolean
If True, use pretty_print to stringify;
if False, use sstrrepr to stringify.
order: string or None
There are a few different settings for this parameter:
lex (default), which is lexographic order;
grlex, which is graded lexographic order;
grevlex, which is reversed graded lexographic order;
old, which is used for compatibility reasons and for long expressions;
None, which sets it to lex.
use_unicode: boolean or None
If True, use unicode characters;
if False, do not use unicode characters.
use_latex: boolean or None
If True, use latex rendering if IPython GUI's;
if False, do not use latex rendering.
quiet: boolean
If True, init_session will not print messages regarding its status;
if False, init_session will print messages regarding its status.
auto_symbols: boolean
If True, IPython will automatically create symbols for you.
If False, it will not.
The default is False.
auto_int_to_Integer: boolean
If True, IPython will automatically wrap int literals with Integer, so
that things like 1/2 give Rational(1, 2).
If False, it will not.
The default is False.
ipython: boolean or None
If True, printing will initialize for an IPython console;
if False, printing will initialize for a normal console;
The default is None, which automatically determines whether we are in
an ipython instance or not.
str_printer: function, optional, default=None
A custom string printer function. This should mimic
sympy.printing.sstrrepr().
pretty_printer: function, optional, default=None
A custom pretty printer. This should mimic sympy.printing.pretty().
latex_printer: function, optional, default=None
A custom LaTeX printer. This should mimic sympy.printing.latex()
This should mimic sympy.printing.latex().
argv: list of arguments for IPython
See sympy.bin.isympy for options that can be used to initialize IPython.
See Also
========
sympy.interactive.printing.init_printing: for examples and the rest of the parameters.
Examples
========
>>> from sympy import init_session, Symbol, sin, sqrt
>>> sin(x) #doctest: +SKIP
NameError: name 'x' is not defined
>>> init_session() #doctest: +SKIP
>>> sin(x) #doctest: +SKIP
sin(x)
>>> sqrt(5) #doctest: +SKIP
___
\\/ 5
>>> init_session(pretty_print=False) #doctest: +SKIP
>>> sqrt(5) #doctest: +SKIP
sqrt(5)
>>> y + x + y**2 + x**2 #doctest: +SKIP
x**2 + x + y**2 + y
>>> init_session(order='grlex') #doctest: +SKIP
>>> y + x + y**2 + x**2 #doctest: +SKIP
x**2 + y**2 + x + y
>>> init_session(order='grevlex') #doctest: +SKIP
>>> y * x**2 + x * y**2 #doctest: +SKIP
x**2*y + x*y**2
>>> init_session(order='old') #doctest: +SKIP
>>> x**2 + y**2 + x + y #doctest: +SKIP
x + y + x**2 + y**2
>>> theta = Symbol('theta') #doctest: +SKIP
>>> theta #doctest: +SKIP
theta
>>> init_session(use_unicode=True) #doctest: +SKIP
>>> theta # doctest: +SKIP
\u03b8
"""
import sys
in_ipython = False
if ipython is not False:
try:
import IPython
except ImportError:
if ipython is True:
raise RuntimeError("IPython is not available on this system")
ip = None
else:
try:
from IPython import get_ipython
ip = get_ipython()
except ImportError:
ip = None
in_ipython = bool(ip)
if ipython is None:
ipython = in_ipython
if ipython is False:
ip = init_python_session()
mainloop = ip.interact
else:
ip = init_ipython_session(ip, argv=argv, auto_symbols=auto_symbols,
auto_int_to_Integer=auto_int_to_Integer)
if version_tuple(IPython.__version__) >= version_tuple('0.11'):
# runsource is gone, use run_cell instead, which doesn't
# take a symbol arg. The second arg is `store_history`,
# and False means don't add the line to IPython's history.
ip.runsource = lambda src, symbol='exec': ip.run_cell(src, False)
# Enable interactive plotting using pylab.
try:
ip.enable_pylab(import_all=False)
except Exception:
# Causes an import error if matplotlib is not installed.
# Causes other errors (depending on the backend) if there
# is no display, or if there is some problem in the
# backend, so we have a bare "except Exception" here
pass
if not in_ipython:
mainloop = ip.mainloop
if auto_symbols and (not ipython or version_tuple(IPython.__version__) < version_tuple('0.11')):
raise RuntimeError("automatic construction of symbols is possible only in IPython 0.11 or above")
if auto_int_to_Integer and (not ipython or version_tuple(IPython.__version__) < version_tuple('0.11')):
raise RuntimeError("automatic int to Integer transformation is possible only in IPython 0.11 or above")
_preexec_source = preexec_source
ip.runsource(_preexec_source, symbol='exec')
init_printing(pretty_print=pretty_print, order=order,
use_unicode=use_unicode, use_latex=use_latex, ip=ip,
str_printer=str_printer, pretty_printer=pretty_printer,
latex_printer=latex_printer)
message = _make_message(ipython, quiet, _preexec_source)
if not in_ipython:
print(message)
mainloop()
sys.exit('Exiting ...')
else:
print(message)
import atexit
atexit.register(lambda: print("Exiting ...\n"))
|
20589eca3e0b9056bb3438864d90f7570518ee648ddc61234e12a4d33e56275b | """Definitions of monomial orderings. """
from __future__ import annotations
__all__ = ["lex", "grlex", "grevlex", "ilex", "igrlex", "igrevlex"]
from sympy.core import Symbol
from sympy.utilities.iterables import iterable
class MonomialOrder:
"""Base class for monomial orderings. """
alias: str | None = None
is_global: bool | None = None
is_default = False
def __repr__(self):
return self.__class__.__name__ + "()"
def __str__(self):
return self.alias
def __call__(self, monomial):
raise NotImplementedError
def __eq__(self, other):
return self.__class__ == other.__class__
def __hash__(self):
return hash(self.__class__)
def __ne__(self, other):
return not (self == other)
class LexOrder(MonomialOrder):
"""Lexicographic order of monomials. """
alias = 'lex'
is_global = True
is_default = True
def __call__(self, monomial):
return monomial
class GradedLexOrder(MonomialOrder):
"""Graded lexicographic order of monomials. """
alias = 'grlex'
is_global = True
def __call__(self, monomial):
return (sum(monomial), monomial)
class ReversedGradedLexOrder(MonomialOrder):
"""Reversed graded lexicographic order of monomials. """
alias = 'grevlex'
is_global = True
def __call__(self, monomial):
return (sum(monomial), tuple(reversed([-m for m in monomial])))
class ProductOrder(MonomialOrder):
"""
A product order built from other monomial orders.
Given (not necessarily total) orders O1, O2, ..., On, their product order
P is defined as M1 > M2 iff there exists i such that O1(M1) = O2(M2),
..., Oi(M1) = Oi(M2), O{i+1}(M1) > O{i+1}(M2).
Product orders are typically built from monomial orders on different sets
of variables.
ProductOrder is constructed by passing a list of pairs
[(O1, L1), (O2, L2), ...] where Oi are MonomialOrders and Li are callables.
Upon comparison, the Li are passed the total monomial, and should filter
out the part of the monomial to pass to Oi.
Examples
========
We can use a lexicographic order on x_1, x_2 and also on
y_1, y_2, y_3, and their product on {x_i, y_i} as follows:
>>> from sympy.polys.orderings import lex, grlex, ProductOrder
>>> P = ProductOrder(
... (lex, lambda m: m[:2]), # lex order on x_1 and x_2 of monomial
... (grlex, lambda m: m[2:]) # grlex on y_1, y_2, y_3
... )
>>> P((2, 1, 1, 0, 0)) > P((1, 10, 0, 2, 0))
True
Here the exponent `2` of `x_1` in the first monomial
(`x_1^2 x_2 y_1`) is bigger than the exponent `1` of `x_1` in the
second monomial (`x_1 x_2^10 y_2^2`), so the first monomial is greater
in the product ordering.
>>> P((2, 1, 1, 0, 0)) < P((2, 1, 0, 2, 0))
True
Here the exponents of `x_1` and `x_2` agree, so the grlex order on
`y_1, y_2, y_3` is used to decide the ordering. In this case the monomial
`y_2^2` is ordered larger than `y_1`, since for the grlex order the degree
of the monomial is most important.
"""
def __init__(self, *args):
self.args = args
def __call__(self, monomial):
return tuple(O(lamda(monomial)) for (O, lamda) in self.args)
def __repr__(self):
contents = [repr(x[0]) for x in self.args]
return self.__class__.__name__ + '(' + ", ".join(contents) + ')'
def __str__(self):
contents = [str(x[0]) for x in self.args]
return self.__class__.__name__ + '(' + ", ".join(contents) + ')'
def __eq__(self, other):
if not isinstance(other, ProductOrder):
return False
return self.args == other.args
def __hash__(self):
return hash((self.__class__, self.args))
@property
def is_global(self):
if all(o.is_global is True for o, _ in self.args):
return True
if all(o.is_global is False for o, _ in self.args):
return False
return None
class InverseOrder(MonomialOrder):
"""
The "inverse" of another monomial order.
If O is any monomial order, we can construct another monomial order iO
such that `A >_{iO} B` if and only if `B >_O A`. This is useful for
constructing local orders.
Note that many algorithms only work with *global* orders.
For example, in the inverse lexicographic order on a single variable `x`,
high powers of `x` count as small:
>>> from sympy.polys.orderings import lex, InverseOrder
>>> ilex = InverseOrder(lex)
>>> ilex((5,)) < ilex((0,))
True
"""
def __init__(self, O):
self.O = O
def __str__(self):
return "i" + str(self.O)
def __call__(self, monomial):
def inv(l):
if iterable(l):
return tuple(inv(x) for x in l)
return -l
return inv(self.O(monomial))
@property
def is_global(self):
if self.O.is_global is True:
return False
if self.O.is_global is False:
return True
return None
def __eq__(self, other):
return isinstance(other, InverseOrder) and other.O == self.O
def __hash__(self):
return hash((self.__class__, self.O))
lex = LexOrder()
grlex = GradedLexOrder()
grevlex = ReversedGradedLexOrder()
ilex = InverseOrder(lex)
igrlex = InverseOrder(grlex)
igrevlex = InverseOrder(grevlex)
_monomial_key = {
'lex': lex,
'grlex': grlex,
'grevlex': grevlex,
'ilex': ilex,
'igrlex': igrlex,
'igrevlex': igrevlex
}
def monomial_key(order=None, gens=None):
"""
Return a function defining admissible order on monomials.
The result of a call to :func:`monomial_key` is a function which should
be used as a key to :func:`sorted` built-in function, to provide order
in a set of monomials of the same length.
Currently supported monomial orderings are:
1. lex - lexicographic order (default)
2. grlex - graded lexicographic order
3. grevlex - reversed graded lexicographic order
4. ilex, igrlex, igrevlex - the corresponding inverse orders
If the ``order`` input argument is not a string but has ``__call__``
attribute, then it will pass through with an assumption that the
callable object defines an admissible order on monomials.
If the ``gens`` input argument contains a list of generators, the
resulting key function can be used to sort SymPy ``Expr`` objects.
"""
if order is None:
order = lex
if isinstance(order, Symbol):
order = str(order)
if isinstance(order, str):
try:
order = _monomial_key[order]
except KeyError:
raise ValueError("supported monomial orderings are 'lex', 'grlex' and 'grevlex', got %r" % order)
if hasattr(order, '__call__'):
if gens is not None:
def _order(expr):
return order(expr.as_poly(*gens).degree_list())
return _order
return order
else:
raise ValueError("monomial ordering specification must be a string or a callable, got %s" % order)
class _ItemGetter:
"""Helper class to return a subsequence of values."""
def __init__(self, seq):
self.seq = tuple(seq)
def __call__(self, m):
return tuple(m[idx] for idx in self.seq)
def __eq__(self, other):
if not isinstance(other, _ItemGetter):
return False
return self.seq == other.seq
def build_product_order(arg, gens):
"""
Build a monomial order on ``gens``.
``arg`` should be a tuple of iterables. The first element of each iterable
should be a string or monomial order (will be passed to monomial_key),
the others should be subsets of the generators. This function will build
the corresponding product order.
For example, build a product of two grlex orders:
>>> from sympy.polys.orderings import build_product_order
>>> from sympy.abc import x, y, z, t
>>> O = build_product_order((("grlex", x, y), ("grlex", z, t)), [x, y, z, t])
>>> O((1, 2, 3, 4))
((3, (1, 2)), (7, (3, 4)))
"""
gens2idx = {}
for i, g in enumerate(gens):
gens2idx[g] = i
order = []
for expr in arg:
name = expr[0]
var = expr[1:]
def makelambda(var):
return _ItemGetter(gens2idx[g] for g in var)
order.append((monomial_key(name), makelambda(var)))
return ProductOrder(*order)
|
2f0359ade5c65470b9d02cf5f9dfc13402dab6217cafabe4eee0e81a1a6476c7 | """Sparse polynomial rings. """
from __future__ import annotations
from typing import Any
from operator import add, mul, lt, le, gt, ge
from functools import reduce
from types import GeneratorType
from sympy.core.expr import Expr
from sympy.core.numbers import igcd, oo
from sympy.core.symbol import Symbol, symbols as _symbols
from sympy.core.sympify import CantSympify, sympify
from sympy.ntheory.multinomial import multinomial_coefficients
from sympy.polys.compatibility import IPolys
from sympy.polys.constructor import construct_domain
from sympy.polys.densebasic import dmp_to_dict, dmp_from_dict
from sympy.polys.domains.domainelement import DomainElement
from sympy.polys.domains.polynomialring import PolynomialRing
from sympy.polys.heuristicgcd import heugcd
from sympy.polys.monomials import MonomialOps
from sympy.polys.orderings import lex
from sympy.polys.polyerrors import (
CoercionFailed, GeneratorsError,
ExactQuotientFailed, MultivariatePolynomialError)
from sympy.polys.polyoptions import (Domain as DomainOpt,
Order as OrderOpt, build_options)
from sympy.polys.polyutils import (expr_from_dict, _dict_reorder,
_parallel_dict_from_expr)
from sympy.printing.defaults import DefaultPrinting
from sympy.utilities import public
from sympy.utilities.iterables import is_sequence
from sympy.utilities.magic import pollute
@public
def ring(symbols, domain, order=lex):
"""Construct a polynomial ring returning ``(ring, x_1, ..., x_n)``.
Parameters
==========
symbols : str
Symbol/Expr or sequence of str, Symbol/Expr (non-empty)
domain : :class:`~.Domain` or coercible
order : :class:`~.MonomialOrder` or coercible, optional, defaults to ``lex``
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.orderings import lex
>>> R, x, y, z = ring("x,y,z", ZZ, lex)
>>> R
Polynomial ring in x, y, z over ZZ with lex order
>>> x + y + z
x + y + z
>>> type(_)
<class 'sympy.polys.rings.PolyElement'>
"""
_ring = PolyRing(symbols, domain, order)
return (_ring,) + _ring.gens
@public
def xring(symbols, domain, order=lex):
"""Construct a polynomial ring returning ``(ring, (x_1, ..., x_n))``.
Parameters
==========
symbols : str
Symbol/Expr or sequence of str, Symbol/Expr (non-empty)
domain : :class:`~.Domain` or coercible
order : :class:`~.MonomialOrder` or coercible, optional, defaults to ``lex``
Examples
========
>>> from sympy.polys.rings import xring
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.orderings import lex
>>> R, (x, y, z) = xring("x,y,z", ZZ, lex)
>>> R
Polynomial ring in x, y, z over ZZ with lex order
>>> x + y + z
x + y + z
>>> type(_)
<class 'sympy.polys.rings.PolyElement'>
"""
_ring = PolyRing(symbols, domain, order)
return (_ring, _ring.gens)
@public
def vring(symbols, domain, order=lex):
"""Construct a polynomial ring and inject ``x_1, ..., x_n`` into the global namespace.
Parameters
==========
symbols : str
Symbol/Expr or sequence of str, Symbol/Expr (non-empty)
domain : :class:`~.Domain` or coercible
order : :class:`~.MonomialOrder` or coercible, optional, defaults to ``lex``
Examples
========
>>> from sympy.polys.rings import vring
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.orderings import lex
>>> vring("x,y,z", ZZ, lex)
Polynomial ring in x, y, z over ZZ with lex order
>>> x + y + z # noqa:
x + y + z
>>> type(_)
<class 'sympy.polys.rings.PolyElement'>
"""
_ring = PolyRing(symbols, domain, order)
pollute([ sym.name for sym in _ring.symbols ], _ring.gens)
return _ring
@public
def sring(exprs, *symbols, **options):
"""Construct a ring deriving generators and domain from options and input expressions.
Parameters
==========
exprs : :class:`~.Expr` or sequence of :class:`~.Expr` (sympifiable)
symbols : sequence of :class:`~.Symbol`/:class:`~.Expr`
options : keyword arguments understood by :class:`~.Options`
Examples
========
>>> from sympy import sring, symbols
>>> x, y, z = symbols("x,y,z")
>>> R, f = sring(x + 2*y + 3*z)
>>> R
Polynomial ring in x, y, z over ZZ with lex order
>>> f
x + 2*y + 3*z
>>> type(_)
<class 'sympy.polys.rings.PolyElement'>
"""
single = False
if not is_sequence(exprs):
exprs, single = [exprs], True
exprs = list(map(sympify, exprs))
opt = build_options(symbols, options)
# TODO: rewrite this so that it doesn't use expand() (see poly()).
reps, opt = _parallel_dict_from_expr(exprs, opt)
if opt.domain is None:
coeffs = sum([ list(rep.values()) for rep in reps ], [])
opt.domain, coeffs_dom = construct_domain(coeffs, opt=opt)
coeff_map = dict(zip(coeffs, coeffs_dom))
reps = [{m: coeff_map[c] for m, c in rep.items()} for rep in reps]
_ring = PolyRing(opt.gens, opt.domain, opt.order)
polys = list(map(_ring.from_dict, reps))
if single:
return (_ring, polys[0])
else:
return (_ring, polys)
def _parse_symbols(symbols):
if isinstance(symbols, str):
return _symbols(symbols, seq=True) if symbols else ()
elif isinstance(symbols, Expr):
return (symbols,)
elif is_sequence(symbols):
if all(isinstance(s, str) for s in symbols):
return _symbols(symbols)
elif all(isinstance(s, Expr) for s in symbols):
return symbols
raise GeneratorsError("expected a string, Symbol or expression or a non-empty sequence of strings, Symbols or expressions")
_ring_cache: dict[Any, Any] = {}
class PolyRing(DefaultPrinting, IPolys):
"""Multivariate distributed polynomial ring. """
def __new__(cls, symbols, domain, order=lex):
symbols = tuple(_parse_symbols(symbols))
ngens = len(symbols)
domain = DomainOpt.preprocess(domain)
order = OrderOpt.preprocess(order)
_hash_tuple = (cls.__name__, symbols, ngens, domain, order)
obj = _ring_cache.get(_hash_tuple)
if obj is None:
if domain.is_Composite and set(symbols) & set(domain.symbols):
raise GeneratorsError("polynomial ring and it's ground domain share generators")
obj = object.__new__(cls)
obj._hash_tuple = _hash_tuple
obj._hash = hash(_hash_tuple)
obj.dtype = type("PolyElement", (PolyElement,), {"ring": obj})
obj.symbols = symbols
obj.ngens = ngens
obj.domain = domain
obj.order = order
obj.zero_monom = (0,)*ngens
obj.gens = obj._gens()
obj._gens_set = set(obj.gens)
obj._one = [(obj.zero_monom, domain.one)]
if ngens:
# These expect monomials in at least one variable
codegen = MonomialOps(ngens)
obj.monomial_mul = codegen.mul()
obj.monomial_pow = codegen.pow()
obj.monomial_mulpow = codegen.mulpow()
obj.monomial_ldiv = codegen.ldiv()
obj.monomial_div = codegen.div()
obj.monomial_lcm = codegen.lcm()
obj.monomial_gcd = codegen.gcd()
else:
monunit = lambda a, b: ()
obj.monomial_mul = monunit
obj.monomial_pow = monunit
obj.monomial_mulpow = lambda a, b, c: ()
obj.monomial_ldiv = monunit
obj.monomial_div = monunit
obj.monomial_lcm = monunit
obj.monomial_gcd = monunit
if order is lex:
obj.leading_expv = max
else:
obj.leading_expv = lambda f: max(f, key=order)
for symbol, generator in zip(obj.symbols, obj.gens):
if isinstance(symbol, Symbol):
name = symbol.name
if not hasattr(obj, name):
setattr(obj, name, generator)
_ring_cache[_hash_tuple] = obj
return obj
def _gens(self):
"""Return a list of polynomial generators. """
one = self.domain.one
_gens = []
for i in range(self.ngens):
expv = self.monomial_basis(i)
poly = self.zero
poly[expv] = one
_gens.append(poly)
return tuple(_gens)
def __getnewargs__(self):
return (self.symbols, self.domain, self.order)
def __getstate__(self):
state = self.__dict__.copy()
del state["leading_expv"]
for key, value in state.items():
if key.startswith("monomial_"):
del state[key]
return state
def __hash__(self):
return self._hash
def __eq__(self, other):
return isinstance(other, PolyRing) and \
(self.symbols, self.domain, self.ngens, self.order) == \
(other.symbols, other.domain, other.ngens, other.order)
def __ne__(self, other):
return not self == other
def clone(self, symbols=None, domain=None, order=None):
return self.__class__(symbols or self.symbols, domain or self.domain, order or self.order)
def monomial_basis(self, i):
"""Return the ith-basis element. """
basis = [0]*self.ngens
basis[i] = 1
return tuple(basis)
@property
def zero(self):
return self.dtype()
@property
def one(self):
return self.dtype(self._one)
def domain_new(self, element, orig_domain=None):
return self.domain.convert(element, orig_domain)
def ground_new(self, coeff):
return self.term_new(self.zero_monom, coeff)
def term_new(self, monom, coeff):
coeff = self.domain_new(coeff)
poly = self.zero
if coeff:
poly[monom] = coeff
return poly
def ring_new(self, element):
if isinstance(element, PolyElement):
if self == element.ring:
return element
elif isinstance(self.domain, PolynomialRing) and self.domain.ring == element.ring:
return self.ground_new(element)
else:
raise NotImplementedError("conversion")
elif isinstance(element, str):
raise NotImplementedError("parsing")
elif isinstance(element, dict):
return self.from_dict(element)
elif isinstance(element, list):
try:
return self.from_terms(element)
except ValueError:
return self.from_list(element)
elif isinstance(element, Expr):
return self.from_expr(element)
else:
return self.ground_new(element)
__call__ = ring_new
def from_dict(self, element, orig_domain=None):
domain_new = self.domain_new
poly = self.zero
for monom, coeff in element.items():
coeff = domain_new(coeff, orig_domain)
if coeff:
poly[monom] = coeff
return poly
def from_terms(self, element, orig_domain=None):
return self.from_dict(dict(element), orig_domain)
def from_list(self, element):
return self.from_dict(dmp_to_dict(element, self.ngens-1, self.domain))
def _rebuild_expr(self, expr, mapping):
domain = self.domain
def _rebuild(expr):
generator = mapping.get(expr)
if generator is not None:
return generator
elif expr.is_Add:
return reduce(add, list(map(_rebuild, expr.args)))
elif expr.is_Mul:
return reduce(mul, list(map(_rebuild, expr.args)))
else:
# XXX: Use as_base_exp() to handle Pow(x, n) and also exp(n)
# XXX: E can be a generator e.g. sring([exp(2)]) -> ZZ[E]
base, exp = expr.as_base_exp()
if exp.is_Integer and exp > 1:
return _rebuild(base)**int(exp)
else:
return self.ground_new(domain.convert(expr))
return _rebuild(sympify(expr))
def from_expr(self, expr):
mapping = dict(list(zip(self.symbols, self.gens)))
try:
poly = self._rebuild_expr(expr, mapping)
except CoercionFailed:
raise ValueError("expected an expression convertible to a polynomial in %s, got %s" % (self, expr))
else:
return self.ring_new(poly)
def index(self, gen):
"""Compute index of ``gen`` in ``self.gens``. """
if gen is None:
if self.ngens:
i = 0
else:
i = -1 # indicate impossible choice
elif isinstance(gen, int):
i = gen
if 0 <= i and i < self.ngens:
pass
elif -self.ngens <= i and i <= -1:
i = -i - 1
else:
raise ValueError("invalid generator index: %s" % gen)
elif isinstance(gen, self.dtype):
try:
i = self.gens.index(gen)
except ValueError:
raise ValueError("invalid generator: %s" % gen)
elif isinstance(gen, str):
try:
i = self.symbols.index(gen)
except ValueError:
raise ValueError("invalid generator: %s" % gen)
else:
raise ValueError("expected a polynomial generator, an integer, a string or None, got %s" % gen)
return i
def drop(self, *gens):
"""Remove specified generators from this ring. """
indices = set(map(self.index, gens))
symbols = [ s for i, s in enumerate(self.symbols) if i not in indices ]
if not symbols:
return self.domain
else:
return self.clone(symbols=symbols)
def __getitem__(self, key):
symbols = self.symbols[key]
if not symbols:
return self.domain
else:
return self.clone(symbols=symbols)
def to_ground(self):
# TODO: should AlgebraicField be a Composite domain?
if self.domain.is_Composite or hasattr(self.domain, 'domain'):
return self.clone(domain=self.domain.domain)
else:
raise ValueError("%s is not a composite domain" % self.domain)
def to_domain(self):
return PolynomialRing(self)
def to_field(self):
from sympy.polys.fields import FracField
return FracField(self.symbols, self.domain, self.order)
@property
def is_univariate(self):
return len(self.gens) == 1
@property
def is_multivariate(self):
return len(self.gens) > 1
def add(self, *objs):
"""
Add a sequence of polynomials or containers of polynomials.
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> R, x = ring("x", ZZ)
>>> R.add([ x**2 + 2*i + 3 for i in range(4) ])
4*x**2 + 24
>>> _.factor_list()
(4, [(x**2 + 6, 1)])
"""
p = self.zero
for obj in objs:
if is_sequence(obj, include=GeneratorType):
p += self.add(*obj)
else:
p += obj
return p
def mul(self, *objs):
"""
Multiply a sequence of polynomials or containers of polynomials.
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> R, x = ring("x", ZZ)
>>> R.mul([ x**2 + 2*i + 3 for i in range(4) ])
x**8 + 24*x**6 + 206*x**4 + 744*x**2 + 945
>>> _.factor_list()
(1, [(x**2 + 3, 1), (x**2 + 5, 1), (x**2 + 7, 1), (x**2 + 9, 1)])
"""
p = self.one
for obj in objs:
if is_sequence(obj, include=GeneratorType):
p *= self.mul(*obj)
else:
p *= obj
return p
def drop_to_ground(self, *gens):
r"""
Remove specified generators from the ring and inject them into
its domain.
"""
indices = set(map(self.index, gens))
symbols = [s for i, s in enumerate(self.symbols) if i not in indices]
gens = [gen for i, gen in enumerate(self.gens) if i not in indices]
if not symbols:
return self
else:
return self.clone(symbols=symbols, domain=self.drop(*gens))
def compose(self, other):
"""Add the generators of ``other`` to ``self``"""
if self != other:
syms = set(self.symbols).union(set(other.symbols))
return self.clone(symbols=list(syms))
else:
return self
def add_gens(self, symbols):
"""Add the elements of ``symbols`` as generators to ``self``"""
syms = set(self.symbols).union(set(symbols))
return self.clone(symbols=list(syms))
class PolyElement(DomainElement, DefaultPrinting, CantSympify, dict):
"""Element of multivariate distributed polynomial ring. """
def new(self, init):
return self.__class__(init)
def parent(self):
return self.ring.to_domain()
def __getnewargs__(self):
return (self.ring, list(self.iterterms()))
_hash = None
def __hash__(self):
# XXX: This computes a hash of a dictionary, but currently we don't
# protect dictionary from being changed so any use site modifications
# will make hashing go wrong. Use this feature with caution until we
# figure out how to make a safe API without compromising speed of this
# low-level class.
_hash = self._hash
if _hash is None:
self._hash = _hash = hash((self.ring, frozenset(self.items())))
return _hash
def copy(self):
"""Return a copy of polynomial self.
Polynomials are mutable; if one is interested in preserving
a polynomial, and one plans to use inplace operations, one
can copy the polynomial. This method makes a shallow copy.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.rings import ring
>>> R, x, y = ring('x, y', ZZ)
>>> p = (x + y)**2
>>> p1 = p.copy()
>>> p2 = p
>>> p[R.zero_monom] = 3
>>> p
x**2 + 2*x*y + y**2 + 3
>>> p1
x**2 + 2*x*y + y**2
>>> p2
x**2 + 2*x*y + y**2 + 3
"""
return self.new(self)
def set_ring(self, new_ring):
if self.ring == new_ring:
return self
elif self.ring.symbols != new_ring.symbols:
terms = list(zip(*_dict_reorder(self, self.ring.symbols, new_ring.symbols)))
return new_ring.from_terms(terms, self.ring.domain)
else:
return new_ring.from_dict(self, self.ring.domain)
def as_expr(self, *symbols):
if symbols and len(symbols) != self.ring.ngens:
raise ValueError("not enough symbols, expected %s got %s" % (self.ring.ngens, len(symbols)))
else:
symbols = self.ring.symbols
return expr_from_dict(self.as_expr_dict(), *symbols)
def as_expr_dict(self):
to_sympy = self.ring.domain.to_sympy
return {monom: to_sympy(coeff) for monom, coeff in self.iterterms()}
def clear_denoms(self):
domain = self.ring.domain
if not domain.is_Field or not domain.has_assoc_Ring:
return domain.one, self
ground_ring = domain.get_ring()
common = ground_ring.one
lcm = ground_ring.lcm
denom = domain.denom
for coeff in self.values():
common = lcm(common, denom(coeff))
poly = self.new([ (k, v*common) for k, v in self.items() ])
return common, poly
def strip_zero(self):
"""Eliminate monomials with zero coefficient. """
for k, v in list(self.items()):
if not v:
del self[k]
def __eq__(p1, p2):
"""Equality test for polynomials.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.rings import ring
>>> _, x, y = ring('x, y', ZZ)
>>> p1 = (x + y)**2 + (x - y)**2
>>> p1 == 4*x*y
False
>>> p1 == 2*(x**2 + y**2)
True
"""
if not p2:
return not p1
elif isinstance(p2, PolyElement) and p2.ring == p1.ring:
return dict.__eq__(p1, p2)
elif len(p1) > 1:
return False
else:
return p1.get(p1.ring.zero_monom) == p2
def __ne__(p1, p2):
return not p1 == p2
def almosteq(p1, p2, tolerance=None):
"""Approximate equality test for polynomials. """
ring = p1.ring
if isinstance(p2, ring.dtype):
if set(p1.keys()) != set(p2.keys()):
return False
almosteq = ring.domain.almosteq
for k in p1.keys():
if not almosteq(p1[k], p2[k], tolerance):
return False
return True
elif len(p1) > 1:
return False
else:
try:
p2 = ring.domain.convert(p2)
except CoercionFailed:
return False
else:
return ring.domain.almosteq(p1.const(), p2, tolerance)
def sort_key(self):
return (len(self), self.terms())
def _cmp(p1, p2, op):
if isinstance(p2, p1.ring.dtype):
return op(p1.sort_key(), p2.sort_key())
else:
return NotImplemented
def __lt__(p1, p2):
return p1._cmp(p2, lt)
def __le__(p1, p2):
return p1._cmp(p2, le)
def __gt__(p1, p2):
return p1._cmp(p2, gt)
def __ge__(p1, p2):
return p1._cmp(p2, ge)
def _drop(self, gen):
ring = self.ring
i = ring.index(gen)
if ring.ngens == 1:
return i, ring.domain
else:
symbols = list(ring.symbols)
del symbols[i]
return i, ring.clone(symbols=symbols)
def drop(self, gen):
i, ring = self._drop(gen)
if self.ring.ngens == 1:
if self.is_ground:
return self.coeff(1)
else:
raise ValueError("Cannot drop %s" % gen)
else:
poly = ring.zero
for k, v in self.items():
if k[i] == 0:
K = list(k)
del K[i]
poly[tuple(K)] = v
else:
raise ValueError("Cannot drop %s" % gen)
return poly
def _drop_to_ground(self, gen):
ring = self.ring
i = ring.index(gen)
symbols = list(ring.symbols)
del symbols[i]
return i, ring.clone(symbols=symbols, domain=ring[i])
def drop_to_ground(self, gen):
if self.ring.ngens == 1:
raise ValueError("Cannot drop only generator to ground")
i, ring = self._drop_to_ground(gen)
poly = ring.zero
gen = ring.domain.gens[0]
for monom, coeff in self.iterterms():
mon = monom[:i] + monom[i+1:]
if mon not in poly:
poly[mon] = (gen**monom[i]).mul_ground(coeff)
else:
poly[mon] += (gen**monom[i]).mul_ground(coeff)
return poly
def to_dense(self):
return dmp_from_dict(self, self.ring.ngens-1, self.ring.domain)
def to_dict(self):
return dict(self)
def str(self, printer, precedence, exp_pattern, mul_symbol):
if not self:
return printer._print(self.ring.domain.zero)
prec_mul = precedence["Mul"]
prec_atom = precedence["Atom"]
ring = self.ring
symbols = ring.symbols
ngens = ring.ngens
zm = ring.zero_monom
sexpvs = []
for expv, coeff in self.terms():
negative = ring.domain.is_negative(coeff)
sign = " - " if negative else " + "
sexpvs.append(sign)
if expv == zm:
scoeff = printer._print(coeff)
if negative and scoeff.startswith("-"):
scoeff = scoeff[1:]
else:
if negative:
coeff = -coeff
if coeff != self.ring.domain.one:
scoeff = printer.parenthesize(coeff, prec_mul, strict=True)
else:
scoeff = ''
sexpv = []
for i in range(ngens):
exp = expv[i]
if not exp:
continue
symbol = printer.parenthesize(symbols[i], prec_atom, strict=True)
if exp != 1:
if exp != int(exp) or exp < 0:
sexp = printer.parenthesize(exp, prec_atom, strict=False)
else:
sexp = exp
sexpv.append(exp_pattern % (symbol, sexp))
else:
sexpv.append('%s' % symbol)
if scoeff:
sexpv = [scoeff] + sexpv
sexpvs.append(mul_symbol.join(sexpv))
if sexpvs[0] in [" + ", " - "]:
head = sexpvs.pop(0)
if head == " - ":
sexpvs.insert(0, "-")
return "".join(sexpvs)
@property
def is_generator(self):
return self in self.ring._gens_set
@property
def is_ground(self):
return not self or (len(self) == 1 and self.ring.zero_monom in self)
@property
def is_monomial(self):
return not self or (len(self) == 1 and self.LC == 1)
@property
def is_term(self):
return len(self) <= 1
@property
def is_negative(self):
return self.ring.domain.is_negative(self.LC)
@property
def is_positive(self):
return self.ring.domain.is_positive(self.LC)
@property
def is_nonnegative(self):
return self.ring.domain.is_nonnegative(self.LC)
@property
def is_nonpositive(self):
return self.ring.domain.is_nonpositive(self.LC)
@property
def is_zero(f):
return not f
@property
def is_one(f):
return f == f.ring.one
@property
def is_monic(f):
return f.ring.domain.is_one(f.LC)
@property
def is_primitive(f):
return f.ring.domain.is_one(f.content())
@property
def is_linear(f):
return all(sum(monom) <= 1 for monom in f.itermonoms())
@property
def is_quadratic(f):
return all(sum(monom) <= 2 for monom in f.itermonoms())
@property
def is_squarefree(f):
if not f.ring.ngens:
return True
return f.ring.dmp_sqf_p(f)
@property
def is_irreducible(f):
if not f.ring.ngens:
return True
return f.ring.dmp_irreducible_p(f)
@property
def is_cyclotomic(f):
if f.ring.is_univariate:
return f.ring.dup_cyclotomic_p(f)
else:
raise MultivariatePolynomialError("cyclotomic polynomial")
def __neg__(self):
return self.new([ (monom, -coeff) for monom, coeff in self.iterterms() ])
def __pos__(self):
return self
def __add__(p1, p2):
"""Add two polynomials.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.rings import ring
>>> _, x, y = ring('x, y', ZZ)
>>> (x + y)**2 + (x - y)**2
2*x**2 + 2*y**2
"""
if not p2:
return p1.copy()
ring = p1.ring
if isinstance(p2, ring.dtype):
p = p1.copy()
get = p.get
zero = ring.domain.zero
for k, v in p2.items():
v = get(k, zero) + v
if v:
p[k] = v
else:
del p[k]
return p
elif isinstance(p2, PolyElement):
if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
pass
elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
return p2.__radd__(p1)
else:
return NotImplemented
try:
cp2 = ring.domain_new(p2)
except CoercionFailed:
return NotImplemented
else:
p = p1.copy()
if not cp2:
return p
zm = ring.zero_monom
if zm not in p1.keys():
p[zm] = cp2
else:
if p2 == -p[zm]:
del p[zm]
else:
p[zm] += cp2
return p
def __radd__(p1, n):
p = p1.copy()
if not n:
return p
ring = p1.ring
try:
n = ring.domain_new(n)
except CoercionFailed:
return NotImplemented
else:
zm = ring.zero_monom
if zm not in p1.keys():
p[zm] = n
else:
if n == -p[zm]:
del p[zm]
else:
p[zm] += n
return p
def __sub__(p1, p2):
"""Subtract polynomial p2 from p1.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.rings import ring
>>> _, x, y = ring('x, y', ZZ)
>>> p1 = x + y**2
>>> p2 = x*y + y**2
>>> p1 - p2
-x*y + x
"""
if not p2:
return p1.copy()
ring = p1.ring
if isinstance(p2, ring.dtype):
p = p1.copy()
get = p.get
zero = ring.domain.zero
for k, v in p2.items():
v = get(k, zero) - v
if v:
p[k] = v
else:
del p[k]
return p
elif isinstance(p2, PolyElement):
if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
pass
elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
return p2.__rsub__(p1)
else:
return NotImplemented
try:
p2 = ring.domain_new(p2)
except CoercionFailed:
return NotImplemented
else:
p = p1.copy()
zm = ring.zero_monom
if zm not in p1.keys():
p[zm] = -p2
else:
if p2 == p[zm]:
del p[zm]
else:
p[zm] -= p2
return p
def __rsub__(p1, n):
"""n - p1 with n convertible to the coefficient domain.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.rings import ring
>>> _, x, y = ring('x, y', ZZ)
>>> p = x + y
>>> 4 - p
-x - y + 4
"""
ring = p1.ring
try:
n = ring.domain_new(n)
except CoercionFailed:
return NotImplemented
else:
p = ring.zero
for expv in p1:
p[expv] = -p1[expv]
p += n
return p
def __mul__(p1, p2):
"""Multiply two polynomials.
Examples
========
>>> from sympy.polys.domains import QQ
>>> from sympy.polys.rings import ring
>>> _, x, y = ring('x, y', QQ)
>>> p1 = x + y
>>> p2 = x - y
>>> p1*p2
x**2 - y**2
"""
ring = p1.ring
p = ring.zero
if not p1 or not p2:
return p
elif isinstance(p2, ring.dtype):
get = p.get
zero = ring.domain.zero
monomial_mul = ring.monomial_mul
p2it = list(p2.items())
for exp1, v1 in p1.items():
for exp2, v2 in p2it:
exp = monomial_mul(exp1, exp2)
p[exp] = get(exp, zero) + v1*v2
p.strip_zero()
return p
elif isinstance(p2, PolyElement):
if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
pass
elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
return p2.__rmul__(p1)
else:
return NotImplemented
try:
p2 = ring.domain_new(p2)
except CoercionFailed:
return NotImplemented
else:
for exp1, v1 in p1.items():
v = v1*p2
if v:
p[exp1] = v
return p
def __rmul__(p1, p2):
"""p2 * p1 with p2 in the coefficient domain of p1.
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.rings import ring
>>> _, x, y = ring('x, y', ZZ)
>>> p = x + y
>>> 4 * p
4*x + 4*y
"""
p = p1.ring.zero
if not p2:
return p
try:
p2 = p.ring.domain_new(p2)
except CoercionFailed:
return NotImplemented
else:
for exp1, v1 in p1.items():
v = p2*v1
if v:
p[exp1] = v
return p
def __pow__(self, n):
"""raise polynomial to power `n`
Examples
========
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.rings import ring
>>> _, x, y = ring('x, y', ZZ)
>>> p = x + y**2
>>> p**3
x**3 + 3*x**2*y**2 + 3*x*y**4 + y**6
"""
ring = self.ring
if not n:
if self:
return ring.one
else:
raise ValueError("0**0")
elif len(self) == 1:
monom, coeff = list(self.items())[0]
p = ring.zero
if coeff == ring.domain.one:
p[ring.monomial_pow(monom, n)] = coeff
else:
p[ring.monomial_pow(monom, n)] = coeff**n
return p
# For ring series, we need negative and rational exponent support only
# with monomials.
n = int(n)
if n < 0:
raise ValueError("Negative exponent")
elif n == 1:
return self.copy()
elif n == 2:
return self.square()
elif n == 3:
return self*self.square()
elif len(self) <= 5: # TODO: use an actual density measure
return self._pow_multinomial(n)
else:
return self._pow_generic(n)
def _pow_generic(self, n):
p = self.ring.one
c = self
while True:
if n & 1:
p = p*c
n -= 1
if not n:
break
c = c.square()
n = n // 2
return p
def _pow_multinomial(self, n):
multinomials = multinomial_coefficients(len(self), n).items()
monomial_mulpow = self.ring.monomial_mulpow
zero_monom = self.ring.zero_monom
terms = self.items()
zero = self.ring.domain.zero
poly = self.ring.zero
for multinomial, multinomial_coeff in multinomials:
product_monom = zero_monom
product_coeff = multinomial_coeff
for exp, (monom, coeff) in zip(multinomial, terms):
if exp:
product_monom = monomial_mulpow(product_monom, monom, exp)
product_coeff *= coeff**exp
monom = tuple(product_monom)
coeff = product_coeff
coeff = poly.get(monom, zero) + coeff
if coeff:
poly[monom] = coeff
elif monom in poly:
del poly[monom]
return poly
def square(self):
"""square of a polynomial
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y = ring('x, y', ZZ)
>>> p = x + y**2
>>> p.square()
x**2 + 2*x*y**2 + y**4
"""
ring = self.ring
p = ring.zero
get = p.get
keys = list(self.keys())
zero = ring.domain.zero
monomial_mul = ring.monomial_mul
for i in range(len(keys)):
k1 = keys[i]
pk = self[k1]
for j in range(i):
k2 = keys[j]
exp = monomial_mul(k1, k2)
p[exp] = get(exp, zero) + pk*self[k2]
p = p.imul_num(2)
get = p.get
for k, v in self.items():
k2 = monomial_mul(k, k)
p[k2] = get(k2, zero) + v**2
p.strip_zero()
return p
def __divmod__(p1, p2):
ring = p1.ring
if not p2:
raise ZeroDivisionError("polynomial division")
elif isinstance(p2, ring.dtype):
return p1.div(p2)
elif isinstance(p2, PolyElement):
if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
pass
elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
return p2.__rdivmod__(p1)
else:
return NotImplemented
try:
p2 = ring.domain_new(p2)
except CoercionFailed:
return NotImplemented
else:
return (p1.quo_ground(p2), p1.rem_ground(p2))
def __rdivmod__(p1, p2):
return NotImplemented
def __mod__(p1, p2):
ring = p1.ring
if not p2:
raise ZeroDivisionError("polynomial division")
elif isinstance(p2, ring.dtype):
return p1.rem(p2)
elif isinstance(p2, PolyElement):
if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
pass
elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
return p2.__rmod__(p1)
else:
return NotImplemented
try:
p2 = ring.domain_new(p2)
except CoercionFailed:
return NotImplemented
else:
return p1.rem_ground(p2)
def __rmod__(p1, p2):
return NotImplemented
def __truediv__(p1, p2):
ring = p1.ring
if not p2:
raise ZeroDivisionError("polynomial division")
elif isinstance(p2, ring.dtype):
if p2.is_monomial:
return p1*(p2**(-1))
else:
return p1.quo(p2)
elif isinstance(p2, PolyElement):
if isinstance(ring.domain, PolynomialRing) and ring.domain.ring == p2.ring:
pass
elif isinstance(p2.ring.domain, PolynomialRing) and p2.ring.domain.ring == ring:
return p2.__rtruediv__(p1)
else:
return NotImplemented
try:
p2 = ring.domain_new(p2)
except CoercionFailed:
return NotImplemented
else:
return p1.quo_ground(p2)
def __rtruediv__(p1, p2):
return NotImplemented
__floordiv__ = __truediv__
__rfloordiv__ = __rtruediv__
# TODO: use // (__floordiv__) for exquo()?
def _term_div(self):
zm = self.ring.zero_monom
domain = self.ring.domain
domain_quo = domain.quo
monomial_div = self.ring.monomial_div
if domain.is_Field:
def term_div(a_lm_a_lc, b_lm_b_lc):
a_lm, a_lc = a_lm_a_lc
b_lm, b_lc = b_lm_b_lc
if b_lm == zm: # apparently this is a very common case
monom = a_lm
else:
monom = monomial_div(a_lm, b_lm)
if monom is not None:
return monom, domain_quo(a_lc, b_lc)
else:
return None
else:
def term_div(a_lm_a_lc, b_lm_b_lc):
a_lm, a_lc = a_lm_a_lc
b_lm, b_lc = b_lm_b_lc
if b_lm == zm: # apparently this is a very common case
monom = a_lm
else:
monom = monomial_div(a_lm, b_lm)
if not (monom is None or a_lc % b_lc):
return monom, domain_quo(a_lc, b_lc)
else:
return None
return term_div
def div(self, fv):
"""Division algorithm, see [CLO] p64.
fv array of polynomials
return qv, r such that
self = sum(fv[i]*qv[i]) + r
All polynomials are required not to be Laurent polynomials.
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y = ring('x, y', ZZ)
>>> f = x**3
>>> f0 = x - y**2
>>> f1 = x - y
>>> qv, r = f.div((f0, f1))
>>> qv[0]
x**2 + x*y**2 + y**4
>>> qv[1]
0
>>> r
y**6
"""
ring = self.ring
ret_single = False
if isinstance(fv, PolyElement):
ret_single = True
fv = [fv]
if not all(fv):
raise ZeroDivisionError("polynomial division")
if not self:
if ret_single:
return ring.zero, ring.zero
else:
return [], ring.zero
for f in fv:
if f.ring != ring:
raise ValueError('self and f must have the same ring')
s = len(fv)
qv = [ring.zero for i in range(s)]
p = self.copy()
r = ring.zero
term_div = self._term_div()
expvs = [fx.leading_expv() for fx in fv]
while p:
i = 0
divoccurred = 0
while i < s and divoccurred == 0:
expv = p.leading_expv()
term = term_div((expv, p[expv]), (expvs[i], fv[i][expvs[i]]))
if term is not None:
expv1, c = term
qv[i] = qv[i]._iadd_monom((expv1, c))
p = p._iadd_poly_monom(fv[i], (expv1, -c))
divoccurred = 1
else:
i += 1
if not divoccurred:
expv = p.leading_expv()
r = r._iadd_monom((expv, p[expv]))
del p[expv]
if expv == ring.zero_monom:
r += p
if ret_single:
if not qv:
return ring.zero, r
else:
return qv[0], r
else:
return qv, r
def rem(self, G):
f = self
if isinstance(G, PolyElement):
G = [G]
if not all(G):
raise ZeroDivisionError("polynomial division")
ring = f.ring
domain = ring.domain
zero = domain.zero
monomial_mul = ring.monomial_mul
r = ring.zero
term_div = f._term_div()
ltf = f.LT
f = f.copy()
get = f.get
while f:
for g in G:
tq = term_div(ltf, g.LT)
if tq is not None:
m, c = tq
for mg, cg in g.iterterms():
m1 = monomial_mul(mg, m)
c1 = get(m1, zero) - c*cg
if not c1:
del f[m1]
else:
f[m1] = c1
ltm = f.leading_expv()
if ltm is not None:
ltf = ltm, f[ltm]
break
else:
ltm, ltc = ltf
if ltm in r:
r[ltm] += ltc
else:
r[ltm] = ltc
del f[ltm]
ltm = f.leading_expv()
if ltm is not None:
ltf = ltm, f[ltm]
return r
def quo(f, G):
return f.div(G)[0]
def exquo(f, G):
q, r = f.div(G)
if not r:
return q
else:
raise ExactQuotientFailed(f, G)
def _iadd_monom(self, mc):
"""add to self the monomial coeff*x0**i0*x1**i1*...
unless self is a generator -- then just return the sum of the two.
mc is a tuple, (monom, coeff), where monomial is (i0, i1, ...)
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y = ring('x, y', ZZ)
>>> p = x**4 + 2*y
>>> m = (1, 2)
>>> p1 = p._iadd_monom((m, 5))
>>> p1
x**4 + 5*x*y**2 + 2*y
>>> p1 is p
True
>>> p = x
>>> p1 = p._iadd_monom((m, 5))
>>> p1
5*x*y**2 + x
>>> p1 is p
False
"""
if self in self.ring._gens_set:
cpself = self.copy()
else:
cpself = self
expv, coeff = mc
c = cpself.get(expv)
if c is None:
cpself[expv] = coeff
else:
c += coeff
if c:
cpself[expv] = c
else:
del cpself[expv]
return cpself
def _iadd_poly_monom(self, p2, mc):
"""add to self the product of (p)*(coeff*x0**i0*x1**i1*...)
unless self is a generator -- then just return the sum of the two.
mc is a tuple, (monom, coeff), where monomial is (i0, i1, ...)
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y, z = ring('x, y, z', ZZ)
>>> p1 = x**4 + 2*y
>>> p2 = y + z
>>> m = (1, 2, 3)
>>> p1 = p1._iadd_poly_monom(p2, (m, 3))
>>> p1
x**4 + 3*x*y**3*z**3 + 3*x*y**2*z**4 + 2*y
"""
p1 = self
if p1 in p1.ring._gens_set:
p1 = p1.copy()
(m, c) = mc
get = p1.get
zero = p1.ring.domain.zero
monomial_mul = p1.ring.monomial_mul
for k, v in p2.items():
ka = monomial_mul(k, m)
coeff = get(ka, zero) + v*c
if coeff:
p1[ka] = coeff
else:
del p1[ka]
return p1
def degree(f, x=None):
"""
The leading degree in ``x`` or the main variable.
Note that the degree of 0 is negative infinity (the SymPy object -oo).
"""
i = f.ring.index(x)
if not f:
return -oo
elif i < 0:
return 0
else:
return max([ monom[i] for monom in f.itermonoms() ])
def degrees(f):
"""
A tuple containing leading degrees in all variables.
Note that the degree of 0 is negative infinity (the SymPy object -oo)
"""
if not f:
return (-oo,)*f.ring.ngens
else:
return tuple(map(max, list(zip(*f.itermonoms()))))
def tail_degree(f, x=None):
"""
The tail degree in ``x`` or the main variable.
Note that the degree of 0 is negative infinity (the SymPy object -oo)
"""
i = f.ring.index(x)
if not f:
return -oo
elif i < 0:
return 0
else:
return min([ monom[i] for monom in f.itermonoms() ])
def tail_degrees(f):
"""
A tuple containing tail degrees in all variables.
Note that the degree of 0 is negative infinity (the SymPy object -oo)
"""
if not f:
return (-oo,)*f.ring.ngens
else:
return tuple(map(min, list(zip(*f.itermonoms()))))
def leading_expv(self):
"""Leading monomial tuple according to the monomial ordering.
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y, z = ring('x, y, z', ZZ)
>>> p = x**4 + x**3*y + x**2*z**2 + z**7
>>> p.leading_expv()
(4, 0, 0)
"""
if self:
return self.ring.leading_expv(self)
else:
return None
def _get_coeff(self, expv):
return self.get(expv, self.ring.domain.zero)
def coeff(self, element):
"""
Returns the coefficient that stands next to the given monomial.
Parameters
==========
element : PolyElement (with ``is_monomial = True``) or 1
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y, z = ring("x,y,z", ZZ)
>>> f = 3*x**2*y - x*y*z + 7*z**3 + 23
>>> f.coeff(x**2*y)
3
>>> f.coeff(x*y)
0
>>> f.coeff(1)
23
"""
if element == 1:
return self._get_coeff(self.ring.zero_monom)
elif isinstance(element, self.ring.dtype):
terms = list(element.iterterms())
if len(terms) == 1:
monom, coeff = terms[0]
if coeff == self.ring.domain.one:
return self._get_coeff(monom)
raise ValueError("expected a monomial, got %s" % element)
def const(self):
"""Returns the constant coefficient. """
return self._get_coeff(self.ring.zero_monom)
@property
def LC(self):
return self._get_coeff(self.leading_expv())
@property
def LM(self):
expv = self.leading_expv()
if expv is None:
return self.ring.zero_monom
else:
return expv
def leading_monom(self):
"""
Leading monomial as a polynomial element.
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y = ring('x, y', ZZ)
>>> (3*x*y + y**2).leading_monom()
x*y
"""
p = self.ring.zero
expv = self.leading_expv()
if expv:
p[expv] = self.ring.domain.one
return p
@property
def LT(self):
expv = self.leading_expv()
if expv is None:
return (self.ring.zero_monom, self.ring.domain.zero)
else:
return (expv, self._get_coeff(expv))
def leading_term(self):
"""Leading term as a polynomial element.
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y = ring('x, y', ZZ)
>>> (3*x*y + y**2).leading_term()
3*x*y
"""
p = self.ring.zero
expv = self.leading_expv()
if expv is not None:
p[expv] = self[expv]
return p
def _sorted(self, seq, order):
if order is None:
order = self.ring.order
else:
order = OrderOpt.preprocess(order)
if order is lex:
return sorted(seq, key=lambda monom: monom[0], reverse=True)
else:
return sorted(seq, key=lambda monom: order(monom[0]), reverse=True)
def coeffs(self, order=None):
"""Ordered list of polynomial coefficients.
Parameters
==========
order : :class:`~.MonomialOrder` or coercible, optional
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.orderings import lex, grlex
>>> _, x, y = ring("x, y", ZZ, lex)
>>> f = x*y**7 + 2*x**2*y**3
>>> f.coeffs()
[2, 1]
>>> f.coeffs(grlex)
[1, 2]
"""
return [ coeff for _, coeff in self.terms(order) ]
def monoms(self, order=None):
"""Ordered list of polynomial monomials.
Parameters
==========
order : :class:`~.MonomialOrder` or coercible, optional
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.orderings import lex, grlex
>>> _, x, y = ring("x, y", ZZ, lex)
>>> f = x*y**7 + 2*x**2*y**3
>>> f.monoms()
[(2, 3), (1, 7)]
>>> f.monoms(grlex)
[(1, 7), (2, 3)]
"""
return [ monom for monom, _ in self.terms(order) ]
def terms(self, order=None):
"""Ordered list of polynomial terms.
Parameters
==========
order : :class:`~.MonomialOrder` or coercible, optional
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.orderings import lex, grlex
>>> _, x, y = ring("x, y", ZZ, lex)
>>> f = x*y**7 + 2*x**2*y**3
>>> f.terms()
[((2, 3), 2), ((1, 7), 1)]
>>> f.terms(grlex)
[((1, 7), 1), ((2, 3), 2)]
"""
return self._sorted(list(self.items()), order)
def itercoeffs(self):
"""Iterator over coefficients of a polynomial. """
return iter(self.values())
def itermonoms(self):
"""Iterator over monomials of a polynomial. """
return iter(self.keys())
def iterterms(self):
"""Iterator over terms of a polynomial. """
return iter(self.items())
def listcoeffs(self):
"""Unordered list of polynomial coefficients. """
return list(self.values())
def listmonoms(self):
"""Unordered list of polynomial monomials. """
return list(self.keys())
def listterms(self):
"""Unordered list of polynomial terms. """
return list(self.items())
def imul_num(p, c):
"""multiply inplace the polynomial p by an element in the
coefficient ring, provided p is not one of the generators;
else multiply not inplace
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y = ring('x, y', ZZ)
>>> p = x + y**2
>>> p1 = p.imul_num(3)
>>> p1
3*x + 3*y**2
>>> p1 is p
True
>>> p = x
>>> p1 = p.imul_num(3)
>>> p1
3*x
>>> p1 is p
False
"""
if p in p.ring._gens_set:
return p*c
if not c:
p.clear()
return
for exp in p:
p[exp] *= c
return p
def content(f):
"""Returns GCD of polynomial's coefficients. """
domain = f.ring.domain
cont = domain.zero
gcd = domain.gcd
for coeff in f.itercoeffs():
cont = gcd(cont, coeff)
return cont
def primitive(f):
"""Returns content and a primitive polynomial. """
cont = f.content()
return cont, f.quo_ground(cont)
def monic(f):
"""Divides all coefficients by the leading coefficient. """
if not f:
return f
else:
return f.quo_ground(f.LC)
def mul_ground(f, x):
if not x:
return f.ring.zero
terms = [ (monom, coeff*x) for monom, coeff in f.iterterms() ]
return f.new(terms)
def mul_monom(f, monom):
monomial_mul = f.ring.monomial_mul
terms = [ (monomial_mul(f_monom, monom), f_coeff) for f_monom, f_coeff in f.items() ]
return f.new(terms)
def mul_term(f, term):
monom, coeff = term
if not f or not coeff:
return f.ring.zero
elif monom == f.ring.zero_monom:
return f.mul_ground(coeff)
monomial_mul = f.ring.monomial_mul
terms = [ (monomial_mul(f_monom, monom), f_coeff*coeff) for f_monom, f_coeff in f.items() ]
return f.new(terms)
def quo_ground(f, x):
domain = f.ring.domain
if not x:
raise ZeroDivisionError('polynomial division')
if not f or x == domain.one:
return f
if domain.is_Field:
quo = domain.quo
terms = [ (monom, quo(coeff, x)) for monom, coeff in f.iterterms() ]
else:
terms = [ (monom, coeff // x) for monom, coeff in f.iterterms() if not (coeff % x) ]
return f.new(terms)
def quo_term(f, term):
monom, coeff = term
if not coeff:
raise ZeroDivisionError("polynomial division")
elif not f:
return f.ring.zero
elif monom == f.ring.zero_monom:
return f.quo_ground(coeff)
term_div = f._term_div()
terms = [ term_div(t, term) for t in f.iterterms() ]
return f.new([ t for t in terms if t is not None ])
def trunc_ground(f, p):
if f.ring.domain.is_ZZ:
terms = []
for monom, coeff in f.iterterms():
coeff = coeff % p
if coeff > p // 2:
coeff = coeff - p
terms.append((monom, coeff))
else:
terms = [ (monom, coeff % p) for monom, coeff in f.iterterms() ]
poly = f.new(terms)
poly.strip_zero()
return poly
rem_ground = trunc_ground
def extract_ground(self, g):
f = self
fc = f.content()
gc = g.content()
gcd = f.ring.domain.gcd(fc, gc)
f = f.quo_ground(gcd)
g = g.quo_ground(gcd)
return gcd, f, g
def _norm(f, norm_func):
if not f:
return f.ring.domain.zero
else:
ground_abs = f.ring.domain.abs
return norm_func([ ground_abs(coeff) for coeff in f.itercoeffs() ])
def max_norm(f):
return f._norm(max)
def l1_norm(f):
return f._norm(sum)
def deflate(f, *G):
ring = f.ring
polys = [f] + list(G)
J = [0]*ring.ngens
for p in polys:
for monom in p.itermonoms():
for i, m in enumerate(monom):
J[i] = igcd(J[i], m)
for i, b in enumerate(J):
if not b:
J[i] = 1
J = tuple(J)
if all(b == 1 for b in J):
return J, polys
H = []
for p in polys:
h = ring.zero
for I, coeff in p.iterterms():
N = [ i // j for i, j in zip(I, J) ]
h[tuple(N)] = coeff
H.append(h)
return J, H
def inflate(f, J):
poly = f.ring.zero
for I, coeff in f.iterterms():
N = [ i*j for i, j in zip(I, J) ]
poly[tuple(N)] = coeff
return poly
def lcm(self, g):
f = self
domain = f.ring.domain
if not domain.is_Field:
fc, f = f.primitive()
gc, g = g.primitive()
c = domain.lcm(fc, gc)
h = (f*g).quo(f.gcd(g))
if not domain.is_Field:
return h.mul_ground(c)
else:
return h.monic()
def gcd(f, g):
return f.cofactors(g)[0]
def cofactors(f, g):
if not f and not g:
zero = f.ring.zero
return zero, zero, zero
elif not f:
h, cff, cfg = f._gcd_zero(g)
return h, cff, cfg
elif not g:
h, cfg, cff = g._gcd_zero(f)
return h, cff, cfg
elif len(f) == 1:
h, cff, cfg = f._gcd_monom(g)
return h, cff, cfg
elif len(g) == 1:
h, cfg, cff = g._gcd_monom(f)
return h, cff, cfg
J, (f, g) = f.deflate(g)
h, cff, cfg = f._gcd(g)
return (h.inflate(J), cff.inflate(J), cfg.inflate(J))
def _gcd_zero(f, g):
one, zero = f.ring.one, f.ring.zero
if g.is_nonnegative:
return g, zero, one
else:
return -g, zero, -one
def _gcd_monom(f, g):
ring = f.ring
ground_gcd = ring.domain.gcd
ground_quo = ring.domain.quo
monomial_gcd = ring.monomial_gcd
monomial_ldiv = ring.monomial_ldiv
mf, cf = list(f.iterterms())[0]
_mgcd, _cgcd = mf, cf
for mg, cg in g.iterterms():
_mgcd = monomial_gcd(_mgcd, mg)
_cgcd = ground_gcd(_cgcd, cg)
h = f.new([(_mgcd, _cgcd)])
cff = f.new([(monomial_ldiv(mf, _mgcd), ground_quo(cf, _cgcd))])
cfg = f.new([(monomial_ldiv(mg, _mgcd), ground_quo(cg, _cgcd)) for mg, cg in g.iterterms()])
return h, cff, cfg
def _gcd(f, g):
ring = f.ring
if ring.domain.is_QQ:
return f._gcd_QQ(g)
elif ring.domain.is_ZZ:
return f._gcd_ZZ(g)
else: # TODO: don't use dense representation (port PRS algorithms)
return ring.dmp_inner_gcd(f, g)
def _gcd_ZZ(f, g):
return heugcd(f, g)
def _gcd_QQ(self, g):
f = self
ring = f.ring
new_ring = ring.clone(domain=ring.domain.get_ring())
cf, f = f.clear_denoms()
cg, g = g.clear_denoms()
f = f.set_ring(new_ring)
g = g.set_ring(new_ring)
h, cff, cfg = f._gcd_ZZ(g)
h = h.set_ring(ring)
c, h = h.LC, h.monic()
cff = cff.set_ring(ring).mul_ground(ring.domain.quo(c, cf))
cfg = cfg.set_ring(ring).mul_ground(ring.domain.quo(c, cg))
return h, cff, cfg
def cancel(self, g):
"""
Cancel common factors in a rational function ``f/g``.
Examples
========
>>> from sympy.polys import ring, ZZ
>>> R, x,y = ring("x,y", ZZ)
>>> (2*x**2 - 2).cancel(x**2 - 2*x + 1)
(2*x + 2, x - 1)
"""
f = self
ring = f.ring
if not f:
return f, ring.one
domain = ring.domain
if not (domain.is_Field and domain.has_assoc_Ring):
_, p, q = f.cofactors(g)
else:
new_ring = ring.clone(domain=domain.get_ring())
cq, f = f.clear_denoms()
cp, g = g.clear_denoms()
f = f.set_ring(new_ring)
g = g.set_ring(new_ring)
_, p, q = f.cofactors(g)
_, cp, cq = new_ring.domain.cofactors(cp, cq)
p = p.set_ring(ring)
q = q.set_ring(ring)
p = p.mul_ground(cp)
q = q.mul_ground(cq)
# Make canonical with respect to sign or quadrant in the case of ZZ_I
# or QQ_I. This ensures that the LC of the denominator is canonical by
# multiplying top and bottom by a unit of the ring.
u = q.canonical_unit()
if u == domain.one:
p, q = p, q
elif u == -domain.one:
p, q = -p, -q
else:
p = p.mul_ground(u)
q = q.mul_ground(u)
return p, q
def canonical_unit(f):
domain = f.ring.domain
return domain.canonical_unit(f.LC)
def diff(f, x):
"""Computes partial derivative in ``x``.
Examples
========
>>> from sympy.polys.rings import ring
>>> from sympy.polys.domains import ZZ
>>> _, x, y = ring("x,y", ZZ)
>>> p = x + x**2*y**3
>>> p.diff(x)
2*x*y**3 + 1
"""
ring = f.ring
i = ring.index(x)
m = ring.monomial_basis(i)
g = ring.zero
for expv, coeff in f.iterterms():
if expv[i]:
e = ring.monomial_ldiv(expv, m)
g[e] = ring.domain_new(coeff*expv[i])
return g
def __call__(f, *values):
if 0 < len(values) <= f.ring.ngens:
return f.evaluate(list(zip(f.ring.gens, values)))
else:
raise ValueError("expected at least 1 and at most %s values, got %s" % (f.ring.ngens, len(values)))
def evaluate(self, x, a=None):
f = self
if isinstance(x, list) and a is None:
(X, a), x = x[0], x[1:]
f = f.evaluate(X, a)
if not x:
return f
else:
x = [ (Y.drop(X), a) for (Y, a) in x ]
return f.evaluate(x)
ring = f.ring
i = ring.index(x)
a = ring.domain.convert(a)
if ring.ngens == 1:
result = ring.domain.zero
for (n,), coeff in f.iterterms():
result += coeff*a**n
return result
else:
poly = ring.drop(x).zero
for monom, coeff in f.iterterms():
n, monom = monom[i], monom[:i] + monom[i+1:]
coeff = coeff*a**n
if monom in poly:
coeff = coeff + poly[monom]
if coeff:
poly[monom] = coeff
else:
del poly[monom]
else:
if coeff:
poly[monom] = coeff
return poly
def subs(self, x, a=None):
f = self
if isinstance(x, list) and a is None:
for X, a in x:
f = f.subs(X, a)
return f
ring = f.ring
i = ring.index(x)
a = ring.domain.convert(a)
if ring.ngens == 1:
result = ring.domain.zero
for (n,), coeff in f.iterterms():
result += coeff*a**n
return ring.ground_new(result)
else:
poly = ring.zero
for monom, coeff in f.iterterms():
n, monom = monom[i], monom[:i] + (0,) + monom[i+1:]
coeff = coeff*a**n
if monom in poly:
coeff = coeff + poly[monom]
if coeff:
poly[monom] = coeff
else:
del poly[monom]
else:
if coeff:
poly[monom] = coeff
return poly
def compose(f, x, a=None):
ring = f.ring
poly = ring.zero
gens_map = dict(zip(ring.gens, range(ring.ngens)))
if a is not None:
replacements = [(x, a)]
else:
if isinstance(x, list):
replacements = list(x)
elif isinstance(x, dict):
replacements = sorted(list(x.items()), key=lambda k: gens_map[k[0]])
else:
raise ValueError("expected a generator, value pair a sequence of such pairs")
for k, (x, g) in enumerate(replacements):
replacements[k] = (gens_map[x], ring.ring_new(g))
for monom, coeff in f.iterterms():
monom = list(monom)
subpoly = ring.one
for i, g in replacements:
n, monom[i] = monom[i], 0
if n:
subpoly *= g**n
subpoly = subpoly.mul_term((tuple(monom), coeff))
poly += subpoly
return poly
# TODO: following methods should point to polynomial
# representation independent algorithm implementations.
def pdiv(f, g):
return f.ring.dmp_pdiv(f, g)
def prem(f, g):
return f.ring.dmp_prem(f, g)
def pquo(f, g):
return f.ring.dmp_quo(f, g)
def pexquo(f, g):
return f.ring.dmp_exquo(f, g)
def half_gcdex(f, g):
return f.ring.dmp_half_gcdex(f, g)
def gcdex(f, g):
return f.ring.dmp_gcdex(f, g)
def subresultants(f, g):
return f.ring.dmp_subresultants(f, g)
def resultant(f, g):
return f.ring.dmp_resultant(f, g)
def discriminant(f):
return f.ring.dmp_discriminant(f)
def decompose(f):
if f.ring.is_univariate:
return f.ring.dup_decompose(f)
else:
raise MultivariatePolynomialError("polynomial decomposition")
def shift(f, a):
if f.ring.is_univariate:
return f.ring.dup_shift(f, a)
else:
raise MultivariatePolynomialError("polynomial shift")
def sturm(f):
if f.ring.is_univariate:
return f.ring.dup_sturm(f)
else:
raise MultivariatePolynomialError("sturm sequence")
def gff_list(f):
return f.ring.dmp_gff_list(f)
def sqf_norm(f):
return f.ring.dmp_sqf_norm(f)
def sqf_part(f):
return f.ring.dmp_sqf_part(f)
def sqf_list(f, all=False):
return f.ring.dmp_sqf_list(f, all=all)
def factor_list(f):
return f.ring.dmp_factor_list(f)
|
567d989350392c723684403ea95426eb1cb921401926de767e99df728d8f0bd2 | """Options manager for :class:`~.Poly` and public API functions. """
from __future__ import annotations
__all__ = ["Options"]
from sympy.core import Basic, sympify
from sympy.polys.polyerrors import GeneratorsError, OptionError, FlagError
from sympy.utilities import numbered_symbols, topological_sort, public
from sympy.utilities.iterables import has_dups, is_sequence
import sympy.polys
import re
class Option:
"""Base class for all kinds of options. """
option: str | None = None
is_Flag = False
requires: list[str] = []
excludes: list[str] = []
after: list[str] = []
before: list[str] = []
@classmethod
def default(cls):
return None
@classmethod
def preprocess(cls, option):
return None
@classmethod
def postprocess(cls, options):
pass
class Flag(Option):
"""Base class for all kinds of flags. """
is_Flag = True
class BooleanOption(Option):
"""An option that must have a boolean value or equivalent assigned. """
@classmethod
def preprocess(cls, value):
if value in [True, False]:
return bool(value)
else:
raise OptionError("'%s' must have a boolean value assigned, got %s" % (cls.option, value))
class OptionType(type):
"""Base type for all options that does registers options. """
def __init__(cls, *args, **kwargs):
@property
def getter(self):
try:
return self[cls.option]
except KeyError:
return cls.default()
setattr(Options, cls.option, getter)
Options.__options__[cls.option] = cls
@public
class Options(dict):
"""
Options manager for polynomial manipulation module.
Examples
========
>>> from sympy.polys.polyoptions import Options
>>> from sympy.polys.polyoptions import build_options
>>> from sympy.abc import x, y, z
>>> Options((x, y, z), {'domain': 'ZZ'})
{'auto': False, 'domain': ZZ, 'gens': (x, y, z)}
>>> build_options((x, y, z), {'domain': 'ZZ'})
{'auto': False, 'domain': ZZ, 'gens': (x, y, z)}
**Options**
* Expand --- boolean option
* Gens --- option
* Wrt --- option
* Sort --- option
* Order --- option
* Field --- boolean option
* Greedy --- boolean option
* Domain --- option
* Split --- boolean option
* Gaussian --- boolean option
* Extension --- option
* Modulus --- option
* Symmetric --- boolean option
* Strict --- boolean option
**Flags**
* Auto --- boolean flag
* Frac --- boolean flag
* Formal --- boolean flag
* Polys --- boolean flag
* Include --- boolean flag
* All --- boolean flag
* Gen --- flag
* Series --- boolean flag
"""
__order__ = None
__options__: dict[str, type[Option]] = {}
def __init__(self, gens, args, flags=None, strict=False):
dict.__init__(self)
if gens and args.get('gens', ()):
raise OptionError(
"both '*gens' and keyword argument 'gens' supplied")
elif gens:
args = dict(args)
args['gens'] = gens
defaults = args.pop('defaults', {})
def preprocess_options(args):
for option, value in args.items():
try:
cls = self.__options__[option]
except KeyError:
raise OptionError("'%s' is not a valid option" % option)
if issubclass(cls, Flag):
if flags is None or option not in flags:
if strict:
raise OptionError("'%s' flag is not allowed in this context" % option)
if value is not None:
self[option] = cls.preprocess(value)
preprocess_options(args)
for key, value in dict(defaults).items():
if key in self:
del defaults[key]
else:
for option in self.keys():
cls = self.__options__[option]
if key in cls.excludes:
del defaults[key]
break
preprocess_options(defaults)
for option in self.keys():
cls = self.__options__[option]
for require_option in cls.requires:
if self.get(require_option) is None:
raise OptionError("'%s' option is only allowed together with '%s'" % (option, require_option))
for exclude_option in cls.excludes:
if self.get(exclude_option) is not None:
raise OptionError("'%s' option is not allowed together with '%s'" % (option, exclude_option))
for option in self.__order__:
self.__options__[option].postprocess(self)
@classmethod
def _init_dependencies_order(cls):
"""Resolve the order of options' processing. """
if cls.__order__ is None:
vertices, edges = [], set()
for name, option in cls.__options__.items():
vertices.append(name)
for _name in option.after:
edges.add((_name, name))
for _name in option.before:
edges.add((name, _name))
try:
cls.__order__ = topological_sort((vertices, list(edges)))
except ValueError:
raise RuntimeError(
"cycle detected in sympy.polys options framework")
def clone(self, updates={}):
"""Clone ``self`` and update specified options. """
obj = dict.__new__(self.__class__)
for option, value in self.items():
obj[option] = value
for option, value in updates.items():
obj[option] = value
return obj
def __setattr__(self, attr, value):
if attr in self.__options__:
self[attr] = value
else:
super().__setattr__(attr, value)
@property
def args(self):
args = {}
for option, value in self.items():
if value is not None and option != 'gens':
cls = self.__options__[option]
if not issubclass(cls, Flag):
args[option] = value
return args
@property
def options(self):
options = {}
for option, cls in self.__options__.items():
if not issubclass(cls, Flag):
options[option] = getattr(self, option)
return options
@property
def flags(self):
flags = {}
for option, cls in self.__options__.items():
if issubclass(cls, Flag):
flags[option] = getattr(self, option)
return flags
class Expand(BooleanOption, metaclass=OptionType):
"""``expand`` option to polynomial manipulation functions. """
option = 'expand'
requires: list[str] = []
excludes: list[str] = []
@classmethod
def default(cls):
return True
class Gens(Option, metaclass=OptionType):
"""``gens`` option to polynomial manipulation functions. """
option = 'gens'
requires: list[str] = []
excludes: list[str] = []
@classmethod
def default(cls):
return ()
@classmethod
def preprocess(cls, gens):
if isinstance(gens, Basic):
gens = (gens,)
elif len(gens) == 1 and is_sequence(gens[0]):
gens = gens[0]
if gens == (None,):
gens = ()
elif has_dups(gens):
raise GeneratorsError("duplicated generators: %s" % str(gens))
elif any(gen.is_commutative is False for gen in gens):
raise GeneratorsError("non-commutative generators: %s" % str(gens))
return tuple(gens)
class Wrt(Option, metaclass=OptionType):
"""``wrt`` option to polynomial manipulation functions. """
option = 'wrt'
requires: list[str] = []
excludes: list[str] = []
_re_split = re.compile(r"\s*,\s*|\s+")
@classmethod
def preprocess(cls, wrt):
if isinstance(wrt, Basic):
return [str(wrt)]
elif isinstance(wrt, str):
wrt = wrt.strip()
if wrt.endswith(','):
raise OptionError('Bad input: missing parameter.')
if not wrt:
return []
return [ gen for gen in cls._re_split.split(wrt) ]
elif hasattr(wrt, '__getitem__'):
return list(map(str, wrt))
else:
raise OptionError("invalid argument for 'wrt' option")
class Sort(Option, metaclass=OptionType):
"""``sort`` option to polynomial manipulation functions. """
option = 'sort'
requires: list[str] = []
excludes: list[str] = []
@classmethod
def default(cls):
return []
@classmethod
def preprocess(cls, sort):
if isinstance(sort, str):
return [ gen.strip() for gen in sort.split('>') ]
elif hasattr(sort, '__getitem__'):
return list(map(str, sort))
else:
raise OptionError("invalid argument for 'sort' option")
class Order(Option, metaclass=OptionType):
"""``order`` option to polynomial manipulation functions. """
option = 'order'
requires: list[str] = []
excludes: list[str] = []
@classmethod
def default(cls):
return sympy.polys.orderings.lex
@classmethod
def preprocess(cls, order):
return sympy.polys.orderings.monomial_key(order)
class Field(BooleanOption, metaclass=OptionType):
"""``field`` option to polynomial manipulation functions. """
option = 'field'
requires: list[str] = []
excludes = ['domain', 'split', 'gaussian']
class Greedy(BooleanOption, metaclass=OptionType):
"""``greedy`` option to polynomial manipulation functions. """
option = 'greedy'
requires: list[str] = []
excludes = ['domain', 'split', 'gaussian', 'extension', 'modulus', 'symmetric']
class Composite(BooleanOption, metaclass=OptionType):
"""``composite`` option to polynomial manipulation functions. """
option = 'composite'
@classmethod
def default(cls):
return None
requires: list[str] = []
excludes = ['domain', 'split', 'gaussian', 'extension', 'modulus', 'symmetric']
class Domain(Option, metaclass=OptionType):
"""``domain`` option to polynomial manipulation functions. """
option = 'domain'
requires: list[str] = []
excludes = ['field', 'greedy', 'split', 'gaussian', 'extension']
after = ['gens']
_re_realfield = re.compile(r"^(R|RR)(_(\d+))?$")
_re_complexfield = re.compile(r"^(C|CC)(_(\d+))?$")
_re_finitefield = re.compile(r"^(FF|GF)\((\d+)\)$")
_re_polynomial = re.compile(r"^(Z|ZZ|Q|QQ|ZZ_I|QQ_I|R|RR|C|CC)\[(.+)\]$")
_re_fraction = re.compile(r"^(Z|ZZ|Q|QQ)\((.+)\)$")
_re_algebraic = re.compile(r"^(Q|QQ)\<(.+)\>$")
@classmethod
def preprocess(cls, domain):
if isinstance(domain, sympy.polys.domains.Domain):
return domain
elif hasattr(domain, 'to_domain'):
return domain.to_domain()
elif isinstance(domain, str):
if domain in ['Z', 'ZZ']:
return sympy.polys.domains.ZZ
if domain in ['Q', 'QQ']:
return sympy.polys.domains.QQ
if domain == 'ZZ_I':
return sympy.polys.domains.ZZ_I
if domain == 'QQ_I':
return sympy.polys.domains.QQ_I
if domain == 'EX':
return sympy.polys.domains.EX
r = cls._re_realfield.match(domain)
if r is not None:
_, _, prec = r.groups()
if prec is None:
return sympy.polys.domains.RR
else:
return sympy.polys.domains.RealField(int(prec))
r = cls._re_complexfield.match(domain)
if r is not None:
_, _, prec = r.groups()
if prec is None:
return sympy.polys.domains.CC
else:
return sympy.polys.domains.ComplexField(int(prec))
r = cls._re_finitefield.match(domain)
if r is not None:
return sympy.polys.domains.FF(int(r.groups()[1]))
r = cls._re_polynomial.match(domain)
if r is not None:
ground, gens = r.groups()
gens = list(map(sympify, gens.split(',')))
if ground in ['Z', 'ZZ']:
return sympy.polys.domains.ZZ.poly_ring(*gens)
elif ground in ['Q', 'QQ']:
return sympy.polys.domains.QQ.poly_ring(*gens)
elif ground in ['R', 'RR']:
return sympy.polys.domains.RR.poly_ring(*gens)
elif ground == 'ZZ_I':
return sympy.polys.domains.ZZ_I.poly_ring(*gens)
elif ground == 'QQ_I':
return sympy.polys.domains.QQ_I.poly_ring(*gens)
else:
return sympy.polys.domains.CC.poly_ring(*gens)
r = cls._re_fraction.match(domain)
if r is not None:
ground, gens = r.groups()
gens = list(map(sympify, gens.split(',')))
if ground in ['Z', 'ZZ']:
return sympy.polys.domains.ZZ.frac_field(*gens)
else:
return sympy.polys.domains.QQ.frac_field(*gens)
r = cls._re_algebraic.match(domain)
if r is not None:
gens = list(map(sympify, r.groups()[1].split(',')))
return sympy.polys.domains.QQ.algebraic_field(*gens)
raise OptionError('expected a valid domain specification, got %s' % domain)
@classmethod
def postprocess(cls, options):
if 'gens' in options and 'domain' in options and options['domain'].is_Composite and \
(set(options['domain'].symbols) & set(options['gens'])):
raise GeneratorsError(
"ground domain and generators interfere together")
elif ('gens' not in options or not options['gens']) and \
'domain' in options and options['domain'] == sympy.polys.domains.EX:
raise GeneratorsError("you have to provide generators because EX domain was requested")
class Split(BooleanOption, metaclass=OptionType):
"""``split`` option to polynomial manipulation functions. """
option = 'split'
requires: list[str] = []
excludes = ['field', 'greedy', 'domain', 'gaussian', 'extension',
'modulus', 'symmetric']
@classmethod
def postprocess(cls, options):
if 'split' in options:
raise NotImplementedError("'split' option is not implemented yet")
class Gaussian(BooleanOption, metaclass=OptionType):
"""``gaussian`` option to polynomial manipulation functions. """
option = 'gaussian'
requires: list[str] = []
excludes = ['field', 'greedy', 'domain', 'split', 'extension',
'modulus', 'symmetric']
@classmethod
def postprocess(cls, options):
if 'gaussian' in options and options['gaussian'] is True:
options['domain'] = sympy.polys.domains.QQ_I
Extension.postprocess(options)
class Extension(Option, metaclass=OptionType):
"""``extension`` option to polynomial manipulation functions. """
option = 'extension'
requires: list[str] = []
excludes = ['greedy', 'domain', 'split', 'gaussian', 'modulus',
'symmetric']
@classmethod
def preprocess(cls, extension):
if extension == 1:
return bool(extension)
elif extension == 0:
raise OptionError("'False' is an invalid argument for 'extension'")
else:
if not hasattr(extension, '__iter__'):
extension = {extension}
else:
if not extension:
extension = None
else:
extension = set(extension)
return extension
@classmethod
def postprocess(cls, options):
if 'extension' in options and options['extension'] is not True:
options['domain'] = sympy.polys.domains.QQ.algebraic_field(
*options['extension'])
class Modulus(Option, metaclass=OptionType):
"""``modulus`` option to polynomial manipulation functions. """
option = 'modulus'
requires: list[str] = []
excludes = ['greedy', 'split', 'domain', 'gaussian', 'extension']
@classmethod
def preprocess(cls, modulus):
modulus = sympify(modulus)
if modulus.is_Integer and modulus > 0:
return int(modulus)
else:
raise OptionError(
"'modulus' must a positive integer, got %s" % modulus)
@classmethod
def postprocess(cls, options):
if 'modulus' in options:
modulus = options['modulus']
symmetric = options.get('symmetric', True)
options['domain'] = sympy.polys.domains.FF(modulus, symmetric)
class Symmetric(BooleanOption, metaclass=OptionType):
"""``symmetric`` option to polynomial manipulation functions. """
option = 'symmetric'
requires = ['modulus']
excludes = ['greedy', 'domain', 'split', 'gaussian', 'extension']
class Strict(BooleanOption, metaclass=OptionType):
"""``strict`` option to polynomial manipulation functions. """
option = 'strict'
@classmethod
def default(cls):
return True
class Auto(BooleanOption, Flag, metaclass=OptionType):
"""``auto`` flag to polynomial manipulation functions. """
option = 'auto'
after = ['field', 'domain', 'extension', 'gaussian']
@classmethod
def default(cls):
return True
@classmethod
def postprocess(cls, options):
if ('domain' in options or 'field' in options) and 'auto' not in options:
options['auto'] = False
class Frac(BooleanOption, Flag, metaclass=OptionType):
"""``auto`` option to polynomial manipulation functions. """
option = 'frac'
@classmethod
def default(cls):
return False
class Formal(BooleanOption, Flag, metaclass=OptionType):
"""``formal`` flag to polynomial manipulation functions. """
option = 'formal'
@classmethod
def default(cls):
return False
class Polys(BooleanOption, Flag, metaclass=OptionType):
"""``polys`` flag to polynomial manipulation functions. """
option = 'polys'
class Include(BooleanOption, Flag, metaclass=OptionType):
"""``include`` flag to polynomial manipulation functions. """
option = 'include'
@classmethod
def default(cls):
return False
class All(BooleanOption, Flag, metaclass=OptionType):
"""``all`` flag to polynomial manipulation functions. """
option = 'all'
@classmethod
def default(cls):
return False
class Gen(Flag, metaclass=OptionType):
"""``gen`` flag to polynomial manipulation functions. """
option = 'gen'
@classmethod
def default(cls):
return 0
@classmethod
def preprocess(cls, gen):
if isinstance(gen, (Basic, int)):
return gen
else:
raise OptionError("invalid argument for 'gen' option")
class Series(BooleanOption, Flag, metaclass=OptionType):
"""``series`` flag to polynomial manipulation functions. """
option = 'series'
@classmethod
def default(cls):
return False
class Symbols(Flag, metaclass=OptionType):
"""``symbols`` flag to polynomial manipulation functions. """
option = 'symbols'
@classmethod
def default(cls):
return numbered_symbols('s', start=1)
@classmethod
def preprocess(cls, symbols):
if hasattr(symbols, '__iter__'):
return iter(symbols)
else:
raise OptionError("expected an iterator or iterable container, got %s" % symbols)
class Method(Flag, metaclass=OptionType):
"""``method`` flag to polynomial manipulation functions. """
option = 'method'
@classmethod
def preprocess(cls, method):
if isinstance(method, str):
return method.lower()
else:
raise OptionError("expected a string, got %s" % method)
def build_options(gens, args=None):
"""Construct options from keyword arguments or ... options. """
if args is None:
gens, args = (), gens
if len(args) != 1 or 'opt' not in args or gens:
return Options(gens, args)
else:
return args['opt']
def allowed_flags(args, flags):
"""
Allow specified flags to be used in the given context.
Examples
========
>>> from sympy.polys.polyoptions import allowed_flags
>>> from sympy.polys.domains import ZZ
>>> allowed_flags({'domain': ZZ}, [])
>>> allowed_flags({'domain': ZZ, 'frac': True}, [])
Traceback (most recent call last):
...
FlagError: 'frac' flag is not allowed in this context
>>> allowed_flags({'domain': ZZ, 'frac': True}, ['frac'])
"""
flags = set(flags)
for arg in args.keys():
try:
if Options.__options__[arg].is_Flag and arg not in flags:
raise FlagError(
"'%s' flag is not allowed in this context" % arg)
except KeyError:
raise OptionError("'%s' is not a valid option" % arg)
def set_defaults(options, **defaults):
"""Update options with default values. """
if 'defaults' not in options:
options = dict(options)
options['defaults'] = defaults
return options
Options._init_dependencies_order()
|
1c45d4387f9b8589134d7c9ebfcecb64fb322b7f9a7aa0a6191804ac5889ce10 | """Sparse rational function fields. """
from __future__ import annotations
from typing import Any
from functools import reduce
from operator import add, mul, lt, le, gt, ge
from sympy.core.expr import Expr
from sympy.core.mod import Mod
from sympy.core.numbers import Exp1
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.core.sympify import CantSympify, sympify
from sympy.functions.elementary.exponential import ExpBase
from sympy.polys.domains.domainelement import DomainElement
from sympy.polys.domains.fractionfield import FractionField
from sympy.polys.domains.polynomialring import PolynomialRing
from sympy.polys.constructor import construct_domain
from sympy.polys.orderings import lex
from sympy.polys.polyerrors import CoercionFailed
from sympy.polys.polyoptions import build_options
from sympy.polys.polyutils import _parallel_dict_from_expr
from sympy.polys.rings import PolyElement
from sympy.printing.defaults import DefaultPrinting
from sympy.utilities import public
from sympy.utilities.iterables import is_sequence
from sympy.utilities.magic import pollute
@public
def field(symbols, domain, order=lex):
"""Construct new rational function field returning (field, x1, ..., xn). """
_field = FracField(symbols, domain, order)
return (_field,) + _field.gens
@public
def xfield(symbols, domain, order=lex):
"""Construct new rational function field returning (field, (x1, ..., xn)). """
_field = FracField(symbols, domain, order)
return (_field, _field.gens)
@public
def vfield(symbols, domain, order=lex):
"""Construct new rational function field and inject generators into global namespace. """
_field = FracField(symbols, domain, order)
pollute([ sym.name for sym in _field.symbols ], _field.gens)
return _field
@public
def sfield(exprs, *symbols, **options):
"""Construct a field deriving generators and domain
from options and input expressions.
Parameters
==========
exprs : py:class:`~.Expr` or sequence of :py:class:`~.Expr` (sympifiable)
symbols : sequence of :py:class:`~.Symbol`/:py:class:`~.Expr`
options : keyword arguments understood by :py:class:`~.Options`
Examples
========
>>> from sympy import exp, log, symbols, sfield
>>> x = symbols("x")
>>> K, f = sfield((x*log(x) + 4*x**2)*exp(1/x + log(x)/3)/x**2)
>>> K
Rational function field in x, exp(1/x), log(x), x**(1/3) over ZZ with lex order
>>> f
(4*x**2*(exp(1/x)) + x*(exp(1/x))*(log(x)))/((x**(1/3))**5)
"""
single = False
if not is_sequence(exprs):
exprs, single = [exprs], True
exprs = list(map(sympify, exprs))
opt = build_options(symbols, options)
numdens = []
for expr in exprs:
numdens.extend(expr.as_numer_denom())
reps, opt = _parallel_dict_from_expr(numdens, opt)
if opt.domain is None:
# NOTE: this is inefficient because construct_domain() automatically
# performs conversion to the target domain. It shouldn't do this.
coeffs = sum([list(rep.values()) for rep in reps], [])
opt.domain, _ = construct_domain(coeffs, opt=opt)
_field = FracField(opt.gens, opt.domain, opt.order)
fracs = []
for i in range(0, len(reps), 2):
fracs.append(_field(tuple(reps[i:i+2])))
if single:
return (_field, fracs[0])
else:
return (_field, fracs)
_field_cache: dict[Any, Any] = {}
class FracField(DefaultPrinting):
"""Multivariate distributed rational function field. """
def __new__(cls, symbols, domain, order=lex):
from sympy.polys.rings import PolyRing
ring = PolyRing(symbols, domain, order)
symbols = ring.symbols
ngens = ring.ngens
domain = ring.domain
order = ring.order
_hash_tuple = (cls.__name__, symbols, ngens, domain, order)
obj = _field_cache.get(_hash_tuple)
if obj is None:
obj = object.__new__(cls)
obj._hash_tuple = _hash_tuple
obj._hash = hash(_hash_tuple)
obj.ring = ring
obj.dtype = type("FracElement", (FracElement,), {"field": obj})
obj.symbols = symbols
obj.ngens = ngens
obj.domain = domain
obj.order = order
obj.zero = obj.dtype(ring.zero)
obj.one = obj.dtype(ring.one)
obj.gens = obj._gens()
for symbol, generator in zip(obj.symbols, obj.gens):
if isinstance(symbol, Symbol):
name = symbol.name
if not hasattr(obj, name):
setattr(obj, name, generator)
_field_cache[_hash_tuple] = obj
return obj
def _gens(self):
"""Return a list of polynomial generators. """
return tuple([ self.dtype(gen) for gen in self.ring.gens ])
def __getnewargs__(self):
return (self.symbols, self.domain, self.order)
def __hash__(self):
return self._hash
def index(self, gen):
if isinstance(gen, self.dtype):
return self.ring.index(gen.to_poly())
else:
raise ValueError("expected a %s, got %s instead" % (self.dtype,gen))
def __eq__(self, other):
return isinstance(other, FracField) and \
(self.symbols, self.ngens, self.domain, self.order) == \
(other.symbols, other.ngens, other.domain, other.order)
def __ne__(self, other):
return not self == other
def raw_new(self, numer, denom=None):
return self.dtype(numer, denom)
def new(self, numer, denom=None):
if denom is None: denom = self.ring.one
numer, denom = numer.cancel(denom)
return self.raw_new(numer, denom)
def domain_new(self, element):
return self.domain.convert(element)
def ground_new(self, element):
try:
return self.new(self.ring.ground_new(element))
except CoercionFailed:
domain = self.domain
if not domain.is_Field and domain.has_assoc_Field:
ring = self.ring
ground_field = domain.get_field()
element = ground_field.convert(element)
numer = ring.ground_new(ground_field.numer(element))
denom = ring.ground_new(ground_field.denom(element))
return self.raw_new(numer, denom)
else:
raise
def field_new(self, element):
if isinstance(element, FracElement):
if self == element.field:
return element
if isinstance(self.domain, FractionField) and \
self.domain.field == element.field:
return self.ground_new(element)
elif isinstance(self.domain, PolynomialRing) and \
self.domain.ring.to_field() == element.field:
return self.ground_new(element)
else:
raise NotImplementedError("conversion")
elif isinstance(element, PolyElement):
denom, numer = element.clear_denoms()
if isinstance(self.domain, PolynomialRing) and \
numer.ring == self.domain.ring:
numer = self.ring.ground_new(numer)
elif isinstance(self.domain, FractionField) and \
numer.ring == self.domain.field.to_ring():
numer = self.ring.ground_new(numer)
else:
numer = numer.set_ring(self.ring)
denom = self.ring.ground_new(denom)
return self.raw_new(numer, denom)
elif isinstance(element, tuple) and len(element) == 2:
numer, denom = list(map(self.ring.ring_new, element))
return self.new(numer, denom)
elif isinstance(element, str):
raise NotImplementedError("parsing")
elif isinstance(element, Expr):
return self.from_expr(element)
else:
return self.ground_new(element)
__call__ = field_new
def _rebuild_expr(self, expr, mapping):
domain = self.domain
powers = tuple((gen, gen.as_base_exp()) for gen in mapping.keys()
if gen.is_Pow or isinstance(gen, ExpBase))
def _rebuild(expr):
generator = mapping.get(expr)
if generator is not None:
return generator
elif expr.is_Add:
return reduce(add, list(map(_rebuild, expr.args)))
elif expr.is_Mul:
return reduce(mul, list(map(_rebuild, expr.args)))
elif expr.is_Pow or isinstance(expr, (ExpBase, Exp1)):
b, e = expr.as_base_exp()
# look for bg**eg whose integer power may be b**e
for gen, (bg, eg) in powers:
if bg == b and Mod(e, eg) == 0:
return mapping.get(gen)**int(e/eg)
if e.is_Integer and e is not S.One:
return _rebuild(b)**int(e)
elif mapping.get(1/expr) is not None:
return 1/mapping.get(1/expr)
try:
return domain.convert(expr)
except CoercionFailed:
if not domain.is_Field and domain.has_assoc_Field:
return domain.get_field().convert(expr)
else:
raise
return _rebuild(expr)
def from_expr(self, expr):
mapping = dict(list(zip(self.symbols, self.gens)))
try:
frac = self._rebuild_expr(sympify(expr), mapping)
except CoercionFailed:
raise ValueError("expected an expression convertible to a rational function in %s, got %s" % (self, expr))
else:
return self.field_new(frac)
def to_domain(self):
return FractionField(self)
def to_ring(self):
from sympy.polys.rings import PolyRing
return PolyRing(self.symbols, self.domain, self.order)
class FracElement(DomainElement, DefaultPrinting, CantSympify):
"""Element of multivariate distributed rational function field. """
def __init__(self, numer, denom=None):
if denom is None:
denom = self.field.ring.one
elif not denom:
raise ZeroDivisionError("zero denominator")
self.numer = numer
self.denom = denom
def raw_new(f, numer, denom):
return f.__class__(numer, denom)
def new(f, numer, denom):
return f.raw_new(*numer.cancel(denom))
def to_poly(f):
if f.denom != 1:
raise ValueError("f.denom should be 1")
return f.numer
def parent(self):
return self.field.to_domain()
def __getnewargs__(self):
return (self.field, self.numer, self.denom)
_hash = None
def __hash__(self):
_hash = self._hash
if _hash is None:
self._hash = _hash = hash((self.field, self.numer, self.denom))
return _hash
def copy(self):
return self.raw_new(self.numer.copy(), self.denom.copy())
def set_field(self, new_field):
if self.field == new_field:
return self
else:
new_ring = new_field.ring
numer = self.numer.set_ring(new_ring)
denom = self.denom.set_ring(new_ring)
return new_field.new(numer, denom)
def as_expr(self, *symbols):
return self.numer.as_expr(*symbols)/self.denom.as_expr(*symbols)
def __eq__(f, g):
if isinstance(g, FracElement) and f.field == g.field:
return f.numer == g.numer and f.denom == g.denom
else:
return f.numer == g and f.denom == f.field.ring.one
def __ne__(f, g):
return not f == g
def __bool__(f):
return bool(f.numer)
def sort_key(self):
return (self.denom.sort_key(), self.numer.sort_key())
def _cmp(f1, f2, op):
if isinstance(f2, f1.field.dtype):
return op(f1.sort_key(), f2.sort_key())
else:
return NotImplemented
def __lt__(f1, f2):
return f1._cmp(f2, lt)
def __le__(f1, f2):
return f1._cmp(f2, le)
def __gt__(f1, f2):
return f1._cmp(f2, gt)
def __ge__(f1, f2):
return f1._cmp(f2, ge)
def __pos__(f):
"""Negate all coefficients in ``f``. """
return f.raw_new(f.numer, f.denom)
def __neg__(f):
"""Negate all coefficients in ``f``. """
return f.raw_new(-f.numer, f.denom)
def _extract_ground(self, element):
domain = self.field.domain
try:
element = domain.convert(element)
except CoercionFailed:
if not domain.is_Field and domain.has_assoc_Field:
ground_field = domain.get_field()
try:
element = ground_field.convert(element)
except CoercionFailed:
pass
else:
return -1, ground_field.numer(element), ground_field.denom(element)
return 0, None, None
else:
return 1, element, None
def __add__(f, g):
"""Add rational functions ``f`` and ``g``. """
field = f.field
if not g:
return f
elif not f:
return g
elif isinstance(g, field.dtype):
if f.denom == g.denom:
return f.new(f.numer + g.numer, f.denom)
else:
return f.new(f.numer*g.denom + f.denom*g.numer, f.denom*g.denom)
elif isinstance(g, field.ring.dtype):
return f.new(f.numer + f.denom*g, f.denom)
else:
if isinstance(g, FracElement):
if isinstance(field.domain, FractionField) and field.domain.field == g.field:
pass
elif isinstance(g.field.domain, FractionField) and g.field.domain.field == field:
return g.__radd__(f)
else:
return NotImplemented
elif isinstance(g, PolyElement):
if isinstance(field.domain, PolynomialRing) and field.domain.ring == g.ring:
pass
else:
return g.__radd__(f)
return f.__radd__(g)
def __radd__(f, c):
if isinstance(c, f.field.ring.dtype):
return f.new(f.numer + f.denom*c, f.denom)
op, g_numer, g_denom = f._extract_ground(c)
if op == 1:
return f.new(f.numer + f.denom*g_numer, f.denom)
elif not op:
return NotImplemented
else:
return f.new(f.numer*g_denom + f.denom*g_numer, f.denom*g_denom)
def __sub__(f, g):
"""Subtract rational functions ``f`` and ``g``. """
field = f.field
if not g:
return f
elif not f:
return -g
elif isinstance(g, field.dtype):
if f.denom == g.denom:
return f.new(f.numer - g.numer, f.denom)
else:
return f.new(f.numer*g.denom - f.denom*g.numer, f.denom*g.denom)
elif isinstance(g, field.ring.dtype):
return f.new(f.numer - f.denom*g, f.denom)
else:
if isinstance(g, FracElement):
if isinstance(field.domain, FractionField) and field.domain.field == g.field:
pass
elif isinstance(g.field.domain, FractionField) and g.field.domain.field == field:
return g.__rsub__(f)
else:
return NotImplemented
elif isinstance(g, PolyElement):
if isinstance(field.domain, PolynomialRing) and field.domain.ring == g.ring:
pass
else:
return g.__rsub__(f)
op, g_numer, g_denom = f._extract_ground(g)
if op == 1:
return f.new(f.numer - f.denom*g_numer, f.denom)
elif not op:
return NotImplemented
else:
return f.new(f.numer*g_denom - f.denom*g_numer, f.denom*g_denom)
def __rsub__(f, c):
if isinstance(c, f.field.ring.dtype):
return f.new(-f.numer + f.denom*c, f.denom)
op, g_numer, g_denom = f._extract_ground(c)
if op == 1:
return f.new(-f.numer + f.denom*g_numer, f.denom)
elif not op:
return NotImplemented
else:
return f.new(-f.numer*g_denom + f.denom*g_numer, f.denom*g_denom)
def __mul__(f, g):
"""Multiply rational functions ``f`` and ``g``. """
field = f.field
if not f or not g:
return field.zero
elif isinstance(g, field.dtype):
return f.new(f.numer*g.numer, f.denom*g.denom)
elif isinstance(g, field.ring.dtype):
return f.new(f.numer*g, f.denom)
else:
if isinstance(g, FracElement):
if isinstance(field.domain, FractionField) and field.domain.field == g.field:
pass
elif isinstance(g.field.domain, FractionField) and g.field.domain.field == field:
return g.__rmul__(f)
else:
return NotImplemented
elif isinstance(g, PolyElement):
if isinstance(field.domain, PolynomialRing) and field.domain.ring == g.ring:
pass
else:
return g.__rmul__(f)
return f.__rmul__(g)
def __rmul__(f, c):
if isinstance(c, f.field.ring.dtype):
return f.new(f.numer*c, f.denom)
op, g_numer, g_denom = f._extract_ground(c)
if op == 1:
return f.new(f.numer*g_numer, f.denom)
elif not op:
return NotImplemented
else:
return f.new(f.numer*g_numer, f.denom*g_denom)
def __truediv__(f, g):
"""Computes quotient of fractions ``f`` and ``g``. """
field = f.field
if not g:
raise ZeroDivisionError
elif isinstance(g, field.dtype):
return f.new(f.numer*g.denom, f.denom*g.numer)
elif isinstance(g, field.ring.dtype):
return f.new(f.numer, f.denom*g)
else:
if isinstance(g, FracElement):
if isinstance(field.domain, FractionField) and field.domain.field == g.field:
pass
elif isinstance(g.field.domain, FractionField) and g.field.domain.field == field:
return g.__rtruediv__(f)
else:
return NotImplemented
elif isinstance(g, PolyElement):
if isinstance(field.domain, PolynomialRing) and field.domain.ring == g.ring:
pass
else:
return g.__rtruediv__(f)
op, g_numer, g_denom = f._extract_ground(g)
if op == 1:
return f.new(f.numer, f.denom*g_numer)
elif not op:
return NotImplemented
else:
return f.new(f.numer*g_denom, f.denom*g_numer)
def __rtruediv__(f, c):
if not f:
raise ZeroDivisionError
elif isinstance(c, f.field.ring.dtype):
return f.new(f.denom*c, f.numer)
op, g_numer, g_denom = f._extract_ground(c)
if op == 1:
return f.new(f.denom*g_numer, f.numer)
elif not op:
return NotImplemented
else:
return f.new(f.denom*g_numer, f.numer*g_denom)
def __pow__(f, n):
"""Raise ``f`` to a non-negative power ``n``. """
if n >= 0:
return f.raw_new(f.numer**n, f.denom**n)
elif not f:
raise ZeroDivisionError
else:
return f.raw_new(f.denom**-n, f.numer**-n)
def diff(f, x):
"""Computes partial derivative in ``x``.
Examples
========
>>> from sympy.polys.fields import field
>>> from sympy.polys.domains import ZZ
>>> _, x, y, z = field("x,y,z", ZZ)
>>> ((x**2 + y)/(z + 1)).diff(x)
2*x/(z + 1)
"""
x = x.to_poly()
return f.new(f.numer.diff(x)*f.denom - f.numer*f.denom.diff(x), f.denom**2)
def __call__(f, *values):
if 0 < len(values) <= f.field.ngens:
return f.evaluate(list(zip(f.field.gens, values)))
else:
raise ValueError("expected at least 1 and at most %s values, got %s" % (f.field.ngens, len(values)))
def evaluate(f, x, a=None):
if isinstance(x, list) and a is None:
x = [ (X.to_poly(), a) for X, a in x ]
numer, denom = f.numer.evaluate(x), f.denom.evaluate(x)
else:
x = x.to_poly()
numer, denom = f.numer.evaluate(x, a), f.denom.evaluate(x, a)
field = numer.ring.to_field()
return field.new(numer, denom)
def subs(f, x, a=None):
if isinstance(x, list) and a is None:
x = [ (X.to_poly(), a) for X, a in x ]
numer, denom = f.numer.subs(x), f.denom.subs(x)
else:
x = x.to_poly()
numer, denom = f.numer.subs(x, a), f.denom.subs(x, a)
return f.new(numer, denom)
def compose(f, x, a=None):
raise NotImplementedError
|
9f2a696de3b910c5771644b46fc73724ad85c9998d4204af362407e61687b4bd | """Low-level linear systems solver. """
from sympy.utilities.exceptions import sympy_deprecation_warning
from sympy.utilities.iterables import connected_components
from sympy.core.sympify import sympify
from sympy.core.numbers import Integer, Rational
from sympy.matrices.dense import MutableDenseMatrix
from sympy.polys.domains import ZZ, QQ
from sympy.polys.domains import EX
from sympy.polys.rings import sring
from sympy.polys.polyerrors import NotInvertible
from sympy.polys.domainmatrix import DomainMatrix
class PolyNonlinearError(Exception):
"""Raised by solve_lin_sys for nonlinear equations"""
pass
class RawMatrix(MutableDenseMatrix):
"""
.. deprecated:: 1.9
This class fundamentally is broken by design. Use ``DomainMatrix`` if
you want a matrix over the polys domains or ``Matrix`` for a matrix
with ``Expr`` elements. The ``RawMatrix`` class will be removed/broken
in future in order to reestablish the invariant that the elements of a
Matrix should be of type ``Expr``.
"""
_sympify = staticmethod(lambda x: x)
def __init__(self, *args, **kwargs):
sympy_deprecation_warning(
"""
The RawMatrix class is deprecated. Use either DomainMatrix or
Matrix instead.
""",
deprecated_since_version="1.9",
active_deprecations_target="deprecated-rawmatrix",
)
domain = ZZ
for i in range(self.rows):
for j in range(self.cols):
val = self[i,j]
if getattr(val, 'is_Poly', False):
K = val.domain[val.gens]
val_sympy = val.as_expr()
elif hasattr(val, 'parent'):
K = val.parent()
val_sympy = K.to_sympy(val)
elif isinstance(val, (int, Integer)):
K = ZZ
val_sympy = sympify(val)
elif isinstance(val, Rational):
K = QQ
val_sympy = val
else:
for K in ZZ, QQ:
if K.of_type(val):
val_sympy = K.to_sympy(val)
break
else:
raise TypeError
domain = domain.unify(K)
self[i,j] = val_sympy
self.ring = domain
def eqs_to_matrix(eqs_coeffs, eqs_rhs, gens, domain):
"""Get matrix from linear equations in dict format.
Explanation
===========
Get the matrix representation of a system of linear equations represented
as dicts with low-level DomainElement coefficients. This is an
*internal* function that is used by solve_lin_sys.
Parameters
==========
eqs_coeffs: list[dict[Symbol, DomainElement]]
The left hand sides of the equations as dicts mapping from symbols to
coefficients where the coefficients are instances of
DomainElement.
eqs_rhs: list[DomainElements]
The right hand sides of the equations as instances of
DomainElement.
gens: list[Symbol]
The unknowns in the system of equations.
domain: Domain
The domain for coefficients of both lhs and rhs.
Returns
=======
The augmented matrix representation of the system as a DomainMatrix.
Examples
========
>>> from sympy import symbols, ZZ
>>> from sympy.polys.solvers import eqs_to_matrix
>>> x, y = symbols('x, y')
>>> eqs_coeff = [{x:ZZ(1), y:ZZ(1)}, {x:ZZ(1), y:ZZ(-1)}]
>>> eqs_rhs = [ZZ(0), ZZ(-1)]
>>> eqs_to_matrix(eqs_coeff, eqs_rhs, [x, y], ZZ)
DomainMatrix([[1, 1, 0], [1, -1, 1]], (2, 3), ZZ)
See also
========
solve_lin_sys: Uses :func:`~eqs_to_matrix` internally
"""
sym2index = {x: n for n, x in enumerate(gens)}
nrows = len(eqs_coeffs)
ncols = len(gens) + 1
rows = [[domain.zero] * ncols for _ in range(nrows)]
for row, eq_coeff, eq_rhs in zip(rows, eqs_coeffs, eqs_rhs):
for sym, coeff in eq_coeff.items():
row[sym2index[sym]] = domain.convert(coeff)
row[-1] = -domain.convert(eq_rhs)
return DomainMatrix(rows, (nrows, ncols), domain)
def sympy_eqs_to_ring(eqs, symbols):
"""Convert a system of equations from Expr to a PolyRing
Explanation
===========
High-level functions like ``solve`` expect Expr as inputs but can use
``solve_lin_sys`` internally. This function converts equations from
``Expr`` to the low-level poly types used by the ``solve_lin_sys``
function.
Parameters
==========
eqs: List of Expr
A list of equations as Expr instances
symbols: List of Symbol
A list of the symbols that are the unknowns in the system of
equations.
Returns
=======
Tuple[List[PolyElement], Ring]: The equations as PolyElement instances
and the ring of polynomials within which each equation is represented.
Examples
========
>>> from sympy import symbols
>>> from sympy.polys.solvers import sympy_eqs_to_ring
>>> a, x, y = symbols('a, x, y')
>>> eqs = [x-y, x+a*y]
>>> eqs_ring, ring = sympy_eqs_to_ring(eqs, [x, y])
>>> eqs_ring
[x - y, x + a*y]
>>> type(eqs_ring[0])
<class 'sympy.polys.rings.PolyElement'>
>>> ring
ZZ(a)[x,y]
With the equations in this form they can be passed to ``solve_lin_sys``:
>>> from sympy.polys.solvers import solve_lin_sys
>>> solve_lin_sys(eqs_ring, ring)
{y: 0, x: 0}
"""
try:
K, eqs_K = sring(eqs, symbols, field=True, extension=True)
except NotInvertible:
# https://github.com/sympy/sympy/issues/18874
K, eqs_K = sring(eqs, symbols, domain=EX)
return eqs_K, K.to_domain()
def solve_lin_sys(eqs, ring, _raw=True):
"""Solve a system of linear equations from a PolynomialRing
Explanation
===========
Solves a system of linear equations given as PolyElement instances of a
PolynomialRing. The basic arithmetic is carried out using instance of
DomainElement which is more efficient than :class:`~sympy.core.expr.Expr`
for the most common inputs.
While this is a public function it is intended primarily for internal use
so its interface is not necessarily convenient. Users are suggested to use
the :func:`sympy.solvers.solveset.linsolve` function (which uses this
function internally) instead.
Parameters
==========
eqs: list[PolyElement]
The linear equations to be solved as elements of a
PolynomialRing (assumed equal to zero).
ring: PolynomialRing
The polynomial ring from which eqs are drawn. The generators of this
ring are the unknowns to be solved for and the domain of the ring is
the domain of the coefficients of the system of equations.
_raw: bool
If *_raw* is False, the keys and values in the returned dictionary
will be of type Expr (and the unit of the field will be removed from
the keys) otherwise the low-level polys types will be returned, e.g.
PolyElement: PythonRational.
Returns
=======
``None`` if the system has no solution.
dict[Symbol, Expr] if _raw=False
dict[Symbol, DomainElement] if _raw=True.
Examples
========
>>> from sympy import symbols
>>> from sympy.polys.solvers import solve_lin_sys, sympy_eqs_to_ring
>>> x, y = symbols('x, y')
>>> eqs = [x - y, x + y - 2]
>>> eqs_ring, ring = sympy_eqs_to_ring(eqs, [x, y])
>>> solve_lin_sys(eqs_ring, ring)
{y: 1, x: 1}
Passing ``_raw=False`` returns the same result except that the keys are
``Expr`` rather than low-level poly types.
>>> solve_lin_sys(eqs_ring, ring, _raw=False)
{x: 1, y: 1}
See also
========
sympy_eqs_to_ring: prepares the inputs to ``solve_lin_sys``.
linsolve: ``linsolve`` uses ``solve_lin_sys`` internally.
sympy.solvers.solvers.solve: ``solve`` uses ``solve_lin_sys`` internally.
"""
as_expr = not _raw
assert ring.domain.is_Field
eqs_dict = [dict(eq) for eq in eqs]
one_monom = ring.one.monoms()[0]
zero = ring.domain.zero
eqs_rhs = []
eqs_coeffs = []
for eq_dict in eqs_dict:
eq_rhs = eq_dict.pop(one_monom, zero)
eq_coeffs = {}
for monom, coeff in eq_dict.items():
if sum(monom) != 1:
msg = "Nonlinear term encountered in solve_lin_sys"
raise PolyNonlinearError(msg)
eq_coeffs[ring.gens[monom.index(1)]] = coeff
if not eq_coeffs:
if not eq_rhs:
continue
else:
return None
eqs_rhs.append(eq_rhs)
eqs_coeffs.append(eq_coeffs)
result = _solve_lin_sys(eqs_coeffs, eqs_rhs, ring)
if result is not None and as_expr:
def to_sympy(x):
as_expr = getattr(x, 'as_expr', None)
if as_expr:
return as_expr()
else:
return ring.domain.to_sympy(x)
tresult = {to_sympy(sym): to_sympy(val) for sym, val in result.items()}
# Remove 1.0x
result = {}
for k, v in tresult.items():
if k.is_Mul:
c, s = k.as_coeff_Mul()
result[s] = v/c
else:
result[k] = v
return result
def _solve_lin_sys(eqs_coeffs, eqs_rhs, ring):
"""Solve a linear system from dict of PolynomialRing coefficients
Explanation
===========
This is an **internal** function used by :func:`solve_lin_sys` after the
equations have been preprocessed. The role of this function is to split
the system into connected components and pass those to
:func:`_solve_lin_sys_component`.
Examples
========
Setup a system for $x-y=0$ and $x+y=2$ and solve:
>>> from sympy import symbols, sring
>>> from sympy.polys.solvers import _solve_lin_sys
>>> x, y = symbols('x, y')
>>> R, (xr, yr) = sring([x, y], [x, y])
>>> eqs = [{xr:R.one, yr:-R.one}, {xr:R.one, yr:R.one}]
>>> eqs_rhs = [R.zero, -2*R.one]
>>> _solve_lin_sys(eqs, eqs_rhs, R)
{y: 1, x: 1}
See also
========
solve_lin_sys: This function is used internally by :func:`solve_lin_sys`.
"""
V = ring.gens
E = []
for eq_coeffs in eqs_coeffs:
syms = list(eq_coeffs)
E.extend(zip(syms[:-1], syms[1:]))
G = V, E
components = connected_components(G)
sym2comp = {}
for n, component in enumerate(components):
for sym in component:
sym2comp[sym] = n
subsystems = [([], []) for _ in range(len(components))]
for eq_coeff, eq_rhs in zip(eqs_coeffs, eqs_rhs):
sym = next(iter(eq_coeff), None)
sub_coeff, sub_rhs = subsystems[sym2comp[sym]]
sub_coeff.append(eq_coeff)
sub_rhs.append(eq_rhs)
sol = {}
for subsystem in subsystems:
subsol = _solve_lin_sys_component(subsystem[0], subsystem[1], ring)
if subsol is None:
return None
sol.update(subsol)
return sol
def _solve_lin_sys_component(eqs_coeffs, eqs_rhs, ring):
"""Solve a linear system from dict of PolynomialRing coefficients
Explanation
===========
This is an **internal** function used by :func:`solve_lin_sys` after the
equations have been preprocessed. After :func:`_solve_lin_sys` splits the
system into connected components this function is called for each
component. The system of equations is solved using Gauss-Jordan
elimination with division followed by back-substitution.
Examples
========
Setup a system for $x-y=0$ and $x+y=2$ and solve:
>>> from sympy import symbols, sring
>>> from sympy.polys.solvers import _solve_lin_sys_component
>>> x, y = symbols('x, y')
>>> R, (xr, yr) = sring([x, y], [x, y])
>>> eqs = [{xr:R.one, yr:-R.one}, {xr:R.one, yr:R.one}]
>>> eqs_rhs = [R.zero, -2*R.one]
>>> _solve_lin_sys_component(eqs, eqs_rhs, R)
{y: 1, x: 1}
See also
========
solve_lin_sys: This function is used internally by :func:`solve_lin_sys`.
"""
# transform from equations to matrix form
matrix = eqs_to_matrix(eqs_coeffs, eqs_rhs, ring.gens, ring.domain)
# convert to a field for rref
if not matrix.domain.is_Field:
matrix = matrix.to_field()
# solve by row-reduction
echelon, pivots = matrix.rref()
# construct the returnable form of the solutions
keys = ring.gens
if pivots and pivots[-1] == len(keys):
return None
if len(pivots) == len(keys):
sol = []
for s in [row[-1] for row in echelon.rep.to_ddm()]:
a = s
sol.append(a)
sols = dict(zip(keys, sol))
else:
sols = {}
g = ring.gens
# Extract ground domain coefficients and convert to the ring:
if hasattr(ring, 'ring'):
convert = ring.ring.ground_new
else:
convert = ring.ground_new
echelon = echelon.rep.to_ddm()
vals_set = {v for row in echelon for v in row}
vals_map = {v: convert(v) for v in vals_set}
echelon = [[vals_map[eij] for eij in ei] for ei in echelon]
for i, p in enumerate(pivots):
v = echelon[i][-1] - sum(echelon[i][j]*g[j] for j in range(p+1, len(g)) if echelon[i][j])
sols[keys[p]] = v
return sols
|
b7ca4b2200d0b3f74c79c197c326d56282dabe87c4cb60d78454bc379823e525 | r"""
Sparse distributed elements of free modules over multivariate (generalized)
polynomial rings.
This code and its data structures are very much like the distributed
polynomials, except that the first "exponent" of the monomial is
a module generator index. That is, the multi-exponent ``(i, e_1, ..., e_n)``
represents the "monomial" `x_1^{e_1} \cdots x_n^{e_n} f_i` of the free module
`F` generated by `f_1, \ldots, f_r` over (a localization of) the ring
`K[x_1, \ldots, x_n]`. A module element is simply stored as a list of terms
ordered by the monomial order. Here a term is a pair of a multi-exponent and a
coefficient. In general, this coefficient should never be zero (since it can
then be omitted). The zero module element is stored as an empty list.
The main routines are ``sdm_nf_mora`` and ``sdm_groebner`` which can be used
to compute, respectively, weak normal forms and standard bases. They work with
arbitrary (not necessarily global) monomial orders.
In general, product orders have to be used to construct valid monomial orders
for modules. However, ``lex`` can be used as-is.
Note that the "level" (number of variables, i.e. parameter u+1 in
distributedpolys.py) is never needed in this code.
The main reference for this file is [SCA],
"A Singular Introduction to Commutative Algebra".
"""
from itertools import permutations
from sympy.polys.monomials import (
monomial_mul, monomial_lcm, monomial_div, monomial_deg
)
from sympy.polys.polytools import Poly
from sympy.polys.polyutils import parallel_dict_from_expr
from sympy.core.singleton import S
from sympy.core.sympify import sympify
# Additional monomial tools.
def sdm_monomial_mul(M, X):
"""
Multiply tuple ``X`` representing a monomial of `K[X]` into the tuple
``M`` representing a monomial of `F`.
Examples
========
Multiplying `xy^3` into `x f_1` yields `x^2 y^3 f_1`:
>>> from sympy.polys.distributedmodules import sdm_monomial_mul
>>> sdm_monomial_mul((1, 1, 0), (1, 3))
(1, 2, 3)
"""
return (M[0],) + monomial_mul(X, M[1:])
def sdm_monomial_deg(M):
"""
Return the total degree of ``M``.
Examples
========
For example, the total degree of `x^2 y f_5` is 3:
>>> from sympy.polys.distributedmodules import sdm_monomial_deg
>>> sdm_monomial_deg((5, 2, 1))
3
"""
return monomial_deg(M[1:])
def sdm_monomial_lcm(A, B):
r"""
Return the "least common multiple" of ``A`` and ``B``.
IF `A = M e_j` and `B = N e_j`, where `M` and `N` are polynomial monomials,
this returns `\lcm(M, N) e_j`. Note that ``A`` and ``B`` involve distinct
monomials.
Otherwise the result is undefined.
Examples
========
>>> from sympy.polys.distributedmodules import sdm_monomial_lcm
>>> sdm_monomial_lcm((1, 2, 3), (1, 0, 5))
(1, 2, 5)
"""
return (A[0],) + monomial_lcm(A[1:], B[1:])
def sdm_monomial_divides(A, B):
"""
Does there exist a (polynomial) monomial X such that XA = B?
Examples
========
Positive examples:
In the following examples, the monomial is given in terms of x, y and the
generator(s), f_1, f_2 etc. The tuple form of that monomial is used in
the call to sdm_monomial_divides.
Note: the generator appears last in the expression but first in the tuple
and other factors appear in the same order that they appear in the monomial
expression.
`A = f_1` divides `B = f_1`
>>> from sympy.polys.distributedmodules import sdm_monomial_divides
>>> sdm_monomial_divides((1, 0, 0), (1, 0, 0))
True
`A = f_1` divides `B = x^2 y f_1`
>>> sdm_monomial_divides((1, 0, 0), (1, 2, 1))
True
`A = xy f_5` divides `B = x^2 y f_5`
>>> sdm_monomial_divides((5, 1, 1), (5, 2, 1))
True
Negative examples:
`A = f_1` does not divide `B = f_2`
>>> sdm_monomial_divides((1, 0, 0), (2, 0, 0))
False
`A = x f_1` does not divide `B = f_1`
>>> sdm_monomial_divides((1, 1, 0), (1, 0, 0))
False
`A = xy^2 f_5` does not divide `B = y f_5`
>>> sdm_monomial_divides((5, 1, 2), (5, 0, 1))
False
"""
return A[0] == B[0] and all(a <= b for a, b in zip(A[1:], B[1:]))
# The actual distributed modules code.
def sdm_LC(f, K):
"""Returns the leading coefficient of ``f``. """
if not f:
return K.zero
else:
return f[0][1]
def sdm_to_dict(f):
"""Make a dictionary from a distributed polynomial. """
return dict(f)
def sdm_from_dict(d, O):
"""
Create an sdm from a dictionary.
Here ``O`` is the monomial order to use.
Examples
========
>>> from sympy.polys.distributedmodules import sdm_from_dict
>>> from sympy.polys import QQ, lex
>>> dic = {(1, 1, 0): QQ(1), (1, 0, 0): QQ(2), (0, 1, 0): QQ(0)}
>>> sdm_from_dict(dic, lex)
[((1, 1, 0), 1), ((1, 0, 0), 2)]
"""
return sdm_strip(sdm_sort(list(d.items()), O))
def sdm_sort(f, O):
"""Sort terms in ``f`` using the given monomial order ``O``. """
return sorted(f, key=lambda term: O(term[0]), reverse=True)
def sdm_strip(f):
"""Remove terms with zero coefficients from ``f`` in ``K[X]``. """
return [ (monom, coeff) for monom, coeff in f if coeff ]
def sdm_add(f, g, O, K):
"""
Add two module elements ``f``, ``g``.
Addition is done over the ground field ``K``, monomials are ordered
according to ``O``.
Examples
========
All examples use lexicographic order.
`(xy f_1) + (f_2) = f_2 + xy f_1`
>>> from sympy.polys.distributedmodules import sdm_add
>>> from sympy.polys import lex, QQ
>>> sdm_add([((1, 1, 1), QQ(1))], [((2, 0, 0), QQ(1))], lex, QQ)
[((2, 0, 0), 1), ((1, 1, 1), 1)]
`(xy f_1) + (-xy f_1)` = 0`
>>> sdm_add([((1, 1, 1), QQ(1))], [((1, 1, 1), QQ(-1))], lex, QQ)
[]
`(f_1) + (2f_1) = 3f_1`
>>> sdm_add([((1, 0, 0), QQ(1))], [((1, 0, 0), QQ(2))], lex, QQ)
[((1, 0, 0), 3)]
`(yf_1) + (xf_1) = xf_1 + yf_1`
>>> sdm_add([((1, 0, 1), QQ(1))], [((1, 1, 0), QQ(1))], lex, QQ)
[((1, 1, 0), 1), ((1, 0, 1), 1)]
"""
h = dict(f)
for monom, c in g:
if monom in h:
coeff = h[monom] + c
if not coeff:
del h[monom]
else:
h[monom] = coeff
else:
h[monom] = c
return sdm_from_dict(h, O)
def sdm_LM(f):
r"""
Returns the leading monomial of ``f``.
Only valid if `f \ne 0`.
Examples
========
>>> from sympy.polys.distributedmodules import sdm_LM, sdm_from_dict
>>> from sympy.polys import QQ, lex
>>> dic = {(1, 2, 3): QQ(1), (4, 0, 0): QQ(1), (4, 0, 1): QQ(1)}
>>> sdm_LM(sdm_from_dict(dic, lex))
(4, 0, 1)
"""
return f[0][0]
def sdm_LT(f):
r"""
Returns the leading term of ``f``.
Only valid if `f \ne 0`.
Examples
========
>>> from sympy.polys.distributedmodules import sdm_LT, sdm_from_dict
>>> from sympy.polys import QQ, lex
>>> dic = {(1, 2, 3): QQ(1), (4, 0, 0): QQ(2), (4, 0, 1): QQ(3)}
>>> sdm_LT(sdm_from_dict(dic, lex))
((4, 0, 1), 3)
"""
return f[0]
def sdm_mul_term(f, term, O, K):
"""
Multiply a distributed module element ``f`` by a (polynomial) term ``term``.
Multiplication of coefficients is done over the ground field ``K``, and
monomials are ordered according to ``O``.
Examples
========
`0 f_1 = 0`
>>> from sympy.polys.distributedmodules import sdm_mul_term
>>> from sympy.polys import lex, QQ
>>> sdm_mul_term([((1, 0, 0), QQ(1))], ((0, 0), QQ(0)), lex, QQ)
[]
`x 0 = 0`
>>> sdm_mul_term([], ((1, 0), QQ(1)), lex, QQ)
[]
`(x) (f_1) = xf_1`
>>> sdm_mul_term([((1, 0, 0), QQ(1))], ((1, 0), QQ(1)), lex, QQ)
[((1, 1, 0), 1)]
`(2xy) (3x f_1 + 4y f_2) = 8xy^2 f_2 + 6x^2y f_1`
>>> f = [((2, 0, 1), QQ(4)), ((1, 1, 0), QQ(3))]
>>> sdm_mul_term(f, ((1, 1), QQ(2)), lex, QQ)
[((2, 1, 2), 8), ((1, 2, 1), 6)]
"""
X, c = term
if not f or not c:
return []
else:
if K.is_one(c):
return [ (sdm_monomial_mul(f_M, X), f_c) for f_M, f_c in f ]
else:
return [ (sdm_monomial_mul(f_M, X), f_c * c) for f_M, f_c in f ]
def sdm_zero():
"""Return the zero module element."""
return []
def sdm_deg(f):
"""
Degree of ``f``.
This is the maximum of the degrees of all its monomials.
Invalid if ``f`` is zero.
Examples
========
>>> from sympy.polys.distributedmodules import sdm_deg
>>> sdm_deg([((1, 2, 3), 1), ((10, 0, 1), 1), ((2, 3, 4), 4)])
7
"""
return max(sdm_monomial_deg(M[0]) for M in f)
# Conversion
def sdm_from_vector(vec, O, K, **opts):
"""
Create an sdm from an iterable of expressions.
Coefficients are created in the ground field ``K``, and terms are ordered
according to monomial order ``O``. Named arguments are passed on to the
polys conversion code and can be used to specify for example generators.
Examples
========
>>> from sympy.polys.distributedmodules import sdm_from_vector
>>> from sympy.abc import x, y, z
>>> from sympy.polys import QQ, lex
>>> sdm_from_vector([x**2+y**2, 2*z], lex, QQ)
[((1, 0, 0, 1), 2), ((0, 2, 0, 0), 1), ((0, 0, 2, 0), 1)]
"""
dics, gens = parallel_dict_from_expr(sympify(vec), **opts)
dic = {}
for i, d in enumerate(dics):
for k, v in d.items():
dic[(i,) + k] = K.convert(v)
return sdm_from_dict(dic, O)
def sdm_to_vector(f, gens, K, n=None):
"""
Convert sdm ``f`` into a list of polynomial expressions.
The generators for the polynomial ring are specified via ``gens``. The rank
of the module is guessed, or passed via ``n``. The ground field is assumed
to be ``K``.
Examples
========
>>> from sympy.polys.distributedmodules import sdm_to_vector
>>> from sympy.abc import x, y, z
>>> from sympy.polys import QQ
>>> f = [((1, 0, 0, 1), QQ(2)), ((0, 2, 0, 0), QQ(1)), ((0, 0, 2, 0), QQ(1))]
>>> sdm_to_vector(f, [x, y, z], QQ)
[x**2 + y**2, 2*z]
"""
dic = sdm_to_dict(f)
dics = {}
for k, v in dic.items():
dics.setdefault(k[0], []).append((k[1:], v))
n = n or len(dics)
res = []
for k in range(n):
if k in dics:
res.append(Poly(dict(dics[k]), gens=gens, domain=K).as_expr())
else:
res.append(S.Zero)
return res
# Algorithms.
def sdm_spoly(f, g, O, K, phantom=None):
"""
Compute the generalized s-polynomial of ``f`` and ``g``.
The ground field is assumed to be ``K``, and monomials ordered according to
``O``.
This is invalid if either of ``f`` or ``g`` is zero.
If the leading terms of `f` and `g` involve different basis elements of
`F`, their s-poly is defined to be zero. Otherwise it is a certain linear
combination of `f` and `g` in which the leading terms cancel.
See [SCA, defn 2.3.6] for details.
If ``phantom`` is not ``None``, it should be a pair of module elements on
which to perform the same operation(s) as on ``f`` and ``g``. The in this
case both results are returned.
Examples
========
>>> from sympy.polys.distributedmodules import sdm_spoly
>>> from sympy.polys import QQ, lex
>>> f = [((2, 1, 1), QQ(1)), ((1, 0, 1), QQ(1))]
>>> g = [((2, 3, 0), QQ(1))]
>>> h = [((1, 2, 3), QQ(1))]
>>> sdm_spoly(f, h, lex, QQ)
[]
>>> sdm_spoly(f, g, lex, QQ)
[((1, 2, 1), 1)]
"""
if not f or not g:
return sdm_zero()
LM1 = sdm_LM(f)
LM2 = sdm_LM(g)
if LM1[0] != LM2[0]:
return sdm_zero()
LM1 = LM1[1:]
LM2 = LM2[1:]
lcm = monomial_lcm(LM1, LM2)
m1 = monomial_div(lcm, LM1)
m2 = monomial_div(lcm, LM2)
c = K.quo(-sdm_LC(f, K), sdm_LC(g, K))
r1 = sdm_add(sdm_mul_term(f, (m1, K.one), O, K),
sdm_mul_term(g, (m2, c), O, K), O, K)
if phantom is None:
return r1
r2 = sdm_add(sdm_mul_term(phantom[0], (m1, K.one), O, K),
sdm_mul_term(phantom[1], (m2, c), O, K), O, K)
return r1, r2
def sdm_ecart(f):
"""
Compute the ecart of ``f``.
This is defined to be the difference of the total degree of `f` and the
total degree of the leading monomial of `f` [SCA, defn 2.3.7].
Invalid if f is zero.
Examples
========
>>> from sympy.polys.distributedmodules import sdm_ecart
>>> sdm_ecart([((1, 2, 3), 1), ((1, 0, 1), 1)])
0
>>> sdm_ecart([((2, 2, 1), 1), ((1, 5, 1), 1)])
3
"""
return sdm_deg(f) - sdm_monomial_deg(sdm_LM(f))
def sdm_nf_mora(f, G, O, K, phantom=None):
r"""
Compute a weak normal form of ``f`` with respect to ``G`` and order ``O``.
The ground field is assumed to be ``K``, and monomials ordered according to
``O``.
Weak normal forms are defined in [SCA, defn 2.3.3]. They are not unique.
This function deterministically computes a weak normal form, depending on
the order of `G`.
The most important property of a weak normal form is the following: if
`R` is the ring associated with the monomial ordering (if the ordering is
global, we just have `R = K[x_1, \ldots, x_n]`, otherwise it is a certain
localization thereof), `I` any ideal of `R` and `G` a standard basis for
`I`, then for any `f \in R`, we have `f \in I` if and only if
`NF(f | G) = 0`.
This is the generalized Mora algorithm for computing weak normal forms with
respect to arbitrary monomial orders [SCA, algorithm 2.3.9].
If ``phantom`` is not ``None``, it should be a pair of "phantom" arguments
on which to perform the same computations as on ``f``, ``G``, both results
are then returned.
"""
from itertools import repeat
h = f
T = list(G)
if phantom is not None:
# "phantom" variables with suffix p
hp = phantom[0]
Tp = list(phantom[1])
phantom = True
else:
Tp = repeat([])
phantom = False
while h:
# TODO better data structure!!!
Th = [(g, sdm_ecart(g), gp) for g, gp in zip(T, Tp)
if sdm_monomial_divides(sdm_LM(g), sdm_LM(h))]
if not Th:
break
g, _, gp = min(Th, key=lambda x: x[1])
if sdm_ecart(g) > sdm_ecart(h):
T.append(h)
if phantom:
Tp.append(hp)
if phantom:
h, hp = sdm_spoly(h, g, O, K, phantom=(hp, gp))
else:
h = sdm_spoly(h, g, O, K)
if phantom:
return h, hp
return h
def sdm_nf_buchberger(f, G, O, K, phantom=None):
r"""
Compute a weak normal form of ``f`` with respect to ``G`` and order ``O``.
The ground field is assumed to be ``K``, and monomials ordered according to
``O``.
This is the standard Buchberger algorithm for computing weak normal forms with
respect to *global* monomial orders [SCA, algorithm 1.6.10].
If ``phantom`` is not ``None``, it should be a pair of "phantom" arguments
on which to perform the same computations as on ``f``, ``G``, both results
are then returned.
"""
from itertools import repeat
h = f
T = list(G)
if phantom is not None:
# "phantom" variables with suffix p
hp = phantom[0]
Tp = list(phantom[1])
phantom = True
else:
Tp = repeat([])
phantom = False
while h:
try:
g, gp = next((g, gp) for g, gp in zip(T, Tp)
if sdm_monomial_divides(sdm_LM(g), sdm_LM(h)))
except StopIteration:
break
if phantom:
h, hp = sdm_spoly(h, g, O, K, phantom=(hp, gp))
else:
h = sdm_spoly(h, g, O, K)
if phantom:
return h, hp
return h
def sdm_nf_buchberger_reduced(f, G, O, K):
r"""
Compute a reduced normal form of ``f`` with respect to ``G`` and order ``O``.
The ground field is assumed to be ``K``, and monomials ordered according to
``O``.
In contrast to weak normal forms, reduced normal forms *are* unique, but
their computation is more expensive.
This is the standard Buchberger algorithm for computing reduced normal forms
with respect to *global* monomial orders [SCA, algorithm 1.6.11].
The ``pantom`` option is not supported, so this normal form cannot be used
as a normal form for the "extended" groebner algorithm.
"""
h = sdm_zero()
g = f
while g:
g = sdm_nf_buchberger(g, G, O, K)
if g:
h = sdm_add(h, [sdm_LT(g)], O, K)
g = g[1:]
return h
def sdm_groebner(G, NF, O, K, extended=False):
"""
Compute a minimal standard basis of ``G`` with respect to order ``O``.
The algorithm uses a normal form ``NF``, for example ``sdm_nf_mora``.
The ground field is assumed to be ``K``, and monomials ordered according
to ``O``.
Let `N` denote the submodule generated by elements of `G`. A standard
basis for `N` is a subset `S` of `N`, such that `in(S) = in(N)`, where for
any subset `X` of `F`, `in(X)` denotes the submodule generated by the
initial forms of elements of `X`. [SCA, defn 2.3.2]
A standard basis is called minimal if no subset of it is a standard basis.
One may show that standard bases are always generating sets.
Minimal standard bases are not unique. This algorithm computes a
deterministic result, depending on the particular order of `G`.
If ``extended=True``, also compute the transition matrix from the initial
generators to the groebner basis. That is, return a list of coefficient
vectors, expressing the elements of the groebner basis in terms of the
elements of ``G``.
This functions implements the "sugar" strategy, see
Giovini et al: "One sugar cube, please" OR Selection strategies in
Buchberger algorithm.
"""
# The critical pair set.
# A critical pair is stored as (i, j, s, t) where (i, j) defines the pair
# (by indexing S), s is the sugar of the pair, and t is the lcm of their
# leading monomials.
P = []
# The eventual standard basis.
S = []
Sugars = []
def Ssugar(i, j):
"""Compute the sugar of the S-poly corresponding to (i, j)."""
LMi = sdm_LM(S[i])
LMj = sdm_LM(S[j])
return max(Sugars[i] - sdm_monomial_deg(LMi),
Sugars[j] - sdm_monomial_deg(LMj)) \
+ sdm_monomial_deg(sdm_monomial_lcm(LMi, LMj))
ourkey = lambda p: (p[2], O(p[3]), p[1])
def update(f, sugar, P):
"""Add f with sugar ``sugar`` to S, update P."""
if not f:
return P
k = len(S)
S.append(f)
Sugars.append(sugar)
LMf = sdm_LM(f)
def removethis(pair):
i, j, s, t = pair
if LMf[0] != t[0]:
return False
tik = sdm_monomial_lcm(LMf, sdm_LM(S[i]))
tjk = sdm_monomial_lcm(LMf, sdm_LM(S[j]))
return tik != t and tjk != t and sdm_monomial_divides(tik, t) and \
sdm_monomial_divides(tjk, t)
# apply the chain criterion
P = [p for p in P if not removethis(p)]
# new-pair set
N = [(i, k, Ssugar(i, k), sdm_monomial_lcm(LMf, sdm_LM(S[i])))
for i in range(k) if LMf[0] == sdm_LM(S[i])[0]]
# TODO apply the product criterion?
N.sort(key=ourkey)
remove = set()
for i, p in enumerate(N):
for j in range(i + 1, len(N)):
if sdm_monomial_divides(p[3], N[j][3]):
remove.add(j)
# TODO mergesort?
P.extend(reversed([p for i, p in enumerate(N) if i not in remove]))
P.sort(key=ourkey, reverse=True)
# NOTE reverse-sort, because we want to pop from the end
return P
# Figure out the number of generators in the ground ring.
try:
# NOTE: we look for the first non-zero vector, take its first monomial
# the number of generators in the ring is one less than the length
# (since the zeroth entry is for the module generators)
numgens = len(next(x[0] for x in G if x)[0]) - 1
except StopIteration:
# No non-zero elements in G ...
if extended:
return [], []
return []
# This list will store expressions of the elements of S in terms of the
# initial generators
coefficients = []
# First add all the elements of G to S
for i, f in enumerate(G):
P = update(f, sdm_deg(f), P)
if extended and f:
coefficients.append(sdm_from_dict({(i,) + (0,)*numgens: K(1)}, O))
# Now carry out the buchberger algorithm.
while P:
i, j, s, t = P.pop()
f, g = S[i], S[j]
if extended:
sp, coeff = sdm_spoly(f, g, O, K,
phantom=(coefficients[i], coefficients[j]))
h, hcoeff = NF(sp, S, O, K, phantom=(coeff, coefficients))
if h:
coefficients.append(hcoeff)
else:
h = NF(sdm_spoly(f, g, O, K), S, O, K)
P = update(h, Ssugar(i, j), P)
# Finally interreduce the standard basis.
# (TODO again, better data structures)
S = {(tuple(f), i) for i, f in enumerate(S)}
for (a, ai), (b, bi) in permutations(S, 2):
A = sdm_LM(a)
B = sdm_LM(b)
if sdm_monomial_divides(A, B) and (b, bi) in S and (a, ai) in S:
S.remove((b, bi))
L = sorted(((list(f), i) for f, i in S), key=lambda p: O(sdm_LM(p[0])),
reverse=True)
res = [x[0] for x in L]
if extended:
return res, [coefficients[i] for _, i in L]
return res
|
41b1bd84f988a28334cf7af7dcf6f8efc74dc8f4369f67d949e44b0e6457c6b9 | """py.test hacks to support XFAIL/XPASS"""
import sys
import re
import functools
import os
import contextlib
import warnings
import inspect
import pathlib
from typing import Any, Callable
from sympy.utilities.exceptions import SymPyDeprecationWarning
# Imported here for backwards compatibility. Note: do not import this from
# here in library code (importing sympy.pytest in library code will break the
# pytest integration).
from sympy.utilities.exceptions import ignore_warnings # noqa:F401
ON_CI = os.getenv('CI', None) == "true"
try:
import pytest
USE_PYTEST = getattr(sys, '_running_pytest', False)
except ImportError:
USE_PYTEST = False
raises: Callable[[Any, Any], Any]
XFAIL: Callable[[Any], Any]
skip: Callable[[Any], Any]
SKIP: Callable[[Any], Any]
slow: Callable[[Any], Any]
nocache_fail: Callable[[Any], Any]
if USE_PYTEST:
raises = pytest.raises
skip = pytest.skip
XFAIL = pytest.mark.xfail
SKIP = pytest.mark.skip
slow = pytest.mark.slow
nocache_fail = pytest.mark.nocache_fail
from _pytest.outcomes import Failed
else:
# Not using pytest so define the things that would have been imported from
# there.
# _pytest._code.code.ExceptionInfo
class ExceptionInfo:
def __init__(self, value):
self.value = value
def __repr__(self):
return "<ExceptionInfo {!r}>".format(self.value)
def raises(expectedException, code=None):
"""
Tests that ``code`` raises the exception ``expectedException``.
``code`` may be a callable, such as a lambda expression or function
name.
If ``code`` is not given or None, ``raises`` will return a context
manager for use in ``with`` statements; the code to execute then
comes from the scope of the ``with``.
``raises()`` does nothing if the callable raises the expected exception,
otherwise it raises an AssertionError.
Examples
========
>>> from sympy.testing.pytest import raises
>>> raises(ZeroDivisionError, lambda: 1/0)
<ExceptionInfo ZeroDivisionError(...)>
>>> raises(ZeroDivisionError, lambda: 1/2)
Traceback (most recent call last):
...
Failed: DID NOT RAISE
>>> with raises(ZeroDivisionError):
... n = 1/0
>>> with raises(ZeroDivisionError):
... n = 1/2
Traceback (most recent call last):
...
Failed: DID NOT RAISE
Note that you cannot test multiple statements via
``with raises``:
>>> with raises(ZeroDivisionError):
... n = 1/0 # will execute and raise, aborting the ``with``
... n = 9999/0 # never executed
This is just what ``with`` is supposed to do: abort the
contained statement sequence at the first exception and let
the context manager deal with the exception.
To test multiple statements, you'll need a separate ``with``
for each:
>>> with raises(ZeroDivisionError):
... n = 1/0 # will execute and raise
>>> with raises(ZeroDivisionError):
... n = 9999/0 # will also execute and raise
"""
if code is None:
return RaisesContext(expectedException)
elif callable(code):
try:
code()
except expectedException as e:
return ExceptionInfo(e)
raise Failed("DID NOT RAISE")
elif isinstance(code, str):
raise TypeError(
'\'raises(xxx, "code")\' has been phased out; '
'change \'raises(xxx, "expression")\' '
'to \'raises(xxx, lambda: expression)\', '
'\'raises(xxx, "statement")\' '
'to \'with raises(xxx): statement\'')
else:
raise TypeError(
'raises() expects a callable for the 2nd argument.')
class RaisesContext:
def __init__(self, expectedException):
self.expectedException = expectedException
def __enter__(self):
return None
def __exit__(self, exc_type, exc_value, traceback):
if exc_type is None:
raise Failed("DID NOT RAISE")
return issubclass(exc_type, self.expectedException)
class XFail(Exception):
pass
class XPass(Exception):
pass
class Skipped(Exception):
pass
class Failed(Exception): # type: ignore
pass
def XFAIL(func):
def wrapper():
try:
func()
except Exception as e:
message = str(e)
if message != "Timeout":
raise XFail(func.__name__)
else:
raise Skipped("Timeout")
raise XPass(func.__name__)
wrapper = functools.update_wrapper(wrapper, func)
return wrapper
def skip(str):
raise Skipped(str)
def SKIP(reason):
"""Similar to ``skip()``, but this is a decorator. """
def wrapper(func):
def func_wrapper():
raise Skipped(reason)
func_wrapper = functools.update_wrapper(func_wrapper, func)
return func_wrapper
return wrapper
def slow(func):
func._slow = True
def func_wrapper():
func()
func_wrapper = functools.update_wrapper(func_wrapper, func)
func_wrapper.__wrapped__ = func
return func_wrapper
def nocache_fail(func):
"Dummy decorator for marking tests that fail when cache is disabled"
return func
@contextlib.contextmanager
def warns(warningcls, *, match='', test_stacklevel=True):
'''
Like raises but tests that warnings are emitted.
>>> from sympy.testing.pytest import warns
>>> import warnings
>>> with warns(UserWarning):
... warnings.warn('deprecated', UserWarning, stacklevel=2)
>>> with warns(UserWarning):
... pass
Traceback (most recent call last):
...
Failed: DID NOT WARN. No warnings of type UserWarning\
was emitted. The list of emitted warnings is: [].
``test_stacklevel`` makes it check that the ``stacklevel`` parameter to
``warn()`` is set so that the warning shows the user line of code (the
code under the warns() context manager). Set this to False if this is
ambiguous or if the context manager does not test the direct user code
that emits the warning.
If the warning is a ``SymPyDeprecationWarning``, this additionally tests
that the ``active_deprecations_target`` is a real target in the
``active-deprecations.md`` file.
'''
# Absorbs all warnings in warnrec
with warnings.catch_warnings(record=True) as warnrec:
# Any warning other than the one we are looking for is an error
warnings.simplefilter("error")
warnings.filterwarnings("always", category=warningcls)
# Now run the test
yield warnrec
# Raise if expected warning not found
if not any(issubclass(w.category, warningcls) for w in warnrec):
msg = ('Failed: DID NOT WARN.'
' No warnings of type %s was emitted.'
' The list of emitted warnings is: %s.'
) % (warningcls, [w.message for w in warnrec])
raise Failed(msg)
# We don't include the match in the filter above because it would then
# fall to the error filter, so we instead manually check that it matches
# here
for w in warnrec:
# Should always be true due to the filters above
assert issubclass(w.category, warningcls)
if not re.compile(match, re.I).match(str(w.message)):
raise Failed(f"Failed: WRONG MESSAGE. A warning with of the correct category ({warningcls.__name__}) was issued, but it did not match the given match regex ({match!r})")
if test_stacklevel:
for f in inspect.stack():
thisfile = f.filename
file = os.path.split(thisfile)[1]
if file.startswith('test_'):
break
elif file == 'doctest.py':
# skip the stacklevel testing in the doctests of this
# function
return
else:
raise RuntimeError("Could not find the file for the given warning to test the stacklevel")
for w in warnrec:
if w.filename != thisfile:
msg = f'''\
Failed: Warning has the wrong stacklevel. The warning stacklevel needs to be
set so that the line of code shown in the warning message is user code that
calls the deprecated code (the current stacklevel is showing code from
{w.filename} (line {w.lineno}), expected {thisfile})'''.replace('\n', ' ')
raise Failed(msg)
if warningcls == SymPyDeprecationWarning:
this_file = pathlib.Path(__file__)
active_deprecations_file = (this_file.parent.parent.parent / 'doc' /
'src' / 'explanation' /
'active-deprecations.md')
if not active_deprecations_file.exists():
# We can only test that the active_deprecations_target works if we are
# in the git repo.
return
targets = []
for w in warnrec:
targets.append(w.message.active_deprecations_target)
with open(active_deprecations_file, encoding="utf-8") as f:
text = f.read()
for target in targets:
if f'({target})=' not in text:
raise Failed(f"The active deprecations target {target!r} does not appear to be a valid target in the active-deprecations.md file ({active_deprecations_file}).")
def _both_exp_pow(func):
"""
Decorator used to run the test twice: the first time `e^x` is represented
as ``Pow(E, x)``, the second time as ``exp(x)`` (exponential object is not
a power).
This is a temporary trick helping to manage the elimination of the class
``exp`` in favor of a replacement by ``Pow(E, ...)``.
"""
from sympy.core.parameters import _exp_is_pow
def func_wrap():
with _exp_is_pow(True):
func()
with _exp_is_pow(False):
func()
wrapper = functools.update_wrapper(func_wrap, func)
return wrapper
@contextlib.contextmanager
def warns_deprecated_sympy():
'''
Shorthand for ``warns(SymPyDeprecationWarning)``
This is the recommended way to test that ``SymPyDeprecationWarning`` is
emitted for deprecated features in SymPy. To test for other warnings use
``warns``. To suppress warnings without asserting that they are emitted
use ``ignore_warnings``.
.. note::
``warns_deprecated_sympy()`` is only intended for internal use in the
SymPy test suite to test that a deprecation warning triggers properly.
All other code in the SymPy codebase, including documentation examples,
should not use deprecated behavior.
If you are a user of SymPy and you want to disable
SymPyDeprecationWarnings, use ``warnings`` filters (see
:ref:`silencing-sympy-deprecation-warnings`).
>>> from sympy.testing.pytest import warns_deprecated_sympy
>>> from sympy.utilities.exceptions import sympy_deprecation_warning
>>> with warns_deprecated_sympy():
... sympy_deprecation_warning("Don't use",
... deprecated_since_version="1.0",
... active_deprecations_target="active-deprecations")
>>> with warns_deprecated_sympy():
... pass
Traceback (most recent call last):
...
Failed: DID NOT WARN. No warnings of type \
SymPyDeprecationWarning was emitted. The list of emitted warnings is: [].
.. note::
Sometimes the stacklevel test will fail because the same warning is
emitted multiple times. In this case, you can use
:func:`sympy.utilities.exceptions.ignore_warnings` in the code to
prevent the ``SymPyDeprecationWarning`` from being emitted again
recursively. In rare cases it is impossible to have a consistent
``stacklevel`` for deprecation warnings because different ways of
calling a function will produce different call stacks.. In those cases,
use ``warns(SymPyDeprecationWarning)`` instead.
See Also
========
sympy.utilities.exceptions.SymPyDeprecationWarning
sympy.utilities.exceptions.sympy_deprecation_warning
sympy.utilities.decorator.deprecated
'''
with warns(SymPyDeprecationWarning):
yield
|
41b8ab7ebbcab1e626accda42e31c784d18d80ee83b07252d6772e1f93e73d3e | """
This is our testing framework.
Goals:
* it should be compatible with py.test and operate very similarly
(or identically)
* does not require any external dependencies
* preferably all the functionality should be in this file only
* no magic, just import the test file and execute the test functions, that's it
* portable
"""
import os
import sys
import platform
import inspect
import traceback
import pdb
import re
import linecache
import time
from fnmatch import fnmatch
from timeit import default_timer as clock
import doctest as pdoctest # avoid clashing with our doctest() function
from doctest import DocTestFinder, DocTestRunner
import random
import subprocess
import shutil
import signal
import stat
import tempfile
import warnings
from contextlib import contextmanager
from inspect import unwrap
from sympy.core.cache import clear_cache
from sympy.external import import_module
from sympy.external.gmpy import GROUND_TYPES, HAS_GMPY
IS_WINDOWS = (os.name == 'nt')
ON_CI = os.getenv('CI', None)
# empirically generated list of the proportion of time spent running
# an even split of tests. This should periodically be regenerated.
# A list of [.6, .1, .3] would mean that if the tests are evenly split
# into '1/3', '2/3', '3/3', the first split would take 60% of the time,
# the second 10% and the third 30%. These lists are normalized to sum
# to 1, so [60, 10, 30] has the same behavior as [6, 1, 3] or [.6, .1, .3].
#
# This list can be generated with the code:
# from time import time
# import sympy
# import os
# os.environ["CI"] = 'true' # Mock CI to get more correct densities
# delays, num_splits = [], 30
# for i in range(1, num_splits + 1):
# tic = time()
# sympy.test(split='{}/{}'.format(i, num_splits), time_balance=False) # Add slow=True for slow tests
# delays.append(time() - tic)
# tot = sum(delays)
# print([round(x / tot, 4) for x in delays])
SPLIT_DENSITY = [
0.0059, 0.0027, 0.0068, 0.0011, 0.0006,
0.0058, 0.0047, 0.0046, 0.004, 0.0257,
0.0017, 0.0026, 0.004, 0.0032, 0.0016,
0.0015, 0.0004, 0.0011, 0.0016, 0.0014,
0.0077, 0.0137, 0.0217, 0.0074, 0.0043,
0.0067, 0.0236, 0.0004, 0.1189, 0.0142,
0.0234, 0.0003, 0.0003, 0.0047, 0.0006,
0.0013, 0.0004, 0.0008, 0.0007, 0.0006,
0.0139, 0.0013, 0.0007, 0.0051, 0.002,
0.0004, 0.0005, 0.0213, 0.0048, 0.0016,
0.0012, 0.0014, 0.0024, 0.0015, 0.0004,
0.0005, 0.0007, 0.011, 0.0062, 0.0015,
0.0021, 0.0049, 0.0006, 0.0006, 0.0011,
0.0006, 0.0019, 0.003, 0.0044, 0.0054,
0.0057, 0.0049, 0.0016, 0.0006, 0.0009,
0.0006, 0.0012, 0.0006, 0.0149, 0.0532,
0.0076, 0.0041, 0.0024, 0.0135, 0.0081,
0.2209, 0.0459, 0.0438, 0.0488, 0.0137,
0.002, 0.0003, 0.0008, 0.0039, 0.0024,
0.0005, 0.0004, 0.003, 0.056, 0.0026]
SPLIT_DENSITY_SLOW = [0.0086, 0.0004, 0.0568, 0.0003, 0.0032, 0.0005, 0.0004, 0.0013, 0.0016, 0.0648, 0.0198, 0.1285, 0.098, 0.0005, 0.0064, 0.0003, 0.0004, 0.0026, 0.0007, 0.0051, 0.0089, 0.0024, 0.0033, 0.0057, 0.0005, 0.0003, 0.001, 0.0045, 0.0091, 0.0006, 0.0005, 0.0321, 0.0059, 0.1105, 0.216, 0.1489, 0.0004, 0.0003, 0.0006, 0.0483]
class Skipped(Exception):
pass
class TimeOutError(Exception):
pass
class DependencyError(Exception):
pass
def _indent(s, indent=4):
"""
Add the given number of space characters to the beginning of
every non-blank line in ``s``, and return the result.
If the string ``s`` is Unicode, it is encoded using the stdout
encoding and the ``backslashreplace`` error handler.
"""
# This regexp matches the start of non-blank lines:
return re.sub('(?m)^(?!$)', indent*' ', s)
pdoctest._indent = _indent # type: ignore
# override reporter to maintain windows and python3
def _report_failure(self, out, test, example, got):
"""
Report that the given example failed.
"""
s = self._checker.output_difference(example, got, self.optionflags)
s = s.encode('raw_unicode_escape').decode('utf8', 'ignore')
out(self._failure_header(test, example) + s)
if IS_WINDOWS:
DocTestRunner.report_failure = _report_failure # type: ignore
def convert_to_native_paths(lst):
"""
Converts a list of '/' separated paths into a list of
native (os.sep separated) paths and converts to lowercase
if the system is case insensitive.
"""
newlst = []
for i, rv in enumerate(lst):
rv = os.path.join(*rv.split("/"))
# on windows the slash after the colon is dropped
if sys.platform == "win32":
pos = rv.find(':')
if pos != -1:
if rv[pos + 1] != '\\':
rv = rv[:pos + 1] + '\\' + rv[pos + 1:]
newlst.append(os.path.normcase(rv))
return newlst
def get_sympy_dir():
"""
Returns the root SymPy directory and set the global value
indicating whether the system is case sensitive or not.
"""
this_file = os.path.abspath(__file__)
sympy_dir = os.path.join(os.path.dirname(this_file), "..", "..")
sympy_dir = os.path.normpath(sympy_dir)
return os.path.normcase(sympy_dir)
def setup_pprint():
from sympy.interactive.printing import init_printing
from sympy.printing.pretty.pretty import pprint_use_unicode
import sympy.interactive.printing as interactive_printing
# force pprint to be in ascii mode in doctests
use_unicode_prev = pprint_use_unicode(False)
# hook our nice, hash-stable strprinter
init_printing(pretty_print=False)
# Prevent init_printing() in doctests from affecting other doctests
interactive_printing.NO_GLOBAL = True
return use_unicode_prev
@contextmanager
def raise_on_deprecated():
"""Context manager to make DeprecationWarning raise an error
This is to catch SymPyDeprecationWarning from library code while running
tests and doctests. It is important to use this context manager around
each individual test/doctest in case some tests modify the warning
filters.
"""
with warnings.catch_warnings():
warnings.filterwarnings('error', '.*', DeprecationWarning, module='sympy.*')
yield
def run_in_subprocess_with_hash_randomization(
function, function_args=(),
function_kwargs=None, command=sys.executable,
module='sympy.testing.runtests', force=False):
"""
Run a function in a Python subprocess with hash randomization enabled.
If hash randomization is not supported by the version of Python given, it
returns False. Otherwise, it returns the exit value of the command. The
function is passed to sys.exit(), so the return value of the function will
be the return value.
The environment variable PYTHONHASHSEED is used to seed Python's hash
randomization. If it is set, this function will return False, because
starting a new subprocess is unnecessary in that case. If it is not set,
one is set at random, and the tests are run. Note that if this
environment variable is set when Python starts, hash randomization is
automatically enabled. To force a subprocess to be created even if
PYTHONHASHSEED is set, pass ``force=True``. This flag will not force a
subprocess in Python versions that do not support hash randomization (see
below), because those versions of Python do not support the ``-R`` flag.
``function`` should be a string name of a function that is importable from
the module ``module``, like "_test". The default for ``module`` is
"sympy.testing.runtests". ``function_args`` and ``function_kwargs``
should be a repr-able tuple and dict, respectively. The default Python
command is sys.executable, which is the currently running Python command.
This function is necessary because the seed for hash randomization must be
set by the environment variable before Python starts. Hence, in order to
use a predetermined seed for tests, we must start Python in a separate
subprocess.
Hash randomization was added in the minor Python versions 2.6.8, 2.7.3,
3.1.5, and 3.2.3, and is enabled by default in all Python versions after
and including 3.3.0.
Examples
========
>>> from sympy.testing.runtests import (
... run_in_subprocess_with_hash_randomization)
>>> # run the core tests in verbose mode
>>> run_in_subprocess_with_hash_randomization("_test",
... function_args=("core",),
... function_kwargs={'verbose': True}) # doctest: +SKIP
# Will return 0 if sys.executable supports hash randomization and tests
# pass, 1 if they fail, and False if it does not support hash
# randomization.
"""
cwd = get_sympy_dir()
# Note, we must return False everywhere, not None, as subprocess.call will
# sometimes return None.
# First check if the Python version supports hash randomization
# If it does not have this support, it won't recognize the -R flag
p = subprocess.Popen([command, "-RV"], stdout=subprocess.PIPE,
stderr=subprocess.STDOUT, cwd=cwd)
p.communicate()
if p.returncode != 0:
return False
hash_seed = os.getenv("PYTHONHASHSEED")
if not hash_seed:
os.environ["PYTHONHASHSEED"] = str(random.randrange(2**32))
else:
if not force:
return False
function_kwargs = function_kwargs or {}
# Now run the command
commandstring = ("import sys; from %s import %s;sys.exit(%s(*%s, **%s))" %
(module, function, function, repr(function_args),
repr(function_kwargs)))
try:
p = subprocess.Popen([command, "-R", "-c", commandstring], cwd=cwd)
p.communicate()
except KeyboardInterrupt:
p.wait()
finally:
# Put the environment variable back, so that it reads correctly for
# the current Python process.
if hash_seed is None:
del os.environ["PYTHONHASHSEED"]
else:
os.environ["PYTHONHASHSEED"] = hash_seed
return p.returncode
def run_all_tests(test_args=(), test_kwargs=None,
doctest_args=(), doctest_kwargs=None,
examples_args=(), examples_kwargs=None):
"""
Run all tests.
Right now, this runs the regular tests (bin/test), the doctests
(bin/doctest), and the examples (examples/all.py).
This is what ``setup.py test`` uses.
You can pass arguments and keyword arguments to the test functions that
support them (for now, test, doctest, and the examples). See the
docstrings of those functions for a description of the available options.
For example, to run the solvers tests with colors turned off:
>>> from sympy.testing.runtests import run_all_tests
>>> run_all_tests(test_args=("solvers",),
... test_kwargs={"colors:False"}) # doctest: +SKIP
"""
tests_successful = True
test_kwargs = test_kwargs or {}
doctest_kwargs = doctest_kwargs or {}
examples_kwargs = examples_kwargs or {'quiet': True}
try:
# Regular tests
if not test(*test_args, **test_kwargs):
# some regular test fails, so set the tests_successful
# flag to false and continue running the doctests
tests_successful = False
# Doctests
print()
if not doctest(*doctest_args, **doctest_kwargs):
tests_successful = False
# Examples
print()
sys.path.append("examples") # examples/all.py
from all import run_examples # type: ignore
if not run_examples(*examples_args, **examples_kwargs):
tests_successful = False
if tests_successful:
return
else:
# Return nonzero exit code
sys.exit(1)
except KeyboardInterrupt:
print()
print("DO *NOT* COMMIT!")
sys.exit(1)
def test(*paths, subprocess=True, rerun=0, **kwargs):
"""
Run tests in the specified test_*.py files.
Tests in a particular test_*.py file are run if any of the given strings
in ``paths`` matches a part of the test file's path. If ``paths=[]``,
tests in all test_*.py files are run.
Notes:
- If sort=False, tests are run in random order (not default).
- Paths can be entered in native system format or in unix,
forward-slash format.
- Files that are on the blacklist can be tested by providing
their path; they are only excluded if no paths are given.
**Explanation of test results**
====== ===============================================================
Output Meaning
====== ===============================================================
. passed
F failed
X XPassed (expected to fail but passed)
f XFAILed (expected to fail and indeed failed)
s skipped
w slow
T timeout (e.g., when ``--timeout`` is used)
K KeyboardInterrupt (when running the slow tests with ``--slow``,
you can interrupt one of them without killing the test runner)
====== ===============================================================
Colors have no additional meaning and are used just to facilitate
interpreting the output.
Examples
========
>>> import sympy
Run all tests:
>>> sympy.test() # doctest: +SKIP
Run one file:
>>> sympy.test("sympy/core/tests/test_basic.py") # doctest: +SKIP
>>> sympy.test("_basic") # doctest: +SKIP
Run all tests in sympy/functions/ and some particular file:
>>> sympy.test("sympy/core/tests/test_basic.py",
... "sympy/functions") # doctest: +SKIP
Run all tests in sympy/core and sympy/utilities:
>>> sympy.test("/core", "/util") # doctest: +SKIP
Run specific test from a file:
>>> sympy.test("sympy/core/tests/test_basic.py",
... kw="test_equality") # doctest: +SKIP
Run specific test from any file:
>>> sympy.test(kw="subs") # doctest: +SKIP
Run the tests with verbose mode on:
>>> sympy.test(verbose=True) # doctest: +SKIP
Do not sort the test output:
>>> sympy.test(sort=False) # doctest: +SKIP
Turn on post-mortem pdb:
>>> sympy.test(pdb=True) # doctest: +SKIP
Turn off colors:
>>> sympy.test(colors=False) # doctest: +SKIP
Force colors, even when the output is not to a terminal (this is useful,
e.g., if you are piping to ``less -r`` and you still want colors)
>>> sympy.test(force_colors=False) # doctest: +SKIP
The traceback verboseness can be set to "short" or "no" (default is
"short")
>>> sympy.test(tb='no') # doctest: +SKIP
The ``split`` option can be passed to split the test run into parts. The
split currently only splits the test files, though this may change in the
future. ``split`` should be a string of the form 'a/b', which will run
part ``a`` of ``b``. For instance, to run the first half of the test suite:
>>> sympy.test(split='1/2') # doctest: +SKIP
The ``time_balance`` option can be passed in conjunction with ``split``.
If ``time_balance=True`` (the default for ``sympy.test``), SymPy will attempt
to split the tests such that each split takes equal time. This heuristic
for balancing is based on pre-recorded test data.
>>> sympy.test(split='1/2', time_balance=True) # doctest: +SKIP
You can disable running the tests in a separate subprocess using
``subprocess=False``. This is done to support seeding hash randomization,
which is enabled by default in the Python versions where it is supported.
If subprocess=False, hash randomization is enabled/disabled according to
whether it has been enabled or not in the calling Python process.
However, even if it is enabled, the seed cannot be printed unless it is
called from a new Python process.
Hash randomization was added in the minor Python versions 2.6.8, 2.7.3,
3.1.5, and 3.2.3, and is enabled by default in all Python versions after
and including 3.3.0.
If hash randomization is not supported ``subprocess=False`` is used
automatically.
>>> sympy.test(subprocess=False) # doctest: +SKIP
To set the hash randomization seed, set the environment variable
``PYTHONHASHSEED`` before running the tests. This can be done from within
Python using
>>> import os
>>> os.environ['PYTHONHASHSEED'] = '42' # doctest: +SKIP
Or from the command line using
$ PYTHONHASHSEED=42 ./bin/test
If the seed is not set, a random seed will be chosen.
Note that to reproduce the same hash values, you must use both the same seed
as well as the same architecture (32-bit vs. 64-bit).
"""
# count up from 0, do not print 0
print_counter = lambda i : (print("rerun %d" % (rerun-i))
if rerun-i else None)
if subprocess:
# loop backwards so last i is 0
for i in range(rerun, -1, -1):
print_counter(i)
ret = run_in_subprocess_with_hash_randomization("_test",
function_args=paths, function_kwargs=kwargs)
if ret is False:
break
val = not bool(ret)
# exit on the first failure or if done
if not val or i == 0:
return val
# rerun even if hash randomization is not supported
for i in range(rerun, -1, -1):
print_counter(i)
val = not bool(_test(*paths, **kwargs))
if not val or i == 0:
return val
def _test(*paths,
verbose=False, tb="short", kw=None, pdb=False, colors=True,
force_colors=False, sort=True, seed=None, timeout=False,
fail_on_timeout=False, slow=False, enhance_asserts=False, split=None,
time_balance=True, blacklist=(),
fast_threshold=None, slow_threshold=None):
"""
Internal function that actually runs the tests.
All keyword arguments from ``test()`` are passed to this function except for
``subprocess``.
Returns 0 if tests passed and 1 if they failed. See the docstring of
``test()`` for more information.
"""
kw = kw or ()
# ensure that kw is a tuple
if isinstance(kw, str):
kw = (kw,)
post_mortem = pdb
if seed is None:
seed = random.randrange(100000000)
if ON_CI and timeout is False:
timeout = 595
fail_on_timeout = True
if ON_CI:
blacklist = list(blacklist) + ['sympy/plotting/pygletplot/tests']
blacklist = convert_to_native_paths(blacklist)
r = PyTestReporter(verbose=verbose, tb=tb, colors=colors,
force_colors=force_colors, split=split)
t = SymPyTests(r, kw, post_mortem, seed,
fast_threshold=fast_threshold,
slow_threshold=slow_threshold)
test_files = t.get_test_files('sympy')
not_blacklisted = [f for f in test_files
if not any(b in f for b in blacklist)]
if len(paths) == 0:
matched = not_blacklisted
else:
paths = convert_to_native_paths(paths)
matched = []
for f in not_blacklisted:
basename = os.path.basename(f)
for p in paths:
if p in f or fnmatch(basename, p):
matched.append(f)
break
density = None
if time_balance:
if slow:
density = SPLIT_DENSITY_SLOW
else:
density = SPLIT_DENSITY
if split:
matched = split_list(matched, split, density=density)
t._testfiles.extend(matched)
return int(not t.test(sort=sort, timeout=timeout, slow=slow,
enhance_asserts=enhance_asserts, fail_on_timeout=fail_on_timeout))
def doctest(*paths, subprocess=True, rerun=0, **kwargs):
r"""
Runs doctests in all \*.py files in the SymPy directory which match
any of the given strings in ``paths`` or all tests if paths=[].
Notes:
- Paths can be entered in native system format or in unix,
forward-slash format.
- Files that are on the blacklist can be tested by providing
their path; they are only excluded if no paths are given.
Examples
========
>>> import sympy
Run all tests:
>>> sympy.doctest() # doctest: +SKIP
Run one file:
>>> sympy.doctest("sympy/core/basic.py") # doctest: +SKIP
>>> sympy.doctest("polynomial.rst") # doctest: +SKIP
Run all tests in sympy/functions/ and some particular file:
>>> sympy.doctest("/functions", "basic.py") # doctest: +SKIP
Run any file having polynomial in its name, doc/src/modules/polynomial.rst,
sympy/functions/special/polynomials.py, and sympy/polys/polynomial.py:
>>> sympy.doctest("polynomial") # doctest: +SKIP
The ``split`` option can be passed to split the test run into parts. The
split currently only splits the test files, though this may change in the
future. ``split`` should be a string of the form 'a/b', which will run
part ``a`` of ``b``. Note that the regular doctests and the Sphinx
doctests are split independently. For instance, to run the first half of
the test suite:
>>> sympy.doctest(split='1/2') # doctest: +SKIP
The ``subprocess`` and ``verbose`` options are the same as with the function
``test()`` (see the docstring of that function for more information) except
that ``verbose`` may also be set equal to ``2`` in order to print
individual doctest lines, as they are being tested.
"""
# count up from 0, do not print 0
print_counter = lambda i : (print("rerun %d" % (rerun-i))
if rerun-i else None)
if subprocess:
# loop backwards so last i is 0
for i in range(rerun, -1, -1):
print_counter(i)
ret = run_in_subprocess_with_hash_randomization("_doctest",
function_args=paths, function_kwargs=kwargs)
if ret is False:
break
val = not bool(ret)
# exit on the first failure or if done
if not val or i == 0:
return val
# rerun even if hash randomization is not supported
for i in range(rerun, -1, -1):
print_counter(i)
val = not bool(_doctest(*paths, **kwargs))
if not val or i == 0:
return val
def _get_doctest_blacklist():
'''Get the default blacklist for the doctests'''
blacklist = []
blacklist.extend([
"doc/src/modules/plotting.rst", # generates live plots
"doc/src/modules/physics/mechanics/autolev_parser.rst",
"sympy/codegen/array_utils.py", # raises deprecation warning
"sympy/core/compatibility.py", # backwards compatibility shim, importing it triggers a deprecation warning
"sympy/core/trace.py", # backwards compatibility shim, importing it triggers a deprecation warning
"sympy/galgebra.py", # no longer part of SymPy
"sympy/parsing/autolev/_antlr/autolevlexer.py", # generated code
"sympy/parsing/autolev/_antlr/autolevlistener.py", # generated code
"sympy/parsing/autolev/_antlr/autolevparser.py", # generated code
"sympy/parsing/latex/_antlr/latexlexer.py", # generated code
"sympy/parsing/latex/_antlr/latexparser.py", # generated code
"sympy/plotting/pygletplot/__init__.py", # crashes on some systems
"sympy/plotting/pygletplot/plot.py", # crashes on some systems
"sympy/printing/ccode.py", # backwards compatibility shim, importing it breaks the codegen doctests
"sympy/printing/cxxcode.py", # backwards compatibility shim, importing it breaks the codegen doctests
"sympy/printing/fcode.py", # backwards compatibility shim, importing it breaks the codegen doctests
"sympy/testing/randtest.py", # backwards compatibility shim, importing it triggers a deprecation warning
"sympy/this.py", # prints text
])
# autolev parser tests
num = 12
for i in range (1, num+1):
blacklist.append("sympy/parsing/autolev/test-examples/ruletest" + str(i) + ".py")
blacklist.extend(["sympy/parsing/autolev/test-examples/pydy-example-repo/mass_spring_damper.py",
"sympy/parsing/autolev/test-examples/pydy-example-repo/chaos_pendulum.py",
"sympy/parsing/autolev/test-examples/pydy-example-repo/double_pendulum.py",
"sympy/parsing/autolev/test-examples/pydy-example-repo/non_min_pendulum.py"])
if import_module('numpy') is None:
blacklist.extend([
"sympy/plotting/experimental_lambdify.py",
"sympy/plotting/plot_implicit.py",
"examples/advanced/autowrap_integrators.py",
"examples/advanced/autowrap_ufuncify.py",
"examples/intermediate/sample.py",
"examples/intermediate/mplot2d.py",
"examples/intermediate/mplot3d.py",
"doc/src/modules/numeric-computation.rst"
])
else:
if import_module('matplotlib') is None:
blacklist.extend([
"examples/intermediate/mplot2d.py",
"examples/intermediate/mplot3d.py"
])
else:
# Use a non-windowed backend, so that the tests work on CI
import matplotlib
matplotlib.use('Agg')
if ON_CI or import_module('pyglet') is None:
blacklist.extend(["sympy/plotting/pygletplot"])
if import_module('aesara') is None:
blacklist.extend([
"sympy/printing/aesaracode.py",
"doc/src/modules/numeric-computation.rst",
])
if import_module('cupy') is None:
blacklist.extend([
"doc/src/modules/numeric-computation.rst",
])
if import_module('jax') is None:
blacklist.extend([
"doc/src/modules/numeric-computation.rst",
])
if import_module('antlr4') is None:
blacklist.extend([
"sympy/parsing/autolev/__init__.py",
"sympy/parsing/latex/_parse_latex_antlr.py",
])
if import_module('lfortran') is None:
#throws ImportError when lfortran not installed
blacklist.extend([
"sympy/parsing/sym_expr.py",
])
if import_module("scipy") is None:
# throws ModuleNotFoundError when scipy not installed
blacklist.extend([
"doc/src/guides/solving/solve-numerically.md",
"doc/src/guides/solving/solve-ode.md",
])
if import_module("numpy") is None:
# throws ModuleNotFoundError when numpy not installed
blacklist.extend([
"doc/src/guides/solving/solve-ode.md",
"doc/src/guides/solving/solve-numerically.md",
])
# disabled because of doctest failures in asmeurer's bot
blacklist.extend([
"sympy/utilities/autowrap.py",
"examples/advanced/autowrap_integrators.py",
"examples/advanced/autowrap_ufuncify.py"
])
blacklist.extend([
"sympy/conftest.py", # Depends on pytest
])
# These are deprecated stubs to be removed:
blacklist.extend([
"sympy/utilities/tmpfiles.py",
"sympy/utilities/pytest.py",
"sympy/utilities/runtests.py",
"sympy/utilities/quality_unicode.py",
"sympy/utilities/randtest.py",
])
blacklist = convert_to_native_paths(blacklist)
return blacklist
def _doctest(*paths, **kwargs):
"""
Internal function that actually runs the doctests.
All keyword arguments from ``doctest()`` are passed to this function
except for ``subprocess``.
Returns 0 if tests passed and 1 if they failed. See the docstrings of
``doctest()`` and ``test()`` for more information.
"""
from sympy.printing.pretty.pretty import pprint_use_unicode
normal = kwargs.get("normal", False)
verbose = kwargs.get("verbose", False)
colors = kwargs.get("colors", True)
force_colors = kwargs.get("force_colors", False)
blacklist = kwargs.get("blacklist", [])
split = kwargs.get('split', None)
blacklist.extend(_get_doctest_blacklist())
# Use a non-windowed backend, so that the tests work on CI
if import_module('matplotlib') is not None:
import matplotlib
matplotlib.use('Agg')
# Disable warnings for external modules
import sympy.external
sympy.external.importtools.WARN_OLD_VERSION = False
sympy.external.importtools.WARN_NOT_INSTALLED = False
# Disable showing up of plots
from sympy.plotting.plot import unset_show
unset_show()
r = PyTestReporter(verbose, split=split, colors=colors,\
force_colors=force_colors)
t = SymPyDocTests(r, normal)
test_files = t.get_test_files('sympy')
test_files.extend(t.get_test_files('examples', init_only=False))
not_blacklisted = [f for f in test_files
if not any(b in f for b in blacklist)]
if len(paths) == 0:
matched = not_blacklisted
else:
# take only what was requested...but not blacklisted items
# and allow for partial match anywhere or fnmatch of name
paths = convert_to_native_paths(paths)
matched = []
for f in not_blacklisted:
basename = os.path.basename(f)
for p in paths:
if p in f or fnmatch(basename, p):
matched.append(f)
break
matched.sort()
if split:
matched = split_list(matched, split)
t._testfiles.extend(matched)
# run the tests and record the result for this *py portion of the tests
if t._testfiles:
failed = not t.test()
else:
failed = False
# N.B.
# --------------------------------------------------------------------
# Here we test *.rst and *.md files at or below doc/src. Code from these
# must be self supporting in terms of imports since there is no importing
# of necessary modules by doctest.testfile. If you try to pass *.py files
# through this they might fail because they will lack the needed imports
# and smarter parsing that can be done with source code.
#
test_files_rst = t.get_test_files('doc/src', '*.rst', init_only=False)
test_files_md = t.get_test_files('doc/src', '*.md', init_only=False)
test_files = test_files_rst + test_files_md
test_files.sort()
not_blacklisted = [f for f in test_files
if not any(b in f for b in blacklist)]
if len(paths) == 0:
matched = not_blacklisted
else:
# Take only what was requested as long as it's not on the blacklist.
# Paths were already made native in *py tests so don't repeat here.
# There's no chance of having a *py file slip through since we
# only have *rst files in test_files.
matched = []
for f in not_blacklisted:
basename = os.path.basename(f)
for p in paths:
if p in f or fnmatch(basename, p):
matched.append(f)
break
if split:
matched = split_list(matched, split)
first_report = True
for rst_file in matched:
if not os.path.isfile(rst_file):
continue
old_displayhook = sys.displayhook
try:
use_unicode_prev = setup_pprint()
out = sympytestfile(
rst_file, module_relative=False, encoding='utf-8',
optionflags=pdoctest.ELLIPSIS | pdoctest.NORMALIZE_WHITESPACE |
pdoctest.IGNORE_EXCEPTION_DETAIL)
finally:
# make sure we return to the original displayhook in case some
# doctest has changed that
sys.displayhook = old_displayhook
# The NO_GLOBAL flag overrides the no_global flag to init_printing
# if True
import sympy.interactive.printing as interactive_printing
interactive_printing.NO_GLOBAL = False
pprint_use_unicode(use_unicode_prev)
rstfailed, tested = out
if tested:
failed = rstfailed or failed
if first_report:
first_report = False
msg = 'rst/md doctests start'
if not t._testfiles:
r.start(msg=msg)
else:
r.write_center(msg)
print()
# use as the id, everything past the first 'sympy'
file_id = rst_file[rst_file.find('sympy') + len('sympy') + 1:]
print(file_id, end=" ")
# get at least the name out so it is know who is being tested
wid = r.terminal_width - len(file_id) - 1 # update width
test_file = '[%s]' % (tested)
report = '[%s]' % (rstfailed or 'OK')
print(''.join(
[test_file, ' '*(wid - len(test_file) - len(report)), report])
)
# the doctests for *py will have printed this message already if there was
# a failure, so now only print it if there was intervening reporting by
# testing the *rst as evidenced by first_report no longer being True.
if not first_report and failed:
print()
print("DO *NOT* COMMIT!")
return int(failed)
sp = re.compile(r'([0-9]+)/([1-9][0-9]*)')
def split_list(l, split, density=None):
"""
Splits a list into part a of b
split should be a string of the form 'a/b'. For instance, '1/3' would give
the split one of three.
If the length of the list is not divisible by the number of splits, the
last split will have more items.
`density` may be specified as a list. If specified,
tests will be balanced so that each split has as equal-as-possible
amount of mass according to `density`.
>>> from sympy.testing.runtests import split_list
>>> a = list(range(10))
>>> split_list(a, '1/3')
[0, 1, 2]
>>> split_list(a, '2/3')
[3, 4, 5]
>>> split_list(a, '3/3')
[6, 7, 8, 9]
"""
m = sp.match(split)
if not m:
raise ValueError("split must be a string of the form a/b where a and b are ints")
i, t = map(int, m.groups())
if not density:
return l[(i - 1)*len(l)//t : i*len(l)//t]
# normalize density
tot = sum(density)
density = [x / tot for x in density]
def density_inv(x):
"""Interpolate the inverse to the cumulative
distribution function given by density"""
if x <= 0:
return 0
if x >= sum(density):
return 1
# find the first time the cumulative sum surpasses x
# and linearly interpolate
cumm = 0
for i, d in enumerate(density):
cumm += d
if cumm >= x:
break
frac = (d - (cumm - x)) / d
return (i + frac) / len(density)
lower_frac = density_inv((i - 1) / t)
higher_frac = density_inv(i / t)
return l[int(lower_frac*len(l)) : int(higher_frac*len(l))]
from collections import namedtuple
SymPyTestResults = namedtuple('SymPyTestResults', 'failed attempted')
def sympytestfile(filename, module_relative=True, name=None, package=None,
globs=None, verbose=None, report=True, optionflags=0,
extraglobs=None, raise_on_error=False,
parser=pdoctest.DocTestParser(), encoding=None):
"""
Test examples in the given file. Return (#failures, #tests).
Optional keyword arg ``module_relative`` specifies how filenames
should be interpreted:
- If ``module_relative`` is True (the default), then ``filename``
specifies a module-relative path. By default, this path is
relative to the calling module's directory; but if the
``package`` argument is specified, then it is relative to that
package. To ensure os-independence, ``filename`` should use
"/" characters to separate path segments, and should not
be an absolute path (i.e., it may not begin with "/").
- If ``module_relative`` is False, then ``filename`` specifies an
os-specific path. The path may be absolute or relative (to
the current working directory).
Optional keyword arg ``name`` gives the name of the test; by default
use the file's basename.
Optional keyword argument ``package`` is a Python package or the
name of a Python package whose directory should be used as the
base directory for a module relative filename. If no package is
specified, then the calling module's directory is used as the base
directory for module relative filenames. It is an error to
specify ``package`` if ``module_relative`` is False.
Optional keyword arg ``globs`` gives a dict to be used as the globals
when executing examples; by default, use {}. A copy of this dict
is actually used for each docstring, so that each docstring's
examples start with a clean slate.
Optional keyword arg ``extraglobs`` gives a dictionary that should be
merged into the globals that are used to execute examples. By
default, no extra globals are used.
Optional keyword arg ``verbose`` prints lots of stuff if true, prints
only failures if false; by default, it's true iff "-v" is in sys.argv.
Optional keyword arg ``report`` prints a summary at the end when true,
else prints nothing at the end. In verbose mode, the summary is
detailed, else very brief (in fact, empty if all tests passed).
Optional keyword arg ``optionflags`` or's together module constants,
and defaults to 0. Possible values (see the docs for details):
- DONT_ACCEPT_TRUE_FOR_1
- DONT_ACCEPT_BLANKLINE
- NORMALIZE_WHITESPACE
- ELLIPSIS
- SKIP
- IGNORE_EXCEPTION_DETAIL
- REPORT_UDIFF
- REPORT_CDIFF
- REPORT_NDIFF
- REPORT_ONLY_FIRST_FAILURE
Optional keyword arg ``raise_on_error`` raises an exception on the
first unexpected exception or failure. This allows failures to be
post-mortem debugged.
Optional keyword arg ``parser`` specifies a DocTestParser (or
subclass) that should be used to extract tests from the files.
Optional keyword arg ``encoding`` specifies an encoding that should
be used to convert the file to unicode.
Advanced tomfoolery: testmod runs methods of a local instance of
class doctest.Tester, then merges the results into (or creates)
global Tester instance doctest.master. Methods of doctest.master
can be called directly too, if you want to do something unusual.
Passing report=0 to testmod is especially useful then, to delay
displaying a summary. Invoke doctest.master.summarize(verbose)
when you're done fiddling.
"""
if package and not module_relative:
raise ValueError("Package may only be specified for module-"
"relative paths.")
# Relativize the path
text, filename = pdoctest._load_testfile(
filename, package, module_relative, encoding)
# If no name was given, then use the file's name.
if name is None:
name = os.path.basename(filename)
# Assemble the globals.
if globs is None:
globs = {}
else:
globs = globs.copy()
if extraglobs is not None:
globs.update(extraglobs)
if '__name__' not in globs:
globs['__name__'] = '__main__'
if raise_on_error:
runner = pdoctest.DebugRunner(verbose=verbose, optionflags=optionflags)
else:
runner = SymPyDocTestRunner(verbose=verbose, optionflags=optionflags)
runner._checker = SymPyOutputChecker()
# Read the file, convert it to a test, and run it.
test = parser.get_doctest(text, globs, name, filename, 0)
runner.run(test)
if report:
runner.summarize()
if pdoctest.master is None:
pdoctest.master = runner
else:
pdoctest.master.merge(runner)
return SymPyTestResults(runner.failures, runner.tries)
class SymPyTests:
def __init__(self, reporter, kw="", post_mortem=False,
seed=None, fast_threshold=None, slow_threshold=None):
self._post_mortem = post_mortem
self._kw = kw
self._count = 0
self._root_dir = get_sympy_dir()
self._reporter = reporter
self._reporter.root_dir(self._root_dir)
self._testfiles = []
self._seed = seed if seed is not None else random.random()
# Defaults in seconds, from human / UX design limits
# http://www.nngroup.com/articles/response-times-3-important-limits/
#
# These defaults are *NOT* set in stone as we are measuring different
# things, so others feel free to come up with a better yardstick :)
if fast_threshold:
self._fast_threshold = float(fast_threshold)
else:
self._fast_threshold = 8
if slow_threshold:
self._slow_threshold = float(slow_threshold)
else:
self._slow_threshold = 10
def test(self, sort=False, timeout=False, slow=False,
enhance_asserts=False, fail_on_timeout=False):
"""
Runs the tests returning True if all tests pass, otherwise False.
If sort=False run tests in random order.
"""
if sort:
self._testfiles.sort()
elif slow:
pass
else:
random.seed(self._seed)
random.shuffle(self._testfiles)
self._reporter.start(self._seed)
for f in self._testfiles:
try:
self.test_file(f, sort, timeout, slow,
enhance_asserts, fail_on_timeout)
except KeyboardInterrupt:
print(" interrupted by user")
self._reporter.finish()
raise
return self._reporter.finish()
def _enhance_asserts(self, source):
from ast import (NodeTransformer, Compare, Name, Store, Load, Tuple,
Assign, BinOp, Str, Mod, Assert, parse, fix_missing_locations)
ops = {"Eq": '==', "NotEq": '!=', "Lt": '<', "LtE": '<=',
"Gt": '>', "GtE": '>=', "Is": 'is', "IsNot": 'is not',
"In": 'in', "NotIn": 'not in'}
class Transform(NodeTransformer):
def visit_Assert(self, stmt):
if isinstance(stmt.test, Compare):
compare = stmt.test
values = [compare.left] + compare.comparators
names = [ "_%s" % i for i, _ in enumerate(values) ]
names_store = [ Name(n, Store()) for n in names ]
names_load = [ Name(n, Load()) for n in names ]
target = Tuple(names_store, Store())
value = Tuple(values, Load())
assign = Assign([target], value)
new_compare = Compare(names_load[0], compare.ops, names_load[1:])
msg_format = "\n%s " + "\n%s ".join([ ops[op.__class__.__name__] for op in compare.ops ]) + "\n%s"
msg = BinOp(Str(msg_format), Mod(), Tuple(names_load, Load()))
test = Assert(new_compare, msg, lineno=stmt.lineno, col_offset=stmt.col_offset)
return [assign, test]
else:
return stmt
tree = parse(source)
new_tree = Transform().visit(tree)
return fix_missing_locations(new_tree)
def test_file(self, filename, sort=True, timeout=False, slow=False,
enhance_asserts=False, fail_on_timeout=False):
reporter = self._reporter
funcs = []
try:
gl = {'__file__': filename}
try:
open_file = lambda: open(filename, encoding="utf8")
with open_file() as f:
source = f.read()
if self._kw:
for l in source.splitlines():
if l.lstrip().startswith('def '):
if any(l.lower().find(k.lower()) != -1 for k in self._kw):
break
else:
return
if enhance_asserts:
try:
source = self._enhance_asserts(source)
except ImportError:
pass
code = compile(source, filename, "exec", flags=0, dont_inherit=True)
exec(code, gl)
except (SystemExit, KeyboardInterrupt):
raise
except ImportError:
reporter.import_error(filename, sys.exc_info())
return
except Exception:
reporter.test_exception(sys.exc_info())
clear_cache()
self._count += 1
random.seed(self._seed)
disabled = gl.get("disabled", False)
if not disabled:
# we need to filter only those functions that begin with 'test_'
# We have to be careful about decorated functions. As long as
# the decorator uses functools.wraps, we can detect it.
funcs = []
for f in gl:
if (f.startswith("test_") and (inspect.isfunction(gl[f])
or inspect.ismethod(gl[f]))):
func = gl[f]
# Handle multiple decorators
while hasattr(func, '__wrapped__'):
func = func.__wrapped__
if inspect.getsourcefile(func) == filename:
funcs.append(gl[f])
if slow:
funcs = [f for f in funcs if getattr(f, '_slow', False)]
# Sorting of XFAILed functions isn't fixed yet :-(
funcs.sort(key=lambda x: inspect.getsourcelines(x)[1])
i = 0
while i < len(funcs):
if inspect.isgeneratorfunction(funcs[i]):
# some tests can be generators, that return the actual
# test functions. We unpack it below:
f = funcs.pop(i)
for fg in f():
func = fg[0]
args = fg[1:]
fgw = lambda: func(*args)
funcs.insert(i, fgw)
i += 1
else:
i += 1
# drop functions that are not selected with the keyword expression:
funcs = [x for x in funcs if self.matches(x)]
if not funcs:
return
except Exception:
reporter.entering_filename(filename, len(funcs))
raise
reporter.entering_filename(filename, len(funcs))
if not sort:
random.shuffle(funcs)
for f in funcs:
start = time.time()
reporter.entering_test(f)
try:
if getattr(f, '_slow', False) and not slow:
raise Skipped("Slow")
with raise_on_deprecated():
if timeout:
self._timeout(f, timeout, fail_on_timeout)
else:
random.seed(self._seed)
f()
except KeyboardInterrupt:
if getattr(f, '_slow', False):
reporter.test_skip("KeyboardInterrupt")
else:
raise
except Exception:
if timeout:
signal.alarm(0) # Disable the alarm. It could not be handled before.
t, v, tr = sys.exc_info()
if t is AssertionError:
reporter.test_fail((t, v, tr))
if self._post_mortem:
pdb.post_mortem(tr)
elif t.__name__ == "Skipped":
reporter.test_skip(v)
elif t.__name__ == "XFail":
reporter.test_xfail()
elif t.__name__ == "XPass":
reporter.test_xpass(v)
else:
reporter.test_exception((t, v, tr))
if self._post_mortem:
pdb.post_mortem(tr)
else:
reporter.test_pass()
taken = time.time() - start
if taken > self._slow_threshold:
filename = os.path.relpath(filename, reporter._root_dir)
reporter.slow_test_functions.append(
(filename + "::" + f.__name__, taken))
if getattr(f, '_slow', False) and slow:
if taken < self._fast_threshold:
filename = os.path.relpath(filename, reporter._root_dir)
reporter.fast_test_functions.append(
(filename + "::" + f.__name__, taken))
reporter.leaving_filename()
def _timeout(self, function, timeout, fail_on_timeout):
def callback(x, y):
signal.alarm(0)
if fail_on_timeout:
raise TimeOutError("Timed out after %d seconds" % timeout)
else:
raise Skipped("Timeout")
signal.signal(signal.SIGALRM, callback)
signal.alarm(timeout) # Set an alarm with a given timeout
function()
signal.alarm(0) # Disable the alarm
def matches(self, x):
"""
Does the keyword expression self._kw match "x"? Returns True/False.
Always returns True if self._kw is "".
"""
if not self._kw:
return True
for kw in self._kw:
if x.__name__.lower().find(kw.lower()) != -1:
return True
return False
def get_test_files(self, dir, pat='test_*.py'):
"""
Returns the list of test_*.py (default) files at or below directory
``dir`` relative to the SymPy home directory.
"""
dir = os.path.join(self._root_dir, convert_to_native_paths([dir])[0])
g = []
for path, folders, files in os.walk(dir):
g.extend([os.path.join(path, f) for f in files if fnmatch(f, pat)])
return sorted([os.path.normcase(gi) for gi in g])
class SymPyDocTests:
def __init__(self, reporter, normal):
self._count = 0
self._root_dir = get_sympy_dir()
self._reporter = reporter
self._reporter.root_dir(self._root_dir)
self._normal = normal
self._testfiles = []
def test(self):
"""
Runs the tests and returns True if all tests pass, otherwise False.
"""
self._reporter.start()
for f in self._testfiles:
try:
self.test_file(f)
except KeyboardInterrupt:
print(" interrupted by user")
self._reporter.finish()
raise
return self._reporter.finish()
def test_file(self, filename):
clear_cache()
from io import StringIO
import sympy.interactive.printing as interactive_printing
from sympy.printing.pretty.pretty import pprint_use_unicode
rel_name = filename[len(self._root_dir) + 1:]
dirname, file = os.path.split(filename)
module = rel_name.replace(os.sep, '.')[:-3]
if rel_name.startswith("examples"):
# Examples files do not have __init__.py files,
# So we have to temporarily extend sys.path to import them
sys.path.insert(0, dirname)
module = file[:-3] # remove ".py"
try:
module = pdoctest._normalize_module(module)
tests = SymPyDocTestFinder().find(module)
except (SystemExit, KeyboardInterrupt):
raise
except ImportError:
self._reporter.import_error(filename, sys.exc_info())
return
finally:
if rel_name.startswith("examples"):
del sys.path[0]
tests = [test for test in tests if len(test.examples) > 0]
# By default tests are sorted by alphabetical order by function name.
# We sort by line number so one can edit the file sequentially from
# bottom to top. However, if there are decorated functions, their line
# numbers will be too large and for now one must just search for these
# by text and function name.
tests.sort(key=lambda x: -x.lineno)
if not tests:
return
self._reporter.entering_filename(filename, len(tests))
for test in tests:
assert len(test.examples) != 0
if self._reporter._verbose:
self._reporter.write("\n{} ".format(test.name))
# check if there are external dependencies which need to be met
if '_doctest_depends_on' in test.globs:
try:
self._check_dependencies(**test.globs['_doctest_depends_on'])
except DependencyError as e:
self._reporter.test_skip(v=str(e))
continue
runner = SymPyDocTestRunner(verbose=self._reporter._verbose==2,
optionflags=pdoctest.ELLIPSIS |
pdoctest.NORMALIZE_WHITESPACE |
pdoctest.IGNORE_EXCEPTION_DETAIL)
runner._checker = SymPyOutputChecker()
old = sys.stdout
new = old if self._reporter._verbose==2 else StringIO()
sys.stdout = new
# If the testing is normal, the doctests get importing magic to
# provide the global namespace. If not normal (the default) then
# then must run on their own; all imports must be explicit within
# a function's docstring. Once imported that import will be
# available to the rest of the tests in a given function's
# docstring (unless clear_globs=True below).
if not self._normal:
test.globs = {}
# if this is uncommented then all the test would get is what
# comes by default with a "from sympy import *"
#exec('from sympy import *') in test.globs
old_displayhook = sys.displayhook
use_unicode_prev = setup_pprint()
try:
f, t = runner.run(test,
out=new.write, clear_globs=False)
except KeyboardInterrupt:
raise
finally:
sys.stdout = old
if f > 0:
self._reporter.doctest_fail(test.name, new.getvalue())
else:
self._reporter.test_pass()
sys.displayhook = old_displayhook
interactive_printing.NO_GLOBAL = False
pprint_use_unicode(use_unicode_prev)
self._reporter.leaving_filename()
def get_test_files(self, dir, pat='*.py', init_only=True):
r"""
Returns the list of \*.py files (default) from which docstrings
will be tested which are at or below directory ``dir``. By default,
only those that have an __init__.py in their parent directory
and do not start with ``test_`` will be included.
"""
def importable(x):
"""
Checks if given pathname x is an importable module by checking for
__init__.py file.
Returns True/False.
Currently we only test if the __init__.py file exists in the
directory with the file "x" (in theory we should also test all the
parent dirs).
"""
init_py = os.path.join(os.path.dirname(x), "__init__.py")
return os.path.exists(init_py)
dir = os.path.join(self._root_dir, convert_to_native_paths([dir])[0])
g = []
for path, folders, files in os.walk(dir):
g.extend([os.path.join(path, f) for f in files
if not f.startswith('test_') and fnmatch(f, pat)])
if init_only:
# skip files that are not importable (i.e. missing __init__.py)
g = [x for x in g if importable(x)]
return [os.path.normcase(gi) for gi in g]
def _check_dependencies(self,
executables=(),
modules=(),
disable_viewers=(),
python_version=(3, 5)):
"""
Checks if the dependencies for the test are installed.
Raises ``DependencyError`` it at least one dependency is not installed.
"""
for executable in executables:
if not shutil.which(executable):
raise DependencyError("Could not find %s" % executable)
for module in modules:
if module == 'matplotlib':
matplotlib = import_module(
'matplotlib',
import_kwargs={'fromlist':
['pyplot', 'cm', 'collections']},
min_module_version='1.0.0', catch=(RuntimeError,))
if matplotlib is None:
raise DependencyError("Could not import matplotlib")
else:
if not import_module(module):
raise DependencyError("Could not import %s" % module)
if disable_viewers:
tempdir = tempfile.mkdtemp()
os.environ['PATH'] = '%s:%s' % (tempdir, os.environ['PATH'])
vw = ('#!/usr/bin/env python3\n'
'import sys\n'
'if len(sys.argv) <= 1:\n'
' exit("wrong number of args")\n')
for viewer in disable_viewers:
with open(os.path.join(tempdir, viewer), 'w') as fh:
fh.write(vw)
# make the file executable
os.chmod(os.path.join(tempdir, viewer),
stat.S_IREAD | stat.S_IWRITE | stat.S_IXUSR)
if python_version:
if sys.version_info < python_version:
raise DependencyError("Requires Python >= " + '.'.join(map(str, python_version)))
if 'pyglet' in modules:
# monkey-patch pyglet s.t. it does not open a window during
# doctesting
import pyglet
class DummyWindow:
def __init__(self, *args, **kwargs):
self.has_exit = True
self.width = 600
self.height = 400
def set_vsync(self, x):
pass
def switch_to(self):
pass
def push_handlers(self, x):
pass
def close(self):
pass
pyglet.window.Window = DummyWindow
class SymPyDocTestFinder(DocTestFinder):
"""
A class used to extract the DocTests that are relevant to a given
object, from its docstring and the docstrings of its contained
objects. Doctests can currently be extracted from the following
object types: modules, functions, classes, methods, staticmethods,
classmethods, and properties.
Modified from doctest's version to look harder for code that
appears comes from a different module. For example, the @vectorize
decorator makes it look like functions come from multidimensional.py
even though their code exists elsewhere.
"""
def _find(self, tests, obj, name, module, source_lines, globs, seen):
"""
Find tests for the given object and any contained objects, and
add them to ``tests``.
"""
if self._verbose:
print('Finding tests in %s' % name)
# If we've already processed this object, then ignore it.
if id(obj) in seen:
return
seen[id(obj)] = 1
# Make sure we don't run doctests for classes outside of sympy, such
# as in numpy or scipy.
if inspect.isclass(obj):
if obj.__module__.split('.')[0] != 'sympy':
return
# Find a test for this object, and add it to the list of tests.
test = self._get_test(obj, name, module, globs, source_lines)
if test is not None:
tests.append(test)
if not self._recurse:
return
# Look for tests in a module's contained objects.
if inspect.ismodule(obj):
for rawname, val in obj.__dict__.items():
# Recurse to functions & classes.
if inspect.isfunction(val) or inspect.isclass(val):
# Make sure we don't run doctests functions or classes
# from different modules
if val.__module__ != module.__name__:
continue
assert self._from_module(module, val), \
"%s is not in module %s (rawname %s)" % (val, module, rawname)
try:
valname = '%s.%s' % (name, rawname)
self._find(tests, val, valname, module,
source_lines, globs, seen)
except KeyboardInterrupt:
raise
# Look for tests in a module's __test__ dictionary.
for valname, val in getattr(obj, '__test__', {}).items():
if not isinstance(valname, str):
raise ValueError("SymPyDocTestFinder.find: __test__ keys "
"must be strings: %r" %
(type(valname),))
if not (inspect.isfunction(val) or inspect.isclass(val) or
inspect.ismethod(val) or inspect.ismodule(val) or
isinstance(val, str)):
raise ValueError("SymPyDocTestFinder.find: __test__ values "
"must be strings, functions, methods, "
"classes, or modules: %r" %
(type(val),))
valname = '%s.__test__.%s' % (name, valname)
self._find(tests, val, valname, module, source_lines,
globs, seen)
# Look for tests in a class's contained objects.
if inspect.isclass(obj):
for valname, val in obj.__dict__.items():
# Special handling for staticmethod/classmethod.
if isinstance(val, staticmethod):
val = getattr(obj, valname)
if isinstance(val, classmethod):
val = getattr(obj, valname).__func__
# Recurse to methods, properties, and nested classes.
if ((inspect.isfunction(unwrap(val)) or
inspect.isclass(val) or
isinstance(val, property)) and
self._from_module(module, val)):
# Make sure we don't run doctests functions or classes
# from different modules
if isinstance(val, property):
if hasattr(val.fget, '__module__'):
if val.fget.__module__ != module.__name__:
continue
else:
if val.__module__ != module.__name__:
continue
assert self._from_module(module, val), \
"%s is not in module %s (valname %s)" % (
val, module, valname)
valname = '%s.%s' % (name, valname)
self._find(tests, val, valname, module, source_lines,
globs, seen)
def _get_test(self, obj, name, module, globs, source_lines):
"""
Return a DocTest for the given object, if it defines a docstring;
otherwise, return None.
"""
lineno = None
# Extract the object's docstring. If it does not have one,
# then return None (no test for this object).
if isinstance(obj, str):
# obj is a string in the case for objects in the polys package.
# Note that source_lines is a binary string (compiled polys
# modules), which can't be handled by _find_lineno so determine
# the line number here.
docstring = obj
matches = re.findall(r"line \d+", name)
assert len(matches) == 1, \
"string '%s' does not contain lineno " % name
# NOTE: this is not the exact linenumber but its better than no
# lineno ;)
lineno = int(matches[0][5:])
else:
try:
if obj.__doc__ is None:
docstring = ''
else:
docstring = obj.__doc__
if not isinstance(docstring, str):
docstring = str(docstring)
except (TypeError, AttributeError):
docstring = ''
# Don't bother if the docstring is empty.
if self._exclude_empty and not docstring:
return None
# check that properties have a docstring because _find_lineno
# assumes it
if isinstance(obj, property):
if obj.fget.__doc__ is None:
return None
# Find the docstring's location in the file.
if lineno is None:
obj = unwrap(obj)
# handling of properties is not implemented in _find_lineno so do
# it here
if hasattr(obj, 'func_closure') and obj.func_closure is not None:
tobj = obj.func_closure[0].cell_contents
elif isinstance(obj, property):
tobj = obj.fget
else:
tobj = obj
lineno = self._find_lineno(tobj, source_lines)
if lineno is None:
return None
# Return a DocTest for this object.
if module is None:
filename = None
else:
filename = getattr(module, '__file__', module.__name__)
if filename[-4:] in (".pyc", ".pyo"):
filename = filename[:-1]
globs['_doctest_depends_on'] = getattr(obj, '_doctest_depends_on', {})
return self._parser.get_doctest(docstring, globs, name,
filename, lineno)
class SymPyDocTestRunner(DocTestRunner):
"""
A class used to run DocTest test cases, and accumulate statistics.
The ``run`` method is used to process a single DocTest case. It
returns a tuple ``(f, t)``, where ``t`` is the number of test cases
tried, and ``f`` is the number of test cases that failed.
Modified from the doctest version to not reset the sys.displayhook (see
issue 5140).
See the docstring of the original DocTestRunner for more information.
"""
def run(self, test, compileflags=None, out=None, clear_globs=True):
"""
Run the examples in ``test``, and display the results using the
writer function ``out``.
The examples are run in the namespace ``test.globs``. If
``clear_globs`` is true (the default), then this namespace will
be cleared after the test runs, to help with garbage
collection. If you would like to examine the namespace after
the test completes, then use ``clear_globs=False``.
``compileflags`` gives the set of flags that should be used by
the Python compiler when running the examples. If not
specified, then it will default to the set of future-import
flags that apply to ``globs``.
The output of each example is checked using
``SymPyDocTestRunner.check_output``, and the results are
formatted by the ``SymPyDocTestRunner.report_*`` methods.
"""
self.test = test
# Remove ``` from the end of example, which may appear in Markdown
# files
for example in test.examples:
example.want = example.want.replace('```\n', '')
example.exc_msg = example.exc_msg and example.exc_msg.replace('```\n', '')
if compileflags is None:
compileflags = pdoctest._extract_future_flags(test.globs)
save_stdout = sys.stdout
if out is None:
out = save_stdout.write
sys.stdout = self._fakeout
# Patch pdb.set_trace to restore sys.stdout during interactive
# debugging (so it's not still redirected to self._fakeout).
# Note that the interactive output will go to *our*
# save_stdout, even if that's not the real sys.stdout; this
# allows us to write test cases for the set_trace behavior.
save_set_trace = pdb.set_trace
self.debugger = pdoctest._OutputRedirectingPdb(save_stdout)
self.debugger.reset()
pdb.set_trace = self.debugger.set_trace
# Patch linecache.getlines, so we can see the example's source
# when we're inside the debugger.
self.save_linecache_getlines = pdoctest.linecache.getlines
linecache.getlines = self.__patched_linecache_getlines
# Fail for deprecation warnings
with raise_on_deprecated():
try:
return self.__run(test, compileflags, out)
finally:
sys.stdout = save_stdout
pdb.set_trace = save_set_trace
linecache.getlines = self.save_linecache_getlines
if clear_globs:
test.globs.clear()
# We have to override the name mangled methods.
monkeypatched_methods = [
'patched_linecache_getlines',
'run',
'record_outcome'
]
for method in monkeypatched_methods:
oldname = '_DocTestRunner__' + method
newname = '_SymPyDocTestRunner__' + method
setattr(SymPyDocTestRunner, newname, getattr(DocTestRunner, oldname))
class SymPyOutputChecker(pdoctest.OutputChecker):
"""
Compared to the OutputChecker from the stdlib our OutputChecker class
supports numerical comparison of floats occurring in the output of the
doctest examples
"""
def __init__(self):
# NOTE OutputChecker is an old-style class with no __init__ method,
# so we can't call the base class version of __init__ here
got_floats = r'(\d+\.\d*|\.\d+)'
# floats in the 'want' string may contain ellipses
want_floats = got_floats + r'(\.{3})?'
front_sep = r'\s|\+|\-|\*|,'
back_sep = front_sep + r'|j|e'
fbeg = r'^%s(?=%s|$)' % (got_floats, back_sep)
fmidend = r'(?<=%s)%s(?=%s|$)' % (front_sep, got_floats, back_sep)
self.num_got_rgx = re.compile(r'(%s|%s)' %(fbeg, fmidend))
fbeg = r'^%s(?=%s|$)' % (want_floats, back_sep)
fmidend = r'(?<=%s)%s(?=%s|$)' % (front_sep, want_floats, back_sep)
self.num_want_rgx = re.compile(r'(%s|%s)' %(fbeg, fmidend))
def check_output(self, want, got, optionflags):
"""
Return True iff the actual output from an example (`got`)
matches the expected output (`want`). These strings are
always considered to match if they are identical; but
depending on what option flags the test runner is using,
several non-exact match types are also possible. See the
documentation for `TestRunner` for more information about
option flags.
"""
# Handle the common case first, for efficiency:
# if they're string-identical, always return true.
if got == want:
return True
# TODO parse integers as well ?
# Parse floats and compare them. If some of the parsed floats contain
# ellipses, skip the comparison.
matches = self.num_got_rgx.finditer(got)
numbers_got = [match.group(1) for match in matches] # list of strs
matches = self.num_want_rgx.finditer(want)
numbers_want = [match.group(1) for match in matches] # list of strs
if len(numbers_got) != len(numbers_want):
return False
if len(numbers_got) > 0:
nw_ = []
for ng, nw in zip(numbers_got, numbers_want):
if '...' in nw:
nw_.append(ng)
continue
else:
nw_.append(nw)
if abs(float(ng)-float(nw)) > 1e-5:
return False
got = self.num_got_rgx.sub(r'%s', got)
got = got % tuple(nw_)
# <BLANKLINE> can be used as a special sequence to signify a
# blank line, unless the DONT_ACCEPT_BLANKLINE flag is used.
if not (optionflags & pdoctest.DONT_ACCEPT_BLANKLINE):
# Replace <BLANKLINE> in want with a blank line.
want = re.sub(r'(?m)^%s\s*?$' % re.escape(pdoctest.BLANKLINE_MARKER),
'', want)
# If a line in got contains only spaces, then remove the
# spaces.
got = re.sub(r'(?m)^\s*?$', '', got)
if got == want:
return True
# This flag causes doctest to ignore any differences in the
# contents of whitespace strings. Note that this can be used
# in conjunction with the ELLIPSIS flag.
if optionflags & pdoctest.NORMALIZE_WHITESPACE:
got = ' '.join(got.split())
want = ' '.join(want.split())
if got == want:
return True
# The ELLIPSIS flag says to let the sequence "..." in `want`
# match any substring in `got`.
if optionflags & pdoctest.ELLIPSIS:
if pdoctest._ellipsis_match(want, got):
return True
# We didn't find any match; return false.
return False
class Reporter:
"""
Parent class for all reporters.
"""
pass
class PyTestReporter(Reporter):
"""
Py.test like reporter. Should produce output identical to py.test.
"""
def __init__(self, verbose=False, tb="short", colors=True,
force_colors=False, split=None):
self._verbose = verbose
self._tb_style = tb
self._colors = colors
self._force_colors = force_colors
self._xfailed = 0
self._xpassed = []
self._failed = []
self._failed_doctest = []
self._passed = 0
self._skipped = 0
self._exceptions = []
self._terminal_width = None
self._default_width = 80
self._split = split
self._active_file = ''
self._active_f = None
# TODO: Should these be protected?
self.slow_test_functions = []
self.fast_test_functions = []
# this tracks the x-position of the cursor (useful for positioning
# things on the screen), without the need for any readline library:
self._write_pos = 0
self._line_wrap = False
def root_dir(self, dir):
self._root_dir = dir
@property
def terminal_width(self):
if self._terminal_width is not None:
return self._terminal_width
def findout_terminal_width():
if sys.platform == "win32":
# Windows support is based on:
#
# http://code.activestate.com/recipes/
# 440694-determine-size-of-console-window-on-windows/
from ctypes import windll, create_string_buffer
h = windll.kernel32.GetStdHandle(-12)
csbi = create_string_buffer(22)
res = windll.kernel32.GetConsoleScreenBufferInfo(h, csbi)
if res:
import struct
(_, _, _, _, _, left, _, right, _, _, _) = \
struct.unpack("hhhhHhhhhhh", csbi.raw)
return right - left
else:
return self._default_width
if hasattr(sys.stdout, 'isatty') and not sys.stdout.isatty():
return self._default_width # leave PIPEs alone
try:
process = subprocess.Popen(['stty', '-a'],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
stdout, stderr = process.communicate()
stdout = stdout.decode("utf-8")
except OSError:
pass
else:
# We support the following output formats from stty:
#
# 1) Linux -> columns 80
# 2) OS X -> 80 columns
# 3) Solaris -> columns = 80
re_linux = r"columns\s+(?P<columns>\d+);"
re_osx = r"(?P<columns>\d+)\s*columns;"
re_solaris = r"columns\s+=\s+(?P<columns>\d+);"
for regex in (re_linux, re_osx, re_solaris):
match = re.search(regex, stdout)
if match is not None:
columns = match.group('columns')
try:
width = int(columns)
except ValueError:
pass
if width != 0:
return width
return self._default_width
width = findout_terminal_width()
self._terminal_width = width
return width
def write(self, text, color="", align="left", width=None,
force_colors=False):
"""
Prints a text on the screen.
It uses sys.stdout.write(), so no readline library is necessary.
Parameters
==========
color : choose from the colors below, "" means default color
align : "left"/"right", "left" is a normal print, "right" is aligned on
the right-hand side of the screen, filled with spaces if
necessary
width : the screen width
"""
color_templates = (
("Black", "0;30"),
("Red", "0;31"),
("Green", "0;32"),
("Brown", "0;33"),
("Blue", "0;34"),
("Purple", "0;35"),
("Cyan", "0;36"),
("LightGray", "0;37"),
("DarkGray", "1;30"),
("LightRed", "1;31"),
("LightGreen", "1;32"),
("Yellow", "1;33"),
("LightBlue", "1;34"),
("LightPurple", "1;35"),
("LightCyan", "1;36"),
("White", "1;37"),
)
colors = {}
for name, value in color_templates:
colors[name] = value
c_normal = '\033[0m'
c_color = '\033[%sm'
if width is None:
width = self.terminal_width
if align == "right":
if self._write_pos + len(text) > width:
# we don't fit on the current line, create a new line
self.write("\n")
self.write(" "*(width - self._write_pos - len(text)))
if not self._force_colors and hasattr(sys.stdout, 'isatty') and not \
sys.stdout.isatty():
# the stdout is not a terminal, this for example happens if the
# output is piped to less, e.g. "bin/test | less". In this case,
# the terminal control sequences would be printed verbatim, so
# don't use any colors.
color = ""
elif sys.platform == "win32":
# Windows consoles don't support ANSI escape sequences
color = ""
elif not self._colors:
color = ""
if self._line_wrap:
if text[0] != "\n":
sys.stdout.write("\n")
# Avoid UnicodeEncodeError when printing out test failures
if IS_WINDOWS:
text = text.encode('raw_unicode_escape').decode('utf8', 'ignore')
elif not sys.stdout.encoding.lower().startswith('utf'):
text = text.encode(sys.stdout.encoding, 'backslashreplace'
).decode(sys.stdout.encoding)
if color == "":
sys.stdout.write(text)
else:
sys.stdout.write("%s%s%s" %
(c_color % colors[color], text, c_normal))
sys.stdout.flush()
l = text.rfind("\n")
if l == -1:
self._write_pos += len(text)
else:
self._write_pos = len(text) - l - 1
self._line_wrap = self._write_pos >= width
self._write_pos %= width
def write_center(self, text, delim="="):
width = self.terminal_width
if text != "":
text = " %s " % text
idx = (width - len(text)) // 2
t = delim*idx + text + delim*(width - idx - len(text))
self.write(t + "\n")
def write_exception(self, e, val, tb):
# remove the first item, as that is always runtests.py
tb = tb.tb_next
t = traceback.format_exception(e, val, tb)
self.write("".join(t))
def start(self, seed=None, msg="test process starts"):
self.write_center(msg)
executable = sys.executable
v = tuple(sys.version_info)
python_version = "%s.%s.%s-%s-%s" % v
implementation = platform.python_implementation()
if implementation == 'PyPy':
implementation += " %s.%s.%s-%s-%s" % sys.pypy_version_info
self.write("executable: %s (%s) [%s]\n" %
(executable, python_version, implementation))
from sympy.utilities.misc import ARCH
self.write("architecture: %s\n" % ARCH)
from sympy.core.cache import USE_CACHE
self.write("cache: %s\n" % USE_CACHE)
version = ''
if GROUND_TYPES =='gmpy':
if HAS_GMPY == 1:
import gmpy
elif HAS_GMPY == 2:
import gmpy2 as gmpy
version = gmpy.version()
self.write("ground types: %s %s\n" % (GROUND_TYPES, version))
numpy = import_module('numpy')
self.write("numpy: %s\n" % (None if not numpy else numpy.__version__))
if seed is not None:
self.write("random seed: %d\n" % seed)
from sympy.utilities.misc import HASH_RANDOMIZATION
self.write("hash randomization: ")
hash_seed = os.getenv("PYTHONHASHSEED") or '0'
if HASH_RANDOMIZATION and (hash_seed == "random" or int(hash_seed)):
self.write("on (PYTHONHASHSEED=%s)\n" % hash_seed)
else:
self.write("off\n")
if self._split:
self.write("split: %s\n" % self._split)
self.write('\n')
self._t_start = clock()
def finish(self):
self._t_end = clock()
self.write("\n")
global text, linelen
text = "tests finished: %d passed, " % self._passed
linelen = len(text)
def add_text(mytext):
global text, linelen
"""Break new text if too long."""
if linelen + len(mytext) > self.terminal_width:
text += '\n'
linelen = 0
text += mytext
linelen += len(mytext)
if len(self._failed) > 0:
add_text("%d failed, " % len(self._failed))
if len(self._failed_doctest) > 0:
add_text("%d failed, " % len(self._failed_doctest))
if self._skipped > 0:
add_text("%d skipped, " % self._skipped)
if self._xfailed > 0:
add_text("%d expected to fail, " % self._xfailed)
if len(self._xpassed) > 0:
add_text("%d expected to fail but passed, " % len(self._xpassed))
if len(self._exceptions) > 0:
add_text("%d exceptions, " % len(self._exceptions))
add_text("in %.2f seconds" % (self._t_end - self._t_start))
if self.slow_test_functions:
self.write_center('slowest tests', '_')
sorted_slow = sorted(self.slow_test_functions, key=lambda r: r[1])
for slow_func_name, taken in sorted_slow:
print('%s - Took %.3f seconds' % (slow_func_name, taken))
if self.fast_test_functions:
self.write_center('unexpectedly fast tests', '_')
sorted_fast = sorted(self.fast_test_functions,
key=lambda r: r[1])
for fast_func_name, taken in sorted_fast:
print('%s - Took %.3f seconds' % (fast_func_name, taken))
if len(self._xpassed) > 0:
self.write_center("xpassed tests", "_")
for e in self._xpassed:
self.write("%s: %s\n" % (e[0], e[1]))
self.write("\n")
if self._tb_style != "no" and len(self._exceptions) > 0:
for e in self._exceptions:
filename, f, (t, val, tb) = e
self.write_center("", "_")
if f is None:
s = "%s" % filename
else:
s = "%s:%s" % (filename, f.__name__)
self.write_center(s, "_")
self.write_exception(t, val, tb)
self.write("\n")
if self._tb_style != "no" and len(self._failed) > 0:
for e in self._failed:
filename, f, (t, val, tb) = e
self.write_center("", "_")
self.write_center("%s:%s" % (filename, f.__name__), "_")
self.write_exception(t, val, tb)
self.write("\n")
if self._tb_style != "no" and len(self._failed_doctest) > 0:
for e in self._failed_doctest:
filename, msg = e
self.write_center("", "_")
self.write_center("%s" % filename, "_")
self.write(msg)
self.write("\n")
self.write_center(text)
ok = len(self._failed) == 0 and len(self._exceptions) == 0 and \
len(self._failed_doctest) == 0
if not ok:
self.write("DO *NOT* COMMIT!\n")
return ok
def entering_filename(self, filename, n):
rel_name = filename[len(self._root_dir) + 1:]
self._active_file = rel_name
self._active_file_error = False
self.write(rel_name)
self.write("[%d] " % n)
def leaving_filename(self):
self.write(" ")
if self._active_file_error:
self.write("[FAIL]", "Red", align="right")
else:
self.write("[OK]", "Green", align="right")
self.write("\n")
if self._verbose:
self.write("\n")
def entering_test(self, f):
self._active_f = f
if self._verbose:
self.write("\n" + f.__name__ + " ")
def test_xfail(self):
self._xfailed += 1
self.write("f", "Green")
def test_xpass(self, v):
message = str(v)
self._xpassed.append((self._active_file, message))
self.write("X", "Green")
def test_fail(self, exc_info):
self._failed.append((self._active_file, self._active_f, exc_info))
self.write("F", "Red")
self._active_file_error = True
def doctest_fail(self, name, error_msg):
# the first line contains "******", remove it:
error_msg = "\n".join(error_msg.split("\n")[1:])
self._failed_doctest.append((name, error_msg))
self.write("F", "Red")
self._active_file_error = True
def test_pass(self, char="."):
self._passed += 1
if self._verbose:
self.write("ok", "Green")
else:
self.write(char, "Green")
def test_skip(self, v=None):
char = "s"
self._skipped += 1
if v is not None:
message = str(v)
if message == "KeyboardInterrupt":
char = "K"
elif message == "Timeout":
char = "T"
elif message == "Slow":
char = "w"
if self._verbose:
if v is not None:
self.write(message + ' ', "Blue")
else:
self.write(" - ", "Blue")
self.write(char, "Blue")
def test_exception(self, exc_info):
self._exceptions.append((self._active_file, self._active_f, exc_info))
if exc_info[0] is TimeOutError:
self.write("T", "Red")
else:
self.write("E", "Red")
self._active_file_error = True
def import_error(self, filename, exc_info):
self._exceptions.append((filename, None, exc_info))
rel_name = filename[len(self._root_dir) + 1:]
self.write(rel_name)
self.write("[?] Failed to import", "Red")
self.write(" ")
self.write("[FAIL]", "Red", align="right")
self.write("\n")
|
a6292678bc24756ffa79df97a3f534fdad8e9b94c64a57c4e0f8a3911b099657 | from __future__ import annotations
from itertools import product
from sympy.core.add import Add
from sympy.core.assumptions import StdFactKB
from sympy.core.expr import AtomicExpr, Expr
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.core.sorting import default_sort_key
from sympy.core.sympify import sympify
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.matrices.immutable import ImmutableDenseMatrix as Matrix
from sympy.vector.basisdependent import (BasisDependentZero,
BasisDependent, BasisDependentMul, BasisDependentAdd)
from sympy.vector.coordsysrect import CoordSys3D
from sympy.vector.dyadic import Dyadic, BaseDyadic, DyadicAdd
class Vector(BasisDependent):
"""
Super class for all Vector classes.
Ideally, neither this class nor any of its subclasses should be
instantiated by the user.
"""
is_scalar = False
is_Vector = True
_op_priority = 12.0
_expr_type: type[Vector]
_mul_func: type[Vector]
_add_func: type[Vector]
_zero_func: type[Vector]
_base_func: type[Vector]
zero: VectorZero
@property
def components(self):
"""
Returns the components of this vector in the form of a
Python dictionary mapping BaseVector instances to the
corresponding measure numbers.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> C = CoordSys3D('C')
>>> v = 3*C.i + 4*C.j + 5*C.k
>>> v.components
{C.i: 3, C.j: 4, C.k: 5}
"""
# The '_components' attribute is defined according to the
# subclass of Vector the instance belongs to.
return self._components
def magnitude(self):
"""
Returns the magnitude of this vector.
"""
return sqrt(self & self)
def normalize(self):
"""
Returns the normalized version of this vector.
"""
return self / self.magnitude()
def dot(self, other):
"""
Returns the dot product of this Vector, either with another
Vector, or a Dyadic, or a Del operator.
If 'other' is a Vector, returns the dot product scalar (SymPy
expression).
If 'other' is a Dyadic, the dot product is returned as a Vector.
If 'other' is an instance of Del, returns the directional
derivative operator as a Python function. If this function is
applied to a scalar expression, it returns the directional
derivative of the scalar field wrt this Vector.
Parameters
==========
other: Vector/Dyadic/Del
The Vector or Dyadic we are dotting with, or a Del operator .
Examples
========
>>> from sympy.vector import CoordSys3D, Del
>>> C = CoordSys3D('C')
>>> delop = Del()
>>> C.i.dot(C.j)
0
>>> C.i & C.i
1
>>> v = 3*C.i + 4*C.j + 5*C.k
>>> v.dot(C.k)
5
>>> (C.i & delop)(C.x*C.y*C.z)
C.y*C.z
>>> d = C.i.outer(C.i)
>>> C.i.dot(d)
C.i
"""
# Check special cases
if isinstance(other, Dyadic):
if isinstance(self, VectorZero):
return Vector.zero
outvec = Vector.zero
for k, v in other.components.items():
vect_dot = k.args[0].dot(self)
outvec += vect_dot * v * k.args[1]
return outvec
from sympy.vector.deloperator import Del
if not isinstance(other, (Del, Vector)):
raise TypeError(str(other) + " is not a vector, dyadic or " +
"del operator")
# Check if the other is a del operator
if isinstance(other, Del):
def directional_derivative(field):
from sympy.vector.functions import directional_derivative
return directional_derivative(field, self)
return directional_derivative
return dot(self, other)
def __and__(self, other):
return self.dot(other)
__and__.__doc__ = dot.__doc__
def cross(self, other):
"""
Returns the cross product of this Vector with another Vector or
Dyadic instance.
The cross product is a Vector, if 'other' is a Vector. If 'other'
is a Dyadic, this returns a Dyadic instance.
Parameters
==========
other: Vector/Dyadic
The Vector or Dyadic we are crossing with.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> C = CoordSys3D('C')
>>> C.i.cross(C.j)
C.k
>>> C.i ^ C.i
0
>>> v = 3*C.i + 4*C.j + 5*C.k
>>> v ^ C.i
5*C.j + (-4)*C.k
>>> d = C.i.outer(C.i)
>>> C.j.cross(d)
(-1)*(C.k|C.i)
"""
# Check special cases
if isinstance(other, Dyadic):
if isinstance(self, VectorZero):
return Dyadic.zero
outdyad = Dyadic.zero
for k, v in other.components.items():
cross_product = self.cross(k.args[0])
outer = cross_product.outer(k.args[1])
outdyad += v * outer
return outdyad
return cross(self, other)
def __xor__(self, other):
return self.cross(other)
__xor__.__doc__ = cross.__doc__
def outer(self, other):
"""
Returns the outer product of this vector with another, in the
form of a Dyadic instance.
Parameters
==========
other : Vector
The Vector with respect to which the outer product is to
be computed.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> N = CoordSys3D('N')
>>> N.i.outer(N.j)
(N.i|N.j)
"""
# Handle the special cases
if not isinstance(other, Vector):
raise TypeError("Invalid operand for outer product")
elif (isinstance(self, VectorZero) or
isinstance(other, VectorZero)):
return Dyadic.zero
# Iterate over components of both the vectors to generate
# the required Dyadic instance
args = [(v1 * v2) * BaseDyadic(k1, k2) for (k1, v1), (k2, v2)
in product(self.components.items(), other.components.items())]
return DyadicAdd(*args)
def projection(self, other, scalar=False):
"""
Returns the vector or scalar projection of the 'other' on 'self'.
Examples
========
>>> from sympy.vector.coordsysrect import CoordSys3D
>>> C = CoordSys3D('C')
>>> i, j, k = C.base_vectors()
>>> v1 = i + j + k
>>> v2 = 3*i + 4*j
>>> v1.projection(v2)
7/3*C.i + 7/3*C.j + 7/3*C.k
>>> v1.projection(v2, scalar=True)
7/3
"""
if self.equals(Vector.zero):
return S.Zero if scalar else Vector.zero
if scalar:
return self.dot(other) / self.dot(self)
else:
return self.dot(other) / self.dot(self) * self
@property
def _projections(self):
"""
Returns the components of this vector but the output includes
also zero values components.
Examples
========
>>> from sympy.vector import CoordSys3D, Vector
>>> C = CoordSys3D('C')
>>> v1 = 3*C.i + 4*C.j + 5*C.k
>>> v1._projections
(3, 4, 5)
>>> v2 = C.x*C.y*C.z*C.i
>>> v2._projections
(C.x*C.y*C.z, 0, 0)
>>> v3 = Vector.zero
>>> v3._projections
(0, 0, 0)
"""
from sympy.vector.operators import _get_coord_systems
if isinstance(self, VectorZero):
return (S.Zero, S.Zero, S.Zero)
base_vec = next(iter(_get_coord_systems(self))).base_vectors()
return tuple([self.dot(i) for i in base_vec])
def __or__(self, other):
return self.outer(other)
__or__.__doc__ = outer.__doc__
def to_matrix(self, system):
"""
Returns the matrix form of this vector with respect to the
specified coordinate system.
Parameters
==========
system : CoordSys3D
The system wrt which the matrix form is to be computed
Examples
========
>>> from sympy.vector import CoordSys3D
>>> C = CoordSys3D('C')
>>> from sympy.abc import a, b, c
>>> v = a*C.i + b*C.j + c*C.k
>>> v.to_matrix(C)
Matrix([
[a],
[b],
[c]])
"""
return Matrix([self.dot(unit_vec) for unit_vec in
system.base_vectors()])
def separate(self):
"""
The constituents of this vector in different coordinate systems,
as per its definition.
Returns a dict mapping each CoordSys3D to the corresponding
constituent Vector.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> R1 = CoordSys3D('R1')
>>> R2 = CoordSys3D('R2')
>>> v = R1.i + R2.i
>>> v.separate() == {R1: R1.i, R2: R2.i}
True
"""
parts = {}
for vect, measure in self.components.items():
parts[vect.system] = (parts.get(vect.system, Vector.zero) +
vect * measure)
return parts
def _div_helper(one, other):
""" Helper for division involving vectors. """
if isinstance(one, Vector) and isinstance(other, Vector):
raise TypeError("Cannot divide two vectors")
elif isinstance(one, Vector):
if other == S.Zero:
raise ValueError("Cannot divide a vector by zero")
return VectorMul(one, Pow(other, S.NegativeOne))
else:
raise TypeError("Invalid division involving a vector")
class BaseVector(Vector, AtomicExpr):
"""
Class to denote a base vector.
"""
def __new__(cls, index, system, pretty_str=None, latex_str=None):
if pretty_str is None:
pretty_str = "x{}".format(index)
if latex_str is None:
latex_str = "x_{}".format(index)
pretty_str = str(pretty_str)
latex_str = str(latex_str)
# Verify arguments
if index not in range(0, 3):
raise ValueError("index must be 0, 1 or 2")
if not isinstance(system, CoordSys3D):
raise TypeError("system should be a CoordSys3D")
name = system._vector_names[index]
# Initialize an object
obj = super().__new__(cls, S(index), system)
# Assign important attributes
obj._base_instance = obj
obj._components = {obj: S.One}
obj._measure_number = S.One
obj._name = system._name + '.' + name
obj._pretty_form = '' + pretty_str
obj._latex_form = latex_str
obj._system = system
# The _id is used for printing purposes
obj._id = (index, system)
assumptions = {'commutative': True}
obj._assumptions = StdFactKB(assumptions)
# This attr is used for re-expression to one of the systems
# involved in the definition of the Vector. Applies to
# VectorMul and VectorAdd too.
obj._sys = system
return obj
@property
def system(self):
return self._system
def _sympystr(self, printer):
return self._name
def _sympyrepr(self, printer):
index, system = self._id
return printer._print(system) + '.' + system._vector_names[index]
@property
def free_symbols(self):
return {self}
class VectorAdd(BasisDependentAdd, Vector):
"""
Class to denote sum of Vector instances.
"""
def __new__(cls, *args, **options):
obj = BasisDependentAdd.__new__(cls, *args, **options)
return obj
def _sympystr(self, printer):
ret_str = ''
items = list(self.separate().items())
items.sort(key=lambda x: x[0].__str__())
for system, vect in items:
base_vects = system.base_vectors()
for x in base_vects:
if x in vect.components:
temp_vect = self.components[x] * x
ret_str += printer._print(temp_vect) + " + "
return ret_str[:-3]
class VectorMul(BasisDependentMul, Vector):
"""
Class to denote products of scalars and BaseVectors.
"""
def __new__(cls, *args, **options):
obj = BasisDependentMul.__new__(cls, *args, **options)
return obj
@property
def base_vector(self):
""" The BaseVector involved in the product. """
return self._base_instance
@property
def measure_number(self):
""" The scalar expression involved in the definition of
this VectorMul.
"""
return self._measure_number
class VectorZero(BasisDependentZero, Vector):
"""
Class to denote a zero vector
"""
_op_priority = 12.1
_pretty_form = '0'
_latex_form = r'\mathbf{\hat{0}}'
def __new__(cls):
obj = BasisDependentZero.__new__(cls)
return obj
class Cross(Vector):
"""
Represents unevaluated Cross product.
Examples
========
>>> from sympy.vector import CoordSys3D, Cross
>>> R = CoordSys3D('R')
>>> v1 = R.i + R.j + R.k
>>> v2 = R.x * R.i + R.y * R.j + R.z * R.k
>>> Cross(v1, v2)
Cross(R.i + R.j + R.k, R.x*R.i + R.y*R.j + R.z*R.k)
>>> Cross(v1, v2).doit()
(-R.y + R.z)*R.i + (R.x - R.z)*R.j + (-R.x + R.y)*R.k
"""
def __new__(cls, expr1, expr2):
expr1 = sympify(expr1)
expr2 = sympify(expr2)
if default_sort_key(expr1) > default_sort_key(expr2):
return -Cross(expr2, expr1)
obj = Expr.__new__(cls, expr1, expr2)
obj._expr1 = expr1
obj._expr2 = expr2
return obj
def doit(self, **hints):
return cross(self._expr1, self._expr2)
class Dot(Expr):
"""
Represents unevaluated Dot product.
Examples
========
>>> from sympy.vector import CoordSys3D, Dot
>>> from sympy import symbols
>>> R = CoordSys3D('R')
>>> a, b, c = symbols('a b c')
>>> v1 = R.i + R.j + R.k
>>> v2 = a * R.i + b * R.j + c * R.k
>>> Dot(v1, v2)
Dot(R.i + R.j + R.k, a*R.i + b*R.j + c*R.k)
>>> Dot(v1, v2).doit()
a + b + c
"""
def __new__(cls, expr1, expr2):
expr1 = sympify(expr1)
expr2 = sympify(expr2)
expr1, expr2 = sorted([expr1, expr2], key=default_sort_key)
obj = Expr.__new__(cls, expr1, expr2)
obj._expr1 = expr1
obj._expr2 = expr2
return obj
def doit(self, **hints):
return dot(self._expr1, self._expr2)
def cross(vect1, vect2):
"""
Returns cross product of two vectors.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> from sympy.vector.vector import cross
>>> R = CoordSys3D('R')
>>> v1 = R.i + R.j + R.k
>>> v2 = R.x * R.i + R.y * R.j + R.z * R.k
>>> cross(v1, v2)
(-R.y + R.z)*R.i + (R.x - R.z)*R.j + (-R.x + R.y)*R.k
"""
if isinstance(vect1, Add):
return VectorAdd.fromiter(cross(i, vect2) for i in vect1.args)
if isinstance(vect2, Add):
return VectorAdd.fromiter(cross(vect1, i) for i in vect2.args)
if isinstance(vect1, BaseVector) and isinstance(vect2, BaseVector):
if vect1._sys == vect2._sys:
n1 = vect1.args[0]
n2 = vect2.args[0]
if n1 == n2:
return Vector.zero
n3 = ({0,1,2}.difference({n1, n2})).pop()
sign = 1 if ((n1 + 1) % 3 == n2) else -1
return sign*vect1._sys.base_vectors()[n3]
from .functions import express
try:
v = express(vect1, vect2._sys)
except ValueError:
return Cross(vect1, vect2)
else:
return cross(v, vect2)
if isinstance(vect1, VectorZero) or isinstance(vect2, VectorZero):
return Vector.zero
if isinstance(vect1, VectorMul):
v1, m1 = next(iter(vect1.components.items()))
return m1*cross(v1, vect2)
if isinstance(vect2, VectorMul):
v2, m2 = next(iter(vect2.components.items()))
return m2*cross(vect1, v2)
return Cross(vect1, vect2)
def dot(vect1, vect2):
"""
Returns dot product of two vectors.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> from sympy.vector.vector import dot
>>> R = CoordSys3D('R')
>>> v1 = R.i + R.j + R.k
>>> v2 = R.x * R.i + R.y * R.j + R.z * R.k
>>> dot(v1, v2)
R.x + R.y + R.z
"""
if isinstance(vect1, Add):
return Add.fromiter(dot(i, vect2) for i in vect1.args)
if isinstance(vect2, Add):
return Add.fromiter(dot(vect1, i) for i in vect2.args)
if isinstance(vect1, BaseVector) and isinstance(vect2, BaseVector):
if vect1._sys == vect2._sys:
return S.One if vect1 == vect2 else S.Zero
from .functions import express
try:
v = express(vect2, vect1._sys)
except ValueError:
return Dot(vect1, vect2)
else:
return dot(vect1, v)
if isinstance(vect1, VectorZero) or isinstance(vect2, VectorZero):
return S.Zero
if isinstance(vect1, VectorMul):
v1, m1 = next(iter(vect1.components.items()))
return m1*dot(v1, vect2)
if isinstance(vect2, VectorMul):
v2, m2 = next(iter(vect2.components.items()))
return m2*dot(vect1, v2)
return Dot(vect1, vect2)
Vector._expr_type = Vector
Vector._mul_func = VectorMul
Vector._add_func = VectorAdd
Vector._zero_func = VectorZero
Vector._base_func = BaseVector
Vector.zero = VectorZero()
|
5ab08816e87f299ea2100ec567361a9d9a1442e27880d04fdcd78d28cc42d25d | from sympy.core.numbers import Rational
from sympy.core.singleton import S
from sympy.core.symbol import symbols
from sympy.functions.elementary.complexes import sign
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.polys.polytools import gcd
from sympy.sets.sets import Complement
from sympy.core import Basic, Tuple, diff, expand, Eq, Integer
from sympy.core.sorting import ordered
from sympy.core.symbol import _symbol
from sympy.solvers import solveset, nonlinsolve, diophantine
from sympy.polys import total_degree
from sympy.geometry import Point
from sympy.ntheory.factor_ import core
class ImplicitRegion(Basic):
"""
Represents an implicit region in space.
Examples
========
>>> from sympy import Eq
>>> from sympy.abc import x, y, z, t
>>> from sympy.vector import ImplicitRegion
>>> ImplicitRegion((x, y), x**2 + y**2 - 4)
ImplicitRegion((x, y), x**2 + y**2 - 4)
>>> ImplicitRegion((x, y), Eq(y*x, 1))
ImplicitRegion((x, y), x*y - 1)
>>> parabola = ImplicitRegion((x, y), y**2 - 4*x)
>>> parabola.degree
2
>>> parabola.equation
-4*x + y**2
>>> parabola.rational_parametrization(t)
(4/t**2, 4/t)
>>> r = ImplicitRegion((x, y, z), Eq(z, x**2 + y**2))
>>> r.variables
(x, y, z)
>>> r.singular_points()
EmptySet
>>> r.regular_point()
(-10, -10, 200)
Parameters
==========
variables : tuple to map variables in implicit equation to base scalars.
equation : An expression or Eq denoting the implicit equation of the region.
"""
def __new__(cls, variables, equation):
if not isinstance(variables, Tuple):
variables = Tuple(*variables)
if isinstance(equation, Eq):
equation = equation.lhs - equation.rhs
return super().__new__(cls, variables, equation)
@property
def variables(self):
return self.args[0]
@property
def equation(self):
return self.args[1]
@property
def degree(self):
return total_degree(self.equation)
def regular_point(self):
"""
Returns a point on the implicit region.
Examples
========
>>> from sympy.abc import x, y, z
>>> from sympy.vector import ImplicitRegion
>>> circle = ImplicitRegion((x, y), (x + 2)**2 + (y - 3)**2 - 16)
>>> circle.regular_point()
(-2, -1)
>>> parabola = ImplicitRegion((x, y), x**2 - 4*y)
>>> parabola.regular_point()
(0, 0)
>>> r = ImplicitRegion((x, y, z), (x + y + z)**4)
>>> r.regular_point()
(-10, -10, 20)
References
==========
- Erik Hillgarter, "Rational Points on Conics", Diploma Thesis, RISC-Linz,
J. Kepler Universitat Linz, 1996. Available:
https://www3.risc.jku.at/publications/download/risc_1355/Rational%20Points%20on%20Conics.pdf
"""
equation = self.equation
if len(self.variables) == 1:
return (list(solveset(equation, self.variables[0], domain=S.Reals))[0],)
elif len(self.variables) == 2:
if self.degree == 2:
coeffs = a, b, c, d, e, f = conic_coeff(self.variables, equation)
if b**2 == 4*a*c:
x_reg, y_reg = self._regular_point_parabola(*coeffs)
else:
x_reg, y_reg = self._regular_point_ellipse(*coeffs)
return x_reg, y_reg
if len(self.variables) == 3:
x, y, z = self.variables
for x_reg in range(-10, 10):
for y_reg in range(-10, 10):
if not solveset(equation.subs({x: x_reg, y: y_reg}), self.variables[2], domain=S.Reals).is_empty:
return (x_reg, y_reg, list(solveset(equation.subs({x: x_reg, y: y_reg})))[0])
if len(self.singular_points()) != 0:
return list[self.singular_points()][0]
raise NotImplementedError()
def _regular_point_parabola(self, a, b, c, d, e, f):
ok = (a, d) != (0, 0) and (c, e) != (0, 0) and b**2 == 4*a*c and (a, c) != (0, 0)
if not ok:
raise ValueError("Rational Point on the conic does not exist")
if a != 0:
d_dash, f_dash = (4*a*e - 2*b*d, 4*a*f - d**2)
if d_dash != 0:
y_reg = -f_dash/d_dash
x_reg = -(d + b*y_reg)/(2*a)
else:
ok = False
elif c != 0:
d_dash, f_dash = (4*c*d - 2*b*e, 4*c*f - e**2)
if d_dash != 0:
x_reg = -f_dash/d_dash
y_reg = -(e + b*x_reg)/(2*c)
else:
ok = False
if ok:
return x_reg, y_reg
else:
raise ValueError("Rational Point on the conic does not exist")
def _regular_point_ellipse(self, a, b, c, d, e, f):
D = 4*a*c - b**2
ok = D
if not ok:
raise ValueError("Rational Point on the conic does not exist")
if a == 0 and c == 0:
K = -1
L = 4*(d*e - b*f)
elif c != 0:
K = D
L = 4*c**2*d**2 - 4*b*c*d*e + 4*a*c*e**2 + 4*b**2*c*f - 16*a*c**2*f
else:
K = D
L = 4*a**2*e**2 - 4*b*a*d*e + 4*b**2*a*f
ok = L != 0 and not(K > 0 and L < 0)
if not ok:
raise ValueError("Rational Point on the conic does not exist")
K = Rational(K).limit_denominator(10**12)
L = Rational(L).limit_denominator(10**12)
k1, k2 = K.p, K.q
l1, l2 = L.p, L.q
g = gcd(k2, l2)
a1 = (l2*k2)/g
b1 = (k1*l2)/g
c1 = -(l1*k2)/g
a2 = sign(a1)*core(abs(a1), 2)
r1 = sqrt(a1/a2)
b2 = sign(b1)*core(abs(b1), 2)
r2 = sqrt(b1/b2)
c2 = sign(c1)*core(abs(c1), 2)
r3 = sqrt(c1/c2)
g = gcd(gcd(a2, b2), c2)
a2 = a2/g
b2 = b2/g
c2 = c2/g
g1 = gcd(a2, b2)
a2 = a2/g1
b2 = b2/g1
c2 = c2*g1
g2 = gcd(a2,c2)
a2 = a2/g2
b2 = b2*g2
c2 = c2/g2
g3 = gcd(b2, c2)
a2 = a2*g3
b2 = b2/g3
c2 = c2/g3
x, y, z = symbols("x y z")
eq = a2*x**2 + b2*y**2 + c2*z**2
solutions = diophantine(eq)
if len(solutions) == 0:
raise ValueError("Rational Point on the conic does not exist")
flag = False
for sol in solutions:
syms = Tuple(*sol).free_symbols
rep = {s: 3 for s in syms}
sol_z = sol[2]
if sol_z == 0:
flag = True
continue
if not isinstance(sol_z, (int, Integer)):
syms_z = sol_z.free_symbols
if len(syms_z) == 1:
p = next(iter(syms_z))
p_values = Complement(S.Integers, solveset(Eq(sol_z, 0), p, S.Integers))
rep[p] = next(iter(p_values))
if len(syms_z) == 2:
p, q = list(ordered(syms_z))
for i in S.Integers:
subs_sol_z = sol_z.subs(p, i)
q_values = Complement(S.Integers, solveset(Eq(subs_sol_z, 0), q, S.Integers))
if not q_values.is_empty:
rep[p] = i
rep[q] = next(iter(q_values))
break
if len(syms) != 0:
x, y, z = tuple(s.subs(rep) for s in sol)
else:
x, y, z = sol
flag = False
break
if flag:
raise ValueError("Rational Point on the conic does not exist")
x = (x*g3)/r1
y = (y*g2)/r2
z = (z*g1)/r3
x = x/z
y = y/z
if a == 0 and c == 0:
x_reg = (x + y - 2*e)/(2*b)
y_reg = (x - y - 2*d)/(2*b)
elif c != 0:
x_reg = (x - 2*d*c + b*e)/K
y_reg = (y - b*x_reg - e)/(2*c)
else:
y_reg = (x - 2*e*a + b*d)/K
x_reg = (y - b*y_reg - d)/(2*a)
return x_reg, y_reg
def singular_points(self):
"""
Returns a set of singular points of the region.
The singular points are those points on the region
where all partial derivatives vanish.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.vector import ImplicitRegion
>>> I = ImplicitRegion((x, y), (y-1)**2 -x**3 + 2*x**2 -x)
>>> I.singular_points()
{(1, 1)}
"""
eq_list = [self.equation]
for var in self.variables:
eq_list += [diff(self.equation, var)]
return nonlinsolve(eq_list, list(self.variables))
def multiplicity(self, point):
"""
Returns the multiplicity of a singular point on the region.
A singular point (x,y) of region is said to be of multiplicity m
if all the partial derivatives off to order m - 1 vanish there.
Examples
========
>>> from sympy.abc import x, y, z
>>> from sympy.vector import ImplicitRegion
>>> I = ImplicitRegion((x, y, z), x**2 + y**3 - z**4)
>>> I.singular_points()
{(0, 0, 0)}
>>> I.multiplicity((0, 0, 0))
2
"""
if isinstance(point, Point):
point = point.args
modified_eq = self.equation
for i, var in enumerate(self.variables):
modified_eq = modified_eq.subs(var, var + point[i])
modified_eq = expand(modified_eq)
if len(modified_eq.args) != 0:
terms = modified_eq.args
m = min([total_degree(term) for term in terms])
else:
terms = modified_eq
m = total_degree(terms)
return m
def rational_parametrization(self, parameters=('t', 's'), reg_point=None):
"""
Returns the rational parametrization of implicit region.
Examples
========
>>> from sympy import Eq
>>> from sympy.abc import x, y, z, s, t
>>> from sympy.vector import ImplicitRegion
>>> parabola = ImplicitRegion((x, y), y**2 - 4*x)
>>> parabola.rational_parametrization()
(4/t**2, 4/t)
>>> circle = ImplicitRegion((x, y), Eq(x**2 + y**2, 4))
>>> circle.rational_parametrization()
(4*t/(t**2 + 1), 4*t**2/(t**2 + 1) - 2)
>>> I = ImplicitRegion((x, y), x**3 + x**2 - y**2)
>>> I.rational_parametrization()
(t**2 - 1, t*(t**2 - 1))
>>> cubic_curve = ImplicitRegion((x, y), x**3 + x**2 - y**2)
>>> cubic_curve.rational_parametrization(parameters=(t))
(t**2 - 1, t*(t**2 - 1))
>>> sphere = ImplicitRegion((x, y, z), x**2 + y**2 + z**2 - 4)
>>> sphere.rational_parametrization(parameters=(t, s))
(-2 + 4/(s**2 + t**2 + 1), 4*s/(s**2 + t**2 + 1), 4*t/(s**2 + t**2 + 1))
For some conics, regular_points() is unable to find a point on curve.
To calulcate the parametric representation in such cases, user need
to determine a point on the region and pass it using reg_point.
>>> c = ImplicitRegion((x, y), (x - 1/2)**2 + (y)**2 - (1/4)**2)
>>> c.rational_parametrization(reg_point=(3/4, 0))
(0.75 - 0.5/(t**2 + 1), -0.5*t/(t**2 + 1))
References
==========
- Christoph M. Hoffmann, "Conversion Methods between Parametric and
Implicit Curves and Surfaces", Purdue e-Pubs, 1990. Available:
https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1827&context=cstech
"""
equation = self.equation
degree = self.degree
if degree == 1:
if len(self.variables) == 1:
return (equation,)
elif len(self.variables) == 2:
x, y = self.variables
y_par = list(solveset(equation, y))[0]
return x, y_par
else:
raise NotImplementedError()
point = ()
# Finding the (n - 1) fold point of the monoid of degree
if degree == 2:
# For degree 2 curves, either a regular point or a singular point can be used.
if reg_point is not None:
# Using point provided by the user as regular point
point = reg_point
else:
if len(self.singular_points()) != 0:
point = list(self.singular_points())[0]
else:
point = self.regular_point()
if len(self.singular_points()) != 0:
singular_points = self.singular_points()
for spoint in singular_points:
syms = Tuple(*spoint).free_symbols
rep = {s: 2 for s in syms}
if len(syms) != 0:
spoint = tuple(s.subs(rep) for s in spoint)
if self.multiplicity(spoint) == degree - 1:
point = spoint
break
if len(point) == 0:
# The region in not a monoid
raise NotImplementedError()
modified_eq = equation
# Shifting the region such that fold point moves to origin
for i, var in enumerate(self.variables):
modified_eq = modified_eq.subs(var, var + point[i])
modified_eq = expand(modified_eq)
hn = hn_1 = 0
for term in modified_eq.args:
if total_degree(term) == degree:
hn += term
else:
hn_1 += term
hn_1 = -1*hn_1
if not isinstance(parameters, tuple):
parameters = (parameters,)
if len(self.variables) == 2:
parameter1 = parameters[0]
if parameter1 == 's':
# To avoid name conflict between parameters
s = _symbol('s_', real=True)
else:
s = _symbol('s', real=True)
t = _symbol(parameter1, real=True)
hn = hn.subs({self.variables[0]: s, self.variables[1]: t})
hn_1 = hn_1.subs({self.variables[0]: s, self.variables[1]: t})
x_par = (s*(hn_1/hn)).subs(s, 1) + point[0]
y_par = (t*(hn_1/hn)).subs(s, 1) + point[1]
return x_par, y_par
elif len(self.variables) == 3:
parameter1, parameter2 = parameters
if 'r' in parameters:
# To avoid name conflict between parameters
r = _symbol('r_', real=True)
else:
r = _symbol('r', real=True)
s = _symbol(parameter2, real=True)
t = _symbol(parameter1, real=True)
hn = hn.subs({self.variables[0]: r, self.variables[1]: s, self.variables[2]: t})
hn_1 = hn_1.subs({self.variables[0]: r, self.variables[1]: s, self.variables[2]: t})
x_par = (r*(hn_1/hn)).subs(r, 1) + point[0]
y_par = (s*(hn_1/hn)).subs(r, 1) + point[1]
z_par = (t*(hn_1/hn)).subs(r, 1) + point[2]
return x_par, y_par, z_par
raise NotImplementedError()
def conic_coeff(variables, equation):
if total_degree(equation) != 2:
raise ValueError()
x = variables[0]
y = variables[1]
equation = expand(equation)
a = equation.coeff(x**2)
b = equation.coeff(x*y)
c = equation.coeff(y**2)
d = equation.coeff(x, 1).coeff(y, 0)
e = equation.coeff(y, 1).coeff(x, 0)
f = equation.coeff(x, 0).coeff(y, 0)
return a, b, c, d, e, f
|
20ecab80e3721831cfb46d1120d70c81eb4054c48e9982396bdf6cf8ec170530 | from __future__ import annotations
from sympy.vector.basisdependent import (BasisDependent, BasisDependentAdd,
BasisDependentMul, BasisDependentZero)
from sympy.core import S, Pow
from sympy.core.expr import AtomicExpr
from sympy.matrices.immutable import ImmutableDenseMatrix as Matrix
import sympy.vector
class Dyadic(BasisDependent):
"""
Super class for all Dyadic-classes.
References
==========
.. [1] https://en.wikipedia.org/wiki/Dyadic_tensor
.. [2] Kane, T., Levinson, D. Dynamics Theory and Applications. 1985
McGraw-Hill
"""
_op_priority = 13.0
_expr_type: type[Dyadic]
_mul_func: type[Dyadic]
_add_func: type[Dyadic]
_zero_func: type[Dyadic]
_base_func: type[Dyadic]
zero: DyadicZero
@property
def components(self):
"""
Returns the components of this dyadic in the form of a
Python dictionary mapping BaseDyadic instances to the
corresponding measure numbers.
"""
# The '_components' attribute is defined according to the
# subclass of Dyadic the instance belongs to.
return self._components
def dot(self, other):
"""
Returns the dot product(also called inner product) of this
Dyadic, with another Dyadic or Vector.
If 'other' is a Dyadic, this returns a Dyadic. Else, it returns
a Vector (unless an error is encountered).
Parameters
==========
other : Dyadic/Vector
The other Dyadic or Vector to take the inner product with
Examples
========
>>> from sympy.vector import CoordSys3D
>>> N = CoordSys3D('N')
>>> D1 = N.i.outer(N.j)
>>> D2 = N.j.outer(N.j)
>>> D1.dot(D2)
(N.i|N.j)
>>> D1.dot(N.j)
N.i
"""
Vector = sympy.vector.Vector
if isinstance(other, BasisDependentZero):
return Vector.zero
elif isinstance(other, Vector):
outvec = Vector.zero
for k, v in self.components.items():
vect_dot = k.args[1].dot(other)
outvec += vect_dot * v * k.args[0]
return outvec
elif isinstance(other, Dyadic):
outdyad = Dyadic.zero
for k1, v1 in self.components.items():
for k2, v2 in other.components.items():
vect_dot = k1.args[1].dot(k2.args[0])
outer_product = k1.args[0].outer(k2.args[1])
outdyad += vect_dot * v1 * v2 * outer_product
return outdyad
else:
raise TypeError("Inner product is not defined for " +
str(type(other)) + " and Dyadics.")
def __and__(self, other):
return self.dot(other)
__and__.__doc__ = dot.__doc__
def cross(self, other):
"""
Returns the cross product between this Dyadic, and a Vector, as a
Vector instance.
Parameters
==========
other : Vector
The Vector that we are crossing this Dyadic with
Examples
========
>>> from sympy.vector import CoordSys3D
>>> N = CoordSys3D('N')
>>> d = N.i.outer(N.i)
>>> d.cross(N.j)
(N.i|N.k)
"""
Vector = sympy.vector.Vector
if other == Vector.zero:
return Dyadic.zero
elif isinstance(other, Vector):
outdyad = Dyadic.zero
for k, v in self.components.items():
cross_product = k.args[1].cross(other)
outer = k.args[0].outer(cross_product)
outdyad += v * outer
return outdyad
else:
raise TypeError(str(type(other)) + " not supported for " +
"cross with dyadics")
def __xor__(self, other):
return self.cross(other)
__xor__.__doc__ = cross.__doc__
def to_matrix(self, system, second_system=None):
"""
Returns the matrix form of the dyadic with respect to one or two
coordinate systems.
Parameters
==========
system : CoordSys3D
The coordinate system that the rows and columns of the matrix
correspond to. If a second system is provided, this
only corresponds to the rows of the matrix.
second_system : CoordSys3D, optional, default=None
The coordinate system that the columns of the matrix correspond
to.
Examples
========
>>> from sympy.vector import CoordSys3D
>>> N = CoordSys3D('N')
>>> v = N.i + 2*N.j
>>> d = v.outer(N.i)
>>> d.to_matrix(N)
Matrix([
[1, 0, 0],
[2, 0, 0],
[0, 0, 0]])
>>> from sympy import Symbol
>>> q = Symbol('q')
>>> P = N.orient_new_axis('P', q, N.k)
>>> d.to_matrix(N, P)
Matrix([
[ cos(q), -sin(q), 0],
[2*cos(q), -2*sin(q), 0],
[ 0, 0, 0]])
"""
if second_system is None:
second_system = system
return Matrix([i.dot(self).dot(j) for i in system for j in
second_system]).reshape(3, 3)
def _div_helper(one, other):
""" Helper for division involving dyadics """
if isinstance(one, Dyadic) and isinstance(other, Dyadic):
raise TypeError("Cannot divide two dyadics")
elif isinstance(one, Dyadic):
return DyadicMul(one, Pow(other, S.NegativeOne))
else:
raise TypeError("Cannot divide by a dyadic")
class BaseDyadic(Dyadic, AtomicExpr):
"""
Class to denote a base dyadic tensor component.
"""
def __new__(cls, vector1, vector2):
Vector = sympy.vector.Vector
BaseVector = sympy.vector.BaseVector
VectorZero = sympy.vector.VectorZero
# Verify arguments
if not isinstance(vector1, (BaseVector, VectorZero)) or \
not isinstance(vector2, (BaseVector, VectorZero)):
raise TypeError("BaseDyadic cannot be composed of non-base " +
"vectors")
# Handle special case of zero vector
elif vector1 == Vector.zero or vector2 == Vector.zero:
return Dyadic.zero
# Initialize instance
obj = super().__new__(cls, vector1, vector2)
obj._base_instance = obj
obj._measure_number = 1
obj._components = {obj: S.One}
obj._sys = vector1._sys
obj._pretty_form = ('(' + vector1._pretty_form + '|' +
vector2._pretty_form + ')')
obj._latex_form = (r'\left(' + vector1._latex_form + r"{\middle|}" +
vector2._latex_form + r'\right)')
return obj
def _sympystr(self, printer):
return "({}|{})".format(
printer._print(self.args[0]), printer._print(self.args[1]))
def _sympyrepr(self, printer):
return "BaseDyadic({}, {})".format(
printer._print(self.args[0]), printer._print(self.args[1]))
class DyadicMul(BasisDependentMul, Dyadic):
""" Products of scalars and BaseDyadics """
def __new__(cls, *args, **options):
obj = BasisDependentMul.__new__(cls, *args, **options)
return obj
@property
def base_dyadic(self):
""" The BaseDyadic involved in the product. """
return self._base_instance
@property
def measure_number(self):
""" The scalar expression involved in the definition of
this DyadicMul.
"""
return self._measure_number
class DyadicAdd(BasisDependentAdd, Dyadic):
""" Class to hold dyadic sums """
def __new__(cls, *args, **options):
obj = BasisDependentAdd.__new__(cls, *args, **options)
return obj
def _sympystr(self, printer):
items = list(self.components.items())
items.sort(key=lambda x: x[0].__str__())
return " + ".join(printer._print(k * v) for k, v in items)
class DyadicZero(BasisDependentZero, Dyadic):
"""
Class to denote a zero dyadic
"""
_op_priority = 13.1
_pretty_form = '(0|0)'
_latex_form = r'(\mathbf{\hat{0}}|\mathbf{\hat{0}})'
def __new__(cls):
obj = BasisDependentZero.__new__(cls)
return obj
Dyadic._expr_type = Dyadic
Dyadic._mul_func = DyadicMul
Dyadic._add_func = DyadicAdd
Dyadic._zero_func = DyadicZero
Dyadic._base_func = BaseDyadic
Dyadic.zero = DyadicZero()
|
d9fd623530ca366f23b7f9edb301dd1031bb84a470203555365527d6d783d142 | """The definition of the base geometrical entity with attributes common to
all derived geometrical entities.
Contains
========
GeometryEntity
GeometricSet
Notes
=====
A GeometryEntity is any object that has special geometric properties.
A GeometrySet is a superclass of any GeometryEntity that can also
be viewed as a sympy.sets.Set. In particular, points are the only
GeometryEntity not considered a Set.
Rn is a GeometrySet representing n-dimensional Euclidean space. R2 and
R3 are currently the only ambient spaces implemented.
"""
from __future__ import annotations
from sympy.core.basic import Basic
from sympy.core.containers import Tuple
from sympy.core.evalf import EvalfMixin, N
from sympy.core.numbers import oo
from sympy.core.symbol import Dummy
from sympy.core.sympify import sympify
from sympy.functions.elementary.trigonometric import cos, sin, atan
from sympy.matrices import eye
from sympy.multipledispatch import dispatch
from sympy.printing import sstr
from sympy.sets import Set, Union, FiniteSet
from sympy.sets.handlers.intersection import intersection_sets
from sympy.sets.handlers.union import union_sets
from sympy.solvers.solvers import solve
from sympy.utilities.misc import func_name
from sympy.utilities.iterables import is_sequence
# How entities are ordered; used by __cmp__ in GeometryEntity
ordering_of_classes = [
"Point2D",
"Point3D",
"Point",
"Segment2D",
"Ray2D",
"Line2D",
"Segment3D",
"Line3D",
"Ray3D",
"Segment",
"Ray",
"Line",
"Plane",
"Triangle",
"RegularPolygon",
"Polygon",
"Circle",
"Ellipse",
"Curve",
"Parabola"
]
class GeometryEntity(Basic, EvalfMixin):
"""The base class for all geometrical entities.
This class does not represent any particular geometric entity, it only
provides the implementation of some methods common to all subclasses.
"""
__slots__: tuple[str, ...] = ()
def __cmp__(self, other):
"""Comparison of two GeometryEntities."""
n1 = self.__class__.__name__
n2 = other.__class__.__name__
c = (n1 > n2) - (n1 < n2)
if not c:
return 0
i1 = -1
for cls in self.__class__.__mro__:
try:
i1 = ordering_of_classes.index(cls.__name__)
break
except ValueError:
i1 = -1
if i1 == -1:
return c
i2 = -1
for cls in other.__class__.__mro__:
try:
i2 = ordering_of_classes.index(cls.__name__)
break
except ValueError:
i2 = -1
if i2 == -1:
return c
return (i1 > i2) - (i1 < i2)
def __contains__(self, other):
"""Subclasses should implement this method for anything more complex than equality."""
if type(self) is type(other):
return self == other
raise NotImplementedError()
def __getnewargs__(self):
"""Returns a tuple that will be passed to __new__ on unpickling."""
return tuple(self.args)
def __ne__(self, o):
"""Test inequality of two geometrical entities."""
return not self == o
def __new__(cls, *args, **kwargs):
# Points are sequences, but they should not
# be converted to Tuples, so use this detection function instead.
def is_seq_and_not_point(a):
# we cannot use isinstance(a, Point) since we cannot import Point
if hasattr(a, 'is_Point') and a.is_Point:
return False
return is_sequence(a)
args = [Tuple(*a) if is_seq_and_not_point(a) else sympify(a) for a in args]
return Basic.__new__(cls, *args)
def __radd__(self, a):
"""Implementation of reverse add method."""
return a.__add__(self)
def __rtruediv__(self, a):
"""Implementation of reverse division method."""
return a.__truediv__(self)
def __repr__(self):
"""String representation of a GeometryEntity that can be evaluated
by sympy."""
return type(self).__name__ + repr(self.args)
def __rmul__(self, a):
"""Implementation of reverse multiplication method."""
return a.__mul__(self)
def __rsub__(self, a):
"""Implementation of reverse subtraction method."""
return a.__sub__(self)
def __str__(self):
"""String representation of a GeometryEntity."""
return type(self).__name__ + sstr(self.args)
def _eval_subs(self, old, new):
from sympy.geometry.point import Point, Point3D
if is_sequence(old) or is_sequence(new):
if isinstance(self, Point3D):
old = Point3D(old)
new = Point3D(new)
else:
old = Point(old)
new = Point(new)
return self._subs(old, new)
def _repr_svg_(self):
"""SVG representation of a GeometryEntity suitable for IPython"""
try:
bounds = self.bounds
except (NotImplementedError, TypeError):
# if we have no SVG representation, return None so IPython
# will fall back to the next representation
return None
if not all(x.is_number and x.is_finite for x in bounds):
return None
svg_top = '''<svg xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink"
width="{1}" height="{2}" viewBox="{0}"
preserveAspectRatio="xMinYMin meet">
<defs>
<marker id="markerCircle" markerWidth="8" markerHeight="8"
refx="5" refy="5" markerUnits="strokeWidth">
<circle cx="5" cy="5" r="1.5" style="stroke: none; fill:#000000;"/>
</marker>
<marker id="markerArrow" markerWidth="13" markerHeight="13" refx="2" refy="4"
orient="auto" markerUnits="strokeWidth">
<path d="M2,2 L2,6 L6,4" style="fill: #000000;" />
</marker>
<marker id="markerReverseArrow" markerWidth="13" markerHeight="13" refx="6" refy="4"
orient="auto" markerUnits="strokeWidth">
<path d="M6,2 L6,6 L2,4" style="fill: #000000;" />
</marker>
</defs>'''
# Establish SVG canvas that will fit all the data + small space
xmin, ymin, xmax, ymax = map(N, bounds)
if xmin == xmax and ymin == ymax:
# This is a point; buffer using an arbitrary size
xmin, ymin, xmax, ymax = xmin - .5, ymin -.5, xmax + .5, ymax + .5
else:
# Expand bounds by a fraction of the data ranges
expand = 0.1 # or 10%; this keeps arrowheads in view (R plots use 4%)
widest_part = max([xmax - xmin, ymax - ymin])
expand_amount = widest_part * expand
xmin -= expand_amount
ymin -= expand_amount
xmax += expand_amount
ymax += expand_amount
dx = xmax - xmin
dy = ymax - ymin
width = min([max([100., dx]), 300])
height = min([max([100., dy]), 300])
scale_factor = 1. if max(width, height) == 0 else max(dx, dy) / max(width, height)
try:
svg = self._svg(scale_factor)
except (NotImplementedError, TypeError):
# if we have no SVG representation, return None so IPython
# will fall back to the next representation
return None
view_box = "{} {} {} {}".format(xmin, ymin, dx, dy)
transform = "matrix(1,0,0,-1,0,{})".format(ymax + ymin)
svg_top = svg_top.format(view_box, width, height)
return svg_top + (
'<g transform="{}">{}</g></svg>'
).format(transform, svg)
def _svg(self, scale_factor=1., fill_color="#66cc99"):
"""Returns SVG path element for the GeometryEntity.
Parameters
==========
scale_factor : float
Multiplication factor for the SVG stroke-width. Default is 1.
fill_color : str, optional
Hex string for fill color. Default is "#66cc99".
"""
raise NotImplementedError()
def _sympy_(self):
return self
@property
def ambient_dimension(self):
"""What is the dimension of the space that the object is contained in?"""
raise NotImplementedError()
@property
def bounds(self):
"""Return a tuple (xmin, ymin, xmax, ymax) representing the bounding
rectangle for the geometric figure.
"""
raise NotImplementedError()
def encloses(self, o):
"""
Return True if o is inside (not on or outside) the boundaries of self.
The object will be decomposed into Points and individual Entities need
only define an encloses_point method for their class.
See Also
========
sympy.geometry.ellipse.Ellipse.encloses_point
sympy.geometry.polygon.Polygon.encloses_point
Examples
========
>>> from sympy import RegularPolygon, Point, Polygon
>>> t = Polygon(*RegularPolygon(Point(0, 0), 1, 3).vertices)
>>> t2 = Polygon(*RegularPolygon(Point(0, 0), 2, 3).vertices)
>>> t2.encloses(t)
True
>>> t.encloses(t2)
False
"""
from sympy.geometry.point import Point
from sympy.geometry.line import Segment, Ray, Line
from sympy.geometry.ellipse import Ellipse
from sympy.geometry.polygon import Polygon, RegularPolygon
if isinstance(o, Point):
return self.encloses_point(o)
elif isinstance(o, Segment):
return all(self.encloses_point(x) for x in o.points)
elif isinstance(o, (Ray, Line)):
return False
elif isinstance(o, Ellipse):
return self.encloses_point(o.center) and \
self.encloses_point(
Point(o.center.x + o.hradius, o.center.y)) and \
not self.intersection(o)
elif isinstance(o, Polygon):
if isinstance(o, RegularPolygon):
if not self.encloses_point(o.center):
return False
return all(self.encloses_point(v) for v in o.vertices)
raise NotImplementedError()
def equals(self, o):
return self == o
def intersection(self, o):
"""
Returns a list of all of the intersections of self with o.
Notes
=====
An entity is not required to implement this method.
If two different types of entities can intersect, the item with
higher index in ordering_of_classes should implement
intersections with anything having a lower index.
See Also
========
sympy.geometry.util.intersection
"""
raise NotImplementedError()
def is_similar(self, other):
"""Is this geometrical entity similar to another geometrical entity?
Two entities are similar if a uniform scaling (enlarging or
shrinking) of one of the entities will allow one to obtain the other.
Notes
=====
This method is not intended to be used directly but rather
through the `are_similar` function found in util.py.
An entity is not required to implement this method.
If two different types of entities can be similar, it is only
required that one of them be able to determine this.
See Also
========
scale
"""
raise NotImplementedError()
def reflect(self, line):
"""
Reflects an object across a line.
Parameters
==========
line: Line
Examples
========
>>> from sympy import pi, sqrt, Line, RegularPolygon
>>> l = Line((0, pi), slope=sqrt(2))
>>> pent = RegularPolygon((1, 2), 1, 5)
>>> rpent = pent.reflect(l)
>>> rpent
RegularPolygon(Point2D(-2*sqrt(2)*pi/3 - 1/3 + 4*sqrt(2)/3, 2/3 + 2*sqrt(2)/3 + 2*pi/3), -1, 5, -atan(2*sqrt(2)) + 3*pi/5)
>>> from sympy import pi, Line, Circle, Point
>>> l = Line((0, pi), slope=1)
>>> circ = Circle(Point(0, 0), 5)
>>> rcirc = circ.reflect(l)
>>> rcirc
Circle(Point2D(-pi, pi), -5)
"""
from sympy.geometry.point import Point
g = self
l = line
o = Point(0, 0)
if l.slope.is_zero:
y = l.args[0].y
if not y: # x-axis
return g.scale(y=-1)
reps = [(p, p.translate(y=2*(y - p.y))) for p in g.atoms(Point)]
elif l.slope is oo:
x = l.args[0].x
if not x: # y-axis
return g.scale(x=-1)
reps = [(p, p.translate(x=2*(x - p.x))) for p in g.atoms(Point)]
else:
if not hasattr(g, 'reflect') and not all(
isinstance(arg, Point) for arg in g.args):
raise NotImplementedError(
'reflect undefined or non-Point args in %s' % g)
a = atan(l.slope)
c = l.coefficients
d = -c[-1]/c[1] # y-intercept
# apply the transform to a single point
x, y = Dummy(), Dummy()
xf = Point(x, y)
xf = xf.translate(y=-d).rotate(-a, o).scale(y=-1
).rotate(a, o).translate(y=d)
# replace every point using that transform
reps = [(p, xf.xreplace({x: p.x, y: p.y})) for p in g.atoms(Point)]
return g.xreplace(dict(reps))
def rotate(self, angle, pt=None):
"""Rotate ``angle`` radians counterclockwise about Point ``pt``.
The default pt is the origin, Point(0, 0)
See Also
========
scale, translate
Examples
========
>>> from sympy import Point, RegularPolygon, Polygon, pi
>>> t = Polygon(*RegularPolygon(Point(0, 0), 1, 3).vertices)
>>> t # vertex on x axis
Triangle(Point2D(1, 0), Point2D(-1/2, sqrt(3)/2), Point2D(-1/2, -sqrt(3)/2))
>>> t.rotate(pi/2) # vertex on y axis now
Triangle(Point2D(0, 1), Point2D(-sqrt(3)/2, -1/2), Point2D(sqrt(3)/2, -1/2))
"""
newargs = []
for a in self.args:
if isinstance(a, GeometryEntity):
newargs.append(a.rotate(angle, pt))
else:
newargs.append(a)
return type(self)(*newargs)
def scale(self, x=1, y=1, pt=None):
"""Scale the object by multiplying the x,y-coordinates by x and y.
If pt is given, the scaling is done relative to that point; the
object is shifted by -pt, scaled, and shifted by pt.
See Also
========
rotate, translate
Examples
========
>>> from sympy import RegularPolygon, Point, Polygon
>>> t = Polygon(*RegularPolygon(Point(0, 0), 1, 3).vertices)
>>> t
Triangle(Point2D(1, 0), Point2D(-1/2, sqrt(3)/2), Point2D(-1/2, -sqrt(3)/2))
>>> t.scale(2)
Triangle(Point2D(2, 0), Point2D(-1, sqrt(3)/2), Point2D(-1, -sqrt(3)/2))
>>> t.scale(2, 2)
Triangle(Point2D(2, 0), Point2D(-1, sqrt(3)), Point2D(-1, -sqrt(3)))
"""
from sympy.geometry.point import Point
if pt:
pt = Point(pt, dim=2)
return self.translate(*(-pt).args).scale(x, y).translate(*pt.args)
return type(self)(*[a.scale(x, y) for a in self.args]) # if this fails, override this class
def translate(self, x=0, y=0):
"""Shift the object by adding to the x,y-coordinates the values x and y.
See Also
========
rotate, scale
Examples
========
>>> from sympy import RegularPolygon, Point, Polygon
>>> t = Polygon(*RegularPolygon(Point(0, 0), 1, 3).vertices)
>>> t
Triangle(Point2D(1, 0), Point2D(-1/2, sqrt(3)/2), Point2D(-1/2, -sqrt(3)/2))
>>> t.translate(2)
Triangle(Point2D(3, 0), Point2D(3/2, sqrt(3)/2), Point2D(3/2, -sqrt(3)/2))
>>> t.translate(2, 2)
Triangle(Point2D(3, 2), Point2D(3/2, sqrt(3)/2 + 2), Point2D(3/2, 2 - sqrt(3)/2))
"""
newargs = []
for a in self.args:
if isinstance(a, GeometryEntity):
newargs.append(a.translate(x, y))
else:
newargs.append(a)
return self.func(*newargs)
def parameter_value(self, other, t):
"""Return the parameter corresponding to the given point.
Evaluating an arbitrary point of the entity at this parameter
value will return the given point.
Examples
========
>>> from sympy import Line, Point
>>> from sympy.abc import t
>>> a = Point(0, 0)
>>> b = Point(2, 2)
>>> Line(a, b).parameter_value((1, 1), t)
{t: 1/2}
>>> Line(a, b).arbitrary_point(t).subs(_)
Point2D(1, 1)
"""
from sympy.geometry.point import Point
if not isinstance(other, GeometryEntity):
other = Point(other, dim=self.ambient_dimension)
if not isinstance(other, Point):
raise ValueError("other must be a point")
T = Dummy('t', real=True)
sol = solve(self.arbitrary_point(T) - other, T, dict=True)
if not sol:
raise ValueError("Given point is not on %s" % func_name(self))
return {t: sol[0][T]}
class GeometrySet(GeometryEntity, Set):
"""Parent class of all GeometryEntity that are also Sets
(compatible with sympy.sets)
"""
__slots__ = ()
def _contains(self, other):
"""sympy.sets uses the _contains method, so include it for compatibility."""
if isinstance(other, Set) and other.is_FiniteSet:
return all(self.__contains__(i) for i in other)
return self.__contains__(other)
@dispatch(GeometrySet, Set) # type:ignore # noqa:F811
def union_sets(self, o): # noqa:F811
""" Returns the union of self and o
for use with sympy.sets.Set, if possible. """
# if its a FiniteSet, merge any points
# we contain and return a union with the rest
if o.is_FiniteSet:
other_points = [p for p in o if not self._contains(p)]
if len(other_points) == len(o):
return None
return Union(self, FiniteSet(*other_points))
if self._contains(o):
return self
return None
@dispatch(GeometrySet, Set) # type: ignore # noqa:F811
def intersection_sets(self, o): # noqa:F811
""" Returns a sympy.sets.Set of intersection objects,
if possible. """
from sympy.geometry.point import Point
try:
# if o is a FiniteSet, find the intersection directly
# to avoid infinite recursion
if o.is_FiniteSet:
inter = FiniteSet(*(p for p in o if self.contains(p)))
else:
inter = self.intersection(o)
except NotImplementedError:
# sympy.sets.Set.reduce expects None if an object
# doesn't know how to simplify
return None
# put the points in a FiniteSet
points = FiniteSet(*[p for p in inter if isinstance(p, Point)])
non_points = [p for p in inter if not isinstance(p, Point)]
return Union(*(non_points + [points]))
def translate(x, y):
"""Return the matrix to translate a 2-D point by x and y."""
rv = eye(3)
rv[2, 0] = x
rv[2, 1] = y
return rv
def scale(x, y, pt=None):
"""Return the matrix to multiply a 2-D point's coordinates by x and y.
If pt is given, the scaling is done relative to that point."""
rv = eye(3)
rv[0, 0] = x
rv[1, 1] = y
if pt:
from sympy.geometry.point import Point
pt = Point(pt, dim=2)
tr1 = translate(*(-pt).args)
tr2 = translate(*pt.args)
return tr1*rv*tr2
return rv
def rotate(th):
"""Return the matrix to rotate a 2-D point about the origin by ``angle``.
The angle is measured in radians. To Point a point about a point other
then the origin, translate the Point, do the rotation, and
translate it back:
>>> from sympy.geometry.entity import rotate, translate
>>> from sympy import Point, pi
>>> rot_about_11 = translate(-1, -1)*rotate(pi/2)*translate(1, 1)
>>> Point(1, 1).transform(rot_about_11)
Point2D(1, 1)
>>> Point(0, 0).transform(rot_about_11)
Point2D(2, 0)
"""
s = sin(th)
rv = eye(3)*cos(th)
rv[0, 1] = s
rv[1, 0] = -s
rv[2, 2] = 1
return rv
|
54354e2fac77f35f693e63f311d10183d6c698a595dc5548f566751f8a23f84a | """Line-like geometrical entities.
Contains
========
LinearEntity
Line
Ray
Segment
LinearEntity2D
Line2D
Ray2D
Segment2D
LinearEntity3D
Line3D
Ray3D
Segment3D
"""
from sympy.core.containers import Tuple
from sympy.core.evalf import N
from sympy.core.expr import Expr
from sympy.core.numbers import Rational, oo, Float
from sympy.core.relational import Eq
from sympy.core.singleton import S
from sympy.core.sorting import ordered
from sympy.core.symbol import _symbol, Dummy, uniquely_named_symbol
from sympy.core.sympify import sympify
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import (_pi_coeff, acos, tan, atan2)
from .entity import GeometryEntity, GeometrySet
from .exceptions import GeometryError
from .point import Point, Point3D
from .util import find, intersection
from sympy.logic.boolalg import And
from sympy.matrices import Matrix
from sympy.sets.sets import Intersection
from sympy.simplify.simplify import simplify
from sympy.solvers.solvers import solve
from sympy.solvers.solveset import linear_coeffs
from sympy.utilities.exceptions import sympy_deprecation_warning
from sympy.utilities.misc import Undecidable, filldedent
import random
class LinearEntity(GeometrySet):
"""A base class for all linear entities (Line, Ray and Segment)
in n-dimensional Euclidean space.
Attributes
==========
ambient_dimension
direction
length
p1
p2
points
Notes
=====
This is an abstract class and is not meant to be instantiated.
See Also
========
sympy.geometry.entity.GeometryEntity
"""
def __new__(cls, p1, p2=None, **kwargs):
p1, p2 = Point._normalize_dimension(p1, p2)
if p1 == p2:
# sometimes we return a single point if we are not given two unique
# points. This is done in the specific subclass
raise ValueError(
"%s.__new__ requires two unique Points." % cls.__name__)
if len(p1) != len(p2):
raise ValueError(
"%s.__new__ requires two Points of equal dimension." % cls.__name__)
return GeometryEntity.__new__(cls, p1, p2, **kwargs)
def __contains__(self, other):
"""Return a definitive answer or else raise an error if it cannot
be determined that other is on the boundaries of self."""
result = self.contains(other)
if result is not None:
return result
else:
raise Undecidable(
"Cannot decide whether '%s' contains '%s'" % (self, other))
def _span_test(self, other):
"""Test whether the point `other` lies in the positive span of `self`.
A point x is 'in front' of a point y if x.dot(y) >= 0. Return
-1 if `other` is behind `self.p1`, 0 if `other` is `self.p1` and
and 1 if `other` is in front of `self.p1`."""
if self.p1 == other:
return 0
rel_pos = other - self.p1
d = self.direction
if d.dot(rel_pos) > 0:
return 1
return -1
@property
def ambient_dimension(self):
"""A property method that returns the dimension of LinearEntity
object.
Parameters
==========
p1 : LinearEntity
Returns
=======
dimension : integer
Examples
========
>>> from sympy import Point, Line
>>> p1, p2 = Point(0, 0), Point(1, 1)
>>> l1 = Line(p1, p2)
>>> l1.ambient_dimension
2
>>> from sympy import Point, Line
>>> p1, p2 = Point(0, 0, 0), Point(1, 1, 1)
>>> l1 = Line(p1, p2)
>>> l1.ambient_dimension
3
"""
return len(self.p1)
def angle_between(l1, l2):
"""Return the non-reflex angle formed by rays emanating from
the origin with directions the same as the direction vectors
of the linear entities.
Parameters
==========
l1 : LinearEntity
l2 : LinearEntity
Returns
=======
angle : angle in radians
Notes
=====
From the dot product of vectors v1 and v2 it is known that:
``dot(v1, v2) = |v1|*|v2|*cos(A)``
where A is the angle formed between the two vectors. We can
get the directional vectors of the two lines and readily
find the angle between the two using the above formula.
See Also
========
is_perpendicular, Ray2D.closing_angle
Examples
========
>>> from sympy import Line
>>> e = Line((0, 0), (1, 0))
>>> ne = Line((0, 0), (1, 1))
>>> sw = Line((1, 1), (0, 0))
>>> ne.angle_between(e)
pi/4
>>> sw.angle_between(e)
3*pi/4
To obtain the non-obtuse angle at the intersection of lines, use
the ``smallest_angle_between`` method:
>>> sw.smallest_angle_between(e)
pi/4
>>> from sympy import Point3D, Line3D
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(-1, 2, 0)
>>> l1, l2 = Line3D(p1, p2), Line3D(p2, p3)
>>> l1.angle_between(l2)
acos(-sqrt(2)/3)
>>> l1.smallest_angle_between(l2)
acos(sqrt(2)/3)
"""
if not isinstance(l1, LinearEntity) and not isinstance(l2, LinearEntity):
raise TypeError('Must pass only LinearEntity objects')
v1, v2 = l1.direction, l2.direction
return acos(v1.dot(v2)/(abs(v1)*abs(v2)))
def smallest_angle_between(l1, l2):
"""Return the smallest angle formed at the intersection of the
lines containing the linear entities.
Parameters
==========
l1 : LinearEntity
l2 : LinearEntity
Returns
=======
angle : angle in radians
See Also
========
angle_between, is_perpendicular, Ray2D.closing_angle
Examples
========
>>> from sympy import Point, Line
>>> p1, p2, p3 = Point(0, 0), Point(0, 4), Point(2, -2)
>>> l1, l2 = Line(p1, p2), Line(p1, p3)
>>> l1.smallest_angle_between(l2)
pi/4
See Also
========
angle_between, Ray2D.closing_angle
"""
if not isinstance(l1, LinearEntity) and not isinstance(l2, LinearEntity):
raise TypeError('Must pass only LinearEntity objects')
v1, v2 = l1.direction, l2.direction
return acos(abs(v1.dot(v2))/(abs(v1)*abs(v2)))
def arbitrary_point(self, parameter='t'):
"""A parameterized point on the Line.
Parameters
==========
parameter : str, optional
The name of the parameter which will be used for the parametric
point. The default value is 't'. When this parameter is 0, the
first point used to define the line will be returned, and when
it is 1 the second point will be returned.
Returns
=======
point : Point
Raises
======
ValueError
When ``parameter`` already appears in the Line's definition.
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy import Point, Line
>>> p1, p2 = Point(1, 0), Point(5, 3)
>>> l1 = Line(p1, p2)
>>> l1.arbitrary_point()
Point2D(4*t + 1, 3*t)
>>> from sympy import Point3D, Line3D
>>> p1, p2 = Point3D(1, 0, 0), Point3D(5, 3, 1)
>>> l1 = Line3D(p1, p2)
>>> l1.arbitrary_point()
Point3D(4*t + 1, 3*t, t)
"""
t = _symbol(parameter, real=True)
if t.name in (f.name for f in self.free_symbols):
raise ValueError(filldedent('''
Symbol %s already appears in object
and cannot be used as a parameter.
''' % t.name))
# multiply on the right so the variable gets
# combined with the coordinates of the point
return self.p1 + (self.p2 - self.p1)*t
@staticmethod
def are_concurrent(*lines):
"""Is a sequence of linear entities concurrent?
Two or more linear entities are concurrent if they all
intersect at a single point.
Parameters
==========
lines : a sequence of linear entities.
Returns
=======
True : if the set of linear entities intersect in one point
False : otherwise.
See Also
========
sympy.geometry.util.intersection
Examples
========
>>> from sympy import Point, Line
>>> p1, p2 = Point(0, 0), Point(3, 5)
>>> p3, p4 = Point(-2, -2), Point(0, 2)
>>> l1, l2, l3 = Line(p1, p2), Line(p1, p3), Line(p1, p4)
>>> Line.are_concurrent(l1, l2, l3)
True
>>> l4 = Line(p2, p3)
>>> Line.are_concurrent(l2, l3, l4)
False
>>> from sympy import Point3D, Line3D
>>> p1, p2 = Point3D(0, 0, 0), Point3D(3, 5, 2)
>>> p3, p4 = Point3D(-2, -2, -2), Point3D(0, 2, 1)
>>> l1, l2, l3 = Line3D(p1, p2), Line3D(p1, p3), Line3D(p1, p4)
>>> Line3D.are_concurrent(l1, l2, l3)
True
>>> l4 = Line3D(p2, p3)
>>> Line3D.are_concurrent(l2, l3, l4)
False
"""
common_points = Intersection(*lines)
if common_points.is_FiniteSet and len(common_points) == 1:
return True
return False
def contains(self, other):
"""Subclasses should implement this method and should return
True if other is on the boundaries of self;
False if not on the boundaries of self;
None if a determination cannot be made."""
raise NotImplementedError()
@property
def direction(self):
"""The direction vector of the LinearEntity.
Returns
=======
p : a Point; the ray from the origin to this point is the
direction of `self`
Examples
========
>>> from sympy import Line
>>> a, b = (1, 1), (1, 3)
>>> Line(a, b).direction
Point2D(0, 2)
>>> Line(b, a).direction
Point2D(0, -2)
This can be reported so the distance from the origin is 1:
>>> Line(b, a).direction.unit
Point2D(0, -1)
See Also
========
sympy.geometry.point.Point.unit
"""
return self.p2 - self.p1
def intersection(self, other):
"""The intersection with another geometrical entity.
Parameters
==========
o : Point or LinearEntity
Returns
=======
intersection : list of geometrical entities
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy import Point, Line, Segment
>>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(7, 7)
>>> l1 = Line(p1, p2)
>>> l1.intersection(p3)
[Point2D(7, 7)]
>>> p4, p5 = Point(5, 0), Point(0, 3)
>>> l2 = Line(p4, p5)
>>> l1.intersection(l2)
[Point2D(15/8, 15/8)]
>>> p6, p7 = Point(0, 5), Point(2, 6)
>>> s1 = Segment(p6, p7)
>>> l1.intersection(s1)
[]
>>> from sympy import Point3D, Line3D, Segment3D
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(7, 7, 7)
>>> l1 = Line3D(p1, p2)
>>> l1.intersection(p3)
[Point3D(7, 7, 7)]
>>> l1 = Line3D(Point3D(4,19,12), Point3D(5,25,17))
>>> l2 = Line3D(Point3D(-3, -15, -19), direction_ratio=[2,8,8])
>>> l1.intersection(l2)
[Point3D(1, 1, -3)]
>>> p6, p7 = Point3D(0, 5, 2), Point3D(2, 6, 3)
>>> s1 = Segment3D(p6, p7)
>>> l1.intersection(s1)
[]
"""
def intersect_parallel_rays(ray1, ray2):
if ray1.direction.dot(ray2.direction) > 0:
# rays point in the same direction
# so return the one that is "in front"
return [ray2] if ray1._span_test(ray2.p1) >= 0 else [ray1]
else:
# rays point in opposite directions
st = ray1._span_test(ray2.p1)
if st < 0:
return []
elif st == 0:
return [ray2.p1]
return [Segment(ray1.p1, ray2.p1)]
def intersect_parallel_ray_and_segment(ray, seg):
st1, st2 = ray._span_test(seg.p1), ray._span_test(seg.p2)
if st1 < 0 and st2 < 0:
return []
elif st1 >= 0 and st2 >= 0:
return [seg]
elif st1 >= 0: # st2 < 0:
return [Segment(ray.p1, seg.p1)]
else: # st1 < 0 and st2 >= 0:
return [Segment(ray.p1, seg.p2)]
def intersect_parallel_segments(seg1, seg2):
if seg1.contains(seg2):
return [seg2]
if seg2.contains(seg1):
return [seg1]
# direct the segments so they're oriented the same way
if seg1.direction.dot(seg2.direction) < 0:
seg2 = Segment(seg2.p2, seg2.p1)
# order the segments so seg1 is "behind" seg2
if seg1._span_test(seg2.p1) < 0:
seg1, seg2 = seg2, seg1
if seg2._span_test(seg1.p2) < 0:
return []
return [Segment(seg2.p1, seg1.p2)]
if not isinstance(other, GeometryEntity):
other = Point(other, dim=self.ambient_dimension)
if other.is_Point:
if self.contains(other):
return [other]
else:
return []
elif isinstance(other, LinearEntity):
# break into cases based on whether
# the lines are parallel, non-parallel intersecting, or skew
pts = Point._normalize_dimension(self.p1, self.p2, other.p1, other.p2)
rank = Point.affine_rank(*pts)
if rank == 1:
# we're collinear
if isinstance(self, Line):
return [other]
if isinstance(other, Line):
return [self]
if isinstance(self, Ray) and isinstance(other, Ray):
return intersect_parallel_rays(self, other)
if isinstance(self, Ray) and isinstance(other, Segment):
return intersect_parallel_ray_and_segment(self, other)
if isinstance(self, Segment) and isinstance(other, Ray):
return intersect_parallel_ray_and_segment(other, self)
if isinstance(self, Segment) and isinstance(other, Segment):
return intersect_parallel_segments(self, other)
elif rank == 2:
# we're in the same plane
l1 = Line(*pts[:2])
l2 = Line(*pts[2:])
# check to see if we're parallel. If we are, we can't
# be intersecting, since the collinear case was already
# handled
if l1.direction.is_scalar_multiple(l2.direction):
return []
# find the intersection as if everything were lines
# by solving the equation t*d + p1 == s*d' + p1'
m = Matrix([l1.direction, -l2.direction]).transpose()
v = Matrix([l2.p1 - l1.p1]).transpose()
# we cannot use m.solve(v) because that only works for square matrices
m_rref, pivots = m.col_insert(2, v).rref(simplify=True)
# rank == 2 ensures we have 2 pivots, but let's check anyway
if len(pivots) != 2:
raise GeometryError("Failed when solving Mx=b when M={} and b={}".format(m, v))
coeff = m_rref[0, 2]
line_intersection = l1.direction*coeff + self.p1
# if both are lines, skip a containment check
if isinstance(self, Line) and isinstance(other, Line):
return [line_intersection]
if ((isinstance(self, Line) or
self.contains(line_intersection)) and
other.contains(line_intersection)):
return [line_intersection]
if not self.atoms(Float) and not other.atoms(Float):
# if it can fail when there are no Floats then
# maybe the following parametric check should be
# done
return []
# floats may fail exact containment so check that the
# arbitrary points, when equal, both give a
# non-negative parameter when the arbitrary point
# coordinates are equated
t, u = [Dummy(i) for i in 'tu']
tu = solve(self.arbitrary_point(t) - other.arbitrary_point(u),
t, u, dict=True)[0]
def ok(p, l):
if isinstance(l, Line):
# p > -oo
return True
if isinstance(l, Ray):
# p >= 0
return p.is_nonnegative
if isinstance(l, Segment):
# 0 <= p <= 1
return p.is_nonnegative and (1 - p).is_nonnegative
raise ValueError("unexpected line type")
if ok(tu[t], self) and ok(tu[u], other):
return [line_intersection]
return []
else:
# we're skew
return []
return other.intersection(self)
def is_parallel(l1, l2):
"""Are two linear entities parallel?
Parameters
==========
l1 : LinearEntity
l2 : LinearEntity
Returns
=======
True : if l1 and l2 are parallel,
False : otherwise.
See Also
========
coefficients
Examples
========
>>> from sympy import Point, Line
>>> p1, p2 = Point(0, 0), Point(1, 1)
>>> p3, p4 = Point(3, 4), Point(6, 7)
>>> l1, l2 = Line(p1, p2), Line(p3, p4)
>>> Line.is_parallel(l1, l2)
True
>>> p5 = Point(6, 6)
>>> l3 = Line(p3, p5)
>>> Line.is_parallel(l1, l3)
False
>>> from sympy import Point3D, Line3D
>>> p1, p2 = Point3D(0, 0, 0), Point3D(3, 4, 5)
>>> p3, p4 = Point3D(2, 1, 1), Point3D(8, 9, 11)
>>> l1, l2 = Line3D(p1, p2), Line3D(p3, p4)
>>> Line3D.is_parallel(l1, l2)
True
>>> p5 = Point3D(6, 6, 6)
>>> l3 = Line3D(p3, p5)
>>> Line3D.is_parallel(l1, l3)
False
"""
if not isinstance(l1, LinearEntity) and not isinstance(l2, LinearEntity):
raise TypeError('Must pass only LinearEntity objects')
return l1.direction.is_scalar_multiple(l2.direction)
def is_perpendicular(l1, l2):
"""Are two linear entities perpendicular?
Parameters
==========
l1 : LinearEntity
l2 : LinearEntity
Returns
=======
True : if l1 and l2 are perpendicular,
False : otherwise.
See Also
========
coefficients
Examples
========
>>> from sympy import Point, Line
>>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(-1, 1)
>>> l1, l2 = Line(p1, p2), Line(p1, p3)
>>> l1.is_perpendicular(l2)
True
>>> p4 = Point(5, 3)
>>> l3 = Line(p1, p4)
>>> l1.is_perpendicular(l3)
False
>>> from sympy import Point3D, Line3D
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(-1, 2, 0)
>>> l1, l2 = Line3D(p1, p2), Line3D(p2, p3)
>>> l1.is_perpendicular(l2)
False
>>> p4 = Point3D(5, 3, 7)
>>> l3 = Line3D(p1, p4)
>>> l1.is_perpendicular(l3)
False
"""
if not isinstance(l1, LinearEntity) and not isinstance(l2, LinearEntity):
raise TypeError('Must pass only LinearEntity objects')
return S.Zero.equals(l1.direction.dot(l2.direction))
def is_similar(self, other):
"""
Return True if self and other are contained in the same line.
Examples
========
>>> from sympy import Point, Line
>>> p1, p2, p3 = Point(0, 1), Point(3, 4), Point(2, 3)
>>> l1 = Line(p1, p2)
>>> l2 = Line(p1, p3)
>>> l1.is_similar(l2)
True
"""
l = Line(self.p1, self.p2)
return l.contains(other)
@property
def length(self):
"""
The length of the line.
Examples
========
>>> from sympy import Point, Line
>>> p1, p2 = Point(0, 0), Point(3, 5)
>>> l1 = Line(p1, p2)
>>> l1.length
oo
"""
return S.Infinity
@property
def p1(self):
"""The first defining point of a linear entity.
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy import Point, Line
>>> p1, p2 = Point(0, 0), Point(5, 3)
>>> l = Line(p1, p2)
>>> l.p1
Point2D(0, 0)
"""
return self.args[0]
@property
def p2(self):
"""The second defining point of a linear entity.
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy import Point, Line
>>> p1, p2 = Point(0, 0), Point(5, 3)
>>> l = Line(p1, p2)
>>> l.p2
Point2D(5, 3)
"""
return self.args[1]
def parallel_line(self, p):
"""Create a new Line parallel to this linear entity which passes
through the point `p`.
Parameters
==========
p : Point
Returns
=======
line : Line
See Also
========
is_parallel
Examples
========
>>> from sympy import Point, Line
>>> p1, p2, p3 = Point(0, 0), Point(2, 3), Point(-2, 2)
>>> l1 = Line(p1, p2)
>>> l2 = l1.parallel_line(p3)
>>> p3 in l2
True
>>> l1.is_parallel(l2)
True
>>> from sympy import Point3D, Line3D
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(2, 3, 4), Point3D(-2, 2, 0)
>>> l1 = Line3D(p1, p2)
>>> l2 = l1.parallel_line(p3)
>>> p3 in l2
True
>>> l1.is_parallel(l2)
True
"""
p = Point(p, dim=self.ambient_dimension)
return Line(p, p + self.direction)
def perpendicular_line(self, p):
"""Create a new Line perpendicular to this linear entity which passes
through the point `p`.
Parameters
==========
p : Point
Returns
=======
line : Line
See Also
========
sympy.geometry.line.LinearEntity.is_perpendicular, perpendicular_segment
Examples
========
>>> from sympy import Point3D, Line3D
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(2, 3, 4), Point3D(-2, 2, 0)
>>> L = Line3D(p1, p2)
>>> P = L.perpendicular_line(p3); P
Line3D(Point3D(-2, 2, 0), Point3D(4/29, 6/29, 8/29))
>>> L.is_perpendicular(P)
True
In 3D the, the first point used to define the line is the point
through which the perpendicular was required to pass; the
second point is (arbitrarily) contained in the given line:
>>> P.p2 in L
True
"""
p = Point(p, dim=self.ambient_dimension)
if p in self:
p = p + self.direction.orthogonal_direction
return Line(p, self.projection(p))
def perpendicular_segment(self, p):
"""Create a perpendicular line segment from `p` to this line.
The endpoints of the segment are ``p`` and the closest point in
the line containing self. (If self is not a line, the point might
not be in self.)
Parameters
==========
p : Point
Returns
=======
segment : Segment
Notes
=====
Returns `p` itself if `p` is on this linear entity.
See Also
========
perpendicular_line
Examples
========
>>> from sympy import Point, Line
>>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(0, 2)
>>> l1 = Line(p1, p2)
>>> s1 = l1.perpendicular_segment(p3)
>>> l1.is_perpendicular(s1)
True
>>> p3 in s1
True
>>> l1.perpendicular_segment(Point(4, 0))
Segment2D(Point2D(4, 0), Point2D(2, 2))
>>> from sympy import Point3D, Line3D
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(0, 2, 0)
>>> l1 = Line3D(p1, p2)
>>> s1 = l1.perpendicular_segment(p3)
>>> l1.is_perpendicular(s1)
True
>>> p3 in s1
True
>>> l1.perpendicular_segment(Point3D(4, 0, 0))
Segment3D(Point3D(4, 0, 0), Point3D(4/3, 4/3, 4/3))
"""
p = Point(p, dim=self.ambient_dimension)
if p in self:
return p
l = self.perpendicular_line(p)
# The intersection should be unique, so unpack the singleton
p2, = Intersection(Line(self.p1, self.p2), l)
return Segment(p, p2)
@property
def points(self):
"""The two points used to define this linear entity.
Returns
=======
points : tuple of Points
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy import Point, Line
>>> p1, p2 = Point(0, 0), Point(5, 11)
>>> l1 = Line(p1, p2)
>>> l1.points
(Point2D(0, 0), Point2D(5, 11))
"""
return (self.p1, self.p2)
def projection(self, other):
"""Project a point, line, ray, or segment onto this linear entity.
Parameters
==========
other : Point or LinearEntity (Line, Ray, Segment)
Returns
=======
projection : Point or LinearEntity (Line, Ray, Segment)
The return type matches the type of the parameter ``other``.
Raises
======
GeometryError
When method is unable to perform projection.
Notes
=====
A projection involves taking the two points that define
the linear entity and projecting those points onto a
Line and then reforming the linear entity using these
projections.
A point P is projected onto a line L by finding the point
on L that is closest to P. This point is the intersection
of L and the line perpendicular to L that passes through P.
See Also
========
sympy.geometry.point.Point, perpendicular_line
Examples
========
>>> from sympy import Point, Line, Segment, Rational
>>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(Rational(1, 2), 0)
>>> l1 = Line(p1, p2)
>>> l1.projection(p3)
Point2D(1/4, 1/4)
>>> p4, p5 = Point(10, 0), Point(12, 1)
>>> s1 = Segment(p4, p5)
>>> l1.projection(s1)
Segment2D(Point2D(5, 5), Point2D(13/2, 13/2))
>>> p1, p2, p3 = Point(0, 0, 1), Point(1, 1, 2), Point(2, 0, 1)
>>> l1 = Line(p1, p2)
>>> l1.projection(p3)
Point3D(2/3, 2/3, 5/3)
>>> p4, p5 = Point(10, 0, 1), Point(12, 1, 3)
>>> s1 = Segment(p4, p5)
>>> l1.projection(s1)
Segment3D(Point3D(10/3, 10/3, 13/3), Point3D(5, 5, 6))
"""
if not isinstance(other, GeometryEntity):
other = Point(other, dim=self.ambient_dimension)
def proj_point(p):
return Point.project(p - self.p1, self.direction) + self.p1
if isinstance(other, Point):
return proj_point(other)
elif isinstance(other, LinearEntity):
p1, p2 = proj_point(other.p1), proj_point(other.p2)
# test to see if we're degenerate
if p1 == p2:
return p1
projected = other.__class__(p1, p2)
projected = Intersection(self, projected)
if projected.is_empty:
return projected
# if we happen to have intersected in only a point, return that
if projected.is_FiniteSet and len(projected) == 1:
# projected is a set of size 1, so unpack it in `a`
a, = projected
return a
# order args so projection is in the same direction as self
if self.direction.dot(projected.direction) < 0:
p1, p2 = projected.args
projected = projected.func(p2, p1)
return projected
raise GeometryError(
"Do not know how to project %s onto %s" % (other, self))
def random_point(self, seed=None):
"""A random point on a LinearEntity.
Returns
=======
point : Point
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy import Point, Line, Ray, Segment
>>> p1, p2 = Point(0, 0), Point(5, 3)
>>> line = Line(p1, p2)
>>> r = line.random_point(seed=42) # seed value is optional
>>> r.n(3)
Point2D(-0.72, -0.432)
>>> r in line
True
>>> Ray(p1, p2).random_point(seed=42).n(3)
Point2D(0.72, 0.432)
>>> Segment(p1, p2).random_point(seed=42).n(3)
Point2D(3.2, 1.92)
"""
if seed is not None:
rng = random.Random(seed)
else:
rng = random
t = Dummy()
pt = self.arbitrary_point(t)
if isinstance(self, Ray):
v = abs(rng.gauss(0, 1))
elif isinstance(self, Segment):
v = rng.random()
elif isinstance(self, Line):
v = rng.gauss(0, 1)
else:
raise NotImplementedError('unhandled line type')
return pt.subs(t, Rational(v))
def bisectors(self, other):
"""Returns the perpendicular lines which pass through the intersections
of self and other that are in the same plane.
Parameters
==========
line : Line3D
Returns
=======
list: two Line instances
Examples
========
>>> from sympy import Point3D, Line3D
>>> r1 = Line3D(Point3D(0, 0, 0), Point3D(1, 0, 0))
>>> r2 = Line3D(Point3D(0, 0, 0), Point3D(0, 1, 0))
>>> r1.bisectors(r2)
[Line3D(Point3D(0, 0, 0), Point3D(1, 1, 0)), Line3D(Point3D(0, 0, 0), Point3D(1, -1, 0))]
"""
if not isinstance(other, LinearEntity):
raise GeometryError("Expecting LinearEntity, not %s" % other)
l1, l2 = self, other
# make sure dimensions match or else a warning will rise from
# intersection calculation
if l1.p1.ambient_dimension != l2.p1.ambient_dimension:
if isinstance(l1, Line2D):
l1, l2 = l2, l1
_, p1 = Point._normalize_dimension(l1.p1, l2.p1, on_morph='ignore')
_, p2 = Point._normalize_dimension(l1.p2, l2.p2, on_morph='ignore')
l2 = Line(p1, p2)
point = intersection(l1, l2)
# Three cases: Lines may intersect in a point, may be equal or may not intersect.
if not point:
raise GeometryError("The lines do not intersect")
else:
pt = point[0]
if isinstance(pt, Line):
# Intersection is a line because both lines are coincident
return [self]
d1 = l1.direction.unit
d2 = l2.direction.unit
bis1 = Line(pt, pt + d1 + d2)
bis2 = Line(pt, pt + d1 - d2)
return [bis1, bis2]
class Line(LinearEntity):
"""An infinite line in space.
A 2D line is declared with two distinct points, point and slope, or
an equation. A 3D line may be defined with a point and a direction ratio.
Parameters
==========
p1 : Point
p2 : Point
slope : SymPy expression
direction_ratio : list
equation : equation of a line
Notes
=====
`Line` will automatically subclass to `Line2D` or `Line3D` based
on the dimension of `p1`. The `slope` argument is only relevant
for `Line2D` and the `direction_ratio` argument is only relevant
for `Line3D`.
The order of the points will define the direction of the line
which is used when calculating the angle between lines.
See Also
========
sympy.geometry.point.Point
sympy.geometry.line.Line2D
sympy.geometry.line.Line3D
Examples
========
>>> from sympy import Line, Segment, Point, Eq
>>> from sympy.abc import x, y, a, b
>>> L = Line(Point(2,3), Point(3,5))
>>> L
Line2D(Point2D(2, 3), Point2D(3, 5))
>>> L.points
(Point2D(2, 3), Point2D(3, 5))
>>> L.equation()
-2*x + y + 1
>>> L.coefficients
(-2, 1, 1)
Instantiate with keyword ``slope``:
>>> Line(Point(0, 0), slope=0)
Line2D(Point2D(0, 0), Point2D(1, 0))
Instantiate with another linear object
>>> s = Segment((0, 0), (0, 1))
>>> Line(s).equation()
x
The line corresponding to an equation in the for `ax + by + c = 0`,
can be entered:
>>> Line(3*x + y + 18)
Line2D(Point2D(0, -18), Point2D(1, -21))
If `x` or `y` has a different name, then they can be specified, too,
as a string (to match the name) or symbol:
>>> Line(Eq(3*a + b, -18), x='a', y=b)
Line2D(Point2D(0, -18), Point2D(1, -21))
"""
def __new__(cls, *args, **kwargs):
if len(args) == 1 and isinstance(args[0], (Expr, Eq)):
missing = uniquely_named_symbol('?', args)
if not kwargs:
x = 'x'
y = 'y'
else:
x = kwargs.pop('x', missing)
y = kwargs.pop('y', missing)
if kwargs:
raise ValueError('expecting only x and y as keywords')
equation = args[0]
if isinstance(equation, Eq):
equation = equation.lhs - equation.rhs
def find_or_missing(x):
try:
return find(x, equation)
except ValueError:
return missing
x = find_or_missing(x)
y = find_or_missing(y)
a, b, c = linear_coeffs(equation, x, y)
if b:
return Line((0, -c/b), slope=-a/b)
if a:
return Line((-c/a, 0), slope=oo)
raise ValueError('not found in equation: %s' % (set('xy') - {x, y}))
else:
if len(args) > 0:
p1 = args[0]
if len(args) > 1:
p2 = args[1]
else:
p2 = None
if isinstance(p1, LinearEntity):
if p2:
raise ValueError('If p1 is a LinearEntity, p2 must be None.')
dim = len(p1.p1)
else:
p1 = Point(p1)
dim = len(p1)
if p2 is not None or isinstance(p2, Point) and p2.ambient_dimension != dim:
p2 = Point(p2)
if dim == 2:
return Line2D(p1, p2, **kwargs)
elif dim == 3:
return Line3D(p1, p2, **kwargs)
return LinearEntity.__new__(cls, p1, p2, **kwargs)
def contains(self, other):
"""
Return True if `other` is on this Line, or False otherwise.
Examples
========
>>> from sympy import Line,Point
>>> p1, p2 = Point(0, 1), Point(3, 4)
>>> l = Line(p1, p2)
>>> l.contains(p1)
True
>>> l.contains((0, 1))
True
>>> l.contains((0, 0))
False
>>> a = (0, 0, 0)
>>> b = (1, 1, 1)
>>> c = (2, 2, 2)
>>> l1 = Line(a, b)
>>> l2 = Line(b, a)
>>> l1 == l2
False
>>> l1 in l2
True
"""
if not isinstance(other, GeometryEntity):
other = Point(other, dim=self.ambient_dimension)
if isinstance(other, Point):
return Point.is_collinear(other, self.p1, self.p2)
if isinstance(other, LinearEntity):
return Point.is_collinear(self.p1, self.p2, other.p1, other.p2)
return False
def distance(self, other):
"""
Finds the shortest distance between a line and a point.
Raises
======
NotImplementedError is raised if `other` is not a Point
Examples
========
>>> from sympy import Point, Line
>>> p1, p2 = Point(0, 0), Point(1, 1)
>>> s = Line(p1, p2)
>>> s.distance(Point(-1, 1))
sqrt(2)
>>> s.distance((-1, 2))
3*sqrt(2)/2
>>> p1, p2 = Point(0, 0, 0), Point(1, 1, 1)
>>> s = Line(p1, p2)
>>> s.distance(Point(-1, 1, 1))
2*sqrt(6)/3
>>> s.distance((-1, 1, 1))
2*sqrt(6)/3
"""
if not isinstance(other, GeometryEntity):
other = Point(other, dim=self.ambient_dimension)
if self.contains(other):
return S.Zero
return self.perpendicular_segment(other).length
def equals(self, other):
"""Returns True if self and other are the same mathematical entities"""
if not isinstance(other, Line):
return False
return Point.is_collinear(self.p1, other.p1, self.p2, other.p2)
def plot_interval(self, parameter='t'):
"""The plot interval for the default geometric plot of line. Gives
values that will produce a line that is +/- 5 units long (where a
unit is the distance between the two points that define the line).
Parameters
==========
parameter : str, optional
Default value is 't'.
Returns
=======
plot_interval : list (plot interval)
[parameter, lower_bound, upper_bound]
Examples
========
>>> from sympy import Point, Line
>>> p1, p2 = Point(0, 0), Point(5, 3)
>>> l1 = Line(p1, p2)
>>> l1.plot_interval()
[t, -5, 5]
"""
t = _symbol(parameter, real=True)
return [t, -5, 5]
class Ray(LinearEntity):
"""A Ray is a semi-line in the space with a source point and a direction.
Parameters
==========
p1 : Point
The source of the Ray
p2 : Point or radian value
This point determines the direction in which the Ray propagates.
If given as an angle it is interpreted in radians with the positive
direction being ccw.
Attributes
==========
source
See Also
========
sympy.geometry.line.Ray2D
sympy.geometry.line.Ray3D
sympy.geometry.point.Point
sympy.geometry.line.Line
Notes
=====
`Ray` will automatically subclass to `Ray2D` or `Ray3D` based on the
dimension of `p1`.
Examples
========
>>> from sympy import Ray, Point, pi
>>> r = Ray(Point(2, 3), Point(3, 5))
>>> r
Ray2D(Point2D(2, 3), Point2D(3, 5))
>>> r.points
(Point2D(2, 3), Point2D(3, 5))
>>> r.source
Point2D(2, 3)
>>> r.xdirection
oo
>>> r.ydirection
oo
>>> r.slope
2
>>> Ray(Point(0, 0), angle=pi/4).slope
1
"""
def __new__(cls, p1, p2=None, **kwargs):
p1 = Point(p1)
if p2 is not None:
p1, p2 = Point._normalize_dimension(p1, Point(p2))
dim = len(p1)
if dim == 2:
return Ray2D(p1, p2, **kwargs)
elif dim == 3:
return Ray3D(p1, p2, **kwargs)
return LinearEntity.__new__(cls, p1, p2, **kwargs)
def _svg(self, scale_factor=1., fill_color="#66cc99"):
"""Returns SVG path element for the LinearEntity.
Parameters
==========
scale_factor : float
Multiplication factor for the SVG stroke-width. Default is 1.
fill_color : str, optional
Hex string for fill color. Default is "#66cc99".
"""
verts = (N(self.p1), N(self.p2))
coords = ["{},{}".format(p.x, p.y) for p in verts]
path = "M {} L {}".format(coords[0], " L ".join(coords[1:]))
return (
'<path fill-rule="evenodd" fill="{2}" stroke="#555555" '
'stroke-width="{0}" opacity="0.6" d="{1}" '
'marker-start="url(#markerCircle)" marker-end="url(#markerArrow)"/>'
).format(2.*scale_factor, path, fill_color)
def contains(self, other):
"""
Is other GeometryEntity contained in this Ray?
Examples
========
>>> from sympy import Ray,Point,Segment
>>> p1, p2 = Point(0, 0), Point(4, 4)
>>> r = Ray(p1, p2)
>>> r.contains(p1)
True
>>> r.contains((1, 1))
True
>>> r.contains((1, 3))
False
>>> s = Segment((1, 1), (2, 2))
>>> r.contains(s)
True
>>> s = Segment((1, 2), (2, 5))
>>> r.contains(s)
False
>>> r1 = Ray((2, 2), (3, 3))
>>> r.contains(r1)
True
>>> r1 = Ray((2, 2), (3, 5))
>>> r.contains(r1)
False
"""
if not isinstance(other, GeometryEntity):
other = Point(other, dim=self.ambient_dimension)
if isinstance(other, Point):
if Point.is_collinear(self.p1, self.p2, other):
# if we're in the direction of the ray, our
# direction vector dot the ray's direction vector
# should be non-negative
return bool((self.p2 - self.p1).dot(other - self.p1) >= S.Zero)
return False
elif isinstance(other, Ray):
if Point.is_collinear(self.p1, self.p2, other.p1, other.p2):
return bool((self.p2 - self.p1).dot(other.p2 - other.p1) > S.Zero)
return False
elif isinstance(other, Segment):
return other.p1 in self and other.p2 in self
# No other known entity can be contained in a Ray
return False
def distance(self, other):
"""
Finds the shortest distance between the ray and a point.
Raises
======
NotImplementedError is raised if `other` is not a Point
Examples
========
>>> from sympy import Point, Ray
>>> p1, p2 = Point(0, 0), Point(1, 1)
>>> s = Ray(p1, p2)
>>> s.distance(Point(-1, -1))
sqrt(2)
>>> s.distance((-1, 2))
3*sqrt(2)/2
>>> p1, p2 = Point(0, 0, 0), Point(1, 1, 2)
>>> s = Ray(p1, p2)
>>> s
Ray3D(Point3D(0, 0, 0), Point3D(1, 1, 2))
>>> s.distance(Point(-1, -1, 2))
4*sqrt(3)/3
>>> s.distance((-1, -1, 2))
4*sqrt(3)/3
"""
if not isinstance(other, GeometryEntity):
other = Point(other, dim=self.ambient_dimension)
if self.contains(other):
return S.Zero
proj = Line(self.p1, self.p2).projection(other)
if self.contains(proj):
return abs(other - proj)
else:
return abs(other - self.source)
def equals(self, other):
"""Returns True if self and other are the same mathematical entities"""
if not isinstance(other, Ray):
return False
return self.source == other.source and other.p2 in self
def plot_interval(self, parameter='t'):
"""The plot interval for the default geometric plot of the Ray. Gives
values that will produce a ray that is 10 units long (where a unit is
the distance between the two points that define the ray).
Parameters
==========
parameter : str, optional
Default value is 't'.
Returns
=======
plot_interval : list
[parameter, lower_bound, upper_bound]
Examples
========
>>> from sympy import Ray, pi
>>> r = Ray((0, 0), angle=pi/4)
>>> r.plot_interval()
[t, 0, 10]
"""
t = _symbol(parameter, real=True)
return [t, 0, 10]
@property
def source(self):
"""The point from which the ray emanates.
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy import Point, Ray
>>> p1, p2 = Point(0, 0), Point(4, 1)
>>> r1 = Ray(p1, p2)
>>> r1.source
Point2D(0, 0)
>>> p1, p2 = Point(0, 0, 0), Point(4, 1, 5)
>>> r1 = Ray(p2, p1)
>>> r1.source
Point3D(4, 1, 5)
"""
return self.p1
class Segment(LinearEntity):
"""A line segment in space.
Parameters
==========
p1 : Point
p2 : Point
Attributes
==========
length : number or SymPy expression
midpoint : Point
See Also
========
sympy.geometry.line.Segment2D
sympy.geometry.line.Segment3D
sympy.geometry.point.Point
sympy.geometry.line.Line
Notes
=====
If 2D or 3D points are used to define `Segment`, it will
be automatically subclassed to `Segment2D` or `Segment3D`.
Examples
========
>>> from sympy import Point, Segment
>>> Segment((1, 0), (1, 1)) # tuples are interpreted as pts
Segment2D(Point2D(1, 0), Point2D(1, 1))
>>> s = Segment(Point(4, 3), Point(1, 1))
>>> s.points
(Point2D(4, 3), Point2D(1, 1))
>>> s.slope
2/3
>>> s.length
sqrt(13)
>>> s.midpoint
Point2D(5/2, 2)
>>> Segment((1, 0, 0), (1, 1, 1)) # tuples are interpreted as pts
Segment3D(Point3D(1, 0, 0), Point3D(1, 1, 1))
>>> s = Segment(Point(4, 3, 9), Point(1, 1, 7)); s
Segment3D(Point3D(4, 3, 9), Point3D(1, 1, 7))
>>> s.points
(Point3D(4, 3, 9), Point3D(1, 1, 7))
>>> s.length
sqrt(17)
>>> s.midpoint
Point3D(5/2, 2, 8)
"""
def __new__(cls, p1, p2, **kwargs):
p1, p2 = Point._normalize_dimension(Point(p1), Point(p2))
dim = len(p1)
if dim == 2:
return Segment2D(p1, p2, **kwargs)
elif dim == 3:
return Segment3D(p1, p2, **kwargs)
return LinearEntity.__new__(cls, p1, p2, **kwargs)
def contains(self, other):
"""
Is the other GeometryEntity contained within this Segment?
Examples
========
>>> from sympy import Point, Segment
>>> p1, p2 = Point(0, 1), Point(3, 4)
>>> s = Segment(p1, p2)
>>> s2 = Segment(p2, p1)
>>> s.contains(s2)
True
>>> from sympy import Point3D, Segment3D
>>> p1, p2 = Point3D(0, 1, 1), Point3D(3, 4, 5)
>>> s = Segment3D(p1, p2)
>>> s2 = Segment3D(p2, p1)
>>> s.contains(s2)
True
>>> s.contains((p1 + p2)/2)
True
"""
if not isinstance(other, GeometryEntity):
other = Point(other, dim=self.ambient_dimension)
if isinstance(other, Point):
if Point.is_collinear(other, self.p1, self.p2):
if isinstance(self, Segment2D):
# if it is collinear and is in the bounding box of the
# segment then it must be on the segment
vert = (1/self.slope).equals(0)
if vert is False:
isin = (self.p1.x - other.x)*(self.p2.x - other.x) <= 0
if isin in (True, False):
return isin
if vert is True:
isin = (self.p1.y - other.y)*(self.p2.y - other.y) <= 0
if isin in (True, False):
return isin
# use the triangle inequality
d1, d2 = other - self.p1, other - self.p2
d = self.p2 - self.p1
# without the call to simplify, SymPy cannot tell that an expression
# like (a+b)*(a/2+b/2) is always non-negative. If it cannot be
# determined, raise an Undecidable error
try:
# the triangle inequality says that |d1|+|d2| >= |d| and is strict
# only if other lies in the line segment
return bool(simplify(Eq(abs(d1) + abs(d2) - abs(d), 0)))
except TypeError:
raise Undecidable("Cannot determine if {} is in {}".format(other, self))
if isinstance(other, Segment):
return other.p1 in self and other.p2 in self
return False
def equals(self, other):
"""Returns True if self and other are the same mathematical entities"""
return isinstance(other, self.func) and list(
ordered(self.args)) == list(ordered(other.args))
def distance(self, other):
"""
Finds the shortest distance between a line segment and a point.
Raises
======
NotImplementedError is raised if `other` is not a Point
Examples
========
>>> from sympy import Point, Segment
>>> p1, p2 = Point(0, 1), Point(3, 4)
>>> s = Segment(p1, p2)
>>> s.distance(Point(10, 15))
sqrt(170)
>>> s.distance((0, 12))
sqrt(73)
>>> from sympy import Point3D, Segment3D
>>> p1, p2 = Point3D(0, 0, 3), Point3D(1, 1, 4)
>>> s = Segment3D(p1, p2)
>>> s.distance(Point3D(10, 15, 12))
sqrt(341)
>>> s.distance((10, 15, 12))
sqrt(341)
"""
if not isinstance(other, GeometryEntity):
other = Point(other, dim=self.ambient_dimension)
if isinstance(other, Point):
vp1 = other - self.p1
vp2 = other - self.p2
dot_prod_sign_1 = self.direction.dot(vp1) >= 0
dot_prod_sign_2 = self.direction.dot(vp2) <= 0
if dot_prod_sign_1 and dot_prod_sign_2:
return Line(self.p1, self.p2).distance(other)
if dot_prod_sign_1 and not dot_prod_sign_2:
return abs(vp2)
if not dot_prod_sign_1 and dot_prod_sign_2:
return abs(vp1)
raise NotImplementedError()
@property
def length(self):
"""The length of the line segment.
See Also
========
sympy.geometry.point.Point.distance
Examples
========
>>> from sympy import Point, Segment
>>> p1, p2 = Point(0, 0), Point(4, 3)
>>> s1 = Segment(p1, p2)
>>> s1.length
5
>>> from sympy import Point3D, Segment3D
>>> p1, p2 = Point3D(0, 0, 0), Point3D(4, 3, 3)
>>> s1 = Segment3D(p1, p2)
>>> s1.length
sqrt(34)
"""
return Point.distance(self.p1, self.p2)
@property
def midpoint(self):
"""The midpoint of the line segment.
See Also
========
sympy.geometry.point.Point.midpoint
Examples
========
>>> from sympy import Point, Segment
>>> p1, p2 = Point(0, 0), Point(4, 3)
>>> s1 = Segment(p1, p2)
>>> s1.midpoint
Point2D(2, 3/2)
>>> from sympy import Point3D, Segment3D
>>> p1, p2 = Point3D(0, 0, 0), Point3D(4, 3, 3)
>>> s1 = Segment3D(p1, p2)
>>> s1.midpoint
Point3D(2, 3/2, 3/2)
"""
return Point.midpoint(self.p1, self.p2)
def perpendicular_bisector(self, p=None):
"""The perpendicular bisector of this segment.
If no point is specified or the point specified is not on the
bisector then the bisector is returned as a Line. Otherwise a
Segment is returned that joins the point specified and the
intersection of the bisector and the segment.
Parameters
==========
p : Point
Returns
=======
bisector : Line or Segment
See Also
========
LinearEntity.perpendicular_segment
Examples
========
>>> from sympy import Point, Segment
>>> p1, p2, p3 = Point(0, 0), Point(6, 6), Point(5, 1)
>>> s1 = Segment(p1, p2)
>>> s1.perpendicular_bisector()
Line2D(Point2D(3, 3), Point2D(-3, 9))
>>> s1.perpendicular_bisector(p3)
Segment2D(Point2D(5, 1), Point2D(3, 3))
"""
l = self.perpendicular_line(self.midpoint)
if p is not None:
p2 = Point(p, dim=self.ambient_dimension)
if p2 in l:
return Segment(p2, self.midpoint)
return l
def plot_interval(self, parameter='t'):
"""The plot interval for the default geometric plot of the Segment gives
values that will produce the full segment in a plot.
Parameters
==========
parameter : str, optional
Default value is 't'.
Returns
=======
plot_interval : list
[parameter, lower_bound, upper_bound]
Examples
========
>>> from sympy import Point, Segment
>>> p1, p2 = Point(0, 0), Point(5, 3)
>>> s1 = Segment(p1, p2)
>>> s1.plot_interval()
[t, 0, 1]
"""
t = _symbol(parameter, real=True)
return [t, 0, 1]
class LinearEntity2D(LinearEntity):
"""A base class for all linear entities (line, ray and segment)
in a 2-dimensional Euclidean space.
Attributes
==========
p1
p2
coefficients
slope
points
Notes
=====
This is an abstract class and is not meant to be instantiated.
See Also
========
sympy.geometry.entity.GeometryEntity
"""
@property
def bounds(self):
"""Return a tuple (xmin, ymin, xmax, ymax) representing the bounding
rectangle for the geometric figure.
"""
verts = self.points
xs = [p.x for p in verts]
ys = [p.y for p in verts]
return (min(xs), min(ys), max(xs), max(ys))
def perpendicular_line(self, p):
"""Create a new Line perpendicular to this linear entity which passes
through the point `p`.
Examples
========
>>> from sympy import Point, Line
>>> p1, p2, p3 = Point(0, 0), Point(2, 3), Point(-2, 2)
>>> l1 = Line(p1, p2)
>>> l2 = l1.perpendicular_line(p3)
>>> p3 in l2
True
>>> l1.is_perpendicular(l2)
True
Parameters
==========
p : Point
Returns
=======
line : Line
See Also
========
sympy.geometry.line.LinearEntity.is_perpendicular, perpendicular_segment
Examples
========
>>> from sympy import Point, Line
>>> p1, p2, p3 = Point(0, 0), Point(2, 3), Point(-2, 2)
>>> L = Line(p1, p2)
>>> P = L.perpendicular_line(p3); P
Line2D(Point2D(-2, 2), Point2D(-5, 4))
>>> L.is_perpendicular(P)
True
In 2D, the first point of the perpendicular line is the
point through which was required to pass; the second
point is arbitrarily chosen. To get a line that explicitly
uses a point in the line, create a line from the perpendicular
segment from the line to the point:
>>> Line(L.perpendicular_segment(p3))
Line2D(Point2D(-2, 2), Point2D(4/13, 6/13))
"""
p = Point(p, dim=self.ambient_dimension)
# any two lines in R^2 intersect, so blindly making
# a line through p in an orthogonal direction will work
# and is faster than finding the projection point as in 3D
return Line(p, p + self.direction.orthogonal_direction)
@property
def slope(self):
"""The slope of this linear entity, or infinity if vertical.
Returns
=======
slope : number or SymPy expression
See Also
========
coefficients
Examples
========
>>> from sympy import Point, Line
>>> p1, p2 = Point(0, 0), Point(3, 5)
>>> l1 = Line(p1, p2)
>>> l1.slope
5/3
>>> p3 = Point(0, 4)
>>> l2 = Line(p1, p3)
>>> l2.slope
oo
"""
d1, d2 = (self.p1 - self.p2).args
if d1 == 0:
return S.Infinity
return simplify(d2/d1)
class Line2D(LinearEntity2D, Line):
"""An infinite line in space 2D.
A line is declared with two distinct points or a point and slope
as defined using keyword `slope`.
Parameters
==========
p1 : Point
pt : Point
slope : SymPy expression
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy import Line, Segment, Point
>>> L = Line(Point(2,3), Point(3,5))
>>> L
Line2D(Point2D(2, 3), Point2D(3, 5))
>>> L.points
(Point2D(2, 3), Point2D(3, 5))
>>> L.equation()
-2*x + y + 1
>>> L.coefficients
(-2, 1, 1)
Instantiate with keyword ``slope``:
>>> Line(Point(0, 0), slope=0)
Line2D(Point2D(0, 0), Point2D(1, 0))
Instantiate with another linear object
>>> s = Segment((0, 0), (0, 1))
>>> Line(s).equation()
x
"""
def __new__(cls, p1, pt=None, slope=None, **kwargs):
if isinstance(p1, LinearEntity):
if pt is not None:
raise ValueError('When p1 is a LinearEntity, pt should be None')
p1, pt = Point._normalize_dimension(*p1.args, dim=2)
else:
p1 = Point(p1, dim=2)
if pt is not None and slope is None:
try:
p2 = Point(pt, dim=2)
except (NotImplementedError, TypeError, ValueError):
raise ValueError(filldedent('''
The 2nd argument was not a valid Point.
If it was a slope, enter it with keyword "slope".
'''))
elif slope is not None and pt is None:
slope = sympify(slope)
if slope.is_finite is False:
# when infinite slope, don't change x
dx = 0
dy = 1
else:
# go over 1 up slope
dx = 1
dy = slope
# XXX avoiding simplification by adding to coords directly
p2 = Point(p1.x + dx, p1.y + dy, evaluate=False)
else:
raise ValueError('A 2nd Point or keyword "slope" must be used.')
return LinearEntity2D.__new__(cls, p1, p2, **kwargs)
def _svg(self, scale_factor=1., fill_color="#66cc99"):
"""Returns SVG path element for the LinearEntity.
Parameters
==========
scale_factor : float
Multiplication factor for the SVG stroke-width. Default is 1.
fill_color : str, optional
Hex string for fill color. Default is "#66cc99".
"""
verts = (N(self.p1), N(self.p2))
coords = ["{},{}".format(p.x, p.y) for p in verts]
path = "M {} L {}".format(coords[0], " L ".join(coords[1:]))
return (
'<path fill-rule="evenodd" fill="{2}" stroke="#555555" '
'stroke-width="{0}" opacity="0.6" d="{1}" '
'marker-start="url(#markerReverseArrow)" marker-end="url(#markerArrow)"/>'
).format(2.*scale_factor, path, fill_color)
@property
def coefficients(self):
"""The coefficients (`a`, `b`, `c`) for `ax + by + c = 0`.
See Also
========
sympy.geometry.line.Line2D.equation
Examples
========
>>> from sympy import Point, Line
>>> from sympy.abc import x, y
>>> p1, p2 = Point(0, 0), Point(5, 3)
>>> l = Line(p1, p2)
>>> l.coefficients
(-3, 5, 0)
>>> p3 = Point(x, y)
>>> l2 = Line(p1, p3)
>>> l2.coefficients
(-y, x, 0)
"""
p1, p2 = self.points
if p1.x == p2.x:
return (S.One, S.Zero, -p1.x)
elif p1.y == p2.y:
return (S.Zero, S.One, -p1.y)
return tuple([simplify(i) for i in
(self.p1.y - self.p2.y,
self.p2.x - self.p1.x,
self.p1.x*self.p2.y - self.p1.y*self.p2.x)])
def equation(self, x='x', y='y'):
"""The equation of the line: ax + by + c.
Parameters
==========
x : str, optional
The name to use for the x-axis, default value is 'x'.
y : str, optional
The name to use for the y-axis, default value is 'y'.
Returns
=======
equation : SymPy expression
See Also
========
sympy.geometry.line.Line2D.coefficients
Examples
========
>>> from sympy import Point, Line
>>> p1, p2 = Point(1, 0), Point(5, 3)
>>> l1 = Line(p1, p2)
>>> l1.equation()
-3*x + 4*y + 3
"""
x = _symbol(x, real=True)
y = _symbol(y, real=True)
p1, p2 = self.points
if p1.x == p2.x:
return x - p1.x
elif p1.y == p2.y:
return y - p1.y
a, b, c = self.coefficients
return a*x + b*y + c
class Ray2D(LinearEntity2D, Ray):
"""
A Ray is a semi-line in the space with a source point and a direction.
Parameters
==========
p1 : Point
The source of the Ray
p2 : Point or radian value
This point determines the direction in which the Ray propagates.
If given as an angle it is interpreted in radians with the positive
direction being ccw.
Attributes
==========
source
xdirection
ydirection
See Also
========
sympy.geometry.point.Point, Line
Examples
========
>>> from sympy import Point, pi, Ray
>>> r = Ray(Point(2, 3), Point(3, 5))
>>> r
Ray2D(Point2D(2, 3), Point2D(3, 5))
>>> r.points
(Point2D(2, 3), Point2D(3, 5))
>>> r.source
Point2D(2, 3)
>>> r.xdirection
oo
>>> r.ydirection
oo
>>> r.slope
2
>>> Ray(Point(0, 0), angle=pi/4).slope
1
"""
def __new__(cls, p1, pt=None, angle=None, **kwargs):
p1 = Point(p1, dim=2)
if pt is not None and angle is None:
try:
p2 = Point(pt, dim=2)
except (NotImplementedError, TypeError, ValueError):
raise ValueError(filldedent('''
The 2nd argument was not a valid Point; if
it was meant to be an angle it should be
given with keyword "angle".'''))
if p1 == p2:
raise ValueError('A Ray requires two distinct points.')
elif angle is not None and pt is None:
# we need to know if the angle is an odd multiple of pi/2
angle = sympify(angle)
c = _pi_coeff(angle)
p2 = None
if c is not None:
if c.is_Rational:
if c.q == 2:
if c.p == 1:
p2 = p1 + Point(0, 1)
elif c.p == 3:
p2 = p1 + Point(0, -1)
elif c.q == 1:
if c.p == 0:
p2 = p1 + Point(1, 0)
elif c.p == 1:
p2 = p1 + Point(-1, 0)
if p2 is None:
c *= S.Pi
else:
c = angle % (2*S.Pi)
if not p2:
m = 2*c/S.Pi
left = And(1 < m, m < 3) # is it in quadrant 2 or 3?
x = Piecewise((-1, left), (Piecewise((0, Eq(m % 1, 0)), (1, True)), True))
y = Piecewise((-tan(c), left), (Piecewise((1, Eq(m, 1)), (-1, Eq(m, 3)), (tan(c), True)), True))
p2 = p1 + Point(x, y)
else:
raise ValueError('A 2nd point or keyword "angle" must be used.')
return LinearEntity2D.__new__(cls, p1, p2, **kwargs)
@property
def xdirection(self):
"""The x direction of the ray.
Positive infinity if the ray points in the positive x direction,
negative infinity if the ray points in the negative x direction,
or 0 if the ray is vertical.
See Also
========
ydirection
Examples
========
>>> from sympy import Point, Ray
>>> p1, p2, p3 = Point(0, 0), Point(1, 1), Point(0, -1)
>>> r1, r2 = Ray(p1, p2), Ray(p1, p3)
>>> r1.xdirection
oo
>>> r2.xdirection
0
"""
if self.p1.x < self.p2.x:
return S.Infinity
elif self.p1.x == self.p2.x:
return S.Zero
else:
return S.NegativeInfinity
@property
def ydirection(self):
"""The y direction of the ray.
Positive infinity if the ray points in the positive y direction,
negative infinity if the ray points in the negative y direction,
or 0 if the ray is horizontal.
See Also
========
xdirection
Examples
========
>>> from sympy import Point, Ray
>>> p1, p2, p3 = Point(0, 0), Point(-1, -1), Point(-1, 0)
>>> r1, r2 = Ray(p1, p2), Ray(p1, p3)
>>> r1.ydirection
-oo
>>> r2.ydirection
0
"""
if self.p1.y < self.p2.y:
return S.Infinity
elif self.p1.y == self.p2.y:
return S.Zero
else:
return S.NegativeInfinity
def closing_angle(r1, r2):
"""Return the angle by which r2 must be rotated so it faces the same
direction as r1.
Parameters
==========
r1 : Ray2D
r2 : Ray2D
Returns
=======
angle : angle in radians (ccw angle is positive)
See Also
========
LinearEntity.angle_between
Examples
========
>>> from sympy import Ray, pi
>>> r1 = Ray((0, 0), (1, 0))
>>> r2 = r1.rotate(-pi/2)
>>> angle = r1.closing_angle(r2); angle
pi/2
>>> r2.rotate(angle).direction.unit == r1.direction.unit
True
>>> r2.closing_angle(r1)
-pi/2
"""
if not all(isinstance(r, Ray2D) for r in (r1, r2)):
# although the direction property is defined for
# all linear entities, only the Ray is truly a
# directed object
raise TypeError('Both arguments must be Ray2D objects.')
a1 = atan2(*list(reversed(r1.direction.args)))
a2 = atan2(*list(reversed(r2.direction.args)))
if a1*a2 < 0:
a1 = 2*S.Pi + a1 if a1 < 0 else a1
a2 = 2*S.Pi + a2 if a2 < 0 else a2
return a1 - a2
class Segment2D(LinearEntity2D, Segment):
"""A line segment in 2D space.
Parameters
==========
p1 : Point
p2 : Point
Attributes
==========
length : number or SymPy expression
midpoint : Point
See Also
========
sympy.geometry.point.Point, Line
Examples
========
>>> from sympy import Point, Segment
>>> Segment((1, 0), (1, 1)) # tuples are interpreted as pts
Segment2D(Point2D(1, 0), Point2D(1, 1))
>>> s = Segment(Point(4, 3), Point(1, 1)); s
Segment2D(Point2D(4, 3), Point2D(1, 1))
>>> s.points
(Point2D(4, 3), Point2D(1, 1))
>>> s.slope
2/3
>>> s.length
sqrt(13)
>>> s.midpoint
Point2D(5/2, 2)
"""
def __new__(cls, p1, p2, **kwargs):
p1 = Point(p1, dim=2)
p2 = Point(p2, dim=2)
if p1 == p2:
return p1
return LinearEntity2D.__new__(cls, p1, p2, **kwargs)
def _svg(self, scale_factor=1., fill_color="#66cc99"):
"""Returns SVG path element for the LinearEntity.
Parameters
==========
scale_factor : float
Multiplication factor for the SVG stroke-width. Default is 1.
fill_color : str, optional
Hex string for fill color. Default is "#66cc99".
"""
verts = (N(self.p1), N(self.p2))
coords = ["{},{}".format(p.x, p.y) for p in verts]
path = "M {} L {}".format(coords[0], " L ".join(coords[1:]))
return (
'<path fill-rule="evenodd" fill="{2}" stroke="#555555" '
'stroke-width="{0}" opacity="0.6" d="{1}" />'
).format(2.*scale_factor, path, fill_color)
class LinearEntity3D(LinearEntity):
"""An base class for all linear entities (line, ray and segment)
in a 3-dimensional Euclidean space.
Attributes
==========
p1
p2
direction_ratio
direction_cosine
points
Notes
=====
This is a base class and is not meant to be instantiated.
"""
def __new__(cls, p1, p2, **kwargs):
p1 = Point3D(p1, dim=3)
p2 = Point3D(p2, dim=3)
if p1 == p2:
# if it makes sense to return a Point, handle in subclass
raise ValueError(
"%s.__new__ requires two unique Points." % cls.__name__)
return GeometryEntity.__new__(cls, p1, p2, **kwargs)
ambient_dimension = 3
@property
def direction_ratio(self):
"""The direction ratio of a given line in 3D.
See Also
========
sympy.geometry.line.Line3D.equation
Examples
========
>>> from sympy import Point3D, Line3D
>>> p1, p2 = Point3D(0, 0, 0), Point3D(5, 3, 1)
>>> l = Line3D(p1, p2)
>>> l.direction_ratio
[5, 3, 1]
"""
p1, p2 = self.points
return p1.direction_ratio(p2)
@property
def direction_cosine(self):
"""The normalized direction ratio of a given line in 3D.
See Also
========
sympy.geometry.line.Line3D.equation
Examples
========
>>> from sympy import Point3D, Line3D
>>> p1, p2 = Point3D(0, 0, 0), Point3D(5, 3, 1)
>>> l = Line3D(p1, p2)
>>> l.direction_cosine
[sqrt(35)/7, 3*sqrt(35)/35, sqrt(35)/35]
>>> sum(i**2 for i in _)
1
"""
p1, p2 = self.points
return p1.direction_cosine(p2)
class Line3D(LinearEntity3D, Line):
"""An infinite 3D line in space.
A line is declared with two distinct points or a point and direction_ratio
as defined using keyword `direction_ratio`.
Parameters
==========
p1 : Point3D
pt : Point3D
direction_ratio : list
See Also
========
sympy.geometry.point.Point3D
sympy.geometry.line.Line
sympy.geometry.line.Line2D
Examples
========
>>> from sympy import Line3D, Point3D
>>> L = Line3D(Point3D(2, 3, 4), Point3D(3, 5, 1))
>>> L
Line3D(Point3D(2, 3, 4), Point3D(3, 5, 1))
>>> L.points
(Point3D(2, 3, 4), Point3D(3, 5, 1))
"""
def __new__(cls, p1, pt=None, direction_ratio=(), **kwargs):
if isinstance(p1, LinearEntity3D):
if pt is not None:
raise ValueError('if p1 is a LinearEntity, pt must be None.')
p1, pt = p1.args
else:
p1 = Point(p1, dim=3)
if pt is not None and len(direction_ratio) == 0:
pt = Point(pt, dim=3)
elif len(direction_ratio) == 3 and pt is None:
pt = Point3D(p1.x + direction_ratio[0], p1.y + direction_ratio[1],
p1.z + direction_ratio[2])
else:
raise ValueError('A 2nd Point or keyword "direction_ratio" must '
'be used.')
return LinearEntity3D.__new__(cls, p1, pt, **kwargs)
def equation(self, x='x', y='y', z='z', k=None):
"""Return the equations that define the line in 3D.
Parameters
==========
x : str, optional
The name to use for the x-axis, default value is 'x'.
y : str, optional
The name to use for the y-axis, default value is 'y'.
z : str, optional
The name to use for the z-axis, default value is 'z'.
k : str, optional
.. deprecated:: 1.2
The ``k`` flag is deprecated. It does nothing.
Returns
=======
equation : Tuple of simultaneous equations
Examples
========
>>> from sympy import Point3D, Line3D, solve
>>> from sympy.abc import x, y, z
>>> p1, p2 = Point3D(1, 0, 0), Point3D(5, 3, 0)
>>> l1 = Line3D(p1, p2)
>>> eq = l1.equation(x, y, z); eq
(-3*x + 4*y + 3, z)
>>> solve(eq.subs(z, 0), (x, y, z))
{x: 4*y/3 + 1}
"""
if k is not None:
sympy_deprecation_warning(
"""
The 'k' argument to Line3D.equation() is deprecated. Is
currently has no effect, so it may be omitted.
""",
deprecated_since_version="1.2",
active_deprecations_target='deprecated-line3d-equation-k',
)
x, y, z, k = [_symbol(i, real=True) for i in (x, y, z, 'k')]
p1, p2 = self.points
d1, d2, d3 = p1.direction_ratio(p2)
x1, y1, z1 = p1
eqs = [-d1*k + x - x1, -d2*k + y - y1, -d3*k + z - z1]
# eliminate k from equations by solving first eq with k for k
for i, e in enumerate(eqs):
if e.has(k):
kk = solve(eqs[i], k)[0]
eqs.pop(i)
break
return Tuple(*[i.subs(k, kk).as_numer_denom()[0] for i in eqs])
class Ray3D(LinearEntity3D, Ray):
"""
A Ray is a semi-line in the space with a source point and a direction.
Parameters
==========
p1 : Point3D
The source of the Ray
p2 : Point or a direction vector
direction_ratio: Determines the direction in which the Ray propagates.
Attributes
==========
source
xdirection
ydirection
zdirection
See Also
========
sympy.geometry.point.Point3D, Line3D
Examples
========
>>> from sympy import Point3D, Ray3D
>>> r = Ray3D(Point3D(2, 3, 4), Point3D(3, 5, 0))
>>> r
Ray3D(Point3D(2, 3, 4), Point3D(3, 5, 0))
>>> r.points
(Point3D(2, 3, 4), Point3D(3, 5, 0))
>>> r.source
Point3D(2, 3, 4)
>>> r.xdirection
oo
>>> r.ydirection
oo
>>> r.direction_ratio
[1, 2, -4]
"""
def __new__(cls, p1, pt=None, direction_ratio=(), **kwargs):
if isinstance(p1, LinearEntity3D):
if pt is not None:
raise ValueError('If p1 is a LinearEntity, pt must be None')
p1, pt = p1.args
else:
p1 = Point(p1, dim=3)
if pt is not None and len(direction_ratio) == 0:
pt = Point(pt, dim=3)
elif len(direction_ratio) == 3 and pt is None:
pt = Point3D(p1.x + direction_ratio[0], p1.y + direction_ratio[1],
p1.z + direction_ratio[2])
else:
raise ValueError(filldedent('''
A 2nd Point or keyword "direction_ratio" must be used.
'''))
return LinearEntity3D.__new__(cls, p1, pt, **kwargs)
@property
def xdirection(self):
"""The x direction of the ray.
Positive infinity if the ray points in the positive x direction,
negative infinity if the ray points in the negative x direction,
or 0 if the ray is vertical.
See Also
========
ydirection
Examples
========
>>> from sympy import Point3D, Ray3D
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(1, 1, 1), Point3D(0, -1, 0)
>>> r1, r2 = Ray3D(p1, p2), Ray3D(p1, p3)
>>> r1.xdirection
oo
>>> r2.xdirection
0
"""
if self.p1.x < self.p2.x:
return S.Infinity
elif self.p1.x == self.p2.x:
return S.Zero
else:
return S.NegativeInfinity
@property
def ydirection(self):
"""The y direction of the ray.
Positive infinity if the ray points in the positive y direction,
negative infinity if the ray points in the negative y direction,
or 0 if the ray is horizontal.
See Also
========
xdirection
Examples
========
>>> from sympy import Point3D, Ray3D
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(-1, -1, -1), Point3D(-1, 0, 0)
>>> r1, r2 = Ray3D(p1, p2), Ray3D(p1, p3)
>>> r1.ydirection
-oo
>>> r2.ydirection
0
"""
if self.p1.y < self.p2.y:
return S.Infinity
elif self.p1.y == self.p2.y:
return S.Zero
else:
return S.NegativeInfinity
@property
def zdirection(self):
"""The z direction of the ray.
Positive infinity if the ray points in the positive z direction,
negative infinity if the ray points in the negative z direction,
or 0 if the ray is horizontal.
See Also
========
xdirection
Examples
========
>>> from sympy import Point3D, Ray3D
>>> p1, p2, p3 = Point3D(0, 0, 0), Point3D(-1, -1, -1), Point3D(-1, 0, 0)
>>> r1, r2 = Ray3D(p1, p2), Ray3D(p1, p3)
>>> r1.ydirection
-oo
>>> r2.ydirection
0
>>> r2.zdirection
0
"""
if self.p1.z < self.p2.z:
return S.Infinity
elif self.p1.z == self.p2.z:
return S.Zero
else:
return S.NegativeInfinity
class Segment3D(LinearEntity3D, Segment):
"""A line segment in a 3D space.
Parameters
==========
p1 : Point3D
p2 : Point3D
Attributes
==========
length : number or SymPy expression
midpoint : Point3D
See Also
========
sympy.geometry.point.Point3D, Line3D
Examples
========
>>> from sympy import Point3D, Segment3D
>>> Segment3D((1, 0, 0), (1, 1, 1)) # tuples are interpreted as pts
Segment3D(Point3D(1, 0, 0), Point3D(1, 1, 1))
>>> s = Segment3D(Point3D(4, 3, 9), Point3D(1, 1, 7)); s
Segment3D(Point3D(4, 3, 9), Point3D(1, 1, 7))
>>> s.points
(Point3D(4, 3, 9), Point3D(1, 1, 7))
>>> s.length
sqrt(17)
>>> s.midpoint
Point3D(5/2, 2, 8)
"""
def __new__(cls, p1, p2, **kwargs):
p1 = Point(p1, dim=3)
p2 = Point(p2, dim=3)
if p1 == p2:
return p1
return LinearEntity3D.__new__(cls, p1, p2, **kwargs)
|
3fff86b5521bb955edf202fde86ca7b5cb83a3c25ad49d1c76a48b3b25e1e3ea | from sympy.core import Expr, S, oo, pi, sympify
from sympy.core.evalf import N
from sympy.core.sorting import default_sort_key, ordered
from sympy.core.symbol import _symbol, Dummy, symbols, Symbol
from sympy.functions.elementary.complexes import sign
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import cos, sin, tan
from .ellipse import Circle
from .entity import GeometryEntity, GeometrySet
from .exceptions import GeometryError
from .line import Line, Segment, Ray
from .point import Point
from sympy.logic import And
from sympy.matrices import Matrix
from sympy.simplify.simplify import simplify
from sympy.solvers.solvers import solve
from sympy.utilities.iterables import has_dups, has_variety, uniq, rotate_left, least_rotation
from sympy.utilities.misc import as_int, func_name
from mpmath.libmp.libmpf import prec_to_dps
import warnings
class Polygon(GeometrySet):
"""A two-dimensional polygon.
A simple polygon in space. Can be constructed from a sequence of points
or from a center, radius, number of sides and rotation angle.
Parameters
==========
vertices : sequence of Points
Optional parameters
==========
n : If > 0, an n-sided RegularPolygon is created. See below.
Default value is 0.
Attributes
==========
area
angles
perimeter
vertices
centroid
sides
Raises
======
GeometryError
If all parameters are not Points.
See Also
========
sympy.geometry.point.Point, sympy.geometry.line.Segment, Triangle
Notes
=====
Polygons are treated as closed paths rather than 2D areas so
some calculations can be be negative or positive (e.g., area)
based on the orientation of the points.
Any consecutive identical points are reduced to a single point
and any points collinear and between two points will be removed
unless they are needed to define an explicit intersection (see examples).
A Triangle, Segment or Point will be returned when there are 3 or
fewer points provided.
Examples
========
>>> from sympy import Polygon, pi
>>> p1, p2, p3, p4, p5 = [(0, 0), (1, 0), (5, 1), (0, 1), (3, 0)]
>>> Polygon(p1, p2, p3, p4)
Polygon(Point2D(0, 0), Point2D(1, 0), Point2D(5, 1), Point2D(0, 1))
>>> Polygon(p1, p2)
Segment2D(Point2D(0, 0), Point2D(1, 0))
>>> Polygon(p1, p2, p5)
Segment2D(Point2D(0, 0), Point2D(3, 0))
The area of a polygon is calculated as positive when vertices are
traversed in a ccw direction. When the sides of a polygon cross the
area will have positive and negative contributions. The following
defines a Z shape where the bottom right connects back to the top
left.
>>> Polygon((0, 2), (2, 2), (0, 0), (2, 0)).area
0
When the keyword `n` is used to define the number of sides of the
Polygon then a RegularPolygon is created and the other arguments are
interpreted as center, radius and rotation. The unrotated RegularPolygon
will always have a vertex at Point(r, 0) where `r` is the radius of the
circle that circumscribes the RegularPolygon. Its method `spin` can be
used to increment that angle.
>>> p = Polygon((0,0), 1, n=3)
>>> p
RegularPolygon(Point2D(0, 0), 1, 3, 0)
>>> p.vertices[0]
Point2D(1, 0)
>>> p.args[0]
Point2D(0, 0)
>>> p.spin(pi/2)
>>> p.vertices[0]
Point2D(0, 1)
"""
__slots__ = ()
def __new__(cls, *args, n = 0, **kwargs):
if n:
args = list(args)
# return a virtual polygon with n sides
if len(args) == 2: # center, radius
args.append(n)
elif len(args) == 3: # center, radius, rotation
args.insert(2, n)
return RegularPolygon(*args, **kwargs)
vertices = [Point(a, dim=2, **kwargs) for a in args]
# remove consecutive duplicates
nodup = []
for p in vertices:
if nodup and p == nodup[-1]:
continue
nodup.append(p)
if len(nodup) > 1 and nodup[-1] == nodup[0]:
nodup.pop() # last point was same as first
# remove collinear points
i = -3
while i < len(nodup) - 3 and len(nodup) > 2:
a, b, c = nodup[i], nodup[i + 1], nodup[i + 2]
if Point.is_collinear(a, b, c):
nodup.pop(i + 1)
if a == c:
nodup.pop(i)
else:
i += 1
vertices = list(nodup)
if len(vertices) > 3:
return GeometryEntity.__new__(cls, *vertices, **kwargs)
elif len(vertices) == 3:
return Triangle(*vertices, **kwargs)
elif len(vertices) == 2:
return Segment(*vertices, **kwargs)
else:
return Point(*vertices, **kwargs)
@property
def area(self):
"""
The area of the polygon.
Notes
=====
The area calculation can be positive or negative based on the
orientation of the points. If any side of the polygon crosses
any other side, there will be areas having opposite signs.
See Also
========
sympy.geometry.ellipse.Ellipse.area
Examples
========
>>> from sympy import Point, Polygon
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.area
3
In the Z shaped polygon (with the lower right connecting back
to the upper left) the areas cancel out:
>>> Z = Polygon((0, 1), (1, 1), (0, 0), (1, 0))
>>> Z.area
0
In the M shaped polygon, areas do not cancel because no side
crosses any other (though there is a point of contact).
>>> M = Polygon((0, 0), (0, 1), (2, 0), (3, 1), (3, 0))
>>> M.area
-3/2
"""
area = 0
args = self.args
for i in range(len(args)):
x1, y1 = args[i - 1].args
x2, y2 = args[i].args
area += x1*y2 - x2*y1
return simplify(area) / 2
@staticmethod
def _isright(a, b, c):
"""Return True/False for cw/ccw orientation.
Examples
========
>>> from sympy import Point, Polygon
>>> a, b, c = [Point(i) for i in [(0, 0), (1, 1), (1, 0)]]
>>> Polygon._isright(a, b, c)
True
>>> Polygon._isright(a, c, b)
False
"""
ba = b - a
ca = c - a
t_area = simplify(ba.x*ca.y - ca.x*ba.y)
res = t_area.is_nonpositive
if res is None:
raise ValueError("Can't determine orientation")
return res
@property
def angles(self):
"""The internal angle at each vertex.
Returns
=======
angles : dict
A dictionary where each key is a vertex and each value is the
internal angle at that vertex. The vertices are represented as
Points.
See Also
========
sympy.geometry.point.Point, sympy.geometry.line.LinearEntity.angle_between
Examples
========
>>> from sympy import Point, Polygon
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.angles[p1]
pi/2
>>> poly.angles[p2]
acos(-4*sqrt(17)/17)
"""
# Determine orientation of points
args = self.vertices
cw = self._isright(args[-1], args[0], args[1])
ret = {}
for i in range(len(args)):
a, b, c = args[i - 2], args[i - 1], args[i]
ang = Ray(b, a).angle_between(Ray(b, c))
if cw ^ self._isright(a, b, c):
ret[b] = 2*S.Pi - ang
else:
ret[b] = ang
return ret
@property
def ambient_dimension(self):
return self.vertices[0].ambient_dimension
@property
def perimeter(self):
"""The perimeter of the polygon.
Returns
=======
perimeter : number or Basic instance
See Also
========
sympy.geometry.line.Segment.length
Examples
========
>>> from sympy import Point, Polygon
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.perimeter
sqrt(17) + 7
"""
p = 0
args = self.vertices
for i in range(len(args)):
p += args[i - 1].distance(args[i])
return simplify(p)
@property
def vertices(self):
"""The vertices of the polygon.
Returns
=======
vertices : list of Points
Notes
=====
When iterating over the vertices, it is more efficient to index self
rather than to request the vertices and index them. Only use the
vertices when you want to process all of them at once. This is even
more important with RegularPolygons that calculate each vertex.
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy import Point, Polygon
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.vertices
[Point2D(0, 0), Point2D(1, 0), Point2D(5, 1), Point2D(0, 1)]
>>> poly.vertices[0]
Point2D(0, 0)
"""
return list(self.args)
@property
def centroid(self):
"""The centroid of the polygon.
Returns
=======
centroid : Point
See Also
========
sympy.geometry.point.Point, sympy.geometry.util.centroid
Examples
========
>>> from sympy import Point, Polygon
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.centroid
Point2D(31/18, 11/18)
"""
A = 1/(6*self.area)
cx, cy = 0, 0
args = self.args
for i in range(len(args)):
x1, y1 = args[i - 1].args
x2, y2 = args[i].args
v = x1*y2 - x2*y1
cx += v*(x1 + x2)
cy += v*(y1 + y2)
return Point(simplify(A*cx), simplify(A*cy))
def second_moment_of_area(self, point=None):
"""Returns the second moment and product moment of area of a two dimensional polygon.
Parameters
==========
point : Point, two-tuple of sympifyable objects, or None(default=None)
point is the point about which second moment of area is to be found.
If "point=None" it will be calculated about the axis passing through the
centroid of the polygon.
Returns
=======
I_xx, I_yy, I_xy : number or SymPy expression
I_xx, I_yy are second moment of area of a two dimensional polygon.
I_xy is product moment of area of a two dimensional polygon.
Examples
========
>>> from sympy import Polygon, symbols
>>> a, b = symbols('a, b')
>>> p1, p2, p3, p4, p5 = [(0, 0), (a, 0), (a, b), (0, b), (a/3, b/3)]
>>> rectangle = Polygon(p1, p2, p3, p4)
>>> rectangle.second_moment_of_area()
(a*b**3/12, a**3*b/12, 0)
>>> rectangle.second_moment_of_area(p5)
(a*b**3/9, a**3*b/9, a**2*b**2/36)
References
==========
.. [1] https://en.wikipedia.org/wiki/Second_moment_of_area
"""
I_xx, I_yy, I_xy = 0, 0, 0
args = self.vertices
for i in range(len(args)):
x1, y1 = args[i-1].args
x2, y2 = args[i].args
v = x1*y2 - x2*y1
I_xx += (y1**2 + y1*y2 + y2**2)*v
I_yy += (x1**2 + x1*x2 + x2**2)*v
I_xy += (x1*y2 + 2*x1*y1 + 2*x2*y2 + x2*y1)*v
A = self.area
c_x = self.centroid[0]
c_y = self.centroid[1]
# parallel axis theorem
I_xx_c = (I_xx/12) - (A*(c_y**2))
I_yy_c = (I_yy/12) - (A*(c_x**2))
I_xy_c = (I_xy/24) - (A*(c_x*c_y))
if point is None:
return I_xx_c, I_yy_c, I_xy_c
I_xx = (I_xx_c + A*((point[1]-c_y)**2))
I_yy = (I_yy_c + A*((point[0]-c_x)**2))
I_xy = (I_xy_c + A*((point[0]-c_x)*(point[1]-c_y)))
return I_xx, I_yy, I_xy
def first_moment_of_area(self, point=None):
"""
Returns the first moment of area of a two-dimensional polygon with
respect to a certain point of interest.
First moment of area is a measure of the distribution of the area
of a polygon in relation to an axis. The first moment of area of
the entire polygon about its own centroid is always zero. Therefore,
here it is calculated for an area, above or below a certain point
of interest, that makes up a smaller portion of the polygon. This
area is bounded by the point of interest and the extreme end
(top or bottom) of the polygon. The first moment for this area is
is then determined about the centroidal axis of the initial polygon.
References
==========
.. [1] https://skyciv.com/docs/tutorials/section-tutorials/calculating-the-statical-or-first-moment-of-area-of-beam-sections/?cc=BMD
.. [2] https://mechanicalc.com/reference/cross-sections
Parameters
==========
point: Point, two-tuple of sympifyable objects, or None (default=None)
point is the point above or below which the area of interest lies
If ``point=None`` then the centroid acts as the point of interest.
Returns
=======
Q_x, Q_y: number or SymPy expressions
Q_x is the first moment of area about the x-axis
Q_y is the first moment of area about the y-axis
A negative sign indicates that the section modulus is
determined for a section below (or left of) the centroidal axis
Examples
========
>>> from sympy import Point, Polygon
>>> a, b = 50, 10
>>> p1, p2, p3, p4 = [(0, b), (0, 0), (a, 0), (a, b)]
>>> p = Polygon(p1, p2, p3, p4)
>>> p.first_moment_of_area()
(625, 3125)
>>> p.first_moment_of_area(point=Point(30, 7))
(525, 3000)
"""
if point:
xc, yc = self.centroid
else:
point = self.centroid
xc, yc = point
h_line = Line(point, slope=0)
v_line = Line(point, slope=S.Infinity)
h_poly = self.cut_section(h_line)
v_poly = self.cut_section(v_line)
poly_1 = h_poly[0] if h_poly[0].area <= h_poly[1].area else h_poly[1]
poly_2 = v_poly[0] if v_poly[0].area <= v_poly[1].area else v_poly[1]
Q_x = (poly_1.centroid.y - yc)*poly_1.area
Q_y = (poly_2.centroid.x - xc)*poly_2.area
return Q_x, Q_y
def polar_second_moment_of_area(self):
"""Returns the polar modulus of a two-dimensional polygon
It is a constituent of the second moment of area, linked through
the perpendicular axis theorem. While the planar second moment of
area describes an object's resistance to deflection (bending) when
subjected to a force applied to a plane parallel to the central
axis, the polar second moment of area describes an object's
resistance to deflection when subjected to a moment applied in a
plane perpendicular to the object's central axis (i.e. parallel to
the cross-section)
Examples
========
>>> from sympy import Polygon, symbols
>>> a, b = symbols('a, b')
>>> rectangle = Polygon((0, 0), (a, 0), (a, b), (0, b))
>>> rectangle.polar_second_moment_of_area()
a**3*b/12 + a*b**3/12
References
==========
.. [1] https://en.wikipedia.org/wiki/Polar_moment_of_inertia
"""
second_moment = self.second_moment_of_area()
return second_moment[0] + second_moment[1]
def section_modulus(self, point=None):
"""Returns a tuple with the section modulus of a two-dimensional
polygon.
Section modulus is a geometric property of a polygon defined as the
ratio of second moment of area to the distance of the extreme end of
the polygon from the centroidal axis.
Parameters
==========
point : Point, two-tuple of sympifyable objects, or None(default=None)
point is the point at which section modulus is to be found.
If "point=None" it will be calculated for the point farthest from the
centroidal axis of the polygon.
Returns
=======
S_x, S_y: numbers or SymPy expressions
S_x is the section modulus with respect to the x-axis
S_y is the section modulus with respect to the y-axis
A negative sign indicates that the section modulus is
determined for a point below the centroidal axis
Examples
========
>>> from sympy import symbols, Polygon, Point
>>> a, b = symbols('a, b', positive=True)
>>> rectangle = Polygon((0, 0), (a, 0), (a, b), (0, b))
>>> rectangle.section_modulus()
(a*b**2/6, a**2*b/6)
>>> rectangle.section_modulus(Point(a/4, b/4))
(-a*b**2/3, -a**2*b/3)
References
==========
.. [1] https://en.wikipedia.org/wiki/Section_modulus
"""
x_c, y_c = self.centroid
if point is None:
# taking x and y as maximum distances from centroid
x_min, y_min, x_max, y_max = self.bounds
y = max(y_c - y_min, y_max - y_c)
x = max(x_c - x_min, x_max - x_c)
else:
# taking x and y as distances of the given point from the centroid
y = point.y - y_c
x = point.x - x_c
second_moment= self.second_moment_of_area()
S_x = second_moment[0]/y
S_y = second_moment[1]/x
return S_x, S_y
@property
def sides(self):
"""The directed line segments that form the sides of the polygon.
Returns
=======
sides : list of sides
Each side is a directed Segment.
See Also
========
sympy.geometry.point.Point, sympy.geometry.line.Segment
Examples
========
>>> from sympy import Point, Polygon
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.sides
[Segment2D(Point2D(0, 0), Point2D(1, 0)),
Segment2D(Point2D(1, 0), Point2D(5, 1)),
Segment2D(Point2D(5, 1), Point2D(0, 1)), Segment2D(Point2D(0, 1), Point2D(0, 0))]
"""
res = []
args = self.vertices
for i in range(-len(args), 0):
res.append(Segment(args[i], args[i + 1]))
return res
@property
def bounds(self):
"""Return a tuple (xmin, ymin, xmax, ymax) representing the bounding
rectangle for the geometric figure.
"""
verts = self.vertices
xs = [p.x for p in verts]
ys = [p.y for p in verts]
return (min(xs), min(ys), max(xs), max(ys))
def is_convex(self):
"""Is the polygon convex?
A polygon is convex if all its interior angles are less than 180
degrees and there are no intersections between sides.
Returns
=======
is_convex : boolean
True if this polygon is convex, False otherwise.
See Also
========
sympy.geometry.util.convex_hull
Examples
========
>>> from sympy import Point, Polygon
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly = Polygon(p1, p2, p3, p4)
>>> poly.is_convex()
True
"""
# Determine orientation of points
args = self.vertices
cw = self._isright(args[-2], args[-1], args[0])
for i in range(1, len(args)):
if cw ^ self._isright(args[i - 2], args[i - 1], args[i]):
return False
# check for intersecting sides
sides = self.sides
for i, si in enumerate(sides):
pts = si.args
# exclude the sides connected to si
for j in range(1 if i == len(sides) - 1 else 0, i - 1):
sj = sides[j]
if sj.p1 not in pts and sj.p2 not in pts:
hit = si.intersection(sj)
if hit:
return False
return True
def encloses_point(self, p):
"""
Return True if p is enclosed by (is inside of) self.
Notes
=====
Being on the border of self is considered False.
Parameters
==========
p : Point
Returns
=======
encloses_point : True, False or None
See Also
========
sympy.geometry.point.Point, sympy.geometry.ellipse.Ellipse.encloses_point
Examples
========
>>> from sympy import Polygon, Point
>>> p = Polygon((0, 0), (4, 0), (4, 4))
>>> p.encloses_point(Point(2, 1))
True
>>> p.encloses_point(Point(2, 2))
False
>>> p.encloses_point(Point(5, 5))
False
References
==========
.. [1] http://paulbourke.net/geometry/polygonmesh/#insidepoly
"""
p = Point(p, dim=2)
if p in self.vertices or any(p in s for s in self.sides):
return False
# move to p, checking that the result is numeric
lit = []
for v in self.vertices:
lit.append(v - p) # the difference is simplified
if lit[-1].free_symbols:
return None
poly = Polygon(*lit)
# polygon closure is assumed in the following test but Polygon removes duplicate pts so
# the last point has to be added so all sides are computed. Using Polygon.sides is
# not good since Segments are unordered.
args = poly.args
indices = list(range(-len(args), 1))
if poly.is_convex():
orientation = None
for i in indices:
a = args[i]
b = args[i + 1]
test = ((-a.y)*(b.x - a.x) - (-a.x)*(b.y - a.y)).is_negative
if orientation is None:
orientation = test
elif test is not orientation:
return False
return True
hit_odd = False
p1x, p1y = args[0].args
for i in indices[1:]:
p2x, p2y = args[i].args
if 0 > min(p1y, p2y):
if 0 <= max(p1y, p2y):
if 0 <= max(p1x, p2x):
if p1y != p2y:
xinters = (-p1y)*(p2x - p1x)/(p2y - p1y) + p1x
if p1x == p2x or 0 <= xinters:
hit_odd = not hit_odd
p1x, p1y = p2x, p2y
return hit_odd
def arbitrary_point(self, parameter='t'):
"""A parameterized point on the polygon.
The parameter, varying from 0 to 1, assigns points to the position on
the perimeter that is that fraction of the total perimeter. So the
point evaluated at t=1/2 would return the point from the first vertex
that is 1/2 way around the polygon.
Parameters
==========
parameter : str, optional
Default value is 't'.
Returns
=======
arbitrary_point : Point
Raises
======
ValueError
When `parameter` already appears in the Polygon's definition.
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy import Polygon, Symbol
>>> t = Symbol('t', real=True)
>>> tri = Polygon((0, 0), (1, 0), (1, 1))
>>> p = tri.arbitrary_point('t')
>>> perimeter = tri.perimeter
>>> s1, s2 = [s.length for s in tri.sides[:2]]
>>> p.subs(t, (s1 + s2/2)/perimeter)
Point2D(1, 1/2)
"""
t = _symbol(parameter, real=True)
if t.name in (f.name for f in self.free_symbols):
raise ValueError('Symbol %s already appears in object and cannot be used as a parameter.' % t.name)
sides = []
perimeter = self.perimeter
perim_fraction_start = 0
for s in self.sides:
side_perim_fraction = s.length/perimeter
perim_fraction_end = perim_fraction_start + side_perim_fraction
pt = s.arbitrary_point(parameter).subs(
t, (t - perim_fraction_start)/side_perim_fraction)
sides.append(
(pt, (And(perim_fraction_start <= t, t < perim_fraction_end))))
perim_fraction_start = perim_fraction_end
return Piecewise(*sides)
def parameter_value(self, other, t):
if not isinstance(other,GeometryEntity):
other = Point(other, dim=self.ambient_dimension)
if not isinstance(other,Point):
raise ValueError("other must be a point")
if other.free_symbols:
raise NotImplementedError('non-numeric coordinates')
unknown = False
T = Dummy('t', real=True)
p = self.arbitrary_point(T)
for pt, cond in p.args:
sol = solve(pt - other, T, dict=True)
if not sol:
continue
value = sol[0][T]
if simplify(cond.subs(T, value)) == True:
return {t: value}
unknown = True
if unknown:
raise ValueError("Given point may not be on %s" % func_name(self))
raise ValueError("Given point is not on %s" % func_name(self))
def plot_interval(self, parameter='t'):
"""The plot interval for the default geometric plot of the polygon.
Parameters
==========
parameter : str, optional
Default value is 't'.
Returns
=======
plot_interval : list (plot interval)
[parameter, lower_bound, upper_bound]
Examples
========
>>> from sympy import Polygon
>>> p = Polygon((0, 0), (1, 0), (1, 1))
>>> p.plot_interval()
[t, 0, 1]
"""
t = Symbol(parameter, real=True)
return [t, 0, 1]
def intersection(self, o):
"""The intersection of polygon and geometry entity.
The intersection may be empty and can contain individual Points and
complete Line Segments.
Parameters
==========
other: GeometryEntity
Returns
=======
intersection : list
The list of Segments and Points
See Also
========
sympy.geometry.point.Point, sympy.geometry.line.Segment
Examples
========
>>> from sympy import Point, Polygon, Line
>>> p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
>>> poly1 = Polygon(p1, p2, p3, p4)
>>> p5, p6, p7 = map(Point, [(3, 2), (1, -1), (0, 2)])
>>> poly2 = Polygon(p5, p6, p7)
>>> poly1.intersection(poly2)
[Point2D(1/3, 1), Point2D(2/3, 0), Point2D(9/5, 1/5), Point2D(7/3, 1)]
>>> poly1.intersection(Line(p1, p2))
[Segment2D(Point2D(0, 0), Point2D(1, 0))]
>>> poly1.intersection(p1)
[Point2D(0, 0)]
"""
intersection_result = []
k = o.sides if isinstance(o, Polygon) else [o]
for side in self.sides:
for side1 in k:
intersection_result.extend(side.intersection(side1))
intersection_result = list(uniq(intersection_result))
points = [entity for entity in intersection_result if isinstance(entity, Point)]
segments = [entity for entity in intersection_result if isinstance(entity, Segment)]
if points and segments:
points_in_segments = list(uniq([point for point in points for segment in segments if point in segment]))
if points_in_segments:
for i in points_in_segments:
points.remove(i)
return list(ordered(segments + points))
else:
return list(ordered(intersection_result))
def cut_section(self, line):
"""
Returns a tuple of two polygon segments that lie above and below
the intersecting line respectively.
Parameters
==========
line: Line object of geometry module
line which cuts the Polygon. The part of the Polygon that lies
above and below this line is returned.
Returns
=======
upper_polygon, lower_polygon: Polygon objects or None
upper_polygon is the polygon that lies above the given line.
lower_polygon is the polygon that lies below the given line.
upper_polygon and lower polygon are ``None`` when no polygon
exists above the line or below the line.
Raises
======
ValueError: When the line does not intersect the polygon
Examples
========
>>> from sympy import Polygon, Line
>>> a, b = 20, 10
>>> p1, p2, p3, p4 = [(0, b), (0, 0), (a, 0), (a, b)]
>>> rectangle = Polygon(p1, p2, p3, p4)
>>> t = rectangle.cut_section(Line((0, 5), slope=0))
>>> t
(Polygon(Point2D(0, 10), Point2D(0, 5), Point2D(20, 5), Point2D(20, 10)),
Polygon(Point2D(0, 5), Point2D(0, 0), Point2D(20, 0), Point2D(20, 5)))
>>> upper_segment, lower_segment = t
>>> upper_segment.area
100
>>> upper_segment.centroid
Point2D(10, 15/2)
>>> lower_segment.centroid
Point2D(10, 5/2)
References
==========
.. [1] https://github.com/sympy/sympy/wiki/A-method-to-return-a-cut-section-of-any-polygon-geometry
"""
intersection_points = self.intersection(line)
if not intersection_points:
raise ValueError("This line does not intersect the polygon")
points = list(self.vertices)
points.append(points[0])
x, y = symbols('x, y', real=True, cls=Dummy)
eq = line.equation(x, y)
# considering equation of line to be `ax +by + c`
a = eq.coeff(x)
b = eq.coeff(y)
upper_vertices = []
lower_vertices = []
# prev is true when previous point is above the line
prev = True
prev_point = None
for point in points:
# when coefficient of y is 0, right side of the line is
# considered
compare = eq.subs({x: point.x, y: point.y})/b if b \
else eq.subs(x, point.x)/a
# if point lies above line
if compare > 0:
if not prev:
# if previous point lies below the line, the intersection
# point of the polygon edge and the line has to be included
edge = Line(point, prev_point)
new_point = edge.intersection(line)
upper_vertices.append(new_point[0])
lower_vertices.append(new_point[0])
upper_vertices.append(point)
prev = True
else:
if prev and prev_point:
edge = Line(point, prev_point)
new_point = edge.intersection(line)
upper_vertices.append(new_point[0])
lower_vertices.append(new_point[0])
lower_vertices.append(point)
prev = False
prev_point = point
upper_polygon, lower_polygon = None, None
if upper_vertices and isinstance(Polygon(*upper_vertices), Polygon):
upper_polygon = Polygon(*upper_vertices)
if lower_vertices and isinstance(Polygon(*lower_vertices), Polygon):
lower_polygon = Polygon(*lower_vertices)
return upper_polygon, lower_polygon
def distance(self, o):
"""
Returns the shortest distance between self and o.
If o is a point, then self does not need to be convex.
If o is another polygon self and o must be convex.
Examples
========
>>> from sympy import Point, Polygon, RegularPolygon
>>> p1, p2 = map(Point, [(0, 0), (7, 5)])
>>> poly = Polygon(*RegularPolygon(p1, 1, 3).vertices)
>>> poly.distance(p2)
sqrt(61)
"""
if isinstance(o, Point):
dist = oo
for side in self.sides:
current = side.distance(o)
if current == 0:
return S.Zero
elif current < dist:
dist = current
return dist
elif isinstance(o, Polygon) and self.is_convex() and o.is_convex():
return self._do_poly_distance(o)
raise NotImplementedError()
def _do_poly_distance(self, e2):
"""
Calculates the least distance between the exteriors of two
convex polygons e1 and e2. Does not check for the convexity
of the polygons as this is checked by Polygon.distance.
Notes
=====
- Prints a warning if the two polygons possibly intersect as the return
value will not be valid in such a case. For a more through test of
intersection use intersection().
See Also
========
sympy.geometry.point.Point.distance
Examples
========
>>> from sympy import Point, Polygon
>>> square = Polygon(Point(0, 0), Point(0, 1), Point(1, 1), Point(1, 0))
>>> triangle = Polygon(Point(1, 2), Point(2, 2), Point(2, 1))
>>> square._do_poly_distance(triangle)
sqrt(2)/2
Description of method used
==========================
Method:
[1] http://cgm.cs.mcgill.ca/~orm/mind2p.html
Uses rotating calipers:
[2] https://en.wikipedia.org/wiki/Rotating_calipers
and antipodal points:
[3] https://en.wikipedia.org/wiki/Antipodal_point
"""
e1 = self
'''Tests for a possible intersection between the polygons and outputs a warning'''
e1_center = e1.centroid
e2_center = e2.centroid
e1_max_radius = S.Zero
e2_max_radius = S.Zero
for vertex in e1.vertices:
r = Point.distance(e1_center, vertex)
if e1_max_radius < r:
e1_max_radius = r
for vertex in e2.vertices:
r = Point.distance(e2_center, vertex)
if e2_max_radius < r:
e2_max_radius = r
center_dist = Point.distance(e1_center, e2_center)
if center_dist <= e1_max_radius + e2_max_radius:
warnings.warn("Polygons may intersect producing erroneous output",
stacklevel=3)
'''
Find the upper rightmost vertex of e1 and the lowest leftmost vertex of e2
'''
e1_ymax = Point(0, -oo)
e2_ymin = Point(0, oo)
for vertex in e1.vertices:
if vertex.y > e1_ymax.y or (vertex.y == e1_ymax.y and vertex.x > e1_ymax.x):
e1_ymax = vertex
for vertex in e2.vertices:
if vertex.y < e2_ymin.y or (vertex.y == e2_ymin.y and vertex.x < e2_ymin.x):
e2_ymin = vertex
min_dist = Point.distance(e1_ymax, e2_ymin)
'''
Produce a dictionary with vertices of e1 as the keys and, for each vertex, the points
to which the vertex is connected as its value. The same is then done for e2.
'''
e1_connections = {}
e2_connections = {}
for side in e1.sides:
if side.p1 in e1_connections:
e1_connections[side.p1].append(side.p2)
else:
e1_connections[side.p1] = [side.p2]
if side.p2 in e1_connections:
e1_connections[side.p2].append(side.p1)
else:
e1_connections[side.p2] = [side.p1]
for side in e2.sides:
if side.p1 in e2_connections:
e2_connections[side.p1].append(side.p2)
else:
e2_connections[side.p1] = [side.p2]
if side.p2 in e2_connections:
e2_connections[side.p2].append(side.p1)
else:
e2_connections[side.p2] = [side.p1]
e1_current = e1_ymax
e2_current = e2_ymin
support_line = Line(Point(S.Zero, S.Zero), Point(S.One, S.Zero))
'''
Determine which point in e1 and e2 will be selected after e2_ymin and e1_ymax,
this information combined with the above produced dictionaries determines the
path that will be taken around the polygons
'''
point1 = e1_connections[e1_ymax][0]
point2 = e1_connections[e1_ymax][1]
angle1 = support_line.angle_between(Line(e1_ymax, point1))
angle2 = support_line.angle_between(Line(e1_ymax, point2))
if angle1 < angle2:
e1_next = point1
elif angle2 < angle1:
e1_next = point2
elif Point.distance(e1_ymax, point1) > Point.distance(e1_ymax, point2):
e1_next = point2
else:
e1_next = point1
point1 = e2_connections[e2_ymin][0]
point2 = e2_connections[e2_ymin][1]
angle1 = support_line.angle_between(Line(e2_ymin, point1))
angle2 = support_line.angle_between(Line(e2_ymin, point2))
if angle1 > angle2:
e2_next = point1
elif angle2 > angle1:
e2_next = point2
elif Point.distance(e2_ymin, point1) > Point.distance(e2_ymin, point2):
e2_next = point2
else:
e2_next = point1
'''
Loop which determines the distance between anti-podal pairs and updates the
minimum distance accordingly. It repeats until it reaches the starting position.
'''
while True:
e1_angle = support_line.angle_between(Line(e1_current, e1_next))
e2_angle = pi - support_line.angle_between(Line(
e2_current, e2_next))
if (e1_angle < e2_angle) is True:
support_line = Line(e1_current, e1_next)
e1_segment = Segment(e1_current, e1_next)
min_dist_current = e1_segment.distance(e2_current)
if min_dist_current.evalf() < min_dist.evalf():
min_dist = min_dist_current
if e1_connections[e1_next][0] != e1_current:
e1_current = e1_next
e1_next = e1_connections[e1_next][0]
else:
e1_current = e1_next
e1_next = e1_connections[e1_next][1]
elif (e1_angle > e2_angle) is True:
support_line = Line(e2_next, e2_current)
e2_segment = Segment(e2_current, e2_next)
min_dist_current = e2_segment.distance(e1_current)
if min_dist_current.evalf() < min_dist.evalf():
min_dist = min_dist_current
if e2_connections[e2_next][0] != e2_current:
e2_current = e2_next
e2_next = e2_connections[e2_next][0]
else:
e2_current = e2_next
e2_next = e2_connections[e2_next][1]
else:
support_line = Line(e1_current, e1_next)
e1_segment = Segment(e1_current, e1_next)
e2_segment = Segment(e2_current, e2_next)
min1 = e1_segment.distance(e2_next)
min2 = e2_segment.distance(e1_next)
min_dist_current = min(min1, min2)
if min_dist_current.evalf() < min_dist.evalf():
min_dist = min_dist_current
if e1_connections[e1_next][0] != e1_current:
e1_current = e1_next
e1_next = e1_connections[e1_next][0]
else:
e1_current = e1_next
e1_next = e1_connections[e1_next][1]
if e2_connections[e2_next][0] != e2_current:
e2_current = e2_next
e2_next = e2_connections[e2_next][0]
else:
e2_current = e2_next
e2_next = e2_connections[e2_next][1]
if e1_current == e1_ymax and e2_current == e2_ymin:
break
return min_dist
def _svg(self, scale_factor=1., fill_color="#66cc99"):
"""Returns SVG path element for the Polygon.
Parameters
==========
scale_factor : float
Multiplication factor for the SVG stroke-width. Default is 1.
fill_color : str, optional
Hex string for fill color. Default is "#66cc99".
"""
verts = map(N, self.vertices)
coords = ["{},{}".format(p.x, p.y) for p in verts]
path = "M {} L {} z".format(coords[0], " L ".join(coords[1:]))
return (
'<path fill-rule="evenodd" fill="{2}" stroke="#555555" '
'stroke-width="{0}" opacity="0.6" d="{1}" />'
).format(2. * scale_factor, path, fill_color)
def _hashable_content(self):
D = {}
def ref_list(point_list):
kee = {}
for i, p in enumerate(ordered(set(point_list))):
kee[p] = i
D[i] = p
return [kee[p] for p in point_list]
S1 = ref_list(self.args)
r_nor = rotate_left(S1, least_rotation(S1))
S2 = ref_list(list(reversed(self.args)))
r_rev = rotate_left(S2, least_rotation(S2))
if r_nor < r_rev:
r = r_nor
else:
r = r_rev
canonical_args = [ D[order] for order in r ]
return tuple(canonical_args)
def __contains__(self, o):
"""
Return True if o is contained within the boundary lines of self.altitudes
Parameters
==========
other : GeometryEntity
Returns
=======
contained in : bool
The points (and sides, if applicable) are contained in self.
See Also
========
sympy.geometry.entity.GeometryEntity.encloses
Examples
========
>>> from sympy import Line, Segment, Point
>>> p = Point(0, 0)
>>> q = Point(1, 1)
>>> s = Segment(p, q*2)
>>> l = Line(p, q)
>>> p in q
False
>>> p in s
True
>>> q*3 in s
False
>>> s in l
True
"""
if isinstance(o, Polygon):
return self == o
elif isinstance(o, Segment):
return any(o in s for s in self.sides)
elif isinstance(o, Point):
if o in self.vertices:
return True
for side in self.sides:
if o in side:
return True
return False
def bisectors(p, prec=None):
"""Returns angle bisectors of a polygon. If prec is given
then approximate the point defining the ray to that precision.
The distance between the points defining the bisector ray is 1.
Examples
========
>>> from sympy import Polygon, Point
>>> p = Polygon(Point(0, 0), Point(2, 0), Point(1, 1), Point(0, 3))
>>> p.bisectors(2)
{Point2D(0, 0): Ray2D(Point2D(0, 0), Point2D(0.71, 0.71)),
Point2D(0, 3): Ray2D(Point2D(0, 3), Point2D(0.23, 2.0)),
Point2D(1, 1): Ray2D(Point2D(1, 1), Point2D(0.19, 0.42)),
Point2D(2, 0): Ray2D(Point2D(2, 0), Point2D(1.1, 0.38))}
"""
b = {}
pts = list(p.args)
pts.append(pts[0]) # close it
cw = Polygon._isright(*pts[:3])
if cw:
pts = list(reversed(pts))
for v, a in p.angles.items():
i = pts.index(v)
p1, p2 = Point._normalize_dimension(pts[i], pts[i + 1])
ray = Ray(p1, p2).rotate(a/2, v)
dir = ray.direction
ray = Ray(ray.p1, ray.p1 + dir/dir.distance((0, 0)))
if prec is not None:
ray = Ray(ray.p1, ray.p2.n(prec))
b[v] = ray
return b
class RegularPolygon(Polygon):
"""
A regular polygon.
Such a polygon has all internal angles equal and all sides the same length.
Parameters
==========
center : Point
radius : number or Basic instance
The distance from the center to a vertex
n : int
The number of sides
Attributes
==========
vertices
center
radius
rotation
apothem
interior_angle
exterior_angle
circumcircle
incircle
angles
Raises
======
GeometryError
If the `center` is not a Point, or the `radius` is not a number or Basic
instance, or the number of sides, `n`, is less than three.
Notes
=====
A RegularPolygon can be instantiated with Polygon with the kwarg n.
Regular polygons are instantiated with a center, radius, number of sides
and a rotation angle. Whereas the arguments of a Polygon are vertices, the
vertices of the RegularPolygon must be obtained with the vertices method.
See Also
========
sympy.geometry.point.Point, Polygon
Examples
========
>>> from sympy import RegularPolygon, Point
>>> r = RegularPolygon(Point(0, 0), 5, 3)
>>> r
RegularPolygon(Point2D(0, 0), 5, 3, 0)
>>> r.vertices[0]
Point2D(5, 0)
"""
__slots__ = ('_n', '_center', '_radius', '_rot')
def __new__(self, c, r, n, rot=0, **kwargs):
r, n, rot = map(sympify, (r, n, rot))
c = Point(c, dim=2, **kwargs)
if not isinstance(r, Expr):
raise GeometryError("r must be an Expr object, not %s" % r)
if n.is_Number:
as_int(n) # let an error raise if necessary
if n < 3:
raise GeometryError("n must be a >= 3, not %s" % n)
obj = GeometryEntity.__new__(self, c, r, n, **kwargs)
obj._n = n
obj._center = c
obj._radius = r
obj._rot = rot % (2*S.Pi/n) if rot.is_number else rot
return obj
def _eval_evalf(self, prec=15, **options):
c, r, n, a = self.args
dps = prec_to_dps(prec)
c, r, a = [i.evalf(n=dps, **options) for i in (c, r, a)]
return self.func(c, r, n, a)
@property
def args(self):
"""
Returns the center point, the radius,
the number of sides, and the orientation angle.
Examples
========
>>> from sympy import RegularPolygon, Point
>>> r = RegularPolygon(Point(0, 0), 5, 3)
>>> r.args
(Point2D(0, 0), 5, 3, 0)
"""
return self._center, self._radius, self._n, self._rot
def __str__(self):
return 'RegularPolygon(%s, %s, %s, %s)' % tuple(self.args)
def __repr__(self):
return 'RegularPolygon(%s, %s, %s, %s)' % tuple(self.args)
@property
def area(self):
"""Returns the area.
Examples
========
>>> from sympy import RegularPolygon
>>> square = RegularPolygon((0, 0), 1, 4)
>>> square.area
2
>>> _ == square.length**2
True
"""
c, r, n, rot = self.args
return sign(r)*n*self.length**2/(4*tan(pi/n))
@property
def length(self):
"""Returns the length of the sides.
The half-length of the side and the apothem form two legs
of a right triangle whose hypotenuse is the radius of the
regular polygon.
Examples
========
>>> from sympy import RegularPolygon
>>> from sympy import sqrt
>>> s = square_in_unit_circle = RegularPolygon((0, 0), 1, 4)
>>> s.length
sqrt(2)
>>> sqrt((_/2)**2 + s.apothem**2) == s.radius
True
"""
return self.radius*2*sin(pi/self._n)
@property
def center(self):
"""The center of the RegularPolygon
This is also the center of the circumscribing circle.
Returns
=======
center : Point
See Also
========
sympy.geometry.point.Point, sympy.geometry.ellipse.Ellipse.center
Examples
========
>>> from sympy import RegularPolygon, Point
>>> rp = RegularPolygon(Point(0, 0), 5, 4)
>>> rp.center
Point2D(0, 0)
"""
return self._center
centroid = center
@property
def circumcenter(self):
"""
Alias for center.
Examples
========
>>> from sympy import RegularPolygon, Point
>>> rp = RegularPolygon(Point(0, 0), 5, 4)
>>> rp.circumcenter
Point2D(0, 0)
"""
return self.center
@property
def radius(self):
"""Radius of the RegularPolygon
This is also the radius of the circumscribing circle.
Returns
=======
radius : number or instance of Basic
See Also
========
sympy.geometry.line.Segment.length, sympy.geometry.ellipse.Circle.radius
Examples
========
>>> from sympy import Symbol
>>> from sympy import RegularPolygon, Point
>>> radius = Symbol('r')
>>> rp = RegularPolygon(Point(0, 0), radius, 4)
>>> rp.radius
r
"""
return self._radius
@property
def circumradius(self):
"""
Alias for radius.
Examples
========
>>> from sympy import Symbol
>>> from sympy import RegularPolygon, Point
>>> radius = Symbol('r')
>>> rp = RegularPolygon(Point(0, 0), radius, 4)
>>> rp.circumradius
r
"""
return self.radius
@property
def rotation(self):
"""CCW angle by which the RegularPolygon is rotated
Returns
=======
rotation : number or instance of Basic
Examples
========
>>> from sympy import pi
>>> from sympy.abc import a
>>> from sympy import RegularPolygon, Point
>>> RegularPolygon(Point(0, 0), 3, 4, pi/4).rotation
pi/4
Numerical rotation angles are made canonical:
>>> RegularPolygon(Point(0, 0), 3, 4, a).rotation
a
>>> RegularPolygon(Point(0, 0), 3, 4, pi).rotation
0
"""
return self._rot
@property
def apothem(self):
"""The inradius of the RegularPolygon.
The apothem/inradius is the radius of the inscribed circle.
Returns
=======
apothem : number or instance of Basic
See Also
========
sympy.geometry.line.Segment.length, sympy.geometry.ellipse.Circle.radius
Examples
========
>>> from sympy import Symbol
>>> from sympy import RegularPolygon, Point
>>> radius = Symbol('r')
>>> rp = RegularPolygon(Point(0, 0), radius, 4)
>>> rp.apothem
sqrt(2)*r/2
"""
return self.radius * cos(S.Pi/self._n)
@property
def inradius(self):
"""
Alias for apothem.
Examples
========
>>> from sympy import Symbol
>>> from sympy import RegularPolygon, Point
>>> radius = Symbol('r')
>>> rp = RegularPolygon(Point(0, 0), radius, 4)
>>> rp.inradius
sqrt(2)*r/2
"""
return self.apothem
@property
def interior_angle(self):
"""Measure of the interior angles.
Returns
=======
interior_angle : number
See Also
========
sympy.geometry.line.LinearEntity.angle_between
Examples
========
>>> from sympy import RegularPolygon, Point
>>> rp = RegularPolygon(Point(0, 0), 4, 8)
>>> rp.interior_angle
3*pi/4
"""
return (self._n - 2)*S.Pi/self._n
@property
def exterior_angle(self):
"""Measure of the exterior angles.
Returns
=======
exterior_angle : number
See Also
========
sympy.geometry.line.LinearEntity.angle_between
Examples
========
>>> from sympy import RegularPolygon, Point
>>> rp = RegularPolygon(Point(0, 0), 4, 8)
>>> rp.exterior_angle
pi/4
"""
return 2*S.Pi/self._n
@property
def circumcircle(self):
"""The circumcircle of the RegularPolygon.
Returns
=======
circumcircle : Circle
See Also
========
circumcenter, sympy.geometry.ellipse.Circle
Examples
========
>>> from sympy import RegularPolygon, Point
>>> rp = RegularPolygon(Point(0, 0), 4, 8)
>>> rp.circumcircle
Circle(Point2D(0, 0), 4)
"""
return Circle(self.center, self.radius)
@property
def incircle(self):
"""The incircle of the RegularPolygon.
Returns
=======
incircle : Circle
See Also
========
inradius, sympy.geometry.ellipse.Circle
Examples
========
>>> from sympy import RegularPolygon, Point
>>> rp = RegularPolygon(Point(0, 0), 4, 7)
>>> rp.incircle
Circle(Point2D(0, 0), 4*cos(pi/7))
"""
return Circle(self.center, self.apothem)
@property
def angles(self):
"""
Returns a dictionary with keys, the vertices of the Polygon,
and values, the interior angle at each vertex.
Examples
========
>>> from sympy import RegularPolygon, Point
>>> r = RegularPolygon(Point(0, 0), 5, 3)
>>> r.angles
{Point2D(-5/2, -5*sqrt(3)/2): pi/3,
Point2D(-5/2, 5*sqrt(3)/2): pi/3,
Point2D(5, 0): pi/3}
"""
ret = {}
ang = self.interior_angle
for v in self.vertices:
ret[v] = ang
return ret
def encloses_point(self, p):
"""
Return True if p is enclosed by (is inside of) self.
Notes
=====
Being on the border of self is considered False.
The general Polygon.encloses_point method is called only if
a point is not within or beyond the incircle or circumcircle,
respectively.
Parameters
==========
p : Point
Returns
=======
encloses_point : True, False or None
See Also
========
sympy.geometry.ellipse.Ellipse.encloses_point
Examples
========
>>> from sympy import RegularPolygon, S, Point, Symbol
>>> p = RegularPolygon((0, 0), 3, 4)
>>> p.encloses_point(Point(0, 0))
True
>>> r, R = p.inradius, p.circumradius
>>> p.encloses_point(Point((r + R)/2, 0))
True
>>> p.encloses_point(Point(R/2, R/2 + (R - r)/10))
False
>>> t = Symbol('t', real=True)
>>> p.encloses_point(p.arbitrary_point().subs(t, S.Half))
False
>>> p.encloses_point(Point(5, 5))
False
"""
c = self.center
d = Segment(c, p).length
if d >= self.radius:
return False
elif d < self.inradius:
return True
else:
# now enumerate the RegularPolygon like a general polygon.
return Polygon.encloses_point(self, p)
def spin(self, angle):
"""Increment *in place* the virtual Polygon's rotation by ccw angle.
See also: rotate method which moves the center.
>>> from sympy import Polygon, Point, pi
>>> r = Polygon(Point(0,0), 1, n=3)
>>> r.vertices[0]
Point2D(1, 0)
>>> r.spin(pi/6)
>>> r.vertices[0]
Point2D(sqrt(3)/2, 1/2)
See Also
========
rotation
rotate : Creates a copy of the RegularPolygon rotated about a Point
"""
self._rot += angle
def rotate(self, angle, pt=None):
"""Override GeometryEntity.rotate to first rotate the RegularPolygon
about its center.
>>> from sympy import Point, RegularPolygon, pi
>>> t = RegularPolygon(Point(1, 0), 1, 3)
>>> t.vertices[0] # vertex on x-axis
Point2D(2, 0)
>>> t.rotate(pi/2).vertices[0] # vertex on y axis now
Point2D(0, 2)
See Also
========
rotation
spin : Rotates a RegularPolygon in place
"""
r = type(self)(*self.args) # need a copy or else changes are in-place
r._rot += angle
return GeometryEntity.rotate(r, angle, pt)
def scale(self, x=1, y=1, pt=None):
"""Override GeometryEntity.scale since it is the radius that must be
scaled (if x == y) or else a new Polygon must be returned.
>>> from sympy import RegularPolygon
Symmetric scaling returns a RegularPolygon:
>>> RegularPolygon((0, 0), 1, 4).scale(2, 2)
RegularPolygon(Point2D(0, 0), 2, 4, 0)
Asymmetric scaling returns a kite as a Polygon:
>>> RegularPolygon((0, 0), 1, 4).scale(2, 1)
Polygon(Point2D(2, 0), Point2D(0, 1), Point2D(-2, 0), Point2D(0, -1))
"""
if pt:
pt = Point(pt, dim=2)
return self.translate(*(-pt).args).scale(x, y).translate(*pt.args)
if x != y:
return Polygon(*self.vertices).scale(x, y)
c, r, n, rot = self.args
r *= x
return self.func(c, r, n, rot)
def reflect(self, line):
"""Override GeometryEntity.reflect since this is not made of only
points.
Examples
========
>>> from sympy import RegularPolygon, Line
>>> RegularPolygon((0, 0), 1, 4).reflect(Line((0, 1), slope=-2))
RegularPolygon(Point2D(4/5, 2/5), -1, 4, atan(4/3))
"""
c, r, n, rot = self.args
v = self.vertices[0]
d = v - c
cc = c.reflect(line)
vv = v.reflect(line)
dd = vv - cc
# calculate rotation about the new center
# which will align the vertices
l1 = Ray((0, 0), dd)
l2 = Ray((0, 0), d)
ang = l1.closing_angle(l2)
rot += ang
# change sign of radius as point traversal is reversed
return self.func(cc, -r, n, rot)
@property
def vertices(self):
"""The vertices of the RegularPolygon.
Returns
=======
vertices : list
Each vertex is a Point.
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy import RegularPolygon, Point
>>> rp = RegularPolygon(Point(0, 0), 5, 4)
>>> rp.vertices
[Point2D(5, 0), Point2D(0, 5), Point2D(-5, 0), Point2D(0, -5)]
"""
c = self._center
r = abs(self._radius)
rot = self._rot
v = 2*S.Pi/self._n
return [Point(c.x + r*cos(k*v + rot), c.y + r*sin(k*v + rot))
for k in range(self._n)]
def __eq__(self, o):
if not isinstance(o, Polygon):
return False
elif not isinstance(o, RegularPolygon):
return Polygon.__eq__(o, self)
return self.args == o.args
def __hash__(self):
return super().__hash__()
class Triangle(Polygon):
"""
A polygon with three vertices and three sides.
Parameters
==========
points : sequence of Points
keyword: asa, sas, or sss to specify sides/angles of the triangle
Attributes
==========
vertices
altitudes
orthocenter
circumcenter
circumradius
circumcircle
inradius
incircle
exradii
medians
medial
nine_point_circle
Raises
======
GeometryError
If the number of vertices is not equal to three, or one of the vertices
is not a Point, or a valid keyword is not given.
See Also
========
sympy.geometry.point.Point, Polygon
Examples
========
>>> from sympy import Triangle, Point
>>> Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
Triangle(Point2D(0, 0), Point2D(4, 0), Point2D(4, 3))
Keywords sss, sas, or asa can be used to give the desired
side lengths (in order) and interior angles (in degrees) that
define the triangle:
>>> Triangle(sss=(3, 4, 5))
Triangle(Point2D(0, 0), Point2D(3, 0), Point2D(3, 4))
>>> Triangle(asa=(30, 1, 30))
Triangle(Point2D(0, 0), Point2D(1, 0), Point2D(1/2, sqrt(3)/6))
>>> Triangle(sas=(1, 45, 2))
Triangle(Point2D(0, 0), Point2D(2, 0), Point2D(sqrt(2)/2, sqrt(2)/2))
"""
def __new__(cls, *args, **kwargs):
if len(args) != 3:
if 'sss' in kwargs:
return _sss(*[simplify(a) for a in kwargs['sss']])
if 'asa' in kwargs:
return _asa(*[simplify(a) for a in kwargs['asa']])
if 'sas' in kwargs:
return _sas(*[simplify(a) for a in kwargs['sas']])
msg = "Triangle instantiates with three points or a valid keyword."
raise GeometryError(msg)
vertices = [Point(a, dim=2, **kwargs) for a in args]
# remove consecutive duplicates
nodup = []
for p in vertices:
if nodup and p == nodup[-1]:
continue
nodup.append(p)
if len(nodup) > 1 and nodup[-1] == nodup[0]:
nodup.pop() # last point was same as first
# remove collinear points
i = -3
while i < len(nodup) - 3 and len(nodup) > 2:
a, b, c = sorted(
[nodup[i], nodup[i + 1], nodup[i + 2]], key=default_sort_key)
if Point.is_collinear(a, b, c):
nodup[i] = a
nodup[i + 1] = None
nodup.pop(i + 1)
i += 1
vertices = list(filter(lambda x: x is not None, nodup))
if len(vertices) == 3:
return GeometryEntity.__new__(cls, *vertices, **kwargs)
elif len(vertices) == 2:
return Segment(*vertices, **kwargs)
else:
return Point(*vertices, **kwargs)
@property
def vertices(self):
"""The triangle's vertices
Returns
=======
vertices : tuple
Each element in the tuple is a Point
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy import Triangle, Point
>>> t = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
>>> t.vertices
(Point2D(0, 0), Point2D(4, 0), Point2D(4, 3))
"""
return self.args
def is_similar(t1, t2):
"""Is another triangle similar to this one.
Two triangles are similar if one can be uniformly scaled to the other.
Parameters
==========
other: Triangle
Returns
=======
is_similar : boolean
See Also
========
sympy.geometry.entity.GeometryEntity.is_similar
Examples
========
>>> from sympy import Triangle, Point
>>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
>>> t2 = Triangle(Point(0, 0), Point(-4, 0), Point(-4, -3))
>>> t1.is_similar(t2)
True
>>> t2 = Triangle(Point(0, 0), Point(-4, 0), Point(-4, -4))
>>> t1.is_similar(t2)
False
"""
if not isinstance(t2, Polygon):
return False
s1_1, s1_2, s1_3 = [side.length for side in t1.sides]
s2 = [side.length for side in t2.sides]
def _are_similar(u1, u2, u3, v1, v2, v3):
e1 = simplify(u1/v1)
e2 = simplify(u2/v2)
e3 = simplify(u3/v3)
return bool(e1 == e2) and bool(e2 == e3)
# There's only 6 permutations, so write them out
return _are_similar(s1_1, s1_2, s1_3, *s2) or \
_are_similar(s1_1, s1_3, s1_2, *s2) or \
_are_similar(s1_2, s1_1, s1_3, *s2) or \
_are_similar(s1_2, s1_3, s1_1, *s2) or \
_are_similar(s1_3, s1_1, s1_2, *s2) or \
_are_similar(s1_3, s1_2, s1_1, *s2)
def is_equilateral(self):
"""Are all the sides the same length?
Returns
=======
is_equilateral : boolean
See Also
========
sympy.geometry.entity.GeometryEntity.is_similar, RegularPolygon
is_isosceles, is_right, is_scalene
Examples
========
>>> from sympy import Triangle, Point
>>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
>>> t1.is_equilateral()
False
>>> from sympy import sqrt
>>> t2 = Triangle(Point(0, 0), Point(10, 0), Point(5, 5*sqrt(3)))
>>> t2.is_equilateral()
True
"""
return not has_variety(s.length for s in self.sides)
def is_isosceles(self):
"""Are two or more of the sides the same length?
Returns
=======
is_isosceles : boolean
See Also
========
is_equilateral, is_right, is_scalene
Examples
========
>>> from sympy import Triangle, Point
>>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(2, 4))
>>> t1.is_isosceles()
True
"""
return has_dups(s.length for s in self.sides)
def is_scalene(self):
"""Are all the sides of the triangle of different lengths?
Returns
=======
is_scalene : boolean
See Also
========
is_equilateral, is_isosceles, is_right
Examples
========
>>> from sympy import Triangle, Point
>>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(1, 4))
>>> t1.is_scalene()
True
"""
return not has_dups(s.length for s in self.sides)
def is_right(self):
"""Is the triangle right-angled.
Returns
=======
is_right : boolean
See Also
========
sympy.geometry.line.LinearEntity.is_perpendicular
is_equilateral, is_isosceles, is_scalene
Examples
========
>>> from sympy import Triangle, Point
>>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))
>>> t1.is_right()
True
"""
s = self.sides
return Segment.is_perpendicular(s[0], s[1]) or \
Segment.is_perpendicular(s[1], s[2]) or \
Segment.is_perpendicular(s[0], s[2])
@property
def altitudes(self):
"""The altitudes of the triangle.
An altitude of a triangle is a segment through a vertex,
perpendicular to the opposite side, with length being the
height of the vertex measured from the line containing the side.
Returns
=======
altitudes : dict
The dictionary consists of keys which are vertices and values
which are Segments.
See Also
========
sympy.geometry.point.Point, sympy.geometry.line.Segment.length
Examples
========
>>> from sympy import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.altitudes[p1]
Segment2D(Point2D(0, 0), Point2D(1/2, 1/2))
"""
s = self.sides
v = self.vertices
return {v[0]: s[1].perpendicular_segment(v[0]),
v[1]: s[2].perpendicular_segment(v[1]),
v[2]: s[0].perpendicular_segment(v[2])}
@property
def orthocenter(self):
"""The orthocenter of the triangle.
The orthocenter is the intersection of the altitudes of a triangle.
It may lie inside, outside or on the triangle.
Returns
=======
orthocenter : Point
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.orthocenter
Point2D(0, 0)
"""
a = self.altitudes
v = self.vertices
return Line(a[v[0]]).intersection(Line(a[v[1]]))[0]
@property
def circumcenter(self):
"""The circumcenter of the triangle
The circumcenter is the center of the circumcircle.
Returns
=======
circumcenter : Point
See Also
========
sympy.geometry.point.Point
Examples
========
>>> from sympy import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.circumcenter
Point2D(1/2, 1/2)
"""
a, b, c = [x.perpendicular_bisector() for x in self.sides]
return a.intersection(b)[0]
@property
def circumradius(self):
"""The radius of the circumcircle of the triangle.
Returns
=======
circumradius : number of Basic instance
See Also
========
sympy.geometry.ellipse.Circle.radius
Examples
========
>>> from sympy import Symbol
>>> from sympy import Point, Triangle
>>> a = Symbol('a')
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, a)
>>> t = Triangle(p1, p2, p3)
>>> t.circumradius
sqrt(a**2/4 + 1/4)
"""
return Point.distance(self.circumcenter, self.vertices[0])
@property
def circumcircle(self):
"""The circle which passes through the three vertices of the triangle.
Returns
=======
circumcircle : Circle
See Also
========
sympy.geometry.ellipse.Circle
Examples
========
>>> from sympy import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.circumcircle
Circle(Point2D(1/2, 1/2), sqrt(2)/2)
"""
return Circle(self.circumcenter, self.circumradius)
def bisectors(self):
"""The angle bisectors of the triangle.
An angle bisector of a triangle is a straight line through a vertex
which cuts the corresponding angle in half.
Returns
=======
bisectors : dict
Each key is a vertex (Point) and each value is the corresponding
bisector (Segment).
See Also
========
sympy.geometry.point.Point, sympy.geometry.line.Segment
Examples
========
>>> from sympy import Point, Triangle, Segment
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> from sympy import sqrt
>>> t.bisectors()[p2] == Segment(Point(1, 0), Point(0, sqrt(2) - 1))
True
"""
# use lines containing sides so containment check during
# intersection calculation can be avoided, thus reducing
# the processing time for calculating the bisectors
s = [Line(l) for l in self.sides]
v = self.vertices
c = self.incenter
l1 = Segment(v[0], Line(v[0], c).intersection(s[1])[0])
l2 = Segment(v[1], Line(v[1], c).intersection(s[2])[0])
l3 = Segment(v[2], Line(v[2], c).intersection(s[0])[0])
return {v[0]: l1, v[1]: l2, v[2]: l3}
@property
def incenter(self):
"""The center of the incircle.
The incircle is the circle which lies inside the triangle and touches
all three sides.
Returns
=======
incenter : Point
See Also
========
incircle, sympy.geometry.point.Point
Examples
========
>>> from sympy import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.incenter
Point2D(1 - sqrt(2)/2, 1 - sqrt(2)/2)
"""
s = self.sides
l = Matrix([s[i].length for i in [1, 2, 0]])
p = sum(l)
v = self.vertices
x = simplify(l.dot(Matrix([vi.x for vi in v]))/p)
y = simplify(l.dot(Matrix([vi.y for vi in v]))/p)
return Point(x, y)
@property
def inradius(self):
"""The radius of the incircle.
Returns
=======
inradius : number of Basic instance
See Also
========
incircle, sympy.geometry.ellipse.Circle.radius
Examples
========
>>> from sympy import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(4, 0), Point(0, 3)
>>> t = Triangle(p1, p2, p3)
>>> t.inradius
1
"""
return simplify(2 * self.area / self.perimeter)
@property
def incircle(self):
"""The incircle of the triangle.
The incircle is the circle which lies inside the triangle and touches
all three sides.
Returns
=======
incircle : Circle
See Also
========
sympy.geometry.ellipse.Circle
Examples
========
>>> from sympy import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(2, 0), Point(0, 2)
>>> t = Triangle(p1, p2, p3)
>>> t.incircle
Circle(Point2D(2 - sqrt(2), 2 - sqrt(2)), 2 - sqrt(2))
"""
return Circle(self.incenter, self.inradius)
@property
def exradii(self):
"""The radius of excircles of a triangle.
An excircle of the triangle is a circle lying outside the triangle,
tangent to one of its sides and tangent to the extensions of the
other two.
Returns
=======
exradii : dict
See Also
========
sympy.geometry.polygon.Triangle.inradius
Examples
========
The exradius touches the side of the triangle to which it is keyed, e.g.
the exradius touching side 2 is:
>>> from sympy import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(6, 0), Point(0, 2)
>>> t = Triangle(p1, p2, p3)
>>> t.exradii[t.sides[2]]
-2 + sqrt(10)
References
==========
.. [1] http://mathworld.wolfram.com/Exradius.html
.. [2] http://mathworld.wolfram.com/Excircles.html
"""
side = self.sides
a = side[0].length
b = side[1].length
c = side[2].length
s = (a+b+c)/2
area = self.area
exradii = {self.sides[0]: simplify(area/(s-a)),
self.sides[1]: simplify(area/(s-b)),
self.sides[2]: simplify(area/(s-c))}
return exradii
@property
def excenters(self):
"""Excenters of the triangle.
An excenter is the center of a circle that is tangent to a side of the
triangle and the extensions of the other two sides.
Returns
=======
excenters : dict
Examples
========
The excenters are keyed to the side of the triangle to which their corresponding
excircle is tangent: The center is keyed, e.g. the excenter of a circle touching
side 0 is:
>>> from sympy import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(6, 0), Point(0, 2)
>>> t = Triangle(p1, p2, p3)
>>> t.excenters[t.sides[0]]
Point2D(12*sqrt(10), 2/3 + sqrt(10)/3)
See Also
========
sympy.geometry.polygon.Triangle.exradii
References
==========
.. [1] http://mathworld.wolfram.com/Excircles.html
"""
s = self.sides
v = self.vertices
a = s[0].length
b = s[1].length
c = s[2].length
x = [v[0].x, v[1].x, v[2].x]
y = [v[0].y, v[1].y, v[2].y]
exc_coords = {
"x1": simplify(-a*x[0]+b*x[1]+c*x[2]/(-a+b+c)),
"x2": simplify(a*x[0]-b*x[1]+c*x[2]/(a-b+c)),
"x3": simplify(a*x[0]+b*x[1]-c*x[2]/(a+b-c)),
"y1": simplify(-a*y[0]+b*y[1]+c*y[2]/(-a+b+c)),
"y2": simplify(a*y[0]-b*y[1]+c*y[2]/(a-b+c)),
"y3": simplify(a*y[0]+b*y[1]-c*y[2]/(a+b-c))
}
excenters = {
s[0]: Point(exc_coords["x1"], exc_coords["y1"]),
s[1]: Point(exc_coords["x2"], exc_coords["y2"]),
s[2]: Point(exc_coords["x3"], exc_coords["y3"])
}
return excenters
@property
def medians(self):
"""The medians of the triangle.
A median of a triangle is a straight line through a vertex and the
midpoint of the opposite side, and divides the triangle into two
equal areas.
Returns
=======
medians : dict
Each key is a vertex (Point) and each value is the median (Segment)
at that point.
See Also
========
sympy.geometry.point.Point.midpoint, sympy.geometry.line.Segment.midpoint
Examples
========
>>> from sympy import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.medians[p1]
Segment2D(Point2D(0, 0), Point2D(1/2, 1/2))
"""
s = self.sides
v = self.vertices
return {v[0]: Segment(v[0], s[1].midpoint),
v[1]: Segment(v[1], s[2].midpoint),
v[2]: Segment(v[2], s[0].midpoint)}
@property
def medial(self):
"""The medial triangle of the triangle.
The triangle which is formed from the midpoints of the three sides.
Returns
=======
medial : Triangle
See Also
========
sympy.geometry.line.Segment.midpoint
Examples
========
>>> from sympy import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.medial
Triangle(Point2D(1/2, 0), Point2D(1/2, 1/2), Point2D(0, 1/2))
"""
s = self.sides
return Triangle(s[0].midpoint, s[1].midpoint, s[2].midpoint)
@property
def nine_point_circle(self):
"""The nine-point circle of the triangle.
Nine-point circle is the circumcircle of the medial triangle, which
passes through the feet of altitudes and the middle points of segments
connecting the vertices and the orthocenter.
Returns
=======
nine_point_circle : Circle
See also
========
sympy.geometry.line.Segment.midpoint
sympy.geometry.polygon.Triangle.medial
sympy.geometry.polygon.Triangle.orthocenter
Examples
========
>>> from sympy import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.nine_point_circle
Circle(Point2D(1/4, 1/4), sqrt(2)/4)
"""
return Circle(*self.medial.vertices)
@property
def eulerline(self):
"""The Euler line of the triangle.
The line which passes through circumcenter, centroid and orthocenter.
Returns
=======
eulerline : Line (or Point for equilateral triangles in which case all
centers coincide)
Examples
========
>>> from sympy import Point, Triangle
>>> p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1)
>>> t = Triangle(p1, p2, p3)
>>> t.eulerline
Line2D(Point2D(0, 0), Point2D(1/2, 1/2))
"""
if self.is_equilateral():
return self.orthocenter
return Line(self.orthocenter, self.circumcenter)
def rad(d):
"""Return the radian value for the given degrees (pi = 180 degrees)."""
return d*pi/180
def deg(r):
"""Return the degree value for the given radians (pi = 180 degrees)."""
return r/pi*180
def _slope(d):
rv = tan(rad(d))
return rv
def _asa(d1, l, d2):
"""Return triangle having side with length l on the x-axis."""
xy = Line((0, 0), slope=_slope(d1)).intersection(
Line((l, 0), slope=_slope(180 - d2)))[0]
return Triangle((0, 0), (l, 0), xy)
def _sss(l1, l2, l3):
"""Return triangle having side of length l1 on the x-axis."""
c1 = Circle((0, 0), l3)
c2 = Circle((l1, 0), l2)
inter = [a for a in c1.intersection(c2) if a.y.is_nonnegative]
if not inter:
return None
pt = inter[0]
return Triangle((0, 0), (l1, 0), pt)
def _sas(l1, d, l2):
"""Return triangle having side with length l2 on the x-axis."""
p1 = Point(0, 0)
p2 = Point(l2, 0)
p3 = Point(cos(rad(d))*l1, sin(rad(d))*l1)
return Triangle(p1, p2, p3)
|
2ba81acea8befb5dcf0a027afd173424b1e07853d288a3fc9510c6b54aeedf6e | """
This module implements Holonomic Functions and
various operations on them.
"""
from sympy.core import Add, Mul, Pow
from sympy.core.numbers import NaN, Infinity, NegativeInfinity, Float, I, pi
from sympy.core.singleton import S
from sympy.core.sorting import ordered
from sympy.core.symbol import Dummy, Symbol
from sympy.core.sympify import sympify
from sympy.functions.combinatorial.factorials import binomial, factorial, rf
from sympy.functions.elementary.exponential import exp_polar, exp, log
from sympy.functions.elementary.hyperbolic import (cosh, sinh)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (cos, sin, sinc)
from sympy.functions.special.error_functions import (Ci, Shi, Si, erf, erfc, erfi)
from sympy.functions.special.gamma_functions import gamma
from sympy.functions.special.hyper import hyper, meijerg
from sympy.integrals import meijerint
from sympy.matrices import Matrix
from sympy.polys.rings import PolyElement
from sympy.polys.fields import FracElement
from sympy.polys.domains import QQ, RR
from sympy.polys.polyclasses import DMF
from sympy.polys.polyroots import roots
from sympy.polys.polytools import Poly
from sympy.polys.matrices import DomainMatrix
from sympy.printing import sstr
from sympy.series.limits import limit
from sympy.series.order import Order
from sympy.simplify.hyperexpand import hyperexpand
from sympy.simplify.simplify import nsimplify
from sympy.solvers.solvers import solve
from .recurrence import HolonomicSequence, RecurrenceOperator, RecurrenceOperators
from .holonomicerrors import (NotPowerSeriesError, NotHyperSeriesError,
SingularityError, NotHolonomicError)
def _find_nonzero_solution(r, homosys):
ones = lambda shape: DomainMatrix.ones(shape, r.domain)
particular, nullspace = r._solve(homosys)
nullity = nullspace.shape[0]
nullpart = ones((1, nullity)) * nullspace
sol = (particular + nullpart).transpose()
return sol
def DifferentialOperators(base, generator):
r"""
This function is used to create annihilators using ``Dx``.
Explanation
===========
Returns an Algebra of Differential Operators also called Weyl Algebra
and the operator for differentiation i.e. the ``Dx`` operator.
Parameters
==========
base:
Base polynomial ring for the algebra.
The base polynomial ring is the ring of polynomials in :math:`x` that
will appear as coefficients in the operators.
generator:
Generator of the algebra which can
be either a noncommutative ``Symbol`` or a string. e.g. "Dx" or "D".
Examples
========
>>> from sympy import ZZ
>>> from sympy.abc import x
>>> from sympy.holonomic.holonomic import DifferentialOperators
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
>>> R
Univariate Differential Operator Algebra in intermediate Dx over the base ring ZZ[x]
>>> Dx*x
(1) + (x)*Dx
"""
ring = DifferentialOperatorAlgebra(base, generator)
return (ring, ring.derivative_operator)
class DifferentialOperatorAlgebra:
r"""
An Ore Algebra is a set of noncommutative polynomials in the
intermediate ``Dx`` and coefficients in a base polynomial ring :math:`A`.
It follows the commutation rule:
.. math ::
Dxa = \sigma(a)Dx + \delta(a)
for :math:`a \subset A`.
Where :math:`\sigma: A \Rightarrow A` is an endomorphism and :math:`\delta: A \rightarrow A`
is a skew-derivation i.e. :math:`\delta(ab) = \delta(a) b + \sigma(a) \delta(b)`.
If one takes the sigma as identity map and delta as the standard derivation
then it becomes the algebra of Differential Operators also called
a Weyl Algebra i.e. an algebra whose elements are Differential Operators.
This class represents a Weyl Algebra and serves as the parent ring for
Differential Operators.
Examples
========
>>> from sympy import ZZ
>>> from sympy import symbols
>>> from sympy.holonomic.holonomic import DifferentialOperators
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
>>> R
Univariate Differential Operator Algebra in intermediate Dx over the base ring
ZZ[x]
See Also
========
DifferentialOperator
"""
def __init__(self, base, generator):
# the base polynomial ring for the algebra
self.base = base
# the operator representing differentiation i.e. `Dx`
self.derivative_operator = DifferentialOperator(
[base.zero, base.one], self)
if generator is None:
self.gen_symbol = Symbol('Dx', commutative=False)
else:
if isinstance(generator, str):
self.gen_symbol = Symbol(generator, commutative=False)
elif isinstance(generator, Symbol):
self.gen_symbol = generator
def __str__(self):
string = 'Univariate Differential Operator Algebra in intermediate '\
+ sstr(self.gen_symbol) + ' over the base ring ' + \
(self.base).__str__()
return string
__repr__ = __str__
def __eq__(self, other):
if self.base == other.base and self.gen_symbol == other.gen_symbol:
return True
else:
return False
class DifferentialOperator:
"""
Differential Operators are elements of Weyl Algebra. The Operators
are defined by a list of polynomials in the base ring and the
parent ring of the Operator i.e. the algebra it belongs to.
Explanation
===========
Takes a list of polynomials for each power of ``Dx`` and the
parent ring which must be an instance of DifferentialOperatorAlgebra.
A Differential Operator can be created easily using
the operator ``Dx``. See examples below.
Examples
========
>>> from sympy.holonomic.holonomic import DifferentialOperator, DifferentialOperators
>>> from sympy import ZZ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx')
>>> DifferentialOperator([0, 1, x**2], R)
(1)*Dx + (x**2)*Dx**2
>>> (x*Dx*x + 1 - Dx**2)**2
(2*x**2 + 2*x + 1) + (4*x**3 + 2*x**2 - 4)*Dx + (x**4 - 6*x - 2)*Dx**2 + (-2*x**2)*Dx**3 + (1)*Dx**4
See Also
========
DifferentialOperatorAlgebra
"""
_op_priority = 20
def __init__(self, list_of_poly, parent):
"""
Parameters
==========
list_of_poly:
List of polynomials belonging to the base ring of the algebra.
parent:
Parent algebra of the operator.
"""
# the parent ring for this operator
# must be an DifferentialOperatorAlgebra object
self.parent = parent
base = self.parent.base
self.x = base.gens[0] if isinstance(base.gens[0], Symbol) else base.gens[0][0]
# sequence of polynomials in x for each power of Dx
# the list should not have trailing zeroes
# represents the operator
# convert the expressions into ring elements using from_sympy
for i, j in enumerate(list_of_poly):
if not isinstance(j, base.dtype):
list_of_poly[i] = base.from_sympy(sympify(j))
else:
list_of_poly[i] = base.from_sympy(base.to_sympy(j))
self.listofpoly = list_of_poly
# highest power of `Dx`
self.order = len(self.listofpoly) - 1
def __mul__(self, other):
"""
Multiplies two DifferentialOperator and returns another
DifferentialOperator instance using the commutation rule
Dx*a = a*Dx + a'
"""
listofself = self.listofpoly
if not isinstance(other, DifferentialOperator):
if not isinstance(other, self.parent.base.dtype):
listofother = [self.parent.base.from_sympy(sympify(other))]
else:
listofother = [other]
else:
listofother = other.listofpoly
# multiplies a polynomial `b` with a list of polynomials
def _mul_dmp_diffop(b, listofother):
if isinstance(listofother, list):
sol = []
for i in listofother:
sol.append(i * b)
return sol
else:
return [b * listofother]
sol = _mul_dmp_diffop(listofself[0], listofother)
# compute Dx^i * b
def _mul_Dxi_b(b):
sol1 = [self.parent.base.zero]
sol2 = []
if isinstance(b, list):
for i in b:
sol1.append(i)
sol2.append(i.diff())
else:
sol1.append(self.parent.base.from_sympy(b))
sol2.append(self.parent.base.from_sympy(b).diff())
return _add_lists(sol1, sol2)
for i in range(1, len(listofself)):
# find Dx^i * b in ith iteration
listofother = _mul_Dxi_b(listofother)
# solution = solution + listofself[i] * (Dx^i * b)
sol = _add_lists(sol, _mul_dmp_diffop(listofself[i], listofother))
return DifferentialOperator(sol, self.parent)
def __rmul__(self, other):
if not isinstance(other, DifferentialOperator):
if not isinstance(other, self.parent.base.dtype):
other = (self.parent.base).from_sympy(sympify(other))
sol = []
for j in self.listofpoly:
sol.append(other * j)
return DifferentialOperator(sol, self.parent)
def __add__(self, other):
if isinstance(other, DifferentialOperator):
sol = _add_lists(self.listofpoly, other.listofpoly)
return DifferentialOperator(sol, self.parent)
else:
list_self = self.listofpoly
if not isinstance(other, self.parent.base.dtype):
list_other = [((self.parent).base).from_sympy(sympify(other))]
else:
list_other = [other]
sol = []
sol.append(list_self[0] + list_other[0])
sol += list_self[1:]
return DifferentialOperator(sol, self.parent)
__radd__ = __add__
def __sub__(self, other):
return self + (-1) * other
def __rsub__(self, other):
return (-1) * self + other
def __neg__(self):
return -1 * self
def __truediv__(self, other):
return self * (S.One / other)
def __pow__(self, n):
if n == 1:
return self
if n == 0:
return DifferentialOperator([self.parent.base.one], self.parent)
# if self is `Dx`
if self.listofpoly == self.parent.derivative_operator.listofpoly:
sol = [self.parent.base.zero]*n
sol.append(self.parent.base.one)
return DifferentialOperator(sol, self.parent)
# the general case
else:
if n % 2 == 1:
powreduce = self**(n - 1)
return powreduce * self
elif n % 2 == 0:
powreduce = self**(n / 2)
return powreduce * powreduce
def __str__(self):
listofpoly = self.listofpoly
print_str = ''
for i, j in enumerate(listofpoly):
if j == self.parent.base.zero:
continue
if i == 0:
print_str += '(' + sstr(j) + ')'
continue
if print_str:
print_str += ' + '
if i == 1:
print_str += '(' + sstr(j) + ')*%s' %(self.parent.gen_symbol)
continue
print_str += '(' + sstr(j) + ')' + '*%s**' %(self.parent.gen_symbol) + sstr(i)
return print_str
__repr__ = __str__
def __eq__(self, other):
if isinstance(other, DifferentialOperator):
if self.listofpoly == other.listofpoly and self.parent == other.parent:
return True
else:
return False
else:
if self.listofpoly[0] == other:
for i in self.listofpoly[1:]:
if i is not self.parent.base.zero:
return False
return True
else:
return False
def is_singular(self, x0):
"""
Checks if the differential equation is singular at x0.
"""
base = self.parent.base
return x0 in roots(base.to_sympy(self.listofpoly[-1]), self.x)
class HolonomicFunction:
r"""
A Holonomic Function is a solution to a linear homogeneous ordinary
differential equation with polynomial coefficients. This differential
equation can also be represented by an annihilator i.e. a Differential
Operator ``L`` such that :math:`L.f = 0`. For uniqueness of these functions,
initial conditions can also be provided along with the annihilator.
Explanation
===========
Holonomic functions have closure properties and thus forms a ring.
Given two Holonomic Functions f and g, their sum, product,
integral and derivative is also a Holonomic Function.
For ordinary points initial condition should be a vector of values of
the derivatives i.e. :math:`[y(x_0), y'(x_0), y''(x_0) ... ]`.
For regular singular points initial conditions can also be provided in this
format:
:math:`{s0: [C_0, C_1, ...], s1: [C^1_0, C^1_1, ...], ...}`
where s0, s1, ... are the roots of indicial equation and vectors
:math:`[C_0, C_1, ...], [C^0_0, C^0_1, ...], ...` are the corresponding initial
terms of the associated power series. See Examples below.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy import QQ
>>> from sympy import symbols, S
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
>>> p = HolonomicFunction(Dx - 1, x, 0, [1]) # e^x
>>> q = HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]) # sin(x)
>>> p + q # annihilator of e^x + sin(x)
HolonomicFunction((-1) + (1)*Dx + (-1)*Dx**2 + (1)*Dx**3, x, 0, [1, 2, 1])
>>> p * q # annihilator of e^x * sin(x)
HolonomicFunction((2) + (-2)*Dx + (1)*Dx**2, x, 0, [0, 1])
An example of initial conditions for regular singular points,
the indicial equation has only one root `1/2`.
>>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]})
HolonomicFunction((-1/2) + (x)*Dx, x, 0, {1/2: [1]})
>>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]}).to_expr()
sqrt(x)
To plot a Holonomic Function, one can use `.evalf()` for numerical
computation. Here's an example on `sin(x)**2/x` using numpy and matplotlib.
>>> import sympy.holonomic # doctest: +SKIP
>>> from sympy import var, sin # doctest: +SKIP
>>> import matplotlib.pyplot as plt # doctest: +SKIP
>>> import numpy as np # doctest: +SKIP
>>> var("x") # doctest: +SKIP
>>> r = np.linspace(1, 5, 100) # doctest: +SKIP
>>> y = sympy.holonomic.expr_to_holonomic(sin(x)**2/x, x0=1).evalf(r) # doctest: +SKIP
>>> plt.plot(r, y, label="holonomic function") # doctest: +SKIP
>>> plt.show() # doctest: +SKIP
"""
_op_priority = 20
def __init__(self, annihilator, x, x0=0, y0=None):
"""
Parameters
==========
annihilator:
Annihilator of the Holonomic Function, represented by a
`DifferentialOperator` object.
x:
Variable of the function.
x0:
The point at which initial conditions are stored.
Generally an integer.
y0:
The initial condition. The proper format for the initial condition
is described in class docstring. To make the function unique,
length of the vector `y0` should be equal to or greater than the
order of differential equation.
"""
# initial condition
self.y0 = y0
# the point for initial conditions, default is zero.
self.x0 = x0
# differential operator L such that L.f = 0
self.annihilator = annihilator
self.x = x
def __str__(self):
if self._have_init_cond():
str_sol = 'HolonomicFunction(%s, %s, %s, %s)' % (str(self.annihilator),\
sstr(self.x), sstr(self.x0), sstr(self.y0))
else:
str_sol = 'HolonomicFunction(%s, %s)' % (str(self.annihilator),\
sstr(self.x))
return str_sol
__repr__ = __str__
def unify(self, other):
"""
Unifies the base polynomial ring of a given two Holonomic
Functions.
"""
R1 = self.annihilator.parent.base
R2 = other.annihilator.parent.base
dom1 = R1.dom
dom2 = R2.dom
if R1 == R2:
return (self, other)
R = (dom1.unify(dom2)).old_poly_ring(self.x)
newparent, _ = DifferentialOperators(R, str(self.annihilator.parent.gen_symbol))
sol1 = [R1.to_sympy(i) for i in self.annihilator.listofpoly]
sol2 = [R2.to_sympy(i) for i in other.annihilator.listofpoly]
sol1 = DifferentialOperator(sol1, newparent)
sol2 = DifferentialOperator(sol2, newparent)
sol1 = HolonomicFunction(sol1, self.x, self.x0, self.y0)
sol2 = HolonomicFunction(sol2, other.x, other.x0, other.y0)
return (sol1, sol2)
def is_singularics(self):
"""
Returns True if the function have singular initial condition
in the dictionary format.
Returns False if the function have ordinary initial condition
in the list format.
Returns None for all other cases.
"""
if isinstance(self.y0, dict):
return True
elif isinstance(self.y0, list):
return False
def _have_init_cond(self):
"""
Checks if the function have initial condition.
"""
return bool(self.y0)
def _singularics_to_ord(self):
"""
Converts a singular initial condition to ordinary if possible.
"""
a = list(self.y0)[0]
b = self.y0[a]
if len(self.y0) == 1 and a == int(a) and a > 0:
y0 = []
a = int(a)
for i in range(a):
y0.append(S.Zero)
y0 += [j * factorial(a + i) for i, j in enumerate(b)]
return HolonomicFunction(self.annihilator, self.x, self.x0, y0)
def __add__(self, other):
# if the ground domains are different
if self.annihilator.parent.base != other.annihilator.parent.base:
a, b = self.unify(other)
return a + b
deg1 = self.annihilator.order
deg2 = other.annihilator.order
dim = max(deg1, deg2)
R = self.annihilator.parent.base
K = R.get_field()
rowsself = [self.annihilator]
rowsother = [other.annihilator]
gen = self.annihilator.parent.derivative_operator
# constructing annihilators up to order dim
for i in range(dim - deg1):
diff1 = (gen * rowsself[-1])
rowsself.append(diff1)
for i in range(dim - deg2):
diff2 = (gen * rowsother[-1])
rowsother.append(diff2)
row = rowsself + rowsother
# constructing the matrix of the ansatz
r = []
for expr in row:
p = []
for i in range(dim + 1):
if i >= len(expr.listofpoly):
p.append(K.zero)
else:
p.append(K.new(expr.listofpoly[i].rep))
r.append(p)
# solving the linear system using gauss jordan solver
r = DomainMatrix(r, (len(row), dim+1), K).transpose()
homosys = DomainMatrix.zeros((dim+1, 1), K)
sol = _find_nonzero_solution(r, homosys)
# if a solution is not obtained then increasing the order by 1 in each
# iteration
while sol.is_zero_matrix:
dim += 1
diff1 = (gen * rowsself[-1])
rowsself.append(diff1)
diff2 = (gen * rowsother[-1])
rowsother.append(diff2)
row = rowsself + rowsother
r = []
for expr in row:
p = []
for i in range(dim + 1):
if i >= len(expr.listofpoly):
p.append(K.zero)
else:
p.append(K.new(expr.listofpoly[i].rep))
r.append(p)
# solving the linear system using gauss jordan solver
r = DomainMatrix(r, (len(row), dim+1), K).transpose()
homosys = DomainMatrix.zeros((dim+1, 1), K)
sol = _find_nonzero_solution(r, homosys)
# taking only the coefficients needed to multiply with `self`
# can be also be done the other way by taking R.H.S and multiplying with
# `other`
sol = sol.flat()[:dim + 1 - deg1]
sol1 = _normalize(sol, self.annihilator.parent)
# annihilator of the solution
sol = sol1 * (self.annihilator)
sol = _normalize(sol.listofpoly, self.annihilator.parent, negative=False)
if not (self._have_init_cond() and other._have_init_cond()):
return HolonomicFunction(sol, self.x)
# both the functions have ordinary initial conditions
if self.is_singularics() == False and other.is_singularics() == False:
# directly add the corresponding value
if self.x0 == other.x0:
# try to extended the initial conditions
# using the annihilator
y1 = _extend_y0(self, sol.order)
y2 = _extend_y0(other, sol.order)
y0 = [a + b for a, b in zip(y1, y2)]
return HolonomicFunction(sol, self.x, self.x0, y0)
else:
# change the initial conditions to a same point
selfat0 = self.annihilator.is_singular(0)
otherat0 = other.annihilator.is_singular(0)
if self.x0 == 0 and not selfat0 and not otherat0:
return self + other.change_ics(0)
elif other.x0 == 0 and not selfat0 and not otherat0:
return self.change_ics(0) + other
else:
selfatx0 = self.annihilator.is_singular(self.x0)
otheratx0 = other.annihilator.is_singular(self.x0)
if not selfatx0 and not otheratx0:
return self + other.change_ics(self.x0)
else:
return self.change_ics(other.x0) + other
if self.x0 != other.x0:
return HolonomicFunction(sol, self.x)
# if the functions have singular_ics
y1 = None
y2 = None
if self.is_singularics() == False and other.is_singularics() == True:
# convert the ordinary initial condition to singular.
_y0 = [j / factorial(i) for i, j in enumerate(self.y0)]
y1 = {S.Zero: _y0}
y2 = other.y0
elif self.is_singularics() == True and other.is_singularics() == False:
_y0 = [j / factorial(i) for i, j in enumerate(other.y0)]
y1 = self.y0
y2 = {S.Zero: _y0}
elif self.is_singularics() == True and other.is_singularics() == True:
y1 = self.y0
y2 = other.y0
# computing singular initial condition for the result
# taking union of the series terms of both functions
y0 = {}
for i in y1:
# add corresponding initial terms if the power
# on `x` is same
if i in y2:
y0[i] = [a + b for a, b in zip(y1[i], y2[i])]
else:
y0[i] = y1[i]
for i in y2:
if i not in y1:
y0[i] = y2[i]
return HolonomicFunction(sol, self.x, self.x0, y0)
def integrate(self, limits, initcond=False):
"""
Integrates the given holonomic function.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy import QQ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
>>> HolonomicFunction(Dx - 1, x, 0, [1]).integrate((x, 0, x)) # e^x - 1
HolonomicFunction((-1)*Dx + (1)*Dx**2, x, 0, [0, 1])
>>> HolonomicFunction(Dx**2 + 1, x, 0, [1, 0]).integrate((x, 0, x))
HolonomicFunction((1)*Dx + (1)*Dx**3, x, 0, [0, 1, 0])
"""
# to get the annihilator, just multiply by Dx from right
D = self.annihilator.parent.derivative_operator
# if the function have initial conditions of the series format
if self.is_singularics() == True:
r = self._singularics_to_ord()
if r:
return r.integrate(limits, initcond=initcond)
# computing singular initial condition for the function
# produced after integration.
y0 = {}
for i in self.y0:
c = self.y0[i]
c2 = []
for j, cj in enumerate(c):
if cj == 0:
c2.append(S.Zero)
# if power on `x` is -1, the integration becomes log(x)
# TODO: Implement this case
elif i + j + 1 == 0:
raise NotImplementedError("logarithmic terms in the series are not supported")
else:
c2.append(cj / S(i + j + 1))
y0[i + 1] = c2
if hasattr(limits, "__iter__"):
raise NotImplementedError("Definite integration for singular initial conditions")
return HolonomicFunction(self.annihilator * D, self.x, self.x0, y0)
# if no initial conditions are available for the function
if not self._have_init_cond():
if initcond:
return HolonomicFunction(self.annihilator * D, self.x, self.x0, [S.Zero])
return HolonomicFunction(self.annihilator * D, self.x)
# definite integral
# initial conditions for the answer will be stored at point `a`,
# where `a` is the lower limit of the integrand
if hasattr(limits, "__iter__"):
if len(limits) == 3 and limits[0] == self.x:
x0 = self.x0
a = limits[1]
b = limits[2]
definite = True
else:
definite = False
y0 = [S.Zero]
y0 += self.y0
indefinite_integral = HolonomicFunction(self.annihilator * D, self.x, self.x0, y0)
if not definite:
return indefinite_integral
# use evalf to get the values at `a`
if x0 != a:
try:
indefinite_expr = indefinite_integral.to_expr()
except (NotHyperSeriesError, NotPowerSeriesError):
indefinite_expr = None
if indefinite_expr:
lower = indefinite_expr.subs(self.x, a)
if isinstance(lower, NaN):
lower = indefinite_expr.limit(self.x, a)
else:
lower = indefinite_integral.evalf(a)
if b == self.x:
y0[0] = y0[0] - lower
return HolonomicFunction(self.annihilator * D, self.x, x0, y0)
elif S(b).is_Number:
if indefinite_expr:
upper = indefinite_expr.subs(self.x, b)
if isinstance(upper, NaN):
upper = indefinite_expr.limit(self.x, b)
else:
upper = indefinite_integral.evalf(b)
return upper - lower
# if the upper limit is `x`, the answer will be a function
if b == self.x:
return HolonomicFunction(self.annihilator * D, self.x, a, y0)
# if the upper limits is a Number, a numerical value will be returned
elif S(b).is_Number:
try:
s = HolonomicFunction(self.annihilator * D, self.x, a,\
y0).to_expr()
indefinite = s.subs(self.x, b)
if not isinstance(indefinite, NaN):
return indefinite
else:
return s.limit(self.x, b)
except (NotHyperSeriesError, NotPowerSeriesError):
return HolonomicFunction(self.annihilator * D, self.x, a, y0).evalf(b)
return HolonomicFunction(self.annihilator * D, self.x)
def diff(self, *args, **kwargs):
r"""
Differentiation of the given Holonomic function.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy import ZZ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx')
>>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).diff().to_expr()
cos(x)
>>> HolonomicFunction(Dx - 2, x, 0, [1]).diff().to_expr()
2*exp(2*x)
See Also
========
.integrate()
"""
kwargs.setdefault('evaluate', True)
if args:
if args[0] != self.x:
return S.Zero
elif len(args) == 2:
sol = self
for i in range(args[1]):
sol = sol.diff(args[0])
return sol
ann = self.annihilator
# if the function is constant.
if ann.listofpoly[0] == ann.parent.base.zero and ann.order == 1:
return S.Zero
# if the coefficient of y in the differential equation is zero.
# a shifting is done to compute the answer in this case.
elif ann.listofpoly[0] == ann.parent.base.zero:
sol = DifferentialOperator(ann.listofpoly[1:], ann.parent)
if self._have_init_cond():
# if ordinary initial condition
if self.is_singularics() == False:
return HolonomicFunction(sol, self.x, self.x0, self.y0[1:])
# TODO: support for singular initial condition
return HolonomicFunction(sol, self.x)
else:
return HolonomicFunction(sol, self.x)
# the general algorithm
R = ann.parent.base
K = R.get_field()
seq_dmf = [K.new(i.rep) for i in ann.listofpoly]
# -y = a1*y'/a0 + a2*y''/a0 ... + an*y^n/a0
rhs = [i / seq_dmf[0] for i in seq_dmf[1:]]
rhs.insert(0, K.zero)
# differentiate both lhs and rhs
sol = _derivate_diff_eq(rhs)
# add the term y' in lhs to rhs
sol = _add_lists(sol, [K.zero, K.one])
sol = _normalize(sol[1:], self.annihilator.parent, negative=False)
if not self._have_init_cond() or self.is_singularics() == True:
return HolonomicFunction(sol, self.x)
y0 = _extend_y0(self, sol.order + 1)[1:]
return HolonomicFunction(sol, self.x, self.x0, y0)
def __eq__(self, other):
if self.annihilator == other.annihilator:
if self.x == other.x:
if self._have_init_cond() and other._have_init_cond():
if self.x0 == other.x0 and self.y0 == other.y0:
return True
else:
return False
else:
return True
else:
return False
else:
return False
def __mul__(self, other):
ann_self = self.annihilator
if not isinstance(other, HolonomicFunction):
other = sympify(other)
if other.has(self.x):
raise NotImplementedError(" Can't multiply a HolonomicFunction and expressions/functions.")
if not self._have_init_cond():
return self
else:
y0 = _extend_y0(self, ann_self.order)
y1 = []
for j in y0:
y1.append((Poly.new(j, self.x) * other).rep)
return HolonomicFunction(ann_self, self.x, self.x0, y1)
if self.annihilator.parent.base != other.annihilator.parent.base:
a, b = self.unify(other)
return a * b
ann_other = other.annihilator
list_self = []
list_other = []
a = ann_self.order
b = ann_other.order
R = ann_self.parent.base
K = R.get_field()
for j in ann_self.listofpoly:
list_self.append(K.new(j.rep))
for j in ann_other.listofpoly:
list_other.append(K.new(j.rep))
# will be used to reduce the degree
self_red = [-list_self[i] / list_self[a] for i in range(a)]
other_red = [-list_other[i] / list_other[b] for i in range(b)]
# coeff_mull[i][j] is the coefficient of Dx^i(f).Dx^j(g)
coeff_mul = [[K.zero for i in range(b + 1)] for j in range(a + 1)]
coeff_mul[0][0] = K.one
# making the ansatz
lin_sys_elements = [[coeff_mul[i][j] for i in range(a) for j in range(b)]]
lin_sys = DomainMatrix(lin_sys_elements, (1, a*b), K).transpose()
homo_sys = DomainMatrix.zeros((a*b, 1), K)
sol = _find_nonzero_solution(lin_sys, homo_sys)
# until a non trivial solution is found
while sol.is_zero_matrix:
# updating the coefficients Dx^i(f).Dx^j(g) for next degree
for i in range(a - 1, -1, -1):
for j in range(b - 1, -1, -1):
coeff_mul[i][j + 1] += coeff_mul[i][j]
coeff_mul[i + 1][j] += coeff_mul[i][j]
if isinstance(coeff_mul[i][j], K.dtype):
coeff_mul[i][j] = DMFdiff(coeff_mul[i][j])
else:
coeff_mul[i][j] = coeff_mul[i][j].diff(self.x)
# reduce the terms to lower power using annihilators of f, g
for i in range(a + 1):
if not coeff_mul[i][b].is_zero:
for j in range(b):
coeff_mul[i][j] += other_red[j] * \
coeff_mul[i][b]
coeff_mul[i][b] = K.zero
# not d2 + 1, as that is already covered in previous loop
for j in range(b):
if not coeff_mul[a][j] == 0:
for i in range(a):
coeff_mul[i][j] += self_red[i] * \
coeff_mul[a][j]
coeff_mul[a][j] = K.zero
lin_sys_elements.append([coeff_mul[i][j] for i in range(a) for j in range(b)])
lin_sys = DomainMatrix(lin_sys_elements, (len(lin_sys_elements), a*b), K).transpose()
sol = _find_nonzero_solution(lin_sys, homo_sys)
sol_ann = _normalize(sol.flat(), self.annihilator.parent, negative=False)
if not (self._have_init_cond() and other._have_init_cond()):
return HolonomicFunction(sol_ann, self.x)
if self.is_singularics() == False and other.is_singularics() == False:
# if both the conditions are at same point
if self.x0 == other.x0:
# try to find more initial conditions
y0_self = _extend_y0(self, sol_ann.order)
y0_other = _extend_y0(other, sol_ann.order)
# h(x0) = f(x0) * g(x0)
y0 = [y0_self[0] * y0_other[0]]
# coefficient of Dx^j(f)*Dx^i(g) in Dx^i(fg)
for i in range(1, min(len(y0_self), len(y0_other))):
coeff = [[0 for i in range(i + 1)] for j in range(i + 1)]
for j in range(i + 1):
for k in range(i + 1):
if j + k == i:
coeff[j][k] = binomial(i, j)
sol = 0
for j in range(i + 1):
for k in range(i + 1):
sol += coeff[j][k]* y0_self[j] * y0_other[k]
y0.append(sol)
return HolonomicFunction(sol_ann, self.x, self.x0, y0)
# if the points are different, consider one
else:
selfat0 = self.annihilator.is_singular(0)
otherat0 = other.annihilator.is_singular(0)
if self.x0 == 0 and not selfat0 and not otherat0:
return self * other.change_ics(0)
elif other.x0 == 0 and not selfat0 and not otherat0:
return self.change_ics(0) * other
else:
selfatx0 = self.annihilator.is_singular(self.x0)
otheratx0 = other.annihilator.is_singular(self.x0)
if not selfatx0 and not otheratx0:
return self * other.change_ics(self.x0)
else:
return self.change_ics(other.x0) * other
if self.x0 != other.x0:
return HolonomicFunction(sol_ann, self.x)
# if the functions have singular_ics
y1 = None
y2 = None
if self.is_singularics() == False and other.is_singularics() == True:
_y0 = [j / factorial(i) for i, j in enumerate(self.y0)]
y1 = {S.Zero: _y0}
y2 = other.y0
elif self.is_singularics() == True and other.is_singularics() == False:
_y0 = [j / factorial(i) for i, j in enumerate(other.y0)]
y1 = self.y0
y2 = {S.Zero: _y0}
elif self.is_singularics() == True and other.is_singularics() == True:
y1 = self.y0
y2 = other.y0
y0 = {}
# multiply every possible pair of the series terms
for i in y1:
for j in y2:
k = min(len(y1[i]), len(y2[j]))
c = []
for a in range(k):
s = S.Zero
for b in range(a + 1):
s += y1[i][b] * y2[j][a - b]
c.append(s)
if not i + j in y0:
y0[i + j] = c
else:
y0[i + j] = [a + b for a, b in zip(c, y0[i + j])]
return HolonomicFunction(sol_ann, self.x, self.x0, y0)
__rmul__ = __mul__
def __sub__(self, other):
return self + other * -1
def __rsub__(self, other):
return self * -1 + other
def __neg__(self):
return -1 * self
def __truediv__(self, other):
return self * (S.One / other)
def __pow__(self, n):
if self.annihilator.order <= 1:
ann = self.annihilator
parent = ann.parent
if self.y0 is None:
y0 = None
else:
y0 = [list(self.y0)[0] ** n]
p0 = ann.listofpoly[0]
p1 = ann.listofpoly[1]
p0 = (Poly.new(p0, self.x) * n).rep
sol = [parent.base.to_sympy(i) for i in [p0, p1]]
dd = DifferentialOperator(sol, parent)
return HolonomicFunction(dd, self.x, self.x0, y0)
if n < 0:
raise NotHolonomicError("Negative Power on a Holonomic Function")
if n == 0:
Dx = self.annihilator.parent.derivative_operator
return HolonomicFunction(Dx, self.x, S.Zero, [S.One])
if n == 1:
return self
else:
if n % 2 == 1:
powreduce = self**(n - 1)
return powreduce * self
elif n % 2 == 0:
powreduce = self**(n / 2)
return powreduce * powreduce
def degree(self):
"""
Returns the highest power of `x` in the annihilator.
"""
sol = [i.degree() for i in self.annihilator.listofpoly]
return max(sol)
def composition(self, expr, *args, **kwargs):
"""
Returns function after composition of a holonomic
function with an algebraic function. The method cannot compute
initial conditions for the result by itself, so they can be also be
provided.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy import QQ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
>>> HolonomicFunction(Dx - 1, x).composition(x**2, 0, [1]) # e^(x**2)
HolonomicFunction((-2*x) + (1)*Dx, x, 0, [1])
>>> HolonomicFunction(Dx**2 + 1, x).composition(x**2 - 1, 1, [1, 0])
HolonomicFunction((4*x**3) + (-1)*Dx + (x)*Dx**2, x, 1, [1, 0])
See Also
========
from_hyper()
"""
R = self.annihilator.parent
a = self.annihilator.order
diff = expr.diff(self.x)
listofpoly = self.annihilator.listofpoly
for i, j in enumerate(listofpoly):
if isinstance(j, self.annihilator.parent.base.dtype):
listofpoly[i] = self.annihilator.parent.base.to_sympy(j)
r = listofpoly[a].subs({self.x:expr})
subs = [-listofpoly[i].subs({self.x:expr}) / r for i in range (a)]
coeffs = [S.Zero for i in range(a)] # coeffs[i] == coeff of (D^i f)(a) in D^k (f(a))
coeffs[0] = S.One
system = [coeffs]
homogeneous = Matrix([[S.Zero for i in range(a)]]).transpose()
while True:
coeffs_next = [p.diff(self.x) for p in coeffs]
for i in range(a - 1):
coeffs_next[i + 1] += (coeffs[i] * diff)
for i in range(a):
coeffs_next[i] += (coeffs[-1] * subs[i] * diff)
coeffs = coeffs_next
# check for linear relations
system.append(coeffs)
sol, taus = (Matrix(system).transpose()
).gauss_jordan_solve(homogeneous)
if sol.is_zero_matrix is not True:
break
tau = list(taus)[0]
sol = sol.subs(tau, 1)
sol = _normalize(sol[0:], R, negative=False)
# if initial conditions are given for the resulting function
if args:
return HolonomicFunction(sol, self.x, args[0], args[1])
return HolonomicFunction(sol, self.x)
def to_sequence(self, lb=True):
r"""
Finds recurrence relation for the coefficients in the series expansion
of the function about :math:`x_0`, where :math:`x_0` is the point at
which the initial condition is stored.
Explanation
===========
If the point :math:`x_0` is ordinary, solution of the form :math:`[(R, n_0)]`
is returned. Where :math:`R` is the recurrence relation and :math:`n_0` is the
smallest ``n`` for which the recurrence holds true.
If the point :math:`x_0` is regular singular, a list of solutions in
the format :math:`(R, p, n_0)` is returned, i.e. `[(R, p, n_0), ... ]`.
Each tuple in this vector represents a recurrence relation :math:`R`
associated with a root of the indicial equation ``p``. Conditions of
a different format can also be provided in this case, see the
docstring of HolonomicFunction class.
If it's not possible to numerically compute a initial condition,
it is returned as a symbol :math:`C_j`, denoting the coefficient of
:math:`(x - x_0)^j` in the power series about :math:`x_0`.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy import QQ
>>> from sympy import symbols, S
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
>>> HolonomicFunction(Dx - 1, x, 0, [1]).to_sequence()
[(HolonomicSequence((-1) + (n + 1)Sn, n), u(0) = 1, 0)]
>>> HolonomicFunction((1 + x)*Dx**2 + Dx, x, 0, [0, 1]).to_sequence()
[(HolonomicSequence((n**2) + (n**2 + n)Sn, n), u(0) = 0, u(1) = 1, u(2) = -1/2, 2)]
>>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]}).to_sequence()
[(HolonomicSequence((n), n), u(0) = 1, 1/2, 1)]
See Also
========
HolonomicFunction.series()
References
==========
.. [1] https://hal.inria.fr/inria-00070025/document
.. [2] http://www.risc.jku.at/publications/download/risc_2244/DIPLFORM.pdf
"""
if self.x0 != 0:
return self.shift_x(self.x0).to_sequence()
# check whether a power series exists if the point is singular
if self.annihilator.is_singular(self.x0):
return self._frobenius(lb=lb)
dict1 = {}
n = Symbol('n', integer=True)
dom = self.annihilator.parent.base.dom
R, _ = RecurrenceOperators(dom.old_poly_ring(n), 'Sn')
# substituting each term of the form `x^k Dx^j` in the
# annihilator, according to the formula below:
# x^k Dx^j = Sum(rf(n + 1 - k, j) * a(n + j - k) * x^n, (n, k, oo))
# for explanation see [2].
for i, j in enumerate(self.annihilator.listofpoly):
listofdmp = j.all_coeffs()
degree = len(listofdmp) - 1
for k in range(degree + 1):
coeff = listofdmp[degree - k]
if coeff == 0:
continue
if (i - k, k) in dict1:
dict1[(i - k, k)] += (dom.to_sympy(coeff) * rf(n - k + 1, i))
else:
dict1[(i - k, k)] = (dom.to_sympy(coeff) * rf(n - k + 1, i))
sol = []
keylist = [i[0] for i in dict1]
lower = min(keylist)
upper = max(keylist)
degree = self.degree()
# the recurrence relation holds for all values of
# n greater than smallest_n, i.e. n >= smallest_n
smallest_n = lower + degree
dummys = {}
eqs = []
unknowns = []
# an appropriate shift of the recurrence
for j in range(lower, upper + 1):
if j in keylist:
temp = S.Zero
for k in dict1.keys():
if k[0] == j:
temp += dict1[k].subs(n, n - lower)
sol.append(temp)
else:
sol.append(S.Zero)
# the recurrence relation
sol = RecurrenceOperator(sol, R)
# computing the initial conditions for recurrence
order = sol.order
all_roots = roots(R.base.to_sympy(sol.listofpoly[-1]), n, filter='Z')
all_roots = all_roots.keys()
if all_roots:
max_root = max(all_roots) + 1
smallest_n = max(max_root, smallest_n)
order += smallest_n
y0 = _extend_y0(self, order)
u0 = []
# u(n) = y^n(0)/factorial(n)
for i, j in enumerate(y0):
u0.append(j / factorial(i))
# if sufficient conditions can't be computed then
# try to use the series method i.e.
# equate the coefficients of x^k in the equation formed by
# substituting the series in differential equation, to zero.
if len(u0) < order:
for i in range(degree):
eq = S.Zero
for j in dict1:
if i + j[0] < 0:
dummys[i + j[0]] = S.Zero
elif i + j[0] < len(u0):
dummys[i + j[0]] = u0[i + j[0]]
elif not i + j[0] in dummys:
dummys[i + j[0]] = Symbol('C_%s' %(i + j[0]))
unknowns.append(dummys[i + j[0]])
if j[1] <= i:
eq += dict1[j].subs(n, i) * dummys[i + j[0]]
eqs.append(eq)
# solve the system of equations formed
soleqs = solve(eqs, *unknowns)
if isinstance(soleqs, dict):
for i in range(len(u0), order):
if i not in dummys:
dummys[i] = Symbol('C_%s' %i)
if dummys[i] in soleqs:
u0.append(soleqs[dummys[i]])
else:
u0.append(dummys[i])
if lb:
return [(HolonomicSequence(sol, u0), smallest_n)]
return [HolonomicSequence(sol, u0)]
for i in range(len(u0), order):
if i not in dummys:
dummys[i] = Symbol('C_%s' %i)
s = False
for j in soleqs:
if dummys[i] in j:
u0.append(j[dummys[i]])
s = True
if not s:
u0.append(dummys[i])
if lb:
return [(HolonomicSequence(sol, u0), smallest_n)]
return [HolonomicSequence(sol, u0)]
def _frobenius(self, lb=True):
# compute the roots of indicial equation
indicialroots = self._indicial()
reals = []
compl = []
for i in ordered(indicialroots.keys()):
if i.is_real:
reals.extend([i] * indicialroots[i])
else:
a, b = i.as_real_imag()
compl.extend([(i, a, b)] * indicialroots[i])
# sort the roots for a fixed ordering of solution
compl.sort(key=lambda x : x[1])
compl.sort(key=lambda x : x[2])
reals.sort()
# grouping the roots, roots differ by an integer are put in the same group.
grp = []
for i in reals:
intdiff = False
if len(grp) == 0:
grp.append([i])
continue
for j in grp:
if int(j[0] - i) == j[0] - i:
j.append(i)
intdiff = True
break
if not intdiff:
grp.append([i])
# True if none of the roots differ by an integer i.e.
# each element in group have only one member
independent = True if all(len(i) == 1 for i in grp) else False
allpos = all(i >= 0 for i in reals)
allint = all(int(i) == i for i in reals)
# if initial conditions are provided
# then use them.
if self.is_singularics() == True:
rootstoconsider = []
for i in ordered(self.y0.keys()):
for j in ordered(indicialroots.keys()):
if j == i:
rootstoconsider.append(i)
elif allpos and allint:
rootstoconsider = [min(reals)]
elif independent:
rootstoconsider = [i[0] for i in grp] + [j[0] for j in compl]
elif not allint:
rootstoconsider = []
for i in reals:
if not int(i) == i:
rootstoconsider.append(i)
elif not allpos:
if not self._have_init_cond() or S(self.y0[0]).is_finite == False:
rootstoconsider = [min(reals)]
else:
posroots = []
for i in reals:
if i >= 0:
posroots.append(i)
rootstoconsider = [min(posroots)]
n = Symbol('n', integer=True)
dom = self.annihilator.parent.base.dom
R, _ = RecurrenceOperators(dom.old_poly_ring(n), 'Sn')
finalsol = []
char = ord('C')
for p in rootstoconsider:
dict1 = {}
for i, j in enumerate(self.annihilator.listofpoly):
listofdmp = j.all_coeffs()
degree = len(listofdmp) - 1
for k in range(degree + 1):
coeff = listofdmp[degree - k]
if coeff == 0:
continue
if (i - k, k - i) in dict1:
dict1[(i - k, k - i)] += (dom.to_sympy(coeff) * rf(n - k + 1 + p, i))
else:
dict1[(i - k, k - i)] = (dom.to_sympy(coeff) * rf(n - k + 1 + p, i))
sol = []
keylist = [i[0] for i in dict1]
lower = min(keylist)
upper = max(keylist)
degree = max([i[1] for i in dict1])
degree2 = min([i[1] for i in dict1])
smallest_n = lower + degree
dummys = {}
eqs = []
unknowns = []
for j in range(lower, upper + 1):
if j in keylist:
temp = S.Zero
for k in dict1.keys():
if k[0] == j:
temp += dict1[k].subs(n, n - lower)
sol.append(temp)
else:
sol.append(S.Zero)
# the recurrence relation
sol = RecurrenceOperator(sol, R)
# computing the initial conditions for recurrence
order = sol.order
all_roots = roots(R.base.to_sympy(sol.listofpoly[-1]), n, filter='Z')
all_roots = all_roots.keys()
if all_roots:
max_root = max(all_roots) + 1
smallest_n = max(max_root, smallest_n)
order += smallest_n
u0 = []
if self.is_singularics() == True:
u0 = self.y0[p]
elif self.is_singularics() == False and p >= 0 and int(p) == p and len(rootstoconsider) == 1:
y0 = _extend_y0(self, order + int(p))
# u(n) = y^n(0)/factorial(n)
if len(y0) > int(p):
for i in range(int(p), len(y0)):
u0.append(y0[i] / factorial(i))
if len(u0) < order:
for i in range(degree2, degree):
eq = S.Zero
for j in dict1:
if i + j[0] < 0:
dummys[i + j[0]] = S.Zero
elif i + j[0] < len(u0):
dummys[i + j[0]] = u0[i + j[0]]
elif not i + j[0] in dummys:
letter = chr(char) + '_%s' %(i + j[0])
dummys[i + j[0]] = Symbol(letter)
unknowns.append(dummys[i + j[0]])
if j[1] <= i:
eq += dict1[j].subs(n, i) * dummys[i + j[0]]
eqs.append(eq)
# solve the system of equations formed
soleqs = solve(eqs, *unknowns)
if isinstance(soleqs, dict):
for i in range(len(u0), order):
if i not in dummys:
letter = chr(char) + '_%s' %i
dummys[i] = Symbol(letter)
if dummys[i] in soleqs:
u0.append(soleqs[dummys[i]])
else:
u0.append(dummys[i])
if lb:
finalsol.append((HolonomicSequence(sol, u0), p, smallest_n))
continue
else:
finalsol.append((HolonomicSequence(sol, u0), p))
continue
for i in range(len(u0), order):
if i not in dummys:
letter = chr(char) + '_%s' %i
dummys[i] = Symbol(letter)
s = False
for j in soleqs:
if dummys[i] in j:
u0.append(j[dummys[i]])
s = True
if not s:
u0.append(dummys[i])
if lb:
finalsol.append((HolonomicSequence(sol, u0), p, smallest_n))
else:
finalsol.append((HolonomicSequence(sol, u0), p))
char += 1
return finalsol
def series(self, n=6, coefficient=False, order=True, _recur=None):
r"""
Finds the power series expansion of given holonomic function about :math:`x_0`.
Explanation
===========
A list of series might be returned if :math:`x_0` is a regular point with
multiple roots of the indicial equation.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy import QQ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
>>> HolonomicFunction(Dx - 1, x, 0, [1]).series() # e^x
1 + x + x**2/2 + x**3/6 + x**4/24 + x**5/120 + O(x**6)
>>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).series(n=8) # sin(x)
x - x**3/6 + x**5/120 - x**7/5040 + O(x**8)
See Also
========
HolonomicFunction.to_sequence()
"""
if _recur is None:
recurrence = self.to_sequence()
else:
recurrence = _recur
if isinstance(recurrence, tuple) and len(recurrence) == 2:
recurrence = recurrence[0]
constantpower = 0
elif isinstance(recurrence, tuple) and len(recurrence) == 3:
constantpower = recurrence[1]
recurrence = recurrence[0]
elif len(recurrence) == 1 and len(recurrence[0]) == 2:
recurrence = recurrence[0][0]
constantpower = 0
elif len(recurrence) == 1 and len(recurrence[0]) == 3:
constantpower = recurrence[0][1]
recurrence = recurrence[0][0]
else:
sol = []
for i in recurrence:
sol.append(self.series(_recur=i))
return sol
n = n - int(constantpower)
l = len(recurrence.u0) - 1
k = recurrence.recurrence.order
x = self.x
x0 = self.x0
seq_dmp = recurrence.recurrence.listofpoly
R = recurrence.recurrence.parent.base
K = R.get_field()
seq = []
for i, j in enumerate(seq_dmp):
seq.append(K.new(j.rep))
sub = [-seq[i] / seq[k] for i in range(k)]
sol = [i for i in recurrence.u0]
if l + 1 >= n:
pass
else:
# use the initial conditions to find the next term
for i in range(l + 1 - k, n - k):
coeff = S.Zero
for j in range(k):
if i + j >= 0:
coeff += DMFsubs(sub[j], i) * sol[i + j]
sol.append(coeff)
if coefficient:
return sol
ser = S.Zero
for i, j in enumerate(sol):
ser += x**(i + constantpower) * j
if order:
ser += Order(x**(n + int(constantpower)), x)
if x0 != 0:
return ser.subs(x, x - x0)
return ser
def _indicial(self):
"""
Computes roots of the Indicial equation.
"""
if self.x0 != 0:
return self.shift_x(self.x0)._indicial()
list_coeff = self.annihilator.listofpoly
R = self.annihilator.parent.base
x = self.x
s = R.zero
y = R.one
def _pole_degree(poly):
root_all = roots(R.to_sympy(poly), x, filter='Z')
if 0 in root_all.keys():
return root_all[0]
else:
return 0
degree = [j.degree() for j in list_coeff]
degree = max(degree)
inf = 10 * (max(1, degree) + max(1, self.annihilator.order))
deg = lambda q: inf if q.is_zero else _pole_degree(q)
b = deg(list_coeff[0])
for j in range(1, len(list_coeff)):
b = min(b, deg(list_coeff[j]) - j)
for i, j in enumerate(list_coeff):
listofdmp = j.all_coeffs()
degree = len(listofdmp) - 1
if - i - b <= 0 and degree - i - b >= 0:
s = s + listofdmp[degree - i - b] * y
y *= x - i
return roots(R.to_sympy(s), x)
def evalf(self, points, method='RK4', h=0.05, derivatives=False):
r"""
Finds numerical value of a holonomic function using numerical methods.
(RK4 by default). A set of points (real or complex) must be provided
which will be the path for the numerical integration.
Explanation
===========
The path should be given as a list :math:`[x_1, x_2, \dots x_n]`. The numerical
values will be computed at each point in this order
:math:`x_1 \rightarrow x_2 \rightarrow x_3 \dots \rightarrow x_n`.
Returns values of the function at :math:`x_1, x_2, \dots x_n` in a list.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy import QQ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx')
A straight line on the real axis from (0 to 1)
>>> r = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]
Runge-Kutta 4th order on e^x from 0.1 to 1.
Exact solution at 1 is 2.71828182845905
>>> HolonomicFunction(Dx - 1, x, 0, [1]).evalf(r)
[1.10517083333333, 1.22140257085069, 1.34985849706254, 1.49182424008069,
1.64872063859684, 1.82211796209193, 2.01375162659678, 2.22553956329232,
2.45960141378007, 2.71827974413517]
Euler's method for the same
>>> HolonomicFunction(Dx - 1, x, 0, [1]).evalf(r, method='Euler')
[1.1, 1.21, 1.331, 1.4641, 1.61051, 1.771561, 1.9487171, 2.14358881,
2.357947691, 2.5937424601]
One can also observe that the value obtained using Runge-Kutta 4th order
is much more accurate than Euler's method.
"""
from sympy.holonomic.numerical import _evalf
lp = False
# if a point `b` is given instead of a mesh
if not hasattr(points, "__iter__"):
lp = True
b = S(points)
if self.x0 == b:
return _evalf(self, [b], method=method, derivatives=derivatives)[-1]
if not b.is_Number:
raise NotImplementedError
a = self.x0
if a > b:
h = -h
n = int((b - a) / h)
points = [a + h]
for i in range(n - 1):
points.append(points[-1] + h)
for i in roots(self.annihilator.parent.base.to_sympy(self.annihilator.listofpoly[-1]), self.x):
if i == self.x0 or i in points:
raise SingularityError(self, i)
if lp:
return _evalf(self, points, method=method, derivatives=derivatives)[-1]
return _evalf(self, points, method=method, derivatives=derivatives)
def change_x(self, z):
"""
Changes only the variable of Holonomic Function, for internal
purposes. For composition use HolonomicFunction.composition()
"""
dom = self.annihilator.parent.base.dom
R = dom.old_poly_ring(z)
parent, _ = DifferentialOperators(R, 'Dx')
sol = []
for j in self.annihilator.listofpoly:
sol.append(R(j.rep))
sol = DifferentialOperator(sol, parent)
return HolonomicFunction(sol, z, self.x0, self.y0)
def shift_x(self, a):
"""
Substitute `x + a` for `x`.
"""
x = self.x
listaftershift = self.annihilator.listofpoly
base = self.annihilator.parent.base
sol = [base.from_sympy(base.to_sympy(i).subs(x, x + a)) for i in listaftershift]
sol = DifferentialOperator(sol, self.annihilator.parent)
x0 = self.x0 - a
if not self._have_init_cond():
return HolonomicFunction(sol, x)
return HolonomicFunction(sol, x, x0, self.y0)
def to_hyper(self, as_list=False, _recur=None):
r"""
Returns a hypergeometric function (or linear combination of them)
representing the given holonomic function.
Explanation
===========
Returns an answer of the form:
`a_1 \cdot x^{b_1} \cdot{hyper()} + a_2 \cdot x^{b_2} \cdot{hyper()} \dots`
This is very useful as one can now use ``hyperexpand`` to find the
symbolic expressions/functions.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy import ZZ
>>> from sympy import symbols
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx')
>>> # sin(x)
>>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).to_hyper()
x*hyper((), (3/2,), -x**2/4)
>>> # exp(x)
>>> HolonomicFunction(Dx - 1, x, 0, [1]).to_hyper()
hyper((), (), x)
See Also
========
from_hyper, from_meijerg
"""
if _recur is None:
recurrence = self.to_sequence()
else:
recurrence = _recur
if isinstance(recurrence, tuple) and len(recurrence) == 2:
smallest_n = recurrence[1]
recurrence = recurrence[0]
constantpower = 0
elif isinstance(recurrence, tuple) and len(recurrence) == 3:
smallest_n = recurrence[2]
constantpower = recurrence[1]
recurrence = recurrence[0]
elif len(recurrence) == 1 and len(recurrence[0]) == 2:
smallest_n = recurrence[0][1]
recurrence = recurrence[0][0]
constantpower = 0
elif len(recurrence) == 1 and len(recurrence[0]) == 3:
smallest_n = recurrence[0][2]
constantpower = recurrence[0][1]
recurrence = recurrence[0][0]
else:
sol = self.to_hyper(as_list=as_list, _recur=recurrence[0])
for i in recurrence[1:]:
sol += self.to_hyper(as_list=as_list, _recur=i)
return sol
u0 = recurrence.u0
r = recurrence.recurrence
x = self.x
x0 = self.x0
# order of the recurrence relation
m = r.order
# when no recurrence exists, and the power series have finite terms
if m == 0:
nonzeroterms = roots(r.parent.base.to_sympy(r.listofpoly[0]), recurrence.n, filter='R')
sol = S.Zero
for j, i in enumerate(nonzeroterms):
if i < 0 or int(i) != i:
continue
i = int(i)
if i < len(u0):
if isinstance(u0[i], (PolyElement, FracElement)):
u0[i] = u0[i].as_expr()
sol += u0[i] * x**i
else:
sol += Symbol('C_%s' %j) * x**i
if isinstance(sol, (PolyElement, FracElement)):
sol = sol.as_expr() * x**constantpower
else:
sol = sol * x**constantpower
if as_list:
if x0 != 0:
return [(sol.subs(x, x - x0), )]
return [(sol, )]
if x0 != 0:
return sol.subs(x, x - x0)
return sol
if smallest_n + m > len(u0):
raise NotImplementedError("Can't compute sufficient Initial Conditions")
# check if the recurrence represents a hypergeometric series
is_hyper = True
for i in range(1, len(r.listofpoly)-1):
if r.listofpoly[i] != r.parent.base.zero:
is_hyper = False
break
if not is_hyper:
raise NotHyperSeriesError(self, self.x0)
a = r.listofpoly[0]
b = r.listofpoly[-1]
# the constant multiple of argument of hypergeometric function
if isinstance(a.rep[0], (PolyElement, FracElement)):
c = - (S(a.rep[0].as_expr()) * m**(a.degree())) / (S(b.rep[0].as_expr()) * m**(b.degree()))
else:
c = - (S(a.rep[0]) * m**(a.degree())) / (S(b.rep[0]) * m**(b.degree()))
sol = 0
arg1 = roots(r.parent.base.to_sympy(a), recurrence.n)
arg2 = roots(r.parent.base.to_sympy(b), recurrence.n)
# iterate through the initial conditions to find
# the hypergeometric representation of the given
# function.
# The answer will be a linear combination
# of different hypergeometric series which satisfies
# the recurrence.
if as_list:
listofsol = []
for i in range(smallest_n + m):
# if the recurrence relation doesn't hold for `n = i`,
# then a Hypergeometric representation doesn't exist.
# add the algebraic term a * x**i to the solution,
# where a is u0[i]
if i < smallest_n:
if as_list:
listofsol.append(((S(u0[i]) * x**(i+constantpower)).subs(x, x-x0), ))
else:
sol += S(u0[i]) * x**i
continue
# if the coefficient u0[i] is zero, then the
# independent hypergeomtric series starting with
# x**i is not a part of the answer.
if S(u0[i]) == 0:
continue
ap = []
bq = []
# substitute m * n + i for n
for k in ordered(arg1.keys()):
ap.extend([nsimplify((i - k) / m)] * arg1[k])
for k in ordered(arg2.keys()):
bq.extend([nsimplify((i - k) / m)] * arg2[k])
# convention of (k + 1) in the denominator
if 1 in bq:
bq.remove(1)
else:
ap.append(1)
if as_list:
listofsol.append(((S(u0[i])*x**(i+constantpower)).subs(x, x-x0), (hyper(ap, bq, c*x**m)).subs(x, x-x0)))
else:
sol += S(u0[i]) * hyper(ap, bq, c * x**m) * x**i
if as_list:
return listofsol
sol = sol * x**constantpower
if x0 != 0:
return sol.subs(x, x - x0)
return sol
def to_expr(self):
"""
Converts a Holonomic Function back to elementary functions.
Examples
========
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators
>>> from sympy import ZZ
>>> from sympy import symbols, S
>>> x = symbols('x')
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx')
>>> HolonomicFunction(x**2*Dx**2 + x*Dx + (x**2 - 1), x, 0, [0, S(1)/2]).to_expr()
besselj(1, x)
>>> HolonomicFunction((1 + x)*Dx**3 + Dx**2, x, 0, [1, 1, 1]).to_expr()
x*log(x + 1) + log(x + 1) + 1
"""
return hyperexpand(self.to_hyper()).simplify()
def change_ics(self, b, lenics=None):
"""
Changes the point `x0` to ``b`` for initial conditions.
Examples
========
>>> from sympy.holonomic import expr_to_holonomic
>>> from sympy import symbols, sin, exp
>>> x = symbols('x')
>>> expr_to_holonomic(sin(x)).change_ics(1)
HolonomicFunction((1) + (1)*Dx**2, x, 1, [sin(1), cos(1)])
>>> expr_to_holonomic(exp(x)).change_ics(2)
HolonomicFunction((-1) + (1)*Dx, x, 2, [exp(2)])
"""
symbolic = True
if lenics is None and len(self.y0) > self.annihilator.order:
lenics = len(self.y0)
dom = self.annihilator.parent.base.domain
try:
sol = expr_to_holonomic(self.to_expr(), x=self.x, x0=b, lenics=lenics, domain=dom)
except (NotPowerSeriesError, NotHyperSeriesError):
symbolic = False
if symbolic and sol.x0 == b:
return sol
y0 = self.evalf(b, derivatives=True)
return HolonomicFunction(self.annihilator, self.x, b, y0)
def to_meijerg(self):
"""
Returns a linear combination of Meijer G-functions.
Examples
========
>>> from sympy.holonomic import expr_to_holonomic
>>> from sympy import sin, cos, hyperexpand, log, symbols
>>> x = symbols('x')
>>> hyperexpand(expr_to_holonomic(cos(x) + sin(x)).to_meijerg())
sin(x) + cos(x)
>>> hyperexpand(expr_to_holonomic(log(x)).to_meijerg()).simplify()
log(x)
See Also
========
to_hyper()
"""
# convert to hypergeometric first
rep = self.to_hyper(as_list=True)
sol = S.Zero
for i in rep:
if len(i) == 1:
sol += i[0]
elif len(i) == 2:
sol += i[0] * _hyper_to_meijerg(i[1])
return sol
def from_hyper(func, x0=0, evalf=False):
r"""
Converts a hypergeometric function to holonomic.
``func`` is the Hypergeometric Function and ``x0`` is the point at
which initial conditions are required.
Examples
========
>>> from sympy.holonomic.holonomic import from_hyper
>>> from sympy import symbols, hyper, S
>>> x = symbols('x')
>>> from_hyper(hyper([], [S(3)/2], x**2/4))
HolonomicFunction((-x) + (2)*Dx + (x)*Dx**2, x, 1, [sinh(1), -sinh(1) + cosh(1)])
"""
a = func.ap
b = func.bq
z = func.args[2]
x = z.atoms(Symbol).pop()
R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
# generalized hypergeometric differential equation
xDx = x*Dx
r1 = 1
for ai in a: # XXX gives sympify error if Mul is used with list of all factors
r1 *= xDx + ai
xDx_1 = xDx - 1
# r2 = Mul(*([Dx] + [xDx_1 + bi for bi in b])) # XXX gives sympify error
r2 = Dx
for bi in b:
r2 *= xDx_1 + bi
sol = r1 - r2
simp = hyperexpand(func)
if simp in (Infinity, NegativeInfinity):
return HolonomicFunction(sol, x).composition(z)
def _find_conditions(simp, x, x0, order, evalf=False):
y0 = []
for i in range(order):
if evalf:
val = simp.subs(x, x0).evalf()
else:
val = simp.subs(x, x0)
# return None if it is Infinite or NaN
if val.is_finite is False or isinstance(val, NaN):
return None
y0.append(val)
simp = simp.diff(x)
return y0
# if the function is known symbolically
if not isinstance(simp, hyper):
y0 = _find_conditions(simp, x, x0, sol.order)
while not y0:
# if values don't exist at 0, then try to find initial
# conditions at 1. If it doesn't exist at 1 too then
# try 2 and so on.
x0 += 1
y0 = _find_conditions(simp, x, x0, sol.order)
return HolonomicFunction(sol, x).composition(z, x0, y0)
if isinstance(simp, hyper):
x0 = 1
# use evalf if the function can't be simplified
y0 = _find_conditions(simp, x, x0, sol.order, evalf)
while not y0:
x0 += 1
y0 = _find_conditions(simp, x, x0, sol.order, evalf)
return HolonomicFunction(sol, x).composition(z, x0, y0)
return HolonomicFunction(sol, x).composition(z)
def from_meijerg(func, x0=0, evalf=False, initcond=True, domain=QQ):
"""
Converts a Meijer G-function to Holonomic.
``func`` is the G-Function and ``x0`` is the point at
which initial conditions are required.
Examples
========
>>> from sympy.holonomic.holonomic import from_meijerg
>>> from sympy import symbols, meijerg, S
>>> x = symbols('x')
>>> from_meijerg(meijerg(([], []), ([S(1)/2], [0]), x**2/4))
HolonomicFunction((1) + (1)*Dx**2, x, 0, [0, 1/sqrt(pi)])
"""
a = func.ap
b = func.bq
n = len(func.an)
m = len(func.bm)
p = len(a)
z = func.args[2]
x = z.atoms(Symbol).pop()
R, Dx = DifferentialOperators(domain.old_poly_ring(x), 'Dx')
# compute the differential equation satisfied by the
# Meijer G-function.
xDx = x*Dx
xDx1 = xDx + 1
r1 = x*(-1)**(m + n - p)
for ai in a: # XXX gives sympify error if args given in list
r1 *= xDx1 - ai
# r2 = Mul(*[xDx - bi for bi in b]) # gives sympify error
r2 = 1
for bi in b:
r2 *= xDx - bi
sol = r1 - r2
if not initcond:
return HolonomicFunction(sol, x).composition(z)
simp = hyperexpand(func)
if simp in (Infinity, NegativeInfinity):
return HolonomicFunction(sol, x).composition(z)
def _find_conditions(simp, x, x0, order, evalf=False):
y0 = []
for i in range(order):
if evalf:
val = simp.subs(x, x0).evalf()
else:
val = simp.subs(x, x0)
if val.is_finite is False or isinstance(val, NaN):
return None
y0.append(val)
simp = simp.diff(x)
return y0
# computing initial conditions
if not isinstance(simp, meijerg):
y0 = _find_conditions(simp, x, x0, sol.order)
while not y0:
x0 += 1
y0 = _find_conditions(simp, x, x0, sol.order)
return HolonomicFunction(sol, x).composition(z, x0, y0)
if isinstance(simp, meijerg):
x0 = 1
y0 = _find_conditions(simp, x, x0, sol.order, evalf)
while not y0:
x0 += 1
y0 = _find_conditions(simp, x, x0, sol.order, evalf)
return HolonomicFunction(sol, x).composition(z, x0, y0)
return HolonomicFunction(sol, x).composition(z)
x_1 = Dummy('x_1')
_lookup_table = None
domain_for_table = None
from sympy.integrals.meijerint import _mytype
def expr_to_holonomic(func, x=None, x0=0, y0=None, lenics=None, domain=None, initcond=True):
"""
Converts a function or an expression to a holonomic function.
Parameters
==========
func:
The expression to be converted.
x:
variable for the function.
x0:
point at which initial condition must be computed.
y0:
One can optionally provide initial condition if the method
is not able to do it automatically.
lenics:
Number of terms in the initial condition. By default it is
equal to the order of the annihilator.
domain:
Ground domain for the polynomials in ``x`` appearing as coefficients
in the annihilator.
initcond:
Set it false if you do not want the initial conditions to be computed.
Examples
========
>>> from sympy.holonomic.holonomic import expr_to_holonomic
>>> from sympy import sin, exp, symbols
>>> x = symbols('x')
>>> expr_to_holonomic(sin(x))
HolonomicFunction((1) + (1)*Dx**2, x, 0, [0, 1])
>>> expr_to_holonomic(exp(x))
HolonomicFunction((-1) + (1)*Dx, x, 0, [1])
See Also
========
sympy.integrals.meijerint._rewrite1, _convert_poly_rat_alg, _create_table
"""
func = sympify(func)
syms = func.free_symbols
if not x:
if len(syms) == 1:
x= syms.pop()
else:
raise ValueError("Specify the variable for the function")
elif x in syms:
syms.remove(x)
extra_syms = list(syms)
if domain is None:
if func.has(Float):
domain = RR
else:
domain = QQ
if len(extra_syms) != 0:
domain = domain[extra_syms].get_field()
# try to convert if the function is polynomial or rational
solpoly = _convert_poly_rat_alg(func, x, x0=x0, y0=y0, lenics=lenics, domain=domain, initcond=initcond)
if solpoly:
return solpoly
# create the lookup table
global _lookup_table, domain_for_table
if not _lookup_table:
domain_for_table = domain
_lookup_table = {}
_create_table(_lookup_table, domain=domain)
elif domain != domain_for_table:
domain_for_table = domain
_lookup_table = {}
_create_table(_lookup_table, domain=domain)
# use the table directly to convert to Holonomic
if func.is_Function:
f = func.subs(x, x_1)
t = _mytype(f, x_1)
if t in _lookup_table:
l = _lookup_table[t]
sol = l[0][1].change_x(x)
else:
sol = _convert_meijerint(func, x, initcond=False, domain=domain)
if not sol:
raise NotImplementedError
if y0:
sol.y0 = y0
if y0 or not initcond:
sol.x0 = x0
return sol
if not lenics:
lenics = sol.annihilator.order
_y0 = _find_conditions(func, x, x0, lenics)
while not _y0:
x0 += 1
_y0 = _find_conditions(func, x, x0, lenics)
return HolonomicFunction(sol.annihilator, x, x0, _y0)
if y0 or not initcond:
sol = sol.composition(func.args[0])
if y0:
sol.y0 = y0
sol.x0 = x0
return sol
if not lenics:
lenics = sol.annihilator.order
_y0 = _find_conditions(func, x, x0, lenics)
while not _y0:
x0 += 1
_y0 = _find_conditions(func, x, x0, lenics)
return sol.composition(func.args[0], x0, _y0)
# iterate through the expression recursively
args = func.args
f = func.func
sol = expr_to_holonomic(args[0], x=x, initcond=False, domain=domain)
if f is Add:
for i in range(1, len(args)):
sol += expr_to_holonomic(args[i], x=x, initcond=False, domain=domain)
elif f is Mul:
for i in range(1, len(args)):
sol *= expr_to_holonomic(args[i], x=x, initcond=False, domain=domain)
elif f is Pow:
sol = sol**args[1]
sol.x0 = x0
if not sol:
raise NotImplementedError
if y0:
sol.y0 = y0
if y0 or not initcond:
return sol
if sol.y0:
return sol
if not lenics:
lenics = sol.annihilator.order
if sol.annihilator.is_singular(x0):
r = sol._indicial()
l = list(r)
if len(r) == 1 and r[l[0]] == S.One:
r = l[0]
g = func / (x - x0)**r
singular_ics = _find_conditions(g, x, x0, lenics)
singular_ics = [j / factorial(i) for i, j in enumerate(singular_ics)]
y0 = {r:singular_ics}
return HolonomicFunction(sol.annihilator, x, x0, y0)
_y0 = _find_conditions(func, x, x0, lenics)
while not _y0:
x0 += 1
_y0 = _find_conditions(func, x, x0, lenics)
return HolonomicFunction(sol.annihilator, x, x0, _y0)
## Some helper functions ##
def _normalize(list_of, parent, negative=True):
"""
Normalize a given annihilator
"""
num = []
denom = []
base = parent.base
K = base.get_field()
lcm_denom = base.from_sympy(S.One)
list_of_coeff = []
# convert polynomials to the elements of associated
# fraction field
for i, j in enumerate(list_of):
if isinstance(j, base.dtype):
list_of_coeff.append(K.new(j.rep))
elif not isinstance(j, K.dtype):
list_of_coeff.append(K.from_sympy(sympify(j)))
else:
list_of_coeff.append(j)
# corresponding numerators of the sequence of polynomials
num.append(list_of_coeff[i].numer())
# corresponding denominators
denom.append(list_of_coeff[i].denom())
# lcm of denominators in the coefficients
for i in denom:
lcm_denom = i.lcm(lcm_denom)
if negative:
lcm_denom = -lcm_denom
lcm_denom = K.new(lcm_denom.rep)
# multiply the coefficients with lcm
for i, j in enumerate(list_of_coeff):
list_of_coeff[i] = j * lcm_denom
gcd_numer = base((list_of_coeff[-1].numer() / list_of_coeff[-1].denom()).rep)
# gcd of numerators in the coefficients
for i in num:
gcd_numer = i.gcd(gcd_numer)
gcd_numer = K.new(gcd_numer.rep)
# divide all the coefficients by the gcd
for i, j in enumerate(list_of_coeff):
frac_ans = j / gcd_numer
list_of_coeff[i] = base((frac_ans.numer() / frac_ans.denom()).rep)
return DifferentialOperator(list_of_coeff, parent)
def _derivate_diff_eq(listofpoly):
"""
Let a differential equation a0(x)y(x) + a1(x)y'(x) + ... = 0
where a0, a1,... are polynomials or rational functions. The function
returns b0, b1, b2... such that the differential equation
b0(x)y(x) + b1(x)y'(x) +... = 0 is formed after differentiating the
former equation.
"""
sol = []
a = len(listofpoly) - 1
sol.append(DMFdiff(listofpoly[0]))
for i, j in enumerate(listofpoly[1:]):
sol.append(DMFdiff(j) + listofpoly[i])
sol.append(listofpoly[a])
return sol
def _hyper_to_meijerg(func):
"""
Converts a `hyper` to meijerg.
"""
ap = func.ap
bq = func.bq
ispoly = any(i <= 0 and int(i) == i for i in ap)
if ispoly:
return hyperexpand(func)
z = func.args[2]
# parameters of the `meijerg` function.
an = (1 - i for i in ap)
anp = ()
bm = (S.Zero, )
bmq = (1 - i for i in bq)
k = S.One
for i in bq:
k = k * gamma(i)
for i in ap:
k = k / gamma(i)
return k * meijerg(an, anp, bm, bmq, -z)
def _add_lists(list1, list2):
"""Takes polynomial sequences of two annihilators a and b and returns
the list of polynomials of sum of a and b.
"""
if len(list1) <= len(list2):
sol = [a + b for a, b in zip(list1, list2)] + list2[len(list1):]
else:
sol = [a + b for a, b in zip(list1, list2)] + list1[len(list2):]
return sol
def _extend_y0(Holonomic, n):
"""
Tries to find more initial conditions by substituting the initial
value point in the differential equation.
"""
if Holonomic.annihilator.is_singular(Holonomic.x0) or Holonomic.is_singularics() == True:
return Holonomic.y0
annihilator = Holonomic.annihilator
a = annihilator.order
listofpoly = []
y0 = Holonomic.y0
R = annihilator.parent.base
K = R.get_field()
for i, j in enumerate(annihilator.listofpoly):
if isinstance(j, annihilator.parent.base.dtype):
listofpoly.append(K.new(j.rep))
if len(y0) < a or n <= len(y0):
return y0
else:
list_red = [-listofpoly[i] / listofpoly[a]
for i in range(a)]
if len(y0) > a:
y1 = [y0[i] for i in range(a)]
else:
y1 = [i for i in y0]
for i in range(n - a):
sol = 0
for a, b in zip(y1, list_red):
r = DMFsubs(b, Holonomic.x0)
if not getattr(r, 'is_finite', True):
return y0
if isinstance(r, (PolyElement, FracElement)):
r = r.as_expr()
sol += a * r
y1.append(sol)
list_red = _derivate_diff_eq(list_red)
return y0 + y1[len(y0):]
def DMFdiff(frac):
# differentiate a DMF object represented as p/q
if not isinstance(frac, DMF):
return frac.diff()
K = frac.ring
p = K.numer(frac)
q = K.denom(frac)
sol_num = - p * q.diff() + q * p.diff()
sol_denom = q**2
return K((sol_num.rep, sol_denom.rep))
def DMFsubs(frac, x0, mpm=False):
# substitute the point x0 in DMF object of the form p/q
if not isinstance(frac, DMF):
return frac
p = frac.num
q = frac.den
sol_p = S.Zero
sol_q = S.Zero
if mpm:
from mpmath import mp
for i, j in enumerate(reversed(p)):
if mpm:
j = sympify(j)._to_mpmath(mp.prec)
sol_p += j * x0**i
for i, j in enumerate(reversed(q)):
if mpm:
j = sympify(j)._to_mpmath(mp.prec)
sol_q += j * x0**i
if isinstance(sol_p, (PolyElement, FracElement)):
sol_p = sol_p.as_expr()
if isinstance(sol_q, (PolyElement, FracElement)):
sol_q = sol_q.as_expr()
return sol_p / sol_q
def _convert_poly_rat_alg(func, x, x0=0, y0=None, lenics=None, domain=QQ, initcond=True):
"""
Converts polynomials, rationals and algebraic functions to holonomic.
"""
ispoly = func.is_polynomial()
if not ispoly:
israt = func.is_rational_function()
else:
israt = True
if not (ispoly or israt):
basepoly, ratexp = func.as_base_exp()
if basepoly.is_polynomial() and ratexp.is_Number:
if isinstance(ratexp, Float):
ratexp = nsimplify(ratexp)
m, n = ratexp.p, ratexp.q
is_alg = True
else:
is_alg = False
else:
is_alg = True
if not (ispoly or israt or is_alg):
return None
R = domain.old_poly_ring(x)
_, Dx = DifferentialOperators(R, 'Dx')
# if the function is constant
if not func.has(x):
return HolonomicFunction(Dx, x, 0, [func])
if ispoly:
# differential equation satisfied by polynomial
sol = func * Dx - func.diff(x)
sol = _normalize(sol.listofpoly, sol.parent, negative=False)
is_singular = sol.is_singular(x0)
# try to compute the conditions for singular points
if y0 is None and x0 == 0 and is_singular:
rep = R.from_sympy(func).rep
for i, j in enumerate(reversed(rep)):
if j == 0:
continue
else:
coeff = list(reversed(rep))[i:]
indicial = i
break
for i, j in enumerate(coeff):
if isinstance(j, (PolyElement, FracElement)):
coeff[i] = j.as_expr()
y0 = {indicial: S(coeff)}
elif israt:
p, q = func.as_numer_denom()
# differential equation satisfied by rational
sol = p * q * Dx + p * q.diff(x) - q * p.diff(x)
sol = _normalize(sol.listofpoly, sol.parent, negative=False)
elif is_alg:
sol = n * (x / m) * Dx - 1
sol = HolonomicFunction(sol, x).composition(basepoly).annihilator
is_singular = sol.is_singular(x0)
# try to compute the conditions for singular points
if y0 is None and x0 == 0 and is_singular and \
(lenics is None or lenics <= 1):
rep = R.from_sympy(basepoly).rep
for i, j in enumerate(reversed(rep)):
if j == 0:
continue
if isinstance(j, (PolyElement, FracElement)):
j = j.as_expr()
coeff = S(j)**ratexp
indicial = S(i) * ratexp
break
if isinstance(coeff, (PolyElement, FracElement)):
coeff = coeff.as_expr()
y0 = {indicial: S([coeff])}
if y0 or not initcond:
return HolonomicFunction(sol, x, x0, y0)
if not lenics:
lenics = sol.order
if sol.is_singular(x0):
r = HolonomicFunction(sol, x, x0)._indicial()
l = list(r)
if len(r) == 1 and r[l[0]] == S.One:
r = l[0]
g = func / (x - x0)**r
singular_ics = _find_conditions(g, x, x0, lenics)
singular_ics = [j / factorial(i) for i, j in enumerate(singular_ics)]
y0 = {r:singular_ics}
return HolonomicFunction(sol, x, x0, y0)
y0 = _find_conditions(func, x, x0, lenics)
while not y0:
x0 += 1
y0 = _find_conditions(func, x, x0, lenics)
return HolonomicFunction(sol, x, x0, y0)
def _convert_meijerint(func, x, initcond=True, domain=QQ):
args = meijerint._rewrite1(func, x)
if args:
fac, po, g, _ = args
else:
return None
# lists for sum of meijerg functions
fac_list = [fac * i[0] for i in g]
t = po.as_base_exp()
s = t[1] if t[0] == x else S.Zero
po_list = [s + i[1] for i in g]
G_list = [i[2] for i in g]
# finds meijerg representation of x**s * meijerg(a1 ... ap, b1 ... bq, z)
def _shift(func, s):
z = func.args[-1]
if z.has(I):
z = z.subs(exp_polar, exp)
d = z.collect(x, evaluate=False)
b = list(d)[0]
a = d[b]
t = b.as_base_exp()
b = t[1] if t[0] == x else S.Zero
r = s / b
an = (i + r for i in func.args[0][0])
ap = (i + r for i in func.args[0][1])
bm = (i + r for i in func.args[1][0])
bq = (i + r for i in func.args[1][1])
return a**-r, meijerg((an, ap), (bm, bq), z)
coeff, m = _shift(G_list[0], po_list[0])
sol = fac_list[0] * coeff * from_meijerg(m, initcond=initcond, domain=domain)
# add all the meijerg functions after converting to holonomic
for i in range(1, len(G_list)):
coeff, m = _shift(G_list[i], po_list[i])
sol += fac_list[i] * coeff * from_meijerg(m, initcond=initcond, domain=domain)
return sol
def _create_table(table, domain=QQ):
"""
Creates the look-up table. For a similar implementation
see meijerint._create_lookup_table.
"""
def add(formula, annihilator, arg, x0=0, y0=()):
"""
Adds a formula in the dictionary
"""
table.setdefault(_mytype(formula, x_1), []).append((formula,
HolonomicFunction(annihilator, arg, x0, y0)))
R = domain.old_poly_ring(x_1)
_, Dx = DifferentialOperators(R, 'Dx')
# add some basic functions
add(sin(x_1), Dx**2 + 1, x_1, 0, [0, 1])
add(cos(x_1), Dx**2 + 1, x_1, 0, [1, 0])
add(exp(x_1), Dx - 1, x_1, 0, 1)
add(log(x_1), Dx + x_1*Dx**2, x_1, 1, [0, 1])
add(erf(x_1), 2*x_1*Dx + Dx**2, x_1, 0, [0, 2/sqrt(pi)])
add(erfc(x_1), 2*x_1*Dx + Dx**2, x_1, 0, [1, -2/sqrt(pi)])
add(erfi(x_1), -2*x_1*Dx + Dx**2, x_1, 0, [0, 2/sqrt(pi)])
add(sinh(x_1), Dx**2 - 1, x_1, 0, [0, 1])
add(cosh(x_1), Dx**2 - 1, x_1, 0, [1, 0])
add(sinc(x_1), x_1 + 2*Dx + x_1*Dx**2, x_1)
add(Si(x_1), x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1)
add(Ci(x_1), x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1)
add(Shi(x_1), -x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1)
def _find_conditions(func, x, x0, order):
y0 = []
for i in range(order):
val = func.subs(x, x0)
if isinstance(val, NaN):
val = limit(func, x, x0)
if val.is_finite is False or isinstance(val, NaN):
return None
y0.append(val)
func = func.diff(x)
return y0
|
fa1c5aae9f7ad5ec8bb6ec1485b8370f7ab3cb4e87ac43d9118a4655c27302fd | from sympy.printing import pycode, ccode, fcode
from sympy.external import import_module
from sympy.utilities.decorator import doctest_depends_on
lfortran = import_module('lfortran')
cin = import_module('clang.cindex', import_kwargs = {'fromlist': ['cindex']})
if lfortran:
from sympy.parsing.fortran.fortran_parser import src_to_sympy
if cin:
from sympy.parsing.c.c_parser import parse_c
@doctest_depends_on(modules=['lfortran', 'clang.cindex'])
class SymPyExpression: # type: ignore
"""Class to store and handle SymPy expressions
This class will hold SymPy Expressions and handle the API for the
conversion to and from different languages.
It works with the C and the Fortran Parser to generate SymPy expressions
which are stored here and which can be converted to multiple language's
source code.
Notes
=====
The module and its API are currently under development and experimental
and can be changed during development.
The Fortran parser does not support numeric assignments, so all the
variables have been Initialized to zero.
The module also depends on external dependencies:
- LFortran which is required to use the Fortran parser
- Clang which is required for the C parser
Examples
========
Example of parsing C code:
>>> from sympy.parsing.sym_expr import SymPyExpression
>>> src = '''
... int a,b;
... float c = 2, d =4;
... '''
>>> a = SymPyExpression(src, 'c')
>>> a.return_expr()
[Declaration(Variable(a, type=intc)),
Declaration(Variable(b, type=intc)),
Declaration(Variable(c, type=float32, value=2.0)),
Declaration(Variable(d, type=float32, value=4.0))]
An example of variable definition:
>>> from sympy.parsing.sym_expr import SymPyExpression
>>> src2 = '''
... integer :: a, b, c, d
... real :: p, q, r, s
... '''
>>> p = SymPyExpression()
>>> p.convert_to_expr(src2, 'f')
>>> p.convert_to_c()
['int a = 0', 'int b = 0', 'int c = 0', 'int d = 0', 'double p = 0.0', 'double q = 0.0', 'double r = 0.0', 'double s = 0.0']
An example of Assignment:
>>> from sympy.parsing.sym_expr import SymPyExpression
>>> src3 = '''
... integer :: a, b, c, d, e
... d = a + b - c
... e = b * d + c * e / a
... '''
>>> p = SymPyExpression(src3, 'f')
>>> p.convert_to_python()
['a = 0', 'b = 0', 'c = 0', 'd = 0', 'e = 0', 'd = a + b - c', 'e = b*d + c*e/a']
An example of function definition:
>>> from sympy.parsing.sym_expr import SymPyExpression
>>> src = '''
... integer function f(a,b)
... integer, intent(in) :: a, b
... integer :: r
... end function
... '''
>>> a = SymPyExpression(src, 'f')
>>> a.convert_to_python()
['def f(a, b):\\n f = 0\\n r = 0\\n return f']
"""
def __init__(self, source_code = None, mode = None):
"""Constructor for SymPyExpression class"""
super().__init__()
if not(mode or source_code):
self._expr = []
elif mode:
if source_code:
if mode.lower() == 'f':
if lfortran:
self._expr = src_to_sympy(source_code)
else:
raise ImportError("LFortran is not installed, cannot parse Fortran code")
elif mode.lower() == 'c':
if cin:
self._expr = parse_c(source_code)
else:
raise ImportError("Clang is not installed, cannot parse C code")
else:
raise NotImplementedError(
'Parser for specified language is not implemented'
)
else:
raise ValueError('Source code not present')
else:
raise ValueError('Please specify a mode for conversion')
def convert_to_expr(self, src_code, mode):
"""Converts the given source code to SymPy Expressions
Attributes
==========
src_code : String
the source code or filename of the source code that is to be
converted
mode: String
the mode to determine which parser is to be used according to
the language of the source code
f or F for Fortran
c or C for C/C++
Examples
========
>>> from sympy.parsing.sym_expr import SymPyExpression
>>> src3 = '''
... integer function f(a,b) result(r)
... integer, intent(in) :: a, b
... integer :: x
... r = a + b -x
... end function
... '''
>>> p = SymPyExpression()
>>> p.convert_to_expr(src3, 'f')
>>> p.return_expr()
[FunctionDefinition(integer, name=f, parameters=(Variable(a), Variable(b)), body=CodeBlock(
Declaration(Variable(r, type=integer, value=0)),
Declaration(Variable(x, type=integer, value=0)),
Assignment(Variable(r), a + b - x),
Return(Variable(r))
))]
"""
if mode.lower() == 'f':
if lfortran:
self._expr = src_to_sympy(src_code)
else:
raise ImportError("LFortran is not installed, cannot parse Fortran code")
elif mode.lower() == 'c':
if cin:
self._expr = parse_c(src_code)
else:
raise ImportError("Clang is not installed, cannot parse C code")
else:
raise NotImplementedError(
"Parser for specified language has not been implemented"
)
def convert_to_python(self):
"""Returns a list with Python code for the SymPy expressions
Examples
========
>>> from sympy.parsing.sym_expr import SymPyExpression
>>> src2 = '''
... integer :: a, b, c, d
... real :: p, q, r, s
... c = a/b
... d = c/a
... s = p/q
... r = q/p
... '''
>>> p = SymPyExpression(src2, 'f')
>>> p.convert_to_python()
['a = 0', 'b = 0', 'c = 0', 'd = 0', 'p = 0.0', 'q = 0.0', 'r = 0.0', 's = 0.0', 'c = a/b', 'd = c/a', 's = p/q', 'r = q/p']
"""
self._pycode = []
for iter in self._expr:
self._pycode.append(pycode(iter))
return self._pycode
def convert_to_c(self):
"""Returns a list with the c source code for the SymPy expressions
Examples
========
>>> from sympy.parsing.sym_expr import SymPyExpression
>>> src2 = '''
... integer :: a, b, c, d
... real :: p, q, r, s
... c = a/b
... d = c/a
... s = p/q
... r = q/p
... '''
>>> p = SymPyExpression()
>>> p.convert_to_expr(src2, 'f')
>>> p.convert_to_c()
['int a = 0', 'int b = 0', 'int c = 0', 'int d = 0', 'double p = 0.0', 'double q = 0.0', 'double r = 0.0', 'double s = 0.0', 'c = a/b;', 'd = c/a;', 's = p/q;', 'r = q/p;']
"""
self._ccode = []
for iter in self._expr:
self._ccode.append(ccode(iter))
return self._ccode
def convert_to_fortran(self):
"""Returns a list with the fortran source code for the SymPy expressions
Examples
========
>>> from sympy.parsing.sym_expr import SymPyExpression
>>> src2 = '''
... integer :: a, b, c, d
... real :: p, q, r, s
... c = a/b
... d = c/a
... s = p/q
... r = q/p
... '''
>>> p = SymPyExpression(src2, 'f')
>>> p.convert_to_fortran()
[' integer*4 a', ' integer*4 b', ' integer*4 c', ' integer*4 d', ' real*8 p', ' real*8 q', ' real*8 r', ' real*8 s', ' c = a/b', ' d = c/a', ' s = p/q', ' r = q/p']
"""
self._fcode = []
for iter in self._expr:
self._fcode.append(fcode(iter))
return self._fcode
def return_expr(self):
"""Returns the expression list
Examples
========
>>> from sympy.parsing.sym_expr import SymPyExpression
>>> src3 = '''
... integer function f(a,b)
... integer, intent(in) :: a, b
... integer :: r
... r = a+b
... f = r
... end function
... '''
>>> p = SymPyExpression()
>>> p.convert_to_expr(src3, 'f')
>>> p.return_expr()
[FunctionDefinition(integer, name=f, parameters=(Variable(a), Variable(b)), body=CodeBlock(
Declaration(Variable(f, type=integer, value=0)),
Declaration(Variable(r, type=integer, value=0)),
Assignment(Variable(f), Variable(r)),
Return(Variable(f))
))]
"""
return self._expr
|
97fbfd0c2ed845d1be7ae7addd8a8d18ff1ba6efaabda7181da450e4f57899af | from __future__ import annotations
import re
import typing
from itertools import product
from typing import Any, Callable
import sympy
from sympy import Mul, Add, Pow, log, exp, sqrt, cos, sin, tan, asin, acos, acot, asec, acsc, sinh, cosh, tanh, asinh, \
acosh, atanh, acoth, asech, acsch, expand, im, flatten, polylog, cancel, expand_trig, sign, simplify, \
UnevaluatedExpr, S, atan, atan2, Mod, Max, Min, rf, Ei, Si, Ci, airyai, airyaiprime, airybi, primepi, prime, \
isprime, cot, sec, csc, csch, sech, coth, Function, I, pi, Tuple, GreaterThan, StrictGreaterThan, StrictLessThan, \
LessThan, Equality, Or, And, Lambda, Integer, Dummy, symbols
from sympy.core.sympify import sympify, _sympify
from sympy.functions.special.bessel import airybiprime
from sympy.functions.special.error_functions import li
from sympy.utilities.exceptions import sympy_deprecation_warning
def mathematica(s, additional_translations=None):
sympy_deprecation_warning(
"""The ``mathematica`` function for the Mathematica parser is now
deprecated. Use ``parse_mathematica`` instead.
The parameter ``additional_translation`` can be replaced by SymPy's
.replace( ) or .subs( ) methods on the output expression instead.""",
deprecated_since_version="1.11",
active_deprecations_target="mathematica-parser-new",
)
parser = MathematicaParser(additional_translations)
return sympify(parser._parse_old(s))
def parse_mathematica(s):
"""
Translate a string containing a Wolfram Mathematica expression to a SymPy
expression.
If the translator is unable to find a suitable SymPy expression, the
``FullForm`` of the Mathematica expression will be output, using SymPy
``Function`` objects as nodes of the syntax tree.
Examples
========
>>> from sympy.parsing.mathematica import parse_mathematica
>>> parse_mathematica("Sin[x]^2 Tan[y]")
sin(x)**2*tan(y)
>>> e = parse_mathematica("F[7,5,3]")
>>> e
F(7, 5, 3)
>>> from sympy import Function, Max, Min
>>> e.replace(Function("F"), lambda *x: Max(*x)*Min(*x))
21
Both standard input form and Mathematica full form are supported:
>>> parse_mathematica("x*(a + b)")
x*(a + b)
>>> parse_mathematica("Times[x, Plus[a, b]]")
x*(a + b)
To get a matrix from Wolfram's code:
>>> m = parse_mathematica("{{a, b}, {c, d}}")
>>> m
((a, b), (c, d))
>>> from sympy import Matrix
>>> Matrix(m)
Matrix([
[a, b],
[c, d]])
If the translation into equivalent SymPy expressions fails, an SymPy
expression equivalent to Wolfram Mathematica's "FullForm" will be created:
>>> parse_mathematica("x_.")
Optional(Pattern(x, Blank()))
>>> parse_mathematica("Plus @@ {x, y, z}")
Apply(Plus, (x, y, z))
>>> parse_mathematica("f[x_, 3] := x^3 /; x > 0")
SetDelayed(f(Pattern(x, Blank()), 3), Condition(x**3, x > 0))
"""
parser = MathematicaParser()
return parser.parse(s)
def _parse_Function(*args):
if len(args) == 1:
arg = args[0]
Slot = Function("Slot")
slots = arg.atoms(Slot)
numbers = [a.args[0] for a in slots]
number_of_arguments = max(numbers)
if isinstance(number_of_arguments, Integer):
variables = symbols(f"dummy0:{number_of_arguments}", cls=Dummy)
return Lambda(variables, arg.xreplace({Slot(i+1): v for i, v in enumerate(variables)}))
return Lambda((), arg)
elif len(args) == 2:
variables = args[0]
body = args[1]
return Lambda(variables, body)
else:
raise SyntaxError("Function node expects 1 or 2 arguments")
def _deco(cls):
cls._initialize_class()
return cls
@_deco
class MathematicaParser:
"""
An instance of this class converts a string of a Wolfram Mathematica
expression to a SymPy expression.
The main parser acts internally in three stages:
1. tokenizer: tokenizes the Mathematica expression and adds the missing *
operators. Handled by ``_from_mathematica_to_tokens(...)``
2. full form list: sort the list of strings output by the tokenizer into a
syntax tree of nested lists and strings, equivalent to Mathematica's
``FullForm`` expression output. This is handled by the function
``_from_tokens_to_fullformlist(...)``.
3. SymPy expression: the syntax tree expressed as full form list is visited
and the nodes with equivalent classes in SymPy are replaced. Unknown
syntax tree nodes are cast to SymPy ``Function`` objects. This is
handled by ``_from_fullformlist_to_sympy(...)``.
"""
# left: Mathematica, right: SymPy
CORRESPONDENCES = {
'Sqrt[x]': 'sqrt(x)',
'Exp[x]': 'exp(x)',
'Log[x]': 'log(x)',
'Log[x,y]': 'log(y,x)',
'Log2[x]': 'log(x,2)',
'Log10[x]': 'log(x,10)',
'Mod[x,y]': 'Mod(x,y)',
'Max[*x]': 'Max(*x)',
'Min[*x]': 'Min(*x)',
'Pochhammer[x,y]':'rf(x,y)',
'ArcTan[x,y]':'atan2(y,x)',
'ExpIntegralEi[x]': 'Ei(x)',
'SinIntegral[x]': 'Si(x)',
'CosIntegral[x]': 'Ci(x)',
'AiryAi[x]': 'airyai(x)',
'AiryAiPrime[x]': 'airyaiprime(x)',
'AiryBi[x]' :'airybi(x)',
'AiryBiPrime[x]' :'airybiprime(x)',
'LogIntegral[x]':' li(x)',
'PrimePi[x]': 'primepi(x)',
'Prime[x]': 'prime(x)',
'PrimeQ[x]': 'isprime(x)'
}
# trigonometric, e.t.c.
for arc, tri, h in product(('', 'Arc'), (
'Sin', 'Cos', 'Tan', 'Cot', 'Sec', 'Csc'), ('', 'h')):
fm = arc + tri + h + '[x]'
if arc: # arc func
fs = 'a' + tri.lower() + h + '(x)'
else: # non-arc func
fs = tri.lower() + h + '(x)'
CORRESPONDENCES.update({fm: fs})
REPLACEMENTS = {
' ': '',
'^': '**',
'{': '[',
'}': ']',
}
RULES = {
# a single whitespace to '*'
'whitespace': (
re.compile(r'''
(?:(?<=[a-zA-Z\d])|(?<=\d\.)) # a letter or a number
\s+ # any number of whitespaces
(?:(?=[a-zA-Z\d])|(?=\.\d)) # a letter or a number
''', re.VERBOSE),
'*'),
# add omitted '*' character
'add*_1': (
re.compile(r'''
(?:(?<=[])\d])|(?<=\d\.)) # ], ) or a number
# ''
(?=[(a-zA-Z]) # ( or a single letter
''', re.VERBOSE),
'*'),
# add omitted '*' character (variable letter preceding)
'add*_2': (
re.compile(r'''
(?<=[a-zA-Z]) # a letter
\( # ( as a character
(?=.) # any characters
''', re.VERBOSE),
'*('),
# convert 'Pi' to 'pi'
'Pi': (
re.compile(r'''
(?:
\A|(?<=[^a-zA-Z])
)
Pi # 'Pi' is 3.14159... in Mathematica
(?=[^a-zA-Z])
''', re.VERBOSE),
'pi'),
}
# Mathematica function name pattern
FM_PATTERN = re.compile(r'''
(?:
\A|(?<=[^a-zA-Z]) # at the top or a non-letter
)
[A-Z][a-zA-Z\d]* # Function
(?=\[) # [ as a character
''', re.VERBOSE)
# list or matrix pattern (for future usage)
ARG_MTRX_PATTERN = re.compile(r'''
\{.*\}
''', re.VERBOSE)
# regex string for function argument pattern
ARGS_PATTERN_TEMPLATE = r'''
(?:
\A|(?<=[^a-zA-Z])
)
{arguments} # model argument like x, y,...
(?=[^a-zA-Z])
'''
# will contain transformed CORRESPONDENCES dictionary
TRANSLATIONS: dict[tuple[str, int], dict[str, Any]] = {}
# cache for a raw users' translation dictionary
cache_original: dict[tuple[str, int], dict[str, Any]] = {}
# cache for a compiled users' translation dictionary
cache_compiled: dict[tuple[str, int], dict[str, Any]] = {}
@classmethod
def _initialize_class(cls):
# get a transformed CORRESPONDENCES dictionary
d = cls._compile_dictionary(cls.CORRESPONDENCES)
cls.TRANSLATIONS.update(d)
def __init__(self, additional_translations=None):
self.translations = {}
# update with TRANSLATIONS (class constant)
self.translations.update(self.TRANSLATIONS)
if additional_translations is None:
additional_translations = {}
# check the latest added translations
if self.__class__.cache_original != additional_translations:
if not isinstance(additional_translations, dict):
raise ValueError('The argument must be dict type')
# get a transformed additional_translations dictionary
d = self._compile_dictionary(additional_translations)
# update cache
self.__class__.cache_original = additional_translations
self.__class__.cache_compiled = d
# merge user's own translations
self.translations.update(self.__class__.cache_compiled)
@classmethod
def _compile_dictionary(cls, dic):
# for return
d = {}
for fm, fs in dic.items():
# check function form
cls._check_input(fm)
cls._check_input(fs)
# uncover '*' hiding behind a whitespace
fm = cls._apply_rules(fm, 'whitespace')
fs = cls._apply_rules(fs, 'whitespace')
# remove whitespace(s)
fm = cls._replace(fm, ' ')
fs = cls._replace(fs, ' ')
# search Mathematica function name
m = cls.FM_PATTERN.search(fm)
# if no-hit
if m is None:
err = "'{f}' function form is invalid.".format(f=fm)
raise ValueError(err)
# get Mathematica function name like 'Log'
fm_name = m.group()
# get arguments of Mathematica function
args, end = cls._get_args(m)
# function side check. (e.g.) '2*Func[x]' is invalid.
if m.start() != 0 or end != len(fm):
err = "'{f}' function form is invalid.".format(f=fm)
raise ValueError(err)
# check the last argument's 1st character
if args[-1][0] == '*':
key_arg = '*'
else:
key_arg = len(args)
key = (fm_name, key_arg)
# convert '*x' to '\\*x' for regex
re_args = [x if x[0] != '*' else '\\' + x for x in args]
# for regex. Example: (?:(x|y|z))
xyz = '(?:(' + '|'.join(re_args) + '))'
# string for regex compile
patStr = cls.ARGS_PATTERN_TEMPLATE.format(arguments=xyz)
pat = re.compile(patStr, re.VERBOSE)
# update dictionary
d[key] = {}
d[key]['fs'] = fs # SymPy function template
d[key]['args'] = args # args are ['x', 'y'] for example
d[key]['pat'] = pat
return d
def _convert_function(self, s):
'''Parse Mathematica function to SymPy one'''
# compiled regex object
pat = self.FM_PATTERN
scanned = '' # converted string
cur = 0 # position cursor
while True:
m = pat.search(s)
if m is None:
# append the rest of string
scanned += s
break
# get Mathematica function name
fm = m.group()
# get arguments, and the end position of fm function
args, end = self._get_args(m)
# the start position of fm function
bgn = m.start()
# convert Mathematica function to SymPy one
s = self._convert_one_function(s, fm, args, bgn, end)
# update cursor
cur = bgn
# append converted part
scanned += s[:cur]
# shrink s
s = s[cur:]
return scanned
def _convert_one_function(self, s, fm, args, bgn, end):
# no variable-length argument
if (fm, len(args)) in self.translations:
key = (fm, len(args))
# x, y,... model arguments
x_args = self.translations[key]['args']
# make CORRESPONDENCES between model arguments and actual ones
d = {k: v for k, v in zip(x_args, args)}
# with variable-length argument
elif (fm, '*') in self.translations:
key = (fm, '*')
# x, y,..*args (model arguments)
x_args = self.translations[key]['args']
# make CORRESPONDENCES between model arguments and actual ones
d = {}
for i, x in enumerate(x_args):
if x[0] == '*':
d[x] = ','.join(args[i:])
break
d[x] = args[i]
# out of self.translations
else:
err = "'{f}' is out of the whitelist.".format(f=fm)
raise ValueError(err)
# template string of converted function
template = self.translations[key]['fs']
# regex pattern for x_args
pat = self.translations[key]['pat']
scanned = ''
cur = 0
while True:
m = pat.search(template)
if m is None:
scanned += template
break
# get model argument
x = m.group()
# get a start position of the model argument
xbgn = m.start()
# add the corresponding actual argument
scanned += template[:xbgn] + d[x]
# update cursor to the end of the model argument
cur = m.end()
# shrink template
template = template[cur:]
# update to swapped string
s = s[:bgn] + scanned + s[end:]
return s
@classmethod
def _get_args(cls, m):
'''Get arguments of a Mathematica function'''
s = m.string # whole string
anc = m.end() + 1 # pointing the first letter of arguments
square, curly = [], [] # stack for brakets
args = []
# current cursor
cur = anc
for i, c in enumerate(s[anc:], anc):
# extract one argument
if c == ',' and (not square) and (not curly):
args.append(s[cur:i]) # add an argument
cur = i + 1 # move cursor
# handle list or matrix (for future usage)
if c == '{':
curly.append(c)
elif c == '}':
curly.pop()
# seek corresponding ']' with skipping irrevant ones
if c == '[':
square.append(c)
elif c == ']':
if square:
square.pop()
else: # empty stack
args.append(s[cur:i])
break
# the next position to ']' bracket (the function end)
func_end = i + 1
return args, func_end
@classmethod
def _replace(cls, s, bef):
aft = cls.REPLACEMENTS[bef]
s = s.replace(bef, aft)
return s
@classmethod
def _apply_rules(cls, s, bef):
pat, aft = cls.RULES[bef]
return pat.sub(aft, s)
@classmethod
def _check_input(cls, s):
for bracket in (('[', ']'), ('{', '}'), ('(', ')')):
if s.count(bracket[0]) != s.count(bracket[1]):
err = "'{f}' function form is invalid.".format(f=s)
raise ValueError(err)
if '{' in s:
err = "Currently list is not supported."
raise ValueError(err)
def _parse_old(self, s):
# input check
self._check_input(s)
# uncover '*' hiding behind a whitespace
s = self._apply_rules(s, 'whitespace')
# remove whitespace(s)
s = self._replace(s, ' ')
# add omitted '*' character
s = self._apply_rules(s, 'add*_1')
s = self._apply_rules(s, 'add*_2')
# translate function
s = self._convert_function(s)
# '^' to '**'
s = self._replace(s, '^')
# 'Pi' to 'pi'
s = self._apply_rules(s, 'Pi')
# '{', '}' to '[', ']', respectively
# s = cls._replace(s, '{') # currently list is not taken into account
# s = cls._replace(s, '}')
return s
def parse(self, s):
s2 = self._from_mathematica_to_tokens(s)
s3 = self._from_tokens_to_fullformlist(s2)
s4 = self._from_fullformlist_to_sympy(s3)
return s4
INFIX = "Infix"
PREFIX = "Prefix"
POSTFIX = "Postfix"
FLAT = "Flat"
RIGHT = "Right"
LEFT = "Left"
_mathematica_op_precedence: list[tuple[str, str | None, dict[str, str | Callable]]] = [
(POSTFIX, None, {";": lambda x: x + ["Null"] if isinstance(x, list) and x and x[0] == "CompoundExpression" else ["CompoundExpression", x, "Null"]}),
(INFIX, FLAT, {";": "CompoundExpression"}),
(INFIX, RIGHT, {"=": "Set", ":=": "SetDelayed", "+=": "AddTo", "-=": "SubtractFrom", "*=": "TimesBy", "/=": "DivideBy"}),
(INFIX, LEFT, {"//": lambda x, y: [x, y]}),
(POSTFIX, None, {"&": "Function"}),
(INFIX, LEFT, {"/.": "ReplaceAll"}),
(INFIX, RIGHT, {"->": "Rule", ":>": "RuleDelayed"}),
(INFIX, LEFT, {"/;": "Condition"}),
(INFIX, FLAT, {"|": "Alternatives"}),
(POSTFIX, None, {"..": "Repeated", "...": "RepeatedNull"}),
(INFIX, FLAT, {"||": "Or"}),
(INFIX, FLAT, {"&&": "And"}),
(PREFIX, None, {"!": "Not"}),
(INFIX, FLAT, {"===": "SameQ", "=!=": "UnsameQ"}),
(INFIX, FLAT, {"==": "Equal", "!=": "Unequal", "<=": "LessEqual", "<": "Less", ">=": "GreaterEqual", ">": "Greater"}),
(INFIX, None, {";;": "Span"}),
(INFIX, FLAT, {"+": "Plus", "-": "Plus"}),
(INFIX, FLAT, {"*": "Times", "/": "Times"}),
(INFIX, FLAT, {".": "Dot"}),
(PREFIX, None, {"-": lambda x: MathematicaParser._get_neg(x),
"+": lambda x: x}),
(INFIX, RIGHT, {"^": "Power"}),
(INFIX, RIGHT, {"@@": "Apply", "/@": "Map", "//@": "MapAll", "@@@": lambda x, y: ["Apply", x, y, ["List", "1"]]}),
(POSTFIX, None, {"'": "Derivative", "!": "Factorial", "!!": "Factorial2", "--": "Decrement"}),
(INFIX, None, {"[": lambda x, y: [x, *y], "[[": lambda x, y: ["Part", x, *y]}),
(PREFIX, None, {"{": lambda x: ["List", *x], "(": lambda x: x[0]}),
(INFIX, None, {"?": "PatternTest"}),
(POSTFIX, None, {
"_": lambda x: ["Pattern", x, ["Blank"]],
"_.": lambda x: ["Optional", ["Pattern", x, ["Blank"]]],
"__": lambda x: ["Pattern", x, ["BlankSequence"]],
"___": lambda x: ["Pattern", x, ["BlankNullSequence"]],
}),
(INFIX, None, {"_": lambda x, y: ["Pattern", x, ["Blank", y]]}),
(PREFIX, None, {"#": "Slot", "##": "SlotSequence"}),
]
_missing_arguments_default = {
"#": lambda: ["Slot", "1"],
"##": lambda: ["SlotSequence", "1"],
}
_literal = r"[A-Za-z][A-Za-z0-9]*"
_number = r"(?:[0-9]+(?:\.[0-9]*)?|\.[0-9]+)"
_enclosure_open = ["(", "[", "[[", "{"]
_enclosure_close = [")", "]", "]]", "}"]
@classmethod
def _get_neg(cls, x):
return f"-{x}" if isinstance(x, str) and re.match(MathematicaParser._number, x) else ["Times", "-1", x]
@classmethod
def _get_inv(cls, x):
return ["Power", x, "-1"]
_regex_tokenizer = None
def _get_tokenizer(self):
if self._regex_tokenizer is not None:
# Check if the regular expression has already been compiled:
return self._regex_tokenizer
tokens = [self._literal, self._number]
tokens_escape = self._enclosure_open[:] + self._enclosure_close[:]
for typ, strat, symdict in self._mathematica_op_precedence:
for k in symdict:
tokens_escape.append(k)
tokens_escape.sort(key=lambda x: -len(x))
tokens.extend(map(re.escape, tokens_escape))
tokens.append(",")
tokens.append("\n")
tokenizer = re.compile("(" + "|".join(tokens) + ")")
self._regex_tokenizer = tokenizer
return self._regex_tokenizer
def _from_mathematica_to_tokens(self, code: str):
tokenizer = self._get_tokenizer()
# Find strings:
code_splits: list[str | list] = []
while True:
string_start = code.find("\"")
if string_start == -1:
if len(code) > 0:
code_splits.append(code)
break
match_end = re.search(r'(?<!\\)"', code[string_start+1:])
if match_end is None:
raise SyntaxError('mismatch in string " " expression')
string_end = string_start + match_end.start() + 1
if string_start > 0:
code_splits.append(code[:string_start])
code_splits.append(["_Str", code[string_start+1:string_end].replace('\\"', '"')])
code = code[string_end+1:]
# Remove comments:
for i, code_split in enumerate(code_splits):
if isinstance(code_split, list):
continue
while True:
pos_comment_start = code_split.find("(*")
if pos_comment_start == -1:
break
pos_comment_end = code_split.find("*)")
if pos_comment_end == -1 or pos_comment_end < pos_comment_start:
raise SyntaxError("mismatch in comment (* *) code")
code_split = code_split[:pos_comment_start] + code_split[pos_comment_end+2:]
code_splits[i] = code_split
# Tokenize the input strings with a regular expression:
token_lists = [tokenizer.findall(i) if isinstance(i, str) and i.isascii() else [i] for i in code_splits]
tokens = [j for i in token_lists for j in i]
# Remove newlines at the beginning
while tokens and tokens[0] == "\n":
tokens.pop(0)
# Remove newlines at the end
while tokens and tokens[-1] == "\n":
tokens.pop(-1)
return tokens
def _is_op(self, token: str | list) -> bool:
if isinstance(token, list):
return False
if re.match(self._literal, token):
return False
if re.match("-?" + self._number, token):
return False
return True
def _is_valid_star1(self, token: str | list) -> bool:
if token in (")", "}"):
return True
return not self._is_op(token)
def _is_valid_star2(self, token: str | list) -> bool:
if token in ("(", "{"):
return True
return not self._is_op(token)
def _from_tokens_to_fullformlist(self, tokens: list):
stack: list[list] = [[]]
open_seq = []
pointer: int = 0
while pointer < len(tokens):
token = tokens[pointer]
if token in self._enclosure_open:
stack[-1].append(token)
open_seq.append(token)
stack.append([])
elif token == ",":
if len(stack[-1]) == 0 and stack[-2][-1] == open_seq[-1]:
raise SyntaxError("%s cannot be followed by comma ," % open_seq[-1])
stack[-1] = self._parse_after_braces(stack[-1])
stack.append([])
elif token in self._enclosure_close:
ind = self._enclosure_close.index(token)
if self._enclosure_open[ind] != open_seq[-1]:
unmatched_enclosure = SyntaxError("unmatched enclosure")
if token == "]]" and open_seq[-1] == "[":
if open_seq[-2] == "[":
# These two lines would be logically correct, but are
# unnecessary:
# token = "]"
# tokens[pointer] = "]"
tokens.insert(pointer+1, "]")
elif open_seq[-2] == "[[":
if tokens[pointer+1] == "]":
tokens[pointer+1] = "]]"
elif tokens[pointer+1] == "]]":
tokens[pointer+1] = "]]"
tokens.insert(pointer+2, "]")
else:
raise unmatched_enclosure
else:
raise unmatched_enclosure
if len(stack[-1]) == 0 and stack[-2][-1] == "(":
raise SyntaxError("( ) not valid syntax")
last_stack = self._parse_after_braces(stack[-1], True)
stack[-1] = last_stack
new_stack_element = []
while stack[-1][-1] != open_seq[-1]:
new_stack_element.append(stack.pop())
new_stack_element.reverse()
if open_seq[-1] == "(" and len(new_stack_element) != 1:
raise SyntaxError("( must be followed by one expression, %i detected" % len(new_stack_element))
stack[-1].append(new_stack_element)
open_seq.pop(-1)
else:
stack[-1].append(token)
pointer += 1
assert len(stack) == 1
return self._parse_after_braces(stack[0])
def _util_remove_newlines(self, lines: list, tokens: list, inside_enclosure: bool):
pointer = 0
size = len(tokens)
while pointer < size:
token = tokens[pointer]
if token == "\n":
if inside_enclosure:
# Ignore newlines inside enclosures
tokens.pop(pointer)
size -= 1
continue
if pointer == 0:
tokens.pop(0)
size -= 1
continue
if pointer > 1:
try:
prev_expr = self._parse_after_braces(tokens[:pointer], inside_enclosure)
except SyntaxError:
tokens.pop(pointer)
size -= 1
continue
else:
prev_expr = tokens[0]
if len(prev_expr) > 0 and prev_expr[0] == "CompoundExpression":
lines.extend(prev_expr[1:])
else:
lines.append(prev_expr)
for i in range(pointer):
tokens.pop(0)
size -= pointer
pointer = 0
continue
pointer += 1
def _util_add_missing_asterisks(self, tokens: list):
size: int = len(tokens)
pointer: int = 0
while pointer < size:
if (pointer > 0 and
self._is_valid_star1(tokens[pointer - 1]) and
self._is_valid_star2(tokens[pointer])):
# This is a trick to add missing * operators in the expression,
# `"*" in op_dict` makes sure the precedence level is the same as "*",
# while `not self._is_op( ... )` makes sure this and the previous
# expression are not operators.
if tokens[pointer] == "(":
# ( has already been processed by now, replace:
tokens[pointer] = "*"
tokens[pointer + 1] = tokens[pointer + 1][0]
else:
tokens.insert(pointer, "*")
pointer += 1
size += 1
pointer += 1
def _parse_after_braces(self, tokens: list, inside_enclosure: bool = False):
op_dict: dict
changed: bool = False
lines: list = []
self._util_remove_newlines(lines, tokens, inside_enclosure)
for op_type, grouping_strat, op_dict in reversed(self._mathematica_op_precedence):
if "*" in op_dict:
self._util_add_missing_asterisks(tokens)
size: int = len(tokens)
pointer: int = 0
while pointer < size:
token = tokens[pointer]
if isinstance(token, str) and token in op_dict:
op_name: str | Callable = op_dict[token]
node: list
first_index: int
if isinstance(op_name, str):
node = [op_name]
first_index = 1
else:
node = []
first_index = 0
if token in ("+", "-") and op_type == self.PREFIX and pointer > 0 and not self._is_op(tokens[pointer - 1]):
# Make sure that PREFIX + - don't match expressions like a + b or a - b,
# the INFIX + - are supposed to match that expression:
pointer += 1
continue
if op_type == self.INFIX:
if pointer == 0 or pointer == size - 1 or self._is_op(tokens[pointer - 1]) or self._is_op(tokens[pointer + 1]):
pointer += 1
continue
changed = True
tokens[pointer] = node
if op_type == self.INFIX:
arg1 = tokens.pop(pointer-1)
arg2 = tokens.pop(pointer)
if token == "/":
arg2 = self._get_inv(arg2)
elif token == "-":
arg2 = self._get_neg(arg2)
pointer -= 1
size -= 2
node.append(arg1)
node_p = node
if grouping_strat == self.FLAT:
while pointer + 2 < size and self._check_op_compatible(tokens[pointer+1], token):
node_p.append(arg2)
other_op = tokens.pop(pointer+1)
arg2 = tokens.pop(pointer+1)
if other_op == "/":
arg2 = self._get_inv(arg2)
elif other_op == "-":
arg2 = self._get_neg(arg2)
size -= 2
node_p.append(arg2)
elif grouping_strat == self.RIGHT:
while pointer + 2 < size and tokens[pointer+1] == token:
node_p.append([op_name, arg2])
node_p = node_p[-1]
tokens.pop(pointer+1)
arg2 = tokens.pop(pointer+1)
size -= 2
node_p.append(arg2)
elif grouping_strat == self.LEFT:
while pointer + 1 < size and tokens[pointer+1] == token:
if isinstance(op_name, str):
node_p[first_index] = [op_name, node_p[first_index], arg2]
else:
node_p[first_index] = op_name(node_p[first_index], arg2)
tokens.pop(pointer+1)
arg2 = tokens.pop(pointer+1)
size -= 2
node_p.append(arg2)
else:
node.append(arg2)
elif op_type == self.PREFIX:
assert grouping_strat is None
if pointer == size - 1 or self._is_op(tokens[pointer + 1]):
tokens[pointer] = self._missing_arguments_default[token]()
else:
node.append(tokens.pop(pointer+1))
size -= 1
elif op_type == self.POSTFIX:
assert grouping_strat is None
if pointer == 0 or self._is_op(tokens[pointer - 1]):
tokens[pointer] = self._missing_arguments_default[token]()
else:
node.append(tokens.pop(pointer-1))
pointer -= 1
size -= 1
if isinstance(op_name, Callable): # type: ignore
op_call: Callable = typing.cast(Callable, op_name)
new_node = op_call(*node)
node.clear()
if isinstance(new_node, list):
node.extend(new_node)
else:
tokens[pointer] = new_node
pointer += 1
if len(tokens) > 1 or (len(lines) == 0 and len(tokens) == 0):
if changed:
# Trick to deal with cases in which an operator with lower
# precedence should be transformed before an operator of higher
# precedence. Such as in the case of `#&[x]` (that is
# equivalent to `Lambda(d_, d_)(x)` in SymPy). In this case the
# operator `&` has lower precedence than `[`, but needs to be
# evaluated first because otherwise `# (&[x])` is not a valid
# expression:
return self._parse_after_braces(tokens, inside_enclosure)
raise SyntaxError("unable to create a single AST for the expression")
if len(lines) > 0:
if tokens[0] and tokens[0][0] == "CompoundExpression":
tokens = tokens[0][1:]
compound_expression = ["CompoundExpression", *lines, *tokens]
return compound_expression
return tokens[0]
def _check_op_compatible(self, op1: str, op2: str):
if op1 == op2:
return True
muldiv = {"*", "/"}
addsub = {"+", "-"}
if op1 in muldiv and op2 in muldiv:
return True
if op1 in addsub and op2 in addsub:
return True
return False
def _from_fullform_to_fullformlist(self, wmexpr: str):
"""
Parses FullForm[Downvalues[]] generated by Mathematica
"""
out: list = []
stack = [out]
generator = re.finditer(r'[\[\],]', wmexpr)
last_pos = 0
for match in generator:
if match is None:
break
position = match.start()
last_expr = wmexpr[last_pos:position].replace(',', '').replace(']', '').replace('[', '').strip()
if match.group() == ',':
if last_expr != '':
stack[-1].append(last_expr)
elif match.group() == ']':
if last_expr != '':
stack[-1].append(last_expr)
stack.pop()
elif match.group() == '[':
stack[-1].append([last_expr])
stack.append(stack[-1][-1])
last_pos = match.end()
return out[0]
def _from_fullformlist_to_fullformsympy(self, pylist: list):
from sympy import Function, Symbol
def converter(expr):
if isinstance(expr, list):
if len(expr) > 0:
head = expr[0]
args = [converter(arg) for arg in expr[1:]]
return Function(head)(*args)
else:
raise ValueError("Empty list of expressions")
elif isinstance(expr, str):
return Symbol(expr)
else:
return _sympify(expr)
return converter(pylist)
_node_conversions = dict(
Times=Mul,
Plus=Add,
Power=Pow,
Log=lambda *a: log(*reversed(a)),
Log2=lambda x: log(x, 2),
Log10=lambda x: log(x, 10),
Exp=exp,
Sqrt=sqrt,
Sin=sin,
Cos=cos,
Tan=tan,
Cot=cot,
Sec=sec,
Csc=csc,
ArcSin=asin,
ArcCos=acos,
ArcTan=lambda *a: atan2(*reversed(a)) if len(a) == 2 else atan(*a),
ArcCot=acot,
ArcSec=asec,
ArcCsc=acsc,
Sinh=sinh,
Cosh=cosh,
Tanh=tanh,
Coth=coth,
Sech=sech,
Csch=csch,
ArcSinh=asinh,
ArcCosh=acosh,
ArcTanh=atanh,
ArcCoth=acoth,
ArcSech=asech,
ArcCsch=acsch,
Expand=expand,
Im=im,
Re=sympy.re,
Flatten=flatten,
Polylog=polylog,
Cancel=cancel,
# Gamma=gamma,
TrigExpand=expand_trig,
Sign=sign,
Simplify=simplify,
Defer=UnevaluatedExpr,
Identity=S,
# Sum=Sum_doit,
# Module=With,
# Block=With,
Null=lambda *a: S.Zero,
Mod=Mod,
Max=Max,
Min=Min,
Pochhammer=rf,
ExpIntegralEi=Ei,
SinIntegral=Si,
CosIntegral=Ci,
AiryAi=airyai,
AiryAiPrime=airyaiprime,
AiryBi=airybi,
AiryBiPrime=airybiprime,
LogIntegral=li,
PrimePi=primepi,
Prime=prime,
PrimeQ=isprime,
List=Tuple,
Greater=StrictGreaterThan,
GreaterEqual=GreaterThan,
Less=StrictLessThan,
LessEqual=LessThan,
Equal=Equality,
Or=Or,
And=And,
Function=_parse_Function,
)
_atom_conversions = {
"I": I,
"Pi": pi,
}
def _from_fullformlist_to_sympy(self, full_form_list):
def recurse(expr):
if isinstance(expr, list):
if isinstance(expr[0], list):
head = recurse(expr[0])
else:
head = self._node_conversions.get(expr[0], Function(expr[0]))
return head(*list(recurse(arg) for arg in expr[1:]))
else:
return self._atom_conversions.get(expr, sympify(expr))
return recurse(full_form_list)
def _from_fullformsympy_to_sympy(self, mform):
expr = mform
for mma_form, sympy_node in self._node_conversions.items():
expr = expr.replace(Function(mma_form), sympy_node)
return expr
|
16f026ea65545554716983f3aa7e2ac219190af37c2c0f315052a39e43293ddc | """
Second quantization operators and states for bosons.
This follow the formulation of Fetter and Welecka, "Quantum Theory
of Many-Particle Systems."
"""
from collections import defaultdict
from sympy.core.add import Add
from sympy.core.basic import Basic
from sympy.core.cache import cacheit
from sympy.core.containers import Tuple
from sympy.core.expr import Expr
from sympy.core.function import Function
from sympy.core.mul import Mul
from sympy.core.numbers import I
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.core.sorting import default_sort_key
from sympy.core.symbol import Dummy, Symbol
from sympy.core.sympify import sympify
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.matrices.dense import zeros
from sympy.printing.str import StrPrinter
from sympy.utilities.iterables import has_dups
__all__ = [
'Dagger',
'KroneckerDelta',
'BosonicOperator',
'AnnihilateBoson',
'CreateBoson',
'AnnihilateFermion',
'CreateFermion',
'FockState',
'FockStateBra',
'FockStateKet',
'FockStateBosonKet',
'FockStateBosonBra',
'FockStateFermionKet',
'FockStateFermionBra',
'BBra',
'BKet',
'FBra',
'FKet',
'F',
'Fd',
'B',
'Bd',
'apply_operators',
'InnerProduct',
'BosonicBasis',
'VarBosonicBasis',
'FixedBosonicBasis',
'Commutator',
'matrix_rep',
'contraction',
'wicks',
'NO',
'evaluate_deltas',
'AntiSymmetricTensor',
'substitute_dummies',
'PermutationOperator',
'simplify_index_permutations',
]
class SecondQuantizationError(Exception):
pass
class AppliesOnlyToSymbolicIndex(SecondQuantizationError):
pass
class ContractionAppliesOnlyToFermions(SecondQuantizationError):
pass
class ViolationOfPauliPrinciple(SecondQuantizationError):
pass
class SubstitutionOfAmbigousOperatorFailed(SecondQuantizationError):
pass
class WicksTheoremDoesNotApply(SecondQuantizationError):
pass
class Dagger(Expr):
"""
Hermitian conjugate of creation/annihilation operators.
Examples
========
>>> from sympy import I
>>> from sympy.physics.secondquant import Dagger, B, Bd
>>> Dagger(2*I)
-2*I
>>> Dagger(B(0))
CreateBoson(0)
>>> Dagger(Bd(0))
AnnihilateBoson(0)
"""
def __new__(cls, arg):
arg = sympify(arg)
r = cls.eval(arg)
if isinstance(r, Basic):
return r
obj = Basic.__new__(cls, arg)
return obj
@classmethod
def eval(cls, arg):
"""
Evaluates the Dagger instance.
Examples
========
>>> from sympy import I
>>> from sympy.physics.secondquant import Dagger, B, Bd
>>> Dagger(2*I)
-2*I
>>> Dagger(B(0))
CreateBoson(0)
>>> Dagger(Bd(0))
AnnihilateBoson(0)
The eval() method is called automatically.
"""
dagger = getattr(arg, '_dagger_', None)
if dagger is not None:
return dagger()
if isinstance(arg, Basic):
if arg.is_Add:
return Add(*tuple(map(Dagger, arg.args)))
if arg.is_Mul:
return Mul(*tuple(map(Dagger, reversed(arg.args))))
if arg.is_Number:
return arg
if arg.is_Pow:
return Pow(Dagger(arg.args[0]), arg.args[1])
if arg == I:
return -arg
else:
return None
def _dagger_(self):
return self.args[0]
class TensorSymbol(Expr):
is_commutative = True
class AntiSymmetricTensor(TensorSymbol):
"""Stores upper and lower indices in separate Tuple's.
Each group of indices is assumed to be antisymmetric.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.secondquant import AntiSymmetricTensor
>>> i, j = symbols('i j', below_fermi=True)
>>> a, b = symbols('a b', above_fermi=True)
>>> AntiSymmetricTensor('v', (a, i), (b, j))
AntiSymmetricTensor(v, (a, i), (b, j))
>>> AntiSymmetricTensor('v', (i, a), (b, j))
-AntiSymmetricTensor(v, (a, i), (b, j))
As you can see, the indices are automatically sorted to a canonical form.
"""
def __new__(cls, symbol, upper, lower):
try:
upper, signu = _sort_anticommuting_fermions(
upper, key=cls._sortkey)
lower, signl = _sort_anticommuting_fermions(
lower, key=cls._sortkey)
except ViolationOfPauliPrinciple:
return S.Zero
symbol = sympify(symbol)
upper = Tuple(*upper)
lower = Tuple(*lower)
if (signu + signl) % 2:
return -TensorSymbol.__new__(cls, symbol, upper, lower)
else:
return TensorSymbol.__new__(cls, symbol, upper, lower)
@classmethod
def _sortkey(cls, index):
"""Key for sorting of indices.
particle < hole < general
FIXME: This is a bottle-neck, can we do it faster?
"""
h = hash(index)
label = str(index)
if isinstance(index, Dummy):
if index.assumptions0.get('above_fermi'):
return (20, label, h)
elif index.assumptions0.get('below_fermi'):
return (21, label, h)
else:
return (22, label, h)
if index.assumptions0.get('above_fermi'):
return (10, label, h)
elif index.assumptions0.get('below_fermi'):
return (11, label, h)
else:
return (12, label, h)
def _latex(self, printer):
return "{%s^{%s}_{%s}}" % (
self.symbol,
"".join([ i.name for i in self.args[1]]),
"".join([ i.name for i in self.args[2]])
)
@property
def symbol(self):
"""
Returns the symbol of the tensor.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.secondquant import AntiSymmetricTensor
>>> i, j = symbols('i,j', below_fermi=True)
>>> a, b = symbols('a,b', above_fermi=True)
>>> AntiSymmetricTensor('v', (a, i), (b, j))
AntiSymmetricTensor(v, (a, i), (b, j))
>>> AntiSymmetricTensor('v', (a, i), (b, j)).symbol
v
"""
return self.args[0]
@property
def upper(self):
"""
Returns the upper indices.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.secondquant import AntiSymmetricTensor
>>> i, j = symbols('i,j', below_fermi=True)
>>> a, b = symbols('a,b', above_fermi=True)
>>> AntiSymmetricTensor('v', (a, i), (b, j))
AntiSymmetricTensor(v, (a, i), (b, j))
>>> AntiSymmetricTensor('v', (a, i), (b, j)).upper
(a, i)
"""
return self.args[1]
@property
def lower(self):
"""
Returns the lower indices.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.secondquant import AntiSymmetricTensor
>>> i, j = symbols('i,j', below_fermi=True)
>>> a, b = symbols('a,b', above_fermi=True)
>>> AntiSymmetricTensor('v', (a, i), (b, j))
AntiSymmetricTensor(v, (a, i), (b, j))
>>> AntiSymmetricTensor('v', (a, i), (b, j)).lower
(b, j)
"""
return self.args[2]
def __str__(self):
return "%s(%s,%s)" % self.args
class SqOperator(Expr):
"""
Base class for Second Quantization operators.
"""
op_symbol = 'sq'
is_commutative = False
def __new__(cls, k):
obj = Basic.__new__(cls, sympify(k))
return obj
@property
def state(self):
"""
Returns the state index related to this operator.
Examples
========
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F, Fd, B, Bd
>>> p = Symbol('p')
>>> F(p).state
p
>>> Fd(p).state
p
>>> B(p).state
p
>>> Bd(p).state
p
"""
return self.args[0]
@property
def is_symbolic(self):
"""
Returns True if the state is a symbol (as opposed to a number).
Examples
========
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F
>>> p = Symbol('p')
>>> F(p).is_symbolic
True
>>> F(1).is_symbolic
False
"""
if self.state.is_Integer:
return False
else:
return True
def __repr__(self):
return NotImplemented
def __str__(self):
return "%s(%r)" % (self.op_symbol, self.state)
def apply_operator(self, state):
"""
Applies an operator to itself.
"""
raise NotImplementedError('implement apply_operator in a subclass')
class BosonicOperator(SqOperator):
pass
class Annihilator(SqOperator):
pass
class Creator(SqOperator):
pass
class AnnihilateBoson(BosonicOperator, Annihilator):
"""
Bosonic annihilation operator.
Examples
========
>>> from sympy.physics.secondquant import B
>>> from sympy.abc import x
>>> B(x)
AnnihilateBoson(x)
"""
op_symbol = 'b'
def _dagger_(self):
return CreateBoson(self.state)
def apply_operator(self, state):
"""
Apply state to self if self is not symbolic and state is a FockStateKet, else
multiply self by state.
Examples
========
>>> from sympy.physics.secondquant import B, BKet
>>> from sympy.abc import x, y, n
>>> B(x).apply_operator(y)
y*AnnihilateBoson(x)
>>> B(0).apply_operator(BKet((n,)))
sqrt(n)*FockStateBosonKet((n - 1,))
"""
if not self.is_symbolic and isinstance(state, FockStateKet):
element = self.state
amp = sqrt(state[element])
return amp*state.down(element)
else:
return Mul(self, state)
def __repr__(self):
return "AnnihilateBoson(%s)" % self.state
def _latex(self, printer):
if self.state is S.Zero:
return "b_{0}"
else:
return "b_{%s}" % self.state.name
class CreateBoson(BosonicOperator, Creator):
"""
Bosonic creation operator.
"""
op_symbol = 'b+'
def _dagger_(self):
return AnnihilateBoson(self.state)
def apply_operator(self, state):
"""
Apply state to self if self is not symbolic and state is a FockStateKet, else
multiply self by state.
Examples
========
>>> from sympy.physics.secondquant import B, Dagger, BKet
>>> from sympy.abc import x, y, n
>>> Dagger(B(x)).apply_operator(y)
y*CreateBoson(x)
>>> B(0).apply_operator(BKet((n,)))
sqrt(n)*FockStateBosonKet((n - 1,))
"""
if not self.is_symbolic and isinstance(state, FockStateKet):
element = self.state
amp = sqrt(state[element] + 1)
return amp*state.up(element)
else:
return Mul(self, state)
def __repr__(self):
return "CreateBoson(%s)" % self.state
def _latex(self, printer):
if self.state is S.Zero:
return "{b^\\dagger_{0}}"
else:
return "{b^\\dagger_{%s}}" % self.state.name
B = AnnihilateBoson
Bd = CreateBoson
class FermionicOperator(SqOperator):
@property
def is_restricted(self):
"""
Is this FermionicOperator restricted with respect to fermi level?
Returns
=======
1 : restricted to orbits above fermi
0 : no restriction
-1 : restricted to orbits below fermi
Examples
========
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F, Fd
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> F(a).is_restricted
1
>>> Fd(a).is_restricted
1
>>> F(i).is_restricted
-1
>>> Fd(i).is_restricted
-1
>>> F(p).is_restricted
0
>>> Fd(p).is_restricted
0
"""
ass = self.args[0].assumptions0
if ass.get("below_fermi"):
return -1
if ass.get("above_fermi"):
return 1
return 0
@property
def is_above_fermi(self):
"""
Does the index of this FermionicOperator allow values above fermi?
Examples
========
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> F(a).is_above_fermi
True
>>> F(i).is_above_fermi
False
>>> F(p).is_above_fermi
True
Note
====
The same applies to creation operators Fd
"""
return not self.args[0].assumptions0.get("below_fermi")
@property
def is_below_fermi(self):
"""
Does the index of this FermionicOperator allow values below fermi?
Examples
========
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> F(a).is_below_fermi
False
>>> F(i).is_below_fermi
True
>>> F(p).is_below_fermi
True
The same applies to creation operators Fd
"""
return not self.args[0].assumptions0.get("above_fermi")
@property
def is_only_below_fermi(self):
"""
Is the index of this FermionicOperator restricted to values below fermi?
Examples
========
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> F(a).is_only_below_fermi
False
>>> F(i).is_only_below_fermi
True
>>> F(p).is_only_below_fermi
False
The same applies to creation operators Fd
"""
return self.is_below_fermi and not self.is_above_fermi
@property
def is_only_above_fermi(self):
"""
Is the index of this FermionicOperator restricted to values above fermi?
Examples
========
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> F(a).is_only_above_fermi
True
>>> F(i).is_only_above_fermi
False
>>> F(p).is_only_above_fermi
False
The same applies to creation operators Fd
"""
return self.is_above_fermi and not self.is_below_fermi
def _sortkey(self):
h = hash(self)
label = str(self.args[0])
if self.is_only_q_creator:
return 1, label, h
if self.is_only_q_annihilator:
return 4, label, h
if isinstance(self, Annihilator):
return 3, label, h
if isinstance(self, Creator):
return 2, label, h
class AnnihilateFermion(FermionicOperator, Annihilator):
"""
Fermionic annihilation operator.
"""
op_symbol = 'f'
def _dagger_(self):
return CreateFermion(self.state)
def apply_operator(self, state):
"""
Apply state to self if self is not symbolic and state is a FockStateKet, else
multiply self by state.
Examples
========
>>> from sympy.physics.secondquant import B, Dagger, BKet
>>> from sympy.abc import x, y, n
>>> Dagger(B(x)).apply_operator(y)
y*CreateBoson(x)
>>> B(0).apply_operator(BKet((n,)))
sqrt(n)*FockStateBosonKet((n - 1,))
"""
if isinstance(state, FockStateFermionKet):
element = self.state
return state.down(element)
elif isinstance(state, Mul):
c_part, nc_part = state.args_cnc()
if isinstance(nc_part[0], FockStateFermionKet):
element = self.state
return Mul(*(c_part + [nc_part[0].down(element)] + nc_part[1:]))
else:
return Mul(self, state)
else:
return Mul(self, state)
@property
def is_q_creator(self):
"""
Can we create a quasi-particle? (create hole or create particle)
If so, would that be above or below the fermi surface?
Examples
========
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> F(a).is_q_creator
0
>>> F(i).is_q_creator
-1
>>> F(p).is_q_creator
-1
"""
if self.is_below_fermi:
return -1
return 0
@property
def is_q_annihilator(self):
"""
Can we destroy a quasi-particle? (annihilate hole or annihilate particle)
If so, would that be above or below the fermi surface?
Examples
========
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F
>>> a = Symbol('a', above_fermi=1)
>>> i = Symbol('i', below_fermi=1)
>>> p = Symbol('p')
>>> F(a).is_q_annihilator
1
>>> F(i).is_q_annihilator
0
>>> F(p).is_q_annihilator
1
"""
if self.is_above_fermi:
return 1
return 0
@property
def is_only_q_creator(self):
"""
Always create a quasi-particle? (create hole or create particle)
Examples
========
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> F(a).is_only_q_creator
False
>>> F(i).is_only_q_creator
True
>>> F(p).is_only_q_creator
False
"""
return self.is_only_below_fermi
@property
def is_only_q_annihilator(self):
"""
Always destroy a quasi-particle? (annihilate hole or annihilate particle)
Examples
========
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import F
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> F(a).is_only_q_annihilator
True
>>> F(i).is_only_q_annihilator
False
>>> F(p).is_only_q_annihilator
False
"""
return self.is_only_above_fermi
def __repr__(self):
return "AnnihilateFermion(%s)" % self.state
def _latex(self, printer):
if self.state is S.Zero:
return "a_{0}"
else:
return "a_{%s}" % self.state.name
class CreateFermion(FermionicOperator, Creator):
"""
Fermionic creation operator.
"""
op_symbol = 'f+'
def _dagger_(self):
return AnnihilateFermion(self.state)
def apply_operator(self, state):
"""
Apply state to self if self is not symbolic and state is a FockStateKet, else
multiply self by state.
Examples
========
>>> from sympy.physics.secondquant import B, Dagger, BKet
>>> from sympy.abc import x, y, n
>>> Dagger(B(x)).apply_operator(y)
y*CreateBoson(x)
>>> B(0).apply_operator(BKet((n,)))
sqrt(n)*FockStateBosonKet((n - 1,))
"""
if isinstance(state, FockStateFermionKet):
element = self.state
return state.up(element)
elif isinstance(state, Mul):
c_part, nc_part = state.args_cnc()
if isinstance(nc_part[0], FockStateFermionKet):
element = self.state
return Mul(*(c_part + [nc_part[0].up(element)] + nc_part[1:]))
return Mul(self, state)
@property
def is_q_creator(self):
"""
Can we create a quasi-particle? (create hole or create particle)
If so, would that be above or below the fermi surface?
Examples
========
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import Fd
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> Fd(a).is_q_creator
1
>>> Fd(i).is_q_creator
0
>>> Fd(p).is_q_creator
1
"""
if self.is_above_fermi:
return 1
return 0
@property
def is_q_annihilator(self):
"""
Can we destroy a quasi-particle? (annihilate hole or annihilate particle)
If so, would that be above or below the fermi surface?
Examples
========
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import Fd
>>> a = Symbol('a', above_fermi=1)
>>> i = Symbol('i', below_fermi=1)
>>> p = Symbol('p')
>>> Fd(a).is_q_annihilator
0
>>> Fd(i).is_q_annihilator
-1
>>> Fd(p).is_q_annihilator
-1
"""
if self.is_below_fermi:
return -1
return 0
@property
def is_only_q_creator(self):
"""
Always create a quasi-particle? (create hole or create particle)
Examples
========
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import Fd
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> Fd(a).is_only_q_creator
True
>>> Fd(i).is_only_q_creator
False
>>> Fd(p).is_only_q_creator
False
"""
return self.is_only_above_fermi
@property
def is_only_q_annihilator(self):
"""
Always destroy a quasi-particle? (annihilate hole or annihilate particle)
Examples
========
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import Fd
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> Fd(a).is_only_q_annihilator
False
>>> Fd(i).is_only_q_annihilator
True
>>> Fd(p).is_only_q_annihilator
False
"""
return self.is_only_below_fermi
def __repr__(self):
return "CreateFermion(%s)" % self.state
def _latex(self, printer):
if self.state is S.Zero:
return "{a^\\dagger_{0}}"
else:
return "{a^\\dagger_{%s}}" % self.state.name
Fd = CreateFermion
F = AnnihilateFermion
class FockState(Expr):
"""
Many particle Fock state with a sequence of occupation numbers.
Anywhere you can have a FockState, you can also have S.Zero.
All code must check for this!
Base class to represent FockStates.
"""
is_commutative = False
def __new__(cls, occupations):
"""
occupations is a list with two possible meanings:
- For bosons it is a list of occupation numbers.
Element i is the number of particles in state i.
- For fermions it is a list of occupied orbits.
Element 0 is the state that was occupied first, element i
is the i'th occupied state.
"""
occupations = list(map(sympify, occupations))
obj = Basic.__new__(cls, Tuple(*occupations))
return obj
def __getitem__(self, i):
i = int(i)
return self.args[0][i]
def __repr__(self):
return ("FockState(%r)") % (self.args)
def __str__(self):
return "%s%r%s" % (getattr(self, 'lbracket', ""), self._labels(), getattr(self, 'rbracket', ""))
def _labels(self):
return self.args[0]
def __len__(self):
return len(self.args[0])
def _latex(self, printer):
return "%s%s%s" % (getattr(self, 'lbracket_latex', ""), printer._print(self._labels()), getattr(self, 'rbracket_latex', ""))
class BosonState(FockState):
"""
Base class for FockStateBoson(Ket/Bra).
"""
def up(self, i):
"""
Performs the action of a creation operator.
Examples
========
>>> from sympy.physics.secondquant import BBra
>>> b = BBra([1, 2])
>>> b
FockStateBosonBra((1, 2))
>>> b.up(1)
FockStateBosonBra((1, 3))
"""
i = int(i)
new_occs = list(self.args[0])
new_occs[i] = new_occs[i] + S.One
return self.__class__(new_occs)
def down(self, i):
"""
Performs the action of an annihilation operator.
Examples
========
>>> from sympy.physics.secondquant import BBra
>>> b = BBra([1, 2])
>>> b
FockStateBosonBra((1, 2))
>>> b.down(1)
FockStateBosonBra((1, 1))
"""
i = int(i)
new_occs = list(self.args[0])
if new_occs[i] == S.Zero:
return S.Zero
else:
new_occs[i] = new_occs[i] - S.One
return self.__class__(new_occs)
class FermionState(FockState):
"""
Base class for FockStateFermion(Ket/Bra).
"""
fermi_level = 0
def __new__(cls, occupations, fermi_level=0):
occupations = list(map(sympify, occupations))
if len(occupations) > 1:
try:
(occupations, sign) = _sort_anticommuting_fermions(
occupations, key=hash)
except ViolationOfPauliPrinciple:
return S.Zero
else:
sign = 0
cls.fermi_level = fermi_level
if cls._count_holes(occupations) > fermi_level:
return S.Zero
if sign % 2:
return S.NegativeOne*FockState.__new__(cls, occupations)
else:
return FockState.__new__(cls, occupations)
def up(self, i):
"""
Performs the action of a creation operator.
Explanation
===========
If below fermi we try to remove a hole,
if above fermi we try to create a particle.
If general index p we return ``Kronecker(p,i)*self``
where ``i`` is a new symbol with restriction above or below.
Examples
========
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import FKet
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
>>> FKet([]).up(a)
FockStateFermionKet((a,))
A creator acting on vacuum below fermi vanishes
>>> FKet([]).up(i)
0
"""
present = i in self.args[0]
if self._only_above_fermi(i):
if present:
return S.Zero
else:
return self._add_orbit(i)
elif self._only_below_fermi(i):
if present:
return self._remove_orbit(i)
else:
return S.Zero
else:
if present:
hole = Dummy("i", below_fermi=True)
return KroneckerDelta(i, hole)*self._remove_orbit(i)
else:
particle = Dummy("a", above_fermi=True)
return KroneckerDelta(i, particle)*self._add_orbit(i)
def down(self, i):
"""
Performs the action of an annihilation operator.
Explanation
===========
If below fermi we try to create a hole,
If above fermi we try to remove a particle.
If general index p we return ``Kronecker(p,i)*self``
where ``i`` is a new symbol with restriction above or below.
Examples
========
>>> from sympy import Symbol
>>> from sympy.physics.secondquant import FKet
>>> a = Symbol('a', above_fermi=True)
>>> i = Symbol('i', below_fermi=True)
>>> p = Symbol('p')
An annihilator acting on vacuum above fermi vanishes
>>> FKet([]).down(a)
0
Also below fermi, it vanishes, unless we specify a fermi level > 0
>>> FKet([]).down(i)
0
>>> FKet([],4).down(i)
FockStateFermionKet((i,))
"""
present = i in self.args[0]
if self._only_above_fermi(i):
if present:
return self._remove_orbit(i)
else:
return S.Zero
elif self._only_below_fermi(i):
if present:
return S.Zero
else:
return self._add_orbit(i)
else:
if present:
hole = Dummy("i", below_fermi=True)
return KroneckerDelta(i, hole)*self._add_orbit(i)
else:
particle = Dummy("a", above_fermi=True)
return KroneckerDelta(i, particle)*self._remove_orbit(i)
@classmethod
def _only_below_fermi(cls, i):
"""
Tests if given orbit is only below fermi surface.
If nothing can be concluded we return a conservative False.
"""
if i.is_number:
return i <= cls.fermi_level
if i.assumptions0.get('below_fermi'):
return True
return False
@classmethod
def _only_above_fermi(cls, i):
"""
Tests if given orbit is only above fermi surface.
If fermi level has not been set we return True.
If nothing can be concluded we return a conservative False.
"""
if i.is_number:
return i > cls.fermi_level
if i.assumptions0.get('above_fermi'):
return True
return not cls.fermi_level
def _remove_orbit(self, i):
"""
Removes particle/fills hole in orbit i. No input tests performed here.
"""
new_occs = list(self.args[0])
pos = new_occs.index(i)
del new_occs[pos]
if (pos) % 2:
return S.NegativeOne*self.__class__(new_occs, self.fermi_level)
else:
return self.__class__(new_occs, self.fermi_level)
def _add_orbit(self, i):
"""
Adds particle/creates hole in orbit i. No input tests performed here.
"""
return self.__class__((i,) + self.args[0], self.fermi_level)
@classmethod
def _count_holes(cls, list):
"""
Returns the number of identified hole states in list.
"""
return len([i for i in list if cls._only_below_fermi(i)])
def _negate_holes(self, list):
return tuple([-i if i <= self.fermi_level else i for i in list])
def __repr__(self):
if self.fermi_level:
return "FockStateKet(%r, fermi_level=%s)" % (self.args[0], self.fermi_level)
else:
return "FockStateKet(%r)" % (self.args[0],)
def _labels(self):
return self._negate_holes(self.args[0])
class FockStateKet(FockState):
"""
Representation of a ket.
"""
lbracket = '|'
rbracket = '>'
lbracket_latex = r'\left|'
rbracket_latex = r'\right\rangle'
class FockStateBra(FockState):
"""
Representation of a bra.
"""
lbracket = '<'
rbracket = '|'
lbracket_latex = r'\left\langle'
rbracket_latex = r'\right|'
def __mul__(self, other):
if isinstance(other, FockStateKet):
return InnerProduct(self, other)
else:
return Expr.__mul__(self, other)
class FockStateBosonKet(BosonState, FockStateKet):
"""
Many particle Fock state with a sequence of occupation numbers.
Occupation numbers can be any integer >= 0.
Examples
========
>>> from sympy.physics.secondquant import BKet
>>> BKet([1, 2])
FockStateBosonKet((1, 2))
"""
def _dagger_(self):
return FockStateBosonBra(*self.args)
class FockStateBosonBra(BosonState, FockStateBra):
"""
Describes a collection of BosonBra particles.
Examples
========
>>> from sympy.physics.secondquant import BBra
>>> BBra([1, 2])
FockStateBosonBra((1, 2))
"""
def _dagger_(self):
return FockStateBosonKet(*self.args)
class FockStateFermionKet(FermionState, FockStateKet):
"""
Many-particle Fock state with a sequence of occupied orbits.
Explanation
===========
Each state can only have one particle, so we choose to store a list of
occupied orbits rather than a tuple with occupation numbers (zeros and ones).
states below fermi level are holes, and are represented by negative labels
in the occupation list.
For symbolic state labels, the fermi_level caps the number of allowed hole-
states.
Examples
========
>>> from sympy.physics.secondquant import FKet
>>> FKet([1, 2])
FockStateFermionKet((1, 2))
"""
def _dagger_(self):
return FockStateFermionBra(*self.args)
class FockStateFermionBra(FermionState, FockStateBra):
"""
See Also
========
FockStateFermionKet
Examples
========
>>> from sympy.physics.secondquant import FBra
>>> FBra([1, 2])
FockStateFermionBra((1, 2))
"""
def _dagger_(self):
return FockStateFermionKet(*self.args)
BBra = FockStateBosonBra
BKet = FockStateBosonKet
FBra = FockStateFermionBra
FKet = FockStateFermionKet
def _apply_Mul(m):
"""
Take a Mul instance with operators and apply them to states.
Explanation
===========
This method applies all operators with integer state labels
to the actual states. For symbolic state labels, nothing is done.
When inner products of FockStates are encountered (like <a|b>),
they are converted to instances of InnerProduct.
This does not currently work on double inner products like,
<a|b><c|d>.
If the argument is not a Mul, it is simply returned as is.
"""
if not isinstance(m, Mul):
return m
c_part, nc_part = m.args_cnc()
n_nc = len(nc_part)
if n_nc in (0, 1):
return m
else:
last = nc_part[-1]
next_to_last = nc_part[-2]
if isinstance(last, FockStateKet):
if isinstance(next_to_last, SqOperator):
if next_to_last.is_symbolic:
return m
else:
result = next_to_last.apply_operator(last)
if result == 0:
return S.Zero
else:
return _apply_Mul(Mul(*(c_part + nc_part[:-2] + [result])))
elif isinstance(next_to_last, Pow):
if isinstance(next_to_last.base, SqOperator) and \
next_to_last.exp.is_Integer:
if next_to_last.base.is_symbolic:
return m
else:
result = last
for i in range(next_to_last.exp):
result = next_to_last.base.apply_operator(result)
if result == 0:
break
if result == 0:
return S.Zero
else:
return _apply_Mul(Mul(*(c_part + nc_part[:-2] + [result])))
else:
return m
elif isinstance(next_to_last, FockStateBra):
result = InnerProduct(next_to_last, last)
if result == 0:
return S.Zero
else:
return _apply_Mul(Mul(*(c_part + nc_part[:-2] + [result])))
else:
return m
else:
return m
def apply_operators(e):
"""
Take a SymPy expression with operators and states and apply the operators.
Examples
========
>>> from sympy.physics.secondquant import apply_operators
>>> from sympy import sympify
>>> apply_operators(sympify(3)+4)
7
"""
e = e.expand()
muls = e.atoms(Mul)
subs_list = [(m, _apply_Mul(m)) for m in iter(muls)]
return e.subs(subs_list)
class InnerProduct(Basic):
"""
An unevaluated inner product between a bra and ket.
Explanation
===========
Currently this class just reduces things to a product of
Kronecker Deltas. In the future, we could introduce abstract
states like ``|a>`` and ``|b>``, and leave the inner product unevaluated as
``<a|b>``.
"""
is_commutative = True
def __new__(cls, bra, ket):
if not isinstance(bra, FockStateBra):
raise TypeError("must be a bra")
if not isinstance(ket, FockStateKet):
raise TypeError("must be a ket")
return cls.eval(bra, ket)
@classmethod
def eval(cls, bra, ket):
result = S.One
for i, j in zip(bra.args[0], ket.args[0]):
result *= KroneckerDelta(i, j)
if result == 0:
break
return result
@property
def bra(self):
"""Returns the bra part of the state"""
return self.args[0]
@property
def ket(self):
"""Returns the ket part of the state"""
return self.args[1]
def __repr__(self):
sbra = repr(self.bra)
sket = repr(self.ket)
return "%s|%s" % (sbra[:-1], sket[1:])
def __str__(self):
return self.__repr__()
def matrix_rep(op, basis):
"""
Find the representation of an operator in a basis.
Examples
========
>>> from sympy.physics.secondquant import VarBosonicBasis, B, matrix_rep
>>> b = VarBosonicBasis(5)
>>> o = B(0)
>>> matrix_rep(o, b)
Matrix([
[0, 1, 0, 0, 0],
[0, 0, sqrt(2), 0, 0],
[0, 0, 0, sqrt(3), 0],
[0, 0, 0, 0, 2],
[0, 0, 0, 0, 0]])
"""
a = zeros(len(basis))
for i in range(len(basis)):
for j in range(len(basis)):
a[i, j] = apply_operators(Dagger(basis[i])*op*basis[j])
return a
class BosonicBasis:
"""
Base class for a basis set of bosonic Fock states.
"""
pass
class VarBosonicBasis:
"""
A single state, variable particle number basis set.
Examples
========
>>> from sympy.physics.secondquant import VarBosonicBasis
>>> b = VarBosonicBasis(5)
>>> b
[FockState((0,)), FockState((1,)), FockState((2,)),
FockState((3,)), FockState((4,))]
"""
def __init__(self, n_max):
self.n_max = n_max
self._build_states()
def _build_states(self):
self.basis = []
for i in range(self.n_max):
self.basis.append(FockStateBosonKet([i]))
self.n_basis = len(self.basis)
def index(self, state):
"""
Returns the index of state in basis.
Examples
========
>>> from sympy.physics.secondquant import VarBosonicBasis
>>> b = VarBosonicBasis(3)
>>> state = b.state(1)
>>> b
[FockState((0,)), FockState((1,)), FockState((2,))]
>>> state
FockStateBosonKet((1,))
>>> b.index(state)
1
"""
return self.basis.index(state)
def state(self, i):
"""
The state of a single basis.
Examples
========
>>> from sympy.physics.secondquant import VarBosonicBasis
>>> b = VarBosonicBasis(5)
>>> b.state(3)
FockStateBosonKet((3,))
"""
return self.basis[i]
def __getitem__(self, i):
return self.state(i)
def __len__(self):
return len(self.basis)
def __repr__(self):
return repr(self.basis)
class FixedBosonicBasis(BosonicBasis):
"""
Fixed particle number basis set.
Examples
========
>>> from sympy.physics.secondquant import FixedBosonicBasis
>>> b = FixedBosonicBasis(2, 2)
>>> state = b.state(1)
>>> b
[FockState((2, 0)), FockState((1, 1)), FockState((0, 2))]
>>> state
FockStateBosonKet((1, 1))
>>> b.index(state)
1
"""
def __init__(self, n_particles, n_levels):
self.n_particles = n_particles
self.n_levels = n_levels
self._build_particle_locations()
self._build_states()
def _build_particle_locations(self):
tup = ["i%i" % i for i in range(self.n_particles)]
first_loop = "for i0 in range(%i)" % self.n_levels
other_loops = ''
for cur, prev in zip(tup[1:], tup):
temp = "for %s in range(%s + 1) " % (cur, prev)
other_loops = other_loops + temp
tup_string = "(%s)" % ", ".join(tup)
list_comp = "[%s %s %s]" % (tup_string, first_loop, other_loops)
result = eval(list_comp)
if self.n_particles == 1:
result = [(item,) for item in result]
self.particle_locations = result
def _build_states(self):
self.basis = []
for tuple_of_indices in self.particle_locations:
occ_numbers = self.n_levels*[0]
for level in tuple_of_indices:
occ_numbers[level] += 1
self.basis.append(FockStateBosonKet(occ_numbers))
self.n_basis = len(self.basis)
def index(self, state):
"""Returns the index of state in basis.
Examples
========
>>> from sympy.physics.secondquant import FixedBosonicBasis
>>> b = FixedBosonicBasis(2, 3)
>>> b.index(b.state(3))
3
"""
return self.basis.index(state)
def state(self, i):
"""Returns the state that lies at index i of the basis
Examples
========
>>> from sympy.physics.secondquant import FixedBosonicBasis
>>> b = FixedBosonicBasis(2, 3)
>>> b.state(3)
FockStateBosonKet((1, 0, 1))
"""
return self.basis[i]
def __getitem__(self, i):
return self.state(i)
def __len__(self):
return len(self.basis)
def __repr__(self):
return repr(self.basis)
class Commutator(Function):
"""
The Commutator: [A, B] = A*B - B*A
The arguments are ordered according to .__cmp__()
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.secondquant import Commutator
>>> A, B = symbols('A,B', commutative=False)
>>> Commutator(B, A)
-Commutator(A, B)
Evaluate the commutator with .doit()
>>> comm = Commutator(A,B); comm
Commutator(A, B)
>>> comm.doit()
A*B - B*A
For two second quantization operators the commutator is evaluated
immediately:
>>> from sympy.physics.secondquant import Fd, F
>>> a = symbols('a', above_fermi=True)
>>> i = symbols('i', below_fermi=True)
>>> p,q = symbols('p,q')
>>> Commutator(Fd(a),Fd(i))
2*NO(CreateFermion(a)*CreateFermion(i))
But for more complicated expressions, the evaluation is triggered by
a call to .doit()
>>> comm = Commutator(Fd(p)*Fd(q),F(i)); comm
Commutator(CreateFermion(p)*CreateFermion(q), AnnihilateFermion(i))
>>> comm.doit(wicks=True)
-KroneckerDelta(i, p)*CreateFermion(q) +
KroneckerDelta(i, q)*CreateFermion(p)
"""
is_commutative = False
@classmethod
def eval(cls, a, b):
"""
The Commutator [A,B] is on canonical form if A < B.
Examples
========
>>> from sympy.physics.secondquant import Commutator, F, Fd
>>> from sympy.abc import x
>>> c1 = Commutator(F(x), Fd(x))
>>> c2 = Commutator(Fd(x), F(x))
>>> Commutator.eval(c1, c2)
0
"""
if not (a and b):
return S.Zero
if a == b:
return S.Zero
if a.is_commutative or b.is_commutative:
return S.Zero
#
# [A+B,C] -> [A,C] + [B,C]
#
a = a.expand()
if isinstance(a, Add):
return Add(*[cls(term, b) for term in a.args])
b = b.expand()
if isinstance(b, Add):
return Add(*[cls(a, term) for term in b.args])
#
# [xA,yB] -> xy*[A,B]
#
ca, nca = a.args_cnc()
cb, ncb = b.args_cnc()
c_part = list(ca) + list(cb)
if c_part:
return Mul(Mul(*c_part), cls(Mul._from_args(nca), Mul._from_args(ncb)))
#
# single second quantization operators
#
if isinstance(a, BosonicOperator) and isinstance(b, BosonicOperator):
if isinstance(b, CreateBoson) and isinstance(a, AnnihilateBoson):
return KroneckerDelta(a.state, b.state)
if isinstance(a, CreateBoson) and isinstance(b, AnnihilateBoson):
return S.NegativeOne*KroneckerDelta(a.state, b.state)
else:
return S.Zero
if isinstance(a, FermionicOperator) and isinstance(b, FermionicOperator):
return wicks(a*b) - wicks(b*a)
#
# Canonical ordering of arguments
#
if a.sort_key() > b.sort_key():
return S.NegativeOne*cls(b, a)
def doit(self, **hints):
"""
Enables the computation of complex expressions.
Examples
========
>>> from sympy.physics.secondquant import Commutator, F, Fd
>>> from sympy import symbols
>>> i, j = symbols('i,j', below_fermi=True)
>>> a, b = symbols('a,b', above_fermi=True)
>>> c = Commutator(Fd(a)*F(i),Fd(b)*F(j))
>>> c.doit(wicks=True)
0
"""
a = self.args[0]
b = self.args[1]
if hints.get("wicks"):
a = a.doit(**hints)
b = b.doit(**hints)
try:
return wicks(a*b) - wicks(b*a)
except ContractionAppliesOnlyToFermions:
pass
except WicksTheoremDoesNotApply:
pass
return (a*b - b*a).doit(**hints)
def __repr__(self):
return "Commutator(%s,%s)" % (self.args[0], self.args[1])
def __str__(self):
return "[%s,%s]" % (self.args[0], self.args[1])
def _latex(self, printer):
return "\\left[%s,%s\\right]" % tuple([
printer._print(arg) for arg in self.args])
class NO(Expr):
"""
This Object is used to represent normal ordering brackets.
i.e. {abcd} sometimes written :abcd:
Explanation
===========
Applying the function NO(arg) to an argument means that all operators in
the argument will be assumed to anticommute, and have vanishing
contractions. This allows an immediate reordering to canonical form
upon object creation.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.secondquant import NO, F, Fd
>>> p,q = symbols('p,q')
>>> NO(Fd(p)*F(q))
NO(CreateFermion(p)*AnnihilateFermion(q))
>>> NO(F(q)*Fd(p))
-NO(CreateFermion(p)*AnnihilateFermion(q))
Note
====
If you want to generate a normal ordered equivalent of an expression, you
should use the function wicks(). This class only indicates that all
operators inside the brackets anticommute, and have vanishing contractions.
Nothing more, nothing less.
"""
is_commutative = False
def __new__(cls, arg):
"""
Use anticommutation to get canonical form of operators.
Explanation
===========
Employ associativity of normal ordered product: {ab{cd}} = {abcd}
but note that {ab}{cd} /= {abcd}.
We also employ distributivity: {ab + cd} = {ab} + {cd}.
Canonical form also implies expand() {ab(c+d)} = {abc} + {abd}.
"""
# {ab + cd} = {ab} + {cd}
arg = sympify(arg)
arg = arg.expand()
if arg.is_Add:
return Add(*[ cls(term) for term in arg.args])
if arg.is_Mul:
# take coefficient outside of normal ordering brackets
c_part, seq = arg.args_cnc()
if c_part:
coeff = Mul(*c_part)
if not seq:
return coeff
else:
coeff = S.One
# {ab{cd}} = {abcd}
newseq = []
foundit = False
for fac in seq:
if isinstance(fac, NO):
newseq.extend(fac.args)
foundit = True
else:
newseq.append(fac)
if foundit:
return coeff*cls(Mul(*newseq))
# We assume that the user don't mix B and F operators
if isinstance(seq[0], BosonicOperator):
raise NotImplementedError
try:
newseq, sign = _sort_anticommuting_fermions(seq)
except ViolationOfPauliPrinciple:
return S.Zero
if sign % 2:
return (S.NegativeOne*coeff)*cls(Mul(*newseq))
elif sign:
return coeff*cls(Mul(*newseq))
else:
pass # since sign==0, no permutations was necessary
# if we couldn't do anything with Mul object, we just
# mark it as normal ordered
if coeff != S.One:
return coeff*cls(Mul(*newseq))
return Expr.__new__(cls, Mul(*newseq))
if isinstance(arg, NO):
return arg
# if object was not Mul or Add, normal ordering does not apply
return arg
@property
def has_q_creators(self):
"""
Return 0 if the leftmost argument of the first argument is a not a
q_creator, else 1 if it is above fermi or -1 if it is below fermi.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.secondquant import NO, F, Fd
>>> a = symbols('a', above_fermi=True)
>>> i = symbols('i', below_fermi=True)
>>> NO(Fd(a)*Fd(i)).has_q_creators
1
>>> NO(F(i)*F(a)).has_q_creators
-1
>>> NO(Fd(i)*F(a)).has_q_creators #doctest: +SKIP
0
"""
return self.args[0].args[0].is_q_creator
@property
def has_q_annihilators(self):
"""
Return 0 if the rightmost argument of the first argument is a not a
q_annihilator, else 1 if it is above fermi or -1 if it is below fermi.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.secondquant import NO, F, Fd
>>> a = symbols('a', above_fermi=True)
>>> i = symbols('i', below_fermi=True)
>>> NO(Fd(a)*Fd(i)).has_q_annihilators
-1
>>> NO(F(i)*F(a)).has_q_annihilators
1
>>> NO(Fd(a)*F(i)).has_q_annihilators
0
"""
return self.args[0].args[-1].is_q_annihilator
def doit(self, **hints):
"""
Either removes the brackets or enables complex computations
in its arguments.
Examples
========
>>> from sympy.physics.secondquant import NO, Fd, F
>>> from textwrap import fill
>>> from sympy import symbols, Dummy
>>> p,q = symbols('p,q', cls=Dummy)
>>> print(fill(str(NO(Fd(p)*F(q)).doit())))
KroneckerDelta(_a, _p)*KroneckerDelta(_a,
_q)*CreateFermion(_a)*AnnihilateFermion(_a) + KroneckerDelta(_a,
_p)*KroneckerDelta(_i, _q)*CreateFermion(_a)*AnnihilateFermion(_i) -
KroneckerDelta(_a, _q)*KroneckerDelta(_i,
_p)*AnnihilateFermion(_a)*CreateFermion(_i) - KroneckerDelta(_i,
_p)*KroneckerDelta(_i, _q)*AnnihilateFermion(_i)*CreateFermion(_i)
"""
if hints.get("remove_brackets", True):
return self._remove_brackets()
else:
return self.__new__(type(self), self.args[0].doit(**hints))
def _remove_brackets(self):
"""
Returns the sorted string without normal order brackets.
The returned string have the property that no nonzero
contractions exist.
"""
# check if any creator is also an annihilator
subslist = []
for i in self.iter_q_creators():
if self[i].is_q_annihilator:
assume = self[i].state.assumptions0
# only operators with a dummy index can be split in two terms
if isinstance(self[i].state, Dummy):
# create indices with fermi restriction
assume.pop("above_fermi", None)
assume["below_fermi"] = True
below = Dummy('i', **assume)
assume.pop("below_fermi", None)
assume["above_fermi"] = True
above = Dummy('a', **assume)
cls = type(self[i])
split = (
self[i].__new__(cls, below)
* KroneckerDelta(below, self[i].state)
+ self[i].__new__(cls, above)
* KroneckerDelta(above, self[i].state)
)
subslist.append((self[i], split))
else:
raise SubstitutionOfAmbigousOperatorFailed(self[i])
if subslist:
result = NO(self.subs(subslist))
if isinstance(result, Add):
return Add(*[term.doit() for term in result.args])
else:
return self.args[0]
def _expand_operators(self):
"""
Returns a sum of NO objects that contain no ambiguous q-operators.
Explanation
===========
If an index q has range both above and below fermi, the operator F(q)
is ambiguous in the sense that it can be both a q-creator and a q-annihilator.
If q is dummy, it is assumed to be a summation variable and this method
rewrites it into a sum of NO terms with unambiguous operators:
{Fd(p)*F(q)} = {Fd(a)*F(b)} + {Fd(a)*F(i)} + {Fd(j)*F(b)} -{F(i)*Fd(j)}
where a,b are above and i,j are below fermi level.
"""
return NO(self._remove_brackets)
def __getitem__(self, i):
if isinstance(i, slice):
indices = i.indices(len(self))
return [self.args[0].args[i] for i in range(*indices)]
else:
return self.args[0].args[i]
def __len__(self):
return len(self.args[0].args)
def iter_q_annihilators(self):
"""
Iterates over the annihilation operators.
Examples
========
>>> from sympy import symbols
>>> i, j = symbols('i j', below_fermi=True)
>>> a, b = symbols('a b', above_fermi=True)
>>> from sympy.physics.secondquant import NO, F, Fd
>>> no = NO(Fd(a)*F(i)*F(b)*Fd(j))
>>> no.iter_q_creators()
<generator object... at 0x...>
>>> list(no.iter_q_creators())
[0, 1]
>>> list(no.iter_q_annihilators())
[3, 2]
"""
ops = self.args[0].args
iter = range(len(ops) - 1, -1, -1)
for i in iter:
if ops[i].is_q_annihilator:
yield i
else:
break
def iter_q_creators(self):
"""
Iterates over the creation operators.
Examples
========
>>> from sympy import symbols
>>> i, j = symbols('i j', below_fermi=True)
>>> a, b = symbols('a b', above_fermi=True)
>>> from sympy.physics.secondquant import NO, F, Fd
>>> no = NO(Fd(a)*F(i)*F(b)*Fd(j))
>>> no.iter_q_creators()
<generator object... at 0x...>
>>> list(no.iter_q_creators())
[0, 1]
>>> list(no.iter_q_annihilators())
[3, 2]
"""
ops = self.args[0].args
iter = range(0, len(ops))
for i in iter:
if ops[i].is_q_creator:
yield i
else:
break
def get_subNO(self, i):
"""
Returns a NO() without FermionicOperator at index i.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.secondquant import F, NO
>>> p, q, r = symbols('p,q,r')
>>> NO(F(p)*F(q)*F(r)).get_subNO(1)
NO(AnnihilateFermion(p)*AnnihilateFermion(r))
"""
arg0 = self.args[0] # it's a Mul by definition of how it's created
mul = arg0._new_rawargs(*(arg0.args[:i] + arg0.args[i + 1:]))
return NO(mul)
def _latex(self, printer):
return "\\left\\{%s\\right\\}" % printer._print(self.args[0])
def __repr__(self):
return "NO(%s)" % self.args[0]
def __str__(self):
return ":%s:" % self.args[0]
def contraction(a, b):
"""
Calculates contraction of Fermionic operators a and b.
Examples
========
>>> from sympy import symbols
>>> from sympy.physics.secondquant import F, Fd, contraction
>>> p, q = symbols('p,q')
>>> a, b = symbols('a,b', above_fermi=True)
>>> i, j = symbols('i,j', below_fermi=True)
A contraction is non-zero only if a quasi-creator is to the right of a
quasi-annihilator:
>>> contraction(F(a),Fd(b))
KroneckerDelta(a, b)
>>> contraction(Fd(i),F(j))
KroneckerDelta(i, j)
For general indices a non-zero result restricts the indices to below/above
the fermi surface:
>>> contraction(Fd(p),F(q))
KroneckerDelta(_i, q)*KroneckerDelta(p, q)
>>> contraction(F(p),Fd(q))
KroneckerDelta(_a, q)*KroneckerDelta(p, q)
Two creators or two annihilators always vanishes:
>>> contraction(F(p),F(q))
0
>>> contraction(Fd(p),Fd(q))
0
"""
if isinstance(b, FermionicOperator) and isinstance(a, FermionicOperator):
if isinstance(a, AnnihilateFermion) and isinstance(b, CreateFermion):
if b.state.assumptions0.get("below_fermi"):
return S.Zero
if a.state.assumptions0.get("below_fermi"):
return S.Zero
if b.state.assumptions0.get("above_fermi"):
return KroneckerDelta(a.state, b.state)
if a.state.assumptions0.get("above_fermi"):
return KroneckerDelta(a.state, b.state)
return (KroneckerDelta(a.state, b.state)*
KroneckerDelta(b.state, Dummy('a', above_fermi=True)))
if isinstance(b, AnnihilateFermion) and isinstance(a, CreateFermion):
if b.state.assumptions0.get("above_fermi"):
return S.Zero
if a.state.assumptions0.get("above_fermi"):
return S.Zero
if b.state.assumptions0.get("below_fermi"):
return KroneckerDelta(a.state, b.state)
if a.state.assumptions0.get("below_fermi"):
return KroneckerDelta(a.state, b.state)
return (KroneckerDelta(a.state, b.state)*
KroneckerDelta(b.state, Dummy('i', below_fermi=True)))
# vanish if 2xAnnihilator or 2xCreator
return S.Zero
else:
#not fermion operators
t = ( isinstance(i, FermionicOperator) for i in (a, b) )
raise ContractionAppliesOnlyToFermions(*t)
def _sqkey(sq_operator):
"""Generates key for canonical sorting of SQ operators."""
return sq_operator._sortkey()
def _sort_anticommuting_fermions(string1, key=_sqkey):
"""Sort fermionic operators to canonical order, assuming all pairs anticommute.
Explanation
===========
Uses a bidirectional bubble sort. Items in string1 are not referenced
so in principle they may be any comparable objects. The sorting depends on the
operators '>' and '=='.
If the Pauli principle is violated, an exception is raised.
Returns
=======
tuple (sorted_str, sign)
sorted_str: list containing the sorted operators
sign: int telling how many times the sign should be changed
(if sign==0 the string was already sorted)
"""
verified = False
sign = 0
rng = list(range(len(string1) - 1))
rev = list(range(len(string1) - 3, -1, -1))
keys = list(map(key, string1))
key_val = dict(list(zip(keys, string1)))
while not verified:
verified = True
for i in rng:
left = keys[i]
right = keys[i + 1]
if left == right:
raise ViolationOfPauliPrinciple([left, right])
if left > right:
verified = False
keys[i:i + 2] = [right, left]
sign = sign + 1
if verified:
break
for i in rev:
left = keys[i]
right = keys[i + 1]
if left == right:
raise ViolationOfPauliPrinciple([left, right])
if left > right:
verified = False
keys[i:i + 2] = [right, left]
sign = sign + 1
string1 = [ key_val[k] for k in keys ]
return (string1, sign)
def evaluate_deltas(e):
"""
We evaluate KroneckerDelta symbols in the expression assuming Einstein summation.
Explanation
===========
If one index is repeated it is summed over and in effect substituted with
the other one. If both indices are repeated we substitute according to what
is the preferred index. this is determined by
KroneckerDelta.preferred_index and KroneckerDelta.killable_index.
In case there are no possible substitutions or if a substitution would
imply a loss of information, nothing is done.
In case an index appears in more than one KroneckerDelta, the resulting
substitution depends on the order of the factors. Since the ordering is platform
dependent, the literal expression resulting from this function may be hard to
predict.
Examples
========
We assume the following:
>>> from sympy import symbols, Function, Dummy, KroneckerDelta
>>> from sympy.physics.secondquant import evaluate_deltas
>>> i,j = symbols('i j', below_fermi=True, cls=Dummy)
>>> a,b = symbols('a b', above_fermi=True, cls=Dummy)
>>> p,q = symbols('p q', cls=Dummy)
>>> f = Function('f')
>>> t = Function('t')
The order of preference for these indices according to KroneckerDelta is
(a, b, i, j, p, q).
Trivial cases:
>>> evaluate_deltas(KroneckerDelta(i,j)*f(i)) # d_ij f(i) -> f(j)
f(_j)
>>> evaluate_deltas(KroneckerDelta(i,j)*f(j)) # d_ij f(j) -> f(i)
f(_i)
>>> evaluate_deltas(KroneckerDelta(i,p)*f(p)) # d_ip f(p) -> f(i)
f(_i)
>>> evaluate_deltas(KroneckerDelta(q,p)*f(p)) # d_qp f(p) -> f(q)
f(_q)
>>> evaluate_deltas(KroneckerDelta(q,p)*f(q)) # d_qp f(q) -> f(p)
f(_p)
More interesting cases:
>>> evaluate_deltas(KroneckerDelta(i,p)*t(a,i)*f(p,q))
f(_i, _q)*t(_a, _i)
>>> evaluate_deltas(KroneckerDelta(a,p)*t(a,i)*f(p,q))
f(_a, _q)*t(_a, _i)
>>> evaluate_deltas(KroneckerDelta(p,q)*f(p,q))
f(_p, _p)
Finally, here are some cases where nothing is done, because that would
imply a loss of information:
>>> evaluate_deltas(KroneckerDelta(i,p)*f(q))
f(_q)*KroneckerDelta(_i, _p)
>>> evaluate_deltas(KroneckerDelta(i,p)*f(i))
f(_i)*KroneckerDelta(_i, _p)
"""
# We treat Deltas only in mul objects
# for general function objects we don't evaluate KroneckerDeltas in arguments,
# but here we hard code exceptions to this rule
accepted_functions = (
Add,
)
if isinstance(e, accepted_functions):
return e.func(*[evaluate_deltas(arg) for arg in e.args])
elif isinstance(e, Mul):
# find all occurrences of delta function and count each index present in
# expression.
deltas = []
indices = {}
for i in e.args:
for s in i.free_symbols:
if s in indices:
indices[s] += 1
else:
indices[s] = 0 # geek counting simplifies logic below
if isinstance(i, KroneckerDelta):
deltas.append(i)
for d in deltas:
# If we do something, and there are more deltas, we should recurse
# to treat the resulting expression properly
if d.killable_index.is_Symbol and indices[d.killable_index]:
e = e.subs(d.killable_index, d.preferred_index)
if len(deltas) > 1:
return evaluate_deltas(e)
elif (d.preferred_index.is_Symbol and indices[d.preferred_index]
and d.indices_contain_equal_information):
e = e.subs(d.preferred_index, d.killable_index)
if len(deltas) > 1:
return evaluate_deltas(e)
else:
pass
return e
# nothing to do, maybe we hit a Symbol or a number
else:
return e
def substitute_dummies(expr, new_indices=False, pretty_indices={}):
"""
Collect terms by substitution of dummy variables.
Explanation
===========
This routine allows simplification of Add expressions containing terms
which differ only due to dummy variables.
The idea is to substitute all dummy variables consistently depending on
the structure of the term. For each term, we obtain a sequence of all
dummy variables, where the order is determined by the index range, what
factors the index belongs to and its position in each factor. See
_get_ordered_dummies() for more information about the sorting of dummies.
The index sequence is then substituted consistently in each term.
Examples
========
>>> from sympy import symbols, Function, Dummy
>>> from sympy.physics.secondquant import substitute_dummies
>>> a,b,c,d = symbols('a b c d', above_fermi=True, cls=Dummy)
>>> i,j = symbols('i j', below_fermi=True, cls=Dummy)
>>> f = Function('f')
>>> expr = f(a,b) + f(c,d); expr
f(_a, _b) + f(_c, _d)
Since a, b, c and d are equivalent summation indices, the expression can be
simplified to a single term (for which the dummy indices are still summed over)
>>> substitute_dummies(expr)
2*f(_a, _b)
Controlling output:
By default the dummy symbols that are already present in the expression
will be reused in a different permutation. However, if new_indices=True,
new dummies will be generated and inserted. The keyword 'pretty_indices'
can be used to control this generation of new symbols.
By default the new dummies will be generated on the form i_1, i_2, a_1,
etc. If you supply a dictionary with key:value pairs in the form:
{ index_group: string_of_letters }
The letters will be used as labels for the new dummy symbols. The
index_groups must be one of 'above', 'below' or 'general'.
>>> expr = f(a,b,i,j)
>>> my_dummies = { 'above':'st', 'below':'uv' }
>>> substitute_dummies(expr, new_indices=True, pretty_indices=my_dummies)
f(_s, _t, _u, _v)
If we run out of letters, or if there is no keyword for some index_group
the default dummy generator will be used as a fallback:
>>> p,q = symbols('p q', cls=Dummy) # general indices
>>> expr = f(p,q)
>>> substitute_dummies(expr, new_indices=True, pretty_indices=my_dummies)
f(_p_0, _p_1)
"""
# setup the replacing dummies
if new_indices:
letters_above = pretty_indices.get('above', "")
letters_below = pretty_indices.get('below', "")
letters_general = pretty_indices.get('general', "")
len_above = len(letters_above)
len_below = len(letters_below)
len_general = len(letters_general)
def _i(number):
try:
return letters_below[number]
except IndexError:
return 'i_' + str(number - len_below)
def _a(number):
try:
return letters_above[number]
except IndexError:
return 'a_' + str(number - len_above)
def _p(number):
try:
return letters_general[number]
except IndexError:
return 'p_' + str(number - len_general)
aboves = []
belows = []
generals = []
dummies = expr.atoms(Dummy)
if not new_indices:
dummies = sorted(dummies, key=default_sort_key)
# generate lists with the dummies we will insert
a = i = p = 0
for d in dummies:
assum = d.assumptions0
if assum.get("above_fermi"):
if new_indices:
sym = _a(a)
a += 1
l1 = aboves
elif assum.get("below_fermi"):
if new_indices:
sym = _i(i)
i += 1
l1 = belows
else:
if new_indices:
sym = _p(p)
p += 1
l1 = generals
if new_indices:
l1.append(Dummy(sym, **assum))
else:
l1.append(d)
expr = expr.expand()
terms = Add.make_args(expr)
new_terms = []
for term in terms:
i = iter(belows)
a = iter(aboves)
p = iter(generals)
ordered = _get_ordered_dummies(term)
subsdict = {}
for d in ordered:
if d.assumptions0.get('below_fermi'):
subsdict[d] = next(i)
elif d.assumptions0.get('above_fermi'):
subsdict[d] = next(a)
else:
subsdict[d] = next(p)
subslist = []
final_subs = []
for k, v in subsdict.items():
if k == v:
continue
if v in subsdict:
# We check if the sequence of substitutions end quickly. In
# that case, we can avoid temporary symbols if we ensure the
# correct substitution order.
if subsdict[v] in subsdict:
# (x, y) -> (y, x), we need a temporary variable
x = Dummy('x')
subslist.append((k, x))
final_subs.append((x, v))
else:
# (x, y) -> (y, a), x->y must be done last
# but before temporary variables are resolved
final_subs.insert(0, (k, v))
else:
subslist.append((k, v))
subslist.extend(final_subs)
new_terms.append(term.subs(subslist))
return Add(*new_terms)
class KeyPrinter(StrPrinter):
"""Printer for which only equal objects are equal in print"""
def _print_Dummy(self, expr):
return "(%s_%i)" % (expr.name, expr.dummy_index)
def __kprint(expr):
p = KeyPrinter()
return p.doprint(expr)
def _get_ordered_dummies(mul, verbose=False):
"""Returns all dummies in the mul sorted in canonical order.
Explanation
===========
The purpose of the canonical ordering is that dummies can be substituted
consistently across terms with the result that equivalent terms can be
simplified.
It is not possible to determine if two terms are equivalent based solely on
the dummy order. However, a consistent substitution guided by the ordered
dummies should lead to trivially (non-)equivalent terms, thereby revealing
the equivalence. This also means that if two terms have identical sequences of
dummies, the (non-)equivalence should already be apparent.
Strategy
--------
The canonical order is given by an arbitrary sorting rule. A sort key
is determined for each dummy as a tuple that depends on all factors where
the index is present. The dummies are thereby sorted according to the
contraction structure of the term, instead of sorting based solely on the
dummy symbol itself.
After all dummies in the term has been assigned a key, we check for identical
keys, i.e. unorderable dummies. If any are found, we call a specialized
method, _determine_ambiguous(), that will determine a unique order based
on recursive calls to _get_ordered_dummies().
Key description
---------------
A high level description of the sort key:
1. Range of the dummy index
2. Relation to external (non-dummy) indices
3. Position of the index in the first factor
4. Position of the index in the second factor
The sort key is a tuple with the following components:
1. A single character indicating the range of the dummy (above, below
or general.)
2. A list of strings with fully masked string representations of all
factors where the dummy is present. By masked, we mean that dummies
are represented by a symbol to indicate either below fermi, above or
general. No other information is displayed about the dummies at
this point. The list is sorted stringwise.
3. An integer number indicating the position of the index, in the first
factor as sorted in 2.
4. An integer number indicating the position of the index, in the second
factor as sorted in 2.
If a factor is either of type AntiSymmetricTensor or SqOperator, the index
position in items 3 and 4 is indicated as 'upper' or 'lower' only.
(Creation operators are considered upper and annihilation operators lower.)
If the masked factors are identical, the two factors cannot be ordered
unambiguously in item 2. In this case, items 3, 4 are left out. If several
indices are contracted between the unorderable factors, it will be handled by
_determine_ambiguous()
"""
# setup dicts to avoid repeated calculations in key()
args = Mul.make_args(mul)
fac_dum = { fac: fac.atoms(Dummy) for fac in args }
fac_repr = { fac: __kprint(fac) for fac in args }
all_dums = set().union(*fac_dum.values())
mask = {}
for d in all_dums:
if d.assumptions0.get('below_fermi'):
mask[d] = '0'
elif d.assumptions0.get('above_fermi'):
mask[d] = '1'
else:
mask[d] = '2'
dum_repr = {d: __kprint(d) for d in all_dums}
def _key(d):
dumstruct = [ fac for fac in fac_dum if d in fac_dum[fac] ]
other_dums = set().union(*[fac_dum[fac] for fac in dumstruct])
fac = dumstruct[-1]
if other_dums is fac_dum[fac]:
other_dums = fac_dum[fac].copy()
other_dums.remove(d)
masked_facs = [ fac_repr[fac] for fac in dumstruct ]
for d2 in other_dums:
masked_facs = [ fac.replace(dum_repr[d2], mask[d2])
for fac in masked_facs ]
all_masked = [ fac.replace(dum_repr[d], mask[d])
for fac in masked_facs ]
masked_facs = dict(list(zip(dumstruct, masked_facs)))
# dummies for which the ordering cannot be determined
if has_dups(all_masked):
all_masked.sort()
return mask[d], tuple(all_masked) # positions are ambiguous
# sort factors according to fully masked strings
keydict = dict(list(zip(dumstruct, all_masked)))
dumstruct.sort(key=lambda x: keydict[x])
all_masked.sort()
pos_val = []
for fac in dumstruct:
if isinstance(fac, AntiSymmetricTensor):
if d in fac.upper:
pos_val.append('u')
if d in fac.lower:
pos_val.append('l')
elif isinstance(fac, Creator):
pos_val.append('u')
elif isinstance(fac, Annihilator):
pos_val.append('l')
elif isinstance(fac, NO):
ops = [ op for op in fac if op.has(d) ]
for op in ops:
if isinstance(op, Creator):
pos_val.append('u')
else:
pos_val.append('l')
else:
# fallback to position in string representation
facpos = -1
while 1:
facpos = masked_facs[fac].find(dum_repr[d], facpos + 1)
if facpos == -1:
break
pos_val.append(facpos)
return (mask[d], tuple(all_masked), pos_val[0], pos_val[-1])
dumkey = dict(list(zip(all_dums, list(map(_key, all_dums)))))
result = sorted(all_dums, key=lambda x: dumkey[x])
if has_dups(iter(dumkey.values())):
# We have ambiguities
unordered = defaultdict(set)
for d, k in dumkey.items():
unordered[k].add(d)
for k in [ k for k in unordered if len(unordered[k]) < 2 ]:
del unordered[k]
unordered = [ unordered[k] for k in sorted(unordered) ]
result = _determine_ambiguous(mul, result, unordered)
return result
def _determine_ambiguous(term, ordered, ambiguous_groups):
# We encountered a term for which the dummy substitution is ambiguous.
# This happens for terms with 2 or more contractions between factors that
# cannot be uniquely ordered independent of summation indices. For
# example:
#
# Sum(p, q) v^{p, .}_{q, .}v^{q, .}_{p, .}
#
# Assuming that the indices represented by . are dummies with the
# same range, the factors cannot be ordered, and there is no
# way to determine a consistent ordering of p and q.
#
# The strategy employed here, is to relabel all unambiguous dummies with
# non-dummy symbols and call _get_ordered_dummies again. This procedure is
# applied to the entire term so there is a possibility that
# _determine_ambiguous() is called again from a deeper recursion level.
# break recursion if there are no ordered dummies
all_ambiguous = set()
for dummies in ambiguous_groups:
all_ambiguous |= dummies
all_ordered = set(ordered) - all_ambiguous
if not all_ordered:
# FIXME: If we arrive here, there are no ordered dummies. A method to
# handle this needs to be implemented. In order to return something
# useful nevertheless, we choose arbitrarily the first dummy and
# determine the rest from this one. This method is dependent on the
# actual dummy labels which violates an assumption for the
# canonicalization procedure. A better implementation is needed.
group = [ d for d in ordered if d in ambiguous_groups[0] ]
d = group[0]
all_ordered.add(d)
ambiguous_groups[0].remove(d)
stored_counter = _symbol_factory._counter
subslist = []
for d in [ d for d in ordered if d in all_ordered ]:
nondum = _symbol_factory._next()
subslist.append((d, nondum))
newterm = term.subs(subslist)
neworder = _get_ordered_dummies(newterm)
_symbol_factory._set_counter(stored_counter)
# update ordered list with new information
for group in ambiguous_groups:
ordered_group = [ d for d in neworder if d in group ]
ordered_group.reverse()
result = []
for d in ordered:
if d in group:
result.append(ordered_group.pop())
else:
result.append(d)
ordered = result
return ordered
class _SymbolFactory:
def __init__(self, label):
self._counterVar = 0
self._label = label
def _set_counter(self, value):
"""
Sets counter to value.
"""
self._counterVar = value
@property
def _counter(self):
"""
What counter is currently at.
"""
return self._counterVar
def _next(self):
"""
Generates the next symbols and increments counter by 1.
"""
s = Symbol("%s%i" % (self._label, self._counterVar))
self._counterVar += 1
return s
_symbol_factory = _SymbolFactory('_]"]_') # most certainly a unique label
@cacheit
def _get_contractions(string1, keep_only_fully_contracted=False):
"""
Returns Add-object with contracted terms.
Uses recursion to find all contractions. -- Internal helper function --
Will find nonzero contractions in string1 between indices given in
leftrange and rightrange.
"""
# Should we store current level of contraction?
if keep_only_fully_contracted and string1:
result = []
else:
result = [NO(Mul(*string1))]
for i in range(len(string1) - 1):
for j in range(i + 1, len(string1)):
c = contraction(string1[i], string1[j])
if c:
sign = (j - i + 1) % 2
if sign:
coeff = S.NegativeOne*c
else:
coeff = c
#
# Call next level of recursion
# ============================
#
# We now need to find more contractions among operators
#
# oplist = string1[:i]+ string1[i+1:j] + string1[j+1:]
#
# To prevent overcounting, we don't allow contractions
# we have already encountered. i.e. contractions between
# string1[:i] <---> string1[i+1:j]
# and string1[:i] <---> string1[j+1:].
#
# This leaves the case:
oplist = string1[i + 1:j] + string1[j + 1:]
if oplist:
result.append(coeff*NO(
Mul(*string1[:i])*_get_contractions( oplist,
keep_only_fully_contracted=keep_only_fully_contracted)))
else:
result.append(coeff*NO( Mul(*string1[:i])))
if keep_only_fully_contracted:
break # next iteration over i leaves leftmost operator string1[0] uncontracted
return Add(*result)
def wicks(e, **kw_args):
"""
Returns the normal ordered equivalent of an expression using Wicks Theorem.
Examples
========
>>> from sympy import symbols, Dummy
>>> from sympy.physics.secondquant import wicks, F, Fd
>>> p, q, r = symbols('p,q,r')
>>> wicks(Fd(p)*F(q))
KroneckerDelta(_i, q)*KroneckerDelta(p, q) + NO(CreateFermion(p)*AnnihilateFermion(q))
By default, the expression is expanded:
>>> wicks(F(p)*(F(q)+F(r)))
NO(AnnihilateFermion(p)*AnnihilateFermion(q)) + NO(AnnihilateFermion(p)*AnnihilateFermion(r))
With the keyword 'keep_only_fully_contracted=True', only fully contracted
terms are returned.
By request, the result can be simplified in the following order:
-- KroneckerDelta functions are evaluated
-- Dummy variables are substituted consistently across terms
>>> p, q, r = symbols('p q r', cls=Dummy)
>>> wicks(Fd(p)*(F(q)+F(r)), keep_only_fully_contracted=True)
KroneckerDelta(_i, _q)*KroneckerDelta(_p, _q) + KroneckerDelta(_i, _r)*KroneckerDelta(_p, _r)
"""
if not e:
return S.Zero
opts = {
'simplify_kronecker_deltas': False,
'expand': True,
'simplify_dummies': False,
'keep_only_fully_contracted': False
}
opts.update(kw_args)
# check if we are already normally ordered
if isinstance(e, NO):
if opts['keep_only_fully_contracted']:
return S.Zero
else:
return e
elif isinstance(e, FermionicOperator):
if opts['keep_only_fully_contracted']:
return S.Zero
else:
return e
# break up any NO-objects, and evaluate commutators
e = e.doit(wicks=True)
# make sure we have only one term to consider
e = e.expand()
if isinstance(e, Add):
if opts['simplify_dummies']:
return substitute_dummies(Add(*[ wicks(term, **kw_args) for term in e.args]))
else:
return Add(*[ wicks(term, **kw_args) for term in e.args])
# For Mul-objects we can actually do something
if isinstance(e, Mul):
# we don't want to mess around with commuting part of Mul
# so we factorize it out before starting recursion
c_part = []
string1 = []
for factor in e.args:
if factor.is_commutative:
c_part.append(factor)
else:
string1.append(factor)
n = len(string1)
# catch trivial cases
if n == 0:
result = e
elif n == 1:
if opts['keep_only_fully_contracted']:
return S.Zero
else:
result = e
else: # non-trivial
if isinstance(string1[0], BosonicOperator):
raise NotImplementedError
string1 = tuple(string1)
# recursion over higher order contractions
result = _get_contractions(string1,
keep_only_fully_contracted=opts['keep_only_fully_contracted'] )
result = Mul(*c_part)*result
if opts['expand']:
result = result.expand()
if opts['simplify_kronecker_deltas']:
result = evaluate_deltas(result)
return result
# there was nothing to do
return e
class PermutationOperator(Expr):
"""
Represents the index permutation operator P(ij).
P(ij)*f(i)*g(j) = f(i)*g(j) - f(j)*g(i)
"""
is_commutative = True
def __new__(cls, i, j):
i, j = sorted(map(sympify, (i, j)), key=default_sort_key)
obj = Basic.__new__(cls, i, j)
return obj
def get_permuted(self, expr):
"""
Returns -expr with permuted indices.
Explanation
===========
>>> from sympy import symbols, Function
>>> from sympy.physics.secondquant import PermutationOperator
>>> p,q = symbols('p,q')
>>> f = Function('f')
>>> PermutationOperator(p,q).get_permuted(f(p,q))
-f(q, p)
"""
i = self.args[0]
j = self.args[1]
if expr.has(i) and expr.has(j):
tmp = Dummy()
expr = expr.subs(i, tmp)
expr = expr.subs(j, i)
expr = expr.subs(tmp, j)
return S.NegativeOne*expr
else:
return expr
def _latex(self, printer):
return "P(%s%s)" % self.args
def simplify_index_permutations(expr, permutation_operators):
"""
Performs simplification by introducing PermutationOperators where appropriate.
Explanation
===========
Schematically:
[abij] - [abji] - [baij] + [baji] -> P(ab)*P(ij)*[abij]
permutation_operators is a list of PermutationOperators to consider.
If permutation_operators=[P(ab),P(ij)] we will try to introduce the
permutation operators P(ij) and P(ab) in the expression. If there are other
possible simplifications, we ignore them.
>>> from sympy import symbols, Function
>>> from sympy.physics.secondquant import simplify_index_permutations
>>> from sympy.physics.secondquant import PermutationOperator
>>> p,q,r,s = symbols('p,q,r,s')
>>> f = Function('f')
>>> g = Function('g')
>>> expr = f(p)*g(q) - f(q)*g(p); expr
f(p)*g(q) - f(q)*g(p)
>>> simplify_index_permutations(expr,[PermutationOperator(p,q)])
f(p)*g(q)*PermutationOperator(p, q)
>>> PermutList = [PermutationOperator(p,q),PermutationOperator(r,s)]
>>> expr = f(p,r)*g(q,s) - f(q,r)*g(p,s) + f(q,s)*g(p,r) - f(p,s)*g(q,r)
>>> simplify_index_permutations(expr,PermutList)
f(p, r)*g(q, s)*PermutationOperator(p, q)*PermutationOperator(r, s)
"""
def _get_indices(expr, ind):
"""
Collects indices recursively in predictable order.
"""
result = []
for arg in expr.args:
if arg in ind:
result.append(arg)
else:
if arg.args:
result.extend(_get_indices(arg, ind))
return result
def _choose_one_to_keep(a, b, ind):
# we keep the one where indices in ind are in order ind[0] < ind[1]
return min(a, b, key=lambda x: default_sort_key(_get_indices(x, ind)))
expr = expr.expand()
if isinstance(expr, Add):
terms = set(expr.args)
for P in permutation_operators:
new_terms = set()
on_hold = set()
while terms:
term = terms.pop()
permuted = P.get_permuted(term)
if permuted in terms | on_hold:
try:
terms.remove(permuted)
except KeyError:
on_hold.remove(permuted)
keep = _choose_one_to_keep(term, permuted, P.args)
new_terms.add(P*keep)
else:
# Some terms must get a second chance because the permuted
# term may already have canonical dummy ordering. Then
# substitute_dummies() does nothing. However, the other
# term, if it exists, will be able to match with us.
permuted1 = permuted
permuted = substitute_dummies(permuted)
if permuted1 == permuted:
on_hold.add(term)
elif permuted in terms | on_hold:
try:
terms.remove(permuted)
except KeyError:
on_hold.remove(permuted)
keep = _choose_one_to_keep(term, permuted, P.args)
new_terms.add(P*keep)
else:
new_terms.add(term)
terms = new_terms | on_hold
return Add(*terms)
return expr
|
7e7893529758cf43afb4d9c582b1c835e757f3a17155cc5f2a3f65fe5d69f51c | from sympy import permutedims
from sympy.core.numbers import Number
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.core.sympify import sympify
from sympy.tensor.tensor import Tensor, TensExpr, TensAdd, TensMul
class PartialDerivative(TensExpr):
"""
Partial derivative for tensor expressions.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, TensorHead
>>> from sympy.tensor.toperators import PartialDerivative
>>> from sympy import symbols
>>> L = TensorIndexType("L")
>>> A = TensorHead("A", [L])
>>> B = TensorHead("B", [L])
>>> i, j, k = symbols("i j k")
>>> expr = PartialDerivative(A(i), A(j))
>>> expr
PartialDerivative(A(i), A(j))
The ``PartialDerivative`` object behaves like a tensorial expression:
>>> expr.get_indices()
[i, -j]
Notice that the deriving variables have opposite valence than the
printed one: ``A(j)`` is printed as covariant, but the index of the
derivative is actually contravariant, i.e. ``-j``.
Indices can be contracted:
>>> expr = PartialDerivative(A(i), A(i))
>>> expr
PartialDerivative(A(L_0), A(L_0))
>>> expr.get_indices()
[L_0, -L_0]
The method ``.get_indices()`` always returns all indices (even the
contracted ones). If only uncontracted indices are needed, call
``.get_free_indices()``:
>>> expr.get_free_indices()
[]
Nested partial derivatives are flattened:
>>> expr = PartialDerivative(PartialDerivative(A(i), A(j)), A(k))
>>> expr
PartialDerivative(A(i), A(j), A(k))
>>> expr.get_indices()
[i, -j, -k]
Replace a derivative with array values:
>>> from sympy.abc import x, y
>>> from sympy import sin, log
>>> compA = [sin(x), log(x)*y**3]
>>> compB = [x, y]
>>> expr = PartialDerivative(A(i), B(j))
>>> expr.replace_with_arrays({A(i): compA, B(i): compB})
[[cos(x), 0], [y**3/x, 3*y**2*log(x)]]
The returned array is indexed by `(i, -j)`.
Be careful that other SymPy modules put the indices of the deriving
variables before the indices of the derivand in the derivative result.
For example:
>>> expr.get_free_indices()
[i, -j]
>>> from sympy import Matrix, Array
>>> Matrix(compA).diff(Matrix(compB)).reshape(2, 2)
[[cos(x), y**3/x], [0, 3*y**2*log(x)]]
>>> Array(compA).diff(Array(compB))
[[cos(x), y**3/x], [0, 3*y**2*log(x)]]
These are the transpose of the result of ``PartialDerivative``,
as the matrix and the array modules put the index `-j` before `i` in the
derivative result. An array read with index order `(-j, i)` is indeed the
transpose of the same array read with index order `(i, -j)`. By specifying
the index order to ``.replace_with_arrays`` one can get a compatible
expression:
>>> expr.replace_with_arrays({A(i): compA, B(i): compB}, [-j, i])
[[cos(x), y**3/x], [0, 3*y**2*log(x)]]
"""
def __new__(cls, expr, *variables):
# Flatten:
if isinstance(expr, PartialDerivative):
variables = expr.variables + variables
expr = expr.expr
args, indices, free, dum = cls._contract_indices_for_derivative(
S(expr), variables)
obj = TensExpr.__new__(cls, *args)
obj._indices = indices
obj._free = free
obj._dum = dum
return obj
@property
def coeff(self):
return S.One
@property
def nocoeff(self):
return self
@classmethod
def _contract_indices_for_derivative(cls, expr, variables):
variables_opposite_valence = []
for i in variables:
if isinstance(i, Tensor):
i_free_indices = i.get_free_indices()
variables_opposite_valence.append(
i.xreplace({k: -k for k in i_free_indices}))
elif isinstance(i, Symbol):
variables_opposite_valence.append(i)
args, indices, free, dum = TensMul._tensMul_contract_indices(
[expr] + variables_opposite_valence, replace_indices=True)
for i in range(1, len(args)):
args_i = args[i]
if isinstance(args_i, Tensor):
i_indices = args[i].get_free_indices()
args[i] = args[i].xreplace({k: -k for k in i_indices})
return args, indices, free, dum
def doit(self, **hints):
args, indices, free, dum = self._contract_indices_for_derivative(self.expr, self.variables)
obj = self.func(*args)
obj._indices = indices
obj._free = free
obj._dum = dum
return obj
def _expand_partial_derivative(self):
args, indices, free, dum = self._contract_indices_for_derivative(self.expr, self.variables)
obj = self.func(*args)
obj._indices = indices
obj._free = free
obj._dum = dum
result = obj
if not args[0].free_symbols:
return S.Zero
elif isinstance(obj.expr, TensAdd):
# take care of sums of multi PDs
result = obj.expr.func(*[
self.func(a, *obj.variables)._expand_partial_derivative()
for a in result.expr.args])
elif isinstance(obj.expr, TensMul):
# take care of products of multi PDs
if len(obj.variables) == 1:
# derivative with respect to single variable
terms = []
mulargs = list(obj.expr.args)
for ind in range(len(mulargs)):
if not isinstance(sympify(mulargs[ind]), Number):
# a number coefficient is not considered for
# expansion of PartialDerivative
d = self.func(mulargs[ind], *obj.variables)._expand_partial_derivative()
terms.append(TensMul(*(mulargs[:ind]
+ [d]
+ mulargs[(ind + 1):])))
result = TensAdd.fromiter(terms)
else:
# derivative with respect to multiple variables
# decompose:
# partial(expr, (u, v))
# = partial(partial(expr, u).doit(), v).doit()
result = obj.expr # init with expr
for v in obj.variables:
result = self.func(result, v)._expand_partial_derivative()
# then throw PD on it
return result
def _perform_derivative(self):
result = self.expr
for v in self.variables:
if isinstance(result, TensExpr):
result = result._eval_partial_derivative(v)
else:
if v._diff_wrt:
result = result._eval_derivative(v)
else:
result = S.Zero
return result
def get_indices(self):
return self._indices
def get_free_indices(self):
free = sorted(self._free, key=lambda x: x[1])
return [i[0] for i in free]
def _replace_indices(self, repl):
expr = self.expr.xreplace(repl)
mirrored = {-k: -v for k, v in repl.items()}
variables = [i.xreplace(mirrored) for i in self.variables]
return self.func(expr, *variables)
@property
def expr(self):
return self.args[0]
@property
def variables(self):
return self.args[1:]
def _extract_data(self, replacement_dict):
from .array import derive_by_array, tensorcontraction
indices, array = self.expr._extract_data(replacement_dict)
for variable in self.variables:
var_indices, var_array = variable._extract_data(replacement_dict)
var_indices = [-i for i in var_indices]
coeff_array, var_array = zip(*[i.as_coeff_Mul() for i in var_array])
dim_before = len(array.shape)
array = derive_by_array(array, var_array)
dim_after = len(array.shape)
dim_increase = dim_after - dim_before
array = permutedims(array, [i + dim_increase for i in range(dim_before)] + list(range(dim_increase)))
array = array.as_mutable()
varindex = var_indices[0]
# Remove coefficients of base vector:
coeff_index = [0] + [slice(None) for i in range(len(indices))]
for i, coeff in enumerate(coeff_array):
coeff_index[0] = i
array[tuple(coeff_index)] /= coeff
if -varindex in indices:
pos = indices.index(-varindex)
array = tensorcontraction(array, (0, pos+1))
indices.pop(pos)
else:
indices.append(varindex)
return indices, array
|
8edaf2c167672fbe37635e42ade39c7ada19fead737f05ebe34e8b9a00126206 | """
This module defines tensors with abstract index notation.
The abstract index notation has been first formalized by Penrose.
Tensor indices are formal objects, with a tensor type; there is no
notion of index range, it is only possible to assign the dimension,
used to trace the Kronecker delta; the dimension can be a Symbol.
The Einstein summation convention is used.
The covariant indices are indicated with a minus sign in front of the index.
For instance the tensor ``t = p(a)*A(b,c)*q(-c)`` has the index ``c``
contracted.
A tensor expression ``t`` can be called; called with its
indices in sorted order it is equal to itself:
in the above example ``t(a, b) == t``;
one can call ``t`` with different indices; ``t(c, d) == p(c)*A(d,a)*q(-a)``.
The contracted indices are dummy indices, internally they have no name,
the indices being represented by a graph-like structure.
Tensors are put in canonical form using ``canon_bp``, which uses
the Butler-Portugal algorithm for canonicalization using the monoterm
symmetries of the tensors.
If there is a (anti)symmetric metric, the indices can be raised and
lowered when the tensor is put in canonical form.
"""
from __future__ import annotations
from typing import Any
from functools import reduce
from math import prod
from abc import abstractmethod, ABCMeta
from collections import defaultdict
import operator
import itertools
from sympy.core.numbers import (Integer, Rational)
from sympy.combinatorics import Permutation
from sympy.combinatorics.tensor_can import get_symmetric_group_sgs, \
bsgs_direct_product, canonicalize, riemann_bsgs
from sympy.core import Basic, Expr, sympify, Add, Mul, S
from sympy.core.assumptions import ManagedProperties
from sympy.core.containers import Tuple, Dict
from sympy.core.sorting import default_sort_key
from sympy.core.symbol import Symbol, symbols
from sympy.core.sympify import CantSympify, _sympify
from sympy.core.operations import AssocOp
from sympy.external.gmpy import SYMPY_INTS
from sympy.matrices import eye
from sympy.utilities.exceptions import (sympy_deprecation_warning,
SymPyDeprecationWarning,
ignore_warnings)
from sympy.utilities.decorator import memoize_property, deprecated
def deprecate_data():
sympy_deprecation_warning(
"""
The data attribute of TensorIndexType is deprecated. Use The
replace_with_arrays() method instead.
""",
deprecated_since_version="1.4",
active_deprecations_target="deprecated-tensorindextype-attrs",
stacklevel=4,
)
def deprecate_fun_eval():
sympy_deprecation_warning(
"""
The Tensor.fun_eval() method is deprecated. Use
Tensor.substitute_indices() instead.
""",
deprecated_since_version="1.5",
active_deprecations_target="deprecated-tensor-fun-eval",
stacklevel=4,
)
def deprecate_call():
sympy_deprecation_warning(
"""
Calling a tensor like Tensor(*indices) is deprecated. Use
Tensor.substitute_indices() instead.
""",
deprecated_since_version="1.5",
active_deprecations_target="deprecated-tensor-fun-eval",
stacklevel=4,
)
class _IndexStructure(CantSympify):
"""
This class handles the indices (free and dummy ones). It contains the
algorithms to manage the dummy indices replacements and contractions of
free indices under multiplications of tensor expressions, as well as stuff
related to canonicalization sorting, getting the permutation of the
expression and so on. It also includes tools to get the ``TensorIndex``
objects corresponding to the given index structure.
"""
def __init__(self, free, dum, index_types, indices, canon_bp=False):
self.free = free
self.dum = dum
self.index_types = index_types
self.indices = indices
self._ext_rank = len(self.free) + 2*len(self.dum)
self.dum.sort(key=lambda x: x[0])
@staticmethod
def from_indices(*indices):
"""
Create a new ``_IndexStructure`` object from a list of ``indices``.
Explanation
===========
``indices`` ``TensorIndex`` objects, the indices. Contractions are
detected upon construction.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, _IndexStructure
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> m0, m1, m2, m3 = tensor_indices('m0,m1,m2,m3', Lorentz)
>>> _IndexStructure.from_indices(m0, m1, -m1, m3)
_IndexStructure([(m0, 0), (m3, 3)], [(1, 2)], [Lorentz, Lorentz, Lorentz, Lorentz])
"""
free, dum = _IndexStructure._free_dum_from_indices(*indices)
index_types = [i.tensor_index_type for i in indices]
indices = _IndexStructure._replace_dummy_names(indices, free, dum)
return _IndexStructure(free, dum, index_types, indices)
@staticmethod
def from_components_free_dum(components, free, dum):
index_types = []
for component in components:
index_types.extend(component.index_types)
indices = _IndexStructure.generate_indices_from_free_dum_index_types(free, dum, index_types)
return _IndexStructure(free, dum, index_types, indices)
@staticmethod
def _free_dum_from_indices(*indices):
"""
Convert ``indices`` into ``free``, ``dum`` for single component tensor.
Explanation
===========
``free`` list of tuples ``(index, pos, 0)``,
where ``pos`` is the position of index in
the list of indices formed by the component tensors
``dum`` list of tuples ``(pos_contr, pos_cov, 0, 0)``
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, \
_IndexStructure
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> m0, m1, m2, m3 = tensor_indices('m0,m1,m2,m3', Lorentz)
>>> _IndexStructure._free_dum_from_indices(m0, m1, -m1, m3)
([(m0, 0), (m3, 3)], [(1, 2)])
"""
n = len(indices)
if n == 1:
return [(indices[0], 0)], []
# find the positions of the free indices and of the dummy indices
free = [True]*len(indices)
index_dict = {}
dum = []
for i, index in enumerate(indices):
name = index.name
typ = index.tensor_index_type
contr = index.is_up
if (name, typ) in index_dict:
# found a pair of dummy indices
is_contr, pos = index_dict[(name, typ)]
# check consistency and update free
if is_contr:
if contr:
raise ValueError('two equal contravariant indices in slots %d and %d' %(pos, i))
else:
free[pos] = False
free[i] = False
else:
if contr:
free[pos] = False
free[i] = False
else:
raise ValueError('two equal covariant indices in slots %d and %d' %(pos, i))
if contr:
dum.append((i, pos))
else:
dum.append((pos, i))
else:
index_dict[(name, typ)] = index.is_up, i
free = [(index, i) for i, index in enumerate(indices) if free[i]]
free.sort()
return free, dum
def get_indices(self):
"""
Get a list of indices, creating new tensor indices to complete dummy indices.
"""
return self.indices[:]
@staticmethod
def generate_indices_from_free_dum_index_types(free, dum, index_types):
indices = [None]*(len(free)+2*len(dum))
for idx, pos in free:
indices[pos] = idx
generate_dummy_name = _IndexStructure._get_generator_for_dummy_indices(free)
for pos1, pos2 in dum:
typ1 = index_types[pos1]
indname = generate_dummy_name(typ1)
indices[pos1] = TensorIndex(indname, typ1, True)
indices[pos2] = TensorIndex(indname, typ1, False)
return _IndexStructure._replace_dummy_names(indices, free, dum)
@staticmethod
def _get_generator_for_dummy_indices(free):
cdt = defaultdict(int)
# if the free indices have names with dummy_name, start with an
# index higher than those for the dummy indices
# to avoid name collisions
for indx, ipos in free:
if indx.name.split('_')[0] == indx.tensor_index_type.dummy_name:
cdt[indx.tensor_index_type] = max(cdt[indx.tensor_index_type], int(indx.name.split('_')[1]) + 1)
def dummy_name_gen(tensor_index_type):
nd = str(cdt[tensor_index_type])
cdt[tensor_index_type] += 1
return tensor_index_type.dummy_name + '_' + nd
return dummy_name_gen
@staticmethod
def _replace_dummy_names(indices, free, dum):
dum.sort(key=lambda x: x[0])
new_indices = [ind for ind in indices]
assert len(indices) == len(free) + 2*len(dum)
generate_dummy_name = _IndexStructure._get_generator_for_dummy_indices(free)
for ipos1, ipos2 in dum:
typ1 = new_indices[ipos1].tensor_index_type
indname = generate_dummy_name(typ1)
new_indices[ipos1] = TensorIndex(indname, typ1, True)
new_indices[ipos2] = TensorIndex(indname, typ1, False)
return new_indices
def get_free_indices(self) -> list[TensorIndex]:
"""
Get a list of free indices.
"""
# get sorted indices according to their position:
free = sorted(self.free, key=lambda x: x[1])
return [i[0] for i in free]
def __str__(self):
return "_IndexStructure({}, {}, {})".format(self.free, self.dum, self.index_types)
def __repr__(self):
return self.__str__()
def _get_sorted_free_indices_for_canon(self):
sorted_free = self.free[:]
sorted_free.sort(key=lambda x: x[0])
return sorted_free
def _get_sorted_dum_indices_for_canon(self):
return sorted(self.dum, key=lambda x: x[0])
def _get_lexicographically_sorted_index_types(self):
permutation = self.indices_canon_args()[0]
index_types = [None]*self._ext_rank
for i, it in enumerate(self.index_types):
index_types[permutation(i)] = it
return index_types
def _get_lexicographically_sorted_indices(self):
permutation = self.indices_canon_args()[0]
indices = [None]*self._ext_rank
for i, it in enumerate(self.indices):
indices[permutation(i)] = it
return indices
def perm2tensor(self, g, is_canon_bp=False):
"""
Returns a ``_IndexStructure`` instance corresponding to the permutation ``g``.
Explanation
===========
``g`` permutation corresponding to the tensor in the representation
used in canonicalization
``is_canon_bp`` if True, then ``g`` is the permutation
corresponding to the canonical form of the tensor
"""
sorted_free = [i[0] for i in self._get_sorted_free_indices_for_canon()]
lex_index_types = self._get_lexicographically_sorted_index_types()
lex_indices = self._get_lexicographically_sorted_indices()
nfree = len(sorted_free)
rank = self._ext_rank
dum = [[None]*2 for i in range((rank - nfree)//2)]
free = []
index_types = [None]*rank
indices = [None]*rank
for i in range(rank):
gi = g[i]
index_types[i] = lex_index_types[gi]
indices[i] = lex_indices[gi]
if gi < nfree:
ind = sorted_free[gi]
assert index_types[i] == sorted_free[gi].tensor_index_type
free.append((ind, i))
else:
j = gi - nfree
idum, cov = divmod(j, 2)
if cov:
dum[idum][1] = i
else:
dum[idum][0] = i
dum = [tuple(x) for x in dum]
return _IndexStructure(free, dum, index_types, indices)
def indices_canon_args(self):
"""
Returns ``(g, dummies, msym, v)``, the entries of ``canonicalize``
See ``canonicalize`` in ``tensor_can.py`` in combinatorics module.
"""
# to be called after sorted_components
from sympy.combinatorics.permutations import _af_new
n = self._ext_rank
g = [None]*n + [n, n+1]
# Converts the symmetry of the metric into msym from .canonicalize()
# method in the combinatorics module
def metric_symmetry_to_msym(metric):
if metric is None:
return None
sym = metric.symmetry
if sym == TensorSymmetry.fully_symmetric(2):
return 0
if sym == TensorSymmetry.fully_symmetric(-2):
return 1
return None
# ordered indices: first the free indices, ordered by types
# then the dummy indices, ordered by types and contravariant before
# covariant
# g[position in tensor] = position in ordered indices
for i, (indx, ipos) in enumerate(self._get_sorted_free_indices_for_canon()):
g[ipos] = i
pos = len(self.free)
j = len(self.free)
dummies = []
prev = None
a = []
msym = []
for ipos1, ipos2 in self._get_sorted_dum_indices_for_canon():
g[ipos1] = j
g[ipos2] = j + 1
j += 2
typ = self.index_types[ipos1]
if typ != prev:
if a:
dummies.append(a)
a = [pos, pos + 1]
prev = typ
msym.append(metric_symmetry_to_msym(typ.metric))
else:
a.extend([pos, pos + 1])
pos += 2
if a:
dummies.append(a)
return _af_new(g), dummies, msym
def components_canon_args(components):
numtyp = []
prev = None
for t in components:
if t == prev:
numtyp[-1][1] += 1
else:
prev = t
numtyp.append([prev, 1])
v = []
for h, n in numtyp:
if h.comm in (0, 1):
comm = h.comm
else:
comm = TensorManager.get_comm(h.comm, h.comm)
v.append((h.symmetry.base, h.symmetry.generators, n, comm))
return v
class _TensorDataLazyEvaluator(CantSympify):
"""
EXPERIMENTAL: do not rely on this class, it may change without deprecation
warnings in future versions of SymPy.
Explanation
===========
This object contains the logic to associate components data to a tensor
expression. Components data are set via the ``.data`` property of tensor
expressions, is stored inside this class as a mapping between the tensor
expression and the ``ndarray``.
Computations are executed lazily: whereas the tensor expressions can have
contractions, tensor products, and additions, components data are not
computed until they are accessed by reading the ``.data`` property
associated to the tensor expression.
"""
_substitutions_dict: dict[Any, Any] = {}
_substitutions_dict_tensmul: dict[Any, Any] = {}
def __getitem__(self, key):
dat = self._get(key)
if dat is None:
return None
from .array import NDimArray
if not isinstance(dat, NDimArray):
return dat
if dat.rank() == 0:
return dat[()]
elif dat.rank() == 1 and len(dat) == 1:
return dat[0]
return dat
def _get(self, key):
"""
Retrieve ``data`` associated with ``key``.
Explanation
===========
This algorithm looks into ``self._substitutions_dict`` for all
``TensorHead`` in the ``TensExpr`` (or just ``TensorHead`` if key is a
TensorHead instance). It reconstructs the components data that the
tensor expression should have by performing on components data the
operations that correspond to the abstract tensor operations applied.
Metric tensor is handled in a different manner: it is pre-computed in
``self._substitutions_dict_tensmul``.
"""
if key in self._substitutions_dict:
return self._substitutions_dict[key]
if isinstance(key, TensorHead):
return None
if isinstance(key, Tensor):
# special case to handle metrics. Metric tensors cannot be
# constructed through contraction by the metric, their
# components show if they are a matrix or its inverse.
signature = tuple([i.is_up for i in key.get_indices()])
srch = (key.component,) + signature
if srch in self._substitutions_dict_tensmul:
return self._substitutions_dict_tensmul[srch]
array_list = [self.data_from_tensor(key)]
return self.data_contract_dum(array_list, key.dum, key.ext_rank)
if isinstance(key, TensMul):
tensmul_args = key.args
if len(tensmul_args) == 1 and len(tensmul_args[0].components) == 1:
# special case to handle metrics. Metric tensors cannot be
# constructed through contraction by the metric, their
# components show if they are a matrix or its inverse.
signature = tuple([i.is_up for i in tensmul_args[0].get_indices()])
srch = (tensmul_args[0].components[0],) + signature
if srch in self._substitutions_dict_tensmul:
return self._substitutions_dict_tensmul[srch]
#data_list = [self.data_from_tensor(i) for i in tensmul_args if isinstance(i, TensExpr)]
data_list = [self.data_from_tensor(i) if isinstance(i, Tensor) else i.data for i in tensmul_args if isinstance(i, TensExpr)]
coeff = prod([i for i in tensmul_args if not isinstance(i, TensExpr)])
if all(i is None for i in data_list):
return None
if any(i is None for i in data_list):
raise ValueError("Mixing tensors with associated components "\
"data with tensors without components data")
data_result = self.data_contract_dum(data_list, key.dum, key.ext_rank)
return coeff*data_result
if isinstance(key, TensAdd):
data_list = []
free_args_list = []
for arg in key.args:
if isinstance(arg, TensExpr):
data_list.append(arg.data)
free_args_list.append([x[0] for x in arg.free])
else:
data_list.append(arg)
free_args_list.append([])
if all(i is None for i in data_list):
return None
if any(i is None for i in data_list):
raise ValueError("Mixing tensors with associated components "\
"data with tensors without components data")
sum_list = []
from .array import permutedims
for data, free_args in zip(data_list, free_args_list):
if len(free_args) < 2:
sum_list.append(data)
else:
free_args_pos = {y: x for x, y in enumerate(free_args)}
axes = [free_args_pos[arg] for arg in key.free_args]
sum_list.append(permutedims(data, axes))
return reduce(lambda x, y: x+y, sum_list)
return None
@staticmethod
def data_contract_dum(ndarray_list, dum, ext_rank):
from .array import tensorproduct, tensorcontraction, MutableDenseNDimArray
arrays = list(map(MutableDenseNDimArray, ndarray_list))
prodarr = tensorproduct(*arrays)
return tensorcontraction(prodarr, *dum)
def data_tensorhead_from_tensmul(self, data, tensmul, tensorhead):
"""
This method is used when assigning components data to a ``TensMul``
object, it converts components data to a fully contravariant ndarray,
which is then stored according to the ``TensorHead`` key.
"""
if data is None:
return None
return self._correct_signature_from_indices(
data,
tensmul.get_indices(),
tensmul.free,
tensmul.dum,
True)
def data_from_tensor(self, tensor):
"""
This method corrects the components data to the right signature
(covariant/contravariant) using the metric associated with each
``TensorIndexType``.
"""
tensorhead = tensor.component
if tensorhead.data is None:
return None
return self._correct_signature_from_indices(
tensorhead.data,
tensor.get_indices(),
tensor.free,
tensor.dum)
def _assign_data_to_tensor_expr(self, key, data):
if isinstance(key, TensAdd):
raise ValueError('cannot assign data to TensAdd')
# here it is assumed that `key` is a `TensMul` instance.
if len(key.components) != 1:
raise ValueError('cannot assign data to TensMul with multiple components')
tensorhead = key.components[0]
newdata = self.data_tensorhead_from_tensmul(data, key, tensorhead)
return tensorhead, newdata
def _check_permutations_on_data(self, tens, data):
from .array import permutedims
from .array.arrayop import Flatten
if isinstance(tens, TensorHead):
rank = tens.rank
generators = tens.symmetry.generators
elif isinstance(tens, Tensor):
rank = tens.rank
generators = tens.components[0].symmetry.generators
elif isinstance(tens, TensorIndexType):
rank = tens.metric.rank
generators = tens.metric.symmetry.generators
# Every generator is a permutation, check that by permuting the array
# by that permutation, the array will be the same, except for a
# possible sign change if the permutation admits it.
for gener in generators:
sign_change = +1 if (gener(rank) == rank) else -1
data_swapped = data
last_data = data
permute_axes = list(map(gener, range(rank)))
# the order of a permutation is the number of times to get the
# identity by applying that permutation.
for i in range(gener.order()-1):
data_swapped = permutedims(data_swapped, permute_axes)
# if any value in the difference array is non-zero, raise an error:
if any(Flatten(last_data - sign_change*data_swapped)):
raise ValueError("Component data symmetry structure error")
last_data = data_swapped
def __setitem__(self, key, value):
"""
Set the components data of a tensor object/expression.
Explanation
===========
Components data are transformed to the all-contravariant form and stored
with the corresponding ``TensorHead`` object. If a ``TensorHead`` object
cannot be uniquely identified, it will raise an error.
"""
data = _TensorDataLazyEvaluator.parse_data(value)
self._check_permutations_on_data(key, data)
# TensorHead and TensorIndexType can be assigned data directly, while
# TensMul must first convert data to a fully contravariant form, and
# assign it to its corresponding TensorHead single component.
if not isinstance(key, (TensorHead, TensorIndexType)):
key, data = self._assign_data_to_tensor_expr(key, data)
if isinstance(key, TensorHead):
for dim, indextype in zip(data.shape, key.index_types):
if indextype.data is None:
raise ValueError("index type {} has no components data"\
" associated (needed to raise/lower index)".format(indextype))
if not indextype.dim.is_number:
continue
if dim != indextype.dim:
raise ValueError("wrong dimension of ndarray")
self._substitutions_dict[key] = data
def __delitem__(self, key):
del self._substitutions_dict[key]
def __contains__(self, key):
return key in self._substitutions_dict
def add_metric_data(self, metric, data):
"""
Assign data to the ``metric`` tensor. The metric tensor behaves in an
anomalous way when raising and lowering indices.
Explanation
===========
A fully covariant metric is the inverse transpose of the fully
contravariant metric (it is meant matrix inverse). If the metric is
symmetric, the transpose is not necessary and mixed
covariant/contravariant metrics are Kronecker deltas.
"""
# hard assignment, data should not be added to `TensorHead` for metric:
# the problem with `TensorHead` is that the metric is anomalous, i.e.
# raising and lowering the index means considering the metric or its
# inverse, this is not the case for other tensors.
self._substitutions_dict_tensmul[metric, True, True] = data
inverse_transpose = self.inverse_transpose_matrix(data)
# in symmetric spaces, the transpose is the same as the original matrix,
# the full covariant metric tensor is the inverse transpose, so this
# code will be able to handle non-symmetric metrics.
self._substitutions_dict_tensmul[metric, False, False] = inverse_transpose
# now mixed cases, these are identical to the unit matrix if the metric
# is symmetric.
m = data.tomatrix()
invt = inverse_transpose.tomatrix()
self._substitutions_dict_tensmul[metric, True, False] = m * invt
self._substitutions_dict_tensmul[metric, False, True] = invt * m
@staticmethod
def _flip_index_by_metric(data, metric, pos):
from .array import tensorproduct, tensorcontraction
mdim = metric.rank()
ddim = data.rank()
if pos == 0:
data = tensorcontraction(
tensorproduct(
metric,
data
),
(1, mdim+pos)
)
else:
data = tensorcontraction(
tensorproduct(
data,
metric
),
(pos, ddim)
)
return data
@staticmethod
def inverse_matrix(ndarray):
m = ndarray.tomatrix().inv()
return _TensorDataLazyEvaluator.parse_data(m)
@staticmethod
def inverse_transpose_matrix(ndarray):
m = ndarray.tomatrix().inv().T
return _TensorDataLazyEvaluator.parse_data(m)
@staticmethod
def _correct_signature_from_indices(data, indices, free, dum, inverse=False):
"""
Utility function to correct the values inside the components data
ndarray according to whether indices are covariant or contravariant.
It uses the metric matrix to lower values of covariant indices.
"""
# change the ndarray values according covariantness/contravariantness of the indices
# use the metric
for i, indx in enumerate(indices):
if not indx.is_up and not inverse:
data = _TensorDataLazyEvaluator._flip_index_by_metric(data, indx.tensor_index_type.data, i)
elif not indx.is_up and inverse:
data = _TensorDataLazyEvaluator._flip_index_by_metric(
data,
_TensorDataLazyEvaluator.inverse_matrix(indx.tensor_index_type.data),
i
)
return data
@staticmethod
def _sort_data_axes(old, new):
from .array import permutedims
new_data = old.data.copy()
old_free = [i[0] for i in old.free]
new_free = [i[0] for i in new.free]
for i in range(len(new_free)):
for j in range(i, len(old_free)):
if old_free[j] == new_free[i]:
old_free[i], old_free[j] = old_free[j], old_free[i]
new_data = permutedims(new_data, (i, j))
break
return new_data
@staticmethod
def add_rearrange_tensmul_parts(new_tensmul, old_tensmul):
def sorted_compo():
return _TensorDataLazyEvaluator._sort_data_axes(old_tensmul, new_tensmul)
_TensorDataLazyEvaluator._substitutions_dict[new_tensmul] = sorted_compo()
@staticmethod
def parse_data(data):
"""
Transform ``data`` to array. The parameter ``data`` may
contain data in various formats, e.g. nested lists, SymPy ``Matrix``,
and so on.
Examples
========
>>> from sympy.tensor.tensor import _TensorDataLazyEvaluator
>>> _TensorDataLazyEvaluator.parse_data([1, 3, -6, 12])
[1, 3, -6, 12]
>>> _TensorDataLazyEvaluator.parse_data([[1, 2], [4, 7]])
[[1, 2], [4, 7]]
"""
from .array import MutableDenseNDimArray
if not isinstance(data, MutableDenseNDimArray):
if len(data) == 2 and hasattr(data[0], '__call__'):
data = MutableDenseNDimArray(data[0], data[1])
else:
data = MutableDenseNDimArray(data)
return data
_tensor_data_substitution_dict = _TensorDataLazyEvaluator()
class _TensorManager:
"""
Class to manage tensor properties.
Notes
=====
Tensors belong to tensor commutation groups; each group has a label
``comm``; there are predefined labels:
``0`` tensors commuting with any other tensor
``1`` tensors anticommuting among themselves
``2`` tensors not commuting, apart with those with ``comm=0``
Other groups can be defined using ``set_comm``; tensors in those
groups commute with those with ``comm=0``; by default they
do not commute with any other group.
"""
def __init__(self):
self._comm_init()
def _comm_init(self):
self._comm = [{} for i in range(3)]
for i in range(3):
self._comm[0][i] = 0
self._comm[i][0] = 0
self._comm[1][1] = 1
self._comm[2][1] = None
self._comm[1][2] = None
self._comm_symbols2i = {0:0, 1:1, 2:2}
self._comm_i2symbol = {0:0, 1:1, 2:2}
@property
def comm(self):
return self._comm
def comm_symbols2i(self, i):
"""
Get the commutation group number corresponding to ``i``.
``i`` can be a symbol or a number or a string.
If ``i`` is not already defined its commutation group number
is set.
"""
if i not in self._comm_symbols2i:
n = len(self._comm)
self._comm.append({})
self._comm[n][0] = 0
self._comm[0][n] = 0
self._comm_symbols2i[i] = n
self._comm_i2symbol[n] = i
return n
return self._comm_symbols2i[i]
def comm_i2symbol(self, i):
"""
Returns the symbol corresponding to the commutation group number.
"""
return self._comm_i2symbol[i]
def set_comm(self, i, j, c):
"""
Set the commutation parameter ``c`` for commutation groups ``i, j``.
Parameters
==========
i, j : symbols representing commutation groups
c : group commutation number
Notes
=====
``i, j`` can be symbols, strings or numbers,
apart from ``0, 1`` and ``2`` which are reserved respectively
for commuting, anticommuting tensors and tensors not commuting
with any other group apart with the commuting tensors.
For the remaining cases, use this method to set the commutation rules;
by default ``c=None``.
The group commutation number ``c`` is assigned in correspondence
to the group commutation symbols; it can be
0 commuting
1 anticommuting
None no commutation property
Examples
========
``G`` and ``GH`` do not commute with themselves and commute with
each other; A is commuting.
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, TensorManager, TensorSymmetry
>>> Lorentz = TensorIndexType('Lorentz')
>>> i0,i1,i2,i3,i4 = tensor_indices('i0:5', Lorentz)
>>> A = TensorHead('A', [Lorentz])
>>> G = TensorHead('G', [Lorentz], TensorSymmetry.no_symmetry(1), 'Gcomm')
>>> GH = TensorHead('GH', [Lorentz], TensorSymmetry.no_symmetry(1), 'GHcomm')
>>> TensorManager.set_comm('Gcomm', 'GHcomm', 0)
>>> (GH(i1)*G(i0)).canon_bp()
G(i0)*GH(i1)
>>> (G(i1)*G(i0)).canon_bp()
G(i1)*G(i0)
>>> (G(i1)*A(i0)).canon_bp()
A(i0)*G(i1)
"""
if c not in (0, 1, None):
raise ValueError('`c` can assume only the values 0, 1 or None')
if i not in self._comm_symbols2i:
n = len(self._comm)
self._comm.append({})
self._comm[n][0] = 0
self._comm[0][n] = 0
self._comm_symbols2i[i] = n
self._comm_i2symbol[n] = i
if j not in self._comm_symbols2i:
n = len(self._comm)
self._comm.append({})
self._comm[0][n] = 0
self._comm[n][0] = 0
self._comm_symbols2i[j] = n
self._comm_i2symbol[n] = j
ni = self._comm_symbols2i[i]
nj = self._comm_symbols2i[j]
self._comm[ni][nj] = c
self._comm[nj][ni] = c
def set_comms(self, *args):
"""
Set the commutation group numbers ``c`` for symbols ``i, j``.
Parameters
==========
args : sequence of ``(i, j, c)``
"""
for i, j, c in args:
self.set_comm(i, j, c)
def get_comm(self, i, j):
"""
Return the commutation parameter for commutation group numbers ``i, j``
see ``_TensorManager.set_comm``
"""
return self._comm[i].get(j, 0 if i == 0 or j == 0 else None)
def clear(self):
"""
Clear the TensorManager.
"""
self._comm_init()
TensorManager = _TensorManager()
class TensorIndexType(Basic):
"""
A TensorIndexType is characterized by its name and its metric.
Parameters
==========
name : name of the tensor type
dummy_name : name of the head of dummy indices
dim : dimension, it can be a symbol or an integer or ``None``
eps_dim : dimension of the epsilon tensor
metric_symmetry : integer that denotes metric symmetry or ``None`` for no metric
metric_name : string with the name of the metric tensor
Attributes
==========
``metric`` : the metric tensor
``delta`` : ``Kronecker delta``
``epsilon`` : the ``Levi-Civita epsilon`` tensor
``data`` : (deprecated) a property to add ``ndarray`` values, to work in a specified basis.
Notes
=====
The possible values of the ``metric_symmetry`` parameter are:
``1`` : metric tensor is fully symmetric
``0`` : metric tensor possesses no index symmetry
``-1`` : metric tensor is fully antisymmetric
``None``: there is no metric tensor (metric equals to ``None``)
The metric is assumed to be symmetric by default. It can also be set
to a custom tensor by the ``.set_metric()`` method.
If there is a metric the metric is used to raise and lower indices.
In the case of non-symmetric metric, the following raising and
lowering conventions will be adopted:
``psi(a) = g(a, b)*psi(-b); chi(-a) = chi(b)*g(-b, -a)``
From these it is easy to find:
``g(-a, b) = delta(-a, b)``
where ``delta(-a, b) = delta(b, -a)`` is the ``Kronecker delta``
(see ``TensorIndex`` for the conventions on indices).
For antisymmetric metrics there is also the following equality:
``g(a, -b) = -delta(a, -b)``
If there is no metric it is not possible to raise or lower indices;
e.g. the index of the defining representation of ``SU(N)``
is 'covariant' and the conjugate representation is
'contravariant'; for ``N > 2`` they are linearly independent.
``eps_dim`` is by default equal to ``dim``, if the latter is an integer;
else it can be assigned (for use in naive dimensional regularization);
if ``eps_dim`` is not an integer ``epsilon`` is ``None``.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> Lorentz.metric
metric(Lorentz,Lorentz)
"""
def __new__(cls, name, dummy_name=None, dim=None, eps_dim=None,
metric_symmetry=1, metric_name='metric', **kwargs):
if 'dummy_fmt' in kwargs:
dummy_fmt = kwargs['dummy_fmt']
sympy_deprecation_warning(
f"""
The dummy_fmt keyword to TensorIndexType is deprecated. Use
dummy_name={dummy_fmt} instead.
""",
deprecated_since_version="1.5",
active_deprecations_target="deprecated-tensorindextype-dummy-fmt",
)
dummy_name = dummy_fmt
if isinstance(name, str):
name = Symbol(name)
if dummy_name is None:
dummy_name = str(name)[0]
if isinstance(dummy_name, str):
dummy_name = Symbol(dummy_name)
if dim is None:
dim = Symbol("dim_" + dummy_name.name)
else:
dim = sympify(dim)
if eps_dim is None:
eps_dim = dim
else:
eps_dim = sympify(eps_dim)
metric_symmetry = sympify(metric_symmetry)
if isinstance(metric_name, str):
metric_name = Symbol(metric_name)
if 'metric' in kwargs:
SymPyDeprecationWarning(
"""
The 'metric' keyword argument to TensorIndexType is
deprecated. Use the 'metric_symmetry' keyword argument or the
TensorIndexType.set_metric() method instead.
""",
deprecated_since_version="1.5",
active_deprecations_target="deprecated-tensorindextype-metric",
)
metric = kwargs.get('metric')
if metric is not None:
if metric in (True, False, 0, 1):
metric_name = 'metric'
#metric_antisym = metric
else:
metric_name = metric.name
#metric_antisym = metric.antisym
if metric:
metric_symmetry = -1
else:
metric_symmetry = 1
obj = Basic.__new__(cls, name, dummy_name, dim, eps_dim,
metric_symmetry, metric_name)
obj._autogenerated = []
return obj
@property
def name(self):
return self.args[0].name
@property
def dummy_name(self):
return self.args[1].name
@property
def dim(self):
return self.args[2]
@property
def eps_dim(self):
return self.args[3]
@memoize_property
def metric(self):
metric_symmetry = self.args[4]
metric_name = self.args[5]
if metric_symmetry is None:
return None
if metric_symmetry == 0:
symmetry = TensorSymmetry.no_symmetry(2)
elif metric_symmetry == 1:
symmetry = TensorSymmetry.fully_symmetric(2)
elif metric_symmetry == -1:
symmetry = TensorSymmetry.fully_symmetric(-2)
return TensorHead(metric_name, [self]*2, symmetry)
@memoize_property
def delta(self):
return TensorHead('KD', [self]*2, TensorSymmetry.fully_symmetric(2))
@memoize_property
def epsilon(self):
if not isinstance(self.eps_dim, (SYMPY_INTS, Integer)):
return None
symmetry = TensorSymmetry.fully_symmetric(-self.eps_dim)
return TensorHead('Eps', [self]*self.eps_dim, symmetry)
def set_metric(self, tensor):
self._metric = tensor
def __lt__(self, other):
return self.name < other.name
def __str__(self):
return self.name
__repr__ = __str__
# Everything below this line is deprecated
@property
def data(self):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
return _tensor_data_substitution_dict[self]
@data.setter
def data(self, data):
deprecate_data()
# This assignment is a bit controversial, should metric components be assigned
# to the metric only or also to the TensorIndexType object? The advantage here
# is the ability to assign a 1D array and transform it to a 2D diagonal array.
from .array import MutableDenseNDimArray
data = _TensorDataLazyEvaluator.parse_data(data)
if data.rank() > 2:
raise ValueError("data have to be of rank 1 (diagonal metric) or 2.")
if data.rank() == 1:
if self.dim.is_number:
nda_dim = data.shape[0]
if nda_dim != self.dim:
raise ValueError("Dimension mismatch")
dim = data.shape[0]
newndarray = MutableDenseNDimArray.zeros(dim, dim)
for i, val in enumerate(data):
newndarray[i, i] = val
data = newndarray
dim1, dim2 = data.shape
if dim1 != dim2:
raise ValueError("Non-square matrix tensor.")
if self.dim.is_number:
if self.dim != dim1:
raise ValueError("Dimension mismatch")
_tensor_data_substitution_dict[self] = data
_tensor_data_substitution_dict.add_metric_data(self.metric, data)
with ignore_warnings(SymPyDeprecationWarning):
delta = self.get_kronecker_delta()
i1 = TensorIndex('i1', self)
i2 = TensorIndex('i2', self)
with ignore_warnings(SymPyDeprecationWarning):
delta(i1, -i2).data = _TensorDataLazyEvaluator.parse_data(eye(dim1))
@data.deleter
def data(self):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
if self.metric in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self.metric]
@deprecated(
"""
The TensorIndexType.get_kronecker_delta() method is deprecated. Use
the TensorIndexType.delta attribute instead.
""",
deprecated_since_version="1.5",
active_deprecations_target="deprecated-tensorindextype-methods",
)
def get_kronecker_delta(self):
sym2 = TensorSymmetry(get_symmetric_group_sgs(2))
delta = TensorHead('KD', [self]*2, sym2)
return delta
@deprecated(
"""
The TensorIndexType.get_epsilon() method is deprecated. Use
the TensorIndexType.epsilon attribute instead.
""",
deprecated_since_version="1.5",
active_deprecations_target="deprecated-tensorindextype-methods",
)
def get_epsilon(self):
if not isinstance(self._eps_dim, (SYMPY_INTS, Integer)):
return None
sym = TensorSymmetry(get_symmetric_group_sgs(self._eps_dim, 1))
epsilon = TensorHead('Eps', [self]*self._eps_dim, sym)
return epsilon
def _components_data_full_destroy(self):
"""
EXPERIMENTAL: do not rely on this API method.
This destroys components data associated to the ``TensorIndexType``, if
any, specifically:
* metric tensor data
* Kronecker tensor data
"""
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
def delete_tensmul_data(key):
if key in _tensor_data_substitution_dict._substitutions_dict_tensmul:
del _tensor_data_substitution_dict._substitutions_dict_tensmul[key]
# delete metric data:
delete_tensmul_data((self.metric, True, True))
delete_tensmul_data((self.metric, True, False))
delete_tensmul_data((self.metric, False, True))
delete_tensmul_data((self.metric, False, False))
# delete delta tensor data:
delta = self.get_kronecker_delta()
if delta in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[delta]
class TensorIndex(Basic):
"""
Represents a tensor index
Parameters
==========
name : name of the index, or ``True`` if you want it to be automatically assigned
tensor_index_type : ``TensorIndexType`` of the index
is_up : flag for contravariant index (is_up=True by default)
Attributes
==========
``name``
``tensor_index_type``
``is_up``
Notes
=====
Tensor indices are contracted with the Einstein summation convention.
An index can be in contravariant or in covariant form; in the latter
case it is represented prepending a ``-`` to the index name. Adding
``-`` to a covariant (is_up=False) index makes it contravariant.
Dummy indices have a name with head given by
``tensor_inde_type.dummy_name`` with underscore and a number.
Similar to ``symbols`` multiple contravariant indices can be created
at once using ``tensor_indices(s, typ)``, where ``s`` is a string
of names.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, TensorIndex, TensorHead, tensor_indices
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> mu = TensorIndex('mu', Lorentz, is_up=False)
>>> nu, rho = tensor_indices('nu, rho', Lorentz)
>>> A = TensorHead('A', [Lorentz, Lorentz])
>>> A(mu, nu)
A(-mu, nu)
>>> A(-mu, -rho)
A(mu, -rho)
>>> A(mu, -mu)
A(-L_0, L_0)
"""
def __new__(cls, name, tensor_index_type, is_up=True):
if isinstance(name, str):
name_symbol = Symbol(name)
elif isinstance(name, Symbol):
name_symbol = name
elif name is True:
name = "_i{}".format(len(tensor_index_type._autogenerated))
name_symbol = Symbol(name)
tensor_index_type._autogenerated.append(name_symbol)
else:
raise ValueError("invalid name")
is_up = sympify(is_up)
return Basic.__new__(cls, name_symbol, tensor_index_type, is_up)
@property
def name(self):
return self.args[0].name
@property
def tensor_index_type(self):
return self.args[1]
@property
def is_up(self):
return self.args[2]
def _print(self):
s = self.name
if not self.is_up:
s = '-%s' % s
return s
def __lt__(self, other):
return ((self.tensor_index_type, self.name) <
(other.tensor_index_type, other.name))
def __neg__(self):
t1 = TensorIndex(self.name, self.tensor_index_type,
(not self.is_up))
return t1
def tensor_indices(s, typ):
"""
Returns list of tensor indices given their names and their types.
Parameters
==========
s : string of comma separated names of indices
typ : ``TensorIndexType`` of the indices
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> a, b, c, d = tensor_indices('a,b,c,d', Lorentz)
"""
if isinstance(s, str):
a = [x.name for x in symbols(s, seq=True)]
else:
raise ValueError('expecting a string')
tilist = [TensorIndex(i, typ) for i in a]
if len(tilist) == 1:
return tilist[0]
return tilist
class TensorSymmetry(Basic):
"""
Monoterm symmetry of a tensor (i.e. any symmetric or anti-symmetric
index permutation). For the relevant terminology see ``tensor_can.py``
section of the combinatorics module.
Parameters
==========
bsgs : tuple ``(base, sgs)`` BSGS of the symmetry of the tensor
Attributes
==========
``base`` : base of the BSGS
``generators`` : generators of the BSGS
``rank`` : rank of the tensor
Notes
=====
A tensor can have an arbitrary monoterm symmetry provided by its BSGS.
Multiterm symmetries, like the cyclic symmetry of the Riemann tensor
(i.e., Bianchi identity), are not covered. See combinatorics module for
information on how to generate BSGS for a general index permutation group.
Simple symmetries can be generated using built-in methods.
See Also
========
sympy.combinatorics.tensor_can.get_symmetric_group_sgs
Examples
========
Define a symmetric tensor of rank 2
>>> from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, get_symmetric_group_sgs, TensorHead
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> sym = TensorSymmetry(get_symmetric_group_sgs(2))
>>> T = TensorHead('T', [Lorentz]*2, sym)
Note, that the same can also be done using built-in TensorSymmetry methods
>>> sym2 = TensorSymmetry.fully_symmetric(2)
>>> sym == sym2
True
"""
def __new__(cls, *args, **kw_args):
if len(args) == 1:
base, generators = args[0]
elif len(args) == 2:
base, generators = args
else:
raise TypeError("bsgs required, either two separate parameters or one tuple")
if not isinstance(base, Tuple):
base = Tuple(*base)
if not isinstance(generators, Tuple):
generators = Tuple(*generators)
return Basic.__new__(cls, base, generators, **kw_args)
@property
def base(self):
return self.args[0]
@property
def generators(self):
return self.args[1]
@property
def rank(self):
return self.generators[0].size - 2
@classmethod
def fully_symmetric(cls, rank):
"""
Returns a fully symmetric (antisymmetric if ``rank``<0)
TensorSymmetry object for ``abs(rank)`` indices.
"""
if rank > 0:
bsgs = get_symmetric_group_sgs(rank, False)
elif rank < 0:
bsgs = get_symmetric_group_sgs(-rank, True)
elif rank == 0:
bsgs = ([], [Permutation(1)])
return TensorSymmetry(bsgs)
@classmethod
def direct_product(cls, *args):
"""
Returns a TensorSymmetry object that is being a direct product of
fully (anti-)symmetric index permutation groups.
Notes
=====
Some examples for different values of ``(*args)``:
``(1)`` vector, equivalent to ``TensorSymmetry.fully_symmetric(1)``
``(2)`` tensor with 2 symmetric indices, equivalent to ``.fully_symmetric(2)``
``(-2)`` tensor with 2 antisymmetric indices, equivalent to ``.fully_symmetric(-2)``
``(2, -2)`` tensor with the first 2 indices commuting and the last 2 anticommuting
``(1, 1, 1)`` tensor with 3 indices without any symmetry
"""
base, sgs = [], [Permutation(1)]
for arg in args:
if arg > 0:
bsgs2 = get_symmetric_group_sgs(arg, False)
elif arg < 0:
bsgs2 = get_symmetric_group_sgs(-arg, True)
else:
continue
base, sgs = bsgs_direct_product(base, sgs, *bsgs2)
return TensorSymmetry(base, sgs)
@classmethod
def riemann(cls):
"""
Returns a monotorem symmetry of the Riemann tensor
"""
return TensorSymmetry(riemann_bsgs)
@classmethod
def no_symmetry(cls, rank):
"""
TensorSymmetry object for ``rank`` indices with no symmetry
"""
return TensorSymmetry([], [Permutation(rank+1)])
@deprecated(
"""
The tensorsymmetry() function is deprecated. Use the TensorSymmetry
constructor instead.
""",
deprecated_since_version="1.5",
active_deprecations_target="deprecated-tensorsymmetry",
)
def tensorsymmetry(*args):
"""
Returns a ``TensorSymmetry`` object. This method is deprecated, use
``TensorSymmetry.direct_product()`` or ``.riemann()`` instead.
Explanation
===========
One can represent a tensor with any monoterm slot symmetry group
using a BSGS.
``args`` can be a BSGS
``args[0]`` base
``args[1]`` sgs
Usually tensors are in (direct products of) representations
of the symmetric group;
``args`` can be a list of lists representing the shapes of Young tableaux
Notes
=====
For instance:
``[[1]]`` vector
``[[1]*n]`` symmetric tensor of rank ``n``
``[[n]]`` antisymmetric tensor of rank ``n``
``[[2, 2]]`` monoterm slot symmetry of the Riemann tensor
``[[1],[1]]`` vector*vector
``[[2],[1],[1]`` (antisymmetric tensor)*vector*vector
Notice that with the shape ``[2, 2]`` we associate only the monoterm
symmetries of the Riemann tensor; this is an abuse of notation,
since the shape ``[2, 2]`` corresponds usually to the irreducible
representation characterized by the monoterm symmetries and by the
cyclic symmetry.
"""
from sympy.combinatorics import Permutation
def tableau2bsgs(a):
if len(a) == 1:
# antisymmetric vector
n = a[0]
bsgs = get_symmetric_group_sgs(n, 1)
else:
if all(x == 1 for x in a):
# symmetric vector
n = len(a)
bsgs = get_symmetric_group_sgs(n)
elif a == [2, 2]:
bsgs = riemann_bsgs
else:
raise NotImplementedError
return bsgs
if not args:
return TensorSymmetry(Tuple(), Tuple(Permutation(1)))
if len(args) == 2 and isinstance(args[1][0], Permutation):
return TensorSymmetry(args)
base, sgs = tableau2bsgs(args[0])
for a in args[1:]:
basex, sgsx = tableau2bsgs(a)
base, sgs = bsgs_direct_product(base, sgs, basex, sgsx)
return TensorSymmetry(Tuple(base, sgs))
@deprecated(
"TensorType is deprecated. Use tensor_heads() instead.",
deprecated_since_version="1.5",
active_deprecations_target="deprecated-tensortype",
)
class TensorType(Basic):
"""
Class of tensor types. Deprecated, use tensor_heads() instead.
Parameters
==========
index_types : list of ``TensorIndexType`` of the tensor indices
symmetry : ``TensorSymmetry`` of the tensor
Attributes
==========
``index_types``
``symmetry``
``types`` : list of ``TensorIndexType`` without repetitions
"""
is_commutative = False
def __new__(cls, index_types, symmetry, **kw_args):
assert symmetry.rank == len(index_types)
obj = Basic.__new__(cls, Tuple(*index_types), symmetry, **kw_args)
return obj
@property
def index_types(self):
return self.args[0]
@property
def symmetry(self):
return self.args[1]
@property
def types(self):
return sorted(set(self.index_types), key=lambda x: x.name)
def __str__(self):
return 'TensorType(%s)' % ([str(x) for x in self.index_types])
def __call__(self, s, comm=0):
"""
Return a TensorHead object or a list of TensorHead objects.
Parameters
==========
s : name or string of names.
comm : Commutation group.
see ``_TensorManager.set_comm``
"""
if isinstance(s, str):
names = [x.name for x in symbols(s, seq=True)]
else:
raise ValueError('expecting a string')
if len(names) == 1:
return TensorHead(names[0], self.index_types, self.symmetry, comm)
else:
return [TensorHead(name, self.index_types, self.symmetry, comm) for name in names]
@deprecated(
"""
The tensorhead() function is deprecated. Use tensor_heads() instead.
""",
deprecated_since_version="1.5",
active_deprecations_target="deprecated-tensorhead",
)
def tensorhead(name, typ, sym=None, comm=0):
"""
Function generating tensorhead(s). This method is deprecated,
use TensorHead constructor or tensor_heads() instead.
Parameters
==========
name : name or sequence of names (as in ``symbols``)
typ : index types
sym : same as ``*args`` in ``tensorsymmetry``
comm : commutation group number
see ``_TensorManager.set_comm``
"""
if sym is None:
sym = [[1] for i in range(len(typ))]
with ignore_warnings(SymPyDeprecationWarning):
sym = tensorsymmetry(*sym)
return TensorHead(name, typ, sym, comm)
class TensorHead(Basic):
"""
Tensor head of the tensor.
Parameters
==========
name : name of the tensor
index_types : list of TensorIndexType
symmetry : TensorSymmetry of the tensor
comm : commutation group number
Attributes
==========
``name``
``index_types``
``rank`` : total number of indices
``symmetry``
``comm`` : commutation group
Notes
=====
Similar to ``symbols`` multiple TensorHeads can be created using
``tensorhead(s, typ, sym=None, comm=0)`` function, where ``s``
is the string of names and ``sym`` is the monoterm tensor symmetry
(see ``tensorsymmetry``).
A ``TensorHead`` belongs to a commutation group, defined by a
symbol on number ``comm`` (see ``_TensorManager.set_comm``);
tensors in a commutation group have the same commutation properties;
by default ``comm`` is ``0``, the group of the commuting tensors.
Examples
========
Define a fully antisymmetric tensor of rank 2:
>>> from sympy.tensor.tensor import TensorIndexType, TensorHead, TensorSymmetry
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> asym2 = TensorSymmetry.fully_symmetric(-2)
>>> A = TensorHead('A', [Lorentz, Lorentz], asym2)
Examples with ndarray values, the components data assigned to the
``TensorHead`` object are assumed to be in a fully-contravariant
representation. In case it is necessary to assign components data which
represents the values of a non-fully covariant tensor, see the other
examples.
>>> from sympy.tensor.tensor import tensor_indices
>>> from sympy import diag
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> i0, i1 = tensor_indices('i0:2', Lorentz)
Specify a replacement dictionary to keep track of the arrays to use for
replacements in the tensorial expression. The ``TensorIndexType`` is
associated to the metric used for contractions (in fully covariant form):
>>> repl = {Lorentz: diag(1, -1, -1, -1)}
Let's see some examples of working with components with the electromagnetic
tensor:
>>> from sympy import symbols
>>> Ex, Ey, Ez, Bx, By, Bz = symbols('E_x E_y E_z B_x B_y B_z')
>>> c = symbols('c', positive=True)
Let's define `F`, an antisymmetric tensor:
>>> F = TensorHead('F', [Lorentz, Lorentz], asym2)
Let's update the dictionary to contain the matrix to use in the
replacements:
>>> repl.update({F(-i0, -i1): [
... [0, Ex/c, Ey/c, Ez/c],
... [-Ex/c, 0, -Bz, By],
... [-Ey/c, Bz, 0, -Bx],
... [-Ez/c, -By, Bx, 0]]})
Now it is possible to retrieve the contravariant form of the Electromagnetic
tensor:
>>> F(i0, i1).replace_with_arrays(repl, [i0, i1])
[[0, -E_x/c, -E_y/c, -E_z/c], [E_x/c, 0, -B_z, B_y], [E_y/c, B_z, 0, -B_x], [E_z/c, -B_y, B_x, 0]]
and the mixed contravariant-covariant form:
>>> F(i0, -i1).replace_with_arrays(repl, [i0, -i1])
[[0, E_x/c, E_y/c, E_z/c], [E_x/c, 0, B_z, -B_y], [E_y/c, -B_z, 0, B_x], [E_z/c, B_y, -B_x, 0]]
Energy-momentum of a particle may be represented as:
>>> from sympy import symbols
>>> P = TensorHead('P', [Lorentz], TensorSymmetry.no_symmetry(1))
>>> E, px, py, pz = symbols('E p_x p_y p_z', positive=True)
>>> repl.update({P(i0): [E, px, py, pz]})
The contravariant and covariant components are, respectively:
>>> P(i0).replace_with_arrays(repl, [i0])
[E, p_x, p_y, p_z]
>>> P(-i0).replace_with_arrays(repl, [-i0])
[E, -p_x, -p_y, -p_z]
The contraction of a 1-index tensor by itself:
>>> expr = P(i0)*P(-i0)
>>> expr.replace_with_arrays(repl, [])
E**2 - p_x**2 - p_y**2 - p_z**2
"""
is_commutative = False
def __new__(cls, name, index_types, symmetry=None, comm=0):
if isinstance(name, str):
name_symbol = Symbol(name)
elif isinstance(name, Symbol):
name_symbol = name
else:
raise ValueError("invalid name")
if symmetry is None:
symmetry = TensorSymmetry.no_symmetry(len(index_types))
else:
assert symmetry.rank == len(index_types)
obj = Basic.__new__(cls, name_symbol, Tuple(*index_types), symmetry)
obj.comm = TensorManager.comm_symbols2i(comm)
return obj
@property
def name(self):
return self.args[0].name
@property
def index_types(self):
return list(self.args[1])
@property
def symmetry(self):
return self.args[2]
@property
def rank(self):
return len(self.index_types)
def __lt__(self, other):
return (self.name, self.index_types) < (other.name, other.index_types)
def commutes_with(self, other):
"""
Returns ``0`` if ``self`` and ``other`` commute, ``1`` if they anticommute.
Returns ``None`` if ``self`` and ``other`` neither commute nor anticommute.
"""
r = TensorManager.get_comm(self.comm, other.comm)
return r
def _print(self):
return '%s(%s)' %(self.name, ','.join([str(x) for x in self.index_types]))
def __call__(self, *indices, **kw_args):
"""
Returns a tensor with indices.
Explanation
===========
There is a special behavior in case of indices denoted by ``True``,
they are considered auto-matrix indices, their slots are automatically
filled, and confer to the tensor the behavior of a matrix or vector
upon multiplication with another tensor containing auto-matrix indices
of the same ``TensorIndexType``. This means indices get summed over the
same way as in matrix multiplication. For matrix behavior, define two
auto-matrix indices, for vector behavior define just one.
Indices can also be strings, in which case the attribute
``index_types`` is used to convert them to proper ``TensorIndex``.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorSymmetry, TensorHead
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> a, b = tensor_indices('a,b', Lorentz)
>>> A = TensorHead('A', [Lorentz]*2, TensorSymmetry.no_symmetry(2))
>>> t = A(a, -b)
>>> t
A(a, -b)
"""
updated_indices = []
for idx, typ in zip(indices, self.index_types):
if isinstance(idx, str):
idx = idx.strip().replace(" ", "")
if idx.startswith('-'):
updated_indices.append(TensorIndex(idx[1:], typ,
is_up=False))
else:
updated_indices.append(TensorIndex(idx, typ))
else:
updated_indices.append(idx)
updated_indices += indices[len(updated_indices):]
tensor = Tensor(self, updated_indices, **kw_args)
return tensor.doit()
# Everything below this line is deprecated
def __pow__(self, other):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
if self.data is None:
raise ValueError("No power on abstract tensors.")
from .array import tensorproduct, tensorcontraction
metrics = [_.data for _ in self.index_types]
marray = self.data
marraydim = marray.rank()
for metric in metrics:
marray = tensorproduct(marray, metric, marray)
marray = tensorcontraction(marray, (0, marraydim), (marraydim+1, marraydim+2))
return marray ** (other * S.Half)
@property
def data(self):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
return _tensor_data_substitution_dict[self]
@data.setter
def data(self, data):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
_tensor_data_substitution_dict[self] = data
@data.deleter
def data(self):
deprecate_data()
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
def __iter__(self):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
return self.data.__iter__()
def _components_data_full_destroy(self):
"""
EXPERIMENTAL: do not rely on this API method.
Destroy components data associated to the ``TensorHead`` object, this
checks for attached components data, and destroys components data too.
"""
# do not garbage collect Kronecker tensor (it should be done by
# ``TensorIndexType`` garbage collection)
deprecate_data()
if self.name == "KD":
return
# the data attached to a tensor must be deleted only by the TensorHead
# destructor. If the TensorHead is deleted, it means that there are no
# more instances of that tensor anywhere.
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
def tensor_heads(s, index_types, symmetry=None, comm=0):
"""
Returns a sequence of TensorHeads from a string `s`
"""
if isinstance(s, str):
names = [x.name for x in symbols(s, seq=True)]
else:
raise ValueError('expecting a string')
thlist = [TensorHead(name, index_types, symmetry, comm) for name in names]
if len(thlist) == 1:
return thlist[0]
return thlist
class _TensorMetaclass(ManagedProperties, ABCMeta):
pass
class TensExpr(Expr, metaclass=_TensorMetaclass):
"""
Abstract base class for tensor expressions
Notes
=====
A tensor expression is an expression formed by tensors;
currently the sums of tensors are distributed.
A ``TensExpr`` can be a ``TensAdd`` or a ``TensMul``.
``TensMul`` objects are formed by products of component tensors,
and include a coefficient, which is a SymPy expression.
In the internal representation contracted indices are represented
by ``(ipos1, ipos2, icomp1, icomp2)``, where ``icomp1`` is the position
of the component tensor with contravariant index, ``ipos1`` is the
slot which the index occupies in that component tensor.
Contracted indices are therefore nameless in the internal representation.
"""
_op_priority = 12.0
is_commutative = False
def __neg__(self):
return self*S.NegativeOne
def __abs__(self):
raise NotImplementedError
def __add__(self, other):
return TensAdd(self, other).doit()
def __radd__(self, other):
return TensAdd(other, self).doit()
def __sub__(self, other):
return TensAdd(self, -other).doit()
def __rsub__(self, other):
return TensAdd(other, -self).doit()
def __mul__(self, other):
"""
Multiply two tensors using Einstein summation convention.
Explanation
===========
If the two tensors have an index in common, one contravariant
and the other covariant, in their product the indices are summed
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> g = Lorentz.metric
>>> p, q = tensor_heads('p,q', [Lorentz])
>>> t1 = p(m0)
>>> t2 = q(-m0)
>>> t1*t2
p(L_0)*q(-L_0)
"""
return TensMul(self, other).doit()
def __rmul__(self, other):
return TensMul(other, self).doit()
def __truediv__(self, other):
other = _sympify(other)
if isinstance(other, TensExpr):
raise ValueError('cannot divide by a tensor')
return TensMul(self, S.One/other).doit()
def __rtruediv__(self, other):
raise ValueError('cannot divide by a tensor')
def __pow__(self, other):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
if self.data is None:
raise ValueError("No power without ndarray data.")
from .array import tensorproduct, tensorcontraction
free = self.free
marray = self.data
mdim = marray.rank()
for metric in free:
marray = tensorcontraction(
tensorproduct(
marray,
metric[0].tensor_index_type.data,
marray),
(0, mdim), (mdim+1, mdim+2)
)
return marray ** (other * S.Half)
def __rpow__(self, other):
raise NotImplementedError
@property
@abstractmethod
def nocoeff(self):
raise NotImplementedError("abstract method")
@property
@abstractmethod
def coeff(self):
raise NotImplementedError("abstract method")
@abstractmethod
def get_indices(self):
raise NotImplementedError("abstract method")
@abstractmethod
def get_free_indices(self) -> list[TensorIndex]:
raise NotImplementedError("abstract method")
@abstractmethod
def _replace_indices(self, repl: dict[TensorIndex, TensorIndex]) -> TensExpr:
raise NotImplementedError("abstract method")
def fun_eval(self, *index_tuples):
deprecate_fun_eval()
return self.substitute_indices(*index_tuples)
def get_matrix(self):
"""
DEPRECATED: do not use.
Returns ndarray components data as a matrix, if components data are
available and ndarray dimension does not exceed 2.
"""
from sympy.matrices.dense import Matrix
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
if 0 < self.rank <= 2:
rows = self.data.shape[0]
columns = self.data.shape[1] if self.rank == 2 else 1
if self.rank == 2:
mat_list = [] * rows
for i in range(rows):
mat_list.append([])
for j in range(columns):
mat_list[i].append(self[i, j])
else:
mat_list = [None] * rows
for i in range(rows):
mat_list[i] = self[i]
return Matrix(mat_list)
else:
raise NotImplementedError(
"missing multidimensional reduction to matrix.")
@staticmethod
def _get_indices_permutation(indices1, indices2):
return [indices1.index(i) for i in indices2]
def expand(self, **hints):
return _expand(self, **hints).doit()
def _expand(self, **kwargs):
return self
def _get_free_indices_set(self):
indset = set()
for arg in self.args:
if isinstance(arg, TensExpr):
indset.update(arg._get_free_indices_set())
return indset
def _get_dummy_indices_set(self):
indset = set()
for arg in self.args:
if isinstance(arg, TensExpr):
indset.update(arg._get_dummy_indices_set())
return indset
def _get_indices_set(self):
indset = set()
for arg in self.args:
if isinstance(arg, TensExpr):
indset.update(arg._get_indices_set())
return indset
@property
def _iterate_dummy_indices(self):
dummy_set = self._get_dummy_indices_set()
def recursor(expr, pos):
if isinstance(expr, TensorIndex):
if expr in dummy_set:
yield (expr, pos)
elif isinstance(expr, (Tuple, TensExpr)):
for p, arg in enumerate(expr.args):
yield from recursor(arg, pos+(p,))
return recursor(self, ())
@property
def _iterate_free_indices(self):
free_set = self._get_free_indices_set()
def recursor(expr, pos):
if isinstance(expr, TensorIndex):
if expr in free_set:
yield (expr, pos)
elif isinstance(expr, (Tuple, TensExpr)):
for p, arg in enumerate(expr.args):
yield from recursor(arg, pos+(p,))
return recursor(self, ())
@property
def _iterate_indices(self):
def recursor(expr, pos):
if isinstance(expr, TensorIndex):
yield (expr, pos)
elif isinstance(expr, (Tuple, TensExpr)):
for p, arg in enumerate(expr.args):
yield from recursor(arg, pos+(p,))
return recursor(self, ())
@staticmethod
def _contract_and_permute_with_metric(metric, array, pos, dim):
# TODO: add possibility of metric after (spinors)
from .array import tensorcontraction, tensorproduct, permutedims
array = tensorcontraction(tensorproduct(metric, array), (1, 2+pos))
permu = list(range(dim))
permu[0], permu[pos] = permu[pos], permu[0]
return permutedims(array, permu)
@staticmethod
def _match_indices_with_other_tensor(array, free_ind1, free_ind2, replacement_dict):
from .array import permutedims
index_types1 = [i.tensor_index_type for i in free_ind1]
# Check if variance of indices needs to be fixed:
pos2up = []
pos2down = []
free2remaining = free_ind2[:]
for pos1, index1 in enumerate(free_ind1):
if index1 in free2remaining:
pos2 = free2remaining.index(index1)
free2remaining[pos2] = None
continue
if -index1 in free2remaining:
pos2 = free2remaining.index(-index1)
free2remaining[pos2] = None
free_ind2[pos2] = index1
if index1.is_up:
pos2up.append(pos2)
else:
pos2down.append(pos2)
else:
index2 = free2remaining[pos1]
if index2 is None:
raise ValueError("incompatible indices: %s and %s" % (free_ind1, free_ind2))
free2remaining[pos1] = None
free_ind2[pos1] = index1
if index1.is_up ^ index2.is_up:
if index1.is_up:
pos2up.append(pos1)
else:
pos2down.append(pos1)
if len(set(free_ind1) & set(free_ind2)) < len(free_ind1):
raise ValueError("incompatible indices: %s and %s" % (free_ind1, free_ind2))
# Raise indices:
for pos in pos2up:
index_type_pos = index_types1[pos]
if index_type_pos not in replacement_dict:
raise ValueError("No metric provided to lower index")
metric = replacement_dict[index_type_pos]
metric_inverse = _TensorDataLazyEvaluator.inverse_matrix(metric)
array = TensExpr._contract_and_permute_with_metric(metric_inverse, array, pos, len(free_ind1))
# Lower indices:
for pos in pos2down:
index_type_pos = index_types1[pos]
if index_type_pos not in replacement_dict:
raise ValueError("No metric provided to lower index")
metric = replacement_dict[index_type_pos]
array = TensExpr._contract_and_permute_with_metric(metric, array, pos, len(free_ind1))
if free_ind1:
permutation = TensExpr._get_indices_permutation(free_ind2, free_ind1)
array = permutedims(array, permutation)
if hasattr(array, "rank") and array.rank() == 0:
array = array[()]
return free_ind2, array
def replace_with_arrays(self, replacement_dict, indices=None):
"""
Replace the tensorial expressions with arrays. The final array will
correspond to the N-dimensional array with indices arranged according
to ``indices``.
Parameters
==========
replacement_dict
dictionary containing the replacement rules for tensors.
indices
the index order with respect to which the array is read. The
original index order will be used if no value is passed.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices
>>> from sympy.tensor.tensor import TensorHead
>>> from sympy import symbols, diag
>>> L = TensorIndexType("L")
>>> i, j = tensor_indices("i j", L)
>>> A = TensorHead("A", [L])
>>> A(i).replace_with_arrays({A(i): [1, 2]}, [i])
[1, 2]
Since 'indices' is optional, we can also call replace_with_arrays by
this way if no specific index order is needed:
>>> A(i).replace_with_arrays({A(i): [1, 2]})
[1, 2]
>>> expr = A(i)*A(j)
>>> expr.replace_with_arrays({A(i): [1, 2]})
[[1, 2], [2, 4]]
For contractions, specify the metric of the ``TensorIndexType``, which
in this case is ``L``, in its covariant form:
>>> expr = A(i)*A(-i)
>>> expr.replace_with_arrays({A(i): [1, 2], L: diag(1, -1)})
-3
Symmetrization of an array:
>>> H = TensorHead("H", [L, L])
>>> a, b, c, d = symbols("a b c d")
>>> expr = H(i, j)/2 + H(j, i)/2
>>> expr.replace_with_arrays({H(i, j): [[a, b], [c, d]]})
[[a, b/2 + c/2], [b/2 + c/2, d]]
Anti-symmetrization of an array:
>>> expr = H(i, j)/2 - H(j, i)/2
>>> repl = {H(i, j): [[a, b], [c, d]]}
>>> expr.replace_with_arrays(repl)
[[0, b/2 - c/2], [-b/2 + c/2, 0]]
The same expression can be read as the transpose by inverting ``i`` and
``j``:
>>> expr.replace_with_arrays(repl, [j, i])
[[0, -b/2 + c/2], [b/2 - c/2, 0]]
"""
from .array import Array
indices = indices or []
remap = {k.args[0] if k.is_up else -k.args[0]: k for k in self.get_free_indices()}
for i, index in enumerate(indices):
if isinstance(index, (Symbol, Mul)):
if index in remap:
indices[i] = remap[index]
else:
indices[i] = -remap[-index]
replacement_dict = {tensor: Array(array) for tensor, array in replacement_dict.items()}
# Check dimensions of replaced arrays:
for tensor, array in replacement_dict.items():
if isinstance(tensor, TensorIndexType):
expected_shape = [tensor.dim for i in range(2)]
else:
expected_shape = [index_type.dim for index_type in tensor.index_types]
if len(expected_shape) != array.rank() or (not all(dim1 == dim2 if
dim1.is_number else True for dim1, dim2 in zip(expected_shape,
array.shape))):
raise ValueError("shapes for tensor %s expected to be %s, "\
"replacement array shape is %s" % (tensor, expected_shape,
array.shape))
ret_indices, array = self._extract_data(replacement_dict)
last_indices, array = self._match_indices_with_other_tensor(array, indices, ret_indices, replacement_dict)
return array
def _check_add_Sum(self, expr, index_symbols):
from sympy.concrete.summations import Sum
indices = self.get_indices()
dum = self.dum
sum_indices = [ (index_symbols[i], 0,
indices[i].tensor_index_type.dim-1) for i, j in dum]
if sum_indices:
expr = Sum(expr, *sum_indices)
return expr
def _expand_partial_derivative(self):
# simply delegate the _expand_partial_derivative() to
# its arguments to expand a possibly found PartialDerivative
return self.func(*[
a._expand_partial_derivative()
if isinstance(a, TensExpr) else a
for a in self.args])
class TensAdd(TensExpr, AssocOp):
"""
Sum of tensors.
Parameters
==========
free_args : list of the free indices
Attributes
==========
``args`` : tuple of addends
``rank`` : rank of the tensor
``free_args`` : list of the free indices in sorted order
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_heads, tensor_indices
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> a, b = tensor_indices('a,b', Lorentz)
>>> p, q = tensor_heads('p,q', [Lorentz])
>>> t = p(a) + q(a); t
p(a) + q(a)
Examples with components data added to the tensor expression:
>>> from sympy import symbols, diag
>>> x, y, z, t = symbols("x y z t")
>>> repl = {}
>>> repl[Lorentz] = diag(1, -1, -1, -1)
>>> repl[p(a)] = [1, 2, 3, 4]
>>> repl[q(a)] = [x, y, z, t]
The following are: 2**2 - 3**2 - 2**2 - 7**2 ==> -58
>>> expr = p(a) + q(a)
>>> expr.replace_with_arrays(repl, [a])
[x + 1, y + 2, z + 3, t + 4]
"""
def __new__(cls, *args, **kw_args):
args = [_sympify(x) for x in args if x]
args = TensAdd._tensAdd_flatten(args)
args.sort(key=default_sort_key)
if not args:
return S.Zero
if len(args) == 1:
return args[0]
return Basic.__new__(cls, *args, **kw_args)
@property
def coeff(self):
return S.One
@property
def nocoeff(self):
return self
def get_free_indices(self) -> list[TensorIndex]:
return self.free_indices
def _replace_indices(self, repl: dict[TensorIndex, TensorIndex]) -> TensExpr:
newargs = [arg._replace_indices(repl) if isinstance(arg, TensExpr) else arg for arg in self.args]
return self.func(*newargs)
@memoize_property
def rank(self):
if isinstance(self.args[0], TensExpr):
return self.args[0].rank
else:
return 0
@memoize_property
def free_args(self):
if isinstance(self.args[0], TensExpr):
return self.args[0].free_args
else:
return []
@memoize_property
def free_indices(self):
if isinstance(self.args[0], TensExpr):
return self.args[0].get_free_indices()
else:
return set()
def doit(self, **hints):
deep = hints.get('deep', True)
if deep:
args = [arg.doit(**hints) for arg in self.args]
else:
args = self.args
if not args:
return S.Zero
if len(args) == 1 and not isinstance(args[0], TensExpr):
return args[0]
# now check that all addends have the same indices:
TensAdd._tensAdd_check(args)
# if TensAdd has only 1 element in its `args`:
if len(args) == 1: # and isinstance(args[0], TensMul):
return args[0]
# Remove zeros:
args = [x for x in args if x]
# if there are no more args (i.e. have cancelled out),
# just return zero:
if not args:
return S.Zero
if len(args) == 1:
return args[0]
# Collect terms appearing more than once, differing by their coefficients:
args = TensAdd._tensAdd_collect_terms(args)
# collect canonicalized terms
def sort_key(t):
if not isinstance(t, TensExpr):
return [], [], []
if hasattr(t, "_index_structure") and hasattr(t, "components"):
x = get_index_structure(t)
return t.components, x.free, x.dum
return [], [], []
args.sort(key=sort_key)
if not args:
return S.Zero
# it there is only a component tensor return it
if len(args) == 1:
return args[0]
obj = self.func(*args)
return obj
@staticmethod
def _tensAdd_flatten(args):
# flatten TensAdd, coerce terms which are not tensors to tensors
a = []
for x in args:
if isinstance(x, (Add, TensAdd)):
a.extend(list(x.args))
else:
a.append(x)
args = [x for x in a if x.coeff]
return args
@staticmethod
def _tensAdd_check(args):
# check that all addends have the same free indices
def get_indices_set(x: Expr) -> set[TensorIndex]:
if isinstance(x, TensExpr):
return set(x.get_free_indices())
return set()
indices0 = get_indices_set(args[0])
list_indices = [get_indices_set(arg) for arg in args[1:]]
if not all(x == indices0 for x in list_indices):
raise ValueError('all tensors must have the same indices')
@staticmethod
def _tensAdd_collect_terms(args):
# collect TensMul terms differing at most by their coefficient
terms_dict = defaultdict(list)
scalars = S.Zero
if isinstance(args[0], TensExpr):
free_indices = set(args[0].get_free_indices())
else:
free_indices = set()
for arg in args:
if not isinstance(arg, TensExpr):
if free_indices != set():
raise ValueError("wrong valence")
scalars += arg
continue
if free_indices != set(arg.get_free_indices()):
raise ValueError("wrong valence")
# TODO: what is the part which is not a coeff?
# needs an implementation similar to .as_coeff_Mul()
terms_dict[arg.nocoeff].append(arg.coeff)
new_args = [TensMul(Add(*coeff), t).doit() for t, coeff in terms_dict.items() if Add(*coeff) != 0]
if isinstance(scalars, Add):
new_args = list(scalars.args) + new_args
elif scalars != 0:
new_args = [scalars] + new_args
return new_args
def get_indices(self):
indices = []
for arg in self.args:
indices.extend([i for i in get_indices(arg) if i not in indices])
return indices
def _expand(self, **hints):
return TensAdd(*[_expand(i, **hints) for i in self.args])
def __call__(self, *indices):
deprecate_call()
free_args = self.free_args
indices = list(indices)
if [x.tensor_index_type for x in indices] != [x.tensor_index_type for x in free_args]:
raise ValueError('incompatible types')
if indices == free_args:
return self
index_tuples = list(zip(free_args, indices))
a = [x.func(*x.substitute_indices(*index_tuples).args) for x in self.args]
res = TensAdd(*a).doit()
return res
def canon_bp(self):
"""
Canonicalize using the Butler-Portugal algorithm for canonicalization
under monoterm symmetries.
"""
expr = self.expand()
args = [canon_bp(x) for x in expr.args]
res = TensAdd(*args).doit()
return res
def equals(self, other):
other = _sympify(other)
if isinstance(other, TensMul) and other.coeff == 0:
return all(x.coeff == 0 for x in self.args)
if isinstance(other, TensExpr):
if self.rank != other.rank:
return False
if isinstance(other, TensAdd):
if set(self.args) != set(other.args):
return False
else:
return True
t = self - other
if not isinstance(t, TensExpr):
return t == 0
else:
if isinstance(t, TensMul):
return t.coeff == 0
else:
return all(x.coeff == 0 for x in t.args)
def __getitem__(self, item):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
return self.data[item]
def contract_delta(self, delta):
args = [x.contract_delta(delta) for x in self.args]
t = TensAdd(*args).doit()
return canon_bp(t)
def contract_metric(self, g):
"""
Raise or lower indices with the metric ``g``.
Parameters
==========
g : metric
contract_all : if True, eliminate all ``g`` which are contracted
Notes
=====
see the ``TensorIndexType`` docstring for the contraction conventions
"""
args = [contract_metric(x, g) for x in self.args]
t = TensAdd(*args).doit()
return canon_bp(t)
def substitute_indices(self, *index_tuples):
new_args = []
for arg in self.args:
if isinstance(arg, TensExpr):
arg = arg.substitute_indices(*index_tuples)
new_args.append(arg)
return TensAdd(*new_args).doit()
def _print(self):
a = []
args = self.args
for x in args:
a.append(str(x))
s = ' + '.join(a)
s = s.replace('+ -', '- ')
return s
def _extract_data(self, replacement_dict):
from sympy.tensor.array import Array, permutedims
args_indices, arrays = zip(*[
arg._extract_data(replacement_dict) if
isinstance(arg, TensExpr) else ([], arg) for arg in self.args
])
arrays = [Array(i) for i in arrays]
ref_indices = args_indices[0]
for i in range(1, len(args_indices)):
indices = args_indices[i]
array = arrays[i]
permutation = TensMul._get_indices_permutation(indices, ref_indices)
arrays[i] = permutedims(array, permutation)
return ref_indices, sum(arrays, Array.zeros(*array.shape))
@property
def data(self):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
return _tensor_data_substitution_dict[self.expand()]
@data.setter
def data(self, data):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
_tensor_data_substitution_dict[self] = data
@data.deleter
def data(self):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
def __iter__(self):
deprecate_data()
if not self.data:
raise ValueError("No iteration on abstract tensors")
return self.data.flatten().__iter__()
def _eval_rewrite_as_Indexed(self, *args):
return Add.fromiter(args)
def _eval_partial_derivative(self, s):
# Evaluation like Add
list_addends = []
for a in self.args:
if isinstance(a, TensExpr):
list_addends.append(a._eval_partial_derivative(s))
# do not call diff if s is no symbol
elif s._diff_wrt:
list_addends.append(a._eval_derivative(s))
return self.func(*list_addends)
class Tensor(TensExpr):
"""
Base tensor class, i.e. this represents a tensor, the single unit to be
put into an expression.
Explanation
===========
This object is usually created from a ``TensorHead``, by attaching indices
to it. Indices preceded by a minus sign are considered contravariant,
otherwise covariant.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead
>>> Lorentz = TensorIndexType("Lorentz", dummy_name="L")
>>> mu, nu = tensor_indices('mu nu', Lorentz)
>>> A = TensorHead("A", [Lorentz, Lorentz])
>>> A(mu, -nu)
A(mu, -nu)
>>> A(mu, -mu)
A(L_0, -L_0)
It is also possible to use symbols instead of inidices (appropriate indices
are then generated automatically).
>>> from sympy import Symbol
>>> x = Symbol('x')
>>> A(x, mu)
A(x, mu)
>>> A(x, -x)
A(L_0, -L_0)
"""
is_commutative = False
_index_structure = None # type: _IndexStructure
args: tuple[TensorHead, Tuple]
def __new__(cls, tensor_head, indices, *, is_canon_bp=False, **kw_args):
indices = cls._parse_indices(tensor_head, indices)
obj = Basic.__new__(cls, tensor_head, Tuple(*indices), **kw_args)
obj._index_structure = _IndexStructure.from_indices(*indices)
obj._free = obj._index_structure.free[:]
obj._dum = obj._index_structure.dum[:]
obj._ext_rank = obj._index_structure._ext_rank
obj._coeff = S.One
obj._nocoeff = obj
obj._component = tensor_head
obj._components = [tensor_head]
if tensor_head.rank != len(indices):
raise ValueError("wrong number of indices")
obj.is_canon_bp = is_canon_bp
obj._index_map = Tensor._build_index_map(indices, obj._index_structure)
return obj
@property
def free(self):
return self._free
@property
def dum(self):
return self._dum
@property
def ext_rank(self):
return self._ext_rank
@property
def coeff(self):
return self._coeff
@property
def nocoeff(self):
return self._nocoeff
@property
def component(self):
return self._component
@property
def components(self):
return self._components
@property
def head(self):
return self.args[0]
@property
def indices(self):
return self.args[1]
@property
def free_indices(self):
return set(self._index_structure.get_free_indices())
@property
def index_types(self):
return self.head.index_types
@property
def rank(self):
return len(self.free_indices)
@staticmethod
def _build_index_map(indices, index_structure):
index_map = {}
for idx in indices:
index_map[idx] = (indices.index(idx),)
return index_map
def doit(self, **hints):
args, indices, free, dum = TensMul._tensMul_contract_indices([self])
return args[0]
@staticmethod
def _parse_indices(tensor_head, indices):
if not isinstance(indices, (tuple, list, Tuple)):
raise TypeError("indices should be an array, got %s" % type(indices))
indices = list(indices)
for i, index in enumerate(indices):
if isinstance(index, Symbol):
indices[i] = TensorIndex(index, tensor_head.index_types[i], True)
elif isinstance(index, Mul):
c, e = index.as_coeff_Mul()
if c == -1 and isinstance(e, Symbol):
indices[i] = TensorIndex(e, tensor_head.index_types[i], False)
else:
raise ValueError("index not understood: %s" % index)
elif not isinstance(index, TensorIndex):
raise TypeError("wrong type for index: %s is %s" % (index, type(index)))
return indices
def _set_new_index_structure(self, im, is_canon_bp=False):
indices = im.get_indices()
return self._set_indices(*indices, is_canon_bp=is_canon_bp)
def _set_indices(self, *indices, is_canon_bp=False, **kw_args):
if len(indices) != self.ext_rank:
raise ValueError("indices length mismatch")
return self.func(self.args[0], indices, is_canon_bp=is_canon_bp).doit()
def _get_free_indices_set(self):
return {i[0] for i in self._index_structure.free}
def _get_dummy_indices_set(self):
dummy_pos = set(itertools.chain(*self._index_structure.dum))
return {idx for i, idx in enumerate(self.args[1]) if i in dummy_pos}
def _get_indices_set(self):
return set(self.args[1].args)
@property
def free_in_args(self):
return [(ind, pos, 0) for ind, pos in self.free]
@property
def dum_in_args(self):
return [(p1, p2, 0, 0) for p1, p2 in self.dum]
@property
def free_args(self):
return sorted([x[0] for x in self.free])
def commutes_with(self, other):
"""
:param other:
:return:
0 commute
1 anticommute
None neither commute nor anticommute
"""
if not isinstance(other, TensExpr):
return 0
elif isinstance(other, Tensor):
return self.component.commutes_with(other.component)
return NotImplementedError
def perm2tensor(self, g, is_canon_bp=False):
"""
Returns the tensor corresponding to the permutation ``g``.
For further details, see the method in ``TIDS`` with the same name.
"""
return perm2tensor(self, g, is_canon_bp)
def canon_bp(self):
if self.is_canon_bp:
return self
expr = self.expand()
g, dummies, msym = expr._index_structure.indices_canon_args()
v = components_canon_args([expr.component])
can = canonicalize(g, dummies, msym, *v)
if can == 0:
return S.Zero
tensor = self.perm2tensor(can, True)
return tensor
def split(self):
return [self]
def _expand(self, **kwargs):
return self
def sorted_components(self):
return self
def get_indices(self) -> list[TensorIndex]:
"""
Get a list of indices, corresponding to those of the tensor.
"""
return list(self.args[1])
def get_free_indices(self) -> list[TensorIndex]:
"""
Get a list of free indices, corresponding to those of the tensor.
"""
return self._index_structure.get_free_indices()
def _replace_indices(self, repl: dict[TensorIndex, TensorIndex]) -> TensExpr:
# TODO: this could be optimized by only swapping the indices
# instead of visiting the whole expression tree:
return self.xreplace(repl)
def as_base_exp(self):
return self, S.One
def substitute_indices(self, *index_tuples):
"""
Return a tensor with free indices substituted according to ``index_tuples``.
``index_types`` list of tuples ``(old_index, new_index)``.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads, TensorSymmetry
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> i, j, k, l = tensor_indices('i,j,k,l', Lorentz)
>>> A, B = tensor_heads('A,B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
>>> t = A(i, k)*B(-k, -j); t
A(i, L_0)*B(-L_0, -j)
>>> t.substitute_indices((i, k),(-j, l))
A(k, L_0)*B(-L_0, l)
"""
indices = []
for index in self.indices:
for ind_old, ind_new in index_tuples:
if (index.name == ind_old.name and index.tensor_index_type ==
ind_old.tensor_index_type):
if index.is_up == ind_old.is_up:
indices.append(ind_new)
else:
indices.append(-ind_new)
break
else:
indices.append(index)
return self.head(*indices)
def __call__(self, *indices):
deprecate_call()
free_args = self.free_args
indices = list(indices)
if [x.tensor_index_type for x in indices] != [x.tensor_index_type for x in free_args]:
raise ValueError('incompatible types')
if indices == free_args:
return self
t = self.substitute_indices(*list(zip(free_args, indices)))
# object is rebuilt in order to make sure that all contracted indices
# get recognized as dummies, but only if there are contracted indices.
if len({i if i.is_up else -i for i in indices}) != len(indices):
return t.func(*t.args)
return t
# TODO: put this into TensExpr?
def __iter__(self):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
return self.data.__iter__()
# TODO: put this into TensExpr?
def __getitem__(self, item):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
return self.data[item]
def _extract_data(self, replacement_dict):
from .array import Array
for k, v in replacement_dict.items():
if isinstance(k, Tensor) and k.args[0] == self.args[0]:
other = k
array = v
break
else:
raise ValueError("%s not found in %s" % (self, replacement_dict))
# TODO: inefficient, this should be done at root level only:
replacement_dict = {k: Array(v) for k, v in replacement_dict.items()}
array = Array(array)
dum1 = self.dum
dum2 = other.dum
if len(dum2) > 0:
for pair in dum2:
# allow `dum2` if the contained values are also in `dum1`.
if pair not in dum1:
raise NotImplementedError("%s with contractions is not implemented" % other)
# Remove elements in `dum2` from `dum1`:
dum1 = [pair for pair in dum1 if pair not in dum2]
if len(dum1) > 0:
indices1 = self.get_indices()
indices2 = other.get_indices()
repl = {}
for p1, p2 in dum1:
repl[indices2[p2]] = -indices2[p1]
for pos in (p1, p2):
if indices1[pos].is_up ^ indices2[pos].is_up:
metric = replacement_dict[indices1[pos].tensor_index_type]
if indices1[pos].is_up:
metric = _TensorDataLazyEvaluator.inverse_matrix(metric)
array = self._contract_and_permute_with_metric(metric, array, pos, len(indices2))
other = other.xreplace(repl).doit()
array = _TensorDataLazyEvaluator.data_contract_dum([array], dum1, len(indices2))
free_ind1 = self.get_free_indices()
free_ind2 = other.get_free_indices()
return self._match_indices_with_other_tensor(array, free_ind1, free_ind2, replacement_dict)
@property
def data(self):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
return _tensor_data_substitution_dict[self]
@data.setter
def data(self, data):
deprecate_data()
# TODO: check data compatibility with properties of tensor.
with ignore_warnings(SymPyDeprecationWarning):
_tensor_data_substitution_dict[self] = data
@data.deleter
def data(self):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
if self in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self]
if self.metric in _tensor_data_substitution_dict:
del _tensor_data_substitution_dict[self.metric]
def _print(self):
indices = [str(ind) for ind in self.indices]
component = self.component
if component.rank > 0:
return ('%s(%s)' % (component.name, ', '.join(indices)))
else:
return ('%s' % component.name)
def equals(self, other):
if other == 0:
return self.coeff == 0
other = _sympify(other)
if not isinstance(other, TensExpr):
assert not self.components
return S.One == other
def _get_compar_comp(self):
t = self.canon_bp()
r = (t.coeff, tuple(t.components), \
tuple(sorted(t.free)), tuple(sorted(t.dum)))
return r
return _get_compar_comp(self) == _get_compar_comp(other)
def contract_metric(self, g):
# if metric is not the same, ignore this step:
if self.component != g:
return self
# in case there are free components, do not perform anything:
if len(self.free) != 0:
return self
#antisym = g.index_types[0].metric_antisym
if g.symmetry == TensorSymmetry.fully_symmetric(-2):
antisym = 1
elif g.symmetry == TensorSymmetry.fully_symmetric(2):
antisym = 0
elif g.symmetry == TensorSymmetry.no_symmetry(2):
antisym = None
else:
raise NotImplementedError
sign = S.One
typ = g.index_types[0]
if not antisym:
# g(i, -i)
sign = sign*typ.dim
else:
# g(i, -i)
sign = sign*typ.dim
dp0, dp1 = self.dum[0]
if dp0 < dp1:
# g(i, -i) = -D with antisymmetric metric
sign = -sign
return sign
def contract_delta(self, metric):
return self.contract_metric(metric)
def _eval_rewrite_as_Indexed(self, tens, indices):
from sympy.tensor.indexed import Indexed
# TODO: replace .args[0] with .name:
index_symbols = [i.args[0] for i in self.get_indices()]
expr = Indexed(tens.args[0], *index_symbols)
return self._check_add_Sum(expr, index_symbols)
def _eval_partial_derivative(self, s): # type: (Tensor) -> Expr
if not isinstance(s, Tensor):
return S.Zero
else:
# @a_i/@a_k = delta_i^k
# @a_i/@a^k = g_ij delta^j_k
# @a^i/@a^k = delta^i_k
# @a^i/@a_k = g^ij delta_j^k
# TODO: if there is no metric present, the derivative should be zero?
if self.head != s.head:
return S.Zero
# if heads are the same, provide delta and/or metric products
# for every free index pair in the appropriate tensor
# assumed that the free indices are in proper order
# A contravariante index in the derivative becomes covariant
# after performing the derivative and vice versa
kronecker_delta_list = [1]
# not guarantee a correct index order
for (count, (iself, iother)) in enumerate(zip(self.get_free_indices(), s.get_free_indices())):
if iself.tensor_index_type != iother.tensor_index_type:
raise ValueError("index types not compatible")
else:
tensor_index_type = iself.tensor_index_type
tensor_metric = tensor_index_type.metric
dummy = TensorIndex("d_" + str(count), tensor_index_type,
is_up=iself.is_up)
if iself.is_up == iother.is_up:
kroneckerdelta = tensor_index_type.delta(iself, -iother)
else:
kroneckerdelta = (
TensMul(tensor_metric(iself, dummy),
tensor_index_type.delta(-dummy, -iother))
)
kronecker_delta_list.append(kroneckerdelta)
return TensMul.fromiter(kronecker_delta_list).doit()
# doit necessary to rename dummy indices accordingly
class TensMul(TensExpr, AssocOp):
"""
Product of tensors.
Parameters
==========
coeff : SymPy coefficient of the tensor
args
Attributes
==========
``components`` : list of ``TensorHead`` of the component tensors
``types`` : list of nonrepeated ``TensorIndexType``
``free`` : list of ``(ind, ipos, icomp)``, see Notes
``dum`` : list of ``(ipos1, ipos2, icomp1, icomp2)``, see Notes
``ext_rank`` : rank of the tensor counting the dummy indices
``rank`` : rank of the tensor
``coeff`` : SymPy coefficient of the tensor
``free_args`` : list of the free indices in sorted order
``is_canon_bp`` : ``True`` if the tensor in in canonical form
Notes
=====
``args[0]`` list of ``TensorHead`` of the component tensors.
``args[1]`` list of ``(ind, ipos, icomp)``
where ``ind`` is a free index, ``ipos`` is the slot position
of ``ind`` in the ``icomp``-th component tensor.
``args[2]`` list of tuples representing dummy indices.
``(ipos1, ipos2, icomp1, icomp2)`` indicates that the contravariant
dummy index is the ``ipos1``-th slot position in the ``icomp1``-th
component tensor; the corresponding covariant index is
in the ``ipos2`` slot position in the ``icomp2``-th component tensor.
"""
identity = S.One
_index_structure = None # type: _IndexStructure
def __new__(cls, *args, **kw_args):
is_canon_bp = kw_args.get('is_canon_bp', False)
args = list(map(_sympify, args))
# Flatten:
args = [i for arg in args for i in (arg.args if isinstance(arg, (TensMul, Mul)) else [arg])]
args, indices, free, dum = TensMul._tensMul_contract_indices(args, replace_indices=False)
# Data for indices:
index_types = [i.tensor_index_type for i in indices]
index_structure = _IndexStructure(free, dum, index_types, indices, canon_bp=is_canon_bp)
obj = TensExpr.__new__(cls, *args)
obj._indices = indices
obj._index_types = index_types[:]
obj._index_structure = index_structure
obj._free = index_structure.free[:]
obj._dum = index_structure.dum[:]
obj._free_indices = {x[0] for x in obj.free}
obj._rank = len(obj.free)
obj._ext_rank = len(obj._index_structure.free) + 2*len(obj._index_structure.dum)
obj._coeff = S.One
obj._is_canon_bp = is_canon_bp
return obj
index_types = property(lambda self: self._index_types)
free = property(lambda self: self._free)
dum = property(lambda self: self._dum)
free_indices = property(lambda self: self._free_indices)
rank = property(lambda self: self._rank)
ext_rank = property(lambda self: self._ext_rank)
@staticmethod
def _indices_to_free_dum(args_indices):
free2pos1 = {}
free2pos2 = {}
dummy_data = []
indices = []
# Notation for positions (to better understand the code):
# `pos1`: position in the `args`.
# `pos2`: position in the indices.
# Example:
# A(i, j)*B(k, m, n)*C(p)
# `pos1` of `n` is 1 because it's in `B` (second `args` of TensMul).
# `pos2` of `n` is 4 because it's the fifth overall index.
# Counter for the index position wrt the whole expression:
pos2 = 0
for pos1, arg_indices in enumerate(args_indices):
for index_pos, index in enumerate(arg_indices):
if not isinstance(index, TensorIndex):
raise TypeError("expected TensorIndex")
if -index in free2pos1:
# Dummy index detected:
other_pos1 = free2pos1.pop(-index)
other_pos2 = free2pos2.pop(-index)
if index.is_up:
dummy_data.append((index, pos1, other_pos1, pos2, other_pos2))
else:
dummy_data.append((-index, other_pos1, pos1, other_pos2, pos2))
indices.append(index)
elif index in free2pos1:
raise ValueError("Repeated index: %s" % index)
else:
free2pos1[index] = pos1
free2pos2[index] = pos2
indices.append(index)
pos2 += 1
free = [(i, p) for (i, p) in free2pos2.items()]
free_names = [i.name for i in free2pos2.keys()]
dummy_data.sort(key=lambda x: x[3])
return indices, free, free_names, dummy_data
@staticmethod
def _dummy_data_to_dum(dummy_data):
return [(p2a, p2b) for (i, p1a, p1b, p2a, p2b) in dummy_data]
@staticmethod
def _tensMul_contract_indices(args, replace_indices=True):
replacements = [{} for _ in args]
#_index_order = all(_has_index_order(arg) for arg in args)
args_indices = [get_indices(arg) for arg in args]
indices, free, free_names, dummy_data = TensMul._indices_to_free_dum(args_indices)
cdt = defaultdict(int)
def dummy_name_gen(tensor_index_type):
nd = str(cdt[tensor_index_type])
cdt[tensor_index_type] += 1
return tensor_index_type.dummy_name + '_' + nd
if replace_indices:
for old_index, pos1cov, pos1contra, pos2cov, pos2contra in dummy_data:
index_type = old_index.tensor_index_type
while True:
dummy_name = dummy_name_gen(index_type)
if dummy_name not in free_names:
break
dummy = TensorIndex(dummy_name, index_type, True)
replacements[pos1cov][old_index] = dummy
replacements[pos1contra][-old_index] = -dummy
indices[pos2cov] = dummy
indices[pos2contra] = -dummy
args = [
arg._replace_indices(repl) if isinstance(arg, TensExpr) else arg
for arg, repl in zip(args, replacements)]
dum = TensMul._dummy_data_to_dum(dummy_data)
return args, indices, free, dum
@staticmethod
def _get_components_from_args(args):
"""
Get a list of ``Tensor`` objects having the same ``TIDS`` if multiplied
by one another.
"""
components = []
for arg in args:
if not isinstance(arg, TensExpr):
continue
if isinstance(arg, TensAdd):
continue
components.extend(arg.components)
return components
@staticmethod
def _rebuild_tensors_list(args, index_structure):
indices = index_structure.get_indices()
#tensors = [None for i in components] # pre-allocate list
ind_pos = 0
for i, arg in enumerate(args):
if not isinstance(arg, TensExpr):
continue
prev_pos = ind_pos
ind_pos += arg.ext_rank
args[i] = Tensor(arg.component, indices[prev_pos:ind_pos])
def doit(self, **hints):
is_canon_bp = self._is_canon_bp
deep = hints.get('deep', True)
if deep:
args = [arg.doit(**hints) for arg in self.args]
else:
args = self.args
args = [arg for arg in args if arg != self.identity]
# Extract non-tensor coefficients:
coeff = reduce(lambda a, b: a*b, [arg for arg in args if not isinstance(arg, TensExpr)], S.One)
args = [arg for arg in args if isinstance(arg, TensExpr)]
if len(args) == 0:
return coeff
if coeff != self.identity:
args = [coeff] + args
if coeff == 0:
return S.Zero
if len(args) == 1:
return args[0]
args, indices, free, dum = TensMul._tensMul_contract_indices(args)
# Data for indices:
index_types = [i.tensor_index_type for i in indices]
index_structure = _IndexStructure(free, dum, index_types, indices, canon_bp=is_canon_bp)
obj = self.func(*args)
obj._index_types = index_types
obj._index_structure = index_structure
obj._ext_rank = len(obj._index_structure.free) + 2*len(obj._index_structure.dum)
obj._coeff = coeff
obj._is_canon_bp = is_canon_bp
return obj
# TODO: this method should be private
# TODO: should this method be renamed _from_components_free_dum ?
@staticmethod
def from_data(coeff, components, free, dum, **kw_args):
return TensMul(coeff, *TensMul._get_tensors_from_components_free_dum(components, free, dum), **kw_args).doit()
@staticmethod
def _get_tensors_from_components_free_dum(components, free, dum):
"""
Get a list of ``Tensor`` objects by distributing ``free`` and ``dum`` indices on the ``components``.
"""
index_structure = _IndexStructure.from_components_free_dum(components, free, dum)
indices = index_structure.get_indices()
tensors = [None for i in components] # pre-allocate list
# distribute indices on components to build a list of tensors:
ind_pos = 0
for i, component in enumerate(components):
prev_pos = ind_pos
ind_pos += component.rank
tensors[i] = Tensor(component, indices[prev_pos:ind_pos])
return tensors
def _get_free_indices_set(self):
return {i[0] for i in self.free}
def _get_dummy_indices_set(self):
dummy_pos = set(itertools.chain(*self.dum))
return {idx for i, idx in enumerate(self._index_structure.get_indices()) if i in dummy_pos}
def _get_position_offset_for_indices(self):
arg_offset = [None for i in range(self.ext_rank)]
counter = 0
for i, arg in enumerate(self.args):
if not isinstance(arg, TensExpr):
continue
for j in range(arg.ext_rank):
arg_offset[j + counter] = counter
counter += arg.ext_rank
return arg_offset
@property
def free_args(self):
return sorted([x[0] for x in self.free])
@property
def components(self):
return self._get_components_from_args(self.args)
@property
def free_in_args(self):
arg_offset = self._get_position_offset_for_indices()
argpos = self._get_indices_to_args_pos()
return [(ind, pos-arg_offset[pos], argpos[pos]) for (ind, pos) in self.free]
@property
def coeff(self):
# return Mul.fromiter([c for c in self.args if not isinstance(c, TensExpr)])
return self._coeff
@property
def nocoeff(self):
return self.func(*[t for t in self.args if isinstance(t, TensExpr)]).doit()
@property
def dum_in_args(self):
arg_offset = self._get_position_offset_for_indices()
argpos = self._get_indices_to_args_pos()
return [(p1-arg_offset[p1], p2-arg_offset[p2], argpos[p1], argpos[p2]) for p1, p2 in self.dum]
def equals(self, other):
if other == 0:
return self.coeff == 0
other = _sympify(other)
if not isinstance(other, TensExpr):
assert not self.components
return self.coeff == other
return self.canon_bp() == other.canon_bp()
def get_indices(self):
"""
Returns the list of indices of the tensor.
Explanation
===========
The indices are listed in the order in which they appear in the
component tensors.
The dummy indices are given a name which does not collide with
the names of the free indices.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> g = Lorentz.metric
>>> p, q = tensor_heads('p,q', [Lorentz])
>>> t = p(m1)*g(m0,m2)
>>> t.get_indices()
[m1, m0, m2]
>>> t2 = p(m1)*g(-m1, m2)
>>> t2.get_indices()
[L_0, -L_0, m2]
"""
return self._indices
def get_free_indices(self) -> list[TensorIndex]:
"""
Returns the list of free indices of the tensor.
Explanation
===========
The indices are listed in the order in which they appear in the
component tensors.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> g = Lorentz.metric
>>> p, q = tensor_heads('p,q', [Lorentz])
>>> t = p(m1)*g(m0,m2)
>>> t.get_free_indices()
[m1, m0, m2]
>>> t2 = p(m1)*g(-m1, m2)
>>> t2.get_free_indices()
[m2]
"""
return self._index_structure.get_free_indices()
def _replace_indices(self, repl: dict[TensorIndex, TensorIndex]) -> TensExpr:
return self.func(*[arg._replace_indices(repl) if isinstance(arg, TensExpr) else arg for arg in self.args])
def split(self):
"""
Returns a list of tensors, whose product is ``self``.
Explanation
===========
Dummy indices contracted among different tensor components
become free indices with the same name as the one used to
represent the dummy indices.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads, TensorSymmetry
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> a, b, c, d = tensor_indices('a,b,c,d', Lorentz)
>>> A, B = tensor_heads('A,B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
>>> t = A(a,b)*B(-b,c)
>>> t
A(a, L_0)*B(-L_0, c)
>>> t.split()
[A(a, L_0), B(-L_0, c)]
"""
if self.args == ():
return [self]
splitp = []
res = 1
for arg in self.args:
if isinstance(arg, Tensor):
splitp.append(res*arg)
res = 1
else:
res *= arg
return splitp
def _expand(self, **hints):
# TODO: temporary solution, in the future this should be linked to
# `Expr.expand`.
args = [_expand(arg, **hints) for arg in self.args]
args1 = [arg.args if isinstance(arg, (Add, TensAdd)) else (arg,) for arg in args]
return TensAdd(*[
TensMul(*i) for i in itertools.product(*args1)]
)
def __neg__(self):
return TensMul(S.NegativeOne, self, is_canon_bp=self._is_canon_bp).doit()
def __getitem__(self, item):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
return self.data[item]
def _get_args_for_traditional_printer(self):
args = list(self.args)
if (self.coeff < 0) == True:
# expressions like "-A(a)"
sign = "-"
if self.coeff == S.NegativeOne:
args = args[1:]
else:
args[0] = -args[0]
else:
sign = ""
return sign, args
def _sort_args_for_sorted_components(self):
"""
Returns the ``args`` sorted according to the components commutation
properties.
Explanation
===========
The sorting is done taking into account the commutation group
of the component tensors.
"""
cv = [arg for arg in self.args if isinstance(arg, TensExpr)]
sign = 1
n = len(cv) - 1
for i in range(n):
for j in range(n, i, -1):
c = cv[j-1].commutes_with(cv[j])
# if `c` is `None`, it does neither commute nor anticommute, skip:
if c not in (0, 1):
continue
typ1 = sorted(set(cv[j-1].component.index_types), key=lambda x: x.name)
typ2 = sorted(set(cv[j].component.index_types), key=lambda x: x.name)
if (typ1, cv[j-1].component.name) > (typ2, cv[j].component.name):
cv[j-1], cv[j] = cv[j], cv[j-1]
# if `c` is 1, the anticommute, so change sign:
if c:
sign = -sign
coeff = sign * self.coeff
if coeff != 1:
return [coeff] + cv
return cv
def sorted_components(self):
"""
Returns a tensor product with sorted components.
"""
return TensMul(*self._sort_args_for_sorted_components()).doit()
def perm2tensor(self, g, is_canon_bp=False):
"""
Returns the tensor corresponding to the permutation ``g``
For further details, see the method in ``TIDS`` with the same name.
"""
return perm2tensor(self, g, is_canon_bp=is_canon_bp)
def canon_bp(self):
"""
Canonicalize using the Butler-Portugal algorithm for canonicalization
under monoterm symmetries.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, TensorSymmetry
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> A = TensorHead('A', [Lorentz]*2, TensorSymmetry.fully_symmetric(-2))
>>> t = A(m0,-m1)*A(m1,-m0)
>>> t.canon_bp()
-A(L_0, L_1)*A(-L_0, -L_1)
>>> t = A(m0,-m1)*A(m1,-m2)*A(m2,-m0)
>>> t.canon_bp()
0
"""
if self._is_canon_bp:
return self
expr = self.expand()
if isinstance(expr, TensAdd):
return expr.canon_bp()
if not expr.components:
return expr
t = expr.sorted_components()
g, dummies, msym = t._index_structure.indices_canon_args()
v = components_canon_args(t.components)
can = canonicalize(g, dummies, msym, *v)
if can == 0:
return S.Zero
tmul = t.perm2tensor(can, True)
return tmul
def contract_delta(self, delta):
t = self.contract_metric(delta)
return t
def _get_indices_to_args_pos(self):
"""
Get a dict mapping the index position to TensMul's argument number.
"""
pos_map = {}
pos_counter = 0
for arg_i, arg in enumerate(self.args):
if not isinstance(arg, TensExpr):
continue
assert isinstance(arg, Tensor)
for i in range(arg.ext_rank):
pos_map[pos_counter] = arg_i
pos_counter += 1
return pos_map
def contract_metric(self, g):
"""
Raise or lower indices with the metric ``g``.
Parameters
==========
g : metric
Notes
=====
See the ``TensorIndexType`` docstring for the contraction conventions.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
>>> g = Lorentz.metric
>>> p, q = tensor_heads('p,q', [Lorentz])
>>> t = p(m0)*q(m1)*g(-m0, -m1)
>>> t.canon_bp()
metric(L_0, L_1)*p(-L_0)*q(-L_1)
>>> t.contract_metric(g).canon_bp()
p(L_0)*q(-L_0)
"""
expr = self.expand()
if self != expr:
expr = expr.canon_bp()
return expr.contract_metric(g)
pos_map = self._get_indices_to_args_pos()
args = list(self.args)
#antisym = g.index_types[0].metric_antisym
if g.symmetry == TensorSymmetry.fully_symmetric(-2):
antisym = 1
elif g.symmetry == TensorSymmetry.fully_symmetric(2):
antisym = 0
elif g.symmetry == TensorSymmetry.no_symmetry(2):
antisym = None
else:
raise NotImplementedError
# list of positions of the metric ``g`` inside ``args``
gpos = [i for i, x in enumerate(self.args) if isinstance(x, Tensor) and x.component == g]
if not gpos:
return self
# Sign is either 1 or -1, to correct the sign after metric contraction
# (for spinor indices).
sign = 1
dum = self.dum[:]
free = self.free[:]
elim = set()
for gposx in gpos:
if gposx in elim:
continue
free1 = [x for x in free if pos_map[x[1]] == gposx]
dum1 = [x for x in dum if pos_map[x[0]] == gposx or pos_map[x[1]] == gposx]
if not dum1:
continue
elim.add(gposx)
# subs with the multiplication neutral element, that is, remove it:
args[gposx] = 1
if len(dum1) == 2:
if not antisym:
dum10, dum11 = dum1
if pos_map[dum10[1]] == gposx:
# the index with pos p0 contravariant
p0 = dum10[0]
else:
# the index with pos p0 is covariant
p0 = dum10[1]
if pos_map[dum11[1]] == gposx:
# the index with pos p1 is contravariant
p1 = dum11[0]
else:
# the index with pos p1 is covariant
p1 = dum11[1]
dum.append((p0, p1))
else:
dum10, dum11 = dum1
# change the sign to bring the indices of the metric to contravariant
# form; change the sign if dum10 has the metric index in position 0
if pos_map[dum10[1]] == gposx:
# the index with pos p0 is contravariant
p0 = dum10[0]
if dum10[1] == 1:
sign = -sign
else:
# the index with pos p0 is covariant
p0 = dum10[1]
if dum10[0] == 0:
sign = -sign
if pos_map[dum11[1]] == gposx:
# the index with pos p1 is contravariant
p1 = dum11[0]
sign = -sign
else:
# the index with pos p1 is covariant
p1 = dum11[1]
dum.append((p0, p1))
elif len(dum1) == 1:
if not antisym:
dp0, dp1 = dum1[0]
if pos_map[dp0] == pos_map[dp1]:
# g(i, -i)
typ = g.index_types[0]
sign = sign*typ.dim
else:
# g(i0, i1)*p(-i1)
if pos_map[dp0] == gposx:
p1 = dp1
else:
p1 = dp0
ind, p = free1[0]
free.append((ind, p1))
else:
dp0, dp1 = dum1[0]
if pos_map[dp0] == pos_map[dp1]:
# g(i, -i)
typ = g.index_types[0]
sign = sign*typ.dim
if dp0 < dp1:
# g(i, -i) = -D with antisymmetric metric
sign = -sign
else:
# g(i0, i1)*p(-i1)
if pos_map[dp0] == gposx:
p1 = dp1
if dp0 == 0:
sign = -sign
else:
p1 = dp0
ind, p = free1[0]
free.append((ind, p1))
dum = [x for x in dum if x not in dum1]
free = [x for x in free if x not in free1]
# shift positions:
shift = 0
shifts = [0]*len(args)
for i in range(len(args)):
if i in elim:
shift += 2
continue
shifts[i] = shift
free = [(ind, p - shifts[pos_map[p]]) for (ind, p) in free if pos_map[p] not in elim]
dum = [(p0 - shifts[pos_map[p0]], p1 - shifts[pos_map[p1]]) for i, (p0, p1) in enumerate(dum) if pos_map[p0] not in elim and pos_map[p1] not in elim]
res = sign*TensMul(*args).doit()
if not isinstance(res, TensExpr):
return res
im = _IndexStructure.from_components_free_dum(res.components, free, dum)
return res._set_new_index_structure(im)
def _set_new_index_structure(self, im, is_canon_bp=False):
indices = im.get_indices()
return self._set_indices(*indices, is_canon_bp=is_canon_bp)
def _set_indices(self, *indices, is_canon_bp=False, **kw_args):
if len(indices) != self.ext_rank:
raise ValueError("indices length mismatch")
args = list(self.args)[:]
pos = 0
for i, arg in enumerate(args):
if not isinstance(arg, TensExpr):
continue
assert isinstance(arg, Tensor)
ext_rank = arg.ext_rank
args[i] = arg._set_indices(*indices[pos:pos+ext_rank])
pos += ext_rank
return TensMul(*args, is_canon_bp=is_canon_bp).doit()
@staticmethod
def _index_replacement_for_contract_metric(args, free, dum):
for arg in args:
if not isinstance(arg, TensExpr):
continue
assert isinstance(arg, Tensor)
def substitute_indices(self, *index_tuples):
new_args = []
for arg in self.args:
if isinstance(arg, TensExpr):
arg = arg.substitute_indices(*index_tuples)
new_args.append(arg)
return TensMul(*new_args).doit()
def __call__(self, *indices):
deprecate_call()
free_args = self.free_args
indices = list(indices)
if [x.tensor_index_type for x in indices] != [x.tensor_index_type for x in free_args]:
raise ValueError('incompatible types')
if indices == free_args:
return self
t = self.substitute_indices(*list(zip(free_args, indices)))
# object is rebuilt in order to make sure that all contracted indices
# get recognized as dummies, but only if there are contracted indices.
if len({i if i.is_up else -i for i in indices}) != len(indices):
return t.func(*t.args)
return t
def _extract_data(self, replacement_dict):
args_indices, arrays = zip(*[arg._extract_data(replacement_dict) for arg in self.args if isinstance(arg, TensExpr)])
coeff = reduce(operator.mul, [a for a in self.args if not isinstance(a, TensExpr)], S.One)
indices, free, free_names, dummy_data = TensMul._indices_to_free_dum(args_indices)
dum = TensMul._dummy_data_to_dum(dummy_data)
ext_rank = self.ext_rank
free.sort(key=lambda x: x[1])
free_indices = [i[0] for i in free]
return free_indices, coeff*_TensorDataLazyEvaluator.data_contract_dum(arrays, dum, ext_rank)
@property
def data(self):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
dat = _tensor_data_substitution_dict[self.expand()]
return dat
@data.setter
def data(self, data):
deprecate_data()
raise ValueError("Not possible to set component data to a tensor expression")
@data.deleter
def data(self):
deprecate_data()
raise ValueError("Not possible to delete component data to a tensor expression")
def __iter__(self):
deprecate_data()
with ignore_warnings(SymPyDeprecationWarning):
if self.data is None:
raise ValueError("No iteration on abstract tensors")
return self.data.__iter__()
def _eval_rewrite_as_Indexed(self, *args):
from sympy.concrete.summations import Sum
index_symbols = [i.args[0] for i in self.get_indices()]
args = [arg.args[0] if isinstance(arg, Sum) else arg for arg in args]
expr = Mul.fromiter(args)
return self._check_add_Sum(expr, index_symbols)
def _eval_partial_derivative(self, s):
# Evaluation like Mul
terms = []
for i, arg in enumerate(self.args):
# checking whether some tensor instance is differentiated
# or some other thing is necessary, but ugly
if isinstance(arg, TensExpr):
d = arg._eval_partial_derivative(s)
else:
# do not call diff is s is no symbol
if s._diff_wrt:
d = arg._eval_derivative(s)
else:
d = S.Zero
if d:
terms.append(TensMul.fromiter(self.args[:i] + (d,) + self.args[i + 1:]))
return TensAdd.fromiter(terms)
class TensorElement(TensExpr):
"""
Tensor with evaluated components.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, TensorHead, TensorSymmetry
>>> from sympy import symbols
>>> L = TensorIndexType("L")
>>> i, j, k = symbols("i j k")
>>> A = TensorHead("A", [L, L], TensorSymmetry.fully_symmetric(2))
>>> A(i, j).get_free_indices()
[i, j]
If we want to set component ``i`` to a specific value, use the
``TensorElement`` class:
>>> from sympy.tensor.tensor import TensorElement
>>> te = TensorElement(A(i, j), {i: 2})
As index ``i`` has been accessed (``{i: 2}`` is the evaluation of its 3rd
element), the free indices will only contain ``j``:
>>> te.get_free_indices()
[j]
"""
def __new__(cls, expr, index_map):
if not isinstance(expr, Tensor):
# remap
if not isinstance(expr, TensExpr):
raise TypeError("%s is not a tensor expression" % expr)
return expr.func(*[TensorElement(arg, index_map) for arg in expr.args])
expr_free_indices = expr.get_free_indices()
name_translation = {i.args[0]: i for i in expr_free_indices}
index_map = {name_translation.get(index, index): value for index, value in index_map.items()}
index_map = {index: value for index, value in index_map.items() if index in expr_free_indices}
if len(index_map) == 0:
return expr
free_indices = [i for i in expr_free_indices if i not in index_map.keys()]
index_map = Dict(index_map)
obj = TensExpr.__new__(cls, expr, index_map)
obj._free_indices = free_indices
return obj
@property
def free(self):
return [(index, i) for i, index in enumerate(self.get_free_indices())]
@property
def dum(self):
# TODO: inherit dummies from expr
return []
@property
def expr(self):
return self._args[0]
@property
def index_map(self):
return self._args[1]
@property
def coeff(self):
return S.One
@property
def nocoeff(self):
return self
def get_free_indices(self):
return self._free_indices
def _replace_indices(self, repl: dict[TensorIndex, TensorIndex]) -> TensExpr:
# TODO: can be improved:
return self.xreplace(repl)
def get_indices(self):
return self.get_free_indices()
def _extract_data(self, replacement_dict):
ret_indices, array = self.expr._extract_data(replacement_dict)
index_map = self.index_map
slice_tuple = tuple(index_map.get(i, slice(None)) for i in ret_indices)
ret_indices = [i for i in ret_indices if i not in index_map]
array = array.__getitem__(slice_tuple)
return ret_indices, array
def canon_bp(p):
"""
Butler-Portugal canonicalization. See ``tensor_can.py`` from the
combinatorics module for the details.
"""
if isinstance(p, TensExpr):
return p.canon_bp()
return p
def tensor_mul(*a):
"""
product of tensors
"""
if not a:
return TensMul.from_data(S.One, [], [], [])
t = a[0]
for tx in a[1:]:
t = t*tx
return t
def riemann_cyclic_replace(t_r):
"""
replace Riemann tensor with an equivalent expression
``R(m,n,p,q) -> 2/3*R(m,n,p,q) - 1/3*R(m,q,n,p) + 1/3*R(m,p,n,q)``
"""
free = sorted(t_r.free, key=lambda x: x[1])
m, n, p, q = [x[0] for x in free]
t0 = t_r*Rational(2, 3)
t1 = -t_r.substitute_indices((m,m),(n,q),(p,n),(q,p))*Rational(1, 3)
t2 = t_r.substitute_indices((m,m),(n,p),(p,n),(q,q))*Rational(1, 3)
t3 = t0 + t1 + t2
return t3
def riemann_cyclic(t2):
"""
Replace each Riemann tensor with an equivalent expression
satisfying the cyclic identity.
This trick is discussed in the reference guide to Cadabra.
Examples
========
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, riemann_cyclic, TensorSymmetry
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
>>> i, j, k, l = tensor_indices('i,j,k,l', Lorentz)
>>> R = TensorHead('R', [Lorentz]*4, TensorSymmetry.riemann())
>>> t = R(i,j,k,l)*(R(-i,-j,-k,-l) - 2*R(-i,-k,-j,-l))
>>> riemann_cyclic(t)
0
"""
t2 = t2.expand()
if isinstance(t2, (TensMul, Tensor)):
args = [t2]
else:
args = t2.args
a1 = [x.split() for x in args]
a2 = [[riemann_cyclic_replace(tx) for tx in y] for y in a1]
a3 = [tensor_mul(*v) for v in a2]
t3 = TensAdd(*a3).doit()
if not t3:
return t3
else:
return canon_bp(t3)
def get_lines(ex, index_type):
"""
Returns ``(lines, traces, rest)`` for an index type,
where ``lines`` is the list of list of positions of a matrix line,
``traces`` is the list of list of traced matrix lines,
``rest`` is the rest of the elements of the tensor.
"""
def _join_lines(a):
i = 0
while i < len(a):
x = a[i]
xend = x[-1]
xstart = x[0]
hit = True
while hit:
hit = False
for j in range(i + 1, len(a)):
if j >= len(a):
break
if a[j][0] == xend:
hit = True
x.extend(a[j][1:])
xend = x[-1]
a.pop(j)
continue
if a[j][0] == xstart:
hit = True
a[i] = reversed(a[j][1:]) + x
x = a[i]
xstart = a[i][0]
a.pop(j)
continue
if a[j][-1] == xend:
hit = True
x.extend(reversed(a[j][:-1]))
xend = x[-1]
a.pop(j)
continue
if a[j][-1] == xstart:
hit = True
a[i] = a[j][:-1] + x
x = a[i]
xstart = x[0]
a.pop(j)
continue
i += 1
return a
arguments = ex.args
dt = {}
for c in ex.args:
if not isinstance(c, TensExpr):
continue
if c in dt:
continue
index_types = c.index_types
a = []
for i in range(len(index_types)):
if index_types[i] is index_type:
a.append(i)
if len(a) > 2:
raise ValueError('at most two indices of type %s allowed' % index_type)
if len(a) == 2:
dt[c] = a
#dum = ex.dum
lines = []
traces = []
traces1 = []
#indices_to_args_pos = ex._get_indices_to_args_pos()
# TODO: add a dum_to_components_map ?
for p0, p1, c0, c1 in ex.dum_in_args:
if arguments[c0] not in dt:
continue
if c0 == c1:
traces.append([c0])
continue
ta0 = dt[arguments[c0]]
ta1 = dt[arguments[c1]]
if p0 not in ta0:
continue
if ta0.index(p0) == ta1.index(p1):
# case gamma(i,s0,-s1) in c0, gamma(j,-s0,s2) in c1;
# to deal with this case one could add to the position
# a flag for transposition;
# one could write [(c0, False), (c1, True)]
raise NotImplementedError
# if p0 == ta0[1] then G in pos c0 is mult on the right by G in c1
# if p0 == ta0[0] then G in pos c1 is mult on the right by G in c0
ta0 = dt[arguments[c0]]
b0, b1 = (c0, c1) if p0 == ta0[1] else (c1, c0)
lines1 = lines[:]
for line in lines:
if line[-1] == b0:
if line[0] == b1:
n = line.index(min(line))
traces1.append(line)
traces.append(line[n:] + line[:n])
else:
line.append(b1)
break
elif line[0] == b1:
line.insert(0, b0)
break
else:
lines1.append([b0, b1])
lines = [x for x in lines1 if x not in traces1]
lines = _join_lines(lines)
rest = []
for line in lines:
for y in line:
rest.append(y)
for line in traces:
for y in line:
rest.append(y)
rest = [x for x in range(len(arguments)) if x not in rest]
return lines, traces, rest
def get_free_indices(t):
if not isinstance(t, TensExpr):
return ()
return t.get_free_indices()
def get_indices(t):
if not isinstance(t, TensExpr):
return ()
return t.get_indices()
def get_index_structure(t):
if isinstance(t, TensExpr):
return t._index_structure
return _IndexStructure([], [], [], [])
def get_coeff(t):
if isinstance(t, Tensor):
return S.One
if isinstance(t, TensMul):
return t.coeff
if isinstance(t, TensExpr):
raise ValueError("no coefficient associated to this tensor expression")
return t
def contract_metric(t, g):
if isinstance(t, TensExpr):
return t.contract_metric(g)
return t
def perm2tensor(t, g, is_canon_bp=False):
"""
Returns the tensor corresponding to the permutation ``g``
For further details, see the method in ``TIDS`` with the same name.
"""
if not isinstance(t, TensExpr):
return t
elif isinstance(t, (Tensor, TensMul)):
nim = get_index_structure(t).perm2tensor(g, is_canon_bp=is_canon_bp)
res = t._set_new_index_structure(nim, is_canon_bp=is_canon_bp)
if g[-1] != len(g) - 1:
return -res
return res
raise NotImplementedError()
def substitute_indices(t, *index_tuples):
if not isinstance(t, TensExpr):
return t
return t.substitute_indices(*index_tuples)
def _expand(expr, **kwargs):
if isinstance(expr, TensExpr):
return expr._expand(**kwargs)
else:
return expr.expand(**kwargs)
|
75c5fd90d28b1e2fd75e414704f4be7dc33e3da7982a45fcd239b3c42d2c8a24 | """Module with functions operating on IndexedBase, Indexed and Idx objects
- Check shape conformance
- Determine indices in resulting expression
etc.
Methods in this module could be implemented by calling methods on Expr
objects instead. When things stabilize this could be a useful
refactoring.
"""
from functools import reduce
from sympy.core.function import Function
from sympy.functions import exp, Piecewise
from sympy.tensor.indexed import Idx, Indexed
from sympy.utilities import sift
from collections import OrderedDict
class IndexConformanceException(Exception):
pass
def _unique_and_repeated(inds):
"""
Returns the unique and repeated indices. Also note, from the examples given below
that the order of indices is maintained as given in the input.
Examples
========
>>> from sympy.tensor.index_methods import _unique_and_repeated
>>> _unique_and_repeated([2, 3, 1, 3, 0, 4, 0])
([2, 1, 4], [3, 0])
"""
uniq = OrderedDict()
for i in inds:
if i in uniq:
uniq[i] = 0
else:
uniq[i] = 1
return sift(uniq, lambda x: uniq[x], binary=True)
def _remove_repeated(inds):
"""
Removes repeated objects from sequences
Returns a set of the unique objects and a tuple of all that have been
removed.
Examples
========
>>> from sympy.tensor.index_methods import _remove_repeated
>>> l1 = [1, 2, 3, 2]
>>> _remove_repeated(l1)
({1, 3}, (2,))
"""
u, r = _unique_and_repeated(inds)
return set(u), tuple(r)
def _get_indices_Mul(expr, return_dummies=False):
"""Determine the outer indices of a Mul object.
Examples
========
>>> from sympy.tensor.index_methods import _get_indices_Mul
>>> from sympy.tensor.indexed import IndexedBase, Idx
>>> i, j, k = map(Idx, ['i', 'j', 'k'])
>>> x = IndexedBase('x')
>>> y = IndexedBase('y')
>>> _get_indices_Mul(x[i, k]*y[j, k])
({i, j}, {})
>>> _get_indices_Mul(x[i, k]*y[j, k], return_dummies=True)
({i, j}, {}, (k,))
"""
inds = list(map(get_indices, expr.args))
inds, syms = list(zip(*inds))
inds = list(map(list, inds))
inds = list(reduce(lambda x, y: x + y, inds))
inds, dummies = _remove_repeated(inds)
symmetry = {}
for s in syms:
for pair in s:
if pair in symmetry:
symmetry[pair] *= s[pair]
else:
symmetry[pair] = s[pair]
if return_dummies:
return inds, symmetry, dummies
else:
return inds, symmetry
def _get_indices_Pow(expr):
"""Determine outer indices of a power or an exponential.
A power is considered a universal function, so that the indices of a Pow is
just the collection of indices present in the expression. This may be
viewed as a bit inconsistent in the special case:
x[i]**2 = x[i]*x[i] (1)
The above expression could have been interpreted as the contraction of x[i]
with itself, but we choose instead to interpret it as a function
lambda y: y**2
applied to each element of x (a universal function in numpy terms). In
order to allow an interpretation of (1) as a contraction, we need
contravariant and covariant Idx subclasses. (FIXME: this is not yet
implemented)
Expressions in the base or exponent are subject to contraction as usual,
but an index that is present in the exponent, will not be considered
contractable with its own base. Note however, that indices in the same
exponent can be contracted with each other.
Examples
========
>>> from sympy.tensor.index_methods import _get_indices_Pow
>>> from sympy import Pow, exp, IndexedBase, Idx
>>> A = IndexedBase('A')
>>> x = IndexedBase('x')
>>> i, j, k = map(Idx, ['i', 'j', 'k'])
>>> _get_indices_Pow(exp(A[i, j]*x[j]))
({i}, {})
>>> _get_indices_Pow(Pow(x[i], x[i]))
({i}, {})
>>> _get_indices_Pow(Pow(A[i, j]*x[j], x[i]))
({i}, {})
"""
base, exp = expr.as_base_exp()
binds, bsyms = get_indices(base)
einds, esyms = get_indices(exp)
inds = binds | einds
# FIXME: symmetries from power needs to check special cases, else nothing
symmetries = {}
return inds, symmetries
def _get_indices_Add(expr):
"""Determine outer indices of an Add object.
In a sum, each term must have the same set of outer indices. A valid
expression could be
x(i)*y(j) - x(j)*y(i)
But we do not allow expressions like:
x(i)*y(j) - z(j)*z(j)
FIXME: Add support for Numpy broadcasting
Examples
========
>>> from sympy.tensor.index_methods import _get_indices_Add
>>> from sympy.tensor.indexed import IndexedBase, Idx
>>> i, j, k = map(Idx, ['i', 'j', 'k'])
>>> x = IndexedBase('x')
>>> y = IndexedBase('y')
>>> _get_indices_Add(x[i] + x[k]*y[i, k])
({i}, {})
"""
inds = list(map(get_indices, expr.args))
inds, syms = list(zip(*inds))
# allow broadcast of scalars
non_scalars = [x for x in inds if x != set()]
if not non_scalars:
return set(), {}
if not all(x == non_scalars[0] for x in non_scalars[1:]):
raise IndexConformanceException("Indices are not consistent: %s" % expr)
if not reduce(lambda x, y: x != y or y, syms):
symmetries = syms[0]
else:
# FIXME: search for symmetries
symmetries = {}
return non_scalars[0], symmetries
def get_indices(expr):
"""Determine the outer indices of expression ``expr``
By *outer* we mean indices that are not summation indices. Returns a set
and a dict. The set contains outer indices and the dict contains
information about index symmetries.
Examples
========
>>> from sympy.tensor.index_methods import get_indices
>>> from sympy import symbols
>>> from sympy.tensor import IndexedBase
>>> x, y, A = map(IndexedBase, ['x', 'y', 'A'])
>>> i, j, a, z = symbols('i j a z', integer=True)
The indices of the total expression is determined, Repeated indices imply a
summation, for instance the trace of a matrix A:
>>> get_indices(A[i, i])
(set(), {})
In the case of many terms, the terms are required to have identical
outer indices. Else an IndexConformanceException is raised.
>>> get_indices(x[i] + A[i, j]*y[j])
({i}, {})
:Exceptions:
An IndexConformanceException means that the terms ar not compatible, e.g.
>>> get_indices(x[i] + y[j]) #doctest: +SKIP
(...)
IndexConformanceException: Indices are not consistent: x(i) + y(j)
.. warning::
The concept of *outer* indices applies recursively, starting on the deepest
level. This implies that dummies inside parenthesis are assumed to be
summed first, so that the following expression is handled gracefully:
>>> get_indices((x[i] + A[i, j]*y[j])*x[j])
({i, j}, {})
This is correct and may appear convenient, but you need to be careful
with this as SymPy will happily .expand() the product, if requested. The
resulting expression would mix the outer ``j`` with the dummies inside
the parenthesis, which makes it a different expression. To be on the
safe side, it is best to avoid such ambiguities by using unique indices
for all contractions that should be held separate.
"""
# We call ourself recursively to determine indices of sub expressions.
# break recursion
if isinstance(expr, Indexed):
c = expr.indices
inds, dummies = _remove_repeated(c)
return inds, {}
elif expr is None:
return set(), {}
elif isinstance(expr, Idx):
return {expr}, {}
elif expr.is_Atom:
return set(), {}
# recurse via specialized functions
else:
if expr.is_Mul:
return _get_indices_Mul(expr)
elif expr.is_Add:
return _get_indices_Add(expr)
elif expr.is_Pow or isinstance(expr, exp):
return _get_indices_Pow(expr)
elif isinstance(expr, Piecewise):
# FIXME: No support for Piecewise yet
return set(), {}
elif isinstance(expr, Function):
# Support ufunc like behaviour by returning indices from arguments.
# Functions do not interpret repeated indices across arguments
# as summation
ind0 = set()
for arg in expr.args:
ind, sym = get_indices(arg)
ind0 |= ind
return ind0, sym
# this test is expensive, so it should be at the end
elif not expr.has(Indexed):
return set(), {}
raise NotImplementedError(
"FIXME: No specialized handling of type %s" % type(expr))
def get_contraction_structure(expr):
"""Determine dummy indices of ``expr`` and describe its structure
By *dummy* we mean indices that are summation indices.
The structure of the expression is determined and described as follows:
1) A conforming summation of Indexed objects is described with a dict where
the keys are summation indices and the corresponding values are sets
containing all terms for which the summation applies. All Add objects
in the SymPy expression tree are described like this.
2) For all nodes in the SymPy expression tree that are *not* of type Add, the
following applies:
If a node discovers contractions in one of its arguments, the node
itself will be stored as a key in the dict. For that key, the
corresponding value is a list of dicts, each of which is the result of a
recursive call to get_contraction_structure(). The list contains only
dicts for the non-trivial deeper contractions, omitting dicts with None
as the one and only key.
.. Note:: The presence of expressions among the dictionary keys indicates
multiple levels of index contractions. A nested dict displays nested
contractions and may itself contain dicts from a deeper level. In
practical calculations the summation in the deepest nested level must be
calculated first so that the outer expression can access the resulting
indexed object.
Examples
========
>>> from sympy.tensor.index_methods import get_contraction_structure
>>> from sympy import default_sort_key
>>> from sympy.tensor import IndexedBase, Idx
>>> x, y, A = map(IndexedBase, ['x', 'y', 'A'])
>>> i, j, k, l = map(Idx, ['i', 'j', 'k', 'l'])
>>> get_contraction_structure(x[i]*y[i] + A[j, j])
{(i,): {x[i]*y[i]}, (j,): {A[j, j]}}
>>> get_contraction_structure(x[i]*y[j])
{None: {x[i]*y[j]}}
A multiplication of contracted factors results in nested dicts representing
the internal contractions.
>>> d = get_contraction_structure(x[i, i]*y[j, j])
>>> sorted(d.keys(), key=default_sort_key)
[None, x[i, i]*y[j, j]]
In this case, the product has no contractions:
>>> d[None]
{x[i, i]*y[j, j]}
Factors are contracted "first":
>>> sorted(d[x[i, i]*y[j, j]], key=default_sort_key)
[{(i,): {x[i, i]}}, {(j,): {y[j, j]}}]
A parenthesized Add object is also returned as a nested dictionary. The
term containing the parenthesis is a Mul with a contraction among the
arguments, so it will be found as a key in the result. It stores the
dictionary resulting from a recursive call on the Add expression.
>>> d = get_contraction_structure(x[i]*(y[i] + A[i, j]*x[j]))
>>> sorted(d.keys(), key=default_sort_key)
[(A[i, j]*x[j] + y[i])*x[i], (i,)]
>>> d[(i,)]
{(A[i, j]*x[j] + y[i])*x[i]}
>>> d[x[i]*(A[i, j]*x[j] + y[i])]
[{None: {y[i]}, (j,): {A[i, j]*x[j]}}]
Powers with contractions in either base or exponent will also be found as
keys in the dictionary, mapping to a list of results from recursive calls:
>>> d = get_contraction_structure(A[j, j]**A[i, i])
>>> d[None]
{A[j, j]**A[i, i]}
>>> nested_contractions = d[A[j, j]**A[i, i]]
>>> nested_contractions[0]
{(j,): {A[j, j]}}
>>> nested_contractions[1]
{(i,): {A[i, i]}}
The description of the contraction structure may appear complicated when
represented with a string in the above examples, but it is easy to iterate
over:
>>> from sympy import Expr
>>> for key in d:
... if isinstance(key, Expr):
... continue
... for term in d[key]:
... if term in d:
... # treat deepest contraction first
... pass
... # treat outermost contactions here
"""
# We call ourself recursively to inspect sub expressions.
if isinstance(expr, Indexed):
junk, key = _remove_repeated(expr.indices)
return {key or None: {expr}}
elif expr.is_Atom:
return {None: {expr}}
elif expr.is_Mul:
junk, junk, key = _get_indices_Mul(expr, return_dummies=True)
result = {key or None: {expr}}
# recurse on every factor
nested = []
for fac in expr.args:
facd = get_contraction_structure(fac)
if not (None in facd and len(facd) == 1):
nested.append(facd)
if nested:
result[expr] = nested
return result
elif expr.is_Pow or isinstance(expr, exp):
# recurse in base and exp separately. If either has internal
# contractions we must include ourselves as a key in the returned dict
b, e = expr.as_base_exp()
dbase = get_contraction_structure(b)
dexp = get_contraction_structure(e)
dicts = []
for d in dbase, dexp:
if not (None in d and len(d) == 1):
dicts.append(d)
result = {None: {expr}}
if dicts:
result[expr] = dicts
return result
elif expr.is_Add:
# Note: we just collect all terms with identical summation indices, We
# do nothing to identify equivalent terms here, as this would require
# substitutions or pattern matching in expressions of unknown
# complexity.
result = {}
for term in expr.args:
# recurse on every term
d = get_contraction_structure(term)
for key in d:
if key in result:
result[key] |= d[key]
else:
result[key] = d[key]
return result
elif isinstance(expr, Piecewise):
# FIXME: No support for Piecewise yet
return {None: expr}
elif isinstance(expr, Function):
# Collect non-trivial contraction structures in each argument
# We do not report repeated indices in separate arguments as a
# contraction
deeplist = []
for arg in expr.args:
deep = get_contraction_structure(arg)
if not (None in deep and len(deep) == 1):
deeplist.append(deep)
d = {None: {expr}}
if deeplist:
d[expr] = deeplist
return d
# this test is expensive, so it should be at the end
elif not expr.has(Indexed):
return {None: {expr}}
raise NotImplementedError(
"FIXME: No specialized handling of type %s" % type(expr))
|
23858e9e6bb556d95a0a79f6a03f51dbec5c92460b4593cd1445ad08e4c061f3 | from __future__ import annotations
from typing import Any
import inspect
from .dispatcher import Dispatcher, MethodDispatcher, ambiguity_warn
# XXX: This parameter to dispatch isn't documented and isn't used anywhere in
# sympy. Maybe it should just be removed.
global_namespace: dict[str, Any] = {}
def dispatch(*types, namespace=global_namespace, on_ambiguity=ambiguity_warn):
""" Dispatch function on the types of the inputs
Supports dispatch on all non-keyword arguments.
Collects implementations based on the function name. Ignores namespaces.
If ambiguous type signatures occur a warning is raised when the function is
defined suggesting the additional method to break the ambiguity.
Examples
--------
>>> from sympy.multipledispatch import dispatch
>>> @dispatch(int)
... def f(x):
... return x + 1
>>> @dispatch(float)
... def f(x): # noqa: F811
... return x - 1
>>> f(3)
4
>>> f(3.0)
2.0
Specify an isolated namespace with the namespace keyword argument
>>> my_namespace = dict()
>>> @dispatch(int, namespace=my_namespace)
... def foo(x):
... return x + 1
Dispatch on instance methods within classes
>>> class MyClass(object):
... @dispatch(list)
... def __init__(self, data):
... self.data = data
... @dispatch(int)
... def __init__(self, datum): # noqa: F811
... self.data = [datum]
"""
types = tuple(types)
def _(func):
name = func.__name__
if ismethod(func):
dispatcher = inspect.currentframe().f_back.f_locals.get(
name,
MethodDispatcher(name))
else:
if name not in namespace:
namespace[name] = Dispatcher(name)
dispatcher = namespace[name]
dispatcher.add(types, func, on_ambiguity=on_ambiguity)
return dispatcher
return _
def ismethod(func):
""" Is func a method?
Note that this has to work as the method is defined but before the class is
defined. At this stage methods look like functions.
"""
signature = inspect.signature(func)
return signature.parameters.get('self', None) is not None
|
036238ba9b78a8da259571a9c33aea83b334a0a1c9859c750543080678d1228c | from __future__ import annotations
from warnings import warn
import inspect
from .conflict import ordering, ambiguities, super_signature, AmbiguityWarning
from .utils import expand_tuples
import itertools as itl
class MDNotImplementedError(NotImplementedError):
""" A NotImplementedError for multiple dispatch """
### Functions for on_ambiguity
def ambiguity_warn(dispatcher, ambiguities):
""" Raise warning when ambiguity is detected
Parameters
----------
dispatcher : Dispatcher
The dispatcher on which the ambiguity was detected
ambiguities : set
Set of type signature pairs that are ambiguous within this dispatcher
See Also:
Dispatcher.add
warning_text
"""
warn(warning_text(dispatcher.name, ambiguities), AmbiguityWarning)
class RaiseNotImplementedError:
"""Raise ``NotImplementedError`` when called."""
def __init__(self, dispatcher):
self.dispatcher = dispatcher
def __call__(self, *args, **kwargs):
types = tuple(type(a) for a in args)
raise NotImplementedError(
"Ambiguous signature for %s: <%s>" % (
self.dispatcher.name, str_signature(types)
))
def ambiguity_register_error_ignore_dup(dispatcher, ambiguities):
"""
If super signature for ambiguous types is duplicate types, ignore it.
Else, register instance of ``RaiseNotImplementedError`` for ambiguous types.
Parameters
----------
dispatcher : Dispatcher
The dispatcher on which the ambiguity was detected
ambiguities : set
Set of type signature pairs that are ambiguous within this dispatcher
See Also:
Dispatcher.add
ambiguity_warn
"""
for amb in ambiguities:
signature = tuple(super_signature(amb))
if len(set(signature)) == 1:
continue
dispatcher.add(
signature, RaiseNotImplementedError(dispatcher),
on_ambiguity=ambiguity_register_error_ignore_dup
)
###
_unresolved_dispatchers: set[Dispatcher] = set()
_resolve = [True]
def halt_ordering():
_resolve[0] = False
def restart_ordering(on_ambiguity=ambiguity_warn):
_resolve[0] = True
while _unresolved_dispatchers:
dispatcher = _unresolved_dispatchers.pop()
dispatcher.reorder(on_ambiguity=on_ambiguity)
class Dispatcher:
""" Dispatch methods based on type signature
Use ``dispatch`` to add implementations
Examples
--------
>>> from sympy.multipledispatch import dispatch
>>> @dispatch(int)
... def f(x):
... return x + 1
>>> @dispatch(float)
... def f(x): # noqa: F811
... return x - 1
>>> f(3)
4
>>> f(3.0)
2.0
"""
__slots__ = '__name__', 'name', 'funcs', 'ordering', '_cache', 'doc'
def __init__(self, name, doc=None):
self.name = self.__name__ = name
self.funcs = {}
self._cache = {}
self.ordering = []
self.doc = doc
def register(self, *types, **kwargs):
""" Register dispatcher with new implementation
>>> from sympy.multipledispatch.dispatcher import Dispatcher
>>> f = Dispatcher('f')
>>> @f.register(int)
... def inc(x):
... return x + 1
>>> @f.register(float)
... def dec(x):
... return x - 1
>>> @f.register(list)
... @f.register(tuple)
... def reverse(x):
... return x[::-1]
>>> f(1)
2
>>> f(1.0)
0.0
>>> f([1, 2, 3])
[3, 2, 1]
"""
def _(func):
self.add(types, func, **kwargs)
return func
return _
@classmethod
def get_func_params(cls, func):
if hasattr(inspect, "signature"):
sig = inspect.signature(func)
return sig.parameters.values()
@classmethod
def get_func_annotations(cls, func):
""" Get annotations of function positional parameters
"""
params = cls.get_func_params(func)
if params:
Parameter = inspect.Parameter
params = (param for param in params
if param.kind in
(Parameter.POSITIONAL_ONLY,
Parameter.POSITIONAL_OR_KEYWORD))
annotations = tuple(
param.annotation
for param in params)
if not any(ann is Parameter.empty for ann in annotations):
return annotations
def add(self, signature, func, on_ambiguity=ambiguity_warn):
""" Add new types/method pair to dispatcher
>>> from sympy.multipledispatch import Dispatcher
>>> D = Dispatcher('add')
>>> D.add((int, int), lambda x, y: x + y)
>>> D.add((float, float), lambda x, y: x + y)
>>> D(1, 2)
3
>>> D(1, 2.0)
Traceback (most recent call last):
...
NotImplementedError: Could not find signature for add: <int, float>
When ``add`` detects a warning it calls the ``on_ambiguity`` callback
with a dispatcher/itself, and a set of ambiguous type signature pairs
as inputs. See ``ambiguity_warn`` for an example.
"""
# Handle annotations
if not signature:
annotations = self.get_func_annotations(func)
if annotations:
signature = annotations
# Handle union types
if any(isinstance(typ, tuple) for typ in signature):
for typs in expand_tuples(signature):
self.add(typs, func, on_ambiguity)
return
for typ in signature:
if not isinstance(typ, type):
str_sig = ', '.join(c.__name__ if isinstance(c, type)
else str(c) for c in signature)
raise TypeError("Tried to dispatch on non-type: %s\n"
"In signature: <%s>\n"
"In function: %s" %
(typ, str_sig, self.name))
self.funcs[signature] = func
self.reorder(on_ambiguity=on_ambiguity)
self._cache.clear()
def reorder(self, on_ambiguity=ambiguity_warn):
if _resolve[0]:
self.ordering = ordering(self.funcs)
amb = ambiguities(self.funcs)
if amb:
on_ambiguity(self, amb)
else:
_unresolved_dispatchers.add(self)
def __call__(self, *args, **kwargs):
types = tuple([type(arg) for arg in args])
try:
func = self._cache[types]
except KeyError:
func = self.dispatch(*types)
if not func:
raise NotImplementedError(
'Could not find signature for %s: <%s>' %
(self.name, str_signature(types)))
self._cache[types] = func
try:
return func(*args, **kwargs)
except MDNotImplementedError:
funcs = self.dispatch_iter(*types)
next(funcs) # burn first
for func in funcs:
try:
return func(*args, **kwargs)
except MDNotImplementedError:
pass
raise NotImplementedError("Matching functions for "
"%s: <%s> found, but none completed successfully"
% (self.name, str_signature(types)))
def __str__(self):
return "<dispatched %s>" % self.name
__repr__ = __str__
def dispatch(self, *types):
""" Deterimine appropriate implementation for this type signature
This method is internal. Users should call this object as a function.
Implementation resolution occurs within the ``__call__`` method.
>>> from sympy.multipledispatch import dispatch
>>> @dispatch(int)
... def inc(x):
... return x + 1
>>> implementation = inc.dispatch(int)
>>> implementation(3)
4
>>> print(inc.dispatch(float))
None
See Also:
``sympy.multipledispatch.conflict`` - module to determine resolution order
"""
if types in self.funcs:
return self.funcs[types]
try:
return next(self.dispatch_iter(*types))
except StopIteration:
return None
def dispatch_iter(self, *types):
n = len(types)
for signature in self.ordering:
if len(signature) == n and all(map(issubclass, types, signature)):
result = self.funcs[signature]
yield result
def resolve(self, types):
""" Deterimine appropriate implementation for this type signature
.. deprecated:: 0.4.4
Use ``dispatch(*types)`` instead
"""
warn("resolve() is deprecated, use dispatch(*types)",
DeprecationWarning)
return self.dispatch(*types)
def __getstate__(self):
return {'name': self.name,
'funcs': self.funcs}
def __setstate__(self, d):
self.name = d['name']
self.funcs = d['funcs']
self.ordering = ordering(self.funcs)
self._cache = {}
@property
def __doc__(self):
docs = ["Multiply dispatched method: %s" % self.name]
if self.doc:
docs.append(self.doc)
other = []
for sig in self.ordering[::-1]:
func = self.funcs[sig]
if func.__doc__:
s = 'Inputs: <%s>\n' % str_signature(sig)
s += '-' * len(s) + '\n'
s += func.__doc__.strip()
docs.append(s)
else:
other.append(str_signature(sig))
if other:
docs.append('Other signatures:\n ' + '\n '.join(other))
return '\n\n'.join(docs)
def _help(self, *args):
return self.dispatch(*map(type, args)).__doc__
def help(self, *args, **kwargs):
""" Print docstring for the function corresponding to inputs """
print(self._help(*args))
def _source(self, *args):
func = self.dispatch(*map(type, args))
if not func:
raise TypeError("No function found")
return source(func)
def source(self, *args, **kwargs):
""" Print source code for the function corresponding to inputs """
print(self._source(*args))
def source(func):
s = 'File: %s\n\n' % inspect.getsourcefile(func)
s = s + inspect.getsource(func)
return s
class MethodDispatcher(Dispatcher):
""" Dispatch methods based on type signature
See Also:
Dispatcher
"""
@classmethod
def get_func_params(cls, func):
if hasattr(inspect, "signature"):
sig = inspect.signature(func)
return itl.islice(sig.parameters.values(), 1, None)
def __get__(self, instance, owner):
self.obj = instance
self.cls = owner
return self
def __call__(self, *args, **kwargs):
types = tuple([type(arg) for arg in args])
func = self.dispatch(*types)
if not func:
raise NotImplementedError('Could not find signature for %s: <%s>' %
(self.name, str_signature(types)))
return func(self.obj, *args, **kwargs)
def str_signature(sig):
""" String representation of type signature
>>> from sympy.multipledispatch.dispatcher import str_signature
>>> str_signature((int, float))
'int, float'
"""
return ', '.join(cls.__name__ for cls in sig)
def warning_text(name, amb):
""" The text for ambiguity warnings """
text = "\nAmbiguities exist in dispatched function %s\n\n" % (name)
text += "The following signatures may result in ambiguous behavior:\n"
for pair in amb:
text += "\t" + \
', '.join('[' + str_signature(s) + ']' for s in pair) + "\n"
text += "\n\nConsider making the following additions:\n\n"
text += '\n\n'.join(['@dispatch(' + str_signature(super_signature(s))
+ ')\ndef %s(...)' % name for s in amb])
return text
|
414ae0699de6b41af9456a2fa20839d338d84176ff025d6ae9779f2300c1ab42 | """
Boolean algebra module for SymPy
"""
from collections import defaultdict
from itertools import chain, combinations, product, permutations
from sympy.core.add import Add
from sympy.core.basic import Basic
from sympy.core.cache import cacheit
from sympy.core.containers import Tuple
from sympy.core.decorators import sympify_method_args, sympify_return
from sympy.core.function import Application, Derivative
from sympy.core.kind import BooleanKind, NumberKind
from sympy.core.numbers import Number
from sympy.core.operations import LatticeOp
from sympy.core.singleton import Singleton, S
from sympy.core.sorting import ordered
from sympy.core.sympify import _sympy_converter, _sympify, sympify
from sympy.utilities.iterables import sift, ibin
from sympy.utilities.misc import filldedent
def as_Boolean(e):
"""Like ``bool``, return the Boolean value of an expression, e,
which can be any instance of :py:class:`~.Boolean` or ``bool``.
Examples
========
>>> from sympy import true, false, nan
>>> from sympy.logic.boolalg import as_Boolean
>>> from sympy.abc import x
>>> as_Boolean(0) is false
True
>>> as_Boolean(1) is true
True
>>> as_Boolean(x)
x
>>> as_Boolean(2)
Traceback (most recent call last):
...
TypeError: expecting bool or Boolean, not `2`.
>>> as_Boolean(nan)
Traceback (most recent call last):
...
TypeError: expecting bool or Boolean, not `nan`.
"""
from sympy.core.symbol import Symbol
if e == True:
return true
if e == False:
return false
if isinstance(e, Symbol):
z = e.is_zero
if z is None:
return e
return false if z else true
if isinstance(e, Boolean):
return e
raise TypeError('expecting bool or Boolean, not `%s`.' % e)
@sympify_method_args
class Boolean(Basic):
"""A Boolean object is an object for which logic operations make sense."""
__slots__ = ()
kind = BooleanKind
@sympify_return([('other', 'Boolean')], NotImplemented)
def __and__(self, other):
return And(self, other)
__rand__ = __and__
@sympify_return([('other', 'Boolean')], NotImplemented)
def __or__(self, other):
return Or(self, other)
__ror__ = __or__
def __invert__(self):
"""Overloading for ~"""
return Not(self)
@sympify_return([('other', 'Boolean')], NotImplemented)
def __rshift__(self, other):
return Implies(self, other)
@sympify_return([('other', 'Boolean')], NotImplemented)
def __lshift__(self, other):
return Implies(other, self)
__rrshift__ = __lshift__
__rlshift__ = __rshift__
@sympify_return([('other', 'Boolean')], NotImplemented)
def __xor__(self, other):
return Xor(self, other)
__rxor__ = __xor__
def equals(self, other):
"""
Returns ``True`` if the given formulas have the same truth table.
For two formulas to be equal they must have the same literals.
Examples
========
>>> from sympy.abc import A, B, C
>>> from sympy import And, Or, Not
>>> (A >> B).equals(~B >> ~A)
True
>>> Not(And(A, B, C)).equals(And(Not(A), Not(B), Not(C)))
False
>>> Not(And(A, Not(A))).equals(Or(B, Not(B)))
False
"""
from sympy.logic.inference import satisfiable
from sympy.core.relational import Relational
if self.has(Relational) or other.has(Relational):
raise NotImplementedError('handling of relationals')
return self.atoms() == other.atoms() and \
not satisfiable(Not(Equivalent(self, other)))
def to_nnf(self, simplify=True):
# override where necessary
return self
def as_set(self):
"""
Rewrites Boolean expression in terms of real sets.
Examples
========
>>> from sympy import Symbol, Eq, Or, And
>>> x = Symbol('x', real=True)
>>> Eq(x, 0).as_set()
{0}
>>> (x > 0).as_set()
Interval.open(0, oo)
>>> And(-2 < x, x < 2).as_set()
Interval.open(-2, 2)
>>> Or(x < -2, 2 < x).as_set()
Union(Interval.open(-oo, -2), Interval.open(2, oo))
"""
from sympy.calculus.util import periodicity
from sympy.core.relational import Relational
free = self.free_symbols
if len(free) == 1:
x = free.pop()
if x.kind is NumberKind:
reps = {}
for r in self.atoms(Relational):
if periodicity(r, x) not in (0, None):
s = r._eval_as_set()
if s in (S.EmptySet, S.UniversalSet, S.Reals):
reps[r] = s.as_relational(x)
continue
raise NotImplementedError(filldedent('''
as_set is not implemented for relationals
with periodic solutions
'''))
new = self.subs(reps)
if new.func != self.func:
return new.as_set() # restart with new obj
else:
return new._eval_as_set()
return self._eval_as_set()
else:
raise NotImplementedError("Sorry, as_set has not yet been"
" implemented for multivariate"
" expressions")
@property
def binary_symbols(self):
from sympy.core.relational import Eq, Ne
return set().union(*[i.binary_symbols for i in self.args
if i.is_Boolean or i.is_Symbol
or isinstance(i, (Eq, Ne))])
def _eval_refine(self, assumptions):
from sympy.assumptions import ask
ret = ask(self, assumptions)
if ret is True:
return true
elif ret is False:
return false
return None
class BooleanAtom(Boolean):
"""
Base class of :py:class:`~.BooleanTrue` and :py:class:`~.BooleanFalse`.
"""
is_Boolean = True
is_Atom = True
_op_priority = 11 # higher than Expr
def simplify(self, *a, **kw):
return self
def expand(self, *a, **kw):
return self
@property
def canonical(self):
return self
def _noop(self, other=None):
raise TypeError('BooleanAtom not allowed in this context.')
__add__ = _noop
__radd__ = _noop
__sub__ = _noop
__rsub__ = _noop
__mul__ = _noop
__rmul__ = _noop
__pow__ = _noop
__rpow__ = _noop
__truediv__ = _noop
__rtruediv__ = _noop
__mod__ = _noop
__rmod__ = _noop
_eval_power = _noop
# /// drop when Py2 is no longer supported
def __lt__(self, other):
raise TypeError(filldedent('''
A Boolean argument can only be used in
Eq and Ne; all other relationals expect
real expressions.
'''))
__le__ = __lt__
__gt__ = __lt__
__ge__ = __lt__
# \\\
def _eval_simplify(self, **kwargs):
return self
class BooleanTrue(BooleanAtom, metaclass=Singleton):
"""
SymPy version of ``True``, a singleton that can be accessed via ``S.true``.
This is the SymPy version of ``True``, for use in the logic module. The
primary advantage of using ``true`` instead of ``True`` is that shorthand Boolean
operations like ``~`` and ``>>`` will work as expected on this class, whereas with
True they act bitwise on 1. Functions in the logic module will return this
class when they evaluate to true.
Notes
=====
There is liable to be some confusion as to when ``True`` should
be used and when ``S.true`` should be used in various contexts
throughout SymPy. An important thing to remember is that
``sympify(True)`` returns ``S.true``. This means that for the most
part, you can just use ``True`` and it will automatically be converted
to ``S.true`` when necessary, similar to how you can generally use 1
instead of ``S.One``.
The rule of thumb is:
"If the boolean in question can be replaced by an arbitrary symbolic
``Boolean``, like ``Or(x, y)`` or ``x > 1``, use ``S.true``.
Otherwise, use ``True``"
In other words, use ``S.true`` only on those contexts where the
boolean is being used as a symbolic representation of truth.
For example, if the object ends up in the ``.args`` of any expression,
then it must necessarily be ``S.true`` instead of ``True``, as
elements of ``.args`` must be ``Basic``. On the other hand,
``==`` is not a symbolic operation in SymPy, since it always returns
``True`` or ``False``, and does so in terms of structural equality
rather than mathematical, so it should return ``True``. The assumptions
system should use ``True`` and ``False``. Aside from not satisfying
the above rule of thumb, the assumptions system uses a three-valued logic
(``True``, ``False``, ``None``), whereas ``S.true`` and ``S.false``
represent a two-valued logic. When in doubt, use ``True``.
"``S.true == True is True``."
While "``S.true is True``" is ``False``, "``S.true == True``"
is ``True``, so if there is any doubt over whether a function or
expression will return ``S.true`` or ``True``, just use ``==``
instead of ``is`` to do the comparison, and it will work in either
case. Finally, for boolean flags, it's better to just use ``if x``
instead of ``if x is True``. To quote PEP 8:
Do not compare boolean values to ``True`` or ``False``
using ``==``.
* Yes: ``if greeting:``
* No: ``if greeting == True:``
* Worse: ``if greeting is True:``
Examples
========
>>> from sympy import sympify, true, false, Or
>>> sympify(True)
True
>>> _ is True, _ is true
(False, True)
>>> Or(true, false)
True
>>> _ is true
True
Python operators give a boolean result for true but a
bitwise result for True
>>> ~true, ~True
(False, -2)
>>> true >> true, True >> True
(True, 0)
Python operators give a boolean result for true but a
bitwise result for True
>>> ~true, ~True
(False, -2)
>>> true >> true, True >> True
(True, 0)
See Also
========
sympy.logic.boolalg.BooleanFalse
"""
def __bool__(self):
return True
def __hash__(self):
return hash(True)
def __eq__(self, other):
if other is True:
return True
if other is False:
return False
return super().__eq__(other)
@property
def negated(self):
return false
def as_set(self):
"""
Rewrite logic operators and relationals in terms of real sets.
Examples
========
>>> from sympy import true
>>> true.as_set()
UniversalSet
"""
return S.UniversalSet
class BooleanFalse(BooleanAtom, metaclass=Singleton):
"""
SymPy version of ``False``, a singleton that can be accessed via ``S.false``.
This is the SymPy version of ``False``, for use in the logic module. The
primary advantage of using ``false`` instead of ``False`` is that shorthand
Boolean operations like ``~`` and ``>>`` will work as expected on this class,
whereas with ``False`` they act bitwise on 0. Functions in the logic module
will return this class when they evaluate to false.
Notes
======
See the notes section in :py:class:`sympy.logic.boolalg.BooleanTrue`
Examples
========
>>> from sympy import sympify, true, false, Or
>>> sympify(False)
False
>>> _ is False, _ is false
(False, True)
>>> Or(true, false)
True
>>> _ is true
True
Python operators give a boolean result for false but a
bitwise result for False
>>> ~false, ~False
(True, -1)
>>> false >> false, False >> False
(True, 0)
See Also
========
sympy.logic.boolalg.BooleanTrue
"""
def __bool__(self):
return False
def __hash__(self):
return hash(False)
def __eq__(self, other):
if other is True:
return False
if other is False:
return True
return super().__eq__(other)
@property
def negated(self):
return true
def as_set(self):
"""
Rewrite logic operators and relationals in terms of real sets.
Examples
========
>>> from sympy import false
>>> false.as_set()
EmptySet
"""
return S.EmptySet
true = BooleanTrue()
false = BooleanFalse()
# We want S.true and S.false to work, rather than S.BooleanTrue and
# S.BooleanFalse, but making the class and instance names the same causes some
# major issues (like the inability to import the class directly from this
# file).
S.true = true
S.false = false
_sympy_converter[bool] = lambda x: true if x else false
class BooleanFunction(Application, Boolean):
"""Boolean function is a function that lives in a boolean space
It is used as base class for :py:class:`~.And`, :py:class:`~.Or`,
:py:class:`~.Not`, etc.
"""
is_Boolean = True
def _eval_simplify(self, **kwargs):
rv = simplify_univariate(self)
if not isinstance(rv, BooleanFunction):
return rv.simplify(**kwargs)
rv = rv.func(*[a.simplify(**kwargs) for a in rv.args])
return simplify_logic(rv)
def simplify(self, **kwargs):
from sympy.simplify.simplify import simplify
return simplify(self, **kwargs)
def __lt__(self, other):
raise TypeError(filldedent('''
A Boolean argument can only be used in
Eq and Ne; all other relationals expect
real expressions.
'''))
__le__ = __lt__
__ge__ = __lt__
__gt__ = __lt__
@classmethod
def binary_check_and_simplify(self, *args):
from sympy.core.relational import Relational, Eq, Ne
args = [as_Boolean(i) for i in args]
bin_syms = set().union(*[i.binary_symbols for i in args])
rel = set().union(*[i.atoms(Relational) for i in args])
reps = {}
for x in bin_syms:
for r in rel:
if x in bin_syms and x in r.free_symbols:
if isinstance(r, (Eq, Ne)):
if not (
true in r.args or
false in r.args):
reps[r] = false
else:
raise TypeError(filldedent('''
Incompatible use of binary symbol `%s` as a
real variable in `%s`
''' % (x, r)))
return [i.subs(reps) for i in args]
def to_nnf(self, simplify=True):
return self._to_nnf(*self.args, simplify=simplify)
def to_anf(self, deep=True):
return self._to_anf(*self.args, deep=deep)
@classmethod
def _to_nnf(cls, *args, **kwargs):
simplify = kwargs.get('simplify', True)
argset = set()
for arg in args:
if not is_literal(arg):
arg = arg.to_nnf(simplify)
if simplify:
if isinstance(arg, cls):
arg = arg.args
else:
arg = (arg,)
for a in arg:
if Not(a) in argset:
return cls.zero
argset.add(a)
else:
argset.add(arg)
return cls(*argset)
@classmethod
def _to_anf(cls, *args, **kwargs):
deep = kwargs.get('deep', True)
argset = set()
for arg in args:
if deep:
if not is_literal(arg) or isinstance(arg, Not):
arg = arg.to_anf(deep=deep)
argset.add(arg)
else:
argset.add(arg)
return cls(*argset, remove_true=False)
# the diff method below is copied from Expr class
def diff(self, *symbols, **assumptions):
assumptions.setdefault("evaluate", True)
return Derivative(self, *symbols, **assumptions)
def _eval_derivative(self, x):
if x in self.binary_symbols:
from sympy.core.relational import Eq
from sympy.functions.elementary.piecewise import Piecewise
return Piecewise(
(0, Eq(self.subs(x, 0), self.subs(x, 1))),
(1, True))
elif x in self.free_symbols:
# not implemented, see https://www.encyclopediaofmath.org/
# index.php/Boolean_differential_calculus
pass
else:
return S.Zero
class And(LatticeOp, BooleanFunction):
"""
Logical AND function.
It evaluates its arguments in order, returning false immediately
when an argument is false and true if they are all true.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy import And
>>> x & y
x & y
Notes
=====
The ``&`` operator is provided as a convenience, but note that its use
here is different from its normal use in Python, which is bitwise
and. Hence, ``And(a, b)`` and ``a & b`` will produce different results if
``a`` and ``b`` are integers.
>>> And(x, y).subs(x, 1)
y
"""
zero = false
identity = true
nargs = None
@classmethod
def _new_args_filter(cls, args):
args = BooleanFunction.binary_check_and_simplify(*args)
args = LatticeOp._new_args_filter(args, And)
newargs = []
rel = set()
for x in ordered(args):
if x.is_Relational:
c = x.canonical
if c in rel:
continue
elif c.negated.canonical in rel:
return [false]
else:
rel.add(c)
newargs.append(x)
return newargs
def _eval_subs(self, old, new):
args = []
bad = None
for i in self.args:
try:
i = i.subs(old, new)
except TypeError:
# store TypeError
if bad is None:
bad = i
continue
if i == False:
return false
elif i != True:
args.append(i)
if bad is not None:
# let it raise
bad.subs(old, new)
# If old is And, replace the parts of the arguments with new if all
# are there
if isinstance(old, And):
old_set = set(old.args)
if old_set.issubset(args):
args = set(args) - old_set
args.add(new)
return self.func(*args)
def _eval_simplify(self, **kwargs):
from sympy.core.relational import Equality, Relational
from sympy.solvers.solveset import linear_coeffs
# standard simplify
rv = super()._eval_simplify(**kwargs)
if not isinstance(rv, And):
return rv
# simplify args that are equalities involving
# symbols so x == 0 & x == y -> x==0 & y == 0
Rel, nonRel = sift(rv.args, lambda i: isinstance(i, Relational),
binary=True)
if not Rel:
return rv
eqs, other = sift(Rel, lambda i: isinstance(i, Equality), binary=True)
measure = kwargs['measure']
if eqs:
ratio = kwargs['ratio']
reps = {}
sifted = {}
# group by length of free symbols
sifted = sift(ordered([
(i.free_symbols, i) for i in eqs]),
lambda x: len(x[0]))
eqs = []
nonlineqs = []
while 1 in sifted:
for free, e in sifted.pop(1):
x = free.pop()
if (e.lhs != x or x in e.rhs.free_symbols) and x not in reps:
try:
m, b = linear_coeffs(
e.rewrite(Add, evaluate=False), x)
enew = e.func(x, -b/m)
if measure(enew) <= ratio*measure(e):
e = enew
else:
eqs.append(e)
continue
except ValueError:
pass
if x in reps:
eqs.append(e.subs(x, reps[x]))
elif e.lhs == x and x not in e.rhs.free_symbols:
reps[x] = e.rhs
eqs.append(e)
else:
# x is not yet identified, but may be later
nonlineqs.append(e)
resifted = defaultdict(list)
for k in sifted:
for f, e in sifted[k]:
e = e.xreplace(reps)
f = e.free_symbols
resifted[len(f)].append((f, e))
sifted = resifted
for k in sifted:
eqs.extend([e for f, e in sifted[k]])
nonlineqs = [ei.subs(reps) for ei in nonlineqs]
other = [ei.subs(reps) for ei in other]
rv = rv.func(*([i.canonical for i in (eqs + nonlineqs + other)] + nonRel))
patterns = _simplify_patterns_and()
threeterm_patterns = _simplify_patterns_and3()
return _apply_patternbased_simplification(rv, patterns,
measure, false,
threeterm_patterns=threeterm_patterns)
def _eval_as_set(self):
from sympy.sets.sets import Intersection
return Intersection(*[arg.as_set() for arg in self.args])
def _eval_rewrite_as_Nor(self, *args, **kwargs):
return Nor(*[Not(arg) for arg in self.args])
def to_anf(self, deep=True):
if deep:
result = And._to_anf(*self.args, deep=deep)
return distribute_xor_over_and(result)
return self
class Or(LatticeOp, BooleanFunction):
"""
Logical OR function
It evaluates its arguments in order, returning true immediately
when an argument is true, and false if they are all false.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy import Or
>>> x | y
x | y
Notes
=====
The ``|`` operator is provided as a convenience, but note that its use
here is different from its normal use in Python, which is bitwise
or. Hence, ``Or(a, b)`` and ``a | b`` will return different things if
``a`` and ``b`` are integers.
>>> Or(x, y).subs(x, 0)
y
"""
zero = true
identity = false
@classmethod
def _new_args_filter(cls, args):
newargs = []
rel = []
args = BooleanFunction.binary_check_and_simplify(*args)
for x in args:
if x.is_Relational:
c = x.canonical
if c in rel:
continue
nc = c.negated.canonical
if any(r == nc for r in rel):
return [true]
rel.append(c)
newargs.append(x)
return LatticeOp._new_args_filter(newargs, Or)
def _eval_subs(self, old, new):
args = []
bad = None
for i in self.args:
try:
i = i.subs(old, new)
except TypeError:
# store TypeError
if bad is None:
bad = i
continue
if i == True:
return true
elif i != False:
args.append(i)
if bad is not None:
# let it raise
bad.subs(old, new)
# If old is Or, replace the parts of the arguments with new if all
# are there
if isinstance(old, Or):
old_set = set(old.args)
if old_set.issubset(args):
args = set(args) - old_set
args.add(new)
return self.func(*args)
def _eval_as_set(self):
from sympy.sets.sets import Union
return Union(*[arg.as_set() for arg in self.args])
def _eval_rewrite_as_Nand(self, *args, **kwargs):
return Nand(*[Not(arg) for arg in self.args])
def _eval_simplify(self, **kwargs):
from sympy.core.relational import Le, Ge, Eq
lege = self.atoms(Le, Ge)
if lege:
reps = {i: self.func(
Eq(i.lhs, i.rhs), i.strict) for i in lege}
return self.xreplace(reps)._eval_simplify(**kwargs)
# standard simplify
rv = super()._eval_simplify(**kwargs)
if not isinstance(rv, Or):
return rv
patterns = _simplify_patterns_or()
return _apply_patternbased_simplification(rv, patterns,
kwargs['measure'], true)
def to_anf(self, deep=True):
args = range(1, len(self.args) + 1)
args = (combinations(self.args, j) for j in args)
args = chain.from_iterable(args) # powerset
args = (And(*arg) for arg in args)
args = map(lambda x: to_anf(x, deep=deep) if deep else x, args)
return Xor(*list(args), remove_true=False)
class Not(BooleanFunction):
"""
Logical Not function (negation)
Returns ``true`` if the statement is ``false`` or ``False``.
Returns ``false`` if the statement is ``true`` or ``True``.
Examples
========
>>> from sympy import Not, And, Or
>>> from sympy.abc import x, A, B
>>> Not(True)
False
>>> Not(False)
True
>>> Not(And(True, False))
True
>>> Not(Or(True, False))
False
>>> Not(And(And(True, x), Or(x, False)))
~x
>>> ~x
~x
>>> Not(And(Or(A, B), Or(~A, ~B)))
~((A | B) & (~A | ~B))
Notes
=====
- The ``~`` operator is provided as a convenience, but note that its use
here is different from its normal use in Python, which is bitwise
not. In particular, ``~a`` and ``Not(a)`` will be different if ``a`` is
an integer. Furthermore, since bools in Python subclass from ``int``,
``~True`` is the same as ``~1`` which is ``-2``, which has a boolean
value of True. To avoid this issue, use the SymPy boolean types
``true`` and ``false``.
>>> from sympy import true
>>> ~True
-2
>>> ~true
False
"""
is_Not = True
@classmethod
def eval(cls, arg):
if isinstance(arg, Number) or arg in (True, False):
return false if arg else true
if arg.is_Not:
return arg.args[0]
# Simplify Relational objects.
if arg.is_Relational:
return arg.negated
def _eval_as_set(self):
"""
Rewrite logic operators and relationals in terms of real sets.
Examples
========
>>> from sympy import Not, Symbol
>>> x = Symbol('x')
>>> Not(x > 0).as_set()
Interval(-oo, 0)
"""
return self.args[0].as_set().complement(S.Reals)
def to_nnf(self, simplify=True):
if is_literal(self):
return self
expr = self.args[0]
func, args = expr.func, expr.args
if func == And:
return Or._to_nnf(*[Not(arg) for arg in args], simplify=simplify)
if func == Or:
return And._to_nnf(*[Not(arg) for arg in args], simplify=simplify)
if func == Implies:
a, b = args
return And._to_nnf(a, Not(b), simplify=simplify)
if func == Equivalent:
return And._to_nnf(Or(*args), Or(*[Not(arg) for arg in args]),
simplify=simplify)
if func == Xor:
result = []
for i in range(1, len(args)+1, 2):
for neg in combinations(args, i):
clause = [Not(s) if s in neg else s for s in args]
result.append(Or(*clause))
return And._to_nnf(*result, simplify=simplify)
if func == ITE:
a, b, c = args
return And._to_nnf(Or(a, Not(c)), Or(Not(a), Not(b)), simplify=simplify)
raise ValueError("Illegal operator %s in expression" % func)
def to_anf(self, deep=True):
return Xor._to_anf(true, self.args[0], deep=deep)
class Xor(BooleanFunction):
"""
Logical XOR (exclusive OR) function.
Returns True if an odd number of the arguments are True and the rest are
False.
Returns False if an even number of the arguments are True and the rest are
False.
Examples
========
>>> from sympy.logic.boolalg import Xor
>>> from sympy import symbols
>>> x, y = symbols('x y')
>>> Xor(True, False)
True
>>> Xor(True, True)
False
>>> Xor(True, False, True, True, False)
True
>>> Xor(True, False, True, False)
False
>>> x ^ y
x ^ y
Notes
=====
The ``^`` operator is provided as a convenience, but note that its use
here is different from its normal use in Python, which is bitwise xor. In
particular, ``a ^ b`` and ``Xor(a, b)`` will be different if ``a`` and
``b`` are integers.
>>> Xor(x, y).subs(y, 0)
x
"""
def __new__(cls, *args, remove_true=True, **kwargs):
argset = set()
obj = super().__new__(cls, *args, **kwargs)
for arg in obj._args:
if isinstance(arg, Number) or arg in (True, False):
if arg:
arg = true
else:
continue
if isinstance(arg, Xor):
for a in arg.args:
argset.remove(a) if a in argset else argset.add(a)
elif arg in argset:
argset.remove(arg)
else:
argset.add(arg)
rel = [(r, r.canonical, r.negated.canonical)
for r in argset if r.is_Relational]
odd = False # is number of complimentary pairs odd? start 0 -> False
remove = []
for i, (r, c, nc) in enumerate(rel):
for j in range(i + 1, len(rel)):
rj, cj = rel[j][:2]
if cj == nc:
odd = ~odd
break
elif cj == c:
break
else:
continue
remove.append((r, rj))
if odd:
argset.remove(true) if true in argset else argset.add(true)
for a, b in remove:
argset.remove(a)
argset.remove(b)
if len(argset) == 0:
return false
elif len(argset) == 1:
return argset.pop()
elif True in argset and remove_true:
argset.remove(True)
return Not(Xor(*argset))
else:
obj._args = tuple(ordered(argset))
obj._argset = frozenset(argset)
return obj
# XXX: This should be cached on the object rather than using cacheit
# Maybe it can be computed in __new__?
@property # type: ignore
@cacheit
def args(self):
return tuple(ordered(self._argset))
def to_nnf(self, simplify=True):
args = []
for i in range(0, len(self.args)+1, 2):
for neg in combinations(self.args, i):
clause = [Not(s) if s in neg else s for s in self.args]
args.append(Or(*clause))
return And._to_nnf(*args, simplify=simplify)
def _eval_rewrite_as_Or(self, *args, **kwargs):
a = self.args
return Or(*[_convert_to_varsSOP(x, self.args)
for x in _get_odd_parity_terms(len(a))])
def _eval_rewrite_as_And(self, *args, **kwargs):
a = self.args
return And(*[_convert_to_varsPOS(x, self.args)
for x in _get_even_parity_terms(len(a))])
def _eval_simplify(self, **kwargs):
# as standard simplify uses simplify_logic which writes things as
# And and Or, we only simplify the partial expressions before using
# patterns
rv = self.func(*[a.simplify(**kwargs) for a in self.args])
if not isinstance(rv, Xor): # This shouldn't really happen here
return rv
patterns = _simplify_patterns_xor()
return _apply_patternbased_simplification(rv, patterns,
kwargs['measure'], None)
def _eval_subs(self, old, new):
# If old is Xor, replace the parts of the arguments with new if all
# are there
if isinstance(old, Xor):
old_set = set(old.args)
if old_set.issubset(self.args):
args = set(self.args) - old_set
args.add(new)
return self.func(*args)
class Nand(BooleanFunction):
"""
Logical NAND function.
It evaluates its arguments in order, giving True immediately if any
of them are False, and False if they are all True.
Returns True if any of the arguments are False
Returns False if all arguments are True
Examples
========
>>> from sympy.logic.boolalg import Nand
>>> from sympy import symbols
>>> x, y = symbols('x y')
>>> Nand(False, True)
True
>>> Nand(True, True)
False
>>> Nand(x, y)
~(x & y)
"""
@classmethod
def eval(cls, *args):
return Not(And(*args))
class Nor(BooleanFunction):
"""
Logical NOR function.
It evaluates its arguments in order, giving False immediately if any
of them are True, and True if they are all False.
Returns False if any argument is True
Returns True if all arguments are False
Examples
========
>>> from sympy.logic.boolalg import Nor
>>> from sympy import symbols
>>> x, y = symbols('x y')
>>> Nor(True, False)
False
>>> Nor(True, True)
False
>>> Nor(False, True)
False
>>> Nor(False, False)
True
>>> Nor(x, y)
~(x | y)
"""
@classmethod
def eval(cls, *args):
return Not(Or(*args))
class Xnor(BooleanFunction):
"""
Logical XNOR function.
Returns False if an odd number of the arguments are True and the rest are
False.
Returns True if an even number of the arguments are True and the rest are
False.
Examples
========
>>> from sympy.logic.boolalg import Xnor
>>> from sympy import symbols
>>> x, y = symbols('x y')
>>> Xnor(True, False)
False
>>> Xnor(True, True)
True
>>> Xnor(True, False, True, True, False)
False
>>> Xnor(True, False, True, False)
True
"""
@classmethod
def eval(cls, *args):
return Not(Xor(*args))
class Implies(BooleanFunction):
r"""
Logical implication.
A implies B is equivalent to if A then B. Mathematically, it is written
as `A \Rightarrow B` and is equivalent to `\neg A \vee B` or ``~A | B``.
Accepts two Boolean arguments; A and B.
Returns False if A is True and B is False
Returns True otherwise.
Examples
========
>>> from sympy.logic.boolalg import Implies
>>> from sympy import symbols
>>> x, y = symbols('x y')
>>> Implies(True, False)
False
>>> Implies(False, False)
True
>>> Implies(True, True)
True
>>> Implies(False, True)
True
>>> x >> y
Implies(x, y)
>>> y << x
Implies(x, y)
Notes
=====
The ``>>`` and ``<<`` operators are provided as a convenience, but note
that their use here is different from their normal use in Python, which is
bit shifts. Hence, ``Implies(a, b)`` and ``a >> b`` will return different
things if ``a`` and ``b`` are integers. In particular, since Python
considers ``True`` and ``False`` to be integers, ``True >> True`` will be
the same as ``1 >> 1``, i.e., 0, which has a truth value of False. To
avoid this issue, use the SymPy objects ``true`` and ``false``.
>>> from sympy import true, false
>>> True >> False
1
>>> true >> false
False
"""
@classmethod
def eval(cls, *args):
try:
newargs = []
for x in args:
if isinstance(x, Number) or x in (0, 1):
newargs.append(bool(x))
else:
newargs.append(x)
A, B = newargs
except ValueError:
raise ValueError(
"%d operand(s) used for an Implies "
"(pairs are required): %s" % (len(args), str(args)))
if A in (True, False) or B in (True, False):
return Or(Not(A), B)
elif A == B:
return true
elif A.is_Relational and B.is_Relational:
if A.canonical == B.canonical:
return true
if A.negated.canonical == B.canonical:
return B
else:
return Basic.__new__(cls, *args)
def to_nnf(self, simplify=True):
a, b = self.args
return Or._to_nnf(Not(a), b, simplify=simplify)
def to_anf(self, deep=True):
a, b = self.args
return Xor._to_anf(true, a, And(a, b), deep=deep)
class Equivalent(BooleanFunction):
"""
Equivalence relation.
``Equivalent(A, B)`` is True iff A and B are both True or both False.
Returns True if all of the arguments are logically equivalent.
Returns False otherwise.
For two arguments, this is equivalent to :py:class:`~.Xnor`.
Examples
========
>>> from sympy.logic.boolalg import Equivalent, And
>>> from sympy.abc import x
>>> Equivalent(False, False, False)
True
>>> Equivalent(True, False, False)
False
>>> Equivalent(x, And(x, True))
True
"""
def __new__(cls, *args, **options):
from sympy.core.relational import Relational
args = [_sympify(arg) for arg in args]
argset = set(args)
for x in args:
if isinstance(x, Number) or x in [True, False]: # Includes 0, 1
argset.discard(x)
argset.add(bool(x))
rel = []
for r in argset:
if isinstance(r, Relational):
rel.append((r, r.canonical, r.negated.canonical))
remove = []
for i, (r, c, nc) in enumerate(rel):
for j in range(i + 1, len(rel)):
rj, cj = rel[j][:2]
if cj == nc:
return false
elif cj == c:
remove.append((r, rj))
break
for a, b in remove:
argset.remove(a)
argset.remove(b)
argset.add(True)
if len(argset) <= 1:
return true
if True in argset:
argset.discard(True)
return And(*argset)
if False in argset:
argset.discard(False)
return And(*[Not(arg) for arg in argset])
_args = frozenset(argset)
obj = super().__new__(cls, _args)
obj._argset = _args
return obj
# XXX: This should be cached on the object rather than using cacheit
# Maybe it can be computed in __new__?
@property # type: ignore
@cacheit
def args(self):
return tuple(ordered(self._argset))
def to_nnf(self, simplify=True):
args = []
for a, b in zip(self.args, self.args[1:]):
args.append(Or(Not(a), b))
args.append(Or(Not(self.args[-1]), self.args[0]))
return And._to_nnf(*args, simplify=simplify)
def to_anf(self, deep=True):
a = And(*self.args)
b = And(*[to_anf(Not(arg), deep=False) for arg in self.args])
b = distribute_xor_over_and(b)
return Xor._to_anf(a, b, deep=deep)
class ITE(BooleanFunction):
"""
If-then-else clause.
``ITE(A, B, C)`` evaluates and returns the result of B if A is true
else it returns the result of C. All args must be Booleans.
From a logic gate perspective, ITE corresponds to a 2-to-1 multiplexer,
where A is the select signal.
Examples
========
>>> from sympy.logic.boolalg import ITE, And, Xor, Or
>>> from sympy.abc import x, y, z
>>> ITE(True, False, True)
False
>>> ITE(Or(True, False), And(True, True), Xor(True, True))
True
>>> ITE(x, y, z)
ITE(x, y, z)
>>> ITE(True, x, y)
x
>>> ITE(False, x, y)
y
>>> ITE(x, y, y)
y
Trying to use non-Boolean args will generate a TypeError:
>>> ITE(True, [], ())
Traceback (most recent call last):
...
TypeError: expecting bool, Boolean or ITE, not `[]`
"""
def __new__(cls, *args, **kwargs):
from sympy.core.relational import Eq, Ne
if len(args) != 3:
raise ValueError('expecting exactly 3 args')
a, b, c = args
# check use of binary symbols
if isinstance(a, (Eq, Ne)):
# in this context, we can evaluate the Eq/Ne
# if one arg is a binary symbol and the other
# is true/false
b, c = map(as_Boolean, (b, c))
bin_syms = set().union(*[i.binary_symbols for i in (b, c)])
if len(set(a.args) - bin_syms) == 1:
# one arg is a binary_symbols
_a = a
if a.lhs is true:
a = a.rhs
elif a.rhs is true:
a = a.lhs
elif a.lhs is false:
a = Not(a.rhs)
elif a.rhs is false:
a = Not(a.lhs)
else:
# binary can only equal True or False
a = false
if isinstance(_a, Ne):
a = Not(a)
else:
a, b, c = BooleanFunction.binary_check_and_simplify(
a, b, c)
rv = None
if kwargs.get('evaluate', True):
rv = cls.eval(a, b, c)
if rv is None:
rv = BooleanFunction.__new__(cls, a, b, c, evaluate=False)
return rv
@classmethod
def eval(cls, *args):
from sympy.core.relational import Eq, Ne
# do the args give a singular result?
a, b, c = args
if isinstance(a, (Ne, Eq)):
_a = a
if true in a.args:
a = a.lhs if a.rhs is true else a.rhs
elif false in a.args:
a = Not(a.lhs) if a.rhs is false else Not(a.rhs)
else:
_a = None
if _a is not None and isinstance(_a, Ne):
a = Not(a)
if a is true:
return b
if a is false:
return c
if b == c:
return b
else:
# or maybe the results allow the answer to be expressed
# in terms of the condition
if b is true and c is false:
return a
if b is false and c is true:
return Not(a)
if [a, b, c] != args:
return cls(a, b, c, evaluate=False)
def to_nnf(self, simplify=True):
a, b, c = self.args
return And._to_nnf(Or(Not(a), b), Or(a, c), simplify=simplify)
def _eval_as_set(self):
return self.to_nnf().as_set()
def _eval_rewrite_as_Piecewise(self, *args, **kwargs):
from sympy.functions.elementary.piecewise import Piecewise
return Piecewise((args[1], args[0]), (args[2], True))
class Exclusive(BooleanFunction):
"""
True if only one or no argument is true.
``Exclusive(A, B, C)`` is equivalent to ``~(A & B) & ~(A & C) & ~(B & C)``.
For two arguments, this is equivalent to :py:class:`~.Xor`.
Examples
========
>>> from sympy.logic.boolalg import Exclusive
>>> Exclusive(False, False, False)
True
>>> Exclusive(False, True, False)
True
>>> Exclusive(False, True, True)
False
"""
@classmethod
def eval(cls, *args):
and_args = []
for a, b in combinations(args, 2):
and_args.append(Not(And(a, b)))
return And(*and_args)
# end class definitions. Some useful methods
def conjuncts(expr):
"""Return a list of the conjuncts in ``expr``.
Examples
========
>>> from sympy.logic.boolalg import conjuncts
>>> from sympy.abc import A, B
>>> conjuncts(A & B)
frozenset({A, B})
>>> conjuncts(A | B)
frozenset({A | B})
"""
return And.make_args(expr)
def disjuncts(expr):
"""Return a list of the disjuncts in ``expr``.
Examples
========
>>> from sympy.logic.boolalg import disjuncts
>>> from sympy.abc import A, B
>>> disjuncts(A | B)
frozenset({A, B})
>>> disjuncts(A & B)
frozenset({A & B})
"""
return Or.make_args(expr)
def distribute_and_over_or(expr):
"""
Given a sentence ``expr`` consisting of conjunctions and disjunctions
of literals, return an equivalent sentence in CNF.
Examples
========
>>> from sympy.logic.boolalg import distribute_and_over_or, And, Or, Not
>>> from sympy.abc import A, B, C
>>> distribute_and_over_or(Or(A, And(Not(B), Not(C))))
(A | ~B) & (A | ~C)
"""
return _distribute((expr, And, Or))
def distribute_or_over_and(expr):
"""
Given a sentence ``expr`` consisting of conjunctions and disjunctions
of literals, return an equivalent sentence in DNF.
Note that the output is NOT simplified.
Examples
========
>>> from sympy.logic.boolalg import distribute_or_over_and, And, Or, Not
>>> from sympy.abc import A, B, C
>>> distribute_or_over_and(And(Or(Not(A), B), C))
(B & C) | (C & ~A)
"""
return _distribute((expr, Or, And))
def distribute_xor_over_and(expr):
"""
Given a sentence ``expr`` consisting of conjunction and
exclusive disjunctions of literals, return an
equivalent exclusive disjunction.
Note that the output is NOT simplified.
Examples
========
>>> from sympy.logic.boolalg import distribute_xor_over_and, And, Xor, Not
>>> from sympy.abc import A, B, C
>>> distribute_xor_over_and(And(Xor(Not(A), B), C))
(B & C) ^ (C & ~A)
"""
return _distribute((expr, Xor, And))
def _distribute(info):
"""
Distributes ``info[1]`` over ``info[2]`` with respect to ``info[0]``.
"""
if isinstance(info[0], info[2]):
for arg in info[0].args:
if isinstance(arg, info[1]):
conj = arg
break
else:
return info[0]
rest = info[2](*[a for a in info[0].args if a is not conj])
return info[1](*list(map(_distribute,
[(info[2](c, rest), info[1], info[2])
for c in conj.args])), remove_true=False)
elif isinstance(info[0], info[1]):
return info[1](*list(map(_distribute,
[(x, info[1], info[2])
for x in info[0].args])),
remove_true=False)
else:
return info[0]
def to_anf(expr, deep=True):
r"""
Converts expr to Algebraic Normal Form (ANF).
ANF is a canonical normal form, which means that two
equivalent formulas will convert to the same ANF.
A logical expression is in ANF if it has the form
.. math:: 1 \oplus a \oplus b \oplus ab \oplus abc
i.e. it can be:
- purely true,
- purely false,
- conjunction of variables,
- exclusive disjunction.
The exclusive disjunction can only contain true, variables
or conjunction of variables. No negations are permitted.
If ``deep`` is ``False``, arguments of the boolean
expression are considered variables, i.e. only the
top-level expression is converted to ANF.
Examples
========
>>> from sympy.logic.boolalg import And, Or, Not, Implies, Equivalent
>>> from sympy.logic.boolalg import to_anf
>>> from sympy.abc import A, B, C
>>> to_anf(Not(A))
A ^ True
>>> to_anf(And(Or(A, B), Not(C)))
A ^ B ^ (A & B) ^ (A & C) ^ (B & C) ^ (A & B & C)
>>> to_anf(Implies(Not(A), Equivalent(B, C)), deep=False)
True ^ ~A ^ (~A & (Equivalent(B, C)))
"""
expr = sympify(expr)
if is_anf(expr):
return expr
return expr.to_anf(deep=deep)
def to_nnf(expr, simplify=True):
"""
Converts ``expr`` to Negation Normal Form (NNF).
A logical expression is in NNF if it
contains only :py:class:`~.And`, :py:class:`~.Or` and :py:class:`~.Not`,
and :py:class:`~.Not` is applied only to literals.
If ``simplify`` is ``True``, the result contains no redundant clauses.
Examples
========
>>> from sympy.abc import A, B, C, D
>>> from sympy.logic.boolalg import Not, Equivalent, to_nnf
>>> to_nnf(Not((~A & ~B) | (C & D)))
(A | B) & (~C | ~D)
>>> to_nnf(Equivalent(A >> B, B >> A))
(A | ~B | (A & ~B)) & (B | ~A | (B & ~A))
"""
if is_nnf(expr, simplify):
return expr
return expr.to_nnf(simplify)
def to_cnf(expr, simplify=False, force=False):
"""
Convert a propositional logical sentence ``expr`` to conjunctive normal
form: ``((A | ~B | ...) & (B | C | ...) & ...)``.
If ``simplify`` is ``True``, ``expr`` is evaluated to its simplest CNF
form using the Quine-McCluskey algorithm; this may take a long
time. If there are more than 8 variables the ``force`` flag must be set
to ``True`` to simplify (default is ``False``).
Examples
========
>>> from sympy.logic.boolalg import to_cnf
>>> from sympy.abc import A, B, D
>>> to_cnf(~(A | B) | D)
(D | ~A) & (D | ~B)
>>> to_cnf((A | B) & (A | ~A), True)
A | B
"""
expr = sympify(expr)
if not isinstance(expr, BooleanFunction):
return expr
if simplify:
if not force and len(_find_predicates(expr)) > 8:
raise ValueError(filldedent('''
To simplify a logical expression with more
than 8 variables may take a long time and requires
the use of `force=True`.'''))
return simplify_logic(expr, 'cnf', True, force=force)
# Don't convert unless we have to
if is_cnf(expr):
return expr
expr = eliminate_implications(expr)
res = distribute_and_over_or(expr)
return res
def to_dnf(expr, simplify=False, force=False):
"""
Convert a propositional logical sentence ``expr`` to disjunctive normal
form: ``((A & ~B & ...) | (B & C & ...) | ...)``.
If ``simplify`` is ``True``, ``expr`` is evaluated to its simplest DNF form using
the Quine-McCluskey algorithm; this may take a long
time. If there are more than 8 variables, the ``force`` flag must be set to
``True`` to simplify (default is ``False``).
Examples
========
>>> from sympy.logic.boolalg import to_dnf
>>> from sympy.abc import A, B, C
>>> to_dnf(B & (A | C))
(A & B) | (B & C)
>>> to_dnf((A & B) | (A & ~B) | (B & C) | (~B & C), True)
A | C
"""
expr = sympify(expr)
if not isinstance(expr, BooleanFunction):
return expr
if simplify:
if not force and len(_find_predicates(expr)) > 8:
raise ValueError(filldedent('''
To simplify a logical expression with more
than 8 variables may take a long time and requires
the use of `force=True`.'''))
return simplify_logic(expr, 'dnf', True, force=force)
# Don't convert unless we have to
if is_dnf(expr):
return expr
expr = eliminate_implications(expr)
return distribute_or_over_and(expr)
def is_anf(expr):
r"""
Checks if ``expr`` is in Algebraic Normal Form (ANF).
A logical expression is in ANF if it has the form
.. math:: 1 \oplus a \oplus b \oplus ab \oplus abc
i.e. it is purely true, purely false, conjunction of
variables or exclusive disjunction. The exclusive
disjunction can only contain true, variables or
conjunction of variables. No negations are permitted.
Examples
========
>>> from sympy.logic.boolalg import And, Not, Xor, true, is_anf
>>> from sympy.abc import A, B, C
>>> is_anf(true)
True
>>> is_anf(A)
True
>>> is_anf(And(A, B, C))
True
>>> is_anf(Xor(A, Not(B)))
False
"""
expr = sympify(expr)
if is_literal(expr) and not isinstance(expr, Not):
return True
if isinstance(expr, And):
for arg in expr.args:
if not arg.is_Symbol:
return False
return True
elif isinstance(expr, Xor):
for arg in expr.args:
if isinstance(arg, And):
for a in arg.args:
if not a.is_Symbol:
return False
elif is_literal(arg):
if isinstance(arg, Not):
return False
else:
return False
return True
else:
return False
def is_nnf(expr, simplified=True):
"""
Checks if ``expr`` is in Negation Normal Form (NNF).
A logical expression is in NNF if it
contains only :py:class:`~.And`, :py:class:`~.Or` and :py:class:`~.Not`,
and :py:class:`~.Not` is applied only to literals.
If ``simplified`` is ``True``, checks if result contains no redundant clauses.
Examples
========
>>> from sympy.abc import A, B, C
>>> from sympy.logic.boolalg import Not, is_nnf
>>> is_nnf(A & B | ~C)
True
>>> is_nnf((A | ~A) & (B | C))
False
>>> is_nnf((A | ~A) & (B | C), False)
True
>>> is_nnf(Not(A & B) | C)
False
>>> is_nnf((A >> B) & (B >> A))
False
"""
expr = sympify(expr)
if is_literal(expr):
return True
stack = [expr]
while stack:
expr = stack.pop()
if expr.func in (And, Or):
if simplified:
args = expr.args
for arg in args:
if Not(arg) in args:
return False
stack.extend(expr.args)
elif not is_literal(expr):
return False
return True
def is_cnf(expr):
"""
Test whether or not an expression is in conjunctive normal form.
Examples
========
>>> from sympy.logic.boolalg import is_cnf
>>> from sympy.abc import A, B, C
>>> is_cnf(A | B | C)
True
>>> is_cnf(A & B & C)
True
>>> is_cnf((A & B) | C)
False
"""
return _is_form(expr, And, Or)
def is_dnf(expr):
"""
Test whether or not an expression is in disjunctive normal form.
Examples
========
>>> from sympy.logic.boolalg import is_dnf
>>> from sympy.abc import A, B, C
>>> is_dnf(A | B | C)
True
>>> is_dnf(A & B & C)
True
>>> is_dnf((A & B) | C)
True
>>> is_dnf(A & (B | C))
False
"""
return _is_form(expr, Or, And)
def _is_form(expr, function1, function2):
"""
Test whether or not an expression is of the required form.
"""
expr = sympify(expr)
vals = function1.make_args(expr) if isinstance(expr, function1) else [expr]
for lit in vals:
if isinstance(lit, function2):
vals2 = function2.make_args(lit) if isinstance(lit, function2) else [lit]
for l in vals2:
if is_literal(l) is False:
return False
elif is_literal(lit) is False:
return False
return True
def eliminate_implications(expr):
"""
Change :py:class:`~.Implies` and :py:class:`~.Equivalent` into
:py:class:`~.And`, :py:class:`~.Or`, and :py:class:`~.Not`.
That is, return an expression that is equivalent to ``expr``, but has only
``&``, ``|``, and ``~`` as logical
operators.
Examples
========
>>> from sympy.logic.boolalg import Implies, Equivalent, \
eliminate_implications
>>> from sympy.abc import A, B, C
>>> eliminate_implications(Implies(A, B))
B | ~A
>>> eliminate_implications(Equivalent(A, B))
(A | ~B) & (B | ~A)
>>> eliminate_implications(Equivalent(A, B, C))
(A | ~C) & (B | ~A) & (C | ~B)
"""
return to_nnf(expr, simplify=False)
def is_literal(expr):
"""
Returns True if expr is a literal, else False.
Examples
========
>>> from sympy import Or, Q
>>> from sympy.abc import A, B
>>> from sympy.logic.boolalg import is_literal
>>> is_literal(A)
True
>>> is_literal(~A)
True
>>> is_literal(Q.zero(A))
True
>>> is_literal(A + B)
True
>>> is_literal(Or(A, B))
False
"""
from sympy.assumptions import AppliedPredicate
if isinstance(expr, Not):
return is_literal(expr.args[0])
elif expr in (True, False) or isinstance(expr, AppliedPredicate) or expr.is_Atom:
return True
elif not isinstance(expr, BooleanFunction) and all(
(isinstance(expr, AppliedPredicate) or a.is_Atom) for a in expr.args):
return True
return False
def to_int_repr(clauses, symbols):
"""
Takes clauses in CNF format and puts them into an integer representation.
Examples
========
>>> from sympy.logic.boolalg import to_int_repr
>>> from sympy.abc import x, y
>>> to_int_repr([x | y, y], [x, y]) == [{1, 2}, {2}]
True
"""
# Convert the symbol list into a dict
symbols = dict(zip(symbols, range(1, len(symbols) + 1)))
def append_symbol(arg, symbols):
if isinstance(arg, Not):
return -symbols[arg.args[0]]
else:
return symbols[arg]
return [{append_symbol(arg, symbols) for arg in Or.make_args(c)}
for c in clauses]
def term_to_integer(term):
"""
Return an integer corresponding to the base-2 digits given by *term*.
Parameters
==========
term : a string or list of ones and zeros
Examples
========
>>> from sympy.logic.boolalg import term_to_integer
>>> term_to_integer([1, 0, 0])
4
>>> term_to_integer('100')
4
"""
return int(''.join(list(map(str, list(term)))), 2)
integer_to_term = ibin # XXX could delete?
def truth_table(expr, variables, input=True):
"""
Return a generator of all possible configurations of the input variables,
and the result of the boolean expression for those values.
Parameters
==========
expr : Boolean expression
variables : list of variables
input : bool (default ``True``)
Indicates whether to return the input combinations.
Examples
========
>>> from sympy.logic.boolalg import truth_table
>>> from sympy.abc import x,y
>>> table = truth_table(x >> y, [x, y])
>>> for t in table:
... print('{0} -> {1}'.format(*t))
[0, 0] -> True
[0, 1] -> True
[1, 0] -> False
[1, 1] -> True
>>> table = truth_table(x | y, [x, y])
>>> list(table)
[([0, 0], False), ([0, 1], True), ([1, 0], True), ([1, 1], True)]
If ``input`` is ``False``, ``truth_table`` returns only a list of truth values.
In this case, the corresponding input values of variables can be
deduced from the index of a given output.
>>> from sympy.utilities.iterables import ibin
>>> vars = [y, x]
>>> values = truth_table(x >> y, vars, input=False)
>>> values = list(values)
>>> values
[True, False, True, True]
>>> for i, value in enumerate(values):
... print('{0} -> {1}'.format(list(zip(
... vars, ibin(i, len(vars)))), value))
[(y, 0), (x, 0)] -> True
[(y, 0), (x, 1)] -> False
[(y, 1), (x, 0)] -> True
[(y, 1), (x, 1)] -> True
"""
variables = [sympify(v) for v in variables]
expr = sympify(expr)
if not isinstance(expr, BooleanFunction) and not is_literal(expr):
return
table = product((0, 1), repeat=len(variables))
for term in table:
value = expr.xreplace(dict(zip(variables, term)))
if input:
yield list(term), value
else:
yield value
def _check_pair(minterm1, minterm2):
"""
Checks if a pair of minterms differs by only one bit. If yes, returns
index, else returns `-1`.
"""
# Early termination seems to be faster than list comprehension,
# at least for large examples.
index = -1
for x, i in enumerate(minterm1): # zip(minterm1, minterm2) is slower
if i != minterm2[x]:
if index == -1:
index = x
else:
return -1
return index
def _convert_to_varsSOP(minterm, variables):
"""
Converts a term in the expansion of a function from binary to its
variable form (for SOP).
"""
temp = [variables[n] if val == 1 else Not(variables[n])
for n, val in enumerate(minterm) if val != 3]
return And(*temp)
def _convert_to_varsPOS(maxterm, variables):
"""
Converts a term in the expansion of a function from binary to its
variable form (for POS).
"""
temp = [variables[n] if val == 0 else Not(variables[n])
for n, val in enumerate(maxterm) if val != 3]
return Or(*temp)
def _convert_to_varsANF(term, variables):
"""
Converts a term in the expansion of a function from binary to its
variable form (for ANF).
Parameters
==========
term : list of 1's and 0's (complementation pattern)
variables : list of variables
"""
temp = [variables[n] for n, t in enumerate(term) if t == 1]
if not temp:
return true
return And(*temp)
def _get_odd_parity_terms(n):
"""
Returns a list of lists, with all possible combinations of n zeros and ones
with an odd number of ones.
"""
return [e for e in [ibin(i, n) for i in range(2**n)] if sum(e) % 2 == 1]
def _get_even_parity_terms(n):
"""
Returns a list of lists, with all possible combinations of n zeros and ones
with an even number of ones.
"""
return [e for e in [ibin(i, n) for i in range(2**n)] if sum(e) % 2 == 0]
def _simplified_pairs(terms):
"""
Reduces a set of minterms, if possible, to a simplified set of minterms
with one less variable in the terms using QM method.
"""
if not terms:
return []
simplified_terms = []
todo = list(range(len(terms)))
# Count number of ones as _check_pair can only potentially match if there
# is at most a difference of a single one
termdict = defaultdict(list)
for n, term in enumerate(terms):
ones = sum([1 for t in term if t == 1])
termdict[ones].append(n)
variables = len(terms[0])
for k in range(variables):
for i in termdict[k]:
for j in termdict[k+1]:
index = _check_pair(terms[i], terms[j])
if index != -1:
# Mark terms handled
todo[i] = todo[j] = None
# Copy old term
newterm = terms[i][:]
# Set differing position to don't care
newterm[index] = 3
# Add if not already there
if newterm not in simplified_terms:
simplified_terms.append(newterm)
if simplified_terms:
# Further simplifications only among the new terms
simplified_terms = _simplified_pairs(simplified_terms)
# Add remaining, non-simplified, terms
simplified_terms.extend([terms[i] for i in todo if i is not None])
return simplified_terms
def _rem_redundancy(l1, terms):
"""
After the truth table has been sufficiently simplified, use the prime
implicant table method to recognize and eliminate redundant pairs,
and return the essential arguments.
"""
if not terms:
return []
nterms = len(terms)
nl1 = len(l1)
# Create dominating matrix
dommatrix = [[0]*nl1 for n in range(nterms)]
colcount = [0]*nl1
rowcount = [0]*nterms
for primei, prime in enumerate(l1):
for termi, term in enumerate(terms):
# Check prime implicant covering term
if all(t == 3 or t == mt for t, mt in zip(prime, term)):
dommatrix[termi][primei] = 1
colcount[primei] += 1
rowcount[termi] += 1
# Keep track if anything changed
anythingchanged = True
# Then, go again
while anythingchanged:
anythingchanged = False
for rowi in range(nterms):
# Still non-dominated?
if rowcount[rowi]:
row = dommatrix[rowi]
for row2i in range(nterms):
# Still non-dominated?
if rowi != row2i and rowcount[rowi] and (rowcount[rowi] <= rowcount[row2i]):
row2 = dommatrix[row2i]
if all(row2[n] >= row[n] for n in range(nl1)):
# row2 dominating row, remove row2
rowcount[row2i] = 0
anythingchanged = True
for primei, prime in enumerate(row2):
if prime:
# Make corresponding entry 0
dommatrix[row2i][primei] = 0
colcount[primei] -= 1
colcache = {}
for coli in range(nl1):
# Still non-dominated?
if colcount[coli]:
if coli in colcache:
col = colcache[coli]
else:
col = [dommatrix[i][coli] for i in range(nterms)]
colcache[coli] = col
for col2i in range(nl1):
# Still non-dominated?
if coli != col2i and colcount[col2i] and (colcount[coli] >= colcount[col2i]):
if col2i in colcache:
col2 = colcache[col2i]
else:
col2 = [dommatrix[i][col2i] for i in range(nterms)]
colcache[col2i] = col2
if all(col[n] >= col2[n] for n in range(nterms)):
# col dominating col2, remove col2
colcount[col2i] = 0
anythingchanged = True
for termi, term in enumerate(col2):
if term and dommatrix[termi][col2i]:
# Make corresponding entry 0
dommatrix[termi][col2i] = 0
rowcount[termi] -= 1
if not anythingchanged:
# Heuristically select the prime implicant covering most terms
maxterms = 0
bestcolidx = -1
for coli in range(nl1):
s = colcount[coli]
if s > maxterms:
bestcolidx = coli
maxterms = s
# In case we found a prime implicant covering at least two terms
if bestcolidx != -1 and maxterms > 1:
for primei, prime in enumerate(l1):
if primei != bestcolidx:
for termi, term in enumerate(colcache[bestcolidx]):
if term and dommatrix[termi][primei]:
# Make corresponding entry 0
dommatrix[termi][primei] = 0
anythingchanged = True
rowcount[termi] -= 1
colcount[primei] -= 1
return [l1[i] for i in range(nl1) if colcount[i]]
def _input_to_binlist(inputlist, variables):
binlist = []
bits = len(variables)
for val in inputlist:
if isinstance(val, int):
binlist.append(ibin(val, bits))
elif isinstance(val, dict):
nonspecvars = list(variables)
for key in val.keys():
nonspecvars.remove(key)
for t in product((0, 1), repeat=len(nonspecvars)):
d = dict(zip(nonspecvars, t))
d.update(val)
binlist.append([d[v] for v in variables])
elif isinstance(val, (list, tuple)):
if len(val) != bits:
raise ValueError("Each term must contain {bits} bits as there are"
"\n{bits} variables (or be an integer)."
"".format(bits=bits))
binlist.append(list(val))
else:
raise TypeError("A term list can only contain lists,"
" ints or dicts.")
return binlist
def SOPform(variables, minterms, dontcares=None):
"""
The SOPform function uses simplified_pairs and a redundant group-
eliminating algorithm to convert the list of all input combos that
generate '1' (the minterms) into the smallest sum-of-products form.
The variables must be given as the first argument.
Return a logical :py:class:`~.Or` function (i.e., the "sum of products" or
"SOP" form) that gives the desired outcome. If there are inputs that can
be ignored, pass them as a list, too.
The result will be one of the (perhaps many) functions that satisfy
the conditions.
Examples
========
>>> from sympy.logic import SOPform
>>> from sympy import symbols
>>> w, x, y, z = symbols('w x y z')
>>> minterms = [[0, 0, 0, 1], [0, 0, 1, 1],
... [0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 1, 1]]
>>> dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]]
>>> SOPform([w, x, y, z], minterms, dontcares)
(y & z) | (~w & ~x)
The terms can also be represented as integers:
>>> minterms = [1, 3, 7, 11, 15]
>>> dontcares = [0, 2, 5]
>>> SOPform([w, x, y, z], minterms, dontcares)
(y & z) | (~w & ~x)
They can also be specified using dicts, which does not have to be fully
specified:
>>> minterms = [{w: 0, x: 1}, {y: 1, z: 1, x: 0}]
>>> SOPform([w, x, y, z], minterms)
(x & ~w) | (y & z & ~x)
Or a combination:
>>> minterms = [4, 7, 11, [1, 1, 1, 1]]
>>> dontcares = [{w : 0, x : 0, y: 0}, 5]
>>> SOPform([w, x, y, z], minterms, dontcares)
(w & y & z) | (~w & ~y) | (x & z & ~w)
See also
========
POSform
References
==========
.. [1] https://en.wikipedia.org/wiki/Quine-McCluskey_algorithm
.. [2] https://en.wikipedia.org/wiki/Don%27t-care_term
"""
if not minterms:
return false
variables = tuple(map(sympify, variables))
minterms = _input_to_binlist(minterms, variables)
dontcares = _input_to_binlist((dontcares or []), variables)
for d in dontcares:
if d in minterms:
raise ValueError('%s in minterms is also in dontcares' % d)
return _sop_form(variables, minterms, dontcares)
def _sop_form(variables, minterms, dontcares):
new = _simplified_pairs(minterms + dontcares)
essential = _rem_redundancy(new, minterms)
return Or(*[_convert_to_varsSOP(x, variables) for x in essential])
def POSform(variables, minterms, dontcares=None):
"""
The POSform function uses simplified_pairs and a redundant-group
eliminating algorithm to convert the list of all input combinations
that generate '1' (the minterms) into the smallest product-of-sums form.
The variables must be given as the first argument.
Return a logical :py:class:`~.And` function (i.e., the "product of sums"
or "POS" form) that gives the desired outcome. If there are inputs that can
be ignored, pass them as a list, too.
The result will be one of the (perhaps many) functions that satisfy
the conditions.
Examples
========
>>> from sympy.logic import POSform
>>> from sympy import symbols
>>> w, x, y, z = symbols('w x y z')
>>> minterms = [[0, 0, 0, 1], [0, 0, 1, 1], [0, 1, 1, 1],
... [1, 0, 1, 1], [1, 1, 1, 1]]
>>> dontcares = [[0, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 1]]
>>> POSform([w, x, y, z], minterms, dontcares)
z & (y | ~w)
The terms can also be represented as integers:
>>> minterms = [1, 3, 7, 11, 15]
>>> dontcares = [0, 2, 5]
>>> POSform([w, x, y, z], minterms, dontcares)
z & (y | ~w)
They can also be specified using dicts, which does not have to be fully
specified:
>>> minterms = [{w: 0, x: 1}, {y: 1, z: 1, x: 0}]
>>> POSform([w, x, y, z], minterms)
(x | y) & (x | z) & (~w | ~x)
Or a combination:
>>> minterms = [4, 7, 11, [1, 1, 1, 1]]
>>> dontcares = [{w : 0, x : 0, y: 0}, 5]
>>> POSform([w, x, y, z], minterms, dontcares)
(w | x) & (y | ~w) & (z | ~y)
See also
========
SOPform
References
==========
.. [1] https://en.wikipedia.org/wiki/Quine-McCluskey_algorithm
.. [2] https://en.wikipedia.org/wiki/Don%27t-care_term
"""
if not minterms:
return false
variables = tuple(map(sympify, variables))
minterms = _input_to_binlist(minterms, variables)
dontcares = _input_to_binlist((dontcares or []), variables)
for d in dontcares:
if d in minterms:
raise ValueError('%s in minterms is also in dontcares' % d)
maxterms = []
for t in product((0, 1), repeat=len(variables)):
t = list(t)
if (t not in minterms) and (t not in dontcares):
maxterms.append(t)
new = _simplified_pairs(maxterms + dontcares)
essential = _rem_redundancy(new, maxterms)
return And(*[_convert_to_varsPOS(x, variables) for x in essential])
def ANFform(variables, truthvalues):
"""
The ANFform function converts the list of truth values to
Algebraic Normal Form (ANF).
The variables must be given as the first argument.
Return True, False, logical :py:class:`~.And` function (i.e., the
"Zhegalkin monomial") or logical :py:class:`~.Xor` function (i.e.,
the "Zhegalkin polynomial"). When True and False
are represented by 1 and 0, respectively, then
:py:class:`~.And` is multiplication and :py:class:`~.Xor` is addition.
Formally a "Zhegalkin monomial" is the product (logical
And) of a finite set of distinct variables, including
the empty set whose product is denoted 1 (True).
A "Zhegalkin polynomial" is the sum (logical Xor) of a
set of Zhegalkin monomials, with the empty set denoted
by 0 (False).
Parameters
==========
variables : list of variables
truthvalues : list of 1's and 0's (result column of truth table)
Examples
========
>>> from sympy.logic.boolalg import ANFform
>>> from sympy.abc import x, y
>>> ANFform([x], [1, 0])
x ^ True
>>> ANFform([x, y], [0, 1, 1, 1])
x ^ y ^ (x & y)
References
==========
.. [1] https://en.wikipedia.org/wiki/Zhegalkin_polynomial
"""
n_vars = len(variables)
n_values = len(truthvalues)
if n_values != 2 ** n_vars:
raise ValueError("The number of truth values must be equal to 2^%d, "
"got %d" % (n_vars, n_values))
variables = tuple(map(sympify, variables))
coeffs = anf_coeffs(truthvalues)
terms = []
for i, t in enumerate(product((0, 1), repeat=n_vars)):
if coeffs[i] == 1:
terms.append(t)
return Xor(*[_convert_to_varsANF(x, variables) for x in terms],
remove_true=False)
def anf_coeffs(truthvalues):
"""
Convert a list of truth values of some boolean expression
to the list of coefficients of the polynomial mod 2 (exclusive
disjunction) representing the boolean expression in ANF
(i.e., the "Zhegalkin polynomial").
There are `2^n` possible Zhegalkin monomials in `n` variables, since
each monomial is fully specified by the presence or absence of
each variable.
We can enumerate all the monomials. For example, boolean
function with four variables ``(a, b, c, d)`` can contain
up to `2^4 = 16` monomials. The 13-th monomial is the
product ``a & b & d``, because 13 in binary is 1, 1, 0, 1.
A given monomial's presence or absence in a polynomial corresponds
to that monomial's coefficient being 1 or 0 respectively.
Examples
========
>>> from sympy.logic.boolalg import anf_coeffs, bool_monomial, Xor
>>> from sympy.abc import a, b, c
>>> truthvalues = [0, 1, 1, 0, 0, 1, 0, 1]
>>> coeffs = anf_coeffs(truthvalues)
>>> coeffs
[0, 1, 1, 0, 0, 0, 1, 0]
>>> polynomial = Xor(*[
... bool_monomial(k, [a, b, c])
... for k, coeff in enumerate(coeffs) if coeff == 1
... ])
>>> polynomial
b ^ c ^ (a & b)
"""
s = '{:b}'.format(len(truthvalues))
n = len(s) - 1
if len(truthvalues) != 2**n:
raise ValueError("The number of truth values must be a power of two, "
"got %d" % len(truthvalues))
coeffs = [[v] for v in truthvalues]
for i in range(n):
tmp = []
for j in range(2 ** (n-i-1)):
tmp.append(coeffs[2*j] +
list(map(lambda x, y: x^y, coeffs[2*j], coeffs[2*j+1])))
coeffs = tmp
return coeffs[0]
def bool_minterm(k, variables):
"""
Return the k-th minterm.
Minterms are numbered by a binary encoding of the complementation
pattern of the variables. This convention assigns the value 1 to
the direct form and 0 to the complemented form.
Parameters
==========
k : int or list of 1's and 0's (complementation pattern)
variables : list of variables
Examples
========
>>> from sympy.logic.boolalg import bool_minterm
>>> from sympy.abc import x, y, z
>>> bool_minterm([1, 0, 1], [x, y, z])
x & z & ~y
>>> bool_minterm(6, [x, y, z])
x & y & ~z
References
==========
.. [1] https://en.wikipedia.org/wiki/Canonical_normal_form#Indexing_minterms
"""
if isinstance(k, int):
k = ibin(k, len(variables))
variables = tuple(map(sympify, variables))
return _convert_to_varsSOP(k, variables)
def bool_maxterm(k, variables):
"""
Return the k-th maxterm.
Each maxterm is assigned an index based on the opposite
conventional binary encoding used for minterms. The maxterm
convention assigns the value 0 to the direct form and 1 to
the complemented form.
Parameters
==========
k : int or list of 1's and 0's (complementation pattern)
variables : list of variables
Examples
========
>>> from sympy.logic.boolalg import bool_maxterm
>>> from sympy.abc import x, y, z
>>> bool_maxterm([1, 0, 1], [x, y, z])
y | ~x | ~z
>>> bool_maxterm(6, [x, y, z])
z | ~x | ~y
References
==========
.. [1] https://en.wikipedia.org/wiki/Canonical_normal_form#Indexing_maxterms
"""
if isinstance(k, int):
k = ibin(k, len(variables))
variables = tuple(map(sympify, variables))
return _convert_to_varsPOS(k, variables)
def bool_monomial(k, variables):
"""
Return the k-th monomial.
Monomials are numbered by a binary encoding of the presence and
absences of the variables. This convention assigns the value
1 to the presence of variable and 0 to the absence of variable.
Each boolean function can be uniquely represented by a
Zhegalkin Polynomial (Algebraic Normal Form). The Zhegalkin
Polynomial of the boolean function with `n` variables can contain
up to `2^n` monomials. We can enumerate all the monomials.
Each monomial is fully specified by the presence or absence
of each variable.
For example, boolean function with four variables ``(a, b, c, d)``
can contain up to `2^4 = 16` monomials. The 13-th monomial is the
product ``a & b & d``, because 13 in binary is 1, 1, 0, 1.
Parameters
==========
k : int or list of 1's and 0's
variables : list of variables
Examples
========
>>> from sympy.logic.boolalg import bool_monomial
>>> from sympy.abc import x, y, z
>>> bool_monomial([1, 0, 1], [x, y, z])
x & z
>>> bool_monomial(6, [x, y, z])
x & y
"""
if isinstance(k, int):
k = ibin(k, len(variables))
variables = tuple(map(sympify, variables))
return _convert_to_varsANF(k, variables)
def _find_predicates(expr):
"""Helper to find logical predicates in BooleanFunctions.
A logical predicate is defined here as anything within a BooleanFunction
that is not a BooleanFunction itself.
"""
if not isinstance(expr, BooleanFunction):
return {expr}
return set().union(*(map(_find_predicates, expr.args)))
def simplify_logic(expr, form=None, deep=True, force=False, dontcare=None):
"""
This function simplifies a boolean function to its simplified version
in SOP or POS form. The return type is an :py:class:`~.Or` or
:py:class:`~.And` object in SymPy.
Parameters
==========
expr : Boolean expression
form : string (``'cnf'`` or ``'dnf'``) or ``None`` (default).
If ``'cnf'`` or ``'dnf'``, the simplest expression in the corresponding
normal form is returned; if ``None``, the answer is returned
according to the form with fewest args (in CNF by default).
deep : bool (default ``True``)
Indicates whether to recursively simplify any
non-boolean functions contained within the input.
force : bool (default ``False``)
As the simplifications require exponential time in the number
of variables, there is by default a limit on expressions with
8 variables. When the expression has more than 8 variables
only symbolical simplification (controlled by ``deep``) is
made. By setting ``force`` to ``True``, this limit is removed. Be
aware that this can lead to very long simplification times.
dontcare : Boolean expression
Optimize expression under the assumption that inputs where this
expression is true are don't care. This is useful in e.g. Piecewise
conditions, where later conditions do not need to consider inputs that
are converted by previous conditions. For example, if a previous
condition is ``And(A, B)``, the simplification of expr can be made
with don't cares for ``And(A, B)``.
Examples
========
>>> from sympy.logic import simplify_logic
>>> from sympy.abc import x, y, z
>>> b = (~x & ~y & ~z) | ( ~x & ~y & z)
>>> simplify_logic(b)
~x & ~y
>>> simplify_logic(x | y, dontcare=y)
x
References
==========
.. [1] https://en.wikipedia.org/wiki/Don%27t-care_term
"""
if form not in (None, 'cnf', 'dnf'):
raise ValueError("form can be cnf or dnf only")
expr = sympify(expr)
# check for quick exit if form is given: right form and all args are
# literal and do not involve Not
if form:
form_ok = False
if form == 'cnf':
form_ok = is_cnf(expr)
elif form == 'dnf':
form_ok = is_dnf(expr)
if form_ok and all(is_literal(a)
for a in expr.args):
return expr
from sympy.core.relational import Relational
if deep:
variables = expr.atoms(Relational)
from sympy.simplify.simplify import simplify
s = tuple(map(simplify, variables))
expr = expr.xreplace(dict(zip(variables, s)))
if not isinstance(expr, BooleanFunction):
return expr
# Replace Relationals with Dummys to possibly
# reduce the number of variables
repl = {}
undo = {}
from sympy.core.symbol import Dummy
variables = expr.atoms(Relational)
if dontcare is not None:
dontcare = sympify(dontcare)
variables.update(dontcare.atoms(Relational))
while variables:
var = variables.pop()
if var.is_Relational:
d = Dummy()
undo[d] = var
repl[var] = d
nvar = var.negated
if nvar in variables:
repl[nvar] = Not(d)
variables.remove(nvar)
expr = expr.xreplace(repl)
if dontcare is not None:
dontcare = dontcare.xreplace(repl)
# Get new variables after replacing
variables = _find_predicates(expr)
if not force and len(variables) > 8:
return expr.xreplace(undo)
if dontcare is not None:
# Add variables from dontcare
dcvariables = _find_predicates(dontcare)
variables.update(dcvariables)
# if too many restore to variables only
if not force and len(variables) > 8:
variables = _find_predicates(expr)
dontcare = None
# group into constants and variable values
c, v = sift(ordered(variables), lambda x: x in (True, False), binary=True)
variables = c + v
# standardize constants to be 1 or 0 in keeping with truthtable
c = [1 if i == True else 0 for i in c]
truthtable = _get_truthtable(v, expr, c)
if dontcare is not None:
dctruthtable = _get_truthtable(v, dontcare, c)
truthtable = [t for t in truthtable if t not in dctruthtable]
else:
dctruthtable = []
big = len(truthtable) >= (2 ** (len(variables) - 1))
if form == 'dnf' or form is None and big:
return _sop_form(variables, truthtable, dctruthtable).xreplace(undo)
return POSform(variables, truthtable, dctruthtable).xreplace(undo)
def _get_truthtable(variables, expr, const):
""" Return a list of all combinations leading to a True result for ``expr``.
"""
_variables = variables.copy()
def _get_tt(inputs):
if _variables:
v = _variables.pop()
tab = [[i[0].xreplace({v: false}), [0] + i[1]] for i in inputs if i[0] is not false]
tab.extend([[i[0].xreplace({v: true}), [1] + i[1]] for i in inputs if i[0] is not false])
return _get_tt(tab)
return inputs
res = [const + k[1] for k in _get_tt([[expr, []]]) if k[0]]
if res == [[]]:
return []
else:
return res
def _finger(eq):
"""
Assign a 5-item fingerprint to each symbol in the equation:
[
# of times it appeared as a Symbol;
# of times it appeared as a Not(symbol);
# of times it appeared as a Symbol in an And or Or;
# of times it appeared as a Not(Symbol) in an And or Or;
a sorted tuple of tuples, (i, j, k), where i is the number of arguments
in an And or Or with which it appeared as a Symbol, and j is
the number of arguments that were Not(Symbol); k is the number
of times that (i, j) was seen.
]
Examples
========
>>> from sympy.logic.boolalg import _finger as finger
>>> from sympy import And, Or, Not, Xor, to_cnf, symbols
>>> from sympy.abc import a, b, x, y
>>> eq = Or(And(Not(y), a), And(Not(y), b), And(x, y))
>>> dict(finger(eq))
{(0, 0, 1, 0, ((2, 0, 1),)): [x],
(0, 0, 1, 0, ((2, 1, 1),)): [a, b],
(0, 0, 1, 2, ((2, 0, 1),)): [y]}
>>> dict(finger(x & ~y))
{(0, 1, 0, 0, ()): [y], (1, 0, 0, 0, ()): [x]}
In the following, the (5, 2, 6) means that there were 6 Or
functions in which a symbol appeared as itself amongst 5 arguments in
which there were also 2 negated symbols, e.g. ``(a0 | a1 | a2 | ~a3 | ~a4)``
is counted once for a0, a1 and a2.
>>> dict(finger(to_cnf(Xor(*symbols('a:5')))))
{(0, 0, 8, 8, ((5, 0, 1), (5, 2, 6), (5, 4, 1))): [a0, a1, a2, a3, a4]}
The equation must not have more than one level of nesting:
>>> dict(finger(And(Or(x, y), y)))
{(0, 0, 1, 0, ((2, 0, 1),)): [x], (1, 0, 1, 0, ((2, 0, 1),)): [y]}
>>> dict(finger(And(Or(x, And(a, x)), y)))
Traceback (most recent call last):
...
NotImplementedError: unexpected level of nesting
So y and x have unique fingerprints, but a and b do not.
"""
f = eq.free_symbols
d = dict(list(zip(f, [[0]*4 + [defaultdict(int)] for fi in f])))
for a in eq.args:
if a.is_Symbol:
d[a][0] += 1
elif a.is_Not:
d[a.args[0]][1] += 1
else:
o = len(a.args), sum(isinstance(ai, Not) for ai in a.args)
for ai in a.args:
if ai.is_Symbol:
d[ai][2] += 1
d[ai][-1][o] += 1
elif ai.is_Not:
d[ai.args[0]][3] += 1
else:
raise NotImplementedError('unexpected level of nesting')
inv = defaultdict(list)
for k, v in ordered(iter(d.items())):
v[-1] = tuple(sorted([i + (j,) for i, j in v[-1].items()]))
inv[tuple(v)].append(k)
return inv
def bool_map(bool1, bool2):
"""
Return the simplified version of *bool1*, and the mapping of variables
that makes the two expressions *bool1* and *bool2* represent the same
logical behaviour for some correspondence between the variables
of each.
If more than one mappings of this sort exist, one of them
is returned.
For example, ``And(x, y)`` is logically equivalent to ``And(a, b)`` for
the mapping ``{x: a, y: b}`` or ``{x: b, y: a}``.
If no such mapping exists, return ``False``.
Examples
========
>>> from sympy import SOPform, bool_map, Or, And, Not, Xor
>>> from sympy.abc import w, x, y, z, a, b, c, d
>>> function1 = SOPform([x, z, y],[[1, 0, 1], [0, 0, 1]])
>>> function2 = SOPform([a, b, c],[[1, 0, 1], [1, 0, 0]])
>>> bool_map(function1, function2)
(y & ~z, {y: a, z: b})
The results are not necessarily unique, but they are canonical. Here,
``(w, z)`` could be ``(a, d)`` or ``(d, a)``:
>>> eq = Or(And(Not(y), w), And(Not(y), z), And(x, y))
>>> eq2 = Or(And(Not(c), a), And(Not(c), d), And(b, c))
>>> bool_map(eq, eq2)
((x & y) | (w & ~y) | (z & ~y), {w: a, x: b, y: c, z: d})
>>> eq = And(Xor(a, b), c, And(c,d))
>>> bool_map(eq, eq.subs(c, x))
(c & d & (a | b) & (~a | ~b), {a: a, b: b, c: d, d: x})
"""
def match(function1, function2):
"""Return the mapping that equates variables between two
simplified boolean expressions if possible.
By "simplified" we mean that a function has been denested
and is either an And (or an Or) whose arguments are either
symbols (x), negated symbols (Not(x)), or Or (or an And) whose
arguments are only symbols or negated symbols. For example,
``And(x, Not(y), Or(w, Not(z)))``.
Basic.match is not robust enough (see issue 4835) so this is
a workaround that is valid for simplified boolean expressions
"""
# do some quick checks
if function1.__class__ != function2.__class__:
return None # maybe simplification makes them the same?
if len(function1.args) != len(function2.args):
return None # maybe simplification makes them the same?
if function1.is_Symbol:
return {function1: function2}
# get the fingerprint dictionaries
f1 = _finger(function1)
f2 = _finger(function2)
# more quick checks
if len(f1) != len(f2):
return False
# assemble the match dictionary if possible
matchdict = {}
for k in f1.keys():
if k not in f2:
return False
if len(f1[k]) != len(f2[k]):
return False
for i, x in enumerate(f1[k]):
matchdict[x] = f2[k][i]
return matchdict
a = simplify_logic(bool1)
b = simplify_logic(bool2)
m = match(a, b)
if m:
return a, m
return m
def _apply_patternbased_simplification(rv, patterns, measure,
dominatingvalue,
replacementvalue=None,
threeterm_patterns=None):
"""
Replace patterns of Relational
Parameters
==========
rv : Expr
Boolean expression
patterns : tuple
Tuple of tuples, with (pattern to simplify, simplified pattern) with
two terms.
measure : function
Simplification measure.
dominatingvalue : Boolean or ``None``
The dominating value for the function of consideration.
For example, for :py:class:`~.And` ``S.false`` is dominating.
As soon as one expression is ``S.false`` in :py:class:`~.And`,
the whole expression is ``S.false``.
replacementvalue : Boolean or ``None``, optional
The resulting value for the whole expression if one argument
evaluates to ``dominatingvalue``.
For example, for :py:class:`~.Nand` ``S.false`` is dominating, but
in this case the resulting value is ``S.true``. Default is ``None``.
If ``replacementvalue`` is ``None`` and ``dominatingvalue`` is not
``None``, ``replacementvalue = dominatingvalue``.
threeterm_patterns : tuple, optional
Tuple of tuples, with (pattern to simplify, simplified pattern) with
three terms.
"""
from sympy.core.relational import Relational, _canonical
if replacementvalue is None and dominatingvalue is not None:
replacementvalue = dominatingvalue
# Use replacement patterns for Relationals
Rel, nonRel = sift(rv.args, lambda i: isinstance(i, Relational),
binary=True)
if len(Rel) <= 1:
return rv
Rel, nonRealRel = sift(Rel, lambda i: not any(s.is_real is False
for s in i.free_symbols),
binary=True)
Rel = [i.canonical for i in Rel]
if threeterm_patterns and len(Rel) >= 3:
Rel = _apply_patternbased_threeterm_simplification(Rel,
threeterm_patterns, rv.func, dominatingvalue,
replacementvalue, measure)
Rel = _apply_patternbased_twoterm_simplification(Rel, patterns,
rv.func, dominatingvalue, replacementvalue, measure)
rv = rv.func(*([_canonical(i) for i in ordered(Rel)]
+ nonRel + nonRealRel))
return rv
def _apply_patternbased_twoterm_simplification(Rel, patterns, func,
dominatingvalue,
replacementvalue,
measure):
""" Apply pattern-based two-term simplification."""
from sympy.functions.elementary.miscellaneous import Min, Max
from sympy.core.relational import Ge, Gt, _Inequality
changed = True
while changed and len(Rel) >= 2:
changed = False
# Use only < or <=
Rel = [r.reversed if isinstance(r, (Ge, Gt)) else r for r in Rel]
# Sort based on ordered
Rel = list(ordered(Rel))
# Eq and Ne must be tested reversed as well
rtmp = [(r, ) if isinstance(r, _Inequality) else (r, r.reversed) for r in Rel]
# Create a list of possible replacements
results = []
# Try all combinations of possibly reversed relational
for ((i, pi), (j, pj)) in combinations(enumerate(rtmp), 2):
for pattern, simp in patterns:
res = []
for p1, p2 in product(pi, pj):
# use SymPy matching
oldexpr = Tuple(p1, p2)
tmpres = oldexpr.match(pattern)
if tmpres:
res.append((tmpres, oldexpr))
if res:
for tmpres, oldexpr in res:
# we have a matching, compute replacement
np = simp.xreplace(tmpres)
if np == dominatingvalue:
# if dominatingvalue, the whole expression
# will be replacementvalue
return [replacementvalue]
# add replacement
if not isinstance(np, ITE) and not np.has(Min, Max):
# We only want to use ITE and Min/Max replacements if
# they simplify to a relational
costsaving = measure(func(*oldexpr.args)) - measure(np)
if costsaving > 0:
results.append((costsaving, ([i, j], np)))
if results:
# Sort results based on complexity
results = list(reversed(sorted(results,
key=lambda pair: pair[0])))
# Replace the one providing most simplification
replacement = results[0][1]
idx, newrel = replacement
idx.sort()
# Remove the old relationals
for index in reversed(idx):
del Rel[index]
if dominatingvalue is None or newrel != Not(dominatingvalue):
# Insert the new one (no need to insert a value that will
# not affect the result)
if newrel.func == func:
for a in newrel.args:
Rel.append(a)
else:
Rel.append(newrel)
# We did change something so try again
changed = True
return Rel
def _apply_patternbased_threeterm_simplification(Rel, patterns, func,
dominatingvalue,
replacementvalue,
measure):
""" Apply pattern-based three-term simplification."""
from sympy.functions.elementary.miscellaneous import Min, Max
from sympy.core.relational import Le, Lt, _Inequality
changed = True
while changed and len(Rel) >= 3:
changed = False
# Use only > or >=
Rel = [r.reversed if isinstance(r, (Le, Lt)) else r for r in Rel]
# Sort based on ordered
Rel = list(ordered(Rel))
# Create a list of possible replacements
results = []
# Eq and Ne must be tested reversed as well
rtmp = [(r, ) if isinstance(r, _Inequality) else (r, r.reversed) for r in Rel]
# Try all combinations of possibly reversed relational
for ((i, pi), (j, pj), (k, pk)) in permutations(enumerate(rtmp), 3):
for pattern, simp in patterns:
res = []
for p1, p2, p3 in product(pi, pj, pk):
# use SymPy matching
oldexpr = Tuple(p1, p2, p3)
tmpres = oldexpr.match(pattern)
if tmpres:
res.append((tmpres, oldexpr))
if res:
for tmpres, oldexpr in res:
# we have a matching, compute replacement
np = simp.xreplace(tmpres)
if np == dominatingvalue:
# if dominatingvalue, the whole expression
# will be replacementvalue
return [replacementvalue]
# add replacement
if not isinstance(np, ITE) and not np.has(Min, Max):
# We only want to use ITE and Min/Max replacements if
# they simplify to a relational
costsaving = measure(func(*oldexpr.args)) - measure(np)
if costsaving > 0:
results.append((costsaving, ([i, j, k], np)))
if results:
# Sort results based on complexity
results = list(reversed(sorted(results,
key=lambda pair: pair[0])))
# Replace the one providing most simplification
replacement = results[0][1]
idx, newrel = replacement
idx.sort()
# Remove the old relationals
for index in reversed(idx):
del Rel[index]
if dominatingvalue is None or newrel != Not(dominatingvalue):
# Insert the new one (no need to insert a value that will
# not affect the result)
if newrel.func == func:
for a in newrel.args:
Rel.append(a)
else:
Rel.append(newrel)
# We did change something so try again
changed = True
return Rel
@cacheit
def _simplify_patterns_and():
""" Two-term patterns for And."""
from sympy.core import Wild
from sympy.core.relational import Eq, Ne, Ge, Gt, Le, Lt
from sympy.functions.elementary.complexes import Abs
from sympy.functions.elementary.miscellaneous import Min, Max
a = Wild('a')
b = Wild('b')
c = Wild('c')
# Relationals patterns should be in alphabetical order
# (pattern1, pattern2, simplified)
# Do not use Ge, Gt
_matchers_and = ((Tuple(Eq(a, b), Lt(a, b)), false),
#(Tuple(Eq(a, b), Lt(b, a)), S.false),
#(Tuple(Le(b, a), Lt(a, b)), S.false),
#(Tuple(Lt(b, a), Le(a, b)), S.false),
(Tuple(Lt(b, a), Lt(a, b)), false),
(Tuple(Eq(a, b), Le(b, a)), Eq(a, b)),
#(Tuple(Eq(a, b), Le(a, b)), Eq(a, b)),
#(Tuple(Le(b, a), Lt(b, a)), Gt(a, b)),
(Tuple(Le(b, a), Le(a, b)), Eq(a, b)),
#(Tuple(Le(b, a), Ne(a, b)), Gt(a, b)),
#(Tuple(Lt(b, a), Ne(a, b)), Gt(a, b)),
(Tuple(Le(a, b), Lt(a, b)), Lt(a, b)),
(Tuple(Le(a, b), Ne(a, b)), Lt(a, b)),
(Tuple(Lt(a, b), Ne(a, b)), Lt(a, b)),
# Sign
(Tuple(Eq(a, b), Eq(a, -b)), And(Eq(a, S.Zero), Eq(b, S.Zero))),
# Min/Max/ITE
(Tuple(Le(b, a), Le(c, a)), Ge(a, Max(b, c))),
(Tuple(Le(b, a), Lt(c, a)), ITE(b > c, Ge(a, b), Gt(a, c))),
(Tuple(Lt(b, a), Lt(c, a)), Gt(a, Max(b, c))),
(Tuple(Le(a, b), Le(a, c)), Le(a, Min(b, c))),
(Tuple(Le(a, b), Lt(a, c)), ITE(b < c, Le(a, b), Lt(a, c))),
(Tuple(Lt(a, b), Lt(a, c)), Lt(a, Min(b, c))),
(Tuple(Le(a, b), Le(c, a)), ITE(Eq(b, c), Eq(a, b), ITE(b < c, false, And(Le(a, b), Ge(a, c))))),
(Tuple(Le(c, a), Le(a, b)), ITE(Eq(b, c), Eq(a, b), ITE(b < c, false, And(Le(a, b), Ge(a, c))))),
(Tuple(Lt(a, b), Lt(c, a)), ITE(b < c, false, And(Lt(a, b), Gt(a, c)))),
(Tuple(Lt(c, a), Lt(a, b)), ITE(b < c, false, And(Lt(a, b), Gt(a, c)))),
(Tuple(Le(a, b), Lt(c, a)), ITE(b <= c, false, And(Le(a, b), Gt(a, c)))),
(Tuple(Le(c, a), Lt(a, b)), ITE(b <= c, false, And(Lt(a, b), Ge(a, c)))),
(Tuple(Eq(a, b), Eq(a, c)), ITE(Eq(b, c), Eq(a, b), false)),
(Tuple(Lt(a, b), Lt(-b, a)), ITE(b > 0, Lt(Abs(a), b), false)),
(Tuple(Le(a, b), Le(-b, a)), ITE(b >= 0, Le(Abs(a), b), false)),
)
return _matchers_and
@cacheit
def _simplify_patterns_and3():
""" Three-term patterns for And."""
from sympy.core import Wild
from sympy.core.relational import Eq, Ge, Gt
a = Wild('a')
b = Wild('b')
c = Wild('c')
# Relationals patterns should be in alphabetical order
# (pattern1, pattern2, pattern3, simplified)
# Do not use Le, Lt
_matchers_and = ((Tuple(Ge(a, b), Ge(b, c), Gt(c, a)), false),
(Tuple(Ge(a, b), Gt(b, c), Gt(c, a)), false),
(Tuple(Gt(a, b), Gt(b, c), Gt(c, a)), false),
# (Tuple(Ge(c, a), Gt(a, b), Gt(b, c)), S.false),
# Lower bound relations
# Commented out combinations that does not simplify
(Tuple(Ge(a, b), Ge(a, c), Ge(b, c)), And(Ge(a, b), Ge(b, c))),
(Tuple(Ge(a, b), Ge(a, c), Gt(b, c)), And(Ge(a, b), Gt(b, c))),
# (Tuple(Ge(a, b), Gt(a, c), Ge(b, c)), And(Ge(a, b), Ge(b, c))),
(Tuple(Ge(a, b), Gt(a, c), Gt(b, c)), And(Ge(a, b), Gt(b, c))),
# (Tuple(Gt(a, b), Ge(a, c), Ge(b, c)), And(Gt(a, b), Ge(b, c))),
(Tuple(Ge(a, c), Gt(a, b), Gt(b, c)), And(Gt(a, b), Gt(b, c))),
(Tuple(Ge(b, c), Gt(a, b), Gt(a, c)), And(Gt(a, b), Ge(b, c))),
(Tuple(Gt(a, b), Gt(a, c), Gt(b, c)), And(Gt(a, b), Gt(b, c))),
# Upper bound relations
# Commented out combinations that does not simplify
(Tuple(Ge(b, a), Ge(c, a), Ge(b, c)), And(Ge(c, a), Ge(b, c))),
(Tuple(Ge(b, a), Ge(c, a), Gt(b, c)), And(Ge(c, a), Gt(b, c))),
# (Tuple(Ge(b, a), Gt(c, a), Ge(b, c)), And(Gt(c, a), Ge(b, c))),
(Tuple(Ge(b, a), Gt(c, a), Gt(b, c)), And(Gt(c, a), Gt(b, c))),
# (Tuple(Gt(b, a), Ge(c, a), Ge(b, c)), And(Ge(c, a), Ge(b, c))),
(Tuple(Ge(c, a), Gt(b, a), Gt(b, c)), And(Ge(c, a), Gt(b, c))),
(Tuple(Ge(b, c), Gt(b, a), Gt(c, a)), And(Gt(c, a), Ge(b, c))),
(Tuple(Gt(b, a), Gt(c, a), Gt(b, c)), And(Gt(c, a), Gt(b, c))),
# Circular relation
(Tuple(Ge(a, b), Ge(b, c), Ge(c, a)), And(Eq(a, b), Eq(b, c))),
)
return _matchers_and
@cacheit
def _simplify_patterns_or():
""" Two-term patterns for Or."""
from sympy.core import Wild
from sympy.core.relational import Eq, Ne, Ge, Gt, Le, Lt
from sympy.functions.elementary.complexes import Abs
from sympy.functions.elementary.miscellaneous import Min, Max
a = Wild('a')
b = Wild('b')
c = Wild('c')
# Relationals patterns should be in alphabetical order
# (pattern1, pattern2, simplified)
# Do not use Ge, Gt
_matchers_or = ((Tuple(Le(b, a), Le(a, b)), true),
#(Tuple(Le(b, a), Lt(a, b)), true),
(Tuple(Le(b, a), Ne(a, b)), true),
#(Tuple(Le(a, b), Lt(b, a)), true),
#(Tuple(Le(a, b), Ne(a, b)), true),
#(Tuple(Eq(a, b), Le(b, a)), Ge(a, b)),
#(Tuple(Eq(a, b), Lt(b, a)), Ge(a, b)),
(Tuple(Eq(a, b), Le(a, b)), Le(a, b)),
(Tuple(Eq(a, b), Lt(a, b)), Le(a, b)),
#(Tuple(Le(b, a), Lt(b, a)), Ge(a, b)),
(Tuple(Lt(b, a), Lt(a, b)), Ne(a, b)),
(Tuple(Lt(b, a), Ne(a, b)), Ne(a, b)),
(Tuple(Le(a, b), Lt(a, b)), Le(a, b)),
#(Tuple(Lt(a, b), Ne(a, b)), Ne(a, b)),
(Tuple(Eq(a, b), Ne(a, c)), ITE(Eq(b, c), true, Ne(a, c))),
(Tuple(Ne(a, b), Ne(a, c)), ITE(Eq(b, c), Ne(a, b), true)),
# Min/Max/ITE
(Tuple(Le(b, a), Le(c, a)), Ge(a, Min(b, c))),
#(Tuple(Ge(b, a), Ge(c, a)), Ge(Min(b, c), a)),
(Tuple(Le(b, a), Lt(c, a)), ITE(b > c, Lt(c, a), Le(b, a))),
(Tuple(Lt(b, a), Lt(c, a)), Gt(a, Min(b, c))),
#(Tuple(Gt(b, a), Gt(c, a)), Gt(Min(b, c), a)),
(Tuple(Le(a, b), Le(a, c)), Le(a, Max(b, c))),
#(Tuple(Le(b, a), Le(c, a)), Le(Max(b, c), a)),
(Tuple(Le(a, b), Lt(a, c)), ITE(b >= c, Le(a, b), Lt(a, c))),
(Tuple(Lt(a, b), Lt(a, c)), Lt(a, Max(b, c))),
#(Tuple(Lt(b, a), Lt(c, a)), Lt(Max(b, c), a)),
(Tuple(Le(a, b), Le(c, a)), ITE(b >= c, true, Or(Le(a, b), Ge(a, c)))),
(Tuple(Le(c, a), Le(a, b)), ITE(b >= c, true, Or(Le(a, b), Ge(a, c)))),
(Tuple(Lt(a, b), Lt(c, a)), ITE(b > c, true, Or(Lt(a, b), Gt(a, c)))),
(Tuple(Lt(c, a), Lt(a, b)), ITE(b > c, true, Or(Lt(a, b), Gt(a, c)))),
(Tuple(Le(a, b), Lt(c, a)), ITE(b >= c, true, Or(Le(a, b), Gt(a, c)))),
(Tuple(Le(c, a), Lt(a, b)), ITE(b >= c, true, Or(Lt(a, b), Ge(a, c)))),
(Tuple(Lt(b, a), Lt(a, -b)), ITE(b >= 0, Gt(Abs(a), b), true)),
(Tuple(Le(b, a), Le(a, -b)), ITE(b > 0, Ge(Abs(a), b), true)),
)
return _matchers_or
@cacheit
def _simplify_patterns_xor():
""" Two-term patterns for Xor."""
from sympy.functions.elementary.miscellaneous import Min, Max
from sympy.core import Wild
from sympy.core.relational import Eq, Ne, Ge, Gt, Le, Lt
a = Wild('a')
b = Wild('b')
c = Wild('c')
# Relationals patterns should be in alphabetical order
# (pattern1, pattern2, simplified)
# Do not use Ge, Gt
_matchers_xor = (#(Tuple(Le(b, a), Lt(a, b)), true),
#(Tuple(Lt(b, a), Le(a, b)), true),
#(Tuple(Eq(a, b), Le(b, a)), Gt(a, b)),
#(Tuple(Eq(a, b), Lt(b, a)), Ge(a, b)),
(Tuple(Eq(a, b), Le(a, b)), Lt(a, b)),
(Tuple(Eq(a, b), Lt(a, b)), Le(a, b)),
(Tuple(Le(a, b), Lt(a, b)), Eq(a, b)),
(Tuple(Le(a, b), Le(b, a)), Ne(a, b)),
(Tuple(Le(b, a), Ne(a, b)), Le(a, b)),
# (Tuple(Lt(b, a), Lt(a, b)), Ne(a, b)),
(Tuple(Lt(b, a), Ne(a, b)), Lt(a, b)),
# (Tuple(Le(a, b), Lt(a, b)), Eq(a, b)),
# (Tuple(Le(a, b), Ne(a, b)), Ge(a, b)),
# (Tuple(Lt(a, b), Ne(a, b)), Gt(a, b)),
# Min/Max/ITE
(Tuple(Le(b, a), Le(c, a)),
And(Ge(a, Min(b, c)), Lt(a, Max(b, c)))),
(Tuple(Le(b, a), Lt(c, a)),
ITE(b > c, And(Gt(a, c), Lt(a, b)),
And(Ge(a, b), Le(a, c)))),
(Tuple(Lt(b, a), Lt(c, a)),
And(Gt(a, Min(b, c)), Le(a, Max(b, c)))),
(Tuple(Le(a, b), Le(a, c)),
And(Le(a, Max(b, c)), Gt(a, Min(b, c)))),
(Tuple(Le(a, b), Lt(a, c)),
ITE(b < c, And(Lt(a, c), Gt(a, b)),
And(Le(a, b), Ge(a, c)))),
(Tuple(Lt(a, b), Lt(a, c)),
And(Lt(a, Max(b, c)), Ge(a, Min(b, c)))),
)
return _matchers_xor
def simplify_univariate(expr):
"""return a simplified version of univariate boolean expression, else ``expr``"""
from sympy.functions.elementary.piecewise import Piecewise
from sympy.core.relational import Eq, Ne
if not isinstance(expr, BooleanFunction):
return expr
if expr.atoms(Eq, Ne):
return expr
c = expr
free = c.free_symbols
if len(free) != 1:
return c
x = free.pop()
ok, i = Piecewise((0, c), evaluate=False
)._intervals(x, err_on_Eq=True)
if not ok:
return c
if not i:
return false
args = []
for a, b, _, _ in i:
if a is S.NegativeInfinity:
if b is S.Infinity:
c = true
else:
if c.subs(x, b) == True:
c = (x <= b)
else:
c = (x < b)
else:
incl_a = (c.subs(x, a) == True)
incl_b = (c.subs(x, b) == True)
if incl_a and incl_b:
if b.is_infinite:
c = (x >= a)
else:
c = And(a <= x, x <= b)
elif incl_a:
c = And(a <= x, x < b)
elif incl_b:
if b.is_infinite:
c = (x > a)
else:
c = And(a < x, x <= b)
else:
c = And(a < x, x < b)
args.append(c)
return Or(*args)
# Classes corresponding to logic gates
# Used in gateinputcount method
BooleanGates = (And, Or, Xor, Nand, Nor, Not, Xnor, ITE)
def gateinputcount(expr):
"""
Return the total number of inputs for the logic gates realizing the
Boolean expression.
Returns
=======
int
Number of gate inputs
Note
====
Not all Boolean functions count as gate here, only those that are
considered to be standard gates. These are: :py:class:`~.And`,
:py:class:`~.Or`, :py:class:`~.Xor`, :py:class:`~.Not`, and
:py:class:`~.ITE` (multiplexer). :py:class:`~.Nand`, :py:class:`~.Nor`,
and :py:class:`~.Xnor` will be evaluated to ``Not(And())`` etc.
Examples
========
>>> from sympy.logic import And, Or, Nand, Not, gateinputcount
>>> from sympy.abc import x, y, z
>>> expr = And(x, y)
>>> gateinputcount(expr)
2
>>> gateinputcount(Or(expr, z))
4
Note that ``Nand`` is automatically evaluated to ``Not(And())`` so
>>> gateinputcount(Nand(x, y, z))
4
>>> gateinputcount(Not(And(x, y, z)))
4
Although this can be avoided by using ``evaluate=False``
>>> gateinputcount(Nand(x, y, z, evaluate=False))
3
Also note that a comparison will count as a Boolean variable:
>>> gateinputcount(And(x > z, y >= 2))
2
As will a symbol:
>>> gateinputcount(x)
0
"""
if not isinstance(expr, Boolean):
raise TypeError("Expression must be Boolean")
if isinstance(expr, BooleanGates):
return len(expr.args) + sum(gateinputcount(x) for x in expr.args)
return 0
|
11820b130c2fc684d5a5aa4ea2408220cf8a9139ec7403204188982a714df79f | import copy
from sympy.core import S
from sympy.core.function import expand_mul
from sympy.functions.elementary.miscellaneous import Min, sqrt
from sympy.functions.elementary.complexes import sign
from .common import NonSquareMatrixError, NonPositiveDefiniteMatrixError
from .utilities import _get_intermediate_simp, _iszero
from .determinant import _find_reasonable_pivot_naive
def _rank_decomposition(M, iszerofunc=_iszero, simplify=False):
r"""Returns a pair of matrices (`C`, `F`) with matching rank
such that `A = C F`.
Parameters
==========
iszerofunc : Function, optional
A function used for detecting whether an element can
act as a pivot. ``lambda x: x.is_zero`` is used by default.
simplify : Bool or Function, optional
A function used to simplify elements when looking for a
pivot. By default SymPy's ``simplify`` is used.
Returns
=======
(C, F) : Matrices
`C` and `F` are full-rank matrices with rank as same as `A`,
whose product gives `A`.
See Notes for additional mathematical details.
Examples
========
>>> from sympy import Matrix
>>> A = Matrix([
... [1, 3, 1, 4],
... [2, 7, 3, 9],
... [1, 5, 3, 1],
... [1, 2, 0, 8]
... ])
>>> C, F = A.rank_decomposition()
>>> C
Matrix([
[1, 3, 4],
[2, 7, 9],
[1, 5, 1],
[1, 2, 8]])
>>> F
Matrix([
[1, 0, -2, 0],
[0, 1, 1, 0],
[0, 0, 0, 1]])
>>> C * F == A
True
Notes
=====
Obtaining `F`, an RREF of `A`, is equivalent to creating a
product
.. math::
E_n E_{n-1} ... E_1 A = F
where `E_n, E_{n-1}, \dots, E_1` are the elimination matrices or
permutation matrices equivalent to each row-reduction step.
The inverse of the same product of elimination matrices gives
`C`:
.. math::
C = \left(E_n E_{n-1} \dots E_1\right)^{-1}
It is not necessary, however, to actually compute the inverse:
the columns of `C` are those from the original matrix with the
same column indices as the indices of the pivot columns of `F`.
References
==========
.. [1] https://en.wikipedia.org/wiki/Rank_factorization
.. [2] Piziak, R.; Odell, P. L. (1 June 1999).
"Full Rank Factorization of Matrices".
Mathematics Magazine. 72 (3): 193. doi:10.2307/2690882
See Also
========
sympy.matrices.matrices.MatrixReductions.rref
"""
F, pivot_cols = M.rref(simplify=simplify, iszerofunc=iszerofunc,
pivots=True)
rank = len(pivot_cols)
C = M.extract(range(M.rows), pivot_cols)
F = F[:rank, :]
return C, F
def _liupc(M):
"""Liu's algorithm, for pre-determination of the Elimination Tree of
the given matrix, used in row-based symbolic Cholesky factorization.
Examples
========
>>> from sympy import SparseMatrix
>>> S = SparseMatrix([
... [1, 0, 3, 2],
... [0, 0, 1, 0],
... [4, 0, 0, 5],
... [0, 6, 7, 0]])
>>> S.liupc()
([[0], [], [0], [1, 2]], [4, 3, 4, 4])
References
==========
.. [1] Symbolic Sparse Cholesky Factorization using Elimination Trees,
Jeroen Van Grondelle (1999)
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.7582
"""
# Algorithm 2.4, p 17 of reference
# get the indices of the elements that are non-zero on or below diag
R = [[] for r in range(M.rows)]
for r, c, _ in M.row_list():
if c <= r:
R[r].append(c)
inf = len(R) # nothing will be this large
parent = [inf]*M.rows
virtual = [inf]*M.rows
for r in range(M.rows):
for c in R[r][:-1]:
while virtual[c] < r:
t = virtual[c]
virtual[c] = r
c = t
if virtual[c] == inf:
parent[c] = virtual[c] = r
return R, parent
def _row_structure_symbolic_cholesky(M):
"""Symbolic cholesky factorization, for pre-determination of the
non-zero structure of the Cholesky factororization.
Examples
========
>>> from sympy import SparseMatrix
>>> S = SparseMatrix([
... [1, 0, 3, 2],
... [0, 0, 1, 0],
... [4, 0, 0, 5],
... [0, 6, 7, 0]])
>>> S.row_structure_symbolic_cholesky()
[[0], [], [0], [1, 2]]
References
==========
.. [1] Symbolic Sparse Cholesky Factorization using Elimination Trees,
Jeroen Van Grondelle (1999)
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.7582
"""
R, parent = M.liupc()
inf = len(R) # this acts as infinity
Lrow = copy.deepcopy(R)
for k in range(M.rows):
for j in R[k]:
while j != inf and j != k:
Lrow[k].append(j)
j = parent[j]
Lrow[k] = list(sorted(set(Lrow[k])))
return Lrow
def _cholesky(M, hermitian=True):
"""Returns the Cholesky-type decomposition L of a matrix A
such that L * L.H == A if hermitian flag is True,
or L * L.T == A if hermitian is False.
A must be a Hermitian positive-definite matrix if hermitian is True,
or a symmetric matrix if it is False.
Examples
========
>>> from sympy import Matrix
>>> A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11)))
>>> A.cholesky()
Matrix([
[ 5, 0, 0],
[ 3, 3, 0],
[-1, 1, 3]])
>>> A.cholesky() * A.cholesky().T
Matrix([
[25, 15, -5],
[15, 18, 0],
[-5, 0, 11]])
The matrix can have complex entries:
>>> from sympy import I
>>> A = Matrix(((9, 3*I), (-3*I, 5)))
>>> A.cholesky()
Matrix([
[ 3, 0],
[-I, 2]])
>>> A.cholesky() * A.cholesky().H
Matrix([
[ 9, 3*I],
[-3*I, 5]])
Non-hermitian Cholesky-type decomposition may be useful when the
matrix is not positive-definite.
>>> A = Matrix([[1, 2], [2, 1]])
>>> L = A.cholesky(hermitian=False)
>>> L
Matrix([
[1, 0],
[2, sqrt(3)*I]])
>>> L*L.T == A
True
See Also
========
sympy.matrices.dense.DenseMatrix.LDLdecomposition
sympy.matrices.matrices.MatrixBase.LUdecomposition
QRdecomposition
"""
from .dense import MutableDenseMatrix
if not M.is_square:
raise NonSquareMatrixError("Matrix must be square.")
if hermitian and not M.is_hermitian:
raise ValueError("Matrix must be Hermitian.")
if not hermitian and not M.is_symmetric():
raise ValueError("Matrix must be symmetric.")
L = MutableDenseMatrix.zeros(M.rows, M.rows)
if hermitian:
for i in range(M.rows):
for j in range(i):
L[i, j] = ((1 / L[j, j])*(M[i, j] -
sum(L[i, k]*L[j, k].conjugate() for k in range(j))))
Lii2 = (M[i, i] -
sum(L[i, k]*L[i, k].conjugate() for k in range(i)))
if Lii2.is_positive is False:
raise NonPositiveDefiniteMatrixError(
"Matrix must be positive-definite")
L[i, i] = sqrt(Lii2)
else:
for i in range(M.rows):
for j in range(i):
L[i, j] = ((1 / L[j, j])*(M[i, j] -
sum(L[i, k]*L[j, k] for k in range(j))))
L[i, i] = sqrt(M[i, i] -
sum(L[i, k]**2 for k in range(i)))
return M._new(L)
def _cholesky_sparse(M, hermitian=True):
"""
Returns the Cholesky decomposition L of a matrix A
such that L * L.T = A
A must be a square, symmetric, positive-definite
and non-singular matrix
Examples
========
>>> from sympy import SparseMatrix
>>> A = SparseMatrix(((25,15,-5),(15,18,0),(-5,0,11)))
>>> A.cholesky()
Matrix([
[ 5, 0, 0],
[ 3, 3, 0],
[-1, 1, 3]])
>>> A.cholesky() * A.cholesky().T == A
True
The matrix can have complex entries:
>>> from sympy import I
>>> A = SparseMatrix(((9, 3*I), (-3*I, 5)))
>>> A.cholesky()
Matrix([
[ 3, 0],
[-I, 2]])
>>> A.cholesky() * A.cholesky().H
Matrix([
[ 9, 3*I],
[-3*I, 5]])
Non-hermitian Cholesky-type decomposition may be useful when the
matrix is not positive-definite.
>>> A = SparseMatrix([[1, 2], [2, 1]])
>>> L = A.cholesky(hermitian=False)
>>> L
Matrix([
[1, 0],
[2, sqrt(3)*I]])
>>> L*L.T == A
True
See Also
========
sympy.matrices.sparse.SparseMatrix.LDLdecomposition
sympy.matrices.matrices.MatrixBase.LUdecomposition
QRdecomposition
"""
from .dense import MutableDenseMatrix
if not M.is_square:
raise NonSquareMatrixError("Matrix must be square.")
if hermitian and not M.is_hermitian:
raise ValueError("Matrix must be Hermitian.")
if not hermitian and not M.is_symmetric():
raise ValueError("Matrix must be symmetric.")
dps = _get_intermediate_simp(expand_mul, expand_mul)
Crowstruc = M.row_structure_symbolic_cholesky()
C = MutableDenseMatrix.zeros(M.rows)
for i in range(len(Crowstruc)):
for j in Crowstruc[i]:
if i != j:
C[i, j] = M[i, j]
summ = 0
for p1 in Crowstruc[i]:
if p1 < j:
for p2 in Crowstruc[j]:
if p2 < j:
if p1 == p2:
if hermitian:
summ += C[i, p1]*C[j, p1].conjugate()
else:
summ += C[i, p1]*C[j, p1]
else:
break
else:
break
C[i, j] = dps((C[i, j] - summ) / C[j, j])
else: # i == j
C[j, j] = M[j, j]
summ = 0
for k in Crowstruc[j]:
if k < j:
if hermitian:
summ += C[j, k]*C[j, k].conjugate()
else:
summ += C[j, k]**2
else:
break
Cjj2 = dps(C[j, j] - summ)
if hermitian and Cjj2.is_positive is False:
raise NonPositiveDefiniteMatrixError(
"Matrix must be positive-definite")
C[j, j] = sqrt(Cjj2)
return M._new(C)
def _LDLdecomposition(M, hermitian=True):
"""Returns the LDL Decomposition (L, D) of matrix A,
such that L * D * L.H == A if hermitian flag is True, or
L * D * L.T == A if hermitian is False.
This method eliminates the use of square root.
Further this ensures that all the diagonal entries of L are 1.
A must be a Hermitian positive-definite matrix if hermitian is True,
or a symmetric matrix otherwise.
Examples
========
>>> from sympy import Matrix, eye
>>> A = Matrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11)))
>>> L, D = A.LDLdecomposition()
>>> L
Matrix([
[ 1, 0, 0],
[ 3/5, 1, 0],
[-1/5, 1/3, 1]])
>>> D
Matrix([
[25, 0, 0],
[ 0, 9, 0],
[ 0, 0, 9]])
>>> L * D * L.T * A.inv() == eye(A.rows)
True
The matrix can have complex entries:
>>> from sympy import I
>>> A = Matrix(((9, 3*I), (-3*I, 5)))
>>> L, D = A.LDLdecomposition()
>>> L
Matrix([
[ 1, 0],
[-I/3, 1]])
>>> D
Matrix([
[9, 0],
[0, 4]])
>>> L*D*L.H == A
True
See Also
========
sympy.matrices.dense.DenseMatrix.cholesky
sympy.matrices.matrices.MatrixBase.LUdecomposition
QRdecomposition
"""
from .dense import MutableDenseMatrix
if not M.is_square:
raise NonSquareMatrixError("Matrix must be square.")
if hermitian and not M.is_hermitian:
raise ValueError("Matrix must be Hermitian.")
if not hermitian and not M.is_symmetric():
raise ValueError("Matrix must be symmetric.")
D = MutableDenseMatrix.zeros(M.rows, M.rows)
L = MutableDenseMatrix.eye(M.rows)
if hermitian:
for i in range(M.rows):
for j in range(i):
L[i, j] = (1 / D[j, j])*(M[i, j] - sum(
L[i, k]*L[j, k].conjugate()*D[k, k] for k in range(j)))
D[i, i] = (M[i, i] -
sum(L[i, k]*L[i, k].conjugate()*D[k, k] for k in range(i)))
if D[i, i].is_positive is False:
raise NonPositiveDefiniteMatrixError(
"Matrix must be positive-definite")
else:
for i in range(M.rows):
for j in range(i):
L[i, j] = (1 / D[j, j])*(M[i, j] - sum(
L[i, k]*L[j, k]*D[k, k] for k in range(j)))
D[i, i] = M[i, i] - sum(L[i, k]**2*D[k, k] for k in range(i))
return M._new(L), M._new(D)
def _LDLdecomposition_sparse(M, hermitian=True):
"""
Returns the LDL Decomposition (matrices ``L`` and ``D``) of matrix
``A``, such that ``L * D * L.T == A``. ``A`` must be a square,
symmetric, positive-definite and non-singular.
This method eliminates the use of square root and ensures that all
the diagonal entries of L are 1.
Examples
========
>>> from sympy import SparseMatrix
>>> A = SparseMatrix(((25, 15, -5), (15, 18, 0), (-5, 0, 11)))
>>> L, D = A.LDLdecomposition()
>>> L
Matrix([
[ 1, 0, 0],
[ 3/5, 1, 0],
[-1/5, 1/3, 1]])
>>> D
Matrix([
[25, 0, 0],
[ 0, 9, 0],
[ 0, 0, 9]])
>>> L * D * L.T == A
True
"""
from .dense import MutableDenseMatrix
if not M.is_square:
raise NonSquareMatrixError("Matrix must be square.")
if hermitian and not M.is_hermitian:
raise ValueError("Matrix must be Hermitian.")
if not hermitian and not M.is_symmetric():
raise ValueError("Matrix must be symmetric.")
dps = _get_intermediate_simp(expand_mul, expand_mul)
Lrowstruc = M.row_structure_symbolic_cholesky()
L = MutableDenseMatrix.eye(M.rows)
D = MutableDenseMatrix.zeros(M.rows, M.cols)
for i in range(len(Lrowstruc)):
for j in Lrowstruc[i]:
if i != j:
L[i, j] = M[i, j]
summ = 0
for p1 in Lrowstruc[i]:
if p1 < j:
for p2 in Lrowstruc[j]:
if p2 < j:
if p1 == p2:
if hermitian:
summ += L[i, p1]*L[j, p1].conjugate()*D[p1, p1]
else:
summ += L[i, p1]*L[j, p1]*D[p1, p1]
else:
break
else:
break
L[i, j] = dps((L[i, j] - summ) / D[j, j])
else: # i == j
D[i, i] = M[i, i]
summ = 0
for k in Lrowstruc[i]:
if k < i:
if hermitian:
summ += L[i, k]*L[i, k].conjugate()*D[k, k]
else:
summ += L[i, k]**2*D[k, k]
else:
break
D[i, i] = dps(D[i, i] - summ)
if hermitian and D[i, i].is_positive is False:
raise NonPositiveDefiniteMatrixError(
"Matrix must be positive-definite")
return M._new(L), M._new(D)
def _LUdecomposition(M, iszerofunc=_iszero, simpfunc=None, rankcheck=False):
"""Returns (L, U, perm) where L is a lower triangular matrix with unit
diagonal, U is an upper triangular matrix, and perm is a list of row
swap index pairs. If A is the original matrix, then
``A = (L*U).permuteBkwd(perm)``, and the row permutation matrix P such
that $P A = L U$ can be computed by ``P = eye(A.rows).permuteFwd(perm)``.
See documentation for LUCombined for details about the keyword argument
rankcheck, iszerofunc, and simpfunc.
Parameters
==========
rankcheck : bool, optional
Determines if this function should detect the rank
deficiency of the matrixis and should raise a
``ValueError``.
iszerofunc : function, optional
A function which determines if a given expression is zero.
The function should be a callable that takes a single
SymPy expression and returns a 3-valued boolean value
``True``, ``False``, or ``None``.
It is internally used by the pivot searching algorithm.
See the notes section for a more information about the
pivot searching algorithm.
simpfunc : function or None, optional
A function that simplifies the input.
If this is specified as a function, this function should be
a callable that takes a single SymPy expression and returns
an another SymPy expression that is algebraically
equivalent.
If ``None``, it indicates that the pivot search algorithm
should not attempt to simplify any candidate pivots.
It is internally used by the pivot searching algorithm.
See the notes section for a more information about the
pivot searching algorithm.
Examples
========
>>> from sympy import Matrix
>>> a = Matrix([[4, 3], [6, 3]])
>>> L, U, _ = a.LUdecomposition()
>>> L
Matrix([
[ 1, 0],
[3/2, 1]])
>>> U
Matrix([
[4, 3],
[0, -3/2]])
See Also
========
sympy.matrices.dense.DenseMatrix.cholesky
sympy.matrices.dense.DenseMatrix.LDLdecomposition
QRdecomposition
LUdecomposition_Simple
LUdecompositionFF
LUsolve
"""
combined, p = M.LUdecomposition_Simple(iszerofunc=iszerofunc,
simpfunc=simpfunc, rankcheck=rankcheck)
# L is lower triangular ``M.rows x M.rows``
# U is upper triangular ``M.rows x M.cols``
# L has unit diagonal. For each column in combined, the subcolumn
# below the diagonal of combined is shared by L.
# If L has more columns than combined, then the remaining subcolumns
# below the diagonal of L are zero.
# The upper triangular portion of L and combined are equal.
def entry_L(i, j):
if i < j:
# Super diagonal entry
return M.zero
elif i == j:
return M.one
elif j < combined.cols:
return combined[i, j]
# Subdiagonal entry of L with no corresponding
# entry in combined
return M.zero
def entry_U(i, j):
return M.zero if i > j else combined[i, j]
L = M._new(combined.rows, combined.rows, entry_L)
U = M._new(combined.rows, combined.cols, entry_U)
return L, U, p
def _LUdecomposition_Simple(M, iszerofunc=_iszero, simpfunc=None,
rankcheck=False):
r"""Compute the PLU decomposition of the matrix.
Parameters
==========
rankcheck : bool, optional
Determines if this function should detect the rank
deficiency of the matrixis and should raise a
``ValueError``.
iszerofunc : function, optional
A function which determines if a given expression is zero.
The function should be a callable that takes a single
SymPy expression and returns a 3-valued boolean value
``True``, ``False``, or ``None``.
It is internally used by the pivot searching algorithm.
See the notes section for a more information about the
pivot searching algorithm.
simpfunc : function or None, optional
A function that simplifies the input.
If this is specified as a function, this function should be
a callable that takes a single SymPy expression and returns
an another SymPy expression that is algebraically
equivalent.
If ``None``, it indicates that the pivot search algorithm
should not attempt to simplify any candidate pivots.
It is internally used by the pivot searching algorithm.
See the notes section for a more information about the
pivot searching algorithm.
Returns
=======
(lu, row_swaps) : (Matrix, list)
If the original matrix is a $m, n$ matrix:
*lu* is a $m, n$ matrix, which contains result of the
decomposition in a compressed form. See the notes section
to see how the matrix is compressed.
*row_swaps* is a $m$-element list where each element is a
pair of row exchange indices.
``A = (L*U).permute_backward(perm)``, and the row
permutation matrix $P$ from the formula $P A = L U$ can be
computed by ``P=eye(A.row).permute_forward(perm)``.
Raises
======
ValueError
Raised if ``rankcheck=True`` and the matrix is found to
be rank deficient during the computation.
Notes
=====
About the PLU decomposition:
PLU decomposition is a generalization of a LU decomposition
which can be extended for rank-deficient matrices.
It can further be generalized for non-square matrices, and this
is the notation that SymPy is using.
PLU decomposition is a decomposition of a $m, n$ matrix $A$ in
the form of $P A = L U$ where
* $L$ is a $m, m$ lower triangular matrix with unit diagonal
entries.
* $U$ is a $m, n$ upper triangular matrix.
* $P$ is a $m, m$ permutation matrix.
So, for a square matrix, the decomposition would look like:
.. math::
L = \begin{bmatrix}
1 & 0 & 0 & \cdots & 0 \\
L_{1, 0} & 1 & 0 & \cdots & 0 \\
L_{2, 0} & L_{2, 1} & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
L_{n-1, 0} & L_{n-1, 1} & L_{n-1, 2} & \cdots & 1
\end{bmatrix}
.. math::
U = \begin{bmatrix}
U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, n-1} \\
0 & U_{1, 1} & U_{1, 2} & \cdots & U_{1, n-1} \\
0 & 0 & U_{2, 2} & \cdots & U_{2, n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & U_{n-1, n-1}
\end{bmatrix}
And for a matrix with more rows than the columns,
the decomposition would look like:
.. math::
L = \begin{bmatrix}
1 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
L_{1, 0} & 1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\
L_{2, 0} & L_{2, 1} & 1 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots
& \vdots \\
L_{n-1, 0} & L_{n-1, 1} & L_{n-1, 2} & \cdots & 1 & 0
& \cdots & 0 \\
L_{n, 0} & L_{n, 1} & L_{n, 2} & \cdots & L_{n, n-1} & 1
& \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots
& \ddots & \vdots \\
L_{m-1, 0} & L_{m-1, 1} & L_{m-1, 2} & \cdots & L_{m-1, n-1}
& 0 & \cdots & 1 \\
\end{bmatrix}
.. math::
U = \begin{bmatrix}
U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, n-1} \\
0 & U_{1, 1} & U_{1, 2} & \cdots & U_{1, n-1} \\
0 & 0 & U_{2, 2} & \cdots & U_{2, n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & U_{n-1, n-1} \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{bmatrix}
Finally, for a matrix with more columns than the rows, the
decomposition would look like:
.. math::
L = \begin{bmatrix}
1 & 0 & 0 & \cdots & 0 \\
L_{1, 0} & 1 & 0 & \cdots & 0 \\
L_{2, 0} & L_{2, 1} & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
L_{m-1, 0} & L_{m-1, 1} & L_{m-1, 2} & \cdots & 1
\end{bmatrix}
.. math::
U = \begin{bmatrix}
U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, m-1}
& \cdots & U_{0, n-1} \\
0 & U_{1, 1} & U_{1, 2} & \cdots & U_{1, m-1}
& \cdots & U_{1, n-1} \\
0 & 0 & U_{2, 2} & \cdots & U_{2, m-1}
& \cdots & U_{2, n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots
& \cdots & \vdots \\
0 & 0 & 0 & \cdots & U_{m-1, m-1}
& \cdots & U_{m-1, n-1} \\
\end{bmatrix}
About the compressed LU storage:
The results of the decomposition are often stored in compressed
forms rather than returning $L$ and $U$ matrices individually.
It may be less intiuitive, but it is commonly used for a lot of
numeric libraries because of the efficiency.
The storage matrix is defined as following for this specific
method:
* The subdiagonal elements of $L$ are stored in the subdiagonal
portion of $LU$, that is $LU_{i, j} = L_{i, j}$ whenever
$i > j$.
* The elements on the diagonal of $L$ are all 1, and are not
explicitly stored.
* $U$ is stored in the upper triangular portion of $LU$, that is
$LU_{i, j} = U_{i, j}$ whenever $i <= j$.
* For a case of $m > n$, the right side of the $L$ matrix is
trivial to store.
* For a case of $m < n$, the below side of the $U$ matrix is
trivial to store.
So, for a square matrix, the compressed output matrix would be:
.. math::
LU = \begin{bmatrix}
U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, n-1} \\
L_{1, 0} & U_{1, 1} & U_{1, 2} & \cdots & U_{1, n-1} \\
L_{2, 0} & L_{2, 1} & U_{2, 2} & \cdots & U_{2, n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
L_{n-1, 0} & L_{n-1, 1} & L_{n-1, 2} & \cdots & U_{n-1, n-1}
\end{bmatrix}
For a matrix with more rows than the columns, the compressed
output matrix would be:
.. math::
LU = \begin{bmatrix}
U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, n-1} \\
L_{1, 0} & U_{1, 1} & U_{1, 2} & \cdots & U_{1, n-1} \\
L_{2, 0} & L_{2, 1} & U_{2, 2} & \cdots & U_{2, n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
L_{n-1, 0} & L_{n-1, 1} & L_{n-1, 2} & \cdots
& U_{n-1, n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
L_{m-1, 0} & L_{m-1, 1} & L_{m-1, 2} & \cdots
& L_{m-1, n-1} \\
\end{bmatrix}
For a matrix with more columns than the rows, the compressed
output matrix would be:
.. math::
LU = \begin{bmatrix}
U_{0, 0} & U_{0, 1} & U_{0, 2} & \cdots & U_{0, m-1}
& \cdots & U_{0, n-1} \\
L_{1, 0} & U_{1, 1} & U_{1, 2} & \cdots & U_{1, m-1}
& \cdots & U_{1, n-1} \\
L_{2, 0} & L_{2, 1} & U_{2, 2} & \cdots & U_{2, m-1}
& \cdots & U_{2, n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots
& \cdots & \vdots \\
L_{m-1, 0} & L_{m-1, 1} & L_{m-1, 2} & \cdots & U_{m-1, m-1}
& \cdots & U_{m-1, n-1} \\
\end{bmatrix}
About the pivot searching algorithm:
When a matrix contains symbolic entries, the pivot search algorithm
differs from the case where every entry can be categorized as zero or
nonzero.
The algorithm searches column by column through the submatrix whose
top left entry coincides with the pivot position.
If it exists, the pivot is the first entry in the current search
column that iszerofunc guarantees is nonzero.
If no such candidate exists, then each candidate pivot is simplified
if simpfunc is not None.
The search is repeated, with the difference that a candidate may be
the pivot if ``iszerofunc()`` cannot guarantee that it is nonzero.
In the second search the pivot is the first candidate that
iszerofunc can guarantee is nonzero.
If no such candidate exists, then the pivot is the first candidate
for which iszerofunc returns None.
If no such candidate exists, then the search is repeated in the next
column to the right.
The pivot search algorithm differs from the one in ``rref()``, which
relies on ``_find_reasonable_pivot()``.
Future versions of ``LUdecomposition_simple()`` may use
``_find_reasonable_pivot()``.
See Also
========
sympy.matrices.matrices.MatrixBase.LUdecomposition
LUdecompositionFF
LUsolve
"""
if rankcheck:
# https://github.com/sympy/sympy/issues/9796
pass
if S.Zero in M.shape:
# Define LU decomposition of a matrix with no entries as a matrix
# of the same dimensions with all zero entries.
return M.zeros(M.rows, M.cols), []
dps = _get_intermediate_simp()
lu = M.as_mutable()
row_swaps = []
pivot_col = 0
for pivot_row in range(0, lu.rows - 1):
# Search for pivot. Prefer entry that iszeropivot determines
# is nonzero, over entry that iszeropivot cannot guarantee
# is zero.
# XXX ``_find_reasonable_pivot`` uses slow zero testing. Blocked by bug #10279
# Future versions of LUdecomposition_simple can pass iszerofunc and simpfunc
# to _find_reasonable_pivot().
# In pass 3 of _find_reasonable_pivot(), the predicate in ``if x.equals(S.Zero):``
# calls sympy.simplify(), and not the simplification function passed in via
# the keyword argument simpfunc.
iszeropivot = True
while pivot_col != M.cols and iszeropivot:
sub_col = (lu[r, pivot_col] for r in range(pivot_row, M.rows))
pivot_row_offset, pivot_value, is_assumed_non_zero, ind_simplified_pairs =\
_find_reasonable_pivot_naive(sub_col, iszerofunc, simpfunc)
iszeropivot = pivot_value is None
if iszeropivot:
# All candidate pivots in this column are zero.
# Proceed to next column.
pivot_col += 1
if rankcheck and pivot_col != pivot_row:
# All entries including and below the pivot position are
# zero, which indicates that the rank of the matrix is
# strictly less than min(num rows, num cols)
# Mimic behavior of previous implementation, by throwing a
# ValueError.
raise ValueError("Rank of matrix is strictly less than"
" number of rows or columns."
" Pass keyword argument"
" rankcheck=False to compute"
" the LU decomposition of this matrix.")
candidate_pivot_row = None if pivot_row_offset is None else pivot_row + pivot_row_offset
if candidate_pivot_row is None and iszeropivot:
# If candidate_pivot_row is None and iszeropivot is True
# after pivot search has completed, then the submatrix
# below and to the right of (pivot_row, pivot_col) is
# all zeros, indicating that Gaussian elimination is
# complete.
return lu, row_swaps
# Update entries simplified during pivot search.
for offset, val in ind_simplified_pairs:
lu[pivot_row + offset, pivot_col] = val
if pivot_row != candidate_pivot_row:
# Row swap book keeping:
# Record which rows were swapped.
# Update stored portion of L factor by multiplying L on the
# left and right with the current permutation.
# Swap rows of U.
row_swaps.append([pivot_row, candidate_pivot_row])
# Update L.
lu[pivot_row, 0:pivot_row], lu[candidate_pivot_row, 0:pivot_row] = \
lu[candidate_pivot_row, 0:pivot_row], lu[pivot_row, 0:pivot_row]
# Swap pivot row of U with candidate pivot row.
lu[pivot_row, pivot_col:lu.cols], lu[candidate_pivot_row, pivot_col:lu.cols] = \
lu[candidate_pivot_row, pivot_col:lu.cols], lu[pivot_row, pivot_col:lu.cols]
# Introduce zeros below the pivot by adding a multiple of the
# pivot row to a row under it, and store the result in the
# row under it.
# Only entries in the target row whose index is greater than
# start_col may be nonzero.
start_col = pivot_col + 1
for row in range(pivot_row + 1, lu.rows):
# Store factors of L in the subcolumn below
# (pivot_row, pivot_row).
lu[row, pivot_row] = \
dps(lu[row, pivot_col]/lu[pivot_row, pivot_col])
# Form the linear combination of the pivot row and the current
# row below the pivot row that zeros the entries below the pivot.
# Employing slicing instead of a loop here raises
# NotImplementedError: Cannot add Zero to MutableSparseMatrix
# in sympy/matrices/tests/test_sparse.py.
# c = pivot_row + 1 if pivot_row == pivot_col else pivot_col
for c in range(start_col, lu.cols):
lu[row, c] = dps(lu[row, c] - lu[row, pivot_row]*lu[pivot_row, c])
if pivot_row != pivot_col:
# matrix rank < min(num rows, num cols),
# so factors of L are not stored directly below the pivot.
# These entries are zero by construction, so don't bother
# computing them.
for row in range(pivot_row + 1, lu.rows):
lu[row, pivot_col] = M.zero
pivot_col += 1
if pivot_col == lu.cols:
# All candidate pivots are zero implies that Gaussian
# elimination is complete.
return lu, row_swaps
if rankcheck:
if iszerofunc(
lu[Min(lu.rows, lu.cols) - 1, Min(lu.rows, lu.cols) - 1]):
raise ValueError("Rank of matrix is strictly less than"
" number of rows or columns."
" Pass keyword argument"
" rankcheck=False to compute"
" the LU decomposition of this matrix.")
return lu, row_swaps
def _LUdecompositionFF(M):
"""Compute a fraction-free LU decomposition.
Returns 4 matrices P, L, D, U such that PA = L D**-1 U.
If the elements of the matrix belong to some integral domain I, then all
elements of L, D and U are guaranteed to belong to I.
See Also
========
sympy.matrices.matrices.MatrixBase.LUdecomposition
LUdecomposition_Simple
LUsolve
References
==========
.. [1] W. Zhou & D.J. Jeffrey, "Fraction-free matrix factors: new forms
for LU and QR factors". Frontiers in Computer Science in China,
Vol 2, no. 1, pp. 67-80, 2008.
"""
from sympy.matrices import SparseMatrix
zeros = SparseMatrix.zeros
eye = SparseMatrix.eye
n, m = M.rows, M.cols
U, L, P = M.as_mutable(), eye(n), eye(n)
DD = zeros(n, n)
oldpivot = 1
for k in range(n - 1):
if U[k, k] == 0:
for kpivot in range(k + 1, n):
if U[kpivot, k]:
break
else:
raise ValueError("Matrix is not full rank")
U[k, k:], U[kpivot, k:] = U[kpivot, k:], U[k, k:]
L[k, :k], L[kpivot, :k] = L[kpivot, :k], L[k, :k]
P[k, :], P[kpivot, :] = P[kpivot, :], P[k, :]
L [k, k] = Ukk = U[k, k]
DD[k, k] = oldpivot * Ukk
for i in range(k + 1, n):
L[i, k] = Uik = U[i, k]
for j in range(k + 1, m):
U[i, j] = (Ukk * U[i, j] - U[k, j] * Uik) / oldpivot
U[i, k] = 0
oldpivot = Ukk
DD[n - 1, n - 1] = oldpivot
return P, L, DD, U
def _singular_value_decomposition(A):
r"""Returns a Condensed Singular Value decomposition.
Explanation
===========
A Singular Value decomposition is a decomposition in the form $A = U \Sigma V$
where
- $U, V$ are column orthogonal matrix.
- $\Sigma$ is a diagonal matrix, where the main diagonal contains singular
values of matrix A.
A column orthogonal matrix satisfies
$\mathbb{I} = U^H U$ while a full orthogonal matrix satisfies
relation $\mathbb{I} = U U^H = U^H U$ where $\mathbb{I}$ is an identity
matrix with matching dimensions.
For matrices which are not square or are rank-deficient, it is
sufficient to return a column orthogonal matrix because augmenting
them may introduce redundant computations.
In condensed Singular Value Decomposition we only return column orthogonal
matrices because of this reason
If you want to augment the results to return a full orthogonal
decomposition, you should use the following procedures.
- Augment the $U, V$ matrices with columns that are orthogonal to every
other columns and make it square.
- Augment the $\Sigma$ matrix with zero rows to make it have the same
shape as the original matrix.
The procedure will be illustrated in the examples section.
Examples
========
we take a full rank matrix first:
>>> from sympy import Matrix
>>> A = Matrix([[1, 2],[2,1]])
>>> U, S, V = A.singular_value_decomposition()
>>> U
Matrix([
[ sqrt(2)/2, sqrt(2)/2],
[-sqrt(2)/2, sqrt(2)/2]])
>>> S
Matrix([
[1, 0],
[0, 3]])
>>> V
Matrix([
[-sqrt(2)/2, sqrt(2)/2],
[ sqrt(2)/2, sqrt(2)/2]])
If a matrix if square and full rank both U, V
are orthogonal in both directions
>>> U * U.H
Matrix([
[1, 0],
[0, 1]])
>>> U.H * U
Matrix([
[1, 0],
[0, 1]])
>>> V * V.H
Matrix([
[1, 0],
[0, 1]])
>>> V.H * V
Matrix([
[1, 0],
[0, 1]])
>>> A == U * S * V.H
True
>>> C = Matrix([
... [1, 0, 0, 0, 2],
... [0, 0, 3, 0, 0],
... [0, 0, 0, 0, 0],
... [0, 2, 0, 0, 0],
... ])
>>> U, S, V = C.singular_value_decomposition()
>>> V.H * V
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
>>> V * V.H
Matrix([
[1/5, 0, 0, 0, 2/5],
[ 0, 1, 0, 0, 0],
[ 0, 0, 1, 0, 0],
[ 0, 0, 0, 0, 0],
[2/5, 0, 0, 0, 4/5]])
If you want to augment the results to be a full orthogonal
decomposition, you should augment $V$ with an another orthogonal
column.
You are able to append an arbitrary standard basis that are linearly
independent to every other columns and you can run the Gram-Schmidt
process to make them augmented as orthogonal basis.
>>> V_aug = V.row_join(Matrix([[0,0,0,0,1],
... [0,0,0,1,0]]).H)
>>> V_aug = V_aug.QRdecomposition()[0]
>>> V_aug
Matrix([
[0, sqrt(5)/5, 0, -2*sqrt(5)/5, 0],
[1, 0, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 0, 1],
[0, 2*sqrt(5)/5, 0, sqrt(5)/5, 0]])
>>> V_aug.H * V_aug
Matrix([
[1, 0, 0, 0, 0],
[0, 1, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 1, 0],
[0, 0, 0, 0, 1]])
>>> V_aug * V_aug.H
Matrix([
[1, 0, 0, 0, 0],
[0, 1, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 1, 0],
[0, 0, 0, 0, 1]])
Similarly we augment U
>>> U_aug = U.row_join(Matrix([0,0,1,0]))
>>> U_aug = U_aug.QRdecomposition()[0]
>>> U_aug
Matrix([
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1],
[1, 0, 0, 0]])
>>> U_aug.H * U_aug
Matrix([
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]])
>>> U_aug * U_aug.H
Matrix([
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]])
We add 2 zero columns and one row to S
>>> S_aug = S.col_join(Matrix([[0,0,0]]))
>>> S_aug = S_aug.row_join(Matrix([[0,0,0,0],
... [0,0,0,0]]).H)
>>> S_aug
Matrix([
[2, 0, 0, 0, 0],
[0, sqrt(5), 0, 0, 0],
[0, 0, 3, 0, 0],
[0, 0, 0, 0, 0]])
>>> U_aug * S_aug * V_aug.H == C
True
"""
AH = A.H
m, n = A.shape
if m >= n:
V, S = (AH * A).diagonalize()
ranked = []
for i, x in enumerate(S.diagonal()):
if not x.is_zero:
ranked.append(i)
V = V[:, ranked]
Singular_vals = [sqrt(S[i, i]) for i in range(S.rows) if i in ranked]
S = S.zeros(len(Singular_vals))
for i, sv in enumerate(Singular_vals):
S[i, i] = sv
V, _ = V.QRdecomposition()
U = A * V * S.inv()
else:
U, S = (A * AH).diagonalize()
ranked = []
for i, x in enumerate(S.diagonal()):
if not x.is_zero:
ranked.append(i)
U = U[:, ranked]
Singular_vals = [sqrt(S[i, i]) for i in range(S.rows) if i in ranked]
S = S.zeros(len(Singular_vals))
for i, sv in enumerate(Singular_vals):
S[i, i] = sv
U, _ = U.QRdecomposition()
V = AH * U * S.inv()
return U, S, V
def _QRdecomposition_optional(M, normalize=True):
def dot(u, v):
return u.dot(v, hermitian=True)
dps = _get_intermediate_simp(expand_mul, expand_mul)
A = M.as_mutable()
ranked = list()
Q = A
R = A.zeros(A.cols)
for j in range(A.cols):
for i in range(j):
if Q[:, i].is_zero_matrix:
continue
R[i, j] = dot(Q[:, i], Q[:, j]) / dot(Q[:, i], Q[:, i])
R[i, j] = dps(R[i, j])
Q[:, j] -= Q[:, i] * R[i, j]
Q[:, j] = dps(Q[:, j])
if Q[:, j].is_zero_matrix is not True:
ranked.append(j)
R[j, j] = M.one
Q = Q.extract(range(Q.rows), ranked)
R = R.extract(ranked, range(R.cols))
if normalize:
# Normalization
for i in range(Q.cols):
norm = Q[:, i].norm()
Q[:, i] /= norm
R[i, :] *= norm
return M.__class__(Q), M.__class__(R)
def _QRdecomposition(M):
r"""Returns a QR decomposition.
Explanation
===========
A QR decomposition is a decomposition in the form $A = Q R$
where
- $Q$ is a column orthogonal matrix.
- $R$ is a upper triangular (trapezoidal) matrix.
A column orthogonal matrix satisfies
$\mathbb{I} = Q^H Q$ while a full orthogonal matrix satisfies
relation $\mathbb{I} = Q Q^H = Q^H Q$ where $I$ is an identity
matrix with matching dimensions.
For matrices which are not square or are rank-deficient, it is
sufficient to return a column orthogonal matrix because augmenting
them may introduce redundant computations.
And an another advantage of this is that you can easily inspect the
matrix rank by counting the number of columns of $Q$.
If you want to augment the results to return a full orthogonal
decomposition, you should use the following procedures.
- Augment the $Q$ matrix with columns that are orthogonal to every
other columns and make it square.
- Augment the $R$ matrix with zero rows to make it have the same
shape as the original matrix.
The procedure will be illustrated in the examples section.
Examples
========
A full rank matrix example:
>>> from sympy import Matrix
>>> A = Matrix([[12, -51, 4], [6, 167, -68], [-4, 24, -41]])
>>> Q, R = A.QRdecomposition()
>>> Q
Matrix([
[ 6/7, -69/175, -58/175],
[ 3/7, 158/175, 6/175],
[-2/7, 6/35, -33/35]])
>>> R
Matrix([
[14, 21, -14],
[ 0, 175, -70],
[ 0, 0, 35]])
If the matrix is square and full rank, the $Q$ matrix becomes
orthogonal in both directions, and needs no augmentation.
>>> Q * Q.H
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
>>> Q.H * Q
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
>>> A == Q*R
True
A rank deficient matrix example:
>>> A = Matrix([[12, -51, 0], [6, 167, 0], [-4, 24, 0]])
>>> Q, R = A.QRdecomposition()
>>> Q
Matrix([
[ 6/7, -69/175],
[ 3/7, 158/175],
[-2/7, 6/35]])
>>> R
Matrix([
[14, 21, 0],
[ 0, 175, 0]])
QRdecomposition might return a matrix Q that is rectangular.
In this case the orthogonality condition might be satisfied as
$\mathbb{I} = Q.H*Q$ but not in the reversed product
$\mathbb{I} = Q * Q.H$.
>>> Q.H * Q
Matrix([
[1, 0],
[0, 1]])
>>> Q * Q.H
Matrix([
[27261/30625, 348/30625, -1914/6125],
[ 348/30625, 30589/30625, 198/6125],
[ -1914/6125, 198/6125, 136/1225]])
If you want to augment the results to be a full orthogonal
decomposition, you should augment $Q$ with an another orthogonal
column.
You are able to append an arbitrary standard basis that are linearly
independent to every other columns and you can run the Gram-Schmidt
process to make them augmented as orthogonal basis.
>>> Q_aug = Q.row_join(Matrix([0, 0, 1]))
>>> Q_aug = Q_aug.QRdecomposition()[0]
>>> Q_aug
Matrix([
[ 6/7, -69/175, 58/175],
[ 3/7, 158/175, -6/175],
[-2/7, 6/35, 33/35]])
>>> Q_aug.H * Q_aug
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
>>> Q_aug * Q_aug.H
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
Augmenting the $R$ matrix with zero row is straightforward.
>>> R_aug = R.col_join(Matrix([[0, 0, 0]]))
>>> R_aug
Matrix([
[14, 21, 0],
[ 0, 175, 0],
[ 0, 0, 0]])
>>> Q_aug * R_aug == A
True
A zero matrix example:
>>> from sympy import Matrix
>>> A = Matrix.zeros(3, 4)
>>> Q, R = A.QRdecomposition()
They may return matrices with zero rows and columns.
>>> Q
Matrix(3, 0, [])
>>> R
Matrix(0, 4, [])
>>> Q*R
Matrix([
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]])
As the same augmentation rule described above, $Q$ can be augmented
with columns of an identity matrix and $R$ can be augmented with
rows of a zero matrix.
>>> Q_aug = Q.row_join(Matrix.eye(3))
>>> R_aug = R.col_join(Matrix.zeros(3, 4))
>>> Q_aug * Q_aug.T
Matrix([
[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
>>> R_aug
Matrix([
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0]])
>>> Q_aug * R_aug == A
True
See Also
========
sympy.matrices.dense.DenseMatrix.cholesky
sympy.matrices.dense.DenseMatrix.LDLdecomposition
sympy.matrices.matrices.MatrixBase.LUdecomposition
QRsolve
"""
return _QRdecomposition_optional(M, normalize=True)
def _upper_hessenberg_decomposition(A):
"""Converts a matrix into Hessenberg matrix H
Returns 2 matrices H, P s.t.
$P H P^{T} = A$, where H is an upper hessenberg matrix
and P is an orthogonal matrix
Examples
========
>>> from sympy import Matrix
>>> A = Matrix([
... [1,2,3],
... [-3,5,6],
... [4,-8,9],
... ])
>>> H, P = A.upper_hessenberg_decomposition()
>>> H
Matrix([
[1, 6/5, 17/5],
[5, 213/25, -134/25],
[0, 216/25, 137/25]])
>>> P
Matrix([
[1, 0, 0],
[0, -3/5, 4/5],
[0, 4/5, 3/5]])
>>> P * H * P.H == A
True
References
==========
.. [#] https://mathworld.wolfram.com/HessenbergDecomposition.html
"""
M = A.as_mutable()
if not M.is_square:
raise NonSquareMatrixError("Matrix must be square.")
n = M.cols
P = M.eye(n)
H = M
for j in range(n - 2):
u = H[j + 1:, j]
if u[1:, :].is_zero_matrix:
continue
if sign(u[0]) != 0:
u[0] = u[0] + sign(u[0]) * u.norm()
else:
u[0] = u[0] + u.norm()
v = u / u.norm()
H[j + 1:, :] = H[j + 1:, :] - 2 * v * (v.H * H[j + 1:, :])
H[:, j + 1:] = H[:, j + 1:] - (H[:, j + 1:] * (2 * v)) * v.H
P[:, j + 1:] = P[:, j + 1:] - (P[:, j + 1:] * (2 * v)) * v.H
return H, P
|
a188d000f480dc3ae9d3d8c498736c0de551e675d625cbf49c95475cc4630103 | from types import FunctionType
from sympy.core.numbers import Float, Integer
from sympy.core.singleton import S
from sympy.core.symbol import uniquely_named_symbol
from sympy.core.mul import Mul
from sympy.polys import PurePoly, cancel
from sympy.functions.combinatorial.numbers import nC
from sympy.polys.matrices.domainmatrix import DomainMatrix
from .common import NonSquareMatrixError
from .utilities import (
_get_intermediate_simp, _get_intermediate_simp_bool,
_iszero, _is_zero_after_expand_mul, _dotprodsimp, _simplify)
def _find_reasonable_pivot(col, iszerofunc=_iszero, simpfunc=_simplify):
""" Find the lowest index of an item in ``col`` that is
suitable for a pivot. If ``col`` consists only of
Floats, the pivot with the largest norm is returned.
Otherwise, the first element where ``iszerofunc`` returns
False is used. If ``iszerofunc`` does not return false,
items are simplified and retested until a suitable
pivot is found.
Returns a 4-tuple
(pivot_offset, pivot_val, assumed_nonzero, newly_determined)
where pivot_offset is the index of the pivot, pivot_val is
the (possibly simplified) value of the pivot, assumed_nonzero
is True if an assumption that the pivot was non-zero
was made without being proved, and newly_determined are
elements that were simplified during the process of pivot
finding."""
newly_determined = []
col = list(col)
# a column that contains a mix of floats and integers
# but at least one float is considered a numerical
# column, and so we do partial pivoting
if all(isinstance(x, (Float, Integer)) for x in col) and any(
isinstance(x, Float) for x in col):
col_abs = [abs(x) for x in col]
max_value = max(col_abs)
if iszerofunc(max_value):
# just because iszerofunc returned True, doesn't
# mean the value is numerically zero. Make sure
# to replace all entries with numerical zeros
if max_value != 0:
newly_determined = [(i, 0) for i, x in enumerate(col) if x != 0]
return (None, None, False, newly_determined)
index = col_abs.index(max_value)
return (index, col[index], False, newly_determined)
# PASS 1 (iszerofunc directly)
possible_zeros = []
for i, x in enumerate(col):
is_zero = iszerofunc(x)
# is someone wrote a custom iszerofunc, it may return
# BooleanFalse or BooleanTrue instead of True or False,
# so use == for comparison instead of `is`
if is_zero == False:
# we found something that is definitely not zero
return (i, x, False, newly_determined)
possible_zeros.append(is_zero)
# by this point, we've found no certain non-zeros
if all(possible_zeros):
# if everything is definitely zero, we have
# no pivot
return (None, None, False, newly_determined)
# PASS 2 (iszerofunc after simplify)
# we haven't found any for-sure non-zeros, so
# go through the elements iszerofunc couldn't
# make a determination about and opportunistically
# simplify to see if we find something
for i, x in enumerate(col):
if possible_zeros[i] is not None:
continue
simped = simpfunc(x)
is_zero = iszerofunc(simped)
if is_zero in (True, False):
newly_determined.append((i, simped))
if is_zero == False:
return (i, simped, False, newly_determined)
possible_zeros[i] = is_zero
# after simplifying, some things that were recognized
# as zeros might be zeros
if all(possible_zeros):
# if everything is definitely zero, we have
# no pivot
return (None, None, False, newly_determined)
# PASS 3 (.equals(0))
# some expressions fail to simplify to zero, but
# ``.equals(0)`` evaluates to True. As a last-ditch
# attempt, apply ``.equals`` to these expressions
for i, x in enumerate(col):
if possible_zeros[i] is not None:
continue
if x.equals(S.Zero):
# ``.iszero`` may return False with
# an implicit assumption (e.g., ``x.equals(0)``
# when ``x`` is a symbol), so only treat it
# as proved when ``.equals(0)`` returns True
possible_zeros[i] = True
newly_determined.append((i, S.Zero))
if all(possible_zeros):
return (None, None, False, newly_determined)
# at this point there is nothing that could definitely
# be a pivot. To maintain compatibility with existing
# behavior, we'll assume that an illdetermined thing is
# non-zero. We should probably raise a warning in this case
i = possible_zeros.index(None)
return (i, col[i], True, newly_determined)
def _find_reasonable_pivot_naive(col, iszerofunc=_iszero, simpfunc=None):
"""
Helper that computes the pivot value and location from a
sequence of contiguous matrix column elements. As a side effect
of the pivot search, this function may simplify some of the elements
of the input column. A list of these simplified entries and their
indices are also returned.
This function mimics the behavior of _find_reasonable_pivot(),
but does less work trying to determine if an indeterminate candidate
pivot simplifies to zero. This more naive approach can be much faster,
with the trade-off that it may erroneously return a pivot that is zero.
``col`` is a sequence of contiguous column entries to be searched for
a suitable pivot.
``iszerofunc`` is a callable that returns a Boolean that indicates
if its input is zero, or None if no such determination can be made.
``simpfunc`` is a callable that simplifies its input. It must return
its input if it does not simplify its input. Passing in
``simpfunc=None`` indicates that the pivot search should not attempt
to simplify any candidate pivots.
Returns a 4-tuple:
(pivot_offset, pivot_val, assumed_nonzero, newly_determined)
``pivot_offset`` is the sequence index of the pivot.
``pivot_val`` is the value of the pivot.
pivot_val and col[pivot_index] are equivalent, but will be different
when col[pivot_index] was simplified during the pivot search.
``assumed_nonzero`` is a boolean indicating if the pivot cannot be
guaranteed to be zero. If assumed_nonzero is true, then the pivot
may or may not be non-zero. If assumed_nonzero is false, then
the pivot is non-zero.
``newly_determined`` is a list of index-value pairs of pivot candidates
that were simplified during the pivot search.
"""
# indeterminates holds the index-value pairs of each pivot candidate
# that is neither zero or non-zero, as determined by iszerofunc().
# If iszerofunc() indicates that a candidate pivot is guaranteed
# non-zero, or that every candidate pivot is zero then the contents
# of indeterminates are unused.
# Otherwise, the only viable candidate pivots are symbolic.
# In this case, indeterminates will have at least one entry,
# and all but the first entry are ignored when simpfunc is None.
indeterminates = []
for i, col_val in enumerate(col):
col_val_is_zero = iszerofunc(col_val)
if col_val_is_zero == False:
# This pivot candidate is non-zero.
return i, col_val, False, []
elif col_val_is_zero is None:
# The candidate pivot's comparison with zero
# is indeterminate.
indeterminates.append((i, col_val))
if len(indeterminates) == 0:
# All candidate pivots are guaranteed to be zero, i.e. there is
# no pivot.
return None, None, False, []
if simpfunc is None:
# Caller did not pass in a simplification function that might
# determine if an indeterminate pivot candidate is guaranteed
# to be nonzero, so assume the first indeterminate candidate
# is non-zero.
return indeterminates[0][0], indeterminates[0][1], True, []
# newly_determined holds index-value pairs of candidate pivots
# that were simplified during the search for a non-zero pivot.
newly_determined = []
for i, col_val in indeterminates:
tmp_col_val = simpfunc(col_val)
if id(col_val) != id(tmp_col_val):
# simpfunc() simplified this candidate pivot.
newly_determined.append((i, tmp_col_val))
if iszerofunc(tmp_col_val) == False:
# Candidate pivot simplified to a guaranteed non-zero value.
return i, tmp_col_val, False, newly_determined
return indeterminates[0][0], indeterminates[0][1], True, newly_determined
# This functions is a candidate for caching if it gets implemented for matrices.
def _berkowitz_toeplitz_matrix(M):
"""Return (A,T) where T the Toeplitz matrix used in the Berkowitz algorithm
corresponding to ``M`` and A is the first principal submatrix.
"""
# the 0 x 0 case is trivial
if M.rows == 0 and M.cols == 0:
return M._new(1,1, [M.one])
#
# Partition M = [ a_11 R ]
# [ C A ]
#
a, R = M[0,0], M[0, 1:]
C, A = M[1:, 0], M[1:,1:]
#
# The Toeplitz matrix looks like
#
# [ 1 ]
# [ -a 1 ]
# [ -RC -a 1 ]
# [ -RAC -RC -a 1 ]
# [ -RA**2C -RAC -RC -a 1 ]
# etc.
# Compute the diagonal entries.
# Because multiplying matrix times vector is so much
# more efficient than matrix times matrix, recursively
# compute -R * A**n * C.
diags = [C]
for i in range(M.rows - 2):
diags.append(A.multiply(diags[i], dotprodsimp=None))
diags = [(-R).multiply(d, dotprodsimp=None)[0, 0] for d in diags]
diags = [M.one, -a] + diags
def entry(i,j):
if j > i:
return M.zero
return diags[i - j]
toeplitz = M._new(M.cols + 1, M.rows, entry)
return (A, toeplitz)
# This functions is a candidate for caching if it gets implemented for matrices.
def _berkowitz_vector(M):
""" Run the Berkowitz algorithm and return a vector whose entries
are the coefficients of the characteristic polynomial of ``M``.
Given N x N matrix, efficiently compute
coefficients of characteristic polynomials of ``M``
without division in the ground domain.
This method is particularly useful for computing determinant,
principal minors and characteristic polynomial when ``M``
has complicated coefficients e.g. polynomials. Semi-direct
usage of this algorithm is also important in computing
efficiently sub-resultant PRS.
Assuming that M is a square matrix of dimension N x N and
I is N x N identity matrix, then the Berkowitz vector is
an N x 1 vector whose entries are coefficients of the
polynomial
charpoly(M) = det(t*I - M)
As a consequence, all polynomials generated by Berkowitz
algorithm are monic.
For more information on the implemented algorithm refer to:
[1] S.J. Berkowitz, On computing the determinant in small
parallel time using a small number of processors, ACM,
Information Processing Letters 18, 1984, pp. 147-150
[2] M. Keber, Division-Free computation of sub-resultants
using Bezout matrices, Tech. Report MPI-I-2006-1-006,
Saarbrucken, 2006
"""
# handle the trivial cases
if M.rows == 0 and M.cols == 0:
return M._new(1, 1, [M.one])
elif M.rows == 1 and M.cols == 1:
return M._new(2, 1, [M.one, -M[0,0]])
submat, toeplitz = _berkowitz_toeplitz_matrix(M)
return toeplitz.multiply(_berkowitz_vector(submat), dotprodsimp=None)
def _adjugate(M, method="berkowitz"):
"""Returns the adjugate, or classical adjoint, of
a matrix. That is, the transpose of the matrix of cofactors.
https://en.wikipedia.org/wiki/Adjugate
Parameters
==========
method : string, optional
Method to use to find the cofactors, can be "bareiss", "berkowitz" or
"lu".
Examples
========
>>> from sympy import Matrix
>>> M = Matrix([[1, 2], [3, 4]])
>>> M.adjugate()
Matrix([
[ 4, -2],
[-3, 1]])
See Also
========
cofactor_matrix
sympy.matrices.common.MatrixCommon.transpose
"""
return M.cofactor_matrix(method=method).transpose()
# This functions is a candidate for caching if it gets implemented for matrices.
def _charpoly(M, x='lambda', simplify=_simplify):
"""Computes characteristic polynomial det(x*I - M) where I is
the identity matrix.
A PurePoly is returned, so using different variables for ``x`` does
not affect the comparison or the polynomials:
Parameters
==========
x : string, optional
Name for the "lambda" variable, defaults to "lambda".
simplify : function, optional
Simplification function to use on the characteristic polynomial
calculated. Defaults to ``simplify``.
Examples
========
>>> from sympy import Matrix
>>> from sympy.abc import x, y
>>> M = Matrix([[1, 3], [2, 0]])
>>> M.charpoly()
PurePoly(lambda**2 - lambda - 6, lambda, domain='ZZ')
>>> M.charpoly(x) == M.charpoly(y)
True
>>> M.charpoly(x) == M.charpoly(y)
True
Specifying ``x`` is optional; a symbol named ``lambda`` is used by
default (which looks good when pretty-printed in unicode):
>>> M.charpoly().as_expr()
lambda**2 - lambda - 6
And if ``x`` clashes with an existing symbol, underscores will
be prepended to the name to make it unique:
>>> M = Matrix([[1, 2], [x, 0]])
>>> M.charpoly(x).as_expr()
_x**2 - _x - 2*x
Whether you pass a symbol or not, the generator can be obtained
with the gen attribute since it may not be the same as the symbol
that was passed:
>>> M.charpoly(x).gen
_x
>>> M.charpoly(x).gen == x
False
Notes
=====
The Samuelson-Berkowitz algorithm is used to compute
the characteristic polynomial efficiently and without any
division operations. Thus the characteristic polynomial over any
commutative ring without zero divisors can be computed.
If the determinant det(x*I - M) can be found out easily as
in the case of an upper or a lower triangular matrix, then
instead of Samuelson-Berkowitz algorithm, eigenvalues are computed
and the characteristic polynomial with their help.
See Also
========
det
"""
if not M.is_square:
raise NonSquareMatrixError()
if M.is_lower or M.is_upper:
diagonal_elements = M.diagonal()
x = uniquely_named_symbol(x, diagonal_elements, modify=lambda s: '_' + s)
m = 1
for i in diagonal_elements:
m = m * (x - simplify(i))
return PurePoly(m, x)
berk_vector = _berkowitz_vector(M)
x = uniquely_named_symbol(x, berk_vector, modify=lambda s: '_' + s)
return PurePoly([simplify(a) for a in berk_vector], x)
def _cofactor(M, i, j, method="berkowitz"):
"""Calculate the cofactor of an element.
Parameters
==========
method : string, optional
Method to use to find the cofactors, can be "bareiss", "berkowitz" or
"lu".
Examples
========
>>> from sympy import Matrix
>>> M = Matrix([[1, 2], [3, 4]])
>>> M.cofactor(0, 1)
-3
See Also
========
cofactor_matrix
minor
minor_submatrix
"""
if not M.is_square or M.rows < 1:
raise NonSquareMatrixError()
return S.NegativeOne**((i + j) % 2) * M.minor(i, j, method)
def _cofactor_matrix(M, method="berkowitz"):
"""Return a matrix containing the cofactor of each element.
Parameters
==========
method : string, optional
Method to use to find the cofactors, can be "bareiss", "berkowitz" or
"lu".
Examples
========
>>> from sympy import Matrix
>>> M = Matrix([[1, 2], [3, 4]])
>>> M.cofactor_matrix()
Matrix([
[ 4, -3],
[-2, 1]])
See Also
========
cofactor
minor
minor_submatrix
"""
if not M.is_square or M.rows < 1:
raise NonSquareMatrixError()
return M._new(M.rows, M.cols,
lambda i, j: M.cofactor(i, j, method))
def _per(M):
"""Returns the permanent of a matrix. Unlike determinant,
permanent is defined for both square and non-square matrices.
For an m x n matrix, with m less than or equal to n,
it is given as the sum over the permutations s of size
less than or equal to m on [1, 2, . . . n] of the product
from i = 1 to m of M[i, s[i]]. Taking the transpose will
not affect the value of the permanent.
In the case of a square matrix, this is the same as the permutation
definition of the determinant, but it does not take the sign of the
permutation into account. Computing the permanent with this definition
is quite inefficient, so here the Ryser formula is used.
Examples
========
>>> from sympy import Matrix
>>> M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> M.per()
450
>>> M = Matrix([1, 5, 7])
>>> M.per()
13
References
==========
.. [1] Prof. Frank Ben's notes: https://math.berkeley.edu/~bernd/ban275.pdf
.. [2] Wikipedia article on Permanent: https://en.wikipedia.org/wiki/Permanent_(mathematics)
.. [3] https://reference.wolfram.com/language/ref/Permanent.html
.. [4] Permanent of a rectangular matrix : https://arxiv.org/pdf/0904.3251.pdf
"""
import itertools
m, n = M.shape
if m > n:
M = M.T
m, n = n, m
s = list(range(n))
subsets = []
for i in range(1, m + 1):
subsets += list(map(list, itertools.combinations(s, i)))
perm = 0
for subset in subsets:
prod = 1
sub_len = len(subset)
for i in range(m):
prod *= sum([M[i, j] for j in subset])
perm += prod * S.NegativeOne**sub_len * nC(n - sub_len, m - sub_len)
perm *= S.NegativeOne**m
return perm.simplify()
def _det_DOM(M):
DOM = DomainMatrix.from_Matrix(M, field=True, extension=True)
K = DOM.domain
return K.to_sympy(DOM.det())
# This functions is a candidate for caching if it gets implemented for matrices.
def _det(M, method="bareiss", iszerofunc=None):
"""Computes the determinant of a matrix if ``M`` is a concrete matrix object
otherwise return an expressions ``Determinant(M)`` if ``M`` is a
``MatrixSymbol`` or other expression.
Parameters
==========
method : string, optional
Specifies the algorithm used for computing the matrix determinant.
If the matrix is at most 3x3, a hard-coded formula is used and the
specified method is ignored. Otherwise, it defaults to
``'bareiss'``.
Also, if the matrix is an upper or a lower triangular matrix, determinant
is computed by simple multiplication of diagonal elements, and the
specified method is ignored.
If it is set to ``'domain-ge'``, then Gaussian elimination method will
be used via using DomainMatrix.
If it is set to ``'bareiss'``, Bareiss' fraction-free algorithm will
be used.
If it is set to ``'berkowitz'``, Berkowitz' algorithm will be used.
Otherwise, if it is set to ``'lu'``, LU decomposition will be used.
.. note::
For backward compatibility, legacy keys like "bareis" and
"det_lu" can still be used to indicate the corresponding
methods.
And the keys are also case-insensitive for now. However, it is
suggested to use the precise keys for specifying the method.
iszerofunc : FunctionType or None, optional
If it is set to ``None``, it will be defaulted to ``_iszero`` if the
method is set to ``'bareiss'``, and ``_is_zero_after_expand_mul`` if
the method is set to ``'lu'``.
It can also accept any user-specified zero testing function, if it
is formatted as a function which accepts a single symbolic argument
and returns ``True`` if it is tested as zero and ``False`` if it
tested as non-zero, and also ``None`` if it is undecidable.
Returns
=======
det : Basic
Result of determinant.
Raises
======
ValueError
If unrecognized keys are given for ``method`` or ``iszerofunc``.
NonSquareMatrixError
If attempted to calculate determinant from a non-square matrix.
Examples
========
>>> from sympy import Matrix, eye, det
>>> I3 = eye(3)
>>> det(I3)
1
>>> M = Matrix([[1, 2], [3, 4]])
>>> det(M)
-2
>>> det(M) == M.det()
True
>>> M.det(method="domain-ge")
-2
"""
# sanitize `method`
method = method.lower()
if method == "bareis":
method = "bareiss"
elif method == "det_lu":
method = "lu"
if method not in ("bareiss", "berkowitz", "lu", "domain-ge"):
raise ValueError("Determinant method '%s' unrecognized" % method)
if iszerofunc is None:
if method == "bareiss":
iszerofunc = _is_zero_after_expand_mul
elif method == "lu":
iszerofunc = _iszero
elif not isinstance(iszerofunc, FunctionType):
raise ValueError("Zero testing method '%s' unrecognized" % iszerofunc)
n = M.rows
if n == M.cols: # square check is done in individual method functions
if n == 0:
return M.one
elif n == 1:
return M[0, 0]
elif n == 2:
m = M[0, 0] * M[1, 1] - M[0, 1] * M[1, 0]
return _get_intermediate_simp(_dotprodsimp)(m)
elif n == 3:
m = (M[0, 0] * M[1, 1] * M[2, 2]
+ M[0, 1] * M[1, 2] * M[2, 0]
+ M[0, 2] * M[1, 0] * M[2, 1]
- M[0, 2] * M[1, 1] * M[2, 0]
- M[0, 0] * M[1, 2] * M[2, 1]
- M[0, 1] * M[1, 0] * M[2, 2])
return _get_intermediate_simp(_dotprodsimp)(m)
dets = []
for b in M.strongly_connected_components():
if method == "domain-ge": # uses DomainMatrix to evaluate determinant
det = _det_DOM(M[b, b])
elif method == "bareiss":
det = M[b, b]._eval_det_bareiss(iszerofunc=iszerofunc)
elif method == "berkowitz":
det = M[b, b]._eval_det_berkowitz()
elif method == "lu":
det = M[b, b]._eval_det_lu(iszerofunc=iszerofunc)
dets.append(det)
return Mul(*dets)
# This functions is a candidate for caching if it gets implemented for matrices.
def _det_bareiss(M, iszerofunc=_is_zero_after_expand_mul):
"""Compute matrix determinant using Bareiss' fraction-free
algorithm which is an extension of the well known Gaussian
elimination method. This approach is best suited for dense
symbolic matrices and will result in a determinant with
minimal number of fractions. It means that less term
rewriting is needed on resulting formulae.
Parameters
==========
iszerofunc : function, optional
The function to use to determine zeros when doing an LU decomposition.
Defaults to ``lambda x: x.is_zero``.
TODO: Implement algorithm for sparse matrices (SFF),
http://www.eecis.udel.edu/~saunders/papers/sffge/it5.ps.
"""
# Recursively implemented Bareiss' algorithm as per Deanna Richelle Leggett's
# thesis http://www.math.usm.edu/perry/Research/Thesis_DRL.pdf
def bareiss(mat, cumm=1):
if mat.rows == 0:
return mat.one
elif mat.rows == 1:
return mat[0, 0]
# find a pivot and extract the remaining matrix
# With the default iszerofunc, _find_reasonable_pivot slows down
# the computation by the factor of 2.5 in one test.
# Relevant issues: #10279 and #13877.
pivot_pos, pivot_val, _, _ = _find_reasonable_pivot(mat[:, 0], iszerofunc=iszerofunc)
if pivot_pos is None:
return mat.zero
# if we have a valid pivot, we'll do a "row swap", so keep the
# sign of the det
sign = (-1) ** (pivot_pos % 2)
# we want every row but the pivot row and every column
rows = list(i for i in range(mat.rows) if i != pivot_pos)
cols = list(range(mat.cols))
tmp_mat = mat.extract(rows, cols)
def entry(i, j):
ret = (pivot_val*tmp_mat[i, j + 1] - mat[pivot_pos, j + 1]*tmp_mat[i, 0]) / cumm
if _get_intermediate_simp_bool(True):
return _dotprodsimp(ret)
elif not ret.is_Atom:
return cancel(ret)
return ret
return sign*bareiss(M._new(mat.rows - 1, mat.cols - 1, entry), pivot_val)
if not M.is_square:
raise NonSquareMatrixError()
if M.rows == 0:
return M.one
# sympy/matrices/tests/test_matrices.py contains a test that
# suggests that the determinant of a 0 x 0 matrix is one, by
# convention.
return bareiss(M)
def _det_berkowitz(M):
""" Use the Berkowitz algorithm to compute the determinant."""
if not M.is_square:
raise NonSquareMatrixError()
if M.rows == 0:
return M.one
# sympy/matrices/tests/test_matrices.py contains a test that
# suggests that the determinant of a 0 x 0 matrix is one, by
# convention.
berk_vector = _berkowitz_vector(M)
return (-1)**(len(berk_vector) - 1) * berk_vector[-1]
# This functions is a candidate for caching if it gets implemented for matrices.
def _det_LU(M, iszerofunc=_iszero, simpfunc=None):
""" Computes the determinant of a matrix from its LU decomposition.
This function uses the LU decomposition computed by
LUDecomposition_Simple().
The keyword arguments iszerofunc and simpfunc are passed to
LUDecomposition_Simple().
iszerofunc is a callable that returns a boolean indicating if its
input is zero, or None if it cannot make the determination.
simpfunc is a callable that simplifies its input.
The default is simpfunc=None, which indicate that the pivot search
algorithm should not attempt to simplify any candidate pivots.
If simpfunc fails to simplify its input, then it must return its input
instead of a copy.
Parameters
==========
iszerofunc : function, optional
The function to use to determine zeros when doing an LU decomposition.
Defaults to ``lambda x: x.is_zero``.
simpfunc : function, optional
The simplification function to use when looking for zeros for pivots.
"""
if not M.is_square:
raise NonSquareMatrixError()
if M.rows == 0:
return M.one
# sympy/matrices/tests/test_matrices.py contains a test that
# suggests that the determinant of a 0 x 0 matrix is one, by
# convention.
lu, row_swaps = M.LUdecomposition_Simple(iszerofunc=iszerofunc,
simpfunc=simpfunc)
# P*A = L*U => det(A) = det(L)*det(U)/det(P) = det(P)*det(U).
# Lower triangular factor L encoded in lu has unit diagonal => det(L) = 1.
# P is a permutation matrix => det(P) in {-1, 1} => 1/det(P) = det(P).
# LUdecomposition_Simple() returns a list of row exchange index pairs, rather
# than a permutation matrix, but det(P) = (-1)**len(row_swaps).
# Avoid forming the potentially time consuming product of U's diagonal entries
# if the product is zero.
# Bottom right entry of U is 0 => det(A) = 0.
# It may be impossible to determine if this entry of U is zero when it is symbolic.
if iszerofunc(lu[lu.rows-1, lu.rows-1]):
return M.zero
# Compute det(P)
det = -M.one if len(row_swaps)%2 else M.one
# Compute det(U) by calculating the product of U's diagonal entries.
# The upper triangular portion of lu is the upper triangular portion of the
# U factor in the LU decomposition.
for k in range(lu.rows):
det *= lu[k, k]
# return det(P)*det(U)
return det
def _minor(M, i, j, method="berkowitz"):
"""Return the (i,j) minor of ``M``. That is,
return the determinant of the matrix obtained by deleting
the `i`th row and `j`th column from ``M``.
Parameters
==========
i, j : int
The row and column to exclude to obtain the submatrix.
method : string, optional
Method to use to find the determinant of the submatrix, can be
"bareiss", "berkowitz" or "lu".
Examples
========
>>> from sympy import Matrix
>>> M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> M.minor(1, 1)
-12
See Also
========
minor_submatrix
cofactor
det
"""
if not M.is_square:
raise NonSquareMatrixError()
return M.minor_submatrix(i, j).det(method=method)
def _minor_submatrix(M, i, j):
"""Return the submatrix obtained by removing the `i`th row
and `j`th column from ``M`` (works with Pythonic negative indices).
Parameters
==========
i, j : int
The row and column to exclude to obtain the submatrix.
Examples
========
>>> from sympy import Matrix
>>> M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
>>> M.minor_submatrix(1, 1)
Matrix([
[1, 3],
[7, 9]])
See Also
========
minor
cofactor
"""
if i < 0:
i += M.rows
if j < 0:
j += M.cols
if not 0 <= i < M.rows or not 0 <= j < M.cols:
raise ValueError("`i` and `j` must satisfy 0 <= i < ``M.rows`` "
"(%d)" % M.rows + "and 0 <= j < ``M.cols`` (%d)." % M.cols)
rows = [a for a in range(M.rows) if a != i]
cols = [a for a in range(M.cols) if a != j]
return M.extract(rows, cols)
|
2030d399363d15366c6d3c0f0b8a151bfd1957cbfa7b2d096e10851ee94d9b61 | from sympy.core.function import expand_mul
from sympy.core.symbol import Dummy, uniquely_named_symbol, symbols
from sympy.utilities.iterables import numbered_symbols
from .common import ShapeError, NonSquareMatrixError, NonInvertibleMatrixError
from .eigen import _fuzzy_positive_definite
from .utilities import _get_intermediate_simp, _iszero
def _diagonal_solve(M, rhs):
"""Solves ``Ax = B`` efficiently, where A is a diagonal Matrix,
with non-zero diagonal entries.
Examples
========
>>> from sympy import Matrix, eye
>>> A = eye(2)*2
>>> B = Matrix([[1, 2], [3, 4]])
>>> A.diagonal_solve(B) == B/2
True
See Also
========
sympy.matrices.dense.DenseMatrix.lower_triangular_solve
sympy.matrices.dense.DenseMatrix.upper_triangular_solve
gauss_jordan_solve
cholesky_solve
LDLsolve
LUsolve
QRsolve
pinv_solve
"""
if not M.is_diagonal():
raise TypeError("Matrix should be diagonal")
if rhs.rows != M.rows:
raise TypeError("Size mismatch")
return M._new(
rhs.rows, rhs.cols, lambda i, j: rhs[i, j] / M[i, i])
def _lower_triangular_solve(M, rhs):
"""Solves ``Ax = B``, where A is a lower triangular matrix.
See Also
========
upper_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LDLsolve
LUsolve
QRsolve
pinv_solve
"""
from .dense import MutableDenseMatrix
if not M.is_square:
raise NonSquareMatrixError("Matrix must be square.")
if rhs.rows != M.rows:
raise ShapeError("Matrices size mismatch.")
if not M.is_lower:
raise ValueError("Matrix must be lower triangular.")
dps = _get_intermediate_simp()
X = MutableDenseMatrix.zeros(M.rows, rhs.cols)
for j in range(rhs.cols):
for i in range(M.rows):
if M[i, i] == 0:
raise TypeError("Matrix must be non-singular.")
X[i, j] = dps((rhs[i, j] - sum(M[i, k]*X[k, j]
for k in range(i))) / M[i, i])
return M._new(X)
def _lower_triangular_solve_sparse(M, rhs):
"""Solves ``Ax = B``, where A is a lower triangular matrix.
See Also
========
upper_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LDLsolve
LUsolve
QRsolve
pinv_solve
"""
if not M.is_square:
raise NonSquareMatrixError("Matrix must be square.")
if rhs.rows != M.rows:
raise ShapeError("Matrices size mismatch.")
if not M.is_lower:
raise ValueError("Matrix must be lower triangular.")
dps = _get_intermediate_simp()
rows = [[] for i in range(M.rows)]
for i, j, v in M.row_list():
if i > j:
rows[i].append((j, v))
X = rhs.as_mutable()
for j in range(rhs.cols):
for i in range(rhs.rows):
for u, v in rows[i]:
X[i, j] -= v*X[u, j]
X[i, j] = dps(X[i, j] / M[i, i])
return M._new(X)
def _upper_triangular_solve(M, rhs):
"""Solves ``Ax = B``, where A is an upper triangular matrix.
See Also
========
lower_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LDLsolve
LUsolve
QRsolve
pinv_solve
"""
from .dense import MutableDenseMatrix
if not M.is_square:
raise NonSquareMatrixError("Matrix must be square.")
if rhs.rows != M.rows:
raise ShapeError("Matrix size mismatch.")
if not M.is_upper:
raise TypeError("Matrix is not upper triangular.")
dps = _get_intermediate_simp()
X = MutableDenseMatrix.zeros(M.rows, rhs.cols)
for j in range(rhs.cols):
for i in reversed(range(M.rows)):
if M[i, i] == 0:
raise ValueError("Matrix must be non-singular.")
X[i, j] = dps((rhs[i, j] - sum(M[i, k]*X[k, j]
for k in range(i + 1, M.rows))) / M[i, i])
return M._new(X)
def _upper_triangular_solve_sparse(M, rhs):
"""Solves ``Ax = B``, where A is an upper triangular matrix.
See Also
========
lower_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LDLsolve
LUsolve
QRsolve
pinv_solve
"""
if not M.is_square:
raise NonSquareMatrixError("Matrix must be square.")
if rhs.rows != M.rows:
raise ShapeError("Matrix size mismatch.")
if not M.is_upper:
raise TypeError("Matrix is not upper triangular.")
dps = _get_intermediate_simp()
rows = [[] for i in range(M.rows)]
for i, j, v in M.row_list():
if i < j:
rows[i].append((j, v))
X = rhs.as_mutable()
for j in range(rhs.cols):
for i in reversed(range(rhs.rows)):
for u, v in reversed(rows[i]):
X[i, j] -= v*X[u, j]
X[i, j] = dps(X[i, j] / M[i, i])
return M._new(X)
def _cholesky_solve(M, rhs):
"""Solves ``Ax = B`` using Cholesky decomposition,
for a general square non-singular matrix.
For a non-square matrix with rows > cols,
the least squares solution is returned.
See Also
========
sympy.matrices.dense.DenseMatrix.lower_triangular_solve
sympy.matrices.dense.DenseMatrix.upper_triangular_solve
gauss_jordan_solve
diagonal_solve
LDLsolve
LUsolve
QRsolve
pinv_solve
"""
if M.rows < M.cols:
raise NotImplementedError(
'Under-determined System. Try M.gauss_jordan_solve(rhs)')
hermitian = True
reform = False
if M.is_symmetric():
hermitian = False
elif not M.is_hermitian:
reform = True
if reform or _fuzzy_positive_definite(M) is False:
H = M.H
M = H.multiply(M)
rhs = H.multiply(rhs)
hermitian = not M.is_symmetric()
L = M.cholesky(hermitian=hermitian)
Y = L.lower_triangular_solve(rhs)
if hermitian:
return (L.H).upper_triangular_solve(Y)
else:
return (L.T).upper_triangular_solve(Y)
def _LDLsolve(M, rhs):
"""Solves ``Ax = B`` using LDL decomposition,
for a general square and non-singular matrix.
For a non-square matrix with rows > cols,
the least squares solution is returned.
Examples
========
>>> from sympy import Matrix, eye
>>> A = eye(2)*2
>>> B = Matrix([[1, 2], [3, 4]])
>>> A.LDLsolve(B) == B/2
True
See Also
========
sympy.matrices.dense.DenseMatrix.LDLdecomposition
sympy.matrices.dense.DenseMatrix.lower_triangular_solve
sympy.matrices.dense.DenseMatrix.upper_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LUsolve
QRsolve
pinv_solve
"""
if M.rows < M.cols:
raise NotImplementedError(
'Under-determined System. Try M.gauss_jordan_solve(rhs)')
hermitian = True
reform = False
if M.is_symmetric():
hermitian = False
elif not M.is_hermitian:
reform = True
if reform or _fuzzy_positive_definite(M) is False:
H = M.H
M = H.multiply(M)
rhs = H.multiply(rhs)
hermitian = not M.is_symmetric()
L, D = M.LDLdecomposition(hermitian=hermitian)
Y = L.lower_triangular_solve(rhs)
Z = D.diagonal_solve(Y)
if hermitian:
return (L.H).upper_triangular_solve(Z)
else:
return (L.T).upper_triangular_solve(Z)
def _LUsolve(M, rhs, iszerofunc=_iszero):
"""Solve the linear system ``Ax = rhs`` for ``x`` where ``A = M``.
This is for symbolic matrices, for real or complex ones use
mpmath.lu_solve or mpmath.qr_solve.
See Also
========
sympy.matrices.dense.DenseMatrix.lower_triangular_solve
sympy.matrices.dense.DenseMatrix.upper_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LDLsolve
QRsolve
pinv_solve
LUdecomposition
"""
if rhs.rows != M.rows:
raise ShapeError(
"``M`` and ``rhs`` must have the same number of rows.")
m = M.rows
n = M.cols
if m < n:
raise NotImplementedError("Underdetermined systems not supported.")
try:
A, perm = M.LUdecomposition_Simple(
iszerofunc=_iszero, rankcheck=True)
except ValueError:
raise NonInvertibleMatrixError("Matrix det == 0; not invertible.")
dps = _get_intermediate_simp()
b = rhs.permute_rows(perm).as_mutable()
# forward substitution, all diag entries are scaled to 1
for i in range(m):
for j in range(min(i, n)):
scale = A[i, j]
b.zip_row_op(i, j, lambda x, y: dps(x - y * scale))
# consistency check for overdetermined systems
if m > n:
for i in range(n, m):
for j in range(b.cols):
if not iszerofunc(b[i, j]):
raise ValueError("The system is inconsistent.")
b = b[0:n, :] # truncate zero rows if consistent
# backward substitution
for i in range(n - 1, -1, -1):
for j in range(i + 1, n):
scale = A[i, j]
b.zip_row_op(i, j, lambda x, y: dps(x - y * scale))
scale = A[i, i]
b.row_op(i, lambda x, _: dps(x / scale))
return rhs.__class__(b)
def _QRsolve(M, b):
"""Solve the linear system ``Ax = b``.
``M`` is the matrix ``A``, the method argument is the vector
``b``. The method returns the solution vector ``x``. If ``b`` is a
matrix, the system is solved for each column of ``b`` and the
return value is a matrix of the same shape as ``b``.
This method is slower (approximately by a factor of 2) but
more stable for floating-point arithmetic than the LUsolve method.
However, LUsolve usually uses an exact arithmetic, so you do not need
to use QRsolve.
This is mainly for educational purposes and symbolic matrices, for real
(or complex) matrices use mpmath.qr_solve.
See Also
========
sympy.matrices.dense.DenseMatrix.lower_triangular_solve
sympy.matrices.dense.DenseMatrix.upper_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LDLsolve
LUsolve
pinv_solve
QRdecomposition
"""
dps = _get_intermediate_simp(expand_mul, expand_mul)
Q, R = M.QRdecomposition()
y = Q.T * b
# back substitution to solve R*x = y:
# We build up the result "backwards" in the vector 'x' and reverse it
# only in the end.
x = []
n = R.rows
for j in range(n - 1, -1, -1):
tmp = y[j, :]
for k in range(j + 1, n):
tmp -= R[j, k] * x[n - 1 - k]
tmp = dps(tmp)
x.append(tmp / R[j, j])
return M.vstack(*x[::-1])
def _gauss_jordan_solve(M, B, freevar=False):
"""
Solves ``Ax = B`` using Gauss Jordan elimination.
There may be zero, one, or infinite solutions. If one solution
exists, it will be returned. If infinite solutions exist, it will
be returned parametrically. If no solutions exist, It will throw
ValueError.
Parameters
==========
B : Matrix
The right hand side of the equation to be solved for. Must have
the same number of rows as matrix A.
freevar : boolean, optional
Flag, when set to `True` will return the indices of the free
variables in the solutions (column Matrix), for a system that is
undetermined (e.g. A has more columns than rows), for which
infinite solutions are possible, in terms of arbitrary
values of free variables. Default `False`.
Returns
=======
x : Matrix
The matrix that will satisfy ``Ax = B``. Will have as many rows as
matrix A has columns, and as many columns as matrix B.
params : Matrix
If the system is underdetermined (e.g. A has more columns than
rows), infinite solutions are possible, in terms of arbitrary
parameters. These arbitrary parameters are returned as params
Matrix.
free_var_index : List, optional
If the system is underdetermined (e.g. A has more columns than
rows), infinite solutions are possible, in terms of arbitrary
values of free variables. Then the indices of the free variables
in the solutions (column Matrix) are returned by free_var_index,
if the flag `freevar` is set to `True`.
Examples
========
>>> from sympy import Matrix
>>> A = Matrix([[1, 2, 1, 1], [1, 2, 2, -1], [2, 4, 0, 6]])
>>> B = Matrix([7, 12, 4])
>>> sol, params = A.gauss_jordan_solve(B)
>>> sol
Matrix([
[-2*tau0 - 3*tau1 + 2],
[ tau0],
[ 2*tau1 + 5],
[ tau1]])
>>> params
Matrix([
[tau0],
[tau1]])
>>> taus_zeroes = { tau:0 for tau in params }
>>> sol_unique = sol.xreplace(taus_zeroes)
>>> sol_unique
Matrix([
[2],
[0],
[5],
[0]])
>>> A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 10]])
>>> B = Matrix([3, 6, 9])
>>> sol, params = A.gauss_jordan_solve(B)
>>> sol
Matrix([
[-1],
[ 2],
[ 0]])
>>> params
Matrix(0, 1, [])
>>> A = Matrix([[2, -7], [-1, 4]])
>>> B = Matrix([[-21, 3], [12, -2]])
>>> sol, params = A.gauss_jordan_solve(B)
>>> sol
Matrix([
[0, -2],
[3, -1]])
>>> params
Matrix(0, 2, [])
>>> from sympy import Matrix
>>> A = Matrix([[1, 2, 1, 1], [1, 2, 2, -1], [2, 4, 0, 6]])
>>> B = Matrix([7, 12, 4])
>>> sol, params, freevars = A.gauss_jordan_solve(B, freevar=True)
>>> sol
Matrix([
[-2*tau0 - 3*tau1 + 2],
[ tau0],
[ 2*tau1 + 5],
[ tau1]])
>>> params
Matrix([
[tau0],
[tau1]])
>>> freevars
[1, 3]
See Also
========
sympy.matrices.dense.DenseMatrix.lower_triangular_solve
sympy.matrices.dense.DenseMatrix.upper_triangular_solve
cholesky_solve
diagonal_solve
LDLsolve
LUsolve
QRsolve
pinv
References
==========
.. [1] https://en.wikipedia.org/wiki/Gaussian_elimination
"""
from sympy.matrices import Matrix, zeros
cls = M.__class__
aug = M.hstack(M.copy(), B.copy())
B_cols = B.cols
row, col = aug[:, :-B_cols].shape
# solve by reduced row echelon form
A, pivots = aug.rref(simplify=True)
A, v = A[:, :-B_cols], A[:, -B_cols:]
pivots = list(filter(lambda p: p < col, pivots))
rank = len(pivots)
# Get index of free symbols (free parameters)
# non-pivots columns are free variables
free_var_index = [c for c in range(A.cols) if c not in pivots]
# Bring to block form
permutation = Matrix(pivots + free_var_index).T
# check for existence of solutions
# rank of aug Matrix should be equal to rank of coefficient matrix
if not v[rank:, :].is_zero_matrix:
raise ValueError("Linear system has no solution")
# Free parameters
# what are current unnumbered free symbol names?
name = uniquely_named_symbol('tau', aug,
compare=lambda i: str(i).rstrip('1234567890'),
modify=lambda s: '_' + s).name
gen = numbered_symbols(name)
tau = Matrix([next(gen) for k in range((col - rank)*B_cols)]).reshape(
col - rank, B_cols)
# Full parametric solution
V = A[:rank, free_var_index]
vt = v[:rank, :]
free_sol = tau.vstack(vt - V * tau, tau)
# Undo permutation
sol = zeros(col, B_cols)
for k in range(col):
sol[permutation[k], :] = free_sol[k,:]
sol, tau = cls(sol), cls(tau)
if freevar:
return sol, tau, free_var_index
else:
return sol, tau
def _pinv_solve(M, B, arbitrary_matrix=None):
"""Solve ``Ax = B`` using the Moore-Penrose pseudoinverse.
There may be zero, one, or infinite solutions. If one solution
exists, it will be returned. If infinite solutions exist, one will
be returned based on the value of arbitrary_matrix. If no solutions
exist, the least-squares solution is returned.
Parameters
==========
B : Matrix
The right hand side of the equation to be solved for. Must have
the same number of rows as matrix A.
arbitrary_matrix : Matrix
If the system is underdetermined (e.g. A has more columns than
rows), infinite solutions are possible, in terms of an arbitrary
matrix. This parameter may be set to a specific matrix to use
for that purpose; if so, it must be the same shape as x, with as
many rows as matrix A has columns, and as many columns as matrix
B. If left as None, an appropriate matrix containing dummy
symbols in the form of ``wn_m`` will be used, with n and m being
row and column position of each symbol.
Returns
=======
x : Matrix
The matrix that will satisfy ``Ax = B``. Will have as many rows as
matrix A has columns, and as many columns as matrix B.
Examples
========
>>> from sympy import Matrix
>>> A = Matrix([[1, 2, 3], [4, 5, 6]])
>>> B = Matrix([7, 8])
>>> A.pinv_solve(B)
Matrix([
[ _w0_0/6 - _w1_0/3 + _w2_0/6 - 55/18],
[-_w0_0/3 + 2*_w1_0/3 - _w2_0/3 + 1/9],
[ _w0_0/6 - _w1_0/3 + _w2_0/6 + 59/18]])
>>> A.pinv_solve(B, arbitrary_matrix=Matrix([0, 0, 0]))
Matrix([
[-55/18],
[ 1/9],
[ 59/18]])
See Also
========
sympy.matrices.dense.DenseMatrix.lower_triangular_solve
sympy.matrices.dense.DenseMatrix.upper_triangular_solve
gauss_jordan_solve
cholesky_solve
diagonal_solve
LDLsolve
LUsolve
QRsolve
pinv
Notes
=====
This may return either exact solutions or least squares solutions.
To determine which, check ``A * A.pinv() * B == B``. It will be
True if exact solutions exist, and False if only a least-squares
solution exists. Be aware that the left hand side of that equation
may need to be simplified to correctly compare to the right hand
side.
References
==========
.. [1] https://en.wikipedia.org/wiki/Moore-Penrose_pseudoinverse#Obtaining_all_solutions_of_a_linear_system
"""
from sympy.matrices import eye
A = M
A_pinv = M.pinv()
if arbitrary_matrix is None:
rows, cols = A.cols, B.cols
w = symbols('w:{}_:{}'.format(rows, cols), cls=Dummy)
arbitrary_matrix = M.__class__(cols, rows, w).T
return A_pinv.multiply(B) + (eye(A.cols) -
A_pinv.multiply(A)).multiply(arbitrary_matrix)
def _solve(M, rhs, method='GJ'):
"""Solves linear equation where the unique solution exists.
Parameters
==========
rhs : Matrix
Vector representing the right hand side of the linear equation.
method : string, optional
If set to ``'GJ'`` or ``'GE'``, the Gauss-Jordan elimination will be
used, which is implemented in the routine ``gauss_jordan_solve``.
If set to ``'LU'``, ``LUsolve`` routine will be used.
If set to ``'QR'``, ``QRsolve`` routine will be used.
If set to ``'PINV'``, ``pinv_solve`` routine will be used.
It also supports the methods available for special linear systems
For positive definite systems:
If set to ``'CH'``, ``cholesky_solve`` routine will be used.
If set to ``'LDL'``, ``LDLsolve`` routine will be used.
To use a different method and to compute the solution via the
inverse, use a method defined in the .inv() docstring.
Returns
=======
solutions : Matrix
Vector representing the solution.
Raises
======
ValueError
If there is not a unique solution then a ``ValueError`` will be
raised.
If ``M`` is not square, a ``ValueError`` and a different routine
for solving the system will be suggested.
"""
if method in ('GJ', 'GE'):
try:
soln, param = M.gauss_jordan_solve(rhs)
if param:
raise NonInvertibleMatrixError("Matrix det == 0; not invertible. "
"Try ``M.gauss_jordan_solve(rhs)`` to obtain a parametric solution.")
except ValueError:
raise NonInvertibleMatrixError("Matrix det == 0; not invertible.")
return soln
elif method == 'LU':
return M.LUsolve(rhs)
elif method == 'CH':
return M.cholesky_solve(rhs)
elif method == 'QR':
return M.QRsolve(rhs)
elif method == 'LDL':
return M.LDLsolve(rhs)
elif method == 'PINV':
return M.pinv_solve(rhs)
else:
return M.inv(method=method).multiply(rhs)
def _solve_least_squares(M, rhs, method='CH'):
"""Return the least-square fit to the data.
Parameters
==========
rhs : Matrix
Vector representing the right hand side of the linear equation.
method : string or boolean, optional
If set to ``'CH'``, ``cholesky_solve`` routine will be used.
If set to ``'LDL'``, ``LDLsolve`` routine will be used.
If set to ``'QR'``, ``QRsolve`` routine will be used.
If set to ``'PINV'``, ``pinv_solve`` routine will be used.
Otherwise, the conjugate of ``M`` will be used to create a system
of equations that is passed to ``solve`` along with the hint
defined by ``method``.
Returns
=======
solutions : Matrix
Vector representing the solution.
Examples
========
>>> from sympy import Matrix, ones
>>> A = Matrix([1, 2, 3])
>>> B = Matrix([2, 3, 4])
>>> S = Matrix(A.row_join(B))
>>> S
Matrix([
[1, 2],
[2, 3],
[3, 4]])
If each line of S represent coefficients of Ax + By
and x and y are [2, 3] then S*xy is:
>>> r = S*Matrix([2, 3]); r
Matrix([
[ 8],
[13],
[18]])
But let's add 1 to the middle value and then solve for the
least-squares value of xy:
>>> xy = S.solve_least_squares(Matrix([8, 14, 18])); xy
Matrix([
[ 5/3],
[10/3]])
The error is given by S*xy - r:
>>> S*xy - r
Matrix([
[1/3],
[1/3],
[1/3]])
>>> _.norm().n(2)
0.58
If a different xy is used, the norm will be higher:
>>> xy += ones(2, 1)/10
>>> (S*xy - r).norm().n(2)
1.5
"""
if method == 'CH':
return M.cholesky_solve(rhs)
elif method == 'QR':
return M.QRsolve(rhs)
elif method == 'LDL':
return M.LDLsolve(rhs)
elif method == 'PINV':
return M.pinv_solve(rhs)
else:
t = M.H
return (t * M).solve(t * rhs, method=method)
|
ee7d1ccad9a38c5a016b27093df817fa26050ab4a87dccf87b38528b36d9abf2 | from typing import Any, Callable
from functools import reduce
from collections import defaultdict
import inspect
from sympy.core.kind import Kind, UndefinedKind, NumberKind
from sympy.core.basic import Basic
from sympy.core.containers import Tuple, TupleKind
from sympy.core.decorators import sympify_method_args, sympify_return
from sympy.core.evalf import EvalfMixin
from sympy.core.expr import Expr
from sympy.core.function import Lambda
from sympy.core.logic import (FuzzyBool, fuzzy_bool, fuzzy_or, fuzzy_and,
fuzzy_not)
from sympy.core.numbers import Float, Integer
from sympy.core.operations import LatticeOp
from sympy.core.parameters import global_parameters
from sympy.core.relational import Eq, Ne, is_lt
from sympy.core.singleton import Singleton, S
from sympy.core.sorting import ordered
from sympy.core.symbol import symbols, Symbol, Dummy, uniquely_named_symbol
from sympy.core.sympify import _sympify, sympify, _sympy_converter
from sympy.functions.elementary.exponential import exp, log
from sympy.functions.elementary.miscellaneous import Max, Min
from sympy.logic.boolalg import And, Or, Not, Xor, true, false
from sympy.utilities.decorator import deprecated
from sympy.utilities.exceptions import sympy_deprecation_warning
from sympy.utilities.iterables import (iproduct, sift, roundrobin, iterable,
subsets)
from sympy.utilities.misc import func_name, filldedent
from mpmath import mpi, mpf
from mpmath.libmp.libmpf import prec_to_dps
tfn = defaultdict(lambda: None, {
True: S.true,
S.true: S.true,
False: S.false,
S.false: S.false})
@sympify_method_args
class Set(Basic, EvalfMixin):
"""
The base class for any kind of set.
Explanation
===========
This is not meant to be used directly as a container of items. It does not
behave like the builtin ``set``; see :class:`FiniteSet` for that.
Real intervals are represented by the :class:`Interval` class and unions of
sets by the :class:`Union` class. The empty set is represented by the
:class:`EmptySet` class and available as a singleton as ``S.EmptySet``.
"""
__slots__ = ()
is_number = False
is_iterable = False
is_interval = False
is_FiniteSet = False
is_Interval = False
is_ProductSet = False
is_Union = False
is_Intersection: FuzzyBool = None
is_UniversalSet: FuzzyBool = None
is_Complement: FuzzyBool = None
is_ComplexRegion = False
is_empty: FuzzyBool = None
is_finite_set: FuzzyBool = None
@property # type: ignore
@deprecated(
"""
The is_EmptySet attribute of Set objects is deprecated.
Use 's is S.EmptySet" or 's.is_empty' instead.
""",
deprecated_since_version="1.5",
active_deprecations_target="deprecated-is-emptyset",
)
def is_EmptySet(self):
return None
@staticmethod
def _infimum_key(expr):
"""
Return infimum (if possible) else S.Infinity.
"""
try:
infimum = expr.inf
assert infimum.is_comparable
infimum = infimum.evalf() # issue #18505
except (NotImplementedError,
AttributeError, AssertionError, ValueError):
infimum = S.Infinity
return infimum
def union(self, other):
"""
Returns the union of ``self`` and ``other``.
Examples
========
As a shortcut it is possible to use the ``+`` operator:
>>> from sympy import Interval, FiniteSet
>>> Interval(0, 1).union(Interval(2, 3))
Union(Interval(0, 1), Interval(2, 3))
>>> Interval(0, 1) + Interval(2, 3)
Union(Interval(0, 1), Interval(2, 3))
>>> Interval(1, 2, True, True) + FiniteSet(2, 3)
Union({3}, Interval.Lopen(1, 2))
Similarly it is possible to use the ``-`` operator for set differences:
>>> Interval(0, 2) - Interval(0, 1)
Interval.Lopen(1, 2)
>>> Interval(1, 3) - FiniteSet(2)
Union(Interval.Ropen(1, 2), Interval.Lopen(2, 3))
"""
return Union(self, other)
def intersect(self, other):
"""
Returns the intersection of 'self' and 'other'.
Examples
========
>>> from sympy import Interval
>>> Interval(1, 3).intersect(Interval(1, 2))
Interval(1, 2)
>>> from sympy import imageset, Lambda, symbols, S
>>> n, m = symbols('n m')
>>> a = imageset(Lambda(n, 2*n), S.Integers)
>>> a.intersect(imageset(Lambda(m, 2*m + 1), S.Integers))
EmptySet
"""
return Intersection(self, other)
def intersection(self, other):
"""
Alias for :meth:`intersect()`
"""
return self.intersect(other)
def is_disjoint(self, other):
"""
Returns True if ``self`` and ``other`` are disjoint.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 2).is_disjoint(Interval(1, 2))
False
>>> Interval(0, 2).is_disjoint(Interval(3, 4))
True
References
==========
.. [1] https://en.wikipedia.org/wiki/Disjoint_sets
"""
return self.intersect(other) == S.EmptySet
def isdisjoint(self, other):
"""
Alias for :meth:`is_disjoint()`
"""
return self.is_disjoint(other)
def complement(self, universe):
r"""
The complement of 'self' w.r.t the given universe.
Examples
========
>>> from sympy import Interval, S
>>> Interval(0, 1).complement(S.Reals)
Union(Interval.open(-oo, 0), Interval.open(1, oo))
>>> Interval(0, 1).complement(S.UniversalSet)
Complement(UniversalSet, Interval(0, 1))
"""
return Complement(universe, self)
def _complement(self, other):
# this behaves as other - self
if isinstance(self, ProductSet) and isinstance(other, ProductSet):
# If self and other are disjoint then other - self == self
if len(self.sets) != len(other.sets):
return other
# There can be other ways to represent this but this gives:
# (A x B) - (C x D) = ((A - C) x B) U (A x (B - D))
overlaps = []
pairs = list(zip(self.sets, other.sets))
for n in range(len(pairs)):
sets = (o if i != n else o-s for i, (s, o) in enumerate(pairs))
overlaps.append(ProductSet(*sets))
return Union(*overlaps)
elif isinstance(other, Interval):
if isinstance(self, (Interval, FiniteSet)):
return Intersection(other, self.complement(S.Reals))
elif isinstance(other, Union):
return Union(*(o - self for o in other.args))
elif isinstance(other, Complement):
return Complement(other.args[0], Union(other.args[1], self), evaluate=False)
elif other is S.EmptySet:
return S.EmptySet
elif isinstance(other, FiniteSet):
sifted = sift(other, lambda x: fuzzy_bool(self.contains(x)))
# ignore those that are contained in self
return Union(FiniteSet(*(sifted[False])),
Complement(FiniteSet(*(sifted[None])), self, evaluate=False)
if sifted[None] else S.EmptySet)
def symmetric_difference(self, other):
"""
Returns symmetric difference of ``self`` and ``other``.
Examples
========
>>> from sympy import Interval, S
>>> Interval(1, 3).symmetric_difference(S.Reals)
Union(Interval.open(-oo, 1), Interval.open(3, oo))
>>> Interval(1, 10).symmetric_difference(S.Reals)
Union(Interval.open(-oo, 1), Interval.open(10, oo))
>>> from sympy import S, EmptySet
>>> S.Reals.symmetric_difference(EmptySet)
Reals
References
==========
.. [1] https://en.wikipedia.org/wiki/Symmetric_difference
"""
return SymmetricDifference(self, other)
def _symmetric_difference(self, other):
return Union(Complement(self, other), Complement(other, self))
@property
def inf(self):
"""
The infimum of ``self``.
Examples
========
>>> from sympy import Interval, Union
>>> Interval(0, 1).inf
0
>>> Union(Interval(0, 1), Interval(2, 3)).inf
0
"""
return self._inf
@property
def _inf(self):
raise NotImplementedError("(%s)._inf" % self)
@property
def sup(self):
"""
The supremum of ``self``.
Examples
========
>>> from sympy import Interval, Union
>>> Interval(0, 1).sup
1
>>> Union(Interval(0, 1), Interval(2, 3)).sup
3
"""
return self._sup
@property
def _sup(self):
raise NotImplementedError("(%s)._sup" % self)
def contains(self, other):
"""
Returns a SymPy value indicating whether ``other`` is contained
in ``self``: ``true`` if it is, ``false`` if it is not, else
an unevaluated ``Contains`` expression (or, as in the case of
ConditionSet and a union of FiniteSet/Intervals, an expression
indicating the conditions for containment).
Examples
========
>>> from sympy import Interval, S
>>> from sympy.abc import x
>>> Interval(0, 1).contains(0.5)
True
As a shortcut it is possible to use the ``in`` operator, but that
will raise an error unless an affirmative true or false is not
obtained.
>>> Interval(0, 1).contains(x)
(0 <= x) & (x <= 1)
>>> x in Interval(0, 1)
Traceback (most recent call last):
...
TypeError: did not evaluate to a bool: None
The result of 'in' is a bool, not a SymPy value
>>> 1 in Interval(0, 2)
True
>>> _ is S.true
False
"""
from .contains import Contains
other = sympify(other, strict=True)
c = self._contains(other)
if isinstance(c, Contains):
return c
if c is None:
return Contains(other, self, evaluate=False)
b = tfn[c]
if b is None:
return c
return b
def _contains(self, other):
raise NotImplementedError(filldedent('''
(%s)._contains(%s) is not defined. This method, when
defined, will receive a sympified object. The method
should return True, False, None or something that
expresses what must be true for the containment of that
object in self to be evaluated. If None is returned
then a generic Contains object will be returned
by the ``contains`` method.''' % (self, other)))
def is_subset(self, other):
"""
Returns True if ``self`` is a subset of ``other``.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 0.5).is_subset(Interval(0, 1))
True
>>> Interval(0, 1).is_subset(Interval(0, 1, left_open=True))
False
"""
if not isinstance(other, Set):
raise ValueError("Unknown argument '%s'" % other)
# Handle the trivial cases
if self == other:
return True
is_empty = self.is_empty
if is_empty is True:
return True
elif fuzzy_not(is_empty) and other.is_empty:
return False
if self.is_finite_set is False and other.is_finite_set:
return False
# Dispatch on subclass rules
ret = self._eval_is_subset(other)
if ret is not None:
return ret
ret = other._eval_is_superset(self)
if ret is not None:
return ret
# Use pairwise rules from multiple dispatch
from sympy.sets.handlers.issubset import is_subset_sets
ret = is_subset_sets(self, other)
if ret is not None:
return ret
# Fall back on computing the intersection
# XXX: We shouldn't do this. A query like this should be handled
# without evaluating new Set objects. It should be the other way round
# so that the intersect method uses is_subset for evaluation.
if self.intersect(other) == self:
return True
def _eval_is_subset(self, other):
'''Returns a fuzzy bool for whether self is a subset of other.'''
return None
def _eval_is_superset(self, other):
'''Returns a fuzzy bool for whether self is a subset of other.'''
return None
# This should be deprecated:
def issubset(self, other):
"""
Alias for :meth:`is_subset()`
"""
return self.is_subset(other)
def is_proper_subset(self, other):
"""
Returns True if ``self`` is a proper subset of ``other``.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 0.5).is_proper_subset(Interval(0, 1))
True
>>> Interval(0, 1).is_proper_subset(Interval(0, 1))
False
"""
if isinstance(other, Set):
return self != other and self.is_subset(other)
else:
raise ValueError("Unknown argument '%s'" % other)
def is_superset(self, other):
"""
Returns True if ``self`` is a superset of ``other``.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 0.5).is_superset(Interval(0, 1))
False
>>> Interval(0, 1).is_superset(Interval(0, 1, left_open=True))
True
"""
if isinstance(other, Set):
return other.is_subset(self)
else:
raise ValueError("Unknown argument '%s'" % other)
# This should be deprecated:
def issuperset(self, other):
"""
Alias for :meth:`is_superset()`
"""
return self.is_superset(other)
def is_proper_superset(self, other):
"""
Returns True if ``self`` is a proper superset of ``other``.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).is_proper_superset(Interval(0, 0.5))
True
>>> Interval(0, 1).is_proper_superset(Interval(0, 1))
False
"""
if isinstance(other, Set):
return self != other and self.is_superset(other)
else:
raise ValueError("Unknown argument '%s'" % other)
def _eval_powerset(self):
from .powerset import PowerSet
return PowerSet(self)
def powerset(self):
"""
Find the Power set of ``self``.
Examples
========
>>> from sympy import EmptySet, FiniteSet, Interval
A power set of an empty set:
>>> A = EmptySet
>>> A.powerset()
{EmptySet}
A power set of a finite set:
>>> A = FiniteSet(1, 2)
>>> a, b, c = FiniteSet(1), FiniteSet(2), FiniteSet(1, 2)
>>> A.powerset() == FiniteSet(a, b, c, EmptySet)
True
A power set of an interval:
>>> Interval(1, 2).powerset()
PowerSet(Interval(1, 2))
References
==========
.. [1] https://en.wikipedia.org/wiki/Power_set
"""
return self._eval_powerset()
@property
def measure(self):
"""
The (Lebesgue) measure of ``self``.
Examples
========
>>> from sympy import Interval, Union
>>> Interval(0, 1).measure
1
>>> Union(Interval(0, 1), Interval(2, 3)).measure
2
"""
return self._measure
@property
def kind(self):
"""
The kind of a Set
Explanation
===========
Any :class:`Set` will have kind :class:`SetKind` which is
parametrised by the kind of the elements of the set. For example
most sets are sets of numbers and will have kind
``SetKind(NumberKind)``. If elements of sets are different in kind than
their kind will ``SetKind(UndefinedKind)``. See
:class:`sympy.core.kind.Kind` for an explanation of the kind system.
Examples
========
>>> from sympy import Interval, Matrix, FiniteSet, EmptySet, ProductSet, PowerSet
>>> FiniteSet(Matrix([1, 2])).kind
SetKind(MatrixKind(NumberKind))
>>> Interval(1, 2).kind
SetKind(NumberKind)
>>> EmptySet.kind
SetKind()
A :class:`sympy.sets.powerset.PowerSet` is a set of sets:
>>> PowerSet({1, 2, 3}).kind
SetKind(SetKind(NumberKind))
A :class:`ProductSet` represents the set of tuples of elements of
other sets. Its kind is :class:`sympy.core.containers.TupleKind`
parametrised by the kinds of the elements of those sets:
>>> p = ProductSet(FiniteSet(1, 2), FiniteSet(3, 4))
>>> list(p)
[(1, 3), (2, 3), (1, 4), (2, 4)]
>>> p.kind
SetKind(TupleKind(NumberKind, NumberKind))
When all elements of the set do not have same kind, the kind
will be returned as ``SetKind(UndefinedKind)``:
>>> FiniteSet(0, Matrix([1, 2])).kind
SetKind(UndefinedKind)
The kind of the elements of a set are given by the ``element_kind``
attribute of ``SetKind``:
>>> Interval(1, 2).kind.element_kind
NumberKind
See Also
========
NumberKind
sympy.core.kind.UndefinedKind
sympy.core.containers.TupleKind
MatrixKind
sympy.matrices.expressions.sets.MatrixSet
sympy.sets.conditionset.ConditionSet
Rationals
Naturals
Integers
sympy.sets.fancysets.ImageSet
sympy.sets.fancysets.Range
sympy.sets.fancysets.ComplexRegion
sympy.sets.powerset.PowerSet
sympy.sets.sets.ProductSet
sympy.sets.sets.Interval
sympy.sets.sets.Union
sympy.sets.sets.Intersection
sympy.sets.sets.Complement
sympy.sets.sets.EmptySet
sympy.sets.sets.UniversalSet
sympy.sets.sets.FiniteSet
sympy.sets.sets.SymmetricDifference
sympy.sets.sets.DisjointUnion
"""
return self._kind()
@property
def boundary(self):
"""
The boundary or frontier of a set.
Explanation
===========
A point x is on the boundary of a set S if
1. x is in the closure of S.
I.e. Every neighborhood of x contains a point in S.
2. x is not in the interior of S.
I.e. There does not exist an open set centered on x contained
entirely within S.
There are the points on the outer rim of S. If S is open then these
points need not actually be contained within S.
For example, the boundary of an interval is its start and end points.
This is true regardless of whether or not the interval is open.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).boundary
{0, 1}
>>> Interval(0, 1, True, False).boundary
{0, 1}
"""
return self._boundary
@property
def is_open(self):
"""
Property method to check whether a set is open.
Explanation
===========
A set is open if and only if it has an empty intersection with its
boundary. In particular, a subset A of the reals is open if and only
if each one of its points is contained in an open interval that is a
subset of A.
Examples
========
>>> from sympy import S
>>> S.Reals.is_open
True
>>> S.Rationals.is_open
False
"""
return Intersection(self, self.boundary).is_empty
@property
def is_closed(self):
"""
A property method to check whether a set is closed.
Explanation
===========
A set is closed if its complement is an open set. The closedness of a
subset of the reals is determined with respect to R and its standard
topology.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).is_closed
True
"""
return self.boundary.is_subset(self)
@property
def closure(self):
"""
Property method which returns the closure of a set.
The closure is defined as the union of the set itself and its
boundary.
Examples
========
>>> from sympy import S, Interval
>>> S.Reals.closure
Reals
>>> Interval(0, 1).closure
Interval(0, 1)
"""
return self + self.boundary
@property
def interior(self):
"""
Property method which returns the interior of a set.
The interior of a set S consists all points of S that do not
belong to the boundary of S.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).interior
Interval.open(0, 1)
>>> Interval(0, 1).boundary.interior
EmptySet
"""
return self - self.boundary
@property
def _boundary(self):
raise NotImplementedError()
@property
def _measure(self):
raise NotImplementedError("(%s)._measure" % self)
def _kind(self):
return SetKind(UndefinedKind)
def _eval_evalf(self, prec):
dps = prec_to_dps(prec)
return self.func(*[arg.evalf(n=dps) for arg in self.args])
@sympify_return([('other', 'Set')], NotImplemented)
def __add__(self, other):
return self.union(other)
@sympify_return([('other', 'Set')], NotImplemented)
def __or__(self, other):
return self.union(other)
@sympify_return([('other', 'Set')], NotImplemented)
def __and__(self, other):
return self.intersect(other)
@sympify_return([('other', 'Set')], NotImplemented)
def __mul__(self, other):
return ProductSet(self, other)
@sympify_return([('other', 'Set')], NotImplemented)
def __xor__(self, other):
return SymmetricDifference(self, other)
@sympify_return([('exp', Expr)], NotImplemented)
def __pow__(self, exp):
if not (exp.is_Integer and exp >= 0):
raise ValueError("%s: Exponent must be a positive Integer" % exp)
return ProductSet(*[self]*exp)
@sympify_return([('other', 'Set')], NotImplemented)
def __sub__(self, other):
return Complement(self, other)
def __contains__(self, other):
other = _sympify(other)
c = self._contains(other)
b = tfn[c]
if b is None:
# x in y must evaluate to T or F; to entertain a None
# result with Set use y.contains(x)
raise TypeError('did not evaluate to a bool: %r' % c)
return b
class ProductSet(Set):
"""
Represents a Cartesian Product of Sets.
Explanation
===========
Returns a Cartesian product given several sets as either an iterable
or individual arguments.
Can use ``*`` operator on any sets for convenient shorthand.
Examples
========
>>> from sympy import Interval, FiniteSet, ProductSet
>>> I = Interval(0, 5); S = FiniteSet(1, 2, 3)
>>> ProductSet(I, S)
ProductSet(Interval(0, 5), {1, 2, 3})
>>> (2, 2) in ProductSet(I, S)
True
>>> Interval(0, 1) * Interval(0, 1) # The unit square
ProductSet(Interval(0, 1), Interval(0, 1))
>>> coin = FiniteSet('H', 'T')
>>> set(coin**2)
{(H, H), (H, T), (T, H), (T, T)}
The Cartesian product is not commutative or associative e.g.:
>>> I*S == S*I
False
>>> (I*I)*I == I*(I*I)
False
Notes
=====
- Passes most operations down to the argument sets
References
==========
.. [1] https://en.wikipedia.org/wiki/Cartesian_product
"""
is_ProductSet = True
def __new__(cls, *sets, **assumptions):
if len(sets) == 1 and iterable(sets[0]) and not isinstance(sets[0], (Set, set)):
sympy_deprecation_warning(
"""
ProductSet(iterable) is deprecated. Use ProductSet(*iterable) instead.
""",
deprecated_since_version="1.5",
active_deprecations_target="deprecated-productset-iterable",
)
sets = tuple(sets[0])
sets = [sympify(s) for s in sets]
if not all(isinstance(s, Set) for s in sets):
raise TypeError("Arguments to ProductSet should be of type Set")
# Nullary product of sets is *not* the empty set
if len(sets) == 0:
return FiniteSet(())
if S.EmptySet in sets:
return S.EmptySet
return Basic.__new__(cls, *sets, **assumptions)
@property
def sets(self):
return self.args
def flatten(self):
def _flatten(sets):
for s in sets:
if s.is_ProductSet:
yield from _flatten(s.sets)
else:
yield s
return ProductSet(*_flatten(self.sets))
def _contains(self, element):
"""
``in`` operator for ProductSets.
Examples
========
>>> from sympy import Interval
>>> (2, 3) in Interval(0, 5) * Interval(0, 5)
True
>>> (10, 10) in Interval(0, 5) * Interval(0, 5)
False
Passes operation on to constituent sets
"""
if element.is_Symbol:
return None
if not isinstance(element, Tuple) or len(element) != len(self.sets):
return False
return fuzzy_and(s._contains(e) for s, e in zip(self.sets, element))
def as_relational(self, *symbols):
symbols = [_sympify(s) for s in symbols]
if len(symbols) != len(self.sets) or not all(
i.is_Symbol for i in symbols):
raise ValueError(
'number of symbols must match the number of sets')
return And(*[s.as_relational(i) for s, i in zip(self.sets, symbols)])
@property
def _boundary(self):
return Union(*(ProductSet(*(b + b.boundary if i != j else b.boundary
for j, b in enumerate(self.sets)))
for i, a in enumerate(self.sets)))
@property
def is_iterable(self):
"""
A property method which tests whether a set is iterable or not.
Returns True if set is iterable, otherwise returns False.
Examples
========
>>> from sympy import FiniteSet, Interval
>>> I = Interval(0, 1)
>>> A = FiniteSet(1, 2, 3, 4, 5)
>>> I.is_iterable
False
>>> A.is_iterable
True
"""
return all(set.is_iterable for set in self.sets)
def __iter__(self):
"""
A method which implements is_iterable property method.
If self.is_iterable returns True (both constituent sets are iterable),
then return the Cartesian Product. Otherwise, raise TypeError.
"""
return iproduct(*self.sets)
@property
def is_empty(self):
return fuzzy_or(s.is_empty for s in self.sets)
@property
def is_finite_set(self):
all_finite = fuzzy_and(s.is_finite_set for s in self.sets)
return fuzzy_or([self.is_empty, all_finite])
@property
def _measure(self):
measure = 1
for s in self.sets:
measure *= s.measure
return measure
def _kind(self):
return SetKind(TupleKind(*(i.kind.element_kind for i in self.args)))
def __len__(self):
return reduce(lambda a, b: a*b, (len(s) for s in self.args))
def __bool__(self):
return all(self.sets)
class Interval(Set):
"""
Represents a real interval as a Set.
Usage:
Returns an interval with end points ``start`` and ``end``.
For ``left_open=True`` (default ``left_open`` is ``False``) the interval
will be open on the left. Similarly, for ``right_open=True`` the interval
will be open on the right.
Examples
========
>>> from sympy import Symbol, Interval
>>> Interval(0, 1)
Interval(0, 1)
>>> Interval.Ropen(0, 1)
Interval.Ropen(0, 1)
>>> Interval.Ropen(0, 1)
Interval.Ropen(0, 1)
>>> Interval.Lopen(0, 1)
Interval.Lopen(0, 1)
>>> Interval.open(0, 1)
Interval.open(0, 1)
>>> a = Symbol('a', real=True)
>>> Interval(0, a)
Interval(0, a)
Notes
=====
- Only real end points are supported
- ``Interval(a, b)`` with $a > b$ will return the empty set
- Use the ``evalf()`` method to turn an Interval into an mpmath
``mpi`` interval instance
References
==========
.. [1] https://en.wikipedia.org/wiki/Interval_%28mathematics%29
"""
is_Interval = True
def __new__(cls, start, end, left_open=False, right_open=False):
start = _sympify(start)
end = _sympify(end)
left_open = _sympify(left_open)
right_open = _sympify(right_open)
if not all(isinstance(a, (type(true), type(false)))
for a in [left_open, right_open]):
raise NotImplementedError(
"left_open and right_open can have only true/false values, "
"got %s and %s" % (left_open, right_open))
# Only allow real intervals
if fuzzy_not(fuzzy_and(i.is_extended_real for i in (start, end, end-start))):
raise ValueError("Non-real intervals are not supported")
# evaluate if possible
if is_lt(end, start):
return S.EmptySet
elif (end - start).is_negative:
return S.EmptySet
if end == start and (left_open or right_open):
return S.EmptySet
if end == start and not (left_open or right_open):
if start is S.Infinity or start is S.NegativeInfinity:
return S.EmptySet
return FiniteSet(end)
# Make sure infinite interval end points are open.
if start is S.NegativeInfinity:
left_open = true
if end is S.Infinity:
right_open = true
if start == S.Infinity or end == S.NegativeInfinity:
return S.EmptySet
return Basic.__new__(cls, start, end, left_open, right_open)
@property
def start(self):
"""
The left end point of the interval.
This property takes the same value as the ``inf`` property.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).start
0
"""
return self._args[0]
@property
def end(self):
"""
The right end point of the interval.
This property takes the same value as the ``sup`` property.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1).end
1
"""
return self._args[1]
@property
def left_open(self):
"""
True if interval is left-open.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1, left_open=True).left_open
True
>>> Interval(0, 1, left_open=False).left_open
False
"""
return self._args[2]
@property
def right_open(self):
"""
True if interval is right-open.
Examples
========
>>> from sympy import Interval
>>> Interval(0, 1, right_open=True).right_open
True
>>> Interval(0, 1, right_open=False).right_open
False
"""
return self._args[3]
@classmethod
def open(cls, a, b):
"""Return an interval including neither boundary."""
return cls(a, b, True, True)
@classmethod
def Lopen(cls, a, b):
"""Return an interval not including the left boundary."""
return cls(a, b, True, False)
@classmethod
def Ropen(cls, a, b):
"""Return an interval not including the right boundary."""
return cls(a, b, False, True)
@property
def _inf(self):
return self.start
@property
def _sup(self):
return self.end
@property
def left(self):
return self.start
@property
def right(self):
return self.end
@property
def is_empty(self):
if self.left_open or self.right_open:
cond = self.start >= self.end # One/both bounds open
else:
cond = self.start > self.end # Both bounds closed
return fuzzy_bool(cond)
@property
def is_finite_set(self):
return self.measure.is_zero
def _complement(self, other):
if other == S.Reals:
a = Interval(S.NegativeInfinity, self.start,
True, not self.left_open)
b = Interval(self.end, S.Infinity, not self.right_open, True)
return Union(a, b)
if isinstance(other, FiniteSet):
nums = [m for m in other.args if m.is_number]
if nums == []:
return None
return Set._complement(self, other)
@property
def _boundary(self):
finite_points = [p for p in (self.start, self.end)
if abs(p) != S.Infinity]
return FiniteSet(*finite_points)
def _contains(self, other):
if (not isinstance(other, Expr) or other is S.NaN
or other.is_real is False or other.has(S.ComplexInfinity)):
# if an expression has zoo it will be zoo or nan
# and neither of those is real
return false
if self.start is S.NegativeInfinity and self.end is S.Infinity:
if other.is_real is not None:
return other.is_real
d = Dummy()
return self.as_relational(d).subs(d, other)
def as_relational(self, x):
"""Rewrite an interval in terms of inequalities and logic operators."""
x = sympify(x)
if self.right_open:
right = x < self.end
else:
right = x <= self.end
if self.left_open:
left = self.start < x
else:
left = self.start <= x
return And(left, right)
@property
def _measure(self):
return self.end - self.start
def _kind(self):
return SetKind(NumberKind)
def to_mpi(self, prec=53):
return mpi(mpf(self.start._eval_evalf(prec)),
mpf(self.end._eval_evalf(prec)))
def _eval_evalf(self, prec):
return Interval(self.left._evalf(prec), self.right._evalf(prec),
left_open=self.left_open, right_open=self.right_open)
def _is_comparable(self, other):
is_comparable = self.start.is_comparable
is_comparable &= self.end.is_comparable
is_comparable &= other.start.is_comparable
is_comparable &= other.end.is_comparable
return is_comparable
@property
def is_left_unbounded(self):
"""Return ``True`` if the left endpoint is negative infinity. """
return self.left is S.NegativeInfinity or self.left == Float("-inf")
@property
def is_right_unbounded(self):
"""Return ``True`` if the right endpoint is positive infinity. """
return self.right is S.Infinity or self.right == Float("+inf")
def _eval_Eq(self, other):
if not isinstance(other, Interval):
if isinstance(other, FiniteSet):
return false
elif isinstance(other, Set):
return None
return false
class Union(Set, LatticeOp):
"""
Represents a union of sets as a :class:`Set`.
Examples
========
>>> from sympy import Union, Interval
>>> Union(Interval(1, 2), Interval(3, 4))
Union(Interval(1, 2), Interval(3, 4))
The Union constructor will always try to merge overlapping intervals,
if possible. For example:
>>> Union(Interval(1, 2), Interval(2, 3))
Interval(1, 3)
See Also
========
Intersection
References
==========
.. [1] https://en.wikipedia.org/wiki/Union_%28set_theory%29
"""
is_Union = True
@property
def identity(self):
return S.EmptySet
@property
def zero(self):
return S.UniversalSet
def __new__(cls, *args, **kwargs):
evaluate = kwargs.get('evaluate', global_parameters.evaluate)
# flatten inputs to merge intersections and iterables
args = _sympify(args)
# Reduce sets using known rules
if evaluate:
args = list(cls._new_args_filter(args))
return simplify_union(args)
args = list(ordered(args, Set._infimum_key))
obj = Basic.__new__(cls, *args)
obj._argset = frozenset(args)
return obj
@property
def args(self):
return self._args
def _complement(self, universe):
# DeMorgan's Law
return Intersection(s.complement(universe) for s in self.args)
@property
def _inf(self):
# We use Min so that sup is meaningful in combination with symbolic
# interval end points.
return Min(*[set.inf for set in self.args])
@property
def _sup(self):
# We use Max so that sup is meaningful in combination with symbolic
# end points.
return Max(*[set.sup for set in self.args])
@property
def is_empty(self):
return fuzzy_and(set.is_empty for set in self.args)
@property
def is_finite_set(self):
return fuzzy_and(set.is_finite_set for set in self.args)
@property
def _measure(self):
# Measure of a union is the sum of the measures of the sets minus
# the sum of their pairwise intersections plus the sum of their
# triple-wise intersections minus ... etc...
# Sets is a collection of intersections and a set of elementary
# sets which made up those intersections (called "sos" for set of sets)
# An example element might of this list might be:
# ( {A,B,C}, A.intersect(B).intersect(C) )
# Start with just elementary sets ( ({A}, A), ({B}, B), ... )
# Then get and subtract ( ({A,B}, (A int B), ... ) while non-zero
sets = [(FiniteSet(s), s) for s in self.args]
measure = 0
parity = 1
while sets:
# Add up the measure of these sets and add or subtract it to total
measure += parity * sum(inter.measure for sos, inter in sets)
# For each intersection in sets, compute the intersection with every
# other set not already part of the intersection.
sets = ((sos + FiniteSet(newset), newset.intersect(intersection))
for sos, intersection in sets for newset in self.args
if newset not in sos)
# Clear out sets with no measure
sets = [(sos, inter) for sos, inter in sets if inter.measure != 0]
# Clear out duplicates
sos_list = []
sets_list = []
for _set in sets:
if _set[0] in sos_list:
continue
else:
sos_list.append(_set[0])
sets_list.append(_set)
sets = sets_list
# Flip Parity - next time subtract/add if we added/subtracted here
parity *= -1
return measure
def _kind(self):
kinds = tuple(arg.kind for arg in self.args if arg is not S.EmptySet)
if not kinds:
return SetKind()
elif all(i == kinds[0] for i in kinds):
return kinds[0]
else:
return SetKind(UndefinedKind)
@property
def _boundary(self):
def boundary_of_set(i):
""" The boundary of set i minus interior of all other sets """
b = self.args[i].boundary
for j, a in enumerate(self.args):
if j != i:
b = b - a.interior
return b
return Union(*map(boundary_of_set, range(len(self.args))))
def _contains(self, other):
return Or(*[s.contains(other) for s in self.args])
def is_subset(self, other):
return fuzzy_and(s.is_subset(other) for s in self.args)
def as_relational(self, symbol):
"""Rewrite a Union in terms of equalities and logic operators. """
if (len(self.args) == 2 and
all(isinstance(i, Interval) for i in self.args)):
# optimization to give 3 args as (x > 1) & (x < 5) & Ne(x, 3)
# instead of as 4, ((1 <= x) & (x < 3)) | ((x <= 5) & (3 < x))
# XXX: This should be ideally be improved to handle any number of
# intervals and also not to assume that the intervals are in any
# particular sorted order.
a, b = self.args
if a.sup == b.inf and a.right_open and b.left_open:
mincond = symbol > a.inf if a.left_open else symbol >= a.inf
maxcond = symbol < b.sup if b.right_open else symbol <= b.sup
necond = Ne(symbol, a.sup)
return And(necond, mincond, maxcond)
return Or(*[i.as_relational(symbol) for i in self.args])
@property
def is_iterable(self):
return all(arg.is_iterable for arg in self.args)
def __iter__(self):
return roundrobin(*(iter(arg) for arg in self.args))
class Intersection(Set, LatticeOp):
"""
Represents an intersection of sets as a :class:`Set`.
Examples
========
>>> from sympy import Intersection, Interval
>>> Intersection(Interval(1, 3), Interval(2, 4))
Interval(2, 3)
We often use the .intersect method
>>> Interval(1,3).intersect(Interval(2,4))
Interval(2, 3)
See Also
========
Union
References
==========
.. [1] https://en.wikipedia.org/wiki/Intersection_%28set_theory%29
"""
is_Intersection = True
@property
def identity(self):
return S.UniversalSet
@property
def zero(self):
return S.EmptySet
def __new__(cls, *args, **kwargs):
evaluate = kwargs.get('evaluate', global_parameters.evaluate)
# flatten inputs to merge intersections and iterables
args = list(ordered(set(_sympify(args))))
# Reduce sets using known rules
if evaluate:
args = list(cls._new_args_filter(args))
return simplify_intersection(args)
args = list(ordered(args, Set._infimum_key))
obj = Basic.__new__(cls, *args)
obj._argset = frozenset(args)
return obj
@property
def args(self):
return self._args
@property
def is_iterable(self):
return any(arg.is_iterable for arg in self.args)
@property
def is_finite_set(self):
if fuzzy_or(arg.is_finite_set for arg in self.args):
return True
def _kind(self):
kinds = tuple(arg.kind for arg in self.args if arg is not S.UniversalSet)
if not kinds:
return SetKind(UndefinedKind)
elif all(i == kinds[0] for i in kinds):
return kinds[0]
else:
return SetKind()
@property
def _inf(self):
raise NotImplementedError()
@property
def _sup(self):
raise NotImplementedError()
def _contains(self, other):
return And(*[set.contains(other) for set in self.args])
def __iter__(self):
sets_sift = sift(self.args, lambda x: x.is_iterable)
completed = False
candidates = sets_sift[True] + sets_sift[None]
finite_candidates, others = [], []
for candidate in candidates:
length = None
try:
length = len(candidate)
except TypeError:
others.append(candidate)
if length is not None:
finite_candidates.append(candidate)
finite_candidates.sort(key=len)
for s in finite_candidates + others:
other_sets = set(self.args) - {s}
other = Intersection(*other_sets, evaluate=False)
completed = True
for x in s:
try:
if x in other:
yield x
except TypeError:
completed = False
if completed:
return
if not completed:
if not candidates:
raise TypeError("None of the constituent sets are iterable")
raise TypeError(
"The computation had not completed because of the "
"undecidable set membership is found in every candidates.")
@staticmethod
def _handle_finite_sets(args):
'''Simplify intersection of one or more FiniteSets and other sets'''
# First separate the FiniteSets from the others
fs_args, others = sift(args, lambda x: x.is_FiniteSet, binary=True)
# Let the caller handle intersection of non-FiniteSets
if not fs_args:
return
# Convert to Python sets and build the set of all elements
fs_sets = [set(fs) for fs in fs_args]
all_elements = reduce(lambda a, b: a | b, fs_sets, set())
# Extract elements that are definitely in or definitely not in the
# intersection. Here we check contains for all of args.
definite = set()
for e in all_elements:
inall = fuzzy_and(s.contains(e) for s in args)
if inall is True:
definite.add(e)
if inall is not None:
for s in fs_sets:
s.discard(e)
# At this point all elements in all of fs_sets are possibly in the
# intersection. In some cases this is because they are definitely in
# the intersection of the finite sets but it's not clear if they are
# members of others. We might have {m, n}, {m}, and Reals where we
# don't know if m or n is real. We want to remove n here but it is
# possibly in because it might be equal to m. So what we do now is
# extract the elements that are definitely in the remaining finite
# sets iteratively until we end up with {n}, {}. At that point if we
# get any empty set all remaining elements are discarded.
fs_elements = reduce(lambda a, b: a | b, fs_sets, set())
# Need fuzzy containment testing
fs_symsets = [FiniteSet(*s) for s in fs_sets]
while fs_elements:
for e in fs_elements:
infs = fuzzy_and(s.contains(e) for s in fs_symsets)
if infs is True:
definite.add(e)
if infs is not None:
for n, s in enumerate(fs_sets):
# Update Python set and FiniteSet
if e in s:
s.remove(e)
fs_symsets[n] = FiniteSet(*s)
fs_elements.remove(e)
break
# If we completed the for loop without removing anything we are
# done so quit the outer while loop
else:
break
# If any of the sets of remainder elements is empty then we discard
# all of them for the intersection.
if not all(fs_sets):
fs_sets = [set()]
# Here we fold back the definitely included elements into each fs.
# Since they are definitely included they must have been members of
# each FiniteSet to begin with. We could instead fold these in with a
# Union at the end to get e.g. {3}|({x}&{y}) rather than {3,x}&{3,y}.
if definite:
fs_sets = [fs | definite for fs in fs_sets]
if fs_sets == [set()]:
return S.EmptySet
sets = [FiniteSet(*s) for s in fs_sets]
# Any set in others is redundant if it contains all the elements that
# are in the finite sets so we don't need it in the Intersection
all_elements = reduce(lambda a, b: a | b, fs_sets, set())
is_redundant = lambda o: all(fuzzy_bool(o.contains(e)) for e in all_elements)
others = [o for o in others if not is_redundant(o)]
if others:
rest = Intersection(*others)
# XXX: Maybe this shortcut should be at the beginning. For large
# FiniteSets it could much more efficient to process the other
# sets first...
if rest is S.EmptySet:
return S.EmptySet
# Flatten the Intersection
if rest.is_Intersection:
sets.extend(rest.args)
else:
sets.append(rest)
if len(sets) == 1:
return sets[0]
else:
return Intersection(*sets, evaluate=False)
def as_relational(self, symbol):
"""Rewrite an Intersection in terms of equalities and logic operators"""
return And(*[set.as_relational(symbol) for set in self.args])
class Complement(Set):
r"""Represents the set difference or relative complement of a set with
another set.
$$A - B = \{x \in A \mid x \notin B\}$$
Examples
========
>>> from sympy import Complement, FiniteSet
>>> Complement(FiniteSet(0, 1, 2), FiniteSet(1))
{0, 2}
See Also
=========
Intersection, Union
References
==========
.. [1] http://mathworld.wolfram.com/ComplementSet.html
"""
is_Complement = True
def __new__(cls, a, b, evaluate=True):
a, b = map(_sympify, (a, b))
if evaluate:
return Complement.reduce(a, b)
return Basic.__new__(cls, a, b)
@staticmethod
def reduce(A, B):
"""
Simplify a :class:`Complement`.
"""
if B == S.UniversalSet or A.is_subset(B):
return S.EmptySet
if isinstance(B, Union):
return Intersection(*(s.complement(A) for s in B.args))
result = B._complement(A)
if result is not None:
return result
else:
return Complement(A, B, evaluate=False)
def _contains(self, other):
A = self.args[0]
B = self.args[1]
return And(A.contains(other), Not(B.contains(other)))
def as_relational(self, symbol):
"""Rewrite a complement in terms of equalities and logic
operators"""
A, B = self.args
A_rel = A.as_relational(symbol)
B_rel = Not(B.as_relational(symbol))
return And(A_rel, B_rel)
def _kind(self):
return self.args[0].kind
@property
def is_iterable(self):
if self.args[0].is_iterable:
return True
@property
def is_finite_set(self):
A, B = self.args
a_finite = A.is_finite_set
if a_finite is True:
return True
elif a_finite is False and B.is_finite_set:
return False
def __iter__(self):
A, B = self.args
for a in A:
if a not in B:
yield a
else:
continue
class EmptySet(Set, metaclass=Singleton):
"""
Represents the empty set. The empty set is available as a singleton
as ``S.EmptySet``.
Examples
========
>>> from sympy import S, Interval
>>> S.EmptySet
EmptySet
>>> Interval(1, 2).intersect(S.EmptySet)
EmptySet
See Also
========
UniversalSet
References
==========
.. [1] https://en.wikipedia.org/wiki/Empty_set
"""
is_empty = True
is_finite_set = True
is_FiniteSet = True
@property # type: ignore
@deprecated(
"""
The is_EmptySet attribute of Set objects is deprecated.
Use 's is S.EmptySet" or 's.is_empty' instead.
""",
deprecated_since_version="1.5",
active_deprecations_target="deprecated-is-emptyset",
)
def is_EmptySet(self):
return True
@property
def _measure(self):
return 0
def _contains(self, other):
return false
def as_relational(self, symbol):
return false
def __len__(self):
return 0
def __iter__(self):
return iter([])
def _eval_powerset(self):
return FiniteSet(self)
@property
def _boundary(self):
return self
def _complement(self, other):
return other
def _kind(self):
return SetKind()
def _symmetric_difference(self, other):
return other
class UniversalSet(Set, metaclass=Singleton):
"""
Represents the set of all things.
The universal set is available as a singleton as ``S.UniversalSet``.
Examples
========
>>> from sympy import S, Interval
>>> S.UniversalSet
UniversalSet
>>> Interval(1, 2).intersect(S.UniversalSet)
Interval(1, 2)
See Also
========
EmptySet
References
==========
.. [1] https://en.wikipedia.org/wiki/Universal_set
"""
is_UniversalSet = True
is_empty = False
is_finite_set = False
def _complement(self, other):
return S.EmptySet
def _symmetric_difference(self, other):
return other
@property
def _measure(self):
return S.Infinity
def _kind(self):
return SetKind(UndefinedKind)
def _contains(self, other):
return true
def as_relational(self, symbol):
return true
@property
def _boundary(self):
return S.EmptySet
class FiniteSet(Set):
"""
Represents a finite set of Sympy expressions.
Examples
========
>>> from sympy import FiniteSet, Symbol, Interval, Naturals0
>>> FiniteSet(1, 2, 3, 4)
{1, 2, 3, 4}
>>> 3 in FiniteSet(1, 2, 3, 4)
True
>>> FiniteSet(1, (1, 2), Symbol('x'))
{1, x, (1, 2)}
>>> FiniteSet(Interval(1, 2), Naturals0, {1, 2})
FiniteSet({1, 2}, Interval(1, 2), Naturals0)
>>> members = [1, 2, 3, 4]
>>> f = FiniteSet(*members)
>>> f
{1, 2, 3, 4}
>>> f - FiniteSet(2)
{1, 3, 4}
>>> f + FiniteSet(2, 5)
{1, 2, 3, 4, 5}
References
==========
.. [1] https://en.wikipedia.org/wiki/Finite_set
"""
is_FiniteSet = True
is_iterable = True
is_empty = False
is_finite_set = True
def __new__(cls, *args, **kwargs):
evaluate = kwargs.get('evaluate', global_parameters.evaluate)
if evaluate:
args = list(map(sympify, args))
if len(args) == 0:
return S.EmptySet
else:
args = list(map(sympify, args))
# keep the form of the first canonical arg
dargs = {}
for i in reversed(list(ordered(args))):
if i.is_Symbol:
dargs[i] = i
else:
try:
dargs[i.as_dummy()] = i
except TypeError:
# e.g. i = class without args like `Interval`
dargs[i] = i
_args_set = set(dargs.values())
args = list(ordered(_args_set, Set._infimum_key))
obj = Basic.__new__(cls, *args)
obj._args_set = _args_set
return obj
def __iter__(self):
return iter(self.args)
def _complement(self, other):
if isinstance(other, Interval):
# Splitting in sub-intervals is only done for S.Reals;
# other cases that need splitting will first pass through
# Set._complement().
nums, syms = [], []
for m in self.args:
if m.is_number and m.is_real:
nums.append(m)
elif m.is_real == False:
pass # drop non-reals
else:
syms.append(m) # various symbolic expressions
if other == S.Reals and nums != []:
nums.sort()
intervals = [] # Build up a list of intervals between the elements
intervals += [Interval(S.NegativeInfinity, nums[0], True, True)]
for a, b in zip(nums[:-1], nums[1:]):
intervals.append(Interval(a, b, True, True)) # both open
intervals.append(Interval(nums[-1], S.Infinity, True, True))
if syms != []:
return Complement(Union(*intervals, evaluate=False),
FiniteSet(*syms), evaluate=False)
else:
return Union(*intervals, evaluate=False)
elif nums == []: # no splitting necessary or possible:
if syms:
return Complement(other, FiniteSet(*syms), evaluate=False)
else:
return other
elif isinstance(other, FiniteSet):
unk = []
for i in self:
c = sympify(other.contains(i))
if c is not S.true and c is not S.false:
unk.append(i)
unk = FiniteSet(*unk)
if unk == self:
return
not_true = []
for i in other:
c = sympify(self.contains(i))
if c is not S.true:
not_true.append(i)
return Complement(FiniteSet(*not_true), unk)
return Set._complement(self, other)
def _contains(self, other):
"""
Tests whether an element, other, is in the set.
Explanation
===========
The actual test is for mathematical equality (as opposed to
syntactical equality). In the worst case all elements of the
set must be checked.
Examples
========
>>> from sympy import FiniteSet
>>> 1 in FiniteSet(1, 2)
True
>>> 5 in FiniteSet(1, 2)
False
"""
if other in self._args_set:
return True
else:
# evaluate=True is needed to override evaluate=False context;
# we need Eq to do the evaluation
return fuzzy_or(fuzzy_bool(Eq(e, other, evaluate=True))
for e in self.args)
def _eval_is_subset(self, other):
return fuzzy_and(other._contains(e) for e in self.args)
@property
def _boundary(self):
return self
@property
def _inf(self):
return Min(*self)
@property
def _sup(self):
return Max(*self)
@property
def measure(self):
return 0
def _kind(self):
if not self.args:
return SetKind()
elif all(i.kind == self.args[0].kind for i in self.args):
return SetKind(self.args[0].kind)
else:
return SetKind(UndefinedKind)
def __len__(self):
return len(self.args)
def as_relational(self, symbol):
"""Rewrite a FiniteSet in terms of equalities and logic operators. """
return Or(*[Eq(symbol, elem) for elem in self])
def compare(self, other):
return (hash(self) - hash(other))
def _eval_evalf(self, prec):
dps = prec_to_dps(prec)
return FiniteSet(*[elem.evalf(n=dps) for elem in self])
def _eval_simplify(self, **kwargs):
from sympy.simplify import simplify
return FiniteSet(*[simplify(elem, **kwargs) for elem in self])
@property
def _sorted_args(self):
return self.args
def _eval_powerset(self):
return self.func(*[self.func(*s) for s in subsets(self.args)])
def _eval_rewrite_as_PowerSet(self, *args, **kwargs):
"""Rewriting method for a finite set to a power set."""
from .powerset import PowerSet
is2pow = lambda n: bool(n and not n & (n - 1))
if not is2pow(len(self)):
return None
fs_test = lambda arg: isinstance(arg, Set) and arg.is_FiniteSet
if not all(fs_test(arg) for arg in args):
return None
biggest = max(args, key=len)
for arg in subsets(biggest.args):
arg_set = FiniteSet(*arg)
if arg_set not in args:
return None
return PowerSet(biggest)
def __ge__(self, other):
if not isinstance(other, Set):
raise TypeError("Invalid comparison of set with %s" % func_name(other))
return other.is_subset(self)
def __gt__(self, other):
if not isinstance(other, Set):
raise TypeError("Invalid comparison of set with %s" % func_name(other))
return self.is_proper_superset(other)
def __le__(self, other):
if not isinstance(other, Set):
raise TypeError("Invalid comparison of set with %s" % func_name(other))
return self.is_subset(other)
def __lt__(self, other):
if not isinstance(other, Set):
raise TypeError("Invalid comparison of set with %s" % func_name(other))
return self.is_proper_subset(other)
def __eq__(self, other):
if isinstance(other, (set, frozenset)):
return self._args_set == other
return super().__eq__(other)
__hash__ : Callable[[Basic], Any] = Basic.__hash__
_sympy_converter[set] = lambda x: FiniteSet(*x)
_sympy_converter[frozenset] = lambda x: FiniteSet(*x)
class SymmetricDifference(Set):
"""Represents the set of elements which are in either of the
sets and not in their intersection.
Examples
========
>>> from sympy import SymmetricDifference, FiniteSet
>>> SymmetricDifference(FiniteSet(1, 2, 3), FiniteSet(3, 4, 5))
{1, 2, 4, 5}
See Also
========
Complement, Union
References
==========
.. [1] https://en.wikipedia.org/wiki/Symmetric_difference
"""
is_SymmetricDifference = True
def __new__(cls, a, b, evaluate=True):
if evaluate:
return SymmetricDifference.reduce(a, b)
return Basic.__new__(cls, a, b)
@staticmethod
def reduce(A, B):
result = B._symmetric_difference(A)
if result is not None:
return result
else:
return SymmetricDifference(A, B, evaluate=False)
def as_relational(self, symbol):
"""Rewrite a symmetric_difference in terms of equalities and
logic operators"""
A, B = self.args
A_rel = A.as_relational(symbol)
B_rel = B.as_relational(symbol)
return Xor(A_rel, B_rel)
@property
def is_iterable(self):
if all(arg.is_iterable for arg in self.args):
return True
def __iter__(self):
args = self.args
union = roundrobin(*(iter(arg) for arg in args))
for item in union:
count = 0
for s in args:
if item in s:
count += 1
if count % 2 == 1:
yield item
class DisjointUnion(Set):
""" Represents the disjoint union (also known as the external disjoint union)
of a finite number of sets.
Examples
========
>>> from sympy import DisjointUnion, FiniteSet, Interval, Union, Symbol
>>> A = FiniteSet(1, 2, 3)
>>> B = Interval(0, 5)
>>> DisjointUnion(A, B)
DisjointUnion({1, 2, 3}, Interval(0, 5))
>>> DisjointUnion(A, B).rewrite(Union)
Union(ProductSet({1, 2, 3}, {0}), ProductSet(Interval(0, 5), {1}))
>>> C = FiniteSet(Symbol('x'), Symbol('y'), Symbol('z'))
>>> DisjointUnion(C, C)
DisjointUnion({x, y, z}, {x, y, z})
>>> DisjointUnion(C, C).rewrite(Union)
ProductSet({x, y, z}, {0, 1})
References
==========
https://en.wikipedia.org/wiki/Disjoint_union
"""
def __new__(cls, *sets):
dj_collection = []
for set_i in sets:
if isinstance(set_i, Set):
dj_collection.append(set_i)
else:
raise TypeError("Invalid input: '%s', input args \
to DisjointUnion must be Sets" % set_i)
obj = Basic.__new__(cls, *dj_collection)
return obj
@property
def sets(self):
return self.args
@property
def is_empty(self):
return fuzzy_and(s.is_empty for s in self.sets)
@property
def is_finite_set(self):
all_finite = fuzzy_and(s.is_finite_set for s in self.sets)
return fuzzy_or([self.is_empty, all_finite])
@property
def is_iterable(self):
if self.is_empty:
return False
iter_flag = True
for set_i in self.sets:
if not set_i.is_empty:
iter_flag = iter_flag and set_i.is_iterable
return iter_flag
def _eval_rewrite_as_Union(self, *sets):
"""
Rewrites the disjoint union as the union of (``set`` x {``i``})
where ``set`` is the element in ``sets`` at index = ``i``
"""
dj_union = S.EmptySet
index = 0
for set_i in sets:
if isinstance(set_i, Set):
cross = ProductSet(set_i, FiniteSet(index))
dj_union = Union(dj_union, cross)
index = index + 1
return dj_union
def _contains(self, element):
"""
``in`` operator for DisjointUnion
Examples
========
>>> from sympy import Interval, DisjointUnion
>>> D = DisjointUnion(Interval(0, 1), Interval(0, 2))
>>> (0.5, 0) in D
True
>>> (0.5, 1) in D
True
>>> (1.5, 0) in D
False
>>> (1.5, 1) in D
True
Passes operation on to constituent sets
"""
if not isinstance(element, Tuple) or len(element) != 2:
return False
if not element[1].is_Integer:
return False
if element[1] >= len(self.sets) or element[1] < 0:
return False
return element[0] in self.sets[element[1]]
def _kind(self):
if not self.args:
return SetKind()
elif all(i.kind == self.args[0].kind for i in self.args):
return self.args[0].kind
else:
return SetKind(UndefinedKind)
def __iter__(self):
if self.is_iterable:
iters = []
for i, s in enumerate(self.sets):
iters.append(iproduct(s, {Integer(i)}))
return iter(roundrobin(*iters))
else:
raise ValueError("'%s' is not iterable." % self)
def __len__(self):
"""
Returns the length of the disjoint union, i.e., the number of elements in the set.
Examples
========
>>> from sympy import FiniteSet, DisjointUnion, EmptySet
>>> D1 = DisjointUnion(FiniteSet(1, 2, 3, 4), EmptySet, FiniteSet(3, 4, 5))
>>> len(D1)
7
>>> D2 = DisjointUnion(FiniteSet(3, 5, 7), EmptySet, FiniteSet(3, 5, 7))
>>> len(D2)
6
>>> D3 = DisjointUnion(EmptySet, EmptySet)
>>> len(D3)
0
Adds up the lengths of the constituent sets.
"""
if self.is_finite_set:
size = 0
for set in self.sets:
size += len(set)
return size
else:
raise ValueError("'%s' is not a finite set." % self)
def imageset(*args):
r"""
Return an image of the set under transformation ``f``.
Explanation
===========
If this function cannot compute the image, it returns an
unevaluated ImageSet object.
.. math::
\{ f(x) \mid x \in \mathrm{self} \}
Examples
========
>>> from sympy import S, Interval, imageset, sin, Lambda
>>> from sympy.abc import x
>>> imageset(x, 2*x, Interval(0, 2))
Interval(0, 4)
>>> imageset(lambda x: 2*x, Interval(0, 2))
Interval(0, 4)
>>> imageset(Lambda(x, sin(x)), Interval(-2, 1))
ImageSet(Lambda(x, sin(x)), Interval(-2, 1))
>>> imageset(sin, Interval(-2, 1))
ImageSet(Lambda(x, sin(x)), Interval(-2, 1))
>>> imageset(lambda y: x + y, Interval(-2, 1))
ImageSet(Lambda(y, x + y), Interval(-2, 1))
Expressions applied to the set of Integers are simplified
to show as few negatives as possible and linear expressions
are converted to a canonical form. If this is not desirable
then the unevaluated ImageSet should be used.
>>> imageset(x, -2*x + 5, S.Integers)
ImageSet(Lambda(x, 2*x + 1), Integers)
See Also
========
sympy.sets.fancysets.ImageSet
"""
from .fancysets import ImageSet
from .setexpr import set_function
if len(args) < 2:
raise ValueError('imageset expects at least 2 args, got: %s' % len(args))
if isinstance(args[0], (Symbol, tuple)) and len(args) > 2:
f = Lambda(args[0], args[1])
set_list = args[2:]
else:
f = args[0]
set_list = args[1:]
if isinstance(f, Lambda):
pass
elif callable(f):
nargs = getattr(f, 'nargs', {})
if nargs:
if len(nargs) != 1:
raise NotImplementedError(filldedent('''
This function can take more than 1 arg
but the potentially complicated set input
has not been analyzed at this point to
know its dimensions. TODO
'''))
N = nargs.args[0]
if N == 1:
s = 'x'
else:
s = [Symbol('x%i' % i) for i in range(1, N + 1)]
else:
s = inspect.signature(f).parameters
dexpr = _sympify(f(*[Dummy() for i in s]))
var = tuple(uniquely_named_symbol(
Symbol(i), dexpr) for i in s)
f = Lambda(var, f(*var))
else:
raise TypeError(filldedent('''
expecting lambda, Lambda, or FunctionClass,
not \'%s\'.''' % func_name(f)))
if any(not isinstance(s, Set) for s in set_list):
name = [func_name(s) for s in set_list]
raise ValueError(
'arguments after mapping should be sets, not %s' % name)
if len(set_list) == 1:
set = set_list[0]
try:
# TypeError if arg count != set dimensions
r = set_function(f, set)
if r is None:
raise TypeError
if not r:
return r
except TypeError:
r = ImageSet(f, set)
if isinstance(r, ImageSet):
f, set = r.args
if f.variables[0] == f.expr:
return set
if isinstance(set, ImageSet):
# XXX: Maybe this should just be:
# f2 = set.lambda
# fun = Lambda(f2.signature, f(*f2.expr))
# return imageset(fun, *set.base_sets)
if len(set.lamda.variables) == 1 and len(f.variables) == 1:
x = set.lamda.variables[0]
y = f.variables[0]
return imageset(
Lambda(x, f.expr.subs(y, set.lamda.expr)), *set.base_sets)
if r is not None:
return r
return ImageSet(f, *set_list)
def is_function_invertible_in_set(func, setv):
"""
Checks whether function ``func`` is invertible when the domain is
restricted to set ``setv``.
"""
# Functions known to always be invertible:
if func in (exp, log):
return True
u = Dummy("u")
fdiff = func(u).diff(u)
# monotonous functions:
# TODO: check subsets (`func` in `setv`)
if (fdiff > 0) == True or (fdiff < 0) == True:
return True
# TODO: support more
return None
def simplify_union(args):
"""
Simplify a :class:`Union` using known rules.
Explanation
===========
We first start with global rules like 'Merge all FiniteSets'
Then we iterate through all pairs and ask the constituent sets if they
can simplify themselves with any other constituent. This process depends
on ``union_sets(a, b)`` functions.
"""
from sympy.sets.handlers.union import union_sets
# ===== Global Rules =====
if not args:
return S.EmptySet
for arg in args:
if not isinstance(arg, Set):
raise TypeError("Input args to Union must be Sets")
# Merge all finite sets
finite_sets = [x for x in args if x.is_FiniteSet]
if len(finite_sets) > 1:
a = (x for set in finite_sets for x in set)
finite_set = FiniteSet(*a)
args = [finite_set] + [x for x in args if not x.is_FiniteSet]
# ===== Pair-wise Rules =====
# Here we depend on rules built into the constituent sets
args = set(args)
new_args = True
while new_args:
for s in args:
new_args = False
for t in args - {s}:
new_set = union_sets(s, t)
# This returns None if s does not know how to intersect
# with t. Returns the newly intersected set otherwise
if new_set is not None:
if not isinstance(new_set, set):
new_set = {new_set}
new_args = (args - {s, t}).union(new_set)
break
if new_args:
args = new_args
break
if len(args) == 1:
return args.pop()
else:
return Union(*args, evaluate=False)
def simplify_intersection(args):
"""
Simplify an intersection using known rules.
Explanation
===========
We first start with global rules like
'if any empty sets return empty set' and 'distribute any unions'
Then we iterate through all pairs and ask the constituent sets if they
can simplify themselves with any other constituent
"""
# ===== Global Rules =====
if not args:
return S.UniversalSet
for arg in args:
if not isinstance(arg, Set):
raise TypeError("Input args to Union must be Sets")
# If any EmptySets return EmptySet
if S.EmptySet in args:
return S.EmptySet
# Handle Finite sets
rv = Intersection._handle_finite_sets(args)
if rv is not None:
return rv
# If any of the sets are unions, return a Union of Intersections
for s in args:
if s.is_Union:
other_sets = set(args) - {s}
if len(other_sets) > 0:
other = Intersection(*other_sets)
return Union(*(Intersection(arg, other) for arg in s.args))
else:
return Union(*[arg for arg in s.args])
for s in args:
if s.is_Complement:
args.remove(s)
other_sets = args + [s.args[0]]
return Complement(Intersection(*other_sets), s.args[1])
from sympy.sets.handlers.intersection import intersection_sets
# At this stage we are guaranteed not to have any
# EmptySets, FiniteSets, or Unions in the intersection
# ===== Pair-wise Rules =====
# Here we depend on rules built into the constituent sets
args = set(args)
new_args = True
while new_args:
for s in args:
new_args = False
for t in args - {s}:
new_set = intersection_sets(s, t)
# This returns None if s does not know how to intersect
# with t. Returns the newly intersected set otherwise
if new_set is not None:
new_args = (args - {s, t}).union({new_set})
break
if new_args:
args = new_args
break
if len(args) == 1:
return args.pop()
else:
return Intersection(*args, evaluate=False)
def _handle_finite_sets(op, x, y, commutative):
# Handle finite sets:
fs_args, other = sift([x, y], lambda x: isinstance(x, FiniteSet), binary=True)
if len(fs_args) == 2:
return FiniteSet(*[op(i, j) for i in fs_args[0] for j in fs_args[1]])
elif len(fs_args) == 1:
sets = [_apply_operation(op, other[0], i, commutative) for i in fs_args[0]]
return Union(*sets)
else:
return None
def _apply_operation(op, x, y, commutative):
from .fancysets import ImageSet
d = Dummy('d')
out = _handle_finite_sets(op, x, y, commutative)
if out is None:
out = op(x, y)
if out is None and commutative:
out = op(y, x)
if out is None:
_x, _y = symbols("x y")
if isinstance(x, Set) and not isinstance(y, Set):
out = ImageSet(Lambda(d, op(d, y)), x).doit()
elif not isinstance(x, Set) and isinstance(y, Set):
out = ImageSet(Lambda(d, op(x, d)), y).doit()
else:
out = ImageSet(Lambda((_x, _y), op(_x, _y)), x, y)
return out
def set_add(x, y):
from sympy.sets.handlers.add import _set_add
return _apply_operation(_set_add, x, y, commutative=True)
def set_sub(x, y):
from sympy.sets.handlers.add import _set_sub
return _apply_operation(_set_sub, x, y, commutative=False)
def set_mul(x, y):
from sympy.sets.handlers.mul import _set_mul
return _apply_operation(_set_mul, x, y, commutative=True)
def set_div(x, y):
from sympy.sets.handlers.mul import _set_div
return _apply_operation(_set_div, x, y, commutative=False)
def set_pow(x, y):
from sympy.sets.handlers.power import _set_pow
return _apply_operation(_set_pow, x, y, commutative=False)
def set_function(f, x):
from sympy.sets.handlers.functions import _set_function
return _set_function(f, x)
class SetKind(Kind):
"""
SetKind is kind for all Sets
Every instance of Set will have kind ``SetKind`` parametrised by the kind
of the elements of the ``Set``. The kind of the elements might be
``NumberKind``, or ``TupleKind`` or something else. When not all elements
have the same kind then the kind of the elements will be given as
``UndefinedKind``.
Parameters
==========
element_kind: Kind (optional)
The kind of the elements of the set. In a well defined set all elements
will have the same kind. Otherwise the kind should
:class:`sympy.core.kind.UndefinedKind`. The ``element_kind`` argument is optional but
should only be omitted in the case of ``EmptySet`` whose kind is simply
``SetKind()``
Examples
========
>>> from sympy import Interval
>>> Interval(1, 2).kind
SetKind(NumberKind)
>>> Interval(1,2).kind.element_kind
NumberKind
See Also
========
sympy.core.kind.NumberKind
sympy.matrices.common.MatrixKind
sympy.core.containers.TupleKind
"""
def __new__(cls, element_kind=None):
obj = super().__new__(cls, element_kind)
obj.element_kind = element_kind
return obj
def __repr__(self):
if not self.element_kind:
return "SetKind()"
else:
return "SetKind(%s)" % self.element_kind
|
60152310b7f706c77820119bc4de283aa2a0d57fb933513648afe6633907d043 | """Plotting module for SymPy.
A plot is represented by the ``Plot`` class that contains a reference to the
backend and a list of the data series to be plotted. The data series are
instances of classes meant to simplify getting points and meshes from SymPy
expressions. ``plot_backends`` is a dictionary with all the backends.
This module gives only the essential. For all the fancy stuff use directly
the backend. You can get the backend wrapper for every plot from the
``_backend`` attribute. Moreover the data series classes have various useful
methods like ``get_points``, ``get_meshes``, etc, that may
be useful if you wish to use another plotting library.
Especially if you need publication ready graphs and this module is not enough
for you - just get the ``_backend`` attribute and add whatever you want
directly to it. In the case of matplotlib (the common way to graph data in
python) just copy ``_backend.fig`` which is the figure and ``_backend.ax``
which is the axis and work on them as you would on any other matplotlib object.
Simplicity of code takes much greater importance than performance. Do not use it
if you care at all about performance. A new backend instance is initialized
every time you call ``show()`` and the old one is left to the garbage collector.
"""
from collections.abc import Callable
from sympy.core.basic import Basic
from sympy.core.containers import Tuple
from sympy.core.expr import Expr
from sympy.core.function import arity, Function
from sympy.core.symbol import (Dummy, Symbol)
from sympy.core.sympify import sympify
from sympy.external import import_module
from sympy.printing.latex import latex
from sympy.utilities.exceptions import sympy_deprecation_warning
from sympy.utilities.iterables import is_sequence
from .experimental_lambdify import (vectorized_lambdify, lambdify)
# N.B.
# When changing the minimum module version for matplotlib, please change
# the same in the `SymPyDocTestFinder`` in `sympy/testing/runtests.py`
# Backend specific imports - textplot
from sympy.plotting.textplot import textplot
# Global variable
# Set to False when running tests / doctests so that the plots don't show.
_show = True
def unset_show():
"""
Disable show(). For use in the tests.
"""
global _show
_show = False
def _str_or_latex(label):
if isinstance(label, Basic):
return latex(label, mode='inline')
return str(label)
##############################################################################
# The public interface
##############################################################################
class Plot:
"""The central class of the plotting module.
Explanation
===========
For interactive work the function :func:`plot()` is better suited.
This class permits the plotting of SymPy expressions using numerous
backends (:external:mod:`matplotlib`, textplot, the old pyglet module for SymPy, Google
charts api, etc).
The figure can contain an arbitrary number of plots of SymPy expressions,
lists of coordinates of points, etc. Plot has a private attribute _series that
contains all data series to be plotted (expressions for lines or surfaces,
lists of points, etc (all subclasses of BaseSeries)). Those data series are
instances of classes not imported by ``from sympy import *``.
The customization of the figure is on two levels. Global options that
concern the figure as a whole (e.g. title, xlabel, scale, etc) and
per-data series options (e.g. name) and aesthetics (e.g. color, point shape,
line type, etc.).
The difference between options and aesthetics is that an aesthetic can be
a function of the coordinates (or parameters in a parametric plot). The
supported values for an aesthetic are:
- None (the backend uses default values)
- a constant
- a function of one variable (the first coordinate or parameter)
- a function of two variables (the first and second coordinate or parameters)
- a function of three variables (only in nonparametric 3D plots)
Their implementation depends on the backend so they may not work in some
backends.
If the plot is parametric and the arity of the aesthetic function permits
it the aesthetic is calculated over parameters and not over coordinates.
If the arity does not permit calculation over parameters the calculation is
done over coordinates.
Only cartesian coordinates are supported for the moment, but you can use
the parametric plots to plot in polar, spherical and cylindrical
coordinates.
The arguments for the constructor Plot must be subclasses of BaseSeries.
Any global option can be specified as a keyword argument.
The global options for a figure are:
- title : str
- xlabel : str or Symbol
- ylabel : str or Symbol
- zlabel : str or Symbol
- legend : bool
- xscale : {'linear', 'log'}
- yscale : {'linear', 'log'}
- axis : bool
- axis_center : tuple of two floats or {'center', 'auto'}
- xlim : tuple of two floats
- ylim : tuple of two floats
- aspect_ratio : tuple of two floats or {'auto'}
- autoscale : bool
- margin : float in [0, 1]
- backend : {'default', 'matplotlib', 'text'} or a subclass of BaseBackend
- size : optional tuple of two floats, (width, height); default: None
The per data series options and aesthetics are:
There are none in the base series. See below for options for subclasses.
Some data series support additional aesthetics or options:
:class:`~.LineOver1DRangeSeries`, :class:`~.Parametric2DLineSeries`, and
:class:`~.Parametric3DLineSeries` support the following:
Aesthetics:
- line_color : string, or float, or function, optional
Specifies the color for the plot, which depends on the backend being
used.
For example, if ``MatplotlibBackend`` is being used, then
Matplotlib string colors are acceptable (``"red"``, ``"r"``,
``"cyan"``, ``"c"``, ...).
Alternatively, we can use a float number, 0 < color < 1, wrapped in a
string (for example, ``line_color="0.5"``) to specify grayscale colors.
Alternatively, We can specify a function returning a single
float value: this will be used to apply a color-loop (for example,
``line_color=lambda x: math.cos(x)``).
Note that by setting line_color, it would be applied simultaneously
to all the series.
Options:
- label : str
- steps : bool
- integers_only : bool
:class:`~.SurfaceOver2DRangeSeries` and :class:`~.ParametricSurfaceSeries`
support the following:
Aesthetics:
- surface_color : function which returns a float.
"""
def __init__(self, *args,
title=None, xlabel=None, ylabel=None, zlabel=None, aspect_ratio='auto',
xlim=None, ylim=None, axis_center='auto', axis=True,
xscale='linear', yscale='linear', legend=False, autoscale=True,
margin=0, annotations=None, markers=None, rectangles=None,
fill=None, backend='default', size=None, **kwargs):
super().__init__()
# Options for the graph as a whole.
# The possible values for each option are described in the docstring of
# Plot. They are based purely on convention, no checking is done.
self.title = title
self.xlabel = xlabel
self.ylabel = ylabel
self.zlabel = zlabel
self.aspect_ratio = aspect_ratio
self.axis_center = axis_center
self.axis = axis
self.xscale = xscale
self.yscale = yscale
self.legend = legend
self.autoscale = autoscale
self.margin = margin
self.annotations = annotations
self.markers = markers
self.rectangles = rectangles
self.fill = fill
# Contains the data objects to be plotted. The backend should be smart
# enough to iterate over this list.
self._series = []
self._series.extend(args)
# The backend type. On every show() a new backend instance is created
# in self._backend which is tightly coupled to the Plot instance
# (thanks to the parent attribute of the backend).
if isinstance(backend, str):
self.backend = plot_backends[backend]
elif (type(backend) == type) and issubclass(backend, BaseBackend):
self.backend = backend
else:
raise TypeError(
"backend must be either a string or a subclass of BaseBackend")
is_real = \
lambda lim: all(getattr(i, 'is_real', True) for i in lim)
is_finite = \
lambda lim: all(getattr(i, 'is_finite', True) for i in lim)
# reduce code repetition
def check_and_set(t_name, t):
if t:
if not is_real(t):
raise ValueError(
"All numbers from {}={} must be real".format(t_name, t))
if not is_finite(t):
raise ValueError(
"All numbers from {}={} must be finite".format(t_name, t))
setattr(self, t_name, (float(t[0]), float(t[1])))
self.xlim = None
check_and_set("xlim", xlim)
self.ylim = None
check_and_set("ylim", ylim)
self.size = None
check_and_set("size", size)
def show(self):
# TODO move this to the backend (also for save)
if hasattr(self, '_backend'):
self._backend.close()
self._backend = self.backend(self)
self._backend.show()
def save(self, path):
if hasattr(self, '_backend'):
self._backend.close()
self._backend = self.backend(self)
self._backend.save(path)
def __str__(self):
series_strs = [('[%d]: ' % i) + str(s)
for i, s in enumerate(self._series)]
return 'Plot object containing:\n' + '\n'.join(series_strs)
def __getitem__(self, index):
return self._series[index]
def __setitem__(self, index, *args):
if len(args) == 1 and isinstance(args[0], BaseSeries):
self._series[index] = args
def __delitem__(self, index):
del self._series[index]
def append(self, arg):
"""Adds an element from a plot's series to an existing plot.
Examples
========
Consider two ``Plot`` objects, ``p1`` and ``p2``. To add the
second plot's first series object to the first, use the
``append`` method, like so:
.. plot::
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.plotting import plot
>>> x = symbols('x')
>>> p1 = plot(x*x, show=False)
>>> p2 = plot(x, show=False)
>>> p1.append(p2[0])
>>> p1
Plot object containing:
[0]: cartesian line: x**2 for x over (-10.0, 10.0)
[1]: cartesian line: x for x over (-10.0, 10.0)
>>> p1.show()
See Also
========
extend
"""
if isinstance(arg, BaseSeries):
self._series.append(arg)
else:
raise TypeError('Must specify element of plot to append.')
def extend(self, arg):
"""Adds all series from another plot.
Examples
========
Consider two ``Plot`` objects, ``p1`` and ``p2``. To add the
second plot to the first, use the ``extend`` method, like so:
.. plot::
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.plotting import plot
>>> x = symbols('x')
>>> p1 = plot(x**2, show=False)
>>> p2 = plot(x, -x, show=False)
>>> p1.extend(p2)
>>> p1
Plot object containing:
[0]: cartesian line: x**2 for x over (-10.0, 10.0)
[1]: cartesian line: x for x over (-10.0, 10.0)
[2]: cartesian line: -x for x over (-10.0, 10.0)
>>> p1.show()
"""
if isinstance(arg, Plot):
self._series.extend(arg._series)
elif is_sequence(arg):
self._series.extend(arg)
else:
raise TypeError('Expecting Plot or sequence of BaseSeries')
class PlotGrid:
"""This class helps to plot subplots from already created SymPy plots
in a single figure.
Examples
========
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.plotting import plot, plot3d, PlotGrid
>>> x, y = symbols('x, y')
>>> p1 = plot(x, x**2, x**3, (x, -5, 5))
>>> p2 = plot((x**2, (x, -6, 6)), (x, (x, -5, 5)))
>>> p3 = plot(x**3, (x, -5, 5))
>>> p4 = plot3d(x*y, (x, -5, 5), (y, -5, 5))
Plotting vertically in a single line:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> PlotGrid(2, 1, p1, p2)
PlotGrid object containing:
Plot[0]:Plot object containing:
[0]: cartesian line: x for x over (-5.0, 5.0)
[1]: cartesian line: x**2 for x over (-5.0, 5.0)
[2]: cartesian line: x**3 for x over (-5.0, 5.0)
Plot[1]:Plot object containing:
[0]: cartesian line: x**2 for x over (-6.0, 6.0)
[1]: cartesian line: x for x over (-5.0, 5.0)
Plotting horizontally in a single line:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> PlotGrid(1, 3, p2, p3, p4)
PlotGrid object containing:
Plot[0]:Plot object containing:
[0]: cartesian line: x**2 for x over (-6.0, 6.0)
[1]: cartesian line: x for x over (-5.0, 5.0)
Plot[1]:Plot object containing:
[0]: cartesian line: x**3 for x over (-5.0, 5.0)
Plot[2]:Plot object containing:
[0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
Plotting in a grid form:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> PlotGrid(2, 2, p1, p2, p3, p4)
PlotGrid object containing:
Plot[0]:Plot object containing:
[0]: cartesian line: x for x over (-5.0, 5.0)
[1]: cartesian line: x**2 for x over (-5.0, 5.0)
[2]: cartesian line: x**3 for x over (-5.0, 5.0)
Plot[1]:Plot object containing:
[0]: cartesian line: x**2 for x over (-6.0, 6.0)
[1]: cartesian line: x for x over (-5.0, 5.0)
Plot[2]:Plot object containing:
[0]: cartesian line: x**3 for x over (-5.0, 5.0)
Plot[3]:Plot object containing:
[0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
"""
def __init__(self, nrows, ncolumns, *args, show=True, size=None, **kwargs):
"""
Parameters
==========
nrows :
The number of rows that should be in the grid of the
required subplot.
ncolumns :
The number of columns that should be in the grid
of the required subplot.
nrows and ncolumns together define the required grid.
Arguments
=========
A list of predefined plot objects entered in a row-wise sequence
i.e. plot objects which are to be in the top row of the required
grid are written first, then the second row objects and so on
Keyword arguments
=================
show : Boolean
The default value is set to ``True``. Set show to ``False`` and
the function will not display the subplot. The returned instance
of the ``PlotGrid`` class can then be used to save or display the
plot by calling the ``save()`` and ``show()`` methods
respectively.
size : (float, float), optional
A tuple in the form (width, height) in inches to specify the size of
the overall figure. The default value is set to ``None``, meaning
the size will be set by the default backend.
"""
self.nrows = nrows
self.ncolumns = ncolumns
self._series = []
self.args = args
for arg in args:
self._series.append(arg._series)
self.backend = DefaultBackend
self.size = size
if show:
self.show()
def show(self):
if hasattr(self, '_backend'):
self._backend.close()
self._backend = self.backend(self)
self._backend.show()
def save(self, path):
if hasattr(self, '_backend'):
self._backend.close()
self._backend = self.backend(self)
self._backend.save(path)
def __str__(self):
plot_strs = [('Plot[%d]:' % i) + str(plot)
for i, plot in enumerate(self.args)]
return 'PlotGrid object containing:\n' + '\n'.join(plot_strs)
##############################################################################
# Data Series
##############################################################################
#TODO more general way to calculate aesthetics (see get_color_array)
### The base class for all series
class BaseSeries:
"""Base class for the data objects containing stuff to be plotted.
Explanation
===========
The backend should check if it supports the data series that is given.
(e.g. TextBackend supports only LineOver1DRangeSeries).
It is the backend responsibility to know how to use the class of
data series that is given.
Some data series classes are grouped (using a class attribute like is_2Dline)
according to the api they present (based only on convention). The backend is
not obliged to use that api (e.g. LineOver1DRangeSeries belongs to the
is_2Dline group and presents the get_points method, but the
TextBackend does not use the get_points method).
"""
# Some flags follow. The rationale for using flags instead of checking base
# classes is that setting multiple flags is simpler than multiple
# inheritance.
is_2Dline = False
# Some of the backends expect:
# - get_points returning 1D np.arrays list_x, list_y
# - get_color_array returning 1D np.array (done in Line2DBaseSeries)
# with the colors calculated at the points from get_points
is_3Dline = False
# Some of the backends expect:
# - get_points returning 1D np.arrays list_x, list_y, list_y
# - get_color_array returning 1D np.array (done in Line2DBaseSeries)
# with the colors calculated at the points from get_points
is_3Dsurface = False
# Some of the backends expect:
# - get_meshes returning mesh_x, mesh_y, mesh_z (2D np.arrays)
# - get_points an alias for get_meshes
is_contour = False
# Some of the backends expect:
# - get_meshes returning mesh_x, mesh_y, mesh_z (2D np.arrays)
# - get_points an alias for get_meshes
is_implicit = False
# Some of the backends expect:
# - get_meshes returning mesh_x (1D array), mesh_y(1D array,
# mesh_z (2D np.arrays)
# - get_points an alias for get_meshes
# Different from is_contour as the colormap in backend will be
# different
is_parametric = False
# The calculation of aesthetics expects:
# - get_parameter_points returning one or two np.arrays (1D or 2D)
# used for calculation aesthetics
def __init__(self):
super().__init__()
@property
def is_3D(self):
flags3D = [
self.is_3Dline,
self.is_3Dsurface
]
return any(flags3D)
@property
def is_line(self):
flagslines = [
self.is_2Dline,
self.is_3Dline
]
return any(flagslines)
### 2D lines
class Line2DBaseSeries(BaseSeries):
"""A base class for 2D lines.
- adding the label, steps and only_integers options
- making is_2Dline true
- defining get_segments and get_color_array
"""
is_2Dline = True
_dim = 2
def __init__(self):
super().__init__()
self.label = None
self.steps = False
self.only_integers = False
self.line_color = None
def get_data(self):
""" Return lists of coordinates for plotting the line.
Returns
=======
x : list
List of x-coordinates
y : list
List of y-coordinates
z : list
List of z-coordinates in case of Parametric3DLineSeries
"""
np = import_module('numpy')
points = self.get_points()
if self.steps is True:
if len(points) == 2:
x = np.array((points[0], points[0])).T.flatten()[1:]
y = np.array((points[1], points[1])).T.flatten()[:-1]
points = (x, y)
else:
x = np.repeat(points[0], 3)[2:]
y = np.repeat(points[1], 3)[:-2]
z = np.repeat(points[2], 3)[1:-1]
points = (x, y, z)
return points
def get_segments(self):
sympy_deprecation_warning(
"""
The Line2DBaseSeries.get_segments() method is deprecated.
Instead, use the MatplotlibBackend.get_segments() method, or use
The get_points() or get_data() methods.
""",
deprecated_since_version="1.9",
active_deprecations_target="deprecated-get-segments")
np = import_module('numpy')
points = type(self).get_data(self)
points = np.ma.array(points).T.reshape(-1, 1, self._dim)
return np.ma.concatenate([points[:-1], points[1:]], axis=1)
def get_color_array(self):
np = import_module('numpy')
c = self.line_color
if hasattr(c, '__call__'):
f = np.vectorize(c)
nargs = arity(c)
if nargs == 1 and self.is_parametric:
x = self.get_parameter_points()
return f(centers_of_segments(x))
else:
variables = list(map(centers_of_segments, self.get_points()))
if nargs == 1:
return f(variables[0])
elif nargs == 2:
return f(*variables[:2])
else: # only if the line is 3D (otherwise raises an error)
return f(*variables)
else:
return c*np.ones(self.nb_of_points)
class List2DSeries(Line2DBaseSeries):
"""Representation for a line consisting of list of points."""
def __init__(self, list_x, list_y):
np = import_module('numpy')
super().__init__()
self.list_x = np.array(list_x)
self.list_y = np.array(list_y)
self.label = 'list'
def __str__(self):
return 'list plot'
def get_points(self):
return (self.list_x, self.list_y)
class LineOver1DRangeSeries(Line2DBaseSeries):
"""Representation for a line consisting of a SymPy expression over a range."""
def __init__(self, expr, var_start_end, **kwargs):
super().__init__()
self.expr = sympify(expr)
self.label = kwargs.get('label', None) or self.expr
self.var = sympify(var_start_end[0])
self.start = float(var_start_end[1])
self.end = float(var_start_end[2])
self.nb_of_points = kwargs.get('nb_of_points', 300)
self.adaptive = kwargs.get('adaptive', True)
self.depth = kwargs.get('depth', 12)
self.line_color = kwargs.get('line_color', None)
self.xscale = kwargs.get('xscale', 'linear')
def __str__(self):
return 'cartesian line: %s for %s over %s' % (
str(self.expr), str(self.var), str((self.start, self.end)))
def get_points(self):
""" Return lists of coordinates for plotting. Depending on the
``adaptive`` option, this function will either use an adaptive algorithm
or it will uniformly sample the expression over the provided range.
Returns
=======
x : list
List of x-coordinates
y : list
List of y-coordinates
Explanation
===========
The adaptive sampling is done by recursively checking if three
points are almost collinear. If they are not collinear, then more
points are added between those points.
References
==========
.. [1] Adaptive polygonal approximation of parametric curves,
Luiz Henrique de Figueiredo.
"""
if self.only_integers or not self.adaptive:
return self._uniform_sampling()
else:
f = lambdify([self.var], self.expr)
x_coords = []
y_coords = []
np = import_module('numpy')
def sample(p, q, depth):
""" Samples recursively if three points are almost collinear.
For depth < 6, points are added irrespective of whether they
satisfy the collinearity condition or not. The maximum depth
allowed is 12.
"""
# Randomly sample to avoid aliasing.
random = 0.45 + np.random.rand() * 0.1
if self.xscale == 'log':
xnew = 10**(np.log10(p[0]) + random * (np.log10(q[0]) -
np.log10(p[0])))
else:
xnew = p[0] + random * (q[0] - p[0])
ynew = f(xnew)
new_point = np.array([xnew, ynew])
# Maximum depth
if depth > self.depth:
x_coords.append(q[0])
y_coords.append(q[1])
# Sample irrespective of whether the line is flat till the
# depth of 6. We are not using linspace to avoid aliasing.
elif depth < 6:
sample(p, new_point, depth + 1)
sample(new_point, q, depth + 1)
# Sample ten points if complex values are encountered
# at both ends. If there is a real value in between, then
# sample those points further.
elif p[1] is None and q[1] is None:
if self.xscale == 'log':
xarray = np.logspace(p[0], q[0], 10)
else:
xarray = np.linspace(p[0], q[0], 10)
yarray = list(map(f, xarray))
if not all(y is None for y in yarray):
for i in range(len(yarray) - 1):
if not (yarray[i] is None and yarray[i + 1] is None):
sample([xarray[i], yarray[i]],
[xarray[i + 1], yarray[i + 1]], depth + 1)
# Sample further if one of the end points in None (i.e. a
# complex value) or the three points are not almost collinear.
elif (p[1] is None or q[1] is None or new_point[1] is None
or not flat(p, new_point, q)):
sample(p, new_point, depth + 1)
sample(new_point, q, depth + 1)
else:
x_coords.append(q[0])
y_coords.append(q[1])
f_start = f(self.start)
f_end = f(self.end)
x_coords.append(self.start)
y_coords.append(f_start)
sample(np.array([self.start, f_start]),
np.array([self.end, f_end]), 0)
return (x_coords, y_coords)
def _uniform_sampling(self):
np = import_module('numpy')
if self.only_integers is True:
if self.xscale == 'log':
list_x = np.logspace(int(self.start), int(self.end),
num=int(self.end) - int(self.start) + 1)
else:
list_x = np.linspace(int(self.start), int(self.end),
num=int(self.end) - int(self.start) + 1)
else:
if self.xscale == 'log':
list_x = np.logspace(self.start, self.end, num=self.nb_of_points)
else:
list_x = np.linspace(self.start, self.end, num=self.nb_of_points)
f = vectorized_lambdify([self.var], self.expr)
list_y = f(list_x)
return (list_x, list_y)
class Parametric2DLineSeries(Line2DBaseSeries):
"""Representation for a line consisting of two parametric SymPy expressions
over a range."""
is_parametric = True
def __init__(self, expr_x, expr_y, var_start_end, **kwargs):
super().__init__()
self.expr_x = sympify(expr_x)
self.expr_y = sympify(expr_y)
self.label = kwargs.get('label', None) or \
Tuple(self.expr_x, self.expr_y)
self.var = sympify(var_start_end[0])
self.start = float(var_start_end[1])
self.end = float(var_start_end[2])
self.nb_of_points = kwargs.get('nb_of_points', 300)
self.adaptive = kwargs.get('adaptive', True)
self.depth = kwargs.get('depth', 12)
self.line_color = kwargs.get('line_color', None)
def __str__(self):
return 'parametric cartesian line: (%s, %s) for %s over %s' % (
str(self.expr_x), str(self.expr_y), str(self.var),
str((self.start, self.end)))
def get_parameter_points(self):
np = import_module('numpy')
return np.linspace(self.start, self.end, num=self.nb_of_points)
def _uniform_sampling(self):
param = self.get_parameter_points()
fx = vectorized_lambdify([self.var], self.expr_x)
fy = vectorized_lambdify([self.var], self.expr_y)
list_x = fx(param)
list_y = fy(param)
return (list_x, list_y)
def get_points(self):
""" Return lists of coordinates for plotting. Depending on the
``adaptive`` option, this function will either use an adaptive algorithm
or it will uniformly sample the expression over the provided range.
Returns
=======
x : list
List of x-coordinates
y : list
List of y-coordinates
Explanation
===========
The adaptive sampling is done by recursively checking if three
points are almost collinear. If they are not collinear, then more
points are added between those points.
References
==========
.. [1] Adaptive polygonal approximation of parametric curves,
Luiz Henrique de Figueiredo.
"""
if not self.adaptive:
return self._uniform_sampling()
f_x = lambdify([self.var], self.expr_x)
f_y = lambdify([self.var], self.expr_y)
x_coords = []
y_coords = []
def sample(param_p, param_q, p, q, depth):
""" Samples recursively if three points are almost collinear.
For depth < 6, points are added irrespective of whether they
satisfy the collinearity condition or not. The maximum depth
allowed is 12.
"""
# Randomly sample to avoid aliasing.
np = import_module('numpy')
random = 0.45 + np.random.rand() * 0.1
param_new = param_p + random * (param_q - param_p)
xnew = f_x(param_new)
ynew = f_y(param_new)
new_point = np.array([xnew, ynew])
# Maximum depth
if depth > self.depth:
x_coords.append(q[0])
y_coords.append(q[1])
# Sample irrespective of whether the line is flat till the
# depth of 6. We are not using linspace to avoid aliasing.
elif depth < 6:
sample(param_p, param_new, p, new_point, depth + 1)
sample(param_new, param_q, new_point, q, depth + 1)
# Sample ten points if complex values are encountered
# at both ends. If there is a real value in between, then
# sample those points further.
elif ((p[0] is None and q[1] is None) or
(p[1] is None and q[1] is None)):
param_array = np.linspace(param_p, param_q, 10)
x_array = list(map(f_x, param_array))
y_array = list(map(f_y, param_array))
if not all(x is None and y is None
for x, y in zip(x_array, y_array)):
for i in range(len(y_array) - 1):
if ((x_array[i] is not None and y_array[i] is not None) or
(x_array[i + 1] is not None and y_array[i + 1] is not None)):
point_a = [x_array[i], y_array[i]]
point_b = [x_array[i + 1], y_array[i + 1]]
sample(param_array[i], param_array[i], point_a,
point_b, depth + 1)
# Sample further if one of the end points in None (i.e. a complex
# value) or the three points are not almost collinear.
elif (p[0] is None or p[1] is None
or q[1] is None or q[0] is None
or not flat(p, new_point, q)):
sample(param_p, param_new, p, new_point, depth + 1)
sample(param_new, param_q, new_point, q, depth + 1)
else:
x_coords.append(q[0])
y_coords.append(q[1])
f_start_x = f_x(self.start)
f_start_y = f_y(self.start)
start = [f_start_x, f_start_y]
f_end_x = f_x(self.end)
f_end_y = f_y(self.end)
end = [f_end_x, f_end_y]
x_coords.append(f_start_x)
y_coords.append(f_start_y)
sample(self.start, self.end, start, end, 0)
return x_coords, y_coords
### 3D lines
class Line3DBaseSeries(Line2DBaseSeries):
"""A base class for 3D lines.
Most of the stuff is derived from Line2DBaseSeries."""
is_2Dline = False
is_3Dline = True
_dim = 3
def __init__(self):
super().__init__()
class Parametric3DLineSeries(Line3DBaseSeries):
"""Representation for a 3D line consisting of three parametric SymPy
expressions and a range."""
is_parametric = True
def __init__(self, expr_x, expr_y, expr_z, var_start_end, **kwargs):
super().__init__()
self.expr_x = sympify(expr_x)
self.expr_y = sympify(expr_y)
self.expr_z = sympify(expr_z)
self.label = kwargs.get('label', None) or \
Tuple(self.expr_x, self.expr_y)
self.var = sympify(var_start_end[0])
self.start = float(var_start_end[1])
self.end = float(var_start_end[2])
self.nb_of_points = kwargs.get('nb_of_points', 300)
self.line_color = kwargs.get('line_color', None)
self._xlim = None
self._ylim = None
self._zlim = None
def __str__(self):
return '3D parametric cartesian line: (%s, %s, %s) for %s over %s' % (
str(self.expr_x), str(self.expr_y), str(self.expr_z),
str(self.var), str((self.start, self.end)))
def get_parameter_points(self):
np = import_module('numpy')
return np.linspace(self.start, self.end, num=self.nb_of_points)
def get_points(self):
np = import_module('numpy')
param = self.get_parameter_points()
fx = vectorized_lambdify([self.var], self.expr_x)
fy = vectorized_lambdify([self.var], self.expr_y)
fz = vectorized_lambdify([self.var], self.expr_z)
list_x = fx(param)
list_y = fy(param)
list_z = fz(param)
list_x = np.array(list_x, dtype=np.float64)
list_y = np.array(list_y, dtype=np.float64)
list_z = np.array(list_z, dtype=np.float64)
list_x = np.ma.masked_invalid(list_x)
list_y = np.ma.masked_invalid(list_y)
list_z = np.ma.masked_invalid(list_z)
self._xlim = (np.amin(list_x), np.amax(list_x))
self._ylim = (np.amin(list_y), np.amax(list_y))
self._zlim = (np.amin(list_z), np.amax(list_z))
return list_x, list_y, list_z
### Surfaces
class SurfaceBaseSeries(BaseSeries):
"""A base class for 3D surfaces."""
is_3Dsurface = True
def __init__(self):
super().__init__()
self.surface_color = None
def get_color_array(self):
np = import_module('numpy')
c = self.surface_color
if isinstance(c, Callable):
f = np.vectorize(c)
nargs = arity(c)
if self.is_parametric:
variables = list(map(centers_of_faces, self.get_parameter_meshes()))
if nargs == 1:
return f(variables[0])
elif nargs == 2:
return f(*variables)
variables = list(map(centers_of_faces, self.get_meshes()))
if nargs == 1:
return f(variables[0])
elif nargs == 2:
return f(*variables[:2])
else:
return f(*variables)
else:
if isinstance(self, SurfaceOver2DRangeSeries):
return c*np.ones(min(self.nb_of_points_x, self.nb_of_points_y))
else:
return c*np.ones(min(self.nb_of_points_u, self.nb_of_points_v))
class SurfaceOver2DRangeSeries(SurfaceBaseSeries):
"""Representation for a 3D surface consisting of a SymPy expression and 2D
range."""
def __init__(self, expr, var_start_end_x, var_start_end_y, **kwargs):
super().__init__()
self.expr = sympify(expr)
self.var_x = sympify(var_start_end_x[0])
self.start_x = float(var_start_end_x[1])
self.end_x = float(var_start_end_x[2])
self.var_y = sympify(var_start_end_y[0])
self.start_y = float(var_start_end_y[1])
self.end_y = float(var_start_end_y[2])
self.nb_of_points_x = kwargs.get('nb_of_points_x', 50)
self.nb_of_points_y = kwargs.get('nb_of_points_y', 50)
self.surface_color = kwargs.get('surface_color', None)
self._xlim = (self.start_x, self.end_x)
self._ylim = (self.start_y, self.end_y)
def __str__(self):
return ('cartesian surface: %s for'
' %s over %s and %s over %s') % (
str(self.expr),
str(self.var_x),
str((self.start_x, self.end_x)),
str(self.var_y),
str((self.start_y, self.end_y)))
def get_meshes(self):
np = import_module('numpy')
mesh_x, mesh_y = np.meshgrid(np.linspace(self.start_x, self.end_x,
num=self.nb_of_points_x),
np.linspace(self.start_y, self.end_y,
num=self.nb_of_points_y))
f = vectorized_lambdify((self.var_x, self.var_y), self.expr)
mesh_z = f(mesh_x, mesh_y)
mesh_z = np.array(mesh_z, dtype=np.float64)
mesh_z = np.ma.masked_invalid(mesh_z)
self._zlim = (np.amin(mesh_z), np.amax(mesh_z))
return mesh_x, mesh_y, mesh_z
class ParametricSurfaceSeries(SurfaceBaseSeries):
"""Representation for a 3D surface consisting of three parametric SymPy
expressions and a range."""
is_parametric = True
def __init__(
self, expr_x, expr_y, expr_z, var_start_end_u, var_start_end_v,
**kwargs):
super().__init__()
self.expr_x = sympify(expr_x)
self.expr_y = sympify(expr_y)
self.expr_z = sympify(expr_z)
self.var_u = sympify(var_start_end_u[0])
self.start_u = float(var_start_end_u[1])
self.end_u = float(var_start_end_u[2])
self.var_v = sympify(var_start_end_v[0])
self.start_v = float(var_start_end_v[1])
self.end_v = float(var_start_end_v[2])
self.nb_of_points_u = kwargs.get('nb_of_points_u', 50)
self.nb_of_points_v = kwargs.get('nb_of_points_v', 50)
self.surface_color = kwargs.get('surface_color', None)
def __str__(self):
return ('parametric cartesian surface: (%s, %s, %s) for'
' %s over %s and %s over %s') % (
str(self.expr_x),
str(self.expr_y),
str(self.expr_z),
str(self.var_u),
str((self.start_u, self.end_u)),
str(self.var_v),
str((self.start_v, self.end_v)))
def get_parameter_meshes(self):
np = import_module('numpy')
return np.meshgrid(np.linspace(self.start_u, self.end_u,
num=self.nb_of_points_u),
np.linspace(self.start_v, self.end_v,
num=self.nb_of_points_v))
def get_meshes(self):
np = import_module('numpy')
mesh_u, mesh_v = self.get_parameter_meshes()
fx = vectorized_lambdify((self.var_u, self.var_v), self.expr_x)
fy = vectorized_lambdify((self.var_u, self.var_v), self.expr_y)
fz = vectorized_lambdify((self.var_u, self.var_v), self.expr_z)
mesh_x = fx(mesh_u, mesh_v)
mesh_y = fy(mesh_u, mesh_v)
mesh_z = fz(mesh_u, mesh_v)
mesh_x = np.array(mesh_x, dtype=np.float64)
mesh_y = np.array(mesh_y, dtype=np.float64)
mesh_z = np.array(mesh_z, dtype=np.float64)
mesh_x = np.ma.masked_invalid(mesh_x)
mesh_y = np.ma.masked_invalid(mesh_y)
mesh_z = np.ma.masked_invalid(mesh_z)
self._xlim = (np.amin(mesh_x), np.amax(mesh_x))
self._ylim = (np.amin(mesh_y), np.amax(mesh_y))
self._zlim = (np.amin(mesh_z), np.amax(mesh_z))
return mesh_x, mesh_y, mesh_z
### Contours
class ContourSeries(BaseSeries):
"""Representation for a contour plot."""
# The code is mostly repetition of SurfaceOver2DRange.
# Presently used in contour_plot function
is_contour = True
def __init__(self, expr, var_start_end_x, var_start_end_y):
super().__init__()
self.nb_of_points_x = 50
self.nb_of_points_y = 50
self.expr = sympify(expr)
self.var_x = sympify(var_start_end_x[0])
self.start_x = float(var_start_end_x[1])
self.end_x = float(var_start_end_x[2])
self.var_y = sympify(var_start_end_y[0])
self.start_y = float(var_start_end_y[1])
self.end_y = float(var_start_end_y[2])
self.get_points = self.get_meshes
self._xlim = (self.start_x, self.end_x)
self._ylim = (self.start_y, self.end_y)
def __str__(self):
return ('contour: %s for '
'%s over %s and %s over %s') % (
str(self.expr),
str(self.var_x),
str((self.start_x, self.end_x)),
str(self.var_y),
str((self.start_y, self.end_y)))
def get_meshes(self):
np = import_module('numpy')
mesh_x, mesh_y = np.meshgrid(np.linspace(self.start_x, self.end_x,
num=self.nb_of_points_x),
np.linspace(self.start_y, self.end_y,
num=self.nb_of_points_y))
f = vectorized_lambdify((self.var_x, self.var_y), self.expr)
return (mesh_x, mesh_y, f(mesh_x, mesh_y))
##############################################################################
# Backends
##############################################################################
class BaseBackend:
"""Base class for all backends. A backend represents the plotting library,
which implements the necessary functionalities in order to use SymPy
plotting functions.
How the plotting module works:
1. Whenever a plotting function is called, the provided expressions are
processed and a list of instances of the :class:`BaseSeries` class is
created, containing the necessary information to plot the expressions
(e.g. the expression, ranges, series name, ...). Eventually, these
objects will generate the numerical data to be plotted.
2. A :class:`~.Plot` object is instantiated, which stores the list of
series and the main attributes of the plot (e.g. axis labels, title, ...).
3. When the ``show`` command is executed, a new backend is instantiated,
which loops through each series object to generate and plot the
numerical data. The backend is also going to set the axis labels, title,
..., according to the values stored in the Plot instance.
The backend should check if it supports the data series that it is given
(e.g. :class:`TextBackend` supports only :class:`LineOver1DRangeSeries`).
It is the backend responsibility to know how to use the class of data series
that it's given. Note that the current implementation of the ``*Series``
classes is "matplotlib-centric": the numerical data returned by the
``get_points`` and ``get_meshes`` methods is meant to be used directly by
Matplotlib. Therefore, the new backend will have to pre-process the
numerical data to make it compatible with the chosen plotting library.
Keep in mind that future SymPy versions may improve the ``*Series`` classes
in order to return numerical data "non-matplotlib-centric", hence if you code
a new backend you have the responsibility to check if its working on each
SymPy release.
Please explore the :class:`MatplotlibBackend` source code to understand how a
backend should be coded.
Methods
=======
In order to be used by SymPy plotting functions, a backend must implement
the following methods:
* show(self): used to loop over the data series, generate the numerical
data, plot it and set the axis labels, title, ...
* save(self, path): used to save the current plot to the specified file
path.
* close(self): used to close the current plot backend (note: some plotting
library does not support this functionality. In that case, just raise a
warning).
See also
========
MatplotlibBackend
"""
def __init__(self, parent):
super().__init__()
self.parent = parent
def show(self):
raise NotImplementedError
def save(self, path):
raise NotImplementedError
def close(self):
raise NotImplementedError
# Don't have to check for the success of importing matplotlib in each case;
# we will only be using this backend if we can successfully import matploblib
class MatplotlibBackend(BaseBackend):
""" This class implements the functionalities to use Matplotlib with SymPy
plotting functions.
"""
def __init__(self, parent):
super().__init__(parent)
self.matplotlib = import_module('matplotlib',
import_kwargs={'fromlist': ['pyplot', 'cm', 'collections']},
min_module_version='1.1.0', catch=(RuntimeError,))
self.plt = self.matplotlib.pyplot
self.cm = self.matplotlib.cm
self.LineCollection = self.matplotlib.collections.LineCollection
aspect = getattr(self.parent, 'aspect_ratio', 'auto')
if aspect != 'auto':
aspect = float(aspect[1]) / aspect[0]
if isinstance(self.parent, Plot):
nrows, ncolumns = 1, 1
series_list = [self.parent._series]
elif isinstance(self.parent, PlotGrid):
nrows, ncolumns = self.parent.nrows, self.parent.ncolumns
series_list = self.parent._series
self.ax = []
self.fig = self.plt.figure(figsize=parent.size)
for i, series in enumerate(series_list):
are_3D = [s.is_3D for s in series]
if any(are_3D) and not all(are_3D):
raise ValueError('The matplotlib backend cannot mix 2D and 3D.')
elif all(are_3D):
# mpl_toolkits.mplot3d is necessary for
# projection='3d'
mpl_toolkits = import_module('mpl_toolkits', # noqa
import_kwargs={'fromlist': ['mplot3d']})
self.ax.append(self.fig.add_subplot(nrows, ncolumns, i + 1, projection='3d', aspect=aspect))
elif not any(are_3D):
self.ax.append(self.fig.add_subplot(nrows, ncolumns, i + 1, aspect=aspect))
self.ax[i].spines['left'].set_position('zero')
self.ax[i].spines['right'].set_color('none')
self.ax[i].spines['bottom'].set_position('zero')
self.ax[i].spines['top'].set_color('none')
self.ax[i].xaxis.set_ticks_position('bottom')
self.ax[i].yaxis.set_ticks_position('left')
@staticmethod
def get_segments(x, y, z=None):
""" Convert two list of coordinates to a list of segments to be used
with Matplotlib's :external:class:`~matplotlib.collections.LineCollection`.
Parameters
==========
x : list
List of x-coordinates
y : list
List of y-coordinates
z : list
List of z-coordinates for a 3D line.
"""
np = import_module('numpy')
if z is not None:
dim = 3
points = (x, y, z)
else:
dim = 2
points = (x, y)
points = np.ma.array(points).T.reshape(-1, 1, dim)
return np.ma.concatenate([points[:-1], points[1:]], axis=1)
def _process_series(self, series, ax, parent):
np = import_module('numpy')
mpl_toolkits = import_module(
'mpl_toolkits', import_kwargs={'fromlist': ['mplot3d']})
# XXX Workaround for matplotlib issue
# https://github.com/matplotlib/matplotlib/issues/17130
xlims, ylims, zlims = [], [], []
for s in series:
# Create the collections
if s.is_2Dline:
x, y = s.get_data()
if (isinstance(s.line_color, (int, float)) or
callable(s.line_color)):
segments = self.get_segments(x, y)
collection = self.LineCollection(segments)
collection.set_array(s.get_color_array())
ax.add_collection(collection)
else:
lbl = _str_or_latex(s.label)
line, = ax.plot(x, y, label=lbl, color=s.line_color)
elif s.is_contour:
ax.contour(*s.get_meshes())
elif s.is_3Dline:
x, y, z = s.get_data()
if (isinstance(s.line_color, (int, float)) or
callable(s.line_color)):
art3d = mpl_toolkits.mplot3d.art3d
segments = self.get_segments(x, y, z)
collection = art3d.Line3DCollection(segments)
collection.set_array(s.get_color_array())
ax.add_collection(collection)
else:
lbl = _str_or_latex(s.label)
ax.plot(x, y, z, label=lbl, color=s.line_color)
xlims.append(s._xlim)
ylims.append(s._ylim)
zlims.append(s._zlim)
elif s.is_3Dsurface:
x, y, z = s.get_meshes()
collection = ax.plot_surface(x, y, z,
cmap=getattr(self.cm, 'viridis', self.cm.jet),
rstride=1, cstride=1, linewidth=0.1)
if isinstance(s.surface_color, (float, int, Callable)):
color_array = s.get_color_array()
color_array = color_array.reshape(color_array.size)
collection.set_array(color_array)
else:
collection.set_color(s.surface_color)
xlims.append(s._xlim)
ylims.append(s._ylim)
zlims.append(s._zlim)
elif s.is_implicit:
points = s.get_raster()
if len(points) == 2:
# interval math plotting
x, y = _matplotlib_list(points[0])
ax.fill(x, y, facecolor=s.line_color, edgecolor='None')
else:
# use contourf or contour depending on whether it is
# an inequality or equality.
# XXX: ``contour`` plots multiple lines. Should be fixed.
ListedColormap = self.matplotlib.colors.ListedColormap
colormap = ListedColormap(["white", s.line_color])
xarray, yarray, zarray, plot_type = points
if plot_type == 'contour':
ax.contour(xarray, yarray, zarray, cmap=colormap)
else:
ax.contourf(xarray, yarray, zarray, cmap=colormap)
else:
raise NotImplementedError(
'{} is not supported in the SymPy plotting module '
'with matplotlib backend. Please report this issue.'
.format(ax))
Axes3D = mpl_toolkits.mplot3d.Axes3D
if not isinstance(ax, Axes3D):
ax.autoscale_view(
scalex=ax.get_autoscalex_on(),
scaley=ax.get_autoscaley_on())
else:
# XXX Workaround for matplotlib issue
# https://github.com/matplotlib/matplotlib/issues/17130
if xlims:
xlims = np.array(xlims)
xlim = (np.amin(xlims[:, 0]), np.amax(xlims[:, 1]))
ax.set_xlim(xlim)
else:
ax.set_xlim([0, 1])
if ylims:
ylims = np.array(ylims)
ylim = (np.amin(ylims[:, 0]), np.amax(ylims[:, 1]))
ax.set_ylim(ylim)
else:
ax.set_ylim([0, 1])
if zlims:
zlims = np.array(zlims)
zlim = (np.amin(zlims[:, 0]), np.amax(zlims[:, 1]))
ax.set_zlim(zlim)
else:
ax.set_zlim([0, 1])
# Set global options.
# TODO The 3D stuff
# XXX The order of those is important.
if parent.xscale and not isinstance(ax, Axes3D):
ax.set_xscale(parent.xscale)
if parent.yscale and not isinstance(ax, Axes3D):
ax.set_yscale(parent.yscale)
if not isinstance(ax, Axes3D) or self.matplotlib.__version__ >= '1.2.0': # XXX in the distant future remove this check
ax.set_autoscale_on(parent.autoscale)
if parent.axis_center:
val = parent.axis_center
if isinstance(ax, Axes3D):
pass
elif val == 'center':
ax.spines['left'].set_position('center')
ax.spines['bottom'].set_position('center')
elif val == 'auto':
xl, xh = ax.get_xlim()
yl, yh = ax.get_ylim()
pos_left = ('data', 0) if xl*xh <= 0 else 'center'
pos_bottom = ('data', 0) if yl*yh <= 0 else 'center'
ax.spines['left'].set_position(pos_left)
ax.spines['bottom'].set_position(pos_bottom)
else:
ax.spines['left'].set_position(('data', val[0]))
ax.spines['bottom'].set_position(('data', val[1]))
if not parent.axis:
ax.set_axis_off()
if parent.legend:
if ax.legend():
ax.legend_.set_visible(parent.legend)
if parent.margin:
ax.set_xmargin(parent.margin)
ax.set_ymargin(parent.margin)
if parent.title:
ax.set_title(parent.title)
if parent.xlabel:
xlbl = _str_or_latex(parent.xlabel)
ax.set_xlabel(xlbl, position=(1, 0))
if parent.ylabel:
ylbl = _str_or_latex(parent.ylabel)
ax.set_ylabel(ylbl, position=(0, 1))
if isinstance(ax, Axes3D) and parent.zlabel:
zlbl = _str_or_latex(parent.zlabel)
ax.set_zlabel(zlbl, position=(0, 1))
if parent.annotations:
for a in parent.annotations:
ax.annotate(**a)
if parent.markers:
for marker in parent.markers:
# make a copy of the marker dictionary
# so that it doesn't get altered
m = marker.copy()
args = m.pop('args')
ax.plot(*args, **m)
if parent.rectangles:
for r in parent.rectangles:
rect = self.matplotlib.patches.Rectangle(**r)
ax.add_patch(rect)
if parent.fill:
ax.fill_between(**parent.fill)
# xlim and ylim should always be set at last so that plot limits
# doesn't get altered during the process.
if parent.xlim:
ax.set_xlim(parent.xlim)
if parent.ylim:
ax.set_ylim(parent.ylim)
def process_series(self):
"""
Iterates over every ``Plot`` object and further calls
_process_series()
"""
parent = self.parent
if isinstance(parent, Plot):
series_list = [parent._series]
else:
series_list = parent._series
for i, (series, ax) in enumerate(zip(series_list, self.ax)):
if isinstance(self.parent, PlotGrid):
parent = self.parent.args[i]
self._process_series(series, ax, parent)
def show(self):
self.process_series()
#TODO after fixing https://github.com/ipython/ipython/issues/1255
# you can uncomment the next line and remove the pyplot.show() call
#self.fig.show()
if _show:
self.fig.tight_layout()
self.plt.show()
else:
self.close()
def save(self, path):
self.process_series()
self.fig.savefig(path)
def close(self):
self.plt.close(self.fig)
class TextBackend(BaseBackend):
def __init__(self, parent):
super().__init__(parent)
def show(self):
if not _show:
return
if len(self.parent._series) != 1:
raise ValueError(
'The TextBackend supports only one graph per Plot.')
elif not isinstance(self.parent._series[0], LineOver1DRangeSeries):
raise ValueError(
'The TextBackend supports only expressions over a 1D range')
else:
ser = self.parent._series[0]
textplot(ser.expr, ser.start, ser.end)
def close(self):
pass
class DefaultBackend(BaseBackend):
def __new__(cls, parent):
matplotlib = import_module('matplotlib', min_module_version='1.1.0', catch=(RuntimeError,))
if matplotlib:
return MatplotlibBackend(parent)
else:
return TextBackend(parent)
plot_backends = {
'matplotlib': MatplotlibBackend,
'text': TextBackend,
'default': DefaultBackend
}
##############################################################################
# Finding the centers of line segments or mesh faces
##############################################################################
def centers_of_segments(array):
np = import_module('numpy')
return np.mean(np.vstack((array[:-1], array[1:])), 0)
def centers_of_faces(array):
np = import_module('numpy')
return np.mean(np.dstack((array[:-1, :-1],
array[1:, :-1],
array[:-1, 1:],
array[:-1, :-1],
)), 2)
def flat(x, y, z, eps=1e-3):
"""Checks whether three points are almost collinear"""
np = import_module('numpy')
# Workaround plotting piecewise (#8577):
# workaround for `lambdify` in `.experimental_lambdify` fails
# to return numerical values in some cases. Lower-level fix
# in `lambdify` is possible.
vector_a = (x - y).astype(np.float64)
vector_b = (z - y).astype(np.float64)
dot_product = np.dot(vector_a, vector_b)
vector_a_norm = np.linalg.norm(vector_a)
vector_b_norm = np.linalg.norm(vector_b)
cos_theta = dot_product / (vector_a_norm * vector_b_norm)
return abs(cos_theta + 1) < eps
def _matplotlib_list(interval_list):
"""
Returns lists for matplotlib ``fill`` command from a list of bounding
rectangular intervals
"""
xlist = []
ylist = []
if len(interval_list):
for intervals in interval_list:
intervalx = intervals[0]
intervaly = intervals[1]
xlist.extend([intervalx.start, intervalx.start,
intervalx.end, intervalx.end, None])
ylist.extend([intervaly.start, intervaly.end,
intervaly.end, intervaly.start, None])
else:
#XXX Ugly hack. Matplotlib does not accept empty lists for ``fill``
xlist.extend((None, None, None, None))
ylist.extend((None, None, None, None))
return xlist, ylist
####New API for plotting module ####
# TODO: Add color arrays for plots.
# TODO: Add more plotting options for 3d plots.
# TODO: Adaptive sampling for 3D plots.
def plot(*args, show=True, **kwargs):
"""Plots a function of a single variable as a curve.
Parameters
==========
args :
The first argument is the expression representing the function
of single variable to be plotted.
The last argument is a 3-tuple denoting the range of the free
variable. e.g. ``(x, 0, 5)``
Typical usage examples are in the following:
- Plotting a single expression with a single range.
``plot(expr, range, **kwargs)``
- Plotting a single expression with the default range (-10, 10).
``plot(expr, **kwargs)``
- Plotting multiple expressions with a single range.
``plot(expr1, expr2, ..., range, **kwargs)``
- Plotting multiple expressions with multiple ranges.
``plot((expr1, range1), (expr2, range2), ..., **kwargs)``
It is best practice to specify range explicitly because default
range may change in the future if a more advanced default range
detection algorithm is implemented.
show : bool, optional
The default value is set to ``True``. Set show to ``False`` and
the function will not display the plot. The returned instance of
the ``Plot`` class can then be used to save or display the plot
by calling the ``save()`` and ``show()`` methods respectively.
line_color : string, or float, or function, optional
Specifies the color for the plot.
See ``Plot`` to see how to set color for the plots.
Note that by setting ``line_color``, it would be applied simultaneously
to all the series.
title : str, optional
Title of the plot. It is set to the latex representation of
the expression, if the plot has only one expression.
label : str, optional
The label of the expression in the plot. It will be used when
called with ``legend``. Default is the name of the expression.
e.g. ``sin(x)``
xlabel : str or expression, optional
Label for the x-axis.
ylabel : str or expression, optional
Label for the y-axis.
xscale : 'linear' or 'log', optional
Sets the scaling of the x-axis.
yscale : 'linear' or 'log', optional
Sets the scaling of the y-axis.
axis_center : (float, float), optional
Tuple of two floats denoting the coordinates of the center or
{'center', 'auto'}
xlim : (float, float), optional
Denotes the x-axis limits, ``(min, max)```.
ylim : (float, float), optional
Denotes the y-axis limits, ``(min, max)```.
annotations : list, optional
A list of dictionaries specifying the type of annotation
required. The keys in the dictionary should be equivalent
to the arguments of the :external:mod:`matplotlib`'s
:external:meth:`~matplotlib.axes.Axes.annotate` method.
markers : list, optional
A list of dictionaries specifying the type the markers required.
The keys in the dictionary should be equivalent to the arguments
of the :external:mod:`matplotlib`'s :external:func:`~matplotlib.pyplot.plot()` function
along with the marker related keyworded arguments.
rectangles : list, optional
A list of dictionaries specifying the dimensions of the
rectangles to be plotted. The keys in the dictionary should be
equivalent to the arguments of the :external:mod:`matplotlib`'s
:external:class:`~matplotlib.patches.Rectangle` class.
fill : dict, optional
A dictionary specifying the type of color filling required in
the plot. The keys in the dictionary should be equivalent to the
arguments of the :external:mod:`matplotlib`'s
:external:meth:`~matplotlib.axes.Axes.fill_between` method.
adaptive : bool, optional
The default value is set to ``True``. Set adaptive to ``False``
and specify ``nb_of_points`` if uniform sampling is required.
The plotting uses an adaptive algorithm which samples
recursively to accurately plot. The adaptive algorithm uses a
random point near the midpoint of two points that has to be
further sampled. Hence the same plots can appear slightly
different.
depth : int, optional
Recursion depth of the adaptive algorithm. A depth of value
`n` samples a maximum of `2^{n}` points.
If the ``adaptive`` flag is set to ``False``, this will be
ignored.
nb_of_points : int, optional
Used when the ``adaptive`` is set to ``False``. The function
is uniformly sampled at ``nb_of_points`` number of points.
If the ``adaptive`` flag is set to ``True``, this will be
ignored.
size : (float, float), optional
A tuple in the form (width, height) in inches to specify the size of
the overall figure. The default value is set to ``None``, meaning
the size will be set by the default backend.
Examples
========
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.plotting import plot
>>> x = symbols('x')
Single Plot
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot(x**2, (x, -5, 5))
Plot object containing:
[0]: cartesian line: x**2 for x over (-5.0, 5.0)
Multiple plots with single range.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot(x, x**2, x**3, (x, -5, 5))
Plot object containing:
[0]: cartesian line: x for x over (-5.0, 5.0)
[1]: cartesian line: x**2 for x over (-5.0, 5.0)
[2]: cartesian line: x**3 for x over (-5.0, 5.0)
Multiple plots with different ranges.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot((x**2, (x, -6, 6)), (x, (x, -5, 5)))
Plot object containing:
[0]: cartesian line: x**2 for x over (-6.0, 6.0)
[1]: cartesian line: x for x over (-5.0, 5.0)
No adaptive sampling.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot(x**2, adaptive=False, nb_of_points=400)
Plot object containing:
[0]: cartesian line: x**2 for x over (-10.0, 10.0)
See Also
========
Plot, LineOver1DRangeSeries
"""
args = list(map(sympify, args))
free = set()
for a in args:
if isinstance(a, Expr):
free |= a.free_symbols
if len(free) > 1:
raise ValueError(
'The same variable should be used in all '
'univariate expressions being plotted.')
x = free.pop() if free else Symbol('x')
kwargs.setdefault('xlabel', x)
kwargs.setdefault('ylabel', Function('f')(x))
series = []
plot_expr = check_arguments(args, 1, 1)
series = [LineOver1DRangeSeries(*arg, **kwargs) for arg in plot_expr]
plots = Plot(*series, **kwargs)
if show:
plots.show()
return plots
def plot_parametric(*args, show=True, **kwargs):
"""
Plots a 2D parametric curve.
Parameters
==========
args
Common specifications are:
- Plotting a single parametric curve with a range
``plot_parametric((expr_x, expr_y), range)``
- Plotting multiple parametric curves with the same range
``plot_parametric((expr_x, expr_y), ..., range)``
- Plotting multiple parametric curves with different ranges
``plot_parametric((expr_x, expr_y, range), ...)``
``expr_x`` is the expression representing $x$ component of the
parametric function.
``expr_y`` is the expression representing $y$ component of the
parametric function.
``range`` is a 3-tuple denoting the parameter symbol, start and
stop. For example, ``(u, 0, 5)``.
If the range is not specified, then a default range of (-10, 10)
is used.
However, if the arguments are specified as
``(expr_x, expr_y, range), ...``, you must specify the ranges
for each expressions manually.
Default range may change in the future if a more advanced
algorithm is implemented.
adaptive : bool, optional
Specifies whether to use the adaptive sampling or not.
The default value is set to ``True``. Set adaptive to ``False``
and specify ``nb_of_points`` if uniform sampling is required.
depth : int, optional
The recursion depth of the adaptive algorithm. A depth of
value $n$ samples a maximum of $2^n$ points.
nb_of_points : int, optional
Used when the ``adaptive`` flag is set to ``False``.
Specifies the number of the points used for the uniform
sampling.
line_color : string, or float, or function, optional
Specifies the color for the plot.
See ``Plot`` to see how to set color for the plots.
Note that by setting ``line_color``, it would be applied simultaneously
to all the series.
label : str, optional
The label of the expression in the plot. It will be used when
called with ``legend``. Default is the name of the expression.
e.g. ``sin(x)``
xlabel : str, optional
Label for the x-axis.
ylabel : str, optional
Label for the y-axis.
xscale : 'linear' or 'log', optional
Sets the scaling of the x-axis.
yscale : 'linear' or 'log', optional
Sets the scaling of the y-axis.
axis_center : (float, float), optional
Tuple of two floats denoting the coordinates of the center or
{'center', 'auto'}
xlim : (float, float), optional
Denotes the x-axis limits, ``(min, max)```.
ylim : (float, float), optional
Denotes the y-axis limits, ``(min, max)```.
size : (float, float), optional
A tuple in the form (width, height) in inches to specify the size of
the overall figure. The default value is set to ``None``, meaning
the size will be set by the default backend.
Examples
========
.. plot::
:context: reset
:format: doctest
:include-source: True
>>> from sympy import plot_parametric, symbols, cos, sin
>>> u = symbols('u')
A parametric plot with a single expression:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot_parametric((cos(u), sin(u)), (u, -5, 5))
Plot object containing:
[0]: parametric cartesian line: (cos(u), sin(u)) for u over (-5.0, 5.0)
A parametric plot with multiple expressions with the same range:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot_parametric((cos(u), sin(u)), (u, cos(u)), (u, -10, 10))
Plot object containing:
[0]: parametric cartesian line: (cos(u), sin(u)) for u over (-10.0, 10.0)
[1]: parametric cartesian line: (u, cos(u)) for u over (-10.0, 10.0)
A parametric plot with multiple expressions with different ranges
for each curve:
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot_parametric((cos(u), sin(u), (u, -5, 5)),
... (cos(u), u, (u, -5, 5)))
Plot object containing:
[0]: parametric cartesian line: (cos(u), sin(u)) for u over (-5.0, 5.0)
[1]: parametric cartesian line: (cos(u), u) for u over (-5.0, 5.0)
Notes
=====
The plotting uses an adaptive algorithm which samples recursively to
accurately plot the curve. The adaptive algorithm uses a random point
near the midpoint of two points that has to be further sampled.
Hence, repeating the same plot command can give slightly different
results because of the random sampling.
If there are multiple plots, then the same optional arguments are
applied to all the plots drawn in the same canvas. If you want to
set these options separately, you can index the returned ``Plot``
object and set it.
For example, when you specify ``line_color`` once, it would be
applied simultaneously to both series.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> from sympy import pi
>>> expr1 = (u, cos(2*pi*u)/2 + 1/2)
>>> expr2 = (u, sin(2*pi*u)/2 + 1/2)
>>> p = plot_parametric(expr1, expr2, (u, 0, 1), line_color='blue')
If you want to specify the line color for the specific series, you
should index each item and apply the property manually.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> p[0].line_color = 'red'
>>> p.show()
See Also
========
Plot, Parametric2DLineSeries
"""
args = list(map(sympify, args))
series = []
plot_expr = check_arguments(args, 2, 1)
series = [Parametric2DLineSeries(*arg, **kwargs) for arg in plot_expr]
plots = Plot(*series, **kwargs)
if show:
plots.show()
return plots
def plot3d_parametric_line(*args, show=True, **kwargs):
"""
Plots a 3D parametric line plot.
Usage
=====
Single plot:
``plot3d_parametric_line(expr_x, expr_y, expr_z, range, **kwargs)``
If the range is not specified, then a default range of (-10, 10) is used.
Multiple plots.
``plot3d_parametric_line((expr_x, expr_y, expr_z, range), ..., **kwargs)``
Ranges have to be specified for every expression.
Default range may change in the future if a more advanced default range
detection algorithm is implemented.
Arguments
=========
expr_x : Expression representing the function along x.
expr_y : Expression representing the function along y.
expr_z : Expression representing the function along z.
range : (:class:`~.Symbol`, float, float)
A 3-tuple denoting the range of the parameter variable, e.g., (u, 0, 5).
Keyword Arguments
=================
Arguments for ``Parametric3DLineSeries`` class.
nb_of_points : The range is uniformly sampled at ``nb_of_points``
number of points.
Aesthetics:
line_color : string, or float, or function, optional
Specifies the color for the plot.
See ``Plot`` to see how to set color for the plots.
Note that by setting ``line_color``, it would be applied simultaneously
to all the series.
label : str
The label to the plot. It will be used when called with ``legend=True``
to denote the function with the given label in the plot.
If there are multiple plots, then the same series arguments are applied to
all the plots. If you want to set these options separately, you can index
the returned ``Plot`` object and set it.
Arguments for ``Plot`` class.
title : str
Title of the plot.
size : (float, float), optional
A tuple in the form (width, height) in inches to specify the size of
the overall figure. The default value is set to ``None``, meaning
the size will be set by the default backend.
Examples
========
.. plot::
:context: reset
:format: doctest
:include-source: True
>>> from sympy import symbols, cos, sin
>>> from sympy.plotting import plot3d_parametric_line
>>> u = symbols('u')
Single plot.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot3d_parametric_line(cos(u), sin(u), u, (u, -5, 5))
Plot object containing:
[0]: 3D parametric cartesian line: (cos(u), sin(u), u) for u over (-5.0, 5.0)
Multiple plots.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot3d_parametric_line((cos(u), sin(u), u, (u, -5, 5)),
... (sin(u), u**2, u, (u, -5, 5)))
Plot object containing:
[0]: 3D parametric cartesian line: (cos(u), sin(u), u) for u over (-5.0, 5.0)
[1]: 3D parametric cartesian line: (sin(u), u**2, u) for u over (-5.0, 5.0)
See Also
========
Plot, Parametric3DLineSeries
"""
args = list(map(sympify, args))
series = []
plot_expr = check_arguments(args, 3, 1)
series = [Parametric3DLineSeries(*arg, **kwargs) for arg in plot_expr]
kwargs.setdefault("xlabel", "x")
kwargs.setdefault("ylabel", "y")
kwargs.setdefault("zlabel", "z")
plots = Plot(*series, **kwargs)
if show:
plots.show()
return plots
def plot3d(*args, show=True, **kwargs):
"""
Plots a 3D surface plot.
Usage
=====
Single plot
``plot3d(expr, range_x, range_y, **kwargs)``
If the ranges are not specified, then a default range of (-10, 10) is used.
Multiple plot with the same range.
``plot3d(expr1, expr2, range_x, range_y, **kwargs)``
If the ranges are not specified, then a default range of (-10, 10) is used.
Multiple plots with different ranges.
``plot3d((expr1, range_x, range_y), (expr2, range_x, range_y), ..., **kwargs)``
Ranges have to be specified for every expression.
Default range may change in the future if a more advanced default range
detection algorithm is implemented.
Arguments
=========
expr : Expression representing the function along x.
range_x : (:class:`~.Symbol`, float, float)
A 3-tuple denoting the range of the x variable, e.g. (x, 0, 5).
range_y : (:class:`~.Symbol`, float, float)
A 3-tuple denoting the range of the y variable, e.g. (y, 0, 5).
Keyword Arguments
=================
Arguments for ``SurfaceOver2DRangeSeries`` class:
nb_of_points_x : int
The x range is sampled uniformly at ``nb_of_points_x`` of points.
nb_of_points_y : int
The y range is sampled uniformly at ``nb_of_points_y`` of points.
Aesthetics:
surface_color : Function which returns a float
Specifies the color for the surface of the plot.
See :class:`~.Plot` for more details.
If there are multiple plots, then the same series arguments are applied to
all the plots. If you want to set these options separately, you can index
the returned ``Plot`` object and set it.
Arguments for ``Plot`` class:
title : str
Title of the plot.
size : (float, float), optional
A tuple in the form (width, height) in inches to specify the size of the
overall figure. The default value is set to ``None``, meaning the size will
be set by the default backend.
Examples
========
.. plot::
:context: reset
:format: doctest
:include-source: True
>>> from sympy import symbols
>>> from sympy.plotting import plot3d
>>> x, y = symbols('x y')
Single plot
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot3d(x*y, (x, -5, 5), (y, -5, 5))
Plot object containing:
[0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
Multiple plots with same range
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot3d(x*y, -x*y, (x, -5, 5), (y, -5, 5))
Plot object containing:
[0]: cartesian surface: x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
[1]: cartesian surface: -x*y for x over (-5.0, 5.0) and y over (-5.0, 5.0)
Multiple plots with different ranges.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot3d((x**2 + y**2, (x, -5, 5), (y, -5, 5)),
... (x*y, (x, -3, 3), (y, -3, 3)))
Plot object containing:
[0]: cartesian surface: x**2 + y**2 for x over (-5.0, 5.0) and y over (-5.0, 5.0)
[1]: cartesian surface: x*y for x over (-3.0, 3.0) and y over (-3.0, 3.0)
See Also
========
Plot, SurfaceOver2DRangeSeries
"""
args = list(map(sympify, args))
series = []
plot_expr = check_arguments(args, 1, 2)
series = [SurfaceOver2DRangeSeries(*arg, **kwargs) for arg in plot_expr]
kwargs.setdefault("xlabel", series[0].var_x)
kwargs.setdefault("ylabel", series[0].var_y)
kwargs.setdefault("zlabel", Function('f')(series[0].var_x, series[0].var_y))
plots = Plot(*series, **kwargs)
if show:
plots.show()
return plots
def plot3d_parametric_surface(*args, show=True, **kwargs):
"""
Plots a 3D parametric surface plot.
Explanation
===========
Single plot.
``plot3d_parametric_surface(expr_x, expr_y, expr_z, range_u, range_v, **kwargs)``
If the ranges is not specified, then a default range of (-10, 10) is used.
Multiple plots.
``plot3d_parametric_surface((expr_x, expr_y, expr_z, range_u, range_v), ..., **kwargs)``
Ranges have to be specified for every expression.
Default range may change in the future if a more advanced default range
detection algorithm is implemented.
Arguments
=========
expr_x : Expression representing the function along ``x``.
expr_y : Expression representing the function along ``y``.
expr_z : Expression representing the function along ``z``.
range_u : (:class:`~.Symbol`, float, float)
A 3-tuple denoting the range of the u variable, e.g. (u, 0, 5).
range_v : (:class:`~.Symbol`, float, float)
A 3-tuple denoting the range of the v variable, e.g. (v, 0, 5).
Keyword Arguments
=================
Arguments for ``ParametricSurfaceSeries`` class:
nb_of_points_u : int
The ``u`` range is sampled uniformly at ``nb_of_points_v`` of points
nb_of_points_y : int
The ``v`` range is sampled uniformly at ``nb_of_points_y`` of points
Aesthetics:
surface_color : Function which returns a float
Specifies the color for the surface of the plot. See
:class:`~Plot` for more details.
If there are multiple plots, then the same series arguments are applied for
all the plots. If you want to set these options separately, you can index
the returned ``Plot`` object and set it.
Arguments for ``Plot`` class:
title : str
Title of the plot.
size : (float, float), optional
A tuple in the form (width, height) in inches to specify the size of the
overall figure. The default value is set to ``None``, meaning the size will
be set by the default backend.
Examples
========
.. plot::
:context: reset
:format: doctest
:include-source: True
>>> from sympy import symbols, cos, sin
>>> from sympy.plotting import plot3d_parametric_surface
>>> u, v = symbols('u v')
Single plot.
.. plot::
:context: close-figs
:format: doctest
:include-source: True
>>> plot3d_parametric_surface(cos(u + v), sin(u - v), u - v,
... (u, -5, 5), (v, -5, 5))
Plot object containing:
[0]: parametric cartesian surface: (cos(u + v), sin(u - v), u - v) for u over (-5.0, 5.0) and v over (-5.0, 5.0)
See Also
========
Plot, ParametricSurfaceSeries
"""
args = list(map(sympify, args))
series = []
plot_expr = check_arguments(args, 3, 2)
series = [ParametricSurfaceSeries(*arg, **kwargs) for arg in plot_expr]
kwargs.setdefault("xlabel", "x")
kwargs.setdefault("ylabel", "y")
kwargs.setdefault("zlabel", "z")
plots = Plot(*series, **kwargs)
if show:
plots.show()
return plots
def plot_contour(*args, show=True, **kwargs):
"""
Draws contour plot of a function
Usage
=====
Single plot
``plot_contour(expr, range_x, range_y, **kwargs)``
If the ranges are not specified, then a default range of (-10, 10) is used.
Multiple plot with the same range.
``plot_contour(expr1, expr2, range_x, range_y, **kwargs)``
If the ranges are not specified, then a default range of (-10, 10) is used.
Multiple plots with different ranges.
``plot_contour((expr1, range_x, range_y), (expr2, range_x, range_y), ..., **kwargs)``
Ranges have to be specified for every expression.
Default range may change in the future if a more advanced default range
detection algorithm is implemented.
Arguments
=========
expr : Expression representing the function along x.
range_x : (:class:`Symbol`, float, float)
A 3-tuple denoting the range of the x variable, e.g. (x, 0, 5).
range_y : (:class:`Symbol`, float, float)
A 3-tuple denoting the range of the y variable, e.g. (y, 0, 5).
Keyword Arguments
=================
Arguments for ``ContourSeries`` class:
nb_of_points_x : int
The x range is sampled uniformly at ``nb_of_points_x`` of points.
nb_of_points_y : int
The y range is sampled uniformly at ``nb_of_points_y`` of points.
Aesthetics:
surface_color : Function which returns a float
Specifies the color for the surface of the plot. See
:class:`sympy.plotting.Plot` for more details.
If there are multiple plots, then the same series arguments are applied to
all the plots. If you want to set these options separately, you can index
the returned ``Plot`` object and set it.
Arguments for ``Plot`` class:
title : str
Title of the plot.
size : (float, float), optional
A tuple in the form (width, height) in inches to specify the size of
the overall figure. The default value is set to ``None``, meaning
the size will be set by the default backend.
See Also
========
Plot, ContourSeries
"""
args = list(map(sympify, args))
plot_expr = check_arguments(args, 1, 2)
series = [ContourSeries(*arg) for arg in plot_expr]
plot_contours = Plot(*series, **kwargs)
if len(plot_expr[0].free_symbols) > 2:
raise ValueError('Contour Plot cannot Plot for more than two variables.')
if show:
plot_contours.show()
return plot_contours
def check_arguments(args, expr_len, nb_of_free_symbols):
"""
Checks the arguments and converts into tuples of the
form (exprs, ranges).
Examples
========
.. plot::
:context: reset
:format: doctest
:include-source: True
>>> from sympy import cos, sin, symbols
>>> from sympy.plotting.plot import check_arguments
>>> x = symbols('x')
>>> check_arguments([cos(x), sin(x)], 2, 1)
[(cos(x), sin(x), (x, -10, 10))]
>>> check_arguments([x, x**2], 1, 1)
[(x, (x, -10, 10)), (x**2, (x, -10, 10))]
"""
if not args:
return []
if expr_len > 1 and isinstance(args[0], Expr):
# Multiple expressions same range.
# The arguments are tuples when the expression length is
# greater than 1.
if len(args) < expr_len:
raise ValueError("len(args) should not be less than expr_len")
for i in range(len(args)):
if isinstance(args[i], Tuple):
break
else:
i = len(args) + 1
exprs = Tuple(*args[:i])
free_symbols = list(set().union(*[e.free_symbols for e in exprs]))
if len(args) == expr_len + nb_of_free_symbols:
#Ranges given
plots = [exprs + Tuple(*args[expr_len:])]
else:
default_range = Tuple(-10, 10)
ranges = []
for symbol in free_symbols:
ranges.append(Tuple(symbol) + default_range)
for i in range(len(free_symbols) - nb_of_free_symbols):
ranges.append(Tuple(Dummy()) + default_range)
plots = [exprs + Tuple(*ranges)]
return plots
if isinstance(args[0], Expr) or (isinstance(args[0], Tuple) and
len(args[0]) == expr_len and
expr_len != 3):
# Cannot handle expressions with number of expression = 3. It is
# not possible to differentiate between expressions and ranges.
#Series of plots with same range
for i in range(len(args)):
if isinstance(args[i], Tuple) and len(args[i]) != expr_len:
break
if not isinstance(args[i], Tuple):
args[i] = Tuple(args[i])
else:
i = len(args) + 1
exprs = args[:i]
assert all(isinstance(e, Expr) for expr in exprs for e in expr)
free_symbols = list(set().union(*[e.free_symbols for expr in exprs
for e in expr]))
if len(free_symbols) > nb_of_free_symbols:
raise ValueError("The number of free_symbols in the expression "
"is greater than %d" % nb_of_free_symbols)
if len(args) == i + nb_of_free_symbols and isinstance(args[i], Tuple):
ranges = Tuple(*[range_expr for range_expr in args[
i:i + nb_of_free_symbols]])
plots = [expr + ranges for expr in exprs]
return plots
else:
# Use default ranges.
default_range = Tuple(-10, 10)
ranges = []
for symbol in free_symbols:
ranges.append(Tuple(symbol) + default_range)
for i in range(nb_of_free_symbols - len(free_symbols)):
ranges.append(Tuple(Dummy()) + default_range)
ranges = Tuple(*ranges)
plots = [expr + ranges for expr in exprs]
return plots
elif isinstance(args[0], Tuple) and len(args[0]) == expr_len + nb_of_free_symbols:
# Multiple plots with different ranges.
for arg in args:
for i in range(expr_len):
if not isinstance(arg[i], Expr):
raise ValueError("Expected an expression, given %s" %
str(arg[i]))
for i in range(nb_of_free_symbols):
if not len(arg[i + expr_len]) == 3:
raise ValueError("The ranges should be a tuple of "
"length 3, got %s" % str(arg[i + expr_len]))
return args
|
d2a5d64148c153a379ca234ed3d077401f117c088b052089d11e67d04a36fa54 | from sympy.stats import Expectation, Normal, Variance, Covariance
from sympy.testing.pytest import raises
from sympy.core.symbol import symbols
from sympy.matrices.common import ShapeError
from sympy.matrices.dense import Matrix
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.matrices.expressions.special import ZeroMatrix
from sympy.stats.rv import RandomMatrixSymbol
from sympy.stats.symbolic_multivariate_probability import (ExpectationMatrix,
VarianceMatrix, CrossCovarianceMatrix)
j, k = symbols("j,k")
A = MatrixSymbol("A", k, k)
B = MatrixSymbol("B", k, k)
C = MatrixSymbol("C", k, k)
D = MatrixSymbol("D", k, k)
a = MatrixSymbol("a", k, 1)
b = MatrixSymbol("b", k, 1)
A2 = MatrixSymbol("A2", 2, 2)
B2 = MatrixSymbol("B2", 2, 2)
X = RandomMatrixSymbol("X", k, 1)
Y = RandomMatrixSymbol("Y", k, 1)
Z = RandomMatrixSymbol("Z", k, 1)
W = RandomMatrixSymbol("W", k, 1)
R = RandomMatrixSymbol("R", k, k)
X2 = RandomMatrixSymbol("X2", 2, 1)
normal = Normal("normal", 0, 1)
m1 = Matrix([
[1, j*Normal("normal2", 2, 1)],
[normal, 0]
])
def test_multivariate_expectation():
expr = Expectation(a)
assert expr == Expectation(a) == ExpectationMatrix(a)
assert expr.expand() == a
expr = Expectation(X)
assert expr == Expectation(X) == ExpectationMatrix(X)
assert expr.shape == (k, 1)
assert expr.rows == k
assert expr.cols == 1
assert isinstance(expr, ExpectationMatrix)
expr = Expectation(A*X + b)
assert expr == ExpectationMatrix(A*X + b)
assert expr.expand() == A*ExpectationMatrix(X) + b
assert isinstance(expr, ExpectationMatrix)
assert expr.shape == (k, 1)
expr = Expectation(m1*X2)
assert expr.expand() == expr
expr = Expectation(A2*m1*B2*X2)
assert expr.args[0].args == (A2, m1, B2, X2)
assert expr.expand() == A2*ExpectationMatrix(m1*B2*X2)
expr = Expectation((X + Y)*(X - Y).T)
assert expr.expand() == ExpectationMatrix(X*X.T) - ExpectationMatrix(X*Y.T) +\
ExpectationMatrix(Y*X.T) - ExpectationMatrix(Y*Y.T)
expr = Expectation(A*X + B*Y)
assert expr.expand() == A*ExpectationMatrix(X) + B*ExpectationMatrix(Y)
assert Expectation(m1).doit() == Matrix([[1, 2*j], [0, 0]])
x1 = Matrix([
[Normal('N11', 11, 1), Normal('N12', 12, 1)],
[Normal('N21', 21, 1), Normal('N22', 22, 1)]
])
x2 = Matrix([
[Normal('M11', 1, 1), Normal('M12', 2, 1)],
[Normal('M21', 3, 1), Normal('M22', 4, 1)]
])
assert Expectation(Expectation(x1 + x2)).doit(deep=False) == ExpectationMatrix(x1 + x2)
assert Expectation(Expectation(x1 + x2)).doit() == Matrix([[12, 14], [24, 26]])
def test_multivariate_variance():
raises(ShapeError, lambda: Variance(A))
expr = Variance(a)
assert expr == Variance(a) == VarianceMatrix(a)
assert expr.expand() == ZeroMatrix(k, k)
expr = Variance(a.T)
assert expr == Variance(a.T) == VarianceMatrix(a.T)
assert expr.expand() == ZeroMatrix(k, k)
expr = Variance(X)
assert expr == Variance(X) == VarianceMatrix(X)
assert expr.shape == (k, k)
assert expr.rows == k
assert expr.cols == k
assert isinstance(expr, VarianceMatrix)
expr = Variance(A*X)
assert expr == VarianceMatrix(A*X)
assert expr.expand() == A*VarianceMatrix(X)*A.T
assert isinstance(expr, VarianceMatrix)
assert expr.shape == (k, k)
expr = Variance(A*B*X)
assert expr.expand() == A*B*VarianceMatrix(X)*B.T*A.T
expr = Variance(m1*X2)
assert expr.expand() == expr
expr = Variance(A2*m1*B2*X2)
assert expr.args[0].args == (A2, m1, B2, X2)
assert expr.expand() == expr
expr = Variance(A*X + B*Y)
assert expr.expand() == 2*A*CrossCovarianceMatrix(X, Y)*B.T +\
A*VarianceMatrix(X)*A.T + B*VarianceMatrix(Y)*B.T
def test_multivariate_crosscovariance():
raises(ShapeError, lambda: Covariance(X, Y.T))
raises(ShapeError, lambda: Covariance(X, A))
expr = Covariance(a.T, b.T)
assert expr.shape == (1, 1)
assert expr.expand() == ZeroMatrix(1, 1)
expr = Covariance(a, b)
assert expr == Covariance(a, b) == CrossCovarianceMatrix(a, b)
assert expr.expand() == ZeroMatrix(k, k)
assert expr.shape == (k, k)
assert expr.rows == k
assert expr.cols == k
assert isinstance(expr, CrossCovarianceMatrix)
expr = Covariance(A*X + a, b)
assert expr.expand() == ZeroMatrix(k, k)
expr = Covariance(X, Y)
assert isinstance(expr, CrossCovarianceMatrix)
assert expr.expand() == expr
expr = Covariance(X, X)
assert isinstance(expr, CrossCovarianceMatrix)
assert expr.expand() == VarianceMatrix(X)
expr = Covariance(X + Y, Z)
assert isinstance(expr, CrossCovarianceMatrix)
assert expr.expand() == CrossCovarianceMatrix(X, Z) + CrossCovarianceMatrix(Y, Z)
expr = Covariance(A*X, Y)
assert isinstance(expr, CrossCovarianceMatrix)
assert expr.expand() == A*CrossCovarianceMatrix(X, Y)
expr = Covariance(X, B*Y)
assert isinstance(expr, CrossCovarianceMatrix)
assert expr.expand() == CrossCovarianceMatrix(X, Y)*B.T
expr = Covariance(A*X + a, B.T*Y + b)
assert isinstance(expr, CrossCovarianceMatrix)
assert expr.expand() == A*CrossCovarianceMatrix(X, Y)*B
expr = Covariance(A*X + B*Y + a, C.T*Z + D.T*W + b)
assert isinstance(expr, CrossCovarianceMatrix)
assert expr.expand() == A*CrossCovarianceMatrix(X, W)*D + A*CrossCovarianceMatrix(X, Z)*C \
+ B*CrossCovarianceMatrix(Y, W)*D + B*CrossCovarianceMatrix(Y, Z)*C
|
53ce9813a23b534e41bb66e2cc7f1e863e2f6b7e515d7da1229b2ef49192008b | from __future__ import annotations
from sympy.ntheory import qs
from sympy.ntheory.qs import SievePolynomial, \
_generate_factor_base, _initialize_first_polynomial, _initialize_ith_poly, \
_gen_sieve_array, _check_smoothness, _trial_division_stage, _gauss_mod_2, \
_build_matrix, _find_factor
assert qs(10009202107, 100, 10000) == {100043, 100049}
assert qs(211107295182713951054568361, 1000, 10000) == {13791315212531, 15307263442931}
assert qs(980835832582657*990377764891511, 3000, 50000) == {980835832582657, 990377764891511}
assert qs(18640889198609*20991129234731, 1000, 50000) == {18640889198609, 20991129234731}
n = 10009202107
M = 50
#a = 10, b = 15, modified_coeff = [a**2, 2*a*b, b**2 - N]
sieve_poly = SievePolynomial([100, 1600, -10009195707], 10, 80)
assert sieve_poly.eval(10) == -10009169707
assert sieve_poly.eval(5) == -10009185207
idx_1000, idx_5000, factor_base = _generate_factor_base(2000, n)
assert idx_1000 == 82
assert [factor_base[i].prime for i in range(15)] == [2, 3, 7, 11, 17, 19, 29, 31,\
43, 59, 61, 67, 71, 73, 79]
assert [factor_base[i].tmem_p for i in range(15)] == [1, 1, 3, 5, 3, 6, 6, 14, 1,\
16, 24, 22, 18, 22, 15]
assert [factor_base[i].log_p for i in range(5)] == [710, 1125, 1993, 2455, 2901]
g, B = _initialize_first_polynomial(n, M, factor_base, idx_1000, idx_5000, seed=0)
assert g.a == 1133107
assert g.b == 682543
assert B == [272889, 409654]
assert [factor_base[i].soln1 for i in range(15)] == [0, 0, 3, 7, 13, 0, 8, 19,\
9, 43, 27, 25, 63, 29, 19]
assert [factor_base[i].soln2 for i in range(15)] == [0, 1, 1, 3, 12, 16, 15, 6,\
15, 1, 56, 55, 61, 58, 16]
assert [factor_base[i].a_inv for i in range(15)] == [1, 1, 5, 7, 3, 5, 26, 6,\
40, 5, 21, 45, 4, 1, 8]
assert [factor_base[i].b_ainv for i in range(5)] == [[0, 0], [0, 2], [3, 0],\
[3, 9], [13, 13]]
g_1 = _initialize_ith_poly(n, factor_base, 1, g, B)
assert g_1.a == 1133107
assert g_1.b == 136765
sieve_array = _gen_sieve_array(M, factor_base)
assert sieve_array[0:5] == [8424, 13603, 1835, 5335, 710]
assert _check_smoothness(9645, factor_base) == (5, False)
assert _check_smoothness(210313, factor_base)[0][0:15] == [0, 0, 0, 0, 0, 0, 0,\
0, 0, 1, 0, 0, 1, 0, 1]
assert _check_smoothness(210313, factor_base)[1] == True
partial_relations: dict[int, tuple[int, int]] = {}
smooth_relation, partial_relation = _trial_division_stage(n, M, factor_base,\
sieve_array, sieve_poly,\
partial_relations, ERROR_TERM=25*2**10)
assert partial_relations == {8699: (440, -10009008507),
166741: (490, -10008962007),
131449: (530, -10008921207),
6653: (550, -10008899607)}
assert [smooth_relation[i][0] for i in range(5)] == [-250, -670615476700,\
-45211565844500, -231723037747200, -1811665537200]
assert [smooth_relation[i][1] for i in range(5)] == [-10009139607, 1133094251961,\
5302606761, 53804049849, 1950723889]
assert smooth_relation[0][2][0:15] == [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
assert _gauss_mod_2([[0, 0, 1], [1, 0, 1], [0, 1, 0], [0, 1, 1], [0, 1, 1]]) ==\
([[[0, 1, 1], 3], [[0, 1, 1], 4]], [True, True, True, False, False], [[0, 0, 1],\
[1, 0, 0], [0, 1, 0], [0, 1, 1], [0, 1, 1]])
N=1817
smooth_relations = [(2455024, 637, [0, 0, 0, 1]),
(-27993000, 81536, [0, 1, 0, 1]),
(11461840, 12544, [0, 0, 0, 0]),
(149, 20384, [0, 1, 0, 1]),
(-31138074, 19208, [0, 1, 0, 0])]
matrix = _build_matrix(smooth_relations)
assert matrix == [[0, 0, 0, 1], [0, 1, 0, 1], [0, 0, 0, 0], [0, 1, 0, 1], [0, 1, 0, 0]]
dependent_row, mark, gauss_matrix = _gauss_mod_2(matrix)
assert dependent_row == [[[0, 0, 0, 0], 2], [[0, 1, 0, 0], 3]]
assert mark == [True, True, False, False, True]
assert gauss_matrix == [[0, 0, 0, 1], [0, 1, 0, 0], [0, 0, 0, 0], [0, 1, 0, 0], [0, 1, 0, 1]]
factor = _find_factor(dependent_row, mark, gauss_matrix, 0, smooth_relations, N)
assert factor == 23
|
1ba1c59e8c207935315dd02af57be6d4c382bf63863bdbb34a47f454ab6b91aa | from sympy.core.containers import Tuple
from sympy.combinatorics.generators import rubik_cube_generators
from sympy.combinatorics.homomorphisms import is_isomorphic
from sympy.combinatorics.named_groups import SymmetricGroup, CyclicGroup,\
DihedralGroup, AlternatingGroup, AbelianGroup, RubikGroup
from sympy.combinatorics.perm_groups import (PermutationGroup,
_orbit_transversal, Coset, SymmetricPermutationGroup)
from sympy.combinatorics.permutations import Permutation
from sympy.combinatorics.polyhedron import tetrahedron as Tetra, cube
from sympy.combinatorics.testutil import _verify_bsgs, _verify_centralizer,\
_verify_normal_closure
from sympy.testing.pytest import skip, XFAIL, slow
rmul = Permutation.rmul
def test_has():
a = Permutation([1, 0])
G = PermutationGroup([a])
assert G.is_abelian
a = Permutation([2, 0, 1])
b = Permutation([2, 1, 0])
G = PermutationGroup([a, b])
assert not G.is_abelian
G = PermutationGroup([a])
assert G.has(a)
assert not G.has(b)
a = Permutation([2, 0, 1, 3, 4, 5])
b = Permutation([0, 2, 1, 3, 4])
assert PermutationGroup(a, b).degree == \
PermutationGroup(a, b).degree == 6
g = PermutationGroup(Permutation(0, 2, 1))
assert Tuple(1, g).has(g)
def test_generate():
a = Permutation([1, 0])
g = list(PermutationGroup([a]).generate())
assert g == [Permutation([0, 1]), Permutation([1, 0])]
assert len(list(PermutationGroup(Permutation((0, 1))).generate())) == 1
g = PermutationGroup([a]).generate(method='dimino')
assert list(g) == [Permutation([0, 1]), Permutation([1, 0])]
a = Permutation([2, 0, 1])
b = Permutation([2, 1, 0])
G = PermutationGroup([a, b])
g = G.generate()
v1 = [p.array_form for p in list(g)]
v1.sort()
assert v1 == [[0, 1, 2], [0, 2, 1], [1, 0, 2], [1, 2, 0], [2, 0,
1], [2, 1, 0]]
v2 = list(G.generate(method='dimino', af=True))
assert v1 == sorted(v2)
a = Permutation([2, 0, 1, 3, 4, 5])
b = Permutation([2, 1, 3, 4, 5, 0])
g = PermutationGroup([a, b]).generate(af=True)
assert len(list(g)) == 360
def test_order():
a = Permutation([2, 0, 1, 3, 4, 5, 6, 7, 8, 9])
b = Permutation([2, 1, 3, 4, 5, 6, 7, 8, 9, 0])
g = PermutationGroup([a, b])
assert g.order() == 1814400
assert PermutationGroup().order() == 1
def test_equality():
p_1 = Permutation(0, 1, 3)
p_2 = Permutation(0, 2, 3)
p_3 = Permutation(0, 1, 2)
p_4 = Permutation(0, 1, 3)
g_1 = PermutationGroup(p_1, p_2)
g_2 = PermutationGroup(p_3, p_4)
g_3 = PermutationGroup(p_2, p_1)
g_4 = PermutationGroup(p_1, p_2)
assert g_1 != g_2
assert g_1.generators != g_2.generators
assert g_1.equals(g_2)
assert g_1 != g_3
assert g_1.equals(g_3)
assert g_1 == g_4
def test_stabilizer():
S = SymmetricGroup(2)
H = S.stabilizer(0)
assert H.generators == [Permutation(1)]
a = Permutation([2, 0, 1, 3, 4, 5])
b = Permutation([2, 1, 3, 4, 5, 0])
G = PermutationGroup([a, b])
G0 = G.stabilizer(0)
assert G0.order() == 60
gens_cube = [[1, 3, 5, 7, 0, 2, 4, 6], [1, 3, 0, 2, 5, 7, 4, 6]]
gens = [Permutation(p) for p in gens_cube]
G = PermutationGroup(gens)
G2 = G.stabilizer(2)
assert G2.order() == 6
G2_1 = G2.stabilizer(1)
v = list(G2_1.generate(af=True))
assert v == [[0, 1, 2, 3, 4, 5, 6, 7], [3, 1, 2, 0, 7, 5, 6, 4]]
gens = (
(1, 2, 0, 4, 5, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19),
(0, 1, 2, 3, 4, 5, 19, 6, 8, 9, 10, 11, 12, 13, 14,
15, 16, 7, 17, 18),
(0, 1, 2, 3, 4, 5, 6, 7, 9, 18, 16, 11, 12, 13, 14, 15, 8, 17, 10, 19))
gens = [Permutation(p) for p in gens]
G = PermutationGroup(gens)
G2 = G.stabilizer(2)
assert G2.order() == 181440
S = SymmetricGroup(3)
assert [G.order() for G in S.basic_stabilizers] == [6, 2]
def test_center():
# the center of the dihedral group D_n is of order 2 for even n
for i in (4, 6, 10):
D = DihedralGroup(i)
assert (D.center()).order() == 2
# the center of the dihedral group D_n is of order 1 for odd n>2
for i in (3, 5, 7):
D = DihedralGroup(i)
assert (D.center()).order() == 1
# the center of an abelian group is the group itself
for i in (2, 3, 5):
for j in (1, 5, 7):
for k in (1, 1, 11):
G = AbelianGroup(i, j, k)
assert G.center().is_subgroup(G)
# the center of a nonabelian simple group is trivial
for i in(1, 5, 9):
A = AlternatingGroup(i)
assert (A.center()).order() == 1
# brute-force verifications
D = DihedralGroup(5)
A = AlternatingGroup(3)
C = CyclicGroup(4)
G.is_subgroup(D*A*C)
assert _verify_centralizer(G, G)
def test_centralizer():
# the centralizer of the trivial group is the entire group
S = SymmetricGroup(2)
assert S.centralizer(Permutation(list(range(2)))).is_subgroup(S)
A = AlternatingGroup(5)
assert A.centralizer(Permutation(list(range(5)))).is_subgroup(A)
# a centralizer in the trivial group is the trivial group itself
triv = PermutationGroup([Permutation([0, 1, 2, 3])])
D = DihedralGroup(4)
assert triv.centralizer(D).is_subgroup(triv)
# brute-force verifications for centralizers of groups
for i in (4, 5, 6):
S = SymmetricGroup(i)
A = AlternatingGroup(i)
C = CyclicGroup(i)
D = DihedralGroup(i)
for gp in (S, A, C, D):
for gp2 in (S, A, C, D):
if not gp2.is_subgroup(gp):
assert _verify_centralizer(gp, gp2)
# verify the centralizer for all elements of several groups
S = SymmetricGroup(5)
elements = list(S.generate_dimino())
for element in elements:
assert _verify_centralizer(S, element)
A = AlternatingGroup(5)
elements = list(A.generate_dimino())
for element in elements:
assert _verify_centralizer(A, element)
D = DihedralGroup(7)
elements = list(D.generate_dimino())
for element in elements:
assert _verify_centralizer(D, element)
# verify centralizers of small groups within small groups
small = []
for i in (1, 2, 3):
small.append(SymmetricGroup(i))
small.append(AlternatingGroup(i))
small.append(DihedralGroup(i))
small.append(CyclicGroup(i))
for gp in small:
for gp2 in small:
if gp.degree == gp2.degree:
assert _verify_centralizer(gp, gp2)
def test_coset_rank():
gens_cube = [[1, 3, 5, 7, 0, 2, 4, 6], [1, 3, 0, 2, 5, 7, 4, 6]]
gens = [Permutation(p) for p in gens_cube]
G = PermutationGroup(gens)
i = 0
for h in G.generate(af=True):
rk = G.coset_rank(h)
assert rk == i
h1 = G.coset_unrank(rk, af=True)
assert h == h1
i += 1
assert G.coset_unrank(48) == None
assert G.coset_unrank(G.coset_rank(gens[0])) == gens[0]
def test_coset_factor():
a = Permutation([0, 2, 1])
G = PermutationGroup([a])
c = Permutation([2, 1, 0])
assert not G.coset_factor(c)
assert G.coset_rank(c) is None
a = Permutation([2, 0, 1, 3, 4, 5])
b = Permutation([2, 1, 3, 4, 5, 0])
g = PermutationGroup([a, b])
assert g.order() == 360
d = Permutation([1, 0, 2, 3, 4, 5])
assert not g.coset_factor(d.array_form)
assert not g.contains(d)
assert Permutation(2) in G
c = Permutation([1, 0, 2, 3, 5, 4])
v = g.coset_factor(c, True)
tr = g.basic_transversals
p = Permutation.rmul(*[tr[i][v[i]] for i in range(len(g.base))])
assert p == c
v = g.coset_factor(c)
p = Permutation.rmul(*v)
assert p == c
assert g.contains(c)
G = PermutationGroup([Permutation([2, 1, 0])])
p = Permutation([1, 0, 2])
assert G.coset_factor(p) == []
def test_orbits():
a = Permutation([2, 0, 1])
b = Permutation([2, 1, 0])
g = PermutationGroup([a, b])
assert g.orbit(0) == {0, 1, 2}
assert g.orbits() == [{0, 1, 2}]
assert g.is_transitive() and g.is_transitive(strict=False)
assert g.orbit_transversal(0) == \
[Permutation(
[0, 1, 2]), Permutation([2, 0, 1]), Permutation([1, 2, 0])]
assert g.orbit_transversal(0, True) == \
[(0, Permutation([0, 1, 2])), (2, Permutation([2, 0, 1])),
(1, Permutation([1, 2, 0]))]
G = DihedralGroup(6)
transversal, slps = _orbit_transversal(G.degree, G.generators, 0, True, slp=True)
for i, t in transversal:
slp = slps[i]
w = G.identity
for s in slp:
w = G.generators[s]*w
assert w == t
a = Permutation(list(range(1, 100)) + [0])
G = PermutationGroup([a])
assert [min(o) for o in G.orbits()] == [0]
G = PermutationGroup(rubik_cube_generators())
assert [min(o) for o in G.orbits()] == [0, 1]
assert not G.is_transitive() and not G.is_transitive(strict=False)
G = PermutationGroup([Permutation(0, 1, 3), Permutation(3)(0, 1)])
assert not G.is_transitive() and G.is_transitive(strict=False)
assert PermutationGroup(
Permutation(3)).is_transitive(strict=False) is False
def test_is_normal():
gens_s5 = [Permutation(p) for p in [[1, 2, 3, 4, 0], [2, 1, 4, 0, 3]]]
G1 = PermutationGroup(gens_s5)
assert G1.order() == 120
gens_a5 = [Permutation(p) for p in [[1, 0, 3, 2, 4], [2, 1, 4, 3, 0]]]
G2 = PermutationGroup(gens_a5)
assert G2.order() == 60
assert G2.is_normal(G1)
gens3 = [Permutation(p) for p in [[2, 1, 3, 0, 4], [1, 2, 0, 3, 4]]]
G3 = PermutationGroup(gens3)
assert not G3.is_normal(G1)
assert G3.order() == 12
G4 = G1.normal_closure(G3.generators)
assert G4.order() == 60
gens5 = [Permutation(p) for p in [[1, 2, 3, 0, 4], [1, 2, 0, 3, 4]]]
G5 = PermutationGroup(gens5)
assert G5.order() == 24
G6 = G1.normal_closure(G5.generators)
assert G6.order() == 120
assert G1.is_subgroup(G6)
assert not G1.is_subgroup(G4)
assert G2.is_subgroup(G4)
I5 = PermutationGroup(Permutation(4))
assert I5.is_normal(G5)
assert I5.is_normal(G6, strict=False)
p1 = Permutation([1, 0, 2, 3, 4])
p2 = Permutation([0, 1, 2, 4, 3])
p3 = Permutation([3, 4, 2, 1, 0])
id_ = Permutation([0, 1, 2, 3, 4])
H = PermutationGroup([p1, p3])
H_n1 = PermutationGroup([p1, p2])
H_n2_1 = PermutationGroup(p1)
H_n2_2 = PermutationGroup(p2)
H_id = PermutationGroup(id_)
assert H_n1.is_normal(H)
assert H_n2_1.is_normal(H_n1)
assert H_n2_2.is_normal(H_n1)
assert H_id.is_normal(H_n2_1)
assert H_id.is_normal(H_n1)
assert H_id.is_normal(H)
assert not H_n2_1.is_normal(H)
assert not H_n2_2.is_normal(H)
def test_eq():
a = [[1, 2, 0, 3, 4, 5], [1, 0, 2, 3, 4, 5], [2, 1, 0, 3, 4, 5], [
1, 2, 0, 3, 4, 5]]
a = [Permutation(p) for p in a + [[1, 2, 3, 4, 5, 0]]]
g = Permutation([1, 2, 3, 4, 5, 0])
G1, G2, G3 = [PermutationGroup(x) for x in [a[:2], a[2:4], [g, g**2]]]
assert G1.order() == G2.order() == G3.order() == 6
assert G1.is_subgroup(G2)
assert not G1.is_subgroup(G3)
G4 = PermutationGroup([Permutation([0, 1])])
assert not G1.is_subgroup(G4)
assert G4.is_subgroup(G1, 0)
assert PermutationGroup(g, g).is_subgroup(PermutationGroup(g))
assert SymmetricGroup(3).is_subgroup(SymmetricGroup(4), 0)
assert SymmetricGroup(3).is_subgroup(SymmetricGroup(3)*CyclicGroup(5), 0)
assert not CyclicGroup(5).is_subgroup(SymmetricGroup(3)*CyclicGroup(5), 0)
assert CyclicGroup(3).is_subgroup(SymmetricGroup(3)*CyclicGroup(5), 0)
def test_derived_subgroup():
a = Permutation([1, 0, 2, 4, 3])
b = Permutation([0, 1, 3, 2, 4])
G = PermutationGroup([a, b])
C = G.derived_subgroup()
assert C.order() == 3
assert C.is_normal(G)
assert C.is_subgroup(G, 0)
assert not G.is_subgroup(C, 0)
gens_cube = [[1, 3, 5, 7, 0, 2, 4, 6], [1, 3, 0, 2, 5, 7, 4, 6]]
gens = [Permutation(p) for p in gens_cube]
G = PermutationGroup(gens)
C = G.derived_subgroup()
assert C.order() == 12
def test_is_solvable():
a = Permutation([1, 2, 0])
b = Permutation([1, 0, 2])
G = PermutationGroup([a, b])
assert G.is_solvable
G = PermutationGroup([a])
assert G.is_solvable
a = Permutation([1, 2, 3, 4, 0])
b = Permutation([1, 0, 2, 3, 4])
G = PermutationGroup([a, b])
assert not G.is_solvable
P = SymmetricGroup(10)
S = P.sylow_subgroup(3)
assert S.is_solvable
def test_rubik1():
gens = rubik_cube_generators()
gens1 = [gens[-1]] + [p**2 for p in gens[1:]]
G1 = PermutationGroup(gens1)
assert G1.order() == 19508428800
gens2 = [p**2 for p in gens]
G2 = PermutationGroup(gens2)
assert G2.order() == 663552
assert G2.is_subgroup(G1, 0)
C1 = G1.derived_subgroup()
assert C1.order() == 4877107200
assert C1.is_subgroup(G1, 0)
assert not G2.is_subgroup(C1, 0)
G = RubikGroup(2)
assert G.order() == 3674160
@XFAIL
def test_rubik():
skip('takes too much time')
G = PermutationGroup(rubik_cube_generators())
assert G.order() == 43252003274489856000
G1 = PermutationGroup(G[:3])
assert G1.order() == 170659735142400
assert not G1.is_normal(G)
G2 = G.normal_closure(G1.generators)
assert G2.is_subgroup(G)
def test_direct_product():
C = CyclicGroup(4)
D = DihedralGroup(4)
G = C*C*C
assert G.order() == 64
assert G.degree == 12
assert len(G.orbits()) == 3
assert G.is_abelian is True
H = D*C
assert H.order() == 32
assert H.is_abelian is False
def test_orbit_rep():
G = DihedralGroup(6)
assert G.orbit_rep(1, 3) in [Permutation([2, 3, 4, 5, 0, 1]),
Permutation([4, 3, 2, 1, 0, 5])]
H = CyclicGroup(4)*G
assert H.orbit_rep(1, 5) is False
def test_schreier_vector():
G = CyclicGroup(50)
v = [0]*50
v[23] = -1
assert G.schreier_vector(23) == v
H = DihedralGroup(8)
assert H.schreier_vector(2) == [0, 1, -1, 0, 0, 1, 0, 0]
L = SymmetricGroup(4)
assert L.schreier_vector(1) == [1, -1, 0, 0]
def test_random_pr():
D = DihedralGroup(6)
r = 11
n = 3
_random_prec_n = {}
_random_prec_n[0] = {'s': 7, 't': 3, 'x': 2, 'e': -1}
_random_prec_n[1] = {'s': 5, 't': 5, 'x': 1, 'e': -1}
_random_prec_n[2] = {'s': 3, 't': 4, 'x': 2, 'e': 1}
D._random_pr_init(r, n, _random_prec_n=_random_prec_n)
assert D._random_gens[11] == [0, 1, 2, 3, 4, 5]
_random_prec = {'s': 2, 't': 9, 'x': 1, 'e': -1}
assert D.random_pr(_random_prec=_random_prec) == \
Permutation([0, 5, 4, 3, 2, 1])
def test_is_alt_sym():
G = DihedralGroup(10)
assert G.is_alt_sym() is False
assert G._eval_is_alt_sym_naive() is False
assert G._eval_is_alt_sym_naive(only_alt=True) is False
assert G._eval_is_alt_sym_naive(only_sym=True) is False
S = SymmetricGroup(10)
assert S._eval_is_alt_sym_naive() is True
assert S._eval_is_alt_sym_naive(only_alt=True) is False
assert S._eval_is_alt_sym_naive(only_sym=True) is True
N_eps = 10
_random_prec = {'N_eps': N_eps,
0: Permutation([[2], [1, 4], [0, 6, 7, 8, 9, 3, 5]]),
1: Permutation([[1, 8, 7, 6, 3, 5, 2, 9], [0, 4]]),
2: Permutation([[5, 8], [4, 7], [0, 1, 2, 3, 6, 9]]),
3: Permutation([[3], [0, 8, 2, 7, 4, 1, 6, 9, 5]]),
4: Permutation([[8], [4, 7, 9], [3, 6], [0, 5, 1, 2]]),
5: Permutation([[6], [0, 2, 4, 5, 1, 8, 3, 9, 7]]),
6: Permutation([[6, 9, 8], [4, 5], [1, 3, 7], [0, 2]]),
7: Permutation([[4], [0, 2, 9, 1, 3, 8, 6, 5, 7]]),
8: Permutation([[1, 5, 6, 3], [0, 2, 7, 8, 4, 9]]),
9: Permutation([[8], [6, 7], [2, 3, 4, 5], [0, 1, 9]])}
assert S.is_alt_sym(_random_prec=_random_prec) is True
A = AlternatingGroup(10)
assert A._eval_is_alt_sym_naive() is True
assert A._eval_is_alt_sym_naive(only_alt=True) is True
assert A._eval_is_alt_sym_naive(only_sym=True) is False
_random_prec = {'N_eps': N_eps,
0: Permutation([[1, 6, 4, 2, 7, 8, 5, 9, 3], [0]]),
1: Permutation([[1], [0, 5, 8, 4, 9, 2, 3, 6, 7]]),
2: Permutation([[1, 9, 8, 3, 2, 5], [0, 6, 7, 4]]),
3: Permutation([[6, 8, 9], [4, 5], [1, 3, 7, 2], [0]]),
4: Permutation([[8], [5], [4], [2, 6, 9, 3], [1], [0, 7]]),
5: Permutation([[3, 6], [0, 8, 1, 7, 5, 9, 4, 2]]),
6: Permutation([[5], [2, 9], [1, 8, 3], [0, 4, 7, 6]]),
7: Permutation([[1, 8, 4, 7, 2, 3], [0, 6, 9, 5]]),
8: Permutation([[5, 8, 7], [3], [1, 4, 2, 6], [0, 9]]),
9: Permutation([[4, 9, 6], [3, 8], [1, 2], [0, 5, 7]])}
assert A.is_alt_sym(_random_prec=_random_prec) is False
G = PermutationGroup(
Permutation(1, 3, size=8)(0, 2, 4, 6),
Permutation(5, 7, size=8)(0, 2, 4, 6))
assert G.is_alt_sym() is False
# Tests for monte-carlo c_n parameter setting, and which guarantees
# to give False.
G = DihedralGroup(10)
assert G._eval_is_alt_sym_monte_carlo() is False
G = DihedralGroup(20)
assert G._eval_is_alt_sym_monte_carlo() is False
# A dry-running test to check if it looks up for the updated cache.
G = DihedralGroup(6)
G.is_alt_sym()
assert G.is_alt_sym() == False
def test_minimal_block():
D = DihedralGroup(6)
block_system = D.minimal_block([0, 3])
for i in range(3):
assert block_system[i] == block_system[i + 3]
S = SymmetricGroup(6)
assert S.minimal_block([0, 1]) == [0, 0, 0, 0, 0, 0]
assert Tetra.pgroup.minimal_block([0, 1]) == [0, 0, 0, 0]
P1 = PermutationGroup(Permutation(1, 5)(2, 4), Permutation(0, 1, 2, 3, 4, 5))
P2 = PermutationGroup(Permutation(0, 1, 2, 3, 4, 5), Permutation(1, 5)(2, 4))
assert P1.minimal_block([0, 2]) == [0, 1, 0, 1, 0, 1]
assert P2.minimal_block([0, 2]) == [0, 1, 0, 1, 0, 1]
def test_minimal_blocks():
P = PermutationGroup(Permutation(1, 5)(2, 4), Permutation(0, 1, 2, 3, 4, 5))
assert P.minimal_blocks() == [[0, 1, 0, 1, 0, 1], [0, 1, 2, 0, 1, 2]]
P = SymmetricGroup(5)
assert P.minimal_blocks() == [[0]*5]
P = PermutationGroup(Permutation(0, 3))
assert P.minimal_blocks() == False
def test_max_div():
S = SymmetricGroup(10)
assert S.max_div == 5
def test_is_primitive():
S = SymmetricGroup(5)
assert S.is_primitive() is True
C = CyclicGroup(7)
assert C.is_primitive() is True
a = Permutation(0, 1, 2, size=6)
b = Permutation(3, 4, 5, size=6)
G = PermutationGroup(a, b)
assert G.is_primitive() is False
def test_random_stab():
S = SymmetricGroup(5)
_random_el = Permutation([1, 3, 2, 0, 4])
_random_prec = {'rand': _random_el}
g = S.random_stab(2, _random_prec=_random_prec)
assert g == Permutation([1, 3, 2, 0, 4])
h = S.random_stab(1)
assert h(1) == 1
def test_transitivity_degree():
perm = Permutation([1, 2, 0])
C = PermutationGroup([perm])
assert C.transitivity_degree == 1
gen1 = Permutation([1, 2, 0, 3, 4])
gen2 = Permutation([1, 2, 3, 4, 0])
# alternating group of degree 5
Alt = PermutationGroup([gen1, gen2])
assert Alt.transitivity_degree == 3
def test_schreier_sims_random():
assert sorted(Tetra.pgroup.base) == [0, 1]
S = SymmetricGroup(3)
base = [0, 1]
strong_gens = [Permutation([1, 2, 0]), Permutation([1, 0, 2]),
Permutation([0, 2, 1])]
assert S.schreier_sims_random(base, strong_gens, 5) == (base, strong_gens)
D = DihedralGroup(3)
_random_prec = {'g': [Permutation([2, 0, 1]), Permutation([1, 2, 0]),
Permutation([1, 0, 2])]}
base = [0, 1]
strong_gens = [Permutation([1, 2, 0]), Permutation([2, 1, 0]),
Permutation([0, 2, 1])]
assert D.schreier_sims_random([], D.generators, 2,
_random_prec=_random_prec) == (base, strong_gens)
def test_baseswap():
S = SymmetricGroup(4)
S.schreier_sims()
base = S.base
strong_gens = S.strong_gens
assert base == [0, 1, 2]
deterministic = S.baseswap(base, strong_gens, 1, randomized=False)
randomized = S.baseswap(base, strong_gens, 1)
assert deterministic[0] == [0, 2, 1]
assert _verify_bsgs(S, deterministic[0], deterministic[1]) is True
assert randomized[0] == [0, 2, 1]
assert _verify_bsgs(S, randomized[0], randomized[1]) is True
def test_schreier_sims_incremental():
identity = Permutation([0, 1, 2, 3, 4])
TrivialGroup = PermutationGroup([identity])
base, strong_gens = TrivialGroup.schreier_sims_incremental(base=[0, 1, 2])
assert _verify_bsgs(TrivialGroup, base, strong_gens) is True
S = SymmetricGroup(5)
base, strong_gens = S.schreier_sims_incremental(base=[0, 1, 2])
assert _verify_bsgs(S, base, strong_gens) is True
D = DihedralGroup(2)
base, strong_gens = D.schreier_sims_incremental(base=[1])
assert _verify_bsgs(D, base, strong_gens) is True
A = AlternatingGroup(7)
gens = A.generators[:]
gen0 = gens[0]
gen1 = gens[1]
gen1 = rmul(gen1, ~gen0)
gen0 = rmul(gen0, gen1)
gen1 = rmul(gen0, gen1)
base, strong_gens = A.schreier_sims_incremental(base=[0, 1], gens=gens)
assert _verify_bsgs(A, base, strong_gens) is True
C = CyclicGroup(11)
gen = C.generators[0]
base, strong_gens = C.schreier_sims_incremental(gens=[gen**3])
assert _verify_bsgs(C, base, strong_gens) is True
def _subgroup_search(i, j, k):
prop_true = lambda x: True
prop_fix_points = lambda x: [x(point) for point in points] == points
prop_comm_g = lambda x: rmul(x, g) == rmul(g, x)
prop_even = lambda x: x.is_even
for i in range(i, j, k):
S = SymmetricGroup(i)
A = AlternatingGroup(i)
C = CyclicGroup(i)
Sym = S.subgroup_search(prop_true)
assert Sym.is_subgroup(S)
Alt = S.subgroup_search(prop_even)
assert Alt.is_subgroup(A)
Sym = S.subgroup_search(prop_true, init_subgroup=C)
assert Sym.is_subgroup(S)
points = [7]
assert S.stabilizer(7).is_subgroup(S.subgroup_search(prop_fix_points))
points = [3, 4]
assert S.stabilizer(3).stabilizer(4).is_subgroup(
S.subgroup_search(prop_fix_points))
points = [3, 5]
fix35 = A.subgroup_search(prop_fix_points)
points = [5]
fix5 = A.subgroup_search(prop_fix_points)
assert A.subgroup_search(prop_fix_points, init_subgroup=fix35
).is_subgroup(fix5)
base, strong_gens = A.schreier_sims_incremental()
g = A.generators[0]
comm_g = \
A.subgroup_search(prop_comm_g, base=base, strong_gens=strong_gens)
assert _verify_bsgs(comm_g, base, comm_g.generators) is True
assert [prop_comm_g(gen) is True for gen in comm_g.generators]
def test_subgroup_search():
_subgroup_search(10, 15, 2)
@XFAIL
def test_subgroup_search2():
skip('takes too much time')
_subgroup_search(16, 17, 1)
def test_normal_closure():
# the normal closure of the trivial group is trivial
S = SymmetricGroup(3)
identity = Permutation([0, 1, 2])
closure = S.normal_closure(identity)
assert closure.is_trivial
# the normal closure of the entire group is the entire group
A = AlternatingGroup(4)
assert A.normal_closure(A).is_subgroup(A)
# brute-force verifications for subgroups
for i in (3, 4, 5):
S = SymmetricGroup(i)
A = AlternatingGroup(i)
D = DihedralGroup(i)
C = CyclicGroup(i)
for gp in (A, D, C):
assert _verify_normal_closure(S, gp)
# brute-force verifications for all elements of a group
S = SymmetricGroup(5)
elements = list(S.generate_dimino())
for element in elements:
assert _verify_normal_closure(S, element)
# small groups
small = []
for i in (1, 2, 3):
small.append(SymmetricGroup(i))
small.append(AlternatingGroup(i))
small.append(DihedralGroup(i))
small.append(CyclicGroup(i))
for gp in small:
for gp2 in small:
if gp2.is_subgroup(gp, 0) and gp2.degree == gp.degree:
assert _verify_normal_closure(gp, gp2)
def test_derived_series():
# the derived series of the trivial group consists only of the trivial group
triv = PermutationGroup([Permutation([0, 1, 2])])
assert triv.derived_series()[0].is_subgroup(triv)
# the derived series for a simple group consists only of the group itself
for i in (5, 6, 7):
A = AlternatingGroup(i)
assert A.derived_series()[0].is_subgroup(A)
# the derived series for S_4 is S_4 > A_4 > K_4 > triv
S = SymmetricGroup(4)
series = S.derived_series()
assert series[1].is_subgroup(AlternatingGroup(4))
assert series[2].is_subgroup(DihedralGroup(2))
assert series[3].is_trivial
def test_lower_central_series():
# the lower central series of the trivial group consists of the trivial
# group
triv = PermutationGroup([Permutation([0, 1, 2])])
assert triv.lower_central_series()[0].is_subgroup(triv)
# the lower central series of a simple group consists of the group itself
for i in (5, 6, 7):
A = AlternatingGroup(i)
assert A.lower_central_series()[0].is_subgroup(A)
# GAP-verified example
S = SymmetricGroup(6)
series = S.lower_central_series()
assert len(series) == 2
assert series[1].is_subgroup(AlternatingGroup(6))
def test_commutator():
# the commutator of the trivial group and the trivial group is trivial
S = SymmetricGroup(3)
triv = PermutationGroup([Permutation([0, 1, 2])])
assert S.commutator(triv, triv).is_subgroup(triv)
# the commutator of the trivial group and any other group is again trivial
A = AlternatingGroup(3)
assert S.commutator(triv, A).is_subgroup(triv)
# the commutator is commutative
for i in (3, 4, 5):
S = SymmetricGroup(i)
A = AlternatingGroup(i)
D = DihedralGroup(i)
assert S.commutator(A, D).is_subgroup(S.commutator(D, A))
# the commutator of an abelian group is trivial
S = SymmetricGroup(7)
A1 = AbelianGroup(2, 5)
A2 = AbelianGroup(3, 4)
triv = PermutationGroup([Permutation([0, 1, 2, 3, 4, 5, 6])])
assert S.commutator(A1, A1).is_subgroup(triv)
assert S.commutator(A2, A2).is_subgroup(triv)
# examples calculated by hand
S = SymmetricGroup(3)
A = AlternatingGroup(3)
assert S.commutator(A, S).is_subgroup(A)
def test_is_nilpotent():
# every abelian group is nilpotent
for i in (1, 2, 3):
C = CyclicGroup(i)
Ab = AbelianGroup(i, i + 2)
assert C.is_nilpotent
assert Ab.is_nilpotent
Ab = AbelianGroup(5, 7, 10)
assert Ab.is_nilpotent
# A_5 is not solvable and thus not nilpotent
assert AlternatingGroup(5).is_nilpotent is False
def test_is_trivial():
for i in range(5):
triv = PermutationGroup([Permutation(list(range(i)))])
assert triv.is_trivial
def test_pointwise_stabilizer():
S = SymmetricGroup(2)
stab = S.pointwise_stabilizer([0])
assert stab.generators == [Permutation(1)]
S = SymmetricGroup(5)
points = []
stab = S
for point in (2, 0, 3, 4, 1):
stab = stab.stabilizer(point)
points.append(point)
assert S.pointwise_stabilizer(points).is_subgroup(stab)
def test_make_perm():
assert cube.pgroup.make_perm(5, seed=list(range(5))) == \
Permutation([4, 7, 6, 5, 0, 3, 2, 1])
assert cube.pgroup.make_perm(7, seed=list(range(7))) == \
Permutation([6, 7, 3, 2, 5, 4, 0, 1])
def test_elements():
from sympy.sets.sets import FiniteSet
p = Permutation(2, 3)
assert PermutationGroup(p).elements == {Permutation(3), Permutation(2, 3)}
assert FiniteSet(*PermutationGroup(p).elements) \
== FiniteSet(Permutation(2, 3), Permutation(3))
def test_is_group():
assert PermutationGroup(Permutation(1,2), Permutation(2,4)).is_group == True
assert SymmetricGroup(4).is_group == True
def test_PermutationGroup():
assert PermutationGroup() == PermutationGroup(Permutation())
assert (PermutationGroup() == 0) is False
def test_coset_transvesal():
G = AlternatingGroup(5)
H = PermutationGroup(Permutation(0,1,2),Permutation(1,2)(3,4))
assert G.coset_transversal(H) == \
[Permutation(4), Permutation(2, 3, 4), Permutation(2, 4, 3),
Permutation(1, 2, 4), Permutation(4)(1, 2, 3), Permutation(1, 3)(2, 4),
Permutation(0, 1, 2, 3, 4), Permutation(0, 1, 2, 4, 3),
Permutation(0, 1, 3, 2, 4), Permutation(0, 2, 4, 1, 3)]
def test_coset_table():
G = PermutationGroup(Permutation(0,1,2,3), Permutation(0,1,2),
Permutation(0,4,2,7), Permutation(5,6), Permutation(0,7));
H = PermutationGroup(Permutation(0,1,2,3), Permutation(0,7))
assert G.coset_table(H) == \
[[0, 0, 0, 0, 1, 2, 3, 3, 0, 0], [4, 5, 2, 5, 6, 0, 7, 7, 1, 1],
[5, 4, 5, 1, 0, 6, 8, 8, 6, 6], [3, 3, 3, 3, 7, 8, 0, 0, 3, 3],
[2, 1, 4, 4, 4, 4, 9, 9, 4, 4], [1, 2, 1, 2, 5, 5, 10, 10, 5, 5],
[6, 6, 6, 6, 2, 1, 11, 11, 2, 2], [9, 10, 8, 10, 11, 3, 1, 1, 7, 7],
[10, 9, 10, 7, 3, 11, 2, 2, 11, 11], [8, 7, 9, 9, 9, 9, 4, 4, 9, 9],
[7, 8, 7, 8, 10, 10, 5, 5, 10, 10], [11, 11, 11, 11, 8, 7, 6, 6, 8, 8]]
def test_subgroup():
G = PermutationGroup(Permutation(0,1,2), Permutation(0,2,3))
H = G.subgroup([Permutation(0,1,3)])
assert H.is_subgroup(G)
def test_generator_product():
G = SymmetricGroup(5)
p = Permutation(0, 2, 3)(1, 4)
gens = G.generator_product(p)
assert all(g in G.strong_gens for g in gens)
w = G.identity
for g in gens:
w = g*w
assert w == p
def test_sylow_subgroup():
P = PermutationGroup(Permutation(1, 5)(2, 4), Permutation(0, 1, 2, 3, 4, 5))
S = P.sylow_subgroup(2)
assert S.order() == 4
P = DihedralGroup(12)
S = P.sylow_subgroup(3)
assert S.order() == 3
P = PermutationGroup(Permutation(1, 5)(2, 4), Permutation(0, 1, 2, 3, 4, 5), Permutation(0, 2))
S = P.sylow_subgroup(3)
assert S.order() == 9
S = P.sylow_subgroup(2)
assert S.order() == 8
P = SymmetricGroup(10)
S = P.sylow_subgroup(2)
assert S.order() == 256
S = P.sylow_subgroup(3)
assert S.order() == 81
S = P.sylow_subgroup(5)
assert S.order() == 25
# the length of the lower central series
# of a p-Sylow subgroup of Sym(n) grows with
# the highest exponent exp of p such
# that n >= p**exp
exp = 1
length = 0
for i in range(2, 9):
P = SymmetricGroup(i)
S = P.sylow_subgroup(2)
ls = S.lower_central_series()
if i // 2**exp > 0:
# length increases with exponent
assert len(ls) > length
length = len(ls)
exp += 1
else:
assert len(ls) == length
G = SymmetricGroup(100)
S = G.sylow_subgroup(3)
assert G.order() % S.order() == 0
assert G.order()/S.order() % 3 > 0
G = AlternatingGroup(100)
S = G.sylow_subgroup(2)
assert G.order() % S.order() == 0
assert G.order()/S.order() % 2 > 0
G = DihedralGroup(18)
S = G.sylow_subgroup(p=2)
assert S.order() == 4
G = DihedralGroup(50)
S = G.sylow_subgroup(p=2)
assert S.order() == 4
@slow
def test_presentation():
def _test(P):
G = P.presentation()
return G.order() == P.order()
def _strong_test(P):
G = P.strong_presentation()
chk = len(G.generators) == len(P.strong_gens)
return chk and G.order() == P.order()
P = PermutationGroup(Permutation(0,1,5,2)(3,7,4,6), Permutation(0,3,5,4)(1,6,2,7))
assert _test(P)
P = AlternatingGroup(5)
assert _test(P)
P = SymmetricGroup(5)
assert _test(P)
P = PermutationGroup([Permutation(0,3,1,2), Permutation(3)(0,1), Permutation(0,1)(2,3)])
assert _strong_test(P)
P = DihedralGroup(6)
assert _strong_test(P)
a = Permutation(0,1)(2,3)
b = Permutation(0,2)(3,1)
c = Permutation(4,5)
P = PermutationGroup(c, a, b)
assert _strong_test(P)
def test_polycyclic():
a = Permutation([0, 1, 2])
b = Permutation([2, 1, 0])
G = PermutationGroup([a, b])
assert G.is_polycyclic == True
a = Permutation([1, 2, 3, 4, 0])
b = Permutation([1, 0, 2, 3, 4])
G = PermutationGroup([a, b])
assert G.is_polycyclic == False
def test_elementary():
a = Permutation([1, 5, 2, 0, 3, 6, 4])
G = PermutationGroup([a])
assert G.is_elementary(7) == False
a = Permutation(0, 1)(2, 3)
b = Permutation(0, 2)(3, 1)
G = PermutationGroup([a, b])
assert G.is_elementary(2) == True
c = Permutation(4, 5, 6)
G = PermutationGroup([a, b, c])
assert G.is_elementary(2) == False
G = SymmetricGroup(4).sylow_subgroup(2)
assert G.is_elementary(2) == False
H = AlternatingGroup(4).sylow_subgroup(2)
assert H.is_elementary(2) == True
def test_perfect():
G = AlternatingGroup(3)
assert G.is_perfect == False
G = AlternatingGroup(5)
assert G.is_perfect == True
def test_index():
G = PermutationGroup(Permutation(0,1,2), Permutation(0,2,3))
H = G.subgroup([Permutation(0,1,3)])
assert G.index(H) == 4
def test_cyclic():
G = SymmetricGroup(2)
assert G.is_cyclic
G = AbelianGroup(3, 7)
assert G.is_cyclic
G = AbelianGroup(7, 7)
assert not G.is_cyclic
G = AlternatingGroup(3)
assert G.is_cyclic
G = AlternatingGroup(4)
assert not G.is_cyclic
# Order less than 6
G = PermutationGroup(Permutation(0, 1, 2), Permutation(0, 2, 1))
assert G.is_cyclic
G = PermutationGroup(
Permutation(0, 1, 2, 3),
Permutation(0, 2)(1, 3)
)
assert G.is_cyclic
G = PermutationGroup(
Permutation(3),
Permutation(0, 1)(2, 3),
Permutation(0, 2)(1, 3),
Permutation(0, 3)(1, 2)
)
assert G.is_cyclic is False
# Order 15
G = PermutationGroup(
Permutation(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14),
Permutation(0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13)
)
assert G.is_cyclic
# Distinct prime orders
assert PermutationGroup._distinct_primes_lemma([3, 5]) is True
assert PermutationGroup._distinct_primes_lemma([5, 7]) is True
assert PermutationGroup._distinct_primes_lemma([2, 3]) is None
assert PermutationGroup._distinct_primes_lemma([3, 5, 7]) is None
assert PermutationGroup._distinct_primes_lemma([5, 7, 13]) is True
G = PermutationGroup(
Permutation(0, 1, 2, 3),
Permutation(0, 2)(1, 3))
assert G.is_cyclic
assert G._is_abelian
def test_dihedral():
G = SymmetricGroup(2)
assert G.is_dihedral
G = SymmetricGroup(3)
assert G.is_dihedral
G = AbelianGroup(2, 2)
assert G.is_dihedral
G = CyclicGroup(4)
assert not G.is_dihedral
G = AbelianGroup(3, 5)
assert not G.is_dihedral
G = AbelianGroup(2)
assert G.is_dihedral
G = AbelianGroup(6)
assert not G.is_dihedral
# D6, generated by two adjacent flips
G = PermutationGroup(
Permutation(1, 5)(2, 4),
Permutation(0, 1)(3, 4)(2, 5))
assert G.is_dihedral
# D7, generated by a flip and a rotation
G = PermutationGroup(
Permutation(1, 6)(2, 5)(3, 4),
Permutation(0, 1, 2, 3, 4, 5, 6))
assert G.is_dihedral
# S4, presented by three generators, fails due to having exactly 9
# elements of order 2:
G = PermutationGroup(
Permutation(0, 1), Permutation(0, 2),
Permutation(0, 3))
assert not G.is_dihedral
# D7, given by three generators
G = PermutationGroup(
Permutation(1, 6)(2, 5)(3, 4),
Permutation(2, 0)(3, 6)(4, 5),
Permutation(0, 1, 2, 3, 4, 5, 6))
assert G.is_dihedral
def test_abelian_invariants():
G = AbelianGroup(2, 3, 4)
assert G.abelian_invariants() == [2, 3, 4]
G=PermutationGroup([Permutation(1, 2, 3, 4), Permutation(1, 2), Permutation(5, 6)])
assert G.abelian_invariants() == [2, 2]
G = AlternatingGroup(7)
assert G.abelian_invariants() == []
G = AlternatingGroup(4)
assert G.abelian_invariants() == [3]
G = DihedralGroup(4)
assert G.abelian_invariants() == [2, 2]
G = PermutationGroup([Permutation(1, 2, 3, 4, 5, 6, 7)])
assert G.abelian_invariants() == [7]
G = DihedralGroup(12)
S = G.sylow_subgroup(3)
assert S.abelian_invariants() == [3]
G = PermutationGroup(Permutation(0, 1, 2), Permutation(0, 2, 3))
assert G.abelian_invariants() == [3]
G = PermutationGroup([Permutation(0, 1), Permutation(0, 2, 4, 6)(1, 3, 5, 7)])
assert G.abelian_invariants() == [2, 4]
G = SymmetricGroup(30)
S = G.sylow_subgroup(2)
assert S.abelian_invariants() == [2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
S = G.sylow_subgroup(3)
assert S.abelian_invariants() == [3, 3, 3, 3]
S = G.sylow_subgroup(5)
assert S.abelian_invariants() == [5, 5, 5]
def test_composition_series():
a = Permutation(1, 2, 3)
b = Permutation(1, 2)
G = PermutationGroup([a, b])
comp_series = G.composition_series()
assert comp_series == G.derived_series()
# The first group in the composition series is always the group itself and
# the last group in the series is the trivial group.
S = SymmetricGroup(4)
assert S.composition_series()[0] == S
assert len(S.composition_series()) == 5
A = AlternatingGroup(4)
assert A.composition_series()[0] == A
assert len(A.composition_series()) == 4
# the composition series for C_8 is C_8 > C_4 > C_2 > triv
G = CyclicGroup(8)
series = G.composition_series()
assert is_isomorphic(series[1], CyclicGroup(4))
assert is_isomorphic(series[2], CyclicGroup(2))
assert series[3].is_trivial
def test_is_symmetric():
a = Permutation(0, 1, 2)
b = Permutation(0, 1, size=3)
assert PermutationGroup(a, b).is_symmetric == True
a = Permutation(0, 2, 1)
b = Permutation(1, 2, size=3)
assert PermutationGroup(a, b).is_symmetric == True
a = Permutation(0, 1, 2, 3)
b = Permutation(0, 3)(1, 2)
assert PermutationGroup(a, b).is_symmetric == False
def test_conjugacy_class():
S = SymmetricGroup(4)
x = Permutation(1, 2, 3)
C = {Permutation(0, 1, 2, size = 4), Permutation(0, 1, 3),
Permutation(0, 2, 1, size = 4), Permutation(0, 2, 3),
Permutation(0, 3, 1), Permutation(0, 3, 2),
Permutation(1, 2, 3), Permutation(1, 3, 2)}
assert S.conjugacy_class(x) == C
def test_conjugacy_classes():
S = SymmetricGroup(3)
expected = [{Permutation(size = 3)},
{Permutation(0, 1, size = 3), Permutation(0, 2), Permutation(1, 2)},
{Permutation(0, 1, 2), Permutation(0, 2, 1)}]
computed = S.conjugacy_classes()
assert len(expected) == len(computed)
assert all(e in computed for e in expected)
def test_coset_class():
a = Permutation(1, 2)
b = Permutation(0, 1)
G = PermutationGroup([a, b])
#Creating right coset
rht_coset = G*a
#Checking whether it is left coset or right coset
assert rht_coset.is_right_coset
assert not rht_coset.is_left_coset
#Creating list representation of coset
list_repr = rht_coset.as_list()
expected = [Permutation(0, 2), Permutation(0, 2, 1), Permutation(1, 2), Permutation(2), Permutation(2)(0, 1), Permutation(0, 1, 2)]
for ele in list_repr:
assert ele in expected
#Creating left coset
left_coset = a*G
#Checking whether it is left coset or right coset
assert not left_coset.is_right_coset
assert left_coset.is_left_coset
#Creating list representation of Coset
list_repr = left_coset.as_list()
expected = [Permutation(2)(0, 1), Permutation(0, 1, 2), Permutation(1, 2),
Permutation(2), Permutation(0, 2), Permutation(0, 2, 1)]
for ele in list_repr:
assert ele in expected
G = PermutationGroup(Permutation(1, 2, 3, 4), Permutation(2, 3, 4))
H = PermutationGroup(Permutation(1, 2, 3, 4))
g = Permutation(1, 3)(2, 4)
rht_coset = Coset(g, H, G, dir='+')
assert rht_coset.is_right_coset
list_repr = rht_coset.as_list()
expected = [Permutation(1, 2, 3, 4), Permutation(4), Permutation(1, 3)(2, 4),
Permutation(1, 4, 3, 2)]
for ele in list_repr:
assert ele in expected
def test_symmetricpermutationgroup():
a = SymmetricPermutationGroup(5)
assert a.degree == 5
assert a.order() == 120
assert a.identity() == Permutation(4)
|
c20d77b93ba6165b562066d583f3c4afa9e15c8aeed7d5168adb046626a4a112 | from sympy.core import S, Rational
from sympy.combinatorics.schur_number import schur_partition, SchurNumber
from sympy.core.random import _randint
from sympy.testing.pytest import raises
from sympy.core.symbol import symbols
def _sum_free_test(subset):
"""
Checks if subset is sum-free(There are no x,y,z in the subset such that
x + y = z)
"""
for i in subset:
for j in subset:
assert (i + j in subset) is False
def test_schur_partition():
raises(ValueError, lambda: schur_partition(S.Infinity))
raises(ValueError, lambda: schur_partition(-1))
raises(ValueError, lambda: schur_partition(0))
assert schur_partition(2) == [[1, 2]]
random_number_generator = _randint(1000)
for _ in range(5):
n = random_number_generator(1, 1000)
result = schur_partition(n)
t = 0
numbers = []
for item in result:
_sum_free_test(item)
"""
Checks if the occurrence of all numbers is exactly one
"""
t += len(item)
for l in item:
assert (l in numbers) is False
numbers.append(l)
assert n == t
x = symbols("x")
raises(ValueError, lambda: schur_partition(x))
def test_schur_number():
first_known_schur_numbers = {1: 1, 2: 4, 3: 13, 4: 44, 5: 160}
for k in first_known_schur_numbers:
assert SchurNumber(k) == first_known_schur_numbers[k]
assert SchurNumber(S.Infinity) == S.Infinity
assert SchurNumber(0) == 0
raises(ValueError, lambda: SchurNumber(0.5))
n = symbols("n")
assert SchurNumber(n).lower_bound() == 3**n/2 - Rational(1, 2)
assert SchurNumber(8).lower_bound() == 5039
|
7177bf6d804c5f4fe7d1aa1e701bcf26e259707dfd42ced48cd4d761ce5a0d17 | from itertools import product
from sympy.concrete.summations import Sum
from sympy.core.function import (Function, diff)
from sympy.core import EulerGamma
from sympy.core.numbers import (E, I, Rational, oo, pi, zoo)
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, symbols)
from sympy.functions.combinatorial.factorials import (binomial, factorial, subfactorial)
from sympy.functions.elementary.complexes import (Abs, re, sign)
from sympy.functions.elementary.exponential import (LambertW, exp, log)
from sympy.functions.elementary.hyperbolic import (acosh, acoth, acsch, asech, atanh, sinh, tanh)
from sympy.functions.elementary.integers import (ceiling, floor, frac)
from sympy.functions.elementary.miscellaneous import (cbrt, real_root, sqrt)
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import (acos, acot, acsc, asec, asin,
atan, cos, cot, csc, sec, sin, tan)
from sympy.functions.special.bessel import (besseli, bessely, besselj, besselk)
from sympy.functions.special.error_functions import (Ei, erf, erfc, erfi, fresnelc, fresnels)
from sympy.functions.special.gamma_functions import (digamma, gamma, uppergamma)
from sympy.functions.special.hyper import meijerg
from sympy.integrals.integrals import (Integral, integrate)
from sympy.series.limits import (Limit, limit)
from sympy.simplify.simplify import (logcombine, simplify)
from sympy.simplify.hyperexpand import hyperexpand
from sympy.calculus.accumulationbounds import AccumBounds
from sympy.core.mul import Mul
from sympy.series.limits import heuristics
from sympy.series.order import Order
from sympy.testing.pytest import XFAIL, raises
from sympy.abc import x, y, z, k
n = Symbol('n', integer=True, positive=True)
def test_basic1():
assert limit(x, x, oo) is oo
assert limit(x, x, -oo) is -oo
assert limit(-x, x, oo) is -oo
assert limit(x**2, x, -oo) is oo
assert limit(-x**2, x, oo) is -oo
assert limit(x*log(x), x, 0, dir="+") == 0
assert limit(1/x, x, oo) == 0
assert limit(exp(x), x, oo) is oo
assert limit(-exp(x), x, oo) is -oo
assert limit(exp(x)/x, x, oo) is oo
assert limit(1/x - exp(-x), x, oo) == 0
assert limit(x + 1/x, x, oo) is oo
assert limit(x - x**2, x, oo) is -oo
assert limit((1 + x)**(1 + sqrt(2)), x, 0) == 1
assert limit((1 + x)**oo, x, 0) == Limit((x + 1)**oo, x, 0)
assert limit((1 + x)**oo, x, 0, dir='-') == Limit((x + 1)**oo, x, 0, dir='-')
assert limit((1 + x + y)**oo, x, 0, dir='-') == Limit((1 + x + y)**oo, x, 0, dir='-')
assert limit(y/x/log(x), x, 0) == -oo*sign(y)
assert limit(cos(x + y)/x, x, 0) == sign(cos(y))*oo
assert limit(gamma(1/x + 3), x, oo) == 2
assert limit(S.NaN, x, -oo) is S.NaN
assert limit(Order(2)*x, x, S.NaN) is S.NaN
assert limit(1/(x - 1), x, 1, dir="+") is oo
assert limit(1/(x - 1), x, 1, dir="-") is -oo
assert limit(1/(5 - x)**3, x, 5, dir="+") is -oo
assert limit(1/(5 - x)**3, x, 5, dir="-") is oo
assert limit(1/sin(x), x, pi, dir="+") is -oo
assert limit(1/sin(x), x, pi, dir="-") is oo
assert limit(1/cos(x), x, pi/2, dir="+") is -oo
assert limit(1/cos(x), x, pi/2, dir="-") is oo
assert limit(1/tan(x**3), x, (2*pi)**Rational(1, 3), dir="+") is oo
assert limit(1/tan(x**3), x, (2*pi)**Rational(1, 3), dir="-") is -oo
assert limit(1/cot(x)**3, x, (pi*Rational(3, 2)), dir="+") is -oo
assert limit(1/cot(x)**3, x, (pi*Rational(3, 2)), dir="-") is oo
assert limit(tan(x), x, oo) == AccumBounds(S.NegativeInfinity, S.Infinity)
assert limit(cot(x), x, oo) == AccumBounds(S.NegativeInfinity, S.Infinity)
assert limit(sec(x), x, oo) == AccumBounds(S.NegativeInfinity, S.Infinity)
assert limit(csc(x), x, oo) == AccumBounds(S.NegativeInfinity, S.Infinity)
# test bi-directional limits
assert limit(sin(x)/x, x, 0, dir="+-") == 1
assert limit(x**2, x, 0, dir="+-") == 0
assert limit(1/x**2, x, 0, dir="+-") is oo
# test failing bi-directional limits
assert limit(1/x, x, 0, dir="+-") is zoo
# approaching 0
# from dir="+"
assert limit(1 + 1/x, x, 0) is oo
# from dir='-'
# Add
assert limit(1 + 1/x, x, 0, dir='-') is -oo
# Pow
assert limit(x**(-2), x, 0, dir='-') is oo
assert limit(x**(-3), x, 0, dir='-') is -oo
assert limit(1/sqrt(x), x, 0, dir='-') == (-oo)*I
assert limit(x**2, x, 0, dir='-') == 0
assert limit(sqrt(x), x, 0, dir='-') == 0
assert limit(x**-pi, x, 0, dir='-') == oo/(-1)**pi
assert limit((1 + cos(x))**oo, x, 0) == Limit((cos(x) + 1)**oo, x, 0)
# test pull request 22491
assert limit(1/asin(x), x, 0, dir = '+') == oo
assert limit(1/asin(x), x, 0, dir = '-') == -oo
assert limit(1/sinh(x), x, 0, dir = '+') == oo
assert limit(1/sinh(x), x, 0, dir = '-') == -oo
assert limit(log(1/x) + 1/sin(x), x, 0, dir = '+') == oo
assert limit(log(1/x) + 1/x, x, 0, dir = '+') == oo
def test_basic2():
assert limit(x**x, x, 0, dir="+") == 1
assert limit((exp(x) - 1)/x, x, 0) == 1
assert limit(1 + 1/x, x, oo) == 1
assert limit(-exp(1/x), x, oo) == -1
assert limit(x + exp(-x), x, oo) is oo
assert limit(x + exp(-x**2), x, oo) is oo
assert limit(x + exp(-exp(x)), x, oo) is oo
assert limit(13 + 1/x - exp(-x), x, oo) == 13
def test_basic3():
assert limit(1/x, x, 0, dir="+") is oo
assert limit(1/x, x, 0, dir="-") is -oo
def test_basic4():
assert limit(2*x + y*x, x, 0) == 0
assert limit(2*x + y*x, x, 1) == 2 + y
assert limit(2*x**8 + y*x**(-3), x, -2) == 512 - y/8
assert limit(sqrt(x + 1) - sqrt(x), x, oo) == 0
assert integrate(1/(x**3 + 1), (x, 0, oo)) == 2*pi*sqrt(3)/9
def test_log():
# https://github.com/sympy/sympy/issues/21598
a, b, c = symbols('a b c', positive=True)
A = log(a/b) - (log(a) - log(b))
assert A.limit(a, oo) == 0
assert (A * c).limit(a, oo) == 0
tau, x = symbols('tau x', positive=True)
# The value of manualintegrate in the issue
expr = tau**2*((tau - 1)*(tau + 1)*log(x + 1)/(tau**2 + 1)**2 + 1/((tau**2\
+ 1)*(x + 1)) - (-2*tau*atan(x/tau) + (tau**2/2 - 1/2)*log(tau**2\
+ x**2))/(tau**2 + 1)**2)
assert limit(expr, x, oo) == pi*tau**3/(tau**2 + 1)**2
def test_piecewise():
# https://github.com/sympy/sympy/issues/18363
assert limit((real_root(x - 6, 3) + 2)/(x + 2), x, -2, '+') == Rational(1, 12)
def test_piecewise2():
func1 = 2*sqrt(x)*Piecewise(((4*x - 2)/Abs(sqrt(4 - 4*(2*x - 1)**2)), 4*x - 2\
>= 0), ((2 - 4*x)/Abs(sqrt(4 - 4*(2*x - 1)**2)), True))
func2 = Piecewise((x**2/2, x <= 0.5), (x/2 - 0.125, True))
func3 = Piecewise(((x - 9) / 5, x < -1), ((x - 9) / 5, x > 4), (sqrt(Abs(x - 3)), True))
assert limit(func1, x, 0) == 1
assert limit(func2, x, 0) == 0
assert limit(func3, x, -1) == 2
def test_basic5():
class my(Function):
@classmethod
def eval(cls, arg):
if arg is S.Infinity:
return S.NaN
assert limit(my(x), x, oo) == Limit(my(x), x, oo)
def test_issue_3885():
assert limit(x*y + x*z, z, 2) == x*y + 2*x
def test_Limit():
assert Limit(sin(x)/x, x, 0) != 1
assert Limit(sin(x)/x, x, 0).doit() == 1
assert Limit(x, x, 0, dir='+-').args == (x, x, 0, Symbol('+-'))
def test_floor():
assert limit(floor(x), x, -2, "+") == -2
assert limit(floor(x), x, -2, "-") == -3
assert limit(floor(x), x, -1, "+") == -1
assert limit(floor(x), x, -1, "-") == -2
assert limit(floor(x), x, 0, "+") == 0
assert limit(floor(x), x, 0, "-") == -1
assert limit(floor(x), x, 1, "+") == 1
assert limit(floor(x), x, 1, "-") == 0
assert limit(floor(x), x, 2, "+") == 2
assert limit(floor(x), x, 2, "-") == 1
assert limit(floor(x), x, 248, "+") == 248
assert limit(floor(x), x, 248, "-") == 247
# https://github.com/sympy/sympy/issues/14478
assert limit(x*floor(3/x)/2, x, 0, '+') == Rational(3, 2)
assert limit(floor(x + 1/2) - floor(x), x, oo) == AccumBounds(-S.Half, S(3)/2)
# test issue 9158
assert limit(floor(atan(x)), x, oo) == 1
assert limit(floor(atan(x)), x, -oo) == -2
assert limit(ceiling(atan(x)), x, oo) == 2
assert limit(ceiling(atan(x)), x, -oo) == -1
def test_floor_requires_robust_assumptions():
assert limit(floor(sin(x)), x, 0, "+") == 0
assert limit(floor(sin(x)), x, 0, "-") == -1
assert limit(floor(cos(x)), x, 0, "+") == 0
assert limit(floor(cos(x)), x, 0, "-") == 0
assert limit(floor(5 + sin(x)), x, 0, "+") == 5
assert limit(floor(5 + sin(x)), x, 0, "-") == 4
assert limit(floor(5 + cos(x)), x, 0, "+") == 5
assert limit(floor(5 + cos(x)), x, 0, "-") == 5
def test_ceiling():
assert limit(ceiling(x), x, -2, "+") == -1
assert limit(ceiling(x), x, -2, "-") == -2
assert limit(ceiling(x), x, -1, "+") == 0
assert limit(ceiling(x), x, -1, "-") == -1
assert limit(ceiling(x), x, 0, "+") == 1
assert limit(ceiling(x), x, 0, "-") == 0
assert limit(ceiling(x), x, 1, "+") == 2
assert limit(ceiling(x), x, 1, "-") == 1
assert limit(ceiling(x), x, 2, "+") == 3
assert limit(ceiling(x), x, 2, "-") == 2
assert limit(ceiling(x), x, 248, "+") == 249
assert limit(ceiling(x), x, 248, "-") == 248
# https://github.com/sympy/sympy/issues/14478
assert limit(x*ceiling(3/x)/2, x, 0, '+') == Rational(3, 2)
assert limit(ceiling(x + 1/2) - ceiling(x), x, oo) == AccumBounds(-S.Half, S(3)/2)
def test_ceiling_requires_robust_assumptions():
assert limit(ceiling(sin(x)), x, 0, "+") == 1
assert limit(ceiling(sin(x)), x, 0, "-") == 0
assert limit(ceiling(cos(x)), x, 0, "+") == 1
assert limit(ceiling(cos(x)), x, 0, "-") == 1
assert limit(ceiling(5 + sin(x)), x, 0, "+") == 6
assert limit(ceiling(5 + sin(x)), x, 0, "-") == 5
assert limit(ceiling(5 + cos(x)), x, 0, "+") == 6
assert limit(ceiling(5 + cos(x)), x, 0, "-") == 6
def test_frac():
assert limit(frac(x), x, oo) == AccumBounds(0, 1)
assert limit(frac(x)**(1/x), x, oo) == AccumBounds(0, 1)
assert limit(frac(x)**(1/x), x, -oo) == AccumBounds(1, oo)
assert limit(frac(x)**x, x, oo) == AccumBounds(0, oo) # wolfram gives (0, 1)
assert limit(frac(sin(x)), x, 0, "+") == 0
assert limit(frac(sin(x)), x, 0, "-") == 1
assert limit(frac(cos(x)), x, 0, "+-") == 1
assert limit(frac(x**2), x, 0, "+-") == 0
raises(ValueError, lambda: limit(frac(x), x, 0, '+-'))
assert limit(frac(-2*x + 1), x, 0, "+") == 1
assert limit(frac(-2*x + 1), x, 0, "-") == 0
assert limit(frac(x + S.Half), x, 0, "+-") == 1/2
assert limit(frac(1/x), x, 0) == AccumBounds(0, 1)
def test_issue_14355():
assert limit(floor(sin(x)/x), x, 0, '+') == 0
assert limit(floor(sin(x)/x), x, 0, '-') == 0
# test comment https://github.com/sympy/sympy/issues/14355#issuecomment-372121314
assert limit(floor(-tan(x)/x), x, 0, '+') == -2
assert limit(floor(-tan(x)/x), x, 0, '-') == -2
def test_atan():
x = Symbol("x", real=True)
assert limit(atan(x)*sin(1/x), x, 0) == 0
assert limit(atan(x) + sqrt(x + 1) - sqrt(x), x, oo) == pi/2
def test_set_signs():
assert limit(abs(x), x, 0) == 0
assert limit(abs(sin(x)), x, 0) == 0
assert limit(abs(cos(x)), x, 0) == 1
assert limit(abs(sin(x + 1)), x, 0) == sin(1)
# https://github.com/sympy/sympy/issues/9449
assert limit((Abs(x + y) - Abs(x - y))/(2*x), x, 0) == sign(y)
# https://github.com/sympy/sympy/issues/12398
assert limit(Abs(log(x)/x**3), x, oo) == 0
assert limit(x*(Abs(log(x)/x**3)/Abs(log(x + 1)/(x + 1)**3) - 1), x, oo) == 3
# https://github.com/sympy/sympy/issues/18501
assert limit(Abs(log(x - 1)**3 - 1), x, 1, '+') == oo
# https://github.com/sympy/sympy/issues/18997
assert limit(Abs(log(x)), x, 0) == oo
assert limit(Abs(log(Abs(x))), x, 0) == oo
# https://github.com/sympy/sympy/issues/19026
z = Symbol('z', positive=True)
assert limit(Abs(log(z) + 1)/log(z), z, oo) == 1
# https://github.com/sympy/sympy/issues/20704
assert limit(z*(Abs(1/z + y) - Abs(y - 1/z))/2, z, 0) == 0
# https://github.com/sympy/sympy/issues/21606
assert limit(cos(z)/sign(z), z, pi, '-') == -1
def test_heuristic():
x = Symbol("x", real=True)
assert heuristics(sin(1/x) + atan(x), x, 0, '+') == AccumBounds(-1, 1)
assert limit(log(2 + sqrt(atan(x))*sqrt(sin(1/x))), x, 0) == log(2)
def test_issue_3871():
z = Symbol("z", positive=True)
f = -1/z*exp(-z*x)
assert limit(f, x, oo) == 0
assert f.limit(x, oo) == 0
def test_exponential():
n = Symbol('n')
x = Symbol('x', real=True)
assert limit((1 + x/n)**n, n, oo) == exp(x)
assert limit((1 + x/(2*n))**n, n, oo) == exp(x/2)
assert limit((1 + x/(2*n + 1))**n, n, oo) == exp(x/2)
assert limit(((x - 1)/(x + 1))**x, x, oo) == exp(-2)
assert limit(1 + (1 + 1/x)**x, x, oo) == 1 + S.Exp1
assert limit((2 + 6*x)**x/(6*x)**x, x, oo) == exp(S('1/3'))
def test_exponential2():
n = Symbol('n')
assert limit((1 + x/(n + sin(n)))**n, n, oo) == exp(x)
def test_doit():
f = Integral(2 * x, x)
l = Limit(f, x, oo)
assert l.doit() is oo
def test_series_AccumBounds():
assert limit(sin(k) - sin(k + 1), k, oo) == AccumBounds(-2, 2)
assert limit(cos(k) - cos(k + 1) + 1, k, oo) == AccumBounds(-1, 3)
# not the exact bound
assert limit(sin(k) - sin(k)*cos(k), k, oo) == AccumBounds(-2, 2)
# test for issue #9934
lo = (-3 + cos(1))/2
hi = (1 + cos(1))/2
t1 = Mul(AccumBounds(lo, hi), 1/(-1 + cos(1)), evaluate=False)
assert limit(simplify(Sum(cos(n).rewrite(exp), (n, 0, k)).doit().rewrite(sin)), k, oo) == t1
t2 = Mul(AccumBounds(-1 + sin(1)/2, sin(1)/2 + 1), 1/(1 - cos(1)))
assert limit(simplify(Sum(sin(n).rewrite(exp), (n, 0, k)).doit().rewrite(sin)), k, oo) == t2
assert limit(((sin(x) + 1)/2)**x, x, oo) == AccumBounds(0, oo) # wolfram says 0
# https://github.com/sympy/sympy/issues/12312
e = 2**(-x)*(sin(x) + 1)**x
assert limit(e, x, oo) == AccumBounds(0, oo)
def test_bessel_functions_at_infinity():
# Pull Request 23844 implements limits for all bessel and modified bessel
# functions approaching infinity along any direction i.e. abs(z0) tends to oo
assert limit(besselj(1, x), x, oo) == 0
assert limit(besselj(1, x), x, -oo) == 0
assert limit(besselj(1, x), x, I*oo) == oo*I
assert limit(besselj(1, x), x, -I*oo) == -oo*I
assert limit(bessely(1, x), x, oo) == 0
assert limit(bessely(1, x), x, -oo) == 0
assert limit(bessely(1, x), x, I*oo) == -oo
assert limit(bessely(1, x), x, -I*oo) == -oo
assert limit(besseli(1, x), x, oo) == oo
assert limit(besseli(1, x), x, -oo) == -oo
assert limit(besseli(1, x), x, I*oo) == 0
assert limit(besseli(1, x), x, -I*oo) == 0
assert limit(besselk(1, x), x, oo) == 0
assert limit(besselk(1, x), x, -oo) == -oo*I
assert limit(besselk(1, x), x, I*oo) == 0
assert limit(besselk(1, x), x, -I*oo) == 0
# test issue 14874
assert limit(besselk(0, x), x, oo) == 0
@XFAIL
def test_doit2():
f = Integral(2 * x, x)
l = Limit(f, x, oo)
# limit() breaks on the contained Integral.
assert l.doit(deep=False) == l
def test_issue_2929():
assert limit((x * exp(x))/(exp(x) - 1), x, -oo) == 0
def test_issue_3792():
assert limit((1 - cos(x))/x**2, x, S.Half) == 4 - 4*cos(S.Half)
assert limit(sin(sin(x + 1) + 1), x, 0) == sin(1 + sin(1))
assert limit(abs(sin(x + 1) + 1), x, 0) == 1 + sin(1)
def test_issue_4090():
assert limit(1/(x + 3), x, 2) == Rational(1, 5)
assert limit(1/(x + pi), x, 2) == S.One/(2 + pi)
assert limit(log(x)/(x**2 + 3), x, 2) == log(2)/7
assert limit(log(x)/(x**2 + pi), x, 2) == log(2)/(4 + pi)
def test_issue_4547():
assert limit(cot(x), x, 0, dir='+') is oo
assert limit(cot(x), x, pi/2, dir='+') == 0
def test_issue_5164():
assert limit(x**0.5, x, oo) == oo**0.5 is oo
assert limit(x**0.5, x, 16) == S(16)**0.5
assert limit(x**0.5, x, 0) == 0
assert limit(x**(-0.5), x, oo) == 0
assert limit(x**(-0.5), x, 4) == S(4)**(-0.5)
def test_issue_5383():
func = (1.0 * 1 + 1.0 * x)**(1.0 * 1 / x)
assert limit(func, x, 0) == E
def test_issue_14793():
expr = ((x + S(1)/2) * log(x) - x + log(2*pi)/2 - \
log(factorial(x)) + S(1)/(12*x))*x**3
assert limit(expr, x, oo) == S(1)/360
def test_issue_5183():
# using list(...) so py.test can recalculate values
tests = list(product([x, -x],
[-1, 1],
[2, 3, S.Half, Rational(2, 3)],
['-', '+']))
results = (oo, oo, -oo, oo, -oo*I, oo, -oo*(-1)**Rational(1, 3), oo,
0, 0, 0, 0, 0, 0, 0, 0,
oo, oo, oo, -oo, oo, -oo*I, oo, -oo*(-1)**Rational(1, 3),
0, 0, 0, 0, 0, 0, 0, 0)
assert len(tests) == len(results)
for i, (args, res) in enumerate(zip(tests, results)):
y, s, e, d = args
eq = y**(s*e)
try:
assert limit(eq, x, 0, dir=d) == res
except AssertionError:
if 0: # change to 1 if you want to see the failing tests
print()
print(i, res, eq, d, limit(eq, x, 0, dir=d))
else:
assert None
def test_issue_5184():
assert limit(sin(x)/x, x, oo) == 0
assert limit(atan(x), x, oo) == pi/2
assert limit(gamma(x), x, oo) is oo
assert limit(cos(x)/x, x, oo) == 0
assert limit(gamma(x), x, S.Half) == sqrt(pi)
r = Symbol('r', real=True)
assert limit(r*sin(1/r), r, 0) == 0
def test_issue_5229():
assert limit((1 + y)**(1/y) - S.Exp1, y, 0) == 0
def test_issue_4546():
# using list(...) so py.test can recalculate values
tests = list(product([cot, tan],
[-pi/2, 0, pi/2, pi, pi*Rational(3, 2)],
['-', '+']))
results = (0, 0, -oo, oo, 0, 0, -oo, oo, 0, 0,
oo, -oo, 0, 0, oo, -oo, 0, 0, oo, -oo)
assert len(tests) == len(results)
for i, (args, res) in enumerate(zip(tests, results)):
f, l, d = args
eq = f(x)
try:
assert limit(eq, x, l, dir=d) == res
except AssertionError:
if 0: # change to 1 if you want to see the failing tests
print()
print(i, res, eq, l, d, limit(eq, x, l, dir=d))
else:
assert None
def test_issue_3934():
assert limit((1 + x**log(3))**(1/x), x, 0) == 1
assert limit((5**(1/x) + 3**(1/x))**x, x, 0) == 5
def test_calculate_series():
# NOTE
# The calculate_series method is being deprecated and is no longer responsible
# for result being returned. The mrv_leadterm function now uses simple leadterm
# calls rather than calculate_series.
# needs gruntz calculate_series to go to n = 32
assert limit(x**Rational(77, 3)/(1 + x**Rational(77, 3)), x, oo) == 1
# needs gruntz calculate_series to go to n = 128
assert limit(x**101.1/(1 + x**101.1), x, oo) == 1
def test_issue_5955():
assert limit((x**16)/(1 + x**16), x, oo) == 1
assert limit((x**100)/(1 + x**100), x, oo) == 1
assert limit((x**1885)/(1 + x**1885), x, oo) == 1
assert limit((x**1000/((x + 1)**1000 + exp(-x))), x, oo) == 1
def test_newissue():
assert limit(exp(1/sin(x))/exp(cot(x)), x, 0) == 1
def test_extended_real_line():
assert limit(x - oo, x, oo) == Limit(x - oo, x, oo)
assert limit(1/(x + sin(x)) - oo, x, 0) == Limit(1/(x + sin(x)) - oo, x, 0)
assert limit(oo/x, x, oo) == Limit(oo/x, x, oo)
assert limit(x - oo + 1/x, x, oo) == Limit(x - oo + 1/x, x, oo)
@XFAIL
def test_order_oo():
x = Symbol('x', positive=True)
assert Order(x)*oo != Order(1, x)
assert limit(oo/(x**2 - 4), x, oo) is oo
def test_issue_5436():
raises(NotImplementedError, lambda: limit(exp(x*y), x, oo))
raises(NotImplementedError, lambda: limit(exp(-x*y), x, oo))
def test_Limit_dir():
raises(TypeError, lambda: Limit(x, x, 0, dir=0))
raises(ValueError, lambda: Limit(x, x, 0, dir='0'))
def test_polynomial():
assert limit((x + 1)**1000/((x + 1)**1000 + 1), x, oo) == 1
assert limit((x + 1)**1000/((x + 1)**1000 + 1), x, -oo) == 1
def test_rational():
assert limit(1/y - (1/(y + x) + x/(y + x)/y)/z, x, oo) == (z - 1)/(y*z)
assert limit(1/y - (1/(y + x) + x/(y + x)/y)/z, x, -oo) == (z - 1)/(y*z)
def test_issue_5740():
assert limit(log(x)*z - log(2*x)*y, x, 0) == oo*sign(y - z)
def test_issue_6366():
n = Symbol('n', integer=True, positive=True)
r = (n + 1)*x**(n + 1)/(x**(n + 1) - 1) - x/(x - 1)
assert limit(r, x, 1).cancel() == n/2
def test_factorial():
f = factorial(x)
assert limit(f, x, oo) is oo
assert limit(x/f, x, oo) == 0
# see Stirling's approximation:
# https://en.wikipedia.org/wiki/Stirling's_approximation
assert limit(f/(sqrt(2*pi*x)*(x/E)**x), x, oo) == 1
assert limit(f, x, -oo) == gamma(-oo)
def test_issue_6560():
e = (5*x**3/4 - x*Rational(3, 4) + (y*(3*x**2/2 - S.Half) +
35*x**4/8 - 15*x**2/4 + Rational(3, 8))/(2*(y + 1)))
assert limit(e, y, oo) == 5*x**3/4 + 3*x**2/4 - 3*x/4 - Rational(1, 4)
@XFAIL
def test_issue_5172():
n = Symbol('n')
r = Symbol('r', positive=True)
c = Symbol('c')
p = Symbol('p', positive=True)
m = Symbol('m', negative=True)
expr = ((2*n*(n - r + 1)/(n + r*(n - r + 1)))**c +
(r - 1)*(n*(n - r + 2)/(n + r*(n - r + 1)))**c - n)/(n**c - n)
expr = expr.subs(c, c + 1)
raises(NotImplementedError, lambda: limit(expr, n, oo))
assert limit(expr.subs(c, m), n, oo) == 1
assert limit(expr.subs(c, p), n, oo).simplify() == \
(2**(p + 1) + r - 1)/(r + 1)**(p + 1)
def test_issue_7088():
a = Symbol('a')
assert limit(sqrt(x/(x + a)), x, oo) == 1
def test_branch_cuts():
assert limit(asin(I*x + 2), x, 0) == pi - asin(2)
assert limit(asin(I*x + 2), x, 0, '-') == asin(2)
assert limit(asin(I*x - 2), x, 0) == -asin(2)
assert limit(asin(I*x - 2), x, 0, '-') == -pi + asin(2)
assert limit(acos(I*x + 2), x, 0) == -acos(2)
assert limit(acos(I*x + 2), x, 0, '-') == acos(2)
assert limit(acos(I*x - 2), x, 0) == acos(-2)
assert limit(acos(I*x - 2), x, 0, '-') == 2*pi - acos(-2)
assert limit(atan(x + 2*I), x, 0) == I*atanh(2)
assert limit(atan(x + 2*I), x, 0, '-') == -pi + I*atanh(2)
assert limit(atan(x - 2*I), x, 0) == pi - I*atanh(2)
assert limit(atan(x - 2*I), x, 0, '-') == -I*atanh(2)
assert limit(atan(1/x), x, 0) == pi/2
assert limit(atan(1/x), x, 0, '-') == -pi/2
assert limit(atan(x), x, oo) == pi/2
assert limit(atan(x), x, -oo) == -pi/2
assert limit(acot(x + S(1)/2*I), x, 0) == pi - I*acoth(S(1)/2)
assert limit(acot(x + S(1)/2*I), x, 0, '-') == -I*acoth(S(1)/2)
assert limit(acot(x - S(1)/2*I), x, 0) == I*acoth(S(1)/2)
assert limit(acot(x - S(1)/2*I), x, 0, '-') == -pi + I*acoth(S(1)/2)
assert limit(acot(x), x, 0) == pi/2
assert limit(acot(x), x, 0, '-') == -pi/2
assert limit(asec(I*x + S(1)/2), x, 0) == asec(S(1)/2)
assert limit(asec(I*x + S(1)/2), x, 0, '-') == -asec(S(1)/2)
assert limit(asec(I*x - S(1)/2), x, 0) == 2*pi - asec(-S(1)/2)
assert limit(asec(I*x - S(1)/2), x, 0, '-') == asec(-S(1)/2)
assert limit(acsc(I*x + S(1)/2), x, 0) == acsc(S(1)/2)
assert limit(acsc(I*x + S(1)/2), x, 0, '-') == pi - acsc(S(1)/2)
assert limit(acsc(I*x - S(1)/2), x, 0) == -pi + acsc(S(1)/2)
assert limit(acsc(I*x - S(1)/2), x, 0, '-') == -acsc(S(1)/2)
assert limit(log(I*x - 1), x, 0) == I*pi
assert limit(log(I*x - 1), x, 0, '-') == -I*pi
assert limit(log(-I*x - 1), x, 0) == -I*pi
assert limit(log(-I*x - 1), x, 0, '-') == I*pi
assert limit(sqrt(I*x - 1), x, 0) == I
assert limit(sqrt(I*x - 1), x, 0, '-') == -I
assert limit(sqrt(-I*x - 1), x, 0) == -I
assert limit(sqrt(-I*x - 1), x, 0, '-') == I
assert limit(cbrt(I*x - 1), x, 0) == (-1)**(S(1)/3)
assert limit(cbrt(I*x - 1), x, 0, '-') == -(-1)**(S(2)/3)
assert limit(cbrt(-I*x - 1), x, 0) == -(-1)**(S(2)/3)
assert limit(cbrt(-I*x - 1), x, 0, '-') == (-1)**(S(1)/3)
def test_issue_6364():
a = Symbol('a')
e = z/(1 - sqrt(1 + z)*sin(a)**2 - sqrt(1 - z)*cos(a)**2)
assert limit(e, z, 0) == 1/(cos(a)**2 - S.Half)
def test_issue_6682():
assert limit(exp(2*Ei(-x))/x**2, x, 0) == exp(2*EulerGamma)
def test_issue_4099():
a = Symbol('a')
assert limit(a/x, x, 0) == oo*sign(a)
assert limit(-a/x, x, 0) == -oo*sign(a)
assert limit(-a*x, x, oo) == -oo*sign(a)
assert limit(a*x, x, oo) == oo*sign(a)
def test_issue_4503():
dx = Symbol('dx')
assert limit((sqrt(1 + exp(x + dx)) - sqrt(1 + exp(x)))/dx, dx, 0) == \
exp(x)/(2*sqrt(exp(x) + 1))
def test_issue_6052():
G = meijerg((), (), (1,), (0,), -x)
g = hyperexpand(G)
assert limit(g, x, 0, '+-') == 0
assert limit(g, x, oo) == -oo
def test_issue_7224():
expr = sqrt(x)*besseli(1,sqrt(8*x))
assert limit(x*diff(expr, x, x)/expr, x, 0) == 2
assert limit(x*diff(expr, x, x)/expr, x, 1).evalf(n=2) == 2.0
def test_issue_8208():
assert limit(n**(Rational(1, 1e9) - 1), n, oo) == 0
def test_issue_8229():
assert limit((x**Rational(1, 4) - 2)/(sqrt(x) - 4)**Rational(2, 3), x, 16) == 0
def test_issue_8433():
d, t = symbols('d t', positive=True)
assert limit(erf(1 - t/d), t, oo) == -1
def test_issue_8481():
k = Symbol('k', integer=True, nonnegative=True)
lamda = Symbol('lamda', positive=True)
assert limit(lamda**k * exp(-lamda) / factorial(k), k, oo) == 0
def test_issue_8462():
assert limit(binomial(n, n/2), n, oo) == oo
assert limit(binomial(n, n/2) * 3 ** (-n), n, oo) == 0
def test_issue_8635_18176():
x = Symbol('x', real=True)
k = Symbol('k', positive=True)
assert limit(x**n - x**(n - 0), x, oo) == 0
assert limit(x**n - x**(n - 5), x, oo) == oo
assert limit(x**n - x**(n - 2.5), x, oo) == oo
assert limit(x**n - x**(n - k - 1), x, oo) == oo
x = Symbol('x', positive=True)
assert limit(x**n - x**(n - 1), x, oo) == oo
assert limit(x**n - x**(n + 2), x, oo) == -oo
def test_issue_8730():
assert limit(subfactorial(x), x, oo) is oo
def test_issue_9252():
n = Symbol('n', integer=True)
c = Symbol('c', positive=True)
assert limit((log(n))**(n/log(n)) / (1 + c)**n, n, oo) == 0
# limit should depend on the value of c
raises(NotImplementedError, lambda: limit((log(n))**(n/log(n)) / c**n, n, oo))
def test_issue_9558():
assert limit(sin(x)**15, x, 0, '-') == 0
def test_issue_10801():
# make sure limits work with binomial
assert limit(16**k / (k * binomial(2*k, k)**2), k, oo) == pi
def test_issue_10976():
s, x = symbols('s x', real=True)
assert limit(erf(s*x)/erf(s), s, 0) == x
def test_issue_9041():
assert limit(factorial(n) / ((n/exp(1))**n * sqrt(2*pi*n)), n, oo) == 1
def test_issue_9205():
x, y, a = symbols('x, y, a')
assert Limit(x, x, a).free_symbols == {a}
assert Limit(x, x, a, '-').free_symbols == {a}
assert Limit(x + y, x + y, a).free_symbols == {a}
assert Limit(-x**2 + y, x**2, a).free_symbols == {y, a}
def test_issue_9471():
assert limit(((27**(log(n,3)))/n**3),n,oo) == 1
assert limit(((27**(log(n,3)+1))/n**3),n,oo) == 27
def test_issue_11496():
assert limit(erfc(log(1/x)), x, oo) == 2
def test_issue_11879():
assert simplify(limit(((x+y)**n-x**n)/y, y, 0)) == n*x**(n-1)
def test_limit_with_Float():
k = symbols("k")
assert limit(1.0 ** k, k, oo) == 1
assert limit(0.3*1.0**k, k, oo) == Rational(3, 10)
def test_issue_10610():
assert limit(3**x*3**(-x - 1)*(x + 1)**2/x**2, x, oo) == Rational(1, 3)
def test_issue_10868():
assert limit(log(x) + asech(x), x, 0, '+') == log(2)
assert limit(log(x) + asech(x), x, 0, '-') == log(2) + 2*I*pi
raises(ValueError, lambda: limit(log(x) + asech(x), x, 0, '+-'))
assert limit(log(x) + asech(x), x, oo) == oo
assert limit(log(x) + acsch(x), x, 0, '+') == log(2)
assert limit(log(x) + acsch(x), x, 0, '-') == -oo
raises(ValueError, lambda: limit(log(x) + acsch(x), x, 0, '+-'))
assert limit(log(x) + acsch(x), x, oo) == oo
def test_issue_6599():
assert limit((n + cos(n))/n, n, oo) == 1
def test_issue_12555():
assert limit((3**x + 2* x**10) / (x**10 + exp(x)), x, -oo) == 2
assert limit((3**x + 2* x**10) / (x**10 + exp(x)), x, oo) is oo
def test_issue_12769():
r, z, x = symbols('r z x', real=True)
a, b, s0, K, F0, s, T = symbols('a b s0 K F0 s T', positive=True, real=True)
fx = (F0**b*K**b*r*s0 - sqrt((F0**2*K**(2*b)*a**2*(b - 1) + \
F0**(2*b)*K**2*a**2*(b - 1) + F0**(2*b)*K**(2*b)*s0**2*(b - 1)*(b**2 - 2*b + 1) - \
2*F0**(2*b)*K**(b + 1)*a*r*s0*(b**2 - 2*b + 1) + \
2*F0**(b + 1)*K**(2*b)*a*r*s0*(b**2 - 2*b + 1) - \
2*F0**(b + 1)*K**(b + 1)*a**2*(b - 1))/((b - 1)*(b**2 - 2*b + 1))))*(b*r - b - r + 1)
assert fx.subs(K, F0).factor(deep=True) == limit(fx, K, F0).factor(deep=True)
def test_issue_13332():
assert limit(sqrt(30)*5**(-5*x - 1)*(46656*x)**x*(5*x + 2)**(5*x + 5*S.Half) *
(6*x + 2)**(-6*x - 5*S.Half), x, oo) == Rational(25, 36)
def test_issue_12564():
assert limit(x**2 + x*sin(x) + cos(x), x, -oo) is oo
assert limit(x**2 + x*sin(x) + cos(x), x, oo) is oo
assert limit(((x + cos(x))**2).expand(), x, oo) is oo
assert limit(((x + sin(x))**2).expand(), x, oo) is oo
assert limit(((x + cos(x))**2).expand(), x, -oo) is oo
assert limit(((x + sin(x))**2).expand(), x, -oo) is oo
def test_issue_14456():
raises(NotImplementedError, lambda: Limit(exp(x), x, zoo).doit())
raises(NotImplementedError, lambda: Limit(x**2/(x+1), x, zoo).doit())
def test_issue_14411():
assert limit(3*sec(4*pi*x - x/3), x, 3*pi/(24*pi - 2)) is -oo
def test_issue_13382():
assert limit(x*(((x + 1)**2 + 1)/(x**2 + 1) - 1), x, oo) == 2
def test_issue_13403():
assert limit(x*(-1 + (x + log(x + 1) + 1)/(x + log(x))), x, oo) == 1
def test_issue_13416():
assert limit((-x**3*log(x)**3 + (x - 1)*(x + 1)**2*log(x + 1)**3)/(x**2*log(x)**3), x, oo) == 1
def test_issue_13462():
assert limit(n**2*(2*n*(-(1 - 1/(2*n))**x + 1) - x - (-x**2/4 + x/4)/n), n, oo) == x**3/24 - x**2/8 + x/12
def test_issue_13750():
a = Symbol('a')
assert limit(erf(a - x), x, oo) == -1
assert limit(erf(sqrt(x) - x), x, oo) == -1
def test_issue_14276():
assert isinstance(limit(sin(x)**log(x), x, oo), Limit)
assert isinstance(limit(sin(x)**cos(x), x, oo), Limit)
assert isinstance(limit(sin(log(cos(x))), x, oo), Limit)
assert limit((1 + 1/(x**2 + cos(x)))**(x**2 + x), x, oo) == E
def test_issue_14514():
assert limit((1/(log(x)**log(x)))**(1/x), x, oo) == 1
def test_issues_14525():
assert limit(sin(x)**2 - cos(x) + tan(x)*csc(x), x, oo) == AccumBounds(S.NegativeInfinity, S.Infinity)
assert limit(sin(x)**2 - cos(x) + sin(x)*cot(x), x, oo) == AccumBounds(S.NegativeInfinity, S.Infinity)
assert limit(cot(x) - tan(x)**2, x, oo) == AccumBounds(S.NegativeInfinity, S.Infinity)
assert limit(cos(x) - tan(x)**2, x, oo) == AccumBounds(S.NegativeInfinity, S.One)
assert limit(sin(x) - tan(x)**2, x, oo) == AccumBounds(S.NegativeInfinity, S.One)
assert limit(cos(x)**2 - tan(x)**2, x, oo) == AccumBounds(S.NegativeInfinity, S.One)
assert limit(tan(x)**2 + sin(x)**2 - cos(x), x, oo) == AccumBounds(-S.One, S.Infinity)
def test_issue_14574():
assert limit(sqrt(x)*cos(x - x**2) / (x + 1), x, oo) == 0
def test_issue_10102():
assert limit(fresnels(x), x, oo) == S.Half
assert limit(3 + fresnels(x), x, oo) == 3 + S.Half
assert limit(5*fresnels(x), x, oo) == Rational(5, 2)
assert limit(fresnelc(x), x, oo) == S.Half
assert limit(fresnels(x), x, -oo) == Rational(-1, 2)
assert limit(4*fresnelc(x), x, -oo) == -2
def test_issue_14377():
raises(NotImplementedError, lambda: limit(exp(I*x)*sin(pi*x), x, oo))
def test_issue_15146():
e = (x/2) * (-2*x**3 - 2*(x**3 - 1) * x**2 * digamma(x**3 + 1) + \
2*(x**3 - 1) * x**2 * digamma(x**3 + x + 1) + x + 3)
assert limit(e, x, oo) == S(1)/3
def test_issue_15202():
e = (2**x*(2 + 2**(-x)*(-2*2**x + x + 2))/(x + 1))**(x + 1)
assert limit(e, x, oo) == exp(1)
e = (log(x, 2)**7 + 10*x*factorial(x) + 5**x) / (factorial(x + 1) + 3*factorial(x) + 10**x)
assert limit(e, x, oo) == 10
def test_issue_15282():
assert limit((x**2000 - (x + 1)**2000) / x**1999, x, oo) == -2000
def test_issue_15984():
assert limit((-x + log(exp(x) + 1))/x, x, oo, dir='-') == 0
def test_issue_13571():
assert limit(uppergamma(x, 1) / gamma(x), x, oo) == 1
def test_issue_13575():
assert limit(acos(erfi(x)), x, 1) == acos(erfi(S.One))
def test_issue_17325():
assert Limit(sin(x)/x, x, 0, dir="+-").doit() == 1
assert Limit(x**2, x, 0, dir="+-").doit() == 0
assert Limit(1/x**2, x, 0, dir="+-").doit() is oo
assert Limit(1/x, x, 0, dir="+-").doit() is zoo
def test_issue_10978():
assert LambertW(x).limit(x, 0) == 0
def test_issue_14313_comment():
assert limit(floor(n/2), n, oo) is oo
@XFAIL
def test_issue_15323():
d = ((1 - 1/x)**x).diff(x)
assert limit(d, x, 1, dir='+') == 1
def test_issue_12571():
assert limit(-LambertW(-log(x))/log(x), x, 1) == 1
def test_issue_14590():
assert limit((x**3*((x + 1)/x)**x)/((x + 1)*(x + 2)*(x + 3)), x, oo) == exp(1)
def test_issue_14393():
a, b = symbols('a b')
assert limit((x**b - y**b)/(x**a - y**a), x, y) == b*y**(-a + b)/a
def test_issue_14556():
assert limit(factorial(n + 1)**(1/(n + 1)) - factorial(n)**(1/n), n, oo) == exp(-1)
def test_issue_14811():
assert limit(((1 + ((S(2)/3)**(x + 1)))**(2**x))/(2**((S(4)/3)**(x - 1))), x, oo) == oo
def test_issue_16222():
assert limit(exp(x), x, 1000000000) == exp(1000000000)
def test_issue_16714():
assert limit(((x**(x + 1) + (x + 1)**x) / x**(x + 1))**x, x, oo) == exp(exp(1))
def test_issue_16722():
z = symbols('z', positive=True)
assert limit(binomial(n + z, n)*n**-z, n, oo) == 1/gamma(z + 1)
z = symbols('z', positive=True, integer=True)
assert limit(binomial(n + z, n)*n**-z, n, oo) == 1/gamma(z + 1)
def test_issue_17431():
assert limit(((n + 1) + 1) / (((n + 1) + 2) * factorial(n + 1)) *
(n + 2) * factorial(n) / (n + 1), n, oo) == 0
assert limit((n + 2)**2*factorial(n)/((n + 1)*(n + 3)*factorial(n + 1))
, n, oo) == 0
assert limit((n + 1) * factorial(n) / (n * factorial(n + 1)), n, oo) == 0
def test_issue_17671():
assert limit(Ei(-log(x)) - log(log(x))/x, x, 1) == EulerGamma
def test_issue_17751():
a, b, c, x = symbols('a b c x', positive=True)
assert limit((a + 1)*x - sqrt((a + 1)**2*x**2 + b*x + c), x, oo) == -b/(2*a + 2)
def test_issue_17792():
assert limit(factorial(n)/sqrt(n)*(exp(1)/n)**n, n, oo) == sqrt(2)*sqrt(pi)
def test_issue_18118():
assert limit(sign(sin(x)), x, 0, "-") == -1
assert limit(sign(sin(x)), x, 0, "+") == 1
def test_issue_18306():
assert limit(sin(sqrt(x))/sqrt(sin(x)), x, 0, '+') == 1
def test_issue_18378():
assert limit(log(exp(3*x) + x)/log(exp(x) + x**100), x, oo) == 3
def test_issue_18399():
assert limit((1 - S(1)/2*x)**(3*x), x, oo) is zoo
assert limit((-x)**x, x, oo) is zoo
def test_issue_18442():
assert limit(tan(x)**(2**(sqrt(pi))), x, oo, dir='-') == Limit(tan(x)**(2**(sqrt(pi))), x, oo, dir='-')
def test_issue_18452():
assert limit(abs(log(x))**x, x, 0) == 1
assert limit(abs(log(x))**x, x, 0, "-") == 1
def test_issue_18473():
assert limit(sin(x)**(1/x), x, oo) == Limit(sin(x)**(1/x), x, oo, dir='-')
assert limit(cos(x)**(1/x), x, oo) == Limit(cos(x)**(1/x), x, oo, dir='-')
assert limit(tan(x)**(1/x), x, oo) == Limit(tan(x)**(1/x), x, oo, dir='-')
assert limit((cos(x) + 2)**(1/x), x, oo) == 1
assert limit((sin(x) + 10)**(1/x), x, oo) == 1
assert limit((cos(x) - 2)**(1/x), x, oo) == Limit((cos(x) - 2)**(1/x), x, oo, dir='-')
assert limit((cos(x) + 1)**(1/x), x, oo) == AccumBounds(0, 1)
assert limit((tan(x)**2)**(2/x) , x, oo) == AccumBounds(0, oo)
assert limit((sin(x)**2)**(1/x), x, oo) == AccumBounds(0, 1)
# Tests for issue #23751
assert limit((cos(x) + 1)**(1/x), x, -oo) == AccumBounds(1, oo)
assert limit((sin(x)**2)**(1/x), x, -oo) == AccumBounds(1, oo)
assert limit((tan(x)**2)**(2/x) , x, -oo) == AccumBounds(0, oo)
def test_issue_18482():
assert limit((2*exp(3*x)/(exp(2*x) + 1))**(1/x), x, oo) == exp(1)
def test_issue_18508():
assert limit(sin(x)/sqrt(1-cos(x)), x, 0) == sqrt(2)
assert limit(sin(x)/sqrt(1-cos(x)), x, 0, dir='+') == sqrt(2)
assert limit(sin(x)/sqrt(1-cos(x)), x, 0, dir='-') == -sqrt(2)
def test_issue_18521():
raises(NotImplementedError, lambda: limit(exp((2 - n) * x), x, oo))
def test_issue_18969():
a, b = symbols('a b', positive=True)
assert limit(LambertW(a), a, b) == LambertW(b)
assert limit(exp(LambertW(a)), a, b) == exp(LambertW(b))
def test_issue_18992():
assert limit(n/(factorial(n)**(1/n)), n, oo) == exp(1)
def test_issue_19067():
x = Symbol('x')
assert limit(gamma(x)/(gamma(x - 1)*gamma(x + 2)), x, 0) == -1
def test_issue_19586():
assert limit(x**(2**x*3**(-x)), x, oo) == 1
def test_issue_13715():
n = Symbol('n')
p = Symbol('p', zero=True)
assert limit(n + p, n, 0) == 0
def test_issue_15055():
assert limit(n**3*((-n - 1)*sin(1/n) + (n + 2)*sin(1/(n + 1)))/(-n + 1), n, oo) == 1
def test_issue_16708():
m, vi = symbols('m vi', positive=True)
B, ti, d = symbols('B ti d')
assert limit((B*ti*vi - sqrt(m)*sqrt(-2*B*d*vi + m*(vi)**2) + m*vi)/(B*vi), B, 0) == (d + ti*vi)/vi
def test_issue_19154():
assert limit(besseli(1, 3 *x)/(x *besseli(1, x)**3), x , oo) == 2*sqrt(3)*pi/3
assert limit(besseli(1, 3 *x)/(x *besseli(1, x)**3), x , -oo) == -2*sqrt(3)*pi/3
def test_issue_19453():
beta = Symbol("beta", positive=True)
h = Symbol("h", positive=True)
m = Symbol("m", positive=True)
w = Symbol("omega", positive=True)
g = Symbol("g", positive=True)
e = exp(1)
q = 3*h**2*beta*g*e**(0.5*h*beta*w)
p = m**2*w**2
s = e**(h*beta*w) - 1
Z = -q/(4*p*s) - q/(2*p*s**2) - q*(e**(h*beta*w) + 1)/(2*p*s**3)\
+ e**(0.5*h*beta*w)/s
E = -diff(log(Z), beta)
assert limit(E - 0.5*h*w, beta, oo) == 0
assert limit(E.simplify() - 0.5*h*w, beta, oo) == 0
def test_issue_19739():
assert limit((-S(1)/4)**x, x, oo) == 0
def test_issue_19766():
assert limit(2**(-x)*sqrt(4**(x + 1) + 1), x, oo) == 2
def test_issue_19770():
m = Symbol('m')
# the result is not 0 for non-real m
assert limit(cos(m*x)/x, x, oo) == Limit(cos(m*x)/x, x, oo, dir='-')
m = Symbol('m', real=True)
# can be improved to give the correct result 0
assert limit(cos(m*x)/x, x, oo) == Limit(cos(m*x)/x, x, oo, dir='-')
m = Symbol('m', nonzero=True)
assert limit(cos(m*x), x, oo) == AccumBounds(-1, 1)
assert limit(cos(m*x)/x, x, oo) == 0
def test_issue_7535():
assert limit(tan(x)/sin(tan(x)), x, pi/2) == Limit(tan(x)/sin(tan(x)), x, pi/2, dir='+')
assert limit(tan(x)/sin(tan(x)), x, pi/2, dir='-') == Limit(tan(x)/sin(tan(x)), x, pi/2, dir='-')
assert limit(tan(x)/sin(tan(x)), x, pi/2, dir='+-') == Limit(tan(x)/sin(tan(x)), x, pi/2, dir='+-')
assert limit(sin(tan(x)),x,pi/2) == AccumBounds(-1, 1)
assert -oo*(1/sin(-oo)) == AccumBounds(-oo, oo)
assert oo*(1/sin(oo)) == AccumBounds(-oo, oo)
assert oo*(1/sin(-oo)) == AccumBounds(-oo, oo)
assert -oo*(1/sin(oo)) == AccumBounds(-oo, oo)
def test_issue_20365():
assert limit(((x + 1)**(1/x) - E)/x, x, 0) == -E/2
def test_issue_21031():
assert limit(((1 + x)**(1/x) - (1 + 2*x)**(1/(2*x)))/asin(x), x, 0) == E/2
def test_issue_21038():
assert limit(sin(pi*x)/(3*x - 12), x, 4) == pi/3
def test_issue_20578():
expr = abs(x) * sin(1/x)
assert limit(expr,x,0,'+') == 0
assert limit(expr,x,0,'-') == 0
assert limit(expr,x,0,'+-') == 0
def test_issue_21227():
f = log(x)
assert f.nseries(x, logx=y) == y
assert f.nseries(x, logx=-x) == -x
f = log(-log(x))
assert f.nseries(x, logx=y) == log(-y)
assert f.nseries(x, logx=-x) == log(x)
f = log(log(x))
assert f.nseries(x, logx=y) == log(y)
assert f.nseries(x, logx=-x) == log(-x)
assert f.nseries(x, logx=x) == log(x)
f = log(log(log(1/x)))
assert f.nseries(x, logx=y) == log(log(-y))
assert f.nseries(x, logx=-y) == log(log(y))
assert f.nseries(x, logx=x) == log(log(-x))
assert f.nseries(x, logx=-x) == log(log(x))
def test_issue_21415():
exp = (x-1)*cos(1/(x-1))
assert exp.limit(x,1) == 0
assert exp.expand().limit(x,1) == 0
def test_issue_21530():
assert limit(sinh(n + 1)/sinh(n), n, oo) == E
def test_issue_21550():
r = (sqrt(5) - 1)/2
assert limit((x - r)/(x**2 + x - 1), x, r) == sqrt(5)/5
def test_issue_21661():
out = limit((x**(x + 1) * (log(x) + 1) + 1) / x, x, 11)
assert out == S(3138428376722)/11 + 285311670611*log(11)
def test_issue_21701():
assert limit((besselj(z, x)/x**z).subs(z, 7), x, 0) == S(1)/645120
def test_issue_21721():
a = Symbol('a', real=True)
I = integrate(1/(pi*(1 + (x - a)**2)), x)
assert I.limit(x, oo) == S.Half
def test_issue_21756():
term = (1 - exp(-2*I*pi*z))/(1 - exp(-2*I*pi*z/5))
assert term.limit(z, 0) == 5
assert re(term).limit(z, 0) == 5
def test_issue_21785():
a = Symbol('a')
assert sqrt((-a**2 + x**2)/(1 - x**2)).limit(a, 1, '-') == I
def test_issue_22181():
assert limit((-1)**x * 2**(-x), x, oo) == 0
def test_issue_22220():
e1 = sqrt(30)*atan(sqrt(30)*tan(x/2)/6)/30
e2 = sqrt(30)*I*(-log(sqrt(2)*tan(x/2) - 2*sqrt(15)*I/5) +
+log(sqrt(2)*tan(x/2) + 2*sqrt(15)*I/5))/60
assert limit(e1, x, -pi) == -sqrt(30)*pi/60
assert limit(e2, x, -pi) == -sqrt(30)*pi/30
assert limit(e1, x, -pi, '-') == sqrt(30)*pi/60
assert limit(e2, x, -pi, '-') == 0
# test https://github.com/sympy/sympy/issues/22220#issuecomment-972727694
expr = log(x - I) - log(-x - I)
expr2 = logcombine(expr, force=True)
assert limit(expr, x, oo) == limit(expr2, x, oo) == I*pi
# test https://github.com/sympy/sympy/issues/22220#issuecomment-1077618340
expr = expr = (-log(tan(x/2) - I) +log(tan(x/2) + I))
assert limit(expr, x, pi, '+') == 2*I*pi
assert limit(expr, x, pi, '-') == 0
def test_issue_22334():
k, n = symbols('k, n', positive=True)
assert limit((n+1)**k/((n+1)**(k+1) - (n)**(k+1)), n, oo) == 1/(k + 1)
assert limit((n+1)**k/((n+1)**(k+1) - (n)**(k+1)).expand(), n, oo) == 1/(k + 1)
assert limit((n+1)**k/(n*(-n**k + (n + 1)**k) + (n + 1)**k), n, oo) == 1/(k + 1)
def test_sympyissue_22986():
assert limit(acosh(1 + 1/x)*sqrt(x), x, oo) == sqrt(2)
def test_issue_23231():
f = (2**x - 2**(-x))/(2**x + 2**(-x))
assert limit(f, x, -oo) == -1
def test_issue_23596():
assert integrate(((1 + x)/x**2)*exp(-1/x), (x, 0, oo)) == oo
def test_issue_23752():
expr1 = sqrt(-I*x**2 + x - 3)
expr2 = sqrt(-I*x**2 + I*x - 3)
assert limit(expr1, x, 0, '+') == -sqrt(3)*I
assert limit(expr1, x, 0, '-') == -sqrt(3)*I
assert limit(expr2, x, 0, '+') == sqrt(3)*I
assert limit(expr2, x, 0, '-') == -sqrt(3)*I
def test_issue_24276():
fx = log(tan(pi/2*tanh(x))).diff(x)
assert fx.limit(x, oo) == 2
assert fx.simplify().limit(x, oo) == 2
assert fx.rewrite(sin).limit(x, oo) == 2
assert fx.rewrite(sin).simplify().limit(x, oo) == 2
|
dd5d03f87f0c5a3e2c4230c86f053b4cb447f0ab05d504994ba7b742907d0b28 | from itertools import product
from sympy.core.function import (Subs, count_ops, diff, expand)
from sympy.core.numbers import (E, I, Rational, pi)
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, symbols)
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.elementary.hyperbolic import (cosh, coth, sinh, tanh)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import (cos, cot, sin, tan)
from sympy.functions.elementary.trigonometric import (acos, asin, atan2)
from sympy.functions.elementary.trigonometric import (asec, acsc)
from sympy.functions.elementary.trigonometric import (acot, atan)
from sympy.integrals.integrals import integrate
from sympy.matrices.dense import Matrix
from sympy.simplify.simplify import simplify
from sympy.simplify.trigsimp import (exptrigsimp, trigsimp)
from sympy.testing.pytest import XFAIL
from sympy.abc import x, y
def test_trigsimp1():
x, y = symbols('x,y')
assert trigsimp(1 - sin(x)**2) == cos(x)**2
assert trigsimp(1 - cos(x)**2) == sin(x)**2
assert trigsimp(sin(x)**2 + cos(x)**2) == 1
assert trigsimp(1 + tan(x)**2) == 1/cos(x)**2
assert trigsimp(1/cos(x)**2 - 1) == tan(x)**2
assert trigsimp(1/cos(x)**2 - tan(x)**2) == 1
assert trigsimp(1 + cot(x)**2) == 1/sin(x)**2
assert trigsimp(1/sin(x)**2 - 1) == 1/tan(x)**2
assert trigsimp(1/sin(x)**2 - cot(x)**2) == 1
assert trigsimp(5*cos(x)**2 + 5*sin(x)**2) == 5
assert trigsimp(5*cos(x/2)**2 + 2*sin(x/2)**2) == 3*cos(x)/2 + Rational(7, 2)
assert trigsimp(sin(x)/cos(x)) == tan(x)
assert trigsimp(2*tan(x)*cos(x)) == 2*sin(x)
assert trigsimp(cot(x)**3*sin(x)**3) == cos(x)**3
assert trigsimp(y*tan(x)**2/sin(x)**2) == y/cos(x)**2
assert trigsimp(cot(x)/cos(x)) == 1/sin(x)
assert trigsimp(sin(x + y) + sin(x - y)) == 2*sin(x)*cos(y)
assert trigsimp(sin(x + y) - sin(x - y)) == 2*sin(y)*cos(x)
assert trigsimp(cos(x + y) + cos(x - y)) == 2*cos(x)*cos(y)
assert trigsimp(cos(x + y) - cos(x - y)) == -2*sin(x)*sin(y)
assert trigsimp(tan(x + y) - tan(x)/(1 - tan(x)*tan(y))) == \
sin(y)/(-sin(y)*tan(x) + cos(y)) # -tan(y)/(tan(x)*tan(y) - 1)
assert trigsimp(sinh(x + y) + sinh(x - y)) == 2*sinh(x)*cosh(y)
assert trigsimp(sinh(x + y) - sinh(x - y)) == 2*sinh(y)*cosh(x)
assert trigsimp(cosh(x + y) + cosh(x - y)) == 2*cosh(x)*cosh(y)
assert trigsimp(cosh(x + y) - cosh(x - y)) == 2*sinh(x)*sinh(y)
assert trigsimp(tanh(x + y) - tanh(x)/(1 + tanh(x)*tanh(y))) == \
sinh(y)/(sinh(y)*tanh(x) + cosh(y))
assert trigsimp(cos(0.12345)**2 + sin(0.12345)**2) == 1
e = 2*sin(x)**2 + 2*cos(x)**2
assert trigsimp(log(e)) == log(2)
def test_trigsimp1a():
assert trigsimp(sin(2)**2*cos(3)*exp(2)/cos(2)**2) == tan(2)**2*cos(3)*exp(2)
assert trigsimp(tan(2)**2*cos(3)*exp(2)*cos(2)**2) == sin(2)**2*cos(3)*exp(2)
assert trigsimp(cot(2)*cos(3)*exp(2)*sin(2)) == cos(3)*exp(2)*cos(2)
assert trigsimp(tan(2)*cos(3)*exp(2)/sin(2)) == cos(3)*exp(2)/cos(2)
assert trigsimp(cot(2)*cos(3)*exp(2)/cos(2)) == cos(3)*exp(2)/sin(2)
assert trigsimp(cot(2)*cos(3)*exp(2)*tan(2)) == cos(3)*exp(2)
assert trigsimp(sinh(2)*cos(3)*exp(2)/cosh(2)) == tanh(2)*cos(3)*exp(2)
assert trigsimp(tanh(2)*cos(3)*exp(2)*cosh(2)) == sinh(2)*cos(3)*exp(2)
assert trigsimp(coth(2)*cos(3)*exp(2)*sinh(2)) == cosh(2)*cos(3)*exp(2)
assert trigsimp(tanh(2)*cos(3)*exp(2)/sinh(2)) == cos(3)*exp(2)/cosh(2)
assert trigsimp(coth(2)*cos(3)*exp(2)/cosh(2)) == cos(3)*exp(2)/sinh(2)
assert trigsimp(coth(2)*cos(3)*exp(2)*tanh(2)) == cos(3)*exp(2)
def test_trigsimp2():
x, y = symbols('x,y')
assert trigsimp(cos(x)**2*sin(y)**2 + cos(x)**2*cos(y)**2 + sin(x)**2,
recursive=True) == 1
assert trigsimp(sin(x)**2*sin(y)**2 + sin(x)**2*cos(y)**2 + cos(x)**2,
recursive=True) == 1
assert trigsimp(
Subs(x, x, sin(y)**2 + cos(y)**2)) == Subs(x, x, 1)
def test_issue_4373():
x = Symbol("x")
assert abs(trigsimp(2.0*sin(x)**2 + 2.0*cos(x)**2) - 2.0) < 1e-10
def test_trigsimp3():
x, y = symbols('x,y')
assert trigsimp(sin(x)/cos(x)) == tan(x)
assert trigsimp(sin(x)**2/cos(x)**2) == tan(x)**2
assert trigsimp(sin(x)**3/cos(x)**3) == tan(x)**3
assert trigsimp(sin(x)**10/cos(x)**10) == tan(x)**10
assert trigsimp(cos(x)/sin(x)) == 1/tan(x)
assert trigsimp(cos(x)**2/sin(x)**2) == 1/tan(x)**2
assert trigsimp(cos(x)**10/sin(x)**10) == 1/tan(x)**10
assert trigsimp(tan(x)) == trigsimp(sin(x)/cos(x))
def test_issue_4661():
a, x, y = symbols('a x y')
eq = -4*sin(x)**4 + 4*cos(x)**4 - 8*cos(x)**2
assert trigsimp(eq) == -4
n = sin(x)**6 + 4*sin(x)**4*cos(x)**2 + 5*sin(x)**2*cos(x)**4 + 2*cos(x)**6
d = -sin(x)**2 - 2*cos(x)**2
assert simplify(n/d) == -1
assert trigsimp(-2*cos(x)**2 + cos(x)**4 - sin(x)**4) == -1
eq = (- sin(x)**3/4)*cos(x) + (cos(x)**3/4)*sin(x) - sin(2*x)*cos(2*x)/8
assert trigsimp(eq) == 0
def test_issue_4494():
a, b = symbols('a b')
eq = sin(a)**2*sin(b)**2 + cos(a)**2*cos(b)**2*tan(a)**2 + cos(a)**2
assert trigsimp(eq) == 1
def test_issue_5948():
a, x, y = symbols('a x y')
assert trigsimp(diff(integrate(cos(x)/sin(x)**7, x), x)) == \
cos(x)/sin(x)**7
def test_issue_4775():
a, x, y = symbols('a x y')
assert trigsimp(sin(x)*cos(y)+cos(x)*sin(y)) == sin(x + y)
assert trigsimp(sin(x)*cos(y)+cos(x)*sin(y)+3) == sin(x + y) + 3
def test_issue_4280():
a, x, y = symbols('a x y')
assert trigsimp(cos(x)**2 + cos(y)**2*sin(x)**2 + sin(y)**2*sin(x)**2) == 1
assert trigsimp(a**2*sin(x)**2 + a**2*cos(y)**2*cos(x)**2 + a**2*cos(x)**2*sin(y)**2) == a**2
assert trigsimp(a**2*cos(y)**2*sin(x)**2 + a**2*sin(y)**2*sin(x)**2) == a**2*sin(x)**2
def test_issue_3210():
eqs = (sin(2)*cos(3) + sin(3)*cos(2),
-sin(2)*sin(3) + cos(2)*cos(3),
sin(2)*cos(3) - sin(3)*cos(2),
sin(2)*sin(3) + cos(2)*cos(3),
sin(2)*sin(3) + cos(2)*cos(3) + cos(2),
sinh(2)*cosh(3) + sinh(3)*cosh(2),
sinh(2)*sinh(3) + cosh(2)*cosh(3),
)
assert [trigsimp(e) for e in eqs] == [
sin(5),
cos(5),
-sin(1),
cos(1),
cos(1) + cos(2),
sinh(5),
cosh(5),
]
def test_trigsimp_issues():
a, x, y = symbols('a x y')
# issue 4625 - factor_terms works, too
assert trigsimp(sin(x)**3 + cos(x)**2*sin(x)) == sin(x)
# issue 5948
assert trigsimp(diff(integrate(cos(x)/sin(x)**3, x), x)) == \
cos(x)/sin(x)**3
assert trigsimp(diff(integrate(sin(x)/cos(x)**3, x), x)) == \
sin(x)/cos(x)**3
# check integer exponents
e = sin(x)**y/cos(x)**y
assert trigsimp(e) == e
assert trigsimp(e.subs(y, 2)) == tan(x)**2
assert trigsimp(e.subs(x, 1)) == tan(1)**y
# check for multiple patterns
assert (cos(x)**2/sin(x)**2*cos(y)**2/sin(y)**2).trigsimp() == \
1/tan(x)**2/tan(y)**2
assert trigsimp(cos(x)/sin(x)*cos(x+y)/sin(x+y)) == \
1/(tan(x)*tan(x + y))
eq = cos(2)*(cos(3) + 1)**2/(cos(3) - 1)**2
assert trigsimp(eq) == eq.factor() # factor makes denom (-1 + cos(3))**2
assert trigsimp(cos(2)*(cos(3) + 1)**2*(cos(3) - 1)**2) == \
cos(2)*sin(3)**4
# issue 6789; this generates an expression that formerly caused
# trigsimp to hang
assert cot(x).equals(tan(x)) is False
# nan or the unchanged expression is ok, but not sin(1)
z = cos(x)**2 + sin(x)**2 - 1
z1 = tan(x)**2 - 1/cot(x)**2
n = (1 + z1/z)
assert trigsimp(sin(n)) != sin(1)
eq = x*(n - 1) - x*n
assert trigsimp(eq) is S.NaN
assert trigsimp(eq, recursive=True) is S.NaN
assert trigsimp(1).is_Integer
assert trigsimp(-sin(x)**4 - 2*sin(x)**2*cos(x)**2 - cos(x)**4) == -1
def test_trigsimp_issue_2515():
x = Symbol('x')
assert trigsimp(x*cos(x)*tan(x)) == x*sin(x)
assert trigsimp(-sin(x) + cos(x)*tan(x)) == 0
def test_trigsimp_issue_3826():
assert trigsimp(tan(2*x).expand(trig=True)) == tan(2*x)
def test_trigsimp_issue_4032():
n = Symbol('n', integer=True, positive=True)
assert trigsimp(2**(n/2)*cos(pi*n/4)/2 + 2**(n - 1)/2) == \
2**(n/2)*cos(pi*n/4)/2 + 2**n/4
def test_trigsimp_issue_7761():
assert trigsimp(cosh(pi/4)) == cosh(pi/4)
def test_trigsimp_noncommutative():
x, y = symbols('x,y')
A, B = symbols('A,B', commutative=False)
assert trigsimp(A - A*sin(x)**2) == A*cos(x)**2
assert trigsimp(A - A*cos(x)**2) == A*sin(x)**2
assert trigsimp(A*sin(x)**2 + A*cos(x)**2) == A
assert trigsimp(A + A*tan(x)**2) == A/cos(x)**2
assert trigsimp(A/cos(x)**2 - A) == A*tan(x)**2
assert trigsimp(A/cos(x)**2 - A*tan(x)**2) == A
assert trigsimp(A + A*cot(x)**2) == A/sin(x)**2
assert trigsimp(A/sin(x)**2 - A) == A/tan(x)**2
assert trigsimp(A/sin(x)**2 - A*cot(x)**2) == A
assert trigsimp(y*A*cos(x)**2 + y*A*sin(x)**2) == y*A
assert trigsimp(A*sin(x)/cos(x)) == A*tan(x)
assert trigsimp(A*tan(x)*cos(x)) == A*sin(x)
assert trigsimp(A*cot(x)**3*sin(x)**3) == A*cos(x)**3
assert trigsimp(y*A*tan(x)**2/sin(x)**2) == y*A/cos(x)**2
assert trigsimp(A*cot(x)/cos(x)) == A/sin(x)
assert trigsimp(A*sin(x + y) + A*sin(x - y)) == 2*A*sin(x)*cos(y)
assert trigsimp(A*sin(x + y) - A*sin(x - y)) == 2*A*sin(y)*cos(x)
assert trigsimp(A*cos(x + y) + A*cos(x - y)) == 2*A*cos(x)*cos(y)
assert trigsimp(A*cos(x + y) - A*cos(x - y)) == -2*A*sin(x)*sin(y)
assert trigsimp(A*sinh(x + y) + A*sinh(x - y)) == 2*A*sinh(x)*cosh(y)
assert trigsimp(A*sinh(x + y) - A*sinh(x - y)) == 2*A*sinh(y)*cosh(x)
assert trigsimp(A*cosh(x + y) + A*cosh(x - y)) == 2*A*cosh(x)*cosh(y)
assert trigsimp(A*cosh(x + y) - A*cosh(x - y)) == 2*A*sinh(x)*sinh(y)
assert trigsimp(A*cos(0.12345)**2 + A*sin(0.12345)**2) == 1.0*A
def test_hyperbolic_simp():
x, y = symbols('x,y')
assert trigsimp(sinh(x)**2 + 1) == cosh(x)**2
assert trigsimp(cosh(x)**2 - 1) == sinh(x)**2
assert trigsimp(cosh(x)**2 - sinh(x)**2) == 1
assert trigsimp(1 - tanh(x)**2) == 1/cosh(x)**2
assert trigsimp(1 - 1/cosh(x)**2) == tanh(x)**2
assert trigsimp(tanh(x)**2 + 1/cosh(x)**2) == 1
assert trigsimp(coth(x)**2 - 1) == 1/sinh(x)**2
assert trigsimp(1/sinh(x)**2 + 1) == 1/tanh(x)**2
assert trigsimp(coth(x)**2 - 1/sinh(x)**2) == 1
assert trigsimp(5*cosh(x)**2 - 5*sinh(x)**2) == 5
assert trigsimp(5*cosh(x/2)**2 - 2*sinh(x/2)**2) == 3*cosh(x)/2 + Rational(7, 2)
assert trigsimp(sinh(x)/cosh(x)) == tanh(x)
assert trigsimp(tanh(x)) == trigsimp(sinh(x)/cosh(x))
assert trigsimp(cosh(x)/sinh(x)) == 1/tanh(x)
assert trigsimp(2*tanh(x)*cosh(x)) == 2*sinh(x)
assert trigsimp(coth(x)**3*sinh(x)**3) == cosh(x)**3
assert trigsimp(y*tanh(x)**2/sinh(x)**2) == y/cosh(x)**2
assert trigsimp(coth(x)/cosh(x)) == 1/sinh(x)
for a in (pi/6*I, pi/4*I, pi/3*I):
assert trigsimp(sinh(a)*cosh(x) + cosh(a)*sinh(x)) == sinh(x + a)
assert trigsimp(-sinh(a)*cosh(x) + cosh(a)*sinh(x)) == sinh(x - a)
e = 2*cosh(x)**2 - 2*sinh(x)**2
assert trigsimp(log(e)) == log(2)
# issue 19535:
assert trigsimp(sqrt(cosh(x)**2 - 1)) == sqrt(sinh(x)**2)
assert trigsimp(cosh(x)**2*cosh(y)**2 - cosh(x)**2*sinh(y)**2 - sinh(x)**2,
recursive=True) == 1
assert trigsimp(sinh(x)**2*sinh(y)**2 - sinh(x)**2*cosh(y)**2 + cosh(x)**2,
recursive=True) == 1
assert abs(trigsimp(2.0*cosh(x)**2 - 2.0*sinh(x)**2) - 2.0) < 1e-10
assert trigsimp(sinh(x)**2/cosh(x)**2) == tanh(x)**2
assert trigsimp(sinh(x)**3/cosh(x)**3) == tanh(x)**3
assert trigsimp(sinh(x)**10/cosh(x)**10) == tanh(x)**10
assert trigsimp(cosh(x)**3/sinh(x)**3) == 1/tanh(x)**3
assert trigsimp(cosh(x)/sinh(x)) == 1/tanh(x)
assert trigsimp(cosh(x)**2/sinh(x)**2) == 1/tanh(x)**2
assert trigsimp(cosh(x)**10/sinh(x)**10) == 1/tanh(x)**10
assert trigsimp(x*cosh(x)*tanh(x)) == x*sinh(x)
assert trigsimp(-sinh(x) + cosh(x)*tanh(x)) == 0
assert tan(x) != 1/cot(x) # cot doesn't auto-simplify
assert trigsimp(tan(x) - 1/cot(x)) == 0
assert trigsimp(3*tanh(x)**7 - 2/coth(x)**7) == tanh(x)**7
def test_trigsimp_groebner():
from sympy.simplify.trigsimp import trigsimp_groebner
c = cos(x)
s = sin(x)
ex = (4*s*c + 12*s + 5*c**3 + 21*c**2 + 23*c + 15)/(
-s*c**2 + 2*s*c + 15*s + 7*c**3 + 31*c**2 + 37*c + 21)
resnum = (5*s - 5*c + 1)
resdenom = (8*s - 6*c)
results = [resnum/resdenom, (-resnum)/(-resdenom)]
assert trigsimp_groebner(ex) in results
assert trigsimp_groebner(s/c, hints=[tan]) == tan(x)
assert trigsimp_groebner(c*s) == c*s
assert trigsimp((-s + 1)/c + c/(-s + 1),
method='groebner') == 2/c
assert trigsimp((-s + 1)/c + c/(-s + 1),
method='groebner', polynomial=True) == 2/c
# Test quick=False works
assert trigsimp_groebner(ex, hints=[2]) in results
assert trigsimp_groebner(ex, hints=[int(2)]) in results
# test "I"
assert trigsimp_groebner(sin(I*x)/cos(I*x), hints=[tanh]) == I*tanh(x)
# test hyperbolic / sums
assert trigsimp_groebner((tanh(x)+tanh(y))/(1+tanh(x)*tanh(y)),
hints=[(tanh, x, y)]) == tanh(x + y)
def test_issue_2827_trigsimp_methods():
measure1 = lambda expr: len(str(expr))
measure2 = lambda expr: -count_ops(expr)
# Return the most complicated result
expr = (x + 1)/(x + sin(x)**2 + cos(x)**2)
ans = Matrix([1])
M = Matrix([expr])
assert trigsimp(M, method='fu', measure=measure1) == ans
assert trigsimp(M, method='fu', measure=measure2) != ans
# all methods should work with Basic expressions even if they
# aren't Expr
M = Matrix.eye(1)
assert all(trigsimp(M, method=m) == M for m in
'fu matching groebner old'.split())
# watch for E in exptrigsimp, not only exp()
eq = 1/sqrt(E) + E
assert exptrigsimp(eq) == eq
def test_issue_15129_trigsimp_methods():
t1 = Matrix([sin(Rational(1, 50)), cos(Rational(1, 50)), 0])
t2 = Matrix([sin(Rational(1, 25)), cos(Rational(1, 25)), 0])
t3 = Matrix([cos(Rational(1, 25)), sin(Rational(1, 25)), 0])
r1 = t1.dot(t2)
r2 = t1.dot(t3)
assert trigsimp(r1) == cos(Rational(1, 50))
assert trigsimp(r2) == sin(Rational(3, 50))
def test_exptrigsimp():
def valid(a, b):
from sympy.core.random import verify_numerically as tn
if not (tn(a, b) and a == b):
return False
return True
assert exptrigsimp(exp(x) + exp(-x)) == 2*cosh(x)
assert exptrigsimp(exp(x) - exp(-x)) == 2*sinh(x)
assert exptrigsimp((2*exp(x)-2*exp(-x))/(exp(x)+exp(-x))) == 2*tanh(x)
assert exptrigsimp((2*exp(2*x)-2)/(exp(2*x)+1)) == 2*tanh(x)
e = [cos(x) + I*sin(x), cos(x) - I*sin(x),
cosh(x) - sinh(x), cosh(x) + sinh(x)]
ok = [exp(I*x), exp(-I*x), exp(-x), exp(x)]
assert all(valid(i, j) for i, j in zip(
[exptrigsimp(ei) for ei in e], ok))
ue = [cos(x) + sin(x), cos(x) - sin(x),
cosh(x) + I*sinh(x), cosh(x) - I*sinh(x)]
assert [exptrigsimp(ei) == ei for ei in ue]
res = []
ok = [y*tanh(1), 1/(y*tanh(1)), I*y*tan(1), -I/(y*tan(1)),
y*tanh(x), 1/(y*tanh(x)), I*y*tan(x), -I/(y*tan(x)),
y*tanh(1 + I), 1/(y*tanh(1 + I))]
for a in (1, I, x, I*x, 1 + I):
w = exp(a)
eq = y*(w - 1/w)/(w + 1/w)
res.append(simplify(eq))
res.append(simplify(1/eq))
assert all(valid(i, j) for i, j in zip(res, ok))
for a in range(1, 3):
w = exp(a)
e = w + 1/w
s = simplify(e)
assert s == exptrigsimp(e)
assert valid(s, 2*cosh(a))
e = w - 1/w
s = simplify(e)
assert s == exptrigsimp(e)
assert valid(s, 2*sinh(a))
def test_exptrigsimp_noncommutative():
a,b = symbols('a b', commutative=False)
x = Symbol('x', commutative=True)
assert exp(a + x) == exptrigsimp(exp(a)*exp(x))
p = exp(a)*exp(b) - exp(b)*exp(a)
assert p == exptrigsimp(p) != 0
def test_powsimp_on_numbers():
assert 2**(Rational(1, 3) - 2) == 2**Rational(1, 3)/4
@XFAIL
def test_issue_6811_fail():
# from doc/src/modules/physics/mechanics/examples.rst, the current `eq`
# at Line 576 (in different variables) was formerly the equivalent and
# shorter expression given below...it would be nice to get the short one
# back again
xp, y, x, z = symbols('xp, y, x, z')
eq = 4*(-19*sin(x)*y + 5*sin(3*x)*y + 15*cos(2*x)*z - 21*z)*xp/(9*cos(x) - 5*cos(3*x))
assert trigsimp(eq) == -2*(2*cos(x)*tan(x)*y + 3*z)*xp/cos(x)
def test_Piecewise():
e1 = x*(x + y) - y*(x + y)
e2 = sin(x)**2 + cos(x)**2
e3 = expand((x + y)*y/x)
# s1 = simplify(e1)
s2 = simplify(e2)
# s3 = simplify(e3)
# trigsimp tries not to touch non-trig containing args
assert trigsimp(Piecewise((e1, e3 < e2), (e3, True))) == \
Piecewise((e1, e3 < s2), (e3, True))
def test_issue_21594():
assert simplify(exp(Rational(1,2)) + exp(Rational(-1,2))) == cosh(S.Half)*2
def test_trigsimp_old():
x, y = symbols('x,y')
assert trigsimp(1 - sin(x)**2, old=True) == cos(x)**2
assert trigsimp(1 - cos(x)**2, old=True) == sin(x)**2
assert trigsimp(sin(x)**2 + cos(x)**2, old=True) == 1
assert trigsimp(1 + tan(x)**2, old=True) == 1/cos(x)**2
assert trigsimp(1/cos(x)**2 - 1, old=True) == tan(x)**2
assert trigsimp(1/cos(x)**2 - tan(x)**2, old=True) == 1
assert trigsimp(1 + cot(x)**2, old=True) == 1/sin(x)**2
assert trigsimp(1/sin(x)**2 - cot(x)**2, old=True) == 1
assert trigsimp(5*cos(x)**2 + 5*sin(x)**2, old=True) == 5
assert trigsimp(sin(x)/cos(x), old=True) == tan(x)
assert trigsimp(2*tan(x)*cos(x), old=True) == 2*sin(x)
assert trigsimp(cot(x)**3*sin(x)**3, old=True) == cos(x)**3
assert trigsimp(y*tan(x)**2/sin(x)**2, old=True) == y/cos(x)**2
assert trigsimp(cot(x)/cos(x), old=True) == 1/sin(x)
assert trigsimp(sin(x + y) + sin(x - y), old=True) == 2*sin(x)*cos(y)
assert trigsimp(sin(x + y) - sin(x - y), old=True) == 2*sin(y)*cos(x)
assert trigsimp(cos(x + y) + cos(x - y), old=True) == 2*cos(x)*cos(y)
assert trigsimp(cos(x + y) - cos(x - y), old=True) == -2*sin(x)*sin(y)
assert trigsimp(sinh(x + y) + sinh(x - y), old=True) == 2*sinh(x)*cosh(y)
assert trigsimp(sinh(x + y) - sinh(x - y), old=True) == 2*sinh(y)*cosh(x)
assert trigsimp(cosh(x + y) + cosh(x - y), old=True) == 2*cosh(x)*cosh(y)
assert trigsimp(cosh(x + y) - cosh(x - y), old=True) == 2*sinh(x)*sinh(y)
assert trigsimp(cos(0.12345)**2 + sin(0.12345)**2, old=True) == 1
assert trigsimp(sin(x)/cos(x), old=True, method='combined') == tan(x)
assert trigsimp(sin(x)/cos(x), old=True, method='groebner') == sin(x)/cos(x)
assert trigsimp(sin(x)/cos(x), old=True, method='groebner', hints=[tan]) == tan(x)
assert trigsimp(1-sin(sin(x)**2+cos(x)**2)**2, old=True, deep=True) == cos(1)**2
def test_trigsimp_inverse():
alpha = symbols('alpha')
s, c = sin(alpha), cos(alpha)
for finv in [asin, acos, asec, acsc, atan, acot]:
f = finv.inverse(None)
assert alpha == trigsimp(finv(f(alpha)), inverse=True)
# test atan2(cos, sin), atan2(sin, cos), etc...
for a, b in [[c, s], [s, c]]:
for i, j in product([-1, 1], repeat=2):
angle = atan2(i*b, j*a)
angle_inverted = trigsimp(angle, inverse=True)
assert angle_inverted != angle # assures simplification happened
assert sin(angle_inverted) == trigsimp(sin(angle))
assert cos(angle_inverted) == trigsimp(cos(angle))
|
b64ad1ab7cde3a35e51fcf241a23e03c70b74d3af963805ba02ddba83b2c2897 | from sympy.core.random import randrange
from sympy.simplify.hyperexpand import (ShiftA, ShiftB, UnShiftA, UnShiftB,
MeijerShiftA, MeijerShiftB, MeijerShiftC, MeijerShiftD,
MeijerUnShiftA, MeijerUnShiftB, MeijerUnShiftC,
MeijerUnShiftD,
ReduceOrder, reduce_order, apply_operators,
devise_plan, make_derivative_operator, Formula,
hyperexpand, Hyper_Function, G_Function,
reduce_order_meijer,
build_hypergeometric_formula)
from sympy.concrete.summations import Sum
from sympy.core.containers import Tuple
from sympy.core.expr import Expr
from sympy.core.numbers import I
from sympy.core.singleton import S
from sympy.core.symbol import symbols
from sympy.functions.combinatorial.factorials import binomial
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.special.hyper import (hyper, meijerg)
from sympy.abc import z, a, b, c
from sympy.testing.pytest import XFAIL, raises, slow, ON_CI, skip
from sympy.core.random import verify_numerically as tn
from sympy.core.numbers import (Rational, pi)
from sympy.functions.elementary.exponential import (exp, exp_polar, log)
from sympy.functions.elementary.hyperbolic import atanh
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (asin, cos, sin)
from sympy.functions.special.bessel import besseli
from sympy.functions.special.error_functions import erf
from sympy.functions.special.gamma_functions import (gamma, lowergamma)
def test_branch_bug():
assert hyperexpand(hyper((Rational(-1, 3), S.Half), (Rational(2, 3), Rational(3, 2)), -z)) == \
-z**S('1/3')*lowergamma(exp_polar(I*pi)/3, z)/5 \
+ sqrt(pi)*erf(sqrt(z))/(5*sqrt(z))
assert hyperexpand(meijerg([Rational(7, 6), 1], [], [Rational(2, 3)], [Rational(1, 6), 0], z)) == \
2*z**S('2/3')*(2*sqrt(pi)*erf(sqrt(z))/sqrt(z) - 2*lowergamma(
Rational(2, 3), z)/z**S('2/3'))*gamma(Rational(2, 3))/gamma(Rational(5, 3))
def test_hyperexpand():
# Luke, Y. L. (1969), The Special Functions and Their Approximations,
# Volume 1, section 6.2
assert hyperexpand(hyper([], [], z)) == exp(z)
assert hyperexpand(hyper([1, 1], [2], -z)*z) == log(1 + z)
assert hyperexpand(hyper([], [S.Half], -z**2/4)) == cos(z)
assert hyperexpand(z*hyper([], [S('3/2')], -z**2/4)) == sin(z)
assert hyperexpand(hyper([S('1/2'), S('1/2')], [S('3/2')], z**2)*z) \
== asin(z)
assert isinstance(Sum(binomial(2, z)*z**2, (z, 0, a)).doit(), Expr)
def can_do(ap, bq, numerical=True, div=1, lowerplane=False):
r = hyperexpand(hyper(ap, bq, z))
if r.has(hyper):
return False
if not numerical:
return True
repl = {}
randsyms = r.free_symbols - {z}
while randsyms:
# Only randomly generated parameters are checked.
for n, ai in enumerate(randsyms):
repl[ai] = randcplx(n)/div
if not any(b.is_Integer and b <= 0 for b in Tuple(*bq).subs(repl)):
break
[a, b, c, d] = [2, -1, 3, 1]
if lowerplane:
[a, b, c, d] = [2, -2, 3, -1]
return tn(
hyper(ap, bq, z).subs(repl),
r.replace(exp_polar, exp).subs(repl),
z, a=a, b=b, c=c, d=d)
def test_roach():
# Kelly B. Roach. Meijer G Function Representations.
# Section "Gallery"
assert can_do([S.Half], [Rational(9, 2)])
assert can_do([], [1, Rational(5, 2), 4])
assert can_do([Rational(-1, 2), 1, 2], [3, 4])
assert can_do([Rational(1, 3)], [Rational(-2, 3), Rational(-1, 2), S.Half, 1])
assert can_do([Rational(-3, 2), Rational(-1, 2)], [Rational(-5, 2), 1])
assert can_do([Rational(-3, 2), ], [Rational(-1, 2), S.Half]) # shine-integral
assert can_do([Rational(-3, 2), Rational(-1, 2)], [2]) # elliptic integrals
@XFAIL
def test_roach_fail():
assert can_do([Rational(-1, 2), 1], [Rational(1, 4), S.Half, Rational(3, 4)]) # PFDD
assert can_do([Rational(3, 2)], [Rational(5, 2), 5]) # struve function
assert can_do([Rational(-1, 2), S.Half, 1], [Rational(3, 2), Rational(5, 2)]) # polylog, pfdd
assert can_do([1, 2, 3], [S.Half, 4]) # XXX ?
assert can_do([S.Half], [Rational(-1, 3), Rational(-1, 2), Rational(-2, 3)]) # PFDD ?
# For the long table tests, see end of file
def test_polynomial():
from sympy.core.numbers import oo
assert hyperexpand(hyper([], [-1], z)) is oo
assert hyperexpand(hyper([-2], [-1], z)) is oo
assert hyperexpand(hyper([0, 0], [-1], z)) == 1
assert can_do([-5, -2, randcplx(), randcplx()], [-10, randcplx()])
assert hyperexpand(hyper((-1, 1), (-2,), z)) == 1 + z/2
def test_hyperexpand_bases():
assert hyperexpand(hyper([2], [a], z)) == \
a + z**(-a + 1)*(-a**2 + 3*a + z*(a - 1) - 2)*exp(z)* \
lowergamma(a - 1, z) - 1
# TODO [a+1, aRational(-1, 2)], [2*a]
assert hyperexpand(hyper([1, 2], [3], z)) == -2/z - 2*log(-z + 1)/z**2
assert hyperexpand(hyper([S.Half, 2], [Rational(3, 2)], z)) == \
-1/(2*z - 2) + atanh(sqrt(z))/sqrt(z)/2
assert hyperexpand(hyper([S.Half, S.Half], [Rational(5, 2)], z)) == \
(-3*z + 3)/4/(z*sqrt(-z + 1)) \
+ (6*z - 3)*asin(sqrt(z))/(4*z**Rational(3, 2))
assert hyperexpand(hyper([1, 2], [Rational(3, 2)], z)) == -1/(2*z - 2) \
- asin(sqrt(z))/(sqrt(z)*(2*z - 2)*sqrt(-z + 1))
assert hyperexpand(hyper([Rational(-1, 2) - 1, 1, 2], [S.Half, 3], z)) == \
sqrt(z)*(z*Rational(6, 7) - Rational(6, 5))*atanh(sqrt(z)) \
+ (-30*z**2 + 32*z - 6)/35/z - 6*log(-z + 1)/(35*z**2)
assert hyperexpand(hyper([1 + S.Half, 1, 1], [2, 2], z)) == \
-4*log(sqrt(-z + 1)/2 + S.Half)/z
# TODO hyperexpand(hyper([a], [2*a + 1], z))
# TODO [S.Half, a], [Rational(3, 2), a+1]
assert hyperexpand(hyper([2], [b, 1], z)) == \
z**(-b/2 + S.Half)*besseli(b - 1, 2*sqrt(z))*gamma(b) \
+ z**(-b/2 + 1)*besseli(b, 2*sqrt(z))*gamma(b)
# TODO [a], [a - S.Half, 2*a]
def test_hyperexpand_parametric():
assert hyperexpand(hyper([a, S.Half + a], [S.Half], z)) \
== (1 + sqrt(z))**(-2*a)/2 + (1 - sqrt(z))**(-2*a)/2
assert hyperexpand(hyper([a, Rational(-1, 2) + a], [2*a], z)) \
== 2**(2*a - 1)*((-z + 1)**S.Half + 1)**(-2*a + 1)
def test_shifted_sum():
from sympy.simplify.simplify import simplify
assert simplify(hyperexpand(z**4*hyper([2], [3, S('3/2')], -z**2))) \
== z*sin(2*z) + (-z**2 + S.Half)*cos(2*z) - S.Half
def _randrat():
""" Steer clear of integers. """
return S(randrange(25) + 10)/50
def randcplx(offset=-1):
""" Polys is not good with real coefficients. """
return _randrat() + I*_randrat() + I*(1 + offset)
@slow
def test_formulae():
from sympy.simplify.hyperexpand import FormulaCollection
formulae = FormulaCollection().formulae
for formula in formulae:
h = formula.func(formula.z)
rep = {}
for n, sym in enumerate(formula.symbols):
rep[sym] = randcplx(n)
# NOTE hyperexpand returns truly branched functions. We know we are
# on the main sheet, but numerical evaluation can still go wrong
# (e.g. if exp_polar cannot be evalf'd).
# Just replace all exp_polar by exp, this usually works.
# first test if the closed-form is actually correct
h = h.subs(rep)
closed_form = formula.closed_form.subs(rep).rewrite('nonrepsmall')
z = formula.z
assert tn(h, closed_form.replace(exp_polar, exp), z)
# now test the computed matrix
cl = (formula.C * formula.B)[0].subs(rep).rewrite('nonrepsmall')
assert tn(closed_form.replace(
exp_polar, exp), cl.replace(exp_polar, exp), z)
deriv1 = z*formula.B.applyfunc(lambda t: t.rewrite(
'nonrepsmall')).diff(z)
deriv2 = formula.M * formula.B
for d1, d2 in zip(deriv1, deriv2):
assert tn(d1.subs(rep).replace(exp_polar, exp),
d2.subs(rep).rewrite('nonrepsmall').replace(exp_polar, exp), z)
def test_meijerg_formulae():
from sympy.simplify.hyperexpand import MeijerFormulaCollection
formulae = MeijerFormulaCollection().formulae
for sig in formulae:
for formula in formulae[sig]:
g = meijerg(formula.func.an, formula.func.ap,
formula.func.bm, formula.func.bq,
formula.z)
rep = {}
for sym in formula.symbols:
rep[sym] = randcplx()
# first test if the closed-form is actually correct
g = g.subs(rep)
closed_form = formula.closed_form.subs(rep)
z = formula.z
assert tn(g, closed_form, z)
# now test the computed matrix
cl = (formula.C * formula.B)[0].subs(rep)
assert tn(closed_form, cl, z)
deriv1 = z*formula.B.diff(z)
deriv2 = formula.M * formula.B
for d1, d2 in zip(deriv1, deriv2):
assert tn(d1.subs(rep), d2.subs(rep), z)
def op(f):
return z*f.diff(z)
def test_plan():
assert devise_plan(Hyper_Function([0], ()),
Hyper_Function([0], ()), z) == []
with raises(ValueError):
devise_plan(Hyper_Function([1], ()), Hyper_Function((), ()), z)
with raises(ValueError):
devise_plan(Hyper_Function([2], [1]), Hyper_Function([2], [2]), z)
with raises(ValueError):
devise_plan(Hyper_Function([2], []), Hyper_Function([S("1/2")], []), z)
# We cannot use pi/(10000 + n) because polys is insanely slow.
a1, a2, b1 = (randcplx(n) for n in range(3))
b1 += 2*I
h = hyper([a1, a2], [b1], z)
h2 = hyper((a1 + 1, a2), [b1], z)
assert tn(apply_operators(h,
devise_plan(Hyper_Function((a1 + 1, a2), [b1]),
Hyper_Function((a1, a2), [b1]), z), op),
h2, z)
h2 = hyper((a1 + 1, a2 - 1), [b1], z)
assert tn(apply_operators(h,
devise_plan(Hyper_Function((a1 + 1, a2 - 1), [b1]),
Hyper_Function((a1, a2), [b1]), z), op),
h2, z)
def test_plan_derivatives():
a1, a2, a3 = 1, 2, S('1/2')
b1, b2 = 3, S('5/2')
h = Hyper_Function((a1, a2, a3), (b1, b2))
h2 = Hyper_Function((a1 + 1, a2 + 1, a3 + 2), (b1 + 1, b2 + 1))
ops = devise_plan(h2, h, z)
f = Formula(h, z, h(z), [])
deriv = make_derivative_operator(f.M, z)
assert tn((apply_operators(f.C, ops, deriv)*f.B)[0], h2(z), z)
h2 = Hyper_Function((a1, a2 - 1, a3 - 2), (b1 - 1, b2 - 1))
ops = devise_plan(h2, h, z)
assert tn((apply_operators(f.C, ops, deriv)*f.B)[0], h2(z), z)
def test_reduction_operators():
a1, a2, b1 = (randcplx(n) for n in range(3))
h = hyper([a1], [b1], z)
assert ReduceOrder(2, 0) is None
assert ReduceOrder(2, -1) is None
assert ReduceOrder(1, S('1/2')) is None
h2 = hyper((a1, a2), (b1, a2), z)
assert tn(ReduceOrder(a2, a2).apply(h, op), h2, z)
h2 = hyper((a1, a2 + 1), (b1, a2), z)
assert tn(ReduceOrder(a2 + 1, a2).apply(h, op), h2, z)
h2 = hyper((a2 + 4, a1), (b1, a2), z)
assert tn(ReduceOrder(a2 + 4, a2).apply(h, op), h2, z)
# test several step order reduction
ap = (a2 + 4, a1, b1 + 1)
bq = (a2, b1, b1)
func, ops = reduce_order(Hyper_Function(ap, bq))
assert func.ap == (a1,)
assert func.bq == (b1,)
assert tn(apply_operators(h, ops, op), hyper(ap, bq, z), z)
def test_shift_operators():
a1, a2, b1, b2, b3 = (randcplx(n) for n in range(5))
h = hyper((a1, a2), (b1, b2, b3), z)
raises(ValueError, lambda: ShiftA(0))
raises(ValueError, lambda: ShiftB(1))
assert tn(ShiftA(a1).apply(h, op), hyper((a1 + 1, a2), (b1, b2, b3), z), z)
assert tn(ShiftA(a2).apply(h, op), hyper((a1, a2 + 1), (b1, b2, b3), z), z)
assert tn(ShiftB(b1).apply(h, op), hyper((a1, a2), (b1 - 1, b2, b3), z), z)
assert tn(ShiftB(b2).apply(h, op), hyper((a1, a2), (b1, b2 - 1, b3), z), z)
assert tn(ShiftB(b3).apply(h, op), hyper((a1, a2), (b1, b2, b3 - 1), z), z)
def test_ushift_operators():
a1, a2, b1, b2, b3 = (randcplx(n) for n in range(5))
h = hyper((a1, a2), (b1, b2, b3), z)
raises(ValueError, lambda: UnShiftA((1,), (), 0, z))
raises(ValueError, lambda: UnShiftB((), (-1,), 0, z))
raises(ValueError, lambda: UnShiftA((1,), (0, -1, 1), 0, z))
raises(ValueError, lambda: UnShiftB((0, 1), (1,), 0, z))
s = UnShiftA((a1, a2), (b1, b2, b3), 0, z)
assert tn(s.apply(h, op), hyper((a1 - 1, a2), (b1, b2, b3), z), z)
s = UnShiftA((a1, a2), (b1, b2, b3), 1, z)
assert tn(s.apply(h, op), hyper((a1, a2 - 1), (b1, b2, b3), z), z)
s = UnShiftB((a1, a2), (b1, b2, b3), 0, z)
assert tn(s.apply(h, op), hyper((a1, a2), (b1 + 1, b2, b3), z), z)
s = UnShiftB((a1, a2), (b1, b2, b3), 1, z)
assert tn(s.apply(h, op), hyper((a1, a2), (b1, b2 + 1, b3), z), z)
s = UnShiftB((a1, a2), (b1, b2, b3), 2, z)
assert tn(s.apply(h, op), hyper((a1, a2), (b1, b2, b3 + 1), z), z)
def can_do_meijer(a1, a2, b1, b2, numeric=True):
"""
This helper function tries to hyperexpand() the meijer g-function
corresponding to the parameters a1, a2, b1, b2.
It returns False if this expansion still contains g-functions.
If numeric is True, it also tests the so-obtained formula numerically
(at random values) and returns False if the test fails.
Else it returns True.
"""
from sympy.core.function import expand
from sympy.functions.elementary.complexes import unpolarify
r = hyperexpand(meijerg(a1, a2, b1, b2, z))
if r.has(meijerg):
return False
# NOTE hyperexpand() returns a truly branched function, whereas numerical
# evaluation only works on the main branch. Since we are evaluating on
# the main branch, this should not be a problem, but expressions like
# exp_polar(I*pi/2*x)**a are evaluated incorrectly. We thus have to get
# rid of them. The expand heuristically does this...
r = unpolarify(expand(r, force=True, power_base=True, power_exp=False,
mul=False, log=False, multinomial=False, basic=False))
if not numeric:
return True
repl = {}
for n, ai in enumerate(meijerg(a1, a2, b1, b2, z).free_symbols - {z}):
repl[ai] = randcplx(n)
return tn(meijerg(a1, a2, b1, b2, z).subs(repl), r.subs(repl), z)
@slow
def test_meijerg_expand():
from sympy.simplify.gammasimp import gammasimp
from sympy.simplify.simplify import simplify
# from mpmath docs
assert hyperexpand(meijerg([[], []], [[0], []], -z)) == exp(z)
assert hyperexpand(meijerg([[1, 1], []], [[1], [0]], z)) == \
log(z + 1)
assert hyperexpand(meijerg([[1, 1], []], [[1], [1]], z)) == \
z/(z + 1)
assert hyperexpand(meijerg([[], []], [[S.Half], [0]], (z/2)**2)) \
== sin(z)/sqrt(pi)
assert hyperexpand(meijerg([[], []], [[0], [S.Half]], (z/2)**2)) \
== cos(z)/sqrt(pi)
assert can_do_meijer([], [a], [a - 1, a - S.Half], [])
assert can_do_meijer([], [], [a/2], [-a/2], False) # branches...
assert can_do_meijer([a], [b], [a], [b, a - 1])
# wikipedia
assert hyperexpand(meijerg([1], [], [], [0], z)) == \
Piecewise((0, abs(z) < 1), (1, abs(1/z) < 1),
(meijerg([1], [], [], [0], z), True))
assert hyperexpand(meijerg([], [1], [0], [], z)) == \
Piecewise((1, abs(z) < 1), (0, abs(1/z) < 1),
(meijerg([], [1], [0], [], z), True))
# The Special Functions and their Approximations
assert can_do_meijer([], [], [a + b/2], [a, a - b/2, a + S.Half])
assert can_do_meijer(
[], [], [a], [b], False) # branches only agree for small z
assert can_do_meijer([], [S.Half], [a], [-a])
assert can_do_meijer([], [], [a, b], [])
assert can_do_meijer([], [], [a, b], [])
assert can_do_meijer([], [], [a, a + S.Half], [b, b + S.Half])
assert can_do_meijer([], [], [a, -a], [0, S.Half], False) # dito
assert can_do_meijer([], [], [a, a + S.Half, b, b + S.Half], [])
assert can_do_meijer([S.Half], [], [0], [a, -a])
assert can_do_meijer([S.Half], [], [a], [0, -a], False) # dito
assert can_do_meijer([], [a - S.Half], [a, b], [a - S.Half], False)
assert can_do_meijer([], [a + S.Half], [a + b, a - b, a], [], False)
assert can_do_meijer([a + S.Half], [], [b, 2*a - b, a], [], False)
# This for example is actually zero.
assert can_do_meijer([], [], [], [a, b])
# Testing a bug:
assert hyperexpand(meijerg([0, 2], [], [], [-1, 1], z)) == \
Piecewise((0, abs(z) < 1),
(z*(1 - 1/z**2)/2, abs(1/z) < 1),
(meijerg([0, 2], [], [], [-1, 1], z), True))
# Test that the simplest possible answer is returned:
assert gammasimp(simplify(hyperexpand(
meijerg([1], [1 - a], [-a/2, -a/2 + S.Half], [], 1/z)))) == \
-2*sqrt(pi)*(sqrt(z + 1) + 1)**a/a
# Test that hyper is returned
assert hyperexpand(meijerg([1], [], [a], [0, 0], z)) == hyper(
(a,), (a + 1, a + 1), z*exp_polar(I*pi))*z**a*gamma(a)/gamma(a + 1)**2
# Test place option
f = meijerg(((0, 1), ()), ((S.Half,), (0,)), z**2)
assert hyperexpand(f) == sqrt(pi)/sqrt(1 + z**(-2))
assert hyperexpand(f, place=0) == sqrt(pi)*z/sqrt(z**2 + 1)
def test_meijerg_lookup():
from sympy.functions.special.error_functions import (Ci, Si)
from sympy.functions.special.gamma_functions import uppergamma
assert hyperexpand(meijerg([a], [], [b, a], [], z)) == \
z**b*exp(z)*gamma(-a + b + 1)*uppergamma(a - b, z)
assert hyperexpand(meijerg([0], [], [0, 0], [], z)) == \
exp(z)*uppergamma(0, z)
assert can_do_meijer([a], [], [b, a + 1], [])
assert can_do_meijer([a], [], [b + 2, a], [])
assert can_do_meijer([a], [], [b - 2, a], [])
assert hyperexpand(meijerg([a], [], [a, a, a - S.Half], [], z)) == \
-sqrt(pi)*z**(a - S.Half)*(2*cos(2*sqrt(z))*(Si(2*sqrt(z)) - pi/2)
- 2*sin(2*sqrt(z))*Ci(2*sqrt(z))) == \
hyperexpand(meijerg([a], [], [a, a - S.Half, a], [], z)) == \
hyperexpand(meijerg([a], [], [a - S.Half, a, a], [], z))
assert can_do_meijer([a - 1], [], [a + 2, a - Rational(3, 2), a + 1], [])
@XFAIL
def test_meijerg_expand_fail():
# These basically test hyper([], [1/2 - a, 1/2 + 1, 1/2], z),
# which is *very* messy. But since the meijer g actually yields a
# sum of bessel functions, things can sometimes be simplified a lot and
# are then put into tables...
assert can_do_meijer([], [], [a + S.Half], [a, a - b/2, a + b/2])
assert can_do_meijer([], [], [0, S.Half], [a, -a])
assert can_do_meijer([], [], [3*a - S.Half, a, -a - S.Half], [a - S.Half])
assert can_do_meijer([], [], [0, a - S.Half, -a - S.Half], [S.Half])
assert can_do_meijer([], [], [a, b + S.Half, b], [2*b - a])
assert can_do_meijer([], [], [a, b + S.Half, b, 2*b - a])
assert can_do_meijer([S.Half], [], [-a, a], [0])
@slow
def test_meijerg():
# carefully set up the parameters.
# NOTE: this used to fail sometimes. I believe it is fixed, but if you
# hit an inexplicable test failure here, please let me know the seed.
a1, a2 = (randcplx(n) - 5*I - n*I for n in range(2))
b1, b2 = (randcplx(n) + 5*I + n*I for n in range(2))
b3, b4, b5, a3, a4, a5 = (randcplx() for n in range(6))
g = meijerg([a1], [a3, a4], [b1], [b3, b4], z)
assert ReduceOrder.meijer_minus(3, 4) is None
assert ReduceOrder.meijer_plus(4, 3) is None
g2 = meijerg([a1, a2], [a3, a4], [b1], [b3, b4, a2], z)
assert tn(ReduceOrder.meijer_plus(a2, a2).apply(g, op), g2, z)
g2 = meijerg([a1, a2], [a3, a4], [b1], [b3, b4, a2 + 1], z)
assert tn(ReduceOrder.meijer_plus(a2, a2 + 1).apply(g, op), g2, z)
g2 = meijerg([a1, a2 - 1], [a3, a4], [b1], [b3, b4, a2 + 2], z)
assert tn(ReduceOrder.meijer_plus(a2 - 1, a2 + 2).apply(g, op), g2, z)
g2 = meijerg([a1], [a3, a4, b2 - 1], [b1, b2 + 2], [b3, b4], z)
assert tn(ReduceOrder.meijer_minus(
b2 + 2, b2 - 1).apply(g, op), g2, z, tol=1e-6)
# test several-step reduction
an = [a1, a2]
bq = [b3, b4, a2 + 1]
ap = [a3, a4, b2 - 1]
bm = [b1, b2 + 1]
niq, ops = reduce_order_meijer(G_Function(an, ap, bm, bq))
assert niq.an == (a1,)
assert set(niq.ap) == {a3, a4}
assert niq.bm == (b1,)
assert set(niq.bq) == {b3, b4}
assert tn(apply_operators(g, ops, op), meijerg(an, ap, bm, bq, z), z)
def test_meijerg_shift_operators():
# carefully set up the parameters. XXX this still fails sometimes
a1, a2, a3, a4, a5, b1, b2, b3, b4, b5 = (randcplx(n) for n in range(10))
g = meijerg([a1], [a3, a4], [b1], [b3, b4], z)
assert tn(MeijerShiftA(b1).apply(g, op),
meijerg([a1], [a3, a4], [b1 + 1], [b3, b4], z), z)
assert tn(MeijerShiftB(a1).apply(g, op),
meijerg([a1 - 1], [a3, a4], [b1], [b3, b4], z), z)
assert tn(MeijerShiftC(b3).apply(g, op),
meijerg([a1], [a3, a4], [b1], [b3 + 1, b4], z), z)
assert tn(MeijerShiftD(a3).apply(g, op),
meijerg([a1], [a3 - 1, a4], [b1], [b3, b4], z), z)
s = MeijerUnShiftA([a1], [a3, a4], [b1], [b3, b4], 0, z)
assert tn(
s.apply(g, op), meijerg([a1], [a3, a4], [b1 - 1], [b3, b4], z), z)
s = MeijerUnShiftC([a1], [a3, a4], [b1], [b3, b4], 0, z)
assert tn(
s.apply(g, op), meijerg([a1], [a3, a4], [b1], [b3 - 1, b4], z), z)
s = MeijerUnShiftB([a1], [a3, a4], [b1], [b3, b4], 0, z)
assert tn(
s.apply(g, op), meijerg([a1 + 1], [a3, a4], [b1], [b3, b4], z), z)
s = MeijerUnShiftD([a1], [a3, a4], [b1], [b3, b4], 0, z)
assert tn(
s.apply(g, op), meijerg([a1], [a3 + 1, a4], [b1], [b3, b4], z), z)
@slow
def test_meijerg_confluence():
def t(m, a, b):
from sympy.core.sympify import sympify
a, b = sympify([a, b])
m_ = m
m = hyperexpand(m)
if not m == Piecewise((a, abs(z) < 1), (b, abs(1/z) < 1), (m_, True)):
return False
if not (m.args[0].args[0] == a and m.args[1].args[0] == b):
return False
z0 = randcplx()/10
if abs(m.subs(z, z0).n() - a.subs(z, z0).n()).n() > 1e-10:
return False
if abs(m.subs(z, 1/z0).n() - b.subs(z, 1/z0).n()).n() > 1e-10:
return False
return True
assert t(meijerg([], [1, 1], [0, 0], [], z), -log(z), 0)
assert t(meijerg(
[], [3, 1], [0, 0], [], z), -z**2/4 + z - log(z)/2 - Rational(3, 4), 0)
assert t(meijerg([], [3, 1], [-1, 0], [], z),
z**2/12 - z/2 + log(z)/2 + Rational(1, 4) + 1/(6*z), 0)
assert t(meijerg([], [1, 1, 1, 1], [0, 0, 0, 0], [], z), -log(z)**3/6, 0)
assert t(meijerg([1, 1], [], [], [0, 0], z), 0, -log(1/z))
assert t(meijerg([1, 1], [2, 2], [1, 1], [0, 0], z),
-z*log(z) + 2*z, -log(1/z) + 2)
assert t(meijerg([S.Half], [1, 1], [0, 0], [Rational(3, 2)], z), log(z)/2 - 1, 0)
def u(an, ap, bm, bq):
m = meijerg(an, ap, bm, bq, z)
m2 = hyperexpand(m, allow_hyper=True)
if m2.has(meijerg) and not (m2.is_Piecewise and len(m2.args) == 3):
return False
return tn(m, m2, z)
assert u([], [1], [0, 0], [])
assert u([1, 1], [], [], [0])
assert u([1, 1], [2, 2, 5], [1, 1, 6], [0, 0])
assert u([1, 1], [2, 2, 5], [1, 1, 6], [0])
def test_meijerg_with_Floats():
# see issue #10681
from sympy.polys.domains.realfield import RR
f = meijerg(((3.0, 1), ()), ((Rational(3, 2),), (0,)), z)
a = -2.3632718012073
g = a*z**Rational(3, 2)*hyper((-0.5, Rational(3, 2)), (Rational(5, 2),), z*exp_polar(I*pi))
assert RR.almosteq((hyperexpand(f)/g).n(), 1.0, 1e-12)
def test_lerchphi():
from sympy.functions.special.zeta_functions import (lerchphi, polylog)
from sympy.simplify.gammasimp import gammasimp
assert hyperexpand(hyper([1, a], [a + 1], z)/a) == lerchphi(z, 1, a)
assert hyperexpand(
hyper([1, a, a], [a + 1, a + 1], z)/a**2) == lerchphi(z, 2, a)
assert hyperexpand(hyper([1, a, a, a], [a + 1, a + 1, a + 1], z)/a**3) == \
lerchphi(z, 3, a)
assert hyperexpand(hyper([1] + [a]*10, [a + 1]*10, z)/a**10) == \
lerchphi(z, 10, a)
assert gammasimp(hyperexpand(meijerg([0, 1 - a], [], [0],
[-a], exp_polar(-I*pi)*z))) == lerchphi(z, 1, a)
assert gammasimp(hyperexpand(meijerg([0, 1 - a, 1 - a], [], [0],
[-a, -a], exp_polar(-I*pi)*z))) == lerchphi(z, 2, a)
assert gammasimp(hyperexpand(meijerg([0, 1 - a, 1 - a, 1 - a], [], [0],
[-a, -a, -a], exp_polar(-I*pi)*z))) == lerchphi(z, 3, a)
assert hyperexpand(z*hyper([1, 1], [2], z)) == -log(1 + -z)
assert hyperexpand(z*hyper([1, 1, 1], [2, 2], z)) == polylog(2, z)
assert hyperexpand(z*hyper([1, 1, 1, 1], [2, 2, 2], z)) == polylog(3, z)
assert hyperexpand(hyper([1, a, 1 + S.Half], [a + 1, S.Half], z)) == \
-2*a/(z - 1) + (-2*a**2 + a)*lerchphi(z, 1, a)
# Now numerical tests. These make sure reductions etc are carried out
# correctly
# a rational function (polylog at negative integer order)
assert can_do([2, 2, 2], [1, 1])
# NOTE these contain log(1-x) etc ... better make sure we have |z| < 1
# reduction of order for polylog
assert can_do([1, 1, 1, b + 5], [2, 2, b], div=10)
# reduction of order for lerchphi
# XXX lerchphi in mpmath is flaky
assert can_do(
[1, a, a, a, b + 5], [a + 1, a + 1, a + 1, b], numerical=False)
# test a bug
from sympy.functions.elementary.complexes import Abs
assert hyperexpand(hyper([S.Half, S.Half, S.Half, 1],
[Rational(3, 2), Rational(3, 2), Rational(3, 2)], Rational(1, 4))) == \
Abs(-polylog(3, exp_polar(I*pi)/2) + polylog(3, S.Half))
def test_partial_simp():
# First test that hypergeometric function formulae work.
a, b, c, d, e = (randcplx() for _ in range(5))
for func in [Hyper_Function([a, b, c], [d, e]),
Hyper_Function([], [a, b, c, d, e])]:
f = build_hypergeometric_formula(func)
z = f.z
assert f.closed_form == func(z)
deriv1 = f.B.diff(z)*z
deriv2 = f.M*f.B
for func1, func2 in zip(deriv1, deriv2):
assert tn(func1, func2, z)
# Now test that formulae are partially simplified.
a, b, z = symbols('a b z')
assert hyperexpand(hyper([3, a], [1, b], z)) == \
(-a*b/2 + a*z/2 + 2*a)*hyper([a + 1], [b], z) \
+ (a*b/2 - 2*a + 1)*hyper([a], [b], z)
assert tn(
hyperexpand(hyper([3, d], [1, e], z)), hyper([3, d], [1, e], z), z)
assert hyperexpand(hyper([3], [1, a, b], z)) == \
hyper((), (a, b), z) \
+ z*hyper((), (a + 1, b), z)/(2*a) \
- z*(b - 4)*hyper((), (a + 1, b + 1), z)/(2*a*b)
assert tn(
hyperexpand(hyper([3], [1, d, e], z)), hyper([3], [1, d, e], z), z)
def test_hyperexpand_special():
assert hyperexpand(hyper([a, b], [c], 1)) == \
gamma(c)*gamma(c - a - b)/gamma(c - a)/gamma(c - b)
assert hyperexpand(hyper([a, b], [1 + a - b], -1)) == \
gamma(1 + a/2)*gamma(1 + a - b)/gamma(1 + a)/gamma(1 + a/2 - b)
assert hyperexpand(hyper([a, b], [1 + b - a], -1)) == \
gamma(1 + b/2)*gamma(1 + b - a)/gamma(1 + b)/gamma(1 + b/2 - a)
assert hyperexpand(meijerg([1 - z - a/2], [1 - z + a/2], [b/2], [-b/2], 1)) == \
gamma(1 - 2*z)*gamma(z + a/2 + b/2)/gamma(1 - z + a/2 - b/2) \
/gamma(1 - z - a/2 + b/2)/gamma(1 - z + a/2 + b/2)
assert hyperexpand(hyper([a], [b], 0)) == 1
assert hyper([a], [b], 0) != 0
def test_Mod1_behavior():
from sympy.core.symbol import Symbol
from sympy.simplify.simplify import simplify
n = Symbol('n', integer=True)
# Note: this should not hang.
assert simplify(hyperexpand(meijerg([1], [], [n + 1], [0], z))) == \
lowergamma(n + 1, z)
@slow
def test_prudnikov_misc():
assert can_do([1, (3 + I)/2, (3 - I)/2], [Rational(3, 2), 2])
assert can_do([S.Half, a - 1], [Rational(3, 2), a + 1], lowerplane=True)
assert can_do([], [b + 1])
assert can_do([a], [a - 1, b + 1])
assert can_do([a], [a - S.Half, 2*a])
assert can_do([a], [a - S.Half, 2*a + 1])
assert can_do([a], [a - S.Half, 2*a - 1])
assert can_do([a], [a + S.Half, 2*a])
assert can_do([a], [a + S.Half, 2*a + 1])
assert can_do([a], [a + S.Half, 2*a - 1])
assert can_do([S.Half], [b, 2 - b])
assert can_do([S.Half], [b, 3 - b])
assert can_do([1], [2, b])
assert can_do([a, a + S.Half], [2*a, b, 2*a - b + 1])
assert can_do([a, a + S.Half], [S.Half, 2*a, 2*a + S.Half])
assert can_do([a], [a + 1], lowerplane=True) # lowergamma
def test_prudnikov_1():
# A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev (1990).
# Integrals and Series: More Special Functions, Vol. 3,.
# Gordon and Breach Science Publisher
# 7.3.1
assert can_do([a, -a], [S.Half])
assert can_do([a, 1 - a], [S.Half])
assert can_do([a, 1 - a], [Rational(3, 2)])
assert can_do([a, 2 - a], [S.Half])
assert can_do([a, 2 - a], [Rational(3, 2)])
assert can_do([a, 2 - a], [Rational(3, 2)])
assert can_do([a, a + S.Half], [2*a - 1])
assert can_do([a, a + S.Half], [2*a])
assert can_do([a, a + S.Half], [2*a + 1])
assert can_do([a, a + S.Half], [S.Half])
assert can_do([a, a + S.Half], [Rational(3, 2)])
assert can_do([a, a/2 + 1], [a/2])
assert can_do([1, b], [2])
assert can_do([1, b], [b + 1], numerical=False) # Lerch Phi
# NOTE: branches are complicated for |z| > 1
assert can_do([a], [2*a])
assert can_do([a], [2*a + 1])
assert can_do([a], [2*a - 1])
@slow
def test_prudnikov_2():
h = S.Half
assert can_do([-h, -h], [h])
assert can_do([-h, h], [3*h])
assert can_do([-h, h], [5*h])
assert can_do([-h, h], [7*h])
assert can_do([-h, 1], [h])
for p in [-h, h]:
for n in [-h, h, 1, 3*h, 2, 5*h, 3, 7*h, 4]:
for m in [-h, h, 3*h, 5*h, 7*h]:
assert can_do([p, n], [m])
for n in [1, 2, 3, 4]:
for m in [1, 2, 3, 4]:
assert can_do([p, n], [m])
@slow
def test_prudnikov_3():
if ON_CI:
# See https://github.com/sympy/sympy/pull/12795
skip("Too slow for CI.")
h = S.Half
assert can_do([Rational(1, 4), Rational(3, 4)], [h])
assert can_do([Rational(1, 4), Rational(3, 4)], [3*h])
assert can_do([Rational(1, 3), Rational(2, 3)], [3*h])
assert can_do([Rational(3, 4), Rational(5, 4)], [h])
assert can_do([Rational(3, 4), Rational(5, 4)], [3*h])
for p in [1, 2, 3, 4]:
for n in [-h, h, 1, 3*h, 2, 5*h, 3, 7*h, 4, 9*h]:
for m in [1, 3*h, 2, 5*h, 3, 7*h, 4]:
assert can_do([p, m], [n])
@slow
def test_prudnikov_4():
h = S.Half
for p in [3*h, 5*h, 7*h]:
for n in [-h, h, 3*h, 5*h, 7*h]:
for m in [3*h, 2, 5*h, 3, 7*h, 4]:
assert can_do([p, m], [n])
for n in [1, 2, 3, 4]:
for m in [2, 3, 4]:
assert can_do([p, m], [n])
@slow
def test_prudnikov_5():
h = S.Half
for p in [1, 2, 3]:
for q in range(p, 4):
for r in [1, 2, 3]:
for s in range(r, 4):
assert can_do([-h, p, q], [r, s])
for p in [h, 1, 3*h, 2, 5*h, 3]:
for q in [h, 3*h, 5*h]:
for r in [h, 3*h, 5*h]:
for s in [h, 3*h, 5*h]:
if s <= q and s <= r:
assert can_do([-h, p, q], [r, s])
for p in [h, 1, 3*h, 2, 5*h, 3]:
for q in [1, 2, 3]:
for r in [h, 3*h, 5*h]:
for s in [1, 2, 3]:
assert can_do([-h, p, q], [r, s])
@slow
def test_prudnikov_6():
h = S.Half
for m in [3*h, 5*h]:
for n in [1, 2, 3]:
for q in [h, 1, 2]:
for p in [1, 2, 3]:
assert can_do([h, q, p], [m, n])
for q in [1, 2, 3]:
for p in [3*h, 5*h]:
assert can_do([h, q, p], [m, n])
for q in [1, 2]:
for p in [1, 2, 3]:
for m in [1, 2, 3]:
for n in [1, 2, 3]:
assert can_do([h, q, p], [m, n])
assert can_do([h, h, 5*h], [3*h, 3*h])
assert can_do([h, 1, 5*h], [3*h, 3*h])
assert can_do([h, 2, 2], [1, 3])
# pages 435 to 457 contain more PFDD and stuff like this
@slow
def test_prudnikov_7():
assert can_do([3], [6])
h = S.Half
for n in [h, 3*h, 5*h, 7*h]:
assert can_do([-h], [n])
for m in [-h, h, 1, 3*h, 2, 5*h, 3, 7*h, 4]: # HERE
for n in [-h, h, 3*h, 5*h, 7*h, 1, 2, 3, 4]:
assert can_do([m], [n])
@slow
def test_prudnikov_8():
h = S.Half
# 7.12.2
for ai in [1, 2, 3]:
for bi in [1, 2, 3]:
for ci in range(1, ai + 1):
for di in [h, 1, 3*h, 2, 5*h, 3]:
assert can_do([ai, bi], [ci, di])
for bi in [3*h, 5*h]:
for ci in [h, 1, 3*h, 2, 5*h, 3]:
for di in [1, 2, 3]:
assert can_do([ai, bi], [ci, di])
for ai in [-h, h, 3*h, 5*h]:
for bi in [1, 2, 3]:
for ci in [h, 1, 3*h, 2, 5*h, 3]:
for di in [1, 2, 3]:
assert can_do([ai, bi], [ci, di])
for bi in [h, 3*h, 5*h]:
for ci in [h, 3*h, 5*h, 3]:
for di in [h, 1, 3*h, 2, 5*h, 3]:
if ci <= bi:
assert can_do([ai, bi], [ci, di])
def test_prudnikov_9():
# 7.13.1 [we have a general formula ... so this is a bit pointless]
for i in range(9):
assert can_do([], [(S(i) + 1)/2])
for i in range(5):
assert can_do([], [-(2*S(i) + 1)/2])
@slow
def test_prudnikov_10():
# 7.14.2
h = S.Half
for p in [-h, h, 1, 3*h, 2, 5*h, 3, 7*h, 4]:
for m in [1, 2, 3, 4]:
for n in range(m, 5):
assert can_do([p], [m, n])
for p in [1, 2, 3, 4]:
for n in [h, 3*h, 5*h, 7*h]:
for m in [1, 2, 3, 4]:
assert can_do([p], [n, m])
for p in [3*h, 5*h, 7*h]:
for m in [h, 1, 2, 5*h, 3, 7*h, 4]:
assert can_do([p], [h, m])
assert can_do([p], [3*h, m])
for m in [h, 1, 2, 5*h, 3, 7*h, 4]:
assert can_do([7*h], [5*h, m])
assert can_do([Rational(-1, 2)], [S.Half, S.Half]) # shine-integral shi
def test_prudnikov_11():
# 7.15
assert can_do([a, a + S.Half], [2*a, b, 2*a - b])
assert can_do([a, a + S.Half], [Rational(3, 2), 2*a, 2*a - S.Half])
assert can_do([Rational(1, 4), Rational(3, 4)], [S.Half, S.Half, 1])
assert can_do([Rational(5, 4), Rational(3, 4)], [Rational(3, 2), S.Half, 2])
assert can_do([Rational(5, 4), Rational(3, 4)], [Rational(3, 2), Rational(3, 2), 1])
assert can_do([Rational(5, 4), Rational(7, 4)], [Rational(3, 2), Rational(5, 2), 2])
assert can_do([1, 1], [Rational(3, 2), 2, 2]) # cosh-integral chi
def test_prudnikov_12():
# 7.16
assert can_do(
[], [a, a + S.Half, 2*a], False) # branches only agree for some z!
assert can_do([], [a, a + S.Half, 2*a + 1], False) # dito
assert can_do([], [S.Half, a, a + S.Half])
assert can_do([], [Rational(3, 2), a, a + S.Half])
assert can_do([], [Rational(1, 4), S.Half, Rational(3, 4)])
assert can_do([], [S.Half, S.Half, 1])
assert can_do([], [S.Half, Rational(3, 2), 1])
assert can_do([], [Rational(3, 4), Rational(3, 2), Rational(5, 4)])
assert can_do([], [1, 1, Rational(3, 2)])
assert can_do([], [1, 2, Rational(3, 2)])
assert can_do([], [1, Rational(3, 2), Rational(3, 2)])
assert can_do([], [Rational(5, 4), Rational(3, 2), Rational(7, 4)])
assert can_do([], [2, Rational(3, 2), Rational(3, 2)])
@slow
def test_prudnikov_2F1():
h = S.Half
# Elliptic integrals
for p in [-h, h]:
for m in [h, 3*h, 5*h, 7*h]:
for n in [1, 2, 3, 4]:
assert can_do([p, m], [n])
@XFAIL
def test_prudnikov_fail_2F1():
assert can_do([a, b], [b + 1]) # incomplete beta function
assert can_do([-1, b], [c]) # Poly. also -2, -3 etc
# TODO polys
# Legendre functions:
assert can_do([a, b], [a + b + S.Half])
assert can_do([a, b], [a + b - S.Half])
assert can_do([a, b], [a + b + Rational(3, 2)])
assert can_do([a, b], [(a + b + 1)/2])
assert can_do([a, b], [(a + b)/2 + 1])
assert can_do([a, b], [a - b + 1])
assert can_do([a, b], [a - b + 2])
assert can_do([a, b], [2*b])
assert can_do([a, b], [S.Half])
assert can_do([a, b], [Rational(3, 2)])
assert can_do([a, 1 - a], [c])
assert can_do([a, 2 - a], [c])
assert can_do([a, 3 - a], [c])
assert can_do([a, a + S.Half], [c])
assert can_do([1, b], [c])
assert can_do([1, b], [Rational(3, 2)])
assert can_do([Rational(1, 4), Rational(3, 4)], [1])
# PFDD
o = S.One
assert can_do([o/8, 1], [o/8*9])
assert can_do([o/6, 1], [o/6*7])
assert can_do([o/6, 1], [o/6*13])
assert can_do([o/5, 1], [o/5*6])
assert can_do([o/5, 1], [o/5*11])
assert can_do([o/4, 1], [o/4*5])
assert can_do([o/4, 1], [o/4*9])
assert can_do([o/3, 1], [o/3*4])
assert can_do([o/3, 1], [o/3*7])
assert can_do([o/8*3, 1], [o/8*11])
assert can_do([o/5*2, 1], [o/5*7])
assert can_do([o/5*2, 1], [o/5*12])
assert can_do([o/5*3, 1], [o/5*8])
assert can_do([o/5*3, 1], [o/5*13])
assert can_do([o/8*5, 1], [o/8*13])
assert can_do([o/4*3, 1], [o/4*7])
assert can_do([o/4*3, 1], [o/4*11])
assert can_do([o/3*2, 1], [o/3*5])
assert can_do([o/3*2, 1], [o/3*8])
assert can_do([o/5*4, 1], [o/5*9])
assert can_do([o/5*4, 1], [o/5*14])
assert can_do([o/6*5, 1], [o/6*11])
assert can_do([o/6*5, 1], [o/6*17])
assert can_do([o/8*7, 1], [o/8*15])
@XFAIL
def test_prudnikov_fail_3F2():
assert can_do([a, a + Rational(1, 3), a + Rational(2, 3)], [Rational(1, 3), Rational(2, 3)])
assert can_do([a, a + Rational(1, 3), a + Rational(2, 3)], [Rational(2, 3), Rational(4, 3)])
assert can_do([a, a + Rational(1, 3), a + Rational(2, 3)], [Rational(4, 3), Rational(5, 3)])
# page 421
assert can_do([a, a + Rational(1, 3), a + Rational(2, 3)], [a*Rational(3, 2), (3*a + 1)/2])
# pages 422 ...
assert can_do([Rational(-1, 2), S.Half, S.Half], [1, 1]) # elliptic integrals
assert can_do([Rational(-1, 2), S.Half, 1], [Rational(3, 2), Rational(3, 2)])
# TODO LOTS more
# PFDD
assert can_do([Rational(1, 8), Rational(3, 8), 1], [Rational(9, 8), Rational(11, 8)])
assert can_do([Rational(1, 8), Rational(5, 8), 1], [Rational(9, 8), Rational(13, 8)])
assert can_do([Rational(1, 8), Rational(7, 8), 1], [Rational(9, 8), Rational(15, 8)])
assert can_do([Rational(1, 6), Rational(1, 3), 1], [Rational(7, 6), Rational(4, 3)])
assert can_do([Rational(1, 6), Rational(2, 3), 1], [Rational(7, 6), Rational(5, 3)])
assert can_do([Rational(1, 6), Rational(2, 3), 1], [Rational(5, 3), Rational(13, 6)])
assert can_do([S.Half, 1, 1], [Rational(1, 4), Rational(3, 4)])
# LOTS more
@XFAIL
def test_prudnikov_fail_other():
# 7.11.2
# 7.12.1
assert can_do([1, a], [b, 1 - 2*a + b]) # ???
# 7.14.2
assert can_do([Rational(-1, 2)], [S.Half, 1]) # struve
assert can_do([1], [S.Half, S.Half]) # struve
assert can_do([Rational(1, 4)], [S.Half, Rational(5, 4)]) # PFDD
assert can_do([Rational(3, 4)], [Rational(3, 2), Rational(7, 4)]) # PFDD
assert can_do([1], [Rational(1, 4), Rational(3, 4)]) # PFDD
assert can_do([1], [Rational(3, 4), Rational(5, 4)]) # PFDD
assert can_do([1], [Rational(5, 4), Rational(7, 4)]) # PFDD
# TODO LOTS more
# 7.15.2
assert can_do([S.Half, 1], [Rational(3, 4), Rational(5, 4), Rational(3, 2)]) # PFDD
assert can_do([S.Half, 1], [Rational(7, 4), Rational(5, 4), Rational(3, 2)]) # PFDD
# 7.16.1
assert can_do([], [Rational(1, 3), S(2/3)]) # PFDD
assert can_do([], [Rational(2, 3), S(4/3)]) # PFDD
assert can_do([], [Rational(5, 3), S(4/3)]) # PFDD
# XXX this does not *evaluate* right??
assert can_do([], [a, a + S.Half, 2*a - 1])
def test_bug():
h = hyper([-1, 1], [z], -1)
assert hyperexpand(h) == (z + 1)/z
def test_omgissue_203():
h = hyper((-5, -3, -4), (-6, -6), 1)
assert hyperexpand(h) == Rational(1, 30)
h = hyper((-6, -7, -5), (-6, -6), 1)
assert hyperexpand(h) == Rational(-1, 6)
|
f0f0ed9f4de618581ec1703e8a2a5f295c3afb8ad29f9800226d4dee49d4f524 | from sympy.core.function import diff
from sympy.core.function import expand
from sympy.core.numbers import (E, I, Rational, pi)
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, symbols)
from sympy.functions.elementary.complexes import (Abs, conjugate, im, re, sign)
from sympy.functions.elementary.exponential import log
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (acos, asin, cos, sin, atan2, atan)
from sympy.integrals.integrals import integrate
from sympy.matrices.dense import Matrix
from sympy.simplify import simplify
from sympy.simplify.trigsimp import trigsimp
from sympy.algebras.quaternion import Quaternion
from sympy.testing.pytest import raises, warns
from itertools import permutations, product
w, x, y, z = symbols('w:z')
phi = symbols('phi')
def test_quaternion_construction():
q = Quaternion(w, x, y, z)
assert q + q == Quaternion(2*w, 2*x, 2*y, 2*z)
q2 = Quaternion.from_axis_angle((sqrt(3)/3, sqrt(3)/3, sqrt(3)/3),
pi*Rational(2, 3))
assert q2 == Quaternion(S.Half, S.Half,
S.Half, S.Half)
M = Matrix([[cos(phi), -sin(phi), 0], [sin(phi), cos(phi), 0], [0, 0, 1]])
q3 = trigsimp(Quaternion.from_rotation_matrix(M))
assert q3 == Quaternion(sqrt(2)*sqrt(cos(phi) + 1)/2, 0, 0, sqrt(2 - 2*cos(phi))*sign(sin(phi))/2)
nc = Symbol('nc', commutative=False)
raises(ValueError, lambda: Quaternion(w, x, nc, z))
def test_quaternion_construction_norm():
q1 = Quaternion(*symbols('a:d'))
q2 = Quaternion(w, x, y, z)
assert expand((q1*q2).norm()**2 - (q1.norm()**2 * q2.norm()**2)) == 0
q3 = Quaternion(w, x, y, z, norm=1)
assert (q1 * q3).norm() == q1.norm()
def test_to_and_from_Matrix():
q = Quaternion(w, x, y, z)
q_full = Quaternion.from_Matrix(q.to_Matrix())
q_vect = Quaternion.from_Matrix(q.to_Matrix(True))
assert (q - q_full).is_zero_quaternion()
assert (q.vector_part() - q_vect).is_zero_quaternion()
def test_product_matrices():
q1 = Quaternion(w, x, y, z)
q2 = Quaternion(*(symbols("a:d")))
assert (q1 * q2).to_Matrix() == q1.product_matrix_left * q2.to_Matrix()
assert (q1 * q2).to_Matrix() == q2.product_matrix_right * q1.to_Matrix()
R1 = (q1.product_matrix_left * q1.product_matrix_right.T)[1:, 1:]
R2 = simplify(q1.to_rotation_matrix()*q1.norm()**2)
assert R1 == R2
def test_quaternion_axis_angle():
test_data = [ # axis, angle, expected_quaternion
((1, 0, 0), 0, (1, 0, 0, 0)),
((1, 0, 0), pi/2, (sqrt(2)/2, sqrt(2)/2, 0, 0)),
((0, 1, 0), pi/2, (sqrt(2)/2, 0, sqrt(2)/2, 0)),
((0, 0, 1), pi/2, (sqrt(2)/2, 0, 0, sqrt(2)/2)),
((1, 0, 0), pi, (0, 1, 0, 0)),
((0, 1, 0), pi, (0, 0, 1, 0)),
((0, 0, 1), pi, (0, 0, 0, 1)),
((1, 1, 1), pi, (0, 1/sqrt(3),1/sqrt(3),1/sqrt(3))),
((sqrt(3)/3, sqrt(3)/3, sqrt(3)/3), pi*2/3, (S.Half, S.Half, S.Half, S.Half))
]
for axis, angle, expected in test_data:
assert Quaternion.from_axis_angle(axis, angle) == Quaternion(*expected)
def test_quaternion_axis_angle_simplification():
result = Quaternion.from_axis_angle((1, 2, 3), asin(4))
assert result.a == cos(asin(4)/2)
assert result.b == sqrt(14)*sin(asin(4)/2)/14
assert result.c == sqrt(14)*sin(asin(4)/2)/7
assert result.d == 3*sqrt(14)*sin(asin(4)/2)/14
def test_quaternion_complex_real_addition():
a = symbols("a", complex=True)
b = symbols("b", real=True)
# This symbol is not complex:
c = symbols("c", commutative=False)
q = Quaternion(w, x, y, z)
assert a + q == Quaternion(w + re(a), x + im(a), y, z)
assert 1 + q == Quaternion(1 + w, x, y, z)
assert I + q == Quaternion(w, 1 + x, y, z)
assert b + q == Quaternion(w + b, x, y, z)
raises(ValueError, lambda: c + q)
raises(ValueError, lambda: q * c)
raises(ValueError, lambda: c * q)
assert -q == Quaternion(-w, -x, -y, -z)
q1 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
q2 = Quaternion(1, 4, 7, 8)
assert q1 + (2 + 3*I) == Quaternion(5 + 7*I, 2 + 5*I, 0, 7 + 8*I)
assert q2 + (2 + 3*I) == Quaternion(3, 7, 7, 8)
assert q1 * (2 + 3*I) == \
Quaternion((2 + 3*I)*(3 + 4*I), (2 + 3*I)*(2 + 5*I), 0, (2 + 3*I)*(7 + 8*I))
assert q2 * (2 + 3*I) == Quaternion(-10, 11, 38, -5)
q1 = Quaternion(1, 2, 3, 4)
q0 = Quaternion(0, 0, 0, 0)
assert q1 + q0 == q1
assert q1 - q0 == q1
assert q1 - q1 == q0
def test_quaternion_evalf():
assert Quaternion(sqrt(2), 0, 0, sqrt(3)).evalf() == Quaternion(sqrt(2).evalf(), 0, 0, sqrt(3).evalf())
assert Quaternion(1/sqrt(2), 0, 0, 1/sqrt(2)).evalf() == Quaternion((1/sqrt(2)).evalf(), 0, 0, (1/sqrt(2)).evalf())
def test_quaternion_functions():
q = Quaternion(w, x, y, z)
q1 = Quaternion(1, 2, 3, 4)
q0 = Quaternion(0, 0, 0, 0)
assert conjugate(q) == Quaternion(w, -x, -y, -z)
assert q.norm() == sqrt(w**2 + x**2 + y**2 + z**2)
assert q.normalize() == Quaternion(w, x, y, z) / sqrt(w**2 + x**2 + y**2 + z**2)
assert q.inverse() == Quaternion(w, -x, -y, -z) / (w**2 + x**2 + y**2 + z**2)
assert q.inverse() == q.pow(-1)
raises(ValueError, lambda: q0.inverse())
assert q.pow(2) == Quaternion(w**2 - x**2 - y**2 - z**2, 2*w*x, 2*w*y, 2*w*z)
assert q**(2) == Quaternion(w**2 - x**2 - y**2 - z**2, 2*w*x, 2*w*y, 2*w*z)
assert q1.pow(-2) == Quaternion(Rational(-7, 225), Rational(-1, 225), Rational(-1, 150), Rational(-2, 225))
assert q1**(-2) == Quaternion(Rational(-7, 225), Rational(-1, 225), Rational(-1, 150), Rational(-2, 225))
assert q1.pow(-0.5) == NotImplemented
raises(TypeError, lambda: q1**(-0.5))
assert q1.exp() == \
Quaternion(E * cos(sqrt(29)),
2 * sqrt(29) * E * sin(sqrt(29)) / 29,
3 * sqrt(29) * E * sin(sqrt(29)) / 29,
4 * sqrt(29) * E * sin(sqrt(29)) / 29)
assert q1._ln() == \
Quaternion(log(sqrt(30)),
2 * sqrt(29) * acos(sqrt(30)/30) / 29,
3 * sqrt(29) * acos(sqrt(30)/30) / 29,
4 * sqrt(29) * acos(sqrt(30)/30) / 29)
assert q1.pow_cos_sin(2) == \
Quaternion(30 * cos(2 * acos(sqrt(30)/30)),
60 * sqrt(29) * sin(2 * acos(sqrt(30)/30)) / 29,
90 * sqrt(29) * sin(2 * acos(sqrt(30)/30)) / 29,
120 * sqrt(29) * sin(2 * acos(sqrt(30)/30)) / 29)
assert diff(Quaternion(x, x, x, x), x) == Quaternion(1, 1, 1, 1)
assert integrate(Quaternion(x, x, x, x), x) == \
Quaternion(x**2 / 2, x**2 / 2, x**2 / 2, x**2 / 2)
assert Quaternion.rotate_point((1, 1, 1), q1) == (S.One / 5, 1, S(7) / 5)
n = Symbol('n')
raises(TypeError, lambda: q1**n)
n = Symbol('n', integer=True)
raises(TypeError, lambda: q1**n)
assert Quaternion(22, 23, 55, 8).scalar_part() == 22
assert Quaternion(w, x, y, z).scalar_part() == w
assert Quaternion(22, 23, 55, 8).vector_part() == Quaternion(0, 23, 55, 8)
assert Quaternion(w, x, y, z).vector_part() == Quaternion(0, x, y, z)
assert q1.axis() == Quaternion(0, 2*sqrt(29)/29, 3*sqrt(29)/29, 4*sqrt(29)/29)
assert q1.axis().pow(2) == Quaternion(-1, 0, 0, 0)
assert q0.axis().scalar_part() == 0
assert q.axis() == Quaternion(0, x/sqrt(x**2 + y**2 + z**2), y/sqrt(x**2 + y**2 + z**2), z/sqrt(x**2 + y**2 + z**2))
assert q0.is_pure() == True
assert q1.is_pure() == False
assert Quaternion(0, 0, 0, 3).is_pure() == True
assert Quaternion(0, 2, 10, 3).is_pure() == True
assert Quaternion(w, 2, 10, 3).is_pure() == None
assert q1.angle() == atan(sqrt(29))
assert q.angle() == atan2(sqrt(x**2 + y**2 + z**2), w)
assert Quaternion.arc_coplanar(q1, Quaternion(2, 4, 6, 8)) == True
assert Quaternion.arc_coplanar(q1, Quaternion(1, -2, -3, -4)) == True
assert Quaternion.arc_coplanar(q1, Quaternion(1, 8, 12, 16)) == True
assert Quaternion.arc_coplanar(q1, Quaternion(1, 2, 3, 4)) == True
assert Quaternion.arc_coplanar(q1, Quaternion(w, 4, 6, 8)) == True
assert Quaternion.arc_coplanar(q1, Quaternion(2, 7, 4, 1)) == False
assert Quaternion.arc_coplanar(q1, Quaternion(w, x, y, z)) == None
raises(ValueError, lambda: Quaternion.arc_coplanar(q1, q0))
assert Quaternion.vector_coplanar(Quaternion(0, 8, 12, 16), Quaternion(0, 4, 6, 8), Quaternion(0, 2, 3, 4)) == True
assert Quaternion.vector_coplanar(Quaternion(0, 0, 0, 0), Quaternion(0, 4, 6, 8), Quaternion(0, 2, 3, 4)) == True
assert Quaternion.vector_coplanar(Quaternion(0, 8, 2, 6), Quaternion(0, 1, 6, 6), Quaternion(0, 0, 3, 4)) == False
assert Quaternion.vector_coplanar(Quaternion(0, 1, 3, 4), Quaternion(0, 4, w, 6), Quaternion(0, 6, 8, 1)) == None
raises(ValueError, lambda: Quaternion.vector_coplanar(q0, Quaternion(0, 4, 6, 8), q1))
assert Quaternion(0, 1, 2, 3).parallel(Quaternion(0, 2, 4, 6)) == True
assert Quaternion(0, 1, 2, 3).parallel(Quaternion(0, 2, 2, 6)) == False
assert Quaternion(0, 1, 2, 3).parallel(Quaternion(w, x, y, 6)) == None
raises(ValueError, lambda: q0.parallel(q1))
assert Quaternion(0, 1, 2, 3).orthogonal(Quaternion(0, -2, 1, 0)) == True
assert Quaternion(0, 2, 4, 7).orthogonal(Quaternion(0, 2, 2, 6)) == False
assert Quaternion(0, 2, 4, 7).orthogonal(Quaternion(w, x, y, 6)) == None
raises(ValueError, lambda: q0.orthogonal(q1))
assert q1.index_vector() == Quaternion(0, 2*sqrt(870)/29, 3*sqrt(870)/29, 4*sqrt(870)/29)
assert Quaternion(0, 3, 9, 4).index_vector() == Quaternion(0, 3, 9, 4)
assert Quaternion(4, 3, 9, 4).mensor() == log(sqrt(122))
assert Quaternion(3, 3, 0, 2).mensor() == log(sqrt(22))
assert q0.is_zero_quaternion() == True
assert q1.is_zero_quaternion() == False
assert Quaternion(w, 0, 0, 0).is_zero_quaternion() == None
def test_quaternion_conversions():
q1 = Quaternion(1, 2, 3, 4)
assert q1.to_axis_angle() == ((2 * sqrt(29)/29,
3 * sqrt(29)/29,
4 * sqrt(29)/29),
2 * acos(sqrt(30)/30))
assert q1.to_rotation_matrix() == Matrix([[Rational(-2, 3), Rational(2, 15), Rational(11, 15)],
[Rational(2, 3), Rational(-1, 3), Rational(2, 3)],
[Rational(1, 3), Rational(14, 15), Rational(2, 15)]])
assert q1.to_rotation_matrix((1, 1, 1)) == Matrix([[Rational(-2, 3), Rational(2, 15), Rational(11, 15), Rational(4, 5)],
[Rational(2, 3), Rational(-1, 3), Rational(2, 3), S.Zero],
[Rational(1, 3), Rational(14, 15), Rational(2, 15), Rational(-2, 5)],
[S.Zero, S.Zero, S.Zero, S.One]])
theta = symbols("theta", real=True)
q2 = Quaternion(cos(theta/2), 0, 0, sin(theta/2))
assert trigsimp(q2.to_rotation_matrix()) == Matrix([
[cos(theta), -sin(theta), 0],
[sin(theta), cos(theta), 0],
[0, 0, 1]])
assert q2.to_axis_angle() == ((0, 0, sin(theta/2)/Abs(sin(theta/2))),
2*acos(cos(theta/2)))
assert trigsimp(q2.to_rotation_matrix((1, 1, 1))) == Matrix([
[cos(theta), -sin(theta), 0, sin(theta) - cos(theta) + 1],
[sin(theta), cos(theta), 0, -sin(theta) - cos(theta) + 1],
[0, 0, 1, 0],
[0, 0, 0, 1]])
def test_rotation_matrix_homogeneous():
q = Quaternion(w, x, y, z)
R1 = q.to_rotation_matrix(homogeneous=True) * q.norm()**2
R2 = simplify(q.to_rotation_matrix() * q.norm()**2)
assert R1 == R2
def test_quaternion_rotation_iss1593():
"""
There was a sign mistake in the definition,
of the rotation matrix. This tests that particular sign mistake.
See issue 1593 for reference.
See wikipedia
https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation#Quaternion-derived_rotation_matrix
for the correct definition
"""
q = Quaternion(cos(phi/2), sin(phi/2), 0, 0)
assert(trigsimp(q.to_rotation_matrix()) == Matrix([
[1, 0, 0],
[0, cos(phi), -sin(phi)],
[0, sin(phi), cos(phi)]]))
def test_quaternion_multiplication():
q1 = Quaternion(3 + 4*I, 2 + 5*I, 0, 7 + 8*I, real_field = False)
q2 = Quaternion(1, 2, 3, 5)
q3 = Quaternion(1, 1, 1, y)
assert Quaternion._generic_mul(S(4), S.One) == 4
assert Quaternion._generic_mul(S(4), q1) == Quaternion(12 + 16*I, 8 + 20*I, 0, 28 + 32*I)
assert q2.mul(2) == Quaternion(2, 4, 6, 10)
assert q2.mul(q3) == Quaternion(-5*y - 4, 3*y - 2, 9 - 2*y, y + 4)
assert q2.mul(q3) == q2*q3
z = symbols('z', complex=True)
z_quat = Quaternion(re(z), im(z), 0, 0)
q = Quaternion(*symbols('q:4', real=True))
assert z * q == z_quat * q
assert q * z == q * z_quat
def test_issue_16318():
#for rtruediv
q0 = Quaternion(0, 0, 0, 0)
raises(ValueError, lambda: 1/q0)
#for rotate_point
q = Quaternion(1, 2, 3, 4)
(axis, angle) = q.to_axis_angle()
assert Quaternion.rotate_point((1, 1, 1), (axis, angle)) == (S.One / 5, 1, S(7) / 5)
#test for to_axis_angle
q = Quaternion(-1, 1, 1, 1)
axis = (-sqrt(3)/3, -sqrt(3)/3, -sqrt(3)/3)
angle = 2*pi/3
assert (axis, angle) == q.to_axis_angle()
def test_to_euler():
q = Quaternion(w, x, y, z)
q_normalized = q.normalize()
seqs = ['zxy', 'zyx', 'zyz', 'zxz']
seqs += [seq.upper() for seq in seqs]
for seq in seqs:
euler_from_q = q.to_euler(seq)
q_back = simplify(Quaternion.from_euler(euler_from_q, seq))
assert q_back == q_normalized
def test_to_euler_numerical_singilarities():
def test_one_case(angles, seq):
q = Quaternion.from_euler(angles, seq)
with warns(UserWarning, match='Singularity', test_stacklevel=False):
assert q.to_euler(seq) == angles
# symmetric
test_one_case((pi/2, 0, 0), 'zyz')
test_one_case((pi/2, 0, 0), 'ZYZ')
test_one_case((pi/2, pi, 0), 'zyz')
test_one_case((pi/2, pi, 0), 'ZYZ')
# asymmetric
test_one_case((pi/2, pi/2, 0), 'zyx')
test_one_case((pi/2, -pi/2, 0), 'zyx')
test_one_case((pi/2, pi/2, 0), 'ZYX')
test_one_case((pi/2, -pi/2, 0), 'ZYX')
def test_to_euler_options():
def test_one_case(q):
angles1 = Matrix(q.to_euler(seq, True, True))
angles2 = Matrix(q.to_euler(seq, False, False))
angle_errors = simplify(angles1-angles2).evalf()
for angle_error in angle_errors:
# forcing angles to set {-pi, pi}
angle_error = (angle_error + pi) % (2 * pi) - pi
assert angle_error < 10e-7
for xyz in ('xyz', 'XYZ'):
for seq_tuple in permutations(xyz):
for symmetric in (True, False):
if symmetric:
seq = ''.join([seq_tuple[0], seq_tuple[1], seq_tuple[0]])
else:
seq = ''.join(seq_tuple)
for elements in product([-1, 0, 1], repeat=4):
q = Quaternion(*elements)
if not q.is_zero_quaternion():
test_one_case(q)
|
2c15a98d345f81637934b4dc84b644a7a9bb20cb6eec76e22a8ced2dce8a3466 | from itertools import product
from sympy.core.power import Pow
from sympy.core.symbol import symbols
from sympy.functions.elementary.exponential import exp, log
from sympy.functions.elementary.trigonometric import cos
from sympy.core.numbers import pi
from sympy.codegen.scipy_nodes import cosm1, powm1
x, y, z = symbols('x y z')
def test_cosm1():
cm1_xy = cosm1(x*y)
ref_xy = cos(x*y) - 1
for wrt, deriv_order in product([x, y, z], range(3)):
assert (
cm1_xy.diff(wrt, deriv_order) -
ref_xy.diff(wrt, deriv_order)
).rewrite(cos).simplify() == 0
expr_minus2 = cosm1(pi)
assert expr_minus2.rewrite(cos) == -2
assert cosm1(3.14).simplify() == cosm1(3.14) # cannot simplify with 3.14
assert cosm1(pi/2).simplify() == -1
assert (1/cos(x) - 1 + cosm1(x)/cos(x)).simplify() == 0
def test_powm1():
cases = {
powm1(x, y): x**y - 1,
powm1(x*y, z): (x*y)**z - 1,
powm1(x, y*z): x**(y*z)-1,
powm1(x*y*z, x*y*z): (x*y*z)**(x*y*z)-1
}
for pm1_e, ref_e in cases.items():
for wrt, deriv_order in product([x, y, z], range(3)):
der = pm1_e.diff(wrt, deriv_order)
ref = ref_e.diff(wrt, deriv_order)
delta = (der - ref).rewrite(Pow)
assert delta.simplify() == 0
eulers_constant_m1 = powm1(x, 1/log(x))
assert eulers_constant_m1.rewrite(Pow) == exp(1) - 1
assert eulers_constant_m1.simplify() == exp(1) - 1
|
da5c41e588bcb7f8b8828877079fc1ab2cda88c238540c36677ffcce7d9bc51e | import tempfile
from sympy.core.numbers import pi, Rational
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.functions.elementary.complexes import Abs
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.elementary.trigonometric import (cos, sin, sinc)
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.assumptions import assuming, Q
from sympy.external import import_module
from sympy.printing.codeprinter import ccode
from sympy.codegen.matrix_nodes import MatrixSolve
from sympy.codegen.cfunctions import log2, exp2, expm1, log1p
from sympy.codegen.numpy_nodes import logaddexp, logaddexp2
from sympy.codegen.scipy_nodes import cosm1, powm1
from sympy.codegen.rewriting import (
optimize, cosm1_opt, log2_opt, exp2_opt, expm1_opt, log1p_opt, powm1_opt, optims_c99,
create_expand_pow_optimization, matinv_opt, logaddexp_opt, logaddexp2_opt,
optims_numpy, optims_scipy, sinc_opts, FuncMinusOneOptim
)
from sympy.testing.pytest import XFAIL, skip
from sympy.utilities import lambdify
from sympy.utilities._compilation import compile_link_import_strings, has_c
from sympy.utilities._compilation.util import may_xfail
cython = import_module('cython')
numpy = import_module('numpy')
scipy = import_module('scipy')
def test_log2_opt():
x = Symbol('x')
expr1 = 7*log(3*x + 5)/(log(2))
opt1 = optimize(expr1, [log2_opt])
assert opt1 == 7*log2(3*x + 5)
assert opt1.rewrite(log) == expr1
expr2 = 3*log(5*x + 7)/(13*log(2))
opt2 = optimize(expr2, [log2_opt])
assert opt2 == 3*log2(5*x + 7)/13
assert opt2.rewrite(log) == expr2
expr3 = log(x)/log(2)
opt3 = optimize(expr3, [log2_opt])
assert opt3 == log2(x)
assert opt3.rewrite(log) == expr3
expr4 = log(x)/log(2) + log(x+1)
opt4 = optimize(expr4, [log2_opt])
assert opt4 == log2(x) + log(2)*log2(x+1)
assert opt4.rewrite(log) == expr4
expr5 = log(17)
opt5 = optimize(expr5, [log2_opt])
assert opt5 == expr5
expr6 = log(x + 3)/log(2)
opt6 = optimize(expr6, [log2_opt])
assert str(opt6) == 'log2(x + 3)'
assert opt6.rewrite(log) == expr6
def test_exp2_opt():
x = Symbol('x')
expr1 = 1 + 2**x
opt1 = optimize(expr1, [exp2_opt])
assert opt1 == 1 + exp2(x)
assert opt1.rewrite(Pow) == expr1
expr2 = 1 + 3**x
assert expr2 == optimize(expr2, [exp2_opt])
def test_expm1_opt():
x = Symbol('x')
expr1 = exp(x) - 1
opt1 = optimize(expr1, [expm1_opt])
assert expm1(x) - opt1 == 0
assert opt1.rewrite(exp) == expr1
expr2 = 3*exp(x) - 3
opt2 = optimize(expr2, [expm1_opt])
assert 3*expm1(x) == opt2
assert opt2.rewrite(exp) == expr2
expr3 = 3*exp(x) - 5
opt3 = optimize(expr3, [expm1_opt])
assert 3*expm1(x) - 2 == opt3
assert opt3.rewrite(exp) == expr3
expm1_opt_non_opportunistic = FuncMinusOneOptim(exp, expm1, opportunistic=False)
assert expr3 == optimize(expr3, [expm1_opt_non_opportunistic])
assert opt1 == optimize(expr1, [expm1_opt_non_opportunistic])
assert opt2 == optimize(expr2, [expm1_opt_non_opportunistic])
expr4 = 3*exp(x) + log(x) - 3
opt4 = optimize(expr4, [expm1_opt])
assert 3*expm1(x) + log(x) == opt4
assert opt4.rewrite(exp) == expr4
expr5 = 3*exp(2*x) - 3
opt5 = optimize(expr5, [expm1_opt])
assert 3*expm1(2*x) == opt5
assert opt5.rewrite(exp) == expr5
expr6 = (2*exp(x) + 1)/(exp(x) + 1) + 1
opt6 = optimize(expr6, [expm1_opt])
assert opt6.count_ops() <= expr6.count_ops()
def ev(e):
return e.subs(x, 3).evalf()
assert abs(ev(expr6) - ev(opt6)) < 1e-15
y = Symbol('y')
expr7 = (2*exp(x) - 1)/(1 - exp(y)) - 1/(1-exp(y))
opt7 = optimize(expr7, [expm1_opt])
assert -2*expm1(x)/expm1(y) == opt7
assert (opt7.rewrite(exp) - expr7).factor() == 0
expr8 = (1+exp(x))**2 - 4
opt8 = optimize(expr8, [expm1_opt])
tgt8a = (exp(x) + 3)*expm1(x)
tgt8b = 2*expm1(x) + expm1(2*x)
# Both tgt8a & tgt8b seem to give full precision (~16 digits for double)
# for x=1e-7 (compare with expr8 which only achieves ~8 significant digits).
# If we can show that either tgt8a or tgt8b is preferable, we can
# change this test to ensure the preferable version is returned.
assert (tgt8a - tgt8b).rewrite(exp).factor() == 0
assert opt8 in (tgt8a, tgt8b)
assert (opt8.rewrite(exp) - expr8).factor() == 0
expr9 = sin(expr8)
opt9 = optimize(expr9, [expm1_opt])
tgt9a = sin(tgt8a)
tgt9b = sin(tgt8b)
assert opt9 in (tgt9a, tgt9b)
assert (opt9.rewrite(exp) - expr9.rewrite(exp)).factor().is_zero
def test_expm1_two_exp_terms():
x, y = map(Symbol, 'x y'.split())
expr1 = exp(x) + exp(y) - 2
opt1 = optimize(expr1, [expm1_opt])
assert opt1 == expm1(x) + expm1(y)
def test_cosm1_opt():
x = Symbol('x')
expr1 = cos(x) - 1
opt1 = optimize(expr1, [cosm1_opt])
assert cosm1(x) - opt1 == 0
assert opt1.rewrite(cos) == expr1
expr2 = 3*cos(x) - 3
opt2 = optimize(expr2, [cosm1_opt])
assert 3*cosm1(x) == opt2
assert opt2.rewrite(cos) == expr2
expr3 = 3*cos(x) - 5
opt3 = optimize(expr3, [cosm1_opt])
assert 3*cosm1(x) - 2 == opt3
assert opt3.rewrite(cos) == expr3
cosm1_opt_non_opportunistic = FuncMinusOneOptim(cos, cosm1, opportunistic=False)
assert expr3 == optimize(expr3, [cosm1_opt_non_opportunistic])
assert opt1 == optimize(expr1, [cosm1_opt_non_opportunistic])
assert opt2 == optimize(expr2, [cosm1_opt_non_opportunistic])
expr4 = 3*cos(x) + log(x) - 3
opt4 = optimize(expr4, [cosm1_opt])
assert 3*cosm1(x) + log(x) == opt4
assert opt4.rewrite(cos) == expr4
expr5 = 3*cos(2*x) - 3
opt5 = optimize(expr5, [cosm1_opt])
assert 3*cosm1(2*x) == opt5
assert opt5.rewrite(cos) == expr5
expr6 = 2 - 2*cos(x)
opt6 = optimize(expr6, [cosm1_opt])
assert -2*cosm1(x) == opt6
assert opt6.rewrite(cos) == expr6
def test_cosm1_two_cos_terms():
x, y = map(Symbol, 'x y'.split())
expr1 = cos(x) + cos(y) - 2
opt1 = optimize(expr1, [cosm1_opt])
assert opt1 == cosm1(x) + cosm1(y)
def test_expm1_cosm1_mixed():
x = Symbol('x')
expr1 = exp(x) + cos(x) - 2
opt1 = optimize(expr1, [expm1_opt, cosm1_opt])
assert opt1 == cosm1(x) + expm1(x)
def _check_num_lambdify(expr, opt, val_subs, approx_ref, lambdify_kw=None, poorness=1e10):
""" poorness=1e10 signifies that `expr` loses precision of at least ten decimal digits. """
num_ref = expr.subs(val_subs).evalf()
eps = numpy.finfo(numpy.float64).eps
assert abs(num_ref - approx_ref) < approx_ref*eps
f1 = lambdify(list(val_subs.keys()), opt, **(lambdify_kw or {}))
args_float = tuple(map(float, val_subs.values()))
num_err1 = abs(f1(*args_float) - approx_ref)
assert num_err1 < abs(num_ref*eps)
f2 = lambdify(list(val_subs.keys()), expr, **(lambdify_kw or {}))
num_err2 = abs(f2(*args_float) - approx_ref)
assert num_err2 > abs(num_ref*eps*poorness) # this only ensures that the *test* works as intended
def test_cosm1_apart():
x = Symbol('x')
expr1 = 1/cos(x) - 1
opt1 = optimize(expr1, [cosm1_opt])
assert opt1 == -cosm1(x)/cos(x)
if scipy:
_check_num_lambdify(expr1, opt1, {x: S(10)**-30}, 5e-61, lambdify_kw=dict(modules='scipy'))
expr2 = 2/cos(x) - 2
opt2 = optimize(expr2, optims_scipy)
assert opt2 == -2*cosm1(x)/cos(x)
if scipy:
_check_num_lambdify(expr2, opt2, {x: S(10)**-30}, 1e-60, lambdify_kw=dict(modules='scipy'))
expr3 = pi/cos(3*x) - pi
opt3 = optimize(expr3, [cosm1_opt])
assert opt3 == -pi*cosm1(3*x)/cos(3*x)
if scipy:
_check_num_lambdify(expr3, opt3, {x: S(10)**-30/3}, float(5e-61*pi), lambdify_kw=dict(modules='scipy'))
def test_powm1():
args = x, y = map(Symbol, "xy")
expr1 = x**y - 1
opt1 = optimize(expr1, [powm1_opt])
assert opt1 == powm1(x, y)
for arg in args:
assert expr1.diff(arg) == opt1.diff(arg)
if scipy and tuple(map(int, scipy.version.version.split('.')[:3])) >= (1, 10, 0):
subs1_a = {x: Rational(*(1.0+1e-13).as_integer_ratio()), y: pi}
ref1_f64_a = 3.139081648208105e-13
_check_num_lambdify(expr1, opt1, subs1_a, ref1_f64_a, lambdify_kw=dict(modules='scipy'), poorness=10**11)
subs1_b = {x: pi, y: Rational(*(1e-10).as_integer_ratio())}
ref1_f64_b = 1.1447298859149205e-10
_check_num_lambdify(expr1, opt1, subs1_b, ref1_f64_b, lambdify_kw=dict(modules='scipy'), poorness=10**9)
def test_log1p_opt():
x = Symbol('x')
expr1 = log(x + 1)
opt1 = optimize(expr1, [log1p_opt])
assert log1p(x) - opt1 == 0
assert opt1.rewrite(log) == expr1
expr2 = log(3*x + 3)
opt2 = optimize(expr2, [log1p_opt])
assert log1p(x) + log(3) == opt2
assert (opt2.rewrite(log) - expr2).simplify() == 0
expr3 = log(2*x + 1)
opt3 = optimize(expr3, [log1p_opt])
assert log1p(2*x) - opt3 == 0
assert opt3.rewrite(log) == expr3
expr4 = log(x+3)
opt4 = optimize(expr4, [log1p_opt])
assert str(opt4) == 'log(x + 3)'
def test_optims_c99():
x = Symbol('x')
expr1 = 2**x + log(x)/log(2) + log(x + 1) + exp(x) - 1
opt1 = optimize(expr1, optims_c99).simplify()
assert opt1 == exp2(x) + log2(x) + log1p(x) + expm1(x)
assert opt1.rewrite(exp).rewrite(log).rewrite(Pow) == expr1
expr2 = log(x)/log(2) + log(x + 1)
opt2 = optimize(expr2, optims_c99)
assert opt2 == log2(x) + log1p(x)
assert opt2.rewrite(log) == expr2
expr3 = log(x)/log(2) + log(17*x + 17)
opt3 = optimize(expr3, optims_c99)
delta3 = opt3 - (log2(x) + log(17) + log1p(x))
assert delta3 == 0
assert (opt3.rewrite(log) - expr3).simplify() == 0
expr4 = 2**x + 3*log(5*x + 7)/(13*log(2)) + 11*exp(x) - 11 + log(17*x + 17)
opt4 = optimize(expr4, optims_c99).simplify()
delta4 = opt4 - (exp2(x) + 3*log2(5*x + 7)/13 + 11*expm1(x) + log(17) + log1p(x))
assert delta4 == 0
assert (opt4.rewrite(exp).rewrite(log).rewrite(Pow) - expr4).simplify() == 0
expr5 = 3*exp(2*x) - 3
opt5 = optimize(expr5, optims_c99)
delta5 = opt5 - 3*expm1(2*x)
assert delta5 == 0
assert opt5.rewrite(exp) == expr5
expr6 = exp(2*x) - 3
opt6 = optimize(expr6, optims_c99)
assert opt6 in (expm1(2*x) - 2, expr6) # expm1(2*x) - 2 is not better or worse
expr7 = log(3*x + 3)
opt7 = optimize(expr7, optims_c99)
delta7 = opt7 - (log(3) + log1p(x))
assert delta7 == 0
assert (opt7.rewrite(log) - expr7).simplify() == 0
expr8 = log(2*x + 3)
opt8 = optimize(expr8, optims_c99)
assert opt8 == expr8
def test_create_expand_pow_optimization():
cc = lambda x: ccode(
optimize(x, [create_expand_pow_optimization(4)]))
x = Symbol('x')
assert cc(x**4) == 'x*x*x*x'
assert cc(x**4 + x**2) == 'x*x + x*x*x*x'
assert cc(x**5 + x**4) == 'pow(x, 5) + x*x*x*x'
assert cc(sin(x)**4) == 'pow(sin(x), 4)'
# gh issue 15335
assert cc(x**(-4)) == '1.0/(x*x*x*x)'
assert cc(x**(-5)) == 'pow(x, -5)'
assert cc(-x**4) == '-(x*x*x*x)'
assert cc(x**4 - x**2) == '-(x*x) + x*x*x*x'
i = Symbol('i', integer=True)
assert cc(x**i - x**2) == 'pow(x, i) - (x*x)'
y = Symbol('y', real=True)
assert cc(Abs(exp(y**4))) == "exp(y*y*y*y)"
# gh issue 20753
cc2 = lambda x: ccode(optimize(x, [create_expand_pow_optimization(
4, base_req=lambda b: b.is_Function)]))
assert cc2(x**3 + sin(x)**3) == "pow(x, 3) + sin(x)*sin(x)*sin(x)"
def test_matsolve():
n = Symbol('n', integer=True)
A = MatrixSymbol('A', n, n)
x = MatrixSymbol('x', n, 1)
with assuming(Q.fullrank(A)):
assert optimize(A**(-1) * x, [matinv_opt]) == MatrixSolve(A, x)
assert optimize(A**(-1) * x + x, [matinv_opt]) == MatrixSolve(A, x) + x
def test_logaddexp_opt():
x, y = map(Symbol, 'x y'.split())
expr1 = log(exp(x) + exp(y))
opt1 = optimize(expr1, [logaddexp_opt])
assert logaddexp(x, y) - opt1 == 0
assert logaddexp(y, x) - opt1 == 0
assert opt1.rewrite(log) == expr1
def test_logaddexp2_opt():
x, y = map(Symbol, 'x y'.split())
expr1 = log(2**x + 2**y)/log(2)
opt1 = optimize(expr1, [logaddexp2_opt])
assert logaddexp2(x, y) - opt1 == 0
assert logaddexp2(y, x) - opt1 == 0
assert opt1.rewrite(log) == expr1
def test_sinc_opts():
def check(d):
for k, v in d.items():
assert optimize(k, sinc_opts) == v
x = Symbol('x')
check({
sin(x)/x : sinc(x),
sin(2*x)/(2*x) : sinc(2*x),
sin(3*x)/x : 3*sinc(3*x),
x*sin(x) : x*sin(x)
})
y = Symbol('y')
check({
sin(x*y)/(x*y) : sinc(x*y),
y*sin(x/y)/x : sinc(x/y),
sin(sin(x))/sin(x) : sinc(sin(x)),
sin(3*sin(x))/sin(x) : 3*sinc(3*sin(x)),
sin(x)/y : sin(x)/y
})
def test_optims_numpy():
def check(d):
for k, v in d.items():
assert optimize(k, optims_numpy) == v
x = Symbol('x')
check({
sin(2*x)/(2*x) + exp(2*x) - 1: sinc(2*x) + expm1(2*x),
log(x+3)/log(2) + log(x**2 + 1): log1p(x**2) + log2(x+3)
})
@XFAIL # room for improvement, ideally this test case should pass.
def test_optims_numpy_TODO():
def check(d):
for k, v in d.items():
assert optimize(k, optims_numpy) == v
x, y = map(Symbol, 'x y'.split())
check({
log(x*y)*sin(x*y)*log(x*y+1)/(log(2)*x*y): log2(x*y)*sinc(x*y)*log1p(x*y),
exp(x*sin(y)/y) - 1: expm1(x*sinc(y))
})
@may_xfail
def test_compiled_ccode_with_rewriting():
if not cython:
skip("cython not installed.")
if not has_c():
skip("No C compiler found.")
x = Symbol('x')
about_two = 2**(58/S(117))*3**(97/S(117))*5**(4/S(39))*7**(92/S(117))/S(30)*pi
# about_two: 1.999999999999581826
unchanged = 2*exp(x) - about_two
xval = S(10)**-11
ref = unchanged.subs(x, xval).n(19) # 2.0418173913673213e-11
rewritten = optimize(2*exp(x) - about_two, [expm1_opt])
# Unfortunately, we need to call ``.n()`` on our expressions before we hand them
# to ``ccode``, and we need to request a large number of significant digits.
# In this test, results converged for double precision when the following number
# of significant digits were chosen:
NUMBER_OF_DIGITS = 25 # TODO: this should ideally be automatically handled.
func_c = '''
#include <math.h>
double func_unchanged(double x) {
return %(unchanged)s;
}
double func_rewritten(double x) {
return %(rewritten)s;
}
''' % dict(unchanged=ccode(unchanged.n(NUMBER_OF_DIGITS)),
rewritten=ccode(rewritten.n(NUMBER_OF_DIGITS)))
func_pyx = '''
#cython: language_level=3
cdef extern double func_unchanged(double)
cdef extern double func_rewritten(double)
def py_unchanged(x):
return func_unchanged(x)
def py_rewritten(x):
return func_rewritten(x)
'''
with tempfile.TemporaryDirectory() as folder:
mod, info = compile_link_import_strings(
[('func.c', func_c), ('_func.pyx', func_pyx)],
build_dir=folder, compile_kwargs=dict(std='c99')
)
err_rewritten = abs(mod.py_rewritten(1e-11) - ref)
err_unchanged = abs(mod.py_unchanged(1e-11) - ref)
assert 1e-27 < err_rewritten < 1e-25 # highly accurate.
assert 1e-19 < err_unchanged < 1e-16 # quite poor.
# Tolerances used above were determined as follows:
# >>> no_opt = unchanged.subs(x, xval.evalf()).evalf()
# >>> with_opt = rewritten.n(25).subs(x, 1e-11).evalf()
# >>> with_opt - ref, no_opt - ref
# (1.1536301877952077e-26, 1.6547074214222335e-18)
|
de2c27484139dfebd1b0fbfe6ce9e3c9d80e902a5b075d854c547fb10dc2c2f1 | """
General binary relations.
"""
from typing import Optional
from sympy.core.singleton import S
from sympy.assumptions import AppliedPredicate, ask, Predicate, Q # type: ignore
from sympy.core.kind import BooleanKind
from sympy.core.relational import Eq, Ne, Gt, Lt, Ge, Le
from sympy.logic.boolalg import conjuncts, Not
__all__ = ["BinaryRelation", "AppliedBinaryRelation"]
class BinaryRelation(Predicate):
"""
Base class for all binary relational predicates.
Explanation
===========
Binary relation takes two arguments and returns ``AppliedBinaryRelation``
instance. To evaluate it to boolean value, use :obj:`~.ask()` or
:obj:`~.refine()` function.
You can add support for new types by registering the handler to dispatcher.
See :obj:`~.Predicate()` for more information about predicate dispatching.
Examples
========
Applying and evaluating to boolean value:
>>> from sympy import Q, ask, sin, cos
>>> from sympy.abc import x
>>> Q.eq(sin(x)**2+cos(x)**2, 1)
Q.eq(sin(x)**2 + cos(x)**2, 1)
>>> ask(_)
True
You can define a new binary relation by subclassing and dispatching.
Here, we define a relation $R$ such that $x R y$ returns true if
$x = y + 1$.
>>> from sympy import ask, Number, Q
>>> from sympy.assumptions import BinaryRelation
>>> class MyRel(BinaryRelation):
... name = "R"
... is_reflexive = False
>>> Q.R = MyRel()
>>> @Q.R.register(Number, Number)
... def _(n1, n2, assumptions):
... return ask(Q.zero(n1 - n2 - 1), assumptions)
>>> Q.R(2, 1)
Q.R(2, 1)
Now, we can use ``ask()`` to evaluate it to boolean value.
>>> ask(Q.R(2, 1))
True
>>> ask(Q.R(1, 2))
False
``Q.R`` returns ``False`` with minimum cost if two arguments have same
structure because it is antireflexive relation [1] by
``is_reflexive = False``.
>>> ask(Q.R(x, x))
False
References
==========
.. [1] https://en.wikipedia.org/wiki/Reflexive_relation
"""
is_reflexive: Optional[bool] = None
is_symmetric: Optional[bool] = None
def __call__(self, *args):
if not len(args) == 2:
raise ValueError("Binary relation takes two arguments, but got %s." % len(args))
return AppliedBinaryRelation(self, *args)
@property
def reversed(self):
if self.is_symmetric:
return self
return None
@property
def negated(self):
return None
def _compare_reflexive(self, lhs, rhs):
# quick exit for structurally same arguments
# do not check != here because it cannot catch the
# equivalent arguments with different structures.
# reflexivity does not hold to NaN
if lhs is S.NaN or rhs is S.NaN:
return None
reflexive = self.is_reflexive
if reflexive is None:
pass
elif reflexive and (lhs == rhs):
return True
elif not reflexive and (lhs == rhs):
return False
return None
def eval(self, args, assumptions=True):
# quick exit for structurally same arguments
ret = self._compare_reflexive(*args)
if ret is not None:
return ret
# don't perform simplify on args here. (done by AppliedBinaryRelation._eval_ask)
# evaluate by multipledispatch
lhs, rhs = args
ret = self.handler(lhs, rhs, assumptions=assumptions)
if ret is not None:
return ret
# check reversed order if the relation is reflexive
if self.is_reflexive:
types = (type(lhs), type(rhs))
if self.handler.dispatch(*types) is not self.handler.dispatch(*reversed(types)):
ret = self.handler(rhs, lhs, assumptions=assumptions)
return ret
class AppliedBinaryRelation(AppliedPredicate):
"""
The class of expressions resulting from applying ``BinaryRelation``
to the arguments.
"""
@property
def lhs(self):
"""The left-hand side of the relation."""
return self.arguments[0]
@property
def rhs(self):
"""The right-hand side of the relation."""
return self.arguments[1]
@property
def reversed(self):
"""
Try to return the relationship with sides reversed.
"""
revfunc = self.function.reversed
if revfunc is None:
return self
return revfunc(self.rhs, self.lhs)
@property
def reversedsign(self):
"""
Try to return the relationship with signs reversed.
"""
revfunc = self.function.reversed
if revfunc is None:
return self
if not any(side.kind is BooleanKind for side in self.arguments):
return revfunc(-self.lhs, -self.rhs)
return self
@property
def negated(self):
neg_rel = self.function.negated
if neg_rel is None:
return Not(self, evaluate=False)
return neg_rel(*self.arguments)
def _eval_ask(self, assumptions):
conj_assumps = set()
binrelpreds = {Eq: Q.eq, Ne: Q.ne, Gt: Q.gt, Lt: Q.lt, Ge: Q.ge, Le: Q.le}
for a in conjuncts(assumptions):
if a.func in binrelpreds:
conj_assumps.add(binrelpreds[type(a)](*a.args))
else:
conj_assumps.add(a)
# After CNF in assumptions module is modified to take polyadic
# predicate, this will be removed
if any(rel in conj_assumps for rel in (self, self.reversed)):
return True
neg_rels = (self.negated, self.reversed.negated, Not(self, evaluate=False),
Not(self.reversed, evaluate=False))
if any(rel in conj_assumps for rel in neg_rels):
return False
# evaluation using multipledispatching
ret = self.function.eval(self.arguments, assumptions)
if ret is not None:
return ret
# simplify the args and try again
args = tuple(a.simplify() for a in self.arguments)
return self.function.eval(args, assumptions)
def __bool__(self):
ret = ask(self)
if ret is None:
raise TypeError("Cannot determine truth value of %s" % self)
return ret
|
73419c772ff29bab47cee987c0b1c6468797b31bb767e47ae0e45e20b2832383 | """
This module implements some special functions that commonly appear in
combinatorial contexts (e.g. in power series); in particular,
sequences of rational numbers such as Bernoulli and Fibonacci numbers.
Factorials, binomial coefficients and related functions are located in
the separate 'factorials' module.
"""
from math import prod
from collections import defaultdict
from typing import Tuple as tTuple
from sympy.core import S, Symbol, Add, Dummy
from sympy.core.cache import cacheit
from sympy.core.expr import Expr
from sympy.core.function import ArgumentIndexError, Function, expand_mul
from sympy.core.logic import fuzzy_not
from sympy.core.mul import Mul
from sympy.core.numbers import E, I, pi, oo, Rational, Integer
from sympy.core.relational import Eq, is_le, is_gt
from sympy.external.gmpy import SYMPY_INTS
from sympy.functions.combinatorial.factorials import (binomial,
factorial, subfactorial)
from sympy.functions.elementary.exponential import log
from sympy.functions.elementary.piecewise import Piecewise
from sympy.ntheory.primetest import isprime, is_square
from sympy.polys.appellseqs import bernoulli_poly, euler_poly, genocchi_poly
from sympy.utilities.enumerative import MultisetPartitionTraverser
from sympy.utilities.exceptions import sympy_deprecation_warning
from sympy.utilities.iterables import multiset, multiset_derangements, iterable
from sympy.utilities.memoization import recurrence_memo
from sympy.utilities.misc import as_int
from mpmath import mp, workprec
from mpmath.libmp import ifib as _ifib
def _product(a, b):
return prod(range(a, b + 1))
# Dummy symbol used for computing polynomial sequences
_sym = Symbol('x')
#----------------------------------------------------------------------------#
# #
# Carmichael numbers #
# #
#----------------------------------------------------------------------------#
def _divides(p, n):
return n % p == 0
class carmichael(Function):
r"""
Carmichael Numbers:
Certain cryptographic algorithms make use of big prime numbers.
However, checking whether a big number is prime is not so easy.
Randomized prime number checking tests exist that offer a high degree of
confidence of accurate determination at low cost, such as the Fermat test.
Let 'a' be a random number between $2$ and $n - 1$, where $n$ is the
number whose primality we are testing. Then, $n$ is probably prime if it
satisfies the modular arithmetic congruence relation:
.. math :: a^{n-1} = 1 \pmod{n}
(where mod refers to the modulo operation)
If a number passes the Fermat test several times, then it is prime with a
high probability.
Unfortunately, certain composite numbers (non-primes) still pass the Fermat
test with every number smaller than themselves.
These numbers are called Carmichael numbers.
A Carmichael number will pass a Fermat primality test to every base $b$
relatively prime to the number, even though it is not actually prime.
This makes tests based on Fermat's Little Theorem less effective than
strong probable prime tests such as the Baillie-PSW primality test and
the Miller-Rabin primality test.
Examples
========
>>> from sympy import carmichael
>>> carmichael.find_first_n_carmichaels(5)
[561, 1105, 1729, 2465, 2821]
>>> carmichael.find_carmichael_numbers_in_range(0, 562)
[561]
>>> carmichael.find_carmichael_numbers_in_range(0,1000)
[561]
>>> carmichael.find_carmichael_numbers_in_range(0,2000)
[561, 1105, 1729]
References
==========
.. [1] https://en.wikipedia.org/wiki/Carmichael_number
.. [2] https://en.wikipedia.org/wiki/Fermat_primality_test
.. [3] https://www.jstor.org/stable/23248683?seq=1#metadata_info_tab_contents
"""
@staticmethod
def is_perfect_square(n):
sympy_deprecation_warning(
"""
is_perfect_square is just a wrapper around sympy.ntheory.primetest.is_square
so use that directly instead.
""",
deprecated_since_version="1.11",
active_deprecations_target='deprecated-carmichael-static-methods',
)
return is_square(n)
@staticmethod
def divides(p, n):
sympy_deprecation_warning(
"""
divides can be replaced by directly testing n % p == 0.
""",
deprecated_since_version="1.11",
active_deprecations_target='deprecated-carmichael-static-methods',
)
return n % p == 0
@staticmethod
def is_prime(n):
sympy_deprecation_warning(
"""
is_prime is just a wrapper around sympy.ntheory.primetest.isprime so use that
directly instead.
""",
deprecated_since_version="1.11",
active_deprecations_target='deprecated-carmichael-static-methods',
)
return isprime(n)
@staticmethod
def is_carmichael(n):
if n >= 0:
if (n == 1) or isprime(n) or (n % 2 == 0):
return False
divisors = [1, n]
# get divisors
divisors.extend([i for i in range(3, n // 2 + 1, 2) if n % i == 0])
for i in divisors:
if is_square(i) and i != 1:
return False
if isprime(i):
if not _divides(i - 1, n - 1):
return False
return True
else:
raise ValueError('The provided number must be greater than or equal to 0')
@staticmethod
def find_carmichael_numbers_in_range(x, y):
if 0 <= x <= y:
if x % 2 == 0:
return [i for i in range(x + 1, y, 2) if carmichael.is_carmichael(i)]
else:
return [i for i in range(x, y, 2) if carmichael.is_carmichael(i)]
else:
raise ValueError('The provided range is not valid. x and y must be non-negative integers and x <= y')
@staticmethod
def find_first_n_carmichaels(n):
i = 1
carmichaels = list()
while len(carmichaels) < n:
if carmichael.is_carmichael(i):
carmichaels.append(i)
i += 2
return carmichaels
#----------------------------------------------------------------------------#
# #
# Fibonacci numbers #
# #
#----------------------------------------------------------------------------#
class fibonacci(Function):
r"""
Fibonacci numbers / Fibonacci polynomials
The Fibonacci numbers are the integer sequence defined by the
initial terms `F_0 = 0`, `F_1 = 1` and the two-term recurrence
relation `F_n = F_{n-1} + F_{n-2}`. This definition
extended to arbitrary real and complex arguments using
the formula
.. math :: F_z = \frac{\phi^z - \cos(\pi z) \phi^{-z}}{\sqrt 5}
The Fibonacci polynomials are defined by `F_1(x) = 1`,
`F_2(x) = x`, and `F_n(x) = x*F_{n-1}(x) + F_{n-2}(x)` for `n > 2`.
For all positive integers `n`, `F_n(1) = F_n`.
* ``fibonacci(n)`` gives the `n^{th}` Fibonacci number, `F_n`
* ``fibonacci(n, x)`` gives the `n^{th}` Fibonacci polynomial in `x`, `F_n(x)`
Examples
========
>>> from sympy import fibonacci, Symbol
>>> [fibonacci(x) for x in range(11)]
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
>>> fibonacci(5, Symbol('t'))
t**4 + 3*t**2 + 1
See Also
========
bell, bernoulli, catalan, euler, harmonic, lucas, genocchi, partition, tribonacci
References
==========
.. [1] https://en.wikipedia.org/wiki/Fibonacci_number
.. [2] http://mathworld.wolfram.com/FibonacciNumber.html
"""
@staticmethod
def _fib(n):
return _ifib(n)
@staticmethod
@recurrence_memo([None, S.One, _sym])
def _fibpoly(n, prev):
return (prev[-2] + _sym*prev[-1]).expand()
@classmethod
def eval(cls, n, sym=None):
if n is S.Infinity:
return S.Infinity
if n.is_Integer:
if sym is None:
n = int(n)
if n < 0:
return S.NegativeOne**(n + 1) * fibonacci(-n)
else:
return Integer(cls._fib(n))
else:
if n < 1:
raise ValueError("Fibonacci polynomials are defined "
"only for positive integer indices.")
return cls._fibpoly(n).subs(_sym, sym)
def _eval_rewrite_as_sqrt(self, n, **kwargs):
from sympy.functions.elementary.miscellaneous import sqrt
return 2**(-n)*sqrt(5)*((1 + sqrt(5))**n - (-sqrt(5) + 1)**n) / 5
def _eval_rewrite_as_GoldenRatio(self,n, **kwargs):
return (S.GoldenRatio**n - 1/(-S.GoldenRatio)**n)/(2*S.GoldenRatio-1)
#----------------------------------------------------------------------------#
# #
# Lucas numbers #
# #
#----------------------------------------------------------------------------#
class lucas(Function):
"""
Lucas numbers
Lucas numbers satisfy a recurrence relation similar to that of
the Fibonacci sequence, in which each term is the sum of the
preceding two. They are generated by choosing the initial
values `L_0 = 2` and `L_1 = 1`.
* ``lucas(n)`` gives the `n^{th}` Lucas number
Examples
========
>>> from sympy import lucas
>>> [lucas(x) for x in range(11)]
[2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123]
See Also
========
bell, bernoulli, catalan, euler, fibonacci, harmonic, genocchi, partition, tribonacci
References
==========
.. [1] https://en.wikipedia.org/wiki/Lucas_number
.. [2] http://mathworld.wolfram.com/LucasNumber.html
"""
@classmethod
def eval(cls, n):
if n is S.Infinity:
return S.Infinity
if n.is_Integer:
return fibonacci(n + 1) + fibonacci(n - 1)
def _eval_rewrite_as_sqrt(self, n, **kwargs):
from sympy.functions.elementary.miscellaneous import sqrt
return 2**(-n)*((1 + sqrt(5))**n + (-sqrt(5) + 1)**n)
#----------------------------------------------------------------------------#
# #
# Tribonacci numbers #
# #
#----------------------------------------------------------------------------#
class tribonacci(Function):
r"""
Tribonacci numbers / Tribonacci polynomials
The Tribonacci numbers are the integer sequence defined by the
initial terms `T_0 = 0`, `T_1 = 1`, `T_2 = 1` and the three-term
recurrence relation `T_n = T_{n-1} + T_{n-2} + T_{n-3}`.
The Tribonacci polynomials are defined by `T_0(x) = 0`, `T_1(x) = 1`,
`T_2(x) = x^2`, and `T_n(x) = x^2 T_{n-1}(x) + x T_{n-2}(x) + T_{n-3}(x)`
for `n > 2`. For all positive integers `n`, `T_n(1) = T_n`.
* ``tribonacci(n)`` gives the `n^{th}` Tribonacci number, `T_n`
* ``tribonacci(n, x)`` gives the `n^{th}` Tribonacci polynomial in `x`, `T_n(x)`
Examples
========
>>> from sympy import tribonacci, Symbol
>>> [tribonacci(x) for x in range(11)]
[0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149]
>>> tribonacci(5, Symbol('t'))
t**8 + 3*t**5 + 3*t**2
See Also
========
bell, bernoulli, catalan, euler, fibonacci, harmonic, lucas, genocchi, partition
References
==========
.. [1] https://en.wikipedia.org/wiki/Generalizations_of_Fibonacci_numbers#Tribonacci_numbers
.. [2] http://mathworld.wolfram.com/TribonacciNumber.html
.. [3] https://oeis.org/A000073
"""
@staticmethod
@recurrence_memo([S.Zero, S.One, S.One])
def _trib(n, prev):
return (prev[-3] + prev[-2] + prev[-1])
@staticmethod
@recurrence_memo([S.Zero, S.One, _sym**2])
def _tribpoly(n, prev):
return (prev[-3] + _sym*prev[-2] + _sym**2*prev[-1]).expand()
@classmethod
def eval(cls, n, sym=None):
if n is S.Infinity:
return S.Infinity
if n.is_Integer:
n = int(n)
if n < 0:
raise ValueError("Tribonacci polynomials are defined "
"only for non-negative integer indices.")
if sym is None:
return Integer(cls._trib(n))
else:
return cls._tribpoly(n).subs(_sym, sym)
def _eval_rewrite_as_sqrt(self, n, **kwargs):
from sympy.functions.elementary.miscellaneous import cbrt, sqrt
w = (-1 + S.ImaginaryUnit * sqrt(3)) / 2
a = (1 + cbrt(19 + 3*sqrt(33)) + cbrt(19 - 3*sqrt(33))) / 3
b = (1 + w*cbrt(19 + 3*sqrt(33)) + w**2*cbrt(19 - 3*sqrt(33))) / 3
c = (1 + w**2*cbrt(19 + 3*sqrt(33)) + w*cbrt(19 - 3*sqrt(33))) / 3
Tn = (a**(n + 1)/((a - b)*(a - c))
+ b**(n + 1)/((b - a)*(b - c))
+ c**(n + 1)/((c - a)*(c - b)))
return Tn
def _eval_rewrite_as_TribonacciConstant(self, n, **kwargs):
from sympy.functions.elementary.integers import floor
from sympy.functions.elementary.miscellaneous import cbrt, sqrt
b = cbrt(586 + 102*sqrt(33))
Tn = 3 * b * S.TribonacciConstant**n / (b**2 - 2*b + 4)
return floor(Tn + S.Half)
#----------------------------------------------------------------------------#
# #
# Bernoulli numbers #
# #
#----------------------------------------------------------------------------#
class bernoulli(Function):
r"""
Bernoulli numbers / Bernoulli polynomials / Bernoulli function
The Bernoulli numbers are a sequence of rational numbers
defined by `B_0 = 1` and the recursive relation (`n > 0`):
.. math :: n+1 = \sum_{k=0}^n \binom{n+1}{k} B_k
They are also commonly defined by their exponential generating
function, which is `\frac{x}{1 - e^{-x}}`. For odd indices > 1,
the Bernoulli numbers are zero.
The Bernoulli polynomials satisfy the analogous formula:
.. math :: B_n(x) = \sum_{k=0}^n (-1)^k \binom{n}{k} B_k x^{n-k}
Bernoulli numbers and Bernoulli polynomials are related as
`B_n(1) = B_n`.
The generalized Bernoulli function `\operatorname{B}(s, a)`
is defined for any complex `s` and `a`, except where `a` is a
nonpositive integer and `s` is not a nonnegative integer. It is
an entire function of `s` for fixed `a`, related to the Hurwitz
zeta function by
.. math:: \operatorname{B}(s, a) = \begin{cases}
-s \zeta(1-s, a) & s \ne 0 \\ 1 & s = 0 \end{cases}
When `s` is a nonnegative integer this function reduces to the
Bernoulli polynomials: `\operatorname{B}(n, x) = B_n(x)`. When
`a` is omitted it is assumed to be 1, yielding the (ordinary)
Bernoulli function which interpolates the Bernoulli numbers and is
related to the Riemann zeta function.
We compute Bernoulli numbers using Ramanujan's formula:
.. math :: B_n = \frac{A(n) - S(n)}{\binom{n+3}{n}}
where:
.. math :: A(n) = \begin{cases} \frac{n+3}{3} &
n \equiv 0\ \text{or}\ 2 \pmod{6} \\
-\frac{n+3}{6} & n \equiv 4 \pmod{6} \end{cases}
and:
.. math :: S(n) = \sum_{k=1}^{[n/6]} \binom{n+3}{n-6k} B_{n-6k}
This formula is similar to the sum given in the definition, but
cuts `\frac{2}{3}` of the terms. For Bernoulli polynomials, we use
Appell sequences.
For `n` a nonnegative integer and `s`, `a`, `x` arbitrary complex numbers,
* ``bernoulli(n)`` gives the nth Bernoulli number, `B_n`
* ``bernoulli(s)`` gives the Bernoulli function `\operatorname{B}(s)`
* ``bernoulli(n, x)`` gives the nth Bernoulli polynomial in `x`, `B_n(x)`
* ``bernoulli(s, a)`` gives the generalized Bernoulli function
`\operatorname{B}(s, a)`
.. versionchanged:: 1.12
``bernoulli(1)`` gives `+\frac{1}{2}` instead of `-\frac{1}{2}`.
This choice of value confers several theoretical advantages [5]_,
including the extension to complex parameters described above
which this function now implements. The previous behavior, defined
only for nonnegative integers `n`, can be obtained with
``(-1)**n*bernoulli(n)``.
Examples
========
>>> from sympy import bernoulli
>>> from sympy.abc import x
>>> [bernoulli(n) for n in range(11)]
[1, 1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0, 5/66]
>>> bernoulli(1000001)
0
>>> bernoulli(3, x)
x**3 - 3*x**2/2 + x/2
See Also
========
andre, bell, catalan, euler, fibonacci, harmonic, lucas, genocchi,
partition, tribonacci, sympy.polys.appellseqs.bernoulli_poly
References
==========
.. [1] https://en.wikipedia.org/wiki/Bernoulli_number
.. [2] https://en.wikipedia.org/wiki/Bernoulli_polynomial
.. [3] http://mathworld.wolfram.com/BernoulliNumber.html
.. [4] http://mathworld.wolfram.com/BernoulliPolynomial.html
.. [5] Peter Luschny, "The Bernoulli Manifesto",
http://luschny.de/math/zeta/The-Bernoulli-Manifesto.html
.. [6] Peter Luschny, "An introduction to the Bernoulli function",
https://arxiv.org/abs/2009.06743
"""
args: tTuple[Integer]
# Calculates B_n for positive even n
@staticmethod
def _calc_bernoulli(n):
s = 0
a = int(binomial(n + 3, n - 6))
for j in range(1, n//6 + 1):
s += a * bernoulli(n - 6*j)
# Avoid computing each binomial coefficient from scratch
a *= _product(n - 6 - 6*j + 1, n - 6*j)
a //= _product(6*j + 4, 6*j + 9)
if n % 6 == 4:
s = -Rational(n + 3, 6) - s
else:
s = Rational(n + 3, 3) - s
return s / binomial(n + 3, n)
# We implement a specialized memoization scheme to handle each
# case modulo 6 separately
_cache = {0: S.One, 2: Rational(1, 6), 4: Rational(-1, 30)}
_highest = {0: 0, 2: 2, 4: 4}
@classmethod
def eval(cls, n, x=None):
if x is S.One:
return cls(n)
elif n.is_zero:
return S.One
elif n.is_integer is False or n.is_nonnegative is False:
if x is not None and x.is_Integer and x.is_nonpositive:
return S.NaN
return
# Bernoulli numbers
elif x is None:
if n is S.One:
return S.Half
elif n.is_odd and (n-1).is_positive:
return S.Zero
elif n.is_Number:
n = int(n)
# Use mpmath for enormous Bernoulli numbers
if n > 500:
p, q = mp.bernfrac(n)
return Rational(int(p), int(q))
case = n % 6
highest_cached = cls._highest[case]
if n <= highest_cached:
return cls._cache[n]
# To avoid excessive recursion when, say, bernoulli(1000) is
# requested, calculate and cache the entire sequence ... B_988,
# B_994, B_1000 in increasing order
for i in range(highest_cached + 6, n + 6, 6):
b = cls._calc_bernoulli(i)
cls._cache[i] = b
cls._highest[case] = i
return b
# Bernoulli polynomials
elif n.is_Number:
return bernoulli_poly(n, x)
def _eval_rewrite_as_zeta(self, n, x=1, **kwargs):
from sympy.functions.special.zeta_functions import zeta
return Piecewise((1, Eq(n, 0)), (-n * zeta(1-n, x), True))
def _eval_evalf(self, prec):
if not all(x.is_number for x in self.args):
return
n = self.args[0]._to_mpmath(prec)
x = (self.args[1] if len(self.args) > 1 else S.One)._to_mpmath(prec)
with workprec(prec):
if n == 0:
res = mp.mpf(1)
elif n == 1:
res = x - mp.mpf(0.5)
elif mp.isint(n) and n >= 0:
res = mp.bernoulli(n) if x == 1 else mp.bernpoly(n, x)
else:
res = -n * mp.zeta(1-n, x)
return Expr._from_mpmath(res, prec)
#----------------------------------------------------------------------------#
# #
# Bell numbers #
# #
#----------------------------------------------------------------------------#
class bell(Function):
r"""
Bell numbers / Bell polynomials
The Bell numbers satisfy `B_0 = 1` and
.. math:: B_n = \sum_{k=0}^{n-1} \binom{n-1}{k} B_k.
They are also given by:
.. math:: B_n = \frac{1}{e} \sum_{k=0}^{\infty} \frac{k^n}{k!}.
The Bell polynomials are given by `B_0(x) = 1` and
.. math:: B_n(x) = x \sum_{k=1}^{n-1} \binom{n-1}{k-1} B_{k-1}(x).
The second kind of Bell polynomials (are sometimes called "partial" Bell
polynomials or incomplete Bell polynomials) are defined as
.. math:: B_{n,k}(x_1, x_2,\dotsc x_{n-k+1}) =
\sum_{j_1+j_2+j_2+\dotsb=k \atop j_1+2j_2+3j_2+\dotsb=n}
\frac{n!}{j_1!j_2!\dotsb j_{n-k+1}!}
\left(\frac{x_1}{1!} \right)^{j_1}
\left(\frac{x_2}{2!} \right)^{j_2} \dotsb
\left(\frac{x_{n-k+1}}{(n-k+1)!} \right) ^{j_{n-k+1}}.
* ``bell(n)`` gives the `n^{th}` Bell number, `B_n`.
* ``bell(n, x)`` gives the `n^{th}` Bell polynomial, `B_n(x)`.
* ``bell(n, k, (x1, x2, ...))`` gives Bell polynomials of the second kind,
`B_{n,k}(x_1, x_2, \dotsc, x_{n-k+1})`.
Notes
=====
Not to be confused with Bernoulli numbers and Bernoulli polynomials,
which use the same notation.
Examples
========
>>> from sympy import bell, Symbol, symbols
>>> [bell(n) for n in range(11)]
[1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975]
>>> bell(30)
846749014511809332450147
>>> bell(4, Symbol('t'))
t**4 + 6*t**3 + 7*t**2 + t
>>> bell(6, 2, symbols('x:6')[1:])
6*x1*x5 + 15*x2*x4 + 10*x3**2
See Also
========
bernoulli, catalan, euler, fibonacci, harmonic, lucas, genocchi, partition, tribonacci
References
==========
.. [1] https://en.wikipedia.org/wiki/Bell_number
.. [2] http://mathworld.wolfram.com/BellNumber.html
.. [3] http://mathworld.wolfram.com/BellPolynomial.html
"""
@staticmethod
@recurrence_memo([1, 1])
def _bell(n, prev):
s = 1
a = 1
for k in range(1, n):
a = a * (n - k) // k
s += a * prev[k]
return s
@staticmethod
@recurrence_memo([S.One, _sym])
def _bell_poly(n, prev):
s = 1
a = 1
for k in range(2, n + 1):
a = a * (n - k + 1) // (k - 1)
s += a * prev[k - 1]
return expand_mul(_sym * s)
@staticmethod
def _bell_incomplete_poly(n, k, symbols):
r"""
The second kind of Bell polynomials (incomplete Bell polynomials).
Calculated by recurrence formula:
.. math:: B_{n,k}(x_1, x_2, \dotsc, x_{n-k+1}) =
\sum_{m=1}^{n-k+1}
\x_m \binom{n-1}{m-1} B_{n-m,k-1}(x_1, x_2, \dotsc, x_{n-m-k})
where
`B_{0,0} = 1;`
`B_{n,0} = 0; for n \ge 1`
`B_{0,k} = 0; for k \ge 1`
"""
if (n == 0) and (k == 0):
return S.One
elif (n == 0) or (k == 0):
return S.Zero
s = S.Zero
a = S.One
for m in range(1, n - k + 2):
s += a * bell._bell_incomplete_poly(
n - m, k - 1, symbols) * symbols[m - 1]
a = a * (n - m) / m
return expand_mul(s)
@classmethod
def eval(cls, n, k_sym=None, symbols=None):
if n is S.Infinity:
if k_sym is None:
return S.Infinity
else:
raise ValueError("Bell polynomial is not defined")
if n.is_negative or n.is_integer is False:
raise ValueError("a non-negative integer expected")
if n.is_Integer and n.is_nonnegative:
if k_sym is None:
return Integer(cls._bell(int(n)))
elif symbols is None:
return cls._bell_poly(int(n)).subs(_sym, k_sym)
else:
r = cls._bell_incomplete_poly(int(n), int(k_sym), symbols)
return r
def _eval_rewrite_as_Sum(self, n, k_sym=None, symbols=None, **kwargs):
from sympy.concrete.summations import Sum
if (k_sym is not None) or (symbols is not None):
return self
# Dobinski's formula
if not n.is_nonnegative:
return self
k = Dummy('k', integer=True, nonnegative=True)
return 1 / E * Sum(k**n / factorial(k), (k, 0, S.Infinity))
#----------------------------------------------------------------------------#
# #
# Harmonic numbers #
# #
#----------------------------------------------------------------------------#
class harmonic(Function):
r"""
Harmonic numbers
The nth harmonic number is given by `\operatorname{H}_{n} =
1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}`.
More generally:
.. math:: \operatorname{H}_{n,m} = \sum_{k=1}^{n} \frac{1}{k^m}
As `n \rightarrow \infty`, `\operatorname{H}_{n,m} \rightarrow \zeta(m)`,
the Riemann zeta function.
* ``harmonic(n)`` gives the nth harmonic number, `\operatorname{H}_n`
* ``harmonic(n, m)`` gives the nth generalized harmonic number
of order `m`, `\operatorname{H}_{n,m}`, where
``harmonic(n) == harmonic(n, 1)``
This function can be extended to complex `n` and `m` where `n` is not a
negative integer or `m` is a nonpositive integer as
.. math:: \operatorname{H}_{n,m} = \begin{cases} \zeta(m) - \zeta(m, n+1)
& m \ne 1 \\ \psi(n+1) + \gamma & m = 1 \end{cases}
Examples
========
>>> from sympy import harmonic, oo
>>> [harmonic(n) for n in range(6)]
[0, 1, 3/2, 11/6, 25/12, 137/60]
>>> [harmonic(n, 2) for n in range(6)]
[0, 1, 5/4, 49/36, 205/144, 5269/3600]
>>> harmonic(oo, 2)
pi**2/6
>>> from sympy import Symbol, Sum
>>> n = Symbol("n")
>>> harmonic(n).rewrite(Sum)
Sum(1/_k, (_k, 1, n))
We can evaluate harmonic numbers for all integral and positive
rational arguments:
>>> from sympy import S, expand_func, simplify
>>> harmonic(8)
761/280
>>> harmonic(11)
83711/27720
>>> H = harmonic(1/S(3))
>>> H
harmonic(1/3)
>>> He = expand_func(H)
>>> He
-log(6) - sqrt(3)*pi/6 + 2*Sum(log(sin(_k*pi/3))*cos(2*_k*pi/3), (_k, 1, 1))
+ 3*Sum(1/(3*_k + 1), (_k, 0, 0))
>>> He.doit()
-log(6) - sqrt(3)*pi/6 - log(sqrt(3)/2) + 3
>>> H = harmonic(25/S(7))
>>> He = simplify(expand_func(H).doit())
>>> He
log(sin(2*pi/7)**(2*cos(16*pi/7))/(14*sin(pi/7)**(2*cos(pi/7))*cos(pi/14)**(2*sin(pi/14)))) + pi*tan(pi/14)/2 + 30247/9900
>>> He.n(40)
1.983697455232980674869851942390639915940
>>> harmonic(25/S(7)).n(40)
1.983697455232980674869851942390639915940
We can rewrite harmonic numbers in terms of polygamma functions:
>>> from sympy import digamma, polygamma
>>> m = Symbol("m", integer=True, positive=True)
>>> harmonic(n).rewrite(digamma)
polygamma(0, n + 1) + EulerGamma
>>> harmonic(n).rewrite(polygamma)
polygamma(0, n + 1) + EulerGamma
>>> harmonic(n,3).rewrite(polygamma)
polygamma(2, n + 1)/2 + zeta(3)
>>> simplify(harmonic(n,m).rewrite(polygamma))
Piecewise((polygamma(0, n + 1) + EulerGamma, Eq(m, 1)),
(-(-1)**m*polygamma(m - 1, n + 1)/factorial(m - 1) + zeta(m), True))
Integer offsets in the argument can be pulled out:
>>> from sympy import expand_func
>>> expand_func(harmonic(n+4))
harmonic(n) + 1/(n + 4) + 1/(n + 3) + 1/(n + 2) + 1/(n + 1)
>>> expand_func(harmonic(n-4))
harmonic(n) - 1/(n - 1) - 1/(n - 2) - 1/(n - 3) - 1/n
Some limits can be computed as well:
>>> from sympy import limit, oo
>>> limit(harmonic(n), n, oo)
oo
>>> limit(harmonic(n, 2), n, oo)
pi**2/6
>>> limit(harmonic(n, 3), n, oo)
zeta(3)
For `m > 1`, `H_{n,m}` tends to `\zeta(m)` in the limit of infinite `n`:
>>> m = Symbol("m", positive=True)
>>> limit(harmonic(n, m+1), n, oo)
zeta(m + 1)
See Also
========
bell, bernoulli, catalan, euler, fibonacci, lucas, genocchi, partition, tribonacci
References
==========
.. [1] https://en.wikipedia.org/wiki/Harmonic_number
.. [2] http://functions.wolfram.com/GammaBetaErf/HarmonicNumber/
.. [3] http://functions.wolfram.com/GammaBetaErf/HarmonicNumber2/
"""
@classmethod
def eval(cls, n, m=None):
from sympy.functions.special.zeta_functions import zeta
if m is S.One:
return cls(n)
if m is None:
m = S.One
if n.is_zero:
return S.Zero
elif m.is_zero:
return n
elif n is S.Infinity:
if m.is_negative:
return S.NaN
elif is_le(m, S.One):
return S.Infinity
elif is_gt(m, S.One):
return zeta(m)
elif m.is_Integer and m.is_nonpositive:
return (bernoulli(1-m, n+1) - bernoulli(1-m)) / (1-m)
elif n.is_Integer:
if n.is_negative and (m.is_integer is False or m.is_nonpositive is False):
return S.ComplexInfinity if m is S.One else S.NaN
if n.is_nonnegative:
return Add(*(k**(-m) for k in range(1, int(n)+1)))
def _eval_rewrite_as_polygamma(self, n, m=S.One, **kwargs):
from sympy.functions.special.gamma_functions import gamma, polygamma
if m.is_integer and m.is_positive:
return Piecewise((polygamma(0, n+1) + S.EulerGamma, Eq(m, 1)),
(S.NegativeOne**m * (polygamma(m-1, 1) - polygamma(m-1, n+1)) /
gamma(m), True))
def _eval_rewrite_as_digamma(self, n, m=1, **kwargs):
from sympy.functions.special.gamma_functions import polygamma
return self.rewrite(polygamma)
def _eval_rewrite_as_trigamma(self, n, m=1, **kwargs):
from sympy.functions.special.gamma_functions import polygamma
return self.rewrite(polygamma)
def _eval_rewrite_as_Sum(self, n, m=None, **kwargs):
from sympy.concrete.summations import Sum
k = Dummy("k", integer=True)
if m is None:
m = S.One
return Sum(k**(-m), (k, 1, n))
def _eval_rewrite_as_zeta(self, n, m=S.One, **kwargs):
from sympy.functions.special.zeta_functions import zeta
from sympy.functions.special.gamma_functions import digamma
return Piecewise((digamma(n + 1) + S.EulerGamma, Eq(m, 1)),
(zeta(m) - zeta(m, n+1), True))
def _eval_expand_func(self, **hints):
from sympy.concrete.summations import Sum
n = self.args[0]
m = self.args[1] if len(self.args) == 2 else 1
if m == S.One:
if n.is_Add:
off = n.args[0]
nnew = n - off
if off.is_Integer and off.is_positive:
result = [S.One/(nnew + i) for i in range(off, 0, -1)] + [harmonic(nnew)]
return Add(*result)
elif off.is_Integer and off.is_negative:
result = [-S.One/(nnew + i) for i in range(0, off, -1)] + [harmonic(nnew)]
return Add(*result)
if n.is_Rational:
# Expansions for harmonic numbers at general rational arguments (u + p/q)
# Split n as u + p/q with p < q
p, q = n.as_numer_denom()
u = p // q
p = p - u * q
if u.is_nonnegative and p.is_positive and q.is_positive and p < q:
from sympy.functions.elementary.exponential import log
from sympy.functions.elementary.integers import floor
from sympy.functions.elementary.trigonometric import sin, cos, cot
k = Dummy("k")
t1 = q * Sum(1 / (q * k + p), (k, 0, u))
t2 = 2 * Sum(cos((2 * pi * p * k) / S(q)) *
log(sin((pi * k) / S(q))),
(k, 1, floor((q - 1) / S(2))))
t3 = (pi / 2) * cot((pi * p) / q) + log(2 * q)
return t1 + t2 - t3
return self
def _eval_rewrite_as_tractable(self, n, m=1, limitvar=None, **kwargs):
from sympy.functions.special.zeta_functions import zeta
from sympy.functions.special.gamma_functions import polygamma
pg = self.rewrite(polygamma)
if not isinstance(pg, harmonic):
return pg.rewrite("tractable", deep=True)
arg = m - S.One
if arg.is_nonzero:
return (zeta(m) - zeta(m, n+1)).rewrite("tractable", deep=True)
def _eval_evalf(self, prec):
if not all(x.is_number for x in self.args):
return
n = self.args[0]._to_mpmath(prec)
m = (self.args[1] if len(self.args) > 1 else S.One)._to_mpmath(prec)
if mp.isint(n) and n < 0:
return S.NaN
with workprec(prec):
if m == 1:
res = mp.harmonic(n)
else:
res = mp.zeta(m) - mp.zeta(m, n+1)
return Expr._from_mpmath(res, prec)
def fdiff(self, argindex=1):
from sympy.functions.special.zeta_functions import zeta
if len(self.args) == 2:
n, m = self.args
else:
n, m = self.args + (1,)
if argindex == 1:
return m * zeta(m+1, n+1)
else:
raise ArgumentIndexError
#----------------------------------------------------------------------------#
# #
# Euler numbers #
# #
#----------------------------------------------------------------------------#
class euler(Function):
r"""
Euler numbers / Euler polynomials / Euler function
The Euler numbers are given by:
.. math:: E_{2n} = I \sum_{k=1}^{2n+1} \sum_{j=0}^k \binom{k}{j}
\frac{(-1)^j (k-2j)^{2n+1}}{2^k I^k k}
.. math:: E_{2n+1} = 0
Euler numbers and Euler polynomials are related by
.. math:: E_n = 2^n E_n\left(\frac{1}{2}\right).
We compute symbolic Euler polynomials using Appell sequences,
but numerical evaluation of the Euler polynomial is computed
more efficiently (and more accurately) using the mpmath library.
The Euler polynomials are special cases of the generalized Euler function,
related to the Genocchi function as
.. math:: \operatorname{E}(s, a) = -\frac{\operatorname{G}(s+1, a)}{s+1}
with the limit of `\psi\left(\frac{a+1}{2}\right) - \psi\left(\frac{a}{2}\right)`
being taken when `s = -1`. The (ordinary) Euler function interpolating
the Euler numbers is then obtained as
`\operatorname{E}(s) = 2^s \operatorname{E}\left(s, \frac{1}{2}\right)`.
* ``euler(n)`` gives the nth Euler number `E_n`.
* ``euler(s)`` gives the Euler function `\operatorname{E}(s)`.
* ``euler(n, x)`` gives the nth Euler polynomial `E_n(x)`.
* ``euler(s, a)`` gives the generalized Euler function `\operatorname{E}(s, a)`.
Examples
========
>>> from sympy import euler, Symbol, S
>>> [euler(n) for n in range(10)]
[1, 0, -1, 0, 5, 0, -61, 0, 1385, 0]
>>> [2**n*euler(n,1) for n in range(10)]
[1, 1, 0, -2, 0, 16, 0, -272, 0, 7936]
>>> n = Symbol("n")
>>> euler(n + 2*n)
euler(3*n)
>>> x = Symbol("x")
>>> euler(n, x)
euler(n, x)
>>> euler(0, x)
1
>>> euler(1, x)
x - 1/2
>>> euler(2, x)
x**2 - x
>>> euler(3, x)
x**3 - 3*x**2/2 + 1/4
>>> euler(4, x)
x**4 - 2*x**3 + x
>>> euler(12, S.Half)
2702765/4096
>>> euler(12)
2702765
See Also
========
andre, bell, bernoulli, catalan, fibonacci, harmonic, lucas, genocchi,
partition, tribonacci, sympy.polys.appellseqs.euler_poly
References
==========
.. [1] https://en.wikipedia.org/wiki/Euler_numbers
.. [2] http://mathworld.wolfram.com/EulerNumber.html
.. [3] https://en.wikipedia.org/wiki/Alternating_permutation
.. [4] http://mathworld.wolfram.com/AlternatingPermutation.html
"""
@classmethod
def eval(cls, n, x=None):
if n.is_zero:
return S.One
elif n is S.NegativeOne:
if x is None:
return S.Pi/2
from sympy.functions.special.gamma_functions import digamma
return digamma((x+1)/2) - digamma(x/2)
elif n.is_integer is False or n.is_nonnegative is False:
return
# Euler numbers
elif x is None:
if n.is_odd and n.is_positive:
return S.Zero
elif n.is_Number:
from mpmath import mp
n = n._to_mpmath(mp.prec)
res = mp.eulernum(n, exact=True)
return Integer(res)
# Euler polynomials
elif n.is_Number:
return euler_poly(n, x)
def _eval_rewrite_as_Sum(self, n, x=None, **kwargs):
from sympy.concrete.summations import Sum
if x is None and n.is_even:
k = Dummy("k", integer=True)
j = Dummy("j", integer=True)
n = n / 2
Em = (S.ImaginaryUnit * Sum(Sum(binomial(k, j) * (S.NegativeOne**j *
(k - 2*j)**(2*n + 1)) /
(2**k*S.ImaginaryUnit**k * k), (j, 0, k)), (k, 1, 2*n + 1)))
return Em
if x:
k = Dummy("k", integer=True)
return Sum(binomial(n, k)*euler(k)/2**k*(x - S.Half)**(n - k), (k, 0, n))
def _eval_rewrite_as_genocchi(self, n, x=None, **kwargs):
if x is None:
return Piecewise((S.Pi/2, Eq(n, -1)),
(-2**n * genocchi(n+1, S.Half) / (n+1), True))
from sympy.functions.special.gamma_functions import digamma
return Piecewise((digamma((x+1)/2) - digamma(x/2), Eq(n, -1)),
(-genocchi(n+1, x) / (n+1), True))
def _eval_evalf(self, prec):
if not all(i.is_number for i in self.args):
return
from mpmath import mp
m, x = (self.args[0], None) if len(self.args) == 1 else self.args
m = m._to_mpmath(prec)
if x is not None:
x = x._to_mpmath(prec)
with workprec(prec):
if mp.isint(m) and m >= 0:
res = mp.eulernum(m) if x is None else mp.eulerpoly(m, x)
else:
if m == -1:
res = mp.pi if x is None else mp.digamma((x+1)/2) - mp.digamma(x/2)
else:
y = 0.5 if x is None else x
res = 2 * (mp.zeta(-m, y) - 2**(m+1) * mp.zeta(-m, (y+1)/2))
if x is None:
res *= 2**m
return Expr._from_mpmath(res, prec)
#----------------------------------------------------------------------------#
# #
# Catalan numbers #
# #
#----------------------------------------------------------------------------#
class catalan(Function):
r"""
Catalan numbers
The `n^{th}` catalan number is given by:
.. math :: C_n = \frac{1}{n+1} \binom{2n}{n}
* ``catalan(n)`` gives the `n^{th}` Catalan number, `C_n`
Examples
========
>>> from sympy import (Symbol, binomial, gamma, hyper,
... catalan, diff, combsimp, Rational, I)
>>> [catalan(i) for i in range(1,10)]
[1, 2, 5, 14, 42, 132, 429, 1430, 4862]
>>> n = Symbol("n", integer=True)
>>> catalan(n)
catalan(n)
Catalan numbers can be transformed into several other, identical
expressions involving other mathematical functions
>>> catalan(n).rewrite(binomial)
binomial(2*n, n)/(n + 1)
>>> catalan(n).rewrite(gamma)
4**n*gamma(n + 1/2)/(sqrt(pi)*gamma(n + 2))
>>> catalan(n).rewrite(hyper)
hyper((1 - n, -n), (2,), 1)
For some non-integer values of n we can get closed form
expressions by rewriting in terms of gamma functions:
>>> catalan(Rational(1, 2)).rewrite(gamma)
8/(3*pi)
We can differentiate the Catalan numbers C(n) interpreted as a
continuous real function in n:
>>> diff(catalan(n), n)
(polygamma(0, n + 1/2) - polygamma(0, n + 2) + log(4))*catalan(n)
As a more advanced example consider the following ratio
between consecutive numbers:
>>> combsimp((catalan(n + 1)/catalan(n)).rewrite(binomial))
2*(2*n + 1)/(n + 2)
The Catalan numbers can be generalized to complex numbers:
>>> catalan(I).rewrite(gamma)
4**I*gamma(1/2 + I)/(sqrt(pi)*gamma(2 + I))
and evaluated with arbitrary precision:
>>> catalan(I).evalf(20)
0.39764993382373624267 - 0.020884341620842555705*I
See Also
========
andre, bell, bernoulli, euler, fibonacci, harmonic, lucas, genocchi,
partition, tribonacci, sympy.functions.combinatorial.factorials.binomial
References
==========
.. [1] https://en.wikipedia.org/wiki/Catalan_number
.. [2] http://mathworld.wolfram.com/CatalanNumber.html
.. [3] http://functions.wolfram.com/GammaBetaErf/CatalanNumber/
.. [4] http://geometer.org/mathcircles/catalan.pdf
"""
@classmethod
def eval(cls, n):
from sympy.functions.special.gamma_functions import gamma
if (n.is_Integer and n.is_nonnegative) or \
(n.is_noninteger and n.is_negative):
return 4**n*gamma(n + S.Half)/(gamma(S.Half)*gamma(n + 2))
if (n.is_integer and n.is_negative):
if (n + 1).is_negative:
return S.Zero
if (n + 1).is_zero:
return Rational(-1, 2)
def fdiff(self, argindex=1):
from sympy.functions.elementary.exponential import log
from sympy.functions.special.gamma_functions import polygamma
n = self.args[0]
return catalan(n)*(polygamma(0, n + S.Half) - polygamma(0, n + 2) + log(4))
def _eval_rewrite_as_binomial(self, n, **kwargs):
return binomial(2*n, n)/(n + 1)
def _eval_rewrite_as_factorial(self, n, **kwargs):
return factorial(2*n) / (factorial(n+1) * factorial(n))
def _eval_rewrite_as_gamma(self, n, piecewise=True, **kwargs):
from sympy.functions.special.gamma_functions import gamma
# The gamma function allows to generalize Catalan numbers to complex n
return 4**n*gamma(n + S.Half)/(gamma(S.Half)*gamma(n + 2))
def _eval_rewrite_as_hyper(self, n, **kwargs):
from sympy.functions.special.hyper import hyper
return hyper([1 - n, -n], [2], 1)
def _eval_rewrite_as_Product(self, n, **kwargs):
from sympy.concrete.products import Product
if not (n.is_integer and n.is_nonnegative):
return self
k = Dummy('k', integer=True, positive=True)
return Product((n + k) / k, (k, 2, n))
def _eval_is_integer(self):
if self.args[0].is_integer and self.args[0].is_nonnegative:
return True
def _eval_is_positive(self):
if self.args[0].is_nonnegative:
return True
def _eval_is_composite(self):
if self.args[0].is_integer and (self.args[0] - 3).is_positive:
return True
def _eval_evalf(self, prec):
from sympy.functions.special.gamma_functions import gamma
if self.args[0].is_number:
return self.rewrite(gamma)._eval_evalf(prec)
#----------------------------------------------------------------------------#
# #
# Genocchi numbers #
# #
#----------------------------------------------------------------------------#
class genocchi(Function):
r"""
Genocchi numbers / Genocchi polynomials / Genocchi function
The Genocchi numbers are a sequence of integers `G_n` that satisfy the
relation:
.. math:: \frac{-2t}{1 + e^{-t}} = \sum_{n=0}^\infty \frac{G_n t^n}{n!}
They are related to the Bernoulli numbers by
.. math:: G_n = 2 (1 - 2^n) B_n
and generalize like the Bernoulli numbers to the Genocchi polynomials and
function as
.. math:: \operatorname{G}(s, a) = 2 \left(\operatorname{B}(s, a) -
2^s \operatorname{B}\left(s, \frac{a+1}{2}\right)\right)
.. versionchanged:: 1.12
``genocchi(1)`` gives `-1` instead of `1`.
Examples
========
>>> from sympy import genocchi, Symbol
>>> [genocchi(n) for n in range(9)]
[0, -1, -1, 0, 1, 0, -3, 0, 17]
>>> n = Symbol('n', integer=True, positive=True)
>>> genocchi(2*n + 1)
0
>>> x = Symbol('x')
>>> genocchi(4, x)
-4*x**3 + 6*x**2 - 1
See Also
========
bell, bernoulli, catalan, euler, fibonacci, harmonic, lucas, partition, tribonacci
sympy.polys.appellseqs.genocchi_poly
References
==========
.. [1] https://en.wikipedia.org/wiki/Genocchi_number
.. [2] http://mathworld.wolfram.com/GenocchiNumber.html
.. [3] Peter Luschny, "An introduction to the Bernoulli function",
https://arxiv.org/abs/2009.06743
"""
@classmethod
def eval(cls, n, x=None):
if x is S.One:
return cls(n)
elif n.is_integer is False or n.is_nonnegative is False:
return
# Genocchi numbers
elif x is None:
if n.is_odd and (n-1).is_positive:
return S.Zero
elif n.is_Number:
return 2 * (1-S(2)**n) * bernoulli(n)
# Genocchi polynomials
elif n.is_Number:
return genocchi_poly(n, x)
def _eval_rewrite_as_bernoulli(self, n, x=1, **kwargs):
if x == 1 and n.is_integer and n.is_nonnegative:
return 2 * (1-S(2)**n) * bernoulli(n)
return 2 * (bernoulli(n, x) - 2**n * bernoulli(n, (x+1) / 2))
def _eval_rewrite_as_dirichlet_eta(self, n, x=1, **kwargs):
from sympy.functions.special.zeta_functions import dirichlet_eta
return -2*n * dirichlet_eta(1-n, x)
def _eval_is_integer(self):
if len(self.args) > 1 and self.args[1] != 1:
return
n = self.args[0]
if n.is_integer and n.is_nonnegative:
return True
def _eval_is_negative(self):
if len(self.args) > 1 and self.args[1] != 1:
return
n = self.args[0]
if n.is_integer and n.is_nonnegative:
if n.is_odd:
return fuzzy_not((n-1).is_positive)
return (n/2).is_odd
def _eval_is_positive(self):
if len(self.args) > 1 and self.args[1] != 1:
return
n = self.args[0]
if n.is_integer and n.is_nonnegative:
if n.is_zero or n.is_odd:
return False
return (n/2).is_even
def _eval_is_even(self):
if len(self.args) > 1 and self.args[1] != 1:
return
n = self.args[0]
if n.is_integer and n.is_nonnegative:
if n.is_even:
return n.is_zero
return (n-1).is_positive
def _eval_is_odd(self):
if len(self.args) > 1 and self.args[1] != 1:
return
n = self.args[0]
if n.is_integer and n.is_nonnegative:
if n.is_even:
return fuzzy_not(n.is_zero)
return fuzzy_not((n-1).is_positive)
def _eval_is_prime(self):
if len(self.args) > 1 and self.args[1] != 1:
return
n = self.args[0]
# only G_6 = -3 and G_8 = 17 are prime,
# but SymPy does not consider negatives as prime
# so only n=8 is tested
return (n-8).is_zero
def _eval_evalf(self, prec):
if all(i.is_number for i in self.args):
return self.rewrite(bernoulli)._eval_evalf(prec)
#----------------------------------------------------------------------------#
# #
# Andre numbers #
# #
#----------------------------------------------------------------------------#
class andre(Function):
r"""
Andre numbers / Andre function
The Andre number `\mathcal{A}_n` is Luschny's name for half the number of
*alternating permutations* on `n` elements, where a permutation is alternating
if adjacent elements alternately compare "greater" and "smaller" going from
left to right. For example, `2 < 3 > 1 < 4` is an alternating permutation.
This sequence is A000111 in the OEIS, which assigns the names *up/down numbers*
and *Euler zigzag numbers*. It satisfies a recurrence relation similar to that
for the Catalan numbers, with `\mathcal{A}_0 = 1` and
.. math:: 2 \mathcal{A}_{n+1} = \sum_{k=0}^n \binom{n}{k} \mathcal{A}_k \mathcal{A}_{n-k}
The Bernoulli and Euler numbers are signed transformations of the odd- and
even-indexed elements of this sequence respectively:
.. math :: \operatorname{B}_{2k} = \frac{2k \mathcal{A}_{2k-1}}{(-4)^k - (-16)^k}
.. math :: \operatorname{E}_{2k} = (-1)^k \mathcal{A}_{2k}
Like the Bernoulli and Euler numbers, the Andre numbers are interpolated by the
entire Andre function:
.. math :: \mathcal{A}(s) = (-i)^{s+1} \operatorname{Li}_{-s}(i) +
i^{s+1} \operatorname{Li}_{-s}(-i) = \\ \frac{2 \Gamma(s+1)}{(2\pi)^{s+1}}
(\zeta(s+1, 1/4) - \zeta(s+1, 3/4) \cos{\pi s})
Examples
========
>>> from sympy import andre, euler, bernoulli
>>> [andre(n) for n in range(11)]
[1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521]
>>> [(-1)**k * andre(2*k) for k in range(7)]
[1, -1, 5, -61, 1385, -50521, 2702765]
>>> [euler(2*k) for k in range(7)]
[1, -1, 5, -61, 1385, -50521, 2702765]
>>> [andre(2*k-1) * (2*k) / ((-4)**k - (-16)**k) for k in range(1, 8)]
[1/6, -1/30, 1/42, -1/30, 5/66, -691/2730, 7/6]
>>> [bernoulli(2*k) for k in range(1, 8)]
[1/6, -1/30, 1/42, -1/30, 5/66, -691/2730, 7/6]
See Also
========
bernoulli, catalan, euler, sympy.polys.appellseqs.andre_poly
References
==========
.. [1] https://en.wikipedia.org/wiki/Alternating_permutation
.. [2] https://mathworld.wolfram.com/EulerZigzagNumber.html
.. [3] Peter Luschny, "An introduction to the Bernoulli function",
https://arxiv.org/abs/2009.06743
"""
@classmethod
def eval(cls, n):
if n is S.NaN:
return S.NaN
elif n is S.Infinity:
return S.Infinity
if n.is_zero:
return S.One
elif n == -1:
return -log(2)
elif n == -2:
return -2*S.Catalan
elif n.is_Integer:
if n.is_nonnegative and n.is_even:
return abs(euler(n))
elif n.is_odd:
from sympy.functions.special.zeta_functions import zeta
m = -n-1
return I**m * Rational(1-2**m, 4**m) * zeta(-n)
def _eval_rewrite_as_zeta(self, s, **kwargs):
from sympy.functions.elementary.trigonometric import cos
from sympy.functions.special.gamma_functions import gamma
from sympy.functions.special.zeta_functions import zeta
return 2 * gamma(s+1) / (2*pi)**(s+1) * \
(zeta(s+1, S.One/4) - cos(pi*s) * zeta(s+1, S(3)/4))
def _eval_rewrite_as_polylog(self, s, **kwargs):
from sympy.functions.special.zeta_functions import polylog
return (-I)**(s+1) * polylog(-s, I) + I**(s+1) * polylog(-s, -I)
def _eval_is_integer(self):
n = self.args[0]
if n.is_integer and n.is_nonnegative:
return True
def _eval_is_positive(self):
if self.args[0].is_nonnegative:
return True
def _eval_evalf(self, prec):
if not self.args[0].is_number:
return
s = self.args[0]._to_mpmath(prec+12)
with workprec(prec+12):
sp, cp = mp.sinpi(s/2), mp.cospi(s/2)
res = 2*mp.dirichlet(-s, (-sp, cp, sp, -cp))
return Expr._from_mpmath(res, prec)
#----------------------------------------------------------------------------#
# #
# Partition numbers #
# #
#----------------------------------------------------------------------------#
_npartition = [1, 1]
class partition(Function):
r"""
Partition numbers
The Partition numbers are a sequence of integers `p_n` that represent the
number of distinct ways of representing `n` as a sum of natural numbers
(with order irrelevant). The generating function for `p_n` is given by:
.. math:: \sum_{n=0}^\infty p_n x^n = \prod_{k=1}^\infty (1 - x^k)^{-1}
Examples
========
>>> from sympy import partition, Symbol
>>> [partition(n) for n in range(9)]
[1, 1, 2, 3, 5, 7, 11, 15, 22]
>>> n = Symbol('n', integer=True, negative=True)
>>> partition(n)
0
See Also
========
bell, bernoulli, catalan, euler, fibonacci, harmonic, lucas, genocchi, tribonacci
References
==========
.. [1] https://en.wikipedia.org/wiki/Partition_(number_theory%29
.. [2] https://en.wikipedia.org/wiki/Pentagonal_number_theorem
"""
@staticmethod
def _partition(n):
L = len(_npartition)
if n < L:
return _npartition[n]
# lengthen cache
for _n in range(L, n + 1):
v, p, i = 0, 0, 0
while 1:
s = 0
p += 3*i + 1 # p = pentagonal number: 1, 5, 12, ...
if _n >= p:
s += _npartition[_n - p]
i += 1
gp = p + i # gp = generalized pentagonal: 2, 7, 15, ...
if _n >= gp:
s += _npartition[_n - gp]
if s == 0:
break
else:
v += s if i%2 == 1 else -s
_npartition.append(v)
return v
@classmethod
def eval(cls, n):
is_int = n.is_integer
if is_int == False:
raise ValueError("Partition numbers are defined only for "
"integers")
elif is_int:
if n.is_negative:
return S.Zero
if n.is_zero or (n - 1).is_zero:
return S.One
if n.is_Integer:
return Integer(cls._partition(n))
def _eval_is_integer(self):
if self.args[0].is_integer:
return True
def _eval_is_negative(self):
if self.args[0].is_integer:
return False
def _eval_is_positive(self):
n = self.args[0]
if n.is_nonnegative and n.is_integer:
return True
#######################################################################
###
### Functions for enumerating partitions, permutations and combinations
###
#######################################################################
class _MultisetHistogram(tuple):
pass
_N = -1
_ITEMS = -2
_M = slice(None, _ITEMS)
def _multiset_histogram(n):
"""Return tuple used in permutation and combination counting. Input
is a dictionary giving items with counts as values or a sequence of
items (which need not be sorted).
The data is stored in a class deriving from tuple so it is easily
recognized and so it can be converted easily to a list.
"""
if isinstance(n, dict): # item: count
if not all(isinstance(v, int) and v >= 0 for v in n.values()):
raise ValueError
tot = sum(n.values())
items = sum(1 for k in n if n[k] > 0)
return _MultisetHistogram([n[k] for k in n if n[k] > 0] + [items, tot])
else:
n = list(n)
s = set(n)
lens = len(s)
lenn = len(n)
if lens == lenn:
n = [1]*lenn + [lenn, lenn]
return _MultisetHistogram(n)
m = dict(zip(s, range(lens)))
d = dict(zip(range(lens), (0,)*lens))
for i in n:
d[m[i]] += 1
return _multiset_histogram(d)
def nP(n, k=None, replacement=False):
"""Return the number of permutations of ``n`` items taken ``k`` at a time.
Possible values for ``n``:
integer - set of length ``n``
sequence - converted to a multiset internally
multiset - {element: multiplicity}
If ``k`` is None then the total of all permutations of length 0
through the number of items represented by ``n`` will be returned.
If ``replacement`` is True then a given item can appear more than once
in the ``k`` items. (For example, for 'ab' permutations of 2 would
include 'aa', 'ab', 'ba' and 'bb'.) The multiplicity of elements in
``n`` is ignored when ``replacement`` is True but the total number
of elements is considered since no element can appear more times than
the number of elements in ``n``.
Examples
========
>>> from sympy.functions.combinatorial.numbers import nP
>>> from sympy.utilities.iterables import multiset_permutations, multiset
>>> nP(3, 2)
6
>>> nP('abc', 2) == nP(multiset('abc'), 2) == 6
True
>>> nP('aab', 2)
3
>>> nP([1, 2, 2], 2)
3
>>> [nP(3, i) for i in range(4)]
[1, 3, 6, 6]
>>> nP(3) == sum(_)
True
When ``replacement`` is True, each item can have multiplicity
equal to the length represented by ``n``:
>>> nP('aabc', replacement=True)
121
>>> [len(list(multiset_permutations('aaaabbbbcccc', i))) for i in range(5)]
[1, 3, 9, 27, 81]
>>> sum(_)
121
See Also
========
sympy.utilities.iterables.multiset_permutations
References
==========
.. [1] https://en.wikipedia.org/wiki/Permutation
"""
try:
n = as_int(n)
except ValueError:
return Integer(_nP(_multiset_histogram(n), k, replacement))
return Integer(_nP(n, k, replacement))
@cacheit
def _nP(n, k=None, replacement=False):
if k == 0:
return 1
if isinstance(n, SYMPY_INTS): # n different items
# assert n >= 0
if k is None:
return sum(_nP(n, i, replacement) for i in range(n + 1))
elif replacement:
return n**k
elif k > n:
return 0
elif k == n:
return factorial(k)
elif k == 1:
return n
else:
# assert k >= 0
return _product(n - k + 1, n)
elif isinstance(n, _MultisetHistogram):
if k is None:
return sum(_nP(n, i, replacement) for i in range(n[_N] + 1))
elif replacement:
return n[_ITEMS]**k
elif k == n[_N]:
return factorial(k)/prod([factorial(i) for i in n[_M] if i > 1])
elif k > n[_N]:
return 0
elif k == 1:
return n[_ITEMS]
else:
# assert k >= 0
tot = 0
n = list(n)
for i in range(len(n[_M])):
if not n[i]:
continue
n[_N] -= 1
if n[i] == 1:
n[i] = 0
n[_ITEMS] -= 1
tot += _nP(_MultisetHistogram(n), k - 1)
n[_ITEMS] += 1
n[i] = 1
else:
n[i] -= 1
tot += _nP(_MultisetHistogram(n), k - 1)
n[i] += 1
n[_N] += 1
return tot
@cacheit
def _AOP_product(n):
"""for n = (m1, m2, .., mk) return the coefficients of the polynomial,
prod(sum(x**i for i in range(nj + 1)) for nj in n); i.e. the coefficients
of the product of AOPs (all-one polynomials) or order given in n. The
resulting coefficient corresponding to x**r is the number of r-length
combinations of sum(n) elements with multiplicities given in n.
The coefficients are given as a default dictionary (so if a query is made
for a key that is not present, 0 will be returned).
Examples
========
>>> from sympy.functions.combinatorial.numbers import _AOP_product
>>> from sympy.abc import x
>>> n = (2, 2, 3) # e.g. aabbccc
>>> prod = ((x**2 + x + 1)*(x**2 + x + 1)*(x**3 + x**2 + x + 1)).expand()
>>> c = _AOP_product(n); dict(c)
{0: 1, 1: 3, 2: 6, 3: 8, 4: 8, 5: 6, 6: 3, 7: 1}
>>> [c[i] for i in range(8)] == [prod.coeff(x, i) for i in range(8)]
True
The generating poly used here is the same as that listed in
http://tinyurl.com/cep849r, but in a refactored form.
"""
n = list(n)
ord = sum(n)
need = (ord + 2)//2
rv = [1]*(n.pop() + 1)
rv.extend((0,) * (need - len(rv)))
rv = rv[:need]
while n:
ni = n.pop()
N = ni + 1
was = rv[:]
for i in range(1, min(N, len(rv))):
rv[i] += rv[i - 1]
for i in range(N, need):
rv[i] += rv[i - 1] - was[i - N]
rev = list(reversed(rv))
if ord % 2:
rv = rv + rev
else:
rv[-1:] = rev
d = defaultdict(int)
for i, r in enumerate(rv):
d[i] = r
return d
def nC(n, k=None, replacement=False):
"""Return the number of combinations of ``n`` items taken ``k`` at a time.
Possible values for ``n``:
integer - set of length ``n``
sequence - converted to a multiset internally
multiset - {element: multiplicity}
If ``k`` is None then the total of all combinations of length 0
through the number of items represented in ``n`` will be returned.
If ``replacement`` is True then a given item can appear more than once
in the ``k`` items. (For example, for 'ab' sets of 2 would include 'aa',
'ab', and 'bb'.) The multiplicity of elements in ``n`` is ignored when
``replacement`` is True but the total number of elements is considered
since no element can appear more times than the number of elements in
``n``.
Examples
========
>>> from sympy.functions.combinatorial.numbers import nC
>>> from sympy.utilities.iterables import multiset_combinations
>>> nC(3, 2)
3
>>> nC('abc', 2)
3
>>> nC('aab', 2)
2
When ``replacement`` is True, each item can have multiplicity
equal to the length represented by ``n``:
>>> nC('aabc', replacement=True)
35
>>> [len(list(multiset_combinations('aaaabbbbcccc', i))) for i in range(5)]
[1, 3, 6, 10, 15]
>>> sum(_)
35
If there are ``k`` items with multiplicities ``m_1, m_2, ..., m_k``
then the total of all combinations of length 0 through ``k`` is the
product, ``(m_1 + 1)*(m_2 + 1)*...*(m_k + 1)``. When the multiplicity
of each item is 1 (i.e., k unique items) then there are 2**k
combinations. For example, if there are 4 unique items, the total number
of combinations is 16:
>>> sum(nC(4, i) for i in range(5))
16
See Also
========
sympy.utilities.iterables.multiset_combinations
References
==========
.. [1] https://en.wikipedia.org/wiki/Combination
.. [2] http://tinyurl.com/cep849r
"""
if isinstance(n, SYMPY_INTS):
if k is None:
if not replacement:
return 2**n
return sum(nC(n, i, replacement) for i in range(n + 1))
if k < 0:
raise ValueError("k cannot be negative")
if replacement:
return binomial(n + k - 1, k)
return binomial(n, k)
if isinstance(n, _MultisetHistogram):
N = n[_N]
if k is None:
if not replacement:
return prod(m + 1 for m in n[_M])
return sum(nC(n, i, replacement) for i in range(N + 1))
elif replacement:
return nC(n[_ITEMS], k, replacement)
# assert k >= 0
elif k in (1, N - 1):
return n[_ITEMS]
elif k in (0, N):
return 1
return _AOP_product(tuple(n[_M]))[k]
else:
return nC(_multiset_histogram(n), k, replacement)
def _eval_stirling1(n, k):
if n == k == 0:
return S.One
if 0 in (n, k):
return S.Zero
# some special values
if n == k:
return S.One
elif k == n - 1:
return binomial(n, 2)
elif k == n - 2:
return (3*n - 1)*binomial(n, 3)/4
elif k == n - 3:
return binomial(n, 2)*binomial(n, 4)
return _stirling1(n, k)
@cacheit
def _stirling1(n, k):
row = [0, 1]+[0]*(k-1) # for n = 1
for i in range(2, n+1):
for j in range(min(k,i), 0, -1):
row[j] = (i-1) * row[j] + row[j-1]
return Integer(row[k])
def _eval_stirling2(n, k):
if n == k == 0:
return S.One
if 0 in (n, k):
return S.Zero
# some special values
if n == k:
return S.One
elif k == n - 1:
return binomial(n, 2)
elif k == 1:
return S.One
elif k == 2:
return Integer(2**(n - 1) - 1)
return _stirling2(n, k)
@cacheit
def _stirling2(n, k):
row = [0, 1]+[0]*(k-1) # for n = 1
for i in range(2, n+1):
for j in range(min(k,i), 0, -1):
row[j] = j * row[j] + row[j-1]
return Integer(row[k])
def stirling(n, k, d=None, kind=2, signed=False):
r"""Return Stirling number $S(n, k)$ of the first or second (default) kind.
The sum of all Stirling numbers of the second kind for $k = 1$
through $n$ is ``bell(n)``. The recurrence relationship for these numbers
is:
.. math :: {0 \brace 0} = 1; {n \brace 0} = {0 \brace k} = 0;
.. math :: {{n+1} \brace k} = j {n \brace k} + {n \brace {k-1}}
where $j$ is:
$n$ for Stirling numbers of the first kind,
$-n$ for signed Stirling numbers of the first kind,
$k$ for Stirling numbers of the second kind.
The first kind of Stirling number counts the number of permutations of
``n`` distinct items that have ``k`` cycles; the second kind counts the
ways in which ``n`` distinct items can be partitioned into ``k`` parts.
If ``d`` is given, the "reduced Stirling number of the second kind" is
returned: $S^{d}(n, k) = S(n - d + 1, k - d + 1)$ with $n \ge k \ge d$.
(This counts the ways to partition $n$ consecutive integers into $k$
groups with no pairwise difference less than $d$. See example below.)
To obtain the signed Stirling numbers of the first kind, use keyword
``signed=True``. Using this keyword automatically sets ``kind`` to 1.
Examples
========
>>> from sympy.functions.combinatorial.numbers import stirling, bell
>>> from sympy.combinatorics import Permutation
>>> from sympy.utilities.iterables import multiset_partitions, permutations
First kind (unsigned by default):
>>> [stirling(6, i, kind=1) for i in range(7)]
[0, 120, 274, 225, 85, 15, 1]
>>> perms = list(permutations(range(4)))
>>> [sum(Permutation(p).cycles == i for p in perms) for i in range(5)]
[0, 6, 11, 6, 1]
>>> [stirling(4, i, kind=1) for i in range(5)]
[0, 6, 11, 6, 1]
First kind (signed):
>>> [stirling(4, i, signed=True) for i in range(5)]
[0, -6, 11, -6, 1]
Second kind:
>>> [stirling(10, i) for i in range(12)]
[0, 1, 511, 9330, 34105, 42525, 22827, 5880, 750, 45, 1, 0]
>>> sum(_) == bell(10)
True
>>> len(list(multiset_partitions(range(4), 2))) == stirling(4, 2)
True
Reduced second kind:
>>> from sympy import subsets, oo
>>> def delta(p):
... if len(p) == 1:
... return oo
... return min(abs(i[0] - i[1]) for i in subsets(p, 2))
>>> parts = multiset_partitions(range(5), 3)
>>> d = 2
>>> sum(1 for p in parts if all(delta(i) >= d for i in p))
7
>>> stirling(5, 3, 2)
7
See Also
========
sympy.utilities.iterables.multiset_partitions
References
==========
.. [1] https://en.wikipedia.org/wiki/Stirling_numbers_of_the_first_kind
.. [2] https://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind
"""
# TODO: make this a class like bell()
n = as_int(n)
k = as_int(k)
if n < 0:
raise ValueError('n must be nonnegative')
if k > n:
return S.Zero
if d:
# assert k >= d
# kind is ignored -- only kind=2 is supported
return _eval_stirling2(n - d + 1, k - d + 1)
elif signed:
# kind is ignored -- only kind=1 is supported
return S.NegativeOne**(n - k)*_eval_stirling1(n, k)
if kind == 1:
return _eval_stirling1(n, k)
elif kind == 2:
return _eval_stirling2(n, k)
else:
raise ValueError('kind must be 1 or 2, not %s' % k)
@cacheit
def _nT(n, k):
"""Return the partitions of ``n`` items into ``k`` parts. This
is used by ``nT`` for the case when ``n`` is an integer."""
# really quick exits
if k > n or k < 0:
return 0
if k in (1, n):
return 1
if k == 0:
return 0
# exits that could be done below but this is quicker
if k == 2:
return n//2
d = n - k
if d <= 3:
return d
# quick exit
if 3*k >= n: # or, equivalently, 2*k >= d
# all the information needed in this case
# will be in the cache needed to calculate
# partition(d), so...
# update cache
tot = partition._partition(d)
# and correct for values not needed
if d - k > 0:
tot -= sum(_npartition[:d - k])
return tot
# regular exit
# nT(n, k) = Sum(nT(n - k, m), (m, 1, k));
# calculate needed nT(i, j) values
p = [1]*d
for i in range(2, k + 1):
for m in range(i + 1, d):
p[m] += p[m - i]
d -= 1
# if p[0] were appended to the end of p then the last
# k values of p are the nT(n, j) values for 0 < j < k in reverse
# order p[-1] = nT(n, 1), p[-2] = nT(n, 2), etc.... Instead of
# putting the 1 from p[0] there, however, it is simply added to
# the sum below which is valid for 1 < k <= n//2
return (1 + sum(p[1 - k:]))
def nT(n, k=None):
"""Return the number of ``k``-sized partitions of ``n`` items.
Possible values for ``n``:
integer - ``n`` identical items
sequence - converted to a multiset internally
multiset - {element: multiplicity}
Note: the convention for ``nT`` is different than that of ``nC`` and
``nP`` in that
here an integer indicates ``n`` *identical* items instead of a set of
length ``n``; this is in keeping with the ``partitions`` function which
treats its integer-``n`` input like a list of ``n`` 1s. One can use
``range(n)`` for ``n`` to indicate ``n`` distinct items.
If ``k`` is None then the total number of ways to partition the elements
represented in ``n`` will be returned.
Examples
========
>>> from sympy.functions.combinatorial.numbers import nT
Partitions of the given multiset:
>>> [nT('aabbc', i) for i in range(1, 7)]
[1, 8, 11, 5, 1, 0]
>>> nT('aabbc') == sum(_)
True
>>> [nT("mississippi", i) for i in range(1, 12)]
[1, 74, 609, 1521, 1768, 1224, 579, 197, 50, 9, 1]
Partitions when all items are identical:
>>> [nT(5, i) for i in range(1, 6)]
[1, 2, 2, 1, 1]
>>> nT('1'*5) == sum(_)
True
When all items are different:
>>> [nT(range(5), i) for i in range(1, 6)]
[1, 15, 25, 10, 1]
>>> nT(range(5)) == sum(_)
True
Partitions of an integer expressed as a sum of positive integers:
>>> from sympy import partition
>>> partition(4)
5
>>> nT(4, 1) + nT(4, 2) + nT(4, 3) + nT(4, 4)
5
>>> nT('1'*4)
5
See Also
========
sympy.utilities.iterables.partitions
sympy.utilities.iterables.multiset_partitions
sympy.functions.combinatorial.numbers.partition
References
==========
.. [1] http://undergraduate.csse.uwa.edu.au/units/CITS7209/partition.pdf
"""
if isinstance(n, SYMPY_INTS):
# n identical items
if k is None:
return partition(n)
if isinstance(k, SYMPY_INTS):
n = as_int(n)
k = as_int(k)
return Integer(_nT(n, k))
if not isinstance(n, _MultisetHistogram):
try:
# if n contains hashable items there is some
# quick handling that can be done
u = len(set(n))
if u <= 1:
return nT(len(n), k)
elif u == len(n):
n = range(u)
raise TypeError
except TypeError:
n = _multiset_histogram(n)
N = n[_N]
if k is None and N == 1:
return 1
if k in (1, N):
return 1
if k == 2 or N == 2 and k is None:
m, r = divmod(N, 2)
rv = sum(nC(n, i) for i in range(1, m + 1))
if not r:
rv -= nC(n, m)//2
if k is None:
rv += 1 # for k == 1
return rv
if N == n[_ITEMS]:
# all distinct
if k is None:
return bell(N)
return stirling(N, k)
m = MultisetPartitionTraverser()
if k is None:
return m.count_partitions(n[_M])
# MultisetPartitionTraverser does not have a range-limited count
# method, so need to enumerate and count
tot = 0
for discard in m.enum_range(n[_M], k-1, k):
tot += 1
return tot
#-----------------------------------------------------------------------------#
# #
# Motzkin numbers #
# #
#-----------------------------------------------------------------------------#
class motzkin(Function):
"""
The nth Motzkin number is the number
of ways of drawing non-intersecting chords
between n points on a circle (not necessarily touching
every point by a chord). The Motzkin numbers are named
after Theodore Motzkin and have diverse applications
in geometry, combinatorics and number theory.
Motzkin numbers are the integer sequence defined by the
initial terms `M_0 = 1`, `M_1 = 1` and the two-term recurrence relation
`M_n = \frac{2*n + 1}{n + 2} * M_{n-1} + \frac{3n - 3}{n + 2} * M_{n-2}`.
Examples
========
>>> from sympy import motzkin
>>> motzkin.is_motzkin(5)
False
>>> motzkin.find_motzkin_numbers_in_range(2,300)
[2, 4, 9, 21, 51, 127]
>>> motzkin.find_motzkin_numbers_in_range(2,900)
[2, 4, 9, 21, 51, 127, 323, 835]
>>> motzkin.find_first_n_motzkins(10)
[1, 1, 2, 4, 9, 21, 51, 127, 323, 835]
References
==========
.. [1] https://en.wikipedia.org/wiki/Motzkin_number
.. [2] https://mathworld.wolfram.com/MotzkinNumber.html
"""
@staticmethod
def is_motzkin(n):
try:
n = as_int(n)
except ValueError:
return False
if n > 0:
if n in (1, 2):
return True
tn1 = 1
tn = 2
i = 3
while tn < n:
a = ((2*i + 1)*tn + (3*i - 3)*tn1)/(i + 2)
i += 1
tn1 = tn
tn = a
if tn == n:
return True
else:
return False
else:
return False
@staticmethod
def find_motzkin_numbers_in_range(x, y):
if 0 <= x <= y:
motzkins = list()
if x <= 1 <= y:
motzkins.append(1)
tn1 = 1
tn = 2
i = 3
while tn <= y:
if tn >= x:
motzkins.append(tn)
a = ((2*i + 1)*tn + (3*i - 3)*tn1)/(i + 2)
i += 1
tn1 = tn
tn = int(a)
return motzkins
else:
raise ValueError('The provided range is not valid. This condition should satisfy x <= y')
@staticmethod
def find_first_n_motzkins(n):
try:
n = as_int(n)
except ValueError:
raise ValueError('The provided number must be a positive integer')
if n < 0:
raise ValueError('The provided number must be a positive integer')
motzkins = [1]
if n >= 1:
motzkins.append(1)
tn1 = 1
tn = 2
i = 3
while i <= n:
motzkins.append(tn)
a = ((2*i + 1)*tn + (3*i - 3)*tn1)/(i + 2)
i += 1
tn1 = tn
tn = int(a)
return motzkins
@staticmethod
@recurrence_memo([S.One, S.One])
def _motzkin(n, prev):
return ((2*n + 1)*prev[-1] + (3*n - 3)*prev[-2]) // (n + 2)
@classmethod
def eval(cls, n):
try:
n = as_int(n)
except ValueError:
raise ValueError('The provided number must be a positive integer')
if n < 0:
raise ValueError('The provided number must be a positive integer')
return Integer(cls._motzkin(n - 1))
def nD(i=None, brute=None, *, n=None, m=None):
"""return the number of derangements for: ``n`` unique items, ``i``
items (as a sequence or multiset), or multiplicities, ``m`` given
as a sequence or multiset.
Examples
========
>>> from sympy.utilities.iterables import generate_derangements as enum
>>> from sympy.functions.combinatorial.numbers import nD
A derangement ``d`` of sequence ``s`` has all ``d[i] != s[i]``:
>>> set([''.join(i) for i in enum('abc')])
{'bca', 'cab'}
>>> nD('abc')
2
Input as iterable or dictionary (multiset form) is accepted:
>>> assert nD([1, 2, 2, 3, 3, 3]) == nD({1: 1, 2: 2, 3: 3})
By default, a brute-force enumeration and count of multiset permutations
is only done if there are fewer than 9 elements. There may be cases when
there is high multiplicity with few unique elements that will benefit
from a brute-force enumeration, too. For this reason, the `brute`
keyword (default None) is provided. When False, the brute-force
enumeration will never be used. When True, it will always be used.
>>> nD('1111222233', brute=True)
44
For convenience, one may specify ``n`` distinct items using the
``n`` keyword:
>>> assert nD(n=3) == nD('abc') == 2
Since the number of derangments depends on the multiplicity of the
elements and not the elements themselves, it may be more convenient
to give a list or multiset of multiplicities using keyword ``m``:
>>> assert nD('abc') == nD(m=(1,1,1)) == nD(m={1:3}) == 2
"""
from sympy.integrals.integrals import integrate
from sympy.functions.special.polynomials import laguerre
from sympy.abc import x
def ok(x):
if not isinstance(x, SYMPY_INTS):
raise TypeError('expecting integer values')
if x < 0:
raise ValueError('value must not be negative')
return True
if (i, n, m).count(None) != 2:
raise ValueError('enter only 1 of i, n, or m')
if i is not None:
if isinstance(i, SYMPY_INTS):
raise TypeError('items must be a list or dictionary')
if not i:
return S.Zero
if type(i) is not dict:
s = list(i)
ms = multiset(s)
elif type(i) is dict:
all(ok(_) for _ in i.values())
ms = {k: v for k, v in i.items() if v}
s = None
if not ms:
return S.Zero
N = sum(ms.values())
counts = multiset(ms.values())
nkey = len(ms)
elif n is not None:
ok(n)
if not n:
return S.Zero
return subfactorial(n)
elif m is not None:
if isinstance(m, dict):
all(ok(i) and ok(j) for i, j in m.items())
counts = {k: v for k, v in m.items() if k*v}
elif iterable(m) or isinstance(m, str):
m = list(m)
all(ok(i) for i in m)
counts = multiset([i for i in m if i])
else:
raise TypeError('expecting iterable')
if not counts:
return S.Zero
N = sum(k*v for k, v in counts.items())
nkey = sum(counts.values())
s = None
big = int(max(counts))
if big == 1: # no repetition
return subfactorial(nkey)
nval = len(counts)
if big*2 > N:
return S.Zero
if big*2 == N:
if nkey == 2 and nval == 1:
return S.One # aaabbb
if nkey - 1 == big: # one element repeated
return factorial(big) # e.g. abc part of abcddd
if N < 9 and brute is None or brute:
# for all possibilities, this was found to be faster
if s is None:
s = []
i = 0
for m, v in counts.items():
for j in range(v):
s.extend([i]*m)
i += 1
return Integer(sum(1 for i in multiset_derangements(s)))
from sympy.functions.elementary.exponential import exp
return Integer(abs(integrate(exp(-x)*Mul(*[
laguerre(i, x)**m for i, m in counts.items()]), (x, 0, oo))))
|
d5829fa33eca12222a0cf5667ab289aceb2c32cf9c667391cf732df7d304bb8b | from __future__ import annotations
from functools import reduce
from sympy.core import S, sympify, Dummy, Mod
from sympy.core.cache import cacheit
from sympy.core.function import Function, ArgumentIndexError, PoleError
from sympy.core.logic import fuzzy_and
from sympy.core.numbers import Integer, pi, I
from sympy.core.relational import Eq
from sympy.external.gmpy import HAS_GMPY, gmpy
from sympy.ntheory import sieve
from sympy.polys.polytools import Poly
from math import factorial as _factorial, prod, sqrt as _sqrt
class CombinatorialFunction(Function):
"""Base class for combinatorial functions. """
def _eval_simplify(self, **kwargs):
from sympy.simplify.combsimp import combsimp
# combinatorial function with non-integer arguments is
# automatically passed to gammasimp
expr = combsimp(self)
measure = kwargs['measure']
if measure(expr) <= kwargs['ratio']*measure(self):
return expr
return self
###############################################################################
######################## FACTORIAL and MULTI-FACTORIAL ########################
###############################################################################
class factorial(CombinatorialFunction):
r"""Implementation of factorial function over nonnegative integers.
By convention (consistent with the gamma function and the binomial
coefficients), factorial of a negative integer is complex infinity.
The factorial is very important in combinatorics where it gives
the number of ways in which `n` objects can be permuted. It also
arises in calculus, probability, number theory, etc.
There is strict relation of factorial with gamma function. In
fact `n! = gamma(n+1)` for nonnegative integers. Rewrite of this
kind is very useful in case of combinatorial simplification.
Computation of the factorial is done using two algorithms. For
small arguments a precomputed look up table is used. However for bigger
input algorithm Prime-Swing is used. It is the fastest algorithm
known and computes `n!` via prime factorization of special class
of numbers, called here the 'Swing Numbers'.
Examples
========
>>> from sympy import Symbol, factorial, S
>>> n = Symbol('n', integer=True)
>>> factorial(0)
1
>>> factorial(7)
5040
>>> factorial(-2)
zoo
>>> factorial(n)
factorial(n)
>>> factorial(2*n)
factorial(2*n)
>>> factorial(S(1)/2)
factorial(1/2)
See Also
========
factorial2, RisingFactorial, FallingFactorial
"""
def fdiff(self, argindex=1):
from sympy.functions.special.gamma_functions import (gamma, polygamma)
if argindex == 1:
return gamma(self.args[0] + 1)*polygamma(0, self.args[0] + 1)
else:
raise ArgumentIndexError(self, argindex)
_small_swing = [
1, 1, 1, 3, 3, 15, 5, 35, 35, 315, 63, 693, 231, 3003, 429, 6435, 6435, 109395,
12155, 230945, 46189, 969969, 88179, 2028117, 676039, 16900975, 1300075,
35102025, 5014575, 145422675, 9694845, 300540195, 300540195
]
_small_factorials: list[int] = []
@classmethod
def _swing(cls, n):
if n < 33:
return cls._small_swing[n]
else:
N, primes = int(_sqrt(n)), []
for prime in sieve.primerange(3, N + 1):
p, q = 1, n
while True:
q //= prime
if q > 0:
if q & 1 == 1:
p *= prime
else:
break
if p > 1:
primes.append(p)
for prime in sieve.primerange(N + 1, n//3 + 1):
if (n // prime) & 1 == 1:
primes.append(prime)
L_product = prod(sieve.primerange(n//2 + 1, n + 1))
R_product = prod(primes)
return L_product*R_product
@classmethod
def _recursive(cls, n):
if n < 2:
return 1
else:
return (cls._recursive(n//2)**2)*cls._swing(n)
@classmethod
def eval(cls, n):
n = sympify(n)
if n.is_Number:
if n.is_zero:
return S.One
elif n is S.Infinity:
return S.Infinity
elif n.is_Integer:
if n.is_negative:
return S.ComplexInfinity
else:
n = n.p
if n < 20:
if not cls._small_factorials:
result = 1
for i in range(1, 20):
result *= i
cls._small_factorials.append(result)
result = cls._small_factorials[n-1]
# GMPY factorial is faster, use it when available
elif HAS_GMPY:
result = gmpy.fac(n)
else:
bits = bin(n).count('1')
result = cls._recursive(n)*2**(n - bits)
return Integer(result)
def _facmod(self, n, q):
res, N = 1, int(_sqrt(n))
# Exponent of prime p in n! is e_p(n) = [n/p] + [n/p**2] + ...
# for p > sqrt(n), e_p(n) < sqrt(n), the primes with [n/p] = m,
# occur consecutively and are grouped together in pw[m] for
# simultaneous exponentiation at a later stage
pw = [1]*N
m = 2 # to initialize the if condition below
for prime in sieve.primerange(2, n + 1):
if m > 1:
m, y = 0, n // prime
while y:
m += y
y //= prime
if m < N:
pw[m] = pw[m]*prime % q
else:
res = res*pow(prime, m, q) % q
for ex, bs in enumerate(pw):
if ex == 0 or bs == 1:
continue
if bs == 0:
return 0
res = res*pow(bs, ex, q) % q
return res
def _eval_Mod(self, q):
n = self.args[0]
if n.is_integer and n.is_nonnegative and q.is_integer:
aq = abs(q)
d = aq - n
if d.is_nonpositive:
return S.Zero
else:
isprime = aq.is_prime
if d == 1:
# Apply Wilson's theorem (if a natural number n > 1
# is a prime number, then (n-1)! = -1 mod n) and
# its inverse (if n > 4 is a composite number, then
# (n-1)! = 0 mod n)
if isprime:
return -1 % q
elif isprime is False and (aq - 6).is_nonnegative:
return S.Zero
elif n.is_Integer and q.is_Integer:
n, d, aq = map(int, (n, d, aq))
if isprime and (d - 1 < n):
fc = self._facmod(d - 1, aq)
fc = pow(fc, aq - 2, aq)
if d%2:
fc = -fc
else:
fc = self._facmod(n, aq)
return fc % q
def _eval_rewrite_as_gamma(self, n, piecewise=True, **kwargs):
from sympy.functions.special.gamma_functions import gamma
return gamma(n + 1)
def _eval_rewrite_as_Product(self, n, **kwargs):
from sympy.concrete.products import Product
if n.is_nonnegative and n.is_integer:
i = Dummy('i', integer=True)
return Product(i, (i, 1, n))
def _eval_is_integer(self):
if self.args[0].is_integer and self.args[0].is_nonnegative:
return True
def _eval_is_positive(self):
if self.args[0].is_integer and self.args[0].is_nonnegative:
return True
def _eval_is_even(self):
x = self.args[0]
if x.is_integer and x.is_nonnegative:
return (x - 2).is_nonnegative
def _eval_is_composite(self):
x = self.args[0]
if x.is_integer and x.is_nonnegative:
return (x - 3).is_nonnegative
def _eval_is_real(self):
x = self.args[0]
if x.is_nonnegative or x.is_noninteger:
return True
def _eval_as_leading_term(self, x, logx=None, cdir=0):
arg = self.args[0].as_leading_term(x)
arg0 = arg.subs(x, 0)
if arg0.is_zero:
return S.One
elif not arg0.is_infinite:
return self.func(arg)
raise PoleError("Cannot expand %s around 0" % (self))
class MultiFactorial(CombinatorialFunction):
pass
class subfactorial(CombinatorialFunction):
r"""The subfactorial counts the derangements of $n$ items and is
defined for non-negative integers as:
.. math:: !n = \begin{cases} 1 & n = 0 \\ 0 & n = 1 \\
(n-1)(!(n-1) + !(n-2)) & n > 1 \end{cases}
It can also be written as ``int(round(n!/exp(1)))`` but the
recursive definition with caching is implemented for this function.
An interesting analytic expression is the following [2]_
.. math:: !x = \Gamma(x + 1, -1)/e
which is valid for non-negative integers `x`. The above formula
is not very useful in case of non-integers. `\Gamma(x + 1, -1)` is
single-valued only for integral arguments `x`, elsewhere on the positive
real axis it has an infinite number of branches none of which are real.
References
==========
.. [1] https://en.wikipedia.org/wiki/Subfactorial
.. [2] http://mathworld.wolfram.com/Subfactorial.html
Examples
========
>>> from sympy import subfactorial
>>> from sympy.abc import n
>>> subfactorial(n + 1)
subfactorial(n + 1)
>>> subfactorial(5)
44
See Also
========
factorial, uppergamma,
sympy.utilities.iterables.generate_derangements
"""
@classmethod
@cacheit
def _eval(self, n):
if not n:
return S.One
elif n == 1:
return S.Zero
else:
z1, z2 = 1, 0
for i in range(2, n + 1):
z1, z2 = z2, (i - 1)*(z2 + z1)
return z2
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg.is_Integer and arg.is_nonnegative:
return cls._eval(arg)
elif arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Infinity
def _eval_is_even(self):
if self.args[0].is_odd and self.args[0].is_nonnegative:
return True
def _eval_is_integer(self):
if self.args[0].is_integer and self.args[0].is_nonnegative:
return True
def _eval_rewrite_as_factorial(self, arg, **kwargs):
from sympy.concrete.summations import summation
i = Dummy('i')
f = S.NegativeOne**i / factorial(i)
return factorial(arg) * summation(f, (i, 0, arg))
def _eval_rewrite_as_gamma(self, arg, piecewise=True, **kwargs):
from sympy.functions.elementary.exponential import exp
from sympy.functions.special.gamma_functions import (gamma, lowergamma)
return (S.NegativeOne**(arg + 1)*exp(-I*pi*arg)*lowergamma(arg + 1, -1)
+ gamma(arg + 1))*exp(-1)
def _eval_rewrite_as_uppergamma(self, arg, **kwargs):
from sympy.functions.special.gamma_functions import uppergamma
return uppergamma(arg + 1, -1)/S.Exp1
def _eval_is_nonnegative(self):
if self.args[0].is_integer and self.args[0].is_nonnegative:
return True
def _eval_is_odd(self):
if self.args[0].is_even and self.args[0].is_nonnegative:
return True
class factorial2(CombinatorialFunction):
r"""The double factorial `n!!`, not to be confused with `(n!)!`
The double factorial is defined for nonnegative integers and for odd
negative integers as:
.. math:: n!! = \begin{cases} 1 & n = 0 \\
n(n-2)(n-4) \cdots 1 & n\ \text{positive odd} \\
n(n-2)(n-4) \cdots 2 & n\ \text{positive even} \\
(n+2)!!/(n+2) & n\ \text{negative odd} \end{cases}
References
==========
.. [1] https://en.wikipedia.org/wiki/Double_factorial
Examples
========
>>> from sympy import factorial2, var
>>> n = var('n')
>>> n
n
>>> factorial2(n + 1)
factorial2(n + 1)
>>> factorial2(5)
15
>>> factorial2(-1)
1
>>> factorial2(-5)
1/3
See Also
========
factorial, RisingFactorial, FallingFactorial
"""
@classmethod
def eval(cls, arg):
# TODO: extend this to complex numbers?
if arg.is_Number:
if not arg.is_Integer:
raise ValueError("argument must be nonnegative integer "
"or negative odd integer")
# This implementation is faster than the recursive one
# It also avoids "maximum recursion depth exceeded" runtime error
if arg.is_nonnegative:
if arg.is_even:
k = arg / 2
return 2**k * factorial(k)
return factorial(arg) / factorial2(arg - 1)
if arg.is_odd:
return arg*(S.NegativeOne)**((1 - arg)/2) / factorial2(-arg)
raise ValueError("argument must be nonnegative integer "
"or negative odd integer")
def _eval_is_even(self):
# Double factorial is even for every positive even input
n = self.args[0]
if n.is_integer:
if n.is_odd:
return False
if n.is_even:
if n.is_positive:
return True
if n.is_zero:
return False
def _eval_is_integer(self):
# Double factorial is an integer for every nonnegative input, and for
# -1 and -3
n = self.args[0]
if n.is_integer:
if (n + 1).is_nonnegative:
return True
if n.is_odd:
return (n + 3).is_nonnegative
def _eval_is_odd(self):
# Double factorial is odd for every odd input not smaller than -3, and
# for 0
n = self.args[0]
if n.is_odd:
return (n + 3).is_nonnegative
if n.is_even:
if n.is_positive:
return False
if n.is_zero:
return True
def _eval_is_positive(self):
# Double factorial is positive for every nonnegative input, and for
# every odd negative input which is of the form -1-4k for an
# nonnegative integer k
n = self.args[0]
if n.is_integer:
if (n + 1).is_nonnegative:
return True
if n.is_odd:
return ((n + 1) / 2).is_even
def _eval_rewrite_as_gamma(self, n, piecewise=True, **kwargs):
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.special.gamma_functions import gamma
return 2**(n/2)*gamma(n/2 + 1) * Piecewise((1, Eq(Mod(n, 2), 0)),
(sqrt(2/pi), Eq(Mod(n, 2), 1)))
###############################################################################
######################## RISING and FALLING FACTORIALS ########################
###############################################################################
class RisingFactorial(CombinatorialFunction):
r"""
Rising factorial (also called Pochhammer symbol [1]_) is a double valued
function arising in concrete mathematics, hypergeometric functions
and series expansions. It is defined by:
.. math:: \texttt{rf(y, k)} = (x)^k = x \cdot (x+1) \cdots (x+k-1)
where `x` can be arbitrary expression and `k` is an integer. For
more information check "Concrete mathematics" by Graham, pp. 66
or visit http://mathworld.wolfram.com/RisingFactorial.html page.
When `x` is a `~.Poly` instance of degree $\ge 1$ with a single variable,
`(x)^k = x(y) \cdot x(y+1) \cdots x(y+k-1)`, where `y` is the
variable of `x`. This is as described in [2]_.
Examples
========
>>> from sympy import rf, Poly
>>> from sympy.abc import x
>>> rf(x, 0)
1
>>> rf(1, 5)
120
>>> rf(x, 5) == x*(1 + x)*(2 + x)*(3 + x)*(4 + x)
True
>>> rf(Poly(x**3, x), 2)
Poly(x**6 + 3*x**5 + 3*x**4 + x**3, x, domain='ZZ')
Rewriting is complicated unless the relationship between
the arguments is known, but rising factorial can
be rewritten in terms of gamma, factorial, binomial,
and falling factorial.
>>> from sympy import Symbol, factorial, ff, binomial, gamma
>>> n = Symbol('n', integer=True, positive=True)
>>> R = rf(n, n + 2)
>>> for i in (rf, ff, factorial, binomial, gamma):
... R.rewrite(i)
...
RisingFactorial(n, n + 2)
FallingFactorial(2*n + 1, n + 2)
factorial(2*n + 1)/factorial(n - 1)
binomial(2*n + 1, n + 2)*factorial(n + 2)
gamma(2*n + 2)/gamma(n)
See Also
========
factorial, factorial2, FallingFactorial
References
==========
.. [1] https://en.wikipedia.org/wiki/Pochhammer_symbol
.. [2] Peter Paule, "Greatest Factorial Factorization and Symbolic
Summation", Journal of Symbolic Computation, vol. 20, pp. 235-268,
1995.
"""
@classmethod
def eval(cls, x, k):
x = sympify(x)
k = sympify(k)
if x is S.NaN or k is S.NaN:
return S.NaN
elif x is S.One:
return factorial(k)
elif k.is_Integer:
if k.is_zero:
return S.One
else:
if k.is_positive:
if x is S.Infinity:
return S.Infinity
elif x is S.NegativeInfinity:
if k.is_odd:
return S.NegativeInfinity
else:
return S.Infinity
else:
if isinstance(x, Poly):
gens = x.gens
if len(gens)!= 1:
raise ValueError("rf only defined for "
"polynomials on one generator")
else:
return reduce(lambda r, i:
r*(x.shift(i)),
range(int(k)), 1)
else:
return reduce(lambda r, i: r*(x + i),
range(int(k)), 1)
else:
if x is S.Infinity:
return S.Infinity
elif x is S.NegativeInfinity:
return S.Infinity
else:
if isinstance(x, Poly):
gens = x.gens
if len(gens)!= 1:
raise ValueError("rf only defined for "
"polynomials on one generator")
else:
return 1/reduce(lambda r, i:
r*(x.shift(-i)),
range(1, abs(int(k)) + 1), 1)
else:
return 1/reduce(lambda r, i:
r*(x - i),
range(1, abs(int(k)) + 1), 1)
if k.is_integer == False:
if x.is_integer and x.is_negative:
return S.Zero
def _eval_rewrite_as_gamma(self, x, k, piecewise=True, **kwargs):
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.special.gamma_functions import gamma
if not piecewise:
if (x <= 0) == True:
return S.NegativeOne**k*gamma(1 - x) / gamma(-k - x + 1)
return gamma(x + k) / gamma(x)
return Piecewise(
(gamma(x + k) / gamma(x), x > 0),
(S.NegativeOne**k*gamma(1 - x) / gamma(-k - x + 1), True))
def _eval_rewrite_as_FallingFactorial(self, x, k, **kwargs):
return FallingFactorial(x + k - 1, k)
def _eval_rewrite_as_factorial(self, x, k, **kwargs):
from sympy.functions.elementary.piecewise import Piecewise
if x.is_integer and k.is_integer:
return Piecewise(
(factorial(k + x - 1)/factorial(x - 1), x > 0),
(S.NegativeOne**k*factorial(-x)/factorial(-k - x), True))
def _eval_rewrite_as_binomial(self, x, k, **kwargs):
if k.is_integer:
return factorial(k) * binomial(x + k - 1, k)
def _eval_rewrite_as_tractable(self, x, k, limitvar=None, **kwargs):
from sympy.functions.special.gamma_functions import gamma
if limitvar:
k_lim = k.subs(limitvar, S.Infinity)
if k_lim is S.Infinity:
return (gamma(x + k).rewrite('tractable', deep=True) / gamma(x))
elif k_lim is S.NegativeInfinity:
return (S.NegativeOne**k*gamma(1 - x) / gamma(-k - x + 1).rewrite('tractable', deep=True))
return self.rewrite(gamma).rewrite('tractable', deep=True)
def _eval_is_integer(self):
return fuzzy_and((self.args[0].is_integer, self.args[1].is_integer,
self.args[1].is_nonnegative))
class FallingFactorial(CombinatorialFunction):
r"""
Falling factorial (related to rising factorial) is a double valued
function arising in concrete mathematics, hypergeometric functions
and series expansions. It is defined by
.. math:: \texttt{ff(x, k)} = (x)_k = x \cdot (x-1) \cdots (x-k+1)
where `x` can be arbitrary expression and `k` is an integer. For
more information check "Concrete mathematics" by Graham, pp. 66
or [1]_.
When `x` is a `~.Poly` instance of degree $\ge 1$ with single variable,
`(x)_k = x(y) \cdot x(y-1) \cdots x(y-k+1)`, where `y` is the
variable of `x`. This is as described in
>>> from sympy import ff, Poly, Symbol
>>> from sympy.abc import x
>>> n = Symbol('n', integer=True)
>>> ff(x, 0)
1
>>> ff(5, 5)
120
>>> ff(x, 5) == x*(x - 1)*(x - 2)*(x - 3)*(x - 4)
True
>>> ff(Poly(x**2, x), 2)
Poly(x**4 - 2*x**3 + x**2, x, domain='ZZ')
>>> ff(n, n)
factorial(n)
Rewriting is complicated unless the relationship between
the arguments is known, but falling factorial can
be rewritten in terms of gamma, factorial and binomial
and rising factorial.
>>> from sympy import factorial, rf, gamma, binomial, Symbol
>>> n = Symbol('n', integer=True, positive=True)
>>> F = ff(n, n - 2)
>>> for i in (rf, ff, factorial, binomial, gamma):
... F.rewrite(i)
...
RisingFactorial(3, n - 2)
FallingFactorial(n, n - 2)
factorial(n)/2
binomial(n, n - 2)*factorial(n - 2)
gamma(n + 1)/2
See Also
========
factorial, factorial2, RisingFactorial
References
==========
.. [1] http://mathworld.wolfram.com/FallingFactorial.html
.. [2] Peter Paule, "Greatest Factorial Factorization and Symbolic
Summation", Journal of Symbolic Computation, vol. 20, pp. 235-268,
1995.
"""
@classmethod
def eval(cls, x, k):
x = sympify(x)
k = sympify(k)
if x is S.NaN or k is S.NaN:
return S.NaN
elif k.is_integer and x == k:
return factorial(x)
elif k.is_Integer:
if k.is_zero:
return S.One
else:
if k.is_positive:
if x is S.Infinity:
return S.Infinity
elif x is S.NegativeInfinity:
if k.is_odd:
return S.NegativeInfinity
else:
return S.Infinity
else:
if isinstance(x, Poly):
gens = x.gens
if len(gens)!= 1:
raise ValueError("ff only defined for "
"polynomials on one generator")
else:
return reduce(lambda r, i:
r*(x.shift(-i)),
range(int(k)), 1)
else:
return reduce(lambda r, i: r*(x - i),
range(int(k)), 1)
else:
if x is S.Infinity:
return S.Infinity
elif x is S.NegativeInfinity:
return S.Infinity
else:
if isinstance(x, Poly):
gens = x.gens
if len(gens)!= 1:
raise ValueError("rf only defined for "
"polynomials on one generator")
else:
return 1/reduce(lambda r, i:
r*(x.shift(i)),
range(1, abs(int(k)) + 1), 1)
else:
return 1/reduce(lambda r, i: r*(x + i),
range(1, abs(int(k)) + 1), 1)
def _eval_rewrite_as_gamma(self, x, k, piecewise=True, **kwargs):
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.special.gamma_functions import gamma
if not piecewise:
if (x < 0) == True:
return S.NegativeOne**k*gamma(k - x) / gamma(-x)
return gamma(x + 1) / gamma(x - k + 1)
return Piecewise(
(gamma(x + 1) / gamma(x - k + 1), x >= 0),
(S.NegativeOne**k*gamma(k - x) / gamma(-x), True))
def _eval_rewrite_as_RisingFactorial(self, x, k, **kwargs):
return rf(x - k + 1, k)
def _eval_rewrite_as_binomial(self, x, k, **kwargs):
if k.is_integer:
return factorial(k) * binomial(x, k)
def _eval_rewrite_as_factorial(self, x, k, **kwargs):
from sympy.functions.elementary.piecewise import Piecewise
if x.is_integer and k.is_integer:
return Piecewise(
(factorial(x)/factorial(-k + x), x >= 0),
(S.NegativeOne**k*factorial(k - x - 1)/factorial(-x - 1), True))
def _eval_rewrite_as_tractable(self, x, k, limitvar=None, **kwargs):
from sympy.functions.special.gamma_functions import gamma
if limitvar:
k_lim = k.subs(limitvar, S.Infinity)
if k_lim is S.Infinity:
return (S.NegativeOne**k*gamma(k - x).rewrite('tractable', deep=True) / gamma(-x))
elif k_lim is S.NegativeInfinity:
return (gamma(x + 1) / gamma(x - k + 1).rewrite('tractable', deep=True))
return self.rewrite(gamma).rewrite('tractable', deep=True)
def _eval_is_integer(self):
return fuzzy_and((self.args[0].is_integer, self.args[1].is_integer,
self.args[1].is_nonnegative))
rf = RisingFactorial
ff = FallingFactorial
###############################################################################
########################### BINOMIAL COEFFICIENTS #############################
###############################################################################
class binomial(CombinatorialFunction):
r"""Implementation of the binomial coefficient. It can be defined
in two ways depending on its desired interpretation:
.. math:: \binom{n}{k} = \frac{n!}{k!(n-k)!}\ \text{or}\
\binom{n}{k} = \frac{(n)_k}{k!}
First, in a strict combinatorial sense it defines the
number of ways we can choose `k` elements from a set of
`n` elements. In this case both arguments are nonnegative
integers and binomial is computed using an efficient
algorithm based on prime factorization.
The other definition is generalization for arbitrary `n`,
however `k` must also be nonnegative. This case is very
useful when evaluating summations.
For the sake of convenience, for negative integer `k` this function
will return zero no matter the other argument.
To expand the binomial when `n` is a symbol, use either
``expand_func()`` or ``expand(func=True)``. The former will keep
the polynomial in factored form while the latter will expand the
polynomial itself. See examples for details.
Examples
========
>>> from sympy import Symbol, Rational, binomial, expand_func
>>> n = Symbol('n', integer=True, positive=True)
>>> binomial(15, 8)
6435
>>> binomial(n, -1)
0
Rows of Pascal's triangle can be generated with the binomial function:
>>> for N in range(8):
... print([binomial(N, i) for i in range(N + 1)])
...
[1]
[1, 1]
[1, 2, 1]
[1, 3, 3, 1]
[1, 4, 6, 4, 1]
[1, 5, 10, 10, 5, 1]
[1, 6, 15, 20, 15, 6, 1]
[1, 7, 21, 35, 35, 21, 7, 1]
As can a given diagonal, e.g. the 4th diagonal:
>>> N = -4
>>> [binomial(N, i) for i in range(1 - N)]
[1, -4, 10, -20, 35]
>>> binomial(Rational(5, 4), 3)
-5/128
>>> binomial(Rational(-5, 4), 3)
-195/128
>>> binomial(n, 3)
binomial(n, 3)
>>> binomial(n, 3).expand(func=True)
n**3/6 - n**2/2 + n/3
>>> expand_func(binomial(n, 3))
n*(n - 2)*(n - 1)/6
References
==========
.. [1] https://www.johndcook.com/blog/binomial_coefficients/
"""
def fdiff(self, argindex=1):
from sympy.functions.special.gamma_functions import polygamma
if argindex == 1:
# http://functions.wolfram.com/GammaBetaErf/Binomial/20/01/01/
n, k = self.args
return binomial(n, k)*(polygamma(0, n + 1) - \
polygamma(0, n - k + 1))
elif argindex == 2:
# http://functions.wolfram.com/GammaBetaErf/Binomial/20/01/02/
n, k = self.args
return binomial(n, k)*(polygamma(0, n - k + 1) - \
polygamma(0, k + 1))
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def _eval(self, n, k):
# n.is_Number and k.is_Integer and k != 1 and n != k
if k.is_Integer:
if n.is_Integer and n >= 0:
n, k = int(n), int(k)
if k > n:
return S.Zero
elif k > n // 2:
k = n - k
if HAS_GMPY:
return Integer(gmpy.bincoef(n, k))
d, result = n - k, 1
for i in range(1, k + 1):
d += 1
result = result * d // i
return Integer(result)
else:
d, result = n - k, 1
for i in range(1, k + 1):
d += 1
result *= d
return result / _factorial(k)
@classmethod
def eval(cls, n, k):
n, k = map(sympify, (n, k))
d = n - k
n_nonneg, n_isint = n.is_nonnegative, n.is_integer
if k.is_zero or ((n_nonneg or n_isint is False)
and d.is_zero):
return S.One
if (k - 1).is_zero or ((n_nonneg or n_isint is False)
and (d - 1).is_zero):
return n
if k.is_integer:
if k.is_negative or (n_nonneg and n_isint and d.is_negative):
return S.Zero
elif n.is_number:
res = cls._eval(n, k)
return res.expand(basic=True) if res else res
elif n_nonneg is False and n_isint:
# a special case when binomial evaluates to complex infinity
return S.ComplexInfinity
elif k.is_number:
from sympy.functions.special.gamma_functions import gamma
return gamma(n + 1)/(gamma(k + 1)*gamma(n - k + 1))
def _eval_Mod(self, q):
n, k = self.args
if any(x.is_integer is False for x in (n, k, q)):
raise ValueError("Integers expected for binomial Mod")
if all(x.is_Integer for x in (n, k, q)):
n, k = map(int, (n, k))
aq, res = abs(q), 1
# handle negative integers k or n
if k < 0:
return S.Zero
if n < 0:
n = -n + k - 1
res = -1 if k%2 else 1
# non negative integers k and n
if k > n:
return S.Zero
isprime = aq.is_prime
aq = int(aq)
if isprime:
if aq < n:
# use Lucas Theorem
N, K = n, k
while N or K:
res = res*binomial(N % aq, K % aq) % aq
N, K = N // aq, K // aq
else:
# use Factorial Modulo
d = n - k
if k > d:
k, d = d, k
kf = 1
for i in range(2, k + 1):
kf = kf*i % aq
df = kf
for i in range(k + 1, d + 1):
df = df*i % aq
res *= df
for i in range(d + 1, n + 1):
res = res*i % aq
res *= pow(kf*df % aq, aq - 2, aq)
res %= aq
else:
# Binomial Factorization is performed by calculating the
# exponents of primes <= n in `n! /(k! (n - k)!)`,
# for non-negative integers n and k. As the exponent of
# prime in n! is e_p(n) = [n/p] + [n/p**2] + ...
# the exponent of prime in binomial(n, k) would be
# e_p(n) - e_p(k) - e_p(n - k)
M = int(_sqrt(n))
for prime in sieve.primerange(2, n + 1):
if prime > n - k:
res = res*prime % aq
elif prime > n // 2:
continue
elif prime > M:
if n % prime < k % prime:
res = res*prime % aq
else:
N, K = n, k
exp = a = 0
while N > 0:
a = int((N % prime) < (K % prime + a))
N, K = N // prime, K // prime
exp += a
if exp > 0:
res *= pow(prime, exp, aq)
res %= aq
return S(res % q)
def _eval_expand_func(self, **hints):
"""
Function to expand binomial(n, k) when m is positive integer
Also,
n is self.args[0] and k is self.args[1] while using binomial(n, k)
"""
n = self.args[0]
if n.is_Number:
return binomial(*self.args)
k = self.args[1]
if (n-k).is_Integer:
k = n - k
if k.is_Integer:
if k.is_zero:
return S.One
elif k.is_negative:
return S.Zero
else:
n, result = self.args[0], 1
for i in range(1, k + 1):
result *= n - k + i
return result / _factorial(k)
else:
return binomial(*self.args)
def _eval_rewrite_as_factorial(self, n, k, **kwargs):
return factorial(n)/(factorial(k)*factorial(n - k))
def _eval_rewrite_as_gamma(self, n, k, piecewise=True, **kwargs):
from sympy.functions.special.gamma_functions import gamma
return gamma(n + 1)/(gamma(k + 1)*gamma(n - k + 1))
def _eval_rewrite_as_tractable(self, n, k, limitvar=None, **kwargs):
return self._eval_rewrite_as_gamma(n, k).rewrite('tractable')
def _eval_rewrite_as_FallingFactorial(self, n, k, **kwargs):
if k.is_integer:
return ff(n, k) / factorial(k)
def _eval_is_integer(self):
n, k = self.args
if n.is_integer and k.is_integer:
return True
elif k.is_integer is False:
return False
def _eval_is_nonnegative(self):
n, k = self.args
if n.is_integer and k.is_integer:
if n.is_nonnegative or k.is_negative or k.is_even:
return True
elif k.is_even is False:
return False
def _eval_as_leading_term(self, x, logx=None, cdir=0):
from sympy.functions.special.gamma_functions import gamma
return self.rewrite(gamma)._eval_as_leading_term(x, logx=logx, cdir=cdir)
|
65a1b2598bb82559707ef829ae5277f0762b3af97da50d63427f2b4e762199b9 | from typing import Tuple as tTuple
from sympy.core.add import Add
from sympy.core.cache import cacheit
from sympy.core.expr import Expr
from sympy.core.function import Function, ArgumentIndexError, PoleError, expand_mul
from sympy.core.logic import fuzzy_not, fuzzy_or, FuzzyBool, fuzzy_and
from sympy.core.mod import Mod
from sympy.core.numbers import igcdex, Rational, pi, Integer, Float
from sympy.core.relational import Ne, Eq
from sympy.core.singleton import S
from sympy.core.symbol import Symbol, Dummy
from sympy.core.sympify import sympify
from sympy.functions.combinatorial.factorials import factorial, RisingFactorial
from sympy.functions.combinatorial.numbers import bernoulli, euler
from sympy.functions.elementary.complexes import arg as arg_f, im, re
from sympy.functions.elementary.exponential import log, exp
from sympy.functions.elementary.integers import floor
from sympy.functions.elementary.miscellaneous import sqrt, Min, Max
from sympy.functions.elementary.piecewise import Piecewise
from sympy.logic.boolalg import And
from sympy.ntheory import factorint
from sympy.polys.specialpolys import symmetric_poly
from sympy.utilities.iterables import numbered_symbols
###############################################################################
########################## UTILITIES ##########################################
###############################################################################
def _imaginary_unit_as_coefficient(arg):
""" Helper to extract symbolic coefficient for imaginary unit """
if isinstance(arg, Float):
return None
else:
return arg.as_coefficient(S.ImaginaryUnit)
###############################################################################
########################## TRIGONOMETRIC FUNCTIONS ############################
###############################################################################
class TrigonometricFunction(Function):
"""Base class for trigonometric functions. """
unbranched = True
_singularities = (S.ComplexInfinity,)
def _eval_is_rational(self):
s = self.func(*self.args)
if s.func == self.func:
if s.args[0].is_rational and fuzzy_not(s.args[0].is_zero):
return False
else:
return s.is_rational
def _eval_is_algebraic(self):
s = self.func(*self.args)
if s.func == self.func:
if fuzzy_not(self.args[0].is_zero) and self.args[0].is_algebraic:
return False
pi_coeff = _pi_coeff(self.args[0])
if pi_coeff is not None and pi_coeff.is_rational:
return True
else:
return s.is_algebraic
def _eval_expand_complex(self, deep=True, **hints):
re_part, im_part = self.as_real_imag(deep=deep, **hints)
return re_part + im_part*S.ImaginaryUnit
def _as_real_imag(self, deep=True, **hints):
if self.args[0].is_extended_real:
if deep:
hints['complex'] = False
return (self.args[0].expand(deep, **hints), S.Zero)
else:
return (self.args[0], S.Zero)
if deep:
re, im = self.args[0].expand(deep, **hints).as_real_imag()
else:
re, im = self.args[0].as_real_imag()
return (re, im)
def _period(self, general_period, symbol=None):
f = expand_mul(self.args[0])
if symbol is None:
symbol = tuple(f.free_symbols)[0]
if not f.has(symbol):
return S.Zero
if f == symbol:
return general_period
if symbol in f.free_symbols:
if f.is_Mul:
g, h = f.as_independent(symbol)
if h == symbol:
return general_period/abs(g)
if f.is_Add:
a, h = f.as_independent(symbol)
g, h = h.as_independent(symbol, as_Add=False)
if h == symbol:
return general_period/abs(g)
raise NotImplementedError("Use the periodicity function instead.")
@cacheit
def _table2():
# If nested sqrt's are worse than un-evaluation
# you can require q to be in (1, 2, 3, 4, 6, 12)
# q <= 12, q=15, q=20, q=24, q=30, q=40, q=60, q=120 return
# expressions with 2 or fewer sqrt nestings.
return {
12: (3, 4),
20: (4, 5),
30: (5, 6),
15: (6, 10),
24: (6, 8),
40: (8, 10),
60: (20, 30),
120: (40, 60)
}
def _peeloff_pi(arg):
r"""
Split ARG into two parts, a "rest" and a multiple of $\pi$.
This assumes ARG to be an Add.
The multiple of $\pi$ returned in the second position is always a Rational.
Examples
========
>>> from sympy.functions.elementary.trigonometric import _peeloff_pi
>>> from sympy import pi
>>> from sympy.abc import x, y
>>> _peeloff_pi(x + pi/2)
(x, 1/2)
>>> _peeloff_pi(x + 2*pi/3 + pi*y)
(x + pi*y + pi/6, 1/2)
"""
pi_coeff = S.Zero
rest_terms = []
for a in Add.make_args(arg):
K = a.coeff(pi)
if K and K.is_rational:
pi_coeff += K
else:
rest_terms.append(a)
if pi_coeff is S.Zero:
return arg, S.Zero
m1 = (pi_coeff % S.Half)
m2 = pi_coeff - m1
if m2.is_integer or ((2*m2).is_integer and m2.is_even is False):
return Add(*(rest_terms + [m1*pi])), m2
return arg, S.Zero
def _pi_coeff(arg, cycles=1):
r"""
When arg is a Number times $\pi$ (e.g. $3\pi/2$) then return the Number
normalized to be in the range $[0, 2]$, else `None`.
When an even multiple of $\pi$ is encountered, if it is multiplying
something with known parity then the multiple is returned as 0 otherwise
as 2.
Examples
========
>>> from sympy.functions.elementary.trigonometric import _pi_coeff
>>> from sympy import pi, Dummy
>>> from sympy.abc import x
>>> _pi_coeff(3*x*pi)
3*x
>>> _pi_coeff(11*pi/7)
11/7
>>> _pi_coeff(-11*pi/7)
3/7
>>> _pi_coeff(4*pi)
0
>>> _pi_coeff(5*pi)
1
>>> _pi_coeff(5.0*pi)
1
>>> _pi_coeff(5.5*pi)
3/2
>>> _pi_coeff(2 + pi)
>>> _pi_coeff(2*Dummy(integer=True)*pi)
2
>>> _pi_coeff(2*Dummy(even=True)*pi)
0
"""
if arg is pi:
return S.One
elif not arg:
return S.Zero
elif arg.is_Mul:
cx = arg.coeff(pi)
if cx:
c, x = cx.as_coeff_Mul() # pi is not included as coeff
if c.is_Float:
# recast exact binary fractions to Rationals
f = abs(c) % 1
if f != 0:
p = -int(round(log(f, 2).evalf()))
m = 2**p
cm = c*m
i = int(cm)
if i == cm:
c = Rational(i, m)
cx = c*x
else:
c = Rational(int(c))
cx = c*x
if x.is_integer:
c2 = c % 2
if c2 == 1:
return x
elif not c2:
if x.is_even is not None: # known parity
return S.Zero
return Integer(2)
else:
return c2*x
return cx
elif arg.is_zero:
return S.Zero
@cacheit
def _cospi257():
""" Express cos(pi/257) explicitly as a function of radicals
Based upon the equations in
http://math.stackexchange.com/questions/516142/how-does-cos2-pi-257-look-like-in-real-radicals
See also https://r-knott.surrey.ac.uk/Fibonacci/simpleTrig.html
"""
def f1(a, b):
return (a + sqrt(a**2 + b))/2, (a - sqrt(a**2 + b))/2
def f2(a, b):
return (a - sqrt(a**2 + b))/2
t1, t2 = f1(-1, 256)
z1, z3 = f1(t1, 64)
z2, z4 = f1(t2, 64)
y1, y5 = f1(z1, 4*(5 + t1 + 2*z1))
y6, y2 = f1(z2, 4*(5 + t2 + 2*z2))
y3, y7 = f1(z3, 4*(5 + t1 + 2*z3))
y8, y4 = f1(z4, 4*(5 + t2 + 2*z4))
x1, x9 = f1(y1, -4*(t1 + y1 + y3 + 2*y6))
x2, x10 = f1(y2, -4*(t2 + y2 + y4 + 2*y7))
x3, x11 = f1(y3, -4*(t1 + y3 + y5 + 2*y8))
x4, x12 = f1(y4, -4*(t2 + y4 + y6 + 2*y1))
x5, x13 = f1(y5, -4*(t1 + y5 + y7 + 2*y2))
x6, x14 = f1(y6, -4*(t2 + y6 + y8 + 2*y3))
x15, x7 = f1(y7, -4*(t1 + y7 + y1 + 2*y4))
x8, x16 = f1(y8, -4*(t2 + y8 + y2 + 2*y5))
v1 = f2(x1, -4*(x1 + x2 + x3 + x6))
v2 = f2(x2, -4*(x2 + x3 + x4 + x7))
v3 = f2(x8, -4*(x8 + x9 + x10 + x13))
v4 = f2(x9, -4*(x9 + x10 + x11 + x14))
v5 = f2(x10, -4*(x10 + x11 + x12 + x15))
v6 = f2(x16, -4*(x16 + x1 + x2 + x5))
u1 = -f2(-v1, -4*(v2 + v3))
u2 = -f2(-v4, -4*(v5 + v6))
w1 = -2*f2(-u1, -4*u2)
return sqrt(sqrt(2)*sqrt(w1 + 4)/8 + S.Half)
@cacheit
def _cos_sqrt_cst_table_some():
return {
3: S.Half,
5: (sqrt(5) + 1) / 4,
17: sqrt((15 + sqrt(17)) / 32 + sqrt(2) * (sqrt(17 - sqrt(17)) +
sqrt(sqrt(2) * (-8 * sqrt(17 + sqrt(17)) - (1 - sqrt(17))
* sqrt(17 - sqrt(17))) + 6 * sqrt(17) + 34)) / 32),
257: _cospi257()
# 65537 is the only other known Fermat prime and the very
# large expression is intentionally omitted from SymPy; see
# https://r-knott.surrey.ac.uk/Fibonacci/simpleTrig.html
}
class sin(TrigonometricFunction):
r"""
The sine function.
Returns the sine of x (measured in radians).
Explanation
===========
This function will evaluate automatically in the
case $x/\pi$ is some rational number [4]_. For example,
if $x$ is a multiple of $\pi$, $\pi/2$, $\pi/3$, $\pi/4$, and $\pi/6$.
Examples
========
>>> from sympy import sin, pi
>>> from sympy.abc import x
>>> sin(x**2).diff(x)
2*x*cos(x**2)
>>> sin(1).diff(x)
0
>>> sin(pi)
0
>>> sin(pi/2)
1
>>> sin(pi/6)
1/2
>>> sin(pi/12)
-sqrt(2)/4 + sqrt(6)/4
See Also
========
csc, cos, sec, tan, cot
asin, acsc, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigonometric_functions
.. [2] http://dlmf.nist.gov/4.14
.. [3] http://functions.wolfram.com/ElementaryFunctions/Sin
.. [4] http://mathworld.wolfram.com/TrigonometryAngles.html
"""
def period(self, symbol=None):
return self._period(2*pi, symbol)
def fdiff(self, argindex=1):
if argindex == 1:
return cos(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
from sympy.calculus.accumulationbounds import AccumBounds
from sympy.sets.setexpr import SetExpr
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg.is_zero:
return S.Zero
elif arg in (S.Infinity, S.NegativeInfinity):
return AccumBounds(-1, 1)
if arg is S.ComplexInfinity:
return S.NaN
if isinstance(arg, AccumBounds):
from sympy.sets.sets import FiniteSet
min, max = arg.min, arg.max
d = floor(min/(2*pi))
if min is not S.NegativeInfinity:
min = min - d*2*pi
if max is not S.Infinity:
max = max - d*2*pi
if AccumBounds(min, max).intersection(FiniteSet(pi/2, pi*Rational(5, 2))) \
is not S.EmptySet and \
AccumBounds(min, max).intersection(FiniteSet(pi*Rational(3, 2),
pi*Rational(7, 2))) is not S.EmptySet:
return AccumBounds(-1, 1)
elif AccumBounds(min, max).intersection(FiniteSet(pi/2, pi*Rational(5, 2))) \
is not S.EmptySet:
return AccumBounds(Min(sin(min), sin(max)), 1)
elif AccumBounds(min, max).intersection(FiniteSet(pi*Rational(3, 2), pi*Rational(8, 2))) \
is not S.EmptySet:
return AccumBounds(-1, Max(sin(min), sin(max)))
else:
return AccumBounds(Min(sin(min), sin(max)),
Max(sin(min), sin(max)))
elif isinstance(arg, SetExpr):
return arg._eval_func(cls)
if arg.could_extract_minus_sign():
return -cls(-arg)
i_coeff = _imaginary_unit_as_coefficient(arg)
if i_coeff is not None:
from sympy.functions.elementary.hyperbolic import sinh
return S.ImaginaryUnit*sinh(i_coeff)
pi_coeff = _pi_coeff(arg)
if pi_coeff is not None:
if pi_coeff.is_integer:
return S.Zero
if (2*pi_coeff).is_integer:
# is_even-case handled above as then pi_coeff.is_integer,
# so check if known to be not even
if pi_coeff.is_even is False:
return S.NegativeOne**(pi_coeff - S.Half)
if not pi_coeff.is_Rational:
narg = pi_coeff*pi
if narg != arg:
return cls(narg)
return None
# https://github.com/sympy/sympy/issues/6048
# transform a sine to a cosine, to avoid redundant code
if pi_coeff.is_Rational:
x = pi_coeff % 2
if x > 1:
return -cls((x % 1)*pi)
if 2*x > 1:
return cls((1 - x)*pi)
narg = ((pi_coeff + Rational(3, 2)) % 2)*pi
result = cos(narg)
if not isinstance(result, cos):
return result
if pi_coeff*pi != arg:
return cls(pi_coeff*pi)
return None
if arg.is_Add:
x, m = _peeloff_pi(arg)
if m:
m = m*pi
return sin(m)*cos(x) + cos(m)*sin(x)
if arg.is_zero:
return S.Zero
if isinstance(arg, asin):
return arg.args[0]
if isinstance(arg, atan):
x = arg.args[0]
return x/sqrt(1 + x**2)
if isinstance(arg, atan2):
y, x = arg.args
return y/sqrt(x**2 + y**2)
if isinstance(arg, acos):
x = arg.args[0]
return sqrt(1 - x**2)
if isinstance(arg, acot):
x = arg.args[0]
return 1/(sqrt(1 + 1/x**2)*x)
if isinstance(arg, acsc):
x = arg.args[0]
return 1/x
if isinstance(arg, asec):
x = arg.args[0]
return sqrt(1 - 1/x**2)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) > 2:
p = previous_terms[-2]
return -p*x**2/(n*(n - 1))
else:
return S.NegativeOne**(n//2)*x**n/factorial(n)
def _eval_nseries(self, x, n, logx, cdir=0):
arg = self.args[0]
if logx is not None:
arg = arg.subs(log(x), logx)
if arg.subs(x, 0).has(S.NaN, S.ComplexInfinity):
raise PoleError("Cannot expand %s around 0" % (self))
return Function._eval_nseries(self, x, n=n, logx=logx, cdir=cdir)
def _eval_rewrite_as_exp(self, arg, **kwargs):
from sympy.functions.elementary.hyperbolic import HyperbolicFunction
I = S.ImaginaryUnit
if isinstance(arg, (TrigonometricFunction, HyperbolicFunction)):
arg = arg.func(arg.args[0]).rewrite(exp)
return (exp(arg*I) - exp(-arg*I))/(2*I)
def _eval_rewrite_as_Pow(self, arg, **kwargs):
if isinstance(arg, log):
I = S.ImaginaryUnit
x = arg.args[0]
return I*x**-I/2 - I*x**I /2
def _eval_rewrite_as_cos(self, arg, **kwargs):
return cos(arg - pi/2, evaluate=False)
def _eval_rewrite_as_tan(self, arg, **kwargs):
tan_half = tan(S.Half*arg)
return 2*tan_half/(1 + tan_half**2)
def _eval_rewrite_as_sincos(self, arg, **kwargs):
return sin(arg)*cos(arg)/cos(arg)
def _eval_rewrite_as_cot(self, arg, **kwargs):
cot_half = cot(S.Half*arg)
return Piecewise((0, And(Eq(im(arg), 0), Eq(Mod(arg, pi), 0))),
(2*cot_half/(1 + cot_half**2), True))
def _eval_rewrite_as_pow(self, arg, **kwargs):
return self.rewrite(cos).rewrite(pow)
def _eval_rewrite_as_sqrt(self, arg, **kwargs):
return self.rewrite(cos).rewrite(sqrt)
def _eval_rewrite_as_csc(self, arg, **kwargs):
return 1/csc(arg)
def _eval_rewrite_as_sec(self, arg, **kwargs):
return 1/sec(arg - pi/2, evaluate=False)
def _eval_rewrite_as_sinc(self, arg, **kwargs):
return arg*sinc(arg)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
from sympy.functions.elementary.hyperbolic import cosh, sinh
re, im = self._as_real_imag(deep=deep, **hints)
return (sin(re)*cosh(im), cos(re)*sinh(im))
def _eval_expand_trig(self, **hints):
from sympy.functions.special.polynomials import chebyshevt, chebyshevu
arg = self.args[0]
x = None
if arg.is_Add: # TODO, implement more if deep stuff here
# TODO: Do this more efficiently for more than two terms
x, y = arg.as_two_terms()
sx = sin(x, evaluate=False)._eval_expand_trig()
sy = sin(y, evaluate=False)._eval_expand_trig()
cx = cos(x, evaluate=False)._eval_expand_trig()
cy = cos(y, evaluate=False)._eval_expand_trig()
return sx*cy + sy*cx
elif arg.is_Mul:
n, x = arg.as_coeff_Mul(rational=True)
if n.is_Integer: # n will be positive because of .eval
# canonicalization
# See http://mathworld.wolfram.com/Multiple-AngleFormulas.html
if n.is_odd:
return S.NegativeOne**((n - 1)/2)*chebyshevt(n, sin(x))
else:
return expand_mul(S.NegativeOne**(n/2 - 1)*cos(x)*
chebyshevu(n - 1, sin(x)), deep=False)
pi_coeff = _pi_coeff(arg)
if pi_coeff is not None:
if pi_coeff.is_Rational:
return self.rewrite(sqrt)
return sin(arg)
def _eval_as_leading_term(self, x, logx=None, cdir=0):
from sympy.calculus.accumulationbounds import AccumBounds
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
n = x0/pi
if n.is_integer:
lt = (arg - n*pi).as_leading_term(x)
return (S.NegativeOne**n)*lt
if x0 is S.ComplexInfinity:
x0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+')
if x0 in [S.Infinity, S.NegativeInfinity]:
return AccumBounds(-1, 1)
return self.func(x0) if x0.is_finite else self
def _eval_is_extended_real(self):
if self.args[0].is_extended_real:
return True
def _eval_is_finite(self):
arg = self.args[0]
if arg.is_extended_real:
return True
def _eval_is_zero(self):
rest, pi_mult = _peeloff_pi(self.args[0])
if rest.is_zero:
return pi_mult.is_integer
def _eval_is_complex(self):
if self.args[0].is_extended_real \
or self.args[0].is_complex:
return True
class cos(TrigonometricFunction):
"""
The cosine function.
Returns the cosine of x (measured in radians).
Explanation
===========
See :func:`sin` for notes about automatic evaluation.
Examples
========
>>> from sympy import cos, pi
>>> from sympy.abc import x
>>> cos(x**2).diff(x)
-2*x*sin(x**2)
>>> cos(1).diff(x)
0
>>> cos(pi)
-1
>>> cos(pi/2)
0
>>> cos(2*pi/3)
-1/2
>>> cos(pi/12)
sqrt(2)/4 + sqrt(6)/4
See Also
========
sin, csc, sec, tan, cot
asin, acsc, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigonometric_functions
.. [2] http://dlmf.nist.gov/4.14
.. [3] http://functions.wolfram.com/ElementaryFunctions/Cos
"""
def period(self, symbol=None):
return self._period(2*pi, symbol)
def fdiff(self, argindex=1):
if argindex == 1:
return -sin(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
from sympy.functions.special.polynomials import chebyshevt
from sympy.calculus.accumulationbounds import AccumBounds
from sympy.sets.setexpr import SetExpr
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg.is_zero:
return S.One
elif arg in (S.Infinity, S.NegativeInfinity):
# In this case it is better to return AccumBounds(-1, 1)
# rather than returning S.NaN, since AccumBounds(-1, 1)
# preserves the information that sin(oo) is between
# -1 and 1, where S.NaN does not do that.
return AccumBounds(-1, 1)
if arg is S.ComplexInfinity:
return S.NaN
if isinstance(arg, AccumBounds):
return sin(arg + pi/2)
elif isinstance(arg, SetExpr):
return arg._eval_func(cls)
if arg.is_extended_real and arg.is_finite is False:
return AccumBounds(-1, 1)
if arg.could_extract_minus_sign():
return cls(-arg)
i_coeff = _imaginary_unit_as_coefficient(arg)
if i_coeff is not None:
from sympy.functions.elementary.hyperbolic import cosh
return cosh(i_coeff)
pi_coeff = _pi_coeff(arg)
if pi_coeff is not None:
if pi_coeff.is_integer:
return (S.NegativeOne)**pi_coeff
if (2*pi_coeff).is_integer:
# is_even-case handled above as then pi_coeff.is_integer,
# so check if known to be not even
if pi_coeff.is_even is False:
return S.Zero
if not pi_coeff.is_Rational:
narg = pi_coeff*pi
if narg != arg:
return cls(narg)
return None
# cosine formula #####################
# https://github.com/sympy/sympy/issues/6048
# explicit calculations are performed for
# cos(k pi/n) for n = 8,10,12,15,20,24,30,40,60,120
# Some other exact values like cos(k pi/240) can be
# calculated using a partial-fraction decomposition
# by calling cos( X ).rewrite(sqrt)
if pi_coeff.is_Rational:
q = pi_coeff.q
p = pi_coeff.p % (2*q)
if p > q:
narg = (pi_coeff - 1)*pi
return -cls(narg)
if 2*p > q:
narg = (1 - pi_coeff)*pi
return -cls(narg)
# If nested sqrt's are worse than un-evaluation
# you can require q to be in (1, 2, 3, 4, 6, 12)
# q <= 12, q=15, q=20, q=24, q=30, q=40, q=60, q=120 return
# expressions with 2 or fewer sqrt nestings.
table2 = _table2()
if q in table2:
a, b = table2[q]
a, b = p*pi/a, p*pi/b
nvala, nvalb = cls(a), cls(b)
if None in (nvala, nvalb):
return None
return nvala*nvalb + cls(pi/2 - a)*cls(pi/2 - b)
if q > 12:
return None
cst_table_some = {
3: S.Half,
5: (sqrt(5) + 1) / 4,
}
if q in cst_table_some:
cts = cst_table_some[pi_coeff.q]
return chebyshevt(pi_coeff.p, cts).expand()
if 0 == q % 2:
narg = (pi_coeff*2)*pi
nval = cls(narg)
if None == nval:
return None
x = (2*pi_coeff + 1)/2
sign_cos = (-1)**((-1 if x < 0 else 1)*int(abs(x)))
return sign_cos*sqrt( (1 + nval)/2 )
return None
if arg.is_Add:
x, m = _peeloff_pi(arg)
if m:
m = m*pi
return cos(m)*cos(x) - sin(m)*sin(x)
if arg.is_zero:
return S.One
if isinstance(arg, acos):
return arg.args[0]
if isinstance(arg, atan):
x = arg.args[0]
return 1/sqrt(1 + x**2)
if isinstance(arg, atan2):
y, x = arg.args
return x/sqrt(x**2 + y**2)
if isinstance(arg, asin):
x = arg.args[0]
return sqrt(1 - x ** 2)
if isinstance(arg, acot):
x = arg.args[0]
return 1/sqrt(1 + 1/x**2)
if isinstance(arg, acsc):
x = arg.args[0]
return sqrt(1 - 1/x**2)
if isinstance(arg, asec):
x = arg.args[0]
return 1/x
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 1:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) > 2:
p = previous_terms[-2]
return -p*x**2/(n*(n - 1))
else:
return S.NegativeOne**(n//2)*x**n/factorial(n)
def _eval_nseries(self, x, n, logx, cdir=0):
arg = self.args[0]
if logx is not None:
arg = arg.subs(log(x), logx)
if arg.subs(x, 0).has(S.NaN, S.ComplexInfinity):
raise PoleError("Cannot expand %s around 0" % (self))
return Function._eval_nseries(self, x, n=n, logx=logx, cdir=cdir)
def _eval_rewrite_as_exp(self, arg, **kwargs):
I = S.ImaginaryUnit
from sympy.functions.elementary.hyperbolic import HyperbolicFunction
if isinstance(arg, (TrigonometricFunction, HyperbolicFunction)):
arg = arg.func(arg.args[0]).rewrite(exp)
return (exp(arg*I) + exp(-arg*I))/2
def _eval_rewrite_as_Pow(self, arg, **kwargs):
if isinstance(arg, log):
I = S.ImaginaryUnit
x = arg.args[0]
return x**I/2 + x**-I/2
def _eval_rewrite_as_sin(self, arg, **kwargs):
return sin(arg + pi/2, evaluate=False)
def _eval_rewrite_as_tan(self, arg, **kwargs):
tan_half = tan(S.Half*arg)**2
return (1 - tan_half)/(1 + tan_half)
def _eval_rewrite_as_sincos(self, arg, **kwargs):
return sin(arg)*cos(arg)/sin(arg)
def _eval_rewrite_as_cot(self, arg, **kwargs):
cot_half = cot(S.Half*arg)**2
return Piecewise((1, And(Eq(im(arg), 0), Eq(Mod(arg, 2*pi), 0))),
((cot_half - 1)/(cot_half + 1), True))
def _eval_rewrite_as_pow(self, arg, **kwargs):
return self._eval_rewrite_as_sqrt(arg)
def _eval_rewrite_as_sqrt(self, arg, **kwargs):
from sympy.functions.special.polynomials import chebyshevt
def migcdex(x):
# recursive calculation of gcd and linear combination
# for a sequence of integers.
# Given (x1, x2, x3)
# Returns (y1, y1, y3, g)
# such that g is the gcd and x1*y1+x2*y2+x3*y3 - g = 0
# Note, that this is only one such linear combination.
if len(x) == 1:
return (1, x[0])
if len(x) == 2:
return igcdex(x[0], x[-1])
g = migcdex(x[1:])
u, v, h = igcdex(x[0], g[-1])
return tuple([u] + [v*i for i in g[0:-1] ] + [h])
def ipartfrac(r, factors=None):
if isinstance(r, int):
return r
if not isinstance(r, Rational):
raise TypeError("r is not rational")
n = r.q
if 2 > r.q*r.q:
return r.q
if None == factors:
a = [n//x**y for x, y in factorint(r.q).items()]
else:
a = [n//x for x in factors]
if len(a) == 1:
return [ r ]
h = migcdex(a)
ans = [ r.p*Rational(i*j, r.q) for i, j in zip(h[:-1], a) ]
assert r == sum(ans)
return ans
pi_coeff = _pi_coeff(arg)
if pi_coeff is None:
return None
if pi_coeff.is_integer:
# it was unevaluated
return self.func(pi_coeff*pi)
if not pi_coeff.is_Rational:
return None
cst_table_some = _cos_sqrt_cst_table_some()
if pi_coeff.q in cst_table_some:
rv = chebyshevt(pi_coeff.p, cst_table_some[pi_coeff.q])
if pi_coeff.q < 257:
rv = rv.expand()
return rv
if not pi_coeff.q % 2: # recursively remove factors of 2
pico2 = pi_coeff*2
nval = cos(pico2*pi).rewrite(sqrt)
x = (pico2 + 1)/2
sign_cos = -1 if int(x) % 2 else 1
return sign_cos*sqrt( (1 + nval)/2 )
def _fermatCoords(n):
# if n can be factored in terms of Fermat primes with
# multiplicity of each being 1, return those primes, else
# False
primes = []
for p_i in cst_table_some:
quotient, remainder = divmod(n, p_i)
if remainder == 0:
n = quotient
primes.append(p_i)
if n == 1:
return tuple(primes)
return False
FC = _fermatCoords(pi_coeff.q)
if FC:
decomp = ipartfrac(pi_coeff, FC)
X = [(x[1], x[0]*pi) for x in zip(decomp, numbered_symbols('z'))]
pcls = cos(sum([x[0] for x in X]))._eval_expand_trig().subs(X)
return pcls.rewrite(sqrt)
else:
decomp = ipartfrac(pi_coeff)
X = [(x[1], x[0]*pi) for x in zip(decomp, numbered_symbols('z'))]
pcls = cos(sum([x[0] for x in X]))._eval_expand_trig().subs(X)
return pcls
def _eval_rewrite_as_sec(self, arg, **kwargs):
return 1/sec(arg)
def _eval_rewrite_as_csc(self, arg, **kwargs):
return 1/sec(arg).rewrite(csc)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
from sympy.functions.elementary.hyperbolic import cosh, sinh
re, im = self._as_real_imag(deep=deep, **hints)
return (cos(re)*cosh(im), -sin(re)*sinh(im))
def _eval_expand_trig(self, **hints):
from sympy.functions.special.polynomials import chebyshevt
arg = self.args[0]
x = None
if arg.is_Add: # TODO: Do this more efficiently for more than two terms
x, y = arg.as_two_terms()
sx = sin(x, evaluate=False)._eval_expand_trig()
sy = sin(y, evaluate=False)._eval_expand_trig()
cx = cos(x, evaluate=False)._eval_expand_trig()
cy = cos(y, evaluate=False)._eval_expand_trig()
return cx*cy - sx*sy
elif arg.is_Mul:
coeff, terms = arg.as_coeff_Mul(rational=True)
if coeff.is_Integer:
return chebyshevt(coeff, cos(terms))
pi_coeff = _pi_coeff(arg)
if pi_coeff is not None:
if pi_coeff.is_Rational:
return self.rewrite(sqrt)
return cos(arg)
def _eval_as_leading_term(self, x, logx=None, cdir=0):
from sympy.calculus.accumulationbounds import AccumBounds
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
n = (x0 + pi/2)/pi
if n.is_integer:
lt = (arg - n*pi + pi/2).as_leading_term(x)
return (S.NegativeOne**n)*lt
if x0 is S.ComplexInfinity:
x0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+')
if x0 in [S.Infinity, S.NegativeInfinity]:
return AccumBounds(-1, 1)
return self.func(x0) if x0.is_finite else self
def _eval_is_extended_real(self):
if self.args[0].is_extended_real:
return True
def _eval_is_finite(self):
arg = self.args[0]
if arg.is_extended_real:
return True
def _eval_is_complex(self):
if self.args[0].is_extended_real \
or self.args[0].is_complex:
return True
def _eval_is_zero(self):
rest, pi_mult = _peeloff_pi(self.args[0])
if rest.is_zero and pi_mult:
return (pi_mult - S.Half).is_integer
class tan(TrigonometricFunction):
"""
The tangent function.
Returns the tangent of x (measured in radians).
Explanation
===========
See :class:`sin` for notes about automatic evaluation.
Examples
========
>>> from sympy import tan, pi
>>> from sympy.abc import x
>>> tan(x**2).diff(x)
2*x*(tan(x**2)**2 + 1)
>>> tan(1).diff(x)
0
>>> tan(pi/8).expand()
-1 + sqrt(2)
See Also
========
sin, csc, cos, sec, cot
asin, acsc, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigonometric_functions
.. [2] http://dlmf.nist.gov/4.14
.. [3] http://functions.wolfram.com/ElementaryFunctions/Tan
"""
def period(self, symbol=None):
return self._period(pi, symbol)
def fdiff(self, argindex=1):
if argindex == 1:
return S.One + self**2
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return atan
@classmethod
def eval(cls, arg):
from sympy.calculus.accumulationbounds import AccumBounds
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg.is_zero:
return S.Zero
elif arg in (S.Infinity, S.NegativeInfinity):
return AccumBounds(S.NegativeInfinity, S.Infinity)
if arg is S.ComplexInfinity:
return S.NaN
if isinstance(arg, AccumBounds):
min, max = arg.min, arg.max
d = floor(min/pi)
if min is not S.NegativeInfinity:
min = min - d*pi
if max is not S.Infinity:
max = max - d*pi
from sympy.sets.sets import FiniteSet
if AccumBounds(min, max).intersection(FiniteSet(pi/2, pi*Rational(3, 2))):
return AccumBounds(S.NegativeInfinity, S.Infinity)
else:
return AccumBounds(tan(min), tan(max))
if arg.could_extract_minus_sign():
return -cls(-arg)
i_coeff = _imaginary_unit_as_coefficient(arg)
if i_coeff is not None:
from sympy.functions.elementary.hyperbolic import tanh
return S.ImaginaryUnit*tanh(i_coeff)
pi_coeff = _pi_coeff(arg, 2)
if pi_coeff is not None:
if pi_coeff.is_integer:
return S.Zero
if not pi_coeff.is_Rational:
narg = pi_coeff*pi
if narg != arg:
return cls(narg)
return None
if pi_coeff.is_Rational:
q = pi_coeff.q
p = pi_coeff.p % q
# ensure simplified results are returned for n*pi/5, n*pi/10
table10 = {
1: sqrt(1 - 2*sqrt(5)/5),
2: sqrt(5 - 2*sqrt(5)),
3: sqrt(1 + 2*sqrt(5)/5),
4: sqrt(5 + 2*sqrt(5))
}
if q in (5, 10):
n = 10*p/q
if n > 5:
n = 10 - n
return -table10[n]
else:
return table10[n]
if not pi_coeff.q % 2:
narg = pi_coeff*pi*2
cresult, sresult = cos(narg), cos(narg - pi/2)
if not isinstance(cresult, cos) \
and not isinstance(sresult, cos):
if sresult == 0:
return S.ComplexInfinity
return 1/sresult - cresult/sresult
table2 = _table2()
if q in table2:
a, b = table2[q]
nvala, nvalb = cls(p*pi/a), cls(p*pi/b)
if None in (nvala, nvalb):
return None
return (nvala - nvalb)/(1 + nvala*nvalb)
narg = ((pi_coeff + S.Half) % 1 - S.Half)*pi
# see cos() to specify which expressions should be
# expanded automatically in terms of radicals
cresult, sresult = cos(narg), cos(narg - pi/2)
if not isinstance(cresult, cos) \
and not isinstance(sresult, cos):
if cresult == 0:
return S.ComplexInfinity
return (sresult/cresult)
if narg != arg:
return cls(narg)
if arg.is_Add:
x, m = _peeloff_pi(arg)
if m:
tanm = tan(m*pi)
if tanm is S.ComplexInfinity:
return -cot(x)
else: # tanm == 0
return tan(x)
if arg.is_zero:
return S.Zero
if isinstance(arg, atan):
return arg.args[0]
if isinstance(arg, atan2):
y, x = arg.args
return y/x
if isinstance(arg, asin):
x = arg.args[0]
return x/sqrt(1 - x**2)
if isinstance(arg, acos):
x = arg.args[0]
return sqrt(1 - x**2)/x
if isinstance(arg, acot):
x = arg.args[0]
return 1/x
if isinstance(arg, acsc):
x = arg.args[0]
return 1/(sqrt(1 - 1/x**2)*x)
if isinstance(arg, asec):
x = arg.args[0]
return sqrt(1 - 1/x**2)*x
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
a, b = ((n - 1)//2), 2**(n + 1)
B = bernoulli(n + 1)
F = factorial(n + 1)
return S.NegativeOne**a*b*(b - 1)*B/F*x**n
def _eval_nseries(self, x, n, logx, cdir=0):
i = self.args[0].limit(x, 0)*2/pi
if i and i.is_Integer:
return self.rewrite(cos)._eval_nseries(x, n=n, logx=logx)
return Function._eval_nseries(self, x, n=n, logx=logx)
def _eval_rewrite_as_Pow(self, arg, **kwargs):
if isinstance(arg, log):
I = S.ImaginaryUnit
x = arg.args[0]
return I*(x**-I - x**I)/(x**-I + x**I)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
re, im = self._as_real_imag(deep=deep, **hints)
if im:
from sympy.functions.elementary.hyperbolic import cosh, sinh
denom = cos(2*re) + cosh(2*im)
return (sin(2*re)/denom, sinh(2*im)/denom)
else:
return (self.func(re), S.Zero)
def _eval_expand_trig(self, **hints):
arg = self.args[0]
x = None
if arg.is_Add:
n = len(arg.args)
TX = []
for x in arg.args:
tx = tan(x, evaluate=False)._eval_expand_trig()
TX.append(tx)
Yg = numbered_symbols('Y')
Y = [ next(Yg) for i in range(n) ]
p = [0, 0]
for i in range(n + 1):
p[1 - i % 2] += symmetric_poly(i, Y)*(-1)**((i % 4)//2)
return (p[0]/p[1]).subs(list(zip(Y, TX)))
elif arg.is_Mul:
coeff, terms = arg.as_coeff_Mul(rational=True)
if coeff.is_Integer and coeff > 1:
I = S.ImaginaryUnit
z = Symbol('dummy', real=True)
P = ((1 + I*z)**coeff).expand()
return (im(P)/re(P)).subs([(z, tan(terms))])
return tan(arg)
def _eval_rewrite_as_exp(self, arg, **kwargs):
I = S.ImaginaryUnit
from sympy.functions.elementary.hyperbolic import HyperbolicFunction
if isinstance(arg, (TrigonometricFunction, HyperbolicFunction)):
arg = arg.func(arg.args[0]).rewrite(exp)
neg_exp, pos_exp = exp(-arg*I), exp(arg*I)
return I*(neg_exp - pos_exp)/(neg_exp + pos_exp)
def _eval_rewrite_as_sin(self, x, **kwargs):
return 2*sin(x)**2/sin(2*x)
def _eval_rewrite_as_cos(self, x, **kwargs):
return cos(x - pi/2, evaluate=False)/cos(x)
def _eval_rewrite_as_sincos(self, arg, **kwargs):
return sin(arg)/cos(arg)
def _eval_rewrite_as_cot(self, arg, **kwargs):
return 1/cot(arg)
def _eval_rewrite_as_sec(self, arg, **kwargs):
sin_in_sec_form = sin(arg).rewrite(sec)
cos_in_sec_form = cos(arg).rewrite(sec)
return sin_in_sec_form/cos_in_sec_form
def _eval_rewrite_as_csc(self, arg, **kwargs):
sin_in_csc_form = sin(arg).rewrite(csc)
cos_in_csc_form = cos(arg).rewrite(csc)
return sin_in_csc_form/cos_in_csc_form
def _eval_rewrite_as_pow(self, arg, **kwargs):
y = self.rewrite(cos).rewrite(pow)
if y.has(cos):
return None
return y
def _eval_rewrite_as_sqrt(self, arg, **kwargs):
y = self.rewrite(cos).rewrite(sqrt)
if y.has(cos):
return None
return y
def _eval_as_leading_term(self, x, logx=None, cdir=0):
from sympy.calculus.accumulationbounds import AccumBounds
from sympy.functions.elementary.complexes import re
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
n = 2*x0/pi
if n.is_integer:
lt = (arg - n*pi/2).as_leading_term(x)
return lt if n.is_even else -1/lt
if x0 is S.ComplexInfinity:
x0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+')
if x0 in (S.Infinity, S.NegativeInfinity):
return AccumBounds(S.NegativeInfinity, S.Infinity)
return self.func(x0) if x0.is_finite else self
def _eval_is_extended_real(self):
# FIXME: currently tan(pi/2) return zoo
return self.args[0].is_extended_real
def _eval_is_real(self):
arg = self.args[0]
if arg.is_real and (arg/pi - S.Half).is_integer is False:
return True
def _eval_is_finite(self):
arg = self.args[0]
if arg.is_real and (arg/pi - S.Half).is_integer is False:
return True
if arg.is_imaginary:
return True
def _eval_is_zero(self):
rest, pi_mult = _peeloff_pi(self.args[0])
if rest.is_zero:
return pi_mult.is_integer
def _eval_is_complex(self):
arg = self.args[0]
if arg.is_real and (arg/pi - S.Half).is_integer is False:
return True
class cot(TrigonometricFunction):
"""
The cotangent function.
Returns the cotangent of x (measured in radians).
Explanation
===========
See :class:`sin` for notes about automatic evaluation.
Examples
========
>>> from sympy import cot, pi
>>> from sympy.abc import x
>>> cot(x**2).diff(x)
2*x*(-cot(x**2)**2 - 1)
>>> cot(1).diff(x)
0
>>> cot(pi/12)
sqrt(3) + 2
See Also
========
sin, csc, cos, sec, tan
asin, acsc, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigonometric_functions
.. [2] http://dlmf.nist.gov/4.14
.. [3] http://functions.wolfram.com/ElementaryFunctions/Cot
"""
def period(self, symbol=None):
return self._period(pi, symbol)
def fdiff(self, argindex=1):
if argindex == 1:
return S.NegativeOne - self**2
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return acot
@classmethod
def eval(cls, arg):
from sympy.calculus.accumulationbounds import AccumBounds
if arg.is_Number:
if arg is S.NaN:
return S.NaN
if arg.is_zero:
return S.ComplexInfinity
elif arg in (S.Infinity, S.NegativeInfinity):
return AccumBounds(S.NegativeInfinity, S.Infinity)
if arg is S.ComplexInfinity:
return S.NaN
if isinstance(arg, AccumBounds):
return -tan(arg + pi/2)
if arg.could_extract_minus_sign():
return -cls(-arg)
i_coeff = _imaginary_unit_as_coefficient(arg)
if i_coeff is not None:
from sympy.functions.elementary.hyperbolic import coth
return -S.ImaginaryUnit*coth(i_coeff)
pi_coeff = _pi_coeff(arg, 2)
if pi_coeff is not None:
if pi_coeff.is_integer:
return S.ComplexInfinity
if not pi_coeff.is_Rational:
narg = pi_coeff*pi
if narg != arg:
return cls(narg)
return None
if pi_coeff.is_Rational:
if pi_coeff.q in (5, 10):
return tan(pi/2 - arg)
if pi_coeff.q > 2 and not pi_coeff.q % 2:
narg = pi_coeff*pi*2
cresult, sresult = cos(narg), cos(narg - pi/2)
if not isinstance(cresult, cos) \
and not isinstance(sresult, cos):
return 1/sresult + cresult/sresult
q = pi_coeff.q
p = pi_coeff.p % q
table2 = _table2()
if q in table2:
a, b = table2[q]
nvala, nvalb = cls(p*pi/a), cls(p*pi/b)
if None in (nvala, nvalb):
return None
return (1 + nvala*nvalb)/(nvalb - nvala)
narg = (((pi_coeff + S.Half) % 1) - S.Half)*pi
# see cos() to specify which expressions should be
# expanded automatically in terms of radicals
cresult, sresult = cos(narg), cos(narg - pi/2)
if not isinstance(cresult, cos) \
and not isinstance(sresult, cos):
if sresult == 0:
return S.ComplexInfinity
return cresult/sresult
if narg != arg:
return cls(narg)
if arg.is_Add:
x, m = _peeloff_pi(arg)
if m:
cotm = cot(m*pi)
if cotm is S.ComplexInfinity:
return cot(x)
else: # cotm == 0
return -tan(x)
if arg.is_zero:
return S.ComplexInfinity
if isinstance(arg, acot):
return arg.args[0]
if isinstance(arg, atan):
x = arg.args[0]
return 1/x
if isinstance(arg, atan2):
y, x = arg.args
return x/y
if isinstance(arg, asin):
x = arg.args[0]
return sqrt(1 - x**2)/x
if isinstance(arg, acos):
x = arg.args[0]
return x/sqrt(1 - x**2)
if isinstance(arg, acsc):
x = arg.args[0]
return sqrt(1 - 1/x**2)*x
if isinstance(arg, asec):
x = arg.args[0]
return 1/(sqrt(1 - 1/x**2)*x)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n == 0:
return 1/sympify(x)
elif n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
B = bernoulli(n + 1)
F = factorial(n + 1)
return S.NegativeOne**((n + 1)//2)*2**(n + 1)*B/F*x**n
def _eval_nseries(self, x, n, logx, cdir=0):
i = self.args[0].limit(x, 0)/pi
if i and i.is_Integer:
return self.rewrite(cos)._eval_nseries(x, n=n, logx=logx)
return self.rewrite(tan)._eval_nseries(x, n=n, logx=logx)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
re, im = self._as_real_imag(deep=deep, **hints)
if im:
from sympy.functions.elementary.hyperbolic import cosh, sinh
denom = cos(2*re) - cosh(2*im)
return (-sin(2*re)/denom, sinh(2*im)/denom)
else:
return (self.func(re), S.Zero)
def _eval_rewrite_as_exp(self, arg, **kwargs):
from sympy.functions.elementary.hyperbolic import HyperbolicFunction
I = S.ImaginaryUnit
if isinstance(arg, (TrigonometricFunction, HyperbolicFunction)):
arg = arg.func(arg.args[0]).rewrite(exp)
neg_exp, pos_exp = exp(-arg*I), exp(arg*I)
return I*(pos_exp + neg_exp)/(pos_exp - neg_exp)
def _eval_rewrite_as_Pow(self, arg, **kwargs):
if isinstance(arg, log):
I = S.ImaginaryUnit
x = arg.args[0]
return -I*(x**-I + x**I)/(x**-I - x**I)
def _eval_rewrite_as_sin(self, x, **kwargs):
return sin(2*x)/(2*(sin(x)**2))
def _eval_rewrite_as_cos(self, x, **kwargs):
return cos(x)/cos(x - pi/2, evaluate=False)
def _eval_rewrite_as_sincos(self, arg, **kwargs):
return cos(arg)/sin(arg)
def _eval_rewrite_as_tan(self, arg, **kwargs):
return 1/tan(arg)
def _eval_rewrite_as_sec(self, arg, **kwargs):
cos_in_sec_form = cos(arg).rewrite(sec)
sin_in_sec_form = sin(arg).rewrite(sec)
return cos_in_sec_form/sin_in_sec_form
def _eval_rewrite_as_csc(self, arg, **kwargs):
cos_in_csc_form = cos(arg).rewrite(csc)
sin_in_csc_form = sin(arg).rewrite(csc)
return cos_in_csc_form/sin_in_csc_form
def _eval_rewrite_as_pow(self, arg, **kwargs):
y = self.rewrite(cos).rewrite(pow)
if y.has(cos):
return None
return y
def _eval_rewrite_as_sqrt(self, arg, **kwargs):
y = self.rewrite(cos).rewrite(sqrt)
if y.has(cos):
return None
return y
def _eval_as_leading_term(self, x, logx=None, cdir=0):
from sympy.calculus.accumulationbounds import AccumBounds
from sympy.functions.elementary.complexes import re
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
n = 2*x0/pi
if n.is_integer:
lt = (arg - n*pi/2).as_leading_term(x)
return 1/lt if n.is_even else -lt
if x0 is S.ComplexInfinity:
x0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+')
if x0 in (S.Infinity, S.NegativeInfinity):
return AccumBounds(S.NegativeInfinity, S.Infinity)
return self.func(x0) if x0.is_finite else self
def _eval_is_extended_real(self):
return self.args[0].is_extended_real
def _eval_expand_trig(self, **hints):
arg = self.args[0]
x = None
if arg.is_Add:
n = len(arg.args)
CX = []
for x in arg.args:
cx = cot(x, evaluate=False)._eval_expand_trig()
CX.append(cx)
Yg = numbered_symbols('Y')
Y = [ next(Yg) for i in range(n) ]
p = [0, 0]
for i in range(n, -1, -1):
p[(n - i) % 2] += symmetric_poly(i, Y)*(-1)**(((n - i) % 4)//2)
return (p[0]/p[1]).subs(list(zip(Y, CX)))
elif arg.is_Mul:
coeff, terms = arg.as_coeff_Mul(rational=True)
if coeff.is_Integer and coeff > 1:
I = S.ImaginaryUnit
z = Symbol('dummy', real=True)
P = ((z + I)**coeff).expand()
return (re(P)/im(P)).subs([(z, cot(terms))])
return cot(arg) # XXX sec and csc return 1/cos and 1/sin
def _eval_is_finite(self):
arg = self.args[0]
if arg.is_real and (arg/pi).is_integer is False:
return True
if arg.is_imaginary:
return True
def _eval_is_real(self):
arg = self.args[0]
if arg.is_real and (arg/pi).is_integer is False:
return True
def _eval_is_complex(self):
arg = self.args[0]
if arg.is_real and (arg/pi).is_integer is False:
return True
def _eval_is_zero(self):
rest, pimult = _peeloff_pi(self.args[0])
if pimult and rest.is_zero:
return (pimult - S.Half).is_integer
def _eval_subs(self, old, new):
arg = self.args[0]
argnew = arg.subs(old, new)
if arg != argnew and (argnew/pi).is_integer:
return S.ComplexInfinity
return cot(argnew)
class ReciprocalTrigonometricFunction(TrigonometricFunction):
"""Base class for reciprocal functions of trigonometric functions. """
_reciprocal_of = None # mandatory, to be defined in subclass
_singularities = (S.ComplexInfinity,)
# _is_even and _is_odd are used for correct evaluation of csc(-x), sec(-x)
# TODO refactor into TrigonometricFunction common parts of
# trigonometric functions eval() like even/odd, func(x+2*k*pi), etc.
# optional, to be defined in subclasses:
_is_even: FuzzyBool = None
_is_odd: FuzzyBool = None
@classmethod
def eval(cls, arg):
if arg.could_extract_minus_sign():
if cls._is_even:
return cls(-arg)
if cls._is_odd:
return -cls(-arg)
pi_coeff = _pi_coeff(arg)
if (pi_coeff is not None
and not (2*pi_coeff).is_integer
and pi_coeff.is_Rational):
q = pi_coeff.q
p = pi_coeff.p % (2*q)
if p > q:
narg = (pi_coeff - 1)*pi
return -cls(narg)
if 2*p > q:
narg = (1 - pi_coeff)*pi
if cls._is_odd:
return cls(narg)
elif cls._is_even:
return -cls(narg)
if hasattr(arg, 'inverse') and arg.inverse() == cls:
return arg.args[0]
t = cls._reciprocal_of.eval(arg)
if t is None:
return t
elif any(isinstance(i, cos) for i in (t, -t)):
return (1/t).rewrite(sec)
elif any(isinstance(i, sin) for i in (t, -t)):
return (1/t).rewrite(csc)
else:
return 1/t
def _call_reciprocal(self, method_name, *args, **kwargs):
# Calls method_name on _reciprocal_of
o = self._reciprocal_of(self.args[0])
return getattr(o, method_name)(*args, **kwargs)
def _calculate_reciprocal(self, method_name, *args, **kwargs):
# If calling method_name on _reciprocal_of returns a value != None
# then return the reciprocal of that value
t = self._call_reciprocal(method_name, *args, **kwargs)
return 1/t if t is not None else t
def _rewrite_reciprocal(self, method_name, arg):
# Special handling for rewrite functions. If reciprocal rewrite returns
# unmodified expression, then return None
t = self._call_reciprocal(method_name, arg)
if t is not None and t != self._reciprocal_of(arg):
return 1/t
def _period(self, symbol):
f = expand_mul(self.args[0])
return self._reciprocal_of(f).period(symbol)
def fdiff(self, argindex=1):
return -self._calculate_reciprocal("fdiff", argindex)/self**2
def _eval_rewrite_as_exp(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_exp", arg)
def _eval_rewrite_as_Pow(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_Pow", arg)
def _eval_rewrite_as_sin(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_sin", arg)
def _eval_rewrite_as_cos(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_cos", arg)
def _eval_rewrite_as_tan(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_tan", arg)
def _eval_rewrite_as_pow(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_pow", arg)
def _eval_rewrite_as_sqrt(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_sqrt", arg)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
return (1/self._reciprocal_of(self.args[0])).as_real_imag(deep,
**hints)
def _eval_expand_trig(self, **hints):
return self._calculate_reciprocal("_eval_expand_trig", **hints)
def _eval_is_extended_real(self):
return self._reciprocal_of(self.args[0])._eval_is_extended_real()
def _eval_as_leading_term(self, x, logx=None, cdir=0):
return (1/self._reciprocal_of(self.args[0]))._eval_as_leading_term(x)
def _eval_is_finite(self):
return (1/self._reciprocal_of(self.args[0])).is_finite
def _eval_nseries(self, x, n, logx, cdir=0):
return (1/self._reciprocal_of(self.args[0]))._eval_nseries(x, n, logx)
class sec(ReciprocalTrigonometricFunction):
"""
The secant function.
Returns the secant of x (measured in radians).
Explanation
===========
See :class:`sin` for notes about automatic evaluation.
Examples
========
>>> from sympy import sec
>>> from sympy.abc import x
>>> sec(x**2).diff(x)
2*x*tan(x**2)*sec(x**2)
>>> sec(1).diff(x)
0
See Also
========
sin, csc, cos, tan, cot
asin, acsc, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigonometric_functions
.. [2] http://dlmf.nist.gov/4.14
.. [3] http://functions.wolfram.com/ElementaryFunctions/Sec
"""
_reciprocal_of = cos
_is_even = True
def period(self, symbol=None):
return self._period(symbol)
def _eval_rewrite_as_cot(self, arg, **kwargs):
cot_half_sq = cot(arg/2)**2
return (cot_half_sq + 1)/(cot_half_sq - 1)
def _eval_rewrite_as_cos(self, arg, **kwargs):
return (1/cos(arg))
def _eval_rewrite_as_sincos(self, arg, **kwargs):
return sin(arg)/(cos(arg)*sin(arg))
def _eval_rewrite_as_sin(self, arg, **kwargs):
return (1/cos(arg).rewrite(sin))
def _eval_rewrite_as_tan(self, arg, **kwargs):
return (1/cos(arg).rewrite(tan))
def _eval_rewrite_as_csc(self, arg, **kwargs):
return csc(pi/2 - arg, evaluate=False)
def fdiff(self, argindex=1):
if argindex == 1:
return tan(self.args[0])*sec(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
def _eval_is_complex(self):
arg = self.args[0]
if arg.is_complex and (arg/pi - S.Half).is_integer is False:
return True
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
# Reference Formula:
# http://functions.wolfram.com/ElementaryFunctions/Sec/06/01/02/01/
if n < 0 or n % 2 == 1:
return S.Zero
else:
x = sympify(x)
k = n//2
return S.NegativeOne**k*euler(2*k)/factorial(2*k)*x**(2*k)
def _eval_as_leading_term(self, x, logx=None, cdir=0):
from sympy.calculus.accumulationbounds import AccumBounds
from sympy.functions.elementary.complexes import re
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
n = (x0 + pi/2)/pi
if n.is_integer:
lt = (arg - n*pi + pi/2).as_leading_term(x)
return (S.NegativeOne**n)/lt
if x0 is S.ComplexInfinity:
x0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+')
if x0 in (S.Infinity, S.NegativeInfinity):
return AccumBounds(S.NegativeInfinity, S.Infinity)
return self.func(x0) if x0.is_finite else self
class csc(ReciprocalTrigonometricFunction):
"""
The cosecant function.
Returns the cosecant of x (measured in radians).
Explanation
===========
See :func:`sin` for notes about automatic evaluation.
Examples
========
>>> from sympy import csc
>>> from sympy.abc import x
>>> csc(x**2).diff(x)
-2*x*cot(x**2)*csc(x**2)
>>> csc(1).diff(x)
0
See Also
========
sin, cos, sec, tan, cot
asin, acsc, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Trigonometric_functions
.. [2] http://dlmf.nist.gov/4.14
.. [3] http://functions.wolfram.com/ElementaryFunctions/Csc
"""
_reciprocal_of = sin
_is_odd = True
def period(self, symbol=None):
return self._period(symbol)
def _eval_rewrite_as_sin(self, arg, **kwargs):
return (1/sin(arg))
def _eval_rewrite_as_sincos(self, arg, **kwargs):
return cos(arg)/(sin(arg)*cos(arg))
def _eval_rewrite_as_cot(self, arg, **kwargs):
cot_half = cot(arg/2)
return (1 + cot_half**2)/(2*cot_half)
def _eval_rewrite_as_cos(self, arg, **kwargs):
return 1/sin(arg).rewrite(cos)
def _eval_rewrite_as_sec(self, arg, **kwargs):
return sec(pi/2 - arg, evaluate=False)
def _eval_rewrite_as_tan(self, arg, **kwargs):
return (1/sin(arg).rewrite(tan))
def fdiff(self, argindex=1):
if argindex == 1:
return -cot(self.args[0])*csc(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
def _eval_is_complex(self):
arg = self.args[0]
if arg.is_real and (arg/pi).is_integer is False:
return True
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n == 0:
return 1/sympify(x)
elif n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
k = n//2 + 1
return (S.NegativeOne**(k - 1)*2*(2**(2*k - 1) - 1)*
bernoulli(2*k)*x**(2*k - 1)/factorial(2*k))
def _eval_as_leading_term(self, x, logx=None, cdir=0):
from sympy.calculus.accumulationbounds import AccumBounds
from sympy.functions.elementary.complexes import re
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
n = x0/pi
if n.is_integer:
lt = (arg - n*pi).as_leading_term(x)
return (S.NegativeOne**n)/lt
if x0 is S.ComplexInfinity:
x0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+')
if x0 in (S.Infinity, S.NegativeInfinity):
return AccumBounds(S.NegativeInfinity, S.Infinity)
return self.func(x0) if x0.is_finite else self
class sinc(Function):
r"""
Represents an unnormalized sinc function:
.. math::
\operatorname{sinc}(x) =
\begin{cases}
\frac{\sin x}{x} & \qquad x \neq 0 \\
1 & \qquad x = 0
\end{cases}
Examples
========
>>> from sympy import sinc, oo, jn
>>> from sympy.abc import x
>>> sinc(x)
sinc(x)
* Automated Evaluation
>>> sinc(0)
1
>>> sinc(oo)
0
* Differentiation
>>> sinc(x).diff()
cos(x)/x - sin(x)/x**2
* Series Expansion
>>> sinc(x).series()
1 - x**2/6 + x**4/120 + O(x**6)
* As zero'th order spherical Bessel Function
>>> sinc(x).rewrite(jn)
jn(0, x)
See also
========
sin
References
==========
.. [1] https://en.wikipedia.org/wiki/Sinc_function
"""
_singularities = (S.ComplexInfinity,)
def fdiff(self, argindex=1):
x = self.args[0]
if argindex == 1:
# We would like to return the Piecewise here, but Piecewise.diff
# currently can't handle removable singularities, meaning things
# like sinc(x).diff(x, 2) give the wrong answer at x = 0. See
# https://github.com/sympy/sympy/issues/11402.
#
# return Piecewise(((x*cos(x) - sin(x))/x**2, Ne(x, S.Zero)), (S.Zero, S.true))
return cos(x)/x - sin(x)/x**2
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
if arg.is_zero:
return S.One
if arg.is_Number:
if arg in [S.Infinity, S.NegativeInfinity]:
return S.Zero
elif arg is S.NaN:
return S.NaN
if arg is S.ComplexInfinity:
return S.NaN
if arg.could_extract_minus_sign():
return cls(-arg)
pi_coeff = _pi_coeff(arg)
if pi_coeff is not None:
if pi_coeff.is_integer:
if fuzzy_not(arg.is_zero):
return S.Zero
elif (2*pi_coeff).is_integer:
return S.NegativeOne**(pi_coeff - S.Half)/arg
def _eval_nseries(self, x, n, logx, cdir=0):
x = self.args[0]
return (sin(x)/x)._eval_nseries(x, n, logx)
def _eval_rewrite_as_jn(self, arg, **kwargs):
from sympy.functions.special.bessel import jn
return jn(0, arg)
def _eval_rewrite_as_sin(self, arg, **kwargs):
return Piecewise((sin(arg)/arg, Ne(arg, S.Zero)), (S.One, S.true))
def _eval_is_zero(self):
if self.args[0].is_infinite:
return True
rest, pi_mult = _peeloff_pi(self.args[0])
if rest.is_zero:
return fuzzy_and([pi_mult.is_integer, pi_mult.is_nonzero])
if rest.is_Number and pi_mult.is_integer:
return False
def _eval_is_real(self):
if self.args[0].is_extended_real or self.args[0].is_imaginary:
return True
_eval_is_finite = _eval_is_real
###############################################################################
########################### TRIGONOMETRIC INVERSES ############################
###############################################################################
class InverseTrigonometricFunction(Function):
"""Base class for inverse trigonometric functions."""
_singularities = (S.One, S.NegativeOne, S.Zero, S.ComplexInfinity) # type: tTuple[Expr, ...]
@staticmethod
@cacheit
def _asin_table():
# Only keys with could_extract_minus_sign() == False
# are actually needed.
return {
sqrt(3)/2: pi/3,
sqrt(2)/2: pi/4,
1/sqrt(2): pi/4,
sqrt((5 - sqrt(5))/8): pi/5,
sqrt(2)*sqrt(5 - sqrt(5))/4: pi/5,
sqrt((5 + sqrt(5))/8): pi*Rational(2, 5),
sqrt(2)*sqrt(5 + sqrt(5))/4: pi*Rational(2, 5),
S.Half: pi/6,
sqrt(2 - sqrt(2))/2: pi/8,
sqrt(S.Half - sqrt(2)/4): pi/8,
sqrt(2 + sqrt(2))/2: pi*Rational(3, 8),
sqrt(S.Half + sqrt(2)/4): pi*Rational(3, 8),
(sqrt(5) - 1)/4: pi/10,
(1 - sqrt(5))/4: -pi/10,
(sqrt(5) + 1)/4: pi*Rational(3, 10),
sqrt(6)/4 - sqrt(2)/4: pi/12,
-sqrt(6)/4 + sqrt(2)/4: -pi/12,
(sqrt(3) - 1)/sqrt(8): pi/12,
(1 - sqrt(3))/sqrt(8): -pi/12,
sqrt(6)/4 + sqrt(2)/4: pi*Rational(5, 12),
(1 + sqrt(3))/sqrt(8): pi*Rational(5, 12)
}
@staticmethod
@cacheit
def _atan_table():
# Only keys with could_extract_minus_sign() == False
# are actually needed.
return {
sqrt(3)/3: pi/6,
1/sqrt(3): pi/6,
sqrt(3): pi/3,
sqrt(2) - 1: pi/8,
1 - sqrt(2): -pi/8,
1 + sqrt(2): pi*Rational(3, 8),
sqrt(5 - 2*sqrt(5)): pi/5,
sqrt(5 + 2*sqrt(5)): pi*Rational(2, 5),
sqrt(1 - 2*sqrt(5)/5): pi/10,
sqrt(1 + 2*sqrt(5)/5): pi*Rational(3, 10),
2 - sqrt(3): pi/12,
-2 + sqrt(3): -pi/12,
2 + sqrt(3): pi*Rational(5, 12)
}
@staticmethod
@cacheit
def _acsc_table():
# Keys for which could_extract_minus_sign()
# will obviously return True are omitted.
return {
2*sqrt(3)/3: pi/3,
sqrt(2): pi/4,
sqrt(2 + 2*sqrt(5)/5): pi/5,
1/sqrt(Rational(5, 8) - sqrt(5)/8): pi/5,
sqrt(2 - 2*sqrt(5)/5): pi*Rational(2, 5),
1/sqrt(Rational(5, 8) + sqrt(5)/8): pi*Rational(2, 5),
2: pi/6,
sqrt(4 + 2*sqrt(2)): pi/8,
2/sqrt(2 - sqrt(2)): pi/8,
sqrt(4 - 2*sqrt(2)): pi*Rational(3, 8),
2/sqrt(2 + sqrt(2)): pi*Rational(3, 8),
1 + sqrt(5): pi/10,
sqrt(5) - 1: pi*Rational(3, 10),
-(sqrt(5) - 1): pi*Rational(-3, 10),
sqrt(6) + sqrt(2): pi/12,
sqrt(6) - sqrt(2): pi*Rational(5, 12),
-(sqrt(6) - sqrt(2)): pi*Rational(-5, 12)
}
class asin(InverseTrigonometricFunction):
r"""
The inverse sine function.
Returns the arcsine of x in radians.
Explanation
===========
``asin(x)`` will evaluate automatically in the cases
$x \in \{\infty, -\infty, 0, 1, -1\}$ and for some instances when the
result is a rational multiple of $\pi$ (see the ``eval`` class method).
A purely imaginary argument will lead to an asinh expression.
Examples
========
>>> from sympy import asin, oo
>>> asin(1)
pi/2
>>> asin(-1)
-pi/2
>>> asin(-oo)
oo*I
>>> asin(oo)
-oo*I
See Also
========
sin, csc, cos, sec, tan, cot
acsc, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
.. [2] http://dlmf.nist.gov/4.23
.. [3] http://functions.wolfram.com/ElementaryFunctions/ArcSin
"""
def fdiff(self, argindex=1):
if argindex == 1:
return 1/sqrt(1 - self.args[0]**2)
else:
raise ArgumentIndexError(self, argindex)
def _eval_is_rational(self):
s = self.func(*self.args)
if s.func == self.func:
if s.args[0].is_rational:
return False
else:
return s.is_rational
def _eval_is_positive(self):
return self._eval_is_extended_real() and self.args[0].is_positive
def _eval_is_negative(self):
return self._eval_is_extended_real() and self.args[0].is_negative
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.NegativeInfinity*S.ImaginaryUnit
elif arg is S.NegativeInfinity:
return S.Infinity*S.ImaginaryUnit
elif arg.is_zero:
return S.Zero
elif arg is S.One:
return pi/2
elif arg is S.NegativeOne:
return -pi/2
if arg is S.ComplexInfinity:
return S.ComplexInfinity
if arg.could_extract_minus_sign():
return -cls(-arg)
if arg.is_number:
asin_table = cls._asin_table()
if arg in asin_table:
return asin_table[arg]
i_coeff = _imaginary_unit_as_coefficient(arg)
if i_coeff is not None:
from sympy.functions.elementary.hyperbolic import asinh
return S.ImaginaryUnit*asinh(i_coeff)
if arg.is_zero:
return S.Zero
if isinstance(arg, sin):
ang = arg.args[0]
if ang.is_comparable:
ang %= 2*pi # restrict to [0,2*pi)
if ang > pi: # restrict to (-pi,pi]
ang = pi - ang
# restrict to [-pi/2,pi/2]
if ang > pi/2:
ang = pi - ang
if ang < -pi/2:
ang = -pi - ang
return ang
if isinstance(arg, cos): # acos(x) + asin(x) = pi/2
ang = arg.args[0]
if ang.is_comparable:
return pi/2 - acos(arg)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) >= 2 and n > 2:
p = previous_terms[-2]
return p*(n - 2)**2/(n*(n - 1))*x**2
else:
k = (n - 1) // 2
R = RisingFactorial(S.Half, k)
F = factorial(k)
return R/F*x**n/n
def _eval_as_leading_term(self, x, logx=None, cdir=0): # asin
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
if x0.is_zero:
return arg.as_leading_term(x)
# Handling branch points
if x0 in (-S.One, S.One, S.ComplexInfinity):
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand()
# Handling points lying on branch cuts (-oo, -1) U (1, oo)
if (1 - x0**2).is_negative:
ndir = arg.dir(x, cdir if cdir else 1)
if im(ndir).is_negative:
if x0.is_negative:
return -pi - self.func(x0)
elif im(ndir).is_positive:
if x0.is_positive:
return pi - self.func(x0)
else:
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand()
return self.func(x0)
def _eval_nseries(self, x, n, logx, cdir=0): # asin
from sympy.series.order import O
arg0 = self.args[0].subs(x, 0)
# Handling branch points
if arg0 is S.One:
t = Dummy('t', positive=True)
ser = asin(S.One - t**2).rewrite(log).nseries(t, 0, 2*n)
arg1 = S.One - self.args[0]
f = arg1.as_leading_term(x)
g = (arg1 - f)/ f
if not g.is_meromorphic(x, 0): # cannot be expanded
return O(1) if n == 0 else pi/2 + O(sqrt(x))
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
res = (res1.removeO()*sqrt(f)).expand()
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
if arg0 is S.NegativeOne:
t = Dummy('t', positive=True)
ser = asin(S.NegativeOne + t**2).rewrite(log).nseries(t, 0, 2*n)
arg1 = S.One + self.args[0]
f = arg1.as_leading_term(x)
g = (arg1 - f)/ f
if not g.is_meromorphic(x, 0): # cannot be expanded
return O(1) if n == 0 else -pi/2 + O(sqrt(x))
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
res = (res1.removeO()*sqrt(f)).expand()
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
res = Function._eval_nseries(self, x, n=n, logx=logx)
if arg0 is S.ComplexInfinity:
return res
# Handling points lying on branch cuts (-oo, -1) U (1, oo)
if (1 - arg0**2).is_negative:
ndir = self.args[0].dir(x, cdir if cdir else 1)
if im(ndir).is_negative:
if arg0.is_negative:
return -pi - res
elif im(ndir).is_positive:
if arg0.is_positive:
return pi - res
else:
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
return res
def _eval_rewrite_as_acos(self, x, **kwargs):
return pi/2 - acos(x)
def _eval_rewrite_as_atan(self, x, **kwargs):
return 2*atan(x/(1 + sqrt(1 - x**2)))
def _eval_rewrite_as_log(self, x, **kwargs):
return -S.ImaginaryUnit*log(S.ImaginaryUnit*x + sqrt(1 - x**2))
_eval_rewrite_as_tractable = _eval_rewrite_as_log
def _eval_rewrite_as_acot(self, arg, **kwargs):
return 2*acot((1 + sqrt(1 - arg**2))/arg)
def _eval_rewrite_as_asec(self, arg, **kwargs):
return pi/2 - asec(1/arg)
def _eval_rewrite_as_acsc(self, arg, **kwargs):
return acsc(1/arg)
def _eval_is_extended_real(self):
x = self.args[0]
return x.is_extended_real and (1 - abs(x)).is_nonnegative
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return sin
class acos(InverseTrigonometricFunction):
r"""
The inverse cosine function.
Returns the arc cosine of x (measured in radians).
Examples
========
``acos(x)`` will evaluate automatically in the cases
$x \in \{\infty, -\infty, 0, 1, -1\}$ and for some instances when
the result is a rational multiple of $\pi$ (see the eval class method).
``acos(zoo)`` evaluates to ``zoo``
(see note in :class:`sympy.functions.elementary.trigonometric.asec`)
A purely imaginary argument will be rewritten to asinh.
Examples
========
>>> from sympy import acos, oo
>>> acos(1)
0
>>> acos(0)
pi/2
>>> acos(oo)
oo*I
See Also
========
sin, csc, cos, sec, tan, cot
asin, acsc, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
.. [2] http://dlmf.nist.gov/4.23
.. [3] http://functions.wolfram.com/ElementaryFunctions/ArcCos
"""
def fdiff(self, argindex=1):
if argindex == 1:
return -1/sqrt(1 - self.args[0]**2)
else:
raise ArgumentIndexError(self, argindex)
def _eval_is_rational(self):
s = self.func(*self.args)
if s.func == self.func:
if s.args[0].is_rational:
return False
else:
return s.is_rational
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Infinity*S.ImaginaryUnit
elif arg is S.NegativeInfinity:
return S.NegativeInfinity*S.ImaginaryUnit
elif arg.is_zero:
return pi/2
elif arg is S.One:
return S.Zero
elif arg is S.NegativeOne:
return pi
if arg is S.ComplexInfinity:
return S.ComplexInfinity
if arg.is_number:
asin_table = cls._asin_table()
if arg in asin_table:
return pi/2 - asin_table[arg]
elif -arg in asin_table:
return pi/2 + asin_table[-arg]
i_coeff = _imaginary_unit_as_coefficient(arg)
if i_coeff is not None:
return pi/2 - asin(arg)
if isinstance(arg, cos):
ang = arg.args[0]
if ang.is_comparable:
ang %= 2*pi # restrict to [0,2*pi)
if ang > pi: # restrict to [0,pi]
ang = 2*pi - ang
return ang
if isinstance(arg, sin): # acos(x) + asin(x) = pi/2
ang = arg.args[0]
if ang.is_comparable:
return pi/2 - asin(arg)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n == 0:
return pi/2
elif n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) >= 2 and n > 2:
p = previous_terms[-2]
return p*(n - 2)**2/(n*(n - 1))*x**2
else:
k = (n - 1) // 2
R = RisingFactorial(S.Half, k)
F = factorial(k)
return -R/F*x**n/n
def _eval_as_leading_term(self, x, logx=None, cdir=0): # acos
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
# Handling branch points
if x0 == 1:
return sqrt(2)*sqrt((S.One - arg).as_leading_term(x))
if x0 in (-S.One, S.ComplexInfinity):
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
# Handling points lying on branch cuts (-oo, -1) U (1, oo)
if (1 - x0**2).is_negative:
ndir = arg.dir(x, cdir if cdir else 1)
if im(ndir).is_negative:
if x0.is_negative:
return 2*pi - self.func(x0)
elif im(ndir).is_positive:
if x0.is_positive:
return -self.func(x0)
else:
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand()
return self.func(x0)
def _eval_is_extended_real(self):
x = self.args[0]
return x.is_extended_real and (1 - abs(x)).is_nonnegative
def _eval_is_nonnegative(self):
return self._eval_is_extended_real()
def _eval_nseries(self, x, n, logx, cdir=0): # acos
from sympy.series.order import O
arg0 = self.args[0].subs(x, 0)
# Handling branch points
if arg0 is S.One:
t = Dummy('t', positive=True)
ser = acos(S.One - t**2).rewrite(log).nseries(t, 0, 2*n)
arg1 = S.One - self.args[0]
f = arg1.as_leading_term(x)
g = (arg1 - f)/ f
if not g.is_meromorphic(x, 0): # cannot be expanded
return O(1) if n == 0 else O(sqrt(x))
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
res = (res1.removeO()*sqrt(f)).expand()
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
if arg0 is S.NegativeOne:
t = Dummy('t', positive=True)
ser = acos(S.NegativeOne + t**2).rewrite(log).nseries(t, 0, 2*n)
arg1 = S.One + self.args[0]
f = arg1.as_leading_term(x)
g = (arg1 - f)/ f
if not g.is_meromorphic(x, 0): # cannot be expanded
return O(1) if n == 0 else pi + O(sqrt(x))
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
res = (res1.removeO()*sqrt(f)).expand()
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
res = Function._eval_nseries(self, x, n=n, logx=logx)
if arg0 is S.ComplexInfinity:
return res
# Handling points lying on branch cuts (-oo, -1) U (1, oo)
if (1 - arg0**2).is_negative:
ndir = self.args[0].dir(x, cdir if cdir else 1)
if im(ndir).is_negative:
if arg0.is_negative:
return 2*pi - res
elif im(ndir).is_positive:
if arg0.is_positive:
return -res
else:
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
return res
def _eval_rewrite_as_log(self, x, **kwargs):
return pi/2 + S.ImaginaryUnit*\
log(S.ImaginaryUnit*x + sqrt(1 - x**2))
_eval_rewrite_as_tractable = _eval_rewrite_as_log
def _eval_rewrite_as_asin(self, x, **kwargs):
return pi/2 - asin(x)
def _eval_rewrite_as_atan(self, x, **kwargs):
return atan(sqrt(1 - x**2)/x) + (pi/2)*(1 - x*sqrt(1/x**2))
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return cos
def _eval_rewrite_as_acot(self, arg, **kwargs):
return pi/2 - 2*acot((1 + sqrt(1 - arg**2))/arg)
def _eval_rewrite_as_asec(self, arg, **kwargs):
return asec(1/arg)
def _eval_rewrite_as_acsc(self, arg, **kwargs):
return pi/2 - acsc(1/arg)
def _eval_conjugate(self):
z = self.args[0]
r = self.func(self.args[0].conjugate())
if z.is_extended_real is False:
return r
elif z.is_extended_real and (z + 1).is_nonnegative and (z - 1).is_nonpositive:
return r
class atan(InverseTrigonometricFunction):
r"""
The inverse tangent function.
Returns the arc tangent of x (measured in radians).
Explanation
===========
``atan(x)`` will evaluate automatically in the cases
$x \in \{\infty, -\infty, 0, 1, -1\}$ and for some instances when the
result is a rational multiple of $\pi$ (see the eval class method).
Examples
========
>>> from sympy import atan, oo
>>> atan(0)
0
>>> atan(1)
pi/4
>>> atan(oo)
pi/2
See Also
========
sin, csc, cos, sec, tan, cot
asin, acsc, acos, asec, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
.. [2] http://dlmf.nist.gov/4.23
.. [3] http://functions.wolfram.com/ElementaryFunctions/ArcTan
"""
args: tTuple[Expr]
_singularities = (S.ImaginaryUnit, -S.ImaginaryUnit)
def fdiff(self, argindex=1):
if argindex == 1:
return 1/(1 + self.args[0]**2)
else:
raise ArgumentIndexError(self, argindex)
def _eval_is_rational(self):
s = self.func(*self.args)
if s.func == self.func:
if s.args[0].is_rational:
return False
else:
return s.is_rational
def _eval_is_positive(self):
return self.args[0].is_extended_positive
def _eval_is_nonnegative(self):
return self.args[0].is_extended_nonnegative
def _eval_is_zero(self):
return self.args[0].is_zero
def _eval_is_real(self):
return self.args[0].is_extended_real
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return pi/2
elif arg is S.NegativeInfinity:
return -pi/2
elif arg.is_zero:
return S.Zero
elif arg is S.One:
return pi/4
elif arg is S.NegativeOne:
return -pi/4
if arg is S.ComplexInfinity:
from sympy.calculus.accumulationbounds import AccumBounds
return AccumBounds(-pi/2, pi/2)
if arg.could_extract_minus_sign():
return -cls(-arg)
if arg.is_number:
atan_table = cls._atan_table()
if arg in atan_table:
return atan_table[arg]
i_coeff = _imaginary_unit_as_coefficient(arg)
if i_coeff is not None:
from sympy.functions.elementary.hyperbolic import atanh
return S.ImaginaryUnit*atanh(i_coeff)
if arg.is_zero:
return S.Zero
if isinstance(arg, tan):
ang = arg.args[0]
if ang.is_comparable:
ang %= pi # restrict to [0,pi)
if ang > pi/2: # restrict to [-pi/2,pi/2]
ang -= pi
return ang
if isinstance(arg, cot): # atan(x) + acot(x) = pi/2
ang = arg.args[0]
if ang.is_comparable:
ang = pi/2 - acot(arg)
if ang > pi/2: # restrict to [-pi/2,pi/2]
ang -= pi
return ang
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
return S.NegativeOne**((n - 1)//2)*x**n/n
def _eval_as_leading_term(self, x, logx=None, cdir=0): # atan
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
if x0.is_zero:
return arg.as_leading_term(x)
# Handling branch points
if x0 in (-S.ImaginaryUnit, S.ImaginaryUnit, S.ComplexInfinity):
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand()
# Handling points lying on branch cuts (-I*oo, -I) U (I, I*oo)
if (1 + x0**2).is_negative:
ndir = arg.dir(x, cdir if cdir else 1)
if re(ndir).is_negative:
if im(x0).is_positive:
return self.func(x0) - pi
elif re(ndir).is_positive:
if im(x0).is_negative:
return self.func(x0) + pi
else:
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand()
return self.func(x0)
def _eval_nseries(self, x, n, logx, cdir=0): # atan
arg0 = self.args[0].subs(x, 0)
# Handling branch points
if arg0 in (S.ImaginaryUnit, S.NegativeOne*S.ImaginaryUnit):
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
res = Function._eval_nseries(self, x, n=n, logx=logx)
ndir = self.args[0].dir(x, cdir if cdir else 1)
if arg0 is S.ComplexInfinity:
if re(ndir) > 0:
return res - pi
return res
# Handling points lying on branch cuts (-I*oo, -I) U (I, I*oo)
if (1 + arg0**2).is_negative:
if re(ndir).is_negative:
if im(arg0).is_positive:
return res - pi
elif re(ndir).is_positive:
if im(arg0).is_negative:
return res + pi
else:
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
return res
def _eval_rewrite_as_log(self, x, **kwargs):
return S.ImaginaryUnit/2*(log(S.One - S.ImaginaryUnit*x)
- log(S.One + S.ImaginaryUnit*x))
_eval_rewrite_as_tractable = _eval_rewrite_as_log
def _eval_aseries(self, n, args0, x, logx):
if args0[0] is S.Infinity:
return (pi/2 - atan(1/self.args[0]))._eval_nseries(x, n, logx)
elif args0[0] is S.NegativeInfinity:
return (-pi/2 - atan(1/self.args[0]))._eval_nseries(x, n, logx)
else:
return super()._eval_aseries(n, args0, x, logx)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return tan
def _eval_rewrite_as_asin(self, arg, **kwargs):
return sqrt(arg**2)/arg*(pi/2 - asin(1/sqrt(1 + arg**2)))
def _eval_rewrite_as_acos(self, arg, **kwargs):
return sqrt(arg**2)/arg*acos(1/sqrt(1 + arg**2))
def _eval_rewrite_as_acot(self, arg, **kwargs):
return acot(1/arg)
def _eval_rewrite_as_asec(self, arg, **kwargs):
return sqrt(arg**2)/arg*asec(sqrt(1 + arg**2))
def _eval_rewrite_as_acsc(self, arg, **kwargs):
return sqrt(arg**2)/arg*(pi/2 - acsc(sqrt(1 + arg**2)))
class acot(InverseTrigonometricFunction):
r"""
The inverse cotangent function.
Returns the arc cotangent of x (measured in radians).
Explanation
===========
``acot(x)`` will evaluate automatically in the cases
$x \in \{\infty, -\infty, \tilde{\infty}, 0, 1, -1\}$
and for some instances when the result is a rational multiple of $\pi$
(see the eval class method).
A purely imaginary argument will lead to an ``acoth`` expression.
``acot(x)`` has a branch cut along $(-i, i)$, hence it is discontinuous
at 0. Its range for real $x$ is $(-\frac{\pi}{2}, \frac{\pi}{2}]$.
Examples
========
>>> from sympy import acot, sqrt
>>> acot(0)
pi/2
>>> acot(1)
pi/4
>>> acot(sqrt(3) - 2)
-5*pi/12
See Also
========
sin, csc, cos, sec, tan, cot
asin, acsc, acos, asec, atan, atan2
References
==========
.. [1] http://dlmf.nist.gov/4.23
.. [2] http://functions.wolfram.com/ElementaryFunctions/ArcCot
"""
_singularities = (S.ImaginaryUnit, -S.ImaginaryUnit)
def fdiff(self, argindex=1):
if argindex == 1:
return -1/(1 + self.args[0]**2)
else:
raise ArgumentIndexError(self, argindex)
def _eval_is_rational(self):
s = self.func(*self.args)
if s.func == self.func:
if s.args[0].is_rational:
return False
else:
return s.is_rational
def _eval_is_positive(self):
return self.args[0].is_nonnegative
def _eval_is_negative(self):
return self.args[0].is_negative
def _eval_is_extended_real(self):
return self.args[0].is_extended_real
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Zero
elif arg is S.NegativeInfinity:
return S.Zero
elif arg.is_zero:
return pi/ 2
elif arg is S.One:
return pi/4
elif arg is S.NegativeOne:
return -pi/4
if arg is S.ComplexInfinity:
return S.Zero
if arg.could_extract_minus_sign():
return -cls(-arg)
if arg.is_number:
atan_table = cls._atan_table()
if arg in atan_table:
ang = pi/2 - atan_table[arg]
if ang > pi/2: # restrict to (-pi/2,pi/2]
ang -= pi
return ang
i_coeff = _imaginary_unit_as_coefficient(arg)
if i_coeff is not None:
from sympy.functions.elementary.hyperbolic import acoth
return -S.ImaginaryUnit*acoth(i_coeff)
if arg.is_zero:
return pi*S.Half
if isinstance(arg, cot):
ang = arg.args[0]
if ang.is_comparable:
ang %= pi # restrict to [0,pi)
if ang > pi/2: # restrict to (-pi/2,pi/2]
ang -= pi;
return ang
if isinstance(arg, tan): # atan(x) + acot(x) = pi/2
ang = arg.args[0]
if ang.is_comparable:
ang = pi/2 - atan(arg)
if ang > pi/2: # restrict to (-pi/2,pi/2]
ang -= pi
return ang
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n == 0:
return pi/2 # FIX THIS
elif n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
return S.NegativeOne**((n + 1)//2)*x**n/n
def _eval_as_leading_term(self, x, logx=None, cdir=0): # acot
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
if x0 is S.ComplexInfinity:
return (1/arg).as_leading_term(x)
# Handling branch points
if x0 in (-S.ImaginaryUnit, S.ImaginaryUnit, S.Zero):
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand()
# Handling points lying on branch cuts [-I, I]
if x0.is_imaginary and (1 + x0**2).is_positive:
ndir = arg.dir(x, cdir if cdir else 1)
if re(ndir).is_positive:
if im(x0).is_positive:
return self.func(x0) + pi
elif re(ndir).is_negative:
if im(x0).is_negative:
return self.func(x0) - pi
else:
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand()
return self.func(x0)
def _eval_nseries(self, x, n, logx, cdir=0): # acot
arg0 = self.args[0].subs(x, 0)
# Handling branch points
if arg0 in (S.ImaginaryUnit, S.NegativeOne*S.ImaginaryUnit):
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
res = Function._eval_nseries(self, x, n=n, logx=logx)
if arg0 is S.ComplexInfinity:
return res
ndir = self.args[0].dir(x, cdir if cdir else 1)
if arg0.is_zero:
if re(ndir) < 0:
return res - pi
return res
# Handling points lying on branch cuts [-I, I]
if arg0.is_imaginary and (1 + arg0**2).is_positive:
if re(ndir).is_positive:
if im(arg0).is_positive:
return res + pi
elif re(ndir).is_negative:
if im(arg0).is_negative:
return res - pi
else:
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
return res
def _eval_aseries(self, n, args0, x, logx):
if args0[0] is S.Infinity:
return (pi/2 - acot(1/self.args[0]))._eval_nseries(x, n, logx)
elif args0[0] is S.NegativeInfinity:
return (pi*Rational(3, 2) - acot(1/self.args[0]))._eval_nseries(x, n, logx)
else:
return super(atan, self)._eval_aseries(n, args0, x, logx)
def _eval_rewrite_as_log(self, x, **kwargs):
return S.ImaginaryUnit/2*(log(1 - S.ImaginaryUnit/x)
- log(1 + S.ImaginaryUnit/x))
_eval_rewrite_as_tractable = _eval_rewrite_as_log
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return cot
def _eval_rewrite_as_asin(self, arg, **kwargs):
return (arg*sqrt(1/arg**2)*
(pi/2 - asin(sqrt(-arg**2)/sqrt(-arg**2 - 1))))
def _eval_rewrite_as_acos(self, arg, **kwargs):
return arg*sqrt(1/arg**2)*acos(sqrt(-arg**2)/sqrt(-arg**2 - 1))
def _eval_rewrite_as_atan(self, arg, **kwargs):
return atan(1/arg)
def _eval_rewrite_as_asec(self, arg, **kwargs):
return arg*sqrt(1/arg**2)*asec(sqrt((1 + arg**2)/arg**2))
def _eval_rewrite_as_acsc(self, arg, **kwargs):
return arg*sqrt(1/arg**2)*(pi/2 - acsc(sqrt((1 + arg**2)/arg**2)))
class asec(InverseTrigonometricFunction):
r"""
The inverse secant function.
Returns the arc secant of x (measured in radians).
Explanation
===========
``asec(x)`` will evaluate automatically in the cases
$x \in \{\infty, -\infty, 0, 1, -1\}$ and for some instances when the
result is a rational multiple of $\pi$ (see the eval class method).
``asec(x)`` has branch cut in the interval $[-1, 1]$. For complex arguments,
it can be defined [4]_ as
.. math::
\operatorname{sec^{-1}}(z) = -i\frac{\log\left(\sqrt{1 - z^2} + 1\right)}{z}
At ``x = 0``, for positive branch cut, the limit evaluates to ``zoo``. For
negative branch cut, the limit
.. math::
\lim_{z \to 0}-i\frac{\log\left(-\sqrt{1 - z^2} + 1\right)}{z}
simplifies to :math:`-i\log\left(z/2 + O\left(z^3\right)\right)` which
ultimately evaluates to ``zoo``.
As ``acos(x) = asec(1/x)``, a similar argument can be given for
``acos(x)``.
Examples
========
>>> from sympy import asec, oo
>>> asec(1)
0
>>> asec(-1)
pi
>>> asec(0)
zoo
>>> asec(-oo)
pi/2
See Also
========
sin, csc, cos, sec, tan, cot
asin, acsc, acos, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
.. [2] http://dlmf.nist.gov/4.23
.. [3] http://functions.wolfram.com/ElementaryFunctions/ArcSec
.. [4] http://reference.wolfram.com/language/ref/ArcSec.html
"""
@classmethod
def eval(cls, arg):
if arg.is_zero:
return S.ComplexInfinity
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.One:
return S.Zero
elif arg is S.NegativeOne:
return pi
if arg in [S.Infinity, S.NegativeInfinity, S.ComplexInfinity]:
return pi/2
if arg.is_number:
acsc_table = cls._acsc_table()
if arg in acsc_table:
return pi/2 - acsc_table[arg]
elif -arg in acsc_table:
return pi/2 + acsc_table[-arg]
if arg.is_infinite:
return pi/2
if isinstance(arg, sec):
ang = arg.args[0]
if ang.is_comparable:
ang %= 2*pi # restrict to [0,2*pi)
if ang > pi: # restrict to [0,pi]
ang = 2*pi - ang
return ang
if isinstance(arg, csc): # asec(x) + acsc(x) = pi/2
ang = arg.args[0]
if ang.is_comparable:
return pi/2 - acsc(arg)
def fdiff(self, argindex=1):
if argindex == 1:
return 1/(self.args[0]**2*sqrt(1 - 1/self.args[0]**2))
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return sec
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n == 0:
return S.ImaginaryUnit*log(2 / x)
elif n < 0 or n % 2 == 1:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) > 2 and n > 2:
p = previous_terms[-2]
return p * ((n - 1)*(n-2)) * x**2/(4 * (n//2)**2)
else:
k = n // 2
R = RisingFactorial(S.Half, k) * n
F = factorial(k) * n // 2 * n // 2
return -S.ImaginaryUnit * R / F * x**n / 4
def _eval_as_leading_term(self, x, logx=None, cdir=0): # asec
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
# Handling branch points
if x0 == 1:
return sqrt(2)*sqrt((arg - S.One).as_leading_term(x))
if x0 in (-S.One, S.Zero):
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
# Handling points lying on branch cuts (-1, 1)
if x0.is_real and (1 - x0**2).is_positive:
ndir = arg.dir(x, cdir if cdir else 1)
if im(ndir).is_negative:
if x0.is_positive:
return -self.func(x0)
elif im(ndir).is_positive:
if x0.is_negative:
return 2*pi - self.func(x0)
else:
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand()
return self.func(x0)
def _eval_nseries(self, x, n, logx, cdir=0): # asec
from sympy.series.order import O
arg0 = self.args[0].subs(x, 0)
# Handling branch points
if arg0 is S.One:
t = Dummy('t', positive=True)
ser = asec(S.One + t**2).rewrite(log).nseries(t, 0, 2*n)
arg1 = S.NegativeOne + self.args[0]
f = arg1.as_leading_term(x)
g = (arg1 - f)/ f
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
res = (res1.removeO()*sqrt(f)).expand()
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
if arg0 is S.NegativeOne:
t = Dummy('t', positive=True)
ser = asec(S.NegativeOne - t**2).rewrite(log).nseries(t, 0, 2*n)
arg1 = S.NegativeOne - self.args[0]
f = arg1.as_leading_term(x)
g = (arg1 - f)/ f
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
res = (res1.removeO()*sqrt(f)).expand()
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
res = Function._eval_nseries(self, x, n=n, logx=logx)
if arg0 is S.ComplexInfinity:
return res
# Handling points lying on branch cuts (-1, 1)
if arg0.is_real and (1 - arg0**2).is_positive:
ndir = self.args[0].dir(x, cdir if cdir else 1)
if im(ndir).is_negative:
if arg0.is_positive:
return -res
elif im(ndir).is_positive:
if arg0.is_negative:
return 2*pi - res
else:
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
return res
def _eval_is_extended_real(self):
x = self.args[0]
if x.is_extended_real is False:
return False
return fuzzy_or(((x - 1).is_nonnegative, (-x - 1).is_nonnegative))
def _eval_rewrite_as_log(self, arg, **kwargs):
return pi/2 + S.ImaginaryUnit*log(S.ImaginaryUnit/arg + sqrt(1 - 1/arg**2))
_eval_rewrite_as_tractable = _eval_rewrite_as_log
def _eval_rewrite_as_asin(self, arg, **kwargs):
return pi/2 - asin(1/arg)
def _eval_rewrite_as_acos(self, arg, **kwargs):
return acos(1/arg)
def _eval_rewrite_as_atan(self, x, **kwargs):
sx2x = sqrt(x**2)/x
return pi/2*(1 - sx2x) + sx2x*atan(sqrt(x**2 - 1))
def _eval_rewrite_as_acot(self, x, **kwargs):
sx2x = sqrt(x**2)/x
return pi/2*(1 - sx2x) + sx2x*acot(1/sqrt(x**2 - 1))
def _eval_rewrite_as_acsc(self, arg, **kwargs):
return pi/2 - acsc(arg)
class acsc(InverseTrigonometricFunction):
r"""
The inverse cosecant function.
Returns the arc cosecant of x (measured in radians).
Explanation
===========
``acsc(x)`` will evaluate automatically in the cases
$x \in \{\infty, -\infty, 0, 1, -1\}$` and for some instances when the
result is a rational multiple of $\pi$ (see the ``eval`` class method).
Examples
========
>>> from sympy import acsc, oo
>>> acsc(1)
pi/2
>>> acsc(-1)
-pi/2
>>> acsc(oo)
0
>>> acsc(-oo) == acsc(oo)
True
>>> acsc(0)
zoo
See Also
========
sin, csc, cos, sec, tan, cot
asin, acos, asec, atan, acot, atan2
References
==========
.. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
.. [2] http://dlmf.nist.gov/4.23
.. [3] http://functions.wolfram.com/ElementaryFunctions/ArcCsc
"""
@classmethod
def eval(cls, arg):
if arg.is_zero:
return S.ComplexInfinity
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.One:
return pi/2
elif arg is S.NegativeOne:
return -pi/2
if arg in [S.Infinity, S.NegativeInfinity, S.ComplexInfinity]:
return S.Zero
if arg.could_extract_minus_sign():
return -cls(-arg)
if arg.is_infinite:
return S.Zero
if arg.is_number:
acsc_table = cls._acsc_table()
if arg in acsc_table:
return acsc_table[arg]
if isinstance(arg, csc):
ang = arg.args[0]
if ang.is_comparable:
ang %= 2*pi # restrict to [0,2*pi)
if ang > pi: # restrict to (-pi,pi]
ang = pi - ang
# restrict to [-pi/2,pi/2]
if ang > pi/2:
ang = pi - ang
if ang < -pi/2:
ang = -pi - ang
return ang
if isinstance(arg, sec): # asec(x) + acsc(x) = pi/2
ang = arg.args[0]
if ang.is_comparable:
return pi/2 - asec(arg)
def fdiff(self, argindex=1):
if argindex == 1:
return -1/(self.args[0]**2*sqrt(1 - 1/self.args[0]**2))
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return csc
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n == 0:
return pi/2 - S.ImaginaryUnit*log(2) + S.ImaginaryUnit*log(x)
elif n < 0 or n % 2 == 1:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) > 2 and n > 2:
p = previous_terms[-2]
return p * ((n - 1)*(n-2)) * x**2/(4 * (n//2)**2)
else:
k = n // 2
R = RisingFactorial(S.Half, k) * n
F = factorial(k) * n // 2 * n // 2
return S.ImaginaryUnit * R / F * x**n / 4
def _eval_as_leading_term(self, x, logx=None, cdir=0): # acsc
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
# Handling branch points
if x0 in (-S.One, S.One, S.Zero):
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand()
if x0 is S.ComplexInfinity:
return (1/arg).as_leading_term(x)
# Handling points lying on branch cuts (-1, 1)
if x0.is_real and (1 - x0**2).is_positive:
ndir = arg.dir(x, cdir if cdir else 1)
if im(ndir).is_negative:
if x0.is_positive:
return pi - self.func(x0)
elif im(ndir).is_positive:
if x0.is_negative:
return -pi - self.func(x0)
else:
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir).expand()
return self.func(x0)
def _eval_nseries(self, x, n, logx, cdir=0): # acsc
from sympy.series.order import O
arg0 = self.args[0].subs(x, 0)
# Handling branch points
if arg0 is S.One:
t = Dummy('t', positive=True)
ser = acsc(S.One + t**2).rewrite(log).nseries(t, 0, 2*n)
arg1 = S.NegativeOne + self.args[0]
f = arg1.as_leading_term(x)
g = (arg1 - f)/ f
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
res = (res1.removeO()*sqrt(f)).expand()
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
if arg0 is S.NegativeOne:
t = Dummy('t', positive=True)
ser = acsc(S.NegativeOne - t**2).rewrite(log).nseries(t, 0, 2*n)
arg1 = S.NegativeOne - self.args[0]
f = arg1.as_leading_term(x)
g = (arg1 - f)/ f
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
res = (res1.removeO()*sqrt(f)).expand()
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
res = Function._eval_nseries(self, x, n=n, logx=logx)
if arg0 is S.ComplexInfinity:
return res
# Handling points lying on branch cuts (-1, 1)
if arg0.is_real and (1 - arg0**2).is_positive:
ndir = self.args[0].dir(x, cdir if cdir else 1)
if im(ndir).is_negative:
if arg0.is_positive:
return pi - res
elif im(ndir).is_positive:
if arg0.is_negative:
return -pi - res
else:
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
return res
def _eval_rewrite_as_log(self, arg, **kwargs):
return -S.ImaginaryUnit*log(S.ImaginaryUnit/arg + sqrt(1 - 1/arg**2))
_eval_rewrite_as_tractable = _eval_rewrite_as_log
def _eval_rewrite_as_asin(self, arg, **kwargs):
return asin(1/arg)
def _eval_rewrite_as_acos(self, arg, **kwargs):
return pi/2 - acos(1/arg)
def _eval_rewrite_as_atan(self, x, **kwargs):
return sqrt(x**2)/x*(pi/2 - atan(sqrt(x**2 - 1)))
def _eval_rewrite_as_acot(self, arg, **kwargs):
return sqrt(arg**2)/arg*(pi/2 - acot(1/sqrt(arg**2 - 1)))
def _eval_rewrite_as_asec(self, arg, **kwargs):
return pi/2 - asec(arg)
class atan2(InverseTrigonometricFunction):
r"""
The function ``atan2(y, x)`` computes `\operatorname{atan}(y/x)` taking
two arguments `y` and `x`. Signs of both `y` and `x` are considered to
determine the appropriate quadrant of `\operatorname{atan}(y/x)`.
The range is `(-\pi, \pi]`. The complete definition reads as follows:
.. math::
\operatorname{atan2}(y, x) =
\begin{cases}
\arctan\left(\frac y x\right) & \qquad x > 0 \\
\arctan\left(\frac y x\right) + \pi& \qquad y \ge 0, x < 0 \\
\arctan\left(\frac y x\right) - \pi& \qquad y < 0, x < 0 \\
+\frac{\pi}{2} & \qquad y > 0, x = 0 \\
-\frac{\pi}{2} & \qquad y < 0, x = 0 \\
\text{undefined} & \qquad y = 0, x = 0
\end{cases}
Attention: Note the role reversal of both arguments. The `y`-coordinate
is the first argument and the `x`-coordinate the second.
If either `x` or `y` is complex:
.. math::
\operatorname{atan2}(y, x) =
-i\log\left(\frac{x + iy}{\sqrt{x^2 + y^2}}\right)
Examples
========
Going counter-clock wise around the origin we find the
following angles:
>>> from sympy import atan2
>>> atan2(0, 1)
0
>>> atan2(1, 1)
pi/4
>>> atan2(1, 0)
pi/2
>>> atan2(1, -1)
3*pi/4
>>> atan2(0, -1)
pi
>>> atan2(-1, -1)
-3*pi/4
>>> atan2(-1, 0)
-pi/2
>>> atan2(-1, 1)
-pi/4
which are all correct. Compare this to the results of the ordinary
`\operatorname{atan}` function for the point `(x, y) = (-1, 1)`
>>> from sympy import atan, S
>>> atan(S(1)/-1)
-pi/4
>>> atan2(1, -1)
3*pi/4
where only the `\operatorname{atan2}` function reurns what we expect.
We can differentiate the function with respect to both arguments:
>>> from sympy import diff
>>> from sympy.abc import x, y
>>> diff(atan2(y, x), x)
-y/(x**2 + y**2)
>>> diff(atan2(y, x), y)
x/(x**2 + y**2)
We can express the `\operatorname{atan2}` function in terms of
complex logarithms:
>>> from sympy import log
>>> atan2(y, x).rewrite(log)
-I*log((x + I*y)/sqrt(x**2 + y**2))
and in terms of `\operatorname(atan)`:
>>> from sympy import atan
>>> atan2(y, x).rewrite(atan)
Piecewise((2*atan(y/(x + sqrt(x**2 + y**2))), Ne(y, 0)), (pi, re(x) < 0), (0, Ne(x, 0)), (nan, True))
but note that this form is undefined on the negative real axis.
See Also
========
sin, csc, cos, sec, tan, cot
asin, acsc, acos, asec, atan, acot
References
==========
.. [1] https://en.wikipedia.org/wiki/Inverse_trigonometric_functions
.. [2] https://en.wikipedia.org/wiki/Atan2
.. [3] http://functions.wolfram.com/ElementaryFunctions/ArcTan2
"""
@classmethod
def eval(cls, y, x):
from sympy.functions.special.delta_functions import Heaviside
if x is S.NegativeInfinity:
if y.is_zero:
# Special case y = 0 because we define Heaviside(0) = 1/2
return pi
return 2*pi*(Heaviside(re(y))) - pi
elif x is S.Infinity:
return S.Zero
elif x.is_imaginary and y.is_imaginary and x.is_number and y.is_number:
x = im(x)
y = im(y)
if x.is_extended_real and y.is_extended_real:
if x.is_positive:
return atan(y/x)
elif x.is_negative:
if y.is_negative:
return atan(y/x) - pi
elif y.is_nonnegative:
return atan(y/x) + pi
elif x.is_zero:
if y.is_positive:
return pi/2
elif y.is_negative:
return -pi/2
elif y.is_zero:
return S.NaN
if y.is_zero:
if x.is_extended_nonzero:
return pi*(S.One - Heaviside(x))
if x.is_number:
return Piecewise((pi, re(x) < 0),
(0, Ne(x, 0)),
(S.NaN, True))
if x.is_number and y.is_number:
return -S.ImaginaryUnit*log(
(x + S.ImaginaryUnit*y)/sqrt(x**2 + y**2))
def _eval_rewrite_as_log(self, y, x, **kwargs):
return -S.ImaginaryUnit*log((x + S.ImaginaryUnit*y)/sqrt(x**2 + y**2))
def _eval_rewrite_as_atan(self, y, x, **kwargs):
return Piecewise((2*atan(y/(x + sqrt(x**2 + y**2))), Ne(y, 0)),
(pi, re(x) < 0),
(0, Ne(x, 0)),
(S.NaN, True))
def _eval_rewrite_as_arg(self, y, x, **kwargs):
if x.is_extended_real and y.is_extended_real:
return arg_f(x + y*S.ImaginaryUnit)
n = x + S.ImaginaryUnit*y
d = x**2 + y**2
return arg_f(n/sqrt(d)) - S.ImaginaryUnit*log(abs(n)/sqrt(abs(d)))
def _eval_is_extended_real(self):
return self.args[0].is_extended_real and self.args[1].is_extended_real
def _eval_conjugate(self):
return self.func(self.args[0].conjugate(), self.args[1].conjugate())
def fdiff(self, argindex):
y, x = self.args
if argindex == 1:
# Diff wrt y
return x/(x**2 + y**2)
elif argindex == 2:
# Diff wrt x
return -y/(x**2 + y**2)
else:
raise ArgumentIndexError(self, argindex)
def _eval_evalf(self, prec):
y, x = self.args
if x.is_extended_real and y.is_extended_real:
return super()._eval_evalf(prec)
|
dc35c8481154036087ece65f55695b82c9adcf4ca8f834a3359c514349a2061b | from sympy.core import S, sympify, cacheit
from sympy.core.add import Add
from sympy.core.function import Function, ArgumentIndexError
from sympy.core.logic import fuzzy_or, fuzzy_and, FuzzyBool
from sympy.core.numbers import I, pi, Rational
from sympy.core.symbol import Dummy
from sympy.functions.combinatorial.factorials import (binomial, factorial,
RisingFactorial)
from sympy.functions.combinatorial.numbers import bernoulli, euler, nC
from sympy.functions.elementary.complexes import Abs, im, re
from sympy.functions.elementary.exponential import exp, log, match_real_imag
from sympy.functions.elementary.integers import floor
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (
acos, acot, asin, atan, cos, cot, csc, sec, sin, tan,
_imaginary_unit_as_coefficient)
from sympy.polys.specialpolys import symmetric_poly
def _rewrite_hyperbolics_as_exp(expr):
return expr.xreplace({h: h.rewrite(exp)
for h in expr.atoms(HyperbolicFunction)})
@cacheit
def _acosh_table():
return {
I: log(I*(1 + sqrt(2))),
-I: log(-I*(1 + sqrt(2))),
S.Half: pi/3,
Rational(-1, 2): pi*Rational(2, 3),
sqrt(2)/2: pi/4,
-sqrt(2)/2: pi*Rational(3, 4),
1/sqrt(2): pi/4,
-1/sqrt(2): pi*Rational(3, 4),
sqrt(3)/2: pi/6,
-sqrt(3)/2: pi*Rational(5, 6),
(sqrt(3) - 1)/sqrt(2**3): pi*Rational(5, 12),
-(sqrt(3) - 1)/sqrt(2**3): pi*Rational(7, 12),
sqrt(2 + sqrt(2))/2: pi/8,
-sqrt(2 + sqrt(2))/2: pi*Rational(7, 8),
sqrt(2 - sqrt(2))/2: pi*Rational(3, 8),
-sqrt(2 - sqrt(2))/2: pi*Rational(5, 8),
(1 + sqrt(3))/(2*sqrt(2)): pi/12,
-(1 + sqrt(3))/(2*sqrt(2)): pi*Rational(11, 12),
(sqrt(5) + 1)/4: pi/5,
-(sqrt(5) + 1)/4: pi*Rational(4, 5)
}
@cacheit
def _acsch_table():
return {
I: -pi / 2,
I*(sqrt(2) + sqrt(6)): -pi / 12,
I*(1 + sqrt(5)): -pi / 10,
I*2 / sqrt(2 - sqrt(2)): -pi / 8,
I*2: -pi / 6,
I*sqrt(2 + 2/sqrt(5)): -pi / 5,
I*sqrt(2): -pi / 4,
I*(sqrt(5)-1): -3*pi / 10,
I*2 / sqrt(3): -pi / 3,
I*2 / sqrt(2 + sqrt(2)): -3*pi / 8,
I*sqrt(2 - 2/sqrt(5)): -2*pi / 5,
I*(sqrt(6) - sqrt(2)): -5*pi / 12,
S(2): -I*log((1+sqrt(5))/2),
}
@cacheit
def _asech_table():
return {
I: - (pi*I / 2) + log(1 + sqrt(2)),
-I: (pi*I / 2) + log(1 + sqrt(2)),
(sqrt(6) - sqrt(2)): pi / 12,
(sqrt(2) - sqrt(6)): 11*pi / 12,
sqrt(2 - 2/sqrt(5)): pi / 10,
-sqrt(2 - 2/sqrt(5)): 9*pi / 10,
2 / sqrt(2 + sqrt(2)): pi / 8,
-2 / sqrt(2 + sqrt(2)): 7*pi / 8,
2 / sqrt(3): pi / 6,
-2 / sqrt(3): 5*pi / 6,
(sqrt(5) - 1): pi / 5,
(1 - sqrt(5)): 4*pi / 5,
sqrt(2): pi / 4,
-sqrt(2): 3*pi / 4,
sqrt(2 + 2/sqrt(5)): 3*pi / 10,
-sqrt(2 + 2/sqrt(5)): 7*pi / 10,
S(2): pi / 3,
-S(2): 2*pi / 3,
sqrt(2*(2 + sqrt(2))): 3*pi / 8,
-sqrt(2*(2 + sqrt(2))): 5*pi / 8,
(1 + sqrt(5)): 2*pi / 5,
(-1 - sqrt(5)): 3*pi / 5,
(sqrt(6) + sqrt(2)): 5*pi / 12,
(-sqrt(6) - sqrt(2)): 7*pi / 12,
I*S.Infinity: -pi*I / 2,
I*S.NegativeInfinity: pi*I / 2,
}
###############################################################################
########################### HYPERBOLIC FUNCTIONS ##############################
###############################################################################
class HyperbolicFunction(Function):
"""
Base class for hyperbolic functions.
See Also
========
sinh, cosh, tanh, coth
"""
unbranched = True
def _peeloff_ipi(arg):
r"""
Split ARG into two parts, a "rest" and a multiple of $I\pi$.
This assumes ARG to be an ``Add``.
The multiple of $I\pi$ returned in the second position is always a ``Rational``.
Examples
========
>>> from sympy.functions.elementary.hyperbolic import _peeloff_ipi as peel
>>> from sympy import pi, I
>>> from sympy.abc import x, y
>>> peel(x + I*pi/2)
(x, 1/2)
>>> peel(x + I*2*pi/3 + I*pi*y)
(x + I*pi*y + I*pi/6, 1/2)
"""
ipi = pi*I
for a in Add.make_args(arg):
if a == ipi:
K = S.One
break
elif a.is_Mul:
K, p = a.as_two_terms()
if p == ipi and K.is_Rational:
break
else:
return arg, S.Zero
m1 = (K % S.Half)
m2 = K - m1
return arg - m2*ipi, m2
class sinh(HyperbolicFunction):
r"""
``sinh(x)`` is the hyperbolic sine of ``x``.
The hyperbolic sine function is $\frac{e^x - e^{-x}}{2}$.
Examples
========
>>> from sympy import sinh
>>> from sympy.abc import x
>>> sinh(x)
sinh(x)
See Also
========
cosh, tanh, asinh
"""
def fdiff(self, argindex=1):
"""
Returns the first derivative of this function.
"""
if argindex == 1:
return cosh(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return asinh
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Infinity
elif arg is S.NegativeInfinity:
return S.NegativeInfinity
elif arg.is_zero:
return S.Zero
elif arg.is_negative:
return -cls(-arg)
else:
if arg is S.ComplexInfinity:
return S.NaN
i_coeff = _imaginary_unit_as_coefficient(arg)
if i_coeff is not None:
return I * sin(i_coeff)
else:
if arg.could_extract_minus_sign():
return -cls(-arg)
if arg.is_Add:
x, m = _peeloff_ipi(arg)
if m:
m = m*pi*I
return sinh(m)*cosh(x) + cosh(m)*sinh(x)
if arg.is_zero:
return S.Zero
if arg.func == asinh:
return arg.args[0]
if arg.func == acosh:
x = arg.args[0]
return sqrt(x - 1) * sqrt(x + 1)
if arg.func == atanh:
x = arg.args[0]
return x/sqrt(1 - x**2)
if arg.func == acoth:
x = arg.args[0]
return 1/(sqrt(x - 1) * sqrt(x + 1))
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
"""
Returns the next term in the Taylor series expansion.
"""
if n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) > 2:
p = previous_terms[-2]
return p * x**2 / (n*(n - 1))
else:
return x**(n) / factorial(n)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
"""
Returns this function as a complex coordinate.
"""
if self.args[0].is_extended_real:
if deep:
hints['complex'] = False
return (self.expand(deep, **hints), S.Zero)
else:
return (self, S.Zero)
if deep:
re, im = self.args[0].expand(deep, **hints).as_real_imag()
else:
re, im = self.args[0].as_real_imag()
return (sinh(re)*cos(im), cosh(re)*sin(im))
def _eval_expand_complex(self, deep=True, **hints):
re_part, im_part = self.as_real_imag(deep=deep, **hints)
return re_part + im_part*I
def _eval_expand_trig(self, deep=True, **hints):
if deep:
arg = self.args[0].expand(deep, **hints)
else:
arg = self.args[0]
x = None
if arg.is_Add: # TODO, implement more if deep stuff here
x, y = arg.as_two_terms()
else:
coeff, terms = arg.as_coeff_Mul(rational=True)
if coeff is not S.One and coeff.is_Integer and terms is not S.One:
x = terms
y = (coeff - 1)*x
if x is not None:
return (sinh(x)*cosh(y) + sinh(y)*cosh(x)).expand(trig=True)
return sinh(arg)
def _eval_rewrite_as_tractable(self, arg, limitvar=None, **kwargs):
return (exp(arg) - exp(-arg)) / 2
def _eval_rewrite_as_exp(self, arg, **kwargs):
return (exp(arg) - exp(-arg)) / 2
def _eval_rewrite_as_sin(self, arg, **kwargs):
return -I * sin(I * arg)
def _eval_rewrite_as_csc(self, arg, **kwargs):
return -I / csc(I * arg)
def _eval_rewrite_as_cosh(self, arg, **kwargs):
return -I*cosh(arg + pi*I/2)
def _eval_rewrite_as_tanh(self, arg, **kwargs):
tanh_half = tanh(S.Half*arg)
return 2*tanh_half/(1 - tanh_half**2)
def _eval_rewrite_as_coth(self, arg, **kwargs):
coth_half = coth(S.Half*arg)
return 2*coth_half/(coth_half**2 - 1)
def _eval_rewrite_as_csch(self, arg, **kwargs):
return 1 / csch(arg)
def _eval_as_leading_term(self, x, logx=None, cdir=0):
arg = self.args[0].as_leading_term(x, logx=logx, cdir=cdir)
arg0 = arg.subs(x, 0)
if arg0 is S.NaN:
arg0 = arg.limit(x, 0, dir='-' if cdir.is_negative else '+')
if arg0.is_zero:
return arg
elif arg0.is_finite:
return self.func(arg0)
else:
return self
def _eval_is_real(self):
arg = self.args[0]
if arg.is_real:
return True
# if `im` is of the form n*pi
# else, check if it is a number
re, im = arg.as_real_imag()
return (im%pi).is_zero
def _eval_is_extended_real(self):
if self.args[0].is_extended_real:
return True
def _eval_is_positive(self):
if self.args[0].is_extended_real:
return self.args[0].is_positive
def _eval_is_negative(self):
if self.args[0].is_extended_real:
return self.args[0].is_negative
def _eval_is_finite(self):
arg = self.args[0]
return arg.is_finite
def _eval_is_zero(self):
rest, ipi_mult = _peeloff_ipi(self.args[0])
if rest.is_zero:
return ipi_mult.is_integer
class cosh(HyperbolicFunction):
r"""
``cosh(x)`` is the hyperbolic cosine of ``x``.
The hyperbolic cosine function is $\frac{e^x + e^{-x}}{2}$.
Examples
========
>>> from sympy import cosh
>>> from sympy.abc import x
>>> cosh(x)
cosh(x)
See Also
========
sinh, tanh, acosh
"""
def fdiff(self, argindex=1):
if argindex == 1:
return sinh(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
from sympy.functions.elementary.trigonometric import cos
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Infinity
elif arg is S.NegativeInfinity:
return S.Infinity
elif arg.is_zero:
return S.One
elif arg.is_negative:
return cls(-arg)
else:
if arg is S.ComplexInfinity:
return S.NaN
i_coeff = _imaginary_unit_as_coefficient(arg)
if i_coeff is not None:
return cos(i_coeff)
else:
if arg.could_extract_minus_sign():
return cls(-arg)
if arg.is_Add:
x, m = _peeloff_ipi(arg)
if m:
m = m*pi*I
return cosh(m)*cosh(x) + sinh(m)*sinh(x)
if arg.is_zero:
return S.One
if arg.func == asinh:
return sqrt(1 + arg.args[0]**2)
if arg.func == acosh:
return arg.args[0]
if arg.func == atanh:
return 1/sqrt(1 - arg.args[0]**2)
if arg.func == acoth:
x = arg.args[0]
return x/(sqrt(x - 1) * sqrt(x + 1))
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 1:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) > 2:
p = previous_terms[-2]
return p * x**2 / (n*(n - 1))
else:
return x**(n)/factorial(n)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
if self.args[0].is_extended_real:
if deep:
hints['complex'] = False
return (self.expand(deep, **hints), S.Zero)
else:
return (self, S.Zero)
if deep:
re, im = self.args[0].expand(deep, **hints).as_real_imag()
else:
re, im = self.args[0].as_real_imag()
return (cosh(re)*cos(im), sinh(re)*sin(im))
def _eval_expand_complex(self, deep=True, **hints):
re_part, im_part = self.as_real_imag(deep=deep, **hints)
return re_part + im_part*I
def _eval_expand_trig(self, deep=True, **hints):
if deep:
arg = self.args[0].expand(deep, **hints)
else:
arg = self.args[0]
x = None
if arg.is_Add: # TODO, implement more if deep stuff here
x, y = arg.as_two_terms()
else:
coeff, terms = arg.as_coeff_Mul(rational=True)
if coeff is not S.One and coeff.is_Integer and terms is not S.One:
x = terms
y = (coeff - 1)*x
if x is not None:
return (cosh(x)*cosh(y) + sinh(x)*sinh(y)).expand(trig=True)
return cosh(arg)
def _eval_rewrite_as_tractable(self, arg, limitvar=None, **kwargs):
return (exp(arg) + exp(-arg)) / 2
def _eval_rewrite_as_exp(self, arg, **kwargs):
return (exp(arg) + exp(-arg)) / 2
def _eval_rewrite_as_cos(self, arg, **kwargs):
return cos(I * arg)
def _eval_rewrite_as_sec(self, arg, **kwargs):
return 1 / sec(I * arg)
def _eval_rewrite_as_sinh(self, arg, **kwargs):
return -I*sinh(arg + pi*I/2)
def _eval_rewrite_as_tanh(self, arg, **kwargs):
tanh_half = tanh(S.Half*arg)**2
return (1 + tanh_half)/(1 - tanh_half)
def _eval_rewrite_as_coth(self, arg, **kwargs):
coth_half = coth(S.Half*arg)**2
return (coth_half + 1)/(coth_half - 1)
def _eval_rewrite_as_sech(self, arg, **kwargs):
return 1 / sech(arg)
def _eval_as_leading_term(self, x, logx=None, cdir=0):
arg = self.args[0].as_leading_term(x, logx=logx, cdir=cdir)
arg0 = arg.subs(x, 0)
if arg0 is S.NaN:
arg0 = arg.limit(x, 0, dir='-' if cdir.is_negative else '+')
if arg0.is_zero:
return S.One
elif arg0.is_finite:
return self.func(arg0)
else:
return self
def _eval_is_real(self):
arg = self.args[0]
# `cosh(x)` is real for real OR purely imaginary `x`
if arg.is_real or arg.is_imaginary:
return True
# cosh(a+ib) = cos(b)*cosh(a) + i*sin(b)*sinh(a)
# the imaginary part can be an expression like n*pi
# if not, check if the imaginary part is a number
re, im = arg.as_real_imag()
return (im%pi).is_zero
def _eval_is_positive(self):
# cosh(x+I*y) = cos(y)*cosh(x) + I*sin(y)*sinh(x)
# cosh(z) is positive iff it is real and the real part is positive.
# So we need sin(y)*sinh(x) = 0 which gives x=0 or y=n*pi
# Case 1 (y=n*pi): cosh(z) = (-1)**n * cosh(x) -> positive for n even
# Case 2 (x=0): cosh(z) = cos(y) -> positive when cos(y) is positive
z = self.args[0]
x, y = z.as_real_imag()
ymod = y % (2*pi)
yzero = ymod.is_zero
# shortcut if ymod is zero
if yzero:
return True
xzero = x.is_zero
# shortcut x is not zero
if xzero is False:
return yzero
return fuzzy_or([
# Case 1:
yzero,
# Case 2:
fuzzy_and([
xzero,
fuzzy_or([ymod < pi/2, ymod > 3*pi/2])
])
])
def _eval_is_nonnegative(self):
z = self.args[0]
x, y = z.as_real_imag()
ymod = y % (2*pi)
yzero = ymod.is_zero
# shortcut if ymod is zero
if yzero:
return True
xzero = x.is_zero
# shortcut x is not zero
if xzero is False:
return yzero
return fuzzy_or([
# Case 1:
yzero,
# Case 2:
fuzzy_and([
xzero,
fuzzy_or([ymod <= pi/2, ymod >= 3*pi/2])
])
])
def _eval_is_finite(self):
arg = self.args[0]
return arg.is_finite
def _eval_is_zero(self):
rest, ipi_mult = _peeloff_ipi(self.args[0])
if ipi_mult and rest.is_zero:
return (ipi_mult - S.Half).is_integer
class tanh(HyperbolicFunction):
r"""
``tanh(x)`` is the hyperbolic tangent of ``x``.
The hyperbolic tangent function is $\frac{\sinh(x)}{\cosh(x)}$.
Examples
========
>>> from sympy import tanh
>>> from sympy.abc import x
>>> tanh(x)
tanh(x)
See Also
========
sinh, cosh, atanh
"""
def fdiff(self, argindex=1):
if argindex == 1:
return S.One - tanh(self.args[0])**2
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return atanh
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.One
elif arg is S.NegativeInfinity:
return S.NegativeOne
elif arg.is_zero:
return S.Zero
elif arg.is_negative:
return -cls(-arg)
else:
if arg is S.ComplexInfinity:
return S.NaN
i_coeff = _imaginary_unit_as_coefficient(arg)
if i_coeff is not None:
if i_coeff.could_extract_minus_sign():
return -I * tan(-i_coeff)
return I * tan(i_coeff)
else:
if arg.could_extract_minus_sign():
return -cls(-arg)
if arg.is_Add:
x, m = _peeloff_ipi(arg)
if m:
tanhm = tanh(m*pi*I)
if tanhm is S.ComplexInfinity:
return coth(x)
else: # tanhm == 0
return tanh(x)
if arg.is_zero:
return S.Zero
if arg.func == asinh:
x = arg.args[0]
return x/sqrt(1 + x**2)
if arg.func == acosh:
x = arg.args[0]
return sqrt(x - 1) * sqrt(x + 1) / x
if arg.func == atanh:
return arg.args[0]
if arg.func == acoth:
return 1/arg.args[0]
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
a = 2**(n + 1)
B = bernoulli(n + 1)
F = factorial(n + 1)
return a*(a - 1) * B/F * x**n
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
if self.args[0].is_extended_real:
if deep:
hints['complex'] = False
return (self.expand(deep, **hints), S.Zero)
else:
return (self, S.Zero)
if deep:
re, im = self.args[0].expand(deep, **hints).as_real_imag()
else:
re, im = self.args[0].as_real_imag()
denom = sinh(re)**2 + cos(im)**2
return (sinh(re)*cosh(re)/denom, sin(im)*cos(im)/denom)
def _eval_expand_trig(self, **hints):
arg = self.args[0]
if arg.is_Add:
n = len(arg.args)
TX = [tanh(x, evaluate=False)._eval_expand_trig()
for x in arg.args]
p = [0, 0] # [den, num]
for i in range(n + 1):
p[i % 2] += symmetric_poly(i, TX)
return p[1]/p[0]
elif arg.is_Mul:
coeff, terms = arg.as_coeff_Mul()
if coeff.is_Integer and coeff > 1:
T = tanh(terms)
n = [nC(range(coeff), k)*T**k for k in range(1, coeff + 1, 2)]
d = [nC(range(coeff), k)*T**k for k in range(0, coeff + 1, 2)]
return Add(*n)/Add(*d)
return tanh(arg)
def _eval_rewrite_as_tractable(self, arg, limitvar=None, **kwargs):
neg_exp, pos_exp = exp(-arg), exp(arg)
return (pos_exp - neg_exp)/(pos_exp + neg_exp)
def _eval_rewrite_as_exp(self, arg, **kwargs):
neg_exp, pos_exp = exp(-arg), exp(arg)
return (pos_exp - neg_exp)/(pos_exp + neg_exp)
def _eval_rewrite_as_tan(self, arg, **kwargs):
return -I * tan(I * arg)
def _eval_rewrite_as_cot(self, arg, **kwargs):
return -I / cot(I * arg)
def _eval_rewrite_as_sinh(self, arg, **kwargs):
return I*sinh(arg)/sinh(pi*I/2 - arg)
def _eval_rewrite_as_cosh(self, arg, **kwargs):
return I*cosh(pi*I/2 - arg)/cosh(arg)
def _eval_rewrite_as_coth(self, arg, **kwargs):
return 1/coth(arg)
def _eval_as_leading_term(self, x, logx=None, cdir=0):
from sympy.series.order import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return arg
else:
return self.func(arg)
def _eval_is_real(self):
arg = self.args[0]
if arg.is_real:
return True
re, im = arg.as_real_imag()
# if denom = 0, tanh(arg) = zoo
if re == 0 and im % pi == pi/2:
return None
# check if im is of the form n*pi/2 to make sin(2*im) = 0
# if not, im could be a number, return False in that case
return (im % (pi/2)).is_zero
def _eval_is_extended_real(self):
if self.args[0].is_extended_real:
return True
def _eval_is_positive(self):
if self.args[0].is_extended_real:
return self.args[0].is_positive
def _eval_is_negative(self):
if self.args[0].is_extended_real:
return self.args[0].is_negative
def _eval_is_finite(self):
arg = self.args[0]
re, im = arg.as_real_imag()
denom = cos(im)**2 + sinh(re)**2
if denom == 0:
return False
elif denom.is_number:
return True
if arg.is_extended_real:
return True
def _eval_is_zero(self):
arg = self.args[0]
if arg.is_zero:
return True
class coth(HyperbolicFunction):
r"""
``coth(x)`` is the hyperbolic cotangent of ``x``.
The hyperbolic cotangent function is $\frac{\cosh(x)}{\sinh(x)}$.
Examples
========
>>> from sympy import coth
>>> from sympy.abc import x
>>> coth(x)
coth(x)
See Also
========
sinh, cosh, acoth
"""
def fdiff(self, argindex=1):
if argindex == 1:
return -1/sinh(self.args[0])**2
else:
raise ArgumentIndexError(self, argindex)
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return acoth
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.One
elif arg is S.NegativeInfinity:
return S.NegativeOne
elif arg.is_zero:
return S.ComplexInfinity
elif arg.is_negative:
return -cls(-arg)
else:
if arg is S.ComplexInfinity:
return S.NaN
i_coeff = _imaginary_unit_as_coefficient(arg)
if i_coeff is not None:
if i_coeff.could_extract_minus_sign():
return I * cot(-i_coeff)
return -I * cot(i_coeff)
else:
if arg.could_extract_minus_sign():
return -cls(-arg)
if arg.is_Add:
x, m = _peeloff_ipi(arg)
if m:
cothm = coth(m*pi*I)
if cothm is S.ComplexInfinity:
return coth(x)
else: # cothm == 0
return tanh(x)
if arg.is_zero:
return S.ComplexInfinity
if arg.func == asinh:
x = arg.args[0]
return sqrt(1 + x**2)/x
if arg.func == acosh:
x = arg.args[0]
return x/(sqrt(x - 1) * sqrt(x + 1))
if arg.func == atanh:
return 1/arg.args[0]
if arg.func == acoth:
return arg.args[0]
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n == 0:
return 1 / sympify(x)
elif n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
B = bernoulli(n + 1)
F = factorial(n + 1)
return 2**(n + 1) * B/F * x**n
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def as_real_imag(self, deep=True, **hints):
from sympy.functions.elementary.trigonometric import (cos, sin)
if self.args[0].is_extended_real:
if deep:
hints['complex'] = False
return (self.expand(deep, **hints), S.Zero)
else:
return (self, S.Zero)
if deep:
re, im = self.args[0].expand(deep, **hints).as_real_imag()
else:
re, im = self.args[0].as_real_imag()
denom = sinh(re)**2 + sin(im)**2
return (sinh(re)*cosh(re)/denom, -sin(im)*cos(im)/denom)
def _eval_rewrite_as_tractable(self, arg, limitvar=None, **kwargs):
neg_exp, pos_exp = exp(-arg), exp(arg)
return (pos_exp + neg_exp)/(pos_exp - neg_exp)
def _eval_rewrite_as_exp(self, arg, **kwargs):
neg_exp, pos_exp = exp(-arg), exp(arg)
return (pos_exp + neg_exp)/(pos_exp - neg_exp)
def _eval_rewrite_as_sinh(self, arg, **kwargs):
return -I*sinh(pi*I/2 - arg)/sinh(arg)
def _eval_rewrite_as_cosh(self, arg, **kwargs):
return -I*cosh(arg)/cosh(pi*I/2 - arg)
def _eval_rewrite_as_tanh(self, arg, **kwargs):
return 1/tanh(arg)
def _eval_is_positive(self):
if self.args[0].is_extended_real:
return self.args[0].is_positive
def _eval_is_negative(self):
if self.args[0].is_extended_real:
return self.args[0].is_negative
def _eval_as_leading_term(self, x, logx=None, cdir=0):
from sympy.series.order import Order
arg = self.args[0].as_leading_term(x)
if x in arg.free_symbols and Order(1, x).contains(arg):
return 1/arg
else:
return self.func(arg)
def _eval_expand_trig(self, **hints):
arg = self.args[0]
if arg.is_Add:
CX = [coth(x, evaluate=False)._eval_expand_trig() for x in arg.args]
p = [[], []]
n = len(arg.args)
for i in range(n, -1, -1):
p[(n - i) % 2].append(symmetric_poly(i, CX))
return Add(*p[0])/Add(*p[1])
elif arg.is_Mul:
coeff, x = arg.as_coeff_Mul(rational=True)
if coeff.is_Integer and coeff > 1:
c = coth(x, evaluate=False)
p = [[], []]
for i in range(coeff, -1, -1):
p[(coeff - i) % 2].append(binomial(coeff, i)*c**i)
return Add(*p[0])/Add(*p[1])
return coth(arg)
class ReciprocalHyperbolicFunction(HyperbolicFunction):
"""Base class for reciprocal functions of hyperbolic functions. """
#To be defined in class
_reciprocal_of = None
_is_even: FuzzyBool = None
_is_odd: FuzzyBool = None
@classmethod
def eval(cls, arg):
if arg.could_extract_minus_sign():
if cls._is_even:
return cls(-arg)
if cls._is_odd:
return -cls(-arg)
t = cls._reciprocal_of.eval(arg)
if hasattr(arg, 'inverse') and arg.inverse() == cls:
return arg.args[0]
return 1/t if t is not None else t
def _call_reciprocal(self, method_name, *args, **kwargs):
# Calls method_name on _reciprocal_of
o = self._reciprocal_of(self.args[0])
return getattr(o, method_name)(*args, **kwargs)
def _calculate_reciprocal(self, method_name, *args, **kwargs):
# If calling method_name on _reciprocal_of returns a value != None
# then return the reciprocal of that value
t = self._call_reciprocal(method_name, *args, **kwargs)
return 1/t if t is not None else t
def _rewrite_reciprocal(self, method_name, arg):
# Special handling for rewrite functions. If reciprocal rewrite returns
# unmodified expression, then return None
t = self._call_reciprocal(method_name, arg)
if t is not None and t != self._reciprocal_of(arg):
return 1/t
def _eval_rewrite_as_exp(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_exp", arg)
def _eval_rewrite_as_tractable(self, arg, limitvar=None, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_tractable", arg)
def _eval_rewrite_as_tanh(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_tanh", arg)
def _eval_rewrite_as_coth(self, arg, **kwargs):
return self._rewrite_reciprocal("_eval_rewrite_as_coth", arg)
def as_real_imag(self, deep = True, **hints):
return (1 / self._reciprocal_of(self.args[0])).as_real_imag(deep, **hints)
def _eval_conjugate(self):
return self.func(self.args[0].conjugate())
def _eval_expand_complex(self, deep=True, **hints):
re_part, im_part = self.as_real_imag(deep=True, **hints)
return re_part + I*im_part
def _eval_expand_trig(self, **hints):
return self._calculate_reciprocal("_eval_expand_trig", **hints)
def _eval_as_leading_term(self, x, logx=None, cdir=0):
return (1/self._reciprocal_of(self.args[0]))._eval_as_leading_term(x)
def _eval_is_extended_real(self):
return self._reciprocal_of(self.args[0]).is_extended_real
def _eval_is_finite(self):
return (1/self._reciprocal_of(self.args[0])).is_finite
class csch(ReciprocalHyperbolicFunction):
r"""
``csch(x)`` is the hyperbolic cosecant of ``x``.
The hyperbolic cosecant function is $\frac{2}{e^x - e^{-x}}$
Examples
========
>>> from sympy import csch
>>> from sympy.abc import x
>>> csch(x)
csch(x)
See Also
========
sinh, cosh, tanh, sech, asinh, acosh
"""
_reciprocal_of = sinh
_is_odd = True
def fdiff(self, argindex=1):
"""
Returns the first derivative of this function
"""
if argindex == 1:
return -coth(self.args[0]) * csch(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
"""
Returns the next term in the Taylor series expansion
"""
if n == 0:
return 1/sympify(x)
elif n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
B = bernoulli(n + 1)
F = factorial(n + 1)
return 2 * (1 - 2**n) * B/F * x**n
def _eval_rewrite_as_sin(self, arg, **kwargs):
return I / sin(I * arg)
def _eval_rewrite_as_csc(self, arg, **kwargs):
return I * csc(I * arg)
def _eval_rewrite_as_cosh(self, arg, **kwargs):
return I / cosh(arg + I * pi / 2)
def _eval_rewrite_as_sinh(self, arg, **kwargs):
return 1 / sinh(arg)
def _eval_is_positive(self):
if self.args[0].is_extended_real:
return self.args[0].is_positive
def _eval_is_negative(self):
if self.args[0].is_extended_real:
return self.args[0].is_negative
class sech(ReciprocalHyperbolicFunction):
r"""
``sech(x)`` is the hyperbolic secant of ``x``.
The hyperbolic secant function is $\frac{2}{e^x + e^{-x}}$
Examples
========
>>> from sympy import sech
>>> from sympy.abc import x
>>> sech(x)
sech(x)
See Also
========
sinh, cosh, tanh, coth, csch, asinh, acosh
"""
_reciprocal_of = cosh
_is_even = True
def fdiff(self, argindex=1):
if argindex == 1:
return - tanh(self.args[0])*sech(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 1:
return S.Zero
else:
x = sympify(x)
return euler(n) / factorial(n) * x**(n)
def _eval_rewrite_as_cos(self, arg, **kwargs):
return 1 / cos(I * arg)
def _eval_rewrite_as_sec(self, arg, **kwargs):
return sec(I * arg)
def _eval_rewrite_as_sinh(self, arg, **kwargs):
return I / sinh(arg + I * pi /2)
def _eval_rewrite_as_cosh(self, arg, **kwargs):
return 1 / cosh(arg)
def _eval_is_positive(self):
if self.args[0].is_extended_real:
return True
###############################################################################
############################# HYPERBOLIC INVERSES #############################
###############################################################################
class InverseHyperbolicFunction(Function):
"""Base class for inverse hyperbolic functions."""
pass
class asinh(InverseHyperbolicFunction):
"""
``asinh(x)`` is the inverse hyperbolic sine of ``x``.
The inverse hyperbolic sine function.
Examples
========
>>> from sympy import asinh
>>> from sympy.abc import x
>>> asinh(x).diff(x)
1/sqrt(x**2 + 1)
>>> asinh(1)
log(1 + sqrt(2))
See Also
========
acosh, atanh, sinh
"""
def fdiff(self, argindex=1):
if argindex == 1:
return 1/sqrt(self.args[0]**2 + 1)
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Infinity
elif arg is S.NegativeInfinity:
return S.NegativeInfinity
elif arg.is_zero:
return S.Zero
elif arg is S.One:
return log(sqrt(2) + 1)
elif arg is S.NegativeOne:
return log(sqrt(2) - 1)
elif arg.is_negative:
return -cls(-arg)
else:
if arg is S.ComplexInfinity:
return S.ComplexInfinity
if arg.is_zero:
return S.Zero
i_coeff = _imaginary_unit_as_coefficient(arg)
if i_coeff is not None:
return I * asin(i_coeff)
else:
if arg.could_extract_minus_sign():
return -cls(-arg)
if isinstance(arg, sinh) and arg.args[0].is_number:
z = arg.args[0]
if z.is_real:
return z
r, i = match_real_imag(z)
if r is not None and i is not None:
f = floor((i + pi/2)/pi)
m = z - I*pi*f
even = f.is_even
if even is True:
return m
elif even is False:
return -m
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) >= 2 and n > 2:
p = previous_terms[-2]
return -p * (n - 2)**2/(n*(n - 1)) * x**2
else:
k = (n - 1) // 2
R = RisingFactorial(S.Half, k)
F = factorial(k)
return S.NegativeOne**k * R / F * x**n / n
def _eval_as_leading_term(self, x, logx=None, cdir=0): # asinh
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
if x0.is_zero:
return arg.as_leading_term(x)
# Handling branch points
if x0 in (-I, I, S.ComplexInfinity):
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
# Handling points lying on branch cuts (-I*oo, -I) U (I, I*oo)
if (1 + x0**2).is_negative:
ndir = arg.dir(x, cdir if cdir else 1)
if re(ndir).is_positive:
if im(x0).is_negative:
return -self.func(x0) - I*pi
elif re(ndir).is_negative:
if im(x0).is_positive:
return -self.func(x0) + I*pi
else:
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
return self.func(x0)
def _eval_nseries(self, x, n, logx, cdir=0): # asinh
arg = self.args[0]
arg0 = arg.subs(x, 0)
# Handling branch points
if arg0 in (I, -I):
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
res = Function._eval_nseries(self, x, n=n, logx=logx)
if arg0 is S.ComplexInfinity:
return res
# Handling points lying on branch cuts (-I*oo, -I) U (I, I*oo)
if (1 + arg0**2).is_negative:
ndir = arg.dir(x, cdir if cdir else 1)
if re(ndir).is_positive:
if im(arg0).is_negative:
return -res - I*pi
elif re(ndir).is_negative:
if im(arg0).is_positive:
return -res + I*pi
else:
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
return res
def _eval_rewrite_as_log(self, x, **kwargs):
return log(x + sqrt(x**2 + 1))
_eval_rewrite_as_tractable = _eval_rewrite_as_log
def _eval_rewrite_as_atanh(self, x, **kwargs):
return atanh(x/sqrt(1 + x**2))
def _eval_rewrite_as_acosh(self, x, **kwargs):
ix = I*x
return I*(sqrt(1 - ix)/sqrt(ix - 1) * acosh(ix) - pi/2)
def _eval_rewrite_as_asin(self, x, **kwargs):
return -I * asin(I * x)
def _eval_rewrite_as_acos(self, x, **kwargs):
return I * acos(I * x) - I*pi/2
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return sinh
def _eval_is_zero(self):
return self.args[0].is_zero
class acosh(InverseHyperbolicFunction):
"""
``acosh(x)`` is the inverse hyperbolic cosine of ``x``.
The inverse hyperbolic cosine function.
Examples
========
>>> from sympy import acosh
>>> from sympy.abc import x
>>> acosh(x).diff(x)
1/(sqrt(x - 1)*sqrt(x + 1))
>>> acosh(1)
0
See Also
========
asinh, atanh, cosh
"""
def fdiff(self, argindex=1):
if argindex == 1:
arg = self.args[0]
return 1/(sqrt(arg - 1)*sqrt(arg + 1))
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Infinity
elif arg is S.NegativeInfinity:
return S.Infinity
elif arg.is_zero:
return pi*I / 2
elif arg is S.One:
return S.Zero
elif arg is S.NegativeOne:
return pi*I
if arg.is_number:
cst_table = _acosh_table()
if arg in cst_table:
if arg.is_extended_real:
return cst_table[arg]*I
return cst_table[arg]
if arg is S.ComplexInfinity:
return S.ComplexInfinity
if arg == I*S.Infinity:
return S.Infinity + I*pi/2
if arg == -I*S.Infinity:
return S.Infinity - I*pi/2
if arg.is_zero:
return pi*I*S.Half
if isinstance(arg, cosh) and arg.args[0].is_number:
z = arg.args[0]
if z.is_real:
return Abs(z)
r, i = match_real_imag(z)
if r is not None and i is not None:
f = floor(i/pi)
m = z - I*pi*f
even = f.is_even
if even is True:
if r.is_nonnegative:
return m
elif r.is_negative:
return -m
elif even is False:
m -= I*pi
if r.is_nonpositive:
return -m
elif r.is_positive:
return m
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n == 0:
return I*pi/2
elif n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) >= 2 and n > 2:
p = previous_terms[-2]
return p * (n - 2)**2/(n*(n - 1)) * x**2
else:
k = (n - 1) // 2
R = RisingFactorial(S.Half, k)
F = factorial(k)
return -R / F * I * x**n / n
def _eval_as_leading_term(self, x, logx=None, cdir=0): # acosh
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
# Handling branch points
if x0 in (-S.One, S.Zero, S.One, S.ComplexInfinity):
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
# Handling points lying on branch cuts (-oo, 1)
if (x0 - 1).is_negative:
ndir = arg.dir(x, cdir if cdir else 1)
if im(ndir).is_negative:
if (x0 + 1).is_negative:
return self.func(x0) - 2*I*pi
return -self.func(x0)
elif not im(ndir).is_positive:
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
return self.func(x0)
def _eval_nseries(self, x, n, logx, cdir=0): # acosh
arg = self.args[0]
arg0 = arg.subs(x, 0)
# Handling branch points
if arg0 in (S.One, S.NegativeOne):
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
res = Function._eval_nseries(self, x, n=n, logx=logx)
if arg0 is S.ComplexInfinity:
return res
# Handling points lying on branch cuts (-oo, 1)
if (arg0 - 1).is_negative:
ndir = arg.dir(x, cdir if cdir else 1)
if im(ndir).is_negative:
if (arg0 + 1).is_negative:
return res - 2*I*pi
return -res
elif not im(ndir).is_positive:
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
return res
def _eval_rewrite_as_log(self, x, **kwargs):
return log(x + sqrt(x + 1) * sqrt(x - 1))
_eval_rewrite_as_tractable = _eval_rewrite_as_log
def _eval_rewrite_as_acos(self, x, **kwargs):
return sqrt(x - 1)/sqrt(1 - x) * acos(x)
def _eval_rewrite_as_asin(self, x, **kwargs):
return sqrt(x - 1)/sqrt(1 - x) * (pi/2 - asin(x))
def _eval_rewrite_as_asinh(self, x, **kwargs):
return sqrt(x - 1)/sqrt(1 - x) * (pi/2 + I*asinh(I*x))
def _eval_rewrite_as_atanh(self, x, **kwargs):
sxm1 = sqrt(x - 1)
s1mx = sqrt(1 - x)
sx2m1 = sqrt(x**2 - 1)
return (pi/2*sxm1/s1mx*(1 - x * sqrt(1/x**2)) +
sxm1*sqrt(x + 1)/sx2m1 * atanh(sx2m1/x))
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return cosh
def _eval_is_zero(self):
if (self.args[0] - 1).is_zero:
return True
class atanh(InverseHyperbolicFunction):
"""
``atanh(x)`` is the inverse hyperbolic tangent of ``x``.
The inverse hyperbolic tangent function.
Examples
========
>>> from sympy import atanh
>>> from sympy.abc import x
>>> atanh(x).diff(x)
1/(1 - x**2)
See Also
========
asinh, acosh, tanh
"""
def fdiff(self, argindex=1):
if argindex == 1:
return 1/(1 - self.args[0]**2)
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg.is_zero:
return S.Zero
elif arg is S.One:
return S.Infinity
elif arg is S.NegativeOne:
return S.NegativeInfinity
elif arg is S.Infinity:
return -I * atan(arg)
elif arg is S.NegativeInfinity:
return I * atan(-arg)
elif arg.is_negative:
return -cls(-arg)
else:
if arg is S.ComplexInfinity:
from sympy.calculus.accumulationbounds import AccumBounds
return I*AccumBounds(-pi/2, pi/2)
i_coeff = _imaginary_unit_as_coefficient(arg)
if i_coeff is not None:
return I * atan(i_coeff)
else:
if arg.could_extract_minus_sign():
return -cls(-arg)
if arg.is_zero:
return S.Zero
if isinstance(arg, tanh) and arg.args[0].is_number:
z = arg.args[0]
if z.is_real:
return z
r, i = match_real_imag(z)
if r is not None and i is not None:
f = floor(2*i/pi)
even = f.is_even
m = z - I*f*pi/2
if even is True:
return m
elif even is False:
return m - I*pi/2
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
return x**n / n
def _eval_as_leading_term(self, x, logx=None, cdir=0): # atanh
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
if x0.is_zero:
return arg.as_leading_term(x)
# Handling branch points
if x0 in (-S.One, S.One, S.ComplexInfinity):
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
# Handling points lying on branch cuts (-oo, -1] U [1, oo)
if (1 - x0**2).is_negative:
ndir = arg.dir(x, cdir if cdir else 1)
if im(ndir).is_negative:
if x0.is_negative:
return self.func(x0) - I*pi
elif im(ndir).is_positive:
if x0.is_positive:
return self.func(x0) + I*pi
else:
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
return self.func(x0)
def _eval_nseries(self, x, n, logx, cdir=0): # atanh
arg = self.args[0]
arg0 = arg.subs(x, 0)
# Handling branch points
if arg0 in (S.One, S.NegativeOne):
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
res = Function._eval_nseries(self, x, n=n, logx=logx)
if arg0 is S.ComplexInfinity:
return res
# Handling points lying on branch cuts (-oo, -1] U [1, oo)
if (1 - arg0**2).is_negative:
ndir = arg.dir(x, cdir if cdir else 1)
if im(ndir).is_negative:
if arg0.is_negative:
return res - I*pi
elif im(ndir).is_positive:
if arg0.is_positive:
return res + I*pi
else:
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
return res
def _eval_rewrite_as_log(self, x, **kwargs):
return (log(1 + x) - log(1 - x)) / 2
_eval_rewrite_as_tractable = _eval_rewrite_as_log
def _eval_rewrite_as_asinh(self, x, **kwargs):
f = sqrt(1/(x**2 - 1))
return (pi*x/(2*sqrt(-x**2)) -
sqrt(-x)*sqrt(1 - x**2)/sqrt(x)*f*asinh(f))
def _eval_is_zero(self):
if self.args[0].is_zero:
return True
def _eval_is_imaginary(self):
return self.args[0].is_imaginary
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return tanh
class acoth(InverseHyperbolicFunction):
"""
``acoth(x)`` is the inverse hyperbolic cotangent of ``x``.
The inverse hyperbolic cotangent function.
Examples
========
>>> from sympy import acoth
>>> from sympy.abc import x
>>> acoth(x).diff(x)
1/(1 - x**2)
See Also
========
asinh, acosh, coth
"""
def fdiff(self, argindex=1):
if argindex == 1:
return 1/(1 - self.args[0]**2)
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Zero
elif arg is S.NegativeInfinity:
return S.Zero
elif arg.is_zero:
return pi*I / 2
elif arg is S.One:
return S.Infinity
elif arg is S.NegativeOne:
return S.NegativeInfinity
elif arg.is_negative:
return -cls(-arg)
else:
if arg is S.ComplexInfinity:
return S.Zero
i_coeff = _imaginary_unit_as_coefficient(arg)
if i_coeff is not None:
return -I * acot(i_coeff)
else:
if arg.could_extract_minus_sign():
return -cls(-arg)
if arg.is_zero:
return pi*I*S.Half
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n == 0:
return -I*pi/2
elif n < 0 or n % 2 == 0:
return S.Zero
else:
x = sympify(x)
return x**n / n
def _eval_as_leading_term(self, x, logx=None, cdir=0): # acoth
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
if x0 is S.ComplexInfinity:
return (1/arg).as_leading_term(x)
# Handling branch points
if x0 in (-S.One, S.One, S.Zero):
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
# Handling points lying on branch cuts [-1, 1]
if x0.is_real and (1 - x0**2).is_positive:
ndir = arg.dir(x, cdir if cdir else 1)
if im(ndir).is_negative:
if x0.is_positive:
return self.func(x0) + I*pi
elif im(ndir).is_positive:
if x0.is_negative:
return self.func(x0) - I*pi
else:
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
return self.func(x0)
def _eval_nseries(self, x, n, logx, cdir=0): # acoth
arg = self.args[0]
arg0 = arg.subs(x, 0)
# Handling branch points
if arg0 in (S.One, S.NegativeOne):
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
res = Function._eval_nseries(self, x, n=n, logx=logx)
if arg0 is S.ComplexInfinity:
return res
# Handling points lying on branch cuts [-1, 1]
if arg0.is_real and (1 - arg0**2).is_positive:
ndir = arg.dir(x, cdir if cdir else 1)
if im(ndir).is_negative:
if arg0.is_positive:
return res + I*pi
elif im(ndir).is_positive:
if arg0.is_negative:
return res - I*pi
else:
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
return res
def _eval_rewrite_as_log(self, x, **kwargs):
return (log(1 + 1/x) - log(1 - 1/x)) / 2
_eval_rewrite_as_tractable = _eval_rewrite_as_log
def _eval_rewrite_as_atanh(self, x, **kwargs):
return atanh(1/x)
def _eval_rewrite_as_asinh(self, x, **kwargs):
return (pi*I/2*(sqrt((x - 1)/x)*sqrt(x/(x - 1)) - sqrt(1 + 1/x)*sqrt(x/(x + 1))) +
x*sqrt(1/x**2)*asinh(sqrt(1/(x**2 - 1))))
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return coth
class asech(InverseHyperbolicFunction):
"""
``asech(x)`` is the inverse hyperbolic secant of ``x``.
The inverse hyperbolic secant function.
Examples
========
>>> from sympy import asech, sqrt, S
>>> from sympy.abc import x
>>> asech(x).diff(x)
-1/(x*sqrt(1 - x**2))
>>> asech(1).diff(x)
0
>>> asech(1)
0
>>> asech(S(2))
I*pi/3
>>> asech(-sqrt(2))
3*I*pi/4
>>> asech((sqrt(6) - sqrt(2)))
I*pi/12
See Also
========
asinh, atanh, cosh, acoth
References
==========
.. [1] https://en.wikipedia.org/wiki/Hyperbolic_function
.. [2] http://dlmf.nist.gov/4.37
.. [3] http://functions.wolfram.com/ElementaryFunctions/ArcSech/
"""
def fdiff(self, argindex=1):
if argindex == 1:
z = self.args[0]
return -1/(z*sqrt(1 - z**2))
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return pi*I / 2
elif arg is S.NegativeInfinity:
return pi*I / 2
elif arg.is_zero:
return S.Infinity
elif arg is S.One:
return S.Zero
elif arg is S.NegativeOne:
return pi*I
if arg.is_number:
cst_table = _asech_table()
if arg in cst_table:
if arg.is_extended_real:
return cst_table[arg]*I
return cst_table[arg]
if arg is S.ComplexInfinity:
from sympy.calculus.accumulationbounds import AccumBounds
return I*AccumBounds(-pi/2, pi/2)
if arg.is_zero:
return S.Infinity
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n == 0:
return log(2 / x)
elif n < 0 or n % 2 == 1:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) > 2 and n > 2:
p = previous_terms[-2]
return p * ((n - 1)*(n-2)) * x**2/(4 * (n//2)**2)
else:
k = n // 2
R = RisingFactorial(S.Half, k) * n
F = factorial(k) * n // 2 * n // 2
return -1 * R / F * x**n / 4
def _eval_as_leading_term(self, x, logx=None, cdir=0): # asech
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
# Handling branch points
if x0 in (-S.One, S.Zero, S.One, S.ComplexInfinity):
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
# Handling points lying on branch cuts (-oo, 0] U (1, oo)
if x0.is_negative or (1 - x0).is_negative:
ndir = arg.dir(x, cdir if cdir else 1)
if im(ndir).is_positive:
if x0.is_positive or (x0 + 1).is_negative:
return -self.func(x0)
return self.func(x0) - 2*I*pi
elif not im(ndir).is_negative:
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
return self.func(x0)
def _eval_nseries(self, x, n, logx, cdir=0): # asech
from sympy.series.order import O
arg = self.args[0]
arg0 = arg.subs(x, 0)
# Handling branch points
if arg0 is S.One:
t = Dummy('t', positive=True)
ser = asech(S.One - t**2).rewrite(log).nseries(t, 0, 2*n)
arg1 = S.One - self.args[0]
f = arg1.as_leading_term(x)
g = (arg1 - f)/ f
if not g.is_meromorphic(x, 0): # cannot be expanded
return O(1) if n == 0 else O(sqrt(x))
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
res = (res1.removeO()*sqrt(f)).expand()
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
if arg0 is S.NegativeOne:
t = Dummy('t', positive=True)
ser = asech(S.NegativeOne + t**2).rewrite(log).nseries(t, 0, 2*n)
arg1 = S.One + self.args[0]
f = arg1.as_leading_term(x)
g = (arg1 - f)/ f
if not g.is_meromorphic(x, 0): # cannot be expanded
return O(1) if n == 0 else I*pi + O(sqrt(x))
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
res = (res1.removeO()*sqrt(f)).expand()
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
res = Function._eval_nseries(self, x, n=n, logx=logx)
if arg0 is S.ComplexInfinity:
return res
# Handling points lying on branch cuts (-oo, 0] U (1, oo)
if arg0.is_negative or (1 - arg0).is_negative:
ndir = arg.dir(x, cdir if cdir else 1)
if im(ndir).is_positive:
if arg0.is_positive or (arg0 + 1).is_negative:
return -res
return res - 2*I*pi
elif not im(ndir).is_negative:
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
return res
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return sech
def _eval_rewrite_as_log(self, arg, **kwargs):
return log(1/arg + sqrt(1/arg - 1) * sqrt(1/arg + 1))
_eval_rewrite_as_tractable = _eval_rewrite_as_log
def _eval_rewrite_as_acosh(self, arg, **kwargs):
return acosh(1/arg)
def _eval_rewrite_as_asinh(self, arg, **kwargs):
return sqrt(1/arg - 1)/sqrt(1 - 1/arg)*(I*asinh(I/arg)
+ pi*S.Half)
def _eval_rewrite_as_atanh(self, x, **kwargs):
return (I*pi*(1 - sqrt(x)*sqrt(1/x) - I/2*sqrt(-x)/sqrt(x) - I/2*sqrt(x**2)/sqrt(-x**2))
+ sqrt(1/(x + 1))*sqrt(x + 1)*atanh(sqrt(1 - x**2)))
def _eval_rewrite_as_acsch(self, x, **kwargs):
return sqrt(1/x - 1)/sqrt(1 - 1/x)*(pi/2 - I*acsch(I*x))
class acsch(InverseHyperbolicFunction):
"""
``acsch(x)`` is the inverse hyperbolic cosecant of ``x``.
The inverse hyperbolic cosecant function.
Examples
========
>>> from sympy import acsch, sqrt, I
>>> from sympy.abc import x
>>> acsch(x).diff(x)
-1/(x**2*sqrt(1 + x**(-2)))
>>> acsch(1).diff(x)
0
>>> acsch(1)
log(1 + sqrt(2))
>>> acsch(I)
-I*pi/2
>>> acsch(-2*I)
I*pi/6
>>> acsch(I*(sqrt(6) - sqrt(2)))
-5*I*pi/12
See Also
========
asinh
References
==========
.. [1] https://en.wikipedia.org/wiki/Hyperbolic_function
.. [2] http://dlmf.nist.gov/4.37
.. [3] http://functions.wolfram.com/ElementaryFunctions/ArcCsch/
"""
def fdiff(self, argindex=1):
if argindex == 1:
z = self.args[0]
return -1/(z**2*sqrt(1 + 1/z**2))
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg):
if arg.is_Number:
if arg is S.NaN:
return S.NaN
elif arg is S.Infinity:
return S.Zero
elif arg is S.NegativeInfinity:
return S.Zero
elif arg.is_zero:
return S.ComplexInfinity
elif arg is S.One:
return log(1 + sqrt(2))
elif arg is S.NegativeOne:
return - log(1 + sqrt(2))
if arg.is_number:
cst_table = _acsch_table()
if arg in cst_table:
return cst_table[arg]*I
if arg is S.ComplexInfinity:
return S.Zero
if arg.is_infinite:
return S.Zero
if arg.is_zero:
return S.ComplexInfinity
if arg.could_extract_minus_sign():
return -cls(-arg)
@staticmethod
@cacheit
def taylor_term(n, x, *previous_terms):
if n == 0:
return log(2 / x)
elif n < 0 or n % 2 == 1:
return S.Zero
else:
x = sympify(x)
if len(previous_terms) > 2 and n > 2:
p = previous_terms[-2]
return -p * ((n - 1)*(n-2)) * x**2/(4 * (n//2)**2)
else:
k = n // 2
R = RisingFactorial(S.Half, k) * n
F = factorial(k) * n // 2 * n // 2
return S.NegativeOne**(k +1) * R / F * x**n / 4
def _eval_as_leading_term(self, x, logx=None, cdir=0): # acsch
arg = self.args[0]
x0 = arg.subs(x, 0).cancel()
# Handling branch points
if x0 in (-I, I, S.Zero):
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
if x0 is S.ComplexInfinity:
return (1/arg).as_leading_term(x)
# Handling points lying on branch cuts (-I, I)
if x0.is_imaginary and (1 + x0**2).is_positive:
ndir = arg.dir(x, cdir if cdir else 1)
if re(ndir).is_positive:
if im(x0).is_positive:
return -self.func(x0) - I*pi
elif re(ndir).is_negative:
if im(x0).is_negative:
return -self.func(x0) + I*pi
else:
return self.rewrite(log)._eval_as_leading_term(x, logx=logx, cdir=cdir)
return self.func(x0)
def _eval_nseries(self, x, n, logx, cdir=0): # acsch
from sympy.series.order import O
arg = self.args[0]
arg0 = arg.subs(x, 0)
# Handling branch points
if arg0 is I:
t = Dummy('t', positive=True)
ser = acsch(I + t**2).rewrite(log).nseries(t, 0, 2*n)
arg1 = -I + self.args[0]
f = arg1.as_leading_term(x)
g = (arg1 - f)/ f
if not g.is_meromorphic(x, 0): # cannot be expanded
return O(1) if n == 0 else -I*pi/2 + O(sqrt(x))
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
res = (res1.removeO()*sqrt(f)).expand()
res = ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
return res
if arg0 == S.NegativeOne*I:
t = Dummy('t', positive=True)
ser = acsch(-I + t**2).rewrite(log).nseries(t, 0, 2*n)
arg1 = I + self.args[0]
f = arg1.as_leading_term(x)
g = (arg1 - f)/ f
if not g.is_meromorphic(x, 0): # cannot be expanded
return O(1) if n == 0 else I*pi/2 + O(sqrt(x))
res1 = sqrt(S.One + g)._eval_nseries(x, n=n, logx=logx)
res = (res1.removeO()*sqrt(f)).expand()
return ser.removeO().subs(t, res).expand().powsimp() + O(x**n, x)
res = Function._eval_nseries(self, x, n=n, logx=logx)
if arg0 is S.ComplexInfinity:
return res
# Handling points lying on branch cuts (-I, I)
if arg0.is_imaginary and (1 + arg0**2).is_positive:
ndir = self.args[0].dir(x, cdir if cdir else 1)
if re(ndir).is_positive:
if im(arg0).is_positive:
return -res - I*pi
elif re(ndir).is_negative:
if im(arg0).is_negative:
return -res + I*pi
else:
return self.rewrite(log)._eval_nseries(x, n, logx=logx, cdir=cdir)
return res
def inverse(self, argindex=1):
"""
Returns the inverse of this function.
"""
return csch
def _eval_rewrite_as_log(self, arg, **kwargs):
return log(1/arg + sqrt(1/arg**2 + 1))
_eval_rewrite_as_tractable = _eval_rewrite_as_log
def _eval_rewrite_as_asinh(self, arg, **kwargs):
return asinh(1/arg)
def _eval_rewrite_as_acosh(self, arg, **kwargs):
return I*(sqrt(1 - I/arg)/sqrt(I/arg - 1)*
acosh(I/arg) - pi*S.Half)
def _eval_rewrite_as_atanh(self, arg, **kwargs):
arg2 = arg**2
arg2p1 = arg2 + 1
return sqrt(-arg2)/arg*(pi*S.Half -
sqrt(-arg2p1**2)/arg2p1*atanh(sqrt(arg2p1)))
def _eval_is_zero(self):
return self.args[0].is_infinite
|
40d914c0c738a4af21a3412f55a0181124e9ef7c5831ae3182c8f9f6cf36cfb7 | from sympy.core import S, diff
from sympy.core.function import Function, ArgumentIndexError
from sympy.core.logic import fuzzy_not
from sympy.core.relational import Eq, Ne
from sympy.functions.elementary.complexes import im, sign
from sympy.functions.elementary.piecewise import Piecewise
from sympy.polys.polyerrors import PolynomialError
from sympy.polys.polyroots import roots
from sympy.utilities.misc import filldedent
###############################################################################
################################ DELTA FUNCTION ###############################
###############################################################################
class DiracDelta(Function):
r"""
The DiracDelta function and its derivatives.
Explanation
===========
DiracDelta is not an ordinary function. It can be rigorously defined either
as a distribution or as a measure.
DiracDelta only makes sense in definite integrals, and in particular,
integrals of the form ``Integral(f(x)*DiracDelta(x - x0), (x, a, b))``,
where it equals ``f(x0)`` if ``a <= x0 <= b`` and ``0`` otherwise. Formally,
DiracDelta acts in some ways like a function that is ``0`` everywhere except
at ``0``, but in many ways it also does not. It can often be useful to treat
DiracDelta in formal ways, building up and manipulating expressions with
delta functions (which may eventually be integrated), but care must be taken
to not treat it as a real function. SymPy's ``oo`` is similar. It only
truly makes sense formally in certain contexts (such as integration limits),
but SymPy allows its use everywhere, and it tries to be consistent with
operations on it (like ``1/oo``), but it is easy to get into trouble and get
wrong results if ``oo`` is treated too much like a number. Similarly, if
DiracDelta is treated too much like a function, it is easy to get wrong or
nonsensical results.
DiracDelta function has the following properties:
1) $\frac{d}{d x} \theta(x) = \delta(x)$
2) $\int_{-\infty}^\infty \delta(x - a)f(x)\, dx = f(a)$ and $\int_{a-
\epsilon}^{a+\epsilon} \delta(x - a)f(x)\, dx = f(a)$
3) $\delta(x) = 0$ for all $x \neq 0$
4) $\delta(g(x)) = \sum_i \frac{\delta(x - x_i)}{\|g'(x_i)\|}$ where $x_i$
are the roots of $g$
5) $\delta(-x) = \delta(x)$
Derivatives of ``k``-th order of DiracDelta have the following properties:
6) $\delta(x, k) = 0$ for all $x \neq 0$
7) $\delta(-x, k) = -\delta(x, k)$ for odd $k$
8) $\delta(-x, k) = \delta(x, k)$ for even $k$
Examples
========
>>> from sympy import DiracDelta, diff, pi
>>> from sympy.abc import x, y
>>> DiracDelta(x)
DiracDelta(x)
>>> DiracDelta(1)
0
>>> DiracDelta(-1)
0
>>> DiracDelta(pi)
0
>>> DiracDelta(x - 4).subs(x, 4)
DiracDelta(0)
>>> diff(DiracDelta(x))
DiracDelta(x, 1)
>>> diff(DiracDelta(x - 1), x, 2)
DiracDelta(x - 1, 2)
>>> diff(DiracDelta(x**2 - 1), x, 2)
2*(2*x**2*DiracDelta(x**2 - 1, 2) + DiracDelta(x**2 - 1, 1))
>>> DiracDelta(3*x).is_simple(x)
True
>>> DiracDelta(x**2).is_simple(x)
False
>>> DiracDelta((x**2 - 1)*y).expand(diracdelta=True, wrt=x)
DiracDelta(x - 1)/(2*Abs(y)) + DiracDelta(x + 1)/(2*Abs(y))
See Also
========
Heaviside
sympy.simplify.simplify.simplify, is_simple
sympy.functions.special.tensor_functions.KroneckerDelta
References
==========
.. [1] http://mathworld.wolfram.com/DeltaFunction.html
"""
is_real = True
def fdiff(self, argindex=1):
"""
Returns the first derivative of a DiracDelta Function.
Explanation
===========
The difference between ``diff()`` and ``fdiff()`` is: ``diff()`` is the
user-level function and ``fdiff()`` is an object method. ``fdiff()`` is
a convenience method available in the ``Function`` class. It returns
the derivative of the function without considering the chain rule.
``diff(function, x)`` calls ``Function._eval_derivative`` which in turn
calls ``fdiff()`` internally to compute the derivative of the function.
Examples
========
>>> from sympy import DiracDelta, diff
>>> from sympy.abc import x
>>> DiracDelta(x).fdiff()
DiracDelta(x, 1)
>>> DiracDelta(x, 1).fdiff()
DiracDelta(x, 2)
>>> DiracDelta(x**2 - 1).fdiff()
DiracDelta(x**2 - 1, 1)
>>> diff(DiracDelta(x, 1)).fdiff()
DiracDelta(x, 3)
Parameters
==========
argindex : integer
degree of derivative
"""
if argindex == 1:
#I didn't know if there is a better way to handle default arguments
k = 0
if len(self.args) > 1:
k = self.args[1]
return self.func(self.args[0], k + 1)
else:
raise ArgumentIndexError(self, argindex)
@classmethod
def eval(cls, arg, k=S.Zero):
"""
Returns a simplified form or a value of DiracDelta depending on the
argument passed by the DiracDelta object.
Explanation
===========
The ``eval()`` method is automatically called when the ``DiracDelta``
class is about to be instantiated and it returns either some simplified
instance or the unevaluated instance depending on the argument passed.
In other words, ``eval()`` method is not needed to be called explicitly,
it is being called and evaluated once the object is called.
Examples
========
>>> from sympy import DiracDelta, S
>>> from sympy.abc import x
>>> DiracDelta(x)
DiracDelta(x)
>>> DiracDelta(-x, 1)
-DiracDelta(x, 1)
>>> DiracDelta(1)
0
>>> DiracDelta(5, 1)
0
>>> DiracDelta(0)
DiracDelta(0)
>>> DiracDelta(-1)
0
>>> DiracDelta(S.NaN)
nan
>>> DiracDelta(x - 100).subs(x, 5)
0
>>> DiracDelta(x - 100).subs(x, 100)
DiracDelta(0)
Parameters
==========
k : integer
order of derivative
arg : argument passed to DiracDelta
"""
if not k.is_Integer or k.is_negative:
raise ValueError("Error: the second argument of DiracDelta must be \
a non-negative integer, %s given instead." % (k,))
if arg is S.NaN:
return S.NaN
if arg.is_nonzero:
return S.Zero
if fuzzy_not(im(arg).is_zero):
raise ValueError(filldedent('''
Function defined only for Real Values.
Complex part: %s found in %s .''' % (
repr(im(arg)), repr(arg))))
c, nc = arg.args_cnc()
if c and c[0] is S.NegativeOne:
# keep this fast and simple instead of using
# could_extract_minus_sign
if k.is_odd:
return -cls(-arg, k)
elif k.is_even:
return cls(-arg, k) if k else cls(-arg)
elif k.is_zero:
return cls(arg, evaluate=False)
def _eval_expand_diracdelta(self, **hints):
"""
Compute a simplified representation of the function using
property number 4. Pass ``wrt`` as a hint to expand the expression
with respect to a particular variable.
Explanation
===========
``wrt`` is:
- a variable with respect to which a DiracDelta expression will
get expanded.
Examples
========
>>> from sympy import DiracDelta
>>> from sympy.abc import x, y
>>> DiracDelta(x*y).expand(diracdelta=True, wrt=x)
DiracDelta(x)/Abs(y)
>>> DiracDelta(x*y).expand(diracdelta=True, wrt=y)
DiracDelta(y)/Abs(x)
>>> DiracDelta(x**2 + x - 2).expand(diracdelta=True, wrt=x)
DiracDelta(x - 1)/3 + DiracDelta(x + 2)/3
See Also
========
is_simple, Diracdelta
"""
wrt = hints.get('wrt', None)
if wrt is None:
free = self.free_symbols
if len(free) == 1:
wrt = free.pop()
else:
raise TypeError(filldedent('''
When there is more than 1 free symbol or variable in the expression,
the 'wrt' keyword is required as a hint to expand when using the
DiracDelta hint.'''))
if not self.args[0].has(wrt) or (len(self.args) > 1 and self.args[1] != 0 ):
return self
try:
argroots = roots(self.args[0], wrt)
result = 0
valid = True
darg = abs(diff(self.args[0], wrt))
for r, m in argroots.items():
if r.is_real is not False and m == 1:
result += self.func(wrt - r)/darg.subs(wrt, r)
else:
# don't handle non-real and if m != 1 then
# a polynomial will have a zero in the derivative (darg)
# at r
valid = False
break
if valid:
return result
except PolynomialError:
pass
return self
def is_simple(self, x):
"""
Tells whether the argument(args[0]) of DiracDelta is a linear
expression in *x*.
Examples
========
>>> from sympy import DiracDelta, cos
>>> from sympy.abc import x, y
>>> DiracDelta(x*y).is_simple(x)
True
>>> DiracDelta(x*y).is_simple(y)
True
>>> DiracDelta(x**2 + x - 2).is_simple(x)
False
>>> DiracDelta(cos(x)).is_simple(x)
False
Parameters
==========
x : can be a symbol
See Also
========
sympy.simplify.simplify.simplify, DiracDelta
"""
p = self.args[0].as_poly(x)
if p:
return p.degree() == 1
return False
def _eval_rewrite_as_Piecewise(self, *args, **kwargs):
"""
Represents DiracDelta in a piecewise form.
Examples
========
>>> from sympy import DiracDelta, Piecewise, Symbol
>>> x = Symbol('x')
>>> DiracDelta(x).rewrite(Piecewise)
Piecewise((DiracDelta(0), Eq(x, 0)), (0, True))
>>> DiracDelta(x - 5).rewrite(Piecewise)
Piecewise((DiracDelta(0), Eq(x, 5)), (0, True))
>>> DiracDelta(x**2 - 5).rewrite(Piecewise)
Piecewise((DiracDelta(0), Eq(x**2, 5)), (0, True))
>>> DiracDelta(x - 5, 4).rewrite(Piecewise)
DiracDelta(x - 5, 4)
"""
if len(args) == 1:
return Piecewise((DiracDelta(0), Eq(args[0], 0)), (0, True))
def _eval_rewrite_as_SingularityFunction(self, *args, **kwargs):
"""
Returns the DiracDelta expression written in the form of Singularity
Functions.
"""
from sympy.solvers import solve
from sympy.functions.special.singularity_functions import SingularityFunction
if self == DiracDelta(0):
return SingularityFunction(0, 0, -1)
if self == DiracDelta(0, 1):
return SingularityFunction(0, 0, -2)
free = self.free_symbols
if len(free) == 1:
x = (free.pop())
if len(args) == 1:
return SingularityFunction(x, solve(args[0], x)[0], -1)
return SingularityFunction(x, solve(args[0], x)[0], -args[1] - 1)
else:
# I don't know how to handle the case for DiracDelta expressions
# having arguments with more than one variable.
raise TypeError(filldedent('''
rewrite(SingularityFunction) does not support
arguments with more that one variable.'''))
###############################################################################
############################## HEAVISIDE FUNCTION #############################
###############################################################################
class Heaviside(Function):
r"""
Heaviside step function.
Explanation
===========
The Heaviside step function has the following properties:
1) $\frac{d}{d x} \theta(x) = \delta(x)$
2) $\theta(x) = \begin{cases} 0 & \text{for}\: x < 0 \\ \frac{1}{2} &
\text{for}\: x = 0 \\1 & \text{for}\: x > 0 \end{cases}$
3) $\frac{d}{d x} \max(x, 0) = \theta(x)$
Heaviside(x) is printed as $\theta(x)$ with the SymPy LaTeX printer.
The value at 0 is set differently in different fields. SymPy uses 1/2,
which is a convention from electronics and signal processing, and is
consistent with solving improper integrals by Fourier transform and
convolution.
To specify a different value of Heaviside at ``x=0``, a second argument
can be given. Using ``Heaviside(x, nan)`` gives an expression that will
evaluate to nan for x=0.
.. versionchanged:: 1.9 ``Heaviside(0)`` now returns 1/2 (before: undefined)
Examples
========
>>> from sympy import Heaviside, nan
>>> from sympy.abc import x
>>> Heaviside(9)
1
>>> Heaviside(-9)
0
>>> Heaviside(0)
1/2
>>> Heaviside(0, nan)
nan
>>> (Heaviside(x) + 1).replace(Heaviside(x), Heaviside(x, 1))
Heaviside(x, 1) + 1
See Also
========
DiracDelta
References
==========
.. [1] http://mathworld.wolfram.com/HeavisideStepFunction.html
.. [2] http://dlmf.nist.gov/1.16#iv
"""
is_real = True
def fdiff(self, argindex=1):
"""
Returns the first derivative of a Heaviside Function.
Examples
========
>>> from sympy import Heaviside, diff
>>> from sympy.abc import x
>>> Heaviside(x).fdiff()
DiracDelta(x)
>>> Heaviside(x**2 - 1).fdiff()
DiracDelta(x**2 - 1)
>>> diff(Heaviside(x)).fdiff()
DiracDelta(x, 1)
Parameters
==========
argindex : integer
order of derivative
"""
if argindex == 1:
return DiracDelta(self.args[0])
else:
raise ArgumentIndexError(self, argindex)
def __new__(cls, arg, H0=S.Half, **options):
if isinstance(H0, Heaviside) and len(H0.args) == 1:
H0 = S.Half
return super(cls, cls).__new__(cls, arg, H0, **options)
@property
def pargs(self):
"""Args without default S.Half"""
args = self.args
if args[1] is S.Half:
args = args[:1]
return args
@classmethod
def eval(cls, arg, H0=S.Half):
"""
Returns a simplified form or a value of Heaviside depending on the
argument passed by the Heaviside object.
Explanation
===========
The ``eval()`` method is automatically called when the ``Heaviside``
class is about to be instantiated and it returns either some simplified
instance or the unevaluated instance depending on the argument passed.
In other words, ``eval()`` method is not needed to be called explicitly,
it is being called and evaluated once the object is called.
Examples
========
>>> from sympy import Heaviside, S
>>> from sympy.abc import x
>>> Heaviside(x)
Heaviside(x)
>>> Heaviside(19)
1
>>> Heaviside(0)
1/2
>>> Heaviside(0, 1)
1
>>> Heaviside(-5)
0
>>> Heaviside(S.NaN)
nan
>>> Heaviside(x - 100).subs(x, 5)
0
>>> Heaviside(x - 100).subs(x, 105)
1
Parameters
==========
arg : argument passed by Heaviside object
H0 : value of Heaviside(0)
"""
if arg.is_extended_negative:
return S.Zero
elif arg.is_extended_positive:
return S.One
elif arg.is_zero:
return H0
elif arg is S.NaN:
return S.NaN
elif fuzzy_not(im(arg).is_zero):
raise ValueError("Function defined only for Real Values. Complex part: %s found in %s ." % (repr(im(arg)), repr(arg)) )
def _eval_rewrite_as_Piecewise(self, arg, H0=None, **kwargs):
"""
Represents Heaviside in a Piecewise form.
Examples
========
>>> from sympy import Heaviside, Piecewise, Symbol, nan
>>> x = Symbol('x')
>>> Heaviside(x).rewrite(Piecewise)
Piecewise((0, x < 0), (1/2, Eq(x, 0)), (1, True))
>>> Heaviside(x,nan).rewrite(Piecewise)
Piecewise((0, x < 0), (nan, Eq(x, 0)), (1, True))
>>> Heaviside(x - 5).rewrite(Piecewise)
Piecewise((0, x < 5), (1/2, Eq(x, 5)), (1, True))
>>> Heaviside(x**2 - 1).rewrite(Piecewise)
Piecewise((0, x**2 < 1), (1/2, Eq(x**2, 1)), (1, True))
"""
if H0 == 0:
return Piecewise((0, arg <= 0), (1, True))
if H0 == 1:
return Piecewise((0, arg < 0), (1, True))
return Piecewise((0, arg < 0), (H0, Eq(arg, 0)), (1, True))
def _eval_rewrite_as_sign(self, arg, H0=S.Half, **kwargs):
"""
Represents the Heaviside function in the form of sign function.
Explanation
===========
The value of Heaviside(0) must be 1/2 for rewriting as sign to be
strictly equivalent. For easier usage, we also allow this rewriting
when Heaviside(0) is undefined.
Examples
========
>>> from sympy import Heaviside, Symbol, sign, nan
>>> x = Symbol('x', real=True)
>>> y = Symbol('y')
>>> Heaviside(x).rewrite(sign)
sign(x)/2 + 1/2
>>> Heaviside(x, 0).rewrite(sign)
Piecewise((sign(x)/2 + 1/2, Ne(x, 0)), (0, True))
>>> Heaviside(x, nan).rewrite(sign)
Piecewise((sign(x)/2 + 1/2, Ne(x, 0)), (nan, True))
>>> Heaviside(x - 2).rewrite(sign)
sign(x - 2)/2 + 1/2
>>> Heaviside(x**2 - 2*x + 1).rewrite(sign)
sign(x**2 - 2*x + 1)/2 + 1/2
>>> Heaviside(y).rewrite(sign)
Heaviside(y)
>>> Heaviside(y**2 - 2*y + 1).rewrite(sign)
Heaviside(y**2 - 2*y + 1)
See Also
========
sign
"""
if arg.is_extended_real:
pw1 = Piecewise(
((sign(arg) + 1)/2, Ne(arg, 0)),
(Heaviside(0, H0=H0), True))
pw2 = Piecewise(
((sign(arg) + 1)/2, Eq(Heaviside(0, H0=H0), S.Half)),
(pw1, True))
return pw2
def _eval_rewrite_as_SingularityFunction(self, args, H0=S.Half, **kwargs):
"""
Returns the Heaviside expression written in the form of Singularity
Functions.
"""
from sympy.solvers import solve
from sympy.functions.special.singularity_functions import SingularityFunction
if self == Heaviside(0):
return SingularityFunction(0, 0, 0)
free = self.free_symbols
if len(free) == 1:
x = (free.pop())
return SingularityFunction(x, solve(args, x)[0], 0)
# TODO
# ((x - 5)**3*Heaviside(x - 5)).rewrite(SingularityFunction) should output
# SingularityFunction(x, 5, 0) instead of (x - 5)**3*SingularityFunction(x, 5, 0)
else:
# I don't know how to handle the case for Heaviside expressions
# having arguments with more than one variable.
raise TypeError(filldedent('''
rewrite(SingularityFunction) does not
support arguments with more that one variable.'''))
|
1b15bfead5ee8ae59aa7ea5ce13d2fd4f31c7f0f055daab799211fe743a42e85 | from sympy.core import S, sympify
from sympy.core.symbol import (Dummy, symbols)
from sympy.functions import Piecewise, piecewise_fold
from sympy.logic.boolalg import And
from sympy.sets.sets import Interval
from functools import lru_cache
def _ivl(cond, x):
"""return the interval corresponding to the condition
Conditions in spline's Piecewise give the range over
which an expression is valid like (lo <= x) & (x <= hi).
This function returns (lo, hi).
"""
if isinstance(cond, And) and len(cond.args) == 2:
a, b = cond.args
if a.lts == x:
a, b = b, a
return a.lts, b.gts
raise TypeError('unexpected cond type: %s' % cond)
def _add_splines(c, b1, d, b2, x):
"""Construct c*b1 + d*b2."""
if S.Zero in (b1, c):
rv = piecewise_fold(d * b2)
elif S.Zero in (b2, d):
rv = piecewise_fold(c * b1)
else:
new_args = []
# Just combining the Piecewise without any fancy optimization
p1 = piecewise_fold(c * b1)
p2 = piecewise_fold(d * b2)
# Search all Piecewise arguments except (0, True)
p2args = list(p2.args[:-1])
# This merging algorithm assumes the conditions in
# p1 and p2 are sorted
for arg in p1.args[:-1]:
expr = arg.expr
cond = arg.cond
lower = _ivl(cond, x)[0]
# Check p2 for matching conditions that can be merged
for i, arg2 in enumerate(p2args):
expr2 = arg2.expr
cond2 = arg2.cond
lower_2, upper_2 = _ivl(cond2, x)
if cond2 == cond:
# Conditions match, join expressions
expr += expr2
# Remove matching element
del p2args[i]
# No need to check the rest
break
elif lower_2 < lower and upper_2 <= lower:
# Check if arg2 condition smaller than arg1,
# add to new_args by itself (no match expected
# in p1)
new_args.append(arg2)
del p2args[i]
break
# Checked all, add expr and cond
new_args.append((expr, cond))
# Add remaining items from p2args
new_args.extend(p2args)
# Add final (0, True)
new_args.append((0, True))
rv = Piecewise(*new_args, evaluate=False)
return rv.expand()
@lru_cache(maxsize=128)
def bspline_basis(d, knots, n, x):
"""
The $n$-th B-spline at $x$ of degree $d$ with knots.
Explanation
===========
B-Splines are piecewise polynomials of degree $d$. They are defined on a
set of knots, which is a sequence of integers or floats.
Examples
========
The 0th degree splines have a value of 1 on a single interval:
>>> from sympy import bspline_basis
>>> from sympy.abc import x
>>> d = 0
>>> knots = tuple(range(5))
>>> bspline_basis(d, knots, 0, x)
Piecewise((1, (x >= 0) & (x <= 1)), (0, True))
For a given ``(d, knots)`` there are ``len(knots)-d-1`` B-splines
defined, that are indexed by ``n`` (starting at 0).
Here is an example of a cubic B-spline:
>>> bspline_basis(3, tuple(range(5)), 0, x)
Piecewise((x**3/6, (x >= 0) & (x <= 1)),
(-x**3/2 + 2*x**2 - 2*x + 2/3,
(x >= 1) & (x <= 2)),
(x**3/2 - 4*x**2 + 10*x - 22/3,
(x >= 2) & (x <= 3)),
(-x**3/6 + 2*x**2 - 8*x + 32/3,
(x >= 3) & (x <= 4)),
(0, True))
By repeating knot points, you can introduce discontinuities in the
B-splines and their derivatives:
>>> d = 1
>>> knots = (0, 0, 2, 3, 4)
>>> bspline_basis(d, knots, 0, x)
Piecewise((1 - x/2, (x >= 0) & (x <= 2)), (0, True))
It is quite time consuming to construct and evaluate B-splines. If
you need to evaluate a B-spline many times, it is best to lambdify them
first:
>>> from sympy import lambdify
>>> d = 3
>>> knots = tuple(range(10))
>>> b0 = bspline_basis(d, knots, 0, x)
>>> f = lambdify(x, b0)
>>> y = f(0.5)
Parameters
==========
d : integer
degree of bspline
knots : list of integer values
list of knots points of bspline
n : integer
$n$-th B-spline
x : symbol
See Also
========
bspline_basis_set
References
==========
.. [1] https://en.wikipedia.org/wiki/B-spline
"""
# make sure x has no assumptions so conditions don't evaluate
xvar = x
x = Dummy()
knots = tuple(sympify(k) for k in knots)
d = int(d)
n = int(n)
n_knots = len(knots)
n_intervals = n_knots - 1
if n + d + 1 > n_intervals:
raise ValueError("n + d + 1 must not exceed len(knots) - 1")
if d == 0:
result = Piecewise(
(S.One, Interval(knots[n], knots[n + 1]).contains(x)), (0, True)
)
elif d > 0:
denom = knots[n + d + 1] - knots[n + 1]
if denom != S.Zero:
B = (knots[n + d + 1] - x) / denom
b2 = bspline_basis(d - 1, knots, n + 1, x)
else:
b2 = B = S.Zero
denom = knots[n + d] - knots[n]
if denom != S.Zero:
A = (x - knots[n]) / denom
b1 = bspline_basis(d - 1, knots, n, x)
else:
b1 = A = S.Zero
result = _add_splines(A, b1, B, b2, x)
else:
raise ValueError("degree must be non-negative: %r" % n)
# return result with user-given x
return result.xreplace({x: xvar})
def bspline_basis_set(d, knots, x):
"""
Return the ``len(knots)-d-1`` B-splines at *x* of degree *d*
with *knots*.
Explanation
===========
This function returns a list of piecewise polynomials that are the
``len(knots)-d-1`` B-splines of degree *d* for the given knots.
This function calls ``bspline_basis(d, knots, n, x)`` for different
values of *n*.
Examples
========
>>> from sympy import bspline_basis_set
>>> from sympy.abc import x
>>> d = 2
>>> knots = range(5)
>>> splines = bspline_basis_set(d, knots, x)
>>> splines
[Piecewise((x**2/2, (x >= 0) & (x <= 1)),
(-x**2 + 3*x - 3/2, (x >= 1) & (x <= 2)),
(x**2/2 - 3*x + 9/2, (x >= 2) & (x <= 3)),
(0, True)),
Piecewise((x**2/2 - x + 1/2, (x >= 1) & (x <= 2)),
(-x**2 + 5*x - 11/2, (x >= 2) & (x <= 3)),
(x**2/2 - 4*x + 8, (x >= 3) & (x <= 4)),
(0, True))]
Parameters
==========
d : integer
degree of bspline
knots : list of integers
list of knots points of bspline
x : symbol
See Also
========
bspline_basis
"""
n_splines = len(knots) - d - 1
return [bspline_basis(d, tuple(knots), i, x) for i in range(n_splines)]
def interpolating_spline(d, x, X, Y):
"""
Return spline of degree *d*, passing through the given *X*
and *Y* values.
Explanation
===========
This function returns a piecewise function such that each part is
a polynomial of degree not greater than *d*. The value of *d*
must be 1 or greater and the values of *X* must be strictly
increasing.
Examples
========
>>> from sympy import interpolating_spline
>>> from sympy.abc import x
>>> interpolating_spline(1, x, [1, 2, 4, 7], [3, 6, 5, 7])
Piecewise((3*x, (x >= 1) & (x <= 2)),
(7 - x/2, (x >= 2) & (x <= 4)),
(2*x/3 + 7/3, (x >= 4) & (x <= 7)))
>>> interpolating_spline(3, x, [-2, 0, 1, 3, 4], [4, 2, 1, 1, 3])
Piecewise((7*x**3/117 + 7*x**2/117 - 131*x/117 + 2, (x >= -2) & (x <= 1)),
(10*x**3/117 - 2*x**2/117 - 122*x/117 + 77/39, (x >= 1) & (x <= 4)))
Parameters
==========
d : integer
Degree of Bspline strictly greater than equal to one
x : symbol
X : list of strictly increasing real values
list of X coordinates through which the spline passes
Y : list of real values
list of corresponding Y coordinates through which the spline passes
See Also
========
bspline_basis_set, interpolating_poly
"""
from sympy.solvers.solveset import linsolve
from sympy.matrices.dense import Matrix
# Input sanitization
d = sympify(d)
if not (d.is_Integer and d.is_positive):
raise ValueError("Spline degree must be a positive integer, not %s." % d)
if len(X) != len(Y):
raise ValueError("Number of X and Y coordinates must be the same.")
if len(X) < d + 1:
raise ValueError("Degree must be less than the number of control points.")
if not all(a < b for a, b in zip(X, X[1:])):
raise ValueError("The x-coordinates must be strictly increasing.")
X = [sympify(i) for i in X]
# Evaluating knots value
if d.is_odd:
j = (d + 1) // 2
interior_knots = X[j:-j]
else:
j = d // 2
interior_knots = [
(a + b)/2 for a, b in zip(X[j : -j - 1], X[j + 1 : -j])
]
knots = [X[0]] * (d + 1) + list(interior_knots) + [X[-1]] * (d + 1)
basis = bspline_basis_set(d, knots, x)
A = [[b.subs(x, v) for b in basis] for v in X]
coeff = linsolve((Matrix(A), Matrix(Y)), symbols("c0:{}".format(len(X)), cls=Dummy))
coeff = list(coeff)[0]
intervals = {c for b in basis for (e, c) in b.args if c != True}
# Sorting the intervals
# ival contains the end-points of each interval
ival = [_ivl(c, x) for c in intervals]
com = zip(ival, intervals)
com = sorted(com, key=lambda x: x[0])
intervals = [y for x, y in com]
basis_dicts = [{c: e for (e, c) in b.args} for b in basis]
spline = []
for i in intervals:
piece = sum(
[c * d.get(i, S.Zero) for (c, d) in zip(coeff, basis_dicts)], S.Zero
)
spline.append((piece, i))
return Piecewise(*spline)
|
6c207ffb7c3fe468940a93a9f6f4aa88aefb81ba44464cabda9abf4afe9903d6 | from sympy.calculus.accumulationbounds import AccumBounds
from sympy.core.add import Add
from sympy.core.function import (Lambda, diff)
from sympy.core.mod import Mod
from sympy.core.mul import Mul
from sympy.core.numbers import (E, Float, I, Rational, nan, oo, pi, zoo)
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, symbols)
from sympy.functions.elementary.complexes import (arg, conjugate, im, re)
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.elementary.hyperbolic import (acoth, asinh, atanh, cosh, coth, sinh, tanh)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (acos, acot, acsc, asec, asin, atan, atan2,
cos, cot, csc, sec, sin, sinc, tan)
from sympy.functions.special.bessel import (besselj, jn)
from sympy.functions.special.delta_functions import Heaviside
from sympy.matrices.dense import Matrix
from sympy.polys.polytools import (cancel, gcd)
from sympy.series.limits import limit
from sympy.series.order import O
from sympy.series.series import series
from sympy.sets.fancysets import ImageSet
from sympy.sets.sets import (FiniteSet, Interval)
from sympy.simplify.simplify import simplify
from sympy.core.expr import unchanged
from sympy.core.function import ArgumentIndexError
from sympy.core.relational import Ne, Eq
from sympy.functions.elementary.piecewise import Piecewise
from sympy.sets.setexpr import SetExpr
from sympy.testing.pytest import XFAIL, slow, raises
x, y, z = symbols('x y z')
r = Symbol('r', real=True)
k, m = symbols('k m', integer=True)
p = Symbol('p', positive=True)
n = Symbol('n', negative=True)
np = Symbol('p', nonpositive=True)
nn = Symbol('n', nonnegative=True)
nz = Symbol('nz', nonzero=True)
ep = Symbol('ep', extended_positive=True)
en = Symbol('en', extended_negative=True)
enp = Symbol('ep', extended_nonpositive=True)
enn = Symbol('en', extended_nonnegative=True)
enz = Symbol('enz', extended_nonzero=True)
a = Symbol('a', algebraic=True)
na = Symbol('na', nonzero=True, algebraic=True)
def test_sin():
x, y = symbols('x y')
z = symbols('z', imaginary=True)
assert sin.nargs == FiniteSet(1)
assert sin(nan) is nan
assert sin(zoo) is nan
assert sin(oo) == AccumBounds(-1, 1)
assert sin(oo) - sin(oo) == AccumBounds(-2, 2)
assert sin(oo*I) == oo*I
assert sin(-oo*I) == -oo*I
assert 0*sin(oo) is S.Zero
assert 0/sin(oo) is S.Zero
assert 0 + sin(oo) == AccumBounds(-1, 1)
assert 5 + sin(oo) == AccumBounds(4, 6)
assert sin(0) == 0
assert sin(z*I) == I*sinh(z)
assert sin(asin(x)) == x
assert sin(atan(x)) == x / sqrt(1 + x**2)
assert sin(acos(x)) == sqrt(1 - x**2)
assert sin(acot(x)) == 1 / (sqrt(1 + 1 / x**2) * x)
assert sin(acsc(x)) == 1 / x
assert sin(asec(x)) == sqrt(1 - 1 / x**2)
assert sin(atan2(y, x)) == y / sqrt(x**2 + y**2)
assert sin(pi*I) == sinh(pi)*I
assert sin(-pi*I) == -sinh(pi)*I
assert sin(-2*I) == -sinh(2)*I
assert sin(pi) == 0
assert sin(-pi) == 0
assert sin(2*pi) == 0
assert sin(-2*pi) == 0
assert sin(-3*10**73*pi) == 0
assert sin(7*10**103*pi) == 0
assert sin(pi/2) == 1
assert sin(-pi/2) == -1
assert sin(pi*Rational(5, 2)) == 1
assert sin(pi*Rational(7, 2)) == -1
ne = symbols('ne', integer=True, even=False)
e = symbols('e', even=True)
assert sin(pi*ne/2) == (-1)**(ne/2 - S.Half)
assert sin(pi*k/2).func == sin
assert sin(pi*e/2) == 0
assert sin(pi*k) == 0
assert sin(pi*k).subs(k, 3) == sin(pi*k/2).subs(k, 6) # issue 8298
assert sin(pi/3) == S.Half*sqrt(3)
assert sin(pi*Rational(-2, 3)) == Rational(-1, 2)*sqrt(3)
assert sin(pi/4) == S.Half*sqrt(2)
assert sin(-pi/4) == Rational(-1, 2)*sqrt(2)
assert sin(pi*Rational(17, 4)) == S.Half*sqrt(2)
assert sin(pi*Rational(-3, 4)) == Rational(-1, 2)*sqrt(2)
assert sin(pi/6) == S.Half
assert sin(-pi/6) == Rational(-1, 2)
assert sin(pi*Rational(7, 6)) == Rational(-1, 2)
assert sin(pi*Rational(-5, 6)) == Rational(-1, 2)
assert sin(pi*Rational(1, 5)) == sqrt((5 - sqrt(5)) / 8)
assert sin(pi*Rational(2, 5)) == sqrt((5 + sqrt(5)) / 8)
assert sin(pi*Rational(3, 5)) == sin(pi*Rational(2, 5))
assert sin(pi*Rational(4, 5)) == sin(pi*Rational(1, 5))
assert sin(pi*Rational(6, 5)) == -sin(pi*Rational(1, 5))
assert sin(pi*Rational(8, 5)) == -sin(pi*Rational(2, 5))
assert sin(pi*Rational(-1273, 5)) == -sin(pi*Rational(2, 5))
assert sin(pi/8) == sqrt((2 - sqrt(2))/4)
assert sin(pi/10) == Rational(-1, 4) + sqrt(5)/4
assert sin(pi/12) == -sqrt(2)/4 + sqrt(6)/4
assert sin(pi*Rational(5, 12)) == sqrt(2)/4 + sqrt(6)/4
assert sin(pi*Rational(-7, 12)) == -sqrt(2)/4 - sqrt(6)/4
assert sin(pi*Rational(-11, 12)) == sqrt(2)/4 - sqrt(6)/4
assert sin(pi*Rational(104, 105)) == sin(pi/105)
assert sin(pi*Rational(106, 105)) == -sin(pi/105)
assert sin(pi*Rational(-104, 105)) == -sin(pi/105)
assert sin(pi*Rational(-106, 105)) == sin(pi/105)
assert sin(x*I) == sinh(x)*I
assert sin(k*pi) == 0
assert sin(17*k*pi) == 0
assert sin(2*k*pi + 4) == sin(4)
assert sin(2*k*pi + m*pi + 1) == (-1)**(m + 2*k)*sin(1)
assert sin(k*pi*I) == sinh(k*pi)*I
assert sin(r).is_real is True
assert sin(0, evaluate=False).is_algebraic
assert sin(a).is_algebraic is None
assert sin(na).is_algebraic is False
q = Symbol('q', rational=True)
assert sin(pi*q).is_algebraic
qn = Symbol('qn', rational=True, nonzero=True)
assert sin(qn).is_rational is False
assert sin(q).is_rational is None # issue 8653
assert isinstance(sin( re(x) - im(y)), sin) is True
assert isinstance(sin(-re(x) + im(y)), sin) is False
assert sin(SetExpr(Interval(0, 1))) == SetExpr(ImageSet(Lambda(x, sin(x)),
Interval(0, 1)))
for d in list(range(1, 22)) + [60, 85]:
for n in range(d*2 + 1):
x = n*pi/d
e = abs( float(sin(x)) - sin(float(x)) )
assert e < 1e-12
assert sin(0, evaluate=False).is_zero is True
assert sin(k*pi, evaluate=False).is_zero is True
assert sin(Add(1, -1, evaluate=False), evaluate=False).is_zero is True
def test_sin_cos():
for d in [1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 24, 30, 40, 60, 120]: # list is not exhaustive...
for n in range(-2*d, d*2):
x = n*pi/d
assert sin(x + pi/2) == cos(x), "fails for %d*pi/%d" % (n, d)
assert sin(x - pi/2) == -cos(x), "fails for %d*pi/%d" % (n, d)
assert sin(x) == cos(x - pi/2), "fails for %d*pi/%d" % (n, d)
assert -sin(x) == cos(x + pi/2), "fails for %d*pi/%d" % (n, d)
def test_sin_series():
assert sin(x).series(x, 0, 9) == \
x - x**3/6 + x**5/120 - x**7/5040 + O(x**9)
def test_sin_rewrite():
assert sin(x).rewrite(exp) == -I*(exp(I*x) - exp(-I*x))/2
assert sin(x).rewrite(tan) == 2*tan(x/2)/(1 + tan(x/2)**2)
assert sin(x).rewrite(cot) == \
Piecewise((0, Eq(im(x), 0) & Eq(Mod(x, pi), 0)),
(2*cot(x/2)/(cot(x/2)**2 + 1), True))
assert sin(sinh(x)).rewrite(
exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, sinh(3)).n()
assert sin(cosh(x)).rewrite(
exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, cosh(3)).n()
assert sin(tanh(x)).rewrite(
exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, tanh(3)).n()
assert sin(coth(x)).rewrite(
exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, coth(3)).n()
assert sin(sin(x)).rewrite(
exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, sin(3)).n()
assert sin(cos(x)).rewrite(
exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, cos(3)).n()
assert sin(tan(x)).rewrite(
exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, tan(3)).n()
assert sin(cot(x)).rewrite(
exp).subs(x, 3).n() == sin(x).rewrite(exp).subs(x, cot(3)).n()
assert sin(log(x)).rewrite(Pow) == I*x**-I / 2 - I*x**I /2
assert sin(x).rewrite(csc) == 1/csc(x)
assert sin(x).rewrite(cos) == cos(x - pi / 2, evaluate=False)
assert sin(x).rewrite(sec) == 1 / sec(x - pi / 2, evaluate=False)
assert sin(cos(x)).rewrite(Pow) == sin(cos(x))
def _test_extrig(f, i, e):
from sympy.core.function import expand_trig
assert unchanged(f, i)
assert expand_trig(f(i)) == f(i)
# testing directly instead of with .expand(trig=True)
# because the other expansions undo the unevaluated Mul
assert expand_trig(f(Mul(i, 1, evaluate=False))) == e
assert abs(f(i) - e).n() < 1e-10
def test_sin_expansion():
# Note: these formulas are not unique. The ones here come from the
# Chebyshev formulas.
assert sin(x + y).expand(trig=True) == sin(x)*cos(y) + cos(x)*sin(y)
assert sin(x - y).expand(trig=True) == sin(x)*cos(y) - cos(x)*sin(y)
assert sin(y - x).expand(trig=True) == cos(x)*sin(y) - sin(x)*cos(y)
assert sin(2*x).expand(trig=True) == 2*sin(x)*cos(x)
assert sin(3*x).expand(trig=True) == -4*sin(x)**3 + 3*sin(x)
assert sin(4*x).expand(trig=True) == -8*sin(x)**3*cos(x) + 4*sin(x)*cos(x)
_test_extrig(sin, 2, 2*sin(1)*cos(1))
_test_extrig(sin, 3, -4*sin(1)**3 + 3*sin(1))
def test_sin_AccumBounds():
assert sin(AccumBounds(-oo, oo)) == AccumBounds(-1, 1)
assert sin(AccumBounds(0, oo)) == AccumBounds(-1, 1)
assert sin(AccumBounds(-oo, 0)) == AccumBounds(-1, 1)
assert sin(AccumBounds(0, 2*S.Pi)) == AccumBounds(-1, 1)
assert sin(AccumBounds(0, S.Pi*Rational(3, 4))) == AccumBounds(0, 1)
assert sin(AccumBounds(S.Pi*Rational(3, 4), S.Pi*Rational(7, 4))) == AccumBounds(-1, sin(S.Pi*Rational(3, 4)))
assert sin(AccumBounds(S.Pi/4, S.Pi/3)) == AccumBounds(sin(S.Pi/4), sin(S.Pi/3))
assert sin(AccumBounds(S.Pi*Rational(3, 4), S.Pi*Rational(5, 6))) == AccumBounds(sin(S.Pi*Rational(5, 6)), sin(S.Pi*Rational(3, 4)))
def test_sin_fdiff():
assert sin(x).fdiff() == cos(x)
raises(ArgumentIndexError, lambda: sin(x).fdiff(2))
def test_trig_symmetry():
assert sin(-x) == -sin(x)
assert cos(-x) == cos(x)
assert tan(-x) == -tan(x)
assert cot(-x) == -cot(x)
assert sin(x + pi) == -sin(x)
assert sin(x + 2*pi) == sin(x)
assert sin(x + 3*pi) == -sin(x)
assert sin(x + 4*pi) == sin(x)
assert sin(x - 5*pi) == -sin(x)
assert cos(x + pi) == -cos(x)
assert cos(x + 2*pi) == cos(x)
assert cos(x + 3*pi) == -cos(x)
assert cos(x + 4*pi) == cos(x)
assert cos(x - 5*pi) == -cos(x)
assert tan(x + pi) == tan(x)
assert tan(x - 3*pi) == tan(x)
assert cot(x + pi) == cot(x)
assert cot(x - 3*pi) == cot(x)
assert sin(pi/2 - x) == cos(x)
assert sin(pi*Rational(3, 2) - x) == -cos(x)
assert sin(pi*Rational(5, 2) - x) == cos(x)
assert cos(pi/2 - x) == sin(x)
assert cos(pi*Rational(3, 2) - x) == -sin(x)
assert cos(pi*Rational(5, 2) - x) == sin(x)
assert tan(pi/2 - x) == cot(x)
assert tan(pi*Rational(3, 2) - x) == cot(x)
assert tan(pi*Rational(5, 2) - x) == cot(x)
assert cot(pi/2 - x) == tan(x)
assert cot(pi*Rational(3, 2) - x) == tan(x)
assert cot(pi*Rational(5, 2) - x) == tan(x)
assert sin(pi/2 + x) == cos(x)
assert cos(pi/2 + x) == -sin(x)
assert tan(pi/2 + x) == -cot(x)
assert cot(pi/2 + x) == -tan(x)
def test_cos():
x, y = symbols('x y')
assert cos.nargs == FiniteSet(1)
assert cos(nan) is nan
assert cos(oo) == AccumBounds(-1, 1)
assert cos(oo) - cos(oo) == AccumBounds(-2, 2)
assert cos(oo*I) is oo
assert cos(-oo*I) is oo
assert cos(zoo) is nan
assert cos(0) == 1
assert cos(acos(x)) == x
assert cos(atan(x)) == 1 / sqrt(1 + x**2)
assert cos(asin(x)) == sqrt(1 - x**2)
assert cos(acot(x)) == 1 / sqrt(1 + 1 / x**2)
assert cos(acsc(x)) == sqrt(1 - 1 / x**2)
assert cos(asec(x)) == 1 / x
assert cos(atan2(y, x)) == x / sqrt(x**2 + y**2)
assert cos(pi*I) == cosh(pi)
assert cos(-pi*I) == cosh(pi)
assert cos(-2*I) == cosh(2)
assert cos(pi/2) == 0
assert cos(-pi/2) == 0
assert cos(pi/2) == 0
assert cos(-pi/2) == 0
assert cos((-3*10**73 + 1)*pi/2) == 0
assert cos((7*10**103 + 1)*pi/2) == 0
n = symbols('n', integer=True, even=False)
e = symbols('e', even=True)
assert cos(pi*n/2) == 0
assert cos(pi*e/2) == (-1)**(e/2)
assert cos(pi) == -1
assert cos(-pi) == -1
assert cos(2*pi) == 1
assert cos(5*pi) == -1
assert cos(8*pi) == 1
assert cos(pi/3) == S.Half
assert cos(pi*Rational(-2, 3)) == Rational(-1, 2)
assert cos(pi/4) == S.Half*sqrt(2)
assert cos(-pi/4) == S.Half*sqrt(2)
assert cos(pi*Rational(11, 4)) == Rational(-1, 2)*sqrt(2)
assert cos(pi*Rational(-3, 4)) == Rational(-1, 2)*sqrt(2)
assert cos(pi/6) == S.Half*sqrt(3)
assert cos(-pi/6) == S.Half*sqrt(3)
assert cos(pi*Rational(7, 6)) == Rational(-1, 2)*sqrt(3)
assert cos(pi*Rational(-5, 6)) == Rational(-1, 2)*sqrt(3)
assert cos(pi*Rational(1, 5)) == (sqrt(5) + 1)/4
assert cos(pi*Rational(2, 5)) == (sqrt(5) - 1)/4
assert cos(pi*Rational(3, 5)) == -cos(pi*Rational(2, 5))
assert cos(pi*Rational(4, 5)) == -cos(pi*Rational(1, 5))
assert cos(pi*Rational(6, 5)) == -cos(pi*Rational(1, 5))
assert cos(pi*Rational(8, 5)) == cos(pi*Rational(2, 5))
assert cos(pi*Rational(-1273, 5)) == -cos(pi*Rational(2, 5))
assert cos(pi/8) == sqrt((2 + sqrt(2))/4)
assert cos(pi/12) == sqrt(2)/4 + sqrt(6)/4
assert cos(pi*Rational(5, 12)) == -sqrt(2)/4 + sqrt(6)/4
assert cos(pi*Rational(7, 12)) == sqrt(2)/4 - sqrt(6)/4
assert cos(pi*Rational(11, 12)) == -sqrt(2)/4 - sqrt(6)/4
assert cos(pi*Rational(104, 105)) == -cos(pi/105)
assert cos(pi*Rational(106, 105)) == -cos(pi/105)
assert cos(pi*Rational(-104, 105)) == -cos(pi/105)
assert cos(pi*Rational(-106, 105)) == -cos(pi/105)
assert cos(x*I) == cosh(x)
assert cos(k*pi*I) == cosh(k*pi)
assert cos(r).is_real is True
assert cos(0, evaluate=False).is_algebraic
assert cos(a).is_algebraic is None
assert cos(na).is_algebraic is False
q = Symbol('q', rational=True)
assert cos(pi*q).is_algebraic
assert cos(pi*Rational(2, 7)).is_algebraic
assert cos(k*pi) == (-1)**k
assert cos(2*k*pi) == 1
assert cos(0, evaluate=False).is_zero is False
assert cos(Rational(1, 2)).is_zero is False
# The following test will return None as the result, but really it should
# be True even if it is not always possible to resolve an assumptions query.
assert cos(asin(-1, evaluate=False), evaluate=False).is_zero is None
for d in list(range(1, 22)) + [60, 85]:
for n in range(2*d + 1):
x = n*pi/d
e = abs( float(cos(x)) - cos(float(x)) )
assert e < 1e-12
def test_issue_6190():
c = Float('123456789012345678901234567890.25', '')
for cls in [sin, cos, tan, cot]:
assert cls(c*pi) == cls(pi/4)
assert cls(4.125*pi) == cls(pi/8)
assert cls(4.7*pi) == cls((4.7 % 2)*pi)
def test_cos_series():
assert cos(x).series(x, 0, 9) == \
1 - x**2/2 + x**4/24 - x**6/720 + x**8/40320 + O(x**9)
def test_cos_rewrite():
assert cos(x).rewrite(exp) == exp(I*x)/2 + exp(-I*x)/2
assert cos(x).rewrite(tan) == (1 - tan(x/2)**2)/(1 + tan(x/2)**2)
assert cos(x).rewrite(cot) == \
Piecewise((1, Eq(im(x), 0) & Eq(Mod(x, 2*pi), 0)),
((cot(x/2)**2 - 1)/(cot(x/2)**2 + 1), True))
assert cos(sinh(x)).rewrite(
exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, sinh(3)).n()
assert cos(cosh(x)).rewrite(
exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, cosh(3)).n()
assert cos(tanh(x)).rewrite(
exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, tanh(3)).n()
assert cos(coth(x)).rewrite(
exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, coth(3)).n()
assert cos(sin(x)).rewrite(
exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, sin(3)).n()
assert cos(cos(x)).rewrite(
exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, cos(3)).n()
assert cos(tan(x)).rewrite(
exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, tan(3)).n()
assert cos(cot(x)).rewrite(
exp).subs(x, 3).n() == cos(x).rewrite(exp).subs(x, cot(3)).n()
assert cos(log(x)).rewrite(Pow) == x**I/2 + x**-I/2
assert cos(x).rewrite(sec) == 1/sec(x)
assert cos(x).rewrite(sin) == sin(x + pi/2, evaluate=False)
assert cos(x).rewrite(csc) == 1/csc(-x + pi/2, evaluate=False)
assert cos(sin(x)).rewrite(Pow) == cos(sin(x))
def test_cos_expansion():
assert cos(x + y).expand(trig=True) == cos(x)*cos(y) - sin(x)*sin(y)
assert cos(x - y).expand(trig=True) == cos(x)*cos(y) + sin(x)*sin(y)
assert cos(y - x).expand(trig=True) == cos(x)*cos(y) + sin(x)*sin(y)
assert cos(2*x).expand(trig=True) == 2*cos(x)**2 - 1
assert cos(3*x).expand(trig=True) == 4*cos(x)**3 - 3*cos(x)
assert cos(4*x).expand(trig=True) == 8*cos(x)**4 - 8*cos(x)**2 + 1
_test_extrig(cos, 2, 2*cos(1)**2 - 1)
_test_extrig(cos, 3, 4*cos(1)**3 - 3*cos(1))
def test_cos_AccumBounds():
assert cos(AccumBounds(-oo, oo)) == AccumBounds(-1, 1)
assert cos(AccumBounds(0, oo)) == AccumBounds(-1, 1)
assert cos(AccumBounds(-oo, 0)) == AccumBounds(-1, 1)
assert cos(AccumBounds(0, 2*S.Pi)) == AccumBounds(-1, 1)
assert cos(AccumBounds(-S.Pi/3, S.Pi/4)) == AccumBounds(cos(-S.Pi/3), 1)
assert cos(AccumBounds(S.Pi*Rational(3, 4), S.Pi*Rational(5, 4))) == AccumBounds(-1, cos(S.Pi*Rational(3, 4)))
assert cos(AccumBounds(S.Pi*Rational(5, 4), S.Pi*Rational(4, 3))) == AccumBounds(cos(S.Pi*Rational(5, 4)), cos(S.Pi*Rational(4, 3)))
assert cos(AccumBounds(S.Pi/4, S.Pi/3)) == AccumBounds(cos(S.Pi/3), cos(S.Pi/4))
def test_cos_fdiff():
assert cos(x).fdiff() == -sin(x)
raises(ArgumentIndexError, lambda: cos(x).fdiff(2))
def test_tan():
assert tan(nan) is nan
assert tan(zoo) is nan
assert tan(oo) == AccumBounds(-oo, oo)
assert tan(oo) - tan(oo) == AccumBounds(-oo, oo)
assert tan.nargs == FiniteSet(1)
assert tan(oo*I) == I
assert tan(-oo*I) == -I
assert tan(0) == 0
assert tan(atan(x)) == x
assert tan(asin(x)) == x / sqrt(1 - x**2)
assert tan(acos(x)) == sqrt(1 - x**2) / x
assert tan(acot(x)) == 1 / x
assert tan(acsc(x)) == 1 / (sqrt(1 - 1 / x**2) * x)
assert tan(asec(x)) == sqrt(1 - 1 / x**2) * x
assert tan(atan2(y, x)) == y/x
assert tan(pi*I) == tanh(pi)*I
assert tan(-pi*I) == -tanh(pi)*I
assert tan(-2*I) == -tanh(2)*I
assert tan(pi) == 0
assert tan(-pi) == 0
assert tan(2*pi) == 0
assert tan(-2*pi) == 0
assert tan(-3*10**73*pi) == 0
assert tan(pi/2) is zoo
assert tan(pi*Rational(3, 2)) is zoo
assert tan(pi/3) == sqrt(3)
assert tan(pi*Rational(-2, 3)) == sqrt(3)
assert tan(pi/4) is S.One
assert tan(-pi/4) is S.NegativeOne
assert tan(pi*Rational(17, 4)) is S.One
assert tan(pi*Rational(-3, 4)) is S.One
assert tan(pi/5) == sqrt(5 - 2*sqrt(5))
assert tan(pi*Rational(2, 5)) == sqrt(5 + 2*sqrt(5))
assert tan(pi*Rational(18, 5)) == -sqrt(5 + 2*sqrt(5))
assert tan(pi*Rational(-16, 5)) == -sqrt(5 - 2*sqrt(5))
assert tan(pi/6) == 1/sqrt(3)
assert tan(-pi/6) == -1/sqrt(3)
assert tan(pi*Rational(7, 6)) == 1/sqrt(3)
assert tan(pi*Rational(-5, 6)) == 1/sqrt(3)
assert tan(pi/8) == -1 + sqrt(2)
assert tan(pi*Rational(3, 8)) == 1 + sqrt(2) # issue 15959
assert tan(pi*Rational(5, 8)) == -1 - sqrt(2)
assert tan(pi*Rational(7, 8)) == 1 - sqrt(2)
assert tan(pi/10) == sqrt(1 - 2*sqrt(5)/5)
assert tan(pi*Rational(3, 10)) == sqrt(1 + 2*sqrt(5)/5)
assert tan(pi*Rational(17, 10)) == -sqrt(1 + 2*sqrt(5)/5)
assert tan(pi*Rational(-31, 10)) == -sqrt(1 - 2*sqrt(5)/5)
assert tan(pi/12) == -sqrt(3) + 2
assert tan(pi*Rational(5, 12)) == sqrt(3) + 2
assert tan(pi*Rational(7, 12)) == -sqrt(3) - 2
assert tan(pi*Rational(11, 12)) == sqrt(3) - 2
assert tan(pi/24).radsimp() == -2 - sqrt(3) + sqrt(2) + sqrt(6)
assert tan(pi*Rational(5, 24)).radsimp() == -2 + sqrt(3) - sqrt(2) + sqrt(6)
assert tan(pi*Rational(7, 24)).radsimp() == 2 - sqrt(3) - sqrt(2) + sqrt(6)
assert tan(pi*Rational(11, 24)).radsimp() == 2 + sqrt(3) + sqrt(2) + sqrt(6)
assert tan(pi*Rational(13, 24)).radsimp() == -2 - sqrt(3) - sqrt(2) - sqrt(6)
assert tan(pi*Rational(17, 24)).radsimp() == -2 + sqrt(3) + sqrt(2) - sqrt(6)
assert tan(pi*Rational(19, 24)).radsimp() == 2 - sqrt(3) + sqrt(2) - sqrt(6)
assert tan(pi*Rational(23, 24)).radsimp() == 2 + sqrt(3) - sqrt(2) - sqrt(6)
assert tan(x*I) == tanh(x)*I
assert tan(k*pi) == 0
assert tan(17*k*pi) == 0
assert tan(k*pi*I) == tanh(k*pi)*I
assert tan(r).is_real is None
assert tan(r).is_extended_real is True
assert tan(0, evaluate=False).is_algebraic
assert tan(a).is_algebraic is None
assert tan(na).is_algebraic is False
assert tan(pi*Rational(10, 7)) == tan(pi*Rational(3, 7))
assert tan(pi*Rational(11, 7)) == -tan(pi*Rational(3, 7))
assert tan(pi*Rational(-11, 7)) == tan(pi*Rational(3, 7))
assert tan(pi*Rational(15, 14)) == tan(pi/14)
assert tan(pi*Rational(-15, 14)) == -tan(pi/14)
assert tan(r).is_finite is None
assert tan(I*r).is_finite is True
# https://github.com/sympy/sympy/issues/21177
f = tan(pi*(x + S(3)/2))/(3*x)
assert f.as_leading_term(x) == -1/(3*pi*x**2)
def test_tan_series():
assert tan(x).series(x, 0, 9) == \
x + x**3/3 + 2*x**5/15 + 17*x**7/315 + O(x**9)
def test_tan_rewrite():
neg_exp, pos_exp = exp(-x*I), exp(x*I)
assert tan(x).rewrite(exp) == I*(neg_exp - pos_exp)/(neg_exp + pos_exp)
assert tan(x).rewrite(sin) == 2*sin(x)**2/sin(2*x)
assert tan(x).rewrite(cos) == cos(x - S.Pi/2, evaluate=False)/cos(x)
assert tan(x).rewrite(cot) == 1/cot(x)
assert tan(sinh(x)).rewrite(
exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, sinh(3)).n()
assert tan(cosh(x)).rewrite(
exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, cosh(3)).n()
assert tan(tanh(x)).rewrite(
exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, tanh(3)).n()
assert tan(coth(x)).rewrite(
exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, coth(3)).n()
assert tan(sin(x)).rewrite(
exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, sin(3)).n()
assert tan(cos(x)).rewrite(
exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, cos(3)).n()
assert tan(tan(x)).rewrite(
exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, tan(3)).n()
assert tan(cot(x)).rewrite(
exp).subs(x, 3).n() == tan(x).rewrite(exp).subs(x, cot(3)).n()
assert tan(log(x)).rewrite(Pow) == I*(x**-I - x**I)/(x**-I + x**I)
assert 0 == (cos(pi/34)*tan(pi/34) - sin(pi/34)).rewrite(pow)
assert 0 == (cos(pi/17)*tan(pi/17) - sin(pi/17)).rewrite(pow)
assert tan(pi/19).rewrite(pow) == tan(pi/19)
assert tan(pi*Rational(8, 19)).rewrite(sqrt) == tan(pi*Rational(8, 19))
assert tan(x).rewrite(sec) == sec(x)/sec(x - pi/2, evaluate=False)
assert tan(x).rewrite(csc) == csc(-x + pi/2, evaluate=False)/csc(x)
assert tan(sin(x)).rewrite(Pow) == tan(sin(x))
assert tan(pi*Rational(2, 5), evaluate=False).rewrite(sqrt) == sqrt(sqrt(5)/8 +
Rational(5, 8))/(Rational(-1, 4) + sqrt(5)/4)
def test_tan_subs():
assert tan(x).subs(tan(x), y) == y
assert tan(x).subs(x, y) == tan(y)
assert tan(x).subs(x, S.Pi/2) is zoo
assert tan(x).subs(x, S.Pi*Rational(3, 2)) is zoo
def test_tan_expansion():
assert tan(x + y).expand(trig=True) == ((tan(x) + tan(y))/(1 - tan(x)*tan(y))).expand()
assert tan(x - y).expand(trig=True) == ((tan(x) - tan(y))/(1 + tan(x)*tan(y))).expand()
assert tan(x + y + z).expand(trig=True) == (
(tan(x) + tan(y) + tan(z) - tan(x)*tan(y)*tan(z))/
(1 - tan(x)*tan(y) - tan(x)*tan(z) - tan(y)*tan(z))).expand()
assert 0 == tan(2*x).expand(trig=True).rewrite(tan).subs([(tan(x), Rational(1, 7))])*24 - 7
assert 0 == tan(3*x).expand(trig=True).rewrite(tan).subs([(tan(x), Rational(1, 5))])*55 - 37
assert 0 == tan(4*x - pi/4).expand(trig=True).rewrite(tan).subs([(tan(x), Rational(1, 5))])*239 - 1
_test_extrig(tan, 2, 2*tan(1)/(1 - tan(1)**2))
_test_extrig(tan, 3, (-tan(1)**3 + 3*tan(1))/(1 - 3*tan(1)**2))
def test_tan_AccumBounds():
assert tan(AccumBounds(-oo, oo)) == AccumBounds(-oo, oo)
assert tan(AccumBounds(S.Pi/3, S.Pi*Rational(2, 3))) == AccumBounds(-oo, oo)
assert tan(AccumBounds(S.Pi/6, S.Pi/3)) == AccumBounds(tan(S.Pi/6), tan(S.Pi/3))
def test_tan_fdiff():
assert tan(x).fdiff() == tan(x)**2 + 1
raises(ArgumentIndexError, lambda: tan(x).fdiff(2))
def test_cot():
assert cot(nan) is nan
assert cot.nargs == FiniteSet(1)
assert cot(oo*I) == -I
assert cot(-oo*I) == I
assert cot(zoo) is nan
assert cot(0) is zoo
assert cot(2*pi) is zoo
assert cot(acot(x)) == x
assert cot(atan(x)) == 1 / x
assert cot(asin(x)) == sqrt(1 - x**2) / x
assert cot(acos(x)) == x / sqrt(1 - x**2)
assert cot(acsc(x)) == sqrt(1 - 1 / x**2) * x
assert cot(asec(x)) == 1 / (sqrt(1 - 1 / x**2) * x)
assert cot(atan2(y, x)) == x/y
assert cot(pi*I) == -coth(pi)*I
assert cot(-pi*I) == coth(pi)*I
assert cot(-2*I) == coth(2)*I
assert cot(pi) == cot(2*pi) == cot(3*pi)
assert cot(-pi) == cot(-2*pi) == cot(-3*pi)
assert cot(pi/2) == 0
assert cot(-pi/2) == 0
assert cot(pi*Rational(5, 2)) == 0
assert cot(pi*Rational(7, 2)) == 0
assert cot(pi/3) == 1/sqrt(3)
assert cot(pi*Rational(-2, 3)) == 1/sqrt(3)
assert cot(pi/4) is S.One
assert cot(-pi/4) is S.NegativeOne
assert cot(pi*Rational(17, 4)) is S.One
assert cot(pi*Rational(-3, 4)) is S.One
assert cot(pi/6) == sqrt(3)
assert cot(-pi/6) == -sqrt(3)
assert cot(pi*Rational(7, 6)) == sqrt(3)
assert cot(pi*Rational(-5, 6)) == sqrt(3)
assert cot(pi/8) == 1 + sqrt(2)
assert cot(pi*Rational(3, 8)) == -1 + sqrt(2)
assert cot(pi*Rational(5, 8)) == 1 - sqrt(2)
assert cot(pi*Rational(7, 8)) == -1 - sqrt(2)
assert cot(pi/12) == sqrt(3) + 2
assert cot(pi*Rational(5, 12)) == -sqrt(3) + 2
assert cot(pi*Rational(7, 12)) == sqrt(3) - 2
assert cot(pi*Rational(11, 12)) == -sqrt(3) - 2
assert cot(pi/24).radsimp() == sqrt(2) + sqrt(3) + 2 + sqrt(6)
assert cot(pi*Rational(5, 24)).radsimp() == -sqrt(2) - sqrt(3) + 2 + sqrt(6)
assert cot(pi*Rational(7, 24)).radsimp() == -sqrt(2) + sqrt(3) - 2 + sqrt(6)
assert cot(pi*Rational(11, 24)).radsimp() == sqrt(2) - sqrt(3) - 2 + sqrt(6)
assert cot(pi*Rational(13, 24)).radsimp() == -sqrt(2) + sqrt(3) + 2 - sqrt(6)
assert cot(pi*Rational(17, 24)).radsimp() == sqrt(2) - sqrt(3) + 2 - sqrt(6)
assert cot(pi*Rational(19, 24)).radsimp() == sqrt(2) + sqrt(3) - 2 - sqrt(6)
assert cot(pi*Rational(23, 24)).radsimp() == -sqrt(2) - sqrt(3) - 2 - sqrt(6)
assert cot(x*I) == -coth(x)*I
assert cot(k*pi*I) == -coth(k*pi)*I
assert cot(r).is_real is None
assert cot(r).is_extended_real is True
assert cot(a).is_algebraic is None
assert cot(na).is_algebraic is False
assert cot(pi*Rational(10, 7)) == cot(pi*Rational(3, 7))
assert cot(pi*Rational(11, 7)) == -cot(pi*Rational(3, 7))
assert cot(pi*Rational(-11, 7)) == cot(pi*Rational(3, 7))
assert cot(pi*Rational(39, 34)) == cot(pi*Rational(5, 34))
assert cot(pi*Rational(-41, 34)) == -cot(pi*Rational(7, 34))
assert cot(x).is_finite is None
assert cot(r).is_finite is None
i = Symbol('i', imaginary=True)
assert cot(i).is_finite is True
assert cot(x).subs(x, 3*pi) is zoo
# https://github.com/sympy/sympy/issues/21177
f = cot(pi*(x + 4))/(3*x)
assert f.as_leading_term(x) == 1/(3*pi*x**2)
def test_tan_cot_sin_cos_evalf():
assert abs((tan(pi*Rational(8, 15))*cos(pi*Rational(8, 15))/sin(pi*Rational(8, 15)) - 1).evalf()) < 1e-14
assert abs((cot(pi*Rational(4, 15))*sin(pi*Rational(4, 15))/cos(pi*Rational(4, 15)) - 1).evalf()) < 1e-14
@XFAIL
def test_tan_cot_sin_cos_ratsimp():
assert 1 == (tan(pi*Rational(8, 15))*cos(pi*Rational(8, 15))/sin(pi*Rational(8, 15))).ratsimp()
assert 1 == (cot(pi*Rational(4, 15))*sin(pi*Rational(4, 15))/cos(pi*Rational(4, 15))).ratsimp()
def test_cot_series():
assert cot(x).series(x, 0, 9) == \
1/x - x/3 - x**3/45 - 2*x**5/945 - x**7/4725 + O(x**9)
# issue 6210
assert cot(x**4 + x**5).series(x, 0, 1) == \
x**(-4) - 1/x**3 + x**(-2) - 1/x + 1 + O(x)
assert cot(pi*(1-x)).series(x, 0, 3) == -1/(pi*x) + pi*x/3 + O(x**3)
assert cot(x).taylor_term(0, x) == 1/x
assert cot(x).taylor_term(2, x) is S.Zero
assert cot(x).taylor_term(3, x) == -x**3/45
def test_cot_rewrite():
neg_exp, pos_exp = exp(-x*I), exp(x*I)
assert cot(x).rewrite(exp) == I*(pos_exp + neg_exp)/(pos_exp - neg_exp)
assert cot(x).rewrite(sin) == sin(2*x)/(2*(sin(x)**2))
assert cot(x).rewrite(cos) == cos(x)/cos(x - pi/2, evaluate=False)
assert cot(x).rewrite(tan) == 1/tan(x)
def check(func):
z = cot(func(x)).rewrite(exp
) - cot(x).rewrite(exp).subs(x, func(x))
assert z.rewrite(exp).expand() == 0
check(sinh)
check(cosh)
check(tanh)
check(coth)
check(sin)
check(cos)
check(tan)
assert cot(log(x)).rewrite(Pow) == -I*(x**-I + x**I)/(x**-I - x**I)
assert cot(pi*Rational(4, 34)).rewrite(pow).ratsimp() == (cos(pi*Rational(4, 34))/sin(pi*Rational(4, 34))).rewrite(pow).ratsimp()
assert cot(pi*Rational(4, 17)).rewrite(pow) == (cos(pi*Rational(4, 17))/sin(pi*Rational(4, 17))).rewrite(pow)
assert cot(pi/19).rewrite(pow) == cot(pi/19)
assert cot(pi/19).rewrite(sqrt) == cot(pi/19)
assert cot(x).rewrite(sec) == sec(x - pi / 2, evaluate=False) / sec(x)
assert cot(x).rewrite(csc) == csc(x) / csc(- x + pi / 2, evaluate=False)
assert cot(sin(x)).rewrite(Pow) == cot(sin(x))
assert cot(pi*Rational(2, 5), evaluate=False).rewrite(sqrt) == (Rational(-1, 4) + sqrt(5)/4)/\
sqrt(sqrt(5)/8 + Rational(5, 8))
def test_cot_subs():
assert cot(x).subs(cot(x), y) == y
assert cot(x).subs(x, y) == cot(y)
assert cot(x).subs(x, 0) is zoo
assert cot(x).subs(x, S.Pi) is zoo
def test_cot_expansion():
assert cot(x + y).expand(trig=True).together() == (
(cot(x)*cot(y) - 1)/(cot(x) + cot(y)))
assert cot(x - y).expand(trig=True).together() == (
cot(x)*cot(-y) - 1)/(cot(x) + cot(-y))
assert cot(x + y + z).expand(trig=True).together() == (
(cot(x)*cot(y)*cot(z) - cot(x) - cot(y) - cot(z))/
(-1 + cot(x)*cot(y) + cot(x)*cot(z) + cot(y)*cot(z)))
assert cot(3*x).expand(trig=True).together() == (
(cot(x)**2 - 3)*cot(x)/(3*cot(x)**2 - 1))
assert cot(2*x).expand(trig=True) == cot(x)/2 - 1/(2*cot(x))
assert cot(3*x).expand(trig=True).together() == (
cot(x)**2 - 3)*cot(x)/(3*cot(x)**2 - 1)
assert cot(4*x - pi/4).expand(trig=True).cancel() == (
-tan(x)**4 + 4*tan(x)**3 + 6*tan(x)**2 - 4*tan(x) - 1
)/(tan(x)**4 + 4*tan(x)**3 - 6*tan(x)**2 - 4*tan(x) + 1)
_test_extrig(cot, 2, (-1 + cot(1)**2)/(2*cot(1)))
_test_extrig(cot, 3, (-3*cot(1) + cot(1)**3)/(-1 + 3*cot(1)**2))
def test_cot_AccumBounds():
assert cot(AccumBounds(-oo, oo)) == AccumBounds(-oo, oo)
assert cot(AccumBounds(-S.Pi/3, S.Pi/3)) == AccumBounds(-oo, oo)
assert cot(AccumBounds(S.Pi/6, S.Pi/3)) == AccumBounds(cot(S.Pi/3), cot(S.Pi/6))
def test_cot_fdiff():
assert cot(x).fdiff() == -cot(x)**2 - 1
raises(ArgumentIndexError, lambda: cot(x).fdiff(2))
def test_sinc():
assert isinstance(sinc(x), sinc)
s = Symbol('s', zero=True)
assert sinc(s) is S.One
assert sinc(S.Infinity) is S.Zero
assert sinc(S.NegativeInfinity) is S.Zero
assert sinc(S.NaN) is S.NaN
assert sinc(S.ComplexInfinity) is S.NaN
n = Symbol('n', integer=True, nonzero=True)
assert sinc(n*pi) is S.Zero
assert sinc(-n*pi) is S.Zero
assert sinc(pi/2) == 2 / pi
assert sinc(-pi/2) == 2 / pi
assert sinc(pi*Rational(5, 2)) == 2 / (5*pi)
assert sinc(pi*Rational(7, 2)) == -2 / (7*pi)
assert sinc(-x) == sinc(x)
assert sinc(x).diff(x) == cos(x)/x - sin(x)/x**2
assert sinc(x).diff(x) == (sin(x)/x).diff(x)
assert sinc(x).diff(x, x) == (-sin(x) - 2*cos(x)/x + 2*sin(x)/x**2)/x
assert sinc(x).diff(x, x) == (sin(x)/x).diff(x, x)
assert limit(sinc(x).diff(x), x, 0) == 0
assert limit(sinc(x).diff(x, x), x, 0) == -S(1)/3
# https://github.com/sympy/sympy/issues/11402
#
# assert sinc(x).diff(x) == Piecewise(((x*cos(x) - sin(x)) / x**2, Ne(x, 0)), (0, True))
#
# assert sinc(x).diff(x).equals(sinc(x).rewrite(sin).diff(x))
#
# assert sinc(x).diff(x).subs(x, 0) is S.Zero
assert sinc(x).series() == 1 - x**2/6 + x**4/120 + O(x**6)
assert sinc(x).rewrite(jn) == jn(0, x)
assert sinc(x).rewrite(sin) == Piecewise((sin(x)/x, Ne(x, 0)), (1, True))
assert sinc(pi, evaluate=False).is_zero is True
assert sinc(0, evaluate=False).is_zero is False
assert sinc(n*pi, evaluate=False).is_zero is True
assert sinc(x).is_zero is None
xr = Symbol('xr', real=True, nonzero=True)
assert sinc(x).is_real is None
assert sinc(xr).is_real is True
assert sinc(I*xr).is_real is True
assert sinc(I*100).is_real is True
assert sinc(x).is_finite is None
assert sinc(xr).is_finite is True
def test_asin():
assert asin(nan) is nan
assert asin.nargs == FiniteSet(1)
assert asin(oo) == -I*oo
assert asin(-oo) == I*oo
assert asin(zoo) is zoo
# Note: asin(-x) = - asin(x)
assert asin(0) == 0
assert asin(1) == pi/2
assert asin(-1) == -pi/2
assert asin(sqrt(3)/2) == pi/3
assert asin(-sqrt(3)/2) == -pi/3
assert asin(sqrt(2)/2) == pi/4
assert asin(-sqrt(2)/2) == -pi/4
assert asin(sqrt((5 - sqrt(5))/8)) == pi/5
assert asin(-sqrt((5 - sqrt(5))/8)) == -pi/5
assert asin(S.Half) == pi/6
assert asin(Rational(-1, 2)) == -pi/6
assert asin((sqrt(2 - sqrt(2)))/2) == pi/8
assert asin(-(sqrt(2 - sqrt(2)))/2) == -pi/8
assert asin((sqrt(5) - 1)/4) == pi/10
assert asin(-(sqrt(5) - 1)/4) == -pi/10
assert asin((sqrt(3) - 1)/sqrt(2**3)) == pi/12
assert asin(-(sqrt(3) - 1)/sqrt(2**3)) == -pi/12
# check round-trip for exact values:
for d in [5, 6, 8, 10, 12]:
for n in range(-(d//2), d//2 + 1):
if gcd(n, d) == 1:
assert asin(sin(n*pi/d)) == n*pi/d
assert asin(x).diff(x) == 1/sqrt(1 - x**2)
assert asin(0.2, evaluate=False).is_real is True
assert asin(-2).is_real is False
assert asin(r).is_real is None
assert asin(-2*I) == -I*asinh(2)
assert asin(Rational(1, 7), evaluate=False).is_positive is True
assert asin(Rational(-1, 7), evaluate=False).is_positive is False
assert asin(p).is_positive is None
assert asin(sin(Rational(7, 2))) == Rational(-7, 2) + pi
assert asin(sin(Rational(-7, 4))) == Rational(7, 4) - pi
assert unchanged(asin, cos(x))
def test_asin_series():
assert asin(x).series(x, 0, 9) == \
x + x**3/6 + 3*x**5/40 + 5*x**7/112 + O(x**9)
t5 = asin(x).taylor_term(5, x)
assert t5 == 3*x**5/40
assert asin(x).taylor_term(7, x, t5, 0) == 5*x**7/112
def test_asin_leading_term():
assert asin(x).as_leading_term(x) == x
# Tests concerning branch points
assert asin(x + 1).as_leading_term(x) == pi/2
assert asin(x - 1).as_leading_term(x) == -pi/2
assert asin(1/x).as_leading_term(x, cdir=1) == I*log(x) + pi/2 - I*log(2)
assert asin(1/x).as_leading_term(x, cdir=-1) == -I*log(x) - 3*pi/2 + I*log(2)
# Tests concerning points lying on branch cuts
assert asin(I*x + 2).as_leading_term(x, cdir=1) == pi - asin(2)
assert asin(-I*x + 2).as_leading_term(x, cdir=1) == asin(2)
assert asin(I*x - 2).as_leading_term(x, cdir=1) == -asin(2)
assert asin(-I*x - 2).as_leading_term(x, cdir=1) == -pi + asin(2)
# Tests concerning im(ndir) == 0
assert asin(-I*x**2 + x - 2).as_leading_term(x, cdir=1) == -pi/2 + I*log(2 - sqrt(3))
assert asin(-I*x**2 + x - 2).as_leading_term(x, cdir=-1) == -pi/2 + I*log(2 - sqrt(3))
def test_asin_rewrite():
assert asin(x).rewrite(log) == -I*log(I*x + sqrt(1 - x**2))
assert asin(x).rewrite(atan) == 2*atan(x/(1 + sqrt(1 - x**2)))
assert asin(x).rewrite(acos) == S.Pi/2 - acos(x)
assert asin(x).rewrite(acot) == 2*acot((sqrt(-x**2 + 1) + 1)/x)
assert asin(x).rewrite(asec) == -asec(1/x) + pi/2
assert asin(x).rewrite(acsc) == acsc(1/x)
def test_asin_fdiff():
assert asin(x).fdiff() == 1/sqrt(1 - x**2)
raises(ArgumentIndexError, lambda: asin(x).fdiff(2))
def test_acos():
assert acos(nan) is nan
assert acos(zoo) is zoo
assert acos.nargs == FiniteSet(1)
assert acos(oo) == I*oo
assert acos(-oo) == -I*oo
# Note: acos(-x) = pi - acos(x)
assert acos(0) == pi/2
assert acos(S.Half) == pi/3
assert acos(Rational(-1, 2)) == pi*Rational(2, 3)
assert acos(1) == 0
assert acos(-1) == pi
assert acos(sqrt(2)/2) == pi/4
assert acos(-sqrt(2)/2) == pi*Rational(3, 4)
# check round-trip for exact values:
for d in [5, 6, 8, 10, 12]:
for num in range(d):
if gcd(num, d) == 1:
assert acos(cos(num*pi/d)) == num*pi/d
assert acos(2*I) == pi/2 - asin(2*I)
assert acos(x).diff(x) == -1/sqrt(1 - x**2)
assert acos(0.2).is_real is True
assert acos(-2).is_real is False
assert acos(r).is_real is None
assert acos(Rational(1, 7), evaluate=False).is_positive is True
assert acos(Rational(-1, 7), evaluate=False).is_positive is True
assert acos(Rational(3, 2), evaluate=False).is_positive is False
assert acos(p).is_positive is None
assert acos(2 + p).conjugate() != acos(10 + p)
assert acos(-3 + n).conjugate() != acos(-3 + n)
assert acos(Rational(1, 3)).conjugate() == acos(Rational(1, 3))
assert acos(Rational(-1, 3)).conjugate() == acos(Rational(-1, 3))
assert acos(p + n*I).conjugate() == acos(p - n*I)
assert acos(z).conjugate() != acos(conjugate(z))
def test_acos_leading_term():
assert acos(x).as_leading_term(x) == pi/2
# Tests concerning branch points
assert acos(x + 1).as_leading_term(x) == sqrt(2)*sqrt(-x)
assert acos(x - 1).as_leading_term(x) == pi
assert acos(1/x).as_leading_term(x, cdir=1) == -I*log(x) + I*log(2)
assert acos(1/x).as_leading_term(x, cdir=-1) == I*log(x) + 2*pi - I*log(2)
# Tests concerning points lying on branch cuts
assert acos(I*x + 2).as_leading_term(x, cdir=1) == -acos(2)
assert acos(-I*x + 2).as_leading_term(x, cdir=1) == acos(2)
assert acos(I*x - 2).as_leading_term(x, cdir=1) == acos(-2)
assert acos(-I*x - 2).as_leading_term(x, cdir=1) == 2*pi - acos(-2)
# Tests concerning im(ndir) == 0
assert acos(-I*x**2 + x - 2).as_leading_term(x, cdir=1) == pi + I*log(sqrt(3) + 2)
assert acos(-I*x**2 + x - 2).as_leading_term(x, cdir=-1) == pi + I*log(sqrt(3) + 2)
def test_acos_series():
assert acos(x).series(x, 0, 8) == \
pi/2 - x - x**3/6 - 3*x**5/40 - 5*x**7/112 + O(x**8)
assert acos(x).series(x, 0, 8) == pi/2 - asin(x).series(x, 0, 8)
t5 = acos(x).taylor_term(5, x)
assert t5 == -3*x**5/40
assert acos(x).taylor_term(7, x, t5, 0) == -5*x**7/112
assert acos(x).taylor_term(0, x) == pi/2
assert acos(x).taylor_term(2, x) is S.Zero
def test_acos_rewrite():
assert acos(x).rewrite(log) == pi/2 + I*log(I*x + sqrt(1 - x**2))
assert acos(x).rewrite(atan) == pi*(-x*sqrt(x**(-2)) + 1)/2 + atan(sqrt(1 - x**2)/x)
assert acos(0).rewrite(atan) == S.Pi/2
assert acos(0.5).rewrite(atan) == acos(0.5).rewrite(log)
assert acos(x).rewrite(asin) == S.Pi/2 - asin(x)
assert acos(x).rewrite(acot) == -2*acot((sqrt(-x**2 + 1) + 1)/x) + pi/2
assert acos(x).rewrite(asec) == asec(1/x)
assert acos(x).rewrite(acsc) == -acsc(1/x) + pi/2
def test_acos_fdiff():
assert acos(x).fdiff() == -1/sqrt(1 - x**2)
raises(ArgumentIndexError, lambda: acos(x).fdiff(2))
def test_atan():
assert atan(nan) is nan
assert atan.nargs == FiniteSet(1)
assert atan(oo) == pi/2
assert atan(-oo) == -pi/2
assert atan(zoo) == AccumBounds(-pi/2, pi/2)
assert atan(0) == 0
assert atan(1) == pi/4
assert atan(sqrt(3)) == pi/3
assert atan(-(1 + sqrt(2))) == pi*Rational(-3, 8)
assert atan(sqrt(5 - 2 * sqrt(5))) == pi/5
assert atan(-sqrt(1 - 2 * sqrt(5)/ 5)) == -pi/10
assert atan(sqrt(1 + 2 * sqrt(5) / 5)) == pi*Rational(3, 10)
assert atan(-2 + sqrt(3)) == -pi/12
assert atan(2 + sqrt(3)) == pi*Rational(5, 12)
assert atan(-2 - sqrt(3)) == pi*Rational(-5, 12)
# check round-trip for exact values:
for d in [5, 6, 8, 10, 12]:
for num in range(-(d//2), d//2 + 1):
if gcd(num, d) == 1:
assert atan(tan(num*pi/d)) == num*pi/d
assert atan(oo) == pi/2
assert atan(x).diff(x) == 1/(1 + x**2)
assert atan(r).is_real is True
assert atan(-2*I) == -I*atanh(2)
assert unchanged(atan, cot(x))
assert atan(cot(Rational(1, 4))) == Rational(-1, 4) + pi/2
assert acot(Rational(1, 4)).is_rational is False
for s in (x, p, n, np, nn, nz, ep, en, enp, enn, enz):
if s.is_real or s.is_extended_real is None:
assert s.is_nonzero is atan(s).is_nonzero
assert s.is_positive is atan(s).is_positive
assert s.is_negative is atan(s).is_negative
assert s.is_nonpositive is atan(s).is_nonpositive
assert s.is_nonnegative is atan(s).is_nonnegative
else:
assert s.is_extended_nonzero is atan(s).is_nonzero
assert s.is_extended_positive is atan(s).is_positive
assert s.is_extended_negative is atan(s).is_negative
assert s.is_extended_nonpositive is atan(s).is_nonpositive
assert s.is_extended_nonnegative is atan(s).is_nonnegative
assert s.is_extended_nonzero is atan(s).is_extended_nonzero
assert s.is_extended_positive is atan(s).is_extended_positive
assert s.is_extended_negative is atan(s).is_extended_negative
assert s.is_extended_nonpositive is atan(s).is_extended_nonpositive
assert s.is_extended_nonnegative is atan(s).is_extended_nonnegative
def test_atan_rewrite():
assert atan(x).rewrite(log) == I*(log(1 - I*x)-log(1 + I*x))/2
assert atan(x).rewrite(asin) == (-asin(1/sqrt(x**2 + 1)) + pi/2)*sqrt(x**2)/x
assert atan(x).rewrite(acos) == sqrt(x**2)*acos(1/sqrt(x**2 + 1))/x
assert atan(x).rewrite(acot) == acot(1/x)
assert atan(x).rewrite(asec) == sqrt(x**2)*asec(sqrt(x**2 + 1))/x
assert atan(x).rewrite(acsc) == (-acsc(sqrt(x**2 + 1)) + pi/2)*sqrt(x**2)/x
assert atan(-5*I).evalf() == atan(x).rewrite(log).evalf(subs={x:-5*I})
assert atan(5*I).evalf() == atan(x).rewrite(log).evalf(subs={x:5*I})
def test_atan_fdiff():
assert atan(x).fdiff() == 1/(x**2 + 1)
raises(ArgumentIndexError, lambda: atan(x).fdiff(2))
def test_atan_leading_term():
assert atan(x).as_leading_term(x) == x
assert atan(1/x).as_leading_term(x, cdir=1) == pi/2
assert atan(1/x).as_leading_term(x, cdir=-1) == -pi/2
# Tests concerning branch points
assert atan(x + I).as_leading_term(x, cdir=1) == -I*log(x)/2 + pi/4 + I*log(2)/2
assert atan(x + I).as_leading_term(x, cdir=-1) == -I*log(x)/2 - 3*pi/4 + I*log(2)/2
assert atan(x - I).as_leading_term(x, cdir=1) == I*log(x)/2 + pi/4 - I*log(2)/2
assert atan(x - I).as_leading_term(x, cdir=-1) == I*log(x)/2 + pi/4 - I*log(2)/2
# Tests concerning points lying on branch cuts
assert atan(x + 2*I).as_leading_term(x, cdir=1) == I*atanh(2)
assert atan(x + 2*I).as_leading_term(x, cdir=-1) == -pi + I*atanh(2)
assert atan(x - 2*I).as_leading_term(x, cdir=1) == pi - I*atanh(2)
assert atan(x - 2*I).as_leading_term(x, cdir=-1) == -I*atanh(2)
# Tests concerning re(ndir) == 0
assert atan(2*I - I*x - x**2).as_leading_term(x, cdir=1) == -pi/2 + I*log(3)/2
assert atan(2*I - I*x - x**2).as_leading_term(x, cdir=-1) == -pi/2 + I*log(3)/2
def test_atan2():
assert atan2.nargs == FiniteSet(2)
assert atan2(0, 0) is S.NaN
assert atan2(0, 1) == 0
assert atan2(1, 1) == pi/4
assert atan2(1, 0) == pi/2
assert atan2(1, -1) == pi*Rational(3, 4)
assert atan2(0, -1) == pi
assert atan2(-1, -1) == pi*Rational(-3, 4)
assert atan2(-1, 0) == -pi/2
assert atan2(-1, 1) == -pi/4
i = symbols('i', imaginary=True)
r = symbols('r', real=True)
eq = atan2(r, i)
ans = -I*log((i + I*r)/sqrt(i**2 + r**2))
reps = ((r, 2), (i, I))
assert eq.subs(reps) == ans.subs(reps)
x = Symbol('x', negative=True)
y = Symbol('y', negative=True)
assert atan2(y, x) == atan(y/x) - pi
y = Symbol('y', nonnegative=True)
assert atan2(y, x) == atan(y/x) + pi
y = Symbol('y')
assert atan2(y, x) == atan2(y, x, evaluate=False)
u = Symbol("u", positive=True)
assert atan2(0, u) == 0
u = Symbol("u", negative=True)
assert atan2(0, u) == pi
assert atan2(y, oo) == 0
assert atan2(y, -oo)== 2*pi*Heaviside(re(y), S.Half) - pi
assert atan2(y, x).rewrite(log) == -I*log((x + I*y)/sqrt(x**2 + y**2))
assert atan2(0, 0) is S.NaN
ex = atan2(y, x) - arg(x + I*y)
assert ex.subs({x:2, y:3}).rewrite(arg) == 0
assert ex.subs({x:2, y:3*I}).rewrite(arg) == -pi - I*log(sqrt(5)*I/5)
assert ex.subs({x:2*I, y:3}).rewrite(arg) == -pi/2 - I*log(sqrt(5)*I)
assert ex.subs({x:2*I, y:3*I}).rewrite(arg) == -pi + atan(Rational(2, 3)) + atan(Rational(3, 2))
i = symbols('i', imaginary=True)
r = symbols('r', real=True)
e = atan2(i, r)
rewrite = e.rewrite(arg)
reps = {i: I, r: -2}
assert rewrite == -I*log(abs(I*i + r)/sqrt(abs(i**2 + r**2))) + arg((I*i + r)/sqrt(i**2 + r**2))
assert (e - rewrite).subs(reps).equals(0)
assert atan2(0, x).rewrite(atan) == Piecewise((pi, re(x) < 0),
(0, Ne(x, 0)),
(nan, True))
assert atan2(0, r).rewrite(atan) == Piecewise((pi, r < 0), (0, Ne(r, 0)), (S.NaN, True))
assert atan2(0, i),rewrite(atan) == 0
assert atan2(0, r + i).rewrite(atan) == Piecewise((pi, r < 0), (0, True))
assert atan2(y, x).rewrite(atan) == Piecewise(
(2*atan(y/(x + sqrt(x**2 + y**2))), Ne(y, 0)),
(pi, re(x) < 0),
(0, (re(x) > 0) | Ne(im(x), 0)),
(nan, True))
assert conjugate(atan2(x, y)) == atan2(conjugate(x), conjugate(y))
assert diff(atan2(y, x), x) == -y/(x**2 + y**2)
assert diff(atan2(y, x), y) == x/(x**2 + y**2)
assert simplify(diff(atan2(y, x).rewrite(log), x)) == -y/(x**2 + y**2)
assert simplify(diff(atan2(y, x).rewrite(log), y)) == x/(x**2 + y**2)
assert str(atan2(1, 2).evalf(5)) == '0.46365'
raises(ArgumentIndexError, lambda: atan2(x, y).fdiff(3))
def test_issue_17461():
class A(Symbol):
is_extended_real = True
def _eval_evalf(self, prec):
return Float(5.0)
x = A('X')
y = A('Y')
assert abs(atan2(x, y).evalf() - 0.785398163397448) <= 1e-10
def test_acot():
assert acot(nan) is nan
assert acot.nargs == FiniteSet(1)
assert acot(-oo) == 0
assert acot(oo) == 0
assert acot(zoo) == 0
assert acot(1) == pi/4
assert acot(0) == pi/2
assert acot(sqrt(3)/3) == pi/3
assert acot(1/sqrt(3)) == pi/3
assert acot(-1/sqrt(3)) == -pi/3
assert acot(x).diff(x) == -1/(1 + x**2)
assert acot(r).is_extended_real is True
assert acot(I*pi) == -I*acoth(pi)
assert acot(-2*I) == I*acoth(2)
assert acot(x).is_positive is None
assert acot(n).is_positive is False
assert acot(p).is_positive is True
assert acot(I).is_positive is False
assert acot(Rational(1, 4)).is_rational is False
assert unchanged(acot, cot(x))
assert unchanged(acot, tan(x))
assert acot(cot(Rational(1, 4))) == Rational(1, 4)
assert acot(tan(Rational(-1, 4))) == Rational(1, 4) - pi/2
def test_acot_rewrite():
assert acot(x).rewrite(log) == I*(log(1 - I/x)-log(1 + I/x))/2
assert acot(x).rewrite(asin) == x*(-asin(sqrt(-x**2)/sqrt(-x**2 - 1)) + pi/2)*sqrt(x**(-2))
assert acot(x).rewrite(acos) == x*sqrt(x**(-2))*acos(sqrt(-x**2)/sqrt(-x**2 - 1))
assert acot(x).rewrite(atan) == atan(1/x)
assert acot(x).rewrite(asec) == x*sqrt(x**(-2))*asec(sqrt((x**2 + 1)/x**2))
assert acot(x).rewrite(acsc) == x*(-acsc(sqrt((x**2 + 1)/x**2)) + pi/2)*sqrt(x**(-2))
assert acot(-I/5).evalf() == acot(x).rewrite(log).evalf(subs={x:-I/5})
assert acot(I/5).evalf() == acot(x).rewrite(log).evalf(subs={x:I/5})
def test_acot_fdiff():
assert acot(x).fdiff() == -1/(x**2 + 1)
raises(ArgumentIndexError, lambda: acot(x).fdiff(2))
def test_acot_leading_term():
assert acot(1/x).as_leading_term(x) == x
# Tests concerning branch points
assert acot(x + I).as_leading_term(x, cdir=1) == I*log(x)/2 + pi/4 - I*log(2)/2
assert acot(x + I).as_leading_term(x, cdir=-1) == I*log(x)/2 + pi/4 - I*log(2)/2
assert acot(x - I).as_leading_term(x, cdir=1) == -I*log(x)/2 + pi/4 + I*log(2)/2
assert acot(x - I).as_leading_term(x, cdir=-1) == -I*log(x)/2 - 3*pi/4 + I*log(2)/2
# Tests concerning points lying on branch cuts
assert acot(x).as_leading_term(x, cdir=1) == pi/2
assert acot(x).as_leading_term(x, cdir=-1) == -pi/2
assert acot(x + I/2).as_leading_term(x, cdir=1) == pi - I*acoth(S(1)/2)
assert acot(x + I/2).as_leading_term(x, cdir=-1) == -I*acoth(S(1)/2)
assert acot(x - I/2).as_leading_term(x, cdir=1) == I*acoth(S(1)/2)
assert acot(x - I/2).as_leading_term(x, cdir=-1) == -pi + I*acoth(S(1)/2)
# Tests concerning re(ndir) == 0
assert acot(I/2 - I*x - x**2).as_leading_term(x, cdir=1) == -pi/2 - I*log(3)/2
assert acot(I/2 - I*x - x**2).as_leading_term(x, cdir=-1) == -pi/2 - I*log(3)/2
def test_attributes():
assert sin(x).args == (x,)
def test_sincos_rewrite():
assert sin(pi/2 - x) == cos(x)
assert sin(pi - x) == sin(x)
assert cos(pi/2 - x) == sin(x)
assert cos(pi - x) == -cos(x)
def _check_even_rewrite(func, arg):
"""Checks that the expr has been rewritten using f(-x) -> f(x)
arg : -x
"""
return func(arg).args[0] == -arg
def _check_odd_rewrite(func, arg):
"""Checks that the expr has been rewritten using f(-x) -> -f(x)
arg : -x
"""
return func(arg).func.is_Mul
def _check_no_rewrite(func, arg):
"""Checks that the expr is not rewritten"""
return func(arg).args[0] == arg
def test_evenodd_rewrite():
a = cos(2) # negative
b = sin(1) # positive
even = [cos]
odd = [sin, tan, cot, asin, atan, acot]
with_minus = [-1, -2**1024 * E, -pi/105, -x*y, -x - y]
for func in even:
for expr in with_minus:
assert _check_even_rewrite(func, expr)
assert _check_no_rewrite(func, a*b)
assert func(
x - y) == func(y - x) # it doesn't matter which form is canonical
for func in odd:
for expr in with_minus:
assert _check_odd_rewrite(func, expr)
assert _check_no_rewrite(func, a*b)
assert func(
x - y) == -func(y - x) # it doesn't matter which form is canonical
def test_as_leading_term_issue_5272():
assert sin(x).as_leading_term(x) == x
assert cos(x).as_leading_term(x) == 1
assert tan(x).as_leading_term(x) == x
assert cot(x).as_leading_term(x) == 1/x
def test_leading_terms():
assert sin(1/x).as_leading_term(x) == AccumBounds(-1, 1)
assert sin(S.Half).as_leading_term(x) == sin(S.Half)
assert cos(1/x).as_leading_term(x) == AccumBounds(-1, 1)
assert cos(S.Half).as_leading_term(x) == cos(S.Half)
assert sec(1/x).as_leading_term(x) == AccumBounds(S.NegativeInfinity, S.Infinity)
assert csc(1/x).as_leading_term(x) == AccumBounds(S.NegativeInfinity, S.Infinity)
assert tan(1/x).as_leading_term(x) == AccumBounds(S.NegativeInfinity, S.Infinity)
assert cot(1/x).as_leading_term(x) == AccumBounds(S.NegativeInfinity, S.Infinity)
# https://github.com/sympy/sympy/issues/21038
f = sin(pi*(x + 4))/(3*x)
assert f.as_leading_term(x) == pi/3
def test_atan2_expansion():
assert cancel(atan2(x**2, x + 1).diff(x) - atan(x**2/(x + 1)).diff(x)) == 0
assert cancel(atan(y/x).series(y, 0, 5) - atan2(y, x).series(y, 0, 5)
+ atan2(0, x) - atan(0)) == O(y**5)
assert cancel(atan(y/x).series(x, 1, 4) - atan2(y, x).series(x, 1, 4)
+ atan2(y, 1) - atan(y)) == O((x - 1)**4, (x, 1))
assert cancel(atan((y + x)/x).series(x, 1, 3) - atan2(y + x, x).series(x, 1, 3)
+ atan2(1 + y, 1) - atan(1 + y)) == O((x - 1)**3, (x, 1))
assert Matrix([atan2(y, x)]).jacobian([y, x]) == \
Matrix([[x/(y**2 + x**2), -y/(y**2 + x**2)]])
def test_aseries():
def t(n, v, d, e):
assert abs(
n(1/v).evalf() - n(1/x).series(x, dir=d).removeO().subs(x, v)) < e
t(atan, 0.1, '+', 1e-5)
t(atan, -0.1, '-', 1e-5)
t(acot, 0.1, '+', 1e-5)
t(acot, -0.1, '-', 1e-5)
def test_issue_4420():
i = Symbol('i', integer=True)
e = Symbol('e', even=True)
o = Symbol('o', odd=True)
# unknown parity for variable
assert cos(4*i*pi) == 1
assert sin(4*i*pi) == 0
assert tan(4*i*pi) == 0
assert cot(4*i*pi) is zoo
assert cos(3*i*pi) == cos(pi*i) # +/-1
assert sin(3*i*pi) == 0
assert tan(3*i*pi) == 0
assert cot(3*i*pi) is zoo
assert cos(4.0*i*pi) == 1
assert sin(4.0*i*pi) == 0
assert tan(4.0*i*pi) == 0
assert cot(4.0*i*pi) is zoo
assert cos(3.0*i*pi) == cos(pi*i) # +/-1
assert sin(3.0*i*pi) == 0
assert tan(3.0*i*pi) == 0
assert cot(3.0*i*pi) is zoo
assert cos(4.5*i*pi) == cos(0.5*pi*i)
assert sin(4.5*i*pi) == sin(0.5*pi*i)
assert tan(4.5*i*pi) == tan(0.5*pi*i)
assert cot(4.5*i*pi) == cot(0.5*pi*i)
# parity of variable is known
assert cos(4*e*pi) == 1
assert sin(4*e*pi) == 0
assert tan(4*e*pi) == 0
assert cot(4*e*pi) is zoo
assert cos(3*e*pi) == 1
assert sin(3*e*pi) == 0
assert tan(3*e*pi) == 0
assert cot(3*e*pi) is zoo
assert cos(4.0*e*pi) == 1
assert sin(4.0*e*pi) == 0
assert tan(4.0*e*pi) == 0
assert cot(4.0*e*pi) is zoo
assert cos(3.0*e*pi) == 1
assert sin(3.0*e*pi) == 0
assert tan(3.0*e*pi) == 0
assert cot(3.0*e*pi) is zoo
assert cos(4.5*e*pi) == cos(0.5*pi*e)
assert sin(4.5*e*pi) == sin(0.5*pi*e)
assert tan(4.5*e*pi) == tan(0.5*pi*e)
assert cot(4.5*e*pi) == cot(0.5*pi*e)
assert cos(4*o*pi) == 1
assert sin(4*o*pi) == 0
assert tan(4*o*pi) == 0
assert cot(4*o*pi) is zoo
assert cos(3*o*pi) == -1
assert sin(3*o*pi) == 0
assert tan(3*o*pi) == 0
assert cot(3*o*pi) is zoo
assert cos(4.0*o*pi) == 1
assert sin(4.0*o*pi) == 0
assert tan(4.0*o*pi) == 0
assert cot(4.0*o*pi) is zoo
assert cos(3.0*o*pi) == -1
assert sin(3.0*o*pi) == 0
assert tan(3.0*o*pi) == 0
assert cot(3.0*o*pi) is zoo
assert cos(4.5*o*pi) == cos(0.5*pi*o)
assert sin(4.5*o*pi) == sin(0.5*pi*o)
assert tan(4.5*o*pi) == tan(0.5*pi*o)
assert cot(4.5*o*pi) == cot(0.5*pi*o)
# x could be imaginary
assert cos(4*x*pi) == cos(4*pi*x)
assert sin(4*x*pi) == sin(4*pi*x)
assert tan(4*x*pi) == tan(4*pi*x)
assert cot(4*x*pi) == cot(4*pi*x)
assert cos(3*x*pi) == cos(3*pi*x)
assert sin(3*x*pi) == sin(3*pi*x)
assert tan(3*x*pi) == tan(3*pi*x)
assert cot(3*x*pi) == cot(3*pi*x)
assert cos(4.0*x*pi) == cos(4.0*pi*x)
assert sin(4.0*x*pi) == sin(4.0*pi*x)
assert tan(4.0*x*pi) == tan(4.0*pi*x)
assert cot(4.0*x*pi) == cot(4.0*pi*x)
assert cos(3.0*x*pi) == cos(3.0*pi*x)
assert sin(3.0*x*pi) == sin(3.0*pi*x)
assert tan(3.0*x*pi) == tan(3.0*pi*x)
assert cot(3.0*x*pi) == cot(3.0*pi*x)
assert cos(4.5*x*pi) == cos(4.5*pi*x)
assert sin(4.5*x*pi) == sin(4.5*pi*x)
assert tan(4.5*x*pi) == tan(4.5*pi*x)
assert cot(4.5*x*pi) == cot(4.5*pi*x)
def test_inverses():
raises(AttributeError, lambda: sin(x).inverse())
raises(AttributeError, lambda: cos(x).inverse())
assert tan(x).inverse() == atan
assert cot(x).inverse() == acot
raises(AttributeError, lambda: csc(x).inverse())
raises(AttributeError, lambda: sec(x).inverse())
assert asin(x).inverse() == sin
assert acos(x).inverse() == cos
assert atan(x).inverse() == tan
assert acot(x).inverse() == cot
def test_real_imag():
a, b = symbols('a b', real=True)
z = a + b*I
for deep in [True, False]:
assert sin(
z).as_real_imag(deep=deep) == (sin(a)*cosh(b), cos(a)*sinh(b))
assert cos(
z).as_real_imag(deep=deep) == (cos(a)*cosh(b), -sin(a)*sinh(b))
assert tan(z).as_real_imag(deep=deep) == (sin(2*a)/(cos(2*a) +
cosh(2*b)), sinh(2*b)/(cos(2*a) + cosh(2*b)))
assert cot(z).as_real_imag(deep=deep) == (-sin(2*a)/(cos(2*a) -
cosh(2*b)), sinh(2*b)/(cos(2*a) - cosh(2*b)))
assert sin(a).as_real_imag(deep=deep) == (sin(a), 0)
assert cos(a).as_real_imag(deep=deep) == (cos(a), 0)
assert tan(a).as_real_imag(deep=deep) == (tan(a), 0)
assert cot(a).as_real_imag(deep=deep) == (cot(a), 0)
@XFAIL
def test_sin_cos_with_infinity():
# Test for issue 5196
# https://github.com/sympy/sympy/issues/5196
assert sin(oo) is S.NaN
assert cos(oo) is S.NaN
@slow
def test_sincos_rewrite_sqrt():
# equivalent to testing rewrite(pow)
for p in [1, 3, 5, 17]:
for t in [1, 8]:
n = t*p
# The vertices `exp(i*pi/n)` of a regular `n`-gon can
# be expressed by means of nested square roots if and
# only if `n` is a product of Fermat primes, `p`, and
# powers of 2, `t'. The code aims to check all vertices
# not belonging to an `m`-gon for `m < n`(`gcd(i, n) == 1`).
# For large `n` this makes the test too slow, therefore
# the vertices are limited to those of index `i < 10`.
for i in range(1, min((n + 1)//2 + 1, 10)):
if 1 == gcd(i, n):
x = i*pi/n
s1 = sin(x).rewrite(sqrt)
c1 = cos(x).rewrite(sqrt)
assert not s1.has(cos, sin), "fails for %d*pi/%d" % (i, n)
assert not c1.has(cos, sin), "fails for %d*pi/%d" % (i, n)
assert 1e-3 > abs(sin(x.evalf(5)) - s1.evalf(2)), "fails for %d*pi/%d" % (i, n)
assert 1e-3 > abs(cos(x.evalf(5)) - c1.evalf(2)), "fails for %d*pi/%d" % (i, n)
assert cos(pi/14).rewrite(sqrt) == sqrt(cos(pi/7)/2 + S.Half)
assert cos(pi/257).rewrite(sqrt).evalf(64) == cos(pi/257).evalf(64)
assert cos(pi*Rational(-15, 2)/11, evaluate=False).rewrite(
sqrt) == -sqrt(-cos(pi*Rational(4, 11))/2 + S.Half)
assert cos(Mul(2, pi, S.Half, evaluate=False), evaluate=False).rewrite(
sqrt) == -1
e = cos(pi/3/17) # don't use pi/15 since that is caught at instantiation
a = (
-3*sqrt(-sqrt(17) + 17)*sqrt(sqrt(17) + 17)/64 -
3*sqrt(34)*sqrt(sqrt(17) + 17)/128 - sqrt(sqrt(17) +
17)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17)
+ sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/64 - sqrt(-sqrt(17)
+ 17)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) +
17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/128 - Rational(1, 32) +
sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) +
17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/64 +
3*sqrt(2)*sqrt(sqrt(17) + 17)/128 + sqrt(34)*sqrt(-sqrt(17) + 17)/128
+ 13*sqrt(2)*sqrt(-sqrt(17) + 17)/128 + sqrt(17)*sqrt(-sqrt(17) +
17)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) + 17)
+ sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/128 + 5*sqrt(17)/32
+ sqrt(3)*sqrt(-sqrt(2)*sqrt(sqrt(17) + 17)*sqrt(sqrt(17)/32 +
sqrt(2)*sqrt(-sqrt(17) + 17)/32 +
sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) +
17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 + Rational(15, 32))/8 -
5*sqrt(2)*sqrt(sqrt(17)/32 + sqrt(2)*sqrt(-sqrt(17) + 17)/32 +
sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) +
17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 +
Rational(15, 32))*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) +
17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/64 -
3*sqrt(2)*sqrt(-sqrt(17) + 17)*sqrt(sqrt(17)/32 +
sqrt(2)*sqrt(-sqrt(17) + 17)/32 +
sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) +
17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 + Rational(15, 32))/32
+ sqrt(34)*sqrt(sqrt(17)/32 + sqrt(2)*sqrt(-sqrt(17) + 17)/32 +
sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) +
17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 +
Rational(15, 32))*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) +
17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/64 +
sqrt(sqrt(17)/32 + sqrt(2)*sqrt(-sqrt(17) + 17)/32 +
sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) +
17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 + Rational(15, 32))/2 +
S.Half + sqrt(-sqrt(17) + 17)*sqrt(sqrt(17)/32 + sqrt(2)*sqrt(-sqrt(17) +
17)/32 + sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) -
sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) +
6*sqrt(17) + 34)/32 + Rational(15, 32))*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) -
sqrt(2)*sqrt(-sqrt(17) + 17) + sqrt(34)*sqrt(-sqrt(17) + 17) +
6*sqrt(17) + 34)/32 + sqrt(34)*sqrt(-sqrt(17) + 17)*sqrt(sqrt(17)/32 +
sqrt(2)*sqrt(-sqrt(17) + 17)/32 +
sqrt(2)*sqrt(-8*sqrt(2)*sqrt(sqrt(17) + 17) - sqrt(2)*sqrt(-sqrt(17) +
17) + sqrt(34)*sqrt(-sqrt(17) + 17) + 6*sqrt(17) + 34)/32 +
Rational(15, 32))/32)/2)
assert e.rewrite(sqrt) == a
assert e.n() == a.n()
# coverage of fermatCoords: multiplicity > 1; the following could be
# different but that portion of the code should be tested in some way
assert cos(pi/9/17).rewrite(sqrt) == \
sin(pi/9)*sin(pi*Rational(2, 17)) + cos(pi/9)*cos(pi*Rational(2, 17))
@slow
def test_tancot_rewrite_sqrt():
# equivalent to testing rewrite(pow)
for p in [1, 3, 5, 17]:
for t in [1, 8]:
n = t*p
for i in range(1, min((n + 1)//2 + 1, 10)):
if 1 == gcd(i, n):
x = i*pi/n
if 2*i != n and 3*i != 2*n:
t1 = tan(x).rewrite(sqrt)
assert not t1.has(cot, tan), "fails for %d*pi/%d" % (i, n)
assert 1e-3 > abs( tan(x.evalf(7)) - t1.evalf(4) ), "fails for %d*pi/%d" % (i, n)
if i != 0 and i != n:
c1 = cot(x).rewrite(sqrt)
assert not c1.has(cot, tan), "fails for %d*pi/%d" % (i, n)
assert 1e-3 > abs( cot(x.evalf(7)) - c1.evalf(4) ), "fails for %d*pi/%d" % (i, n)
def test_sec():
x = symbols('x', real=True)
z = symbols('z')
assert sec.nargs == FiniteSet(1)
assert sec(zoo) is nan
assert sec(0) == 1
assert sec(pi) == -1
assert sec(pi/2) is zoo
assert sec(-pi/2) is zoo
assert sec(pi/6) == 2*sqrt(3)/3
assert sec(pi/3) == 2
assert sec(pi*Rational(5, 2)) is zoo
assert sec(pi*Rational(9, 7)) == -sec(pi*Rational(2, 7))
assert sec(pi*Rational(3, 4)) == -sqrt(2) # issue 8421
assert sec(I) == 1/cosh(1)
assert sec(x*I) == 1/cosh(x)
assert sec(-x) == sec(x)
assert sec(asec(x)) == x
assert sec(z).conjugate() == sec(conjugate(z))
assert (sec(z).as_real_imag() ==
(cos(re(z))*cosh(im(z))/(sin(re(z))**2*sinh(im(z))**2 +
cos(re(z))**2*cosh(im(z))**2),
sin(re(z))*sinh(im(z))/(sin(re(z))**2*sinh(im(z))**2 +
cos(re(z))**2*cosh(im(z))**2)))
assert sec(x).expand(trig=True) == 1/cos(x)
assert sec(2*x).expand(trig=True) == 1/(2*cos(x)**2 - 1)
assert sec(x).is_extended_real == True
assert sec(z).is_real == None
assert sec(a).is_algebraic is None
assert sec(na).is_algebraic is False
assert sec(x).as_leading_term() == sec(x)
assert sec(0, evaluate=False).is_finite == True
assert sec(x).is_finite == None
assert sec(pi/2, evaluate=False).is_finite == False
assert series(sec(x), x, x0=0, n=6) == 1 + x**2/2 + 5*x**4/24 + O(x**6)
# https://github.com/sympy/sympy/issues/7166
assert series(sqrt(sec(x))) == 1 + x**2/4 + 7*x**4/96 + O(x**6)
# https://github.com/sympy/sympy/issues/7167
assert (series(sqrt(sec(x)), x, x0=pi*3/2, n=4) ==
1/sqrt(x - pi*Rational(3, 2)) + (x - pi*Rational(3, 2))**Rational(3, 2)/12 +
(x - pi*Rational(3, 2))**Rational(7, 2)/160 + O((x - pi*Rational(3, 2))**4, (x, pi*Rational(3, 2))))
assert sec(x).diff(x) == tan(x)*sec(x)
# Taylor Term checks
assert sec(z).taylor_term(4, z) == 5*z**4/24
assert sec(z).taylor_term(6, z) == 61*z**6/720
assert sec(z).taylor_term(5, z) == 0
def test_sec_rewrite():
assert sec(x).rewrite(exp) == 1/(exp(I*x)/2 + exp(-I*x)/2)
assert sec(x).rewrite(cos) == 1/cos(x)
assert sec(x).rewrite(tan) == (tan(x/2)**2 + 1)/(-tan(x/2)**2 + 1)
assert sec(x).rewrite(pow) == sec(x)
assert sec(x).rewrite(sqrt) == sec(x)
assert sec(z).rewrite(cot) == (cot(z/2)**2 + 1)/(cot(z/2)**2 - 1)
assert sec(x).rewrite(sin) == 1 / sin(x + pi / 2, evaluate=False)
assert sec(x).rewrite(tan) == (tan(x / 2)**2 + 1) / (-tan(x / 2)**2 + 1)
assert sec(x).rewrite(csc) == csc(-x + pi/2, evaluate=False)
def test_sec_fdiff():
assert sec(x).fdiff() == tan(x)*sec(x)
raises(ArgumentIndexError, lambda: sec(x).fdiff(2))
def test_csc():
x = symbols('x', real=True)
z = symbols('z')
# https://github.com/sympy/sympy/issues/6707
cosecant = csc('x')
alternate = 1/sin('x')
assert cosecant.equals(alternate) == True
assert alternate.equals(cosecant) == True
assert csc.nargs == FiniteSet(1)
assert csc(0) is zoo
assert csc(pi) is zoo
assert csc(zoo) is nan
assert csc(pi/2) == 1
assert csc(-pi/2) == -1
assert csc(pi/6) == 2
assert csc(pi/3) == 2*sqrt(3)/3
assert csc(pi*Rational(5, 2)) == 1
assert csc(pi*Rational(9, 7)) == -csc(pi*Rational(2, 7))
assert csc(pi*Rational(3, 4)) == sqrt(2) # issue 8421
assert csc(I) == -I/sinh(1)
assert csc(x*I) == -I/sinh(x)
assert csc(-x) == -csc(x)
assert csc(acsc(x)) == x
assert csc(z).conjugate() == csc(conjugate(z))
assert (csc(z).as_real_imag() ==
(sin(re(z))*cosh(im(z))/(sin(re(z))**2*cosh(im(z))**2 +
cos(re(z))**2*sinh(im(z))**2),
-cos(re(z))*sinh(im(z))/(sin(re(z))**2*cosh(im(z))**2 +
cos(re(z))**2*sinh(im(z))**2)))
assert csc(x).expand(trig=True) == 1/sin(x)
assert csc(2*x).expand(trig=True) == 1/(2*sin(x)*cos(x))
assert csc(x).is_extended_real == True
assert csc(z).is_real == None
assert csc(a).is_algebraic is None
assert csc(na).is_algebraic is False
assert csc(x).as_leading_term() == csc(x)
assert csc(0, evaluate=False).is_finite == False
assert csc(x).is_finite == None
assert csc(pi/2, evaluate=False).is_finite == True
assert series(csc(x), x, x0=pi/2, n=6) == \
1 + (x - pi/2)**2/2 + 5*(x - pi/2)**4/24 + O((x - pi/2)**6, (x, pi/2))
assert series(csc(x), x, x0=0, n=6) == \
1/x + x/6 + 7*x**3/360 + 31*x**5/15120 + O(x**6)
assert csc(x).diff(x) == -cot(x)*csc(x)
assert csc(x).taylor_term(2, x) == 0
assert csc(x).taylor_term(3, x) == 7*x**3/360
assert csc(x).taylor_term(5, x) == 31*x**5/15120
raises(ArgumentIndexError, lambda: csc(x).fdiff(2))
def test_asec():
z = Symbol('z', zero=True)
assert asec(z) is zoo
assert asec(nan) is nan
assert asec(1) == 0
assert asec(-1) == pi
assert asec(oo) == pi/2
assert asec(-oo) == pi/2
assert asec(zoo) == pi/2
assert asec(sec(pi*Rational(13, 4))) == pi*Rational(3, 4)
assert asec(1 + sqrt(5)) == pi*Rational(2, 5)
assert asec(2/sqrt(3)) == pi/6
assert asec(sqrt(4 - 2*sqrt(2))) == pi/8
assert asec(-sqrt(4 + 2*sqrt(2))) == pi*Rational(5, 8)
assert asec(sqrt(2 + 2*sqrt(5)/5)) == pi*Rational(3, 10)
assert asec(-sqrt(2 + 2*sqrt(5)/5)) == pi*Rational(7, 10)
assert asec(sqrt(2) - sqrt(6)) == pi*Rational(11, 12)
assert asec(x).diff(x) == 1/(x**2*sqrt(1 - 1/x**2))
assert asec(x).rewrite(log) == I*log(sqrt(1 - 1/x**2) + I/x) + pi/2
assert asec(x).rewrite(asin) == -asin(1/x) + pi/2
assert asec(x).rewrite(acos) == acos(1/x)
assert asec(x).rewrite(atan) == \
pi*(1 - sqrt(x**2)/x)/2 + sqrt(x**2)*atan(sqrt(x**2 - 1))/x
assert asec(x).rewrite(acot) == \
pi*(1 - sqrt(x**2)/x)/2 + sqrt(x**2)*acot(1/sqrt(x**2 - 1))/x
assert asec(x).rewrite(acsc) == -acsc(x) + pi/2
raises(ArgumentIndexError, lambda: asec(x).fdiff(2))
def test_asec_is_real():
assert asec(S.Half).is_real is False
n = Symbol('n', positive=True, integer=True)
assert asec(n).is_extended_real is True
assert asec(x).is_real is None
assert asec(r).is_real is None
t = Symbol('t', real=False, finite=True)
assert asec(t).is_real is False
def test_asec_leading_term():
assert asec(1/x).as_leading_term(x) == pi/2
# Tests concerning branch points
assert asec(x + 1).as_leading_term(x) == sqrt(2)*sqrt(x)
assert asec(x - 1).as_leading_term(x) == pi
# Tests concerning points lying on branch cuts
assert asec(x).as_leading_term(x, cdir=1) == -I*log(x) + I*log(2)
assert asec(x).as_leading_term(x, cdir=-1) == I*log(x) + 2*pi - I*log(2)
assert asec(I*x + 1/2).as_leading_term(x, cdir=1) == asec(1/2)
assert asec(-I*x + 1/2).as_leading_term(x, cdir=1) == -asec(1/2)
assert asec(I*x - 1/2).as_leading_term(x, cdir=1) == 2*pi - asec(-1/2)
assert asec(-I*x - 1/2).as_leading_term(x, cdir=1) == asec(-1/2)
# Tests concerning im(ndir) == 0
assert asec(-I*x**2 + x - S(1)/2).as_leading_term(x, cdir=1) == pi + I*log(2 - sqrt(3))
assert asec(-I*x**2 + x - S(1)/2).as_leading_term(x, cdir=-1) == pi + I*log(2 - sqrt(3))
def test_asec_series():
assert asec(x).series(x, 0, 9) == \
I*log(2) - I*log(x) - I*x**2/4 - 3*I*x**4/32 \
- 5*I*x**6/96 - 35*I*x**8/1024 + O(x**9)
t4 = asec(x).taylor_term(4, x)
assert t4 == -3*I*x**4/32
assert asec(x).taylor_term(6, x, t4, 0) == -5*I*x**6/96
def test_acsc():
assert acsc(nan) is nan
assert acsc(1) == pi/2
assert acsc(-1) == -pi/2
assert acsc(oo) == 0
assert acsc(-oo) == 0
assert acsc(zoo) == 0
assert acsc(0) is zoo
assert acsc(csc(3)) == -3 + pi
assert acsc(csc(4)) == -4 + pi
assert acsc(csc(6)) == 6 - 2*pi
assert unchanged(acsc, csc(x))
assert unchanged(acsc, sec(x))
assert acsc(2/sqrt(3)) == pi/3
assert acsc(csc(pi*Rational(13, 4))) == -pi/4
assert acsc(sqrt(2 + 2*sqrt(5)/5)) == pi/5
assert acsc(-sqrt(2 + 2*sqrt(5)/5)) == -pi/5
assert acsc(-2) == -pi/6
assert acsc(-sqrt(4 + 2*sqrt(2))) == -pi/8
assert acsc(sqrt(4 - 2*sqrt(2))) == pi*Rational(3, 8)
assert acsc(1 + sqrt(5)) == pi/10
assert acsc(sqrt(2) - sqrt(6)) == pi*Rational(-5, 12)
assert acsc(x).diff(x) == -1/(x**2*sqrt(1 - 1/x**2))
assert acsc(x).rewrite(log) == -I*log(sqrt(1 - 1/x**2) + I/x)
assert acsc(x).rewrite(asin) == asin(1/x)
assert acsc(x).rewrite(acos) == -acos(1/x) + pi/2
assert acsc(x).rewrite(atan) == \
(-atan(sqrt(x**2 - 1)) + pi/2)*sqrt(x**2)/x
assert acsc(x).rewrite(acot) == (-acot(1/sqrt(x**2 - 1)) + pi/2)*sqrt(x**2)/x
assert acsc(x).rewrite(asec) == -asec(x) + pi/2
raises(ArgumentIndexError, lambda: acsc(x).fdiff(2))
def test_csc_rewrite():
assert csc(x).rewrite(pow) == csc(x)
assert csc(x).rewrite(sqrt) == csc(x)
assert csc(x).rewrite(exp) == 2*I/(exp(I*x) - exp(-I*x))
assert csc(x).rewrite(sin) == 1/sin(x)
assert csc(x).rewrite(tan) == (tan(x/2)**2 + 1)/(2*tan(x/2))
assert csc(x).rewrite(cot) == (cot(x/2)**2 + 1)/(2*cot(x/2))
assert csc(x).rewrite(cos) == 1/cos(x - pi/2, evaluate=False)
assert csc(x).rewrite(sec) == sec(-x + pi/2, evaluate=False)
# issue 17349
assert csc(1 - exp(-besselj(I, I))).rewrite(cos) == \
-1/cos(-pi/2 - 1 + cos(I*besselj(I, I)) +
I*cos(-pi/2 + I*besselj(I, I), evaluate=False), evaluate=False)
def test_acsc_leading_term():
assert acsc(1/x).as_leading_term(x) == x
# Tests concerning branch points
assert acsc(x + 1).as_leading_term(x) == pi/2
assert acsc(x - 1).as_leading_term(x) == -pi/2
# Tests concerning points lying on branch cuts
assert acsc(x).as_leading_term(x, cdir=1) == I*log(x) + pi/2 - I*log(2)
assert acsc(x).as_leading_term(x, cdir=-1) == -I*log(x) - 3*pi/2 + I*log(2)
assert acsc(I*x + 1/2).as_leading_term(x, cdir=1) == acsc(1/2)
assert acsc(-I*x + 1/2).as_leading_term(x, cdir=1) == pi - acsc(1/2)
assert acsc(I*x - 1/2).as_leading_term(x, cdir=1) == -pi - acsc(-1/2)
assert acsc(-I*x - 1/2).as_leading_term(x, cdir=1) == -acsc(1/2)
# Tests concerning im(ndir) == 0
assert acsc(-I*x**2 + x - S(1)/2).as_leading_term(x, cdir=1) == -pi/2 + I*log(sqrt(3) + 2)
assert acsc(-I*x**2 + x - S(1)/2).as_leading_term(x, cdir=-1) == -pi/2 + I*log(sqrt(3) + 2)
def test_acsc_series():
assert acsc(x).series(x, 0, 9) == \
-I*log(2) + pi/2 + I*log(x) + I*x**2/4 \
+ 3*I*x**4/32 + 5*I*x**6/96 + 35*I*x**8/1024 + O(x**9)
t6 = acsc(x).taylor_term(6, x)
assert t6 == 5*I*x**6/96
assert acsc(x).taylor_term(8, x, t6, 0) == 35*I*x**8/1024
def test_asin_nseries():
assert asin(x + 2)._eval_nseries(x, 4, None, I) == -asin(2) + pi + \
sqrt(3)*I*x/3 - sqrt(3)*I*x**2/9 + sqrt(3)*I*x**3/18 + O(x**4)
assert asin(x + 2)._eval_nseries(x, 4, None, -I) == asin(2) - \
sqrt(3)*I*x/3 + sqrt(3)*I*x**2/9 - sqrt(3)*I*x**3/18 + O(x**4)
assert asin(x - 2)._eval_nseries(x, 4, None, I) == -asin(2) - \
sqrt(3)*I*x/3 - sqrt(3)*I*x**2/9 - sqrt(3)*I*x**3/18 + O(x**4)
assert asin(x - 2)._eval_nseries(x, 4, None, -I) == asin(2) - pi + \
sqrt(3)*I*x/3 + sqrt(3)*I*x**2/9 + sqrt(3)*I*x**3/18 + O(x**4)
# testing nseries for asin at branch points
assert asin(1 + x)._eval_nseries(x, 3, None) == pi/2 - sqrt(2)*sqrt(-x) - \
sqrt(2)*(-x)**(S(3)/2)/12 - 3*sqrt(2)*(-x)**(S(5)/2)/160 + O(x**3)
assert asin(-1 + x)._eval_nseries(x, 3, None) == -pi/2 + sqrt(2)*sqrt(x) + \
sqrt(2)*x**(S(3)/2)/12 + 3*sqrt(2)*x**(S(5)/2)/160 + O(x**3)
assert asin(exp(x))._eval_nseries(x, 3, None) == pi/2 - sqrt(2)*sqrt(-x) + \
sqrt(2)*(-x)**(S(3)/2)/6 - sqrt(2)*(-x)**(S(5)/2)/120 + O(x**3)
assert asin(-exp(x))._eval_nseries(x, 3, None) == -pi/2 + sqrt(2)*sqrt(-x) - \
sqrt(2)*(-x)**(S(3)/2)/6 + sqrt(2)*(-x)**(S(5)/2)/120 + O(x**3)
def test_acos_nseries():
assert acos(x + 2)._eval_nseries(x, 4, None, I) == -acos(2) - sqrt(3)*I*x/3 + \
sqrt(3)*I*x**2/9 - sqrt(3)*I*x**3/18 + O(x**4)
assert acos(x + 2)._eval_nseries(x, 4, None, -I) == acos(2) + sqrt(3)*I*x/3 - \
sqrt(3)*I*x**2/9 + sqrt(3)*I*x**3/18 + O(x**4)
assert acos(x - 2)._eval_nseries(x, 4, None, I) == acos(-2) + sqrt(3)*I*x/3 + \
sqrt(3)*I*x**2/9 + sqrt(3)*I*x**3/18 + O(x**4)
assert acos(x - 2)._eval_nseries(x, 4, None, -I) == -acos(-2) + 2*pi - \
sqrt(3)*I*x/3 - sqrt(3)*I*x**2/9 - sqrt(3)*I*x**3/18 + O(x**4)
# testing nseries for acos at branch points
assert acos(1 + x)._eval_nseries(x, 3, None) == sqrt(2)*sqrt(-x) + \
sqrt(2)*(-x)**(S(3)/2)/12 + 3*sqrt(2)*(-x)**(S(5)/2)/160 + O(x**3)
assert acos(-1 + x)._eval_nseries(x, 3, None) == pi - sqrt(2)*sqrt(x) - \
sqrt(2)*x**(S(3)/2)/12 - 3*sqrt(2)*x**(S(5)/2)/160 + O(x**3)
assert acos(exp(x))._eval_nseries(x, 3, None) == sqrt(2)*sqrt(-x) - \
sqrt(2)*(-x)**(S(3)/2)/6 + sqrt(2)*(-x)**(S(5)/2)/120 + O(x**3)
assert acos(-exp(x))._eval_nseries(x, 3, None) == pi - sqrt(2)*sqrt(-x) + \
sqrt(2)*(-x)**(S(3)/2)/6 - sqrt(2)*(-x)**(S(5)/2)/120 + O(x**3)
def test_atan_nseries():
assert atan(x + 2*I)._eval_nseries(x, 4, None, 1) == I*atanh(2) - x/3 - \
2*I*x**2/9 + 13*x**3/81 + O(x**4)
assert atan(x + 2*I)._eval_nseries(x, 4, None, -1) == I*atanh(2) - pi - \
x/3 - 2*I*x**2/9 + 13*x**3/81 + O(x**4)
assert atan(x - 2*I)._eval_nseries(x, 4, None, 1) == -I*atanh(2) + pi - \
x/3 + 2*I*x**2/9 + 13*x**3/81 + O(x**4)
assert atan(x - 2*I)._eval_nseries(x, 4, None, -1) == -I*atanh(2) - x/3 + \
2*I*x**2/9 + 13*x**3/81 + O(x**4)
assert atan(1/x)._eval_nseries(x, 2, None, 1) == pi/2 - x + O(x**2)
assert atan(1/x)._eval_nseries(x, 2, None, -1) == -pi/2 - x + O(x**2)
# testing nseries for atan at branch points
assert atan(x + I)._eval_nseries(x, 4, None) == I*log(2)/2 + pi/4 - \
I*log(x)/2 + x/4 + I*x**2/16 - x**3/48 + O(x**4)
assert atan(x - I)._eval_nseries(x, 4, None) == -I*log(2)/2 + pi/4 + \
I*log(x)/2 + x/4 - I*x**2/16 - x**3/48 + O(x**4)
def test_acot_nseries():
assert acot(x + S(1)/2*I)._eval_nseries(x, 4, None, 1) == -I*acoth(S(1)/2) + \
pi - 4*x/3 + 8*I*x**2/9 + 112*x**3/81 + O(x**4)
assert acot(x + S(1)/2*I)._eval_nseries(x, 4, None, -1) == -I*acoth(S(1)/2) - \
4*x/3 + 8*I*x**2/9 + 112*x**3/81 + O(x**4)
assert acot(x - S(1)/2*I)._eval_nseries(x, 4, None, 1) == I*acoth(S(1)/2) - \
4*x/3 - 8*I*x**2/9 + 112*x**3/81 + O(x**4)
assert acot(x - S(1)/2*I)._eval_nseries(x, 4, None, -1) == I*acoth(S(1)/2) - \
pi - 4*x/3 - 8*I*x**2/9 + 112*x**3/81 + O(x**4)
assert acot(x)._eval_nseries(x, 2, None, 1) == pi/2 - x + O(x**2)
assert acot(x)._eval_nseries(x, 2, None, -1) == -pi/2 - x + O(x**2)
# testing nseries for acot at branch points
assert acot(x + I)._eval_nseries(x, 4, None) == -I*log(2)/2 + pi/4 + \
I*log(x)/2 - x/4 - I*x**2/16 + x**3/48 + O(x**4)
assert acot(x - I)._eval_nseries(x, 4, None) == I*log(2)/2 + pi/4 - \
I*log(x)/2 - x/4 + I*x**2/16 + x**3/48 + O(x**4)
def test_asec_nseries():
assert asec(x + S(1)/2)._eval_nseries(x, 4, None, I) == asec(S(1)/2) - \
4*sqrt(3)*I*x/3 + 8*sqrt(3)*I*x**2/9 - 16*sqrt(3)*I*x**3/9 + O(x**4)
assert asec(x + S(1)/2)._eval_nseries(x, 4, None, -I) == -asec(S(1)/2) + \
4*sqrt(3)*I*x/3 - 8*sqrt(3)*I*x**2/9 + 16*sqrt(3)*I*x**3/9 + O(x**4)
assert asec(x - S(1)/2)._eval_nseries(x, 4, None, I) == -asec(-S(1)/2) + \
2*pi + 4*sqrt(3)*I*x/3 + 8*sqrt(3)*I*x**2/9 + 16*sqrt(3)*I*x**3/9 + O(x**4)
assert asec(x - S(1)/2)._eval_nseries(x, 4, None, -I) == asec(-S(1)/2) - \
4*sqrt(3)*I*x/3 - 8*sqrt(3)*I*x**2/9 - 16*sqrt(3)*I*x**3/9 + O(x**4)
# testing nseries for asec at branch points
assert asec(1 + x)._eval_nseries(x, 3, None) == sqrt(2)*sqrt(x) - \
5*sqrt(2)*x**(S(3)/2)/12 + 43*sqrt(2)*x**(S(5)/2)/160 + O(x**3)
assert asec(-1 + x)._eval_nseries(x, 3, None) == pi - sqrt(2)*sqrt(-x) + \
5*sqrt(2)*(-x)**(S(3)/2)/12 - 43*sqrt(2)*(-x)**(S(5)/2)/160 + O(x**3)
assert asec(exp(x))._eval_nseries(x, 3, None) == sqrt(2)*sqrt(x) - \
sqrt(2)*x**(S(3)/2)/6 + sqrt(2)*x**(S(5)/2)/120 + O(x**3)
assert asec(-exp(x))._eval_nseries(x, 3, None) == pi - sqrt(2)*sqrt(x) + \
sqrt(2)*x**(S(3)/2)/6 - sqrt(2)*x**(S(5)/2)/120 + O(x**3)
def test_acsc_nseries():
assert acsc(x + S(1)/2)._eval_nseries(x, 4, None, I) == acsc(S(1)/2) + \
4*sqrt(3)*I*x/3 - 8*sqrt(3)*I*x**2/9 + 16*sqrt(3)*I*x**3/9 + O(x**4)
assert acsc(x + S(1)/2)._eval_nseries(x, 4, None, -I) == -acsc(S(1)/2) + \
pi - 4*sqrt(3)*I*x/3 + 8*sqrt(3)*I*x**2/9 - 16*sqrt(3)*I*x**3/9 + O(x**4)
assert acsc(x - S(1)/2)._eval_nseries(x, 4, None, I) == acsc(S(1)/2) - pi -\
4*sqrt(3)*I*x/3 - 8*sqrt(3)*I*x**2/9 - 16*sqrt(3)*I*x**3/9 + O(x**4)
assert acsc(x - S(1)/2)._eval_nseries(x, 4, None, -I) == -acsc(S(1)/2) + \
4*sqrt(3)*I*x/3 + 8*sqrt(3)*I*x**2/9 + 16*sqrt(3)*I*x**3/9 + O(x**4)
# testing nseries for acsc at branch points
assert acsc(1 + x)._eval_nseries(x, 3, None) == pi/2 - sqrt(2)*sqrt(x) + \
5*sqrt(2)*x**(S(3)/2)/12 - 43*sqrt(2)*x**(S(5)/2)/160 + O(x**3)
assert acsc(-1 + x)._eval_nseries(x, 3, None) == -pi/2 + sqrt(2)*sqrt(-x) - \
5*sqrt(2)*(-x)**(S(3)/2)/12 + 43*sqrt(2)*(-x)**(S(5)/2)/160 + O(x**3)
assert acsc(exp(x))._eval_nseries(x, 3, None) == pi/2 - sqrt(2)*sqrt(x) + \
sqrt(2)*x**(S(3)/2)/6 - sqrt(2)*x**(S(5)/2)/120 + O(x**3)
assert acsc(-exp(x))._eval_nseries(x, 3, None) == -pi/2 + sqrt(2)*sqrt(x) - \
sqrt(2)*x**(S(3)/2)/6 + sqrt(2)*x**(S(5)/2)/120 + O(x**3)
def test_issue_8653():
n = Symbol('n', integer=True)
assert sin(n).is_irrational is None
assert cos(n).is_irrational is None
assert tan(n).is_irrational is None
def test_issue_9157():
n = Symbol('n', integer=True, positive=True)
assert atan(n - 1).is_nonnegative is True
def test_trig_period():
x, y = symbols('x, y')
assert sin(x).period() == 2*pi
assert cos(x).period() == 2*pi
assert tan(x).period() == pi
assert cot(x).period() == pi
assert sec(x).period() == 2*pi
assert csc(x).period() == 2*pi
assert sin(2*x).period() == pi
assert cot(4*x - 6).period() == pi/4
assert cos((-3)*x).period() == pi*Rational(2, 3)
assert cos(x*y).period(x) == 2*pi/abs(y)
assert sin(3*x*y + 2*pi).period(y) == 2*pi/abs(3*x)
assert tan(3*x).period(y) is S.Zero
raises(NotImplementedError, lambda: sin(x**2).period(x))
def test_issue_7171():
assert sin(x).rewrite(sqrt) == sin(x)
assert sin(x).rewrite(pow) == sin(x)
def test_issue_11864():
w, k = symbols('w, k', real=True)
F = Piecewise((1, Eq(2*pi*k, 0)), (sin(pi*k)/(pi*k), True))
soln = Piecewise((1, Eq(2*pi*k, 0)), (sinc(pi*k), True))
assert F.rewrite(sinc) == soln
def test_real_assumptions():
z = Symbol('z', real=False, finite=True)
assert sin(z).is_real is None
assert cos(z).is_real is None
assert tan(z).is_real is False
assert sec(z).is_real is None
assert csc(z).is_real is None
assert cot(z).is_real is False
assert asin(p).is_real is None
assert asin(n).is_real is None
assert asec(p).is_real is None
assert asec(n).is_real is None
assert acos(p).is_real is None
assert acos(n).is_real is None
assert acsc(p).is_real is None
assert acsc(n).is_real is None
assert atan(p).is_positive is True
assert atan(n).is_negative is True
assert acot(p).is_positive is True
assert acot(n).is_negative is True
def test_issue_14320():
assert asin(sin(2)) == -2 + pi and (-pi/2 <= -2 + pi <= pi/2) and sin(2) == sin(-2 + pi)
assert asin(cos(2)) == -2 + pi/2 and (-pi/2 <= -2 + pi/2 <= pi/2) and cos(2) == sin(-2 + pi/2)
assert acos(sin(2)) == -pi/2 + 2 and (0 <= -pi/2 + 2 <= pi) and sin(2) == cos(-pi/2 + 2)
assert acos(cos(20)) == -6*pi + 20 and (0 <= -6*pi + 20 <= pi) and cos(20) == cos(-6*pi + 20)
assert acos(cos(30)) == -30 + 10*pi and (0 <= -30 + 10*pi <= pi) and cos(30) == cos(-30 + 10*pi)
assert atan(tan(17)) == -5*pi + 17 and (-pi/2 < -5*pi + 17 < pi/2) and tan(17) == tan(-5*pi + 17)
assert atan(tan(15)) == -5*pi + 15 and (-pi/2 < -5*pi + 15 < pi/2) and tan(15) == tan(-5*pi + 15)
assert atan(cot(12)) == -12 + pi*Rational(7, 2) and (-pi/2 < -12 + pi*Rational(7, 2) < pi/2) and cot(12) == tan(-12 + pi*Rational(7, 2))
assert acot(cot(15)) == -5*pi + 15 and (-pi/2 < -5*pi + 15 <= pi/2) and cot(15) == cot(-5*pi + 15)
assert acot(tan(19)) == -19 + pi*Rational(13, 2) and (-pi/2 < -19 + pi*Rational(13, 2) <= pi/2) and tan(19) == cot(-19 + pi*Rational(13, 2))
assert asec(sec(11)) == -11 + 4*pi and (0 <= -11 + 4*pi <= pi) and cos(11) == cos(-11 + 4*pi)
assert asec(csc(13)) == -13 + pi*Rational(9, 2) and (0 <= -13 + pi*Rational(9, 2) <= pi) and sin(13) == cos(-13 + pi*Rational(9, 2))
assert acsc(csc(14)) == -4*pi + 14 and (-pi/2 <= -4*pi + 14 <= pi/2) and sin(14) == sin(-4*pi + 14)
assert acsc(sec(10)) == pi*Rational(-7, 2) + 10 and (-pi/2 <= pi*Rational(-7, 2) + 10 <= pi/2) and cos(10) == sin(pi*Rational(-7, 2) + 10)
def test_issue_14543():
assert sec(2*pi + 11) == sec(11)
assert sec(2*pi - 11) == sec(11)
assert sec(pi + 11) == -sec(11)
assert sec(pi - 11) == -sec(11)
assert csc(2*pi + 17) == csc(17)
assert csc(2*pi - 17) == -csc(17)
assert csc(pi + 17) == -csc(17)
assert csc(pi - 17) == csc(17)
x = Symbol('x')
assert csc(pi/2 + x) == sec(x)
assert csc(pi/2 - x) == sec(x)
assert csc(pi*Rational(3, 2) + x) == -sec(x)
assert csc(pi*Rational(3, 2) - x) == -sec(x)
assert sec(pi/2 - x) == csc(x)
assert sec(pi/2 + x) == -csc(x)
assert sec(pi*Rational(3, 2) + x) == csc(x)
assert sec(pi*Rational(3, 2) - x) == -csc(x)
def test_as_real_imag():
# This is for https://github.com/sympy/sympy/issues/17142
# If it start failing again in irrelevant builds or in the master
# please open up the issue again.
expr = atan(I/(I + I*tan(1)))
assert expr.as_real_imag() == (expr, 0)
def test_issue_18746():
e3 = cos(S.Pi*(x/4 + 1/4))
assert e3.period() == 8
|
63b42f31830ba2d7580cef9bf8a8f4150d56704abe38fed79d7b25fcff8c11fa | from sympy.core.add import Add
from sympy.core.assumptions import check_assumptions
from sympy.core.containers import Tuple
from sympy.core.exprtools import factor_terms
from sympy.core.function import _mexpand
from sympy.core.mul import Mul
from sympy.core.numbers import Rational
from sympy.core.numbers import igcdex, ilcm, igcd
from sympy.core.power import integer_nthroot, isqrt
from sympy.core.relational import Eq
from sympy.core.singleton import S
from sympy.core.sorting import default_sort_key, ordered
from sympy.core.symbol import Symbol, symbols
from sympy.core.sympify import _sympify
from sympy.functions.elementary.complexes import sign
from sympy.functions.elementary.integers import floor
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.matrices.dense import MutableDenseMatrix as Matrix
from sympy.ntheory.factor_ import (
divisors, factorint, multiplicity, perfect_power)
from sympy.ntheory.generate import nextprime
from sympy.ntheory.primetest import is_square, isprime
from sympy.ntheory.residue_ntheory import sqrt_mod
from sympy.polys.polyerrors import GeneratorsNeeded
from sympy.polys.polytools import Poly, factor_list
from sympy.simplify.simplify import signsimp
from sympy.solvers.solveset import solveset_real
from sympy.utilities import numbered_symbols
from sympy.utilities.misc import as_int, filldedent
from sympy.utilities.iterables import (is_sequence, subsets, permute_signs,
signed_permutations, ordered_partitions)
# these are imported with 'from sympy.solvers.diophantine import *
__all__ = ['diophantine', 'classify_diop']
class DiophantineSolutionSet(set):
"""
Container for a set of solutions to a particular diophantine equation.
The base representation is a set of tuples representing each of the solutions.
Parameters
==========
symbols : list
List of free symbols in the original equation.
parameters: list
List of parameters to be used in the solution.
Examples
========
Adding solutions:
>>> from sympy.solvers.diophantine.diophantine import DiophantineSolutionSet
>>> from sympy.abc import x, y, t, u
>>> s1 = DiophantineSolutionSet([x, y], [t, u])
>>> s1
set()
>>> s1.add((2, 3))
>>> s1.add((-1, u))
>>> s1
{(-1, u), (2, 3)}
>>> s2 = DiophantineSolutionSet([x, y], [t, u])
>>> s2.add((3, 4))
>>> s1.update(*s2)
>>> s1
{(-1, u), (2, 3), (3, 4)}
Conversion of solutions into dicts:
>>> list(s1.dict_iterator())
[{x: -1, y: u}, {x: 2, y: 3}, {x: 3, y: 4}]
Substituting values:
>>> s3 = DiophantineSolutionSet([x, y], [t, u])
>>> s3.add((t**2, t + u))
>>> s3
{(t**2, t + u)}
>>> s3.subs({t: 2, u: 3})
{(4, 5)}
>>> s3.subs(t, -1)
{(1, u - 1)}
>>> s3.subs(t, 3)
{(9, u + 3)}
Evaluation at specific values. Positional arguments are given in the same order as the parameters:
>>> s3(-2, 3)
{(4, 1)}
>>> s3(5)
{(25, u + 5)}
>>> s3(None, 2)
{(t**2, t + 2)}
"""
def __init__(self, symbols_seq, parameters):
super().__init__()
if not is_sequence(symbols_seq):
raise ValueError("Symbols must be given as a sequence.")
if not is_sequence(parameters):
raise ValueError("Parameters must be given as a sequence.")
self.symbols = tuple(symbols_seq)
self.parameters = tuple(parameters)
def add(self, solution):
if len(solution) != len(self.symbols):
raise ValueError("Solution should have a length of %s, not %s" % (len(self.symbols), len(solution)))
super().add(Tuple(*solution))
def update(self, *solutions):
for solution in solutions:
self.add(solution)
def dict_iterator(self):
for solution in ordered(self):
yield dict(zip(self.symbols, solution))
def subs(self, *args, **kwargs):
result = DiophantineSolutionSet(self.symbols, self.parameters)
for solution in self:
result.add(solution.subs(*args, **kwargs))
return result
def __call__(self, *args):
if len(args) > len(self.parameters):
raise ValueError("Evaluation should have at most %s values, not %s" % (len(self.parameters), len(args)))
rep = {p: v for p, v in zip(self.parameters, args) if v is not None}
return self.subs(rep)
class DiophantineEquationType:
"""
Internal representation of a particular diophantine equation type.
Parameters
==========
equation :
The diophantine equation that is being solved.
free_symbols : list (optional)
The symbols being solved for.
Attributes
==========
total_degree :
The maximum of the degrees of all terms in the equation
homogeneous :
Does the equation contain a term of degree 0
homogeneous_order :
Does the equation contain any coefficient that is in the symbols being solved for
dimension :
The number of symbols being solved for
"""
name = None # type: str
def __init__(self, equation, free_symbols=None):
self.equation = _sympify(equation).expand(force=True)
if free_symbols is not None:
self.free_symbols = free_symbols
else:
self.free_symbols = list(self.equation.free_symbols)
self.free_symbols.sort(key=default_sort_key)
if not self.free_symbols:
raise ValueError('equation should have 1 or more free symbols')
self.coeff = self.equation.as_coefficients_dict()
if not all(_is_int(c) for c in self.coeff.values()):
raise TypeError("Coefficients should be Integers")
self.total_degree = Poly(self.equation).total_degree()
self.homogeneous = 1 not in self.coeff
self.homogeneous_order = not (set(self.coeff) & set(self.free_symbols))
self.dimension = len(self.free_symbols)
self._parameters = None
def matches(self):
"""
Determine whether the given equation can be matched to the particular equation type.
"""
return False
@property
def n_parameters(self):
return self.dimension
@property
def parameters(self):
if self._parameters is None:
self._parameters = symbols('t_:%i' % (self.n_parameters,), integer=True)
return self._parameters
def solve(self, parameters=None, limit=None) -> DiophantineSolutionSet:
raise NotImplementedError('No solver has been written for %s.' % self.name)
def pre_solve(self, parameters=None):
if not self.matches():
raise ValueError("This equation does not match the %s equation type." % self.name)
if parameters is not None:
if len(parameters) != self.n_parameters:
raise ValueError("Expected %s parameter(s) but got %s" % (self.n_parameters, len(parameters)))
self._parameters = parameters
class Univariate(DiophantineEquationType):
"""
Representation of a univariate diophantine equation.
A univariate diophantine equation is an equation of the form
`a_{0} + a_{1}x + a_{2}x^2 + .. + a_{n}x^n = 0` where `a_{1}, a_{2}, ..a_{n}` are
integer constants and `x` is an integer variable.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import Univariate
>>> from sympy.abc import x
>>> Univariate((x - 2)*(x - 3)**2).solve() # solves equation (x - 2)*(x - 3)**2 == 0
{(2,), (3,)}
"""
name = 'univariate'
def matches(self):
return self.dimension == 1
def solve(self, parameters=None, limit=None):
self.pre_solve(parameters)
result = DiophantineSolutionSet(self.free_symbols, parameters=self.parameters)
for i in solveset_real(self.equation, self.free_symbols[0]).intersect(S.Integers):
result.add((i,))
return result
class Linear(DiophantineEquationType):
"""
Representation of a linear diophantine equation.
A linear diophantine equation is an equation of the form `a_{1}x_{1} +
a_{2}x_{2} + .. + a_{n}x_{n} = 0` where `a_{1}, a_{2}, ..a_{n}` are
integer constants and `x_{1}, x_{2}, ..x_{n}` are integer variables.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import Linear
>>> from sympy.abc import x, y, z
>>> l1 = Linear(2*x - 3*y - 5)
>>> l1.matches() # is this equation linear
True
>>> l1.solve() # solves equation 2*x - 3*y - 5 == 0
{(3*t_0 - 5, 2*t_0 - 5)}
Here x = -3*t_0 - 5 and y = -2*t_0 - 5
>>> Linear(2*x - 3*y - 4*z -3).solve()
{(t_0, 2*t_0 + 4*t_1 + 3, -t_0 - 3*t_1 - 3)}
"""
name = 'linear'
def matches(self):
return self.total_degree == 1
def solve(self, parameters=None, limit=None):
self.pre_solve(parameters)
coeff = self.coeff
var = self.free_symbols
if 1 in coeff:
# negate coeff[] because input is of the form: ax + by + c == 0
# but is used as: ax + by == -c
c = -coeff[1]
else:
c = 0
result = DiophantineSolutionSet(var, parameters=self.parameters)
params = result.parameters
if len(var) == 1:
q, r = divmod(c, coeff[var[0]])
if not r:
result.add((q,))
return result
else:
return result
'''
base_solution_linear() can solve diophantine equations of the form:
a*x + b*y == c
We break down multivariate linear diophantine equations into a
series of bivariate linear diophantine equations which can then
be solved individually by base_solution_linear().
Consider the following:
a_0*x_0 + a_1*x_1 + a_2*x_2 == c
which can be re-written as:
a_0*x_0 + g_0*y_0 == c
where
g_0 == gcd(a_1, a_2)
and
y == (a_1*x_1)/g_0 + (a_2*x_2)/g_0
This leaves us with two binary linear diophantine equations.
For the first equation:
a == a_0
b == g_0
c == c
For the second:
a == a_1/g_0
b == a_2/g_0
c == the solution we find for y_0 in the first equation.
The arrays A and B are the arrays of integers used for
'a' and 'b' in each of the n-1 bivariate equations we solve.
'''
A = [coeff[v] for v in var]
B = []
if len(var) > 2:
B.append(igcd(A[-2], A[-1]))
A[-2] = A[-2] // B[0]
A[-1] = A[-1] // B[0]
for i in range(len(A) - 3, 0, -1):
gcd = igcd(B[0], A[i])
B[0] = B[0] // gcd
A[i] = A[i] // gcd
B.insert(0, gcd)
B.append(A[-1])
'''
Consider the trivariate linear equation:
4*x_0 + 6*x_1 + 3*x_2 == 2
This can be re-written as:
4*x_0 + 3*y_0 == 2
where
y_0 == 2*x_1 + x_2
(Note that gcd(3, 6) == 3)
The complete integral solution to this equation is:
x_0 == 2 + 3*t_0
y_0 == -2 - 4*t_0
where 't_0' is any integer.
Now that we have a solution for 'x_0', find 'x_1' and 'x_2':
2*x_1 + x_2 == -2 - 4*t_0
We can then solve for '-2' and '-4' independently,
and combine the results:
2*x_1a + x_2a == -2
x_1a == 0 + t_0
x_2a == -2 - 2*t_0
2*x_1b + x_2b == -4*t_0
x_1b == 0*t_0 + t_1
x_2b == -4*t_0 - 2*t_1
==>
x_1 == t_0 + t_1
x_2 == -2 - 6*t_0 - 2*t_1
where 't_0' and 't_1' are any integers.
Note that:
4*(2 + 3*t_0) + 6*(t_0 + t_1) + 3*(-2 - 6*t_0 - 2*t_1) == 2
for any integral values of 't_0', 't_1'; as required.
This method is generalised for many variables, below.
'''
solutions = []
for Ai, Bi in zip(A, B):
tot_x, tot_y = [], []
for j, arg in enumerate(Add.make_args(c)):
if arg.is_Integer:
# example: 5 -> k = 5
k, p = arg, S.One
pnew = params[0]
else: # arg is a Mul or Symbol
# example: 3*t_1 -> k = 3
# example: t_0 -> k = 1
k, p = arg.as_coeff_Mul()
pnew = params[params.index(p) + 1]
sol = sol_x, sol_y = base_solution_linear(k, Ai, Bi, pnew)
if p is S.One:
if None in sol:
return result
else:
# convert a + b*pnew -> a*p + b*pnew
if isinstance(sol_x, Add):
sol_x = sol_x.args[0]*p + sol_x.args[1]
if isinstance(sol_y, Add):
sol_y = sol_y.args[0]*p + sol_y.args[1]
tot_x.append(sol_x)
tot_y.append(sol_y)
solutions.append(Add(*tot_x))
c = Add(*tot_y)
solutions.append(c)
result.add(solutions)
return result
class BinaryQuadratic(DiophantineEquationType):
"""
Representation of a binary quadratic diophantine equation.
A binary quadratic diophantine equation is an equation of the
form `Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0`, where `A, B, C, D, E,
F` are integer constants and `x` and `y` are integer variables.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.solvers.diophantine.diophantine import BinaryQuadratic
>>> b1 = BinaryQuadratic(x**3 + y**2 + 1)
>>> b1.matches()
False
>>> b2 = BinaryQuadratic(x**2 + y**2 + 2*x + 2*y + 2)
>>> b2.matches()
True
>>> b2.solve()
{(-1, -1)}
References
==========
.. [1] Methods to solve Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0, [online],
Available: http://www.alpertron.com.ar/METHODS.HTM
.. [2] Solving the equation ax^2+ bxy + cy^2 + dx + ey + f= 0, [online],
Available: https://web.archive.org/web/20160323033111/http://www.jpr2718.org/ax2p.pdf
"""
name = 'binary_quadratic'
def matches(self):
return self.total_degree == 2 and self.dimension == 2
def solve(self, parameters=None, limit=None) -> DiophantineSolutionSet:
self.pre_solve(parameters)
var = self.free_symbols
coeff = self.coeff
x, y = var
A = coeff[x**2]
B = coeff[x*y]
C = coeff[y**2]
D = coeff[x]
E = coeff[y]
F = coeff[S.One]
A, B, C, D, E, F = [as_int(i) for i in _remove_gcd(A, B, C, D, E, F)]
# (1) Simple-Hyperbolic case: A = C = 0, B != 0
# In this case equation can be converted to (Bx + E)(By + D) = DE - BF
# We consider two cases; DE - BF = 0 and DE - BF != 0
# More details, http://www.alpertron.com.ar/METHODS.HTM#SHyperb
result = DiophantineSolutionSet(var, self.parameters)
t, u = result.parameters
discr = B**2 - 4*A*C
if A == 0 and C == 0 and B != 0:
if D*E - B*F == 0:
q, r = divmod(E, B)
if not r:
result.add((-q, t))
q, r = divmod(D, B)
if not r:
result.add((t, -q))
else:
div = divisors(D*E - B*F)
div = div + [-term for term in div]
for d in div:
x0, r = divmod(d - E, B)
if not r:
q, r = divmod(D*E - B*F, d)
if not r:
y0, r = divmod(q - D, B)
if not r:
result.add((x0, y0))
# (2) Parabolic case: B**2 - 4*A*C = 0
# There are two subcases to be considered in this case.
# sqrt(c)D - sqrt(a)E = 0 and sqrt(c)D - sqrt(a)E != 0
# More Details, http://www.alpertron.com.ar/METHODS.HTM#Parabol
elif discr == 0:
if A == 0:
s = BinaryQuadratic(self.equation, free_symbols=[y, x]).solve(parameters=[t, u])
for soln in s:
result.add((soln[1], soln[0]))
else:
g = sign(A)*igcd(A, C)
a = A // g
c = C // g
e = sign(B / A)
sqa = isqrt(a)
sqc = isqrt(c)
_c = e*sqc*D - sqa*E
if not _c:
z = Symbol("z", real=True)
eq = sqa*g*z**2 + D*z + sqa*F
roots = solveset_real(eq, z).intersect(S.Integers)
for root in roots:
ans = diop_solve(sqa*x + e*sqc*y - root)
result.add((ans[0], ans[1]))
elif _is_int(c):
solve_x = lambda u: -e*sqc*g*_c*t**2 - (E + 2*e*sqc*g*u)*t \
- (e*sqc*g*u**2 + E*u + e*sqc*F) // _c
solve_y = lambda u: sqa*g*_c*t**2 + (D + 2*sqa*g*u)*t \
+ (sqa*g*u**2 + D*u + sqa*F) // _c
for z0 in range(0, abs(_c)):
# Check if the coefficients of y and x obtained are integers or not
if (divisible(sqa*g*z0**2 + D*z0 + sqa*F, _c) and
divisible(e*sqc*g*z0**2 + E*z0 + e*sqc*F, _c)):
result.add((solve_x(z0), solve_y(z0)))
# (3) Method used when B**2 - 4*A*C is a square, is described in p. 6 of the below paper
# by John P. Robertson.
# https://web.archive.org/web/20160323033111/http://www.jpr2718.org/ax2p.pdf
elif is_square(discr):
if A != 0:
r = sqrt(discr)
u, v = symbols("u, v", integer=True)
eq = _mexpand(
4*A*r*u*v + 4*A*D*(B*v + r*u + r*v - B*u) +
2*A*4*A*E*(u - v) + 4*A*r*4*A*F)
solution = diop_solve(eq, t)
for s0, t0 in solution:
num = B*t0 + r*s0 + r*t0 - B*s0
x_0 = S(num) / (4*A*r)
y_0 = S(s0 - t0) / (2*r)
if isinstance(s0, Symbol) or isinstance(t0, Symbol):
if len(check_param(x_0, y_0, 4*A*r, parameters)) > 0:
ans = check_param(x_0, y_0, 4*A*r, parameters)
result.update(*ans)
elif x_0.is_Integer and y_0.is_Integer:
if is_solution_quad(var, coeff, x_0, y_0):
result.add((x_0, y_0))
else:
s = BinaryQuadratic(self.equation, free_symbols=var[::-1]).solve(parameters=[t, u]) # Interchange x and y
while s:
result.add(s.pop()[::-1]) # and solution <--------+
# (4) B**2 - 4*A*C > 0 and B**2 - 4*A*C not a square or B**2 - 4*A*C < 0
else:
P, Q = _transformation_to_DN(var, coeff)
D, N = _find_DN(var, coeff)
solns_pell = diop_DN(D, N)
if D < 0:
for x0, y0 in solns_pell:
for x in [-x0, x0]:
for y in [-y0, y0]:
s = P*Matrix([x, y]) + Q
try:
result.add([as_int(_) for _ in s])
except ValueError:
pass
else:
# In this case equation can be transformed into a Pell equation
solns_pell = set(solns_pell)
for X, Y in list(solns_pell):
solns_pell.add((-X, -Y))
a = diop_DN(D, 1)
T = a[0][0]
U = a[0][1]
if all(_is_int(_) for _ in P[:4] + Q[:2]):
for r, s in solns_pell:
_a = (r + s*sqrt(D))*(T + U*sqrt(D))**t
_b = (r - s*sqrt(D))*(T - U*sqrt(D))**t
x_n = _mexpand(S(_a + _b) / 2)
y_n = _mexpand(S(_a - _b) / (2*sqrt(D)))
s = P*Matrix([x_n, y_n]) + Q
result.add(s)
else:
L = ilcm(*[_.q for _ in P[:4] + Q[:2]])
k = 1
T_k = T
U_k = U
while (T_k - 1) % L != 0 or U_k % L != 0:
T_k, U_k = T_k*T + D*U_k*U, T_k*U + U_k*T
k += 1
for X, Y in solns_pell:
for i in range(k):
if all(_is_int(_) for _ in P*Matrix([X, Y]) + Q):
_a = (X + sqrt(D)*Y)*(T_k + sqrt(D)*U_k)**t
_b = (X - sqrt(D)*Y)*(T_k - sqrt(D)*U_k)**t
Xt = S(_a + _b) / 2
Yt = S(_a - _b) / (2*sqrt(D))
s = P*Matrix([Xt, Yt]) + Q
result.add(s)
X, Y = X*T + D*U*Y, X*U + Y*T
return result
class InhomogeneousTernaryQuadratic(DiophantineEquationType):
"""
Representation of an inhomogeneous ternary quadratic.
No solver is currently implemented for this equation type.
"""
name = 'inhomogeneous_ternary_quadratic'
def matches(self):
if not (self.total_degree == 2 and self.dimension == 3):
return False
if not self.homogeneous:
return False
return not self.homogeneous_order
class HomogeneousTernaryQuadraticNormal(DiophantineEquationType):
"""
Representation of a homogeneous ternary quadratic normal diophantine equation.
Examples
========
>>> from sympy.abc import x, y, z
>>> from sympy.solvers.diophantine.diophantine import HomogeneousTernaryQuadraticNormal
>>> HomogeneousTernaryQuadraticNormal(4*x**2 - 5*y**2 + z**2).solve()
{(1, 2, 4)}
"""
name = 'homogeneous_ternary_quadratic_normal'
def matches(self):
if not (self.total_degree == 2 and self.dimension == 3):
return False
if not self.homogeneous:
return False
if not self.homogeneous_order:
return False
nonzero = [k for k in self.coeff if self.coeff[k]]
return len(nonzero) == 3 and all(i**2 in nonzero for i in self.free_symbols)
def solve(self, parameters=None, limit=None) -> DiophantineSolutionSet:
self.pre_solve(parameters)
var = self.free_symbols
coeff = self.coeff
x, y, z = var
a = coeff[x**2]
b = coeff[y**2]
c = coeff[z**2]
(sqf_of_a, sqf_of_b, sqf_of_c), (a_1, b_1, c_1), (a_2, b_2, c_2) = \
sqf_normal(a, b, c, steps=True)
A = -a_2*c_2
B = -b_2*c_2
result = DiophantineSolutionSet(var, parameters=self.parameters)
# If following two conditions are satisfied then there are no solutions
if A < 0 and B < 0:
return result
if (
sqrt_mod(-b_2*c_2, a_2) is None or
sqrt_mod(-c_2*a_2, b_2) is None or
sqrt_mod(-a_2*b_2, c_2) is None):
return result
z_0, x_0, y_0 = descent(A, B)
z_0, q = _rational_pq(z_0, abs(c_2))
x_0 *= q
y_0 *= q
x_0, y_0, z_0 = _remove_gcd(x_0, y_0, z_0)
# Holzer reduction
if sign(a) == sign(b):
x_0, y_0, z_0 = holzer(x_0, y_0, z_0, abs(a_2), abs(b_2), abs(c_2))
elif sign(a) == sign(c):
x_0, z_0, y_0 = holzer(x_0, z_0, y_0, abs(a_2), abs(c_2), abs(b_2))
else:
y_0, z_0, x_0 = holzer(y_0, z_0, x_0, abs(b_2), abs(c_2), abs(a_2))
x_0 = reconstruct(b_1, c_1, x_0)
y_0 = reconstruct(a_1, c_1, y_0)
z_0 = reconstruct(a_1, b_1, z_0)
sq_lcm = ilcm(sqf_of_a, sqf_of_b, sqf_of_c)
x_0 = abs(x_0*sq_lcm // sqf_of_a)
y_0 = abs(y_0*sq_lcm // sqf_of_b)
z_0 = abs(z_0*sq_lcm // sqf_of_c)
result.add(_remove_gcd(x_0, y_0, z_0))
return result
class HomogeneousTernaryQuadratic(DiophantineEquationType):
"""
Representation of a homogeneous ternary quadratic diophantine equation.
Examples
========
>>> from sympy.abc import x, y, z
>>> from sympy.solvers.diophantine.diophantine import HomogeneousTernaryQuadratic
>>> HomogeneousTernaryQuadratic(x**2 + y**2 - 3*z**2 + x*y).solve()
{(-1, 2, 1)}
>>> HomogeneousTernaryQuadratic(3*x**2 + y**2 - 3*z**2 + 5*x*y + y*z).solve()
{(3, 12, 13)}
"""
name = 'homogeneous_ternary_quadratic'
def matches(self):
if not (self.total_degree == 2 and self.dimension == 3):
return False
if not self.homogeneous:
return False
if not self.homogeneous_order:
return False
nonzero = [k for k in self.coeff if self.coeff[k]]
return not (len(nonzero) == 3 and all(i**2 in nonzero for i in self.free_symbols))
def solve(self, parameters=None, limit=None):
self.pre_solve(parameters)
_var = self.free_symbols
coeff = self.coeff
x, y, z = _var
var = [x, y, z]
# Equations of the form B*x*y + C*z*x + E*y*z = 0 and At least two of the
# coefficients A, B, C are non-zero.
# There are infinitely many solutions for the equation.
# Ex: (0, 0, t), (0, t, 0), (t, 0, 0)
# Equation can be re-written as y*(B*x + E*z) = -C*x*z and we can find rather
# unobvious solutions. Set y = -C and B*x + E*z = x*z. The latter can be solved by
# using methods for binary quadratic diophantine equations. Let's select the
# solution which minimizes |x| + |z|
result = DiophantineSolutionSet(var, parameters=self.parameters)
def unpack_sol(sol):
if len(sol) > 0:
return list(sol)[0]
return None, None, None
if not any(coeff[i**2] for i in var):
if coeff[x*z]:
sols = diophantine(coeff[x*y]*x + coeff[y*z]*z - x*z)
s = sols.pop()
min_sum = abs(s[0]) + abs(s[1])
for r in sols:
m = abs(r[0]) + abs(r[1])
if m < min_sum:
s = r
min_sum = m
result.add(_remove_gcd(s[0], -coeff[x*z], s[1]))
return result
else:
var[0], var[1] = _var[1], _var[0]
y_0, x_0, z_0 = unpack_sol(_diop_ternary_quadratic(var, coeff))
if x_0 is not None:
result.add((x_0, y_0, z_0))
return result
if coeff[x**2] == 0:
# If the coefficient of x is zero change the variables
if coeff[y**2] == 0:
var[0], var[2] = _var[2], _var[0]
z_0, y_0, x_0 = unpack_sol(_diop_ternary_quadratic(var, coeff))
else:
var[0], var[1] = _var[1], _var[0]
y_0, x_0, z_0 = unpack_sol(_diop_ternary_quadratic(var, coeff))
else:
if coeff[x*y] or coeff[x*z]:
# Apply the transformation x --> X - (B*y + C*z)/(2*A)
A = coeff[x**2]
B = coeff[x*y]
C = coeff[x*z]
D = coeff[y**2]
E = coeff[y*z]
F = coeff[z**2]
_coeff = {}
_coeff[x**2] = 4*A**2
_coeff[y**2] = 4*A*D - B**2
_coeff[z**2] = 4*A*F - C**2
_coeff[y*z] = 4*A*E - 2*B*C
_coeff[x*y] = 0
_coeff[x*z] = 0
x_0, y_0, z_0 = unpack_sol(_diop_ternary_quadratic(var, _coeff))
if x_0 is None:
return result
p, q = _rational_pq(B*y_0 + C*z_0, 2*A)
x_0, y_0, z_0 = x_0*q - p, y_0*q, z_0*q
elif coeff[z*y] != 0:
if coeff[y**2] == 0:
if coeff[z**2] == 0:
# Equations of the form A*x**2 + E*yz = 0.
A = coeff[x**2]
E = coeff[y*z]
b, a = _rational_pq(-E, A)
x_0, y_0, z_0 = b, a, b
else:
# Ax**2 + E*y*z + F*z**2 = 0
var[0], var[2] = _var[2], _var[0]
z_0, y_0, x_0 = unpack_sol(_diop_ternary_quadratic(var, coeff))
else:
# A*x**2 + D*y**2 + E*y*z + F*z**2 = 0, C may be zero
var[0], var[1] = _var[1], _var[0]
y_0, x_0, z_0 = unpack_sol(_diop_ternary_quadratic(var, coeff))
else:
# Ax**2 + D*y**2 + F*z**2 = 0, C may be zero
x_0, y_0, z_0 = unpack_sol(_diop_ternary_quadratic_normal(var, coeff))
if x_0 is None:
return result
result.add(_remove_gcd(x_0, y_0, z_0))
return result
class InhomogeneousGeneralQuadratic(DiophantineEquationType):
"""
Representation of an inhomogeneous general quadratic.
No solver is currently implemented for this equation type.
"""
name = 'inhomogeneous_general_quadratic'
def matches(self):
if not (self.total_degree == 2 and self.dimension >= 3):
return False
if not self.homogeneous_order:
return True
else:
# there may be Pow keys like x**2 or Mul keys like x*y
if any(k.is_Mul for k in self.coeff): # cross terms
return not self.homogeneous
return False
class HomogeneousGeneralQuadratic(DiophantineEquationType):
"""
Representation of a homogeneous general quadratic.
No solver is currently implemented for this equation type.
"""
name = 'homogeneous_general_quadratic'
def matches(self):
if not (self.total_degree == 2 and self.dimension >= 3):
return False
if not self.homogeneous_order:
return False
else:
# there may be Pow keys like x**2 or Mul keys like x*y
if any(k.is_Mul for k in self.coeff): # cross terms
return self.homogeneous
return False
class GeneralSumOfSquares(DiophantineEquationType):
r"""
Representation of the diophantine equation
`x_{1}^2 + x_{2}^2 + . . . + x_{n}^2 - k = 0`.
Details
=======
When `n = 3` if `k = 4^a(8m + 7)` for some `a, m \in Z` then there will be
no solutions. Refer [1]_ for more details.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import GeneralSumOfSquares
>>> from sympy.abc import a, b, c, d, e
>>> GeneralSumOfSquares(a**2 + b**2 + c**2 + d**2 + e**2 - 2345).solve()
{(15, 22, 22, 24, 24)}
By default only 1 solution is returned. Use the `limit` keyword for more:
>>> sorted(GeneralSumOfSquares(a**2 + b**2 + c**2 + d**2 + e**2 - 2345).solve(limit=3))
[(15, 22, 22, 24, 24), (16, 19, 24, 24, 24), (16, 20, 22, 23, 26)]
References
==========
.. [1] Representing an integer as a sum of three squares, [online],
Available:
http://www.proofwiki.org/wiki/Integer_as_Sum_of_Three_Squares
"""
name = 'general_sum_of_squares'
def matches(self):
if not (self.total_degree == 2 and self.dimension >= 3):
return False
if not self.homogeneous_order:
return False
if any(k.is_Mul for k in self.coeff):
return False
return all(self.coeff[k] == 1 for k in self.coeff if k != 1)
def solve(self, parameters=None, limit=1):
self.pre_solve(parameters)
var = self.free_symbols
k = -int(self.coeff[1])
n = self.dimension
result = DiophantineSolutionSet(var, parameters=self.parameters)
if k < 0 or limit < 1:
return result
signs = [-1 if x.is_nonpositive else 1 for x in var]
negs = signs.count(-1) != 0
took = 0
for t in sum_of_squares(k, n, zeros=True):
if negs:
result.add([signs[i]*j for i, j in enumerate(t)])
else:
result.add(t)
took += 1
if took == limit:
break
return result
class GeneralPythagorean(DiophantineEquationType):
"""
Representation of the general pythagorean equation,
`a_{1}^2x_{1}^2 + a_{2}^2x_{2}^2 + . . . + a_{n}^2x_{n}^2 - a_{n + 1}^2x_{n + 1}^2 = 0`.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import GeneralPythagorean
>>> from sympy.abc import a, b, c, d, e, x, y, z, t
>>> GeneralPythagorean(a**2 + b**2 + c**2 - d**2).solve()
{(t_0**2 + t_1**2 - t_2**2, 2*t_0*t_2, 2*t_1*t_2, t_0**2 + t_1**2 + t_2**2)}
>>> GeneralPythagorean(9*a**2 - 4*b**2 + 16*c**2 + 25*d**2 + e**2).solve(parameters=[x, y, z, t])
{(-10*t**2 + 10*x**2 + 10*y**2 + 10*z**2, 15*t**2 + 15*x**2 + 15*y**2 + 15*z**2, 15*t*x, 12*t*y, 60*t*z)}
"""
name = 'general_pythagorean'
def matches(self):
if not (self.total_degree == 2 and self.dimension >= 3):
return False
if not self.homogeneous_order:
return False
if any(k.is_Mul for k in self.coeff):
return False
if all(self.coeff[k] == 1 for k in self.coeff if k != 1):
return False
if not all(is_square(abs(self.coeff[k])) for k in self.coeff):
return False
# all but one has the same sign
# e.g. 4*x**2 + y**2 - 4*z**2
return abs(sum(sign(self.coeff[k]) for k in self.coeff)) == self.dimension - 2
@property
def n_parameters(self):
return self.dimension - 1
def solve(self, parameters=None, limit=1):
self.pre_solve(parameters)
coeff = self.coeff
var = self.free_symbols
n = self.dimension
if sign(coeff[var[0] ** 2]) + sign(coeff[var[1] ** 2]) + sign(coeff[var[2] ** 2]) < 0:
for key in coeff.keys():
coeff[key] = -coeff[key]
result = DiophantineSolutionSet(var, parameters=self.parameters)
index = 0
for i, v in enumerate(var):
if sign(coeff[v ** 2]) == -1:
index = i
m = result.parameters
ith = sum(m_i ** 2 for m_i in m)
L = [ith - 2 * m[n - 2] ** 2]
L.extend([2 * m[i] * m[n - 2] for i in range(n - 2)])
sol = L[:index] + [ith] + L[index:]
lcm = 1
for i, v in enumerate(var):
if i == index or (index > 0 and i == 0) or (index == 0 and i == 1):
lcm = ilcm(lcm, sqrt(abs(coeff[v ** 2])))
else:
s = sqrt(coeff[v ** 2])
lcm = ilcm(lcm, s if _odd(s) else s // 2)
for i, v in enumerate(var):
sol[i] = (lcm * sol[i]) / sqrt(abs(coeff[v ** 2]))
result.add(sol)
return result
class CubicThue(DiophantineEquationType):
"""
Representation of a cubic Thue diophantine equation.
A cubic Thue diophantine equation is a polynomial of the form
`f(x, y) = r` of degree 3, where `x` and `y` are integers
and `r` is a rational number.
No solver is currently implemented for this equation type.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.solvers.diophantine.diophantine import CubicThue
>>> c1 = CubicThue(x**3 + y**2 + 1)
>>> c1.matches()
True
"""
name = 'cubic_thue'
def matches(self):
return self.total_degree == 3 and self.dimension == 2
class GeneralSumOfEvenPowers(DiophantineEquationType):
"""
Representation of the diophantine equation
`x_{1}^e + x_{2}^e + . . . + x_{n}^e - k = 0`
where `e` is an even, integer power.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import GeneralSumOfEvenPowers
>>> from sympy.abc import a, b
>>> GeneralSumOfEvenPowers(a**4 + b**4 - (2**4 + 3**4)).solve()
{(2, 3)}
"""
name = 'general_sum_of_even_powers'
def matches(self):
if not self.total_degree > 3:
return False
if self.total_degree % 2 != 0:
return False
if not all(k.is_Pow and k.exp == self.total_degree for k in self.coeff if k != 1):
return False
return all(self.coeff[k] == 1 for k in self.coeff if k != 1)
def solve(self, parameters=None, limit=1):
self.pre_solve(parameters)
var = self.free_symbols
coeff = self.coeff
p = None
for q in coeff.keys():
if q.is_Pow and coeff[q]:
p = q.exp
k = len(var)
n = -coeff[1]
result = DiophantineSolutionSet(var, parameters=self.parameters)
if n < 0 or limit < 1:
return result
sign = [-1 if x.is_nonpositive else 1 for x in var]
negs = sign.count(-1) != 0
took = 0
for t in power_representation(n, p, k):
if negs:
result.add([sign[i]*j for i, j in enumerate(t)])
else:
result.add(t)
took += 1
if took == limit:
break
return result
# these types are known (but not necessarily handled)
# note that order is important here (in the current solver state)
all_diop_classes = [
Linear,
Univariate,
BinaryQuadratic,
InhomogeneousTernaryQuadratic,
HomogeneousTernaryQuadraticNormal,
HomogeneousTernaryQuadratic,
InhomogeneousGeneralQuadratic,
HomogeneousGeneralQuadratic,
GeneralSumOfSquares,
GeneralPythagorean,
CubicThue,
GeneralSumOfEvenPowers,
]
diop_known = {diop_class.name for diop_class in all_diop_classes}
def _is_int(i):
try:
as_int(i)
return True
except ValueError:
pass
def _sorted_tuple(*i):
return tuple(sorted(i))
def _remove_gcd(*x):
try:
g = igcd(*x)
except ValueError:
fx = list(filter(None, x))
if len(fx) < 2:
return x
g = igcd(*[i.as_content_primitive()[0] for i in fx])
except TypeError:
raise TypeError('_remove_gcd(a,b,c) or _remove_gcd(*container)')
if g == 1:
return x
return tuple([i//g for i in x])
def _rational_pq(a, b):
# return `(numer, denom)` for a/b; sign in numer and gcd removed
return _remove_gcd(sign(b)*a, abs(b))
def _nint_or_floor(p, q):
# return nearest int to p/q; in case of tie return floor(p/q)
w, r = divmod(p, q)
if abs(r) <= abs(q)//2:
return w
return w + 1
def _odd(i):
return i % 2 != 0
def _even(i):
return i % 2 == 0
def diophantine(eq, param=symbols("t", integer=True), syms=None,
permute=False):
"""
Simplify the solution procedure of diophantine equation ``eq`` by
converting it into a product of terms which should equal zero.
Explanation
===========
For example, when solving, `x^2 - y^2 = 0` this is treated as
`(x + y)(x - y) = 0` and `x + y = 0` and `x - y = 0` are solved
independently and combined. Each term is solved by calling
``diop_solve()``. (Although it is possible to call ``diop_solve()``
directly, one must be careful to pass an equation in the correct
form and to interpret the output correctly; ``diophantine()`` is
the public-facing function to use in general.)
Output of ``diophantine()`` is a set of tuples. The elements of the
tuple are the solutions for each variable in the equation and
are arranged according to the alphabetic ordering of the variables.
e.g. For an equation with two variables, `a` and `b`, the first
element of the tuple is the solution for `a` and the second for `b`.
Usage
=====
``diophantine(eq, t, syms)``: Solve the diophantine
equation ``eq``.
``t`` is the optional parameter to be used by ``diop_solve()``.
``syms`` is an optional list of symbols which determines the
order of the elements in the returned tuple.
By default, only the base solution is returned. If ``permute`` is set to
True then permutations of the base solution and/or permutations of the
signs of the values will be returned when applicable.
Examples
========
>>> from sympy import diophantine
>>> from sympy.abc import a, b
>>> eq = a**4 + b**4 - (2**4 + 3**4)
>>> diophantine(eq)
{(2, 3)}
>>> diophantine(eq, permute=True)
{(-3, -2), (-3, 2), (-2, -3), (-2, 3), (2, -3), (2, 3), (3, -2), (3, 2)}
Details
=======
``eq`` should be an expression which is assumed to be zero.
``t`` is the parameter to be used in the solution.
Examples
========
>>> from sympy.abc import x, y, z
>>> diophantine(x**2 - y**2)
{(t_0, -t_0), (t_0, t_0)}
>>> diophantine(x*(2*x + 3*y - z))
{(0, n1, n2), (t_0, t_1, 2*t_0 + 3*t_1)}
>>> diophantine(x**2 + 3*x*y + 4*x)
{(0, n1), (3*t_0 - 4, -t_0)}
See Also
========
diop_solve()
sympy.utilities.iterables.permute_signs
sympy.utilities.iterables.signed_permutations
"""
eq = _sympify(eq)
if isinstance(eq, Eq):
eq = eq.lhs - eq.rhs
try:
var = list(eq.expand(force=True).free_symbols)
var.sort(key=default_sort_key)
if syms:
if not is_sequence(syms):
raise TypeError(
'syms should be given as a sequence, e.g. a list')
syms = [i for i in syms if i in var]
if syms != var:
dict_sym_index = dict(zip(syms, range(len(syms))))
return {tuple([t[dict_sym_index[i]] for i in var])
for t in diophantine(eq, param, permute=permute)}
n, d = eq.as_numer_denom()
if n.is_number:
return set()
if not d.is_number:
dsol = diophantine(d)
good = diophantine(n) - dsol
return {s for s in good if _mexpand(d.subs(zip(var, s)))}
else:
eq = n
eq = factor_terms(eq)
assert not eq.is_number
eq = eq.as_independent(*var, as_Add=False)[1]
p = Poly(eq)
assert not any(g.is_number for g in p.gens)
eq = p.as_expr()
assert eq.is_polynomial()
except (GeneratorsNeeded, AssertionError):
raise TypeError(filldedent('''
Equation should be a polynomial with Rational coefficients.'''))
# permute only sign
do_permute_signs = False
# permute sign and values
do_permute_signs_var = False
# permute few signs
permute_few_signs = False
try:
# if we know that factoring should not be attempted, skip
# the factoring step
v, c, t = classify_diop(eq)
# check for permute sign
if permute:
len_var = len(v)
permute_signs_for = [
GeneralSumOfSquares.name,
GeneralSumOfEvenPowers.name]
permute_signs_check = [
HomogeneousTernaryQuadratic.name,
HomogeneousTernaryQuadraticNormal.name,
BinaryQuadratic.name]
if t in permute_signs_for:
do_permute_signs_var = True
elif t in permute_signs_check:
# if all the variables in eq have even powers
# then do_permute_sign = True
if len_var == 3:
var_mul = list(subsets(v, 2))
# here var_mul is like [(x, y), (x, z), (y, z)]
xy_coeff = True
x_coeff = True
var1_mul_var2 = map(lambda a: a[0]*a[1], var_mul)
# if coeff(y*z), coeff(y*x), coeff(x*z) is not 0 then
# `xy_coeff` => True and do_permute_sign => False.
# Means no permuted solution.
for v1_mul_v2 in var1_mul_var2:
try:
coeff = c[v1_mul_v2]
except KeyError:
coeff = 0
xy_coeff = bool(xy_coeff) and bool(coeff)
var_mul = list(subsets(v, 1))
# here var_mul is like [(x,), (y, )]
for v1 in var_mul:
try:
coeff = c[v1[0]]
except KeyError:
coeff = 0
x_coeff = bool(x_coeff) and bool(coeff)
if not any((xy_coeff, x_coeff)):
# means only x**2, y**2, z**2, const is present
do_permute_signs = True
elif not x_coeff:
permute_few_signs = True
elif len_var == 2:
var_mul = list(subsets(v, 2))
# here var_mul is like [(x, y)]
xy_coeff = True
x_coeff = True
var1_mul_var2 = map(lambda x: x[0]*x[1], var_mul)
for v1_mul_v2 in var1_mul_var2:
try:
coeff = c[v1_mul_v2]
except KeyError:
coeff = 0
xy_coeff = bool(xy_coeff) and bool(coeff)
var_mul = list(subsets(v, 1))
# here var_mul is like [(x,), (y, )]
for v1 in var_mul:
try:
coeff = c[v1[0]]
except KeyError:
coeff = 0
x_coeff = bool(x_coeff) and bool(coeff)
if not any((xy_coeff, x_coeff)):
# means only x**2, y**2 and const is present
# so we can get more soln by permuting this soln.
do_permute_signs = True
elif not x_coeff:
# when coeff(x), coeff(y) is not present then signs of
# x, y can be permuted such that their sign are same
# as sign of x*y.
# e.g 1. (x_val,y_val)=> (x_val,y_val), (-x_val,-y_val)
# 2. (-x_vall, y_val)=> (-x_val,y_val), (x_val,-y_val)
permute_few_signs = True
if t == 'general_sum_of_squares':
# trying to factor such expressions will sometimes hang
terms = [(eq, 1)]
else:
raise TypeError
except (TypeError, NotImplementedError):
fl = factor_list(eq)
if fl[0].is_Rational and fl[0] != 1:
return diophantine(eq/fl[0], param=param, syms=syms, permute=permute)
terms = fl[1]
sols = set()
for term in terms:
base, _ = term
var_t, _, eq_type = classify_diop(base, _dict=False)
_, base = signsimp(base, evaluate=False).as_coeff_Mul()
solution = diop_solve(base, param)
if eq_type in [
Linear.name,
HomogeneousTernaryQuadratic.name,
HomogeneousTernaryQuadraticNormal.name,
GeneralPythagorean.name]:
sols.add(merge_solution(var, var_t, solution))
elif eq_type in [
BinaryQuadratic.name,
GeneralSumOfSquares.name,
GeneralSumOfEvenPowers.name,
Univariate.name]:
for sol in solution:
sols.add(merge_solution(var, var_t, sol))
else:
raise NotImplementedError('unhandled type: %s' % eq_type)
# remove null merge results
if () in sols:
sols.remove(())
null = tuple([0]*len(var))
# if there is no solution, return trivial solution
if not sols and eq.subs(zip(var, null)).is_zero:
sols.add(null)
final_soln = set()
for sol in sols:
if all(_is_int(s) for s in sol):
if do_permute_signs:
permuted_sign = set(permute_signs(sol))
final_soln.update(permuted_sign)
elif permute_few_signs:
lst = list(permute_signs(sol))
lst = list(filter(lambda x: x[0]*x[1] == sol[1]*sol[0], lst))
permuted_sign = set(lst)
final_soln.update(permuted_sign)
elif do_permute_signs_var:
permuted_sign_var = set(signed_permutations(sol))
final_soln.update(permuted_sign_var)
else:
final_soln.add(sol)
else:
final_soln.add(sol)
return final_soln
def merge_solution(var, var_t, solution):
"""
This is used to construct the full solution from the solutions of sub
equations.
Explanation
===========
For example when solving the equation `(x - y)(x^2 + y^2 - z^2) = 0`,
solutions for each of the equations `x - y = 0` and `x^2 + y^2 - z^2` are
found independently. Solutions for `x - y = 0` are `(x, y) = (t, t)`. But
we should introduce a value for z when we output the solution for the
original equation. This function converts `(t, t)` into `(t, t, n_{1})`
where `n_{1}` is an integer parameter.
"""
sol = []
if None in solution:
return ()
solution = iter(solution)
params = numbered_symbols("n", integer=True, start=1)
for v in var:
if v in var_t:
sol.append(next(solution))
else:
sol.append(next(params))
for val, symb in zip(sol, var):
if check_assumptions(val, **symb.assumptions0) is False:
return tuple()
return tuple(sol)
def _diop_solve(eq, params=None):
for diop_type in all_diop_classes:
if diop_type(eq).matches():
return diop_type(eq).solve(parameters=params)
def diop_solve(eq, param=symbols("t", integer=True)):
"""
Solves the diophantine equation ``eq``.
Explanation
===========
Unlike ``diophantine()``, factoring of ``eq`` is not attempted. Uses
``classify_diop()`` to determine the type of the equation and calls
the appropriate solver function.
Use of ``diophantine()`` is recommended over other helper functions.
``diop_solve()`` can return either a set or a tuple depending on the
nature of the equation.
Usage
=====
``diop_solve(eq, t)``: Solve diophantine equation, ``eq`` using ``t``
as a parameter if needed.
Details
=======
``eq`` should be an expression which is assumed to be zero.
``t`` is a parameter to be used in the solution.
Examples
========
>>> from sympy.solvers.diophantine import diop_solve
>>> from sympy.abc import x, y, z, w
>>> diop_solve(2*x + 3*y - 5)
(3*t_0 - 5, 5 - 2*t_0)
>>> diop_solve(4*x + 3*y - 4*z + 5)
(t_0, 8*t_0 + 4*t_1 + 5, 7*t_0 + 3*t_1 + 5)
>>> diop_solve(x + 3*y - 4*z + w - 6)
(t_0, t_0 + t_1, 6*t_0 + 5*t_1 + 4*t_2 - 6, 5*t_0 + 4*t_1 + 3*t_2 - 6)
>>> diop_solve(x**2 + y**2 - 5)
{(-2, -1), (-2, 1), (-1, -2), (-1, 2), (1, -2), (1, 2), (2, -1), (2, 1)}
See Also
========
diophantine()
"""
var, coeff, eq_type = classify_diop(eq, _dict=False)
if eq_type == Linear.name:
return diop_linear(eq, param)
elif eq_type == BinaryQuadratic.name:
return diop_quadratic(eq, param)
elif eq_type == HomogeneousTernaryQuadratic.name:
return diop_ternary_quadratic(eq, parameterize=True)
elif eq_type == HomogeneousTernaryQuadraticNormal.name:
return diop_ternary_quadratic_normal(eq, parameterize=True)
elif eq_type == GeneralPythagorean.name:
return diop_general_pythagorean(eq, param)
elif eq_type == Univariate.name:
return diop_univariate(eq)
elif eq_type == GeneralSumOfSquares.name:
return diop_general_sum_of_squares(eq, limit=S.Infinity)
elif eq_type == GeneralSumOfEvenPowers.name:
return diop_general_sum_of_even_powers(eq, limit=S.Infinity)
if eq_type is not None and eq_type not in diop_known:
raise ValueError(filldedent('''
Although this type of equation was identified, it is not yet
handled. It should, however, be listed in `diop_known` at the
top of this file. Developers should see comments at the end of
`classify_diop`.
''')) # pragma: no cover
else:
raise NotImplementedError(
'No solver has been written for %s.' % eq_type)
def classify_diop(eq, _dict=True):
# docstring supplied externally
matched = False
diop_type = None
for diop_class in all_diop_classes:
diop_type = diop_class(eq)
if diop_type.matches():
matched = True
break
if matched:
return diop_type.free_symbols, dict(diop_type.coeff) if _dict else diop_type.coeff, diop_type.name
# new diop type instructions
# --------------------------
# if this error raises and the equation *can* be classified,
# * it should be identified in the if-block above
# * the type should be added to the diop_known
# if a solver can be written for it,
# * a dedicated handler should be written (e.g. diop_linear)
# * it should be passed to that handler in diop_solve
raise NotImplementedError(filldedent('''
This equation is not yet recognized or else has not been
simplified sufficiently to put it in a form recognized by
diop_classify().'''))
classify_diop.func_doc = ( # type: ignore
'''
Helper routine used by diop_solve() to find information about ``eq``.
Explanation
===========
Returns a tuple containing the type of the diophantine equation
along with the variables (free symbols) and their coefficients.
Variables are returned as a list and coefficients are returned
as a dict with the key being the respective term and the constant
term is keyed to 1. The type is one of the following:
* %s
Usage
=====
``classify_diop(eq)``: Return variables, coefficients and type of the
``eq``.
Details
=======
``eq`` should be an expression which is assumed to be zero.
``_dict`` is for internal use: when True (default) a dict is returned,
otherwise a defaultdict which supplies 0 for missing keys is returned.
Examples
========
>>> from sympy.solvers.diophantine import classify_diop
>>> from sympy.abc import x, y, z, w, t
>>> classify_diop(4*x + 6*y - 4)
([x, y], {1: -4, x: 4, y: 6}, 'linear')
>>> classify_diop(x + 3*y -4*z + 5)
([x, y, z], {1: 5, x: 1, y: 3, z: -4}, 'linear')
>>> classify_diop(x**2 + y**2 - x*y + x + 5)
([x, y], {1: 5, x: 1, x**2: 1, y**2: 1, x*y: -1}, 'binary_quadratic')
''' % ('\n * '.join(sorted(diop_known))))
def diop_linear(eq, param=symbols("t", integer=True)):
"""
Solves linear diophantine equations.
A linear diophantine equation is an equation of the form `a_{1}x_{1} +
a_{2}x_{2} + .. + a_{n}x_{n} = 0` where `a_{1}, a_{2}, ..a_{n}` are
integer constants and `x_{1}, x_{2}, ..x_{n}` are integer variables.
Usage
=====
``diop_linear(eq)``: Returns a tuple containing solutions to the
diophantine equation ``eq``. Values in the tuple is arranged in the same
order as the sorted variables.
Details
=======
``eq`` is a linear diophantine equation which is assumed to be zero.
``param`` is the parameter to be used in the solution.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import diop_linear
>>> from sympy.abc import x, y, z
>>> diop_linear(2*x - 3*y - 5) # solves equation 2*x - 3*y - 5 == 0
(3*t_0 - 5, 2*t_0 - 5)
Here x = -3*t_0 - 5 and y = -2*t_0 - 5
>>> diop_linear(2*x - 3*y - 4*z -3)
(t_0, 2*t_0 + 4*t_1 + 3, -t_0 - 3*t_1 - 3)
See Also
========
diop_quadratic(), diop_ternary_quadratic(), diop_general_pythagorean(),
diop_general_sum_of_squares()
"""
var, coeff, diop_type = classify_diop(eq, _dict=False)
if diop_type == Linear.name:
parameters = None
if param is not None:
parameters = symbols('%s_0:%i' % (param, len(var)), integer=True)
result = Linear(eq).solve(parameters=parameters)
if param is None:
result = result(*[0]*len(result.parameters))
if len(result) > 0:
return list(result)[0]
else:
return tuple([None]*len(result.parameters))
def base_solution_linear(c, a, b, t=None):
"""
Return the base solution for the linear equation, `ax + by = c`.
Explanation
===========
Used by ``diop_linear()`` to find the base solution of a linear
Diophantine equation. If ``t`` is given then the parametrized solution is
returned.
Usage
=====
``base_solution_linear(c, a, b, t)``: ``a``, ``b``, ``c`` are coefficients
in `ax + by = c` and ``t`` is the parameter to be used in the solution.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import base_solution_linear
>>> from sympy.abc import t
>>> base_solution_linear(5, 2, 3) # equation 2*x + 3*y = 5
(-5, 5)
>>> base_solution_linear(0, 5, 7) # equation 5*x + 7*y = 0
(0, 0)
>>> base_solution_linear(5, 2, 3, t) # equation 2*x + 3*y = 5
(3*t - 5, 5 - 2*t)
>>> base_solution_linear(0, 5, 7, t) # equation 5*x + 7*y = 0
(7*t, -5*t)
"""
a, b, c = _remove_gcd(a, b, c)
if c == 0:
if t is not None:
if b < 0:
t = -t
return (b*t, -a*t)
else:
return (0, 0)
else:
x0, y0, d = igcdex(abs(a), abs(b))
x0 *= sign(a)
y0 *= sign(b)
if divisible(c, d):
if t is not None:
if b < 0:
t = -t
return (c*x0 + b*t, c*y0 - a*t)
else:
return (c*x0, c*y0)
else:
return (None, None)
def diop_univariate(eq):
"""
Solves a univariate diophantine equations.
Explanation
===========
A univariate diophantine equation is an equation of the form
`a_{0} + a_{1}x + a_{2}x^2 + .. + a_{n}x^n = 0` where `a_{1}, a_{2}, ..a_{n}` are
integer constants and `x` is an integer variable.
Usage
=====
``diop_univariate(eq)``: Returns a set containing solutions to the
diophantine equation ``eq``.
Details
=======
``eq`` is a univariate diophantine equation which is assumed to be zero.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import diop_univariate
>>> from sympy.abc import x
>>> diop_univariate((x - 2)*(x - 3)**2) # solves equation (x - 2)*(x - 3)**2 == 0
{(2,), (3,)}
"""
var, coeff, diop_type = classify_diop(eq, _dict=False)
if diop_type == Univariate.name:
return {(int(i),) for i in solveset_real(
eq, var[0]).intersect(S.Integers)}
def divisible(a, b):
"""
Returns `True` if ``a`` is divisible by ``b`` and `False` otherwise.
"""
return not a % b
def diop_quadratic(eq, param=symbols("t", integer=True)):
"""
Solves quadratic diophantine equations.
i.e. equations of the form `Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0`. Returns a
set containing the tuples `(x, y)` which contains the solutions. If there
are no solutions then `(None, None)` is returned.
Usage
=====
``diop_quadratic(eq, param)``: ``eq`` is a quadratic binary diophantine
equation. ``param`` is used to indicate the parameter to be used in the
solution.
Details
=======
``eq`` should be an expression which is assumed to be zero.
``param`` is a parameter to be used in the solution.
Examples
========
>>> from sympy.abc import x, y, t
>>> from sympy.solvers.diophantine.diophantine import diop_quadratic
>>> diop_quadratic(x**2 + y**2 + 2*x + 2*y + 2, t)
{(-1, -1)}
References
==========
.. [1] Methods to solve Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0, [online],
Available: http://www.alpertron.com.ar/METHODS.HTM
.. [2] Solving the equation ax^2+ bxy + cy^2 + dx + ey + f= 0, [online],
Available: https://web.archive.org/web/20160323033111/http://www.jpr2718.org/ax2p.pdf
See Also
========
diop_linear(), diop_ternary_quadratic(), diop_general_sum_of_squares(),
diop_general_pythagorean()
"""
var, coeff, diop_type = classify_diop(eq, _dict=False)
if diop_type == BinaryQuadratic.name:
if param is not None:
parameters = [param, Symbol("u", integer=True)]
else:
parameters = None
return set(BinaryQuadratic(eq).solve(parameters=parameters))
def is_solution_quad(var, coeff, u, v):
"""
Check whether `(u, v)` is solution to the quadratic binary diophantine
equation with the variable list ``var`` and coefficient dictionary
``coeff``.
Not intended for use by normal users.
"""
reps = dict(zip(var, (u, v)))
eq = Add(*[j*i.xreplace(reps) for i, j in coeff.items()])
return _mexpand(eq) == 0
def diop_DN(D, N, t=symbols("t", integer=True)):
"""
Solves the equation `x^2 - Dy^2 = N`.
Explanation
===========
Mainly concerned with the case `D > 0, D` is not a perfect square,
which is the same as the generalized Pell equation. The LMM
algorithm [1]_ is used to solve this equation.
Returns one solution tuple, (`x, y)` for each class of the solutions.
Other solutions of the class can be constructed according to the
values of ``D`` and ``N``.
Usage
=====
``diop_DN(D, N, t)``: D and N are integers as in `x^2 - Dy^2 = N` and
``t`` is the parameter to be used in the solutions.
Details
=======
``D`` and ``N`` correspond to D and N in the equation.
``t`` is the parameter to be used in the solutions.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import diop_DN
>>> diop_DN(13, -4) # Solves equation x**2 - 13*y**2 = -4
[(3, 1), (393, 109), (36, 10)]
The output can be interpreted as follows: There are three fundamental
solutions to the equation `x^2 - 13y^2 = -4` given by (3, 1), (393, 109)
and (36, 10). Each tuple is in the form (x, y), i.e. solution (3, 1) means
that `x = 3` and `y = 1`.
>>> diop_DN(986, 1) # Solves equation x**2 - 986*y**2 = 1
[(49299, 1570)]
See Also
========
find_DN(), diop_bf_DN()
References
==========
.. [1] Solving the generalized Pell equation x**2 - D*y**2 = N, John P.
Robertson, July 31, 2004, Pages 16 - 17. [online], Available:
https://web.archive.org/web/20160323033128/http://www.jpr2718.org/pell.pdf
"""
if D < 0:
if N == 0:
return [(0, 0)]
elif N < 0:
return []
elif N > 0:
sol = []
for d in divisors(square_factor(N)):
sols = cornacchia(1, -D, N // d**2)
if sols:
for x, y in sols:
sol.append((d*x, d*y))
if D == -1:
sol.append((d*y, d*x))
return sol
elif D == 0:
if N < 0:
return []
if N == 0:
return [(0, t)]
sN, _exact = integer_nthroot(N, 2)
if _exact:
return [(sN, t)]
else:
return []
else: # D > 0
sD, _exact = integer_nthroot(D, 2)
if _exact:
if N == 0:
return [(sD*t, t)]
else:
sol = []
for y in range(floor(sign(N)*(N - 1)/(2*sD)) + 1):
try:
sq, _exact = integer_nthroot(D*y**2 + N, 2)
except ValueError:
_exact = False
if _exact:
sol.append((sq, y))
return sol
elif 1 < N**2 < D:
# It is much faster to call `_special_diop_DN`.
return _special_diop_DN(D, N)
else:
if N == 0:
return [(0, 0)]
elif abs(N) == 1:
pqa = PQa(0, 1, D)
j = 0
G = []
B = []
for i in pqa:
a = i[2]
G.append(i[5])
B.append(i[4])
if j != 0 and a == 2*sD:
break
j = j + 1
if _odd(j):
if N == -1:
x = G[j - 1]
y = B[j - 1]
else:
count = j
while count < 2*j - 1:
i = next(pqa)
G.append(i[5])
B.append(i[4])
count += 1
x = G[count]
y = B[count]
else:
if N == 1:
x = G[j - 1]
y = B[j - 1]
else:
return []
return [(x, y)]
else:
fs = []
sol = []
div = divisors(N)
for d in div:
if divisible(N, d**2):
fs.append(d)
for f in fs:
m = N // f**2
zs = sqrt_mod(D, abs(m), all_roots=True)
zs = [i for i in zs if i <= abs(m) // 2 ]
if abs(m) != 2:
zs = zs + [-i for i in zs if i] # omit dupl 0
for z in zs:
pqa = PQa(z, abs(m), D)
j = 0
G = []
B = []
for i in pqa:
G.append(i[5])
B.append(i[4])
if j != 0 and abs(i[1]) == 1:
r = G[j-1]
s = B[j-1]
if r**2 - D*s**2 == m:
sol.append((f*r, f*s))
elif diop_DN(D, -1) != []:
a = diop_DN(D, -1)
sol.append((f*(r*a[0][0] + a[0][1]*s*D), f*(r*a[0][1] + s*a[0][0])))
break
j = j + 1
if j == length(z, abs(m), D):
break
return sol
def _special_diop_DN(D, N):
"""
Solves the equation `x^2 - Dy^2 = N` for the special case where
`1 < N**2 < D` and `D` is not a perfect square.
It is better to call `diop_DN` rather than this function, as
the former checks the condition `1 < N**2 < D`, and calls the latter only
if appropriate.
Usage
=====
WARNING: Internal method. Do not call directly!
``_special_diop_DN(D, N)``: D and N are integers as in `x^2 - Dy^2 = N`.
Details
=======
``D`` and ``N`` correspond to D and N in the equation.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import _special_diop_DN
>>> _special_diop_DN(13, -3) # Solves equation x**2 - 13*y**2 = -3
[(7, 2), (137, 38)]
The output can be interpreted as follows: There are two fundamental
solutions to the equation `x^2 - 13y^2 = -3` given by (7, 2) and
(137, 38). Each tuple is in the form (x, y), i.e. solution (7, 2) means
that `x = 7` and `y = 2`.
>>> _special_diop_DN(2445, -20) # Solves equation x**2 - 2445*y**2 = -20
[(445, 9), (17625560, 356454), (698095554475, 14118073569)]
See Also
========
diop_DN()
References
==========
.. [1] Section 4.4.4 of the following book:
Quadratic Diophantine Equations, T. Andreescu and D. Andrica,
Springer, 2015.
"""
# The following assertion was removed for efficiency, with the understanding
# that this method is not called directly. The parent method, `diop_DN`
# is responsible for performing the appropriate checks.
#
# assert (1 < N**2 < D) and (not integer_nthroot(D, 2)[1])
sqrt_D = sqrt(D)
F = [(N, 1)]
f = 2
while True:
f2 = f**2
if f2 > abs(N):
break
n, r = divmod(N, f2)
if r == 0:
F.append((n, f))
f += 1
P = 0
Q = 1
G0, G1 = 0, 1
B0, B1 = 1, 0
solutions = []
i = 0
while True:
a = floor((P + sqrt_D) / Q)
P = a*Q - P
Q = (D - P**2) // Q
G2 = a*G1 + G0
B2 = a*B1 + B0
for n, f in F:
if G2**2 - D*B2**2 == n:
solutions.append((f*G2, f*B2))
i += 1
if Q == 1 and i % 2 == 0:
break
G0, G1 = G1, G2
B0, B1 = B1, B2
return solutions
def cornacchia(a, b, m):
r"""
Solves `ax^2 + by^2 = m` where `\gcd(a, b) = 1 = gcd(a, m)` and `a, b > 0`.
Explanation
===========
Uses the algorithm due to Cornacchia. The method only finds primitive
solutions, i.e. ones with `\gcd(x, y) = 1`. So this method cannot be used to
find the solutions of `x^2 + y^2 = 20` since the only solution to former is
`(x, y) = (4, 2)` and it is not primitive. When `a = b`, only the
solutions with `x \leq y` are found. For more details, see the References.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import cornacchia
>>> cornacchia(2, 3, 35) # equation 2x**2 + 3y**2 = 35
{(2, 3), (4, 1)}
>>> cornacchia(1, 1, 25) # equation x**2 + y**2 = 25
{(4, 3)}
References
===========
.. [1] A. Nitaj, "L'algorithme de Cornacchia"
.. [2] Solving the diophantine equation ax**2 + by**2 = m by Cornacchia's
method, [online], Available:
http://www.numbertheory.org/php/cornacchia.html
See Also
========
sympy.utilities.iterables.signed_permutations
"""
sols = set()
a1 = igcdex(a, m)[0]
v = sqrt_mod(-b*a1, m, all_roots=True)
if not v:
return None
for t in v:
if t < m // 2:
continue
u, r = t, m
while True:
u, r = r, u % r
if a*r**2 < m:
break
m1 = m - a*r**2
if m1 % b == 0:
m1 = m1 // b
s, _exact = integer_nthroot(m1, 2)
if _exact:
if a == b and r < s:
r, s = s, r
sols.add((int(r), int(s)))
return sols
def PQa(P_0, Q_0, D):
r"""
Returns useful information needed to solve the Pell equation.
Explanation
===========
There are six sequences of integers defined related to the continued
fraction representation of `\\frac{P + \sqrt{D}}{Q}`, namely {`P_{i}`},
{`Q_{i}`}, {`a_{i}`},{`A_{i}`}, {`B_{i}`}, {`G_{i}`}. ``PQa()`` Returns
these values as a 6-tuple in the same order as mentioned above. Refer [1]_
for more detailed information.
Usage
=====
``PQa(P_0, Q_0, D)``: ``P_0``, ``Q_0`` and ``D`` are integers corresponding
to `P_{0}`, `Q_{0}` and `D` in the continued fraction
`\\frac{P_{0} + \sqrt{D}}{Q_{0}}`.
Also it's assumed that `P_{0}^2 == D mod(|Q_{0}|)` and `D` is square free.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import PQa
>>> pqa = PQa(13, 4, 5) # (13 + sqrt(5))/4
>>> next(pqa) # (P_0, Q_0, a_0, A_0, B_0, G_0)
(13, 4, 3, 3, 1, -1)
>>> next(pqa) # (P_1, Q_1, a_1, A_1, B_1, G_1)
(-1, 1, 1, 4, 1, 3)
References
==========
.. [1] Solving the generalized Pell equation x^2 - Dy^2 = N, John P.
Robertson, July 31, 2004, Pages 4 - 8. https://web.archive.org/web/20160323033128/http://www.jpr2718.org/pell.pdf
"""
A_i_2 = B_i_1 = 0
A_i_1 = B_i_2 = 1
G_i_2 = -P_0
G_i_1 = Q_0
P_i = P_0
Q_i = Q_0
while True:
a_i = floor((P_i + sqrt(D))/Q_i)
A_i = a_i*A_i_1 + A_i_2
B_i = a_i*B_i_1 + B_i_2
G_i = a_i*G_i_1 + G_i_2
yield P_i, Q_i, a_i, A_i, B_i, G_i
A_i_1, A_i_2 = A_i, A_i_1
B_i_1, B_i_2 = B_i, B_i_1
G_i_1, G_i_2 = G_i, G_i_1
P_i = a_i*Q_i - P_i
Q_i = (D - P_i**2)/Q_i
def diop_bf_DN(D, N, t=symbols("t", integer=True)):
r"""
Uses brute force to solve the equation, `x^2 - Dy^2 = N`.
Explanation
===========
Mainly concerned with the generalized Pell equation which is the case when
`D > 0, D` is not a perfect square. For more information on the case refer
[1]_. Let `(t, u)` be the minimal positive solution of the equation
`x^2 - Dy^2 = 1`. Then this method requires
`\sqrt{\\frac{\mid N \mid (t \pm 1)}{2D}}` to be small.
Usage
=====
``diop_bf_DN(D, N, t)``: ``D`` and ``N`` are coefficients in
`x^2 - Dy^2 = N` and ``t`` is the parameter to be used in the solutions.
Details
=======
``D`` and ``N`` correspond to D and N in the equation.
``t`` is the parameter to be used in the solutions.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import diop_bf_DN
>>> diop_bf_DN(13, -4)
[(3, 1), (-3, 1), (36, 10)]
>>> diop_bf_DN(986, 1)
[(49299, 1570)]
See Also
========
diop_DN()
References
==========
.. [1] Solving the generalized Pell equation x**2 - D*y**2 = N, John P.
Robertson, July 31, 2004, Page 15. https://web.archive.org/web/20160323033128/http://www.jpr2718.org/pell.pdf
"""
D = as_int(D)
N = as_int(N)
sol = []
a = diop_DN(D, 1)
u = a[0][0]
if abs(N) == 1:
return diop_DN(D, N)
elif N > 1:
L1 = 0
L2 = integer_nthroot(int(N*(u - 1)/(2*D)), 2)[0] + 1
elif N < -1:
L1, _exact = integer_nthroot(-int(N/D), 2)
if not _exact:
L1 += 1
L2 = integer_nthroot(-int(N*(u + 1)/(2*D)), 2)[0] + 1
else: # N = 0
if D < 0:
return [(0, 0)]
elif D == 0:
return [(0, t)]
else:
sD, _exact = integer_nthroot(D, 2)
if _exact:
return [(sD*t, t), (-sD*t, t)]
else:
return [(0, 0)]
for y in range(L1, L2):
try:
x, _exact = integer_nthroot(N + D*y**2, 2)
except ValueError:
_exact = False
if _exact:
sol.append((x, y))
if not equivalent(x, y, -x, y, D, N):
sol.append((-x, y))
return sol
def equivalent(u, v, r, s, D, N):
"""
Returns True if two solutions `(u, v)` and `(r, s)` of `x^2 - Dy^2 = N`
belongs to the same equivalence class and False otherwise.
Explanation
===========
Two solutions `(u, v)` and `(r, s)` to the above equation fall to the same
equivalence class iff both `(ur - Dvs)` and `(us - vr)` are divisible by
`N`. See reference [1]_. No test is performed to test whether `(u, v)` and
`(r, s)` are actually solutions to the equation. User should take care of
this.
Usage
=====
``equivalent(u, v, r, s, D, N)``: `(u, v)` and `(r, s)` are two solutions
of the equation `x^2 - Dy^2 = N` and all parameters involved are integers.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import equivalent
>>> equivalent(18, 5, -18, -5, 13, -1)
True
>>> equivalent(3, 1, -18, 393, 109, -4)
False
References
==========
.. [1] Solving the generalized Pell equation x**2 - D*y**2 = N, John P.
Robertson, July 31, 2004, Page 12. https://web.archive.org/web/20160323033128/http://www.jpr2718.org/pell.pdf
"""
return divisible(u*r - D*v*s, N) and divisible(u*s - v*r, N)
def length(P, Q, D):
r"""
Returns the (length of aperiodic part + length of periodic part) of
continued fraction representation of `\\frac{P + \sqrt{D}}{Q}`.
It is important to remember that this does NOT return the length of the
periodic part but the sum of the lengths of the two parts as mentioned
above.
Usage
=====
``length(P, Q, D)``: ``P``, ``Q`` and ``D`` are integers corresponding to
the continued fraction `\\frac{P + \sqrt{D}}{Q}`.
Details
=======
``P``, ``D`` and ``Q`` corresponds to P, D and Q in the continued fraction,
`\\frac{P + \sqrt{D}}{Q}`.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import length
>>> length(-2, 4, 5) # (-2 + sqrt(5))/4
3
>>> length(-5, 4, 17) # (-5 + sqrt(17))/4
4
See Also
========
sympy.ntheory.continued_fraction.continued_fraction_periodic
"""
from sympy.ntheory.continued_fraction import continued_fraction_periodic
v = continued_fraction_periodic(P, Q, D)
if isinstance(v[-1], list):
rpt = len(v[-1])
nonrpt = len(v) - 1
else:
rpt = 0
nonrpt = len(v)
return rpt + nonrpt
def transformation_to_DN(eq):
"""
This function transforms general quadratic,
`ax^2 + bxy + cy^2 + dx + ey + f = 0`
to more easy to deal with `X^2 - DY^2 = N` form.
Explanation
===========
This is used to solve the general quadratic equation by transforming it to
the latter form. Refer to [1]_ for more detailed information on the
transformation. This function returns a tuple (A, B) where A is a 2 X 2
matrix and B is a 2 X 1 matrix such that,
Transpose([x y]) = A * Transpose([X Y]) + B
Usage
=====
``transformation_to_DN(eq)``: where ``eq`` is the quadratic to be
transformed.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.solvers.diophantine.diophantine import transformation_to_DN
>>> A, B = transformation_to_DN(x**2 - 3*x*y - y**2 - 2*y + 1)
>>> A
Matrix([
[1/26, 3/26],
[ 0, 1/13]])
>>> B
Matrix([
[-6/13],
[-4/13]])
A, B returned are such that Transpose((x y)) = A * Transpose((X Y)) + B.
Substituting these values for `x` and `y` and a bit of simplifying work
will give an equation of the form `x^2 - Dy^2 = N`.
>>> from sympy.abc import X, Y
>>> from sympy import Matrix, simplify
>>> u = (A*Matrix([X, Y]) + B)[0] # Transformation for x
>>> u
X/26 + 3*Y/26 - 6/13
>>> v = (A*Matrix([X, Y]) + B)[1] # Transformation for y
>>> v
Y/13 - 4/13
Next we will substitute these formulas for `x` and `y` and do
``simplify()``.
>>> eq = simplify((x**2 - 3*x*y - y**2 - 2*y + 1).subs(zip((x, y), (u, v))))
>>> eq
X**2/676 - Y**2/52 + 17/13
By multiplying the denominator appropriately, we can get a Pell equation
in the standard form.
>>> eq * 676
X**2 - 13*Y**2 + 884
If only the final equation is needed, ``find_DN()`` can be used.
See Also
========
find_DN()
References
==========
.. [1] Solving the equation ax^2 + bxy + cy^2 + dx + ey + f = 0,
John P.Robertson, May 8, 2003, Page 7 - 11.
https://web.archive.org/web/20160323033111/http://www.jpr2718.org/ax2p.pdf
"""
var, coeff, diop_type = classify_diop(eq, _dict=False)
if diop_type == BinaryQuadratic.name:
return _transformation_to_DN(var, coeff)
def _transformation_to_DN(var, coeff):
x, y = var
a = coeff[x**2]
b = coeff[x*y]
c = coeff[y**2]
d = coeff[x]
e = coeff[y]
f = coeff[1]
a, b, c, d, e, f = [as_int(i) for i in _remove_gcd(a, b, c, d, e, f)]
X, Y = symbols("X, Y", integer=True)
if b:
B, C = _rational_pq(2*a, b)
A, T = _rational_pq(a, B**2)
# eq_1 = A*B*X**2 + B*(c*T - A*C**2)*Y**2 + d*T*X + (B*e*T - d*T*C)*Y + f*T*B
coeff = {X**2: A*B, X*Y: 0, Y**2: B*(c*T - A*C**2), X: d*T, Y: B*e*T - d*T*C, 1: f*T*B}
A_0, B_0 = _transformation_to_DN([X, Y], coeff)
return Matrix(2, 2, [S.One/B, -S(C)/B, 0, 1])*A_0, Matrix(2, 2, [S.One/B, -S(C)/B, 0, 1])*B_0
else:
if d:
B, C = _rational_pq(2*a, d)
A, T = _rational_pq(a, B**2)
# eq_2 = A*X**2 + c*T*Y**2 + e*T*Y + f*T - A*C**2
coeff = {X**2: A, X*Y: 0, Y**2: c*T, X: 0, Y: e*T, 1: f*T - A*C**2}
A_0, B_0 = _transformation_to_DN([X, Y], coeff)
return Matrix(2, 2, [S.One/B, 0, 0, 1])*A_0, Matrix(2, 2, [S.One/B, 0, 0, 1])*B_0 + Matrix([-S(C)/B, 0])
else:
if e:
B, C = _rational_pq(2*c, e)
A, T = _rational_pq(c, B**2)
# eq_3 = a*T*X**2 + A*Y**2 + f*T - A*C**2
coeff = {X**2: a*T, X*Y: 0, Y**2: A, X: 0, Y: 0, 1: f*T - A*C**2}
A_0, B_0 = _transformation_to_DN([X, Y], coeff)
return Matrix(2, 2, [1, 0, 0, S.One/B])*A_0, Matrix(2, 2, [1, 0, 0, S.One/B])*B_0 + Matrix([0, -S(C)/B])
else:
# TODO: pre-simplification: Not necessary but may simplify
# the equation.
return Matrix(2, 2, [S.One/a, 0, 0, 1]), Matrix([0, 0])
def find_DN(eq):
"""
This function returns a tuple, `(D, N)` of the simplified form,
`x^2 - Dy^2 = N`, corresponding to the general quadratic,
`ax^2 + bxy + cy^2 + dx + ey + f = 0`.
Solving the general quadratic is then equivalent to solving the equation
`X^2 - DY^2 = N` and transforming the solutions by using the transformation
matrices returned by ``transformation_to_DN()``.
Usage
=====
``find_DN(eq)``: where ``eq`` is the quadratic to be transformed.
Examples
========
>>> from sympy.abc import x, y
>>> from sympy.solvers.diophantine.diophantine import find_DN
>>> find_DN(x**2 - 3*x*y - y**2 - 2*y + 1)
(13, -884)
Interpretation of the output is that we get `X^2 -13Y^2 = -884` after
transforming `x^2 - 3xy - y^2 - 2y + 1` using the transformation returned
by ``transformation_to_DN()``.
See Also
========
transformation_to_DN()
References
==========
.. [1] Solving the equation ax^2 + bxy + cy^2 + dx + ey + f = 0,
John P.Robertson, May 8, 2003, Page 7 - 11.
https://web.archive.org/web/20160323033111/http://www.jpr2718.org/ax2p.pdf
"""
var, coeff, diop_type = classify_diop(eq, _dict=False)
if diop_type == BinaryQuadratic.name:
return _find_DN(var, coeff)
def _find_DN(var, coeff):
x, y = var
X, Y = symbols("X, Y", integer=True)
A, B = _transformation_to_DN(var, coeff)
u = (A*Matrix([X, Y]) + B)[0]
v = (A*Matrix([X, Y]) + B)[1]
eq = x**2*coeff[x**2] + x*y*coeff[x*y] + y**2*coeff[y**2] + x*coeff[x] + y*coeff[y] + coeff[1]
simplified = _mexpand(eq.subs(zip((x, y), (u, v))))
coeff = simplified.as_coefficients_dict()
return -coeff[Y**2]/coeff[X**2], -coeff[1]/coeff[X**2]
def check_param(x, y, a, params):
"""
If there is a number modulo ``a`` such that ``x`` and ``y`` are both
integers, then return a parametric representation for ``x`` and ``y``
else return (None, None).
Here ``x`` and ``y`` are functions of ``t``.
"""
from sympy.simplify.simplify import clear_coefficients
if x.is_number and not x.is_Integer:
return DiophantineSolutionSet([x, y], parameters=params)
if y.is_number and not y.is_Integer:
return DiophantineSolutionSet([x, y], parameters=params)
m, n = symbols("m, n", integer=True)
c, p = (m*x + n*y).as_content_primitive()
if a % c.q:
return DiophantineSolutionSet([x, y], parameters=params)
# clear_coefficients(mx + b, R)[1] -> (R - b)/m
eq = clear_coefficients(x, m)[1] - clear_coefficients(y, n)[1]
junk, eq = eq.as_content_primitive()
return _diop_solve(eq, params=params)
def diop_ternary_quadratic(eq, parameterize=False):
"""
Solves the general quadratic ternary form,
`ax^2 + by^2 + cz^2 + fxy + gyz + hxz = 0`.
Returns a tuple `(x, y, z)` which is a base solution for the above
equation. If there are no solutions, `(None, None, None)` is returned.
Usage
=====
``diop_ternary_quadratic(eq)``: Return a tuple containing a basic solution
to ``eq``.
Details
=======
``eq`` should be an homogeneous expression of degree two in three variables
and it is assumed to be zero.
Examples
========
>>> from sympy.abc import x, y, z
>>> from sympy.solvers.diophantine.diophantine import diop_ternary_quadratic
>>> diop_ternary_quadratic(x**2 + 3*y**2 - z**2)
(1, 0, 1)
>>> diop_ternary_quadratic(4*x**2 + 5*y**2 - z**2)
(1, 0, 2)
>>> diop_ternary_quadratic(45*x**2 - 7*y**2 - 8*x*y - z**2)
(28, 45, 105)
>>> diop_ternary_quadratic(x**2 - 49*y**2 - z**2 + 13*z*y -8*x*y)
(9, 1, 5)
"""
var, coeff, diop_type = classify_diop(eq, _dict=False)
if diop_type in (
HomogeneousTernaryQuadratic.name,
HomogeneousTernaryQuadraticNormal.name):
sol = _diop_ternary_quadratic(var, coeff)
if len(sol) > 0:
x_0, y_0, z_0 = list(sol)[0]
else:
x_0, y_0, z_0 = None, None, None
if parameterize:
return _parametrize_ternary_quadratic(
(x_0, y_0, z_0), var, coeff)
return x_0, y_0, z_0
def _diop_ternary_quadratic(_var, coeff):
eq = sum([i*coeff[i] for i in coeff])
if HomogeneousTernaryQuadratic(eq).matches():
return HomogeneousTernaryQuadratic(eq, free_symbols=_var).solve()
elif HomogeneousTernaryQuadraticNormal(eq).matches():
return HomogeneousTernaryQuadraticNormal(eq, free_symbols=_var).solve()
def transformation_to_normal(eq):
"""
Returns the transformation Matrix that converts a general ternary
quadratic equation ``eq`` (`ax^2 + by^2 + cz^2 + dxy + eyz + fxz`)
to a form without cross terms: `ax^2 + by^2 + cz^2 = 0`. This is
not used in solving ternary quadratics; it is only implemented for
the sake of completeness.
"""
var, coeff, diop_type = classify_diop(eq, _dict=False)
if diop_type in (
"homogeneous_ternary_quadratic",
"homogeneous_ternary_quadratic_normal"):
return _transformation_to_normal(var, coeff)
def _transformation_to_normal(var, coeff):
_var = list(var) # copy
x, y, z = var
if not any(coeff[i**2] for i in var):
# https://math.stackexchange.com/questions/448051/transform-quadratic-ternary-form-to-normal-form/448065#448065
a = coeff[x*y]
b = coeff[y*z]
c = coeff[x*z]
swap = False
if not a: # b can't be 0 or else there aren't 3 vars
swap = True
a, b = b, a
T = Matrix(((1, 1, -b/a), (1, -1, -c/a), (0, 0, 1)))
if swap:
T.row_swap(0, 1)
T.col_swap(0, 1)
return T
if coeff[x**2] == 0:
# If the coefficient of x is zero change the variables
if coeff[y**2] == 0:
_var[0], _var[2] = var[2], var[0]
T = _transformation_to_normal(_var, coeff)
T.row_swap(0, 2)
T.col_swap(0, 2)
return T
else:
_var[0], _var[1] = var[1], var[0]
T = _transformation_to_normal(_var, coeff)
T.row_swap(0, 1)
T.col_swap(0, 1)
return T
# Apply the transformation x --> X - (B*Y + C*Z)/(2*A)
if coeff[x*y] != 0 or coeff[x*z] != 0:
A = coeff[x**2]
B = coeff[x*y]
C = coeff[x*z]
D = coeff[y**2]
E = coeff[y*z]
F = coeff[z**2]
_coeff = {}
_coeff[x**2] = 4*A**2
_coeff[y**2] = 4*A*D - B**2
_coeff[z**2] = 4*A*F - C**2
_coeff[y*z] = 4*A*E - 2*B*C
_coeff[x*y] = 0
_coeff[x*z] = 0
T_0 = _transformation_to_normal(_var, _coeff)
return Matrix(3, 3, [1, S(-B)/(2*A), S(-C)/(2*A), 0, 1, 0, 0, 0, 1])*T_0
elif coeff[y*z] != 0:
if coeff[y**2] == 0:
if coeff[z**2] == 0:
# Equations of the form A*x**2 + E*yz = 0.
# Apply transformation y -> Y + Z ans z -> Y - Z
return Matrix(3, 3, [1, 0, 0, 0, 1, 1, 0, 1, -1])
else:
# Ax**2 + E*y*z + F*z**2 = 0
_var[0], _var[2] = var[2], var[0]
T = _transformation_to_normal(_var, coeff)
T.row_swap(0, 2)
T.col_swap(0, 2)
return T
else:
# A*x**2 + D*y**2 + E*y*z + F*z**2 = 0, F may be zero
_var[0], _var[1] = var[1], var[0]
T = _transformation_to_normal(_var, coeff)
T.row_swap(0, 1)
T.col_swap(0, 1)
return T
else:
return Matrix.eye(3)
def parametrize_ternary_quadratic(eq):
"""
Returns the parametrized general solution for the ternary quadratic
equation ``eq`` which has the form
`ax^2 + by^2 + cz^2 + fxy + gyz + hxz = 0`.
Examples
========
>>> from sympy import Tuple, ordered
>>> from sympy.abc import x, y, z
>>> from sympy.solvers.diophantine.diophantine import parametrize_ternary_quadratic
The parametrized solution may be returned with three parameters:
>>> parametrize_ternary_quadratic(2*x**2 + y**2 - 2*z**2)
(p**2 - 2*q**2, -2*p**2 + 4*p*q - 4*p*r - 4*q**2, p**2 - 4*p*q + 2*q**2 - 4*q*r)
There might also be only two parameters:
>>> parametrize_ternary_quadratic(4*x**2 + 2*y**2 - 3*z**2)
(2*p**2 - 3*q**2, -4*p**2 + 12*p*q - 6*q**2, 4*p**2 - 8*p*q + 6*q**2)
Notes
=====
Consider ``p`` and ``q`` in the previous 2-parameter
solution and observe that more than one solution can be represented
by a given pair of parameters. If `p` and ``q`` are not coprime, this is
trivially true since the common factor will also be a common factor of the
solution values. But it may also be true even when ``p`` and
``q`` are coprime:
>>> sol = Tuple(*_)
>>> p, q = ordered(sol.free_symbols)
>>> sol.subs([(p, 3), (q, 2)])
(6, 12, 12)
>>> sol.subs([(q, 1), (p, 1)])
(-1, 2, 2)
>>> sol.subs([(q, 0), (p, 1)])
(2, -4, 4)
>>> sol.subs([(q, 1), (p, 0)])
(-3, -6, 6)
Except for sign and a common factor, these are equivalent to
the solution of (1, 2, 2).
References
==========
.. [1] The algorithmic resolution of Diophantine equations, Nigel P. Smart,
London Mathematical Society Student Texts 41, Cambridge University
Press, Cambridge, 1998.
"""
var, coeff, diop_type = classify_diop(eq, _dict=False)
if diop_type in (
"homogeneous_ternary_quadratic",
"homogeneous_ternary_quadratic_normal"):
x_0, y_0, z_0 = list(_diop_ternary_quadratic(var, coeff))[0]
return _parametrize_ternary_quadratic(
(x_0, y_0, z_0), var, coeff)
def _parametrize_ternary_quadratic(solution, _var, coeff):
# called for a*x**2 + b*y**2 + c*z**2 + d*x*y + e*y*z + f*x*z = 0
assert 1 not in coeff
x_0, y_0, z_0 = solution
v = list(_var) # copy
if x_0 is None:
return (None, None, None)
if solution.count(0) >= 2:
# if there are 2 zeros the equation reduces
# to k*X**2 == 0 where X is x, y, or z so X must
# be zero, too. So there is only the trivial
# solution.
return (None, None, None)
if x_0 == 0:
v[0], v[1] = v[1], v[0]
y_p, x_p, z_p = _parametrize_ternary_quadratic(
(y_0, x_0, z_0), v, coeff)
return x_p, y_p, z_p
x, y, z = v
r, p, q = symbols("r, p, q", integer=True)
eq = sum(k*v for k, v in coeff.items())
eq_1 = _mexpand(eq.subs(zip(
(x, y, z), (r*x_0, r*y_0 + p, r*z_0 + q))))
A, B = eq_1.as_independent(r, as_Add=True)
x = A*x_0
y = (A*y_0 - _mexpand(B/r*p))
z = (A*z_0 - _mexpand(B/r*q))
return _remove_gcd(x, y, z)
def diop_ternary_quadratic_normal(eq, parameterize=False):
"""
Solves the quadratic ternary diophantine equation,
`ax^2 + by^2 + cz^2 = 0`.
Explanation
===========
Here the coefficients `a`, `b`, and `c` should be non zero. Otherwise the
equation will be a quadratic binary or univariate equation. If solvable,
returns a tuple `(x, y, z)` that satisfies the given equation. If the
equation does not have integer solutions, `(None, None, None)` is returned.
Usage
=====
``diop_ternary_quadratic_normal(eq)``: where ``eq`` is an equation of the form
`ax^2 + by^2 + cz^2 = 0`.
Examples
========
>>> from sympy.abc import x, y, z
>>> from sympy.solvers.diophantine.diophantine import diop_ternary_quadratic_normal
>>> diop_ternary_quadratic_normal(x**2 + 3*y**2 - z**2)
(1, 0, 1)
>>> diop_ternary_quadratic_normal(4*x**2 + 5*y**2 - z**2)
(1, 0, 2)
>>> diop_ternary_quadratic_normal(34*x**2 - 3*y**2 - 301*z**2)
(4, 9, 1)
"""
var, coeff, diop_type = classify_diop(eq, _dict=False)
if diop_type == HomogeneousTernaryQuadraticNormal.name:
sol = _diop_ternary_quadratic_normal(var, coeff)
if len(sol) > 0:
x_0, y_0, z_0 = list(sol)[0]
else:
x_0, y_0, z_0 = None, None, None
if parameterize:
return _parametrize_ternary_quadratic(
(x_0, y_0, z_0), var, coeff)
return x_0, y_0, z_0
def _diop_ternary_quadratic_normal(var, coeff):
eq = sum([i * coeff[i] for i in coeff])
return HomogeneousTernaryQuadraticNormal(eq, free_symbols=var).solve()
def sqf_normal(a, b, c, steps=False):
"""
Return `a', b', c'`, the coefficients of the square-free normal
form of `ax^2 + by^2 + cz^2 = 0`, where `a', b', c'` are pairwise
prime. If `steps` is True then also return three tuples:
`sq`, `sqf`, and `(a', b', c')` where `sq` contains the square
factors of `a`, `b` and `c` after removing the `gcd(a, b, c)`;
`sqf` contains the values of `a`, `b` and `c` after removing
both the `gcd(a, b, c)` and the square factors.
The solutions for `ax^2 + by^2 + cz^2 = 0` can be
recovered from the solutions of `a'x^2 + b'y^2 + c'z^2 = 0`.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import sqf_normal
>>> sqf_normal(2 * 3**2 * 5, 2 * 5 * 11, 2 * 7**2 * 11)
(11, 1, 5)
>>> sqf_normal(2 * 3**2 * 5, 2 * 5 * 11, 2 * 7**2 * 11, True)
((3, 1, 7), (5, 55, 11), (11, 1, 5))
References
==========
.. [1] Legendre's Theorem, Legrange's Descent,
http://public.csusm.edu/aitken_html/notes/legendre.pdf
See Also
========
reconstruct()
"""
ABC = _remove_gcd(a, b, c)
sq = tuple(square_factor(i) for i in ABC)
sqf = A, B, C = tuple([i//j**2 for i,j in zip(ABC, sq)])
pc = igcd(A, B)
A /= pc
B /= pc
pa = igcd(B, C)
B /= pa
C /= pa
pb = igcd(A, C)
A /= pb
B /= pb
A *= pa
B *= pb
C *= pc
if steps:
return (sq, sqf, (A, B, C))
else:
return A, B, C
def square_factor(a):
r"""
Returns an integer `c` s.t. `a = c^2k, \ c,k \in Z`. Here `k` is square
free. `a` can be given as an integer or a dictionary of factors.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import square_factor
>>> square_factor(24)
2
>>> square_factor(-36*3)
6
>>> square_factor(1)
1
>>> square_factor({3: 2, 2: 1, -1: 1}) # -18
3
See Also
========
sympy.ntheory.factor_.core
"""
f = a if isinstance(a, dict) else factorint(a)
return Mul(*[p**(e//2) for p, e in f.items()])
def reconstruct(A, B, z):
"""
Reconstruct the `z` value of an equivalent solution of `ax^2 + by^2 + cz^2`
from the `z` value of a solution of the square-free normal form of the
equation, `a'*x^2 + b'*y^2 + c'*z^2`, where `a'`, `b'` and `c'` are square
free and `gcd(a', b', c') == 1`.
"""
f = factorint(igcd(A, B))
for p, e in f.items():
if e != 1:
raise ValueError('a and b should be square-free')
z *= p
return z
def ldescent(A, B):
"""
Return a non-trivial solution to `w^2 = Ax^2 + By^2` using
Lagrange's method; return None if there is no such solution.
.
Here, `A \\neq 0` and `B \\neq 0` and `A` and `B` are square free. Output a
tuple `(w_0, x_0, y_0)` which is a solution to the above equation.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import ldescent
>>> ldescent(1, 1) # w^2 = x^2 + y^2
(1, 1, 0)
>>> ldescent(4, -7) # w^2 = 4x^2 - 7y^2
(2, -1, 0)
This means that `x = -1, y = 0` and `w = 2` is a solution to the equation
`w^2 = 4x^2 - 7y^2`
>>> ldescent(5, -1) # w^2 = 5x^2 - y^2
(2, 1, -1)
References
==========
.. [1] The algorithmic resolution of Diophantine equations, Nigel P. Smart,
London Mathematical Society Student Texts 41, Cambridge University
Press, Cambridge, 1998.
.. [2] Efficient Solution of Rational Conices, J. E. Cremona and D. Rusin,
[online], Available:
https://nottingham-repository.worktribe.com/output/1023265/efficient-solution-of-rational-conics
"""
if abs(A) > abs(B):
w, y, x = ldescent(B, A)
return w, x, y
if A == 1:
return (1, 1, 0)
if B == 1:
return (1, 0, 1)
if B == -1: # and A == -1
return
r = sqrt_mod(A, B)
Q = (r**2 - A) // B
if Q == 0:
B_0 = 1
d = 0
else:
div = divisors(Q)
B_0 = None
for i in div:
sQ, _exact = integer_nthroot(abs(Q) // i, 2)
if _exact:
B_0, d = sign(Q)*i, sQ
break
if B_0 is not None:
W, X, Y = ldescent(A, B_0)
return _remove_gcd((-A*X + r*W), (r*X - W), Y*(B_0*d))
def descent(A, B):
"""
Returns a non-trivial solution, (x, y, z), to `x^2 = Ay^2 + Bz^2`
using Lagrange's descent method with lattice-reduction. `A` and `B`
are assumed to be valid for such a solution to exist.
This is faster than the normal Lagrange's descent algorithm because
the Gaussian reduction is used.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import descent
>>> descent(3, 1) # x**2 = 3*y**2 + z**2
(1, 0, 1)
`(x, y, z) = (1, 0, 1)` is a solution to the above equation.
>>> descent(41, -113)
(-16, -3, 1)
References
==========
.. [1] Efficient Solution of Rational Conices, J. E. Cremona and D. Rusin,
Mathematics of Computation, Volume 00, Number 0.
"""
if abs(A) > abs(B):
x, y, z = descent(B, A)
return x, z, y
if B == 1:
return (1, 0, 1)
if A == 1:
return (1, 1, 0)
if B == -A:
return (0, 1, 1)
if B == A:
x, z, y = descent(-1, A)
return (A*y, z, x)
w = sqrt_mod(A, B)
x_0, z_0 = gaussian_reduce(w, A, B)
t = (x_0**2 - A*z_0**2) // B
t_2 = square_factor(t)
t_1 = t // t_2**2
x_1, z_1, y_1 = descent(A, t_1)
return _remove_gcd(x_0*x_1 + A*z_0*z_1, z_0*x_1 + x_0*z_1, t_1*t_2*y_1)
def gaussian_reduce(w, a, b):
r"""
Returns a reduced solution `(x, z)` to the congruence
`X^2 - aZ^2 \equiv 0 \ (mod \ b)` so that `x^2 + |a|z^2` is minimal.
Details
=======
Here ``w`` is a solution of the congruence `x^2 \equiv a \ (mod \ b)`
References
==========
.. [1] Gaussian lattice Reduction [online]. Available:
http://home.ie.cuhk.edu.hk/~wkshum/wordpress/?p=404
.. [2] Efficient Solution of Rational Conices, J. E. Cremona and D. Rusin,
Mathematics of Computation, Volume 00, Number 0.
"""
u = (0, 1)
v = (1, 0)
if dot(u, v, w, a, b) < 0:
v = (-v[0], -v[1])
if norm(u, w, a, b) < norm(v, w, a, b):
u, v = v, u
while norm(u, w, a, b) > norm(v, w, a, b):
k = dot(u, v, w, a, b) // dot(v, v, w, a, b)
u, v = v, (u[0]- k*v[0], u[1]- k*v[1])
u, v = v, u
if dot(u, v, w, a, b) < dot(v, v, w, a, b)/2 or norm((u[0]-v[0], u[1]-v[1]), w, a, b) > norm(v, w, a, b):
c = v
else:
c = (u[0] - v[0], u[1] - v[1])
return c[0]*w + b*c[1], c[0]
def dot(u, v, w, a, b):
r"""
Returns a special dot product of the vectors `u = (u_{1}, u_{2})` and
`v = (v_{1}, v_{2})` which is defined in order to reduce solution of
the congruence equation `X^2 - aZ^2 \equiv 0 \ (mod \ b)`.
"""
u_1, u_2 = u
v_1, v_2 = v
return (w*u_1 + b*u_2)*(w*v_1 + b*v_2) + abs(a)*u_1*v_1
def norm(u, w, a, b):
r"""
Returns the norm of the vector `u = (u_{1}, u_{2})` under the dot product
defined by `u \cdot v = (wu_{1} + bu_{2})(w*v_{1} + bv_{2}) + |a|*u_{1}*v_{1}`
where `u = (u_{1}, u_{2})` and `v = (v_{1}, v_{2})`.
"""
u_1, u_2 = u
return sqrt(dot((u_1, u_2), (u_1, u_2), w, a, b))
def holzer(x, y, z, a, b, c):
r"""
Simplify the solution `(x, y, z)` of the equation
`ax^2 + by^2 = cz^2` with `a, b, c > 0` and `z^2 \geq \mid ab \mid` to
a new reduced solution `(x', y', z')` such that `z'^2 \leq \mid ab \mid`.
The algorithm is an interpretation of Mordell's reduction as described
on page 8 of Cremona and Rusin's paper [1]_ and the work of Mordell in
reference [2]_.
References
==========
.. [1] Efficient Solution of Rational Conices, J. E. Cremona and D. Rusin,
Mathematics of Computation, Volume 00, Number 0.
.. [2] Diophantine Equations, L. J. Mordell, page 48.
"""
if _odd(c):
k = 2*c
else:
k = c//2
small = a*b*c
step = 0
while True:
t1, t2, t3 = a*x**2, b*y**2, c*z**2
# check that it's a solution
if t1 + t2 != t3:
if step == 0:
raise ValueError('bad starting solution')
break
x_0, y_0, z_0 = x, y, z
if max(t1, t2, t3) <= small:
# Holzer condition
break
uv = u, v = base_solution_linear(k, y_0, -x_0)
if None in uv:
break
p, q = -(a*u*x_0 + b*v*y_0), c*z_0
r = Rational(p, q)
if _even(c):
w = _nint_or_floor(p, q)
assert abs(w - r) <= S.Half
else:
w = p//q # floor
if _odd(a*u + b*v + c*w):
w += 1
assert abs(w - r) <= S.One
A = (a*u**2 + b*v**2 + c*w**2)
B = (a*u*x_0 + b*v*y_0 + c*w*z_0)
x = Rational(x_0*A - 2*u*B, k)
y = Rational(y_0*A - 2*v*B, k)
z = Rational(z_0*A - 2*w*B, k)
assert all(i.is_Integer for i in (x, y, z))
step += 1
return tuple([int(i) for i in (x_0, y_0, z_0)])
def diop_general_pythagorean(eq, param=symbols("m", integer=True)):
"""
Solves the general pythagorean equation,
`a_{1}^2x_{1}^2 + a_{2}^2x_{2}^2 + . . . + a_{n}^2x_{n}^2 - a_{n + 1}^2x_{n + 1}^2 = 0`.
Returns a tuple which contains a parametrized solution to the equation,
sorted in the same order as the input variables.
Usage
=====
``diop_general_pythagorean(eq, param)``: where ``eq`` is a general
pythagorean equation which is assumed to be zero and ``param`` is the base
parameter used to construct other parameters by subscripting.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import diop_general_pythagorean
>>> from sympy.abc import a, b, c, d, e
>>> diop_general_pythagorean(a**2 + b**2 + c**2 - d**2)
(m1**2 + m2**2 - m3**2, 2*m1*m3, 2*m2*m3, m1**2 + m2**2 + m3**2)
>>> diop_general_pythagorean(9*a**2 - 4*b**2 + 16*c**2 + 25*d**2 + e**2)
(10*m1**2 + 10*m2**2 + 10*m3**2 - 10*m4**2, 15*m1**2 + 15*m2**2 + 15*m3**2 + 15*m4**2, 15*m1*m4, 12*m2*m4, 60*m3*m4)
"""
var, coeff, diop_type = classify_diop(eq, _dict=False)
if diop_type == GeneralPythagorean.name:
if param is None:
params = None
else:
params = symbols('%s1:%i' % (param, len(var)), integer=True)
return list(GeneralPythagorean(eq).solve(parameters=params))[0]
def diop_general_sum_of_squares(eq, limit=1):
r"""
Solves the equation `x_{1}^2 + x_{2}^2 + . . . + x_{n}^2 - k = 0`.
Returns at most ``limit`` number of solutions.
Usage
=====
``general_sum_of_squares(eq, limit)`` : Here ``eq`` is an expression which
is assumed to be zero. Also, ``eq`` should be in the form,
`x_{1}^2 + x_{2}^2 + . . . + x_{n}^2 - k = 0`.
Details
=======
When `n = 3` if `k = 4^a(8m + 7)` for some `a, m \in Z` then there will be
no solutions. Refer to [1]_ for more details.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import diop_general_sum_of_squares
>>> from sympy.abc import a, b, c, d, e
>>> diop_general_sum_of_squares(a**2 + b**2 + c**2 + d**2 + e**2 - 2345)
{(15, 22, 22, 24, 24)}
Reference
=========
.. [1] Representing an integer as a sum of three squares, [online],
Available:
http://www.proofwiki.org/wiki/Integer_as_Sum_of_Three_Squares
"""
var, coeff, diop_type = classify_diop(eq, _dict=False)
if diop_type == GeneralSumOfSquares.name:
return set(GeneralSumOfSquares(eq).solve(limit=limit))
def diop_general_sum_of_even_powers(eq, limit=1):
"""
Solves the equation `x_{1}^e + x_{2}^e + . . . + x_{n}^e - k = 0`
where `e` is an even, integer power.
Returns at most ``limit`` number of solutions.
Usage
=====
``general_sum_of_even_powers(eq, limit)`` : Here ``eq`` is an expression which
is assumed to be zero. Also, ``eq`` should be in the form,
`x_{1}^e + x_{2}^e + . . . + x_{n}^e - k = 0`.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import diop_general_sum_of_even_powers
>>> from sympy.abc import a, b
>>> diop_general_sum_of_even_powers(a**4 + b**4 - (2**4 + 3**4))
{(2, 3)}
See Also
========
power_representation
"""
var, coeff, diop_type = classify_diop(eq, _dict=False)
if diop_type == GeneralSumOfEvenPowers.name:
return set(GeneralSumOfEvenPowers(eq).solve(limit=limit))
## Functions below this comment can be more suitably grouped under
## an Additive number theory module rather than the Diophantine
## equation module.
def partition(n, k=None, zeros=False):
"""
Returns a generator that can be used to generate partitions of an integer
`n`.
Explanation
===========
A partition of `n` is a set of positive integers which add up to `n`. For
example, partitions of 3 are 3, 1 + 2, 1 + 1 + 1. A partition is returned
as a tuple. If ``k`` equals None, then all possible partitions are returned
irrespective of their size, otherwise only the partitions of size ``k`` are
returned. If the ``zero`` parameter is set to True then a suitable
number of zeros are added at the end of every partition of size less than
``k``.
``zero`` parameter is considered only if ``k`` is not None. When the
partitions are over, the last `next()` call throws the ``StopIteration``
exception, so this function should always be used inside a try - except
block.
Details
=======
``partition(n, k)``: Here ``n`` is a positive integer and ``k`` is the size
of the partition which is also positive integer.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import partition
>>> f = partition(5)
>>> next(f)
(1, 1, 1, 1, 1)
>>> next(f)
(1, 1, 1, 2)
>>> g = partition(5, 3)
>>> next(g)
(1, 1, 3)
>>> next(g)
(1, 2, 2)
>>> g = partition(5, 3, zeros=True)
>>> next(g)
(0, 0, 5)
"""
if not zeros or k is None:
for i in ordered_partitions(n, k):
yield tuple(i)
else:
for m in range(1, k + 1):
for i in ordered_partitions(n, m):
i = tuple(i)
yield (0,)*(k - len(i)) + i
def prime_as_sum_of_two_squares(p):
"""
Represent a prime `p` as a unique sum of two squares; this can
only be done if the prime is congruent to 1 mod 4.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import prime_as_sum_of_two_squares
>>> prime_as_sum_of_two_squares(7) # can't be done
>>> prime_as_sum_of_two_squares(5)
(1, 2)
Reference
=========
.. [1] Representing a number as a sum of four squares, [online],
Available: http://schorn.ch/lagrange.html
See Also
========
sum_of_squares()
"""
if not p % 4 == 1:
return
if p % 8 == 5:
b = 2
else:
b = 3
while pow(b, (p - 1) // 2, p) == 1:
b = nextprime(b)
b = pow(b, (p - 1) // 4, p)
a = p
while b**2 > p:
a, b = b, a % b
return (int(a % b), int(b)) # convert from long
def sum_of_three_squares(n):
r"""
Returns a 3-tuple $(a, b, c)$ such that $a^2 + b^2 + c^2 = n$ and
$a, b, c \geq 0$.
Returns None if $n = 4^a(8m + 7)$ for some `a, m \in \mathbb{Z}`. See
[1]_ for more details.
Usage
=====
``sum_of_three_squares(n)``: Here ``n`` is a non-negative integer.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import sum_of_three_squares
>>> sum_of_three_squares(44542)
(18, 37, 207)
References
==========
.. [1] Representing a number as a sum of three squares, [online],
Available: http://schorn.ch/lagrange.html
See Also
========
sum_of_squares()
"""
special = {1:(1, 0, 0), 2:(1, 1, 0), 3:(1, 1, 1), 10: (1, 3, 0), 34: (3, 3, 4), 58:(3, 7, 0),
85:(6, 7, 0), 130:(3, 11, 0), 214:(3, 6, 13), 226:(8, 9, 9), 370:(8, 9, 15),
526:(6, 7, 21), 706:(15, 15, 16), 730:(1, 27, 0), 1414:(6, 17, 33), 1906:(13, 21, 36),
2986: (21, 32, 39), 9634: (56, 57, 57)}
v = 0
if n == 0:
return (0, 0, 0)
v = multiplicity(4, n)
n //= 4**v
if n % 8 == 7:
return
if n in special.keys():
x, y, z = special[n]
return _sorted_tuple(2**v*x, 2**v*y, 2**v*z)
s, _exact = integer_nthroot(n, 2)
if _exact:
return (2**v*s, 0, 0)
x = None
if n % 8 == 3:
s = s if _odd(s) else s - 1
for x in range(s, -1, -2):
N = (n - x**2) // 2
if isprime(N):
y, z = prime_as_sum_of_two_squares(N)
return _sorted_tuple(2**v*x, 2**v*(y + z), 2**v*abs(y - z))
return
if n % 8 in (2, 6):
s = s if _odd(s) else s - 1
else:
s = s - 1 if _odd(s) else s
for x in range(s, -1, -2):
N = n - x**2
if isprime(N):
y, z = prime_as_sum_of_two_squares(N)
return _sorted_tuple(2**v*x, 2**v*y, 2**v*z)
def sum_of_four_squares(n):
r"""
Returns a 4-tuple `(a, b, c, d)` such that `a^2 + b^2 + c^2 + d^2 = n`.
Here `a, b, c, d \geq 0`.
Usage
=====
``sum_of_four_squares(n)``: Here ``n`` is a non-negative integer.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import sum_of_four_squares
>>> sum_of_four_squares(3456)
(8, 8, 32, 48)
>>> sum_of_four_squares(1294585930293)
(0, 1234, 2161, 1137796)
References
==========
.. [1] Representing a number as a sum of four squares, [online],
Available: http://schorn.ch/lagrange.html
See Also
========
sum_of_squares()
"""
if n == 0:
return (0, 0, 0, 0)
v = multiplicity(4, n)
n //= 4**v
if n % 8 == 7:
d = 2
n = n - 4
elif n % 8 in (2, 6):
d = 1
n = n - 1
else:
d = 0
x, y, z = sum_of_three_squares(n)
return _sorted_tuple(2**v*d, 2**v*x, 2**v*y, 2**v*z)
def power_representation(n, p, k, zeros=False):
r"""
Returns a generator for finding k-tuples of integers,
`(n_{1}, n_{2}, . . . n_{k})`, such that
`n = n_{1}^p + n_{2}^p + . . . n_{k}^p`.
Usage
=====
``power_representation(n, p, k, zeros)``: Represent non-negative number
``n`` as a sum of ``k`` ``p``\ th powers. If ``zeros`` is true, then the
solutions is allowed to contain zeros.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import power_representation
Represent 1729 as a sum of two cubes:
>>> f = power_representation(1729, 3, 2)
>>> next(f)
(9, 10)
>>> next(f)
(1, 12)
If the flag `zeros` is True, the solution may contain tuples with
zeros; any such solutions will be generated after the solutions
without zeros:
>>> list(power_representation(125, 2, 3, zeros=True))
[(5, 6, 8), (3, 4, 10), (0, 5, 10), (0, 2, 11)]
For even `p` the `permute_sign` function can be used to get all
signed values:
>>> from sympy.utilities.iterables import permute_signs
>>> list(permute_signs((1, 12)))
[(1, 12), (-1, 12), (1, -12), (-1, -12)]
All possible signed permutations can also be obtained:
>>> from sympy.utilities.iterables import signed_permutations
>>> list(signed_permutations((1, 12)))
[(1, 12), (-1, 12), (1, -12), (-1, -12), (12, 1), (-12, 1), (12, -1), (-12, -1)]
"""
n, p, k = [as_int(i) for i in (n, p, k)]
if n < 0:
if p % 2:
for t in power_representation(-n, p, k, zeros):
yield tuple(-i for i in t)
return
if p < 1 or k < 1:
raise ValueError(filldedent('''
Expecting positive integers for `(p, k)`, but got `(%s, %s)`'''
% (p, k)))
if n == 0:
if zeros:
yield (0,)*k
return
if k == 1:
if p == 1:
yield (n,)
else:
be = perfect_power(n)
if be:
b, e = be
d, r = divmod(e, p)
if not r:
yield (b**d,)
return
if p == 1:
for t in partition(n, k, zeros=zeros):
yield t
return
if p == 2:
feasible = _can_do_sum_of_squares(n, k)
if not feasible:
return
if not zeros and n > 33 and k >= 5 and k <= n and n - k in (
13, 10, 7, 5, 4, 2, 1):
'''Todd G. Will, "When Is n^2 a Sum of k Squares?", [online].
Available: https://www.maa.org/sites/default/files/Will-MMz-201037918.pdf'''
return
if feasible is not True: # it's prime and k == 2
yield prime_as_sum_of_two_squares(n)
return
if k == 2 and p > 2:
be = perfect_power(n)
if be and be[1] % p == 0:
return # Fermat: a**n + b**n = c**n has no solution for n > 2
if n >= k:
a = integer_nthroot(n - (k - 1), p)[0]
for t in pow_rep_recursive(a, k, n, [], p):
yield tuple(reversed(t))
if zeros:
a = integer_nthroot(n, p)[0]
for i in range(1, k):
for t in pow_rep_recursive(a, i, n, [], p):
yield tuple(reversed(t + (0,)*(k - i)))
sum_of_powers = power_representation
def pow_rep_recursive(n_i, k, n_remaining, terms, p):
# Invalid arguments
if n_i <= 0 or k <= 0:
return
# No solutions may exist
if n_remaining < k:
return
if k * pow(n_i, p) < n_remaining:
return
if k == 0 and n_remaining == 0:
yield tuple(terms)
elif k == 1:
# next_term^p must equal to n_remaining
next_term, exact = integer_nthroot(n_remaining, p)
if exact and next_term <= n_i:
yield tuple(terms + [next_term])
return
else:
# TODO: Fall back to diop_DN when k = 2
if n_i >= 1 and k > 0:
for next_term in range(1, n_i + 1):
residual = n_remaining - pow(next_term, p)
if residual < 0:
break
yield from pow_rep_recursive(next_term, k - 1, residual, terms + [next_term], p)
def sum_of_squares(n, k, zeros=False):
"""Return a generator that yields the k-tuples of nonnegative
values, the squares of which sum to n. If zeros is False (default)
then the solution will not contain zeros. The nonnegative
elements of a tuple are sorted.
* If k == 1 and n is square, (n,) is returned.
* If k == 2 then n can only be written as a sum of squares if
every prime in the factorization of n that has the form
4*k + 3 has an even multiplicity. If n is prime then
it can only be written as a sum of two squares if it is
in the form 4*k + 1.
* if k == 3 then n can be written as a sum of squares if it does
not have the form 4**m*(8*k + 7).
* all integers can be written as the sum of 4 squares.
* if k > 4 then n can be partitioned and each partition can
be written as a sum of 4 squares; if n is not evenly divisible
by 4 then n can be written as a sum of squares only if the
an additional partition can be written as sum of squares.
For example, if k = 6 then n is partitioned into two parts,
the first being written as a sum of 4 squares and the second
being written as a sum of 2 squares -- which can only be
done if the condition above for k = 2 can be met, so this will
automatically reject certain partitions of n.
Examples
========
>>> from sympy.solvers.diophantine.diophantine import sum_of_squares
>>> list(sum_of_squares(25, 2))
[(3, 4)]
>>> list(sum_of_squares(25, 2, True))
[(3, 4), (0, 5)]
>>> list(sum_of_squares(25, 4))
[(1, 2, 2, 4)]
See Also
========
sympy.utilities.iterables.signed_permutations
"""
yield from power_representation(n, 2, k, zeros)
def _can_do_sum_of_squares(n, k):
"""Return True if n can be written as the sum of k squares,
False if it cannot, or 1 if ``k == 2`` and ``n`` is prime (in which
case it *can* be written as a sum of two squares). A False
is returned only if it cannot be written as ``k``-squares, even
if 0s are allowed.
"""
if k < 1:
return False
if n < 0:
return False
if n == 0:
return True
if k == 1:
return is_square(n)
if k == 2:
if n in (1, 2):
return True
if isprime(n):
if n % 4 == 1:
return 1 # signal that it was prime
return False
else:
f = factorint(n)
for p, m in f.items():
# we can proceed iff no prime factor in the form 4*k + 3
# has an odd multiplicity
if (p % 4 == 3) and m % 2:
return False
return True
if k == 3:
if (n//4**multiplicity(4, n)) % 8 == 7:
return False
# every number can be written as a sum of 4 squares; for k > 4 partitions
# can be 0
return True
|
b8ba9384786b1256f0cde74d1b71df578044be7683133820db8d5ef521b2da15 | #
# This is the module for ODE solver classes for single ODEs.
#
from __future__ import annotations
from typing import ClassVar, Iterator
from .riccati import match_riccati, solve_riccati
from sympy.core import Add, S, Pow, Rational
from sympy.core.cache import cached_property
from sympy.core.exprtools import factor_terms
from sympy.core.expr import Expr
from sympy.core.function import AppliedUndef, Derivative, diff, Function, expand, Subs, _mexpand
from sympy.core.numbers import zoo
from sympy.core.relational import Equality, Eq
from sympy.core.symbol import Symbol, Dummy, Wild
from sympy.core.mul import Mul
from sympy.functions import exp, tan, log, sqrt, besselj, bessely, cbrt, airyai, airybi
from sympy.integrals import Integral
from sympy.polys import Poly
from sympy.polys.polytools import cancel, factor, degree
from sympy.simplify import collect, simplify, separatevars, logcombine, posify # type: ignore
from sympy.simplify.radsimp import fraction
from sympy.utilities import numbered_symbols
from sympy.solvers.solvers import solve
from sympy.solvers.deutils import ode_order, _preprocess
from sympy.polys.matrices.linsolve import _lin_eq2dict
from sympy.polys.solvers import PolyNonlinearError
from .hypergeometric import equivalence_hypergeometric, match_2nd_2F1_hypergeometric, \
get_sol_2F1_hypergeometric, match_2nd_hypergeometric
from .nonhomogeneous import _get_euler_characteristic_eq_sols, _get_const_characteristic_eq_sols, \
_solve_undetermined_coefficients, _solve_variation_of_parameters, _test_term, _undetermined_coefficients_match, \
_get_simplified_sol
from .lie_group import _ode_lie_group
class ODEMatchError(NotImplementedError):
"""Raised if a SingleODESolver is asked to solve an ODE it does not match"""
pass
class SingleODEProblem:
"""Represents an ordinary differential equation (ODE)
This class is used internally in the by dsolve and related
functions/classes so that properties of an ODE can be computed
efficiently.
Examples
========
This class is used internally by dsolve. To instantiate an instance
directly first define an ODE problem:
>>> from sympy import Function, Symbol
>>> x = Symbol('x')
>>> f = Function('f')
>>> eq = f(x).diff(x, 2)
Now you can create a SingleODEProblem instance and query its properties:
>>> from sympy.solvers.ode.single import SingleODEProblem
>>> problem = SingleODEProblem(f(x).diff(x), f(x), x)
>>> problem.eq
Derivative(f(x), x)
>>> problem.func
f(x)
>>> problem.sym
x
"""
# Instance attributes:
eq = None # type: Expr
func = None # type: AppliedUndef
sym = None # type: Symbol
_order = None # type: int
_eq_expanded = None # type: Expr
_eq_preprocessed = None # type: Expr
_eq_high_order_free = None
def __init__(self, eq, func, sym, prep=True, **kwargs):
assert isinstance(eq, Expr)
assert isinstance(func, AppliedUndef)
assert isinstance(sym, Symbol)
assert isinstance(prep, bool)
self.eq = eq
self.func = func
self.sym = sym
self.prep = prep
self.params = kwargs
@cached_property
def order(self) -> int:
return ode_order(self.eq, self.func)
@cached_property
def eq_preprocessed(self) -> Expr:
return self._get_eq_preprocessed()
@cached_property
def eq_high_order_free(self) -> Expr:
a = Wild('a', exclude=[self.func])
c1 = Wild('c1', exclude=[self.sym])
# Precondition to try remove f(x) from highest order derivative
reduced_eq = None
if self.eq.is_Add:
deriv_coef = self.eq.coeff(self.func.diff(self.sym, self.order))
if deriv_coef not in (1, 0):
r = deriv_coef.match(a*self.func**c1)
if r and r[c1]:
den = self.func**r[c1]
reduced_eq = Add(*[arg/den for arg in self.eq.args])
if not reduced_eq:
reduced_eq = expand(self.eq)
return reduced_eq
@cached_property
def eq_expanded(self) -> Expr:
return expand(self.eq_preprocessed)
def _get_eq_preprocessed(self) -> Expr:
if self.prep:
process_eq, process_func = _preprocess(self.eq, self.func)
if process_func != self.func:
raise ValueError
else:
process_eq = self.eq
return process_eq
def get_numbered_constants(self, num=1, start=1, prefix='C') -> list[Symbol]:
"""
Returns a list of constants that do not occur
in eq already.
"""
ncs = self.iter_numbered_constants(start, prefix)
Cs = [next(ncs) for i in range(num)]
return Cs
def iter_numbered_constants(self, start=1, prefix='C') -> Iterator[Symbol]:
"""
Returns an iterator of constants that do not occur
in eq already.
"""
atom_set = self.eq.free_symbols
func_set = self.eq.atoms(Function)
if func_set:
atom_set |= {Symbol(str(f.func)) for f in func_set}
return numbered_symbols(start=start, prefix=prefix, exclude=atom_set)
@cached_property
def is_autonomous(self):
u = Dummy('u')
x = self.sym
syms = self.eq.subs(self.func, u).free_symbols
return x not in syms
def get_linear_coefficients(self, eq, func, order):
r"""
Matches a differential equation to the linear form:
.. math:: a_n(x) y^{(n)} + \cdots + a_1(x)y' + a_0(x) y + B(x) = 0
Returns a dict of order:coeff terms, where order is the order of the
derivative on each term, and coeff is the coefficient of that derivative.
The key ``-1`` holds the function `B(x)`. Returns ``None`` if the ODE is
not linear. This function assumes that ``func`` has already been checked
to be good.
Examples
========
>>> from sympy import Function, cos, sin
>>> from sympy.abc import x
>>> from sympy.solvers.ode.single import SingleODEProblem
>>> f = Function('f')
>>> eq = f(x).diff(x, 3) + 2*f(x).diff(x) + \
... x*f(x).diff(x, 2) + cos(x)*f(x).diff(x) + x - f(x) - \
... sin(x)
>>> obj = SingleODEProblem(eq, f(x), x)
>>> obj.get_linear_coefficients(eq, f(x), 3)
{-1: x - sin(x), 0: -1, 1: cos(x) + 2, 2: x, 3: 1}
>>> eq = f(x).diff(x, 3) + 2*f(x).diff(x) + \
... x*f(x).diff(x, 2) + cos(x)*f(x).diff(x) + x - f(x) - \
... sin(f(x))
>>> obj = SingleODEProblem(eq, f(x), x)
>>> obj.get_linear_coefficients(eq, f(x), 3) == None
True
"""
f = func.func
x = func.args[0]
symset = {Derivative(f(x), x, i) for i in range(order+1)}
try:
rhs, lhs_terms = _lin_eq2dict(eq, symset)
except PolyNonlinearError:
return None
if rhs.has(func) or any(c.has(func) for c in lhs_terms.values()):
return None
terms = {i: lhs_terms.get(f(x).diff(x, i), S.Zero) for i in range(order+1)}
terms[-1] = rhs
return terms
# TODO: Add methods that can be used by many ODE solvers:
# order
# is_linear()
# get_linear_coefficients()
# eq_prepared (the ODE in prepared form)
class SingleODESolver:
"""
Base class for Single ODE solvers.
Subclasses should implement the _matches and _get_general_solution
methods. This class is not intended to be instantiated directly but its
subclasses are as part of dsolve.
Examples
========
You can use a subclass of SingleODEProblem to solve a particular type of
ODE. We first define a particular ODE problem:
>>> from sympy import Function, Symbol
>>> x = Symbol('x')
>>> f = Function('f')
>>> eq = f(x).diff(x, 2)
Now we solve this problem using the NthAlgebraic solver which is a
subclass of SingleODESolver:
>>> from sympy.solvers.ode.single import NthAlgebraic, SingleODEProblem
>>> problem = SingleODEProblem(eq, f(x), x)
>>> solver = NthAlgebraic(problem)
>>> solver.get_general_solution()
[Eq(f(x), _C*x + _C)]
The normal way to solve an ODE is to use dsolve (which would use
NthAlgebraic and other solvers internally). When using dsolve a number of
other things are done such as evaluating integrals, simplifying the
solution and renumbering the constants:
>>> from sympy import dsolve
>>> dsolve(eq, hint='nth_algebraic')
Eq(f(x), C1 + C2*x)
"""
# Subclasses should store the hint name (the argument to dsolve) in this
# attribute
hint: ClassVar[str]
# Subclasses should define this to indicate if they support an _Integral
# hint.
has_integral: ClassVar[bool]
# The ODE to be solved
ode_problem = None # type: SingleODEProblem
# Cache whether or not the equation has matched the method
_matched: bool | None = None
# Subclasses should store in this attribute the list of order(s) of ODE
# that subclass can solve or leave it to None if not specific to any order
order: list | None = None
def __init__(self, ode_problem):
self.ode_problem = ode_problem
def matches(self) -> bool:
if self.order is not None and self.ode_problem.order not in self.order:
self._matched = False
return self._matched
if self._matched is None:
self._matched = self._matches()
return self._matched
def get_general_solution(self, *, simplify: bool = True) -> list[Equality]:
if not self.matches():
msg = "%s solver cannot solve:\n%s"
raise ODEMatchError(msg % (self.hint, self.ode_problem.eq))
return self._get_general_solution(simplify_flag=simplify)
def _matches(self) -> bool:
msg = "Subclasses of SingleODESolver should implement matches."
raise NotImplementedError(msg)
def _get_general_solution(self, *, simplify_flag: bool = True) -> list[Equality]:
msg = "Subclasses of SingleODESolver should implement get_general_solution."
raise NotImplementedError(msg)
class SinglePatternODESolver(SingleODESolver):
'''Superclass for ODE solvers based on pattern matching'''
def wilds(self):
prob = self.ode_problem
f = prob.func.func
x = prob.sym
order = prob.order
return self._wilds(f, x, order)
def wilds_match(self):
match = self._wilds_match
return [match.get(w, S.Zero) for w in self.wilds()]
def _matches(self):
eq = self.ode_problem.eq_expanded
f = self.ode_problem.func.func
x = self.ode_problem.sym
order = self.ode_problem.order
df = f(x).diff(x, order)
if order not in [1, 2]:
return False
pattern = self._equation(f(x), x, order)
if not pattern.coeff(df).has(Wild):
eq = expand(eq / eq.coeff(df))
eq = eq.collect([f(x).diff(x), f(x)], func = cancel)
self._wilds_match = match = eq.match(pattern)
if match is not None:
return self._verify(f(x))
return False
def _verify(self, fx) -> bool:
return True
def _wilds(self, f, x, order):
msg = "Subclasses of SingleODESolver should implement _wilds"
raise NotImplementedError(msg)
def _equation(self, fx, x, order):
msg = "Subclasses of SingleODESolver should implement _equation"
raise NotImplementedError(msg)
class NthAlgebraic(SingleODESolver):
r"""
Solves an `n`\th order ordinary differential equation using algebra and
integrals.
There is no general form for the kind of equation that this can solve. The
the equation is solved algebraically treating differentiation as an
invertible algebraic function.
Examples
========
>>> from sympy import Function, dsolve, Eq
>>> from sympy.abc import x
>>> f = Function('f')
>>> eq = Eq(f(x) * (f(x).diff(x)**2 - 1), 0)
>>> dsolve(eq, f(x), hint='nth_algebraic')
[Eq(f(x), 0), Eq(f(x), C1 - x), Eq(f(x), C1 + x)]
Note that this solver can return algebraic solutions that do not have any
integration constants (f(x) = 0 in the above example).
"""
hint = 'nth_algebraic'
has_integral = True # nth_algebraic_Integral hint
def _matches(self):
r"""
Matches any differential equation that nth_algebraic can solve. Uses
`sympy.solve` but teaches it how to integrate derivatives.
This involves calling `sympy.solve` and does most of the work of finding a
solution (apart from evaluating the integrals).
"""
eq = self.ode_problem.eq
func = self.ode_problem.func
var = self.ode_problem.sym
# Derivative that solve can handle:
diffx = self._get_diffx(var)
# Replace derivatives wrt the independent variable with diffx
def replace(eq, var):
def expand_diffx(*args):
differand, diffs = args[0], args[1:]
toreplace = differand
for v, n in diffs:
for _ in range(n):
if v == var:
toreplace = diffx(toreplace)
else:
toreplace = Derivative(toreplace, v)
return toreplace
return eq.replace(Derivative, expand_diffx)
# Restore derivatives in solution afterwards
def unreplace(eq, var):
return eq.replace(diffx, lambda e: Derivative(e, var))
subs_eqn = replace(eq, var)
try:
# turn off simplification to protect Integrals that have
# _t instead of fx in them and would otherwise factor
# as t_*Integral(1, x)
solns = solve(subs_eqn, func, simplify=False)
except NotImplementedError:
solns = []
solns = [simplify(unreplace(soln, var)) for soln in solns]
solns = [Equality(func, soln) for soln in solns]
self.solutions = solns
return len(solns) != 0
def _get_general_solution(self, *, simplify_flag: bool = True):
return self.solutions
# This needs to produce an invertible function but the inverse depends
# which variable we are integrating with respect to. Since the class can
# be stored in cached results we need to ensure that we always get the
# same class back for each particular integration variable so we store these
# classes in a global dict:
_diffx_stored: dict[Symbol, type[Function]] = {}
@staticmethod
def _get_diffx(var):
diffcls = NthAlgebraic._diffx_stored.get(var, None)
if diffcls is None:
# A class that behaves like Derivative wrt var but is "invertible".
class diffx(Function):
def inverse(self):
# don't use integrate here because fx has been replaced by _t
# in the equation; integrals will not be correct while solve
# is at work.
return lambda expr: Integral(expr, var) + Dummy('C')
diffcls = NthAlgebraic._diffx_stored.setdefault(var, diffx)
return diffcls
class FirstExact(SinglePatternODESolver):
r"""
Solves 1st order exact ordinary differential equations.
A 1st order differential equation is called exact if it is the total
differential of a function. That is, the differential equation
.. math:: P(x, y) \,\partial{}x + Q(x, y) \,\partial{}y = 0
is exact if there is some function `F(x, y)` such that `P(x, y) =
\partial{}F/\partial{}x` and `Q(x, y) = \partial{}F/\partial{}y`. It can
be shown that a necessary and sufficient condition for a first order ODE
to be exact is that `\partial{}P/\partial{}y = \partial{}Q/\partial{}x`.
Then, the solution will be as given below::
>>> from sympy import Function, Eq, Integral, symbols, pprint
>>> x, y, t, x0, y0, C1= symbols('x,y,t,x0,y0,C1')
>>> P, Q, F= map(Function, ['P', 'Q', 'F'])
>>> pprint(Eq(Eq(F(x, y), Integral(P(t, y), (t, x0, x)) +
... Integral(Q(x0, t), (t, y0, y))), C1))
x y
/ /
| |
F(x, y) = | P(t, y) dt + | Q(x0, t) dt = C1
| |
/ /
x0 y0
Where the first partials of `P` and `Q` exist and are continuous in a
simply connected region.
A note: SymPy currently has no way to represent inert substitution on an
expression, so the hint ``1st_exact_Integral`` will return an integral
with `dy`. This is supposed to represent the function that you are
solving for.
Examples
========
>>> from sympy import Function, dsolve, cos, sin
>>> from sympy.abc import x
>>> f = Function('f')
>>> dsolve(cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x),
... f(x), hint='1st_exact')
Eq(x*cos(f(x)) + f(x)**3/3, C1)
References
==========
- https://en.wikipedia.org/wiki/Exact_differential_equation
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
Dover 1963, pp. 73
# indirect doctest
"""
hint = "1st_exact"
has_integral = True
order = [1]
def _wilds(self, f, x, order):
P = Wild('P', exclude=[f(x).diff(x)])
Q = Wild('Q', exclude=[f(x).diff(x)])
return P, Q
def _equation(self, fx, x, order):
P, Q = self.wilds()
return P + Q*fx.diff(x)
def _verify(self, fx) -> bool:
P, Q = self.wilds()
x = self.ode_problem.sym
y = Dummy('y')
m, n = self.wilds_match()
m = m.subs(fx, y)
n = n.subs(fx, y)
numerator = cancel(m.diff(y) - n.diff(x))
if numerator.is_zero:
# Is exact
return True
else:
# The following few conditions try to convert a non-exact
# differential equation into an exact one.
# References:
# 1. Differential equations with applications
# and historical notes - George E. Simmons
# 2. https://math.okstate.edu/people/binegar/2233-S99/2233-l12.pdf
factor_n = cancel(numerator/n)
factor_m = cancel(-numerator/m)
if y not in factor_n.free_symbols:
# If (dP/dy - dQ/dx) / Q = f(x)
# then exp(integral(f(x))*equation becomes exact
factor = factor_n
integration_variable = x
elif x not in factor_m.free_symbols:
# If (dP/dy - dQ/dx) / -P = f(y)
# then exp(integral(f(y))*equation becomes exact
factor = factor_m
integration_variable = y
else:
# Couldn't convert to exact
return False
factor = exp(Integral(factor, integration_variable))
m *= factor
n *= factor
self._wilds_match[P] = m.subs(y, fx)
self._wilds_match[Q] = n.subs(y, fx)
return True
def _get_general_solution(self, *, simplify_flag: bool = True):
m, n = self.wilds_match()
fx = self.ode_problem.func
x = self.ode_problem.sym
(C1,) = self.ode_problem.get_numbered_constants(num=1)
y = Dummy('y')
m = m.subs(fx, y)
n = n.subs(fx, y)
gen_sol = Eq(Subs(Integral(m, x)
+ Integral(n - Integral(m, x).diff(y), y), y, fx), C1)
return [gen_sol]
class FirstLinear(SinglePatternODESolver):
r"""
Solves 1st order linear differential equations.
These are differential equations of the form
.. math:: dy/dx + P(x) y = Q(x)\text{.}
These kinds of differential equations can be solved in a general way. The
integrating factor `e^{\int P(x) \,dx}` will turn the equation into a
separable equation. The general solution is::
>>> from sympy import Function, dsolve, Eq, pprint, diff, sin
>>> from sympy.abc import x
>>> f, P, Q = map(Function, ['f', 'P', 'Q'])
>>> genform = Eq(f(x).diff(x) + P(x)*f(x), Q(x))
>>> pprint(genform)
d
P(x)*f(x) + --(f(x)) = Q(x)
dx
>>> pprint(dsolve(genform, f(x), hint='1st_linear_Integral'))
/ / \
| | |
| | / | /
| | | | |
| | | P(x) dx | - | P(x) dx
| | | | |
| | / | /
f(x) = |C1 + | Q(x)*e dx|*e
| | |
\ / /
Examples
========
>>> f = Function('f')
>>> pprint(dsolve(Eq(x*diff(f(x), x) - f(x), x**2*sin(x)),
... f(x), '1st_linear'))
f(x) = x*(C1 - cos(x))
References
==========
- https://en.wikipedia.org/wiki/Linear_differential_equation#First_order_equation
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
Dover 1963, pp. 92
# indirect doctest
"""
hint = '1st_linear'
has_integral = True
order = [1]
def _wilds(self, f, x, order):
P = Wild('P', exclude=[f(x)])
Q = Wild('Q', exclude=[f(x), f(x).diff(x)])
return P, Q
def _equation(self, fx, x, order):
P, Q = self.wilds()
return fx.diff(x) + P*fx - Q
def _get_general_solution(self, *, simplify_flag: bool = True):
P, Q = self.wilds_match()
fx = self.ode_problem.func
x = self.ode_problem.sym
(C1,) = self.ode_problem.get_numbered_constants(num=1)
gensol = Eq(fx, ((C1 + Integral(Q*exp(Integral(P, x)), x))
* exp(-Integral(P, x))))
return [gensol]
class AlmostLinear(SinglePatternODESolver):
r"""
Solves an almost-linear differential equation.
The general form of an almost linear differential equation is
.. math:: a(x) g'(f(x)) f'(x) + b(x) g(f(x)) + c(x)
Here `f(x)` is the function to be solved for (the dependent variable).
The substitution `g(f(x)) = u(x)` leads to a linear differential equation
for `u(x)` of the form `a(x) u' + b(x) u + c(x) = 0`. This can be solved
for `u(x)` by the `first_linear` hint and then `f(x)` is found by solving
`g(f(x)) = u(x)`.
See Also
========
:obj:`sympy.solvers.ode.single.FirstLinear`
Examples
========
>>> from sympy import dsolve, Function, pprint, sin, cos
>>> from sympy.abc import x
>>> f = Function('f')
>>> d = f(x).diff(x)
>>> eq = x*d + x*f(x) + 1
>>> dsolve(eq, f(x), hint='almost_linear')
Eq(f(x), (C1 - Ei(x))*exp(-x))
>>> pprint(dsolve(eq, f(x), hint='almost_linear'))
-x
f(x) = (C1 - Ei(x))*e
>>> example = cos(f(x))*f(x).diff(x) + sin(f(x)) + 1
>>> pprint(example)
d
sin(f(x)) + cos(f(x))*--(f(x)) + 1
dx
>>> pprint(dsolve(example, f(x), hint='almost_linear'))
/ -x \ / -x \
[f(x) = pi - asin\C1*e - 1/, f(x) = asin\C1*e - 1/]
References
==========
- Joel Moses, "Symbolic Integration - The Stormy Decade", Communications
of the ACM, Volume 14, Number 8, August 1971, pp. 558
"""
hint = "almost_linear"
has_integral = True
order = [1]
def _wilds(self, f, x, order):
P = Wild('P', exclude=[f(x).diff(x)])
Q = Wild('Q', exclude=[f(x).diff(x)])
return P, Q
def _equation(self, fx, x, order):
P, Q = self.wilds()
return P*fx.diff(x) + Q
def _verify(self, fx):
a, b = self.wilds_match()
c, b = b.as_independent(fx) if b.is_Add else (S.Zero, b)
# a, b and c are the function a(x), b(x) and c(x) respectively.
# c(x) is obtained by separating out b as terms with and without fx i.e, l(y)
# The following conditions checks if the given equation is an almost-linear differential equation using the fact that
# a(x)*(l(y))' / l(y)' is independent of l(y)
if b.diff(fx) != 0 and not simplify(b.diff(fx)/a).has(fx):
self.ly = factor_terms(b).as_independent(fx, as_Add=False)[1] # Gives the term containing fx i.e., l(y)
self.ax = a / self.ly.diff(fx)
self.cx = -c # cx is taken as -c(x) to simplify expression in the solution integral
self.bx = factor_terms(b) / self.ly
return True
return False
def _get_general_solution(self, *, simplify_flag: bool = True):
x = self.ode_problem.sym
(C1,) = self.ode_problem.get_numbered_constants(num=1)
gensol = Eq(self.ly, ((C1 + Integral((self.cx/self.ax)*exp(Integral(self.bx/self.ax, x)), x))
* exp(-Integral(self.bx/self.ax, x))))
return [gensol]
class Bernoulli(SinglePatternODESolver):
r"""
Solves Bernoulli differential equations.
These are equations of the form
.. math:: dy/dx + P(x) y = Q(x) y^n\text{, }n \ne 1`\text{.}
The substitution `w = 1/y^{1-n}` will transform an equation of this form
into one that is linear (see the docstring of
:obj:`~sympy.solvers.ode.single.FirstLinear`). The general solution is::
>>> from sympy import Function, dsolve, Eq, pprint
>>> from sympy.abc import x, n
>>> f, P, Q = map(Function, ['f', 'P', 'Q'])
>>> genform = Eq(f(x).diff(x) + P(x)*f(x), Q(x)*f(x)**n)
>>> pprint(genform)
d n
P(x)*f(x) + --(f(x)) = Q(x)*f (x)
dx
>>> pprint(dsolve(genform, f(x), hint='Bernoulli_Integral'), num_columns=110)
-1
-----
n - 1
// / / \ \
|| | | | |
|| | / | / | / |
|| | | | | | | |
|| | -(n - 1)* | P(x) dx | -(n - 1)* | P(x) dx | (n - 1)* | P(x) dx|
|| | | | | | | |
|| | / | / | / |
f(x) = ||C1 - n* | Q(x)*e dx + | Q(x)*e dx|*e |
|| | | | |
\\ / / / /
Note that the equation is separable when `n = 1` (see the docstring of
:obj:`~sympy.solvers.ode.single.Separable`).
>>> pprint(dsolve(Eq(f(x).diff(x) + P(x)*f(x), Q(x)*f(x)), f(x),
... hint='separable_Integral'))
f(x)
/
| /
| 1 |
| - dy = C1 + | (-P(x) + Q(x)) dx
| y |
| /
/
Examples
========
>>> from sympy import Function, dsolve, Eq, pprint, log
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(Eq(x*f(x).diff(x) + f(x), log(x)*f(x)**2),
... f(x), hint='Bernoulli'))
1
f(x) = -----------------
C1*x + log(x) + 1
References
==========
- https://en.wikipedia.org/wiki/Bernoulli_differential_equation
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
Dover 1963, pp. 95
# indirect doctest
"""
hint = "Bernoulli"
has_integral = True
order = [1]
def _wilds(self, f, x, order):
P = Wild('P', exclude=[f(x)])
Q = Wild('Q', exclude=[f(x)])
n = Wild('n', exclude=[x, f(x), f(x).diff(x)])
return P, Q, n
def _equation(self, fx, x, order):
P, Q, n = self.wilds()
return fx.diff(x) + P*fx - Q*fx**n
def _get_general_solution(self, *, simplify_flag: bool = True):
P, Q, n = self.wilds_match()
fx = self.ode_problem.func
x = self.ode_problem.sym
(C1,) = self.ode_problem.get_numbered_constants(num=1)
if n==1:
gensol = Eq(log(fx), (
C1 + Integral((-P + Q), x)
))
else:
gensol = Eq(fx**(1-n), (
(C1 - (n - 1) * Integral(Q*exp(-n*Integral(P, x))
* exp(Integral(P, x)), x)
) * exp(-(1 - n)*Integral(P, x)))
)
return [gensol]
class Factorable(SingleODESolver):
r"""
Solves equations having a solvable factor.
This function is used to solve the equation having factors. Factors may be of type algebraic or ode. It
will try to solve each factor independently. Factors will be solved by calling dsolve. We will return the
list of solutions.
Examples
========
>>> from sympy import Function, dsolve, pprint
>>> from sympy.abc import x
>>> f = Function('f')
>>> eq = (f(x)**2-4)*(f(x).diff(x)+f(x))
>>> pprint(dsolve(eq, f(x)))
-x
[f(x) = 2, f(x) = -2, f(x) = C1*e ]
"""
hint = "factorable"
has_integral = False
def _matches(self):
eq_orig = self.ode_problem.eq
f = self.ode_problem.func.func
x = self.ode_problem.sym
df = f(x).diff(x)
self.eqs = []
eq = eq_orig.collect(f(x), func = cancel)
eq = fraction(factor(eq))[0]
factors = Mul.make_args(factor(eq))
roots = [fac.as_base_exp() for fac in factors if len(fac.args)!=0]
if len(roots)>1 or roots[0][1]>1:
for base, expo in roots:
if base.has(f(x)):
self.eqs.append(base)
if len(self.eqs)>0:
return True
roots = solve(eq, df)
if len(roots)>0:
self.eqs = [(df - root) for root in roots]
# Avoid infinite recursion
matches = self.eqs != [eq_orig]
return matches
for i in factors:
if i.has(f(x)):
self.eqs.append(i)
return len(self.eqs)>0 and len(factors)>1
def _get_general_solution(self, *, simplify_flag: bool = True):
func = self.ode_problem.func.func
x = self.ode_problem.sym
eqns = self.eqs
sols = []
for eq in eqns:
try:
sol = dsolve(eq, func(x))
except NotImplementedError:
continue
else:
if isinstance(sol, list):
sols.extend(sol)
else:
sols.append(sol)
if sols == []:
raise NotImplementedError("The given ODE " + str(eq) + " cannot be solved by"
+ " the factorable group method")
return sols
class RiccatiSpecial(SinglePatternODESolver):
r"""
The general Riccati equation has the form
.. math:: dy/dx = f(x) y^2 + g(x) y + h(x)\text{.}
While it does not have a general solution [1], the "special" form, `dy/dx
= a y^2 - b x^c`, does have solutions in many cases [2]. This routine
returns a solution for `a(dy/dx) = b y^2 + c y/x + d/x^2` that is obtained
by using a suitable change of variables to reduce it to the special form
and is valid when neither `a` nor `b` are zero and either `c` or `d` is
zero.
>>> from sympy.abc import x, a, b, c, d
>>> from sympy import dsolve, checkodesol, pprint, Function
>>> f = Function('f')
>>> y = f(x)
>>> genform = a*y.diff(x) - (b*y**2 + c*y/x + d/x**2)
>>> sol = dsolve(genform, y, hint="Riccati_special_minus2")
>>> pprint(sol, wrap_line=False)
/ / __________________ \\
| __________________ | / 2 ||
| / 2 | \/ 4*b*d - (a + c) *log(x)||
-|a + c - \/ 4*b*d - (a + c) *tan|C1 + ----------------------------||
\ \ 2*a //
f(x) = ------------------------------------------------------------------------
2*b*x
>>> checkodesol(genform, sol, order=1)[0]
True
References
==========
- http://www.maplesoft.com/support/help/Maple/view.aspx?path=odeadvisor/Riccati
- http://eqworld.ipmnet.ru/en/solutions/ode/ode0106.pdf -
http://eqworld.ipmnet.ru/en/solutions/ode/ode0123.pdf
"""
hint = "Riccati_special_minus2"
has_integral = False
order = [1]
def _wilds(self, f, x, order):
a = Wild('a', exclude=[x, f(x), f(x).diff(x), 0])
b = Wild('b', exclude=[x, f(x), f(x).diff(x), 0])
c = Wild('c', exclude=[x, f(x), f(x).diff(x)])
d = Wild('d', exclude=[x, f(x), f(x).diff(x)])
return a, b, c, d
def _equation(self, fx, x, order):
a, b, c, d = self.wilds()
return a*fx.diff(x) + b*fx**2 + c*fx/x + d/x**2
def _get_general_solution(self, *, simplify_flag: bool = True):
a, b, c, d = self.wilds_match()
fx = self.ode_problem.func
x = self.ode_problem.sym
(C1,) = self.ode_problem.get_numbered_constants(num=1)
mu = sqrt(4*d*b - (a - c)**2)
gensol = Eq(fx, (a - c - mu*tan(mu/(2*a)*log(x) + C1))/(2*b*x))
return [gensol]
class RationalRiccati(SinglePatternODESolver):
r"""
Gives general solutions to the first order Riccati differential
equations that have atleast one rational particular solution.
.. math :: y' = b_0(x) + b_1(x) y + b_2(x) y^2
where `b_0`, `b_1` and `b_2` are rational functions of `x`
with `b_2 \ne 0` (`b_2 = 0` would make it a Bernoulli equation).
Examples
========
>>> from sympy import Symbol, Function, dsolve, checkodesol
>>> f = Function('f')
>>> x = Symbol('x')
>>> eq = -x**4*f(x)**2 + x**3*f(x).diff(x) + x**2*f(x) + 20
>>> sol = dsolve(eq, hint="1st_rational_riccati")
>>> sol
Eq(f(x), (4*C1 - 5*x**9 - 4)/(x**2*(C1 + x**9 - 1)))
>>> checkodesol(eq, sol)
(True, 0)
References
==========
- Riccati ODE: https://en.wikipedia.org/wiki/Riccati_equation
- N. Thieu Vo - Rational and Algebraic Solutions of First-Order Algebraic ODEs:
Algorithm 11, pp. 78 - https://www3.risc.jku.at/publications/download/risc_5387/PhDThesisThieu.pdf
"""
has_integral = False
hint = "1st_rational_riccati"
order = [1]
def _wilds(self, f, x, order):
b0 = Wild('b0', exclude=[f(x), f(x).diff(x)])
b1 = Wild('b1', exclude=[f(x), f(x).diff(x)])
b2 = Wild('b2', exclude=[f(x), f(x).diff(x)])
return (b0, b1, b2)
def _equation(self, fx, x, order):
b0, b1, b2 = self.wilds()
return fx.diff(x) - b0 - b1*fx - b2*fx**2
def _matches(self):
eq = self.ode_problem.eq_expanded
f = self.ode_problem.func.func
x = self.ode_problem.sym
order = self.ode_problem.order
if order != 1:
return False
match, funcs = match_riccati(eq, f, x)
if not match:
return False
_b0, _b1, _b2 = funcs
b0, b1, b2 = self.wilds()
self._wilds_match = match = {b0: _b0, b1: _b1, b2: _b2}
return True
def _get_general_solution(self, *, simplify_flag: bool = True):
# Match the equation
b0, b1, b2 = self.wilds_match()
fx = self.ode_problem.func
x = self.ode_problem.sym
return solve_riccati(fx, x, b0, b1, b2, gensol=True)
class SecondNonlinearAutonomousConserved(SinglePatternODESolver):
r"""
Gives solution for the autonomous second order nonlinear
differential equation of the form
.. math :: f''(x) = g(f(x))
The solution for this differential equation can be computed
by multiplying by `f'(x)` and integrating on both sides,
converting it into a first order differential equation.
Examples
========
>>> from sympy import Function, symbols, dsolve
>>> f, g = symbols('f g', cls=Function)
>>> x = symbols('x')
>>> eq = f(x).diff(x, 2) - g(f(x))
>>> dsolve(eq, simplify=False)
[Eq(Integral(1/sqrt(C1 + 2*Integral(g(_u), _u)), (_u, f(x))), C2 + x),
Eq(Integral(1/sqrt(C1 + 2*Integral(g(_u), _u)), (_u, f(x))), C2 - x)]
>>> from sympy import exp, log
>>> eq = f(x).diff(x, 2) - exp(f(x)) + log(f(x))
>>> dsolve(eq, simplify=False)
[Eq(Integral(1/sqrt(-2*_u*log(_u) + 2*_u + C1 + 2*exp(_u)), (_u, f(x))), C2 + x),
Eq(Integral(1/sqrt(-2*_u*log(_u) + 2*_u + C1 + 2*exp(_u)), (_u, f(x))), C2 - x)]
References
==========
- http://eqworld.ipmnet.ru/en/solutions/ode/ode0301.pdf
"""
hint = "2nd_nonlinear_autonomous_conserved"
has_integral = True
order = [2]
def _wilds(self, f, x, order):
fy = Wild('fy', exclude=[0, f(x).diff(x), f(x).diff(x, 2)])
return (fy, )
def _equation(self, fx, x, order):
fy = self.wilds()[0]
return fx.diff(x, 2) + fy
def _verify(self, fx):
return self.ode_problem.is_autonomous
def _get_general_solution(self, *, simplify_flag: bool = True):
g = self.wilds_match()[0]
fx = self.ode_problem.func
x = self.ode_problem.sym
u = Dummy('u')
g = g.subs(fx, u)
C1, C2 = self.ode_problem.get_numbered_constants(num=2)
inside = -2*Integral(g, u) + C1
lhs = Integral(1/sqrt(inside), (u, fx))
return [Eq(lhs, C2 + x), Eq(lhs, C2 - x)]
class Liouville(SinglePatternODESolver):
r"""
Solves 2nd order Liouville differential equations.
The general form of a Liouville ODE is
.. math:: \frac{d^2 y}{dx^2} + g(y) \left(\!
\frac{dy}{dx}\!\right)^2 + h(x)
\frac{dy}{dx}\text{.}
The general solution is:
>>> from sympy import Function, dsolve, Eq, pprint, diff
>>> from sympy.abc import x
>>> f, g, h = map(Function, ['f', 'g', 'h'])
>>> genform = Eq(diff(f(x),x,x) + g(f(x))*diff(f(x),x)**2 +
... h(x)*diff(f(x),x), 0)
>>> pprint(genform)
2 2
/d \ d d
g(f(x))*|--(f(x))| + h(x)*--(f(x)) + ---(f(x)) = 0
\dx / dx 2
dx
>>> pprint(dsolve(genform, f(x), hint='Liouville_Integral'))
f(x)
/ /
| |
| / | /
| | | |
| - | h(x) dx | | g(y) dy
| | | |
| / | /
C1 + C2* | e dx + | e dy = 0
| |
/ /
Examples
========
>>> from sympy import Function, dsolve, Eq, pprint
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(diff(f(x), x, x) + diff(f(x), x)**2/f(x) +
... diff(f(x), x)/x, f(x), hint='Liouville'))
________________ ________________
[f(x) = -\/ C1 + C2*log(x) , f(x) = \/ C1 + C2*log(x) ]
References
==========
- Goldstein and Braun, "Advanced Methods for the Solution of Differential
Equations", pp. 98
- http://www.maplesoft.com/support/help/Maple/view.aspx?path=odeadvisor/Liouville
# indirect doctest
"""
hint = "Liouville"
has_integral = True
order = [2]
def _wilds(self, f, x, order):
d = Wild('d', exclude=[f(x).diff(x), f(x).diff(x, 2)])
e = Wild('e', exclude=[f(x).diff(x)])
k = Wild('k', exclude=[f(x).diff(x)])
return d, e, k
def _equation(self, fx, x, order):
# Liouville ODE in the form
# f(x).diff(x, 2) + g(f(x))*(f(x).diff(x))**2 + h(x)*f(x).diff(x)
# See Goldstein and Braun, "Advanced Methods for the Solution of
# Differential Equations", pg. 98
d, e, k = self.wilds()
return d*fx.diff(x, 2) + e*fx.diff(x)**2 + k*fx.diff(x)
def _verify(self, fx):
d, e, k = self.wilds_match()
self.y = Dummy('y')
x = self.ode_problem.sym
self.g = simplify(e/d).subs(fx, self.y)
self.h = simplify(k/d).subs(fx, self.y)
if self.y in self.h.free_symbols or x in self.g.free_symbols:
return False
return True
def _get_general_solution(self, *, simplify_flag: bool = True):
d, e, k = self.wilds_match()
fx = self.ode_problem.func
x = self.ode_problem.sym
C1, C2 = self.ode_problem.get_numbered_constants(num=2)
int = Integral(exp(Integral(self.g, self.y)), (self.y, None, fx))
gen_sol = Eq(int + C1*Integral(exp(-Integral(self.h, x)), x) + C2, 0)
return [gen_sol]
class Separable(SinglePatternODESolver):
r"""
Solves separable 1st order differential equations.
This is any differential equation that can be written as `P(y)
\tfrac{dy}{dx} = Q(x)`. The solution can then just be found by
rearranging terms and integrating: `\int P(y) \,dy = \int Q(x) \,dx`.
This hint uses :py:meth:`sympy.simplify.simplify.separatevars` as its back
end, so if a separable equation is not caught by this solver, it is most
likely the fault of that function.
:py:meth:`~sympy.simplify.simplify.separatevars` is
smart enough to do most expansion and factoring necessary to convert a
separable equation `F(x, y)` into the proper form `P(x)\cdot{}Q(y)`. The
general solution is::
>>> from sympy import Function, dsolve, Eq, pprint
>>> from sympy.abc import x
>>> a, b, c, d, f = map(Function, ['a', 'b', 'c', 'd', 'f'])
>>> genform = Eq(a(x)*b(f(x))*f(x).diff(x), c(x)*d(f(x)))
>>> pprint(genform)
d
a(x)*b(f(x))*--(f(x)) = c(x)*d(f(x))
dx
>>> pprint(dsolve(genform, f(x), hint='separable_Integral'))
f(x)
/ /
| |
| b(y) | c(x)
| ---- dy = C1 + | ---- dx
| d(y) | a(x)
| |
/ /
Examples
========
>>> from sympy import Function, dsolve, Eq
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(Eq(f(x)*f(x).diff(x) + x, 3*x*f(x)**2), f(x),
... hint='separable', simplify=False))
/ 2 \ 2
log\3*f (x) - 1/ x
---------------- = C1 + --
6 2
References
==========
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
Dover 1963, pp. 52
# indirect doctest
"""
hint = "separable"
has_integral = True
order = [1]
def _wilds(self, f, x, order):
d = Wild('d', exclude=[f(x).diff(x), f(x).diff(x, 2)])
e = Wild('e', exclude=[f(x).diff(x)])
return d, e
def _equation(self, fx, x, order):
d, e = self.wilds()
return d + e*fx.diff(x)
def _verify(self, fx):
d, e = self.wilds_match()
self.y = Dummy('y')
x = self.ode_problem.sym
d = separatevars(d.subs(fx, self.y))
e = separatevars(e.subs(fx, self.y))
# m1[coeff]*m1[x]*m1[y] + m2[coeff]*m2[x]*m2[y]*y'
self.m1 = separatevars(d, dict=True, symbols=(x, self.y))
self.m2 = separatevars(e, dict=True, symbols=(x, self.y))
if self.m1 and self.m2:
return True
return False
def _get_match_object(self):
fx = self.ode_problem.func
x = self.ode_problem.sym
return self.m1, self.m2, x, fx
def _get_general_solution(self, *, simplify_flag: bool = True):
m1, m2, x, fx = self._get_match_object()
(C1,) = self.ode_problem.get_numbered_constants(num=1)
int = Integral(m2['coeff']*m2[self.y]/m1[self.y],
(self.y, None, fx))
gen_sol = Eq(int, Integral(-m1['coeff']*m1[x]/
m2[x], x) + C1)
return [gen_sol]
class SeparableReduced(Separable):
r"""
Solves a differential equation that can be reduced to the separable form.
The general form of this equation is
.. math:: y' + (y/x) H(x^n y) = 0\text{}.
This can be solved by substituting `u(y) = x^n y`. The equation then
reduces to the separable form `\frac{u'}{u (\mathrm{power} - H(u))} -
\frac{1}{x} = 0`.
The general solution is:
>>> from sympy import Function, dsolve, pprint
>>> from sympy.abc import x, n
>>> f, g = map(Function, ['f', 'g'])
>>> genform = f(x).diff(x) + (f(x)/x)*g(x**n*f(x))
>>> pprint(genform)
/ n \
d f(x)*g\x *f(x)/
--(f(x)) + ---------------
dx x
>>> pprint(dsolve(genform, hint='separable_reduced'))
n
x *f(x)
/
|
| 1
| ------------ dy = C1 + log(x)
| y*(n - g(y))
|
/
See Also
========
:obj:`sympy.solvers.ode.single.Separable`
Examples
========
>>> from sympy import dsolve, Function, pprint
>>> from sympy.abc import x
>>> f = Function('f')
>>> d = f(x).diff(x)
>>> eq = (x - x**2*f(x))*d - f(x)
>>> dsolve(eq, hint='separable_reduced')
[Eq(f(x), (1 - sqrt(C1*x**2 + 1))/x), Eq(f(x), (sqrt(C1*x**2 + 1) + 1)/x)]
>>> pprint(dsolve(eq, hint='separable_reduced'))
___________ ___________
/ 2 / 2
1 - \/ C1*x + 1 \/ C1*x + 1 + 1
[f(x) = ------------------, f(x) = ------------------]
x x
References
==========
- Joel Moses, "Symbolic Integration - The Stormy Decade", Communications
of the ACM, Volume 14, Number 8, August 1971, pp. 558
"""
hint = "separable_reduced"
has_integral = True
order = [1]
def _degree(self, expr, x):
# Made this function to calculate the degree of
# x in an expression. If expr will be of form
# x**p*y, (wheare p can be variables/rationals) then it
# will return p.
for val in expr:
if val.has(x):
if isinstance(val, Pow) and val.as_base_exp()[0] == x:
return (val.as_base_exp()[1])
elif val == x:
return (val.as_base_exp()[1])
else:
return self._degree(val.args, x)
return 0
def _powers(self, expr):
# this function will return all the different relative power of x w.r.t f(x).
# expr = x**p * f(x)**q then it will return {p/q}.
pows = set()
fx = self.ode_problem.func
x = self.ode_problem.sym
self.y = Dummy('y')
if isinstance(expr, Add):
exprs = expr.atoms(Add)
elif isinstance(expr, Mul):
exprs = expr.atoms(Mul)
elif isinstance(expr, Pow):
exprs = expr.atoms(Pow)
else:
exprs = {expr}
for arg in exprs:
if arg.has(x):
_, u = arg.as_independent(x, fx)
pow = self._degree((u.subs(fx, self.y), ), x)/self._degree((u.subs(fx, self.y), ), self.y)
pows.add(pow)
return pows
def _verify(self, fx):
num, den = self.wilds_match()
x = self.ode_problem.sym
factor = simplify(x/fx*num/den)
# Try representing factor in terms of x^n*y
# where n is lowest power of x in factor;
# first remove terms like sqrt(2)*3 from factor.atoms(Mul)
num, dem = factor.as_numer_denom()
num = expand(num)
dem = expand(dem)
pows = self._powers(num)
pows.update(self._powers(dem))
pows = list(pows)
if(len(pows)==1) and pows[0]!=zoo:
self.t = Dummy('t')
self.r2 = {'t': self.t}
num = num.subs(x**pows[0]*fx, self.t)
dem = dem.subs(x**pows[0]*fx, self.t)
test = num/dem
free = test.free_symbols
if len(free) == 1 and free.pop() == self.t:
self.r2.update({'power' : pows[0], 'u' : test})
return True
return False
return False
def _get_match_object(self):
fx = self.ode_problem.func
x = self.ode_problem.sym
u = self.r2['u'].subs(self.r2['t'], self.y)
ycoeff = 1/(self.y*(self.r2['power'] - u))
m1 = {self.y: 1, x: -1/x, 'coeff': 1}
m2 = {self.y: ycoeff, x: 1, 'coeff': 1}
return m1, m2, x, x**self.r2['power']*fx
class HomogeneousCoeffSubsDepDivIndep(SinglePatternODESolver):
r"""
Solves a 1st order differential equation with homogeneous coefficients
using the substitution `u_1 = \frac{\text{<dependent
variable>}}{\text{<independent variable>}}`.
This is a differential equation
.. math:: P(x, y) + Q(x, y) dy/dx = 0
such that `P` and `Q` are homogeneous and of the same order. A function
`F(x, y)` is homogeneous of order `n` if `F(x t, y t) = t^n F(x, y)`.
Equivalently, `F(x, y)` can be rewritten as `G(y/x)` or `H(x/y)`. See
also the docstring of :py:meth:`~sympy.solvers.ode.homogeneous_order`.
If the coefficients `P` and `Q` in the differential equation above are
homogeneous functions of the same order, then it can be shown that the
substitution `y = u_1 x` (i.e. `u_1 = y/x`) will turn the differential
equation into an equation separable in the variables `x` and `u`. If
`h(u_1)` is the function that results from making the substitution `u_1 =
f(x)/x` on `P(x, f(x))` and `g(u_2)` is the function that results from the
substitution on `Q(x, f(x))` in the differential equation `P(x, f(x)) +
Q(x, f(x)) f'(x) = 0`, then the general solution is::
>>> from sympy import Function, dsolve, pprint
>>> from sympy.abc import x
>>> f, g, h = map(Function, ['f', 'g', 'h'])
>>> genform = g(f(x)/x) + h(f(x)/x)*f(x).diff(x)
>>> pprint(genform)
/f(x)\ /f(x)\ d
g|----| + h|----|*--(f(x))
\ x / \ x / dx
>>> pprint(dsolve(genform, f(x),
... hint='1st_homogeneous_coeff_subs_dep_div_indep_Integral'))
f(x)
----
x
/
|
| -h(u1)
log(x) = C1 + | ---------------- d(u1)
| u1*h(u1) + g(u1)
|
/
Where `u_1 h(u_1) + g(u_1) \ne 0` and `x \ne 0`.
See also the docstrings of
:obj:`~sympy.solvers.ode.single.HomogeneousCoeffBest` and
:obj:`~sympy.solvers.ode.single.HomogeneousCoeffSubsIndepDivDep`.
Examples
========
>>> from sympy import Function, dsolve
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x),
... hint='1st_homogeneous_coeff_subs_dep_div_indep', simplify=False))
/ 3 \
|3*f(x) f (x)|
log|------ + -----|
| x 3 |
\ x /
log(x) = log(C1) - -------------------
3
References
==========
- https://en.wikipedia.org/wiki/Homogeneous_differential_equation
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
Dover 1963, pp. 59
# indirect doctest
"""
hint = "1st_homogeneous_coeff_subs_dep_div_indep"
has_integral = True
order = [1]
def _wilds(self, f, x, order):
d = Wild('d', exclude=[f(x).diff(x), f(x).diff(x, 2)])
e = Wild('e', exclude=[f(x).diff(x)])
return d, e
def _equation(self, fx, x, order):
d, e = self.wilds()
return d + e*fx.diff(x)
def _verify(self, fx):
self.d, self.e = self.wilds_match()
self.y = Dummy('y')
x = self.ode_problem.sym
self.d = separatevars(self.d.subs(fx, self.y))
self.e = separatevars(self.e.subs(fx, self.y))
ordera = homogeneous_order(self.d, x, self.y)
orderb = homogeneous_order(self.e, x, self.y)
if ordera == orderb and ordera is not None:
self.u = Dummy('u')
if simplify((self.d + self.u*self.e).subs({x: 1, self.y: self.u})) != 0:
return True
return False
return False
def _get_match_object(self):
fx = self.ode_problem.func
x = self.ode_problem.sym
self.u1 = Dummy('u1')
xarg = 0
yarg = 0
return [self.d, self.e, fx, x, self.u, self.u1, self.y, xarg, yarg]
def _get_general_solution(self, *, simplify_flag: bool = True):
d, e, fx, x, u, u1, y, xarg, yarg = self._get_match_object()
(C1,) = self.ode_problem.get_numbered_constants(num=1)
int = Integral(
(-e/(d + u1*e)).subs({x: 1, y: u1}),
(u1, None, fx/x))
sol = logcombine(Eq(log(x), int + log(C1)), force=True)
gen_sol = sol.subs(fx, u).subs(((u, u - yarg), (x, x - xarg), (u, fx)))
return [gen_sol]
class HomogeneousCoeffSubsIndepDivDep(SinglePatternODESolver):
r"""
Solves a 1st order differential equation with homogeneous coefficients
using the substitution `u_2 = \frac{\text{<independent
variable>}}{\text{<dependent variable>}}`.
This is a differential equation
.. math:: P(x, y) + Q(x, y) dy/dx = 0
such that `P` and `Q` are homogeneous and of the same order. A function
`F(x, y)` is homogeneous of order `n` if `F(x t, y t) = t^n F(x, y)`.
Equivalently, `F(x, y)` can be rewritten as `G(y/x)` or `H(x/y)`. See
also the docstring of :py:meth:`~sympy.solvers.ode.homogeneous_order`.
If the coefficients `P` and `Q` in the differential equation above are
homogeneous functions of the same order, then it can be shown that the
substitution `x = u_2 y` (i.e. `u_2 = x/y`) will turn the differential
equation into an equation separable in the variables `y` and `u_2`. If
`h(u_2)` is the function that results from making the substitution `u_2 =
x/f(x)` on `P(x, f(x))` and `g(u_2)` is the function that results from the
substitution on `Q(x, f(x))` in the differential equation `P(x, f(x)) +
Q(x, f(x)) f'(x) = 0`, then the general solution is:
>>> from sympy import Function, dsolve, pprint
>>> from sympy.abc import x
>>> f, g, h = map(Function, ['f', 'g', 'h'])
>>> genform = g(x/f(x)) + h(x/f(x))*f(x).diff(x)
>>> pprint(genform)
/ x \ / x \ d
g|----| + h|----|*--(f(x))
\f(x)/ \f(x)/ dx
>>> pprint(dsolve(genform, f(x),
... hint='1st_homogeneous_coeff_subs_indep_div_dep_Integral'))
x
----
f(x)
/
|
| -g(u1)
| ---------------- d(u1)
| u1*g(u1) + h(u1)
|
/
<BLANKLINE>
f(x) = C1*e
Where `u_1 g(u_1) + h(u_1) \ne 0` and `f(x) \ne 0`.
See also the docstrings of
:obj:`~sympy.solvers.ode.single.HomogeneousCoeffBest` and
:obj:`~sympy.solvers.ode.single.HomogeneousCoeffSubsDepDivIndep`.
Examples
========
>>> from sympy import Function, pprint, dsolve
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x),
... hint='1st_homogeneous_coeff_subs_indep_div_dep',
... simplify=False))
/ 2 \
| 3*x |
log|----- + 1|
| 2 |
\f (x) /
log(f(x)) = log(C1) - --------------
3
References
==========
- https://en.wikipedia.org/wiki/Homogeneous_differential_equation
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
Dover 1963, pp. 59
# indirect doctest
"""
hint = "1st_homogeneous_coeff_subs_indep_div_dep"
has_integral = True
order = [1]
def _wilds(self, f, x, order):
d = Wild('d', exclude=[f(x).diff(x), f(x).diff(x, 2)])
e = Wild('e', exclude=[f(x).diff(x)])
return d, e
def _equation(self, fx, x, order):
d, e = self.wilds()
return d + e*fx.diff(x)
def _verify(self, fx):
self.d, self.e = self.wilds_match()
self.y = Dummy('y')
x = self.ode_problem.sym
self.d = separatevars(self.d.subs(fx, self.y))
self.e = separatevars(self.e.subs(fx, self.y))
ordera = homogeneous_order(self.d, x, self.y)
orderb = homogeneous_order(self.e, x, self.y)
if ordera == orderb and ordera is not None:
self.u = Dummy('u')
if simplify((self.e + self.u*self.d).subs({x: self.u, self.y: 1})) != 0:
return True
return False
return False
def _get_match_object(self):
fx = self.ode_problem.func
x = self.ode_problem.sym
self.u1 = Dummy('u1')
xarg = 0
yarg = 0
return [self.d, self.e, fx, x, self.u, self.u1, self.y, xarg, yarg]
def _get_general_solution(self, *, simplify_flag: bool = True):
d, e, fx, x, u, u1, y, xarg, yarg = self._get_match_object()
(C1,) = self.ode_problem.get_numbered_constants(num=1)
int = Integral(simplify((-d/(e + u1*d)).subs({x: u1, y: 1})), (u1, None, x/fx)) # type: ignore
sol = logcombine(Eq(log(fx), int + log(C1)), force=True)
gen_sol = sol.subs(fx, u).subs(((u, u - yarg), (x, x - xarg), (u, fx)))
return [gen_sol]
class HomogeneousCoeffBest(HomogeneousCoeffSubsIndepDivDep, HomogeneousCoeffSubsDepDivIndep):
r"""
Returns the best solution to an ODE from the two hints
``1st_homogeneous_coeff_subs_dep_div_indep`` and
``1st_homogeneous_coeff_subs_indep_div_dep``.
This is as determined by :py:meth:`~sympy.solvers.ode.ode.ode_sol_simplicity`.
See the
:obj:`~sympy.solvers.ode.single.HomogeneousCoeffSubsIndepDivDep`
and
:obj:`~sympy.solvers.ode.single.HomogeneousCoeffSubsDepDivIndep`
docstrings for more information on these hints. Note that there is no
``ode_1st_homogeneous_coeff_best_Integral`` hint.
Examples
========
>>> from sympy import Function, dsolve, pprint
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x), f(x),
... hint='1st_homogeneous_coeff_best', simplify=False))
/ 2 \
| 3*x |
log|----- + 1|
| 2 |
\f (x) /
log(f(x)) = log(C1) - --------------
3
References
==========
- https://en.wikipedia.org/wiki/Homogeneous_differential_equation
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
Dover 1963, pp. 59
# indirect doctest
"""
hint = "1st_homogeneous_coeff_best"
has_integral = False
order = [1]
def _verify(self, fx):
if HomogeneousCoeffSubsIndepDivDep._verify(self, fx) and HomogeneousCoeffSubsDepDivIndep._verify(self, fx):
return True
return False
def _get_general_solution(self, *, simplify_flag: bool = True):
# There are two substitutions that solve the equation, u1=y/x and u2=x/y
# # They produce different integrals, so try them both and see which
# # one is easier
sol1 = HomogeneousCoeffSubsIndepDivDep._get_general_solution(self)
sol2 = HomogeneousCoeffSubsDepDivIndep._get_general_solution(self)
fx = self.ode_problem.func
if simplify_flag:
sol1 = odesimp(self.ode_problem.eq, *sol1, fx, "1st_homogeneous_coeff_subs_indep_div_dep")
sol2 = odesimp(self.ode_problem.eq, *sol2, fx, "1st_homogeneous_coeff_subs_dep_div_indep")
return min([sol1, sol2], key=lambda x: ode_sol_simplicity(x, fx, trysolving=not simplify))
class LinearCoefficients(HomogeneousCoeffBest):
r"""
Solves a differential equation with linear coefficients.
The general form of a differential equation with linear coefficients is
.. math:: y' + F\left(\!\frac{a_1 x + b_1 y + c_1}{a_2 x + b_2 y +
c_2}\!\right) = 0\text{,}
where `a_1`, `b_1`, `c_1`, `a_2`, `b_2`, `c_2` are constants and `a_1 b_2
- a_2 b_1 \ne 0`.
This can be solved by substituting:
.. math:: x = x' + \frac{b_2 c_1 - b_1 c_2}{a_2 b_1 - a_1 b_2}
y = y' + \frac{a_1 c_2 - a_2 c_1}{a_2 b_1 - a_1
b_2}\text{.}
This substitution reduces the equation to a homogeneous differential
equation.
See Also
========
:obj:`sympy.solvers.ode.single.HomogeneousCoeffBest`
:obj:`sympy.solvers.ode.single.HomogeneousCoeffSubsIndepDivDep`
:obj:`sympy.solvers.ode.single.HomogeneousCoeffSubsDepDivIndep`
Examples
========
>>> from sympy import dsolve, Function, pprint
>>> from sympy.abc import x
>>> f = Function('f')
>>> df = f(x).diff(x)
>>> eq = (x + f(x) + 1)*df + (f(x) - 6*x + 1)
>>> dsolve(eq, hint='linear_coefficients')
[Eq(f(x), -x - sqrt(C1 + 7*x**2) - 1), Eq(f(x), -x + sqrt(C1 + 7*x**2) - 1)]
>>> pprint(dsolve(eq, hint='linear_coefficients'))
___________ ___________
/ 2 / 2
[f(x) = -x - \/ C1 + 7*x - 1, f(x) = -x + \/ C1 + 7*x - 1]
References
==========
- Joel Moses, "Symbolic Integration - The Stormy Decade", Communications
of the ACM, Volume 14, Number 8, August 1971, pp. 558
"""
hint = "linear_coefficients"
has_integral = True
order = [1]
def _wilds(self, f, x, order):
d = Wild('d', exclude=[f(x).diff(x), f(x).diff(x, 2)])
e = Wild('e', exclude=[f(x).diff(x)])
return d, e
def _equation(self, fx, x, order):
d, e = self.wilds()
return d + e*fx.diff(x)
def _verify(self, fx):
self.d, self.e = self.wilds_match()
a, b = self.wilds()
F = self.d/self.e
x = self.ode_problem.sym
params = self._linear_coeff_match(F, fx)
if params:
self.xarg, self.yarg = params
u = Dummy('u')
t = Dummy('t')
self.y = Dummy('y')
# Dummy substitution for df and f(x).
dummy_eq = self.ode_problem.eq.subs(((fx.diff(x), t), (fx, u)))
reps = ((x, x + self.xarg), (u, u + self.yarg), (t, fx.diff(x)), (u, fx))
dummy_eq = simplify(dummy_eq.subs(reps))
# get the re-cast values for e and d
r2 = collect(expand(dummy_eq), [fx.diff(x), fx]).match(a*fx.diff(x) + b)
if r2:
self.d, self.e = r2[b], r2[a]
orderd = homogeneous_order(self.d, x, fx)
ordere = homogeneous_order(self.e, x, fx)
if orderd == ordere and orderd is not None:
self.d = self.d.subs(fx, self.y)
self.e = self.e.subs(fx, self.y)
return True
return False
return False
def _linear_coeff_match(self, expr, func):
r"""
Helper function to match hint ``linear_coefficients``.
Matches the expression to the form `(a_1 x + b_1 f(x) + c_1)/(a_2 x + b_2
f(x) + c_2)` where the following conditions hold:
1. `a_1`, `b_1`, `c_1`, `a_2`, `b_2`, `c_2` are Rationals;
2. `c_1` or `c_2` are not equal to zero;
3. `a_2 b_1 - a_1 b_2` is not equal to zero.
Return ``xarg``, ``yarg`` where
1. ``xarg`` = `(b_2 c_1 - b_1 c_2)/(a_2 b_1 - a_1 b_2)`
2. ``yarg`` = `(a_1 c_2 - a_2 c_1)/(a_2 b_1 - a_1 b_2)`
Examples
========
>>> from sympy import Function, sin
>>> from sympy.abc import x
>>> from sympy.solvers.ode.single import LinearCoefficients
>>> f = Function('f')
>>> eq = (-25*f(x) - 8*x + 62)/(4*f(x) + 11*x - 11)
>>> obj = LinearCoefficients(eq)
>>> obj._linear_coeff_match(eq, f(x))
(1/9, 22/9)
>>> eq = sin((-5*f(x) - 8*x + 6)/(4*f(x) + x - 1))
>>> obj = LinearCoefficients(eq)
>>> obj._linear_coeff_match(eq, f(x))
(19/27, 2/27)
>>> eq = sin(f(x)/x)
>>> obj = LinearCoefficients(eq)
>>> obj._linear_coeff_match(eq, f(x))
"""
f = func.func
x = func.args[0]
def abc(eq):
r'''
Internal function of _linear_coeff_match
that returns Rationals a, b, c
if eq is a*x + b*f(x) + c, else None.
'''
eq = _mexpand(eq)
c = eq.as_independent(x, f(x), as_Add=True)[0]
if not c.is_Rational:
return
a = eq.coeff(x)
if not a.is_Rational:
return
b = eq.coeff(f(x))
if not b.is_Rational:
return
if eq == a*x + b*f(x) + c:
return a, b, c
def match(arg):
r'''
Internal function of _linear_coeff_match that returns Rationals a1,
b1, c1, a2, b2, c2 and a2*b1 - a1*b2 of the expression (a1*x + b1*f(x)
+ c1)/(a2*x + b2*f(x) + c2) if one of c1 or c2 and a2*b1 - a1*b2 is
non-zero, else None.
'''
n, d = arg.together().as_numer_denom()
m = abc(n)
if m is not None:
a1, b1, c1 = m
m = abc(d)
if m is not None:
a2, b2, c2 = m
d = a2*b1 - a1*b2
if (c1 or c2) and d:
return a1, b1, c1, a2, b2, c2, d
m = [fi.args[0] for fi in expr.atoms(Function) if fi.func != f and
len(fi.args) == 1 and not fi.args[0].is_Function] or {expr}
m1 = match(m.pop())
if m1 and all(match(mi) == m1 for mi in m):
a1, b1, c1, a2, b2, c2, denom = m1
return (b2*c1 - b1*c2)/denom, (a1*c2 - a2*c1)/denom
def _get_match_object(self):
fx = self.ode_problem.func
x = self.ode_problem.sym
self.u1 = Dummy('u1')
u = Dummy('u')
return [self.d, self.e, fx, x, u, self.u1, self.y, self.xarg, self.yarg]
class NthOrderReducible(SingleODESolver):
r"""
Solves ODEs that only involve derivatives of the dependent variable using
a substitution of the form `f^n(x) = g(x)`.
For example any second order ODE of the form `f''(x) = h(f'(x), x)` can be
transformed into a pair of 1st order ODEs `g'(x) = h(g(x), x)` and
`f'(x) = g(x)`. Usually the 1st order ODE for `g` is easier to solve. If
that gives an explicit solution for `g` then `f` is found simply by
integration.
Examples
========
>>> from sympy import Function, dsolve, Eq
>>> from sympy.abc import x
>>> f = Function('f')
>>> eq = Eq(x*f(x).diff(x)**2 + f(x).diff(x, 2), 0)
>>> dsolve(eq, f(x), hint='nth_order_reducible')
... # doctest: +NORMALIZE_WHITESPACE
Eq(f(x), C1 - sqrt(-1/C2)*log(-C2*sqrt(-1/C2) + x) + sqrt(-1/C2)*log(C2*sqrt(-1/C2) + x))
"""
hint = "nth_order_reducible"
has_integral = False
def _matches(self):
# Any ODE that can be solved with a substitution and
# repeated integration e.g.:
# `d^2/dx^2(y) + x*d/dx(y) = constant
#f'(x) must be finite for this to work
eq = self.ode_problem.eq_preprocessed
func = self.ode_problem.func
x = self.ode_problem.sym
r"""
Matches any differential equation that can be rewritten with a smaller
order. Only derivatives of ``func`` alone, wrt a single variable,
are considered, and only in them should ``func`` appear.
"""
# ODE only handles functions of 1 variable so this affirms that state
assert len(func.args) == 1
vc = [d.variable_count[0] for d in eq.atoms(Derivative)
if d.expr == func and len(d.variable_count) == 1]
ords = [c for v, c in vc if v == x]
if len(ords) < 2:
return False
self.smallest = min(ords)
# make sure func does not appear outside of derivatives
D = Dummy()
if eq.subs(func.diff(x, self.smallest), D).has(func):
return False
return True
def _get_general_solution(self, *, simplify_flag: bool = True):
eq = self.ode_problem.eq
f = self.ode_problem.func.func
x = self.ode_problem.sym
n = self.smallest
# get a unique function name for g
names = [a.name for a in eq.atoms(AppliedUndef)]
while True:
name = Dummy().name
if name not in names:
g = Function(name)
break
w = f(x).diff(x, n)
geq = eq.subs(w, g(x))
gsol = dsolve(geq, g(x))
if not isinstance(gsol, list):
gsol = [gsol]
# Might be multiple solutions to the reduced ODE:
fsol = []
for gsoli in gsol:
fsoli = dsolve(gsoli.subs(g(x), w), f(x)) # or do integration n times
fsol.append(fsoli)
return fsol
class SecondHypergeometric(SingleODESolver):
r"""
Solves 2nd order linear differential equations.
It computes special function solutions which can be expressed using the
2F1, 1F1 or 0F1 hypergeometric functions.
.. math:: y'' + A(x) y' + B(x) y = 0\text{,}
where `A` and `B` are rational functions.
These kinds of differential equations have solution of non-Liouvillian form.
Given linear ODE can be obtained from 2F1 given by
.. math:: (x^2 - x) y'' + ((a + b + 1) x - c) y' + b a y = 0\text{,}
where {a, b, c} are arbitrary constants.
Notes
=====
The algorithm should find any solution of the form
.. math:: y = P(x) _pF_q(..; ..;\frac{\alpha x^k + \beta}{\gamma x^k + \delta})\text{,}
where pFq is any of 2F1, 1F1 or 0F1 and `P` is an "arbitrary function".
Currently only the 2F1 case is implemented in SymPy but the other cases are
described in the paper and could be implemented in future (contributions
welcome!).
Examples
========
>>> from sympy import Function, dsolve, pprint
>>> from sympy.abc import x
>>> f = Function('f')
>>> eq = (x*x - x)*f(x).diff(x,2) + (5*x - 1)*f(x).diff(x) + 4*f(x)
>>> pprint(dsolve(eq, f(x), '2nd_hypergeometric'))
_
/ / 4 \\ |_ /-1, -1 | \
|C1 + C2*|log(x) + -----||* | | | x|
\ \ x + 1// 2 1 \ 1 | /
f(x) = --------------------------------------------
3
(x - 1)
References
==========
- "Non-Liouvillian solutions for second order linear ODEs" by L. Chan, E.S. Cheb-Terrab
"""
hint = "2nd_hypergeometric"
has_integral = True
def _matches(self):
eq = self.ode_problem.eq_preprocessed
func = self.ode_problem.func
r = match_2nd_hypergeometric(eq, func)
self.match_object = None
if r:
A, B = r
d = equivalence_hypergeometric(A, B, func)
if d:
if d['type'] == "2F1":
self.match_object = match_2nd_2F1_hypergeometric(d['I0'], d['k'], d['sing_point'], func)
if self.match_object is not None:
self.match_object.update({'A':A, 'B':B})
# We can extend it for 1F1 and 0F1 type also.
return self.match_object is not None
def _get_general_solution(self, *, simplify_flag: bool = True):
eq = self.ode_problem.eq
func = self.ode_problem.func
if self.match_object['type'] == "2F1":
sol = get_sol_2F1_hypergeometric(eq, func, self.match_object)
if sol is None:
raise NotImplementedError("The given ODE " + str(eq) + " cannot be solved by"
+ " the hypergeometric method")
return [sol]
class NthLinearConstantCoeffHomogeneous(SingleODESolver):
r"""
Solves an `n`\th order linear homogeneous differential equation with
constant coefficients.
This is an equation of the form
.. math:: a_n f^{(n)}(x) + a_{n-1} f^{(n-1)}(x) + \cdots + a_1 f'(x)
+ a_0 f(x) = 0\text{.}
These equations can be solved in a general manner, by taking the roots of
the characteristic equation `a_n m^n + a_{n-1} m^{n-1} + \cdots + a_1 m +
a_0 = 0`. The solution will then be the sum of `C_n x^i e^{r x}` terms,
for each where `C_n` is an arbitrary constant, `r` is a root of the
characteristic equation and `i` is one of each from 0 to the multiplicity
of the root - 1 (for example, a root 3 of multiplicity 2 would create the
terms `C_1 e^{3 x} + C_2 x e^{3 x}`). The exponential is usually expanded
for complex roots using Euler's equation `e^{I x} = \cos(x) + I \sin(x)`.
Complex roots always come in conjugate pairs in polynomials with real
coefficients, so the two roots will be represented (after simplifying the
constants) as `e^{a x} \left(C_1 \cos(b x) + C_2 \sin(b x)\right)`.
If SymPy cannot find exact roots to the characteristic equation, a
:py:class:`~sympy.polys.rootoftools.ComplexRootOf` instance will be return
instead.
>>> from sympy import Function, dsolve
>>> from sympy.abc import x
>>> f = Function('f')
>>> dsolve(f(x).diff(x, 5) + 10*f(x).diff(x) - 2*f(x), f(x),
... hint='nth_linear_constant_coeff_homogeneous')
... # doctest: +NORMALIZE_WHITESPACE
Eq(f(x), C5*exp(x*CRootOf(_x**5 + 10*_x - 2, 0))
+ (C1*sin(x*im(CRootOf(_x**5 + 10*_x - 2, 1)))
+ C2*cos(x*im(CRootOf(_x**5 + 10*_x - 2, 1))))*exp(x*re(CRootOf(_x**5 + 10*_x - 2, 1)))
+ (C3*sin(x*im(CRootOf(_x**5 + 10*_x - 2, 3)))
+ C4*cos(x*im(CRootOf(_x**5 + 10*_x - 2, 3))))*exp(x*re(CRootOf(_x**5 + 10*_x - 2, 3))))
Note that because this method does not involve integration, there is no
``nth_linear_constant_coeff_homogeneous_Integral`` hint.
Examples
========
>>> from sympy import Function, dsolve, pprint
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(f(x).diff(x, 4) + 2*f(x).diff(x, 3) -
... 2*f(x).diff(x, 2) - 6*f(x).diff(x) + 5*f(x), f(x),
... hint='nth_linear_constant_coeff_homogeneous'))
x -2*x
f(x) = (C1 + C2*x)*e + (C3*sin(x) + C4*cos(x))*e
References
==========
- https://en.wikipedia.org/wiki/Linear_differential_equation section:
Nonhomogeneous_equation_with_constant_coefficients
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
Dover 1963, pp. 211
# indirect doctest
"""
hint = "nth_linear_constant_coeff_homogeneous"
has_integral = False
def _matches(self):
eq = self.ode_problem.eq_high_order_free
func = self.ode_problem.func
order = self.ode_problem.order
x = self.ode_problem.sym
self.r = self.ode_problem.get_linear_coefficients(eq, func, order)
if order and self.r and not any(self.r[i].has(x) for i in self.r if i >= 0):
if not self.r[-1]:
return True
else:
return False
return False
def _get_general_solution(self, *, simplify_flag: bool = True):
fx = self.ode_problem.func
order = self.ode_problem.order
roots, collectterms = _get_const_characteristic_eq_sols(self.r, fx, order)
# A generator of constants
constants = self.ode_problem.get_numbered_constants(num=len(roots))
gsol = Add(*[i*j for (i, j) in zip(constants, roots)])
gsol = Eq(fx, gsol)
if simplify_flag:
gsol = _get_simplified_sol([gsol], fx, collectterms)
return [gsol]
class NthLinearConstantCoeffVariationOfParameters(SingleODESolver):
r"""
Solves an `n`\th order linear differential equation with constant
coefficients using the method of variation of parameters.
This method works on any differential equations of the form
.. math:: f^{(n)}(x) + a_{n-1} f^{(n-1)}(x) + \cdots + a_1 f'(x) + a_0
f(x) = P(x)\text{.}
This method works by assuming that the particular solution takes the form
.. math:: \sum_{x=1}^{n} c_i(x) y_i(x)\text{,}
where `y_i` is the `i`\th solution to the homogeneous equation. The
solution is then solved using Wronskian's and Cramer's Rule. The
particular solution is given by
.. math:: \sum_{x=1}^n \left( \int \frac{W_i(x)}{W(x)} \,dx
\right) y_i(x) \text{,}
where `W(x)` is the Wronskian of the fundamental system (the system of `n`
linearly independent solutions to the homogeneous equation), and `W_i(x)`
is the Wronskian of the fundamental system with the `i`\th column replaced
with `[0, 0, \cdots, 0, P(x)]`.
This method is general enough to solve any `n`\th order inhomogeneous
linear differential equation with constant coefficients, but sometimes
SymPy cannot simplify the Wronskian well enough to integrate it. If this
method hangs, try using the
``nth_linear_constant_coeff_variation_of_parameters_Integral`` hint and
simplifying the integrals manually. Also, prefer using
``nth_linear_constant_coeff_undetermined_coefficients`` when it
applies, because it does not use integration, making it faster and more
reliable.
Warning, using simplify=False with
'nth_linear_constant_coeff_variation_of_parameters' in
:py:meth:`~sympy.solvers.ode.dsolve` may cause it to hang, because it will
not attempt to simplify the Wronskian before integrating. It is
recommended that you only use simplify=False with
'nth_linear_constant_coeff_variation_of_parameters_Integral' for this
method, especially if the solution to the homogeneous equation has
trigonometric functions in it.
Examples
========
>>> from sympy import Function, dsolve, pprint, exp, log
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(f(x).diff(x, 3) - 3*f(x).diff(x, 2) +
... 3*f(x).diff(x) - f(x) - exp(x)*log(x), f(x),
... hint='nth_linear_constant_coeff_variation_of_parameters'))
/ / / x*log(x) 11*x\\\ x
f(x) = |C1 + x*|C2 + x*|C3 + -------- - ----|||*e
\ \ \ 6 36 ///
References
==========
- https://en.wikipedia.org/wiki/Variation_of_parameters
- http://planetmath.org/VariationOfParameters
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
Dover 1963, pp. 233
# indirect doctest
"""
hint = "nth_linear_constant_coeff_variation_of_parameters"
has_integral = True
def _matches(self):
eq = self.ode_problem.eq_high_order_free
func = self.ode_problem.func
order = self.ode_problem.order
x = self.ode_problem.sym
self.r = self.ode_problem.get_linear_coefficients(eq, func, order)
if order and self.r and not any(self.r[i].has(x) for i in self.r if i >= 0):
if self.r[-1]:
return True
else:
return False
return False
def _get_general_solution(self, *, simplify_flag: bool = True):
eq = self.ode_problem.eq_high_order_free
f = self.ode_problem.func.func
x = self.ode_problem.sym
order = self.ode_problem.order
roots, collectterms = _get_const_characteristic_eq_sols(self.r, f(x), order)
# A generator of constants
constants = self.ode_problem.get_numbered_constants(num=len(roots))
homogen_sol = Add(*[i*j for (i, j) in zip(constants, roots)])
homogen_sol = Eq(f(x), homogen_sol)
homogen_sol = _solve_variation_of_parameters(eq, f(x), roots, homogen_sol, order, self.r, simplify_flag)
if simplify_flag:
homogen_sol = _get_simplified_sol([homogen_sol], f(x), collectterms)
return [homogen_sol]
class NthLinearConstantCoeffUndeterminedCoefficients(SingleODESolver):
r"""
Solves an `n`\th order linear differential equation with constant
coefficients using the method of undetermined coefficients.
This method works on differential equations of the form
.. math:: a_n f^{(n)}(x) + a_{n-1} f^{(n-1)}(x) + \cdots + a_1 f'(x)
+ a_0 f(x) = P(x)\text{,}
where `P(x)` is a function that has a finite number of linearly
independent derivatives.
Functions that fit this requirement are finite sums functions of the form
`a x^i e^{b x} \sin(c x + d)` or `a x^i e^{b x} \cos(c x + d)`, where `i`
is a non-negative integer and `a`, `b`, `c`, and `d` are constants. For
example any polynomial in `x`, functions like `x^2 e^{2 x}`, `x \sin(x)`,
and `e^x \cos(x)` can all be used. Products of `\sin`'s and `\cos`'s have
a finite number of derivatives, because they can be expanded into `\sin(a
x)` and `\cos(b x)` terms. However, SymPy currently cannot do that
expansion, so you will need to manually rewrite the expression in terms of
the above to use this method. So, for example, you will need to manually
convert `\sin^2(x)` into `(1 + \cos(2 x))/2` to properly apply the method
of undetermined coefficients on it.
This method works by creating a trial function from the expression and all
of its linear independent derivatives and substituting them into the
original ODE. The coefficients for each term will be a system of linear
equations, which are be solved for and substituted, giving the solution.
If any of the trial functions are linearly dependent on the solution to
the homogeneous equation, they are multiplied by sufficient `x` to make
them linearly independent.
Examples
========
>>> from sympy import Function, dsolve, pprint, exp, cos
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(f(x).diff(x, 2) + 2*f(x).diff(x) + f(x) -
... 4*exp(-x)*x**2 + cos(2*x), f(x),
... hint='nth_linear_constant_coeff_undetermined_coefficients'))
/ / 3\\
| | x || -x 4*sin(2*x) 3*cos(2*x)
f(x) = |C1 + x*|C2 + --||*e - ---------- + ----------
\ \ 3 // 25 25
References
==========
- https://en.wikipedia.org/wiki/Method_of_undetermined_coefficients
- M. Tenenbaum & H. Pollard, "Ordinary Differential Equations",
Dover 1963, pp. 221
# indirect doctest
"""
hint = "nth_linear_constant_coeff_undetermined_coefficients"
has_integral = False
def _matches(self):
eq = self.ode_problem.eq_high_order_free
func = self.ode_problem.func
order = self.ode_problem.order
x = self.ode_problem.sym
self.r = self.ode_problem.get_linear_coefficients(eq, func, order)
does_match = False
if order and self.r and not any(self.r[i].has(x) for i in self.r if i >= 0):
if self.r[-1]:
eq_homogeneous = Add(eq, -self.r[-1])
undetcoeff = _undetermined_coefficients_match(self.r[-1], x, func, eq_homogeneous)
if undetcoeff['test']:
self.trialset = undetcoeff['trialset']
does_match = True
return does_match
def _get_general_solution(self, *, simplify_flag: bool = True):
eq = self.ode_problem.eq
f = self.ode_problem.func.func
x = self.ode_problem.sym
order = self.ode_problem.order
roots, collectterms = _get_const_characteristic_eq_sols(self.r, f(x), order)
# A generator of constants
constants = self.ode_problem.get_numbered_constants(num=len(roots))
homogen_sol = Add(*[i*j for (i, j) in zip(constants, roots)])
homogen_sol = Eq(f(x), homogen_sol)
self.r.update({'list': roots, 'sol': homogen_sol, 'simpliy_flag': simplify_flag})
gsol = _solve_undetermined_coefficients(eq, f(x), order, self.r, self.trialset)
if simplify_flag:
gsol = _get_simplified_sol([gsol], f(x), collectterms)
return [gsol]
class NthLinearEulerEqHomogeneous(SingleODESolver):
r"""
Solves an `n`\th order linear homogeneous variable-coefficient
Cauchy-Euler equidimensional ordinary differential equation.
This is an equation with form `0 = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x)
\cdots`.
These equations can be solved in a general manner, by substituting
solutions of the form `f(x) = x^r`, and deriving a characteristic equation
for `r`. When there are repeated roots, we include extra terms of the
form `C_{r k} \ln^k(x) x^r`, where `C_{r k}` is an arbitrary integration
constant, `r` is a root of the characteristic equation, and `k` ranges
over the multiplicity of `r`. In the cases where the roots are complex,
solutions of the form `C_1 x^a \sin(b \log(x)) + C_2 x^a \cos(b \log(x))`
are returned, based on expansions with Euler's formula. The general
solution is the sum of the terms found. If SymPy cannot find exact roots
to the characteristic equation, a
:py:obj:`~.ComplexRootOf` instance will be returned
instead.
>>> from sympy import Function, dsolve
>>> from sympy.abc import x
>>> f = Function('f')
>>> dsolve(4*x**2*f(x).diff(x, 2) + f(x), f(x),
... hint='nth_linear_euler_eq_homogeneous')
... # doctest: +NORMALIZE_WHITESPACE
Eq(f(x), sqrt(x)*(C1 + C2*log(x)))
Note that because this method does not involve integration, there is no
``nth_linear_euler_eq_homogeneous_Integral`` hint.
The following is for internal use:
- ``returns = 'sol'`` returns the solution to the ODE.
- ``returns = 'list'`` returns a list of linearly independent solutions,
corresponding to the fundamental solution set, for use with non
homogeneous solution methods like variation of parameters and
undetermined coefficients. Note that, though the solutions should be
linearly independent, this function does not explicitly check that. You
can do ``assert simplify(wronskian(sollist)) != 0`` to check for linear
independence. Also, ``assert len(sollist) == order`` will need to pass.
- ``returns = 'both'``, return a dictionary ``{'sol': <solution to ODE>,
'list': <list of linearly independent solutions>}``.
Examples
========
>>> from sympy import Function, dsolve, pprint
>>> from sympy.abc import x
>>> f = Function('f')
>>> eq = f(x).diff(x, 2)*x**2 - 4*f(x).diff(x)*x + 6*f(x)
>>> pprint(dsolve(eq, f(x),
... hint='nth_linear_euler_eq_homogeneous'))
2
f(x) = x *(C1 + C2*x)
References
==========
- https://en.wikipedia.org/wiki/Cauchy%E2%80%93Euler_equation
- C. Bender & S. Orszag, "Advanced Mathematical Methods for Scientists and
Engineers", Springer 1999, pp. 12
# indirect doctest
"""
hint = "nth_linear_euler_eq_homogeneous"
has_integral = False
def _matches(self):
eq = self.ode_problem.eq_preprocessed
f = self.ode_problem.func.func
order = self.ode_problem.order
x = self.ode_problem.sym
match = self.ode_problem.get_linear_coefficients(eq, f(x), order)
self.r = None
does_match = False
if order and match:
coeff = match[order]
factor = x**order / coeff
self.r = {i: factor*match[i] for i in match}
if self.r and all(_test_term(self.r[i], f(x), i) for i in
self.r if i >= 0):
if not self.r[-1]:
does_match = True
return does_match
def _get_general_solution(self, *, simplify_flag: bool = True):
fx = self.ode_problem.func
eq = self.ode_problem.eq
homogen_sol = _get_euler_characteristic_eq_sols(eq, fx, self.r)[0]
return [homogen_sol]
class NthLinearEulerEqNonhomogeneousVariationOfParameters(SingleODESolver):
r"""
Solves an `n`\th order linear non homogeneous Cauchy-Euler equidimensional
ordinary differential equation using variation of parameters.
This is an equation with form `g(x) = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x)
\cdots`.
This method works by assuming that the particular solution takes the form
.. math:: \sum_{x=1}^{n} c_i(x) y_i(x) {a_n} {x^n} \text{, }
where `y_i` is the `i`\th solution to the homogeneous equation. The
solution is then solved using Wronskian's and Cramer's Rule. The
particular solution is given by multiplying eq given below with `a_n x^{n}`
.. math:: \sum_{x=1}^n \left( \int \frac{W_i(x)}{W(x)} \, dx
\right) y_i(x) \text{, }
where `W(x)` is the Wronskian of the fundamental system (the system of `n`
linearly independent solutions to the homogeneous equation), and `W_i(x)`
is the Wronskian of the fundamental system with the `i`\th column replaced
with `[0, 0, \cdots, 0, \frac{x^{- n}}{a_n} g{\left(x \right)}]`.
This method is general enough to solve any `n`\th order inhomogeneous
linear differential equation, but sometimes SymPy cannot simplify the
Wronskian well enough to integrate it. If this method hangs, try using the
``nth_linear_constant_coeff_variation_of_parameters_Integral`` hint and
simplifying the integrals manually. Also, prefer using
``nth_linear_constant_coeff_undetermined_coefficients`` when it
applies, because it does not use integration, making it faster and more
reliable.
Warning, using simplify=False with
'nth_linear_constant_coeff_variation_of_parameters' in
:py:meth:`~sympy.solvers.ode.dsolve` may cause it to hang, because it will
not attempt to simplify the Wronskian before integrating. It is
recommended that you only use simplify=False with
'nth_linear_constant_coeff_variation_of_parameters_Integral' for this
method, especially if the solution to the homogeneous equation has
trigonometric functions in it.
Examples
========
>>> from sympy import Function, dsolve, Derivative
>>> from sympy.abc import x
>>> f = Function('f')
>>> eq = x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x) - x**4
>>> dsolve(eq, f(x),
... hint='nth_linear_euler_eq_nonhomogeneous_variation_of_parameters').expand()
Eq(f(x), C1*x + C2*x**2 + x**4/6)
"""
hint = "nth_linear_euler_eq_nonhomogeneous_variation_of_parameters"
has_integral = True
def _matches(self):
eq = self.ode_problem.eq_preprocessed
f = self.ode_problem.func.func
order = self.ode_problem.order
x = self.ode_problem.sym
match = self.ode_problem.get_linear_coefficients(eq, f(x), order)
self.r = None
does_match = False
if order and match:
coeff = match[order]
factor = x**order / coeff
self.r = {i: factor*match[i] for i in match}
if self.r and all(_test_term(self.r[i], f(x), i) for i in
self.r if i >= 0):
if self.r[-1]:
does_match = True
return does_match
def _get_general_solution(self, *, simplify_flag: bool = True):
eq = self.ode_problem.eq
f = self.ode_problem.func.func
x = self.ode_problem.sym
order = self.ode_problem.order
homogen_sol, roots = _get_euler_characteristic_eq_sols(eq, f(x), self.r)
self.r[-1] = self.r[-1]/self.r[order]
sol = _solve_variation_of_parameters(eq, f(x), roots, homogen_sol, order, self.r, simplify_flag)
return [Eq(f(x), homogen_sol.rhs + (sol.rhs - homogen_sol.rhs)*self.r[order])]
class NthLinearEulerEqNonhomogeneousUndeterminedCoefficients(SingleODESolver):
r"""
Solves an `n`\th order linear non homogeneous Cauchy-Euler equidimensional
ordinary differential equation using undetermined coefficients.
This is an equation with form `g(x) = a_0 f(x) + a_1 x f'(x) + a_2 x^2 f''(x)
\cdots`.
These equations can be solved in a general manner, by substituting
solutions of the form `x = exp(t)`, and deriving a characteristic equation
of form `g(exp(t)) = b_0 f(t) + b_1 f'(t) + b_2 f''(t) \cdots` which can
be then solved by nth_linear_constant_coeff_undetermined_coefficients if
g(exp(t)) has finite number of linearly independent derivatives.
Functions that fit this requirement are finite sums functions of the form
`a x^i e^{b x} \sin(c x + d)` or `a x^i e^{b x} \cos(c x + d)`, where `i`
is a non-negative integer and `a`, `b`, `c`, and `d` are constants. For
example any polynomial in `x`, functions like `x^2 e^{2 x}`, `x \sin(x)`,
and `e^x \cos(x)` can all be used. Products of `\sin`'s and `\cos`'s have
a finite number of derivatives, because they can be expanded into `\sin(a
x)` and `\cos(b x)` terms. However, SymPy currently cannot do that
expansion, so you will need to manually rewrite the expression in terms of
the above to use this method. So, for example, you will need to manually
convert `\sin^2(x)` into `(1 + \cos(2 x))/2` to properly apply the method
of undetermined coefficients on it.
After replacement of x by exp(t), this method works by creating a trial function
from the expression and all of its linear independent derivatives and
substituting them into the original ODE. The coefficients for each term
will be a system of linear equations, which are be solved for and
substituted, giving the solution. If any of the trial functions are linearly
dependent on the solution to the homogeneous equation, they are multiplied
by sufficient `x` to make them linearly independent.
Examples
========
>>> from sympy import dsolve, Function, Derivative, log
>>> from sympy.abc import x
>>> f = Function('f')
>>> eq = x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x) - log(x)
>>> dsolve(eq, f(x),
... hint='nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients').expand()
Eq(f(x), C1*x + C2*x**2 + log(x)/2 + 3/4)
"""
hint = "nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients"
has_integral = False
def _matches(self):
eq = self.ode_problem.eq_high_order_free
f = self.ode_problem.func.func
order = self.ode_problem.order
x = self.ode_problem.sym
match = self.ode_problem.get_linear_coefficients(eq, f(x), order)
self.r = None
does_match = False
if order and match:
coeff = match[order]
factor = x**order / coeff
self.r = {i: factor*match[i] for i in match}
if self.r and all(_test_term(self.r[i], f(x), i) for i in
self.r if i >= 0):
if self.r[-1]:
e, re = posify(self.r[-1].subs(x, exp(x)))
undetcoeff = _undetermined_coefficients_match(e.subs(re), x)
if undetcoeff['test']:
does_match = True
return does_match
def _get_general_solution(self, *, simplify_flag: bool = True):
f = self.ode_problem.func.func
x = self.ode_problem.sym
chareq, eq, symbol = S.Zero, S.Zero, Dummy('x')
for i in self.r.keys():
if i >= 0:
chareq += (self.r[i]*diff(x**symbol, x, i)*x**-symbol).expand()
for i in range(1, degree(Poly(chareq, symbol))+1):
eq += chareq.coeff(symbol**i)*diff(f(x), x, i)
if chareq.as_coeff_add(symbol)[0]:
eq += chareq.as_coeff_add(symbol)[0]*f(x)
e, re = posify(self.r[-1].subs(x, exp(x)))
eq += e.subs(re)
self.const_undet_instance = NthLinearConstantCoeffUndeterminedCoefficients(SingleODEProblem(eq, f(x), x))
sol = self.const_undet_instance.get_general_solution(simplify = simplify_flag)[0]
sol = sol.subs(x, log(x))
sol = sol.subs(f(log(x)), f(x)).expand()
return [sol]
class SecondLinearBessel(SingleODESolver):
r"""
Gives solution of the Bessel differential equation
.. math :: x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} y(x) + (x^2-n^2) y(x)
if `n` is integer then the solution is of the form ``Eq(f(x), C0 besselj(n,x)
+ C1 bessely(n,x))`` as both the solutions are linearly independent else if
`n` is a fraction then the solution is of the form ``Eq(f(x), C0 besselj(n,x)
+ C1 besselj(-n,x))`` which can also transform into ``Eq(f(x), C0 besselj(n,x)
+ C1 bessely(n,x))``.
Examples
========
>>> from sympy.abc import x
>>> from sympy import Symbol
>>> v = Symbol('v', positive=True)
>>> from sympy import dsolve, Function
>>> f = Function('f')
>>> y = f(x)
>>> genform = x**2*y.diff(x, 2) + x*y.diff(x) + (x**2 - v**2)*y
>>> dsolve(genform)
Eq(f(x), C1*besselj(v, x) + C2*bessely(v, x))
References
==========
https://www.math24.net/bessel-differential-equation/
"""
hint = "2nd_linear_bessel"
has_integral = False
def _matches(self):
eq = self.ode_problem.eq_high_order_free
f = self.ode_problem.func
order = self.ode_problem.order
x = self.ode_problem.sym
df = f.diff(x)
a = Wild('a', exclude=[f,df])
b = Wild('b', exclude=[x, f,df])
a4 = Wild('a4', exclude=[x,f,df])
b4 = Wild('b4', exclude=[x,f,df])
c4 = Wild('c4', exclude=[x,f,df])
d4 = Wild('d4', exclude=[x,f,df])
a3 = Wild('a3', exclude=[f, df, f.diff(x, 2)])
b3 = Wild('b3', exclude=[f, df, f.diff(x, 2)])
c3 = Wild('c3', exclude=[f, df, f.diff(x, 2)])
deq = a3*(f.diff(x, 2)) + b3*df + c3*f
r = collect(eq,
[f.diff(x, 2), df, f]).match(deq)
if order == 2 and r:
if not all(r[key].is_polynomial() for key in r):
n, d = eq.as_numer_denom()
eq = expand(n)
r = collect(eq,
[f.diff(x, 2), df, f]).match(deq)
if r and r[a3] != 0:
# leading coeff of f(x).diff(x, 2)
coeff = factor(r[a3]).match(a4*(x-b)**b4)
if coeff:
# if coeff[b4] = 0 means constant coefficient
if coeff[b4] == 0:
return False
point = coeff[b]
else:
return False
if point:
r[a3] = simplify(r[a3].subs(x, x+point))
r[b3] = simplify(r[b3].subs(x, x+point))
r[c3] = simplify(r[c3].subs(x, x+point))
# making a3 in the form of x**2
r[a3] = cancel(r[a3]/(coeff[a4]*(x)**(-2+coeff[b4])))
r[b3] = cancel(r[b3]/(coeff[a4]*(x)**(-2+coeff[b4])))
r[c3] = cancel(r[c3]/(coeff[a4]*(x)**(-2+coeff[b4])))
# checking if b3 is of form c*(x-b)
coeff1 = factor(r[b3]).match(a4*(x))
if coeff1 is None:
return False
# c3 maybe of very complex form so I am simply checking (a - b) form
# if yes later I will match with the standerd form of bessel in a and b
# a, b are wild variable defined above.
_coeff2 = r[c3].match(a - b)
if _coeff2 is None:
return False
# matching with standerd form for c3
coeff2 = factor(_coeff2[a]).match(c4**2*(x)**(2*a4))
if coeff2 is None:
return False
if _coeff2[b] == 0:
coeff2[d4] = 0
else:
coeff2[d4] = factor(_coeff2[b]).match(d4**2)[d4]
self.rn = {'n':coeff2[d4], 'a4':coeff2[c4], 'd4':coeff2[a4]}
self.rn['c4'] = coeff1[a4]
self.rn['b4'] = point
return True
return False
def _get_general_solution(self, *, simplify_flag: bool = True):
f = self.ode_problem.func.func
x = self.ode_problem.sym
n = self.rn['n']
a4 = self.rn['a4']
c4 = self.rn['c4']
d4 = self.rn['d4']
b4 = self.rn['b4']
n = sqrt(n**2 + Rational(1, 4)*(c4 - 1)**2)
(C1, C2) = self.ode_problem.get_numbered_constants(num=2)
return [Eq(f(x), ((x**(Rational(1-c4,2)))*(C1*besselj(n/d4,a4*x**d4/d4)
+ C2*bessely(n/d4,a4*x**d4/d4))).subs(x, x-b4))]
class SecondLinearAiry(SingleODESolver):
r"""
Gives solution of the Airy differential equation
.. math :: \frac{d^2y}{dx^2} + (a + b x) y(x) = 0
in terms of Airy special functions airyai and airybi.
Examples
========
>>> from sympy import dsolve, Function
>>> from sympy.abc import x
>>> f = Function("f")
>>> eq = f(x).diff(x, 2) - x*f(x)
>>> dsolve(eq)
Eq(f(x), C1*airyai(x) + C2*airybi(x))
"""
hint = "2nd_linear_airy"
has_integral = False
def _matches(self):
eq = self.ode_problem.eq_high_order_free
f = self.ode_problem.func
order = self.ode_problem.order
x = self.ode_problem.sym
df = f.diff(x)
a4 = Wild('a4', exclude=[x,f,df])
b4 = Wild('b4', exclude=[x,f,df])
match = self.ode_problem.get_linear_coefficients(eq, f, order)
does_match = False
if order == 2 and match and match[2] != 0:
if match[1].is_zero:
self.rn = cancel(match[0]/match[2]).match(a4+b4*x)
if self.rn and self.rn[b4] != 0:
self.rn = {'b':self.rn[a4],'m':self.rn[b4]}
does_match = True
return does_match
def _get_general_solution(self, *, simplify_flag: bool = True):
f = self.ode_problem.func.func
x = self.ode_problem.sym
(C1, C2) = self.ode_problem.get_numbered_constants(num=2)
b = self.rn['b']
m = self.rn['m']
if m.is_positive:
arg = - b/cbrt(m)**2 - cbrt(m)*x
elif m.is_negative:
arg = - b/cbrt(-m)**2 + cbrt(-m)*x
else:
arg = - b/cbrt(-m)**2 + cbrt(-m)*x
return [Eq(f(x), C1*airyai(arg) + C2*airybi(arg))]
class LieGroup(SingleODESolver):
r"""
This hint implements the Lie group method of solving first order differential
equations. The aim is to convert the given differential equation from the
given coordinate system into another coordinate system where it becomes
invariant under the one-parameter Lie group of translations. The converted
ODE can be easily solved by quadrature. It makes use of the
:py:meth:`sympy.solvers.ode.infinitesimals` function which returns the
infinitesimals of the transformation.
The coordinates `r` and `s` can be found by solving the following Partial
Differential Equations.
.. math :: \xi\frac{\partial r}{\partial x} + \eta\frac{\partial r}{\partial y}
= 0
.. math :: \xi\frac{\partial s}{\partial x} + \eta\frac{\partial s}{\partial y}
= 1
The differential equation becomes separable in the new coordinate system
.. math :: \frac{ds}{dr} = \frac{\frac{\partial s}{\partial x} +
h(x, y)\frac{\partial s}{\partial y}}{
\frac{\partial r}{\partial x} + h(x, y)\frac{\partial r}{\partial y}}
After finding the solution by integration, it is then converted back to the original
coordinate system by substituting `r` and `s` in terms of `x` and `y` again.
Examples
========
>>> from sympy import Function, dsolve, exp, pprint
>>> from sympy.abc import x
>>> f = Function('f')
>>> pprint(dsolve(f(x).diff(x) + 2*x*f(x) - x*exp(-x**2), f(x),
... hint='lie_group'))
/ 2\ 2
| x | -x
f(x) = |C1 + --|*e
\ 2 /
References
==========
- Solving differential equations by Symmetry Groups,
John Starrett, pp. 1 - pp. 14
"""
hint = "lie_group"
has_integral = False
def _has_additional_params(self):
return 'xi' in self.ode_problem.params and 'eta' in self.ode_problem.params
def _matches(self):
eq = self.ode_problem.eq
f = self.ode_problem.func.func
order = self.ode_problem.order
x = self.ode_problem.sym
df = f(x).diff(x)
y = Dummy('y')
d = Wild('d', exclude=[df, f(x).diff(x, 2)])
e = Wild('e', exclude=[df])
does_match = False
if self._has_additional_params() and order == 1:
xi = self.ode_problem.params['xi']
eta = self.ode_problem.params['eta']
self.r3 = {'xi': xi, 'eta': eta}
r = collect(eq, df, exact=True).match(d + e * df)
if r:
r['d'] = d
r['e'] = e
r['y'] = y
r[d] = r[d].subs(f(x), y)
r[e] = r[e].subs(f(x), y)
self.r3.update(r)
does_match = True
return does_match
def _get_general_solution(self, *, simplify_flag: bool = True):
eq = self.ode_problem.eq
x = self.ode_problem.sym
func = self.ode_problem.func
order = self.ode_problem.order
df = func.diff(x)
try:
eqsol = solve(eq, df)
except NotImplementedError:
eqsol = []
desols = []
for s in eqsol:
sol = _ode_lie_group(s, func, order, match=self.r3)
if sol:
desols.extend(sol)
if desols == []:
raise NotImplementedError("The given ODE " + str(eq) + " cannot be solved by"
+ " the lie group method")
return desols
solver_map = {
'factorable': Factorable,
'nth_linear_constant_coeff_homogeneous': NthLinearConstantCoeffHomogeneous,
'nth_linear_euler_eq_homogeneous': NthLinearEulerEqHomogeneous,
'nth_linear_constant_coeff_undetermined_coefficients': NthLinearConstantCoeffUndeterminedCoefficients,
'nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients': NthLinearEulerEqNonhomogeneousUndeterminedCoefficients,
'separable': Separable,
'1st_exact': FirstExact,
'1st_linear': FirstLinear,
'Bernoulli': Bernoulli,
'Riccati_special_minus2': RiccatiSpecial,
'1st_rational_riccati': RationalRiccati,
'1st_homogeneous_coeff_best': HomogeneousCoeffBest,
'1st_homogeneous_coeff_subs_indep_div_dep': HomogeneousCoeffSubsIndepDivDep,
'1st_homogeneous_coeff_subs_dep_div_indep': HomogeneousCoeffSubsDepDivIndep,
'almost_linear': AlmostLinear,
'linear_coefficients': LinearCoefficients,
'separable_reduced': SeparableReduced,
'nth_linear_constant_coeff_variation_of_parameters': NthLinearConstantCoeffVariationOfParameters,
'nth_linear_euler_eq_nonhomogeneous_variation_of_parameters': NthLinearEulerEqNonhomogeneousVariationOfParameters,
'Liouville': Liouville,
'2nd_linear_airy': SecondLinearAiry,
'2nd_linear_bessel': SecondLinearBessel,
'2nd_hypergeometric': SecondHypergeometric,
'nth_order_reducible': NthOrderReducible,
'2nd_nonlinear_autonomous_conserved': SecondNonlinearAutonomousConserved,
'nth_algebraic': NthAlgebraic,
'lie_group': LieGroup,
}
# Avoid circular import:
from .ode import dsolve, ode_sol_simplicity, odesimp, homogeneous_order
|
31adac1228fd36cde89e3df917b3cc38b017b051b834070f8cff90a794a9b78b | r"""
This module contains :py:meth:`~sympy.solvers.ode.riccati.solve_riccati`,
a function which gives all rational particular solutions to first order
Riccati ODEs. A general first order Riccati ODE is given by -
.. math:: y' = b_0(x) + b_1(x)w + b_2(x)w^2
where `b_0, b_1` and `b_2` can be arbitrary rational functions of `x`
with `b_2 \ne 0`. When `b_2 = 0`, the equation is not a Riccati ODE
anymore and becomes a Linear ODE. Similarly, when `b_0 = 0`, the equation
is a Bernoulli ODE. The algorithm presented below can find rational
solution(s) to all ODEs with `b_2 \ne 0` that have a rational solution,
or prove that no rational solution exists for the equation.
Background
==========
A Riccati equation can be transformed to its normal form
.. math:: y' + y^2 = a(x)
using the transformation
.. math:: y = -b_2(x) - \frac{b'_2(x)}{2 b_2(x)} - \frac{b_1(x)}{2}
where `a(x)` is given by
.. math:: a(x) = \frac{1}{4}\left(\frac{b_2'}{b_2} + b_1\right)^2 - \frac{1}{2}\left(\frac{b_2'}{b_2} + b_1\right)' - b_0 b_2
Thus, we can develop an algorithm to solve for the Riccati equation
in its normal form, which would in turn give us the solution for
the original Riccati equation.
Algorithm
=========
The algorithm implemented here is presented in the Ph.D thesis
"Rational and Algebraic Solutions of First-Order Algebraic ODEs"
by N. Thieu Vo. The entire thesis can be found here -
https://www3.risc.jku.at/publications/download/risc_5387/PhDThesisThieu.pdf
We have only implemented the Rational Riccati solver (Algorithm 11,
Pg 78-82 in Thesis). Before we proceed towards the implementation
of the algorithm, a few definitions to understand are -
1. Valuation of a Rational Function at `\infty`:
The valuation of a rational function `p(x)` at `\infty` is equal
to the difference between the degree of the denominator and the
numerator of `p(x)`.
NOTE: A general definition of valuation of a rational function
at any value of `x` can be found in Pg 63 of the thesis, but
is not of any interest for this algorithm.
2. Zeros and Poles of a Rational Function:
Let `a(x) = \frac{S(x)}{T(x)}, T \ne 0` be a rational function
of `x`. Then -
a. The Zeros of `a(x)` are the roots of `S(x)`.
b. The Poles of `a(x)` are the roots of `T(x)`. However, `\infty`
can also be a pole of a(x). We say that `a(x)` has a pole at
`\infty` if `a(\frac{1}{x})` has a pole at 0.
Every pole is associated with an order that is equal to the multiplicity
of its appearance as a root of `T(x)`. A pole is called a simple pole if
it has an order 1. Similarly, a pole is called a multiple pole if it has
an order `\ge` 2.
Necessary Conditions
====================
For a Riccati equation in its normal form,
.. math:: y' + y^2 = a(x)
we can define
a. A pole is called a movable pole if it is a pole of `y(x)` and is not
a pole of `a(x)`.
b. Similarly, a pole is called a non-movable pole if it is a pole of both
`y(x)` and `a(x)`.
Then, the algorithm states that a rational solution exists only if -
a. Every pole of `a(x)` must be either a simple pole or a multiple pole
of even order.
b. The valuation of `a(x)` at `\infty` must be even or be `\ge` 2.
This algorithm finds all possible rational solutions for the Riccati ODE.
If no rational solutions are found, it means that no rational solutions
exist.
The algorithm works for Riccati ODEs where the coefficients are rational
functions in the independent variable `x` with rational number coefficients
i.e. in `Q(x)`. The coefficients in the rational function cannot be floats,
irrational numbers, symbols or any other kind of expression. The reasons
for this are -
1. When using symbols, different symbols could take the same value and this
would affect the multiplicity of poles if symbols are present here.
2. An integer degree bound is required to calculate a polynomial solution
to an auxiliary differential equation, which in turn gives the particular
solution for the original ODE. If symbols/floats/irrational numbers are
present, we cannot determine if the expression for the degree bound is an
integer or not.
Solution
========
With these definitions, we can state a general form for the solution of
the equation. `y(x)` must have the form -
.. math:: y(x) = \sum_{i=1}^{n} \sum_{j=1}^{r_i} \frac{c_{ij}}{(x - x_i)^j} + \sum_{i=1}^{m} \frac{1}{x - \chi_i} + \sum_{i=0}^{N} d_i x^i
where `x_1, x_2, \dots, x_n` are non-movable poles of `a(x)`,
`\chi_1, \chi_2, \dots, \chi_m` are movable poles of `a(x)`, and the values
of `N, n, r_1, r_2, \dots, r_n` can be determined from `a(x)`. The
coefficient vectors `(d_0, d_1, \dots, d_N)` and `(c_{i1}, c_{i2}, \dots, c_{i r_i})`
can be determined from `a(x)`. We will have 2 choices each of these vectors
and part of the procedure is figuring out which of the 2 should be used
to get the solution correctly.
Implementation
==============
In this implementation, we use ``Poly`` to represent a rational function
rather than using ``Expr`` since ``Poly`` is much faster. Since we cannot
represent rational functions directly using ``Poly``, we instead represent
a rational function with 2 ``Poly`` objects - one for its numerator and
the other for its denominator.
The code is written to match the steps given in the thesis (Pg 82)
Step 0 : Match the equation -
Find `b_0, b_1` and `b_2`. If `b_2 = 0` or no such functions exist, raise
an error
Step 1 : Transform the equation to its normal form as explained in the
theory section.
Step 2 : Initialize an empty set of solutions, ``sol``.
Step 3 : If `a(x) = 0`, append `\frac{1}/{(x - C1)}` to ``sol``.
Step 4 : If `a(x)` is a rational non-zero number, append `\pm \sqrt{a}`
to ``sol``.
Step 5 : Find the poles and their multiplicities of `a(x)`. Let
the number of poles be `n`. Also find the valuation of `a(x)` at
`\infty` using ``val_at_inf``.
NOTE: Although the algorithm considers `\infty` as a pole, it is
not mentioned if it a part of the set of finite poles. `\infty`
is NOT a part of the set of finite poles. If a pole exists at
`\infty`, we use its multiplicity to find the laurent series of
`a(x)` about `\infty`.
Step 6 : Find `n` c-vectors (one for each pole) and 1 d-vector using
``construct_c`` and ``construct_d``. Now, determine all the ``2**(n + 1)``
combinations of choosing between 2 choices for each of the `n` c-vectors
and 1 d-vector.
NOTE: The equation for `d_{-1}` in Case 4 (Pg 80) has a printinig
mistake. The term `- d_N` must be replaced with `-N d_N`. The same
has been explained in the code as well.
For each of these above combinations, do
Step 8 : Compute `m` in ``compute_m_ybar``. `m` is the degree bound of
the polynomial solution we must find for the auxiliary equation.
Step 9 : In ``compute_m_ybar``, compute ybar as well where ``ybar`` is
one part of y(x) -
.. math:: \overline{y}(x) = \sum_{i=1}^{n} \sum_{j=1}^{r_i} \frac{c_{ij}}{(x - x_i)^j} + \sum_{i=0}^{N} d_i x^i
Step 10 : If `m` is a non-negative integer -
Step 11: Find a polynomial solution of degree `m` for the auxiliary equation.
There are 2 cases possible -
a. `m` is a non-negative integer: We can solve for the coefficients
in `p(x)` using Undetermined Coefficients.
b. `m` is not a non-negative integer: In this case, we cannot find
a polynomial solution to the auxiliary equation, and hence, we ignore
this value of `m`.
Step 12 : For each `p(x)` that exists, append `ybar + \frac{p'(x)}{p(x)}`
to ``sol``.
Step 13 : For each solution in ``sol``, apply an inverse transformation,
so that the solutions of the original equation are found using the
solutions of the equation in its normal form.
"""
from itertools import product
from sympy.core import S
from sympy.core.add import Add
from sympy.core.numbers import oo, Float
from sympy.core.function import count_ops
from sympy.core.relational import Eq
from sympy.core.symbol import symbols, Symbol, Dummy
from sympy.functions import sqrt, exp
from sympy.functions.elementary.complexes import sign
from sympy.integrals.integrals import Integral
from sympy.polys.domains import ZZ
from sympy.polys.polytools import Poly
from sympy.polys.polyroots import roots
from sympy.solvers.solveset import linsolve
def riccati_normal(w, x, b1, b2):
"""
Given a solution `w(x)` to the equation
.. math:: w'(x) = b_0(x) + b_1(x)*w(x) + b_2(x)*w(x)^2
and rational function coefficients `b_1(x)` and
`b_2(x)`, this function transforms the solution to
give a solution `y(x)` for its corresponding normal
Riccati ODE
.. math:: y'(x) + y(x)^2 = a(x)
using the transformation
.. math:: y(x) = -b_2(x)*w(x) - b'_2(x)/(2*b_2(x)) - b_1(x)/2
"""
return -b2*w - b2.diff(x)/(2*b2) - b1/2
def riccati_inverse_normal(y, x, b1, b2, bp=None):
"""
Inverse transforming the solution to the normal
Riccati ODE to get the solution to the Riccati ODE.
"""
# bp is the expression which is independent of the solution
# and hence, it need not be computed again
if bp is None:
bp = -b2.diff(x)/(2*b2**2) - b1/(2*b2)
# w(x) = -y(x)/b2(x) - b2'(x)/(2*b2(x)^2) - b1(x)/(2*b2(x))
return -y/b2 + bp
def riccati_reduced(eq, f, x):
"""
Convert a Riccati ODE into its corresponding
normal Riccati ODE.
"""
match, funcs = match_riccati(eq, f, x)
# If equation is not a Riccati ODE, exit
if not match:
return False
# Using the rational functions, find the expression for a(x)
b0, b1, b2 = funcs
a = -b0*b2 + b1**2/4 - b1.diff(x)/2 + 3*b2.diff(x)**2/(4*b2**2) + b1*b2.diff(x)/(2*b2) - \
b2.diff(x, 2)/(2*b2)
# Normal form of Riccati ODE is f'(x) + f(x)^2 = a(x)
return f(x).diff(x) + f(x)**2 - a
def linsolve_dict(eq, syms):
"""
Get the output of linsolve as a dict
"""
# Convert tuple type return value of linsolve
# to a dictionary for ease of use
sol = linsolve(eq, syms)
if not sol:
return {}
return {k:v for k, v in zip(syms, list(sol)[0])}
def match_riccati(eq, f, x):
"""
A function that matches and returns the coefficients
if an equation is a Riccati ODE
Parameters
==========
eq: Equation to be matched
f: Dependent variable
x: Independent variable
Returns
=======
match: True if equation is a Riccati ODE, False otherwise
funcs: [b0, b1, b2] if match is True, [] otherwise. Here,
b0, b1 and b2 are rational functions which match the equation.
"""
# Group terms based on f(x)
if isinstance(eq, Eq):
eq = eq.lhs - eq.rhs
eq = eq.expand().collect(f(x))
cf = eq.coeff(f(x).diff(x))
# There must be an f(x).diff(x) term.
# eq must be an Add object since we are using the expanded
# equation and it must have atleast 2 terms (b2 != 0)
if cf != 0 and isinstance(eq, Add):
# Divide all coefficients by the coefficient of f(x).diff(x)
# and add the terms again to get the same equation
eq = Add(*((x/cf).cancel() for x in eq.args)).collect(f(x))
# Match the equation with the pattern
b1 = -eq.coeff(f(x))
b2 = -eq.coeff(f(x)**2)
b0 = (f(x).diff(x) - b1*f(x) - b2*f(x)**2 - eq).expand()
funcs = [b0, b1, b2]
# Check if coefficients are not symbols and floats
if any(len(x.atoms(Symbol)) > 1 or len(x.atoms(Float)) for x in funcs):
return False, []
# If b_0(x) contains f(x), it is not a Riccati ODE
if len(b0.atoms(f)) or not all((b2 != 0, b0.is_rational_function(x),
b1.is_rational_function(x), b2.is_rational_function(x))):
return False, []
return True, funcs
return False, []
def val_at_inf(num, den, x):
# Valuation of a rational function at oo = deg(denom) - deg(numer)
return den.degree(x) - num.degree(x)
def check_necessary_conds(val_inf, muls):
"""
The necessary conditions for a rational solution
to exist are as follows -
i) Every pole of a(x) must be either a simple pole
or a multiple pole of even order.
ii) The valuation of a(x) at infinity must be even
or be greater than or equal to 2.
Here, a simple pole is a pole with multiplicity 1
and a multiple pole is a pole with multiplicity
greater than 1.
"""
return (val_inf >= 2 or (val_inf <= 0 and val_inf%2 == 0)) and \
all(mul == 1 or (mul%2 == 0 and mul >= 2) for mul in muls)
def inverse_transform_poly(num, den, x):
"""
A function to make the substitution
x -> 1/x in a rational function that
is represented using Poly objects for
numerator and denominator.
"""
# Declare for reuse
one = Poly(1, x)
xpoly = Poly(x, x)
# Check if degree of numerator is same as denominator
pwr = val_at_inf(num, den, x)
if pwr >= 0:
# Denominator has greater degree. Substituting x with
# 1/x would make the extra power go to the numerator
if num.expr != 0:
num = num.transform(one, xpoly) * x**pwr
den = den.transform(one, xpoly)
else:
# Numerator has greater degree. Substituting x with
# 1/x would make the extra power go to the denominator
num = num.transform(one, xpoly)
den = den.transform(one, xpoly) * x**(-pwr)
return num.cancel(den, include=True)
def limit_at_inf(num, den, x):
"""
Find the limit of a rational function
at oo
"""
# pwr = degree(num) - degree(den)
pwr = -val_at_inf(num, den, x)
# Numerator has a greater degree than denominator
# Limit at infinity would depend on the sign of the
# leading coefficients of numerator and denominator
if pwr > 0:
return oo*sign(num.LC()/den.LC())
# Degree of numerator is equal to that of denominator
# Limit at infinity is just the ratio of leading coeffs
elif pwr == 0:
return num.LC()/den.LC()
# Degree of numerator is less than that of denominator
# Limit at infinity is just 0
else:
return 0
def construct_c_case_1(num, den, x, pole):
# Find the coefficient of 1/(x - pole)**2 in the
# Laurent series expansion of a(x) about pole.
num1, den1 = (num*Poly((x - pole)**2, x, extension=True)).cancel(den, include=True)
r = (num1.subs(x, pole))/(den1.subs(x, pole))
# If multiplicity is 2, the coefficient to be added
# in the c-vector is c = (1 +- sqrt(1 + 4*r))/2
if r != -S(1)/4:
return [[(1 + sqrt(1 + 4*r))/2], [(1 - sqrt(1 + 4*r))/2]]
return [[S.Half]]
def construct_c_case_2(num, den, x, pole, mul):
# Generate the coefficients using the recurrence
# relation mentioned in (5.14) in the thesis (Pg 80)
# r_i = mul/2
ri = mul//2
# Find the Laurent series coefficients about the pole
ser = rational_laurent_series(num, den, x, pole, mul, 6)
# Start with an empty memo to store the coefficients
# This is for the plus case
cplus = [0 for i in range(ri)]
# Base Case
cplus[ri-1] = sqrt(ser[2*ri])
# Iterate backwards to find all coefficients
s = ri - 1
sm = 0
for s in range(ri-1, 0, -1):
sm = 0
for j in range(s+1, ri):
sm += cplus[j-1]*cplus[ri+s-j-1]
if s!= 1:
cplus[s-1] = (ser[ri+s] - sm)/(2*cplus[ri-1])
# Memo for the minus case
cminus = [-x for x in cplus]
# Find the 0th coefficient in the recurrence
cplus[0] = (ser[ri+s] - sm - ri*cplus[ri-1])/(2*cplus[ri-1])
cminus[0] = (ser[ri+s] - sm - ri*cminus[ri-1])/(2*cminus[ri-1])
# Add both the plus and minus cases' coefficients
if cplus != cminus:
return [cplus, cminus]
return cplus
def construct_c_case_3():
# If multiplicity is 1, the coefficient to be added
# in the c-vector is 1 (no choice)
return [[1]]
def construct_c(num, den, x, poles, muls):
"""
Helper function to calculate the coefficients
in the c-vector for each pole.
"""
c = []
for pole, mul in zip(poles, muls):
c.append([])
# Case 3
if mul == 1:
# Add the coefficients from Case 3
c[-1].extend(construct_c_case_3())
# Case 1
elif mul == 2:
# Add the coefficients from Case 1
c[-1].extend(construct_c_case_1(num, den, x, pole))
# Case 2
else:
# Add the coefficients from Case 2
c[-1].extend(construct_c_case_2(num, den, x, pole, mul))
return c
def construct_d_case_4(ser, N):
# Initialize an empty vector
dplus = [0 for i in range(N+2)]
# d_N = sqrt(a_{2*N})
dplus[N] = sqrt(ser[2*N])
# Use the recurrence relations to find
# the value of d_s
for s in range(N-1, -2, -1):
sm = 0
for j in range(s+1, N):
sm += dplus[j]*dplus[N+s-j]
if s != -1:
dplus[s] = (ser[N+s] - sm)/(2*dplus[N])
# Coefficients for the case of d_N = -sqrt(a_{2*N})
dminus = [-x for x in dplus]
# The third equation in Eq 5.15 of the thesis is WRONG!
# d_N must be replaced with N*d_N in that equation.
dplus[-1] = (ser[N+s] - N*dplus[N] - sm)/(2*dplus[N])
dminus[-1] = (ser[N+s] - N*dminus[N] - sm)/(2*dminus[N])
if dplus != dminus:
return [dplus, dminus]
return dplus
def construct_d_case_5(ser):
# List to store coefficients for plus case
dplus = [0, 0]
# d_0 = sqrt(a_0)
dplus[0] = sqrt(ser[0])
# d_(-1) = a_(-1)/(2*d_0)
dplus[-1] = ser[-1]/(2*dplus[0])
# Coefficients for the minus case are just the negative
# of the coefficients for the positive case.
dminus = [-x for x in dplus]
if dplus != dminus:
return [dplus, dminus]
return dplus
def construct_d_case_6(num, den, x):
# s_oo = lim x->0 1/x**2 * a(1/x) which is equivalent to
# s_oo = lim x->oo x**2 * a(x)
s_inf = limit_at_inf(Poly(x**2, x)*num, den, x)
# d_(-1) = (1 +- sqrt(1 + 4*s_oo))/2
if s_inf != -S(1)/4:
return [[(1 + sqrt(1 + 4*s_inf))/2], [(1 - sqrt(1 + 4*s_inf))/2]]
return [[S.Half]]
def construct_d(num, den, x, val_inf):
"""
Helper function to calculate the coefficients
in the d-vector based on the valuation of the
function at oo.
"""
N = -val_inf//2
# Multiplicity of oo as a pole
mul = -val_inf if val_inf < 0 else 0
ser = rational_laurent_series(num, den, x, oo, mul, 1)
# Case 4
if val_inf < 0:
d = construct_d_case_4(ser, N)
# Case 5
elif val_inf == 0:
d = construct_d_case_5(ser)
# Case 6
else:
d = construct_d_case_6(num, den, x)
return d
def rational_laurent_series(num, den, x, r, m, n):
r"""
The function computes the Laurent series coefficients
of a rational function.
Parameters
==========
num: A Poly object that is the numerator of `f(x)`.
den: A Poly object that is the denominator of `f(x)`.
x: The variable of expansion of the series.
r: The point of expansion of the series.
m: Multiplicity of r if r is a pole of `f(x)`. Should
be zero otherwise.
n: Order of the term upto which the series is expanded.
Returns
=======
series: A dictionary that has power of the term as key
and coefficient of that term as value.
Below is a basic outline of how the Laurent series of a
rational function `f(x)` about `x_0` is being calculated -
1. Substitute `x + x_0` in place of `x`. If `x_0`
is a pole of `f(x)`, multiply the expression by `x^m`
where `m` is the multiplicity of `x_0`. Denote the
the resulting expression as g(x). We do this substitution
so that we can now find the Laurent series of g(x) about
`x = 0`.
2. We can then assume that the Laurent series of `g(x)`
takes the following form -
.. math:: g(x) = \frac{num(x)}{den(x)} = \sum_{m = 0}^{\infty} a_m x^m
where `a_m` denotes the Laurent series coefficients.
3. Multiply the denominator to the RHS of the equation
and form a recurrence relation for the coefficients `a_m`.
"""
one = Poly(1, x, extension=True)
if r == oo:
# Series at x = oo is equal to first transforming
# the function from x -> 1/x and finding the
# series at x = 0
num, den = inverse_transform_poly(num, den, x)
r = S(0)
if r:
# For an expansion about a non-zero point, a
# transformation from x -> x + r must be made
num = num.transform(Poly(x + r, x, extension=True), one)
den = den.transform(Poly(x + r, x, extension=True), one)
# Remove the pole from the denominator if the series
# expansion is about one of the poles
num, den = (num*x**m).cancel(den, include=True)
# Equate coefficients for the first terms (base case)
maxdegree = 1 + max(num.degree(), den.degree())
syms = symbols(f'a:{maxdegree}', cls=Dummy)
diff = num - den * Poly(syms[::-1], x)
coeff_diffs = diff.all_coeffs()[::-1][:maxdegree]
(coeffs, ) = linsolve(coeff_diffs, syms)
# Use the recursion relation for the rest
recursion = den.all_coeffs()[::-1]
div, rec_rhs = recursion[0], recursion[1:]
series = list(coeffs)
while len(series) < n:
next_coeff = Add(*(c*series[-1-n] for n, c in enumerate(rec_rhs))) / div
series.append(-next_coeff)
series = {m - i: val for i, val in enumerate(series)}
return series
def compute_m_ybar(x, poles, choice, N):
"""
Helper function to calculate -
1. m - The degree bound for the polynomial
solution that must be found for the auxiliary
differential equation.
2. ybar - Part of the solution which can be
computed using the poles, c and d vectors.
"""
ybar = 0
m = Poly(choice[-1][-1], x, extension=True)
# Calculate the first (nested) summation for ybar
# as given in Step 9 of the Thesis (Pg 82)
dybar = []
for i, polei in enumerate(poles):
for j, cij in enumerate(choice[i]):
dybar.append(cij/(x - polei)**(j + 1))
m -=Poly(choice[i][0], x, extension=True) # can't accumulate Poly and use with Add
ybar += Add(*dybar)
# Calculate the second summation for ybar
for i in range(N+1):
ybar += choice[-1][i]*x**i
return (m.expr, ybar)
def solve_aux_eq(numa, dena, numy, deny, x, m):
"""
Helper function to find a polynomial solution
of degree m for the auxiliary differential
equation.
"""
# Assume that the solution is of the type
# p(x) = C_0 + C_1*x + ... + C_{m-1}*x**(m-1) + x**m
psyms = symbols(f'C0:{m}', cls=Dummy)
K = ZZ[psyms]
psol = Poly(K.gens, x, domain=K) + Poly(x**m, x, domain=K)
# Eq (5.16) in Thesis - Pg 81
auxeq = (dena*(numy.diff(x)*deny - numy*deny.diff(x) + numy**2) - numa*deny**2)*psol
if m >= 1:
px = psol.diff(x)
auxeq += px*(2*numy*deny*dena)
if m >= 2:
auxeq += px.diff(x)*(deny**2*dena)
if m != 0:
# m is a non-zero integer. Find the constant terms using undetermined coefficients
return psol, linsolve_dict(auxeq.all_coeffs(), psyms), True
else:
# m == 0 . Check if 1 (x**0) is a solution to the auxiliary equation
return S.One, auxeq, auxeq == 0
def remove_redundant_sols(sol1, sol2, x):
"""
Helper function to remove redundant
solutions to the differential equation.
"""
# If y1 and y2 are redundant solutions, there is
# some value of the arbitrary constant for which
# they will be equal
syms1 = sol1.atoms(Symbol, Dummy)
syms2 = sol2.atoms(Symbol, Dummy)
num1, den1 = [Poly(e, x, extension=True) for e in sol1.together().as_numer_denom()]
num2, den2 = [Poly(e, x, extension=True) for e in sol2.together().as_numer_denom()]
# Cross multiply
e = num1*den2 - den1*num2
# Check if there are any constants
syms = list(e.atoms(Symbol, Dummy))
if len(syms):
# Find values of constants for which solutions are equal
redn = linsolve(e.all_coeffs(), syms)
if len(redn):
# Return the general solution over a particular solution
if len(syms1) > len(syms2):
return sol2
# If both have constants, return the lesser complex solution
elif len(syms1) == len(syms2):
return sol1 if count_ops(syms1) >= count_ops(syms2) else sol2
else:
return sol1
def get_gen_sol_from_part_sol(part_sols, a, x):
""""
Helper function which computes the general
solution for a Riccati ODE from its particular
solutions.
There are 3 cases to find the general solution
from the particular solutions for a Riccati ODE
depending on the number of particular solution(s)
we have - 1, 2 or 3.
For more information, see Section 6 of
"Methods of Solution of the Riccati Differential Equation"
by D. R. Haaheim and F. M. Stein
"""
# If no particular solutions are found, a general
# solution cannot be found
if len(part_sols) == 0:
return []
# In case of a single particular solution, the general
# solution can be found by using the substitution
# y = y1 + 1/z and solving a Bernoulli ODE to find z.
elif len(part_sols) == 1:
y1 = part_sols[0]
i = exp(Integral(2*y1, x))
z = i * Integral(a/i, x)
z = z.doit()
if a == 0 or z == 0:
return y1
return y1 + 1/z
# In case of 2 particular solutions, the general solution
# can be found by solving a separable equation. This is
# the most common case, i.e. most Riccati ODEs have 2
# rational particular solutions.
elif len(part_sols) == 2:
y1, y2 = part_sols
# One of them already has a constant
if len(y1.atoms(Dummy)) + len(y2.atoms(Dummy)) > 0:
u = exp(Integral(y2 - y1, x)).doit()
# Introduce a constant
else:
C1 = Dummy('C1')
u = C1*exp(Integral(y2 - y1, x)).doit()
if u == 1:
return y2
return (y2*u - y1)/(u - 1)
# In case of 3 particular solutions, a closed form
# of the general solution can be obtained directly
else:
y1, y2, y3 = part_sols[:3]
C1 = Dummy('C1')
return (C1 + 1)*y2*(y1 - y3)/(C1*y1 + y2 - (C1 + 1)*y3)
def solve_riccati(fx, x, b0, b1, b2, gensol=False):
"""
The main function that gives particular/general
solutions to Riccati ODEs that have atleast 1
rational particular solution.
"""
# Step 1 : Convert to Normal Form
a = -b0*b2 + b1**2/4 - b1.diff(x)/2 + 3*b2.diff(x)**2/(4*b2**2) + b1*b2.diff(x)/(2*b2) - \
b2.diff(x, 2)/(2*b2)
a_t = a.together()
num, den = [Poly(e, x, extension=True) for e in a_t.as_numer_denom()]
num, den = num.cancel(den, include=True)
# Step 2
presol = []
# Step 3 : a(x) is 0
if num == 0:
presol.append(1/(x + Dummy('C1')))
# Step 4 : a(x) is a non-zero constant
elif x not in num.free_symbols.union(den.free_symbols):
presol.extend([sqrt(a), -sqrt(a)])
# Step 5 : Find poles and valuation at infinity
poles = roots(den, x)
poles, muls = list(poles.keys()), list(poles.values())
val_inf = val_at_inf(num, den, x)
if len(poles):
# Check necessary conditions (outlined in the module docstring)
if not check_necessary_conds(val_inf, muls):
raise ValueError("Rational Solution doesn't exist")
# Step 6
# Construct c-vectors for each singular point
c = construct_c(num, den, x, poles, muls)
# Construct d vectors for each singular point
d = construct_d(num, den, x, val_inf)
# Step 7 : Iterate over all possible combinations and return solutions
# For each possible combination, generate an array of 0's and 1's
# where 0 means pick 1st choice and 1 means pick the second choice.
# NOTE: We could exit from the loop if we find 3 particular solutions,
# but it is not implemented here as -
# a. Finding 3 particular solutions is very rare. Most of the time,
# only 2 particular solutions are found.
# b. In case we exit after finding 3 particular solutions, it might
# happen that 1 or 2 of them are redundant solutions. So, instead of
# spending some more time in computing the particular solutions,
# we will end up computing the general solution from a single
# particular solution which is usually slower than computing the
# general solution from 2 or 3 particular solutions.
c.append(d)
choices = product(*c)
for choice in choices:
m, ybar = compute_m_ybar(x, poles, choice, -val_inf//2)
numy, deny = [Poly(e, x, extension=True) for e in ybar.together().as_numer_denom()]
# Step 10 : Check if a valid solution exists. If yes, also check
# if m is a non-negative integer
if m.is_nonnegative == True and m.is_integer == True:
# Step 11 : Find polynomial solutions of degree m for the auxiliary equation
psol, coeffs, exists = solve_aux_eq(num, den, numy, deny, x, m)
# Step 12 : If valid polynomial solution exists, append solution.
if exists:
# m == 0 case
if psol == 1 and coeffs == 0:
# p(x) = 1, so p'(x)/p(x) term need not be added
presol.append(ybar)
# m is a positive integer and there are valid coefficients
elif len(coeffs):
# Substitute the valid coefficients to get p(x)
psol = psol.xreplace(coeffs)
# y(x) = ybar(x) + p'(x)/p(x)
presol.append(ybar + psol.diff(x)/psol)
# Remove redundant solutions from the list of existing solutions
remove = set()
for i in range(len(presol)):
for j in range(i+1, len(presol)):
rem = remove_redundant_sols(presol[i], presol[j], x)
if rem is not None:
remove.add(rem)
sols = [x for x in presol if x not in remove]
# Step 15 : Inverse transform the solutions of the equation in normal form
bp = -b2.diff(x)/(2*b2**2) - b1/(2*b2)
# If general solution is required, compute it from the particular solutions
if gensol:
sols = [get_gen_sol_from_part_sol(sols, a, x)]
# Inverse transform the particular solutions
presol = [Eq(fx, riccati_inverse_normal(y, x, b1, b2, bp).cancel(extension=True)) for y in sols]
return presol
|
a14c5a673a9777975f3583330b07794e67335fc797f9fb58c275384291a48dec | from sympy.core import Add, Mul, S
from sympy.core.containers import Tuple
from sympy.core.exprtools import factor_terms
from sympy.core.numbers import I
from sympy.core.relational import Eq, Equality
from sympy.core.sorting import default_sort_key, ordered
from sympy.core.symbol import Dummy, Symbol
from sympy.core.function import (expand_mul, expand, Derivative,
AppliedUndef, Function, Subs)
from sympy.functions import (exp, im, cos, sin, re, Piecewise,
piecewise_fold, sqrt, log)
from sympy.functions.combinatorial.factorials import factorial
from sympy.matrices import zeros, Matrix, NonSquareMatrixError, MatrixBase, eye
from sympy.polys import Poly, together
from sympy.simplify import collect, radsimp, signsimp # type: ignore
from sympy.simplify.powsimp import powdenest, powsimp
from sympy.simplify.ratsimp import ratsimp
from sympy.simplify.simplify import simplify
from sympy.sets.sets import FiniteSet
from sympy.solvers.deutils import ode_order
from sympy.solvers.solveset import NonlinearError, solveset
from sympy.utilities.iterables import (connected_components, iterable,
strongly_connected_components)
from sympy.utilities.misc import filldedent
from sympy.integrals.integrals import Integral, integrate
def _get_func_order(eqs, funcs):
return {func: max(ode_order(eq, func) for eq in eqs) for func in funcs}
class ODEOrderError(ValueError):
"""Raised by linear_ode_to_matrix if the system has the wrong order"""
pass
class ODENonlinearError(NonlinearError):
"""Raised by linear_ode_to_matrix if the system is nonlinear"""
pass
def _simpsol(soleq):
lhs = soleq.lhs
sol = soleq.rhs
sol = powsimp(sol)
gens = list(sol.atoms(exp))
p = Poly(sol, *gens, expand=False)
gens = [factor_terms(g) for g in gens]
if not gens:
gens = p.gens
syms = [Symbol('C1'), Symbol('C2')]
terms = []
for coeff, monom in zip(p.coeffs(), p.monoms()):
coeff = piecewise_fold(coeff)
if isinstance(coeff, Piecewise):
coeff = Piecewise(*((ratsimp(coef).collect(syms), cond) for coef, cond in coeff.args))
else:
coeff = ratsimp(coeff).collect(syms)
monom = Mul(*(g ** i for g, i in zip(gens, monom)))
terms.append(coeff * monom)
return Eq(lhs, Add(*terms))
def _solsimp(e, t):
no_t, has_t = powsimp(expand_mul(e)).as_independent(t)
no_t = ratsimp(no_t)
has_t = has_t.replace(exp, lambda a: exp(factor_terms(a)))
return no_t + has_t
def simpsol(sol, wrt1, wrt2, doit=True):
"""Simplify solutions from dsolve_system."""
# The parameter sol is the solution as returned by dsolve (list of Eq).
#
# The parameters wrt1 and wrt2 are lists of symbols to be collected for
# with those in wrt1 being collected for first. This allows for collecting
# on any factors involving the independent variable before collecting on
# the integration constants or vice versa using e.g.:
#
# sol = simpsol(sol, [t], [C1, C2]) # t first, constants after
# sol = simpsol(sol, [C1, C2], [t]) # constants first, t after
#
# If doit=True (default) then simpsol will begin by evaluating any
# unevaluated integrals. Since many integrals will appear multiple times
# in the solutions this is done intelligently by computing each integral
# only once.
#
# The strategy is to first perform simple cancellation with factor_terms
# and then multiply out all brackets with expand_mul. This gives an Add
# with many terms.
#
# We split each term into two multiplicative factors dep and coeff where
# all factors that involve wrt1 are in dep and any constant factors are in
# coeff e.g.
# sqrt(2)*C1*exp(t) -> ( exp(t), sqrt(2)*C1 )
#
# The dep factors are simplified using powsimp to combine expanded
# exponential factors e.g.
# exp(a*t)*exp(b*t) -> exp(t*(a+b))
#
# We then collect coefficients for all terms having the same (simplified)
# dep. The coefficients are then simplified using together and ratsimp and
# lastly by recursively applying the same transformation to the
# coefficients to collect on wrt2.
#
# Finally the result is recombined into an Add and signsimp is used to
# normalise any minus signs.
def simprhs(rhs, rep, wrt1, wrt2):
"""Simplify the rhs of an ODE solution"""
if rep:
rhs = rhs.subs(rep)
rhs = factor_terms(rhs)
rhs = simp_coeff_dep(rhs, wrt1, wrt2)
rhs = signsimp(rhs)
return rhs
def simp_coeff_dep(expr, wrt1, wrt2=None):
"""Split rhs into terms, split terms into dep and coeff and collect on dep"""
add_dep_terms = lambda e: e.is_Add and e.has(*wrt1)
expandable = lambda e: e.is_Mul and any(map(add_dep_terms, e.args))
expand_func = lambda e: expand_mul(e, deep=False)
expand_mul_mod = lambda e: e.replace(expandable, expand_func)
terms = Add.make_args(expand_mul_mod(expr))
dc = {}
for term in terms:
coeff, dep = term.as_independent(*wrt1, as_Add=False)
# Collect together the coefficients for terms that have the same
# dependence on wrt1 (after dep is normalised using simpdep).
dep = simpdep(dep, wrt1)
# See if the dependence on t cancels out...
if dep is not S.One:
dep2 = factor_terms(dep)
if not dep2.has(*wrt1):
coeff *= dep2
dep = S.One
if dep not in dc:
dc[dep] = coeff
else:
dc[dep] += coeff
# Apply the method recursively to the coefficients but this time
# collecting on wrt2 rather than wrt2.
termpairs = ((simpcoeff(c, wrt2), d) for d, c in dc.items())
if wrt2 is not None:
termpairs = ((simp_coeff_dep(c, wrt2), d) for c, d in termpairs)
return Add(*(c * d for c, d in termpairs))
def simpdep(term, wrt1):
"""Normalise factors involving t with powsimp and recombine exp"""
def canonicalise(a):
# Using factor_terms here isn't quite right because it leads to things
# like exp(t*(1+t)) that we don't want. We do want to cancel factors
# and pull out a common denominator but ideally the numerator would be
# expressed as a standard form polynomial in t so we expand_mul
# and collect afterwards.
a = factor_terms(a)
num, den = a.as_numer_denom()
num = expand_mul(num)
num = collect(num, wrt1)
return num / den
term = powsimp(term)
rep = {e: exp(canonicalise(e.args[0])) for e in term.atoms(exp)}
term = term.subs(rep)
return term
def simpcoeff(coeff, wrt2):
"""Bring to a common fraction and cancel with ratsimp"""
coeff = together(coeff)
if coeff.is_polynomial():
# Calling ratsimp can be expensive. The main reason is to simplify
# sums of terms with irrational denominators so we limit ourselves
# to the case where the expression is polynomial in any symbols.
# Maybe there's a better approach...
coeff = ratsimp(radsimp(coeff))
# collect on secondary variables first and any remaining symbols after
if wrt2 is not None:
syms = list(wrt2) + list(ordered(coeff.free_symbols - set(wrt2)))
else:
syms = list(ordered(coeff.free_symbols))
coeff = collect(coeff, syms)
coeff = together(coeff)
return coeff
# There are often repeated integrals. Collect unique integrals and
# evaluate each once and then substitute into the final result to replace
# all occurrences in each of the solution equations.
if doit:
integrals = set().union(*(s.atoms(Integral) for s in sol))
rep = {i: factor_terms(i).doit() for i in integrals}
else:
rep = {}
sol = [Eq(s.lhs, simprhs(s.rhs, rep, wrt1, wrt2)) for s in sol]
return sol
def linodesolve_type(A, t, b=None):
r"""
Helper function that determines the type of the system of ODEs for solving with :obj:`sympy.solvers.ode.systems.linodesolve()`
Explanation
===========
This function takes in the coefficient matrix and/or the non-homogeneous term
and returns the type of the equation that can be solved by :obj:`sympy.solvers.ode.systems.linodesolve()`.
If the system is constant coefficient homogeneous, then "type1" is returned
If the system is constant coefficient non-homogeneous, then "type2" is returned
If the system is non-constant coefficient homogeneous, then "type3" is returned
If the system is non-constant coefficient non-homogeneous, then "type4" is returned
If the system has a non-constant coefficient matrix which can be factorized into constant
coefficient matrix, then "type5" or "type6" is returned for when the system is homogeneous or
non-homogeneous respectively.
Note that, if the system of ODEs is of "type3" or "type4", then along with the type,
the commutative antiderivative of the coefficient matrix is also returned.
If the system cannot be solved by :obj:`sympy.solvers.ode.systems.linodesolve()`, then
NotImplementedError is raised.
Parameters
==========
A : Matrix
Coefficient matrix of the system of ODEs
b : Matrix or None
Non-homogeneous term of the system. The default value is None.
If this argument is None, then the system is assumed to be homogeneous.
Examples
========
>>> from sympy import symbols, Matrix
>>> from sympy.solvers.ode.systems import linodesolve_type
>>> t = symbols("t")
>>> A = Matrix([[1, 1], [2, 3]])
>>> b = Matrix([t, 1])
>>> linodesolve_type(A, t)
{'antiderivative': None, 'type_of_equation': 'type1'}
>>> linodesolve_type(A, t, b=b)
{'antiderivative': None, 'type_of_equation': 'type2'}
>>> A_t = Matrix([[1, t], [-t, 1]])
>>> linodesolve_type(A_t, t)
{'antiderivative': Matrix([
[ t, t**2/2],
[-t**2/2, t]]), 'type_of_equation': 'type3'}
>>> linodesolve_type(A_t, t, b=b)
{'antiderivative': Matrix([
[ t, t**2/2],
[-t**2/2, t]]), 'type_of_equation': 'type4'}
>>> A_non_commutative = Matrix([[1, t], [t, -1]])
>>> linodesolve_type(A_non_commutative, t)
Traceback (most recent call last):
...
NotImplementedError:
The system does not have a commutative antiderivative, it cannot be
solved by linodesolve.
Returns
=======
Dict
Raises
======
NotImplementedError
When the coefficient matrix does not have a commutative antiderivative
See Also
========
linodesolve: Function for which linodesolve_type gets the information
"""
match = {}
is_non_constant = not _matrix_is_constant(A, t)
is_non_homogeneous = not (b is None or b.is_zero_matrix)
type = "type{}".format(int("{}{}".format(int(is_non_constant), int(is_non_homogeneous)), 2) + 1)
B = None
match.update({"type_of_equation": type, "antiderivative": B})
if is_non_constant:
B, is_commuting = _is_commutative_anti_derivative(A, t)
if not is_commuting:
raise NotImplementedError(filldedent('''
The system does not have a commutative antiderivative, it cannot be solved
by linodesolve.
'''))
match['antiderivative'] = B
match.update(_first_order_type5_6_subs(A, t, b=b))
return match
def _first_order_type5_6_subs(A, t, b=None):
match = {}
factor_terms = _factor_matrix(A, t)
is_homogeneous = b is None or b.is_zero_matrix
if factor_terms is not None:
t_ = Symbol("{}_".format(t))
F_t = integrate(factor_terms[0], t)
inverse = solveset(Eq(t_, F_t), t)
# Note: A simple way to check if a function is invertible
# or not.
if isinstance(inverse, FiniteSet) and not inverse.has(Piecewise)\
and len(inverse) == 1:
A = factor_terms[1]
if not is_homogeneous:
b = b / factor_terms[0]
b = b.subs(t, list(inverse)[0])
type = "type{}".format(5 + (not is_homogeneous))
match.update({'func_coeff': A, 'tau': F_t,
't_': t_, 'type_of_equation': type, 'rhs': b})
return match
def linear_ode_to_matrix(eqs, funcs, t, order):
r"""
Convert a linear system of ODEs to matrix form
Explanation
===========
Express a system of linear ordinary differential equations as a single
matrix differential equation [1]. For example the system $x' = x + y + 1$
and $y' = x - y$ can be represented as
.. math:: A_1 X' = A_0 X + b
where $A_1$ and $A_0$ are $2 \times 2$ matrices and $b$, $X$ and $X'$ are
$2 \times 1$ matrices with $X = [x, y]^T$.
Higher-order systems are represented with additional matrices e.g. a
second-order system would look like
.. math:: A_2 X'' = A_1 X' + A_0 X + b
Examples
========
>>> from sympy import Function, Symbol, Matrix, Eq
>>> from sympy.solvers.ode.systems import linear_ode_to_matrix
>>> t = Symbol('t')
>>> x = Function('x')
>>> y = Function('y')
We can create a system of linear ODEs like
>>> eqs = [
... Eq(x(t).diff(t), x(t) + y(t) + 1),
... Eq(y(t).diff(t), x(t) - y(t)),
... ]
>>> funcs = [x(t), y(t)]
>>> order = 1 # 1st order system
Now ``linear_ode_to_matrix`` can represent this as a matrix
differential equation.
>>> (A1, A0), b = linear_ode_to_matrix(eqs, funcs, t, order)
>>> A1
Matrix([
[1, 0],
[0, 1]])
>>> A0
Matrix([
[1, 1],
[1, -1]])
>>> b
Matrix([
[1],
[0]])
The original equations can be recovered from these matrices:
>>> eqs_mat = Matrix([eq.lhs - eq.rhs for eq in eqs])
>>> X = Matrix(funcs)
>>> A1 * X.diff(t) - A0 * X - b == eqs_mat
True
If the system of equations has a maximum order greater than the
order of the system specified, a ODEOrderError exception is raised.
>>> eqs = [Eq(x(t).diff(t, 2), x(t).diff(t) + x(t)), Eq(y(t).diff(t), y(t) + x(t))]
>>> linear_ode_to_matrix(eqs, funcs, t, 1)
Traceback (most recent call last):
...
ODEOrderError: Cannot represent system in 1-order form
If the system of equations is nonlinear, then ODENonlinearError is
raised.
>>> eqs = [Eq(x(t).diff(t), x(t) + y(t)), Eq(y(t).diff(t), y(t)**2 + x(t))]
>>> linear_ode_to_matrix(eqs, funcs, t, 1)
Traceback (most recent call last):
...
ODENonlinearError: The system of ODEs is nonlinear.
Parameters
==========
eqs : list of SymPy expressions or equalities
The equations as expressions (assumed equal to zero).
funcs : list of applied functions
The dependent variables of the system of ODEs.
t : symbol
The independent variable.
order : int
The order of the system of ODEs.
Returns
=======
The tuple ``(As, b)`` where ``As`` is a tuple of matrices and ``b`` is the
the matrix representing the rhs of the matrix equation.
Raises
======
ODEOrderError
When the system of ODEs have an order greater than what was specified
ODENonlinearError
When the system of ODEs is nonlinear
See Also
========
linear_eq_to_matrix: for systems of linear algebraic equations.
References
==========
.. [1] https://en.wikipedia.org/wiki/Matrix_differential_equation
"""
from sympy.solvers.solveset import linear_eq_to_matrix
if any(ode_order(eq, func) > order for eq in eqs for func in funcs):
msg = "Cannot represent system in {}-order form"
raise ODEOrderError(msg.format(order))
As = []
for o in range(order, -1, -1):
# Work from the highest derivative down
syms = [func.diff(t, o) for func in funcs]
# Ai is the matrix for X(t).diff(t, o)
# eqs is minus the remainder of the equations.
try:
Ai, b = linear_eq_to_matrix(eqs, syms)
except NonlinearError:
raise ODENonlinearError("The system of ODEs is nonlinear.")
Ai = Ai.applyfunc(expand_mul)
As.append(Ai if o == order else -Ai)
if o:
eqs = [-eq for eq in b]
else:
rhs = b
return As, rhs
def matrix_exp(A, t):
r"""
Matrix exponential $\exp(A*t)$ for the matrix ``A`` and scalar ``t``.
Explanation
===========
This functions returns the $\exp(A*t)$ by doing a simple
matrix multiplication:
.. math:: \exp(A*t) = P * expJ * P^{-1}
where $expJ$ is $\exp(J*t)$. $J$ is the Jordan normal
form of $A$ and $P$ is matrix such that:
.. math:: A = P * J * P^{-1}
The matrix exponential $\exp(A*t)$ appears in the solution of linear
differential equations. For example if $x$ is a vector and $A$ is a matrix
then the initial value problem
.. math:: \frac{dx(t)}{dt} = A \times x(t), x(0) = x0
has the unique solution
.. math:: x(t) = \exp(A t) x0
Examples
========
>>> from sympy import Symbol, Matrix, pprint
>>> from sympy.solvers.ode.systems import matrix_exp
>>> t = Symbol('t')
We will consider a 2x2 matrix for comupting the exponential
>>> A = Matrix([[2, -5], [2, -4]])
>>> pprint(A)
[2 -5]
[ ]
[2 -4]
Now, exp(A*t) is given as follows:
>>> pprint(matrix_exp(A, t))
[ -t -t -t ]
[3*e *sin(t) + e *cos(t) -5*e *sin(t) ]
[ ]
[ -t -t -t ]
[ 2*e *sin(t) - 3*e *sin(t) + e *cos(t)]
Parameters
==========
A : Matrix
The matrix $A$ in the expression $\exp(A*t)$
t : Symbol
The independent variable
See Also
========
matrix_exp_jordan_form: For exponential of Jordan normal form
References
==========
.. [1] https://en.wikipedia.org/wiki/Jordan_normal_form
.. [2] https://en.wikipedia.org/wiki/Matrix_exponential
"""
P, expJ = matrix_exp_jordan_form(A, t)
return P * expJ * P.inv()
def matrix_exp_jordan_form(A, t):
r"""
Matrix exponential $\exp(A*t)$ for the matrix *A* and scalar *t*.
Explanation
===========
Returns the Jordan form of the $\exp(A*t)$ along with the matrix $P$ such that:
.. math::
\exp(A*t) = P * expJ * P^{-1}
Examples
========
>>> from sympy import Matrix, Symbol
>>> from sympy.solvers.ode.systems import matrix_exp, matrix_exp_jordan_form
>>> t = Symbol('t')
We will consider a 2x2 defective matrix. This shows that our method
works even for defective matrices.
>>> A = Matrix([[1, 1], [0, 1]])
It can be observed that this function gives us the Jordan normal form
and the required invertible matrix P.
>>> P, expJ = matrix_exp_jordan_form(A, t)
Here, it is shown that P and expJ returned by this function is correct
as they satisfy the formula: P * expJ * P_inverse = exp(A*t).
>>> P * expJ * P.inv() == matrix_exp(A, t)
True
Parameters
==========
A : Matrix
The matrix $A$ in the expression $\exp(A*t)$
t : Symbol
The independent variable
References
==========
.. [1] https://en.wikipedia.org/wiki/Defective_matrix
.. [2] https://en.wikipedia.org/wiki/Jordan_matrix
.. [3] https://en.wikipedia.org/wiki/Jordan_normal_form
"""
N, M = A.shape
if N != M:
raise ValueError('Needed square matrix but got shape (%s, %s)' % (N, M))
elif A.has(t):
raise ValueError('Matrix A should not depend on t')
def jordan_chains(A):
'''Chains from Jordan normal form analogous to M.eigenvects().
Returns a dict with eignevalues as keys like:
{e1: [[v111,v112,...], [v121, v122,...]], e2:...}
where vijk is the kth vector in the jth chain for eigenvalue i.
'''
P, blocks = A.jordan_cells()
basis = [P[:,i] for i in range(P.shape[1])]
n = 0
chains = {}
for b in blocks:
eigval = b[0, 0]
size = b.shape[0]
if eigval not in chains:
chains[eigval] = []
chains[eigval].append(basis[n:n+size])
n += size
return chains
eigenchains = jordan_chains(A)
# Needed for consistency across Python versions
eigenchains_iter = sorted(eigenchains.items(), key=default_sort_key)
isreal = not A.has(I)
blocks = []
vectors = []
seen_conjugate = set()
for e, chains in eigenchains_iter:
for chain in chains:
n = len(chain)
if isreal and e != e.conjugate() and e.conjugate() in eigenchains:
if e in seen_conjugate:
continue
seen_conjugate.add(e.conjugate())
exprt = exp(re(e) * t)
imrt = im(e) * t
imblock = Matrix([[cos(imrt), sin(imrt)],
[-sin(imrt), cos(imrt)]])
expJblock2 = Matrix(n, n, lambda i,j:
imblock * t**(j-i) / factorial(j-i) if j >= i
else zeros(2, 2))
expJblock = Matrix(2*n, 2*n, lambda i,j: expJblock2[i//2,j//2][i%2,j%2])
blocks.append(exprt * expJblock)
for i in range(n):
vectors.append(re(chain[i]))
vectors.append(im(chain[i]))
else:
vectors.extend(chain)
fun = lambda i,j: t**(j-i)/factorial(j-i) if j >= i else 0
expJblock = Matrix(n, n, fun)
blocks.append(exp(e * t) * expJblock)
expJ = Matrix.diag(*blocks)
P = Matrix(N, N, lambda i,j: vectors[j][i])
return P, expJ
# Note: To add a docstring example with tau
def linodesolve(A, t, b=None, B=None, type="auto", doit=False,
tau=None):
r"""
System of n equations linear first-order differential equations
Explanation
===========
This solver solves the system of ODEs of the following form:
.. math::
X'(t) = A(t) X(t) + b(t)
Here, $A(t)$ is the coefficient matrix, $X(t)$ is the vector of n independent variables,
$b(t)$ is the non-homogeneous term and $X'(t)$ is the derivative of $X(t)$
Depending on the properties of $A(t)$ and $b(t)$, this solver evaluates the solution
differently.
When $A(t)$ is constant coefficient matrix and $b(t)$ is zero vector i.e. system is homogeneous,
the system is "type1". The solution is:
.. math::
X(t) = \exp(A t) C
Here, $C$ is a vector of constants and $A$ is the constant coefficient matrix.
When $A(t)$ is constant coefficient matrix and $b(t)$ is non-zero i.e. system is non-homogeneous,
the system is "type2". The solution is:
.. math::
X(t) = e^{A t} ( \int e^{- A t} b \,dt + C)
When $A(t)$ is coefficient matrix such that its commutative with its antiderivative $B(t)$ and
$b(t)$ is a zero vector i.e. system is homogeneous, the system is "type3". The solution is:
.. math::
X(t) = \exp(B(t)) C
When $A(t)$ is commutative with its antiderivative $B(t)$ and $b(t)$ is non-zero i.e. system is
non-homogeneous, the system is "type4". The solution is:
.. math::
X(t) = e^{B(t)} ( \int e^{-B(t)} b(t) \,dt + C)
When $A(t)$ is a coefficient matrix such that it can be factorized into a scalar and a constant
coefficient matrix:
.. math::
A(t) = f(t) * A
Where $f(t)$ is a scalar expression in the independent variable $t$ and $A$ is a constant matrix,
then we can do the following substitutions:
.. math::
tau = \int f(t) dt, X(t) = Y(tau), b(t) = b(f^{-1}(tau))
Here, the substitution for the non-homogeneous term is done only when its non-zero.
Using these substitutions, our original system becomes:
.. math::
Y'(tau) = A * Y(tau) + b(tau)/f(tau)
The above system can be easily solved using the solution for "type1" or "type2" depending
on the homogeneity of the system. After we get the solution for $Y(tau)$, we substitute the
solution for $tau$ as $t$ to get back $X(t)$
.. math::
X(t) = Y(tau)
Systems of "type5" and "type6" have a commutative antiderivative but we use this solution
because its faster to compute.
The final solution is the general solution for all the four equations since a constant coefficient
matrix is always commutative with its antidervative.
An additional feature of this function is, if someone wants to substitute for value of the independent
variable, they can pass the substitution `tau` and the solution will have the independent variable
substituted with the passed expression(`tau`).
Parameters
==========
A : Matrix
Coefficient matrix of the system of linear first order ODEs.
t : Symbol
Independent variable in the system of ODEs.
b : Matrix or None
Non-homogeneous term in the system of ODEs. If None is passed,
a homogeneous system of ODEs is assumed.
B : Matrix or None
Antiderivative of the coefficient matrix. If the antiderivative
is not passed and the solution requires the term, then the solver
would compute it internally.
type : String
Type of the system of ODEs passed. Depending on the type, the
solution is evaluated. The type values allowed and the corresponding
system it solves are: "type1" for constant coefficient homogeneous
"type2" for constant coefficient non-homogeneous, "type3" for non-constant
coefficient homogeneous, "type4" for non-constant coefficient non-homogeneous,
"type5" and "type6" for non-constant coefficient homogeneous and non-homogeneous
systems respectively where the coefficient matrix can be factorized to a constant
coefficient matrix.
The default value is "auto" which will let the solver decide the correct type of
the system passed.
doit : Boolean
Evaluate the solution if True, default value is False
tau: Expression
Used to substitute for the value of `t` after we get the solution of the system.
Examples
========
To solve the system of ODEs using this function directly, several things must be
done in the right order. Wrong inputs to the function will lead to incorrect results.
>>> from sympy import symbols, Function, Eq
>>> from sympy.solvers.ode.systems import canonical_odes, linear_ode_to_matrix, linodesolve, linodesolve_type
>>> from sympy.solvers.ode.subscheck import checkodesol
>>> f, g = symbols("f, g", cls=Function)
>>> x, a = symbols("x, a")
>>> funcs = [f(x), g(x)]
>>> eqs = [Eq(f(x).diff(x) - f(x), a*g(x) + 1), Eq(g(x).diff(x) + g(x), a*f(x))]
Here, it is important to note that before we derive the coefficient matrix, it is
important to get the system of ODEs into the desired form. For that we will use
:obj:`sympy.solvers.ode.systems.canonical_odes()`.
>>> eqs = canonical_odes(eqs, funcs, x)
>>> eqs
[[Eq(Derivative(f(x), x), a*g(x) + f(x) + 1), Eq(Derivative(g(x), x), a*f(x) - g(x))]]
Now, we will use :obj:`sympy.solvers.ode.systems.linear_ode_to_matrix()` to get the coefficient matrix and the
non-homogeneous term if it is there.
>>> eqs = eqs[0]
>>> (A1, A0), b = linear_ode_to_matrix(eqs, funcs, x, 1)
>>> A = A0
We have the coefficient matrices and the non-homogeneous term ready. Now, we can use
:obj:`sympy.solvers.ode.systems.linodesolve_type()` to get the information for the system of ODEs
to finally pass it to the solver.
>>> system_info = linodesolve_type(A, x, b=b)
>>> sol_vector = linodesolve(A, x, b=b, B=system_info['antiderivative'], type=system_info['type_of_equation'])
Now, we can prove if the solution is correct or not by using :obj:`sympy.solvers.ode.checkodesol()`
>>> sol = [Eq(f, s) for f, s in zip(funcs, sol_vector)]
>>> checkodesol(eqs, sol)
(True, [0, 0])
We can also use the doit method to evaluate the solutions passed by the function.
>>> sol_vector_evaluated = linodesolve(A, x, b=b, type="type2", doit=True)
Now, we will look at a system of ODEs which is non-constant.
>>> eqs = [Eq(f(x).diff(x), f(x) + x*g(x)), Eq(g(x).diff(x), -x*f(x) + g(x))]
The system defined above is already in the desired form, so we do not have to convert it.
>>> (A1, A0), b = linear_ode_to_matrix(eqs, funcs, x, 1)
>>> A = A0
A user can also pass the commutative antiderivative required for type3 and type4 system of ODEs.
Passing an incorrect one will lead to incorrect results. If the coefficient matrix is not commutative
with its antiderivative, then :obj:`sympy.solvers.ode.systems.linodesolve_type()` raises a NotImplementedError.
If it does have a commutative antiderivative, then the function just returns the information about the system.
>>> system_info = linodesolve_type(A, x, b=b)
Now, we can pass the antiderivative as an argument to get the solution. If the system information is not
passed, then the solver will compute the required arguments internally.
>>> sol_vector = linodesolve(A, x, b=b)
Once again, we can verify the solution obtained.
>>> sol = [Eq(f, s) for f, s in zip(funcs, sol_vector)]
>>> checkodesol(eqs, sol)
(True, [0, 0])
Returns
=======
List
Raises
======
ValueError
This error is raised when the coefficient matrix, non-homogeneous term
or the antiderivative, if passed, are not a matrix or
do not have correct dimensions
NonSquareMatrixError
When the coefficient matrix or its antiderivative, if passed is not a
square matrix
NotImplementedError
If the coefficient matrix does not have a commutative antiderivative
See Also
========
linear_ode_to_matrix: Coefficient matrix computation function
canonical_odes: System of ODEs representation change
linodesolve_type: Getting information about systems of ODEs to pass in this solver
"""
if not isinstance(A, MatrixBase):
raise ValueError(filldedent('''\
The coefficients of the system of ODEs should be of type Matrix
'''))
if not A.is_square:
raise NonSquareMatrixError(filldedent('''\
The coefficient matrix must be a square
'''))
if b is not None:
if not isinstance(b, MatrixBase):
raise ValueError(filldedent('''\
The non-homogeneous terms of the system of ODEs should be of type Matrix
'''))
if A.rows != b.rows:
raise ValueError(filldedent('''\
The system of ODEs should have the same number of non-homogeneous terms and the number of
equations
'''))
if B is not None:
if not isinstance(B, MatrixBase):
raise ValueError(filldedent('''\
The antiderivative of coefficients of the system of ODEs should be of type Matrix
'''))
if not B.is_square:
raise NonSquareMatrixError(filldedent('''\
The antiderivative of the coefficient matrix must be a square
'''))
if A.rows != B.rows:
raise ValueError(filldedent('''\
The coefficient matrix and its antiderivative should have same dimensions
'''))
if not any(type == "type{}".format(i) for i in range(1, 7)) and not type == "auto":
raise ValueError(filldedent('''\
The input type should be a valid one
'''))
n = A.rows
# constants = numbered_symbols(prefix='C', cls=Dummy, start=const_idx+1)
Cvect = Matrix(list(Dummy() for _ in range(n)))
if b is None and any(type == typ for typ in ["type2", "type4", "type6"]):
b = zeros(n, 1)
is_transformed = tau is not None
passed_type = type
if type == "auto":
system_info = linodesolve_type(A, t, b=b)
type = system_info["type_of_equation"]
B = system_info["antiderivative"]
if type in ("type5", "type6"):
is_transformed = True
if passed_type != "auto":
if tau is None:
system_info = _first_order_type5_6_subs(A, t, b=b)
if not system_info:
raise ValueError(filldedent('''
The system passed isn't {}.
'''.format(type)))
tau = system_info['tau']
t = system_info['t_']
A = system_info['A']
b = system_info['b']
intx_wrtt = lambda x: Integral(x, t) if x else 0
if type in ("type1", "type2", "type5", "type6"):
P, J = matrix_exp_jordan_form(A, t)
P = simplify(P)
if type in ("type1", "type5"):
sol_vector = P * (J * Cvect)
else:
Jinv = J.subs(t, -t)
sol_vector = P * J * ((Jinv * P.inv() * b).applyfunc(intx_wrtt) + Cvect)
else:
if B is None:
B, _ = _is_commutative_anti_derivative(A, t)
if type == "type3":
sol_vector = B.exp() * Cvect
else:
sol_vector = B.exp() * (((-B).exp() * b).applyfunc(intx_wrtt) + Cvect)
if is_transformed:
sol_vector = sol_vector.subs(t, tau)
gens = sol_vector.atoms(exp)
if type != "type1":
sol_vector = [expand_mul(s) for s in sol_vector]
sol_vector = [collect(s, ordered(gens), exact=True) for s in sol_vector]
if doit:
sol_vector = [s.doit() for s in sol_vector]
return sol_vector
def _matrix_is_constant(M, t):
"""Checks if the matrix M is independent of t or not."""
return all(coef.as_independent(t, as_Add=True)[1] == 0 for coef in M)
def canonical_odes(eqs, funcs, t):
r"""
Function that solves for highest order derivatives in a system
Explanation
===========
This function inputs a system of ODEs and based on the system,
the dependent variables and their highest order, returns the system
in the following form:
.. math::
X'(t) = A(t) X(t) + b(t)
Here, $X(t)$ is the vector of dependent variables of lower order, $A(t)$ is
the coefficient matrix, $b(t)$ is the non-homogeneous term and $X'(t)$ is the
vector of dependent variables in their respective highest order. We use the term
canonical form to imply the system of ODEs which is of the above form.
If the system passed has a non-linear term with multiple solutions, then a list of
systems is returned in its canonical form.
Parameters
==========
eqs : List
List of the ODEs
funcs : List
List of dependent variables
t : Symbol
Independent variable
Examples
========
>>> from sympy import symbols, Function, Eq, Derivative
>>> from sympy.solvers.ode.systems import canonical_odes
>>> f, g = symbols("f g", cls=Function)
>>> x, y = symbols("x y")
>>> funcs = [f(x), g(x)]
>>> eqs = [Eq(f(x).diff(x) - 7*f(x), 12*g(x)), Eq(g(x).diff(x) + g(x), 20*f(x))]
>>> canonical_eqs = canonical_odes(eqs, funcs, x)
>>> canonical_eqs
[[Eq(Derivative(f(x), x), 7*f(x) + 12*g(x)), Eq(Derivative(g(x), x), 20*f(x) - g(x))]]
>>> system = [Eq(Derivative(f(x), x)**2 - 2*Derivative(f(x), x) + 1, 4), Eq(-y*f(x) + Derivative(g(x), x), 0)]
>>> canonical_system = canonical_odes(system, funcs, x)
>>> canonical_system
[[Eq(Derivative(f(x), x), -1), Eq(Derivative(g(x), x), y*f(x))], [Eq(Derivative(f(x), x), 3), Eq(Derivative(g(x), x), y*f(x))]]
Returns
=======
List
"""
from sympy.solvers.solvers import solve
order = _get_func_order(eqs, funcs)
canon_eqs = solve(eqs, *[func.diff(t, order[func]) for func in funcs], dict=True)
systems = []
for eq in canon_eqs:
system = [Eq(func.diff(t, order[func]), eq[func.diff(t, order[func])]) for func in funcs]
systems.append(system)
return systems
def _is_commutative_anti_derivative(A, t):
r"""
Helper function for determining if the Matrix passed is commutative with its antiderivative
Explanation
===========
This function checks if the Matrix $A$ passed is commutative with its antiderivative with respect
to the independent variable $t$.
.. math::
B(t) = \int A(t) dt
The function outputs two values, first one being the antiderivative $B(t)$, second one being a
boolean value, if True, then the matrix $A(t)$ passed is commutative with $B(t)$, else the matrix
passed isn't commutative with $B(t)$.
Parameters
==========
A : Matrix
The matrix which has to be checked
t : Symbol
Independent variable
Examples
========
>>> from sympy import symbols, Matrix
>>> from sympy.solvers.ode.systems import _is_commutative_anti_derivative
>>> t = symbols("t")
>>> A = Matrix([[1, t], [-t, 1]])
>>> B, is_commuting = _is_commutative_anti_derivative(A, t)
>>> is_commuting
True
Returns
=======
Matrix, Boolean
"""
B = integrate(A, t)
is_commuting = (B*A - A*B).applyfunc(expand).applyfunc(factor_terms).is_zero_matrix
is_commuting = False if is_commuting is None else is_commuting
return B, is_commuting
def _factor_matrix(A, t):
term = None
for element in A:
temp_term = element.as_independent(t)[1]
if temp_term.has(t):
term = temp_term
break
if term is not None:
A_factored = (A/term).applyfunc(ratsimp)
can_factor = _matrix_is_constant(A_factored, t)
term = (term, A_factored) if can_factor else None
return term
def _is_second_order_type2(A, t):
term = _factor_matrix(A, t)
is_type2 = False
if term is not None:
term = 1/term[0]
is_type2 = term.is_polynomial()
if is_type2:
poly = Poly(term.expand(), t)
monoms = poly.monoms()
if monoms[0][0] in (2, 4):
cs = _get_poly_coeffs(poly, 4)
a, b, c, d, e = cs
a1 = powdenest(sqrt(a), force=True)
c1 = powdenest(sqrt(e), force=True)
b1 = powdenest(sqrt(c - 2*a1*c1), force=True)
is_type2 = (b == 2*a1*b1) and (d == 2*b1*c1)
term = a1*t**2 + b1*t + c1
else:
is_type2 = False
return is_type2, term
def _get_poly_coeffs(poly, order):
cs = [0 for _ in range(order+1)]
for c, m in zip(poly.coeffs(), poly.monoms()):
cs[-1-m[0]] = c
return cs
def _match_second_order_type(A1, A0, t, b=None):
r"""
Works only for second order system in its canonical form.
Type 0: Constant coefficient matrix, can be simply solved by
introducing dummy variables.
Type 1: When the substitution: $U = t*X' - X$ works for reducing
the second order system to first order system.
Type 2: When the system is of the form: $poly * X'' = A*X$ where
$poly$ is square of a quadratic polynomial with respect to
*t* and $A$ is a constant coefficient matrix.
"""
match = {"type_of_equation": "type0"}
n = A1.shape[0]
if _matrix_is_constant(A1, t) and _matrix_is_constant(A0, t):
return match
if (A1 + A0*t).applyfunc(expand_mul).is_zero_matrix:
match.update({"type_of_equation": "type1", "A1": A1})
elif A1.is_zero_matrix and (b is None or b.is_zero_matrix):
is_type2, term = _is_second_order_type2(A0, t)
if is_type2:
a, b, c = _get_poly_coeffs(Poly(term, t), 2)
A = (A0*(term**2).expand()).applyfunc(ratsimp) + (b**2/4 - a*c)*eye(n, n)
tau = integrate(1/term, t)
t_ = Symbol("{}_".format(t))
match.update({"type_of_equation": "type2", "A0": A,
"g(t)": sqrt(term), "tau": tau, "is_transformed": True,
"t_": t_})
return match
def _second_order_subs_type1(A, b, funcs, t):
r"""
For a linear, second order system of ODEs, a particular substitution.
A system of the below form can be reduced to a linear first order system of
ODEs:
.. math::
X'' = A(t) * (t*X' - X) + b(t)
By substituting:
.. math:: U = t*X' - X
To get the system:
.. math:: U' = t*(A(t)*U + b(t))
Where $U$ is the vector of dependent variables, $X$ is the vector of dependent
variables in `funcs` and $X'$ is the first order derivative of $X$ with respect to
$t$. It may or may not reduce the system into linear first order system of ODEs.
Then a check is made to determine if the system passed can be reduced or not, if
this substitution works, then the system is reduced and its solved for the new
substitution. After we get the solution for $U$:
.. math:: U = a(t)
We substitute and return the reduced system:
.. math::
a(t) = t*X' - X
Parameters
==========
A: Matrix
Coefficient matrix($A(t)*t$) of the second order system of this form.
b: Matrix
Non-homogeneous term($b(t)$) of the system of ODEs.
funcs: List
List of dependent variables
t: Symbol
Independent variable of the system of ODEs.
Returns
=======
List
"""
U = Matrix([t*func.diff(t) - func for func in funcs])
sol = linodesolve(A, t, t*b)
reduced_eqs = [Eq(u, s) for s, u in zip(sol, U)]
reduced_eqs = canonical_odes(reduced_eqs, funcs, t)[0]
return reduced_eqs
def _second_order_subs_type2(A, funcs, t_):
r"""
Returns a second order system based on the coefficient matrix passed.
Explanation
===========
This function returns a system of second order ODE of the following form:
.. math::
X'' = A * X
Here, $X$ is the vector of dependent variables, but a bit modified, $A$ is the
coefficient matrix passed.
Along with returning the second order system, this function also returns the new
dependent variables with the new independent variable `t_` passed.
Parameters
==========
A: Matrix
Coefficient matrix of the system
funcs: List
List of old dependent variables
t_: Symbol
New independent variable
Returns
=======
List, List
"""
func_names = [func.func.__name__ for func in funcs]
new_funcs = [Function(Dummy("{}_".format(name)))(t_) for name in func_names]
rhss = A * Matrix(new_funcs)
new_eqs = [Eq(func.diff(t_, 2), rhs) for func, rhs in zip(new_funcs, rhss)]
return new_eqs, new_funcs
def _is_euler_system(As, t):
return all(_matrix_is_constant((A*t**i).applyfunc(ratsimp), t) for i, A in enumerate(As))
def _classify_linear_system(eqs, funcs, t, is_canon=False):
r"""
Returns a dictionary with details of the eqs if the system passed is linear
and can be classified by this function else returns None
Explanation
===========
This function takes the eqs, converts it into a form Ax = b where x is a vector of terms
containing dependent variables and their derivatives till their maximum order. If it is
possible to convert eqs into Ax = b, then all the equations in eqs are linear otherwise
they are non-linear.
To check if the equations are constant coefficient, we need to check if all the terms in
A obtained above are constant or not.
To check if the equations are homogeneous or not, we need to check if b is a zero matrix
or not.
Parameters
==========
eqs: List
List of ODEs
funcs: List
List of dependent variables
t: Symbol
Independent variable of the equations in eqs
is_canon: Boolean
If True, then this function will not try to get the
system in canonical form. Default value is False
Returns
=======
match = {
'no_of_equation': len(eqs),
'eq': eqs,
'func': funcs,
'order': order,
'is_linear': is_linear,
'is_constant': is_constant,
'is_homogeneous': is_homogeneous,
}
Dict or list of Dicts or None
Dict with values for keys:
1. no_of_equation: Number of equations
2. eq: The set of equations
3. func: List of dependent variables
4. order: A dictionary that gives the order of the
dependent variable in eqs
5. is_linear: Boolean value indicating if the set of
equations are linear or not.
6. is_constant: Boolean value indicating if the set of
equations have constant coefficients or not.
7. is_homogeneous: Boolean value indicating if the set of
equations are homogeneous or not.
8. commutative_antiderivative: Antiderivative of the coefficient
matrix if the coefficient matrix is non-constant
and commutative with its antiderivative. This key
may or may not exist.
9. is_general: Boolean value indicating if the system of ODEs is
solvable using one of the general case solvers or not.
10. rhs: rhs of the non-homogeneous system of ODEs in Matrix form. This
key may or may not exist.
11. is_higher_order: True if the system passed has an order greater than 1.
This key may or may not exist.
12. is_second_order: True if the system passed is a second order ODE. This
key may or may not exist.
This Dict is the answer returned if the eqs are linear and constant
coefficient. Otherwise, None is returned.
"""
# Error for i == 0 can be added but isn't for now
# Check for len(funcs) == len(eqs)
if len(funcs) != len(eqs):
raise ValueError("Number of functions given is not equal to the number of equations %s" % funcs)
# ValueError when functions have more than one arguments
for func in funcs:
if len(func.args) != 1:
raise ValueError("dsolve() and classify_sysode() work with "
"functions of one variable only, not %s" % func)
# Getting the func_dict and order using the helper
# function
order = _get_func_order(eqs, funcs)
system_order = max(order[func] for func in funcs)
is_higher_order = system_order > 1
is_second_order = system_order == 2 and all(order[func] == 2 for func in funcs)
# Not adding the check if the len(func.args) for
# every func in funcs is 1
# Linearity check
try:
canon_eqs = canonical_odes(eqs, funcs, t) if not is_canon else [eqs]
if len(canon_eqs) == 1:
As, b = linear_ode_to_matrix(canon_eqs[0], funcs, t, system_order)
else:
match = {
'is_implicit': True,
'canon_eqs': canon_eqs
}
return match
# When the system of ODEs is non-linear, an ODENonlinearError is raised.
# This function catches the error and None is returned.
except ODENonlinearError:
return None
is_linear = True
# Homogeneous check
is_homogeneous = True if b.is_zero_matrix else False
# Is general key is used to identify if the system of ODEs can be solved by
# one of the general case solvers or not.
match = {
'no_of_equation': len(eqs),
'eq': eqs,
'func': funcs,
'order': order,
'is_linear': is_linear,
'is_homogeneous': is_homogeneous,
'is_general': True
}
if not is_homogeneous:
match['rhs'] = b
is_constant = all(_matrix_is_constant(A_, t) for A_ in As)
# The match['is_linear'] check will be added in the future when this
# function becomes ready to deal with non-linear systems of ODEs
if not is_higher_order:
A = As[1]
match['func_coeff'] = A
# Constant coefficient check
is_constant = _matrix_is_constant(A, t)
match['is_constant'] = is_constant
try:
system_info = linodesolve_type(A, t, b=b)
except NotImplementedError:
return None
match.update(system_info)
antiderivative = match.pop("antiderivative")
if not is_constant:
match['commutative_antiderivative'] = antiderivative
return match
else:
match['type_of_equation'] = "type0"
if is_second_order:
A1, A0 = As[1:]
match_second_order = _match_second_order_type(A1, A0, t)
match.update(match_second_order)
match['is_second_order'] = True
# If system is constant, then no need to check if its in euler
# form or not. It will be easier and faster to directly proceed
# to solve it.
if match['type_of_equation'] == "type0" and not is_constant:
is_euler = _is_euler_system(As, t)
if is_euler:
t_ = Symbol('{}_'.format(t))
match.update({'is_transformed': True, 'type_of_equation': 'type1',
't_': t_})
else:
is_jordan = lambda M: M == Matrix.jordan_block(M.shape[0], M[0, 0])
terms = _factor_matrix(As[-1], t)
if all(A.is_zero_matrix for A in As[1:-1]) and terms is not None and not is_jordan(terms[1]):
P, J = terms[1].jordan_form()
match.update({'type_of_equation': 'type2', 'J': J,
'f(t)': terms[0], 'P': P, 'is_transformed': True})
if match['type_of_equation'] != 'type0' and is_second_order:
match.pop('is_second_order', None)
match['is_higher_order'] = is_higher_order
return match
def _preprocess_eqs(eqs):
processed_eqs = []
for eq in eqs:
processed_eqs.append(eq if isinstance(eq, Equality) else Eq(eq, 0))
return processed_eqs
def _eqs2dict(eqs, funcs):
eqsorig = {}
eqsmap = {}
funcset = set(funcs)
for eq in eqs:
f1, = eq.lhs.atoms(AppliedUndef)
f2s = (eq.rhs.atoms(AppliedUndef) - {f1}) & funcset
eqsmap[f1] = f2s
eqsorig[f1] = eq
return eqsmap, eqsorig
def _dict2graph(d):
nodes = list(d)
edges = [(f1, f2) for f1, f2s in d.items() for f2 in f2s]
G = (nodes, edges)
return G
def _is_type1(scc, t):
eqs, funcs = scc
try:
(A1, A0), b = linear_ode_to_matrix(eqs, funcs, t, 1)
except (ODENonlinearError, ODEOrderError):
return False
if _matrix_is_constant(A0, t) and b.is_zero_matrix:
return True
return False
def _combine_type1_subsystems(subsystem, funcs, t):
indices = [i for i, sys in enumerate(zip(subsystem, funcs)) if _is_type1(sys, t)]
remove = set()
for ip, i in enumerate(indices):
for j in indices[ip+1:]:
if any(eq2.has(funcs[i]) for eq2 in subsystem[j]):
subsystem[j] = subsystem[i] + subsystem[j]
remove.add(i)
subsystem = [sys for i, sys in enumerate(subsystem) if i not in remove]
return subsystem
def _component_division(eqs, funcs, t):
# Assuming that each eq in eqs is in canonical form,
# that is, [f(x).diff(x) = .., g(x).diff(x) = .., etc]
# and that the system passed is in its first order
eqsmap, eqsorig = _eqs2dict(eqs, funcs)
subsystems = []
for cc in connected_components(_dict2graph(eqsmap)):
eqsmap_c = {f: eqsmap[f] for f in cc}
sccs = strongly_connected_components(_dict2graph(eqsmap_c))
subsystem = [[eqsorig[f] for f in scc] for scc in sccs]
subsystem = _combine_type1_subsystems(subsystem, sccs, t)
subsystems.append(subsystem)
return subsystems
# Returns: List of equations
def _linear_ode_solver(match):
t = match['t']
funcs = match['func']
rhs = match.get('rhs', None)
tau = match.get('tau', None)
t = match['t_'] if 't_' in match else t
A = match['func_coeff']
# Note: To make B None when the matrix has constant
# coefficient
B = match.get('commutative_antiderivative', None)
type = match['type_of_equation']
sol_vector = linodesolve(A, t, b=rhs, B=B,
type=type, tau=tau)
sol = [Eq(f, s) for f, s in zip(funcs, sol_vector)]
return sol
def _select_equations(eqs, funcs, key=lambda x: x):
eq_dict = {e.lhs: e.rhs for e in eqs}
return [Eq(f, eq_dict[key(f)]) for f in funcs]
def _higher_order_ode_solver(match):
eqs = match["eq"]
funcs = match["func"]
t = match["t"]
sysorder = match['order']
type = match.get('type_of_equation', "type0")
is_second_order = match.get('is_second_order', False)
is_transformed = match.get('is_transformed', False)
is_euler = is_transformed and type == "type1"
is_higher_order_type2 = is_transformed and type == "type2" and 'P' in match
if is_second_order:
new_eqs, new_funcs = _second_order_to_first_order(eqs, funcs, t,
A1=match.get("A1", None), A0=match.get("A0", None),
b=match.get("rhs", None), type=type,
t_=match.get("t_", None))
else:
new_eqs, new_funcs = _higher_order_to_first_order(eqs, sysorder, t, funcs=funcs,
type=type, J=match.get('J', None),
f_t=match.get('f(t)', None),
P=match.get('P', None), b=match.get('rhs', None))
if is_transformed:
t = match.get('t_', t)
if not is_higher_order_type2:
new_eqs = _select_equations(new_eqs, [f.diff(t) for f in new_funcs])
sol = None
# NotImplementedError may be raised when the system may be actually
# solvable if it can be just divided into sub-systems
try:
if not is_higher_order_type2:
sol = _strong_component_solver(new_eqs, new_funcs, t)
except NotImplementedError:
sol = None
# Dividing the system only when it becomes essential
if sol is None:
try:
sol = _component_solver(new_eqs, new_funcs, t)
except NotImplementedError:
sol = None
if sol is None:
return sol
is_second_order_type2 = is_second_order and type == "type2"
underscores = '__' if is_transformed else '_'
sol = _select_equations(sol, funcs,
key=lambda x: Function(Dummy('{}{}0'.format(x.func.__name__, underscores)))(t))
if match.get("is_transformed", False):
if is_second_order_type2:
g_t = match["g(t)"]
tau = match["tau"]
sol = [Eq(s.lhs, s.rhs.subs(t, tau) * g_t) for s in sol]
elif is_euler:
t = match['t']
tau = match['t_']
sol = [s.subs(tau, log(t)) for s in sol]
elif is_higher_order_type2:
P = match['P']
sol_vector = P * Matrix([s.rhs for s in sol])
sol = [Eq(f, s) for f, s in zip(funcs, sol_vector)]
return sol
# Returns: List of equations or None
# If None is returned by this solver, then the system
# of ODEs cannot be solved directly by dsolve_system.
def _strong_component_solver(eqs, funcs, t):
from sympy.solvers.ode.ode import dsolve, constant_renumber
match = _classify_linear_system(eqs, funcs, t, is_canon=True)
sol = None
# Assuming that we can't get an implicit system
# since we are already canonical equations from
# dsolve_system
if match:
match['t'] = t
if match.get('is_higher_order', False):
sol = _higher_order_ode_solver(match)
elif match.get('is_linear', False):
sol = _linear_ode_solver(match)
# Note: For now, only linear systems are handled by this function
# hence, the match condition is added. This can be removed later.
if sol is None and len(eqs) == 1:
sol = dsolve(eqs[0], func=funcs[0])
variables = Tuple(eqs[0]).free_symbols
new_constants = [Dummy() for _ in range(ode_order(eqs[0], funcs[0]))]
sol = constant_renumber(sol, variables=variables, newconstants=new_constants)
sol = [sol]
# To add non-linear case here in future
return sol
def _get_funcs_from_canon(eqs):
return [eq.lhs.args[0] for eq in eqs]
# Returns: List of Equations(a solution)
def _weak_component_solver(wcc, t):
# We will divide the systems into sccs
# only when the wcc cannot be solved as
# a whole
eqs = []
for scc in wcc:
eqs += scc
funcs = _get_funcs_from_canon(eqs)
sol = _strong_component_solver(eqs, funcs, t)
if sol:
return sol
sol = []
for j, scc in enumerate(wcc):
eqs = scc
funcs = _get_funcs_from_canon(eqs)
# Substituting solutions for the dependent
# variables solved in previous SCC, if any solved.
comp_eqs = [eq.subs({s.lhs: s.rhs for s in sol}) for eq in eqs]
scc_sol = _strong_component_solver(comp_eqs, funcs, t)
if scc_sol is None:
raise NotImplementedError(filldedent('''
The system of ODEs passed cannot be solved by dsolve_system.
'''))
# scc_sol: List of equations
# scc_sol is a solution
sol += scc_sol
return sol
# Returns: List of Equations(a solution)
def _component_solver(eqs, funcs, t):
components = _component_division(eqs, funcs, t)
sol = []
for wcc in components:
# wcc_sol: List of Equations
sol += _weak_component_solver(wcc, t)
# sol: List of Equations
return sol
def _second_order_to_first_order(eqs, funcs, t, type="auto", A1=None,
A0=None, b=None, t_=None):
r"""
Expects the system to be in second order and in canonical form
Explanation
===========
Reduces a second order system into a first order one depending on the type of second
order system.
1. "type0": If this is passed, then the system will be reduced to first order by
introducing dummy variables.
2. "type1": If this is passed, then a particular substitution will be used to reduce the
the system into first order.
3. "type2": If this is passed, then the system will be transformed with new dependent
variables and independent variables. This transformation is a part of solving
the corresponding system of ODEs.
`A1` and `A0` are the coefficient matrices from the system and it is assumed that the
second order system has the form given below:
.. math::
A2 * X'' = A1 * X' + A0 * X + b
Here, $A2$ is the coefficient matrix for the vector $X''$ and $b$ is the non-homogeneous
term.
Default value for `b` is None but if `A1` and `A0` are passed and `b` is not passed, then the
system will be assumed homogeneous.
"""
is_a1 = A1 is None
is_a0 = A0 is None
if (type == "type1" and is_a1) or (type == "type2" and is_a0)\
or (type == "auto" and (is_a1 or is_a0)):
(A2, A1, A0), b = linear_ode_to_matrix(eqs, funcs, t, 2)
if not A2.is_Identity:
raise ValueError(filldedent('''
The system must be in its canonical form.
'''))
if type == "auto":
match = _match_second_order_type(A1, A0, t)
type = match["type_of_equation"]
A1 = match.get("A1", None)
A0 = match.get("A0", None)
sys_order = {func: 2 for func in funcs}
if type == "type1":
if b is None:
b = zeros(len(eqs))
eqs = _second_order_subs_type1(A1, b, funcs, t)
sys_order = {func: 1 for func in funcs}
if type == "type2":
if t_ is None:
t_ = Symbol("{}_".format(t))
t = t_
eqs, funcs = _second_order_subs_type2(A0, funcs, t_)
sys_order = {func: 2 for func in funcs}
return _higher_order_to_first_order(eqs, sys_order, t, funcs=funcs)
def _higher_order_type2_to_sub_systems(J, f_t, funcs, t, max_order, b=None, P=None):
# Note: To add a test for this ValueError
if J is None or f_t is None or not _matrix_is_constant(J, t):
raise ValueError(filldedent('''
Correctly input for args 'A' and 'f_t' for Linear, Higher Order,
Type 2
'''))
if P is None and b is not None and not b.is_zero_matrix:
raise ValueError(filldedent('''
Provide the keyword 'P' for matrix P in A = P * J * P-1.
'''))
new_funcs = Matrix([Function(Dummy('{}__0'.format(f.func.__name__)))(t) for f in funcs])
new_eqs = new_funcs.diff(t, max_order) - f_t * J * new_funcs
if b is not None and not b.is_zero_matrix:
new_eqs -= P.inv() * b
new_eqs = canonical_odes(new_eqs, new_funcs, t)[0]
return new_eqs, new_funcs
def _higher_order_to_first_order(eqs, sys_order, t, funcs=None, type="type0", **kwargs):
if funcs is None:
funcs = sys_order.keys()
# Standard Cauchy Euler system
if type == "type1":
t_ = Symbol('{}_'.format(t))
new_funcs = [Function(Dummy('{}_'.format(f.func.__name__)))(t_) for f in funcs]
max_order = max(sys_order[func] for func in funcs)
subs_dict = {func: new_func for func, new_func in zip(funcs, new_funcs)}
subs_dict[t] = exp(t_)
free_function = Function(Dummy())
def _get_coeffs_from_subs_expression(expr):
if isinstance(expr, Subs):
free_symbol = expr.args[1][0]
term = expr.args[0]
return {ode_order(term, free_symbol): 1}
if isinstance(expr, Mul):
coeff = expr.args[0]
order = list(_get_coeffs_from_subs_expression(expr.args[1]).keys())[0]
return {order: coeff}
if isinstance(expr, Add):
coeffs = {}
for arg in expr.args:
if isinstance(arg, Mul):
coeffs.update(_get_coeffs_from_subs_expression(arg))
else:
order = list(_get_coeffs_from_subs_expression(arg).keys())[0]
coeffs[order] = 1
return coeffs
for o in range(1, max_order + 1):
expr = free_function(log(t_)).diff(t_, o)*t_**o
coeff_dict = _get_coeffs_from_subs_expression(expr)
coeffs = [coeff_dict[order] if order in coeff_dict else 0 for order in range(o + 1)]
expr_to_subs = sum(free_function(t_).diff(t_, i) * c for i, c in
enumerate(coeffs)) / t**o
subs_dict.update({f.diff(t, o): expr_to_subs.subs(free_function(t_), nf)
for f, nf in zip(funcs, new_funcs)})
new_eqs = [eq.subs(subs_dict) for eq in eqs]
new_sys_order = {nf: sys_order[f] for f, nf in zip(funcs, new_funcs)}
new_eqs = canonical_odes(new_eqs, new_funcs, t_)[0]
return _higher_order_to_first_order(new_eqs, new_sys_order, t_, funcs=new_funcs)
# Systems of the form: X(n)(t) = f(t)*A*X + b
# where X(n)(t) is the nth derivative of the vector of dependent variables
# with respect to the independent variable and A is a constant matrix.
if type == "type2":
J = kwargs.get('J', None)
f_t = kwargs.get('f_t', None)
b = kwargs.get('b', None)
P = kwargs.get('P', None)
max_order = max(sys_order[func] for func in funcs)
return _higher_order_type2_to_sub_systems(J, f_t, funcs, t, max_order, P=P, b=b)
# Note: To be changed to this after doit option is disabled for default cases
# new_sysorder = _get_func_order(new_eqs, new_funcs)
#
# return _higher_order_to_first_order(new_eqs, new_sysorder, t, funcs=new_funcs)
new_funcs = []
for prev_func in funcs:
func_name = prev_func.func.__name__
func = Function(Dummy('{}_0'.format(func_name)))(t)
new_funcs.append(func)
subs_dict = {prev_func: func}
new_eqs = []
for i in range(1, sys_order[prev_func]):
new_func = Function(Dummy('{}_{}'.format(func_name, i)))(t)
subs_dict[prev_func.diff(t, i)] = new_func
new_funcs.append(new_func)
prev_f = subs_dict[prev_func.diff(t, i-1)]
new_eq = Eq(prev_f.diff(t), new_func)
new_eqs.append(new_eq)
eqs = [eq.subs(subs_dict) for eq in eqs] + new_eqs
return eqs, new_funcs
def dsolve_system(eqs, funcs=None, t=None, ics=None, doit=False, simplify=True):
r"""
Solves any(supported) system of Ordinary Differential Equations
Explanation
===========
This function takes a system of ODEs as an input, determines if the
it is solvable by this function, and returns the solution if found any.
This function can handle:
1. Linear, First Order, Constant coefficient homogeneous system of ODEs
2. Linear, First Order, Constant coefficient non-homogeneous system of ODEs
3. Linear, First Order, non-constant coefficient homogeneous system of ODEs
4. Linear, First Order, non-constant coefficient non-homogeneous system of ODEs
5. Any implicit system which can be divided into system of ODEs which is of the above 4 forms
6. Any higher order linear system of ODEs that can be reduced to one of the 5 forms of systems described above.
The types of systems described above are not limited by the number of equations, i.e. this
function can solve the above types irrespective of the number of equations in the system passed.
But, the bigger the system, the more time it will take to solve the system.
This function returns a list of solutions. Each solution is a list of equations where LHS is
the dependent variable and RHS is an expression in terms of the independent variable.
Among the non constant coefficient types, not all the systems are solvable by this function. Only
those which have either a coefficient matrix with a commutative antiderivative or those systems which
may be divided further so that the divided systems may have coefficient matrix with commutative antiderivative.
Parameters
==========
eqs : List
system of ODEs to be solved
funcs : List or None
List of dependent variables that make up the system of ODEs
t : Symbol or None
Independent variable in the system of ODEs
ics : Dict or None
Set of initial boundary/conditions for the system of ODEs
doit : Boolean
Evaluate the solutions if True. Default value is True. Can be
set to false if the integral evaluation takes too much time and/or
is not required.
simplify: Boolean
Simplify the solutions for the systems. Default value is True.
Can be set to false if simplification takes too much time and/or
is not required.
Examples
========
>>> from sympy import symbols, Eq, Function
>>> from sympy.solvers.ode.systems import dsolve_system
>>> f, g = symbols("f g", cls=Function)
>>> x = symbols("x")
>>> eqs = [Eq(f(x).diff(x), g(x)), Eq(g(x).diff(x), f(x))]
>>> dsolve_system(eqs)
[[Eq(f(x), -C1*exp(-x) + C2*exp(x)), Eq(g(x), C1*exp(-x) + C2*exp(x))]]
You can also pass the initial conditions for the system of ODEs:
>>> dsolve_system(eqs, ics={f(0): 1, g(0): 0})
[[Eq(f(x), exp(x)/2 + exp(-x)/2), Eq(g(x), exp(x)/2 - exp(-x)/2)]]
Optionally, you can pass the dependent variables and the independent
variable for which the system is to be solved:
>>> funcs = [f(x), g(x)]
>>> dsolve_system(eqs, funcs=funcs, t=x)
[[Eq(f(x), -C1*exp(-x) + C2*exp(x)), Eq(g(x), C1*exp(-x) + C2*exp(x))]]
Lets look at an implicit system of ODEs:
>>> eqs = [Eq(f(x).diff(x)**2, g(x)**2), Eq(g(x).diff(x), g(x))]
>>> dsolve_system(eqs)
[[Eq(f(x), C1 - C2*exp(x)), Eq(g(x), C2*exp(x))], [Eq(f(x), C1 + C2*exp(x)), Eq(g(x), C2*exp(x))]]
Returns
=======
List of List of Equations
Raises
======
NotImplementedError
When the system of ODEs is not solvable by this function.
ValueError
When the parameters passed are not in the required form.
"""
from sympy.solvers.ode.ode import solve_ics, _extract_funcs, constant_renumber
if not iterable(eqs):
raise ValueError(filldedent('''
List of equations should be passed. The input is not valid.
'''))
eqs = _preprocess_eqs(eqs)
if funcs is not None and not isinstance(funcs, list):
raise ValueError(filldedent('''
Input to the funcs should be a list of functions.
'''))
if funcs is None:
funcs = _extract_funcs(eqs)
if any(len(func.args) != 1 for func in funcs):
raise ValueError(filldedent('''
dsolve_system can solve a system of ODEs with only one independent
variable.
'''))
if len(eqs) != len(funcs):
raise ValueError(filldedent('''
Number of equations and number of functions do not match
'''))
if t is not None and not isinstance(t, Symbol):
raise ValueError(filldedent('''
The independent variable must be of type Symbol
'''))
if t is None:
t = list(list(eqs[0].atoms(Derivative))[0].atoms(Symbol))[0]
sols = []
canon_eqs = canonical_odes(eqs, funcs, t)
for canon_eq in canon_eqs:
try:
sol = _strong_component_solver(canon_eq, funcs, t)
except NotImplementedError:
sol = None
if sol is None:
sol = _component_solver(canon_eq, funcs, t)
sols.append(sol)
if sols:
final_sols = []
variables = Tuple(*eqs).free_symbols
for sol in sols:
sol = _select_equations(sol, funcs)
sol = constant_renumber(sol, variables=variables)
if ics:
constants = Tuple(*sol).free_symbols - variables
solved_constants = solve_ics(sol, funcs, constants, ics)
sol = [s.subs(solved_constants) for s in sol]
if simplify:
constants = Tuple(*sol).free_symbols - variables
sol = simpsol(sol, [t], constants, doit=doit)
final_sols.append(sol)
sols = final_sols
return sols
|
4b24155cadc107580466570ad6ae4bb9e5afa72a3e53ad34b5d9e957ff3b41b1 | r"""
This File contains helper functions for nth_linear_constant_coeff_undetermined_coefficients,
nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients,
nth_linear_constant_coeff_variation_of_parameters,
and nth_linear_euler_eq_nonhomogeneous_variation_of_parameters.
All the functions in this file are used by more than one solvers so, instead of creating
instances in other classes for using them it is better to keep it here as separate helpers.
"""
from collections import defaultdict
from sympy.core import Add, S
from sympy.core.function import diff, expand, _mexpand, expand_mul
from sympy.core.relational import Eq
from sympy.core.sorting import default_sort_key
from sympy.core.symbol import Dummy, Wild
from sympy.functions import exp, cos, cosh, im, log, re, sin, sinh, \
atan2, conjugate
from sympy.integrals import Integral
from sympy.polys import (Poly, RootOf, rootof, roots)
from sympy.simplify import collect, simplify, separatevars, powsimp, trigsimp # type: ignore
from sympy.utilities import numbered_symbols
from sympy.solvers.solvers import solve
from sympy.matrices import wronskian
from .subscheck import sub_func_doit
from sympy.solvers.ode.ode import get_numbered_constants
def _test_term(coeff, func, order):
r"""
Linear Euler ODEs have the form K*x**order*diff(y(x), x, order) = F(x),
where K is independent of x and y(x), order>= 0.
So we need to check that for each term, coeff == K*x**order from
some K. We have a few cases, since coeff may have several
different types.
"""
x = func.args[0]
f = func.func
if order < 0:
raise ValueError("order should be greater than 0")
if coeff == 0:
return True
if order == 0:
if x in coeff.free_symbols:
return False
return True
if coeff.is_Mul:
if coeff.has(f(x)):
return False
return x**order in coeff.args
elif coeff.is_Pow:
return coeff.as_base_exp() == (x, order)
elif order == 1:
return x == coeff
return False
def _get_euler_characteristic_eq_sols(eq, func, match_obj):
r"""
Returns the solution of homogeneous part of the linear euler ODE and
the list of roots of characteristic equation.
The parameter ``match_obj`` is a dict of order:coeff terms, where order is the order
of the derivative on each term, and coeff is the coefficient of that derivative.
"""
x = func.args[0]
f = func.func
# First, set up characteristic equation.
chareq, symbol = S.Zero, Dummy('x')
for i in match_obj:
if i >= 0:
chareq += (match_obj[i]*diff(x**symbol, x, i)*x**-symbol).expand()
chareq = Poly(chareq, symbol)
chareqroots = [rootof(chareq, k) for k in range(chareq.degree())]
collectterms = []
# A generator of constants
constants = list(get_numbered_constants(eq, num=chareq.degree()*2))
constants.reverse()
# Create a dict root: multiplicity or charroots
charroots = defaultdict(int)
for root in chareqroots:
charroots[root] += 1
gsol = S.Zero
ln = log
for root, multiplicity in charroots.items():
for i in range(multiplicity):
if isinstance(root, RootOf):
gsol += (x**root) * constants.pop()
if multiplicity != 1:
raise ValueError("Value should be 1")
collectterms = [(0, root, 0)] + collectterms
elif root.is_real:
gsol += ln(x)**i*(x**root) * constants.pop()
collectterms = [(i, root, 0)] + collectterms
else:
reroot = re(root)
imroot = im(root)
gsol += ln(x)**i * (x**reroot) * (
constants.pop() * sin(abs(imroot)*ln(x))
+ constants.pop() * cos(imroot*ln(x)))
collectterms = [(i, reroot, imroot)] + collectterms
gsol = Eq(f(x), gsol)
gensols = []
# Keep track of when to use sin or cos for nonzero imroot
for i, reroot, imroot in collectterms:
if imroot == 0:
gensols.append(ln(x)**i*x**reroot)
else:
sin_form = ln(x)**i*x**reroot*sin(abs(imroot)*ln(x))
if sin_form in gensols:
cos_form = ln(x)**i*x**reroot*cos(imroot*ln(x))
gensols.append(cos_form)
else:
gensols.append(sin_form)
return gsol, gensols
def _solve_variation_of_parameters(eq, func, roots, homogen_sol, order, match_obj, simplify_flag=True):
r"""
Helper function for the method of variation of parameters and nonhomogeneous euler eq.
See the
:py:meth:`~sympy.solvers.ode.single.NthLinearConstantCoeffVariationOfParameters`
docstring for more information on this method.
The parameter are ``match_obj`` should be a dictionary that has the following
keys:
``list``
A list of solutions to the homogeneous equation.
``sol``
The general solution.
"""
f = func.func
x = func.args[0]
r = match_obj
psol = 0
wr = wronskian(roots, x)
if simplify_flag:
wr = simplify(wr) # We need much better simplification for
# some ODEs. See issue 4662, for example.
# To reduce commonly occurring sin(x)**2 + cos(x)**2 to 1
wr = trigsimp(wr, deep=True, recursive=True)
if not wr:
# The wronskian will be 0 iff the solutions are not linearly
# independent.
raise NotImplementedError("Cannot find " + str(order) +
" solutions to the homogeneous equation necessary to apply " +
"variation of parameters to " + str(eq) + " (Wronskian == 0)")
if len(roots) != order:
raise NotImplementedError("Cannot find " + str(order) +
" solutions to the homogeneous equation necessary to apply " +
"variation of parameters to " +
str(eq) + " (number of terms != order)")
negoneterm = S.NegativeOne**(order)
for i in roots:
psol += negoneterm*Integral(wronskian([sol for sol in roots if sol != i], x)*r[-1]/wr, x)*i/r[order]
negoneterm *= -1
if simplify_flag:
psol = simplify(psol)
psol = trigsimp(psol, deep=True)
return Eq(f(x), homogen_sol.rhs + psol)
def _get_const_characteristic_eq_sols(r, func, order):
r"""
Returns the roots of characteristic equation of constant coefficient
linear ODE and list of collectterms which is later on used by simplification
to use collect on solution.
The parameter `r` is a dict of order:coeff terms, where order is the order of the
derivative on each term, and coeff is the coefficient of that derivative.
"""
x = func.args[0]
# First, set up characteristic equation.
chareq, symbol = S.Zero, Dummy('x')
for i in r.keys():
if isinstance(i, str) or i < 0:
pass
else:
chareq += r[i]*symbol**i
chareq = Poly(chareq, symbol)
# Can't just call roots because it doesn't return rootof for unsolveable
# polynomials.
chareqroots = roots(chareq, multiple=True)
if len(chareqroots) != order:
chareqroots = [rootof(chareq, k) for k in range(chareq.degree())]
chareq_is_complex = not all(i.is_real for i in chareq.all_coeffs())
# Create a dict root: multiplicity or charroots
charroots = defaultdict(int)
for root in chareqroots:
charroots[root] += 1
# We need to keep track of terms so we can run collect() at the end.
# This is necessary for constantsimp to work properly.
collectterms = []
gensols = []
conjugate_roots = [] # used to prevent double-use of conjugate roots
# Loop over roots in theorder provided by roots/rootof...
for root in chareqroots:
# but don't repoeat multiple roots.
if root not in charroots:
continue
multiplicity = charroots.pop(root)
for i in range(multiplicity):
if chareq_is_complex:
gensols.append(x**i*exp(root*x))
collectterms = [(i, root, 0)] + collectterms
continue
reroot = re(root)
imroot = im(root)
if imroot.has(atan2) and reroot.has(atan2):
# Remove this condition when re and im stop returning
# circular atan2 usages.
gensols.append(x**i*exp(root*x))
collectterms = [(i, root, 0)] + collectterms
else:
if root in conjugate_roots:
collectterms = [(i, reroot, imroot)] + collectterms
continue
if imroot == 0:
gensols.append(x**i*exp(reroot*x))
collectterms = [(i, reroot, 0)] + collectterms
continue
conjugate_roots.append(conjugate(root))
gensols.append(x**i*exp(reroot*x) * sin(abs(imroot) * x))
gensols.append(x**i*exp(reroot*x) * cos( imroot * x))
# This ordering is important
collectterms = [(i, reroot, imroot)] + collectterms
return gensols, collectterms
# Ideally these kind of simplification functions shouldn't be part of solvers.
# odesimp should be improved to handle these kind of specific simplifications.
def _get_simplified_sol(sol, func, collectterms):
r"""
Helper function which collects the solution on
collectterms. Ideally this should be handled by odesimp.It is used
only when the simplify is set to True in dsolve.
The parameter ``collectterms`` is a list of tuple (i, reroot, imroot) where `i` is
the multiplicity of the root, reroot is real part and imroot being the imaginary part.
"""
f = func.func
x = func.args[0]
collectterms.sort(key=default_sort_key)
collectterms.reverse()
assert len(sol) == 1 and sol[0].lhs == f(x)
sol = sol[0].rhs
sol = expand_mul(sol)
for i, reroot, imroot in collectterms:
sol = collect(sol, x**i*exp(reroot*x)*sin(abs(imroot)*x))
sol = collect(sol, x**i*exp(reroot*x)*cos(imroot*x))
for i, reroot, imroot in collectterms:
sol = collect(sol, x**i*exp(reroot*x))
sol = powsimp(sol)
return Eq(f(x), sol)
def _undetermined_coefficients_match(expr, x, func=None, eq_homogeneous=S.Zero):
r"""
Returns a trial function match if undetermined coefficients can be applied
to ``expr``, and ``None`` otherwise.
A trial expression can be found for an expression for use with the method
of undetermined coefficients if the expression is an
additive/multiplicative combination of constants, polynomials in `x` (the
independent variable of expr), `\sin(a x + b)`, `\cos(a x + b)`, and
`e^{a x}` terms (in other words, it has a finite number of linearly
independent derivatives).
Note that you may still need to multiply each term returned here by
sufficient `x` to make it linearly independent with the solutions to the
homogeneous equation.
This is intended for internal use by ``undetermined_coefficients`` hints.
SymPy currently has no way to convert `\sin^n(x) \cos^m(y)` into a sum of
only `\sin(a x)` and `\cos(b x)` terms, so these are not implemented. So,
for example, you will need to manually convert `\sin^2(x)` into `[1 +
\cos(2 x)]/2` to properly apply the method of undetermined coefficients on
it.
Examples
========
>>> from sympy import log, exp
>>> from sympy.solvers.ode.nonhomogeneous import _undetermined_coefficients_match
>>> from sympy.abc import x
>>> _undetermined_coefficients_match(9*x*exp(x) + exp(-x), x)
{'test': True, 'trialset': {x*exp(x), exp(-x), exp(x)}}
>>> _undetermined_coefficients_match(log(x), x)
{'test': False}
"""
a = Wild('a', exclude=[x])
b = Wild('b', exclude=[x])
expr = powsimp(expr, combine='exp') # exp(x)*exp(2*x + 1) => exp(3*x + 1)
retdict = {}
def _test_term(expr, x):
r"""
Test if ``expr`` fits the proper form for undetermined coefficients.
"""
if not expr.has(x):
return True
elif expr.is_Add:
return all(_test_term(i, x) for i in expr.args)
elif expr.is_Mul:
if expr.has(sin, cos):
foundtrig = False
# Make sure that there is only one trig function in the args.
# See the docstring.
for i in expr.args:
if i.has(sin, cos):
if foundtrig:
return False
else:
foundtrig = True
return all(_test_term(i, x) for i in expr.args)
elif expr.is_Function:
if expr.func in (sin, cos, exp, sinh, cosh):
if expr.args[0].match(a*x + b):
return True
else:
return False
else:
return False
elif expr.is_Pow and expr.base.is_Symbol and expr.exp.is_Integer and \
expr.exp >= 0:
return True
elif expr.is_Pow and expr.base.is_number:
if expr.exp.match(a*x + b):
return True
else:
return False
elif expr.is_Symbol or expr.is_number:
return True
else:
return False
def _get_trial_set(expr, x, exprs=set()):
r"""
Returns a set of trial terms for undetermined coefficients.
The idea behind undetermined coefficients is that the terms expression
repeat themselves after a finite number of derivatives, except for the
coefficients (they are linearly dependent). So if we collect these,
we should have the terms of our trial function.
"""
def _remove_coefficient(expr, x):
r"""
Returns the expression without a coefficient.
Similar to expr.as_independent(x)[1], except it only works
multiplicatively.
"""
term = S.One
if expr.is_Mul:
for i in expr.args:
if i.has(x):
term *= i
elif expr.has(x):
term = expr
return term
expr = expand_mul(expr)
if expr.is_Add:
for term in expr.args:
if _remove_coefficient(term, x) in exprs:
pass
else:
exprs.add(_remove_coefficient(term, x))
exprs = exprs.union(_get_trial_set(term, x, exprs))
else:
term = _remove_coefficient(expr, x)
tmpset = exprs.union({term})
oldset = set()
while tmpset != oldset:
# If you get stuck in this loop, then _test_term is probably
# broken
oldset = tmpset.copy()
expr = expr.diff(x)
term = _remove_coefficient(expr, x)
if term.is_Add:
tmpset = tmpset.union(_get_trial_set(term, x, tmpset))
else:
tmpset.add(term)
exprs = tmpset
return exprs
def is_homogeneous_solution(term):
r""" This function checks whether the given trialset contains any root
of homogeneous equation"""
return expand(sub_func_doit(eq_homogeneous, func, term)).is_zero
retdict['test'] = _test_term(expr, x)
if retdict['test']:
# Try to generate a list of trial solutions that will have the
# undetermined coefficients. Note that if any of these are not linearly
# independent with any of the solutions to the homogeneous equation,
# then they will need to be multiplied by sufficient x to make them so.
# This function DOES NOT do that (it doesn't even look at the
# homogeneous equation).
temp_set = set()
for i in Add.make_args(expr):
act = _get_trial_set(i, x)
if eq_homogeneous is not S.Zero:
while any(is_homogeneous_solution(ts) for ts in act):
act = {x*ts for ts in act}
temp_set = temp_set.union(act)
retdict['trialset'] = temp_set
return retdict
def _solve_undetermined_coefficients(eq, func, order, match, trialset):
r"""
Helper function for the method of undetermined coefficients.
See the
:py:meth:`~sympy.solvers.ode.single.NthLinearConstantCoeffUndeterminedCoefficients`
docstring for more information on this method.
The parameter ``trialset`` is the set of trial functions as returned by
``_undetermined_coefficients_match()['trialset']``.
The parameter ``match`` should be a dictionary that has the following
keys:
``list``
A list of solutions to the homogeneous equation.
``sol``
The general solution.
"""
r = match
coeffs = numbered_symbols('a', cls=Dummy)
coefflist = []
gensols = r['list']
gsol = r['sol']
f = func.func
x = func.args[0]
if len(gensols) != order:
raise NotImplementedError("Cannot find " + str(order) +
" solutions to the homogeneous equation necessary to apply" +
" undetermined coefficients to " + str(eq) +
" (number of terms != order)")
trialfunc = 0
for i in trialset:
c = next(coeffs)
coefflist.append(c)
trialfunc += c*i
eqs = sub_func_doit(eq, f(x), trialfunc)
coeffsdict = dict(list(zip(trialset, [0]*(len(trialset) + 1))))
eqs = _mexpand(eqs)
for i in Add.make_args(eqs):
s = separatevars(i, dict=True, symbols=[x])
if coeffsdict.get(s[x]):
coeffsdict[s[x]] += s['coeff']
else:
coeffsdict[s[x]] = s['coeff']
coeffvals = solve(list(coeffsdict.values()), coefflist)
if not coeffvals:
raise NotImplementedError(
"Could not solve `%s` using the "
"method of undetermined coefficients "
"(unable to solve for coefficients)." % eq)
psol = trialfunc.subs(coeffvals)
return Eq(f(x), gsol.rhs + psol)
|
a98e199928114454f9fe2038adcad0faad812e1a52343c840d9aca406683ac88 | from math import isclose
from sympy.core.add import Add
from sympy.core.containers import Tuple
from sympy.core.function import (Function, Lambda, nfloat, diff)
from sympy.core.mod import Mod
from sympy.core.numbers import (E, I, Rational, oo, pi, Integer)
from sympy.core.relational import (Eq, Gt, Ne, Ge)
from sympy.core.singleton import S
from sympy.core.sorting import ordered
from sympy.core.symbol import (Dummy, Symbol, symbols)
from sympy.core.sympify import sympify
from sympy.functions.elementary.complexes import (Abs, arg, im, re, sign, conjugate)
from sympy.functions.elementary.exponential import (LambertW, exp, log)
from sympy.functions.elementary.hyperbolic import (HyperbolicFunction,
sinh, tanh, cosh, sech, coth)
from sympy.functions.elementary.miscellaneous import sqrt, Min, Max
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import (
TrigonometricFunction, acos, acot, acsc, asec, asin, atan, atan2,
cos, cot, csc, sec, sin, tan)
from sympy.functions.special.error_functions import (erf, erfc,
erfcinv, erfinv)
from sympy.logic.boolalg import And
from sympy.matrices.dense import MutableDenseMatrix as Matrix
from sympy.matrices.immutable import ImmutableDenseMatrix
from sympy.polys.polytools import Poly
from sympy.polys.rootoftools import CRootOf
from sympy.sets.contains import Contains
from sympy.sets.conditionset import ConditionSet
from sympy.sets.fancysets import ImageSet, Range
from sympy.sets.sets import (Complement, FiniteSet,
Intersection, Interval, Union, imageset, ProductSet)
from sympy.simplify import simplify
from sympy.tensor.indexed import Indexed
from sympy.utilities.iterables import numbered_symbols
from sympy.testing.pytest import (XFAIL, raises, skip, slow, SKIP, _both_exp_pow)
from sympy.core.random import verify_numerically as tn
from sympy.physics.units import cm
from sympy.solvers import solve
from sympy.solvers.solveset import (
solveset_real, domain_check, solveset_complex, linear_eq_to_matrix,
linsolve, _is_function_class_equation, invert_real, invert_complex,
solveset, solve_decomposition, substitution, nonlinsolve, solvify,
_is_finite_with_finite_vars, _transolve, _is_exponential,
_solve_exponential, _is_logarithmic, _is_lambert,
_solve_logarithm, _term_factors, _is_modular, NonlinearError)
from sympy.abc import (a, b, c, d, e, f, g, h, i, j, k, l, m, n, q, r,
t, w, x, y, z)
def dumeq(i, j):
if type(i) in (list, tuple):
return all(dumeq(i, j) for i, j in zip(i, j))
return i == j or i.dummy_eq(j)
def assert_close_ss(sol1, sol2):
"""Test solutions with floats from solveset are close"""
sol1 = sympify(sol1)
sol2 = sympify(sol2)
assert isinstance(sol1, FiniteSet)
assert isinstance(sol2, FiniteSet)
assert len(sol1) == len(sol2)
assert all(isclose(v1, v2) for v1, v2 in zip(sol1, sol2))
def assert_close_nl(sol1, sol2):
"""Test solutions with floats from nonlinsolve are close"""
sol1 = sympify(sol1)
sol2 = sympify(sol2)
assert isinstance(sol1, FiniteSet)
assert isinstance(sol2, FiniteSet)
assert len(sol1) == len(sol2)
for s1, s2 in zip(sol1, sol2):
assert len(s1) == len(s2)
assert all(isclose(v1, v2) for v1, v2 in zip(s1, s2))
@_both_exp_pow
def test_invert_real():
x = Symbol('x', real=True)
def ireal(x, s=S.Reals):
return Intersection(s, x)
assert invert_real(exp(x), z, x) == (x, ireal(FiniteSet(log(z))))
y = Symbol('y', positive=True)
n = Symbol('n', real=True)
assert invert_real(x + 3, y, x) == (x, FiniteSet(y - 3))
assert invert_real(x*3, y, x) == (x, FiniteSet(y / 3))
assert invert_real(exp(x), y, x) == (x, FiniteSet(log(y)))
assert invert_real(exp(3*x), y, x) == (x, FiniteSet(log(y) / 3))
assert invert_real(exp(x + 3), y, x) == (x, FiniteSet(log(y) - 3))
assert invert_real(exp(x) + 3, y, x) == (x, ireal(FiniteSet(log(y - 3))))
assert invert_real(exp(x)*3, y, x) == (x, FiniteSet(log(y / 3)))
assert invert_real(log(x), y, x) == (x, FiniteSet(exp(y)))
assert invert_real(log(3*x), y, x) == (x, FiniteSet(exp(y) / 3))
assert invert_real(log(x + 3), y, x) == (x, FiniteSet(exp(y) - 3))
assert invert_real(Abs(x), y, x) == (x, FiniteSet(y, -y))
assert invert_real(2**x, y, x) == (x, FiniteSet(log(y)/log(2)))
assert invert_real(2**exp(x), y, x) == (x, ireal(FiniteSet(log(log(y)/log(2)))))
assert invert_real(x**2, y, x) == (x, FiniteSet(sqrt(y), -sqrt(y)))
assert invert_real(x**S.Half, y, x) == (x, FiniteSet(y**2))
raises(ValueError, lambda: invert_real(x, x, x))
# issue 21236
assert invert_real(x**pi, y, x) == (x, FiniteSet(y**(1/pi)))
assert invert_real(x**pi, -E, x) == (x, S.EmptySet)
assert invert_real(x**Rational(3/2), 1000, x) == (x, FiniteSet(100))
assert invert_real(x**1.0, 1, x) == (x**1.0, FiniteSet(1))
raises(ValueError, lambda: invert_real(S.One, y, x))
assert invert_real(x**31 + x, y, x) == (x**31 + x, FiniteSet(y))
lhs = x**31 + x
base_values = FiniteSet(y - 1, -y - 1)
assert invert_real(Abs(x**31 + x + 1), y, x) == (lhs, base_values)
assert dumeq(invert_real(sin(x), y, x),
(x, imageset(Lambda(n, n*pi + (-1)**n*asin(y)), S.Integers)))
assert dumeq(invert_real(sin(exp(x)), y, x),
(x, imageset(Lambda(n, log((-1)**n*asin(y) + n*pi)), S.Integers)))
assert dumeq(invert_real(csc(x), y, x),
(x, imageset(Lambda(n, n*pi + (-1)**n*acsc(y)), S.Integers)))
assert dumeq(invert_real(csc(exp(x)), y, x),
(x, imageset(Lambda(n, log((-1)**n*acsc(y) + n*pi)), S.Integers)))
assert dumeq(invert_real(cos(x), y, x),
(x, Union(imageset(Lambda(n, 2*n*pi + acos(y)), S.Integers), \
imageset(Lambda(n, 2*n*pi - acos(y)), S.Integers))))
assert dumeq(invert_real(cos(exp(x)), y, x),
(x, Union(imageset(Lambda(n, log(2*n*pi + acos(y))), S.Integers), \
imageset(Lambda(n, log(2*n*pi - acos(y))), S.Integers))))
assert dumeq(invert_real(sec(x), y, x),
(x, Union(imageset(Lambda(n, 2*n*pi + asec(y)), S.Integers), \
imageset(Lambda(n, 2*n*pi - asec(y)), S.Integers))))
assert dumeq(invert_real(sec(exp(x)), y, x),
(x, Union(imageset(Lambda(n, log(2*n*pi + asec(y))), S.Integers), \
imageset(Lambda(n, log(2*n*pi - asec(y))), S.Integers))))
assert dumeq(invert_real(tan(x), y, x),
(x, imageset(Lambda(n, n*pi + atan(y)), S.Integers)))
assert dumeq(invert_real(tan(exp(x)), y, x),
(x, imageset(Lambda(n, log(n*pi + atan(y))), S.Integers)))
assert dumeq(invert_real(cot(x), y, x),
(x, imageset(Lambda(n, n*pi + acot(y)), S.Integers)))
assert dumeq(invert_real(cot(exp(x)), y, x),
(x, imageset(Lambda(n, log(n*pi + acot(y))), S.Integers)))
assert dumeq(invert_real(tan(tan(x)), y, x),
(tan(x), imageset(Lambda(n, n*pi + atan(y)), S.Integers)))
x = Symbol('x', positive=True)
assert invert_real(x**pi, y, x) == (x, FiniteSet(y**(1/pi)))
def test_invert_complex():
assert invert_complex(x + 3, y, x) == (x, FiniteSet(y - 3))
assert invert_complex(x*3, y, x) == (x, FiniteSet(y / 3))
assert invert_complex((x - 1)**3, 0, x) == (x, FiniteSet(1))
assert dumeq(invert_complex(exp(x), y, x),
(x, imageset(Lambda(n, I*(2*pi*n + arg(y)) + log(Abs(y))), S.Integers)))
assert invert_complex(log(x), y, x) == (x, FiniteSet(exp(y)))
raises(ValueError, lambda: invert_real(1, y, x))
raises(ValueError, lambda: invert_complex(x, x, x))
raises(ValueError, lambda: invert_complex(x, x, 1))
# https://github.com/skirpichev/omg/issues/16
assert invert_complex(sinh(x), 0, x) != (x, FiniteSet(0))
def test_domain_check():
assert domain_check(1/(1 + (1/(x+1))**2), x, -1) is False
assert domain_check(x**2, x, 0) is True
assert domain_check(x, x, oo) is False
assert domain_check(0, x, oo) is False
def test_issue_11536():
assert solveset(0**x - 100, x, S.Reals) == S.EmptySet
assert solveset(0**x - 1, x, S.Reals) == FiniteSet(0)
def test_issue_17479():
f = (x**2 + y**2)**2 + (x**2 + z**2)**2 - 2*(2*x**2 + y**2 + z**2)
fx = f.diff(x)
fy = f.diff(y)
fz = f.diff(z)
sol = nonlinsolve([fx, fy, fz], [x, y, z])
assert len(sol) >= 4 and len(sol) <= 20
# nonlinsolve has been giving a varying number of solutions
# (originally 18, then 20, now 19) due to various internal changes.
# Unfortunately not all the solutions are actually valid and some are
# redundant. Since the original issue was that an exception was raised,
# this first test only checks that nonlinsolve returns a "plausible"
# solution set. The next test checks the result for correctness.
@XFAIL
def test_issue_18449():
x, y, z = symbols("x, y, z")
f = (x**2 + y**2)**2 + (x**2 + z**2)**2 - 2*(2*x**2 + y**2 + z**2)
fx = diff(f, x)
fy = diff(f, y)
fz = diff(f, z)
sol = nonlinsolve([fx, fy, fz], [x, y, z])
for (xs, ys, zs) in sol:
d = {x: xs, y: ys, z: zs}
assert tuple(_.subs(d).simplify() for _ in (fx, fy, fz)) == (0, 0, 0)
# After simplification and removal of duplicate elements, there should
# only be 4 parametric solutions left:
# simplifiedsolutions = FiniteSet((sqrt(1 - z**2), z, z),
# (-sqrt(1 - z**2), z, z),
# (sqrt(1 - z**2), -z, z),
# (-sqrt(1 - z**2), -z, z))
# TODO: Is the above solution set definitely complete?
def test_issue_21047():
f = (2 - x)**2 + (sqrt(x - 1) - 1)**6
assert solveset(f, x, S.Reals) == FiniteSet(2)
f = (sqrt(x)-1)**2 + (sqrt(x)+1)**2 -2*x**2 + sqrt(2)
assert solveset(f, x, S.Reals) == FiniteSet(
S.Half - sqrt(2*sqrt(2) + 5)/2, S.Half + sqrt(2*sqrt(2) + 5)/2)
def test_is_function_class_equation():
assert _is_function_class_equation(TrigonometricFunction,
tan(x), x) is True
assert _is_function_class_equation(TrigonometricFunction,
tan(x) - 1, x) is True
assert _is_function_class_equation(TrigonometricFunction,
tan(x) + sin(x), x) is True
assert _is_function_class_equation(TrigonometricFunction,
tan(x) + sin(x) - a, x) is True
assert _is_function_class_equation(TrigonometricFunction,
sin(x)*tan(x) + sin(x), x) is True
assert _is_function_class_equation(TrigonometricFunction,
sin(x)*tan(x + a) + sin(x), x) is True
assert _is_function_class_equation(TrigonometricFunction,
sin(x)*tan(x*a) + sin(x), x) is True
assert _is_function_class_equation(TrigonometricFunction,
a*tan(x) - 1, x) is True
assert _is_function_class_equation(TrigonometricFunction,
tan(x)**2 + sin(x) - 1, x) is True
assert _is_function_class_equation(TrigonometricFunction,
tan(x) + x, x) is False
assert _is_function_class_equation(TrigonometricFunction,
tan(x**2), x) is False
assert _is_function_class_equation(TrigonometricFunction,
tan(x**2) + sin(x), x) is False
assert _is_function_class_equation(TrigonometricFunction,
tan(x)**sin(x), x) is False
assert _is_function_class_equation(TrigonometricFunction,
tan(sin(x)) + sin(x), x) is False
assert _is_function_class_equation(HyperbolicFunction,
tanh(x), x) is True
assert _is_function_class_equation(HyperbolicFunction,
tanh(x) - 1, x) is True
assert _is_function_class_equation(HyperbolicFunction,
tanh(x) + sinh(x), x) is True
assert _is_function_class_equation(HyperbolicFunction,
tanh(x) + sinh(x) - a, x) is True
assert _is_function_class_equation(HyperbolicFunction,
sinh(x)*tanh(x) + sinh(x), x) is True
assert _is_function_class_equation(HyperbolicFunction,
sinh(x)*tanh(x + a) + sinh(x), x) is True
assert _is_function_class_equation(HyperbolicFunction,
sinh(x)*tanh(x*a) + sinh(x), x) is True
assert _is_function_class_equation(HyperbolicFunction,
a*tanh(x) - 1, x) is True
assert _is_function_class_equation(HyperbolicFunction,
tanh(x)**2 + sinh(x) - 1, x) is True
assert _is_function_class_equation(HyperbolicFunction,
tanh(x) + x, x) is False
assert _is_function_class_equation(HyperbolicFunction,
tanh(x**2), x) is False
assert _is_function_class_equation(HyperbolicFunction,
tanh(x**2) + sinh(x), x) is False
assert _is_function_class_equation(HyperbolicFunction,
tanh(x)**sinh(x), x) is False
assert _is_function_class_equation(HyperbolicFunction,
tanh(sinh(x)) + sinh(x), x) is False
def test_garbage_input():
raises(ValueError, lambda: solveset_real([y], y))
x = Symbol('x', real=True)
assert solveset_real(x, 1) == S.EmptySet
assert solveset_real(x - 1, 1) == FiniteSet(x)
assert solveset_real(x, pi) == S.EmptySet
assert solveset_real(x, x**2) == S.EmptySet
raises(ValueError, lambda: solveset_complex([x], x))
assert solveset_complex(x, pi) == S.EmptySet
raises(ValueError, lambda: solveset((x, y), x))
raises(ValueError, lambda: solveset(x + 1, S.Reals))
raises(ValueError, lambda: solveset(x + 1, x, 2))
def test_solve_mul():
assert solveset_real((a*x + b)*(exp(x) - 3), x) == \
Union({log(3)}, Intersection({-b/a}, S.Reals))
anz = Symbol('anz', nonzero=True)
bb = Symbol('bb', real=True)
assert solveset_real((anz*x + bb)*(exp(x) - 3), x) == \
FiniteSet(-bb/anz, log(3))
assert solveset_real((2*x + 8)*(8 + exp(x)), x) == FiniteSet(S(-4))
assert solveset_real(x/log(x), x) is S.EmptySet
def test_solve_invert():
assert solveset_real(exp(x) - 3, x) == FiniteSet(log(3))
assert solveset_real(log(x) - 3, x) == FiniteSet(exp(3))
assert solveset_real(3**(x + 2), x) == FiniteSet()
assert solveset_real(3**(2 - x), x) == FiniteSet()
assert solveset_real(y - b*exp(a/x), x) == Intersection(
S.Reals, FiniteSet(a/log(y/b)))
# issue 4504
assert solveset_real(2**x - 10, x) == FiniteSet(1 + log(5)/log(2))
def test_errorinverses():
assert solveset_real(erf(x) - S.Half, x) == \
FiniteSet(erfinv(S.Half))
assert solveset_real(erfinv(x) - 2, x) == \
FiniteSet(erf(2))
assert solveset_real(erfc(x) - S.One, x) == \
FiniteSet(erfcinv(S.One))
assert solveset_real(erfcinv(x) - 2, x) == FiniteSet(erfc(2))
def test_solve_polynomial():
x = Symbol('x', real=True)
y = Symbol('y', real=True)
assert solveset_real(3*x - 2, x) == FiniteSet(Rational(2, 3))
assert solveset_real(x**2 - 1, x) == FiniteSet(-S.One, S.One)
assert solveset_real(x - y**3, x) == FiniteSet(y ** 3)
assert solveset_real(x**3 - 15*x - 4, x) == FiniteSet(
-2 + 3 ** S.Half,
S(4),
-2 - 3 ** S.Half)
assert solveset_real(sqrt(x) - 1, x) == FiniteSet(1)
assert solveset_real(sqrt(x) - 2, x) == FiniteSet(4)
assert solveset_real(x**Rational(1, 4) - 2, x) == FiniteSet(16)
assert solveset_real(x**Rational(1, 3) - 3, x) == FiniteSet(27)
assert len(solveset_real(x**5 + x**3 + 1, x)) == 1
assert len(solveset_real(-2*x**3 + 4*x**2 - 2*x + 6, x)) > 0
assert solveset_real(x**6 + x**4 + I, x) is S.EmptySet
def test_return_root_of():
f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20
s = list(solveset_complex(f, x))
for root in s:
assert root.func == CRootOf
# if one uses solve to get the roots of a polynomial that has a CRootOf
# solution, make sure that the use of nfloat during the solve process
# doesn't fail. Note: if you want numerical solutions to a polynomial
# it is *much* faster to use nroots to get them than to solve the
# equation only to get CRootOf solutions which are then numerically
# evaluated. So for eq = x**5 + 3*x + 7 do Poly(eq).nroots() rather
# than [i.n() for i in solve(eq)] to get the numerical roots of eq.
assert nfloat(list(solveset_complex(x**5 + 3*x**3 + 7, x))[0],
exponent=False) == CRootOf(x**5 + 3*x**3 + 7, 0).n()
sol = list(solveset_complex(x**6 - 2*x + 2, x))
assert all(isinstance(i, CRootOf) for i in sol) and len(sol) == 6
f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20
s = list(solveset_complex(f, x))
for root in s:
assert root.func == CRootOf
s = x**5 + 4*x**3 + 3*x**2 + Rational(7, 4)
assert solveset_complex(s, x) == \
FiniteSet(*Poly(s*4, domain='ZZ').all_roots())
# Refer issue #7876
eq = x*(x - 1)**2*(x + 1)*(x**6 - x + 1)
assert solveset_complex(eq, x) == \
FiniteSet(-1, 0, 1, CRootOf(x**6 - x + 1, 0),
CRootOf(x**6 - x + 1, 1),
CRootOf(x**6 - x + 1, 2),
CRootOf(x**6 - x + 1, 3),
CRootOf(x**6 - x + 1, 4),
CRootOf(x**6 - x + 1, 5))
def test_solveset_sqrt_1():
assert solveset_real(sqrt(5*x + 6) - 2 - x, x) == \
FiniteSet(-S.One, S(2))
assert solveset_real(sqrt(x - 1) - x + 7, x) == FiniteSet(10)
assert solveset_real(sqrt(x - 2) - 5, x) == FiniteSet(27)
assert solveset_real(sqrt(x) - 2 - 5, x) == FiniteSet(49)
assert solveset_real(sqrt(x**3), x) == FiniteSet(0)
assert solveset_real(sqrt(x - 1), x) == FiniteSet(1)
assert solveset_real(sqrt((x-3)/x), x) == FiniteSet(3)
assert solveset_real(sqrt((x-3)/x)-Rational(1, 2), x) == \
FiniteSet(4)
def test_solveset_sqrt_2():
x = Symbol('x', real=True)
y = Symbol('y', real=True)
# http://tutorial.math.lamar.edu/Classes/Alg/SolveRadicalEqns.aspx#Solve_Rad_Ex2_a
assert solveset_real(sqrt(2*x - 1) - sqrt(x - 4) - 2, x) == \
FiniteSet(S(5), S(13))
assert solveset_real(sqrt(x + 7) + 2 - sqrt(3 - x), x) == \
FiniteSet(-6)
# http://www.purplemath.com/modules/solverad.htm
assert solveset_real(sqrt(17*x - sqrt(x**2 - 5)) - 7, x) == \
FiniteSet(3)
eq = x + 1 - (x**4 + 4*x**3 - x)**Rational(1, 4)
assert solveset_real(eq, x) == FiniteSet(Rational(-1, 2), Rational(-1, 3))
eq = sqrt(2*x + 9) - sqrt(x + 1) - sqrt(x + 4)
assert solveset_real(eq, x) == FiniteSet(0)
eq = sqrt(x + 4) + sqrt(2*x - 1) - 3*sqrt(x - 1)
assert solveset_real(eq, x) == FiniteSet(5)
eq = sqrt(x)*sqrt(x - 7) - 12
assert solveset_real(eq, x) == FiniteSet(16)
eq = sqrt(x - 3) + sqrt(x) - 3
assert solveset_real(eq, x) == FiniteSet(4)
eq = sqrt(2*x**2 - 7) - (3 - x)
assert solveset_real(eq, x) == FiniteSet(-S(8), S(2))
# others
eq = sqrt(9*x**2 + 4) - (3*x + 2)
assert solveset_real(eq, x) == FiniteSet(0)
assert solveset_real(sqrt(x - 3) - sqrt(x) - 3, x) == FiniteSet()
eq = (2*x - 5)**Rational(1, 3) - 3
assert solveset_real(eq, x) == FiniteSet(16)
assert solveset_real(sqrt(x) + sqrt(sqrt(x)) - 4, x) == \
FiniteSet((Rational(-1, 2) + sqrt(17)/2)**4)
eq = sqrt(x) - sqrt(x - 1) + sqrt(sqrt(x))
assert solveset_real(eq, x) == FiniteSet()
eq = (x - 4)**2 + (sqrt(x) - 2)**4
assert solveset_real(eq, x) == FiniteSet(-4, 4)
eq = (sqrt(x) + sqrt(x + 1) + sqrt(1 - x) - 6*sqrt(5)/5)
ans = solveset_real(eq, x)
ra = S('''-1484/375 - 4*(-S(1)/2 + sqrt(3)*I/2)*(-12459439/52734375 +
114*sqrt(12657)/78125)**(S(1)/3) - 172564/(140625*(-S(1)/2 +
sqrt(3)*I/2)*(-12459439/52734375 + 114*sqrt(12657)/78125)**(S(1)/3))''')
rb = Rational(4, 5)
assert all(abs(eq.subs(x, i).n()) < 1e-10 for i in (ra, rb)) and \
len(ans) == 2 and \
{i.n(chop=True) for i in ans} == \
{i.n(chop=True) for i in (ra, rb)}
assert solveset_real(sqrt(x) + x**Rational(1, 3) +
x**Rational(1, 4), x) == FiniteSet(0)
assert solveset_real(x/sqrt(x**2 + 1), x) == FiniteSet(0)
eq = (x - y**3)/((y**2)*sqrt(1 - y**2))
assert solveset_real(eq, x) == FiniteSet(y**3)
# issue 4497
assert solveset_real(1/(5 + x)**Rational(1, 5) - 9, x) == \
FiniteSet(Rational(-295244, 59049))
@XFAIL
def test_solve_sqrt_fail():
# this only works if we check real_root(eq.subs(x, Rational(1, 3)))
# but checksol doesn't work like that
eq = (x**3 - 3*x**2)**Rational(1, 3) + 1 - x
assert solveset_real(eq, x) == FiniteSet(Rational(1, 3))
@slow
def test_solve_sqrt_3():
R = Symbol('R')
eq = sqrt(2)*R*sqrt(1/(R + 1)) + (R + 1)*(sqrt(2)*sqrt(1/(R + 1)) - 1)
sol = solveset_complex(eq, R)
fset = [Rational(5, 3) + 4*sqrt(10)*cos(atan(3*sqrt(111)/251)/3)/3,
-sqrt(10)*cos(atan(3*sqrt(111)/251)/3)/3 +
40*re(1/((Rational(-1, 2) - sqrt(3)*I/2)*(Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3)))/9 +
sqrt(30)*sin(atan(3*sqrt(111)/251)/3)/3 + Rational(5, 3) +
I*(-sqrt(30)*cos(atan(3*sqrt(111)/251)/3)/3 -
sqrt(10)*sin(atan(3*sqrt(111)/251)/3)/3 +
40*im(1/((Rational(-1, 2) - sqrt(3)*I/2)*(Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3)))/9)]
cset = [40*re(1/((Rational(-1, 2) + sqrt(3)*I/2)*(Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3)))/9 -
sqrt(10)*cos(atan(3*sqrt(111)/251)/3)/3 - sqrt(30)*sin(atan(3*sqrt(111)/251)/3)/3 +
Rational(5, 3) +
I*(40*im(1/((Rational(-1, 2) + sqrt(3)*I/2)*(Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3)))/9 -
sqrt(10)*sin(atan(3*sqrt(111)/251)/3)/3 +
sqrt(30)*cos(atan(3*sqrt(111)/251)/3)/3)]
assert sol._args[0] == FiniteSet(*fset)
assert sol._args[1] == ConditionSet(
R,
Eq(sqrt(2)*R*sqrt(1/(R + 1)) + (R + 1)*(sqrt(2)*sqrt(1/(R + 1)) - 1), 0),
FiniteSet(*cset))
# the number of real roots will depend on the value of m: for m=1 there are 4
# and for m=-1 there are none.
eq = -sqrt((m - q)**2 + (-m/(2*q) + S.Half)**2) + sqrt((-m**2/2 - sqrt(
4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2 + (m**2/2 - m - sqrt(
4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2)
unsolved_object = ConditionSet(q, Eq(sqrt((m - q)**2 + (-m/(2*q) + S.Half)**2) -
sqrt((-m**2/2 - sqrt(4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2 + (m**2/2 - m -
sqrt(4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2), 0), S.Reals)
assert solveset_real(eq, q) == unsolved_object
def test_solve_polynomial_symbolic_param():
assert solveset_complex((x**2 - 1)**2 - a, x) == \
FiniteSet(sqrt(1 + sqrt(a)), -sqrt(1 + sqrt(a)),
sqrt(1 - sqrt(a)), -sqrt(1 - sqrt(a)))
# issue 4507
assert solveset_complex(y - b/(1 + a*x), x) == \
FiniteSet((b/y - 1)/a) - FiniteSet(-1/a)
# issue 4508
assert solveset_complex(y - b*x/(a + x), x) == \
FiniteSet(-a*y/(y - b)) - FiniteSet(-a)
def test_solve_rational():
assert solveset_real(1/x + 1, x) == FiniteSet(-S.One)
assert solveset_real(1/exp(x) - 1, x) == FiniteSet(0)
assert solveset_real(x*(1 - 5/x), x) == FiniteSet(5)
assert solveset_real(2*x/(x + 2) - 1, x) == FiniteSet(2)
assert solveset_real((x**2/(7 - x)).diff(x), x) == \
FiniteSet(S.Zero, S(14))
def test_solveset_real_gen_is_pow():
assert solveset_real(sqrt(1) + 1, x) is S.EmptySet
def test_no_sol():
assert solveset(1 - oo*x) is S.EmptySet
assert solveset(oo*x, x) is S.EmptySet
assert solveset(oo*x - oo, x) is S.EmptySet
assert solveset_real(4, x) is S.EmptySet
assert solveset_real(exp(x), x) is S.EmptySet
assert solveset_real(x**2 + 1, x) is S.EmptySet
assert solveset_real(-3*a/sqrt(x), x) is S.EmptySet
assert solveset_real(1/x, x) is S.EmptySet
assert solveset_real(-(1 + x)/(2 + x)**2 + 1/(2 + x), x
) is S.EmptySet
def test_sol_zero_real():
assert solveset_real(0, x) == S.Reals
assert solveset(0, x, Interval(1, 2)) == Interval(1, 2)
assert solveset_real(-x**2 - 2*x + (x + 1)**2 - 1, x) == S.Reals
def test_no_sol_rational_extragenous():
assert solveset_real((x/(x + 1) + 3)**(-2), x) is S.EmptySet
assert solveset_real((x - 1)/(1 + 1/(x - 1)), x) is S.EmptySet
def test_solve_polynomial_cv_1a():
"""
Test for solving on equations that can be converted to
a polynomial equation using the change of variable y -> x**Rational(p, q)
"""
assert solveset_real(sqrt(x) - 1, x) == FiniteSet(1)
assert solveset_real(sqrt(x) - 2, x) == FiniteSet(4)
assert solveset_real(x**Rational(1, 4) - 2, x) == FiniteSet(16)
assert solveset_real(x**Rational(1, 3) - 3, x) == FiniteSet(27)
assert solveset_real(x*(x**(S.One / 3) - 3), x) == \
FiniteSet(S.Zero, S(27))
def test_solveset_real_rational():
"""Test solveset_real for rational functions"""
x = Symbol('x', real=True)
y = Symbol('y', real=True)
assert solveset_real((x - y**3) / ((y**2)*sqrt(1 - y**2)), x) \
== FiniteSet(y**3)
# issue 4486
assert solveset_real(2*x/(x + 2) - 1, x) == FiniteSet(2)
def test_solveset_real_log():
assert solveset_real(log((x-1)*(x+1)), x) == \
FiniteSet(sqrt(2), -sqrt(2))
def test_poly_gens():
assert solveset_real(4**(2*(x**2) + 2*x) - 8, x) == \
FiniteSet(Rational(-3, 2), S.Half)
def test_solve_abs():
n = Dummy('n')
raises(ValueError, lambda: solveset(Abs(x) - 1, x))
assert solveset(Abs(x) - n, x, S.Reals).dummy_eq(
ConditionSet(x, Contains(n, Interval(0, oo)), {-n, n}))
assert solveset_real(Abs(x) - 2, x) == FiniteSet(-2, 2)
assert solveset_real(Abs(x) + 2, x) is S.EmptySet
assert solveset_real(Abs(x + 3) - 2*Abs(x - 3), x) == \
FiniteSet(1, 9)
assert solveset_real(2*Abs(x) - Abs(x - 1), x) == \
FiniteSet(-1, Rational(1, 3))
sol = ConditionSet(
x,
And(
Contains(b, Interval(0, oo)),
Contains(a + b, Interval(0, oo)),
Contains(a - b, Interval(0, oo))),
FiniteSet(-a - b - 3, -a + b - 3, a - b - 3, a + b - 3))
eq = Abs(Abs(x + 3) - a) - b
assert invert_real(eq, 0, x)[1] == sol
reps = {a: 3, b: 1}
eqab = eq.subs(reps)
for si in sol.subs(reps):
assert not eqab.subs(x, si)
assert dumeq(solveset(Eq(sin(Abs(x)), 1), x, domain=S.Reals), Union(
Intersection(Interval(0, oo),
ImageSet(Lambda(n, (-1)**n*pi/2 + n*pi), S.Integers)),
Intersection(Interval(-oo, 0),
ImageSet(Lambda(n, n*pi - (-1)**(-n)*pi/2), S.Integers))))
def test_issue_9824():
assert dumeq(solveset(sin(x)**2 - 2*sin(x) + 1, x), ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers))
assert dumeq(solveset(cos(x)**2 - 2*cos(x) + 1, x), ImageSet(Lambda(n, 2*n*pi), S.Integers))
def test_issue_9565():
assert solveset_real(Abs((x - 1)/(x - 5)) <= Rational(1, 3), x) == Interval(-1, 2)
def test_issue_10069():
eq = abs(1/(x - 1)) - 1 > 0
assert solveset_real(eq, x) == Union(
Interval.open(0, 1), Interval.open(1, 2))
def test_real_imag_splitting():
a, b = symbols('a b', real=True)
assert solveset_real(sqrt(a**2 - b**2) - 3, a) == \
FiniteSet(-sqrt(b**2 + 9), sqrt(b**2 + 9))
assert solveset_real(sqrt(a**2 + b**2) - 3, a) != \
S.EmptySet
def test_units():
assert solveset_real(1/x - 1/(2*cm), x) == FiniteSet(2*cm)
def test_solve_only_exp_1():
y = Symbol('y', positive=True)
assert solveset_real(exp(x) - y, x) == FiniteSet(log(y))
assert solveset_real(exp(x) + exp(-x) - 4, x) == \
FiniteSet(log(-sqrt(3) + 2), log(sqrt(3) + 2))
assert solveset_real(exp(x) + exp(-x) - y, x) != S.EmptySet
def test_atan2():
# The .inverse() method on atan2 works only if x.is_real is True and the
# second argument is a real constant
assert solveset_real(atan2(x, 2) - pi/3, x) == FiniteSet(2*sqrt(3))
def test_piecewise_solveset():
eq = Piecewise((x - 2, Gt(x, 2)), (2 - x, True)) - 3
assert set(solveset_real(eq, x)) == set(FiniteSet(-1, 5))
absxm3 = Piecewise(
(x - 3, 0 <= x - 3),
(3 - x, 0 > x - 3))
y = Symbol('y', positive=True)
assert solveset_real(absxm3 - y, x) == FiniteSet(-y + 3, y + 3)
f = Piecewise(((x - 2)**2, x >= 0), (0, True))
assert solveset(f, x, domain=S.Reals) == Union(FiniteSet(2), Interval(-oo, 0, True, True))
assert solveset(
Piecewise((x + 1, x > 0), (I, True)) - I, x, S.Reals
) == Interval(-oo, 0)
assert solveset(Piecewise((x - 1, Ne(x, I)), (x, True)), x) == FiniteSet(1)
# issue 19718
g = Piecewise((1, x > 10), (0, True))
assert solveset(g > 0, x, S.Reals) == Interval.open(10, oo)
from sympy.logic.boolalg import BooleanTrue
f = BooleanTrue()
assert solveset(f, x, domain=Interval(-3, 10)) == Interval(-3, 10)
# issue 20552
f = Piecewise((0, Eq(x, 0)), (x**2/Abs(x), True))
g = Piecewise((0, Eq(x, pi)), ((x - pi)/sin(x), True))
assert solveset(f, x, domain=S.Reals) == FiniteSet(0)
assert solveset(g) == FiniteSet(pi)
def test_solveset_complex_polynomial():
assert solveset_complex(a*x**2 + b*x + c, x) == \
FiniteSet(-b/(2*a) - sqrt(-4*a*c + b**2)/(2*a),
-b/(2*a) + sqrt(-4*a*c + b**2)/(2*a))
assert solveset_complex(x - y**3, y) == FiniteSet(
(-x**Rational(1, 3))/2 + I*sqrt(3)*x**Rational(1, 3)/2,
x**Rational(1, 3),
(-x**Rational(1, 3))/2 - I*sqrt(3)*x**Rational(1, 3)/2)
assert solveset_complex(x + 1/x - 1, x) == \
FiniteSet(S.Half + I*sqrt(3)/2, S.Half - I*sqrt(3)/2)
def test_sol_zero_complex():
assert solveset_complex(0, x) is S.Complexes
def test_solveset_complex_rational():
assert solveset_complex((x - 1)*(x - I)/(x - 3), x) == \
FiniteSet(1, I)
assert solveset_complex((x - y**3)/((y**2)*sqrt(1 - y**2)), x) == \
FiniteSet(y**3)
assert solveset_complex(-x**2 - I, x) == \
FiniteSet(-sqrt(2)/2 + sqrt(2)*I/2, sqrt(2)/2 - sqrt(2)*I/2)
def test_solve_quintics():
skip("This test is too slow")
f = x**5 - 110*x**3 - 55*x**2 + 2310*x + 979
s = solveset_complex(f, x)
for root in s:
res = f.subs(x, root.n()).n()
assert tn(res, 0)
f = x**5 + 15*x + 12
s = solveset_complex(f, x)
for root in s:
res = f.subs(x, root.n()).n()
assert tn(res, 0)
def test_solveset_complex_exp():
assert dumeq(solveset_complex(exp(x) - 1, x),
imageset(Lambda(n, I*2*n*pi), S.Integers))
assert dumeq(solveset_complex(exp(x) - I, x),
imageset(Lambda(n, I*(2*n*pi + pi/2)), S.Integers))
assert solveset_complex(1/exp(x), x) == S.EmptySet
assert dumeq(solveset_complex(sinh(x).rewrite(exp), x),
imageset(Lambda(n, n*pi*I), S.Integers))
def test_solveset_real_exp():
assert solveset(Eq((-2)**x, 4), x, S.Reals) == FiniteSet(2)
assert solveset(Eq(-2**x, 4), x, S.Reals) == S.EmptySet
assert solveset(Eq((-3)**x, 27), x, S.Reals) == S.EmptySet
assert solveset(Eq((-5)**(x+1), 625), x, S.Reals) == FiniteSet(3)
assert solveset(Eq(2**(x-3), -16), x, S.Reals) == S.EmptySet
assert solveset(Eq((-3)**(x - 3), -3**39), x, S.Reals) == FiniteSet(42)
assert solveset(Eq(2**x, y), x, S.Reals) == Intersection(S.Reals, FiniteSet(log(y)/log(2)))
assert invert_real((-2)**(2*x) - 16, 0, x) == (x, FiniteSet(2))
def test_solve_complex_log():
assert solveset_complex(log(x), x) == FiniteSet(1)
assert solveset_complex(1 - log(a + 4*x**2), x) == \
FiniteSet(-sqrt(-a + E)/2, sqrt(-a + E)/2)
def test_solve_complex_sqrt():
assert solveset_complex(sqrt(5*x + 6) - 2 - x, x) == \
FiniteSet(-S.One, S(2))
assert solveset_complex(sqrt(5*x + 6) - (2 + 2*I) - x, x) == \
FiniteSet(-S(2), 3 - 4*I)
assert solveset_complex(4*x*(1 - a * sqrt(x)), x) == \
FiniteSet(S.Zero, 1 / a ** 2)
def test_solveset_complex_tan():
s = solveset_complex(tan(x).rewrite(exp), x)
assert dumeq(s, imageset(Lambda(n, pi*n), S.Integers) - \
imageset(Lambda(n, pi*n + pi/2), S.Integers))
@_both_exp_pow
def test_solve_trig():
assert dumeq(solveset_real(sin(x), x),
Union(imageset(Lambda(n, 2*pi*n), S.Integers),
imageset(Lambda(n, 2*pi*n + pi), S.Integers)))
assert dumeq(solveset_real(sin(x) - 1, x),
imageset(Lambda(n, 2*pi*n + pi/2), S.Integers))
assert dumeq(solveset_real(cos(x), x),
Union(imageset(Lambda(n, 2*pi*n + pi/2), S.Integers),
imageset(Lambda(n, 2*pi*n + pi*Rational(3, 2)), S.Integers)))
assert dumeq(solveset_real(sin(x) + cos(x), x),
Union(imageset(Lambda(n, 2*n*pi + pi*Rational(3, 4)), S.Integers),
imageset(Lambda(n, 2*n*pi + pi*Rational(7, 4)), S.Integers)))
assert solveset_real(sin(x)**2 + cos(x)**2, x) == S.EmptySet
assert dumeq(solveset_complex(cos(x) - S.Half, x),
Union(imageset(Lambda(n, 2*n*pi + pi*Rational(5, 3)), S.Integers),
imageset(Lambda(n, 2*n*pi + pi/3), S.Integers)))
assert dumeq(solveset(sin(y + a) - sin(y), a, domain=S.Reals),
Union(ImageSet(Lambda(n, 2*n*pi), S.Integers),
Intersection(ImageSet(Lambda(n, -I*(I*(
2*n*pi + arg(-exp(-2*I*y))) +
2*im(y))), S.Integers), S.Reals)))
assert dumeq(solveset_real(sin(2*x)*cos(x) + cos(2*x)*sin(x)-1, x),
ImageSet(Lambda(n, n*pi*Rational(2, 3) + pi/6), S.Integers))
assert dumeq(solveset_real(2*tan(x)*sin(x) + 1, x), Union(
ImageSet(Lambda(n, 2*n*pi + atan(sqrt(2)*sqrt(-1 + sqrt(17))/
(1 - sqrt(17))) + pi), S.Integers),
ImageSet(Lambda(n, 2*n*pi - atan(sqrt(2)*sqrt(-1 + sqrt(17))/
(1 - sqrt(17))) + pi), S.Integers)))
assert dumeq(solveset_real(cos(2*x)*cos(4*x) - 1, x),
ImageSet(Lambda(n, n*pi), S.Integers))
assert dumeq(solveset(sin(x/10) + Rational(3, 4)), Union(
ImageSet(Lambda(n, 20*n*pi + 10*atan(3*sqrt(7)/7) + 10*pi), S.Integers),
ImageSet(Lambda(n, 20*n*pi - 10*atan(3*sqrt(7)/7) + 20*pi), S.Integers)))
assert dumeq(solveset(cos(x/15) + cos(x/5)), Union(
ImageSet(Lambda(n, 30*n*pi + 15*pi/2), S.Integers),
ImageSet(Lambda(n, 30*n*pi + 45*pi/2), S.Integers),
ImageSet(Lambda(n, 30*n*pi + 75*pi/4), S.Integers),
ImageSet(Lambda(n, 30*n*pi + 45*pi/4), S.Integers),
ImageSet(Lambda(n, 30*n*pi + 105*pi/4), S.Integers),
ImageSet(Lambda(n, 30*n*pi + 15*pi/4), S.Integers)))
assert dumeq(solveset(sec(sqrt(2)*x/3) + 5), Union(
ImageSet(Lambda(n, 3*sqrt(2)*(2*n*pi - pi + atan(2*sqrt(6)))/2), S.Integers),
ImageSet(Lambda(n, 3*sqrt(2)*(2*n*pi - atan(2*sqrt(6)) + pi)/2), S.Integers)))
assert dumeq(simplify(solveset(tan(pi*x) - cot(pi/2*x))), Union(
ImageSet(Lambda(n, 4*n + 1), S.Integers),
ImageSet(Lambda(n, 4*n + 3), S.Integers),
ImageSet(Lambda(n, 4*n + Rational(7, 3)), S.Integers),
ImageSet(Lambda(n, 4*n + Rational(5, 3)), S.Integers),
ImageSet(Lambda(n, 4*n + Rational(11, 3)), S.Integers),
ImageSet(Lambda(n, 4*n + Rational(1, 3)), S.Integers)))
assert dumeq(solveset(cos(9*x)), Union(
ImageSet(Lambda(n, 2*n*pi/9 + pi/18), S.Integers),
ImageSet(Lambda(n, 2*n*pi/9 + pi/6), S.Integers)))
assert dumeq(solveset(sin(8*x) + cot(12*x), x, S.Reals), Union(
ImageSet(Lambda(n, n*pi/2 + pi/8), S.Integers),
ImageSet(Lambda(n, n*pi/2 + 3*pi/8), S.Integers),
ImageSet(Lambda(n, n*pi/2 + 5*pi/16), S.Integers),
ImageSet(Lambda(n, n*pi/2 + 3*pi/16), S.Integers),
ImageSet(Lambda(n, n*pi/2 + 7*pi/16), S.Integers),
ImageSet(Lambda(n, n*pi/2 + pi/16), S.Integers)))
# This is the only remaining solveset test that actually ends up being solved
# by _solve_trig2(). All others are handled by the improved _solve_trig1.
assert dumeq(solveset_real(2*cos(x)*cos(2*x) - 1, x),
Union(ImageSet(Lambda(n, 2*n*pi + 2*atan(sqrt(-2*2**Rational(1, 3)*(67 +
9*sqrt(57))**Rational(2, 3) + 8*2**Rational(2, 3) + 11*(67 +
9*sqrt(57))**Rational(1, 3))/(3*(67 + 9*sqrt(57))**Rational(1, 6)))), S.Integers),
ImageSet(Lambda(n, 2*n*pi - 2*atan(sqrt(-2*2**Rational(1, 3)*(67 +
9*sqrt(57))**Rational(2, 3) + 8*2**Rational(2, 3) + 11*(67 +
9*sqrt(57))**Rational(1, 3))/(3*(67 + 9*sqrt(57))**Rational(1, 6))) +
2*pi), S.Integers)))
# issue #16870
assert dumeq(simplify(solveset(sin(x/180*pi) - S.Half, x, S.Reals)), Union(
ImageSet(Lambda(n, 360*n + 150), S.Integers),
ImageSet(Lambda(n, 360*n + 30), S.Integers)))
def test_solve_hyperbolic():
# actual solver: _solve_trig1
n = Dummy('n')
assert solveset(sinh(x) + cosh(x), x) == S.EmptySet
assert solveset(sinh(x) + cos(x), x) == ConditionSet(x,
Eq(cos(x) + sinh(x), 0), S.Complexes)
assert solveset_real(sinh(x) + sech(x), x) == FiniteSet(
log(sqrt(sqrt(5) - 2)))
assert solveset_real(3*cosh(2*x) - 5, x) == FiniteSet(
-log(3)/2, log(3)/2)
assert solveset_real(sinh(x - 3) - 2, x) == FiniteSet(
log((2 + sqrt(5))*exp(3)))
assert solveset_real(cosh(2*x) + 2*sinh(x) - 5, x) == FiniteSet(
log(-2 + sqrt(5)), log(1 + sqrt(2)))
assert solveset_real((coth(x) + sinh(2*x))/cosh(x) - 3, x) == FiniteSet(
log(S.Half + sqrt(5)/2), log(1 + sqrt(2)))
assert solveset_real(cosh(x)*sinh(x) - 2, x) == FiniteSet(
log(4 + sqrt(17))/2)
assert solveset_real(sinh(x) + tanh(x) - 1, x) == FiniteSet(
log(sqrt(2)/2 + sqrt(-S(1)/2 + sqrt(2))))
assert dumeq(solveset_complex(sinh(x) - I/2, x), Union(
ImageSet(Lambda(n, I*(2*n*pi + 5*pi/6)), S.Integers),
ImageSet(Lambda(n, I*(2*n*pi + pi/6)), S.Integers)))
assert dumeq(solveset_complex(sinh(x) + sech(x), x), Union(
ImageSet(Lambda(n, 2*n*I*pi + log(sqrt(-2 + sqrt(5)))), S.Integers),
ImageSet(Lambda(n, I*(2*n*pi + pi/2) + log(sqrt(2 + sqrt(5)))), S.Integers),
ImageSet(Lambda(n, I*(2*n*pi + pi) + log(sqrt(-2 + sqrt(5)))), S.Integers),
ImageSet(Lambda(n, I*(2*n*pi - pi/2) + log(sqrt(2 + sqrt(5)))), S.Integers)))
assert dumeq(solveset(sinh(x/10) + Rational(3, 4)), Union(
ImageSet(Lambda(n, 10*I*(2*n*pi + pi) + 10*log(2)), S.Integers),
ImageSet(Lambda(n, 20*n*I*pi - 10*log(2)), S.Integers)))
assert dumeq(solveset(cosh(x/15) + cosh(x/5)), Union(
ImageSet(Lambda(n, 15*I*(2*n*pi + pi/2)), S.Integers),
ImageSet(Lambda(n, 15*I*(2*n*pi - pi/2)), S.Integers),
ImageSet(Lambda(n, 15*I*(2*n*pi - 3*pi/4)), S.Integers),
ImageSet(Lambda(n, 15*I*(2*n*pi + 3*pi/4)), S.Integers),
ImageSet(Lambda(n, 15*I*(2*n*pi - pi/4)), S.Integers),
ImageSet(Lambda(n, 15*I*(2*n*pi + pi/4)), S.Integers)))
assert dumeq(solveset(sech(sqrt(2)*x/3) + 5), Union(
ImageSet(Lambda(n, 3*sqrt(2)*I*(2*n*pi - pi + atan(2*sqrt(6)))/2), S.Integers),
ImageSet(Lambda(n, 3*sqrt(2)*I*(2*n*pi - atan(2*sqrt(6)) + pi)/2), S.Integers)))
assert dumeq(solveset(tanh(pi*x) - coth(pi/2*x)), Union(
ImageSet(Lambda(n, 2*I*(2*n*pi + pi/2)/pi), S.Integers),
ImageSet(Lambda(n, 2*I*(2*n*pi - pi/2)/pi), S.Integers)))
assert dumeq(solveset(cosh(9*x)), Union(
ImageSet(Lambda(n, I*(2*n*pi + pi/2)/9), S.Integers),
ImageSet(Lambda(n, I*(2*n*pi - pi/2)/9), S.Integers)))
# issues #9606 / #9531:
assert solveset(sinh(x), x, S.Reals) == FiniteSet(0)
assert dumeq(solveset(sinh(x), x, S.Complexes), Union(
ImageSet(Lambda(n, I*(2*n*pi + pi)), S.Integers),
ImageSet(Lambda(n, 2*n*I*pi), S.Integers)))
# issues #11218 / #18427
assert dumeq(solveset(sin(pi*x), x, S.Reals), Union(
ImageSet(Lambda(n, (2*n*pi + pi)/pi), S.Integers),
ImageSet(Lambda(n, 2*n), S.Integers)))
assert dumeq(solveset(sin(pi*x), x), Union(
ImageSet(Lambda(n, (2*n*pi + pi)/pi), S.Integers),
ImageSet(Lambda(n, 2*n), S.Integers)))
# issue #17543
assert dumeq(simplify(solveset(I*cot(8*x - 8*E), x)), Union(
ImageSet(Lambda(n, n*pi/4 - 13*pi/16 + E), S.Integers),
ImageSet(Lambda(n, n*pi/4 - 11*pi/16 + E), S.Integers)))
# issues #18490 / #19489
assert solveset(cosh(x) + cosh(3*x) - cosh(5*x), x, S.Reals
).dummy_eq(ConditionSet(x,
Eq(cosh(x) + cosh(3*x) - cosh(5*x), 0), S.Reals))
assert solveset(sinh(8*x) + coth(12*x)).dummy_eq(
ConditionSet(x, Eq(sinh(8*x) + coth(12*x), 0), S.Complexes))
def test_solve_trig_hyp_symbolic():
# actual solver: _solve_trig1
assert dumeq(solveset(sin(a*x), x), ConditionSet(x, Ne(a, 0), Union(
ImageSet(Lambda(n, (2*n*pi + pi)/a), S.Integers),
ImageSet(Lambda(n, 2*n*pi/a), S.Integers))))
assert dumeq(solveset(cosh(x/a), x), ConditionSet(x, Ne(a, 0), Union(
ImageSet(Lambda(n, I*a*(2*n*pi + pi/2)), S.Integers),
ImageSet(Lambda(n, I*a*(2*n*pi - pi/2)), S.Integers))))
assert dumeq(solveset(sin(2*sqrt(3)/3*a**2/(b*pi)*x)
+ cos(4*sqrt(3)/3*a**2/(b*pi)*x), x),
ConditionSet(x, Ne(b, 0) & Ne(a**2, 0), Union(
ImageSet(Lambda(n, sqrt(3)*pi*b*(2*n*pi + pi/2)/(2*a**2)), S.Integers),
ImageSet(Lambda(n, sqrt(3)*pi*b*(2*n*pi - 5*pi/6)/(2*a**2)), S.Integers),
ImageSet(Lambda(n, sqrt(3)*pi*b*(2*n*pi - pi/6)/(2*a**2)), S.Integers))))
assert dumeq(simplify(solveset(cot((1 + I)*x) - cot((3 + 3*I)*x), x)), Union(
ImageSet(Lambda(n, pi*(1 - I)*(4*n + 1)/4), S.Integers),
ImageSet(Lambda(n, pi*(1 - I)*(4*n - 1)/4), S.Integers)))
assert dumeq(solveset(cosh((a**2 + 1)*x) - 3, x),
ConditionSet(x, Ne(a**2 + 1, 0), Union(
ImageSet(Lambda(n, (2*n*I*pi + log(3 - 2*sqrt(2)))/(a**2 + 1)), S.Integers),
ImageSet(Lambda(n, (2*n*I*pi + log(2*sqrt(2) + 3))/(a**2 + 1)), S.Integers))))
ar = Symbol('ar', real=True)
assert solveset(cosh((ar**2 + 1)*x) - 2, x, S.Reals) == FiniteSet(
log(sqrt(3) + 2)/(ar**2 + 1), log(2 - sqrt(3))/(ar**2 + 1))
def test_issue_9616():
assert dumeq(solveset(sinh(x) + tanh(x) - 1, x), Union(
ImageSet(Lambda(n, 2*n*I*pi + log(sqrt(2)/2 + sqrt(-S.Half + sqrt(2)))), S.Integers),
ImageSet(Lambda(n, I*(2*n*pi - atan(sqrt(2)*sqrt(S.Half + sqrt(2))) + pi)
+ log(sqrt(1 + sqrt(2)))), S.Integers),
ImageSet(Lambda(n, I*(2*n*pi + pi) + log(-sqrt(2)/2 + sqrt(-S.Half + sqrt(2)))), S.Integers),
ImageSet(Lambda(n, I*(2*n*pi - pi + atan(sqrt(2)*sqrt(S.Half + sqrt(2))))
+ log(sqrt(1 + sqrt(2)))), S.Integers)))
f1 = (sinh(x)).rewrite(exp)
f2 = (tanh(x)).rewrite(exp)
assert dumeq(solveset(f1 + f2 - 1, x), Union(
Complement(ImageSet(
Lambda(n, I*(2*n*pi + pi) + log(-sqrt(2)/2 + sqrt(-S.Half + sqrt(2)))), S.Integers),
ImageSet(Lambda(n, I*(2*n*pi + pi)/2), S.Integers)),
Complement(ImageSet(Lambda(n, I*(2*n*pi - pi + atan(sqrt(2)*sqrt(S.Half + sqrt(2))))
+ log(sqrt(1 + sqrt(2)))), S.Integers),
ImageSet(Lambda(n, I*(2*n*pi + pi)/2), S.Integers)),
Complement(ImageSet(Lambda(n, I*(2*n*pi - atan(sqrt(2)*sqrt(S.Half + sqrt(2))) + pi)
+ log(sqrt(1 + sqrt(2)))), S.Integers),
ImageSet(Lambda(n, I*(2*n*pi + pi)/2), S.Integers)),
Complement(
ImageSet(Lambda(n, 2*n*I*pi + log(sqrt(2)/2 + sqrt(-S.Half + sqrt(2)))), S.Integers),
ImageSet(Lambda(n, I*(2*n*pi + pi)/2), S.Integers))))
def test_solve_invalid_sol():
assert 0 not in solveset_real(sin(x)/x, x)
assert 0 not in solveset_complex((exp(x) - 1)/x, x)
@XFAIL
def test_solve_trig_simplified():
n = Dummy('n')
assert dumeq(solveset_real(sin(x), x),
imageset(Lambda(n, n*pi), S.Integers))
assert dumeq(solveset_real(cos(x), x),
imageset(Lambda(n, n*pi + pi/2), S.Integers))
assert dumeq(solveset_real(cos(x) + sin(x), x),
imageset(Lambda(n, n*pi - pi/4), S.Integers))
@XFAIL
def test_solve_lambert():
assert solveset_real(x*exp(x) - 1, x) == FiniteSet(LambertW(1))
assert solveset_real(exp(x) + x, x) == FiniteSet(-LambertW(1))
assert solveset_real(x + 2**x, x) == \
FiniteSet(-LambertW(log(2))/log(2))
# issue 4739
ans = solveset_real(3*x + 5 + 2**(-5*x + 3), x)
assert ans == FiniteSet(Rational(-5, 3) +
LambertW(-10240*2**Rational(1, 3)*log(2)/3)/(5*log(2)))
eq = 2*(3*x + 4)**5 - 6*7**(3*x + 9)
result = solveset_real(eq, x)
ans = FiniteSet((log(2401) +
5*LambertW(-log(7**(7*3**Rational(1, 5)/5))))/(3*log(7))/-1)
assert result == ans
assert solveset_real(eq.expand(), x) == result
assert solveset_real(5*x - 1 + 3*exp(2 - 7*x), x) == \
FiniteSet(Rational(1, 5) + LambertW(-21*exp(Rational(3, 5))/5)/7)
assert solveset_real(2*x + 5 + log(3*x - 2), x) == \
FiniteSet(Rational(2, 3) + LambertW(2*exp(Rational(-19, 3))/3)/2)
assert solveset_real(3*x + log(4*x), x) == \
FiniteSet(LambertW(Rational(3, 4))/3)
assert solveset_real(x**x - 2) == FiniteSet(exp(LambertW(log(2))))
a = Symbol('a')
assert solveset_real(-a*x + 2*x*log(x), x) == FiniteSet(exp(a/2))
a = Symbol('a', real=True)
assert solveset_real(a/x + exp(x/2), x) == \
FiniteSet(2*LambertW(-a/2))
assert solveset_real((a/x + exp(x/2)).diff(x), x) == \
FiniteSet(4*LambertW(sqrt(2)*sqrt(a)/4))
# coverage test
assert solveset_real(tanh(x + 3)*tanh(x - 3) - 1, x) is S.EmptySet
assert solveset_real((x**2 - 2*x + 1).subs(x, log(x) + 3*x), x) == \
FiniteSet(LambertW(3*S.Exp1)/3)
assert solveset_real((x**2 - 2*x + 1).subs(x, (log(x) + 3*x)**2 - 1), x) == \
FiniteSet(LambertW(3*exp(-sqrt(2)))/3, LambertW(3*exp(sqrt(2)))/3)
assert solveset_real((x**2 - 2*x - 2).subs(x, log(x) + 3*x), x) == \
FiniteSet(LambertW(3*exp(1 + sqrt(3)))/3, LambertW(3*exp(-sqrt(3) + 1))/3)
assert solveset_real(x*log(x) + 3*x + 1, x) == \
FiniteSet(exp(-3 + LambertW(-exp(3))))
eq = (x*exp(x) - 3).subs(x, x*exp(x))
assert solveset_real(eq, x) == \
FiniteSet(LambertW(3*exp(-LambertW(3))))
assert solveset_real(3*log(a**(3*x + 5)) + a**(3*x + 5), x) == \
FiniteSet(-((log(a**5) + LambertW(Rational(1, 3)))/(3*log(a))))
p = symbols('p', positive=True)
assert solveset_real(3*log(p**(3*x + 5)) + p**(3*x + 5), x) == \
FiniteSet(
log((-3**Rational(1, 3) - 3**Rational(5, 6)*I)*LambertW(Rational(1, 3))**Rational(1, 3)/(2*p**Rational(5, 3)))/log(p),
log((-3**Rational(1, 3) + 3**Rational(5, 6)*I)*LambertW(Rational(1, 3))**Rational(1, 3)/(2*p**Rational(5, 3)))/log(p),
log((3*LambertW(Rational(1, 3))/p**5)**(1/(3*log(p)))),) # checked numerically
# check collection
b = Symbol('b')
eq = 3*log(a**(3*x + 5)) + b*log(a**(3*x + 5)) + a**(3*x + 5)
assert solveset_real(eq, x) == FiniteSet(
-((log(a**5) + LambertW(1/(b + 3)))/(3*log(a))))
# issue 4271
assert solveset_real((a/x + exp(x/2)).diff(x, 2), x) == FiniteSet(
6*LambertW((-1)**Rational(1, 3)*a**Rational(1, 3)/3))
assert solveset_real(x**3 - 3**x, x) == \
FiniteSet(-3/log(3)*LambertW(-log(3)/3))
assert solveset_real(3**cos(x) - cos(x)**3) == FiniteSet(
acos(-3*LambertW(-log(3)/3)/log(3)))
assert solveset_real(x**2 - 2**x, x) == \
solveset_real(-x**2 + 2**x, x)
assert solveset_real(3*log(x) - x*log(3)) == FiniteSet(
-3*LambertW(-log(3)/3)/log(3),
-3*LambertW(-log(3)/3, -1)/log(3))
assert solveset_real(LambertW(2*x) - y) == FiniteSet(
y*exp(y)/2)
@XFAIL
def test_other_lambert():
a = Rational(6, 5)
assert solveset_real(x**a - a**x, x) == FiniteSet(
a, -a*LambertW(-log(a)/a)/log(a))
@_both_exp_pow
def test_solveset():
f = Function('f')
raises(ValueError, lambda: solveset(x + y))
assert solveset(x, 1) == S.EmptySet
assert solveset(f(1)**2 + y + 1, f(1)
) == FiniteSet(-sqrt(-y - 1), sqrt(-y - 1))
assert solveset(f(1)**2 - 1, f(1), S.Reals) == FiniteSet(-1, 1)
assert solveset(f(1)**2 + 1, f(1)) == FiniteSet(-I, I)
assert solveset(x - 1, 1) == FiniteSet(x)
assert solveset(sin(x) - cos(x), sin(x)) == FiniteSet(cos(x))
assert solveset(0, domain=S.Reals) == S.Reals
assert solveset(1) == S.EmptySet
assert solveset(True, domain=S.Reals) == S.Reals # issue 10197
assert solveset(False, domain=S.Reals) == S.EmptySet
assert solveset(exp(x) - 1, domain=S.Reals) == FiniteSet(0)
assert solveset(exp(x) - 1, x, S.Reals) == FiniteSet(0)
assert solveset(Eq(exp(x), 1), x, S.Reals) == FiniteSet(0)
assert solveset(exp(x) - 1, exp(x), S.Reals) == FiniteSet(1)
A = Indexed('A', x)
assert solveset(A - 1, A, S.Reals) == FiniteSet(1)
assert solveset(x - 1 >= 0, x, S.Reals) == Interval(1, oo)
assert solveset(exp(x) - 1 >= 0, x, S.Reals) == Interval(0, oo)
assert dumeq(solveset(exp(x) - 1, x), imageset(Lambda(n, 2*I*pi*n), S.Integers))
assert dumeq(solveset(Eq(exp(x), 1), x), imageset(Lambda(n, 2*I*pi*n),
S.Integers))
# issue 13825
assert solveset(x**2 + f(0) + 1, x) == {-sqrt(-f(0) - 1), sqrt(-f(0) - 1)}
# issue 19977
assert solveset(atan(log(x)) > 0, x, domain=Interval.open(0, oo)) == Interval.open(1, oo)
@_both_exp_pow
def test_multi_exp():
k1, k2, k3 = symbols('k1, k2, k3')
assert dumeq(solveset(exp(exp(x)) - 5, x),\
imageset(Lambda(((k1, n),), I*(2*k1*pi + arg(2*n*I*pi + log(5))) + log(Abs(2*n*I*pi + log(5)))),\
ProductSet(S.Integers, S.Integers)))
assert dumeq(solveset((d*exp(exp(a*x + b)) + c), x),\
imageset(Lambda(x, (-b + x)/a), ImageSet(Lambda(((k1, n),), \
I*(2*k1*pi + arg(I*(2*n*pi + arg(-c/d)) + log(Abs(c/d)))) + log(Abs(I*(2*n*pi + arg(-c/d)) + log(Abs(c/d))))), \
ProductSet(S.Integers, S.Integers))))
assert dumeq(solveset((d*exp(exp(exp(a*x + b))) + c), x),\
imageset(Lambda(x, (-b + x)/a), ImageSet(Lambda(((k2, k1, n),), \
I*(2*k2*pi + arg(I*(2*k1*pi + arg(I*(2*n*pi + arg(-c/d)) + log(Abs(c/d)))) + \
log(Abs(I*(2*n*pi + arg(-c/d)) + log(Abs(c/d)))))) + log(Abs(I*(2*k1*pi + arg(I*(2*n*pi + arg(-c/d)) + \
log(Abs(c/d)))) + log(Abs(I*(2*n*pi + arg(-c/d)) + log(Abs(c/d))))))), \
ProductSet(S.Integers, S.Integers, S.Integers))))
assert dumeq(solveset((d*exp(exp(exp(exp(a*x + b)))) + c), x),\
ImageSet(Lambda(x, (-b + x)/a), ImageSet(Lambda(((k3, k2, k1, n),), \
I*(2*k3*pi + arg(I*(2*k2*pi + arg(I*(2*k1*pi + arg(I*(2*n*pi + arg(-c/d)) + log(Abs(c/d)))) + \
log(Abs(I*(2*n*pi + arg(-c/d)) + log(Abs(c/d)))))) + log(Abs(I*(2*k1*pi + arg(I*(2*n*pi + arg(-c/d)) + \
log(Abs(c/d)))) + log(Abs(I*(2*n*pi + arg(-c/d)) + log(Abs(c/d)))))))) + log(Abs(I*(2*k2*pi + \
arg(I*(2*k1*pi + arg(I*(2*n*pi + arg(-c/d)) + log(Abs(c/d)))) + log(Abs(I*(2*n*pi + arg(-c/d)) + log(Abs(c/d)))))) + \
log(Abs(I*(2*k1*pi + arg(I*(2*n*pi + arg(-c/d)) + log(Abs(c/d)))) + log(Abs(I*(2*n*pi + arg(-c/d)) + log(Abs(c/d))))))))), \
ProductSet(S.Integers, S.Integers, S.Integers, S.Integers))))
def test__solveset_multi():
from sympy.solvers.solveset import _solveset_multi
from sympy.sets import Reals
# Basic univariate case:
assert _solveset_multi([x**2-1], [x], [S.Reals]) == FiniteSet((1,), (-1,))
# Linear systems of two equations
assert _solveset_multi([x+y, x+1], [x, y], [Reals, Reals]) == FiniteSet((-1, 1))
assert _solveset_multi([x+y, x+1], [y, x], [Reals, Reals]) == FiniteSet((1, -1))
assert _solveset_multi([x+y, x-y-1], [x, y], [Reals, Reals]) == FiniteSet((S(1)/2, -S(1)/2))
assert _solveset_multi([x-1, y-2], [x, y], [Reals, Reals]) == FiniteSet((1, 2))
# assert dumeq(_solveset_multi([x+y], [x, y], [Reals, Reals]), ImageSet(Lambda(x, (x, -x)), Reals))
assert dumeq(_solveset_multi([x+y], [x, y], [Reals, Reals]), Union(
ImageSet(Lambda(((x,),), (x, -x)), ProductSet(Reals)),
ImageSet(Lambda(((y,),), (-y, y)), ProductSet(Reals))))
assert _solveset_multi([x+y, x+y+1], [x, y], [Reals, Reals]) == S.EmptySet
assert _solveset_multi([x+y, x-y, x-1], [x, y], [Reals, Reals]) == S.EmptySet
assert _solveset_multi([x+y, x-y, x-1], [y, x], [Reals, Reals]) == S.EmptySet
# Systems of three equations:
assert _solveset_multi([x+y+z-1, x+y-z-2, x-y-z-3], [x, y, z], [Reals,
Reals, Reals]) == FiniteSet((2, -S.Half, -S.Half))
# Nonlinear systems:
from sympy.abc import theta
assert _solveset_multi([x**2+y**2-2, x+y], [x, y], [Reals, Reals]) == FiniteSet((-1, 1), (1, -1))
assert _solveset_multi([x**2-1, y], [x, y], [Reals, Reals]) == FiniteSet((1, 0), (-1, 0))
#assert _solveset_multi([x**2-y**2], [x, y], [Reals, Reals]) == Union(
# ImageSet(Lambda(x, (x, -x)), Reals), ImageSet(Lambda(x, (x, x)), Reals))
assert dumeq(_solveset_multi([x**2-y**2], [x, y], [Reals, Reals]), Union(
ImageSet(Lambda(((x,),), (x, -Abs(x))), ProductSet(Reals)),
ImageSet(Lambda(((x,),), (x, Abs(x))), ProductSet(Reals)),
ImageSet(Lambda(((y,),), (-Abs(y), y)), ProductSet(Reals)),
ImageSet(Lambda(((y,),), (Abs(y), y)), ProductSet(Reals))))
assert _solveset_multi([r*cos(theta)-1, r*sin(theta)], [theta, r],
[Interval(0, pi), Interval(-1, 1)]) == FiniteSet((0, 1), (pi, -1))
assert _solveset_multi([r*cos(theta)-1, r*sin(theta)], [r, theta],
[Interval(0, 1), Interval(0, pi)]) == FiniteSet((1, 0))
#assert _solveset_multi([r*cos(theta)-r, r*sin(theta)], [r, theta],
# [Interval(0, 1), Interval(0, pi)]) == ?
assert dumeq(_solveset_multi([r*cos(theta)-r, r*sin(theta)], [r, theta],
[Interval(0, 1), Interval(0, pi)]), Union(
ImageSet(Lambda(((r,),), (r, 0)), ImageSet(Lambda(r, (r,)), Interval(0, 1))),
ImageSet(Lambda(((theta,),), (0, theta)), ImageSet(Lambda(theta, (theta,)), Interval(0, pi)))))
def test_conditionset():
assert solveset(Eq(sin(x)**2 + cos(x)**2, 1), x, domain=S.Reals
) is S.Reals
assert solveset(Eq(x**2 + x*sin(x), 1), x, domain=S.Reals
).dummy_eq(ConditionSet(x, Eq(x**2 + x*sin(x) - 1, 0), S.Reals))
assert dumeq(solveset(Eq(-I*(exp(I*x) - exp(-I*x))/2, 1), x
), imageset(Lambda(n, 2*n*pi + pi/2), S.Integers))
assert solveset(x + sin(x) > 1, x, domain=S.Reals
).dummy_eq(ConditionSet(x, x + sin(x) > 1, S.Reals))
assert solveset(Eq(sin(Abs(x)), x), x, domain=S.Reals
).dummy_eq(ConditionSet(x, Eq(-x + sin(Abs(x)), 0), S.Reals))
assert solveset(y**x-z, x, S.Reals
).dummy_eq(ConditionSet(x, Eq(y**x - z, 0), S.Reals))
@XFAIL
def test_conditionset_equality():
''' Checking equality of different representations of ConditionSet'''
assert solveset(Eq(tan(x), y), x) == ConditionSet(x, Eq(tan(x), y), S.Complexes)
def test_solveset_domain():
assert solveset(x**2 - x - 6, x, Interval(0, oo)) == FiniteSet(3)
assert solveset(x**2 - 1, x, Interval(0, oo)) == FiniteSet(1)
assert solveset(x**4 - 16, x, Interval(0, 10)) == FiniteSet(2)
def test_improve_coverage():
solution = solveset(exp(x) + sin(x), x, S.Reals)
unsolved_object = ConditionSet(x, Eq(exp(x) + sin(x), 0), S.Reals)
assert solution.dummy_eq(unsolved_object)
def test_issue_9522():
expr1 = Eq(1/(x**2 - 4) + x, 1/(x**2 - 4) + 2)
expr2 = Eq(1/x + x, 1/x)
assert solveset(expr1, x, S.Reals) is S.EmptySet
assert solveset(expr2, x, S.Reals) is S.EmptySet
def test_solvify():
assert solvify(x**2 + 10, x, S.Reals) == []
assert solvify(x**3 + 1, x, S.Complexes) == [-1, S.Half - sqrt(3)*I/2,
S.Half + sqrt(3)*I/2]
assert solvify(log(x), x, S.Reals) == [1]
assert solvify(cos(x), x, S.Reals) == [pi/2, pi*Rational(3, 2)]
assert solvify(sin(x) + 1, x, S.Reals) == [pi*Rational(3, 2)]
raises(NotImplementedError, lambda: solvify(sin(exp(x)), x, S.Complexes))
def test_solvify_piecewise():
p1 = Piecewise((0, x < -1), (x**2, x <= 1), (log(x), True))
p2 = Piecewise((0, x < -10), (x**2 + 5*x - 6, x >= -9))
p3 = Piecewise((0, Eq(x, 0)), (x**2/Abs(x), True))
p4 = Piecewise((0, Eq(x, pi)), ((x - pi)/sin(x), True))
# issue 21079
assert solvify(p1, x, S.Reals) == [0]
assert solvify(p2, x, S.Reals) == [-6, 1]
assert solvify(p3, x, S.Reals) == [0]
assert solvify(p4, x, S.Reals) == [pi]
def test_abs_invert_solvify():
x = Symbol('x',positive=True)
assert solvify(sin(Abs(x)), x, S.Reals) == [0, pi]
x = Symbol('x')
assert solvify(sin(Abs(x)), x, S.Reals) is None
def test_linear_eq_to_matrix():
assert linear_eq_to_matrix(0, x) == (Matrix([[0]]), Matrix([[0]]))
assert linear_eq_to_matrix(1, x) == (Matrix([[0]]), Matrix([[-1]]))
# integer coefficients
eqns1 = [2*x + y - 2*z - 3, x - y - z, x + y + 3*z - 12]
eqns2 = [Eq(3*x + 2*y - z, 1), Eq(2*x - 2*y + 4*z, -2), -2*x + y - 2*z]
A, B = linear_eq_to_matrix(eqns1, x, y, z)
assert A == Matrix([[2, 1, -2], [1, -1, -1], [1, 1, 3]])
assert B == Matrix([[3], [0], [12]])
A, B = linear_eq_to_matrix(eqns2, x, y, z)
assert A == Matrix([[3, 2, -1], [2, -2, 4], [-2, 1, -2]])
assert B == Matrix([[1], [-2], [0]])
# Pure symbolic coefficients
eqns3 = [a*b*x + b*y + c*z - d, e*x + d*x + f*y + g*z - h, i*x + j*y + k*z - l]
A, B = linear_eq_to_matrix(eqns3, x, y, z)
assert A == Matrix([[a*b, b, c], [d + e, f, g], [i, j, k]])
assert B == Matrix([[d], [h], [l]])
# raise Errors if
# 1) no symbols are given
raises(ValueError, lambda: linear_eq_to_matrix(eqns3))
# 2) there are duplicates
raises(ValueError, lambda: linear_eq_to_matrix(eqns3, [x, x, y]))
# 3) a nonlinear term is detected in the original expression
raises(NonlinearError, lambda: linear_eq_to_matrix(Eq(1/x + x, 1/x), [x]))
raises(NonlinearError, lambda: linear_eq_to_matrix([x**2], [x]))
raises(NonlinearError, lambda: linear_eq_to_matrix([x*y], [x, y]))
# 4) Eq being used to represent equations autoevaluates
# (use unevaluated Eq instead)
raises(ValueError, lambda: linear_eq_to_matrix(Eq(x, x), x))
raises(ValueError, lambda: linear_eq_to_matrix(Eq(x, x + 1), x))
# if non-symbols are passed, the user is responsible for interpreting
assert linear_eq_to_matrix([x], [1/x]) == (Matrix([[0]]), Matrix([[-x]]))
# issue 15195
assert linear_eq_to_matrix(x + y*(z*(3*x + 2) + 3), x) == (
Matrix([[3*y*z + 1]]), Matrix([[-y*(2*z + 3)]]))
assert linear_eq_to_matrix(Matrix(
[[a*x + b*y - 7], [5*x + 6*y - c]]), x, y) == (
Matrix([[a, b], [5, 6]]), Matrix([[7], [c]]))
# issue 15312
assert linear_eq_to_matrix(Eq(x + 2, 1), x) == (
Matrix([[1]]), Matrix([[-1]]))
def test_issue_16577():
assert linear_eq_to_matrix(Eq(a*(2*x + 3*y) + 4*y, 5), x, y) == (
Matrix([[2*a, 3*a + 4]]), Matrix([[5]]))
def test_issue_10085():
assert invert_real(exp(x),0,x) == (x, S.EmptySet)
def test_linsolve():
x1, x2, x3, x4 = symbols('x1, x2, x3, x4')
# Test for different input forms
M = Matrix([[1, 2, 1, 1, 7], [1, 2, 2, -1, 12], [2, 4, 0, 6, 4]])
system1 = A, B = M[:, :-1], M[:, -1]
Eqns = [x1 + 2*x2 + x3 + x4 - 7, x1 + 2*x2 + 2*x3 - x4 - 12,
2*x1 + 4*x2 + 6*x4 - 4]
sol = FiniteSet((-2*x2 - 3*x4 + 2, x2, 2*x4 + 5, x4))
assert linsolve(Eqns, (x1, x2, x3, x4)) == sol
assert linsolve(Eqns, *(x1, x2, x3, x4)) == sol
assert linsolve(system1, (x1, x2, x3, x4)) == sol
assert linsolve(system1, *(x1, x2, x3, x4)) == sol
# issue 9667 - symbols can be Dummy symbols
x1, x2, x3, x4 = symbols('x:4', cls=Dummy)
assert linsolve(system1, x1, x2, x3, x4) == FiniteSet(
(-2*x2 - 3*x4 + 2, x2, 2*x4 + 5, x4))
# raise ValueError for garbage value
raises(ValueError, lambda: linsolve(Eqns))
raises(ValueError, lambda: linsolve(x1))
raises(ValueError, lambda: linsolve(x1, x2))
raises(ValueError, lambda: linsolve((A,), x1, x2))
raises(ValueError, lambda: linsolve(A, B, x1, x2))
raises(ValueError, lambda: linsolve([x1], x1, x1))
raises(ValueError, lambda: linsolve([x1], (i for i in (x1, x1))))
#raise ValueError if equations are non-linear in given variables
raises(NonlinearError, lambda: linsolve([x + y - 1, x ** 2 + y - 3], [x, y]))
raises(NonlinearError, lambda: linsolve([cos(x) + y, x + y], [x, y]))
assert linsolve([x + z - 1, x ** 2 + y - 3], [z, y]) == {(-x + 1, -x**2 + 3)}
# Fully symbolic test
A = Matrix([[a, b], [c, d]])
B = Matrix([[e], [g]])
system2 = (A, B)
sol = FiniteSet(((-b*g + d*e)/(a*d - b*c), (a*g - c*e)/(a*d - b*c)))
assert linsolve(system2, [x, y]) == sol
# No solution
A = Matrix([[1, 2, 3], [2, 4, 6], [3, 6, 9]])
B = Matrix([0, 0, 1])
assert linsolve((A, B), (x, y, z)) is S.EmptySet
# Issue #10056
A, B, J1, J2 = symbols('A B J1 J2')
Augmatrix = Matrix([
[2*I*J1, 2*I*J2, -2/J1],
[-2*I*J2, -2*I*J1, 2/J2],
[0, 2, 2*I/(J1*J2)],
[2, 0, 0],
])
assert linsolve(Augmatrix, A, B) == FiniteSet((0, I/(J1*J2)))
# Issue #10121 - Assignment of free variables
Augmatrix = Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0]])
assert linsolve(Augmatrix, a, b, c, d, e) == FiniteSet((a, 0, c, 0, e))
#raises(IndexError, lambda: linsolve(Augmatrix, a, b, c))
x0, x1, x2, _x0 = symbols('tau0 tau1 tau2 _tau0')
assert linsolve(Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, _x0]])
) == FiniteSet((x0, 0, x1, _x0, x2))
x0, x1, x2, _x0 = symbols('tau00 tau01 tau02 tau0')
assert linsolve(Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, _x0]])
) == FiniteSet((x0, 0, x1, _x0, x2))
x0, x1, x2, _x0 = symbols('tau00 tau01 tau02 tau1')
assert linsolve(Matrix([[0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, _x0]])
) == FiniteSet((x0, 0, x1, _x0, x2))
# symbols can be given as generators
x0, x2, x4 = symbols('x0, x2, x4')
assert linsolve(Augmatrix, numbered_symbols('x')
) == FiniteSet((x0, 0, x2, 0, x4))
Augmatrix[-1, -1] = x0
# use Dummy to avoid clash; the names may clash but the symbols
# will not
Augmatrix[-1, -1] = symbols('_x0')
assert len(linsolve(
Augmatrix, numbered_symbols('x', cls=Dummy)).free_symbols) == 4
# Issue #12604
f = Function('f')
assert linsolve([f(x) - 5], f(x)) == FiniteSet((5,))
# Issue #14860
from sympy.physics.units import meter, newton, kilo
kN = kilo*newton
Eqns = [8*kN + x + y, 28*kN*meter + 3*x*meter]
assert linsolve(Eqns, x, y) == {
(kilo*newton*Rational(-28, 3), kN*Rational(4, 3))}
# linsolve does not allow expansion (real or implemented)
# to remove singularities, but it will cancel linear terms
assert linsolve([Eq(x, x + y)], [x, y]) == {(x, 0)}
assert linsolve([Eq(x + x*y, 1 + y)], [x]) == {(1,)}
assert linsolve([Eq(1 + y, x + x*y)], [x]) == {(1,)}
raises(NonlinearError, lambda:
linsolve([Eq(x**2, x**2 + y)], [x, y]))
# corner cases
#
# XXX: The case below should give the same as for [0]
# assert linsolve([], [x]) == {(x,)}
assert linsolve([], [x]) is S.EmptySet
assert linsolve([0], [x]) == {(x,)}
assert linsolve([x], [x, y]) == {(0, y)}
assert linsolve([x, 0], [x, y]) == {(0, y)}
def test_linsolve_large_sparse():
#
# This is mainly a performance test
#
def _mk_eqs_sol(n):
xs = symbols('x:{}'.format(n))
ys = symbols('y:{}'.format(n))
syms = xs + ys
eqs = []
sol = (-S.Half,) * n + (S.Half,) * n
for xi, yi in zip(xs, ys):
eqs.extend([xi + yi, xi - yi + 1])
return eqs, syms, FiniteSet(sol)
n = 500
eqs, syms, sol = _mk_eqs_sol(n)
assert linsolve(eqs, syms) == sol
def test_linsolve_immutable():
A = ImmutableDenseMatrix([[1, 1, 2], [0, 1, 2], [0, 0, 1]])
B = ImmutableDenseMatrix([2, 1, -1])
assert linsolve([A, B], (x, y, z)) == FiniteSet((1, 3, -1))
A = ImmutableDenseMatrix([[1, 1, 7], [1, -1, 3]])
assert linsolve(A) == FiniteSet((5, 2))
def test_solve_decomposition():
n = Dummy('n')
f1 = exp(3*x) - 6*exp(2*x) + 11*exp(x) - 6
f2 = sin(x)**2 - 2*sin(x) + 1
f3 = sin(x)**2 - sin(x)
f4 = sin(x + 1)
f5 = exp(x + 2) - 1
f6 = 1/log(x)
f7 = 1/x
s1 = ImageSet(Lambda(n, 2*n*pi), S.Integers)
s2 = ImageSet(Lambda(n, 2*n*pi + pi), S.Integers)
s3 = ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers)
s4 = ImageSet(Lambda(n, 2*n*pi - 1), S.Integers)
s5 = ImageSet(Lambda(n, 2*n*pi - 1 + pi), S.Integers)
assert solve_decomposition(f1, x, S.Reals) == FiniteSet(0, log(2), log(3))
assert dumeq(solve_decomposition(f2, x, S.Reals), s3)
assert dumeq(solve_decomposition(f3, x, S.Reals), Union(s1, s2, s3))
assert dumeq(solve_decomposition(f4, x, S.Reals), Union(s4, s5))
assert solve_decomposition(f5, x, S.Reals) == FiniteSet(-2)
assert solve_decomposition(f6, x, S.Reals) == S.EmptySet
assert solve_decomposition(f7, x, S.Reals) == S.EmptySet
assert solve_decomposition(x, x, Interval(1, 2)) == S.EmptySet
# nonlinsolve testcases
def test_nonlinsolve_basic():
assert nonlinsolve([],[]) == S.EmptySet
assert nonlinsolve([],[x, y]) == S.EmptySet
system = [x, y - x - 5]
assert nonlinsolve([x],[x, y]) == FiniteSet((0, y))
assert nonlinsolve(system, [y]) == S.EmptySet
soln = (ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers),)
assert dumeq(nonlinsolve([sin(x) - 1], [x]), FiniteSet(tuple(soln)))
soln = ((ImageSet(Lambda(n, 2*n*pi + pi), S.Integers), FiniteSet(1)),
(ImageSet(Lambda(n, 2*n*pi), S.Integers), FiniteSet(1,)))
assert dumeq(nonlinsolve([sin(x), y - 1], [x, y]), FiniteSet(*soln))
assert nonlinsolve([x**2 - 1], [x]) == FiniteSet((-1,), (1,))
soln = FiniteSet((y, y))
assert nonlinsolve([x - y, 0], x, y) == soln
assert nonlinsolve([0, x - y], x, y) == soln
assert nonlinsolve([x - y, x - y], x, y) == soln
assert nonlinsolve([x, 0], x, y) == FiniteSet((0, y))
f = Function('f')
assert nonlinsolve([f(x), 0], f(x), y) == FiniteSet((0, y))
assert nonlinsolve([f(x), 0], f(x), f(y)) == FiniteSet((0, f(y)))
A = Indexed('A', x)
assert nonlinsolve([A, 0], A, y) == FiniteSet((0, y))
assert nonlinsolve([x**2 -1], [sin(x)]) == FiniteSet((S.EmptySet,))
assert nonlinsolve([x**2 -1], sin(x)) == FiniteSet((S.EmptySet,))
assert nonlinsolve([x**2 -1], 1) == FiniteSet((x**2,))
assert nonlinsolve([x**2 -1], x + y) == FiniteSet((S.EmptySet,))
assert nonlinsolve([Eq(1, x + y), Eq(1, -x + y - 1), Eq(1, -x + y - 1)], x, y) == FiniteSet(
(-S.Half, 3*S.Half))
def test_nonlinsolve_abs():
soln = FiniteSet((y, y), (-y, y))
assert nonlinsolve([Abs(x) - y], x, y) == soln
def test_raise_exception_nonlinsolve():
raises(IndexError, lambda: nonlinsolve([x**2 -1], []))
raises(ValueError, lambda: nonlinsolve([x**2 -1]))
def test_trig_system():
# TODO: add more simple testcases when solveset returns
# simplified soln for Trig eq
assert nonlinsolve([sin(x) - 1, cos(x) -1 ], x) == S.EmptySet
soln1 = (ImageSet(Lambda(n, 2*n*pi + pi/2), S.Integers),)
soln = FiniteSet(soln1)
assert dumeq(nonlinsolve([sin(x) - 1, cos(x)], x), soln)
@XFAIL
def test_trig_system_fail():
# fails because solveset trig solver is not much smart.
sys = [x + y - pi/2, sin(x) + sin(y) - 1]
# solveset returns conditionset for sin(x) + sin(y) - 1
soln_1 = (ImageSet(Lambda(n, n*pi + pi/2), S.Integers),
ImageSet(Lambda(n, n*pi), S.Integers))
soln_1 = FiniteSet(soln_1)
soln_2 = (ImageSet(Lambda(n, n*pi), S.Integers),
ImageSet(Lambda(n, n*pi+ pi/2), S.Integers))
soln_2 = FiniteSet(soln_2)
soln = soln_1 + soln_2
assert dumeq(nonlinsolve(sys, [x, y]), soln)
# Add more cases from here
# http://www.vitutor.com/geometry/trigonometry/equations_systems.html#uno
sys = [sin(x) + sin(y) - (sqrt(3)+1)/2, sin(x) - sin(y) - (sqrt(3) - 1)/2]
soln_x = Union(ImageSet(Lambda(n, 2*n*pi + pi/3), S.Integers),
ImageSet(Lambda(n, 2*n*pi + pi*Rational(2, 3)), S.Integers))
soln_y = Union(ImageSet(Lambda(n, 2*n*pi + pi/6), S.Integers),
ImageSet(Lambda(n, 2*n*pi + pi*Rational(5, 6)), S.Integers))
assert dumeq(nonlinsolve(sys, [x, y]), FiniteSet((soln_x, soln_y)))
def test_nonlinsolve_positive_dimensional():
x, y, a, b, c, d = symbols('x, y, a, b, c, d', extended_real=True)
assert nonlinsolve([x*y, x*y - x], [x, y]) == FiniteSet((0, y))
system = [a**2 + a*c, a - b]
assert nonlinsolve(system, [a, b]) == FiniteSet((0, 0), (-c, -c))
# here (a= 0, b = 0) is independent soln so both is printed.
# if symbols = [a, b, c] then only {a : -c ,b : -c}
eq1 = a + b + c + d
eq2 = a*b + b*c + c*d + d*a
eq3 = a*b*c + b*c*d + c*d*a + d*a*b
eq4 = a*b*c*d - 1
system = [eq1, eq2, eq3, eq4]
sol1 = (-1/d, -d, 1/d, FiniteSet(d) - FiniteSet(0))
sol2 = (1/d, -d, -1/d, FiniteSet(d) - FiniteSet(0))
soln = FiniteSet(sol1, sol2)
assert nonlinsolve(system, [a, b, c, d]) == soln
assert nonlinsolve([x**4 - 3*x**2 + y*x, x*z**2, y*z - 1], [x, y, z]) == \
{(0, 1/z, z)}
def test_nonlinsolve_polysys():
x, y, z = symbols('x, y, z', real=True)
assert nonlinsolve([x**2 + y - 2, x**2 + y], [x, y]) == S.EmptySet
s = (-y + 2, y)
assert nonlinsolve([(x + y)**2 - 4, x + y - 2], [x, y]) == FiniteSet(s)
system = [x**2 - y**2]
soln_real = FiniteSet((-y, y), (y, y))
soln_complex = FiniteSet((-Abs(y), y), (Abs(y), y))
soln =soln_real + soln_complex
assert nonlinsolve(system, [x, y]) == soln
system = [x**2 - y**2]
soln_real= FiniteSet((y, -y), (y, y))
soln_complex = FiniteSet((y, -Abs(y)), (y, Abs(y)))
soln = soln_real + soln_complex
assert nonlinsolve(system, [y, x]) == soln
system = [x**2 + y - 3, x - y - 4]
assert nonlinsolve(system, (x, y)) != nonlinsolve(system, (y, x))
assert nonlinsolve([-x**2 - y**2 + z, -2*x, -2*y, S.One], [x, y, z]) == S.EmptySet
assert nonlinsolve([x + y + z, S.One, S.One, S.One], [x, y, z]) == S.EmptySet
system = [-x**2*z**2 + x*y*z + y**4, -2*x*z**2 + y*z, x*z + 4*y**3, -2*x**2*z + x*y]
assert nonlinsolve(system, [x, y, z]) == FiniteSet((0, 0, z), (x, 0, 0))
def test_nonlinsolve_using_substitution():
x, y, z, n = symbols('x, y, z, n', real = True)
system = [(x + y)*n - y**2 + 2]
s_x = (n*y - y**2 + 2)/n
soln = (-s_x, y)
assert nonlinsolve(system, [x, y]) == FiniteSet(soln)
system = [z**2*x**2 - z**2*y**2/exp(x)]
soln_real_1 = (y, x, 0)
soln_real_2 = (-exp(x/2)*Abs(x), x, z)
soln_real_3 = (exp(x/2)*Abs(x), x, z)
soln_complex_1 = (-x*exp(x/2), x, z)
soln_complex_2 = (x*exp(x/2), x, z)
syms = [y, x, z]
soln = FiniteSet(soln_real_1, soln_complex_1, soln_complex_2,\
soln_real_2, soln_real_3)
assert nonlinsolve(system,syms) == soln
def test_nonlinsolve_complex():
n = Dummy('n')
assert dumeq(nonlinsolve([exp(x) - sin(y), 1/y - 3], [x, y]), {
(ImageSet(Lambda(n, 2*n*I*pi + log(sin(Rational(1, 3)))), S.Integers), Rational(1, 3))})
system = [exp(x) - sin(y), 1/exp(y) - 3]
assert dumeq(nonlinsolve(system, [x, y]), {
(ImageSet(Lambda(n, I*(2*n*pi + pi)
+ log(sin(log(3)))), S.Integers), -log(3)),
(ImageSet(Lambda(n, I*(2*n*pi + arg(sin(2*n*I*pi - log(3))))
+ log(Abs(sin(2*n*I*pi - log(3))))), S.Integers),
ImageSet(Lambda(n, 2*n*I*pi - log(3)), S.Integers))})
system = [exp(x) - sin(y), y**2 - 4]
assert dumeq(nonlinsolve(system, [x, y]), {
(ImageSet(Lambda(n, I*(2*n*pi + pi) + log(sin(2))), S.Integers), -2),
(ImageSet(Lambda(n, 2*n*I*pi + log(sin(2))), S.Integers), 2)})
system = [exp(x) - 2, y ** 2 - 2]
assert dumeq(nonlinsolve(system, [x, y]), {
(log(2), -sqrt(2)), (log(2), sqrt(2)),
(ImageSet(Lambda(n, 2*n*I*pi + log(2)), S.Integers), FiniteSet(-sqrt(2))),
(ImageSet(Lambda(n, 2 * n * I * pi + log(2)), S.Integers), FiniteSet(sqrt(2)))})
def test_nonlinsolve_radical():
assert nonlinsolve([sqrt(y) - x - z, y - 1], [x, y, z]) == {(1 - z, 1, z)}
def test_nonlinsolve_inexact():
sol = [(-1.625, -1.375), (1.625, 1.375)]
res = nonlinsolve([(x + y)**2 - 9, x**2 - y**2 - 0.75], [x, y])
assert all(abs(res.args[i][j]-sol[i][j]) < 1e-9
for i in range(2) for j in range(2))
assert nonlinsolve([(x + y)**2 - 9, (x + y)**2 - 0.75], [x, y]) == S.EmptySet
assert nonlinsolve([y**2 + (x - 0.5)**2 - 0.0625, 2*x - 1.0, 2*y], [x, y]) == \
S.EmptySet
res = nonlinsolve([x**2 + y - 0.5, (x + y)**2, log(z)], [x, y, z])
sol = [(-0.366025403784439, 0.366025403784439, 1),
(-0.366025403784439, 0.366025403784439, 1),
(1.36602540378444, -1.36602540378444, 1)]
assert all(abs(res.args[i][j]-sol[i][j]) < 1e-9
for i in range(3) for j in range(3))
res = nonlinsolve([y - x**2, x**5 - x + 1.0], [x, y])
sol = [(-1.16730397826142, 1.36259857766493),
(-0.181232444469876 - 1.08395410131771*I,
-1.14211129483496 + 0.392895302949911*I),
(-0.181232444469876 + 1.08395410131771*I,
-1.14211129483496 - 0.392895302949911*I),
(0.764884433600585 - 0.352471546031726*I,
0.460812006002492 - 0.539199997693599*I),
(0.764884433600585 + 0.352471546031726*I,
0.460812006002492 + 0.539199997693599*I)]
assert all(abs(res.args[i][j] - sol[i][j]) < 1e-9
for i in range(5) for j in range(2))
@XFAIL
def test_solve_nonlinear_trans():
# After the transcendental equation solver these will work
x, y = symbols('x, y', real=True)
soln1 = FiniteSet((2*LambertW(y/2), y))
soln2 = FiniteSet((-x*sqrt(exp(x)), y), (x*sqrt(exp(x)), y))
soln3 = FiniteSet((x*exp(x/2), x))
soln4 = FiniteSet(2*LambertW(y/2), y)
assert nonlinsolve([x**2 - y**2/exp(x)], [x, y]) == soln1
assert nonlinsolve([x**2 - y**2/exp(x)], [y, x]) == soln2
assert nonlinsolve([x**2 - y**2/exp(x)], [y, x]) == soln3
assert nonlinsolve([x**2 - y**2/exp(x)], [x, y]) == soln4
def test_issue_14642():
x = Symbol('x')
n1 = 0.5*x**3+x**2+0.5+I #add I in the Polynomials
solution = solveset(n1, x)
assert abs(solution.args[0] - (-2.28267560928153 - 0.312325580497716*I)) <= 1e-9
assert abs(solution.args[1] - (-0.297354141679308 + 1.01904778618762*I)) <= 1e-9
assert abs(solution.args[2] - (0.580029750960839 - 0.706722205689907*I)) <= 1e-9
# Symbolic
n1 = S.Half*x**3+x**2+S.Half+I
res = FiniteSet(-((3*sqrt(3)*31985**(S(1)/4)*sin(atan(S(172)/49)/2)/2 +
S(43)/2)**2 + (27 + 3*sqrt(3)*31985**(S(1)/4)*cos(atan(S(172)/49)
/2)/2)**2)**(S(1)/6)*cos(atan((27 + 3*sqrt(3)*31985**(S(1)/4)*
cos(atan(S(172)/49)/2)/2)/(3*sqrt(3)*31985**(S(1)/4)*sin(atan(
S(172)/49)/2)/2 + S(43)/2))/3)/3 - S(2)/3 - 4*cos(atan((27 +
3*sqrt(3)*31985**(S(1)/4)*cos(atan(S(172)/49)/2)/2)/(3*sqrt(3)*
31985**(S(1)/4)*sin(atan(S(172)/49)/2)/2 + S(43)/2))/3)/(3*((3*
sqrt(3)*31985**(S(1)/4)*sin(atan(S(172)/49)/2)/2 + S(43)/2)**2 +
(27 + 3*sqrt(3)*31985**(S(1)/4)*cos(atan(S(172)/49)/2)/2)**2)**(S(1)/
6)) + I*(-((3*sqrt(3)*31985**(S(1)/4)*sin(atan(S(172)/49)/2)/2 +
S(43)/2)**2 + (27 + 3*sqrt(3)*31985**(S(1)/4)*cos(atan(S(172)/49)/
2)/2)**2)**(S(1)/6)*sin(atan((27 + 3*sqrt(3)*31985**(S(1)/4)*cos(
atan(S(172)/49)/2)/2)/(3*sqrt(3)*31985**(S(1)/4)*sin(atan(S(172)/49)
/2)/2 + S(43)/2))/3)/3 + 4*sin(atan((27 + 3*sqrt(3)*31985**(S(1)/4)*
cos(atan(S(172)/49)/2)/2)/(3*sqrt(3)*31985**(S(1)/4)*sin(atan(S(172)
/49)/2)/2 + S(43)/2))/3)/(3*((3*sqrt(3)*31985**(S(1)/4)*sin(atan(
S(172)/49)/2)/2 + S(43)/2)**2 + (27 + 3*sqrt(3)*31985**(S(1)/4)*
cos(atan(S(172)/49)/2)/2)**2)**(S(1)/6))), -S(2)/3 - sqrt(3)*((3*
sqrt(3)*31985**(S(1)/4)*sin(atan(S(172)/49)/2)/2 + S(43)/2)**2 +
(27 + 3*sqrt(3)*31985**(S(1)/4)*cos(atan(S(172)/49)/2)/2)**2)**(S(1)
/6)*sin(atan((27 + 3*sqrt(3)*31985**(S(1)/4)*cos(atan(S(172)/49)/2)
/2)/(3*sqrt(3)*31985**(S(1)/4)*sin(atan(S(172)/49)/2)/2 + S(43)/2))
/3)/6 - 4*re(1/((-S(1)/2 - sqrt(3)*I/2)*(S(43)/2 + 27*I + sqrt(-256 +
(43 + 54*I)**2)/2)**(S(1)/3)))/3 + ((3*sqrt(3)*31985**(S(1)/4)*sin(
atan(S(172)/49)/2)/2 + S(43)/2)**2 + (27 + 3*sqrt(3)*31985**(S(1)/4)*
cos(atan(S(172)/49)/2)/2)**2)**(S(1)/6)*cos(atan((27 + 3*sqrt(3)*
31985**(S(1)/4)*cos(atan(S(172)/49)/2)/2)/(3*sqrt(3)*31985**(S(1)/4)*
sin(atan(S(172)/49)/2)/2 + S(43)/2))/3)/6 + I*(-4*im(1/((-S(1)/2 -
sqrt(3)*I/2)*(S(43)/2 + 27*I + sqrt(-256 + (43 + 54*I)**2)/2)**(S(1)/
3)))/3 + ((3*sqrt(3)*31985**(S(1)/4)*sin(atan(S(172)/49)/2)/2 +
S(43)/2)**2 + (27 + 3*sqrt(3)*31985**(S(1)/4)*cos(atan(S(172)/49)/2)
/2)**2)**(S(1)/6)*sin(atan((27 + 3*sqrt(3)*31985**(S(1)/4)*cos(atan(
S(172)/49)/2)/2)/(3*sqrt(3)*31985**(S(1)/4)*sin(atan(S(172)/49)/2)/2 +
S(43)/2))/3)/6 + sqrt(3)*((3*sqrt(3)*31985**(S(1)/4)*sin(atan(S(172)/
49)/2)/2 + S(43)/2)**2 + (27 + 3*sqrt(3)*31985**(S(1)/4)*cos(atan(
S(172)/49)/2)/2)**2)**(S(1)/6)*cos(atan((27 + 3*sqrt(3)*31985**(S(1)/
4)*cos(atan(S(172)/49)/2)/2)/(3*sqrt(3)*31985**(S(1)/4)*sin(atan(
S(172)/49)/2)/2 + S(43)/2))/3)/6), -S(2)/3 - 4*re(1/((-S(1)/2 +
sqrt(3)*I/2)*(S(43)/2 + 27*I + sqrt(-256 + (43 + 54*I)**2)/2)**(S(1)
/3)))/3 + sqrt(3)*((3*sqrt(3)*31985**(S(1)/4)*sin(atan(S(172)/49)/2)/2 +
S(43)/2)**2 + (27 + 3*sqrt(3)*31985**(S(1)/4)*cos(atan(S(172)/49)/2)
/2)**2)**(S(1)/6)*sin(atan((27 + 3*sqrt(3)*31985**(S(1)/4)*cos(atan(
S(172)/49)/2)/2)/(3*sqrt(3)*31985**(S(1)/4)*sin(atan(S(172)/49)/2)/2 +
S(43)/2))/3)/6 + ((3*sqrt(3)*31985**(S(1)/4)*sin(atan(S(172)/49)/2)/2 +
S(43)/2)**2 + (27 + 3*sqrt(3)*31985**(S(1)/4)*cos(atan(S(172)/49)/2)
/2)**2)**(S(1)/6)*cos(atan((27 + 3*sqrt(3)*31985**(S(1)/4)*cos(atan(
S(172)/49)/2)/2)/(3*sqrt(3)*31985**(S(1)/4)*sin(atan(S(172)/49)/2)/2 +
S(43)/2))/3)/6 + I*(-sqrt(3)*((3*sqrt(3)*31985**(S(1)/4)*sin(atan(
S(172)/49)/2)/2 + S(43)/2)**2 + (27 + 3*sqrt(3)*31985**(S(1)/4)*cos(
atan(S(172)/49)/2)/2)**2)**(S(1)/6)*cos(atan((27 + 3*sqrt(3)*31985**(
S(1)/4)*cos(atan(S(172)/49)/2)/2)/(3*sqrt(3)*31985**(S(1)/4)*sin(
atan(S(172)/49)/2)/2 + S(43)/2))/3)/6 + ((3*sqrt(3)*31985**(S(1)/4)*
sin(atan(S(172)/49)/2)/2 + S(43)/2)**2 + (27 + 3*sqrt(3)*31985**(S(1)/4)*
cos(atan(S(172)/49)/2)/2)**2)**(S(1)/6)*sin(atan((27 + 3*sqrt(3)*31985**(
S(1)/4)*cos(atan(S(172)/49)/2)/2)/(3*sqrt(3)*31985**(S(1)/4)*sin(
atan(S(172)/49)/2)/2 + S(43)/2))/3)/6 - 4*im(1/((-S(1)/2 + sqrt(3)*I/2)*
(S(43)/2 + 27*I + sqrt(-256 + (43 + 54*I)**2)/2)**(S(1)/3)))/3))
assert solveset(n1, x) == res
def test_issue_13961():
V = (ax, bx, cx, gx, jx, lx, mx, nx, q) = symbols('ax bx cx gx jx lx mx nx q')
S = (ax*q - lx*q - mx, ax - gx*q - lx, bx*q**2 + cx*q - jx*q - nx, q*(-ax*q + lx*q + mx), q*(-ax + gx*q + lx))
sol = FiniteSet((lx + mx/q, (-cx*q + jx*q + nx)/q**2, cx, mx/q**2, jx, lx, mx, nx, Complement({q}, {0})),
(lx + mx/q, (cx*q - jx*q - nx)/q**2*-1, cx, mx/q**2, jx, lx, mx, nx, Complement({q}, {0})))
assert nonlinsolve(S, *V) == sol
# The two solutions are in fact identical, so even better if only one is returned
def test_issue_14541():
solutions = solveset(sqrt(-x**2 - 2.0), x)
assert abs(solutions.args[0]+1.4142135623731*I) <= 1e-9
assert abs(solutions.args[1]-1.4142135623731*I) <= 1e-9
def test_issue_13396():
expr = -2*y*exp(-x**2 - y**2)*Abs(x)
sol = FiniteSet(0)
assert solveset(expr, y, domain=S.Reals) == sol
# Related type of equation also solved here
assert solveset(atan(x**2 - y**2)-pi/2, y, S.Reals) is S.EmptySet
def test_issue_12032():
sol = FiniteSet(-sqrt(-2/(3*(Rational(1, 16) + sqrt(849)/144)**(Rational(1, 3))) +
2*(Rational(1, 16) + sqrt(849)/144)**(Rational(1, 3)))/2 +
sqrt(Abs(-2*(Rational(1, 16) + sqrt(849)/144)**(Rational(1, 3)) +
2/(3*(Rational(1, 16) + sqrt(849)/144)**(Rational(1, 3))) +
2/sqrt(-2/(3*(Rational(1, 16) + sqrt(849)/144)**(Rational(1, 3))) +
2*(Rational(1, 16) + sqrt(849)/144)**(Rational(1, 3)))))/2,
-sqrt(Abs(-2*(Rational(1, 16) + sqrt(849)/144)**(Rational(1, 3)) +
2/(3*(Rational(1, 16) + sqrt(849)/144)**(Rational(1, 3))) +
2/sqrt(-2/(3*(Rational(1, 16) + sqrt(849)/144)**(Rational(1, 3))) +
2*(Rational(1, 16) + sqrt(849)/144)**(Rational(1, 3)))))/2 -
sqrt(-2/(3*(Rational(1, 16) + sqrt(849)/144)**(Rational(1, 3))) +
2*(Rational(1, 16) + sqrt(849)/144)**(Rational(1, 3)))/2,
sqrt(-2/(3*(Rational(1, 16) + sqrt(849)/144)**(Rational(1, 3))) +
2*(Rational(1, 16) + sqrt(849)/144)**(Rational(1, 3)))/2 -
I*sqrt(Abs(-2/sqrt(-2/(3*(Rational(1, 16) + sqrt(849)/144)**(Rational(1, 3))) +
2*(Rational(1, 16) + sqrt(849)/144)**(Rational(1, 3))) -
2*(Rational(1, 16) + sqrt(849)/144)**(Rational(1, 3)) +
2/(3*(Rational(1, 16) + sqrt(849)/144)**(Rational(1, 3)))))/2,
sqrt(-2/(3*(Rational(1, 16) + sqrt(849)/144)**(Rational(1, 3))) +
2*(Rational(1, 16) + sqrt(849)/144)**(Rational(1, 3)))/2 +
I*sqrt(Abs(-2/sqrt(-2/(3*(Rational(1, 16) + sqrt(849)/144)**(Rational(1, 3))) +
2*(Rational(1, 16) + sqrt(849)/144)**(Rational(1, 3))) -
2*(Rational(1, 16) + sqrt(849)/144)**(Rational(1, 3)) +
2/(3*(Rational(1, 16) + sqrt(849)/144)**(Rational(1,3)))))/2)
assert solveset(x**4 + x - 1, x) == sol
def test_issue_10876():
assert solveset(1/sqrt(x), x) == S.EmptySet
def test_issue_19050():
# test_issue_19050 --> TypeError removed
assert dumeq(nonlinsolve([x + y, sin(y)], [x, y]),
FiniteSet((ImageSet(Lambda(n, -2*n*pi), S.Integers), ImageSet(Lambda(n, 2*n*pi), S.Integers)),\
(ImageSet(Lambda(n, -2*n*pi - pi), S.Integers), ImageSet(Lambda(n, 2*n*pi + pi), S.Integers))))
assert dumeq(nonlinsolve([x + y, sin(y) + cos(y)], [x, y]),
FiniteSet((ImageSet(Lambda(n, -2*n*pi - 3*pi/4), S.Integers), ImageSet(Lambda(n, 2*n*pi + 3*pi/4), S.Integers)), \
(ImageSet(Lambda(n, -2*n*pi - 7*pi/4), S.Integers), ImageSet(Lambda(n, 2*n*pi + 7*pi/4), S.Integers))))
def test_issue_16618():
# AttributeError is removed !
eqn = [sin(x)*sin(y), cos(x)*cos(y) - 1]
ans = FiniteSet((x, 2*n*pi), (2*n*pi, y), (x, 2*n*pi + pi), (2*n*pi + pi, y))
sol = nonlinsolve(eqn, [x, y])
for i0, j0 in zip(ordered(sol), ordered(ans)):
assert len(i0) == len(j0) == 2
assert all(a.dummy_eq(b) for a, b in zip(i0, j0))
assert len(sol) == len(ans)
def test_issue_17566():
assert nonlinsolve([32*(2**x)/2**(-y) - 4**y, 27*(3**x) - S(1)/3**y], x, y) ==\
FiniteSet((-log(81)/log(3), 1))
def test_issue_16643():
n = Dummy('n')
assert solveset(x**2*sin(x), x).dummy_eq(Union(ImageSet(Lambda(n, 2*n*pi + pi), S.Integers),
ImageSet(Lambda(n, 2*n*pi), S.Integers)))
def test_issue_19587():
n,m = symbols('n m')
assert nonlinsolve([32*2**m*2**n - 4**n, 27*3**m - 3**(-n)], m, n) ==\
FiniteSet((-log(81)/log(3), 1))
def test_issue_5132_1():
system = [sqrt(x**2 + y**2) - sqrt(10), x + y - 4]
assert nonlinsolve(system, [x, y]) == FiniteSet((1, 3), (3, 1))
n = Dummy('n')
eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3]
s_real_y = -log(3)
s_real_z = sqrt(-exp(2*x) - sin(log(3)))
soln_real = FiniteSet((s_real_y, s_real_z), (s_real_y, -s_real_z))
lam = Lambda(n, 2*n*I*pi + -log(3))
s_complex_y = ImageSet(lam, S.Integers)
lam = Lambda(n, sqrt(-exp(2*x) + sin(2*n*I*pi + -log(3))))
s_complex_z_1 = ImageSet(lam, S.Integers)
lam = Lambda(n, -sqrt(-exp(2*x) + sin(2*n*I*pi + -log(3))))
s_complex_z_2 = ImageSet(lam, S.Integers)
soln_complex = FiniteSet(
(s_complex_y, s_complex_z_1),
(s_complex_y, s_complex_z_2)
)
soln = soln_real + soln_complex
assert dumeq(nonlinsolve(eqs, [y, z]), soln)
def test_issue_5132_2():
x, y = symbols('x, y', real=True)
eqs = [exp(x)**2 - sin(y) + z**2]
n = Dummy('n')
soln_real = (log(-z**2 + sin(y))/2, z)
lam = Lambda( n, I*(2*n*pi + arg(-z**2 + sin(y)))/2 + log(Abs(z**2 - sin(y)))/2)
img = ImageSet(lam, S.Integers)
# not sure about the complex soln. But it looks correct.
soln_complex = (img, z)
soln = FiniteSet(soln_real, soln_complex)
assert dumeq(nonlinsolve(eqs, [x, z]), soln)
system = [r - x**2 - y**2, tan(t) - y/x]
s_x = sqrt(r/(tan(t)**2 + 1))
s_y = sqrt(r/(tan(t)**2 + 1))*tan(t)
soln = FiniteSet((s_x, s_y), (-s_x, -s_y))
assert nonlinsolve(system, [x, y]) == soln
def test_issue_6752():
a, b = symbols('a, b', real=True)
assert nonlinsolve([a**2 + a, a - b], [a, b]) == {(-1, -1), (0, 0)}
@SKIP("slow")
def test_issue_5114_solveset():
# slow testcase
from sympy.abc import o, p
# there is no 'a' in the equation set but this is how the
# problem was originally posed
syms = [a, b, c, f, h, k, n]
eqs = [b + r/d - c/d,
c*(1/d + 1/e + 1/g) - f/g - r/d,
f*(1/g + 1/i + 1/j) - c/g - h/i,
h*(1/i + 1/l + 1/m) - f/i - k/m,
k*(1/m + 1/o + 1/p) - h/m - n/p,
n*(1/p + 1/q) - k/p]
assert len(nonlinsolve(eqs, syms)) == 1
@SKIP("Hangs")
def _test_issue_5335():
# Not able to check zero dimensional system.
# is_zero_dimensional Hangs
lam, a0, conc = symbols('lam a0 conc')
eqs = [lam + 2*y - a0*(1 - x/2)*x - 0.005*x/2*x,
a0*(1 - x/2)*x - 1*y - 0.743436700916726*y,
x + y - conc]
sym = [x, y, a0]
# there are 4 solutions but only two are valid
assert len(nonlinsolve(eqs, sym)) == 2
# float
eqs = [lam + 2*y - a0*(1 - x/2)*x - 0.005*x/2*x,
a0*(1 - x/2)*x - 1*y - 0.743436700916726*y,
x + y - conc]
sym = [x, y, a0]
assert len(nonlinsolve(eqs, sym)) == 2
def test_issue_2777():
# the equations represent two circles
x, y = symbols('x y', real=True)
e1, e2 = sqrt(x**2 + y**2) - 10, sqrt(y**2 + (-x + 10)**2) - 3
a, b = Rational(191, 20), 3*sqrt(391)/20
ans = {(a, -b), (a, b)}
assert nonlinsolve((e1, e2), (x, y)) == ans
assert nonlinsolve((e1, e2/(x - a)), (x, y)) == S.EmptySet
# make the 2nd circle's radius be -3
e2 += 6
assert nonlinsolve((e1, e2), (x, y)) == S.EmptySet
def test_issue_8828():
x1 = 0
y1 = -620
r1 = 920
x2 = 126
y2 = 276
x3 = 51
y3 = 205
r3 = 104
v = [x, y, z]
f1 = (x - x1)**2 + (y - y1)**2 - (r1 - z)**2
f2 = (x2 - x)**2 + (y2 - y)**2 - z**2
f3 = (x - x3)**2 + (y - y3)**2 - (r3 - z)**2
F = [f1, f2, f3]
g1 = sqrt((x - x1)**2 + (y - y1)**2) + z - r1
g2 = f2
g3 = sqrt((x - x3)**2 + (y - y3)**2) + z - r3
G = [g1, g2, g3]
# both soln same
A = nonlinsolve(F, v)
B = nonlinsolve(G, v)
assert A == B
def test_nonlinsolve_conditionset():
# when solveset failed to solve all the eq
# return conditionset
f = Function('f')
f1 = f(x) - pi/2
f2 = f(y) - pi*Rational(3, 2)
intermediate_system = Eq(2*f(x) - pi, 0) & Eq(2*f(y) - 3*pi, 0)
syms = Tuple(x, y)
soln = ConditionSet(
syms,
intermediate_system,
S.Complexes**2)
assert nonlinsolve([f1, f2], [x, y]) == soln
def test_substitution_basic():
assert substitution([], [x, y]) == S.EmptySet
assert substitution([], []) == S.EmptySet
system = [2*x**2 + 3*y**2 - 30, 3*x**2 - 2*y**2 - 19]
soln = FiniteSet((-3, -2), (-3, 2), (3, -2), (3, 2))
assert substitution(system, [x, y]) == soln
soln = FiniteSet((-1, 1))
assert substitution([x + y], [x], [{y: 1}], [y], set(), [x, y]) == soln
assert substitution(
[x + y], [x], [{y: 1}], [y],
{x + 1}, [y, x]) == S.EmptySet
def test_substitution_incorrect():
# the solutions in the following two tests are incorrect. The
# correct result is EmptySet in both cases.
assert substitution([h - 1, k - 1, f - 2, f - 4, -2 * k],
[h, k, f]) == {(1, 1, f)}
assert substitution([x + y + z, S.One, S.One, S.One], [x, y, z]) == \
{(-y - z, y, z)}
# the correct result in the test below is {(-I, I, I, -I),
# (I, -I, -I, I)}
assert substitution([a - d, b + d, c + d, d**2 + 1], [a, b, c, d]) == \
{(d, -d, -d, d)}
# the result in the test below is incomplete. The complete result
# is {(0, b), (log(2), 2)}
assert substitution([a*(a - log(b)), a*(b - 2)], [a, b]) == \
{(0, b)}
# The system in the test below is zero-dimensional, so the result
# should have no free symbols
assert substitution([-k*y + 6*x - 4*y, -81*k + 49*y**2 - 270,
-3*k*z + k + z**3, k**2 - 2*k + 4],
[x, y, z, k]).free_symbols == {z}
def test_substitution_redundant():
# the third and fourth solutions are redundant in the test below
assert substitution([x**2 - y**2, z - 1], [x, z]) == \
{(-y, 1), (y, 1), (-sqrt(y**2), 1), (sqrt(y**2), 1)}
# the system below has three solutions. Two of the solutions
# returned by substitution are redundant.
res = substitution([x - y, y**3 - 3*y**2 + 1], [x, y])
assert len(res) == 5
def test_issue_5132_substitution():
x, y, z, r, t = symbols('x, y, z, r, t', real=True)
system = [r - x**2 - y**2, tan(t) - y/x]
s_x_1 = Complement(FiniteSet(-sqrt(r/(tan(t)**2 + 1))), FiniteSet(0))
s_x_2 = Complement(FiniteSet(sqrt(r/(tan(t)**2 + 1))), FiniteSet(0))
s_y = sqrt(r/(tan(t)**2 + 1))*tan(t)
soln = FiniteSet((s_x_2, s_y)) + FiniteSet((s_x_1, -s_y))
assert substitution(system, [x, y]) == soln
n = Dummy('n')
eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3]
s_real_y = -log(3)
s_real_z = sqrt(-exp(2*x) - sin(log(3)))
soln_real = FiniteSet((s_real_y, s_real_z), (s_real_y, -s_real_z))
lam = Lambda(n, 2*n*I*pi + -log(3))
s_complex_y = ImageSet(lam, S.Integers)
lam = Lambda(n, sqrt(-exp(2*x) + sin(2*n*I*pi + -log(3))))
s_complex_z_1 = ImageSet(lam, S.Integers)
lam = Lambda(n, -sqrt(-exp(2*x) + sin(2*n*I*pi + -log(3))))
s_complex_z_2 = ImageSet(lam, S.Integers)
soln_complex = FiniteSet(
(s_complex_y, s_complex_z_1),
(s_complex_y, s_complex_z_2))
soln = soln_real + soln_complex
assert dumeq(substitution(eqs, [y, z]), soln)
def test_raises_substitution():
raises(ValueError, lambda: substitution([x**2 -1], []))
raises(TypeError, lambda: substitution([x**2 -1]))
raises(ValueError, lambda: substitution([x**2 -1], [sin(x)]))
raises(TypeError, lambda: substitution([x**2 -1], x))
raises(TypeError, lambda: substitution([x**2 -1], 1))
def test_issue_21022():
from sympy.core.sympify import sympify
eqs = [
'k-16',
'p-8',
'y*y+z*z-x*x',
'd - x + p',
'd*d+k*k-y*y',
'z*z-p*p-k*k',
'abc-efg',
]
efg = Symbol('efg')
eqs = [sympify(x) for x in eqs]
syb = list(ordered(set.union(*[x.free_symbols for x in eqs])))
res = nonlinsolve(eqs, syb)
ans = FiniteSet(
(efg, 32, efg, 16, 8, 40, -16*sqrt(5), -8*sqrt(5)),
(efg, 32, efg, 16, 8, 40, -16*sqrt(5), 8*sqrt(5)),
(efg, 32, efg, 16, 8, 40, 16*sqrt(5), -8*sqrt(5)),
(efg, 32, efg, 16, 8, 40, 16*sqrt(5), 8*sqrt(5)),
)
assert len(res) == len(ans) == 4
assert res == ans
for result in res.args:
assert len(result) == 8
def test_issue_17940():
n = Dummy('n')
k1 = Dummy('k1')
sol = ImageSet(Lambda(((k1, n),), I*(2*k1*pi + arg(2*n*I*pi + log(5)))
+ log(Abs(2*n*I*pi + log(5)))),
ProductSet(S.Integers, S.Integers))
assert solveset(exp(exp(x)) - 5, x).dummy_eq(sol)
def test_issue_17906():
assert solveset(7**(x**2 - 80) - 49**x, x) == FiniteSet(-8, 10)
def test_issue_17933():
eq1 = x*sin(45) - y*cos(q)
eq2 = x*cos(45) - y*sin(q)
eq3 = 9*x*sin(45)/10 + y*cos(q)
eq4 = 9*x*cos(45)/10 + y*sin(z) - z
assert nonlinsolve([eq1, eq2, eq3, eq4], x, y, z, q) ==\
FiniteSet((0, 0, 0, q))
def test_issue_14565():
# removed redundancy
assert dumeq(nonlinsolve([k + m, k + m*exp(-2*pi*k)], [k, m]) ,
FiniteSet((-n*I, ImageSet(Lambda(n, n*I), S.Integers))))
# end of tests for nonlinsolve
def test_issue_9556():
b = Symbol('b', positive=True)
assert solveset(Abs(x) + 1, x, S.Reals) is S.EmptySet
assert solveset(Abs(x) + b, x, S.Reals) is S.EmptySet
assert solveset(Eq(b, -1), b, S.Reals) is S.EmptySet
def test_issue_9611():
assert solveset(Eq(x - x + a, a), x, S.Reals) == S.Reals
assert solveset(Eq(y - y + a, a), y) == S.Complexes
def test_issue_9557():
assert solveset(x**2 + a, x, S.Reals) == Intersection(S.Reals,
FiniteSet(-sqrt(-a), sqrt(-a)))
def test_issue_9778():
x = Symbol('x', real=True)
y = Symbol('y', real=True)
assert solveset(x**3 + 1, x, S.Reals) == FiniteSet(-1)
assert solveset(x**Rational(3, 5) + 1, x, S.Reals) == S.EmptySet
assert solveset(x**3 + y, x, S.Reals) == \
FiniteSet(-Abs(y)**Rational(1, 3)*sign(y))
def test_issue_10214():
assert solveset(x**Rational(3, 2) + 4, x, S.Reals) == S.EmptySet
assert solveset(x**(Rational(-3, 2)) + 4, x, S.Reals) == S.EmptySet
ans = FiniteSet(-2**Rational(2, 3))
assert solveset(x**(S(3)) + 4, x, S.Reals) == ans
assert (x**(S(3)) + 4).subs(x,list(ans)[0]) == 0 # substituting ans and verifying the result.
assert (x**(S(3)) + 4).subs(x,-(-2)**Rational(2, 3)) == 0
def test_issue_9849():
assert solveset(Abs(sin(x)) + 1, x, S.Reals) == S.EmptySet
def test_issue_9953():
assert linsolve([ ], x) == S.EmptySet
def test_issue_9913():
assert solveset(2*x + 1/(x - 10)**2, x, S.Reals) == \
FiniteSet(-(3*sqrt(24081)/4 + Rational(4027, 4))**Rational(1, 3)/3 - 100/
(3*(3*sqrt(24081)/4 + Rational(4027, 4))**Rational(1, 3)) + Rational(20, 3))
def test_issue_10397():
assert solveset(sqrt(x), x, S.Complexes) == FiniteSet(0)
def test_issue_14987():
raises(ValueError, lambda: linear_eq_to_matrix(
[x**2], x))
raises(ValueError, lambda: linear_eq_to_matrix(
[x*(-3/x + 1) + 2*y - a], [x, y]))
raises(ValueError, lambda: linear_eq_to_matrix(
[(x**2 - 3*x)/(x - 3) - 3], x))
raises(ValueError, lambda: linear_eq_to_matrix(
[(x + 1)**3 - x**3 - 3*x**2 + 7], x))
raises(ValueError, lambda: linear_eq_to_matrix(
[x*(1/x + 1) + y], [x, y]))
raises(ValueError, lambda: linear_eq_to_matrix(
[(x + 1)*y], [x, y]))
raises(ValueError, lambda: linear_eq_to_matrix(
[Eq(1/x, 1/x + y)], [x, y]))
raises(ValueError, lambda: linear_eq_to_matrix(
[Eq(y/x, y/x + y)], [x, y]))
raises(ValueError, lambda: linear_eq_to_matrix(
[Eq(x*(x + 1), x**2 + y)], [x, y]))
def test_simplification():
eq = x + (a - b)/(-2*a + 2*b)
assert solveset(eq, x) == FiniteSet(S.Half)
assert solveset(eq, x, S.Reals) == Intersection({-((a - b)/(-2*a + 2*b))}, S.Reals)
# So that ap - bn is not zero:
ap = Symbol('ap', positive=True)
bn = Symbol('bn', negative=True)
eq = x + (ap - bn)/(-2*ap + 2*bn)
assert solveset(eq, x) == FiniteSet(S.Half)
assert solveset(eq, x, S.Reals) == FiniteSet(S.Half)
def test_integer_domain_relational():
eq1 = 2*x + 3 > 0
eq2 = x**2 + 3*x - 2 >= 0
eq3 = x + 1/x > -2 + 1/x
eq4 = x + sqrt(x**2 - 5) > 0
eq = x + 1/x > -2 + 1/x
eq5 = eq.subs(x,log(x))
eq6 = log(x)/x <= 0
eq7 = log(x)/x < 0
eq8 = x/(x-3) < 3
eq9 = x/(x**2-3) < 3
assert solveset(eq1, x, S.Integers) == Range(-1, oo, 1)
assert solveset(eq2, x, S.Integers) == Union(Range(-oo, -3, 1), Range(1, oo, 1))
assert solveset(eq3, x, S.Integers) == Union(Range(-1, 0, 1), Range(1, oo, 1))
assert solveset(eq4, x, S.Integers) == Range(3, oo, 1)
assert solveset(eq5, x, S.Integers) == Range(2, oo, 1)
assert solveset(eq6, x, S.Integers) == Range(1, 2, 1)
assert solveset(eq7, x, S.Integers) == S.EmptySet
assert solveset(eq8, x, domain=Range(0,5)) == Range(0, 3, 1)
assert solveset(eq9, x, domain=Range(0,5)) == Union(Range(0, 2, 1), Range(2, 5, 1))
# test_issue_19794
assert solveset(x + 2 < 0, x, S.Integers) == Range(-oo, -2, 1)
def test_issue_10555():
f = Function('f')
g = Function('g')
assert solveset(f(x) - pi/2, x, S.Reals).dummy_eq(
ConditionSet(x, Eq(f(x) - pi/2, 0), S.Reals))
assert solveset(f(g(x)) - pi/2, g(x), S.Reals).dummy_eq(
ConditionSet(g(x), Eq(f(g(x)) - pi/2, 0), S.Reals))
def test_issue_8715():
eq = x + 1/x > -2 + 1/x
assert solveset(eq, x, S.Reals) == \
(Interval.open(-2, oo) - FiniteSet(0))
assert solveset(eq.subs(x,log(x)), x, S.Reals) == \
Interval.open(exp(-2), oo) - FiniteSet(1)
def test_issue_11174():
eq = z**2 + exp(2*x) - sin(y)
soln = Intersection(S.Reals, FiniteSet(log(-z**2 + sin(y))/2))
assert solveset(eq, x, S.Reals) == soln
eq = sqrt(r)*Abs(tan(t))/sqrt(tan(t)**2 + 1) + x*tan(t)
s = -sqrt(r)*Abs(tan(t))/(sqrt(tan(t)**2 + 1)*tan(t))
soln = Intersection(S.Reals, FiniteSet(s))
assert solveset(eq, x, S.Reals) == soln
def test_issue_11534():
# eq and eq2 should give the same solution as a Complement
x = Symbol('x', real=True)
y = Symbol('y', real=True)
eq = -y + x/sqrt(-x**2 + 1)
eq2 = -y**2 + x**2/(-x**2 + 1)
soln = Complement(FiniteSet(-y/sqrt(y**2 + 1), y/sqrt(y**2 + 1)), FiniteSet(-1, 1))
assert solveset(eq, x, S.Reals) == soln
assert solveset(eq2, x, S.Reals) == soln
def test_issue_10477():
assert solveset((x**2 + 4*x - 3)/x < 2, x, S.Reals) == \
Union(Interval.open(-oo, -3), Interval.open(0, 1))
def test_issue_10671():
assert solveset(sin(y), y, Interval(0, pi)) == FiniteSet(0, pi)
i = Interval(1, 10)
assert solveset((1/x).diff(x) < 0, x, i) == i
def test_issue_11064():
eq = x + sqrt(x**2 - 5)
assert solveset(eq > 0, x, S.Reals) == \
Interval(sqrt(5), oo)
assert solveset(eq < 0, x, S.Reals) == \
Interval(-oo, -sqrt(5))
assert solveset(eq > sqrt(5), x, S.Reals) == \
Interval.Lopen(sqrt(5), oo)
def test_issue_12478():
eq = sqrt(x - 2) + 2
soln = solveset_real(eq, x)
assert soln is S.EmptySet
assert solveset(eq < 0, x, S.Reals) is S.EmptySet
assert solveset(eq > 0, x, S.Reals) == Interval(2, oo)
def test_issue_12429():
eq = solveset(log(x)/x <= 0, x, S.Reals)
sol = Interval.Lopen(0, 1)
assert eq == sol
def test_issue_19506():
eq = arg(x + I)
C = Dummy('C')
assert solveset(eq).dummy_eq(Intersection(ConditionSet(C, Eq(im(C) + 1, 0), S.Complexes),
ConditionSet(C, re(C) > 0, S.Complexes)))
def test_solveset_arg():
assert solveset(arg(x), x, S.Reals) == Interval.open(0, oo)
assert solveset(arg(4*x -3), x, S.Reals) == Interval.open(Rational(3, 4), oo)
def test__is_finite_with_finite_vars():
f = _is_finite_with_finite_vars
# issue 12482
assert all(f(1/x) is None for x in (
Dummy(), Dummy(real=True), Dummy(complex=True)))
assert f(1/Dummy(real=False)) is True # b/c it's finite but not 0
def test_issue_13550():
assert solveset(x**2 - 2*x - 15, symbol = x, domain = Interval(-oo, 0)) == FiniteSet(-3)
def test_issue_13849():
assert nonlinsolve((t*(sqrt(5) + sqrt(2)) - sqrt(2), t), t) is S.EmptySet
def test_issue_14223():
assert solveset((Abs(x + Min(x, 2)) - 2).rewrite(Piecewise), x,
S.Reals) == FiniteSet(-1, 1)
assert solveset((Abs(x + Min(x, 2)) - 2).rewrite(Piecewise), x,
Interval(0, 2)) == FiniteSet(1)
assert solveset(x, x, FiniteSet(1, 2)) is S.EmptySet
def test_issue_10158():
dom = S.Reals
assert solveset(x*Max(x, 15) - 10, x, dom) == FiniteSet(Rational(2, 3))
assert solveset(x*Min(x, 15) - 10, x, dom) == FiniteSet(-sqrt(10), sqrt(10))
assert solveset(Max(Abs(x - 3) - 1, x + 2) - 3, x, dom) == FiniteSet(-1, 1)
assert solveset(Abs(x - 1) - Abs(y), x, dom) == FiniteSet(-Abs(y) + 1, Abs(y) + 1)
assert solveset(Abs(x + 4*Abs(x + 1)), x, dom) == FiniteSet(Rational(-4, 3), Rational(-4, 5))
assert solveset(2*Abs(x + Abs(x + Max(3, x))) - 2, x, S.Reals) == FiniteSet(-1, -2)
dom = S.Complexes
raises(ValueError, lambda: solveset(x*Max(x, 15) - 10, x, dom))
raises(ValueError, lambda: solveset(x*Min(x, 15) - 10, x, dom))
raises(ValueError, lambda: solveset(Max(Abs(x - 3) - 1, x + 2) - 3, x, dom))
raises(ValueError, lambda: solveset(Abs(x - 1) - Abs(y), x, dom))
raises(ValueError, lambda: solveset(Abs(x + 4*Abs(x + 1)), x, dom))
def test_issue_14300():
f = 1 - exp(-18000000*x) - y
a1 = FiniteSet(-log(-y + 1)/18000000)
assert solveset(f, x, S.Reals) == \
Intersection(S.Reals, a1)
assert dumeq(solveset(f, x),
ImageSet(Lambda(n, -I*(2*n*pi + arg(-y + 1))/18000000 -
log(Abs(y - 1))/18000000), S.Integers))
def test_issue_14454():
number = CRootOf(x**4 + x - 1, 2)
raises(ValueError, lambda: invert_real(number, 0, x))
assert invert_real(x**2, number, x) # no error
def test_issue_17882():
assert solveset(-8*x**2/(9*(x**2 - 1)**(S(4)/3)) + 4/(3*(x**2 - 1)**(S(1)/3)), x, S.Complexes) == \
FiniteSet(sqrt(3), -sqrt(3))
def test_term_factors():
assert list(_term_factors(3**x - 2)) == [-2, 3**x]
expr = 4**(x + 1) + 4**(x + 2) + 4**(x - 1) - 3**(x + 2) - 3**(x + 3)
assert set(_term_factors(expr)) == {
3**(x + 2), 4**(x + 2), 3**(x + 3), 4**(x - 1), -1, 4**(x + 1)}
#################### tests for transolve and its helpers ###############
def test_transolve():
assert _transolve(3**x, x, S.Reals) == S.EmptySet
assert _transolve(3**x - 9**(x + 5), x, S.Reals) == FiniteSet(-10)
def test_issue_21276():
eq = (2*x*(y - z) - y*erf(y - z) - y + z*erf(y - z) + z)**2
assert solveset(eq.expand(), y) == FiniteSet(z, z + erfinv(2*x - 1))
# exponential tests
def test_exponential_real():
from sympy.abc import y
e1 = 3**(2*x) - 2**(x + 3)
e2 = 4**(5 - 9*x) - 8**(2 - x)
e3 = 2**x + 4**x
e4 = exp(log(5)*x) - 2**x
e5 = exp(x/y)*exp(-z/y) - 2
e6 = 5**(x/2) - 2**(x/3)
e7 = 4**(x + 1) + 4**(x + 2) + 4**(x - 1) - 3**(x + 2) - 3**(x + 3)
e8 = -9*exp(-2*x + 5) + 4*exp(3*x + 1)
e9 = 2**x + 4**x + 8**x - 84
e10 = 29*2**(x + 1)*615**(x) - 123*2726**(x)
assert solveset(e1, x, S.Reals) == FiniteSet(
-3*log(2)/(-2*log(3) + log(2)))
assert solveset(e2, x, S.Reals) == FiniteSet(Rational(4, 15))
assert solveset(e3, x, S.Reals) == S.EmptySet
assert solveset(e4, x, S.Reals) == FiniteSet(0)
assert solveset(e5, x, S.Reals) == Intersection(
S.Reals, FiniteSet(y*log(2*exp(z/y))))
assert solveset(e6, x, S.Reals) == FiniteSet(0)
assert solveset(e7, x, S.Reals) == FiniteSet(2)
assert solveset(e8, x, S.Reals) == FiniteSet(-2*log(2)/5 + 2*log(3)/5 + Rational(4, 5))
assert solveset(e9, x, S.Reals) == FiniteSet(2)
assert solveset(e10,x, S.Reals) == FiniteSet((-log(29) - log(2) + log(123))/(-log(2726) + log(2) + log(615)))
assert solveset_real(-9*exp(-2*x + 5) + 2**(x + 1), x) == FiniteSet(
-((-5 - 2*log(3) + log(2))/(log(2) + 2)))
assert solveset_real(4**(x/2) - 2**(x/3), x) == FiniteSet(0)
b = sqrt(6)*sqrt(log(2))/sqrt(log(5))
assert solveset_real(5**(x/2) - 2**(3/x), x) == FiniteSet(-b, b)
# coverage test
C1, C2 = symbols('C1 C2')
f = Function('f')
assert solveset_real(C1 + C2/x**2 - exp(-f(x)), f(x)) == Intersection(
S.Reals, FiniteSet(-log(C1 + C2/x**2)))
y = symbols('y', positive=True)
assert solveset_real(x**2 - y**2/exp(x), y) == Intersection(
S.Reals, FiniteSet(-sqrt(x**2*exp(x)), sqrt(x**2*exp(x))))
p = Symbol('p', positive=True)
assert solveset_real((1/p + 1)**(p + 1), p).dummy_eq(
ConditionSet(x, Eq((1 + 1/x)**(x + 1), 0), S.Reals))
assert solveset(2**x - 4**x + 12, x, S.Reals) == {2}
assert solveset(2**x - 2**(2*x) + 12, x, S.Reals) == {2}
@XFAIL
def test_exponential_complex():
n = Dummy('n')
assert dumeq(solveset_complex(2**x + 4**x, x),imageset(
Lambda(n, I*(2*n*pi + pi)/log(2)), S.Integers))
assert solveset_complex(x**z*y**z - 2, z) == FiniteSet(
log(2)/(log(x) + log(y)))
assert dumeq(solveset_complex(4**(x/2) - 2**(x/3), x), imageset(
Lambda(n, 3*n*I*pi/log(2)), S.Integers))
assert dumeq(solveset(2**x + 32, x), imageset(
Lambda(n, (I*(2*n*pi + pi) + 5*log(2))/log(2)), S.Integers))
eq = (2**exp(y**2/x) + 2)/(x**2 + 15)
a = sqrt(x)*sqrt(-log(log(2)) + log(log(2) + 2*n*I*pi))
assert solveset_complex(eq, y) == FiniteSet(-a, a)
union1 = imageset(Lambda(n, I*(2*n*pi - pi*Rational(2, 3))/log(2)), S.Integers)
union2 = imageset(Lambda(n, I*(2*n*pi + pi*Rational(2, 3))/log(2)), S.Integers)
assert dumeq(solveset(2**x + 4**x + 8**x, x), Union(union1, union2))
eq = 4**(x + 1) + 4**(x + 2) + 4**(x - 1) - 3**(x + 2) - 3**(x + 3)
res = solveset(eq, x)
num = 2*n*I*pi - 4*log(2) + 2*log(3)
den = -2*log(2) + log(3)
ans = imageset(Lambda(n, num/den), S.Integers)
assert dumeq(res, ans)
def test_expo_conditionset():
f1 = (exp(x) + 1)**x - 2
f2 = (x + 2)**y*x - 3
f3 = 2**x - exp(x) - 3
f4 = log(x) - exp(x)
f5 = 2**x + 3**x - 5**x
assert solveset(f1, x, S.Reals).dummy_eq(ConditionSet(
x, Eq((exp(x) + 1)**x - 2, 0), S.Reals))
assert solveset(f2, x, S.Reals).dummy_eq(ConditionSet(
x, Eq(x*(x + 2)**y - 3, 0), S.Reals))
assert solveset(f3, x, S.Reals).dummy_eq(ConditionSet(
x, Eq(2**x - exp(x) - 3, 0), S.Reals))
assert solveset(f4, x, S.Reals).dummy_eq(ConditionSet(
x, Eq(-exp(x) + log(x), 0), S.Reals))
assert solveset(f5, x, S.Reals).dummy_eq(ConditionSet(
x, Eq(2**x + 3**x - 5**x, 0), S.Reals))
def test_exponential_symbols():
x, y, z = symbols('x y z', positive=True)
xr, zr = symbols('xr, zr', real=True)
assert solveset(z**x - y, x, S.Reals) == Intersection(
S.Reals, FiniteSet(log(y)/log(z)))
f1 = 2*x**w - 4*y**w
f2 = (x/y)**w - 2
sol1 = Intersection({log(2)/(log(x) - log(y))}, S.Reals)
sol2 = Intersection({log(2)/log(x/y)}, S.Reals)
assert solveset(f1, w, S.Reals) == sol1, solveset(f1, w, S.Reals)
assert solveset(f2, w, S.Reals) == sol2, solveset(f2, w, S.Reals)
assert solveset(x**x, x, Interval.Lopen(0,oo)).dummy_eq(
ConditionSet(w, Eq(w**w, 0), Interval.open(0, oo)))
assert solveset(x**y - 1, y, S.Reals) == FiniteSet(0)
assert solveset(exp(x/y)*exp(-z/y) - 2, y, S.Reals) == \
Complement(ConditionSet(y, Eq(im(x)/y, 0) & Eq(im(z)/y, 0), \
Complement(Intersection(FiniteSet((x - z)/log(2)), S.Reals), FiniteSet(0))), FiniteSet(0))
assert solveset(exp(xr/y)*exp(-zr/y) - 2, y, S.Reals) == \
Complement(FiniteSet((xr - zr)/log(2)), FiniteSet(0))
assert solveset(a**x - b**x, x).dummy_eq(ConditionSet(
w, Ne(a, 0) & Ne(b, 0), FiniteSet(0)))
def test_ignore_assumptions():
# make sure assumptions are ignored
xpos = symbols('x', positive=True)
x = symbols('x')
assert solveset_complex(xpos**2 - 4, xpos
) == solveset_complex(x**2 - 4, x)
@XFAIL
def test_issue_10864():
assert solveset(x**(y*z) - x, x, S.Reals) == FiniteSet(1)
@XFAIL
def test_solve_only_exp_2():
assert solveset_real(sqrt(exp(x)) + sqrt(exp(-x)) - 4, x) == \
FiniteSet(2*log(-sqrt(3) + 2), 2*log(sqrt(3) + 2))
def test_is_exponential():
assert _is_exponential(y, x) is False
assert _is_exponential(3**x - 2, x) is True
assert _is_exponential(5**x - 7**(2 - x), x) is True
assert _is_exponential(sin(2**x) - 4*x, x) is False
assert _is_exponential(x**y - z, y) is True
assert _is_exponential(x**y - z, x) is False
assert _is_exponential(2**x + 4**x - 1, x) is True
assert _is_exponential(x**(y*z) - x, x) is False
assert _is_exponential(x**(2*x) - 3**x, x) is False
assert _is_exponential(x**y - y*z, y) is False
assert _is_exponential(x**y - x*z, y) is True
def test_solve_exponential():
assert _solve_exponential(3**(2*x) - 2**(x + 3), 0, x, S.Reals) == \
FiniteSet(-3*log(2)/(-2*log(3) + log(2)))
assert _solve_exponential(2**y + 4**y, 1, y, S.Reals) == \
FiniteSet(log(Rational(-1, 2) + sqrt(5)/2)/log(2))
assert _solve_exponential(2**y + 4**y, 0, y, S.Reals) == \
S.EmptySet
assert _solve_exponential(2**x + 3**x - 5**x, 0, x, S.Reals) == \
ConditionSet(x, Eq(2**x + 3**x - 5**x, 0), S.Reals)
# end of exponential tests
# logarithmic tests
def test_logarithmic():
assert solveset_real(log(x - 3) + log(x + 3), x) == FiniteSet(
-sqrt(10), sqrt(10))
assert solveset_real(log(x + 1) - log(2*x - 1), x) == FiniteSet(2)
assert solveset_real(log(x + 3) + log(1 + 3/x) - 3, x) == FiniteSet(
-3 + sqrt(-12 + exp(3))*exp(Rational(3, 2))/2 + exp(3)/2,
-sqrt(-12 + exp(3))*exp(Rational(3, 2))/2 - 3 + exp(3)/2)
eq = z - log(x) + log(y/(x*(-1 + y**2/x**2)))
assert solveset_real(eq, x) == \
Intersection(S.Reals, FiniteSet(-sqrt(y**2 - y*exp(z)),
sqrt(y**2 - y*exp(z)))) - \
Intersection(S.Reals, FiniteSet(-sqrt(y**2), sqrt(y**2)))
assert solveset_real(
log(3*x) - log(-x + 1) - log(4*x + 1), x) == FiniteSet(Rational(-1, 2), S.Half)
assert solveset(log(x**y) - y*log(x), x, S.Reals) == S.Reals
@XFAIL
def test_uselogcombine_2():
eq = log(exp(2*x) + 1) + log(-tanh(x) + 1) - log(2)
assert solveset_real(eq, x) is S.EmptySet
eq = log(8*x) - log(sqrt(x) + 1) - 2
assert solveset_real(eq, x) is S.EmptySet
def test_is_logarithmic():
assert _is_logarithmic(y, x) is False
assert _is_logarithmic(log(x), x) is True
assert _is_logarithmic(log(x) - 3, x) is True
assert _is_logarithmic(log(x)*log(y), x) is True
assert _is_logarithmic(log(x)**2, x) is False
assert _is_logarithmic(log(x - 3) + log(x + 3), x) is True
assert _is_logarithmic(log(x**y) - y*log(x), x) is True
assert _is_logarithmic(sin(log(x)), x) is False
assert _is_logarithmic(x + y, x) is False
assert _is_logarithmic(log(3*x) - log(1 - x) + 4, x) is True
assert _is_logarithmic(log(x) + log(y) + x, x) is False
assert _is_logarithmic(log(log(x - 3)) + log(x - 3), x) is True
assert _is_logarithmic(log(log(3) + x) + log(x), x) is True
assert _is_logarithmic(log(x)*(y + 3) + log(x), y) is False
def test_solve_logarithm():
y = Symbol('y')
assert _solve_logarithm(log(x**y) - y*log(x), 0, x, S.Reals) == S.Reals
y = Symbol('y', positive=True)
assert _solve_logarithm(log(x)*log(y), 0, x, S.Reals) == FiniteSet(1)
# end of logarithmic tests
# lambert tests
def test_is_lambert():
a, b, c = symbols('a,b,c')
assert _is_lambert(x**2, x) is False
assert _is_lambert(a**x**2+b*x+c, x) is True
assert _is_lambert(E**2, x) is False
assert _is_lambert(x*E**2, x) is False
assert _is_lambert(3*log(x) - x*log(3), x) is True
assert _is_lambert(log(log(x - 3)) + log(x-3), x) is True
assert _is_lambert(5*x - 1 + 3*exp(2 - 7*x), x) is True
assert _is_lambert((a/x + exp(x/2)).diff(x, 2), x) is True
assert _is_lambert((x**2 - 2*x + 1).subs(x, (log(x) + 3*x)**2 - 1), x) is True
assert _is_lambert(x*sinh(x) - 1, x) is True
assert _is_lambert(x*cos(x) - 5, x) is True
assert _is_lambert(tanh(x) - 5*x, x) is True
assert _is_lambert(cosh(x) - sinh(x), x) is False
# end of lambert tests
def test_linear_coeffs():
from sympy.solvers.solveset import linear_coeffs
assert linear_coeffs(0, x) == [0, 0]
assert all(i is S.Zero for i in linear_coeffs(0, x))
assert linear_coeffs(x + 2*y + 3, x, y) == [1, 2, 3]
assert linear_coeffs(x + 2*y + 3, y, x) == [2, 1, 3]
assert linear_coeffs(x + 2*x**2 + 3, x, x**2) == [1, 2, 3]
raises(ValueError, lambda:
linear_coeffs(x + 2*x**2 + x**3, x, x**2))
raises(ValueError, lambda:
linear_coeffs(1/x*(x - 1) + 1/x, x))
raises(ValueError, lambda:
linear_coeffs(x, x, x))
assert linear_coeffs(a*(x + y), x, y) == [a, a, 0]
assert linear_coeffs(1.0, x, y) == [0, 0, 1.0]
# don't include coefficients of 0
assert linear_coeffs(Eq(x, x + y), x, y, dict=True) == {y: -1}
assert linear_coeffs(0, x, y, dict=True) == {}
def test_is_modular():
assert _is_modular(y, x) is False
assert _is_modular(Mod(x, 3) - 1, x) is True
assert _is_modular(Mod(x**3 - 3*x**2 - x + 1, 3) - 1, x) is True
assert _is_modular(Mod(exp(x + y), 3) - 2, x) is True
assert _is_modular(Mod(exp(x + y), 3) - log(x), x) is True
assert _is_modular(Mod(x, 3) - 1, y) is False
assert _is_modular(Mod(x, 3)**2 - 5, x) is False
assert _is_modular(Mod(x, 3)**2 - y, x) is False
assert _is_modular(exp(Mod(x, 3)) - 1, x) is False
assert _is_modular(Mod(3, y) - 1, y) is False
def test_invert_modular():
n = Dummy('n', integer=True)
from sympy.solvers.solveset import _invert_modular as invert_modular
# non invertible cases
assert invert_modular(Mod(sin(x), 7), S(5), n, x) == (Mod(sin(x), 7), 5)
assert invert_modular(Mod(exp(x), 7), S(5), n, x) == (Mod(exp(x), 7), 5)
assert invert_modular(Mod(log(x), 7), S(5), n, x) == (Mod(log(x), 7), 5)
# a is symbol
assert dumeq(invert_modular(Mod(x, 7), S(5), n, x),
(x, ImageSet(Lambda(n, 7*n + 5), S.Integers)))
# a.is_Add
assert dumeq(invert_modular(Mod(x + 8, 7), S(5), n, x),
(x, ImageSet(Lambda(n, 7*n + 4), S.Integers)))
assert invert_modular(Mod(x**2 + x, 7), S(5), n, x) == \
(Mod(x**2 + x, 7), 5)
# a.is_Mul
assert dumeq(invert_modular(Mod(3*x, 7), S(5), n, x),
(x, ImageSet(Lambda(n, 7*n + 4), S.Integers)))
assert invert_modular(Mod((x + 1)*(x + 2), 7), S(5), n, x) == \
(Mod((x + 1)*(x + 2), 7), 5)
# a.is_Pow
assert invert_modular(Mod(x**4, 7), S(5), n, x) == \
(x, S.EmptySet)
assert dumeq(invert_modular(Mod(3**x, 4), S(3), n, x),
(x, ImageSet(Lambda(n, 2*n + 1), S.Naturals0)))
assert dumeq(invert_modular(Mod(2**(x**2 + x + 1), 7), S(2), n, x),
(x**2 + x + 1, ImageSet(Lambda(n, 3*n + 1), S.Naturals0)))
assert invert_modular(Mod(sin(x)**4, 7), S(5), n, x) == (x, S.EmptySet)
def test_solve_modular():
n = Dummy('n', integer=True)
# if rhs has symbol (need to be implemented in future).
assert solveset(Mod(x, 4) - x, x, S.Integers
).dummy_eq(
ConditionSet(x, Eq(-x + Mod(x, 4), 0),
S.Integers))
# when _invert_modular fails to invert
assert solveset(3 - Mod(sin(x), 7), x, S.Integers
).dummy_eq(
ConditionSet(x, Eq(Mod(sin(x), 7) - 3, 0), S.Integers))
assert solveset(3 - Mod(log(x), 7), x, S.Integers
).dummy_eq(
ConditionSet(x, Eq(Mod(log(x), 7) - 3, 0), S.Integers))
assert solveset(3 - Mod(exp(x), 7), x, S.Integers
).dummy_eq(ConditionSet(x, Eq(Mod(exp(x), 7) - 3, 0),
S.Integers))
# EmptySet solution definitely
assert solveset(7 - Mod(x, 5), x, S.Integers) is S.EmptySet
assert solveset(5 - Mod(x, 5), x, S.Integers) is S.EmptySet
# Negative m
assert dumeq(solveset(2 + Mod(x, -3), x, S.Integers),
ImageSet(Lambda(n, -3*n - 2), S.Integers))
assert solveset(4 + Mod(x, -3), x, S.Integers) is S.EmptySet
# linear expression in Mod
assert dumeq(solveset(3 - Mod(x, 5), x, S.Integers),
ImageSet(Lambda(n, 5*n + 3), S.Integers))
assert dumeq(solveset(3 - Mod(5*x - 8, 7), x, S.Integers),
ImageSet(Lambda(n, 7*n + 5), S.Integers))
assert dumeq(solveset(3 - Mod(5*x, 7), x, S.Integers),
ImageSet(Lambda(n, 7*n + 2), S.Integers))
# higher degree expression in Mod
assert dumeq(solveset(Mod(x**2, 160) - 9, x, S.Integers),
Union(ImageSet(Lambda(n, 160*n + 3), S.Integers),
ImageSet(Lambda(n, 160*n + 13), S.Integers),
ImageSet(Lambda(n, 160*n + 67), S.Integers),
ImageSet(Lambda(n, 160*n + 77), S.Integers),
ImageSet(Lambda(n, 160*n + 83), S.Integers),
ImageSet(Lambda(n, 160*n + 93), S.Integers),
ImageSet(Lambda(n, 160*n + 147), S.Integers),
ImageSet(Lambda(n, 160*n + 157), S.Integers)))
assert solveset(3 - Mod(x**4, 7), x, S.Integers) is S.EmptySet
assert dumeq(solveset(Mod(x**4, 17) - 13, x, S.Integers),
Union(ImageSet(Lambda(n, 17*n + 3), S.Integers),
ImageSet(Lambda(n, 17*n + 5), S.Integers),
ImageSet(Lambda(n, 17*n + 12), S.Integers),
ImageSet(Lambda(n, 17*n + 14), S.Integers)))
# a.is_Pow tests
assert dumeq(solveset(Mod(7**x, 41) - 15, x, S.Integers),
ImageSet(Lambda(n, 40*n + 3), S.Naturals0))
assert dumeq(solveset(Mod(12**x, 21) - 18, x, S.Integers),
ImageSet(Lambda(n, 6*n + 2), S.Naturals0))
assert dumeq(solveset(Mod(3**x, 4) - 3, x, S.Integers),
ImageSet(Lambda(n, 2*n + 1), S.Naturals0))
assert dumeq(solveset(Mod(2**x, 7) - 2 , x, S.Integers),
ImageSet(Lambda(n, 3*n + 1), S.Naturals0))
assert dumeq(solveset(Mod(3**(3**x), 4) - 3, x, S.Integers),
Intersection(ImageSet(Lambda(n, Intersection({log(2*n + 1)/log(3)},
S.Integers)), S.Naturals0), S.Integers))
# Implemented for m without primitive root
assert solveset(Mod(x**3, 7) - 2, x, S.Integers) is S.EmptySet
assert dumeq(solveset(Mod(x**3, 8) - 1, x, S.Integers),
ImageSet(Lambda(n, 8*n + 1), S.Integers))
assert dumeq(solveset(Mod(x**4, 9) - 4, x, S.Integers),
Union(ImageSet(Lambda(n, 9*n + 4), S.Integers),
ImageSet(Lambda(n, 9*n + 5), S.Integers)))
# domain intersection
assert dumeq(solveset(3 - Mod(5*x - 8, 7), x, S.Naturals0),
Intersection(ImageSet(Lambda(n, 7*n + 5), S.Integers), S.Naturals0))
# Complex args
assert solveset(Mod(x, 3) - I, x, S.Integers) == \
S.EmptySet
assert solveset(Mod(I*x, 3) - 2, x, S.Integers
).dummy_eq(
ConditionSet(x, Eq(Mod(I*x, 3) - 2, 0), S.Integers))
assert solveset(Mod(I + x, 3) - 2, x, S.Integers
).dummy_eq(
ConditionSet(x, Eq(Mod(x + I, 3) - 2, 0), S.Integers))
# issue 17373 (https://github.com/sympy/sympy/issues/17373)
assert dumeq(solveset(Mod(x**4, 14) - 11, x, S.Integers),
Union(ImageSet(Lambda(n, 14*n + 3), S.Integers),
ImageSet(Lambda(n, 14*n + 11), S.Integers)))
assert dumeq(solveset(Mod(x**31, 74) - 43, x, S.Integers),
ImageSet(Lambda(n, 74*n + 31), S.Integers))
# issue 13178
n = symbols('n', integer=True)
a = 742938285
b = 1898888478
m = 2**31 - 1
c = 20170816
assert dumeq(solveset(c - Mod(a**n*b, m), n, S.Integers),
ImageSet(Lambda(n, 2147483646*n + 100), S.Naturals0))
assert dumeq(solveset(c - Mod(a**n*b, m), n, S.Naturals0),
Intersection(ImageSet(Lambda(n, 2147483646*n + 100), S.Naturals0),
S.Naturals0))
assert dumeq(solveset(c - Mod(a**(2*n)*b, m), n, S.Integers),
Intersection(ImageSet(Lambda(n, 1073741823*n + 50), S.Naturals0),
S.Integers))
assert solveset(c - Mod(a**(2*n + 7)*b, m), n, S.Integers) is S.EmptySet
assert dumeq(solveset(c - Mod(a**(n - 4)*b, m), n, S.Integers),
Intersection(ImageSet(Lambda(n, 2147483646*n + 104), S.Naturals0),
S.Integers))
# end of modular tests
def test_issue_17276():
assert nonlinsolve([Eq(x, 5**(S(1)/5)), Eq(x*y, 25*sqrt(5))], x, y) == \
FiniteSet((5**(S(1)/5), 25*5**(S(3)/10)))
def test_issue_10426():
x = Dummy('x')
a = Symbol('a')
n = Dummy('n')
assert (solveset(sin(x + a) - sin(x), a)).dummy_eq(Dummy('x')) == (Union(
ImageSet(Lambda(n, 2*n*pi), S.Integers),
Intersection(S.Complexes, ImageSet(Lambda(n, -I*(I*(2*n*pi + arg(-exp(-2*I*x))) + 2*im(x))),
S.Integers)))).dummy_eq(Dummy('x,n'))
def test_solveset_conjugate():
"""Test solveset for simple conjugate functions"""
assert solveset(conjugate(x) -3 + I) == FiniteSet(3 + I)
def test_issue_18208():
variables = symbols('x0:16') + symbols('y0:12')
x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15,\
y0, y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11 = variables
eqs = [x0 + x1 + x2 + x3 - 51,
x0 + x1 + x4 + x5 - 46,
x2 + x3 + x6 + x7 - 39,
x0 + x3 + x4 + x7 - 50,
x1 + x2 + x5 + x6 - 35,
x4 + x5 + x6 + x7 - 34,
x4 + x5 + x8 + x9 - 46,
x10 + x11 + x6 + x7 - 23,
x11 + x4 + x7 + x8 - 25,
x10 + x5 + x6 + x9 - 44,
x10 + x11 + x8 + x9 - 35,
x12 + x13 + x8 + x9 - 35,
x10 + x11 + x14 + x15 - 29,
x11 + x12 + x15 + x8 - 35,
x10 + x13 + x14 + x9 - 29,
x12 + x13 + x14 + x15 - 29,
y0 + y1 + y2 + y3 - 55,
y0 + y1 + y4 + y5 - 53,
y2 + y3 + y6 + y7 - 56,
y0 + y3 + y4 + y7 - 57,
y1 + y2 + y5 + y6 - 52,
y4 + y5 + y6 + y7 - 54,
y4 + y5 + y8 + y9 - 48,
y10 + y11 + y6 + y7 - 60,
y11 + y4 + y7 + y8 - 51,
y10 + y5 + y6 + y9 - 57,
y10 + y11 + y8 + y9 - 54,
x10 - 2,
x11 - 5,
x12 - 1,
x13 - 6,
x14 - 1,
x15 - 21,
y0 - 12,
y1 - 20]
expected = [38 - x3, x3 - 10, 23 - x3, x3, 12 - x7, x7 + 6, 16 - x7, x7,
8, 20, 2, 5, 1, 6, 1, 21, 12, 20, -y11 + y9 + 2, y11 - y9 + 21,
-y11 - y7 + y9 + 24, y11 + y7 - y9 - 3, 33 - y7, y7, 27 - y9, y9,
27 - y11, y11]
A, b = linear_eq_to_matrix(eqs, variables)
# solve
solve_expected = {v:eq for v, eq in zip(variables, expected) if v != eq}
assert solve(eqs, variables) == solve_expected
# linsolve
linsolve_expected = FiniteSet(Tuple(*expected))
assert linsolve(eqs, variables) == linsolve_expected
assert linsolve((A, b), variables) == linsolve_expected
# gauss_jordan_solve
gj_solve, new_vars = A.gauss_jordan_solve(b)
gj_solve = [i for i in gj_solve]
gj_expected = linsolve_expected.subs(zip([x3, x7, y7, y9, y11], new_vars))
assert FiniteSet(Tuple(*gj_solve)) == gj_expected
# nonlinsolve
# The solution set of nonlinsolve is currently equivalent to linsolve and is
# also correct. However, we would prefer to use the same symbols as parameters
# for the solution to the underdetermined system in all cases if possible.
# We want a solution that is not just equivalent but also given in the same form.
# This test may be changed should nonlinsolve be modified in this way.
nonlinsolve_expected = FiniteSet((38 - x3, x3 - 10, 23 - x3, x3, 12 - x7, x7 + 6,
16 - x7, x7, 8, 20, 2, 5, 1, 6, 1, 21, 12, 20,
-y5 + y7 - 1, y5 - y7 + 24, 21 - y5, y5, 33 - y7,
y7, 27 - y9, y9, -y5 + y7 - y9 + 24, y5 - y7 + y9 + 3))
assert nonlinsolve(eqs, variables) == nonlinsolve_expected
def test_substitution_with_infeasible_solution():
a00, a01, a10, a11, l0, l1, l2, l3, m0, m1, m2, m3, m4, m5, m6, m7, c00, c01, c10, c11, p00, p01, p10, p11 = symbols(
'a00, a01, a10, a11, l0, l1, l2, l3, m0, m1, m2, m3, m4, m5, m6, m7, c00, c01, c10, c11, p00, p01, p10, p11'
)
solvefor = [p00, p01, p10, p11, c00, c01, c10, c11, m0, m1, m3, l0, l1, l2, l3]
system = [
-l0 * c00 - l1 * c01 + m0 + c00 + c01,
-l0 * c10 - l1 * c11 + m1,
-l2 * c00 - l3 * c01 + c00 + c01,
-l2 * c10 - l3 * c11 + m3,
-l0 * p00 - l2 * p10 + p00 + p10,
-l1 * p00 - l3 * p10 + p00 + p10,
-l0 * p01 - l2 * p11,
-l1 * p01 - l3 * p11,
-a00 + c00 * p00 + c10 * p01,
-a01 + c01 * p00 + c11 * p01,
-a10 + c00 * p10 + c10 * p11,
-a11 + c01 * p10 + c11 * p11,
-m0 * p00,
-m1 * p01,
-m2 * p10,
-m3 * p11,
-m4 * c00,
-m5 * c01,
-m6 * c10,
-m7 * c11,
m2,
m4,
m5,
m6,
m7
]
sol = FiniteSet(
(0, Complement(FiniteSet(p01), FiniteSet(0)), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, l2, l3),
(p00, Complement(FiniteSet(p01), FiniteSet(0)), 0, p11, 0, 0, 0, 0, 0, 0, 0, 1, 1, -p01/p11, -p01/p11),
(0, Complement(FiniteSet(p01), FiniteSet(0)), 0, p11, 0, 0, 0, 0, 0, 0, 0, 1, -l3*p11/p01, -p01/p11, l3),
(0, Complement(FiniteSet(p01), FiniteSet(0)), 0, p11, 0, 0, 0, 0, 0, 0, 0, -l2*p11/p01, -l3*p11/p01, l2, l3),
)
assert sol != nonlinsolve(system, solvefor)
def test_issue_20097():
assert solveset(1/sqrt(x)) is S.EmptySet
def test_issue_15350():
assert solveset(diff(sqrt(1/x+x))) == FiniteSet(-1, 1)
def test_issue_18359():
c1 = Piecewise((0, x < 0), (Min(1, x)/2 - Min(2, x)/2 + Min(3, x)/2, True))
c2 = Piecewise((Piecewise((0, x < 0), (Min(1, x)/2 - Min(2, x)/2 + Min(3, x)/2, True)), x >= 0), (0, True))
correct_result = Interval(1, 2)
result1 = solveset(c1 - Rational(1, 2), x, Interval(0, 3))
result2 = solveset(c2 - Rational(1, 2), x, Interval(0, 3))
assert result1 == correct_result
assert result2 == correct_result
def test_issue_17604():
lhs = -2**(3*x/11)*exp(x/11) + pi**(x/11)
assert _is_exponential(lhs, x)
assert _solve_exponential(lhs, 0, x, S.Complexes) == FiniteSet(0)
def test_issue_17580():
assert solveset(1/(1 - x**3)**2, x, S.Reals) is S.EmptySet
def test_issue_17566_actual():
sys = [2**x + 2**y - 3, 4**x + 9**y - 5]
# Not clear this is the correct result, but at least no recursion error
assert nonlinsolve(sys, x, y) == FiniteSet((log(3 - 2**y)/log(2), y))
def test_issue_17565():
eq = Ge(2*(x - 2)**2/(3*(x + 1)**(Integer(1)/3)) + 2*(x - 2)*(x + 1)**(Integer(2)/3), 0)
res = Union(Interval.Lopen(-1, -Rational(1, 4)), Interval(2, oo))
assert solveset(eq, x, S.Reals) == res
def test_issue_15024():
function = (x + 5)/sqrt(-x**2 - 10*x)
assert solveset(function, x, S.Reals) == FiniteSet(Integer(-5))
def test_issue_16877():
assert dumeq(nonlinsolve([x - 1, sin(y)], x, y),
FiniteSet((FiniteSet(1), ImageSet(Lambda(n, 2*n*pi), S.Integers)),
(FiniteSet(1), ImageSet(Lambda(n, 2*n*pi + pi), S.Integers))))
# Even better if (FiniteSet(1), ImageSet(Lambda(n, n*pi), S.Integers)) is obtained
def test_issue_16876():
assert dumeq(nonlinsolve([sin(x), 2*x - 4*y], x, y),
FiniteSet((ImageSet(Lambda(n, 2*n*pi), S.Integers),
ImageSet(Lambda(n, n*pi), S.Integers)),
(ImageSet(Lambda(n, 2*n*pi + pi), S.Integers),
ImageSet(Lambda(n, n*pi + pi/2), S.Integers))))
# Even better if (ImageSet(Lambda(n, n*pi), S.Integers),
# ImageSet(Lambda(n, n*pi/2), S.Integers)) is obtained
def test_issue_21236():
x, z = symbols("x z")
y = symbols('y', rational=True)
assert solveset(x**y - z, x, S.Reals) == ConditionSet(x, Eq(x**y - z, 0), S.Reals)
e1, e2 = symbols('e1 e2', even=True)
y = e1/e2 # don't know if num or den will be odd and the other even
assert solveset(x**y - z, x, S.Reals) == ConditionSet(x, Eq(x**y - z, 0), S.Reals)
def test_issue_21908():
assert nonlinsolve([(x**2 + 2*x - y**2)*exp(x), -2*y*exp(x)], x, y
) == {(-2, 0), (0, 0)}
def test_issue_19144():
# test case 1
expr1 = [x + y - 1, y**2 + 1]
eq1 = [Eq(i, 0) for i in expr1]
soln1 = {(1 - I, I), (1 + I, -I)}
soln_expr1 = nonlinsolve(expr1, [x, y])
soln_eq1 = nonlinsolve(eq1, [x, y])
assert soln_eq1 == soln_expr1 == soln1
# test case 2 - with denoms
expr2 = [x/y - 1, y**2 + 1]
eq2 = [Eq(i, 0) for i in expr2]
soln2 = {(-I, -I), (I, I)}
soln_expr2 = nonlinsolve(expr2, [x, y])
soln_eq2 = nonlinsolve(eq2, [x, y])
assert soln_eq2 == soln_expr2 == soln2
# denominators that cancel in expression
assert nonlinsolve([Eq(x + 1/x, 1/x)], [x]) == FiniteSet((S.EmptySet,))
def test_issue_22413():
res = nonlinsolve((4*y*(2*x + 2*exp(y) + 1)*exp(2*x),
4*x*exp(2*x) + 4*y*exp(2*x + y) + 4*exp(2*x + y) + 1),
x, y)
# First solution is not correct, but the issue was an exception
sols = FiniteSet((x, S.Zero), (-exp(y) - S.Half, y))
assert res == sols
def test_issue_23318():
eqs_eq = [
Eq(53.5780461486929, x * log(y / (5.0 - y) + 1) / y),
Eq(x, 0.0015 * z),
Eq(0.0015, 7845.32 * y / z),
]
eqs_expr = [eq.rewrite(Add) for eq in eqs_eq]
sol = {(266.97755814852, 0.0340301680681629, 177985.03876568)}
assert_close_nl(nonlinsolve(eqs_eq, [x, y, z]), sol)
assert_close_nl(nonlinsolve(eqs_expr, [x, y, z]), sol)
logterm = log(1.91196789933362e-7*z/(5.0 - 1.91196789933362e-7*z) + 1)
eq = -0.0015*z*logterm + 1.02439504345316e-5*z
assert_close_ss(solveset(eq, z), {0, 177985.038765679})
def test_issue_19814():
assert nonlinsolve([ 2**m - 2**(2*n), 4*2**m - 2**(4*n)], m, n
) == FiniteSet((log(2**(2*n))/log(2), S.Complexes))
def test_issue_22058():
sol = solveset(-sqrt(t)*x**2 + 2*x + sqrt(t), x, S.Reals)
# doesn't fail (and following numerical check)
assert sol.xreplace({t: 1}) == {1 - sqrt(2), 1 + sqrt(2)}, sol.xreplace({t: 1})
def test_issue_11184():
assert solveset(20*sqrt(y**2 + (sqrt(-(y - 10)*(y + 10)) + 10)**2) - 60, y, S.Reals) is S.EmptySet
def test_issue_21890():
e = S(2)/3
assert nonlinsolve([4*x**3*y**4 - 2*y, 4*x**4*y**3 - 2*x], x, y) == {
(2**e/(2*y), y), ((-2**e/4 - 2**e*sqrt(3)*I/4)/y, y),
((-2**e/4 + 2**e*sqrt(3)*I/4)/y, y)}
assert nonlinsolve([(1 - 4*x**2)*exp(-2*x**2 - 2*y**2),
-4*x*y*exp(-2*x**2)*exp(-2*y**2)], x, y) == {(-S(1)/2, 0), (S(1)/2, 0)}
rx, ry = symbols('x y', real=True)
sol = nonlinsolve([4*rx**3*ry**4 - 2*ry, 4*rx**4*ry**3 - 2*rx], rx, ry)
ans = {(2**(S(2)/3)/(2*ry), ry),
((-2**(S(2)/3)/4 - 2**(S(2)/3)*sqrt(3)*I/4)/ry, ry),
((-2**(S(2)/3)/4 + 2**(S(2)/3)*sqrt(3)*I/4)/ry, ry)}
assert sol == ans
def test_issue_22628():
assert nonlinsolve([h - 1, k - 1, f - 2, f - 4, -2*k], h, k, f) == S.EmptySet
assert nonlinsolve([x**3 - 1, x + y, x**2 - 4], [x, y]) == S.EmptySet
|
994c229f3d46fdd52aae8e34681d7b2b531e36770a517c0e6186d2941932bee9 | from sympy.assumptions.ask import (Q, ask)
from sympy.core.add import Add
from sympy.core.containers import Tuple
from sympy.core.function import (Derivative, Function, diff)
from sympy.core.mul import Mul
from sympy.core import (GoldenRatio, TribonacciConstant)
from sympy.core.numbers import (E, Float, I, Rational, oo, pi)
from sympy.core.relational import (Eq, Gt, Lt, Ne)
from sympy.core.singleton import S
from sympy.core.symbol import (Dummy, Symbol, Wild, symbols)
from sympy.core.sympify import sympify
from sympy.functions.combinatorial.factorials import binomial
from sympy.functions.elementary.complexes import (Abs, arg, conjugate, im, re)
from sympy.functions.elementary.exponential import (LambertW, exp, log)
from sympy.functions.elementary.hyperbolic import (atanh, cosh, sinh, tanh)
from sympy.functions.elementary.miscellaneous import (cbrt, root, sqrt)
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import (acos, asin, atan, atan2, cos, sec, sin, tan)
from sympy.functions.special.error_functions import (erf, erfc, erfcinv, erfinv)
from sympy.integrals.integrals import Integral
from sympy.logic.boolalg import (And, Or)
from sympy.matrices.dense import Matrix
from sympy.matrices import SparseMatrix
from sympy.polys.polytools import Poly
from sympy.printing.str import sstr
from sympy.simplify.radsimp import denom
from sympy.solvers.solvers import (nsolve, solve, solve_linear)
from sympy.core.function import nfloat
from sympy.solvers import solve_linear_system, solve_linear_system_LU, \
solve_undetermined_coeffs
from sympy.solvers.bivariate import _filtered_gens, _solve_lambert, _lambert
from sympy.solvers.solvers import _invert, unrad, checksol, posify, _ispow, \
det_quick, det_perm, det_minor, _simple_dens, denoms
from sympy.physics.units import cm
from sympy.polys.rootoftools import CRootOf
from sympy.testing.pytest import slow, XFAIL, SKIP, raises
from sympy.core.random import verify_numerically as tn
from sympy.abc import a, b, c, d, e, k, h, p, x, y, z, t, q, m, R
def NS(e, n=15, **options):
return sstr(sympify(e).evalf(n, **options), full_prec=True)
def test_swap_back():
f, g = map(Function, 'fg')
fx, gx = f(x), g(x)
assert solve([fx + y - 2, fx - gx - 5], fx, y, gx) == \
{fx: gx + 5, y: -gx - 3}
assert solve(fx + gx*x - 2, [fx, gx], dict=True) == [{fx: 2, gx: 0}]
assert solve(fx + gx**2*x - y, [fx, gx], dict=True) == [{fx: y, gx: 0}]
assert solve([f(1) - 2, x + 2], dict=True) == [{x: -2, f(1): 2}]
def guess_solve_strategy(eq, symbol):
try:
solve(eq, symbol)
return True
except (TypeError, NotImplementedError):
return False
def test_guess_poly():
# polynomial equations
assert guess_solve_strategy( S(4), x ) # == GS_POLY
assert guess_solve_strategy( x, x ) # == GS_POLY
assert guess_solve_strategy( x + a, x ) # == GS_POLY
assert guess_solve_strategy( 2*x, x ) # == GS_POLY
assert guess_solve_strategy( x + sqrt(2), x) # == GS_POLY
assert guess_solve_strategy( x + 2**Rational(1, 4), x) # == GS_POLY
assert guess_solve_strategy( x**2 + 1, x ) # == GS_POLY
assert guess_solve_strategy( x**2 - 1, x ) # == GS_POLY
assert guess_solve_strategy( x*y + y, x ) # == GS_POLY
assert guess_solve_strategy( x*exp(y) + y, x) # == GS_POLY
assert guess_solve_strategy(
(x - y**3)/(y**2*sqrt(1 - y**2)), x) # == GS_POLY
def test_guess_poly_cv():
# polynomial equations via a change of variable
assert guess_solve_strategy( sqrt(x) + 1, x ) # == GS_POLY_CV_1
assert guess_solve_strategy(
x**Rational(1, 3) + sqrt(x) + 1, x ) # == GS_POLY_CV_1
assert guess_solve_strategy( 4*x*(1 - sqrt(x)), x ) # == GS_POLY_CV_1
# polynomial equation multiplying both sides by x**n
assert guess_solve_strategy( x + 1/x + y, x ) # == GS_POLY_CV_2
def test_guess_rational_cv():
# rational functions
assert guess_solve_strategy( (x + 1)/(x**2 + 2), x) # == GS_RATIONAL
assert guess_solve_strategy(
(x - y**3)/(y**2*sqrt(1 - y**2)), y) # == GS_RATIONAL_CV_1
# rational functions via the change of variable y -> x**n
assert guess_solve_strategy( (sqrt(x) + 1)/(x**Rational(1, 3) + sqrt(x) + 1), x ) \
#== GS_RATIONAL_CV_1
def test_guess_transcendental():
#transcendental functions
assert guess_solve_strategy( exp(x) + 1, x ) # == GS_TRANSCENDENTAL
assert guess_solve_strategy( 2*cos(x) - y, x ) # == GS_TRANSCENDENTAL
assert guess_solve_strategy(
exp(x) + exp(-x) - y, x ) # == GS_TRANSCENDENTAL
assert guess_solve_strategy(3**x - 10, x) # == GS_TRANSCENDENTAL
assert guess_solve_strategy(-3**x + 10, x) # == GS_TRANSCENDENTAL
assert guess_solve_strategy(a*x**b - y, x) # == GS_TRANSCENDENTAL
def test_solve_args():
# equation container, issue 5113
ans = {x: -3, y: 1}
eqs = (x + 5*y - 2, -3*x + 6*y - 15)
assert all(solve(container(eqs), x, y) == ans for container in
(tuple, list, set, frozenset))
assert solve(Tuple(*eqs), x, y) == ans
# implicit symbol to solve for
assert set(solve(x**2 - 4)) == {S(2), -S(2)}
assert solve([x + y - 3, x - y - 5]) == {x: 4, y: -1}
assert solve(x - exp(x), x, implicit=True) == [exp(x)]
# no symbol to solve for
assert solve(42) == solve(42, x) == []
assert solve([1, 2]) == []
assert solve([sqrt(2)],[x]) == []
# duplicate symbols raises
raises(ValueError, lambda: solve((x - 3, y + 2), x, y, x))
raises(ValueError, lambda: solve(x, x, x))
# no error in exclude
assert solve(x, x, exclude=[y, y]) == [0]
# duplicate symbols raises
raises(ValueError, lambda: solve((x - 3, y + 2), x, y, x))
raises(ValueError, lambda: solve(x, x, x))
# no error in exclude
assert solve(x, x, exclude=[y, y]) == [0]
# unordered symbols
# only 1
assert solve(y - 3, {y}) == [3]
# more than 1
assert solve(y - 3, {x, y}) == [{y: 3}]
# multiple symbols: take the first linear solution+
# - return as tuple with values for all requested symbols
assert solve(x + y - 3, [x, y]) == [(3 - y, y)]
# - unless dict is True
assert solve(x + y - 3, [x, y], dict=True) == [{x: 3 - y}]
# - or no symbols are given
assert solve(x + y - 3) == [{x: 3 - y}]
# multiple symbols might represent an undetermined coefficients system
assert solve(a + b*x - 2, [a, b]) == {a: 2, b: 0}
assert solve((a + b)*x + b - c, [a, b]) == {a: -c, b: c}
eq = a*x**2 + b*x + c - ((x - h)**2 + 4*p*k)/4/p
# - check that flags are obeyed
sol = solve(eq, [h, p, k], exclude=[a, b, c])
assert sol == {h: -b/(2*a), k: (4*a*c - b**2)/(4*a), p: 1/(4*a)}
assert solve(eq, [h, p, k], dict=True) == [sol]
assert solve(eq, [h, p, k], set=True) == \
([h, p, k], {(-b/(2*a), 1/(4*a), (4*a*c - b**2)/(4*a))})
# issue 23889 - polysys not simplified
assert solve(eq, [h, p, k], exclude=[a, b, c], simplify=False) == \
{h: -b/(2*a), k: (4*a*c - b**2)/(4*a), p: 1/(4*a)}
# but this only happens when system has a single solution
args = (a + b)*x - b**2 + 2, a, b
assert solve(*args) == [((b**2 - b*x - 2)/x, b)]
# and if the system has a solution; the following doesn't so
# an algebraic solution is returned
assert solve(a*x + b**2/(x + 4) - 3*x - 4/x, a, b, dict=True) == \
[{a: (-b**2*x + 3*x**3 + 12*x**2 + 4*x + 16)/(x**2*(x + 4))}]
# failed single equation
assert solve(1/(1/x - y + exp(y))) == []
raises(
NotImplementedError, lambda: solve(exp(x) + sin(x) + exp(y) + sin(y)))
# failed system
# -- when no symbols given, 1 fails
assert solve([y, exp(x) + x]) == [{x: -LambertW(1), y: 0}]
# both fail
assert solve(
(exp(x) - x, exp(y) - y)) == [{x: -LambertW(-1), y: -LambertW(-1)}]
# -- when symbols given
assert solve([y, exp(x) + x], x, y) == [(-LambertW(1), 0)]
# symbol is a number
assert solve(x**2 - pi, pi) == [x**2]
# no equations
assert solve([], [x]) == []
# nonlinear system
assert solve((x**2 - 4, y - 2), x, y) == [(-2, 2), (2, 2)]
assert solve((x**2 - 4, y - 2), y, x) == [(2, -2), (2, 2)]
assert solve((x**2 - 4 + z, y - 2 - z), a, z, y, x, set=True
) == ([a, z, y, x], {
(a, z, z + 2, -sqrt(4 - z)),
(a, z, z + 2, sqrt(4 - z))})
# overdetermined system
# - nonlinear
assert solve([(x + y)**2 - 4, x + y - 2]) == [{x: -y + 2}]
# - linear
assert solve((x + y - 2, 2*x + 2*y - 4)) == {x: -y + 2}
# When one or more args are Boolean
assert solve(Eq(x**2, 0.0)) == [0] # issue 19048
assert solve([True, Eq(x, 0)], [x], dict=True) == [{x: 0}]
assert solve([Eq(x, x), Eq(x, 0), Eq(x, x+1)], [x], dict=True) == []
assert not solve([Eq(x, x+1), x < 2], x)
assert solve([Eq(x, 0), x+1<2]) == Eq(x, 0)
assert solve([Eq(x, x), Eq(x, x+1)], x) == []
assert solve(True, x) == []
assert solve([x - 1, False], [x], set=True) == ([], set())
assert solve([-y*(x + y - 1)/2, (y - 1)/x/y + 1/y],
set=True, check=False) == ([x, y], {(1 - y, y), (x, 0)})
# ordering should be canonical, fastest to order by keys instead
# of by size
assert list(solve((y - 1, x - sqrt(3)*z)).keys()) == [x, y]
# as set always returns as symbols, set even if no solution
assert solve([x - 1, x], (y, x), set=True) == ([y, x], set())
assert solve([x - 1, x], {y, x}, set=True) == ([x, y], set())
def test_solve_polynomial1():
assert solve(3*x - 2, x) == [Rational(2, 3)]
assert solve(Eq(3*x, 2), x) == [Rational(2, 3)]
assert set(solve(x**2 - 1, x)) == {-S.One, S.One}
assert set(solve(Eq(x**2, 1), x)) == {-S.One, S.One}
assert solve(x - y**3, x) == [y**3]
rx = root(x, 3)
assert solve(x - y**3, y) == [
rx, -rx/2 - sqrt(3)*I*rx/2, -rx/2 + sqrt(3)*I*rx/2]
a11, a12, a21, a22, b1, b2 = symbols('a11,a12,a21,a22,b1,b2')
assert solve([a11*x + a12*y - b1, a21*x + a22*y - b2], x, y) == \
{
x: (a22*b1 - a12*b2)/(a11*a22 - a12*a21),
y: (a11*b2 - a21*b1)/(a11*a22 - a12*a21),
}
solution = {x: S.Zero, y: S.Zero}
assert solve((x - y, x + y), x, y ) == solution
assert solve((x - y, x + y), (x, y)) == solution
assert solve((x - y, x + y), [x, y]) == solution
assert set(solve(x**3 - 15*x - 4, x)) == {
-2 + 3**S.Half,
S(4),
-2 - 3**S.Half
}
assert set(solve((x**2 - 1)**2 - a, x)) == \
{sqrt(1 + sqrt(a)), -sqrt(1 + sqrt(a)),
sqrt(1 - sqrt(a)), -sqrt(1 - sqrt(a))}
def test_solve_polynomial2():
assert solve(4, x) == []
def test_solve_polynomial_cv_1a():
"""
Test for solving on equations that can be converted to a polynomial equation
using the change of variable y -> x**Rational(p, q)
"""
assert solve( sqrt(x) - 1, x) == [1]
assert solve( sqrt(x) - 2, x) == [4]
assert solve( x**Rational(1, 4) - 2, x) == [16]
assert solve( x**Rational(1, 3) - 3, x) == [27]
assert solve(sqrt(x) + x**Rational(1, 3) + x**Rational(1, 4), x) == [0]
def test_solve_polynomial_cv_1b():
assert set(solve(4*x*(1 - a*sqrt(x)), x)) == {S.Zero, 1/a**2}
assert set(solve(x*(root(x, 3) - 3), x)) == {S.Zero, S(27)}
def test_solve_polynomial_cv_2():
"""
Test for solving on equations that can be converted to a polynomial equation
multiplying both sides of the equation by x**m
"""
assert solve(x + 1/x - 1, x) in \
[[ S.Half + I*sqrt(3)/2, S.Half - I*sqrt(3)/2],
[ S.Half - I*sqrt(3)/2, S.Half + I*sqrt(3)/2]]
def test_quintics_1():
f = x**5 - 110*x**3 - 55*x**2 + 2310*x + 979
s = solve(f, check=False)
for r in s:
res = f.subs(x, r.n()).n()
assert tn(res, 0)
f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20
s = solve(f)
for r in s:
assert r.func == CRootOf
# if one uses solve to get the roots of a polynomial that has a CRootOf
# solution, make sure that the use of nfloat during the solve process
# doesn't fail. Note: if you want numerical solutions to a polynomial
# it is *much* faster to use nroots to get them than to solve the
# equation only to get RootOf solutions which are then numerically
# evaluated. So for eq = x**5 + 3*x + 7 do Poly(eq).nroots() rather
# than [i.n() for i in solve(eq)] to get the numerical roots of eq.
assert nfloat(solve(x**5 + 3*x**3 + 7)[0], exponent=False) == \
CRootOf(x**5 + 3*x**3 + 7, 0).n()
def test_quintics_2():
f = x**5 + 15*x + 12
s = solve(f, check=False)
for r in s:
res = f.subs(x, r.n()).n()
assert tn(res, 0)
f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20
s = solve(f)
for r in s:
assert r.func == CRootOf
assert solve(x**5 - 6*x**3 - 6*x**2 + x - 6) == [
CRootOf(x**5 - 6*x**3 - 6*x**2 + x - 6, 0),
CRootOf(x**5 - 6*x**3 - 6*x**2 + x - 6, 1),
CRootOf(x**5 - 6*x**3 - 6*x**2 + x - 6, 2),
CRootOf(x**5 - 6*x**3 - 6*x**2 + x - 6, 3),
CRootOf(x**5 - 6*x**3 - 6*x**2 + x - 6, 4)]
def test_quintics_3():
y = x**5 + x**3 - 2**Rational(1, 3)
assert solve(y) == solve(-y) == []
def test_highorder_poly():
# just testing that the uniq generator is unpacked
sol = solve(x**6 - 2*x + 2)
assert all(isinstance(i, CRootOf) for i in sol) and len(sol) == 6
def test_solve_rational():
"""Test solve for rational functions"""
assert solve( ( x - y**3 )/( (y**2)*sqrt(1 - y**2) ), x) == [y**3]
def test_solve_conjugate():
"""Test solve for simple conjugate functions"""
assert solve(conjugate(x) -3 + I) == [3 + I]
def test_solve_nonlinear():
assert solve(x**2 - y**2, x, y, dict=True) == [{x: -y}, {x: y}]
assert solve(x**2 - y**2/exp(x), y, x, dict=True) == [{y: -x*sqrt(exp(x))},
{y: x*sqrt(exp(x))}]
def test_issue_8666():
x = symbols('x')
assert solve(Eq(x**2 - 1/(x**2 - 4), 4 - 1/(x**2 - 4)), x) == []
assert solve(Eq(x + 1/x, 1/x), x) == []
def test_issue_7228():
assert solve(4**(2*(x**2) + 2*x) - 8, x) == [Rational(-3, 2), S.Half]
def test_issue_7190():
assert solve(log(x-3) + log(x+3), x) == [sqrt(10)]
def test_issue_21004():
x = symbols('x')
f = x/sqrt(x**2+1)
f_diff = f.diff(x)
assert solve(f_diff, x) == []
def test_linear_system():
x, y, z, t, n = symbols('x, y, z, t, n')
assert solve([x - 1, x - y, x - 2*y, y - 1], [x, y]) == []
assert solve([x - 1, x - y, x - 2*y, x - 1], [x, y]) == []
assert solve([x - 1, x - 1, x - y, x - 2*y], [x, y]) == []
assert solve([x + 5*y - 2, -3*x + 6*y - 15], x, y) == {x: -3, y: 1}
M = Matrix([[0, 0, n*(n + 1), (n + 1)**2, 0],
[n + 1, n + 1, -2*n - 1, -(n + 1), 0],
[-1, 0, 1, 0, 0]])
assert solve_linear_system(M, x, y, z, t) == \
{x: t*(-n-1)/n, y: 0, z: t*(-n-1)/n}
assert solve([x + y + z + t, -z - t], x, y, z, t) == {x: -y, z: -t}
@XFAIL
def test_linear_system_xfail():
# https://github.com/sympy/sympy/issues/6420
M = Matrix([[0, 15.0, 10.0, 700.0],
[1, 1, 1, 100.0],
[0, 10.0, 5.0, 200.0],
[-5.0, 0, 0, 0 ]])
assert solve_linear_system(M, x, y, z) == {x: 0, y: -60.0, z: 160.0}
def test_linear_system_function():
a = Function('a')
assert solve([a(0, 0) + a(0, 1) + a(1, 0) + a(1, 1), -a(1, 0) - a(1, 1)],
a(0, 0), a(0, 1), a(1, 0), a(1, 1)) == {a(1, 0): -a(1, 1), a(0, 0): -a(0, 1)}
def test_linear_system_symbols_doesnt_hang_1():
def _mk_eqs(wy):
# Equations for fitting a wy*2 - 1 degree polynomial between two points,
# at end points derivatives are known up to order: wy - 1
order = 2*wy - 1
x, x0, x1 = symbols('x, x0, x1', real=True)
y0s = symbols('y0_:{}'.format(wy), real=True)
y1s = symbols('y1_:{}'.format(wy), real=True)
c = symbols('c_:{}'.format(order+1), real=True)
expr = sum([coeff*x**o for o, coeff in enumerate(c)])
eqs = []
for i in range(wy):
eqs.append(expr.diff(x, i).subs({x: x0}) - y0s[i])
eqs.append(expr.diff(x, i).subs({x: x1}) - y1s[i])
return eqs, c
#
# The purpose of this test is just to see that these calls don't hang. The
# expressions returned are complicated so are not included here. Testing
# their correctness takes longer than solving the system.
#
for n in range(1, 7+1):
eqs, c = _mk_eqs(n)
solve(eqs, c)
def test_linear_system_symbols_doesnt_hang_2():
M = Matrix([
[66, 24, 39, 50, 88, 40, 37, 96, 16, 65, 31, 11, 37, 72, 16, 19, 55, 37, 28, 76],
[10, 93, 34, 98, 59, 44, 67, 74, 74, 94, 71, 61, 60, 23, 6, 2, 57, 8, 29, 78],
[19, 91, 57, 13, 64, 65, 24, 53, 77, 34, 85, 58, 87, 39, 39, 7, 36, 67, 91, 3],
[74, 70, 15, 53, 68, 43, 86, 83, 81, 72, 25, 46, 67, 17, 59, 25, 78, 39, 63, 6],
[69, 40, 67, 21, 67, 40, 17, 13, 93, 44, 46, 89, 62, 31, 30, 38, 18, 20, 12, 81],
[50, 22, 74, 76, 34, 45, 19, 76, 28, 28, 11, 99, 97, 82, 8, 46, 99, 57, 68, 35],
[58, 18, 45, 88, 10, 64, 9, 34, 90, 82, 17, 41, 43, 81, 45, 83, 22, 88, 24, 39],
[42, 21, 70, 68, 6, 33, 64, 81, 83, 15, 86, 75, 86, 17, 77, 34, 62, 72, 20, 24],
[ 7, 8, 2, 72, 71, 52, 96, 5, 32, 51, 31, 36, 79, 88, 25, 77, 29, 26, 33, 13],
[19, 31, 30, 85, 81, 39, 63, 28, 19, 12, 16, 49, 37, 66, 38, 13, 3, 71, 61, 51],
[29, 82, 80, 49, 26, 85, 1, 37, 2, 74, 54, 82, 26, 47, 54, 9, 35, 0, 99, 40],
[15, 49, 82, 91, 93, 57, 45, 25, 45, 97, 15, 98, 48, 52, 66, 24, 62, 54, 97, 37],
[62, 23, 73, 53, 52, 86, 28, 38, 0, 74, 92, 38, 97, 70, 71, 29, 26, 90, 67, 45],
[ 2, 32, 23, 24, 71, 37, 25, 71, 5, 41, 97, 65, 93, 13, 65, 45, 25, 88, 69, 50],
[40, 56, 1, 29, 79, 98, 79, 62, 37, 28, 45, 47, 3, 1, 32, 74, 98, 35, 84, 32],
[33, 15, 87, 79, 65, 9, 14, 63, 24, 19, 46, 28, 74, 20, 29, 96, 84, 91, 93, 1],
[97, 18, 12, 52, 1, 2, 50, 14, 52, 76, 19, 82, 41, 73, 51, 79, 13, 3, 82, 96],
[40, 28, 52, 10, 10, 71, 56, 78, 82, 5, 29, 48, 1, 26, 16, 18, 50, 76, 86, 52],
[38, 89, 83, 43, 29, 52, 90, 77, 57, 0, 67, 20, 81, 88, 48, 96, 88, 58, 14, 3]])
syms = x0,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18 = symbols('x:19')
sol = {
x0: -S(1967374186044955317099186851240896179)/3166636564687820453598895768302256588,
x1: -S(84268280268757263347292368432053826)/791659141171955113399723942075564147,
x2: -S(229962957341664730974463872411844965)/1583318282343910226799447884151128294,
x3: S(990156781744251750886760432229180537)/6333273129375640907197791536604513176,
x4: -S(2169830351210066092046760299593096265)/18999819388126922721593374609813539528,
x5: S(4680868883477577389628494526618745355)/9499909694063461360796687304906769764,
x6: -S(1590820774344371990683178396480879213)/3166636564687820453598895768302256588,
x7: -S(54104723404825537735226491634383072)/339282489073695048599881689460956063,
x8: S(3182076494196560075964847771774733847)/6333273129375640907197791536604513176,
x9: -S(10870817431029210431989147852497539675)/18999819388126922721593374609813539528,
x10: -S(13118019242576506476316318268573312603)/18999819388126922721593374609813539528,
x11: -S(5173852969886775824855781403820641259)/4749954847031730680398343652453384882,
x12: S(4261112042731942783763341580651820563)/4749954847031730680398343652453384882,
x13: -S(821833082694661608993818117038209051)/6333273129375640907197791536604513176,
x14: S(906881575107250690508618713632090559)/904753304196520129599684505229216168,
x15: -S(732162528717458388995329317371283987)/6333273129375640907197791536604513176,
x16: S(4524215476705983545537087360959896817)/9499909694063461360796687304906769764,
x17: -S(3898571347562055611881270844646055217)/6333273129375640907197791536604513176,
x18: S(7513502486176995632751685137907442269)/18999819388126922721593374609813539528
}
eqs = list(M * Matrix(syms + (1,)))
assert solve(eqs, syms) == sol
y = Symbol('y')
eqs = list(y * M * Matrix(syms + (1,)))
assert solve(eqs, syms) == sol
def test_linear_systemLU():
n = Symbol('n')
M = Matrix([[1, 2, 0, 1], [1, 3, 2*n, 1], [4, -1, n**2, 1]])
assert solve_linear_system_LU(M, [x, y, z]) == {z: -3/(n**2 + 18*n),
x: 1 - 12*n/(n**2 + 18*n),
y: 6*n/(n**2 + 18*n)}
# Note: multiple solutions exist for some of these equations, so the tests
# should be expected to break if the implementation of the solver changes
# in such a way that a different branch is chosen
@slow
def test_solve_transcendental():
from sympy.abc import a, b
assert solve(exp(x) - 3, x) == [log(3)]
assert set(solve((a*x + b)*(exp(x) - 3), x)) == {-b/a, log(3)}
assert solve(cos(x) - y, x) == [-acos(y) + 2*pi, acos(y)]
assert solve(2*cos(x) - y, x) == [-acos(y/2) + 2*pi, acos(y/2)]
assert solve(Eq(cos(x), sin(x)), x) == [pi/4]
assert set(solve(exp(x) + exp(-x) - y, x)) in [{
log(y/2 - sqrt(y**2 - 4)/2),
log(y/2 + sqrt(y**2 - 4)/2),
}, {
log(y - sqrt(y**2 - 4)) - log(2),
log(y + sqrt(y**2 - 4)) - log(2)},
{
log(y/2 - sqrt((y - 2)*(y + 2))/2),
log(y/2 + sqrt((y - 2)*(y + 2))/2)}]
assert solve(exp(x) - 3, x) == [log(3)]
assert solve(Eq(exp(x), 3), x) == [log(3)]
assert solve(log(x) - 3, x) == [exp(3)]
assert solve(sqrt(3*x) - 4, x) == [Rational(16, 3)]
assert solve(3**(x + 2), x) == []
assert solve(3**(2 - x), x) == []
assert solve(x + 2**x, x) == [-LambertW(log(2))/log(2)]
assert solve(2*x + 5 + log(3*x - 2), x) == \
[Rational(2, 3) + LambertW(2*exp(Rational(-19, 3))/3)/2]
assert solve(3*x + log(4*x), x) == [LambertW(Rational(3, 4))/3]
assert set(solve((2*x + 8)*(8 + exp(x)), x)) == {S(-4), log(8) + pi*I}
eq = 2*exp(3*x + 4) - 3
ans = solve(eq, x) # this generated a failure in flatten
assert len(ans) == 3 and all(eq.subs(x, a).n(chop=True) == 0 for a in ans)
assert solve(2*log(3*x + 4) - 3, x) == [(exp(Rational(3, 2)) - 4)/3]
assert solve(exp(x) + 1, x) == [pi*I]
eq = 2*(3*x + 4)**5 - 6*7**(3*x + 9)
result = solve(eq, x)
x0 = -log(2401)
x1 = 3**Rational(1, 5)
x2 = log(7**(7*x1/20))
x3 = sqrt(2)
x4 = sqrt(5)
x5 = x3*sqrt(x4 - 5)
x6 = x4 + 1
x7 = 1/(3*log(7))
x8 = -x4
x9 = x3*sqrt(x8 - 5)
x10 = x8 + 1
ans = [x7*(x0 - 5*LambertW(x2*(-x5 + x6))),
x7*(x0 - 5*LambertW(x2*(x5 + x6))),
x7*(x0 - 5*LambertW(x2*(x10 - x9))),
x7*(x0 - 5*LambertW(x2*(x10 + x9))),
x7*(x0 - 5*LambertW(-log(7**(7*x1/5))))]
assert result == ans, result
# it works if expanded, too
assert solve(eq.expand(), x) == result
assert solve(z*cos(x) - y, x) == [-acos(y/z) + 2*pi, acos(y/z)]
assert solve(z*cos(2*x) - y, x) == [-acos(y/z)/2 + pi, acos(y/z)/2]
assert solve(z*cos(sin(x)) - y, x) == [
pi - asin(acos(y/z)), asin(acos(y/z) - 2*pi) + pi,
-asin(acos(y/z) - 2*pi), asin(acos(y/z))]
assert solve(z*cos(x), x) == [pi/2, pi*Rational(3, 2)]
# issue 4508
assert solve(y - b*x/(a + x), x) in [[-a*y/(y - b)], [a*y/(b - y)]]
assert solve(y - b*exp(a/x), x) == [a/log(y/b)]
# issue 4507
assert solve(y - b/(1 + a*x), x) in [[(b - y)/(a*y)], [-((y - b)/(a*y))]]
# issue 4506
assert solve(y - a*x**b, x) == [(y/a)**(1/b)]
# issue 4505
assert solve(z**x - y, x) == [log(y)/log(z)]
# issue 4504
assert solve(2**x - 10, x) == [1 + log(5)/log(2)]
# issue 6744
assert solve(x*y) == [{x: 0}, {y: 0}]
assert solve([x*y]) == [{x: 0}, {y: 0}]
assert solve(x**y - 1) == [{x: 1}, {y: 0}]
assert solve([x**y - 1]) == [{x: 1}, {y: 0}]
assert solve(x*y*(x**2 - y**2)) == [{x: 0}, {x: -y}, {x: y}, {y: 0}]
assert solve([x*y*(x**2 - y**2)]) == [{x: 0}, {x: -y}, {x: y}, {y: 0}]
# issue 4739
assert solve(exp(log(5)*x) - 2**x, x) == [0]
# issue 14791
assert solve(exp(log(5)*x) - exp(log(2)*x), x) == [0]
f = Function('f')
assert solve(y*f(log(5)*x) - y*f(log(2)*x), x) == [0]
assert solve(f(x) - f(0), x) == [0]
assert solve(f(x) - f(2 - x), x) == [1]
raises(NotImplementedError, lambda: solve(f(x, y) - f(1, 2), x))
raises(NotImplementedError, lambda: solve(f(x, y) - f(2 - x, 2), x))
raises(ValueError, lambda: solve(f(x, y) - f(1 - x), x))
raises(ValueError, lambda: solve(f(x, y) - f(1), x))
# misc
# make sure that the right variables is picked up in tsolve
# shouldn't generate a GeneratorsNeeded error in _tsolve when the NaN is generated
# for eq_down. Actual answers, as determined numerically are approx. +/- 0.83
raises(NotImplementedError, lambda:
solve(sinh(x)*sinh(sinh(x)) + cosh(x)*cosh(sinh(x)) - 3))
# watch out for recursive loop in tsolve
raises(NotImplementedError, lambda: solve((x + 2)**y*x - 3, x))
# issue 7245
assert solve(sin(sqrt(x))) == [0, pi**2]
# issue 7602
a, b = symbols('a, b', real=True, negative=False)
assert str(solve(Eq(a, 0.5 - cos(pi*b)/2), b)) == \
'[2.0 - 0.318309886183791*acos(1.0 - 2.0*a), 0.318309886183791*acos(1.0 - 2.0*a)]'
# issue 15325
assert solve(y**(1/x) - z, x) == [log(y)/log(z)]
def test_solve_for_functions_derivatives():
t = Symbol('t')
x = Function('x')(t)
y = Function('y')(t)
a11, a12, a21, a22, b1, b2 = symbols('a11,a12,a21,a22,b1,b2')
soln = solve([a11*x + a12*y - b1, a21*x + a22*y - b2], x, y)
assert soln == {
x: (a22*b1 - a12*b2)/(a11*a22 - a12*a21),
y: (a11*b2 - a21*b1)/(a11*a22 - a12*a21),
}
assert solve(x - 1, x) == [1]
assert solve(3*x - 2, x) == [Rational(2, 3)]
soln = solve([a11*x.diff(t) + a12*y.diff(t) - b1, a21*x.diff(t) +
a22*y.diff(t) - b2], x.diff(t), y.diff(t))
assert soln == { y.diff(t): (a11*b2 - a21*b1)/(a11*a22 - a12*a21),
x.diff(t): (a22*b1 - a12*b2)/(a11*a22 - a12*a21) }
assert solve(x.diff(t) - 1, x.diff(t)) == [1]
assert solve(3*x.diff(t) - 2, x.diff(t)) == [Rational(2, 3)]
eqns = {3*x - 1, 2*y - 4}
assert solve(eqns, {x, y}) == { x: Rational(1, 3), y: 2 }
x = Symbol('x')
f = Function('f')
F = x**2 + f(x)**2 - 4*x - 1
assert solve(F.diff(x), diff(f(x), x)) == [(-x + 2)/f(x)]
# Mixed cased with a Symbol and a Function
x = Symbol('x')
y = Function('y')(t)
soln = solve([a11*x + a12*y.diff(t) - b1, a21*x +
a22*y.diff(t) - b2], x, y.diff(t))
assert soln == { y.diff(t): (a11*b2 - a21*b1)/(a11*a22 - a12*a21),
x: (a22*b1 - a12*b2)/(a11*a22 - a12*a21) }
# issue 13263
x = Symbol('x')
f = Function('f')
soln = solve([f(x).diff(x) + f(x).diff(x, 2) - 1, f(x).diff(x) - f(x).diff(x, 2)],
f(x).diff(x), f(x).diff(x, 2))
assert soln == { f(x).diff(x, 2): 1/2, f(x).diff(x): 1/2 }
soln = solve([f(x).diff(x, 2) + f(x).diff(x, 3) - 1, 1 - f(x).diff(x, 2) -
f(x).diff(x, 3), 1 - f(x).diff(x,3)], f(x).diff(x, 2), f(x).diff(x, 3))
assert soln == { f(x).diff(x, 2): 0, f(x).diff(x, 3): 1 }
def test_issue_3725():
f = Function('f')
F = x**2 + f(x)**2 - 4*x - 1
e = F.diff(x)
assert solve(e, f(x).diff(x)) in [[(2 - x)/f(x)], [-((x - 2)/f(x))]]
def test_issue_3870():
a, b, c, d = symbols('a b c d')
A = Matrix(2, 2, [a, b, c, d])
B = Matrix(2, 2, [0, 2, -3, 0])
C = Matrix(2, 2, [1, 2, 3, 4])
assert solve(A*B - C, [a, b, c, d]) == {a: 1, b: Rational(-1, 3), c: 2, d: -1}
assert solve([A*B - C], [a, b, c, d]) == {a: 1, b: Rational(-1, 3), c: 2, d: -1}
assert solve(Eq(A*B, C), [a, b, c, d]) == {a: 1, b: Rational(-1, 3), c: 2, d: -1}
assert solve([A*B - B*A], [a, b, c, d]) == {a: d, b: Rational(-2, 3)*c}
assert solve([A*C - C*A], [a, b, c, d]) == {a: d - c, b: Rational(2, 3)*c}
assert solve([A*B - B*A, A*C - C*A], [a, b, c, d]) == {a: d, b: 0, c: 0}
assert solve([Eq(A*B, B*A)], [a, b, c, d]) == {a: d, b: Rational(-2, 3)*c}
assert solve([Eq(A*C, C*A)], [a, b, c, d]) == {a: d - c, b: Rational(2, 3)*c}
assert solve([Eq(A*B, B*A), Eq(A*C, C*A)], [a, b, c, d]) == {a: d, b: 0, c: 0}
def test_solve_linear():
w = Wild('w')
assert solve_linear(x, x) == (0, 1)
assert solve_linear(x, exclude=[x]) == (0, 1)
assert solve_linear(x, symbols=[w]) == (0, 1)
assert solve_linear(x, y - 2*x) in [(x, y/3), (y, 3*x)]
assert solve_linear(x, y - 2*x, exclude=[x]) == (y, 3*x)
assert solve_linear(3*x - y, 0) in [(x, y/3), (y, 3*x)]
assert solve_linear(3*x - y, 0, [x]) == (x, y/3)
assert solve_linear(3*x - y, 0, [y]) == (y, 3*x)
assert solve_linear(x**2/y, 1) == (y, x**2)
assert solve_linear(w, x) in [(w, x), (x, w)]
assert solve_linear(cos(x)**2 + sin(x)**2 + 2 + y) == \
(y, -2 - cos(x)**2 - sin(x)**2)
assert solve_linear(cos(x)**2 + sin(x)**2 + 2 + y, symbols=[x]) == (0, 1)
assert solve_linear(Eq(x, 3)) == (x, 3)
assert solve_linear(1/(1/x - 2)) == (0, 0)
assert solve_linear((x + 1)*exp(-x), symbols=[x]) == (x, -1)
assert solve_linear((x + 1)*exp(x), symbols=[x]) == ((x + 1)*exp(x), 1)
assert solve_linear(x*exp(-x**2), symbols=[x]) == (x, 0)
assert solve_linear(0**x - 1) == (0**x - 1, 1)
assert solve_linear(1 + 1/(x - 1)) == (x, 0)
eq = y*cos(x)**2 + y*sin(x)**2 - y # = y*(1 - 1) = 0
assert solve_linear(eq) == (0, 1)
eq = cos(x)**2 + sin(x)**2 # = 1
assert solve_linear(eq) == (0, 1)
raises(ValueError, lambda: solve_linear(Eq(x, 3), 3))
def test_solve_undetermined_coeffs():
assert solve_undetermined_coeffs(
a*x**2 + b*x**2 + b*x + 2*c*x + c + 1, [a, b, c], x
) == {a: -2, b: 2, c: -1}
# Test that rational functions work
assert solve_undetermined_coeffs(a/x + b/(x + 1)
- (2*x + 1)/(x**2 + x), [a, b], x) == {a: 1, b: 1}
# Test cancellation in rational functions
assert solve_undetermined_coeffs(
((c + 1)*a*x**2 + (c + 1)*b*x**2 +
(c + 1)*b*x + (c + 1)*2*c*x + (c + 1)**2)/(c + 1),
[a, b, c], x) == \
{a: -2, b: 2, c: -1}
# multivariate
X, Y, Z = y, x**y, y*x**y
eq = a*X + b*Y + c*Z - X - 2*Y - 3*Z
coeffs = a, b, c
syms = x, y
assert solve_undetermined_coeffs(eq, coeffs) == {
a: 1, b: 2, c: 3}
assert solve_undetermined_coeffs(eq, coeffs, syms) == {
a: 1, b: 2, c: 3}
assert solve_undetermined_coeffs(eq, coeffs, *syms) == {
a: 1, b: 2, c: 3}
# check output format
assert solve_undetermined_coeffs(a*x + a - 2, [a]) == []
assert solve_undetermined_coeffs(a**2*x - 4*x, [a]) == [
{a: -2}, {a: 2}]
assert solve_undetermined_coeffs(0, [a]) == []
assert solve_undetermined_coeffs(0, [a], dict=True) == []
assert solve_undetermined_coeffs(0, [a], set=True) == ([], {})
assert solve_undetermined_coeffs(1, [a]) == []
abeq = a*x - 2*x + b - 3
s = {b, a}
assert solve_undetermined_coeffs(abeq, s, x) == {a: 2, b: 3}
assert solve_undetermined_coeffs(abeq, s, x, set=True) == ([a, b], {(2, 3)})
assert solve_undetermined_coeffs(sin(a*x) - sin(2*x), (a,)) is None
assert solve_undetermined_coeffs(a*x + b*x - 2*x, (a, b)) == {a: 2 - b}
def test_solve_inequalities():
x = Symbol('x')
sol = And(S.Zero < x, x < oo)
assert solve(x + 1 > 1) == sol
assert solve([x + 1 > 1]) == sol
assert solve([x + 1 > 1], x) == sol
assert solve([x + 1 > 1], [x]) == sol
system = [Lt(x**2 - 2, 0), Gt(x**2 - 1, 0)]
assert solve(system) == \
And(Or(And(Lt(-sqrt(2), x), Lt(x, -1)),
And(Lt(1, x), Lt(x, sqrt(2)))), Eq(0, 0))
x = Symbol('x', real=True)
system = [Lt(x**2 - 2, 0), Gt(x**2 - 1, 0)]
assert solve(system) == \
Or(And(Lt(-sqrt(2), x), Lt(x, -1)), And(Lt(1, x), Lt(x, sqrt(2))))
# issues 6627, 3448
assert solve((x - 3)/(x - 2) < 0, x) == And(Lt(2, x), Lt(x, 3))
assert solve(x/(x + 1) > 1, x) == And(Lt(-oo, x), Lt(x, -1))
assert solve(sin(x) > S.Half) == And(pi/6 < x, x < pi*Rational(5, 6))
assert solve(Eq(False, x < 1)) == (S.One <= x) & (x < oo)
assert solve(Eq(True, x < 1)) == (-oo < x) & (x < 1)
assert solve(Eq(x < 1, False)) == (S.One <= x) & (x < oo)
assert solve(Eq(x < 1, True)) == (-oo < x) & (x < 1)
assert solve(Eq(False, x)) == False
assert solve(Eq(0, x)) == [0]
assert solve(Eq(True, x)) == True
assert solve(Eq(1, x)) == [1]
assert solve(Eq(False, ~x)) == True
assert solve(Eq(True, ~x)) == False
assert solve(Ne(True, x)) == False
assert solve(Ne(1, x)) == (x > -oo) & (x < oo) & Ne(x, 1)
def test_issue_4793():
assert solve(1/x) == []
assert solve(x*(1 - 5/x)) == [5]
assert solve(x + sqrt(x) - 2) == [1]
assert solve(-(1 + x)/(2 + x)**2 + 1/(2 + x)) == []
assert solve(-x**2 - 2*x + (x + 1)**2 - 1) == []
assert solve((x/(x + 1) + 3)**(-2)) == []
assert solve(x/sqrt(x**2 + 1), x) == [0]
assert solve(exp(x) - y, x) == [log(y)]
assert solve(exp(x)) == []
assert solve(x**2 + x + sin(y)**2 + cos(y)**2 - 1, x) in [[0, -1], [-1, 0]]
eq = 4*3**(5*x + 2) - 7
ans = solve(eq, x)
assert len(ans) == 5 and all(eq.subs(x, a).n(chop=True) == 0 for a in ans)
assert solve(log(x**2) - y**2/exp(x), x, y, set=True) == (
[x, y],
{(x, sqrt(exp(x) * log(x ** 2))), (x, -sqrt(exp(x) * log(x ** 2)))})
assert solve(x**2*z**2 - z**2*y**2) == [{x: -y}, {x: y}, {z: 0}]
assert solve((x - 1)/(1 + 1/(x - 1))) == []
assert solve(x**(y*z) - x, x) == [1]
raises(NotImplementedError, lambda: solve(log(x) - exp(x), x))
raises(NotImplementedError, lambda: solve(2**x - exp(x) - 3))
def test_PR1964():
# issue 5171
assert solve(sqrt(x)) == solve(sqrt(x**3)) == [0]
assert solve(sqrt(x - 1)) == [1]
# issue 4462
a = Symbol('a')
assert solve(-3*a/sqrt(x), x) == []
# issue 4486
assert solve(2*x/(x + 2) - 1, x) == [2]
# issue 4496
assert set(solve((x**2/(7 - x)).diff(x))) == {S.Zero, S(14)}
# issue 4695
f = Function('f')
assert solve((3 - 5*x/f(x))*f(x), f(x)) == [x*Rational(5, 3)]
# issue 4497
assert solve(1/root(5 + x, 5) - 9, x) == [Rational(-295244, 59049)]
assert solve(sqrt(x) + sqrt(sqrt(x)) - 4) == [(Rational(-1, 2) + sqrt(17)/2)**4]
assert set(solve(Poly(sqrt(exp(x)) + sqrt(exp(-x)) - 4))) in \
[
{log((-sqrt(3) + 2)**2), log((sqrt(3) + 2)**2)},
{2*log(-sqrt(3) + 2), 2*log(sqrt(3) + 2)},
{log(-4*sqrt(3) + 7), log(4*sqrt(3) + 7)},
]
assert set(solve(Poly(exp(x) + exp(-x) - 4))) == \
{log(-sqrt(3) + 2), log(sqrt(3) + 2)}
assert set(solve(x**y + x**(2*y) - 1, x)) == \
{(Rational(-1, 2) + sqrt(5)/2)**(1/y), (Rational(-1, 2) - sqrt(5)/2)**(1/y)}
assert solve(exp(x/y)*exp(-z/y) - 2, y) == [(x - z)/log(2)]
assert solve(
x**z*y**z - 2, z) in [[log(2)/(log(x) + log(y))], [log(2)/(log(x*y))]]
# if you do inversion too soon then multiple roots (as for the following)
# will be missed, e.g. if exp(3*x) = exp(3) -> 3*x = 3
E = S.Exp1
assert solve(exp(3*x) - exp(3), x) in [
[1, log(E*(Rational(-1, 2) - sqrt(3)*I/2)), log(E*(Rational(-1, 2) + sqrt(3)*I/2))],
[1, log(-E/2 - sqrt(3)*E*I/2), log(-E/2 + sqrt(3)*E*I/2)],
]
# coverage test
p = Symbol('p', positive=True)
assert solve((1/p + 1)**(p + 1)) == []
def test_issue_5197():
x = Symbol('x', real=True)
assert solve(x**2 + 1, x) == []
n = Symbol('n', integer=True, positive=True)
assert solve((n - 1)*(n + 2)*(2*n - 1), n) == [1]
x = Symbol('x', positive=True)
y = Symbol('y')
assert solve([x + 5*y - 2, -3*x + 6*y - 15], x, y) == []
# not {x: -3, y: 1} b/c x is positive
# The solution following should not contain (-sqrt(2), sqrt(2))
assert solve([(x + y), 2 - y**2], x, y) == [(sqrt(2), -sqrt(2))]
y = Symbol('y', positive=True)
# The solution following should not contain {y: -x*exp(x/2)}
assert solve(x**2 - y**2/exp(x), y, x, dict=True) == [{y: x*exp(x/2)}]
x, y, z = symbols('x y z', positive=True)
assert solve(z**2*x**2 - z**2*y**2/exp(x), y, x, z, dict=True) == [{y: x*exp(x/2)}]
def test_checking():
assert set(
solve(x*(x - y/x), x, check=False)) == {sqrt(y), S.Zero, -sqrt(y)}
assert set(solve(x*(x - y/x), x, check=True)) == {sqrt(y), -sqrt(y)}
# {x: 0, y: 4} sets denominator to 0 in the following so system should return None
assert solve((1/(1/x + 2), 1/(y - 3) - 1)) == []
# 0 sets denominator of 1/x to zero so None is returned
assert solve(1/(1/x + 2)) == []
def test_issue_4671_4463_4467():
assert solve(sqrt(x**2 - 1) - 2) in ([sqrt(5), -sqrt(5)],
[-sqrt(5), sqrt(5)])
assert solve((2**exp(y**2/x) + 2)/(x**2 + 15), y) == [
-sqrt(x*log(1 + I*pi/log(2))), sqrt(x*log(1 + I*pi/log(2)))]
C1, C2 = symbols('C1 C2')
f = Function('f')
assert solve(C1 + C2/x**2 - exp(-f(x)), f(x)) == [log(x**2/(C1*x**2 + C2))]
a = Symbol('a')
E = S.Exp1
assert solve(1 - log(a + 4*x**2), x) in (
[-sqrt(-a + E)/2, sqrt(-a + E)/2],
[sqrt(-a + E)/2, -sqrt(-a + E)/2]
)
assert solve(log(a**(-3) - x**2)/a, x) in (
[-sqrt(-1 + a**(-3)), sqrt(-1 + a**(-3))],
[sqrt(-1 + a**(-3)), -sqrt(-1 + a**(-3))],)
assert solve(1 - log(a + 4*x**2), x) in (
[-sqrt(-a + E)/2, sqrt(-a + E)/2],
[sqrt(-a + E)/2, -sqrt(-a + E)/2],)
assert solve((a**2 + 1)*(sin(a*x) + cos(a*x)), x) == [-pi/(4*a)]
assert solve(3 - (sinh(a*x) + cosh(a*x)), x) == [log(3)/a]
assert set(solve(3 - (sinh(a*x) + cosh(a*x)**2), x)) == \
{log(-2 + sqrt(5))/a, log(-sqrt(2) + 1)/a,
log(-sqrt(5) - 2)/a, log(1 + sqrt(2))/a}
assert solve(atan(x) - 1) == [tan(1)]
def test_issue_5132():
r, t = symbols('r,t')
assert set(solve([r - x**2 - y**2, tan(t) - y/x], [x, y])) == \
{(
-sqrt(r*cos(t)**2), -1*sqrt(r*cos(t)**2)*tan(t)),
(sqrt(r*cos(t)**2), sqrt(r*cos(t)**2)*tan(t))}
assert solve([exp(x) - sin(y), 1/y - 3], [x, y]) == \
[(log(sin(Rational(1, 3))), Rational(1, 3))]
assert solve([exp(x) - sin(y), 1/exp(y) - 3], [x, y]) == \
[(log(-sin(log(3))), -log(3))]
assert set(solve([exp(x) - sin(y), y**2 - 4], [x, y])) == \
{(log(-sin(2)), -S(2)), (log(sin(2)), S(2))}
eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3]
assert solve(eqs, set=True) == \
([y, z], {
(-log(3), sqrt(-exp(2*x) - sin(log(3)))),
(-log(3), -sqrt(-exp(2*x) - sin(log(3))))})
assert solve(eqs, x, z, set=True) == (
[x, z],
{(x, sqrt(-exp(2*x) + sin(y))), (x, -sqrt(-exp(2*x) + sin(y)))})
assert set(solve(eqs, x, y)) == \
{
(log(-sqrt(-z**2 - sin(log(3)))), -log(3)),
(log(-z**2 - sin(log(3)))/2, -log(3))}
assert set(solve(eqs, y, z)) == \
{
(-log(3), -sqrt(-exp(2*x) - sin(log(3)))),
(-log(3), sqrt(-exp(2*x) - sin(log(3))))}
eqs = [exp(x)**2 - sin(y) + z, 1/exp(y) - 3]
assert solve(eqs, set=True) == ([y, z], {
(-log(3), -exp(2*x) - sin(log(3)))})
assert solve(eqs, x, z, set=True) == (
[x, z], {(x, -exp(2*x) + sin(y))})
assert set(solve(eqs, x, y)) == {
(log(-sqrt(-z - sin(log(3)))), -log(3)),
(log(-z - sin(log(3)))/2, -log(3))}
assert solve(eqs, z, y) == \
[(-exp(2*x) - sin(log(3)), -log(3))]
assert solve((sqrt(x**2 + y**2) - sqrt(10), x + y - 4), set=True) == (
[x, y], {(S.One, S(3)), (S(3), S.One)})
assert set(solve((sqrt(x**2 + y**2) - sqrt(10), x + y - 4), x, y)) == \
{(S.One, S(3)), (S(3), S.One)}
def test_issue_5335():
lam, a0, conc = symbols('lam a0 conc')
a = 0.005
b = 0.743436700916726
eqs = [lam + 2*y - a0*(1 - x/2)*x - a*x/2*x,
a0*(1 - x/2)*x - 1*y - b*y,
x + y - conc]
sym = [x, y, a0]
# there are 4 solutions obtained manually but only two are valid
assert len(solve(eqs, sym, manual=True, minimal=True)) == 2
assert len(solve(eqs, sym)) == 2 # cf below with rational=False
@SKIP("Hangs")
def _test_issue_5335_float():
# gives ZeroDivisionError: polynomial division
lam, a0, conc = symbols('lam a0 conc')
a = 0.005
b = 0.743436700916726
eqs = [lam + 2*y - a0*(1 - x/2)*x - a*x/2*x,
a0*(1 - x/2)*x - 1*y - b*y,
x + y - conc]
sym = [x, y, a0]
assert len(solve(eqs, sym, rational=False)) == 2
def test_issue_5767():
assert set(solve([x**2 + y + 4], [x])) == \
{(-sqrt(-y - 4),), (sqrt(-y - 4),)}
def test_polysys():
assert set(solve([x**2 + 2/y - 2, x + y - 3], [x, y])) == \
{(S.One, S(2)), (1 + sqrt(5), 2 - sqrt(5)),
(1 - sqrt(5), 2 + sqrt(5))}
assert solve([x**2 + y - 2, x**2 + y]) == []
# the ordering should be whatever the user requested
assert solve([x**2 + y - 3, x - y - 4], (x, y)) != solve([x**2 +
y - 3, x - y - 4], (y, x))
@slow
def test_unrad1():
raises(NotImplementedError, lambda:
unrad(sqrt(x) + sqrt(x + 1) + sqrt(1 - sqrt(x)) + 3))
raises(NotImplementedError, lambda:
unrad(sqrt(x) + (x + 1)**Rational(1, 3) + 2*sqrt(y)))
s = symbols('s', cls=Dummy)
# checkers to deal with possibility of answer coming
# back with a sign change (cf issue 5203)
def check(rv, ans):
assert bool(rv[1]) == bool(ans[1])
if ans[1]:
return s_check(rv, ans)
e = rv[0].expand()
a = ans[0].expand()
return e in [a, -a] and rv[1] == ans[1]
def s_check(rv, ans):
# get the dummy
rv = list(rv)
d = rv[0].atoms(Dummy)
reps = list(zip(d, [s]*len(d)))
# replace s with this dummy
rv = (rv[0].subs(reps).expand(), [rv[1][0].subs(reps), rv[1][1].subs(reps)])
ans = (ans[0].subs(reps).expand(), [ans[1][0].subs(reps), ans[1][1].subs(reps)])
return str(rv[0]) in [str(ans[0]), str(-ans[0])] and \
str(rv[1]) == str(ans[1])
assert unrad(1) is None
assert check(unrad(sqrt(x)),
(x, []))
assert check(unrad(sqrt(x) + 1),
(x - 1, []))
assert check(unrad(sqrt(x) + root(x, 3) + 2),
(s**3 + s**2 + 2, [s, s**6 - x]))
assert check(unrad(sqrt(x)*root(x, 3) + 2),
(x**5 - 64, []))
assert check(unrad(sqrt(x) + (x + 1)**Rational(1, 3)),
(x**3 - (x + 1)**2, []))
assert check(unrad(sqrt(x) + sqrt(x + 1) + sqrt(2*x)),
(-2*sqrt(2)*x - 2*x + 1, []))
assert check(unrad(sqrt(x) + sqrt(x + 1) + 2),
(16*x - 9, []))
assert check(unrad(sqrt(x) + sqrt(x + 1) + sqrt(1 - x)),
(5*x**2 - 4*x, []))
assert check(unrad(a*sqrt(x) + b*sqrt(x) + c*sqrt(y) + d*sqrt(y)),
((a*sqrt(x) + b*sqrt(x))**2 - (c*sqrt(y) + d*sqrt(y))**2, []))
assert check(unrad(sqrt(x) + sqrt(1 - x)),
(2*x - 1, []))
assert check(unrad(sqrt(x) + sqrt(1 - x) - 3),
(x**2 - x + 16, []))
assert check(unrad(sqrt(x) + sqrt(1 - x) + sqrt(2 + x)),
(5*x**2 - 2*x + 1, []))
assert unrad(sqrt(x) + sqrt(1 - x) + sqrt(2 + x) - 3) in [
(25*x**4 + 376*x**3 + 1256*x**2 - 2272*x + 784, []),
(25*x**8 - 476*x**6 + 2534*x**4 - 1468*x**2 + 169, [])]
assert unrad(sqrt(x) + sqrt(1 - x) + sqrt(2 + x) - sqrt(1 - 2*x)) == \
(41*x**4 + 40*x**3 + 232*x**2 - 160*x + 16, []) # orig root at 0.487
assert check(unrad(sqrt(x) + sqrt(x + 1)), (S.One, []))
eq = sqrt(x) + sqrt(x + 1) + sqrt(1 - sqrt(x))
assert check(unrad(eq),
(16*x**2 - 9*x, []))
assert set(solve(eq, check=False)) == {S.Zero, Rational(9, 16)}
assert solve(eq) == []
# but this one really does have those solutions
assert set(solve(sqrt(x) - sqrt(x + 1) + sqrt(1 - sqrt(x)))) == \
{S.Zero, Rational(9, 16)}
assert check(unrad(sqrt(x) + root(x + 1, 3) + 2*sqrt(y), y),
(S('2*sqrt(x)*(x + 1)**(1/3) + x - 4*y + (x + 1)**(2/3)'), []))
assert check(unrad(sqrt(x/(1 - x)) + (x + 1)**Rational(1, 3)),
(x**5 - x**4 - x**3 + 2*x**2 + x - 1, []))
assert check(unrad(sqrt(x/(1 - x)) + 2*sqrt(y), y),
(4*x*y + x - 4*y, []))
assert check(unrad(sqrt(x)*sqrt(1 - x) + 2, x),
(x**2 - x + 4, []))
# http://tutorial.math.lamar.edu/
# Classes/Alg/SolveRadicalEqns.aspx#Solve_Rad_Ex2_a
assert solve(Eq(x, sqrt(x + 6))) == [3]
assert solve(Eq(x + sqrt(x - 4), 4)) == [4]
assert solve(Eq(1, x + sqrt(2*x - 3))) == []
assert set(solve(Eq(sqrt(5*x + 6) - 2, x))) == {-S.One, S(2)}
assert set(solve(Eq(sqrt(2*x - 1) - sqrt(x - 4), 2))) == {S(5), S(13)}
assert solve(Eq(sqrt(x + 7) + 2, sqrt(3 - x))) == [-6]
# http://www.purplemath.com/modules/solverad.htm
assert solve((2*x - 5)**Rational(1, 3) - 3) == [16]
assert set(solve(x + 1 - root(x**4 + 4*x**3 - x, 4))) == \
{Rational(-1, 2), Rational(-1, 3)}
assert set(solve(sqrt(2*x**2 - 7) - (3 - x))) == {-S(8), S(2)}
assert solve(sqrt(2*x + 9) - sqrt(x + 1) - sqrt(x + 4)) == [0]
assert solve(sqrt(x + 4) + sqrt(2*x - 1) - 3*sqrt(x - 1)) == [5]
assert solve(sqrt(x)*sqrt(x - 7) - 12) == [16]
assert solve(sqrt(x - 3) + sqrt(x) - 3) == [4]
assert solve(sqrt(9*x**2 + 4) - (3*x + 2)) == [0]
assert solve(sqrt(x) - 2 - 5) == [49]
assert solve(sqrt(x - 3) - sqrt(x) - 3) == []
assert solve(sqrt(x - 1) - x + 7) == [10]
assert solve(sqrt(x - 2) - 5) == [27]
assert solve(sqrt(17*x - sqrt(x**2 - 5)) - 7) == [3]
assert solve(sqrt(x) - sqrt(x - 1) + sqrt(sqrt(x))) == []
# don't posify the expression in unrad and do use _mexpand
z = sqrt(2*x + 1)/sqrt(x) - sqrt(2 + 1/x)
p = posify(z)[0]
assert solve(p) == []
assert solve(z) == []
assert solve(z + 6*I) == [Rational(-1, 11)]
assert solve(p + 6*I) == []
# issue 8622
assert unrad(root(x + 1, 5) - root(x, 3)) == (
-(x**5 - x**3 - 3*x**2 - 3*x - 1), [])
# issue #8679
assert check(unrad(x + root(x, 3) + root(x, 3)**2 + sqrt(y), x),
(s**3 + s**2 + s + sqrt(y), [s, s**3 - x]))
# for coverage
assert check(unrad(sqrt(x) + root(x, 3) + y),
(s**3 + s**2 + y, [s, s**6 - x]))
assert solve(sqrt(x) + root(x, 3) - 2) == [1]
raises(NotImplementedError, lambda:
solve(sqrt(x) + root(x, 3) + root(x + 1, 5) - 2))
# fails through a different code path
raises(NotImplementedError, lambda: solve(-sqrt(2) + cosh(x)/x))
# unrad some
assert solve(sqrt(x + root(x, 3))+root(x - y, 5), y) == [
x + (x**Rational(1, 3) + x)**Rational(5, 2)]
assert check(unrad(sqrt(x) - root(x + 1, 3)*sqrt(x + 2) + 2),
(s**10 + 8*s**8 + 24*s**6 - 12*s**5 - 22*s**4 - 160*s**3 - 212*s**2 -
192*s - 56, [s, s**2 - x]))
e = root(x + 1, 3) + root(x, 3)
assert unrad(e) == (2*x + 1, [])
eq = (sqrt(x) + sqrt(x + 1) + sqrt(1 - x) - 6*sqrt(5)/5)
assert check(unrad(eq),
(15625*x**4 + 173000*x**3 + 355600*x**2 - 817920*x + 331776, []))
assert check(unrad(root(x, 4) + root(x, 4)**3 - 1),
(s**3 + s - 1, [s, s**4 - x]))
assert check(unrad(root(x, 2) + root(x, 2)**3 - 1),
(x**3 + 2*x**2 + x - 1, []))
assert unrad(x**0.5) is None
assert check(unrad(t + root(x + y, 5) + root(x + y, 5)**3),
(s**3 + s + t, [s, s**5 - x - y]))
assert check(unrad(x + root(x + y, 5) + root(x + y, 5)**3, y),
(s**3 + s + x, [s, s**5 - x - y]))
assert check(unrad(x + root(x + y, 5) + root(x + y, 5)**3, x),
(s**5 + s**3 + s - y, [s, s**5 - x - y]))
assert check(unrad(root(x - 1, 3) + root(x + 1, 5) + root(2, 5)),
(s**5 + 5*2**Rational(1, 5)*s**4 + s**3 + 10*2**Rational(2, 5)*s**3 +
10*2**Rational(3, 5)*s**2 + 5*2**Rational(4, 5)*s + 4, [s, s**3 - x + 1]))
raises(NotImplementedError, lambda:
unrad((root(x, 2) + root(x, 3) + root(x, 4)).subs(x, x**5 - x + 1)))
# the simplify flag should be reset to False for unrad results;
# if it's not then this next test will take a long time
assert solve(root(x, 3) + root(x, 5) - 2) == [1]
eq = (sqrt(x) + sqrt(x + 1) + sqrt(1 - x) - 6*sqrt(5)/5)
assert check(unrad(eq),
((5*x - 4)*(3125*x**3 + 37100*x**2 + 100800*x - 82944), []))
ans = S('''
[4/5, -1484/375 + 172564/(140625*(114*sqrt(12657)/78125 +
12459439/52734375)**(1/3)) +
4*(114*sqrt(12657)/78125 + 12459439/52734375)**(1/3)]''')
assert solve(eq) == ans
# duplicate radical handling
assert check(unrad(sqrt(x + root(x + 1, 3)) - root(x + 1, 3) - 2),
(s**3 - s**2 - 3*s - 5, [s, s**3 - x - 1]))
# cov post-processing
e = root(x**2 + 1, 3) - root(x**2 - 1, 5) - 2
assert check(unrad(e),
(s**5 - 10*s**4 + 39*s**3 - 80*s**2 + 80*s - 30,
[s, s**3 - x**2 - 1]))
e = sqrt(x + root(x + 1, 2)) - root(x + 1, 3) - 2
assert check(unrad(e),
(s**6 - 2*s**5 - 7*s**4 - 3*s**3 + 26*s**2 + 40*s + 25,
[s, s**3 - x - 1]))
assert check(unrad(e, _reverse=True),
(s**6 - 14*s**5 + 73*s**4 - 187*s**3 + 276*s**2 - 228*s + 89,
[s, s**2 - x - sqrt(x + 1)]))
# this one needs r0, r1 reversal to work
assert check(unrad(sqrt(x + sqrt(root(x, 3) - 1)) - root(x, 6) - 2),
(s**12 - 2*s**8 - 8*s**7 - 8*s**6 + s**4 + 8*s**3 + 23*s**2 +
32*s + 17, [s, s**6 - x]))
# why does this pass
assert unrad(root(cosh(x), 3)/x*root(x + 1, 5) - 1) == (
-(x**15 - x**3*cosh(x)**5 - 3*x**2*cosh(x)**5 - 3*x*cosh(x)**5
- cosh(x)**5), [])
# and this fail?
#assert unrad(sqrt(cosh(x)/x) + root(x + 1, 3)*sqrt(x) - 1) == (
# -s**6 + 6*s**5 - 15*s**4 + 20*s**3 - 15*s**2 + 6*s + x**5 +
# 2*x**4 + x**3 - 1, [s, s**2 - cosh(x)/x])
# watch for symbols in exponents
assert unrad(S('(x+y)**(2*y/3) + (x+y)**(1/3) + 1')) is None
assert check(unrad(S('(x+y)**(2*y/3) + (x+y)**(1/3) + 1'), x),
(s**(2*y) + s + 1, [s, s**3 - x - y]))
# should _Q be so lenient?
assert unrad(x**(S.Half/y) + y, x) == (x**(1/y) - y**2, [])
# This tests two things: that if full unrad is attempted and fails
# the solution should still be found; also it tests that the use of
# composite
assert len(solve(sqrt(y)*x + x**3 - 1, x)) == 3
assert len(solve(-512*y**3 + 1344*(x + 2)**Rational(1, 3)*y**2 -
1176*(x + 2)**Rational(2, 3)*y - 169*x + 686, y, _unrad=False)) == 3
# watch out for when the cov doesn't involve the symbol of interest
eq = S('-x + (7*y/8 - (27*x/2 + 27*sqrt(x**2)/2)**(1/3)/3)**3 - 1')
assert solve(eq, y) == [
2**(S(2)/3)*(27*x + 27*sqrt(x**2))**(S(1)/3)*S(4)/21 + (512*x/343 +
S(512)/343)**(S(1)/3)*(-S(1)/2 - sqrt(3)*I/2), 2**(S(2)/3)*(27*x +
27*sqrt(x**2))**(S(1)/3)*S(4)/21 + (512*x/343 +
S(512)/343)**(S(1)/3)*(-S(1)/2 + sqrt(3)*I/2), 2**(S(2)/3)*(27*x +
27*sqrt(x**2))**(S(1)/3)*S(4)/21 + (512*x/343 + S(512)/343)**(S(1)/3)]
eq = root(x + 1, 3) - (root(x, 3) + root(x, 5))
assert check(unrad(eq),
(3*s**13 + 3*s**11 + s**9 - 1, [s, s**15 - x]))
assert check(unrad(eq - 2),
(3*s**13 + 3*s**11 + 6*s**10 + s**9 + 12*s**8 + 6*s**6 + 12*s**5 +
12*s**3 + 7, [s, s**15 - x]))
assert check(unrad(root(x, 3) - root(x + 1, 4)/2 + root(x + 2, 3)),
(s*(4096*s**9 + 960*s**8 + 48*s**7 - s**6 - 1728),
[s, s**4 - x - 1])) # orig expr has two real roots: -1, -.389
assert check(unrad(root(x, 3) + root(x + 1, 4) - root(x + 2, 3)/2),
(343*s**13 + 2904*s**12 + 1344*s**11 + 512*s**10 - 1323*s**9 -
3024*s**8 - 1728*s**7 + 1701*s**5 + 216*s**4 - 729*s, [s, s**4 - x -
1])) # orig expr has one real root: -0.048
assert check(unrad(root(x, 3)/2 - root(x + 1, 4) + root(x + 2, 3)),
(729*s**13 - 216*s**12 + 1728*s**11 - 512*s**10 + 1701*s**9 -
3024*s**8 + 1344*s**7 + 1323*s**5 - 2904*s**4 + 343*s, [s, s**4 - x -
1])) # orig expr has 2 real roots: -0.91, -0.15
assert check(unrad(root(x, 3)/2 - root(x + 1, 4) + root(x + 2, 3) - 2),
(729*s**13 + 1242*s**12 + 18496*s**10 + 129701*s**9 + 388602*s**8 +
453312*s**7 - 612864*s**6 - 3337173*s**5 - 6332418*s**4 - 7134912*s**3
- 5064768*s**2 - 2111913*s - 398034, [s, s**4 - x - 1]))
# orig expr has 1 real root: 19.53
ans = solve(sqrt(x) + sqrt(x + 1) -
sqrt(1 - x) - sqrt(2 + x))
assert len(ans) == 1 and NS(ans[0])[:4] == '0.73'
# the fence optimization problem
# https://github.com/sympy/sympy/issues/4793#issuecomment-36994519
F = Symbol('F')
eq = F - (2*x + 2*y + sqrt(x**2 + y**2))
ans = F*Rational(2, 7) - sqrt(2)*F/14
X = solve(eq, x, check=False)
for xi in reversed(X): # reverse since currently, ans is the 2nd one
Y = solve((x*y).subs(x, xi).diff(y), y, simplify=False, check=False)
if any((a - ans).expand().is_zero for a in Y):
break
else:
assert None # no answer was found
assert solve(sqrt(x + 1) + root(x, 3) - 2) == S('''
[(-11/(9*(47/54 + sqrt(93)/6)**(1/3)) + 1/3 + (47/54 +
sqrt(93)/6)**(1/3))**3]''')
assert solve(sqrt(sqrt(x + 1)) + x**Rational(1, 3) - 2) == S('''
[(-sqrt(-2*(-1/16 + sqrt(6913)/16)**(1/3) + 6/(-1/16 +
sqrt(6913)/16)**(1/3) + 17/2 + 121/(4*sqrt(-6/(-1/16 +
sqrt(6913)/16)**(1/3) + 2*(-1/16 + sqrt(6913)/16)**(1/3) + 17/4)))/2 +
sqrt(-6/(-1/16 + sqrt(6913)/16)**(1/3) + 2*(-1/16 +
sqrt(6913)/16)**(1/3) + 17/4)/2 + 9/4)**3]''')
assert solve(sqrt(x) + root(sqrt(x) + 1, 3) - 2) == S('''
[(-(81/2 + 3*sqrt(741)/2)**(1/3)/3 + (81/2 + 3*sqrt(741)/2)**(-1/3) +
2)**2]''')
eq = S('''
-x + (1/2 - sqrt(3)*I/2)*(3*x**3/2 - x*(3*x**2 - 34)/2 + sqrt((-3*x**3
+ x*(3*x**2 - 34) + 90)**2/4 - 39304/27) - 45)**(1/3) + 34/(3*(1/2 -
sqrt(3)*I/2)*(3*x**3/2 - x*(3*x**2 - 34)/2 + sqrt((-3*x**3 + x*(3*x**2
- 34) + 90)**2/4 - 39304/27) - 45)**(1/3))''')
assert check(unrad(eq),
(s*-(-s**6 + sqrt(3)*s**6*I - 153*2**Rational(2, 3)*3**Rational(1, 3)*s**4 +
51*12**Rational(1, 3)*s**4 - 102*2**Rational(2, 3)*3**Rational(5, 6)*s**4*I - 1620*s**3 +
1620*sqrt(3)*s**3*I + 13872*18**Rational(1, 3)*s**2 - 471648 +
471648*sqrt(3)*I), [s, s**3 - 306*x - sqrt(3)*sqrt(31212*x**2 -
165240*x + 61484) + 810]))
assert solve(eq) == [] # not other code errors
eq = root(x, 3) - root(y, 3) + root(x, 5)
assert check(unrad(eq),
(s**15 + 3*s**13 + 3*s**11 + s**9 - y, [s, s**15 - x]))
eq = root(x, 3) + root(y, 3) + root(x*y, 4)
assert check(unrad(eq),
(s*y*(-s**12 - 3*s**11*y - 3*s**10*y**2 - s**9*y**3 -
3*s**8*y**2 + 21*s**7*y**3 - 3*s**6*y**4 - 3*s**4*y**4 -
3*s**3*y**5 - y**6), [s, s**4 - x*y]))
raises(NotImplementedError,
lambda: unrad(root(x, 3) + root(y, 3) + root(x*y, 5)))
# Test unrad with an Equality
eq = Eq(-x**(S(1)/5) + x**(S(1)/3), -3**(S(1)/3) - (-1)**(S(3)/5)*3**(S(1)/5))
assert check(unrad(eq),
(-s**5 + s**3 - 3**(S(1)/3) - (-1)**(S(3)/5)*3**(S(1)/5), [s, s**15 - x]))
# make sure buried radicals are exposed
s = sqrt(x) - 1
assert unrad(s**2 - s**3) == (x**3 - 6*x**2 + 9*x - 4, [])
# make sure numerators which are already polynomial are rejected
assert unrad((x/(x + 1) + 3)**(-2), x) is None
# https://github.com/sympy/sympy/issues/23707
eq = sqrt(x - y)*exp(t*sqrt(x - y)) - exp(t*sqrt(x - y))
assert solve(eq, y) == [x - 1]
assert unrad(eq) is None
@slow
def test_unrad_slow():
# this has roots with multiplicity > 1; there should be no
# repeats in roots obtained, however
eq = (sqrt(1 + sqrt(1 - 4*x**2)) - x*(1 + sqrt(1 + 2*sqrt(1 - 4*x**2))))
assert solve(eq) == [S.Half]
@XFAIL
def test_unrad_fail():
# this only works if we check real_root(eq.subs(x, Rational(1, 3)))
# but checksol doesn't work like that
assert solve(root(x**3 - 3*x**2, 3) + 1 - x) == [Rational(1, 3)]
assert solve(root(x + 1, 3) + root(x**2 - 2, 5) + 1) == [
-1, -1 + CRootOf(x**5 + x**4 + 5*x**3 + 8*x**2 + 10*x + 5, 0)**3]
def test_checksol():
x, y, r, t = symbols('x, y, r, t')
eq = r - x**2 - y**2
dict_var_soln = {y: - sqrt(r) / sqrt(tan(t)**2 + 1),
x: -sqrt(r)*tan(t)/sqrt(tan(t)**2 + 1)}
assert checksol(eq, dict_var_soln) == True
assert checksol(Eq(x, False), {x: False}) is True
assert checksol(Ne(x, False), {x: False}) is False
assert checksol(Eq(x < 1, True), {x: 0}) is True
assert checksol(Eq(x < 1, True), {x: 1}) is False
assert checksol(Eq(x < 1, False), {x: 1}) is True
assert checksol(Eq(x < 1, False), {x: 0}) is False
assert checksol(Eq(x + 1, x**2 + 1), {x: 1}) is True
assert checksol([x - 1, x**2 - 1], x, 1) is True
assert checksol([x - 1, x**2 - 2], x, 1) is False
assert checksol(Poly(x**2 - 1), x, 1) is True
assert checksol(0, {}) is True
assert checksol([1e-10, x - 2], x, 2) is False
assert checksol([0.5, 0, x], x, 0) is False
assert checksol(y, x, 2) is False
assert checksol(x+1e-10, x, 0, numerical=True) is True
assert checksol(x+1e-10, x, 0, numerical=False) is False
assert checksol(exp(92*x), {x: log(sqrt(2)/2)}) is False
assert checksol(exp(92*x), {x: log(sqrt(2)/2) + I*pi}) is False
assert checksol(1/x**5, x, 1000) is False
raises(ValueError, lambda: checksol(x, 1))
raises(ValueError, lambda: checksol([], x, 1))
def test__invert():
assert _invert(x - 2) == (2, x)
assert _invert(2) == (2, 0)
assert _invert(exp(1/x) - 3, x) == (1/log(3), x)
assert _invert(exp(1/x + a/x) - 3, x) == ((a + 1)/log(3), x)
assert _invert(a, x) == (a, 0)
def test_issue_4463():
assert solve(-a*x + 2*x*log(x), x) == [exp(a/2)]
assert solve(x**x) == []
assert solve(x**x - 2) == [exp(LambertW(log(2)))]
assert solve(((x - 3)*(x - 2))**((x - 3)*(x - 4))) == [2]
@slow
def test_issue_5114_solvers():
a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r = symbols('a:r')
# there is no 'a' in the equation set but this is how the
# problem was originally posed
syms = a, b, c, f, h, k, n
eqs = [b + r/d - c/d,
c*(1/d + 1/e + 1/g) - f/g - r/d,
f*(1/g + 1/i + 1/j) - c/g - h/i,
h*(1/i + 1/l + 1/m) - f/i - k/m,
k*(1/m + 1/o + 1/p) - h/m - n/p,
n*(1/p + 1/q) - k/p]
assert len(solve(eqs, syms, manual=True, check=False, simplify=False)) == 1
def test_issue_5849():
#
# XXX: This system does not have a solution for most values of the
# parameters. Generally solve returns the empty set for systems that are
# generically inconsistent.
#
I1, I2, I3, I4, I5, I6 = symbols('I1:7')
dI1, dI4, dQ2, dQ4, Q2, Q4 = symbols('dI1,dI4,dQ2,dQ4,Q2,Q4')
e = (
I1 - I2 - I3,
I3 - I4 - I5,
I4 + I5 - I6,
-I1 + I2 + I6,
-2*I1 - 2*I3 - 2*I5 - 3*I6 - dI1/2 + 12,
-I4 + dQ4,
-I2 + dQ2,
2*I3 + 2*I5 + 3*I6 - Q2,
I4 - 2*I5 + 2*Q4 + dI4
)
ans = [{
I1: I2 + I3,
dI1: -4*I2 - 8*I3 - 4*I5 - 6*I6 + 24,
I4: I3 - I5,
dQ4: I3 - I5,
Q4: -I3/2 + 3*I5/2 - dI4/2,
dQ2: I2,
Q2: 2*I3 + 2*I5 + 3*I6}]
v = I1, I4, Q2, Q4, dI1, dI4, dQ2, dQ4
assert solve(e, *v, manual=True, check=False, dict=True) == ans
assert solve(e, *v, manual=True, check=False) == [
tuple([a.get(i, i) for i in v]) for a in ans]
assert solve(e, *v, manual=True) == []
assert solve(e, *v) == []
# the matrix solver (tested below) doesn't like this because it produces
# a zero row in the matrix. Is this related to issue 4551?
assert [ei.subs(
ans[0]) for ei in e] == [0, 0, I3 - I6, -I3 + I6, 0, 0, 0, 0, 0]
def test_issue_5849_matrix():
'''Same as test_issue_5849 but solved with the matrix solver.
A solution only exists if I3 == I6 which is not generically true,
but `solve` does not return conditions under which the solution is
valid, only a solution that is canonical and consistent with the input.
'''
# a simple example with the same issue
# assert solve([x+y+z, x+y], [x, y]) == {x: y}
# the longer example
I1, I2, I3, I4, I5, I6 = symbols('I1:7')
dI1, dI4, dQ2, dQ4, Q2, Q4 = symbols('dI1,dI4,dQ2,dQ4,Q2,Q4')
e = (
I1 - I2 - I3,
I3 - I4 - I5,
I4 + I5 - I6,
-I1 + I2 + I6,
-2*I1 - 2*I3 - 2*I5 - 3*I6 - dI1/2 + 12,
-I4 + dQ4,
-I2 + dQ2,
2*I3 + 2*I5 + 3*I6 - Q2,
I4 - 2*I5 + 2*Q4 + dI4
)
assert solve(e, I1, I4, Q2, Q4, dI1, dI4, dQ2, dQ4) == []
def test_issue_21882():
a, b, c, d, f, g, k = unknowns = symbols('a, b, c, d, f, g, k')
equations = [
-k*a + b + 5*f/6 + 2*c/9 + 5*d/6 + 4*a/3,
-k*f + 4*f/3 + d/2,
-k*d + f/6 + d,
13*b/18 + 13*c/18 + 13*a/18,
-k*c + b/2 + 20*c/9 + a,
-k*b + b + c/18 + a/6,
5*b/3 + c/3 + a,
2*b/3 + 2*c + 4*a/3,
-g,
]
answer = [
{a: 0, f: 0, b: 0, d: 0, c: 0, g: 0},
{a: 0, f: -d, b: 0, k: S(5)/6, c: 0, g: 0},
{a: -2*c, f: 0, b: c, d: 0, k: S(13)/18, g: 0}]
# but not {a: 0, f: 0, b: 0, k: S(3)/2, c: 0, d: 0, g: 0}
# since this is already covered by the first solution
got = solve(equations, unknowns, dict=True)
assert got == answer, (got,answer)
def test_issue_5901():
f, g, h = map(Function, 'fgh')
a = Symbol('a')
D = Derivative(f(x), x)
G = Derivative(g(a), a)
assert solve(f(x) + f(x).diff(x), f(x)) == \
[-D]
assert solve(f(x) - 3, f(x)) == \
[3]
assert solve(f(x) - 3*f(x).diff(x), f(x)) == \
[3*D]
assert solve([f(x) - 3*f(x).diff(x)], f(x)) == \
{f(x): 3*D}
assert solve([f(x) - 3*f(x).diff(x), f(x)**2 - y + 4], f(x), y) == \
[(3*D, 9*D**2 + 4)]
assert solve(-f(a)**2*g(a)**2 + f(a)**2*h(a)**2 + g(a).diff(a),
h(a), g(a), set=True) == \
([h(a), g(a)], {
(-sqrt(f(a)**2*g(a)**2 - G)/f(a), g(a)),
(sqrt(f(a)**2*g(a)**2 - G)/f(a), g(a))}), solve(-f(a)**2*g(a)**2 + f(a)**2*h(a)**2 + g(a).diff(a),
h(a), g(a), set=True)
args = [[f(x).diff(x, 2)*(f(x) + g(x)), 2 - g(x)**2], f(x), g(x)]
assert solve(*args, set=True)[1] == \
{(-sqrt(2), sqrt(2)), (sqrt(2), -sqrt(2))}
eqs = [f(x)**2 + g(x) - 2*f(x).diff(x), g(x)**2 - 4]
assert solve(eqs, f(x), g(x), set=True) == \
([f(x), g(x)], {
(-sqrt(2*D - 2), S(2)),
(sqrt(2*D - 2), S(2)),
(-sqrt(2*D + 2), -S(2)),
(sqrt(2*D + 2), -S(2))})
# the underlying problem was in solve_linear that was not masking off
# anything but a Mul or Add; it now raises an error if it gets anything
# but a symbol and solve handles the substitutions necessary so solve_linear
# won't make this error
raises(
ValueError, lambda: solve_linear(f(x) + f(x).diff(x), symbols=[f(x)]))
assert solve_linear(f(x) + f(x).diff(x), symbols=[x]) == \
(f(x) + Derivative(f(x), x), 1)
assert solve_linear(f(x) + Integral(x, (x, y)), symbols=[x]) == \
(f(x) + Integral(x, (x, y)), 1)
assert solve_linear(f(x) + Integral(x, (x, y)) + x, symbols=[x]) == \
(x + f(x) + Integral(x, (x, y)), 1)
assert solve_linear(f(y) + Integral(x, (x, y)) + x, symbols=[x]) == \
(x, -f(y) - Integral(x, (x, y)))
assert solve_linear(x - f(x)/a + (f(x) - 1)/a, symbols=[x]) == \
(x, 1/a)
assert solve_linear(x + Derivative(2*x, x)) == \
(x, -2)
assert solve_linear(x + Integral(x, y), symbols=[x]) == \
(x, 0)
assert solve_linear(x + Integral(x, y) - 2, symbols=[x]) == \
(x, 2/(y + 1))
assert set(solve(x + exp(x)**2, exp(x))) == \
{-sqrt(-x), sqrt(-x)}
assert solve(x + exp(x), x, implicit=True) == \
[-exp(x)]
assert solve(cos(x) - sin(x), x, implicit=True) == []
assert solve(x - sin(x), x, implicit=True) == \
[sin(x)]
assert solve(x**2 + x - 3, x, implicit=True) == \
[-x**2 + 3]
assert solve(x**2 + x - 3, x**2, implicit=True) == \
[-x + 3]
def test_issue_5912():
assert set(solve(x**2 - x - 0.1, rational=True)) == \
{S.Half + sqrt(35)/10, -sqrt(35)/10 + S.Half}
ans = solve(x**2 - x - 0.1, rational=False)
assert len(ans) == 2 and all(a.is_Number for a in ans)
ans = solve(x**2 - x - 0.1)
assert len(ans) == 2 and all(a.is_Number for a in ans)
def test_float_handling():
def test(e1, e2):
return len(e1.atoms(Float)) == len(e2.atoms(Float))
assert solve(x - 0.5, rational=True)[0].is_Rational
assert solve(x - 0.5, rational=False)[0].is_Float
assert solve(x - S.Half, rational=False)[0].is_Rational
assert solve(x - 0.5, rational=None)[0].is_Float
assert solve(x - S.Half, rational=None)[0].is_Rational
assert test(nfloat(1 + 2*x), 1.0 + 2.0*x)
for contain in [list, tuple, set]:
ans = nfloat(contain([1 + 2*x]))
assert type(ans) is contain and test(list(ans)[0], 1.0 + 2.0*x)
k, v = list(nfloat({2*x: [1 + 2*x]}).items())[0]
assert test(k, 2*x) and test(v[0], 1.0 + 2.0*x)
assert test(nfloat(cos(2*x)), cos(2.0*x))
assert test(nfloat(3*x**2), 3.0*x**2)
assert test(nfloat(3*x**2, exponent=True), 3.0*x**2.0)
assert test(nfloat(exp(2*x)), exp(2.0*x))
assert test(nfloat(x/3), x/3.0)
assert test(nfloat(x**4 + 2*x + cos(Rational(1, 3)) + 1),
x**4 + 2.0*x + 1.94495694631474)
# don't call nfloat if there is no solution
tot = 100 + c + z + t
assert solve(((.7 + c)/tot - .6, (.2 + z)/tot - .3, t/tot - .1)) == []
def test_check_assumptions():
x = symbols('x', positive=True)
assert solve(x**2 - 1) == [1]
def test_issue_6056():
assert solve(tanh(x + 3)*tanh(x - 3) - 1) == []
assert solve(tanh(x - 1)*tanh(x + 1) + 1) == \
[I*pi*Rational(-3, 4), -I*pi/4, I*pi/4, I*pi*Rational(3, 4)]
assert solve((tanh(x + 3)*tanh(x - 3) + 1)**2) == \
[I*pi*Rational(-3, 4), -I*pi/4, I*pi/4, I*pi*Rational(3, 4)]
def test_issue_5673():
eq = -x + exp(exp(LambertW(log(x)))*LambertW(log(x)))
assert checksol(eq, x, 2) is True
assert checksol(eq, x, 2, numerical=False) is None
def test_exclude():
R, C, Ri, Vout, V1, Vminus, Vplus, s = \
symbols('R, C, Ri, Vout, V1, Vminus, Vplus, s')
Rf = symbols('Rf', positive=True) # to eliminate Rf = 0 soln
eqs = [C*V1*s + Vplus*(-2*C*s - 1/R),
Vminus*(-1/Ri - 1/Rf) + Vout/Rf,
C*Vplus*s + V1*(-C*s - 1/R) + Vout/R,
-Vminus + Vplus]
assert solve(eqs, exclude=s*C*R) == [
{
Rf: Ri*(C*R*s + 1)**2/(C*R*s),
Vminus: Vplus,
V1: 2*Vplus + Vplus/(C*R*s),
Vout: C*R*Vplus*s + 3*Vplus + Vplus/(C*R*s)},
{
Vplus: 0,
Vminus: 0,
V1: 0,
Vout: 0},
]
# TODO: Investigate why currently solution [0] is preferred over [1].
assert solve(eqs, exclude=[Vplus, s, C]) in [[{
Vminus: Vplus,
V1: Vout/2 + Vplus/2 + sqrt((Vout - 5*Vplus)*(Vout - Vplus))/2,
R: (Vout - 3*Vplus - sqrt(Vout**2 - 6*Vout*Vplus + 5*Vplus**2))/(2*C*Vplus*s),
Rf: Ri*(Vout - Vplus)/Vplus,
}, {
Vminus: Vplus,
V1: Vout/2 + Vplus/2 - sqrt((Vout - 5*Vplus)*(Vout - Vplus))/2,
R: (Vout - 3*Vplus + sqrt(Vout**2 - 6*Vout*Vplus + 5*Vplus**2))/(2*C*Vplus*s),
Rf: Ri*(Vout - Vplus)/Vplus,
}], [{
Vminus: Vplus,
Vout: (V1**2 - V1*Vplus - Vplus**2)/(V1 - 2*Vplus),
Rf: Ri*(V1 - Vplus)**2/(Vplus*(V1 - 2*Vplus)),
R: Vplus/(C*s*(V1 - 2*Vplus)),
}]]
def test_high_order_roots():
s = x**5 + 4*x**3 + 3*x**2 + Rational(7, 4)
assert set(solve(s)) == set(Poly(s*4, domain='ZZ').all_roots())
def test_minsolve_linear_system():
pqt = dict(quick=True, particular=True)
pqf = dict(quick=False, particular=True)
assert solve([x + y - 5, 2*x - y - 1], **pqt) == {x: 2, y: 3}
assert solve([x + y - 5, 2*x - y - 1], **pqf) == {x: 2, y: 3}
def count(dic):
return len([x for x in dic.values() if x == 0])
assert count(solve([x + y + z, y + z + a + t], **pqt)) == 3
assert count(solve([x + y + z, y + z + a + t], **pqf)) == 3
assert count(solve([x + y + z, y + z + a], **pqt)) == 1
assert count(solve([x + y + z, y + z + a], **pqf)) == 2
# issue 22718
A = Matrix([
[ 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0],
[ 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, -1, -1, 0, 0],
[-1, -1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 1, 0, 1],
[ 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, -1, 0, -1, 0],
[-1, 0, -1, 0, 0, -1, 0, 0, 0, 0, 1, 0, 1, 1],
[-1, 0, 0, -1, 0, 0, -1, 0, 0, 0, -1, 0, 0, -1],
[ 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, -1, -1, 0],
[ 0, -1, -1, 0, 0, 0, 0, -1, 0, 0, 0, 1, 1, 1],
[ 0, -1, 0, -1, 0, 0, 0, 0, -1, 0, 0, -1, 0, -1],
[ 0, 0, -1, -1, 0, 0, 0, 0, 0, -1, 0, 0, -1, -1],
[ 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0],
[ 0, 0, 0, 0, -1, -1, 0, -1, 0, 0, 0, 0, 0, 0]])
v = Matrix(symbols("v:14", integer=True))
B = Matrix([[2], [-2], [0], [0], [0], [0], [0], [0], [0],
[0], [0], [0]])
eqs = A@v-B
assert solve(eqs) == []
assert solve(eqs, particular=True) == [] # assumption violated
assert all(v for v in solve([x + y + z, y + z + a]).values())
for _q in (True, False):
assert not all(v for v in solve(
[x + y + z, y + z + a], quick=_q,
particular=True).values())
# raise error if quick used w/o particular=True
raises(ValueError, lambda: solve([x + 1], quick=_q))
raises(ValueError, lambda: solve([x + 1], quick=_q, particular=False))
# and give a good error message if someone tries to use
# particular with a single equation
raises(ValueError, lambda: solve(x + 1, particular=True))
def test_real_roots():
# cf. issue 6650
x = Symbol('x', real=True)
assert len(solve(x**5 + x**3 + 1)) == 1
def test_issue_6528():
eqs = [
327600995*x**2 - 37869137*x + 1809975124*y**2 - 9998905626,
895613949*x**2 - 273830224*x*y + 530506983*y**2 - 10000000000]
# two expressions encountered are > 1400 ops long so if this hangs
# it is likely because simplification is being done
assert len(solve(eqs, y, x, check=False)) == 4
def test_overdetermined():
x = symbols('x', real=True)
eqs = [Abs(4*x - 7) - 5, Abs(3 - 8*x) - 1]
assert solve(eqs, x) == [(S.Half,)]
assert solve(eqs, x, manual=True) == [(S.Half,)]
assert solve(eqs, x, manual=True, check=False) == [(S.Half,), (S(3),)]
def test_issue_6605():
x = symbols('x')
assert solve(4**(x/2) - 2**(x/3)) == [0, 3*I*pi/log(2)]
# while the first one passed, this one failed
x = symbols('x', real=True)
assert solve(5**(x/2) - 2**(x/3)) == [0]
b = sqrt(6)*sqrt(log(2))/sqrt(log(5))
assert solve(5**(x/2) - 2**(3/x)) == [-b, b]
def test__ispow():
assert _ispow(x**2)
assert not _ispow(x)
assert not _ispow(True)
def test_issue_6644():
eq = -sqrt((m - q)**2 + (-m/(2*q) + S.Half)**2) + sqrt((-m**2/2 - sqrt(
4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2 + (m**2/2 - m - sqrt(
4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2)
sol = solve(eq, q, simplify=False, check=False)
assert len(sol) == 5
def test_issue_6752():
assert solve([a**2 + a, a - b], [a, b]) == [(-1, -1), (0, 0)]
assert solve([a**2 + a*c, a - b], [a, b]) == [(0, 0), (-c, -c)]
def test_issue_6792():
assert solve(x*(x - 1)**2*(x + 1)*(x**6 - x + 1)) == [
-1, 0, 1, CRootOf(x**6 - x + 1, 0), CRootOf(x**6 - x + 1, 1),
CRootOf(x**6 - x + 1, 2), CRootOf(x**6 - x + 1, 3),
CRootOf(x**6 - x + 1, 4), CRootOf(x**6 - x + 1, 5)]
def test_issues_6819_6820_6821_6248_8692():
# issue 6821
x, y = symbols('x y', real=True)
assert solve(abs(x + 3) - 2*abs(x - 3)) == [1, 9]
assert solve([abs(x) - 2, arg(x) - pi], x) == [(-2,)]
assert set(solve(abs(x - 7) - 8)) == {-S.One, S(15)}
# issue 8692
assert solve(Eq(Abs(x + 1) + Abs(x**2 - 7), 9), x) == [
Rational(-1, 2) + sqrt(61)/2, -sqrt(69)/2 + S.Half]
# issue 7145
assert solve(2*abs(x) - abs(x - 1)) == [-1, Rational(1, 3)]
x = symbols('x')
assert solve([re(x) - 1, im(x) - 2], x) == [
{re(x): 1, x: 1 + 2*I, im(x): 2}]
# check for 'dict' handling of solution
eq = sqrt(re(x)**2 + im(x)**2) - 3
assert solve(eq) == solve(eq, x)
i = symbols('i', imaginary=True)
assert solve(abs(i) - 3) == [-3*I, 3*I]
raises(NotImplementedError, lambda: solve(abs(x) - 3))
w = symbols('w', integer=True)
assert solve(2*x**w - 4*y**w, w) == solve((x/y)**w - 2, w)
x, y = symbols('x y', real=True)
assert solve(x + y*I + 3) == {y: 0, x: -3}
# issue 2642
assert solve(x*(1 + I)) == [0]
x, y = symbols('x y', imaginary=True)
assert solve(x + y*I + 3 + 2*I) == {x: -2*I, y: 3*I}
x = symbols('x', real=True)
assert solve(x + y + 3 + 2*I) == {x: -3, y: -2*I}
# issue 6248
f = Function('f')
assert solve(f(x + 1) - f(2*x - 1)) == [2]
assert solve(log(x + 1) - log(2*x - 1)) == [2]
x = symbols('x')
assert solve(2**x + 4**x) == [I*pi/log(2)]
def test_issue_14607():
# issue 14607
s, tau_c, tau_1, tau_2, phi, K = symbols(
's, tau_c, tau_1, tau_2, phi, K')
target = (s**2*tau_1*tau_2 + s*tau_1 + s*tau_2 + 1)/(K*s*(-phi + tau_c))
K_C, tau_I, tau_D = symbols('K_C, tau_I, tau_D',
positive=True, nonzero=True)
PID = K_C*(1 + 1/(tau_I*s) + tau_D*s)
eq = (target - PID).together()
eq *= denom(eq).simplify()
eq = Poly(eq, s)
c = eq.coeffs()
vars = [K_C, tau_I, tau_D]
s = solve(c, vars, dict=True)
assert len(s) == 1
knownsolution = {K_C: -(tau_1 + tau_2)/(K*(phi - tau_c)),
tau_I: tau_1 + tau_2,
tau_D: tau_1*tau_2/(tau_1 + tau_2)}
for var in vars:
assert s[0][var].simplify() == knownsolution[var].simplify()
def test_lambert_multivariate():
from sympy.abc import x, y
assert _filtered_gens(Poly(x + 1/x + exp(x) + y), x) == {x, exp(x)}
assert _lambert(x, x) == []
assert solve((x**2 - 2*x + 1).subs(x, log(x) + 3*x)) == [LambertW(3*S.Exp1)/3]
assert solve((x**2 - 2*x + 1).subs(x, (log(x) + 3*x)**2 - 1)) == \
[LambertW(3*exp(-sqrt(2)))/3, LambertW(3*exp(sqrt(2)))/3]
assert solve((x**2 - 2*x - 2).subs(x, log(x) + 3*x)) == \
[LambertW(3*exp(1 - sqrt(3)))/3, LambertW(3*exp(1 + sqrt(3)))/3]
eq = (x*exp(x) - 3).subs(x, x*exp(x))
assert solve(eq) == [LambertW(3*exp(-LambertW(3)))]
# coverage test
raises(NotImplementedError, lambda: solve(x - sin(x)*log(y - x), x))
ans = [3, -3*LambertW(-log(3)/3)/log(3)] # 3 and 2.478...
assert solve(x**3 - 3**x, x) == ans
assert set(solve(3*log(x) - x*log(3))) == set(ans)
assert solve(LambertW(2*x) - y, x) == [y*exp(y)/2]
@XFAIL
def test_other_lambert():
assert solve(3*sin(x) - x*sin(3), x) == [3]
assert set(solve(x**a - a**x), x) == {
a, -a*LambertW(-log(a)/a)/log(a)}
@slow
def test_lambert_bivariate():
# tests passing current implementation
assert solve((x**2 + x)*exp(x**2 + x) - 1) == [
Rational(-1, 2) + sqrt(1 + 4*LambertW(1))/2,
Rational(-1, 2) - sqrt(1 + 4*LambertW(1))/2]
assert solve((x**2 + x)*exp((x**2 + x)*2) - 1) == [
Rational(-1, 2) + sqrt(1 + 2*LambertW(2))/2,
Rational(-1, 2) - sqrt(1 + 2*LambertW(2))/2]
assert solve(a/x + exp(x/2), x) == [2*LambertW(-a/2)]
assert solve((a/x + exp(x/2)).diff(x), x) == \
[4*LambertW(-sqrt(2)*sqrt(a)/4), 4*LambertW(sqrt(2)*sqrt(a)/4)]
assert solve((1/x + exp(x/2)).diff(x), x) == \
[4*LambertW(-sqrt(2)/4),
4*LambertW(sqrt(2)/4), # nsimplifies as 2*2**(141/299)*3**(206/299)*5**(205/299)*7**(37/299)/21
4*LambertW(-sqrt(2)/4, -1)]
assert solve(x*log(x) + 3*x + 1, x) == \
[exp(-3 + LambertW(-exp(3)))]
assert solve(-x**2 + 2**x, x) == [2, 4, -2*LambertW(log(2)/2)/log(2)]
assert solve(x**2 - 2**x, x) == [2, 4, -2*LambertW(log(2)/2)/log(2)]
ans = solve(3*x + 5 + 2**(-5*x + 3), x)
assert len(ans) == 1 and ans[0].expand() == \
Rational(-5, 3) + LambertW(-10240*root(2, 3)*log(2)/3)/(5*log(2))
assert solve(5*x - 1 + 3*exp(2 - 7*x), x) == \
[Rational(1, 5) + LambertW(-21*exp(Rational(3, 5))/5)/7]
assert solve((log(x) + x).subs(x, x**2 + 1)) == [
-I*sqrt(-LambertW(1) + 1), sqrt(-1 + LambertW(1))]
# check collection
ax = a**(3*x + 5)
ans = solve(3*log(ax) + b*log(ax) + ax, x)
x0 = 1/log(a)
x1 = sqrt(3)*I
x2 = b + 3
x3 = x2*LambertW(1/x2)/a**5
x4 = x3**Rational(1, 3)/2
assert ans == [
x0*log(x4*(-x1 - 1)),
x0*log(x4*(x1 - 1)),
x0*log(x3)/3]
x1 = LambertW(Rational(1, 3))
x2 = a**(-5)
x3 = -3**Rational(1, 3)
x4 = 3**Rational(5, 6)*I
x5 = x1**Rational(1, 3)*x2**Rational(1, 3)/2
ans = solve(3*log(ax) + ax, x)
assert ans == [
x0*log(3*x1*x2)/3,
x0*log(x5*(x3 - x4)),
x0*log(x5*(x3 + x4))]
# coverage
p = symbols('p', positive=True)
eq = 4*2**(2*p + 3) - 2*p - 3
assert _solve_lambert(eq, p, _filtered_gens(Poly(eq), p)) == [
Rational(-3, 2) - LambertW(-4*log(2))/(2*log(2))]
assert set(solve(3**cos(x) - cos(x)**3)) == {
acos(3), acos(-3*LambertW(-log(3)/3)/log(3))}
# should give only one solution after using `uniq`
assert solve(2*log(x) - 2*log(z) + log(z + log(x) + log(z)), x) == [
exp(-z + LambertW(2*z**4*exp(2*z))/2)/z]
# cases when p != S.One
# issue 4271
ans = solve((a/x + exp(x/2)).diff(x, 2), x)
x0 = (-a)**Rational(1, 3)
x1 = sqrt(3)*I
x2 = x0/6
assert ans == [
6*LambertW(x0/3),
6*LambertW(x2*(-x1 - 1)),
6*LambertW(x2*(x1 - 1))]
assert solve((1/x + exp(x/2)).diff(x, 2), x) == \
[6*LambertW(Rational(-1, 3)), 6*LambertW(Rational(1, 6) - sqrt(3)*I/6), \
6*LambertW(Rational(1, 6) + sqrt(3)*I/6), 6*LambertW(Rational(-1, 3), -1)]
assert solve(x**2 - y**2/exp(x), x, y, dict=True) == \
[{x: 2*LambertW(-y/2)}, {x: 2*LambertW(y/2)}]
# this is slow but not exceedingly slow
assert solve((x**3)**(x/2) + pi/2, x) == [
exp(LambertW(-2*log(2)/3 + 2*log(pi)/3 + I*pi*Rational(2, 3)))]
# issue 23253
assert solve((1/log(sqrt(x) + 2)**2 - 1/x)) == [
(LambertW(-exp(-2), -1) + 2)**2]
assert solve((1/log(1/sqrt(x) + 2)**2 - x)) == [
(LambertW(-exp(-2), -1) + 2)**-2]
assert solve((1/log(x**2 + 2)**2 - x**-4)) == [
-I*sqrt(2 - LambertW(exp(2))),
-I*sqrt(LambertW(-exp(-2)) + 2),
sqrt(-2 - LambertW(-exp(-2))),
sqrt(-2 + LambertW(exp(2))),
-sqrt(-2 - LambertW(-exp(-2), -1)),
sqrt(-2 - LambertW(-exp(-2), -1))]
def test_rewrite_trig():
assert solve(sin(x) + tan(x)) == [0, -pi, pi, 2*pi]
assert solve(sin(x) + sec(x)) == [
-2*atan(Rational(-1, 2) + sqrt(2)*sqrt(1 - sqrt(3)*I)/2 + sqrt(3)*I/2),
2*atan(S.Half - sqrt(2)*sqrt(1 + sqrt(3)*I)/2 + sqrt(3)*I/2), 2*atan(S.Half
+ sqrt(2)*sqrt(1 + sqrt(3)*I)/2 + sqrt(3)*I/2), 2*atan(S.Half -
sqrt(3)*I/2 + sqrt(2)*sqrt(1 - sqrt(3)*I)/2)]
assert solve(sinh(x) + tanh(x)) == [0, I*pi]
# issue 6157
assert solve(2*sin(x) - cos(x), x) == [atan(S.Half)]
@XFAIL
def test_rewrite_trigh():
# if this import passes then the test below should also pass
from sympy.functions.elementary.hyperbolic import sech
assert solve(sinh(x) + sech(x)) == [
2*atanh(Rational(-1, 2) + sqrt(5)/2 - sqrt(-2*sqrt(5) + 2)/2),
2*atanh(Rational(-1, 2) + sqrt(5)/2 + sqrt(-2*sqrt(5) + 2)/2),
2*atanh(-sqrt(5)/2 - S.Half + sqrt(2 + 2*sqrt(5))/2),
2*atanh(-sqrt(2 + 2*sqrt(5))/2 - sqrt(5)/2 - S.Half)]
def test_uselogcombine():
eq = z - log(x) + log(y/(x*(-1 + y**2/x**2)))
assert solve(eq, x, force=True) == [-sqrt(y*(y - exp(z))), sqrt(y*(y - exp(z)))]
assert solve(log(x + 3) + log(1 + 3/x) - 3) in [
[-3 + sqrt(-12 + exp(3))*exp(Rational(3, 2))/2 + exp(3)/2,
-sqrt(-12 + exp(3))*exp(Rational(3, 2))/2 - 3 + exp(3)/2],
[-3 + sqrt(-36 + (-exp(3) + 6)**2)/2 + exp(3)/2,
-3 - sqrt(-36 + (-exp(3) + 6)**2)/2 + exp(3)/2],
]
assert solve(log(exp(2*x) + 1) + log(-tanh(x) + 1) - log(2)) == []
def test_atan2():
assert solve(atan2(x, 2) - pi/3, x) == [2*sqrt(3)]
def test_errorinverses():
assert solve(erf(x) - y, x) == [erfinv(y)]
assert solve(erfinv(x) - y, x) == [erf(y)]
assert solve(erfc(x) - y, x) == [erfcinv(y)]
assert solve(erfcinv(x) - y, x) == [erfc(y)]
def test_issue_2725():
R = Symbol('R')
eq = sqrt(2)*R*sqrt(1/(R + 1)) + (R + 1)*(sqrt(2)*sqrt(1/(R + 1)) - 1)
sol = solve(eq, R, set=True)[1]
assert sol == {(Rational(5, 3) + (Rational(-1, 2) - sqrt(3)*I/2)*(Rational(251, 27) +
sqrt(111)*I/9)**Rational(1, 3) + 40/(9*((Rational(-1, 2) - sqrt(3)*I/2)*(Rational(251, 27) +
sqrt(111)*I/9)**Rational(1, 3))),), (Rational(5, 3) + 40/(9*(Rational(251, 27) +
sqrt(111)*I/9)**Rational(1, 3)) + (Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3),)}
def test_issue_5114_6611():
# See that it doesn't hang; this solves in about 2 seconds.
# Also check that the solution is relatively small.
# Note: the system in issue 6611 solves in about 5 seconds and has
# an op-count of 138336 (with simplify=False).
b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r = symbols('b:r')
eqs = Matrix([
[b - c/d + r/d], [c*(1/g + 1/e + 1/d) - f/g - r/d],
[-c/g + f*(1/j + 1/i + 1/g) - h/i], [-f/i + h*(1/m + 1/l + 1/i) - k/m],
[-h/m + k*(1/p + 1/o + 1/m) - n/p], [-k/p + n*(1/q + 1/p)]])
v = Matrix([f, h, k, n, b, c])
ans = solve(list(eqs), list(v), simplify=False)
# If time is taken to simplify then then 2617 below becomes
# 1168 and the time is about 50 seconds instead of 2.
assert sum([s.count_ops() for s in ans.values()]) <= 3270
def test_det_quick():
m = Matrix(3, 3, symbols('a:9'))
assert m.det() == det_quick(m) # calls det_perm
m[0, 0] = 1
assert m.det() == det_quick(m) # calls det_minor
m = Matrix(3, 3, list(range(9)))
assert m.det() == det_quick(m) # defaults to .det()
# make sure they work with Sparse
s = SparseMatrix(2, 2, (1, 2, 1, 4))
assert det_perm(s) == det_minor(s) == s.det()
def test_real_imag_splitting():
a, b = symbols('a b', real=True)
assert solve(sqrt(a**2 + b**2) - 3, a) == \
[-sqrt(-b**2 + 9), sqrt(-b**2 + 9)]
a, b = symbols('a b', imaginary=True)
assert solve(sqrt(a**2 + b**2) - 3, a) == []
def test_issue_7110():
y = -2*x**3 + 4*x**2 - 2*x + 5
assert any(ask(Q.real(i)) for i in solve(y))
def test_units():
assert solve(1/x - 1/(2*cm)) == [2*cm]
def test_issue_7547():
A, B, V = symbols('A,B,V')
eq1 = Eq(630.26*(V - 39.0)*V*(V + 39) - A + B, 0)
eq2 = Eq(B, 1.36*10**8*(V - 39))
eq3 = Eq(A, 5.75*10**5*V*(V + 39.0))
sol = Matrix(nsolve(Tuple(eq1, eq2, eq3), [A, B, V], (0, 0, 0)))
assert str(sol) == str(Matrix(
[['4442890172.68209'],
['4289299466.1432'],
['70.5389666628177']]))
def test_issue_7895():
r = symbols('r', real=True)
assert solve(sqrt(r) - 2) == [4]
def test_issue_2777():
# the equations represent two circles
x, y = symbols('x y', real=True)
e1, e2 = sqrt(x**2 + y**2) - 10, sqrt(y**2 + (-x + 10)**2) - 3
a, b = Rational(191, 20), 3*sqrt(391)/20
ans = [(a, -b), (a, b)]
assert solve((e1, e2), (x, y)) == ans
assert solve((e1, e2/(x - a)), (x, y)) == []
# make the 2nd circle's radius be -3
e2 += 6
assert solve((e1, e2), (x, y)) == []
assert solve((e1, e2), (x, y), check=False) == ans
def test_issue_7322():
number = 5.62527e-35
assert solve(x - number, x)[0] == number
def test_nsolve():
raises(ValueError, lambda: nsolve(x, (-1, 1), method='bisect'))
raises(TypeError, lambda: nsolve((x - y + 3,x + y,z - y),(x,y,z),(-50,50)))
raises(TypeError, lambda: nsolve((x + y, x - y), (0, 1)))
@slow
def test_high_order_multivariate():
assert len(solve(a*x**3 - x + 1, x)) == 3
assert len(solve(a*x**4 - x + 1, x)) == 4
assert solve(a*x**5 - x + 1, x) == [] # incomplete solution allowed
raises(NotImplementedError, lambda:
solve(a*x**5 - x + 1, x, incomplete=False))
# result checking must always consider the denominator and CRootOf
# must be checked, too
d = x**5 - x + 1
assert solve(d*(1 + 1/d)) == [CRootOf(d + 1, i) for i in range(5)]
d = x - 1
assert solve(d*(2 + 1/d)) == [S.Half]
def test_base_0_exp_0():
assert solve(0**x - 1) == [0]
assert solve(0**(x - 2) - 1) == [2]
assert solve(S('x*(1/x**0 - x)', evaluate=False)) == \
[0, 1]
def test__simple_dens():
assert _simple_dens(1/x**0, [x]) == set()
assert _simple_dens(1/x**y, [x]) == {x**y}
assert _simple_dens(1/root(x, 3), [x]) == {x}
def test_issue_8755():
# This tests two things: that if full unrad is attempted and fails
# the solution should still be found; also it tests the use of
# keyword `composite`.
assert len(solve(sqrt(y)*x + x**3 - 1, x)) == 3
assert len(solve(-512*y**3 + 1344*(x + 2)**Rational(1, 3)*y**2 -
1176*(x + 2)**Rational(2, 3)*y - 169*x + 686, y, _unrad=False)) == 3
@slow
def test_issue_8828():
x1 = 0
y1 = -620
r1 = 920
x2 = 126
y2 = 276
x3 = 51
y3 = 205
r3 = 104
v = x, y, z
f1 = (x - x1)**2 + (y - y1)**2 - (r1 - z)**2
f2 = (x - x2)**2 + (y - y2)**2 - z**2
f3 = (x - x3)**2 + (y - y3)**2 - (r3 - z)**2
F = f1,f2,f3
g1 = sqrt((x - x1)**2 + (y - y1)**2) + z - r1
g2 = f2
g3 = sqrt((x - x3)**2 + (y - y3)**2) + z - r3
G = g1,g2,g3
A = solve(F, v)
B = solve(G, v)
C = solve(G, v, manual=True)
p, q, r = [{tuple(i.evalf(2) for i in j) for j in R} for R in [A, B, C]]
assert p == q == r
@slow
def test_issue_2840_8155():
assert solve(sin(3*x) + sin(6*x)) == [
0, pi*Rational(-5, 3), pi*Rational(-4, 3), -pi, pi*Rational(-2, 3),
pi*Rational(-4, 9), -pi/3, pi*Rational(-2, 9), pi*Rational(2, 9),
pi/3, pi*Rational(4, 9), pi*Rational(2, 3), pi, pi*Rational(4, 3),
pi*Rational(14, 9), pi*Rational(5, 3), pi*Rational(16, 9), 2*pi,
-2*I*log(-(-1)**Rational(1, 9)), -2*I*log(-(-1)**Rational(2, 9)),
-2*I*log(-sin(pi/18) - I*cos(pi/18)),
-2*I*log(-sin(pi/18) + I*cos(pi/18)),
-2*I*log(sin(pi/18) - I*cos(pi/18)),
-2*I*log(sin(pi/18) + I*cos(pi/18))]
assert solve(2*sin(x) - 2*sin(2*x)) == [
0, pi*Rational(-5, 3), -pi, -pi/3, pi/3, pi, pi*Rational(5, 3)]
def test_issue_9567():
assert solve(1 + 1/(x - 1)) == [0]
def test_issue_11538():
assert solve(x + E) == [-E]
assert solve(x**2 + E) == [-I*sqrt(E), I*sqrt(E)]
assert solve(x**3 + 2*E) == [
-cbrt(2 * E),
cbrt(2)*cbrt(E)/2 - cbrt(2)*sqrt(3)*I*cbrt(E)/2,
cbrt(2)*cbrt(E)/2 + cbrt(2)*sqrt(3)*I*cbrt(E)/2]
assert solve([x + 4, y + E], x, y) == {x: -4, y: -E}
assert solve([x**2 + 4, y + E], x, y) == [
(-2*I, -E), (2*I, -E)]
e1 = x - y**3 + 4
e2 = x + y + 4 + 4 * E
assert len(solve([e1, e2], x, y)) == 3
@slow
def test_issue_12114():
a, b, c, d, e, f, g = symbols('a,b,c,d,e,f,g')
terms = [1 + a*b + d*e, 1 + a*c + d*f, 1 + b*c + e*f,
g - a**2 - d**2, g - b**2 - e**2, g - c**2 - f**2]
sol = solve(terms, [a, b, c, d, e, f, g], dict=True)
s = sqrt(-f**2 - 1)
s2 = sqrt(2 - f**2)
s3 = sqrt(6 - 3*f**2)
s4 = sqrt(3)*f
s5 = sqrt(3)*s2
assert sol == [
{a: -s, b: -s, c: -s, d: f, e: f, g: -1},
{a: s, b: s, c: s, d: f, e: f, g: -1},
{a: -s4/2 - s2/2, b: s4/2 - s2/2, c: s2,
d: -f/2 + s3/2, e: -f/2 - s5/2, g: 2},
{a: -s4/2 + s2/2, b: s4/2 + s2/2, c: -s2,
d: -f/2 - s3/2, e: -f/2 + s5/2, g: 2},
{a: s4/2 - s2/2, b: -s4/2 - s2/2, c: s2,
d: -f/2 - s3/2, e: -f/2 + s5/2, g: 2},
{a: s4/2 + s2/2, b: -s4/2 + s2/2, c: -s2,
d: -f/2 + s3/2, e: -f/2 - s5/2, g: 2}]
def test_inf():
assert solve(1 - oo*x) == []
assert solve(oo*x, x) == []
assert solve(oo*x - oo, x) == []
def test_issue_12448():
f = Function('f')
fun = [f(i) for i in range(15)]
sym = symbols('x:15')
reps = dict(zip(fun, sym))
(x, y, z), c = sym[:3], sym[3:]
ssym = solve([c[4*i]*x + c[4*i + 1]*y + c[4*i + 2]*z + c[4*i + 3]
for i in range(3)], (x, y, z))
(x, y, z), c = fun[:3], fun[3:]
sfun = solve([c[4*i]*x + c[4*i + 1]*y + c[4*i + 2]*z + c[4*i + 3]
for i in range(3)], (x, y, z))
assert sfun[fun[0]].xreplace(reps).count_ops() == \
ssym[sym[0]].count_ops()
def test_denoms():
assert denoms(x/2 + 1/y) == {2, y}
assert denoms(x/2 + 1/y, y) == {y}
assert denoms(x/2 + 1/y, [y]) == {y}
assert denoms(1/x + 1/y + 1/z, [x, y]) == {x, y}
assert denoms(1/x + 1/y + 1/z, x, y) == {x, y}
assert denoms(1/x + 1/y + 1/z, {x, y}) == {x, y}
def test_issue_12476():
x0, x1, x2, x3, x4, x5 = symbols('x0 x1 x2 x3 x4 x5')
eqns = [x0**2 - x0, x0*x1 - x1, x0*x2 - x2, x0*x3 - x3, x0*x4 - x4, x0*x5 - x5,
x0*x1 - x1, -x0/3 + x1**2 - 2*x2/3, x1*x2 - x1/3 - x2/3 - x3/3,
x1*x3 - x2/3 - x3/3 - x4/3, x1*x4 - 2*x3/3 - x5/3, x1*x5 - x4, x0*x2 - x2,
x1*x2 - x1/3 - x2/3 - x3/3, -x0/6 - x1/6 + x2**2 - x2/6 - x3/3 - x4/6,
-x1/6 + x2*x3 - x2/3 - x3/6 - x4/6 - x5/6, x2*x4 - x2/3 - x3/3 - x4/3,
x2*x5 - x3, x0*x3 - x3, x1*x3 - x2/3 - x3/3 - x4/3,
-x1/6 + x2*x3 - x2/3 - x3/6 - x4/6 - x5/6,
-x0/6 - x1/6 - x2/6 + x3**2 - x3/3 - x4/6, -x1/3 - x2/3 + x3*x4 - x3/3,
-x2 + x3*x5, x0*x4 - x4, x1*x4 - 2*x3/3 - x5/3, x2*x4 - x2/3 - x3/3 - x4/3,
-x1/3 - x2/3 + x3*x4 - x3/3, -x0/3 - 2*x2/3 + x4**2, -x1 + x4*x5, x0*x5 - x5,
x1*x5 - x4, x2*x5 - x3, -x2 + x3*x5, -x1 + x4*x5, -x0 + x5**2, x0 - 1]
sols = [{x0: 1, x3: Rational(1, 6), x2: Rational(1, 6), x4: Rational(-2, 3), x1: Rational(-2, 3), x5: 1},
{x0: 1, x3: S.Half, x2: Rational(-1, 2), x4: 0, x1: 0, x5: -1},
{x0: 1, x3: Rational(-1, 3), x2: Rational(-1, 3), x4: Rational(1, 3), x1: Rational(1, 3), x5: 1},
{x0: 1, x3: 1, x2: 1, x4: 1, x1: 1, x5: 1},
{x0: 1, x3: Rational(-1, 3), x2: Rational(1, 3), x4: sqrt(5)/3, x1: -sqrt(5)/3, x5: -1},
{x0: 1, x3: Rational(-1, 3), x2: Rational(1, 3), x4: -sqrt(5)/3, x1: sqrt(5)/3, x5: -1}]
assert solve(eqns) == sols
def test_issue_13849():
t = symbols('t')
assert solve((t*(sqrt(5) + sqrt(2)) - sqrt(2), t), t) == []
def test_issue_14860():
from sympy.physics.units import newton, kilo
assert solve(8*kilo*newton + x + y, x) == [-8000*newton - y]
def test_issue_14721():
k, h, a, b = symbols(':4')
assert solve([
-1 + (-k + 1)**2/b**2 + (-h - 1)**2/a**2,
-1 + (-k + 1)**2/b**2 + (-h + 1)**2/a**2,
h, k + 2], h, k, a, b) == [
(0, -2, -b*sqrt(1/(b**2 - 9)), b),
(0, -2, b*sqrt(1/(b**2 - 9)), b)]
assert solve([
h, h/a + 1/b**2 - 2, -h/2 + 1/b**2 - 2], a, h, b) == [
(a, 0, -sqrt(2)/2), (a, 0, sqrt(2)/2)]
assert solve((a + b**2 - 1, a + b**2 - 2)) == []
def test_issue_14779():
x = symbols('x', real=True)
assert solve(sqrt(x**4 - 130*x**2 + 1089) + sqrt(x**4 - 130*x**2
+ 3969) - 96*Abs(x)/x,x) == [sqrt(130)]
def test_issue_15307():
assert solve((y - 2, Mul(x + 3,x - 2, evaluate=False))) == \
[{x: -3, y: 2}, {x: 2, y: 2}]
assert solve((y - 2, Mul(3, x - 2, evaluate=False))) == \
{x: 2, y: 2}
assert solve((y - 2, Add(x + 4, x - 2, evaluate=False))) == \
{x: -1, y: 2}
eq1 = Eq(12513*x + 2*y - 219093, -5726*x - y)
eq2 = Eq(-2*x + 8, 2*x - 40)
assert solve([eq1, eq2]) == {x:12, y:75}
def test_issue_15415():
assert solve(x - 3, x) == [3]
assert solve([x - 3], x) == {x:3}
assert solve(Eq(y + 3*x**2/2, y + 3*x), y) == []
assert solve([Eq(y + 3*x**2/2, y + 3*x)], y) == []
assert solve([Eq(y + 3*x**2/2, y + 3*x), Eq(x, 1)], y) == []
@slow
def test_issue_15731():
# f(x)**g(x)=c
assert solve(Eq((x**2 - 7*x + 11)**(x**2 - 13*x + 42), 1)) == [2, 3, 4, 5, 6, 7]
assert solve((x)**(x + 4) - 4) == [-2]
assert solve((-x)**(-x + 4) - 4) == [2]
assert solve((x**2 - 6)**(x**2 - 2) - 4) == [-2, 2]
assert solve((x**2 - 2*x - 1)**(x**2 - 3) - 1/(1 - 2*sqrt(2))) == [sqrt(2)]
assert solve(x**(x + S.Half) - 4*sqrt(2)) == [S(2)]
assert solve((x**2 + 1)**x - 25) == [2]
assert solve(x**(2/x) - 2) == [2, 4]
assert solve((x/2)**(2/x) - sqrt(2)) == [4, 8]
assert solve(x**(x + S.Half) - Rational(9, 4)) == [Rational(3, 2)]
# a**g(x)=c
assert solve((-sqrt(sqrt(2)))**x - 2) == [4, log(2)/(log(2**Rational(1, 4)) + I*pi)]
assert solve((sqrt(2))**x - sqrt(sqrt(2))) == [S.Half]
assert solve((-sqrt(2))**x + 2*(sqrt(2))) == [3,
(3*log(2)**2 + 4*pi**2 - 4*I*pi*log(2))/(log(2)**2 + 4*pi**2)]
assert solve((sqrt(2))**x - 2*(sqrt(2))) == [3]
assert solve(I**x + 1) == [2]
assert solve((1 + I)**x - 2*I) == [2]
assert solve((sqrt(2) + sqrt(3))**x - (2*sqrt(6) + 5)**Rational(1, 3)) == [Rational(2, 3)]
# bases of both sides are equal
b = Symbol('b')
assert solve(b**x - b**2, x) == [2]
assert solve(b**x - 1/b, x) == [-1]
assert solve(b**x - b, x) == [1]
b = Symbol('b', positive=True)
assert solve(b**x - b**2, x) == [2]
assert solve(b**x - 1/b, x) == [-1]
def test_issue_10933():
assert solve(x**4 + y*(x + 0.1), x) # doesn't fail
assert solve(I*x**4 + x**3 + x**2 + 1.) # doesn't fail
def test_Abs_handling():
x = symbols('x', real=True)
assert solve(abs(x/y), x) == [0]
def test_issue_7982():
x = Symbol('x')
# Test that no exception happens
assert solve([2*x**2 + 5*x + 20 <= 0, x >= 1.5], x) is S.false
# From #8040
assert solve([x**3 - 8.08*x**2 - 56.48*x/5 - 106 >= 0, x - 1 <= 0], [x]) is S.false
def test_issue_14645():
x, y = symbols('x y')
assert solve([x*y - x - y, x*y - x - y], [x, y]) == [(y/(y - 1), y)]
def test_issue_12024():
x, y = symbols('x y')
assert solve(Piecewise((0.0, x < 0.1), (x, x >= 0.1)) - y) == \
[{y: Piecewise((0.0, x < 0.1), (x, True))}]
def test_issue_17452():
assert solve((7**x)**x + pi, x) == [-sqrt(log(pi) + I*pi)/sqrt(log(7)),
sqrt(log(pi) + I*pi)/sqrt(log(7))]
assert solve(x**(x/11) + pi/11, x) == [exp(LambertW(-11*log(11) + 11*log(pi) + 11*I*pi))]
def test_issue_17799():
assert solve(-erf(x**(S(1)/3))**pi + I, x) == []
def test_issue_17650():
x = Symbol('x', real=True)
assert solve(abs(abs(x**2 - 1) - x) - x) == [1, -1 + sqrt(2), 1 + sqrt(2)]
def test_issue_17882():
eq = -8*x**2/(9*(x**2 - 1)**(S(4)/3)) + 4/(3*(x**2 - 1)**(S(1)/3))
assert unrad(eq) is None
def test_issue_17949():
assert solve(exp(+x+x**2), x) == []
assert solve(exp(-x+x**2), x) == []
assert solve(exp(+x-x**2), x) == []
assert solve(exp(-x-x**2), x) == []
def test_issue_10993():
assert solve(Eq(binomial(x, 2), 3)) == [-2, 3]
assert solve(Eq(pow(x, 2) + binomial(x, 3), x)) == [-4, 0, 1]
assert solve(Eq(binomial(x, 2), 0)) == [0, 1]
assert solve(a+binomial(x, 3), a) == [-binomial(x, 3)]
assert solve(x-binomial(a, 3) + binomial(y, 2) + sin(a), x) == [-sin(a) + binomial(a, 3) - binomial(y, 2)]
assert solve((x+1)-binomial(x+1, 3), x) == [-2, -1, 3]
def test_issue_11553():
eq1 = x + y + 1
eq2 = x + GoldenRatio
assert solve([eq1, eq2], x, y) == {x: -GoldenRatio, y: -1 + GoldenRatio}
eq3 = x + 2 + TribonacciConstant
assert solve([eq1, eq3], x, y) == {x: -2 - TribonacciConstant, y: 1 + TribonacciConstant}
def test_issue_19113_19102():
t = S(1)/3
solve(cos(x)**5-sin(x)**5)
assert solve(4*cos(x)**3 - 2*sin(x)**3) == [
atan(2**(t)), -atan(2**(t)*(1 - sqrt(3)*I)/2),
-atan(2**(t)*(1 + sqrt(3)*I)/2)]
h = S.Half
assert solve(cos(x)**2 + sin(x)) == [
2*atan(-h + sqrt(5)/2 + sqrt(2)*sqrt(1 - sqrt(5))/2),
-2*atan(h + sqrt(5)/2 + sqrt(2)*sqrt(1 + sqrt(5))/2),
-2*atan(-sqrt(5)/2 + h + sqrt(2)*sqrt(1 - sqrt(5))/2),
-2*atan(-sqrt(2)*sqrt(1 + sqrt(5))/2 + h + sqrt(5)/2)]
assert solve(3*cos(x) - sin(x)) == [atan(3)]
def test_issue_19509():
a = S(3)/4
b = S(5)/8
c = sqrt(5)/8
d = sqrt(5)/4
assert solve(1/(x -1)**5 - 1) == [2,
-d + a - sqrt(-b + c),
-d + a + sqrt(-b + c),
d + a - sqrt(-b - c),
d + a + sqrt(-b - c)]
def test_issue_20747():
THT, HT, DBH, dib, c0, c1, c2, c3, c4 = symbols('THT HT DBH dib c0 c1 c2 c3 c4')
f = DBH*c3 + THT*c4 + c2
rhs = 1 - ((HT - 1)/(THT - 1))**c1*(1 - exp(c0/f))
eq = dib - DBH*(c0 - f*log(rhs))
term = ((1 - exp((DBH*c0 - dib)/(DBH*(DBH*c3 + THT*c4 + c2))))
/ (1 - exp(c0/(DBH*c3 + THT*c4 + c2))))
sol = [THT*term**(1/c1) - term**(1/c1) + 1]
assert solve(eq, HT) == sol
def test_issue_20902():
f = (t / ((1 + t) ** 2))
assert solve(f.subs({t: 3 * x + 2}).diff(x) > 0, x) == (S(-1) < x) & (x < S(-1)/3)
assert solve(f.subs({t: 3 * x + 3}).diff(x) > 0, x) == (S(-4)/3 < x) & (x < S(-2)/3)
assert solve(f.subs({t: 3 * x + 4}).diff(x) > 0, x) == (S(-5)/3 < x) & (x < S(-1))
assert solve(f.subs({t: 3 * x + 2}).diff(x) > 0, x) == (S(-1) < x) & (x < S(-1)/3)
def test_issue_21034():
a = symbols('a', real=True)
system = [x - cosh(cos(4)), y - sinh(cos(a)), z - tanh(x)]
# constants inside hyperbolic functions should not be rewritten in terms of exp
assert solve(system, x, y, z) == [(cosh(cos(4)), sinh(cos(a)), tanh(cosh(cos(4))))]
# but if the variable of interest is present in a hyperbolic function,
# then it should be rewritten in terms of exp and solved further
newsystem = [(exp(x) - exp(-x)) - tanh(x)*(exp(x) + exp(-x)) + x - 5]
assert solve(newsystem, x) == {x: 5}
def test_issue_4886():
z = a*sqrt(R**2*a**2 + R**2*b**2 - c**2)/(a**2 + b**2)
t = b*c/(a**2 + b**2)
sol = [((b*(t - z) - c)/(-a), t - z), ((b*(t + z) - c)/(-a), t + z)]
assert solve([x**2 + y**2 - R**2, a*x + b*y - c], x, y) == sol
def test_issue_6819():
a, b, c, d = symbols('a b c d', positive=True)
assert solve(a*b**x - c*d**x, x) == [log(c/a)/log(b/d)]
def test_issue_17454():
x = Symbol('x')
assert solve((1 - x - I)**4, x) == [1 - I]
def test_issue_21852():
solution = [21 - 21*sqrt(2)/2]
assert solve(2*x + sqrt(2*x**2) - 21) == solution
def test_issue_21942():
eq = -d + (a*c**(1 - e) + b**(1 - e)*(1 - a))**(1/(1 - e))
sol = solve(eq, c, simplify=False, check=False)
assert sol == [((a*b**(1 - e) - b**(1 - e) +
d**(1 - e))/a)**(1/(1 - e))]
def test_solver_flags():
root = solve(x**5 + x**2 - x - 1, cubics=False)
rad = solve(x**5 + x**2 - x - 1, cubics=True)
assert root != rad
def test_issue_22768():
eq = 2*x**3 - 16*(y - 1)**6*z**3
assert solve(eq.expand(), x, simplify=False
) == [2*z*(y - 1)**2, z*(-1 + sqrt(3)*I)*(y - 1)**2,
-z*(1 + sqrt(3)*I)*(y - 1)**2]
def test_issue_22717():
assert solve((-y**2 + log(y**2/x) + 2, -2*x*y + 2*x/y)) == [
{y: -1, x: E}, {y: 1, x: E}]
def test_issue_10169():
eq = S(-8*a - x**5*(a + b + c + e) - x**4*(4*a - 2**Rational(3,4)*c + 4*c +
d + 2**Rational(3,4)*e + 4*e + k) - x**3*(-4*2**Rational(3,4)*c + sqrt(2)*c -
2**Rational(3,4)*d + 4*d + sqrt(2)*e + 4*2**Rational(3,4)*e + 2**Rational(3,4)*k + 4*k) -
x**2*(4*sqrt(2)*c - 4*2**Rational(3,4)*d + sqrt(2)*d + 4*sqrt(2)*e +
sqrt(2)*k + 4*2**Rational(3,4)*k) - x*(2*a + 2*b + 4*sqrt(2)*d +
4*sqrt(2)*k) + 5)
assert solve_undetermined_coeffs(eq, [a, b, c, d, e, k], x) == {
a: Rational(5,8),
b: Rational(-5,1032),
c: Rational(-40,129) - 5*2**Rational(3,4)/129 + 5*2**Rational(1,4)/1032,
d: -20*2**Rational(3,4)/129 - 10*sqrt(2)/129 - 5*2**Rational(1,4)/258,
e: Rational(-40,129) - 5*2**Rational(1,4)/1032 + 5*2**Rational(3,4)/129,
k: -10*sqrt(2)/129 + 5*2**Rational(1,4)/258 + 20*2**Rational(3,4)/129
}
def test_solve_undetermined_coeffs_issue_23927():
A, B, r, phi = symbols('A, B, r, phi')
eq = Eq(A*sin(t) + B*cos(t), r*sin(t - phi)).rewrite(Add).expand(trig=True)
soln = solve_undetermined_coeffs(eq, (r, phi), t)
assert soln == [{
phi: 2*atan((A - sqrt(A**2 + B**2))/B),
r: (-A**2 + A*sqrt(A**2 + B**2) - B**2)/(A - sqrt(A**2 + B**2))
}, {
phi: 2*atan((A + sqrt(A**2 + B**2))/B),
r: (A**2 + A*sqrt(A**2 + B**2) + B**2)/(A + sqrt(A**2 + B**2))/-1
}]
|
fb60bbf544e1e961b04fc1a343f630773941ad0538e5ff8d4fbcb4b35bdda3c7 | from sympy.core.random import randint
from sympy.core.function import Function
from sympy.core.mul import Mul
from sympy.core.numbers import (I, Rational, oo)
from sympy.core.relational import Eq
from sympy.core.singleton import S
from sympy.core.symbol import (Dummy, symbols)
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.elementary.hyperbolic import tanh
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import sin
from sympy.polys.polytools import Poly
from sympy.simplify.ratsimp import ratsimp
from sympy.solvers.ode.subscheck import checkodesol
from sympy.testing.pytest import slow
from sympy.solvers.ode.riccati import (riccati_normal, riccati_inverse_normal,
riccati_reduced, match_riccati, inverse_transform_poly, limit_at_inf,
check_necessary_conds, val_at_inf, construct_c_case_1,
construct_c_case_2, construct_c_case_3, construct_d_case_4,
construct_d_case_5, construct_d_case_6, rational_laurent_series,
solve_riccati)
f = Function('f')
x = symbols('x')
# These are the functions used to generate the tests
# SHOULD NOT BE USED DIRECTLY IN TESTS
def rand_rational(maxint):
return Rational(randint(-maxint, maxint), randint(1, maxint))
def rand_poly(x, degree, maxint):
return Poly([rand_rational(maxint) for _ in range(degree+1)], x)
def rand_rational_function(x, degree, maxint):
degnum = randint(1, degree)
degden = randint(1, degree)
num = rand_poly(x, degnum, maxint)
den = rand_poly(x, degden, maxint)
while den == Poly(0, x):
den = rand_poly(x, degden, maxint)
return num / den
def find_riccati_ode(ratfunc, x, yf):
y = ratfunc
yp = y.diff(x)
q1 = rand_rational_function(x, 1, 3)
q2 = rand_rational_function(x, 1, 3)
while q2 == 0:
q2 = rand_rational_function(x, 1, 3)
q0 = ratsimp(yp - q1*y - q2*y**2)
eq = Eq(yf.diff(), q0 + q1*yf + q2*yf**2)
sol = Eq(yf, y)
assert checkodesol(eq, sol) == (True, 0)
return eq, q0, q1, q2
# Testing functions start
def test_riccati_transformation():
"""
This function tests the transformation of the
solution of a Riccati ODE to the solution of
its corresponding normal Riccati ODE.
Each test case 4 values -
1. w - The solution to be transformed
2. b1 - The coefficient of f(x) in the ODE.
3. b2 - The coefficient of f(x)**2 in the ODE.
4. y - The solution to the normal Riccati ODE.
"""
tests = [
(
x/(x - 1),
(x**2 + 7)/3*x,
x,
-x**2/(x - 1) - x*(x**2/3 + S(7)/3)/2 - 1/(2*x)
),
(
(2*x + 3)/(2*x + 2),
(3 - 3*x)/(x + 1),
5*x,
-5*x*(2*x + 3)/(2*x + 2) - (3 - 3*x)/(Mul(2, x + 1, evaluate=False)) - 1/(2*x)
),
(
-1/(2*x**2 - 1),
0,
(2 - x)/(4*x - 2),
(2 - x)/((4*x - 2)*(2*x**2 - 1)) - (4*x - 2)*(Mul(-4, 2 - x, evaluate=False)/(4*x - \
2)**2 - 1/(4*x - 2))/(Mul(2, 2 - x, evaluate=False))
),
(
x,
(8*x - 12)/(12*x + 9),
x**3/(6*x - 9),
-x**4/(6*x - 9) - (8*x - 12)/(Mul(2, 12*x + 9, evaluate=False)) - (6*x - 9)*(-6*x**3/(6*x \
- 9)**2 + 3*x**2/(6*x - 9))/(2*x**3)
)]
for w, b1, b2, y in tests:
assert y == riccati_normal(w, x, b1, b2)
assert w == riccati_inverse_normal(y, x, b1, b2).cancel()
# Test bp parameter in riccati_inverse_normal
tests = [
(
(-2*x - 1)/(2*x**2 + 2*x - 2),
-2/x,
(-x - 1)/(4*x),
8*x**2*(1/(4*x) + (-x - 1)/(4*x**2))/(-x - 1)**2 + 4/(-x - 1),
-2*x*(-1/(4*x) - (-x - 1)/(4*x**2))/(-x - 1) - (-2*x - 1)*(-x - 1)/(4*x*(2*x**2 + 2*x \
- 2)) + 1/x
),
(
3/(2*x**2),
-2/x,
(-x - 1)/(4*x),
8*x**2*(1/(4*x) + (-x - 1)/(4*x**2))/(-x - 1)**2 + 4/(-x - 1),
-2*x*(-1/(4*x) - (-x - 1)/(4*x**2))/(-x - 1) + 1/x - Mul(3, -x - 1, evaluate=False)/(8*x**3)
)]
for w, b1, b2, bp, y in tests:
assert y == riccati_normal(w, x, b1, b2)
assert w == riccati_inverse_normal(y, x, b1, b2, bp).cancel()
def test_riccati_reduced():
"""
This function tests the transformation of a
Riccati ODE to its normal Riccati ODE.
Each test case 2 values -
1. eq - A Riccati ODE.
2. normal_eq - The normal Riccati ODE of eq.
"""
tests = [
(
f(x).diff(x) - x**2 - x*f(x) - x*f(x)**2,
f(x).diff(x) + f(x)**2 + x**3 - x**2/4 - 3/(4*x**2)
),
(
6*x/(2*x + 9) + f(x).diff(x) - (x + 1)*f(x)**2/x,
-3*x**2*(1/x + (-x - 1)/x**2)**2/(4*(-x - 1)**2) + Mul(6, \
-x - 1, evaluate=False)/(2*x + 9) + f(x)**2 + f(x).diff(x) \
- (-1 + (x + 1)/x)/(x*(-x - 1))
),
(
f(x)**2 + f(x).diff(x) - (x - 1)*f(x)/(-x - S(1)/2),
-(2*x - 2)**2/(4*(2*x + 1)**2) + (2*x - 2)/(2*x + 1)**2 + \
f(x)**2 + f(x).diff(x) - 1/(2*x + 1)
),
(
f(x).diff(x) - f(x)**2/x,
f(x)**2 + f(x).diff(x) + 1/(4*x**2)
),
(
-3*(-x**2 - x + 1)/(x**2 + 6*x + 1) + f(x).diff(x) + f(x)**2/x,
f(x)**2 + f(x).diff(x) + (3*x**2/(x**2 + 6*x + 1) + 3*x/(x**2 \
+ 6*x + 1) - 3/(x**2 + 6*x + 1))/x + 1/(4*x**2)
),
(
6*x/(2*x + 9) + f(x).diff(x) - (x + 1)*f(x)/x,
False
),
(
f(x)*f(x).diff(x) - 1/x + f(x)/3 + f(x)**2/(x**2 - 2),
False
)]
for eq, normal_eq in tests:
assert normal_eq == riccati_reduced(eq, f, x)
def test_match_riccati():
"""
This function tests if an ODE is Riccati or not.
Each test case has 5 values -
1. eq - The Riccati ODE.
2. match - Boolean indicating if eq is a Riccati ODE.
3. b0 -
4. b1 - Coefficient of f(x) in eq.
5. b2 - Coefficient of f(x)**2 in eq.
"""
tests = [
# Test Rational Riccati ODEs
(
f(x).diff(x) - (405*x**3 - 882*x**2 - 78*x + 92)/(243*x**4 \
- 945*x**3 + 846*x**2 + 180*x - 72) - 2 - f(x)**2/(3*x + 1) \
- (S(1)/3 - x)*f(x)/(S(1)/3 - 3*x/2),
True,
45*x**3/(27*x**4 - 105*x**3 + 94*x**2 + 20*x - 8) - 98*x**2/ \
(27*x**4 - 105*x**3 + 94*x**2 + 20*x - 8) - 26*x/(81*x**4 - \
315*x**3 + 282*x**2 + 60*x - 24) + 2 + 92/(243*x**4 - 945*x**3 \
+ 846*x**2 + 180*x - 72),
Mul(-1, 2 - 6*x, evaluate=False)/(9*x - 2),
1/(3*x + 1)
),
(
f(x).diff(x) + 4*x/27 - (x/3 - 1)*f(x)**2 - (2*x/3 + \
1)*f(x)/(3*x + 2) - S(10)/27 - (265*x**2 + 423*x + 162) \
/(324*x**3 + 216*x**2),
True,
-4*x/27 + S(10)/27 + 3/(6*x**3 + 4*x**2) + 47/(36*x**2 \
+ 24*x) + 265/(324*x + 216),
Mul(-1, -2*x - 3, evaluate=False)/(9*x + 6),
x/3 - 1
),
(
f(x).diff(x) - (304*x**5 - 745*x**4 + 631*x**3 - 876*x**2 \
+ 198*x - 108)/(36*x**6 - 216*x**5 + 477*x**4 - 567*x**3 + \
360*x**2 - 108*x) - S(17)/9 - (x - S(3)/2)*f(x)/(x/2 - \
S(3)/2) - (x/3 - 3)*f(x)**2/(3*x),
True,
304*x**4/(36*x**5 - 216*x**4 + 477*x**3 - 567*x**2 + 360*x - \
108) - 745*x**3/(36*x**5 - 216*x**4 + 477*x**3 - 567*x**2 + \
360*x - 108) + 631*x**2/(36*x**5 - 216*x**4 + 477*x**3 - 567* \
x**2 + 360*x - 108) - 292*x/(12*x**5 - 72*x**4 + 159*x**3 - \
189*x**2 + 120*x - 36) + S(17)/9 - 12/(4*x**6 - 24*x**5 + \
53*x**4 - 63*x**3 + 40*x**2 - 12*x) + 22/(4*x**5 - 24*x**4 \
+ 53*x**3 - 63*x**2 + 40*x - 12),
Mul(-1, 3 - 2*x, evaluate=False)/(x - 3),
Mul(-1, 9 - x, evaluate=False)/(9*x)
),
# Test Non-Rational Riccati ODEs
(
f(x).diff(x) - x**(S(3)/2)/(x**(S(1)/2) - 2) + x**2*f(x) + \
x*f(x)**2/(x**(S(3)/4)),
False, 0, 0, 0
),
(
f(x).diff(x) - sin(x**2) + exp(x)*f(x) + log(x)*f(x)**2,
False, 0, 0, 0
),
(
f(x).diff(x) - tanh(x + sqrt(x)) + f(x) + x**4*f(x)**2,
False, 0, 0, 0
),
# Test Non-Riccati ODEs
(
(1 - x**2)*f(x).diff(x, 2) - 2*x*f(x).diff(x) + 20*f(x),
False, 0, 0, 0
),
(
f(x).diff(x) - x**2 + x**3*f(x) + (x**2/(x + 1))*f(x)**3,
False, 0, 0, 0
),
(
f(x).diff(x)*f(x)**2 + (x**2 - 1)/(x**3 + 1)*f(x) + 1/(2*x \
+ 3) + f(x)**2,
False, 0, 0, 0
)]
for eq, res, b0, b1, b2 in tests:
match, funcs = match_riccati(eq, f, x)
assert match == res
if res:
assert [b0, b1, b2] == funcs
def test_val_at_inf():
"""
This function tests the valuation of rational
function at oo.
Each test case has 3 values -
1. num - Numerator of rational function.
2. den - Denominator of rational function.
3. val_inf - Valuation of rational function at oo
"""
tests = [
# degree(denom) > degree(numer)
(
Poly(10*x**3 + 8*x**2 - 13*x + 6, x),
Poly(-13*x**10 - x**9 + 5*x**8 + 7*x**7 + 10*x**6 + 6*x**5 - 7*x**4 + 11*x**3 - 8*x**2 + 5*x + 13, x),
7
),
(
Poly(1, x),
Poly(-9*x**4 + 3*x**3 + 15*x**2 - 6*x - 14, x),
4
),
# degree(denom) == degree(numer)
(
Poly(-6*x**3 - 8*x**2 + 8*x - 6, x),
Poly(-5*x**3 + 12*x**2 - 6*x - 9, x),
0
),
# degree(denom) < degree(numer)
(
Poly(12*x**8 - 12*x**7 - 11*x**6 + 8*x**5 + 3*x**4 - x**3 + x**2 - 11*x, x),
Poly(-14*x**2 + x, x),
-6
),
(
Poly(5*x**6 + 9*x**5 - 11*x**4 - 9*x**3 + x**2 - 4*x + 4, x),
Poly(15*x**4 + 3*x**3 - 8*x**2 + 15*x + 12, x),
-2
)]
for num, den, val in tests:
assert val_at_inf(num, den, x) == val
def test_necessary_conds():
"""
This function tests the necessary conditions for
a Riccati ODE to have a rational particular solution.
"""
# Valuation at Infinity is an odd negative integer
assert check_necessary_conds(-3, [1, 2, 4]) == False
# Valuation at Infinity is a positive integer lesser than 2
assert check_necessary_conds(1, [1, 2, 4]) == False
# Multiplicity of a pole is an odd integer greater than 1
assert check_necessary_conds(2, [3, 1, 6]) == False
# All values are correct
assert check_necessary_conds(-10, [1, 2, 8, 12]) == True
def test_inverse_transform_poly():
"""
This function tests the substitution x -> 1/x
in rational functions represented using Poly.
"""
fns = [
(15*x**3 - 8*x**2 - 2*x - 6)/(18*x + 6),
(180*x**5 + 40*x**4 + 80*x**3 + 30*x**2 - 60*x - 80)/(180*x**3 - 150*x**2 + 75*x + 12),
(-15*x**5 - 36*x**4 + 75*x**3 - 60*x**2 - 80*x - 60)/(80*x**4 + 60*x**3 + 60*x**2 + 60*x - 80),
(60*x**7 + 24*x**6 - 15*x**5 - 20*x**4 + 30*x**2 + 100*x - 60)/(240*x**2 - 20*x - 30),
(30*x**6 - 12*x**5 + 15*x**4 - 15*x**2 + 10*x + 60)/(3*x**10 - 45*x**9 + 15*x**5 + 15*x**4 - 5*x**3 \
+ 15*x**2 + 45*x - 15)
]
for f in fns:
num, den = [Poly(e, x) for e in f.as_numer_denom()]
num, den = inverse_transform_poly(num, den, x)
assert f.subs(x, 1/x).cancel() == num/den
def test_limit_at_inf():
"""
This function tests the limit at oo of a
rational function.
Each test case has 3 values -
1. num - Numerator of rational function.
2. den - Denominator of rational function.
3. limit_at_inf - Limit of rational function at oo
"""
tests = [
# deg(denom) > deg(numer)
(
Poly(-12*x**2 + 20*x + 32, x),
Poly(32*x**3 + 72*x**2 + 3*x - 32, x),
0
),
# deg(denom) < deg(numer)
(
Poly(1260*x**4 - 1260*x**3 - 700*x**2 - 1260*x + 1400, x),
Poly(6300*x**3 - 1575*x**2 + 756*x - 540, x),
oo
),
# deg(denom) < deg(numer), one of the leading coefficients is negative
(
Poly(-735*x**8 - 1400*x**7 + 1680*x**6 - 315*x**5 - 600*x**4 + 840*x**3 - 525*x**2 \
+ 630*x + 3780, x),
Poly(1008*x**7 - 2940*x**6 - 84*x**5 + 2940*x**4 - 420*x**3 + 1512*x**2 + 105*x + 168, x),
-oo
),
# deg(denom) == deg(numer)
(
Poly(105*x**7 - 960*x**6 + 60*x**5 + 60*x**4 - 80*x**3 + 45*x**2 + 120*x + 15, x),
Poly(735*x**7 + 525*x**6 + 720*x**5 + 720*x**4 - 8400*x**3 - 2520*x**2 + 2800*x + 280, x),
S(1)/7
),
(
Poly(288*x**4 - 450*x**3 + 280*x**2 - 900*x - 90, x),
Poly(607*x**4 + 840*x**3 - 1050*x**2 + 420*x + 420, x),
S(288)/607
)]
for num, den, lim in tests:
assert limit_at_inf(num, den, x) == lim
def test_construct_c_case_1():
"""
This function tests the Case 1 in the step
to calculate coefficients of c-vectors.
Each test case has 4 values -
1. num - Numerator of the rational function a(x).
2. den - Denominator of the rational function a(x).
3. pole - Pole of a(x) for which c-vector is being
calculated.
4. c - The c-vector for the pole.
"""
tests = [
(
Poly(-3*x**3 + 3*x**2 + 4*x - 5, x, extension=True),
Poly(4*x**8 + 16*x**7 + 9*x**5 + 12*x**4 + 6*x**3 + 12*x**2, x, extension=True),
S(0),
[[S(1)/2 + sqrt(6)*I/6], [S(1)/2 - sqrt(6)*I/6]]
),
(
Poly(1200*x**3 + 1440*x**2 + 816*x + 560, x, extension=True),
Poly(128*x**5 - 656*x**4 + 1264*x**3 - 1125*x**2 + 385*x + 49, x, extension=True),
S(7)/4,
[[S(1)/2 + sqrt(16367978)/634], [S(1)/2 - sqrt(16367978)/634]]
),
(
Poly(4*x + 2, x, extension=True),
Poly(18*x**4 + (2 - 18*sqrt(3))*x**3 + (14 - 11*sqrt(3))*x**2 + (4 - 6*sqrt(3))*x \
+ 8*sqrt(3) + 16, x, domain='QQ<sqrt(3)>'),
(S(1) + sqrt(3))/2,
[[S(1)/2 + sqrt(Mul(4, 2*sqrt(3) + 4, evaluate=False)/(19*sqrt(3) + 44) + 1)/2], \
[S(1)/2 - sqrt(Mul(4, 2*sqrt(3) + 4, evaluate=False)/(19*sqrt(3) + 44) + 1)/2]]
)]
for num, den, pole, c in tests:
assert construct_c_case_1(num, den, x, pole) == c
def test_construct_c_case_2():
"""
This function tests the Case 2 in the step
to calculate coefficients of c-vectors.
Each test case has 5 values -
1. num - Numerator of the rational function a(x).
2. den - Denominator of the rational function a(x).
3. pole - Pole of a(x) for which c-vector is being
calculated.
4. mul - The multiplicity of the pole.
5. c - The c-vector for the pole.
"""
tests = [
# Testing poles with multiplicity 2
(
Poly(1, x, extension=True),
Poly((x - 1)**2*(x - 2), x, extension=True),
1, 2,
[[-I*(-1 - I)/2], [I*(-1 + I)/2]]
),
(
Poly(3*x**5 - 12*x**4 - 7*x**3 + 1, x, extension=True),
Poly((3*x - 1)**2*(x + 2)**2, x, extension=True),
S(1)/3, 2,
[[-S(89)/98], [-S(9)/98]]
),
# Testing poles with multiplicity 4
(
Poly(x**3 - x**2 + 4*x, x, extension=True),
Poly((x - 2)**4*(x + 5)**2, x, extension=True),
2, 4,
[[7*sqrt(3)*(S(60)/343 - 4*sqrt(3)/7)/12, 2*sqrt(3)/7], \
[-7*sqrt(3)*(S(60)/343 + 4*sqrt(3)/7)/12, -2*sqrt(3)/7]]
),
(
Poly(3*x**5 + x**4 + 3, x, extension=True),
Poly((4*x + 1)**4*(x + 2), x, extension=True),
-S(1)/4, 4,
[[128*sqrt(439)*(-sqrt(439)/128 - S(55)/14336)/439, sqrt(439)/256], \
[-128*sqrt(439)*(sqrt(439)/128 - S(55)/14336)/439, -sqrt(439)/256]]
),
# Testing poles with multiplicity 6
(
Poly(x**3 + 2, x, extension=True),
Poly((3*x - 1)**6*(x**2 + 1), x, extension=True),
S(1)/3, 6,
[[27*sqrt(66)*(-sqrt(66)/54 - S(131)/267300)/22, -2*sqrt(66)/1485, sqrt(66)/162], \
[-27*sqrt(66)*(sqrt(66)/54 - S(131)/267300)/22, 2*sqrt(66)/1485, -sqrt(66)/162]]
),
(
Poly(x**2 + 12, x, extension=True),
Poly((x - sqrt(2))**6, x, extension=True),
sqrt(2), 6,
[[sqrt(14)*(S(6)/7 - 3*sqrt(14))/28, sqrt(7)/7, sqrt(14)], \
[-sqrt(14)*(S(6)/7 + 3*sqrt(14))/28, -sqrt(7)/7, -sqrt(14)]]
)]
for num, den, pole, mul, c in tests:
assert construct_c_case_2(num, den, x, pole, mul) == c
def test_construct_c_case_3():
"""
This function tests the Case 3 in the step
to calculate coefficients of c-vectors.
"""
assert construct_c_case_3() == [[1]]
def test_construct_d_case_4():
"""
This function tests the Case 4 in the step
to calculate coefficients of the d-vector.
Each test case has 4 values -
1. num - Numerator of the rational function a(x).
2. den - Denominator of the rational function a(x).
3. mul - Multiplicity of oo as a pole.
4. d - The d-vector.
"""
tests = [
# Tests with multiplicity at oo = 2
(
Poly(-x**5 - 2*x**4 + 4*x**3 + 2*x + 5, x, extension=True),
Poly(9*x**3 - 2*x**2 + 10*x - 2, x, extension=True),
2,
[[10*I/27, I/3, -3*I*(S(158)/243 - I/3)/2], \
[-10*I/27, -I/3, 3*I*(S(158)/243 + I/3)/2]]
),
(
Poly(-x**6 + 9*x**5 + 5*x**4 + 6*x**3 + 5*x**2 + 6*x + 7, x, extension=True),
Poly(x**4 + 3*x**3 + 12*x**2 - x + 7, x, extension=True),
2,
[[-6*I, I, -I*(17 - I)/2], [6*I, -I, I*(17 + I)/2]]
),
# Tests with multiplicity at oo = 4
(
Poly(-2*x**6 - x**5 - x**4 - 2*x**3 - x**2 - 3*x - 3, x, extension=True),
Poly(3*x**2 + 10*x + 7, x, extension=True),
4,
[[269*sqrt(6)*I/288, -17*sqrt(6)*I/36, sqrt(6)*I/3, -sqrt(6)*I*(S(16969)/2592 \
- 2*sqrt(6)*I/3)/4], [-269*sqrt(6)*I/288, 17*sqrt(6)*I/36, -sqrt(6)*I/3, \
sqrt(6)*I*(S(16969)/2592 + 2*sqrt(6)*I/3)/4]]
),
(
Poly(-3*x**5 - 3*x**4 - 3*x**3 - x**2 - 1, x, extension=True),
Poly(12*x - 2, x, extension=True),
4,
[[41*I/192, 7*I/24, I/2, -I*(-S(59)/6912 - I)], \
[-41*I/192, -7*I/24, -I/2, I*(-S(59)/6912 + I)]]
),
# Tests with multiplicity at oo = 4
(
Poly(-x**7 - x**5 - x**4 - x**2 - x, x, extension=True),
Poly(x + 2, x, extension=True),
6,
[[-5*I/2, 2*I, -I, I, -I*(-9 - 3*I)/2], [5*I/2, -2*I, I, -I, I*(-9 + 3*I)/2]]
),
(
Poly(-x**7 - x**6 - 2*x**5 - 2*x**4 - x**3 - x**2 + 2*x - 2, x, extension=True),
Poly(2*x - 2, x, extension=True),
6,
[[3*sqrt(2)*I/4, 3*sqrt(2)*I/4, sqrt(2)*I/2, sqrt(2)*I/2, -sqrt(2)*I*(-S(7)/8 - \
3*sqrt(2)*I/2)/2], [-3*sqrt(2)*I/4, -3*sqrt(2)*I/4, -sqrt(2)*I/2, -sqrt(2)*I/2, \
sqrt(2)*I*(-S(7)/8 + 3*sqrt(2)*I/2)/2]]
)]
for num, den, mul, d in tests:
ser = rational_laurent_series(num, den, x, oo, mul, 1)
assert construct_d_case_4(ser, mul//2) == d
def test_construct_d_case_5():
"""
This function tests the Case 5 in the step
to calculate coefficients of the d-vector.
Each test case has 3 values -
1. num - Numerator of the rational function a(x).
2. den - Denominator of the rational function a(x).
3. d - The d-vector.
"""
tests = [
(
Poly(2*x**3 + x**2 + x - 2, x, extension=True),
Poly(9*x**3 + 5*x**2 + 2*x - 1, x, extension=True),
[[sqrt(2)/3, -sqrt(2)/108], [-sqrt(2)/3, sqrt(2)/108]]
),
(
Poly(3*x**5 + x**4 - x**3 + x**2 - 2*x - 2, x, domain='ZZ'),
Poly(9*x**5 + 7*x**4 + 3*x**3 + 2*x**2 + 5*x + 7, x, domain='ZZ'),
[[sqrt(3)/3, -2*sqrt(3)/27], [-sqrt(3)/3, 2*sqrt(3)/27]]
),
(
Poly(x**2 - x + 1, x, domain='ZZ'),
Poly(3*x**2 + 7*x + 3, x, domain='ZZ'),
[[sqrt(3)/3, -5*sqrt(3)/9], [-sqrt(3)/3, 5*sqrt(3)/9]]
)]
for num, den, d in tests:
# Multiplicity of oo is 0
ser = rational_laurent_series(num, den, x, oo, 0, 1)
assert construct_d_case_5(ser) == d
def test_construct_d_case_6():
"""
This function tests the Case 6 in the step
to calculate coefficients of the d-vector.
Each test case has 3 values -
1. num - Numerator of the rational function a(x).
2. den - Denominator of the rational function a(x).
3. d - The d-vector.
"""
tests = [
(
Poly(-2*x**2 - 5, x, domain='ZZ'),
Poly(4*x**4 + 2*x**2 + 10*x + 2, x, domain='ZZ'),
[[S(1)/2 + I/2], [S(1)/2 - I/2]]
),
(
Poly(-2*x**3 - 4*x**2 - 2*x - 5, x, domain='ZZ'),
Poly(x**6 - x**5 + 2*x**4 - 4*x**3 - 5*x**2 - 5*x + 9, x, domain='ZZ'),
[[1], [0]]
),
(
Poly(-5*x**3 + x**2 + 11*x + 12, x, domain='ZZ'),
Poly(6*x**8 - 26*x**7 - 27*x**6 - 10*x**5 - 44*x**4 - 46*x**3 - 34*x**2 \
- 27*x - 42, x, domain='ZZ'),
[[1], [0]]
)]
for num, den, d in tests:
assert construct_d_case_6(num, den, x) == d
def test_rational_laurent_series():
"""
This function tests the computation of coefficients
of Laurent series of a rational function.
Each test case has 5 values -
1. num - Numerator of the rational function.
2. den - Denominator of the rational function.
3. x0 - Point about which Laurent series is to
be calculated.
4. mul - Multiplicity of x0 if x0 is a pole of
the rational function (0 otherwise).
5. n - Number of terms upto which the series
is to be calculated.
"""
tests = [
# Laurent series about simple pole (Multiplicity = 1)
(
Poly(x**2 - 3*x + 9, x, extension=True),
Poly(x**2 - x, x, extension=True),
S(1), 1, 6,
{1: 7, 0: -8, -1: 9, -2: -9, -3: 9, -4: -9}
),
# Laurent series about multiple pole (Multiplicity > 1)
(
Poly(64*x**3 - 1728*x + 1216, x, extension=True),
Poly(64*x**4 - 80*x**3 - 831*x**2 + 1809*x - 972, x, extension=True),
S(9)/8, 2, 3,
{0: S(32177152)/46521675, 2: S(1019)/984, -1: S(11947565056)/28610830125, \
1: S(209149)/75645}
),
(
Poly(1, x, extension=True),
Poly(x**5 + (-4*sqrt(2) - 1)*x**4 + (4*sqrt(2) + 12)*x**3 + (-12 - 8*sqrt(2))*x**2 \
+ (4 + 8*sqrt(2))*x - 4, x, extension=True),
sqrt(2), 4, 6,
{4: 1 + sqrt(2), 3: -3 - 2*sqrt(2), 2: Mul(-1, -3 - 2*sqrt(2), evaluate=False)/(-1 \
+ sqrt(2)), 1: (-3 - 2*sqrt(2))/(-1 + sqrt(2))**2, 0: Mul(-1, -3 - 2*sqrt(2), evaluate=False \
)/(-1 + sqrt(2))**3, -1: (-3 - 2*sqrt(2))/(-1 + sqrt(2))**4}
),
# Laurent series about oo
(
Poly(x**5 - 4*x**3 + 6*x**2 + 10*x - 13, x, extension=True),
Poly(x**2 - 5, x, extension=True),
oo, 3, 6,
{3: 1, 2: 0, 1: 1, 0: 6, -1: 15, -2: 17}
),
# Laurent series at x0 where x0 is not a pole of the function
# Using multiplicity as 0 (as x0 will not be a pole)
(
Poly(3*x**3 + 6*x**2 - 2*x + 5, x, extension=True),
Poly(9*x**4 - x**3 - 3*x**2 + 4*x + 4, x, extension=True),
S(2)/5, 0, 1,
{0: S(3345)/3304, -1: S(399325)/2729104, -2: S(3926413375)/4508479808, \
-3: S(-5000852751875)/1862002160704, -4: S(-6683640101653125)/6152055138966016}
),
(
Poly(-7*x**2 + 2*x - 4, x, extension=True),
Poly(7*x**5 + 9*x**4 + 8*x**3 + 3*x**2 + 6*x + 9, x, extension=True),
oo, 0, 6,
{0: 0, -2: 0, -5: -S(71)/49, -1: 0, -3: -1, -4: S(11)/7}
)]
for num, den, x0, mul, n, ser in tests:
assert ser == rational_laurent_series(num, den, x, x0, mul, n)
def check_dummy_sol(eq, solse, dummy_sym):
"""
Helper function to check if actual solution
matches expected solution if actual solution
contains dummy symbols.
"""
if isinstance(eq, Eq):
eq = eq.lhs - eq.rhs
_, funcs = match_riccati(eq, f, x)
sols = solve_riccati(f(x), x, *funcs)
C1 = Dummy('C1')
sols = [sol.subs(C1, dummy_sym) for sol in sols]
assert all([x[0] for x in checkodesol(eq, sols)])
assert all([s1.dummy_eq(s2, dummy_sym) for s1, s2 in zip(sols, solse)])
def test_solve_riccati():
"""
This function tests the computation of rational
particular solutions for a Riccati ODE.
Each test case has 2 values -
1. eq - Riccati ODE to be solved.
2. sol - Expected solution to the equation.
Some examples have been taken from the paper - "Statistical Investigation of
First-Order Algebraic ODEs and their Rational General Solutions" by
Georg Grasegger, N. Thieu Vo, Franz Winkler
https://www3.risc.jku.at/publications/download/risc_5197/RISCReport15-19.pdf
"""
C0 = Dummy('C0')
# Type: 1st Order Rational Riccati, dy/dx = a + b*y + c*y**2,
# a, b, c are rational functions of x
tests = [
# a(x) is a constant
(
Eq(f(x).diff(x) + f(x)**2 - 2, 0),
[Eq(f(x), sqrt(2)), Eq(f(x), -sqrt(2))]
),
# a(x) is a constant
(
f(x)**2 + f(x).diff(x) + 4*f(x)/x + 2/x**2,
[Eq(f(x), (-2*C0 - x)/(C0*x + x**2))]
),
# a(x) is a constant
(
2*x**2*f(x).diff(x) - x*(4*f(x) + f(x).diff(x) - 4) + (f(x) - 1)*f(x),
[Eq(f(x), (C0 + 2*x**2)/(C0 + x))]
),
# Pole with multiplicity 1
(
Eq(f(x).diff(x), -f(x)**2 - 2/(x**3 - x**2)),
[Eq(f(x), 1/(x**2 - x))]
),
# One pole of multiplicity 2
(
x**2 - (2*x + 1/x)*f(x) + f(x)**2 + f(x).diff(x),
[Eq(f(x), (C0*x + x**3 + 2*x)/(C0 + x**2)), Eq(f(x), x)]
),
(
x**4*f(x).diff(x) + x**2 - x*(2*f(x)**2 + f(x).diff(x)) + f(x),
[Eq(f(x), (C0*x**2 + x)/(C0 + x**2)), Eq(f(x), x**2)]
),
# Multiple poles of multiplicity 2
(
-f(x)**2 + f(x).diff(x) + (15*x**2 - 20*x + 7)/((x - 1)**2*(2*x \
- 1)**2),
[Eq(f(x), (9*C0*x - 6*C0 - 15*x**5 + 60*x**4 - 94*x**3 + 72*x**2 \
- 30*x + 6)/(6*C0*x**2 - 9*C0*x + 3*C0 + 6*x**6 - 29*x**5 + \
57*x**4 - 58*x**3 + 30*x**2 - 6*x)), Eq(f(x), (3*x - 2)/(2*x**2 \
- 3*x + 1))]
),
# Regression: Poles with even multiplicity > 2 fixed
(
f(x)**2 + f(x).diff(x) - (4*x**6 - 8*x**5 + 12*x**4 + 4*x**3 + \
7*x**2 - 20*x + 4)/(4*x**4),
[Eq(f(x), (2*x**5 - 2*x**4 - x**3 + 4*x**2 + 3*x - 2)/(2*x**4 \
- 2*x**2))]
),
# Regression: Poles with even multiplicity > 2 fixed
(
Eq(f(x).diff(x), (-x**6 + 15*x**4 - 40*x**3 + 45*x**2 - 24*x + 4)/\
(x**12 - 12*x**11 + 66*x**10 - 220*x**9 + 495*x**8 - 792*x**7 + 924*x**6 - \
792*x**5 + 495*x**4 - 220*x**3 + 66*x**2 - 12*x + 1) + f(x)**2 + f(x)),
[Eq(f(x), 1/(x**6 - 6*x**5 + 15*x**4 - 20*x**3 + 15*x**2 - 6*x + 1))]
),
# More than 2 poles with multiplicity 2
# Regression: Fixed mistake in necessary conditions
(
Eq(f(x).diff(x), x*f(x) + 2*x + (3*x - 2)*f(x)**2/(4*x + 2) + \
(8*x**2 - 7*x + 26)/(16*x**3 - 24*x**2 + 8) - S(3)/2),
[Eq(f(x), (1 - 4*x)/(2*x - 2))]
),
# Regression: Fixed mistake in necessary conditions
(
Eq(f(x).diff(x), (-12*x**2 - 48*x - 15)/(24*x**3 - 40*x**2 + 8*x + 8) \
+ 3*f(x)**2/(6*x + 2)),
[Eq(f(x), (2*x + 1)/(2*x - 2))]
),
# Imaginary poles
(
f(x).diff(x) + (3*x**2 + 1)*f(x)**2/x + (6*x**2 - x + 3)*f(x)/(x*(x \
- 1)) + (3*x**2 - 2*x + 2)/(x*(x - 1)**2),
[Eq(f(x), (-C0 - x**3 + x**2 - 2*x)/(C0*x - C0 + x**4 - x**3 + x**2 \
- x)), Eq(f(x), -1/(x - 1))],
),
# Imaginary coefficients in equation
(
f(x).diff(x) - 2*I*(f(x)**2 + 1)/x,
[Eq(f(x), (-I*C0 + I*x**4)/(C0 + x**4)), Eq(f(x), -I)]
),
# Regression: linsolve returning empty solution
# Large value of m (> 10)
(
Eq(f(x).diff(x), x*f(x)/(S(3)/2 - 2*x) + (x/2 - S(1)/3)*f(x)**2/\
(2*x/3 - S(1)/2) - S(5)/4 + (281*x**2 - 1260*x + 756)/(16*x**3 - 12*x**2)),
[Eq(f(x), (9 - x)/x), Eq(f(x), (40*x**14 + 28*x**13 + 420*x**12 + 2940*x**11 + \
18480*x**10 + 103950*x**9 + 519750*x**8 + 2286900*x**7 + 8731800*x**6 + 28378350*\
x**5 + 76403250*x**4 + 163721250*x**3 + 261954000*x**2 + 278326125*x + 147349125)/\
((24*x**14 + 140*x**13 + 840*x**12 + 4620*x**11 + 23100*x**10 + 103950*x**9 + \
415800*x**8 + 1455300*x**7 + 4365900*x**6 + 10914750*x**5 + 21829500*x**4 + 32744250\
*x**3 + 32744250*x**2 + 16372125*x)))]
),
# Regression: Fixed bug due to a typo in paper
(
Eq(f(x).diff(x), 18*x**3 + 18*x**2 + (-x/2 - S(1)/2)*f(x)**2 + 6),
[Eq(f(x), 6*x)]
),
# Regression: Fixed bug due to a typo in paper
(
Eq(f(x).diff(x), -3*x**3/4 + 15*x/2 + (x/3 - S(4)/3)*f(x)**2 \
+ 9 + (1 - x)*f(x)/x + 3/x),
[Eq(f(x), -3*x/2 - 3)]
)]
for eq, sol in tests:
check_dummy_sol(eq, sol, C0)
@slow
def test_solve_riccati_slow():
"""
This function tests the computation of rational
particular solutions for a Riccati ODE.
Each test case has 2 values -
1. eq - Riccati ODE to be solved.
2. sol - Expected solution to the equation.
"""
C0 = Dummy('C0')
tests = [
# Very large values of m (989 and 991)
(
Eq(f(x).diff(x), (1 - x)*f(x)/(x - 3) + (2 - 12*x)*f(x)**2/(2*x - 9) + \
(54924*x**3 - 405264*x**2 + 1084347*x - 1087533)/(8*x**4 - 132*x**3 + 810*x**2 - \
2187*x + 2187) + 495),
[Eq(f(x), (18*x + 6)/(2*x - 9))]
)]
for eq, sol in tests:
check_dummy_sol(eq, sol, C0)
|
455e8397732363574e43035993b86f799533cfc19fb7aa6546e22bec5986e7c7 | #
# The main tests for the code in single.py are currently located in
# sympy/solvers/tests/test_ode.py
#
r"""
This File contains test functions for the individual hints used for solving ODEs.
Examples of each solver will be returned by _get_examples_ode_sol_name_of_solver.
Examples should have a key 'XFAIL' which stores the list of hints if they are
expected to fail for that hint.
Functions that are for internal use:
1) _ode_solver_test(ode_examples) - It takes a dictionary of examples returned by
_get_examples method and tests them with their respective hints.
2) _test_particular_example(our_hint, example_name) - It tests the ODE example corresponding
to the hint provided.
3) _test_all_hints(runxfail=False) - It is used to test all the examples with all the hints
currently implemented. It calls _test_all_examples_for_one_hint() which outputs whether the
given hint functions properly if it classifies the ODE example.
If runxfail flag is set to True then it will only test the examples which are expected to fail.
Everytime the ODE of a particular solver is added, _test_all_hints() is to be executed to find
the possible failures of different solver hints.
4) _test_all_examples_for_one_hint(our_hint, all_examples) - It takes hint as argument and checks
this hint against all the ODE examples and gives output as the number of ODEs matched, number
of ODEs which were solved correctly, list of ODEs which gives incorrect solution and list of
ODEs which raises exception.
"""
from sympy.core.function import (Derivative, diff)
from sympy.core.mul import Mul
from sympy.core.numbers import (E, I, Rational, pi)
from sympy.core.relational import (Eq, Ne)
from sympy.core.singleton import S
from sympy.core.symbol import (Dummy, symbols)
from sympy.functions.elementary.complexes import (im, re)
from sympy.functions.elementary.exponential import (LambertW, exp, log)
from sympy.functions.elementary.hyperbolic import (asinh, cosh, sinh, tanh)
from sympy.functions.elementary.miscellaneous import (cbrt, sqrt)
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import (acos, asin, atan, cos, sec, sin, tan)
from sympy.functions.special.error_functions import (Ei, erfi)
from sympy.functions.special.hyper import hyper
from sympy.integrals.integrals import (Integral, integrate)
from sympy.polys.rootoftools import rootof
from sympy.core import Function, Symbol
from sympy.functions import airyai, airybi, besselj, bessely, lowergamma
from sympy.integrals.risch import NonElementaryIntegral
from sympy.solvers.ode import classify_ode, dsolve
from sympy.solvers.ode.ode import allhints, _remove_redundant_solutions
from sympy.solvers.ode.single import (FirstLinear, ODEMatchError,
SingleODEProblem, SingleODESolver, NthOrderReducible)
from sympy.solvers.ode.subscheck import checkodesol
from sympy.testing.pytest import raises, slow, ON_CI
import traceback
x = Symbol('x')
u = Symbol('u')
_u = Dummy('u')
y = Symbol('y')
f = Function('f')
g = Function('g')
C1, C2, C3, C4, C5, C6, C7, C8, C9, C10 = symbols('C1:11')
hint_message = """\
Hint did not match the example {example}.
The ODE is:
{eq}.
The expected hint was
{our_hint}\
"""
expected_sol_message = """\
Different solution found from dsolve for example {example}.
The ODE is:
{eq}
The expected solution was
{sol}
What dsolve returned is:
{dsolve_sol}\
"""
checkodesol_msg = """\
solution found is not correct for example {example}.
The ODE is:
{eq}\
"""
dsol_incorrect_msg = """\
solution returned by dsolve is incorrect when using {hint}.
The ODE is:
{eq}
The expected solution was
{sol}
what dsolve returned is:
{dsolve_sol}
You can test this with:
eq = {eq}
sol = dsolve(eq, hint='{hint}')
print(sol)
print(checkodesol(eq, sol))
"""
exception_msg = """\
dsolve raised exception : {e}
when using {hint} for the example {example}
You can test this with:
from sympy.solvers.ode.tests.test_single import _test_an_example
_test_an_example('{hint}', example_name = '{example}')
The ODE is:
{eq}
\
"""
check_hint_msg = """\
Tested hint was : {hint}
Total of {matched} examples matched with this hint.
Out of which {solve} gave correct results.
Examples which gave incorrect results are {unsolve}.
Examples which raised exceptions are {exceptions}
\
"""
def _add_example_keys(func):
def inner():
solver=func()
examples=[]
for example in solver['examples']:
temp={
'eq': solver['examples'][example]['eq'],
'sol': solver['examples'][example]['sol'],
'XFAIL': solver['examples'][example].get('XFAIL', []),
'func': solver['examples'][example].get('func',solver['func']),
'example_name': example,
'slow': solver['examples'][example].get('slow', False),
'simplify_flag':solver['examples'][example].get('simplify_flag',True),
'checkodesol_XFAIL': solver['examples'][example].get('checkodesol_XFAIL', False),
'dsolve_too_slow':solver['examples'][example].get('dsolve_too_slow',False),
'checkodesol_too_slow':solver['examples'][example].get('checkodesol_too_slow',False),
'hint': solver['hint']
}
examples.append(temp)
return examples
return inner()
def _ode_solver_test(ode_examples, run_slow_test=False):
for example in ode_examples:
if ((not run_slow_test) and example['slow']) or (run_slow_test and (not example['slow'])):
continue
result = _test_particular_example(example['hint'], example, solver_flag=True)
if result['xpass_msg'] != "":
print(result['xpass_msg'])
def _test_all_hints(runxfail=False):
all_hints = list(allhints)+["default"]
all_examples = _get_all_examples()
for our_hint in all_hints:
if our_hint.endswith('_Integral') or 'series' in our_hint:
continue
_test_all_examples_for_one_hint(our_hint, all_examples, runxfail)
def _test_dummy_sol(expected_sol,dsolve_sol):
if type(dsolve_sol)==list:
return any(expected_sol.dummy_eq(sub_dsol) for sub_dsol in dsolve_sol)
else:
return expected_sol.dummy_eq(dsolve_sol)
def _test_an_example(our_hint, example_name):
all_examples = _get_all_examples()
for example in all_examples:
if example['example_name'] == example_name:
_test_particular_example(our_hint, example)
def _test_particular_example(our_hint, ode_example, solver_flag=False):
eq = ode_example['eq']
expected_sol = ode_example['sol']
example = ode_example['example_name']
xfail = our_hint in ode_example['XFAIL']
func = ode_example['func']
result = {'msg': '', 'xpass_msg': ''}
simplify_flag=ode_example['simplify_flag']
checkodesol_XFAIL = ode_example['checkodesol_XFAIL']
dsolve_too_slow = ode_example['dsolve_too_slow']
checkodesol_too_slow = ode_example['checkodesol_too_slow']
xpass = True
if solver_flag:
if our_hint not in classify_ode(eq, func):
message = hint_message.format(example=example, eq=eq, our_hint=our_hint)
raise AssertionError(message)
if our_hint in classify_ode(eq, func):
result['match_list'] = example
try:
if not (dsolve_too_slow):
dsolve_sol = dsolve(eq, func, simplify=simplify_flag,hint=our_hint)
else:
if len(expected_sol)==1:
dsolve_sol = expected_sol[0]
else:
dsolve_sol = expected_sol
except Exception as e:
dsolve_sol = []
result['exception_list'] = example
if not solver_flag:
traceback.print_exc()
result['msg'] = exception_msg.format(e=str(e), hint=our_hint, example=example, eq=eq)
if solver_flag and not xfail:
print(result['msg'])
raise
xpass = False
if solver_flag and dsolve_sol!=[]:
expect_sol_check = False
if type(dsolve_sol)==list:
for sub_sol in expected_sol:
if sub_sol.has(Dummy):
expect_sol_check = not _test_dummy_sol(sub_sol, dsolve_sol)
else:
expect_sol_check = sub_sol not in dsolve_sol
if expect_sol_check:
break
else:
expect_sol_check = dsolve_sol not in expected_sol
for sub_sol in expected_sol:
if sub_sol.has(Dummy):
expect_sol_check = not _test_dummy_sol(sub_sol, dsolve_sol)
if expect_sol_check:
message = expected_sol_message.format(example=example, eq=eq, sol=expected_sol, dsolve_sol=dsolve_sol)
raise AssertionError(message)
expected_checkodesol = [(True, 0) for i in range(len(expected_sol))]
if len(expected_sol) == 1:
expected_checkodesol = (True, 0)
if not (checkodesol_too_slow and ON_CI):
if not checkodesol_XFAIL:
if checkodesol(eq, dsolve_sol, func, solve_for_func=False) != expected_checkodesol:
result['unsolve_list'] = example
xpass = False
message = dsol_incorrect_msg.format(hint=our_hint, eq=eq, sol=expected_sol,dsolve_sol=dsolve_sol)
if solver_flag:
message = checkodesol_msg.format(example=example, eq=eq)
raise AssertionError(message)
else:
result['msg'] = 'AssertionError: ' + message
if xpass and xfail:
result['xpass_msg'] = example + "is now passing for the hint" + our_hint
return result
def _test_all_examples_for_one_hint(our_hint, all_examples=[], runxfail=None):
if all_examples == []:
all_examples = _get_all_examples()
match_list, unsolve_list, exception_list = [], [], []
for ode_example in all_examples:
xfail = our_hint in ode_example['XFAIL']
if runxfail and not xfail:
continue
if xfail:
continue
result = _test_particular_example(our_hint, ode_example)
match_list += result.get('match_list',[])
unsolve_list += result.get('unsolve_list',[])
exception_list += result.get('exception_list',[])
if runxfail is not None:
msg = result['msg']
if msg!='':
print(result['msg'])
# print(result.get('xpass_msg',''))
if runxfail is None:
match_count = len(match_list)
solved = len(match_list)-len(unsolve_list)-len(exception_list)
msg = check_hint_msg.format(hint=our_hint, matched=match_count, solve=solved, unsolve=unsolve_list, exceptions=exception_list)
print(msg)
def test_SingleODESolver():
# Test that not implemented methods give NotImplementedError
# Subclasses should override these methods.
problem = SingleODEProblem(f(x).diff(x), f(x), x)
solver = SingleODESolver(problem)
raises(NotImplementedError, lambda: solver.matches())
raises(NotImplementedError, lambda: solver.get_general_solution())
raises(NotImplementedError, lambda: solver._matches())
raises(NotImplementedError, lambda: solver._get_general_solution())
# This ODE can not be solved by the FirstLinear solver. Here we test that
# it does not match and the asking for a general solution gives
# ODEMatchError
problem = SingleODEProblem(f(x).diff(x) + f(x)*f(x), f(x), x)
solver = FirstLinear(problem)
raises(ODEMatchError, lambda: solver.get_general_solution())
solver = FirstLinear(problem)
assert solver.matches() is False
#These are just test for order of ODE
problem = SingleODEProblem(f(x).diff(x) + f(x), f(x), x)
assert problem.order == 1
problem = SingleODEProblem(f(x).diff(x,4) + f(x).diff(x,2) - f(x).diff(x,3), f(x), x)
assert problem.order == 4
problem = SingleODEProblem(f(x).diff(x, 3) + f(x).diff(x, 2) - f(x)**2, f(x), x)
assert problem.is_autonomous == True
problem = SingleODEProblem(f(x).diff(x, 3) + x*f(x).diff(x, 2) - f(x)**2, f(x), x)
assert problem.is_autonomous == False
def test_linear_coefficients():
_ode_solver_test(_get_examples_ode_sol_linear_coefficients)
@slow
def test_1st_homogeneous_coeff_ode():
#These were marked as test_1st_homogeneous_coeff_corner_case
eq1 = f(x).diff(x) - f(x)/x
c1 = classify_ode(eq1, f(x))
eq2 = x*f(x).diff(x) - f(x)
c2 = classify_ode(eq2, f(x))
sdi = "1st_homogeneous_coeff_subs_dep_div_indep"
sid = "1st_homogeneous_coeff_subs_indep_div_dep"
assert sid not in c1 and sdi not in c1
assert sid not in c2 and sdi not in c2
_ode_solver_test(_get_examples_ode_sol_1st_homogeneous_coeff_subs_dep_div_indep)
_ode_solver_test(_get_examples_ode_sol_1st_homogeneous_coeff_best)
@slow
def test_slow_examples_1st_homogeneous_coeff_ode():
_ode_solver_test(_get_examples_ode_sol_1st_homogeneous_coeff_subs_dep_div_indep, run_slow_test=True)
_ode_solver_test(_get_examples_ode_sol_1st_homogeneous_coeff_best, run_slow_test=True)
@slow
def test_nth_linear_constant_coeff_homogeneous():
_ode_solver_test(_get_examples_ode_sol_nth_linear_constant_coeff_homogeneous)
@slow
def test_slow_examples_nth_linear_constant_coeff_homogeneous():
_ode_solver_test(_get_examples_ode_sol_nth_linear_constant_coeff_homogeneous, run_slow_test=True)
def test_Airy_equation():
_ode_solver_test(_get_examples_ode_sol_2nd_linear_airy)
@slow
def test_lie_group():
_ode_solver_test(_get_examples_ode_sol_lie_group)
@slow
def test_separable_reduced():
df = f(x).diff(x)
eq = (x / f(x))*df + tan(x**2*f(x) / (x**2*f(x) - 1))
assert classify_ode(eq) == ('factorable', 'separable_reduced', 'lie_group',
'separable_reduced_Integral')
_ode_solver_test(_get_examples_ode_sol_separable_reduced)
@slow
def test_slow_examples_separable_reduced():
_ode_solver_test(_get_examples_ode_sol_separable_reduced, run_slow_test=True)
@slow
def test_2nd_2F1_hypergeometric():
_ode_solver_test(_get_examples_ode_sol_2nd_2F1_hypergeometric)
def test_2nd_2F1_hypergeometric_integral():
eq = x*(x-1)*f(x).diff(x, 2) + (-1+ S(7)/2*x)*f(x).diff(x) + f(x)
sol = Eq(f(x), (C1 + C2*Integral(exp(Integral((1 - x/2)/(x*(x - 1)), x))/(1 -
x/2)**2, x))*exp(Integral(1/(x - 1), x)/4)*exp(-Integral(7/(x -
1), x)/4)*hyper((S(1)/2, -1), (1,), x))
assert sol == dsolve(eq, hint='2nd_hypergeometric_Integral')
assert checkodesol(eq, sol) == (True, 0)
@slow
def test_2nd_nonlinear_autonomous_conserved():
_ode_solver_test(_get_examples_ode_sol_2nd_nonlinear_autonomous_conserved)
def test_2nd_nonlinear_autonomous_conserved_integral():
eq = f(x).diff(x, 2) + asin(f(x))
actual = [Eq(Integral(1/sqrt(C1 - 2*Integral(asin(_u), _u)), (_u, f(x))), C2 + x),
Eq(Integral(1/sqrt(C1 - 2*Integral(asin(_u), _u)), (_u, f(x))), C2 - x)]
solved = dsolve(eq, hint='2nd_nonlinear_autonomous_conserved_Integral', simplify=False)
for a,s in zip(actual, solved):
assert a.dummy_eq(s)
# checkodesol unable to simplify solutions with f(x) in an integral equation
assert checkodesol(eq, [s.doit() for s in solved]) == [(True, 0), (True, 0)]
@slow
def test_2nd_linear_bessel_equation():
_ode_solver_test(_get_examples_ode_sol_2nd_linear_bessel)
@slow
def test_nth_algebraic():
eqn = f(x) + f(x)*f(x).diff(x)
solns = [Eq(f(x), exp(x)),
Eq(f(x), C1*exp(C2*x))]
solns_final = _remove_redundant_solutions(eqn, solns, 2, x)
assert solns_final == [Eq(f(x), C1*exp(C2*x))]
_ode_solver_test(_get_examples_ode_sol_nth_algebraic)
@slow
def test_slow_examples_nth_linear_constant_coeff_var_of_parameters():
_ode_solver_test(_get_examples_ode_sol_nth_linear_var_of_parameters, run_slow_test=True)
def test_nth_linear_constant_coeff_var_of_parameters():
_ode_solver_test(_get_examples_ode_sol_nth_linear_var_of_parameters)
@slow
def test_nth_linear_constant_coeff_variation_of_parameters__integral():
# solve_variation_of_parameters shouldn't attempt to simplify the
# Wronskian if simplify=False. If wronskian() ever gets good enough
# to simplify the result itself, this test might fail.
our_hint = 'nth_linear_constant_coeff_variation_of_parameters_Integral'
eq = f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x) - 2*x - exp(I*x)
sol_simp = dsolve(eq, f(x), hint=our_hint, simplify=True)
sol_nsimp = dsolve(eq, f(x), hint=our_hint, simplify=False)
assert sol_simp != sol_nsimp
assert checkodesol(eq, sol_simp, order=5, solve_for_func=False) == (True, 0)
assert checkodesol(eq, sol_simp, order=5, solve_for_func=False) == (True, 0)
@slow
def test_slow_examples_1st_exact():
_ode_solver_test(_get_examples_ode_sol_1st_exact, run_slow_test=True)
@slow
def test_1st_exact():
_ode_solver_test(_get_examples_ode_sol_1st_exact)
def test_1st_exact_integral():
eq = cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x)
sol_1 = dsolve(eq, f(x), simplify=False, hint='1st_exact_Integral')
assert checkodesol(eq, sol_1, order=1, solve_for_func=False)
@slow
def test_slow_examples_nth_order_reducible():
_ode_solver_test(_get_examples_ode_sol_nth_order_reducible, run_slow_test=True)
@slow
def test_slow_examples_nth_linear_constant_coeff_undetermined_coefficients():
_ode_solver_test(_get_examples_ode_sol_nth_linear_undetermined_coefficients, run_slow_test=True)
@slow
def test_slow_examples_separable():
_ode_solver_test(_get_examples_ode_sol_separable, run_slow_test=True)
@slow
def test_nth_linear_constant_coeff_undetermined_coefficients():
#issue-https://github.com/sympy/sympy/issues/5787
# This test case is to show the classification of imaginary constants under
# nth_linear_constant_coeff_undetermined_coefficients
eq = Eq(diff(f(x), x), I*f(x) + S.Half - I)
our_hint = 'nth_linear_constant_coeff_undetermined_coefficients'
assert our_hint in classify_ode(eq)
_ode_solver_test(_get_examples_ode_sol_nth_linear_undetermined_coefficients)
def test_nth_order_reducible():
F = lambda eq: NthOrderReducible(SingleODEProblem(eq, f(x), x))._matches()
D = Derivative
assert F(D(y*f(x), x, y) + D(f(x), x)) == False
assert F(D(y*f(y), y, y) + D(f(y), y)) == False
assert F(f(x)*D(f(x), x) + D(f(x), x, 2))== False
assert F(D(x*f(y), y, 2) + D(u*y*f(x), x, 3)) == False # no simplification by design
assert F(D(f(y), y, 2) + D(f(y), y, 3) + D(f(x), x, 4)) == False
assert F(D(f(x), x, 2) + D(f(x), x, 3)) == True
_ode_solver_test(_get_examples_ode_sol_nth_order_reducible)
@slow
def test_separable():
_ode_solver_test(_get_examples_ode_sol_separable)
@slow
def test_factorable():
assert integrate(-asin(f(2*x)+pi), x) == -Integral(asin(pi + f(2*x)), x)
_ode_solver_test(_get_examples_ode_sol_factorable)
@slow
def test_slow_examples_factorable():
_ode_solver_test(_get_examples_ode_sol_factorable, run_slow_test=True)
def test_Riccati_special_minus2():
_ode_solver_test(_get_examples_ode_sol_riccati)
@slow
def test_1st_rational_riccati():
_ode_solver_test(_get_examples_ode_sol_1st_rational_riccati)
def test_Bernoulli():
_ode_solver_test(_get_examples_ode_sol_bernoulli)
def test_1st_linear():
_ode_solver_test(_get_examples_ode_sol_1st_linear)
def test_almost_linear():
_ode_solver_test(_get_examples_ode_sol_almost_linear)
@slow
def test_Liouville_ODE():
hint = 'Liouville'
not_Liouville1 = classify_ode(diff(f(x), x)/x + f(x)*diff(f(x), x, x)/2 -
diff(f(x), x)**2/2, f(x))
not_Liouville2 = classify_ode(diff(f(x), x)/x + diff(f(x), x, x)/2 -
x*diff(f(x), x)**2/2, f(x))
assert hint not in not_Liouville1
assert hint not in not_Liouville2
assert hint + '_Integral' not in not_Liouville1
assert hint + '_Integral' not in not_Liouville2
_ode_solver_test(_get_examples_ode_sol_liouville)
def test_nth_order_linear_euler_eq_homogeneous():
x, t, a, b, c = symbols('x t a b c')
y = Function('y')
our_hint = "nth_linear_euler_eq_homogeneous"
eq = diff(f(t), t, 4)*t**4 - 13*diff(f(t), t, 2)*t**2 + 36*f(t)
assert our_hint in classify_ode(eq)
eq = a*y(t) + b*t*diff(y(t), t) + c*t**2*diff(y(t), t, 2)
assert our_hint in classify_ode(eq)
_ode_solver_test(_get_examples_ode_sol_euler_homogeneous)
def test_nth_order_linear_euler_eq_nonhomogeneous_undetermined_coefficients():
x, t = symbols('x t')
a, b, c, d = symbols('a b c d', integer=True)
our_hint = "nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients"
eq = x**4*diff(f(x), x, 4) - 13*x**2*diff(f(x), x, 2) + 36*f(x) + x
assert our_hint in classify_ode(eq, f(x))
eq = a*x**2*diff(f(x), x, 2) + b*x*diff(f(x), x) + c*f(x) + d*log(x)
assert our_hint in classify_ode(eq, f(x))
_ode_solver_test(_get_examples_ode_sol_euler_undetermined_coeff)
@slow
def test_nth_order_linear_euler_eq_nonhomogeneous_variation_of_parameters():
x, t = symbols('x, t')
a, b, c, d = symbols('a, b, c, d', integer=True)
our_hint = "nth_linear_euler_eq_nonhomogeneous_variation_of_parameters"
eq = Eq(x**2*diff(f(x),x,2) - 8*x*diff(f(x),x) + 12*f(x), x**2)
assert our_hint in classify_ode(eq, f(x))
eq = Eq(a*x**3*diff(f(x),x,3) + b*x**2*diff(f(x),x,2) + c*x*diff(f(x),x) + d*f(x), x*log(x))
assert our_hint in classify_ode(eq, f(x))
_ode_solver_test(_get_examples_ode_sol_euler_var_para)
@_add_example_keys
def _get_examples_ode_sol_euler_homogeneous():
r1, r2, r3, r4, r5 = [rootof(x**5 - 14*x**4 + 71*x**3 - 154*x**2 + 120*x - 1, n) for n in range(5)]
return {
'hint': "nth_linear_euler_eq_homogeneous",
'func': f(x),
'examples':{
'euler_hom_01': {
'eq': Eq(-3*diff(f(x), x)*x + 2*x**2*diff(f(x), x, x), 0),
'sol': [Eq(f(x), C1 + C2*x**Rational(5, 2))],
},
'euler_hom_02': {
'eq': Eq(3*f(x) - 5*diff(f(x), x)*x + 2*x**2*diff(f(x), x, x), 0),
'sol': [Eq(f(x), C1*sqrt(x) + C2*x**3)]
},
'euler_hom_03': {
'eq': Eq(4*f(x) + 5*diff(f(x), x)*x + x**2*diff(f(x), x, x), 0),
'sol': [Eq(f(x), (C1 + C2*log(x))/x**2)]
},
'euler_hom_04': {
'eq': Eq(6*f(x) - 6*diff(f(x), x)*x + 1*x**2*diff(f(x), x, x) + x**3*diff(f(x), x, x, x), 0),
'sol': [Eq(f(x), C1/x**2 + C2*x + C3*x**3)]
},
'euler_hom_05': {
'eq': Eq(-125*f(x) + 61*diff(f(x), x)*x - 12*x**2*diff(f(x), x, x) + x**3*diff(f(x), x, x, x), 0),
'sol': [Eq(f(x), x**5*(C1 + C2*log(x) + C3*log(x)**2))]
},
'euler_hom_06': {
'eq': x**2*diff(f(x), x, 2) + x*diff(f(x), x) - 9*f(x),
'sol': [Eq(f(x), C1*x**-3 + C2*x**3)]
},
'euler_hom_07': {
'eq': sin(x)*x**2*f(x).diff(x, 2) + sin(x)*x*f(x).diff(x) + sin(x)*f(x),
'sol': [Eq(f(x), C1*sin(log(x)) + C2*cos(log(x)))],
'XFAIL': ['2nd_power_series_regular','nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients']
},
'euler_hom_08': {
'eq': x**6 * f(x).diff(x, 6) - x*f(x).diff(x) + f(x),
'sol': [Eq(f(x), C1*x + C2*x**r1 + C3*x**r2 + C4*x**r3 + C5*x**r4 + C6*x**r5)],
'checkodesol_XFAIL':True
},
#This example is from issue: https://github.com/sympy/sympy/issues/15237 #This example is from issue:
# https://github.com/sympy/sympy/issues/15237
'euler_hom_09': {
'eq': Derivative(x*f(x), x, x, x),
'sol': [Eq(f(x), C1 + C2/x + C3*x)],
},
}
}
@_add_example_keys
def _get_examples_ode_sol_euler_undetermined_coeff():
return {
'hint': "nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients",
'func': f(x),
'examples':{
'euler_undet_01': {
'eq': Eq(x**2*diff(f(x), x, x) + x*diff(f(x), x), 1),
'sol': [Eq(f(x), C1 + C2*log(x) + log(x)**2/2)]
},
'euler_undet_02': {
'eq': Eq(x**2*diff(f(x), x, x) - 2*x*diff(f(x), x) + 2*f(x), x**3),
'sol': [Eq(f(x), x*(C1 + C2*x + Rational(1, 2)*x**2))]
},
'euler_undet_03': {
'eq': Eq(x**2*diff(f(x), x, x) - x*diff(f(x), x) - 3*f(x), log(x)/x),
'sol': [Eq(f(x), (C1 + C2*x**4 - log(x)**2/8 - log(x)/16)/x)]
},
'euler_undet_04': {
'eq': Eq(x**2*diff(f(x), x, x) + 3*x*diff(f(x), x) - 8*f(x), log(x)**3 - log(x)),
'sol': [Eq(f(x), C1/x**4 + C2*x**2 - Rational(1,8)*log(x)**3 - Rational(3,32)*log(x)**2 - Rational(1,64)*log(x) - Rational(7, 256))]
},
'euler_undet_05': {
'eq': Eq(x**3*diff(f(x), x, x, x) - 3*x**2*diff(f(x), x, x) + 6*x*diff(f(x), x) - 6*f(x), log(x)),
'sol': [Eq(f(x), C1*x + C2*x**2 + C3*x**3 - Rational(1, 6)*log(x) - Rational(11, 36))]
},
#Below examples were added for the issue: https://github.com/sympy/sympy/issues/5096
'euler_undet_06': {
'eq': 2*x**2*f(x).diff(x, 2) + f(x) + sqrt(2*x)*sin(log(2*x)/2),
'sol': [Eq(f(x), sqrt(x)*(C1*sin(log(x)/2) + C2*cos(log(x)/2) + sqrt(2)*log(x)*cos(log(2*x)/2)/2))]
},
'euler_undet_07': {
'eq': 2*x**2*f(x).diff(x, 2) + f(x) + sin(log(2*x)/2),
'sol': [Eq(f(x), C1*sqrt(x)*sin(log(x)/2) + C2*sqrt(x)*cos(log(x)/2) - 2*sin(log(2*x)/2)/5 - 4*cos(log(2*x)/2)/5)]
},
}
}
@_add_example_keys
def _get_examples_ode_sol_euler_var_para():
return {
'hint': "nth_linear_euler_eq_nonhomogeneous_variation_of_parameters",
'func': f(x),
'examples':{
'euler_var_01': {
'eq': Eq(x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x), x**4),
'sol': [Eq(f(x), x*(C1 + C2*x + x**3/6))]
},
'euler_var_02': {
'eq': Eq(3*x**2*diff(f(x), x, x) + 6*x*diff(f(x), x) - 6*f(x), x**3*exp(x)),
'sol': [Eq(f(x), C1/x**2 + C2*x + x*exp(x)/3 - 4*exp(x)/3 + 8*exp(x)/(3*x) - 8*exp(x)/(3*x**2))]
},
'euler_var_03': {
'eq': Eq(x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x), x**4*exp(x)),
'sol': [Eq(f(x), x*(C1 + C2*x + x*exp(x) - 2*exp(x)))]
},
'euler_var_04': {
'eq': x**2*Derivative(f(x), x, x) - 2*x*Derivative(f(x), x) + 2*f(x) - log(x),
'sol': [Eq(f(x), C1*x + C2*x**2 + log(x)/2 + Rational(3, 4))]
},
'euler_var_05': {
'eq': -exp(x) + (x*Derivative(f(x), (x, 2)) + Derivative(f(x), x))/x,
'sol': [Eq(f(x), C1 + C2*log(x) + exp(x) - Ei(x))]
},
'euler_var_06': {
'eq': x**2 * f(x).diff(x, 2) + x * f(x).diff(x) + 4 * f(x) - 1/x,
'sol': [Eq(f(x), C1*sin(2*log(x)) + C2*cos(2*log(x)) + 1/(5*x))]
},
}
}
@_add_example_keys
def _get_examples_ode_sol_bernoulli():
# Type: Bernoulli, f'(x) + p(x)*f(x) == q(x)*f(x)**n
return {
'hint': "Bernoulli",
'func': f(x),
'examples':{
'bernoulli_01': {
'eq': Eq(x*f(x).diff(x) + f(x) - f(x)**2, 0),
'sol': [Eq(f(x), 1/(C1*x + 1))],
'XFAIL': ['separable_reduced']
},
'bernoulli_02': {
'eq': f(x).diff(x) - y*f(x),
'sol': [Eq(f(x), C1*exp(x*y))]
},
'bernoulli_03': {
'eq': f(x)*f(x).diff(x) - 1,
'sol': [Eq(f(x), -sqrt(C1 + 2*x)), Eq(f(x), sqrt(C1 + 2*x))]
},
}
}
@_add_example_keys
def _get_examples_ode_sol_riccati():
# Type: Riccati special alpha = -2, a*dy/dx + b*y**2 + c*y/x +d/x**2
return {
'hint': "Riccati_special_minus2",
'func': f(x),
'examples':{
'riccati_01': {
'eq': 2*f(x).diff(x) + f(x)**2 - f(x)/x + 3*x**(-2),
'sol': [Eq(f(x), (-sqrt(3)*tan(C1 + sqrt(3)*log(x)/4) + 3)/(2*x))],
},
},
}
@_add_example_keys
def _get_examples_ode_sol_1st_rational_riccati():
# Type: 1st Order Rational Riccati, dy/dx = a + b*y + c*y**2,
# a, b, c are rational functions of x
return {
'hint': "1st_rational_riccati",
'func': f(x),
'examples':{
# a(x) is a constant
"rational_riccati_01": {
"eq": Eq(f(x).diff(x) + f(x)**2 - 2, 0),
"sol": [Eq(f(x), sqrt(2)*(-C1 - exp(2*sqrt(2)*x))/(C1 - exp(2*sqrt(2)*x)))]
},
# a(x) is a constant
"rational_riccati_02": {
"eq": f(x)**2 + Derivative(f(x), x) + 4*f(x)/x + 2/x**2,
"sol": [Eq(f(x), (-2*C1 - x)/(x*(C1 + x)))]
},
# a(x) is a constant
"rational_riccati_03": {
"eq": 2*x**2*Derivative(f(x), x) - x*(4*f(x) + Derivative(f(x), x) - 4) + (f(x) - 1)*f(x),
"sol": [Eq(f(x), (C1 + 2*x**2)/(C1 + x))]
},
# Constant coefficients
"rational_riccati_04": {
"eq": f(x).diff(x) - 6 - 5*f(x) - f(x)**2,
"sol": [Eq(f(x), (-2*C1 + 3*exp(x))/(C1 - exp(x)))]
},
# One pole of multiplicity 2
"rational_riccati_05": {
"eq": x**2 - (2*x + 1/x)*f(x) + f(x)**2 + Derivative(f(x), x),
"sol": [Eq(f(x), x*(C1 + x**2 + 1)/(C1 + x**2 - 1))]
},
# One pole of multiplicity 2
"rational_riccati_06": {
"eq": x**4*Derivative(f(x), x) + x**2 - x*(2*f(x)**2 + Derivative(f(x), x)) + f(x),
"sol": [Eq(f(x), x*(C1*x - x + 1)/(C1 + x**2 - 1))]
},
# Multiple poles of multiplicity 2
"rational_riccati_07": {
"eq": -f(x)**2 + Derivative(f(x), x) + (15*x**2 - 20*x + 7)/((x - 1)**2*(2*x \
- 1)**2),
"sol": [Eq(f(x), (9*C1*x - 6*C1 - 15*x**5 + 60*x**4 - 94*x**3 + 72*x**2 - \
33*x + 8)/(6*C1*x**2 - 9*C1*x + 3*C1 + 6*x**6 - 29*x**5 + 57*x**4 - \
58*x**3 + 28*x**2 - 3*x - 1))]
},
# Imaginary poles
"rational_riccati_08": {
"eq": Derivative(f(x), x) + (3*x**2 + 1)*f(x)**2/x + (6*x**2 - x + 3)*f(x)/(x*(x \
- 1)) + (3*x**2 - 2*x + 2)/(x*(x - 1)**2),
"sol": [Eq(f(x), (-C1 - x**3 + x**2 - 2*x + 1)/(C1*x - C1 + x**4 - x**3 + x**2 - \
2*x + 1))],
},
# Imaginary coefficients in equation
"rational_riccati_09": {
"eq": Derivative(f(x), x) - 2*I*(f(x)**2 + 1)/x,
"sol": [Eq(f(x), (-I*C1 + I*x**4 + I)/(C1 + x**4 - 1))]
},
# Regression: linsolve returning empty solution
# Large value of m (> 10)
"rational_riccati_10": {
"eq": Eq(Derivative(f(x), x), x*f(x)/(S(3)/2 - 2*x) + (x/2 - S(1)/3)*f(x)**2/\
(2*x/3 - S(1)/2) - S(5)/4 + (281*x**2 - 1260*x + 756)/(16*x**3 - 12*x**2)),
"sol": [Eq(f(x), (40*C1*x**14 + 28*C1*x**13 + 420*C1*x**12 + 2940*C1*x**11 + \
18480*C1*x**10 + 103950*C1*x**9 + 519750*C1*x**8 + 2286900*C1*x**7 + \
8731800*C1*x**6 + 28378350*C1*x**5 + 76403250*C1*x**4 + 163721250*C1*x**3 \
+ 261954000*C1*x**2 + 278326125*C1*x + 147349125*C1 + x*exp(2*x) - 9*exp(2*x) \
)/(x*(24*C1*x**13 + 140*C1*x**12 + 840*C1*x**11 + 4620*C1*x**10 + 23100*C1*x**9 \
+ 103950*C1*x**8 + 415800*C1*x**7 + 1455300*C1*x**6 + 4365900*C1*x**5 + \
10914750*C1*x**4 + 21829500*C1*x**3 + 32744250*C1*x**2 + 32744250*C1*x + \
16372125*C1 - exp(2*x))))]
}
}
}
@_add_example_keys
def _get_examples_ode_sol_1st_linear():
# Type: first order linear form f'(x)+p(x)f(x)=q(x)
return {
'hint': "1st_linear",
'func': f(x),
'examples':{
'linear_01': {
'eq': Eq(f(x).diff(x) + x*f(x), x**2),
'sol': [Eq(f(x), (C1 + x*exp(x**2/2)- sqrt(2)*sqrt(pi)*erfi(sqrt(2)*x/2)/2)*exp(-x**2/2))],
},
},
}
@_add_example_keys
def _get_examples_ode_sol_factorable():
""" some hints are marked as xfail for examples because they missed additional algebraic solution
which could be found by Factorable hint. Fact_01 raise exception for
nth_linear_constant_coeff_undetermined_coefficients"""
y = Dummy('y')
a0,a1,a2,a3,a4 = symbols('a0, a1, a2, a3, a4')
return {
'hint': "factorable",
'func': f(x),
'examples':{
'fact_01': {
'eq': f(x) + f(x)*f(x).diff(x),
'sol': [Eq(f(x), 0), Eq(f(x), C1 - x)],
'XFAIL': ['separable', '1st_exact', '1st_linear', 'Bernoulli', '1st_homogeneous_coeff_best',
'1st_homogeneous_coeff_subs_indep_div_dep', '1st_homogeneous_coeff_subs_dep_div_indep',
'lie_group', 'nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients',
'nth_linear_constant_coeff_variation_of_parameters',
'nth_linear_euler_eq_nonhomogeneous_variation_of_parameters',
'nth_linear_constant_coeff_undetermined_coefficients']
},
'fact_02': {
'eq': f(x)*(f(x).diff(x)+f(x)*x+2),
'sol': [Eq(f(x), (C1 - sqrt(2)*sqrt(pi)*erfi(sqrt(2)*x/2))*exp(-x**2/2)), Eq(f(x), 0)],
'XFAIL': ['Bernoulli', '1st_linear', 'lie_group']
},
'fact_03': {
'eq': (f(x).diff(x)+f(x)*x**2)*(f(x).diff(x, 2) + x*f(x)),
'sol': [Eq(f(x), C1*airyai(-x) + C2*airybi(-x)),Eq(f(x), C1*exp(-x**3/3))]
},
'fact_04': {
'eq': (f(x).diff(x)+f(x)*x**2)*(f(x).diff(x, 2) + f(x)),
'sol': [Eq(f(x), C1*exp(-x**3/3)), Eq(f(x), C1*sin(x) + C2*cos(x))]
},
'fact_05': {
'eq': (f(x).diff(x)**2-1)*(f(x).diff(x)**2-4),
'sol': [Eq(f(x), C1 - x), Eq(f(x), C1 + x), Eq(f(x), C1 + 2*x), Eq(f(x), C1 - 2*x)]
},
'fact_06': {
'eq': (f(x).diff(x, 2)-exp(f(x)))*f(x).diff(x),
'sol': [
Eq(f(x), log(-C1/(cos(sqrt(-C1)*(C2 + x)) + 1))),
Eq(f(x), log(-C1/(cos(sqrt(-C1)*(C2 - x)) + 1))),
Eq(f(x), C1)
],
'slow': True,
},
'fact_07': {
'eq': (f(x).diff(x)**2-1)*(f(x)*f(x).diff(x)-1),
'sol': [Eq(f(x), C1 - x), Eq(f(x), -sqrt(C1 + 2*x)),Eq(f(x), sqrt(C1 + 2*x)), Eq(f(x), C1 + x)]
},
'fact_08': {
'eq': Derivative(f(x), x)**4 - 2*Derivative(f(x), x)**2 + 1,
'sol': [Eq(f(x), C1 - x), Eq(f(x), C1 + x)]
},
'fact_09': {
'eq': f(x)**2*Derivative(f(x), x)**6 - 2*f(x)**2*Derivative(f(x),
x)**4 + f(x)**2*Derivative(f(x), x)**2 - 2*f(x)*Derivative(f(x),
x)**5 + 4*f(x)*Derivative(f(x), x)**3 - 2*f(x)*Derivative(f(x),
x) + Derivative(f(x), x)**4 - 2*Derivative(f(x), x)**2 + 1,
'sol': [
Eq(f(x), C1 - x), Eq(f(x), -sqrt(C1 + 2*x)),
Eq(f(x), sqrt(C1 + 2*x)), Eq(f(x), C1 + x)
]
},
'fact_10': {
'eq': x**4*f(x)**2 + 2*x**4*f(x)*Derivative(f(x), (x, 2)) + x**4*Derivative(f(x),
(x, 2))**2 + 2*x**3*f(x)*Derivative(f(x), x) + 2*x**3*Derivative(f(x),
x)*Derivative(f(x), (x, 2)) - 7*x**2*f(x)**2 - 7*x**2*f(x)*Derivative(f(x),
(x, 2)) + x**2*Derivative(f(x), x)**2 - 7*x*f(x)*Derivative(f(x), x) + 12*f(x)**2,
'sol': [
Eq(f(x), C1*besselj(2, x) + C2*bessely(2, x)),
Eq(f(x), C1*besselj(sqrt(3), x) + C2*bessely(sqrt(3), x))
],
'slow': True,
},
'fact_11': {
'eq': (f(x).diff(x, 2)-exp(f(x)))*(f(x).diff(x, 2)+exp(f(x))),
'sol': [
Eq(f(x), log(C1/(cos(C1*sqrt(-1/C1)*(C2 + x)) - 1))),
Eq(f(x), log(C1/(cos(C1*sqrt(-1/C1)*(C2 - x)) - 1))),
Eq(f(x), log(C1/(1 - cos(C1*sqrt(-1/C1)*(C2 + x))))),
Eq(f(x), log(C1/(1 - cos(C1*sqrt(-1/C1)*(C2 - x)))))
],
'dsolve_too_slow': True,
},
#Below examples were added for the issue: https://github.com/sympy/sympy/issues/15889
'fact_12': {
'eq': exp(f(x).diff(x))-f(x)**2,
'sol': [Eq(NonElementaryIntegral(1/log(y**2), (y, f(x))), C1 + x)],
'XFAIL': ['lie_group'] #It shows not implemented error for lie_group.
},
'fact_13': {
'eq': f(x).diff(x)**2 - f(x)**3,
'sol': [Eq(f(x), 4/(C1**2 - 2*C1*x + x**2))],
'XFAIL': ['lie_group'] #It shows not implemented error for lie_group.
},
'fact_14': {
'eq': f(x).diff(x)**2 - f(x),
'sol': [Eq(f(x), C1**2/4 - C1*x/2 + x**2/4)]
},
'fact_15': {
'eq': f(x).diff(x)**2 - f(x)**2,
'sol': [Eq(f(x), C1*exp(x)), Eq(f(x), C1*exp(-x))]
},
'fact_16': {
'eq': f(x).diff(x)**2 - f(x)**3,
'sol': [Eq(f(x), 4/(C1**2 - 2*C1*x + x**2))],
},
# kamke ode 1.1
'fact_17': {
'eq': f(x).diff(x)-(a4*x**4 + a3*x**3 + a2*x**2 + a1*x + a0)**(-1/2),
'sol': [Eq(f(x), C1 + Integral(1/sqrt(a0 + a1*x + a2*x**2 + a3*x**3 + a4*x**4), x))],
'slow': True
},
# This is from issue: https://github.com/sympy/sympy/issues/9446
'fact_18':{
'eq': Eq(f(2 * x), sin(Derivative(f(x)))),
'sol': [Eq(f(x), C1 + Integral(pi - asin(f(2*x)), x)), Eq(f(x), C1 + Integral(asin(f(2*x)), x))],
'checkodesol_XFAIL':True
},
# This is from issue: https://github.com/sympy/sympy/issues/7093
'fact_19': {
'eq': Derivative(f(x), x)**2 - x**3,
'sol': [Eq(f(x), C1 - 2*x**Rational(5,2)/5), Eq(f(x), C1 + 2*x**Rational(5,2)/5)],
},
'fact_20': {
'eq': x*f(x).diff(x, 2) - x*f(x),
'sol': [Eq(f(x), C1*exp(-x) + C2*exp(x))],
},
}
}
@_add_example_keys
def _get_examples_ode_sol_almost_linear():
from sympy.functions.special.error_functions import Ei
A = Symbol('A', positive=True)
f = Function('f')
d = f(x).diff(x)
return {
'hint': "almost_linear",
'func': f(x),
'examples':{
'almost_lin_01': {
'eq': x**2*f(x)**2*d + f(x)**3 + 1,
'sol': [Eq(f(x), (C1*exp(3/x) - 1)**Rational(1, 3)),
Eq(f(x), (-1 - sqrt(3)*I)*(C1*exp(3/x) - 1)**Rational(1, 3)/2),
Eq(f(x), (-1 + sqrt(3)*I)*(C1*exp(3/x) - 1)**Rational(1, 3)/2)],
},
'almost_lin_02': {
'eq': x*f(x)*d + 2*x*f(x)**2 + 1,
'sol': [Eq(f(x), -sqrt((C1 - 2*Ei(4*x))*exp(-4*x))), Eq(f(x), sqrt((C1 - 2*Ei(4*x))*exp(-4*x)))]
},
'almost_lin_03': {
'eq': x*d + x*f(x) + 1,
'sol': [Eq(f(x), (C1 - Ei(x))*exp(-x))]
},
'almost_lin_04': {
'eq': x*exp(f(x))*d + exp(f(x)) + 3*x,
'sol': [Eq(f(x), log(C1/x - x*Rational(3, 2)))],
},
'almost_lin_05': {
'eq': x + A*(x + diff(f(x), x) + f(x)) + diff(f(x), x) + f(x) + 2,
'sol': [Eq(f(x), (C1 + Piecewise(
(x, Eq(A + 1, 0)), ((-A*x + A - x - 1)*exp(x)/(A + 1), True)))*exp(-x))],
},
}
}
@_add_example_keys
def _get_examples_ode_sol_liouville():
n = Symbol('n')
_y = Dummy('y')
return {
'hint': "Liouville",
'func': f(x),
'examples':{
'liouville_01': {
'eq': diff(f(x), x)/x + diff(f(x), x, x)/2 - diff(f(x), x)**2/2,
'sol': [Eq(f(x), log(x/(C1 + C2*x)))],
},
'liouville_02': {
'eq': diff(x*exp(-f(x)), x, x),
'sol': [Eq(f(x), log(x/(C1 + C2*x)))]
},
'liouville_03': {
'eq': ((diff(f(x), x)/x + diff(f(x), x, x)/2 - diff(f(x), x)**2/2)*exp(-f(x))/exp(f(x))).expand(),
'sol': [Eq(f(x), log(x/(C1 + C2*x)))]
},
'liouville_04': {
'eq': diff(f(x), x, x) + 1/f(x)*(diff(f(x), x))**2 + 1/x*diff(f(x), x),
'sol': [Eq(f(x), -sqrt(C1 + C2*log(x))), Eq(f(x), sqrt(C1 + C2*log(x)))],
},
'liouville_05': {
'eq': x*diff(f(x), x, x) + x/f(x)*diff(f(x), x)**2 + x*diff(f(x), x),
'sol': [Eq(f(x), -sqrt(C1 + C2*exp(-x))), Eq(f(x), sqrt(C1 + C2*exp(-x)))],
},
'liouville_06': {
'eq': Eq((x*exp(f(x))).diff(x, x), 0),
'sol': [Eq(f(x), log(C1 + C2/x))],
},
'liouville_07': {
'eq': (diff(f(x), x)/x + diff(f(x), x, x)/2 - diff(f(x), x)**2/2)*exp(-f(x))/exp(f(x)),
'sol': [Eq(f(x), log(x/(C1 + C2*x)))],
},
'liouville_08': {
'eq': x**2*diff(f(x),x) + (n*f(x) + f(x)**2)*diff(f(x),x)**2 + diff(f(x), (x, 2)),
'sol': [Eq(C1 + C2*lowergamma(Rational(1,3), x**3/3) + NonElementaryIntegral(exp(_y**3/3)*exp(_y**2*n/2), (_y, f(x))), 0)],
},
}
}
@_add_example_keys
def _get_examples_ode_sol_nth_algebraic():
M, m, r, t = symbols('M m r t')
phi = Function('phi')
k = Symbol('k')
# This one needs a substitution f' = g.
# 'algeb_12': {
# 'eq': -exp(x) + (x*Derivative(f(x), (x, 2)) + Derivative(f(x), x))/x,
# 'sol': [Eq(f(x), C1 + C2*log(x) + exp(x) - Ei(x))],
# },
return {
'hint': "nth_algebraic",
'func': f(x),
'examples':{
'algeb_01': {
'eq': f(x) * f(x).diff(x) * f(x).diff(x, x) * (f(x) - 1) * (f(x).diff(x) - x),
'sol': [Eq(f(x), C1 + x**2/2), Eq(f(x), C1 + C2*x)]
},
'algeb_02': {
'eq': f(x) * f(x).diff(x) * f(x).diff(x, x) * (f(x) - 1),
'sol': [Eq(f(x), C1 + C2*x)]
},
'algeb_03': {
'eq': f(x) * f(x).diff(x) * f(x).diff(x, x),
'sol': [Eq(f(x), C1 + C2*x)]
},
'algeb_04': {
'eq': Eq(-M * phi(t).diff(t),
Rational(3, 2) * m * r**2 * phi(t).diff(t) * phi(t).diff(t,t)),
'sol': [Eq(phi(t), C1), Eq(phi(t), C1 + C2*t - M*t**2/(3*m*r**2))],
'func': phi(t)
},
'algeb_05': {
'eq': (1 - sin(f(x))) * f(x).diff(x),
'sol': [Eq(f(x), C1)],
'XFAIL': ['separable'] #It raised exception.
},
'algeb_06': {
'eq': (diff(f(x)) - x)*(diff(f(x)) + x),
'sol': [Eq(f(x), C1 - x**2/2), Eq(f(x), C1 + x**2/2)]
},
'algeb_07': {
'eq': Eq(Derivative(f(x), x), Derivative(g(x), x)),
'sol': [Eq(f(x), C1 + g(x))],
},
'algeb_08': {
'eq': f(x).diff(x) - C1, #this example is from issue 15999
'sol': [Eq(f(x), C1*x + C2)],
},
'algeb_09': {
'eq': f(x)*f(x).diff(x),
'sol': [Eq(f(x), C1)],
},
'algeb_10': {
'eq': (diff(f(x)) - x)*(diff(f(x)) + x),
'sol': [Eq(f(x), C1 - x**2/2), Eq(f(x), C1 + x**2/2)],
},
'algeb_11': {
'eq': f(x) + f(x)*f(x).diff(x),
'sol': [Eq(f(x), 0), Eq(f(x), C1 - x)],
'XFAIL': ['separable', '1st_exact', '1st_linear', 'Bernoulli', '1st_homogeneous_coeff_best',
'1st_homogeneous_coeff_subs_indep_div_dep', '1st_homogeneous_coeff_subs_dep_div_indep',
'lie_group', 'nth_linear_constant_coeff_undetermined_coefficients',
'nth_linear_euler_eq_nonhomogeneous_undetermined_coefficients',
'nth_linear_constant_coeff_variation_of_parameters',
'nth_linear_euler_eq_nonhomogeneous_variation_of_parameters']
#nth_linear_constant_coeff_undetermined_coefficients raises exception rest all of them misses a solution.
},
'algeb_12': {
'eq': Derivative(x*f(x), x, x, x),
'sol': [Eq(f(x), (C1 + C2*x + C3*x**2) / x)],
'XFAIL': ['nth_algebraic'] # It passes only when prep=False is set in dsolve.
},
'algeb_13': {
'eq': Eq(Derivative(x*Derivative(f(x), x), x)/x, exp(x)),
'sol': [Eq(f(x), C1 + C2*log(x) + exp(x) - Ei(x))],
'XFAIL': ['nth_algebraic'] # It passes only when prep=False is set in dsolve.
},
# These are simple tests from the old ode module example 14-18
'algeb_14': {
'eq': Eq(f(x).diff(x), 0),
'sol': [Eq(f(x), C1)],
},
'algeb_15': {
'eq': Eq(3*f(x).diff(x) - 5, 0),
'sol': [Eq(f(x), C1 + x*Rational(5, 3))],
},
'algeb_16': {
'eq': Eq(3*f(x).diff(x), 5),
'sol': [Eq(f(x), C1 + x*Rational(5, 3))],
},
# Type: 2nd order, constant coefficients (two complex roots)
'algeb_17': {
'eq': Eq(3*f(x).diff(x) - 1, 0),
'sol': [Eq(f(x), C1 + x/3)],
},
'algeb_18': {
'eq': Eq(x*f(x).diff(x) - 1, 0),
'sol': [Eq(f(x), C1 + log(x))],
},
# https://github.com/sympy/sympy/issues/6989
'algeb_19': {
'eq': f(x).diff(x) - x*exp(-k*x),
'sol': [Eq(f(x), C1 + Piecewise(((-k*x - 1)*exp(-k*x)/k**2, Ne(k**2, 0)),(x**2/2, True)))],
},
'algeb_20': {
'eq': -f(x).diff(x) + x*exp(-k*x),
'sol': [Eq(f(x), C1 + Piecewise(((-k*x - 1)*exp(-k*x)/k**2, Ne(k**2, 0)),(x**2/2, True)))],
},
# https://github.com/sympy/sympy/issues/10867
'algeb_21': {
'eq': Eq(g(x).diff(x).diff(x), (x-2)**2 + (x-3)**3),
'sol': [Eq(g(x), C1 + C2*x + x**5/20 - 2*x**4/3 + 23*x**3/6 - 23*x**2/2)],
'func': g(x),
},
# https://github.com/sympy/sympy/issues/13691
'algeb_22': {
'eq': f(x).diff(x) - C1*g(x).diff(x),
'sol': [Eq(f(x), C2 + C1*g(x))],
'func': f(x),
},
# https://github.com/sympy/sympy/issues/4838
'algeb_23': {
'eq': f(x).diff(x) - 3*C1 - 3*x**2,
'sol': [Eq(f(x), C2 + 3*C1*x + x**3)],
},
}
}
@_add_example_keys
def _get_examples_ode_sol_nth_order_reducible():
return {
'hint': "nth_order_reducible",
'func': f(x),
'examples':{
'reducible_01': {
'eq': Eq(x*Derivative(f(x), x)**2 + Derivative(f(x), x, 2), 0),
'sol': [Eq(f(x),C1 - sqrt(-1/C2)*log(-C2*sqrt(-1/C2) + x) +
sqrt(-1/C2)*log(C2*sqrt(-1/C2) + x))],
'slow': True,
},
'reducible_02': {
'eq': -exp(x) + (x*Derivative(f(x), (x, 2)) + Derivative(f(x), x))/x,
'sol': [Eq(f(x), C1 + C2*log(x) + exp(x) - Ei(x))],
'slow': True,
},
'reducible_03': {
'eq': Eq(sqrt(2) * f(x).diff(x,x,x) + f(x).diff(x), 0),
'sol': [Eq(f(x), C1 + C2*sin(2**Rational(3, 4)*x/2) + C3*cos(2**Rational(3, 4)*x/2))],
'slow': True,
},
'reducible_04': {
'eq': f(x).diff(x, 2) + 2*f(x).diff(x),
'sol': [Eq(f(x), C1 + C2*exp(-2*x))],
},
'reducible_05': {
'eq': f(x).diff(x, 3) + f(x).diff(x, 2) - 6*f(x).diff(x),
'sol': [Eq(f(x), C1 + C2*exp(-3*x) + C3*exp(2*x))],
'slow': True,
},
'reducible_06': {
'eq': f(x).diff(x, 4) - f(x).diff(x, 3) - 4*f(x).diff(x, 2) + \
4*f(x).diff(x),
'sol': [Eq(f(x), C1 + C2*exp(-2*x) + C3*exp(x) + C4*exp(2*x))],
'slow': True,
},
'reducible_07': {
'eq': f(x).diff(x, 4) + 3*f(x).diff(x, 3),
'sol': [Eq(f(x), C1 + C2*x + C3*x**2 + C4*exp(-3*x))],
'slow': True,
},
'reducible_08': {
'eq': f(x).diff(x, 4) - 2*f(x).diff(x, 2),
'sol': [Eq(f(x), C1 + C2*x + C3*exp(-sqrt(2)*x) + C4*exp(sqrt(2)*x))],
'slow': True,
},
'reducible_09': {
'eq': f(x).diff(x, 4) + 4*f(x).diff(x, 2),
'sol': [Eq(f(x), C1 + C2*x + C3*sin(2*x) + C4*cos(2*x))],
'slow': True,
},
'reducible_10': {
'eq': f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x),
'sol': [Eq(f(x), C1 + C2*x*sin(x) + C2*cos(x) - C3*x*cos(x) + C3*sin(x) + C4*sin(x) + C5*cos(x))],
'slow': True,
},
'reducible_11': {
'eq': f(x).diff(x, 2) - f(x).diff(x)**3,
'sol': [Eq(f(x), C1 - sqrt(2)*sqrt(-1/(C2 + x))*(C2 + x)),
Eq(f(x), C1 + sqrt(2)*sqrt(-1/(C2 + x))*(C2 + x))],
'slow': True,
},
# Needs to be a way to know how to combine derivatives in the expression
'reducible_12': {
'eq': Derivative(x*f(x), x, x, x) + Derivative(f(x), x, x, x),
'sol': [Eq(f(x), C1 + C3/Mul(2, (x**2 + 2*x + 1), evaluate=False) +
x*(C2 + C3/Mul(2, (x**2 + 2*x + 1), evaluate=False)))], # 2-arg Mul!
'slow': True,
},
}
}
@_add_example_keys
def _get_examples_ode_sol_nth_linear_undetermined_coefficients():
# examples 3-27 below are from Ordinary Differential Equations,
# Tenenbaum and Pollard, pg. 231
g = exp(-x)
f2 = f(x).diff(x, 2)
c = 3*f(x).diff(x, 3) + 5*f2 + f(x).diff(x) - f(x) - x
t = symbols("t")
u = symbols("u",cls=Function)
R, L, C, E_0, alpha = symbols("R L C E_0 alpha",positive=True)
omega = Symbol('omega')
return {
'hint': "nth_linear_constant_coeff_undetermined_coefficients",
'func': f(x),
'examples':{
'undet_01': {
'eq': c - x*g,
'sol': [Eq(f(x), C3*exp(x/3) - x + (C1 + x*(C2 - x**2/24 - 3*x/32))*exp(-x) - 1)],
'slow': True,
},
'undet_02': {
'eq': c - g,
'sol': [Eq(f(x), C3*exp(x/3) - x + (C1 + x*(C2 - x/8))*exp(-x) - 1)],
'slow': True,
},
'undet_03': {
'eq': f2 + 3*f(x).diff(x) + 2*f(x) - 4,
'sol': [Eq(f(x), C1*exp(-2*x) + C2*exp(-x) + 2)],
'slow': True,
},
'undet_04': {
'eq': f2 + 3*f(x).diff(x) + 2*f(x) - 12*exp(x),
'sol': [Eq(f(x), C1*exp(-2*x) + C2*exp(-x) + 2*exp(x))],
'slow': True,
},
'undet_05': {
'eq': f2 + 3*f(x).diff(x) + 2*f(x) - exp(I*x),
'sol': [Eq(f(x), (S(3)/10 + I/10)*(C1*exp(-2*x) + C2*exp(-x) - I*exp(I*x)))],
'slow': True,
},
'undet_06': {
'eq': f2 + 3*f(x).diff(x) + 2*f(x) - sin(x),
'sol': [Eq(f(x), C1*exp(-2*x) + C2*exp(-x) + sin(x)/10 - 3*cos(x)/10)],
'slow': True,
},
'undet_07': {
'eq': f2 + 3*f(x).diff(x) + 2*f(x) - cos(x),
'sol': [Eq(f(x), C1*exp(-2*x) + C2*exp(-x) + 3*sin(x)/10 + cos(x)/10)],
'slow': True,
},
'undet_08': {
'eq': f2 + 3*f(x).diff(x) + 2*f(x) - (8 + 6*exp(x) + 2*sin(x)),
'sol': [Eq(f(x), C1*exp(-2*x) + C2*exp(-x) + exp(x) + sin(x)/5 - 3*cos(x)/5 + 4)],
'slow': True,
},
'undet_09': {
'eq': f2 + f(x).diff(x) + f(x) - x**2,
'sol': [Eq(f(x), -2*x + x**2 + (C1*sin(x*sqrt(3)/2) + C2*cos(x*sqrt(3)/2))*exp(-x/2))],
'slow': True,
},
'undet_10': {
'eq': f2 - 2*f(x).diff(x) - 8*f(x) - 9*x*exp(x) - 10*exp(-x),
'sol': [Eq(f(x), -x*exp(x) - 2*exp(-x) + C1*exp(-2*x) + C2*exp(4*x))],
'slow': True,
},
'undet_11': {
'eq': f2 - 3*f(x).diff(x) - 2*exp(2*x)*sin(x),
'sol': [Eq(f(x), C1 + C2*exp(3*x) - 3*exp(2*x)*sin(x)/5 - exp(2*x)*cos(x)/5)],
'slow': True,
},
'undet_12': {
'eq': f(x).diff(x, 4) - 2*f2 + f(x) - x + sin(x),
'sol': [Eq(f(x), x - sin(x)/4 + (C1 + C2*x)*exp(-x) + (C3 + C4*x)*exp(x))],
'slow': True,
},
'undet_13': {
'eq': f2 + f(x).diff(x) - x**2 - 2*x,
'sol': [Eq(f(x), C1 + x**3/3 + C2*exp(-x))],
'slow': True,
},
'undet_14': {
'eq': f2 + f(x).diff(x) - x - sin(2*x),
'sol': [Eq(f(x), C1 - x - sin(2*x)/5 - cos(2*x)/10 + x**2/2 + C2*exp(-x))],
'slow': True,
},
'undet_15': {
'eq': f2 + f(x) - 4*x*sin(x),
'sol': [Eq(f(x), (C1 - x**2)*cos(x) + (C2 + x)*sin(x))],
'slow': True,
},
'undet_16': {
'eq': f2 + 4*f(x) - x*sin(2*x),
'sol': [Eq(f(x), (C1 - x**2/8)*cos(2*x) + (C2 + x/16)*sin(2*x))],
'slow': True,
},
'undet_17': {
'eq': f2 + 2*f(x).diff(x) + f(x) - x**2*exp(-x),
'sol': [Eq(f(x), (C1 + x*(C2 + x**3/12))*exp(-x))],
'slow': True,
},
'undet_18': {
'eq': f(x).diff(x, 3) + 3*f2 + 3*f(x).diff(x) + f(x) - 2*exp(-x) + \
x**2*exp(-x),
'sol': [Eq(f(x), (C1 + x*(C2 + x*(C3 - x**3/60 + x/3)))*exp(-x))],
'slow': True,
},
'undet_19': {
'eq': f2 + 3*f(x).diff(x) + 2*f(x) - exp(-2*x) - x**2,
'sol': [Eq(f(x), C2*exp(-x) + x**2/2 - x*Rational(3,2) + (C1 - x)*exp(-2*x) + Rational(7,4))],
'slow': True,
},
'undet_20': {
'eq': f2 - 3*f(x).diff(x) + 2*f(x) - x*exp(-x),
'sol': [Eq(f(x), C1*exp(x) + C2*exp(2*x) + (6*x + 5)*exp(-x)/36)],
'slow': True,
},
'undet_21': {
'eq': f2 + f(x).diff(x) - 6*f(x) - x - exp(2*x),
'sol': [Eq(f(x), Rational(-1, 36) - x/6 + C2*exp(-3*x) + (C1 + x/5)*exp(2*x))],
'slow': True,
},
'undet_22': {
'eq': f2 + f(x) - sin(x) - exp(-x),
'sol': [Eq(f(x), C2*sin(x) + (C1 - x/2)*cos(x) + exp(-x)/2)],
'slow': True,
},
'undet_23': {
'eq': f(x).diff(x, 3) - 3*f2 + 3*f(x).diff(x) - f(x) - exp(x),
'sol': [Eq(f(x), (C1 + x*(C2 + x*(C3 + x/6)))*exp(x))],
'slow': True,
},
'undet_24': {
'eq': f2 + f(x) - S.Half - cos(2*x)/2,
'sol': [Eq(f(x), S.Half - cos(2*x)/6 + C1*sin(x) + C2*cos(x))],
'slow': True,
},
'undet_25': {
'eq': f(x).diff(x, 3) - f(x).diff(x) - exp(2*x)*(S.Half - cos(2*x)/2),
'sol': [Eq(f(x), C1 + C2*exp(-x) + C3*exp(x) + (-21*sin(2*x) + 27*cos(2*x) + 130)*exp(2*x)/1560)],
'slow': True,
},
#Note: 'undet_26' is referred in 'undet_37'
'undet_26': {
'eq': (f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x) - 2*x -
sin(x) - cos(x)),
'sol': [Eq(f(x), C1 + x**2 + (C2 + x*(C3 - x/8))*sin(x) + (C4 + x*(C5 + x/8))*cos(x))],
'slow': True,
},
'undet_27': {
'eq': f2 + f(x) - cos(x)/2 + cos(3*x)/2,
'sol': [Eq(f(x), cos(3*x)/16 + C2*cos(x) + (C1 + x/4)*sin(x))],
'slow': True,
},
'undet_28': {
'eq': f(x).diff(x) - 1,
'sol': [Eq(f(x), C1 + x)],
'slow': True,
},
# https://github.com/sympy/sympy/issues/19358
'undet_29': {
'eq': f2 + f(x).diff(x) + exp(x-C1),
'sol': [Eq(f(x), C2 + C3*exp(-x) - exp(-C1 + x)/2)],
'slow': True,
},
# https://github.com/sympy/sympy/issues/18408
'undet_30': {
'eq': f(x).diff(x, 3) - f(x).diff(x) - sinh(x),
'sol': [Eq(f(x), C1 + C2*exp(-x) + C3*exp(x) + x*sinh(x)/2)],
},
'undet_31': {
'eq': f(x).diff(x, 2) - 49*f(x) - sinh(3*x),
'sol': [Eq(f(x), C1*exp(-7*x) + C2*exp(7*x) - sinh(3*x)/40)],
},
'undet_32': {
'eq': f(x).diff(x, 3) - f(x).diff(x) - sinh(x) - exp(x),
'sol': [Eq(f(x), C1 + C3*exp(-x) + x*sinh(x)/2 + (C2 + x/2)*exp(x))],
},
# https://github.com/sympy/sympy/issues/5096
'undet_33': {
'eq': f(x).diff(x, x) + f(x) - x*sin(x - 2),
'sol': [Eq(f(x), C1*sin(x) + C2*cos(x) - x**2*cos(x - 2)/4 + x*sin(x - 2)/4)],
},
'undet_34': {
'eq': f(x).diff(x, 2) + f(x) - x**4*sin(x-1),
'sol': [ Eq(f(x), C1*sin(x) + C2*cos(x) - x**5*cos(x - 1)/10 + x**4*sin(x - 1)/4 + x**3*cos(x - 1)/2 - 3*x**2*sin(x - 1)/4 - 3*x*cos(x - 1)/4)],
},
'undet_35': {
'eq': f(x).diff(x, 2) - f(x) - exp(x - 1),
'sol': [Eq(f(x), C2*exp(-x) + (C1 + x*exp(-1)/2)*exp(x))],
},
'undet_36': {
'eq': f(x).diff(x, 2)+f(x)-(sin(x-2)+1),
'sol': [Eq(f(x), C1*sin(x) + C2*cos(x) - x*cos(x - 2)/2 + 1)],
},
# Equivalent to example_name 'undet_26'.
# This previously failed because the algorithm for undetermined coefficients
# didn't know to multiply exp(I*x) by sufficient x because it is linearly
# dependent on sin(x) and cos(x).
'undet_37': {
'eq': f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x) - 2*x - exp(I*x),
'sol': [Eq(f(x), C1 + x**2*(I*exp(I*x)/8 + 1) + (C2 + C3*x)*sin(x) + (C4 + C5*x)*cos(x))],
},
# https://github.com/sympy/sympy/issues/12623
'undet_38': {
'eq': Eq( u(t).diff(t,t) + R /L*u(t).diff(t) + 1/(L*C)*u(t), alpha),
'sol': [Eq(u(t), C*L*alpha + C2*exp(-t*(R + sqrt(C*R**2 - 4*L)/sqrt(C))/(2*L))
+ C1*exp(t*(-R + sqrt(C*R**2 - 4*L)/sqrt(C))/(2*L)))],
'func': u(t)
},
'undet_39': {
'eq': Eq( L*C*u(t).diff(t,t) + R*C*u(t).diff(t) + u(t), E_0*exp(I*omega*t) ),
'sol': [Eq(u(t), C2*exp(-t*(R + sqrt(C*R**2 - 4*L)/sqrt(C))/(2*L))
+ C1*exp(t*(-R + sqrt(C*R**2 - 4*L)/sqrt(C))/(2*L))
- E_0*exp(I*omega*t)/(C*L*omega**2 - I*C*R*omega - 1))],
'func': u(t),
},
# https://github.com/sympy/sympy/issues/6879
'undet_40': {
'eq': Eq(Derivative(f(x), x, 2) - 2*Derivative(f(x), x) + f(x), sin(x)),
'sol': [Eq(f(x), (C1 + C2*x)*exp(x) + cos(x)/2)],
},
}
}
@_add_example_keys
def _get_examples_ode_sol_separable():
# test_separable1-5 are from Ordinary Differential Equations, Tenenbaum and
# Pollard, pg. 55
t,a = symbols('a,t')
m = 96
g = 9.8
k = .2
f1 = g * m
v = Function('v')
return {
'hint': "separable",
'func': f(x),
'examples':{
'separable_01': {
'eq': f(x).diff(x) - f(x),
'sol': [Eq(f(x), C1*exp(x))],
},
'separable_02': {
'eq': x*f(x).diff(x) - f(x),
'sol': [Eq(f(x), C1*x)],
},
'separable_03': {
'eq': f(x).diff(x) + sin(x),
'sol': [Eq(f(x), C1 + cos(x))],
},
'separable_04': {
'eq': f(x)**2 + 1 - (x**2 + 1)*f(x).diff(x),
'sol': [Eq(f(x), tan(C1 + atan(x)))],
},
'separable_05': {
'eq': f(x).diff(x)/tan(x) - f(x) - 2,
'sol': [Eq(f(x), C1/cos(x) - 2)],
},
'separable_06': {
'eq': f(x).diff(x) * (1 - sin(f(x))) - 1,
'sol': [Eq(-x + f(x) + cos(f(x)), C1)],
},
'separable_07': {
'eq': f(x)*x**2*f(x).diff(x) - f(x)**3 - 2*x**2*f(x).diff(x),
'sol': [Eq(f(x), (-x - sqrt(x*(4*C1*x + x - 4)))/(C1*x - 1)/2),
Eq(f(x), (-x + sqrt(x*(4*C1*x + x - 4)))/(C1*x - 1)/2)],
'slow': True,
},
'separable_08': {
'eq': f(x)**2 - 1 - (2*f(x) + x*f(x))*f(x).diff(x),
'sol': [Eq(f(x), -sqrt(C1*x**2 + 4*C1*x + 4*C1 + 1)),
Eq(f(x), sqrt(C1*x**2 + 4*C1*x + 4*C1 + 1))],
'slow': True,
},
'separable_09': {
'eq': x*log(x)*f(x).diff(x) + sqrt(1 + f(x)**2),
'sol': [Eq(f(x), sinh(C1 - log(log(x))))], #One more solution is f(x)=I
'slow': True,
'checkodesol_XFAIL': True,
},
'separable_10': {
'eq': exp(x + 1)*tan(f(x)) + cos(f(x))*f(x).diff(x),
'sol': [Eq(E*exp(x) + log(cos(f(x)) - 1)/2 - log(cos(f(x)) + 1)/2 + cos(f(x)), C1)],
'slow': True,
},
'separable_11': {
'eq': (x*cos(f(x)) + x**2*sin(f(x))*f(x).diff(x) - a**2*sin(f(x))*f(x).diff(x)),
'sol': [
Eq(f(x), -acos(C1*sqrt(-a**2 + x**2)) + 2*pi),
Eq(f(x), acos(C1*sqrt(-a**2 + x**2)))
],
'slow': True,
},
'separable_12': {
'eq': f(x).diff(x) - f(x)*tan(x),
'sol': [Eq(f(x), C1/cos(x))],
},
'separable_13': {
'eq': (x - 1)*cos(f(x))*f(x).diff(x) - 2*x*sin(f(x)),
'sol': [
Eq(f(x), pi - asin(C1*(x**2 - 2*x + 1)*exp(2*x))),
Eq(f(x), asin(C1*(x**2 - 2*x + 1)*exp(2*x)))
],
},
'separable_14': {
'eq': f(x).diff(x) - f(x)*log(f(x))/tan(x),
'sol': [Eq(f(x), exp(C1*sin(x)))],
},
'separable_15': {
'eq': x*f(x).diff(x) + (1 + f(x)**2)*atan(f(x)),
'sol': [Eq(f(x), tan(C1/x))], #Two more solutions are f(x)=0 and f(x)=I
'slow': True,
'checkodesol_XFAIL': True,
},
'separable_16': {
'eq': f(x).diff(x) + x*(f(x) + 1),
'sol': [Eq(f(x), -1 + C1*exp(-x**2/2))],
},
'separable_17': {
'eq': exp(f(x)**2)*(x**2 + 2*x + 1) + (x*f(x) + f(x))*f(x).diff(x),
'sol': [
Eq(f(x), -sqrt(log(1/(C1 + x**2 + 2*x)))),
Eq(f(x), sqrt(log(1/(C1 + x**2 + 2*x))))
],
},
'separable_18': {
'eq': f(x).diff(x) + f(x),
'sol': [Eq(f(x), C1*exp(-x))],
},
'separable_19': {
'eq': sin(x)*cos(2*f(x)) + cos(x)*sin(2*f(x))*f(x).diff(x),
'sol': [Eq(f(x), pi - acos(C1/cos(x)**2)/2), Eq(f(x), acos(C1/cos(x)**2)/2)],
},
'separable_20': {
'eq': (1 - x)*f(x).diff(x) - x*(f(x) + 1),
'sol': [Eq(f(x), (C1*exp(-x) - x + 1)/(x - 1))],
},
'separable_21': {
'eq': f(x)*diff(f(x), x) + x - 3*x*f(x)**2,
'sol': [Eq(f(x), -sqrt(3)*sqrt(C1*exp(3*x**2) + 1)/3),
Eq(f(x), sqrt(3)*sqrt(C1*exp(3*x**2) + 1)/3)],
},
'separable_22': {
'eq': f(x).diff(x) - exp(x + f(x)),
'sol': [Eq(f(x), log(-1/(C1 + exp(x))))],
'XFAIL': ['lie_group'] #It shows 'NoneType' object is not subscriptable for lie_group.
},
# https://github.com/sympy/sympy/issues/7081
'separable_23': {
'eq': x*(f(x).diff(x)) + 1 - f(x)**2,
'sol': [Eq(f(x), (-C1 - x**2)/(-C1 + x**2))],
},
# https://github.com/sympy/sympy/issues/10379
'separable_24': {
'eq': f(t).diff(t)-(1-51.05*y*f(t)),
'sol': [Eq(f(t), (0.019588638589618023*exp(y*(C1 - 51.049999999999997*t)) + 0.019588638589618023)/y)],
'func': f(t),
},
# https://github.com/sympy/sympy/issues/15999
'separable_25': {
'eq': f(x).diff(x) - C1*f(x),
'sol': [Eq(f(x), C2*exp(C1*x))],
},
'separable_26': {
'eq': f1 - k * (v(t) ** 2) - m * Derivative(v(t)),
'sol': [Eq(v(t), -68.585712797928991/tanh(C1 - 0.14288690166235204*t))],
'func': v(t),
'checkodesol_XFAIL': True,
},
#https://github.com/sympy/sympy/issues/22155
'separable_27': {
'eq': f(x).diff(x) - exp(f(x) - x),
'sol': [Eq(f(x), log(-exp(x)/(C1*exp(x) - 1)))],
}
}
}
@_add_example_keys
def _get_examples_ode_sol_1st_exact():
# Type: Exact differential equation, p(x,f) + q(x,f)*f' == 0,
# where dp/df == dq/dx
'''
Example 7 is an exact equation that fails under the exact engine. It is caught
by first order homogeneous albeit with a much contorted solution. The
exact engine fails because of a poorly simplified integral of q(0,y)dy,
where q is the function multiplying f'. The solutions should be
Eq(sqrt(x**2+f(x)**2)**3+y**3, C1). The equation below is
equivalent, but it is so complex that checkodesol fails, and takes a long
time to do so.
'''
return {
'hint': "1st_exact",
'func': f(x),
'examples':{
'1st_exact_01': {
'eq': sin(x)*cos(f(x)) + cos(x)*sin(f(x))*f(x).diff(x),
'sol': [Eq(f(x), -acos(C1/cos(x)) + 2*pi), Eq(f(x), acos(C1/cos(x)))],
'slow': True,
},
'1st_exact_02': {
'eq': (2*x*f(x) + 1)/f(x) + (f(x) - x)/f(x)**2*f(x).diff(x),
'sol': [Eq(f(x), exp(C1 - x**2 + LambertW(-x*exp(-C1 + x**2))))],
'XFAIL': ['lie_group'], #It shows dsolve raises an exception: List index out of range for lie_group
'slow': True,
'checkodesol_XFAIL':True
},
'1st_exact_03': {
'eq': 2*x + f(x)*cos(x) + (2*f(x) + sin(x) - sin(f(x)))*f(x).diff(x),
'sol': [Eq(f(x)*sin(x) + cos(f(x)) + x**2 + f(x)**2, C1)],
'XFAIL': ['lie_group'], #It goes into infinite loop for lie_group.
'slow': True,
},
'1st_exact_04': {
'eq': cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x),
'sol': [Eq(x*cos(f(x)) + f(x)**3/3, C1)],
'slow': True,
},
'1st_exact_05': {
'eq': 2*x*f(x) + (x**2 + f(x)**2)*f(x).diff(x),
'sol': [Eq(x**2*f(x) + f(x)**3/3, C1)],
'slow': True,
'simplify_flag':False
},
# This was from issue: https://github.com/sympy/sympy/issues/11290
'1st_exact_06': {
'eq': cos(f(x)) - (x*sin(f(x)) - f(x)**2)*f(x).diff(x),
'sol': [Eq(x*cos(f(x)) + f(x)**3/3, C1)],
'simplify_flag':False
},
'1st_exact_07': {
'eq': x*sqrt(x**2 + f(x)**2) - (x**2*f(x)/(f(x) - sqrt(x**2 + f(x)**2)))*f(x).diff(x),
'sol': [Eq(log(x),
C1 - 9*sqrt(1 + f(x)**2/x**2)*asinh(f(x)/x)/(-27*f(x)/x +
27*sqrt(1 + f(x)**2/x**2)) - 9*sqrt(1 + f(x)**2/x**2)*
log(1 - sqrt(1 + f(x)**2/x**2)*f(x)/x + 2*f(x)**2/x**2)/
(-27*f(x)/x + 27*sqrt(1 + f(x)**2/x**2)) +
9*asinh(f(x)/x)*f(x)/(x*(-27*f(x)/x + 27*sqrt(1 + f(x)**2/x**2))) +
9*f(x)*log(1 - sqrt(1 + f(x)**2/x**2)*f(x)/x + 2*f(x)**2/x**2)/
(x*(-27*f(x)/x + 27*sqrt(1 + f(x)**2/x**2))))],
'slow': True,
'dsolve_too_slow':True
},
# Type: a(x)f'(x)+b(x)*f(x)+c(x)=0
'1st_exact_08': {
'eq': Eq(x**2*f(x).diff(x) + 3*x*f(x) - sin(x)/x, 0),
'sol': [Eq(f(x), (C1 - cos(x))/x**3)],
},
# these examples are from test_exact_enhancement
'1st_exact_09': {
'eq': f(x)/x**2 + ((f(x)*x - 1)/x)*f(x).diff(x),
'sol': [Eq(f(x), (i*sqrt(C1*x**2 + 1) + 1)/x) for i in (-1, 1)],
},
'1st_exact_10': {
'eq': (x*f(x) - 1) + f(x).diff(x)*(x**2 - x*f(x)),
'sol': [Eq(f(x), x - sqrt(C1 + x**2 - 2*log(x))), Eq(f(x), x + sqrt(C1 + x**2 - 2*log(x)))],
},
'1st_exact_11': {
'eq': (x + 2)*sin(f(x)) + f(x).diff(x)*x*cos(f(x)),
'sol': [Eq(f(x), -asin(C1*exp(-x)/x**2) + pi), Eq(f(x), asin(C1*exp(-x)/x**2))],
},
}
}
@_add_example_keys
def _get_examples_ode_sol_nth_linear_var_of_parameters():
g = exp(-x)
f2 = f(x).diff(x, 2)
c = 3*f(x).diff(x, 3) + 5*f2 + f(x).diff(x) - f(x) - x
return {
'hint': "nth_linear_constant_coeff_variation_of_parameters",
'func': f(x),
'examples':{
'var_of_parameters_01': {
'eq': c - x*g,
'sol': [Eq(f(x), C3*exp(x/3) - x + (C1 + x*(C2 - x**2/24 - 3*x/32))*exp(-x) - 1)],
'slow': True,
},
'var_of_parameters_02': {
'eq': c - g,
'sol': [Eq(f(x), C3*exp(x/3) - x + (C1 + x*(C2 - x/8))*exp(-x) - 1)],
'slow': True,
},
'var_of_parameters_03': {
'eq': f(x).diff(x) - 1,
'sol': [Eq(f(x), C1 + x)],
'slow': True,
},
'var_of_parameters_04': {
'eq': f2 + 3*f(x).diff(x) + 2*f(x) - 4,
'sol': [Eq(f(x), C1*exp(-2*x) + C2*exp(-x) + 2)],
'slow': True,
},
'var_of_parameters_05': {
'eq': f2 + 3*f(x).diff(x) + 2*f(x) - 12*exp(x),
'sol': [Eq(f(x), C1*exp(-2*x) + C2*exp(-x) + 2*exp(x))],
'slow': True,
},
'var_of_parameters_06': {
'eq': f2 - 2*f(x).diff(x) - 8*f(x) - 9*x*exp(x) - 10*exp(-x),
'sol': [Eq(f(x), -x*exp(x) - 2*exp(-x) + C1*exp(-2*x) + C2*exp(4*x))],
'slow': True,
},
'var_of_parameters_07': {
'eq': f2 + 2*f(x).diff(x) + f(x) - x**2*exp(-x),
'sol': [Eq(f(x), (C1 + x*(C2 + x**3/12))*exp(-x))],
'slow': True,
},
'var_of_parameters_08': {
'eq': f2 - 3*f(x).diff(x) + 2*f(x) - x*exp(-x),
'sol': [Eq(f(x), C1*exp(x) + C2*exp(2*x) + (6*x + 5)*exp(-x)/36)],
'slow': True,
},
'var_of_parameters_09': {
'eq': f(x).diff(x, 3) - 3*f2 + 3*f(x).diff(x) - f(x) - exp(x),
'sol': [Eq(f(x), (C1 + x*(C2 + x*(C3 + x/6)))*exp(x))],
'slow': True,
},
'var_of_parameters_10': {
'eq': f2 + 2*f(x).diff(x) + f(x) - exp(-x)/x,
'sol': [Eq(f(x), (C1 + x*(C2 + log(x)))*exp(-x))],
'slow': True,
},
'var_of_parameters_11': {
'eq': f2 + f(x) - 1/sin(x)*1/cos(x),
'sol': [Eq(f(x), (C1 + log(sin(x) - 1)/2 - log(sin(x) + 1)/2
)*cos(x) + (C2 + log(cos(x) - 1)/2 - log(cos(x) + 1)/2)*sin(x))],
'slow': True,
},
'var_of_parameters_12': {
'eq': f(x).diff(x, 4) - 1/x,
'sol': [Eq(f(x), C1 + C2*x + C3*x**2 + x**3*(C4 + log(x)/6))],
'slow': True,
},
# These were from issue: https://github.com/sympy/sympy/issues/15996
'var_of_parameters_13': {
'eq': f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x) - 2*x - exp(I*x),
'sol': [Eq(f(x), C1 + x**2 + (C2 + x*(C3 - x/8 + 3*exp(I*x)/2 + 3*exp(-I*x)/2) + 5*exp(2*I*x)/16 + 2*I*exp(I*x) - 2*I*exp(-I*x))*sin(x) + (C4 + x*(C5 + I*x/8 + 3*I*exp(I*x)/2 - 3*I*exp(-I*x)/2)
+ 5*I*exp(2*I*x)/16 - 2*exp(I*x) - 2*exp(-I*x))*cos(x) - I*exp(I*x))],
},
'var_of_parameters_14': {
'eq': f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x) - exp(I*x),
'sol': [Eq(f(x), C1 + (C2 + x*(C3 - x/8) + 5*exp(2*I*x)/16)*sin(x) + (C4 + x*(C5 + I*x/8) + 5*I*exp(2*I*x)/16)*cos(x) - I*exp(I*x))],
},
# https://github.com/sympy/sympy/issues/14395
'var_of_parameters_15': {
'eq': Derivative(f(x), x, x) + 9*f(x) - sec(x),
'sol': [Eq(f(x), (C1 - x/3 + sin(2*x)/3)*sin(3*x) + (C2 + log(cos(x))
- 2*log(cos(x)**2)/3 + 2*cos(x)**2/3)*cos(3*x))],
'slow': True,
},
}
}
@_add_example_keys
def _get_examples_ode_sol_2nd_linear_bessel():
return {
'hint': "2nd_linear_bessel",
'func': f(x),
'examples':{
'2nd_lin_bessel_01': {
'eq': x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**2 - 4)*f(x),
'sol': [Eq(f(x), C1*besselj(2, x) + C2*bessely(2, x))],
},
'2nd_lin_bessel_02': {
'eq': x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**2 +25)*f(x),
'sol': [Eq(f(x), C1*besselj(5*I, x) + C2*bessely(5*I, x))],
},
'2nd_lin_bessel_03': {
'eq': x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**2)*f(x),
'sol': [Eq(f(x), C1*besselj(0, x) + C2*bessely(0, x))],
},
'2nd_lin_bessel_04': {
'eq': x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (81*x**2 -S(1)/9)*f(x),
'sol': [Eq(f(x), C1*besselj(S(1)/3, 9*x) + C2*bessely(S(1)/3, 9*x))],
},
'2nd_lin_bessel_05': {
'eq': x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**4 - 4)*f(x),
'sol': [Eq(f(x), C1*besselj(1, x**2/2) + C2*bessely(1, x**2/2))],
},
'2nd_lin_bessel_06': {
'eq': x**2*(f(x).diff(x, 2)) + 2*x*(f(x).diff(x)) + (x**4 - 4)*f(x),
'sol': [Eq(f(x), (C1*besselj(sqrt(17)/4, x**2/2) + C2*bessely(sqrt(17)/4, x**2/2))/sqrt(x))],
},
'2nd_lin_bessel_07': {
'eq': x**2*(f(x).diff(x, 2)) + x*(f(x).diff(x)) + (x**2 - S(1)/4)*f(x),
'sol': [Eq(f(x), C1*besselj(S(1)/2, x) + C2*bessely(S(1)/2, x))],
},
'2nd_lin_bessel_08': {
'eq': x**2*(f(x).diff(x, 2)) - 3*x*(f(x).diff(x)) + (4*x + 4)*f(x),
'sol': [Eq(f(x), x**2*(C1*besselj(0, 4*sqrt(x)) + C2*bessely(0, 4*sqrt(x))))],
},
'2nd_lin_bessel_09': {
'eq': x*(f(x).diff(x, 2)) - f(x).diff(x) + 4*x**3*f(x),
'sol': [Eq(f(x), x*(C1*besselj(S(1)/2, x**2) + C2*bessely(S(1)/2, x**2)))],
},
'2nd_lin_bessel_10': {
'eq': (x-2)**2*(f(x).diff(x, 2)) - (x-2)*f(x).diff(x) + 4*(x-2)**2*f(x),
'sol': [Eq(f(x), (x - 2)*(C1*besselj(1, 2*x - 4) + C2*bessely(1, 2*x - 4)))],
},
# https://github.com/sympy/sympy/issues/4414
'2nd_lin_bessel_11': {
'eq': f(x).diff(x, x) + 2/x*f(x).diff(x) + f(x),
'sol': [Eq(f(x), (C1*besselj(S(1)/2, x) + C2*bessely(S(1)/2, x))/sqrt(x))],
},
}
}
@_add_example_keys
def _get_examples_ode_sol_2nd_2F1_hypergeometric():
return {
'hint': "2nd_hypergeometric",
'func': f(x),
'examples':{
'2nd_2F1_hyper_01': {
'eq': x*(x-1)*f(x).diff(x, 2) + (S(3)/2 -2*x)*f(x).diff(x) + 2*f(x),
'sol': [Eq(f(x), C1*x**(S(5)/2)*hyper((S(3)/2, S(1)/2), (S(7)/2,), x) + C2*hyper((-1, -2), (-S(3)/2,), x))],
},
'2nd_2F1_hyper_02': {
'eq': x*(x-1)*f(x).diff(x, 2) + (S(7)/2*x)*f(x).diff(x) + f(x),
'sol': [Eq(f(x), (C1*(1 - x)**(S(5)/2)*hyper((S(1)/2, 2), (S(7)/2,), 1 - x) +
C2*hyper((-S(1)/2, -2), (-S(3)/2,), 1 - x))/(x - 1)**(S(5)/2))],
},
'2nd_2F1_hyper_03': {
'eq': x*(x-1)*f(x).diff(x, 2) + (S(3)+ S(7)/2*x)*f(x).diff(x) + f(x),
'sol': [Eq(f(x), (C1*(1 - x)**(S(11)/2)*hyper((S(1)/2, 2), (S(13)/2,), 1 - x) +
C2*hyper((-S(7)/2, -5), (-S(9)/2,), 1 - x))/(x - 1)**(S(11)/2))],
},
'2nd_2F1_hyper_04': {
'eq': -x**(S(5)/7)*(-416*x**(S(9)/7)/9 - 2385*x**(S(5)/7)/49 + S(298)*x/3)*f(x)/(196*(-x**(S(6)/7) +
x)**2*(x**(S(6)/7) + x)**2) + Derivative(f(x), (x, 2)),
'sol': [Eq(f(x), x**(S(45)/98)*(C1*x**(S(4)/49)*hyper((S(1)/3, -S(1)/2), (S(9)/7,), x**(S(2)/7)) +
C2*hyper((S(1)/21, -S(11)/14), (S(5)/7,), x**(S(2)/7)))/(x**(S(2)/7) - 1)**(S(19)/84))],
'checkodesol_XFAIL':True,
},
}
}
@_add_example_keys
def _get_examples_ode_sol_2nd_nonlinear_autonomous_conserved():
return {
'hint': "2nd_nonlinear_autonomous_conserved",
'func': f(x),
'examples': {
'2nd_nonlinear_autonomous_conserved_01': {
'eq': f(x).diff(x, 2) + exp(f(x)) + log(f(x)),
'sol': [
Eq(Integral(1/sqrt(C1 - 2*_u*log(_u) + 2*_u - 2*exp(_u)), (_u, f(x))), C2 + x),
Eq(Integral(1/sqrt(C1 - 2*_u*log(_u) + 2*_u - 2*exp(_u)), (_u, f(x))), C2 - x)
],
'simplify_flag': False,
},
'2nd_nonlinear_autonomous_conserved_02': {
'eq': f(x).diff(x, 2) + cbrt(f(x)) + 1/f(x),
'sol': [
Eq(sqrt(2)*Integral(1/sqrt(2*C1 - 3*_u**Rational(4, 3) - 4*log(_u)), (_u, f(x))), C2 + x),
Eq(sqrt(2)*Integral(1/sqrt(2*C1 - 3*_u**Rational(4, 3) - 4*log(_u)), (_u, f(x))), C2 - x)
],
'simplify_flag': False,
},
'2nd_nonlinear_autonomous_conserved_03': {
'eq': f(x).diff(x, 2) + sin(f(x)),
'sol': [
Eq(Integral(1/sqrt(C1 + 2*cos(_u)), (_u, f(x))), C2 + x),
Eq(Integral(1/sqrt(C1 + 2*cos(_u)), (_u, f(x))), C2 - x)
],
'simplify_flag': False,
},
'2nd_nonlinear_autonomous_conserved_04': {
'eq': f(x).diff(x, 2) + cosh(f(x)),
'sol': [
Eq(Integral(1/sqrt(C1 - 2*sinh(_u)), (_u, f(x))), C2 + x),
Eq(Integral(1/sqrt(C1 - 2*sinh(_u)), (_u, f(x))), C2 - x)
],
'simplify_flag': False,
},
'2nd_nonlinear_autonomous_conserved_05': {
'eq': f(x).diff(x, 2) + asin(f(x)),
'sol': [
Eq(Integral(1/sqrt(C1 - 2*_u*asin(_u) - 2*sqrt(1 - _u**2)), (_u, f(x))), C2 + x),
Eq(Integral(1/sqrt(C1 - 2*_u*asin(_u) - 2*sqrt(1 - _u**2)), (_u, f(x))), C2 - x)
],
'simplify_flag': False,
'XFAIL': ['2nd_nonlinear_autonomous_conserved_Integral']
}
}
}
@_add_example_keys
def _get_examples_ode_sol_separable_reduced():
df = f(x).diff(x)
return {
'hint': "separable_reduced",
'func': f(x),
'examples':{
'separable_reduced_01': {
'eq': x* df + f(x)* (1 / (x**2*f(x) - 1)),
'sol': [Eq(log(x**2*f(x))/3 + log(x**2*f(x) - Rational(3, 2))/6, C1 + log(x))],
'simplify_flag': False,
'XFAIL': ['lie_group'], #It hangs.
},
#Note: 'separable_reduced_02' is referred in 'separable_reduced_11'
'separable_reduced_02': {
'eq': f(x).diff(x) + (f(x) / (x**4*f(x) - x)),
'sol': [Eq(log(x**3*f(x))/4 + log(x**3*f(x) - Rational(4,3))/12, C1 + log(x))],
'simplify_flag': False,
'checkodesol_XFAIL':True, #It hangs for this.
},
'separable_reduced_03': {
'eq': x*df + f(x)*(x**2*f(x)),
'sol': [Eq(log(x**2*f(x))/2 - log(x**2*f(x) - 2)/2, C1 + log(x))],
'simplify_flag': False,
},
'separable_reduced_04': {
'eq': Eq(f(x).diff(x) + f(x)/x * (1 + (x**(S(2)/3)*f(x))**2), 0),
'sol': [Eq(-3*log(x**(S(2)/3)*f(x)) + 3*log(3*x**(S(4)/3)*f(x)**2 + 1)/2, C1 + log(x))],
'simplify_flag': False,
},
'separable_reduced_05': {
'eq': Eq(f(x).diff(x) + f(x)/x * (1 + (x*f(x))**2), 0),
'sol': [Eq(f(x), -sqrt(2)*sqrt(1/(C1 + log(x)))/(2*x)),\
Eq(f(x), sqrt(2)*sqrt(1/(C1 + log(x)))/(2*x))],
},
'separable_reduced_06': {
'eq': Eq(f(x).diff(x) + (x**4*f(x)**2 + x**2*f(x))*f(x)/(x*(x**6*f(x)**3 + x**4*f(x)**2)), 0),
'sol': [Eq(f(x), C1 + 1/(2*x**2))],
},
'separable_reduced_07': {
'eq': Eq(f(x).diff(x) + (f(x)**2)*f(x)/(x), 0),
'sol': [
Eq(f(x), -sqrt(2)*sqrt(1/(C1 + log(x)))/2),
Eq(f(x), sqrt(2)*sqrt(1/(C1 + log(x)))/2)
],
},
'separable_reduced_08': {
'eq': Eq(f(x).diff(x) + (f(x)+3)*f(x)/(x*(f(x)+2)), 0),
'sol': [Eq(-log(f(x) + 3)/3 - 2*log(f(x))/3, C1 + log(x))],
'simplify_flag': False,
'XFAIL': ['lie_group'], #It hangs.
},
'separable_reduced_09': {
'eq': Eq(f(x).diff(x) + (f(x)+3)*f(x)/x, 0),
'sol': [Eq(f(x), 3/(C1*x**3 - 1))],
},
'separable_reduced_10': {
'eq': Eq(f(x).diff(x) + (f(x)**2+f(x))*f(x)/(x), 0),
'sol': [Eq(- log(x) - log(f(x) + 1) + log(f(x)) + 1/f(x), C1)],
'XFAIL': ['lie_group'],#No algorithms are implemented to solve equation -C1 + x*(_y + 1)*exp(-1/_y)/_y
},
# Equivalent to example_name 'separable_reduced_02'. Only difference is testing with simplify=True
'separable_reduced_11': {
'eq': f(x).diff(x) + (f(x) / (x**4*f(x) - x)),
'sol': [Eq(f(x), -sqrt(2)*sqrt(3*3**Rational(1,3)*(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3)
- 3*3**Rational(2,3)*exp(12*C1)/(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) + 2/x**6)/6
- sqrt(2)*sqrt(-3*3**Rational(1,3)*(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3)
+ 3*3**Rational(2,3)*exp(12*C1)/(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) + 4/x**6
- 4*sqrt(2)/(x**9*sqrt(3*3**Rational(1,3)*(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3)
- 3*3**Rational(2,3)*exp(12*C1)/(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) + 2/x**6)))/6 + 1/(3*x**3)),
Eq(f(x), -sqrt(2)*sqrt(3*3**Rational(1,3)*(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3)
- 3*3**Rational(2,3)*exp(12*C1)/(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) + 2/x**6)/6
+ sqrt(2)*sqrt(-3*3**Rational(1,3)*(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3)
+ 3*3**Rational(2,3)*exp(12*C1)/(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) + 4/x**6
- 4*sqrt(2)/(x**9*sqrt(3*3**Rational(1,3)*(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3)
- 3*3**Rational(2,3)*exp(12*C1)/(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) + 2/x**6)))/6 + 1/(3*x**3)),
Eq(f(x), sqrt(2)*sqrt(3*3**Rational(1,3)*(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3)
- 3*3**Rational(2,3)*exp(12*C1)/(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) + 2/x**6)/6
- sqrt(2)*sqrt(-3*3**Rational(1,3)*(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3)
+ 3*3**Rational(2,3)*exp(12*C1)/(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3)
+ 4/x**6 + 4*sqrt(2)/(x**9*sqrt(3*3**Rational(1,3)*(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3)
- 3*3**Rational(2,3)*exp(12*C1)/(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) + 2/x**6)))/6 + 1/(3*x**3)),
Eq(f(x), sqrt(2)*sqrt(3*3**Rational(1,3)*(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3)
- 3*3**Rational(2,3)*exp(12*C1)/(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) + 2/x**6)/6
+ sqrt(2)*sqrt(-3*3**Rational(1,3)*(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) + 3*3**Rational(2,3)*exp(12*C1)/(sqrt((3*exp(12*C1)
+ x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) + 4/x**6 + 4*sqrt(2)/(x**9*sqrt(3*3**Rational(1,3)*(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1))
- exp(12*C1)/x**6)**Rational(1,3) - 3*3**Rational(2,3)*exp(12*C1)/(sqrt((3*exp(12*C1) + x**(-12))*exp(24*C1)) - exp(12*C1)/x**6)**Rational(1,3) + 2/x**6)))/6 + 1/(3*x**3))],
'checkodesol_XFAIL':True, #It hangs for this.
'slow': True,
},
#These were from issue: https://github.com/sympy/sympy/issues/6247
'separable_reduced_12': {
'eq': x**2*f(x)**2 + x*Derivative(f(x), x),
'sol': [Eq(f(x), 2*C1/(C1*x**2 - 1))],
},
}
}
@_add_example_keys
def _get_examples_ode_sol_lie_group():
a, b, c = symbols("a b c")
return {
'hint': "lie_group",
'func': f(x),
'examples':{
#Example 1-4 and 19-20 were from issue: https://github.com/sympy/sympy/issues/17322
'lie_group_01': {
'eq': x*f(x).diff(x)*(f(x)+4) + (f(x)**2) -2*f(x)-2*x,
'sol': [],
'dsolve_too_slow': True,
'checkodesol_too_slow': True,
},
'lie_group_02': {
'eq': x*f(x).diff(x)*(f(x)+4) + (f(x)**2) -2*f(x)-2*x,
'sol': [],
'dsolve_too_slow': True,
},
'lie_group_03': {
'eq': Eq(x**7*Derivative(f(x), x) + 5*x**3*f(x)**2 - (2*x**2 + 2)*f(x)**3, 0),
'sol': [],
'dsolve_too_slow': True,
},
'lie_group_04': {
'eq': f(x).diff(x) - (f(x) - x*log(x))**2/x**2 + log(x),
'sol': [],
'XFAIL': ['lie_group'],
},
'lie_group_05': {
'eq': f(x).diff(x)**2,
'sol': [Eq(f(x), C1)],
'XFAIL': ['factorable'], #It raises Not Implemented error
},
'lie_group_06': {
'eq': Eq(f(x).diff(x), x**2*f(x)),
'sol': [Eq(f(x), C1*exp(x**3)**Rational(1, 3))],
},
'lie_group_07': {
'eq': f(x).diff(x) + a*f(x) - c*exp(b*x),
'sol': [Eq(f(x), Piecewise(((-C1*(a + b) + c*exp(x*(a + b)))*exp(-a*x)/(a + b),\
Ne(a, -b)), ((-C1 + c*x)*exp(-a*x), True)))],
},
'lie_group_08': {
'eq': f(x).diff(x) + 2*x*f(x) - x*exp(-x**2),
'sol': [Eq(f(x), (C1 + x**2/2)*exp(-x**2))],
},
'lie_group_09': {
'eq': (1 + 2*x)*(f(x).diff(x)) + 2 - 4*exp(-f(x)),
'sol': [Eq(f(x), log(C1/(2*x + 1) + 2))],
},
'lie_group_10': {
'eq': x**2*(f(x).diff(x)) - f(x) + x**2*exp(x - (1/x)),
'sol': [Eq(f(x), (C1 - exp(x))*exp(-1/x))],
'XFAIL': ['factorable'], #It raises Recursion Error (maixmum depth exceeded)
},
'lie_group_11': {
'eq': x**2*f(x)**2 + x*Derivative(f(x), x),
'sol': [Eq(f(x), 2/(C1 + x**2))],
},
'lie_group_12': {
'eq': diff(f(x),x) + 2*x*f(x) - x*exp(-x**2),
'sol': [Eq(f(x), exp(-x**2)*(C1 + x**2/2))],
},
'lie_group_13': {
'eq': diff(f(x),x) + f(x)*cos(x) - exp(2*x),
'sol': [Eq(f(x), exp(-sin(x))*(C1 + Integral(exp(2*x)*exp(sin(x)), x)))],
},
'lie_group_14': {
'eq': diff(f(x),x) + f(x)*cos(x) - sin(2*x)/2,
'sol': [Eq(f(x), C1*exp(-sin(x)) + sin(x) - 1)],
},
'lie_group_15': {
'eq': x*diff(f(x),x) + f(x) - x*sin(x),
'sol': [Eq(f(x), (C1 - x*cos(x) + sin(x))/x)],
},
'lie_group_16': {
'eq': x*diff(f(x),x) - f(x) - x/log(x),
'sol': [Eq(f(x), x*(C1 + log(log(x))))],
},
'lie_group_17': {
'eq': (f(x).diff(x)-f(x)) * (f(x).diff(x)+f(x)),
'sol': [Eq(f(x), C1*exp(x)), Eq(f(x), C1*exp(-x))],
},
'lie_group_18': {
'eq': f(x).diff(x) * (f(x).diff(x) - f(x)),
'sol': [Eq(f(x), C1*exp(x)), Eq(f(x), C1)],
},
'lie_group_19': {
'eq': (f(x).diff(x)-f(x)) * (f(x).diff(x)+f(x)),
'sol': [Eq(f(x), C1*exp(-x)), Eq(f(x), C1*exp(x))],
},
'lie_group_20': {
'eq': f(x).diff(x)*(f(x).diff(x)+f(x)),
'sol': [Eq(f(x), C1), Eq(f(x), C1*exp(-x))],
},
}
}
@_add_example_keys
def _get_examples_ode_sol_2nd_linear_airy():
return {
'hint': "2nd_linear_airy",
'func': f(x),
'examples':{
'2nd_lin_airy_01': {
'eq': f(x).diff(x, 2) - x*f(x),
'sol': [Eq(f(x), C1*airyai(x) + C2*airybi(x))],
},
'2nd_lin_airy_02': {
'eq': f(x).diff(x, 2) + 2*x*f(x),
'sol': [Eq(f(x), C1*airyai(-2**(S(1)/3)*x) + C2*airybi(-2**(S(1)/3)*x))],
},
}
}
@_add_example_keys
def _get_examples_ode_sol_nth_linear_constant_coeff_homogeneous():
# From Exercise 20, in Ordinary Differential Equations,
# Tenenbaum and Pollard, pg. 220
a = Symbol('a', positive=True)
k = Symbol('k', real=True)
r1, r2, r3, r4, r5 = [rootof(x**5 + 11*x - 2, n) for n in range(5)]
r6, r7, r8, r9, r10 = [rootof(x**5 - 3*x + 1, n) for n in range(5)]
r11, r12, r13, r14, r15 = [rootof(x**5 - 100*x**3 + 1000*x + 1, n) for n in range(5)]
r16, r17, r18, r19, r20 = [rootof(x**5 - x**4 + 10, n) for n in range(5)]
r21, r22, r23, r24, r25 = [rootof(x**5 - x + 1, n) for n in range(5)]
E = exp(1)
return {
'hint': "nth_linear_constant_coeff_homogeneous",
'func': f(x),
'examples':{
'lin_const_coeff_hom_01': {
'eq': f(x).diff(x, 2) + 2*f(x).diff(x),
'sol': [Eq(f(x), C1 + C2*exp(-2*x))],
},
'lin_const_coeff_hom_02': {
'eq': f(x).diff(x, 2) - 3*f(x).diff(x) + 2*f(x),
'sol': [Eq(f(x), (C1 + C2*exp(x))*exp(x))],
},
'lin_const_coeff_hom_03': {
'eq': f(x).diff(x, 2) - f(x),
'sol': [Eq(f(x), C1*exp(-x) + C2*exp(x))],
},
'lin_const_coeff_hom_04': {
'eq': f(x).diff(x, 3) + f(x).diff(x, 2) - 6*f(x).diff(x),
'sol': [Eq(f(x), C1 + C2*exp(-3*x) + C3*exp(2*x))],
'slow': True,
},
'lin_const_coeff_hom_05': {
'eq': 6*f(x).diff(x, 2) - 11*f(x).diff(x) + 4*f(x),
'sol': [Eq(f(x), C1*exp(x/2) + C2*exp(x*Rational(4, 3)))],
'slow': True,
},
'lin_const_coeff_hom_06': {
'eq': Eq(f(x).diff(x, 2) + 2*f(x).diff(x) - f(x), 0),
'sol': [Eq(f(x), C1*exp(x*(-1 + sqrt(2))) + C2*exp(-x*(sqrt(2) + 1)))],
'slow': True,
},
'lin_const_coeff_hom_07': {
'eq': diff(f(x), x, 3) + diff(f(x), x, 2) - 10*diff(f(x), x) - 6*f(x),
'sol': [Eq(f(x), C1*exp(3*x) + C3*exp(-x*(2 + sqrt(2))) + C2*exp(x*(-2 + sqrt(2))))],
'slow': True,
},
'lin_const_coeff_hom_08': {
'eq': f(x).diff(x, 4) - f(x).diff(x, 3) - 4*f(x).diff(x, 2) + \
4*f(x).diff(x),
'sol': [Eq(f(x), C1 + C2*exp(-2*x) + C3*exp(x) + C4*exp(2*x))],
'slow': True,
},
'lin_const_coeff_hom_09': {
'eq': f(x).diff(x, 4) + 4*f(x).diff(x, 3) + f(x).diff(x, 2) - \
4*f(x).diff(x) - 2*f(x),
'sol': [Eq(f(x), C3*exp(-x) + C4*exp(x) + (C1*exp(-sqrt(2)*x) + C2*exp(sqrt(2)*x))*exp(-2*x))],
'slow': True,
},
'lin_const_coeff_hom_10': {
'eq': f(x).diff(x, 4) - a**2*f(x),
'sol': [Eq(f(x), C1*exp(-sqrt(a)*x) + C2*exp(sqrt(a)*x) + C3*sin(sqrt(a)*x) + C4*cos(sqrt(a)*x))],
'slow': True,
},
'lin_const_coeff_hom_11': {
'eq': f(x).diff(x, 2) - 2*k*f(x).diff(x) - 2*f(x),
'sol': [Eq(f(x), C1*exp(x*(k - sqrt(k**2 + 2))) + C2*exp(x*(k + sqrt(k**2 + 2))))],
'slow': True,
},
'lin_const_coeff_hom_12': {
'eq': f(x).diff(x, 2) + 4*k*f(x).diff(x) - 12*k**2*f(x),
'sol': [Eq(f(x), C1*exp(-6*k*x) + C2*exp(2*k*x))],
'slow': True,
},
'lin_const_coeff_hom_13': {
'eq': f(x).diff(x, 4),
'sol': [Eq(f(x), C1 + C2*x + C3*x**2 + C4*x**3)],
'slow': True,
},
'lin_const_coeff_hom_14': {
'eq': f(x).diff(x, 2) + 4*f(x).diff(x) + 4*f(x),
'sol': [Eq(f(x), (C1 + C2*x)*exp(-2*x))],
'slow': True,
},
'lin_const_coeff_hom_15': {
'eq': 3*f(x).diff(x, 3) + 5*f(x).diff(x, 2) + f(x).diff(x) - f(x),
'sol': [Eq(f(x), (C1 + C2*x)*exp(-x) + C3*exp(x/3))],
'slow': True,
},
'lin_const_coeff_hom_16': {
'eq': f(x).diff(x, 3) - 6*f(x).diff(x, 2) + 12*f(x).diff(x) - 8*f(x),
'sol': [Eq(f(x), (C1 + x*(C2 + C3*x))*exp(2*x))],
'slow': True,
},
'lin_const_coeff_hom_17': {
'eq': f(x).diff(x, 2) - 2*a*f(x).diff(x) + a**2*f(x),
'sol': [Eq(f(x), (C1 + C2*x)*exp(a*x))],
'slow': True,
},
'lin_const_coeff_hom_18': {
'eq': f(x).diff(x, 4) + 3*f(x).diff(x, 3),
'sol': [Eq(f(x), C1 + C2*x + C3*x**2 + C4*exp(-3*x))],
'slow': True,
},
'lin_const_coeff_hom_19': {
'eq': f(x).diff(x, 4) - 2*f(x).diff(x, 2),
'sol': [Eq(f(x), C1 + C2*x + C3*exp(-sqrt(2)*x) + C4*exp(sqrt(2)*x))],
'slow': True,
},
'lin_const_coeff_hom_20': {
'eq': f(x).diff(x, 4) + 2*f(x).diff(x, 3) - 11*f(x).diff(x, 2) - \
12*f(x).diff(x) + 36*f(x),
'sol': [Eq(f(x), (C1 + C2*x)*exp(-3*x) + (C3 + C4*x)*exp(2*x))],
'slow': True,
},
'lin_const_coeff_hom_21': {
'eq': 36*f(x).diff(x, 4) - 37*f(x).diff(x, 2) + 4*f(x).diff(x) + 5*f(x),
'sol': [Eq(f(x), C1*exp(-x) + C2*exp(-x/3) + C3*exp(x/2) + C4*exp(x*Rational(5, 6)))],
'slow': True,
},
'lin_const_coeff_hom_22': {
'eq': f(x).diff(x, 4) - 8*f(x).diff(x, 2) + 16*f(x),
'sol': [Eq(f(x), (C1 + C2*x)*exp(-2*x) + (C3 + C4*x)*exp(2*x))],
'slow': True,
},
'lin_const_coeff_hom_23': {
'eq': f(x).diff(x, 2) - 2*f(x).diff(x) + 5*f(x),
'sol': [Eq(f(x), (C1*sin(2*x) + C2*cos(2*x))*exp(x))],
'slow': True,
},
'lin_const_coeff_hom_24': {
'eq': f(x).diff(x, 2) - f(x).diff(x) + f(x),
'sol': [Eq(f(x), (C1*sin(x*sqrt(3)/2) + C2*cos(x*sqrt(3)/2))*exp(x/2))],
'slow': True,
},
'lin_const_coeff_hom_25': {
'eq': f(x).diff(x, 4) + 5*f(x).diff(x, 2) + 6*f(x),
'sol': [Eq(f(x),
C1*sin(sqrt(2)*x) + C2*sin(sqrt(3)*x) + C3*cos(sqrt(2)*x) + C4*cos(sqrt(3)*x))],
'slow': True,
},
'lin_const_coeff_hom_26': {
'eq': f(x).diff(x, 2) - 4*f(x).diff(x) + 20*f(x),
'sol': [Eq(f(x), (C1*sin(4*x) + C2*cos(4*x))*exp(2*x))],
'slow': True,
},
'lin_const_coeff_hom_27': {
'eq': f(x).diff(x, 4) + 4*f(x).diff(x, 2) + 4*f(x),
'sol': [Eq(f(x), (C1 + C2*x)*sin(x*sqrt(2)) + (C3 + C4*x)*cos(x*sqrt(2)))],
'slow': True,
},
'lin_const_coeff_hom_28': {
'eq': f(x).diff(x, 3) + 8*f(x),
'sol': [Eq(f(x), (C1*sin(x*sqrt(3)) + C2*cos(x*sqrt(3)))*exp(x) + C3*exp(-2*x))],
'slow': True,
},
'lin_const_coeff_hom_29': {
'eq': f(x).diff(x, 4) + 4*f(x).diff(x, 2),
'sol': [Eq(f(x), C1 + C2*x + C3*sin(2*x) + C4*cos(2*x))],
'slow': True,
},
'lin_const_coeff_hom_30': {
'eq': f(x).diff(x, 5) + 2*f(x).diff(x, 3) + f(x).diff(x),
'sol': [Eq(f(x), C1 + (C2 + C3*x)*sin(x) + (C4 + C5*x)*cos(x))],
'slow': True,
},
'lin_const_coeff_hom_31': {
'eq': f(x).diff(x, 4) + f(x).diff(x, 2) + f(x),
'sol': [Eq(f(x), (C1*sin(sqrt(3)*x/2) + C2*cos(sqrt(3)*x/2))*exp(-x/2)
+ (C3*sin(sqrt(3)*x/2) + C4*cos(sqrt(3)*x/2))*exp(x/2))],
'slow': True,
},
'lin_const_coeff_hom_32': {
'eq': f(x).diff(x, 4) + 4*f(x).diff(x, 2) + f(x),
'sol': [Eq(f(x), C1*sin(x*sqrt(-sqrt(3) + 2)) + C2*sin(x*sqrt(sqrt(3) + 2))
+ C3*cos(x*sqrt(-sqrt(3) + 2)) + C4*cos(x*sqrt(sqrt(3) + 2)))],
'slow': True,
},
# One real root, two complex conjugate pairs
'lin_const_coeff_hom_33': {
'eq': f(x).diff(x, 5) + 11*f(x).diff(x) - 2*f(x),
'sol': [Eq(f(x),
C5*exp(r1*x) + exp(re(r2)*x) * (C1*sin(im(r2)*x) + C2*cos(im(r2)*x))
+ exp(re(r4)*x) * (C3*sin(im(r4)*x) + C4*cos(im(r4)*x)))],
'checkodesol_XFAIL':True, #It Hangs
},
# Three real roots, one complex conjugate pair
'lin_const_coeff_hom_34': {
'eq': f(x).diff(x,5) - 3*f(x).diff(x) + f(x),
'sol': [Eq(f(x),
C3*exp(r6*x) + C4*exp(r7*x) + C5*exp(r8*x)
+ exp(re(r9)*x) * (C1*sin(im(r9)*x) + C2*cos(im(r9)*x)))],
'checkodesol_XFAIL':True, #It Hangs
},
# Five distinct real roots
'lin_const_coeff_hom_35': {
'eq': f(x).diff(x,5) - 100*f(x).diff(x,3) + 1000*f(x).diff(x) + f(x),
'sol': [Eq(f(x), C1*exp(r11*x) + C2*exp(r12*x) + C3*exp(r13*x) + C4*exp(r14*x) + C5*exp(r15*x))],
'checkodesol_XFAIL':True, #It Hangs
},
# Rational root and unsolvable quintic
'lin_const_coeff_hom_36': {
'eq': f(x).diff(x, 6) - 6*f(x).diff(x, 5) + 5*f(x).diff(x, 4) + 10*f(x).diff(x) - 50 * f(x),
'sol': [Eq(f(x),
C5*exp(5*x)
+ C6*exp(x*r16)
+ exp(re(r17)*x) * (C1*sin(im(r17)*x) + C2*cos(im(r17)*x))
+ exp(re(r19)*x) * (C3*sin(im(r19)*x) + C4*cos(im(r19)*x)))],
'checkodesol_XFAIL':True, #It Hangs
},
# Five double roots (this is (x**5 - x + 1)**2)
'lin_const_coeff_hom_37': {
'eq': f(x).diff(x, 10) - 2*f(x).diff(x, 6) + 2*f(x).diff(x, 5)
+ f(x).diff(x, 2) - 2*f(x).diff(x, 1) + f(x),
'sol': [Eq(f(x), (C1 + C2*x)*exp(x*r21) + (-((C3 + C4*x)*sin(x*im(r22)))
+ (C5 + C6*x)*cos(x*im(r22)))*exp(x*re(r22)) + (-((C7 + C8*x)*sin(x*im(r24)))
+ (C10*x + C9)*cos(x*im(r24)))*exp(x*re(r24)))],
'checkodesol_XFAIL':True, #It Hangs
},
'lin_const_coeff_hom_38': {
'eq': Eq(sqrt(2) * f(x).diff(x,x,x) + f(x).diff(x), 0),
'sol': [Eq(f(x), C1 + C2*sin(2**Rational(3, 4)*x/2) + C3*cos(2**Rational(3, 4)*x/2))],
},
'lin_const_coeff_hom_39': {
'eq': Eq(E * f(x).diff(x,x,x) + f(x).diff(x), 0),
'sol': [Eq(f(x), C1 + C2*sin(x/sqrt(E)) + C3*cos(x/sqrt(E)))],
},
'lin_const_coeff_hom_40': {
'eq': Eq(pi * f(x).diff(x,x,x) + f(x).diff(x), 0),
'sol': [Eq(f(x), C1 + C2*sin(x/sqrt(pi)) + C3*cos(x/sqrt(pi)))],
},
'lin_const_coeff_hom_41': {
'eq': Eq(I * f(x).diff(x,x,x) + f(x).diff(x), 0),
'sol': [Eq(f(x), C1 + C2*exp(-sqrt(I)*x) + C3*exp(sqrt(I)*x))],
},
'lin_const_coeff_hom_42': {
'eq': f(x).diff(x, x) + y*f(x),
'sol': [Eq(f(x), C1*exp(-x*sqrt(-y)) + C2*exp(x*sqrt(-y)))],
},
'lin_const_coeff_hom_43': {
'eq': Eq(9*f(x).diff(x, x) + f(x), 0),
'sol': [Eq(f(x), C1*sin(x/3) + C2*cos(x/3))],
},
'lin_const_coeff_hom_44': {
'eq': Eq(9*f(x).diff(x, x), f(x)),
'sol': [Eq(f(x), C1*exp(-x/3) + C2*exp(x/3))],
},
'lin_const_coeff_hom_45': {
'eq': Eq(f(x).diff(x, x) - 3*diff(f(x), x) + 2*f(x), 0),
'sol': [Eq(f(x), (C1 + C2*exp(x))*exp(x))],
},
'lin_const_coeff_hom_46': {
'eq': Eq(f(x).diff(x, x) - 4*diff(f(x), x) + 4*f(x), 0),
'sol': [Eq(f(x), (C1 + C2*x)*exp(2*x))],
},
# Type: 2nd order, constant coefficients (two real equal roots)
'lin_const_coeff_hom_47': {
'eq': Eq(f(x).diff(x, x) + 2*diff(f(x), x) + 3*f(x), 0),
'sol': [Eq(f(x), (C1*sin(x*sqrt(2)) + C2*cos(x*sqrt(2)))*exp(-x))],
},
#These were from issue: https://github.com/sympy/sympy/issues/6247
'lin_const_coeff_hom_48': {
'eq': f(x).diff(x, x) + 4*f(x),
'sol': [Eq(f(x), C1*sin(2*x) + C2*cos(2*x))],
},
}
}
@_add_example_keys
def _get_examples_ode_sol_1st_homogeneous_coeff_subs_dep_div_indep():
return {
'hint': "1st_homogeneous_coeff_subs_dep_div_indep",
'func': f(x),
'examples':{
'dep_div_indep_01': {
'eq': f(x)/x*cos(f(x)/x) - (x/f(x)*sin(f(x)/x) + cos(f(x)/x))*f(x).diff(x),
'sol': [Eq(log(x), C1 - log(f(x)*sin(f(x)/x)/x))],
'slow': True
},
#indep_div_dep actually has a simpler solution for example 2 but it runs too slow.
'dep_div_indep_02': {
'eq': x*f(x).diff(x) - f(x) - x*sin(f(x)/x),
'sol': [Eq(log(x), log(C1) + log(cos(f(x)/x) - 1)/2 - log(cos(f(x)/x) + 1)/2)],
'simplify_flag':False,
},
'dep_div_indep_03': {
'eq': x*exp(f(x)/x) - f(x)*sin(f(x)/x) + x*sin(f(x)/x)*f(x).diff(x),
'sol': [Eq(log(x), C1 + exp(-f(x)/x)*sin(f(x)/x)/2 + exp(-f(x)/x)*cos(f(x)/x)/2)],
'slow': True
},
'dep_div_indep_04': {
'eq': f(x).diff(x) - f(x)/x + 1/sin(f(x)/x),
'sol': [Eq(f(x), x*(-acos(C1 + log(x)) + 2*pi)), Eq(f(x), x*acos(C1 + log(x)))],
'slow': True
},
# previous code was testing with these other solution:
# example5_solb = Eq(f(x), log(log(C1/x)**(-x)))
'dep_div_indep_05': {
'eq': x*exp(f(x)/x) + f(x) - x*f(x).diff(x),
'sol': [Eq(f(x), log((1/(C1 - log(x)))**x))],
'checkodesol_XFAIL':True, #(because of **x?)
},
}
}
@_add_example_keys
def _get_examples_ode_sol_linear_coefficients():
return {
'hint': "linear_coefficients",
'func': f(x),
'examples':{
'linear_coeff_01': {
'eq': f(x).diff(x) + (3 + 2*f(x))/(x + 3),
'sol': [Eq(f(x), C1/(x**2 + 6*x + 9) - Rational(3, 2))],
},
}
}
@_add_example_keys
def _get_examples_ode_sol_1st_homogeneous_coeff_best():
return {
'hint': "1st_homogeneous_coeff_best",
'func': f(x),
'examples':{
# previous code was testing this with other solution:
# example1_solb = Eq(-f(x)/(1 + log(x/f(x))), C1)
'1st_homogeneous_coeff_best_01': {
'eq': f(x) + (x*log(f(x)/x) - 2*x)*diff(f(x), x),
'sol': [Eq(f(x), -exp(C1)*LambertW(-x*exp(-C1 + 1)))],
'checkodesol_XFAIL':True, #(because of LambertW?)
},
'1st_homogeneous_coeff_best_02': {
'eq': 2*f(x)*exp(x/f(x)) + f(x)*f(x).diff(x) - 2*x*exp(x/f(x))*f(x).diff(x),
'sol': [Eq(log(f(x)), C1 - 2*exp(x/f(x)))],
},
# previous code was testing this with other solution:
# example3_solb = Eq(log(C1*x*sqrt(1/x)*sqrt(f(x))) + x**2/(2*f(x)**2), 0)
'1st_homogeneous_coeff_best_03': {
'eq': 2*x**2*f(x) + f(x)**3 + (x*f(x)**2 - 2*x**3)*f(x).diff(x),
'sol': [Eq(f(x), exp(2*C1 + LambertW(-2*x**4*exp(-4*C1))/2)/x)],
'checkodesol_XFAIL':True, #(because of LambertW?)
},
'1st_homogeneous_coeff_best_04': {
'eq': (x + sqrt(f(x)**2 - x*f(x)))*f(x).diff(x) - f(x),
'sol': [Eq(log(f(x)), C1 - 2*sqrt(-x/f(x) + 1))],
'slow': True,
},
'1st_homogeneous_coeff_best_05': {
'eq': x + f(x) - (x - f(x))*f(x).diff(x),
'sol': [Eq(log(x), C1 - log(sqrt(1 + f(x)**2/x**2)) + atan(f(x)/x))],
},
'1st_homogeneous_coeff_best_06': {
'eq': x*f(x).diff(x) - f(x) - x*sin(f(x)/x),
'sol': [Eq(f(x), 2*x*atan(C1*x))],
},
'1st_homogeneous_coeff_best_07': {
'eq': x**2 + f(x)**2 - 2*x*f(x)*f(x).diff(x),
'sol': [Eq(f(x), -sqrt(x*(C1 + x))), Eq(f(x), sqrt(x*(C1 + x)))],
},
'1st_homogeneous_coeff_best_08': {
'eq': f(x)**2 + (x*sqrt(f(x)**2 - x**2) - x*f(x))*f(x).diff(x),
'sol': [Eq(f(x), -sqrt(-x*exp(2*C1)/(x - 2*exp(C1)))), Eq(f(x), sqrt(-x*exp(2*C1)/(x - 2*exp(C1))))],
'checkodesol_XFAIL': True # solutions are valid in a range
},
}
}
def _get_all_examples():
all_examples = _get_examples_ode_sol_euler_homogeneous + \
_get_examples_ode_sol_euler_undetermined_coeff + \
_get_examples_ode_sol_euler_var_para + \
_get_examples_ode_sol_factorable + \
_get_examples_ode_sol_bernoulli + \
_get_examples_ode_sol_nth_algebraic + \
_get_examples_ode_sol_riccati + \
_get_examples_ode_sol_1st_linear + \
_get_examples_ode_sol_1st_exact + \
_get_examples_ode_sol_almost_linear + \
_get_examples_ode_sol_nth_order_reducible + \
_get_examples_ode_sol_nth_linear_undetermined_coefficients + \
_get_examples_ode_sol_liouville + \
_get_examples_ode_sol_separable + \
_get_examples_ode_sol_1st_rational_riccati + \
_get_examples_ode_sol_nth_linear_var_of_parameters + \
_get_examples_ode_sol_2nd_linear_bessel + \
_get_examples_ode_sol_2nd_2F1_hypergeometric + \
_get_examples_ode_sol_2nd_nonlinear_autonomous_conserved + \
_get_examples_ode_sol_separable_reduced + \
_get_examples_ode_sol_lie_group + \
_get_examples_ode_sol_2nd_linear_airy + \
_get_examples_ode_sol_nth_linear_constant_coeff_homogeneous +\
_get_examples_ode_sol_1st_homogeneous_coeff_best +\
_get_examples_ode_sol_1st_homogeneous_coeff_subs_dep_div_indep +\
_get_examples_ode_sol_linear_coefficients
return all_examples
|
2e4abce2c477a52c3be5dfe94c0926dbfd20638e6909329698a9ab3b6cdba2ff | from sympy.core.function import (Derivative, Function, diff)
from sympy.core.mul import Mul
from sympy.core.numbers import (I, Rational, pi)
from sympy.core.relational import Eq
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, symbols)
from sympy.functions.elementary.hyperbolic import sinh
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.matrices.dense import Matrix
from sympy.core.containers import Tuple
from sympy.functions import exp, cos, sin, log, Ci, Si, erf, erfi
from sympy.matrices import dotprodsimp, NonSquareMatrixError
from sympy.solvers.ode import dsolve
from sympy.solvers.ode.ode import constant_renumber
from sympy.solvers.ode.subscheck import checksysodesol
from sympy.solvers.ode.systems import (_classify_linear_system, linear_ode_to_matrix,
ODEOrderError, ODENonlinearError, _simpsol,
_is_commutative_anti_derivative, linodesolve,
canonical_odes, dsolve_system, _component_division,
_eqs2dict, _dict2graph)
from sympy.functions import airyai, airybi
from sympy.integrals.integrals import Integral
from sympy.simplify.ratsimp import ratsimp
from sympy.testing.pytest import ON_CI, raises, slow, skip, XFAIL
C0, C1, C2, C3, C4, C5, C6, C7, C8, C9, C10 = symbols('C0:11')
x = symbols('x')
f = Function('f')
g = Function('g')
h = Function('h')
def test_linear_ode_to_matrix():
f, g, h = symbols("f, g, h", cls=Function)
t = Symbol("t")
funcs = [f(t), g(t), h(t)]
f1 = f(t).diff(t)
g1 = g(t).diff(t)
h1 = h(t).diff(t)
f2 = f(t).diff(t, 2)
g2 = g(t).diff(t, 2)
h2 = h(t).diff(t, 2)
eqs_1 = [Eq(f1, g(t)), Eq(g1, f(t))]
sol_1 = ([Matrix([[1, 0], [0, 1]]), Matrix([[ 0, 1], [1, 0]])], Matrix([[0],[0]]))
assert linear_ode_to_matrix(eqs_1, funcs[:-1], t, 1) == sol_1
eqs_2 = [Eq(f1, f(t) + 2*g(t)), Eq(g1, h(t)), Eq(h1, g(t) + h(t) + f(t))]
sol_2 = ([Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]]), Matrix([[1, 2, 0], [ 0, 0, 1], [1, 1, 1]])],
Matrix([[0], [0], [0]]))
assert linear_ode_to_matrix(eqs_2, funcs, t, 1) == sol_2
eqs_3 = [Eq(2*f1 + 3*h1, f(t) + g(t)), Eq(4*h1 + 5*g1, f(t) + h(t)), Eq(5*f1 + 4*g1, g(t) + h(t))]
sol_3 = ([Matrix([[2, 0, 3], [0, 5, 4], [5, 4, 0]]), Matrix([[1, 1, 0], [1, 0, 1], [0, 1, 1]])],
Matrix([[0], [0], [0]]))
assert linear_ode_to_matrix(eqs_3, funcs, t, 1) == sol_3
eqs_4 = [Eq(f2 + h(t), f1 + g(t)), Eq(2*h2 + g2 + g1 + g(t), 0), Eq(3*h1, 4)]
sol_4 = ([Matrix([[1, 0, 0], [0, 1, 2], [0, 0, 0]]), Matrix([[1, 0, 0], [0, -1, 0], [0, 0, -3]]),
Matrix([[0, 1, -1], [0, -1, 0], [0, 0, 0]])], Matrix([[0], [0], [4]]))
assert linear_ode_to_matrix(eqs_4, funcs, t, 2) == sol_4
eqs_5 = [Eq(f2, g(t)), Eq(f1 + g1, f(t))]
raises(ODEOrderError, lambda: linear_ode_to_matrix(eqs_5, funcs[:-1], t, 1))
eqs_6 = [Eq(f1, f(t)**2), Eq(g1, f(t) + g(t))]
raises(ODENonlinearError, lambda: linear_ode_to_matrix(eqs_6, funcs[:-1], t, 1))
def test__classify_linear_system():
x, y, z, w = symbols('x, y, z, w', cls=Function)
t, k, l = symbols('t k l')
x1 = diff(x(t), t)
y1 = diff(y(t), t)
z1 = diff(z(t), t)
w1 = diff(w(t), t)
x2 = diff(x(t), t, t)
y2 = diff(y(t), t, t)
funcs = [x(t), y(t)]
funcs_2 = funcs + [z(t), w(t)]
eqs_1 = (5 * x1 + 12 * x(t) - 6 * (y(t)), (2 * y1 - 11 * t * x(t) + 3 * y(t) + t))
assert _classify_linear_system(eqs_1, funcs, t) is None
eqs_2 = (5 * (x1**2) + 12 * x(t) - 6 * (y(t)), (2 * y1 - 11 * t * x(t) + 3 * y(t) + t))
sol2 = {'is_implicit': True,
'canon_eqs': [[Eq(Derivative(x(t), t), -sqrt(-12*x(t)/5 + 6*y(t)/5)),
Eq(Derivative(y(t), t), 11*t*x(t)/2 - t/2 - 3*y(t)/2)],
[Eq(Derivative(x(t), t), sqrt(-12*x(t)/5 + 6*y(t)/5)),
Eq(Derivative(y(t), t), 11*t*x(t)/2 - t/2 - 3*y(t)/2)]]}
assert _classify_linear_system(eqs_2, funcs, t) == sol2
eqs_2_1 = [Eq(Derivative(x(t), t), -sqrt(-12*x(t)/5 + 6*y(t)/5)),
Eq(Derivative(y(t), t), 11*t*x(t)/2 - t/2 - 3*y(t)/2)]
assert _classify_linear_system(eqs_2_1, funcs, t) is None
eqs_2_2 = [Eq(Derivative(x(t), t), sqrt(-12*x(t)/5 + 6*y(t)/5)),
Eq(Derivative(y(t), t), 11*t*x(t)/2 - t/2 - 3*y(t)/2)]
assert _classify_linear_system(eqs_2_2, funcs, t) is None
eqs_3 = (5 * x1 + 12 * x(t) - 6 * (y(t)), (2 * y1 - 11 * x(t) + 3 * y(t)), (5 * w1 + z(t)), (z1 + w(t)))
answer_3 = {'no_of_equation': 4,
'eq': (12*x(t) - 6*y(t) + 5*Derivative(x(t), t),
-11*x(t) + 3*y(t) + 2*Derivative(y(t), t),
z(t) + 5*Derivative(w(t), t),
w(t) + Derivative(z(t), t)),
'func': [x(t), y(t), z(t), w(t)],
'order': {x(t): 1, y(t): 1, z(t): 1, w(t): 1},
'is_linear': True,
'is_constant': True,
'is_homogeneous': True,
'func_coeff': -Matrix([
[Rational(12, 5), Rational(-6, 5), 0, 0],
[Rational(-11, 2), Rational(3, 2), 0, 0],
[0, 0, 0, 1],
[0, 0, Rational(1, 5), 0]]),
'type_of_equation': 'type1',
'is_general': True}
assert _classify_linear_system(eqs_3, funcs_2, t) == answer_3
eqs_4 = (5 * x1 + 12 * x(t) - 6 * (y(t)), (2 * y1 - 11 * x(t) + 3 * y(t)), (z1 - w(t)), (w1 - z(t)))
answer_4 = {'no_of_equation': 4,
'eq': (12 * x(t) - 6 * y(t) + 5 * Derivative(x(t), t),
-11 * x(t) + 3 * y(t) + 2 * Derivative(y(t), t),
-w(t) + Derivative(z(t), t),
-z(t) + Derivative(w(t), t)),
'func': [x(t), y(t), z(t), w(t)],
'order': {x(t): 1, y(t): 1, z(t): 1, w(t): 1},
'is_linear': True,
'is_constant': True,
'is_homogeneous': True,
'func_coeff': -Matrix([
[Rational(12, 5), Rational(-6, 5), 0, 0],
[Rational(-11, 2), Rational(3, 2), 0, 0],
[0, 0, 0, -1],
[0, 0, -1, 0]]),
'type_of_equation': 'type1',
'is_general': True}
assert _classify_linear_system(eqs_4, funcs_2, t) == answer_4
eqs_5 = (5*x1 + 12*x(t) - 6*(y(t)) + x2, (2*y1 - 11*x(t) + 3*y(t)), (z1 - w(t)), (w1 - z(t)))
answer_5 = {'no_of_equation': 4, 'eq': (12*x(t) - 6*y(t) + 5*Derivative(x(t), t) + Derivative(x(t), (t, 2)),
-11*x(t) + 3*y(t) + 2*Derivative(y(t), t), -w(t) + Derivative(z(t), t), -z(t) + Derivative(w(t),
t)), 'func': [x(t), y(t), z(t), w(t)], 'order': {x(t): 2, y(t): 1, z(t): 1, w(t): 1}, 'is_linear':
True, 'is_homogeneous': True, 'is_general': True, 'type_of_equation': 'type0', 'is_higher_order': True}
assert _classify_linear_system(eqs_5, funcs_2, t) == answer_5
eqs_6 = (Eq(x1, 3*y(t) - 11*z(t)), Eq(y1, 7*z(t) - 3*x(t)), Eq(z1, 11*x(t) - 7*y(t)))
answer_6 = {'no_of_equation': 3, 'eq': (Eq(Derivative(x(t), t), 3*y(t) - 11*z(t)), Eq(Derivative(y(t), t), -3*x(t) + 7*z(t)),
Eq(Derivative(z(t), t), 11*x(t) - 7*y(t))), 'func': [x(t), y(t), z(t)], 'order': {x(t): 1, y(t): 1, z(t): 1},
'is_linear': True, 'is_constant': True, 'is_homogeneous': True,
'func_coeff': -Matrix([
[ 0, -3, 11],
[ 3, 0, -7],
[-11, 7, 0]]),
'type_of_equation': 'type1', 'is_general': True}
assert _classify_linear_system(eqs_6, funcs_2[:-1], t) == answer_6
eqs_7 = (Eq(x1, y(t)), Eq(y1, x(t)))
answer_7 = {'no_of_equation': 2, 'eq': (Eq(Derivative(x(t), t), y(t)), Eq(Derivative(y(t), t), x(t))),
'func': [x(t), y(t)], 'order': {x(t): 1, y(t): 1}, 'is_linear': True, 'is_constant': True,
'is_homogeneous': True, 'func_coeff': -Matrix([
[ 0, -1],
[-1, 0]]),
'type_of_equation': 'type1', 'is_general': True}
assert _classify_linear_system(eqs_7, funcs, t) == answer_7
eqs_8 = (Eq(x1, 21*x(t)), Eq(y1, 17*x(t) + 3*y(t)), Eq(z1, 5*x(t) + 7*y(t) + 9*z(t)))
answer_8 = {'no_of_equation': 3, 'eq': (Eq(Derivative(x(t), t), 21*x(t)), Eq(Derivative(y(t), t), 17*x(t) + 3*y(t)),
Eq(Derivative(z(t), t), 5*x(t) + 7*y(t) + 9*z(t))), 'func': [x(t), y(t), z(t)], 'order': {x(t): 1, y(t): 1, z(t): 1},
'is_linear': True, 'is_constant': True, 'is_homogeneous': True,
'func_coeff': -Matrix([
[-21, 0, 0],
[-17, -3, 0],
[ -5, -7, -9]]),
'type_of_equation': 'type1', 'is_general': True}
assert _classify_linear_system(eqs_8, funcs_2[:-1], t) == answer_8
eqs_9 = (Eq(x1, 4*x(t) + 5*y(t) + 2*z(t)), Eq(y1, x(t) + 13*y(t) + 9*z(t)), Eq(z1, 32*x(t) + 41*y(t) + 11*z(t)))
answer_9 = {'no_of_equation': 3, 'eq': (Eq(Derivative(x(t), t), 4*x(t) + 5*y(t) + 2*z(t)),
Eq(Derivative(y(t), t), x(t) + 13*y(t) + 9*z(t)), Eq(Derivative(z(t), t), 32*x(t) + 41*y(t) + 11*z(t))),
'func': [x(t), y(t), z(t)], 'order': {x(t): 1, y(t): 1, z(t): 1}, 'is_linear': True,
'is_constant': True, 'is_homogeneous': True,
'func_coeff': -Matrix([
[ -4, -5, -2],
[ -1, -13, -9],
[-32, -41, -11]]),
'type_of_equation': 'type1', 'is_general': True}
assert _classify_linear_system(eqs_9, funcs_2[:-1], t) == answer_9
eqs_10 = (Eq(3*x1, 4*5*(y(t) - z(t))), Eq(4*y1, 3*5*(z(t) - x(t))), Eq(5*z1, 3*4*(x(t) - y(t))))
answer_10 = {'no_of_equation': 3, 'eq': (Eq(3*Derivative(x(t), t), 20*y(t) - 20*z(t)),
Eq(4*Derivative(y(t), t), -15*x(t) + 15*z(t)), Eq(5*Derivative(z(t), t), 12*x(t) - 12*y(t))),
'func': [x(t), y(t), z(t)], 'order': {x(t): 1, y(t): 1, z(t): 1}, 'is_linear': True,
'is_constant': True, 'is_homogeneous': True,
'func_coeff': -Matrix([
[ 0, Rational(-20, 3), Rational(20, 3)],
[Rational(15, 4), 0, Rational(-15, 4)],
[Rational(-12, 5), Rational(12, 5), 0]]),
'type_of_equation': 'type1', 'is_general': True}
assert _classify_linear_system(eqs_10, funcs_2[:-1], t) == answer_10
eq11 = (Eq(x1, 3*y(t) - 11*z(t)), Eq(y1, 7*z(t) - 3*x(t)), Eq(z1, 11*x(t) - 7*y(t)))
sol11 = {'no_of_equation': 3, 'eq': (Eq(Derivative(x(t), t), 3*y(t) - 11*z(t)), Eq(Derivative(y(t), t), -3*x(t) + 7*z(t)),
Eq(Derivative(z(t), t), 11*x(t) - 7*y(t))), 'func': [x(t), y(t), z(t)], 'order': {x(t): 1, y(t): 1, z(t): 1},
'is_linear': True, 'is_constant': True, 'is_homogeneous': True, 'func_coeff': -Matrix([
[ 0, -3, 11], [ 3, 0, -7], [-11, 7, 0]]), 'type_of_equation': 'type1', 'is_general': True}
assert _classify_linear_system(eq11, funcs_2[:-1], t) == sol11
eq12 = (Eq(Derivative(x(t), t), y(t)), Eq(Derivative(y(t), t), x(t)))
sol12 = {'no_of_equation': 2, 'eq': (Eq(Derivative(x(t), t), y(t)), Eq(Derivative(y(t), t), x(t))),
'func': [x(t), y(t)], 'order': {x(t): 1, y(t): 1}, 'is_linear': True, 'is_constant': True,
'is_homogeneous': True, 'func_coeff': -Matrix([
[0, -1],
[-1, 0]]), 'type_of_equation': 'type1', 'is_general': True}
assert _classify_linear_system(eq12, [x(t), y(t)], t) == sol12
eq13 = (Eq(Derivative(x(t), t), 21*x(t)), Eq(Derivative(y(t), t), 17*x(t) + 3*y(t)),
Eq(Derivative(z(t), t), 5*x(t) + 7*y(t) + 9*z(t)))
sol13 = {'no_of_equation': 3, 'eq': (
Eq(Derivative(x(t), t), 21 * x(t)), Eq(Derivative(y(t), t), 17 * x(t) + 3 * y(t)),
Eq(Derivative(z(t), t), 5 * x(t) + 7 * y(t) + 9 * z(t))), 'func': [x(t), y(t), z(t)],
'order': {x(t): 1, y(t): 1, z(t): 1}, 'is_linear': True, 'is_constant': True, 'is_homogeneous': True,
'func_coeff': -Matrix([
[-21, 0, 0],
[-17, -3, 0],
[-5, -7, -9]]), 'type_of_equation': 'type1', 'is_general': True}
assert _classify_linear_system(eq13, [x(t), y(t), z(t)], t) == sol13
eq14 = (
Eq(Derivative(x(t), t), 4*x(t) + 5*y(t) + 2*z(t)), Eq(Derivative(y(t), t), x(t) + 13*y(t) + 9*z(t)),
Eq(Derivative(z(t), t), 32*x(t) + 41*y(t) + 11*z(t)))
sol14 = {'no_of_equation': 3, 'eq': (
Eq(Derivative(x(t), t), 4 * x(t) + 5 * y(t) + 2 * z(t)), Eq(Derivative(y(t), t), x(t) + 13 * y(t) + 9 * z(t)),
Eq(Derivative(z(t), t), 32 * x(t) + 41 * y(t) + 11 * z(t))), 'func': [x(t), y(t), z(t)],
'order': {x(t): 1, y(t): 1, z(t): 1}, 'is_linear': True, 'is_constant': True, 'is_homogeneous': True,
'func_coeff': -Matrix([
[-4, -5, -2],
[-1, -13, -9],
[-32, -41, -11]]), 'type_of_equation': 'type1', 'is_general': True}
assert _classify_linear_system(eq14, [x(t), y(t), z(t)], t) == sol14
eq15 = (Eq(3*Derivative(x(t), t), 20*y(t) - 20*z(t)), Eq(4*Derivative(y(t), t), -15*x(t) + 15*z(t)),
Eq(5*Derivative(z(t), t), 12*x(t) - 12*y(t)))
sol15 = {'no_of_equation': 3, 'eq': (
Eq(3 * Derivative(x(t), t), 20 * y(t) - 20 * z(t)), Eq(4 * Derivative(y(t), t), -15 * x(t) + 15 * z(t)),
Eq(5 * Derivative(z(t), t), 12 * x(t) - 12 * y(t))), 'func': [x(t), y(t), z(t)],
'order': {x(t): 1, y(t): 1, z(t): 1}, 'is_linear': True, 'is_constant': True, 'is_homogeneous': True,
'func_coeff': -Matrix([
[0, Rational(-20, 3), Rational(20, 3)],
[Rational(15, 4), 0, Rational(-15, 4)],
[Rational(-12, 5), Rational(12, 5), 0]]), 'type_of_equation': 'type1', 'is_general': True}
assert _classify_linear_system(eq15, [x(t), y(t), z(t)], t) == sol15
# Constant coefficient homogeneous ODEs
eq1 = (Eq(diff(x(t), t), x(t) + y(t) + 9), Eq(diff(y(t), t), 2*x(t) + 5*y(t) + 23))
sol1 = {'no_of_equation': 2, 'eq': (Eq(Derivative(x(t), t), x(t) + y(t) + 9),
Eq(Derivative(y(t), t), 2*x(t) + 5*y(t) + 23)), 'func': [x(t), y(t)],
'order': {x(t): 1, y(t): 1}, 'is_linear': True, 'is_constant': True, 'is_homogeneous': False, 'is_general': True,
'func_coeff': -Matrix([[-1, -1], [-2, -5]]), 'rhs': Matrix([[ 9], [23]]), 'type_of_equation': 'type2'}
assert _classify_linear_system(eq1, funcs, t) == sol1
# Non constant coefficient homogeneous ODEs
eq1 = (Eq(diff(x(t), t), 5*t*x(t) + 2*y(t)), Eq(diff(y(t), t), 2*x(t) + 5*t*y(t)))
sol1 = {'no_of_equation': 2, 'eq': (Eq(Derivative(x(t), t), 5*t*x(t) + 2*y(t)), Eq(Derivative(y(t), t), 5*t*y(t) + 2*x(t))),
'func': [x(t), y(t)], 'order': {x(t): 1, y(t): 1}, 'is_linear': True, 'is_constant': False,
'is_homogeneous': True, 'func_coeff': -Matrix([ [-5*t, -2], [ -2, -5*t]]), 'commutative_antiderivative': Matrix([
[5*t**2/2, 2*t], [ 2*t, 5*t**2/2]]), 'type_of_equation': 'type3', 'is_general': True}
assert _classify_linear_system(eq1, funcs, t) == sol1
# Non constant coefficient non-homogeneous ODEs
eq1 = [Eq(x1, x(t) + t*y(t) + t), Eq(y1, t*x(t) + y(t))]
sol1 = {'no_of_equation': 2, 'eq': [Eq(Derivative(x(t), t), t*y(t) + t + x(t)), Eq(Derivative(y(t), t),
t*x(t) + y(t))], 'func': [x(t), y(t)], 'order': {x(t): 1, y(t): 1}, 'is_linear': True,
'is_constant': False, 'is_homogeneous': False, 'is_general': True, 'func_coeff': -Matrix([ [-1, -t],
[-t, -1]]), 'commutative_antiderivative': Matrix([ [ t, t**2/2], [t**2/2, t]]), 'rhs':
Matrix([ [t], [0]]), 'type_of_equation': 'type4'}
assert _classify_linear_system(eq1, funcs, t) == sol1
eq2 = [Eq(x1, t*x(t) + t*y(t) + t), Eq(y1, t*x(t) + t*y(t) + cos(t))]
sol2 = {'no_of_equation': 2, 'eq': [Eq(Derivative(x(t), t), t*x(t) + t*y(t) + t), Eq(Derivative(y(t), t),
t*x(t) + t*y(t) + cos(t))], 'func': [x(t), y(t)], 'order': {x(t): 1, y(t): 1}, 'is_linear': True,
'is_homogeneous': False, 'is_general': True, 'rhs': Matrix([ [ t], [cos(t)]]), 'func_coeff':
Matrix([ [t, t], [t, t]]), 'is_constant': False, 'type_of_equation': 'type4',
'commutative_antiderivative': Matrix([ [t**2/2, t**2/2], [t**2/2, t**2/2]])}
assert _classify_linear_system(eq2, funcs, t) == sol2
eq3 = [Eq(x1, t*(x(t) + y(t) + z(t) + 1)), Eq(y1, t*(x(t) + y(t) + z(t))), Eq(z1, t*(x(t) + y(t) + z(t)))]
sol3 = {'no_of_equation': 3, 'eq': [Eq(Derivative(x(t), t), t*(x(t) + y(t) + z(t) + 1)),
Eq(Derivative(y(t), t), t*(x(t) + y(t) + z(t))), Eq(Derivative(z(t), t), t*(x(t) + y(t) + z(t)))],
'func': [x(t), y(t), z(t)], 'order': {x(t): 1, y(t): 1, z(t): 1}, 'is_linear': True, 'is_constant':
False, 'is_homogeneous': False, 'is_general': True, 'func_coeff': -Matrix([ [-t, -t, -t], [-t, -t,
-t], [-t, -t, -t]]), 'commutative_antiderivative': Matrix([ [t**2/2, t**2/2, t**2/2], [t**2/2,
t**2/2, t**2/2], [t**2/2, t**2/2, t**2/2]]), 'rhs': Matrix([ [t], [0], [0]]), 'type_of_equation':
'type4'}
assert _classify_linear_system(eq3, funcs_2[:-1], t) == sol3
eq4 = [Eq(x1, x(t) + y(t) + t*z(t) + 1), Eq(y1, x(t) + t*y(t) + z(t) + 10), Eq(z1, t*x(t) + y(t) + z(t) + t)]
sol4 = {'no_of_equation': 3, 'eq': [Eq(Derivative(x(t), t), t*z(t) + x(t) + y(t) + 1), Eq(Derivative(y(t),
t), t*y(t) + x(t) + z(t) + 10), Eq(Derivative(z(t), t), t*x(t) + t + y(t) + z(t))], 'func': [x(t),
y(t), z(t)], 'order': {x(t): 1, y(t): 1, z(t): 1}, 'is_linear': True, 'is_constant': False,
'is_homogeneous': False, 'is_general': True, 'func_coeff': -Matrix([ [-1, -1, -t], [-1, -t, -1], [-t,
-1, -1]]), 'commutative_antiderivative': Matrix([ [ t, t, t**2/2], [ t, t**2/2,
t], [t**2/2, t, t]]), 'rhs': Matrix([ [ 1], [10], [ t]]), 'type_of_equation': 'type4'}
assert _classify_linear_system(eq4, funcs_2[:-1], t) == sol4
sum_terms = t*(x(t) + y(t) + z(t) + w(t))
eq5 = [Eq(x1, sum_terms), Eq(y1, sum_terms), Eq(z1, sum_terms + 1), Eq(w1, sum_terms)]
sol5 = {'no_of_equation': 4, 'eq': [Eq(Derivative(x(t), t), t*(w(t) + x(t) + y(t) + z(t))),
Eq(Derivative(y(t), t), t*(w(t) + x(t) + y(t) + z(t))), Eq(Derivative(z(t), t), t*(w(t) + x(t) +
y(t) + z(t)) + 1), Eq(Derivative(w(t), t), t*(w(t) + x(t) + y(t) + z(t)))], 'func': [x(t), y(t),
z(t), w(t)], 'order': {x(t): 1, y(t): 1, z(t): 1, w(t): 1}, 'is_linear': True, 'is_constant': False,
'is_homogeneous': False, 'is_general': True, 'func_coeff': -Matrix([ [-t, -t, -t, -t], [-t, -t, -t,
-t], [-t, -t, -t, -t], [-t, -t, -t, -t]]), 'commutative_antiderivative': Matrix([ [t**2/2, t**2/2,
t**2/2, t**2/2], [t**2/2, t**2/2, t**2/2, t**2/2], [t**2/2, t**2/2, t**2/2, t**2/2], [t**2/2,
t**2/2, t**2/2, t**2/2]]), 'rhs': Matrix([ [0], [0], [1], [0]]), 'type_of_equation': 'type4'}
assert _classify_linear_system(eq5, funcs_2, t) == sol5
# Second Order
t_ = symbols("t_")
eq1 = (Eq(9*x(t) + 7*y(t) + 4*Derivative(x(t), t) + Derivative(x(t), (t, 2)) + 3*Derivative(y(t), t), 11*exp(I*t)),
Eq(3*x(t) + 12*y(t) + 5*Derivative(x(t), t) + 8*Derivative(y(t), t) + Derivative(y(t), (t, 2)), 2*exp(I*t)))
sol1 = {'no_of_equation': 2, 'eq': (Eq(9*x(t) + 7*y(t) + 4*Derivative(x(t), t) + Derivative(x(t), (t, 2)) +
3*Derivative(y(t), t), 11*exp(I*t)), Eq(3*x(t) + 12*y(t) + 5*Derivative(x(t), t) +
8*Derivative(y(t), t) + Derivative(y(t), (t, 2)), 2*exp(I*t))), 'func': [x(t), y(t)], 'order':
{x(t): 2, y(t): 2}, 'is_linear': True, 'is_homogeneous': False, 'is_general': True, 'rhs': Matrix([
[11*exp(I*t)], [ 2*exp(I*t)]]), 'type_of_equation': 'type0', 'is_second_order': True,
'is_higher_order': True}
assert _classify_linear_system(eq1, funcs, t) == sol1
eq2 = (Eq((4*t**2 + 7*t + 1)**2*Derivative(x(t), (t, 2)), 5*x(t) + 35*y(t)),
Eq((4*t**2 + 7*t + 1)**2*Derivative(y(t), (t, 2)), x(t) + 9*y(t)))
sol2 = {'no_of_equation': 2, 'eq': (Eq((4*t**2 + 7*t + 1)**2*Derivative(x(t), (t, 2)), 5*x(t) + 35*y(t)),
Eq((4*t**2 + 7*t + 1)**2*Derivative(y(t), (t, 2)), x(t) + 9*y(t))), 'func': [x(t), y(t)], 'order':
{x(t): 2, y(t): 2}, 'is_linear': True, 'is_homogeneous': True, 'is_general': True,
'type_of_equation': 'type2', 'A0': Matrix([ [Rational(53, 4), 35], [ 1, Rational(69, 4)]]), 'g(t)': sqrt(4*t**2 + 7*t
+ 1), 'tau': sqrt(33)*log(t - sqrt(33)/8 + Rational(7, 8))/33 - sqrt(33)*log(t + sqrt(33)/8 + Rational(7, 8))/33,
'is_transformed': True, 't_': t_, 'is_second_order': True, 'is_higher_order': True}
assert _classify_linear_system(eq2, funcs, t) == sol2
eq3 = ((t*Derivative(x(t), t) - x(t))*log(t) + (t*Derivative(y(t), t) - y(t))*exp(t) + Derivative(x(t), (t, 2)),
t**2*(t*Derivative(x(t), t) - x(t)) + t*(t*Derivative(y(t), t) - y(t)) + Derivative(y(t), (t, 2)))
sol3 = {'no_of_equation': 2, 'eq': ((t*Derivative(x(t), t) - x(t))*log(t) + (t*Derivative(y(t), t) -
y(t))*exp(t) + Derivative(x(t), (t, 2)), t**2*(t*Derivative(x(t), t) - x(t)) + t*(t*Derivative(y(t),
t) - y(t)) + Derivative(y(t), (t, 2))), 'func': [x(t), y(t)], 'order': {x(t): 2, y(t): 2},
'is_linear': True, 'is_homogeneous': True, 'is_general': True, 'type_of_equation': 'type1', 'A1':
Matrix([ [-t*log(t), -t*exp(t)], [ -t**3, -t**2]]), 'is_second_order': True,
'is_higher_order': True}
assert _classify_linear_system(eq3, funcs, t) == sol3
eq4 = (Eq(x2, k*x(t) - l*y1), Eq(y2, l*x1 + k*y(t)))
sol4 = {'no_of_equation': 2, 'eq': (Eq(Derivative(x(t), (t, 2)), k*x(t) - l*Derivative(y(t), t)),
Eq(Derivative(y(t), (t, 2)), k*y(t) + l*Derivative(x(t), t))), 'func': [x(t), y(t)], 'order': {x(t):
2, y(t): 2}, 'is_linear': True, 'is_homogeneous': True, 'is_general': True, 'type_of_equation':
'type0', 'is_second_order': True, 'is_higher_order': True}
assert _classify_linear_system(eq4, funcs, t) == sol4
# Multiple matches
f, g = symbols("f g", cls=Function)
y, t_ = symbols("y t_")
funcs = [f(t), g(t)]
eq1 = [Eq(Derivative(f(t), t)**2 - 2*Derivative(f(t), t) + 1, 4),
Eq(-y*f(t) + Derivative(g(t), t), 0)]
sol1 = {'is_implicit': True,
'canon_eqs': [[Eq(Derivative(f(t), t), -1), Eq(Derivative(g(t), t), y*f(t))],
[Eq(Derivative(f(t), t), 3), Eq(Derivative(g(t), t), y*f(t))]]}
assert _classify_linear_system(eq1, funcs, t) == sol1
raises(ValueError, lambda: _classify_linear_system(eq1, funcs[:1], t))
eq2 = [Eq(Derivative(f(t), t), (2*f(t) + g(t) + 1)/t), Eq(Derivative(g(t), t), (f(t) + 2*g(t))/t)]
sol2 = {'no_of_equation': 2, 'eq': [Eq(Derivative(f(t), t), (2*f(t) + g(t) + 1)/t), Eq(Derivative(g(t), t),
(f(t) + 2*g(t))/t)], 'func': [f(t), g(t)], 'order': {f(t): 1, g(t): 1}, 'is_linear': True,
'is_homogeneous': False, 'is_general': True, 'rhs': Matrix([ [1], [0]]), 'func_coeff': Matrix([ [2,
1], [1, 2]]), 'is_constant': False, 'type_of_equation': 'type6', 't_': t_, 'tau': log(t),
'commutative_antiderivative': Matrix([ [2*log(t), log(t)], [ log(t), 2*log(t)]])}
assert _classify_linear_system(eq2, funcs, t) == sol2
eq3 = [Eq(Derivative(f(t), t), (2*f(t) + g(t))/t), Eq(Derivative(g(t), t), (f(t) + 2*g(t))/t)]
sol3 = {'no_of_equation': 2, 'eq': [Eq(Derivative(f(t), t), (2*f(t) + g(t))/t), Eq(Derivative(g(t), t),
(f(t) + 2*g(t))/t)], 'func': [f(t), g(t)], 'order': {f(t): 1, g(t): 1}, 'is_linear': True,
'is_homogeneous': True, 'is_general': True, 'func_coeff': Matrix([ [2, 1], [1, 2]]), 'is_constant':
False, 'type_of_equation': 'type5', 't_': t_, 'rhs': Matrix([ [0], [0]]), 'tau': log(t),
'commutative_antiderivative': Matrix([ [2*log(t), log(t)], [ log(t), 2*log(t)]])}
assert _classify_linear_system(eq3, funcs, t) == sol3
def test_matrix_exp():
from sympy.matrices.dense import Matrix, eye, zeros
from sympy.solvers.ode.systems import matrix_exp
t = Symbol('t')
for n in range(1, 6+1):
assert matrix_exp(zeros(n), t) == eye(n)
for n in range(1, 6+1):
A = eye(n)
expAt = exp(t) * eye(n)
assert matrix_exp(A, t) == expAt
for n in range(1, 6+1):
A = Matrix(n, n, lambda i,j: i+1 if i==j else 0)
expAt = Matrix(n, n, lambda i,j: exp((i+1)*t) if i==j else 0)
assert matrix_exp(A, t) == expAt
A = Matrix([[0, 1], [-1, 0]])
expAt = Matrix([[cos(t), sin(t)], [-sin(t), cos(t)]])
assert matrix_exp(A, t) == expAt
A = Matrix([[2, -5], [2, -4]])
expAt = Matrix([
[3*exp(-t)*sin(t) + exp(-t)*cos(t), -5*exp(-t)*sin(t)],
[2*exp(-t)*sin(t), -3*exp(-t)*sin(t) + exp(-t)*cos(t)]
])
assert matrix_exp(A, t) == expAt
A = Matrix([[21, 17, 6], [-5, -1, -6], [4, 4, 16]])
# TO update this.
# expAt = Matrix([
# [(8*t*exp(12*t) + 5*exp(12*t) - 1)*exp(4*t)/4,
# (8*t*exp(12*t) + 5*exp(12*t) - 5)*exp(4*t)/4,
# (exp(12*t) - 1)*exp(4*t)/2],
# [(-8*t*exp(12*t) - exp(12*t) + 1)*exp(4*t)/4,
# (-8*t*exp(12*t) - exp(12*t) + 5)*exp(4*t)/4,
# (-exp(12*t) + 1)*exp(4*t)/2],
# [4*t*exp(16*t), 4*t*exp(16*t), exp(16*t)]])
expAt = Matrix([
[2*t*exp(16*t) + 5*exp(16*t)/4 - exp(4*t)/4, 2*t*exp(16*t) + 5*exp(16*t)/4 - 5*exp(4*t)/4, exp(16*t)/2 - exp(4*t)/2],
[ -2*t*exp(16*t) - exp(16*t)/4 + exp(4*t)/4, -2*t*exp(16*t) - exp(16*t)/4 + 5*exp(4*t)/4, -exp(16*t)/2 + exp(4*t)/2],
[ 4*t*exp(16*t), 4*t*exp(16*t), exp(16*t)]
])
assert matrix_exp(A, t) == expAt
A = Matrix([[1, 1, 0, 0],
[0, 1, 1, 0],
[0, 0, 1, -S(1)/8],
[0, 0, S(1)/2, S(1)/2]])
expAt = Matrix([
[exp(t), t*exp(t), 4*t*exp(3*t/4) + 8*t*exp(t) + 48*exp(3*t/4) - 48*exp(t),
-2*t*exp(3*t/4) - 2*t*exp(t) - 16*exp(3*t/4) + 16*exp(t)],
[0, exp(t), -t*exp(3*t/4) - 8*exp(3*t/4) + 8*exp(t), t*exp(3*t/4)/2 + 2*exp(3*t/4) - 2*exp(t)],
[0, 0, t*exp(3*t/4)/4 + exp(3*t/4), -t*exp(3*t/4)/8],
[0, 0, t*exp(3*t/4)/2, -t*exp(3*t/4)/4 + exp(3*t/4)]
])
assert matrix_exp(A, t) == expAt
A = Matrix([
[ 0, 1, 0, 0],
[-1, 0, 0, 0],
[ 0, 0, 0, 1],
[ 0, 0, -1, 0]])
expAt = Matrix([
[ cos(t), sin(t), 0, 0],
[-sin(t), cos(t), 0, 0],
[ 0, 0, cos(t), sin(t)],
[ 0, 0, -sin(t), cos(t)]])
assert matrix_exp(A, t) == expAt
A = Matrix([
[ 0, 1, 1, 0],
[-1, 0, 0, 1],
[ 0, 0, 0, 1],
[ 0, 0, -1, 0]])
expAt = Matrix([
[ cos(t), sin(t), t*cos(t), t*sin(t)],
[-sin(t), cos(t), -t*sin(t), t*cos(t)],
[ 0, 0, cos(t), sin(t)],
[ 0, 0, -sin(t), cos(t)]])
assert matrix_exp(A, t) == expAt
# This case is unacceptably slow right now but should be solvable...
#a, b, c, d, e, f = symbols('a b c d e f')
#A = Matrix([
#[-a, b, c, d],
#[ a, -b, e, 0],
#[ 0, 0, -c - e - f, 0],
#[ 0, 0, f, -d]])
A = Matrix([[0, I], [I, 0]])
expAt = Matrix([
[exp(I*t)/2 + exp(-I*t)/2, exp(I*t)/2 - exp(-I*t)/2],
[exp(I*t)/2 - exp(-I*t)/2, exp(I*t)/2 + exp(-I*t)/2]])
assert matrix_exp(A, t) == expAt
# Testing Errors
M = Matrix([[1, 2, 3], [4, 5, 6], [7, 7, 7]])
M1 = Matrix([[t, 1], [1, 1]])
raises(ValueError, lambda: matrix_exp(M[:, :2], t))
raises(ValueError, lambda: matrix_exp(M[:2, :], t))
raises(ValueError, lambda: matrix_exp(M1, t))
raises(ValueError, lambda: matrix_exp(M1[:1, :1], t))
def test_canonical_odes():
f, g, h = symbols('f g h', cls=Function)
x = symbols('x')
funcs = [f(x), g(x), h(x)]
eqs1 = [Eq(f(x).diff(x, x), f(x) + 2*g(x)), Eq(g(x) + 1, g(x).diff(x) + f(x))]
sol1 = [[Eq(Derivative(f(x), (x, 2)), f(x) + 2*g(x)), Eq(Derivative(g(x), x), -f(x) + g(x) + 1)]]
assert canonical_odes(eqs1, funcs[:2], x) == sol1
eqs2 = [Eq(f(x).diff(x), h(x).diff(x) + f(x)), Eq(g(x).diff(x)**2, f(x) + h(x)), Eq(h(x).diff(x), f(x))]
sol2 = [[Eq(Derivative(f(x), x), 2*f(x)), Eq(Derivative(g(x), x), -sqrt(f(x) + h(x))), Eq(Derivative(h(x), x), f(x))],
[Eq(Derivative(f(x), x), 2*f(x)), Eq(Derivative(g(x), x), sqrt(f(x) + h(x))), Eq(Derivative(h(x), x), f(x))]]
assert canonical_odes(eqs2, funcs, x) == sol2
def test_sysode_linear_neq_order1_type1():
f, g, x, y, h = symbols('f g x y h', cls=Function)
a, b, c, t = symbols('a b c t')
eqs1 = [Eq(Derivative(x(t), t), x(t)),
Eq(Derivative(y(t), t), y(t))]
sol1 = [Eq(x(t), C1*exp(t)),
Eq(y(t), C2*exp(t))]
assert dsolve(eqs1) == sol1
assert checksysodesol(eqs1, sol1) == (True, [0, 0])
eqs2 = [Eq(Derivative(x(t), t), 2*x(t)),
Eq(Derivative(y(t), t), 3*y(t))]
sol2 = [Eq(x(t), C1*exp(2*t)),
Eq(y(t), C2*exp(3*t))]
assert dsolve(eqs2) == sol2
assert checksysodesol(eqs2, sol2) == (True, [0, 0])
eqs3 = [Eq(Derivative(x(t), t), a*x(t)),
Eq(Derivative(y(t), t), a*y(t))]
sol3 = [Eq(x(t), C1*exp(a*t)),
Eq(y(t), C2*exp(a*t))]
assert dsolve(eqs3) == sol3
assert checksysodesol(eqs3, sol3) == (True, [0, 0])
# Regression test case for issue #15474
# https://github.com/sympy/sympy/issues/15474
eqs4 = [Eq(Derivative(x(t), t), a*x(t)),
Eq(Derivative(y(t), t), b*y(t))]
sol4 = [Eq(x(t), C1*exp(a*t)),
Eq(y(t), C2*exp(b*t))]
assert dsolve(eqs4) == sol4
assert checksysodesol(eqs4, sol4) == (True, [0, 0])
eqs5 = [Eq(Derivative(x(t), t), -y(t)),
Eq(Derivative(y(t), t), x(t))]
sol5 = [Eq(x(t), -C1*sin(t) - C2*cos(t)),
Eq(y(t), C1*cos(t) - C2*sin(t))]
assert dsolve(eqs5) == sol5
assert checksysodesol(eqs5, sol5) == (True, [0, 0])
eqs6 = [Eq(Derivative(x(t), t), -2*y(t)),
Eq(Derivative(y(t), t), 2*x(t))]
sol6 = [Eq(x(t), -C1*sin(2*t) - C2*cos(2*t)),
Eq(y(t), C1*cos(2*t) - C2*sin(2*t))]
assert dsolve(eqs6) == sol6
assert checksysodesol(eqs6, sol6) == (True, [0, 0])
eqs7 = [Eq(Derivative(x(t), t), I*y(t)),
Eq(Derivative(y(t), t), I*x(t))]
sol7 = [Eq(x(t), -C1*exp(-I*t) + C2*exp(I*t)),
Eq(y(t), C1*exp(-I*t) + C2*exp(I*t))]
assert dsolve(eqs7) == sol7
assert checksysodesol(eqs7, sol7) == (True, [0, 0])
eqs8 = [Eq(Derivative(x(t), t), -a*y(t)),
Eq(Derivative(y(t), t), a*x(t))]
sol8 = [Eq(x(t), -I*C1*exp(-I*a*t) + I*C2*exp(I*a*t)),
Eq(y(t), C1*exp(-I*a*t) + C2*exp(I*a*t))]
assert dsolve(eqs8) == sol8
assert checksysodesol(eqs8, sol8) == (True, [0, 0])
eqs9 = [Eq(Derivative(x(t), t), x(t) + y(t)),
Eq(Derivative(y(t), t), x(t) - y(t))]
sol9 = [Eq(x(t), C1*(1 - sqrt(2))*exp(-sqrt(2)*t) + C2*(1 + sqrt(2))*exp(sqrt(2)*t)),
Eq(y(t), C1*exp(-sqrt(2)*t) + C2*exp(sqrt(2)*t))]
assert dsolve(eqs9) == sol9
assert checksysodesol(eqs9, sol9) == (True, [0, 0])
eqs10 = [Eq(Derivative(x(t), t), x(t) + y(t)),
Eq(Derivative(y(t), t), x(t) + y(t))]
sol10 = [Eq(x(t), -C1 + C2*exp(2*t)),
Eq(y(t), C1 + C2*exp(2*t))]
assert dsolve(eqs10) == sol10
assert checksysodesol(eqs10, sol10) == (True, [0, 0])
eqs11 = [Eq(Derivative(x(t), t), 2*x(t) + y(t)),
Eq(Derivative(y(t), t), -x(t) + 2*y(t))]
sol11 = [Eq(x(t), C1*exp(2*t)*sin(t) + C2*exp(2*t)*cos(t)),
Eq(y(t), C1*exp(2*t)*cos(t) - C2*exp(2*t)*sin(t))]
assert dsolve(eqs11) == sol11
assert checksysodesol(eqs11, sol11) == (True, [0, 0])
eqs12 = [Eq(Derivative(x(t), t), x(t) + 2*y(t)),
Eq(Derivative(y(t), t), 2*x(t) + y(t))]
sol12 = [Eq(x(t), -C1*exp(-t) + C2*exp(3*t)),
Eq(y(t), C1*exp(-t) + C2*exp(3*t))]
assert dsolve(eqs12) == sol12
assert checksysodesol(eqs12, sol12) == (True, [0, 0])
eqs13 = [Eq(Derivative(x(t), t), 4*x(t) + y(t)),
Eq(Derivative(y(t), t), -x(t) + 2*y(t))]
sol13 = [Eq(x(t), C2*t*exp(3*t) + (C1 + C2)*exp(3*t)),
Eq(y(t), -C1*exp(3*t) - C2*t*exp(3*t))]
assert dsolve(eqs13) == sol13
assert checksysodesol(eqs13, sol13) == (True, [0, 0])
eqs14 = [Eq(Derivative(x(t), t), a*y(t)),
Eq(Derivative(y(t), t), a*x(t))]
sol14 = [Eq(x(t), -C1*exp(-a*t) + C2*exp(a*t)),
Eq(y(t), C1*exp(-a*t) + C2*exp(a*t))]
assert dsolve(eqs14) == sol14
assert checksysodesol(eqs14, sol14) == (True, [0, 0])
eqs15 = [Eq(Derivative(x(t), t), a*y(t)),
Eq(Derivative(y(t), t), b*x(t))]
sol15 = [Eq(x(t), -C1*a*exp(-t*sqrt(a*b))/sqrt(a*b) + C2*a*exp(t*sqrt(a*b))/sqrt(a*b)),
Eq(y(t), C1*exp(-t*sqrt(a*b)) + C2*exp(t*sqrt(a*b)))]
assert dsolve(eqs15) == sol15
assert checksysodesol(eqs15, sol15) == (True, [0, 0])
eqs16 = [Eq(Derivative(x(t), t), a*x(t) + b*y(t)),
Eq(Derivative(y(t), t), c*x(t))]
sol16 = [Eq(x(t), -2*C1*b*exp(t*(a + sqrt(a**2 + 4*b*c))/2)/(a - sqrt(a**2 + 4*b*c)) - 2*C2*b*exp(t*(a -
sqrt(a**2 + 4*b*c))/2)/(a + sqrt(a**2 + 4*b*c))),
Eq(y(t), C1*exp(t*(a + sqrt(a**2 + 4*b*c))/2) + C2*exp(t*(a - sqrt(a**2 + 4*b*c))/2))]
assert dsolve(eqs16) == sol16
assert checksysodesol(eqs16, sol16) == (True, [0, 0])
# Regression test case for issue #18562
# https://github.com/sympy/sympy/issues/18562
eqs17 = [Eq(Derivative(x(t), t), a*y(t) + x(t)),
Eq(Derivative(y(t), t), a*x(t) - y(t))]
sol17 = [Eq(x(t), C1*a*exp(t*sqrt(a**2 + 1))/(sqrt(a**2 + 1) - 1) - C2*a*exp(-t*sqrt(a**2 + 1))/(sqrt(a**2 +
1) + 1)),
Eq(y(t), C1*exp(t*sqrt(a**2 + 1)) + C2*exp(-t*sqrt(a**2 + 1)))]
assert dsolve(eqs17) == sol17
assert checksysodesol(eqs17, sol17) == (True, [0, 0])
eqs18 = [Eq(Derivative(x(t), t), 0),
Eq(Derivative(y(t), t), 0)]
sol18 = [Eq(x(t), C1),
Eq(y(t), C2)]
assert dsolve(eqs18) == sol18
assert checksysodesol(eqs18, sol18) == (True, [0, 0])
eqs19 = [Eq(Derivative(x(t), t), 2*x(t) - y(t)),
Eq(Derivative(y(t), t), x(t))]
sol19 = [Eq(x(t), C2*t*exp(t) + (C1 + C2)*exp(t)),
Eq(y(t), C1*exp(t) + C2*t*exp(t))]
assert dsolve(eqs19) == sol19
assert checksysodesol(eqs19, sol19) == (True, [0, 0])
eqs20 = [Eq(Derivative(x(t), t), x(t)),
Eq(Derivative(y(t), t), x(t) + y(t))]
sol20 = [Eq(x(t), C1*exp(t)),
Eq(y(t), C1*t*exp(t) + C2*exp(t))]
assert dsolve(eqs20) == sol20
assert checksysodesol(eqs20, sol20) == (True, [0, 0])
eqs21 = [Eq(Derivative(x(t), t), 3*x(t)),
Eq(Derivative(y(t), t), x(t) + y(t))]
sol21 = [Eq(x(t), 2*C1*exp(3*t)),
Eq(y(t), C1*exp(3*t) + C2*exp(t))]
assert dsolve(eqs21) == sol21
assert checksysodesol(eqs21, sol21) == (True, [0, 0])
eqs22 = [Eq(Derivative(x(t), t), 3*x(t)),
Eq(Derivative(y(t), t), y(t))]
sol22 = [Eq(x(t), C1*exp(3*t)),
Eq(y(t), C2*exp(t))]
assert dsolve(eqs22) == sol22
assert checksysodesol(eqs22, sol22) == (True, [0, 0])
@slow
def test_sysode_linear_neq_order1_type1_slow():
t = Symbol('t')
Z0 = Function('Z0')
Z1 = Function('Z1')
Z2 = Function('Z2')
Z3 = Function('Z3')
k01, k10, k20, k21, k23, k30 = symbols('k01 k10 k20 k21 k23 k30')
eqs1 = [Eq(Derivative(Z0(t), t), -k01*Z0(t) + k10*Z1(t) + k20*Z2(t) + k30*Z3(t)),
Eq(Derivative(Z1(t), t), k01*Z0(t) - k10*Z1(t) + k21*Z2(t)),
Eq(Derivative(Z2(t), t), (-k20 - k21 - k23)*Z2(t)),
Eq(Derivative(Z3(t), t), k23*Z2(t) - k30*Z3(t))]
sol1 = [Eq(Z0(t), C1*k10/k01 - C2*(k10 - k30)*exp(-k30*t)/(k01 + k10 - k30) - C3*(k10*(k20 + k21 - k30) -
k20**2 - k20*(k21 + k23 - k30) + k23*k30)*exp(-t*(k20 + k21 + k23))/(k23*(-k01 - k10 + k20 + k21 +
k23)) - C4*exp(-t*(k01 + k10))),
Eq(Z1(t), C1 - C2*k01*exp(-k30*t)/(k01 + k10 - k30) + C3*(-k01*(k20 + k21 - k30) + k20*k21 + k21**2
+ k21*(k23 - k30))*exp(-t*(k20 + k21 + k23))/(k23*(-k01 - k10 + k20 + k21 + k23)) + C4*exp(-t*(k01 +
k10))),
Eq(Z2(t), -C3*(k20 + k21 + k23 - k30)*exp(-t*(k20 + k21 + k23))/k23),
Eq(Z3(t), C2*exp(-k30*t) + C3*exp(-t*(k20 + k21 + k23)))]
assert dsolve(eqs1) == sol1
assert checksysodesol(eqs1, sol1) == (True, [0, 0, 0, 0])
x, y, z, u, v, w = symbols('x y z u v w', cls=Function)
k2, k3 = symbols('k2 k3')
a_b, a_c = symbols('a_b a_c', real=True)
eqs2 = [Eq(Derivative(z(t), t), k2*y(t)),
Eq(Derivative(x(t), t), k3*y(t)),
Eq(Derivative(y(t), t), (-k2 - k3)*y(t))]
sol2 = [Eq(z(t), C1 - C2*k2*exp(-t*(k2 + k3))/(k2 + k3)),
Eq(x(t), -C2*k3*exp(-t*(k2 + k3))/(k2 + k3) + C3),
Eq(y(t), C2*exp(-t*(k2 + k3)))]
assert dsolve(eqs2) == sol2
assert checksysodesol(eqs2, sol2) == (True, [0, 0, 0])
eqs3 = [4*u(t) - v(t) - 2*w(t) + Derivative(u(t), t),
2*u(t) + v(t) - 2*w(t) + Derivative(v(t), t),
5*u(t) + v(t) - 3*w(t) + Derivative(w(t), t)]
sol3 = [Eq(u(t), C3*exp(-2*t) + (C1/2 + sqrt(3)*C2/6)*cos(sqrt(3)*t) + sin(sqrt(3)*t)*(sqrt(3)*C1/6 +
C2*Rational(-1, 2))),
Eq(v(t), (C1/2 + sqrt(3)*C2/6)*cos(sqrt(3)*t) + sin(sqrt(3)*t)*(sqrt(3)*C1/6 + C2*Rational(-1, 2))),
Eq(w(t), C1*cos(sqrt(3)*t) - C2*sin(sqrt(3)*t) + C3*exp(-2*t))]
assert dsolve(eqs3) == sol3
assert checksysodesol(eqs3, sol3) == (True, [0, 0, 0])
eqs4 = [Eq(Derivative(x(t), t), w(t)*Rational(-2, 9) + 2*x(t) + y(t) + z(t)*Rational(-8, 9)),
Eq(Derivative(y(t), t), w(t)*Rational(4, 9) + 2*y(t) + z(t)*Rational(16, 9)),
Eq(Derivative(z(t), t), w(t)*Rational(-2, 9) + z(t)*Rational(37, 9)),
Eq(Derivative(w(t), t), w(t)*Rational(44, 9) + z(t)*Rational(-4, 9))]
sol4 = [Eq(x(t), C1*exp(2*t) + C2*t*exp(2*t)),
Eq(y(t), C2*exp(2*t) + 2*C3*exp(4*t)),
Eq(z(t), 2*C3*exp(4*t) + C4*exp(5*t)*Rational(-1, 4)),
Eq(w(t), C3*exp(4*t) + C4*exp(5*t))]
assert dsolve(eqs4) == sol4
assert checksysodesol(eqs4, sol4) == (True, [0, 0, 0, 0])
# Regression test case for issue #15574
# https://github.com/sympy/sympy/issues/15574
eq5 = [Eq(x(t).diff(t), x(t)), Eq(y(t).diff(t), y(t)), Eq(z(t).diff(t), z(t)), Eq(w(t).diff(t), w(t))]
sol5 = [Eq(x(t), C1*exp(t)), Eq(y(t), C2*exp(t)), Eq(z(t), C3*exp(t)), Eq(w(t), C4*exp(t))]
assert dsolve(eq5) == sol5
assert checksysodesol(eq5, sol5) == (True, [0, 0, 0, 0])
eqs6 = [Eq(Derivative(x(t), t), x(t) + y(t)),
Eq(Derivative(y(t), t), y(t) + z(t)),
Eq(Derivative(z(t), t), w(t)*Rational(-1, 8) + z(t)),
Eq(Derivative(w(t), t), w(t)/2 + z(t)/2)]
sol6 = [Eq(x(t), C1*exp(t) + C2*t*exp(t) + 4*C4*t*exp(t*Rational(3, 4)) + (4*C3 + 48*C4)*exp(t*Rational(3,
4))),
Eq(y(t), C2*exp(t) - C4*t*exp(t*Rational(3, 4)) - (C3 + 8*C4)*exp(t*Rational(3, 4))),
Eq(z(t), C4*t*exp(t*Rational(3, 4))/4 + (C3/4 + C4)*exp(t*Rational(3, 4))),
Eq(w(t), C3*exp(t*Rational(3, 4))/2 + C4*t*exp(t*Rational(3, 4))/2)]
assert dsolve(eqs6) == sol6
assert checksysodesol(eqs6, sol6) == (True, [0, 0, 0, 0])
# Regression test case for issue #15574
# https://github.com/sympy/sympy/issues/15574
eq7 = [Eq(Derivative(x(t), t), x(t)), Eq(Derivative(y(t), t), y(t)), Eq(Derivative(z(t), t), z(t)),
Eq(Derivative(w(t), t), w(t)), Eq(Derivative(u(t), t), u(t))]
sol7 = [Eq(x(t), C1*exp(t)), Eq(y(t), C2*exp(t)), Eq(z(t), C3*exp(t)), Eq(w(t), C4*exp(t)),
Eq(u(t), C5*exp(t))]
assert dsolve(eq7) == sol7
assert checksysodesol(eq7, sol7) == (True, [0, 0, 0, 0, 0])
eqs8 = [Eq(Derivative(x(t), t), 2*x(t) + y(t)),
Eq(Derivative(y(t), t), 2*y(t)),
Eq(Derivative(z(t), t), 4*z(t)),
Eq(Derivative(w(t), t), u(t) + 5*w(t)),
Eq(Derivative(u(t), t), 5*u(t))]
sol8 = [Eq(x(t), C1*exp(2*t) + C2*t*exp(2*t)),
Eq(y(t), C2*exp(2*t)),
Eq(z(t), C3*exp(4*t)),
Eq(w(t), C4*exp(5*t) + C5*t*exp(5*t)),
Eq(u(t), C5*exp(5*t))]
assert dsolve(eqs8) == sol8
assert checksysodesol(eqs8, sol8) == (True, [0, 0, 0, 0, 0])
# Regression test case for issue #15574
# https://github.com/sympy/sympy/issues/15574
eq9 = [Eq(Derivative(x(t), t), x(t)), Eq(Derivative(y(t), t), y(t)), Eq(Derivative(z(t), t), z(t))]
sol9 = [Eq(x(t), C1*exp(t)), Eq(y(t), C2*exp(t)), Eq(z(t), C3*exp(t))]
assert dsolve(eq9) == sol9
assert checksysodesol(eq9, sol9) == (True, [0, 0, 0])
# Regression test case for issue #15407
# https://github.com/sympy/sympy/issues/15407
eqs10 = [Eq(Derivative(x(t), t), (-a_b - a_c)*x(t)),
Eq(Derivative(y(t), t), a_b*y(t)),
Eq(Derivative(z(t), t), a_c*x(t))]
sol10 = [Eq(x(t), -C1*(a_b + a_c)*exp(-t*(a_b + a_c))/a_c),
Eq(y(t), C2*exp(a_b*t)),
Eq(z(t), C1*exp(-t*(a_b + a_c)) + C3)]
assert dsolve(eqs10) == sol10
assert checksysodesol(eqs10, sol10) == (True, [0, 0, 0])
# Regression test case for issue #14312
# https://github.com/sympy/sympy/issues/14312
eqs11 = [Eq(Derivative(x(t), t), k3*y(t)),
Eq(Derivative(y(t), t), (-k2 - k3)*y(t)),
Eq(Derivative(z(t), t), k2*y(t))]
sol11 = [Eq(x(t), C1 + C2*k3*exp(-t*(k2 + k3))/k2),
Eq(y(t), -C2*(k2 + k3)*exp(-t*(k2 + k3))/k2),
Eq(z(t), C2*exp(-t*(k2 + k3)) + C3)]
assert dsolve(eqs11) == sol11
assert checksysodesol(eqs11, sol11) == (True, [0, 0, 0])
# Regression test case for issue #14312
# https://github.com/sympy/sympy/issues/14312
eqs12 = [Eq(Derivative(z(t), t), k2*y(t)),
Eq(Derivative(x(t), t), k3*y(t)),
Eq(Derivative(y(t), t), (-k2 - k3)*y(t))]
sol12 = [Eq(z(t), C1 - C2*k2*exp(-t*(k2 + k3))/(k2 + k3)),
Eq(x(t), -C2*k3*exp(-t*(k2 + k3))/(k2 + k3) + C3),
Eq(y(t), C2*exp(-t*(k2 + k3)))]
assert dsolve(eqs12) == sol12
assert checksysodesol(eqs12, sol12) == (True, [0, 0, 0])
f, g, h = symbols('f, g, h', cls=Function)
a, b, c = symbols('a, b, c')
# Regression test case for issue #15474
# https://github.com/sympy/sympy/issues/15474
eqs13 = [Eq(Derivative(f(t), t), 2*f(t) + g(t)),
Eq(Derivative(g(t), t), a*f(t))]
sol13 = [Eq(f(t), C1*exp(t*(sqrt(a + 1) + 1))/(sqrt(a + 1) - 1) - C2*exp(-t*(sqrt(a + 1) - 1))/(sqrt(a + 1) +
1)),
Eq(g(t), C1*exp(t*(sqrt(a + 1) + 1)) + C2*exp(-t*(sqrt(a + 1) - 1)))]
assert dsolve(eqs13) == sol13
assert checksysodesol(eqs13, sol13) == (True, [0, 0])
eqs14 = [Eq(Derivative(f(t), t), 2*g(t) - 3*h(t)),
Eq(Derivative(g(t), t), -2*f(t) + 4*h(t)),
Eq(Derivative(h(t), t), 3*f(t) - 4*g(t))]
sol14 = [Eq(f(t), 2*C1 - sin(sqrt(29)*t)*(sqrt(29)*C2*Rational(3, 25) + C3*Rational(-8, 25)) -
cos(sqrt(29)*t)*(C2*Rational(8, 25) + sqrt(29)*C3*Rational(3, 25))),
Eq(g(t), C1*Rational(3, 2) + sin(sqrt(29)*t)*(sqrt(29)*C2*Rational(4, 25) + C3*Rational(6, 25)) -
cos(sqrt(29)*t)*(C2*Rational(6, 25) + sqrt(29)*C3*Rational(-4, 25))),
Eq(h(t), C1 + C2*cos(sqrt(29)*t) - C3*sin(sqrt(29)*t))]
assert dsolve(eqs14) == sol14
assert checksysodesol(eqs14, sol14) == (True, [0, 0, 0])
eqs15 = [Eq(2*Derivative(f(t), t), 12*g(t) - 12*h(t)),
Eq(3*Derivative(g(t), t), -8*f(t) + 8*h(t)),
Eq(4*Derivative(h(t), t), 6*f(t) - 6*g(t))]
sol15 = [Eq(f(t), C1 - sin(sqrt(29)*t)*(sqrt(29)*C2*Rational(6, 13) + C3*Rational(-16, 13)) -
cos(sqrt(29)*t)*(C2*Rational(16, 13) + sqrt(29)*C3*Rational(6, 13))),
Eq(g(t), C1 + sin(sqrt(29)*t)*(sqrt(29)*C2*Rational(8, 39) + C3*Rational(16, 13)) -
cos(sqrt(29)*t)*(C2*Rational(16, 13) + sqrt(29)*C3*Rational(-8, 39))),
Eq(h(t), C1 + C2*cos(sqrt(29)*t) - C3*sin(sqrt(29)*t))]
assert dsolve(eqs15) == sol15
assert checksysodesol(eqs15, sol15) == (True, [0, 0, 0])
eq16 = (Eq(diff(x(t), t), 21*x(t)), Eq(diff(y(t), t), 17*x(t) + 3*y(t)),
Eq(diff(z(t), t), 5*x(t) + 7*y(t) + 9*z(t)))
sol16 = [Eq(x(t), 216*C1*exp(21*t)/209),
Eq(y(t), 204*C1*exp(21*t)/209 - 6*C2*exp(3*t)/7),
Eq(z(t), C1*exp(21*t) + C2*exp(3*t) + C3*exp(9*t))]
assert dsolve(eq16) == sol16
assert checksysodesol(eq16, sol16) == (True, [0, 0, 0])
eqs17 = [Eq(Derivative(x(t), t), 3*y(t) - 11*z(t)),
Eq(Derivative(y(t), t), -3*x(t) + 7*z(t)),
Eq(Derivative(z(t), t), 11*x(t) - 7*y(t))]
sol17 = [Eq(x(t), C1*Rational(7, 3) - sin(sqrt(179)*t)*(sqrt(179)*C2*Rational(11, 170) + C3*Rational(-21,
170)) - cos(sqrt(179)*t)*(C2*Rational(21, 170) + sqrt(179)*C3*Rational(11, 170))),
Eq(y(t), C1*Rational(11, 3) + sin(sqrt(179)*t)*(sqrt(179)*C2*Rational(7, 170) + C3*Rational(33,
170)) - cos(sqrt(179)*t)*(C2*Rational(33, 170) + sqrt(179)*C3*Rational(-7, 170))),
Eq(z(t), C1 + C2*cos(sqrt(179)*t) - C3*sin(sqrt(179)*t))]
assert dsolve(eqs17) == sol17
assert checksysodesol(eqs17, sol17) == (True, [0, 0, 0])
eqs18 = [Eq(3*Derivative(x(t), t), 20*y(t) - 20*z(t)),
Eq(4*Derivative(y(t), t), -15*x(t) + 15*z(t)),
Eq(5*Derivative(z(t), t), 12*x(t) - 12*y(t))]
sol18 = [Eq(x(t), C1 - sin(5*sqrt(2)*t)*(sqrt(2)*C2*Rational(4, 3) - C3) - cos(5*sqrt(2)*t)*(C2 +
sqrt(2)*C3*Rational(4, 3))),
Eq(y(t), C1 + sin(5*sqrt(2)*t)*(sqrt(2)*C2*Rational(3, 4) + C3) - cos(5*sqrt(2)*t)*(C2 +
sqrt(2)*C3*Rational(-3, 4))),
Eq(z(t), C1 + C2*cos(5*sqrt(2)*t) - C3*sin(5*sqrt(2)*t))]
assert dsolve(eqs18) == sol18
assert checksysodesol(eqs18, sol18) == (True, [0, 0, 0])
eqs19 = [Eq(Derivative(x(t), t), 4*x(t) - z(t)),
Eq(Derivative(y(t), t), 2*x(t) + 2*y(t) - z(t)),
Eq(Derivative(z(t), t), 3*x(t) + y(t))]
sol19 = [Eq(x(t), C2*t**2*exp(2*t)/2 + t*(2*C2 + C3)*exp(2*t) + (C1 + C2 + 2*C3)*exp(2*t)),
Eq(y(t), C2*t**2*exp(2*t)/2 + t*(2*C2 + C3)*exp(2*t) + (C1 + 2*C3)*exp(2*t)),
Eq(z(t), C2*t**2*exp(2*t) + t*(3*C2 + 2*C3)*exp(2*t) + (2*C1 + 3*C3)*exp(2*t))]
assert dsolve(eqs19) == sol19
assert checksysodesol(eqs19, sol19) == (True, [0, 0, 0])
eqs20 = [Eq(Derivative(x(t), t), 4*x(t) - y(t) - 2*z(t)),
Eq(Derivative(y(t), t), 2*x(t) + y(t) - 2*z(t)),
Eq(Derivative(z(t), t), 5*x(t) - 3*z(t))]
sol20 = [Eq(x(t), C1*exp(2*t) - sin(t)*(C2*Rational(3, 5) + C3/5) - cos(t)*(C2/5 + C3*Rational(-3, 5))),
Eq(y(t), -sin(t)*(C2*Rational(3, 5) + C3/5) - cos(t)*(C2/5 + C3*Rational(-3, 5))),
Eq(z(t), C1*exp(2*t) - C2*sin(t) + C3*cos(t))]
assert dsolve(eqs20) == sol20
assert checksysodesol(eqs20, sol20) == (True, [0, 0, 0])
eq21 = (Eq(diff(x(t), t), 9*y(t)), Eq(diff(y(t), t), 12*x(t)))
sol21 = [Eq(x(t), -sqrt(3)*C1*exp(-6*sqrt(3)*t)/2 + sqrt(3)*C2*exp(6*sqrt(3)*t)/2),
Eq(y(t), C1*exp(-6*sqrt(3)*t) + C2*exp(6*sqrt(3)*t))]
assert dsolve(eq21) == sol21
assert checksysodesol(eq21, sol21) == (True, [0, 0])
eqs22 = [Eq(Derivative(x(t), t), 2*x(t) + 4*y(t)),
Eq(Derivative(y(t), t), 12*x(t) + 41*y(t))]
sol22 = [Eq(x(t), C1*(39 - sqrt(1713))*exp(t*(sqrt(1713) + 43)/2)*Rational(-1, 24) + C2*(39 +
sqrt(1713))*exp(t*(43 - sqrt(1713))/2)*Rational(-1, 24)),
Eq(y(t), C1*exp(t*(sqrt(1713) + 43)/2) + C2*exp(t*(43 - sqrt(1713))/2))]
assert dsolve(eqs22) == sol22
assert checksysodesol(eqs22, sol22) == (True, [0, 0])
eqs23 = [Eq(Derivative(x(t), t), x(t) + y(t)),
Eq(Derivative(y(t), t), -2*x(t) + 2*y(t))]
sol23 = [Eq(x(t), (C1/4 + sqrt(7)*C2/4)*cos(sqrt(7)*t/2)*exp(t*Rational(3, 2)) +
sin(sqrt(7)*t/2)*(sqrt(7)*C1/4 + C2*Rational(-1, 4))*exp(t*Rational(3, 2))),
Eq(y(t), C1*cos(sqrt(7)*t/2)*exp(t*Rational(3, 2)) - C2*sin(sqrt(7)*t/2)*exp(t*Rational(3, 2)))]
assert dsolve(eqs23) == sol23
assert checksysodesol(eqs23, sol23) == (True, [0, 0])
# Regression test case for issue #15474
# https://github.com/sympy/sympy/issues/15474
a = Symbol("a", real=True)
eq24 = [x(t).diff(t) - a*y(t), y(t).diff(t) + a*x(t)]
sol24 = [Eq(x(t), C1*sin(a*t) + C2*cos(a*t)), Eq(y(t), C1*cos(a*t) - C2*sin(a*t))]
assert dsolve(eq24) == sol24
assert checksysodesol(eq24, sol24) == (True, [0, 0])
# Regression test case for issue #19150
# https://github.com/sympy/sympy/issues/19150
eqs25 = [Eq(Derivative(f(t), t), 0),
Eq(Derivative(g(t), t), (f(t) - 2*g(t) + x(t))/(b*c)),
Eq(Derivative(x(t), t), (g(t) - 2*x(t) + y(t))/(b*c)),
Eq(Derivative(y(t), t), (h(t) + x(t) - 2*y(t))/(b*c)),
Eq(Derivative(h(t), t), 0)]
sol25 = [Eq(f(t), -3*C1 + 4*C2),
Eq(g(t), -2*C1 + 3*C2 - C3*exp(-2*t/(b*c)) + C4*exp(-t*(sqrt(2) + 2)/(b*c)) + C5*exp(-t*(2 -
sqrt(2))/(b*c))),
Eq(x(t), -C1 + 2*C2 - sqrt(2)*C4*exp(-t*(sqrt(2) + 2)/(b*c)) + sqrt(2)*C5*exp(-t*(2 -
sqrt(2))/(b*c))),
Eq(y(t), C2 + C3*exp(-2*t/(b*c)) + C4*exp(-t*(sqrt(2) + 2)/(b*c)) + C5*exp(-t*(2 - sqrt(2))/(b*c))),
Eq(h(t), C1)]
assert dsolve(eqs25) == sol25
assert checksysodesol(eqs25, sol25) == (True, [0, 0, 0, 0, 0])
eq26 = [Eq(Derivative(f(t), t), 2*f(t)), Eq(Derivative(g(t), t), 3*f(t) + 7*g(t))]
sol26 = [Eq(f(t), -5*C1*exp(2*t)/3), Eq(g(t), C1*exp(2*t) + C2*exp(7*t))]
assert dsolve(eq26) == sol26
assert checksysodesol(eq26, sol26) == (True, [0, 0])
eq27 = [Eq(Derivative(f(t), t), -9*I*f(t) - 4*g(t)), Eq(Derivative(g(t), t), -4*I*g(t))]
sol27 = [Eq(f(t), 4*I*C1*exp(-4*I*t)/5 + C2*exp(-9*I*t)), Eq(g(t), C1*exp(-4*I*t))]
assert dsolve(eq27) == sol27
assert checksysodesol(eq27, sol27) == (True, [0, 0])
eq28 = [Eq(Derivative(f(t), t), -9*I*f(t)), Eq(Derivative(g(t), t), -4*I*g(t))]
sol28 = [Eq(f(t), C1*exp(-9*I*t)), Eq(g(t), C2*exp(-4*I*t))]
assert dsolve(eq28) == sol28
assert checksysodesol(eq28, sol28) == (True, [0, 0])
eq29 = [Eq(Derivative(f(t), t), 0), Eq(Derivative(g(t), t), 0)]
sol29 = [Eq(f(t), C1), Eq(g(t), C2)]
assert dsolve(eq29) == sol29
assert checksysodesol(eq29, sol29) == (True, [0, 0])
eq30 = [Eq(Derivative(f(t), t), f(t)), Eq(Derivative(g(t), t), 0)]
sol30 = [Eq(f(t), C1*exp(t)), Eq(g(t), C2)]
assert dsolve(eq30) == sol30
assert checksysodesol(eq30, sol30) == (True, [0, 0])
eq31 = [Eq(Derivative(f(t), t), g(t)), Eq(Derivative(g(t), t), 0)]
sol31 = [Eq(f(t), C1 + C2*t), Eq(g(t), C2)]
assert dsolve(eq31) == sol31
assert checksysodesol(eq31, sol31) == (True, [0, 0])
eq32 = [Eq(Derivative(f(t), t), 0), Eq(Derivative(g(t), t), f(t))]
sol32 = [Eq(f(t), C1), Eq(g(t), C1*t + C2)]
assert dsolve(eq32) == sol32
assert checksysodesol(eq32, sol32) == (True, [0, 0])
eq33 = [Eq(Derivative(f(t), t), 0), Eq(Derivative(g(t), t), g(t))]
sol33 = [Eq(f(t), C1), Eq(g(t), C2*exp(t))]
assert dsolve(eq33) == sol33
assert checksysodesol(eq33, sol33) == (True, [0, 0])
eq34 = [Eq(Derivative(f(t), t), f(t)), Eq(Derivative(g(t), t), I*g(t))]
sol34 = [Eq(f(t), C1*exp(t)), Eq(g(t), C2*exp(I*t))]
assert dsolve(eq34) == sol34
assert checksysodesol(eq34, sol34) == (True, [0, 0])
eq35 = [Eq(Derivative(f(t), t), I*f(t)), Eq(Derivative(g(t), t), -I*g(t))]
sol35 = [Eq(f(t), C1*exp(I*t)), Eq(g(t), C2*exp(-I*t))]
assert dsolve(eq35) == sol35
assert checksysodesol(eq35, sol35) == (True, [0, 0])
eq36 = [Eq(Derivative(f(t), t), I*g(t)), Eq(Derivative(g(t), t), 0)]
sol36 = [Eq(f(t), I*C1 + I*C2*t), Eq(g(t), C2)]
assert dsolve(eq36) == sol36
assert checksysodesol(eq36, sol36) == (True, [0, 0])
eq37 = [Eq(Derivative(f(t), t), I*g(t)), Eq(Derivative(g(t), t), I*f(t))]
sol37 = [Eq(f(t), -C1*exp(-I*t) + C2*exp(I*t)), Eq(g(t), C1*exp(-I*t) + C2*exp(I*t))]
assert dsolve(eq37) == sol37
assert checksysodesol(eq37, sol37) == (True, [0, 0])
# Multiple systems
eq1 = [Eq(Derivative(f(t), t)**2, g(t)**2), Eq(-f(t) + Derivative(g(t), t), 0)]
sol1 = [[Eq(f(t), -C1*sin(t) - C2*cos(t)),
Eq(g(t), C1*cos(t) - C2*sin(t))],
[Eq(f(t), -C1*exp(-t) + C2*exp(t)),
Eq(g(t), C1*exp(-t) + C2*exp(t))]]
assert dsolve(eq1) == sol1
for sol in sol1:
assert checksysodesol(eq1, sol) == (True, [0, 0])
def test_sysode_linear_neq_order1_type2():
f, g, h, k = symbols('f g h k', cls=Function)
x, t, a, b, c, d, y = symbols('x t a b c d y')
k1, k2 = symbols('k1 k2')
eqs1 = [Eq(Derivative(f(x), x), f(x) + g(x) + 5),
Eq(Derivative(g(x), x), -f(x) - g(x) + 7)]
sol1 = [Eq(f(x), C1 + C2 + 6*x**2 + x*(C2 + 5)),
Eq(g(x), -C1 - 6*x**2 - x*(C2 - 7))]
assert dsolve(eqs1) == sol1
assert checksysodesol(eqs1, sol1) == (True, [0, 0])
eqs2 = [Eq(Derivative(f(x), x), f(x) + g(x) + 5),
Eq(Derivative(g(x), x), f(x) + g(x) + 7)]
sol2 = [Eq(f(x), -C1 + C2*exp(2*x) - x - 3),
Eq(g(x), C1 + C2*exp(2*x) + x - 3)]
assert dsolve(eqs2) == sol2
assert checksysodesol(eqs2, sol2) == (True, [0, 0])
eqs3 = [Eq(Derivative(f(x), x), f(x) + 5),
Eq(Derivative(g(x), x), f(x) + 7)]
sol3 = [Eq(f(x), C1*exp(x) - 5),
Eq(g(x), C1*exp(x) + C2 + 2*x - 5)]
assert dsolve(eqs3) == sol3
assert checksysodesol(eqs3, sol3) == (True, [0, 0])
eqs4 = [Eq(Derivative(f(x), x), f(x) + exp(x)),
Eq(Derivative(g(x), x), x*exp(x) + f(x) + g(x))]
sol4 = [Eq(f(x), C1*exp(x) + x*exp(x)),
Eq(g(x), C1*x*exp(x) + C2*exp(x) + x**2*exp(x))]
assert dsolve(eqs4) == sol4
assert checksysodesol(eqs4, sol4) == (True, [0, 0])
eqs5 = [Eq(Derivative(f(x), x), 5*x + f(x) + g(x)),
Eq(Derivative(g(x), x), f(x) - g(x))]
sol5 = [Eq(f(x), C1*(1 + sqrt(2))*exp(sqrt(2)*x) + C2*(1 - sqrt(2))*exp(-sqrt(2)*x) + x*Rational(-5, 2) +
Rational(-5, 2)),
Eq(g(x), C1*exp(sqrt(2)*x) + C2*exp(-sqrt(2)*x) + x*Rational(-5, 2))]
assert dsolve(eqs5) == sol5
assert checksysodesol(eqs5, sol5) == (True, [0, 0])
eqs6 = [Eq(Derivative(f(x), x), -9*f(x) - 4*g(x)),
Eq(Derivative(g(x), x), -4*g(x)),
Eq(Derivative(h(x), x), h(x) + exp(x))]
sol6 = [Eq(f(x), C2*exp(-4*x)*Rational(-4, 5) + C1*exp(-9*x)),
Eq(g(x), C2*exp(-4*x)),
Eq(h(x), C3*exp(x) + x*exp(x))]
assert dsolve(eqs6) == sol6
assert checksysodesol(eqs6, sol6) == (True, [0, 0, 0])
# Regression test case for issue #8859
# https://github.com/sympy/sympy/issues/8859
eqs7 = [Eq(Derivative(f(t), t), 3*t + f(t)),
Eq(Derivative(g(t), t), g(t))]
sol7 = [Eq(f(t), C1*exp(t) - 3*t - 3),
Eq(g(t), C2*exp(t))]
assert dsolve(eqs7) == sol7
assert checksysodesol(eqs7, sol7) == (True, [0, 0])
# Regression test case for issue #8567
# https://github.com/sympy/sympy/issues/8567
eqs8 = [Eq(Derivative(f(t), t), f(t) + 2*g(t)),
Eq(Derivative(g(t), t), -2*f(t) + g(t) + 2*exp(t))]
sol8 = [Eq(f(t), C1*exp(t)*sin(2*t) + C2*exp(t)*cos(2*t)
+ exp(t)*sin(2*t)**2 + exp(t)*cos(2*t)**2),
Eq(g(t), C1*exp(t)*cos(2*t) - C2*exp(t)*sin(2*t))]
assert dsolve(eqs8) == sol8
assert checksysodesol(eqs8, sol8) == (True, [0, 0])
# Regression test case for issue #19150
# https://github.com/sympy/sympy/issues/19150
eqs9 = [Eq(Derivative(f(t), t), (c - 2*f(t) + g(t))/(a*b)),
Eq(Derivative(g(t), t), (f(t) - 2*g(t) + h(t))/(a*b)),
Eq(Derivative(h(t), t), (d + g(t) - 2*h(t))/(a*b))]
sol9 = [Eq(f(t), -C1*exp(-2*t/(a*b)) + C2*exp(-t*(sqrt(2) + 2)/(a*b)) + C3*exp(-t*(2 - sqrt(2))/(a*b)) +
Mul(Rational(1, 4), 3*c + d, evaluate=False)),
Eq(g(t), -sqrt(2)*C2*exp(-t*(sqrt(2) + 2)/(a*b)) + sqrt(2)*C3*exp(-t*(2 - sqrt(2))/(a*b)) +
Mul(Rational(1, 2), c + d, evaluate=False)),
Eq(h(t), C1*exp(-2*t/(a*b)) + C2*exp(-t*(sqrt(2) + 2)/(a*b)) + C3*exp(-t*(2 - sqrt(2))/(a*b)) +
Mul(Rational(1, 4), c + 3*d, evaluate=False))]
assert dsolve(eqs9) == sol9
assert checksysodesol(eqs9, sol9) == (True, [0, 0, 0])
# Regression test case for issue #16635
# https://github.com/sympy/sympy/issues/16635
eqs10 = [Eq(Derivative(f(t), t), 15*t + f(t) - g(t) - 10),
Eq(Derivative(g(t), t), -15*t + f(t) - g(t) - 5)]
sol10 = [Eq(f(t), C1 + C2 + 5*t**3 + 5*t**2 + t*(C2 - 10)),
Eq(g(t), C1 + 5*t**3 - 10*t**2 + t*(C2 - 5))]
assert dsolve(eqs10) == sol10
assert checksysodesol(eqs10, sol10) == (True, [0, 0])
# Multiple solutions
eqs11 = [Eq(Derivative(f(t), t)**2 - 2*Derivative(f(t), t) + 1, 4),
Eq(-y*f(t) + Derivative(g(t), t), 0)]
sol11 = [[Eq(f(t), C1 - t), Eq(g(t), C1*t*y + C2*y + t**2*y*Rational(-1, 2))],
[Eq(f(t), C1 + 3*t), Eq(g(t), C1*t*y + C2*y + t**2*y*Rational(3, 2))]]
assert dsolve(eqs11) == sol11
for s11 in sol11:
assert checksysodesol(eqs11, s11) == (True, [0, 0])
# test case for issue #19831
# https://github.com/sympy/sympy/issues/19831
n = symbols('n', positive=True)
x0 = symbols('x_0')
t0 = symbols('t_0')
x_0 = symbols('x_0')
t_0 = symbols('t_0')
t = symbols('t')
x = Function('x')
y = Function('y')
T = symbols('T')
eqs12 = [Eq(Derivative(y(t), t), x(t)),
Eq(Derivative(x(t), t), n*(y(t) + 1))]
sol12 = [Eq(y(t), C1*exp(sqrt(n)*t)*n**Rational(-1, 2) - C2*exp(-sqrt(n)*t)*n**Rational(-1, 2) - 1),
Eq(x(t), C1*exp(sqrt(n)*t) + C2*exp(-sqrt(n)*t))]
assert dsolve(eqs12) == sol12
assert checksysodesol(eqs12, sol12) == (True, [0, 0])
sol12b = [
Eq(y(t), (T*exp(-sqrt(n)*t_0)/2 + exp(-sqrt(n)*t_0)/2 +
x_0*exp(-sqrt(n)*t_0)/(2*sqrt(n)))*exp(sqrt(n)*t) +
(T*exp(sqrt(n)*t_0)/2 + exp(sqrt(n)*t_0)/2 -
x_0*exp(sqrt(n)*t_0)/(2*sqrt(n)))*exp(-sqrt(n)*t) - 1),
Eq(x(t), (T*sqrt(n)*exp(-sqrt(n)*t_0)/2 + sqrt(n)*exp(-sqrt(n)*t_0)/2
+ x_0*exp(-sqrt(n)*t_0)/2)*exp(sqrt(n)*t)
- (T*sqrt(n)*exp(sqrt(n)*t_0)/2 + sqrt(n)*exp(sqrt(n)*t_0)/2 -
x_0*exp(sqrt(n)*t_0)/2)*exp(-sqrt(n)*t))
]
assert dsolve(eqs12, ics={y(t0): T, x(t0): x0}) == sol12b
assert checksysodesol(eqs12, sol12b) == (True, [0, 0])
#Test cases added for the issue 19763
#https://github.com/sympy/sympy/issues/19763
eq13 = [Eq(Derivative(f(t), t), f(t) + g(t) + 9),
Eq(Derivative(g(t), t), 2*f(t) + 5*g(t) + 23)]
sol13 = [Eq(f(t), -C1*(2 + sqrt(6))*exp(t*(3 - sqrt(6)))/2 - C2*(2 - sqrt(6))*exp(t*(sqrt(6) + 3))/2 -
Rational(22,3)),
Eq(g(t), C1*exp(t*(3 - sqrt(6))) + C2*exp(t*(sqrt(6) + 3)) - Rational(5,3))]
assert dsolve(eq13) == sol13
assert checksysodesol(eq13, sol13) == (True, [0, 0])
eq14 = [Eq(Derivative(f(t), t), f(t) + g(t) + 81),
Eq(Derivative(g(t), t), -2*f(t) + g(t) + 23)]
sol14 = [Eq(f(t), sqrt(2)*C1*exp(t)*sin(sqrt(2)*t)/2
+ sqrt(2)*C2*exp(t)*cos(sqrt(2)*t)/2
- 58*sin(sqrt(2)*t)**2/3 - 58*cos(sqrt(2)*t)**2/3),
Eq(g(t), C1*exp(t)*cos(sqrt(2)*t) - C2*exp(t)*sin(sqrt(2)*t)
- 185*sin(sqrt(2)*t)**2/3 - 185*cos(sqrt(2)*t)**2/3)]
assert dsolve(eq14) == sol14
assert checksysodesol(eq14, sol14) == (True, [0,0])
eq15 = [Eq(Derivative(f(t), t), f(t) + 2*g(t) + k1),
Eq(Derivative(g(t), t), 3*f(t) + 4*g(t) + k2)]
sol15 = [Eq(f(t), -C1*(3 - sqrt(33))*exp(t*(5 + sqrt(33))/2)/6 -
C2*(3 + sqrt(33))*exp(t*(5 - sqrt(33))/2)/6 + 2*k1 - k2),
Eq(g(t), C1*exp(t*(5 + sqrt(33))/2) + C2*exp(t*(5 - sqrt(33))/2) -
Mul(Rational(1,2), 3*k1 - k2, evaluate = False))]
assert dsolve(eq15) == sol15
assert checksysodesol(eq15, sol15) == (True, [0,0])
eq16 = [Eq(Derivative(f(t), t), k1),
Eq(Derivative(g(t), t), k2)]
sol16 = [Eq(f(t), C1 + k1*t),
Eq(g(t), C2 + k2*t)]
assert dsolve(eq16) == sol16
assert checksysodesol(eq16, sol16) == (True, [0,0])
eq17 = [Eq(Derivative(f(t), t), 0),
Eq(Derivative(g(t), t), c*f(t) + k2)]
sol17 = [Eq(f(t), C1),
Eq(g(t), C2*c + t*(C1*c + k2))]
assert dsolve(eq17) == sol17
assert checksysodesol(eq17 , sol17) == (True , [0,0])
eq18 = [Eq(Derivative(f(t), t), k1),
Eq(Derivative(g(t), t), f(t) + k2)]
sol18 = [Eq(f(t), C1 + k1*t),
Eq(g(t), C2 + k1*t**2/2 + t*(C1 + k2))]
assert dsolve(eq18) == sol18
assert checksysodesol(eq18 , sol18) == (True , [0,0])
eq19 = [Eq(Derivative(f(t), t), k1),
Eq(Derivative(g(t), t), f(t) + 2*g(t) + k2)]
sol19 = [Eq(f(t), -2*C1 + k1*t),
Eq(g(t), C1 + C2*exp(2*t) - k1*t/2 - Mul(Rational(1,4), k1 + 2*k2 , evaluate = False))]
assert dsolve(eq19) == sol19
assert checksysodesol(eq19 , sol19) == (True , [0,0])
eq20 = [Eq(diff(f(t), t), f(t) + k1),
Eq(diff(g(t), t), k2)]
sol20 = [Eq(f(t), C1*exp(t) - k1),
Eq(g(t), C2 + k2*t)]
assert dsolve(eq20) == sol20
assert checksysodesol(eq20 , sol20) == (True , [0,0])
eq21 = [Eq(diff(f(t), t), g(t) + k1),
Eq(diff(g(t), t), 0)]
sol21 = [Eq(f(t), C1 + t*(C2 + k1)),
Eq(g(t), C2)]
assert dsolve(eq21) == sol21
assert checksysodesol(eq21 , sol21) == (True , [0,0])
eq22 = [Eq(Derivative(f(t), t), f(t) + 2*g(t) + k1),
Eq(Derivative(g(t), t), k2)]
sol22 = [Eq(f(t), -2*C1 + C2*exp(t) - k1 - 2*k2*t - 2*k2),
Eq(g(t), C1 + k2*t)]
assert dsolve(eq22) == sol22
assert checksysodesol(eq22 , sol22) == (True , [0,0])
eq23 = [Eq(Derivative(f(t), t), g(t) + k1),
Eq(Derivative(g(t), t), 2*g(t) + k2)]
sol23 = [Eq(f(t), C1 + C2*exp(2*t)/2 - k2/4 + t*(2*k1 - k2)/2),
Eq(g(t), C2*exp(2*t) - k2/2)]
assert dsolve(eq23) == sol23
assert checksysodesol(eq23 , sol23) == (True , [0,0])
eq24 = [Eq(Derivative(f(t), t), f(t) + k1),
Eq(Derivative(g(t), t), 2*f(t) + k2)]
sol24 = [Eq(f(t), C1*exp(t)/2 - k1),
Eq(g(t), C1*exp(t) + C2 - 2*k1 - t*(2*k1 - k2))]
assert dsolve(eq24) == sol24
assert checksysodesol(eq24 , sol24) == (True , [0,0])
eq25 = [Eq(Derivative(f(t), t), f(t) + 2*g(t) + k1),
Eq(Derivative(g(t), t), 3*f(t) + 6*g(t) + k2)]
sol25 = [Eq(f(t), -2*C1 + C2*exp(7*t)/3 + 2*t*(3*k1 - k2)/7 -
Mul(Rational(1,49), k1 + 2*k2 , evaluate = False)),
Eq(g(t), C1 + C2*exp(7*t) - t*(3*k1 - k2)/7 -
Mul(Rational(3,49), k1 + 2*k2 , evaluate = False))]
assert dsolve(eq25) == sol25
assert checksysodesol(eq25 , sol25) == (True , [0,0])
eq26 = [Eq(Derivative(f(t), t), 2*f(t) - g(t) + k1),
Eq(Derivative(g(t), t), 4*f(t) - 2*g(t) + 2*k1)]
sol26 = [Eq(f(t), C1 + 2*C2 + t*(2*C1 + k1)),
Eq(g(t), 4*C2 + t*(4*C1 + 2*k1))]
assert dsolve(eq26) == sol26
assert checksysodesol(eq26 , sol26) == (True , [0,0])
# Test Case added for issue #22715
# https://github.com/sympy/sympy/issues/22715
eq27 = [Eq(diff(x(t),t),-1*y(t)+10), Eq(diff(y(t),t),5*x(t)-2*y(t)+3)]
sol27 = [Eq(x(t), (C1/5 - 2*C2/5)*exp(-t)*cos(2*t)
- (2*C1/5 + C2/5)*exp(-t)*sin(2*t)
+ 17*sin(2*t)**2/5 + 17*cos(2*t)**2/5),
Eq(y(t), C1*exp(-t)*cos(2*t) - C2*exp(-t)*sin(2*t)
+ 10*sin(2*t)**2 + 10*cos(2*t)**2)]
assert dsolve(eq27) == sol27
assert checksysodesol(eq27 , sol27) == (True , [0,0])
def test_sysode_linear_neq_order1_type3():
f, g, h, k, x0 , y0 = symbols('f g h k x0 y0', cls=Function)
x, t, a = symbols('x t a')
r = symbols('r', real=True)
eqs1 = [Eq(Derivative(f(r), r), r*g(r) + f(r)),
Eq(Derivative(g(r), r), -r*f(r) + g(r))]
sol1 = [Eq(f(r), C1*exp(r)*sin(r**2/2) + C2*exp(r)*cos(r**2/2)),
Eq(g(r), C1*exp(r)*cos(r**2/2) - C2*exp(r)*sin(r**2/2))]
assert dsolve(eqs1) == sol1
assert checksysodesol(eqs1, sol1) == (True, [0, 0])
eqs2 = [Eq(Derivative(f(x), x), x**2*g(x) + x*f(x)),
Eq(Derivative(g(x), x), 2*x**2*f(x) + (3*x**2 + x)*g(x))]
sol2 = [Eq(f(x), (sqrt(17)*C1/17 + C2*(17 - 3*sqrt(17))/34)*exp(x**3*(3 + sqrt(17))/6 + x**2/2) -
exp(x**3*(3 - sqrt(17))/6 + x**2/2)*(sqrt(17)*C1/17 + C2*(3*sqrt(17) + 17)*Rational(-1, 34))),
Eq(g(x), exp(x**3*(3 - sqrt(17))/6 + x**2/2)*(C1*(17 - 3*sqrt(17))/34 + sqrt(17)*C2*Rational(-2,
17)) + exp(x**3*(3 + sqrt(17))/6 + x**2/2)*(C1*(3*sqrt(17) + 17)/34 + sqrt(17)*C2*Rational(2, 17)))]
assert dsolve(eqs2) == sol2
assert checksysodesol(eqs2, sol2) == (True, [0, 0])
eqs3 = [Eq(f(x).diff(x), x*f(x) + g(x)),
Eq(g(x).diff(x), -f(x) + x*g(x))]
sol3 = [Eq(f(x), (C1/2 + I*C2/2)*exp(x**2/2 - I*x) + exp(x**2/2 + I*x)*(C1/2 + I*C2*Rational(-1, 2))),
Eq(g(x), (I*C1/2 + C2/2)*exp(x**2/2 + I*x) - exp(x**2/2 - I*x)*(I*C1/2 + C2*Rational(-1, 2)))]
assert dsolve(eqs3) == sol3
assert checksysodesol(eqs3, sol3) == (True, [0, 0])
eqs4 = [Eq(f(x).diff(x), x*(f(x) + g(x) + h(x))), Eq(g(x).diff(x), x*(f(x) + g(x) + h(x))),
Eq(h(x).diff(x), x*(f(x) + g(x) + h(x)))]
sol4 = [Eq(f(x), -C1/3 - C2/3 + 2*C3/3 + (C1/3 + C2/3 + C3/3)*exp(3*x**2/2)),
Eq(g(x), 2*C1/3 - C2/3 - C3/3 + (C1/3 + C2/3 + C3/3)*exp(3*x**2/2)),
Eq(h(x), -C1/3 + 2*C2/3 - C3/3 + (C1/3 + C2/3 + C3/3)*exp(3*x**2/2))]
assert dsolve(eqs4) == sol4
assert checksysodesol(eqs4, sol4) == (True, [0, 0, 0])
eqs5 = [Eq(f(x).diff(x), x**2*(f(x) + g(x) + h(x))), Eq(g(x).diff(x), x**2*(f(x) + g(x) + h(x))),
Eq(h(x).diff(x), x**2*(f(x) + g(x) + h(x)))]
sol5 = [Eq(f(x), -C1/3 - C2/3 + 2*C3/3 + (C1/3 + C2/3 + C3/3)*exp(x**3)),
Eq(g(x), 2*C1/3 - C2/3 - C3/3 + (C1/3 + C2/3 + C3/3)*exp(x**3)),
Eq(h(x), -C1/3 + 2*C2/3 - C3/3 + (C1/3 + C2/3 + C3/3)*exp(x**3))]
assert dsolve(eqs5) == sol5
assert checksysodesol(eqs5, sol5) == (True, [0, 0, 0])
eqs6 = [Eq(Derivative(f(x), x), x*(f(x) + g(x) + h(x) + k(x))),
Eq(Derivative(g(x), x), x*(f(x) + g(x) + h(x) + k(x))),
Eq(Derivative(h(x), x), x*(f(x) + g(x) + h(x) + k(x))),
Eq(Derivative(k(x), x), x*(f(x) + g(x) + h(x) + k(x)))]
sol6 = [Eq(f(x), -C1/4 - C2/4 - C3/4 + 3*C4/4 + (C1/4 + C2/4 + C3/4 + C4/4)*exp(2*x**2)),
Eq(g(x), 3*C1/4 - C2/4 - C3/4 - C4/4 + (C1/4 + C2/4 + C3/4 + C4/4)*exp(2*x**2)),
Eq(h(x), -C1/4 + 3*C2/4 - C3/4 - C4/4 + (C1/4 + C2/4 + C3/4 + C4/4)*exp(2*x**2)),
Eq(k(x), -C1/4 - C2/4 + 3*C3/4 - C4/4 + (C1/4 + C2/4 + C3/4 + C4/4)*exp(2*x**2))]
assert dsolve(eqs6) == sol6
assert checksysodesol(eqs6, sol6) == (True, [0, 0, 0, 0])
y = symbols("y", real=True)
eqs7 = [Eq(Derivative(f(y), y), y*f(y) + g(y)),
Eq(Derivative(g(y), y), y*g(y) - f(y))]
sol7 = [Eq(f(y), C1*exp(y**2/2)*sin(y) + C2*exp(y**2/2)*cos(y)),
Eq(g(y), C1*exp(y**2/2)*cos(y) - C2*exp(y**2/2)*sin(y))]
assert dsolve(eqs7) == sol7
assert checksysodesol(eqs7, sol7) == (True, [0, 0])
#Test cases added for the issue 19763
#https://github.com/sympy/sympy/issues/19763
eqs8 = [Eq(Derivative(f(t), t), 5*t*f(t) + 2*h(t)),
Eq(Derivative(h(t), t), 2*f(t) + 5*t*h(t))]
sol8 = [Eq(f(t), Mul(-1, (C1/2 - C2/2), evaluate = False)*exp(5*t**2/2 - 2*t) + (C1/2 + C2/2)*exp(5*t**2/2 + 2*t)),
Eq(h(t), (C1/2 - C2/2)*exp(5*t**2/2 - 2*t) + (C1/2 + C2/2)*exp(5*t**2/2 + 2*t))]
assert dsolve(eqs8) == sol8
assert checksysodesol(eqs8, sol8) == (True, [0, 0])
eqs9 = [Eq(diff(f(t), t), 5*t*f(t) + t**2*g(t)),
Eq(diff(g(t), t), -t**2*f(t) + 5*t*g(t))]
sol9 = [Eq(f(t), (C1/2 - I*C2/2)*exp(I*t**3/3 + 5*t**2/2) + (C1/2 + I*C2/2)*exp(-I*t**3/3 + 5*t**2/2)),
Eq(g(t), Mul(-1, (I*C1/2 - C2/2) , evaluate = False)*exp(-I*t**3/3 + 5*t**2/2) + (I*C1/2 + C2/2)*exp(I*t**3/3 + 5*t**2/2))]
assert dsolve(eqs9) == sol9
assert checksysodesol(eqs9 , sol9) == (True , [0,0])
eqs10 = [Eq(diff(f(t), t), t**2*g(t) + 5*t*f(t)),
Eq(diff(g(t), t), -t**2*f(t) + (9*t**2 + 5*t)*g(t))]
sol10 = [Eq(f(t), (C1*(77 - 9*sqrt(77))/154 + sqrt(77)*C2/77)*exp(t**3*(sqrt(77) + 9)/6 + 5*t**2/2) + (C1*(77 + 9*sqrt(77))/154 - sqrt(77)*C2/77)*exp(t**3*(9 - sqrt(77))/6 + 5*t**2/2)),
Eq(g(t), (sqrt(77)*C1/77 + C2*(77 - 9*sqrt(77))/154)*exp(t**3*(9 - sqrt(77))/6 + 5*t**2/2) - (sqrt(77)*C1/77 - C2*(77 + 9*sqrt(77))/154)*exp(t**3*(sqrt(77) + 9)/6 + 5*t**2/2))]
assert dsolve(eqs10) == sol10
assert checksysodesol(eqs10 , sol10) == (True , [0,0])
eqs11 = [Eq(diff(f(t), t), 5*t*f(t) + t**2*g(t)),
Eq(diff(g(t), t), (1-t**2)*f(t) + (5*t + 9*t**2)*g(t))]
sol11 = [Eq(f(t), C1*x0(t) + C2*x0(t)*Integral(t**2*exp(Integral(5*t, t))*exp(Integral(9*t**2 + 5*t, t))/x0(t)**2, t)),
Eq(g(t), C1*y0(t) + C2*(y0(t)*Integral(t**2*exp(Integral(5*t, t))*exp(Integral(9*t**2 + 5*t, t))/x0(t)**2, t) + exp(Integral(5*t, t))*exp(Integral(9*t**2 + 5*t, t))/x0(t)))]
assert dsolve(eqs11) == sol11
@slow
def test_sysode_linear_neq_order1_type4():
f, g, h, k = symbols('f g h k', cls=Function)
x, t, a = symbols('x t a')
r = symbols('r', real=True)
eqs1 = [Eq(diff(f(r), r), f(r) + r*g(r) + r**2), Eq(diff(g(r), r), -r*f(r) + g(r) + r)]
sol1 = [Eq(f(r), C1*exp(r)*sin(r**2/2) + C2*exp(r)*cos(r**2/2) + exp(r)*sin(r**2/2)*Integral(r**2*exp(-r)*sin(r**2/2) +
r*exp(-r)*cos(r**2/2), r) + exp(r)*cos(r**2/2)*Integral(r**2*exp(-r)*cos(r**2/2) - r*exp(-r)*sin(r**2/2), r)),
Eq(g(r), C1*exp(r)*cos(r**2/2) - C2*exp(r)*sin(r**2/2) - exp(r)*sin(r**2/2)*Integral(r**2*exp(-r)*cos(r**2/2) -
r*exp(-r)*sin(r**2/2), r) + exp(r)*cos(r**2/2)*Integral(r**2*exp(-r)*sin(r**2/2) + r*exp(-r)*cos(r**2/2), r))]
assert dsolve(eqs1) == sol1
assert checksysodesol(eqs1, sol1) == (True, [0, 0])
eqs2 = [Eq(diff(f(r), r), f(r) + r*g(r) + r), Eq(diff(g(r), r), -r*f(r) + g(r) + log(r))]
sol2 = [Eq(f(r), C1*exp(r)*sin(r**2/2) + C2*exp(r)*cos(r**2/2) + exp(r)*sin(r**2/2)*Integral(r*exp(-r)*sin(r**2/2) +
exp(-r)*log(r)*cos(r**2/2), r) + exp(r)*cos(r**2/2)*Integral(r*exp(-r)*cos(r**2/2) - exp(-r)*log(r)*sin(
r**2/2), r)),
Eq(g(r), C1*exp(r)*cos(r**2/2) - C2*exp(r)*sin(r**2/2) - exp(r)*sin(r**2/2)*Integral(r*exp(-r)*cos(r**2/2) -
exp(-r)*log(r)*sin(r**2/2), r) + exp(r)*cos(r**2/2)*Integral(r*exp(-r)*sin(r**2/2) + exp(-r)*log(r)*cos(
r**2/2), r))]
# XXX: dsolve hangs for this in integration
assert dsolve_system(eqs2, simplify=False, doit=False) == [sol2]
assert checksysodesol(eqs2, sol2) == (True, [0, 0])
eqs3 = [Eq(Derivative(f(x), x), x*(f(x) + g(x) + h(x)) + x),
Eq(Derivative(g(x), x), x*(f(x) + g(x) + h(x)) + x),
Eq(Derivative(h(x), x), x*(f(x) + g(x) + h(x)) + 1)]
sol3 = [Eq(f(x), C1*Rational(-1, 3) + C2*Rational(-1, 3) + C3*Rational(2, 3) + x**2/6 + x*Rational(-1, 3) +
(C1/3 + C2/3 + C3/3)*exp(x**2*Rational(3, 2)) +
sqrt(6)*sqrt(pi)*erf(sqrt(6)*x/2)*exp(x**2*Rational(3, 2))/18 + Rational(-2, 9)),
Eq(g(x), C1*Rational(2, 3) + C2*Rational(-1, 3) + C3*Rational(-1, 3) + x**2/6 + x*Rational(-1, 3) +
(C1/3 + C2/3 + C3/3)*exp(x**2*Rational(3, 2)) +
sqrt(6)*sqrt(pi)*erf(sqrt(6)*x/2)*exp(x**2*Rational(3, 2))/18 + Rational(-2, 9)),
Eq(h(x), C1*Rational(-1, 3) + C2*Rational(2, 3) + C3*Rational(-1, 3) + x**2*Rational(-1, 3) +
x*Rational(2, 3) + (C1/3 + C2/3 + C3/3)*exp(x**2*Rational(3, 2)) +
sqrt(6)*sqrt(pi)*erf(sqrt(6)*x/2)*exp(x**2*Rational(3, 2))/18 + Rational(-2, 9))]
assert dsolve(eqs3) == sol3
assert checksysodesol(eqs3, sol3) == (True, [0, 0, 0])
eqs4 = [Eq(Derivative(f(x), x), x*(f(x) + g(x) + h(x)) + sin(x)),
Eq(Derivative(g(x), x), x*(f(x) + g(x) + h(x)) + sin(x)),
Eq(Derivative(h(x), x), x*(f(x) + g(x) + h(x)) + sin(x))]
sol4 = [Eq(f(x), C1*Rational(-1, 3) + C2*Rational(-1, 3) + C3*Rational(2, 3) + (C1/3 + C2/3 +
C3/3)*exp(x**2*Rational(3, 2)) + Integral(sin(x)*exp(x**2*Rational(-3, 2)), x)*exp(x**2*Rational(3,
2))),
Eq(g(x), C1*Rational(2, 3) + C2*Rational(-1, 3) + C3*Rational(-1, 3) + (C1/3 + C2/3 +
C3/3)*exp(x**2*Rational(3, 2)) + Integral(sin(x)*exp(x**2*Rational(-3, 2)), x)*exp(x**2*Rational(3,
2))),
Eq(h(x), C1*Rational(-1, 3) + C2*Rational(2, 3) + C3*Rational(-1, 3) + (C1/3 + C2/3 +
C3/3)*exp(x**2*Rational(3, 2)) + Integral(sin(x)*exp(x**2*Rational(-3, 2)), x)*exp(x**2*Rational(3,
2)))]
assert dsolve(eqs4) == sol4
assert checksysodesol(eqs4, sol4) == (True, [0, 0, 0])
eqs5 = [Eq(Derivative(f(x), x), x*(f(x) + g(x) + h(x) + k(x) + 1)),
Eq(Derivative(g(x), x), x*(f(x) + g(x) + h(x) + k(x) + 1)),
Eq(Derivative(h(x), x), x*(f(x) + g(x) + h(x) + k(x) + 1)),
Eq(Derivative(k(x), x), x*(f(x) + g(x) + h(x) + k(x) + 1))]
sol5 = [Eq(f(x), C1*Rational(-1, 4) + C2*Rational(-1, 4) + C3*Rational(-1, 4) + C4*Rational(3, 4) + (C1/4 +
C2/4 + C3/4 + C4/4)*exp(2*x**2) + Rational(-1, 4)),
Eq(g(x), C1*Rational(3, 4) + C2*Rational(-1, 4) + C3*Rational(-1, 4) + C4*Rational(-1, 4) + (C1/4 +
C2/4 + C3/4 + C4/4)*exp(2*x**2) + Rational(-1, 4)),
Eq(h(x), C1*Rational(-1, 4) + C2*Rational(3, 4) + C3*Rational(-1, 4) + C4*Rational(-1, 4) + (C1/4 +
C2/4 + C3/4 + C4/4)*exp(2*x**2) + Rational(-1, 4)),
Eq(k(x), C1*Rational(-1, 4) + C2*Rational(-1, 4) + C3*Rational(3, 4) + C4*Rational(-1, 4) + (C1/4 +
C2/4 + C3/4 + C4/4)*exp(2*x**2) + Rational(-1, 4))]
assert dsolve(eqs5) == sol5
assert checksysodesol(eqs5, sol5) == (True, [0, 0, 0, 0])
eqs6 = [Eq(Derivative(f(x), x), x**2*(f(x) + g(x) + h(x) + k(x) + 1)),
Eq(Derivative(g(x), x), x**2*(f(x) + g(x) + h(x) + k(x) + 1)),
Eq(Derivative(h(x), x), x**2*(f(x) + g(x) + h(x) + k(x) + 1)),
Eq(Derivative(k(x), x), x**2*(f(x) + g(x) + h(x) + k(x) + 1))]
sol6 = [Eq(f(x), C1*Rational(-1, 4) + C2*Rational(-1, 4) + C3*Rational(-1, 4) + C4*Rational(3, 4) + (C1/4 +
C2/4 + C3/4 + C4/4)*exp(x**3*Rational(4, 3)) + Rational(-1, 4)),
Eq(g(x), C1*Rational(3, 4) + C2*Rational(-1, 4) + C3*Rational(-1, 4) + C4*Rational(-1, 4) + (C1/4 +
C2/4 + C3/4 + C4/4)*exp(x**3*Rational(4, 3)) + Rational(-1, 4)),
Eq(h(x), C1*Rational(-1, 4) + C2*Rational(3, 4) + C3*Rational(-1, 4) + C4*Rational(-1, 4) + (C1/4 +
C2/4 + C3/4 + C4/4)*exp(x**3*Rational(4, 3)) + Rational(-1, 4)),
Eq(k(x), C1*Rational(-1, 4) + C2*Rational(-1, 4) + C3*Rational(3, 4) + C4*Rational(-1, 4) + (C1/4 +
C2/4 + C3/4 + C4/4)*exp(x**3*Rational(4, 3)) + Rational(-1, 4))]
assert dsolve(eqs6) == sol6
assert checksysodesol(eqs6, sol6) == (True, [0, 0, 0, 0])
eqs7 = [Eq(Derivative(f(x), x), (f(x) + g(x) + h(x))*log(x) + sin(x)), Eq(Derivative(g(x), x), (f(x) + g(x)
+ h(x))*log(x) + sin(x)), Eq(Derivative(h(x), x), (f(x) + g(x) + h(x))*log(x) + sin(x))]
sol7 = [Eq(f(x), -C1/3 - C2/3 + 2*C3/3 + (C1/3 + C2/3 +
C3/3)*exp(x*(3*log(x) - 3)) + exp(x*(3*log(x) -
3))*Integral(exp(3*x)*exp(-3*x*log(x))*sin(x), x)),
Eq(g(x), 2*C1/3 - C2/3 - C3/3 + (C1/3 + C2/3 +
C3/3)*exp(x*(3*log(x) - 3)) + exp(x*(3*log(x) -
3))*Integral(exp(3*x)*exp(-3*x*log(x))*sin(x), x)),
Eq(h(x), -C1/3 + 2*C2/3 - C3/3 + (C1/3 + C2/3 +
C3/3)*exp(x*(3*log(x) - 3)) + exp(x*(3*log(x) -
3))*Integral(exp(3*x)*exp(-3*x*log(x))*sin(x), x))]
with dotprodsimp(True):
assert dsolve(eqs7, simplify=False, doit=False) == sol7
assert checksysodesol(eqs7, sol7) == (True, [0, 0, 0])
eqs8 = [Eq(Derivative(f(x), x), (f(x) + g(x) + h(x) + k(x))*log(x) + sin(x)), Eq(Derivative(g(x), x), (f(x)
+ g(x) + h(x) + k(x))*log(x) + sin(x)), Eq(Derivative(h(x), x), (f(x) + g(x) + h(x) + k(x))*log(x) +
sin(x)), Eq(Derivative(k(x), x), (f(x) + g(x) + h(x) + k(x))*log(x) + sin(x))]
sol8 = [Eq(f(x), -C1/4 - C2/4 - C3/4 + 3*C4/4 + (C1/4 + C2/4 + C3/4 +
C4/4)*exp(x*(4*log(x) - 4)) + exp(x*(4*log(x) -
4))*Integral(exp(4*x)*exp(-4*x*log(x))*sin(x), x)),
Eq(g(x), 3*C1/4 - C2/4 - C3/4 - C4/4 + (C1/4 + C2/4 + C3/4 +
C4/4)*exp(x*(4*log(x) - 4)) + exp(x*(4*log(x) -
4))*Integral(exp(4*x)*exp(-4*x*log(x))*sin(x), x)),
Eq(h(x), -C1/4 + 3*C2/4 - C3/4 - C4/4 + (C1/4 + C2/4 + C3/4 +
C4/4)*exp(x*(4*log(x) - 4)) + exp(x*(4*log(x) -
4))*Integral(exp(4*x)*exp(-4*x*log(x))*sin(x), x)),
Eq(k(x), -C1/4 - C2/4 + 3*C3/4 - C4/4 + (C1/4 + C2/4 + C3/4 +
C4/4)*exp(x*(4*log(x) - 4)) + exp(x*(4*log(x) -
4))*Integral(exp(4*x)*exp(-4*x*log(x))*sin(x), x))]
with dotprodsimp(True):
assert dsolve(eqs8) == sol8
assert checksysodesol(eqs8, sol8) == (True, [0, 0, 0, 0])
def test_sysode_linear_neq_order1_type5_type6():
f, g = symbols("f g", cls=Function)
x, x_ = symbols("x x_")
# Type 5
eqs1 = [Eq(Derivative(f(x), x), (2*f(x) + g(x))/x), Eq(Derivative(g(x), x), (f(x) + 2*g(x))/x)]
sol1 = [Eq(f(x), -C1*x + C2*x**3), Eq(g(x), C1*x + C2*x**3)]
assert dsolve(eqs1) == sol1
assert checksysodesol(eqs1, sol1) == (True, [0, 0])
# Type 6
eqs2 = [Eq(Derivative(f(x), x), (2*f(x) + g(x) + 1)/x),
Eq(Derivative(g(x), x), (x + f(x) + 2*g(x))/x)]
sol2 = [Eq(f(x), C2*x**3 - x*(C1 + Rational(1, 4)) + x*log(x)*Rational(-1, 2) + Rational(-2, 3)),
Eq(g(x), C2*x**3 + x*log(x)/2 + x*(C1 + Rational(-1, 4)) + Rational(1, 3))]
assert dsolve(eqs2) == sol2
assert checksysodesol(eqs2, sol2) == (True, [0, 0])
def test_higher_order_to_first_order():
f, g = symbols('f g', cls=Function)
x = symbols('x')
eqs1 = [Eq(Derivative(f(x), (x, 2)), 2*f(x) + g(x)),
Eq(Derivative(g(x), (x, 2)), -f(x))]
sol1 = [Eq(f(x), -C2*x*exp(-x) + C3*x*exp(x) - (C1 - C2)*exp(-x) + (C3 + C4)*exp(x)),
Eq(g(x), C2*x*exp(-x) - C3*x*exp(x) + (C1 + C2)*exp(-x) + (C3 - C4)*exp(x))]
assert dsolve(eqs1) == sol1
assert checksysodesol(eqs1, sol1) == (True, [0, 0])
eqs2 = [Eq(f(x).diff(x, 2), 0), Eq(g(x).diff(x, 2), f(x))]
sol2 = [Eq(f(x), C1 + C2*x), Eq(g(x), C1*x**2/2 + C2*x**3/6 + C3 + C4*x)]
assert dsolve(eqs2) == sol2
assert checksysodesol(eqs2, sol2) == (True, [0, 0])
eqs3 = [Eq(Derivative(f(x), (x, 2)), 2*f(x)),
Eq(Derivative(g(x), (x, 2)), -f(x) + 2*g(x))]
sol3 = [Eq(f(x), 4*C1*exp(-sqrt(2)*x) + 4*C2*exp(sqrt(2)*x)),
Eq(g(x), sqrt(2)*C1*x*exp(-sqrt(2)*x) - sqrt(2)*C2*x*exp(sqrt(2)*x) + (C1 +
sqrt(2)*C4)*exp(-sqrt(2)*x) + (C2 - sqrt(2)*C3)*exp(sqrt(2)*x))]
assert dsolve(eqs3) == sol3
assert checksysodesol(eqs3, sol3) == (True, [0, 0])
eqs4 = [Eq(Derivative(f(x), (x, 2)), 2*f(x) + g(x)),
Eq(Derivative(g(x), (x, 2)), 2*g(x))]
sol4 = [Eq(f(x), C1*x*exp(sqrt(2)*x)/4 + C3*x*exp(-sqrt(2)*x)/4 + (C2/4 + sqrt(2)*C3/8)*exp(-sqrt(2)*x) -
exp(sqrt(2)*x)*(sqrt(2)*C1/8 + C4*Rational(-1, 4))),
Eq(g(x), sqrt(2)*C1*exp(sqrt(2)*x)/2 + sqrt(2)*C3*exp(-sqrt(2)*x)*Rational(-1, 2))]
assert dsolve(eqs4) == sol4
assert checksysodesol(eqs4, sol4) == (True, [0, 0])
eqs5 = [Eq(f(x).diff(x, 2), f(x)), Eq(g(x).diff(x, 2), f(x))]
sol5 = [Eq(f(x), -C1*exp(-x) + C2*exp(x)), Eq(g(x), -C1*exp(-x) + C2*exp(x) + C3 + C4*x)]
assert dsolve(eqs5) == sol5
assert checksysodesol(eqs5, sol5) == (True, [0, 0])
eqs6 = [Eq(Derivative(f(x), (x, 2)), f(x) + g(x)),
Eq(Derivative(g(x), (x, 2)), -f(x) - g(x))]
sol6 = [Eq(f(x), C1 + C2*x**2/2 + C2 + C4*x**3/6 + x*(C3 + C4)),
Eq(g(x), -C1 + C2*x**2*Rational(-1, 2) - C3*x + C4*x**3*Rational(-1, 6))]
assert dsolve(eqs6) == sol6
assert checksysodesol(eqs6, sol6) == (True, [0, 0])
eqs7 = [Eq(Derivative(f(x), (x, 2)), f(x) + g(x) + 1),
Eq(Derivative(g(x), (x, 2)), f(x) + g(x) + 1)]
sol7 = [Eq(f(x), -C1 - C2*x + sqrt(2)*C3*exp(sqrt(2)*x)/2 + sqrt(2)*C4*exp(-sqrt(2)*x)*Rational(-1, 2) +
Rational(-1, 2)),
Eq(g(x), C1 + C2*x + sqrt(2)*C3*exp(sqrt(2)*x)/2 + sqrt(2)*C4*exp(-sqrt(2)*x)*Rational(-1, 2) +
Rational(-1, 2))]
assert dsolve(eqs7) == sol7
assert checksysodesol(eqs7, sol7) == (True, [0, 0])
eqs8 = [Eq(Derivative(f(x), (x, 2)), f(x) + g(x) + 1),
Eq(Derivative(g(x), (x, 2)), -f(x) - g(x) + 1)]
sol8 = [Eq(f(x), C1 + C2 + C4*x**3/6 + x**4/12 + x**2*(C2/2 + Rational(1, 2)) + x*(C3 + C4)),
Eq(g(x), -C1 - C3*x + C4*x**3*Rational(-1, 6) + x**4*Rational(-1, 12) - x**2*(C2/2 + Rational(-1,
2)))]
assert dsolve(eqs8) == sol8
assert checksysodesol(eqs8, sol8) == (True, [0, 0])
x, y = symbols('x, y', cls=Function)
t, l = symbols('t, l')
eqs10 = [Eq(Derivative(x(t), (t, 2)), 5*x(t) + 43*y(t)),
Eq(Derivative(y(t), (t, 2)), x(t) + 9*y(t))]
sol10 = [Eq(x(t), C1*(61 - 9*sqrt(47))*sqrt(sqrt(47) + 7)*exp(-t*sqrt(sqrt(47) + 7))/2 + C2*sqrt(7 -
sqrt(47))*(61 + 9*sqrt(47))*exp(-t*sqrt(7 - sqrt(47)))/2 + C3*(61 - 9*sqrt(47))*sqrt(sqrt(47) +
7)*exp(t*sqrt(sqrt(47) + 7))*Rational(-1, 2) + C4*sqrt(7 - sqrt(47))*(61 + 9*sqrt(47))*exp(t*sqrt(7
- sqrt(47)))*Rational(-1, 2)),
Eq(y(t), C1*(7 - sqrt(47))*sqrt(sqrt(47) + 7)*exp(-t*sqrt(sqrt(47) + 7))*Rational(-1, 2) + C2*sqrt(7
- sqrt(47))*(sqrt(47) + 7)*exp(-t*sqrt(7 - sqrt(47)))*Rational(-1, 2) + C3*(7 -
sqrt(47))*sqrt(sqrt(47) + 7)*exp(t*sqrt(sqrt(47) + 7))/2 + C4*sqrt(7 - sqrt(47))*(sqrt(47) +
7)*exp(t*sqrt(7 - sqrt(47)))/2)]
assert dsolve(eqs10) == sol10
assert checksysodesol(eqs10, sol10) == (True, [0, 0])
eqs11 = [Eq(7*x(t) + Derivative(x(t), (t, 2)) - 9*Derivative(y(t), t), 0),
Eq(7*y(t) + 9*Derivative(x(t), t) + Derivative(y(t), (t, 2)), 0)]
sol11 = [Eq(y(t), C1*(9 - sqrt(109))*sin(sqrt(2)*t*sqrt(9*sqrt(109) + 95)/2)/14 + C2*(9 -
sqrt(109))*cos(sqrt(2)*t*sqrt(9*sqrt(109) + 95)/2)*Rational(-1, 14) + C3*(9 +
sqrt(109))*sin(sqrt(2)*t*sqrt(95 - 9*sqrt(109))/2)/14 + C4*(9 + sqrt(109))*cos(sqrt(2)*t*sqrt(95 -
9*sqrt(109))/2)*Rational(-1, 14)),
Eq(x(t), C1*(9 - sqrt(109))*cos(sqrt(2)*t*sqrt(9*sqrt(109) + 95)/2)*Rational(-1, 14) + C2*(9 -
sqrt(109))*sin(sqrt(2)*t*sqrt(9*sqrt(109) + 95)/2)*Rational(-1, 14) + C3*(9 +
sqrt(109))*cos(sqrt(2)*t*sqrt(95 - 9*sqrt(109))/2)/14 + C4*(9 + sqrt(109))*sin(sqrt(2)*t*sqrt(95 -
9*sqrt(109))/2)/14)]
assert dsolve(eqs11) == sol11
assert checksysodesol(eqs11, sol11) == (True, [0, 0])
# Euler Systems
# Note: To add examples of euler systems solver with non-homogeneous term.
eqs13 = [Eq(Derivative(f(t), (t, 2)), Derivative(f(t), t)/t + f(t)/t**2 + g(t)/t**2),
Eq(Derivative(g(t), (t, 2)), g(t)/t**2)]
sol13 = [Eq(f(t), C1*(sqrt(5) + 3)*Rational(-1, 2)*t**(Rational(1, 2) +
sqrt(5)*Rational(-1, 2)) + C2*t**(Rational(1, 2) +
sqrt(5)/2)*(3 - sqrt(5))*Rational(-1, 2) - C3*t**(1 -
sqrt(2))*(1 + sqrt(2)) - C4*t**(1 + sqrt(2))*(1 - sqrt(2))),
Eq(g(t), C1*(1 + sqrt(5))*Rational(-1, 2)*t**(Rational(1, 2) +
sqrt(5)*Rational(-1, 2)) + C2*t**(Rational(1, 2) +
sqrt(5)/2)*(1 - sqrt(5))*Rational(-1, 2))]
assert dsolve(eqs13) == sol13
assert checksysodesol(eqs13, sol13) == (True, [0, 0])
# Solving systems using dsolve separately
eqs14 = [Eq(Derivative(f(t), (t, 2)), t*f(t)),
Eq(Derivative(g(t), (t, 2)), t*g(t))]
sol14 = [Eq(f(t), C1*airyai(t) + C2*airybi(t)),
Eq(g(t), C3*airyai(t) + C4*airybi(t))]
assert dsolve(eqs14) == sol14
assert checksysodesol(eqs14, sol14) == (True, [0, 0])
eqs15 = [Eq(Derivative(x(t), (t, 2)), t*(4*Derivative(x(t), t) + 8*Derivative(y(t), t))),
Eq(Derivative(y(t), (t, 2)), t*(12*Derivative(x(t), t) - 6*Derivative(y(t), t)))]
sol15 = [Eq(x(t), C1 - erf(sqrt(6)*t)*(sqrt(6)*sqrt(pi)*C2/33 + sqrt(6)*sqrt(pi)*C3*Rational(-1, 44)) +
erfi(sqrt(5)*t)*(sqrt(5)*sqrt(pi)*C2*Rational(2, 55) + sqrt(5)*sqrt(pi)*C3*Rational(4, 55))),
Eq(y(t), C4 + erf(sqrt(6)*t)*(sqrt(6)*sqrt(pi)*C2*Rational(2, 33) + sqrt(6)*sqrt(pi)*C3*Rational(-1,
22)) + erfi(sqrt(5)*t)*(sqrt(5)*sqrt(pi)*C2*Rational(3, 110) + sqrt(5)*sqrt(pi)*C3*Rational(3, 55)))]
assert dsolve(eqs15) == sol15
assert checksysodesol(eqs15, sol15) == (True, [0, 0])
@slow
def test_higher_order_to_first_order_9():
f, g = symbols('f g', cls=Function)
x = symbols('x')
eqs9 = [f(x) + g(x) - 2*exp(I*x) + 2*Derivative(f(x), x) + Derivative(f(x), (x, 2)),
f(x) + g(x) - 2*exp(I*x) + 2*Derivative(g(x), x) + Derivative(g(x), (x, 2))]
sol9 = [Eq(f(x), -C1 + C4*exp(-2*x)/2 - (C2/2 - C3/2)*exp(-x)*cos(x)
+ (C2/2 + C3/2)*exp(-x)*sin(x) + 2*((1 - 2*I)*exp(I*x)*sin(x)**2/5)
+ 2*((1 - 2*I)*exp(I*x)*cos(x)**2/5)),
Eq(g(x), C1 - C4*exp(-2*x)/2 - (C2/2 - C3/2)*exp(-x)*cos(x)
+ (C2/2 + C3/2)*exp(-x)*sin(x) + 2*((1 - 2*I)*exp(I*x)*sin(x)**2/5)
+ 2*((1 - 2*I)*exp(I*x)*cos(x)**2/5))]
assert dsolve(eqs9) == sol9
assert checksysodesol(eqs9, sol9) == (True, [0, 0])
def test_higher_order_to_first_order_12():
f, g = symbols('f g', cls=Function)
x = symbols('x')
x, y = symbols('x, y', cls=Function)
t, l = symbols('t, l')
eqs12 = [Eq(4*x(t) + Derivative(x(t), (t, 2)) + 8*Derivative(y(t), t), 0),
Eq(4*y(t) - 8*Derivative(x(t), t) + Derivative(y(t), (t, 2)), 0)]
sol12 = [Eq(y(t), C1*(2 - sqrt(5))*sin(2*t*sqrt(4*sqrt(5) + 9))*Rational(-1, 2) + C2*(2 -
sqrt(5))*cos(2*t*sqrt(4*sqrt(5) + 9))/2 + C3*(2 + sqrt(5))*sin(2*t*sqrt(9 - 4*sqrt(5)))*Rational(-1,
2) + C4*(2 + sqrt(5))*cos(2*t*sqrt(9 - 4*sqrt(5)))/2),
Eq(x(t), C1*(2 - sqrt(5))*cos(2*t*sqrt(4*sqrt(5) + 9))*Rational(-1, 2) + C2*(2 -
sqrt(5))*sin(2*t*sqrt(4*sqrt(5) + 9))*Rational(-1, 2) + C3*(2 + sqrt(5))*cos(2*t*sqrt(9 -
4*sqrt(5)))/2 + C4*(2 + sqrt(5))*sin(2*t*sqrt(9 - 4*sqrt(5)))/2)]
assert dsolve(eqs12) == sol12
assert checksysodesol(eqs12, sol12) == (True, [0, 0])
def test_second_order_to_first_order_2():
f, g = symbols("f g", cls=Function)
x, t, x_, t_, d, a, m = symbols("x t x_ t_ d a m")
eqs2 = [Eq(f(x).diff(x, 2), 2*(x*g(x).diff(x) - g(x))),
Eq(g(x).diff(x, 2),-2*(x*f(x).diff(x) - f(x)))]
sol2 = [Eq(f(x), C1*x + x*Integral(C2*exp(-x_)*exp(I*exp(2*x_))/2 + C2*exp(-x_)*exp(-I*exp(2*x_))/2 -
I*C3*exp(-x_)*exp(I*exp(2*x_))/2 + I*C3*exp(-x_)*exp(-I*exp(2*x_))/2, (x_, log(x)))),
Eq(g(x), C4*x + x*Integral(I*C2*exp(-x_)*exp(I*exp(2*x_))/2 - I*C2*exp(-x_)*exp(-I*exp(2*x_))/2 +
C3*exp(-x_)*exp(I*exp(2*x_))/2 + C3*exp(-x_)*exp(-I*exp(2*x_))/2, (x_, log(x))))]
# XXX: dsolve hangs for this in integration
assert dsolve_system(eqs2, simplify=False, doit=False) == [sol2]
assert checksysodesol(eqs2, sol2) == (True, [0, 0])
eqs3 = (Eq(diff(f(t),t,t), 9*t*diff(g(t),t)-9*g(t)), Eq(diff(g(t),t,t),7*t*diff(f(t),t)-7*f(t)))
sol3 = [Eq(f(t), C1*t + t*Integral(C2*exp(-t_)*exp(3*sqrt(7)*exp(2*t_)/2)/2 + C2*exp(-t_)*
exp(-3*sqrt(7)*exp(2*t_)/2)/2 + 3*sqrt(7)*C3*exp(-t_)*exp(3*sqrt(7)*exp(2*t_)/2)/14 -
3*sqrt(7)*C3*exp(-t_)*exp(-3*sqrt(7)*exp(2*t_)/2)/14, (t_, log(t)))),
Eq(g(t), C4*t + t*Integral(sqrt(7)*C2*exp(-t_)*exp(3*sqrt(7)*exp(2*t_)/2)/6 - sqrt(7)*C2*exp(-t_)*
exp(-3*sqrt(7)*exp(2*t_)/2)/6 + C3*exp(-t_)*exp(3*sqrt(7)*exp(2*t_)/2)/2 + C3*exp(-t_)*exp(-3*sqrt(7)*
exp(2*t_)/2)/2, (t_, log(t))))]
# XXX: dsolve hangs for this in integration
assert dsolve_system(eqs3, simplify=False, doit=False) == [sol3]
assert checksysodesol(eqs3, sol3) == (True, [0, 0])
# Regression Test case for sympy#19238
# https://github.com/sympy/sympy/issues/19238
# Note: When the doit method is removed, these particular types of systems
# can be divided first so that we have lesser number of big matrices.
eqs5 = [Eq(Derivative(g(t), (t, 2)), a*m),
Eq(Derivative(f(t), (t, 2)), 0)]
sol5 = [Eq(g(t), C1 + C2*t + a*m*t**2/2),
Eq(f(t), C3 + C4*t)]
assert dsolve(eqs5) == sol5
assert checksysodesol(eqs5, sol5) == (True, [0, 0])
# Type 2
eqs6 = [Eq(Derivative(f(t), (t, 2)), f(t)/t**4),
Eq(Derivative(g(t), (t, 2)), d*g(t)/t**4)]
sol6 = [Eq(f(t), C1*sqrt(t**2)*exp(-1/t) - C2*sqrt(t**2)*exp(1/t)),
Eq(g(t), C3*sqrt(t**2)*exp(-sqrt(d)/t)*d**Rational(-1, 2) -
C4*sqrt(t**2)*exp(sqrt(d)/t)*d**Rational(-1, 2))]
assert dsolve(eqs6) == sol6
assert checksysodesol(eqs6, sol6) == (True, [0, 0])
@slow
def test_second_order_to_first_order_slow1():
f, g = symbols("f g", cls=Function)
x, t, x_, t_, d, a, m = symbols("x t x_ t_ d a m")
# Type 1
eqs1 = [Eq(f(x).diff(x, 2), 2/x *(x*g(x).diff(x) - g(x))),
Eq(g(x).diff(x, 2),-2/x *(x*f(x).diff(x) - f(x)))]
sol1 = [Eq(f(x), C1*x + 2*C2*x*Ci(2*x) - C2*sin(2*x) - 2*C3*x*Si(2*x) - C3*cos(2*x)),
Eq(g(x), -2*C2*x*Si(2*x) - C2*cos(2*x) - 2*C3*x*Ci(2*x) + C3*sin(2*x) + C4*x)]
assert dsolve(eqs1) == sol1
assert checksysodesol(eqs1, sol1) == (True, [0, 0])
def test_second_order_to_first_order_slow4():
f, g = symbols("f g", cls=Function)
x, t, x_, t_, d, a, m = symbols("x t x_ t_ d a m")
eqs4 = [Eq(Derivative(f(t), (t, 2)), t*sin(t)*Derivative(g(t), t) - g(t)*sin(t)),
Eq(Derivative(g(t), (t, 2)), t*sin(t)*Derivative(f(t), t) - f(t)*sin(t))]
sol4 = [Eq(f(t), C1*t + t*Integral(C2*exp(-t_)*exp(exp(t_)*cos(exp(t_)))*exp(-sin(exp(t_)))/2 +
C2*exp(-t_)*exp(-exp(t_)*cos(exp(t_)))*exp(sin(exp(t_)))/2 - C3*exp(-t_)*exp(exp(t_)*cos(exp(t_)))*
exp(-sin(exp(t_)))/2 +
C3*exp(-t_)*exp(-exp(t_)*cos(exp(t_)))*exp(sin(exp(t_)))/2, (t_, log(t)))),
Eq(g(t), C4*t + t*Integral(-C2*exp(-t_)*exp(exp(t_)*cos(exp(t_)))*exp(-sin(exp(t_)))/2 +
C2*exp(-t_)*exp(-exp(t_)*cos(exp(t_)))*exp(sin(exp(t_)))/2 + C3*exp(-t_)*exp(exp(t_)*cos(exp(t_)))*
exp(-sin(exp(t_)))/2 + C3*exp(-t_)*exp(-exp(t_)*cos(exp(t_)))*exp(sin(exp(t_)))/2, (t_, log(t))))]
# XXX: dsolve hangs for this in integration
assert dsolve_system(eqs4, simplify=False, doit=False) == [sol4]
assert checksysodesol(eqs4, sol4) == (True, [0, 0])
def test_component_division():
f, g, h, k = symbols('f g h k', cls=Function)
x = symbols("x")
funcs = [f(x), g(x), h(x), k(x)]
eqs1 = [Eq(Derivative(f(x), x), 2*f(x)),
Eq(Derivative(g(x), x), f(x)),
Eq(Derivative(h(x), x), h(x)),
Eq(Derivative(k(x), x), h(x)**4 + k(x))]
sol1 = [Eq(f(x), 2*C1*exp(2*x)),
Eq(g(x), C1*exp(2*x) + C2),
Eq(h(x), C3*exp(x)),
Eq(k(x), C3**4*exp(4*x)/3 + C4*exp(x))]
assert dsolve(eqs1) == sol1
assert checksysodesol(eqs1, sol1) == (True, [0, 0, 0, 0])
components1 = {((Eq(Derivative(f(x), x), 2*f(x)),), (Eq(Derivative(g(x), x), f(x)),)),
((Eq(Derivative(h(x), x), h(x)),), (Eq(Derivative(k(x), x), h(x)**4 + k(x)),))}
eqsdict1 = ({f(x): set(), g(x): {f(x)}, h(x): set(), k(x): {h(x)}},
{f(x): Eq(Derivative(f(x), x), 2*f(x)),
g(x): Eq(Derivative(g(x), x), f(x)),
h(x): Eq(Derivative(h(x), x), h(x)),
k(x): Eq(Derivative(k(x), x), h(x)**4 + k(x))})
graph1 = [{f(x), g(x), h(x), k(x)}, {(g(x), f(x)), (k(x), h(x))}]
assert {tuple(tuple(scc) for scc in wcc) for wcc in _component_division(eqs1, funcs, x)} == components1
assert _eqs2dict(eqs1, funcs) == eqsdict1
assert [set(element) for element in _dict2graph(eqsdict1[0])] == graph1
eqs2 = [Eq(Derivative(f(x), x), 2*f(x)),
Eq(Derivative(g(x), x), f(x)),
Eq(Derivative(h(x), x), h(x)),
Eq(Derivative(k(x), x), f(x)**4 + k(x))]
sol2 = [Eq(f(x), C1*exp(2*x)),
Eq(g(x), C1*exp(2*x)/2 + C2),
Eq(h(x), C3*exp(x)),
Eq(k(x), C1**4*exp(8*x)/7 + C4*exp(x))]
assert dsolve(eqs2) == sol2
assert checksysodesol(eqs2, sol2) == (True, [0, 0, 0, 0])
components2 = {frozenset([(Eq(Derivative(f(x), x), 2*f(x)),),
(Eq(Derivative(g(x), x), f(x)),),
(Eq(Derivative(k(x), x), f(x)**4 + k(x)),)]),
frozenset([(Eq(Derivative(h(x), x), h(x)),)])}
eqsdict2 = ({f(x): set(), g(x): {f(x)}, h(x): set(), k(x): {f(x)}},
{f(x): Eq(Derivative(f(x), x), 2*f(x)),
g(x): Eq(Derivative(g(x), x), f(x)),
h(x): Eq(Derivative(h(x), x), h(x)),
k(x): Eq(Derivative(k(x), x), f(x)**4 + k(x))})
graph2 = [{f(x), g(x), h(x), k(x)}, {(g(x), f(x)), (k(x), f(x))}]
assert {frozenset(tuple(scc) for scc in wcc) for wcc in _component_division(eqs2, funcs, x)} == components2
assert _eqs2dict(eqs2, funcs) == eqsdict2
assert [set(element) for element in _dict2graph(eqsdict2[0])] == graph2
eqs3 = [Eq(Derivative(f(x), x), 2*f(x)),
Eq(Derivative(g(x), x), x + f(x)),
Eq(Derivative(h(x), x), h(x)),
Eq(Derivative(k(x), x), f(x)**4 + k(x))]
sol3 = [Eq(f(x), C1*exp(2*x)),
Eq(g(x), C1*exp(2*x)/2 + C2 + x**2/2),
Eq(h(x), C3*exp(x)),
Eq(k(x), C1**4*exp(8*x)/7 + C4*exp(x))]
assert dsolve(eqs3) == sol3
assert checksysodesol(eqs3, sol3) == (True, [0, 0, 0, 0])
components3 = {frozenset([(Eq(Derivative(f(x), x), 2*f(x)),),
(Eq(Derivative(g(x), x), x + f(x)),),
(Eq(Derivative(k(x), x), f(x)**4 + k(x)),)]),
frozenset([(Eq(Derivative(h(x), x), h(x)),),])}
eqsdict3 = ({f(x): set(), g(x): {f(x)}, h(x): set(), k(x): {f(x)}},
{f(x): Eq(Derivative(f(x), x), 2*f(x)),
g(x): Eq(Derivative(g(x), x), x + f(x)),
h(x): Eq(Derivative(h(x), x), h(x)),
k(x): Eq(Derivative(k(x), x), f(x)**4 + k(x))})
graph3 = [{f(x), g(x), h(x), k(x)}, {(g(x), f(x)), (k(x), f(x))}]
assert {frozenset(tuple(scc) for scc in wcc) for wcc in _component_division(eqs3, funcs, x)} == components3
assert _eqs2dict(eqs3, funcs) == eqsdict3
assert [set(l) for l in _dict2graph(eqsdict3[0])] == graph3
# Note: To be uncommented when the default option to call dsolve first for
# single ODE system can be rearranged. This can be done after the doit
# option in dsolve is made False by default.
eqs4 = [Eq(Derivative(f(x), x), x*f(x) + 2*g(x)),
Eq(Derivative(g(x), x), f(x) + x*g(x) + x),
Eq(Derivative(h(x), x), h(x)),
Eq(Derivative(k(x), x), f(x)**4 + k(x))]
sol4 = [Eq(f(x), (C1/2 - sqrt(2)*C2/2 - sqrt(2)*Integral(x*exp(-x**2/2 - sqrt(2)*x)/2 + x*exp(-x**2/2 +\
sqrt(2)*x)/2, x)/2 + Integral(sqrt(2)*x*exp(-x**2/2 - sqrt(2)*x)/2 - sqrt(2)*x*exp(-x**2/2 +\
sqrt(2)*x)/2, x)/2)*exp(x**2/2 - sqrt(2)*x) + (C1/2 + sqrt(2)*C2/2 + sqrt(2)*Integral(x*exp(-x**2/2
- sqrt(2)*x)/2 + x*exp(-x**2/2 + sqrt(2)*x)/2, x)/2 + Integral(sqrt(2)*x*exp(-x**2/2 - sqrt(2)*x)/2
- sqrt(2)*x*exp(-x**2/2 + sqrt(2)*x)/2, x)/2)*exp(x**2/2 + sqrt(2)*x)),
Eq(g(x), (-sqrt(2)*C1/4 + C2/2 + Integral(x*exp(-x**2/2 - sqrt(2)*x)/2 + x*exp(-x**2/2 + sqrt(2)*x)/2, x)/2 -\
sqrt(2)*Integral(sqrt(2)*x*exp(-x**2/2 - sqrt(2)*x)/2 - sqrt(2)*x*exp(-x**2/2 + sqrt(2)*x)/2,
x)/4)*exp(x**2/2 - sqrt(2)*x) + (sqrt(2)*C1/4 + C2/2 + Integral(x*exp(-x**2/2 - sqrt(2)*x)/2 +
x*exp(-x**2/2 + sqrt(2)*x)/2, x)/2 + sqrt(2)*Integral(sqrt(2)*x*exp(-x**2/2 - sqrt(2)*x)/2 -
sqrt(2)*x*exp(-x**2/2 + sqrt(2)*x)/2, x)/4)*exp(x**2/2 + sqrt(2)*x)),
Eq(h(x), C3*exp(x)),
Eq(k(x), C4*exp(x) + exp(x)*Integral((C1*exp(x**2/2 - sqrt(2)*x)/2 + C1*exp(x**2/2 + sqrt(2)*x)/2 -
sqrt(2)*C2*exp(x**2/2 - sqrt(2)*x)/2 + sqrt(2)*C2*exp(x**2/2 + sqrt(2)*x)/2 - sqrt(2)*exp(x**2/2 -
sqrt(2)*x)*Integral(x*exp(-x**2/2 - sqrt(2)*x)/2 + x*exp(-x**2/2 + sqrt(2)*x)/2, x)/2 + exp(x**2/2 -
sqrt(2)*x)*Integral(sqrt(2)*x*exp(-x**2/2 - sqrt(2)*x)/2 - sqrt(2)*x*exp(-x**2/2 + sqrt(2)*x)/2,
x)/2 + sqrt(2)*exp(x**2/2 + sqrt(2)*x)*Integral(x*exp(-x**2/2 - sqrt(2)*x)/2 + x*exp(-x**2/2 +
sqrt(2)*x)/2, x)/2 + exp(x**2/2 + sqrt(2)*x)*Integral(sqrt(2)*x*exp(-x**2/2 - sqrt(2)*x)/2 -
sqrt(2)*x*exp(-x**2/2 + sqrt(2)*x)/2, x)/2)**4*exp(-x), x))]
components4 = {(frozenset([Eq(Derivative(f(x), x), x*f(x) + 2*g(x)),
Eq(Derivative(g(x), x), x*g(x) + x + f(x))]),
frozenset([Eq(Derivative(k(x), x), f(x)**4 + k(x)),])),
(frozenset([Eq(Derivative(h(x), x), h(x)),]),)}
eqsdict4 = ({f(x): {g(x)}, g(x): {f(x)}, h(x): set(), k(x): {f(x)}},
{f(x): Eq(Derivative(f(x), x), x*f(x) + 2*g(x)),
g(x): Eq(Derivative(g(x), x), x*g(x) + x + f(x)),
h(x): Eq(Derivative(h(x), x), h(x)),
k(x): Eq(Derivative(k(x), x), f(x)**4 + k(x))})
graph4 = [{f(x), g(x), h(x), k(x)}, {(f(x), g(x)), (g(x), f(x)), (k(x), f(x))}]
assert {tuple(frozenset(scc) for scc in wcc) for wcc in _component_division(eqs4, funcs, x)} == components4
assert _eqs2dict(eqs4, funcs) == eqsdict4
assert [set(element) for element in _dict2graph(eqsdict4[0])] == graph4
# XXX: dsolve hangs in integration here:
assert dsolve_system(eqs4, simplify=False, doit=False) == [sol4]
assert checksysodesol(eqs4, sol4) == (True, [0, 0, 0, 0])
eqs5 = [Eq(Derivative(f(x), x), x*f(x) + 2*g(x)),
Eq(Derivative(g(x), x), x*g(x) + f(x)),
Eq(Derivative(h(x), x), h(x)),
Eq(Derivative(k(x), x), f(x)**4 + k(x))]
sol5 = [Eq(f(x), (C1/2 - sqrt(2)*C2/2)*exp(x**2/2 - sqrt(2)*x) + (C1/2 + sqrt(2)*C2/2)*exp(x**2/2 + sqrt(2)*x)),
Eq(g(x), (-sqrt(2)*C1/4 + C2/2)*exp(x**2/2 - sqrt(2)*x) + (sqrt(2)*C1/4 + C2/2)*exp(x**2/2 + sqrt(2)*x)),
Eq(h(x), C3*exp(x)),
Eq(k(x), C4*exp(x) + exp(x)*Integral((C1*exp(x**2/2 - sqrt(2)*x)/2 + C1*exp(x**2/2 + sqrt(2)*x)/2 -
sqrt(2)*C2*exp(x**2/2 - sqrt(2)*x)/2 + sqrt(2)*C2*exp(x**2/2 + sqrt(2)*x)/2)**4*exp(-x), x))]
components5 = {(frozenset([Eq(Derivative(f(x), x), x*f(x) + 2*g(x)),
Eq(Derivative(g(x), x), x*g(x) + f(x))]),
frozenset([Eq(Derivative(k(x), x), f(x)**4 + k(x)),])),
(frozenset([Eq(Derivative(h(x), x), h(x)),]),)}
eqsdict5 = ({f(x): {g(x)}, g(x): {f(x)}, h(x): set(), k(x): {f(x)}},
{f(x): Eq(Derivative(f(x), x), x*f(x) + 2*g(x)),
g(x): Eq(Derivative(g(x), x), x*g(x) + f(x)),
h(x): Eq(Derivative(h(x), x), h(x)),
k(x): Eq(Derivative(k(x), x), f(x)**4 + k(x))})
graph5 = [{f(x), g(x), h(x), k(x)}, {(f(x), g(x)), (g(x), f(x)), (k(x), f(x))}]
assert {tuple(frozenset(scc) for scc in wcc) for wcc in _component_division(eqs5, funcs, x)} == components5
assert _eqs2dict(eqs5, funcs) == eqsdict5
assert [set(element) for element in _dict2graph(eqsdict5[0])] == graph5
# XXX: dsolve hangs in integration here:
assert dsolve_system(eqs5, simplify=False, doit=False) == [sol5]
assert checksysodesol(eqs5, sol5) == (True, [0, 0, 0, 0])
def test_linodesolve():
t, x, a = symbols("t x a")
f, g, h = symbols("f g h", cls=Function)
# Testing the Errors
raises(ValueError, lambda: linodesolve(1, t))
raises(ValueError, lambda: linodesolve(a, t))
A1 = Matrix([[1, 2], [2, 4], [4, 6]])
raises(NonSquareMatrixError, lambda: linodesolve(A1, t))
A2 = Matrix([[1, 2, 1], [3, 1, 2]])
raises(NonSquareMatrixError, lambda: linodesolve(A2, t))
# Testing auto functionality
func = [f(t), g(t)]
eq = [Eq(f(t).diff(t) + g(t).diff(t), g(t)), Eq(g(t).diff(t), f(t))]
ceq = canonical_odes(eq, func, t)
(A1, A0), b = linear_ode_to_matrix(ceq[0], func, t, 1)
A = A0
sol = [C1*(-Rational(1, 2) + sqrt(5)/2)*exp(t*(-Rational(1, 2) + sqrt(5)/2)) + C2*(-sqrt(5)/2 - Rational(1, 2))*
exp(t*(-sqrt(5)/2 - Rational(1, 2))),
C1*exp(t*(-Rational(1, 2) + sqrt(5)/2)) + C2*exp(t*(-sqrt(5)/2 - Rational(1, 2)))]
assert constant_renumber(linodesolve(A, t), variables=Tuple(*eq).free_symbols) == sol
# Testing the Errors
raises(ValueError, lambda: linodesolve(1, t, b=Matrix([t+1])))
raises(ValueError, lambda: linodesolve(a, t, b=Matrix([log(t) + sin(t)])))
raises(ValueError, lambda: linodesolve(Matrix([7]), t, b=t**2))
raises(ValueError, lambda: linodesolve(Matrix([a+10]), t, b=log(t)*cos(t)))
raises(ValueError, lambda: linodesolve(7, t, b=t**2))
raises(ValueError, lambda: linodesolve(a, t, b=log(t) + sin(t)))
A1 = Matrix([[1, 2], [2, 4], [4, 6]])
b1 = Matrix([t, 1, t**2])
raises(NonSquareMatrixError, lambda: linodesolve(A1, t, b=b1))
A2 = Matrix([[1, 2, 1], [3, 1, 2]])
b2 = Matrix([t, t**2])
raises(NonSquareMatrixError, lambda: linodesolve(A2, t, b=b2))
raises(ValueError, lambda: linodesolve(A1[:2, :], t, b=b1))
raises(ValueError, lambda: linodesolve(A1[:2, :], t, b=b1[:1]))
# DOIT check
A1 = Matrix([[1, -1], [1, -1]])
b1 = Matrix([15*t - 10, -15*t - 5])
sol1 = [C1 + C2*t + C2 - 10*t**3 + 10*t**2 + t*(15*t**2 - 5*t) - 10*t,
C1 + C2*t - 10*t**3 - 5*t**2 + t*(15*t**2 - 5*t) - 5*t]
assert constant_renumber(linodesolve(A1, t, b=b1, type="type2", doit=True),
variables=[t]) == sol1
# Testing auto functionality
func = [f(t), g(t)]
eq = [Eq(f(t).diff(t) + g(t).diff(t), g(t) + t), Eq(g(t).diff(t), f(t))]
ceq = canonical_odes(eq, func, t)
(A1, A0), b = linear_ode_to_matrix(ceq[0], func, t, 1)
A = A0
sol = [-C1*exp(-t/2 + sqrt(5)*t/2)/2 + sqrt(5)*C1*exp(-t/2 + sqrt(5)*t/2)/2 - sqrt(5)*C2*exp(-sqrt(5)*t/2 -
t/2)/2 - C2*exp(-sqrt(5)*t/2 - t/2)/2 - exp(-t/2 + sqrt(5)*t/2)*Integral(t*exp(-sqrt(5)*t/2 +
t/2)/(-5 + sqrt(5)) - sqrt(5)*t*exp(-sqrt(5)*t/2 + t/2)/(-5 + sqrt(5)), t)/2 + sqrt(5)*exp(-t/2 +
sqrt(5)*t/2)*Integral(t*exp(-sqrt(5)*t/2 + t/2)/(-5 + sqrt(5)) - sqrt(5)*t*exp(-sqrt(5)*t/2 +
t/2)/(-5 + sqrt(5)), t)/2 - sqrt(5)*exp(-sqrt(5)*t/2 - t/2)*Integral(-sqrt(5)*t*exp(t/2 +
sqrt(5)*t/2)/5, t)/2 - exp(-sqrt(5)*t/2 - t/2)*Integral(-sqrt(5)*t*exp(t/2 + sqrt(5)*t/2)/5, t)/2,
C1*exp(-t/2 + sqrt(5)*t/2) + C2*exp(-sqrt(5)*t/2 - t/2) + exp(-t/2 +
sqrt(5)*t/2)*Integral(t*exp(-sqrt(5)*t/2 + t/2)/(-5 + sqrt(5)) - sqrt(5)*t*exp(-sqrt(5)*t/2 +
t/2)/(-5 + sqrt(5)), t) + exp(-sqrt(5)*t/2 -
t/2)*Integral(-sqrt(5)*t*exp(t/2 + sqrt(5)*t/2)/5, t)]
assert constant_renumber(linodesolve(A, t, b=b), variables=[t]) == sol
# non-homogeneous term assumed to be 0
sol1 = [-C1*exp(-t/2 + sqrt(5)*t/2)/2 + sqrt(5)*C1*exp(-t/2 + sqrt(5)*t/2)/2 - sqrt(5)*C2*exp(-sqrt(5)*t/2
- t/2)/2 - C2*exp(-sqrt(5)*t/2 - t/2)/2,
C1*exp(-t/2 + sqrt(5)*t/2) + C2*exp(-sqrt(5)*t/2 - t/2)]
assert constant_renumber(linodesolve(A, t, type="type2"), variables=[t]) == sol1
# Testing the Errors
raises(ValueError, lambda: linodesolve(t+10, t))
raises(ValueError, lambda: linodesolve(a*t, t))
A1 = Matrix([[1, t], [-t, 1]])
B1, _ = _is_commutative_anti_derivative(A1, t)
raises(NonSquareMatrixError, lambda: linodesolve(A1[:, :1], t, B=B1))
raises(ValueError, lambda: linodesolve(A1, t, B=1))
A2 = Matrix([[t, t, t], [t, t, t], [t, t, t]])
B2, _ = _is_commutative_anti_derivative(A2, t)
raises(NonSquareMatrixError, lambda: linodesolve(A2, t, B=B2[:2, :]))
raises(ValueError, lambda: linodesolve(A2, t, B=2))
raises(ValueError, lambda: linodesolve(A2, t, B=B2, type="type31"))
raises(ValueError, lambda: linodesolve(A1, t, B=B2))
raises(ValueError, lambda: linodesolve(A2, t, B=B1))
# Testing auto functionality
func = [f(t), g(t)]
eq = [Eq(f(t).diff(t), f(t) + t*g(t)), Eq(g(t).diff(t), -t*f(t) + g(t))]
ceq = canonical_odes(eq, func, t)
(A1, A0), b = linear_ode_to_matrix(ceq[0], func, t, 1)
A = A0
sol = [(C1/2 - I*C2/2)*exp(I*t**2/2 + t) + (C1/2 + I*C2/2)*exp(-I*t**2/2 + t),
(-I*C1/2 + C2/2)*exp(-I*t**2/2 + t) + (I*C1/2 + C2/2)*exp(I*t**2/2 + t)]
assert constant_renumber(linodesolve(A, t), variables=Tuple(*eq).free_symbols) == sol
assert constant_renumber(linodesolve(A, t, type="type3"), variables=Tuple(*eq).free_symbols) == sol
A1 = Matrix([[t, 1], [t, -1]])
raises(NotImplementedError, lambda: linodesolve(A1, t))
# Testing the Errors
raises(ValueError, lambda: linodesolve(t+10, t, b=Matrix([t+1])))
raises(ValueError, lambda: linodesolve(a*t, t, b=Matrix([log(t) + sin(t)])))
raises(ValueError, lambda: linodesolve(Matrix([7*t]), t, b=t**2))
raises(ValueError, lambda: linodesolve(Matrix([a + 10*log(t)]), t, b=log(t)*cos(t)))
raises(ValueError, lambda: linodesolve(7*t, t, b=t**2))
raises(ValueError, lambda: linodesolve(a*t**2, t, b=log(t) + sin(t)))
A1 = Matrix([[1, t], [-t, 1]])
b1 = Matrix([t, t ** 2])
B1, _ = _is_commutative_anti_derivative(A1, t)
raises(NonSquareMatrixError, lambda: linodesolve(A1[:, :1], t, b=b1))
A2 = Matrix([[t, t, t], [t, t, t], [t, t, t]])
b2 = Matrix([t, 1, t**2])
B2, _ = _is_commutative_anti_derivative(A2, t)
raises(NonSquareMatrixError, lambda: linodesolve(A2[:2, :], t, b=b2))
raises(ValueError, lambda: linodesolve(A1, t, b=b2))
raises(ValueError, lambda: linodesolve(A2, t, b=b1))
raises(ValueError, lambda: linodesolve(A1, t, b=b1, B=B2))
raises(ValueError, lambda: linodesolve(A2, t, b=b2, B=B1))
# Testing auto functionality
func = [f(x), g(x), h(x)]
eq = [Eq(f(x).diff(x), x*(f(x) + g(x) + h(x)) + x),
Eq(g(x).diff(x), x*(f(x) + g(x) + h(x)) + x),
Eq(h(x).diff(x), x*(f(x) + g(x) + h(x)) + 1)]
ceq = canonical_odes(eq, func, x)
(A1, A0), b = linear_ode_to_matrix(ceq[0], func, x, 1)
A = A0
_x1 = exp(-3*x**2/2)
_x2 = exp(3*x**2/2)
_x3 = Integral(2*_x1*x/3 + _x1/3 + x/3 - Rational(1, 3), x)
_x4 = 2*_x2*_x3/3
_x5 = Integral(2*_x1*x/3 + _x1/3 - 2*x/3 + Rational(2, 3), x)
sol = [
C1*_x2/3 - C1/3 + C2*_x2/3 - C2/3 + C3*_x2/3 + 2*C3/3 + _x2*_x5/3 + _x3/3 + _x4 - _x5/3,
C1*_x2/3 + 2*C1/3 + C2*_x2/3 - C2/3 + C3*_x2/3 - C3/3 + _x2*_x5/3 + _x3/3 + _x4 - _x5/3,
C1*_x2/3 - C1/3 + C2*_x2/3 + 2*C2/3 + C3*_x2/3 - C3/3 + _x2*_x5/3 - 2*_x3/3 + _x4 + 2*_x5/3,
]
assert constant_renumber(linodesolve(A, x, b=b), variables=Tuple(*eq).free_symbols) == sol
assert constant_renumber(linodesolve(A, x, b=b, type="type4"),
variables=Tuple(*eq).free_symbols) == sol
A1 = Matrix([[t, 1], [t, -1]])
raises(NotImplementedError, lambda: linodesolve(A1, t, b=b1))
# non-homogeneous term not passed
sol1 = [-C1/3 - C2/3 + 2*C3/3 + (C1/3 + C2/3 + C3/3)*exp(3*x**2/2), 2*C1/3 - C2/3 - C3/3 + (C1/3 + C2/3 + C3/3)*exp(3*x**2/2),
-C1/3 + 2*C2/3 - C3/3 + (C1/3 + C2/3 + C3/3)*exp(3*x**2/2)]
assert constant_renumber(linodesolve(A, x, type="type4", doit=True), variables=Tuple(*eq).free_symbols) == sol1
@slow
def test_linear_3eq_order1_type4_slow():
x, y, z = symbols('x, y, z', cls=Function)
t = Symbol('t')
f = t ** 3 + log(t)
g = t ** 2 + sin(t)
eq1 = (Eq(diff(x(t), t), (4 * f + g) * x(t) - f * y(t) - 2 * f * z(t)),
Eq(diff(y(t), t), 2 * f * x(t) + (f + g) * y(t) - 2 * f * z(t)), Eq(diff(z(t), t), 5 * f * x(t) + f * y(
t) + (-3 * f + g) * z(t)))
with dotprodsimp(True):
dsolve(eq1)
@slow
def test_linear_neq_order1_type2_slow1():
i, r1, c1, r2, c2, t = symbols('i, r1, c1, r2, c2, t')
x1 = Function('x1')
x2 = Function('x2')
eq1 = r1*c1*Derivative(x1(t), t) + x1(t) - x2(t) - r1*i
eq2 = r2*c1*Derivative(x1(t), t) + r2*c2*Derivative(x2(t), t) + x2(t) - r2*i
eq = [eq1, eq2]
# XXX: Solution is too complicated
[sol] = dsolve_system(eq, simplify=False, doit=False)
assert checksysodesol(eq, sol) == (True, [0, 0])
# Regression test case for issue #9204
# https://github.com/sympy/sympy/issues/9204
@slow
def test_linear_new_order1_type2_de_lorentz_slow_check():
if ON_CI:
skip("Too slow for CI.")
m = Symbol("m", real=True)
q = Symbol("q", real=True)
t = Symbol("t", real=True)
e1, e2, e3 = symbols("e1:4", real=True)
b1, b2, b3 = symbols("b1:4", real=True)
v1, v2, v3 = symbols("v1:4", cls=Function, real=True)
eqs = [
-e1*q + m*Derivative(v1(t), t) - q*(-b2*v3(t) + b3*v2(t)),
-e2*q + m*Derivative(v2(t), t) - q*(b1*v3(t) - b3*v1(t)),
-e3*q + m*Derivative(v3(t), t) - q*(-b1*v2(t) + b2*v1(t))
]
sol = dsolve(eqs)
assert checksysodesol(eqs, sol) == (True, [0, 0, 0])
# Regression test case for issue #14001
# https://github.com/sympy/sympy/issues/14001
@slow
def test_linear_neq_order1_type2_slow_check():
RC, t, C, Vs, L, R1, V0, I0 = symbols("RC t C Vs L R1 V0 I0")
V = Function("V")
I = Function("I")
system = [Eq(V(t).diff(t), -1/RC*V(t) + I(t)/C), Eq(I(t).diff(t), -R1/L*I(t) - 1/L*V(t) + Vs/L)]
[sol] = dsolve_system(system, simplify=False, doit=False)
assert checksysodesol(system, sol) == (True, [0, 0])
def _linear_3eq_order1_type4_long():
x, y, z = symbols('x, y, z', cls=Function)
t = Symbol('t')
f = t ** 3 + log(t)
g = t ** 2 + sin(t)
eq1 = (Eq(diff(x(t), t), (4*f + g)*x(t) - f*y(t) - 2*f*z(t)),
Eq(diff(y(t), t), 2*f*x(t) + (f + g)*y(t) - 2*f*z(t)), Eq(diff(z(t), t), 5*f*x(t) + f*y(
t) + (-3*f + g)*z(t)))
dsolve_sol = dsolve(eq1)
dsolve_sol1 = [_simpsol(sol) for sol in dsolve_sol]
x_1 = sqrt(-t**6 - 8*t**3*log(t) + 8*t**3 - 16*log(t)**2 + 32*log(t) - 16)
x_2 = sqrt(3)
x_3 = 8324372644*C1*x_1*x_2 + 4162186322*C2*x_1*x_2 - 8324372644*C3*x_1*x_2
x_4 = 1 / (1903457163*t**3 + 3825881643*x_1*x_2 + 7613828652*log(t) - 7613828652)
x_5 = exp(t**3/3 + t*x_1*x_2/4 - cos(t))
x_6 = exp(t**3/3 - t*x_1*x_2/4 - cos(t))
x_7 = exp(t**4/2 + t**3/3 + 2*t*log(t) - 2*t - cos(t))
x_8 = 91238*C1*x_1*x_2 + 91238*C2*x_1*x_2 - 91238*C3*x_1*x_2
x_9 = 1 / (66049*t**3 - 50629*x_1*x_2 + 264196*log(t) - 264196)
x_10 = 50629 * C1 / 25189 + 37909*C2/25189 - 50629*C3/25189 - x_3*x_4
x_11 = -50629*C1/25189 - 12720*C2/25189 + 50629*C3/25189 + x_3*x_4
sol = [Eq(x(t), x_10*x_5 + x_11*x_6 + x_7*(C1 - C2)), Eq(y(t), x_10*x_5 + x_11*x_6), Eq(z(t), x_5*(
-424*C1/257 - 167*C2/257 + 424*C3/257 - x_8*x_9) + x_6*(167*C1/257 + 424*C2/257 -
167*C3/257 + x_8*x_9) + x_7*(C1 - C2))]
assert dsolve_sol1 == sol
assert checksysodesol(eq1, dsolve_sol1) == (True, [0, 0, 0])
@slow
def test_neq_order1_type4_slow_check1():
f, g = symbols("f g", cls=Function)
x = symbols("x")
eqs = [Eq(diff(f(x), x), x*f(x) + x**2*g(x) + x),
Eq(diff(g(x), x), 2*x**2*f(x) + (x + 3*x**2)*g(x) + 1)]
sol = dsolve(eqs)
assert checksysodesol(eqs, sol) == (True, [0, 0])
@slow
def test_neq_order1_type4_slow_check2():
f, g, h = symbols("f, g, h", cls=Function)
x = Symbol("x")
eqs = [
Eq(Derivative(f(x), x), x*h(x) + f(x) + g(x) + 1),
Eq(Derivative(g(x), x), x*g(x) + f(x) + h(x) + 10),
Eq(Derivative(h(x), x), x*f(x) + x + g(x) + h(x))
]
with dotprodsimp(True):
sol = dsolve(eqs)
assert checksysodesol(eqs, sol) == (True, [0, 0, 0])
def _neq_order1_type4_slow3():
f, g = symbols("f g", cls=Function)
x = symbols("x")
eqs = [
Eq(Derivative(f(x), x), x*f(x) + g(x) + sin(x)),
Eq(Derivative(g(x), x), x**2 + x*g(x) - f(x))
]
sol = [
Eq(f(x), (C1/2 - I*C2/2 - I*Integral(x**2*exp(-x**2/2 - I*x)/2 +
x**2*exp(-x**2/2 + I*x)/2 + I*exp(-x**2/2 - I*x)*sin(x)/2 -
I*exp(-x**2/2 + I*x)*sin(x)/2, x)/2 + Integral(-I*x**2*exp(-x**2/2
- I*x)/2 + I*x**2*exp(-x**2/2 + I*x)/2 + exp(-x**2/2 -
I*x)*sin(x)/2 + exp(-x**2/2 + I*x)*sin(x)/2, x)/2)*exp(x**2/2 +
I*x) + (C1/2 + I*C2/2 + I*Integral(x**2*exp(-x**2/2 - I*x)/2 +
x**2*exp(-x**2/2 + I*x)/2 + I*exp(-x**2/2 - I*x)*sin(x)/2 -
I*exp(-x**2/2 + I*x)*sin(x)/2, x)/2 + Integral(-I*x**2*exp(-x**2/2
- I*x)/2 + I*x**2*exp(-x**2/2 + I*x)/2 + exp(-x**2/2 -
I*x)*sin(x)/2 + exp(-x**2/2 + I*x)*sin(x)/2, x)/2)*exp(x**2/2 -
I*x)),
Eq(g(x), (-I*C1/2 + C2/2 + Integral(x**2*exp(-x**2/2 - I*x)/2 +
x**2*exp(-x**2/2 + I*x)/2 + I*exp(-x**2/2 - I*x)*sin(x)/2 -
I*exp(-x**2/2 + I*x)*sin(x)/2, x)/2 -
I*Integral(-I*x**2*exp(-x**2/2 - I*x)/2 + I*x**2*exp(-x**2/2 +
I*x)/2 + exp(-x**2/2 - I*x)*sin(x)/2 + exp(-x**2/2 +
I*x)*sin(x)/2, x)/2)*exp(x**2/2 - I*x) + (I*C1/2 + C2/2 +
Integral(x**2*exp(-x**2/2 - I*x)/2 + x**2*exp(-x**2/2 + I*x)/2 +
I*exp(-x**2/2 - I*x)*sin(x)/2 - I*exp(-x**2/2 + I*x)*sin(x)/2,
x)/2 + I*Integral(-I*x**2*exp(-x**2/2 - I*x)/2 +
I*x**2*exp(-x**2/2 + I*x)/2 + exp(-x**2/2 - I*x)*sin(x)/2 +
exp(-x**2/2 + I*x)*sin(x)/2, x)/2)*exp(x**2/2 + I*x))
]
return eqs, sol
def test_neq_order1_type4_slow3():
eqs, sol = _neq_order1_type4_slow3()
assert dsolve_system(eqs, simplify=False, doit=False) == [sol]
# XXX: dsolve gives an error in integration:
# assert dsolve(eqs) == sol
# https://github.com/sympy/sympy/issues/20155
@slow
def test_neq_order1_type4_slow_check3():
eqs, sol = _neq_order1_type4_slow3()
assert checksysodesol(eqs, sol) == (True, [0, 0])
@XFAIL
@slow
def test_linear_3eq_order1_type4_long_dsolve_slow_xfail():
if ON_CI:
skip("Too slow for CI.")
eq, sol = _linear_3eq_order1_type4_long()
dsolve_sol = dsolve(eq)
dsolve_sol1 = [_simpsol(sol) for sol in dsolve_sol]
assert dsolve_sol1 == sol
@slow
def test_linear_3eq_order1_type4_long_dsolve_dotprodsimp():
if ON_CI:
skip("Too slow for CI.")
eq, sol = _linear_3eq_order1_type4_long()
# XXX: Only works with dotprodsimp see
# test_linear_3eq_order1_type4_long_dsolve_slow_xfail which is too slow
with dotprodsimp(True):
dsolve_sol = dsolve(eq)
dsolve_sol1 = [_simpsol(sol) for sol in dsolve_sol]
assert dsolve_sol1 == sol
@slow
def test_linear_3eq_order1_type4_long_check():
if ON_CI:
skip("Too slow for CI.")
eq, sol = _linear_3eq_order1_type4_long()
assert checksysodesol(eq, sol) == (True, [0, 0, 0])
def test_dsolve_system():
f, g = symbols("f g", cls=Function)
x = symbols("x")
eqs = [Eq(f(x).diff(x), f(x) + g(x)), Eq(g(x).diff(x), f(x) + g(x))]
funcs = [f(x), g(x)]
sol = [[Eq(f(x), -C1 + C2*exp(2*x)), Eq(g(x), C1 + C2*exp(2*x))]]
assert dsolve_system(eqs, funcs=funcs, t=x, doit=True) == sol
raises(ValueError, lambda: dsolve_system(1))
raises(ValueError, lambda: dsolve_system(eqs, 1))
raises(ValueError, lambda: dsolve_system(eqs, funcs, 1))
raises(ValueError, lambda: dsolve_system(eqs, funcs[:1], x))
eq = (Eq(f(x).diff(x), 12 * f(x) - 6 * g(x)), Eq(g(x).diff(x) ** 2, 11 * f(x) + 3 * g(x)))
raises(NotImplementedError, lambda: dsolve_system(eq) == ([], []))
raises(NotImplementedError, lambda: dsolve_system(eq, funcs=[f(x), g(x)]) == ([], []))
raises(NotImplementedError, lambda: dsolve_system(eq, funcs=[f(x), g(x)], t=x) == ([], []))
raises(NotImplementedError, lambda: dsolve_system(eq, funcs=[f(x), g(x)], t=x, ics={f(0): 1, g(0): 1}) == ([], []))
raises(NotImplementedError, lambda: dsolve_system(eq, t=x, ics={f(0): 1, g(0): 1}) == ([], []))
raises(NotImplementedError, lambda: dsolve_system(eq, ics={f(0): 1, g(0): 1}) == ([], []))
raises(NotImplementedError, lambda: dsolve_system(eq, funcs=[f(x), g(x)], ics={f(0): 1, g(0): 1}) == ([], []))
def test_dsolve():
f, g = symbols('f g', cls=Function)
x, y = symbols('x y')
eqs = [f(x).diff(x) - x, f(x).diff(x) + x]
with raises(ValueError):
dsolve(eqs)
eqs = [f(x, y).diff(x)]
with raises(ValueError):
dsolve(eqs)
eqs = [f(x, y).diff(x)+g(x).diff(x), g(x).diff(x)]
with raises(ValueError):
dsolve(eqs)
@slow
def test_higher_order1_slow1():
x, y = symbols("x y", cls=Function)
t = symbols("t")
eq = [
Eq(diff(x(t),t,t), (log(t)+t**2)*diff(x(t),t)+(log(t)+t**2)*3*diff(y(t),t)),
Eq(diff(y(t),t,t), (log(t)+t**2)*2*diff(x(t),t)+(log(t)+t**2)*9*diff(y(t),t))
]
sol, = dsolve_system(eq, simplify=False, doit=False)
# The solution is too long to write out explicitly and checkodesol is too
# slow so we test for particular values of t:
for e in eq:
res = (e.lhs - e.rhs).subs({sol[0].lhs:sol[0].rhs, sol[1].lhs:sol[1].rhs})
res = res.subs({d: d.doit(deep=False) for d in res.atoms(Derivative)})
assert ratsimp(res.subs(t, 1)) == 0
def test_second_order_type2_slow1():
x, y, z = symbols('x, y, z', cls=Function)
t, l = symbols('t, l')
eqs1 = [Eq(Derivative(x(t), (t, 2)), t*(2*x(t) + y(t))),
Eq(Derivative(y(t), (t, 2)), t*(-x(t) + 2*y(t)))]
sol1 = [Eq(x(t), I*C1*airyai(t*(2 - I)**(S(1)/3)) + I*C2*airybi(t*(2 - I)**(S(1)/3)) - I*C3*airyai(t*(2 +
I)**(S(1)/3)) - I*C4*airybi(t*(2 + I)**(S(1)/3))),
Eq(y(t), C1*airyai(t*(2 - I)**(S(1)/3)) + C2*airybi(t*(2 - I)**(S(1)/3)) + C3*airyai(t*(2 + I)**(S(1)/3)) +
C4*airybi(t*(2 + I)**(S(1)/3)))]
assert dsolve(eqs1) == sol1
assert checksysodesol(eqs1, sol1) == (True, [0, 0])
@slow
@XFAIL
def test_nonlinear_3eq_order1_type1():
if ON_CI:
skip("Too slow for CI.")
a, b, c = symbols('a b c')
eqs = [
a * f(x).diff(x) - (b - c) * g(x) * h(x),
b * g(x).diff(x) - (c - a) * h(x) * f(x),
c * h(x).diff(x) - (a - b) * f(x) * g(x),
]
assert dsolve(eqs) # NotImplementedError
@XFAIL
def test_nonlinear_3eq_order1_type4():
eqs = [
Eq(f(x).diff(x), (2*h(x)*g(x) - 3*g(x)*h(x))),
Eq(g(x).diff(x), (4*f(x)*h(x) - 2*h(x)*f(x))),
Eq(h(x).diff(x), (3*g(x)*f(x) - 4*f(x)*g(x))),
]
dsolve(eqs) # KeyError when matching
# sol = ?
# assert dsolve_sol == sol
# assert checksysodesol(eqs, dsolve_sol) == (True, [0, 0, 0])
@slow
@XFAIL
def test_nonlinear_3eq_order1_type3():
if ON_CI:
skip("Too slow for CI.")
eqs = [
Eq(f(x).diff(x), (2*f(x)**2 - 3 )),
Eq(g(x).diff(x), (4 - 2*h(x) )),
Eq(h(x).diff(x), (3*h(x) - 4*f(x)**2)),
]
dsolve(eqs) # Not sure if this finishes...
# sol = ?
# assert dsolve_sol == sol
# assert checksysodesol(eqs, dsolve_sol) == (True, [0, 0, 0])
@XFAIL
def test_nonlinear_3eq_order1_type5():
eqs = [
Eq(f(x).diff(x), f(x)*(2*f(x) - 3*g(x))),
Eq(g(x).diff(x), g(x)*(4*g(x) - 2*h(x))),
Eq(h(x).diff(x), h(x)*(3*h(x) - 4*f(x))),
]
dsolve(eqs) # KeyError
# sol = ?
# assert dsolve_sol == sol
# assert checksysodesol(eqs, dsolve_sol) == (True, [0, 0, 0])
def test_linear_2eq_order1():
x, y, z = symbols('x, y, z', cls=Function)
k, l, m, n = symbols('k, l, m, n', Integer=True)
t = Symbol('t')
x0, y0 = symbols('x0, y0', cls=Function)
eq1 = (Eq(diff(x(t),t), x(t) + y(t) + 9), Eq(diff(y(t),t), 2*x(t) + 5*y(t) + 23))
sol1 = [Eq(x(t), C1*exp(t*(sqrt(6) + 3)) + C2*exp(t*(-sqrt(6) + 3)) - Rational(22, 3)), \
Eq(y(t), C1*(2 + sqrt(6))*exp(t*(sqrt(6) + 3)) + C2*(-sqrt(6) + 2)*exp(t*(-sqrt(6) + 3)) - Rational(5, 3))]
assert checksysodesol(eq1, sol1) == (True, [0, 0])
eq2 = (Eq(diff(x(t),t), x(t) + y(t) + 81), Eq(diff(y(t),t), -2*x(t) + y(t) + 23))
sol2 = [Eq(x(t), (C1*cos(sqrt(2)*t) + C2*sin(sqrt(2)*t))*exp(t) - Rational(58, 3)), \
Eq(y(t), (-sqrt(2)*C1*sin(sqrt(2)*t) + sqrt(2)*C2*cos(sqrt(2)*t))*exp(t) - Rational(185, 3))]
assert checksysodesol(eq2, sol2) == (True, [0, 0])
eq3 = (Eq(diff(x(t),t), 5*t*x(t) + 2*y(t)), Eq(diff(y(t),t), 2*x(t) + 5*t*y(t)))
sol3 = [Eq(x(t), (C1*exp(2*t) + C2*exp(-2*t))*exp(Rational(5, 2)*t**2)), \
Eq(y(t), (C1*exp(2*t) - C2*exp(-2*t))*exp(Rational(5, 2)*t**2))]
assert checksysodesol(eq3, sol3) == (True, [0, 0])
eq4 = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), -t**2*x(t) + 5*t*y(t)))
sol4 = [Eq(x(t), (C1*cos((t**3)/3) + C2*sin((t**3)/3))*exp(Rational(5, 2)*t**2)), \
Eq(y(t), (-C1*sin((t**3)/3) + C2*cos((t**3)/3))*exp(Rational(5, 2)*t**2))]
assert checksysodesol(eq4, sol4) == (True, [0, 0])
eq5 = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), -t**2*x(t) + (5*t+9*t**2)*y(t)))
sol5 = [Eq(x(t), (C1*exp((sqrt(77)/2 + Rational(9, 2))*(t**3)/3) + \
C2*exp((-sqrt(77)/2 + Rational(9, 2))*(t**3)/3))*exp(Rational(5, 2)*t**2)), \
Eq(y(t), (C1*(sqrt(77)/2 + Rational(9, 2))*exp((sqrt(77)/2 + Rational(9, 2))*(t**3)/3) + \
C2*(-sqrt(77)/2 + Rational(9, 2))*exp((-sqrt(77)/2 + Rational(9, 2))*(t**3)/3))*exp(Rational(5, 2)*t**2))]
assert checksysodesol(eq5, sol5) == (True, [0, 0])
eq6 = (Eq(diff(x(t),t), 5*t*x(t) + t**2*y(t)), Eq(diff(y(t),t), (1-t**2)*x(t) + (5*t+9*t**2)*y(t)))
sol6 = [Eq(x(t), C1*x0(t) + C2*x0(t)*Integral(t**2*exp(Integral(5*t, t))*exp(Integral(9*t**2 + 5*t, t))/x0(t)**2, t)), \
Eq(y(t), C1*y0(t) + C2*(y0(t)*Integral(t**2*exp(Integral(5*t, t))*exp(Integral(9*t**2 + 5*t, t))/x0(t)**2, t) + \
exp(Integral(5*t, t))*exp(Integral(9*t**2 + 5*t, t))/x0(t)))]
s = dsolve(eq6)
assert s == sol6 # too complicated to test with subs and simplify
# assert checksysodesol(eq10, sol10) == (True, [0, 0]) # this one fails
def test_nonlinear_2eq_order1():
x, y, z = symbols('x, y, z', cls=Function)
t = Symbol('t')
eq1 = (Eq(diff(x(t),t),x(t)*y(t)**3), Eq(diff(y(t),t),y(t)**5))
sol1 = [
Eq(x(t), C1*exp((-1/(4*C2 + 4*t))**(Rational(-1, 4)))),
Eq(y(t), -(-1/(4*C2 + 4*t))**Rational(1, 4)),
Eq(x(t), C1*exp(-1/(-1/(4*C2 + 4*t))**Rational(1, 4))),
Eq(y(t), (-1/(4*C2 + 4*t))**Rational(1, 4)),
Eq(x(t), C1*exp(-I/(-1/(4*C2 + 4*t))**Rational(1, 4))),
Eq(y(t), -I*(-1/(4*C2 + 4*t))**Rational(1, 4)),
Eq(x(t), C1*exp(I/(-1/(4*C2 + 4*t))**Rational(1, 4))),
Eq(y(t), I*(-1/(4*C2 + 4*t))**Rational(1, 4))]
assert dsolve(eq1) == sol1
assert checksysodesol(eq1, sol1) == (True, [0, 0])
eq2 = (Eq(diff(x(t),t), exp(3*x(t))*y(t)**3),Eq(diff(y(t),t), y(t)**5))
sol2 = [
Eq(x(t), -log(C1 - 3/(-1/(4*C2 + 4*t))**Rational(1, 4))/3),
Eq(y(t), -(-1/(4*C2 + 4*t))**Rational(1, 4)),
Eq(x(t), -log(C1 + 3/(-1/(4*C2 + 4*t))**Rational(1, 4))/3),
Eq(y(t), (-1/(4*C2 + 4*t))**Rational(1, 4)),
Eq(x(t), -log(C1 + 3*I/(-1/(4*C2 + 4*t))**Rational(1, 4))/3),
Eq(y(t), -I*(-1/(4*C2 + 4*t))**Rational(1, 4)),
Eq(x(t), -log(C1 - 3*I/(-1/(4*C2 + 4*t))**Rational(1, 4))/3),
Eq(y(t), I*(-1/(4*C2 + 4*t))**Rational(1, 4))]
assert dsolve(eq2) == sol2
assert checksysodesol(eq2, sol2) == (True, [0, 0])
eq3 = (Eq(diff(x(t),t), y(t)*x(t)), Eq(diff(y(t),t), x(t)**3))
tt = Rational(2, 3)
sol3 = [
Eq(x(t), 6**tt/(6*(-sinh(sqrt(C1)*(C2 + t)/2)/sqrt(C1))**tt)),
Eq(y(t), sqrt(C1 + C1/sinh(sqrt(C1)*(C2 + t)/2)**2)/3)]
assert dsolve(eq3) == sol3
# FIXME: assert checksysodesol(eq3, sol3) == (True, [0, 0])
eq4 = (Eq(diff(x(t),t),x(t)*y(t)*sin(t)**2), Eq(diff(y(t),t),y(t)**2*sin(t)**2))
sol4 = {Eq(x(t), -2*exp(C1)/(C2*exp(C1) + t - sin(2*t)/2)), Eq(y(t), -2/(C1 + t - sin(2*t)/2))}
assert dsolve(eq4) == sol4
# FIXME: assert checksysodesol(eq4, sol4) == (True, [0, 0])
eq5 = (Eq(x(t),t*diff(x(t),t)+diff(x(t),t)*diff(y(t),t)), Eq(y(t),t*diff(y(t),t)+diff(y(t),t)**2))
sol5 = {Eq(x(t), C1*C2 + C1*t), Eq(y(t), C2**2 + C2*t)}
assert dsolve(eq5) == sol5
assert checksysodesol(eq5, sol5) == (True, [0, 0])
eq6 = (Eq(diff(x(t),t),x(t)**2*y(t)**3), Eq(diff(y(t),t),y(t)**5))
sol6 = [
Eq(x(t), 1/(C1 - 1/(-1/(4*C2 + 4*t))**Rational(1, 4))),
Eq(y(t), -(-1/(4*C2 + 4*t))**Rational(1, 4)),
Eq(x(t), 1/(C1 + (-1/(4*C2 + 4*t))**(Rational(-1, 4)))),
Eq(y(t), (-1/(4*C2 + 4*t))**Rational(1, 4)),
Eq(x(t), 1/(C1 + I/(-1/(4*C2 + 4*t))**Rational(1, 4))),
Eq(y(t), -I*(-1/(4*C2 + 4*t))**Rational(1, 4)),
Eq(x(t), 1/(C1 - I/(-1/(4*C2 + 4*t))**Rational(1, 4))),
Eq(y(t), I*(-1/(4*C2 + 4*t))**Rational(1, 4))]
assert dsolve(eq6) == sol6
assert checksysodesol(eq6, sol6) == (True, [0, 0])
@slow
def test_nonlinear_3eq_order1():
x, y, z = symbols('x, y, z', cls=Function)
t, u = symbols('t u')
eq1 = (4*diff(x(t),t) + 2*y(t)*z(t), 3*diff(y(t),t) - z(t)*x(t), 5*diff(z(t),t) - x(t)*y(t))
sol1 = [Eq(4*Integral(1/(sqrt(-4*u**2 - 3*C1 + C2)*sqrt(-4*u**2 + 5*C1 - C2)), (u, x(t))),
C3 - sqrt(15)*t/15), Eq(3*Integral(1/(sqrt(-6*u**2 - C1 + 5*C2)*sqrt(3*u**2 + C1 - 4*C2)),
(u, y(t))), C3 + sqrt(5)*t/10), Eq(5*Integral(1/(sqrt(-10*u**2 - 3*C1 + C2)*
sqrt(5*u**2 + 4*C1 - C2)), (u, z(t))), C3 + sqrt(3)*t/6)]
assert [i.dummy_eq(j) for i, j in zip(dsolve(eq1), sol1)]
# FIXME: assert checksysodesol(eq1, sol1) == (True, [0, 0, 0])
eq2 = (4*diff(x(t),t) + 2*y(t)*z(t)*sin(t), 3*diff(y(t),t) - z(t)*x(t)*sin(t), 5*diff(z(t),t) - x(t)*y(t)*sin(t))
sol2 = [Eq(3*Integral(1/(sqrt(-6*u**2 - C1 + 5*C2)*sqrt(3*u**2 + C1 - 4*C2)), (u, x(t))), C3 +
sqrt(5)*cos(t)/10), Eq(4*Integral(1/(sqrt(-4*u**2 - 3*C1 + C2)*sqrt(-4*u**2 + 5*C1 - C2)),
(u, y(t))), C3 - sqrt(15)*cos(t)/15), Eq(5*Integral(1/(sqrt(-10*u**2 - 3*C1 + C2)*
sqrt(5*u**2 + 4*C1 - C2)), (u, z(t))), C3 + sqrt(3)*cos(t)/6)]
assert [i.dummy_eq(j) for i, j in zip(dsolve(eq2), sol2)]
# FIXME: assert checksysodesol(eq2, sol2) == (True, [0, 0, 0])
def test_C1_function_9239():
t = Symbol('t')
C1 = Function('C1')
C2 = Function('C2')
C3 = Symbol('C3')
C4 = Symbol('C4')
eq = (Eq(diff(C1(t), t), 9*C2(t)), Eq(diff(C2(t), t), 12*C1(t)))
sol = [Eq(C1(t), 9*C3*exp(6*sqrt(3)*t) + 9*C4*exp(-6*sqrt(3)*t)),
Eq(C2(t), 6*sqrt(3)*C3*exp(6*sqrt(3)*t) - 6*sqrt(3)*C4*exp(-6*sqrt(3)*t))]
assert checksysodesol(eq, sol) == (True, [0, 0])
def test_dsolve_linsystem_symbol():
eps = Symbol('epsilon', positive=True)
eq1 = (Eq(diff(f(x), x), -eps*g(x)), Eq(diff(g(x), x), eps*f(x)))
sol1 = [Eq(f(x), -C1*eps*cos(eps*x) - C2*eps*sin(eps*x)),
Eq(g(x), -C1*eps*sin(eps*x) + C2*eps*cos(eps*x))]
assert checksysodesol(eq1, sol1) == (True, [0, 0])
|
99bf3faefcb1ebca9e90cc7cc99672047e46edb5fde101ba5b7949d7bac19865 | from __future__ import annotations
from typing import Callable, Optional
from collections import OrderedDict
import os
import re
import subprocess
from .util import (
find_binary_of_command, unique_list, CompileError
)
class CompilerRunner:
""" CompilerRunner base class.
Parameters
==========
sources : list of str
Paths to sources.
out : str
flags : iterable of str
Compiler flags.
run_linker : bool
compiler_name_exe : (str, str) tuple
Tuple of compiler name & command to call.
cwd : str
Path of root of relative paths.
include_dirs : list of str
Include directories.
libraries : list of str
Libraries to link against.
library_dirs : list of str
Paths to search for shared libraries.
std : str
Standard string, e.g. ``'c++11'``, ``'c99'``, ``'f2003'``.
define: iterable of strings
macros to define
undef : iterable of strings
macros to undefine
preferred_vendor : string
name of preferred vendor e.g. 'gnu' or 'intel'
Methods
=======
run():
Invoke compilation as a subprocess.
"""
# Subclass to vendor/binary dict
compiler_dict: dict[str, str]
# Standards should be a tuple of supported standards
# (first one will be the default)
standards: tuple[None | str, ...]
# Subclass to dict of binary/formater-callback
std_formater: dict[str, Callable[[Optional[str]], str]]
# subclass to be e.g. {'gcc': 'gnu', ...}
compiler_name_vendor_mapping: dict[str, str]
def __init__(self, sources, out, flags=None, run_linker=True, compiler=None, cwd='.',
include_dirs=None, libraries=None, library_dirs=None, std=None, define=None,
undef=None, strict_aliasing=None, preferred_vendor=None, linkline=None, **kwargs):
if isinstance(sources, str):
raise ValueError("Expected argument sources to be a list of strings.")
self.sources = list(sources)
self.out = out
self.flags = flags or []
self.cwd = cwd
if compiler:
self.compiler_name, self.compiler_binary = compiler
else:
# Find a compiler
if preferred_vendor is None:
preferred_vendor = os.environ.get('SYMPY_COMPILER_VENDOR', None)
self.compiler_name, self.compiler_binary, self.compiler_vendor = self.find_compiler(preferred_vendor)
if self.compiler_binary is None:
raise ValueError("No compiler found (searched: {})".format(', '.join(self.compiler_dict.values())))
self.define = define or []
self.undef = undef or []
self.include_dirs = include_dirs or []
self.libraries = libraries or []
self.library_dirs = library_dirs or []
self.std = std or self.standards[0]
self.run_linker = run_linker
if self.run_linker:
# both gnu and intel compilers use '-c' for disabling linker
self.flags = list(filter(lambda x: x != '-c', self.flags))
else:
if '-c' not in self.flags:
self.flags.append('-c')
if self.std:
self.flags.append(self.std_formater[
self.compiler_name](self.std))
self.linkline = linkline or []
if strict_aliasing is not None:
nsa_re = re.compile("no-strict-aliasing$")
sa_re = re.compile("strict-aliasing$")
if strict_aliasing is True:
if any(map(nsa_re.match, flags)):
raise CompileError("Strict aliasing cannot be both enforced and disabled")
elif any(map(sa_re.match, flags)):
pass # already enforced
else:
flags.append('-fstrict-aliasing')
elif strict_aliasing is False:
if any(map(nsa_re.match, flags)):
pass # already disabled
else:
if any(map(sa_re.match, flags)):
raise CompileError("Strict aliasing cannot be both enforced and disabled")
else:
flags.append('-fno-strict-aliasing')
else:
msg = "Expected argument strict_aliasing to be True/False, got {}"
raise ValueError(msg.format(strict_aliasing))
@classmethod
def find_compiler(cls, preferred_vendor=None):
""" Identify a suitable C/fortran/other compiler. """
candidates = list(cls.compiler_dict.keys())
if preferred_vendor:
if preferred_vendor in candidates:
candidates = [preferred_vendor]+candidates
else:
raise ValueError("Unknown vendor {}".format(preferred_vendor))
name, path = find_binary_of_command([cls.compiler_dict[x] for x in candidates])
return name, path, cls.compiler_name_vendor_mapping[name]
def cmd(self):
""" List of arguments (str) to be passed to e.g. ``subprocess.Popen``. """
cmd = (
[self.compiler_binary] +
self.flags +
['-U'+x for x in self.undef] +
['-D'+x for x in self.define] +
['-I'+x for x in self.include_dirs] +
self.sources
)
if self.run_linker:
cmd += (['-L'+x for x in self.library_dirs] +
['-l'+x for x in self.libraries] +
self.linkline)
counted = []
for envvar in re.findall(r'\$\{(\w+)\}', ' '.join(cmd)):
if os.getenv(envvar) is None:
if envvar not in counted:
counted.append(envvar)
msg = "Environment variable '{}' undefined.".format(envvar)
raise CompileError(msg)
return cmd
def run(self):
self.flags = unique_list(self.flags)
# Append output flag and name to tail of flags
self.flags.extend(['-o', self.out])
env = os.environ.copy()
env['PWD'] = self.cwd
# NOTE: intel compilers seems to need shell=True
p = subprocess.Popen(' '.join(self.cmd()),
shell=True,
cwd=self.cwd,
stdin=subprocess.PIPE,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
env=env)
comm = p.communicate()
try:
self.cmd_outerr = comm[0].decode('utf-8')
except UnicodeDecodeError:
self.cmd_outerr = comm[0].decode('iso-8859-1') # win32
self.cmd_returncode = p.returncode
# Error handling
if self.cmd_returncode != 0:
msg = "Error executing '{}' in {} (exited status {}):\n {}\n".format(
' '.join(self.cmd()), self.cwd, str(self.cmd_returncode), self.cmd_outerr
)
raise CompileError(msg)
return self.cmd_outerr, self.cmd_returncode
class CCompilerRunner(CompilerRunner):
compiler_dict = OrderedDict([
('gnu', 'gcc'),
('intel', 'icc'),
('llvm', 'clang'),
])
standards = ('c89', 'c90', 'c99', 'c11') # First is default
std_formater = {
'gcc': '-std={}'.format,
'icc': '-std={}'.format,
'clang': '-std={}'.format,
}
compiler_name_vendor_mapping = {
'gcc': 'gnu',
'icc': 'intel',
'clang': 'llvm'
}
def _mk_flag_filter(cmplr_name): # helper for class initialization
not_welcome = {'g++': ("Wimplicit-interface",)} # "Wstrict-prototypes",)}
if cmplr_name in not_welcome:
def fltr(x):
for nw in not_welcome[cmplr_name]:
if nw in x:
return False
return True
else:
def fltr(x):
return True
return fltr
class CppCompilerRunner(CompilerRunner):
compiler_dict = OrderedDict([
('gnu', 'g++'),
('intel', 'icpc'),
('llvm', 'clang++'),
])
# First is the default, c++0x == c++11
standards = ('c++98', 'c++0x')
std_formater = {
'g++': '-std={}'.format,
'icpc': '-std={}'.format,
'clang++': '-std={}'.format,
}
compiler_name_vendor_mapping = {
'g++': 'gnu',
'icpc': 'intel',
'clang++': 'llvm'
}
class FortranCompilerRunner(CompilerRunner):
standards = (None, 'f77', 'f95', 'f2003', 'f2008')
std_formater = {
'gfortran': lambda x: '-std=gnu' if x is None else '-std=legacy' if x == 'f77' else '-std={}'.format(x),
'ifort': lambda x: '-stand f08' if x is None else '-stand f{}'.format(x[-2:]), # f2008 => f08
}
compiler_dict = OrderedDict([
('gnu', 'gfortran'),
('intel', 'ifort'),
])
compiler_name_vendor_mapping = {
'gfortran': 'gnu',
'ifort': 'intel',
}
|
dd9554cbbdf67c75c59baa0ad84135dccfadceda46e46e6fcb815c27e5774b06 | from collections import namedtuple
from hashlib import sha256
import os
import shutil
import sys
import fnmatch
from sympy.testing.pytest import XFAIL
def may_xfail(func):
if sys.platform.lower() == 'darwin' or os.name == 'nt':
# sympy.utilities._compilation needs more testing on Windows and macOS
# once those two platforms are reliably supported this xfail decorator
# may be removed.
return XFAIL(func)
else:
return func
class CompilerNotFoundError(FileNotFoundError):
pass
class CompileError (Exception):
"""Failure to compile one or more C/C++ source files."""
def get_abspath(path, cwd='.'):
""" Returns the absolute path.
Parameters
==========
path : str
(relative) path.
cwd : str
Path to root of relative path.
"""
if os.path.isabs(path):
return path
else:
if not os.path.isabs(cwd):
cwd = os.path.abspath(cwd)
return os.path.abspath(
os.path.join(cwd, path)
)
def make_dirs(path):
""" Create directories (equivalent of ``mkdir -p``). """
if path[-1] == '/':
parent = os.path.dirname(path[:-1])
else:
parent = os.path.dirname(path)
if len(parent) > 0:
if not os.path.exists(parent):
make_dirs(parent)
if not os.path.exists(path):
os.mkdir(path, 0o777)
else:
assert os.path.isdir(path)
def copy(src, dst, only_update=False, copystat=True, cwd=None,
dest_is_dir=False, create_dest_dirs=False):
""" Variation of ``shutil.copy`` with extra options.
Parameters
==========
src : str
Path to source file.
dst : str
Path to destination.
only_update : bool
Only copy if source is newer than destination
(returns None if it was newer), default: ``False``.
copystat : bool
See ``shutil.copystat``. default: ``True``.
cwd : str
Path to working directory (root of relative paths).
dest_is_dir : bool
Ensures that dst is treated as a directory. default: ``False``
create_dest_dirs : bool
Creates directories if needed.
Returns
=======
Path to the copied file.
"""
if cwd: # Handle working directory
if not os.path.isabs(src):
src = os.path.join(cwd, src)
if not os.path.isabs(dst):
dst = os.path.join(cwd, dst)
if not os.path.exists(src): # Make sure source file extists
raise FileNotFoundError("Source: `{}` does not exist".format(src))
# We accept both (re)naming destination file _or_
# passing a (possible non-existent) destination directory
if dest_is_dir:
if not dst[-1] == '/':
dst = dst+'/'
else:
if os.path.exists(dst) and os.path.isdir(dst):
dest_is_dir = True
if dest_is_dir:
dest_dir = dst
dest_fname = os.path.basename(src)
dst = os.path.join(dest_dir, dest_fname)
else:
dest_dir = os.path.dirname(dst)
if not os.path.exists(dest_dir):
if create_dest_dirs:
make_dirs(dest_dir)
else:
raise FileNotFoundError("You must create directory first.")
if only_update:
# This function is not defined:
# XXX: This branch is clearly not tested!
if not missing_or_other_newer(dst, src): # noqa
return
if os.path.islink(dst):
dst = os.path.abspath(os.path.realpath(dst), cwd=cwd)
shutil.copy(src, dst)
if copystat:
shutil.copystat(src, dst)
return dst
Glob = namedtuple('Glob', 'pathname')
ArbitraryDepthGlob = namedtuple('ArbitraryDepthGlob', 'filename')
def glob_at_depth(filename_glob, cwd=None):
if cwd is not None:
cwd = '.'
globbed = []
for root, dirs, filenames in os.walk(cwd):
for fn in filenames:
# This is not tested:
if fnmatch.fnmatch(fn, filename_glob):
globbed.append(os.path.join(root, fn))
return globbed
def sha256_of_file(path, nblocks=128):
""" Computes the SHA256 hash of a file.
Parameters
==========
path : string
Path to file to compute hash of.
nblocks : int
Number of blocks to read per iteration.
Returns
=======
hashlib sha256 hash object. Use ``.digest()`` or ``.hexdigest()``
on returned object to get binary or hex encoded string.
"""
sh = sha256()
with open(path, 'rb') as f:
for chunk in iter(lambda: f.read(nblocks*sh.block_size), b''):
sh.update(chunk)
return sh
def sha256_of_string(string):
""" Computes the SHA256 hash of a string. """
sh = sha256()
sh.update(string)
return sh
def pyx_is_cplus(path):
"""
Inspect a Cython source file (.pyx) and look for comment line like:
# distutils: language = c++
Returns True if such a file is present in the file, else False.
"""
with open(path) as fh:
for line in fh:
if line.startswith('#') and '=' in line:
splitted = line.split('=')
if len(splitted) != 2:
continue
lhs, rhs = splitted
if lhs.strip().split()[-1].lower() == 'language' and \
rhs.strip().split()[0].lower() == 'c++':
return True
return False
def import_module_from_file(filename, only_if_newer_than=None):
""" Imports Python extension (from shared object file)
Provide a list of paths in `only_if_newer_than` to check
timestamps of dependencies. import_ raises an ImportError
if any is newer.
Word of warning: The OS may cache shared objects which makes
reimporting same path of an shared object file very problematic.
It will not detect the new time stamp, nor new checksum, but will
instead silently use old module. Use unique names for this reason.
Parameters
==========
filename : str
Path to shared object.
only_if_newer_than : iterable of strings
Paths to dependencies of the shared object.
Raises
======
``ImportError`` if any of the files specified in ``only_if_newer_than`` are newer
than the file given by filename.
"""
path, name = os.path.split(filename)
name, ext = os.path.splitext(name)
name = name.split('.')[0]
if sys.version_info[0] == 2:
from imp import find_module, load_module
fobj, filename, data = find_module(name, [path])
if only_if_newer_than:
for dep in only_if_newer_than:
if os.path.getmtime(filename) < os.path.getmtime(dep):
raise ImportError("{} is newer than {}".format(dep, filename))
mod = load_module(name, fobj, filename, data)
else:
import importlib.util
spec = importlib.util.spec_from_file_location(name, filename)
if spec is None:
raise ImportError("Failed to import: '%s'" % filename)
mod = importlib.util.module_from_spec(spec)
spec.loader.exec_module(mod)
return mod
def find_binary_of_command(candidates):
""" Finds binary first matching name among candidates.
Calls ``which`` from shutils for provided candidates and returns
first hit.
Parameters
==========
candidates : iterable of str
Names of candidate commands
Raises
======
CompilerNotFoundError if no candidates match.
"""
from shutil import which
for c in candidates:
binary_path = which(c)
if c and binary_path:
return c, binary_path
raise CompilerNotFoundError('No binary located for candidates: {}'.format(candidates))
def unique_list(l):
""" Uniquify a list (skip duplicate items). """
result = []
for x in l:
if x not in result:
result.append(x)
return result
|
356db4610889804a1f674c6be06828722c787c0b019a7c9a9e499bc4f7f9e059 | # Tests that require installed backends go into
# sympy/test_external/test_autowrap
import os
import tempfile
import shutil
from io import StringIO
from sympy.core import symbols, Eq
from sympy.utilities.autowrap import (autowrap, binary_function,
CythonCodeWrapper, UfuncifyCodeWrapper, CodeWrapper)
from sympy.utilities.codegen import (
CCodeGen, C99CodeGen, CodeGenArgumentListError, make_routine
)
from sympy.testing.pytest import raises
from sympy.testing.tmpfiles import TmpFileManager
def get_string(dump_fn, routines, prefix="file", **kwargs):
"""Wrapper for dump_fn. dump_fn writes its results to a stream object and
this wrapper returns the contents of that stream as a string. This
auxiliary function is used by many tests below.
The header and the empty lines are not generator to facilitate the
testing of the output.
"""
output = StringIO()
dump_fn(routines, output, prefix, **kwargs)
source = output.getvalue()
output.close()
return source
def test_cython_wrapper_scalar_function():
x, y, z = symbols('x,y,z')
expr = (x + y)*z
routine = make_routine("test", expr)
code_gen = CythonCodeWrapper(CCodeGen())
source = get_string(code_gen.dump_pyx, [routine])
expected = (
"cdef extern from 'file.h':\n"
" double test(double x, double y, double z)\n"
"\n"
"def test_c(double x, double y, double z):\n"
"\n"
" return test(x, y, z)")
assert source == expected
def test_cython_wrapper_outarg():
from sympy.core.relational import Equality
x, y, z = symbols('x,y,z')
code_gen = CythonCodeWrapper(C99CodeGen())
routine = make_routine("test", Equality(z, x + y))
source = get_string(code_gen.dump_pyx, [routine])
expected = (
"cdef extern from 'file.h':\n"
" void test(double x, double y, double *z)\n"
"\n"
"def test_c(double x, double y):\n"
"\n"
" cdef double z = 0\n"
" test(x, y, &z)\n"
" return z")
assert source == expected
def test_cython_wrapper_inoutarg():
from sympy.core.relational import Equality
x, y, z = symbols('x,y,z')
code_gen = CythonCodeWrapper(C99CodeGen())
routine = make_routine("test", Equality(z, x + y + z))
source = get_string(code_gen.dump_pyx, [routine])
expected = (
"cdef extern from 'file.h':\n"
" void test(double x, double y, double *z)\n"
"\n"
"def test_c(double x, double y, double z):\n"
"\n"
" test(x, y, &z)\n"
" return z")
assert source == expected
def test_cython_wrapper_compile_flags():
from sympy.core.relational import Equality
x, y, z = symbols('x,y,z')
routine = make_routine("test", Equality(z, x + y))
code_gen = CythonCodeWrapper(CCodeGen())
expected = """\
from setuptools import setup
from setuptools import Extension
from Cython.Build import cythonize
cy_opts = {'compiler_directives': {'language_level': '3'}}
ext_mods = [Extension(
'wrapper_module_%(num)s', ['wrapper_module_%(num)s.pyx', 'wrapped_code_%(num)s.c'],
include_dirs=[],
library_dirs=[],
libraries=[],
extra_compile_args=['-std=c99'],
extra_link_args=[]
)]
setup(ext_modules=cythonize(ext_mods, **cy_opts))
""" % {'num': CodeWrapper._module_counter}
temp_dir = tempfile.mkdtemp()
TmpFileManager.tmp_folder(temp_dir)
setup_file_path = os.path.join(temp_dir, 'setup.py')
code_gen._prepare_files(routine, build_dir=temp_dir)
with open(setup_file_path) as f:
setup_text = f.read()
assert setup_text == expected
code_gen = CythonCodeWrapper(CCodeGen(),
include_dirs=['/usr/local/include', '/opt/booger/include'],
library_dirs=['/user/local/lib'],
libraries=['thelib', 'nilib'],
extra_compile_args=['-slow-math'],
extra_link_args=['-lswamp', '-ltrident'],
cythonize_options={'compiler_directives': {'boundscheck': False}}
)
expected = """\
from setuptools import setup
from setuptools import Extension
from Cython.Build import cythonize
cy_opts = {'compiler_directives': {'boundscheck': False}}
ext_mods = [Extension(
'wrapper_module_%(num)s', ['wrapper_module_%(num)s.pyx', 'wrapped_code_%(num)s.c'],
include_dirs=['/usr/local/include', '/opt/booger/include'],
library_dirs=['/user/local/lib'],
libraries=['thelib', 'nilib'],
extra_compile_args=['-slow-math', '-std=c99'],
extra_link_args=['-lswamp', '-ltrident']
)]
setup(ext_modules=cythonize(ext_mods, **cy_opts))
""" % {'num': CodeWrapper._module_counter}
code_gen._prepare_files(routine, build_dir=temp_dir)
with open(setup_file_path) as f:
setup_text = f.read()
assert setup_text == expected
expected = """\
from setuptools import setup
from setuptools import Extension
from Cython.Build import cythonize
cy_opts = {'compiler_directives': {'boundscheck': False}}
import numpy as np
ext_mods = [Extension(
'wrapper_module_%(num)s', ['wrapper_module_%(num)s.pyx', 'wrapped_code_%(num)s.c'],
include_dirs=['/usr/local/include', '/opt/booger/include', np.get_include()],
library_dirs=['/user/local/lib'],
libraries=['thelib', 'nilib'],
extra_compile_args=['-slow-math', '-std=c99'],
extra_link_args=['-lswamp', '-ltrident']
)]
setup(ext_modules=cythonize(ext_mods, **cy_opts))
""" % {'num': CodeWrapper._module_counter}
code_gen._need_numpy = True
code_gen._prepare_files(routine, build_dir=temp_dir)
with open(setup_file_path) as f:
setup_text = f.read()
assert setup_text == expected
TmpFileManager.cleanup()
def test_cython_wrapper_unique_dummyvars():
from sympy.core.relational import Equality
from sympy.core.symbol import Dummy
x, y, z = Dummy('x'), Dummy('y'), Dummy('z')
x_id, y_id, z_id = [str(d.dummy_index) for d in [x, y, z]]
expr = Equality(z, x + y)
routine = make_routine("test", expr)
code_gen = CythonCodeWrapper(CCodeGen())
source = get_string(code_gen.dump_pyx, [routine])
expected_template = (
"cdef extern from 'file.h':\n"
" void test(double x_{x_id}, double y_{y_id}, double *z_{z_id})\n"
"\n"
"def test_c(double x_{x_id}, double y_{y_id}):\n"
"\n"
" cdef double z_{z_id} = 0\n"
" test(x_{x_id}, y_{y_id}, &z_{z_id})\n"
" return z_{z_id}")
expected = expected_template.format(x_id=x_id, y_id=y_id, z_id=z_id)
assert source == expected
def test_autowrap_dummy():
x, y, z = symbols('x y z')
# Uses DummyWrapper to test that codegen works as expected
f = autowrap(x + y, backend='dummy')
assert f() == str(x + y)
assert f.args == "x, y"
assert f.returns == "nameless"
f = autowrap(Eq(z, x + y), backend='dummy')
assert f() == str(x + y)
assert f.args == "x, y"
assert f.returns == "z"
f = autowrap(Eq(z, x + y + z), backend='dummy')
assert f() == str(x + y + z)
assert f.args == "x, y, z"
assert f.returns == "z"
def test_autowrap_args():
x, y, z = symbols('x y z')
raises(CodeGenArgumentListError, lambda: autowrap(Eq(z, x + y),
backend='dummy', args=[x]))
f = autowrap(Eq(z, x + y), backend='dummy', args=[y, x])
assert f() == str(x + y)
assert f.args == "y, x"
assert f.returns == "z"
raises(CodeGenArgumentListError, lambda: autowrap(Eq(z, x + y + z),
backend='dummy', args=[x, y]))
f = autowrap(Eq(z, x + y + z), backend='dummy', args=[y, x, z])
assert f() == str(x + y + z)
assert f.args == "y, x, z"
assert f.returns == "z"
f = autowrap(Eq(z, x + y + z), backend='dummy', args=(y, x, z))
assert f() == str(x + y + z)
assert f.args == "y, x, z"
assert f.returns == "z"
def test_autowrap_store_files():
x, y = symbols('x y')
tmp = tempfile.mkdtemp()
TmpFileManager.tmp_folder(tmp)
f = autowrap(x + y, backend='dummy', tempdir=tmp)
assert f() == str(x + y)
assert os.access(tmp, os.F_OK)
TmpFileManager.cleanup()
def test_autowrap_store_files_issue_gh12939():
x, y = symbols('x y')
tmp = './tmp'
saved_cwd = os.getcwd()
temp_cwd = tempfile.mkdtemp()
try:
os.chdir(temp_cwd)
f = autowrap(x + y, backend='dummy', tempdir=tmp)
assert f() == str(x + y)
assert os.access(tmp, os.F_OK)
finally:
os.chdir(saved_cwd)
shutil.rmtree(temp_cwd)
def test_binary_function():
x, y = symbols('x y')
f = binary_function('f', x + y, backend='dummy')
assert f._imp_() == str(x + y)
def test_ufuncify_source():
x, y, z = symbols('x,y,z')
code_wrapper = UfuncifyCodeWrapper(C99CodeGen("ufuncify"))
routine = make_routine("test", x + y + z)
source = get_string(code_wrapper.dump_c, [routine])
expected = """\
#include "Python.h"
#include "math.h"
#include "numpy/ndarraytypes.h"
#include "numpy/ufuncobject.h"
#include "numpy/halffloat.h"
#include "file.h"
static PyMethodDef wrapper_module_%(num)sMethods[] = {
{NULL, NULL, 0, NULL}
};
static void test_ufunc(char **args, npy_intp *dimensions, npy_intp* steps, void* data)
{
npy_intp i;
npy_intp n = dimensions[0];
char *in0 = args[0];
char *in1 = args[1];
char *in2 = args[2];
char *out0 = args[3];
npy_intp in0_step = steps[0];
npy_intp in1_step = steps[1];
npy_intp in2_step = steps[2];
npy_intp out0_step = steps[3];
for (i = 0; i < n; i++) {
*((double *)out0) = test(*(double *)in0, *(double *)in1, *(double *)in2);
in0 += in0_step;
in1 += in1_step;
in2 += in2_step;
out0 += out0_step;
}
}
PyUFuncGenericFunction test_funcs[1] = {&test_ufunc};
static char test_types[4] = {NPY_DOUBLE, NPY_DOUBLE, NPY_DOUBLE, NPY_DOUBLE};
static void *test_data[1] = {NULL};
#if PY_VERSION_HEX >= 0x03000000
static struct PyModuleDef moduledef = {
PyModuleDef_HEAD_INIT,
"wrapper_module_%(num)s",
NULL,
-1,
wrapper_module_%(num)sMethods,
NULL,
NULL,
NULL,
NULL
};
PyMODINIT_FUNC PyInit_wrapper_module_%(num)s(void)
{
PyObject *m, *d;
PyObject *ufunc0;
m = PyModule_Create(&moduledef);
if (!m) {
return NULL;
}
import_array();
import_umath();
d = PyModule_GetDict(m);
ufunc0 = PyUFunc_FromFuncAndData(test_funcs, test_data, test_types, 1, 3, 1,
PyUFunc_None, "wrapper_module_%(num)s", "Created in SymPy with Ufuncify", 0);
PyDict_SetItemString(d, "test", ufunc0);
Py_DECREF(ufunc0);
return m;
}
#else
PyMODINIT_FUNC initwrapper_module_%(num)s(void)
{
PyObject *m, *d;
PyObject *ufunc0;
m = Py_InitModule("wrapper_module_%(num)s", wrapper_module_%(num)sMethods);
if (m == NULL) {
return;
}
import_array();
import_umath();
d = PyModule_GetDict(m);
ufunc0 = PyUFunc_FromFuncAndData(test_funcs, test_data, test_types, 1, 3, 1,
PyUFunc_None, "wrapper_module_%(num)s", "Created in SymPy with Ufuncify", 0);
PyDict_SetItemString(d, "test", ufunc0);
Py_DECREF(ufunc0);
}
#endif""" % {'num': CodeWrapper._module_counter}
assert source == expected
def test_ufuncify_source_multioutput():
x, y, z = symbols('x,y,z')
var_symbols = (x, y, z)
expr = x + y**3 + 10*z**2
code_wrapper = UfuncifyCodeWrapper(C99CodeGen("ufuncify"))
routines = [make_routine("func{}".format(i), expr.diff(var_symbols[i]), var_symbols) for i in range(len(var_symbols))]
source = get_string(code_wrapper.dump_c, routines, funcname='multitest')
expected = """\
#include "Python.h"
#include "math.h"
#include "numpy/ndarraytypes.h"
#include "numpy/ufuncobject.h"
#include "numpy/halffloat.h"
#include "file.h"
static PyMethodDef wrapper_module_%(num)sMethods[] = {
{NULL, NULL, 0, NULL}
};
static void multitest_ufunc(char **args, npy_intp *dimensions, npy_intp* steps, void* data)
{
npy_intp i;
npy_intp n = dimensions[0];
char *in0 = args[0];
char *in1 = args[1];
char *in2 = args[2];
char *out0 = args[3];
char *out1 = args[4];
char *out2 = args[5];
npy_intp in0_step = steps[0];
npy_intp in1_step = steps[1];
npy_intp in2_step = steps[2];
npy_intp out0_step = steps[3];
npy_intp out1_step = steps[4];
npy_intp out2_step = steps[5];
for (i = 0; i < n; i++) {
*((double *)out0) = func0(*(double *)in0, *(double *)in1, *(double *)in2);
*((double *)out1) = func1(*(double *)in0, *(double *)in1, *(double *)in2);
*((double *)out2) = func2(*(double *)in0, *(double *)in1, *(double *)in2);
in0 += in0_step;
in1 += in1_step;
in2 += in2_step;
out0 += out0_step;
out1 += out1_step;
out2 += out2_step;
}
}
PyUFuncGenericFunction multitest_funcs[1] = {&multitest_ufunc};
static char multitest_types[6] = {NPY_DOUBLE, NPY_DOUBLE, NPY_DOUBLE, NPY_DOUBLE, NPY_DOUBLE, NPY_DOUBLE};
static void *multitest_data[1] = {NULL};
#if PY_VERSION_HEX >= 0x03000000
static struct PyModuleDef moduledef = {
PyModuleDef_HEAD_INIT,
"wrapper_module_%(num)s",
NULL,
-1,
wrapper_module_%(num)sMethods,
NULL,
NULL,
NULL,
NULL
};
PyMODINIT_FUNC PyInit_wrapper_module_%(num)s(void)
{
PyObject *m, *d;
PyObject *ufunc0;
m = PyModule_Create(&moduledef);
if (!m) {
return NULL;
}
import_array();
import_umath();
d = PyModule_GetDict(m);
ufunc0 = PyUFunc_FromFuncAndData(multitest_funcs, multitest_data, multitest_types, 1, 3, 3,
PyUFunc_None, "wrapper_module_%(num)s", "Created in SymPy with Ufuncify", 0);
PyDict_SetItemString(d, "multitest", ufunc0);
Py_DECREF(ufunc0);
return m;
}
#else
PyMODINIT_FUNC initwrapper_module_%(num)s(void)
{
PyObject *m, *d;
PyObject *ufunc0;
m = Py_InitModule("wrapper_module_%(num)s", wrapper_module_%(num)sMethods);
if (m == NULL) {
return;
}
import_array();
import_umath();
d = PyModule_GetDict(m);
ufunc0 = PyUFunc_FromFuncAndData(multitest_funcs, multitest_data, multitest_types, 1, 3, 3,
PyUFunc_None, "wrapper_module_%(num)s", "Created in SymPy with Ufuncify", 0);
PyDict_SetItemString(d, "multitest", ufunc0);
Py_DECREF(ufunc0);
}
#endif""" % {'num': CodeWrapper._module_counter}
assert source == expected
|
2d1ad9d94c6e5e72ba270c65f2f4f411d2d3faafbb8cb9130baf54f498ee6185 | from sympy.testing.pytest import warns_deprecated_sympy
# See https://github.com/sympy/sympy/pull/18095
def test_deprecated_utilities():
with warns_deprecated_sympy():
import sympy.utilities.pytest # noqa:F401
with warns_deprecated_sympy():
import sympy.utilities.runtests # noqa:F401
with warns_deprecated_sympy():
import sympy.utilities.randtest # noqa:F401
with warns_deprecated_sympy():
import sympy.utilities.tmpfiles # noqa:F401
|
30003b63e4f9662ebe0700963b720993705e7230ac98ec4db316d85d06cbdd9f | from itertools import product
import math
import inspect
import mpmath
from sympy.testing.pytest import raises, warns_deprecated_sympy
from sympy.concrete.summations import Sum
from sympy.core.function import (Function, Lambda, diff)
from sympy.core.numbers import (E, Float, I, Rational, oo, pi)
from sympy.core.relational import Eq
from sympy.core.singleton import S
from sympy.core.symbol import (Dummy, symbols)
from sympy.functions.combinatorial.factorials import (RisingFactorial, factorial)
from sympy.functions.combinatorial.numbers import bernoulli, harmonic
from sympy.functions.elementary.complexes import Abs
from sympy.functions.elementary.exponential import exp, log
from sympy.functions.elementary.hyperbolic import acosh
from sympy.functions.elementary.integers import floor
from sympy.functions.elementary.miscellaneous import (Max, Min, sqrt)
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import (acos, cos, cot, sin,
sinc, tan)
from sympy.functions.special.bessel import (besseli, besselj, besselk, bessely)
from sympy.functions.special.beta_functions import (beta, betainc, betainc_regularized)
from sympy.functions.special.delta_functions import (Heaviside)
from sympy.functions.special.error_functions import (Ei, erf, erfc, fresnelc, fresnels)
from sympy.functions.special.gamma_functions import (digamma, gamma, loggamma, polygamma)
from sympy.integrals.integrals import Integral
from sympy.logic.boolalg import (And, false, ITE, Not, Or, true)
from sympy.matrices.expressions.dotproduct import DotProduct
from sympy.tensor.array import derive_by_array, Array
from sympy.tensor.indexed import IndexedBase
from sympy.utilities.lambdify import lambdify
from sympy.core.expr import UnevaluatedExpr
from sympy.codegen.cfunctions import expm1, log1p, exp2, log2, log10, hypot
from sympy.codegen.numpy_nodes import logaddexp, logaddexp2
from sympy.codegen.scipy_nodes import cosm1, powm1
from sympy.functions.elementary.complexes import re, im, arg
from sympy.functions.special.polynomials import \
chebyshevt, chebyshevu, legendre, hermite, laguerre, gegenbauer, \
assoc_legendre, assoc_laguerre, jacobi
from sympy.matrices import Matrix, MatrixSymbol, SparseMatrix
from sympy.printing.lambdarepr import LambdaPrinter
from sympy.printing.numpy import NumPyPrinter
from sympy.utilities.lambdify import implemented_function, lambdastr
from sympy.testing.pytest import skip
from sympy.utilities.decorator import conserve_mpmath_dps
from sympy.utilities.exceptions import ignore_warnings
from sympy.external import import_module
from sympy.functions.special.gamma_functions import uppergamma, lowergamma
import sympy
MutableDenseMatrix = Matrix
numpy = import_module('numpy')
scipy = import_module('scipy', import_kwargs={'fromlist': ['sparse']})
numexpr = import_module('numexpr')
tensorflow = import_module('tensorflow')
cupy = import_module('cupy')
jax = import_module('jax')
numba = import_module('numba')
if tensorflow:
# Hide Tensorflow warnings
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
w, x, y, z = symbols('w,x,y,z')
#================== Test different arguments =======================
def test_no_args():
f = lambdify([], 1)
raises(TypeError, lambda: f(-1))
assert f() == 1
def test_single_arg():
f = lambdify(x, 2*x)
assert f(1) == 2
def test_list_args():
f = lambdify([x, y], x + y)
assert f(1, 2) == 3
def test_nested_args():
f1 = lambdify([[w, x]], [w, x])
assert f1([91, 2]) == [91, 2]
raises(TypeError, lambda: f1(1, 2))
f2 = lambdify([(w, x), (y, z)], [w, x, y, z])
assert f2((18, 12), (73, 4)) == [18, 12, 73, 4]
raises(TypeError, lambda: f2(3, 4))
f3 = lambdify([w, [[[x]], y], z], [w, x, y, z])
assert f3(10, [[[52]], 31], 44) == [10, 52, 31, 44]
def test_str_args():
f = lambdify('x,y,z', 'z,y,x')
assert f(3, 2, 1) == (1, 2, 3)
assert f(1.0, 2.0, 3.0) == (3.0, 2.0, 1.0)
# make sure correct number of args required
raises(TypeError, lambda: f(0))
def test_own_namespace_1():
myfunc = lambda x: 1
f = lambdify(x, sin(x), {"sin": myfunc})
assert f(0.1) == 1
assert f(100) == 1
def test_own_namespace_2():
def myfunc(x):
return 1
f = lambdify(x, sin(x), {'sin': myfunc})
assert f(0.1) == 1
assert f(100) == 1
def test_own_module():
f = lambdify(x, sin(x), math)
assert f(0) == 0.0
p, q, r = symbols("p q r", real=True)
ae = abs(exp(p+UnevaluatedExpr(q+r)))
f = lambdify([p, q, r], [ae, ae], modules=math)
results = f(1.0, 1e18, -1e18)
refvals = [math.exp(1.0)]*2
for res, ref in zip(results, refvals):
assert abs((res-ref)/ref) < 1e-15
def test_bad_args():
# no vargs given
raises(TypeError, lambda: lambdify(1))
# same with vector exprs
raises(TypeError, lambda: lambdify([1, 2]))
def test_atoms():
# Non-Symbol atoms should not be pulled out from the expression namespace
f = lambdify(x, pi + x, {"pi": 3.14})
assert f(0) == 3.14
f = lambdify(x, I + x, {"I": 1j})
assert f(1) == 1 + 1j
#================== Test different modules =========================
# high precision output of sin(0.2*pi) is used to detect if precision is lost unwanted
@conserve_mpmath_dps
def test_sympy_lambda():
mpmath.mp.dps = 50
sin02 = mpmath.mpf("0.19866933079506121545941262711838975037020672954020")
f = lambdify(x, sin(x), "sympy")
assert f(x) == sin(x)
prec = 1e-15
assert -prec < f(Rational(1, 5)).evalf() - Float(str(sin02)) < prec
# arctan is in numpy module and should not be available
# The arctan below gives NameError. What is this supposed to test?
# raises(NameError, lambda: lambdify(x, arctan(x), "sympy"))
@conserve_mpmath_dps
def test_math_lambda():
mpmath.mp.dps = 50
sin02 = mpmath.mpf("0.19866933079506121545941262711838975037020672954020")
f = lambdify(x, sin(x), "math")
prec = 1e-15
assert -prec < f(0.2) - sin02 < prec
raises(TypeError, lambda: f(x))
# if this succeeds, it can't be a Python math function
@conserve_mpmath_dps
def test_mpmath_lambda():
mpmath.mp.dps = 50
sin02 = mpmath.mpf("0.19866933079506121545941262711838975037020672954020")
f = lambdify(x, sin(x), "mpmath")
prec = 1e-49 # mpmath precision is around 50 decimal places
assert -prec < f(mpmath.mpf("0.2")) - sin02 < prec
raises(TypeError, lambda: f(x))
# if this succeeds, it can't be a mpmath function
ref2 = (mpmath.mpf("1e-30")
- mpmath.mpf("1e-45")/2
+ 5*mpmath.mpf("1e-60")/6
- 3*mpmath.mpf("1e-75")/4
+ 33*mpmath.mpf("1e-90")/40
)
f2a = lambdify((x, y), x**y - 1, "mpmath")
f2b = lambdify((x, y), powm1(x, y), "mpmath")
f2c = lambdify((x,), expm1(x*log1p(x)), "mpmath")
ans2a = f2a(mpmath.mpf("1")+mpmath.mpf("1e-15"), mpmath.mpf("1e-15"))
ans2b = f2b(mpmath.mpf("1")+mpmath.mpf("1e-15"), mpmath.mpf("1e-15"))
ans2c = f2c(mpmath.mpf("1e-15"))
assert abs(ans2a - ref2) < 1e-51
assert abs(ans2b - ref2) < 1e-67
assert abs(ans2c - ref2) < 1e-80
@conserve_mpmath_dps
def test_number_precision():
mpmath.mp.dps = 50
sin02 = mpmath.mpf("0.19866933079506121545941262711838975037020672954020")
f = lambdify(x, sin02, "mpmath")
prec = 1e-49 # mpmath precision is around 50 decimal places
assert -prec < f(0) - sin02 < prec
@conserve_mpmath_dps
def test_mpmath_precision():
mpmath.mp.dps = 100
assert str(lambdify((), pi.evalf(100), 'mpmath')()) == str(pi.evalf(100))
#================== Test Translations ==============================
# We can only check if all translated functions are valid. It has to be checked
# by hand if they are complete.
def test_math_transl():
from sympy.utilities.lambdify import MATH_TRANSLATIONS
for sym, mat in MATH_TRANSLATIONS.items():
assert sym in sympy.__dict__
assert mat in math.__dict__
def test_mpmath_transl():
from sympy.utilities.lambdify import MPMATH_TRANSLATIONS
for sym, mat in MPMATH_TRANSLATIONS.items():
assert sym in sympy.__dict__ or sym == 'Matrix'
assert mat in mpmath.__dict__
def test_numpy_transl():
if not numpy:
skip("numpy not installed.")
from sympy.utilities.lambdify import NUMPY_TRANSLATIONS
for sym, nump in NUMPY_TRANSLATIONS.items():
assert sym in sympy.__dict__
assert nump in numpy.__dict__
def test_scipy_transl():
if not scipy:
skip("scipy not installed.")
from sympy.utilities.lambdify import SCIPY_TRANSLATIONS
for sym, scip in SCIPY_TRANSLATIONS.items():
assert sym in sympy.__dict__
assert scip in scipy.__dict__ or scip in scipy.special.__dict__
def test_numpy_translation_abs():
if not numpy:
skip("numpy not installed.")
f = lambdify(x, Abs(x), "numpy")
assert f(-1) == 1
assert f(1) == 1
def test_numexpr_printer():
if not numexpr:
skip("numexpr not installed.")
# if translation/printing is done incorrectly then evaluating
# a lambdified numexpr expression will throw an exception
from sympy.printing.lambdarepr import NumExprPrinter
blacklist = ('where', 'complex', 'contains')
arg_tuple = (x, y, z) # some functions take more than one argument
for sym in NumExprPrinter._numexpr_functions.keys():
if sym in blacklist:
continue
ssym = S(sym)
if hasattr(ssym, '_nargs'):
nargs = ssym._nargs[0]
else:
nargs = 1
args = arg_tuple[:nargs]
f = lambdify(args, ssym(*args), modules='numexpr')
assert f(*(1, )*nargs) is not None
def test_issue_9334():
if not numexpr:
skip("numexpr not installed.")
if not numpy:
skip("numpy not installed.")
expr = S('b*a - sqrt(a**2)')
a, b = sorted(expr.free_symbols, key=lambda s: s.name)
func_numexpr = lambdify((a,b), expr, modules=[numexpr], dummify=False)
foo, bar = numpy.random.random((2, 4))
func_numexpr(foo, bar)
def test_issue_12984():
if not numexpr:
skip("numexpr not installed.")
func_numexpr = lambdify((x,y,z), Piecewise((y, x >= 0), (z, x > -1)), numexpr)
with ignore_warnings(RuntimeWarning):
assert func_numexpr(1, 24, 42) == 24
assert str(func_numexpr(-1, 24, 42)) == 'nan'
def test_empty_modules():
x, y = symbols('x y')
expr = -(x % y)
no_modules = lambdify([x, y], expr)
empty_modules = lambdify([x, y], expr, modules=[])
assert no_modules(3, 7) == empty_modules(3, 7)
assert no_modules(3, 7) == -3
def test_exponentiation():
f = lambdify(x, x**2)
assert f(-1) == 1
assert f(0) == 0
assert f(1) == 1
assert f(-2) == 4
assert f(2) == 4
assert f(2.5) == 6.25
def test_sqrt():
f = lambdify(x, sqrt(x))
assert f(0) == 0.0
assert f(1) == 1.0
assert f(4) == 2.0
assert abs(f(2) - 1.414) < 0.001
assert f(6.25) == 2.5
def test_trig():
f = lambdify([x], [cos(x), sin(x)], 'math')
d = f(pi)
prec = 1e-11
assert -prec < d[0] + 1 < prec
assert -prec < d[1] < prec
d = f(3.14159)
prec = 1e-5
assert -prec < d[0] + 1 < prec
assert -prec < d[1] < prec
def test_integral():
if numpy and not scipy:
skip("scipy not installed.")
f = Lambda(x, exp(-x**2))
l = lambdify(y, Integral(f(x), (x, y, oo)))
d = l(-oo)
assert 1.77245385 < d < 1.772453851
def test_double_integral():
if numpy and not scipy:
skip("scipy not installed.")
# example from http://mpmath.org/doc/current/calculus/integration.html
i = Integral(1/(1 - x**2*y**2), (x, 0, 1), (y, 0, z))
l = lambdify([z], i)
d = l(1)
assert 1.23370055 < d < 1.233700551
#================== Test vectors ===================================
def test_vector_simple():
f = lambdify((x, y, z), (z, y, x))
assert f(3, 2, 1) == (1, 2, 3)
assert f(1.0, 2.0, 3.0) == (3.0, 2.0, 1.0)
# make sure correct number of args required
raises(TypeError, lambda: f(0))
def test_vector_discontinuous():
f = lambdify(x, (-1/x, 1/x))
raises(ZeroDivisionError, lambda: f(0))
assert f(1) == (-1.0, 1.0)
assert f(2) == (-0.5, 0.5)
assert f(-2) == (0.5, -0.5)
def test_trig_symbolic():
f = lambdify([x], [cos(x), sin(x)], 'math')
d = f(pi)
assert abs(d[0] + 1) < 0.0001
assert abs(d[1] - 0) < 0.0001
def test_trig_float():
f = lambdify([x], [cos(x), sin(x)])
d = f(3.14159)
assert abs(d[0] + 1) < 0.0001
assert abs(d[1] - 0) < 0.0001
def test_docs():
f = lambdify(x, x**2)
assert f(2) == 4
f = lambdify([x, y, z], [z, y, x])
assert f(1, 2, 3) == [3, 2, 1]
f = lambdify(x, sqrt(x))
assert f(4) == 2.0
f = lambdify((x, y), sin(x*y)**2)
assert f(0, 5) == 0
def test_math():
f = lambdify((x, y), sin(x), modules="math")
assert f(0, 5) == 0
def test_sin():
f = lambdify(x, sin(x)**2)
assert isinstance(f(2), float)
f = lambdify(x, sin(x)**2, modules="math")
assert isinstance(f(2), float)
def test_matrix():
A = Matrix([[x, x*y], [sin(z) + 4, x**z]])
sol = Matrix([[1, 2], [sin(3) + 4, 1]])
f = lambdify((x, y, z), A, modules="sympy")
assert f(1, 2, 3) == sol
f = lambdify((x, y, z), (A, [A]), modules="sympy")
assert f(1, 2, 3) == (sol, [sol])
J = Matrix((x, x + y)).jacobian((x, y))
v = Matrix((x, y))
sol = Matrix([[1, 0], [1, 1]])
assert lambdify(v, J, modules='sympy')(1, 2) == sol
assert lambdify(v.T, J, modules='sympy')(1, 2) == sol
def test_numpy_matrix():
if not numpy:
skip("numpy not installed.")
A = Matrix([[x, x*y], [sin(z) + 4, x**z]])
sol_arr = numpy.array([[1, 2], [numpy.sin(3) + 4, 1]])
#Lambdify array first, to ensure return to array as default
f = lambdify((x, y, z), A, ['numpy'])
numpy.testing.assert_allclose(f(1, 2, 3), sol_arr)
#Check that the types are arrays and matrices
assert isinstance(f(1, 2, 3), numpy.ndarray)
# gh-15071
class dot(Function):
pass
x_dot_mtx = dot(x, Matrix([[2], [1], [0]]))
f_dot1 = lambdify(x, x_dot_mtx)
inp = numpy.zeros((17, 3))
assert numpy.all(f_dot1(inp) == 0)
strict_kw = dict(allow_unknown_functions=False, inline=True, fully_qualified_modules=False)
p2 = NumPyPrinter(dict(user_functions={'dot': 'dot'}, **strict_kw))
f_dot2 = lambdify(x, x_dot_mtx, printer=p2)
assert numpy.all(f_dot2(inp) == 0)
p3 = NumPyPrinter(strict_kw)
# The line below should probably fail upon construction (before calling with "(inp)"):
raises(Exception, lambda: lambdify(x, x_dot_mtx, printer=p3)(inp))
def test_numpy_transpose():
if not numpy:
skip("numpy not installed.")
A = Matrix([[1, x], [0, 1]])
f = lambdify((x), A.T, modules="numpy")
numpy.testing.assert_array_equal(f(2), numpy.array([[1, 0], [2, 1]]))
def test_numpy_dotproduct():
if not numpy:
skip("numpy not installed")
A = Matrix([x, y, z])
f1 = lambdify([x, y, z], DotProduct(A, A), modules='numpy')
f2 = lambdify([x, y, z], DotProduct(A, A.T), modules='numpy')
f3 = lambdify([x, y, z], DotProduct(A.T, A), modules='numpy')
f4 = lambdify([x, y, z], DotProduct(A, A.T), modules='numpy')
assert f1(1, 2, 3) == \
f2(1, 2, 3) == \
f3(1, 2, 3) == \
f4(1, 2, 3) == \
numpy.array([14])
def test_numpy_inverse():
if not numpy:
skip("numpy not installed.")
A = Matrix([[1, x], [0, 1]])
f = lambdify((x), A**-1, modules="numpy")
numpy.testing.assert_array_equal(f(2), numpy.array([[1, -2], [0, 1]]))
def test_numpy_old_matrix():
if not numpy:
skip("numpy not installed.")
A = Matrix([[x, x*y], [sin(z) + 4, x**z]])
sol_arr = numpy.array([[1, 2], [numpy.sin(3) + 4, 1]])
f = lambdify((x, y, z), A, [{'ImmutableDenseMatrix': numpy.matrix}, 'numpy'])
with ignore_warnings(PendingDeprecationWarning):
numpy.testing.assert_allclose(f(1, 2, 3), sol_arr)
assert isinstance(f(1, 2, 3), numpy.matrix)
def test_scipy_sparse_matrix():
if not scipy:
skip("scipy not installed.")
A = SparseMatrix([[x, 0], [0, y]])
f = lambdify((x, y), A, modules="scipy")
B = f(1, 2)
assert isinstance(B, scipy.sparse.coo_matrix)
def test_python_div_zero_issue_11306():
if not numpy:
skip("numpy not installed.")
p = Piecewise((1 / x, y < -1), (x, y < 1), (1 / x, True))
f = lambdify([x, y], p, modules='numpy')
numpy.seterr(divide='ignore')
assert float(f(numpy.array([0]),numpy.array([0.5]))) == 0
assert str(float(f(numpy.array([0]),numpy.array([1])))) == 'inf'
numpy.seterr(divide='warn')
def test_issue9474():
mods = [None, 'math']
if numpy:
mods.append('numpy')
if mpmath:
mods.append('mpmath')
for mod in mods:
f = lambdify(x, S.One/x, modules=mod)
assert f(2) == 0.5
f = lambdify(x, floor(S.One/x), modules=mod)
assert f(2) == 0
for absfunc, modules in product([Abs, abs], mods):
f = lambdify(x, absfunc(x), modules=modules)
assert f(-1) == 1
assert f(1) == 1
assert f(3+4j) == 5
def test_issue_9871():
if not numexpr:
skip("numexpr not installed.")
if not numpy:
skip("numpy not installed.")
r = sqrt(x**2 + y**2)
expr = diff(1/r, x)
xn = yn = numpy.linspace(1, 10, 16)
# expr(xn, xn) = -xn/(sqrt(2)*xn)^3
fv_exact = -numpy.sqrt(2.)**-3 * xn**-2
fv_numpy = lambdify((x, y), expr, modules='numpy')(xn, yn)
fv_numexpr = lambdify((x, y), expr, modules='numexpr')(xn, yn)
numpy.testing.assert_allclose(fv_numpy, fv_exact, rtol=1e-10)
numpy.testing.assert_allclose(fv_numexpr, fv_exact, rtol=1e-10)
def test_numpy_piecewise():
if not numpy:
skip("numpy not installed.")
pieces = Piecewise((x, x < 3), (x**2, x > 5), (0, True))
f = lambdify(x, pieces, modules="numpy")
numpy.testing.assert_array_equal(f(numpy.arange(10)),
numpy.array([0, 1, 2, 0, 0, 0, 36, 49, 64, 81]))
# If we evaluate somewhere all conditions are False, we should get back NaN
nodef_func = lambdify(x, Piecewise((x, x > 0), (-x, x < 0)))
numpy.testing.assert_array_equal(nodef_func(numpy.array([-1, 0, 1])),
numpy.array([1, numpy.nan, 1]))
def test_numpy_logical_ops():
if not numpy:
skip("numpy not installed.")
and_func = lambdify((x, y), And(x, y), modules="numpy")
and_func_3 = lambdify((x, y, z), And(x, y, z), modules="numpy")
or_func = lambdify((x, y), Or(x, y), modules="numpy")
or_func_3 = lambdify((x, y, z), Or(x, y, z), modules="numpy")
not_func = lambdify((x), Not(x), modules="numpy")
arr1 = numpy.array([True, True])
arr2 = numpy.array([False, True])
arr3 = numpy.array([True, False])
numpy.testing.assert_array_equal(and_func(arr1, arr2), numpy.array([False, True]))
numpy.testing.assert_array_equal(and_func_3(arr1, arr2, arr3), numpy.array([False, False]))
numpy.testing.assert_array_equal(or_func(arr1, arr2), numpy.array([True, True]))
numpy.testing.assert_array_equal(or_func_3(arr1, arr2, arr3), numpy.array([True, True]))
numpy.testing.assert_array_equal(not_func(arr2), numpy.array([True, False]))
def test_numpy_matmul():
if not numpy:
skip("numpy not installed.")
xmat = Matrix([[x, y], [z, 1+z]])
ymat = Matrix([[x**2], [Abs(x)]])
mat_func = lambdify((x, y, z), xmat*ymat, modules="numpy")
numpy.testing.assert_array_equal(mat_func(0.5, 3, 4), numpy.array([[1.625], [3.5]]))
numpy.testing.assert_array_equal(mat_func(-0.5, 3, 4), numpy.array([[1.375], [3.5]]))
# Multiple matrices chained together in multiplication
f = lambdify((x, y, z), xmat*xmat*xmat, modules="numpy")
numpy.testing.assert_array_equal(f(0.5, 3, 4), numpy.array([[72.125, 119.25],
[159, 251]]))
def test_numpy_numexpr():
if not numpy:
skip("numpy not installed.")
if not numexpr:
skip("numexpr not installed.")
a, b, c = numpy.random.randn(3, 128, 128)
# ensure that numpy and numexpr return same value for complicated expression
expr = sin(x) + cos(y) + tan(z)**2 + Abs(z-y)*acos(sin(y*z)) + \
Abs(y-z)*acosh(2+exp(y-x))- sqrt(x**2+I*y**2)
npfunc = lambdify((x, y, z), expr, modules='numpy')
nefunc = lambdify((x, y, z), expr, modules='numexpr')
assert numpy.allclose(npfunc(a, b, c), nefunc(a, b, c))
def test_numexpr_userfunctions():
if not numpy:
skip("numpy not installed.")
if not numexpr:
skip("numexpr not installed.")
a, b = numpy.random.randn(2, 10)
uf = type('uf', (Function, ),
{'eval' : classmethod(lambda x, y : y**2+1)})
func = lambdify(x, 1-uf(x), modules='numexpr')
assert numpy.allclose(func(a), -(a**2))
uf = implemented_function(Function('uf'), lambda x, y : 2*x*y+1)
func = lambdify((x, y), uf(x, y), modules='numexpr')
assert numpy.allclose(func(a, b), 2*a*b+1)
def test_tensorflow_basic_math():
if not tensorflow:
skip("tensorflow not installed.")
expr = Max(sin(x), Abs(1/(x+2)))
func = lambdify(x, expr, modules="tensorflow")
with tensorflow.compat.v1.Session() as s:
a = tensorflow.constant(0, dtype=tensorflow.float32)
assert func(a).eval(session=s) == 0.5
def test_tensorflow_placeholders():
if not tensorflow:
skip("tensorflow not installed.")
expr = Max(sin(x), Abs(1/(x+2)))
func = lambdify(x, expr, modules="tensorflow")
with tensorflow.compat.v1.Session() as s:
a = tensorflow.compat.v1.placeholder(dtype=tensorflow.float32)
assert func(a).eval(session=s, feed_dict={a: 0}) == 0.5
def test_tensorflow_variables():
if not tensorflow:
skip("tensorflow not installed.")
expr = Max(sin(x), Abs(1/(x+2)))
func = lambdify(x, expr, modules="tensorflow")
with tensorflow.compat.v1.Session() as s:
a = tensorflow.Variable(0, dtype=tensorflow.float32)
s.run(a.initializer)
assert func(a).eval(session=s, feed_dict={a: 0}) == 0.5
def test_tensorflow_logical_operations():
if not tensorflow:
skip("tensorflow not installed.")
expr = Not(And(Or(x, y), y))
func = lambdify([x, y], expr, modules="tensorflow")
with tensorflow.compat.v1.Session() as s:
assert func(False, True).eval(session=s) == False
def test_tensorflow_piecewise():
if not tensorflow:
skip("tensorflow not installed.")
expr = Piecewise((0, Eq(x,0)), (-1, x < 0), (1, x > 0))
func = lambdify(x, expr, modules="tensorflow")
with tensorflow.compat.v1.Session() as s:
assert func(-1).eval(session=s) == -1
assert func(0).eval(session=s) == 0
assert func(1).eval(session=s) == 1
def test_tensorflow_multi_max():
if not tensorflow:
skip("tensorflow not installed.")
expr = Max(x, -x, x**2)
func = lambdify(x, expr, modules="tensorflow")
with tensorflow.compat.v1.Session() as s:
assert func(-2).eval(session=s) == 4
def test_tensorflow_multi_min():
if not tensorflow:
skip("tensorflow not installed.")
expr = Min(x, -x, x**2)
func = lambdify(x, expr, modules="tensorflow")
with tensorflow.compat.v1.Session() as s:
assert func(-2).eval(session=s) == -2
def test_tensorflow_relational():
if not tensorflow:
skip("tensorflow not installed.")
expr = x >= 0
func = lambdify(x, expr, modules="tensorflow")
with tensorflow.compat.v1.Session() as s:
assert func(1).eval(session=s) == True
def test_tensorflow_complexes():
if not tensorflow:
skip("tensorflow not installed")
func1 = lambdify(x, re(x), modules="tensorflow")
func2 = lambdify(x, im(x), modules="tensorflow")
func3 = lambdify(x, Abs(x), modules="tensorflow")
func4 = lambdify(x, arg(x), modules="tensorflow")
with tensorflow.compat.v1.Session() as s:
# For versions before
# https://github.com/tensorflow/tensorflow/issues/30029
# resolved, using Python numeric types may not work
a = tensorflow.constant(1+2j)
assert func1(a).eval(session=s) == 1
assert func2(a).eval(session=s) == 2
tensorflow_result = func3(a).eval(session=s)
sympy_result = Abs(1 + 2j).evalf()
assert abs(tensorflow_result-sympy_result) < 10**-6
tensorflow_result = func4(a).eval(session=s)
sympy_result = arg(1 + 2j).evalf()
assert abs(tensorflow_result-sympy_result) < 10**-6
def test_tensorflow_array_arg():
# Test for issue 14655 (tensorflow part)
if not tensorflow:
skip("tensorflow not installed.")
f = lambdify([[x, y]], x*x + y, 'tensorflow')
with tensorflow.compat.v1.Session() as s:
fcall = f(tensorflow.constant([2.0, 1.0]))
assert fcall.eval(session=s) == 5.0
#================== Test symbolic ==================================
def test_sym_single_arg():
f = lambdify(x, x * y)
assert f(z) == z * y
def test_sym_list_args():
f = lambdify([x, y], x + y + z)
assert f(1, 2) == 3 + z
def test_sym_integral():
f = Lambda(x, exp(-x**2))
l = lambdify(x, Integral(f(x), (x, -oo, oo)), modules="sympy")
assert l(y) == Integral(exp(-y**2), (y, -oo, oo))
assert l(y).doit() == sqrt(pi)
def test_namespace_order():
# lambdify had a bug, such that module dictionaries or cached module
# dictionaries would pull earlier namespaces into themselves.
# Because the module dictionaries form the namespace of the
# generated lambda, this meant that the behavior of a previously
# generated lambda function could change as a result of later calls
# to lambdify.
n1 = {'f': lambda x: 'first f'}
n2 = {'f': lambda x: 'second f',
'g': lambda x: 'function g'}
f = sympy.Function('f')
g = sympy.Function('g')
if1 = lambdify(x, f(x), modules=(n1, "sympy"))
assert if1(1) == 'first f'
if2 = lambdify(x, g(x), modules=(n2, "sympy"))
# previously gave 'second f'
assert if1(1) == 'first f'
assert if2(1) == 'function g'
def test_imps():
# Here we check if the default returned functions are anonymous - in
# the sense that we can have more than one function with the same name
f = implemented_function('f', lambda x: 2*x)
g = implemented_function('f', lambda x: math.sqrt(x))
l1 = lambdify(x, f(x))
l2 = lambdify(x, g(x))
assert str(f(x)) == str(g(x))
assert l1(3) == 6
assert l2(3) == math.sqrt(3)
# check that we can pass in a Function as input
func = sympy.Function('myfunc')
assert not hasattr(func, '_imp_')
my_f = implemented_function(func, lambda x: 2*x)
assert hasattr(my_f, '_imp_')
# Error for functions with same name and different implementation
f2 = implemented_function("f", lambda x: x + 101)
raises(ValueError, lambda: lambdify(x, f(f2(x))))
def test_imps_errors():
# Test errors that implemented functions can return, and still be able to
# form expressions.
# See: https://github.com/sympy/sympy/issues/10810
#
# XXX: Removed AttributeError here. This test was added due to issue 10810
# but that issue was about ValueError. It doesn't seem reasonable to
# "support" catching AttributeError in the same context...
for val, error_class in product((0, 0., 2, 2.0), (TypeError, ValueError)):
def myfunc(a):
if a == 0:
raise error_class
return 1
f = implemented_function('f', myfunc)
expr = f(val)
assert expr == f(val)
def test_imps_wrong_args():
raises(ValueError, lambda: implemented_function(sin, lambda x: x))
def test_lambdify_imps():
# Test lambdify with implemented functions
# first test basic (sympy) lambdify
f = sympy.cos
assert lambdify(x, f(x))(0) == 1
assert lambdify(x, 1 + f(x))(0) == 2
assert lambdify((x, y), y + f(x))(0, 1) == 2
# make an implemented function and test
f = implemented_function("f", lambda x: x + 100)
assert lambdify(x, f(x))(0) == 100
assert lambdify(x, 1 + f(x))(0) == 101
assert lambdify((x, y), y + f(x))(0, 1) == 101
# Can also handle tuples, lists, dicts as expressions
lam = lambdify(x, (f(x), x))
assert lam(3) == (103, 3)
lam = lambdify(x, [f(x), x])
assert lam(3) == [103, 3]
lam = lambdify(x, [f(x), (f(x), x)])
assert lam(3) == [103, (103, 3)]
lam = lambdify(x, {f(x): x})
assert lam(3) == {103: 3}
lam = lambdify(x, {f(x): x})
assert lam(3) == {103: 3}
lam = lambdify(x, {x: f(x)})
assert lam(3) == {3: 103}
# Check that imp preferred to other namespaces by default
d = {'f': lambda x: x + 99}
lam = lambdify(x, f(x), d)
assert lam(3) == 103
# Unless flag passed
lam = lambdify(x, f(x), d, use_imps=False)
assert lam(3) == 102
def test_dummification():
t = symbols('t')
F = Function('F')
G = Function('G')
#"\alpha" is not a valid Python variable name
#lambdify should sub in a dummy for it, and return
#without a syntax error
alpha = symbols(r'\alpha')
some_expr = 2 * F(t)**2 / G(t)
lam = lambdify((F(t), G(t)), some_expr)
assert lam(3, 9) == 2
lam = lambdify(sin(t), 2 * sin(t)**2)
assert lam(F(t)) == 2 * F(t)**2
#Test that \alpha was properly dummified
lam = lambdify((alpha, t), 2*alpha + t)
assert lam(2, 1) == 5
raises(SyntaxError, lambda: lambdify(F(t) * G(t), F(t) * G(t) + 5))
raises(SyntaxError, lambda: lambdify(2 * F(t), 2 * F(t) + 5))
raises(SyntaxError, lambda: lambdify(2 * F(t), 4 * F(t) + 5))
def test_curly_matrix_symbol():
# Issue #15009
curlyv = sympy.MatrixSymbol("{v}", 2, 1)
lam = lambdify(curlyv, curlyv)
assert lam(1)==1
lam = lambdify(curlyv, curlyv, dummify=True)
assert lam(1)==1
def test_python_keywords():
# Test for issue 7452. The automatic dummification should ensure use of
# Python reserved keywords as symbol names will create valid lambda
# functions. This is an additional regression test.
python_if = symbols('if')
expr = python_if / 2
f = lambdify(python_if, expr)
assert f(4.0) == 2.0
def test_lambdify_docstring():
func = lambdify((w, x, y, z), w + x + y + z)
ref = (
"Created with lambdify. Signature:\n\n"
"func(w, x, y, z)\n\n"
"Expression:\n\n"
"w + x + y + z"
).splitlines()
assert func.__doc__.splitlines()[:len(ref)] == ref
syms = symbols('a1:26')
func = lambdify(syms, sum(syms))
ref = (
"Created with lambdify. Signature:\n\n"
"func(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15,\n"
" a16, a17, a18, a19, a20, a21, a22, a23, a24, a25)\n\n"
"Expression:\n\n"
"a1 + a10 + a11 + a12 + a13 + a14 + a15 + a16 + a17 + a18 + a19 + a2 + a20 +..."
).splitlines()
assert func.__doc__.splitlines()[:len(ref)] == ref
#================== Test special printers ==========================
def test_special_printers():
from sympy.printing.lambdarepr import IntervalPrinter
def intervalrepr(expr):
return IntervalPrinter().doprint(expr)
expr = sqrt(sqrt(2) + sqrt(3)) + S.Half
func0 = lambdify((), expr, modules="mpmath", printer=intervalrepr)
func1 = lambdify((), expr, modules="mpmath", printer=IntervalPrinter)
func2 = lambdify((), expr, modules="mpmath", printer=IntervalPrinter())
mpi = type(mpmath.mpi(1, 2))
assert isinstance(func0(), mpi)
assert isinstance(func1(), mpi)
assert isinstance(func2(), mpi)
# To check Is lambdify loggamma works for mpmath or not
exp1 = lambdify(x, loggamma(x), 'mpmath')(5)
exp2 = lambdify(x, loggamma(x), 'mpmath')(1.8)
exp3 = lambdify(x, loggamma(x), 'mpmath')(15)
exp_ls = [exp1, exp2, exp3]
sol1 = mpmath.loggamma(5)
sol2 = mpmath.loggamma(1.8)
sol3 = mpmath.loggamma(15)
sol_ls = [sol1, sol2, sol3]
assert exp_ls == sol_ls
def test_true_false():
# We want exact is comparison here, not just ==
assert lambdify([], true)() is True
assert lambdify([], false)() is False
def test_issue_2790():
assert lambdify((x, (y, z)), x + y)(1, (2, 4)) == 3
assert lambdify((x, (y, (w, z))), w + x + y + z)(1, (2, (3, 4))) == 10
assert lambdify(x, x + 1, dummify=False)(1) == 2
def test_issue_12092():
f = implemented_function('f', lambda x: x**2)
assert f(f(2)).evalf() == Float(16)
def test_issue_14911():
class Variable(sympy.Symbol):
def _sympystr(self, printer):
return printer.doprint(self.name)
_lambdacode = _sympystr
_numpycode = _sympystr
x = Variable('x')
y = 2 * x
code = LambdaPrinter().doprint(y)
assert code.replace(' ', '') == '2*x'
def test_ITE():
assert lambdify((x, y, z), ITE(x, y, z))(True, 5, 3) == 5
assert lambdify((x, y, z), ITE(x, y, z))(False, 5, 3) == 3
def test_Min_Max():
# see gh-10375
assert lambdify((x, y, z), Min(x, y, z))(1, 2, 3) == 1
assert lambdify((x, y, z), Max(x, y, z))(1, 2, 3) == 3
def test_Indexed():
# Issue #10934
if not numpy:
skip("numpy not installed")
a = IndexedBase('a')
i, j = symbols('i j')
b = numpy.array([[1, 2], [3, 4]])
assert lambdify(a, Sum(a[x, y], (x, 0, 1), (y, 0, 1)))(b) == 10
def test_issue_12173():
#test for issue 12173
expr1 = lambdify((x, y), uppergamma(x, y),"mpmath")(1, 2)
expr2 = lambdify((x, y), lowergamma(x, y),"mpmath")(1, 2)
assert expr1 == uppergamma(1, 2).evalf()
assert expr2 == lowergamma(1, 2).evalf()
def test_issue_13642():
if not numpy:
skip("numpy not installed")
f = lambdify(x, sinc(x))
assert Abs(f(1) - sinc(1)).n() < 1e-15
def test_sinc_mpmath():
f = lambdify(x, sinc(x), "mpmath")
assert Abs(f(1) - sinc(1)).n() < 1e-15
def test_lambdify_dummy_arg():
d1 = Dummy()
f1 = lambdify(d1, d1 + 1, dummify=False)
assert f1(2) == 3
f1b = lambdify(d1, d1 + 1)
assert f1b(2) == 3
d2 = Dummy('x')
f2 = lambdify(d2, d2 + 1)
assert f2(2) == 3
f3 = lambdify([[d2]], d2 + 1)
assert f3([2]) == 3
def test_lambdify_mixed_symbol_dummy_args():
d = Dummy()
# Contrived example of name clash
dsym = symbols(str(d))
f = lambdify([d, dsym], d - dsym)
assert f(4, 1) == 3
def test_numpy_array_arg():
# Test for issue 14655 (numpy part)
if not numpy:
skip("numpy not installed")
f = lambdify([[x, y]], x*x + y, 'numpy')
assert f(numpy.array([2.0, 1.0])) == 5
def test_scipy_fns():
if not scipy:
skip("scipy not installed")
single_arg_sympy_fns = [Ei, erf, erfc, factorial, gamma, loggamma, digamma]
single_arg_scipy_fns = [scipy.special.expi, scipy.special.erf, scipy.special.erfc,
scipy.special.factorial, scipy.special.gamma, scipy.special.gammaln,
scipy.special.psi]
numpy.random.seed(0)
for (sympy_fn, scipy_fn) in zip(single_arg_sympy_fns, single_arg_scipy_fns):
f = lambdify(x, sympy_fn(x), modules="scipy")
for i in range(20):
tv = numpy.random.uniform(-10, 10) + 1j*numpy.random.uniform(-5, 5)
# SciPy thinks that factorial(z) is 0 when re(z) < 0 and
# does not support complex numbers.
# SymPy does not think so.
if sympy_fn == factorial:
tv = numpy.abs(tv)
# SciPy supports gammaln for real arguments only,
# and there is also a branch cut along the negative real axis
if sympy_fn == loggamma:
tv = numpy.abs(tv)
# SymPy's digamma evaluates as polygamma(0, z)
# which SciPy supports for real arguments only
if sympy_fn == digamma:
tv = numpy.real(tv)
sympy_result = sympy_fn(tv).evalf()
assert abs(f(tv) - sympy_result) < 1e-13*(1 + abs(sympy_result))
assert abs(f(tv) - scipy_fn(tv)) < 1e-13*(1 + abs(sympy_result))
double_arg_sympy_fns = [RisingFactorial, besselj, bessely, besseli,
besselk, polygamma]
double_arg_scipy_fns = [scipy.special.poch, scipy.special.jv,
scipy.special.yv, scipy.special.iv, scipy.special.kv, scipy.special.polygamma]
for (sympy_fn, scipy_fn) in zip(double_arg_sympy_fns, double_arg_scipy_fns):
f = lambdify((x, y), sympy_fn(x, y), modules="scipy")
for i in range(20):
# SciPy supports only real orders of Bessel functions
tv1 = numpy.random.uniform(-10, 10)
tv2 = numpy.random.uniform(-10, 10) + 1j*numpy.random.uniform(-5, 5)
# SciPy requires a real valued 2nd argument for: poch, polygamma
if sympy_fn in (RisingFactorial, polygamma):
tv2 = numpy.real(tv2)
if sympy_fn == polygamma:
tv1 = abs(int(tv1)) # first argument to polygamma must be a non-negative integral.
sympy_result = sympy_fn(tv1, tv2).evalf()
assert abs(f(tv1, tv2) - sympy_result) < 1e-13*(1 + abs(sympy_result))
assert abs(f(tv1, tv2) - scipy_fn(tv1, tv2)) < 1e-13*(1 + abs(sympy_result))
def test_scipy_polys():
if not scipy:
skip("scipy not installed")
numpy.random.seed(0)
params = symbols('n k a b')
# list polynomials with the number of parameters
polys = [
(chebyshevt, 1),
(chebyshevu, 1),
(legendre, 1),
(hermite, 1),
(laguerre, 1),
(gegenbauer, 2),
(assoc_legendre, 2),
(assoc_laguerre, 2),
(jacobi, 3)
]
msg = \
"The random test of the function {func} with the arguments " \
"{args} had failed because the SymPy result {sympy_result} " \
"and SciPy result {scipy_result} had failed to converge " \
"within the tolerance {tol} " \
"(Actual absolute difference : {diff})"
for sympy_fn, num_params in polys:
args = params[:num_params] + (x,)
f = lambdify(args, sympy_fn(*args))
for _ in range(10):
tn = numpy.random.randint(3, 10)
tparams = tuple(numpy.random.uniform(0, 5, size=num_params-1))
tv = numpy.random.uniform(-10, 10) + 1j*numpy.random.uniform(-5, 5)
# SciPy supports hermite for real arguments only
if sympy_fn == hermite:
tv = numpy.real(tv)
# assoc_legendre needs x in (-1, 1) and integer param at most n
if sympy_fn == assoc_legendre:
tv = numpy.random.uniform(-1, 1)
tparams = tuple(numpy.random.randint(1, tn, size=1))
vals = (tn,) + tparams + (tv,)
scipy_result = f(*vals)
sympy_result = sympy_fn(*vals).evalf()
atol = 1e-9*(1 + abs(sympy_result))
diff = abs(scipy_result - sympy_result)
try:
assert diff < atol
except TypeError:
raise AssertionError(
msg.format(
func=repr(sympy_fn),
args=repr(vals),
sympy_result=repr(sympy_result),
scipy_result=repr(scipy_result),
diff=diff,
tol=atol)
)
def test_lambdify_inspect():
f = lambdify(x, x**2)
# Test that inspect.getsource works but don't hard-code implementation
# details
assert 'x**2' in inspect.getsource(f)
def test_issue_14941():
x, y = Dummy(), Dummy()
# test dict
f1 = lambdify([x, y], {x: 3, y: 3}, 'sympy')
assert f1(2, 3) == {2: 3, 3: 3}
# test tuple
f2 = lambdify([x, y], (y, x), 'sympy')
assert f2(2, 3) == (3, 2)
f2b = lambdify([], (1,)) # gh-23224
assert f2b() == (1,)
# test list
f3 = lambdify([x, y], [y, x], 'sympy')
assert f3(2, 3) == [3, 2]
def test_lambdify_Derivative_arg_issue_16468():
f = Function('f')(x)
fx = f.diff()
assert lambdify((f, fx), f + fx)(10, 5) == 15
assert eval(lambdastr((f, fx), f/fx))(10, 5) == 2
raises(SyntaxError, lambda:
eval(lambdastr((f, fx), f/fx, dummify=False)))
assert eval(lambdastr((f, fx), f/fx, dummify=True))(10, 5) == 2
assert eval(lambdastr((fx, f), f/fx, dummify=True))(S(10), 5) == S.Half
assert lambdify(fx, 1 + fx)(41) == 42
assert eval(lambdastr(fx, 1 + fx, dummify=True))(41) == 42
def test_imag_real():
f_re = lambdify([z], sympy.re(z))
val = 3+2j
assert f_re(val) == val.real
f_im = lambdify([z], sympy.im(z)) # see #15400
assert f_im(val) == val.imag
def test_MatrixSymbol_issue_15578():
if not numpy:
skip("numpy not installed")
A = MatrixSymbol('A', 2, 2)
A0 = numpy.array([[1, 2], [3, 4]])
f = lambdify(A, A**(-1))
assert numpy.allclose(f(A0), numpy.array([[-2., 1.], [1.5, -0.5]]))
g = lambdify(A, A**3)
assert numpy.allclose(g(A0), numpy.array([[37, 54], [81, 118]]))
def test_issue_15654():
if not scipy:
skip("scipy not installed")
from sympy.abc import n, l, r, Z
from sympy.physics import hydrogen
nv, lv, rv, Zv = 1, 0, 3, 1
sympy_value = hydrogen.R_nl(nv, lv, rv, Zv).evalf()
f = lambdify((n, l, r, Z), hydrogen.R_nl(n, l, r, Z))
scipy_value = f(nv, lv, rv, Zv)
assert abs(sympy_value - scipy_value) < 1e-15
def test_issue_15827():
if not numpy:
skip("numpy not installed")
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 2, 3)
C = MatrixSymbol("C", 3, 4)
D = MatrixSymbol("D", 4, 5)
k=symbols("k")
f = lambdify(A, (2*k)*A)
g = lambdify(A, (2+k)*A)
h = lambdify(A, 2*A)
i = lambdify((B, C, D), 2*B*C*D)
assert numpy.array_equal(f(numpy.array([[1, 2, 3], [1, 2, 3], [1, 2, 3]])), \
numpy.array([[2*k, 4*k, 6*k], [2*k, 4*k, 6*k], [2*k, 4*k, 6*k]], dtype=object))
assert numpy.array_equal(g(numpy.array([[1, 2, 3], [1, 2, 3], [1, 2, 3]])), \
numpy.array([[k + 2, 2*k + 4, 3*k + 6], [k + 2, 2*k + 4, 3*k + 6], \
[k + 2, 2*k + 4, 3*k + 6]], dtype=object))
assert numpy.array_equal(h(numpy.array([[1, 2, 3], [1, 2, 3], [1, 2, 3]])), \
numpy.array([[2, 4, 6], [2, 4, 6], [2, 4, 6]]))
assert numpy.array_equal(i(numpy.array([[1, 2, 3], [1, 2, 3]]), numpy.array([[1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]]), \
numpy.array([[1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 2, 3, 4, 5]])), numpy.array([[ 120, 240, 360, 480, 600], \
[ 120, 240, 360, 480, 600]]))
def test_issue_16930():
if not scipy:
skip("scipy not installed")
x = symbols("x")
f = lambda x: S.GoldenRatio * x**2
f_ = lambdify(x, f(x), modules='scipy')
assert f_(1) == scipy.constants.golden_ratio
def test_issue_17898():
if not scipy:
skip("scipy not installed")
x = symbols("x")
f_ = lambdify([x], sympy.LambertW(x,-1), modules='scipy')
assert f_(0.1) == mpmath.lambertw(0.1, -1)
def test_issue_13167_21411():
if not numpy:
skip("numpy not installed")
f1 = lambdify(x, sympy.Heaviside(x))
f2 = lambdify(x, sympy.Heaviside(x, 1))
res1 = f1([-1, 0, 1])
res2 = f2([-1, 0, 1])
assert Abs(res1[0]).n() < 1e-15 # First functionality: only one argument passed
assert Abs(res1[1] - 1/2).n() < 1e-15
assert Abs(res1[2] - 1).n() < 1e-15
assert Abs(res2[0]).n() < 1e-15 # Second functionality: two arguments passed
assert Abs(res2[1] - 1).n() < 1e-15
assert Abs(res2[2] - 1).n() < 1e-15
def test_single_e():
f = lambdify(x, E)
assert f(23) == exp(1.0)
def test_issue_16536():
if not scipy:
skip("scipy not installed")
a = symbols('a')
f1 = lowergamma(a, x)
F = lambdify((a, x), f1, modules='scipy')
assert abs(lowergamma(1, 3) - F(1, 3)) <= 1e-10
f2 = uppergamma(a, x)
F = lambdify((a, x), f2, modules='scipy')
assert abs(uppergamma(1, 3) - F(1, 3)) <= 1e-10
def test_issue_22726():
if not numpy:
skip("numpy not installed")
x1, x2 = symbols('x1 x2')
f = Max(S.Zero, Min(x1, x2))
g = derive_by_array(f, (x1, x2))
G = lambdify((x1, x2), g, modules='numpy')
point = {x1: 1, x2: 2}
assert (abs(g.subs(point) - G(*point.values())) <= 1e-10).all()
def test_issue_22739():
if not numpy:
skip("numpy not installed")
x1, x2 = symbols('x1 x2')
f = Heaviside(Min(x1, x2))
F = lambdify((x1, x2), f, modules='numpy')
point = {x1: 1, x2: 2}
assert abs(f.subs(point) - F(*point.values())) <= 1e-10
def test_issue_22992():
if not numpy:
skip("numpy not installed")
a, t = symbols('a t')
expr = a*(log(cot(t/2)) - cos(t))
F = lambdify([a, t], expr, 'numpy')
point = {a: 10, t: 2}
assert abs(expr.subs(point) - F(*point.values())) <= 1e-10
# Standard math
F = lambdify([a, t], expr)
assert abs(expr.subs(point) - F(*point.values())) <= 1e-10
def test_issue_19764():
if not numpy:
skip("numpy not installed")
expr = Array([x, x**2])
f = lambdify(x, expr, 'numpy')
assert f(1).__class__ == numpy.ndarray
def test_issue_20070():
if not numba:
skip("numba not installed")
f = lambdify(x, sin(x), 'numpy')
assert numba.jit(f)(1)==0.8414709848078965
def test_fresnel_integrals_scipy():
if not scipy:
skip("scipy not installed")
f1 = fresnelc(x)
f2 = fresnels(x)
F1 = lambdify(x, f1, modules='scipy')
F2 = lambdify(x, f2, modules='scipy')
assert abs(fresnelc(1.3) - F1(1.3)) <= 1e-10
assert abs(fresnels(1.3) - F2(1.3)) <= 1e-10
def test_beta_scipy():
if not scipy:
skip("scipy not installed")
f = beta(x, y)
F = lambdify((x, y), f, modules='scipy')
assert abs(beta(1.3, 2.3) - F(1.3, 2.3)) <= 1e-10
def test_beta_math():
f = beta(x, y)
F = lambdify((x, y), f, modules='math')
assert abs(beta(1.3, 2.3) - F(1.3, 2.3)) <= 1e-10
def test_betainc_scipy():
if not scipy:
skip("scipy not installed")
f = betainc(w, x, y, z)
F = lambdify((w, x, y, z), f, modules='scipy')
assert abs(betainc(1.4, 3.1, 0.1, 0.5) - F(1.4, 3.1, 0.1, 0.5)) <= 1e-10
def test_betainc_regularized_scipy():
if not scipy:
skip("scipy not installed")
f = betainc_regularized(w, x, y, z)
F = lambdify((w, x, y, z), f, modules='scipy')
assert abs(betainc_regularized(0.2, 3.5, 0.1, 1) - F(0.2, 3.5, 0.1, 1)) <= 1e-10
def test_numpy_special_math():
if not numpy:
skip("numpy not installed")
funcs = [expm1, log1p, exp2, log2, log10, hypot, logaddexp, logaddexp2]
for func in funcs:
if 2 in func.nargs:
expr = func(x, y)
args = (x, y)
num_args = (0.3, 0.4)
elif 1 in func.nargs:
expr = func(x)
args = (x,)
num_args = (0.3,)
else:
raise NotImplementedError("Need to handle other than unary & binary functions in test")
f = lambdify(args, expr)
result = f(*num_args)
reference = expr.subs(dict(zip(args, num_args))).evalf()
assert numpy.allclose(result, float(reference))
lae2 = lambdify((x, y), logaddexp2(log2(x), log2(y)))
assert abs(2.0**lae2(1e-50, 2.5e-50) - 3.5e-50) < 1e-62 # from NumPy's docstring
def test_scipy_special_math():
if not scipy:
skip("scipy not installed")
cm1 = lambdify((x,), cosm1(x), modules='scipy')
assert abs(cm1(1e-20) + 5e-41) < 1e-200
have_scipy_1_10plus = tuple(map(int, scipy.version.version.split('.')[:2])) >= (1, 10)
if have_scipy_1_10plus:
cm2 = lambdify((x, y), powm1(x, y), modules='scipy')
assert abs(cm2(1.2, 1e-9) - 1.82321557e-10) < 1e-17
def test_scipy_bernoulli():
if not scipy:
skip("scipy not installed")
bern = lambdify((x,), bernoulli(x), modules='scipy')
assert bern(1) == 0.5
def test_scipy_harmonic():
if not scipy:
skip("scipy not installed")
hn = lambdify((x,), harmonic(x), modules='scipy')
assert hn(2) == 1.5
hnm = lambdify((x, y), harmonic(x, y), modules='scipy')
assert hnm(2, 2) == 1.25
def test_cupy_array_arg():
if not cupy:
skip("CuPy not installed")
f = lambdify([[x, y]], x*x + y, 'cupy')
result = f(cupy.array([2.0, 1.0]))
assert result == 5
assert "cupy" in str(type(result))
def test_cupy_array_arg_using_numpy():
# numpy functions can be run on cupy arrays
# unclear if we can "officially" support this,
# depends on numpy __array_function__ support
if not cupy:
skip("CuPy not installed")
f = lambdify([[x, y]], x*x + y, 'numpy')
result = f(cupy.array([2.0, 1.0]))
assert result == 5
assert "cupy" in str(type(result))
def test_cupy_dotproduct():
if not cupy:
skip("CuPy not installed")
A = Matrix([x, y, z])
f1 = lambdify([x, y, z], DotProduct(A, A), modules='cupy')
f2 = lambdify([x, y, z], DotProduct(A, A.T), modules='cupy')
f3 = lambdify([x, y, z], DotProduct(A.T, A), modules='cupy')
f4 = lambdify([x, y, z], DotProduct(A, A.T), modules='cupy')
assert f1(1, 2, 3) == \
f2(1, 2, 3) == \
f3(1, 2, 3) == \
f4(1, 2, 3) == \
cupy.array([14])
def test_jax_array_arg():
if not jax:
skip("JAX not installed")
f = lambdify([[x, y]], x*x + y, 'jax')
result = f(jax.numpy.array([2.0, 1.0]))
assert result == 5
assert "jax" in str(type(result))
def test_jax_array_arg_using_numpy():
if not jax:
skip("JAX not installed")
f = lambdify([[x, y]], x*x + y, 'numpy')
result = f(jax.numpy.array([2.0, 1.0]))
assert result == 5
assert "jax" in str(type(result))
def test_jax_dotproduct():
if not jax:
skip("JAX not installed")
A = Matrix([x, y, z])
f1 = lambdify([x, y, z], DotProduct(A, A), modules='jax')
f2 = lambdify([x, y, z], DotProduct(A, A.T), modules='jax')
f3 = lambdify([x, y, z], DotProduct(A.T, A), modules='jax')
f4 = lambdify([x, y, z], DotProduct(A, A.T), modules='jax')
assert f1(1, 2, 3) == \
f2(1, 2, 3) == \
f3(1, 2, 3) == \
f4(1, 2, 3) == \
jax.numpy.array([14])
def test_lambdify_cse():
def dummy_cse(exprs):
return (), exprs
def minmem(exprs):
from sympy.simplify.cse_main import cse_release_variables, cse
return cse(exprs, postprocess=cse_release_variables)
class Case:
def __init__(self, *, args, exprs, num_args, requires_numpy=False):
self.args = args
self.exprs = exprs
self.num_args = num_args
subs_dict = dict(zip(self.args, self.num_args))
self.ref = [e.subs(subs_dict).evalf() for e in exprs]
self.requires_numpy = requires_numpy
def lambdify(self, *, cse):
return lambdify(self.args, self.exprs, cse=cse)
def assertAllClose(self, result, *, abstol=1e-15, reltol=1e-15):
if self.requires_numpy:
assert all(numpy.allclose(result[i], numpy.asarray(r, dtype=float),
rtol=reltol, atol=abstol)
for i, r in enumerate(self.ref))
return
for i, r in enumerate(self.ref):
abs_err = abs(result[i] - r)
if r == 0:
assert abs_err < abstol
else:
assert abs_err/abs(r) < reltol
cases = [
Case(
args=(x, y, z),
exprs=[
x + y + z,
x + y - z,
2*x + 2*y - z,
(x+y)**2 + (y+z)**2,
],
num_args=(2., 3., 4.)
),
Case(
args=(x, y, z),
exprs=[
x + sympy.Heaviside(x),
y + sympy.Heaviside(x),
z + sympy.Heaviside(x, 1),
z/sympy.Heaviside(x, 1)
],
num_args=(0., 3., 4.)
),
Case(
args=(x, y, z),
exprs=[
x + sinc(y),
y + sinc(y),
z - sinc(y)
],
num_args=(0.1, 0.2, 0.3)
),
Case(
args=(x, y, z),
exprs=[
Matrix([[x, x*y], [sin(z) + 4, x**z]]),
x*y+sin(z)-x**z,
Matrix([x*x, sin(z), x**z])
],
num_args=(1.,2.,3.),
requires_numpy=True
),
Case(
args=(x, y),
exprs=[(x + y - 1)**2, x, x + y,
(x + y)/(2*x + 1) + (x + y - 1)**2, (2*x + 1)**(x + y)],
num_args=(1,2)
)
]
for case in cases:
if not numpy and case.requires_numpy:
continue
for cse in [False, True, minmem, dummy_cse]:
f = case.lambdify(cse=cse)
result = f(*case.num_args)
case.assertAllClose(result)
def test_deprecated_set():
with warns_deprecated_sympy():
lambdify({x, y}, x + y)
def test_23536_lambdify_cse_dummy():
f = Function('x')(y)
g = Function('w')(y)
expr = z + (f**4 + g**5)*(f**3 + (g*f)**3)
expr = expr.expand()
eval_expr = lambdify(((f, g), z), expr, cse=True)
ans = eval_expr((1.0, 2.0), 3.0) # shouldn't raise NameError
assert ans == 300.0 # not a list and value is 300
|
6775b9187b4820886b4c50693534c25b5731f3e49748e720bd3096eb918579bf | """ Tests from Michael Wester's 1999 paper "Review of CAS mathematical
capabilities".
http://www.math.unm.edu/~wester/cas/book/Wester.pdf
See also http://math.unm.edu/~wester/cas_review.html for detailed output of
each tested system.
"""
from sympy.assumptions.ask import Q, ask
from sympy.assumptions.refine import refine
from sympy.concrete.products import product
from sympy.core import EulerGamma
from sympy.core.evalf import N
from sympy.core.function import (Derivative, Function, Lambda, Subs,
diff, expand, expand_func)
from sympy.core.mul import Mul
from sympy.core.numbers import (AlgebraicNumber, E, I, Rational, igcd,
nan, oo, pi, zoo)
from sympy.core.relational import Eq, Lt
from sympy.core.singleton import S
from sympy.core.symbol import Dummy, Symbol, symbols
from sympy.functions.combinatorial.factorials import (rf, binomial,
factorial, factorial2)
from sympy.functions.combinatorial.numbers import bernoulli, fibonacci
from sympy.functions.elementary.complexes import (conjugate, im, re,
sign)
from sympy.functions.elementary.exponential import LambertW, exp, log
from sympy.functions.elementary.hyperbolic import (asinh, cosh, sinh,
tanh)
from sympy.functions.elementary.integers import ceiling, floor
from sympy.functions.elementary.miscellaneous import Max, Min, sqrt
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import (acos, acot, asin,
atan, cos, cot, csc, sec, sin, tan)
from sympy.functions.special.bessel import besselj
from sympy.functions.special.delta_functions import DiracDelta
from sympy.functions.special.elliptic_integrals import (elliptic_e,
elliptic_f)
from sympy.functions.special.gamma_functions import gamma, polygamma
from sympy.functions.special.hyper import hyper
from sympy.functions.special.polynomials import (assoc_legendre,
chebyshevt)
from sympy.functions.special.zeta_functions import polylog
from sympy.geometry.util import idiff
from sympy.logic.boolalg import And
from sympy.matrices.dense import hessian, wronskian
from sympy.matrices.expressions.matmul import MatMul
from sympy.ntheory.continued_fraction import (
continued_fraction_convergents as cf_c,
continued_fraction_iterator as cf_i, continued_fraction_periodic as
cf_p, continued_fraction_reduce as cf_r)
from sympy.ntheory.factor_ import factorint, totient
from sympy.ntheory.generate import primerange
from sympy.ntheory.partitions_ import npartitions
from sympy.polys.domains.integerring import ZZ
from sympy.polys.orthopolys import legendre_poly
from sympy.polys.partfrac import apart
from sympy.polys.polytools import Poly, factor, gcd, resultant
from sympy.series.limits import limit
from sympy.series.order import O
from sympy.series.residues import residue
from sympy.series.series import series
from sympy.sets.fancysets import ImageSet
from sympy.sets.sets import FiniteSet, Intersection, Interval, Union
from sympy.simplify.combsimp import combsimp
from sympy.simplify.hyperexpand import hyperexpand
from sympy.simplify.powsimp import powdenest, powsimp
from sympy.simplify.radsimp import radsimp
from sympy.simplify.simplify import logcombine, simplify
from sympy.simplify.sqrtdenest import sqrtdenest
from sympy.simplify.trigsimp import trigsimp
from sympy.solvers.solvers import solve
import mpmath
from sympy.functions.combinatorial.numbers import stirling
from sympy.functions.special.delta_functions import Heaviside
from sympy.functions.special.error_functions import Ci, Si, erf
from sympy.functions.special.zeta_functions import zeta
from sympy.testing.pytest import (XFAIL, slow, SKIP, skip, ON_CI,
raises)
from sympy.utilities.iterables import partitions
from mpmath import mpi, mpc
from sympy.matrices import Matrix, GramSchmidt, eye
from sympy.matrices.expressions.blockmatrix import BlockMatrix, block_collapse
from sympy.matrices.expressions import MatrixSymbol, ZeroMatrix
from sympy.physics.quantum import Commutator
from sympy.polys.rings import PolyRing
from sympy.polys.fields import FracField
from sympy.polys.solvers import solve_lin_sys
from sympy.concrete import Sum
from sympy.concrete.products import Product
from sympy.integrals import integrate
from sympy.integrals.transforms import laplace_transform,\
inverse_laplace_transform, LaplaceTransform, fourier_transform,\
mellin_transform
from sympy.solvers.recurr import rsolve
from sympy.solvers.solveset import solveset, solveset_real, linsolve
from sympy.solvers.ode import dsolve
from sympy.core.relational import Equality
from itertools import islice, takewhile
from sympy.series.formal import fps
from sympy.series.fourier import fourier_series
from sympy.calculus.util import minimum
EmptySet = S.EmptySet
R = Rational
x, y, z = symbols('x y z')
i, j, k, l, m, n = symbols('i j k l m n', integer=True)
f = Function('f')
g = Function('g')
# A. Boolean Logic and Quantifier Elimination
# Not implemented.
# B. Set Theory
def test_B1():
assert (FiniteSet(i, j, j, k, k, k) | FiniteSet(l, k, j) |
FiniteSet(j, m, j)) == FiniteSet(i, j, k, l, m)
def test_B2():
assert (FiniteSet(i, j, j, k, k, k) & FiniteSet(l, k, j) &
FiniteSet(j, m, j)) == Intersection({j, m}, {i, j, k}, {j, k, l})
# Previous output below. Not sure why that should be the expected output.
# There should probably be a way to rewrite Intersections that way but I
# don't see why an Intersection should evaluate like that:
#
# == Union({j}, Intersection({m}, Union({j, k}, Intersection({i}, {l}))))
def test_B3():
assert (FiniteSet(i, j, k, l, m) - FiniteSet(j) ==
FiniteSet(i, k, l, m))
def test_B4():
assert (FiniteSet(*(FiniteSet(i, j)*FiniteSet(k, l))) ==
FiniteSet((i, k), (i, l), (j, k), (j, l)))
# C. Numbers
def test_C1():
assert (factorial(50) ==
30414093201713378043612608166064768844377641568960512000000000000)
def test_C2():
assert (factorint(factorial(50)) == {2: 47, 3: 22, 5: 12, 7: 8,
11: 4, 13: 3, 17: 2, 19: 2, 23: 2, 29: 1, 31: 1, 37: 1,
41: 1, 43: 1, 47: 1})
def test_C3():
assert (factorial2(10), factorial2(9)) == (3840, 945)
# Base conversions; not really implemented by SymPy
# Whatever. Take credit!
def test_C4():
assert 0xABC == 2748
def test_C5():
assert 123 == int('234', 7)
def test_C6():
assert int('677', 8) == int('1BF', 16) == 447
def test_C7():
assert log(32768, 8) == 5
def test_C8():
# Modular multiplicative inverse. Would be nice if divmod could do this.
assert ZZ.invert(5, 7) == 3
assert ZZ.invert(5, 6) == 5
def test_C9():
assert igcd(igcd(1776, 1554), 5698) == 74
def test_C10():
x = 0
for n in range(2, 11):
x += R(1, n)
assert x == R(4861, 2520)
def test_C11():
assert R(1, 7) == S('0.[142857]')
def test_C12():
assert R(7, 11) * R(22, 7) == 2
def test_C13():
test = R(10, 7) * (1 + R(29, 1000)) ** R(1, 3)
good = 3 ** R(1, 3)
assert test == good
def test_C14():
assert sqrtdenest(sqrt(2*sqrt(3) + 4)) == 1 + sqrt(3)
def test_C15():
test = sqrtdenest(sqrt(14 + 3*sqrt(3 + 2*sqrt(5 - 12*sqrt(3 - 2*sqrt(2))))))
good = sqrt(2) + 3
assert test == good
def test_C16():
test = sqrtdenest(sqrt(10 + 2*sqrt(6) + 2*sqrt(10) + 2*sqrt(15)))
good = sqrt(2) + sqrt(3) + sqrt(5)
assert test == good
def test_C17():
test = radsimp((sqrt(3) + sqrt(2)) / (sqrt(3) - sqrt(2)))
good = 5 + 2*sqrt(6)
assert test == good
def test_C18():
assert simplify((sqrt(-2 + sqrt(-5)) * sqrt(-2 - sqrt(-5))).expand(complex=True)) == 3
@XFAIL
def test_C19():
assert radsimp(simplify((90 + 34*sqrt(7)) ** R(1, 3))) == 3 + sqrt(7)
def test_C20():
inside = (135 + 78*sqrt(3))
test = AlgebraicNumber((inside**R(2, 3) + 3) * sqrt(3) / inside**R(1, 3))
assert simplify(test) == AlgebraicNumber(12)
def test_C21():
assert simplify(AlgebraicNumber((41 + 29*sqrt(2)) ** R(1, 5))) == \
AlgebraicNumber(1 + sqrt(2))
@XFAIL
def test_C22():
test = simplify(((6 - 4*sqrt(2))*log(3 - 2*sqrt(2)) + (3 - 2*sqrt(2))*log(17
- 12*sqrt(2)) + 32 - 24*sqrt(2)) / (48*sqrt(2) - 72))
good = sqrt(2)/3 - log(sqrt(2) - 1)/3
assert test == good
def test_C23():
assert 2 * oo - 3 is oo
@XFAIL
def test_C24():
raise NotImplementedError("2**aleph_null == aleph_1")
# D. Numerical Analysis
def test_D1():
assert 0.0 / sqrt(2) == 0.0
def test_D2():
assert str(exp(-1000000).evalf()) == '3.29683147808856e-434295'
def test_D3():
assert exp(pi*sqrt(163)).evalf(50).num.ae(262537412640768744)
def test_D4():
assert floor(R(-5, 3)) == -2
assert ceiling(R(-5, 3)) == -1
@XFAIL
def test_D5():
raise NotImplementedError("cubic_spline([1, 2, 4, 5], [1, 4, 2, 3], x)(3) == 27/8")
@XFAIL
def test_D6():
raise NotImplementedError("translate sum(a[i]*x**i, (i,1,n)) to FORTRAN")
@XFAIL
def test_D7():
raise NotImplementedError("translate sum(a[i]*x**i, (i,1,n)) to C")
@XFAIL
def test_D8():
# One way is to cheat by converting the sum to a string,
# and replacing the '[' and ']' with ''.
# E.g., horner(S(str(_).replace('[','').replace(']','')))
raise NotImplementedError("apply Horner's rule to sum(a[i]*x**i, (i,1,5))")
@XFAIL
def test_D9():
raise NotImplementedError("translate D8 to FORTRAN")
@XFAIL
def test_D10():
raise NotImplementedError("translate D8 to C")
@XFAIL
def test_D11():
#Is there a way to use count_ops?
raise NotImplementedError("flops(sum(product(f[i][k], (i,1,k)), (k,1,n)))")
@XFAIL
def test_D12():
assert (mpi(-4, 2) * x + mpi(1, 3)) ** 2 == mpi(-8, 16)*x**2 + mpi(-24, 12)*x + mpi(1, 9)
@XFAIL
def test_D13():
raise NotImplementedError("discretize a PDE: diff(f(x,t),t) == diff(diff(f(x,t),x),x)")
# E. Statistics
# See scipy; all of this is numerical.
# F. Combinatorial Theory.
def test_F1():
assert rf(x, 3) == x*(1 + x)*(2 + x)
def test_F2():
assert expand_func(binomial(n, 3)) == n*(n - 1)*(n - 2)/6
@XFAIL
def test_F3():
assert combsimp(2**n * factorial(n) * factorial2(2*n - 1)) == factorial(2*n)
@XFAIL
def test_F4():
assert combsimp(2**n * factorial(n) * product(2*k - 1, (k, 1, n))) == factorial(2*n)
@XFAIL
def test_F5():
assert gamma(n + R(1, 2)) / sqrt(pi) / factorial(n) == factorial(2*n)/2**(2*n)/factorial(n)**2
def test_F6():
partTest = [p.copy() for p in partitions(4)]
partDesired = [{4: 1}, {1: 1, 3: 1}, {2: 2}, {1: 2, 2:1}, {1: 4}]
assert partTest == partDesired
def test_F7():
assert npartitions(4) == 5
def test_F8():
assert stirling(5, 2, signed=True) == -50 # if signed, then kind=1
def test_F9():
assert totient(1776) == 576
# G. Number Theory
def test_G1():
assert list(primerange(999983, 1000004)) == [999983, 1000003]
@XFAIL
def test_G2():
raise NotImplementedError("find the primitive root of 191 == 19")
@XFAIL
def test_G3():
raise NotImplementedError("(a+b)**p mod p == a**p + b**p mod p; p prime")
# ... G14 Modular equations are not implemented.
def test_G15():
assert Rational(sqrt(3).evalf()).limit_denominator(15) == R(26, 15)
assert list(takewhile(lambda x: x.q <= 15, cf_c(cf_i(sqrt(3)))))[-1] == \
R(26, 15)
def test_G16():
assert list(islice(cf_i(pi),10)) == [3, 7, 15, 1, 292, 1, 1, 1, 2, 1]
def test_G17():
assert cf_p(0, 1, 23) == [4, [1, 3, 1, 8]]
def test_G18():
assert cf_p(1, 2, 5) == [[1]]
assert cf_r([[1]]).expand() == S.Half + sqrt(5)/2
@XFAIL
def test_G19():
s = symbols('s', integer=True, positive=True)
it = cf_i((exp(1/s) - 1)/(exp(1/s) + 1))
assert list(islice(it, 5)) == [0, 2*s, 6*s, 10*s, 14*s]
def test_G20():
s = symbols('s', integer=True, positive=True)
# Wester erroneously has this as -s + sqrt(s**2 + 1)
assert cf_r([[2*s]]) == s + sqrt(s**2 + 1)
@XFAIL
def test_G20b():
s = symbols('s', integer=True, positive=True)
assert cf_p(s, 1, s**2 + 1) == [[2*s]]
# H. Algebra
def test_H1():
assert simplify(2*2**n) == simplify(2**(n + 1))
assert powdenest(2*2**n) == simplify(2**(n + 1))
def test_H2():
assert powsimp(4 * 2**n) == 2**(n + 2)
def test_H3():
assert (-1)**(n*(n + 1)) == 1
def test_H4():
expr = factor(6*x - 10)
assert type(expr) is Mul
assert expr.args[0] == 2
assert expr.args[1] == 3*x - 5
p1 = 64*x**34 - 21*x**47 - 126*x**8 - 46*x**5 - 16*x**60 - 81
p2 = 72*x**60 - 25*x**25 - 19*x**23 - 22*x**39 - 83*x**52 + 54*x**10 + 81
q = 34*x**19 - 25*x**16 + 70*x**7 + 20*x**3 - 91*x - 86
def test_H5():
assert gcd(p1, p2, x) == 1
def test_H6():
assert gcd(expand(p1 * q), expand(p2 * q)) == q
def test_H7():
p1 = 24*x*y**19*z**8 - 47*x**17*y**5*z**8 + 6*x**15*y**9*z**2 - 3*x**22 + 5
p2 = 34*x**5*y**8*z**13 + 20*x**7*y**7*z**7 + 12*x**9*y**16*z**4 + 80*y**14*z
assert gcd(p1, p2, x, y, z) == 1
def test_H8():
p1 = 24*x*y**19*z**8 - 47*x**17*y**5*z**8 + 6*x**15*y**9*z**2 - 3*x**22 + 5
p2 = 34*x**5*y**8*z**13 + 20*x**7*y**7*z**7 + 12*x**9*y**16*z**4 + 80*y**14*z
q = 11*x**12*y**7*z**13 - 23*x**2*y**8*z**10 + 47*x**17*y**5*z**8
assert gcd(p1 * q, p2 * q, x, y, z) == q
def test_H9():
x = Symbol('x', zero=False)
p1 = 2*x**(n + 4) - x**(n + 2)
p2 = 4*x**(n + 1) + 3*x**n
assert gcd(p1, p2) == x**n
def test_H10():
p1 = 3*x**4 + 3*x**3 + x**2 - x - 2
p2 = x**3 - 3*x**2 + x + 5
assert resultant(p1, p2, x) == 0
def test_H11():
assert resultant(p1 * q, p2 * q, x) == 0
def test_H12():
num = x**2 - 4
den = x**2 + 4*x + 4
assert simplify(num/den) == (x - 2)/(x + 2)
@XFAIL
def test_H13():
assert simplify((exp(x) - 1) / (exp(x/2) + 1)) == exp(x/2) - 1
def test_H14():
p = (x + 1) ** 20
ep = expand(p)
assert ep == (1 + 20*x + 190*x**2 + 1140*x**3 + 4845*x**4 + 15504*x**5
+ 38760*x**6 + 77520*x**7 + 125970*x**8 + 167960*x**9 + 184756*x**10
+ 167960*x**11 + 125970*x**12 + 77520*x**13 + 38760*x**14 + 15504*x**15
+ 4845*x**16 + 1140*x**17 + 190*x**18 + 20*x**19 + x**20)
dep = diff(ep, x)
assert dep == (20 + 380*x + 3420*x**2 + 19380*x**3 + 77520*x**4
+ 232560*x**5 + 542640*x**6 + 1007760*x**7 + 1511640*x**8 + 1847560*x**9
+ 1847560*x**10 + 1511640*x**11 + 1007760*x**12 + 542640*x**13
+ 232560*x**14 + 77520*x**15 + 19380*x**16 + 3420*x**17 + 380*x**18
+ 20*x**19)
assert factor(dep) == 20*(1 + x)**19
def test_H15():
assert simplify(Mul(*[x - r for r in solveset(x**3 + x**2 - 7)])) == x**3 + x**2 - 7
def test_H16():
assert factor(x**100 - 1) == ((x - 1)*(x + 1)*(x**2 + 1)*(x**4 - x**3
+ x**2 - x + 1)*(x**4 + x**3 + x**2 + x + 1)*(x**8 - x**6 + x**4
- x**2 + 1)*(x**20 - x**15 + x**10 - x**5 + 1)*(x**20 + x**15 + x**10
+ x**5 + 1)*(x**40 - x**30 + x**20 - x**10 + 1))
def test_H17():
assert simplify(factor(expand(p1 * p2)) - p1*p2) == 0
@XFAIL
def test_H18():
# Factor over complex rationals.
test = factor(4*x**4 + 8*x**3 + 77*x**2 + 18*x + 153)
good = (2*x + 3*I)*(2*x - 3*I)*(x + 1 - 4*I)*(x + 1 + 4*I)
assert test == good
def test_H19():
a = symbols('a')
# The idea is to let a**2 == 2, then solve 1/(a-1). Answer is a+1")
assert Poly(a - 1).invert(Poly(a**2 - 2)) == a + 1
@XFAIL
def test_H20():
raise NotImplementedError("let a**2==2; (x**3 + (a-2)*x**2 - "
+ "(2*a+3)*x - 3*a) / (x**2-2) = (x**2 - 2*x - 3) / (x-a)")
@XFAIL
def test_H21():
raise NotImplementedError("evaluate (b+c)**4 assuming b**3==2, c**2==3. \
Answer is 2*b + 8*c + 18*b**2 + 12*b*c + 9")
def test_H22():
assert factor(x**4 - 3*x**2 + 1, modulus=5) == (x - 2)**2 * (x + 2)**2
def test_H23():
f = x**11 + x + 1
g = (x**2 + x + 1) * (x**9 - x**8 + x**6 - x**5 + x**3 - x**2 + 1)
assert factor(f, modulus=65537) == g
def test_H24():
phi = AlgebraicNumber(S.GoldenRatio.expand(func=True), alias='phi')
assert factor(x**4 - 3*x**2 + 1, extension=phi) == \
(x - phi)*(x + 1 - phi)*(x - 1 + phi)*(x + phi)
def test_H25():
e = (x - 2*y**2 + 3*z**3) ** 20
assert factor(expand(e)) == e
def test_H26():
g = expand((sin(x) - 2*cos(y)**2 + 3*tan(z)**3)**20)
assert factor(g, expand=False) == (-sin(x) + 2*cos(y)**2 - 3*tan(z)**3)**20
def test_H27():
f = 24*x*y**19*z**8 - 47*x**17*y**5*z**8 + 6*x**15*y**9*z**2 - 3*x**22 + 5
g = 34*x**5*y**8*z**13 + 20*x**7*y**7*z**7 + 12*x**9*y**16*z**4 + 80*y**14*z
h = -2*z*y**7 \
*(6*x**9*y**9*z**3 + 10*x**7*z**6 + 17*y*x**5*z**12 + 40*y**7) \
*(3*x**22 + 47*x**17*y**5*z**8 - 6*x**15*y**9*z**2 - 24*x*y**19*z**8 - 5)
assert factor(expand(f*g)) == h
@XFAIL
def test_H28():
raise NotImplementedError("expand ((1 - c**2)**5 * (1 - s**2)**5 * "
+ "(c**2 + s**2)**10) with c**2 + s**2 = 1. Answer is c**10*s**10.")
@XFAIL
def test_H29():
assert factor(4*x**2 - 21*x*y + 20*y**2, modulus=3) == (x + y)*(x - y)
def test_H30():
test = factor(x**3 + y**3, extension=sqrt(-3))
answer = (x + y)*(x + y*(-R(1, 2) - sqrt(3)/2*I))*(x + y*(-R(1, 2) + sqrt(3)/2*I))
assert answer == test
def test_H31():
f = (x**2 + 2*x + 3)/(x**3 + 4*x**2 + 5*x + 2)
g = 2 / (x + 1)**2 - 2 / (x + 1) + 3 / (x + 2)
assert apart(f) == g
@XFAIL
def test_H32(): # issue 6558
raise NotImplementedError("[A*B*C - (A*B*C)**(-1)]*A*C*B (product \
of a non-commuting product and its inverse)")
def test_H33():
A, B, C = symbols('A, B, C', commutative=False)
assert (Commutator(A, Commutator(B, C))
+ Commutator(B, Commutator(C, A))
+ Commutator(C, Commutator(A, B))).doit().expand() == 0
# I. Trigonometry
def test_I1():
assert tan(pi*R(7, 10)) == -sqrt(1 + 2/sqrt(5))
@XFAIL
def test_I2():
assert sqrt((1 + cos(6))/2) == -cos(3)
def test_I3():
assert cos(n*pi) + sin((4*n - 1)*pi/2) == (-1)**n - 1
def test_I4():
assert refine(cos(pi*cos(n*pi)) + sin(pi/2*cos(n*pi)), Q.integer(n)) == (-1)**n - 1
@XFAIL
def test_I5():
assert sin((n**5/5 + n**4/2 + n**3/3 - n/30) * pi) == 0
@XFAIL
def test_I6():
raise NotImplementedError("assuming -3*pi<x<-5*pi/2, abs(cos(x)) == -cos(x), abs(sin(x)) == -sin(x)")
@XFAIL
def test_I7():
assert cos(3*x)/cos(x) == cos(x)**2 - 3*sin(x)**2
@XFAIL
def test_I8():
assert cos(3*x)/cos(x) == 2*cos(2*x) - 1
@XFAIL
def test_I9():
# Supposed to do this with rewrite rules.
assert cos(3*x)/cos(x) == cos(x)**2 - 3*sin(x)**2
def test_I10():
assert trigsimp((tan(x)**2 + 1 - cos(x)**-2) / (sin(x)**2 + cos(x)**2 - 1)) is nan
@SKIP("hangs")
@XFAIL
def test_I11():
assert limit((tan(x)**2 + 1 - cos(x)**-2) / (sin(x)**2 + cos(x)**2 - 1), x, 0) != 0
@XFAIL
def test_I12():
# This should fail or return nan or something.
res = diff((tan(x)**2 + 1 - cos(x)**-2) / (sin(x)**2 + cos(x)**2 - 1), x)
assert res is nan # trigsimp(res) gives nan
# J. Special functions.
def test_J1():
assert bernoulli(16) == R(-3617, 510)
def test_J2():
assert diff(elliptic_e(x, y**2), y) == (elliptic_e(x, y**2) - elliptic_f(x, y**2))/y
@XFAIL
def test_J3():
raise NotImplementedError("Jacobi elliptic functions: diff(dn(u,k), u) == -k**2*sn(u,k)*cn(u,k)")
def test_J4():
assert gamma(R(-1, 2)) == -2*sqrt(pi)
def test_J5():
assert polygamma(0, R(1, 3)) == -log(3) - sqrt(3)*pi/6 - EulerGamma - log(sqrt(3))
def test_J6():
assert mpmath.besselj(2, 1 + 1j).ae(mpc('0.04157988694396212', '0.24739764151330632'))
def test_J7():
assert simplify(besselj(R(-5,2), pi/2)) == 12/(pi**2)
def test_J8():
p = besselj(R(3,2), z)
q = (sin(z)/z - cos(z))/sqrt(pi*z/2)
assert simplify(expand_func(p) -q) == 0
def test_J9():
assert besselj(0, z).diff(z) == - besselj(1, z)
def test_J10():
mu, nu = symbols('mu, nu', integer=True)
assert assoc_legendre(nu, mu, 0) == 2**mu*sqrt(pi)/gamma((nu - mu)/2 + 1)/gamma((-nu - mu + 1)/2)
def test_J11():
assert simplify(assoc_legendre(3, 1, x)) == simplify(-R(3, 2)*sqrt(1 - x**2)*(5*x**2 - 1))
@slow
def test_J12():
assert simplify(chebyshevt(1008, x) - 2*x*chebyshevt(1007, x) + chebyshevt(1006, x)) == 0
def test_J13():
a = symbols('a', integer=True, negative=False)
assert chebyshevt(a, -1) == (-1)**a
def test_J14():
p = hyper([S.Half, S.Half], [R(3, 2)], z**2)
assert hyperexpand(p) == asin(z)/z
@XFAIL
def test_J15():
raise NotImplementedError("F((n+2)/2,-(n-2)/2,R(3,2),sin(z)**2) == sin(n*z)/(n*sin(z)*cos(z)); F(.) is hypergeometric function")
@XFAIL
def test_J16():
raise NotImplementedError("diff(zeta(x), x) @ x=0 == -log(2*pi)/2")
def test_J17():
assert integrate(f((x + 2)/5)*DiracDelta((x - 2)/3) - g(x)*diff(DiracDelta(x - 1), x), (x, 0, 3)) == 3*f(R(4, 5)) + Subs(Derivative(g(x), x), x, 1)
@XFAIL
def test_J18():
raise NotImplementedError("define an antisymmetric function")
# K. The Complex Domain
def test_K1():
z1, z2 = symbols('z1, z2', complex=True)
assert re(z1 + I*z2) == -im(z2) + re(z1)
assert im(z1 + I*z2) == im(z1) + re(z2)
def test_K2():
assert abs(3 - sqrt(7) + I*sqrt(6*sqrt(7) - 15)) == 1
@XFAIL
def test_K3():
a, b = symbols('a, b', real=True)
assert simplify(abs(1/(a + I/a + I*b))) == 1/sqrt(a**2 + (I/a + b)**2)
def test_K4():
assert log(3 + 4*I).expand(complex=True) == log(5) + I*atan(R(4, 3))
def test_K5():
x, y = symbols('x, y', real=True)
assert tan(x + I*y).expand(complex=True) == (sin(2*x)/(cos(2*x) +
cosh(2*y)) + I*sinh(2*y)/(cos(2*x) + cosh(2*y)))
def test_K6():
assert sqrt(x*y*abs(z)**2)/(sqrt(x)*abs(z)) == sqrt(x*y)/sqrt(x)
assert sqrt(x*y*abs(z)**2)/(sqrt(x)*abs(z)) != sqrt(y)
def test_K7():
y = symbols('y', real=True, negative=False)
expr = sqrt(x*y*abs(z)**2)/(sqrt(x)*abs(z))
sexpr = simplify(expr)
assert sexpr == sqrt(y)
def test_K8():
z = symbols('z', complex=True)
assert simplify(sqrt(1/z) - 1/sqrt(z)) != 0 # Passes
z = symbols('z', complex=True, negative=False)
assert simplify(sqrt(1/z) - 1/sqrt(z)) == 0 # Fails
def test_K9():
z = symbols('z', positive=True)
assert simplify(sqrt(1/z) - 1/sqrt(z)) == 0
def test_K10():
z = symbols('z', negative=True)
assert simplify(sqrt(1/z) + 1/sqrt(z)) == 0
# This goes up to K25
# L. Determining Zero Equivalence
def test_L1():
assert sqrt(997) - (997**3)**R(1, 6) == 0
def test_L2():
assert sqrt(999983) - (999983**3)**R(1, 6) == 0
def test_L3():
assert simplify((2**R(1, 3) + 4**R(1, 3))**3 - 6*(2**R(1, 3) + 4**R(1, 3)) - 6) == 0
def test_L4():
assert trigsimp(cos(x)**3 + cos(x)*sin(x)**2 - cos(x)) == 0
@XFAIL
def test_L5():
assert log(tan(R(1, 2)*x + pi/4)) - asinh(tan(x)) == 0
def test_L6():
assert (log(tan(x/2 + pi/4)) - asinh(tan(x))).diff(x).subs({x: 0}) == 0
@XFAIL
def test_L7():
assert simplify(log((2*sqrt(x) + 1)/(sqrt(4*x + 4*sqrt(x) + 1)))) == 0
@XFAIL
def test_L8():
assert simplify((4*x + 4*sqrt(x) + 1)**(sqrt(x)/(2*sqrt(x) + 1)) \
*(2*sqrt(x) + 1)**(1/(2*sqrt(x) + 1)) - 2*sqrt(x) - 1) == 0
@XFAIL
def test_L9():
z = symbols('z', complex=True)
assert simplify(2**(1 - z)*gamma(z)*zeta(z)*cos(z*pi/2) - pi**2*zeta(1 - z)) == 0
# M. Equations
@XFAIL
def test_M1():
assert Equality(x, 2)/2 + Equality(1, 1) == Equality(x/2 + 1, 2)
def test_M2():
# The roots of this equation should all be real. Note that this
# doesn't test that they are correct.
sol = solveset(3*x**3 - 18*x**2 + 33*x - 19, x)
assert all(s.expand(complex=True).is_real for s in sol)
@XFAIL
def test_M5():
assert solveset(x**6 - 9*x**4 - 4*x**3 + 27*x**2 - 36*x - 23, x) == FiniteSet(2**(1/3) + sqrt(3), 2**(1/3) - sqrt(3), +sqrt(3) - 1/2**(2/3) + I*sqrt(3)/2**(2/3), +sqrt(3) - 1/2**(2/3) - I*sqrt(3)/2**(2/3), -sqrt(3) - 1/2**(2/3) + I*sqrt(3)/2**(2/3), -sqrt(3) - 1/2**(2/3) - I*sqrt(3)/2**(2/3))
def test_M6():
assert set(solveset(x**7 - 1, x)) == \
{cos(n*pi*R(2, 7)) + I*sin(n*pi*R(2, 7)) for n in range(0, 7)}
# The paper asks for exp terms, but sin's and cos's may be acceptable;
# if the results are simplified, exp terms appear for all but
# -sin(pi/14) - I*cos(pi/14) and -sin(pi/14) + I*cos(pi/14) which
# will simplify if you apply the transformation foo.rewrite(exp).expand()
def test_M7():
# TODO: Replace solve with solveset, as of now test fails for solveset
assert set(solve(x**8 - 8*x**7 + 34*x**6 - 92*x**5 + 175*x**4 - 236*x**3 +
226*x**2 - 140*x + 46, x)) == set([
1 - sqrt(2)*I*sqrt(-sqrt(-3 + 4*sqrt(3)) + 3)/2,
1 - sqrt(2)*sqrt(-3 + I*sqrt(3 + 4*sqrt(3)))/2,
1 - sqrt(2)*I*sqrt(sqrt(-3 + 4*sqrt(3)) + 3)/2,
1 - sqrt(2)*sqrt(-3 - I*sqrt(3 + 4*sqrt(3)))/2,
1 + sqrt(2)*I*sqrt(sqrt(-3 + 4*sqrt(3)) + 3)/2,
1 + sqrt(2)*sqrt(-3 - I*sqrt(3 + 4*sqrt(3)))/2,
1 + sqrt(2)*sqrt(-3 + I*sqrt(3 + 4*sqrt(3)))/2,
1 + sqrt(2)*I*sqrt(-sqrt(-3 + 4*sqrt(3)) + 3)/2,
])
@XFAIL # There are an infinite number of solutions.
def test_M8():
x = Symbol('x')
z = symbols('z', complex=True)
assert solveset(exp(2*x) + 2*exp(x) + 1 - z, x, S.Reals) == \
FiniteSet(log(1 + z - 2*sqrt(z))/2, log(1 + z + 2*sqrt(z))/2)
# This one could be simplified better (the 1/2 could be pulled into the log
# as a sqrt, and the function inside the log can be factored as a square,
# giving [log(sqrt(z) - 1), log(sqrt(z) + 1)]). Also, there should be an
# infinite number of solutions.
# x = {log(sqrt(z) - 1), log(sqrt(z) + 1) + i pi} [+ n 2 pi i, + n 2 pi i]
# where n is an arbitrary integer. See url of detailed output above.
@XFAIL
def test_M9():
# x = symbols('x')
raise NotImplementedError("solveset(exp(2-x**2)-exp(-x),x) has complex solutions.")
def test_M10():
# TODO: Replace solve with solveset, as of now test fails for solveset
assert solve(exp(x) - x, x) == [-LambertW(-1)]
@XFAIL
def test_M11():
assert solveset(x**x - x, x) == FiniteSet(-1, 1)
def test_M12():
# TODO: x = [-1, 2*(+/-asinh(1)*I + n*pi}, 3*(pi/6 + n*pi/3)]
# TODO: Replace solve with solveset, as of now test fails for solveset
assert solve((x + 1)*(sin(x)**2 + 1)**2*cos(3*x)**3, x) == [
-1, pi/6, pi/2,
- I*log(1 + sqrt(2)), I*log(1 + sqrt(2)),
pi - I*log(1 + sqrt(2)), pi + I*log(1 + sqrt(2)),
]
@XFAIL
def test_M13():
n = Dummy('n')
assert solveset_real(sin(x) - cos(x), x) == ImageSet(Lambda(n, n*pi - pi*R(7, 4)), S.Integers)
@XFAIL
def test_M14():
n = Dummy('n')
assert solveset_real(tan(x) - 1, x) == ImageSet(Lambda(n, n*pi + pi/4), S.Integers)
def test_M15():
n = Dummy('n')
got = solveset(sin(x) - S.Half)
assert any(got.dummy_eq(i) for i in (
Union(ImageSet(Lambda(n, 2*n*pi + pi/6), S.Integers),
ImageSet(Lambda(n, 2*n*pi + pi*R(5, 6)), S.Integers)),
Union(ImageSet(Lambda(n, 2*n*pi + pi*R(5, 6)), S.Integers),
ImageSet(Lambda(n, 2*n*pi + pi/6), S.Integers))))
@XFAIL
def test_M16():
n = Dummy('n')
assert solveset(sin(x) - tan(x), x) == ImageSet(Lambda(n, n*pi), S.Integers)
@XFAIL
def test_M17():
assert solveset_real(asin(x) - atan(x), x) == FiniteSet(0)
@XFAIL
def test_M18():
assert solveset_real(acos(x) - atan(x), x) == FiniteSet(sqrt((sqrt(5) - 1)/2))
def test_M19():
# TODO: Replace solve with solveset, as of now test fails for solveset
assert solve((x - 2)/x**R(1, 3), x) == [2]
def test_M20():
assert solveset(sqrt(x**2 + 1) - x + 2, x) == EmptySet
def test_M21():
assert solveset(x + sqrt(x) - 2) == FiniteSet(1)
def test_M22():
assert solveset(2*sqrt(x) + 3*x**R(1, 4) - 2) == FiniteSet(R(1, 16))
def test_M23():
x = symbols('x', complex=True)
# TODO: Replace solve with solveset, as of now test fails for solveset
assert solve(x - 1/sqrt(1 + x**2)) == [
-I*sqrt(S.Half + sqrt(5)/2), sqrt(Rational(-1, 2) + sqrt(5)/2)]
def test_M24():
# TODO: Replace solve with solveset, as of now test fails for solveset
solution = solve(1 - binomial(m, 2)*2**k, k)
answer = log(2/(m*(m - 1)), 2)
assert solution[0].expand() == answer.expand()
def test_M25():
a, b, c, d = symbols(':d', positive=True)
x = symbols('x')
# TODO: Replace solve with solveset, as of now test fails for solveset
assert solve(a*b**x - c*d**x, x)[0].expand() == (log(c/a)/log(b/d)).expand()
def test_M26():
# TODO: Replace solve with solveset, as of now test fails for solveset
assert solve(sqrt(log(x)) - log(sqrt(x))) == [1, exp(4)]
def test_M27():
x = symbols('x', real=True)
b = symbols('b', real=True)
# TODO: Replace solve with solveset which gives both [+/- current answer]
# note that there is a typo in this test in the wester.pdf; there is no
# real solution for the equation as it appears in wester.pdf
assert solve(log(acos(asin(x**R(2, 3) - b)) - 1) + 2, x
) == [(b + sin(cos(exp(-2) + 1)))**R(3, 2)]
@XFAIL
def test_M28():
assert solveset_real(5*x + exp((x - 5)/2) - 8*x**3, x, assume=Q.real(x)) == [-0.784966, -0.016291, 0.802557]
def test_M29():
x = symbols('x')
assert solveset(abs(x - 1) - 2, domain=S.Reals) == FiniteSet(-1, 3)
def test_M30():
# TODO: Replace solve with solveset, as of now
# solveset doesn't supports assumptions
# assert solve(abs(2*x + 5) - abs(x - 2),x, assume=Q.real(x)) == [-1, -7]
assert solveset_real(abs(2*x + 5) - abs(x - 2), x) == FiniteSet(-1, -7)
def test_M31():
# TODO: Replace solve with solveset, as of now
# solveset doesn't supports assumptions
# assert solve(1 - abs(x) - max(-x - 2, x - 2),x, assume=Q.real(x)) == [-3/2, 3/2]
assert solveset_real(1 - abs(x) - Max(-x - 2, x - 2), x) == FiniteSet(R(-3, 2), R(3, 2))
@XFAIL
def test_M32():
# TODO: Replace solve with solveset, as of now
# solveset doesn't supports assumptions
assert solveset_real(Max(2 - x**2, x)- Max(-x, (x**3)/9), x) == FiniteSet(-1, 3)
@XFAIL
def test_M33():
# TODO: Replace solve with solveset, as of now
# solveset doesn't supports assumptions
# Second answer can be written in another form. The second answer is the root of x**3 + 9*x**2 - 18 = 0 in the interval (-2, -1).
assert solveset_real(Max(2 - x**2, x) - x**3/9, x) == FiniteSet(-3, -1.554894, 3)
@XFAIL
def test_M34():
z = symbols('z', complex=True)
assert solveset((1 + I) * z + (2 - I) * conjugate(z) + 3*I, z) == FiniteSet(2 + 3*I)
def test_M35():
x, y = symbols('x y', real=True)
assert linsolve((3*x - 2*y - I*y + 3*I).as_real_imag(), y, x) == FiniteSet((3, 2))
def test_M36():
# TODO: Replace solve with solveset, as of now
# solveset doesn't supports solving for function
# assert solve(f**2 + f - 2, x) == [Eq(f(x), 1), Eq(f(x), -2)]
assert solveset(f(x)**2 + f(x) - 2, f(x)) == FiniteSet(-2, 1)
def test_M37():
assert linsolve([x + y + z - 6, 2*x + y + 2*z - 10, x + 3*y + z - 10 ], x, y, z) == \
FiniteSet((-z + 4, 2, z))
def test_M38():
a, b, c = symbols('a, b, c')
domain = FracField([a, b, c], ZZ).to_domain()
ring = PolyRing('k1:50', domain)
(k1, k2, k3, k4, k5, k6, k7, k8, k9, k10,
k11, k12, k13, k14, k15, k16, k17, k18, k19, k20,
k21, k22, k23, k24, k25, k26, k27, k28, k29, k30,
k31, k32, k33, k34, k35, k36, k37, k38, k39, k40,
k41, k42, k43, k44, k45, k46, k47, k48, k49) = ring.gens
system = [
-b*k8/a + c*k8/a, -b*k11/a + c*k11/a, -b*k10/a + c*k10/a + k2, -k3 - b*k9/a + c*k9/a,
-b*k14/a + c*k14/a, -b*k15/a + c*k15/a, -b*k18/a + c*k18/a - k2, -b*k17/a + c*k17/a,
-b*k16/a + c*k16/a + k4, -b*k13/a + c*k13/a - b*k21/a + c*k21/a + b*k5/a - c*k5/a,
b*k44/a - c*k44/a, -b*k45/a + c*k45/a, -b*k20/a + c*k20/a, -b*k44/a + c*k44/a,
b*k46/a - c*k46/a, b**2*k47/a**2 - 2*b*c*k47/a**2 + c**2*k47/a**2, k3, -k4,
-b*k12/a + c*k12/a - a*k6/b + c*k6/b, -b*k19/a + c*k19/a + a*k7/c - b*k7/c,
b*k45/a - c*k45/a, -b*k46/a + c*k46/a, -k48 + c*k48/a + c*k48/b - c**2*k48/(a*b),
-k49 + b*k49/a + b*k49/c - b**2*k49/(a*c), a*k1/b - c*k1/b, a*k4/b - c*k4/b,
a*k3/b - c*k3/b + k9, -k10 + a*k2/b - c*k2/b, a*k7/b - c*k7/b, -k9, k11,
b*k12/a - c*k12/a + a*k6/b - c*k6/b, a*k15/b - c*k15/b, k10 + a*k18/b - c*k18/b,
-k11 + a*k17/b - c*k17/b, a*k16/b - c*k16/b, -a*k13/b + c*k13/b + a*k21/b - c*k21/b + a*k5/b - c*k5/b,
-a*k44/b + c*k44/b, a*k45/b - c*k45/b, a*k14/c - b*k14/c + a*k20/b - c*k20/b,
a*k44/b - c*k44/b, -a*k46/b + c*k46/b, -k47 + c*k47/a + c*k47/b - c**2*k47/(a*b),
a*k19/b - c*k19/b, -a*k45/b + c*k45/b, a*k46/b - c*k46/b, a**2*k48/b**2 - 2*a*c*k48/b**2 + c**2*k48/b**2,
-k49 + a*k49/b + a*k49/c - a**2*k49/(b*c), k16, -k17, -a*k1/c + b*k1/c,
-k16 - a*k4/c + b*k4/c, -a*k3/c + b*k3/c, k18 - a*k2/c + b*k2/c, b*k19/a - c*k19/a - a*k7/c + b*k7/c,
-a*k6/c + b*k6/c, -a*k8/c + b*k8/c, -a*k11/c + b*k11/c + k17, -a*k10/c + b*k10/c - k18,
-a*k9/c + b*k9/c, -a*k14/c + b*k14/c - a*k20/b + c*k20/b, -a*k13/c + b*k13/c + a*k21/c - b*k21/c - a*k5/c + b*k5/c,
a*k44/c - b*k44/c, -a*k45/c + b*k45/c, -a*k44/c + b*k44/c, a*k46/c - b*k46/c,
-k47 + b*k47/a + b*k47/c - b**2*k47/(a*c), -a*k12/c + b*k12/c, a*k45/c - b*k45/c,
-a*k46/c + b*k46/c, -k48 + a*k48/b + a*k48/c - a**2*k48/(b*c),
a**2*k49/c**2 - 2*a*b*k49/c**2 + b**2*k49/c**2, k8, k11, -k15, k10 - k18,
-k17, k9, -k16, -k29, k14 - k32, -k21 + k23 - k31, -k24 - k30, -k35, k44,
-k45, k36, k13 - k23 + k39, -k20 + k38, k25 + k37, b*k26/a - c*k26/a - k34 + k42,
-2*k44, k45, k46, b*k47/a - c*k47/a, k41, k44, -k46, -b*k47/a + c*k47/a,
k12 + k24, -k19 - k25, -a*k27/b + c*k27/b - k33, k45, -k46, -a*k48/b + c*k48/b,
a*k28/c - b*k28/c + k40, -k45, k46, a*k48/b - c*k48/b, a*k49/c - b*k49/c,
-a*k49/c + b*k49/c, -k1, -k4, -k3, k15, k18 - k2, k17, k16, k22, k25 - k7,
k24 + k30, k21 + k23 - k31, k28, -k44, k45, -k30 - k6, k20 + k32, k27 + b*k33/a - c*k33/a,
k44, -k46, -b*k47/a + c*k47/a, -k36, k31 - k39 - k5, -k32 - k38, k19 - k37,
k26 - a*k34/b + c*k34/b - k42, k44, -2*k45, k46, a*k48/b - c*k48/b,
a*k35/c - b*k35/c - k41, -k44, k46, b*k47/a - c*k47/a, -a*k49/c + b*k49/c,
-k40, k45, -k46, -a*k48/b + c*k48/b, a*k49/c - b*k49/c, k1, k4, k3, -k8,
-k11, -k10 + k2, -k9, k37 + k7, -k14 - k38, -k22, -k25 - k37, -k24 + k6,
-k13 - k23 + k39, -k28 + b*k40/a - c*k40/a, k44, -k45, -k27, -k44, k46,
b*k47/a - c*k47/a, k29, k32 + k38, k31 - k39 + k5, -k12 + k30, k35 - a*k41/b + c*k41/b,
-k44, k45, -k26 + k34 + a*k42/c - b*k42/c, k44, k45, -2*k46, -b*k47/a + c*k47/a,
-a*k48/b + c*k48/b, a*k49/c - b*k49/c, k33, -k45, k46, a*k48/b - c*k48/b,
-a*k49/c + b*k49/c
]
solution = {
k49: 0, k48: 0, k47: 0, k46: 0, k45: 0, k44: 0, k41: 0, k40: 0,
k38: 0, k37: 0, k36: 0, k35: 0, k33: 0, k32: 0, k30: 0, k29: 0,
k28: 0, k27: 0, k25: 0, k24: 0, k22: 0, k21: 0, k20: 0, k19: 0,
k18: 0, k17: 0, k16: 0, k15: 0, k14: 0, k13: 0, k12: 0, k11: 0,
k10: 0, k9: 0, k8: 0, k7: 0, k6: 0, k5: 0, k4: 0, k3: 0,
k2: 0, k1: 0,
k34: b/c*k42, k31: k39, k26: a/c*k42, k23: k39
}
assert solve_lin_sys(system, ring) == solution
def test_M39():
x, y, z = symbols('x y z', complex=True)
# TODO: Replace solve with solveset, as of now
# solveset doesn't supports non-linear multivariate
assert solve([x**2*y + 3*y*z - 4, -3*x**2*z + 2*y**2 + 1, 2*y*z**2 - z**2 - 1 ]) ==\
[{y: 1, z: 1, x: -1}, {y: 1, z: 1, x: 1},\
{y: sqrt(2)*I, z: R(1,3) - sqrt(2)*I/3, x: -sqrt(-1 - sqrt(2)*I)},\
{y: sqrt(2)*I, z: R(1,3) - sqrt(2)*I/3, x: sqrt(-1 - sqrt(2)*I)},\
{y: -sqrt(2)*I, z: R(1,3) + sqrt(2)*I/3, x: -sqrt(-1 + sqrt(2)*I)},\
{y: -sqrt(2)*I, z: R(1,3) + sqrt(2)*I/3, x: sqrt(-1 + sqrt(2)*I)}]
# N. Inequalities
def test_N1():
assert ask(E**pi > pi**E)
@XFAIL
def test_N2():
x = symbols('x', real=True)
assert ask(x**4 - x + 1 > 0) is True
assert ask(x**4 - x + 1 > 1) is False
@XFAIL
def test_N3():
x = symbols('x', real=True)
assert ask(And(Lt(-1, x), Lt(x, 1)), abs(x) < 1 )
@XFAIL
def test_N4():
x, y = symbols('x y', real=True)
assert ask(2*x**2 > 2*y**2, (x > y) & (y > 0)) is True
@XFAIL
def test_N5():
x, y, k = symbols('x y k', real=True)
assert ask(k*x**2 > k*y**2, (x > y) & (y > 0) & (k > 0)) is True
@slow
@XFAIL
def test_N6():
x, y, k, n = symbols('x y k n', real=True)
assert ask(k*x**n > k*y**n, (x > y) & (y > 0) & (k > 0) & (n > 0)) is True
@XFAIL
def test_N7():
x, y = symbols('x y', real=True)
assert ask(y > 0, (x > 1) & (y >= x - 1)) is True
@XFAIL
@slow
def test_N8():
x, y, z = symbols('x y z', real=True)
assert ask(Eq(x, y) & Eq(y, z),
(x >= y) & (y >= z) & (z >= x))
def test_N9():
x = Symbol('x')
assert solveset(abs(x - 1) > 2, domain=S.Reals) == Union(Interval(-oo, -1, False, True),
Interval(3, oo, True))
def test_N10():
x = Symbol('x')
p = (x - 1)*(x - 2)*(x - 3)*(x - 4)*(x - 5)
assert solveset(expand(p) < 0, domain=S.Reals) == Union(Interval(-oo, 1, True, True),
Interval(2, 3, True, True),
Interval(4, 5, True, True))
def test_N11():
x = Symbol('x')
assert solveset(6/(x - 3) <= 3, domain=S.Reals) == Union(Interval(-oo, 3, True, True), Interval(5, oo))
def test_N12():
x = Symbol('x')
assert solveset(sqrt(x) < 2, domain=S.Reals) == Interval(0, 4, False, True)
def test_N13():
x = Symbol('x')
assert solveset(sin(x) < 2, domain=S.Reals) == S.Reals
@XFAIL
def test_N14():
x = Symbol('x')
# Gives 'Union(Interval(Integer(0), Mul(Rational(1, 2), pi), false, true),
# Interval(Mul(Rational(1, 2), pi), Mul(Integer(2), pi), true, false))'
# which is not the correct answer, but the provided also seems wrong.
assert solveset(sin(x) < 1, x, domain=S.Reals) == Union(Interval(-oo, pi/2, True, True),
Interval(pi/2, oo, True, True))
def test_N15():
r, t = symbols('r t')
# raises NotImplementedError: only univariate inequalities are supported
solveset(abs(2*r*(cos(t) - 1) + 1) <= 1, r, S.Reals)
def test_N16():
r, t = symbols('r t')
solveset((r**2)*((cos(t) - 4)**2)*sin(t)**2 < 9, r, S.Reals)
@XFAIL
def test_N17():
# currently only univariate inequalities are supported
assert solveset((x + y > 0, x - y < 0), (x, y)) == (abs(x) < y)
def test_O1():
M = Matrix((1 + I, -2, 3*I))
assert sqrt(expand(M.dot(M.H))) == sqrt(15)
def test_O2():
assert Matrix((2, 2, -3)).cross(Matrix((1, 3, 1))) == Matrix([[11],
[-5],
[4]])
# The vector module has no way of representing vectors symbolically (without
# respect to a basis)
@XFAIL
def test_O3():
# assert (va ^ vb) | (vc ^ vd) == -(va | vc)*(vb | vd) + (va | vd)*(vb | vc)
raise NotImplementedError("""The vector module has no way of representing
vectors symbolically (without respect to a basis)""")
def test_O4():
from sympy.vector import CoordSys3D, Del
N = CoordSys3D("N")
delop = Del()
i, j, k = N.base_vectors()
x, y, z = N.base_scalars()
F = i*(x*y*z) + j*((x*y*z)**2) + k*((y**2)*(z**3))
assert delop.cross(F).doit() == (-2*x**2*y**2*z + 2*y*z**3)*i + x*y*j + (2*x*y**2*z**2 - x*z)*k
@XFAIL
def test_O5():
#assert grad|(f^g)-g|(grad^f)+f|(grad^g) == 0
raise NotImplementedError("""The vector module has no way of representing
vectors symbolically (without respect to a basis)""")
#testO8-O9 MISSING!!
def test_O10():
L = [Matrix([2, 3, 5]), Matrix([3, 6, 2]), Matrix([8, 3, 6])]
assert GramSchmidt(L) == [Matrix([
[2],
[3],
[5]]),
Matrix([
[R(23, 19)],
[R(63, 19)],
[R(-47, 19)]]),
Matrix([
[R(1692, 353)],
[R(-1551, 706)],
[R(-423, 706)]])]
def test_P1():
assert Matrix(3, 3, lambda i, j: j - i).diagonal(-1) == Matrix(
1, 2, [-1, -1])
def test_P2():
M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
M.row_del(1)
M.col_del(2)
assert M == Matrix([[1, 2],
[7, 8]])
def test_P3():
A = Matrix([
[11, 12, 13, 14],
[21, 22, 23, 24],
[31, 32, 33, 34],
[41, 42, 43, 44]])
A11 = A[0:3, 1:4]
A12 = A[(0, 1, 3), (2, 0, 3)]
A21 = A
A221 = -A[0:2, 2:4]
A222 = -A[(3, 0), (2, 1)]
A22 = BlockMatrix([[A221, A222]]).T
rows = [[-A11, A12], [A21, A22]]
raises(ValueError, lambda: BlockMatrix(rows))
B = Matrix(rows)
assert B == Matrix([
[-12, -13, -14, 13, 11, 14],
[-22, -23, -24, 23, 21, 24],
[-32, -33, -34, 43, 41, 44],
[11, 12, 13, 14, -13, -23],
[21, 22, 23, 24, -14, -24],
[31, 32, 33, 34, -43, -13],
[41, 42, 43, 44, -42, -12]])
@XFAIL
def test_P4():
raise NotImplementedError("Block matrix diagonalization not supported")
def test_P5():
M = Matrix([[7, 11],
[3, 8]])
assert M % 2 == Matrix([[1, 1],
[1, 0]])
def test_P6():
M = Matrix([[cos(x), sin(x)],
[-sin(x), cos(x)]])
assert M.diff(x, 2) == Matrix([[-cos(x), -sin(x)],
[sin(x), -cos(x)]])
def test_P7():
M = Matrix([[x, y]])*(
z*Matrix([[1, 3, 5],
[2, 4, 6]]) + Matrix([[7, -9, 11],
[-8, 10, -12]]))
assert M == Matrix([[x*(z + 7) + y*(2*z - 8), x*(3*z - 9) + y*(4*z + 10),
x*(5*z + 11) + y*(6*z - 12)]])
def test_P8():
M = Matrix([[1, -2*I],
[-3*I, 4]])
assert M.norm(ord=S.Infinity) == 7
def test_P9():
a, b, c = symbols('a b c', nonzero=True)
M = Matrix([[a/(b*c), 1/c, 1/b],
[1/c, b/(a*c), 1/a],
[1/b, 1/a, c/(a*b)]])
assert factor(M.norm('fro')) == (a**2 + b**2 + c**2)/(abs(a)*abs(b)*abs(c))
@XFAIL
def test_P10():
M = Matrix([[1, 2 + 3*I],
[f(4 - 5*I), 6]])
# conjugate(f(4 - 5*i)) is not simplified to f(4+5*I)
assert M.H == Matrix([[1, f(4 + 5*I)],
[2 + 3*I, 6]])
@XFAIL
def test_P11():
# raises NotImplementedError("Matrix([[x,y],[1,x*y]]).inv()
# not simplifying to extract common factor")
assert Matrix([[x, y],
[1, x*y]]).inv() == (1/(x**2 - 1))*Matrix([[x, -1],
[-1/y, x/y]])
def test_P11_workaround():
# This test was changed to inverse method ADJ because it depended on the
# specific form of inverse returned from the 'GE' method which has changed.
M = Matrix([[x, y], [1, x*y]]).inv('ADJ')
c = gcd(tuple(M))
assert MatMul(c, M/c, evaluate=False) == MatMul(c, Matrix([
[x*y, -y],
[ -1, x]]), evaluate=False)
def test_P12():
A11 = MatrixSymbol('A11', n, n)
A12 = MatrixSymbol('A12', n, n)
A22 = MatrixSymbol('A22', n, n)
B = BlockMatrix([[A11, A12],
[ZeroMatrix(n, n), A22]])
assert block_collapse(B.I) == BlockMatrix([[A11.I, (-1)*A11.I*A12*A22.I],
[ZeroMatrix(n, n), A22.I]])
def test_P13():
M = Matrix([[1, x - 2, x - 3],
[x - 1, x**2 - 3*x + 6, x**2 - 3*x - 2],
[x - 2, x**2 - 8, 2*(x**2) - 12*x + 14]])
L, U, _ = M.LUdecomposition()
assert simplify(L) == Matrix([[1, 0, 0],
[x - 1, 1, 0],
[x - 2, x - 3, 1]])
assert simplify(U) == Matrix([[1, x - 2, x - 3],
[0, 4, x - 5],
[0, 0, x - 7]])
def test_P14():
M = Matrix([[1, 2, 3, 1, 3],
[3, 2, 1, 1, 7],
[0, 2, 4, 1, 1],
[1, 1, 1, 1, 4]])
R, _ = M.rref()
assert R == Matrix([[1, 0, -1, 0, 2],
[0, 1, 2, 0, -1],
[0, 0, 0, 1, 3],
[0, 0, 0, 0, 0]])
def test_P15():
M = Matrix([[-1, 3, 7, -5],
[4, -2, 1, 3],
[2, 4, 15, -7]])
assert M.rank() == 2
def test_P16():
M = Matrix([[2*sqrt(2), 8],
[6*sqrt(6), 24*sqrt(3)]])
assert M.rank() == 1
def test_P17():
t = symbols('t', real=True)
M=Matrix([
[sin(2*t), cos(2*t)],
[2*(1 - (cos(t)**2))*cos(t), (1 - 2*(sin(t)**2))*sin(t)]])
assert M.rank() == 1
def test_P18():
M = Matrix([[1, 0, -2, 0],
[-2, 1, 0, 3],
[-1, 2, -6, 6]])
assert M.nullspace() == [Matrix([[2],
[4],
[1],
[0]]),
Matrix([[0],
[-3],
[0],
[1]])]
def test_P19():
w = symbols('w')
M = Matrix([[1, 1, 1, 1],
[w, x, y, z],
[w**2, x**2, y**2, z**2],
[w**3, x**3, y**3, z**3]])
assert M.det() == (w**3*x**2*y - w**3*x**2*z - w**3*x*y**2 + w**3*x*z**2
+ w**3*y**2*z - w**3*y*z**2 - w**2*x**3*y + w**2*x**3*z
+ w**2*x*y**3 - w**2*x*z**3 - w**2*y**3*z + w**2*y*z**3
+ w*x**3*y**2 - w*x**3*z**2 - w*x**2*y**3 + w*x**2*z**3
+ w*y**3*z**2 - w*y**2*z**3 - x**3*y**2*z + x**3*y*z**2
+ x**2*y**3*z - x**2*y*z**3 - x*y**3*z**2 + x*y**2*z**3
)
@XFAIL
def test_P20():
raise NotImplementedError("Matrix minimal polynomial not supported")
def test_P21():
M = Matrix([[5, -3, -7],
[-2, 1, 2],
[2, -3, -4]])
assert M.charpoly(x).as_expr() == x**3 - 2*x**2 - 5*x + 6
def test_P22():
d = 100
M = (2 - x)*eye(d)
assert M.eigenvals() == {-x + 2: d}
def test_P23():
M = Matrix([
[2, 1, 0, 0, 0],
[1, 2, 1, 0, 0],
[0, 1, 2, 1, 0],
[0, 0, 1, 2, 1],
[0, 0, 0, 1, 2]])
assert M.eigenvals() == {
S('1'): 1,
S('2'): 1,
S('3'): 1,
S('sqrt(3) + 2'): 1,
S('-sqrt(3) + 2'): 1}
def test_P24():
M = Matrix([[611, 196, -192, 407, -8, -52, -49, 29],
[196, 899, 113, -192, -71, -43, -8, -44],
[-192, 113, 899, 196, 61, 49, 8, 52],
[ 407, -192, 196, 611, 8, 44, 59, -23],
[ -8, -71, 61, 8, 411, -599, 208, 208],
[ -52, -43, 49, 44, -599, 411, 208, 208],
[ -49, -8, 8, 59, 208, 208, 99, -911],
[ 29, -44, 52, -23, 208, 208, -911, 99]])
assert M.eigenvals() == {
S('0'): 1,
S('10*sqrt(10405)'): 1,
S('100*sqrt(26) + 510'): 1,
S('1000'): 2,
S('-100*sqrt(26) + 510'): 1,
S('-10*sqrt(10405)'): 1,
S('1020'): 1}
def test_P25():
MF = N(Matrix([[ 611, 196, -192, 407, -8, -52, -49, 29],
[ 196, 899, 113, -192, -71, -43, -8, -44],
[-192, 113, 899, 196, 61, 49, 8, 52],
[ 407, -192, 196, 611, 8, 44, 59, -23],
[ -8, -71, 61, 8, 411, -599, 208, 208],
[ -52, -43, 49, 44, -599, 411, 208, 208],
[ -49, -8, 8, 59, 208, 208, 99, -911],
[ 29, -44, 52, -23, 208, 208, -911, 99]]))
ev_1 = sorted(MF.eigenvals(multiple=True))
ev_2 = sorted(
[-1020.0490184299969, 0.0, 0.09804864072151699, 1000.0, 1000.0,
1019.9019513592784, 1020.0, 1020.0490184299969])
for x, y in zip(ev_1, ev_2):
assert abs(x - y) < 1e-12
def test_P26():
a0, a1, a2, a3, a4 = symbols('a0 a1 a2 a3 a4')
M = Matrix([[-a4, -a3, -a2, -a1, -a0, 0, 0, 0, 0],
[ 1, 0, 0, 0, 0, 0, 0, 0, 0],
[ 0, 1, 0, 0, 0, 0, 0, 0, 0],
[ 0, 0, 1, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, 1, 0, 0, 0, 0, 0],
[ 0, 0, 0, 0, 0, -1, -1, 0, 0],
[ 0, 0, 0, 0, 0, 1, 0, 0, 0],
[ 0, 0, 0, 0, 0, 0, 1, -1, -1],
[ 0, 0, 0, 0, 0, 0, 0, 1, 0]])
assert M.eigenvals(error_when_incomplete=False) == {
S('-1/2 - sqrt(3)*I/2'): 2,
S('-1/2 + sqrt(3)*I/2'): 2}
def test_P27():
a = symbols('a')
M = Matrix([[a, 0, 0, 0, 0],
[0, 0, 0, 0, 1],
[0, 0, a, 0, 0],
[0, 0, 0, a, 0],
[0, -2, 0, 0, 2]])
assert M.eigenvects() == [
(a, 3, [
Matrix([1, 0, 0, 0, 0]),
Matrix([0, 0, 1, 0, 0]),
Matrix([0, 0, 0, 1, 0])
]),
(1 - I, 1, [
Matrix([0, (1 + I)/2, 0, 0, 1])
]),
(1 + I, 1, [
Matrix([0, (1 - I)/2, 0, 0, 1])
]),
]
@XFAIL
def test_P28():
raise NotImplementedError("Generalized eigenvectors not supported \
https://github.com/sympy/sympy/issues/5293")
@XFAIL
def test_P29():
raise NotImplementedError("Generalized eigenvectors not supported \
https://github.com/sympy/sympy/issues/5293")
def test_P30():
M = Matrix([[1, 0, 0, 1, -1],
[0, 1, -2, 3, -3],
[0, 0, -1, 2, -2],
[1, -1, 1, 0, 1],
[1, -1, 1, -1, 2]])
_, J = M.jordan_form()
assert J == Matrix([[-1, 0, 0, 0, 0],
[0, 1, 1, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 1, 1],
[0, 0, 0, 0, 1]])
@XFAIL
def test_P31():
raise NotImplementedError("Smith normal form not implemented")
def test_P32():
M = Matrix([[1, -2],
[2, 1]])
assert exp(M).rewrite(cos).simplify() == Matrix([[E*cos(2), -E*sin(2)],
[E*sin(2), E*cos(2)]])
def test_P33():
w, t = symbols('w t')
M = Matrix([[0, 1, 0, 0],
[0, 0, 0, 2*w],
[0, 0, 0, 1],
[0, -2*w, 3*w**2, 0]])
assert exp(M*t).rewrite(cos).expand() == Matrix([
[1, -3*t + 4*sin(t*w)/w, 6*t*w - 6*sin(t*w), -2*cos(t*w)/w + 2/w],
[0, 4*cos(t*w) - 3, -6*w*cos(t*w) + 6*w, 2*sin(t*w)],
[0, 2*cos(t*w)/w - 2/w, -3*cos(t*w) + 4, sin(t*w)/w],
[0, -2*sin(t*w), 3*w*sin(t*w), cos(t*w)]])
@XFAIL
def test_P34():
a, b, c = symbols('a b c', real=True)
M = Matrix([[a, 1, 0, 0, 0, 0],
[0, a, 0, 0, 0, 0],
[0, 0, b, 0, 0, 0],
[0, 0, 0, c, 1, 0],
[0, 0, 0, 0, c, 1],
[0, 0, 0, 0, 0, c]])
# raises exception, sin(M) not supported. exp(M*I) also not supported
# https://github.com/sympy/sympy/issues/6218
assert sin(M) == Matrix([[sin(a), cos(a), 0, 0, 0, 0],
[0, sin(a), 0, 0, 0, 0],
[0, 0, sin(b), 0, 0, 0],
[0, 0, 0, sin(c), cos(c), -sin(c)/2],
[0, 0, 0, 0, sin(c), cos(c)],
[0, 0, 0, 0, 0, sin(c)]])
@XFAIL
def test_P35():
M = pi/2*Matrix([[2, 1, 1],
[2, 3, 2],
[1, 1, 2]])
# raises exception, sin(M) not supported. exp(M*I) also not supported
# https://github.com/sympy/sympy/issues/6218
assert sin(M) == eye(3)
@XFAIL
def test_P36():
M = Matrix([[10, 7],
[7, 17]])
assert sqrt(M) == Matrix([[3, 1],
[1, 4]])
def test_P37():
M = Matrix([[1, 1, 0],
[0, 1, 0],
[0, 0, 1]])
assert M**S.Half == Matrix([[1, R(1, 2), 0],
[0, 1, 0],
[0, 0, 1]])
@XFAIL
def test_P38():
M=Matrix([[0, 1, 0],
[0, 0, 0],
[0, 0, 0]])
with raises(AssertionError):
# raises ValueError: Matrix det == 0; not invertible
M**S.Half
# if it doesn't raise then this assertion will be
# raised and the test will be flagged as not XFAILing
assert None
@XFAIL
def test_P39():
"""
M=Matrix([
[1, 1],
[2, 2],
[3, 3]])
M.SVD()
"""
raise NotImplementedError("Singular value decomposition not implemented")
def test_P40():
r, t = symbols('r t', real=True)
M = Matrix([r*cos(t), r*sin(t)])
assert M.jacobian(Matrix([r, t])) == Matrix([[cos(t), -r*sin(t)],
[sin(t), r*cos(t)]])
def test_P41():
r, t = symbols('r t', real=True)
assert hessian(r**2*sin(t),(r,t)) == Matrix([[ 2*sin(t), 2*r*cos(t)],
[2*r*cos(t), -r**2*sin(t)]])
def test_P42():
assert wronskian([cos(x), sin(x)], x).simplify() == 1
def test_P43():
def __my_jacobian(M, Y):
return Matrix([M.diff(v).T for v in Y]).T
r, t = symbols('r t', real=True)
M = Matrix([r*cos(t), r*sin(t)])
assert __my_jacobian(M,[r,t]) == Matrix([[cos(t), -r*sin(t)],
[sin(t), r*cos(t)]])
def test_P44():
def __my_hessian(f, Y):
V = Matrix([diff(f, v) for v in Y])
return Matrix([V.T.diff(v) for v in Y])
r, t = symbols('r t', real=True)
assert __my_hessian(r**2*sin(t), (r, t)) == Matrix([
[ 2*sin(t), 2*r*cos(t)],
[2*r*cos(t), -r**2*sin(t)]])
def test_P45():
def __my_wronskian(Y, v):
M = Matrix([Matrix(Y).T.diff(x, n) for n in range(0, len(Y))])
return M.det()
assert __my_wronskian([cos(x), sin(x)], x).simplify() == 1
# Q1-Q6 Tensor tests missing
@XFAIL
def test_R1():
i, j, n = symbols('i j n', integer=True, positive=True)
xn = MatrixSymbol('xn', n, 1)
Sm = Sum((xn[i, 0] - Sum(xn[j, 0], (j, 0, n - 1))/n)**2, (i, 0, n - 1))
# sum does not calculate
# Unknown result
Sm.doit()
raise NotImplementedError('Unknown result')
@XFAIL
def test_R2():
m, b = symbols('m b')
i, n = symbols('i n', integer=True, positive=True)
xn = MatrixSymbol('xn', n, 1)
yn = MatrixSymbol('yn', n, 1)
f = Sum((yn[i, 0] - m*xn[i, 0] - b)**2, (i, 0, n - 1))
f1 = diff(f, m)
f2 = diff(f, b)
# raises TypeError: solveset() takes at most 2 arguments (3 given)
solveset((f1, f2), (m, b), domain=S.Reals)
@XFAIL
def test_R3():
n, k = symbols('n k', integer=True, positive=True)
sk = ((-1)**k) * (binomial(2*n, k))**2
Sm = Sum(sk, (k, 1, oo))
T = Sm.doit()
T2 = T.combsimp()
# returns -((-1)**n*factorial(2*n)
# - (factorial(n))**2)*exp_polar(-I*pi)/(factorial(n))**2
assert T2 == (-1)**n*binomial(2*n, n)
@XFAIL
def test_R4():
# Macsyma indefinite sum test case:
#(c15) /* Check whether the full Gosper algorithm is implemented
# => 1/2^(n + 1) binomial(n, k - 1) */
#closedform(indefsum(binomial(n, k)/2^n - binomial(n + 1, k)/2^(n + 1), k));
#Time= 2690 msecs
# (- n + k - 1) binomial(n + 1, k)
#(d15) - --------------------------------
# n
# 2 2 (n + 1)
#
#(c16) factcomb(makefact(%));
#Time= 220 msecs
# n!
#(d16) ----------------
# n
# 2 k! 2 (n - k)!
# Might be possible after fixing https://github.com/sympy/sympy/pull/1879
raise NotImplementedError("Indefinite sum not supported")
@XFAIL
def test_R5():
a, b, c, n, k = symbols('a b c n k', integer=True, positive=True)
sk = ((-1)**k)*(binomial(a + b, a + k)
*binomial(b + c, b + k)*binomial(c + a, c + k))
Sm = Sum(sk, (k, 1, oo))
T = Sm.doit() # hypergeometric series not calculated
assert T == factorial(a+b+c)/(factorial(a)*factorial(b)*factorial(c))
def test_R6():
n, k = symbols('n k', integer=True, positive=True)
gn = MatrixSymbol('gn', n + 2, 1)
Sm = Sum(gn[k, 0] - gn[k - 1, 0], (k, 1, n + 1))
assert Sm.doit() == -gn[0, 0] + gn[n + 1, 0]
def test_R7():
n, k = symbols('n k', integer=True, positive=True)
T = Sum(k**3,(k,1,n)).doit()
assert T.factor() == n**2*(n + 1)**2/4
@XFAIL
def test_R8():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(k**2*binomial(n, k), (k, 1, n))
T = Sm.doit() #returns Piecewise function
assert T.combsimp() == n*(n + 1)*2**(n - 2)
def test_R9():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(binomial(n, k - 1)/k, (k, 1, n + 1))
assert Sm.doit().simplify() == (2**(n + 1) - 1)/(n + 1)
@XFAIL
def test_R10():
n, m, r, k = symbols('n m r k', integer=True, positive=True)
Sm = Sum(binomial(n, k)*binomial(m, r - k), (k, 0, r))
T = Sm.doit()
T2 = T.combsimp().rewrite(factorial)
assert T2 == factorial(m + n)/(factorial(r)*factorial(m + n - r))
assert T2 == binomial(m + n, r).rewrite(factorial)
# rewrite(binomial) is not working.
# https://github.com/sympy/sympy/issues/7135
T3 = T2.rewrite(binomial)
assert T3 == binomial(m + n, r)
@XFAIL
def test_R11():
n, k = symbols('n k', integer=True, positive=True)
sk = binomial(n, k)*fibonacci(k)
Sm = Sum(sk, (k, 0, n))
T = Sm.doit()
# Fibonacci simplification not implemented
# https://github.com/sympy/sympy/issues/7134
assert T == fibonacci(2*n)
@XFAIL
def test_R12():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(fibonacci(k)**2, (k, 0, n))
T = Sm.doit()
assert T == fibonacci(n)*fibonacci(n + 1)
@XFAIL
def test_R13():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(sin(k*x), (k, 1, n))
T = Sm.doit() # Sum is not calculated
assert T.simplify() == cot(x/2)/2 - cos(x*(2*n + 1)/2)/(2*sin(x/2))
@XFAIL
def test_R14():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(sin((2*k - 1)*x), (k, 1, n))
T = Sm.doit() # Sum is not calculated
assert T.simplify() == sin(n*x)**2/sin(x)
@XFAIL
def test_R15():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(binomial(n - k, k), (k, 0, floor(n/2)))
T = Sm.doit() # Sum is not calculated
assert T.simplify() == fibonacci(n + 1)
def test_R16():
k = symbols('k', integer=True, positive=True)
Sm = Sum(1/k**2 + 1/k**3, (k, 1, oo))
assert Sm.doit() == zeta(3) + pi**2/6
def test_R17():
k = symbols('k', integer=True, positive=True)
assert abs(float(Sum(1/k**2 + 1/k**3, (k, 1, oo)))
- 2.8469909700078206) < 1e-15
def test_R18():
k = symbols('k', integer=True, positive=True)
Sm = Sum(1/(2**k*k**2), (k, 1, oo))
T = Sm.doit()
assert T.simplify() == -log(2)**2/2 + pi**2/12
@slow
@XFAIL
def test_R19():
k = symbols('k', integer=True, positive=True)
Sm = Sum(1/((3*k + 1)*(3*k + 2)*(3*k + 3)), (k, 0, oo))
T = Sm.doit()
# assert fails, T not simplified
assert T.simplify() == -log(3)/4 + sqrt(3)*pi/12
@XFAIL
def test_R20():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(binomial(n, 4*k), (k, 0, oo))
T = Sm.doit()
# assert fails, T not simplified
assert T.simplify() == 2**(n/2)*cos(pi*n/4)/2 + 2**(n - 1)/2
@XFAIL
def test_R21():
k = symbols('k', integer=True, positive=True)
Sm = Sum(1/(sqrt(k*(k + 1)) * (sqrt(k) + sqrt(k + 1))), (k, 1, oo))
T = Sm.doit() # Sum not calculated
assert T.simplify() == 1
# test_R22 answer not available in Wester samples
# Sum(Sum(binomial(n, k)*binomial(n - k, n - 2*k)*x**n*y**(n - 2*k),
# (k, 0, floor(n/2))), (n, 0, oo)) with abs(x*y)<1?
@XFAIL
def test_R23():
n, k = symbols('n k', integer=True, positive=True)
Sm = Sum(Sum((factorial(n)/(factorial(k)**2*factorial(n - 2*k)))*
(x/y)**k*(x*y)**(n - k), (n, 2*k, oo)), (k, 0, oo))
# Missing how to express constraint abs(x*y)<1?
T = Sm.doit() # Sum not calculated
assert T == -1/sqrt(x**2*y**2 - 4*x**2 - 2*x*y + 1)
def test_R24():
m, k = symbols('m k', integer=True, positive=True)
Sm = Sum(Product(k/(2*k - 1), (k, 1, m)), (m, 2, oo))
assert Sm.doit() == pi/2
def test_S1():
k = symbols('k', integer=True, positive=True)
Pr = Product(gamma(k/3), (k, 1, 8))
assert Pr.doit().simplify() == 640*sqrt(3)*pi**3/6561
def test_S2():
n, k = symbols('n k', integer=True, positive=True)
assert Product(k, (k, 1, n)).doit() == factorial(n)
def test_S3():
n, k = symbols('n k', integer=True, positive=True)
assert Product(x**k, (k, 1, n)).doit().simplify() == x**(n*(n + 1)/2)
def test_S4():
n, k = symbols('n k', integer=True, positive=True)
assert Product(1 + 1/k, (k, 1, n -1)).doit().simplify() == n
def test_S5():
n, k = symbols('n k', integer=True, positive=True)
assert (Product((2*k - 1)/(2*k), (k, 1, n)).doit().gammasimp() ==
gamma(n + S.Half)/(sqrt(pi)*gamma(n + 1)))
@XFAIL
def test_S6():
n, k = symbols('n k', integer=True, positive=True)
# Product does not evaluate
assert (Product(x**2 -2*x*cos(k*pi/n) + 1, (k, 1, n - 1)).doit().simplify()
== (x**(2*n) - 1)/(x**2 - 1))
@XFAIL
def test_S7():
k = symbols('k', integer=True, positive=True)
Pr = Product((k**3 - 1)/(k**3 + 1), (k, 2, oo))
T = Pr.doit() # Product does not evaluate
assert T.simplify() == R(2, 3)
@XFAIL
def test_S8():
k = symbols('k', integer=True, positive=True)
Pr = Product(1 - 1/(2*k)**2, (k, 1, oo))
T = Pr.doit()
# Product does not evaluate
assert T.simplify() == 2/pi
@XFAIL
def test_S9():
k = symbols('k', integer=True, positive=True)
Pr = Product(1 + (-1)**(k + 1)/(2*k - 1), (k, 1, oo))
T = Pr.doit()
# Product produces 0
# https://github.com/sympy/sympy/issues/7133
assert T.simplify() == sqrt(2)
@XFAIL
def test_S10():
k = symbols('k', integer=True, positive=True)
Pr = Product((k*(k + 1) + 1 + I)/(k*(k + 1) + 1 - I), (k, 0, oo))
T = Pr.doit()
# Product does not evaluate
assert T.simplify() == -1
def test_T1():
assert limit((1 + 1/n)**n, n, oo) == E
assert limit((1 - cos(x))/x**2, x, 0) == S.Half
def test_T2():
assert limit((3**x + 5**x)**(1/x), x, oo) == 5
def test_T3():
assert limit(log(x)/(log(x) + sin(x)), x, oo) == 1
def test_T4():
assert limit((exp(x*exp(-x)/(exp(-x) + exp(-2*x**2/(x + 1))))
- exp(x))/x, x, oo) == -exp(2)
def test_T5():
assert limit(x*log(x)*log(x*exp(x) - x**2)**2/log(log(x**2
+ 2*exp(exp(3*x**3*log(x))))), x, oo) == R(1, 3)
def test_T6():
assert limit(1/n * factorial(n)**(1/n), n, oo) == exp(-1)
def test_T7():
limit(1/n * gamma(n + 1)**(1/n), n, oo)
def test_T8():
a, z = symbols('a z', positive=True)
assert limit(gamma(z + a)/gamma(z)*exp(-a*log(z)), z, oo) == 1
@XFAIL
def test_T9():
z, k = symbols('z k', positive=True)
# raises NotImplementedError:
# Don't know how to calculate the mrv of '(1, k)'
assert limit(hyper((1, k), (1,), z/k), k, oo) == exp(z)
@XFAIL
def test_T10():
# No longer raises PoleError, but should return euler-mascheroni constant
assert limit(zeta(x) - 1/(x - 1), x, 1) == integrate(-1/x + 1/floor(x), (x, 1, oo))
@XFAIL
def test_T11():
n, k = symbols('n k', integer=True, positive=True)
# evaluates to 0
assert limit(n**x/(x*product((1 + x/k), (k, 1, n))), n, oo) == gamma(x)
def test_T12():
x, t = symbols('x t', real=True)
# Does not evaluate the limit but returns an expression with erf
assert limit(x * integrate(exp(-t**2), (t, 0, x))/(1 - exp(-x**2)),
x, 0) == 1
def test_T13():
x = symbols('x', real=True)
assert [limit(x/abs(x), x, 0, dir='-'),
limit(x/abs(x), x, 0, dir='+')] == [-1, 1]
def test_T14():
x = symbols('x', real=True)
assert limit(atan(-log(x)), x, 0, dir='+') == pi/2
def test_U1():
x = symbols('x', real=True)
assert diff(abs(x), x) == sign(x)
def test_U2():
f = Lambda(x, Piecewise((-x, x < 0), (x, x >= 0)))
assert diff(f(x), x) == Piecewise((-1, x < 0), (1, x >= 0))
def test_U3():
f = Lambda(x, Piecewise((x**2 - 1, x == 1), (x**3, x != 1)))
f1 = Lambda(x, diff(f(x), x))
assert f1(x) == 3*x**2
assert f1(1) == 3
@XFAIL
def test_U4():
n = symbols('n', integer=True, positive=True)
x = symbols('x', real=True)
d = diff(x**n, x, n)
assert d.rewrite(factorial) == factorial(n)
def test_U5():
# issue 6681
t = symbols('t')
ans = (
Derivative(f(g(t)), g(t))*Derivative(g(t), (t, 2)) +
Derivative(f(g(t)), (g(t), 2))*Derivative(g(t), t)**2)
assert f(g(t)).diff(t, 2) == ans
assert ans.doit() == ans
def test_U6():
h = Function('h')
T = integrate(f(y), (y, h(x), g(x)))
assert T.diff(x) == (
f(g(x))*Derivative(g(x), x) - f(h(x))*Derivative(h(x), x))
@XFAIL
def test_U7():
p, t = symbols('p t', real=True)
# Exact differential => d(V(P, T)) => dV/dP DP + dV/dT DT
# raises ValueError: Since there is more than one variable in the
# expression, the variable(s) of differentiation must be supplied to
# differentiate f(p,t)
diff(f(p, t))
def test_U8():
x, y = symbols('x y', real=True)
eq = cos(x*y) + x
# If SymPy had implicit_diff() function this hack could be avoided
# TODO: Replace solve with solveset, current test fails for solveset
assert idiff(y - eq, y, x) == (-y*sin(x*y) + 1)/(x*sin(x*y) + 1)
def test_U9():
# Wester sample case for Maple:
# O29 := diff(f(x, y), x) + diff(f(x, y), y);
# /d \ /d \
# |-- f(x, y)| + |-- f(x, y)|
# \dx / \dy /
#
# O30 := factor(subs(f(x, y) = g(x^2 + y^2), %));
# 2 2
# 2 D(g)(x + y ) (x + y)
x, y = symbols('x y', real=True)
su = diff(f(x, y), x) + diff(f(x, y), y)
s2 = su.subs(f(x, y), g(x**2 + y**2))
s3 = s2.doit().factor()
# Subs not performed, s3 = 2*(x + y)*Subs(Derivative(
# g(_xi_1), _xi_1), _xi_1, x**2 + y**2)
# Derivative(g(x*2 + y**2), x**2 + y**2) is not valid in SymPy,
# and probably will remain that way. You can take derivatives with respect
# to other expressions only if they are atomic, like a symbol or a
# function.
# D operator should be added to SymPy
# See https://github.com/sympy/sympy/issues/4719.
assert s3 == (x + y)*Subs(Derivative(g(x), x), x, x**2 + y**2)*2
def test_U10():
# see issue 2519:
assert residue((z**3 + 5)/((z**4 - 1)*(z + 1)), z, -1) == R(-9, 4)
@XFAIL
def test_U11():
# assert (2*dx + dz) ^ (3*dx + dy + dz) ^ (dx + dy + 4*dz) == 8*dx ^ dy ^dz
raise NotImplementedError
@XFAIL
def test_U12():
# Wester sample case:
# (c41) /* d(3 x^5 dy /\ dz + 5 x y^2 dz /\ dx + 8 z dx /\ dy)
# => (15 x^4 + 10 x y + 8) dx /\ dy /\ dz */
# factor(ext_diff(3*x^5 * dy ~ dz + 5*x*y^2 * dz ~ dx + 8*z * dx ~ dy));
# 4
# (d41) (10 x y + 15 x + 8) dx dy dz
raise NotImplementedError(
"External diff of differential form not supported")
def test_U13():
assert minimum(x**4 - x + 1, x) == -3*2**R(1,3)/8 + 1
@XFAIL
def test_U14():
#f = 1/(x**2 + y**2 + 1)
#assert [minimize(f), maximize(f)] == [0,1]
raise NotImplementedError("minimize(), maximize() not supported")
@XFAIL
def test_U15():
raise NotImplementedError("minimize() not supported and also solve does \
not support multivariate inequalities")
@XFAIL
def test_U16():
raise NotImplementedError("minimize() not supported in SymPy and also \
solve does not support multivariate inequalities")
@XFAIL
def test_U17():
raise NotImplementedError("Linear programming, symbolic simplex not \
supported in SymPy")
def test_V1():
x = symbols('x', real=True)
assert integrate(abs(x), x) == Piecewise((-x**2/2, x <= 0), (x**2/2, True))
def test_V2():
assert integrate(Piecewise((-x, x < 0), (x, x >= 0)), x
) == Piecewise((-x**2/2, x < 0), (x**2/2, True))
def test_V3():
assert integrate(1/(x**3 + 2),x).diff().simplify() == 1/(x**3 + 2)
def test_V4():
assert integrate(2**x/sqrt(1 + 4**x), x) == asinh(2**x)/log(2)
@XFAIL
def test_V5():
# Returns (-45*x**2 + 80*x - 41)/(5*sqrt(2*x - 1)*(4*x**2 - 4*x + 1))
assert (integrate((3*x - 5)**2/(2*x - 1)**R(7, 2), x).simplify() ==
(-41 + 80*x - 45*x**2)/(5*(2*x - 1)**R(5, 2)))
@XFAIL
def test_V6():
# returns RootSum(40*_z**2 - 1, Lambda(_i, _i*log(-4*_i + exp(-m*x))))/m
assert (integrate(1/(2*exp(m*x) - 5*exp(-m*x)), x) == sqrt(10)*(
log(2*exp(m*x) - sqrt(10)) - log(2*exp(m*x) + sqrt(10)))/(20*m))
def test_V7():
r1 = integrate(sinh(x)**4/cosh(x)**2)
assert r1.simplify() == x*R(-3, 2) + sinh(x)**3/(2*cosh(x)) + 3*tanh(x)/2
@XFAIL
def test_V8_V9():
#Macsyma test case:
#(c27) /* This example involves several symbolic parameters
# => 1/sqrt(b^2 - a^2) log([sqrt(b^2 - a^2) tan(x/2) + a + b]/
# [sqrt(b^2 - a^2) tan(x/2) - a - b]) (a^2 < b^2)
# [Gradshteyn and Ryzhik 2.553(3)] */
#assume(b^2 > a^2)$
#(c28) integrate(1/(a + b*cos(x)), x);
#(c29) trigsimp(ratsimp(diff(%, x)));
# 1
#(d29) ------------
# b cos(x) + a
raise NotImplementedError(
"Integrate with assumption not supported")
def test_V10():
assert integrate(1/(3 + 3*cos(x) + 4*sin(x)), x) == log(4*tan(x/2) + 3)/4
def test_V11():
r1 = integrate(1/(4 + 3*cos(x) + 4*sin(x)), x)
r2 = factor(r1)
assert (logcombine(r2, force=True) ==
log(((tan(x/2) + 1)/(tan(x/2) + 7))**R(1, 3)))
def test_V12():
r1 = integrate(1/(5 + 3*cos(x) + 4*sin(x)), x)
assert r1 == -1/(tan(x/2) + 2)
@XFAIL
def test_V13():
r1 = integrate(1/(6 + 3*cos(x) + 4*sin(x)), x)
# expression not simplified, returns: -sqrt(11)*I*log(tan(x/2) + 4/3
# - sqrt(11)*I/3)/11 + sqrt(11)*I*log(tan(x/2) + 4/3 + sqrt(11)*I/3)/11
assert r1.simplify() == 2*sqrt(11)*atan(sqrt(11)*(3*tan(x/2) + 4)/11)/11
@slow
@XFAIL
def test_V14():
r1 = integrate(log(abs(x**2 - y**2)), x)
# Piecewise result does not simplify to the desired result.
assert (r1.simplify() == x*log(abs(x**2 - y**2))
+ y*log(x + y) - y*log(x - y) - 2*x)
def test_V15():
r1 = integrate(x*acot(x/y), x)
assert simplify(r1 - (x*y + (x**2 + y**2)*acot(x/y))/2) == 0
@XFAIL
def test_V16():
# Integral not calculated
assert integrate(cos(5*x)*Ci(2*x), x) == Ci(2*x)*sin(5*x)/5 - (Si(3*x) + Si(7*x))/10
@XFAIL
def test_V17():
r1 = integrate((diff(f(x), x)*g(x)
- f(x)*diff(g(x), x))/(f(x)**2 - g(x)**2), x)
# integral not calculated
assert simplify(r1 - (f(x) - g(x))/(f(x) + g(x))/2) == 0
@XFAIL
def test_W1():
# The function has a pole at y.
# The integral has a Cauchy principal value of zero but SymPy returns -I*pi
# https://github.com/sympy/sympy/issues/7159
assert integrate(1/(x - y), (x, y - 1, y + 1)) == 0
@XFAIL
def test_W2():
# The function has a pole at y.
# The integral is divergent but SymPy returns -2
# https://github.com/sympy/sympy/issues/7160
# Test case in Macsyma:
# (c6) errcatch(integrate(1/(x - a)^2, x, a - 1, a + 1));
# Integral is divergent
assert integrate(1/(x - y)**2, (x, y - 1, y + 1)) is zoo
@XFAIL
@slow
def test_W3():
# integral is not calculated
# https://github.com/sympy/sympy/issues/7161
assert integrate(sqrt(x + 1/x - 2), (x, 0, 1)) == R(4, 3)
@XFAIL
@slow
def test_W4():
# integral is not calculated
assert integrate(sqrt(x + 1/x - 2), (x, 1, 2)) == -2*sqrt(2)/3 + R(4, 3)
@XFAIL
@slow
def test_W5():
# integral is not calculated
assert integrate(sqrt(x + 1/x - 2), (x, 0, 2)) == -2*sqrt(2)/3 + R(8, 3)
@XFAIL
@slow
def test_W6():
# integral is not calculated
assert integrate(sqrt(2 - 2*cos(2*x))/2, (x, pi*R(-3, 4), -pi/4)) == sqrt(2)
def test_W7():
a = symbols('a', positive=True)
r1 = integrate(cos(x)/(x**2 + a**2), (x, -oo, oo))
assert r1.simplify() == pi*exp(-a)/a
@XFAIL
def test_W8():
# Test case in Mathematica:
# In[19]:= Integrate[t^(a - 1)/(1 + t), {t, 0, Infinity},
# Assumptions -> 0 < a < 1]
# Out[19]= Pi Csc[a Pi]
raise NotImplementedError(
"Integrate with assumption 0 < a < 1 not supported")
@XFAIL
@slow
def test_W9():
# Integrand with a residue at infinity => -2 pi [sin(pi/5) + sin(2pi/5)]
# (principal value) [Levinson and Redheffer, p. 234] *)
r1 = integrate(5*x**3/(1 + x + x**2 + x**3 + x**4), (x, -oo, oo))
r2 = r1.doit()
assert r2 == -2*pi*(sqrt(-sqrt(5)/8 + 5/8) + sqrt(sqrt(5)/8 + 5/8))
@XFAIL
def test_W10():
# integrate(1/[1 + x + x^2 + ... + x^(2 n)], x = -infinity..infinity) =
# 2 pi/(2 n + 1) [1 + cos(pi/[2 n + 1])] csc(2 pi/[2 n + 1])
# [Levinson and Redheffer, p. 255] => 2 pi/5 [1 + cos(pi/5)] csc(2 pi/5) */
r1 = integrate(x/(1 + x + x**2 + x**4), (x, -oo, oo))
r2 = r1.doit()
assert r2 == 2*pi*(sqrt(5)/4 + 5/4)*csc(pi*R(2, 5))/5
@XFAIL
def test_W11():
# integral not calculated
assert (integrate(sqrt(1 - x**2)/(1 + x**2), (x, -1, 1)) ==
pi*(-1 + sqrt(2)))
def test_W12():
p = symbols('p', positive=True)
q = symbols('q', real=True)
r1 = integrate(x*exp(-p*x**2 + 2*q*x), (x, -oo, oo))
assert r1.simplify() == sqrt(pi)*q*exp(q**2/p)/p**R(3, 2)
@XFAIL
def test_W13():
# Integral not calculated. Expected result is 2*(Euler_mascheroni_constant)
r1 = integrate(1/log(x) + 1/(1 - x) - log(log(1/x)), (x, 0, 1))
assert r1 == 2*EulerGamma
def test_W14():
assert integrate(sin(x)/x*exp(2*I*x), (x, -oo, oo)) == 0
@XFAIL
def test_W15():
# integral not calculated
assert integrate(log(gamma(x))*cos(6*pi*x), (x, 0, 1)) == R(1, 12)
def test_W16():
assert integrate((1 + x)**3*legendre_poly(1, x)*legendre_poly(2, x),
(x, -1, 1)) == R(36, 35)
def test_W17():
a, b = symbols('a b', positive=True)
assert integrate(exp(-a*x)*besselj(0, b*x),
(x, 0, oo)) == 1/(b*sqrt(a**2/b**2 + 1))
def test_W18():
assert integrate((besselj(1, x)/x)**2, (x, 0, oo)) == 4/(3*pi)
@XFAIL
def test_W19():
# Integral not calculated
# Expected result is (cos 7 - 1)/7 [Gradshteyn and Ryzhik 6.782(3)]
assert integrate(Ci(x)*besselj(0, 2*sqrt(7*x)), (x, 0, oo)) == (cos(7) - 1)/7
@XFAIL
def test_W20():
# integral not calculated
assert (integrate(x**2*polylog(3, 1/(x + 1)), (x, 0, 1)) ==
-pi**2/36 - R(17, 108) + zeta(3)/4 +
(-pi**2/2 - 4*log(2) + log(2)**2 + 35/3)*log(2)/9)
def test_W21():
assert abs(N(integrate(x**2*polylog(3, 1/(x + 1)), (x, 0, 1)))
- 0.210882859565594) < 1e-15
def test_W22():
t, u = symbols('t u', real=True)
s = Lambda(x, Piecewise((1, And(x >= 1, x <= 2)), (0, True)))
assert integrate(s(t)*cos(t), (t, 0, u)) == Piecewise(
(0, u < 0),
(-sin(Min(1, u)) + sin(Min(2, u)), True))
@slow
def test_W23():
a, b = symbols('a b', positive=True)
r1 = integrate(integrate(x/(x**2 + y**2), (x, a, b)), (y, -oo, oo))
assert r1.collect(pi).cancel() == -pi*a + pi*b
def test_W23b():
# like W23 but limits are reversed
a, b = symbols('a b', positive=True)
r2 = integrate(integrate(x/(x**2 + y**2), (y, -oo, oo)), (x, a, b))
assert r2.collect(pi) == pi*(-a + b)
@XFAIL
@slow
def test_W24():
if ON_CI:
skip("Too slow for CI.")
# Not that slow, but does not fully evaluate so simplify is slow.
# Maybe also require doit()
x, y = symbols('x y', real=True)
r1 = integrate(integrate(sqrt(x**2 + y**2), (x, 0, 1)), (y, 0, 1))
assert (r1 - (sqrt(2) + asinh(1))/3).simplify() == 0
@XFAIL
@slow
def test_W25():
if ON_CI:
skip("Too slow for CI.")
a, x, y = symbols('a x y', real=True)
i1 = integrate(
sin(a)*sin(y)/sqrt(1 - sin(a)**2*sin(x)**2*sin(y)**2),
(x, 0, pi/2))
i2 = integrate(i1, (y, 0, pi/2))
assert (i2 - pi*a/2).simplify() == 0
def test_W26():
x, y = symbols('x y', real=True)
assert integrate(integrate(abs(y - x**2), (y, 0, 2)),
(x, -1, 1)) == R(46, 15)
def test_W27():
a, b, c = symbols('a b c')
assert integrate(integrate(integrate(1, (z, 0, c*(1 - x/a - y/b))),
(y, 0, b*(1 - x/a))),
(x, 0, a)) == a*b*c/6
def test_X1():
v, c = symbols('v c', real=True)
assert (series(1/sqrt(1 - (v/c)**2), v, x0=0, n=8) ==
5*v**6/(16*c**6) + 3*v**4/(8*c**4) + v**2/(2*c**2) + 1 + O(v**8))
def test_X2():
v, c = symbols('v c', real=True)
s1 = series(1/sqrt(1 - (v/c)**2), v, x0=0, n=8)
assert (1/s1**2).series(v, x0=0, n=8) == -v**2/c**2 + 1 + O(v**8)
def test_X3():
s1 = (sin(x).series()/cos(x).series()).series()
s2 = tan(x).series()
assert s2 == x + x**3/3 + 2*x**5/15 + O(x**6)
assert s1 == s2
def test_X4():
s1 = log(sin(x)/x).series()
assert s1 == -x**2/6 - x**4/180 + O(x**6)
assert log(series(sin(x)/x)).series() == s1
@XFAIL
def test_X5():
# test case in Mathematica syntax:
# In[21]:= (* => [a f'(a d) + g(b d) + integrate(h(c y), y = 0..d)]
# + [a^2 f''(a d) + b g'(b d) + h(c d)] (x - d) *)
# In[22]:= D[f[a*x], x] + g[b*x] + Integrate[h[c*y], {y, 0, x}]
# Out[22]= g[b x] + Integrate[h[c y], {y, 0, x}] + a f'[a x]
# In[23]:= Series[%, {x, d, 1}]
# Out[23]= (g[b d] + Integrate[h[c y], {y, 0, d}] + a f'[a d]) +
# 2 2
# (h[c d] + b g'[b d] + a f''[a d]) (-d + x) + O[-d + x]
h = Function('h')
a, b, c, d = symbols('a b c d', real=True)
# series() raises NotImplementedError:
# The _eval_nseries method should be added to <class
# 'sympy.core.function.Subs'> to give terms up to O(x**n) at x=0
series(diff(f(a*x), x) + g(b*x) + integrate(h(c*y), (y, 0, x)),
x, x0=d, n=2)
# assert missing, until exception is removed
def test_X6():
# Taylor series of nonscalar objects (noncommutative multiplication)
# expected result => (B A - A B) t^2/2 + O(t^3) [Stanly Steinberg]
a, b = symbols('a b', commutative=False, scalar=False)
assert (series(exp((a + b)*x) - exp(a*x) * exp(b*x), x, x0=0, n=3) ==
x**2*(-a*b/2 + b*a/2) + O(x**3))
def test_X7():
# => sum( Bernoulli[k]/k! x^(k - 2), k = 1..infinity )
# = 1/x^2 - 1/(2 x) + 1/12 - x^2/720 + x^4/30240 + O(x^6)
# [Levinson and Redheffer, p. 173]
assert (series(1/(x*(exp(x) - 1)), x, 0, 7) == x**(-2) - 1/(2*x) +
R(1, 12) - x**2/720 + x**4/30240 - x**6/1209600 + O(x**7))
def test_X8():
# Puiseux series (terms with fractional degree):
# => 1/sqrt(x - 3/2 pi) + (x - 3/2 pi)^(3/2) / 12 + O([x - 3/2 pi]^(7/2))
# see issue 7167:
x = symbols('x', real=True)
assert (series(sqrt(sec(x)), x, x0=pi*3/2, n=4) ==
1/sqrt(x - pi*R(3, 2)) + (x - pi*R(3, 2))**R(3, 2)/12 +
(x - pi*R(3, 2))**R(7, 2)/160 + O((x - pi*R(3, 2))**4, (x, pi*R(3, 2))))
def test_X9():
assert (series(x**x, x, x0=0, n=4) == 1 + x*log(x) + x**2*log(x)**2/2 +
x**3*log(x)**3/6 + O(x**4*log(x)**4))
def test_X10():
z, w = symbols('z w')
assert (series(log(sinh(z)) + log(cosh(z + w)), z, x0=0, n=2) ==
log(cosh(w)) + log(z) + z*sinh(w)/cosh(w) + O(z**2))
def test_X11():
z, w = symbols('z w')
assert (series(log(sinh(z) * cosh(z + w)), z, x0=0, n=2) ==
log(cosh(w)) + log(z) + z*sinh(w)/cosh(w) + O(z**2))
@XFAIL
def test_X12():
# Look at the generalized Taylor series around x = 1
# Result => (x - 1)^a/e^b [1 - (a + 2 b) (x - 1) / 2 + O((x - 1)^2)]
a, b, x = symbols('a b x', real=True)
# series returns O(log(x-1)**2)
# https://github.com/sympy/sympy/issues/7168
assert (series(log(x)**a*exp(-b*x), x, x0=1, n=2) ==
(x - 1)**a/exp(b)*(1 - (a + 2*b)*(x - 1)/2 + O((x - 1)**2)))
def test_X13():
assert series(sqrt(2*x**2 + 1), x, x0=oo, n=1) == sqrt(2)*x + O(1/x, (x, oo))
@XFAIL
def test_X14():
# Wallis' product => 1/sqrt(pi n) + ... [Knopp, p. 385]
assert series(1/2**(2*n)*binomial(2*n, n),
n, x==oo, n=1) == 1/(sqrt(pi)*sqrt(n)) + O(1/x, (x, oo))
@SKIP("https://github.com/sympy/sympy/issues/7164")
def test_X15():
# => 0!/x - 1!/x^2 + 2!/x^3 - 3!/x^4 + O(1/x^5) [Knopp, p. 544]
x, t = symbols('x t', real=True)
# raises RuntimeError: maximum recursion depth exceeded
# https://github.com/sympy/sympy/issues/7164
# 2019-02-17: Raises
# PoleError:
# Asymptotic expansion of Ei around [-oo] is not implemented.
e1 = integrate(exp(-t)/t, (t, x, oo))
assert (series(e1, x, x0=oo, n=5) ==
6/x**4 + 2/x**3 - 1/x**2 + 1/x + O(x**(-5), (x, oo)))
def test_X16():
# Multivariate Taylor series expansion => 1 - (x^2 + 2 x y + y^2)/2 + O(x^4)
assert (series(cos(x + y), x + y, x0=0, n=4) == 1 - (x + y)**2/2 +
O(x**4 + x**3*y + x**2*y**2 + x*y**3 + y**4, x, y))
@XFAIL
def test_X17():
# Power series (compute the general formula)
# (c41) powerseries(log(sin(x)/x), x, 0);
# /aquarius/data2/opt/local/macsyma_422/library1/trgred.so being loaded.
# inf
# ==== i1 2 i1 2 i1
# \ (- 1) 2 bern(2 i1) x
# (d41) > ------------------------------
# / 2 i1 (2 i1)!
# ====
# i1 = 1
# fps does not calculate
assert fps(log(sin(x)/x)) == \
Sum((-1)**k*2**(2*k - 1)*bernoulli(2*k)*x**(2*k)/(k*factorial(2*k)), (k, 1, oo))
@XFAIL
def test_X18():
# Power series (compute the general formula). Maple FPS:
# > FormalPowerSeries(exp(-x)*sin(x), x = 0);
# infinity
# ----- (1/2 k) k
# \ 2 sin(3/4 k Pi) x
# ) -------------------------
# / k!
# -----
#
# Now, SymPy returns
# oo
# _____
# \ `
# \ / k k\
# \ k |I*(-1 - I) I*(-1 + I) |
# \ x *|----------- - -----------|
# / \ 2 2 /
# / ------------------------------
# / k!
# /____,
# k = 0
k = Dummy('k')
assert fps(exp(-x)*sin(x)) == \
Sum(2**(S.Half*k)*sin(R(3, 4)*k*pi)*x**k/factorial(k), (k, 0, oo))
@XFAIL
def test_X19():
# (c45) /* Derive an explicit Taylor series solution of y as a function of
# x from the following implicit relation:
# y = x - 1 + (x - 1)^2/2 + 2/3 (x - 1)^3 + (x - 1)^4 +
# 17/10 (x - 1)^5 + ...
# */
# x = sin(y) + cos(y);
# Time= 0 msecs
# (d45) x = sin(y) + cos(y)
#
# (c46) taylor_revert(%, y, 7);
raise NotImplementedError("Solve using series not supported. \
Inverse Taylor series expansion also not supported")
@XFAIL
def test_X20():
# Pade (rational function) approximation => (2 - x)/(2 + x)
# > numapprox[pade](exp(-x), x = 0, [1, 1]);
# bytes used=9019816, alloc=3669344, time=13.12
# 1 - 1/2 x
# ---------
# 1 + 1/2 x
# mpmath support numeric Pade approximant but there is
# no symbolic implementation in SymPy
# https://en.wikipedia.org/wiki/Pad%C3%A9_approximant
raise NotImplementedError("Symbolic Pade approximant not supported")
def test_X21():
"""
Test whether `fourier_series` of x periodical on the [-p, p] interval equals
`- (2 p / pi) sum( (-1)^n / n sin(n pi x / p), n = 1..infinity )`.
"""
p = symbols('p', positive=True)
n = symbols('n', positive=True, integer=True)
s = fourier_series(x, (x, -p, p))
# All cosine coefficients are equal to 0
assert s.an.formula == 0
# Check for sine coefficients
assert s.bn.formula.subs(s.bn.variables[0], 0) == 0
assert s.bn.formula.subs(s.bn.variables[0], n) == \
-2*p/pi * (-1)**n / n * sin(n*pi*x/p)
@XFAIL
def test_X22():
# (c52) /* => p / 2
# - (2 p / pi^2) sum( [1 - (-1)^n] cos(n pi x / p) / n^2,
# n = 1..infinity ) */
# fourier_series(abs(x), x, p);
# p
# (e52) a = -
# 0 2
#
# %nn
# (2 (- 1) - 2) p
# (e53) a = ------------------
# %nn 2 2
# %pi %nn
#
# (e54) b = 0
# %nn
#
# Time= 5290 msecs
# inf %nn %pi %nn x
# ==== (2 (- 1) - 2) cos(---------)
# \ p
# p > -------------------------------
# / 2
# ==== %nn
# %nn = 1 p
# (d54) ----------------------------------------- + -
# 2 2
# %pi
raise NotImplementedError("Fourier series not supported")
def test_Y1():
t = symbols('t', positive=True)
w = symbols('w', real=True)
s = symbols('s')
F, _, _ = laplace_transform(cos((w - 1)*t), t, s)
assert F == s/(s**2 + (w - 1)**2)
def test_Y2():
t = symbols('t', positive=True)
w = symbols('w', real=True)
s = symbols('s')
f = inverse_laplace_transform(s/(s**2 + (w - 1)**2), s, t)
assert f == cos(t*(w - 1))
def test_Y3():
t = symbols('t', positive=True)
w = symbols('w', real=True)
s = symbols('s')
F, _, _ = laplace_transform(sinh(w*t)*cosh(w*t), t, s)
assert F == w/(s**2 - 4*w**2)
def test_Y4():
t = symbols('t', positive=True)
s = symbols('s')
F, _, _ = laplace_transform(erf(3/sqrt(t)), t, s)
assert F == (1 - exp(-6*sqrt(s)))/s
def test_Y5_Y6():
# Solve y'' + y = 4 [H(t - 1) - H(t - 2)], y(0) = 1, y'(0) = 0 where H is the
# Heaviside (unit step) function (the RHS describes a pulse of magnitude 4 and
# duration 1). See David A. Sanchez, Richard C. Allen, Jr. and Walter T.
# Kyner, _Differential Equations: An Introduction_, Addison-Wesley Publishing
# Company, 1983, p. 211. First, take the Laplace transform of the ODE
# => s^2 Y(s) - s + Y(s) = 4/s [e^(-s) - e^(-2 s)]
# where Y(s) is the Laplace transform of y(t)
t = symbols('t', positive=True)
s = symbols('s')
y = Function('y')
F, _, _ = laplace_transform(diff(y(t), t, 2)
+ y(t)
- 4*(Heaviside(t - 1)
- Heaviside(t - 2)), t, s)
assert (F == s**2*LaplaceTransform(y(t), t, s) - s*y(0) +
LaplaceTransform(y(t), t, s) - Subs(Derivative(y(t), t), t, 0) -
4*exp(-s)/s + 4*exp(-2*s)/s)
# TODO implement second part of test case
# Now, solve for Y(s) and then take the inverse Laplace transform
# => Y(s) = s/(s^2 + 1) + 4 [1/s - s/(s^2 + 1)] [e^(-s) - e^(-2 s)]
# => y(t) = cos t + 4 {[1 - cos(t - 1)] H(t - 1) - [1 - cos(t - 2)] H(t - 2)}
@XFAIL
def test_Y7():
# What is the Laplace transform of an infinite square wave?
# => 1/s + 2 sum( (-1)^n e^(- s n a)/s, n = 1..infinity )
# [Sanchez, Allen and Kyner, p. 213]
t = symbols('t', positive=True)
a = symbols('a', real=True)
s = symbols('s')
F, _, _ = laplace_transform(1 + 2*Sum((-1)**n*Heaviside(t - n*a),
(n, 1, oo)), t, s)
# returns 2*LaplaceTransform(Sum((-1)**n*Heaviside(-a*n + t),
# (n, 1, oo)), t, s) + 1/s
# https://github.com/sympy/sympy/issues/7177
assert F == 2*Sum((-1)**n*exp(-a*n*s)/s, (n, 1, oo)) + 1/s
@XFAIL
def test_Y8():
assert fourier_transform(1, x, z) == DiracDelta(z)
def test_Y9():
assert (fourier_transform(exp(-9*x**2), x, z) ==
sqrt(pi)*exp(-pi**2*z**2/9)/3)
def test_Y10():
assert (fourier_transform(abs(x)*exp(-3*abs(x)), x, z).cancel() ==
(-8*pi**2*z**2 + 18)/(16*pi**4*z**4 + 72*pi**2*z**2 + 81))
@SKIP("https://github.com/sympy/sympy/issues/7181")
@slow
def test_Y11():
# => pi cot(pi s) (0 < Re s < 1) [Gradshteyn and Ryzhik 17.43(5)]
x, s = symbols('x s')
# raises RuntimeError: maximum recursion depth exceeded
# https://github.com/sympy/sympy/issues/7181
# Update 2019-02-17 raises:
# TypeError: cannot unpack non-iterable MellinTransform object
F, _, _ = mellin_transform(1/(1 - x), x, s)
assert F == pi*cot(pi*s)
@XFAIL
def test_Y12():
# => 2^(s - 4) gamma(s/2)/gamma(4 - s/2) (0 < Re s < 1)
# [Gradshteyn and Ryzhik 17.43(16)]
x, s = symbols('x s')
# returns Wrong value -2**(s - 4)*gamma(s/2 - 3)/gamma(-s/2 + 1)
# https://github.com/sympy/sympy/issues/7182
F, _, _ = mellin_transform(besselj(3, x)/x**3, x, s)
assert F == -2**(s - 4)*gamma(s/2)/gamma(-s/2 + 4)
@XFAIL
def test_Y13():
# Z[H(t - m T)] => z/[z^m (z - 1)] (H is the Heaviside (unit step) function) z
raise NotImplementedError("z-transform not supported")
@XFAIL
def test_Y14():
# Z[H(t - m T)] => z/[z^m (z - 1)] (H is the Heaviside (unit step) function)
raise NotImplementedError("z-transform not supported")
def test_Z1():
r = Function('r')
assert (rsolve(r(n + 2) - 2*r(n + 1) + r(n) - 2, r(n),
{r(0): 1, r(1): m}).simplify() == n**2 + n*(m - 2) + 1)
def test_Z2():
r = Function('r')
assert (rsolve(r(n) - (5*r(n - 1) - 6*r(n - 2)), r(n), {r(0): 0, r(1): 1})
== -2**n + 3**n)
def test_Z3():
# => r(n) = Fibonacci[n + 1] [Cohen, p. 83]
r = Function('r')
# recurrence solution is correct, Wester expects it to be simplified to
# fibonacci(n+1), but that is quite hard
expected = ((S(1)/2 - sqrt(5)/2)**n*(S(1)/2 - sqrt(5)/10)
+ (S(1)/2 + sqrt(5)/2)**n*(sqrt(5)/10 + S(1)/2))
sol = rsolve(r(n) - (r(n - 1) + r(n - 2)), r(n), {r(1): 1, r(2): 2})
assert sol == expected
@XFAIL
def test_Z4():
# => [c^(n+1) [c^(n+1) - 2 c - 2] + (n+1) c^2 + 2 c - n] / [(c-1)^3 (c+1)]
# [Joan Z. Yu and Robert Israel in sci.math.symbolic]
r = Function('r')
c = symbols('c')
# raises ValueError: Polynomial or rational function expected,
# got '(c**2 - c**n)/(c - c**n)
s = rsolve(r(n) - ((1 + c - c**(n-1) - c**(n+1))/(1 - c**n)*r(n - 1)
- c*(1 - c**(n-2))/(1 - c**(n-1))*r(n - 2) + 1),
r(n), {r(1): 1, r(2): (2 + 2*c + c**2)/(1 + c)})
assert (s - (c*(n + 1)*(c*(n + 1) - 2*c - 2) +
(n + 1)*c**2 + 2*c - n)/((c-1)**3*(c+1)) == 0)
@XFAIL
def test_Z5():
# Second order ODE with initial conditions---solve directly
# transform: f(t) = sin(2 t)/8 - t cos(2 t)/4
C1, C2 = symbols('C1 C2')
# initial conditions not supported, this is a manual workaround
# https://github.com/sympy/sympy/issues/4720
eq = Derivative(f(x), x, 2) + 4*f(x) - sin(2*x)
sol = dsolve(eq, f(x))
f0 = Lambda(x, sol.rhs)
assert f0(x) == C2*sin(2*x) + (C1 - x/4)*cos(2*x)
f1 = Lambda(x, diff(f0(x), x))
# TODO: Replace solve with solveset, when it works for solveset
const_dict = solve((f0(0), f1(0)))
result = f0(x).subs(C1, const_dict[C1]).subs(C2, const_dict[C2])
assert result == -x*cos(2*x)/4 + sin(2*x)/8
# Result is OK, but ODE solving with initial conditions should be
# supported without all this manual work
raise NotImplementedError('ODE solving with initial conditions \
not supported')
@XFAIL
def test_Z6():
# Second order ODE with initial conditions---solve using Laplace
# transform: f(t) = sin(2 t)/8 - t cos(2 t)/4
t = symbols('t', positive=True)
s = symbols('s')
eq = Derivative(f(t), t, 2) + 4*f(t) - sin(2*t)
F, _, _ = laplace_transform(eq, t, s)
# Laplace transform for diff() not calculated
# https://github.com/sympy/sympy/issues/7176
assert (F == s**2*LaplaceTransform(f(t), t, s) +
4*LaplaceTransform(f(t), t, s) - 2/(s**2 + 4))
# rest of test case not implemented
|
b23ddb01d052867d22b70db262c02e0ceb913df29048a272d91f1c3e52dd0e76 | from __future__ import annotations
from typing import Any
from sympy.testing.pytest import raises, warns_deprecated_sympy
from sympy.assumptions.ask import Q
from sympy.core.function import (Function, WildFunction)
from sympy.core.numbers import (AlgebraicNumber, Float, Integer, Rational)
from sympy.core.singleton import S
from sympy.core.symbol import (Dummy, Symbol, Wild, symbols)
from sympy.core.sympify import sympify
from sympy.functions.elementary.complexes import Abs
from sympy.functions.elementary.miscellaneous import (root, sqrt)
from sympy.functions.elementary.trigonometric import sin
from sympy.functions.special.delta_functions import Heaviside
from sympy.logic.boolalg import (false, true)
from sympy.matrices.dense import (Matrix, ones)
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.matrices.immutable import ImmutableDenseMatrix
from sympy.combinatorics import Cycle, Permutation
from sympy.core.symbol import Str
from sympy.geometry import Point, Ellipse
from sympy.printing import srepr
from sympy.polys import ring, field, ZZ, QQ, lex, grlex, Poly
from sympy.polys.polyclasses import DMP
from sympy.polys.agca.extensions import FiniteExtension
x, y = symbols('x,y')
# eval(srepr(expr)) == expr has to succeed in the right environment. The right
# environment is the scope of "from sympy import *" for most cases.
ENV: dict[str, Any] = {"Str": Str}
exec("from sympy import *", ENV)
def sT(expr, string, import_stmt=None, **kwargs):
"""
sT := sreprTest
Tests that srepr delivers the expected string and that
the condition eval(srepr(expr))==expr holds.
"""
if import_stmt is None:
ENV2 = ENV
else:
ENV2 = ENV.copy()
exec(import_stmt, ENV2)
assert srepr(expr, **kwargs) == string
assert eval(string, ENV2) == expr
def test_printmethod():
class R(Abs):
def _sympyrepr(self, printer):
return "foo(%s)" % printer._print(self.args[0])
assert srepr(R(x)) == "foo(Symbol('x'))"
def test_Add():
sT(x + y, "Add(Symbol('x'), Symbol('y'))")
assert srepr(x**2 + 1, order='lex') == "Add(Pow(Symbol('x'), Integer(2)), Integer(1))"
assert srepr(x**2 + 1, order='old') == "Add(Integer(1), Pow(Symbol('x'), Integer(2)))"
assert srepr(sympify('x + 3 - 2', evaluate=False), order='none') == "Add(Symbol('x'), Integer(3), Mul(Integer(-1), Integer(2)))"
def test_more_than_255_args_issue_10259():
from sympy.core.add import Add
from sympy.core.mul import Mul
for op in (Add, Mul):
expr = op(*symbols('x:256'))
assert eval(srepr(expr)) == expr
def test_Function():
sT(Function("f")(x), "Function('f')(Symbol('x'))")
# test unapplied Function
sT(Function('f'), "Function('f')")
sT(sin(x), "sin(Symbol('x'))")
sT(sin, "sin")
def test_Heaviside():
sT(Heaviside(x), "Heaviside(Symbol('x'))")
sT(Heaviside(x, 1), "Heaviside(Symbol('x'), Integer(1))")
def test_Geometry():
sT(Point(0, 0), "Point2D(Integer(0), Integer(0))")
sT(Ellipse(Point(0, 0), 5, 1),
"Ellipse(Point2D(Integer(0), Integer(0)), Integer(5), Integer(1))")
# TODO more tests
def test_Singletons():
sT(S.Catalan, 'Catalan')
sT(S.ComplexInfinity, 'zoo')
sT(S.EulerGamma, 'EulerGamma')
sT(S.Exp1, 'E')
sT(S.GoldenRatio, 'GoldenRatio')
sT(S.TribonacciConstant, 'TribonacciConstant')
sT(S.Half, 'Rational(1, 2)')
sT(S.ImaginaryUnit, 'I')
sT(S.Infinity, 'oo')
sT(S.NaN, 'nan')
sT(S.NegativeInfinity, '-oo')
sT(S.NegativeOne, 'Integer(-1)')
sT(S.One, 'Integer(1)')
sT(S.Pi, 'pi')
sT(S.Zero, 'Integer(0)')
sT(S.Complexes, 'Complexes')
sT(S.EmptySequence, 'EmptySequence')
sT(S.EmptySet, 'EmptySet')
# sT(S.IdentityFunction, 'Lambda(_x, _x)')
sT(S.Naturals, 'Naturals')
sT(S.Naturals0, 'Naturals0')
sT(S.Rationals, 'Rationals')
sT(S.Reals, 'Reals')
sT(S.UniversalSet, 'UniversalSet')
def test_Integer():
sT(Integer(4), "Integer(4)")
def test_list():
sT([x, Integer(4)], "[Symbol('x'), Integer(4)]")
def test_Matrix():
for cls, name in [(Matrix, "MutableDenseMatrix"), (ImmutableDenseMatrix, "ImmutableDenseMatrix")]:
sT(cls([[x**+1, 1], [y, x + y]]),
"%s([[Symbol('x'), Integer(1)], [Symbol('y'), Add(Symbol('x'), Symbol('y'))]])" % name)
sT(cls(), "%s([])" % name)
sT(cls([[x**+1, 1], [y, x + y]]), "%s([[Symbol('x'), Integer(1)], [Symbol('y'), Add(Symbol('x'), Symbol('y'))]])" % name)
def test_empty_Matrix():
sT(ones(0, 3), "MutableDenseMatrix(0, 3, [])")
sT(ones(4, 0), "MutableDenseMatrix(4, 0, [])")
sT(ones(0, 0), "MutableDenseMatrix([])")
def test_Rational():
sT(Rational(1, 3), "Rational(1, 3)")
sT(Rational(-1, 3), "Rational(-1, 3)")
def test_Float():
sT(Float('1.23', dps=3), "Float('1.22998', precision=13)")
sT(Float('1.23456789', dps=9), "Float('1.23456788994', precision=33)")
sT(Float('1.234567890123456789', dps=19),
"Float('1.234567890123456789013', precision=66)")
sT(Float('0.60038617995049726', dps=15),
"Float('0.60038617995049726', precision=53)")
sT(Float('1.23', precision=13), "Float('1.22998', precision=13)")
sT(Float('1.23456789', precision=33),
"Float('1.23456788994', precision=33)")
sT(Float('1.234567890123456789', precision=66),
"Float('1.234567890123456789013', precision=66)")
sT(Float('0.60038617995049726', precision=53),
"Float('0.60038617995049726', precision=53)")
sT(Float('0.60038617995049726', 15),
"Float('0.60038617995049726', precision=53)")
def test_Symbol():
sT(x, "Symbol('x')")
sT(y, "Symbol('y')")
sT(Symbol('x', negative=True), "Symbol('x', negative=True)")
def test_Symbol_two_assumptions():
x = Symbol('x', negative=0, integer=1)
# order could vary
s1 = "Symbol('x', integer=True, negative=False)"
s2 = "Symbol('x', negative=False, integer=True)"
assert srepr(x) in (s1, s2)
assert eval(srepr(x), ENV) == x
def test_Symbol_no_special_commutative_treatment():
sT(Symbol('x'), "Symbol('x')")
sT(Symbol('x', commutative=False), "Symbol('x', commutative=False)")
sT(Symbol('x', commutative=0), "Symbol('x', commutative=False)")
sT(Symbol('x', commutative=True), "Symbol('x', commutative=True)")
sT(Symbol('x', commutative=1), "Symbol('x', commutative=True)")
def test_Wild():
sT(Wild('x', even=True), "Wild('x', even=True)")
def test_Dummy():
d = Dummy('d')
sT(d, "Dummy('d', dummy_index=%s)" % str(d.dummy_index))
def test_Dummy_assumption():
d = Dummy('d', nonzero=True)
assert d == eval(srepr(d))
s1 = "Dummy('d', dummy_index=%s, nonzero=True)" % str(d.dummy_index)
s2 = "Dummy('d', nonzero=True, dummy_index=%s)" % str(d.dummy_index)
assert srepr(d) in (s1, s2)
def test_Dummy_from_Symbol():
# should not get the full dictionary of assumptions
n = Symbol('n', integer=True)
d = n.as_dummy()
assert srepr(d
) == "Dummy('n', dummy_index=%s)" % str(d.dummy_index)
def test_tuple():
sT((x,), "(Symbol('x'),)")
sT((x, y), "(Symbol('x'), Symbol('y'))")
def test_WildFunction():
sT(WildFunction('w'), "WildFunction('w')")
def test_settins():
raises(TypeError, lambda: srepr(x, method="garbage"))
def test_Mul():
sT(3*x**3*y, "Mul(Integer(3), Pow(Symbol('x'), Integer(3)), Symbol('y'))")
assert srepr(3*x**3*y, order='old') == "Mul(Integer(3), Symbol('y'), Pow(Symbol('x'), Integer(3)))"
assert srepr(sympify('(x+4)*2*x*7', evaluate=False), order='none') == "Mul(Add(Symbol('x'), Integer(4)), Integer(2), Symbol('x'), Integer(7))"
def test_AlgebraicNumber():
a = AlgebraicNumber(sqrt(2))
sT(a, "AlgebraicNumber(Pow(Integer(2), Rational(1, 2)), [Integer(1), Integer(0)])")
a = AlgebraicNumber(root(-2, 3))
sT(a, "AlgebraicNumber(Pow(Integer(-2), Rational(1, 3)), [Integer(1), Integer(0)])")
def test_PolyRing():
assert srepr(ring("x", ZZ, lex)[0]) == "PolyRing((Symbol('x'),), ZZ, lex)"
assert srepr(ring("x,y", QQ, grlex)[0]) == "PolyRing((Symbol('x'), Symbol('y')), QQ, grlex)"
assert srepr(ring("x,y,z", ZZ["t"], lex)[0]) == "PolyRing((Symbol('x'), Symbol('y'), Symbol('z')), ZZ[t], lex)"
def test_FracField():
assert srepr(field("x", ZZ, lex)[0]) == "FracField((Symbol('x'),), ZZ, lex)"
assert srepr(field("x,y", QQ, grlex)[0]) == "FracField((Symbol('x'), Symbol('y')), QQ, grlex)"
assert srepr(field("x,y,z", ZZ["t"], lex)[0]) == "FracField((Symbol('x'), Symbol('y'), Symbol('z')), ZZ[t], lex)"
def test_PolyElement():
R, x, y = ring("x,y", ZZ)
assert srepr(3*x**2*y + 1) == "PolyElement(PolyRing((Symbol('x'), Symbol('y')), ZZ, lex), [((2, 1), 3), ((0, 0), 1)])"
def test_FracElement():
F, x, y = field("x,y", ZZ)
assert srepr((3*x**2*y + 1)/(x - y**2)) == "FracElement(FracField((Symbol('x'), Symbol('y')), ZZ, lex), [((2, 1), 3), ((0, 0), 1)], [((1, 0), 1), ((0, 2), -1)])"
def test_FractionField():
assert srepr(QQ.frac_field(x)) == \
"FractionField(FracField((Symbol('x'),), QQ, lex))"
assert srepr(QQ.frac_field(x, y, order=grlex)) == \
"FractionField(FracField((Symbol('x'), Symbol('y')), QQ, grlex))"
def test_PolynomialRingBase():
assert srepr(ZZ.old_poly_ring(x)) == \
"GlobalPolynomialRing(ZZ, Symbol('x'))"
assert srepr(ZZ[x].old_poly_ring(y)) == \
"GlobalPolynomialRing(ZZ[x], Symbol('y'))"
assert srepr(QQ.frac_field(x).old_poly_ring(y)) == \
"GlobalPolynomialRing(FractionField(FracField((Symbol('x'),), QQ, lex)), Symbol('y'))"
def test_DMP():
assert srepr(DMP([1, 2], ZZ)) == 'DMP([1, 2], ZZ)'
assert srepr(ZZ.old_poly_ring(x)([1, 2])) == \
"DMP([1, 2], ZZ, ring=GlobalPolynomialRing(ZZ, Symbol('x')))"
def test_FiniteExtension():
assert srepr(FiniteExtension(Poly(x**2 + 1, x))) == \
"FiniteExtension(Poly(x**2 + 1, x, domain='ZZ'))"
def test_ExtensionElement():
A = FiniteExtension(Poly(x**2 + 1, x))
assert srepr(A.generator) == \
"ExtElem(DMP([1, 0], ZZ, ring=GlobalPolynomialRing(ZZ, Symbol('x'))), FiniteExtension(Poly(x**2 + 1, x, domain='ZZ')))"
def test_BooleanAtom():
assert srepr(true) == "true"
assert srepr(false) == "false"
def test_Integers():
sT(S.Integers, "Integers")
def test_Naturals():
sT(S.Naturals, "Naturals")
def test_Naturals0():
sT(S.Naturals0, "Naturals0")
def test_Reals():
sT(S.Reals, "Reals")
def test_matrix_expressions():
n = symbols('n', integer=True)
A = MatrixSymbol("A", n, n)
B = MatrixSymbol("B", n, n)
sT(A, "MatrixSymbol(Str('A'), Symbol('n', integer=True), Symbol('n', integer=True))")
sT(A*B, "MatMul(MatrixSymbol(Str('A'), Symbol('n', integer=True), Symbol('n', integer=True)), MatrixSymbol(Str('B'), Symbol('n', integer=True), Symbol('n', integer=True)))")
sT(A + B, "MatAdd(MatrixSymbol(Str('A'), Symbol('n', integer=True), Symbol('n', integer=True)), MatrixSymbol(Str('B'), Symbol('n', integer=True), Symbol('n', integer=True)))")
def test_Cycle():
# FIXME: sT fails because Cycle is not immutable and calling srepr(Cycle(1, 2))
# adds keys to the Cycle dict (GH-17661)
#import_stmt = "from sympy.combinatorics import Cycle"
#sT(Cycle(1, 2), "Cycle(1, 2)", import_stmt)
assert srepr(Cycle(1, 2)) == "Cycle(1, 2)"
def test_Permutation():
import_stmt = "from sympy.combinatorics import Permutation"
sT(Permutation(1, 2)(3, 4), "Permutation([0, 2, 1, 4, 3])", import_stmt, perm_cyclic=False)
sT(Permutation(1, 2)(3, 4), "Permutation(1, 2)(3, 4)", import_stmt, perm_cyclic=True)
with warns_deprecated_sympy():
old_print_cyclic = Permutation.print_cyclic
Permutation.print_cyclic = False
sT(Permutation(1, 2)(3, 4), "Permutation([0, 2, 1, 4, 3])", import_stmt)
Permutation.print_cyclic = old_print_cyclic
def test_dict():
from sympy.abc import x, y, z
d = {}
assert srepr(d) == "{}"
d = {x: y}
assert srepr(d) == "{Symbol('x'): Symbol('y')}"
d = {x: y, y: z}
assert srepr(d) in (
"{Symbol('x'): Symbol('y'), Symbol('y'): Symbol('z')}",
"{Symbol('y'): Symbol('z'), Symbol('x'): Symbol('y')}",
)
d = {x: {y: z}}
assert srepr(d) == "{Symbol('x'): {Symbol('y'): Symbol('z')}}"
def test_set():
from sympy.abc import x, y
s = set()
assert srepr(s) == "set()"
s = {x, y}
assert srepr(s) in ("{Symbol('x'), Symbol('y')}", "{Symbol('y'), Symbol('x')}")
def test_Predicate():
sT(Q.even, "Q.even")
def test_AppliedPredicate():
sT(Q.even(Symbol('z')), "AppliedPredicate(Q.even, Symbol('z'))")
|
9be7f0dbc4e1224d00702cf6ff41ca814348c1ef66dd81a775c6f86c9dbc2dea | from sympy import MatAdd
from sympy.algebras.quaternion import Quaternion
from sympy.assumptions.ask import Q
from sympy.calculus.accumulationbounds import AccumBounds
from sympy.combinatorics.partitions import Partition
from sympy.concrete.summations import (Sum, summation)
from sympy.core.add import Add
from sympy.core.containers import (Dict, Tuple)
from sympy.core.expr import UnevaluatedExpr, Expr
from sympy.core.function import (Derivative, Function, Lambda, Subs, WildFunction)
from sympy.core.mul import Mul
from sympy.core import (Catalan, EulerGamma, GoldenRatio, TribonacciConstant)
from sympy.core.numbers import (E, Float, I, Integer, Rational, nan, oo, pi, zoo)
from sympy.core.parameters import _exp_is_pow
from sympy.core.power import Pow
from sympy.core.relational import (Eq, Rel, Ne)
from sympy.core.singleton import S
from sympy.core.symbol import (Dummy, Symbol, Wild, symbols)
from sympy.functions.combinatorial.factorials import (factorial, factorial2, subfactorial)
from sympy.functions.elementary.complexes import Abs
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (cos, sin)
from sympy.functions.special.delta_functions import Heaviside
from sympy.functions.special.zeta_functions import zeta
from sympy.integrals.integrals import Integral
from sympy.logic.boolalg import (Equivalent, false, true, Xor)
from sympy.matrices.dense import Matrix
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.matrices.expressions.slice import MatrixSlice
from sympy.matrices import SparseMatrix
from sympy.polys.polytools import factor
from sympy.series.limits import Limit
from sympy.series.order import O
from sympy.sets.sets import (Complement, FiniteSet, Interval, SymmetricDifference)
from sympy.external import import_module
from sympy.physics.control.lti import TransferFunction, Series, Parallel, \
Feedback, TransferFunctionMatrix, MIMOSeries, MIMOParallel, MIMOFeedback
from sympy.physics.units import second, joule
from sympy.polys import (Poly, rootof, RootSum, groebner, ring, field, ZZ, QQ,
ZZ_I, QQ_I, lex, grlex)
from sympy.geometry import Point, Circle, Polygon, Ellipse, Triangle
from sympy.tensor import NDimArray
from sympy.tensor.array.expressions.array_expressions import ArraySymbol, ArrayElement
from sympy.testing.pytest import raises, warns_deprecated_sympy
from sympy.printing import sstr, sstrrepr, StrPrinter
from sympy.physics.quantum.trace import Tr
x, y, z, w, t = symbols('x,y,z,w,t')
d = Dummy('d')
def test_printmethod():
class R(Abs):
def _sympystr(self, printer):
return "foo(%s)" % printer._print(self.args[0])
assert sstr(R(x)) == "foo(x)"
class R(Abs):
def _sympystr(self, printer):
return "foo"
assert sstr(R(x)) == "foo"
def test_Abs():
assert str(Abs(x)) == "Abs(x)"
assert str(Abs(Rational(1, 6))) == "1/6"
assert str(Abs(Rational(-1, 6))) == "1/6"
def test_Add():
assert str(x + y) == "x + y"
assert str(x + 1) == "x + 1"
assert str(x + x**2) == "x**2 + x"
assert str(Add(0, 1, evaluate=False)) == "0 + 1"
assert str(Add(0, 0, 1, evaluate=False)) == "0 + 0 + 1"
assert str(1.0*x) == "1.0*x"
assert str(5 + x + y + x*y + x**2 + y**2) == "x**2 + x*y + x + y**2 + y + 5"
assert str(1 + x + x**2/2 + x**3/3) == "x**3/3 + x**2/2 + x + 1"
assert str(2*x - 7*x**2 + 2 + 3*y) == "-7*x**2 + 2*x + 3*y + 2"
assert str(x - y) == "x - y"
assert str(2 - x) == "2 - x"
assert str(x - 2) == "x - 2"
assert str(x - y - z - w) == "-w + x - y - z"
assert str(x - z*y**2*z*w) == "-w*y**2*z**2 + x"
assert str(x - 1*y*x*y) == "-x*y**2 + x"
assert str(sin(x).series(x, 0, 15)) == "x - x**3/6 + x**5/120 - x**7/5040 + x**9/362880 - x**11/39916800 + x**13/6227020800 + O(x**15)"
assert str(Add(Add(-w, x, evaluate=False), Add(-y, z, evaluate=False), evaluate=False)) == "(-w + x) + (-y + z)"
assert str(Add(Add(-x, -y, evaluate=False), -z, evaluate=False)) == "-z + (-x - y)"
assert str(Add(Add(Add(-x, -y, evaluate=False), -z, evaluate=False), -t, evaluate=False)) == "-t + (-z + (-x - y))"
def test_Catalan():
assert str(Catalan) == "Catalan"
def test_ComplexInfinity():
assert str(zoo) == "zoo"
def test_Derivative():
assert str(Derivative(x, y)) == "Derivative(x, y)"
assert str(Derivative(x**2, x, evaluate=False)) == "Derivative(x**2, x)"
assert str(Derivative(
x**2/y, x, y, evaluate=False)) == "Derivative(x**2/y, x, y)"
def test_dict():
assert str({1: 1 + x}) == sstr({1: 1 + x}) == "{1: x + 1}"
assert str({1: x**2, 2: y*x}) in ("{1: x**2, 2: x*y}", "{2: x*y, 1: x**2}")
assert sstr({1: x**2, 2: y*x}) == "{1: x**2, 2: x*y}"
def test_Dict():
assert str(Dict({1: 1 + x})) == sstr({1: 1 + x}) == "{1: x + 1}"
assert str(Dict({1: x**2, 2: y*x})) in (
"{1: x**2, 2: x*y}", "{2: x*y, 1: x**2}")
assert sstr(Dict({1: x**2, 2: y*x})) == "{1: x**2, 2: x*y}"
def test_Dummy():
assert str(d) == "_d"
assert str(d + x) == "_d + x"
def test_EulerGamma():
assert str(EulerGamma) == "EulerGamma"
def test_Exp():
assert str(E) == "E"
with _exp_is_pow(True):
assert str(exp(x)) == "E**x"
def test_factorial():
n = Symbol('n', integer=True)
assert str(factorial(-2)) == "zoo"
assert str(factorial(0)) == "1"
assert str(factorial(7)) == "5040"
assert str(factorial(n)) == "factorial(n)"
assert str(factorial(2*n)) == "factorial(2*n)"
assert str(factorial(factorial(n))) == 'factorial(factorial(n))'
assert str(factorial(factorial2(n))) == 'factorial(factorial2(n))'
assert str(factorial2(factorial(n))) == 'factorial2(factorial(n))'
assert str(factorial2(factorial2(n))) == 'factorial2(factorial2(n))'
assert str(subfactorial(3)) == "2"
assert str(subfactorial(n)) == "subfactorial(n)"
assert str(subfactorial(2*n)) == "subfactorial(2*n)"
def test_Function():
f = Function('f')
fx = f(x)
w = WildFunction('w')
assert str(f) == "f"
assert str(fx) == "f(x)"
assert str(w) == "w_"
def test_Geometry():
assert sstr(Point(0, 0)) == 'Point2D(0, 0)'
assert sstr(Circle(Point(0, 0), 3)) == 'Circle(Point2D(0, 0), 3)'
assert sstr(Ellipse(Point(1, 2), 3, 4)) == 'Ellipse(Point2D(1, 2), 3, 4)'
assert sstr(Triangle(Point(1, 1), Point(7, 8), Point(0, -1))) == \
'Triangle(Point2D(1, 1), Point2D(7, 8), Point2D(0, -1))'
assert sstr(Polygon(Point(5, 6), Point(-2, -3), Point(0, 0), Point(4, 7))) == \
'Polygon(Point2D(5, 6), Point2D(-2, -3), Point2D(0, 0), Point2D(4, 7))'
assert sstr(Triangle(Point(0, 0), Point(1, 0), Point(0, 1)), sympy_integers=True) == \
'Triangle(Point2D(S(0), S(0)), Point2D(S(1), S(0)), Point2D(S(0), S(1)))'
assert sstr(Ellipse(Point(1, 2), 3, 4), sympy_integers=True) == \
'Ellipse(Point2D(S(1), S(2)), S(3), S(4))'
def test_GoldenRatio():
assert str(GoldenRatio) == "GoldenRatio"
def test_Heaviside():
assert str(Heaviside(x)) == str(Heaviside(x, S.Half)) == "Heaviside(x)"
assert str(Heaviside(x, 1)) == "Heaviside(x, 1)"
def test_TribonacciConstant():
assert str(TribonacciConstant) == "TribonacciConstant"
def test_ImaginaryUnit():
assert str(I) == "I"
def test_Infinity():
assert str(oo) == "oo"
assert str(oo*I) == "oo*I"
def test_Integer():
assert str(Integer(-1)) == "-1"
assert str(Integer(1)) == "1"
assert str(Integer(-3)) == "-3"
assert str(Integer(0)) == "0"
assert str(Integer(25)) == "25"
def test_Integral():
assert str(Integral(sin(x), y)) == "Integral(sin(x), y)"
assert str(Integral(sin(x), (y, 0, 1))) == "Integral(sin(x), (y, 0, 1))"
def test_Interval():
n = (S.NegativeInfinity, 1, 2, S.Infinity)
for i in range(len(n)):
for j in range(i + 1, len(n)):
for l in (True, False):
for r in (True, False):
ival = Interval(n[i], n[j], l, r)
assert S(str(ival)) == ival
def test_AccumBounds():
a = Symbol('a', real=True)
assert str(AccumBounds(0, a)) == "AccumBounds(0, a)"
assert str(AccumBounds(0, 1)) == "AccumBounds(0, 1)"
def test_Lambda():
assert str(Lambda(d, d**2)) == "Lambda(_d, _d**2)"
# issue 2908
assert str(Lambda((), 1)) == "Lambda((), 1)"
assert str(Lambda((), x)) == "Lambda((), x)"
assert str(Lambda((x, y), x+y)) == "Lambda((x, y), x + y)"
assert str(Lambda(((x, y),), x+y)) == "Lambda(((x, y),), x + y)"
def test_Limit():
assert str(Limit(sin(x)/x, x, y)) == "Limit(sin(x)/x, x, y, dir='+')"
assert str(Limit(1/x, x, 0)) == "Limit(1/x, x, 0, dir='+')"
assert str(
Limit(sin(x)/x, x, y, dir="-")) == "Limit(sin(x)/x, x, y, dir='-')"
def test_list():
assert str([x]) == sstr([x]) == "[x]"
assert str([x**2, x*y + 1]) == sstr([x**2, x*y + 1]) == "[x**2, x*y + 1]"
assert str([x**2, [y + x]]) == sstr([x**2, [y + x]]) == "[x**2, [x + y]]"
def test_Matrix_str():
M = Matrix([[x**+1, 1], [y, x + y]])
assert str(M) == "Matrix([[x, 1], [y, x + y]])"
assert sstr(M) == "Matrix([\n[x, 1],\n[y, x + y]])"
M = Matrix([[1]])
assert str(M) == sstr(M) == "Matrix([[1]])"
M = Matrix([[1, 2]])
assert str(M) == sstr(M) == "Matrix([[1, 2]])"
M = Matrix()
assert str(M) == sstr(M) == "Matrix(0, 0, [])"
M = Matrix(0, 1, lambda i, j: 0)
assert str(M) == sstr(M) == "Matrix(0, 1, [])"
def test_Mul():
assert str(x/y) == "x/y"
assert str(y/x) == "y/x"
assert str(x/y/z) == "x/(y*z)"
assert str((x + 1)/(y + 2)) == "(x + 1)/(y + 2)"
assert str(2*x/3) == '2*x/3'
assert str(-2*x/3) == '-2*x/3'
assert str(-1.0*x) == '-1.0*x'
assert str(1.0*x) == '1.0*x'
assert str(Mul(0, 1, evaluate=False)) == '0*1'
assert str(Mul(1, 0, evaluate=False)) == '1*0'
assert str(Mul(1, 1, evaluate=False)) == '1*1'
assert str(Mul(1, 1, 1, evaluate=False)) == '1*1*1'
assert str(Mul(1, 2, evaluate=False)) == '1*2'
assert str(Mul(1, S.Half, evaluate=False)) == '1*(1/2)'
assert str(Mul(1, 1, S.Half, evaluate=False)) == '1*1*(1/2)'
assert str(Mul(1, 1, 2, 3, x, evaluate=False)) == '1*1*2*3*x'
assert str(Mul(1, -1, evaluate=False)) == '1*(-1)'
assert str(Mul(-1, 1, evaluate=False)) == '-1*1'
assert str(Mul(4, 3, 2, 1, 0, y, x, evaluate=False)) == '4*3*2*1*0*y*x'
assert str(Mul(4, 3, 2, 1+z, 0, y, x, evaluate=False)) == '4*3*2*(z + 1)*0*y*x'
assert str(Mul(Rational(2, 3), Rational(5, 7), evaluate=False)) == '(2/3)*(5/7)'
# For issue 14160
assert str(Mul(-2, x, Pow(Mul(y,y,evaluate=False), -1, evaluate=False),
evaluate=False)) == '-2*x/(y*y)'
# issue 21537
assert str(Mul(x, Pow(1/y, -1, evaluate=False), evaluate=False)) == 'x/(1/y)'
# Issue 24108
from sympy.core.parameters import evaluate
with evaluate(False):
assert str(Mul(Pow(Integer(2), Integer(-1)), Add(Integer(-1), Mul(Integer(-1), Integer(1))))) == "(-1 - 1*1)/2"
class CustomClass1(Expr):
is_commutative = True
class CustomClass2(Expr):
is_commutative = True
cc1 = CustomClass1()
cc2 = CustomClass2()
assert str(Rational(2)*cc1) == '2*CustomClass1()'
assert str(cc1*Rational(2)) == '2*CustomClass1()'
assert str(cc1*Float("1.5")) == '1.5*CustomClass1()'
assert str(cc2*Rational(2)) == '2*CustomClass2()'
assert str(cc2*Rational(2)*cc1) == '2*CustomClass1()*CustomClass2()'
assert str(cc1*Rational(2)*cc2) == '2*CustomClass1()*CustomClass2()'
def test_NaN():
assert str(nan) == "nan"
def test_NegativeInfinity():
assert str(-oo) == "-oo"
def test_Order():
assert str(O(x)) == "O(x)"
assert str(O(x**2)) == "O(x**2)"
assert str(O(x*y)) == "O(x*y, x, y)"
assert str(O(x, x)) == "O(x)"
assert str(O(x, (x, 0))) == "O(x)"
assert str(O(x, (x, oo))) == "O(x, (x, oo))"
assert str(O(x, x, y)) == "O(x, x, y)"
assert str(O(x, x, y)) == "O(x, x, y)"
assert str(O(x, (x, oo), (y, oo))) == "O(x, (x, oo), (y, oo))"
def test_Permutation_Cycle():
from sympy.combinatorics import Permutation, Cycle
# general principle: economically, canonically show all moved elements
# and the size of the permutation.
for p, s in [
(Cycle(),
'()'),
(Cycle(2),
'(2)'),
(Cycle(2, 1),
'(1 2)'),
(Cycle(1, 2)(5)(6, 7)(10),
'(1 2)(6 7)(10)'),
(Cycle(3, 4)(1, 2)(3, 4),
'(1 2)(4)'),
]:
assert sstr(p) == s
for p, s in [
(Permutation([]),
'Permutation([])'),
(Permutation([], size=1),
'Permutation([0])'),
(Permutation([], size=2),
'Permutation([0, 1])'),
(Permutation([], size=10),
'Permutation([], size=10)'),
(Permutation([1, 0, 2]),
'Permutation([1, 0, 2])'),
(Permutation([1, 0, 2, 3, 4, 5]),
'Permutation([1, 0], size=6)'),
(Permutation([1, 0, 2, 3, 4, 5], size=10),
'Permutation([1, 0], size=10)'),
]:
assert sstr(p, perm_cyclic=False) == s
for p, s in [
(Permutation([]),
'()'),
(Permutation([], size=1),
'(0)'),
(Permutation([], size=2),
'(1)'),
(Permutation([], size=10),
'(9)'),
(Permutation([1, 0, 2]),
'(2)(0 1)'),
(Permutation([1, 0, 2, 3, 4, 5]),
'(5)(0 1)'),
(Permutation([1, 0, 2, 3, 4, 5], size=10),
'(9)(0 1)'),
(Permutation([0, 1, 3, 2, 4, 5], size=10),
'(9)(2 3)'),
]:
assert sstr(p) == s
with warns_deprecated_sympy():
old_print_cyclic = Permutation.print_cyclic
Permutation.print_cyclic = False
assert sstr(Permutation([1, 0, 2])) == 'Permutation([1, 0, 2])'
Permutation.print_cyclic = old_print_cyclic
def test_Pi():
assert str(pi) == "pi"
def test_Poly():
assert str(Poly(0, x)) == "Poly(0, x, domain='ZZ')"
assert str(Poly(1, x)) == "Poly(1, x, domain='ZZ')"
assert str(Poly(x, x)) == "Poly(x, x, domain='ZZ')"
assert str(Poly(2*x + 1, x)) == "Poly(2*x + 1, x, domain='ZZ')"
assert str(Poly(2*x - 1, x)) == "Poly(2*x - 1, x, domain='ZZ')"
assert str(Poly(-1, x)) == "Poly(-1, x, domain='ZZ')"
assert str(Poly(-x, x)) == "Poly(-x, x, domain='ZZ')"
assert str(Poly(-2*x + 1, x)) == "Poly(-2*x + 1, x, domain='ZZ')"
assert str(Poly(-2*x - 1, x)) == "Poly(-2*x - 1, x, domain='ZZ')"
assert str(Poly(x - 1, x)) == "Poly(x - 1, x, domain='ZZ')"
assert str(Poly(2*x + x**5, x)) == "Poly(x**5 + 2*x, x, domain='ZZ')"
assert str(Poly(3**(2*x), 3**x)) == "Poly((3**x)**2, 3**x, domain='ZZ')"
assert str(Poly((x**2)**x)) == "Poly(((x**2)**x), (x**2)**x, domain='ZZ')"
assert str(Poly((x + y)**3, (x + y), expand=False)
) == "Poly((x + y)**3, x + y, domain='ZZ')"
assert str(Poly((x - 1)**2, (x - 1), expand=False)
) == "Poly((x - 1)**2, x - 1, domain='ZZ')"
assert str(
Poly(x**2 + 1 + y, x)) == "Poly(x**2 + y + 1, x, domain='ZZ[y]')"
assert str(
Poly(x**2 - 1 + y, x)) == "Poly(x**2 + y - 1, x, domain='ZZ[y]')"
assert str(Poly(x**2 + I*x, x)) == "Poly(x**2 + I*x, x, domain='ZZ_I')"
assert str(Poly(x**2 - I*x, x)) == "Poly(x**2 - I*x, x, domain='ZZ_I')"
assert str(Poly(-x*y*z + x*y - 1, x, y, z)
) == "Poly(-x*y*z + x*y - 1, x, y, z, domain='ZZ')"
assert str(Poly(-w*x**21*y**7*z + (1 + w)*z**3 - 2*x*z + 1, x, y, z)) == \
"Poly(-w*x**21*y**7*z - 2*x*z + (w + 1)*z**3 + 1, x, y, z, domain='ZZ[w]')"
assert str(Poly(x**2 + 1, x, modulus=2)) == "Poly(x**2 + 1, x, modulus=2)"
assert str(Poly(2*x**2 + 3*x + 4, x, modulus=17)) == "Poly(2*x**2 + 3*x + 4, x, modulus=17)"
def test_PolyRing():
assert str(ring("x", ZZ, lex)[0]) == "Polynomial ring in x over ZZ with lex order"
assert str(ring("x,y", QQ, grlex)[0]) == "Polynomial ring in x, y over QQ with grlex order"
assert str(ring("x,y,z", ZZ["t"], lex)[0]) == "Polynomial ring in x, y, z over ZZ[t] with lex order"
def test_FracField():
assert str(field("x", ZZ, lex)[0]) == "Rational function field in x over ZZ with lex order"
assert str(field("x,y", QQ, grlex)[0]) == "Rational function field in x, y over QQ with grlex order"
assert str(field("x,y,z", ZZ["t"], lex)[0]) == "Rational function field in x, y, z over ZZ[t] with lex order"
def test_PolyElement():
Ruv, u,v = ring("u,v", ZZ)
Rxyz, x,y,z = ring("x,y,z", Ruv)
Rx_zzi, xz = ring("x", ZZ_I)
assert str(x - x) == "0"
assert str(x - 1) == "x - 1"
assert str(x + 1) == "x + 1"
assert str(x**2) == "x**2"
assert str(x**(-2)) == "x**(-2)"
assert str(x**QQ(1, 2)) == "x**(1/2)"
assert str((u**2 + 3*u*v + 1)*x**2*y + u + 1) == "(u**2 + 3*u*v + 1)*x**2*y + u + 1"
assert str((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x) == "(u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x"
assert str((u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x + 1) == "(u**2 + 3*u*v + 1)*x**2*y + (u + 1)*x + 1"
assert str((-u**2 + 3*u*v - 1)*x**2*y - (u + 1)*x - 1) == "-(u**2 - 3*u*v + 1)*x**2*y - (u + 1)*x - 1"
assert str(-(v**2 + v + 1)*x + 3*u*v + 1) == "-(v**2 + v + 1)*x + 3*u*v + 1"
assert str(-(v**2 + v + 1)*x - 3*u*v + 1) == "-(v**2 + v + 1)*x - 3*u*v + 1"
assert str((1+I)*xz + 2) == "(1 + 1*I)*x + (2 + 0*I)"
def test_FracElement():
Fuv, u,v = field("u,v", ZZ)
Fxyzt, x,y,z,t = field("x,y,z,t", Fuv)
Rx_zzi, xz = field("x", QQ_I)
i = QQ_I(0, 1)
assert str(x - x) == "0"
assert str(x - 1) == "x - 1"
assert str(x + 1) == "x + 1"
assert str(x/3) == "x/3"
assert str(x/z) == "x/z"
assert str(x*y/z) == "x*y/z"
assert str(x/(z*t)) == "x/(z*t)"
assert str(x*y/(z*t)) == "x*y/(z*t)"
assert str((x - 1)/y) == "(x - 1)/y"
assert str((x + 1)/y) == "(x + 1)/y"
assert str((-x - 1)/y) == "(-x - 1)/y"
assert str((x + 1)/(y*z)) == "(x + 1)/(y*z)"
assert str(-y/(x + 1)) == "-y/(x + 1)"
assert str(y*z/(x + 1)) == "y*z/(x + 1)"
assert str(((u + 1)*x*y + 1)/((v - 1)*z - 1)) == "((u + 1)*x*y + 1)/((v - 1)*z - 1)"
assert str(((u + 1)*x*y + 1)/((v - 1)*z - t*u*v - 1)) == "((u + 1)*x*y + 1)/((v - 1)*z - u*v*t - 1)"
assert str((1+i)/xz) == "(1 + 1*I)/x"
assert str(((1+i)*xz - i)/xz) == "((1 + 1*I)*x + (0 + -1*I))/x"
def test_GaussianInteger():
assert str(ZZ_I(1, 0)) == "1"
assert str(ZZ_I(-1, 0)) == "-1"
assert str(ZZ_I(0, 1)) == "I"
assert str(ZZ_I(0, -1)) == "-I"
assert str(ZZ_I(0, 2)) == "2*I"
assert str(ZZ_I(0, -2)) == "-2*I"
assert str(ZZ_I(1, 1)) == "1 + I"
assert str(ZZ_I(-1, -1)) == "-1 - I"
assert str(ZZ_I(-1, -2)) == "-1 - 2*I"
def test_GaussianRational():
assert str(QQ_I(1, 0)) == "1"
assert str(QQ_I(QQ(2, 3), 0)) == "2/3"
assert str(QQ_I(0, QQ(2, 3))) == "2*I/3"
assert str(QQ_I(QQ(1, 2), QQ(-2, 3))) == "1/2 - 2*I/3"
def test_Pow():
assert str(x**-1) == "1/x"
assert str(x**-2) == "x**(-2)"
assert str(x**2) == "x**2"
assert str((x + y)**-1) == "1/(x + y)"
assert str((x + y)**-2) == "(x + y)**(-2)"
assert str((x + y)**2) == "(x + y)**2"
assert str((x + y)**(1 + x)) == "(x + y)**(x + 1)"
assert str(x**Rational(1, 3)) == "x**(1/3)"
assert str(1/x**Rational(1, 3)) == "x**(-1/3)"
assert str(sqrt(sqrt(x))) == "x**(1/4)"
# not the same as x**-1
assert str(x**-1.0) == 'x**(-1.0)'
# see issue #2860
assert str(Pow(S(2), -1.0, evaluate=False)) == '2**(-1.0)'
def test_sqrt():
assert str(sqrt(x)) == "sqrt(x)"
assert str(sqrt(x**2)) == "sqrt(x**2)"
assert str(1/sqrt(x)) == "1/sqrt(x)"
assert str(1/sqrt(x**2)) == "1/sqrt(x**2)"
assert str(y/sqrt(x)) == "y/sqrt(x)"
assert str(x**0.5) == "x**0.5"
assert str(1/x**0.5) == "x**(-0.5)"
def test_Rational():
n1 = Rational(1, 4)
n2 = Rational(1, 3)
n3 = Rational(2, 4)
n4 = Rational(2, -4)
n5 = Rational(0)
n7 = Rational(3)
n8 = Rational(-3)
assert str(n1*n2) == "1/12"
assert str(n1*n2) == "1/12"
assert str(n3) == "1/2"
assert str(n1*n3) == "1/8"
assert str(n1 + n3) == "3/4"
assert str(n1 + n2) == "7/12"
assert str(n1 + n4) == "-1/4"
assert str(n4*n4) == "1/4"
assert str(n4 + n2) == "-1/6"
assert str(n4 + n5) == "-1/2"
assert str(n4*n5) == "0"
assert str(n3 + n4) == "0"
assert str(n1**n7) == "1/64"
assert str(n2**n7) == "1/27"
assert str(n2**n8) == "27"
assert str(n7**n8) == "1/27"
assert str(Rational("-25")) == "-25"
assert str(Rational("1.25")) == "5/4"
assert str(Rational("-2.6e-2")) == "-13/500"
assert str(S("25/7")) == "25/7"
assert str(S("-123/569")) == "-123/569"
assert str(S("0.1[23]", rational=1)) == "61/495"
assert str(S("5.1[666]", rational=1)) == "31/6"
assert str(S("-5.1[666]", rational=1)) == "-31/6"
assert str(S("0.[9]", rational=1)) == "1"
assert str(S("-0.[9]", rational=1)) == "-1"
assert str(sqrt(Rational(1, 4))) == "1/2"
assert str(sqrt(Rational(1, 36))) == "1/6"
assert str((123**25) ** Rational(1, 25)) == "123"
assert str((123**25 + 1)**Rational(1, 25)) != "123"
assert str((123**25 - 1)**Rational(1, 25)) != "123"
assert str((123**25 - 1)**Rational(1, 25)) != "122"
assert str(sqrt(Rational(81, 36))**3) == "27/8"
assert str(1/sqrt(Rational(81, 36))**3) == "8/27"
assert str(sqrt(-4)) == str(2*I)
assert str(2**Rational(1, 10**10)) == "2**(1/10000000000)"
assert sstr(Rational(2, 3), sympy_integers=True) == "S(2)/3"
x = Symbol("x")
assert sstr(x**Rational(2, 3), sympy_integers=True) == "x**(S(2)/3)"
assert sstr(Eq(x, Rational(2, 3)), sympy_integers=True) == "Eq(x, S(2)/3)"
assert sstr(Limit(x, x, Rational(7, 2)), sympy_integers=True) == \
"Limit(x, x, S(7)/2, dir='+')"
def test_Float():
# NOTE dps is the whole number of decimal digits
assert str(Float('1.23', dps=1 + 2)) == '1.23'
assert str(Float('1.23456789', dps=1 + 8)) == '1.23456789'
assert str(
Float('1.234567890123456789', dps=1 + 18)) == '1.234567890123456789'
assert str(pi.evalf(1 + 2)) == '3.14'
assert str(pi.evalf(1 + 14)) == '3.14159265358979'
assert str(pi.evalf(1 + 64)) == ('3.141592653589793238462643383279'
'5028841971693993751058209749445923')
assert str(pi.round(-1)) == '0.0'
assert str((pi**400 - (pi**400).round(1)).n(2)) == '-0.e+88'
assert sstr(Float("100"), full_prec=False, min=-2, max=2) == '1.0e+2'
assert sstr(Float("100"), full_prec=False, min=-2, max=3) == '100.0'
assert sstr(Float("0.1"), full_prec=False, min=-2, max=3) == '0.1'
assert sstr(Float("0.099"), min=-2, max=3) == '9.90000000000000e-2'
def test_Relational():
assert str(Rel(x, y, "<")) == "x < y"
assert str(Rel(x + y, y, "==")) == "Eq(x + y, y)"
assert str(Rel(x, y, "!=")) == "Ne(x, y)"
assert str(Eq(x, 1) | Eq(x, 2)) == "Eq(x, 1) | Eq(x, 2)"
assert str(Ne(x, 1) & Ne(x, 2)) == "Ne(x, 1) & Ne(x, 2)"
def test_AppliedBinaryRelation():
assert str(Q.eq(x, y)) == "Q.eq(x, y)"
assert str(Q.ne(x, y)) == "Q.ne(x, y)"
def test_CRootOf():
assert str(rootof(x**5 + 2*x - 1, 0)) == "CRootOf(x**5 + 2*x - 1, 0)"
def test_RootSum():
f = x**5 + 2*x - 1
assert str(
RootSum(f, Lambda(z, z), auto=False)) == "RootSum(x**5 + 2*x - 1)"
assert str(RootSum(f, Lambda(
z, z**2), auto=False)) == "RootSum(x**5 + 2*x - 1, Lambda(z, z**2))"
def test_GroebnerBasis():
assert str(groebner(
[], x, y)) == "GroebnerBasis([], x, y, domain='ZZ', order='lex')"
F = [x**2 - 3*y - x + 1, y**2 - 2*x + y - 1]
assert str(groebner(F, order='grlex')) == \
"GroebnerBasis([x**2 - x - 3*y + 1, y**2 - 2*x + y - 1], x, y, domain='ZZ', order='grlex')"
assert str(groebner(F, order='lex')) == \
"GroebnerBasis([2*x - y**2 - y + 1, y**4 + 2*y**3 - 3*y**2 - 16*y + 7], x, y, domain='ZZ', order='lex')"
def test_set():
assert sstr(set()) == 'set()'
assert sstr(frozenset()) == 'frozenset()'
assert sstr({1}) == '{1}'
assert sstr(frozenset([1])) == 'frozenset({1})'
assert sstr({1, 2, 3}) == '{1, 2, 3}'
assert sstr(frozenset([1, 2, 3])) == 'frozenset({1, 2, 3})'
assert sstr(
{1, x, x**2, x**3, x**4}) == '{1, x, x**2, x**3, x**4}'
assert sstr(
frozenset([1, x, x**2, x**3, x**4])) == 'frozenset({1, x, x**2, x**3, x**4})'
def test_SparseMatrix():
M = SparseMatrix([[x**+1, 1], [y, x + y]])
assert str(M) == "Matrix([[x, 1], [y, x + y]])"
assert sstr(M) == "Matrix([\n[x, 1],\n[y, x + y]])"
def test_Sum():
assert str(summation(cos(3*z), (z, x, y))) == "Sum(cos(3*z), (z, x, y))"
assert str(Sum(x*y**2, (x, -2, 2), (y, -5, 5))) == \
"Sum(x*y**2, (x, -2, 2), (y, -5, 5))"
def test_Symbol():
assert str(y) == "y"
assert str(x) == "x"
e = x
assert str(e) == "x"
def test_tuple():
assert str((x,)) == sstr((x,)) == "(x,)"
assert str((x + y, 1 + x)) == sstr((x + y, 1 + x)) == "(x + y, x + 1)"
assert str((x + y, (
1 + x, x**2))) == sstr((x + y, (1 + x, x**2))) == "(x + y, (x + 1, x**2))"
def test_Series_str():
tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y)
tf2 = TransferFunction(x - y, x + y, y)
tf3 = TransferFunction(t*x**2 - t**w*x + w, t - y, y)
assert str(Series(tf1, tf2)) == \
"Series(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y))"
assert str(Series(tf1, tf2, tf3)) == \
"Series(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y), TransferFunction(t*x**2 - t**w*x + w, t - y, y))"
assert str(Series(-tf2, tf1)) == \
"Series(TransferFunction(-x + y, x + y, y), TransferFunction(x*y**2 - z, -t**3 + y**3, y))"
def test_MIMOSeries_str():
tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y)
tf2 = TransferFunction(x - y, x + y, y)
tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]])
tfm_2 = TransferFunctionMatrix([[tf2, tf1], [tf1, tf2]])
assert str(MIMOSeries(tfm_1, tfm_2)) == \
"MIMOSeries(TransferFunctionMatrix(((TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y)), "\
"(TransferFunction(x - y, x + y, y), TransferFunction(x*y**2 - z, -t**3 + y**3, y)))), "\
"TransferFunctionMatrix(((TransferFunction(x - y, x + y, y), TransferFunction(x*y**2 - z, -t**3 + y**3, y)), "\
"(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y)))))"
def test_TransferFunction_str():
tf1 = TransferFunction(x - 1, x + 1, x)
assert str(tf1) == "TransferFunction(x - 1, x + 1, x)"
tf2 = TransferFunction(x + 1, 2 - y, x)
assert str(tf2) == "TransferFunction(x + 1, 2 - y, x)"
tf3 = TransferFunction(y, y**2 + 2*y + 3, y)
assert str(tf3) == "TransferFunction(y, y**2 + 2*y + 3, y)"
def test_Parallel_str():
tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y)
tf2 = TransferFunction(x - y, x + y, y)
tf3 = TransferFunction(t*x**2 - t**w*x + w, t - y, y)
assert str(Parallel(tf1, tf2)) == \
"Parallel(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y))"
assert str(Parallel(tf1, tf2, tf3)) == \
"Parallel(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y), TransferFunction(t*x**2 - t**w*x + w, t - y, y))"
assert str(Parallel(-tf2, tf1)) == \
"Parallel(TransferFunction(-x + y, x + y, y), TransferFunction(x*y**2 - z, -t**3 + y**3, y))"
def test_MIMOParallel_str():
tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y)
tf2 = TransferFunction(x - y, x + y, y)
tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]])
tfm_2 = TransferFunctionMatrix([[tf2, tf1], [tf1, tf2]])
assert str(MIMOParallel(tfm_1, tfm_2)) == \
"MIMOParallel(TransferFunctionMatrix(((TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y)), "\
"(TransferFunction(x - y, x + y, y), TransferFunction(x*y**2 - z, -t**3 + y**3, y)))), "\
"TransferFunctionMatrix(((TransferFunction(x - y, x + y, y), TransferFunction(x*y**2 - z, -t**3 + y**3, y)), "\
"(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y)))))"
def test_Feedback_str():
tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y)
tf2 = TransferFunction(x - y, x + y, y)
tf3 = TransferFunction(t*x**2 - t**w*x + w, t - y, y)
assert str(Feedback(tf1*tf2, tf3)) == \
"Feedback(Series(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y)), " \
"TransferFunction(t*x**2 - t**w*x + w, t - y, y), -1)"
assert str(Feedback(tf1, TransferFunction(1, 1, y), 1)) == \
"Feedback(TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(1, 1, y), 1)"
def test_MIMOFeedback_str():
tf1 = TransferFunction(x**2 - y**3, y - z, x)
tf2 = TransferFunction(y - x, z + y, x)
tfm_1 = TransferFunctionMatrix([[tf2, tf1], [tf1, tf2]])
tfm_2 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]])
assert (str(MIMOFeedback(tfm_1, tfm_2)) \
== "MIMOFeedback(TransferFunctionMatrix(((TransferFunction(-x + y, y + z, x), TransferFunction(x**2 - y**3, y - z, x))," \
" (TransferFunction(x**2 - y**3, y - z, x), TransferFunction(-x + y, y + z, x)))), " \
"TransferFunctionMatrix(((TransferFunction(x**2 - y**3, y - z, x), " \
"TransferFunction(-x + y, y + z, x)), (TransferFunction(-x + y, y + z, x), TransferFunction(x**2 - y**3, y - z, x)))), -1)")
assert (str(MIMOFeedback(tfm_1, tfm_2, 1)) \
== "MIMOFeedback(TransferFunctionMatrix(((TransferFunction(-x + y, y + z, x), TransferFunction(x**2 - y**3, y - z, x)), " \
"(TransferFunction(x**2 - y**3, y - z, x), TransferFunction(-x + y, y + z, x)))), " \
"TransferFunctionMatrix(((TransferFunction(x**2 - y**3, y - z, x), TransferFunction(-x + y, y + z, x)), "\
"(TransferFunction(-x + y, y + z, x), TransferFunction(x**2 - y**3, y - z, x)))), 1)")
def test_TransferFunctionMatrix_str():
tf1 = TransferFunction(x*y**2 - z, y**3 - t**3, y)
tf2 = TransferFunction(x - y, x + y, y)
tf3 = TransferFunction(t*x**2 - t**w*x + w, t - y, y)
assert str(TransferFunctionMatrix([[tf1], [tf2]])) == \
"TransferFunctionMatrix(((TransferFunction(x*y**2 - z, -t**3 + y**3, y),), (TransferFunction(x - y, x + y, y),)))"
assert str(TransferFunctionMatrix([[tf1, tf2], [tf3, tf2]])) == \
"TransferFunctionMatrix(((TransferFunction(x*y**2 - z, -t**3 + y**3, y), TransferFunction(x - y, x + y, y)), (TransferFunction(t*x**2 - t**w*x + w, t - y, y), TransferFunction(x - y, x + y, y))))"
def test_Quaternion_str_printer():
q = Quaternion(x, y, z, t)
assert str(q) == "x + y*i + z*j + t*k"
q = Quaternion(x,y,z,x*t)
assert str(q) == "x + y*i + z*j + t*x*k"
q = Quaternion(x,y,z,x+t)
assert str(q) == "x + y*i + z*j + (t + x)*k"
def test_Quantity_str():
assert sstr(second, abbrev=True) == "s"
assert sstr(joule, abbrev=True) == "J"
assert str(second) == "second"
assert str(joule) == "joule"
def test_wild_str():
# Check expressions containing Wild not causing infinite recursion
w = Wild('x')
assert str(w + 1) == 'x_ + 1'
assert str(exp(2**w) + 5) == 'exp(2**x_) + 5'
assert str(3*w + 1) == '3*x_ + 1'
assert str(1/w + 1) == '1 + 1/x_'
assert str(w**2 + 1) == 'x_**2 + 1'
assert str(1/(1 - w)) == '1/(1 - x_)'
def test_wild_matchpy():
from sympy.utilities.matchpy_connector import WildDot, WildPlus, WildStar
matchpy = import_module("matchpy")
if matchpy is None:
return
wd = WildDot('w_')
wp = WildPlus('w__')
ws = WildStar('w___')
assert str(wd) == 'w_'
assert str(wp) == 'w__'
assert str(ws) == 'w___'
assert str(wp/ws + 2**wd) == '2**w_ + w__/w___'
assert str(sin(wd)*cos(wp)*sqrt(ws)) == 'sqrt(w___)*sin(w_)*cos(w__)'
def test_zeta():
assert str(zeta(3)) == "zeta(3)"
def test_issue_3101():
e = x - y
a = str(e)
b = str(e)
assert a == b
def test_issue_3103():
e = -2*sqrt(x) - y/sqrt(x)/2
assert str(e) not in ["(-2)*x**1/2(-1/2)*x**(-1/2)*y",
"-2*x**1/2(-1/2)*x**(-1/2)*y", "-2*x**1/2-1/2*x**-1/2*w"]
assert str(e) == "-2*sqrt(x) - y/(2*sqrt(x))"
def test_issue_4021():
e = Integral(x, x) + 1
assert str(e) == 'Integral(x, x) + 1'
def test_sstrrepr():
assert sstr('abc') == 'abc'
assert sstrrepr('abc') == "'abc'"
e = ['a', 'b', 'c', x]
assert sstr(e) == "[a, b, c, x]"
assert sstrrepr(e) == "['a', 'b', 'c', x]"
def test_infinity():
assert sstr(oo*I) == "oo*I"
def test_full_prec():
assert sstr(S("0.3"), full_prec=True) == "0.300000000000000"
assert sstr(S("0.3"), full_prec="auto") == "0.300000000000000"
assert sstr(S("0.3"), full_prec=False) == "0.3"
assert sstr(S("0.3")*x, full_prec=True) in [
"0.300000000000000*x",
"x*0.300000000000000"
]
assert sstr(S("0.3")*x, full_prec="auto") in [
"0.3*x",
"x*0.3"
]
assert sstr(S("0.3")*x, full_prec=False) in [
"0.3*x",
"x*0.3"
]
def test_noncommutative():
A, B, C = symbols('A,B,C', commutative=False)
assert sstr(A*B*C**-1) == "A*B*C**(-1)"
assert sstr(C**-1*A*B) == "C**(-1)*A*B"
assert sstr(A*C**-1*B) == "A*C**(-1)*B"
assert sstr(sqrt(A)) == "sqrt(A)"
assert sstr(1/sqrt(A)) == "A**(-1/2)"
def test_empty_printer():
str_printer = StrPrinter()
assert str_printer.emptyPrinter("foo") == "foo"
assert str_printer.emptyPrinter(x*y) == "x*y"
assert str_printer.emptyPrinter(32) == "32"
def test_settings():
raises(TypeError, lambda: sstr(S(4), method="garbage"))
def test_RandomDomain():
from sympy.stats import Normal, Die, Exponential, pspace, where
X = Normal('x1', 0, 1)
assert str(where(X > 0)) == "Domain: (0 < x1) & (x1 < oo)"
D = Die('d1', 6)
assert str(where(D > 4)) == "Domain: Eq(d1, 5) | Eq(d1, 6)"
A = Exponential('a', 1)
B = Exponential('b', 1)
assert str(pspace(Tuple(A, B)).domain) == "Domain: (0 <= a) & (0 <= b) & (a < oo) & (b < oo)"
def test_FiniteSet():
assert str(FiniteSet(*range(1, 51))) == (
'{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,'
' 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,'
' 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50}'
)
assert str(FiniteSet(*range(1, 6))) == '{1, 2, 3, 4, 5}'
assert str(FiniteSet(*[x*y, x**2])) == '{x**2, x*y}'
assert str(FiniteSet(FiniteSet(FiniteSet(x, y), 5), FiniteSet(x,y), 5)
) == 'FiniteSet(5, FiniteSet(5, {x, y}), {x, y})'
def test_Partition():
assert str(Partition(FiniteSet(x, y), {z})) == 'Partition({z}, {x, y})'
def test_UniversalSet():
assert str(S.UniversalSet) == 'UniversalSet'
def test_PrettyPoly():
F = QQ.frac_field(x, y)
R = QQ[x, y]
assert sstr(F.convert(x/(x + y))) == sstr(x/(x + y))
assert sstr(R.convert(x + y)) == sstr(x + y)
def test_categories():
from sympy.categories import (Object, NamedMorphism,
IdentityMorphism, Category)
A = Object("A")
B = Object("B")
f = NamedMorphism(A, B, "f")
id_A = IdentityMorphism(A)
K = Category("K")
assert str(A) == 'Object("A")'
assert str(f) == 'NamedMorphism(Object("A"), Object("B"), "f")'
assert str(id_A) == 'IdentityMorphism(Object("A"))'
assert str(K) == 'Category("K")'
def test_Tr():
A, B = symbols('A B', commutative=False)
t = Tr(A*B)
assert str(t) == 'Tr(A*B)'
def test_issue_6387():
assert str(factor(-3.0*z + 3)) == '-3.0*(1.0*z - 1.0)'
def test_MatMul_MatAdd():
X, Y = MatrixSymbol("X", 2, 2), MatrixSymbol("Y", 2, 2)
assert str(2*(X + Y)) == "2*X + 2*Y"
assert str(I*X) == "I*X"
assert str(-I*X) == "-I*X"
assert str((1 + I)*X) == '(1 + I)*X'
assert str(-(1 + I)*X) == '(-1 - I)*X'
assert str(MatAdd(MatAdd(X, Y), MatAdd(X, Y))) == '(X + Y) + (X + Y)'
def test_MatrixSlice():
n = Symbol('n', integer=True)
X = MatrixSymbol('X', n, n)
Y = MatrixSymbol('Y', 10, 10)
Z = MatrixSymbol('Z', 10, 10)
assert str(MatrixSlice(X, (None, None, None), (None, None, None))) == 'X[:, :]'
assert str(X[x:x + 1, y:y + 1]) == 'X[x:x + 1, y:y + 1]'
assert str(X[x:x + 1:2, y:y + 1:2]) == 'X[x:x + 1:2, y:y + 1:2]'
assert str(X[:x, y:]) == 'X[:x, y:]'
assert str(X[:x, y:]) == 'X[:x, y:]'
assert str(X[x:, :y]) == 'X[x:, :y]'
assert str(X[x:y, z:w]) == 'X[x:y, z:w]'
assert str(X[x:y:t, w:t:x]) == 'X[x:y:t, w:t:x]'
assert str(X[x::y, t::w]) == 'X[x::y, t::w]'
assert str(X[:x:y, :t:w]) == 'X[:x:y, :t:w]'
assert str(X[::x, ::y]) == 'X[::x, ::y]'
assert str(MatrixSlice(X, (0, None, None), (0, None, None))) == 'X[:, :]'
assert str(MatrixSlice(X, (None, n, None), (None, n, None))) == 'X[:, :]'
assert str(MatrixSlice(X, (0, n, None), (0, n, None))) == 'X[:, :]'
assert str(MatrixSlice(X, (0, n, 2), (0, n, 2))) == 'X[::2, ::2]'
assert str(X[1:2:3, 4:5:6]) == 'X[1:2:3, 4:5:6]'
assert str(X[1:3:5, 4:6:8]) == 'X[1:3:5, 4:6:8]'
assert str(X[1:10:2]) == 'X[1:10:2, :]'
assert str(Y[:5, 1:9:2]) == 'Y[:5, 1:9:2]'
assert str(Y[:5, 1:10:2]) == 'Y[:5, 1::2]'
assert str(Y[5, :5:2]) == 'Y[5:6, :5:2]'
assert str(X[0:1, 0:1]) == 'X[:1, :1]'
assert str(X[0:1:2, 0:1:2]) == 'X[:1:2, :1:2]'
assert str((Y + Z)[2:, 2:]) == '(Y + Z)[2:, 2:]'
def test_true_false():
assert str(true) == repr(true) == sstr(true) == "True"
assert str(false) == repr(false) == sstr(false) == "False"
def test_Equivalent():
assert str(Equivalent(y, x)) == "Equivalent(x, y)"
def test_Xor():
assert str(Xor(y, x, evaluate=False)) == "x ^ y"
def test_Complement():
assert str(Complement(S.Reals, S.Naturals)) == 'Complement(Reals, Naturals)'
def test_SymmetricDifference():
assert str(SymmetricDifference(Interval(2, 3), Interval(3, 4),evaluate=False)) == \
'SymmetricDifference(Interval(2, 3), Interval(3, 4))'
def test_UnevaluatedExpr():
a, b = symbols("a b")
expr1 = 2*UnevaluatedExpr(a+b)
assert str(expr1) == "2*(a + b)"
def test_MatrixElement_printing():
# test cases for issue #11821
A = MatrixSymbol("A", 1, 3)
B = MatrixSymbol("B", 1, 3)
C = MatrixSymbol("C", 1, 3)
assert(str(A[0, 0]) == "A[0, 0]")
assert(str(3 * A[0, 0]) == "3*A[0, 0]")
F = C[0, 0].subs(C, A - B)
assert str(F) == "(A - B)[0, 0]"
def test_MatrixSymbol_printing():
A = MatrixSymbol("A", 3, 3)
B = MatrixSymbol("B", 3, 3)
assert str(A - A*B - B) == "A - A*B - B"
assert str(A*B - (A+B)) == "-A + A*B - B"
assert str(A**(-1)) == "A**(-1)"
assert str(A**3) == "A**3"
def test_MatrixExpressions():
n = Symbol('n', integer=True)
X = MatrixSymbol('X', n, n)
assert str(X) == "X"
# Apply function elementwise (`ElementwiseApplyFunc`):
expr = (X.T*X).applyfunc(sin)
assert str(expr) == 'Lambda(_d, sin(_d)).(X.T*X)'
lamda = Lambda(x, 1/x)
expr = (n*X).applyfunc(lamda)
assert str(expr) == 'Lambda(x, 1/x).(n*X)'
def test_Subs_printing():
assert str(Subs(x, (x,), (1,))) == 'Subs(x, x, 1)'
assert str(Subs(x + y, (x, y), (1, 2))) == 'Subs(x + y, (x, y), (1, 2))'
def test_issue_15716():
e = Integral(factorial(x), (x, -oo, oo))
assert e.as_terms() == ([(e, ((1.0, 0.0), (1,), ()))], [e])
def test_str_special_matrices():
from sympy.matrices import Identity, ZeroMatrix, OneMatrix
assert str(Identity(4)) == 'I'
assert str(ZeroMatrix(2, 2)) == '0'
assert str(OneMatrix(2, 2)) == '1'
def test_issue_14567():
assert factorial(Sum(-1, (x, 0, 0))) + y # doesn't raise an error
def test_issue_21823():
assert str(Partition([1, 2])) == 'Partition({1, 2})'
assert str(Partition({1, 2})) == 'Partition({1, 2})'
def test_issue_22689():
assert str(Mul(Pow(x,-2, evaluate=False), Pow(3,-1,evaluate=False), evaluate=False)) == "1/(x**2*3)"
def test_issue_21119_21460():
ss = lambda x: str(S(x, evaluate=False))
assert ss('4/2') == '4/2'
assert ss('4/-2') == '4/(-2)'
assert ss('-4/2') == '-4/2'
assert ss('-4/-2') == '-4/(-2)'
assert ss('-2*3/-1') == '-2*3/(-1)'
assert ss('-2*3/-1/2') == '-2*3/(-1*2)'
assert ss('4/2/1') == '4/(2*1)'
assert ss('-2/-1/2') == '-2/(-1*2)'
assert ss('2*3*4**(-2*3)') == '2*3/4**(2*3)'
assert ss('2*3*1*4**(-2*3)') == '2*3*1/4**(2*3)'
def test_Str():
from sympy.core.symbol import Str
assert str(Str('x')) == 'x'
assert sstrrepr(Str('x')) == "Str('x')"
def test_diffgeom():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField
x,y = symbols('x y', real=True)
m = Manifold('M', 2)
assert str(m) == "M"
p = Patch('P', m)
assert str(p) == "P"
rect = CoordSystem('rect', p, [x, y])
assert str(rect) == "rect"
b = BaseScalarField(rect, 0)
assert str(b) == "x"
def test_NDimArray():
assert sstr(NDimArray(1.0), full_prec=True) == '1.00000000000000'
assert sstr(NDimArray(1.0), full_prec=False) == '1.0'
assert sstr(NDimArray([1.0, 2.0]), full_prec=True) == '[1.00000000000000, 2.00000000000000]'
assert sstr(NDimArray([1.0, 2.0]), full_prec=False) == '[1.0, 2.0]'
def test_Predicate():
assert sstr(Q.even) == 'Q.even'
def test_AppliedPredicate():
assert sstr(Q.even(x)) == 'Q.even(x)'
def test_printing_str_array_expressions():
assert sstr(ArraySymbol("A", (2, 3, 4))) == "A"
assert sstr(ArrayElement("A", (2, 1/(1-x), 0))) == "A[2, 1/(1 - x), 0]"
M = MatrixSymbol("M", 3, 3)
N = MatrixSymbol("N", 3, 3)
assert sstr(ArrayElement(M*N, [x, 0])) == "(M*N)[x, 0]"
|
b904b7c329a48f1979971d490539040a97791f8a900aa291cbd50212dc5a49a5 | from sympy.concrete.summations import Sum
from sympy.core.mod import Mod
from sympy.core.relational import (Equality, Unequality)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.piecewise import Piecewise
from sympy.matrices.expressions.blockmatrix import BlockMatrix
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.matrices.expressions.special import Identity
from sympy.utilities.lambdify import lambdify
from sympy.abc import x, i, j, a, b, c, d
from sympy.core import Pow
from sympy.codegen.matrix_nodes import MatrixSolve
from sympy.codegen.numpy_nodes import logaddexp, logaddexp2
from sympy.codegen.cfunctions import log1p, expm1, hypot, log10, exp2, log2, Sqrt
from sympy.tensor.array import Array
from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct, ArrayAdd, \
PermuteDims, ArrayDiagonal
from sympy.printing.numpy import JaxPrinter, _jax_known_constants, _jax_known_functions
from sympy.tensor.array.expressions.conv_matrix_to_array import convert_matrix_to_array
from sympy.testing.pytest import skip, raises
from sympy.external import import_module
# Unlike NumPy which will aggressively promote operands to double precision,
# jax always uses single precision. Double precision in jax can be
# configured before the call to `import jax`, however this must be explicitly
# configured and is not fully supported. Thus, the tests here have been modified
# from the tests in test_numpy.py, only in the fact that they assert lambdify
# function accuracy to only single precision accuracy.
# https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision
jax = import_module('jax')
if jax:
deafult_float_info = jax.numpy.finfo(jax.numpy.array([]).dtype)
JAX_DEFAULT_EPSILON = deafult_float_info.eps
def test_jax_piecewise_regression():
"""
NumPyPrinter needs to print Piecewise()'s choicelist as a list to avoid
breaking compatibility with numpy 1.8. This is not necessary in numpy 1.9+.
See gh-9747 and gh-9749 for details.
"""
printer = JaxPrinter()
p = Piecewise((1, x < 0), (0, True))
assert printer.doprint(p) == \
'jax.numpy.select([jax.numpy.less(x, 0),True], [1,0], default=jax.numpy.nan)'
assert printer.module_imports == {'jax.numpy': {'select', 'less', 'nan'}}
def test_jax_logaddexp():
lae = logaddexp(a, b)
assert JaxPrinter().doprint(lae) == 'jax.numpy.logaddexp(a, b)'
lae2 = logaddexp2(a, b)
assert JaxPrinter().doprint(lae2) == 'jax.numpy.logaddexp2(a, b)'
def test_jax_sum():
if not jax:
skip("JAX not installed")
s = Sum(x ** i, (i, a, b))
f = lambdify((a, b, x), s, 'jax')
a_, b_ = 0, 10
x_ = jax.numpy.linspace(-1, +1, 10)
assert jax.numpy.allclose(f(a_, b_, x_), sum(x_ ** i_ for i_ in range(a_, b_ + 1)))
s = Sum(i * x, (i, a, b))
f = lambdify((a, b, x), s, 'jax')
a_, b_ = 0, 10
x_ = jax.numpy.linspace(-1, +1, 10)
assert jax.numpy.allclose(f(a_, b_, x_), sum(i_ * x_ for i_ in range(a_, b_ + 1)))
def test_jax_multiple_sums():
if not jax:
skip("JAX not installed")
s = Sum((x + j) * i, (i, a, b), (j, c, d))
f = lambdify((a, b, c, d, x), s, 'jax')
a_, b_ = 0, 10
c_, d_ = 11, 21
x_ = jax.numpy.linspace(-1, +1, 10)
assert jax.numpy.allclose(f(a_, b_, c_, d_, x_),
sum((x_ + j_) * i_ for i_ in range(a_, b_ + 1) for j_ in range(c_, d_ + 1)))
def test_jax_codegen_einsum():
if not jax:
skip("JAX not installed")
M = MatrixSymbol("M", 2, 2)
N = MatrixSymbol("N", 2, 2)
cg = convert_matrix_to_array(M * N)
f = lambdify((M, N), cg, 'jax')
ma = jax.numpy.array([[1, 2], [3, 4]])
mb = jax.numpy.array([[1,-2], [-1, 3]])
assert (f(ma, mb) == jax.numpy.matmul(ma, mb)).all()
def test_jax_codegen_extra():
if not jax:
skip("JAX not installed")
M = MatrixSymbol("M", 2, 2)
N = MatrixSymbol("N", 2, 2)
P = MatrixSymbol("P", 2, 2)
Q = MatrixSymbol("Q", 2, 2)
ma = jax.numpy.array([[1, 2], [3, 4]])
mb = jax.numpy.array([[1,-2], [-1, 3]])
mc = jax.numpy.array([[2, 0], [1, 2]])
md = jax.numpy.array([[1,-1], [4, 7]])
cg = ArrayTensorProduct(M, N)
f = lambdify((M, N), cg, 'jax')
assert (f(ma, mb) == jax.numpy.einsum(ma, [0, 1], mb, [2, 3])).all()
cg = ArrayAdd(M, N)
f = lambdify((M, N), cg, 'jax')
assert (f(ma, mb) == ma+mb).all()
cg = ArrayAdd(M, N, P)
f = lambdify((M, N, P), cg, 'jax')
assert (f(ma, mb, mc) == ma+mb+mc).all()
cg = ArrayAdd(M, N, P, Q)
f = lambdify((M, N, P, Q), cg, 'jax')
assert (f(ma, mb, mc, md) == ma+mb+mc+md).all()
cg = PermuteDims(M, [1, 0])
f = lambdify((M,), cg, 'jax')
assert (f(ma) == ma.T).all()
cg = PermuteDims(ArrayTensorProduct(M, N), [1, 2, 3, 0])
f = lambdify((M, N), cg, 'jax')
assert (f(ma, mb) == jax.numpy.transpose(jax.numpy.einsum(ma, [0, 1], mb, [2, 3]), (1, 2, 3, 0))).all()
cg = ArrayDiagonal(ArrayTensorProduct(M, N), (1, 2))
f = lambdify((M, N), cg, 'jax')
assert (f(ma, mb) == jax.numpy.diagonal(jax.numpy.einsum(ma, [0, 1], mb, [2, 3]), axis1=1, axis2=2)).all()
def test_jax_relational():
if not jax:
skip("JAX not installed")
e = Equality(x, 1)
f = lambdify((x,), e, 'jax')
x_ = jax.numpy.array([0, 1, 2])
assert jax.numpy.array_equal(f(x_), [False, True, False])
e = Unequality(x, 1)
f = lambdify((x,), e, 'jax')
x_ = jax.numpy.array([0, 1, 2])
assert jax.numpy.array_equal(f(x_), [True, False, True])
e = (x < 1)
f = lambdify((x,), e, 'jax')
x_ = jax.numpy.array([0, 1, 2])
assert jax.numpy.array_equal(f(x_), [True, False, False])
e = (x <= 1)
f = lambdify((x,), e, 'jax')
x_ = jax.numpy.array([0, 1, 2])
assert jax.numpy.array_equal(f(x_), [True, True, False])
e = (x > 1)
f = lambdify((x,), e, 'jax')
x_ = jax.numpy.array([0, 1, 2])
assert jax.numpy.array_equal(f(x_), [False, False, True])
e = (x >= 1)
f = lambdify((x,), e, 'jax')
x_ = jax.numpy.array([0, 1, 2])
assert jax.numpy.array_equal(f(x_), [False, True, True])
# Multi-condition expressions
e = (x >= 1) & (x < 2)
f = lambdify((x,), e, 'jax')
x_ = jax.numpy.array([0, 1, 2])
assert jax.numpy.array_equal(f(x_), [False, True, False])
e = (x >= 1) | (x < 2)
f = lambdify((x,), e, 'jax')
x_ = jax.numpy.array([0, 1, 2])
assert jax.numpy.array_equal(f(x_), [True, True, True])
def test_jax_mod():
if not jax:
skip("JAX not installed")
e = Mod(a, b)
f = lambdify((a, b), e, 'jax')
a_ = jax.numpy.array([0, 1, 2, 3])
b_ = 2
assert jax.numpy.array_equal(f(a_, b_), [0, 1, 0, 1])
a_ = jax.numpy.array([0, 1, 2, 3])
b_ = jax.numpy.array([2, 2, 2, 2])
assert jax.numpy.array_equal(f(a_, b_), [0, 1, 0, 1])
a_ = jax.numpy.array([2, 3, 4, 5])
b_ = jax.numpy.array([2, 3, 4, 5])
assert jax.numpy.array_equal(f(a_, b_), [0, 0, 0, 0])
def test_jax_pow():
if not jax:
skip('JAX not installed')
expr = Pow(2, -1, evaluate=False)
f = lambdify([], expr, 'jax')
assert f() == 0.5
def test_jax_expm1():
if not jax:
skip("JAX not installed")
f = lambdify((a,), expm1(a), 'jax')
assert abs(f(1e-10) - 1e-10 - 5e-21) <= 1e-10 * JAX_DEFAULT_EPSILON
def test_jax_log1p():
if not jax:
skip("JAX not installed")
f = lambdify((a,), log1p(a), 'jax')
assert abs(f(1e-99) - 1e-99) <= 1e-99 * JAX_DEFAULT_EPSILON
def test_jax_hypot():
if not jax:
skip("JAX not installed")
assert abs(lambdify((a, b), hypot(a, b), 'jax')(3, 4) - 5) <= JAX_DEFAULT_EPSILON
def test_jax_log10():
if not jax:
skip("JAX not installed")
assert abs(lambdify((a,), log10(a), 'jax')(100) - 2) <= JAX_DEFAULT_EPSILON
def test_jax_exp2():
if not jax:
skip("JAX not installed")
assert abs(lambdify((a,), exp2(a), 'jax')(5) - 32) <= JAX_DEFAULT_EPSILON
def test_jax_log2():
if not jax:
skip("JAX not installed")
assert abs(lambdify((a,), log2(a), 'jax')(256) - 8) <= JAX_DEFAULT_EPSILON
def test_jax_Sqrt():
if not jax:
skip("JAX not installed")
assert abs(lambdify((a,), Sqrt(a), 'jax')(4) - 2) <= JAX_DEFAULT_EPSILON
def test_jax_sqrt():
if not jax:
skip("JAX not installed")
assert abs(lambdify((a,), sqrt(a), 'jax')(4) - 2) <= JAX_DEFAULT_EPSILON
def test_jax_matsolve():
if not jax:
skip("JAX not installed")
M = MatrixSymbol("M", 3, 3)
x = MatrixSymbol("x", 3, 1)
expr = M**(-1) * x + x
matsolve_expr = MatrixSolve(M, x) + x
f = lambdify((M, x), expr, 'jax')
f_matsolve = lambdify((M, x), matsolve_expr, 'jax')
m0 = jax.numpy.array([[1, 2, 3], [3, 2, 5], [5, 6, 7]])
assert jax.numpy.linalg.matrix_rank(m0) == 3
x0 = jax.numpy.array([3, 4, 5])
assert jax.numpy.allclose(f_matsolve(m0, x0), f(m0, x0))
def test_16857():
if not jax:
skip("JAX not installed")
a_1 = MatrixSymbol('a_1', 10, 3)
a_2 = MatrixSymbol('a_2', 10, 3)
a_3 = MatrixSymbol('a_3', 10, 3)
a_4 = MatrixSymbol('a_4', 10, 3)
A = BlockMatrix([[a_1, a_2], [a_3, a_4]])
assert A.shape == (20, 6)
printer = JaxPrinter()
assert printer.doprint(A) == 'jax.numpy.block([[a_1, a_2], [a_3, a_4]])'
def test_issue_17006():
if not jax:
skip("JAX not installed")
M = MatrixSymbol("M", 2, 2)
f = lambdify(M, M + Identity(2), 'jax')
ma = jax.numpy.array([[1, 2], [3, 4]])
mr = jax.numpy.array([[2, 2], [3, 5]])
assert (f(ma) == mr).all()
from sympy.core.symbol import symbols
n = symbols('n', integer=True)
N = MatrixSymbol("M", n, n)
raises(NotImplementedError, lambda: lambdify(N, N + Identity(n), 'jax'))
def test_jax_array():
assert JaxPrinter().doprint(Array(((1, 2), (3, 5)))) == 'jax.numpy.array([[1, 2], [3, 5]])'
assert JaxPrinter().doprint(Array((1, 2))) == 'jax.numpy.array((1, 2))'
def test_jax_known_funcs_consts():
assert _jax_known_constants['NaN'] == 'jax.numpy.nan'
assert _jax_known_constants['EulerGamma'] == 'jax.numpy.euler_gamma'
assert _jax_known_functions['acos'] == 'jax.numpy.arccos'
assert _jax_known_functions['log'] == 'jax.numpy.log'
def test_jax_print_methods():
prntr = JaxPrinter()
assert hasattr(prntr, '_print_acos')
assert hasattr(prntr, '_print_log')
|
6f83aee1b4e9f04fdf173960eaf411a56a3087147ef5207cf2a03fc928578e19 | import contextlib
import itertools
import re
import typing
from enum import Enum
from typing import Callable
import sympy
from sympy import Add, Implies, sqrt
from sympy.core import Mul, Pow
from sympy.core import (S, pi, symbols, Function, Rational, Integer,
Symbol, Eq, Ne, Le, Lt, Gt, Ge)
from sympy.functions import Piecewise, exp, sin, cos
from sympy.printing.smtlib import smtlib_code
from sympy.testing.pytest import raises, Failed
x, y, z = symbols('x,y,z')
class _W(Enum):
DEFAULTING_TO_FLOAT = re.compile("Could not infer type of `.+`. Defaulting to float.", re.I)
WILL_NOT_DECLARE = re.compile("Non-Symbol/Function `.+` will not be declared.", re.I)
WILL_NOT_ASSERT = re.compile("Non-Boolean expression `.+` will not be asserted. Converting to SMTLib verbatim.", re.I)
@contextlib.contextmanager
def _check_warns(expected: typing.Iterable[_W]):
warns: typing.List[str] = []
log_warn = warns.append
yield log_warn
errors = []
for i, (w, e) in enumerate(itertools.zip_longest(warns, expected)):
if not e:
errors += [f"[{i}] Received unexpected warning `{w}`."]
elif not w:
errors += [f"[{i}] Did not receive expected warning `{e.name}`."]
elif not e.value.match(w):
errors += [f"[{i}] Warning `{w}` does not match expected {e.name}."]
if errors: raise Failed('\n'.join(errors))
def test_Integer():
with _check_warns([_W.WILL_NOT_ASSERT] * 2) as w:
assert smtlib_code(Integer(67), log_warn=w) == "67"
assert smtlib_code(Integer(-1), log_warn=w) == "-1"
with _check_warns([]) as w:
assert smtlib_code(Integer(67)) == "67"
assert smtlib_code(Integer(-1)) == "-1"
def test_Rational():
with _check_warns([_W.WILL_NOT_ASSERT] * 4) as w:
assert smtlib_code(Rational(3, 7), log_warn=w) == "(/ 3 7)"
assert smtlib_code(Rational(18, 9), log_warn=w) == "2"
assert smtlib_code(Rational(3, -7), log_warn=w) == "(/ -3 7)"
assert smtlib_code(Rational(-3, -7), log_warn=w) == "(/ 3 7)"
with _check_warns([_W.DEFAULTING_TO_FLOAT, _W.WILL_NOT_ASSERT] * 2) as w:
assert smtlib_code(x + Rational(3, 7), auto_declare=False, log_warn=w) == "(+ (/ 3 7) x)"
assert smtlib_code(Rational(3, 7) * x, log_warn=w) == "(declare-const x Real)\n" \
"(* (/ 3 7) x)"
def test_Relational():
with _check_warns([_W.DEFAULTING_TO_FLOAT] * 12) as w:
assert smtlib_code(Eq(x, y), auto_declare=False, log_warn=w) == "(assert (= x y))"
assert smtlib_code(Ne(x, y), auto_declare=False, log_warn=w) == "(assert (not (= x y)))"
assert smtlib_code(Le(x, y), auto_declare=False, log_warn=w) == "(assert (<= x y))"
assert smtlib_code(Lt(x, y), auto_declare=False, log_warn=w) == "(assert (< x y))"
assert smtlib_code(Gt(x, y), auto_declare=False, log_warn=w) == "(assert (> x y))"
assert smtlib_code(Ge(x, y), auto_declare=False, log_warn=w) == "(assert (>= x y))"
def test_Function():
with _check_warns([_W.DEFAULTING_TO_FLOAT, _W.WILL_NOT_ASSERT]) as w:
assert smtlib_code(sin(x) ** cos(x), auto_declare=False, log_warn=w) == "(pow (sin x) (cos x))"
with _check_warns([_W.WILL_NOT_ASSERT]) as w:
assert smtlib_code(
abs(x),
symbol_table={x: int, y: bool},
known_types={int: "INTEGER_TYPE"},
known_functions={sympy.Abs: "ABSOLUTE_VALUE_OF"},
log_warn=w
) == "(declare-const x INTEGER_TYPE)\n" \
"(ABSOLUTE_VALUE_OF x)"
my_fun1 = Function('f1')
with _check_warns([_W.WILL_NOT_ASSERT]) as w:
assert smtlib_code(
my_fun1(x),
symbol_table={my_fun1: Callable[[bool], float]},
log_warn=w
) == "(declare-const x Bool)\n" \
"(declare-fun f1 (Bool) Real)\n" \
"(f1 x)"
with _check_warns([]) as w:
assert smtlib_code(
my_fun1(x),
symbol_table={my_fun1: Callable[[bool], bool]},
log_warn=w
) == "(declare-const x Bool)\n" \
"(declare-fun f1 (Bool) Bool)\n" \
"(assert (f1 x))"
assert smtlib_code(
Eq(my_fun1(x, z), y),
symbol_table={my_fun1: Callable[[int, bool], bool]},
log_warn=w
) == "(declare-const x Int)\n" \
"(declare-const y Bool)\n" \
"(declare-const z Bool)\n" \
"(declare-fun f1 (Int Bool) Bool)\n" \
"(assert (= (f1 x z) y))"
assert smtlib_code(
Eq(my_fun1(x, z), y),
symbol_table={my_fun1: Callable[[int, bool], bool]},
known_functions={my_fun1: "MY_KNOWN_FUN", Eq: '=='},
log_warn=w
) == "(declare-const x Int)\n" \
"(declare-const y Bool)\n" \
"(declare-const z Bool)\n" \
"(assert (== (MY_KNOWN_FUN x z) y))"
with _check_warns([_W.DEFAULTING_TO_FLOAT] * 3) as w:
assert smtlib_code(
Eq(my_fun1(x, z), y),
known_functions={my_fun1: "MY_KNOWN_FUN", Eq: '=='},
log_warn=w
) == "(declare-const x Real)\n" \
"(declare-const y Real)\n" \
"(declare-const z Real)\n" \
"(assert (== (MY_KNOWN_FUN x z) y))"
def test_Pow():
with _check_warns([_W.DEFAULTING_TO_FLOAT, _W.WILL_NOT_ASSERT]) as w:
assert smtlib_code(x ** 3, auto_declare=False, log_warn=w) == "(pow x 3)"
with _check_warns([_W.DEFAULTING_TO_FLOAT, _W.DEFAULTING_TO_FLOAT, _W.WILL_NOT_ASSERT]) as w:
assert smtlib_code(x ** (y ** 3), auto_declare=False, log_warn=w) == "(pow x (pow y 3))"
with _check_warns([_W.DEFAULTING_TO_FLOAT, _W.WILL_NOT_ASSERT]) as w:
assert smtlib_code(x ** Rational(2, 3), auto_declare=False, log_warn=w) == '(pow x (/ 2 3))'
a = Symbol('a', integer=True)
b = Symbol('b', real=True)
c = Symbol('c')
def g(x): return 2 * x
# if x=1, y=2, then expr=2.333...
expr = 1 / (g(a) * 3.5) ** (a - b ** a) / (a ** 2 + b)
with _check_warns([]) as w:
assert smtlib_code(
[
Eq(a < 2, c),
Eq(b > a, c),
c & True,
Eq(expr, 2 + Rational(1, 3))
],
log_warn=w
) == '(declare-const a Int)\n' \
'(declare-const b Real)\n' \
'(declare-const c Bool)\n' \
'(assert (= (< a 2) c))\n' \
'(assert (= (> b a) c))\n' \
'(assert c)\n' \
'(assert (= ' \
'(* (pow (* 7. a) (+ (pow b a) (* -1 a))) (pow (+ b (pow a 2)) -1)) ' \
'(/ 7 3)' \
'))'
with _check_warns([_W.DEFAULTING_TO_FLOAT, _W.WILL_NOT_ASSERT]) as w:
assert smtlib_code(
Mul(-2, c, Pow(Mul(b, b, evaluate=False), -1, evaluate=False), evaluate=False),
log_warn=w
) == '(declare-const b Real)\n' \
'(declare-const c Real)\n' \
'(* -2 c (pow (* b b) -1))'
def test_basic_ops():
with _check_warns([_W.DEFAULTING_TO_FLOAT, _W.DEFAULTING_TO_FLOAT, _W.WILL_NOT_ASSERT]) as w:
assert smtlib_code(x * y, auto_declare=False, log_warn=w) == "(* x y)"
with _check_warns([_W.DEFAULTING_TO_FLOAT, _W.DEFAULTING_TO_FLOAT, _W.WILL_NOT_ASSERT]) as w:
assert smtlib_code(x + y, auto_declare=False, log_warn=w) == "(+ x y)"
# with _check_warns([_SmtlibWarnings.DEFAULTING_TO_FLOAT, _SmtlibWarnings.DEFAULTING_TO_FLOAT, _SmtlibWarnings.WILL_NOT_ASSERT]) as w:
# todo: implement re-write, currently does '(+ x (* -1 y))' instead
# assert smtlib_code(x - y, auto_declare=False, log_warn=w) == "(- x y)"
with _check_warns([_W.DEFAULTING_TO_FLOAT, _W.WILL_NOT_ASSERT]) as w:
assert smtlib_code(-x, auto_declare=False, log_warn=w) == "(* -1 x)"
def test_quantifier_extensions():
from sympy.logic.boolalg import Boolean
from sympy import Interval, Tuple, sympify
# start For-all quantifier class example
class ForAll(Boolean):
def _smtlib(self, printer):
bound_symbol_declarations = [
printer._s_expr(sym.name, [
printer._known_types[printer.symbol_table[sym]],
Interval(start, end)
]) for sym, start, end in self.limits
]
return printer._s_expr('forall', [
printer._s_expr('', bound_symbol_declarations),
self.function
])
@property
def bound_symbols(self):
return {s for s, _, _ in self.limits}
@property
def free_symbols(self):
bound_symbol_names = {s.name for s in self.bound_symbols}
return {
s for s in self.function.free_symbols
if s.name not in bound_symbol_names
}
def __new__(cls, *args):
limits = [sympify(a) for a in args if isinstance(a, tuple) or isinstance(a, Tuple)]
function = [sympify(a) for a in args if isinstance(a, Boolean)]
assert len(limits) + len(function) == len(args)
assert len(function) == 1
function = function[0]
if isinstance(function, ForAll): return ForAll.__new__(
ForAll, *(limits + function.limits), function.function
)
inst = Boolean.__new__(cls)
inst._args = tuple(limits + [function])
inst.limits = limits
inst.function = function
return inst
# end For-All Quantifier class example
f = Function('f')
with _check_warns([_W.DEFAULTING_TO_FLOAT]) as w:
assert smtlib_code(
ForAll((x, -42, +21), Eq(f(x), f(x))),
symbol_table={f: Callable[[float], float]},
log_warn=w
) == '(assert (forall ( (x Real [-42, 21])) true))'
with _check_warns([_W.DEFAULTING_TO_FLOAT] * 2) as w:
assert smtlib_code(
ForAll(
(x, -42, +21), (y, -100, 3),
Implies(Eq(x, y), Eq(f(x), f(y)))
),
symbol_table={f: Callable[[float], float]},
log_warn=w
) == '(declare-fun f (Real) Real)\n' \
'(assert (' \
'forall ( (x Real [-42, 21]) (y Real [-100, 3])) ' \
'(=> (= x y) (= (f x) (f y)))' \
'))'
a = Symbol('a', integer=True)
b = Symbol('b', real=True)
c = Symbol('c')
with _check_warns([]) as w:
assert smtlib_code(
ForAll(
(a, 2, 100), ForAll(
(b, 2, 100),
Implies(a < b, sqrt(a) < b) | c
)),
log_warn=w
) == '(declare-const c Bool)\n' \
'(assert (forall ( (a Int [2, 100]) (b Real [2, 100])) ' \
'(or c (=> (< a b) (< (pow a (/ 1 2)) b)))' \
'))'
def test_mix_number_mult_symbols():
with _check_warns([_W.WILL_NOT_ASSERT]) as w:
assert smtlib_code(
1 / pi,
known_constants={pi: "MY_PI"},
log_warn=w
) == '(pow MY_PI -1)'
with _check_warns([_W.WILL_NOT_ASSERT]) as w:
assert smtlib_code(
[
Eq(pi, 3.14, evaluate=False),
1 / pi,
],
known_constants={pi: "MY_PI"},
log_warn=w
) == '(assert (= MY_PI 3.14))\n' \
'(pow MY_PI -1)'
with _check_warns([_W.WILL_NOT_ASSERT]) as w:
assert smtlib_code(
Add(S.Zero, S.One, S.NegativeOne, S.Half,
S.Exp1, S.Pi, S.GoldenRatio, evaluate=False),
known_constants={
S.Pi: 'p', S.GoldenRatio: 'g',
S.Exp1: 'e'
},
known_functions={
Add: 'plus',
exp: 'exp'
},
precision=3,
log_warn=w
) == '(plus 0 1 -1 (/ 1 2) (exp 1) p g)'
with _check_warns([_W.WILL_NOT_ASSERT]) as w:
assert smtlib_code(
Add(S.Zero, S.One, S.NegativeOne, S.Half,
S.Exp1, S.Pi, S.GoldenRatio, evaluate=False),
known_constants={
S.Pi: 'p'
},
known_functions={
Add: 'plus',
exp: 'exp'
},
precision=3,
log_warn=w
) == '(plus 0 1 -1 (/ 1 2) (exp 1) p 1.62)'
with _check_warns([_W.WILL_NOT_ASSERT]) as w:
assert smtlib_code(
Add(S.Zero, S.One, S.NegativeOne, S.Half,
S.Exp1, S.Pi, S.GoldenRatio, evaluate=False),
known_functions={Add: 'plus'},
precision=3,
log_warn=w
) == '(plus 0 1 -1 (/ 1 2) 2.72 3.14 1.62)'
with _check_warns([_W.WILL_NOT_ASSERT]) as w:
assert smtlib_code(
Add(S.Zero, S.One, S.NegativeOne, S.Half,
S.Exp1, S.Pi, S.GoldenRatio, evaluate=False),
known_constants={S.Exp1: 'e'},
known_functions={Add: 'plus'},
precision=3,
log_warn=w
) == '(plus 0 1 -1 (/ 1 2) e 3.14 1.62)'
def test_boolean():
with _check_warns([]) as w:
assert smtlib_code(x & y, log_warn=w) == '(declare-const x Bool)\n' \
'(declare-const y Bool)\n' \
'(assert (and x y))'
assert smtlib_code(x | y, log_warn=w) == '(declare-const x Bool)\n' \
'(declare-const y Bool)\n' \
'(assert (or x y))'
assert smtlib_code(~x, log_warn=w) == '(declare-const x Bool)\n' \
'(assert (not x))'
assert smtlib_code(x & y & z, log_warn=w) == '(declare-const x Bool)\n' \
'(declare-const y Bool)\n' \
'(declare-const z Bool)\n' \
'(assert (and x y z))'
with _check_warns([_W.DEFAULTING_TO_FLOAT]) as w:
assert smtlib_code((x & ~y) | (z > 3), log_warn=w) == '(declare-const x Bool)\n' \
'(declare-const y Bool)\n' \
'(declare-const z Real)\n' \
'(assert (or (> z 3) (and x (not y))))'
f = Function('f')
g = Function('g')
h = Function('h')
with _check_warns([_W.DEFAULTING_TO_FLOAT]) as w:
assert smtlib_code(
[Gt(f(x), y),
Lt(y, g(z))],
symbol_table={
f: Callable[[bool], int], g: Callable[[bool], int],
}, log_warn=w
) == '(declare-const x Bool)\n' \
'(declare-const y Real)\n' \
'(declare-const z Bool)\n' \
'(declare-fun f (Bool) Int)\n' \
'(declare-fun g (Bool) Int)\n' \
'(assert (> (f x) y))\n' \
'(assert (< y (g z)))'
with _check_warns([]) as w:
assert smtlib_code(
[Eq(f(x), y),
Lt(y, g(z))],
symbol_table={
f: Callable[[bool], int], g: Callable[[bool], int],
}, log_warn=w
) == '(declare-const x Bool)\n' \
'(declare-const y Int)\n' \
'(declare-const z Bool)\n' \
'(declare-fun f (Bool) Int)\n' \
'(declare-fun g (Bool) Int)\n' \
'(assert (= (f x) y))\n' \
'(assert (< y (g z)))'
with _check_warns([]) as w:
assert smtlib_code(
[Eq(f(x), y),
Eq(g(f(x)), z),
Eq(h(g(f(x))), x)],
symbol_table={
f: Callable[[float], int],
g: Callable[[int], bool],
h: Callable[[bool], float]
},
log_warn=w
) == '(declare-const x Real)\n' \
'(declare-const y Int)\n' \
'(declare-const z Bool)\n' \
'(declare-fun f (Real) Int)\n' \
'(declare-fun g (Int) Bool)\n' \
'(declare-fun h (Bool) Real)\n' \
'(assert (= (f x) y))\n' \
'(assert (= (g (f x)) z))\n' \
'(assert (= (h (g (f x))) x))'
# todo: make smtlib_code support arrays
# def test_containers():
# assert julia_code([1, 2, 3, [4, 5, [6, 7]], 8, [9, 10], 11]) == \
# "Any[1, 2, 3, Any[4, 5, Any[6, 7]], 8, Any[9, 10], 11]"
# assert julia_code((1, 2, (3, 4))) == "(1, 2, (3, 4))"
# assert julia_code([1]) == "Any[1]"
# assert julia_code((1,)) == "(1,)"
# assert julia_code(Tuple(*[1, 2, 3])) == "(1, 2, 3)"
# assert julia_code((1, x * y, (3, x ** 2))) == "(1, x .* y, (3, x .^ 2))"
# # scalar, matrix, empty matrix and empty list
# assert julia_code((1, eye(3), Matrix(0, 0, []), [])) == "(1, [1 0 0;\n0 1 0;\n0 0 1], zeros(0, 0), Any[])"
def test_smtlib_piecewise():
with _check_warns([_W.DEFAULTING_TO_FLOAT, _W.WILL_NOT_ASSERT]) as w:
assert smtlib_code(
Piecewise((x, x < 1),
(x ** 2, True)),
auto_declare=False,
log_warn=w
) == '(ite (< x 1) x (pow x 2))'
with _check_warns([_W.DEFAULTING_TO_FLOAT, _W.WILL_NOT_ASSERT]) as w:
assert smtlib_code(
Piecewise((x ** 2, x < 1),
(x ** 3, x < 2),
(x ** 4, x < 3),
(x ** 5, True)),
auto_declare=False,
log_warn=w
) == '(ite (< x 1) (pow x 2) ' \
'(ite (< x 2) (pow x 3) ' \
'(ite (< x 3) (pow x 4) ' \
'(pow x 5))))'
# Check that Piecewise without a True (default) condition error
expr = Piecewise((x, x < 1), (x ** 2, x > 1), (sin(x), x > 0))
with _check_warns([_W.DEFAULTING_TO_FLOAT, _W.WILL_NOT_ASSERT]) as w:
raises(AssertionError, lambda: smtlib_code(expr, log_warn=w))
def test_smtlib_piecewise_times_const():
pw = Piecewise((x, x < 1), (x ** 2, True))
with _check_warns([_W.DEFAULTING_TO_FLOAT, _W.WILL_NOT_ASSERT]) as w:
assert smtlib_code(2 * pw, log_warn=w) == '(declare-const x Real)\n(* 2 (ite (< x 1) x (pow x 2)))'
with _check_warns([_W.DEFAULTING_TO_FLOAT, _W.WILL_NOT_ASSERT]) as w:
assert smtlib_code(pw / x, log_warn=w) == '(declare-const x Real)\n(* (pow x -1) (ite (< x 1) x (pow x 2)))'
with _check_warns([_W.DEFAULTING_TO_FLOAT, _W.DEFAULTING_TO_FLOAT, _W.WILL_NOT_ASSERT]) as w:
assert smtlib_code(pw / (x * y), log_warn=w) == '(declare-const x Real)\n(declare-const y Real)\n(* (pow x -1) (pow y -1) (ite (< x 1) x (pow x 2)))'
with _check_warns([_W.DEFAULTING_TO_FLOAT, _W.WILL_NOT_ASSERT]) as w:
assert smtlib_code(pw / 3, log_warn=w) == '(declare-const x Real)\n(* (/ 1 3) (ite (< x 1) x (pow x 2)))'
# todo: make smtlib_code support arrays / matrices ?
# def test_smtlib_matrix_assign_to():
# A = Matrix([[1, 2, 3]])
# assert smtlib_code(A, assign_to='a') == "a = [1 2 3]"
# A = Matrix([[1, 2], [3, 4]])
# assert smtlib_code(A, assign_to='A') == "A = [1 2;\n3 4]"
# def test_julia_matrix_1x1():
# A = Matrix([[3]])
# B = MatrixSymbol('B', 1, 1)
# C = MatrixSymbol('C', 1, 2)
# assert julia_code(A, assign_to=B) == "B = [3]"
# raises(ValueError, lambda: julia_code(A, assign_to=C))
# def test_julia_matrix_elements():
# A = Matrix([[x, 2, x * y]])
# assert julia_code(A[0, 0] ** 2 + A[0, 1] + A[0, 2]) == "x .^ 2 + x .* y + 2"
# A = MatrixSymbol('AA', 1, 3)
# assert julia_code(A) == "AA"
# assert julia_code(A[0, 0] ** 2 + sin(A[0, 1]) + A[0, 2]) == \
# "sin(AA[1,2]) + AA[1,1] .^ 2 + AA[1,3]"
# assert julia_code(sum(A)) == "AA[1,1] + AA[1,2] + AA[1,3]"
def test_smtlib_boolean():
with _check_warns([]) as w:
assert smtlib_code(True, auto_assert=False, log_warn=w) == 'true'
assert smtlib_code(True, log_warn=w) == '(assert true)'
assert smtlib_code(S.true, log_warn=w) == '(assert true)'
assert smtlib_code(S.false, log_warn=w) == '(assert false)'
assert smtlib_code(False, log_warn=w) == '(assert false)'
assert smtlib_code(False, auto_assert=False, log_warn=w) == 'false'
def test_not_supported():
f = Function('f')
with _check_warns([_W.DEFAULTING_TO_FLOAT, _W.WILL_NOT_ASSERT]) as w:
raises(KeyError, lambda: smtlib_code(f(x).diff(x), symbol_table={f: Callable[[float], float]}, log_warn=w))
with _check_warns([_W.WILL_NOT_ASSERT]) as w:
raises(KeyError, lambda: smtlib_code(S.ComplexInfinity, log_warn=w))
|
96a31dc68494ab929bc834ba32b1f73dd8e5316b483a8ca239b9e738877311dd | from sympy.concrete.summations import Sum
from sympy.core.mod import Mod
from sympy.core.relational import (Equality, Unequality)
from sympy.core.symbol import Symbol
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.special.gamma_functions import polygamma
from sympy.matrices.expressions.blockmatrix import BlockMatrix
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.matrices.expressions.special import Identity
from sympy.utilities.lambdify import lambdify
from sympy.abc import x, i, j, a, b, c, d
from sympy.core import Pow
from sympy.codegen.matrix_nodes import MatrixSolve
from sympy.codegen.numpy_nodes import logaddexp, logaddexp2
from sympy.codegen.cfunctions import log1p, expm1, hypot, log10, exp2, log2, Sqrt
from sympy.tensor.array import Array
from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct, ArrayAdd, \
PermuteDims, ArrayDiagonal
from sympy.printing.numpy import NumPyPrinter, SciPyPrinter, _numpy_known_constants, \
_numpy_known_functions, _scipy_known_constants, _scipy_known_functions
from sympy.tensor.array.expressions.from_matrix_to_array import convert_matrix_to_array
from sympy.testing.pytest import skip, raises
from sympy.external import import_module
np = import_module('numpy')
if np:
deafult_float_info = np.finfo(np.array([]).dtype)
NUMPY_DEFAULT_EPSILON = deafult_float_info.eps
def test_numpy_piecewise_regression():
"""
NumPyPrinter needs to print Piecewise()'s choicelist as a list to avoid
breaking compatibility with numpy 1.8. This is not necessary in numpy 1.9+.
See gh-9747 and gh-9749 for details.
"""
printer = NumPyPrinter()
p = Piecewise((1, x < 0), (0, True))
assert printer.doprint(p) == \
'numpy.select([numpy.less(x, 0),True], [1,0], default=numpy.nan)'
assert printer.module_imports == {'numpy': {'select', 'less', 'nan'}}
def test_numpy_logaddexp():
lae = logaddexp(a, b)
assert NumPyPrinter().doprint(lae) == 'numpy.logaddexp(a, b)'
lae2 = logaddexp2(a, b)
assert NumPyPrinter().doprint(lae2) == 'numpy.logaddexp2(a, b)'
def test_sum():
if not np:
skip("NumPy not installed")
s = Sum(x ** i, (i, a, b))
f = lambdify((a, b, x), s, 'numpy')
a_, b_ = 0, 10
x_ = np.linspace(-1, +1, 10)
assert np.allclose(f(a_, b_, x_), sum(x_ ** i_ for i_ in range(a_, b_ + 1)))
s = Sum(i * x, (i, a, b))
f = lambdify((a, b, x), s, 'numpy')
a_, b_ = 0, 10
x_ = np.linspace(-1, +1, 10)
assert np.allclose(f(a_, b_, x_), sum(i_ * x_ for i_ in range(a_, b_ + 1)))
def test_multiple_sums():
if not np:
skip("NumPy not installed")
s = Sum((x + j) * i, (i, a, b), (j, c, d))
f = lambdify((a, b, c, d, x), s, 'numpy')
a_, b_ = 0, 10
c_, d_ = 11, 21
x_ = np.linspace(-1, +1, 10)
assert np.allclose(f(a_, b_, c_, d_, x_),
sum((x_ + j_) * i_ for i_ in range(a_, b_ + 1) for j_ in range(c_, d_ + 1)))
def test_codegen_einsum():
if not np:
skip("NumPy not installed")
M = MatrixSymbol("M", 2, 2)
N = MatrixSymbol("N", 2, 2)
cg = convert_matrix_to_array(M * N)
f = lambdify((M, N), cg, 'numpy')
ma = np.array([[1, 2], [3, 4]])
mb = np.array([[1,-2], [-1, 3]])
assert (f(ma, mb) == np.matmul(ma, mb)).all()
def test_codegen_extra():
if not np:
skip("NumPy not installed")
M = MatrixSymbol("M", 2, 2)
N = MatrixSymbol("N", 2, 2)
P = MatrixSymbol("P", 2, 2)
Q = MatrixSymbol("Q", 2, 2)
ma = np.array([[1, 2], [3, 4]])
mb = np.array([[1,-2], [-1, 3]])
mc = np.array([[2, 0], [1, 2]])
md = np.array([[1,-1], [4, 7]])
cg = ArrayTensorProduct(M, N)
f = lambdify((M, N), cg, 'numpy')
assert (f(ma, mb) == np.einsum(ma, [0, 1], mb, [2, 3])).all()
cg = ArrayAdd(M, N)
f = lambdify((M, N), cg, 'numpy')
assert (f(ma, mb) == ma+mb).all()
cg = ArrayAdd(M, N, P)
f = lambdify((M, N, P), cg, 'numpy')
assert (f(ma, mb, mc) == ma+mb+mc).all()
cg = ArrayAdd(M, N, P, Q)
f = lambdify((M, N, P, Q), cg, 'numpy')
assert (f(ma, mb, mc, md) == ma+mb+mc+md).all()
cg = PermuteDims(M, [1, 0])
f = lambdify((M,), cg, 'numpy')
assert (f(ma) == ma.T).all()
cg = PermuteDims(ArrayTensorProduct(M, N), [1, 2, 3, 0])
f = lambdify((M, N), cg, 'numpy')
assert (f(ma, mb) == np.transpose(np.einsum(ma, [0, 1], mb, [2, 3]), (1, 2, 3, 0))).all()
cg = ArrayDiagonal(ArrayTensorProduct(M, N), (1, 2))
f = lambdify((M, N), cg, 'numpy')
assert (f(ma, mb) == np.diagonal(np.einsum(ma, [0, 1], mb, [2, 3]), axis1=1, axis2=2)).all()
def test_relational():
if not np:
skip("NumPy not installed")
e = Equality(x, 1)
f = lambdify((x,), e)
x_ = np.array([0, 1, 2])
assert np.array_equal(f(x_), [False, True, False])
e = Unequality(x, 1)
f = lambdify((x,), e)
x_ = np.array([0, 1, 2])
assert np.array_equal(f(x_), [True, False, True])
e = (x < 1)
f = lambdify((x,), e)
x_ = np.array([0, 1, 2])
assert np.array_equal(f(x_), [True, False, False])
e = (x <= 1)
f = lambdify((x,), e)
x_ = np.array([0, 1, 2])
assert np.array_equal(f(x_), [True, True, False])
e = (x > 1)
f = lambdify((x,), e)
x_ = np.array([0, 1, 2])
assert np.array_equal(f(x_), [False, False, True])
e = (x >= 1)
f = lambdify((x,), e)
x_ = np.array([0, 1, 2])
assert np.array_equal(f(x_), [False, True, True])
def test_mod():
if not np:
skip("NumPy not installed")
e = Mod(a, b)
f = lambdify((a, b), e)
a_ = np.array([0, 1, 2, 3])
b_ = 2
assert np.array_equal(f(a_, b_), [0, 1, 0, 1])
a_ = np.array([0, 1, 2, 3])
b_ = np.array([2, 2, 2, 2])
assert np.array_equal(f(a_, b_), [0, 1, 0, 1])
a_ = np.array([2, 3, 4, 5])
b_ = np.array([2, 3, 4, 5])
assert np.array_equal(f(a_, b_), [0, 0, 0, 0])
def test_pow():
if not np:
skip('NumPy not installed')
expr = Pow(2, -1, evaluate=False)
f = lambdify([], expr, 'numpy')
assert f() == 0.5
def test_expm1():
if not np:
skip("NumPy not installed")
f = lambdify((a,), expm1(a), 'numpy')
assert abs(f(1e-10) - 1e-10 - 5e-21) <= 1e-10 * NUMPY_DEFAULT_EPSILON
def test_log1p():
if not np:
skip("NumPy not installed")
f = lambdify((a,), log1p(a), 'numpy')
assert abs(f(1e-99) - 1e-99) <= 1e-99 * NUMPY_DEFAULT_EPSILON
def test_hypot():
if not np:
skip("NumPy not installed")
assert abs(lambdify((a, b), hypot(a, b), 'numpy')(3, 4) - 5) <= NUMPY_DEFAULT_EPSILON
def test_log10():
if not np:
skip("NumPy not installed")
assert abs(lambdify((a,), log10(a), 'numpy')(100) - 2) <= NUMPY_DEFAULT_EPSILON
def test_exp2():
if not np:
skip("NumPy not installed")
assert abs(lambdify((a,), exp2(a), 'numpy')(5) - 32) <= NUMPY_DEFAULT_EPSILON
def test_log2():
if not np:
skip("NumPy not installed")
assert abs(lambdify((a,), log2(a), 'numpy')(256) - 8) <= NUMPY_DEFAULT_EPSILON
def test_Sqrt():
if not np:
skip("NumPy not installed")
assert abs(lambdify((a,), Sqrt(a), 'numpy')(4) - 2) <= NUMPY_DEFAULT_EPSILON
def test_sqrt():
if not np:
skip("NumPy not installed")
assert abs(lambdify((a,), sqrt(a), 'numpy')(4) - 2) <= NUMPY_DEFAULT_EPSILON
def test_matsolve():
if not np:
skip("NumPy not installed")
M = MatrixSymbol("M", 3, 3)
x = MatrixSymbol("x", 3, 1)
expr = M**(-1) * x + x
matsolve_expr = MatrixSolve(M, x) + x
f = lambdify((M, x), expr)
f_matsolve = lambdify((M, x), matsolve_expr)
m0 = np.array([[1, 2, 3], [3, 2, 5], [5, 6, 7]])
assert np.linalg.matrix_rank(m0) == 3
x0 = np.array([3, 4, 5])
assert np.allclose(f_matsolve(m0, x0), f(m0, x0))
def test_16857():
if not np:
skip("NumPy not installed")
a_1 = MatrixSymbol('a_1', 10, 3)
a_2 = MatrixSymbol('a_2', 10, 3)
a_3 = MatrixSymbol('a_3', 10, 3)
a_4 = MatrixSymbol('a_4', 10, 3)
A = BlockMatrix([[a_1, a_2], [a_3, a_4]])
assert A.shape == (20, 6)
printer = NumPyPrinter()
assert printer.doprint(A) == 'numpy.block([[a_1, a_2], [a_3, a_4]])'
def test_issue_17006():
if not np:
skip("NumPy not installed")
M = MatrixSymbol("M", 2, 2)
f = lambdify(M, M + Identity(2))
ma = np.array([[1, 2], [3, 4]])
mr = np.array([[2, 2], [3, 5]])
assert (f(ma) == mr).all()
from sympy.core.symbol import symbols
n = symbols('n', integer=True)
N = MatrixSymbol("M", n, n)
raises(NotImplementedError, lambda: lambdify(N, N + Identity(n)))
def test_numpy_array():
assert NumPyPrinter().doprint(Array(((1, 2), (3, 5)))) == 'numpy.array([[1, 2], [3, 5]])'
assert NumPyPrinter().doprint(Array((1, 2))) == 'numpy.array((1, 2))'
def test_numpy_known_funcs_consts():
assert _numpy_known_constants['NaN'] == 'numpy.nan'
assert _numpy_known_constants['EulerGamma'] == 'numpy.euler_gamma'
assert _numpy_known_functions['acos'] == 'numpy.arccos'
assert _numpy_known_functions['log'] == 'numpy.log'
def test_scipy_known_funcs_consts():
assert _scipy_known_constants['GoldenRatio'] == 'scipy.constants.golden_ratio'
assert _scipy_known_constants['Pi'] == 'scipy.constants.pi'
assert _scipy_known_functions['erf'] == 'scipy.special.erf'
assert _scipy_known_functions['factorial'] == 'scipy.special.factorial'
def test_numpy_print_methods():
prntr = NumPyPrinter()
assert hasattr(prntr, '_print_acos')
assert hasattr(prntr, '_print_log')
def test_scipy_print_methods():
prntr = SciPyPrinter()
assert hasattr(prntr, '_print_acos')
assert hasattr(prntr, '_print_log')
assert hasattr(prntr, '_print_erf')
assert hasattr(prntr, '_print_factorial')
assert hasattr(prntr, '_print_chebyshevt')
k = Symbol('k', integer=True, nonnegative=True)
x = Symbol('x', real=True)
assert prntr.doprint(polygamma(k, x)) == "scipy.special.polygamma(k, x)"
|
af84636d245849cbb331703f123af16a53b54f51b48b966c0260d072b845537b | from sympy.concrete.summations import Sum
from sympy.core.add import Add
from sympy.core.function import (Derivative, Function, diff)
from sympy.core.numbers import (I, Rational, pi)
from sympy.core.relational import Ne
from sympy.core.symbol import (Symbol, symbols)
from sympy.functions.elementary.exponential import (LambertW, exp, log)
from sympy.functions.elementary.hyperbolic import (asinh, cosh, sinh, tanh)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import (acos, asin, atan, cos, sin, tan)
from sympy.functions.special.bessel import (besselj, besselk, bessely, jn)
from sympy.functions.special.error_functions import erf
from sympy.integrals.integrals import Integral
from sympy.simplify.ratsimp import ratsimp
from sympy.simplify.simplify import simplify
from sympy.integrals.heurisch import components, heurisch, heurisch_wrapper
from sympy.testing.pytest import XFAIL, skip, slow, ON_CI
from sympy.integrals.integrals import integrate
x, y, z, nu = symbols('x,y,z,nu')
f = Function('f')
def test_components():
assert components(x*y, x) == {x}
assert components(1/(x + y), x) == {x}
assert components(sin(x), x) == {sin(x), x}
assert components(sin(x)*sqrt(log(x)), x) == \
{log(x), sin(x), sqrt(log(x)), x}
assert components(x*sin(exp(x)*y), x) == \
{sin(y*exp(x)), x, exp(x)}
assert components(x**Rational(17, 54)/sqrt(sin(x)), x) == \
{sin(x), x**Rational(1, 54), sqrt(sin(x)), x}
assert components(f(x), x) == \
{x, f(x)}
assert components(Derivative(f(x), x), x) == \
{x, f(x), Derivative(f(x), x)}
assert components(f(x)*diff(f(x), x), x) == \
{x, f(x), Derivative(f(x), x), Derivative(f(x), x)}
def test_issue_10680():
assert isinstance(integrate(x**log(x**log(x**log(x))),x), Integral)
def test_issue_21166():
assert integrate(sin(x/sqrt(abs(x))), (x, -1, 1)) == 0
def test_heurisch_polynomials():
assert heurisch(1, x) == x
assert heurisch(x, x) == x**2/2
assert heurisch(x**17, x) == x**18/18
# For coverage
assert heurisch_wrapper(y, x) == y*x
def test_heurisch_fractions():
assert heurisch(1/x, x) == log(x)
assert heurisch(1/(2 + x), x) == log(x + 2)
assert heurisch(1/(x + sin(y)), x) == log(x + sin(y))
# Up to a constant, where C = pi*I*Rational(5, 12), Mathematica gives identical
# result in the first case. The difference is because SymPy changes
# signs of expressions without any care.
# XXX ^ ^ ^ is this still correct?
assert heurisch(5*x**5/(
2*x**6 - 5), x) in [5*log(2*x**6 - 5) / 12, 5*log(-2*x**6 + 5) / 12]
assert heurisch(5*x**5/(2*x**6 + 5), x) == 5*log(2*x**6 + 5) / 12
assert heurisch(1/x**2, x) == -1/x
assert heurisch(-1/x**5, x) == 1/(4*x**4)
def test_heurisch_log():
assert heurisch(log(x), x) == x*log(x) - x
assert heurisch(log(3*x), x) == -x + x*log(3) + x*log(x)
assert heurisch(log(x**2), x) in [x*log(x**2) - 2*x, 2*x*log(x) - 2*x]
def test_heurisch_exp():
assert heurisch(exp(x), x) == exp(x)
assert heurisch(exp(-x), x) == -exp(-x)
assert heurisch(exp(17*x), x) == exp(17*x) / 17
assert heurisch(x*exp(x), x) == x*exp(x) - exp(x)
assert heurisch(x*exp(x**2), x) == exp(x**2) / 2
assert heurisch(exp(-x**2), x) is None
assert heurisch(2**x, x) == 2**x/log(2)
assert heurisch(x*2**x, x) == x*2**x/log(2) - 2**x*log(2)**(-2)
assert heurisch(Integral(x**z*y, (y, 1, 2), (z, 2, 3)).function, x) == (x*x**z*y)/(z+1)
assert heurisch(Sum(x**z, (z, 1, 2)).function, z) == x**z/log(x)
# https://github.com/sympy/sympy/issues/23707
anti = -exp(z)/(sqrt(x - y)*exp(z*sqrt(x - y)) - exp(z*sqrt(x - y)))
assert heurisch(exp(z)*exp(-z*sqrt(x - y)), z) == anti
def test_heurisch_trigonometric():
assert heurisch(sin(x), x) == -cos(x)
assert heurisch(pi*sin(x) + 1, x) == x - pi*cos(x)
assert heurisch(cos(x), x) == sin(x)
assert heurisch(tan(x), x) in [
log(1 + tan(x)**2)/2,
log(tan(x) + I) + I*x,
log(tan(x) - I) - I*x,
]
assert heurisch(sin(x)*sin(y), x) == -cos(x)*sin(y)
assert heurisch(sin(x)*sin(y), y) == -cos(y)*sin(x)
# gives sin(x) in answer when run via setup.py and cos(x) when run via py.test
assert heurisch(sin(x)*cos(x), x) in [sin(x)**2 / 2, -cos(x)**2 / 2]
assert heurisch(cos(x)/sin(x), x) == log(sin(x))
assert heurisch(x*sin(7*x), x) == sin(7*x) / 49 - x*cos(7*x) / 7
assert heurisch(1/pi/4 * x**2*cos(x), x) == 1/pi/4*(x**2*sin(x) -
2*sin(x) + 2*x*cos(x))
assert heurisch(acos(x/4) * asin(x/4), x) == 2*x - (sqrt(16 - x**2))*asin(x/4) \
+ (sqrt(16 - x**2))*acos(x/4) + x*asin(x/4)*acos(x/4)
assert heurisch(sin(x)/(cos(x)**2+1), x) == -atan(cos(x)) #fixes issue 13723
assert heurisch(1/(cos(x)+2), x) == 2*sqrt(3)*atan(sqrt(3)*tan(x/2)/3)/3
assert heurisch(2*sin(x)*cos(x)/(sin(x)**4 + 1), x) == atan(sqrt(2)*sin(x)
- 1) - atan(sqrt(2)*sin(x) + 1)
assert heurisch(1/cosh(x), x) == 2*atan(tanh(x/2))
def test_heurisch_hyperbolic():
assert heurisch(sinh(x), x) == cosh(x)
assert heurisch(cosh(x), x) == sinh(x)
assert heurisch(x*sinh(x), x) == x*cosh(x) - sinh(x)
assert heurisch(x*cosh(x), x) == x*sinh(x) - cosh(x)
assert heurisch(
x*asinh(x/2), x) == x**2*asinh(x/2)/2 + asinh(x/2) - x*sqrt(4 + x**2)/4
def test_heurisch_mixed():
assert heurisch(sin(x)*exp(x), x) == exp(x)*sin(x)/2 - exp(x)*cos(x)/2
assert heurisch(sin(x/sqrt(-x)), x) == 2*x*cos(x/sqrt(-x))/sqrt(-x) - 2*sin(x/sqrt(-x))
def test_heurisch_radicals():
assert heurisch(1/sqrt(x), x) == 2*sqrt(x)
assert heurisch(1/sqrt(x)**3, x) == -2/sqrt(x)
assert heurisch(sqrt(x)**3, x) == 2*sqrt(x)**5/5
assert heurisch(sin(x)*sqrt(cos(x)), x) == -2*sqrt(cos(x))**3/3
y = Symbol('y')
assert heurisch(sin(y*sqrt(x)), x) == 2/y**2*sin(y*sqrt(x)) - \
2*sqrt(x)*cos(y*sqrt(x))/y
assert heurisch_wrapper(sin(y*sqrt(x)), x) == Piecewise(
(-2*sqrt(x)*cos(sqrt(x)*y)/y + 2*sin(sqrt(x)*y)/y**2, Ne(y, 0)),
(0, True))
y = Symbol('y', positive=True)
assert heurisch_wrapper(sin(y*sqrt(x)), x) == 2/y**2*sin(y*sqrt(x)) - \
2*sqrt(x)*cos(y*sqrt(x))/y
def test_heurisch_special():
assert heurisch(erf(x), x) == x*erf(x) + exp(-x**2)/sqrt(pi)
assert heurisch(exp(-x**2)*erf(x), x) == sqrt(pi)*erf(x)**2 / 4
def test_heurisch_symbolic_coeffs():
assert heurisch(1/(x + y), x) == log(x + y)
assert heurisch(1/(x + sqrt(2)), x) == log(x + sqrt(2))
assert simplify(diff(heurisch(log(x + y + z), y), y)) == log(x + y + z)
def test_heurisch_symbolic_coeffs_1130():
y = Symbol('y')
assert heurisch_wrapper(1/(x**2 + y), x) == Piecewise(
(log(x - sqrt(-y))/(2*sqrt(-y)) - log(x + sqrt(-y))/(2*sqrt(-y)),
Ne(y, 0)), (-1/x, True))
y = Symbol('y', positive=True)
assert heurisch_wrapper(1/(x**2 + y), x) == (atan(x/sqrt(y))/sqrt(y))
def test_heurisch_hacking():
assert heurisch(sqrt(1 + 7*x**2), x, hints=[]) == \
x*sqrt(1 + 7*x**2)/2 + sqrt(7)*asinh(sqrt(7)*x)/14
assert heurisch(sqrt(1 - 7*x**2), x, hints=[]) == \
x*sqrt(1 - 7*x**2)/2 + sqrt(7)*asin(sqrt(7)*x)/14
assert heurisch(1/sqrt(1 + 7*x**2), x, hints=[]) == \
sqrt(7)*asinh(sqrt(7)*x)/7
assert heurisch(1/sqrt(1 - 7*x**2), x, hints=[]) == \
sqrt(7)*asin(sqrt(7)*x)/7
assert heurisch(exp(-7*x**2), x, hints=[]) == \
sqrt(7*pi)*erf(sqrt(7)*x)/14
assert heurisch(1/sqrt(9 - 4*x**2), x, hints=[]) == \
asin(x*Rational(2, 3))/2
assert heurisch(1/sqrt(9 + 4*x**2), x, hints=[]) == \
asinh(x*Rational(2, 3))/2
assert heurisch(1/sqrt(3*x**2-4), x, hints=[]) == \
sqrt(3)*log(3*x + sqrt(3)*sqrt(3*x**2 - 4))/3
def test_heurisch_function():
assert heurisch(f(x), x) is None
@XFAIL
def test_heurisch_function_derivative():
# TODO: it looks like this used to work just by coincindence and
# thanks to sloppy implementation. Investigate why this used to
# work at all and if support for this can be restored.
df = diff(f(x), x)
assert heurisch(f(x)*df, x) == f(x)**2/2
assert heurisch(f(x)**2*df, x) == f(x)**3/3
assert heurisch(df/f(x), x) == log(f(x))
def test_heurisch_wrapper():
f = 1/(y + x)
assert heurisch_wrapper(f, x) == log(x + y)
f = 1/(y - x)
assert heurisch_wrapper(f, x) == -log(x - y)
f = 1/((y - x)*(y + x))
assert heurisch_wrapper(f, x) == Piecewise(
(-log(x - y)/(2*y) + log(x + y)/(2*y), Ne(y, 0)), (1/x, True))
# issue 6926
f = sqrt(x**2/((y - x)*(y + x)))
assert heurisch_wrapper(f, x) == x*sqrt(-x**2/(x**2 - y**2)) \
- y**2*sqrt(-x**2/(x**2 - y**2))/x
def test_issue_3609():
assert heurisch(1/(x * (1 + log(x)**2)), x) == atan(log(x))
### These are examples from the Poor Man's Integrator
### http://www-sop.inria.fr/cafe/Manuel.Bronstein/pmint/examples/
def test_pmint_rat():
# TODO: heurisch() is off by a constant: -3/4. Possibly different permutation
# would give the optimal result?
def drop_const(expr, x):
if expr.is_Add:
return Add(*[ arg for arg in expr.args if arg.has(x) ])
else:
return expr
f = (x**7 - 24*x**4 - 4*x**2 + 8*x - 8)/(x**8 + 6*x**6 + 12*x**4 + 8*x**2)
g = (4 + 8*x**2 + 6*x + 3*x**3)/(x**5 + 4*x**3 + 4*x) + log(x)
assert drop_const(ratsimp(heurisch(f, x)), x) == g
def test_pmint_trig():
f = (x - tan(x)) / tan(x)**2 + tan(x)
g = -x**2/2 - x/tan(x) + log(tan(x)**2 + 1)/2
assert heurisch(f, x) == g
@slow # 8 seconds on 3.4 GHz
def test_pmint_logexp():
if ON_CI:
# See https://github.com/sympy/sympy/pull/12795
skip("Too slow for CI.")
f = (1 + x + x*exp(x))*(x + log(x) + exp(x) - 1)/(x + log(x) + exp(x))**2/x
g = log(x + exp(x) + log(x)) + 1/(x + exp(x) + log(x))
assert ratsimp(heurisch(f, x)) == g
def test_pmint_erf():
f = exp(-x**2)*erf(x)/(erf(x)**3 - erf(x)**2 - erf(x) + 1)
g = sqrt(pi)*log(erf(x) - 1)/8 - sqrt(pi)*log(erf(x) + 1)/8 - sqrt(pi)/(4*erf(x) - 4)
assert ratsimp(heurisch(f, x)) == g
def test_pmint_LambertW():
f = LambertW(x)
g = x*LambertW(x) - x + x/LambertW(x)
assert heurisch(f, x) == g
def test_pmint_besselj():
f = besselj(nu + 1, x)/besselj(nu, x)
g = nu*log(x) - log(besselj(nu, x))
assert heurisch(f, x) == g
f = (nu*besselj(nu, x) - x*besselj(nu + 1, x))/x
g = besselj(nu, x)
assert heurisch(f, x) == g
f = jn(nu + 1, x)/jn(nu, x)
g = nu*log(x) - log(jn(nu, x))
assert heurisch(f, x) == g
@slow
def test_pmint_bessel_products():
# Note: Derivatives of Bessel functions have many forms.
# Recurrence relations are needed for comparisons.
if ON_CI:
skip("Too slow for CI.")
f = x*besselj(nu, x)*bessely(nu, 2*x)
g = -2*x*besselj(nu, x)*bessely(nu - 1, 2*x)/3 + x*besselj(nu - 1, x)*bessely(nu, 2*x)/3
assert heurisch(f, x) == g
f = x*besselj(nu, x)*besselk(nu, 2*x)
g = -2*x*besselj(nu, x)*besselk(nu - 1, 2*x)/5 - x*besselj(nu - 1, x)*besselk(nu, 2*x)/5
assert heurisch(f, x) == g
@slow # 110 seconds on 3.4 GHz
def test_pmint_WrightOmega():
if ON_CI:
skip("Too slow for CI.")
def omega(x):
return LambertW(exp(x))
f = (1 + omega(x) * (2 + cos(omega(x)) * (x + omega(x))))/(1 + omega(x))/(x + omega(x))
g = log(x + LambertW(exp(x))) + sin(LambertW(exp(x)))
assert heurisch(f, x) == g
def test_RR():
# Make sure the algorithm does the right thing if the ring is RR. See
# issue 8685.
assert heurisch(sqrt(1 + 0.25*x**2), x, hints=[]) == \
0.5*x*sqrt(0.25*x**2 + 1) + 1.0*asinh(0.5*x)
# TODO: convert the rest of PMINT tests:
# Airy functions
# f = (x - AiryAi(x)*AiryAi(1, x)) / (x**2 - AiryAi(x)**2)
# g = Rational(1,2)*ln(x + AiryAi(x)) + Rational(1,2)*ln(x - AiryAi(x))
# f = x**2 * AiryAi(x)
# g = -AiryAi(x) + AiryAi(1, x)*x
# Whittaker functions
# f = WhittakerW(mu + 1, nu, x) / (WhittakerW(mu, nu, x) * x)
# g = x/2 - mu*ln(x) - ln(WhittakerW(mu, nu, x))
def test_issue_22527():
t, R = symbols(r't R')
z = Function('z')(t)
def f(x):
return x/sqrt(R**2 - x**2)
Uz = integrate(f(z), z)
Ut = integrate(f(t), t)
assert Ut == Uz.subs(z, t)
|
47f1ffb2176799cfb5d1bf0daf7256c2b941974be16fe74d4820854065b5a50f | import math
from sympy.concrete.summations import (Sum, summation)
from sympy.core.add import Add
from sympy.core.containers import Tuple
from sympy.core.expr import Expr
from sympy.core.function import (Derivative, Function, Lambda, diff)
from sympy.core import EulerGamma
from sympy.core.numbers import (E, Float, I, Rational, nan, oo, pi, zoo)
from sympy.core.relational import (Eq, Ne)
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, symbols)
from sympy.core.sympify import sympify
from sympy.functions.elementary.complexes import (Abs, im, polar_lift, re, sign)
from sympy.functions.elementary.exponential import (LambertW, exp, exp_polar, log)
from sympy.functions.elementary.hyperbolic import (acosh, asinh, cosh, coth, csch, sinh, tanh, sech)
from sympy.functions.elementary.miscellaneous import (Max, Min, sqrt)
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import (acos, asin, atan, cos, sin, sinc, tan, sec)
from sympy.functions.special.delta_functions import DiracDelta, Heaviside
from sympy.functions.special.error_functions import (Ci, Ei, Si, erf, erfc, erfi, fresnelc, li)
from sympy.functions.special.gamma_functions import (gamma, polygamma)
from sympy.functions.special.hyper import (hyper, meijerg)
from sympy.functions.special.singularity_functions import SingularityFunction
from sympy.functions.special.zeta_functions import lerchphi
from sympy.integrals.integrals import integrate
from sympy.logic.boolalg import And
from sympy.matrices.dense import Matrix
from sympy.polys.polytools import (Poly, factor)
from sympy.printing.str import sstr
from sympy.series.order import O
from sympy.sets.sets import Interval
from sympy.simplify.gammasimp import gammasimp
from sympy.simplify.simplify import simplify
from sympy.simplify.trigsimp import trigsimp
from sympy.tensor.indexed import (Idx, IndexedBase)
from sympy.core.expr import unchanged
from sympy.functions.elementary.integers import floor
from sympy.integrals.integrals import Integral
from sympy.integrals.risch import NonElementaryIntegral
from sympy.physics import units
from sympy.testing.pytest import (raises, slow, skip, ON_CI,
warns_deprecated_sympy, warns)
from sympy.utilities.exceptions import SymPyDeprecationWarning
from sympy.core.random import verify_numerically
x, y, z, a, b, c, d, e, s, t, x_1, x_2 = symbols('x y z a b c d e s t x_1 x_2')
n = Symbol('n', integer=True)
f = Function('f')
def NS(e, n=15, **options):
return sstr(sympify(e).evalf(n, **options), full_prec=True)
def test_poly_deprecated():
p = Poly(2*x, x)
assert p.integrate(x) == Poly(x**2, x, domain='QQ')
# The stacklevel is based on Integral(Poly)
with warns(SymPyDeprecationWarning, test_stacklevel=False):
integrate(p, x)
with warns(SymPyDeprecationWarning, test_stacklevel=False):
Integral(p, (x,))
@slow
def test_principal_value():
g = 1 / x
assert Integral(g, (x, -oo, oo)).principal_value() == 0
assert Integral(g, (y, -oo, oo)).principal_value() == oo * sign(1 / x)
raises(ValueError, lambda: Integral(g, (x)).principal_value())
raises(ValueError, lambda: Integral(g).principal_value())
l = 1 / ((x ** 3) - 1)
assert Integral(l, (x, -oo, oo)).principal_value().together() == -sqrt(3)*pi/3
raises(ValueError, lambda: Integral(l, (x, -oo, 1)).principal_value())
d = 1 / (x ** 2 - 1)
assert Integral(d, (x, -oo, oo)).principal_value() == 0
assert Integral(d, (x, -2, 2)).principal_value() == -log(3)
v = x / (x ** 2 - 1)
assert Integral(v, (x, -oo, oo)).principal_value() == 0
assert Integral(v, (x, -2, 2)).principal_value() == 0
s = x ** 2 / (x ** 2 - 1)
assert Integral(s, (x, -oo, oo)).principal_value() is oo
assert Integral(s, (x, -2, 2)).principal_value() == -log(3) + 4
f = 1 / ((x ** 2 - 1) * (1 + x ** 2))
assert Integral(f, (x, -oo, oo)).principal_value() == -pi / 2
assert Integral(f, (x, -2, 2)).principal_value() == -atan(2) - log(3) / 2
def diff_test(i):
"""Return the set of symbols, s, which were used in testing that
i.diff(s) agrees with i.doit().diff(s). If there is an error then
the assertion will fail, causing the test to fail."""
syms = i.free_symbols
for s in syms:
assert (i.diff(s).doit() - i.doit().diff(s)).expand() == 0
return syms
def test_improper_integral():
assert integrate(log(x), (x, 0, 1)) == -1
assert integrate(x**(-2), (x, 1, oo)) == 1
assert integrate(1/(1 + exp(x)), (x, 0, oo)) == log(2)
def test_constructor():
# this is shared by Sum, so testing Integral's constructor
# is equivalent to testing Sum's
s1 = Integral(n, n)
assert s1.limits == (Tuple(n),)
s2 = Integral(n, (n,))
assert s2.limits == (Tuple(n),)
s3 = Integral(Sum(x, (x, 1, y)))
assert s3.limits == (Tuple(y),)
s4 = Integral(n, Tuple(n,))
assert s4.limits == (Tuple(n),)
s5 = Integral(n, (n, Interval(1, 2)))
assert s5.limits == (Tuple(n, 1, 2),)
# Testing constructor with inequalities:
s6 = Integral(n, n > 10)
assert s6.limits == (Tuple(n, 10, oo),)
s7 = Integral(n, (n > 2) & (n < 5))
assert s7.limits == (Tuple(n, 2, 5),)
def test_basics():
assert Integral(0, x) != 0
assert Integral(x, (x, 1, 1)) != 0
assert Integral(oo, x) != oo
assert Integral(S.NaN, x) is S.NaN
assert diff(Integral(y, y), x) == 0
assert diff(Integral(x, (x, 0, 1)), x) == 0
assert diff(Integral(x, x), x) == x
assert diff(Integral(t, (t, 0, x)), x) == x
e = (t + 1)**2
assert diff(integrate(e, (t, 0, x)), x) == \
diff(Integral(e, (t, 0, x)), x).doit().expand() == \
((1 + x)**2).expand()
assert diff(integrate(e, (t, 0, x)), t) == \
diff(Integral(e, (t, 0, x)), t) == 0
assert diff(integrate(e, (t, 0, x)), a) == \
diff(Integral(e, (t, 0, x)), a) == 0
assert diff(integrate(e, t), a) == diff(Integral(e, t), a) == 0
assert integrate(e, (t, a, x)).diff(x) == \
Integral(e, (t, a, x)).diff(x).doit().expand()
assert Integral(e, (t, a, x)).diff(x).doit() == ((1 + x)**2)
assert integrate(e, (t, x, a)).diff(x).doit() == (-(1 + x)**2).expand()
assert integrate(t**2, (t, x, 2*x)).diff(x) == 7*x**2
assert Integral(x, x).atoms() == {x}
assert Integral(f(x), (x, 0, 1)).atoms() == {S.Zero, S.One, x}
assert diff_test(Integral(x, (x, 3*y))) == {y}
assert diff_test(Integral(x, (a, 3*y))) == {x, y}
assert integrate(x, (x, oo, oo)) == 0 #issue 8171
assert integrate(x, (x, -oo, -oo)) == 0
# sum integral of terms
assert integrate(y + x + exp(x), x) == x*y + x**2/2 + exp(x)
assert Integral(x).is_commutative
n = Symbol('n', commutative=False)
assert Integral(n + x, x).is_commutative is False
def test_diff_wrt():
class Test(Expr):
_diff_wrt = True
is_commutative = True
t = Test()
assert integrate(t + 1, t) == t**2/2 + t
assert integrate(t + 1, (t, 0, 1)) == Rational(3, 2)
raises(ValueError, lambda: integrate(x + 1, x + 1))
raises(ValueError, lambda: integrate(x + 1, (x + 1, 0, 1)))
def test_basics_multiple():
assert diff_test(Integral(x, (x, 3*x, 5*y), (y, x, 2*x))) == {x}
assert diff_test(Integral(x, (x, 5*y), (y, x, 2*x))) == {x}
assert diff_test(Integral(x, (x, 5*y), (y, y, 2*x))) == {x, y}
assert diff_test(Integral(y, y, x)) == {x, y}
assert diff_test(Integral(y*x, x, y)) == {x, y}
assert diff_test(Integral(x + y, y, (y, 1, x))) == {x}
assert diff_test(Integral(x + y, (x, x, y), (y, y, x))) == {x, y}
def test_conjugate_transpose():
A, B = symbols("A B", commutative=False)
x = Symbol("x", complex=True)
p = Integral(A*B, (x,))
assert p.adjoint().doit() == p.doit().adjoint()
assert p.conjugate().doit() == p.doit().conjugate()
assert p.transpose().doit() == p.doit().transpose()
x = Symbol("x", real=True)
p = Integral(A*B, (x,))
assert p.adjoint().doit() == p.doit().adjoint()
assert p.conjugate().doit() == p.doit().conjugate()
assert p.transpose().doit() == p.doit().transpose()
def test_integration():
assert integrate(0, (t, 0, x)) == 0
assert integrate(3, (t, 0, x)) == 3*x
assert integrate(t, (t, 0, x)) == x**2/2
assert integrate(3*t, (t, 0, x)) == 3*x**2/2
assert integrate(3*t**2, (t, 0, x)) == x**3
assert integrate(1/t, (t, 1, x)) == log(x)
assert integrate(-1/t**2, (t, 1, x)) == 1/x - 1
assert integrate(t**2 + 5*t - 8, (t, 0, x)) == x**3/3 + 5*x**2/2 - 8*x
assert integrate(x**2, x) == x**3/3
assert integrate((3*t*x)**5, x) == (3*t)**5 * x**6 / 6
b = Symbol("b")
c = Symbol("c")
assert integrate(a*t, (t, 0, x)) == a*x**2/2
assert integrate(a*t**4, (t, 0, x)) == a*x**5/5
assert integrate(a*t**2 + b*t + c, (t, 0, x)) == a*x**3/3 + b*x**2/2 + c*x
def test_multiple_integration():
assert integrate((x**2)*(y**2), (x, 0, 1), (y, -1, 2)) == Rational(1)
assert integrate((y**2)*(x**2), x, y) == Rational(1, 9)*(x**3)*(y**3)
assert integrate(1/(x + 3)/(1 + x)**3, x) == \
log(3 + x)*Rational(-1, 8) + log(1 + x)*Rational(1, 8) + x/(4 + 8*x + 4*x**2)
assert integrate(sin(x*y)*y, (x, 0, 1), (y, 0, 1)) == -sin(1) + 1
def test_issue_3532():
assert integrate(exp(-x), (x, 0, oo)) == 1
def test_issue_3560():
assert integrate(sqrt(x)**3, x) == 2*sqrt(x)**5/5
assert integrate(sqrt(x), x) == 2*sqrt(x)**3/3
assert integrate(1/sqrt(x)**3, x) == -2/sqrt(x)
def test_issue_18038():
raises(AttributeError, lambda: integrate((x, x)))
def test_integrate_poly():
p = Poly(x + x**2*y + y**3, x, y)
# The stacklevel is based on Integral(Poly)
with warns_deprecated_sympy():
qx = Integral(p, x)
with warns(SymPyDeprecationWarning, test_stacklevel=False):
qx = integrate(p, x)
with warns(SymPyDeprecationWarning, test_stacklevel=False):
qy = integrate(p, y)
assert isinstance(qx, Poly) is True
assert isinstance(qy, Poly) is True
assert qx.gens == (x, y)
assert qy.gens == (x, y)
assert qx.as_expr() == x**2/2 + x**3*y/3 + x*y**3
assert qy.as_expr() == x*y + x**2*y**2/2 + y**4/4
def test_integrate_poly_definite():
p = Poly(x + x**2*y + y**3, x, y)
with warns_deprecated_sympy():
Qx = Integral(p, (x, 0, 1))
with warns(SymPyDeprecationWarning, test_stacklevel=False):
Qx = integrate(p, (x, 0, 1))
with warns(SymPyDeprecationWarning, test_stacklevel=False):
Qy = integrate(p, (y, 0, pi))
assert isinstance(Qx, Poly) is True
assert isinstance(Qy, Poly) is True
assert Qx.gens == (y,)
assert Qy.gens == (x,)
assert Qx.as_expr() == S.Half + y/3 + y**3
assert Qy.as_expr() == pi**4/4 + pi*x + pi**2*x**2/2
def test_integrate_omit_var():
y = Symbol('y')
assert integrate(x) == x**2/2
raises(ValueError, lambda: integrate(2))
raises(ValueError, lambda: integrate(x*y))
def test_integrate_poly_accurately():
y = Symbol('y')
assert integrate(x*sin(y), x) == x**2*sin(y)/2
# when passed to risch_norman, this will be a CPU hog, so this really
# checks, that integrated function is recognized as polynomial
assert integrate(x**1000*sin(y), x) == x**1001*sin(y)/1001
def test_issue_3635():
y = Symbol('y')
assert integrate(x**2, y) == x**2*y
assert integrate(x**2, (y, -1, 1)) == 2*x**2
# works in SymPy and py.test but hangs in `setup.py test`
def test_integrate_linearterm_pow():
# check integrate((a*x+b)^c, x) -- issue 3499
y = Symbol('y', positive=True)
# TODO: Remove conds='none' below, let the assumption take care of it.
assert integrate(x**y, x, conds='none') == x**(y + 1)/(y + 1)
assert integrate((exp(y)*x + 1/y)**(1 + sin(y)), x, conds='none') == \
exp(-y)*(exp(y)*x + 1/y)**(2 + sin(y)) / (2 + sin(y))
def test_issue_3618():
assert integrate(pi*sqrt(x), x) == 2*pi*sqrt(x)**3/3
assert integrate(pi*sqrt(x) + E*sqrt(x)**3, x) == \
2*pi*sqrt(x)**3/3 + 2*E *sqrt(x)**5/5
def test_issue_3623():
assert integrate(cos((n + 1)*x), x) == Piecewise(
(sin(x*(n + 1))/(n + 1), Ne(n + 1, 0)), (x, True))
assert integrate(cos((n - 1)*x), x) == Piecewise(
(sin(x*(n - 1))/(n - 1), Ne(n - 1, 0)), (x, True))
assert integrate(cos((n + 1)*x) + cos((n - 1)*x), x) == \
Piecewise((sin(x*(n - 1))/(n - 1), Ne(n - 1, 0)), (x, True)) + \
Piecewise((sin(x*(n + 1))/(n + 1), Ne(n + 1, 0)), (x, True))
def test_issue_3664():
n = Symbol('n', integer=True, nonzero=True)
assert integrate(-1./2 * x * sin(n * pi * x/2), [x, -2, 0]) == \
2.0*cos(pi*n)/(pi*n)
assert integrate(x * sin(n * pi * x/2) * Rational(-1, 2), [x, -2, 0]) == \
2*cos(pi*n)/(pi*n)
def test_issue_3679():
# definite integration of rational functions gives wrong answers
assert NS(Integral(1/(x**2 - 8*x + 17), (x, 2, 4))) == '1.10714871779409'
def test_issue_3686(): # remove this when fresnel integrals are implemented
from sympy.core.function import expand_func
from sympy.functions.special.error_functions import fresnels
assert expand_func(integrate(sin(x**2), x)) == \
sqrt(2)*sqrt(pi)*fresnels(sqrt(2)*x/sqrt(pi))/2
def test_integrate_units():
m = units.m
s = units.s
assert integrate(x * m/s, (x, 1*s, 5*s)) == 12*m*s
def test_transcendental_functions():
assert integrate(LambertW(2*x), x) == \
-x + x*LambertW(2*x) + x/LambertW(2*x)
def test_log_polylog():
assert integrate(log(1 - x)/x, (x, 0, 1)) == -pi**2/6
assert integrate(log(x)*(1 - x)**(-1), (x, 0, 1)) == -pi**2/6
def test_issue_3740():
f = 4*log(x) - 2*log(x)**2
fid = diff(integrate(f, x), x)
assert abs(f.subs(x, 42).evalf() - fid.subs(x, 42).evalf()) < 1e-10
def test_issue_3788():
assert integrate(1/(1 + x**2), x) == atan(x)
def test_issue_3952():
f = sin(x)
assert integrate(f, x) == -cos(x)
raises(ValueError, lambda: integrate(f, 2*x))
def test_issue_4516():
assert integrate(2**x - 2*x, x) == 2**x/log(2) - x**2
def test_issue_7450():
ans = integrate(exp(-(1 + I)*x), (x, 0, oo))
assert re(ans) == S.Half and im(ans) == Rational(-1, 2)
def test_issue_8623():
assert integrate((1 + cos(2*x)) / (3 - 2*cos(2*x)), (x, 0, pi)) == -pi/2 + sqrt(5)*pi/2
assert integrate((1 + cos(2*x))/(3 - 2*cos(2*x))) == -x/2 + sqrt(5)*(atan(sqrt(5)*tan(x)) + \
pi*floor((x - pi/2)/pi))/2
def test_issue_9569():
assert integrate(1 / (2 - cos(x)), (x, 0, pi)) == pi/sqrt(3)
assert integrate(1/(2 - cos(x))) == 2*sqrt(3)*(atan(sqrt(3)*tan(x/2)) + pi*floor((x/2 - pi/2)/pi))/3
def test_issue_13733():
s = Symbol('s', positive=True)
pz = exp(-(z - y)**2/(2*s*s))/sqrt(2*pi*s*s)
pzgx = integrate(pz, (z, x, oo))
assert integrate(pzgx, (x, 0, oo)) == sqrt(2)*s*exp(-y**2/(2*s**2))/(2*sqrt(pi)) + \
y*erf(sqrt(2)*y/(2*s))/2 + y/2
def test_issue_13749():
assert integrate(1 / (2 + cos(x)), (x, 0, pi)) == pi/sqrt(3)
assert integrate(1/(2 + cos(x))) == 2*sqrt(3)*(atan(sqrt(3)*tan(x/2)/3) + pi*floor((x/2 - pi/2)/pi))/3
def test_issue_18133():
assert integrate(exp(x)/(1 + x)**2, x) == NonElementaryIntegral(exp(x)/(x + 1)**2, x)
def test_issue_21741():
a = Float('3999999.9999999995', precision=53)
b = Float('2.5000000000000004e-7', precision=53)
r = Piecewise((b*I*exp(-a*I*pi*t*y)*exp(-a*I*pi*x*z)/(pi*x),
Ne(1.0*pi*x*exp(a*I*pi*t*y), 0)),
(z*exp(-a*I*pi*t*y), True))
fun = E**((-2*I*pi*(z*x+t*y))/(500*10**(-9)))
assert integrate(fun, z) == r
def test_matrices():
M = Matrix(2, 2, lambda i, j: (i + j + 1)*sin((i + j + 1)*x))
assert integrate(M, x) == Matrix([
[-cos(x), -cos(2*x)],
[-cos(2*x), -cos(3*x)],
])
def test_integrate_functions():
# issue 4111
assert integrate(f(x), x) == Integral(f(x), x)
assert integrate(f(x), (x, 0, 1)) == Integral(f(x), (x, 0, 1))
assert integrate(f(x)*diff(f(x), x), x) == f(x)**2/2
assert integrate(diff(f(x), x) / f(x), x) == log(f(x))
def test_integrate_derivatives():
assert integrate(Derivative(f(x), x), x) == f(x)
assert integrate(Derivative(f(y), y), x) == x*Derivative(f(y), y)
assert integrate(Derivative(f(x), x)**2, x) == \
Integral(Derivative(f(x), x)**2, x)
def test_transform():
a = Integral(x**2 + 1, (x, -1, 2))
fx = x
fy = 3*y + 1
assert a.doit() == a.transform(fx, fy).doit()
assert a.transform(fx, fy).transform(fy, fx) == a
fx = 3*x + 1
fy = y
assert a.transform(fx, fy).transform(fy, fx) == a
a = Integral(sin(1/x), (x, 0, 1))
assert a.transform(x, 1/y) == Integral(sin(y)/y**2, (y, 1, oo))
assert a.transform(x, 1/y).transform(y, 1/x) == a
a = Integral(exp(-x**2), (x, -oo, oo))
assert a.transform(x, 2*y) == Integral(2*exp(-4*y**2), (y, -oo, oo))
# < 3 arg limit handled properly
assert Integral(x, x).transform(x, a*y).doit() == \
Integral(y*a**2, y).doit()
_3 = S(3)
assert Integral(x, (x, 0, -_3)).transform(x, 1/y).doit() == \
Integral(-1/x**3, (x, -oo, -1/_3)).doit()
assert Integral(x, (x, 0, _3)).transform(x, 1/y) == \
Integral(y**(-3), (y, 1/_3, oo))
# issue 8400
i = Integral(x + y, (x, 1, 2), (y, 1, 2))
assert i.transform(x, (x + 2*y, x)).doit() == \
i.transform(x, (x + 2*z, x)).doit() == 3
i = Integral(x, (x, a, b))
assert i.transform(x, 2*s) == Integral(4*s, (s, a/2, b/2))
raises(ValueError, lambda: i.transform(x, 1))
raises(ValueError, lambda: i.transform(x, s*t))
raises(ValueError, lambda: i.transform(x, -s))
raises(ValueError, lambda: i.transform(x, (s, t)))
raises(ValueError, lambda: i.transform(2*x, 2*s))
i = Integral(x**2, (x, 1, 2))
raises(ValueError, lambda: i.transform(x**2, s))
am = Symbol('a', negative=True)
bp = Symbol('b', positive=True)
i = Integral(x, (x, bp, am))
i.transform(x, 2*s)
assert i.transform(x, 2*s) == Integral(-4*s, (s, am/2, bp/2))
i = Integral(x, (x, a))
assert i.transform(x, 2*s) == Integral(4*s, (s, a/2))
def test_issue_4052():
f = S.Half*asin(x) + x*sqrt(1 - x**2)/2
assert integrate(cos(asin(x)), x) == f
assert integrate(sin(acos(x)), x) == f
@slow
def test_evalf_integrals():
assert NS(Integral(x, (x, 2, 5)), 15) == '10.5000000000000'
gauss = Integral(exp(-x**2), (x, -oo, oo))
assert NS(gauss, 15) == '1.77245385090552'
assert NS(gauss**2 - pi + E*Rational(
1, 10**20), 15) in ('2.71828182845904e-20', '2.71828182845905e-20')
# A monster of an integral from http://mathworld.wolfram.com/DefiniteIntegral.html
t = Symbol('t')
a = 8*sqrt(3)/(1 + 3*t**2)
b = 16*sqrt(2)*(3*t + 1)*sqrt(4*t**2 + t + 1)**3
c = (3*t**2 + 1)*(11*t**2 + 2*t + 3)**2
d = sqrt(2)*(249*t**2 + 54*t + 65)/(11*t**2 + 2*t + 3)**2
f = a - b/c - d
assert NS(Integral(f, (t, 0, 1)), 50) == \
NS((3*sqrt(2) - 49*pi + 162*atan(sqrt(2)))/12, 50)
# http://mathworld.wolfram.com/VardisIntegral.html
assert NS(Integral(log(log(1/x))/(1 + x + x**2), (x, 0, 1)), 15) == \
NS('pi/sqrt(3) * log(2*pi**(5/6) / gamma(1/6))', 15)
# http://mathworld.wolfram.com/AhmedsIntegral.html
assert NS(Integral(atan(sqrt(x**2 + 2))/(sqrt(x**2 + 2)*(x**2 + 1)), (x,
0, 1)), 15) == NS(5*pi**2/96, 15)
# http://mathworld.wolfram.com/AbelsIntegral.html
assert NS(Integral(x/((exp(pi*x) - exp(
-pi*x))*(x**2 + 1)), (x, 0, oo)), 15) == NS('log(2)/2-1/4', 15)
# Complex part trimming
# http://mathworld.wolfram.com/VardisIntegral.html
assert NS(Integral(log(log(sin(x)/cos(x))), (x, pi/4, pi/2)), 15, chop=True) == \
NS('pi/4*log(4*pi**3/gamma(1/4)**4)', 15)
#
# Endpoints causing trouble (rounding error in integration points -> complex log)
assert NS(
2 + Integral(log(2*cos(x/2)), (x, -pi, pi)), 17, chop=True) == NS(2, 17)
assert NS(
2 + Integral(log(2*cos(x/2)), (x, -pi, pi)), 20, chop=True) == NS(2, 20)
assert NS(
2 + Integral(log(2*cos(x/2)), (x, -pi, pi)), 22, chop=True) == NS(2, 22)
# Needs zero handling
assert NS(pi - 4*Integral(
'sqrt(1-x**2)', (x, 0, 1)), 15, maxn=30, chop=True) in ('0.0', '0')
# Oscillatory quadrature
a = Integral(sin(x)/x**2, (x, 1, oo)).evalf(maxn=15)
assert 0.49 < a < 0.51
assert NS(
Integral(sin(x)/x**2, (x, 1, oo)), quad='osc') == '0.504067061906928'
assert NS(Integral(
cos(pi*x + 1)/x, (x, -oo, -1)), quad='osc') == '0.276374705640365'
# indefinite integrals aren't evaluated
assert NS(Integral(x, x)) == 'Integral(x, x)'
assert NS(Integral(x, (x, y))) == 'Integral(x, (x, y))'
def test_evalf_issue_939():
# https://github.com/sympy/sympy/issues/4038
# The output form of an integral may differ by a step function between
# revisions, making this test a bit useless. This can't be said about
# other two tests. For now, all values of this evaluation are used here,
# but in future this should be reconsidered.
assert NS(integrate(1/(x**5 + 1), x).subs(x, 4), chop=True) in \
['-0.000976138910649103', '0.965906660135753', '1.93278945918216']
assert NS(Integral(1/(x**5 + 1), (x, 2, 4))) == '0.0144361088886740'
assert NS(
integrate(1/(x**5 + 1), (x, 2, 4)), chop=True) == '0.0144361088886740'
def test_double_previously_failing_integrals():
# Double integrals not implemented <- Sure it is!
res = integrate(sqrt(x) + x*y, (x, 1, 2), (y, -1, 1))
# Old numerical test
assert NS(res, 15) == '2.43790283299492'
# Symbolic test
assert res == Rational(-4, 3) + 8*sqrt(2)/3
# double integral + zero detection
assert integrate(sin(x + x*y), (x, -1, 1), (y, -1, 1)) is S.Zero
def test_integrate_SingularityFunction():
in_1 = SingularityFunction(x, a, 3) + SingularityFunction(x, 5, -1)
out_1 = SingularityFunction(x, a, 4)/4 + SingularityFunction(x, 5, 0)
assert integrate(in_1, x) == out_1
in_2 = 10*SingularityFunction(x, 4, 0) - 5*SingularityFunction(x, -6, -2)
out_2 = 10*SingularityFunction(x, 4, 1) - 5*SingularityFunction(x, -6, -1)
assert integrate(in_2, x) == out_2
in_3 = 2*x**2*y -10*SingularityFunction(x, -4, 7) - 2*SingularityFunction(y, 10, -2)
out_3_1 = 2*x**3*y/3 - 2*x*SingularityFunction(y, 10, -2) - 5*SingularityFunction(x, -4, 8)/4
out_3_2 = x**2*y**2 - 10*y*SingularityFunction(x, -4, 7) - 2*SingularityFunction(y, 10, -1)
assert integrate(in_3, x) == out_3_1
assert integrate(in_3, y) == out_3_2
assert unchanged(Integral, in_3, (x,))
assert Integral(in_3, x) == Integral(in_3, (x,))
assert Integral(in_3, x).doit() == out_3_1
in_4 = 10*SingularityFunction(x, -4, 7) - 2*SingularityFunction(x, 10, -2)
out_4 = 5*SingularityFunction(x, -4, 8)/4 - 2*SingularityFunction(x, 10, -1)
assert integrate(in_4, (x, -oo, x)) == out_4
assert integrate(SingularityFunction(x, 5, -1), x) == SingularityFunction(x, 5, 0)
assert integrate(SingularityFunction(x, 0, -1), (x, -oo, oo)) == 1
assert integrate(5*SingularityFunction(x, 5, -1), (x, -oo, oo)) == 5
assert integrate(SingularityFunction(x, 5, -1) * f(x), (x, -oo, oo)) == f(5)
def test_integrate_DiracDelta():
# This is here to check that deltaintegrate is being called, but also
# to test definite integrals. More tests are in test_deltafunctions.py
assert integrate(DiracDelta(x) * f(x), (x, -oo, oo)) == f(0)
assert integrate(DiracDelta(x)**2, (x, -oo, oo)) == DiracDelta(0)
# issue 4522
assert integrate(integrate((4 - 4*x + x*y - 4*y) * \
DiracDelta(x)*DiracDelta(y - 1), (x, 0, 1)), (y, 0, 1)) == 0
# issue 5729
p = exp(-(x**2 + y**2))/pi
assert integrate(p*DiracDelta(x - 10*y), (x, -oo, oo), (y, -oo, oo)) == \
integrate(p*DiracDelta(x - 10*y), (y, -oo, oo), (x, -oo, oo)) == \
integrate(p*DiracDelta(10*x - y), (x, -oo, oo), (y, -oo, oo)) == \
integrate(p*DiracDelta(10*x - y), (y, -oo, oo), (x, -oo, oo)) == \
1/sqrt(101*pi)
def test_integrate_returns_piecewise():
assert integrate(x**y, x) == Piecewise(
(x**(y + 1)/(y + 1), Ne(y, -1)), (log(x), True))
assert integrate(x**y, y) == Piecewise(
(x**y/log(x), Ne(log(x), 0)), (y, True))
assert integrate(exp(n*x), x) == Piecewise(
(exp(n*x)/n, Ne(n, 0)), (x, True))
assert integrate(x*exp(n*x), x) == Piecewise(
((n*x - 1)*exp(n*x)/n**2, Ne(n**2, 0)), (x**2/2, True))
assert integrate(x**(n*y), x) == Piecewise(
(x**(n*y + 1)/(n*y + 1), Ne(n*y, -1)), (log(x), True))
assert integrate(x**(n*y), y) == Piecewise(
(x**(n*y)/(n*log(x)), Ne(n*log(x), 0)), (y, True))
assert integrate(cos(n*x), x) == Piecewise(
(sin(n*x)/n, Ne(n, 0)), (x, True))
assert integrate(cos(n*x)**2, x) == Piecewise(
((n*x/2 + sin(n*x)*cos(n*x)/2)/n, Ne(n, 0)), (x, True))
assert integrate(x*cos(n*x), x) == Piecewise(
(x*sin(n*x)/n + cos(n*x)/n**2, Ne(n, 0)), (x**2/2, True))
assert integrate(sin(n*x), x) == Piecewise(
(-cos(n*x)/n, Ne(n, 0)), (0, True))
assert integrate(sin(n*x)**2, x) == Piecewise(
((n*x/2 - sin(n*x)*cos(n*x)/2)/n, Ne(n, 0)), (0, True))
assert integrate(x*sin(n*x), x) == Piecewise(
(-x*cos(n*x)/n + sin(n*x)/n**2, Ne(n, 0)), (0, True))
assert integrate(exp(x*y), (x, 0, z)) == Piecewise(
(exp(y*z)/y - 1/y, (y > -oo) & (y < oo) & Ne(y, 0)), (z, True))
# https://github.com/sympy/sympy/issues/23707
assert integrate(exp(t)*exp(-t*sqrt(x - y)), t) == Piecewise(
(-exp(t)/(sqrt(x - y)*exp(t*sqrt(x - y)) - exp(t*sqrt(x - y))),
Ne(x, y + 1)), (t, True))
def test_integrate_max_min():
x = symbols('x', real=True)
assert integrate(Min(x, 2), (x, 0, 3)) == 4
assert integrate(Max(x**2, x**3), (x, 0, 2)) == Rational(49, 12)
assert integrate(Min(exp(x), exp(-x))**2, x) == Piecewise( \
(exp(2*x)/2, x <= 0), (1 - exp(-2*x)/2, True))
# issue 7907
c = symbols('c', extended_real=True)
int1 = integrate(Max(c, x)*exp(-x**2), (x, -oo, oo))
int2 = integrate(c*exp(-x**2), (x, -oo, c))
int3 = integrate(x*exp(-x**2), (x, c, oo))
assert int1 == int2 + int3 == sqrt(pi)*c*erf(c)/2 + \
sqrt(pi)*c/2 + exp(-c**2)/2
def test_integrate_Abs_sign():
assert integrate(Abs(x), (x, -2, 1)) == Rational(5, 2)
assert integrate(Abs(x), (x, 0, 1)) == S.Half
assert integrate(Abs(x + 1), (x, 0, 1)) == Rational(3, 2)
assert integrate(Abs(x**2 - 1), (x, -2, 2)) == 4
assert integrate(Abs(x**2 - 3*x), (x, -15, 15)) == 2259
assert integrate(sign(x), (x, -1, 2)) == 1
assert integrate(sign(x)*sin(x), (x, -pi, pi)) == 4
assert integrate(sign(x - 2) * x**2, (x, 0, 3)) == Rational(11, 3)
t, s = symbols('t s', real=True)
assert integrate(Abs(t), t) == Piecewise(
(-t**2/2, t <= 0), (t**2/2, True))
assert integrate(Abs(2*t - 6), t) == Piecewise(
(-t**2 + 6*t, t <= 3), (t**2 - 6*t + 18, True))
assert (integrate(abs(t - s**2), (t, 0, 2)) ==
2*s**2*Min(2, s**2) - 2*s**2 - Min(2, s**2)**2 + 2)
assert integrate(exp(-Abs(t)), t) == Piecewise(
(exp(t), t <= 0), (2 - exp(-t), True))
assert integrate(sign(2*t - 6), t) == Piecewise(
(-t, t < 3), (t - 6, True))
assert integrate(2*t*sign(t**2 - 1), t) == Piecewise(
(t**2, t < -1), (-t**2 + 2, t < 1), (t**2, True))
assert integrate(sign(t), (t, s + 1)) == Piecewise(
(s + 1, s + 1 > 0), (-s - 1, s + 1 < 0), (0, True))
def test_subs1():
e = Integral(exp(x - y), x)
assert e.subs(y, 3) == Integral(exp(x - 3), x)
e = Integral(exp(x - y), (x, 0, 1))
assert e.subs(y, 3) == Integral(exp(x - 3), (x, 0, 1))
f = Lambda(x, exp(-x**2))
conv = Integral(f(x - y)*f(y), (y, -oo, oo))
assert conv.subs({x: 0}) == Integral(exp(-2*y**2), (y, -oo, oo))
def test_subs2():
e = Integral(exp(x - y), x, t)
assert e.subs(y, 3) == Integral(exp(x - 3), x, t)
e = Integral(exp(x - y), (x, 0, 1), (t, 0, 1))
assert e.subs(y, 3) == Integral(exp(x - 3), (x, 0, 1), (t, 0, 1))
f = Lambda(x, exp(-x**2))
conv = Integral(f(x - y)*f(y), (y, -oo, oo), (t, 0, 1))
assert conv.subs({x: 0}) == Integral(exp(-2*y**2), (y, -oo, oo), (t, 0, 1))
def test_subs3():
e = Integral(exp(x - y), (x, 0, y), (t, y, 1))
assert e.subs(y, 3) == Integral(exp(x - 3), (x, 0, 3), (t, 3, 1))
f = Lambda(x, exp(-x**2))
conv = Integral(f(x - y)*f(y), (y, -oo, oo), (t, x, 1))
assert conv.subs({x: 0}) == Integral(exp(-2*y**2), (y, -oo, oo), (t, 0, 1))
def test_subs4():
e = Integral(exp(x), (x, 0, y), (t, y, 1))
assert e.subs(y, 3) == Integral(exp(x), (x, 0, 3), (t, 3, 1))
f = Lambda(x, exp(-x**2))
conv = Integral(f(y)*f(y), (y, -oo, oo), (t, x, 1))
assert conv.subs({x: 0}) == Integral(exp(-2*y**2), (y, -oo, oo), (t, 0, 1))
def test_subs5():
e = Integral(exp(-x**2), (x, -oo, oo))
assert e.subs(x, 5) == e
e = Integral(exp(-x**2 + y), x)
assert e.subs(y, 5) == Integral(exp(-x**2 + 5), x)
e = Integral(exp(-x**2 + y), (x, x))
assert e.subs(x, 5) == Integral(exp(y - x**2), (x, 5))
assert e.subs(y, 5) == Integral(exp(-x**2 + 5), x)
e = Integral(exp(-x**2 + y), (y, -oo, oo), (x, -oo, oo))
assert e.subs(x, 5) == e
assert e.subs(y, 5) == e
# Test evaluation of antiderivatives
e = Integral(exp(-x**2), (x, x))
assert e.subs(x, 5) == Integral(exp(-x**2), (x, 5))
e = Integral(exp(x), x)
assert (e.subs(x,1) - e.subs(x,0) - Integral(exp(x), (x, 0, 1))
).doit().is_zero
def test_subs6():
a, b = symbols('a b')
e = Integral(x*y, (x, f(x), f(y)))
assert e.subs(x, 1) == Integral(x*y, (x, f(1), f(y)))
assert e.subs(y, 1) == Integral(x, (x, f(x), f(1)))
e = Integral(x*y, (x, f(x), f(y)), (y, f(x), f(y)))
assert e.subs(x, 1) == Integral(x*y, (x, f(1), f(y)), (y, f(1), f(y)))
assert e.subs(y, 1) == Integral(x*y, (x, f(x), f(y)), (y, f(x), f(1)))
e = Integral(x*y, (x, f(x), f(a)), (y, f(x), f(a)))
assert e.subs(a, 1) == Integral(x*y, (x, f(x), f(1)), (y, f(x), f(1)))
def test_subs7():
e = Integral(x, (x, 1, y), (y, 1, 2))
assert e.subs({x: 1, y: 2}) == e
e = Integral(sin(x) + sin(y), (x, sin(x), sin(y)),
(y, 1, 2))
assert e.subs(sin(y), 1) == e
assert e.subs(sin(x), 1) == Integral(sin(x) + sin(y), (x, 1, sin(y)),
(y, 1, 2))
def test_expand():
e = Integral(f(x)+f(x**2), (x, 1, y))
assert e.expand() == Integral(f(x), (x, 1, y)) + Integral(f(x**2), (x, 1, y))
e = Integral(f(x)+f(x**2), (x, 1, oo))
assert e.expand() == e
assert e.expand(force=True) == Integral(f(x), (x, 1, oo)) + \
Integral(f(x**2), (x, 1, oo))
def test_integration_variable():
raises(ValueError, lambda: Integral(exp(-x**2), 3))
raises(ValueError, lambda: Integral(exp(-x**2), (3, -oo, oo)))
def test_expand_integral():
assert Integral(cos(x**2)*(sin(x**2) + 1), (x, 0, 1)).expand() == \
Integral(cos(x**2)*sin(x**2), (x, 0, 1)) + \
Integral(cos(x**2), (x, 0, 1))
assert Integral(cos(x**2)*(sin(x**2) + 1), x).expand() == \
Integral(cos(x**2)*sin(x**2), x) + \
Integral(cos(x**2), x)
def test_as_sum_midpoint1():
e = Integral(sqrt(x**3 + 1), (x, 2, 10))
assert e.as_sum(1, method="midpoint") == 8*sqrt(217)
assert e.as_sum(2, method="midpoint") == 4*sqrt(65) + 12*sqrt(57)
assert e.as_sum(3, method="midpoint") == 8*sqrt(217)/3 + \
8*sqrt(3081)/27 + 8*sqrt(52809)/27
assert e.as_sum(4, method="midpoint") == 2*sqrt(730) + \
4*sqrt(7) + 4*sqrt(86) + 6*sqrt(14)
assert abs(e.as_sum(4, method="midpoint").n() - e.n()) < 0.5
e = Integral(sqrt(x**3 + y**3), (x, 2, 10), (y, 0, 10))
raises(NotImplementedError, lambda: e.as_sum(4))
def test_as_sum_midpoint2():
e = Integral((x + y)**2, (x, 0, 1))
n = Symbol('n', positive=True, integer=True)
assert e.as_sum(1, method="midpoint").expand() == Rational(1, 4) + y + y**2
assert e.as_sum(2, method="midpoint").expand() == Rational(5, 16) + y + y**2
assert e.as_sum(3, method="midpoint").expand() == Rational(35, 108) + y + y**2
assert e.as_sum(4, method="midpoint").expand() == Rational(21, 64) + y + y**2
assert e.as_sum(n, method="midpoint").expand() == \
y**2 + y + Rational(1, 3) - 1/(12*n**2)
def test_as_sum_left():
e = Integral((x + y)**2, (x, 0, 1))
assert e.as_sum(1, method="left").expand() == y**2
assert e.as_sum(2, method="left").expand() == Rational(1, 8) + y/2 + y**2
assert e.as_sum(3, method="left").expand() == Rational(5, 27) + y*Rational(2, 3) + y**2
assert e.as_sum(4, method="left").expand() == Rational(7, 32) + y*Rational(3, 4) + y**2
assert e.as_sum(n, method="left").expand() == \
y**2 + y + Rational(1, 3) - y/n - 1/(2*n) + 1/(6*n**2)
assert e.as_sum(10, method="left", evaluate=False).has(Sum)
def test_as_sum_right():
e = Integral((x + y)**2, (x, 0, 1))
assert e.as_sum(1, method="right").expand() == 1 + 2*y + y**2
assert e.as_sum(2, method="right").expand() == Rational(5, 8) + y*Rational(3, 2) + y**2
assert e.as_sum(3, method="right").expand() == Rational(14, 27) + y*Rational(4, 3) + y**2
assert e.as_sum(4, method="right").expand() == Rational(15, 32) + y*Rational(5, 4) + y**2
assert e.as_sum(n, method="right").expand() == \
y**2 + y + Rational(1, 3) + y/n + 1/(2*n) + 1/(6*n**2)
def test_as_sum_trapezoid():
e = Integral((x + y)**2, (x, 0, 1))
assert e.as_sum(1, method="trapezoid").expand() == y**2 + y + S.Half
assert e.as_sum(2, method="trapezoid").expand() == y**2 + y + Rational(3, 8)
assert e.as_sum(3, method="trapezoid").expand() == y**2 + y + Rational(19, 54)
assert e.as_sum(4, method="trapezoid").expand() == y**2 + y + Rational(11, 32)
assert e.as_sum(n, method="trapezoid").expand() == \
y**2 + y + Rational(1, 3) + 1/(6*n**2)
assert Integral(sign(x), (x, 0, 1)).as_sum(1, 'trapezoid') == S.Half
def test_as_sum_raises():
e = Integral((x + y)**2, (x, 0, 1))
raises(ValueError, lambda: e.as_sum(-1))
raises(ValueError, lambda: e.as_sum(0))
raises(ValueError, lambda: Integral(x).as_sum(3))
raises(ValueError, lambda: e.as_sum(oo))
raises(ValueError, lambda: e.as_sum(3, method='xxxx2'))
def test_nested_doit():
e = Integral(Integral(x, x), x)
f = Integral(x, x, x)
assert e.doit() == f.doit()
def test_issue_4665():
# Allow only upper or lower limit evaluation
e = Integral(x**2, (x, None, 1))
f = Integral(x**2, (x, 1, None))
assert e.doit() == Rational(1, 3)
assert f.doit() == Rational(-1, 3)
assert Integral(x*y, (x, None, y)).subs(y, t) == Integral(x*t, (x, None, t))
assert Integral(x*y, (x, y, None)).subs(y, t) == Integral(x*t, (x, t, None))
assert integrate(x**2, (x, None, 1)) == Rational(1, 3)
assert integrate(x**2, (x, 1, None)) == Rational(-1, 3)
assert integrate("x**2", ("x", "1", None)) == Rational(-1, 3)
def test_integral_reconstruct():
e = Integral(x**2, (x, -1, 1))
assert e == Integral(*e.args)
def test_doit_integrals():
e = Integral(Integral(2*x), (x, 0, 1))
assert e.doit() == Rational(1, 3)
assert e.doit(deep=False) == Rational(1, 3)
f = Function('f')
# doesn't matter if the integral can't be performed
assert Integral(f(x), (x, 1, 1)).doit() == 0
# doesn't matter if the limits can't be evaluated
assert Integral(0, (x, 1, Integral(f(x), x))).doit() == 0
assert Integral(x, (a, 0)).doit() == 0
limits = ((a, 1, exp(x)), (x, 0))
assert Integral(a, *limits).doit() == Rational(1, 4)
assert Integral(a, *list(reversed(limits))).doit() == 0
def test_issue_4884():
assert integrate(sqrt(x)*(1 + x)) == \
Piecewise(
(2*sqrt(x)*(x + 1)**2/5 - 2*sqrt(x)*(x + 1)/15 - 4*sqrt(x)/15,
Abs(x + 1) > 1),
(2*I*sqrt(-x)*(x + 1)**2/5 - 2*I*sqrt(-x)*(x + 1)/15 -
4*I*sqrt(-x)/15, True))
assert integrate(x**x*(1 + log(x))) == x**x
def test_issue_18153():
assert integrate(x**n*log(x),x) == \
Piecewise(
(n*x*x**n*log(x)/(n**2 + 2*n + 1) +
x*x**n*log(x)/(n**2 + 2*n + 1) - x*x**n/(n**2 + 2*n + 1)
, Ne(n, -1)), (log(x)**2/2, True)
)
def test_is_number():
from sympy.abc import x, y, z
assert Integral(x).is_number is False
assert Integral(1, x).is_number is False
assert Integral(1, (x, 1)).is_number is True
assert Integral(1, (x, 1, 2)).is_number is True
assert Integral(1, (x, 1, y)).is_number is False
assert Integral(1, (x, y)).is_number is False
assert Integral(x, y).is_number is False
assert Integral(x, (y, 1, x)).is_number is False
assert Integral(x, (y, 1, 2)).is_number is False
assert Integral(x, (x, 1, 2)).is_number is True
# `foo.is_number` should always be equivalent to `not foo.free_symbols`
# in each of these cases, there are pseudo-free symbols
i = Integral(x, (y, 1, 1))
assert i.is_number is False and i.n() == 0
i = Integral(x, (y, z, z))
assert i.is_number is False and i.n() == 0
i = Integral(1, (y, z, z + 2))
assert i.is_number is False and i.n() == 2
assert Integral(x*y, (x, 1, 2), (y, 1, 3)).is_number is True
assert Integral(x*y, (x, 1, 2), (y, 1, z)).is_number is False
assert Integral(x, (x, 1)).is_number is True
assert Integral(x, (x, 1, Integral(y, (y, 1, 2)))).is_number is True
assert Integral(Sum(z, (z, 1, 2)), (x, 1, 2)).is_number is True
# it is possible to get a false negative if the integrand is
# actually an unsimplified zero, but this is true of is_number in general.
assert Integral(sin(x)**2 + cos(x)**2 - 1, x).is_number is False
assert Integral(f(x), (x, 0, 1)).is_number is True
def test_free_symbols():
from sympy.abc import x, y, z
assert Integral(0, x).free_symbols == {x}
assert Integral(x).free_symbols == {x}
assert Integral(x, (x, None, y)).free_symbols == {y}
assert Integral(x, (x, y, None)).free_symbols == {y}
assert Integral(x, (x, 1, y)).free_symbols == {y}
assert Integral(x, (x, y, 1)).free_symbols == {y}
assert Integral(x, (x, x, y)).free_symbols == {x, y}
assert Integral(x, x, y).free_symbols == {x, y}
assert Integral(x, (x, 1, 2)).free_symbols == set()
assert Integral(x, (y, 1, 2)).free_symbols == {x}
# pseudo-free in this case
assert Integral(x, (y, z, z)).free_symbols == {x, z}
assert Integral(x, (y, 1, 2), (y, None, None)
).free_symbols == {x, y}
assert Integral(x, (y, 1, 2), (x, 1, y)
).free_symbols == {y}
assert Integral(2, (y, 1, 2), (y, 1, x), (x, 1, 2)
).free_symbols == set()
assert Integral(2, (y, x, 2), (y, 1, x), (x, 1, 2)
).free_symbols == set()
assert Integral(2, (x, 1, 2), (y, x, 2), (y, 1, 2)
).free_symbols == {x}
assert Integral(f(x), (f(x), 1, y)).free_symbols == {y}
assert Integral(f(x), (f(x), 1, x)).free_symbols == {x}
def test_is_zero():
from sympy.abc import x, m
assert Integral(0, (x, 1, x)).is_zero
assert Integral(1, (x, 1, 1)).is_zero
assert Integral(1, (x, 1, 2), (y, 2)).is_zero is False
assert Integral(x, (m, 0)).is_zero
assert Integral(x + m, (m, 0)).is_zero is None
i = Integral(m, (m, 1, exp(x)), (x, 0))
assert i.is_zero is None
assert Integral(m, (x, 0), (m, 1, exp(x))).is_zero is True
assert Integral(x, (x, oo, oo)).is_zero # issue 8171
assert Integral(x, (x, -oo, -oo)).is_zero
# this is zero but is beyond the scope of what is_zero
# should be doing
assert Integral(sin(x), (x, 0, 2*pi)).is_zero is None
def test_series():
from sympy.abc import x
i = Integral(cos(x), (x, x))
e = i.lseries(x)
assert i.nseries(x, n=8).removeO() == Add(*[next(e) for j in range(4)])
def test_trig_nonelementary_integrals():
x = Symbol('x')
assert integrate((1 + sin(x))/x, x) == log(x) + Si(x)
# next one comes out as log(x) + log(x**2)/2 + Ci(x)
# so not hardcoding this log ugliness
assert integrate((cos(x) + 2)/x, x).has(Ci)
def test_issue_4403():
x = Symbol('x')
y = Symbol('y')
z = Symbol('z', positive=True)
assert integrate(sqrt(x**2 + z**2), x) == \
z**2*asinh(x/z)/2 + x*sqrt(x**2 + z**2)/2
assert integrate(sqrt(x**2 - z**2), x) == \
x*sqrt(x**2 - z**2)/2 - z**2*log(x + sqrt(x**2 - z**2))/2
x = Symbol('x', real=True)
y = Symbol('y', positive=True)
assert integrate(1/(x**2 + y**2)**S('3/2'), x) == \
x/(y**2*sqrt(x**2 + y**2))
# If y is real and nonzero, we get x*Abs(y)/(y**3*sqrt(x**2 + y**2)),
# which results from sqrt(1 + x**2/y**2) = sqrt(x**2 + y**2)/|y|.
def test_issue_4403_2():
assert integrate(sqrt(-x**2 - 4), x) == \
-2*atan(x/sqrt(-4 - x**2)) + x*sqrt(-4 - x**2)/2
def test_issue_4100():
R = Symbol('R', positive=True)
assert integrate(sqrt(R**2 - x**2), (x, 0, R)) == pi*R**2/4
def test_issue_5167():
from sympy.abc import w, x, y, z
f = Function('f')
assert Integral(Integral(f(x), x), x) == Integral(f(x), x, x)
assert Integral(f(x)).args == (f(x), Tuple(x))
assert Integral(Integral(f(x))).args == (f(x), Tuple(x), Tuple(x))
assert Integral(Integral(f(x)), y).args == (f(x), Tuple(x), Tuple(y))
assert Integral(Integral(f(x), z), y).args == (f(x), Tuple(z), Tuple(y))
assert Integral(Integral(Integral(f(x), x), y), z).args == \
(f(x), Tuple(x), Tuple(y), Tuple(z))
assert integrate(Integral(f(x), x), x) == Integral(f(x), x, x)
assert integrate(Integral(f(x), y), x) == y*Integral(f(x), x)
assert integrate(Integral(f(x), x), y) in [Integral(y*f(x), x), y*Integral(f(x), x)]
assert integrate(Integral(2, x), x) == x**2
assert integrate(Integral(2, x), y) == 2*x*y
# don't re-order given limits
assert Integral(1, x, y).args != Integral(1, y, x).args
# do as many as possible
assert Integral(f(x), y, x, y, x).doit() == y**2*Integral(f(x), x, x)/2
assert Integral(f(x), (x, 1, 2), (w, 1, x), (z, 1, y)).doit() == \
y*(x - 1)*Integral(f(x), (x, 1, 2)) - (x - 1)*Integral(f(x), (x, 1, 2))
def test_issue_4890():
z = Symbol('z', positive=True)
assert integrate(exp(-log(x)**2), x) == \
sqrt(pi)*exp(Rational(1, 4))*erf(log(x) - S.Half)/2
assert integrate(exp(log(x)**2), x) == \
sqrt(pi)*exp(Rational(-1, 4))*erfi(log(x)+S.Half)/2
assert integrate(exp(-z*log(x)**2), x) == \
sqrt(pi)*exp(1/(4*z))*erf(sqrt(z)*log(x) - 1/(2*sqrt(z)))/(2*sqrt(z))
def test_issue_4551():
assert not integrate(1/(x*sqrt(1 - x**2)), x).has(Integral)
def test_issue_4376():
n = Symbol('n', integer=True, positive=True)
assert simplify(integrate(n*(x**(1/n) - 1), (x, 0, S.Half)) -
(n**2 - 2**(1/n)*n**2 - n*2**(1/n))/(2**(1 + 1/n) + n*2**(1 + 1/n))) == 0
def test_issue_4517():
assert integrate((sqrt(x) - x**3)/x**Rational(1, 3), x) == \
6*x**Rational(7, 6)/7 - 3*x**Rational(11, 3)/11
def test_issue_4527():
k, m = symbols('k m', integer=True)
assert integrate(sin(k*x)*sin(m*x), (x, 0, pi)).simplify() == \
Piecewise((0, Eq(k, 0) | Eq(m, 0)),
(-pi/2, Eq(k, -m) | (Eq(k, 0) & Eq(m, 0))),
(pi/2, Eq(k, m) | (Eq(k, 0) & Eq(m, 0))),
(0, True))
# Should be possible to further simplify to:
# Piecewise(
# (0, Eq(k, 0) | Eq(m, 0)),
# (-pi/2, Eq(k, -m)),
# (pi/2, Eq(k, m)),
# (0, True))
assert integrate(sin(k*x)*sin(m*x), (x,)) == Piecewise(
(0, And(Eq(k, 0), Eq(m, 0))),
(-x*sin(m*x)**2/2 - x*cos(m*x)**2/2 + sin(m*x)*cos(m*x)/(2*m), Eq(k, -m)),
(x*sin(m*x)**2/2 + x*cos(m*x)**2/2 - sin(m*x)*cos(m*x)/(2*m), Eq(k, m)),
(m*sin(k*x)*cos(m*x)/(k**2 - m**2) -
k*sin(m*x)*cos(k*x)/(k**2 - m**2), True))
def test_issue_4199():
ypos = Symbol('y', positive=True)
# TODO: Remove conds='none' below, let the assumption take care of it.
assert integrate(exp(-I*2*pi*ypos*x)*x, (x, -oo, oo), conds='none') == \
Integral(exp(-I*2*pi*ypos*x)*x, (x, -oo, oo))
def test_issue_3940():
a, b, c, d = symbols('a:d', positive=True)
assert integrate(exp(-x**2 + I*c*x), x) == \
-sqrt(pi)*exp(-c**2/4)*erf(I*c/2 - x)/2
assert integrate(exp(a*x**2 + b*x + c), x) == \
sqrt(pi)*exp(c)*exp(-b**2/(4*a))*erfi(sqrt(a)*x + b/(2*sqrt(a)))/(2*sqrt(a))
from sympy.core.function import expand_mul
from sympy.abc import k
assert expand_mul(integrate(exp(-x**2)*exp(I*k*x), (x, -oo, oo))) == \
sqrt(pi)*exp(-k**2/4)
a, d = symbols('a d', positive=True)
assert expand_mul(integrate(exp(-a*x**2 + 2*d*x), (x, -oo, oo))) == \
sqrt(pi)*exp(d**2/a)/sqrt(a)
def test_issue_5413():
# Note that this is not the same as testing ratint() because integrate()
# pulls out the coefficient.
assert integrate(-a/(a**2 + x**2), x) == I*log(-I*a + x)/2 - I*log(I*a + x)/2
def test_issue_4892a():
A, z = symbols('A z')
c = Symbol('c', nonzero=True)
P1 = -A*exp(-z)
P2 = -A/(c*t)*(sin(x)**2 + cos(y)**2)
h1 = -sin(x)**2 - cos(y)**2
h2 = -sin(x)**2 + sin(y)**2 - 1
# there is still some non-deterministic behavior in integrate
# or trigsimp which permits one of the following
assert integrate(c*(P2 - P1), t) in [
c*(-A*(-h1)*log(c*t)/c + A*t*exp(-z)),
c*(-A*(-h2)*log(c*t)/c + A*t*exp(-z)),
c*( A* h1 *log(c*t)/c + A*t*exp(-z)),
c*( A* h2 *log(c*t)/c + A*t*exp(-z)),
(A*c*t - A*(-h1)*log(t)*exp(z))*exp(-z),
(A*c*t - A*(-h2)*log(t)*exp(z))*exp(-z),
]
def test_issue_4892b():
# Issues relating to issue 4596 are making the actual result of this hard
# to test. The answer should be something like
#
# (-sin(y) + sqrt(-72 + 48*cos(y) - 8*cos(y)**2)/2)*log(x + sqrt(-72 +
# 48*cos(y) - 8*cos(y)**2)/(2*(3 - cos(y)))) + (-sin(y) - sqrt(-72 +
# 48*cos(y) - 8*cos(y)**2)/2)*log(x - sqrt(-72 + 48*cos(y) -
# 8*cos(y)**2)/(2*(3 - cos(y)))) + x**2*sin(y)/2 + 2*x*cos(y)
expr = (sin(y)*x**3 + 2*cos(y)*x**2 + 12)/(x**2 + 2)
assert trigsimp(factor(integrate(expr, x).diff(x) - expr)) == 0
def test_issue_5178():
assert integrate(sin(x)*f(y, z), (x, 0, pi), (y, 0, pi), (z, 0, pi)) == \
2*Integral(f(y, z), (y, 0, pi), (z, 0, pi))
def test_integrate_series():
f = sin(x).series(x, 0, 10)
g = x**2/2 - x**4/24 + x**6/720 - x**8/40320 + x**10/3628800 + O(x**11)
assert integrate(f, x) == g
assert diff(integrate(f, x), x) == f
assert integrate(O(x**5), x) == O(x**6)
def test_atom_bug():
from sympy.integrals.heurisch import heurisch
assert heurisch(meijerg([], [], [1], [], x), x) is None
def test_limit_bug():
z = Symbol('z', zero=False)
assert integrate(sin(x*y*z), (x, 0, pi), (y, 0, pi)).together() == \
(log(z) - Ci(pi**2*z) + EulerGamma + 2*log(pi))/z
def test_issue_4703():
g = Function('g')
assert integrate(exp(x)*g(x), x).has(Integral)
def test_issue_1888():
f = Function('f')
assert integrate(f(x).diff(x)**2, x).has(Integral)
# The following tests work using meijerint.
def test_issue_3558():
assert integrate(cos(x*y), (x, -pi/2, pi/2), (y, 0, pi)) == 2*Si(pi**2/2)
def test_issue_4422():
assert integrate(1/sqrt(16 + 4*x**2), x) == asinh(x/2) / 2
def test_issue_4493():
assert simplify(integrate(x*sqrt(1 + 2*x), x)) == \
sqrt(2*x + 1)*(6*x**2 + x - 1)/15
def test_issue_4737():
assert integrate(sin(x)/x, (x, -oo, oo)) == pi
assert integrate(sin(x)/x, (x, 0, oo)) == pi/2
assert integrate(sin(x)/x, x) == Si(x)
def test_issue_4992():
# Note: psi in _check_antecedents becomes NaN.
from sympy.core.function import expand_func
a = Symbol('a', positive=True)
assert simplify(expand_func(integrate(exp(-x)*log(x)*x**a, (x, 0, oo)))) == \
(a*polygamma(0, a) + 1)*gamma(a)
def test_issue_4487():
from sympy.functions.special.gamma_functions import lowergamma
assert simplify(integrate(exp(-x)*x**y, x)) == lowergamma(y + 1, x)
def test_issue_4215():
x = Symbol("x")
assert integrate(1/(x**2), (x, -1, 1)) is oo
def test_issue_4400():
n = Symbol('n', integer=True, positive=True)
assert integrate((x**n)*log(x), x) == \
n*x*x**n*log(x)/(n**2 + 2*n + 1) + x*x**n*log(x)/(n**2 + 2*n + 1) - \
x*x**n/(n**2 + 2*n + 1)
def test_issue_6253():
# Note: this used to raise NotImplementedError
# Note: psi in _check_antecedents becomes NaN.
assert integrate((sqrt(1 - x) + sqrt(1 + x))**2/x, x, meijerg=True) == \
Integral((sqrt(-x + 1) + sqrt(x + 1))**2/x, x)
def test_issue_4153():
assert integrate(1/(1 + x + y + z), (x, 0, 1), (y, 0, 1), (z, 0, 1)) in [
-12*log(3) - 3*log(6)/2 + 3*log(8)/2 + 5*log(2) + 7*log(4),
6*log(2) + 8*log(4) - 27*log(3)/2, 22*log(2) - 27*log(3)/2,
-12*log(3) - 3*log(6)/2 + 47*log(2)/2]
def test_issue_4326():
R, b, h = symbols('R b h')
# It doesn't matter if we can do the integral. Just make sure the result
# doesn't contain nan. This is really a test against _eval_interval.
e = integrate(((h*(x - R + b))/b)*sqrt(R**2 - x**2), (x, R - b, R))
assert not e.has(nan)
# See that it evaluates
assert not e.has(Integral)
def test_powers():
assert integrate(2**x + 3**x, x) == 2**x/log(2) + 3**x/log(3)
def test_manual_option():
raises(ValueError, lambda: integrate(1/x, x, manual=True, meijerg=True))
# an example of a function that manual integration cannot handle
assert integrate(log(1+x)/x, (x, 0, 1), manual=True).has(Integral)
def test_meijerg_option():
raises(ValueError, lambda: integrate(1/x, x, meijerg=True, risch=True))
# an example of a function that meijerg integration cannot handle
assert integrate(tan(x), x, meijerg=True) == Integral(tan(x), x)
def test_risch_option():
# risch=True only allowed on indefinite integrals
raises(ValueError, lambda: integrate(1/log(x), (x, 0, oo), risch=True))
assert integrate(exp(-x**2), x, risch=True) == NonElementaryIntegral(exp(-x**2), x)
assert integrate(log(1/x)*y, x, y, risch=True) == y**2*(x*log(1/x)/2 + x/2)
assert integrate(erf(x), x, risch=True) == Integral(erf(x), x)
# TODO: How to test risch=False?
@slow
def test_heurisch_option():
raises(ValueError, lambda: integrate(1/x, x, risch=True, heurisch=True))
# an integral that heurisch can handle
assert integrate(exp(x**2), x, heurisch=True) == sqrt(pi)*erfi(x)/2
# an integral that heurisch currently cannot handle
assert integrate(exp(x)/x, x, heurisch=True) == Integral(exp(x)/x, x)
# an integral where heurisch currently hangs, issue 15471
assert integrate(log(x)*cos(log(x))/x**Rational(3, 4), x, heurisch=False) == (
-128*x**Rational(1, 4)*sin(log(x))/289 + 240*x**Rational(1, 4)*cos(log(x))/289 +
(16*x**Rational(1, 4)*sin(log(x))/17 + 4*x**Rational(1, 4)*cos(log(x))/17)*log(x))
def test_issue_6828():
f = 1/(1.08*x**2 - 4.3)
g = integrate(f, x).diff(x)
assert verify_numerically(f, g, tol=1e-12)
def test_issue_4803():
x_max = Symbol("x_max")
assert integrate(y/pi*exp(-(x_max - x)/cos(a)), x) == \
y*exp((x - x_max)/cos(a))*cos(a)/pi
def test_issue_4234():
assert integrate(1/sqrt(1 + tan(x)**2)) == tan(x)/sqrt(1 + tan(x)**2)
def test_issue_4492():
assert simplify(integrate(x**2 * sqrt(5 - x**2), x)).factor(
deep=True) == Piecewise(
(I*(2*x**5 - 15*x**3 + 25*x - 25*sqrt(x**2 - 5)*acosh(sqrt(5)*x/5)) /
(8*sqrt(x**2 - 5)), (x > sqrt(5)) | (x < -sqrt(5))),
((2*x**5 - 15*x**3 + 25*x - 25*sqrt(5 - x**2)*asin(sqrt(5)*x/5)) /
(-8*sqrt(-x**2 + 5)), True))
def test_issue_2708():
# This test needs to use an integration function that can
# not be evaluated in closed form. Update as needed.
f = 1/(a + z + log(z))
integral_f = NonElementaryIntegral(f, (z, 2, 3))
assert Integral(f, (z, 2, 3)).doit() == integral_f
assert integrate(f + exp(z), (z, 2, 3)) == integral_f - exp(2) + exp(3)
assert integrate(2*f + exp(z), (z, 2, 3)) == \
2*integral_f - exp(2) + exp(3)
assert integrate(exp(1.2*n*s*z*(-t + z)/t), (z, 0, x)) == \
NonElementaryIntegral(exp(-1.2*n*s*z)*exp(1.2*n*s*z**2/t),
(z, 0, x))
def test_issue_2884():
f = (4.000002016020*x + 4.000002016020*y + 4.000006024032)*exp(10.0*x)
e = integrate(f, (x, 0.1, 0.2))
assert str(e) == '1.86831064982608*y + 2.16387491480008'
def test_issue_8368i():
from sympy.functions.elementary.complexes import arg, Abs
assert integrate(exp(-s*x)*cosh(x), (x, 0, oo)) == \
Piecewise(
( pi*Piecewise(
( -s/(pi*(-s**2 + 1)),
Abs(s**2) < 1),
( 1/(pi*s*(1 - 1/s**2)),
Abs(s**(-2)) < 1),
( meijerg(
((S.Half,), (0, 0)),
((0, S.Half), (0,)),
polar_lift(s)**2),
True)
),
s**2 > 1
),
(
Integral(exp(-s*x)*cosh(x), (x, 0, oo)),
True))
assert integrate(exp(-s*x)*sinh(x), (x, 0, oo)) == \
Piecewise(
( -1/(s + 1)/2 - 1/(-s + 1)/2,
And(
Abs(s) > 1,
Abs(arg(s)) < pi/2,
Abs(arg(s)) <= pi/2
)),
( Integral(exp(-s*x)*sinh(x), (x, 0, oo)),
True))
def test_issue_8901():
assert integrate(sinh(1.0*x)) == 1.0*cosh(1.0*x)
assert integrate(tanh(1.0*x)) == 1.0*x - 1.0*log(tanh(1.0*x) + 1)
assert integrate(tanh(x)) == x - log(tanh(x) + 1)
@slow
def test_issue_8945():
assert integrate(sin(x)**3/x, (x, 0, 1)) == -Si(3)/4 + 3*Si(1)/4
assert integrate(sin(x)**3/x, (x, 0, oo)) == pi/4
assert integrate(cos(x)**2/x**2, x) == -Si(2*x) - cos(2*x)/(2*x) - 1/(2*x)
@slow
def test_issue_7130():
if ON_CI:
skip("Too slow for CI.")
i, L, a, b = symbols('i L a b')
integrand = (cos(pi*i*x/L)**2 / (a + b*x)).rewrite(exp)
assert x not in integrate(integrand, (x, 0, L)).free_symbols
def test_issue_10567():
a, b, c, t = symbols('a b c t')
vt = Matrix([a*t, b, c])
assert integrate(vt, t) == Integral(vt, t).doit()
assert integrate(vt, t) == Matrix([[a*t**2/2], [b*t], [c*t]])
def test_issue_11742():
assert integrate(sqrt(-x**2 + 8*x + 48), (x, 4, 12)) == 16*pi
def test_issue_11856():
t = symbols('t')
assert integrate(sinc(pi*t), t) == Si(pi*t)/pi
@slow
def test_issue_11876():
assert integrate(sqrt(log(1/x)), (x, 0, 1)) == sqrt(pi)/2
def test_issue_4950():
assert integrate((-60*exp(x) - 19.2*exp(4*x))*exp(4*x), x) ==\
-2.4*exp(8*x) - 12.0*exp(5*x)
def test_issue_4968():
assert integrate(sin(log(x**2))) == x*sin(log(x**2))/5 - 2*x*cos(log(x**2))/5
def test_singularities():
assert integrate(1/x**2, (x, -oo, oo)) is oo
assert integrate(1/x**2, (x, -1, 1)) is oo
assert integrate(1/(x - 1)**2, (x, -2, 2)) is oo
assert integrate(1/x**2, (x, 1, -1)) is -oo
assert integrate(1/(x - 1)**2, (x, 2, -2)) is -oo
def test_issue_12645():
x, y = symbols('x y', real=True)
assert (integrate(sin(x*x*x + y*y),
(x, -sqrt(pi - y*y), sqrt(pi - y*y)),
(y, -sqrt(pi), sqrt(pi)))
== Integral(sin(x**3 + y**2),
(x, -sqrt(-y**2 + pi), sqrt(-y**2 + pi)),
(y, -sqrt(pi), sqrt(pi))))
def test_issue_12677():
assert integrate(sin(x) / (cos(x)**3), (x, 0, pi/6)) == Rational(1, 6)
def test_issue_14078():
assert integrate((cos(3*x)-cos(x))/x, (x, 0, oo)) == -log(3)
def test_issue_14064():
assert integrate(1/cosh(x), (x, 0, oo)) == pi/2
def test_issue_14027():
assert integrate(1/(1 + exp(x - S.Half)/(1 + exp(x))), x) == \
x - exp(S.Half)*log(exp(x) + exp(S.Half)/(1 + exp(S.Half)))/(exp(S.Half) + E)
def test_issue_8170():
assert integrate(tan(x), (x, 0, pi/2)) is S.Infinity
def test_issue_8440_14040():
assert integrate(1/x, (x, -1, 1)) is S.NaN
assert integrate(1/(x + 1), (x, -2, 3)) is S.NaN
def test_issue_14096():
assert integrate(1/(x + y)**2, (x, 0, 1)) == -1/(y + 1) + 1/y
assert integrate(1/(1 + x + y + z)**2, (x, 0, 1), (y, 0, 1), (z, 0, 1)) == \
-4*log(4) - 6*log(2) + 9*log(3)
def test_issue_14144():
assert Abs(integrate(1/sqrt(1 - x**3), (x, 0, 1)).n() - 1.402182) < 1e-6
assert Abs(integrate(sqrt(1 - x**3), (x, 0, 1)).n() - 0.841309) < 1e-6
def test_issue_14375():
# This raised a TypeError. The antiderivative has exp_polar, which
# may be possible to unpolarify, so the exact output is not asserted here.
assert integrate(exp(I*x)*log(x), x).has(Ei)
def test_issue_14437():
f = Function('f')(x, y, z)
assert integrate(f, (x, 0, 1), (y, 0, 2), (z, 0, 3)) == \
Integral(f, (x, 0, 1), (y, 0, 2), (z, 0, 3))
def test_issue_14470():
assert integrate(1/sqrt(exp(x) + 1), x) == log(sqrt(exp(x) + 1) - 1) - log(sqrt(exp(x) + 1) + 1)
def test_issue_14877():
f = exp(1 - exp(x**2)*x + 2*x**2)*(2*x**3 + x)/(1 - exp(x**2)*x)**2
assert integrate(f, x) == \
-exp(2*x**2 - x*exp(x**2) + 1)/(x*exp(3*x**2) - exp(2*x**2))
def test_issue_14782():
f = sqrt(-x**2 + 1)*(-x**2 + x)
assert integrate(f, [x, -1, 1]) == - pi / 8
@slow
def test_issue_14782_slow():
f = sqrt(-x**2 + 1)*(-x**2 + x)
assert integrate(f, [x, 0, 1]) == S.One / 3 - pi / 16
def test_issue_12081():
f = x**(Rational(-3, 2))*exp(-x)
assert integrate(f, [x, 0, oo]) is oo
def test_issue_15285():
y = 1/x - 1
f = 4*y*exp(-2*y)/x**2
assert integrate(f, [x, 0, 1]) == 1
def test_issue_15432():
assert integrate(x**n * exp(-x) * log(x), (x, 0, oo)).gammasimp() == Piecewise(
(gamma(n + 1)*polygamma(0, n) + gamma(n + 1)/n, re(n) + 1 > 0),
(Integral(x**n*exp(-x)*log(x), (x, 0, oo)), True))
def test_issue_15124():
omega = IndexedBase('omega')
m, p = symbols('m p', cls=Idx)
assert integrate(exp(x*I*(omega[m] + omega[p])), x, conds='none') == \
-I*exp(I*x*omega[m])*exp(I*x*omega[p])/(omega[m] + omega[p])
def test_issue_15218():
with warns_deprecated_sympy():
Integral(Eq(x, y))
with warns_deprecated_sympy():
assert Integral(Eq(x, y), x) == Eq(Integral(x, x), Integral(y, x))
with warns_deprecated_sympy():
assert Integral(Eq(x, y), x).doit() == Eq(x**2/2, x*y)
with warns(SymPyDeprecationWarning, test_stacklevel=False):
# The warning is made in the ExprWithLimits superclass. The stacklevel
# is correct for integrate(Eq) but not Eq.integrate
assert Eq(x, y).integrate(x) == Eq(x**2/2, x*y)
# These are not deprecated because they are definite integrals
assert integrate(Eq(x, y), (x, 0, 1)) == Eq(S.Half, y)
assert Eq(x, y).integrate((x, 0, 1)) == Eq(S.Half, y)
def test_issue_15292():
res = integrate(exp(-x**2*cos(2*t)) * cos(x**2*sin(2*t)), (x, 0, oo))
assert isinstance(res, Piecewise)
assert gammasimp((res - sqrt(pi)/2 * cos(t)).subs(t, pi/6)) == 0
def test_issue_4514():
assert integrate(sin(2*x)/sin(x), x) == 2*sin(x)
def test_issue_15457():
x, a, b = symbols('x a b', real=True)
definite = integrate(exp(Abs(x-2)), (x, a, b))
indefinite = integrate(exp(Abs(x-2)), x)
assert definite.subs({a: 1, b: 3}) == -2 + 2*E
assert indefinite.subs(x, 3) - indefinite.subs(x, 1) == -2 + 2*E
assert definite.subs({a: -3, b: -1}) == -exp(3) + exp(5)
assert indefinite.subs(x, -1) - indefinite.subs(x, -3) == -exp(3) + exp(5)
def test_issue_15431():
assert integrate(x*exp(x)*log(x), x) == \
(x*exp(x) - exp(x))*log(x) - exp(x) + Ei(x)
def test_issue_15640_log_substitutions():
f = x/log(x)
F = Ei(2*log(x))
assert integrate(f, x) == F and F.diff(x) == f
f = x**3/log(x)**2
F = -x**4/log(x) + 4*Ei(4*log(x))
assert integrate(f, x) == F and F.diff(x) == f
f = sqrt(log(x))/x**2
F = -sqrt(pi)*erfc(sqrt(log(x)))/2 - sqrt(log(x))/x
assert integrate(f, x) == F and F.diff(x) == f
def test_issue_15509():
from sympy.vector import CoordSys3D
N = CoordSys3D('N')
x = N.x
assert integrate(cos(a*x + b), (x, x_1, x_2), heurisch=True) == Piecewise(
(-sin(a*x_1 + b)/a + sin(a*x_2 + b)/a, (a > -oo) & (a < oo) & Ne(a, 0)), \
(-x_1*cos(b) + x_2*cos(b), True))
def test_issue_4311_fast():
x = symbols('x', real=True)
assert integrate(x*abs(9-x**2), x) == Piecewise(
(x**4/4 - 9*x**2/2, x <= -3),
(-x**4/4 + 9*x**2/2 - Rational(81, 2), x <= 3),
(x**4/4 - 9*x**2/2, True))
def test_integrate_with_complex_constants():
K = Symbol('K', positive=True)
x = Symbol('x', real=True)
m = Symbol('m', real=True)
t = Symbol('t', real=True)
assert integrate(exp(-I*K*x**2+m*x), x) == sqrt(I)*sqrt(pi)*exp(-I*m**2
/(4*K))*erfi((-2*I*K*x + m)/(2*sqrt(K)*sqrt(-I)))/(2*sqrt(K))
assert integrate(1/(1 + I*x**2), x) == (-I*(sqrt(-I)*log(x - I*sqrt(-I))/2
- sqrt(-I)*log(x + I*sqrt(-I))/2))
assert integrate(exp(-I*x**2), x) == sqrt(pi)*erf(sqrt(I)*x)/(2*sqrt(I))
assert integrate((1/(exp(I*t)-2)), t) == -t/2 - I*log(exp(I*t) - 2)/2
assert integrate((1/(exp(I*t)-2)), (t, 0, 2*pi)) == -pi
def test_issue_14241():
x = Symbol('x')
n = Symbol('n', positive=True, integer=True)
assert integrate(n * x ** (n - 1) / (x + 1), x) == \
n**2*x**n*lerchphi(x*exp_polar(I*pi), 1, n)*gamma(n)/gamma(n + 1)
def test_issue_13112():
assert integrate(sin(t)**2 / (5 - 4*cos(t)), [t, 0, 2*pi]) == pi / 4
def test_issue_14709b():
h = Symbol('h', positive=True)
i = integrate(x*acos(1 - 2*x/h), (x, 0, h))
assert i == 5*h**2*pi/16
def test_issue_8614():
x = Symbol('x')
t = Symbol('t')
assert integrate(exp(t)/t, (t, -oo, x)) == Ei(x)
assert integrate((exp(-x) - exp(-2*x))/x, (x, 0, oo)) == log(2)
@slow
def test_issue_15494():
s = symbols('s', positive=True)
integrand = (exp(s/2) - 2*exp(1.6*s) + exp(s))*exp(s)
solution = integrate(integrand, s)
assert solution != S.NaN
# Not sure how to test this properly as it is a symbolic expression with floats
# assert str(solution) == '0.666666666666667*exp(1.5*s) + 0.5*exp(2.0*s) - 0.769230769230769*exp(2.6*s)'
# Maybe
assert abs(solution.subs(s, 1) - (-3.67440080236188)) <= 1e-8
integrand = (exp(s/2) - 2*exp(S(8)/5*s) + exp(s))*exp(s)
assert integrate(integrand, s) == -10*exp(13*s/5)/13 + 2*exp(3*s/2)/3 + exp(2*s)/2
def test_li_integral():
y = Symbol('y')
assert Integral(li(y*x**2), x).doit() == Piecewise((x*li(x**2*y) - \
x*Ei(3*log(x**2*y)/2)/sqrt(x**2*y),
Ne(y, 0)), (0, True))
def test_issue_17473():
x = Symbol('x')
n = Symbol('n')
h = S.Half
ans = x**(n + 1)*gamma(h + h/n)*hyper((h + h/n,),
(3*h, 3*h + h/n), -x**(2*n)/4)/(2*n*gamma(3*h + h/n))
got = integrate(sin(x**n), x)
assert got == ans
_x = Symbol('x', zero=False)
reps = {x: _x}
assert integrate(sin(_x**n), _x) == ans.xreplace(reps).expand()
def test_issue_17671():
assert integrate(log(log(x)) / x**2, [x, 1, oo]) == -EulerGamma
assert integrate(log(log(x)) / x**3, [x, 1, oo]) == -log(2)/2 - EulerGamma/2
assert integrate(log(log(x)) / x**10, [x, 1, oo]) == -log(9)/9 - EulerGamma/9
def test_issue_2975():
w = Symbol('w')
C = Symbol('C')
y = Symbol('y')
assert integrate(1/(y**2+C)**(S(3)/2), (y, -w/2, w/2)) == w/(C**(S(3)/2)*sqrt(1 + w**2/(4*C)))
def test_issue_7827():
x, n, M = symbols('x n M')
N = Symbol('N', integer=True)
assert integrate(summation(x*n, (n, 1, N)), x) == x**2*(N**2/4 + N/4)
assert integrate(summation(x*sin(n), (n,1,N)), x) == \
Sum(x**2*sin(n)/2, (n, 1, N))
assert integrate(summation(sin(n*x), (n,1,N)), x) == \
Sum(Piecewise((-cos(n*x)/n, Ne(n, 0)), (0, True)), (n, 1, N))
assert integrate(integrate(summation(sin(n*x), (n,1,N)), x), x) == \
Piecewise((Sum(Piecewise((-sin(n*x)/n**2, Ne(n, 0)), (-x/n, True)),
(n, 1, N)), (n > -oo) & (n < oo) & Ne(n, 0)), (0, True))
assert integrate(Sum(x, (n, 1, M)), x) == M*x**2/2
raises(ValueError, lambda: integrate(Sum(x, (x, y, n)), y))
raises(ValueError, lambda: integrate(Sum(x, (x, 1, n)), n))
raises(ValueError, lambda: integrate(Sum(x, (x, 1, y)), x))
def test_issue_4231():
f = (1 + 2*x + sqrt(x + log(x))*(1 + 3*x) + x**2)/(x*(x + sqrt(x + log(x)))*sqrt(x + log(x)))
assert integrate(f, x) == 2*sqrt(x + log(x)) + 2*log(x + sqrt(x + log(x)))
def test_issue_17841():
f = diff(1/(x**2+x+I), x)
assert integrate(f, x) == 1/(x**2 + x + I)
def test_issue_21034():
x = Symbol('x', real=True, nonzero=True)
f1 = x*(-x**4/asin(5)**4 - x*sinh(x + log(asin(5))) + 5)
f2 = (x + cosh(cos(4)))/(x*(x + 1/(12*x)))
assert integrate(f1, x) == \
-x**6/(6*asin(5)**4) - x**2*cosh(x + log(asin(5))) + 5*x**2/2 + 2*x*sinh(x + log(asin(5))) - 2*cosh(x + log(asin(5)))
assert integrate(f2, x) == \
log(x**2 + S(1)/12)/2 + 2*sqrt(3)*cosh(cos(4))*atan(2*sqrt(3)*x)
def test_issue_4187():
assert integrate(log(x)*exp(-x), x) == Ei(-x) - exp(-x)*log(x)
assert integrate(log(x)*exp(-x), (x, 0, oo)) == -EulerGamma
def test_issue_5547():
L = Symbol('L')
z = Symbol('z')
r0 = Symbol('r0')
R0 = Symbol('R0')
assert integrate(r0**2*cos(z)**2, (z, -L/2, L/2)) == -r0**2*(-L/4 -
sin(L/2)*cos(L/2)/2) + r0**2*(L/4 + sin(L/2)*cos(L/2)/2)
assert integrate(r0**2*cos(R0*z)**2, (z, -L/2, L/2)) == Piecewise(
(-r0**2*(-L*R0/4 - sin(L*R0/2)*cos(L*R0/2)/2)/R0 +
r0**2*(L*R0/4 + sin(L*R0/2)*cos(L*R0/2)/2)/R0, (R0 > -oo) & (R0 < oo) & Ne(R0, 0)),
(L*r0**2, True))
w = 2*pi*z/L
sol = sqrt(2)*sqrt(L)*r0**2*fresnelc(sqrt(2)*sqrt(L))*gamma(S.One/4)/(16*gamma(S(5)/4)) + L*r0**2/2
assert integrate(r0**2*cos(w*z)**2, (z, -L/2, L/2)) == sol
def test_issue_15810():
assert integrate(1/(2**(2*x/3) + 1), (x, 0, oo)) == Rational(3, 2)
def test_issue_21024():
x = Symbol('x', real=True, nonzero=True)
f = log(x)*log(4*x) + log(3*x + exp(2))
F = x*log(x)**2 + x*(1 - 2*log(2)) + (-2*x + 2*x*log(2))*log(x) + \
(x + exp(2)/6)*log(3*x + exp(2)) + exp(2)*log(3*x + exp(2))/6
assert F == integrate(f, x)
f = (x + exp(3))/x**2
F = log(x) - exp(3)/x
assert F == integrate(f, x)
f = (x**2 + exp(5))/x
F = x**2/2 + exp(5)*log(x)
assert F == integrate(f, x)
f = x/(2*x + tanh(1))
F = x/2 - log(2*x + tanh(1))*tanh(1)/4
assert F == integrate(f, x)
f = x - sinh(4)/x
F = x**2/2 - log(x)*sinh(4)
assert F == integrate(f, x)
f = log(x + exp(5)/x)
F = x*log(x + exp(5)/x) - x + 2*exp(Rational(5, 2))*atan(x*exp(Rational(-5, 2)))
assert F == integrate(f, x)
f = x**5/(x + E)
F = x**5/5 - E*x**4/4 + x**3*exp(2)/3 - x**2*exp(3)/2 + x*exp(4) - exp(5)*log(x + E)
assert F == integrate(f, x)
f = 4*x/(x + sinh(5))
F = 4*x - 4*log(x + sinh(5))*sinh(5)
assert F == integrate(f, x)
f = x**2/(2*x + sinh(2))
F = x**2/4 - x*sinh(2)/4 + log(2*x + sinh(2))*sinh(2)**2/8
assert F == integrate(f, x)
f = -x**2/(x + E)
F = -x**2/2 + E*x - exp(2)*log(x + E)
assert F == integrate(f, x)
f = (2*x + 3)*exp(5)/x
F = 2*x*exp(5) + 3*exp(5)*log(x)
assert F == integrate(f, x)
f = x + 2 + cosh(3)/x
F = x**2/2 + 2*x + log(x)*cosh(3)
assert F == integrate(f, x)
f = x - tanh(1)/x**3
F = x**2/2 + tanh(1)/(2*x**2)
assert F == integrate(f, x)
f = (3*x - exp(6))/x
F = 3*x - exp(6)*log(x)
assert F == integrate(f, x)
f = x**4/(x + exp(5))**2 + x
F = x**3/3 + x**2*(Rational(1, 2) - exp(5)) + 3*x*exp(10) - 4*exp(15)*log(x + exp(5)) - exp(20)/(x + exp(5))
assert F == integrate(f, x)
f = x*(x + exp(10)/x**2) + x
F = x**3/3 + x**2/2 + exp(10)*log(x)
assert F == integrate(f, x)
f = x + x/(5*x + sinh(3))
F = x**2/2 + x/5 - log(5*x + sinh(3))*sinh(3)/25
assert F == integrate(f, x)
f = (x + exp(3))/(2*x**2 + 2*x)
F = exp(3)*log(x)/2 - exp(3)*log(x + 1)/2 + log(x + 1)/2
assert F == integrate(f, x).expand()
f = log(x + 4*sinh(4))
F = x*log(x + 4*sinh(4)) - x + 4*log(x + 4*sinh(4))*sinh(4)
assert F == integrate(f, x)
f = -x + 20*(exp(-5) - atan(4)/x)**3*sin(4)/x
F = (-x**2*exp(15)/2 + 20*log(x)*sin(4) - (-180*x**2*exp(5)*sin(4)*atan(4) + 90*x*exp(10)*sin(4)*atan(4)**2 - \
20*exp(15)*sin(4)*atan(4)**3)/(3*x**3))*exp(-15)
assert F == integrate(f, x)
f = 2*x**2*exp(-4) + 6/x
F_true = (2*x**3/3 + 6*exp(4)*log(x))*exp(-4)
assert F_true == integrate(f, x)
def test_issue_21721():
a = Symbol('a')
assert integrate(1/(pi*(1+(x-a)**2)),(x,-oo,oo)).expand() == \
-Heaviside(im(a) - 1, 0) + Heaviside(im(a) + 1, 0)
def test_issue_21831():
theta = symbols('theta')
assert integrate(cos(3*theta)/(5-4*cos(theta)), (theta, 0, 2*pi)) == pi/12
integrand = cos(2*theta)/(5 - 4*cos(theta))
assert integrate(integrand, (theta, 0, 2*pi)) == pi/6
@slow
def test_issue_22033_integral():
assert integrate((x**2 - Rational(1, 4))**2 * sqrt(1 - x**2), (x, -1, 1)) == pi/32
@slow
def test_issue_21671():
assert integrate(1,(z,x**2+y**2,2-x**2-y**2),(y,-sqrt(1-x**2),sqrt(1-x**2)),(x,-1,1)) == pi
assert integrate(-4*(1 - x**2)**(S(3)/2)/3 + 2*sqrt(1 - x**2)*(2 - 2*x**2), (x, -1, 1)) == pi
def test_issue_18527():
# The manual integrator can not currently solve this. Assert that it does
# not give an incorrect result involving Abs when x has real assumptions.
xr = symbols('xr', real=True)
expr = (cos(x)/(4+(sin(x))**2))
res_real = integrate(expr.subs(x, xr), xr, manual=True).subs(xr, x)
assert integrate(expr, x, manual=True) == res_real == Integral(expr, x)
def test_issue_23718():
f = 1/(b*cos(x) + a*sin(x))
Fpos = (-log(-a/b + tan(x/2) - sqrt(a**2 + b**2)/b)/sqrt(a**2 + b**2)
+log(-a/b + tan(x/2) + sqrt(a**2 + b**2)/b)/sqrt(a**2 + b**2))
F = Piecewise(
# XXX: The zoo case here is for a=b=0 so it should just be zoo or maybe
# it doesn't really need to be included at all given that the original
# integrand is really undefined in that case anyway.
(zoo*(-log(tan(x/2) - 1) + log(tan(x/2) + 1)), Eq(a, 0) & Eq(b, 0)),
(log(tan(x/2))/a, Eq(b, 0)),
(-I/(-I*b*sin(x) + b*cos(x)), Eq(a, -I*b)),
(I/(I*b*sin(x) + b*cos(x)), Eq(a, I*b)),
(Fpos, True),
)
assert integrate(f, x) == F
ap, bp = symbols('a, b', positive=True)
rep = {a: ap, b: bp}
assert integrate(f.subs(rep), x) == Fpos.subs(rep)
def test_issue_23566():
i = integrate(1/sqrt(x**2-1), (x, -2, -1))
assert i == -log(2 - sqrt(3))
assert math.isclose(i.n(), 1.31695789692482)
def test_pr_23583():
# This result from meijerg is wrong. Check whether new result is correct when this test fail.
assert integrate(1/sqrt((x - I)**2-1)) == Piecewise((acosh(x - I), Abs((x - I)**2) > 1), (-I*asin(x - I), True))
def test_issue_7264():
assert integrate(exp(x)*sqrt(1 + exp(2*x))) == sqrt(exp(2*x) + 1)*exp(x)/2 + asinh(exp(x))/2
def test_issue_11254a():
assert integrate(sech(x), (x, 0, 1)) == 2*atan(tanh(S.Half))
def test_issue_11254b():
assert integrate(csch(x), x) == log(tanh(x/2))
assert integrate(csch(x), (x, 0, 1)) == oo
def test_issue_11254d():
assert integrate((sech(x)**2).rewrite(sinh), x) == 2*tanh(x/2)/(tanh(x/2)**2 + 1)
def test_issue_22863():
i = integrate((3*x**3-x**2+2*x-4)/sqrt(x**2-3*x+2), (x, 0, 1))
assert i == -101*sqrt(2)/8 - 135*log(3 - 2*sqrt(2))/16
assert math.isclose(i.n(), -2.98126694400554)
def test_issue_9723():
assert integrate(sqrt(x + sqrt(x))) == \
2*sqrt(sqrt(x) + x)*(sqrt(x)/12 + x/3 - S(1)/8) + log(2*sqrt(x) + 2*sqrt(sqrt(x) + x) + 1)/8
assert integrate(sqrt(2*x+3+sqrt(4*x+5))**3) == \
sqrt(2*x + sqrt(4*x + 5) + 3) * \
(9*x/10 + 11*(4*x + 5)**(S(3)/2)/40 + sqrt(4*x + 5)/40 + (4*x + 5)**2/10 + S(11)/10)/2
def test_issue_23704():
# XXX: This is testing that an exception is not raised in risch Ideally
# manualintegrate (manual=True) would be able to compute this but
# manualintegrate is very slow for this example so we don't test that here.
assert (integrate(log(x)/x**2/(c*x**2+b*x+a),x, risch=True)
== NonElementaryIntegral(log(x)/(a*x**2 + b*x**3 + c*x**4), x))
def test_exp_substitution():
assert integrate(1/sqrt(1-exp(2*x))) == log(sqrt(1 - exp(2*x)) - 1)/2 - log(sqrt(1 - exp(2*x)) + 1)/2
def test_hyperbolic():
assert integrate(coth(x)) == x - log(tanh(x) + 1) + log(tanh(x))
assert integrate(sech(x)) == 2*atan(tanh(x/2))
assert integrate(csch(x)) == log(tanh(x/2))
def test_nested_pow():
assert integrate(sqrt(x**2)) == x*sqrt(x**2)/2
assert integrate(sqrt(x**(S(5)/3))) == 6*x*sqrt(x**(S(5)/3))/11
assert integrate(1/sqrt(x**2)) == x*log(x)/sqrt(x**2)
assert integrate(x*sqrt(x**(-4))) == x**2*sqrt(x**-4)*log(x)
def test_sqrt_quadratic():
assert integrate(1/sqrt(3*x**2+4*x+5)) == sqrt(3)*asinh(3*sqrt(11)*(x + S(2)/3)/11)/3
assert integrate(1/sqrt(-3*x**2+4*x+5)) == sqrt(3)*asin(3*sqrt(19)*(x - S(2)/3)/19)/3
assert integrate(1/sqrt(3*x**2+4*x-5)) == sqrt(3)*log(6*x + 2*sqrt(3)*sqrt(3*x**2 + 4*x - 5) + 4)/3
assert integrate(1/sqrt(4*x**2-4*x+1)) == (x - S.Half)*log(x - S.Half)/(2*sqrt((x - S.Half)**2))
assert integrate(1/sqrt(a+b*x+c*x**2), x) == \
Piecewise((log(b + 2*sqrt(c)*sqrt(a + b*x + c*x**2) + 2*c*x)/sqrt(c), Ne(c, 0) & Ne(a - b**2/(4*c), 0)),
((b/(2*c) + x)*log(b/(2*c) + x)/sqrt(c*(b/(2*c) + x)**2), Ne(c, 0)),
(2*sqrt(a + b*x)/b, Ne(b, 0)), (x/sqrt(a), True))
assert integrate((7*x+6)/sqrt(3*x**2+4*x+5)) == \
7*sqrt(3*x**2 + 4*x + 5)/3 + 4*sqrt(3)*asinh(3*sqrt(11)*(x + S(2)/3)/11)/9
assert integrate((7*x+6)/sqrt(-3*x**2+4*x+5)) == \
-7*sqrt(-3*x**2 + 4*x + 5)/3 + 32*sqrt(3)*asin(3*sqrt(19)*(x - S(2)/3)/19)/9
assert integrate((7*x+6)/sqrt(3*x**2+4*x-5)) == \
7*sqrt(3*x**2 + 4*x - 5)/3 + 4*sqrt(3)*log(6*x + 2*sqrt(3)*sqrt(3*x**2 + 4*x - 5) + 4)/9
assert integrate((d+e*x)/sqrt(a+b*x+c*x**2), x) == \
Piecewise(((-b*e/(2*c) + d) *
Piecewise((log(b + 2*sqrt(c)*sqrt(a + b*x + c*x**2) + 2*c*x)/sqrt(c), Ne(a - b**2/(4*c), 0)),
((b/(2*c) + x)*log(b/(2*c) + x)/sqrt(c*(b/(2*c) + x)**2), True)) +
e*sqrt(a + b*x + c*x**2)/c, Ne(c, 0)),
((2*d*sqrt(a + b*x) + 2*e*(-a*sqrt(a + b*x) + (a + b*x)**(S(3)/2)/3)/b)/b, Ne(b, 0)),
((d*x + e*x**2/2)/sqrt(a), True))
assert integrate((3*x**3-x**2+2*x-4)/sqrt(x**2-3*x+2)) == \
sqrt(x**2 - 3*x + 2)*(x**2 + 13*x/4 + S(101)/8) + 135*log(2*x + 2*sqrt(x**2 - 3*x + 2) - 3)/16
assert integrate(sqrt(53225*x**2-66732*x+23013)) == \
(x/2 - S(16683)/53225)*sqrt(53225*x**2 - 66732*x + 23013) + \
111576969*sqrt(2129)*asinh(53225*x/10563 - S(11122)/3521)/1133160250
assert integrate(sqrt(a+b*x+c*x**2), x) == \
Piecewise(((a/2 - b**2/(8*c)) *
Piecewise((log(b + 2*sqrt(c)*sqrt(a + b*x + c*x**2) + 2*c*x)/sqrt(c), Ne(a - b**2/(4*c), 0)),
((b/(2*c) + x)*log(b/(2*c) + x)/sqrt(c*(b/(2*c) + x)**2), True)) +
(b/(4*c) + x/2)*sqrt(a + b*x + c*x**2), Ne(c, 0)),
(2*(a + b*x)**(S(3)/2)/(3*b), Ne(b, 0)),
(sqrt(a)*x, True))
assert integrate(x*sqrt(x**2+2*x+4)) == \
(x**2/3 + x/6 + S(5)/6)*sqrt(x**2 + 2*x + 4) - 3*asinh(sqrt(3)*(x + 1)/3)/2
def test_mul_pow_derivative():
assert integrate(x*sec(x)*tan(x)) == x*sec(x) - log(tan(x) + sec(x))
assert integrate(x*sec(x)**2, x) == x*tan(x) + log(cos(x))
assert integrate(x**3*Derivative(f(x), (x, 4))) == \
x**3*Derivative(f(x), (x, 3)) - 3*x**2*Derivative(f(x), (x, 2)) + 6*x*Derivative(f(x), x) - 6*f(x)
|
6abab131dc54264148a32f7cace8ab3932308fadb7c07c7d36aa2ea592ea914f | from sympy.core.expr import Expr
from sympy.core.mul import Mul
from sympy.core.function import (Derivative, Function, diff, expand)
from sympy.core.numbers import (I, Rational, pi)
from sympy.core.relational import Ne
from sympy.core.singleton import S
from sympy.core.symbol import (Dummy, Symbol, symbols)
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.elementary.hyperbolic import (asinh, csch, cosh, coth, sech, sinh, tanh)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import (acos, acot, acsc, asec, asin, atan, cos, cot, csc, sec, sin, tan)
from sympy.functions.special.delta_functions import Heaviside, DiracDelta
from sympy.functions.special.elliptic_integrals import (elliptic_e, elliptic_f)
from sympy.functions.special.error_functions import (Chi, Ci, Ei, Shi, Si, erf, erfi, fresnelc, fresnels, li)
from sympy.functions.special.gamma_functions import uppergamma
from sympy.functions.special.polynomials import (assoc_laguerre, chebyshevt, chebyshevu, gegenbauer, hermite, jacobi, laguerre, legendre)
from sympy.functions.special.zeta_functions import polylog
from sympy.integrals.integrals import (Integral, integrate)
from sympy.logic.boolalg import And
from sympy.integrals.manualintegrate import (manualintegrate, find_substitutions,
_parts_rule, integral_steps, manual_subs)
from sympy.testing.pytest import raises, slow
x, y, z, u, n, a, b, c, d, e = symbols('x y z u n a b c d e')
f = Function('f')
def assert_is_integral_of(f: Expr, F: Expr):
assert manualintegrate(f, x) == F
assert F.diff(x).equals(f)
def test_find_substitutions():
assert find_substitutions((cot(x)**2 + 1)**2*csc(x)**2*cot(x)**2, x, u) == \
[(cot(x), 1, -u**6 - 2*u**4 - u**2)]
assert find_substitutions((sec(x)**2 + tan(x) * sec(x)) / (sec(x) + tan(x)),
x, u) == [(sec(x) + tan(x), 1, 1/u)]
assert (-x**2, Rational(-1, 2), exp(u)) in find_substitutions(x * exp(-x**2), x, u)
assert not find_substitutions(Derivative(f(x), x)**2, x, u)
def test_manualintegrate_polynomials():
assert manualintegrate(y, x) == x*y
assert manualintegrate(exp(2), x) == x * exp(2)
assert manualintegrate(x**2, x) == x**3 / 3
assert manualintegrate(3 * x**2 + 4 * x**3, x) == x**3 + x**4
assert manualintegrate((x + 2)**3, x) == (x + 2)**4 / 4
assert manualintegrate((3*x + 4)**2, x) == (3*x + 4)**3 / 9
assert manualintegrate((u + 2)**3, u) == (u + 2)**4 / 4
assert manualintegrate((3*u + 4)**2, u) == (3*u + 4)**3 / 9
def test_manualintegrate_exponentials():
assert manualintegrate(exp(2*x), x) == exp(2*x) / 2
assert manualintegrate(2**x, x) == (2 ** x) / log(2)
assert_is_integral_of(1/sqrt(1-exp(2*x)),
log(sqrt(1 - exp(2*x)) - 1)/2 - log(sqrt(1 - exp(2*x)) + 1)/2)
assert manualintegrate(1 / x, x) == log(x)
assert manualintegrate(1 / (2*x + 3), x) == log(2*x + 3) / 2
assert manualintegrate(log(x)**2 / x, x) == log(x)**3 / 3
assert_is_integral_of(x**x*(log(x)+1), x**x)
def test_manualintegrate_parts():
assert manualintegrate(exp(x) * sin(x), x) == \
(exp(x) * sin(x)) / 2 - (exp(x) * cos(x)) / 2
assert manualintegrate(2*x*cos(x), x) == 2*x*sin(x) + 2*cos(x)
assert manualintegrate(x * log(x), x) == x**2*log(x)/2 - x**2/4
assert manualintegrate(log(x), x) == x * log(x) - x
assert manualintegrate((3*x**2 + 5) * exp(x), x) == \
3*x**2*exp(x) - 6*x*exp(x) + 11*exp(x)
assert manualintegrate(atan(x), x) == x*atan(x) - log(x**2 + 1)/2
# Make sure _parts_rule doesn't pick u = constant but can pick dv =
# constant if necessary, e.g. for integrate(atan(x))
assert _parts_rule(cos(x), x) == None
assert _parts_rule(exp(x), x) == None
assert _parts_rule(x**2, x) == None
result = _parts_rule(atan(x), x)
assert result[0] == atan(x) and result[1] == 1
def test_manualintegrate_trigonometry():
assert manualintegrate(sin(x), x) == -cos(x)
assert manualintegrate(tan(x), x) == -log(cos(x))
assert manualintegrate(sec(x), x) == log(sec(x) + tan(x))
assert manualintegrate(csc(x), x) == -log(csc(x) + cot(x))
assert manualintegrate(sin(x) * cos(x), x) in [sin(x) ** 2 / 2, -cos(x)**2 / 2]
assert manualintegrate(-sec(x) * tan(x), x) == -sec(x)
assert manualintegrate(csc(x) * cot(x), x) == -csc(x)
assert manualintegrate(sec(x)**2, x) == tan(x)
assert manualintegrate(csc(x)**2, x) == -cot(x)
assert manualintegrate(x * sec(x**2), x) == log(tan(x**2) + sec(x**2))/2
assert manualintegrate(cos(x)*csc(sin(x)), x) == -log(cot(sin(x)) + csc(sin(x)))
assert manualintegrate(cos(3*x)*sec(x), x) == -x + sin(2*x)
assert manualintegrate(sin(3*x)*sec(x), x) == \
-3*log(cos(x)) + 2*log(cos(x)**2) - 2*cos(x)**2
assert_is_integral_of(sinh(2*x), cosh(2*x)/2)
assert_is_integral_of(x*cosh(x**2), sinh(x**2)/2)
assert_is_integral_of(tanh(x), log(cosh(x)))
assert_is_integral_of(coth(x), log(sinh(x)))
f, F = sech(x), 2*atan(tanh(x/2))
assert manualintegrate(f, x) == F
assert (F.diff(x) - f).rewrite(exp).simplify() == 0 # todo: equals returns None
f, F = csch(x), log(tanh(x/2))
assert manualintegrate(f, x) == F
assert (F.diff(x) - f).rewrite(exp).simplify() == 0
@slow
def test_manualintegrate_trigpowers():
assert manualintegrate(sin(x)**2 * cos(x), x) == sin(x)**3 / 3
assert manualintegrate(sin(x)**2 * cos(x) **2, x) == \
x / 8 - sin(4*x) / 32
assert manualintegrate(sin(x) * cos(x)**3, x) == -cos(x)**4 / 4
assert manualintegrate(sin(x)**3 * cos(x)**2, x) == \
cos(x)**5 / 5 - cos(x)**3 / 3
assert manualintegrate(tan(x)**3 * sec(x), x) == sec(x)**3/3 - sec(x)
assert manualintegrate(tan(x) * sec(x) **2, x) == sec(x)**2/2
assert manualintegrate(cot(x)**5 * csc(x), x) == \
-csc(x)**5/5 + 2*csc(x)**3/3 - csc(x)
assert manualintegrate(cot(x)**2 * csc(x)**6, x) == \
-cot(x)**7/7 - 2*cot(x)**5/5 - cot(x)**3/3
@slow
def test_manualintegrate_inversetrig():
# atan
assert manualintegrate(exp(x) / (1 + exp(2*x)), x) == atan(exp(x))
assert manualintegrate(1 / (4 + 9 * x**2), x) == atan(3 * x/2) / 6
assert manualintegrate(1 / (16 + 16 * x**2), x) == atan(x) / 16
assert manualintegrate(1 / (4 + x**2), x) == atan(x / 2) / 2
assert manualintegrate(1 / (1 + 4 * x**2), x) == atan(2*x) / 2
ra = Symbol('a', real=True)
rb = Symbol('b', real=True)
assert manualintegrate(1/(ra + rb*x**2), x) == \
Piecewise((atan(x/sqrt(ra/rb))/(rb*sqrt(ra/rb)), ra/rb > 0),
((log(x - sqrt(-ra/rb)) - log(x + sqrt(-ra/rb)))/(2*sqrt(rb)*sqrt(-ra)), True))
assert manualintegrate(1/(4 + rb*x**2), x) == \
Piecewise((atan(x/(2*sqrt(1/rb)))/(2*rb*sqrt(1/rb)), 1/rb > 0),
(-I*(log(x - 2*sqrt(-1/rb)) - log(x + 2*sqrt(-1/rb)))/(4*sqrt(rb)), True))
assert manualintegrate(1/(ra + 4*x**2), x) == \
Piecewise((atan(2*x/sqrt(ra))/(2*sqrt(ra)), ra > 0),
((log(x - sqrt(-ra)/2) - log(x + sqrt(-ra)/2))/(4*sqrt(-ra)), True))
assert manualintegrate(1/(4 + 4*x**2), x) == atan(x) / 4
assert manualintegrate(1/(a + b*x**2), x) == atan(x/sqrt(a/b))/(b*sqrt(a/b))
# asin
assert manualintegrate(1/sqrt(1-x**2), x) == asin(x)
assert manualintegrate(1/sqrt(4-4*x**2), x) == asin(x)/2
assert manualintegrate(3/sqrt(1-9*x**2), x) == asin(3*x)
assert manualintegrate(1/sqrt(4-9*x**2), x) == asin(x*Rational(3, 2))/3
# asinh
assert manualintegrate(1/sqrt(x**2 + 1), x) == \
asinh(x)
assert manualintegrate(1/sqrt(x**2 + 4), x) == \
asinh(x/2)
assert manualintegrate(1/sqrt(4*x**2 + 4), x) == \
asinh(x)/2
assert manualintegrate(1/sqrt(4*x**2 + 1), x) == \
asinh(2*x)/2
assert manualintegrate(1/sqrt(ra*x**2 + 1), x) == \
Piecewise((asin(x*sqrt(-ra))/sqrt(-ra), ra < 0), (asinh(sqrt(ra)*x)/sqrt(ra), ra > 0), (x, True))
assert manualintegrate(1/sqrt(ra + x**2), x) == \
Piecewise((asinh(x*sqrt(1/ra)), ra > 0), (log(2*x + 2*sqrt(ra + x**2)), True))
# log
assert manualintegrate(1/sqrt(x**2 - 1), x) == log(2*x + 2*sqrt(x**2 - 1))
assert manualintegrate(1/sqrt(x**2 - 4), x) == log(2*x + 2*sqrt(x**2 - 4))
assert manualintegrate(1/sqrt(4*x**2 - 4), x) == log(8*x + 4*sqrt(4*x**2 - 4))/2
assert manualintegrate(1/sqrt(9*x**2 - 1), x) == log(18*x + 6*sqrt(9*x**2 - 1))/3
assert manualintegrate(1/sqrt(ra*x**2 - 4), x) == \
Piecewise((log(2*sqrt(ra)*sqrt(ra*x**2 - 4) + 2*ra*x)/sqrt(ra), Ne(ra, 0)), (-I*x/2, True))
assert manualintegrate(1/sqrt(-ra + 4*x**2), x) == \
Piecewise((asinh(2*x*sqrt(-1/ra))/2, ra < 0), (log(8*x + 4*sqrt(-ra + 4*x**2))/2, True))
# From https://www.wikiwand.com/en/List_of_integrals_of_inverse_trigonometric_functions
# asin
assert manualintegrate(asin(x), x) == x*asin(x) + sqrt(1 - x**2)
assert manualintegrate(asin(a*x), x) == Piecewise(((a*x*asin(a*x) + sqrt(-a**2*x**2 + 1))/a, Ne(a, 0)), (0, True))
assert manualintegrate(x*asin(a*x), x) == \
-a*Piecewise((-x*sqrt(-a**2*x**2 + 1)/(2*a**2) +
log(-2*a**2*x + 2*sqrt(-a**2)*sqrt(-a**2*x**2 + 1))/(2*a**2*sqrt(-a**2)), Ne(a**2, 0)),
(x**3/3, True))/2 + x**2*asin(a*x)/2
# acos
assert manualintegrate(acos(x), x) == x*acos(x) - sqrt(1 - x**2)
assert manualintegrate(acos(a*x), x) == Piecewise(((a*x*acos(a*x) - sqrt(-a**2*x**2 + 1))/a, Ne(a, 0)), (pi*x/2, True))
assert manualintegrate(x*acos(a*x), x) == \
a*Piecewise((-x*sqrt(-a**2*x**2 + 1)/(2*a**2) +
log(-2*a**2*x + 2*sqrt(-a**2)*sqrt(-a**2*x**2 + 1))/(2*a**2*sqrt(-a**2)), Ne(a**2, 0)),
(x**3/3, True))/2 + x**2*acos(a*x)/2
# atan
assert manualintegrate(atan(x), x) == x*atan(x) - log(x**2 + 1)/2
assert manualintegrate(atan(a*x), x) == Piecewise(((a*x*atan(a*x) - log(a**2*x**2 + 1)/2)/a, Ne(a, 0)), (0, True))
assert manualintegrate(x*atan(a*x), x) == -a*(x/a**2 - atan(x/sqrt(a**(-2)))/(a**4*sqrt(a**(-2))))/2 + x**2*atan(a*x)/2
# acsc
assert manualintegrate(acsc(x), x) == x*acsc(x) + Integral(1/(x*sqrt(1 - 1/x**2)), x)
assert manualintegrate(acsc(a*x), x) == x*acsc(a*x) + Integral(1/(x*sqrt(1 - 1/(a**2*x**2))), x)/a
assert manualintegrate(x*acsc(a*x), x) == x**2*acsc(a*x)/2 + Integral(1/sqrt(1 - 1/(a**2*x**2)), x)/(2*a)
# asec
assert manualintegrate(asec(x), x) == x*asec(x) - Integral(1/(x*sqrt(1 - 1/x**2)), x)
assert manualintegrate(asec(a*x), x) == x*asec(a*x) - Integral(1/(x*sqrt(1 - 1/(a**2*x**2))), x)/a
assert manualintegrate(x*asec(a*x), x) == x**2*asec(a*x)/2 - Integral(1/sqrt(1 - 1/(a**2*x**2)), x)/(2*a)
# acot
assert manualintegrate(acot(x), x) == x*acot(x) + log(x**2 + 1)/2
assert manualintegrate(acot(a*x), x) == Piecewise(((a*x*acot(a*x) + log(a**2*x**2 + 1)/2)/a, Ne(a, 0)), (pi*x/2, True))
assert manualintegrate(x*acot(a*x), x) == a*(x/a**2 - atan(x/sqrt(a**(-2)))/(a**4*sqrt(a**(-2))))/2 + x**2*acot(a*x)/2
# piecewise
assert manualintegrate(1/sqrt(ra-rb*x**2), x) == \
Piecewise((asin(x*sqrt(rb/ra))/sqrt(rb), And(-rb < 0, ra > 0)),
(asinh(x*sqrt(-rb/ra))/sqrt(-rb), And(-rb > 0, ra > 0)),
(log(-2*rb*x + 2*sqrt(-rb)*sqrt(ra - rb*x**2))/sqrt(-rb), Ne(rb, 0)),
(x/sqrt(ra), True))
assert manualintegrate(1/sqrt(ra + rb*x**2), x) == \
Piecewise((asin(x*sqrt(-rb/ra))/sqrt(-rb), And(ra > 0, rb < 0)),
(asinh(x*sqrt(rb/ra))/sqrt(rb), And(ra > 0, rb > 0)),
(log(2*sqrt(rb)*sqrt(ra + rb*x**2) + 2*rb*x)/sqrt(rb), Ne(rb, 0)),
(x/sqrt(ra), True))
def test_manualintegrate_trig_substitution():
assert manualintegrate(sqrt(16*x**2 - 9)/x, x) == \
Piecewise((sqrt(16*x**2 - 9) - 3*acos(3/(4*x)),
And(x < Rational(3, 4), x > Rational(-3, 4))))
assert manualintegrate(1/(x**4 * sqrt(25-x**2)), x) == \
Piecewise((-sqrt(-x**2/25 + 1)/(125*x) -
(-x**2/25 + 1)**(3*S.Half)/(15*x**3), And(x < 5, x > -5)))
assert manualintegrate(x**7/(49*x**2 + 1)**(3 * S.Half), x) == \
((49*x**2 + 1)**(5*S.Half)/28824005 -
(49*x**2 + 1)**(3*S.Half)/5764801 +
3*sqrt(49*x**2 + 1)/5764801 + 1/(5764801*sqrt(49*x**2 + 1)))
def test_manualintegrate_trivial_substitution():
assert manualintegrate((exp(x) - exp(-x))/x, x) == -Ei(-x) + Ei(x)
f = Function('f')
assert manualintegrate((f(x) - f(-x))/x, x) == \
-Integral(f(-x)/x, x) + Integral(f(x)/x, x)
def test_manualintegrate_rational():
assert manualintegrate(1/(4 - x**2), x) == -log(x - 2)/4 + log(x + 2)/4
assert manualintegrate(1/(-1 + x**2), x) == log(x - 1)/2 - log(x + 1)/2
def test_manualintegrate_special():
f, F = 4*exp(-x**2/3), 2*sqrt(3)*sqrt(pi)*erf(sqrt(3)*x/3)
assert_is_integral_of(f, F)
f, F = 3*exp(4*x**2), 3*sqrt(pi)*erfi(2*x)/4
assert_is_integral_of(f, F)
f, F = x**Rational(1, 3)*exp(-x/8), -16*uppergamma(Rational(4, 3), x/8)
assert_is_integral_of(f, F)
f, F = exp(2*x)/x, Ei(2*x)
assert_is_integral_of(f, F)
f, F = exp(1 + 2*x - x**2), sqrt(pi)*exp(2)*erf(x - 1)/2
assert_is_integral_of(f, F)
f = sin(x**2 + 4*x + 1)
F = (sqrt(2)*sqrt(pi)*(-sin(3)*fresnelc(sqrt(2)*(2*x + 4)/(2*sqrt(pi))) +
cos(3)*fresnels(sqrt(2)*(2*x + 4)/(2*sqrt(pi))))/2)
assert_is_integral_of(f, F)
f, F = cos(4*x**2), sqrt(2)*sqrt(pi)*fresnelc(2*sqrt(2)*x/sqrt(pi))/4
assert_is_integral_of(f, F)
f, F = sin(3*x + 2)/x, sin(2)*Ci(3*x) + cos(2)*Si(3*x)
assert_is_integral_of(f, F)
f, F = sinh(3*x - 2)/x, -sinh(2)*Chi(3*x) + cosh(2)*Shi(3*x)
assert_is_integral_of(f, F)
f, F = 5*cos(2*x - 3)/x, 5*cos(3)*Ci(2*x) + 5*sin(3)*Si(2*x)
assert_is_integral_of(f, F)
f, F = cosh(x/2)/x, Chi(x/2)
assert_is_integral_of(f, F)
f, F = cos(x**2)/x, Ci(x**2)/2
assert_is_integral_of(f, F)
f, F = 1/log(2*x + 1), li(2*x + 1)/2
assert_is_integral_of(f, F)
f, F = polylog(2, 5*x)/x, polylog(3, 5*x)
assert_is_integral_of(f, F)
f, F = 5/sqrt(3 - 2*sin(x)**2), 5*sqrt(3)*elliptic_f(x, Rational(2, 3))/3
assert_is_integral_of(f, F)
f, F = sqrt(4 + 9*sin(x)**2), 2*elliptic_e(x, Rational(-9, 4))
assert_is_integral_of(f, F)
def test_manualintegrate_derivative():
assert manualintegrate(pi * Derivative(x**2 + 2*x + 3), x) == \
pi * (x**2 + 2*x + 3)
assert manualintegrate(Derivative(x**2 + 2*x + 3, y), x) == \
Integral(Derivative(x**2 + 2*x + 3, y))
assert manualintegrate(Derivative(sin(x), x, x, x, y), x) == \
Derivative(sin(x), x, x, y)
def test_manualintegrate_Heaviside():
assert_is_integral_of(DiracDelta(3*x+2), Heaviside(3*x+2)/3)
assert_is_integral_of(DiracDelta(3*x, 0), Heaviside(3*x)/3)
assert manualintegrate(DiracDelta(a+b*x, 1), x) == \
Piecewise((DiracDelta(a + b*x)/b, Ne(b, 0)), (x*DiracDelta(a, 1), True))
assert_is_integral_of(DiracDelta(x/3-1, 2), 3*DiracDelta(x/3-1, 1))
assert manualintegrate(Heaviside(x), x) == x*Heaviside(x)
assert manualintegrate(x*Heaviside(2), x) == x**2/2
assert manualintegrate(x*Heaviside(-2), x) == 0
assert manualintegrate(x*Heaviside( x), x) == x**2*Heaviside( x)/2
assert manualintegrate(x*Heaviside(-x), x) == x**2*Heaviside(-x)/2
assert manualintegrate(Heaviside(2*x + 4), x) == (x+2)*Heaviside(2*x + 4)
assert manualintegrate(x*Heaviside(x), x) == x**2*Heaviside(x)/2
assert manualintegrate(Heaviside(x + 1)*Heaviside(1 - x)*x**2, x) == \
((x**3/3 + Rational(1, 3))*Heaviside(x + 1) - Rational(2, 3))*Heaviside(-x + 1)
y = Symbol('y')
assert manualintegrate(sin(7 + x)*Heaviside(3*x - 7), x) == \
(- cos(x + 7) + cos(Rational(28, 3)))*Heaviside(3*x - S(7))
assert manualintegrate(sin(y + x)*Heaviside(3*x - y), x) == \
(cos(y*Rational(4, 3)) - cos(x + y))*Heaviside(3*x - y)
def test_manualintegrate_orthogonal_poly():
n = symbols('n')
a, b = 7, Rational(5, 3)
polys = [jacobi(n, a, b, x), gegenbauer(n, a, x), chebyshevt(n, x),
chebyshevu(n, x), legendre(n, x), hermite(n, x), laguerre(n, x),
assoc_laguerre(n, a, x)]
for p in polys:
integral = manualintegrate(p, x)
for deg in [-2, -1, 0, 1, 3, 5, 8]:
# some accept negative "degree", some do not
try:
p_subbed = p.subs(n, deg)
except ValueError:
continue
assert (integral.subs(n, deg).diff(x) - p_subbed).expand() == 0
# can also integrate simple expressions with these polynomials
q = x*p.subs(x, 2*x + 1)
integral = manualintegrate(q, x)
for deg in [2, 4, 7]:
assert (integral.subs(n, deg).diff(x) - q.subs(n, deg)).expand() == 0
# cannot integrate with respect to any other parameter
t = symbols('t')
for i in range(len(p.args) - 1):
new_args = list(p.args)
new_args[i] = t
assert isinstance(manualintegrate(p.func(*new_args), t), Integral)
@slow
def test_issue_6799():
r, x, phi = map(Symbol, 'r x phi'.split())
n = Symbol('n', integer=True, positive=True)
integrand = (cos(n*(x-phi))*cos(n*x))
limits = (x, -pi, pi)
assert manualintegrate(integrand, x) == \
((n*x/2 + sin(2*n*x)/4)*cos(n*phi) - sin(n*phi)*cos(n*x)**2/2)/n
assert r * integrate(integrand, limits).trigsimp() / pi == r * cos(n * phi)
assert not integrate(integrand, limits).has(Dummy)
def test_issue_12251():
assert manualintegrate(x**y, x) == Piecewise(
(x**(y + 1)/(y + 1), Ne(y, -1)), (log(x), True))
def test_issue_3796():
assert manualintegrate(diff(exp(x + x**2)), x) == exp(x + x**2)
assert integrate(x * exp(x**4), x, risch=False) == -I*sqrt(pi)*erf(I*x**2)/4
def test_manual_true():
assert integrate(exp(x) * sin(x), x, manual=True) == \
(exp(x) * sin(x)) / 2 - (exp(x) * cos(x)) / 2
assert integrate(sin(x) * cos(x), x, manual=True) in \
[sin(x) ** 2 / 2, -cos(x)**2 / 2]
def test_issue_6746():
y = Symbol('y')
n = Symbol('n')
assert manualintegrate(y**x, x) == Piecewise(
(y**x/log(y), Ne(log(y), 0)), (x, True))
assert manualintegrate(y**(n*x), x) == Piecewise(
(Piecewise(
(y**(n*x)/log(y), Ne(log(y), 0)),
(n*x, True)
)/n, Ne(n, 0)),
(x, True))
assert manualintegrate(exp(n*x), x) == Piecewise(
(exp(n*x)/n, Ne(n, 0)), (x, True))
y = Symbol('y', positive=True)
assert manualintegrate((y + 1)**x, x) == (y + 1)**x/log(y + 1)
y = Symbol('y', zero=True)
assert manualintegrate((y + 1)**x, x) == x
y = Symbol('y')
n = Symbol('n', nonzero=True)
assert manualintegrate(y**(n*x), x) == Piecewise(
(y**(n*x)/log(y), Ne(log(y), 0)), (n*x, True))/n
y = Symbol('y', positive=True)
assert manualintegrate((y + 1)**(n*x), x) == \
(y + 1)**(n*x)/(n*log(y + 1))
a = Symbol('a', negative=True)
b = Symbol('b')
assert manualintegrate(1/(a + b*x**2), x) == atan(x/sqrt(a/b))/(b*sqrt(a/b))
b = Symbol('b', negative=True)
assert manualintegrate(1/(a + b*x**2), x) == \
atan(x/(sqrt(-a)*sqrt(-1/b)))/(b*sqrt(-a)*sqrt(-1/b))
assert manualintegrate(1/((x**a + y**b + 4)*sqrt(a*x**2 + 1)), x) == \
y**(-b)*Integral(x**(-a)/(y**(-b)*sqrt(a*x**2 + 1) +
x**(-a)*sqrt(a*x**2 + 1) + 4*x**(-a)*y**(-b)*sqrt(a*x**2 + 1)), x)
assert manualintegrate(1/((x**2 + 4)*sqrt(4*x**2 + 1)), x) == \
Integral(1/((x**2 + 4)*sqrt(4*x**2 + 1)), x)
assert manualintegrate(1/(x - a**x + x*b**2), x) == \
Integral(1/(-a**x + b**2*x + x), x)
@slow
def test_issue_2850():
assert manualintegrate(asin(x)*log(x), x) == -x*asin(x) - sqrt(-x**2 + 1) \
+ (x*asin(x) + sqrt(-x**2 + 1))*log(x) - Integral(sqrt(-x**2 + 1)/x, x)
assert manualintegrate(acos(x)*log(x), x) == -x*acos(x) + sqrt(-x**2 + 1) + \
(x*acos(x) - sqrt(-x**2 + 1))*log(x) + Integral(sqrt(-x**2 + 1)/x, x)
assert manualintegrate(atan(x)*log(x), x) == -x*atan(x) + (x*atan(x) - \
log(x**2 + 1)/2)*log(x) + log(x**2 + 1)/2 + Integral(log(x**2 + 1)/x, x)/2
def test_issue_9462():
assert manualintegrate(sin(2*x)*exp(x), x) == exp(x)*sin(2*x)/5 - 2*exp(x)*cos(2*x)/5
assert not integral_steps(sin(2*x)*exp(x), x).contains_dont_know()
assert manualintegrate((x - 3) / (x**2 - 2*x + 2)**2, x) == \
Integral(x/(x**4 - 4*x**3 + 8*x**2 - 8*x + 4), x) \
- 3*Integral(1/(x**4 - 4*x**3 + 8*x**2 - 8*x + 4), x)
def test_cyclic_parts():
f = cos(x)*exp(x/4)
F = 16*exp(x/4)*sin(x)/17 + 4*exp(x/4)*cos(x)/17
assert manualintegrate(f, x) == F and F.diff(x) == f
f = x*cos(x)*exp(x/4)
F = (x*(16*exp(x/4)*sin(x)/17 + 4*exp(x/4)*cos(x)/17) -
128*exp(x/4)*sin(x)/289 + 240*exp(x/4)*cos(x)/289)
assert manualintegrate(f, x) == F and F.diff(x) == f
@slow
def test_issue_10847_slow():
assert manualintegrate((4*x**4 + 4*x**3 + 16*x**2 + 12*x + 8)
/ (x**6 + 2*x**5 + 3*x**4 + 4*x**3 + 3*x**2 + 2*x + 1), x) == \
2*x/(x**2 + 1) + 3*atan(x) - 1/(x**2 + 1) - 3/(x + 1)
@slow
def test_issue_10847():
assert manualintegrate(x**2 / (x**2 - c), x) == c*atan(x/sqrt(-c))/sqrt(-c) + x
rc = Symbol('c', real=True)
assert manualintegrate(x**2 / (x**2 - rc), x) == \
rc*Piecewise((atan(x/sqrt(-rc))/sqrt(-rc), rc < 0),
((log(-sqrt(rc) + x) - log(sqrt(rc) + x))/(2*sqrt(rc)), True)) + x
assert manualintegrate(sqrt(x - y) * log(z / x), x) == \
4*y**Rational(3, 2)*atan(sqrt(x - y)/sqrt(y))/3 - 4*y*sqrt(x - y)/3 +\
2*(x - y)**Rational(3, 2)*log(z/x)/3 + 4*(x - y)**Rational(3, 2)/9
ry = Symbol('y', real=True)
rz = Symbol('z', real=True)
assert manualintegrate(sqrt(x - ry) * log(rz / x), x) == \
4*ry**2*Piecewise((atan(sqrt(x - ry)/sqrt(ry))/sqrt(ry), ry > 0),
((log(-sqrt(-ry) + sqrt(x - ry)) - log(sqrt(-ry) + sqrt(x - ry)))/(2*sqrt(-ry)), True))/3 \
- 4*ry*sqrt(x - ry)/3 + 2*(x - ry)**Rational(3, 2)*log(rz/x)/3 \
+ 4*(x - ry)**Rational(3, 2)/9
assert manualintegrate(sqrt(x) * log(x), x) == 2*x**Rational(3, 2)*log(x)/3 - 4*x**Rational(3, 2)/9
assert manualintegrate(sqrt(a*x + b) / x, x) == \
Piecewise((2*b*atan(sqrt(a*x + b)/sqrt(-b))/sqrt(-b) + 2*sqrt(a*x + b), Ne(a, 0)), (sqrt(b)*log(x), True))
ra = Symbol('a', real=True)
rb = Symbol('b', real=True)
assert manualintegrate(sqrt(ra*x + rb) / x, x) == \
Piecewise(
(-2*rb*Piecewise(
(-atan(sqrt(ra*x + rb)/sqrt(-rb))/sqrt(-rb), rb < 0),
(-I*(log(-sqrt(rb) + sqrt(ra*x + rb)) - log(sqrt(rb) + sqrt(ra*x + rb)))/(2*sqrt(-rb)), True)) +
2*sqrt(ra*x + rb), Ne(ra, 0)),
(sqrt(rb)*log(x), True))
assert expand(manualintegrate(sqrt(ra*x + rb) / (x + rc), x)) == \
Piecewise((-2*ra*rc*Piecewise((atan(sqrt(ra*x + rb)/sqrt(ra*rc - rb))/sqrt(ra*rc - rb), ra*rc - rb > 0),
(log(-sqrt(-ra*rc + rb) + sqrt(ra*x + rb))/(2*sqrt(-ra*rc + rb)) -
log(sqrt(-ra*rc + rb) + sqrt(ra*x + rb))/(2*sqrt(-ra*rc + rb)), True)) +
2*rb*Piecewise((atan(sqrt(ra*x + rb)/sqrt(ra*rc - rb))/sqrt(ra*rc - rb), ra*rc - rb > 0),
(log(-sqrt(-ra*rc + rb) + sqrt(ra*x + rb))/(2*sqrt(-ra*rc + rb)) -
log(sqrt(-ra*rc + rb) + sqrt(ra*x + rb))/(2*sqrt(-ra*rc + rb)), True)) +
2*sqrt(ra*x + rb), Ne(ra, 0)), (sqrt(rb)*log(rc + x), True))
assert manualintegrate(sqrt(2*x + 3) / (x + 1), x) == 2*sqrt(2*x + 3) - log(sqrt(2*x + 3) + 1) + log(sqrt(2*x + 3) - 1)
assert manualintegrate(sqrt(2*x + 3) / 2 * x, x) == (2*x + 3)**Rational(5, 2)/20 - (2*x + 3)**Rational(3, 2)/4
assert manualintegrate(x**Rational(3,2) * log(x), x) == 2*x**Rational(5,2)*log(x)/5 - 4*x**Rational(5,2)/25
assert manualintegrate(x**(-3) * log(x), x) == -log(x)/(2*x**2) - 1/(4*x**2)
assert manualintegrate(log(y)/(y**2*(1 - 1/y)), y) == \
log(y)*log(-1 + 1/y) - Integral(log(-1 + 1/y)/y, y)
def test_issue_12899():
assert manualintegrate(f(x,y).diff(x),y) == Integral(Derivative(f(x,y),x),y)
assert manualintegrate(f(x,y).diff(y).diff(x),y) == Derivative(f(x,y),x)
def test_constant_independent_of_symbol():
assert manualintegrate(Integral(y, (x, 1, 2)), x) == \
x*Integral(y, (x, 1, 2))
def test_issue_12641():
assert manualintegrate(sin(2*x), x) == -cos(2*x)/2
assert manualintegrate(cos(x)*sin(2*x), x) == -2*cos(x)**3/3
assert manualintegrate((sin(2*x)*cos(x))/(1 + cos(x)), x) == \
-2*log(cos(x) + 1) - cos(x)**2 + 2*cos(x)
@slow
def test_issue_13297():
assert manualintegrate(sin(x) * cos(x)**5, x) == -cos(x)**6 / 6
def test_issue_14470():
assert_is_integral_of(1/(x*sqrt(x + 1)), log(sqrt(x + 1) - 1) - log(sqrt(x + 1) + 1))
@slow
def test_issue_9858():
assert manualintegrate(exp(x)*cos(exp(x)), x) == sin(exp(x))
assert manualintegrate(exp(2*x)*cos(exp(x)), x) == \
exp(x)*sin(exp(x)) + cos(exp(x))
res = manualintegrate(exp(10*x)*sin(exp(x)), x)
assert not res.has(Integral)
assert res.diff(x) == exp(10*x)*sin(exp(x))
# an example with many similar integrations by parts
assert manualintegrate(sum([x*exp(k*x) for k in range(1, 8)]), x) == (
x*exp(7*x)/7 + x*exp(6*x)/6 + x*exp(5*x)/5 + x*exp(4*x)/4 +
x*exp(3*x)/3 + x*exp(2*x)/2 + x*exp(x) - exp(7*x)/49 -exp(6*x)/36 -
exp(5*x)/25 - exp(4*x)/16 - exp(3*x)/9 - exp(2*x)/4 - exp(x))
def test_issue_8520():
assert manualintegrate(x/(x**4 + 1), x) == atan(x**2)/2
assert manualintegrate(x**2/(x**6 + 25), x) == atan(x**3/5)/15
f = x/(9*x**4 + 4)**2
assert manualintegrate(f, x).diff(x).factor() == f
def test_manual_subs():
x, y = symbols('x y')
expr = log(x) + exp(x)
# if log(x) is y, then exp(y) is x
assert manual_subs(expr, log(x), y) == y + exp(exp(y))
# if exp(x) is y, then log(y) need not be x
assert manual_subs(expr, exp(x), y) == log(x) + y
raises(ValueError, lambda: manual_subs(expr, x))
raises(ValueError, lambda: manual_subs(expr, exp(x), x, y))
@slow
def test_issue_15471():
f = log(x)*cos(log(x))/x**Rational(3, 4)
F = -128*x**Rational(1, 4)*sin(log(x))/289 + 240*x**Rational(1, 4)*cos(log(x))/289 + (16*x**Rational(1, 4)*sin(log(x))/17 + 4*x**Rational(1, 4)*cos(log(x))/17)*log(x)
assert_is_integral_of(f, F)
def test_quadratic_denom():
f = (5*x + 2)/(3*x**2 - 2*x + 8)
assert manualintegrate(f, x) == 5*log(3*x**2 - 2*x + 8)/6 + 11*sqrt(23)*atan(3*sqrt(23)*(x - Rational(1, 3))/23)/69
g = 3/(2*x**2 + 3*x + 1)
assert manualintegrate(g, x) == 3*log(4*x + 2) - 3*log(4*x + 4)
def test_issue_22757():
assert manualintegrate(sin(x), y) == y * sin(x)
def test_issue_23348():
steps = integral_steps(tan(x), x)
constant_times_step = steps.substep.substep
assert constant_times_step.integrand == constant_times_step.constant * constant_times_step.other
def test_issue_23566():
i = Integral(1/sqrt(x**2 - 1), (x, -2, -1)).doit(manual=True)
assert i == -log(4 - 2*sqrt(3)) + log(2)
assert str(i.n()) == '1.31695789692482'
def test_nested_pow():
assert_is_integral_of(sqrt(x**2), x*sqrt(x**2)/2)
assert_is_integral_of(sqrt(x**(S(5)/3)), 6*x*sqrt(x**(S(5)/3))/11)
assert_is_integral_of(1/sqrt(x**2), x*log(x)/sqrt(x**2))
assert_is_integral_of(x*sqrt(x**(-4)), x**2*sqrt(x**-4)*log(x))
f = (c*(a+b*x)**d)**e
F1 = (c*(a + b*x)**d)**e*(a/b + x)/(d*e + 1)
F2 = (c*(a + b*x)**d)**e*(a/b + x)*log(a/b + x)
assert manualintegrate(f, x) == \
Piecewise((Piecewise((F1, Ne(d*e, -1)), (F2, True)), Ne(b, 0)), (x*(a**d*c)**e, True))
assert F1.diff(x).equals(f)
assert F2.diff(x).subs(d*e, -1).equals(f)
def test_manualintegrate_sqrt_linear():
assert_is_integral_of((5*x**3+4)/sqrt(2+3*x),
10*(3*x + 2)**(S(7)/2)/567 - 4*(3*x + 2)**(S(5)/2)/27 +
40*(3*x + 2)**(S(3)/2)/81 + 136*sqrt(3*x + 2)/81)
assert manualintegrate(x/sqrt(a+b*x)**3, x) == \
Piecewise((Mul(2, b**-2, a/sqrt(a + b*x) + sqrt(a + b*x)), Ne(b, 0)), (x**2/(2*a**(S(3)/2)), True))
assert_is_integral_of((sqrt(3*x+3)+1)/((2*x+2)**(1/S(3))+1),
3*sqrt(6)*(2*x + 2)**(S(7)/6)/14 - 3*sqrt(6)*(2*x + 2)**(S(5)/6)/10 -
3*sqrt(6)*(2*x + 2)**(S.One/6)/2 + 3*(2*x + 2)**(S(2)/3)/4 - 3*(2*x + 2)**(S.One/3)/2 +
sqrt(6)*sqrt(2*x + 2)/2 + 3*log((2*x + 2)**(S.One/3) + 1)/2 +
3*sqrt(6)*atan((2*x + 2)**(S.One/6))/2)
assert_is_integral_of(sqrt(x+sqrt(x)),
2*sqrt(sqrt(x) + x)*(sqrt(x)/12 + x/3 - S(1)/8) + log(2*sqrt(x) + 2*sqrt(sqrt(x) + x) + 1)/8)
assert_is_integral_of(sqrt(2*x+3+sqrt(4*x+5))**3,
sqrt(2*x + sqrt(4*x + 5) + 3) *
(9*x/10 + 11*(4*x + 5)**(S(3)/2)/40 + sqrt(4*x + 5)/40 + (4*x + 5)**2/10 + S(11)/10)/2)
def test_manualintegrate_sqrt_quadratic():
assert_is_integral_of(1/sqrt((x - I)**2-1), log(2*x + 2*sqrt(x**2 - 2*I*x - 2) - 2*I))
assert_is_integral_of(1/sqrt(3*x**2+4*x+5), sqrt(3)*asinh(3*sqrt(11)*(x + S(2)/3)/11)/3)
assert_is_integral_of(1/sqrt(-3*x**2+4*x+5), sqrt(3)*asin(3*sqrt(19)*(x - S(2)/3)/19)/3)
assert_is_integral_of(1/sqrt(3*x**2+4*x-5), sqrt(3)*log(6*x + 2*sqrt(3)*sqrt(3*x**2 + 4*x - 5) + 4)/3)
assert_is_integral_of(1/sqrt(4*x**2-4*x+1), (x - S.Half)*log(x - S.Half)/(2*sqrt((x - S.Half)**2)))
assert manualintegrate(1/sqrt(a+b*x+c*x**2), x) == \
Piecewise((log(b + 2*sqrt(c)*sqrt(a + b*x + c*x**2) + 2*c*x)/sqrt(c), Ne(c, 0) & Ne(a - b**2/(4*c), 0)),
((b/(2*c) + x)*log(b/(2*c) + x)/sqrt(c*(b/(2*c) + x)**2), Ne(c, 0)),
(2*sqrt(a + b*x)/b, Ne(b, 0)), (x/sqrt(a), True))
assert_is_integral_of((7*x+6)/sqrt(3*x**2+4*x+5),
7*sqrt(3*x**2 + 4*x + 5)/3 + 4*sqrt(3)*asinh(3*sqrt(11)*(x + S(2)/3)/11)/9)
assert_is_integral_of((7*x+6)/sqrt(-3*x**2+4*x+5),
-7*sqrt(-3*x**2 + 4*x + 5)/3 + 32*sqrt(3)*asin(3*sqrt(19)*(x - S(2)/3)/19)/9)
assert_is_integral_of((7*x+6)/sqrt(3*x**2+4*x-5),
7*sqrt(3*x**2 + 4*x - 5)/3 + 4*sqrt(3)*log(6*x + 2*sqrt(3)*sqrt(3*x**2 + 4*x - 5) + 4)/9)
assert manualintegrate((d+e*x)/sqrt(a+b*x+c*x**2), x) == \
Piecewise(((-b*e/(2*c) + d) *
Piecewise((log(b + 2*sqrt(c)*sqrt(a + b*x + c*x**2) + 2*c*x)/sqrt(c), Ne(a - b**2/(4*c), 0)),
((b/(2*c) + x)*log(b/(2*c) + x)/sqrt(c*(b/(2*c) + x)**2), True)) +
e*sqrt(a + b*x + c*x**2)/c, Ne(c, 0)),
((2*d*sqrt(a + b*x) + 2*e*(-a*sqrt(a + b*x) + (a + b*x)**(S(3)/2)/3)/b)/b, Ne(b, 0)),
((d*x + e*x**2/2)/sqrt(a), True))
assert manualintegrate((3*x**3-x**2+2*x-4)/sqrt(x**2-3*x+2), x) == \
sqrt(x**2 - 3*x + 2)*(x**2 + 13*x/4 + S(101)/8) + 135*log(2*x + 2*sqrt(x**2 - 3*x + 2) - 3)/16
assert_is_integral_of(sqrt(53225*x**2-66732*x+23013),
(x/2 - S(16683)/53225)*sqrt(53225*x**2 - 66732*x + 23013) +
111576969*sqrt(2129)*asinh(53225*x/10563 - S(11122)/3521)/1133160250)
assert manualintegrate(sqrt(a+c*x**2), x) == \
Piecewise((a*Piecewise((log(2*sqrt(c)*sqrt(a + c*x**2) + 2*c*x)/sqrt(c), Ne(a, 0)),
(x*log(x)/sqrt(c*x**2), True))/2 + x*sqrt(a + c*x**2)/2, Ne(c, 0)),
(sqrt(a)*x, True))
assert manualintegrate(sqrt(a+b*x+c*x**2), x) == \
Piecewise(((a/2 - b**2/(8*c)) *
Piecewise((log(b + 2*sqrt(c)*sqrt(a + b*x + c*x**2) + 2*c*x)/sqrt(c), Ne(a - b**2/(4*c), 0)),
((b/(2*c) + x)*log(b/(2*c) + x)/sqrt(c*(b/(2*c) + x)**2), True)) +
(b/(4*c) + x/2)*sqrt(a + b*x + c*x**2), Ne(c, 0)),
(2*(a + b*x)**(S(3)/2)/(3*b), Ne(b, 0)),
(sqrt(a)*x, True))
assert_is_integral_of(x*sqrt(x**2+2*x+4),
(x**2/3 + x/6 + S(5)/6)*sqrt(x**2 + 2*x + 4) - 3*asinh(sqrt(3)*(x + 1)/3)/2)
def test_mul_pow_derivative():
assert_is_integral_of(x*sec(x)*tan(x), x*sec(x) - log(tan(x) + sec(x)))
assert_is_integral_of(x*sec(x)**2, x*tan(x) + log(cos(x)))
assert_is_integral_of(x**3*Derivative(f(x), (x, 4)),
x**3*Derivative(f(x), (x, 3)) - 3*x**2*Derivative(f(x), (x, 2)) +
6*x*Derivative(f(x), x) - 6*f(x))
|
85025cdb729f2b46d499b8f85b70b4e10749d0ad7bfe084c55f4cbb8a8d404f7 | # A collection of failing integrals from the issues.
from sympy.core.numbers import (I, Rational, oo, pi)
from sympy.core.singleton import S
from sympy.core.symbol import symbols
from sympy.functions.elementary.complexes import sign
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.elementary.hyperbolic import (sech, sinh)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.elementary.trigonometric import (acos, atan, cos, sin, tan)
from sympy.functions.special.delta_functions import DiracDelta
from sympy.functions.special.gamma_functions import gamma
from sympy.integrals.integrals import (Integral, integrate)
from sympy.testing.pytest import XFAIL, SKIP, slow, skip, ON_CI
from sympy.abc import x, k, c, y, b, h, a, m, z, n, t
@SKIP("Too slow for @slow")
@XFAIL
def test_issue_3880():
# integrate_hyperexponential(Poly(t*2*(1 - t0**2)*t0*(x**3 + x**2), t), Poly((1 + t0**2)**2*2*(x**2 + x + 1), t), [Poly(1, x), Poly(1 + t0**2, t0), Poly(t, t)], [x, t0, t], [exp, tan])
assert not integrate(exp(x)*cos(2*x)*sin(2*x) * (x**3 + x**2)/(2*(x**2 + x + 1)), x).has(Integral)
@XFAIL
def test_issue_4212():
assert not integrate(sign(x), x).has(Integral)
@XFAIL
def test_issue_4511():
# This works, but gives a complicated answer. The correct answer is x - cos(x).
# If current answer is simplified, 1 - cos(x) + x is obtained.
# The last one is what Maple gives. It is also quite slow.
assert integrate(cos(x)**2 / (1 - sin(x))) in [x - cos(x), 1 - cos(x) + x,
-2/(tan((S.Half)*x)**2 + 1) + x]
@XFAIL
def test_integrate_DiracDelta_fails():
# issue 6427
assert integrate(integrate(integrate(
DiracDelta(x - y - z), (z, 0, oo)), (y, 0, 1)), (x, 0, 1)) == S.Half
@XFAIL
@slow
def test_issue_4525():
# Warning: takes a long time
assert not integrate((x**m * (1 - x)**n * (a + b*x + c*x**2))/(1 + x**2), (x, 0, 1)).has(Integral)
@XFAIL
@slow
def test_issue_4540():
if ON_CI:
skip("Too slow for CI.")
# Note, this integral is probably nonelementary
assert not integrate(
(sin(1/x) - x*exp(x)) /
((-sin(1/x) + x*exp(x))*x + x*sin(1/x)), x).has(Integral)
@XFAIL
@slow
def test_issue_4891():
# Requires the hypergeometric function.
assert not integrate(cos(x)**y, x).has(Integral)
@XFAIL
@slow
def test_issue_1796a():
assert not integrate(exp(2*b*x)*exp(-a*x**2), x).has(Integral)
@XFAIL
def test_issue_4895b():
assert not integrate(exp(2*b*x)*exp(-a*x**2), (x, -oo, 0)).has(Integral)
@XFAIL
def test_issue_4895c():
assert not integrate(exp(2*b*x)*exp(-a*x**2), (x, -oo, oo)).has(Integral)
@XFAIL
def test_issue_4895d():
assert not integrate(exp(2*b*x)*exp(-a*x**2), (x, 0, oo)).has(Integral)
@XFAIL
@slow
def test_issue_4941():
if ON_CI:
skip("Too slow for CI.")
assert not integrate(sqrt(1 + sinh(x/20)**2), (x, -25, 25)).has(Integral)
@XFAIL
def test_issue_4992():
# Nonelementary integral. Requires hypergeometric/Meijer-G handling.
assert not integrate(log(x) * x**(k - 1) * exp(-x) / gamma(k), (x, 0, oo)).has(Integral)
@XFAIL
def test_issue_16396a():
i = integrate(1/(1+sqrt(tan(x))), (x, pi/3, pi/6))
assert not i.has(Integral)
@XFAIL
def test_issue_16396b():
i = integrate(x*sin(x)/(1+cos(x)**2), (x, 0, pi))
assert not i.has(Integral)
@XFAIL
def test_issue_16046():
assert integrate(exp(exp(I*x)), [x, 0, 2*pi]) == 2*pi
@XFAIL
def test_issue_15925a():
assert not integrate(sqrt((1+sin(x))**2+(cos(x))**2), (x, -pi/2, pi/2)).has(Integral)
@XFAIL
@slow
def test_issue_15925b():
if ON_CI:
skip("Too slow for CI.")
assert not integrate(sqrt((-12*cos(x)**2*sin(x))**2+(12*cos(x)*sin(x)**2)**2),
(x, 0, pi/6)).has(Integral)
@XFAIL
def test_issue_15925b_manual():
assert not integrate(sqrt((-12*cos(x)**2*sin(x))**2+(12*cos(x)*sin(x)**2)**2),
(x, 0, pi/6), manual=True).has(Integral)
@XFAIL
@slow
def test_issue_15227():
if ON_CI:
skip("Too slow for CI.")
i = integrate(log(1-x)*log((1+x)**2)/x, (x, 0, 1))
assert not i.has(Integral)
# assert i == -5*zeta(3)/4
@XFAIL
@slow
def test_issue_14716():
i = integrate(log(x + 5)*cos(pi*x),(x, S.Half, 1))
assert not i.has(Integral)
# Mathematica can not solve it either, but
# integrate(log(x + 5)*cos(pi*x),(x, S.Half, 1)).transform(x, y - 5).doit()
# works
# assert i == -log(Rational(11, 2))/pi - Si(pi*Rational(11, 2))/pi + Si(6*pi)/pi
@XFAIL
def test_issue_14709a():
i = integrate(x*acos(1 - 2*x/h), (x, 0, h))
assert not i.has(Integral)
# assert i == 5*h**2*pi/16
@slow
@XFAIL
def test_issue_14398():
assert not integrate(exp(x**2)*cos(x), x).has(Integral)
@XFAIL
def test_issue_14074():
i = integrate(log(sin(x)), (x, 0, pi/2))
assert not i.has(Integral)
# assert i == -pi*log(2)/2
@XFAIL
@slow
def test_issue_14078b():
i = integrate((atan(4*x)-atan(2*x))/x, (x, 0, oo))
assert not i.has(Integral)
# assert i == pi*log(2)/2
@XFAIL
def test_issue_13792():
i = integrate(log(1/x) / (1 - x), (x, 0, 1))
assert not i.has(Integral)
# assert i in [polylog(2, -exp_polar(I*pi)), pi**2/6]
@XFAIL
def test_issue_11845a():
assert not integrate(exp(y - x**3), (x, 0, 1)).has(Integral)
@XFAIL
def test_issue_11845b():
assert not integrate(exp(-y - x**3), (x, 0, 1)).has(Integral)
@XFAIL
def test_issue_11813():
assert not integrate((a - x)**Rational(-1, 2)*x, (x, 0, a)).has(Integral)
@XFAIL
def test_issue_11254c():
assert not integrate(sech(x)**2, (x, 0, 1)).has(Integral)
@XFAIL
def test_issue_10584():
assert not integrate(sqrt(x**2 + 1/x**2), x).has(Integral)
@XFAIL
def test_issue_9101():
assert not integrate(log(x + sqrt(x**2 + y**2 + z**2)), z).has(Integral)
@XFAIL
def test_issue_7147():
assert not integrate(x/sqrt(a*x**2 + b*x + c)**3, x).has(Integral)
@XFAIL
def test_issue_7109():
assert not integrate(sqrt(a**2/(a**2 - x**2)), x).has(Integral)
@XFAIL
def test_integrate_Piecewise_rational_over_reals():
f = Piecewise(
(0, t - 478.515625*pi < 0),
(13.2075145209219*pi/(0.000871222*t + 0.995)**2, t - 478.515625*pi >= 0))
assert abs((integrate(f, (t, 0, oo)) - 15235.9375*pi).evalf()) <= 1e-7
@XFAIL
def test_issue_4311_slow():
# Not slow when bypassing heurish
assert not integrate(x*abs(9-x**2), x).has(Integral)
@XFAIL
def test_issue_20370():
a = symbols('a', positive=True)
assert integrate((1 + a * cos(x))**-1, (x, 0, 2 * pi)) == (2 * pi / sqrt(1 - a**2))
@XFAIL
def test_polylog():
# log(1/x)*log(x+1)-polylog(2, -x)
assert not integrate(log(1/x)/(x + 1), x).has(Integral)
@XFAIL
def test_polylog_manual():
# Make sure _parts_rule does not go into an infinite loop here
assert not integrate(log(1/x)/(x + 1), x, manual=True).has(Integral)
|
b951983e1d77aeab7819bc85d093931ea2da6ad72e14224d427e5fdb36f50a80 | from sympy.integrals.transforms import (mellin_transform,
inverse_mellin_transform, laplace_transform,
inverse_laplace_transform, fourier_transform, inverse_fourier_transform,
sine_transform, inverse_sine_transform,
cosine_transform, inverse_cosine_transform,
hankel_transform, inverse_hankel_transform,
LaplaceTransform, FourierTransform, SineTransform, CosineTransform,
InverseLaplaceTransform, InverseFourierTransform,
InverseSineTransform, InverseCosineTransform, IntegralTransformError)
from sympy.core.function import (Function, expand_mul)
from sympy.core import EulerGamma, Subs, Derivative, diff
from sympy.core.numbers import (I, Rational, oo, pi)
from sympy.core.relational import Eq
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, symbols)
from sympy.functions.combinatorial.factorials import factorial
from sympy.functions.elementary.complexes import (Abs, re, unpolarify)
from sympy.functions.elementary.exponential import (exp, exp_polar, log)
from sympy.functions.elementary.hyperbolic import (cosh, sinh, coth, asinh)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (atan, atan2, cos, sin, tan)
from sympy.functions.special.bessel import (besseli, besselj, besselk, bessely)
from sympy.functions.special.delta_functions import Heaviside
from sympy.functions.special.error_functions import (erf, erfc, expint, Ei)
from sympy.functions.special.gamma_functions import gamma
from sympy.functions.special.hyper import meijerg
from sympy.simplify.gammasimp import gammasimp
from sympy.simplify.hyperexpand import hyperexpand
from sympy.simplify.trigsimp import trigsimp
from sympy.testing.pytest import XFAIL, slow, skip, raises, warns_deprecated_sympy
from sympy.matrices import Matrix, eye
from sympy.abc import x, s, a, b, c, d
nu, beta, rho = symbols('nu beta rho')
def test_undefined_function():
from sympy.integrals.transforms import MellinTransform
f = Function('f')
assert mellin_transform(f(x), x, s) == MellinTransform(f(x), x, s)
assert mellin_transform(f(x) + exp(-x), x, s) == \
(MellinTransform(f(x), x, s) + gamma(s + 1)/s, (0, oo), True)
def test_free_symbols():
f = Function('f')
assert mellin_transform(f(x), x, s).free_symbols == {s}
assert mellin_transform(f(x)*a, x, s).free_symbols == {s, a}
def test_as_integral():
from sympy.integrals.integrals import Integral
f = Function('f')
assert mellin_transform(f(x), x, s).rewrite('Integral') == \
Integral(x**(s - 1)*f(x), (x, 0, oo))
assert fourier_transform(f(x), x, s).rewrite('Integral') == \
Integral(f(x)*exp(-2*I*pi*s*x), (x, -oo, oo))
assert laplace_transform(f(x), x, s).rewrite('Integral') == \
Integral(f(x)*exp(-s*x), (x, 0, oo))
assert str(2*pi*I*inverse_mellin_transform(f(s), s, x, (a, b)).rewrite('Integral')) \
== "Integral(f(s)/x**s, (s, _c - oo*I, _c + oo*I))"
assert str(2*pi*I*inverse_laplace_transform(f(s), s, x).rewrite('Integral')) == \
"Integral(f(s)*exp(s*x), (s, _c - oo*I, _c + oo*I))"
assert inverse_fourier_transform(f(s), s, x).rewrite('Integral') == \
Integral(f(s)*exp(2*I*pi*s*x), (s, -oo, oo))
# NOTE this is stuck in risch because meijerint cannot handle it
@slow
@XFAIL
def test_mellin_transform_fail():
skip("Risch takes forever.")
MT = mellin_transform
bpos = symbols('b', positive=True)
# bneg = symbols('b', negative=True)
expr = (sqrt(x + b**2) + b)**a/sqrt(x + b**2)
# TODO does not work with bneg, argument wrong. Needs changes to matching.
assert MT(expr.subs(b, -bpos), x, s) == \
((-1)**(a + 1)*2**(a + 2*s)*bpos**(a + 2*s - 1)*gamma(a + s)
*gamma(1 - a - 2*s)/gamma(1 - s),
(-re(a), -re(a)/2 + S.Half), True)
expr = (sqrt(x + b**2) + b)**a
assert MT(expr.subs(b, -bpos), x, s) == \
(
2**(a + 2*s)*a*bpos**(a + 2*s)*gamma(-a - 2*
s)*gamma(a + s)/gamma(-s + 1),
(-re(a), -re(a)/2), True)
# Test exponent 1:
assert MT(expr.subs({b: -bpos, a: 1}), x, s) == \
(-bpos**(2*s + 1)*gamma(s)*gamma(-s - S.Half)/(2*sqrt(pi)),
(-1, Rational(-1, 2)), True)
def test_mellin_transform():
from sympy.functions.elementary.miscellaneous import (Max, Min)
MT = mellin_transform
bpos = symbols('b', positive=True)
# 8.4.2
assert MT(x**nu*Heaviside(x - 1), x, s) == \
(-1/(nu + s), (-oo, -re(nu)), True)
assert MT(x**nu*Heaviside(1 - x), x, s) == \
(1/(nu + s), (-re(nu), oo), True)
assert MT((1 - x)**(beta - 1)*Heaviside(1 - x), x, s) == \
(gamma(beta)*gamma(s)/gamma(beta + s), (0, oo), re(beta) > 0)
assert MT((x - 1)**(beta - 1)*Heaviside(x - 1), x, s) == \
(gamma(beta)*gamma(1 - beta - s)/gamma(1 - s),
(-oo, 1 - re(beta)), re(beta) > 0)
assert MT((1 + x)**(-rho), x, s) == \
(gamma(s)*gamma(rho - s)/gamma(rho), (0, re(rho)), True)
assert MT(abs(1 - x)**(-rho), x, s) == (
2*sin(pi*rho/2)*gamma(1 - rho)*
cos(pi*(s - rho/2))*gamma(s)*gamma(rho-s)/pi,
(0, re(rho)), re(rho) < 1)
mt = MT((1 - x)**(beta - 1)*Heaviside(1 - x)
+ a*(x - 1)**(beta - 1)*Heaviside(x - 1), x, s)
assert mt[1], mt[2] == ((0, -re(beta) + 1), re(beta) > 0)
assert MT((x**a - b**a)/(x - b), x, s)[0] == \
pi*b**(a + s - 1)*sin(pi*a)/(sin(pi*s)*sin(pi*(a + s)))
assert MT((x**a - bpos**a)/(x - bpos), x, s) == \
(pi*bpos**(a + s - 1)*sin(pi*a)/(sin(pi*s)*sin(pi*(a + s))),
(Max(0, -re(a)), Min(1, 1 - re(a))), True)
expr = (sqrt(x + b**2) + b)**a
assert MT(expr.subs(b, bpos), x, s) == \
(-a*(2*bpos)**(a + 2*s)*gamma(s)*gamma(-a - 2*s)/gamma(-a - s + 1),
(0, -re(a)/2), True)
expr = (sqrt(x + b**2) + b)**a/sqrt(x + b**2)
assert MT(expr.subs(b, bpos), x, s) == \
(2**(a + 2*s)*bpos**(a + 2*s - 1)*gamma(s)
*gamma(1 - a - 2*s)/gamma(1 - a - s),
(0, -re(a)/2 + S.Half), True)
# 8.4.2
assert MT(exp(-x), x, s) == (gamma(s), (0, oo), True)
assert MT(exp(-1/x), x, s) == (gamma(-s), (-oo, 0), True)
# 8.4.5
assert MT(log(x)**4*Heaviside(1 - x), x, s) == (24/s**5, (0, oo), True)
assert MT(log(x)**3*Heaviside(x - 1), x, s) == (6/s**4, (-oo, 0), True)
assert MT(log(x + 1), x, s) == (pi/(s*sin(pi*s)), (-1, 0), True)
assert MT(log(1/x + 1), x, s) == (pi/(s*sin(pi*s)), (0, 1), True)
assert MT(log(abs(1 - x)), x, s) == (pi/(s*tan(pi*s)), (-1, 0), True)
assert MT(log(abs(1 - 1/x)), x, s) == (pi/(s*tan(pi*s)), (0, 1), True)
# 8.4.14
assert MT(erf(sqrt(x)), x, s) == \
(-gamma(s + S.Half)/(sqrt(pi)*s), (Rational(-1, 2), 0), True)
def test_mellin_transform2():
MT = mellin_transform
# TODO we cannot currently do these (needs summation of 3F2(-1))
# this also implies that they cannot be written as a single g-function
# (although this is possible)
mt = MT(log(x)/(x + 1), x, s)
assert mt[1:] == ((0, 1), True)
assert not hyperexpand(mt[0], allow_hyper=True).has(meijerg)
mt = MT(log(x)**2/(x + 1), x, s)
assert mt[1:] == ((0, 1), True)
assert not hyperexpand(mt[0], allow_hyper=True).has(meijerg)
mt = MT(log(x)/(x + 1)**2, x, s)
assert mt[1:] == ((0, 2), True)
assert not hyperexpand(mt[0], allow_hyper=True).has(meijerg)
@slow
def test_mellin_transform_bessel():
from sympy.functions.elementary.miscellaneous import Max
MT = mellin_transform
# 8.4.19
assert MT(besselj(a, 2*sqrt(x)), x, s) == \
(gamma(a/2 + s)/gamma(a/2 - s + 1), (-re(a)/2, Rational(3, 4)), True)
assert MT(sin(sqrt(x))*besselj(a, sqrt(x)), x, s) == \
(2**a*gamma(-2*s + S.Half)*gamma(a/2 + s + S.Half)/(
gamma(-a/2 - s + 1)*gamma(a - 2*s + 1)), (
-re(a)/2 - S.Half, Rational(1, 4)), True)
assert MT(cos(sqrt(x))*besselj(a, sqrt(x)), x, s) == \
(2**a*gamma(a/2 + s)*gamma(-2*s + S.Half)/(
gamma(-a/2 - s + S.Half)*gamma(a - 2*s + 1)), (
-re(a)/2, Rational(1, 4)), True)
assert MT(besselj(a, sqrt(x))**2, x, s) == \
(gamma(a + s)*gamma(S.Half - s)
/ (sqrt(pi)*gamma(1 - s)*gamma(1 + a - s)),
(-re(a), S.Half), True)
assert MT(besselj(a, sqrt(x))*besselj(-a, sqrt(x)), x, s) == \
(gamma(s)*gamma(S.Half - s)
/ (sqrt(pi)*gamma(1 - a - s)*gamma(1 + a - s)),
(0, S.Half), True)
# NOTE: prudnikov gives the strip below as (1/2 - re(a), 1). As far as
# I can see this is wrong (since besselj(z) ~ 1/sqrt(z) for z large)
assert MT(besselj(a - 1, sqrt(x))*besselj(a, sqrt(x)), x, s) == \
(gamma(1 - s)*gamma(a + s - S.Half)
/ (sqrt(pi)*gamma(Rational(3, 2) - s)*gamma(a - s + S.Half)),
(S.Half - re(a), S.Half), True)
assert MT(besselj(a, sqrt(x))*besselj(b, sqrt(x)), x, s) == \
(4**s*gamma(1 - 2*s)*gamma((a + b)/2 + s)
/ (gamma(1 - s + (b - a)/2)*gamma(1 - s + (a - b)/2)
*gamma( 1 - s + (a + b)/2)),
(-(re(a) + re(b))/2, S.Half), True)
assert MT(besselj(a, sqrt(x))**2 + besselj(-a, sqrt(x))**2, x, s)[1:] == \
((Max(re(a), -re(a)), S.Half), True)
# Section 8.4.20
assert MT(bessely(a, 2*sqrt(x)), x, s) == \
(-cos(pi*(a/2 - s))*gamma(s - a/2)*gamma(s + a/2)/pi,
(Max(-re(a)/2, re(a)/2), Rational(3, 4)), True)
assert MT(sin(sqrt(x))*bessely(a, sqrt(x)), x, s) == \
(-4**s*sin(pi*(a/2 - s))*gamma(S.Half - 2*s)
* gamma((1 - a)/2 + s)*gamma((1 + a)/2 + s)
/ (sqrt(pi)*gamma(1 - s - a/2)*gamma(1 - s + a/2)),
(Max(-(re(a) + 1)/2, (re(a) - 1)/2), Rational(1, 4)), True)
assert MT(cos(sqrt(x))*bessely(a, sqrt(x)), x, s) == \
(-4**s*cos(pi*(a/2 - s))*gamma(s - a/2)*gamma(s + a/2)*gamma(S.Half - 2*s)
/ (sqrt(pi)*gamma(S.Half - s - a/2)*gamma(S.Half - s + a/2)),
(Max(-re(a)/2, re(a)/2), Rational(1, 4)), True)
assert MT(besselj(a, sqrt(x))*bessely(a, sqrt(x)), x, s) == \
(-cos(pi*s)*gamma(s)*gamma(a + s)*gamma(S.Half - s)
/ (pi**S('3/2')*gamma(1 + a - s)),
(Max(-re(a), 0), S.Half), True)
assert MT(besselj(a, sqrt(x))*bessely(b, sqrt(x)), x, s) == \
(-4**s*cos(pi*(a/2 - b/2 + s))*gamma(1 - 2*s)
* gamma(a/2 - b/2 + s)*gamma(a/2 + b/2 + s)
/ (pi*gamma(a/2 - b/2 - s + 1)*gamma(a/2 + b/2 - s + 1)),
(Max((-re(a) + re(b))/2, (-re(a) - re(b))/2), S.Half), True)
# NOTE bessely(a, sqrt(x))**2 and bessely(a, sqrt(x))*bessely(b, sqrt(x))
# are a mess (no matter what way you look at it ...)
assert MT(bessely(a, sqrt(x))**2, x, s)[1:] == \
((Max(-re(a), 0, re(a)), S.Half), True)
# Section 8.4.22
# TODO we can't do any of these (delicate cancellation)
# Section 8.4.23
assert MT(besselk(a, 2*sqrt(x)), x, s) == \
(gamma(
s - a/2)*gamma(s + a/2)/2, (Max(-re(a)/2, re(a)/2), oo), True)
assert MT(besselj(a, 2*sqrt(2*sqrt(x)))*besselk(
a, 2*sqrt(2*sqrt(x))), x, s) == (4**(-s)*gamma(2*s)*
gamma(a/2 + s)/(2*gamma(a/2 - s + 1)), (Max(0, -re(a)/2), oo), True)
# TODO bessely(a, x)*besselk(a, x) is a mess
assert MT(besseli(a, sqrt(x))*besselk(a, sqrt(x)), x, s) == \
(gamma(s)*gamma(
a + s)*gamma(-s + S.Half)/(2*sqrt(pi)*gamma(a - s + 1)),
(Max(-re(a), 0), S.Half), True)
assert MT(besseli(b, sqrt(x))*besselk(a, sqrt(x)), x, s) == \
(2**(2*s - 1)*gamma(-2*s + 1)*gamma(-a/2 + b/2 + s)* \
gamma(a/2 + b/2 + s)/(gamma(-a/2 + b/2 - s + 1)* \
gamma(a/2 + b/2 - s + 1)), (Max(-re(a)/2 - re(b)/2, \
re(a)/2 - re(b)/2), S.Half), True)
# TODO products of besselk are a mess
mt = MT(exp(-x/2)*besselk(a, x/2), x, s)
mt0 = gammasimp(trigsimp(gammasimp(mt[0].expand(func=True))))
assert mt0 == 2*pi**Rational(3, 2)*cos(pi*s)*gamma(S.Half - s)/(
(cos(2*pi*a) - cos(2*pi*s))*gamma(-a - s + 1)*gamma(a - s + 1))
assert mt[1:] == ((Max(-re(a), re(a)), oo), True)
# TODO exp(x/2)*besselk(a, x/2) [etc] cannot currently be done
# TODO various strange products of special orders
@slow
def test_expint():
from sympy.functions.elementary.miscellaneous import Max
from sympy.functions.special.error_functions import (Ci, E1, Ei, Si)
from sympy.functions.special.zeta_functions import lerchphi
from sympy.simplify.simplify import simplify
aneg = Symbol('a', negative=True)
u = Symbol('u', polar=True)
assert mellin_transform(E1(x), x, s) == (gamma(s)/s, (0, oo), True)
assert inverse_mellin_transform(gamma(s)/s, s, x,
(0, oo)).rewrite(expint).expand() == E1(x)
assert mellin_transform(expint(a, x), x, s) == \
(gamma(s)/(a + s - 1), (Max(1 - re(a), 0), oo), True)
# XXX IMT has hickups with complicated strips ...
assert simplify(unpolarify(
inverse_mellin_transform(gamma(s)/(aneg + s - 1), s, x,
(1 - aneg, oo)).rewrite(expint).expand(func=True))) == \
expint(aneg, x)
assert mellin_transform(Si(x), x, s) == \
(-2**s*sqrt(pi)*gamma(s/2 + S.Half)/(
2*s*gamma(-s/2 + 1)), (-1, 0), True)
assert inverse_mellin_transform(-2**s*sqrt(pi)*gamma((s + 1)/2)
/(2*s*gamma(-s/2 + 1)), s, x, (-1, 0)) \
== Si(x)
assert mellin_transform(Ci(sqrt(x)), x, s) == \
(-2**(2*s - 1)*sqrt(pi)*gamma(s)/(s*gamma(-s + S.Half)), (0, 1), True)
assert inverse_mellin_transform(
-4**s*sqrt(pi)*gamma(s)/(2*s*gamma(-s + S.Half)),
s, u, (0, 1)).expand() == Ci(sqrt(u))
# TODO LT of Si, Shi, Chi is a mess ...
assert laplace_transform(Ci(x), x, s) == (-log(1 + s**2)/2/s, 0, True)
assert laplace_transform(expint(a, x), x, s) == \
(lerchphi(s*exp_polar(I*pi), 1, a), 0, re(a) > S.Zero)
assert laplace_transform(expint(1, x), x, s) == (log(s + 1)/s, 0, True)
assert laplace_transform(expint(2, x), x, s) == \
((s - log(s + 1))/s**2, 0, True)
assert inverse_laplace_transform(-log(1 + s**2)/2/s, s, u).expand() == \
Heaviside(u)*Ci(u)
assert inverse_laplace_transform(log(s + 1)/s, s, x).rewrite(expint) == \
Heaviside(x)*E1(x)
assert inverse_laplace_transform((s - log(s + 1))/s**2, s,
x).rewrite(expint).expand() == \
(expint(2, x)*Heaviside(x)).rewrite(Ei).rewrite(expint).expand()
@slow
def test_inverse_mellin_transform():
from sympy.core.function import expand
from sympy.functions.elementary.miscellaneous import (Max, Min)
from sympy.functions.elementary.trigonometric import cot
from sympy.simplify.powsimp import powsimp
from sympy.simplify.simplify import simplify
IMT = inverse_mellin_transform
assert IMT(gamma(s), s, x, (0, oo)) == exp(-x)
assert IMT(gamma(-s), s, x, (-oo, 0)) == exp(-1/x)
assert simplify(IMT(s/(2*s**2 - 2), s, x, (2, oo))) == \
(x**2 + 1)*Heaviside(1 - x)/(4*x)
# test passing "None"
assert IMT(1/(s**2 - 1), s, x, (-1, None)) == \
-x*Heaviside(-x + 1)/2 - Heaviside(x - 1)/(2*x)
assert IMT(1/(s**2 - 1), s, x, (None, 1)) == \
-x*Heaviside(-x + 1)/2 - Heaviside(x - 1)/(2*x)
# test expansion of sums
assert IMT(gamma(s) + gamma(s - 1), s, x, (1, oo)) == (x + 1)*exp(-x)/x
# test factorisation of polys
r = symbols('r', real=True)
assert IMT(1/(s**2 + 1), s, exp(-x), (None, oo)
).subs(x, r).rewrite(sin).simplify() \
== sin(r)*Heaviside(1 - exp(-r))
# test multiplicative substitution
_a, _b = symbols('a b', positive=True)
assert IMT(_b**(-s/_a)*factorial(s/_a)/s, s, x, (0, oo)) == exp(-_b*x**_a)
assert IMT(factorial(_a/_b + s/_b)/(_a + s), s, x, (-_a, oo)) == x**_a*exp(-x**_b)
def simp_pows(expr):
return simplify(powsimp(expand_mul(expr, deep=False), force=True)).replace(exp_polar, exp)
# Now test the inverses of all direct transforms tested above
# Section 8.4.2
nu = symbols('nu', real=True)
assert IMT(-1/(nu + s), s, x, (-oo, None)) == x**nu*Heaviside(x - 1)
assert IMT(1/(nu + s), s, x, (None, oo)) == x**nu*Heaviside(1 - x)
assert simp_pows(IMT(gamma(beta)*gamma(s)/gamma(s + beta), s, x, (0, oo))) \
== (1 - x)**(beta - 1)*Heaviside(1 - x)
assert simp_pows(IMT(gamma(beta)*gamma(1 - beta - s)/gamma(1 - s),
s, x, (-oo, None))) \
== (x - 1)**(beta - 1)*Heaviside(x - 1)
assert simp_pows(IMT(gamma(s)*gamma(rho - s)/gamma(rho), s, x, (0, None))) \
== (1/(x + 1))**rho
assert simp_pows(IMT(d**c*d**(s - 1)*sin(pi*c)
*gamma(s)*gamma(s + c)*gamma(1 - s)*gamma(1 - s - c)/pi,
s, x, (Max(-re(c), 0), Min(1 - re(c), 1)))) \
== (x**c - d**c)/(x - d)
assert simplify(IMT(1/sqrt(pi)*(-c/2)*gamma(s)*gamma((1 - c)/2 - s)
*gamma(-c/2 - s)/gamma(1 - c - s),
s, x, (0, -re(c)/2))) == \
(1 + sqrt(x + 1))**c
assert simplify(IMT(2**(a + 2*s)*b**(a + 2*s - 1)*gamma(s)*gamma(1 - a - 2*s)
/gamma(1 - a - s), s, x, (0, (-re(a) + 1)/2))) == \
b**(a - 1)*(b**2*(sqrt(1 + x/b**2) + 1)**a + x*(sqrt(1 + x/b**2) + 1
)**(a - 1))/(b**2 + x)
assert simplify(IMT(-2**(c + 2*s)*c*b**(c + 2*s)*gamma(s)*gamma(-c - 2*s)
/ gamma(-c - s + 1), s, x, (0, -re(c)/2))) == \
b**c*(sqrt(1 + x/b**2) + 1)**c
# Section 8.4.5
assert IMT(24/s**5, s, x, (0, oo)) == log(x)**4*Heaviside(1 - x)
assert expand(IMT(6/s**4, s, x, (-oo, 0)), force=True) == \
log(x)**3*Heaviside(x - 1)
assert IMT(pi/(s*sin(pi*s)), s, x, (-1, 0)) == log(x + 1)
assert IMT(pi/(s*sin(pi*s/2)), s, x, (-2, 0)) == log(x**2 + 1)
assert IMT(pi/(s*sin(2*pi*s)), s, x, (Rational(-1, 2), 0)) == log(sqrt(x) + 1)
assert IMT(pi/(s*sin(pi*s)), s, x, (0, 1)) == log(1 + 1/x)
# TODO
def mysimp(expr):
from sympy.core.function import expand
from sympy.simplify.powsimp import powsimp
from sympy.simplify.simplify import logcombine
return expand(
powsimp(logcombine(expr, force=True), force=True, deep=True),
force=True).replace(exp_polar, exp)
assert mysimp(mysimp(IMT(pi/(s*tan(pi*s)), s, x, (-1, 0)))) in [
log(1 - x)*Heaviside(1 - x) + log(x - 1)*Heaviside(x - 1),
log(x)*Heaviside(x - 1) + log(1 - 1/x)*Heaviside(x - 1) + log(-x +
1)*Heaviside(-x + 1)]
# test passing cot
assert mysimp(IMT(pi*cot(pi*s)/s, s, x, (0, 1))) in [
log(1/x - 1)*Heaviside(1 - x) + log(1 - 1/x)*Heaviside(x - 1),
-log(x)*Heaviside(-x + 1) + log(1 - 1/x)*Heaviside(x - 1) + log(-x +
1)*Heaviside(-x + 1), ]
# 8.4.14
assert IMT(-gamma(s + S.Half)/(sqrt(pi)*s), s, x, (Rational(-1, 2), 0)) == \
erf(sqrt(x))
# 8.4.19
assert simplify(IMT(gamma(a/2 + s)/gamma(a/2 - s + 1), s, x, (-re(a)/2, Rational(3, 4)))) \
== besselj(a, 2*sqrt(x))
assert simplify(IMT(2**a*gamma(S.Half - 2*s)*gamma(s + (a + 1)/2)
/ (gamma(1 - s - a/2)*gamma(1 - 2*s + a)),
s, x, (-(re(a) + 1)/2, Rational(1, 4)))) == \
sin(sqrt(x))*besselj(a, sqrt(x))
assert simplify(IMT(2**a*gamma(a/2 + s)*gamma(S.Half - 2*s)
/ (gamma(S.Half - s - a/2)*gamma(1 - 2*s + a)),
s, x, (-re(a)/2, Rational(1, 4)))) == \
cos(sqrt(x))*besselj(a, sqrt(x))
# TODO this comes out as an amazing mess, but simplifies nicely
assert simplify(IMT(gamma(a + s)*gamma(S.Half - s)
/ (sqrt(pi)*gamma(1 - s)*gamma(1 + a - s)),
s, x, (-re(a), S.Half))) == \
besselj(a, sqrt(x))**2
assert simplify(IMT(gamma(s)*gamma(S.Half - s)
/ (sqrt(pi)*gamma(1 - s - a)*gamma(1 + a - s)),
s, x, (0, S.Half))) == \
besselj(-a, sqrt(x))*besselj(a, sqrt(x))
assert simplify(IMT(4**s*gamma(-2*s + 1)*gamma(a/2 + b/2 + s)
/ (gamma(-a/2 + b/2 - s + 1)*gamma(a/2 - b/2 - s + 1)
*gamma(a/2 + b/2 - s + 1)),
s, x, (-(re(a) + re(b))/2, S.Half))) == \
besselj(a, sqrt(x))*besselj(b, sqrt(x))
# Section 8.4.20
# TODO this can be further simplified!
assert simplify(IMT(-2**(2*s)*cos(pi*a/2 - pi*b/2 + pi*s)*gamma(-2*s + 1) *
gamma(a/2 - b/2 + s)*gamma(a/2 + b/2 + s) /
(pi*gamma(a/2 - b/2 - s + 1)*gamma(a/2 + b/2 - s + 1)),
s, x,
(Max(-re(a)/2 - re(b)/2, -re(a)/2 + re(b)/2), S.Half))) == \
besselj(a, sqrt(x))*-(besselj(-b, sqrt(x)) -
besselj(b, sqrt(x))*cos(pi*b))/sin(pi*b)
# TODO more
# for coverage
assert IMT(pi/cos(pi*s), s, x, (0, S.Half)) == sqrt(x)/(x + 1)
@slow
def test_laplace_transform():
from sympy import lowergamma
from sympy.functions.special.delta_functions import DiracDelta
from sympy.functions.special.error_functions import (fresnelc, fresnels)
LT = laplace_transform
a, b, c, = symbols('a, b, c', positive=True)
t, w, x = symbols('t, w, x')
f = Function("f")
g = Function("g")
# Test rule-base evaluation according to
# http://eqworld.ipmnet.ru/en/auxiliary/inttrans/
# Power-law functions (laplace2.pdf)
assert LT(a*t+t**2+t**(S(5)/2), t, s) ==\
(a/s**2 + 2/s**3 + 15*sqrt(pi)/(8*s**(S(7)/2)), 0, True)
assert LT(b/(t+a), t, s) == (-b*exp(-a*s)*Ei(-a*s), 0, True)
assert LT(1/sqrt(t+a), t, s) ==\
(sqrt(pi)*sqrt(1/s)*exp(a*s)*erfc(sqrt(a)*sqrt(s)), 0, True)
assert LT(sqrt(t)/(t+a), t, s) ==\
(-pi*sqrt(a)*exp(a*s)*erfc(sqrt(a)*sqrt(s)) + sqrt(pi)*sqrt(1/s),
0, True)
assert LT((t+a)**(-S(3)/2), t, s) ==\
(-2*sqrt(pi)*sqrt(s)*exp(a*s)*erfc(sqrt(a)*sqrt(s)) + 2/sqrt(a),
0, True)
assert LT(t**(S(1)/2)*(t+a)**(-1), t, s) ==\
(-pi*sqrt(a)*exp(a*s)*erfc(sqrt(a)*sqrt(s)) + sqrt(pi)*sqrt(1/s),
0, True)
assert LT(1/(a*sqrt(t) + t**(3/2)), t, s) ==\
(pi*sqrt(a)*exp(a*s)*erfc(sqrt(a)*sqrt(s)), 0, True)
assert LT((t+a)**b, t, s) ==\
(s**(-b - 1)*exp(-a*s)*lowergamma(b + 1, a*s), 0, True)
assert LT(t**5/(t+a), t, s) == (120*a**5*lowergamma(-5, a*s), 0, True)
# Exponential functions (laplace3.pdf)
assert LT(exp(t), t, s) == (1/(s - 1), 1, True)
assert LT(exp(2*t), t, s) == (1/(s - 2), 2, True)
assert LT(exp(a*t), t, s) == (1/(s - a), a, True)
assert LT(exp(a*(t-b)), t, s) == (exp(-a*b)/(-a + s), a, True)
assert LT(t*exp(-a*(t)), t, s) == ((a + s)**(-2), -a, True)
assert LT(t*exp(-a*(t-b)), t, s) == (exp(a*b)/(a + s)**2, -a, True)
assert LT(b*t*exp(-a*t), t, s) == (b/(a + s)**2, -a, True)
assert LT(t**(S(7)/4)*exp(-8*t)/gamma(S(11)/4), t, s) ==\
((s + 8)**(-S(11)/4), -8, True)
assert LT(t**(S(3)/2)*exp(-8*t), t, s) ==\
(3*sqrt(pi)/(4*(s + 8)**(S(5)/2)), -8, True)
assert LT(t**a*exp(-a*t), t, s) == ((a+s)**(-a-1)*gamma(a+1), -a, True)
assert LT(b*exp(-a*t**2), t, s) ==\
(sqrt(pi)*b*exp(s**2/(4*a))*erfc(s/(2*sqrt(a)))/(2*sqrt(a)), 0, True)
assert LT(exp(-2*t**2), t, s) ==\
(sqrt(2)*sqrt(pi)*exp(s**2/8)*erfc(sqrt(2)*s/4)/4, 0, True)
assert LT(b*exp(2*t**2), t, s) == b*LaplaceTransform(exp(2*t**2), t, s)
assert LT(t*exp(-a*t**2), t, s) ==\
(1/(2*a) - s*erfc(s/(2*sqrt(a)))/(4*sqrt(pi)*a**(S(3)/2)), 0, True)
assert LT(exp(-a/t), t, s) ==\
(2*sqrt(a)*sqrt(1/s)*besselk(1, 2*sqrt(a)*sqrt(s)), 0, True)
assert LT(sqrt(t)*exp(-a/t), t, s) ==\
(sqrt(pi)*(2*sqrt(a)*sqrt(s) + 1)*sqrt(s**(-3))*exp(-2*sqrt(a)*\
sqrt(s))/2, 0, True)
assert LT(exp(-a/t)/sqrt(t), t, s) ==\
(sqrt(pi)*sqrt(1/s)*exp(-2*sqrt(a)*sqrt(s)), 0, True)
assert LT( exp(-a/t)/(t*sqrt(t)), t, s) ==\
(sqrt(pi)*sqrt(1/a)*exp(-2*sqrt(a)*sqrt(s)), 0, True)
assert LT(exp(-2*sqrt(a*t)), t, s) ==\
( 1/s -sqrt(pi)*sqrt(a) * exp(a/s)*erfc(sqrt(a)*sqrt(1/s))/\
s**(S(3)/2), 0, True)
assert LT(exp(-2*sqrt(a*t))/sqrt(t), t, s) == (exp(a/s)*erfc(sqrt(a)*\
sqrt(1/s))*(sqrt(pi)*sqrt(1/s)), 0, True)
assert LT(t**4*exp(-2/t), t, s) ==\
(8*sqrt(2)*(1/s)**(S(5)/2)*besselk(5, 2*sqrt(2)*sqrt(s)), 0, True)
# Hyperbolic functions (laplace4.pdf)
assert LT(sinh(a*t), t, s) == (a/(-a**2 + s**2), a, True)
assert LT(b*sinh(a*t)**2, t, s) == (2*a**2*b/(-4*a**2*s**2 + s**3),
2*a, True)
# The following line confirms that issue #21202 is solved
assert LT(cosh(2*t), t, s) == (s/(-4 + s**2), 2, True)
assert LT(cosh(a*t), t, s) == (s/(-a**2 + s**2), a, True)
assert LT(cosh(a*t)**2, t, s) == ((-2*a**2 + s**2)/(-4*a**2*s**2 + s**3),
2*a, True)
assert LT(sinh(x + 3), x, s) == (
(-s + (s + 1)*exp(6) + 1)*exp(-3)/(s - 1)/(s + 1)/2, 0, Abs(s) > 1)
# The following line replaces the old test test_issue_7173()
assert LT(sinh(a*t)*cosh(a*t), t, s) == (a/(-4*a**2 + s**2), 2*a, True)
assert LT(sinh(a*t)/t, t, s) == (log((a + s)/(-a + s))/2, a, True)
assert LT(t**(-S(3)/2)*sinh(a*t), t, s) ==\
(-sqrt(pi)*(sqrt(-a + s) - sqrt(a + s)), a, True)
assert LT(sinh(2*sqrt(a*t)), t, s) ==\
(sqrt(pi)*sqrt(a)*exp(a/s)/s**(S(3)/2), 0, True)
assert LT(sqrt(t)*sinh(2*sqrt(a*t)), t, s) ==\
(-sqrt(a)/s**2 + sqrt(pi)*(a + s/2)*exp(a/s)*erf(sqrt(a)*\
sqrt(1/s))/s**(S(5)/2), 0, True)
assert LT(sinh(2*sqrt(a*t))/sqrt(t), t, s) ==\
(sqrt(pi)*exp(a/s)*erf(sqrt(a)*sqrt(1/s))/sqrt(s), 0, True)
assert LT(sinh(sqrt(a*t))**2/sqrt(t), t, s) ==\
(sqrt(pi)*(exp(a/s) - 1)/(2*sqrt(s)), 0, True)
assert LT(t**(S(3)/7)*cosh(a*t), t, s) ==\
(((a + s)**(-S(10)/7) + (-a+s)**(-S(10)/7))*gamma(S(10)/7)/2, a, True)
assert LT(cosh(2*sqrt(a*t)), t, s) ==\
(sqrt(pi)*sqrt(a)*exp(a/s)*erf(sqrt(a)*sqrt(1/s))/s**(S(3)/2) + 1/s,
0, True)
assert LT(sqrt(t)*cosh(2*sqrt(a*t)), t, s) ==\
(sqrt(pi)*(a + s/2)*exp(a/s)/s**(S(5)/2), 0, True)
assert LT(cosh(2*sqrt(a*t))/sqrt(t), t, s) ==\
(sqrt(pi)*exp(a/s)/sqrt(s), 0, True)
assert LT(cosh(sqrt(a*t))**2/sqrt(t), t, s) ==\
(sqrt(pi)*(exp(a/s) + 1)/(2*sqrt(s)), 0, True)
# logarithmic functions (laplace5.pdf)
assert LT(log(t), t, s) == (-log(s+S.EulerGamma)/s, 0, True)
assert LT(log(t/a), t, s) == (-log(a*s + S.EulerGamma)/s, 0, True)
assert LT(log(1+a*t), t, s) == (-exp(s/a)*Ei(-s/a)/s, 0, True)
assert LT(log(t+a), t, s) == ((log(a) - exp(s/a)*Ei(-s/a)/s)/s, 0, True)
assert LT(log(t)/sqrt(t), t, s) ==\
(sqrt(pi)*(-log(s) - 2*log(2) - S.EulerGamma)/sqrt(s), 0, True)
assert LT(t**(S(5)/2)*log(t), t, s) ==\
(15*sqrt(pi)*(-log(s)-2*log(2)-S.EulerGamma+S(46)/15)/(8*s**(S(7)/2)),
0, True)
assert (LT(t**3*log(t), t, s, noconds=True)-6*(-log(s) - S.EulerGamma\
+ S(11)/6)/s**4).simplify() == S.Zero
assert LT(log(t)**2, t, s) ==\
(((log(s) + EulerGamma)**2 + pi**2/6)/s, 0, True)
assert LT(exp(-a*t)*log(t), t, s) ==\
((-log(a + s) - S.EulerGamma)/(a + s), -a, True)
# Trigonometric functions (laplace6.pdf)
assert LT(sin(a*t), t, s) == (a/(a**2 + s**2), 0, True)
assert LT(Abs(sin(a*t)), t, s) ==\
(a*coth(pi*s/(2*a))/(a**2 + s**2), 0, True)
assert LT(sin(a*t)/t, t, s) == (atan(a/s), 0, True)
assert LT(sin(a*t)**2/t, t, s) == (log(4*a**2/s**2 + 1)/4, 0, True)
assert LT(sin(a*t)**2/t**2, t, s) ==\
(a*atan(2*a/s) - s*log(4*a**2/s**2 + 1)/4, 0, True)
assert LT(sin(2*sqrt(a*t)), t, s) ==\
(sqrt(pi)*sqrt(a)*exp(-a/s)/s**(S(3)/2), 0, True)
assert LT(sin(2*sqrt(a*t))/t, t, s) == (pi*erf(sqrt(a)*sqrt(1/s)), 0, True)
assert LT(cos(a*t), t, s) == (s/(a**2 + s**2), 0, True)
assert LT(cos(a*t)**2, t, s) ==\
((2*a**2 + s**2)/(s*(4*a**2 + s**2)), 0, True)
assert LT(sqrt(t)*cos(2*sqrt(a*t)), t, s) ==\
(sqrt(pi)*(-2*a + s)*exp(-a/s)/(2*s**(S(5)/2)), 0, True)
assert LT(cos(2*sqrt(a*t))/sqrt(t), t, s) ==\
(sqrt(pi)*sqrt(1/s)*exp(-a/s), 0, True)
assert LT(sin(a*t)*sin(b*t), t, s) ==\
(2*a*b*s/((s**2 + (a - b)**2)*(s**2 + (a + b)**2)), 0, True)
assert LT(cos(a*t)*sin(b*t), t, s) ==\
(b*(-a**2 + b**2 + s**2)/((s**2 + (a - b)**2)*(s**2 + (a + b)**2)),
0, True)
assert LT(cos(a*t)*cos(b*t), t, s) ==\
(s*(a**2 + b**2 + s**2)/((s**2 + (a - b)**2)*(s**2 + (a + b)**2)),
0, True)
assert LT(c*exp(-b*t)*sin(a*t), t, s) == (a*c/(a**2 + (b + s)**2),
-b, True)
assert LT(c*exp(-b*t)*cos(a*t), t, s) == ((b + s)*c/(a**2 + (b + s)**2),
-b, True)
assert LT(cos(x + 3), x, s) == ((s*cos(3) - sin(3))/(s**2 + 1), 0, True)
# Error functions (laplace7.pdf)
assert LT(erf(a*t), t, s) == (exp(s**2/(4*a**2))*erfc(s/(2*a))/s, 0, True)
assert LT(erf(sqrt(a*t)), t, s) == (sqrt(a)/(s*sqrt(a + s)), 0, True)
assert LT(exp(a*t)*erf(sqrt(a*t)), t, s) ==\
(sqrt(a)/(sqrt(s)*(-a + s)), a, True)
assert LT(erf(sqrt(a/t)/2), t, s) == ((1-exp(-sqrt(a)*sqrt(s)))/s, 0, True)
assert LT(erfc(sqrt(a*t)), t, s) ==\
((-sqrt(a) + sqrt(a + s))/(s*sqrt(a + s)), 0, True)
assert LT(exp(a*t)*erfc(sqrt(a*t)), t, s) ==\
(1/(sqrt(a)*sqrt(s) + s), 0, True)
assert LT(erfc(sqrt(a/t)/2), t, s) == (exp(-sqrt(a)*sqrt(s))/s, 0, True)
# Bessel functions (laplace8.pdf)
assert LT(besselj(0, a*t), t, s) == (1/sqrt(a**2 + s**2), 0, True)
assert LT(besselj(1, a*t), t, s) ==\
(a/(sqrt(a**2 + s**2)*(s + sqrt(a**2 + s**2))), 0, True)
assert LT(besselj(2, a*t), t, s) ==\
(a**2/(sqrt(a**2 + s**2)*(s + sqrt(a**2 + s**2))**2), 0, True)
assert LT(t*besselj(0, a*t), t, s) ==\
(s/(a**2 + s**2)**(S(3)/2), 0, True)
assert LT(t*besselj(1, a*t), t, s) ==\
(a/(a**2 + s**2)**(S(3)/2), 0, True)
assert LT(t**2*besselj(2, a*t), t, s) ==\
(3*a**2/(a**2 + s**2)**(S(5)/2), 0, True)
assert LT(besselj(0, 2*sqrt(a*t)), t, s) == (exp(-a/s)/s, 0, True)
assert LT(t**(S(3)/2)*besselj(3, 2*sqrt(a*t)), t, s) ==\
(a**(S(3)/2)*exp(-a/s)/s**4, 0, True)
assert LT(besselj(0, a*sqrt(t**2+b*t)), t, s) ==\
(exp(b*s - b*sqrt(a**2 + s**2))/sqrt(a**2 + s**2), 0, True)
assert LT(besseli(0, a*t), t, s) == (1/sqrt(-a**2 + s**2), a, True)
assert LT(besseli(1, a*t), t, s) ==\
(a/(sqrt(-a**2 + s**2)*(s + sqrt(-a**2 + s**2))), a, True)
assert LT(besseli(2, a*t), t, s) ==\
(a**2/(sqrt(-a**2 + s**2)*(s + sqrt(-a**2 + s**2))**2), a, True)
assert LT(t*besseli(0, a*t), t, s) == (s/(-a**2 + s**2)**(S(3)/2), a, True)
assert LT(t*besseli(1, a*t), t, s) == (a/(-a**2 + s**2)**(S(3)/2), a, True)
assert LT(t**2*besseli(2, a*t), t, s) ==\
(3*a**2/(-a**2 + s**2)**(S(5)/2), a, True)
assert LT(t**(S(3)/2)*besseli(3, 2*sqrt(a*t)), t, s) ==\
(a**(S(3)/2)*exp(a/s)/s**4, 0, True)
assert LT(bessely(0, a*t), t, s) ==\
(-2*asinh(s/a)/(pi*sqrt(a**2 + s**2)), 0, True)
assert LT(besselk(0, a*t), t, s) ==\
(log(s + sqrt(-a**2 + s**2))/sqrt(-a**2 + s**2), a, True)
assert LT(sin(a*t)**8, t, s) ==\
(40320*a**8/(s*(147456*a**8 + 52480*a**6*s**2 + 4368*a**4*s**4 +\
120*a**2*s**6 + s**8)), 0, True)
# Test general rules and unevaluated forms
# These all also test whether issue #7219 is solved.
assert LT(Heaviside(t-1)*cos(t-1), t, s) == (s*exp(-s)/(s**2 + 1), 0, True)
assert LT(a*f(t), t, w) == a*LaplaceTransform(f(t), t, w)
assert LT(a*Heaviside(t+1)*f(t+1), t, s) ==\
a*LaplaceTransform(f(t + 1)*Heaviside(t + 1), t, s)
assert LT(a*Heaviside(t-1)*f(t-1), t, s) ==\
a*LaplaceTransform(f(t), t, s)*exp(-s)
assert LT(b*f(t/a), t, s) == a*b*LaplaceTransform(f(t), t, a*s)
assert LT(exp(-f(x)*t), t, s) == (1/(s + f(x)), -f(x), True)
assert LT(exp(-a*t)*f(t), t, s) == LaplaceTransform(f(t), t, a + s)
assert LT(exp(-a*t)*erfc(sqrt(b/t)/2), t, s) ==\
(exp(-sqrt(b)*sqrt(a + s))/(a + s), -a, True)
assert LT(sinh(a*t)*f(t), t, s) ==\
LaplaceTransform(f(t), t, -a+s)/2 - LaplaceTransform(f(t), t, a+s)/2
assert LT(sinh(a*t)*t, t, s) ==\
(-1/(2*(a + s)**2) + 1/(2*(-a + s)**2), a, True)
assert LT(cosh(a*t)*f(t), t, s) ==\
LaplaceTransform(f(t), t, -a+s)/2 + LaplaceTransform(f(t), t, a+s)/2
assert LT(cosh(a*t)*t, t, s) ==\
(1/(2*(a + s)**2) + 1/(2*(-a + s)**2), a, True)
assert LT(sin(a*t)*f(t), t, s) ==\
I*(-LaplaceTransform(f(t), t, -I*a + s) +\
LaplaceTransform(f(t), t, I*a + s))/2
assert LT(sin(a*t)*t, t, s) ==\
(2*a*s/(a**4 + 2*a**2*s**2 + s**4), 0, True)
assert LT(cos(a*t)*f(t), t, s) ==\
LaplaceTransform(f(t), t, -I*a + s)/2 +\
LaplaceTransform(f(t), t, I*a + s)/2
assert LT(cos(a*t)*t, t, s) ==\
((-a**2 + s**2)/(a**4 + 2*a**2*s**2 + s**4), 0, True)
# The following two lines test whether issues #5813 and #7176 are solved.
assert LT(diff(f(t), (t, 1)), t, s) == s*LaplaceTransform(f(t), t, s)\
- f(0)
assert LT(diff(f(t), (t, 3)), t, s) == s**3*LaplaceTransform(f(t), t, s)\
- s**2*f(0) - s*Subs(Derivative(f(t), t), t, 0)\
- Subs(Derivative(f(t), (t, 2)), t, 0)
# Issue #23307
assert LT(10*diff(f(t), (t, 1)), t, s) == 10*s*LaplaceTransform(f(t), t, s)\
- 10*f(0)
assert LT(a*f(b*t)+g(c*t), t, s) == a*LaplaceTransform(f(t), t, s/b)/b +\
LaplaceTransform(g(t), t, s/c)/c
assert inverse_laplace_transform(
f(w), w, t, plane=0) == InverseLaplaceTransform(f(w), w, t, 0)
assert LT(f(t)*g(t), t, s) == LaplaceTransform(f(t)*g(t), t, s)
# Issue #24294
assert LT(b*f(a*t), t, s) == b*LaplaceTransform(f(t), t, s/a)/a
assert LT(3*exp(t)*Heaviside(t), t, s) == (3/(s - 1), 1, True)
assert LT(2*sin(t)*Heaviside(t), t, s) == (2/(s**2 + 1), 0, True)
# additional basic tests from wikipedia
assert LT((t - a)**b*exp(-c*(t - a))*Heaviside(t - a), t, s) == \
((s + c)**(-b - 1)*exp(-a*s)*gamma(b + 1), -c, True)
assert LT((exp(2*t) - 1)*exp(-b - t)*Heaviside(t)/2, t, s, noconds=True) \
== exp(-b)/(s**2 - 1)
# DiracDelta function: standard cases
assert LT(DiracDelta(t), t, s) == (1, 0, True)
assert LT(DiracDelta(a*t), t, s) == (1/a, 0, True)
assert LT(DiracDelta(t/42), t, s) == (42, 0, True)
assert LT(DiracDelta(t+42), t, s) == (0, 0, True)
assert LT(DiracDelta(t)+DiracDelta(t-42), t, s) == \
(1 + exp(-42*s), 0, True)
assert LT(DiracDelta(t)-a*exp(-a*t), t, s) == (s/(a + s), 0, True)
assert LT(exp(-t)*(DiracDelta(t)+DiracDelta(t-42)), t, s) == \
(exp(-42*s - 42) + 1, -oo, True)
# Collection of cases that cannot be fully evaluated and/or would catch
# some common implementation errors
assert LT(DiracDelta(t**2), t, s) == LaplaceTransform(DiracDelta(t**2), t, s)
assert LT(DiracDelta(t**2 - 1), t, s) == (exp(-s)/2, -oo, True)
assert LT(DiracDelta(t*(1 - t)), t, s) == \
LaplaceTransform(DiracDelta(-t**2 + t), t, s)
assert LT((DiracDelta(t) + 1)*(DiracDelta(t - 1) + 1), t, s) == \
(LaplaceTransform(DiracDelta(t)*DiracDelta(t - 1), t, s) + \
1 + exp(-s) + 1/s, 0, True)
assert LT(DiracDelta(2*t-2*exp(a)), t, s) == (exp(-s*exp(a))/2, 0, True)
assert LT(DiracDelta(-2*t+2*exp(a)), t, s) == (exp(-s*exp(a))/2, 0, True)
# Heaviside tests
assert LT(Heaviside(t), t, s) == (1/s, 0, True)
assert LT(Heaviside(t - a), t, s) == (exp(-a*s)/s, 0, True)
assert LT(Heaviside(t-1), t, s) == (exp(-s)/s, 0, True)
assert LT(Heaviside(2*t-4), t, s) == (exp(-2*s)/s, 0, True)
assert LT(Heaviside(-2*t+4), t, s) == ((1 - exp(-2*s))/s, 0, True)
assert LT(Heaviside(2*t+4), t, s) == (1/s, 0, True)
assert LT(Heaviside(-2*t+4), t, s) == ((1 - exp(-2*s))/s, 0, True)
# Fresnel functions
assert laplace_transform(fresnels(t), t, s) == \
((-sin(s**2/(2*pi))*fresnels(s/pi) + sin(s**2/(2*pi))/2 -
cos(s**2/(2*pi))*fresnelc(s/pi) + cos(s**2/(2*pi))/2)/s, 0, True)
assert laplace_transform(fresnelc(t), t, s) == (
((2*sin(s**2/(2*pi))*fresnelc(s/pi) - 2*cos(s**2/(2*pi))*fresnels(s/pi)
+ sqrt(2)*cos(s**2/(2*pi) + pi/4))/(2*s), 0, True))
# Matrix tests
Mt = Matrix([[exp(t), t*exp(-t)], [t*exp(-t), exp(t)]])
Ms = Matrix([[ 1/(s - 1), (s + 1)**(-2)],
[(s + 1)**(-2), 1/(s - 1)]])
# The default behaviour for Laplace transform of a Matrix returns a Matrix
# of Tuples and is deprecated:
with warns_deprecated_sympy():
Ms_conds = Matrix([[(1/(s - 1), 1, True), ((s + 1)**(-2),
-1, True)], [((s + 1)**(-2), -1, True), (1/(s - 1), 1, True)]])
with warns_deprecated_sympy():
assert LT(Mt, t, s) == Ms_conds
# The new behavior is to return a tuple of a Matrix and the convergence
# conditions for the matrix as a whole:
assert LT(Mt, t, s, legacy_matrix=False) == (Ms, 1, True)
# With noconds=True the transformed matrix is returned without conditions
# either way:
assert LT(Mt, t, s, noconds=True) == Ms
assert LT(Mt, t, s, legacy_matrix=False, noconds=True) == Ms
@slow
def test_inverse_laplace_transform():
from sympy.core.exprtools import factor_terms
from sympy.functions.special.delta_functions import DiracDelta
from sympy.simplify.simplify import simplify
ILT = inverse_laplace_transform
a, b, c, = symbols('a b c', positive=True)
t = symbols('t')
def simp_hyp(expr):
return factor_terms(expand_mul(expr)).rewrite(sin)
assert ILT(1, s, t) == DiracDelta(t)
assert ILT(1/s, s, t) == Heaviside(t)
assert ILT(a/(a + s), s, t) == a*exp(-a*t)*Heaviside(t)
assert ILT(s/(a + s), s, t) == -a*exp(-a*t)*Heaviside(t) + DiracDelta(t)
assert ILT((a + s)**(-2), s, t) == t*exp(-a*t)*Heaviside(t)
assert ILT((a + s)**(-5), s, t) == t**4*exp(-a*t)*Heaviside(t)/24
assert ILT(a/(a**2 + s**2), s, t) == sin(a*t)*Heaviside(t)
assert ILT(s/(s**2 + a**2), s, t) == cos(a*t)*Heaviside(t)
assert ILT(b/(b**2 + (a + s)**2), s, t) == exp(-a*t)*sin(b*t)*Heaviside(t)
assert ILT(b*s/(b**2 + (a + s)**2), s, t) +\
(a*sin(b*t) - b*cos(b*t))*exp(-a*t)*Heaviside(t) == 0
assert ILT(exp(-a*s)/s, s, t) == Heaviside(-a + t)
assert ILT(exp(-a*s)/(b + s), s, t) == exp(b*(a - t))*Heaviside(-a + t)
assert ILT((b + s)/(a**2 + (b + s)**2), s, t) == \
exp(-b*t)*cos(a*t)*Heaviside(t)
assert ILT(exp(-a*s)/s**b, s, t) == \
(-a + t)**(b - 1)*Heaviside(-a + t)/gamma(b)
assert ILT(exp(-a*s)/sqrt(s**2 + 1), s, t) == \
Heaviside(-a + t)*besselj(0, a - t)
assert ILT(1/(s*sqrt(s + 1)), s, t) == Heaviside(t)*erf(sqrt(t))
assert ILT(1/(s**2*(s**2 + 1)), s, t) == (t - sin(t))*Heaviside(t)
assert ILT(s**2/(s**2 + 1), s, t) == -sin(t)*Heaviside(t) + DiracDelta(t)
assert ILT(1 - 1/(s**2 + 1), s, t) == -sin(t)*Heaviside(t) + DiracDelta(t)
assert ILT(1/s**2, s, t) == t*Heaviside(t)
assert ILT(1/s**5, s, t) == t**4*Heaviside(t)/24
assert simp_hyp(ILT(a/(s**2 - a**2), s, t)) == sinh(a*t)*Heaviside(t)
assert simp_hyp(ILT(s/(s**2 - a**2), s, t)) == cosh(a*t)*Heaviside(t)
# TODO sinh/cosh shifted come out a mess. also delayed trig is a mess
# TODO should this simplify further?
assert ILT(exp(-a*s)/s**b, s, t) == \
(t - a)**(b - 1)*Heaviside(t - a)/gamma(b)
assert ILT(exp(-a*s)/sqrt(1 + s**2), s, t) == \
Heaviside(t - a)*besselj(0, a - t) # note: besselj(0, x) is even
# XXX ILT turns these branch factor into trig functions ...
assert simplify(ILT(a**b*(s + sqrt(s**2 - a**2))**(-b)/sqrt(s**2 - a**2),
s, t).rewrite(exp)) == \
Heaviside(t)*besseli(b, a*t)
assert ILT(a**b*(s + sqrt(s**2 + a**2))**(-b)/sqrt(s**2 + a**2),
s, t).rewrite(exp) == \
Heaviside(t)*besselj(b, a*t)
assert ILT(1/(s*sqrt(s + 1)), s, t) == Heaviside(t)*erf(sqrt(t))
# TODO can we make erf(t) work?
assert ILT(1/(s**2*(s**2 + 1)),s,t) == (t - sin(t))*Heaviside(t)
assert ILT( (s * eye(2) - Matrix([[1, 0], [0, 2]])).inv(), s, t) ==\
Matrix([[exp(t)*Heaviside(t), 0], [0, exp(2*t)*Heaviside(t)]])
def test_inverse_laplace_transform_delta():
from sympy.functions.special.delta_functions import DiracDelta
ILT = inverse_laplace_transform
t = symbols('t')
assert ILT(2, s, t) == 2*DiracDelta(t)
assert ILT(2*exp(3*s) - 5*exp(-7*s), s, t) == \
2*DiracDelta(t + 3) - 5*DiracDelta(t - 7)
a = cos(sin(7)/2)
assert ILT(a*exp(-3*s), s, t) == a*DiracDelta(t - 3)
assert ILT(exp(2*s), s, t) == DiracDelta(t + 2)
r = Symbol('r', real=True)
assert ILT(exp(r*s), s, t) == DiracDelta(t + r)
def test_inverse_laplace_transform_delta_cond():
from sympy.functions.elementary.complexes import im
from sympy.functions.special.delta_functions import DiracDelta
ILT = inverse_laplace_transform
t = symbols('t')
r = Symbol('r', real=True)
assert ILT(exp(r*s), s, t, noconds=False) == (DiracDelta(t + r), True)
z = Symbol('z')
assert ILT(exp(z*s), s, t, noconds=False) == \
(DiracDelta(t + z), Eq(im(z), 0))
# inversion does not exist: verify it doesn't evaluate to DiracDelta
for z in (Symbol('z', extended_real=False),
Symbol('z', imaginary=True, zero=False)):
f = ILT(exp(z*s), s, t, noconds=False)
f = f[0] if isinstance(f, tuple) else f
assert f.func != DiracDelta
# issue 15043
assert ILT(1/s + exp(r*s)/s, s, t, noconds=False) == (
Heaviside(t) + Heaviside(r + t), True)
def test_fourier_transform():
from sympy.core.function import (expand, expand_complex, expand_trig)
from sympy.polys.polytools import factor
from sympy.simplify.simplify import simplify
FT = fourier_transform
IFT = inverse_fourier_transform
def simp(x):
return simplify(expand_trig(expand_complex(expand(x))))
def sinc(x):
return sin(pi*x)/(pi*x)
k = symbols('k', real=True)
f = Function("f")
# TODO for this to work with real a, need to expand abs(a*x) to abs(a)*abs(x)
a = symbols('a', positive=True)
b = symbols('b', positive=True)
posk = symbols('posk', positive=True)
# Test unevaluated form
assert fourier_transform(f(x), x, k) == FourierTransform(f(x), x, k)
assert inverse_fourier_transform(
f(k), k, x) == InverseFourierTransform(f(k), k, x)
# basic examples from wikipedia
assert simp(FT(Heaviside(1 - abs(2*a*x)), x, k)) == sinc(k/a)/a
# TODO IFT is a *mess*
assert simp(FT(Heaviside(1 - abs(a*x))*(1 - abs(a*x)), x, k)) == sinc(k/a)**2/a
# TODO IFT
assert factor(FT(exp(-a*x)*Heaviside(x), x, k), extension=I) == \
1/(a + 2*pi*I*k)
# NOTE: the ift comes out in pieces
assert IFT(1/(a + 2*pi*I*x), x, posk,
noconds=False) == (exp(-a*posk), True)
assert IFT(1/(a + 2*pi*I*x), x, -posk,
noconds=False) == (0, True)
assert IFT(1/(a + 2*pi*I*x), x, symbols('k', negative=True),
noconds=False) == (0, True)
# TODO IFT without factoring comes out as meijer g
assert factor(FT(x*exp(-a*x)*Heaviside(x), x, k), extension=I) == \
1/(a + 2*pi*I*k)**2
assert FT(exp(-a*x)*sin(b*x)*Heaviside(x), x, k) == \
b/(b**2 + (a + 2*I*pi*k)**2)
assert FT(exp(-a*x**2), x, k) == sqrt(pi)*exp(-pi**2*k**2/a)/sqrt(a)
assert IFT(sqrt(pi/a)*exp(-(pi*k)**2/a), k, x) == exp(-a*x**2)
assert FT(exp(-a*abs(x)), x, k) == 2*a/(a**2 + 4*pi**2*k**2)
# TODO IFT (comes out as meijer G)
# TODO besselj(n, x), n an integer > 0 actually can be done...
# TODO are there other common transforms (no distributions!)?
def test_sine_transform():
t = symbols("t")
w = symbols("w")
a = symbols("a")
f = Function("f")
# Test unevaluated form
assert sine_transform(f(t), t, w) == SineTransform(f(t), t, w)
assert inverse_sine_transform(
f(w), w, t) == InverseSineTransform(f(w), w, t)
assert sine_transform(1/sqrt(t), t, w) == 1/sqrt(w)
assert inverse_sine_transform(1/sqrt(w), w, t) == 1/sqrt(t)
assert sine_transform((1/sqrt(t))**3, t, w) == 2*sqrt(w)
assert sine_transform(t**(-a), t, w) == 2**(
-a + S.Half)*w**(a - 1)*gamma(-a/2 + 1)/gamma((a + 1)/2)
assert inverse_sine_transform(2**(-a + S(
1)/2)*w**(a - 1)*gamma(-a/2 + 1)/gamma(a/2 + S.Half), w, t) == t**(-a)
assert sine_transform(
exp(-a*t), t, w) == sqrt(2)*w/(sqrt(pi)*(a**2 + w**2))
assert inverse_sine_transform(
sqrt(2)*w/(sqrt(pi)*(a**2 + w**2)), w, t) == exp(-a*t)
assert sine_transform(
log(t)/t, t, w) == sqrt(2)*sqrt(pi)*-(log(w**2) + 2*EulerGamma)/4
assert sine_transform(
t*exp(-a*t**2), t, w) == sqrt(2)*w*exp(-w**2/(4*a))/(4*a**Rational(3, 2))
assert inverse_sine_transform(
sqrt(2)*w*exp(-w**2/(4*a))/(4*a**Rational(3, 2)), w, t) == t*exp(-a*t**2)
def test_cosine_transform():
from sympy.functions.special.error_functions import (Ci, Si)
t = symbols("t")
w = symbols("w")
a = symbols("a")
f = Function("f")
# Test unevaluated form
assert cosine_transform(f(t), t, w) == CosineTransform(f(t), t, w)
assert inverse_cosine_transform(
f(w), w, t) == InverseCosineTransform(f(w), w, t)
assert cosine_transform(1/sqrt(t), t, w) == 1/sqrt(w)
assert inverse_cosine_transform(1/sqrt(w), w, t) == 1/sqrt(t)
assert cosine_transform(1/(
a**2 + t**2), t, w) == sqrt(2)*sqrt(pi)*exp(-a*w)/(2*a)
assert cosine_transform(t**(
-a), t, w) == 2**(-a + S.Half)*w**(a - 1)*gamma((-a + 1)/2)/gamma(a/2)
assert inverse_cosine_transform(2**(-a + S(
1)/2)*w**(a - 1)*gamma(-a/2 + S.Half)/gamma(a/2), w, t) == t**(-a)
assert cosine_transform(
exp(-a*t), t, w) == sqrt(2)*a/(sqrt(pi)*(a**2 + w**2))
assert inverse_cosine_transform(
sqrt(2)*a/(sqrt(pi)*(a**2 + w**2)), w, t) == exp(-a*t)
assert cosine_transform(exp(-a*sqrt(t))*cos(a*sqrt(
t)), t, w) == a*exp(-a**2/(2*w))/(2*w**Rational(3, 2))
assert cosine_transform(1/(a + t), t, w) == sqrt(2)*(
(-2*Si(a*w) + pi)*sin(a*w)/2 - cos(a*w)*Ci(a*w))/sqrt(pi)
assert inverse_cosine_transform(sqrt(2)*meijerg(((S.Half, 0), ()), (
(S.Half, 0, 0), (S.Half,)), a**2*w**2/4)/(2*pi), w, t) == 1/(a + t)
assert cosine_transform(1/sqrt(a**2 + t**2), t, w) == sqrt(2)*meijerg(
((S.Half,), ()), ((0, 0), (S.Half,)), a**2*w**2/4)/(2*sqrt(pi))
assert inverse_cosine_transform(sqrt(2)*meijerg(((S.Half,), ()), ((0, 0), (S.Half,)), a**2*w**2/4)/(2*sqrt(pi)), w, t) == 1/(t*sqrt(a**2/t**2 + 1))
def test_hankel_transform():
r = Symbol("r")
k = Symbol("k")
nu = Symbol("nu")
m = Symbol("m")
a = symbols("a")
assert hankel_transform(1/r, r, k, 0) == 1/k
assert inverse_hankel_transform(1/k, k, r, 0) == 1/r
assert hankel_transform(
1/r**m, r, k, 0) == 2**(-m + 1)*k**(m - 2)*gamma(-m/2 + 1)/gamma(m/2)
assert inverse_hankel_transform(
2**(-m + 1)*k**(m - 2)*gamma(-m/2 + 1)/gamma(m/2), k, r, 0) == r**(-m)
assert hankel_transform(1/r**m, r, k, nu) == (
2*2**(-m)*k**(m - 2)*gamma(-m/2 + nu/2 + 1)/gamma(m/2 + nu/2))
assert inverse_hankel_transform(2**(-m + 1)*k**(
m - 2)*gamma(-m/2 + nu/2 + 1)/gamma(m/2 + nu/2), k, r, nu) == r**(-m)
assert hankel_transform(r**nu*exp(-a*r), r, k, nu) == \
2**(nu + 1)*a*k**(-nu - 3)*(a**2/k**2 + 1)**(-nu - S(
3)/2)*gamma(nu + Rational(3, 2))/sqrt(pi)
assert inverse_hankel_transform(
2**(nu + 1)*a*k**(-nu - 3)*(a**2/k**2 + 1)**(-nu - Rational(3, 2))*gamma(
nu + Rational(3, 2))/sqrt(pi), k, r, nu) == r**nu*exp(-a*r)
def test_issue_7181():
assert mellin_transform(1/(1 - x), x, s) != None
def test_issue_8882():
# This is the original test.
# from sympy import diff, Integral, integrate
# r = Symbol('r')
# psi = 1/r*sin(r)*exp(-(a0*r))
# h = -1/2*diff(psi, r, r) - 1/r*psi
# f = 4*pi*psi*h*r**2
# assert integrate(f, (r, -oo, 3), meijerg=True).has(Integral) == True
# To save time, only the critical part is included.
F = -a**(-s + 1)*(4 + 1/a**2)**(-s/2)*sqrt(1/a**2)*exp(-s*I*pi)* \
sin(s*atan(sqrt(1/a**2)/2))*gamma(s)
raises(IntegralTransformError, lambda:
inverse_mellin_transform(F, s, x, (-1, oo),
**{'as_meijerg': True, 'needeval': True}))
def test_issue_8514():
from sympy.simplify.simplify import simplify
a, b, c, = symbols('a b c', positive=True)
t = symbols('t', positive=True)
ft = simplify(inverse_laplace_transform(1/(a*s**2+b*s+c),s, t))
assert ft == (I*exp(t*cos(atan2(0, -4*a*c + b**2)/2)*sqrt(Abs(4*a*c -
b**2))/a)*sin(t*sin(atan2(0, -4*a*c + b**2)/2)*sqrt(Abs(
4*a*c - b**2))/(2*a)) + exp(t*cos(atan2(0, -4*a*c + b**2)
/2)*sqrt(Abs(4*a*c - b**2))/a)*cos(t*sin(atan2(0, -4*a*c
+ b**2)/2)*sqrt(Abs(4*a*c - b**2))/(2*a)) + I*sin(t*sin(
atan2(0, -4*a*c + b**2)/2)*sqrt(Abs(4*a*c - b**2))/(2*a))
- cos(t*sin(atan2(0, -4*a*c + b**2)/2)*sqrt(Abs(4*a*c -
b**2))/(2*a)))*exp(-t*(b + cos(atan2(0, -4*a*c + b**2)/2)
*sqrt(Abs(4*a*c - b**2)))/(2*a))/sqrt(-4*a*c + b**2)
def test_issue_12591():
x, y = symbols("x y", real=True)
assert fourier_transform(exp(x), x, y) == FourierTransform(exp(x), x, y)
def test_issue_14692():
b = Symbol('b', negative=True)
assert laplace_transform(1/(I*x - b), x, s) == \
(-I*exp(I*b*s)*expint(1, b*s*exp_polar(I*pi/2)), 0, True)
|
f74b528d739598f2df0431f0dcc9fbcdd3b5f1c399e9cc3cc74d8eeb112fe514 | """Test whether all elements of cls.args are instances of Basic. """
# NOTE: keep tests sorted by (module, class name) key. If a class can't
# be instantiated, add it here anyway with @SKIP("abstract class) (see
# e.g. Function).
import os
import re
from sympy.assumptions.ask import Q
from sympy.core.basic import Basic
from sympy.core.function import (Function, Lambda)
from sympy.core.numbers import (Rational, oo, pi)
from sympy.core.relational import Eq
from sympy.core.singleton import S
from sympy.core.symbol import symbols
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import sin
from sympy.testing.pytest import SKIP
a, b, c, x, y, z = symbols('a,b,c,x,y,z')
whitelist = [
"sympy.assumptions.predicates", # tested by test_predicates()
"sympy.assumptions.relation.equality", # tested by test_predicates()
]
def test_all_classes_are_tested():
this = os.path.split(__file__)[0]
path = os.path.join(this, os.pardir, os.pardir)
sympy_path = os.path.abspath(path)
prefix = os.path.split(sympy_path)[0] + os.sep
re_cls = re.compile(r"^class ([A-Za-z][A-Za-z0-9_]*)\s*\(", re.MULTILINE)
modules = {}
for root, dirs, files in os.walk(sympy_path):
module = root.replace(prefix, "").replace(os.sep, ".")
for file in files:
if file.startswith(("_", "test_", "bench_")):
continue
if not file.endswith(".py"):
continue
with open(os.path.join(root, file), encoding='utf-8') as f:
text = f.read()
submodule = module + '.' + file[:-3]
if any(submodule.startswith(wpath) for wpath in whitelist):
continue
names = re_cls.findall(text)
if not names:
continue
try:
mod = __import__(submodule, fromlist=names)
except ImportError:
continue
def is_Basic(name):
cls = getattr(mod, name)
if hasattr(cls, '_sympy_deprecated_func'):
cls = cls._sympy_deprecated_func
if not isinstance(cls, type):
# check instance of singleton class with same name
cls = type(cls)
return issubclass(cls, Basic)
names = list(filter(is_Basic, names))
if names:
modules[submodule] = names
ns = globals()
failed = []
for module, names in modules.items():
mod = module.replace('.', '__')
for name in names:
test = 'test_' + mod + '__' + name
if test not in ns:
failed.append(module + '.' + name)
assert not failed, "Missing classes: %s. Please add tests for these to sympy/core/tests/test_args.py." % ", ".join(failed)
def _test_args(obj):
all_basic = all(isinstance(arg, Basic) for arg in obj.args)
# Ideally obj.func(*obj.args) would always recreate the object, but for
# now, we only require it for objects with non-empty .args
recreatable = not obj.args or obj.func(*obj.args) == obj
return all_basic and recreatable
def test_sympy__algebras__quaternion__Quaternion():
from sympy.algebras.quaternion import Quaternion
assert _test_args(Quaternion(x, 1, 2, 3))
def test_sympy__assumptions__assume__AppliedPredicate():
from sympy.assumptions.assume import AppliedPredicate, Predicate
assert _test_args(AppliedPredicate(Predicate("test"), 2))
assert _test_args(Q.is_true(True))
@SKIP("abstract class")
def test_sympy__assumptions__assume__Predicate():
pass
def test_predicates():
predicates = [
getattr(Q, attr)
for attr in Q.__class__.__dict__
if not attr.startswith('__')]
for p in predicates:
assert _test_args(p)
def test_sympy__assumptions__assume__UndefinedPredicate():
from sympy.assumptions.assume import Predicate
assert _test_args(Predicate("test"))
@SKIP('abstract class')
def test_sympy__assumptions__relation__binrel__BinaryRelation():
pass
def test_sympy__assumptions__relation__binrel__AppliedBinaryRelation():
assert _test_args(Q.eq(1, 2))
def test_sympy__assumptions__wrapper__AssumptionsWrapper():
from sympy.assumptions.wrapper import AssumptionsWrapper
assert _test_args(AssumptionsWrapper(x, Q.positive(x)))
@SKIP("abstract Class")
def test_sympy__codegen__ast__CodegenAST():
from sympy.codegen.ast import CodegenAST
assert _test_args(CodegenAST())
@SKIP("abstract Class")
def test_sympy__codegen__ast__AssignmentBase():
from sympy.codegen.ast import AssignmentBase
assert _test_args(AssignmentBase(x, 1))
@SKIP("abstract Class")
def test_sympy__codegen__ast__AugmentedAssignment():
from sympy.codegen.ast import AugmentedAssignment
assert _test_args(AugmentedAssignment(x, 1))
def test_sympy__codegen__ast__AddAugmentedAssignment():
from sympy.codegen.ast import AddAugmentedAssignment
assert _test_args(AddAugmentedAssignment(x, 1))
def test_sympy__codegen__ast__SubAugmentedAssignment():
from sympy.codegen.ast import SubAugmentedAssignment
assert _test_args(SubAugmentedAssignment(x, 1))
def test_sympy__codegen__ast__MulAugmentedAssignment():
from sympy.codegen.ast import MulAugmentedAssignment
assert _test_args(MulAugmentedAssignment(x, 1))
def test_sympy__codegen__ast__DivAugmentedAssignment():
from sympy.codegen.ast import DivAugmentedAssignment
assert _test_args(DivAugmentedAssignment(x, 1))
def test_sympy__codegen__ast__ModAugmentedAssignment():
from sympy.codegen.ast import ModAugmentedAssignment
assert _test_args(ModAugmentedAssignment(x, 1))
def test_sympy__codegen__ast__CodeBlock():
from sympy.codegen.ast import CodeBlock, Assignment
assert _test_args(CodeBlock(Assignment(x, 1), Assignment(y, 2)))
def test_sympy__codegen__ast__For():
from sympy.codegen.ast import For, CodeBlock, AddAugmentedAssignment
from sympy.sets import Range
assert _test_args(For(x, Range(10), CodeBlock(AddAugmentedAssignment(y, 1))))
def test_sympy__codegen__ast__Token():
from sympy.codegen.ast import Token
assert _test_args(Token())
def test_sympy__codegen__ast__ContinueToken():
from sympy.codegen.ast import ContinueToken
assert _test_args(ContinueToken())
def test_sympy__codegen__ast__BreakToken():
from sympy.codegen.ast import BreakToken
assert _test_args(BreakToken())
def test_sympy__codegen__ast__NoneToken():
from sympy.codegen.ast import NoneToken
assert _test_args(NoneToken())
def test_sympy__codegen__ast__String():
from sympy.codegen.ast import String
assert _test_args(String('foobar'))
def test_sympy__codegen__ast__QuotedString():
from sympy.codegen.ast import QuotedString
assert _test_args(QuotedString('foobar'))
def test_sympy__codegen__ast__Comment():
from sympy.codegen.ast import Comment
assert _test_args(Comment('this is a comment'))
def test_sympy__codegen__ast__Node():
from sympy.codegen.ast import Node
assert _test_args(Node())
assert _test_args(Node(attrs={1, 2, 3}))
def test_sympy__codegen__ast__Type():
from sympy.codegen.ast import Type
assert _test_args(Type('float128'))
def test_sympy__codegen__ast__IntBaseType():
from sympy.codegen.ast import IntBaseType
assert _test_args(IntBaseType('bigint'))
def test_sympy__codegen__ast___SizedIntType():
from sympy.codegen.ast import _SizedIntType
assert _test_args(_SizedIntType('int128', 128))
def test_sympy__codegen__ast__SignedIntType():
from sympy.codegen.ast import SignedIntType
assert _test_args(SignedIntType('int128_with_sign', 128))
def test_sympy__codegen__ast__UnsignedIntType():
from sympy.codegen.ast import UnsignedIntType
assert _test_args(UnsignedIntType('unt128', 128))
def test_sympy__codegen__ast__FloatBaseType():
from sympy.codegen.ast import FloatBaseType
assert _test_args(FloatBaseType('positive_real'))
def test_sympy__codegen__ast__FloatType():
from sympy.codegen.ast import FloatType
assert _test_args(FloatType('float242', 242, nmant=142, nexp=99))
def test_sympy__codegen__ast__ComplexBaseType():
from sympy.codegen.ast import ComplexBaseType
assert _test_args(ComplexBaseType('positive_cmplx'))
def test_sympy__codegen__ast__ComplexType():
from sympy.codegen.ast import ComplexType
assert _test_args(ComplexType('complex42', 42, nmant=15, nexp=5))
def test_sympy__codegen__ast__Attribute():
from sympy.codegen.ast import Attribute
assert _test_args(Attribute('noexcept'))
def test_sympy__codegen__ast__Variable():
from sympy.codegen.ast import Variable, Type, value_const
assert _test_args(Variable(x))
assert _test_args(Variable(y, Type('float32'), {value_const}))
assert _test_args(Variable(z, type=Type('float64')))
def test_sympy__codegen__ast__Pointer():
from sympy.codegen.ast import Pointer, Type, pointer_const
assert _test_args(Pointer(x))
assert _test_args(Pointer(y, type=Type('float32')))
assert _test_args(Pointer(z, Type('float64'), {pointer_const}))
def test_sympy__codegen__ast__Declaration():
from sympy.codegen.ast import Declaration, Variable, Type
vx = Variable(x, type=Type('float'))
assert _test_args(Declaration(vx))
def test_sympy__codegen__ast__While():
from sympy.codegen.ast import While, AddAugmentedAssignment
assert _test_args(While(abs(x) < 1, [AddAugmentedAssignment(x, -1)]))
def test_sympy__codegen__ast__Scope():
from sympy.codegen.ast import Scope, AddAugmentedAssignment
assert _test_args(Scope([AddAugmentedAssignment(x, -1)]))
def test_sympy__codegen__ast__Stream():
from sympy.codegen.ast import Stream
assert _test_args(Stream('stdin'))
def test_sympy__codegen__ast__Print():
from sympy.codegen.ast import Print
assert _test_args(Print([x, y]))
assert _test_args(Print([x, y], "%d %d"))
def test_sympy__codegen__ast__FunctionPrototype():
from sympy.codegen.ast import FunctionPrototype, real, Declaration, Variable
inp_x = Declaration(Variable(x, type=real))
assert _test_args(FunctionPrototype(real, 'pwer', [inp_x]))
def test_sympy__codegen__ast__FunctionDefinition():
from sympy.codegen.ast import FunctionDefinition, real, Declaration, Variable, Assignment
inp_x = Declaration(Variable(x, type=real))
assert _test_args(FunctionDefinition(real, 'pwer', [inp_x], [Assignment(x, x**2)]))
def test_sympy__codegen__ast__Return():
from sympy.codegen.ast import Return
assert _test_args(Return(x))
def test_sympy__codegen__ast__FunctionCall():
from sympy.codegen.ast import FunctionCall
assert _test_args(FunctionCall('pwer', [x]))
def test_sympy__codegen__ast__Element():
from sympy.codegen.ast import Element
assert _test_args(Element('x', range(3)))
def test_sympy__codegen__cnodes__CommaOperator():
from sympy.codegen.cnodes import CommaOperator
assert _test_args(CommaOperator(1, 2))
def test_sympy__codegen__cnodes__goto():
from sympy.codegen.cnodes import goto
assert _test_args(goto('early_exit'))
def test_sympy__codegen__cnodes__Label():
from sympy.codegen.cnodes import Label
assert _test_args(Label('early_exit'))
def test_sympy__codegen__cnodes__PreDecrement():
from sympy.codegen.cnodes import PreDecrement
assert _test_args(PreDecrement(x))
def test_sympy__codegen__cnodes__PostDecrement():
from sympy.codegen.cnodes import PostDecrement
assert _test_args(PostDecrement(x))
def test_sympy__codegen__cnodes__PreIncrement():
from sympy.codegen.cnodes import PreIncrement
assert _test_args(PreIncrement(x))
def test_sympy__codegen__cnodes__PostIncrement():
from sympy.codegen.cnodes import PostIncrement
assert _test_args(PostIncrement(x))
def test_sympy__codegen__cnodes__struct():
from sympy.codegen.ast import real, Variable
from sympy.codegen.cnodes import struct
assert _test_args(struct(declarations=[
Variable(x, type=real),
Variable(y, type=real)
]))
def test_sympy__codegen__cnodes__union():
from sympy.codegen.ast import float32, int32, Variable
from sympy.codegen.cnodes import union
assert _test_args(union(declarations=[
Variable(x, type=float32),
Variable(y, type=int32)
]))
def test_sympy__codegen__cxxnodes__using():
from sympy.codegen.cxxnodes import using
assert _test_args(using('std::vector'))
assert _test_args(using('std::vector', 'vec'))
def test_sympy__codegen__fnodes__Program():
from sympy.codegen.fnodes import Program
assert _test_args(Program('foobar', []))
def test_sympy__codegen__fnodes__Module():
from sympy.codegen.fnodes import Module
assert _test_args(Module('foobar', [], []))
def test_sympy__codegen__fnodes__Subroutine():
from sympy.codegen.fnodes import Subroutine
x = symbols('x', real=True)
assert _test_args(Subroutine('foo', [x], []))
def test_sympy__codegen__fnodes__GoTo():
from sympy.codegen.fnodes import GoTo
assert _test_args(GoTo([10]))
assert _test_args(GoTo([10, 20], x > 1))
def test_sympy__codegen__fnodes__FortranReturn():
from sympy.codegen.fnodes import FortranReturn
assert _test_args(FortranReturn(10))
def test_sympy__codegen__fnodes__Extent():
from sympy.codegen.fnodes import Extent
assert _test_args(Extent())
assert _test_args(Extent(None))
assert _test_args(Extent(':'))
assert _test_args(Extent(-3, 4))
assert _test_args(Extent(x, y))
def test_sympy__codegen__fnodes__use_rename():
from sympy.codegen.fnodes import use_rename
assert _test_args(use_rename('loc', 'glob'))
def test_sympy__codegen__fnodes__use():
from sympy.codegen.fnodes import use
assert _test_args(use('modfoo', only='bar'))
def test_sympy__codegen__fnodes__SubroutineCall():
from sympy.codegen.fnodes import SubroutineCall
assert _test_args(SubroutineCall('foo', ['bar', 'baz']))
def test_sympy__codegen__fnodes__Do():
from sympy.codegen.fnodes import Do
assert _test_args(Do([], 'i', 1, 42))
def test_sympy__codegen__fnodes__ImpliedDoLoop():
from sympy.codegen.fnodes import ImpliedDoLoop
assert _test_args(ImpliedDoLoop('i', 'i', 1, 42))
def test_sympy__codegen__fnodes__ArrayConstructor():
from sympy.codegen.fnodes import ArrayConstructor
assert _test_args(ArrayConstructor([1, 2, 3]))
from sympy.codegen.fnodes import ImpliedDoLoop
idl = ImpliedDoLoop('i', 'i', 1, 42)
assert _test_args(ArrayConstructor([1, idl, 3]))
def test_sympy__codegen__fnodes__sum_():
from sympy.codegen.fnodes import sum_
assert _test_args(sum_('arr'))
def test_sympy__codegen__fnodes__product_():
from sympy.codegen.fnodes import product_
assert _test_args(product_('arr'))
def test_sympy__codegen__numpy_nodes__logaddexp():
from sympy.codegen.numpy_nodes import logaddexp
assert _test_args(logaddexp(x, y))
def test_sympy__codegen__numpy_nodes__logaddexp2():
from sympy.codegen.numpy_nodes import logaddexp2
assert _test_args(logaddexp2(x, y))
def test_sympy__codegen__pynodes__List():
from sympy.codegen.pynodes import List
assert _test_args(List(1, 2, 3))
def test_sympy__codegen__pynodes__NumExprEvaluate():
from sympy.codegen.pynodes import NumExprEvaluate
assert _test_args(NumExprEvaluate(x))
def test_sympy__codegen__scipy_nodes__cosm1():
from sympy.codegen.scipy_nodes import cosm1
assert _test_args(cosm1(x))
def test_sympy__codegen__scipy_nodes__powm1():
from sympy.codegen.scipy_nodes import powm1
assert _test_args(powm1(x, y))
def test_sympy__codegen__abstract_nodes__List():
from sympy.codegen.abstract_nodes import List
assert _test_args(List(1, 2, 3))
def test_sympy__combinatorics__graycode__GrayCode():
from sympy.combinatorics.graycode import GrayCode
# an integer is given and returned from GrayCode as the arg
assert _test_args(GrayCode(3, start='100'))
assert _test_args(GrayCode(3, rank=1))
def test_sympy__combinatorics__permutations__Permutation():
from sympy.combinatorics.permutations import Permutation
assert _test_args(Permutation([0, 1, 2, 3]))
def test_sympy__combinatorics__permutations__AppliedPermutation():
from sympy.combinatorics.permutations import Permutation
from sympy.combinatorics.permutations import AppliedPermutation
p = Permutation([0, 1, 2, 3])
assert _test_args(AppliedPermutation(p, x))
def test_sympy__combinatorics__perm_groups__PermutationGroup():
from sympy.combinatorics.permutations import Permutation
from sympy.combinatorics.perm_groups import PermutationGroup
assert _test_args(PermutationGroup([Permutation([0, 1])]))
def test_sympy__combinatorics__polyhedron__Polyhedron():
from sympy.combinatorics.permutations import Permutation
from sympy.combinatorics.polyhedron import Polyhedron
from sympy.abc import w, x, y, z
pgroup = [Permutation([[0, 1, 2], [3]]),
Permutation([[0, 1, 3], [2]]),
Permutation([[0, 2, 3], [1]]),
Permutation([[1, 2, 3], [0]]),
Permutation([[0, 1], [2, 3]]),
Permutation([[0, 2], [1, 3]]),
Permutation([[0, 3], [1, 2]]),
Permutation([[0, 1, 2, 3]])]
corners = [w, x, y, z]
faces = [(w, x, y), (w, y, z), (w, z, x), (x, y, z)]
assert _test_args(Polyhedron(corners, faces, pgroup))
def test_sympy__combinatorics__prufer__Prufer():
from sympy.combinatorics.prufer import Prufer
assert _test_args(Prufer([[0, 1], [0, 2], [0, 3]], 4))
def test_sympy__combinatorics__partitions__Partition():
from sympy.combinatorics.partitions import Partition
assert _test_args(Partition([1]))
def test_sympy__combinatorics__partitions__IntegerPartition():
from sympy.combinatorics.partitions import IntegerPartition
assert _test_args(IntegerPartition([1]))
def test_sympy__concrete__products__Product():
from sympy.concrete.products import Product
assert _test_args(Product(x, (x, 0, 10)))
assert _test_args(Product(x, (x, 0, y), (y, 0, 10)))
@SKIP("abstract Class")
def test_sympy__concrete__expr_with_limits__ExprWithLimits():
from sympy.concrete.expr_with_limits import ExprWithLimits
assert _test_args(ExprWithLimits(x, (x, 0, 10)))
assert _test_args(ExprWithLimits(x*y, (x, 0, 10.),(y,1.,3)))
@SKIP("abstract Class")
def test_sympy__concrete__expr_with_limits__AddWithLimits():
from sympy.concrete.expr_with_limits import AddWithLimits
assert _test_args(AddWithLimits(x, (x, 0, 10)))
assert _test_args(AddWithLimits(x*y, (x, 0, 10),(y,1,3)))
@SKIP("abstract Class")
def test_sympy__concrete__expr_with_intlimits__ExprWithIntLimits():
from sympy.concrete.expr_with_intlimits import ExprWithIntLimits
assert _test_args(ExprWithIntLimits(x, (x, 0, 10)))
assert _test_args(ExprWithIntLimits(x*y, (x, 0, 10),(y,1,3)))
def test_sympy__concrete__summations__Sum():
from sympy.concrete.summations import Sum
assert _test_args(Sum(x, (x, 0, 10)))
assert _test_args(Sum(x, (x, 0, y), (y, 0, 10)))
def test_sympy__core__add__Add():
from sympy.core.add import Add
assert _test_args(Add(x, y, z, 2))
def test_sympy__core__basic__Atom():
from sympy.core.basic import Atom
assert _test_args(Atom())
def test_sympy__core__basic__Basic():
from sympy.core.basic import Basic
assert _test_args(Basic())
def test_sympy__core__containers__Dict():
from sympy.core.containers import Dict
assert _test_args(Dict({x: y, y: z}))
def test_sympy__core__containers__Tuple():
from sympy.core.containers import Tuple
assert _test_args(Tuple(x, y, z, 2))
def test_sympy__core__expr__AtomicExpr():
from sympy.core.expr import AtomicExpr
assert _test_args(AtomicExpr())
def test_sympy__core__expr__Expr():
from sympy.core.expr import Expr
assert _test_args(Expr())
def test_sympy__core__expr__UnevaluatedExpr():
from sympy.core.expr import UnevaluatedExpr
from sympy.abc import x
assert _test_args(UnevaluatedExpr(x))
def test_sympy__core__function__Application():
from sympy.core.function import Application
assert _test_args(Application(1, 2, 3))
def test_sympy__core__function__AppliedUndef():
from sympy.core.function import AppliedUndef
assert _test_args(AppliedUndef(1, 2, 3))
def test_sympy__core__function__Derivative():
from sympy.core.function import Derivative
assert _test_args(Derivative(2, x, y, 3))
@SKIP("abstract class")
def test_sympy__core__function__Function():
pass
def test_sympy__core__function__Lambda():
assert _test_args(Lambda((x, y), x + y + z))
def test_sympy__core__function__Subs():
from sympy.core.function import Subs
assert _test_args(Subs(x + y, x, 2))
def test_sympy__core__function__WildFunction():
from sympy.core.function import WildFunction
assert _test_args(WildFunction('f'))
def test_sympy__core__mod__Mod():
from sympy.core.mod import Mod
assert _test_args(Mod(x, 2))
def test_sympy__core__mul__Mul():
from sympy.core.mul import Mul
assert _test_args(Mul(2, x, y, z))
def test_sympy__core__numbers__Catalan():
from sympy.core.numbers import Catalan
assert _test_args(Catalan())
def test_sympy__core__numbers__ComplexInfinity():
from sympy.core.numbers import ComplexInfinity
assert _test_args(ComplexInfinity())
def test_sympy__core__numbers__EulerGamma():
from sympy.core.numbers import EulerGamma
assert _test_args(EulerGamma())
def test_sympy__core__numbers__Exp1():
from sympy.core.numbers import Exp1
assert _test_args(Exp1())
def test_sympy__core__numbers__Float():
from sympy.core.numbers import Float
assert _test_args(Float(1.23))
def test_sympy__core__numbers__GoldenRatio():
from sympy.core.numbers import GoldenRatio
assert _test_args(GoldenRatio())
def test_sympy__core__numbers__TribonacciConstant():
from sympy.core.numbers import TribonacciConstant
assert _test_args(TribonacciConstant())
def test_sympy__core__numbers__Half():
from sympy.core.numbers import Half
assert _test_args(Half())
def test_sympy__core__numbers__ImaginaryUnit():
from sympy.core.numbers import ImaginaryUnit
assert _test_args(ImaginaryUnit())
def test_sympy__core__numbers__Infinity():
from sympy.core.numbers import Infinity
assert _test_args(Infinity())
def test_sympy__core__numbers__Integer():
from sympy.core.numbers import Integer
assert _test_args(Integer(7))
@SKIP("abstract class")
def test_sympy__core__numbers__IntegerConstant():
pass
def test_sympy__core__numbers__NaN():
from sympy.core.numbers import NaN
assert _test_args(NaN())
def test_sympy__core__numbers__NegativeInfinity():
from sympy.core.numbers import NegativeInfinity
assert _test_args(NegativeInfinity())
def test_sympy__core__numbers__NegativeOne():
from sympy.core.numbers import NegativeOne
assert _test_args(NegativeOne())
def test_sympy__core__numbers__Number():
from sympy.core.numbers import Number
assert _test_args(Number(1, 7))
def test_sympy__core__numbers__NumberSymbol():
from sympy.core.numbers import NumberSymbol
assert _test_args(NumberSymbol())
def test_sympy__core__numbers__One():
from sympy.core.numbers import One
assert _test_args(One())
def test_sympy__core__numbers__Pi():
from sympy.core.numbers import Pi
assert _test_args(Pi())
def test_sympy__core__numbers__Rational():
from sympy.core.numbers import Rational
assert _test_args(Rational(1, 7))
@SKIP("abstract class")
def test_sympy__core__numbers__RationalConstant():
pass
def test_sympy__core__numbers__Zero():
from sympy.core.numbers import Zero
assert _test_args(Zero())
@SKIP("abstract class")
def test_sympy__core__operations__AssocOp():
pass
@SKIP("abstract class")
def test_sympy__core__operations__LatticeOp():
pass
def test_sympy__core__power__Pow():
from sympy.core.power import Pow
assert _test_args(Pow(x, 2))
def test_sympy__core__relational__Equality():
from sympy.core.relational import Equality
assert _test_args(Equality(x, 2))
def test_sympy__core__relational__GreaterThan():
from sympy.core.relational import GreaterThan
assert _test_args(GreaterThan(x, 2))
def test_sympy__core__relational__LessThan():
from sympy.core.relational import LessThan
assert _test_args(LessThan(x, 2))
@SKIP("abstract class")
def test_sympy__core__relational__Relational():
pass
def test_sympy__core__relational__StrictGreaterThan():
from sympy.core.relational import StrictGreaterThan
assert _test_args(StrictGreaterThan(x, 2))
def test_sympy__core__relational__StrictLessThan():
from sympy.core.relational import StrictLessThan
assert _test_args(StrictLessThan(x, 2))
def test_sympy__core__relational__Unequality():
from sympy.core.relational import Unequality
assert _test_args(Unequality(x, 2))
def test_sympy__sandbox__indexed_integrals__IndexedIntegral():
from sympy.tensor import IndexedBase, Idx
from sympy.sandbox.indexed_integrals import IndexedIntegral
A = IndexedBase('A')
i, j = symbols('i j', integer=True)
a1, a2 = symbols('a1:3', cls=Idx)
assert _test_args(IndexedIntegral(A[a1], A[a2]))
assert _test_args(IndexedIntegral(A[i], A[j]))
def test_sympy__calculus__accumulationbounds__AccumulationBounds():
from sympy.calculus.accumulationbounds import AccumulationBounds
assert _test_args(AccumulationBounds(0, 1))
def test_sympy__sets__ordinals__OmegaPower():
from sympy.sets.ordinals import OmegaPower
assert _test_args(OmegaPower(1, 1))
def test_sympy__sets__ordinals__Ordinal():
from sympy.sets.ordinals import Ordinal, OmegaPower
assert _test_args(Ordinal(OmegaPower(2, 1)))
def test_sympy__sets__ordinals__OrdinalOmega():
from sympy.sets.ordinals import OrdinalOmega
assert _test_args(OrdinalOmega())
def test_sympy__sets__ordinals__OrdinalZero():
from sympy.sets.ordinals import OrdinalZero
assert _test_args(OrdinalZero())
def test_sympy__sets__powerset__PowerSet():
from sympy.sets.powerset import PowerSet
from sympy.core.singleton import S
assert _test_args(PowerSet(S.EmptySet))
def test_sympy__sets__sets__EmptySet():
from sympy.sets.sets import EmptySet
assert _test_args(EmptySet())
def test_sympy__sets__sets__UniversalSet():
from sympy.sets.sets import UniversalSet
assert _test_args(UniversalSet())
def test_sympy__sets__sets__FiniteSet():
from sympy.sets.sets import FiniteSet
assert _test_args(FiniteSet(x, y, z))
def test_sympy__sets__sets__Interval():
from sympy.sets.sets import Interval
assert _test_args(Interval(0, 1))
def test_sympy__sets__sets__ProductSet():
from sympy.sets.sets import ProductSet, Interval
assert _test_args(ProductSet(Interval(0, 1), Interval(0, 1)))
@SKIP("does it make sense to test this?")
def test_sympy__sets__sets__Set():
from sympy.sets.sets import Set
assert _test_args(Set())
def test_sympy__sets__sets__Intersection():
from sympy.sets.sets import Intersection, Interval
from sympy.core.symbol import Symbol
x = Symbol('x')
y = Symbol('y')
S = Intersection(Interval(0, x), Interval(y, 1))
assert isinstance(S, Intersection)
assert _test_args(S)
def test_sympy__sets__sets__Union():
from sympy.sets.sets import Union, Interval
assert _test_args(Union(Interval(0, 1), Interval(2, 3)))
def test_sympy__sets__sets__Complement():
from sympy.sets.sets import Complement, Interval
assert _test_args(Complement(Interval(0, 2), Interval(0, 1)))
def test_sympy__sets__sets__SymmetricDifference():
from sympy.sets.sets import FiniteSet, SymmetricDifference
assert _test_args(SymmetricDifference(FiniteSet(1, 2, 3), \
FiniteSet(2, 3, 4)))
def test_sympy__sets__sets__DisjointUnion():
from sympy.sets.sets import FiniteSet, DisjointUnion
assert _test_args(DisjointUnion(FiniteSet(1, 2, 3), \
FiniteSet(2, 3, 4)))
def test_sympy__physics__quantum__trace__Tr():
from sympy.physics.quantum.trace import Tr
a, b = symbols('a b', commutative=False)
assert _test_args(Tr(a + b))
def test_sympy__sets__setexpr__SetExpr():
from sympy.sets.setexpr import SetExpr
from sympy.sets.sets import Interval
assert _test_args(SetExpr(Interval(0, 1)))
def test_sympy__sets__fancysets__Rationals():
from sympy.sets.fancysets import Rationals
assert _test_args(Rationals())
def test_sympy__sets__fancysets__Naturals():
from sympy.sets.fancysets import Naturals
assert _test_args(Naturals())
def test_sympy__sets__fancysets__Naturals0():
from sympy.sets.fancysets import Naturals0
assert _test_args(Naturals0())
def test_sympy__sets__fancysets__Integers():
from sympy.sets.fancysets import Integers
assert _test_args(Integers())
def test_sympy__sets__fancysets__Reals():
from sympy.sets.fancysets import Reals
assert _test_args(Reals())
def test_sympy__sets__fancysets__Complexes():
from sympy.sets.fancysets import Complexes
assert _test_args(Complexes())
def test_sympy__sets__fancysets__ComplexRegion():
from sympy.sets.fancysets import ComplexRegion
from sympy.core.singleton import S
from sympy.sets import Interval
a = Interval(0, 1)
b = Interval(2, 3)
theta = Interval(0, 2*S.Pi)
assert _test_args(ComplexRegion(a*b))
assert _test_args(ComplexRegion(a*theta, polar=True))
def test_sympy__sets__fancysets__CartesianComplexRegion():
from sympy.sets.fancysets import CartesianComplexRegion
from sympy.sets import Interval
a = Interval(0, 1)
b = Interval(2, 3)
assert _test_args(CartesianComplexRegion(a*b))
def test_sympy__sets__fancysets__PolarComplexRegion():
from sympy.sets.fancysets import PolarComplexRegion
from sympy.core.singleton import S
from sympy.sets import Interval
a = Interval(0, 1)
theta = Interval(0, 2*S.Pi)
assert _test_args(PolarComplexRegion(a*theta))
def test_sympy__sets__fancysets__ImageSet():
from sympy.sets.fancysets import ImageSet
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
x = Symbol('x')
assert _test_args(ImageSet(Lambda(x, x**2), S.Naturals))
def test_sympy__sets__fancysets__Range():
from sympy.sets.fancysets import Range
assert _test_args(Range(1, 5, 1))
def test_sympy__sets__conditionset__ConditionSet():
from sympy.sets.conditionset import ConditionSet
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
x = Symbol('x')
assert _test_args(ConditionSet(x, Eq(x**2, 1), S.Reals))
def test_sympy__sets__contains__Contains():
from sympy.sets.fancysets import Range
from sympy.sets.contains import Contains
assert _test_args(Contains(x, Range(0, 10, 2)))
# STATS
from sympy.stats.crv_types import NormalDistribution
nd = NormalDistribution(0, 1)
from sympy.stats.frv_types import DieDistribution
die = DieDistribution(6)
def test_sympy__stats__crv__ContinuousDomain():
from sympy.sets.sets import Interval
from sympy.stats.crv import ContinuousDomain
assert _test_args(ContinuousDomain({x}, Interval(-oo, oo)))
def test_sympy__stats__crv__SingleContinuousDomain():
from sympy.sets.sets import Interval
from sympy.stats.crv import SingleContinuousDomain
assert _test_args(SingleContinuousDomain(x, Interval(-oo, oo)))
def test_sympy__stats__crv__ProductContinuousDomain():
from sympy.sets.sets import Interval
from sympy.stats.crv import SingleContinuousDomain, ProductContinuousDomain
D = SingleContinuousDomain(x, Interval(-oo, oo))
E = SingleContinuousDomain(y, Interval(0, oo))
assert _test_args(ProductContinuousDomain(D, E))
def test_sympy__stats__crv__ConditionalContinuousDomain():
from sympy.sets.sets import Interval
from sympy.stats.crv import (SingleContinuousDomain,
ConditionalContinuousDomain)
D = SingleContinuousDomain(x, Interval(-oo, oo))
assert _test_args(ConditionalContinuousDomain(D, x > 0))
def test_sympy__stats__crv__ContinuousPSpace():
from sympy.sets.sets import Interval
from sympy.stats.crv import ContinuousPSpace, SingleContinuousDomain
D = SingleContinuousDomain(x, Interval(-oo, oo))
assert _test_args(ContinuousPSpace(D, nd))
def test_sympy__stats__crv__SingleContinuousPSpace():
from sympy.stats.crv import SingleContinuousPSpace
assert _test_args(SingleContinuousPSpace(x, nd))
@SKIP("abstract class")
def test_sympy__stats__rv__Distribution():
pass
@SKIP("abstract class")
def test_sympy__stats__crv__SingleContinuousDistribution():
pass
def test_sympy__stats__drv__SingleDiscreteDomain():
from sympy.stats.drv import SingleDiscreteDomain
assert _test_args(SingleDiscreteDomain(x, S.Naturals))
def test_sympy__stats__drv__ProductDiscreteDomain():
from sympy.stats.drv import SingleDiscreteDomain, ProductDiscreteDomain
X = SingleDiscreteDomain(x, S.Naturals)
Y = SingleDiscreteDomain(y, S.Integers)
assert _test_args(ProductDiscreteDomain(X, Y))
def test_sympy__stats__drv__SingleDiscretePSpace():
from sympy.stats.drv import SingleDiscretePSpace
from sympy.stats.drv_types import PoissonDistribution
assert _test_args(SingleDiscretePSpace(x, PoissonDistribution(1)))
def test_sympy__stats__drv__DiscretePSpace():
from sympy.stats.drv import DiscretePSpace, SingleDiscreteDomain
density = Lambda(x, 2**(-x))
domain = SingleDiscreteDomain(x, S.Naturals)
assert _test_args(DiscretePSpace(domain, density))
def test_sympy__stats__drv__ConditionalDiscreteDomain():
from sympy.stats.drv import ConditionalDiscreteDomain, SingleDiscreteDomain
X = SingleDiscreteDomain(x, S.Naturals0)
assert _test_args(ConditionalDiscreteDomain(X, x > 2))
def test_sympy__stats__joint_rv__JointPSpace():
from sympy.stats.joint_rv import JointPSpace, JointDistribution
assert _test_args(JointPSpace('X', JointDistribution(1)))
def test_sympy__stats__joint_rv__JointRandomSymbol():
from sympy.stats.joint_rv import JointRandomSymbol
assert _test_args(JointRandomSymbol(x))
def test_sympy__stats__joint_rv_types__JointDistributionHandmade():
from sympy.tensor.indexed import Indexed
from sympy.stats.joint_rv_types import JointDistributionHandmade
x1, x2 = (Indexed('x', i) for i in (1, 2))
assert _test_args(JointDistributionHandmade(x1 + x2, S.Reals**2))
def test_sympy__stats__joint_rv__MarginalDistribution():
from sympy.stats.rv import RandomSymbol
from sympy.stats.joint_rv import MarginalDistribution
r = RandomSymbol(S('r'))
assert _test_args(MarginalDistribution(r, (r,)))
def test_sympy__stats__compound_rv__CompoundDistribution():
from sympy.stats.compound_rv import CompoundDistribution
from sympy.stats.drv_types import PoissonDistribution, Poisson
r = Poisson('r', 10)
assert _test_args(CompoundDistribution(PoissonDistribution(r)))
def test_sympy__stats__compound_rv__CompoundPSpace():
from sympy.stats.compound_rv import CompoundPSpace, CompoundDistribution
from sympy.stats.drv_types import PoissonDistribution, Poisson
r = Poisson('r', 5)
C = CompoundDistribution(PoissonDistribution(r))
assert _test_args(CompoundPSpace('C', C))
@SKIP("abstract class")
def test_sympy__stats__drv__SingleDiscreteDistribution():
pass
@SKIP("abstract class")
def test_sympy__stats__drv__DiscreteDistribution():
pass
@SKIP("abstract class")
def test_sympy__stats__drv__DiscreteDomain():
pass
def test_sympy__stats__rv__RandomDomain():
from sympy.stats.rv import RandomDomain
from sympy.sets.sets import FiniteSet
assert _test_args(RandomDomain(FiniteSet(x), FiniteSet(1, 2, 3)))
def test_sympy__stats__rv__SingleDomain():
from sympy.stats.rv import SingleDomain
from sympy.sets.sets import FiniteSet
assert _test_args(SingleDomain(x, FiniteSet(1, 2, 3)))
def test_sympy__stats__rv__ConditionalDomain():
from sympy.stats.rv import ConditionalDomain, RandomDomain
from sympy.sets.sets import FiniteSet
D = RandomDomain(FiniteSet(x), FiniteSet(1, 2))
assert _test_args(ConditionalDomain(D, x > 1))
def test_sympy__stats__rv__MatrixDomain():
from sympy.stats.rv import MatrixDomain
from sympy.matrices import MatrixSet
from sympy.core.singleton import S
assert _test_args(MatrixDomain(x, MatrixSet(2, 2, S.Reals)))
def test_sympy__stats__rv__PSpace():
from sympy.stats.rv import PSpace, RandomDomain
from sympy.sets.sets import FiniteSet
D = RandomDomain(FiniteSet(x), FiniteSet(1, 2, 3, 4, 5, 6))
assert _test_args(PSpace(D, die))
@SKIP("abstract Class")
def test_sympy__stats__rv__SinglePSpace():
pass
def test_sympy__stats__rv__RandomSymbol():
from sympy.stats.rv import RandomSymbol
from sympy.stats.crv import SingleContinuousPSpace
A = SingleContinuousPSpace(x, nd)
assert _test_args(RandomSymbol(x, A))
@SKIP("abstract Class")
def test_sympy__stats__rv__ProductPSpace():
pass
def test_sympy__stats__rv__IndependentProductPSpace():
from sympy.stats.rv import IndependentProductPSpace
from sympy.stats.crv import SingleContinuousPSpace
A = SingleContinuousPSpace(x, nd)
B = SingleContinuousPSpace(y, nd)
assert _test_args(IndependentProductPSpace(A, B))
def test_sympy__stats__rv__ProductDomain():
from sympy.sets.sets import Interval
from sympy.stats.rv import ProductDomain, SingleDomain
D = SingleDomain(x, Interval(-oo, oo))
E = SingleDomain(y, Interval(0, oo))
assert _test_args(ProductDomain(D, E))
def test_sympy__stats__symbolic_probability__Probability():
from sympy.stats.symbolic_probability import Probability
from sympy.stats import Normal
X = Normal('X', 0, 1)
assert _test_args(Probability(X > 0))
def test_sympy__stats__symbolic_probability__Expectation():
from sympy.stats.symbolic_probability import Expectation
from sympy.stats import Normal
X = Normal('X', 0, 1)
assert _test_args(Expectation(X > 0))
def test_sympy__stats__symbolic_probability__Covariance():
from sympy.stats.symbolic_probability import Covariance
from sympy.stats import Normal
X = Normal('X', 0, 1)
Y = Normal('Y', 0, 3)
assert _test_args(Covariance(X, Y))
def test_sympy__stats__symbolic_probability__Variance():
from sympy.stats.symbolic_probability import Variance
from sympy.stats import Normal
X = Normal('X', 0, 1)
assert _test_args(Variance(X))
def test_sympy__stats__symbolic_probability__Moment():
from sympy.stats.symbolic_probability import Moment
from sympy.stats import Normal
X = Normal('X', 0, 1)
assert _test_args(Moment(X, 3, 2, X > 3))
def test_sympy__stats__symbolic_probability__CentralMoment():
from sympy.stats.symbolic_probability import CentralMoment
from sympy.stats import Normal
X = Normal('X', 0, 1)
assert _test_args(CentralMoment(X, 2, X > 1))
def test_sympy__stats__frv_types__DiscreteUniformDistribution():
from sympy.stats.frv_types import DiscreteUniformDistribution
from sympy.core.containers import Tuple
assert _test_args(DiscreteUniformDistribution(Tuple(*list(range(6)))))
def test_sympy__stats__frv_types__DieDistribution():
assert _test_args(die)
def test_sympy__stats__frv_types__BernoulliDistribution():
from sympy.stats.frv_types import BernoulliDistribution
assert _test_args(BernoulliDistribution(S.Half, 0, 1))
def test_sympy__stats__frv_types__BinomialDistribution():
from sympy.stats.frv_types import BinomialDistribution
assert _test_args(BinomialDistribution(5, S.Half, 1, 0))
def test_sympy__stats__frv_types__BetaBinomialDistribution():
from sympy.stats.frv_types import BetaBinomialDistribution
assert _test_args(BetaBinomialDistribution(5, 1, 1))
def test_sympy__stats__frv_types__HypergeometricDistribution():
from sympy.stats.frv_types import HypergeometricDistribution
assert _test_args(HypergeometricDistribution(10, 5, 3))
def test_sympy__stats__frv_types__RademacherDistribution():
from sympy.stats.frv_types import RademacherDistribution
assert _test_args(RademacherDistribution())
def test_sympy__stats__frv_types__IdealSolitonDistribution():
from sympy.stats.frv_types import IdealSolitonDistribution
assert _test_args(IdealSolitonDistribution(10))
def test_sympy__stats__frv_types__RobustSolitonDistribution():
from sympy.stats.frv_types import RobustSolitonDistribution
assert _test_args(RobustSolitonDistribution(1000, 0.5, 0.1))
def test_sympy__stats__frv__FiniteDomain():
from sympy.stats.frv import FiniteDomain
assert _test_args(FiniteDomain({(x, 1), (x, 2)})) # x can be 1 or 2
def test_sympy__stats__frv__SingleFiniteDomain():
from sympy.stats.frv import SingleFiniteDomain
assert _test_args(SingleFiniteDomain(x, {1, 2})) # x can be 1 or 2
def test_sympy__stats__frv__ProductFiniteDomain():
from sympy.stats.frv import SingleFiniteDomain, ProductFiniteDomain
xd = SingleFiniteDomain(x, {1, 2})
yd = SingleFiniteDomain(y, {1, 2})
assert _test_args(ProductFiniteDomain(xd, yd))
def test_sympy__stats__frv__ConditionalFiniteDomain():
from sympy.stats.frv import SingleFiniteDomain, ConditionalFiniteDomain
xd = SingleFiniteDomain(x, {1, 2})
assert _test_args(ConditionalFiniteDomain(xd, x > 1))
def test_sympy__stats__frv__FinitePSpace():
from sympy.stats.frv import FinitePSpace, SingleFiniteDomain
xd = SingleFiniteDomain(x, {1, 2, 3, 4, 5, 6})
assert _test_args(FinitePSpace(xd, {(x, 1): S.Half, (x, 2): S.Half}))
xd = SingleFiniteDomain(x, {1, 2})
assert _test_args(FinitePSpace(xd, {(x, 1): S.Half, (x, 2): S.Half}))
def test_sympy__stats__frv__SingleFinitePSpace():
from sympy.stats.frv import SingleFinitePSpace
from sympy.core.symbol import Symbol
assert _test_args(SingleFinitePSpace(Symbol('x'), die))
def test_sympy__stats__frv__ProductFinitePSpace():
from sympy.stats.frv import SingleFinitePSpace, ProductFinitePSpace
from sympy.core.symbol import Symbol
xp = SingleFinitePSpace(Symbol('x'), die)
yp = SingleFinitePSpace(Symbol('y'), die)
assert _test_args(ProductFinitePSpace(xp, yp))
@SKIP("abstract class")
def test_sympy__stats__frv__SingleFiniteDistribution():
pass
@SKIP("abstract class")
def test_sympy__stats__crv__ContinuousDistribution():
pass
def test_sympy__stats__frv_types__FiniteDistributionHandmade():
from sympy.stats.frv_types import FiniteDistributionHandmade
from sympy.core.containers import Dict
assert _test_args(FiniteDistributionHandmade(Dict({1: 1})))
def test_sympy__stats__crv_types__ContinuousDistributionHandmade():
from sympy.stats.crv_types import ContinuousDistributionHandmade
from sympy.core.function import Lambda
from sympy.sets.sets import Interval
from sympy.abc import x
assert _test_args(ContinuousDistributionHandmade(Lambda(x, 2*x),
Interval(0, 1)))
def test_sympy__stats__drv_types__DiscreteDistributionHandmade():
from sympy.stats.drv_types import DiscreteDistributionHandmade
from sympy.core.function import Lambda
from sympy.sets.sets import FiniteSet
from sympy.abc import x
assert _test_args(DiscreteDistributionHandmade(Lambda(x, Rational(1, 10)),
FiniteSet(*range(10))))
def test_sympy__stats__rv__Density():
from sympy.stats.rv import Density
from sympy.stats.crv_types import Normal
assert _test_args(Density(Normal('x', 0, 1)))
def test_sympy__stats__crv_types__ArcsinDistribution():
from sympy.stats.crv_types import ArcsinDistribution
assert _test_args(ArcsinDistribution(0, 1))
def test_sympy__stats__crv_types__BeniniDistribution():
from sympy.stats.crv_types import BeniniDistribution
assert _test_args(BeniniDistribution(1, 1, 1))
def test_sympy__stats__crv_types__BetaDistribution():
from sympy.stats.crv_types import BetaDistribution
assert _test_args(BetaDistribution(1, 1))
def test_sympy__stats__crv_types__BetaNoncentralDistribution():
from sympy.stats.crv_types import BetaNoncentralDistribution
assert _test_args(BetaNoncentralDistribution(1, 1, 1))
def test_sympy__stats__crv_types__BetaPrimeDistribution():
from sympy.stats.crv_types import BetaPrimeDistribution
assert _test_args(BetaPrimeDistribution(1, 1))
def test_sympy__stats__crv_types__BoundedParetoDistribution():
from sympy.stats.crv_types import BoundedParetoDistribution
assert _test_args(BoundedParetoDistribution(1, 1, 2))
def test_sympy__stats__crv_types__CauchyDistribution():
from sympy.stats.crv_types import CauchyDistribution
assert _test_args(CauchyDistribution(0, 1))
def test_sympy__stats__crv_types__ChiDistribution():
from sympy.stats.crv_types import ChiDistribution
assert _test_args(ChiDistribution(1))
def test_sympy__stats__crv_types__ChiNoncentralDistribution():
from sympy.stats.crv_types import ChiNoncentralDistribution
assert _test_args(ChiNoncentralDistribution(1,1))
def test_sympy__stats__crv_types__ChiSquaredDistribution():
from sympy.stats.crv_types import ChiSquaredDistribution
assert _test_args(ChiSquaredDistribution(1))
def test_sympy__stats__crv_types__DagumDistribution():
from sympy.stats.crv_types import DagumDistribution
assert _test_args(DagumDistribution(1, 1, 1))
def test_sympy__stats__crv_types__ExGaussianDistribution():
from sympy.stats.crv_types import ExGaussianDistribution
assert _test_args(ExGaussianDistribution(1, 1, 1))
def test_sympy__stats__crv_types__ExponentialDistribution():
from sympy.stats.crv_types import ExponentialDistribution
assert _test_args(ExponentialDistribution(1))
def test_sympy__stats__crv_types__ExponentialPowerDistribution():
from sympy.stats.crv_types import ExponentialPowerDistribution
assert _test_args(ExponentialPowerDistribution(0, 1, 1))
def test_sympy__stats__crv_types__FDistributionDistribution():
from sympy.stats.crv_types import FDistributionDistribution
assert _test_args(FDistributionDistribution(1, 1))
def test_sympy__stats__crv_types__FisherZDistribution():
from sympy.stats.crv_types import FisherZDistribution
assert _test_args(FisherZDistribution(1, 1))
def test_sympy__stats__crv_types__FrechetDistribution():
from sympy.stats.crv_types import FrechetDistribution
assert _test_args(FrechetDistribution(1, 1, 1))
def test_sympy__stats__crv_types__GammaInverseDistribution():
from sympy.stats.crv_types import GammaInverseDistribution
assert _test_args(GammaInverseDistribution(1, 1))
def test_sympy__stats__crv_types__GammaDistribution():
from sympy.stats.crv_types import GammaDistribution
assert _test_args(GammaDistribution(1, 1))
def test_sympy__stats__crv_types__GumbelDistribution():
from sympy.stats.crv_types import GumbelDistribution
assert _test_args(GumbelDistribution(1, 1, False))
def test_sympy__stats__crv_types__GompertzDistribution():
from sympy.stats.crv_types import GompertzDistribution
assert _test_args(GompertzDistribution(1, 1))
def test_sympy__stats__crv_types__KumaraswamyDistribution():
from sympy.stats.crv_types import KumaraswamyDistribution
assert _test_args(KumaraswamyDistribution(1, 1))
def test_sympy__stats__crv_types__LaplaceDistribution():
from sympy.stats.crv_types import LaplaceDistribution
assert _test_args(LaplaceDistribution(0, 1))
def test_sympy__stats__crv_types__LevyDistribution():
from sympy.stats.crv_types import LevyDistribution
assert _test_args(LevyDistribution(0, 1))
def test_sympy__stats__crv_types__LogCauchyDistribution():
from sympy.stats.crv_types import LogCauchyDistribution
assert _test_args(LogCauchyDistribution(0, 1))
def test_sympy__stats__crv_types__LogisticDistribution():
from sympy.stats.crv_types import LogisticDistribution
assert _test_args(LogisticDistribution(0, 1))
def test_sympy__stats__crv_types__LogLogisticDistribution():
from sympy.stats.crv_types import LogLogisticDistribution
assert _test_args(LogLogisticDistribution(1, 1))
def test_sympy__stats__crv_types__LogitNormalDistribution():
from sympy.stats.crv_types import LogitNormalDistribution
assert _test_args(LogitNormalDistribution(0, 1))
def test_sympy__stats__crv_types__LogNormalDistribution():
from sympy.stats.crv_types import LogNormalDistribution
assert _test_args(LogNormalDistribution(0, 1))
def test_sympy__stats__crv_types__LomaxDistribution():
from sympy.stats.crv_types import LomaxDistribution
assert _test_args(LomaxDistribution(1, 2))
def test_sympy__stats__crv_types__MaxwellDistribution():
from sympy.stats.crv_types import MaxwellDistribution
assert _test_args(MaxwellDistribution(1))
def test_sympy__stats__crv_types__MoyalDistribution():
from sympy.stats.crv_types import MoyalDistribution
assert _test_args(MoyalDistribution(1,2))
def test_sympy__stats__crv_types__NakagamiDistribution():
from sympy.stats.crv_types import NakagamiDistribution
assert _test_args(NakagamiDistribution(1, 1))
def test_sympy__stats__crv_types__NormalDistribution():
from sympy.stats.crv_types import NormalDistribution
assert _test_args(NormalDistribution(0, 1))
def test_sympy__stats__crv_types__GaussianInverseDistribution():
from sympy.stats.crv_types import GaussianInverseDistribution
assert _test_args(GaussianInverseDistribution(1, 1))
def test_sympy__stats__crv_types__ParetoDistribution():
from sympy.stats.crv_types import ParetoDistribution
assert _test_args(ParetoDistribution(1, 1))
def test_sympy__stats__crv_types__PowerFunctionDistribution():
from sympy.stats.crv_types import PowerFunctionDistribution
assert _test_args(PowerFunctionDistribution(2,0,1))
def test_sympy__stats__crv_types__QuadraticUDistribution():
from sympy.stats.crv_types import QuadraticUDistribution
assert _test_args(QuadraticUDistribution(1, 2))
def test_sympy__stats__crv_types__RaisedCosineDistribution():
from sympy.stats.crv_types import RaisedCosineDistribution
assert _test_args(RaisedCosineDistribution(1, 1))
def test_sympy__stats__crv_types__RayleighDistribution():
from sympy.stats.crv_types import RayleighDistribution
assert _test_args(RayleighDistribution(1))
def test_sympy__stats__crv_types__ReciprocalDistribution():
from sympy.stats.crv_types import ReciprocalDistribution
assert _test_args(ReciprocalDistribution(5, 30))
def test_sympy__stats__crv_types__ShiftedGompertzDistribution():
from sympy.stats.crv_types import ShiftedGompertzDistribution
assert _test_args(ShiftedGompertzDistribution(1, 1))
def test_sympy__stats__crv_types__StudentTDistribution():
from sympy.stats.crv_types import StudentTDistribution
assert _test_args(StudentTDistribution(1))
def test_sympy__stats__crv_types__TrapezoidalDistribution():
from sympy.stats.crv_types import TrapezoidalDistribution
assert _test_args(TrapezoidalDistribution(1, 2, 3, 4))
def test_sympy__stats__crv_types__TriangularDistribution():
from sympy.stats.crv_types import TriangularDistribution
assert _test_args(TriangularDistribution(-1, 0, 1))
def test_sympy__stats__crv_types__UniformDistribution():
from sympy.stats.crv_types import UniformDistribution
assert _test_args(UniformDistribution(0, 1))
def test_sympy__stats__crv_types__UniformSumDistribution():
from sympy.stats.crv_types import UniformSumDistribution
assert _test_args(UniformSumDistribution(1))
def test_sympy__stats__crv_types__VonMisesDistribution():
from sympy.stats.crv_types import VonMisesDistribution
assert _test_args(VonMisesDistribution(1, 1))
def test_sympy__stats__crv_types__WeibullDistribution():
from sympy.stats.crv_types import WeibullDistribution
assert _test_args(WeibullDistribution(1, 1))
def test_sympy__stats__crv_types__WignerSemicircleDistribution():
from sympy.stats.crv_types import WignerSemicircleDistribution
assert _test_args(WignerSemicircleDistribution(1))
def test_sympy__stats__drv_types__GeometricDistribution():
from sympy.stats.drv_types import GeometricDistribution
assert _test_args(GeometricDistribution(.5))
def test_sympy__stats__drv_types__HermiteDistribution():
from sympy.stats.drv_types import HermiteDistribution
assert _test_args(HermiteDistribution(1, 2))
def test_sympy__stats__drv_types__LogarithmicDistribution():
from sympy.stats.drv_types import LogarithmicDistribution
assert _test_args(LogarithmicDistribution(.5))
def test_sympy__stats__drv_types__NegativeBinomialDistribution():
from sympy.stats.drv_types import NegativeBinomialDistribution
assert _test_args(NegativeBinomialDistribution(.5, .5))
def test_sympy__stats__drv_types__FlorySchulzDistribution():
from sympy.stats.drv_types import FlorySchulzDistribution
assert _test_args(FlorySchulzDistribution(.5))
def test_sympy__stats__drv_types__PoissonDistribution():
from sympy.stats.drv_types import PoissonDistribution
assert _test_args(PoissonDistribution(1))
def test_sympy__stats__drv_types__SkellamDistribution():
from sympy.stats.drv_types import SkellamDistribution
assert _test_args(SkellamDistribution(1, 1))
def test_sympy__stats__drv_types__YuleSimonDistribution():
from sympy.stats.drv_types import YuleSimonDistribution
assert _test_args(YuleSimonDistribution(.5))
def test_sympy__stats__drv_types__ZetaDistribution():
from sympy.stats.drv_types import ZetaDistribution
assert _test_args(ZetaDistribution(1.5))
def test_sympy__stats__joint_rv__JointDistribution():
from sympy.stats.joint_rv import JointDistribution
assert _test_args(JointDistribution(1, 2, 3, 4))
def test_sympy__stats__joint_rv_types__MultivariateNormalDistribution():
from sympy.stats.joint_rv_types import MultivariateNormalDistribution
assert _test_args(
MultivariateNormalDistribution([0, 1], [[1, 0],[0, 1]]))
def test_sympy__stats__joint_rv_types__MultivariateLaplaceDistribution():
from sympy.stats.joint_rv_types import MultivariateLaplaceDistribution
assert _test_args(MultivariateLaplaceDistribution([0, 1], [[1, 0],[0, 1]]))
def test_sympy__stats__joint_rv_types__MultivariateTDistribution():
from sympy.stats.joint_rv_types import MultivariateTDistribution
assert _test_args(MultivariateTDistribution([0, 1], [[1, 0],[0, 1]], 1))
def test_sympy__stats__joint_rv_types__NormalGammaDistribution():
from sympy.stats.joint_rv_types import NormalGammaDistribution
assert _test_args(NormalGammaDistribution(1, 2, 3, 4))
def test_sympy__stats__joint_rv_types__GeneralizedMultivariateLogGammaDistribution():
from sympy.stats.joint_rv_types import GeneralizedMultivariateLogGammaDistribution
v, l, mu = (4, [1, 2, 3, 4], [1, 2, 3, 4])
assert _test_args(GeneralizedMultivariateLogGammaDistribution(S.Half, v, l, mu))
def test_sympy__stats__joint_rv_types__MultivariateBetaDistribution():
from sympy.stats.joint_rv_types import MultivariateBetaDistribution
assert _test_args(MultivariateBetaDistribution([1, 2, 3]))
def test_sympy__stats__joint_rv_types__MultivariateEwensDistribution():
from sympy.stats.joint_rv_types import MultivariateEwensDistribution
assert _test_args(MultivariateEwensDistribution(5, 1))
def test_sympy__stats__joint_rv_types__MultinomialDistribution():
from sympy.stats.joint_rv_types import MultinomialDistribution
assert _test_args(MultinomialDistribution(5, [0.5, 0.1, 0.3]))
def test_sympy__stats__joint_rv_types__NegativeMultinomialDistribution():
from sympy.stats.joint_rv_types import NegativeMultinomialDistribution
assert _test_args(NegativeMultinomialDistribution(5, [0.5, 0.1, 0.3]))
def test_sympy__stats__rv__RandomIndexedSymbol():
from sympy.stats.rv import RandomIndexedSymbol, pspace
from sympy.stats.stochastic_process_types import DiscreteMarkovChain
X = DiscreteMarkovChain("X")
assert _test_args(RandomIndexedSymbol(X[0].symbol, pspace(X[0])))
def test_sympy__stats__rv__RandomMatrixSymbol():
from sympy.stats.rv import RandomMatrixSymbol
from sympy.stats.random_matrix import RandomMatrixPSpace
pspace = RandomMatrixPSpace('P')
assert _test_args(RandomMatrixSymbol('M', 3, 3, pspace))
def test_sympy__stats__stochastic_process__StochasticPSpace():
from sympy.stats.stochastic_process import StochasticPSpace
from sympy.stats.stochastic_process_types import StochasticProcess
from sympy.stats.frv_types import BernoulliDistribution
assert _test_args(StochasticPSpace("Y", StochasticProcess("Y", [1, 2, 3]), BernoulliDistribution(S.Half, 1, 0)))
def test_sympy__stats__stochastic_process_types__StochasticProcess():
from sympy.stats.stochastic_process_types import StochasticProcess
assert _test_args(StochasticProcess("Y", [1, 2, 3]))
def test_sympy__stats__stochastic_process_types__MarkovProcess():
from sympy.stats.stochastic_process_types import MarkovProcess
assert _test_args(MarkovProcess("Y", [1, 2, 3]))
def test_sympy__stats__stochastic_process_types__DiscreteTimeStochasticProcess():
from sympy.stats.stochastic_process_types import DiscreteTimeStochasticProcess
assert _test_args(DiscreteTimeStochasticProcess("Y", [1, 2, 3]))
def test_sympy__stats__stochastic_process_types__ContinuousTimeStochasticProcess():
from sympy.stats.stochastic_process_types import ContinuousTimeStochasticProcess
assert _test_args(ContinuousTimeStochasticProcess("Y", [1, 2, 3]))
def test_sympy__stats__stochastic_process_types__TransitionMatrixOf():
from sympy.stats.stochastic_process_types import TransitionMatrixOf, DiscreteMarkovChain
from sympy.matrices.expressions.matexpr import MatrixSymbol
DMC = DiscreteMarkovChain("Y")
assert _test_args(TransitionMatrixOf(DMC, MatrixSymbol('T', 3, 3)))
def test_sympy__stats__stochastic_process_types__GeneratorMatrixOf():
from sympy.stats.stochastic_process_types import GeneratorMatrixOf, ContinuousMarkovChain
from sympy.matrices.expressions.matexpr import MatrixSymbol
DMC = ContinuousMarkovChain("Y")
assert _test_args(GeneratorMatrixOf(DMC, MatrixSymbol('T', 3, 3)))
def test_sympy__stats__stochastic_process_types__StochasticStateSpaceOf():
from sympy.stats.stochastic_process_types import StochasticStateSpaceOf, DiscreteMarkovChain
DMC = DiscreteMarkovChain("Y")
assert _test_args(StochasticStateSpaceOf(DMC, [0, 1, 2]))
def test_sympy__stats__stochastic_process_types__DiscreteMarkovChain():
from sympy.stats.stochastic_process_types import DiscreteMarkovChain
from sympy.matrices.expressions.matexpr import MatrixSymbol
assert _test_args(DiscreteMarkovChain("Y", [0, 1, 2], MatrixSymbol('T', 3, 3)))
def test_sympy__stats__stochastic_process_types__ContinuousMarkovChain():
from sympy.stats.stochastic_process_types import ContinuousMarkovChain
from sympy.matrices.expressions.matexpr import MatrixSymbol
assert _test_args(ContinuousMarkovChain("Y", [0, 1, 2], MatrixSymbol('T', 3, 3)))
def test_sympy__stats__stochastic_process_types__BernoulliProcess():
from sympy.stats.stochastic_process_types import BernoulliProcess
assert _test_args(BernoulliProcess("B", 0.5, 1, 0))
def test_sympy__stats__stochastic_process_types__CountingProcess():
from sympy.stats.stochastic_process_types import CountingProcess
assert _test_args(CountingProcess("C"))
def test_sympy__stats__stochastic_process_types__PoissonProcess():
from sympy.stats.stochastic_process_types import PoissonProcess
assert _test_args(PoissonProcess("X", 2))
def test_sympy__stats__stochastic_process_types__WienerProcess():
from sympy.stats.stochastic_process_types import WienerProcess
assert _test_args(WienerProcess("X"))
def test_sympy__stats__stochastic_process_types__GammaProcess():
from sympy.stats.stochastic_process_types import GammaProcess
assert _test_args(GammaProcess("X", 1, 2))
def test_sympy__stats__random_matrix__RandomMatrixPSpace():
from sympy.stats.random_matrix import RandomMatrixPSpace
from sympy.stats.random_matrix_models import RandomMatrixEnsembleModel
model = RandomMatrixEnsembleModel('R', 3)
assert _test_args(RandomMatrixPSpace('P', model=model))
def test_sympy__stats__random_matrix_models__RandomMatrixEnsembleModel():
from sympy.stats.random_matrix_models import RandomMatrixEnsembleModel
assert _test_args(RandomMatrixEnsembleModel('R', 3))
def test_sympy__stats__random_matrix_models__GaussianEnsembleModel():
from sympy.stats.random_matrix_models import GaussianEnsembleModel
assert _test_args(GaussianEnsembleModel('G', 3))
def test_sympy__stats__random_matrix_models__GaussianUnitaryEnsembleModel():
from sympy.stats.random_matrix_models import GaussianUnitaryEnsembleModel
assert _test_args(GaussianUnitaryEnsembleModel('U', 3))
def test_sympy__stats__random_matrix_models__GaussianOrthogonalEnsembleModel():
from sympy.stats.random_matrix_models import GaussianOrthogonalEnsembleModel
assert _test_args(GaussianOrthogonalEnsembleModel('U', 3))
def test_sympy__stats__random_matrix_models__GaussianSymplecticEnsembleModel():
from sympy.stats.random_matrix_models import GaussianSymplecticEnsembleModel
assert _test_args(GaussianSymplecticEnsembleModel('U', 3))
def test_sympy__stats__random_matrix_models__CircularEnsembleModel():
from sympy.stats.random_matrix_models import CircularEnsembleModel
assert _test_args(CircularEnsembleModel('C', 3))
def test_sympy__stats__random_matrix_models__CircularUnitaryEnsembleModel():
from sympy.stats.random_matrix_models import CircularUnitaryEnsembleModel
assert _test_args(CircularUnitaryEnsembleModel('U', 3))
def test_sympy__stats__random_matrix_models__CircularOrthogonalEnsembleModel():
from sympy.stats.random_matrix_models import CircularOrthogonalEnsembleModel
assert _test_args(CircularOrthogonalEnsembleModel('O', 3))
def test_sympy__stats__random_matrix_models__CircularSymplecticEnsembleModel():
from sympy.stats.random_matrix_models import CircularSymplecticEnsembleModel
assert _test_args(CircularSymplecticEnsembleModel('S', 3))
def test_sympy__stats__symbolic_multivariate_probability__ExpectationMatrix():
from sympy.stats import ExpectationMatrix
from sympy.stats.rv import RandomMatrixSymbol
assert _test_args(ExpectationMatrix(RandomMatrixSymbol('R', 2, 1)))
def test_sympy__stats__symbolic_multivariate_probability__VarianceMatrix():
from sympy.stats import VarianceMatrix
from sympy.stats.rv import RandomMatrixSymbol
assert _test_args(VarianceMatrix(RandomMatrixSymbol('R', 3, 1)))
def test_sympy__stats__symbolic_multivariate_probability__CrossCovarianceMatrix():
from sympy.stats import CrossCovarianceMatrix
from sympy.stats.rv import RandomMatrixSymbol
assert _test_args(CrossCovarianceMatrix(RandomMatrixSymbol('R', 3, 1),
RandomMatrixSymbol('X', 3, 1)))
def test_sympy__stats__matrix_distributions__MatrixPSpace():
from sympy.stats.matrix_distributions import MatrixDistribution, MatrixPSpace
from sympy.matrices.dense import Matrix
M = MatrixDistribution(1, Matrix([[1, 0], [0, 1]]))
assert _test_args(MatrixPSpace('M', M, 2, 2))
def test_sympy__stats__matrix_distributions__MatrixDistribution():
from sympy.stats.matrix_distributions import MatrixDistribution
from sympy.matrices.dense import Matrix
assert _test_args(MatrixDistribution(1, Matrix([[1, 0], [0, 1]])))
def test_sympy__stats__matrix_distributions__MatrixGammaDistribution():
from sympy.stats.matrix_distributions import MatrixGammaDistribution
from sympy.matrices.dense import Matrix
assert _test_args(MatrixGammaDistribution(3, 4, Matrix([[1, 0], [0, 1]])))
def test_sympy__stats__matrix_distributions__WishartDistribution():
from sympy.stats.matrix_distributions import WishartDistribution
from sympy.matrices.dense import Matrix
assert _test_args(WishartDistribution(3, Matrix([[1, 0], [0, 1]])))
def test_sympy__stats__matrix_distributions__MatrixNormalDistribution():
from sympy.stats.matrix_distributions import MatrixNormalDistribution
from sympy.matrices.expressions.matexpr import MatrixSymbol
L = MatrixSymbol('L', 1, 2)
S1 = MatrixSymbol('S1', 1, 1)
S2 = MatrixSymbol('S2', 2, 2)
assert _test_args(MatrixNormalDistribution(L, S1, S2))
def test_sympy__stats__matrix_distributions__MatrixStudentTDistribution():
from sympy.stats.matrix_distributions import MatrixStudentTDistribution
from sympy.matrices.expressions.matexpr import MatrixSymbol
v = symbols('v', positive=True)
Omega = MatrixSymbol('Omega', 3, 3)
Sigma = MatrixSymbol('Sigma', 1, 1)
Location = MatrixSymbol('Location', 1, 3)
assert _test_args(MatrixStudentTDistribution(v, Location, Omega, Sigma))
def test_sympy__utilities__matchpy_connector__WildDot():
from sympy.utilities.matchpy_connector import WildDot
assert _test_args(WildDot("w_"))
def test_sympy__utilities__matchpy_connector__WildPlus():
from sympy.utilities.matchpy_connector import WildPlus
assert _test_args(WildPlus("w__"))
def test_sympy__utilities__matchpy_connector__WildStar():
from sympy.utilities.matchpy_connector import WildStar
assert _test_args(WildStar("w___"))
def test_sympy__core__symbol__Str():
from sympy.core.symbol import Str
assert _test_args(Str('t'))
def test_sympy__core__symbol__Dummy():
from sympy.core.symbol import Dummy
assert _test_args(Dummy('t'))
def test_sympy__core__symbol__Symbol():
from sympy.core.symbol import Symbol
assert _test_args(Symbol('t'))
def test_sympy__core__symbol__Wild():
from sympy.core.symbol import Wild
assert _test_args(Wild('x', exclude=[x]))
@SKIP("abstract class")
def test_sympy__functions__combinatorial__factorials__CombinatorialFunction():
pass
def test_sympy__functions__combinatorial__factorials__FallingFactorial():
from sympy.functions.combinatorial.factorials import FallingFactorial
assert _test_args(FallingFactorial(2, x))
def test_sympy__functions__combinatorial__factorials__MultiFactorial():
from sympy.functions.combinatorial.factorials import MultiFactorial
assert _test_args(MultiFactorial(x))
def test_sympy__functions__combinatorial__factorials__RisingFactorial():
from sympy.functions.combinatorial.factorials import RisingFactorial
assert _test_args(RisingFactorial(2, x))
def test_sympy__functions__combinatorial__factorials__binomial():
from sympy.functions.combinatorial.factorials import binomial
assert _test_args(binomial(2, x))
def test_sympy__functions__combinatorial__factorials__subfactorial():
from sympy.functions.combinatorial.factorials import subfactorial
assert _test_args(subfactorial(x))
def test_sympy__functions__combinatorial__factorials__factorial():
from sympy.functions.combinatorial.factorials import factorial
assert _test_args(factorial(x))
def test_sympy__functions__combinatorial__factorials__factorial2():
from sympy.functions.combinatorial.factorials import factorial2
assert _test_args(factorial2(x))
def test_sympy__functions__combinatorial__numbers__bell():
from sympy.functions.combinatorial.numbers import bell
assert _test_args(bell(x, y))
def test_sympy__functions__combinatorial__numbers__bernoulli():
from sympy.functions.combinatorial.numbers import bernoulli
assert _test_args(bernoulli(x))
def test_sympy__functions__combinatorial__numbers__catalan():
from sympy.functions.combinatorial.numbers import catalan
assert _test_args(catalan(x))
def test_sympy__functions__combinatorial__numbers__genocchi():
from sympy.functions.combinatorial.numbers import genocchi
assert _test_args(genocchi(x))
def test_sympy__functions__combinatorial__numbers__euler():
from sympy.functions.combinatorial.numbers import euler
assert _test_args(euler(x))
def test_sympy__functions__combinatorial__numbers__andre():
from sympy.functions.combinatorial.numbers import andre
assert _test_args(andre(x))
def test_sympy__functions__combinatorial__numbers__carmichael():
from sympy.functions.combinatorial.numbers import carmichael
assert _test_args(carmichael(x))
def test_sympy__functions__combinatorial__numbers__motzkin():
from sympy.functions.combinatorial.numbers import motzkin
assert _test_args(motzkin(5))
def test_sympy__functions__combinatorial__numbers__fibonacci():
from sympy.functions.combinatorial.numbers import fibonacci
assert _test_args(fibonacci(x))
def test_sympy__functions__combinatorial__numbers__tribonacci():
from sympy.functions.combinatorial.numbers import tribonacci
assert _test_args(tribonacci(x))
def test_sympy__functions__combinatorial__numbers__harmonic():
from sympy.functions.combinatorial.numbers import harmonic
assert _test_args(harmonic(x, 2))
def test_sympy__functions__combinatorial__numbers__lucas():
from sympy.functions.combinatorial.numbers import lucas
assert _test_args(lucas(x))
def test_sympy__functions__combinatorial__numbers__partition():
from sympy.core.symbol import Symbol
from sympy.functions.combinatorial.numbers import partition
assert _test_args(partition(Symbol('a', integer=True)))
def test_sympy__functions__elementary__complexes__Abs():
from sympy.functions.elementary.complexes import Abs
assert _test_args(Abs(x))
def test_sympy__functions__elementary__complexes__adjoint():
from sympy.functions.elementary.complexes import adjoint
assert _test_args(adjoint(x))
def test_sympy__functions__elementary__complexes__arg():
from sympy.functions.elementary.complexes import arg
assert _test_args(arg(x))
def test_sympy__functions__elementary__complexes__conjugate():
from sympy.functions.elementary.complexes import conjugate
assert _test_args(conjugate(x))
def test_sympy__functions__elementary__complexes__im():
from sympy.functions.elementary.complexes import im
assert _test_args(im(x))
def test_sympy__functions__elementary__complexes__re():
from sympy.functions.elementary.complexes import re
assert _test_args(re(x))
def test_sympy__functions__elementary__complexes__sign():
from sympy.functions.elementary.complexes import sign
assert _test_args(sign(x))
def test_sympy__functions__elementary__complexes__polar_lift():
from sympy.functions.elementary.complexes import polar_lift
assert _test_args(polar_lift(x))
def test_sympy__functions__elementary__complexes__periodic_argument():
from sympy.functions.elementary.complexes import periodic_argument
assert _test_args(periodic_argument(x, y))
def test_sympy__functions__elementary__complexes__principal_branch():
from sympy.functions.elementary.complexes import principal_branch
assert _test_args(principal_branch(x, y))
def test_sympy__functions__elementary__complexes__transpose():
from sympy.functions.elementary.complexes import transpose
assert _test_args(transpose(x))
def test_sympy__functions__elementary__exponential__LambertW():
from sympy.functions.elementary.exponential import LambertW
assert _test_args(LambertW(2))
@SKIP("abstract class")
def test_sympy__functions__elementary__exponential__ExpBase():
pass
def test_sympy__functions__elementary__exponential__exp():
from sympy.functions.elementary.exponential import exp
assert _test_args(exp(2))
def test_sympy__functions__elementary__exponential__exp_polar():
from sympy.functions.elementary.exponential import exp_polar
assert _test_args(exp_polar(2))
def test_sympy__functions__elementary__exponential__log():
from sympy.functions.elementary.exponential import log
assert _test_args(log(2))
@SKIP("abstract class")
def test_sympy__functions__elementary__hyperbolic__HyperbolicFunction():
pass
@SKIP("abstract class")
def test_sympy__functions__elementary__hyperbolic__ReciprocalHyperbolicFunction():
pass
@SKIP("abstract class")
def test_sympy__functions__elementary__hyperbolic__InverseHyperbolicFunction():
pass
def test_sympy__functions__elementary__hyperbolic__acosh():
from sympy.functions.elementary.hyperbolic import acosh
assert _test_args(acosh(2))
def test_sympy__functions__elementary__hyperbolic__acoth():
from sympy.functions.elementary.hyperbolic import acoth
assert _test_args(acoth(2))
def test_sympy__functions__elementary__hyperbolic__asinh():
from sympy.functions.elementary.hyperbolic import asinh
assert _test_args(asinh(2))
def test_sympy__functions__elementary__hyperbolic__atanh():
from sympy.functions.elementary.hyperbolic import atanh
assert _test_args(atanh(2))
def test_sympy__functions__elementary__hyperbolic__asech():
from sympy.functions.elementary.hyperbolic import asech
assert _test_args(asech(x))
def test_sympy__functions__elementary__hyperbolic__acsch():
from sympy.functions.elementary.hyperbolic import acsch
assert _test_args(acsch(x))
def test_sympy__functions__elementary__hyperbolic__cosh():
from sympy.functions.elementary.hyperbolic import cosh
assert _test_args(cosh(2))
def test_sympy__functions__elementary__hyperbolic__coth():
from sympy.functions.elementary.hyperbolic import coth
assert _test_args(coth(2))
def test_sympy__functions__elementary__hyperbolic__csch():
from sympy.functions.elementary.hyperbolic import csch
assert _test_args(csch(2))
def test_sympy__functions__elementary__hyperbolic__sech():
from sympy.functions.elementary.hyperbolic import sech
assert _test_args(sech(2))
def test_sympy__functions__elementary__hyperbolic__sinh():
from sympy.functions.elementary.hyperbolic import sinh
assert _test_args(sinh(2))
def test_sympy__functions__elementary__hyperbolic__tanh():
from sympy.functions.elementary.hyperbolic import tanh
assert _test_args(tanh(2))
@SKIP("abstract class")
def test_sympy__functions__elementary__integers__RoundFunction():
pass
def test_sympy__functions__elementary__integers__ceiling():
from sympy.functions.elementary.integers import ceiling
assert _test_args(ceiling(x))
def test_sympy__functions__elementary__integers__floor():
from sympy.functions.elementary.integers import floor
assert _test_args(floor(x))
def test_sympy__functions__elementary__integers__frac():
from sympy.functions.elementary.integers import frac
assert _test_args(frac(x))
def test_sympy__functions__elementary__miscellaneous__IdentityFunction():
from sympy.functions.elementary.miscellaneous import IdentityFunction
assert _test_args(IdentityFunction())
def test_sympy__functions__elementary__miscellaneous__Max():
from sympy.functions.elementary.miscellaneous import Max
assert _test_args(Max(x, 2))
def test_sympy__functions__elementary__miscellaneous__Min():
from sympy.functions.elementary.miscellaneous import Min
assert _test_args(Min(x, 2))
@SKIP("abstract class")
def test_sympy__functions__elementary__miscellaneous__MinMaxBase():
pass
def test_sympy__functions__elementary__miscellaneous__Rem():
from sympy.functions.elementary.miscellaneous import Rem
assert _test_args(Rem(x, 2))
def test_sympy__functions__elementary__piecewise__ExprCondPair():
from sympy.functions.elementary.piecewise import ExprCondPair
assert _test_args(ExprCondPair(1, True))
def test_sympy__functions__elementary__piecewise__Piecewise():
from sympy.functions.elementary.piecewise import Piecewise
assert _test_args(Piecewise((1, x >= 0), (0, True)))
@SKIP("abstract class")
def test_sympy__functions__elementary__trigonometric__TrigonometricFunction():
pass
@SKIP("abstract class")
def test_sympy__functions__elementary__trigonometric__ReciprocalTrigonometricFunction():
pass
@SKIP("abstract class")
def test_sympy__functions__elementary__trigonometric__InverseTrigonometricFunction():
pass
def test_sympy__functions__elementary__trigonometric__acos():
from sympy.functions.elementary.trigonometric import acos
assert _test_args(acos(2))
def test_sympy__functions__elementary__trigonometric__acot():
from sympy.functions.elementary.trigonometric import acot
assert _test_args(acot(2))
def test_sympy__functions__elementary__trigonometric__asin():
from sympy.functions.elementary.trigonometric import asin
assert _test_args(asin(2))
def test_sympy__functions__elementary__trigonometric__asec():
from sympy.functions.elementary.trigonometric import asec
assert _test_args(asec(x))
def test_sympy__functions__elementary__trigonometric__acsc():
from sympy.functions.elementary.trigonometric import acsc
assert _test_args(acsc(x))
def test_sympy__functions__elementary__trigonometric__atan():
from sympy.functions.elementary.trigonometric import atan
assert _test_args(atan(2))
def test_sympy__functions__elementary__trigonometric__atan2():
from sympy.functions.elementary.trigonometric import atan2
assert _test_args(atan2(2, 3))
def test_sympy__functions__elementary__trigonometric__cos():
from sympy.functions.elementary.trigonometric import cos
assert _test_args(cos(2))
def test_sympy__functions__elementary__trigonometric__csc():
from sympy.functions.elementary.trigonometric import csc
assert _test_args(csc(2))
def test_sympy__functions__elementary__trigonometric__cot():
from sympy.functions.elementary.trigonometric import cot
assert _test_args(cot(2))
def test_sympy__functions__elementary__trigonometric__sin():
assert _test_args(sin(2))
def test_sympy__functions__elementary__trigonometric__sinc():
from sympy.functions.elementary.trigonometric import sinc
assert _test_args(sinc(2))
def test_sympy__functions__elementary__trigonometric__sec():
from sympy.functions.elementary.trigonometric import sec
assert _test_args(sec(2))
def test_sympy__functions__elementary__trigonometric__tan():
from sympy.functions.elementary.trigonometric import tan
assert _test_args(tan(2))
@SKIP("abstract class")
def test_sympy__functions__special__bessel__BesselBase():
pass
@SKIP("abstract class")
def test_sympy__functions__special__bessel__SphericalBesselBase():
pass
@SKIP("abstract class")
def test_sympy__functions__special__bessel__SphericalHankelBase():
pass
def test_sympy__functions__special__bessel__besseli():
from sympy.functions.special.bessel import besseli
assert _test_args(besseli(x, 1))
def test_sympy__functions__special__bessel__besselj():
from sympy.functions.special.bessel import besselj
assert _test_args(besselj(x, 1))
def test_sympy__functions__special__bessel__besselk():
from sympy.functions.special.bessel import besselk
assert _test_args(besselk(x, 1))
def test_sympy__functions__special__bessel__bessely():
from sympy.functions.special.bessel import bessely
assert _test_args(bessely(x, 1))
def test_sympy__functions__special__bessel__hankel1():
from sympy.functions.special.bessel import hankel1
assert _test_args(hankel1(x, 1))
def test_sympy__functions__special__bessel__hankel2():
from sympy.functions.special.bessel import hankel2
assert _test_args(hankel2(x, 1))
def test_sympy__functions__special__bessel__jn():
from sympy.functions.special.bessel import jn
assert _test_args(jn(0, x))
def test_sympy__functions__special__bessel__yn():
from sympy.functions.special.bessel import yn
assert _test_args(yn(0, x))
def test_sympy__functions__special__bessel__hn1():
from sympy.functions.special.bessel import hn1
assert _test_args(hn1(0, x))
def test_sympy__functions__special__bessel__hn2():
from sympy.functions.special.bessel import hn2
assert _test_args(hn2(0, x))
def test_sympy__functions__special__bessel__AiryBase():
pass
def test_sympy__functions__special__bessel__airyai():
from sympy.functions.special.bessel import airyai
assert _test_args(airyai(2))
def test_sympy__functions__special__bessel__airybi():
from sympy.functions.special.bessel import airybi
assert _test_args(airybi(2))
def test_sympy__functions__special__bessel__airyaiprime():
from sympy.functions.special.bessel import airyaiprime
assert _test_args(airyaiprime(2))
def test_sympy__functions__special__bessel__airybiprime():
from sympy.functions.special.bessel import airybiprime
assert _test_args(airybiprime(2))
def test_sympy__functions__special__bessel__marcumq():
from sympy.functions.special.bessel import marcumq
assert _test_args(marcumq(x, y, z))
def test_sympy__functions__special__elliptic_integrals__elliptic_k():
from sympy.functions.special.elliptic_integrals import elliptic_k as K
assert _test_args(K(x))
def test_sympy__functions__special__elliptic_integrals__elliptic_f():
from sympy.functions.special.elliptic_integrals import elliptic_f as F
assert _test_args(F(x, y))
def test_sympy__functions__special__elliptic_integrals__elliptic_e():
from sympy.functions.special.elliptic_integrals import elliptic_e as E
assert _test_args(E(x))
assert _test_args(E(x, y))
def test_sympy__functions__special__elliptic_integrals__elliptic_pi():
from sympy.functions.special.elliptic_integrals import elliptic_pi as P
assert _test_args(P(x, y))
assert _test_args(P(x, y, z))
def test_sympy__functions__special__delta_functions__DiracDelta():
from sympy.functions.special.delta_functions import DiracDelta
assert _test_args(DiracDelta(x, 1))
def test_sympy__functions__special__singularity_functions__SingularityFunction():
from sympy.functions.special.singularity_functions import SingularityFunction
assert _test_args(SingularityFunction(x, y, z))
def test_sympy__functions__special__delta_functions__Heaviside():
from sympy.functions.special.delta_functions import Heaviside
assert _test_args(Heaviside(x))
def test_sympy__functions__special__error_functions__erf():
from sympy.functions.special.error_functions import erf
assert _test_args(erf(2))
def test_sympy__functions__special__error_functions__erfc():
from sympy.functions.special.error_functions import erfc
assert _test_args(erfc(2))
def test_sympy__functions__special__error_functions__erfi():
from sympy.functions.special.error_functions import erfi
assert _test_args(erfi(2))
def test_sympy__functions__special__error_functions__erf2():
from sympy.functions.special.error_functions import erf2
assert _test_args(erf2(2, 3))
def test_sympy__functions__special__error_functions__erfinv():
from sympy.functions.special.error_functions import erfinv
assert _test_args(erfinv(2))
def test_sympy__functions__special__error_functions__erfcinv():
from sympy.functions.special.error_functions import erfcinv
assert _test_args(erfcinv(2))
def test_sympy__functions__special__error_functions__erf2inv():
from sympy.functions.special.error_functions import erf2inv
assert _test_args(erf2inv(2, 3))
@SKIP("abstract class")
def test_sympy__functions__special__error_functions__FresnelIntegral():
pass
def test_sympy__functions__special__error_functions__fresnels():
from sympy.functions.special.error_functions import fresnels
assert _test_args(fresnels(2))
def test_sympy__functions__special__error_functions__fresnelc():
from sympy.functions.special.error_functions import fresnelc
assert _test_args(fresnelc(2))
def test_sympy__functions__special__error_functions__erfs():
from sympy.functions.special.error_functions import _erfs
assert _test_args(_erfs(2))
def test_sympy__functions__special__error_functions__Ei():
from sympy.functions.special.error_functions import Ei
assert _test_args(Ei(2))
def test_sympy__functions__special__error_functions__li():
from sympy.functions.special.error_functions import li
assert _test_args(li(2))
def test_sympy__functions__special__error_functions__Li():
from sympy.functions.special.error_functions import Li
assert _test_args(Li(5))
@SKIP("abstract class")
def test_sympy__functions__special__error_functions__TrigonometricIntegral():
pass
def test_sympy__functions__special__error_functions__Si():
from sympy.functions.special.error_functions import Si
assert _test_args(Si(2))
def test_sympy__functions__special__error_functions__Ci():
from sympy.functions.special.error_functions import Ci
assert _test_args(Ci(2))
def test_sympy__functions__special__error_functions__Shi():
from sympy.functions.special.error_functions import Shi
assert _test_args(Shi(2))
def test_sympy__functions__special__error_functions__Chi():
from sympy.functions.special.error_functions import Chi
assert _test_args(Chi(2))
def test_sympy__functions__special__error_functions__expint():
from sympy.functions.special.error_functions import expint
assert _test_args(expint(y, x))
def test_sympy__functions__special__gamma_functions__gamma():
from sympy.functions.special.gamma_functions import gamma
assert _test_args(gamma(x))
def test_sympy__functions__special__gamma_functions__loggamma():
from sympy.functions.special.gamma_functions import loggamma
assert _test_args(loggamma(x))
def test_sympy__functions__special__gamma_functions__lowergamma():
from sympy.functions.special.gamma_functions import lowergamma
assert _test_args(lowergamma(x, 2))
def test_sympy__functions__special__gamma_functions__polygamma():
from sympy.functions.special.gamma_functions import polygamma
assert _test_args(polygamma(x, 2))
def test_sympy__functions__special__gamma_functions__digamma():
from sympy.functions.special.gamma_functions import digamma
assert _test_args(digamma(x))
def test_sympy__functions__special__gamma_functions__trigamma():
from sympy.functions.special.gamma_functions import trigamma
assert _test_args(trigamma(x))
def test_sympy__functions__special__gamma_functions__uppergamma():
from sympy.functions.special.gamma_functions import uppergamma
assert _test_args(uppergamma(x, 2))
def test_sympy__functions__special__gamma_functions__multigamma():
from sympy.functions.special.gamma_functions import multigamma
assert _test_args(multigamma(x, 1))
def test_sympy__functions__special__beta_functions__beta():
from sympy.functions.special.beta_functions import beta
assert _test_args(beta(x))
assert _test_args(beta(x, x))
def test_sympy__functions__special__beta_functions__betainc():
from sympy.functions.special.beta_functions import betainc
assert _test_args(betainc(a, b, x, y))
def test_sympy__functions__special__beta_functions__betainc_regularized():
from sympy.functions.special.beta_functions import betainc_regularized
assert _test_args(betainc_regularized(a, b, x, y))
def test_sympy__functions__special__mathieu_functions__MathieuBase():
pass
def test_sympy__functions__special__mathieu_functions__mathieus():
from sympy.functions.special.mathieu_functions import mathieus
assert _test_args(mathieus(1, 1, 1))
def test_sympy__functions__special__mathieu_functions__mathieuc():
from sympy.functions.special.mathieu_functions import mathieuc
assert _test_args(mathieuc(1, 1, 1))
def test_sympy__functions__special__mathieu_functions__mathieusprime():
from sympy.functions.special.mathieu_functions import mathieusprime
assert _test_args(mathieusprime(1, 1, 1))
def test_sympy__functions__special__mathieu_functions__mathieucprime():
from sympy.functions.special.mathieu_functions import mathieucprime
assert _test_args(mathieucprime(1, 1, 1))
@SKIP("abstract class")
def test_sympy__functions__special__hyper__TupleParametersBase():
pass
@SKIP("abstract class")
def test_sympy__functions__special__hyper__TupleArg():
pass
def test_sympy__functions__special__hyper__hyper():
from sympy.functions.special.hyper import hyper
assert _test_args(hyper([1, 2, 3], [4, 5], x))
def test_sympy__functions__special__hyper__meijerg():
from sympy.functions.special.hyper import meijerg
assert _test_args(meijerg([1, 2, 3], [4, 5], [6], [], x))
@SKIP("abstract class")
def test_sympy__functions__special__hyper__HyperRep():
pass
def test_sympy__functions__special__hyper__HyperRep_power1():
from sympy.functions.special.hyper import HyperRep_power1
assert _test_args(HyperRep_power1(x, y))
def test_sympy__functions__special__hyper__HyperRep_power2():
from sympy.functions.special.hyper import HyperRep_power2
assert _test_args(HyperRep_power2(x, y))
def test_sympy__functions__special__hyper__HyperRep_log1():
from sympy.functions.special.hyper import HyperRep_log1
assert _test_args(HyperRep_log1(x))
def test_sympy__functions__special__hyper__HyperRep_atanh():
from sympy.functions.special.hyper import HyperRep_atanh
assert _test_args(HyperRep_atanh(x))
def test_sympy__functions__special__hyper__HyperRep_asin1():
from sympy.functions.special.hyper import HyperRep_asin1
assert _test_args(HyperRep_asin1(x))
def test_sympy__functions__special__hyper__HyperRep_asin2():
from sympy.functions.special.hyper import HyperRep_asin2
assert _test_args(HyperRep_asin2(x))
def test_sympy__functions__special__hyper__HyperRep_sqrts1():
from sympy.functions.special.hyper import HyperRep_sqrts1
assert _test_args(HyperRep_sqrts1(x, y))
def test_sympy__functions__special__hyper__HyperRep_sqrts2():
from sympy.functions.special.hyper import HyperRep_sqrts2
assert _test_args(HyperRep_sqrts2(x, y))
def test_sympy__functions__special__hyper__HyperRep_log2():
from sympy.functions.special.hyper import HyperRep_log2
assert _test_args(HyperRep_log2(x))
def test_sympy__functions__special__hyper__HyperRep_cosasin():
from sympy.functions.special.hyper import HyperRep_cosasin
assert _test_args(HyperRep_cosasin(x, y))
def test_sympy__functions__special__hyper__HyperRep_sinasin():
from sympy.functions.special.hyper import HyperRep_sinasin
assert _test_args(HyperRep_sinasin(x, y))
def test_sympy__functions__special__hyper__appellf1():
from sympy.functions.special.hyper import appellf1
a, b1, b2, c, x, y = symbols('a b1 b2 c x y')
assert _test_args(appellf1(a, b1, b2, c, x, y))
@SKIP("abstract class")
def test_sympy__functions__special__polynomials__OrthogonalPolynomial():
pass
def test_sympy__functions__special__polynomials__jacobi():
from sympy.functions.special.polynomials import jacobi
assert _test_args(jacobi(x, y, 2, 2))
def test_sympy__functions__special__polynomials__gegenbauer():
from sympy.functions.special.polynomials import gegenbauer
assert _test_args(gegenbauer(x, 2, 2))
def test_sympy__functions__special__polynomials__chebyshevt():
from sympy.functions.special.polynomials import chebyshevt
assert _test_args(chebyshevt(x, 2))
def test_sympy__functions__special__polynomials__chebyshevt_root():
from sympy.functions.special.polynomials import chebyshevt_root
assert _test_args(chebyshevt_root(3, 2))
def test_sympy__functions__special__polynomials__chebyshevu():
from sympy.functions.special.polynomials import chebyshevu
assert _test_args(chebyshevu(x, 2))
def test_sympy__functions__special__polynomials__chebyshevu_root():
from sympy.functions.special.polynomials import chebyshevu_root
assert _test_args(chebyshevu_root(3, 2))
def test_sympy__functions__special__polynomials__hermite():
from sympy.functions.special.polynomials import hermite
assert _test_args(hermite(x, 2))
def test_sympy__functions__special__polynomials__hermite_prob():
from sympy.functions.special.polynomials import hermite_prob
assert _test_args(hermite_prob(x, 2))
def test_sympy__functions__special__polynomials__legendre():
from sympy.functions.special.polynomials import legendre
assert _test_args(legendre(x, 2))
def test_sympy__functions__special__polynomials__assoc_legendre():
from sympy.functions.special.polynomials import assoc_legendre
assert _test_args(assoc_legendre(x, 0, y))
def test_sympy__functions__special__polynomials__laguerre():
from sympy.functions.special.polynomials import laguerre
assert _test_args(laguerre(x, 2))
def test_sympy__functions__special__polynomials__assoc_laguerre():
from sympy.functions.special.polynomials import assoc_laguerre
assert _test_args(assoc_laguerre(x, 0, y))
def test_sympy__functions__special__spherical_harmonics__Ynm():
from sympy.functions.special.spherical_harmonics import Ynm
assert _test_args(Ynm(1, 1, x, y))
def test_sympy__functions__special__spherical_harmonics__Znm():
from sympy.functions.special.spherical_harmonics import Znm
assert _test_args(Znm(x, y, 1, 1))
def test_sympy__functions__special__tensor_functions__LeviCivita():
from sympy.functions.special.tensor_functions import LeviCivita
assert _test_args(LeviCivita(x, y, 2))
def test_sympy__functions__special__tensor_functions__KroneckerDelta():
from sympy.functions.special.tensor_functions import KroneckerDelta
assert _test_args(KroneckerDelta(x, y))
def test_sympy__functions__special__zeta_functions__dirichlet_eta():
from sympy.functions.special.zeta_functions import dirichlet_eta
assert _test_args(dirichlet_eta(x))
def test_sympy__functions__special__zeta_functions__riemann_xi():
from sympy.functions.special.zeta_functions import riemann_xi
assert _test_args(riemann_xi(x))
def test_sympy__functions__special__zeta_functions__zeta():
from sympy.functions.special.zeta_functions import zeta
assert _test_args(zeta(101))
def test_sympy__functions__special__zeta_functions__lerchphi():
from sympy.functions.special.zeta_functions import lerchphi
assert _test_args(lerchphi(x, y, z))
def test_sympy__functions__special__zeta_functions__polylog():
from sympy.functions.special.zeta_functions import polylog
assert _test_args(polylog(x, y))
def test_sympy__functions__special__zeta_functions__stieltjes():
from sympy.functions.special.zeta_functions import stieltjes
assert _test_args(stieltjes(x, y))
def test_sympy__integrals__integrals__Integral():
from sympy.integrals.integrals import Integral
assert _test_args(Integral(2, (x, 0, 1)))
def test_sympy__integrals__risch__NonElementaryIntegral():
from sympy.integrals.risch import NonElementaryIntegral
assert _test_args(NonElementaryIntegral(exp(-x**2), x))
@SKIP("abstract class")
def test_sympy__integrals__transforms__IntegralTransform():
pass
def test_sympy__integrals__transforms__MellinTransform():
from sympy.integrals.transforms import MellinTransform
assert _test_args(MellinTransform(2, x, y))
def test_sympy__integrals__transforms__InverseMellinTransform():
from sympy.integrals.transforms import InverseMellinTransform
assert _test_args(InverseMellinTransform(2, x, y, 0, 1))
def test_sympy__integrals__transforms__LaplaceTransform():
from sympy.integrals.transforms import LaplaceTransform
assert _test_args(LaplaceTransform(2, x, y))
def test_sympy__integrals__transforms__InverseLaplaceTransform():
from sympy.integrals.transforms import InverseLaplaceTransform
assert _test_args(InverseLaplaceTransform(2, x, y, 0))
@SKIP("abstract class")
def test_sympy__integrals__transforms__FourierTypeTransform():
pass
def test_sympy__integrals__transforms__InverseFourierTransform():
from sympy.integrals.transforms import InverseFourierTransform
assert _test_args(InverseFourierTransform(2, x, y))
def test_sympy__integrals__transforms__FourierTransform():
from sympy.integrals.transforms import FourierTransform
assert _test_args(FourierTransform(2, x, y))
@SKIP("abstract class")
def test_sympy__integrals__transforms__SineCosineTypeTransform():
pass
def test_sympy__integrals__transforms__InverseSineTransform():
from sympy.integrals.transforms import InverseSineTransform
assert _test_args(InverseSineTransform(2, x, y))
def test_sympy__integrals__transforms__SineTransform():
from sympy.integrals.transforms import SineTransform
assert _test_args(SineTransform(2, x, y))
def test_sympy__integrals__transforms__InverseCosineTransform():
from sympy.integrals.transforms import InverseCosineTransform
assert _test_args(InverseCosineTransform(2, x, y))
def test_sympy__integrals__transforms__CosineTransform():
from sympy.integrals.transforms import CosineTransform
assert _test_args(CosineTransform(2, x, y))
@SKIP("abstract class")
def test_sympy__integrals__transforms__HankelTypeTransform():
pass
def test_sympy__integrals__transforms__InverseHankelTransform():
from sympy.integrals.transforms import InverseHankelTransform
assert _test_args(InverseHankelTransform(2, x, y, 0))
def test_sympy__integrals__transforms__HankelTransform():
from sympy.integrals.transforms import HankelTransform
assert _test_args(HankelTransform(2, x, y, 0))
def test_sympy__liealgebras__cartan_type__Standard_Cartan():
from sympy.liealgebras.cartan_type import Standard_Cartan
assert _test_args(Standard_Cartan("A", 2))
def test_sympy__liealgebras__weyl_group__WeylGroup():
from sympy.liealgebras.weyl_group import WeylGroup
assert _test_args(WeylGroup("B4"))
def test_sympy__liealgebras__root_system__RootSystem():
from sympy.liealgebras.root_system import RootSystem
assert _test_args(RootSystem("A2"))
def test_sympy__liealgebras__type_a__TypeA():
from sympy.liealgebras.type_a import TypeA
assert _test_args(TypeA(2))
def test_sympy__liealgebras__type_b__TypeB():
from sympy.liealgebras.type_b import TypeB
assert _test_args(TypeB(4))
def test_sympy__liealgebras__type_c__TypeC():
from sympy.liealgebras.type_c import TypeC
assert _test_args(TypeC(4))
def test_sympy__liealgebras__type_d__TypeD():
from sympy.liealgebras.type_d import TypeD
assert _test_args(TypeD(4))
def test_sympy__liealgebras__type_e__TypeE():
from sympy.liealgebras.type_e import TypeE
assert _test_args(TypeE(6))
def test_sympy__liealgebras__type_f__TypeF():
from sympy.liealgebras.type_f import TypeF
assert _test_args(TypeF(4))
def test_sympy__liealgebras__type_g__TypeG():
from sympy.liealgebras.type_g import TypeG
assert _test_args(TypeG(2))
def test_sympy__logic__boolalg__And():
from sympy.logic.boolalg import And
assert _test_args(And(x, y, 1))
@SKIP("abstract class")
def test_sympy__logic__boolalg__Boolean():
pass
def test_sympy__logic__boolalg__BooleanFunction():
from sympy.logic.boolalg import BooleanFunction
assert _test_args(BooleanFunction(1, 2, 3))
@SKIP("abstract class")
def test_sympy__logic__boolalg__BooleanAtom():
pass
def test_sympy__logic__boolalg__BooleanTrue():
from sympy.logic.boolalg import true
assert _test_args(true)
def test_sympy__logic__boolalg__BooleanFalse():
from sympy.logic.boolalg import false
assert _test_args(false)
def test_sympy__logic__boolalg__Equivalent():
from sympy.logic.boolalg import Equivalent
assert _test_args(Equivalent(x, 2))
def test_sympy__logic__boolalg__ITE():
from sympy.logic.boolalg import ITE
assert _test_args(ITE(x, y, 1))
def test_sympy__logic__boolalg__Implies():
from sympy.logic.boolalg import Implies
assert _test_args(Implies(x, y))
def test_sympy__logic__boolalg__Nand():
from sympy.logic.boolalg import Nand
assert _test_args(Nand(x, y, 1))
def test_sympy__logic__boolalg__Nor():
from sympy.logic.boolalg import Nor
assert _test_args(Nor(x, y))
def test_sympy__logic__boolalg__Not():
from sympy.logic.boolalg import Not
assert _test_args(Not(x))
def test_sympy__logic__boolalg__Or():
from sympy.logic.boolalg import Or
assert _test_args(Or(x, y))
def test_sympy__logic__boolalg__Xor():
from sympy.logic.boolalg import Xor
assert _test_args(Xor(x, y, 2))
def test_sympy__logic__boolalg__Xnor():
from sympy.logic.boolalg import Xnor
assert _test_args(Xnor(x, y, 2))
def test_sympy__logic__boolalg__Exclusive():
from sympy.logic.boolalg import Exclusive
assert _test_args(Exclusive(x, y, z))
def test_sympy__matrices__matrices__DeferredVector():
from sympy.matrices.matrices import DeferredVector
assert _test_args(DeferredVector("X"))
@SKIP("abstract class")
def test_sympy__matrices__expressions__matexpr__MatrixBase():
pass
@SKIP("abstract class")
def test_sympy__matrices__immutable__ImmutableRepMatrix():
pass
def test_sympy__matrices__immutable__ImmutableDenseMatrix():
from sympy.matrices.immutable import ImmutableDenseMatrix
m = ImmutableDenseMatrix([[1, 2], [3, 4]])
assert _test_args(m)
assert _test_args(Basic(*list(m)))
m = ImmutableDenseMatrix(1, 1, [1])
assert _test_args(m)
assert _test_args(Basic(*list(m)))
m = ImmutableDenseMatrix(2, 2, lambda i, j: 1)
assert m[0, 0] is S.One
m = ImmutableDenseMatrix(2, 2, lambda i, j: 1/(1 + i) + 1/(1 + j))
assert m[1, 1] is S.One # true div. will give 1.0 if i,j not sympified
assert _test_args(m)
assert _test_args(Basic(*list(m)))
def test_sympy__matrices__immutable__ImmutableSparseMatrix():
from sympy.matrices.immutable import ImmutableSparseMatrix
m = ImmutableSparseMatrix([[1, 2], [3, 4]])
assert _test_args(m)
assert _test_args(Basic(*list(m)))
m = ImmutableSparseMatrix(1, 1, {(0, 0): 1})
assert _test_args(m)
assert _test_args(Basic(*list(m)))
m = ImmutableSparseMatrix(1, 1, [1])
assert _test_args(m)
assert _test_args(Basic(*list(m)))
m = ImmutableSparseMatrix(2, 2, lambda i, j: 1)
assert m[0, 0] is S.One
m = ImmutableSparseMatrix(2, 2, lambda i, j: 1/(1 + i) + 1/(1 + j))
assert m[1, 1] is S.One # true div. will give 1.0 if i,j not sympified
assert _test_args(m)
assert _test_args(Basic(*list(m)))
def test_sympy__matrices__expressions__slice__MatrixSlice():
from sympy.matrices.expressions.slice import MatrixSlice
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('X', 4, 4)
assert _test_args(MatrixSlice(X, (0, 2), (0, 2)))
def test_sympy__matrices__expressions__applyfunc__ElementwiseApplyFunction():
from sympy.matrices.expressions.applyfunc import ElementwiseApplyFunction
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol("X", x, x)
func = Lambda(x, x**2)
assert _test_args(ElementwiseApplyFunction(func, X))
def test_sympy__matrices__expressions__blockmatrix__BlockDiagMatrix():
from sympy.matrices.expressions.blockmatrix import BlockDiagMatrix
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('X', x, x)
Y = MatrixSymbol('Y', y, y)
assert _test_args(BlockDiagMatrix(X, Y))
def test_sympy__matrices__expressions__blockmatrix__BlockMatrix():
from sympy.matrices.expressions.blockmatrix import BlockMatrix
from sympy.matrices.expressions import MatrixSymbol, ZeroMatrix
X = MatrixSymbol('X', x, x)
Y = MatrixSymbol('Y', y, y)
Z = MatrixSymbol('Z', x, y)
O = ZeroMatrix(y, x)
assert _test_args(BlockMatrix([[X, Z], [O, Y]]))
def test_sympy__matrices__expressions__inverse__Inverse():
from sympy.matrices.expressions.inverse import Inverse
from sympy.matrices.expressions import MatrixSymbol
assert _test_args(Inverse(MatrixSymbol('A', 3, 3)))
def test_sympy__matrices__expressions__matadd__MatAdd():
from sympy.matrices.expressions.matadd import MatAdd
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('X', x, y)
Y = MatrixSymbol('Y', x, y)
assert _test_args(MatAdd(X, Y))
@SKIP("abstract class")
def test_sympy__matrices__expressions__matexpr__MatrixExpr():
pass
def test_sympy__matrices__expressions__matexpr__MatrixElement():
from sympy.matrices.expressions.matexpr import MatrixSymbol, MatrixElement
from sympy.core.singleton import S
assert _test_args(MatrixElement(MatrixSymbol('A', 3, 5), S(2), S(3)))
def test_sympy__matrices__expressions__matexpr__MatrixSymbol():
from sympy.matrices.expressions.matexpr import MatrixSymbol
assert _test_args(MatrixSymbol('A', 3, 5))
def test_sympy__matrices__expressions__special__OneMatrix():
from sympy.matrices.expressions.special import OneMatrix
assert _test_args(OneMatrix(3, 5))
def test_sympy__matrices__expressions__special__ZeroMatrix():
from sympy.matrices.expressions.special import ZeroMatrix
assert _test_args(ZeroMatrix(3, 5))
def test_sympy__matrices__expressions__special__GenericZeroMatrix():
from sympy.matrices.expressions.special import GenericZeroMatrix
assert _test_args(GenericZeroMatrix())
def test_sympy__matrices__expressions__special__Identity():
from sympy.matrices.expressions.special import Identity
assert _test_args(Identity(3))
def test_sympy__matrices__expressions__special__GenericIdentity():
from sympy.matrices.expressions.special import GenericIdentity
assert _test_args(GenericIdentity())
def test_sympy__matrices__expressions__sets__MatrixSet():
from sympy.matrices.expressions.sets import MatrixSet
from sympy.core.singleton import S
assert _test_args(MatrixSet(2, 2, S.Reals))
def test_sympy__matrices__expressions__matmul__MatMul():
from sympy.matrices.expressions.matmul import MatMul
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('X', x, y)
Y = MatrixSymbol('Y', y, x)
assert _test_args(MatMul(X, Y))
def test_sympy__matrices__expressions__dotproduct__DotProduct():
from sympy.matrices.expressions.dotproduct import DotProduct
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('X', x, 1)
Y = MatrixSymbol('Y', x, 1)
assert _test_args(DotProduct(X, Y))
def test_sympy__matrices__expressions__diagonal__DiagonalMatrix():
from sympy.matrices.expressions.diagonal import DiagonalMatrix
from sympy.matrices.expressions import MatrixSymbol
x = MatrixSymbol('x', 10, 1)
assert _test_args(DiagonalMatrix(x))
def test_sympy__matrices__expressions__diagonal__DiagonalOf():
from sympy.matrices.expressions.diagonal import DiagonalOf
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('x', 10, 10)
assert _test_args(DiagonalOf(X))
def test_sympy__matrices__expressions__diagonal__DiagMatrix():
from sympy.matrices.expressions.diagonal import DiagMatrix
from sympy.matrices.expressions import MatrixSymbol
x = MatrixSymbol('x', 10, 1)
assert _test_args(DiagMatrix(x))
def test_sympy__matrices__expressions__hadamard__HadamardProduct():
from sympy.matrices.expressions.hadamard import HadamardProduct
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('X', x, y)
Y = MatrixSymbol('Y', x, y)
assert _test_args(HadamardProduct(X, Y))
def test_sympy__matrices__expressions__hadamard__HadamardPower():
from sympy.matrices.expressions.hadamard import HadamardPower
from sympy.matrices.expressions import MatrixSymbol
from sympy.core.symbol import Symbol
X = MatrixSymbol('X', x, y)
n = Symbol("n")
assert _test_args(HadamardPower(X, n))
def test_sympy__matrices__expressions__kronecker__KroneckerProduct():
from sympy.matrices.expressions.kronecker import KroneckerProduct
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('X', x, y)
Y = MatrixSymbol('Y', x, y)
assert _test_args(KroneckerProduct(X, Y))
def test_sympy__matrices__expressions__matpow__MatPow():
from sympy.matrices.expressions.matpow import MatPow
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('X', x, x)
assert _test_args(MatPow(X, 2))
def test_sympy__matrices__expressions__transpose__Transpose():
from sympy.matrices.expressions.transpose import Transpose
from sympy.matrices.expressions import MatrixSymbol
assert _test_args(Transpose(MatrixSymbol('A', 3, 5)))
def test_sympy__matrices__expressions__adjoint__Adjoint():
from sympy.matrices.expressions.adjoint import Adjoint
from sympy.matrices.expressions import MatrixSymbol
assert _test_args(Adjoint(MatrixSymbol('A', 3, 5)))
def test_sympy__matrices__expressions__trace__Trace():
from sympy.matrices.expressions.trace import Trace
from sympy.matrices.expressions import MatrixSymbol
assert _test_args(Trace(MatrixSymbol('A', 3, 3)))
def test_sympy__matrices__expressions__determinant__Determinant():
from sympy.matrices.expressions.determinant import Determinant
from sympy.matrices.expressions import MatrixSymbol
assert _test_args(Determinant(MatrixSymbol('A', 3, 3)))
def test_sympy__matrices__expressions__determinant__Permanent():
from sympy.matrices.expressions.determinant import Permanent
from sympy.matrices.expressions import MatrixSymbol
assert _test_args(Permanent(MatrixSymbol('A', 3, 4)))
def test_sympy__matrices__expressions__funcmatrix__FunctionMatrix():
from sympy.matrices.expressions.funcmatrix import FunctionMatrix
from sympy.core.symbol import symbols
i, j = symbols('i,j')
assert _test_args(FunctionMatrix(3, 3, Lambda((i, j), i - j) ))
def test_sympy__matrices__expressions__fourier__DFT():
from sympy.matrices.expressions.fourier import DFT
from sympy.core.singleton import S
assert _test_args(DFT(S(2)))
def test_sympy__matrices__expressions__fourier__IDFT():
from sympy.matrices.expressions.fourier import IDFT
from sympy.core.singleton import S
assert _test_args(IDFT(S(2)))
from sympy.matrices.expressions import MatrixSymbol
X = MatrixSymbol('X', 10, 10)
def test_sympy__matrices__expressions__factorizations__LofLU():
from sympy.matrices.expressions.factorizations import LofLU
assert _test_args(LofLU(X))
def test_sympy__matrices__expressions__factorizations__UofLU():
from sympy.matrices.expressions.factorizations import UofLU
assert _test_args(UofLU(X))
def test_sympy__matrices__expressions__factorizations__QofQR():
from sympy.matrices.expressions.factorizations import QofQR
assert _test_args(QofQR(X))
def test_sympy__matrices__expressions__factorizations__RofQR():
from sympy.matrices.expressions.factorizations import RofQR
assert _test_args(RofQR(X))
def test_sympy__matrices__expressions__factorizations__LofCholesky():
from sympy.matrices.expressions.factorizations import LofCholesky
assert _test_args(LofCholesky(X))
def test_sympy__matrices__expressions__factorizations__UofCholesky():
from sympy.matrices.expressions.factorizations import UofCholesky
assert _test_args(UofCholesky(X))
def test_sympy__matrices__expressions__factorizations__EigenVectors():
from sympy.matrices.expressions.factorizations import EigenVectors
assert _test_args(EigenVectors(X))
def test_sympy__matrices__expressions__factorizations__EigenValues():
from sympy.matrices.expressions.factorizations import EigenValues
assert _test_args(EigenValues(X))
def test_sympy__matrices__expressions__factorizations__UofSVD():
from sympy.matrices.expressions.factorizations import UofSVD
assert _test_args(UofSVD(X))
def test_sympy__matrices__expressions__factorizations__VofSVD():
from sympy.matrices.expressions.factorizations import VofSVD
assert _test_args(VofSVD(X))
def test_sympy__matrices__expressions__factorizations__SofSVD():
from sympy.matrices.expressions.factorizations import SofSVD
assert _test_args(SofSVD(X))
@SKIP("abstract class")
def test_sympy__matrices__expressions__factorizations__Factorization():
pass
def test_sympy__matrices__expressions__permutation__PermutationMatrix():
from sympy.combinatorics import Permutation
from sympy.matrices.expressions.permutation import PermutationMatrix
assert _test_args(PermutationMatrix(Permutation([2, 0, 1])))
def test_sympy__matrices__expressions__permutation__MatrixPermute():
from sympy.combinatorics import Permutation
from sympy.matrices.expressions.matexpr import MatrixSymbol
from sympy.matrices.expressions.permutation import MatrixPermute
A = MatrixSymbol('A', 3, 3)
assert _test_args(MatrixPermute(A, Permutation([2, 0, 1])))
def test_sympy__matrices__expressions__companion__CompanionMatrix():
from sympy.core.symbol import Symbol
from sympy.matrices.expressions.companion import CompanionMatrix
from sympy.polys.polytools import Poly
x = Symbol('x')
p = Poly([1, 2, 3], x)
assert _test_args(CompanionMatrix(p))
def test_sympy__physics__vector__frame__CoordinateSym():
from sympy.physics.vector import CoordinateSym
from sympy.physics.vector import ReferenceFrame
assert _test_args(CoordinateSym('R_x', ReferenceFrame('R'), 0))
def test_sympy__physics__paulialgebra__Pauli():
from sympy.physics.paulialgebra import Pauli
assert _test_args(Pauli(1))
def test_sympy__physics__quantum__anticommutator__AntiCommutator():
from sympy.physics.quantum.anticommutator import AntiCommutator
assert _test_args(AntiCommutator(x, y))
def test_sympy__physics__quantum__cartesian__PositionBra3D():
from sympy.physics.quantum.cartesian import PositionBra3D
assert _test_args(PositionBra3D(x, y, z))
def test_sympy__physics__quantum__cartesian__PositionKet3D():
from sympy.physics.quantum.cartesian import PositionKet3D
assert _test_args(PositionKet3D(x, y, z))
def test_sympy__physics__quantum__cartesian__PositionState3D():
from sympy.physics.quantum.cartesian import PositionState3D
assert _test_args(PositionState3D(x, y, z))
def test_sympy__physics__quantum__cartesian__PxBra():
from sympy.physics.quantum.cartesian import PxBra
assert _test_args(PxBra(x, y, z))
def test_sympy__physics__quantum__cartesian__PxKet():
from sympy.physics.quantum.cartesian import PxKet
assert _test_args(PxKet(x, y, z))
def test_sympy__physics__quantum__cartesian__PxOp():
from sympy.physics.quantum.cartesian import PxOp
assert _test_args(PxOp(x, y, z))
def test_sympy__physics__quantum__cartesian__XBra():
from sympy.physics.quantum.cartesian import XBra
assert _test_args(XBra(x))
def test_sympy__physics__quantum__cartesian__XKet():
from sympy.physics.quantum.cartesian import XKet
assert _test_args(XKet(x))
def test_sympy__physics__quantum__cartesian__XOp():
from sympy.physics.quantum.cartesian import XOp
assert _test_args(XOp(x))
def test_sympy__physics__quantum__cartesian__YOp():
from sympy.physics.quantum.cartesian import YOp
assert _test_args(YOp(x))
def test_sympy__physics__quantum__cartesian__ZOp():
from sympy.physics.quantum.cartesian import ZOp
assert _test_args(ZOp(x))
def test_sympy__physics__quantum__cg__CG():
from sympy.physics.quantum.cg import CG
from sympy.core.singleton import S
assert _test_args(CG(Rational(3, 2), Rational(3, 2), S.Half, Rational(-1, 2), 1, 1))
def test_sympy__physics__quantum__cg__Wigner3j():
from sympy.physics.quantum.cg import Wigner3j
assert _test_args(Wigner3j(6, 0, 4, 0, 2, 0))
def test_sympy__physics__quantum__cg__Wigner6j():
from sympy.physics.quantum.cg import Wigner6j
assert _test_args(Wigner6j(1, 2, 3, 2, 1, 2))
def test_sympy__physics__quantum__cg__Wigner9j():
from sympy.physics.quantum.cg import Wigner9j
assert _test_args(Wigner9j(2, 1, 1, Rational(3, 2), S.Half, 1, S.Half, S.Half, 0))
def test_sympy__physics__quantum__circuitplot__Mz():
from sympy.physics.quantum.circuitplot import Mz
assert _test_args(Mz(0))
def test_sympy__physics__quantum__circuitplot__Mx():
from sympy.physics.quantum.circuitplot import Mx
assert _test_args(Mx(0))
def test_sympy__physics__quantum__commutator__Commutator():
from sympy.physics.quantum.commutator import Commutator
A, B = symbols('A,B', commutative=False)
assert _test_args(Commutator(A, B))
def test_sympy__physics__quantum__constants__HBar():
from sympy.physics.quantum.constants import HBar
assert _test_args(HBar())
def test_sympy__physics__quantum__dagger__Dagger():
from sympy.physics.quantum.dagger import Dagger
from sympy.physics.quantum.state import Ket
assert _test_args(Dagger(Dagger(Ket('psi'))))
def test_sympy__physics__quantum__gate__CGate():
from sympy.physics.quantum.gate import CGate, Gate
assert _test_args(CGate((0, 1), Gate(2)))
def test_sympy__physics__quantum__gate__CGateS():
from sympy.physics.quantum.gate import CGateS, Gate
assert _test_args(CGateS((0, 1), Gate(2)))
def test_sympy__physics__quantum__gate__CNotGate():
from sympy.physics.quantum.gate import CNotGate
assert _test_args(CNotGate(0, 1))
def test_sympy__physics__quantum__gate__Gate():
from sympy.physics.quantum.gate import Gate
assert _test_args(Gate(0))
def test_sympy__physics__quantum__gate__HadamardGate():
from sympy.physics.quantum.gate import HadamardGate
assert _test_args(HadamardGate(0))
def test_sympy__physics__quantum__gate__IdentityGate():
from sympy.physics.quantum.gate import IdentityGate
assert _test_args(IdentityGate(0))
def test_sympy__physics__quantum__gate__OneQubitGate():
from sympy.physics.quantum.gate import OneQubitGate
assert _test_args(OneQubitGate(0))
def test_sympy__physics__quantum__gate__PhaseGate():
from sympy.physics.quantum.gate import PhaseGate
assert _test_args(PhaseGate(0))
def test_sympy__physics__quantum__gate__SwapGate():
from sympy.physics.quantum.gate import SwapGate
assert _test_args(SwapGate(0, 1))
def test_sympy__physics__quantum__gate__TGate():
from sympy.physics.quantum.gate import TGate
assert _test_args(TGate(0))
def test_sympy__physics__quantum__gate__TwoQubitGate():
from sympy.physics.quantum.gate import TwoQubitGate
assert _test_args(TwoQubitGate(0))
def test_sympy__physics__quantum__gate__UGate():
from sympy.physics.quantum.gate import UGate
from sympy.matrices.immutable import ImmutableDenseMatrix
from sympy.core.containers import Tuple
from sympy.core.numbers import Integer
assert _test_args(
UGate(Tuple(Integer(1)), ImmutableDenseMatrix([[1, 0], [0, 2]])))
def test_sympy__physics__quantum__gate__XGate():
from sympy.physics.quantum.gate import XGate
assert _test_args(XGate(0))
def test_sympy__physics__quantum__gate__YGate():
from sympy.physics.quantum.gate import YGate
assert _test_args(YGate(0))
def test_sympy__physics__quantum__gate__ZGate():
from sympy.physics.quantum.gate import ZGate
assert _test_args(ZGate(0))
def test_sympy__physics__quantum__grover__OracleGateFunction():
from sympy.physics.quantum.grover import OracleGateFunction
@OracleGateFunction
def f(qubit):
return
assert _test_args(f)
def test_sympy__physics__quantum__grover__OracleGate():
from sympy.physics.quantum.grover import OracleGate
def f(qubit):
return
assert _test_args(OracleGate(1,f))
def test_sympy__physics__quantum__grover__WGate():
from sympy.physics.quantum.grover import WGate
assert _test_args(WGate(1))
def test_sympy__physics__quantum__hilbert__ComplexSpace():
from sympy.physics.quantum.hilbert import ComplexSpace
assert _test_args(ComplexSpace(x))
def test_sympy__physics__quantum__hilbert__DirectSumHilbertSpace():
from sympy.physics.quantum.hilbert import DirectSumHilbertSpace, ComplexSpace, FockSpace
c = ComplexSpace(2)
f = FockSpace()
assert _test_args(DirectSumHilbertSpace(c, f))
def test_sympy__physics__quantum__hilbert__FockSpace():
from sympy.physics.quantum.hilbert import FockSpace
assert _test_args(FockSpace())
def test_sympy__physics__quantum__hilbert__HilbertSpace():
from sympy.physics.quantum.hilbert import HilbertSpace
assert _test_args(HilbertSpace())
def test_sympy__physics__quantum__hilbert__L2():
from sympy.physics.quantum.hilbert import L2
from sympy.core.numbers import oo
from sympy.sets.sets import Interval
assert _test_args(L2(Interval(0, oo)))
def test_sympy__physics__quantum__hilbert__TensorPowerHilbertSpace():
from sympy.physics.quantum.hilbert import TensorPowerHilbertSpace, FockSpace
f = FockSpace()
assert _test_args(TensorPowerHilbertSpace(f, 2))
def test_sympy__physics__quantum__hilbert__TensorProductHilbertSpace():
from sympy.physics.quantum.hilbert import TensorProductHilbertSpace, FockSpace, ComplexSpace
c = ComplexSpace(2)
f = FockSpace()
assert _test_args(TensorProductHilbertSpace(f, c))
def test_sympy__physics__quantum__innerproduct__InnerProduct():
from sympy.physics.quantum import Bra, Ket, InnerProduct
b = Bra('b')
k = Ket('k')
assert _test_args(InnerProduct(b, k))
def test_sympy__physics__quantum__operator__DifferentialOperator():
from sympy.physics.quantum.operator import DifferentialOperator
from sympy.core.function import (Derivative, Function)
f = Function('f')
assert _test_args(DifferentialOperator(1/x*Derivative(f(x), x), f(x)))
def test_sympy__physics__quantum__operator__HermitianOperator():
from sympy.physics.quantum.operator import HermitianOperator
assert _test_args(HermitianOperator('H'))
def test_sympy__physics__quantum__operator__IdentityOperator():
from sympy.physics.quantum.operator import IdentityOperator
assert _test_args(IdentityOperator(5))
def test_sympy__physics__quantum__operator__Operator():
from sympy.physics.quantum.operator import Operator
assert _test_args(Operator('A'))
def test_sympy__physics__quantum__operator__OuterProduct():
from sympy.physics.quantum.operator import OuterProduct
from sympy.physics.quantum import Ket, Bra
b = Bra('b')
k = Ket('k')
assert _test_args(OuterProduct(k, b))
def test_sympy__physics__quantum__operator__UnitaryOperator():
from sympy.physics.quantum.operator import UnitaryOperator
assert _test_args(UnitaryOperator('U'))
def test_sympy__physics__quantum__piab__PIABBra():
from sympy.physics.quantum.piab import PIABBra
assert _test_args(PIABBra('B'))
def test_sympy__physics__quantum__boson__BosonOp():
from sympy.physics.quantum.boson import BosonOp
assert _test_args(BosonOp('a'))
assert _test_args(BosonOp('a', False))
def test_sympy__physics__quantum__boson__BosonFockKet():
from sympy.physics.quantum.boson import BosonFockKet
assert _test_args(BosonFockKet(1))
def test_sympy__physics__quantum__boson__BosonFockBra():
from sympy.physics.quantum.boson import BosonFockBra
assert _test_args(BosonFockBra(1))
def test_sympy__physics__quantum__boson__BosonCoherentKet():
from sympy.physics.quantum.boson import BosonCoherentKet
assert _test_args(BosonCoherentKet(1))
def test_sympy__physics__quantum__boson__BosonCoherentBra():
from sympy.physics.quantum.boson import BosonCoherentBra
assert _test_args(BosonCoherentBra(1))
def test_sympy__physics__quantum__fermion__FermionOp():
from sympy.physics.quantum.fermion import FermionOp
assert _test_args(FermionOp('c'))
assert _test_args(FermionOp('c', False))
def test_sympy__physics__quantum__fermion__FermionFockKet():
from sympy.physics.quantum.fermion import FermionFockKet
assert _test_args(FermionFockKet(1))
def test_sympy__physics__quantum__fermion__FermionFockBra():
from sympy.physics.quantum.fermion import FermionFockBra
assert _test_args(FermionFockBra(1))
def test_sympy__physics__quantum__pauli__SigmaOpBase():
from sympy.physics.quantum.pauli import SigmaOpBase
assert _test_args(SigmaOpBase())
def test_sympy__physics__quantum__pauli__SigmaX():
from sympy.physics.quantum.pauli import SigmaX
assert _test_args(SigmaX())
def test_sympy__physics__quantum__pauli__SigmaY():
from sympy.physics.quantum.pauli import SigmaY
assert _test_args(SigmaY())
def test_sympy__physics__quantum__pauli__SigmaZ():
from sympy.physics.quantum.pauli import SigmaZ
assert _test_args(SigmaZ())
def test_sympy__physics__quantum__pauli__SigmaMinus():
from sympy.physics.quantum.pauli import SigmaMinus
assert _test_args(SigmaMinus())
def test_sympy__physics__quantum__pauli__SigmaPlus():
from sympy.physics.quantum.pauli import SigmaPlus
assert _test_args(SigmaPlus())
def test_sympy__physics__quantum__pauli__SigmaZKet():
from sympy.physics.quantum.pauli import SigmaZKet
assert _test_args(SigmaZKet(0))
def test_sympy__physics__quantum__pauli__SigmaZBra():
from sympy.physics.quantum.pauli import SigmaZBra
assert _test_args(SigmaZBra(0))
def test_sympy__physics__quantum__piab__PIABHamiltonian():
from sympy.physics.quantum.piab import PIABHamiltonian
assert _test_args(PIABHamiltonian('P'))
def test_sympy__physics__quantum__piab__PIABKet():
from sympy.physics.quantum.piab import PIABKet
assert _test_args(PIABKet('K'))
def test_sympy__physics__quantum__qexpr__QExpr():
from sympy.physics.quantum.qexpr import QExpr
assert _test_args(QExpr(0))
def test_sympy__physics__quantum__qft__Fourier():
from sympy.physics.quantum.qft import Fourier
assert _test_args(Fourier(0, 1))
def test_sympy__physics__quantum__qft__IQFT():
from sympy.physics.quantum.qft import IQFT
assert _test_args(IQFT(0, 1))
def test_sympy__physics__quantum__qft__QFT():
from sympy.physics.quantum.qft import QFT
assert _test_args(QFT(0, 1))
def test_sympy__physics__quantum__qft__RkGate():
from sympy.physics.quantum.qft import RkGate
assert _test_args(RkGate(0, 1))
def test_sympy__physics__quantum__qubit__IntQubit():
from sympy.physics.quantum.qubit import IntQubit
assert _test_args(IntQubit(0))
def test_sympy__physics__quantum__qubit__IntQubitBra():
from sympy.physics.quantum.qubit import IntQubitBra
assert _test_args(IntQubitBra(0))
def test_sympy__physics__quantum__qubit__IntQubitState():
from sympy.physics.quantum.qubit import IntQubitState, QubitState
assert _test_args(IntQubitState(QubitState(0, 1)))
def test_sympy__physics__quantum__qubit__Qubit():
from sympy.physics.quantum.qubit import Qubit
assert _test_args(Qubit(0, 0, 0))
def test_sympy__physics__quantum__qubit__QubitBra():
from sympy.physics.quantum.qubit import QubitBra
assert _test_args(QubitBra('1', 0))
def test_sympy__physics__quantum__qubit__QubitState():
from sympy.physics.quantum.qubit import QubitState
assert _test_args(QubitState(0, 1))
def test_sympy__physics__quantum__density__Density():
from sympy.physics.quantum.density import Density
from sympy.physics.quantum.state import Ket
assert _test_args(Density([Ket(0), 0.5], [Ket(1), 0.5]))
@SKIP("TODO: sympy.physics.quantum.shor: Cmod Not Implemented")
def test_sympy__physics__quantum__shor__CMod():
from sympy.physics.quantum.shor import CMod
assert _test_args(CMod())
def test_sympy__physics__quantum__spin__CoupledSpinState():
from sympy.physics.quantum.spin import CoupledSpinState
assert _test_args(CoupledSpinState(1, 0, (1, 1)))
assert _test_args(CoupledSpinState(1, 0, (1, S.Half, S.Half)))
assert _test_args(CoupledSpinState(
1, 0, (1, S.Half, S.Half), ((2, 3, S.Half), (1, 2, 1)) ))
j, m, j1, j2, j3, j12, x = symbols('j m j1:4 j12 x')
assert CoupledSpinState(
j, m, (j1, j2, j3)).subs(j2, x) == CoupledSpinState(j, m, (j1, x, j3))
assert CoupledSpinState(j, m, (j1, j2, j3), ((1, 3, j12), (1, 2, j)) ).subs(j12, x) == \
CoupledSpinState(j, m, (j1, j2, j3), ((1, 3, x), (1, 2, j)) )
def test_sympy__physics__quantum__spin__J2Op():
from sympy.physics.quantum.spin import J2Op
assert _test_args(J2Op('J'))
def test_sympy__physics__quantum__spin__JminusOp():
from sympy.physics.quantum.spin import JminusOp
assert _test_args(JminusOp('J'))
def test_sympy__physics__quantum__spin__JplusOp():
from sympy.physics.quantum.spin import JplusOp
assert _test_args(JplusOp('J'))
def test_sympy__physics__quantum__spin__JxBra():
from sympy.physics.quantum.spin import JxBra
assert _test_args(JxBra(1, 0))
def test_sympy__physics__quantum__spin__JxBraCoupled():
from sympy.physics.quantum.spin import JxBraCoupled
assert _test_args(JxBraCoupled(1, 0, (1, 1)))
def test_sympy__physics__quantum__spin__JxKet():
from sympy.physics.quantum.spin import JxKet
assert _test_args(JxKet(1, 0))
def test_sympy__physics__quantum__spin__JxKetCoupled():
from sympy.physics.quantum.spin import JxKetCoupled
assert _test_args(JxKetCoupled(1, 0, (1, 1)))
def test_sympy__physics__quantum__spin__JxOp():
from sympy.physics.quantum.spin import JxOp
assert _test_args(JxOp('J'))
def test_sympy__physics__quantum__spin__JyBra():
from sympy.physics.quantum.spin import JyBra
assert _test_args(JyBra(1, 0))
def test_sympy__physics__quantum__spin__JyBraCoupled():
from sympy.physics.quantum.spin import JyBraCoupled
assert _test_args(JyBraCoupled(1, 0, (1, 1)))
def test_sympy__physics__quantum__spin__JyKet():
from sympy.physics.quantum.spin import JyKet
assert _test_args(JyKet(1, 0))
def test_sympy__physics__quantum__spin__JyKetCoupled():
from sympy.physics.quantum.spin import JyKetCoupled
assert _test_args(JyKetCoupled(1, 0, (1, 1)))
def test_sympy__physics__quantum__spin__JyOp():
from sympy.physics.quantum.spin import JyOp
assert _test_args(JyOp('J'))
def test_sympy__physics__quantum__spin__JzBra():
from sympy.physics.quantum.spin import JzBra
assert _test_args(JzBra(1, 0))
def test_sympy__physics__quantum__spin__JzBraCoupled():
from sympy.physics.quantum.spin import JzBraCoupled
assert _test_args(JzBraCoupled(1, 0, (1, 1)))
def test_sympy__physics__quantum__spin__JzKet():
from sympy.physics.quantum.spin import JzKet
assert _test_args(JzKet(1, 0))
def test_sympy__physics__quantum__spin__JzKetCoupled():
from sympy.physics.quantum.spin import JzKetCoupled
assert _test_args(JzKetCoupled(1, 0, (1, 1)))
def test_sympy__physics__quantum__spin__JzOp():
from sympy.physics.quantum.spin import JzOp
assert _test_args(JzOp('J'))
def test_sympy__physics__quantum__spin__Rotation():
from sympy.physics.quantum.spin import Rotation
assert _test_args(Rotation(pi, 0, pi/2))
def test_sympy__physics__quantum__spin__SpinState():
from sympy.physics.quantum.spin import SpinState
assert _test_args(SpinState(1, 0))
def test_sympy__physics__quantum__spin__WignerD():
from sympy.physics.quantum.spin import WignerD
assert _test_args(WignerD(0, 1, 2, 3, 4, 5))
def test_sympy__physics__quantum__state__Bra():
from sympy.physics.quantum.state import Bra
assert _test_args(Bra(0))
def test_sympy__physics__quantum__state__BraBase():
from sympy.physics.quantum.state import BraBase
assert _test_args(BraBase(0))
def test_sympy__physics__quantum__state__Ket():
from sympy.physics.quantum.state import Ket
assert _test_args(Ket(0))
def test_sympy__physics__quantum__state__KetBase():
from sympy.physics.quantum.state import KetBase
assert _test_args(KetBase(0))
def test_sympy__physics__quantum__state__State():
from sympy.physics.quantum.state import State
assert _test_args(State(0))
def test_sympy__physics__quantum__state__StateBase():
from sympy.physics.quantum.state import StateBase
assert _test_args(StateBase(0))
def test_sympy__physics__quantum__state__OrthogonalBra():
from sympy.physics.quantum.state import OrthogonalBra
assert _test_args(OrthogonalBra(0))
def test_sympy__physics__quantum__state__OrthogonalKet():
from sympy.physics.quantum.state import OrthogonalKet
assert _test_args(OrthogonalKet(0))
def test_sympy__physics__quantum__state__OrthogonalState():
from sympy.physics.quantum.state import OrthogonalState
assert _test_args(OrthogonalState(0))
def test_sympy__physics__quantum__state__TimeDepBra():
from sympy.physics.quantum.state import TimeDepBra
assert _test_args(TimeDepBra('psi', 't'))
def test_sympy__physics__quantum__state__TimeDepKet():
from sympy.physics.quantum.state import TimeDepKet
assert _test_args(TimeDepKet('psi', 't'))
def test_sympy__physics__quantum__state__TimeDepState():
from sympy.physics.quantum.state import TimeDepState
assert _test_args(TimeDepState('psi', 't'))
def test_sympy__physics__quantum__state__Wavefunction():
from sympy.physics.quantum.state import Wavefunction
from sympy.functions import sin
from sympy.functions.elementary.piecewise import Piecewise
n = 1
L = 1
g = Piecewise((0, x < 0), (0, x > L), (sqrt(2//L)*sin(n*pi*x/L), True))
assert _test_args(Wavefunction(g, x))
def test_sympy__physics__quantum__tensorproduct__TensorProduct():
from sympy.physics.quantum.tensorproduct import TensorProduct
x, y = symbols("x y", commutative=False)
assert _test_args(TensorProduct(x, y))
def test_sympy__physics__quantum__identitysearch__GateIdentity():
from sympy.physics.quantum.gate import X
from sympy.physics.quantum.identitysearch import GateIdentity
assert _test_args(GateIdentity(X(0), X(0)))
def test_sympy__physics__quantum__sho1d__SHOOp():
from sympy.physics.quantum.sho1d import SHOOp
assert _test_args(SHOOp('a'))
def test_sympy__physics__quantum__sho1d__RaisingOp():
from sympy.physics.quantum.sho1d import RaisingOp
assert _test_args(RaisingOp('a'))
def test_sympy__physics__quantum__sho1d__LoweringOp():
from sympy.physics.quantum.sho1d import LoweringOp
assert _test_args(LoweringOp('a'))
def test_sympy__physics__quantum__sho1d__NumberOp():
from sympy.physics.quantum.sho1d import NumberOp
assert _test_args(NumberOp('N'))
def test_sympy__physics__quantum__sho1d__Hamiltonian():
from sympy.physics.quantum.sho1d import Hamiltonian
assert _test_args(Hamiltonian('H'))
def test_sympy__physics__quantum__sho1d__SHOState():
from sympy.physics.quantum.sho1d import SHOState
assert _test_args(SHOState(0))
def test_sympy__physics__quantum__sho1d__SHOKet():
from sympy.physics.quantum.sho1d import SHOKet
assert _test_args(SHOKet(0))
def test_sympy__physics__quantum__sho1d__SHOBra():
from sympy.physics.quantum.sho1d import SHOBra
assert _test_args(SHOBra(0))
def test_sympy__physics__secondquant__AnnihilateBoson():
from sympy.physics.secondquant import AnnihilateBoson
assert _test_args(AnnihilateBoson(0))
def test_sympy__physics__secondquant__AnnihilateFermion():
from sympy.physics.secondquant import AnnihilateFermion
assert _test_args(AnnihilateFermion(0))
@SKIP("abstract class")
def test_sympy__physics__secondquant__Annihilator():
pass
def test_sympy__physics__secondquant__AntiSymmetricTensor():
from sympy.physics.secondquant import AntiSymmetricTensor
i, j = symbols('i j', below_fermi=True)
a, b = symbols('a b', above_fermi=True)
assert _test_args(AntiSymmetricTensor('v', (a, i), (b, j)))
def test_sympy__physics__secondquant__BosonState():
from sympy.physics.secondquant import BosonState
assert _test_args(BosonState((0, 1)))
@SKIP("abstract class")
def test_sympy__physics__secondquant__BosonicOperator():
pass
def test_sympy__physics__secondquant__Commutator():
from sympy.physics.secondquant import Commutator
x, y = symbols('x y', commutative=False)
assert _test_args(Commutator(x, y))
def test_sympy__physics__secondquant__CreateBoson():
from sympy.physics.secondquant import CreateBoson
assert _test_args(CreateBoson(0))
def test_sympy__physics__secondquant__CreateFermion():
from sympy.physics.secondquant import CreateFermion
assert _test_args(CreateFermion(0))
@SKIP("abstract class")
def test_sympy__physics__secondquant__Creator():
pass
def test_sympy__physics__secondquant__Dagger():
from sympy.physics.secondquant import Dagger
assert _test_args(Dagger(x))
def test_sympy__physics__secondquant__FermionState():
from sympy.physics.secondquant import FermionState
assert _test_args(FermionState((0, 1)))
def test_sympy__physics__secondquant__FermionicOperator():
from sympy.physics.secondquant import FermionicOperator
assert _test_args(FermionicOperator(0))
def test_sympy__physics__secondquant__FockState():
from sympy.physics.secondquant import FockState
assert _test_args(FockState((0, 1)))
def test_sympy__physics__secondquant__FockStateBosonBra():
from sympy.physics.secondquant import FockStateBosonBra
assert _test_args(FockStateBosonBra((0, 1)))
def test_sympy__physics__secondquant__FockStateBosonKet():
from sympy.physics.secondquant import FockStateBosonKet
assert _test_args(FockStateBosonKet((0, 1)))
def test_sympy__physics__secondquant__FockStateBra():
from sympy.physics.secondquant import FockStateBra
assert _test_args(FockStateBra((0, 1)))
def test_sympy__physics__secondquant__FockStateFermionBra():
from sympy.physics.secondquant import FockStateFermionBra
assert _test_args(FockStateFermionBra((0, 1)))
def test_sympy__physics__secondquant__FockStateFermionKet():
from sympy.physics.secondquant import FockStateFermionKet
assert _test_args(FockStateFermionKet((0, 1)))
def test_sympy__physics__secondquant__FockStateKet():
from sympy.physics.secondquant import FockStateKet
assert _test_args(FockStateKet((0, 1)))
def test_sympy__physics__secondquant__InnerProduct():
from sympy.physics.secondquant import InnerProduct
from sympy.physics.secondquant import FockStateKet, FockStateBra
assert _test_args(InnerProduct(FockStateBra((0, 1)), FockStateKet((0, 1))))
def test_sympy__physics__secondquant__NO():
from sympy.physics.secondquant import NO, F, Fd
assert _test_args(NO(Fd(x)*F(y)))
def test_sympy__physics__secondquant__PermutationOperator():
from sympy.physics.secondquant import PermutationOperator
assert _test_args(PermutationOperator(0, 1))
def test_sympy__physics__secondquant__SqOperator():
from sympy.physics.secondquant import SqOperator
assert _test_args(SqOperator(0))
def test_sympy__physics__secondquant__TensorSymbol():
from sympy.physics.secondquant import TensorSymbol
assert _test_args(TensorSymbol(x))
def test_sympy__physics__control__lti__LinearTimeInvariant():
# Direct instances of LinearTimeInvariant class are not allowed.
# func(*args) tests for its derived classes (TransferFunction,
# Series, Parallel and TransferFunctionMatrix) should pass.
pass
def test_sympy__physics__control__lti__SISOLinearTimeInvariant():
# Direct instances of SISOLinearTimeInvariant class are not allowed.
pass
def test_sympy__physics__control__lti__MIMOLinearTimeInvariant():
# Direct instances of MIMOLinearTimeInvariant class are not allowed.
pass
def test_sympy__physics__control__lti__TransferFunction():
from sympy.physics.control.lti import TransferFunction
assert _test_args(TransferFunction(2, 3, x))
def test_sympy__physics__control__lti__Series():
from sympy.physics.control import Series, TransferFunction
tf1 = TransferFunction(x**2 - y**3, y - z, x)
tf2 = TransferFunction(y - x, z + y, x)
assert _test_args(Series(tf1, tf2))
def test_sympy__physics__control__lti__MIMOSeries():
from sympy.physics.control import MIMOSeries, TransferFunction, TransferFunctionMatrix
tf1 = TransferFunction(x**2 - y**3, y - z, x)
tf2 = TransferFunction(y - x, z + y, x)
tfm_1 = TransferFunctionMatrix([[tf2, tf1]])
tfm_2 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]])
tfm_3 = TransferFunctionMatrix([[tf1], [tf2]])
assert _test_args(MIMOSeries(tfm_3, tfm_2, tfm_1))
def test_sympy__physics__control__lti__Parallel():
from sympy.physics.control import Parallel, TransferFunction
tf1 = TransferFunction(x**2 - y**3, y - z, x)
tf2 = TransferFunction(y - x, z + y, x)
assert _test_args(Parallel(tf1, tf2))
def test_sympy__physics__control__lti__MIMOParallel():
from sympy.physics.control import MIMOParallel, TransferFunction, TransferFunctionMatrix
tf1 = TransferFunction(x**2 - y**3, y - z, x)
tf2 = TransferFunction(y - x, z + y, x)
tfm_1 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]])
tfm_2 = TransferFunctionMatrix([[tf2, tf1], [tf1, tf2]])
assert _test_args(MIMOParallel(tfm_1, tfm_2))
def test_sympy__physics__control__lti__Feedback():
from sympy.physics.control import TransferFunction, Feedback
tf1 = TransferFunction(x**2 - y**3, y - z, x)
tf2 = TransferFunction(y - x, z + y, x)
assert _test_args(Feedback(tf1, tf2))
assert _test_args(Feedback(tf1, tf2, 1))
def test_sympy__physics__control__lti__MIMOFeedback():
from sympy.physics.control import TransferFunction, MIMOFeedback, TransferFunctionMatrix
tf1 = TransferFunction(x**2 - y**3, y - z, x)
tf2 = TransferFunction(y - x, z + y, x)
tfm_1 = TransferFunctionMatrix([[tf2, tf1], [tf1, tf2]])
tfm_2 = TransferFunctionMatrix([[tf1, tf2], [tf2, tf1]])
assert _test_args(MIMOFeedback(tfm_1, tfm_2))
assert _test_args(MIMOFeedback(tfm_1, tfm_2, 1))
def test_sympy__physics__control__lti__TransferFunctionMatrix():
from sympy.physics.control import TransferFunction, TransferFunctionMatrix
tf1 = TransferFunction(x**2 - y**3, y - z, x)
tf2 = TransferFunction(y - x, z + y, x)
assert _test_args(TransferFunctionMatrix([[tf1, tf2]]))
def test_sympy__physics__units__dimensions__Dimension():
from sympy.physics.units.dimensions import Dimension
assert _test_args(Dimension("length", "L"))
def test_sympy__physics__units__dimensions__DimensionSystem():
from sympy.physics.units.dimensions import DimensionSystem
from sympy.physics.units.definitions.dimension_definitions import length, time, velocity
assert _test_args(DimensionSystem((length, time), (velocity,)))
def test_sympy__physics__units__quantities__Quantity():
from sympy.physics.units.quantities import Quantity
assert _test_args(Quantity("dam"))
def test_sympy__physics__units__quantities__PhysicalConstant():
from sympy.physics.units.quantities import PhysicalConstant
assert _test_args(PhysicalConstant("foo"))
def test_sympy__physics__units__prefixes__Prefix():
from sympy.physics.units.prefixes import Prefix
assert _test_args(Prefix('kilo', 'k', 3))
def test_sympy__core__numbers__AlgebraicNumber():
from sympy.core.numbers import AlgebraicNumber
assert _test_args(AlgebraicNumber(sqrt(2), [1, 2, 3]))
def test_sympy__polys__polytools__GroebnerBasis():
from sympy.polys.polytools import GroebnerBasis
assert _test_args(GroebnerBasis([x, y, z], x, y, z))
def test_sympy__polys__polytools__Poly():
from sympy.polys.polytools import Poly
assert _test_args(Poly(2, x, y))
def test_sympy__polys__polytools__PurePoly():
from sympy.polys.polytools import PurePoly
assert _test_args(PurePoly(2, x, y))
@SKIP('abstract class')
def test_sympy__polys__rootoftools__RootOf():
pass
def test_sympy__polys__rootoftools__ComplexRootOf():
from sympy.polys.rootoftools import ComplexRootOf
assert _test_args(ComplexRootOf(x**3 + x + 1, 0))
def test_sympy__polys__rootoftools__RootSum():
from sympy.polys.rootoftools import RootSum
assert _test_args(RootSum(x**3 + x + 1, sin))
def test_sympy__series__limits__Limit():
from sympy.series.limits import Limit
assert _test_args(Limit(x, x, 0, dir='-'))
def test_sympy__series__order__Order():
from sympy.series.order import Order
assert _test_args(Order(1, x, y))
@SKIP('Abstract Class')
def test_sympy__series__sequences__SeqBase():
pass
def test_sympy__series__sequences__EmptySequence():
# Need to import the instance from series not the class from
# series.sequence
from sympy.series import EmptySequence
assert _test_args(EmptySequence)
@SKIP('Abstract Class')
def test_sympy__series__sequences__SeqExpr():
pass
def test_sympy__series__sequences__SeqPer():
from sympy.series.sequences import SeqPer
assert _test_args(SeqPer((1, 2, 3), (0, 10)))
def test_sympy__series__sequences__SeqFormula():
from sympy.series.sequences import SeqFormula
assert _test_args(SeqFormula(x**2, (0, 10)))
def test_sympy__series__sequences__RecursiveSeq():
from sympy.series.sequences import RecursiveSeq
y = Function("y")
n = symbols("n")
assert _test_args(RecursiveSeq(y(n - 1) + y(n - 2), y(n), n, (0, 1)))
assert _test_args(RecursiveSeq(y(n - 1) + y(n - 2), y(n), n))
def test_sympy__series__sequences__SeqExprOp():
from sympy.series.sequences import SeqExprOp, sequence
s1 = sequence((1, 2, 3))
s2 = sequence(x**2)
assert _test_args(SeqExprOp(s1, s2))
def test_sympy__series__sequences__SeqAdd():
from sympy.series.sequences import SeqAdd, sequence
s1 = sequence((1, 2, 3))
s2 = sequence(x**2)
assert _test_args(SeqAdd(s1, s2))
def test_sympy__series__sequences__SeqMul():
from sympy.series.sequences import SeqMul, sequence
s1 = sequence((1, 2, 3))
s2 = sequence(x**2)
assert _test_args(SeqMul(s1, s2))
@SKIP('Abstract Class')
def test_sympy__series__series_class__SeriesBase():
pass
def test_sympy__series__fourier__FourierSeries():
from sympy.series.fourier import fourier_series
assert _test_args(fourier_series(x, (x, -pi, pi)))
def test_sympy__series__fourier__FiniteFourierSeries():
from sympy.series.fourier import fourier_series
assert _test_args(fourier_series(sin(pi*x), (x, -1, 1)))
def test_sympy__series__formal__FormalPowerSeries():
from sympy.series.formal import fps
assert _test_args(fps(log(1 + x), x))
def test_sympy__series__formal__Coeff():
from sympy.series.formal import fps
assert _test_args(fps(x**2 + x + 1, x))
@SKIP('Abstract Class')
def test_sympy__series__formal__FiniteFormalPowerSeries():
pass
def test_sympy__series__formal__FormalPowerSeriesProduct():
from sympy.series.formal import fps
f1, f2 = fps(sin(x)), fps(exp(x))
assert _test_args(f1.product(f2, x))
def test_sympy__series__formal__FormalPowerSeriesCompose():
from sympy.series.formal import fps
f1, f2 = fps(exp(x)), fps(sin(x))
assert _test_args(f1.compose(f2, x))
def test_sympy__series__formal__FormalPowerSeriesInverse():
from sympy.series.formal import fps
f1 = fps(exp(x))
assert _test_args(f1.inverse(x))
def test_sympy__simplify__hyperexpand__Hyper_Function():
from sympy.simplify.hyperexpand import Hyper_Function
assert _test_args(Hyper_Function([2], [1]))
def test_sympy__simplify__hyperexpand__G_Function():
from sympy.simplify.hyperexpand import G_Function
assert _test_args(G_Function([2], [1], [], []))
@SKIP("abstract class")
def test_sympy__tensor__array__ndim_array__ImmutableNDimArray():
pass
def test_sympy__tensor__array__dense_ndim_array__ImmutableDenseNDimArray():
from sympy.tensor.array.dense_ndim_array import ImmutableDenseNDimArray
densarr = ImmutableDenseNDimArray(range(10, 34), (2, 3, 4))
assert _test_args(densarr)
def test_sympy__tensor__array__sparse_ndim_array__ImmutableSparseNDimArray():
from sympy.tensor.array.sparse_ndim_array import ImmutableSparseNDimArray
sparr = ImmutableSparseNDimArray(range(10, 34), (2, 3, 4))
assert _test_args(sparr)
def test_sympy__tensor__array__array_comprehension__ArrayComprehension():
from sympy.tensor.array.array_comprehension import ArrayComprehension
arrcom = ArrayComprehension(x, (x, 1, 5))
assert _test_args(arrcom)
def test_sympy__tensor__array__array_comprehension__ArrayComprehensionMap():
from sympy.tensor.array.array_comprehension import ArrayComprehensionMap
arrcomma = ArrayComprehensionMap(lambda: 0, (x, 1, 5))
assert _test_args(arrcomma)
def test_sympy__tensor__array__array_derivatives__ArrayDerivative():
from sympy.tensor.array.array_derivatives import ArrayDerivative
A = MatrixSymbol("A", 2, 2)
arrder = ArrayDerivative(A, A, evaluate=False)
assert _test_args(arrder)
def test_sympy__tensor__array__expressions__array_expressions__ArraySymbol():
from sympy.tensor.array.expressions.array_expressions import ArraySymbol
m, n, k = symbols("m n k")
array = ArraySymbol("A", (m, n, k, 2))
assert _test_args(array)
def test_sympy__tensor__array__expressions__array_expressions__ArrayElement():
from sympy.tensor.array.expressions.array_expressions import ArrayElement
m, n, k = symbols("m n k")
ae = ArrayElement("A", (m, n, k, 2))
assert _test_args(ae)
def test_sympy__tensor__array__expressions__array_expressions__ZeroArray():
from sympy.tensor.array.expressions.array_expressions import ZeroArray
m, n, k = symbols("m n k")
za = ZeroArray(m, n, k, 2)
assert _test_args(za)
def test_sympy__tensor__array__expressions__array_expressions__OneArray():
from sympy.tensor.array.expressions.array_expressions import OneArray
m, n, k = symbols("m n k")
za = OneArray(m, n, k, 2)
assert _test_args(za)
def test_sympy__tensor__functions__TensorProduct():
from sympy.tensor.functions import TensorProduct
A = MatrixSymbol('A', 3, 3)
B = MatrixSymbol('B', 3, 3)
tp = TensorProduct(A, B)
assert _test_args(tp)
def test_sympy__tensor__indexed__Idx():
from sympy.tensor.indexed import Idx
assert _test_args(Idx('test'))
assert _test_args(Idx('test', (0, 10)))
assert _test_args(Idx('test', 2))
assert _test_args(Idx('test', x))
def test_sympy__tensor__indexed__Indexed():
from sympy.tensor.indexed import Indexed, Idx
assert _test_args(Indexed('A', Idx('i'), Idx('j')))
def test_sympy__tensor__indexed__IndexedBase():
from sympy.tensor.indexed import IndexedBase
assert _test_args(IndexedBase('A', shape=(x, y)))
assert _test_args(IndexedBase('A', 1))
assert _test_args(IndexedBase('A')[0, 1])
def test_sympy__tensor__tensor__TensorIndexType():
from sympy.tensor.tensor import TensorIndexType
assert _test_args(TensorIndexType('Lorentz'))
@SKIP("deprecated class")
def test_sympy__tensor__tensor__TensorType():
pass
def test_sympy__tensor__tensor__TensorSymmetry():
from sympy.tensor.tensor import TensorSymmetry, get_symmetric_group_sgs
assert _test_args(TensorSymmetry(get_symmetric_group_sgs(2)))
def test_sympy__tensor__tensor__TensorHead():
from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, get_symmetric_group_sgs, TensorHead
Lorentz = TensorIndexType('Lorentz', dummy_name='L')
sym = TensorSymmetry(get_symmetric_group_sgs(1))
assert _test_args(TensorHead('p', [Lorentz], sym, 0))
def test_sympy__tensor__tensor__TensorIndex():
from sympy.tensor.tensor import TensorIndexType, TensorIndex
Lorentz = TensorIndexType('Lorentz', dummy_name='L')
assert _test_args(TensorIndex('i', Lorentz))
@SKIP("abstract class")
def test_sympy__tensor__tensor__TensExpr():
pass
def test_sympy__tensor__tensor__TensAdd():
from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, get_symmetric_group_sgs, tensor_indices, TensAdd, tensor_heads
Lorentz = TensorIndexType('Lorentz', dummy_name='L')
a, b = tensor_indices('a,b', Lorentz)
sym = TensorSymmetry(get_symmetric_group_sgs(1))
p, q = tensor_heads('p,q', [Lorentz], sym)
t1 = p(a)
t2 = q(a)
assert _test_args(TensAdd(t1, t2))
def test_sympy__tensor__tensor__Tensor():
from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, get_symmetric_group_sgs, tensor_indices, TensorHead
Lorentz = TensorIndexType('Lorentz', dummy_name='L')
a, b = tensor_indices('a,b', Lorentz)
sym = TensorSymmetry(get_symmetric_group_sgs(1))
p = TensorHead('p', [Lorentz], sym)
assert _test_args(p(a))
def test_sympy__tensor__tensor__TensMul():
from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, get_symmetric_group_sgs, tensor_indices, tensor_heads
Lorentz = TensorIndexType('Lorentz', dummy_name='L')
a, b = tensor_indices('a,b', Lorentz)
sym = TensorSymmetry(get_symmetric_group_sgs(1))
p, q = tensor_heads('p, q', [Lorentz], sym)
assert _test_args(3*p(a)*q(b))
def test_sympy__tensor__tensor__TensorElement():
from sympy.tensor.tensor import TensorIndexType, TensorHead, TensorElement
L = TensorIndexType("L")
A = TensorHead("A", [L, L])
telem = TensorElement(A(x, y), {x: 1})
assert _test_args(telem)
def test_sympy__tensor__toperators__PartialDerivative():
from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead
from sympy.tensor.toperators import PartialDerivative
Lorentz = TensorIndexType('Lorentz', dummy_name='L')
a, b = tensor_indices('a,b', Lorentz)
A = TensorHead("A", [Lorentz])
assert _test_args(PartialDerivative(A(a), A(b)))
def test_as_coeff_add():
assert (7, (3*x, 4*x**2)) == (7 + 3*x + 4*x**2).as_coeff_add()
def test_sympy__geometry__curve__Curve():
from sympy.geometry.curve import Curve
assert _test_args(Curve((x, 1), (x, 0, 1)))
def test_sympy__geometry__point__Point():
from sympy.geometry.point import Point
assert _test_args(Point(0, 1))
def test_sympy__geometry__point__Point2D():
from sympy.geometry.point import Point2D
assert _test_args(Point2D(0, 1))
def test_sympy__geometry__point__Point3D():
from sympy.geometry.point import Point3D
assert _test_args(Point3D(0, 1, 2))
def test_sympy__geometry__ellipse__Ellipse():
from sympy.geometry.ellipse import Ellipse
assert _test_args(Ellipse((0, 1), 2, 3))
def test_sympy__geometry__ellipse__Circle():
from sympy.geometry.ellipse import Circle
assert _test_args(Circle((0, 1), 2))
def test_sympy__geometry__parabola__Parabola():
from sympy.geometry.parabola import Parabola
from sympy.geometry.line import Line
assert _test_args(Parabola((0, 0), Line((2, 3), (4, 3))))
@SKIP("abstract class")
def test_sympy__geometry__line__LinearEntity():
pass
def test_sympy__geometry__line__Line():
from sympy.geometry.line import Line
assert _test_args(Line((0, 1), (2, 3)))
def test_sympy__geometry__line__Ray():
from sympy.geometry.line import Ray
assert _test_args(Ray((0, 1), (2, 3)))
def test_sympy__geometry__line__Segment():
from sympy.geometry.line import Segment
assert _test_args(Segment((0, 1), (2, 3)))
@SKIP("abstract class")
def test_sympy__geometry__line__LinearEntity2D():
pass
def test_sympy__geometry__line__Line2D():
from sympy.geometry.line import Line2D
assert _test_args(Line2D((0, 1), (2, 3)))
def test_sympy__geometry__line__Ray2D():
from sympy.geometry.line import Ray2D
assert _test_args(Ray2D((0, 1), (2, 3)))
def test_sympy__geometry__line__Segment2D():
from sympy.geometry.line import Segment2D
assert _test_args(Segment2D((0, 1), (2, 3)))
@SKIP("abstract class")
def test_sympy__geometry__line__LinearEntity3D():
pass
def test_sympy__geometry__line__Line3D():
from sympy.geometry.line import Line3D
assert _test_args(Line3D((0, 1, 1), (2, 3, 4)))
def test_sympy__geometry__line__Segment3D():
from sympy.geometry.line import Segment3D
assert _test_args(Segment3D((0, 1, 1), (2, 3, 4)))
def test_sympy__geometry__line__Ray3D():
from sympy.geometry.line import Ray3D
assert _test_args(Ray3D((0, 1, 1), (2, 3, 4)))
def test_sympy__geometry__plane__Plane():
from sympy.geometry.plane import Plane
assert _test_args(Plane((1, 1, 1), (-3, 4, -2), (1, 2, 3)))
def test_sympy__geometry__polygon__Polygon():
from sympy.geometry.polygon import Polygon
assert _test_args(Polygon((0, 1), (2, 3), (4, 5), (6, 7)))
def test_sympy__geometry__polygon__RegularPolygon():
from sympy.geometry.polygon import RegularPolygon
assert _test_args(RegularPolygon((0, 1), 2, 3, 4))
def test_sympy__geometry__polygon__Triangle():
from sympy.geometry.polygon import Triangle
assert _test_args(Triangle((0, 1), (2, 3), (4, 5)))
def test_sympy__geometry__entity__GeometryEntity():
from sympy.geometry.entity import GeometryEntity
from sympy.geometry.point import Point
assert _test_args(GeometryEntity(Point(1, 0), 1, [1, 2]))
@SKIP("abstract class")
def test_sympy__geometry__entity__GeometrySet():
pass
def test_sympy__diffgeom__diffgeom__Manifold():
from sympy.diffgeom import Manifold
assert _test_args(Manifold('name', 3))
def test_sympy__diffgeom__diffgeom__Patch():
from sympy.diffgeom import Manifold, Patch
assert _test_args(Patch('name', Manifold('name', 3)))
def test_sympy__diffgeom__diffgeom__CoordSystem():
from sympy.diffgeom import Manifold, Patch, CoordSystem
assert _test_args(CoordSystem('name', Patch('name', Manifold('name', 3))))
assert _test_args(CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c]))
def test_sympy__diffgeom__diffgeom__CoordinateSymbol():
from sympy.diffgeom import Manifold, Patch, CoordSystem, CoordinateSymbol
assert _test_args(CoordinateSymbol(CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c]), 0))
def test_sympy__diffgeom__diffgeom__Point():
from sympy.diffgeom import Manifold, Patch, CoordSystem, Point
assert _test_args(Point(
CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c]), [x, y]))
def test_sympy__diffgeom__diffgeom__BaseScalarField():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField
cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c])
assert _test_args(BaseScalarField(cs, 0))
def test_sympy__diffgeom__diffgeom__BaseVectorField():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseVectorField
cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c])
assert _test_args(BaseVectorField(cs, 0))
def test_sympy__diffgeom__diffgeom__Differential():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential
cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c])
assert _test_args(Differential(BaseScalarField(cs, 0)))
def test_sympy__diffgeom__diffgeom__Commutator():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseVectorField, Commutator
cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c])
cs1 = CoordSystem('name1', Patch('name', Manifold('name', 3)), [a, b, c])
v = BaseVectorField(cs, 0)
v1 = BaseVectorField(cs1, 0)
assert _test_args(Commutator(v, v1))
def test_sympy__diffgeom__diffgeom__TensorProduct():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential, TensorProduct
cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c])
d = Differential(BaseScalarField(cs, 0))
assert _test_args(TensorProduct(d, d))
def test_sympy__diffgeom__diffgeom__WedgeProduct():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential, WedgeProduct
cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c])
d = Differential(BaseScalarField(cs, 0))
d1 = Differential(BaseScalarField(cs, 1))
assert _test_args(WedgeProduct(d, d1))
def test_sympy__diffgeom__diffgeom__LieDerivative():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential, BaseVectorField, LieDerivative
cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c])
d = Differential(BaseScalarField(cs, 0))
v = BaseVectorField(cs, 0)
assert _test_args(LieDerivative(v, d))
def test_sympy__diffgeom__diffgeom__BaseCovarDerivativeOp():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseCovarDerivativeOp
cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c])
assert _test_args(BaseCovarDerivativeOp(cs, 0, [[[0, ]*3, ]*3, ]*3))
def test_sympy__diffgeom__diffgeom__CovarDerivativeOp():
from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseVectorField, CovarDerivativeOp
cs = CoordSystem('name', Patch('name', Manifold('name', 3)), [a, b, c])
v = BaseVectorField(cs, 0)
_test_args(CovarDerivativeOp(v, [[[0, ]*3, ]*3, ]*3))
def test_sympy__categories__baseclasses__Class():
from sympy.categories.baseclasses import Class
assert _test_args(Class())
def test_sympy__categories__baseclasses__Object():
from sympy.categories import Object
assert _test_args(Object("A"))
@SKIP("abstract class")
def test_sympy__categories__baseclasses__Morphism():
pass
def test_sympy__categories__baseclasses__IdentityMorphism():
from sympy.categories import Object, IdentityMorphism
assert _test_args(IdentityMorphism(Object("A")))
def test_sympy__categories__baseclasses__NamedMorphism():
from sympy.categories import Object, NamedMorphism
assert _test_args(NamedMorphism(Object("A"), Object("B"), "f"))
def test_sympy__categories__baseclasses__CompositeMorphism():
from sympy.categories import Object, NamedMorphism, CompositeMorphism
A = Object("A")
B = Object("B")
C = Object("C")
f = NamedMorphism(A, B, "f")
g = NamedMorphism(B, C, "g")
assert _test_args(CompositeMorphism(f, g))
def test_sympy__categories__baseclasses__Diagram():
from sympy.categories import Object, NamedMorphism, Diagram
A = Object("A")
B = Object("B")
f = NamedMorphism(A, B, "f")
d = Diagram([f])
assert _test_args(d)
def test_sympy__categories__baseclasses__Category():
from sympy.categories import Object, NamedMorphism, Diagram, Category
A = Object("A")
B = Object("B")
C = Object("C")
f = NamedMorphism(A, B, "f")
g = NamedMorphism(B, C, "g")
d1 = Diagram([f, g])
d2 = Diagram([f])
K = Category("K", commutative_diagrams=[d1, d2])
assert _test_args(K)
def test_sympy__ntheory__factor___totient():
from sympy.ntheory.factor_ import totient
k = symbols('k', integer=True)
t = totient(k)
assert _test_args(t)
def test_sympy__ntheory__factor___reduced_totient():
from sympy.ntheory.factor_ import reduced_totient
k = symbols('k', integer=True)
t = reduced_totient(k)
assert _test_args(t)
def test_sympy__ntheory__factor___divisor_sigma():
from sympy.ntheory.factor_ import divisor_sigma
k = symbols('k', integer=True)
n = symbols('n', integer=True)
t = divisor_sigma(n, k)
assert _test_args(t)
def test_sympy__ntheory__factor___udivisor_sigma():
from sympy.ntheory.factor_ import udivisor_sigma
k = symbols('k', integer=True)
n = symbols('n', integer=True)
t = udivisor_sigma(n, k)
assert _test_args(t)
def test_sympy__ntheory__factor___primenu():
from sympy.ntheory.factor_ import primenu
n = symbols('n', integer=True)
t = primenu(n)
assert _test_args(t)
def test_sympy__ntheory__factor___primeomega():
from sympy.ntheory.factor_ import primeomega
n = symbols('n', integer=True)
t = primeomega(n)
assert _test_args(t)
def test_sympy__ntheory__residue_ntheory__mobius():
from sympy.ntheory import mobius
assert _test_args(mobius(2))
def test_sympy__ntheory__generate__primepi():
from sympy.ntheory import primepi
n = symbols('n')
t = primepi(n)
assert _test_args(t)
def test_sympy__physics__optics__waves__TWave():
from sympy.physics.optics import TWave
A, f, phi = symbols('A, f, phi')
assert _test_args(TWave(A, f, phi))
def test_sympy__physics__optics__gaussopt__BeamParameter():
from sympy.physics.optics import BeamParameter
assert _test_args(BeamParameter(530e-9, 1, w=1e-3, n=1))
def test_sympy__physics__optics__medium__Medium():
from sympy.physics.optics import Medium
assert _test_args(Medium('m'))
def test_sympy__physics__optics__medium__MediumN():
from sympy.physics.optics.medium import Medium
assert _test_args(Medium('m', n=2))
def test_sympy__physics__optics__medium__MediumPP():
from sympy.physics.optics.medium import Medium
assert _test_args(Medium('m', permittivity=2, permeability=2))
def test_sympy__tensor__array__expressions__array_expressions__ArrayContraction():
from sympy.tensor.array.expressions.array_expressions import ArrayContraction
from sympy.tensor.indexed import IndexedBase
A = symbols("A", cls=IndexedBase)
assert _test_args(ArrayContraction(A, (0, 1)))
def test_sympy__tensor__array__expressions__array_expressions__ArrayDiagonal():
from sympy.tensor.array.expressions.array_expressions import ArrayDiagonal
from sympy.tensor.indexed import IndexedBase
A = symbols("A", cls=IndexedBase)
assert _test_args(ArrayDiagonal(A, (0, 1)))
def test_sympy__tensor__array__expressions__array_expressions__ArrayTensorProduct():
from sympy.tensor.array.expressions.array_expressions import ArrayTensorProduct
from sympy.tensor.indexed import IndexedBase
A, B = symbols("A B", cls=IndexedBase)
assert _test_args(ArrayTensorProduct(A, B))
def test_sympy__tensor__array__expressions__array_expressions__ArrayAdd():
from sympy.tensor.array.expressions.array_expressions import ArrayAdd
from sympy.tensor.indexed import IndexedBase
A, B = symbols("A B", cls=IndexedBase)
assert _test_args(ArrayAdd(A, B))
def test_sympy__tensor__array__expressions__array_expressions__PermuteDims():
from sympy.tensor.array.expressions.array_expressions import PermuteDims
A = MatrixSymbol("A", 4, 4)
assert _test_args(PermuteDims(A, (1, 0)))
def test_sympy__tensor__array__expressions__array_expressions__ArrayElementwiseApplyFunc():
from sympy.tensor.array.expressions.array_expressions import ArraySymbol, ArrayElementwiseApplyFunc
A = ArraySymbol("A", (4,))
assert _test_args(ArrayElementwiseApplyFunc(exp, A))
def test_sympy__tensor__array__expressions__array_expressions__Reshape():
from sympy.tensor.array.expressions.array_expressions import ArraySymbol, Reshape
A = ArraySymbol("A", (4,))
assert _test_args(Reshape(A, (2, 2)))
def test_sympy__codegen__ast__Assignment():
from sympy.codegen.ast import Assignment
assert _test_args(Assignment(x, y))
def test_sympy__codegen__cfunctions__expm1():
from sympy.codegen.cfunctions import expm1
assert _test_args(expm1(x))
def test_sympy__codegen__cfunctions__log1p():
from sympy.codegen.cfunctions import log1p
assert _test_args(log1p(x))
def test_sympy__codegen__cfunctions__exp2():
from sympy.codegen.cfunctions import exp2
assert _test_args(exp2(x))
def test_sympy__codegen__cfunctions__log2():
from sympy.codegen.cfunctions import log2
assert _test_args(log2(x))
def test_sympy__codegen__cfunctions__fma():
from sympy.codegen.cfunctions import fma
assert _test_args(fma(x, y, z))
def test_sympy__codegen__cfunctions__log10():
from sympy.codegen.cfunctions import log10
assert _test_args(log10(x))
def test_sympy__codegen__cfunctions__Sqrt():
from sympy.codegen.cfunctions import Sqrt
assert _test_args(Sqrt(x))
def test_sympy__codegen__cfunctions__Cbrt():
from sympy.codegen.cfunctions import Cbrt
assert _test_args(Cbrt(x))
def test_sympy__codegen__cfunctions__hypot():
from sympy.codegen.cfunctions import hypot
assert _test_args(hypot(x, y))
def test_sympy__codegen__fnodes__FFunction():
from sympy.codegen.fnodes import FFunction
assert _test_args(FFunction('f'))
def test_sympy__codegen__fnodes__F95Function():
from sympy.codegen.fnodes import F95Function
assert _test_args(F95Function('f'))
def test_sympy__codegen__fnodes__isign():
from sympy.codegen.fnodes import isign
assert _test_args(isign(1, x))
def test_sympy__codegen__fnodes__dsign():
from sympy.codegen.fnodes import dsign
assert _test_args(dsign(1, x))
def test_sympy__codegen__fnodes__cmplx():
from sympy.codegen.fnodes import cmplx
assert _test_args(cmplx(x, y))
def test_sympy__codegen__fnodes__kind():
from sympy.codegen.fnodes import kind
assert _test_args(kind(x))
def test_sympy__codegen__fnodes__merge():
from sympy.codegen.fnodes import merge
assert _test_args(merge(1, 2, Eq(x, 0)))
def test_sympy__codegen__fnodes___literal():
from sympy.codegen.fnodes import _literal
assert _test_args(_literal(1))
def test_sympy__codegen__fnodes__literal_sp():
from sympy.codegen.fnodes import literal_sp
assert _test_args(literal_sp(1))
def test_sympy__codegen__fnodes__literal_dp():
from sympy.codegen.fnodes import literal_dp
assert _test_args(literal_dp(1))
def test_sympy__codegen__matrix_nodes__MatrixSolve():
from sympy.matrices import MatrixSymbol
from sympy.codegen.matrix_nodes import MatrixSolve
A = MatrixSymbol('A', 3, 3)
v = MatrixSymbol('x', 3, 1)
assert _test_args(MatrixSolve(A, v))
def test_sympy__vector__coordsysrect__CoordSys3D():
from sympy.vector.coordsysrect import CoordSys3D
assert _test_args(CoordSys3D('C'))
def test_sympy__vector__point__Point():
from sympy.vector.point import Point
assert _test_args(Point('P'))
def test_sympy__vector__basisdependent__BasisDependent():
#from sympy.vector.basisdependent import BasisDependent
#These classes have been created to maintain an OOP hierarchy
#for Vectors and Dyadics. Are NOT meant to be initialized
pass
def test_sympy__vector__basisdependent__BasisDependentMul():
#from sympy.vector.basisdependent import BasisDependentMul
#These classes have been created to maintain an OOP hierarchy
#for Vectors and Dyadics. Are NOT meant to be initialized
pass
def test_sympy__vector__basisdependent__BasisDependentAdd():
#from sympy.vector.basisdependent import BasisDependentAdd
#These classes have been created to maintain an OOP hierarchy
#for Vectors and Dyadics. Are NOT meant to be initialized
pass
def test_sympy__vector__basisdependent__BasisDependentZero():
#from sympy.vector.basisdependent import BasisDependentZero
#These classes have been created to maintain an OOP hierarchy
#for Vectors and Dyadics. Are NOT meant to be initialized
pass
def test_sympy__vector__vector__BaseVector():
from sympy.vector.vector import BaseVector
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(BaseVector(0, C, ' ', ' '))
def test_sympy__vector__vector__VectorAdd():
from sympy.vector.vector import VectorAdd, VectorMul
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
from sympy.abc import a, b, c, x, y, z
v1 = a*C.i + b*C.j + c*C.k
v2 = x*C.i + y*C.j + z*C.k
assert _test_args(VectorAdd(v1, v2))
assert _test_args(VectorMul(x, v1))
def test_sympy__vector__vector__VectorMul():
from sympy.vector.vector import VectorMul
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
from sympy.abc import a
assert _test_args(VectorMul(a, C.i))
def test_sympy__vector__vector__VectorZero():
from sympy.vector.vector import VectorZero
assert _test_args(VectorZero())
def test_sympy__vector__vector__Vector():
#from sympy.vector.vector import Vector
#Vector is never to be initialized using args
pass
def test_sympy__vector__vector__Cross():
from sympy.vector.vector import Cross
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
_test_args(Cross(C.i, C.j))
def test_sympy__vector__vector__Dot():
from sympy.vector.vector import Dot
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
_test_args(Dot(C.i, C.j))
def test_sympy__vector__dyadic__Dyadic():
#from sympy.vector.dyadic import Dyadic
#Dyadic is never to be initialized using args
pass
def test_sympy__vector__dyadic__BaseDyadic():
from sympy.vector.dyadic import BaseDyadic
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(BaseDyadic(C.i, C.j))
def test_sympy__vector__dyadic__DyadicMul():
from sympy.vector.dyadic import BaseDyadic, DyadicMul
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(DyadicMul(3, BaseDyadic(C.i, C.j)))
def test_sympy__vector__dyadic__DyadicAdd():
from sympy.vector.dyadic import BaseDyadic, DyadicAdd
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(2 * DyadicAdd(BaseDyadic(C.i, C.i),
BaseDyadic(C.i, C.j)))
def test_sympy__vector__dyadic__DyadicZero():
from sympy.vector.dyadic import DyadicZero
assert _test_args(DyadicZero())
def test_sympy__vector__deloperator__Del():
from sympy.vector.deloperator import Del
assert _test_args(Del())
def test_sympy__vector__implicitregion__ImplicitRegion():
from sympy.vector.implicitregion import ImplicitRegion
from sympy.abc import x, y
assert _test_args(ImplicitRegion((x, y), y**3 - 4*x))
def test_sympy__vector__integrals__ParametricIntegral():
from sympy.vector.integrals import ParametricIntegral
from sympy.vector.parametricregion import ParametricRegion
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(ParametricIntegral(C.y*C.i - 10*C.j,\
ParametricRegion((x, y), (x, 1, 3), (y, -2, 2))))
def test_sympy__vector__operators__Curl():
from sympy.vector.operators import Curl
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(Curl(C.i))
def test_sympy__vector__operators__Laplacian():
from sympy.vector.operators import Laplacian
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(Laplacian(C.i))
def test_sympy__vector__operators__Divergence():
from sympy.vector.operators import Divergence
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(Divergence(C.i))
def test_sympy__vector__operators__Gradient():
from sympy.vector.operators import Gradient
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(Gradient(C.x))
def test_sympy__vector__orienters__Orienter():
#from sympy.vector.orienters import Orienter
#Not to be initialized
pass
def test_sympy__vector__orienters__ThreeAngleOrienter():
#from sympy.vector.orienters import ThreeAngleOrienter
#Not to be initialized
pass
def test_sympy__vector__orienters__AxisOrienter():
from sympy.vector.orienters import AxisOrienter
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(AxisOrienter(x, C.i))
def test_sympy__vector__orienters__BodyOrienter():
from sympy.vector.orienters import BodyOrienter
assert _test_args(BodyOrienter(x, y, z, '123'))
def test_sympy__vector__orienters__SpaceOrienter():
from sympy.vector.orienters import SpaceOrienter
assert _test_args(SpaceOrienter(x, y, z, '123'))
def test_sympy__vector__orienters__QuaternionOrienter():
from sympy.vector.orienters import QuaternionOrienter
a, b, c, d = symbols('a b c d')
assert _test_args(QuaternionOrienter(a, b, c, d))
def test_sympy__vector__parametricregion__ParametricRegion():
from sympy.abc import t
from sympy.vector.parametricregion import ParametricRegion
assert _test_args(ParametricRegion((t, t**3), (t, 0, 2)))
def test_sympy__vector__scalar__BaseScalar():
from sympy.vector.scalar import BaseScalar
from sympy.vector.coordsysrect import CoordSys3D
C = CoordSys3D('C')
assert _test_args(BaseScalar(0, C, ' ', ' '))
def test_sympy__physics__wigner__Wigner3j():
from sympy.physics.wigner import Wigner3j
assert _test_args(Wigner3j(0, 0, 0, 0, 0, 0))
def test_sympy__combinatorics__schur_number__SchurNumber():
from sympy.combinatorics.schur_number import SchurNumber
assert _test_args(SchurNumber(x))
def test_sympy__combinatorics__perm_groups__SymmetricPermutationGroup():
from sympy.combinatorics.perm_groups import SymmetricPermutationGroup
assert _test_args(SymmetricPermutationGroup(5))
def test_sympy__combinatorics__perm_groups__Coset():
from sympy.combinatorics.permutations import Permutation
from sympy.combinatorics.perm_groups import PermutationGroup, Coset
a = Permutation(1, 2)
b = Permutation(0, 1)
G = PermutationGroup([a, b])
assert _test_args(Coset(a, G))
|
b049dd67bcf5014d2313d2774dcefd6427e594bd189b93767729b6efe5180dd0 | import numbers as nums
import decimal
from sympy.concrete.summations import Sum
from sympy.core import (EulerGamma, Catalan, TribonacciConstant,
GoldenRatio)
from sympy.core.containers import Tuple
from sympy.core.expr import unchanged
from sympy.core.logic import fuzzy_not
from sympy.core.mul import Mul
from sympy.core.numbers import (mpf_norm, mod_inverse, igcd, seterr,
igcd_lehmer, Integer, I, pi, comp, ilcm, Rational, E, nan, igcd2,
oo, AlgebraicNumber, igcdex, Number, Float, zoo)
from sympy.core.power import Pow
from sympy.core.relational import Ge, Gt, Le, Lt
from sympy.core.singleton import S
from sympy.core.symbol import Dummy, Symbol
from sympy.core.sympify import sympify
from sympy.functions.combinatorial.factorials import factorial
from sympy.functions.elementary.integers import floor
from sympy.functions.combinatorial.numbers import fibonacci
from sympy.functions.elementary.exponential import exp, log
from sympy.functions.elementary.miscellaneous import sqrt, cbrt
from sympy.functions.elementary.trigonometric import cos, sin
from sympy.polys.domains.realfield import RealField
from sympy.printing.latex import latex
from sympy.printing.repr import srepr
from sympy.simplify import simplify
from sympy.core.power import integer_nthroot, isqrt, integer_log
from sympy.polys.domains.groundtypes import PythonRational
from sympy.utilities.decorator import conserve_mpmath_dps
from sympy.utilities.iterables import permutations
from sympy.testing.pytest import XFAIL, raises, _both_exp_pow
from mpmath import mpf
from mpmath.rational import mpq
import mpmath
from sympy.core import numbers
t = Symbol('t', real=False)
_ninf = float(-oo)
_inf = float(oo)
def same_and_same_prec(a, b):
# stricter matching for Floats
return a == b and a._prec == b._prec
def test_seterr():
seterr(divide=True)
raises(ValueError, lambda: S.Zero/S.Zero)
seterr(divide=False)
assert S.Zero / S.Zero is S.NaN
def test_mod():
x = S.Half
y = Rational(3, 4)
z = Rational(5, 18043)
assert x % x == 0
assert x % y == S.Half
assert x % z == Rational(3, 36086)
assert y % x == Rational(1, 4)
assert y % y == 0
assert y % z == Rational(9, 72172)
assert z % x == Rational(5, 18043)
assert z % y == Rational(5, 18043)
assert z % z == 0
a = Float(2.6)
assert (a % .2) == 0.0
assert (a % 2).round(15) == 0.6
assert (a % 0.5).round(15) == 0.1
p = Symbol('p', infinite=True)
assert oo % oo is nan
assert zoo % oo is nan
assert 5 % oo is nan
assert p % 5 is nan
# In these two tests, if the precision of m does
# not match the precision of the ans, then it is
# likely that the change made now gives an answer
# with degraded accuracy.
r = Rational(500, 41)
f = Float('.36', 3)
m = r % f
ans = Float(r % Rational(f), 3)
assert m == ans and m._prec == ans._prec
f = Float('8.36', 3)
m = f % r
ans = Float(Rational(f) % r, 3)
assert m == ans and m._prec == ans._prec
s = S.Zero
assert s % float(1) == 0.0
# No rounding required since these numbers can be represented
# exactly.
assert Rational(3, 4) % Float(1.1) == 0.75
assert Float(1.5) % Rational(5, 4) == 0.25
assert Rational(5, 4).__rmod__(Float('1.5')) == 0.25
assert Float('1.5').__rmod__(Float('2.75')) == Float('1.25')
assert 2.75 % Float('1.5') == Float('1.25')
a = Integer(7)
b = Integer(4)
assert type(a % b) == Integer
assert a % b == Integer(3)
assert Integer(1) % Rational(2, 3) == Rational(1, 3)
assert Rational(7, 5) % Integer(1) == Rational(2, 5)
assert Integer(2) % 1.5 == 0.5
assert Integer(3).__rmod__(Integer(10)) == Integer(1)
assert Integer(10) % 4 == Integer(2)
assert 15 % Integer(4) == Integer(3)
def test_divmod():
x = Symbol("x")
assert divmod(S(12), S(8)) == Tuple(1, 4)
assert divmod(-S(12), S(8)) == Tuple(-2, 4)
assert divmod(S.Zero, S.One) == Tuple(0, 0)
raises(ZeroDivisionError, lambda: divmod(S.Zero, S.Zero))
raises(ZeroDivisionError, lambda: divmod(S.One, S.Zero))
assert divmod(S(12), 8) == Tuple(1, 4)
assert divmod(12, S(8)) == Tuple(1, 4)
assert S(1024)//x == 1024//x == floor(1024/x)
assert divmod(S("2"), S("3/2")) == Tuple(S("1"), S("1/2"))
assert divmod(S("3/2"), S("2")) == Tuple(S("0"), S("3/2"))
assert divmod(S("2"), S("3.5")) == Tuple(S("0"), S("2"))
assert divmod(S("3.5"), S("2")) == Tuple(S("1"), S("1.5"))
assert divmod(S("2"), S("1/3")) == Tuple(S("6"), S("0"))
assert divmod(S("1/3"), S("2")) == Tuple(S("0"), S("1/3"))
assert divmod(S("2"), S("1/10")) == Tuple(S("20"), S("0"))
assert divmod(S("2"), S(".1"))[0] == 19
assert divmod(S("0.1"), S("2")) == Tuple(S("0"), S("0.1"))
assert divmod(S("2"), 2) == Tuple(S("1"), S("0"))
assert divmod(2, S("2")) == Tuple(S("1"), S("0"))
assert divmod(S("2"), 1.5) == Tuple(S("1"), S("0.5"))
assert divmod(1.5, S("2")) == Tuple(S("0"), S("1.5"))
assert divmod(0.3, S("2")) == Tuple(S("0"), S("0.3"))
assert divmod(S("3/2"), S("3.5")) == Tuple(S("0"), S("3/2"))
assert divmod(S("3.5"), S("3/2")) == Tuple(S("2"), S("0.5"))
assert divmod(S("3/2"), S("1/3")) == Tuple(S("4"), S("1/6"))
assert divmod(S("1/3"), S("3/2")) == Tuple(S("0"), S("1/3"))
assert divmod(S("3/2"), S("0.1"))[0] == 14
assert divmod(S("0.1"), S("3/2")) == Tuple(S("0"), S("0.1"))
assert divmod(S("3/2"), 2) == Tuple(S("0"), S("3/2"))
assert divmod(2, S("3/2")) == Tuple(S("1"), S("1/2"))
assert divmod(S("3/2"), 1.5) == Tuple(S("1"), S("0"))
assert divmod(1.5, S("3/2")) == Tuple(S("1"), S("0"))
assert divmod(S("3/2"), 0.3) == Tuple(S("5"), S("0"))
assert divmod(0.3, S("3/2")) == Tuple(S("0"), S("0.3"))
assert divmod(S("1/3"), S("3.5")) == Tuple(S("0"), S("1/3"))
assert divmod(S("3.5"), S("0.1")) == Tuple(S("35"), S("0"))
assert divmod(S("0.1"), S("3.5")) == Tuple(S("0"), S("0.1"))
assert divmod(S("3.5"), 2) == Tuple(S("1"), S("1.5"))
assert divmod(2, S("3.5")) == Tuple(S("0"), S("2"))
assert divmod(S("3.5"), 1.5) == Tuple(S("2"), S("0.5"))
assert divmod(1.5, S("3.5")) == Tuple(S("0"), S("1.5"))
assert divmod(0.3, S("3.5")) == Tuple(S("0"), S("0.3"))
assert divmod(S("0.1"), S("1/3")) == Tuple(S("0"), S("0.1"))
assert divmod(S("1/3"), 2) == Tuple(S("0"), S("1/3"))
assert divmod(2, S("1/3")) == Tuple(S("6"), S("0"))
assert divmod(S("1/3"), 1.5) == Tuple(S("0"), S("1/3"))
assert divmod(0.3, S("1/3")) == Tuple(S("0"), S("0.3"))
assert divmod(S("0.1"), 2) == Tuple(S("0"), S("0.1"))
assert divmod(2, S("0.1"))[0] == 19
assert divmod(S("0.1"), 1.5) == Tuple(S("0"), S("0.1"))
assert divmod(1.5, S("0.1")) == Tuple(S("15"), S("0"))
assert divmod(S("0.1"), 0.3) == Tuple(S("0"), S("0.1"))
assert str(divmod(S("2"), 0.3)) == '(6, 0.2)'
assert str(divmod(S("3.5"), S("1/3"))) == '(10, 0.166666666666667)'
assert str(divmod(S("3.5"), 0.3)) == '(11, 0.2)'
assert str(divmod(S("1/3"), S("0.1"))) == '(3, 0.0333333333333333)'
assert str(divmod(1.5, S("1/3"))) == '(4, 0.166666666666667)'
assert str(divmod(S("1/3"), 0.3)) == '(1, 0.0333333333333333)'
assert str(divmod(0.3, S("0.1"))) == '(2, 0.1)'
assert divmod(-3, S(2)) == (-2, 1)
assert divmod(S(-3), S(2)) == (-2, 1)
assert divmod(S(-3), 2) == (-2, 1)
assert divmod(S(4), S(-3.1)) == Tuple(-2, -2.2)
assert divmod(S(4), S(-2.1)) == divmod(4, -2.1)
assert divmod(S(-8), S(-2.5) ) == Tuple(3, -0.5)
assert divmod(oo, 1) == (S.NaN, S.NaN)
assert divmod(S.NaN, 1) == (S.NaN, S.NaN)
assert divmod(1, S.NaN) == (S.NaN, S.NaN)
ans = [(-1, oo), (-1, oo), (0, 0), (0, 1), (0, 2)]
OO = float('inf')
ANS = [tuple(map(float, i)) for i in ans]
assert [divmod(i, oo) for i in range(-2, 3)] == ans
ans = [(0, -2), (0, -1), (0, 0), (-1, -oo), (-1, -oo)]
ANS = [tuple(map(float, i)) for i in ans]
assert [divmod(i, -oo) for i in range(-2, 3)] == ans
assert [divmod(i, -OO) for i in range(-2, 3)] == ANS
assert divmod(S(3.5), S(-2)) == divmod(3.5, -2)
assert divmod(-S(3.5), S(-2)) == divmod(-3.5, -2)
assert divmod(S(0.0), S(9)) == divmod(0.0, 9)
assert divmod(S(0), S(9.0)) == divmod(0, 9.0)
def test_igcd():
assert igcd(0, 0) == 0
assert igcd(0, 1) == 1
assert igcd(1, 0) == 1
assert igcd(0, 7) == 7
assert igcd(7, 0) == 7
assert igcd(7, 1) == 1
assert igcd(1, 7) == 1
assert igcd(-1, 0) == 1
assert igcd(0, -1) == 1
assert igcd(-1, -1) == 1
assert igcd(-1, 7) == 1
assert igcd(7, -1) == 1
assert igcd(8, 2) == 2
assert igcd(4, 8) == 4
assert igcd(8, 16) == 8
assert igcd(7, -3) == 1
assert igcd(-7, 3) == 1
assert igcd(-7, -3) == 1
assert igcd(*[10, 20, 30]) == 10
raises(TypeError, lambda: igcd())
raises(TypeError, lambda: igcd(2))
raises(ValueError, lambda: igcd(0, None))
raises(ValueError, lambda: igcd(1, 2.2))
for args in permutations((45.1, 1, 30)):
raises(ValueError, lambda: igcd(*args))
for args in permutations((1, 2, None)):
raises(ValueError, lambda: igcd(*args))
def test_igcd_lehmer():
a, b = fibonacci(10001), fibonacci(10000)
# len(str(a)) == 2090
# small divisors, long Euclidean sequence
assert igcd_lehmer(a, b) == 1
c = fibonacci(100)
assert igcd_lehmer(a*c, b*c) == c
# big divisor
assert igcd_lehmer(a, 10**1000) == 1
# swapping argument
assert igcd_lehmer(1, 2) == igcd_lehmer(2, 1)
def test_igcd2():
# short loop
assert igcd2(2**100 - 1, 2**99 - 1) == 1
# Lehmer's algorithm
a, b = int(fibonacci(10001)), int(fibonacci(10000))
assert igcd2(a, b) == 1
def test_ilcm():
assert ilcm(0, 0) == 0
assert ilcm(1, 0) == 0
assert ilcm(0, 1) == 0
assert ilcm(1, 1) == 1
assert ilcm(2, 1) == 2
assert ilcm(8, 2) == 8
assert ilcm(8, 6) == 24
assert ilcm(8, 7) == 56
assert ilcm(*[10, 20, 30]) == 60
raises(ValueError, lambda: ilcm(8.1, 7))
raises(ValueError, lambda: ilcm(8, 7.1))
raises(TypeError, lambda: ilcm(8))
def test_igcdex():
assert igcdex(2, 3) == (-1, 1, 1)
assert igcdex(10, 12) == (-1, 1, 2)
assert igcdex(100, 2004) == (-20, 1, 4)
assert igcdex(0, 0) == (0, 1, 0)
assert igcdex(1, 0) == (1, 0, 1)
def _strictly_equal(a, b):
return (a.p, a.q, type(a.p), type(a.q)) == \
(b.p, b.q, type(b.p), type(b.q))
def _test_rational_new(cls):
"""
Tests that are common between Integer and Rational.
"""
assert cls(0) is S.Zero
assert cls(1) is S.One
assert cls(-1) is S.NegativeOne
# These look odd, but are similar to int():
assert cls('1') is S.One
assert cls('-1') is S.NegativeOne
i = Integer(10)
assert _strictly_equal(i, cls('10'))
assert _strictly_equal(i, cls('10'))
assert _strictly_equal(i, cls(int(10)))
assert _strictly_equal(i, cls(i))
raises(TypeError, lambda: cls(Symbol('x')))
def test_Integer_new():
"""
Test for Integer constructor
"""
_test_rational_new(Integer)
assert _strictly_equal(Integer(0.9), S.Zero)
assert _strictly_equal(Integer(10.5), Integer(10))
raises(ValueError, lambda: Integer("10.5"))
assert Integer(Rational('1.' + '9'*20)) == 1
def test_Rational_new():
""""
Test for Rational constructor
"""
_test_rational_new(Rational)
n1 = S.Half
assert n1 == Rational(Integer(1), 2)
assert n1 == Rational(Integer(1), Integer(2))
assert n1 == Rational(1, Integer(2))
assert n1 == Rational(S.Half)
assert 1 == Rational(n1, n1)
assert Rational(3, 2) == Rational(S.Half, Rational(1, 3))
assert Rational(3, 1) == Rational(1, Rational(1, 3))
n3_4 = Rational(3, 4)
assert Rational('3/4') == n3_4
assert -Rational('-3/4') == n3_4
assert Rational('.76').limit_denominator(4) == n3_4
assert Rational(19, 25).limit_denominator(4) == n3_4
assert Rational('19/25').limit_denominator(4) == n3_4
assert Rational(1.0, 3) == Rational(1, 3)
assert Rational(1, 3.0) == Rational(1, 3)
assert Rational(Float(0.5)) == S.Half
assert Rational('1e2/1e-2') == Rational(10000)
assert Rational('1 234') == Rational(1234)
assert Rational('1/1 234') == Rational(1, 1234)
assert Rational(-1, 0) is S.ComplexInfinity
assert Rational(1, 0) is S.ComplexInfinity
# Make sure Rational doesn't lose precision on Floats
assert Rational(pi.evalf(100)).evalf(100) == pi.evalf(100)
raises(TypeError, lambda: Rational('3**3'))
raises(TypeError, lambda: Rational('1/2 + 2/3'))
# handle fractions.Fraction instances
try:
import fractions
assert Rational(fractions.Fraction(1, 2)) == S.Half
except ImportError:
pass
assert Rational(mpq(2, 6)) == Rational(1, 3)
assert Rational(PythonRational(2, 6)) == Rational(1, 3)
assert Rational(2, 4, gcd=1).q == 4
n = Rational(2, -4, gcd=1)
assert n.q == 4
assert n.p == -2
def test_Number_new():
""""
Test for Number constructor
"""
# Expected behavior on numbers and strings
assert Number(1) is S.One
assert Number(2).__class__ is Integer
assert Number(-622).__class__ is Integer
assert Number(5, 3).__class__ is Rational
assert Number(5.3).__class__ is Float
assert Number('1') is S.One
assert Number('2').__class__ is Integer
assert Number('-622').__class__ is Integer
assert Number('5/3').__class__ is Rational
assert Number('5.3').__class__ is Float
raises(ValueError, lambda: Number('cos'))
raises(TypeError, lambda: Number(cos))
a = Rational(3, 5)
assert Number(a) is a # Check idempotence on Numbers
u = ['inf', '-inf', 'nan', 'iNF', '+inf']
v = [oo, -oo, nan, oo, oo]
for i, a in zip(u, v):
assert Number(i) is a, (i, Number(i), a)
def test_Number_cmp():
n1 = Number(1)
n2 = Number(2)
n3 = Number(-3)
assert n1 < n2
assert n1 <= n2
assert n3 < n1
assert n2 > n3
assert n2 >= n3
raises(TypeError, lambda: n1 < S.NaN)
raises(TypeError, lambda: n1 <= S.NaN)
raises(TypeError, lambda: n1 > S.NaN)
raises(TypeError, lambda: n1 >= S.NaN)
def test_Rational_cmp():
n1 = Rational(1, 4)
n2 = Rational(1, 3)
n3 = Rational(2, 4)
n4 = Rational(2, -4)
n5 = Rational(0)
n6 = Rational(1)
n7 = Rational(3)
n8 = Rational(-3)
assert n8 < n5
assert n5 < n6
assert n6 < n7
assert n8 < n7
assert n7 > n8
assert (n1 + 1)**n2 < 2
assert ((n1 + n6)/n7) < 1
assert n4 < n3
assert n2 < n3
assert n1 < n2
assert n3 > n1
assert not n3 < n1
assert not (Rational(-1) > 0)
assert Rational(-1) < 0
raises(TypeError, lambda: n1 < S.NaN)
raises(TypeError, lambda: n1 <= S.NaN)
raises(TypeError, lambda: n1 > S.NaN)
raises(TypeError, lambda: n1 >= S.NaN)
def test_Float():
def eq(a, b):
t = Float("1.0E-15")
return (-t < a - b < t)
zeros = (0, S.Zero, 0., Float(0))
for i, j in permutations(zeros, 2):
assert i == j
for z in zeros:
assert z in zeros
assert S.Zero.is_zero
a = Float(2) ** Float(3)
assert eq(a.evalf(), Float(8))
assert eq((pi ** -1).evalf(), Float("0.31830988618379067"))
a = Float(2) ** Float(4)
assert eq(a.evalf(), Float(16))
assert (S(.3) == S(.5)) is False
mpf = (0, 5404319552844595, -52, 53)
x_str = Float((0, '13333333333333', -52, 53))
x_0xstr = Float((0, '0x13333333333333', -52, 53))
x2_str = Float((0, '26666666666666', -53, 54))
x_hex = Float((0, int(0x13333333333333), -52, 53))
x_dec = Float(mpf)
assert x_str == x_0xstr == x_hex == x_dec == Float(1.2)
# x2_str was entered slightly malformed in that the mantissa
# was even -- it should be odd and the even part should be
# included with the exponent, but this is resolved by normalization
# ONLY IF REQUIREMENTS of mpf_norm are met: the bitcount must
# be exact: double the mantissa ==> increase bc by 1
assert Float(1.2)._mpf_ == mpf
assert x2_str._mpf_ == mpf
assert Float((0, int(0), -123, -1)) is S.NaN
assert Float((0, int(0), -456, -2)) is S.Infinity
assert Float((1, int(0), -789, -3)) is S.NegativeInfinity
# if you don't give the full signature, it's not special
assert Float((0, int(0), -123)) == Float(0)
assert Float((0, int(0), -456)) == Float(0)
assert Float((1, int(0), -789)) == Float(0)
raises(ValueError, lambda: Float((0, 7, 1, 3), ''))
assert Float('0.0').is_finite is True
assert Float('0.0').is_negative is False
assert Float('0.0').is_positive is False
assert Float('0.0').is_infinite is False
assert Float('0.0').is_zero is True
# rationality properties
# if the integer test fails then the use of intlike
# should be removed from gamma_functions.py
assert Float(1).is_integer is False
assert Float(1).is_rational is None
assert Float(1).is_irrational is None
assert sqrt(2).n(15).is_rational is None
assert sqrt(2).n(15).is_irrational is None
# do not automatically evalf
def teq(a):
assert (a.evalf() == a) is False
assert (a.evalf() != a) is True
assert (a == a.evalf()) is False
assert (a != a.evalf()) is True
teq(pi)
teq(2*pi)
teq(cos(0.1, evaluate=False))
# long integer
i = 12345678901234567890
assert same_and_same_prec(Float(12, ''), Float('12', ''))
assert same_and_same_prec(Float(Integer(i), ''), Float(i, ''))
assert same_and_same_prec(Float(i, ''), Float(str(i), 20))
assert same_and_same_prec(Float(str(i)), Float(i, ''))
assert same_and_same_prec(Float(i), Float(i, ''))
# inexact floats (repeating binary = denom not multiple of 2)
# cannot have precision greater than 15
assert Float(.125, 22) == .125
assert Float(2.0, 22) == 2
assert float(Float('.12500000000000001', '')) == .125
raises(ValueError, lambda: Float(.12500000000000001, ''))
# allow spaces
assert Float('123 456.123 456') == Float('123456.123456')
assert Integer('123 456') == Integer('123456')
assert Rational('123 456.123 456') == Rational('123456.123456')
assert Float(' .3e2') == Float('0.3e2')
# allow underscore
assert Float('1_23.4_56') == Float('123.456')
assert Float('1_') == Float('1.0')
assert Float('1_.') == Float('1.0')
assert Float('1._') == Float('1.0')
assert Float('1__2') == Float('12.0')
# assert Float('1_23.4_5_6', 12) == Float('123.456', 12)
# ...but not in all cases (per Py 3.6)
raises(ValueError, lambda: Float('_1'))
raises(ValueError, lambda: Float('_inf'))
# allow auto precision detection
assert Float('.1', '') == Float(.1, 1)
assert Float('.125', '') == Float(.125, 3)
assert Float('.100', '') == Float(.1, 3)
assert Float('2.0', '') == Float('2', 2)
raises(ValueError, lambda: Float("12.3d-4", ""))
raises(ValueError, lambda: Float(12.3, ""))
raises(ValueError, lambda: Float('.'))
raises(ValueError, lambda: Float('-.'))
zero = Float('0.0')
assert Float('-0') == zero
assert Float('.0') == zero
assert Float('-.0') == zero
assert Float('-0.0') == zero
assert Float(0.0) == zero
assert Float(0) == zero
assert Float(0, '') == Float('0', '')
assert Float(1) == Float(1.0)
assert Float(S.Zero) == zero
assert Float(S.One) == Float(1.0)
assert Float(decimal.Decimal('0.1'), 3) == Float('.1', 3)
assert Float(decimal.Decimal('nan')) is S.NaN
assert Float(decimal.Decimal('Infinity')) is S.Infinity
assert Float(decimal.Decimal('-Infinity')) is S.NegativeInfinity
assert '{:.3f}'.format(Float(4.236622)) == '4.237'
assert '{:.35f}'.format(Float(pi.n(40), 40)) == \
'3.14159265358979323846264338327950288'
# unicode
assert Float('0.73908513321516064100000000') == \
Float('0.73908513321516064100000000')
assert Float('0.73908513321516064100000000', 28) == \
Float('0.73908513321516064100000000', 28)
# binary precision
# Decimal value 0.1 cannot be expressed precisely as a base 2 fraction
a = Float(S.One/10, dps=15)
b = Float(S.One/10, dps=16)
p = Float(S.One/10, precision=53)
q = Float(S.One/10, precision=54)
assert a._mpf_ == p._mpf_
assert not a._mpf_ == q._mpf_
assert not b._mpf_ == q._mpf_
# Precision specifying errors
raises(ValueError, lambda: Float("1.23", dps=3, precision=10))
raises(ValueError, lambda: Float("1.23", dps="", precision=10))
raises(ValueError, lambda: Float("1.23", dps=3, precision=""))
raises(ValueError, lambda: Float("1.23", dps="", precision=""))
# from NumberSymbol
assert same_and_same_prec(Float(pi, 32), pi.evalf(32))
assert same_and_same_prec(Float(Catalan), Catalan.evalf())
# oo and nan
u = ['inf', '-inf', 'nan', 'iNF', '+inf']
v = [oo, -oo, nan, oo, oo]
for i, a in zip(u, v):
assert Float(i) is a
def test_zero_not_false():
# https://github.com/sympy/sympy/issues/20796
assert (S(0.0) == S.false) is False
assert (S.false == S(0.0)) is False
assert (S(0) == S.false) is False
assert (S.false == S(0)) is False
@conserve_mpmath_dps
def test_float_mpf():
import mpmath
mpmath.mp.dps = 100
mp_pi = mpmath.pi()
assert Float(mp_pi, 100) == Float(mp_pi._mpf_, 100) == pi.evalf(100)
mpmath.mp.dps = 15
assert Float(mp_pi, 100) == Float(mp_pi._mpf_, 100) == pi.evalf(100)
def test_Float_RealElement():
repi = RealField(dps=100)(pi.evalf(100))
# We still have to pass the precision because Float doesn't know what
# RealElement is, but make sure it keeps full precision from the result.
assert Float(repi, 100) == pi.evalf(100)
def test_Float_default_to_highprec_from_str():
s = str(pi.evalf(128))
assert same_and_same_prec(Float(s), Float(s, ''))
def test_Float_eval():
a = Float(3.2)
assert (a**2).is_Float
def test_Float_issue_2107():
a = Float(0.1, 10)
b = Float("0.1", 10)
assert a - a == 0
assert a + (-a) == 0
assert S.Zero + a - a == 0
assert S.Zero + a + (-a) == 0
assert b - b == 0
assert b + (-b) == 0
assert S.Zero + b - b == 0
assert S.Zero + b + (-b) == 0
def test_issue_14289():
from sympy.polys.numberfields import to_number_field
a = 1 - sqrt(2)
b = to_number_field(a)
assert b.as_expr() == a
assert b.minpoly(a).expand() == 0
def test_Float_from_tuple():
a = Float((0, '1L', 0, 1))
b = Float((0, '1', 0, 1))
assert a == b
def test_Infinity():
assert oo != 1
assert 1*oo is oo
assert 1 != oo
assert oo != -oo
assert oo != Symbol("x")**3
assert oo + 1 is oo
assert 2 + oo is oo
assert 3*oo + 2 is oo
assert S.Half**oo == 0
assert S.Half**(-oo) is oo
assert -oo*3 is -oo
assert oo + oo is oo
assert -oo + oo*(-5) is -oo
assert 1/oo == 0
assert 1/(-oo) == 0
assert 8/oo == 0
assert oo % 2 is nan
assert 2 % oo is nan
assert oo/oo is nan
assert oo/-oo is nan
assert -oo/oo is nan
assert -oo/-oo is nan
assert oo - oo is nan
assert oo - -oo is oo
assert -oo - oo is -oo
assert -oo - -oo is nan
assert oo + -oo is nan
assert -oo + oo is nan
assert oo + oo is oo
assert -oo + oo is nan
assert oo + -oo is nan
assert -oo + -oo is -oo
assert oo*oo is oo
assert -oo*oo is -oo
assert oo*-oo is -oo
assert -oo*-oo is oo
assert oo/0 is oo
assert -oo/0 is -oo
assert 0/oo == 0
assert 0/-oo == 0
assert oo*0 is nan
assert -oo*0 is nan
assert 0*oo is nan
assert 0*-oo is nan
assert oo + 0 is oo
assert -oo + 0 is -oo
assert 0 + oo is oo
assert 0 + -oo is -oo
assert oo - 0 is oo
assert -oo - 0 is -oo
assert 0 - oo is -oo
assert 0 - -oo is oo
assert oo/2 is oo
assert -oo/2 is -oo
assert oo/-2 is -oo
assert -oo/-2 is oo
assert oo*2 is oo
assert -oo*2 is -oo
assert oo*-2 is -oo
assert 2/oo == 0
assert 2/-oo == 0
assert -2/oo == 0
assert -2/-oo == 0
assert 2*oo is oo
assert 2*-oo is -oo
assert -2*oo is -oo
assert -2*-oo is oo
assert 2 + oo is oo
assert 2 - oo is -oo
assert -2 + oo is oo
assert -2 - oo is -oo
assert 2 + -oo is -oo
assert 2 - -oo is oo
assert -2 + -oo is -oo
assert -2 - -oo is oo
assert S(2) + oo is oo
assert S(2) - oo is -oo
assert oo/I == -oo*I
assert -oo/I == oo*I
assert oo*float(1) == _inf and (oo*float(1)) is oo
assert -oo*float(1) == _ninf and (-oo*float(1)) is -oo
assert oo/float(1) == _inf and (oo/float(1)) is oo
assert -oo/float(1) == _ninf and (-oo/float(1)) is -oo
assert oo*float(-1) == _ninf and (oo*float(-1)) is -oo
assert -oo*float(-1) == _inf and (-oo*float(-1)) is oo
assert oo/float(-1) == _ninf and (oo/float(-1)) is -oo
assert -oo/float(-1) == _inf and (-oo/float(-1)) is oo
assert oo + float(1) == _inf and (oo + float(1)) is oo
assert -oo + float(1) == _ninf and (-oo + float(1)) is -oo
assert oo - float(1) == _inf and (oo - float(1)) is oo
assert -oo - float(1) == _ninf and (-oo - float(1)) is -oo
assert float(1)*oo == _inf and (float(1)*oo) is oo
assert float(1)*-oo == _ninf and (float(1)*-oo) is -oo
assert float(1)/oo == 0
assert float(1)/-oo == 0
assert float(-1)*oo == _ninf and (float(-1)*oo) is -oo
assert float(-1)*-oo == _inf and (float(-1)*-oo) is oo
assert float(-1)/oo == 0
assert float(-1)/-oo == 0
assert float(1) + oo is oo
assert float(1) + -oo is -oo
assert float(1) - oo is -oo
assert float(1) - -oo is oo
assert oo == float(oo)
assert (oo != float(oo)) is False
assert type(float(oo)) is float
assert -oo == float(-oo)
assert (-oo != float(-oo)) is False
assert type(float(-oo)) is float
assert Float('nan') is nan
assert nan*1.0 is nan
assert -1.0*nan is nan
assert nan*oo is nan
assert nan*-oo is nan
assert nan/oo is nan
assert nan/-oo is nan
assert nan + oo is nan
assert nan + -oo is nan
assert nan - oo is nan
assert nan - -oo is nan
assert -oo * S.Zero is nan
assert oo*nan is nan
assert -oo*nan is nan
assert oo/nan is nan
assert -oo/nan is nan
assert oo + nan is nan
assert -oo + nan is nan
assert oo - nan is nan
assert -oo - nan is nan
assert S.Zero * oo is nan
assert oo.is_Rational is False
assert isinstance(oo, Rational) is False
assert S.One/oo == 0
assert -S.One/oo == 0
assert S.One/-oo == 0
assert -S.One/-oo == 0
assert S.One*oo is oo
assert -S.One*oo is -oo
assert S.One*-oo is -oo
assert -S.One*-oo is oo
assert S.One/nan is nan
assert S.One - -oo is oo
assert S.One + nan is nan
assert S.One - nan is nan
assert nan - S.One is nan
assert nan/S.One is nan
assert -oo - S.One is -oo
def test_Infinity_2():
x = Symbol('x')
assert oo*x != oo
assert oo*(pi - 1) is oo
assert oo*(1 - pi) is -oo
assert (-oo)*x != -oo
assert (-oo)*(pi - 1) is -oo
assert (-oo)*(1 - pi) is oo
assert (-1)**S.NaN is S.NaN
assert oo - _inf is S.NaN
assert oo + _ninf is S.NaN
assert oo*0 is S.NaN
assert oo/_inf is S.NaN
assert oo/_ninf is S.NaN
assert oo**S.NaN is S.NaN
assert -oo + _inf is S.NaN
assert -oo - _ninf is S.NaN
assert -oo*S.NaN is S.NaN
assert -oo*0 is S.NaN
assert -oo/_inf is S.NaN
assert -oo/_ninf is S.NaN
assert -oo/S.NaN is S.NaN
assert abs(-oo) is oo
assert all((-oo)**i is S.NaN for i in (oo, -oo, S.NaN))
assert (-oo)**3 is -oo
assert (-oo)**2 is oo
assert abs(S.ComplexInfinity) is oo
def test_Mul_Infinity_Zero():
assert Float(0)*_inf is nan
assert Float(0)*_ninf is nan
assert Float(0)*_inf is nan
assert Float(0)*_ninf is nan
assert _inf*Float(0) is nan
assert _ninf*Float(0) is nan
assert _inf*Float(0) is nan
assert _ninf*Float(0) is nan
def test_Div_By_Zero():
assert 1/S.Zero is zoo
assert 1/Float(0) is zoo
assert 0/S.Zero is nan
assert 0/Float(0) is nan
assert S.Zero/0 is nan
assert Float(0)/0 is nan
assert -1/S.Zero is zoo
assert -1/Float(0) is zoo
@_both_exp_pow
def test_Infinity_inequations():
assert oo > pi
assert not (oo < pi)
assert exp(-3) < oo
assert _inf > pi
assert not (_inf < pi)
assert exp(-3) < _inf
raises(TypeError, lambda: oo < I)
raises(TypeError, lambda: oo <= I)
raises(TypeError, lambda: oo > I)
raises(TypeError, lambda: oo >= I)
raises(TypeError, lambda: -oo < I)
raises(TypeError, lambda: -oo <= I)
raises(TypeError, lambda: -oo > I)
raises(TypeError, lambda: -oo >= I)
raises(TypeError, lambda: I < oo)
raises(TypeError, lambda: I <= oo)
raises(TypeError, lambda: I > oo)
raises(TypeError, lambda: I >= oo)
raises(TypeError, lambda: I < -oo)
raises(TypeError, lambda: I <= -oo)
raises(TypeError, lambda: I > -oo)
raises(TypeError, lambda: I >= -oo)
assert oo > -oo and oo >= -oo
assert (oo < -oo) == False and (oo <= -oo) == False
assert -oo < oo and -oo <= oo
assert (-oo > oo) == False and (-oo >= oo) == False
assert (oo < oo) == False # issue 7775
assert (oo > oo) == False
assert (-oo > -oo) == False and (-oo < -oo) == False
assert oo >= oo and oo <= oo and -oo >= -oo and -oo <= -oo
assert (-oo < -_inf) == False
assert (oo > _inf) == False
assert -oo >= -_inf
assert oo <= _inf
x = Symbol('x')
b = Symbol('b', finite=True, real=True)
assert (x < oo) == Lt(x, oo) # issue 7775
assert b < oo and b > -oo and b <= oo and b >= -oo
assert oo > b and oo >= b and (oo < b) == False and (oo <= b) == False
assert (-oo > b) == False and (-oo >= b) == False and -oo < b and -oo <= b
assert (oo < x) == Lt(oo, x) and (oo > x) == Gt(oo, x)
assert (oo <= x) == Le(oo, x) and (oo >= x) == Ge(oo, x)
assert (-oo < x) == Lt(-oo, x) and (-oo > x) == Gt(-oo, x)
assert (-oo <= x) == Le(-oo, x) and (-oo >= x) == Ge(-oo, x)
def test_NaN():
assert nan is nan
assert nan != 1
assert 1*nan is nan
assert 1 != nan
assert -nan is nan
assert oo != Symbol("x")**3
assert 2 + nan is nan
assert 3*nan + 2 is nan
assert -nan*3 is nan
assert nan + nan is nan
assert -nan + nan*(-5) is nan
assert 8/nan is nan
raises(TypeError, lambda: nan > 0)
raises(TypeError, lambda: nan < 0)
raises(TypeError, lambda: nan >= 0)
raises(TypeError, lambda: nan <= 0)
raises(TypeError, lambda: 0 < nan)
raises(TypeError, lambda: 0 > nan)
raises(TypeError, lambda: 0 <= nan)
raises(TypeError, lambda: 0 >= nan)
assert nan**0 == 1 # as per IEEE 754
assert 1**nan is nan # IEEE 754 is not the best choice for symbolic work
# test Pow._eval_power's handling of NaN
assert Pow(nan, 0, evaluate=False)**2 == 1
for n in (1, 1., S.One, S.NegativeOne, Float(1)):
assert n + nan is nan
assert n - nan is nan
assert nan + n is nan
assert nan - n is nan
assert n/nan is nan
assert nan/n is nan
def test_special_numbers():
assert isinstance(S.NaN, Number) is True
assert isinstance(S.Infinity, Number) is True
assert isinstance(S.NegativeInfinity, Number) is True
assert S.NaN.is_number is True
assert S.Infinity.is_number is True
assert S.NegativeInfinity.is_number is True
assert S.ComplexInfinity.is_number is True
assert isinstance(S.NaN, Rational) is False
assert isinstance(S.Infinity, Rational) is False
assert isinstance(S.NegativeInfinity, Rational) is False
assert S.NaN.is_rational is not True
assert S.Infinity.is_rational is not True
assert S.NegativeInfinity.is_rational is not True
def test_powers():
assert integer_nthroot(1, 2) == (1, True)
assert integer_nthroot(1, 5) == (1, True)
assert integer_nthroot(2, 1) == (2, True)
assert integer_nthroot(2, 2) == (1, False)
assert integer_nthroot(2, 5) == (1, False)
assert integer_nthroot(4, 2) == (2, True)
assert integer_nthroot(123**25, 25) == (123, True)
assert integer_nthroot(123**25 + 1, 25) == (123, False)
assert integer_nthroot(123**25 - 1, 25) == (122, False)
assert integer_nthroot(1, 1) == (1, True)
assert integer_nthroot(0, 1) == (0, True)
assert integer_nthroot(0, 3) == (0, True)
assert integer_nthroot(10000, 1) == (10000, True)
assert integer_nthroot(4, 2) == (2, True)
assert integer_nthroot(16, 2) == (4, True)
assert integer_nthroot(26, 2) == (5, False)
assert integer_nthroot(1234567**7, 7) == (1234567, True)
assert integer_nthroot(1234567**7 + 1, 7) == (1234567, False)
assert integer_nthroot(1234567**7 - 1, 7) == (1234566, False)
b = 25**1000
assert integer_nthroot(b, 1000) == (25, True)
assert integer_nthroot(b + 1, 1000) == (25, False)
assert integer_nthroot(b - 1, 1000) == (24, False)
c = 10**400
c2 = c**2
assert integer_nthroot(c2, 2) == (c, True)
assert integer_nthroot(c2 + 1, 2) == (c, False)
assert integer_nthroot(c2 - 1, 2) == (c - 1, False)
assert integer_nthroot(2, 10**10) == (1, False)
p, r = integer_nthroot(int(factorial(10000)), 100)
assert p % (10**10) == 5322420655
assert not r
# Test that this is fast
assert integer_nthroot(2, 10**10) == (1, False)
# output should be int if possible
assert type(integer_nthroot(2**61, 2)[0]) is int
def test_integer_nthroot_overflow():
assert integer_nthroot(10**(50*50), 50) == (10**50, True)
assert integer_nthroot(10**100000, 10000) == (10**10, True)
def test_integer_log():
raises(ValueError, lambda: integer_log(2, 1))
raises(ValueError, lambda: integer_log(0, 2))
raises(ValueError, lambda: integer_log(1.1, 2))
raises(ValueError, lambda: integer_log(1, 2.2))
assert integer_log(1, 2) == (0, True)
assert integer_log(1, 3) == (0, True)
assert integer_log(2, 3) == (0, False)
assert integer_log(3, 3) == (1, True)
assert integer_log(3*2, 3) == (1, False)
assert integer_log(3**2, 3) == (2, True)
assert integer_log(3*4, 3) == (2, False)
assert integer_log(3**3, 3) == (3, True)
assert integer_log(27, 5) == (2, False)
assert integer_log(2, 3) == (0, False)
assert integer_log(-4, -2) == (2, False)
assert integer_log(27, -3) == (3, False)
assert integer_log(-49, 7) == (0, False)
assert integer_log(-49, -7) == (2, False)
def test_isqrt():
from math import sqrt as _sqrt
limit = 4503599761588223
assert int(_sqrt(limit)) == integer_nthroot(limit, 2)[0]
assert int(_sqrt(limit + 1)) != integer_nthroot(limit + 1, 2)[0]
assert isqrt(limit + 1) == integer_nthroot(limit + 1, 2)[0]
assert isqrt(limit + S.Half) == integer_nthroot(limit, 2)[0]
assert isqrt(limit + 1 + S.Half) == integer_nthroot(limit + 1, 2)[0]
assert isqrt(limit + 2 + S.Half) == integer_nthroot(limit + 2, 2)[0]
# Regression tests for https://github.com/sympy/sympy/issues/17034
assert isqrt(4503599761588224) == 67108864
assert isqrt(9999999999999999) == 99999999
# Other corner cases, especially involving non-integers.
raises(ValueError, lambda: isqrt(-1))
raises(ValueError, lambda: isqrt(-10**1000))
raises(ValueError, lambda: isqrt(Rational(-1, 2)))
tiny = Rational(1, 10**1000)
raises(ValueError, lambda: isqrt(-tiny))
assert isqrt(1-tiny) == 0
assert isqrt(4503599761588224-tiny) == 67108864
assert isqrt(10**100 - tiny) == 10**50 - 1
# Check that using an inaccurate math.sqrt doesn't affect the results.
from sympy.core import power
old_sqrt = power._sqrt
power._sqrt = lambda x: 2.999999999
try:
assert isqrt(9) == 3
assert isqrt(10000) == 100
finally:
power._sqrt = old_sqrt
def test_powers_Integer():
"""Test Integer._eval_power"""
# check infinity
assert S.One ** S.Infinity is S.NaN
assert S.NegativeOne** S.Infinity is S.NaN
assert S(2) ** S.Infinity is S.Infinity
assert S(-2)** S.Infinity == zoo
assert S(0) ** S.Infinity is S.Zero
# check Nan
assert S.One ** S.NaN is S.NaN
assert S.NegativeOne ** S.NaN is S.NaN
# check for exact roots
assert S.NegativeOne ** Rational(6, 5) == - (-1)**(S.One/5)
assert sqrt(S(4)) == 2
assert sqrt(S(-4)) == I * 2
assert S(16) ** Rational(1, 4) == 2
assert S(-16) ** Rational(1, 4) == 2 * (-1)**Rational(1, 4)
assert S(9) ** Rational(3, 2) == 27
assert S(-9) ** Rational(3, 2) == -27*I
assert S(27) ** Rational(2, 3) == 9
assert S(-27) ** Rational(2, 3) == 9 * (S.NegativeOne ** Rational(2, 3))
assert (-2) ** Rational(-2, 1) == Rational(1, 4)
# not exact roots
assert sqrt(-3) == I*sqrt(3)
assert (3) ** (Rational(3, 2)) == 3 * sqrt(3)
assert (-3) ** (Rational(3, 2)) == - 3 * sqrt(-3)
assert (-3) ** (Rational(5, 2)) == 9 * I * sqrt(3)
assert (-3) ** (Rational(7, 2)) == - I * 27 * sqrt(3)
assert (2) ** (Rational(3, 2)) == 2 * sqrt(2)
assert (2) ** (Rational(-3, 2)) == sqrt(2) / 4
assert (81) ** (Rational(2, 3)) == 9 * (S(3) ** (Rational(2, 3)))
assert (-81) ** (Rational(2, 3)) == 9 * (S(-3) ** (Rational(2, 3)))
assert (-3) ** Rational(-7, 3) == \
-(-1)**Rational(2, 3)*3**Rational(2, 3)/27
assert (-3) ** Rational(-2, 3) == \
-(-1)**Rational(1, 3)*3**Rational(1, 3)/3
# join roots
assert sqrt(6) + sqrt(24) == 3*sqrt(6)
assert sqrt(2) * sqrt(3) == sqrt(6)
# separate symbols & constansts
x = Symbol("x")
assert sqrt(49 * x) == 7 * sqrt(x)
assert sqrt((3 - sqrt(pi)) ** 2) == 3 - sqrt(pi)
# check that it is fast for big numbers
assert (2**64 + 1) ** Rational(4, 3)
assert (2**64 + 1) ** Rational(17, 25)
# negative rational power and negative base
assert (-3) ** Rational(-7, 3) == \
-(-1)**Rational(2, 3)*3**Rational(2, 3)/27
assert (-3) ** Rational(-2, 3) == \
-(-1)**Rational(1, 3)*3**Rational(1, 3)/3
assert (-2) ** Rational(-10, 3) == \
(-1)**Rational(2, 3)*2**Rational(2, 3)/16
assert abs(Pow(-2, Rational(-10, 3)).n() -
Pow(-2, Rational(-10, 3), evaluate=False).n()) < 1e-16
# negative base and rational power with some simplification
assert (-8) ** Rational(2, 5) == \
2*(-1)**Rational(2, 5)*2**Rational(1, 5)
assert (-4) ** Rational(9, 5) == \
-8*(-1)**Rational(4, 5)*2**Rational(3, 5)
assert S(1234).factors() == {617: 1, 2: 1}
assert Rational(2*3, 3*5*7).factors() == {2: 1, 5: -1, 7: -1}
# test that eval_power factors numbers bigger than
# the current limit in factor_trial_division (2**15)
from sympy.ntheory.generate import nextprime
n = nextprime(2**15)
assert sqrt(n**2) == n
assert sqrt(n**3) == n*sqrt(n)
assert sqrt(4*n) == 2*sqrt(n)
# check that factors of base with powers sharing gcd with power are removed
assert (2**4*3)**Rational(1, 6) == 2**Rational(2, 3)*3**Rational(1, 6)
assert (2**4*3)**Rational(5, 6) == 8*2**Rational(1, 3)*3**Rational(5, 6)
# check that bases sharing a gcd are exptracted
assert 2**Rational(1, 3)*3**Rational(1, 4)*6**Rational(1, 5) == \
2**Rational(8, 15)*3**Rational(9, 20)
assert sqrt(8)*24**Rational(1, 3)*6**Rational(1, 5) == \
4*2**Rational(7, 10)*3**Rational(8, 15)
assert sqrt(8)*(-24)**Rational(1, 3)*(-6)**Rational(1, 5) == \
4*(-3)**Rational(8, 15)*2**Rational(7, 10)
assert 2**Rational(1, 3)*2**Rational(8, 9) == 2*2**Rational(2, 9)
assert 2**Rational(2, 3)*6**Rational(1, 3) == 2*3**Rational(1, 3)
assert 2**Rational(2, 3)*6**Rational(8, 9) == \
2*2**Rational(5, 9)*3**Rational(8, 9)
assert (-2)**Rational(2, S(3))*(-4)**Rational(1, S(3)) == -2*2**Rational(1, 3)
assert 3*Pow(3, 2, evaluate=False) == 3**3
assert 3*Pow(3, Rational(-1, 3), evaluate=False) == 3**Rational(2, 3)
assert (-2)**Rational(1, 3)*(-3)**Rational(1, 4)*(-5)**Rational(5, 6) == \
-(-1)**Rational(5, 12)*2**Rational(1, 3)*3**Rational(1, 4) * \
5**Rational(5, 6)
assert Integer(-2)**Symbol('', even=True) == \
Integer(2)**Symbol('', even=True)
assert (-1)**Float(.5) == 1.0*I
def test_powers_Rational():
"""Test Rational._eval_power"""
# check infinity
assert S.Half ** S.Infinity == 0
assert Rational(3, 2) ** S.Infinity is S.Infinity
assert Rational(-1, 2) ** S.Infinity == 0
assert Rational(-3, 2) ** S.Infinity == zoo
# check Nan
assert Rational(3, 4) ** S.NaN is S.NaN
assert Rational(-2, 3) ** S.NaN is S.NaN
# exact roots on numerator
assert sqrt(Rational(4, 3)) == 2 * sqrt(3) / 3
assert Rational(4, 3) ** Rational(3, 2) == 8 * sqrt(3) / 9
assert sqrt(Rational(-4, 3)) == I * 2 * sqrt(3) / 3
assert Rational(-4, 3) ** Rational(3, 2) == - I * 8 * sqrt(3) / 9
assert Rational(27, 2) ** Rational(1, 3) == 3 * (2 ** Rational(2, 3)) / 2
assert Rational(5**3, 8**3) ** Rational(4, 3) == Rational(5**4, 8**4)
# exact root on denominator
assert sqrt(Rational(1, 4)) == S.Half
assert sqrt(Rational(1, -4)) == I * S.Half
assert sqrt(Rational(3, 4)) == sqrt(3) / 2
assert sqrt(Rational(3, -4)) == I * sqrt(3) / 2
assert Rational(5, 27) ** Rational(1, 3) == (5 ** Rational(1, 3)) / 3
# not exact roots
assert sqrt(S.Half) == sqrt(2) / 2
assert sqrt(Rational(-4, 7)) == I * sqrt(Rational(4, 7))
assert Rational(-3, 2)**Rational(-7, 3) == \
-4*(-1)**Rational(2, 3)*2**Rational(1, 3)*3**Rational(2, 3)/27
assert Rational(-3, 2)**Rational(-2, 3) == \
-(-1)**Rational(1, 3)*2**Rational(2, 3)*3**Rational(1, 3)/3
assert Rational(-3, 2)**Rational(-10, 3) == \
8*(-1)**Rational(2, 3)*2**Rational(1, 3)*3**Rational(2, 3)/81
assert abs(Pow(Rational(-2, 3), Rational(-7, 4)).n() -
Pow(Rational(-2, 3), Rational(-7, 4), evaluate=False).n()) < 1e-16
# negative integer power and negative rational base
assert Rational(-2, 3) ** Rational(-2, 1) == Rational(9, 4)
a = Rational(1, 10)
assert a**Float(a, 2) == Float(a, 2)**Float(a, 2)
assert Rational(-2, 3)**Symbol('', even=True) == \
Rational(2, 3)**Symbol('', even=True)
def test_powers_Float():
assert str((S('-1/10')**S('3/10')).n()) == str(Float(-.1)**(.3))
def test_lshift_Integer():
assert Integer(0) << Integer(2) == Integer(0)
assert Integer(0) << 2 == Integer(0)
assert 0 << Integer(2) == Integer(0)
assert Integer(0b11) << Integer(0) == Integer(0b11)
assert Integer(0b11) << 0 == Integer(0b11)
assert 0b11 << Integer(0) == Integer(0b11)
assert Integer(0b11) << Integer(2) == Integer(0b11 << 2)
assert Integer(0b11) << 2 == Integer(0b11 << 2)
assert 0b11 << Integer(2) == Integer(0b11 << 2)
assert Integer(-0b11) << Integer(2) == Integer(-0b11 << 2)
assert Integer(-0b11) << 2 == Integer(-0b11 << 2)
assert -0b11 << Integer(2) == Integer(-0b11 << 2)
raises(TypeError, lambda: Integer(2) << 0.0)
raises(TypeError, lambda: 0.0 << Integer(2))
raises(ValueError, lambda: Integer(1) << Integer(-1))
def test_rshift_Integer():
assert Integer(0) >> Integer(2) == Integer(0)
assert Integer(0) >> 2 == Integer(0)
assert 0 >> Integer(2) == Integer(0)
assert Integer(0b11) >> Integer(0) == Integer(0b11)
assert Integer(0b11) >> 0 == Integer(0b11)
assert 0b11 >> Integer(0) == Integer(0b11)
assert Integer(0b11) >> Integer(2) == Integer(0)
assert Integer(0b11) >> 2 == Integer(0)
assert 0b11 >> Integer(2) == Integer(0)
assert Integer(-0b11) >> Integer(2) == Integer(-1)
assert Integer(-0b11) >> 2 == Integer(-1)
assert -0b11 >> Integer(2) == Integer(-1)
assert Integer(0b1100) >> Integer(2) == Integer(0b1100 >> 2)
assert Integer(0b1100) >> 2 == Integer(0b1100 >> 2)
assert 0b1100 >> Integer(2) == Integer(0b1100 >> 2)
assert Integer(-0b1100) >> Integer(2) == Integer(-0b1100 >> 2)
assert Integer(-0b1100) >> 2 == Integer(-0b1100 >> 2)
assert -0b1100 >> Integer(2) == Integer(-0b1100 >> 2)
raises(TypeError, lambda: Integer(0b10) >> 0.0)
raises(TypeError, lambda: 0.0 >> Integer(2))
raises(ValueError, lambda: Integer(1) >> Integer(-1))
def test_and_Integer():
assert Integer(0b01010101) & Integer(0b10101010) == Integer(0)
assert Integer(0b01010101) & 0b10101010 == Integer(0)
assert 0b01010101 & Integer(0b10101010) == Integer(0)
assert Integer(0b01010101) & Integer(0b11011011) == Integer(0b01010001)
assert Integer(0b01010101) & 0b11011011 == Integer(0b01010001)
assert 0b01010101 & Integer(0b11011011) == Integer(0b01010001)
assert -Integer(0b01010101) & Integer(0b11011011) == Integer(-0b01010101 & 0b11011011)
assert Integer(-0b01010101) & 0b11011011 == Integer(-0b01010101 & 0b11011011)
assert -0b01010101 & Integer(0b11011011) == Integer(-0b01010101 & 0b11011011)
assert Integer(0b01010101) & -Integer(0b11011011) == Integer(0b01010101 & -0b11011011)
assert Integer(0b01010101) & -0b11011011 == Integer(0b01010101 & -0b11011011)
assert 0b01010101 & Integer(-0b11011011) == Integer(0b01010101 & -0b11011011)
raises(TypeError, lambda: Integer(2) & 0.0)
raises(TypeError, lambda: 0.0 & Integer(2))
def test_xor_Integer():
assert Integer(0b01010101) ^ Integer(0b11111111) == Integer(0b10101010)
assert Integer(0b01010101) ^ 0b11111111 == Integer(0b10101010)
assert 0b01010101 ^ Integer(0b11111111) == Integer(0b10101010)
assert Integer(0b01010101) ^ Integer(0b11011011) == Integer(0b10001110)
assert Integer(0b01010101) ^ 0b11011011 == Integer(0b10001110)
assert 0b01010101 ^ Integer(0b11011011) == Integer(0b10001110)
assert -Integer(0b01010101) ^ Integer(0b11011011) == Integer(-0b01010101 ^ 0b11011011)
assert Integer(-0b01010101) ^ 0b11011011 == Integer(-0b01010101 ^ 0b11011011)
assert -0b01010101 ^ Integer(0b11011011) == Integer(-0b01010101 ^ 0b11011011)
assert Integer(0b01010101) ^ -Integer(0b11011011) == Integer(0b01010101 ^ -0b11011011)
assert Integer(0b01010101) ^ -0b11011011 == Integer(0b01010101 ^ -0b11011011)
assert 0b01010101 ^ Integer(-0b11011011) == Integer(0b01010101 ^ -0b11011011)
raises(TypeError, lambda: Integer(2) ^ 0.0)
raises(TypeError, lambda: 0.0 ^ Integer(2))
def test_or_Integer():
assert Integer(0b01010101) | Integer(0b10101010) == Integer(0b11111111)
assert Integer(0b01010101) | 0b10101010 == Integer(0b11111111)
assert 0b01010101 | Integer(0b10101010) == Integer(0b11111111)
assert Integer(0b01010101) | Integer(0b11011011) == Integer(0b11011111)
assert Integer(0b01010101) | 0b11011011 == Integer(0b11011111)
assert 0b01010101 | Integer(0b11011011) == Integer(0b11011111)
assert -Integer(0b01010101) | Integer(0b11011011) == Integer(-0b01010101 | 0b11011011)
assert Integer(-0b01010101) | 0b11011011 == Integer(-0b01010101 | 0b11011011)
assert -0b01010101 | Integer(0b11011011) == Integer(-0b01010101 | 0b11011011)
assert Integer(0b01010101) | -Integer(0b11011011) == Integer(0b01010101 | -0b11011011)
assert Integer(0b01010101) | -0b11011011 == Integer(0b01010101 | -0b11011011)
assert 0b01010101 | Integer(-0b11011011) == Integer(0b01010101 | -0b11011011)
raises(TypeError, lambda: Integer(2) | 0.0)
raises(TypeError, lambda: 0.0 | Integer(2))
def test_invert_Integer():
assert ~Integer(0b01010101) == Integer(-0b01010110)
assert ~Integer(0b01010101) == Integer(~0b01010101)
assert ~(~Integer(0b01010101)) == Integer(0b01010101)
def test_abs1():
assert Rational(1, 6) != Rational(-1, 6)
assert abs(Rational(1, 6)) == abs(Rational(-1, 6))
def test_accept_int():
assert Float(4) == 4
def test_dont_accept_str():
assert Float("0.2") != "0.2"
assert not (Float("0.2") == "0.2")
def test_int():
a = Rational(5)
assert int(a) == 5
a = Rational(9, 10)
assert int(a) == int(-a) == 0
assert 1/(-1)**Rational(2, 3) == -(-1)**Rational(1, 3)
# issue 10368
a = Rational(32442016954, 78058255275)
assert type(int(a)) is type(int(-a)) is int
def test_int_NumberSymbols():
assert int(Catalan) == 0
assert int(EulerGamma) == 0
assert int(pi) == 3
assert int(E) == 2
assert int(GoldenRatio) == 1
assert int(TribonacciConstant) == 1
for i in [Catalan, E, EulerGamma, GoldenRatio, TribonacciConstant, pi]:
a, b = i.approximation_interval(Integer)
ia = int(i)
assert ia == a
assert isinstance(ia, int)
assert b == a + 1
assert a.is_Integer and b.is_Integer
def test_real_bug():
x = Symbol("x")
assert str(2.0*x*x) in ["(2.0*x)*x", "2.0*x**2", "2.00000000000000*x**2"]
assert str(2.1*x*x) != "(2.0*x)*x"
def test_bug_sqrt():
assert ((sqrt(Rational(2)) + 1)*(sqrt(Rational(2)) - 1)).expand() == 1
def test_pi_Pi():
"Test that pi (instance) is imported, but Pi (class) is not"
from sympy import pi # noqa
with raises(ImportError):
from sympy import Pi # noqa
def test_no_len():
# there should be no len for numbers
raises(TypeError, lambda: len(Rational(2)))
raises(TypeError, lambda: len(Rational(2, 3)))
raises(TypeError, lambda: len(Integer(2)))
def test_issue_3321():
assert sqrt(Rational(1, 5)) == Rational(1, 5)**S.Half
assert 5 * sqrt(Rational(1, 5)) == sqrt(5)
def test_issue_3692():
assert ((-1)**Rational(1, 6)).expand(complex=True) == I/2 + sqrt(3)/2
assert ((-5)**Rational(1, 6)).expand(complex=True) == \
5**Rational(1, 6)*I/2 + 5**Rational(1, 6)*sqrt(3)/2
assert ((-64)**Rational(1, 6)).expand(complex=True) == I + sqrt(3)
def test_issue_3423():
x = Symbol("x")
assert sqrt(x - 1).as_base_exp() == (x - 1, S.Half)
assert sqrt(x - 1) != I*sqrt(1 - x)
def test_issue_3449():
x = Symbol("x")
assert sqrt(x - 1).subs(x, 5) == 2
def test_issue_13890():
x = Symbol("x")
e = (-x/4 - S.One/12)**x - 1
f = simplify(e)
a = Rational(9, 5)
assert abs(e.subs(x,a).evalf() - f.subs(x,a).evalf()) < 1e-15
def test_Integer_factors():
def F(i):
return Integer(i).factors()
assert F(1) == {}
assert F(2) == {2: 1}
assert F(3) == {3: 1}
assert F(4) == {2: 2}
assert F(5) == {5: 1}
assert F(6) == {2: 1, 3: 1}
assert F(7) == {7: 1}
assert F(8) == {2: 3}
assert F(9) == {3: 2}
assert F(10) == {2: 1, 5: 1}
assert F(11) == {11: 1}
assert F(12) == {2: 2, 3: 1}
assert F(13) == {13: 1}
assert F(14) == {2: 1, 7: 1}
assert F(15) == {3: 1, 5: 1}
assert F(16) == {2: 4}
assert F(17) == {17: 1}
assert F(18) == {2: 1, 3: 2}
assert F(19) == {19: 1}
assert F(20) == {2: 2, 5: 1}
assert F(21) == {3: 1, 7: 1}
assert F(22) == {2: 1, 11: 1}
assert F(23) == {23: 1}
assert F(24) == {2: 3, 3: 1}
assert F(25) == {5: 2}
assert F(26) == {2: 1, 13: 1}
assert F(27) == {3: 3}
assert F(28) == {2: 2, 7: 1}
assert F(29) == {29: 1}
assert F(30) == {2: 1, 3: 1, 5: 1}
assert F(31) == {31: 1}
assert F(32) == {2: 5}
assert F(33) == {3: 1, 11: 1}
assert F(34) == {2: 1, 17: 1}
assert F(35) == {5: 1, 7: 1}
assert F(36) == {2: 2, 3: 2}
assert F(37) == {37: 1}
assert F(38) == {2: 1, 19: 1}
assert F(39) == {3: 1, 13: 1}
assert F(40) == {2: 3, 5: 1}
assert F(41) == {41: 1}
assert F(42) == {2: 1, 3: 1, 7: 1}
assert F(43) == {43: 1}
assert F(44) == {2: 2, 11: 1}
assert F(45) == {3: 2, 5: 1}
assert F(46) == {2: 1, 23: 1}
assert F(47) == {47: 1}
assert F(48) == {2: 4, 3: 1}
assert F(49) == {7: 2}
assert F(50) == {2: 1, 5: 2}
assert F(51) == {3: 1, 17: 1}
def test_Rational_factors():
def F(p, q, visual=None):
return Rational(p, q).factors(visual=visual)
assert F(2, 3) == {2: 1, 3: -1}
assert F(2, 9) == {2: 1, 3: -2}
assert F(2, 15) == {2: 1, 3: -1, 5: -1}
assert F(6, 10) == {3: 1, 5: -1}
def test_issue_4107():
assert pi*(E + 10) + pi*(-E - 10) != 0
assert pi*(E + 10**10) + pi*(-E - 10**10) != 0
assert pi*(E + 10**20) + pi*(-E - 10**20) != 0
assert pi*(E + 10**80) + pi*(-E - 10**80) != 0
assert (pi*(E + 10) + pi*(-E - 10)).expand() == 0
assert (pi*(E + 10**10) + pi*(-E - 10**10)).expand() == 0
assert (pi*(E + 10**20) + pi*(-E - 10**20)).expand() == 0
assert (pi*(E + 10**80) + pi*(-E - 10**80)).expand() == 0
def test_IntegerInteger():
a = Integer(4)
b = Integer(a)
assert a == b
def test_Rational_gcd_lcm_cofactors():
assert Integer(4).gcd(2) == Integer(2)
assert Integer(4).lcm(2) == Integer(4)
assert Integer(4).gcd(Integer(2)) == Integer(2)
assert Integer(4).lcm(Integer(2)) == Integer(4)
a, b = 720**99911, 480**12342
assert Integer(a).lcm(b) == a*b/Integer(a).gcd(b)
assert Integer(4).gcd(3) == Integer(1)
assert Integer(4).lcm(3) == Integer(12)
assert Integer(4).gcd(Integer(3)) == Integer(1)
assert Integer(4).lcm(Integer(3)) == Integer(12)
assert Rational(4, 3).gcd(2) == Rational(2, 3)
assert Rational(4, 3).lcm(2) == Integer(4)
assert Rational(4, 3).gcd(Integer(2)) == Rational(2, 3)
assert Rational(4, 3).lcm(Integer(2)) == Integer(4)
assert Integer(4).gcd(Rational(2, 9)) == Rational(2, 9)
assert Integer(4).lcm(Rational(2, 9)) == Integer(4)
assert Rational(4, 3).gcd(Rational(2, 9)) == Rational(2, 9)
assert Rational(4, 3).lcm(Rational(2, 9)) == Rational(4, 3)
assert Rational(4, 5).gcd(Rational(2, 9)) == Rational(2, 45)
assert Rational(4, 5).lcm(Rational(2, 9)) == Integer(4)
assert Rational(5, 9).lcm(Rational(3, 7)) == Rational(Integer(5).lcm(3),Integer(9).gcd(7))
assert Integer(4).cofactors(2) == (Integer(2), Integer(2), Integer(1))
assert Integer(4).cofactors(Integer(2)) == \
(Integer(2), Integer(2), Integer(1))
assert Integer(4).gcd(Float(2.0)) == S.One
assert Integer(4).lcm(Float(2.0)) == Float(8.0)
assert Integer(4).cofactors(Float(2.0)) == (S.One, Integer(4), Float(2.0))
assert S.Half.gcd(Float(2.0)) == S.One
assert S.Half.lcm(Float(2.0)) == Float(1.0)
assert S.Half.cofactors(Float(2.0)) == \
(S.One, S.Half, Float(2.0))
def test_Float_gcd_lcm_cofactors():
assert Float(2.0).gcd(Integer(4)) == S.One
assert Float(2.0).lcm(Integer(4)) == Float(8.0)
assert Float(2.0).cofactors(Integer(4)) == (S.One, Float(2.0), Integer(4))
assert Float(2.0).gcd(S.Half) == S.One
assert Float(2.0).lcm(S.Half) == Float(1.0)
assert Float(2.0).cofactors(S.Half) == \
(S.One, Float(2.0), S.Half)
def test_issue_4611():
assert abs(pi._evalf(50) - 3.14159265358979) < 1e-10
assert abs(E._evalf(50) - 2.71828182845905) < 1e-10
assert abs(Catalan._evalf(50) - 0.915965594177219) < 1e-10
assert abs(EulerGamma._evalf(50) - 0.577215664901533) < 1e-10
assert abs(GoldenRatio._evalf(50) - 1.61803398874989) < 1e-10
assert abs(TribonacciConstant._evalf(50) - 1.83928675521416) < 1e-10
x = Symbol("x")
assert (pi + x).evalf() == pi.evalf() + x
assert (E + x).evalf() == E.evalf() + x
assert (Catalan + x).evalf() == Catalan.evalf() + x
assert (EulerGamma + x).evalf() == EulerGamma.evalf() + x
assert (GoldenRatio + x).evalf() == GoldenRatio.evalf() + x
assert (TribonacciConstant + x).evalf() == TribonacciConstant.evalf() + x
@conserve_mpmath_dps
def test_conversion_to_mpmath():
assert mpmath.mpmathify(Integer(1)) == mpmath.mpf(1)
assert mpmath.mpmathify(S.Half) == mpmath.mpf(0.5)
assert mpmath.mpmathify(Float('1.23', 15)) == mpmath.mpf('1.23')
assert mpmath.mpmathify(I) == mpmath.mpc(1j)
assert mpmath.mpmathify(1 + 2*I) == mpmath.mpc(1 + 2j)
assert mpmath.mpmathify(1.0 + 2*I) == mpmath.mpc(1 + 2j)
assert mpmath.mpmathify(1 + 2.0*I) == mpmath.mpc(1 + 2j)
assert mpmath.mpmathify(1.0 + 2.0*I) == mpmath.mpc(1 + 2j)
assert mpmath.mpmathify(S.Half + S.Half*I) == mpmath.mpc(0.5 + 0.5j)
assert mpmath.mpmathify(2*I) == mpmath.mpc(2j)
assert mpmath.mpmathify(2.0*I) == mpmath.mpc(2j)
assert mpmath.mpmathify(S.Half*I) == mpmath.mpc(0.5j)
mpmath.mp.dps = 100
assert mpmath.mpmathify(pi.evalf(100) + pi.evalf(100)*I) == mpmath.pi + mpmath.pi*mpmath.j
assert mpmath.mpmathify(pi.evalf(100)*I) == mpmath.pi*mpmath.j
def test_relational():
# real
x = S(.1)
assert (x != cos) is True
assert (x == cos) is False
# rational
x = Rational(1, 3)
assert (x != cos) is True
assert (x == cos) is False
# integer defers to rational so these tests are omitted
# number symbol
x = pi
assert (x != cos) is True
assert (x == cos) is False
def test_Integer_as_index():
assert 'hello'[Integer(2):] == 'llo'
def test_Rational_int():
assert int( Rational(7, 5)) == 1
assert int( S.Half) == 0
assert int(Rational(-1, 2)) == 0
assert int(-Rational(7, 5)) == -1
def test_zoo():
b = Symbol('b', finite=True)
nz = Symbol('nz', nonzero=True)
p = Symbol('p', positive=True)
n = Symbol('n', negative=True)
im = Symbol('i', imaginary=True)
c = Symbol('c', complex=True)
pb = Symbol('pb', positive=True)
nb = Symbol('nb', negative=True)
imb = Symbol('ib', imaginary=True, finite=True)
for i in [I, S.Infinity, S.NegativeInfinity, S.Zero, S.One, S.Pi, S.Half, S(3), log(3),
b, nz, p, n, im, pb, nb, imb, c]:
if i.is_finite and (i.is_real or i.is_imaginary):
assert i + zoo is zoo
assert i - zoo is zoo
assert zoo + i is zoo
assert zoo - i is zoo
elif i.is_finite is not False:
assert (i + zoo).is_Add
assert (i - zoo).is_Add
assert (zoo + i).is_Add
assert (zoo - i).is_Add
else:
assert (i + zoo) is S.NaN
assert (i - zoo) is S.NaN
assert (zoo + i) is S.NaN
assert (zoo - i) is S.NaN
if fuzzy_not(i.is_zero) and (i.is_extended_real or i.is_imaginary):
assert i*zoo is zoo
assert zoo*i is zoo
elif i.is_zero:
assert i*zoo is S.NaN
assert zoo*i is S.NaN
else:
assert (i*zoo).is_Mul
assert (zoo*i).is_Mul
if fuzzy_not((1/i).is_zero) and (i.is_real or i.is_imaginary):
assert zoo/i is zoo
elif (1/i).is_zero:
assert zoo/i is S.NaN
elif i.is_zero:
assert zoo/i is zoo
else:
assert (zoo/i).is_Mul
assert (I*oo).is_Mul # allow directed infinity
assert zoo + zoo is S.NaN
assert zoo * zoo is zoo
assert zoo - zoo is S.NaN
assert zoo/zoo is S.NaN
assert zoo**zoo is S.NaN
assert zoo**0 is S.One
assert zoo**2 is zoo
assert 1/zoo is S.Zero
assert Mul.flatten([S.NegativeOne, oo, S(0)]) == ([S.NaN], [], None)
def test_issue_4122():
x = Symbol('x', nonpositive=True)
assert oo + x is oo
x = Symbol('x', extended_nonpositive=True)
assert (oo + x).is_Add
x = Symbol('x', finite=True)
assert (oo + x).is_Add # x could be imaginary
x = Symbol('x', nonnegative=True)
assert oo + x is oo
x = Symbol('x', extended_nonnegative=True)
assert oo + x is oo
x = Symbol('x', finite=True, real=True)
assert oo + x is oo
# similarly for negative infinity
x = Symbol('x', nonnegative=True)
assert -oo + x is -oo
x = Symbol('x', extended_nonnegative=True)
assert (-oo + x).is_Add
x = Symbol('x', finite=True)
assert (-oo + x).is_Add
x = Symbol('x', nonpositive=True)
assert -oo + x is -oo
x = Symbol('x', extended_nonpositive=True)
assert -oo + x is -oo
x = Symbol('x', finite=True, real=True)
assert -oo + x is -oo
def test_GoldenRatio_expand():
assert GoldenRatio.expand(func=True) == S.Half + sqrt(5)/2
def test_TribonacciConstant_expand():
assert TribonacciConstant.expand(func=True) == \
(1 + cbrt(19 - 3*sqrt(33)) + cbrt(19 + 3*sqrt(33))) / 3
def test_as_content_primitive():
assert S.Zero.as_content_primitive() == (1, 0)
assert S.Half.as_content_primitive() == (S.Half, 1)
assert (Rational(-1, 2)).as_content_primitive() == (S.Half, -1)
assert S(3).as_content_primitive() == (3, 1)
assert S(3.1).as_content_primitive() == (1, 3.1)
def test_hashing_sympy_integers():
# Test for issue 5072
assert {Integer(3)} == {int(3)}
assert hash(Integer(4)) == hash(int(4))
def test_rounding_issue_4172():
assert int((E**100).round()) == \
26881171418161354484126255515800135873611119
assert int((pi**100).round()) == \
51878483143196131920862615246303013562686760680406
assert int((Rational(1)/EulerGamma**100).round()) == \
734833795660954410469466
@XFAIL
def test_mpmath_issues():
from mpmath.libmp.libmpf import _normalize
import mpmath.libmp as mlib
rnd = mlib.round_nearest
mpf = (0, int(0), -123, -1, 53, rnd) # nan
assert _normalize(mpf, 53) != (0, int(0), 0, 0)
mpf = (0, int(0), -456, -2, 53, rnd) # +inf
assert _normalize(mpf, 53) != (0, int(0), 0, 0)
mpf = (1, int(0), -789, -3, 53, rnd) # -inf
assert _normalize(mpf, 53) != (0, int(0), 0, 0)
from mpmath.libmp.libmpf import fnan
assert mlib.mpf_eq(fnan, fnan)
def test_Catalan_EulerGamma_prec():
n = GoldenRatio
f = Float(n.n(), 5)
assert f._mpf_ == (0, int(212079), -17, 18)
assert f._prec == 20
assert n._as_mpf_val(20) == f._mpf_
n = EulerGamma
f = Float(n.n(), 5)
assert f._mpf_ == (0, int(302627), -19, 19)
assert f._prec == 20
assert n._as_mpf_val(20) == f._mpf_
def test_Catalan_rewrite():
k = Dummy('k', integer=True, nonnegative=True)
assert Catalan.rewrite(Sum).dummy_eq(
Sum((-1)**k/(2*k + 1)**2, (k, 0, oo)))
assert Catalan.rewrite() == Catalan
def test_bool_eq():
assert 0 == False
assert S(0) == False
assert S(0) != S.false
assert 1 == True
assert S.One == True
assert S.One != S.true
def test_Float_eq():
# all .5 values are the same
assert Float(.5, 10) == Float(.5, 11) == Float(.5, 1)
# but floats that aren't exact in base-2 still
# don't compare the same because they have different
# underlying mpf values
assert Float(.12, 3) != Float(.12, 4)
assert Float(.12, 3) != .12
assert 0.12 != Float(.12, 3)
assert Float('.12', 22) != .12
# issue 11707
# but Float/Rational -- except for 0 --
# are exact so Rational(x) = Float(y) only if
# Rational(x) == Rational(Float(y))
assert Float('1.1') != Rational(11, 10)
assert Rational(11, 10) != Float('1.1')
# coverage
assert not Float(3) == 2
assert not Float(2**2) == S.Half
assert Float(2**2) == 4
assert not Float(2**-2) == 1
assert Float(2**-1) == S.Half
assert not Float(2*3) == 3
assert not Float(2*3) == S.Half
assert Float(2*3) == 6
assert not Float(2*3) == 8
assert Float(.75) == Rational(3, 4)
assert Float(5/18) == 5/18
# 4473
assert Float(2.) != 3
assert Float((0,1,-3)) == S.One/8
assert Float((0,1,-3)) != S.One/9
# 16196
assert 2 == Float(2) # as per Python
# but in a computation...
assert t**2 != t**2.0
def test_issue_6640():
from mpmath.libmp.libmpf import finf, fninf
# fnan is not included because Float no longer returns fnan,
# but otherwise, the same sort of test could apply
assert Float(finf).is_zero is False
assert Float(fninf).is_zero is False
assert bool(Float(0)) is False
def test_issue_6349():
assert Float('23.e3', '')._prec == 10
assert Float('23e3', '')._prec == 20
assert Float('23000', '')._prec == 20
assert Float('-23000', '')._prec == 20
def test_mpf_norm():
assert mpf_norm((1, 0, 1, 0), 10) == mpf('0')._mpf_
assert Float._new((1, 0, 1, 0), 10)._mpf_ == mpf('0')._mpf_
def test_latex():
assert latex(pi) == r"\pi"
assert latex(E) == r"e"
assert latex(GoldenRatio) == r"\phi"
assert latex(TribonacciConstant) == r"\text{TribonacciConstant}"
assert latex(EulerGamma) == r"\gamma"
assert latex(oo) == r"\infty"
assert latex(-oo) == r"-\infty"
assert latex(zoo) == r"\tilde{\infty}"
assert latex(nan) == r"\text{NaN}"
assert latex(I) == r"i"
def test_issue_7742():
assert -oo % 1 is nan
def test_simplify_AlgebraicNumber():
A = AlgebraicNumber
e = 3**(S.One/6)*(3 + (135 + 78*sqrt(3))**Rational(2, 3))/(45 + 26*sqrt(3))**(S.One/3)
assert simplify(A(e)) == A(12) # wester test_C20
e = (41 + 29*sqrt(2))**(S.One/5)
assert simplify(A(e)) == A(1 + sqrt(2)) # wester test_C21
e = (3 + 4*I)**Rational(3, 2)
assert simplify(A(e)) == A(2 + 11*I) # issue 4401
def test_Float_idempotence():
x = Float('1.23', '')
y = Float(x)
z = Float(x, 15)
assert same_and_same_prec(y, x)
assert not same_and_same_prec(z, x)
x = Float(10**20)
y = Float(x)
z = Float(x, 15)
assert same_and_same_prec(y, x)
assert not same_and_same_prec(z, x)
def test_comp1():
# sqrt(2) = 1.414213 5623730950...
a = sqrt(2).n(7)
assert comp(a, 1.4142129) is False
assert comp(a, 1.4142130)
# ...
assert comp(a, 1.4142141)
assert comp(a, 1.4142142) is False
assert comp(sqrt(2).n(2), '1.4')
assert comp(sqrt(2).n(2), Float(1.4, 2), '')
assert comp(sqrt(2).n(2), 1.4, '')
assert comp(sqrt(2).n(2), Float(1.4, 3), '') is False
assert comp(sqrt(2) + sqrt(3)*I, 1.4 + 1.7*I, .1)
assert not comp(sqrt(2) + sqrt(3)*I, (1.5 + 1.7*I)*0.89, .1)
assert comp(sqrt(2) + sqrt(3)*I, (1.5 + 1.7*I)*0.90, .1)
assert comp(sqrt(2) + sqrt(3)*I, (1.5 + 1.7*I)*1.07, .1)
assert not comp(sqrt(2) + sqrt(3)*I, (1.5 + 1.7*I)*1.08, .1)
assert [(i, j)
for i in range(130, 150)
for j in range(170, 180)
if comp((sqrt(2)+ I*sqrt(3)).n(3), i/100. + I*j/100.)] == [
(141, 173), (142, 173)]
raises(ValueError, lambda: comp(t, '1'))
raises(ValueError, lambda: comp(t, 1))
assert comp(0, 0.0)
assert comp(.5, S.Half)
assert comp(2 + sqrt(2), 2.0 + sqrt(2))
assert not comp(0, 1)
assert not comp(2, sqrt(2))
assert not comp(2 + I, 2.0 + sqrt(2))
assert not comp(2.0 + sqrt(2), 2 + I)
assert not comp(2.0 + sqrt(2), sqrt(3))
assert comp(1/pi.n(4), 0.3183, 1e-5)
assert not comp(1/pi.n(4), 0.3183, 8e-6)
def test_issue_9491():
assert oo**zoo is nan
def test_issue_10063():
assert 2**Float(3) == Float(8)
def test_issue_10020():
assert oo**I is S.NaN
assert oo**(1 + I) is S.ComplexInfinity
assert oo**(-1 + I) is S.Zero
assert (-oo)**I is S.NaN
assert (-oo)**(-1 + I) is S.Zero
assert oo**t == Pow(oo, t, evaluate=False)
assert (-oo)**t == Pow(-oo, t, evaluate=False)
def test_invert_numbers():
assert S(2).invert(5) == 3
assert S(2).invert(Rational(5, 2)) == S.Half
assert S(2).invert(5.) == 0.5
assert S(2).invert(S(5)) == 3
assert S(2.).invert(5) == 0.5
assert S(sqrt(2)).invert(5) == 1/sqrt(2)
assert S(sqrt(2)).invert(sqrt(3)) == 1/sqrt(2)
def test_mod_inverse():
assert mod_inverse(3, 11) == 4
assert mod_inverse(5, 11) == 9
assert mod_inverse(21124921, 521512) == 7713
assert mod_inverse(124215421, 5125) == 2981
assert mod_inverse(214, 12515) == 1579
assert mod_inverse(5823991, 3299) == 1442
assert mod_inverse(123, 44) == 39
assert mod_inverse(2, 5) == 3
assert mod_inverse(-2, 5) == 2
assert mod_inverse(2, -5) == -2
assert mod_inverse(-2, -5) == -3
assert mod_inverse(-3, -7) == -5
x = Symbol('x')
assert S(2).invert(x) == S.Half
raises(TypeError, lambda: mod_inverse(2, x))
raises(ValueError, lambda: mod_inverse(2, S.Half))
raises(ValueError, lambda: mod_inverse(2, cos(1)**2 + sin(1)**2))
def test_golden_ratio_rewrite_as_sqrt():
assert GoldenRatio.rewrite(sqrt) == S.Half + sqrt(5)*S.Half
def test_tribonacci_constant_rewrite_as_sqrt():
assert TribonacciConstant.rewrite(sqrt) == \
(1 + cbrt(19 - 3*sqrt(33)) + cbrt(19 + 3*sqrt(33))) / 3
def test_comparisons_with_unknown_type():
class Foo:
"""
Class that is unaware of Basic, and relies on both classes returning
the NotImplemented singleton for equivalence to evaluate to False.
"""
ni, nf, nr = Integer(3), Float(1.0), Rational(1, 3)
foo = Foo()
for n in ni, nf, nr, oo, -oo, zoo, nan:
assert n != foo
assert foo != n
assert not n == foo
assert not foo == n
raises(TypeError, lambda: n < foo)
raises(TypeError, lambda: foo > n)
raises(TypeError, lambda: n > foo)
raises(TypeError, lambda: foo < n)
raises(TypeError, lambda: n <= foo)
raises(TypeError, lambda: foo >= n)
raises(TypeError, lambda: n >= foo)
raises(TypeError, lambda: foo <= n)
class Bar:
"""
Class that considers itself equal to any instance of Number except
infinities and nans, and relies on SymPy types returning the
NotImplemented singleton for symmetric equality relations.
"""
def __eq__(self, other):
if other in (oo, -oo, zoo, nan):
return False
if isinstance(other, Number):
return True
return NotImplemented
def __ne__(self, other):
return not self == other
bar = Bar()
for n in ni, nf, nr:
assert n == bar
assert bar == n
assert not n != bar
assert not bar != n
for n in oo, -oo, zoo, nan:
assert n != bar
assert bar != n
assert not n == bar
assert not bar == n
for n in ni, nf, nr, oo, -oo, zoo, nan:
raises(TypeError, lambda: n < bar)
raises(TypeError, lambda: bar > n)
raises(TypeError, lambda: n > bar)
raises(TypeError, lambda: bar < n)
raises(TypeError, lambda: n <= bar)
raises(TypeError, lambda: bar >= n)
raises(TypeError, lambda: n >= bar)
raises(TypeError, lambda: bar <= n)
def test_NumberSymbol_comparison():
from sympy.core.tests.test_relational import rel_check
rpi = Rational('905502432259640373/288230376151711744')
fpi = Float(float(pi))
assert rel_check(rpi, fpi)
def test_Integer_precision():
# Make sure Integer inputs for keyword args work
assert Float('1.0', dps=Integer(15))._prec == 53
assert Float('1.0', precision=Integer(15))._prec == 15
assert type(Float('1.0', precision=Integer(15))._prec) == int
assert sympify(srepr(Float('1.0', precision=15))) == Float('1.0', precision=15)
def test_numpy_to_float():
from sympy.testing.pytest import skip
from sympy.external import import_module
np = import_module('numpy')
if not np:
skip('numpy not installed. Abort numpy tests.')
def check_prec_and_relerr(npval, ratval):
prec = np.finfo(npval).nmant + 1
x = Float(npval)
assert x._prec == prec
y = Float(ratval, precision=prec)
assert abs((x - y)/y) < 2**(-(prec + 1))
check_prec_and_relerr(np.float16(2.0/3), Rational(2, 3))
check_prec_and_relerr(np.float32(2.0/3), Rational(2, 3))
check_prec_and_relerr(np.float64(2.0/3), Rational(2, 3))
# extended precision, on some arch/compilers:
x = np.longdouble(2)/3
check_prec_and_relerr(x, Rational(2, 3))
y = Float(x, precision=10)
assert same_and_same_prec(y, Float(Rational(2, 3), precision=10))
raises(TypeError, lambda: Float(np.complex64(1+2j)))
raises(TypeError, lambda: Float(np.complex128(1+2j)))
def test_Integer_ceiling_floor():
a = Integer(4)
assert a.floor() == a
assert a.ceiling() == a
def test_ComplexInfinity():
assert zoo.floor() is zoo
assert zoo.ceiling() is zoo
assert zoo**zoo is S.NaN
def test_Infinity_floor_ceiling_power():
assert oo.floor() is oo
assert oo.ceiling() is oo
assert oo**S.NaN is S.NaN
assert oo**zoo is S.NaN
def test_One_power():
assert S.One**12 is S.One
assert S.NegativeOne**S.NaN is S.NaN
def test_NegativeInfinity():
assert (-oo).floor() is -oo
assert (-oo).ceiling() is -oo
assert (-oo)**11 is -oo
assert (-oo)**12 is oo
def test_issue_6133():
raises(TypeError, lambda: (-oo < None))
raises(TypeError, lambda: (S(-2) < None))
raises(TypeError, lambda: (oo < None))
raises(TypeError, lambda: (oo > None))
raises(TypeError, lambda: (S(2) < None))
def test_abc():
x = numbers.Float(5)
assert(isinstance(x, nums.Number))
assert(isinstance(x, numbers.Number))
assert(isinstance(x, nums.Real))
y = numbers.Rational(1, 3)
assert(isinstance(y, nums.Number))
assert(y.numerator == 1)
assert(y.denominator == 3)
assert(isinstance(y, nums.Rational))
z = numbers.Integer(3)
assert(isinstance(z, nums.Number))
assert(isinstance(z, numbers.Number))
assert(isinstance(z, nums.Rational))
assert(isinstance(z, numbers.Rational))
assert(isinstance(z, nums.Integral))
def test_floordiv():
assert S(2)//S.Half == 4
def test_negation():
assert -S.Zero is S.Zero
assert -Float(0) is not S.Zero and -Float(0) == 0
def test_exponentiation_of_0():
x = Symbol('x')
assert 0**-x == zoo**x
assert unchanged(Pow, 0, x)
x = Symbol('x', zero=True)
assert 0**-x == S.One
assert 0**x == S.One
|
3a6080c7b2b413ccb98a7593109c02fa329935b37572348234b33f679dfbe14a | import math
from sympy.concrete.products import (Product, product)
from sympy.concrete.summations import Sum
from sympy.core.add import Add
from sympy.core.evalf import N
from sympy.core.function import (Function, nfloat)
from sympy.core.mul import Mul
from sympy.core import (GoldenRatio)
from sympy.core.numbers import (AlgebraicNumber, E, Float, I, Rational,
oo, zoo, nan, pi)
from sympy.core.power import Pow
from sympy.core.relational import Eq
from sympy.core.singleton import S
from sympy.core.symbol import Symbol
from sympy.core.sympify import sympify
from sympy.functions.combinatorial.factorials import factorial
from sympy.functions.combinatorial.numbers import fibonacci
from sympy.functions.elementary.complexes import (Abs, re, im)
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.elementary.hyperbolic import (acosh, cosh)
from sympy.functions.elementary.integers import (ceiling, floor)
from sympy.functions.elementary.miscellaneous import (Max, sqrt)
from sympy.functions.elementary.trigonometric import (acos, atan, cos, sin, tan)
from sympy.integrals.integrals import (Integral, integrate)
from sympy.polys.polytools import factor
from sympy.polys.rootoftools import CRootOf
from sympy.polys.specialpolys import cyclotomic_poly
from sympy.printing import srepr
from sympy.printing.str import sstr
from sympy.simplify.simplify import simplify
from sympy.core.numbers import comp
from sympy.core.evalf import (complex_accuracy, PrecisionExhausted,
scaled_zero, get_integer_part, as_mpmath, evalf, _evalf_with_bounded_error)
from mpmath import inf, ninf, make_mpc
from mpmath.libmp.libmpf import from_float, fzero
from sympy.core.expr import unchanged
from sympy.testing.pytest import raises, XFAIL
from sympy.abc import n, x, y
def NS(e, n=15, **options):
return sstr(sympify(e).evalf(n, **options), full_prec=True)
def test_evalf_helpers():
from mpmath.libmp import finf
assert complex_accuracy((from_float(2.0), None, 35, None)) == 35
assert complex_accuracy((from_float(2.0), from_float(10.0), 35, 100)) == 37
assert complex_accuracy(
(from_float(2.0), from_float(1000.0), 35, 100)) == 43
assert complex_accuracy((from_float(2.0), from_float(10.0), 100, 35)) == 35
assert complex_accuracy(
(from_float(2.0), from_float(1000.0), 100, 35)) == 35
assert complex_accuracy(finf) == math.inf
assert complex_accuracy(zoo) == math.inf
raises(ValueError, lambda: get_integer_part(zoo, 1, {}))
def test_evalf_basic():
assert NS('pi', 15) == '3.14159265358979'
assert NS('2/3', 10) == '0.6666666667'
assert NS('355/113-pi', 6) == '2.66764e-7'
assert NS('16*atan(1/5)-4*atan(1/239)', 15) == '3.14159265358979'
def test_cancellation():
assert NS(Add(pi, Rational(1, 10**1000), -pi, evaluate=False), 15,
maxn=1200) == '1.00000000000000e-1000'
def test_evalf_powers():
assert NS('pi**(10**20)', 10) == '1.339148777e+49714987269413385435'
assert NS(pi**(10**100), 10) == ('4.946362032e+4971498726941338543512682882'
'9089887365167832438044244613405349992494711208'
'95526746555473864642912223')
assert NS('2**(1/10**50)', 15) == '1.00000000000000'
assert NS('2**(1/10**50)-1', 15) == '6.93147180559945e-51'
# Evaluation of Rump's ill-conditioned polynomial
def test_evalf_rump():
a = 1335*y**6/4 + x**2*(11*x**2*y**2 - y**6 - 121*y**4 - 2) + 11*y**8/2 + x/(2*y)
assert NS(a, 15, subs={x: 77617, y: 33096}) == '-0.827396059946821'
def test_evalf_complex():
assert NS('2*sqrt(pi)*I', 10) == '3.544907702*I'
assert NS('3+3*I', 15) == '3.00000000000000 + 3.00000000000000*I'
assert NS('E+pi*I', 15) == '2.71828182845905 + 3.14159265358979*I'
assert NS('pi * (3+4*I)', 15) == '9.42477796076938 + 12.5663706143592*I'
assert NS('I*(2+I)', 15) == '-1.00000000000000 + 2.00000000000000*I'
@XFAIL
def test_evalf_complex_bug():
assert NS('(pi+E*I)*(E+pi*I)', 15) in ('0.e-15 + 17.25866050002*I',
'0.e-17 + 17.25866050002*I', '-0.e-17 + 17.25866050002*I')
def test_evalf_complex_powers():
assert NS('(E+pi*I)**100000000000000000') == \
'-3.58896782867793e+61850354284995199 + 4.58581754997159e+61850354284995199*I'
# XXX: rewrite if a+a*I simplification introduced in SymPy
#assert NS('(pi + pi*I)**2') in ('0.e-15 + 19.7392088021787*I', '0.e-16 + 19.7392088021787*I')
assert NS('(pi + pi*I)**2', chop=True) == '19.7392088021787*I'
assert NS(
'(pi + 1/10**8 + pi*I)**2') == '6.2831853e-8 + 19.7392088650106*I'
assert NS('(pi + 1/10**12 + pi*I)**2') == '6.283e-12 + 19.7392088021850*I'
assert NS('(pi + pi*I)**4', chop=True) == '-389.636364136010'
assert NS(
'(pi + 1/10**8 + pi*I)**4') == '-389.636366616512 + 2.4805021e-6*I'
assert NS('(pi + 1/10**12 + pi*I)**4') == '-389.636364136258 + 2.481e-10*I'
assert NS(
'(10000*pi + 10000*pi*I)**4', chop=True) == '-3.89636364136010e+18'
@XFAIL
def test_evalf_complex_powers_bug():
assert NS('(pi + pi*I)**4') == '-389.63636413601 + 0.e-14*I'
def test_evalf_exponentiation():
assert NS(sqrt(-pi)) == '1.77245385090552*I'
assert NS(Pow(pi*I, Rational(
1, 2), evaluate=False)) == '1.25331413731550 + 1.25331413731550*I'
assert NS(pi**I) == '0.413292116101594 + 0.910598499212615*I'
assert NS(pi**(E + I/3)) == '20.8438653991931 + 8.36343473930031*I'
assert NS((pi + I/3)**(E + I/3)) == '17.2442906093590 + 13.6839376767037*I'
assert NS(exp(pi)) == '23.1406926327793'
assert NS(exp(pi + E*I)) == '-21.0981542849657 + 9.50576358282422*I'
assert NS(pi**pi) == '36.4621596072079'
assert NS((-pi)**pi) == '-32.9138577418939 - 15.6897116534332*I'
assert NS((-pi)**(-pi)) == '-0.0247567717232697 + 0.0118013091280262*I'
# An example from Smith, "Multiple Precision Complex Arithmetic and Functions"
def test_evalf_complex_cancellation():
A = Rational('63287/100000')
B = Rational('52498/100000')
C = Rational('69301/100000')
D = Rational('83542/100000')
F = Rational('2231321613/2500000000')
# XXX: the number of returned mantissa digits in the real part could
# change with the implementation. What matters is that the returned digits are
# correct; those that are showing now are correct.
# >>> ((A+B*I)*(C+D*I)).expand()
# 64471/10000000000 + 2231321613*I/2500000000
# >>> 2231321613*4
# 8925286452L
assert NS((A + B*I)*(C + D*I), 6) == '6.44710e-6 + 0.892529*I'
assert NS((A + B*I)*(C + D*I), 10) == '6.447100000e-6 + 0.8925286452*I'
assert NS((A + B*I)*(
C + D*I) - F*I, 5) in ('6.4471e-6 + 0.e-14*I', '6.4471e-6 - 0.e-14*I')
def test_evalf_logs():
assert NS("log(3+pi*I)", 15) == '1.46877619736226 + 0.808448792630022*I'
assert NS("log(pi*I)", 15) == '1.14472988584940 + 1.57079632679490*I'
assert NS('log(-1 + 0.00001)', 2) == '-1.0e-5 + 3.1*I'
assert NS('log(100, 10, evaluate=False)', 15) == '2.00000000000000'
assert NS('-2*I*log(-(-1)**(S(1)/9))', 15) == '-5.58505360638185'
def test_evalf_trig():
assert NS('sin(1)', 15) == '0.841470984807897'
assert NS('cos(1)', 15) == '0.540302305868140'
assert NS('sin(10**-6)', 15) == '9.99999999999833e-7'
assert NS('cos(10**-6)', 15) == '0.999999999999500'
assert NS('sin(E*10**100)', 15) == '0.409160531722613'
# Some input near roots
assert NS(sin(exp(pi*sqrt(163))*pi), 15) == '-2.35596641936785e-12'
assert NS(sin(pi*10**100 + Rational(7, 10**5), evaluate=False), 15, maxn=120) == \
'6.99999999428333e-5'
assert NS(sin(Rational(7, 10**5), evaluate=False), 15) == \
'6.99999999428333e-5'
# Check detection of various false identities
def test_evalf_near_integers():
# Binet's formula
f = lambda n: ((1 + sqrt(5))**n)/(2**n * sqrt(5))
assert NS(f(5000) - fibonacci(5000), 10, maxn=1500) == '5.156009964e-1046'
# Some near-integer identities from
# http://mathworld.wolfram.com/AlmostInteger.html
assert NS('sin(2017*2**(1/5))', 15) == '-1.00000000000000'
assert NS('sin(2017*2**(1/5))', 20) == '-0.99999999999999997857'
assert NS('1+sin(2017*2**(1/5))', 15) == '2.14322287389390e-17'
assert NS('45 - 613*E/37 + 35/991', 15) == '6.03764498766326e-11'
def test_evalf_ramanujan():
assert NS(exp(pi*sqrt(163)) - 640320**3 - 744, 10) == '-7.499274028e-13'
# A related identity
A = 262537412640768744*exp(-pi*sqrt(163))
B = 196884*exp(-2*pi*sqrt(163))
C = 103378831900730205293632*exp(-3*pi*sqrt(163))
assert NS(1 - A - B + C, 10) == '1.613679005e-59'
# Input that for various reasons have failed at some point
def test_evalf_bugs():
assert NS(sin(1) + exp(-10**10), 10) == NS(sin(1), 10)
assert NS(exp(10**10) + sin(1), 10) == NS(exp(10**10), 10)
assert NS('expand_log(log(1+1/10**50))', 20) == '1.0000000000000000000e-50'
assert NS('log(10**100,10)', 10) == '100.0000000'
assert NS('log(2)', 10) == '0.6931471806'
assert NS(
'(sin(x)-x)/x**3', 15, subs={x: '1/10**50'}) == '-0.166666666666667'
assert NS(sin(1) + Rational(
1, 10**100)*I, 15) == '0.841470984807897 + 1.00000000000000e-100*I'
assert x.evalf() == x
assert NS((1 + I)**2*I, 6) == '-2.00000'
d = {n: (
-1)**Rational(6, 7), y: (-1)**Rational(4, 7), x: (-1)**Rational(2, 7)}
assert NS((x*(1 + y*(1 + n))).subs(d).evalf(), 6) == '0.346011 + 0.433884*I'
assert NS(((-I - sqrt(2)*I)**2).evalf()) == '-5.82842712474619'
assert NS((1 + I)**2*I, 15) == '-2.00000000000000'
# issue 4758 (1/2):
assert NS(pi.evalf(69) - pi) == '-4.43863937855894e-71'
# issue 4758 (2/2): With the bug present, this still only fails if the
# terms are in the order given here. This is not generally the case,
# because the order depends on the hashes of the terms.
assert NS(20 - 5008329267844*n**25 - 477638700*n**37 - 19*n,
subs={n: .01}) == '19.8100000000000'
assert NS(((x - 1)*(1 - x)**1000).n()
) == '(1.00000000000000 - x)**1000*(x - 1.00000000000000)'
assert NS((-x).n()) == '-x'
assert NS((-2*x).n()) == '-2.00000000000000*x'
assert NS((-2*x*y).n()) == '-2.00000000000000*x*y'
assert cos(x).n(subs={x: 1+I}) == cos(x).subs(x, 1+I).n()
# issue 6660. Also NaN != mpmath.nan
# In this order:
# 0*nan, 0/nan, 0*inf, 0/inf
# 0+nan, 0-nan, 0+inf, 0-inf
# >>> n = Some Number
# n*nan, n/nan, n*inf, n/inf
# n+nan, n-nan, n+inf, n-inf
assert (0*E**(oo)).n() is S.NaN
assert (0/E**(oo)).n() is S.Zero
assert (0+E**(oo)).n() is S.Infinity
assert (0-E**(oo)).n() is S.NegativeInfinity
assert (5*E**(oo)).n() is S.Infinity
assert (5/E**(oo)).n() is S.Zero
assert (5+E**(oo)).n() is S.Infinity
assert (5-E**(oo)).n() is S.NegativeInfinity
#issue 7416
assert as_mpmath(0.0, 10, {'chop': True}) == 0
#issue 5412
assert ((oo*I).n() == S.Infinity*I)
assert ((oo+oo*I).n() == S.Infinity + S.Infinity*I)
#issue 11518
assert NS(2*x**2.5, 5) == '2.0000*x**2.5000'
#issue 13076
assert NS(Mul(Max(0, y), x, evaluate=False).evalf()) == 'x*Max(0, y)'
#issue 18516
assert NS(log(S(3273390607896141870013189696827599152216642046043064789483291368096133796404674554883270092325904157150886684127560071009217256545885393053328527589376)/36360291795869936842385267079543319118023385026001623040346035832580600191583895484198508262979388783308179702534403855752855931517013066142992430916562025780021771247847643450125342836565813209972590371590152578728008385990139795377610001).evalf(15, chop=True)) == '-oo'
def test_evalf_integer_parts():
a = floor(log(8)/log(2) - exp(-1000), evaluate=False)
b = floor(log(8)/log(2), evaluate=False)
assert a.evalf() == 3
assert b.evalf() == 3
# equals, as a fallback, can still fail but it might succeed as here
assert ceiling(10*(sin(1)**2 + cos(1)**2)) == 10
assert int(floor(factorial(50)/E, evaluate=False).evalf(70)) == \
int(11188719610782480504630258070757734324011354208865721592720336800)
assert int(ceiling(factorial(50)/E, evaluate=False).evalf(70)) == \
int(11188719610782480504630258070757734324011354208865721592720336801)
assert int(floor(GoldenRatio**999 / sqrt(5) + S.Half)
.evalf(1000)) == fibonacci(999)
assert int(floor(GoldenRatio**1000 / sqrt(5) + S.Half)
.evalf(1000)) == fibonacci(1000)
assert ceiling(x).evalf(subs={x: 3}) == 3
assert ceiling(x).evalf(subs={x: 3*I}) == 3.0*I
assert ceiling(x).evalf(subs={x: 2 + 3*I}) == 2.0 + 3.0*I
assert ceiling(x).evalf(subs={x: 3.}) == 3
assert ceiling(x).evalf(subs={x: 3.*I}) == 3.0*I
assert ceiling(x).evalf(subs={x: 2. + 3*I}) == 2.0 + 3.0*I
assert float((floor(1.5, evaluate=False)+1/9).evalf()) == 1 + 1/9
assert float((floor(0.5, evaluate=False)+20).evalf()) == 20
# issue 19991
n = 1169809367327212570704813632106852886389036911
r = 744723773141314414542111064094745678855643068
assert floor(n / (pi / 2)) == r
assert floor(80782 * sqrt(2)) == 114242
# issue 20076
assert 260515 - floor(260515/pi + 1/2) * pi == atan(tan(260515))
def test_evalf_trig_zero_detection():
a = sin(160*pi, evaluate=False)
t = a.evalf(maxn=100)
assert abs(t) < 1e-100
assert t._prec < 2
assert a.evalf(chop=True) == 0
raises(PrecisionExhausted, lambda: a.evalf(strict=True))
def test_evalf_sum():
assert Sum(n,(n,1,2)).evalf() == 3.
assert Sum(n,(n,1,2)).doit().evalf() == 3.
# the next test should return instantly
assert Sum(1/n,(n,1,2)).evalf() == 1.5
# issue 8219
assert Sum(E/factorial(n), (n, 0, oo)).evalf() == (E*E).evalf()
# issue 8254
assert Sum(2**n*n/factorial(n), (n, 0, oo)).evalf() == (2*E*E).evalf()
# issue 8411
s = Sum(1/x**2, (x, 100, oo))
assert s.n() == s.doit().n()
def test_evalf_divergent_series():
raises(ValueError, lambda: Sum(1/n, (n, 1, oo)).evalf())
raises(ValueError, lambda: Sum(n/(n**2 + 1), (n, 1, oo)).evalf())
raises(ValueError, lambda: Sum((-1)**n, (n, 1, oo)).evalf())
raises(ValueError, lambda: Sum((-1)**n, (n, 1, oo)).evalf())
raises(ValueError, lambda: Sum(n**2, (n, 1, oo)).evalf())
raises(ValueError, lambda: Sum(2**n, (n, 1, oo)).evalf())
raises(ValueError, lambda: Sum((-2)**n, (n, 1, oo)).evalf())
raises(ValueError, lambda: Sum((2*n + 3)/(3*n**2 + 4), (n, 0, oo)).evalf())
raises(ValueError, lambda: Sum((0.5*n**3)/(n**4 + 1), (n, 0, oo)).evalf())
def test_evalf_product():
assert Product(n, (n, 1, 10)).evalf() == 3628800.
assert comp(Product(1 - S.Half**2/n**2, (n, 1, oo)).n(5), 0.63662)
assert Product(n, (n, -1, 3)).evalf() == 0
def test_evalf_py_methods():
assert abs(float(pi + 1) - 4.1415926535897932) < 1e-10
assert abs(complex(pi + 1) - 4.1415926535897932) < 1e-10
assert abs(
complex(pi + E*I) - (3.1415926535897931 + 2.7182818284590451j)) < 1e-10
raises(TypeError, lambda: float(pi + x))
def test_evalf_power_subs_bugs():
assert (x**2).evalf(subs={x: 0}) == 0
assert sqrt(x).evalf(subs={x: 0}) == 0
assert (x**Rational(2, 3)).evalf(subs={x: 0}) == 0
assert (x**x).evalf(subs={x: 0}) == 1
assert (3**x).evalf(subs={x: 0}) == 1
assert exp(x).evalf(subs={x: 0}) == 1
assert ((2 + I)**x).evalf(subs={x: 0}) == 1
assert (0**x).evalf(subs={x: 0}) == 1
def test_evalf_arguments():
raises(TypeError, lambda: pi.evalf(method="garbage"))
def test_implemented_function_evalf():
from sympy.utilities.lambdify import implemented_function
f = Function('f')
f = implemented_function(f, lambda x: x + 1)
assert str(f(x)) == "f(x)"
assert str(f(2)) == "f(2)"
assert f(2).evalf() == 3
assert f(x).evalf() == f(x)
f = implemented_function(Function('sin'), lambda x: x + 1)
assert f(2).evalf() != sin(2)
del f._imp_ # XXX: due to caching _imp_ would influence all other tests
def test_evaluate_false():
for no in [0, False]:
assert Add(3, 2, evaluate=no).is_Add
assert Mul(3, 2, evaluate=no).is_Mul
assert Pow(3, 2, evaluate=no).is_Pow
assert Pow(y, 2, evaluate=True) - Pow(y, 2, evaluate=True) == 0
def test_evalf_relational():
assert Eq(x/5, y/10).evalf() == Eq(0.2*x, 0.1*y)
# if this first assertion fails it should be replaced with
# one that doesn't
assert unchanged(Eq, (3 - I)**2/2 + I, 0)
assert Eq((3 - I)**2/2 + I, 0).n() is S.false
assert nfloat(Eq((3 - I)**2 + I, 0)) == S.false
def test_issue_5486():
assert not cos(sqrt(0.5 + I)).n().is_Function
def test_issue_5486_bug():
from sympy.core.expr import Expr
from sympy.core.numbers import I
assert abs(Expr._from_mpmath(I._to_mpmath(15), 15) - I) < 1.0e-15
def test_bugs():
from sympy.functions.elementary.complexes import (polar_lift, re)
assert abs(re((1 + I)**2)) < 1e-15
# anything that evalf's to 0 will do in place of polar_lift
assert abs(polar_lift(0)).n() == 0
def test_subs():
assert NS('besseli(-x, y) - besseli(x, y)', subs={x: 3.5, y: 20.0}) == \
'-4.92535585957223e-10'
assert NS('Piecewise((x, x>0)) + Piecewise((1-x, x>0))', subs={x: 0.1}) == \
'1.00000000000000'
raises(TypeError, lambda: x.evalf(subs=(x, 1)))
def test_issue_4956_5204():
# issue 4956
v = S('''(-27*12**(1/3)*sqrt(31)*I +
27*2**(2/3)*3**(1/3)*sqrt(31)*I)/(-2511*2**(2/3)*3**(1/3) +
(29*18**(1/3) + 9*2**(1/3)*3**(2/3)*sqrt(31)*I +
87*2**(1/3)*3**(1/6)*I)**2)''')
assert NS(v, 1) == '0.e-118 - 0.e-118*I'
# issue 5204
v = S('''-(357587765856 + 18873261792*249**(1/2) + 56619785376*I*83**(1/2) +
108755765856*I*3**(1/2) + 41281887168*6**(1/3)*(1422 +
54*249**(1/2))**(1/3) - 1239810624*6**(1/3)*249**(1/2)*(1422 +
54*249**(1/2))**(1/3) - 3110400000*I*6**(1/3)*83**(1/2)*(1422 +
54*249**(1/2))**(1/3) + 13478400000*I*3**(1/2)*6**(1/3)*(1422 +
54*249**(1/2))**(1/3) + 1274950152*6**(2/3)*(1422 +
54*249**(1/2))**(2/3) + 32347944*6**(2/3)*249**(1/2)*(1422 +
54*249**(1/2))**(2/3) - 1758790152*I*3**(1/2)*6**(2/3)*(1422 +
54*249**(1/2))**(2/3) - 304403832*I*6**(2/3)*83**(1/2)*(1422 +
4*249**(1/2))**(2/3))/(175732658352 + (1106028 + 25596*249**(1/2) +
76788*I*83**(1/2))**2)''')
assert NS(v, 5) == '0.077284 + 1.1104*I'
assert NS(v, 1) == '0.08 + 1.*I'
def test_old_docstring():
a = (E + pi*I)*(E - pi*I)
assert NS(a) == '17.2586605000200'
assert a.n() == 17.25866050002001
def test_issue_4806():
assert integrate(atan(x)**2, (x, -1, 1)).evalf().round(1) == 0.5
assert atan(0, evaluate=False).n() == 0
def test_evalf_mul():
# SymPy should not try to expand this; it should be handled term-wise
# in evalf through mpmath
assert NS(product(1 + sqrt(n)*I, (n, 1, 500)), 1) == '5.e+567 + 2.e+568*I'
def test_scaled_zero():
a, b = (([0], 1, 100, 1), -1)
assert scaled_zero(100) == (a, b)
assert scaled_zero(a) == (0, 1, 100, 1)
a, b = (([1], 1, 100, 1), -1)
assert scaled_zero(100, -1) == (a, b)
assert scaled_zero(a) == (1, 1, 100, 1)
raises(ValueError, lambda: scaled_zero(scaled_zero(100)))
raises(ValueError, lambda: scaled_zero(100, 2))
raises(ValueError, lambda: scaled_zero(100, 0))
raises(ValueError, lambda: scaled_zero((1, 5, 1, 3)))
def test_chop_value():
for i in range(-27, 28):
assert (Pow(10, i)*2).n(chop=10**i) and not (Pow(10, i)).n(chop=10**i)
def test_infinities():
assert oo.evalf(chop=True) == inf
assert (-oo).evalf(chop=True) == ninf
def test_to_mpmath():
assert sqrt(3)._to_mpmath(20)._mpf_ == (0, int(908093), -19, 20)
assert S(3.2)._to_mpmath(20)._mpf_ == (0, int(838861), -18, 20)
def test_issue_6632_evalf():
add = (-100000*sqrt(2500000001) + 5000000001)
assert add.n() == 9.999999998e-11
assert (add*add).n() == 9.999999996e-21
def test_issue_4945():
from sympy.abc import H
assert (H/0).evalf(subs={H:1}) == zoo
def test_evalf_integral():
# test that workprec has to increase in order to get a result other than 0
eps = Rational(1, 1000000)
assert Integral(sin(x), (x, -pi, pi + eps)).n(2)._prec == 10
def test_issue_8821_highprec_from_str():
s = str(pi.evalf(128))
p = N(s)
assert Abs(sin(p)) < 1e-15
p = N(s, 64)
assert Abs(sin(p)) < 1e-64
def test_issue_8853():
p = Symbol('x', even=True, positive=True)
assert floor(-p - S.Half).is_even == False
assert floor(-p + S.Half).is_even == True
assert ceiling(p - S.Half).is_even == True
assert ceiling(p + S.Half).is_even == False
assert get_integer_part(S.Half, -1, {}, True) == (0, 0)
assert get_integer_part(S.Half, 1, {}, True) == (1, 0)
assert get_integer_part(Rational(-1, 2), -1, {}, True) == (-1, 0)
assert get_integer_part(Rational(-1, 2), 1, {}, True) == (0, 0)
def test_issue_17681():
class identity_func(Function):
def _eval_evalf(self, *args, **kwargs):
return self.args[0].evalf(*args, **kwargs)
assert floor(identity_func(S(0))) == 0
assert get_integer_part(S(0), 1, {}, True) == (0, 0)
def test_issue_9326():
from sympy.core.symbol import Dummy
d1 = Dummy('d')
d2 = Dummy('d')
e = d1 + d2
assert e.evalf(subs = {d1: 1, d2: 2}) == 3
def test_issue_10323():
assert ceiling(sqrt(2**30 + 1)) == 2**15 + 1
def test_AssocOp_Function():
# the first arg of Min is not comparable in the imaginary part
raises(ValueError, lambda: S('''
Min(-sqrt(3)*cos(pi/18)/6 + re(1/((-1/2 - sqrt(3)*I/2)*(1/6 +
sqrt(3)*I/18)**(1/3)))/3 + sin(pi/18)/2 + 2 + I*(-cos(pi/18)/2 -
sqrt(3)*sin(pi/18)/6 + im(1/((-1/2 - sqrt(3)*I/2)*(1/6 +
sqrt(3)*I/18)**(1/3)))/3), re(1/((-1/2 + sqrt(3)*I/2)*(1/6 +
sqrt(3)*I/18)**(1/3)))/3 - sqrt(3)*cos(pi/18)/6 - sin(pi/18)/2 + 2 +
I*(im(1/((-1/2 + sqrt(3)*I/2)*(1/6 + sqrt(3)*I/18)**(1/3)))/3 -
sqrt(3)*sin(pi/18)/6 + cos(pi/18)/2))'''))
# if that is changed so a non-comparable number remains as
# an arg, then the Min/Max instantiation needs to be changed
# to watch out for non-comparable args when making simplifications
# and the following test should be added instead (with e being
# the sympified expression above):
# raises(ValueError, lambda: e._eval_evalf(2))
def test_issue_10395():
eq = x*Max(0, y)
assert nfloat(eq) == eq
eq = x*Max(y, -1.1)
assert nfloat(eq) == eq
assert Max(y, 4).n() == Max(4.0, y)
def test_issue_13098():
assert floor(log(S('9.'+'9'*20), 10)) == 0
assert ceiling(log(S('9.'+'9'*20), 10)) == 1
assert floor(log(20 - S('9.'+'9'*20), 10)) == 1
assert ceiling(log(20 - S('9.'+'9'*20), 10)) == 2
def test_issue_14601():
e = 5*x*y/2 - y*(35*(x**3)/2 - 15*x/2)
subst = {x:0.0, y:0.0}
e2 = e.evalf(subs=subst)
assert float(e2) == 0.0
assert float((x + x*(x**2 + x)).evalf(subs={x: 0.0})) == 0.0
def test_issue_11151():
z = S.Zero
e = Sum(z, (x, 1, 2))
assert e != z # it shouldn't evaluate
# when it does evaluate, this is what it should give
assert evalf(e, 15, {}) == \
evalf(z, 15, {}) == (None, None, 15, None)
# so this shouldn't fail
assert (e/2).n() == 0
# this was where the issue appeared
expr0 = Sum(x**2 + x, (x, 1, 2))
expr1 = Sum(0, (x, 1, 2))
expr2 = expr1/expr0
assert simplify(factor(expr2) - expr2) == 0
def test_issue_13425():
assert N('2**.5', 30) == N('sqrt(2)', 30)
assert N('x - x', 30) == 0
assert abs((N('pi*.1', 22)*10 - pi).n()) < 1e-22
def test_issue_17421():
assert N(acos(-I + acosh(cosh(cosh(1) + I)))) == 1.0*I
def test_issue_20291():
from sympy.sets import EmptySet, Reals
from sympy.sets.sets import (Complement, FiniteSet, Intersection)
a = Symbol('a')
b = Symbol('b')
A = FiniteSet(a, b)
assert A.evalf(subs={a: 1, b: 2}) == FiniteSet(1.0, 2.0)
B = FiniteSet(a-b, 1)
assert B.evalf(subs={a: 1, b: 2}) == FiniteSet(-1.0, 1.0)
sol = Complement(Intersection(FiniteSet(-b/2 - sqrt(b**2-4*pi)/2), Reals), FiniteSet(0))
assert sol.evalf(subs={b: 1}) == EmptySet
def test_evalf_with_zoo():
assert (1/x).evalf(subs={x: 0}) == zoo # issue 8242
assert (-1/x).evalf(subs={x: 0}) == zoo # PR 16150
assert (0 ** x).evalf(subs={x: -1}) == zoo # PR 16150
assert (0 ** x).evalf(subs={x: -1 + I}) == nan
assert Mul(2, Pow(0, -1, evaluate=False), evaluate=False).evalf() == zoo # issue 21147
assert Mul(x, 1/x, evaluate=False).evalf(subs={x: 0}) == Mul(x, 1/x, evaluate=False).subs(x, 0) == nan
assert Mul(1/x, 1/x, evaluate=False).evalf(subs={x: 0}) == zoo
assert Mul(1/x, Abs(1/x), evaluate=False).evalf(subs={x: 0}) == zoo
assert Abs(zoo, evaluate=False).evalf() == oo
assert re(zoo, evaluate=False).evalf() == nan
assert im(zoo, evaluate=False).evalf() == nan
assert Add(zoo, zoo, evaluate=False).evalf() == nan
assert Add(oo, zoo, evaluate=False).evalf() == nan
assert Pow(zoo, -1, evaluate=False).evalf() == 0
assert Pow(zoo, Rational(-1, 3), evaluate=False).evalf() == 0
assert Pow(zoo, Rational(1, 3), evaluate=False).evalf() == zoo
assert Pow(zoo, S.Half, evaluate=False).evalf() == zoo
assert Pow(zoo, 2, evaluate=False).evalf() == zoo
assert Pow(0, zoo, evaluate=False).evalf() == nan
assert log(zoo, evaluate=False).evalf() == zoo
assert zoo.evalf(chop=True) == zoo
assert x.evalf(subs={x: zoo}) == zoo
def test_evalf_with_bounded_error():
cases = [
# zero
(Rational(0), None, 1),
# zero im part
(pi, None, 10),
# zero real part
(pi*I, None, 10),
# re and im nonzero
(2-3*I, None, 5),
# similar tests again, but using eps instead of m
(Rational(0), Rational(1, 2), None),
(pi, Rational(1, 1000), None),
(pi * I, Rational(1, 1000), None),
(2 - 3 * I, Rational(1, 1000), None),
# very large eps
(2 - 3 * I, Rational(1000), None),
# case where x already small, hence some cancellation in p = m + n - 1
(Rational(1234, 10**8), Rational(1, 10**12), None),
]
for x0, eps, m in cases:
a, b, _, _ = evalf(x0, 53, {})
c, d, _, _ = _evalf_with_bounded_error(x0, eps, m)
if eps is None:
eps = 2**(-m)
z = make_mpc((a or fzero, b or fzero))
w = make_mpc((c or fzero, d or fzero))
assert abs(w - z) < eps
# eps must be positive
raises(ValueError, lambda: _evalf_with_bounded_error(pi, Rational(0)))
raises(ValueError, lambda: _evalf_with_bounded_error(pi, -pi))
raises(ValueError, lambda: _evalf_with_bounded_error(pi, I))
def test_issue_22849():
a = -8 + 3 * sqrt(3)
x = AlgebraicNumber(a)
assert evalf(a, 1, {}) == evalf(x, 1, {})
def test_evalf_real_alg_num():
# This test demonstrates why the entry for `AlgebraicNumber` in
# `sympy.core.evalf._create_evalf_table()` has to use `x.to_root()`,
# instead of `x.as_expr()`. If the latter is used, then `z` will be
# a complex number with `0.e-20` for imaginary part, even though `a5`
# is a real number.
zeta = Symbol('zeta')
a5 = AlgebraicNumber(CRootOf(cyclotomic_poly(5), -1), [-1, -1, 0, 0], alias=zeta)
z = a5.evalf()
assert isinstance(z, Float)
assert not hasattr(z, '_mpc_')
assert hasattr(z, '_mpf_')
def test_issue_20733():
expr = 1/((x - 9)*(x - 8)*(x - 7)*(x - 4)**2*(x - 3)**3*(x - 2))
assert str(expr.evalf(1, subs={x:1})) == '-4.e-5'
assert str(expr.evalf(2, subs={x:1})) == '-4.1e-5'
assert str(expr.evalf(11, subs={x:1})) == '-4.1335978836e-5'
assert str(expr.evalf(20, subs={x:1})) == '-0.000041335978835978835979'
expr = Mul(*((x - i) for i in range(2, 1000)))
assert srepr(expr.evalf(2, subs={x: 1})) == "Float('4.0271e+2561', precision=10)"
assert srepr(expr.evalf(10, subs={x: 1})) == "Float('4.02790050126e+2561', precision=37)"
assert srepr(expr.evalf(53, subs={x: 1})) == "Float('4.0279005012722099453824067459760158730668154575647110393e+2561', precision=179)"
|
7b7f545b26194f4dec90a38c1a7ecb0af3253c921877981e4f961b819ca0b4fb | from sympy.core.add import Add
from sympy.core.basic import Basic
from sympy.core.mod import Mod
from sympy.core.mul import Mul
from sympy.core.numbers import (Float, I, Integer, Rational, comp, nan,
oo, pi, zoo)
from sympy.core.power import Pow
from sympy.core.singleton import S
from sympy.core.symbol import (Dummy, Symbol, symbols)
from sympy.core.sympify import sympify
from sympy.functions.combinatorial.factorials import factorial
from sympy.functions.elementary.complexes import (im, re, sign)
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.elementary.integers import floor
from sympy.functions.elementary.miscellaneous import (Max, sqrt)
from sympy.functions.elementary.trigonometric import (atan, cos, sin)
from sympy.polys.polytools import Poly
from sympy.sets.sets import FiniteSet
from sympy.core.parameters import distribute, evaluate
from sympy.core.expr import unchanged
from sympy.utilities.iterables import permutations
from sympy.testing.pytest import XFAIL, raises, warns
from sympy.utilities.exceptions import SymPyDeprecationWarning
from sympy.core.random import verify_numerically
from sympy.functions.elementary.trigonometric import asin
from itertools import product
a, c, x, y, z = symbols('a,c,x,y,z')
b = Symbol("b", positive=True)
def same_and_same_prec(a, b):
# stricter matching for Floats
return a == b and a._prec == b._prec
def test_bug1():
assert re(x) != x
x.series(x, 0, 1)
assert re(x) != x
def test_Symbol():
e = a*b
assert e == a*b
assert a*b*b == a*b**2
assert a*b*b + c == c + a*b**2
assert a*b*b - c == -c + a*b**2
x = Symbol('x', complex=True, real=False)
assert x.is_imaginary is None # could be I or 1 + I
x = Symbol('x', complex=True, imaginary=False)
assert x.is_real is None # could be 1 or 1 + I
x = Symbol('x', real=True)
assert x.is_complex
x = Symbol('x', imaginary=True)
assert x.is_complex
x = Symbol('x', real=False, imaginary=False)
assert x.is_complex is None # might be a non-number
def test_arit0():
p = Rational(5)
e = a*b
assert e == a*b
e = a*b + b*a
assert e == 2*a*b
e = a*b + b*a + a*b + p*b*a
assert e == 8*a*b
e = a*b + b*a + a*b + p*b*a + a
assert e == a + 8*a*b
e = a + a
assert e == 2*a
e = a + b + a
assert e == b + 2*a
e = a + b*b + a + b*b
assert e == 2*a + 2*b**2
e = a + Rational(2) + b*b + a + b*b + p
assert e == 7 + 2*a + 2*b**2
e = (a + b*b + a + b*b)*p
assert e == 5*(2*a + 2*b**2)
e = (a*b*c + c*b*a + b*a*c)*p
assert e == 15*a*b*c
e = (a*b*c + c*b*a + b*a*c)*p - Rational(15)*a*b*c
assert e == Rational(0)
e = Rational(50)*(a - a)
assert e == Rational(0)
e = b*a - b - a*b + b
assert e == Rational(0)
e = a*b + c**p
assert e == a*b + c**5
e = a/b
assert e == a*b**(-1)
e = a*2*2
assert e == 4*a
e = 2 + a*2/2
assert e == 2 + a
e = 2 - a - 2
assert e == -a
e = 2*a*2
assert e == 4*a
e = 2/a/2
assert e == a**(-1)
e = 2**a**2
assert e == 2**(a**2)
e = -(1 + a)
assert e == -1 - a
e = S.Half*(1 + a)
assert e == S.Half + a/2
def test_div():
e = a/b
assert e == a*b**(-1)
e = a/b + c/2
assert e == a*b**(-1) + Rational(1)/2*c
e = (1 - b)/(b - 1)
assert e == (1 + -b)*((-1) + b)**(-1)
def test_pow_arit():
n1 = Rational(1)
n2 = Rational(2)
n5 = Rational(5)
e = a*a
assert e == a**2
e = a*a*a
assert e == a**3
e = a*a*a*a**Rational(6)
assert e == a**9
e = a*a*a*a**Rational(6) - a**Rational(9)
assert e == Rational(0)
e = a**(b - b)
assert e == Rational(1)
e = (a + Rational(1) - a)**b
assert e == Rational(1)
e = (a + b + c)**n2
assert e == (a + b + c)**2
assert e.expand() == 2*b*c + 2*a*c + 2*a*b + a**2 + c**2 + b**2
e = (a + b)**n2
assert e == (a + b)**2
assert e.expand() == 2*a*b + a**2 + b**2
e = (a + b)**(n1/n2)
assert e == sqrt(a + b)
assert e.expand() == sqrt(a + b)
n = n5**(n1/n2)
assert n == sqrt(5)
e = n*a*b - n*b*a
assert e == Rational(0)
e = n*a*b + n*b*a
assert e == 2*a*b*sqrt(5)
assert e.diff(a) == 2*b*sqrt(5)
assert e.diff(a) == 2*b*sqrt(5)
e = a/b**2
assert e == a*b**(-2)
assert sqrt(2*(1 + sqrt(2))) == (2*(1 + 2**S.Half))**S.Half
x = Symbol('x')
y = Symbol('y')
assert ((x*y)**3).expand() == y**3 * x**3
assert ((x*y)**-3).expand() == y**-3 * x**-3
assert (x**5*(3*x)**(3)).expand() == 27 * x**8
assert (x**5*(-3*x)**(3)).expand() == -27 * x**8
assert (x**5*(3*x)**(-3)).expand() == x**2 * Rational(1, 27)
assert (x**5*(-3*x)**(-3)).expand() == x**2 * Rational(-1, 27)
# expand_power_exp
_x = Symbol('x', zero=False)
_y = Symbol('y', zero=False)
assert (_x**(y**(x + exp(x + y)) + z)).expand(deep=False) == \
_x**z*_x**(y**(x + exp(x + y)))
assert (_x**(_y**(x + exp(x + y)) + z)).expand() == \
_x**z*_x**(_y**x*_y**(exp(x)*exp(y)))
n = Symbol('n', even=False)
k = Symbol('k', even=True)
o = Symbol('o', odd=True)
assert unchanged(Pow, -1, x)
assert unchanged(Pow, -1, n)
assert (-2)**k == 2**k
assert (-1)**k == 1
assert (-1)**o == -1
def test_pow2():
# x**(2*y) is always (x**y)**2 but is only (x**2)**y if
# x.is_positive or y.is_integer
# let x = 1 to see why the following are not true.
assert (-x)**Rational(2, 3) != x**Rational(2, 3)
assert (-x)**Rational(5, 7) != -x**Rational(5, 7)
assert ((-x)**2)**Rational(1, 3) != ((-x)**Rational(1, 3))**2
assert sqrt(x**2) != x
def test_pow3():
assert sqrt(2)**3 == 2 * sqrt(2)
assert sqrt(2)**3 == sqrt(8)
def test_mod_pow():
for s, t, u, v in [(4, 13, 497, 445), (4, -3, 497, 365),
(3.2, 2.1, 1.9, 0.1031015682350942), (S(3)/2, 5, S(5)/6, S(3)/32)]:
assert pow(S(s), t, u) == v
assert pow(S(s), S(t), u) == v
assert pow(S(s), t, S(u)) == v
assert pow(S(s), S(t), S(u)) == v
assert pow(S(2), S(10000000000), S(3)) == 1
assert pow(x, y, z) == x**y%z
raises(TypeError, lambda: pow(S(4), "13", 497))
raises(TypeError, lambda: pow(S(4), 13, "497"))
def test_pow_E():
assert 2**(y/log(2)) == S.Exp1**y
assert 2**(y/log(2)/3) == S.Exp1**(y/3)
assert 3**(1/log(-3)) != S.Exp1
assert (3 + 2*I)**(1/(log(-3 - 2*I) + I*pi)) == S.Exp1
assert (4 + 2*I)**(1/(log(-4 - 2*I) + I*pi)) == S.Exp1
assert (3 + 2*I)**(1/(log(-3 - 2*I, 3)/2 + I*pi/log(3)/2)) == 9
assert (3 + 2*I)**(1/(log(3 + 2*I, 3)/2)) == 9
# every time tests are run they will affirm with a different random
# value that this identity holds
while 1:
b = x._random()
r, i = b.as_real_imag()
if i:
break
assert verify_numerically(b**(1/(log(-b) + sign(i)*I*pi).n()), S.Exp1)
def test_pow_issue_3516():
assert 4**Rational(1, 4) == sqrt(2)
def test_pow_im():
for m in (-2, -1, 2):
for d in (3, 4, 5):
b = m*I
for i in range(1, 4*d + 1):
e = Rational(i, d)
assert (b**e - b.n()**e.n()).n(2, chop=1e-10) == 0
e = Rational(7, 3)
assert (2*x*I)**e == 4*2**Rational(1, 3)*(I*x)**e # same as Wolfram Alpha
im = symbols('im', imaginary=True)
assert (2*im*I)**e == 4*2**Rational(1, 3)*(I*im)**e
args = [I, I, I, I, 2]
e = Rational(1, 3)
ans = 2**e
assert Mul(*args, evaluate=False)**e == ans
assert Mul(*args)**e == ans
args = [I, I, I, 2]
e = Rational(1, 3)
ans = 2**e*(-I)**e
assert Mul(*args, evaluate=False)**e == ans
assert Mul(*args)**e == ans
args.append(-3)
ans = (6*I)**e
assert Mul(*args, evaluate=False)**e == ans
assert Mul(*args)**e == ans
args.append(-1)
ans = (-6*I)**e
assert Mul(*args, evaluate=False)**e == ans
assert Mul(*args)**e == ans
args = [I, I, 2]
e = Rational(1, 3)
ans = (-2)**e
assert Mul(*args, evaluate=False)**e == ans
assert Mul(*args)**e == ans
args.append(-3)
ans = (6)**e
assert Mul(*args, evaluate=False)**e == ans
assert Mul(*args)**e == ans
args.append(-1)
ans = (-6)**e
assert Mul(*args, evaluate=False)**e == ans
assert Mul(*args)**e == ans
assert Mul(Pow(-1, Rational(3, 2), evaluate=False), I, I) == I
assert Mul(I*Pow(I, S.Half, evaluate=False)) == sqrt(I)*I
def test_real_mul():
assert Float(0) * pi * x == 0
assert set((Float(1) * pi * x).args) == {Float(1), pi, x}
def test_ncmul():
A = Symbol("A", commutative=False)
B = Symbol("B", commutative=False)
C = Symbol("C", commutative=False)
assert A*B != B*A
assert A*B*C != C*B*A
assert A*b*B*3*C == 3*b*A*B*C
assert A*b*B*3*C != 3*b*B*A*C
assert A*b*B*3*C == 3*A*B*C*b
assert A + B == B + A
assert (A + B)*C != C*(A + B)
assert C*(A + B)*C != C*C*(A + B)
assert A*A == A**2
assert (A + B)*(A + B) == (A + B)**2
assert A**-1 * A == 1
assert A/A == 1
assert A/(A**2) == 1/A
assert A/(1 + A) == A/(1 + A)
assert set((A + B + 2*(A + B)).args) == \
{A, B, 2*(A + B)}
def test_mul_add_identity():
m = Mul(1, 2)
assert isinstance(m, Rational) and m.p == 2 and m.q == 1
m = Mul(1, 2, evaluate=False)
assert isinstance(m, Mul) and m.args == (1, 2)
m = Mul(0, 1)
assert m is S.Zero
m = Mul(0, 1, evaluate=False)
assert isinstance(m, Mul) and m.args == (0, 1)
m = Add(0, 1)
assert m is S.One
m = Add(0, 1, evaluate=False)
assert isinstance(m, Add) and m.args == (0, 1)
def test_ncpow():
x = Symbol('x', commutative=False)
y = Symbol('y', commutative=False)
z = Symbol('z', commutative=False)
a = Symbol('a')
b = Symbol('b')
c = Symbol('c')
assert (x**2)*(y**2) != (y**2)*(x**2)
assert (x**-2)*y != y*(x**2)
assert 2**x*2**y != 2**(x + y)
assert 2**x*2**y*2**z != 2**(x + y + z)
assert 2**x*2**(2*x) == 2**(3*x)
assert 2**x*2**(2*x)*2**x == 2**(4*x)
assert exp(x)*exp(y) != exp(y)*exp(x)
assert exp(x)*exp(y)*exp(z) != exp(y)*exp(x)*exp(z)
assert exp(x)*exp(y)*exp(z) != exp(x + y + z)
assert x**a*x**b != x**(a + b)
assert x**a*x**b*x**c != x**(a + b + c)
assert x**3*x**4 == x**7
assert x**3*x**4*x**2 == x**9
assert x**a*x**(4*a) == x**(5*a)
assert x**a*x**(4*a)*x**a == x**(6*a)
def test_powerbug():
x = Symbol("x")
assert x**1 != (-x)**1
assert x**2 == (-x)**2
assert x**3 != (-x)**3
assert x**4 == (-x)**4
assert x**5 != (-x)**5
assert x**6 == (-x)**6
assert x**128 == (-x)**128
assert x**129 != (-x)**129
assert (2*x)**2 == (-2*x)**2
def test_Mul_doesnt_expand_exp():
x = Symbol('x')
y = Symbol('y')
assert unchanged(Mul, exp(x), exp(y))
assert unchanged(Mul, 2**x, 2**y)
assert x**2*x**3 == x**5
assert 2**x*3**x == 6**x
assert x**(y)*x**(2*y) == x**(3*y)
assert sqrt(2)*sqrt(2) == 2
assert 2**x*2**(2*x) == 2**(3*x)
assert sqrt(2)*2**Rational(1, 4)*5**Rational(3, 4) == 10**Rational(3, 4)
assert (x**(-log(5)/log(3))*x)/(x*x**( - log(5)/log(3))) == sympify(1)
def test_Mul_is_integer():
k = Symbol('k', integer=True)
n = Symbol('n', integer=True)
nr = Symbol('nr', rational=False)
ir = Symbol('ir', irrational=True)
nz = Symbol('nz', integer=True, zero=False)
e = Symbol('e', even=True)
o = Symbol('o', odd=True)
i2 = Symbol('2', prime=True, even=True)
assert (k/3).is_integer is None
assert (nz/3).is_integer is None
assert (nr/3).is_integer is False
assert (ir/3).is_integer is False
assert (x*k*n).is_integer is None
assert (e/2).is_integer is True
assert (e**2/2).is_integer is True
assert (2/k).is_integer is None
assert (2/k**2).is_integer is None
assert ((-1)**k*n).is_integer is True
assert (3*k*e/2).is_integer is True
assert (2*k*e/3).is_integer is None
assert (e/o).is_integer is None
assert (o/e).is_integer is False
assert (o/i2).is_integer is False
assert Mul(k, 1/k, evaluate=False).is_integer is None
assert Mul(2., S.Half, evaluate=False).is_integer is None
assert (2*sqrt(k)).is_integer is None
assert (2*k**n).is_integer is None
s = 2**2**2**Pow(2, 1000, evaluate=False)
m = Mul(s, s, evaluate=False)
assert m.is_integer
# broken in 1.6 and before, see #20161
xq = Symbol('xq', rational=True)
yq = Symbol('yq', rational=True)
assert (xq*yq).is_integer is None
e_20161 = Mul(-1,Mul(1,Pow(2,-1,evaluate=False),evaluate=False),evaluate=False)
assert e_20161.is_integer is not True # expand(e_20161) -> -1/2, but no need to see that in the assumption without evaluation
def test_Add_Mul_is_integer():
x = Symbol('x')
k = Symbol('k', integer=True)
n = Symbol('n', integer=True)
nk = Symbol('nk', integer=False)
nr = Symbol('nr', rational=False)
nz = Symbol('nz', integer=True, zero=False)
assert (-nk).is_integer is None
assert (-nr).is_integer is False
assert (2*k).is_integer is True
assert (-k).is_integer is True
assert (k + nk).is_integer is False
assert (k + n).is_integer is True
assert (k + x).is_integer is None
assert (k + n*x).is_integer is None
assert (k + n/3).is_integer is None
assert (k + nz/3).is_integer is None
assert (k + nr/3).is_integer is False
assert ((1 + sqrt(3))*(-sqrt(3) + 1)).is_integer is not False
assert (1 + (1 + sqrt(3))*(-sqrt(3) + 1)).is_integer is not False
def test_Add_Mul_is_finite():
x = Symbol('x', extended_real=True, finite=False)
assert sin(x).is_finite is True
assert (x*sin(x)).is_finite is None
assert (x*atan(x)).is_finite is False
assert (1024*sin(x)).is_finite is True
assert (sin(x)*exp(x)).is_finite is None
assert (sin(x)*cos(x)).is_finite is True
assert (x*sin(x)*exp(x)).is_finite is None
assert (sin(x) - 67).is_finite is True
assert (sin(x) + exp(x)).is_finite is not True
assert (1 + x).is_finite is False
assert (1 + x**2 + (1 + x)*(1 - x)).is_finite is None
assert (sqrt(2)*(1 + x)).is_finite is False
assert (sqrt(2)*(1 + x)*(1 - x)).is_finite is False
def test_Mul_is_even_odd():
x = Symbol('x', integer=True)
y = Symbol('y', integer=True)
k = Symbol('k', odd=True)
n = Symbol('n', odd=True)
m = Symbol('m', even=True)
assert (2*x).is_even is True
assert (2*x).is_odd is False
assert (3*x).is_even is None
assert (3*x).is_odd is None
assert (k/3).is_integer is None
assert (k/3).is_even is None
assert (k/3).is_odd is None
assert (2*n).is_even is True
assert (2*n).is_odd is False
assert (2*m).is_even is True
assert (2*m).is_odd is False
assert (-n).is_even is False
assert (-n).is_odd is True
assert (k*n).is_even is False
assert (k*n).is_odd is True
assert (k*m).is_even is True
assert (k*m).is_odd is False
assert (k*n*m).is_even is True
assert (k*n*m).is_odd is False
assert (k*m*x).is_even is True
assert (k*m*x).is_odd is False
# issue 6791:
assert (x/2).is_integer is None
assert (k/2).is_integer is False
assert (m/2).is_integer is True
assert (x*y).is_even is None
assert (x*x).is_even is None
assert (x*(x + k)).is_even is True
assert (x*(x + m)).is_even is None
assert (x*y).is_odd is None
assert (x*x).is_odd is None
assert (x*(x + k)).is_odd is False
assert (x*(x + m)).is_odd is None
# issue 8648
assert (m**2/2).is_even
assert (m**2/3).is_even is False
assert (2/m**2).is_odd is False
assert (2/m).is_odd is None
@XFAIL
def test_evenness_in_ternary_integer_product_with_odd():
# Tests that oddness inference is independent of term ordering.
# Term ordering at the point of testing depends on SymPy's symbol order, so
# we try to force a different order by modifying symbol names.
x = Symbol('x', integer=True)
y = Symbol('y', integer=True)
k = Symbol('k', odd=True)
assert (x*y*(y + k)).is_even is True
assert (y*x*(x + k)).is_even is True
def test_evenness_in_ternary_integer_product_with_even():
x = Symbol('x', integer=True)
y = Symbol('y', integer=True)
m = Symbol('m', even=True)
assert (x*y*(y + m)).is_even is None
@XFAIL
def test_oddness_in_ternary_integer_product_with_odd():
# Tests that oddness inference is independent of term ordering.
# Term ordering at the point of testing depends on SymPy's symbol order, so
# we try to force a different order by modifying symbol names.
x = Symbol('x', integer=True)
y = Symbol('y', integer=True)
k = Symbol('k', odd=True)
assert (x*y*(y + k)).is_odd is False
assert (y*x*(x + k)).is_odd is False
def test_oddness_in_ternary_integer_product_with_even():
x = Symbol('x', integer=True)
y = Symbol('y', integer=True)
m = Symbol('m', even=True)
assert (x*y*(y + m)).is_odd is None
def test_Mul_is_rational():
x = Symbol('x')
n = Symbol('n', integer=True)
m = Symbol('m', integer=True, nonzero=True)
assert (n/m).is_rational is True
assert (x/pi).is_rational is None
assert (x/n).is_rational is None
assert (m/pi).is_rational is False
r = Symbol('r', rational=True)
assert (pi*r).is_rational is None
# issue 8008
z = Symbol('z', zero=True)
i = Symbol('i', imaginary=True)
assert (z*i).is_rational is True
bi = Symbol('i', imaginary=True, finite=True)
assert (z*bi).is_zero is True
def test_Add_is_rational():
x = Symbol('x')
n = Symbol('n', rational=True)
m = Symbol('m', rational=True)
assert (n + m).is_rational is True
assert (x + pi).is_rational is None
assert (x + n).is_rational is None
assert (n + pi).is_rational is False
def test_Add_is_even_odd():
x = Symbol('x', integer=True)
k = Symbol('k', odd=True)
n = Symbol('n', odd=True)
m = Symbol('m', even=True)
assert (k + 7).is_even is True
assert (k + 7).is_odd is False
assert (-k + 7).is_even is True
assert (-k + 7).is_odd is False
assert (k - 12).is_even is False
assert (k - 12).is_odd is True
assert (-k - 12).is_even is False
assert (-k - 12).is_odd is True
assert (k + n).is_even is True
assert (k + n).is_odd is False
assert (k + m).is_even is False
assert (k + m).is_odd is True
assert (k + n + m).is_even is True
assert (k + n + m).is_odd is False
assert (k + n + x + m).is_even is None
assert (k + n + x + m).is_odd is None
def test_Mul_is_negative_positive():
x = Symbol('x', real=True)
y = Symbol('y', extended_real=False, complex=True)
z = Symbol('z', zero=True)
e = 2*z
assert e.is_Mul and e.is_positive is False and e.is_negative is False
neg = Symbol('neg', negative=True)
pos = Symbol('pos', positive=True)
nneg = Symbol('nneg', nonnegative=True)
npos = Symbol('npos', nonpositive=True)
assert neg.is_negative is True
assert (-neg).is_negative is False
assert (2*neg).is_negative is True
assert (2*pos)._eval_is_extended_negative() is False
assert (2*pos).is_negative is False
assert pos.is_negative is False
assert (-pos).is_negative is True
assert (2*pos).is_negative is False
assert (pos*neg).is_negative is True
assert (2*pos*neg).is_negative is True
assert (-pos*neg).is_negative is False
assert (pos*neg*y).is_negative is False # y.is_real=F; !real -> !neg
assert nneg.is_negative is False
assert (-nneg).is_negative is None
assert (2*nneg).is_negative is False
assert npos.is_negative is None
assert (-npos).is_negative is False
assert (2*npos).is_negative is None
assert (nneg*npos).is_negative is None
assert (neg*nneg).is_negative is None
assert (neg*npos).is_negative is False
assert (pos*nneg).is_negative is False
assert (pos*npos).is_negative is None
assert (npos*neg*nneg).is_negative is False
assert (npos*pos*nneg).is_negative is None
assert (-npos*neg*nneg).is_negative is None
assert (-npos*pos*nneg).is_negative is False
assert (17*npos*neg*nneg).is_negative is False
assert (17*npos*pos*nneg).is_negative is None
assert (neg*npos*pos*nneg).is_negative is False
assert (x*neg).is_negative is None
assert (nneg*npos*pos*x*neg).is_negative is None
assert neg.is_positive is False
assert (-neg).is_positive is True
assert (2*neg).is_positive is False
assert pos.is_positive is True
assert (-pos).is_positive is False
assert (2*pos).is_positive is True
assert (pos*neg).is_positive is False
assert (2*pos*neg).is_positive is False
assert (-pos*neg).is_positive is True
assert (-pos*neg*y).is_positive is False # y.is_real=F; !real -> !neg
assert nneg.is_positive is None
assert (-nneg).is_positive is False
assert (2*nneg).is_positive is None
assert npos.is_positive is False
assert (-npos).is_positive is None
assert (2*npos).is_positive is False
assert (nneg*npos).is_positive is False
assert (neg*nneg).is_positive is False
assert (neg*npos).is_positive is None
assert (pos*nneg).is_positive is None
assert (pos*npos).is_positive is False
assert (npos*neg*nneg).is_positive is None
assert (npos*pos*nneg).is_positive is False
assert (-npos*neg*nneg).is_positive is False
assert (-npos*pos*nneg).is_positive is None
assert (17*npos*neg*nneg).is_positive is None
assert (17*npos*pos*nneg).is_positive is False
assert (neg*npos*pos*nneg).is_positive is None
assert (x*neg).is_positive is None
assert (nneg*npos*pos*x*neg).is_positive is None
def test_Mul_is_negative_positive_2():
a = Symbol('a', nonnegative=True)
b = Symbol('b', nonnegative=True)
c = Symbol('c', nonpositive=True)
d = Symbol('d', nonpositive=True)
assert (a*b).is_nonnegative is True
assert (a*b).is_negative is False
assert (a*b).is_zero is None
assert (a*b).is_positive is None
assert (c*d).is_nonnegative is True
assert (c*d).is_negative is False
assert (c*d).is_zero is None
assert (c*d).is_positive is None
assert (a*c).is_nonpositive is True
assert (a*c).is_positive is False
assert (a*c).is_zero is None
assert (a*c).is_negative is None
def test_Mul_is_nonpositive_nonnegative():
x = Symbol('x', real=True)
k = Symbol('k', negative=True)
n = Symbol('n', positive=True)
u = Symbol('u', nonnegative=True)
v = Symbol('v', nonpositive=True)
assert k.is_nonpositive is True
assert (-k).is_nonpositive is False
assert (2*k).is_nonpositive is True
assert n.is_nonpositive is False
assert (-n).is_nonpositive is True
assert (2*n).is_nonpositive is False
assert (n*k).is_nonpositive is True
assert (2*n*k).is_nonpositive is True
assert (-n*k).is_nonpositive is False
assert u.is_nonpositive is None
assert (-u).is_nonpositive is True
assert (2*u).is_nonpositive is None
assert v.is_nonpositive is True
assert (-v).is_nonpositive is None
assert (2*v).is_nonpositive is True
assert (u*v).is_nonpositive is True
assert (k*u).is_nonpositive is True
assert (k*v).is_nonpositive is None
assert (n*u).is_nonpositive is None
assert (n*v).is_nonpositive is True
assert (v*k*u).is_nonpositive is None
assert (v*n*u).is_nonpositive is True
assert (-v*k*u).is_nonpositive is True
assert (-v*n*u).is_nonpositive is None
assert (17*v*k*u).is_nonpositive is None
assert (17*v*n*u).is_nonpositive is True
assert (k*v*n*u).is_nonpositive is None
assert (x*k).is_nonpositive is None
assert (u*v*n*x*k).is_nonpositive is None
assert k.is_nonnegative is False
assert (-k).is_nonnegative is True
assert (2*k).is_nonnegative is False
assert n.is_nonnegative is True
assert (-n).is_nonnegative is False
assert (2*n).is_nonnegative is True
assert (n*k).is_nonnegative is False
assert (2*n*k).is_nonnegative is False
assert (-n*k).is_nonnegative is True
assert u.is_nonnegative is True
assert (-u).is_nonnegative is None
assert (2*u).is_nonnegative is True
assert v.is_nonnegative is None
assert (-v).is_nonnegative is True
assert (2*v).is_nonnegative is None
assert (u*v).is_nonnegative is None
assert (k*u).is_nonnegative is None
assert (k*v).is_nonnegative is True
assert (n*u).is_nonnegative is True
assert (n*v).is_nonnegative is None
assert (v*k*u).is_nonnegative is True
assert (v*n*u).is_nonnegative is None
assert (-v*k*u).is_nonnegative is None
assert (-v*n*u).is_nonnegative is True
assert (17*v*k*u).is_nonnegative is True
assert (17*v*n*u).is_nonnegative is None
assert (k*v*n*u).is_nonnegative is True
assert (x*k).is_nonnegative is None
assert (u*v*n*x*k).is_nonnegative is None
def test_Add_is_negative_positive():
x = Symbol('x', real=True)
k = Symbol('k', negative=True)
n = Symbol('n', positive=True)
u = Symbol('u', nonnegative=True)
v = Symbol('v', nonpositive=True)
assert (k - 2).is_negative is True
assert (k + 17).is_negative is None
assert (-k - 5).is_negative is None
assert (-k + 123).is_negative is False
assert (k - n).is_negative is True
assert (k + n).is_negative is None
assert (-k - n).is_negative is None
assert (-k + n).is_negative is False
assert (k - n - 2).is_negative is True
assert (k + n + 17).is_negative is None
assert (-k - n - 5).is_negative is None
assert (-k + n + 123).is_negative is False
assert (-2*k + 123*n + 17).is_negative is False
assert (k + u).is_negative is None
assert (k + v).is_negative is True
assert (n + u).is_negative is False
assert (n + v).is_negative is None
assert (u - v).is_negative is False
assert (u + v).is_negative is None
assert (-u - v).is_negative is None
assert (-u + v).is_negative is None
assert (u - v + n + 2).is_negative is False
assert (u + v + n + 2).is_negative is None
assert (-u - v + n + 2).is_negative is None
assert (-u + v + n + 2).is_negative is None
assert (k + x).is_negative is None
assert (k + x - n).is_negative is None
assert (k - 2).is_positive is False
assert (k + 17).is_positive is None
assert (-k - 5).is_positive is None
assert (-k + 123).is_positive is True
assert (k - n).is_positive is False
assert (k + n).is_positive is None
assert (-k - n).is_positive is None
assert (-k + n).is_positive is True
assert (k - n - 2).is_positive is False
assert (k + n + 17).is_positive is None
assert (-k - n - 5).is_positive is None
assert (-k + n + 123).is_positive is True
assert (-2*k + 123*n + 17).is_positive is True
assert (k + u).is_positive is None
assert (k + v).is_positive is False
assert (n + u).is_positive is True
assert (n + v).is_positive is None
assert (u - v).is_positive is None
assert (u + v).is_positive is None
assert (-u - v).is_positive is None
assert (-u + v).is_positive is False
assert (u - v - n - 2).is_positive is None
assert (u + v - n - 2).is_positive is None
assert (-u - v - n - 2).is_positive is None
assert (-u + v - n - 2).is_positive is False
assert (n + x).is_positive is None
assert (n + x - k).is_positive is None
z = (-3 - sqrt(5) + (-sqrt(10)/2 - sqrt(2)/2)**2)
assert z.is_zero
z = sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3)) - sqrt(10 + 6*sqrt(3))
assert z.is_zero
def test_Add_is_nonpositive_nonnegative():
x = Symbol('x', real=True)
k = Symbol('k', negative=True)
n = Symbol('n', positive=True)
u = Symbol('u', nonnegative=True)
v = Symbol('v', nonpositive=True)
assert (u - 2).is_nonpositive is None
assert (u + 17).is_nonpositive is False
assert (-u - 5).is_nonpositive is True
assert (-u + 123).is_nonpositive is None
assert (u - v).is_nonpositive is None
assert (u + v).is_nonpositive is None
assert (-u - v).is_nonpositive is None
assert (-u + v).is_nonpositive is True
assert (u - v - 2).is_nonpositive is None
assert (u + v + 17).is_nonpositive is None
assert (-u - v - 5).is_nonpositive is None
assert (-u + v - 123).is_nonpositive is True
assert (-2*u + 123*v - 17).is_nonpositive is True
assert (k + u).is_nonpositive is None
assert (k + v).is_nonpositive is True
assert (n + u).is_nonpositive is False
assert (n + v).is_nonpositive is None
assert (k - n).is_nonpositive is True
assert (k + n).is_nonpositive is None
assert (-k - n).is_nonpositive is None
assert (-k + n).is_nonpositive is False
assert (k - n + u + 2).is_nonpositive is None
assert (k + n + u + 2).is_nonpositive is None
assert (-k - n + u + 2).is_nonpositive is None
assert (-k + n + u + 2).is_nonpositive is False
assert (u + x).is_nonpositive is None
assert (v - x - n).is_nonpositive is None
assert (u - 2).is_nonnegative is None
assert (u + 17).is_nonnegative is True
assert (-u - 5).is_nonnegative is False
assert (-u + 123).is_nonnegative is None
assert (u - v).is_nonnegative is True
assert (u + v).is_nonnegative is None
assert (-u - v).is_nonnegative is None
assert (-u + v).is_nonnegative is None
assert (u - v + 2).is_nonnegative is True
assert (u + v + 17).is_nonnegative is None
assert (-u - v - 5).is_nonnegative is None
assert (-u + v - 123).is_nonnegative is False
assert (2*u - 123*v + 17).is_nonnegative is True
assert (k + u).is_nonnegative is None
assert (k + v).is_nonnegative is False
assert (n + u).is_nonnegative is True
assert (n + v).is_nonnegative is None
assert (k - n).is_nonnegative is False
assert (k + n).is_nonnegative is None
assert (-k - n).is_nonnegative is None
assert (-k + n).is_nonnegative is True
assert (k - n - u - 2).is_nonnegative is False
assert (k + n - u - 2).is_nonnegative is None
assert (-k - n - u - 2).is_nonnegative is None
assert (-k + n - u - 2).is_nonnegative is None
assert (u - x).is_nonnegative is None
assert (v + x + n).is_nonnegative is None
def test_Pow_is_integer():
x = Symbol('x')
k = Symbol('k', integer=True)
n = Symbol('n', integer=True, nonnegative=True)
m = Symbol('m', integer=True, positive=True)
assert (k**2).is_integer is True
assert (k**(-2)).is_integer is None
assert ((m + 1)**(-2)).is_integer is False
assert (m**(-1)).is_integer is None # issue 8580
assert (2**k).is_integer is None
assert (2**(-k)).is_integer is None
assert (2**n).is_integer is True
assert (2**(-n)).is_integer is None
assert (2**m).is_integer is True
assert (2**(-m)).is_integer is False
assert (x**2).is_integer is None
assert (2**x).is_integer is None
assert (k**n).is_integer is True
assert (k**(-n)).is_integer is None
assert (k**x).is_integer is None
assert (x**k).is_integer is None
assert (k**(n*m)).is_integer is True
assert (k**(-n*m)).is_integer is None
assert sqrt(3).is_integer is False
assert sqrt(.3).is_integer is False
assert Pow(3, 2, evaluate=False).is_integer is True
assert Pow(3, 0, evaluate=False).is_integer is True
assert Pow(3, -2, evaluate=False).is_integer is False
assert Pow(S.Half, 3, evaluate=False).is_integer is False
# decided by re-evaluating
assert Pow(3, S.Half, evaluate=False).is_integer is False
assert Pow(3, S.Half, evaluate=False).is_integer is False
assert Pow(4, S.Half, evaluate=False).is_integer is True
assert Pow(S.Half, -2, evaluate=False).is_integer is True
assert ((-1)**k).is_integer
# issue 8641
x = Symbol('x', real=True, integer=False)
assert (x**2).is_integer is None
# issue 10458
x = Symbol('x', positive=True)
assert (1/(x + 1)).is_integer is False
assert (1/(-x - 1)).is_integer is False
assert (-1/(x + 1)).is_integer is False
# issue 23287
assert (x**2/2).is_integer is None
# issue 8648-like
k = Symbol('k', even=True)
assert (k**3/2).is_integer
assert (k**3/8).is_integer
assert (k**3/16).is_integer is None
assert (2/k).is_integer is None
assert (2/k**2).is_integer is False
o = Symbol('o', odd=True)
assert (k/o).is_integer is None
o = Symbol('o', odd=True, prime=True)
assert (k/o).is_integer is False
def test_Pow_is_real():
x = Symbol('x', real=True)
y = Symbol('y', positive=True)
assert (x**2).is_real is True
assert (x**3).is_real is True
assert (x**x).is_real is None
assert (y**x).is_real is True
assert (x**Rational(1, 3)).is_real is None
assert (y**Rational(1, 3)).is_real is True
assert sqrt(-1 - sqrt(2)).is_real is False
i = Symbol('i', imaginary=True)
assert (i**i).is_real is None
assert (I**i).is_extended_real is True
assert ((-I)**i).is_extended_real is True
assert (2**i).is_real is None # (2**(pi/log(2) * I)) is real, 2**I is not
assert (2**I).is_real is False
assert (2**-I).is_real is False
assert (i**2).is_extended_real is True
assert (i**3).is_extended_real is False
assert (i**x).is_real is None # could be (-I)**(2/3)
e = Symbol('e', even=True)
o = Symbol('o', odd=True)
k = Symbol('k', integer=True)
assert (i**e).is_extended_real is True
assert (i**o).is_extended_real is False
assert (i**k).is_real is None
assert (i**(4*k)).is_extended_real is True
x = Symbol("x", nonnegative=True)
y = Symbol("y", nonnegative=True)
assert im(x**y).expand(complex=True) is S.Zero
assert (x**y).is_real is True
i = Symbol('i', imaginary=True)
assert (exp(i)**I).is_extended_real is True
assert log(exp(i)).is_imaginary is None # i could be 2*pi*I
c = Symbol('c', complex=True)
assert log(c).is_real is None # c could be 0 or 2, too
assert log(exp(c)).is_real is None # log(0), log(E), ...
n = Symbol('n', negative=False)
assert log(n).is_real is None
n = Symbol('n', nonnegative=True)
assert log(n).is_real is None
assert sqrt(-I).is_real is False # issue 7843
i = Symbol('i', integer=True)
assert (1/(i-1)).is_real is None
assert (1/(i-1)).is_extended_real is None
# test issue 20715
from sympy.core.parameters import evaluate
x = S(-1)
with evaluate(False):
assert x.is_negative is True
f = Pow(x, -1)
with evaluate(False):
assert f.is_imaginary is False
def test_real_Pow():
k = Symbol('k', integer=True, nonzero=True)
assert (k**(I*pi/log(k))).is_real
def test_Pow_is_finite():
xe = Symbol('xe', extended_real=True)
xr = Symbol('xr', real=True)
p = Symbol('p', positive=True)
n = Symbol('n', negative=True)
i = Symbol('i', integer=True)
assert (xe**2).is_finite is None # xe could be oo
assert (xr**2).is_finite is True
assert (xe**xe).is_finite is None
assert (xr**xe).is_finite is None
assert (xe**xr).is_finite is None
# FIXME: The line below should be True rather than None
# assert (xr**xr).is_finite is True
assert (xr**xr).is_finite is None
assert (p**xe).is_finite is None
assert (p**xr).is_finite is True
assert (n**xe).is_finite is None
assert (n**xr).is_finite is True
assert (sin(xe)**2).is_finite is True
assert (sin(xr)**2).is_finite is True
assert (sin(xe)**xe).is_finite is None # xe, xr could be -pi
assert (sin(xr)**xr).is_finite is None
# FIXME: Should the line below be True rather than None?
assert (sin(xe)**exp(xe)).is_finite is None
assert (sin(xr)**exp(xr)).is_finite is True
assert (1/sin(xe)).is_finite is None # if zero, no, otherwise yes
assert (1/sin(xr)).is_finite is None
assert (1/exp(xe)).is_finite is None # xe could be -oo
assert (1/exp(xr)).is_finite is True
assert (1/S.Pi).is_finite is True
assert (1/(i-1)).is_finite is None
def test_Pow_is_even_odd():
x = Symbol('x')
k = Symbol('k', even=True)
n = Symbol('n', odd=True)
m = Symbol('m', integer=True, nonnegative=True)
p = Symbol('p', integer=True, positive=True)
assert ((-1)**n).is_odd
assert ((-1)**k).is_odd
assert ((-1)**(m - p)).is_odd
assert (k**2).is_even is True
assert (n**2).is_even is False
assert (2**k).is_even is None
assert (x**2).is_even is None
assert (k**m).is_even is None
assert (n**m).is_even is False
assert (k**p).is_even is True
assert (n**p).is_even is False
assert (m**k).is_even is None
assert (p**k).is_even is None
assert (m**n).is_even is None
assert (p**n).is_even is None
assert (k**x).is_even is None
assert (n**x).is_even is None
assert (k**2).is_odd is False
assert (n**2).is_odd is True
assert (3**k).is_odd is None
assert (k**m).is_odd is None
assert (n**m).is_odd is True
assert (k**p).is_odd is False
assert (n**p).is_odd is True
assert (m**k).is_odd is None
assert (p**k).is_odd is None
assert (m**n).is_odd is None
assert (p**n).is_odd is None
assert (k**x).is_odd is None
assert (n**x).is_odd is None
def test_Pow_is_negative_positive():
r = Symbol('r', real=True)
k = Symbol('k', integer=True, positive=True)
n = Symbol('n', even=True)
m = Symbol('m', odd=True)
x = Symbol('x')
assert (2**r).is_positive is True
assert ((-2)**r).is_positive is None
assert ((-2)**n).is_positive is True
assert ((-2)**m).is_positive is False
assert (k**2).is_positive is True
assert (k**(-2)).is_positive is True
assert (k**r).is_positive is True
assert ((-k)**r).is_positive is None
assert ((-k)**n).is_positive is True
assert ((-k)**m).is_positive is False
assert (2**r).is_negative is False
assert ((-2)**r).is_negative is None
assert ((-2)**n).is_negative is False
assert ((-2)**m).is_negative is True
assert (k**2).is_negative is False
assert (k**(-2)).is_negative is False
assert (k**r).is_negative is False
assert ((-k)**r).is_negative is None
assert ((-k)**n).is_negative is False
assert ((-k)**m).is_negative is True
assert (2**x).is_positive is None
assert (2**x).is_negative is None
def test_Pow_is_zero():
z = Symbol('z', zero=True)
e = z**2
assert e.is_zero
assert e.is_positive is False
assert e.is_negative is False
assert Pow(0, 0, evaluate=False).is_zero is False
assert Pow(0, 3, evaluate=False).is_zero
assert Pow(0, oo, evaluate=False).is_zero
assert Pow(0, -3, evaluate=False).is_zero is False
assert Pow(0, -oo, evaluate=False).is_zero is False
assert Pow(2, 2, evaluate=False).is_zero is False
a = Symbol('a', zero=False)
assert Pow(a, 3).is_zero is False # issue 7965
assert Pow(2, oo, evaluate=False).is_zero is False
assert Pow(2, -oo, evaluate=False).is_zero
assert Pow(S.Half, oo, evaluate=False).is_zero
assert Pow(S.Half, -oo, evaluate=False).is_zero is False
# All combinations of real/complex base/exponent
h = S.Half
T = True
F = False
N = None
pow_iszero = [
['**', 0, h, 1, 2, -h, -1,-2,-2*I,-I/2,I/2,1+I,oo,-oo,zoo],
[ 0, F, T, T, T, F, F, F, F, F, F, N, T, F, N],
[ h, F, F, F, F, F, F, F, F, F, F, F, T, F, N],
[ 1, F, F, F, F, F, F, F, F, F, F, F, F, F, N],
[ 2, F, F, F, F, F, F, F, F, F, F, F, F, T, N],
[ -h, F, F, F, F, F, F, F, F, F, F, F, T, F, N],
[ -1, F, F, F, F, F, F, F, F, F, F, F, F, F, N],
[ -2, F, F, F, F, F, F, F, F, F, F, F, F, T, N],
[-2*I, F, F, F, F, F, F, F, F, F, F, F, F, T, N],
[-I/2, F, F, F, F, F, F, F, F, F, F, F, T, F, N],
[ I/2, F, F, F, F, F, F, F, F, F, F, F, T, F, N],
[ 1+I, F, F, F, F, F, F, F, F, F, F, F, F, T, N],
[ oo, F, F, F, F, T, T, T, F, F, F, F, F, T, N],
[ -oo, F, F, F, F, T, T, T, F, F, F, F, F, T, N],
[ zoo, F, F, F, F, T, T, T, N, N, N, N, F, T, N]
]
def test_table(table):
n = len(table[0])
for row in range(1, n):
base = table[row][0]
for col in range(1, n):
exp = table[0][col]
is_zero = table[row][col]
# The actual test here:
assert Pow(base, exp, evaluate=False).is_zero is is_zero
test_table(pow_iszero)
# A zero symbol...
zo, zo2 = symbols('zo, zo2', zero=True)
# All combinations of finite symbols
zf, zf2 = symbols('zf, zf2', finite=True)
wf, wf2 = symbols('wf, wf2', nonzero=True)
xf, xf2 = symbols('xf, xf2', real=True)
yf, yf2 = symbols('yf, yf2', nonzero=True)
af, af2 = symbols('af, af2', positive=True)
bf, bf2 = symbols('bf, bf2', nonnegative=True)
cf, cf2 = symbols('cf, cf2', negative=True)
df, df2 = symbols('df, df2', nonpositive=True)
# Without finiteness:
zi, zi2 = symbols('zi, zi2')
wi, wi2 = symbols('wi, wi2', zero=False)
xi, xi2 = symbols('xi, xi2', extended_real=True)
yi, yi2 = symbols('yi, yi2', zero=False, extended_real=True)
ai, ai2 = symbols('ai, ai2', extended_positive=True)
bi, bi2 = symbols('bi, bi2', extended_nonnegative=True)
ci, ci2 = symbols('ci, ci2', extended_negative=True)
di, di2 = symbols('di, di2', extended_nonpositive=True)
pow_iszero_sym = [
['**',zo,wf,yf,af,cf,zf,xf,bf,df,zi,wi,xi,yi,ai,bi,ci,di],
[ zo2, F, N, N, T, F, N, N, N, F, N, N, N, N, T, N, F, F],
[ wf2, F, F, F, F, F, F, F, F, F, N, N, N, N, N, N, N, N],
[ yf2, F, F, F, F, F, F, F, F, F, N, N, N, N, N, N, N, N],
[ af2, F, F, F, F, F, F, F, F, F, N, N, N, N, N, N, N, N],
[ cf2, F, F, F, F, F, F, F, F, F, N, N, N, N, N, N, N, N],
[ zf2, N, N, N, N, F, N, N, N, N, N, N, N, N, N, N, N, N],
[ xf2, N, N, N, N, F, N, N, N, N, N, N, N, N, N, N, N, N],
[ bf2, N, N, N, N, F, N, N, N, N, N, N, N, N, N, N, N, N],
[ df2, N, N, N, N, F, N, N, N, N, N, N, N, N, N, N, N, N],
[ zi2, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N],
[ wi2, F, N, N, F, N, N, N, F, N, N, N, N, N, N, N, N, N],
[ xi2, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N],
[ yi2, F, N, N, F, N, N, N, F, N, N, N, N, N, N, N, N, N],
[ ai2, F, N, N, F, N, N, N, F, N, N, N, N, N, N, N, N, N],
[ bi2, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N],
[ ci2, F, N, N, F, N, N, N, F, N, N, N, N, N, N, N, N, N],
[ di2, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N]
]
test_table(pow_iszero_sym)
# In some cases (x**x).is_zero is different from (x**y).is_zero even if y
# has the same assumptions as x.
assert (zo ** zo).is_zero is False
assert (wf ** wf).is_zero is False
assert (yf ** yf).is_zero is False
assert (af ** af).is_zero is False
assert (cf ** cf).is_zero is False
assert (zf ** zf).is_zero is None
assert (xf ** xf).is_zero is None
assert (bf ** bf).is_zero is False # None in table
assert (df ** df).is_zero is None
assert (zi ** zi).is_zero is None
assert (wi ** wi).is_zero is None
assert (xi ** xi).is_zero is None
assert (yi ** yi).is_zero is None
assert (ai ** ai).is_zero is False # None in table
assert (bi ** bi).is_zero is False # None in table
assert (ci ** ci).is_zero is None
assert (di ** di).is_zero is None
def test_Pow_is_nonpositive_nonnegative():
x = Symbol('x', real=True)
k = Symbol('k', integer=True, nonnegative=True)
l = Symbol('l', integer=True, positive=True)
n = Symbol('n', even=True)
m = Symbol('m', odd=True)
assert (x**(4*k)).is_nonnegative is True
assert (2**x).is_nonnegative is True
assert ((-2)**x).is_nonnegative is None
assert ((-2)**n).is_nonnegative is True
assert ((-2)**m).is_nonnegative is False
assert (k**2).is_nonnegative is True
assert (k**(-2)).is_nonnegative is None
assert (k**k).is_nonnegative is True
assert (k**x).is_nonnegative is None # NOTE (0**x).is_real = U
assert (l**x).is_nonnegative is True
assert (l**x).is_positive is True
assert ((-k)**x).is_nonnegative is None
assert ((-k)**m).is_nonnegative is None
assert (2**x).is_nonpositive is False
assert ((-2)**x).is_nonpositive is None
assert ((-2)**n).is_nonpositive is False
assert ((-2)**m).is_nonpositive is True
assert (k**2).is_nonpositive is None
assert (k**(-2)).is_nonpositive is None
assert (k**x).is_nonpositive is None
assert ((-k)**x).is_nonpositive is None
assert ((-k)**n).is_nonpositive is None
assert (x**2).is_nonnegative is True
i = symbols('i', imaginary=True)
assert (i**2).is_nonpositive is True
assert (i**4).is_nonpositive is False
assert (i**3).is_nonpositive is False
assert (I**i).is_nonnegative is True
assert (exp(I)**i).is_nonnegative is True
assert ((-l)**n).is_nonnegative is True
assert ((-l)**m).is_nonpositive is True
assert ((-k)**n).is_nonnegative is None
assert ((-k)**m).is_nonpositive is None
def test_Mul_is_imaginary_real():
r = Symbol('r', real=True)
p = Symbol('p', positive=True)
i1 = Symbol('i1', imaginary=True)
i2 = Symbol('i2', imaginary=True)
x = Symbol('x')
assert I.is_imaginary is True
assert I.is_real is False
assert (-I).is_imaginary is True
assert (-I).is_real is False
assert (3*I).is_imaginary is True
assert (3*I).is_real is False
assert (I*I).is_imaginary is False
assert (I*I).is_real is True
e = (p + p*I)
j = Symbol('j', integer=True, zero=False)
assert (e**j).is_real is None
assert (e**(2*j)).is_real is None
assert (e**j).is_imaginary is None
assert (e**(2*j)).is_imaginary is None
assert (e**-1).is_imaginary is False
assert (e**2).is_imaginary
assert (e**3).is_imaginary is False
assert (e**4).is_imaginary is False
assert (e**5).is_imaginary is False
assert (e**-1).is_real is False
assert (e**2).is_real is False
assert (e**3).is_real is False
assert (e**4).is_real is True
assert (e**5).is_real is False
assert (e**3).is_complex
assert (r*i1).is_imaginary is None
assert (r*i1).is_real is None
assert (x*i1).is_imaginary is None
assert (x*i1).is_real is None
assert (i1*i2).is_imaginary is False
assert (i1*i2).is_real is True
assert (r*i1*i2).is_imaginary is False
assert (r*i1*i2).is_real is True
# Github's issue 5874:
nr = Symbol('nr', real=False, complex=True) # e.g. I or 1 + I
a = Symbol('a', real=True, nonzero=True)
b = Symbol('b', real=True)
assert (i1*nr).is_real is None
assert (a*nr).is_real is False
assert (b*nr).is_real is None
ni = Symbol('ni', imaginary=False, complex=True) # e.g. 2 or 1 + I
a = Symbol('a', real=True, nonzero=True)
b = Symbol('b', real=True)
assert (i1*ni).is_real is False
assert (a*ni).is_real is None
assert (b*ni).is_real is None
def test_Mul_hermitian_antihermitian():
xz, yz = symbols('xz, yz', zero=True, antihermitian=True)
xf, yf = symbols('xf, yf', hermitian=False, antihermitian=False, finite=True)
xh, yh = symbols('xh, yh', hermitian=True, antihermitian=False, nonzero=True)
xa, ya = symbols('xa, ya', hermitian=False, antihermitian=True, zero=False, finite=True)
assert (xz*xh).is_hermitian is True
assert (xz*xh).is_antihermitian is True
assert (xz*xa).is_hermitian is True
assert (xz*xa).is_antihermitian is True
assert (xf*yf).is_hermitian is None
assert (xf*yf).is_antihermitian is None
assert (xh*yh).is_hermitian is True
assert (xh*yh).is_antihermitian is False
assert (xh*ya).is_hermitian is False
assert (xh*ya).is_antihermitian is True
assert (xa*ya).is_hermitian is True
assert (xa*ya).is_antihermitian is False
a = Symbol('a', hermitian=True, zero=False)
b = Symbol('b', hermitian=True)
c = Symbol('c', hermitian=False)
d = Symbol('d', antihermitian=True)
e1 = Mul(a, b, c, evaluate=False)
e2 = Mul(b, a, c, evaluate=False)
e3 = Mul(a, b, c, d, evaluate=False)
e4 = Mul(b, a, c, d, evaluate=False)
e5 = Mul(a, c, evaluate=False)
e6 = Mul(a, c, d, evaluate=False)
assert e1.is_hermitian is None
assert e2.is_hermitian is None
assert e1.is_antihermitian is None
assert e2.is_antihermitian is None
assert e3.is_antihermitian is None
assert e4.is_antihermitian is None
assert e5.is_antihermitian is None
assert e6.is_antihermitian is None
def test_Add_is_comparable():
assert (x + y).is_comparable is False
assert (x + 1).is_comparable is False
assert (Rational(1, 3) - sqrt(8)).is_comparable is True
def test_Mul_is_comparable():
assert (x*y).is_comparable is False
assert (x*2).is_comparable is False
assert (sqrt(2)*Rational(1, 3)).is_comparable is True
def test_Pow_is_comparable():
assert (x**y).is_comparable is False
assert (x**2).is_comparable is False
assert (sqrt(Rational(1, 3))).is_comparable is True
def test_Add_is_positive_2():
e = Rational(1, 3) - sqrt(8)
assert e.is_positive is False
assert e.is_negative is True
e = pi - 1
assert e.is_positive is True
assert e.is_negative is False
def test_Add_is_irrational():
i = Symbol('i', irrational=True)
assert i.is_irrational is True
assert i.is_rational is False
assert (i + 1).is_irrational is True
assert (i + 1).is_rational is False
def test_Mul_is_irrational():
expr = Mul(1, 2, 3, evaluate=False)
assert expr.is_irrational is False
expr = Mul(1, I, I, evaluate=False)
assert expr.is_rational is None # I * I = -1 but *no evaluation allowed*
# sqrt(2) * I * I = -sqrt(2) is irrational but
# this can't be determined without evaluating the
# expression and the eval_is routines shouldn't do that
expr = Mul(sqrt(2), I, I, evaluate=False)
assert expr.is_irrational is None
def test_issue_3531():
# https://github.com/sympy/sympy/issues/3531
# https://github.com/sympy/sympy/pull/18116
class MightyNumeric(tuple):
def __rtruediv__(self, other):
return "something"
assert sympify(1)/MightyNumeric((1, 2)) == "something"
def test_issue_3531b():
class Foo:
def __init__(self):
self.field = 1.0
def __mul__(self, other):
self.field = self.field * other
def __rmul__(self, other):
self.field = other * self.field
f = Foo()
x = Symbol("x")
assert f*x == x*f
def test_bug3():
a = Symbol("a")
b = Symbol("b", positive=True)
e = 2*a + b
f = b + 2*a
assert e == f
def test_suppressed_evaluation():
a = Add(0, 3, 2, evaluate=False)
b = Mul(1, 3, 2, evaluate=False)
c = Pow(3, 2, evaluate=False)
assert a != 6
assert a.func is Add
assert a.args == (0, 3, 2)
assert b != 6
assert b.func is Mul
assert b.args == (1, 3, 2)
assert c != 9
assert c.func is Pow
assert c.args == (3, 2)
def test_AssocOp_doit():
a = Add(x,x, evaluate=False)
b = Mul(y,y, evaluate=False)
c = Add(b,b, evaluate=False)
d = Mul(a,a, evaluate=False)
assert c.doit(deep=False).func == Mul
assert c.doit(deep=False).args == (2,y,y)
assert c.doit().func == Mul
assert c.doit().args == (2, Pow(y,2))
assert d.doit(deep=False).func == Pow
assert d.doit(deep=False).args == (a, 2*S.One)
assert d.doit().func == Mul
assert d.doit().args == (4*S.One, Pow(x,2))
def test_Add_Mul_Expr_args():
nonexpr = [Basic(), Poly(x, x), FiniteSet(x)]
for typ in [Add, Mul]:
for obj in nonexpr:
# The cache can mess with the stacklevel check
with warns(SymPyDeprecationWarning, test_stacklevel=False):
typ(obj, 1)
def test_Add_as_coeff_mul():
# issue 5524. These should all be (1, self)
assert (x + 1).as_coeff_mul() == (1, (x + 1,))
assert (x + 2).as_coeff_mul() == (1, (x + 2,))
assert (x + 3).as_coeff_mul() == (1, (x + 3,))
assert (x - 1).as_coeff_mul() == (1, (x - 1,))
assert (x - 2).as_coeff_mul() == (1, (x - 2,))
assert (x - 3).as_coeff_mul() == (1, (x - 3,))
n = Symbol('n', integer=True)
assert (n + 1).as_coeff_mul() == (1, (n + 1,))
assert (n + 2).as_coeff_mul() == (1, (n + 2,))
assert (n + 3).as_coeff_mul() == (1, (n + 3,))
assert (n - 1).as_coeff_mul() == (1, (n - 1,))
assert (n - 2).as_coeff_mul() == (1, (n - 2,))
assert (n - 3).as_coeff_mul() == (1, (n - 3,))
def test_Pow_as_coeff_mul_doesnt_expand():
assert exp(x + y).as_coeff_mul() == (1, (exp(x + y),))
assert exp(x + exp(x + y)) != exp(x + exp(x)*exp(y))
def test_issue_3514_18626():
assert sqrt(S.Half) * sqrt(6) == 2 * sqrt(3)/2
assert S.Half*sqrt(6)*sqrt(2) == sqrt(3)
assert sqrt(6)/2*sqrt(2) == sqrt(3)
assert sqrt(6)*sqrt(2)/2 == sqrt(3)
assert sqrt(8)**Rational(2, 3) == 2
def test_make_args():
assert Add.make_args(x) == (x,)
assert Mul.make_args(x) == (x,)
assert Add.make_args(x*y*z) == (x*y*z,)
assert Mul.make_args(x*y*z) == (x*y*z).args
assert Add.make_args(x + y + z) == (x + y + z).args
assert Mul.make_args(x + y + z) == (x + y + z,)
assert Add.make_args((x + y)**z) == ((x + y)**z,)
assert Mul.make_args((x + y)**z) == ((x + y)**z,)
def test_issue_5126():
assert (-2)**x*(-3)**x != 6**x
i = Symbol('i', integer=1)
assert (-2)**i*(-3)**i == 6**i
def test_Rational_as_content_primitive():
c, p = S.One, S.Zero
assert (c*p).as_content_primitive() == (c, p)
c, p = S.Half, S.One
assert (c*p).as_content_primitive() == (c, p)
def test_Add_as_content_primitive():
assert (x + 2).as_content_primitive() == (1, x + 2)
assert (3*x + 2).as_content_primitive() == (1, 3*x + 2)
assert (3*x + 3).as_content_primitive() == (3, x + 1)
assert (3*x + 6).as_content_primitive() == (3, x + 2)
assert (3*x + 2*y).as_content_primitive() == (1, 3*x + 2*y)
assert (3*x + 3*y).as_content_primitive() == (3, x + y)
assert (3*x + 6*y).as_content_primitive() == (3, x + 2*y)
assert (3/x + 2*x*y*z**2).as_content_primitive() == (1, 3/x + 2*x*y*z**2)
assert (3/x + 3*x*y*z**2).as_content_primitive() == (3, 1/x + x*y*z**2)
assert (3/x + 6*x*y*z**2).as_content_primitive() == (3, 1/x + 2*x*y*z**2)
assert (2*x/3 + 4*y/9).as_content_primitive() == \
(Rational(2, 9), 3*x + 2*y)
assert (2*x/3 + 2.5*y).as_content_primitive() == \
(Rational(1, 3), 2*x + 7.5*y)
# the coefficient may sort to a position other than 0
p = 3 + x + y
assert (2*p).expand().as_content_primitive() == (2, p)
assert (2.0*p).expand().as_content_primitive() == (1, 2.*p)
p *= -1
assert (2*p).expand().as_content_primitive() == (2, p)
def test_Mul_as_content_primitive():
assert (2*x).as_content_primitive() == (2, x)
assert (x*(2 + 2*x)).as_content_primitive() == (2, x*(1 + x))
assert (x*(2 + 2*y)*(3*x + 3)**2).as_content_primitive() == \
(18, x*(1 + y)*(x + 1)**2)
assert ((2 + 2*x)**2*(3 + 6*x) + S.Half).as_content_primitive() == \
(S.Half, 24*(x + 1)**2*(2*x + 1) + 1)
def test_Pow_as_content_primitive():
assert (x**y).as_content_primitive() == (1, x**y)
assert ((2*x + 2)**y).as_content_primitive() == \
(1, (Mul(2, (x + 1), evaluate=False))**y)
assert ((2*x + 2)**3).as_content_primitive() == (8, (x + 1)**3)
def test_issue_5460():
u = Mul(2, (1 + x), evaluate=False)
assert (2 + u).args == (2, u)
def test_product_irrational():
assert (I*pi).is_irrational is False
# The following used to be deduced from the above bug:
assert (I*pi).is_positive is False
def test_issue_5919():
assert (x/(y*(1 + y))).expand() == x/(y**2 + y)
def test_Mod():
assert Mod(x, 1).func is Mod
assert pi % pi is S.Zero
assert Mod(5, 3) == 2
assert Mod(-5, 3) == 1
assert Mod(5, -3) == -1
assert Mod(-5, -3) == -2
assert type(Mod(3.2, 2, evaluate=False)) == Mod
assert 5 % x == Mod(5, x)
assert x % 5 == Mod(x, 5)
assert x % y == Mod(x, y)
assert (x % y).subs({x: 5, y: 3}) == 2
assert Mod(nan, 1) is nan
assert Mod(1, nan) is nan
assert Mod(nan, nan) is nan
assert Mod(0, x) == 0
with raises(ZeroDivisionError):
Mod(x, 0)
k = Symbol('k', integer=True)
m = Symbol('m', integer=True, positive=True)
assert (x**m % x).func is Mod
assert (k**(-m) % k).func is Mod
assert k**m % k == 0
assert (-2*k)**m % k == 0
# Float handling
point3 = Float(3.3) % 1
assert (x - 3.3) % 1 == Mod(1.*x + 1 - point3, 1)
assert Mod(-3.3, 1) == 1 - point3
assert Mod(0.7, 1) == Float(0.7)
e = Mod(1.3, 1)
assert comp(e, .3) and e.is_Float
e = Mod(1.3, .7)
assert comp(e, .6) and e.is_Float
e = Mod(1.3, Rational(7, 10))
assert comp(e, .6) and e.is_Float
e = Mod(Rational(13, 10), 0.7)
assert comp(e, .6) and e.is_Float
e = Mod(Rational(13, 10), Rational(7, 10))
assert comp(e, .6) and e.is_Rational
# check that sign is right
r2 = sqrt(2)
r3 = sqrt(3)
for i in [-r3, -r2, r2, r3]:
for j in [-r3, -r2, r2, r3]:
assert verify_numerically(i % j, i.n() % j.n())
for _x in range(4):
for _y in range(9):
reps = [(x, _x), (y, _y)]
assert Mod(3*x + y, 9).subs(reps) == (3*_x + _y) % 9
# denesting
t = Symbol('t', real=True)
assert Mod(Mod(x, t), t) == Mod(x, t)
assert Mod(-Mod(x, t), t) == Mod(-x, t)
assert Mod(Mod(x, 2*t), t) == Mod(x, t)
assert Mod(-Mod(x, 2*t), t) == Mod(-x, t)
assert Mod(Mod(x, t), 2*t) == Mod(x, t)
assert Mod(-Mod(x, t), -2*t) == -Mod(x, t)
for i in [-4, -2, 2, 4]:
for j in [-4, -2, 2, 4]:
for k in range(4):
assert Mod(Mod(x, i), j).subs({x: k}) == (k % i) % j
assert Mod(-Mod(x, i), j).subs({x: k}) == -(k % i) % j
# known difference
assert Mod(5*sqrt(2), sqrt(5)) == 5*sqrt(2) - 3*sqrt(5)
p = symbols('p', positive=True)
assert Mod(2, p + 3) == 2
assert Mod(-2, p + 3) == p + 1
assert Mod(2, -p - 3) == -p - 1
assert Mod(-2, -p - 3) == -2
assert Mod(p + 5, p + 3) == 2
assert Mod(-p - 5, p + 3) == p + 1
assert Mod(p + 5, -p - 3) == -p - 1
assert Mod(-p - 5, -p - 3) == -2
assert Mod(p + 1, p - 1).func is Mod
# handling sums
assert (x + 3) % 1 == Mod(x, 1)
assert (x + 3.0) % 1 == Mod(1.*x, 1)
assert (x - S(33)/10) % 1 == Mod(x + S(7)/10, 1)
a = Mod(.6*x + y, .3*y)
b = Mod(0.1*y + 0.6*x, 0.3*y)
# Test that a, b are equal, with 1e-14 accuracy in coefficients
eps = 1e-14
assert abs((a.args[0] - b.args[0]).subs({x: 1, y: 1})) < eps
assert abs((a.args[1] - b.args[1]).subs({x: 1, y: 1})) < eps
assert (x + 1) % x == 1 % x
assert (x + y) % x == y % x
assert (x + y + 2) % x == (y + 2) % x
assert (a + 3*x + 1) % (2*x) == Mod(a + x + 1, 2*x)
assert (12*x + 18*y) % (3*x) == 3*Mod(6*y, x)
# gcd extraction
assert (-3*x) % (-2*y) == -Mod(3*x, 2*y)
assert (.6*pi) % (.3*x*pi) == 0.3*pi*Mod(2, x)
assert (.6*pi) % (.31*x*pi) == pi*Mod(0.6, 0.31*x)
assert (6*pi) % (.3*x*pi) == 0.3*pi*Mod(20, x)
assert (6*pi) % (.31*x*pi) == pi*Mod(6, 0.31*x)
assert (6*pi) % (.42*x*pi) == pi*Mod(6, 0.42*x)
assert (12*x) % (2*y) == 2*Mod(6*x, y)
assert (12*x) % (3*5*y) == 3*Mod(4*x, 5*y)
assert (12*x) % (15*x*y) == 3*x*Mod(4, 5*y)
assert (-2*pi) % (3*pi) == pi
assert (2*x + 2) % (x + 1) == 0
assert (x*(x + 1)) % (x + 1) == (x + 1)*Mod(x, 1)
assert Mod(5.0*x, 0.1*y) == 0.1*Mod(50*x, y)
i = Symbol('i', integer=True)
assert (3*i*x) % (2*i*y) == i*Mod(3*x, 2*y)
assert Mod(4*i, 4) == 0
# issue 8677
n = Symbol('n', integer=True, positive=True)
assert factorial(n) % n == 0
assert factorial(n + 2) % n == 0
assert (factorial(n + 4) % (n + 5)).func is Mod
# Wilson's theorem
assert factorial(18042, evaluate=False) % 18043 == 18042
p = Symbol('n', prime=True)
assert factorial(p - 1) % p == p - 1
assert factorial(p - 1) % -p == -1
assert (factorial(3, evaluate=False) % 4).doit() == 2
n = Symbol('n', composite=True, odd=True)
assert factorial(n - 1) % n == 0
# symbolic with known parity
n = Symbol('n', even=True)
assert Mod(n, 2) == 0
n = Symbol('n', odd=True)
assert Mod(n, 2) == 1
# issue 10963
assert (x**6000%400).args[1] == 400
#issue 13543
assert Mod(Mod(x + 1, 2) + 1, 2) == Mod(x, 2)
x1 = Symbol('x1', integer=True)
assert Mod(Mod(x1 + 2, 4)*(x1 + 4), 4) == Mod(x1*(x1 + 2), 4)
assert Mod(Mod(x1 + 2, 4)*4, 4) == 0
# issue 15493
i, j = symbols('i j', integer=True, positive=True)
assert Mod(3*i, 2) == Mod(i, 2)
assert Mod(8*i/j, 4) == 4*Mod(2*i/j, 1)
assert Mod(8*i, 4) == 0
# rewrite
assert Mod(x, y).rewrite(floor) == x - y*floor(x/y)
assert ((x - Mod(x, y))/y).rewrite(floor) == floor(x/y)
# issue 21373
from sympy.functions.elementary.hyperbolic import sinh
from sympy.functions.elementary.piecewise import Piecewise
x_r, y_r = symbols('x_r y_r', real=True)
assert (Piecewise((x_r, y_r > x_r), (y_r, True)) / z) % 1
expr = exp(sinh(Piecewise((x_r, y_r > x_r), (y_r, True)) / z))
expr.subs({1: 1.0})
sinh(Piecewise((x_r, y_r > x_r), (y_r, True)) * z ** -1.0).is_zero
# issue 24215
from sympy.abc import phi
assert Mod(4.0*Mod(phi, 1) , 2) == 2.0*(Mod(2*(Mod(phi, 1)), 1))
def test_Mod_Pow():
# modular exponentiation
assert isinstance(Mod(Pow(2, 2, evaluate=False), 3), Integer)
assert Mod(Pow(4, 13, evaluate=False), 497) == Mod(Pow(4, 13), 497)
assert Mod(Pow(2, 10000000000, evaluate=False), 3) == 1
assert Mod(Pow(32131231232, 9**10**6, evaluate=False),10**12) == \
pow(32131231232,9**10**6,10**12)
assert Mod(Pow(33284959323, 123**999, evaluate=False),11**13) == \
pow(33284959323,123**999,11**13)
assert Mod(Pow(78789849597, 333**555, evaluate=False),12**9) == \
pow(78789849597,333**555,12**9)
# modular nested exponentiation
expr = Pow(2, 2, evaluate=False)
expr = Pow(2, expr, evaluate=False)
assert Mod(expr, 3**10) == 16
expr = Pow(2, expr, evaluate=False)
assert Mod(expr, 3**10) == 6487
expr = Pow(2, expr, evaluate=False)
assert Mod(expr, 3**10) == 32191
expr = Pow(2, expr, evaluate=False)
assert Mod(expr, 3**10) == 18016
expr = Pow(2, expr, evaluate=False)
assert Mod(expr, 3**10) == 5137
expr = Pow(2, 2, evaluate=False)
expr = Pow(expr, 2, evaluate=False)
assert Mod(expr, 3**10) == 16
expr = Pow(expr, 2, evaluate=False)
assert Mod(expr, 3**10) == 256
expr = Pow(expr, 2, evaluate=False)
assert Mod(expr, 3**10) == 6487
expr = Pow(expr, 2, evaluate=False)
assert Mod(expr, 3**10) == 38281
expr = Pow(expr, 2, evaluate=False)
assert Mod(expr, 3**10) == 15928
expr = Pow(2, 2, evaluate=False)
expr = Pow(expr, expr, evaluate=False)
assert Mod(expr, 3**10) == 256
expr = Pow(expr, expr, evaluate=False)
assert Mod(expr, 3**10) == 9229
expr = Pow(expr, expr, evaluate=False)
assert Mod(expr, 3**10) == 25708
expr = Pow(expr, expr, evaluate=False)
assert Mod(expr, 3**10) == 26608
expr = Pow(expr, expr, evaluate=False)
# XXX This used to fail in a nondeterministic way because of overflow
# error.
assert Mod(expr, 3**10) == 1966
def test_Mod_is_integer():
p = Symbol('p', integer=True)
q1 = Symbol('q1', integer=True)
q2 = Symbol('q2', integer=True, nonzero=True)
assert Mod(x, y).is_integer is None
assert Mod(p, q1).is_integer is None
assert Mod(x, q2).is_integer is None
assert Mod(p, q2).is_integer
def test_Mod_is_nonposneg():
n = Symbol('n', integer=True)
k = Symbol('k', integer=True, positive=True)
assert (n%3).is_nonnegative
assert Mod(n, -3).is_nonpositive
assert Mod(n, k).is_nonnegative
assert Mod(n, -k).is_nonpositive
assert Mod(k, n).is_nonnegative is None
def test_issue_6001():
A = Symbol("A", commutative=False)
eq = A + A**2
# it doesn't matter whether it's True or False; they should
# just all be the same
assert (
eq.is_commutative ==
(eq + 1).is_commutative ==
(A + 1).is_commutative)
B = Symbol("B", commutative=False)
# Although commutative terms could cancel we return True
# meaning "there are non-commutative symbols; aftersubstitution
# that definition can change, e.g. (A*B).subs(B,A**-1) -> 1
assert (sqrt(2)*A).is_commutative is False
assert (sqrt(2)*A*B).is_commutative is False
def test_polar():
from sympy.functions.elementary.complexes import polar_lift
p = Symbol('p', polar=True)
x = Symbol('x')
assert p.is_polar
assert x.is_polar is None
assert S.One.is_polar is None
assert (p**x).is_polar is True
assert (x**p).is_polar is None
assert ((2*p)**x).is_polar is True
assert (2*p).is_polar is True
assert (-2*p).is_polar is not True
assert (polar_lift(-2)*p).is_polar is True
q = Symbol('q', polar=True)
assert (p*q)**2 == p**2 * q**2
assert (2*q)**2 == 4 * q**2
assert ((p*q)**x).expand() == p**x * q**x
def test_issue_6040():
a, b = Pow(1, 2, evaluate=False), S.One
assert a != b
assert b != a
assert not (a == b)
assert not (b == a)
def test_issue_6082():
# Comparison is symmetric
assert Basic.compare(Max(x, 1), Max(x, 2)) == \
- Basic.compare(Max(x, 2), Max(x, 1))
# Equal expressions compare equal
assert Basic.compare(Max(x, 1), Max(x, 1)) == 0
# Basic subtypes (such as Max) compare different than standard types
assert Basic.compare(Max(1, x), frozenset((1, x))) != 0
def test_issue_6077():
assert x**2.0/x == x**1.0
assert x/x**2.0 == x**-1.0
assert x*x**2.0 == x**3.0
assert x**1.5*x**2.5 == x**4.0
assert 2**(2.0*x)/2**x == 2**(1.0*x)
assert 2**x/2**(2.0*x) == 2**(-1.0*x)
assert 2**x*2**(2.0*x) == 2**(3.0*x)
assert 2**(1.5*x)*2**(2.5*x) == 2**(4.0*x)
def test_mul_flatten_oo():
p = symbols('p', positive=True)
n, m = symbols('n,m', negative=True)
x_im = symbols('x_im', imaginary=True)
assert n*oo is -oo
assert n*m*oo is oo
assert p*oo is oo
assert x_im*oo != I*oo # i could be +/- 3*I -> +/-oo
def test_add_flatten():
# see https://github.com/sympy/sympy/issues/2633#issuecomment-29545524
a = oo + I*oo
b = oo - I*oo
assert a + b is nan
assert a - b is nan
# FIXME: This evaluates as:
# >>> 1/a
# 0*(oo + oo*I)
# which should not simplify to 0. Should be fixed in Pow.eval
#assert (1/a).simplify() == (1/b).simplify() == 0
a = Pow(2, 3, evaluate=False)
assert a + a == 16
def test_issue_5160_6087_6089_6090():
# issue 6087
assert ((-2*x*y**y)**3.2).n(2) == (2**3.2*(-x*y**y)**3.2).n(2)
# issue 6089
A, B, C = symbols('A,B,C', commutative=False)
assert (2.*B*C)**3 == 8.0*(B*C)**3
assert (-2.*B*C)**3 == -8.0*(B*C)**3
assert (-2*B*C)**2 == 4*(B*C)**2
# issue 5160
assert sqrt(-1.0*x) == 1.0*sqrt(-x)
assert sqrt(1.0*x) == 1.0*sqrt(x)
# issue 6090
assert (-2*x*y*A*B)**2 == 4*x**2*y**2*(A*B)**2
def test_float_int_round():
assert int(float(sqrt(10))) == int(sqrt(10))
assert int(pi**1000) % 10 == 2
assert int(Float('1.123456789012345678901234567890e20', '')) == \
int(112345678901234567890)
assert int(Float('1.123456789012345678901234567890e25', '')) == \
int(11234567890123456789012345)
# decimal forces float so it's not an exact integer ending in 000000
assert int(Float('1.123456789012345678901234567890e35', '')) == \
112345678901234567890123456789000192
assert int(Float('123456789012345678901234567890e5', '')) == \
12345678901234567890123456789000000
assert Integer(Float('1.123456789012345678901234567890e20', '')) == \
112345678901234567890
assert Integer(Float('1.123456789012345678901234567890e25', '')) == \
11234567890123456789012345
# decimal forces float so it's not an exact integer ending in 000000
assert Integer(Float('1.123456789012345678901234567890e35', '')) == \
112345678901234567890123456789000192
assert Integer(Float('123456789012345678901234567890e5', '')) == \
12345678901234567890123456789000000
assert same_and_same_prec(Float('123000e-2',''), Float('1230.00', ''))
assert same_and_same_prec(Float('123000e2',''), Float('12300000', ''))
assert int(1 + Rational('.9999999999999999999999999')) == 1
assert int(pi/1e20) == 0
assert int(1 + pi/1e20) == 1
assert int(Add(1.2, -2, evaluate=False)) == int(1.2 - 2)
assert int(Add(1.2, +2, evaluate=False)) == int(1.2 + 2)
assert int(Add(1 + Float('.99999999999999999', ''), evaluate=False)) == 1
raises(TypeError, lambda: float(x))
raises(TypeError, lambda: float(sqrt(-1)))
assert int(12345678901234567890 + cos(1)**2 + sin(1)**2) == \
12345678901234567891
def test_issue_6611a():
assert Mul.flatten([3**Rational(1, 3),
Pow(-Rational(1, 9), Rational(2, 3), evaluate=False)]) == \
([Rational(1, 3), (-1)**Rational(2, 3)], [], None)
def test_denest_add_mul():
# when working with evaluated expressions make sure they denest
eq = x + 1
eq = Add(eq, 2, evaluate=False)
eq = Add(eq, 2, evaluate=False)
assert Add(*eq.args) == x + 5
eq = x*2
eq = Mul(eq, 2, evaluate=False)
eq = Mul(eq, 2, evaluate=False)
assert Mul(*eq.args) == 8*x
# but don't let them denest unnecessarily
eq = Mul(-2, x - 2, evaluate=False)
assert 2*eq == Mul(-4, x - 2, evaluate=False)
assert -eq == Mul(2, x - 2, evaluate=False)
def test_mul_coeff():
# It is important that all Numbers be removed from the seq;
# This can be tricky when powers combine to produce those numbers
p = exp(I*pi/3)
assert p**2*x*p*y*p*x*p**2 == x**2*y
def test_mul_zero_detection():
nz = Dummy(real=True, zero=False)
r = Dummy(extended_real=True)
c = Dummy(real=False, complex=True)
c2 = Dummy(real=False, complex=True)
i = Dummy(imaginary=True)
e = nz*r*c
assert e.is_imaginary is None
assert e.is_extended_real is None
e = nz*c
assert e.is_imaginary is None
assert e.is_extended_real is False
e = nz*i*c
assert e.is_imaginary is False
assert e.is_extended_real is None
# check for more than one complex; it is important to use
# uniquely named Symbols to ensure that two factors appear
# e.g. if the symbols have the same name they just become
# a single factor, a power.
e = nz*i*c*c2
assert e.is_imaginary is None
assert e.is_extended_real is None
# _eval_is_extended_real and _eval_is_zero both employ trapping of the
# zero value so args should be tested in both directions and
# TO AVOID GETTING THE CACHED RESULT, Dummy MUST BE USED
# real is unknown
def test(z, b, e):
if z.is_zero and b.is_finite:
assert e.is_extended_real and e.is_zero
else:
assert e.is_extended_real is None
if b.is_finite:
if z.is_zero:
assert e.is_zero
else:
assert e.is_zero is None
elif b.is_finite is False:
if z.is_zero is None:
assert e.is_zero is None
else:
assert e.is_zero is False
for iz, ib in product(*[[True, False, None]]*2):
z = Dummy('z', nonzero=iz)
b = Dummy('f', finite=ib)
e = Mul(z, b, evaluate=False)
test(z, b, e)
z = Dummy('nz', nonzero=iz)
b = Dummy('f', finite=ib)
e = Mul(b, z, evaluate=False)
test(z, b, e)
# real is True
def test(z, b, e):
if z.is_zero and not b.is_finite:
assert e.is_extended_real is None
else:
assert e.is_extended_real is True
for iz, ib in product(*[[True, False, None]]*2):
z = Dummy('z', nonzero=iz, extended_real=True)
b = Dummy('b', finite=ib, extended_real=True)
e = Mul(z, b, evaluate=False)
test(z, b, e)
z = Dummy('z', nonzero=iz, extended_real=True)
b = Dummy('b', finite=ib, extended_real=True)
e = Mul(b, z, evaluate=False)
test(z, b, e)
def test_Mul_with_zero_infinite():
zer = Dummy(zero=True)
inf = Dummy(finite=False)
e = Mul(zer, inf, evaluate=False)
assert e.is_extended_positive is None
assert e.is_hermitian is None
e = Mul(inf, zer, evaluate=False)
assert e.is_extended_positive is None
assert e.is_hermitian is None
def test_Mul_does_not_cancel_infinities():
a, b = symbols('a b')
assert ((zoo + 3*a)/(3*a + zoo)) is nan
assert ((b - oo)/(b - oo)) is nan
# issue 13904
expr = (1/(a+b) + 1/(a-b))/(1/(a+b) - 1/(a-b))
assert expr.subs(b, a) is nan
def test_Mul_does_not_distribute_infinity():
a, b = symbols('a b')
assert ((1 + I)*oo).is_Mul
assert ((a + b)*(-oo)).is_Mul
assert ((a + 1)*zoo).is_Mul
assert ((1 + I)*oo).is_finite is False
z = (1 + I)*oo
assert ((1 - I)*z).expand() is oo
def test_issue_8247_8354():
from sympy.functions.elementary.trigonometric import tan
z = sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3)) - sqrt(10 + 6*sqrt(3))
assert z.is_positive is False # it's 0
z = S('''-2**(1/3)*(3*sqrt(93) + 29)**2 - 4*(3*sqrt(93) + 29)**(4/3) +
12*sqrt(93)*(3*sqrt(93) + 29)**(1/3) + 116*(3*sqrt(93) + 29)**(1/3) +
174*2**(1/3)*sqrt(93) + 1678*2**(1/3)''')
assert z.is_positive is False # it's 0
z = 2*(-3*tan(19*pi/90) + sqrt(3))*cos(11*pi/90)*cos(19*pi/90) - \
sqrt(3)*(-3 + 4*cos(19*pi/90)**2)
assert z.is_positive is not True # it's zero and it shouldn't hang
z = S('''9*(3*sqrt(93) + 29)**(2/3)*((3*sqrt(93) +
29)**(1/3)*(-2**(2/3)*(3*sqrt(93) + 29)**(1/3) - 2) - 2*2**(1/3))**3 +
72*(3*sqrt(93) + 29)**(2/3)*(81*sqrt(93) + 783) + (162*sqrt(93) +
1566)*((3*sqrt(93) + 29)**(1/3)*(-2**(2/3)*(3*sqrt(93) + 29)**(1/3) -
2) - 2*2**(1/3))**2''')
assert z.is_positive is False # it's 0 (and a single _mexpand isn't enough)
def test_Add_is_zero():
x, y = symbols('x y', zero=True)
assert (x + y).is_zero
# Issue 15873
e = -2*I + (1 + I)**2
assert e.is_zero is None
def test_issue_14392():
assert (sin(zoo)**2).as_real_imag() == (nan, nan)
def test_divmod():
assert divmod(x, y) == (x//y, x % y)
assert divmod(x, 3) == (x//3, x % 3)
assert divmod(3, x) == (3//x, 3 % x)
def test__neg__():
assert -(x*y) == -x*y
assert -(-x*y) == x*y
assert -(1.*x) == -1.*x
assert -(-1.*x) == 1.*x
assert -(2.*x) == -2.*x
assert -(-2.*x) == 2.*x
with distribute(False):
eq = -(x + y)
assert eq.is_Mul and eq.args == (-1, x + y)
with evaluate(False):
eq = -(x + y)
assert eq.is_Mul and eq.args == (-1, x + y)
def test_issue_18507():
assert Mul(zoo, zoo, 0) is nan
def test_issue_17130():
e = Add(b, -b, I, -I, evaluate=False)
assert e.is_zero is None # ideally this would be True
def test_issue_21034():
e = -I*log((re(asin(5)) + I*im(asin(5)))/sqrt(re(asin(5))**2 + im(asin(5))**2))/pi
assert e.round(2)
def test_issue_22021():
from sympy.calculus.accumulationbounds import AccumBounds
# these objects are special cases in Mul
from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads
L = TensorIndexType("L")
i = tensor_indices("i", L)
A, B = tensor_heads("A B", [L])
e = A(i) + B(i)
assert -e == -1*e
e = zoo + x
assert -e == -1*e
a = AccumBounds(1, 2)
e = a + x
assert -e == -1*e
for args in permutations((zoo, a, x)):
e = Add(*args, evaluate=False)
assert -e == -1*e
assert 2*Add(1, x, x, evaluate=False) == 4*x + 2
def test_issue_22244():
assert -(zoo*x) == zoo*x
def test_issue_22453():
from sympy.utilities.iterables import cartes
e = Symbol('e', extended_positive=True)
for a, b in cartes(*[[oo, -oo, 3]]*2):
if a == b == 3:
continue
i = a + I*b
assert i**(1 + e) is S.ComplexInfinity
assert i**-e is S.Zero
assert unchanged(Pow, i, e)
assert 1/(oo + I*oo) is S.Zero
r, i = [Dummy(infinite=True, extended_real=True) for _ in range(2)]
assert 1/(r + I*i) is S.Zero
assert 1/(3 + I*i) is S.Zero
assert 1/(r + I*3) is S.Zero
def test_issue_22613():
assert (0**(x - 2)).as_content_primitive() == (1, 0**(x - 2))
assert (0**(x + 2)).as_content_primitive() == (1, 0**(x + 2))
|
6c052c922897d63fa7f522f1efd8d408f3ae3bd98335bcd472e8a345c23b1e0e | """Implementation of :class:`ModularInteger` class. """
from __future__ import annotations
from typing import Any
import operator
from sympy.polys.polyutils import PicklableWithSlots
from sympy.polys.polyerrors import CoercionFailed
from sympy.polys.domains.domainelement import DomainElement
from sympy.utilities import public
@public
class ModularInteger(PicklableWithSlots, DomainElement):
"""A class representing a modular integer. """
mod, dom, sym, _parent = None, None, None, None
__slots__ = ('val',)
def parent(self):
return self._parent
def __init__(self, val):
if isinstance(val, self.__class__):
self.val = val.val % self.mod
else:
self.val = self.dom.convert(val) % self.mod
def __hash__(self):
return hash((self.val, self.mod))
def __repr__(self):
return "%s(%s)" % (self.__class__.__name__, self.val)
def __str__(self):
return "%s mod %s" % (self.val, self.mod)
def __int__(self):
return int(self.to_int())
def to_int(self):
if self.sym:
if self.val <= self.mod // 2:
return self.val
else:
return self.val - self.mod
else:
return self.val
def __pos__(self):
return self
def __neg__(self):
return self.__class__(-self.val)
@classmethod
def _get_val(cls, other):
if isinstance(other, cls):
return other.val
else:
try:
return cls.dom.convert(other)
except CoercionFailed:
return None
def __add__(self, other):
val = self._get_val(other)
if val is not None:
return self.__class__(self.val + val)
else:
return NotImplemented
def __radd__(self, other):
return self.__add__(other)
def __sub__(self, other):
val = self._get_val(other)
if val is not None:
return self.__class__(self.val - val)
else:
return NotImplemented
def __rsub__(self, other):
return (-self).__add__(other)
def __mul__(self, other):
val = self._get_val(other)
if val is not None:
return self.__class__(self.val * val)
else:
return NotImplemented
def __rmul__(self, other):
return self.__mul__(other)
def __truediv__(self, other):
val = self._get_val(other)
if val is not None:
return self.__class__(self.val * self._invert(val))
else:
return NotImplemented
def __rtruediv__(self, other):
return self.invert().__mul__(other)
def __mod__(self, other):
val = self._get_val(other)
if val is not None:
return self.__class__(self.val % val)
else:
return NotImplemented
def __rmod__(self, other):
val = self._get_val(other)
if val is not None:
return self.__class__(val % self.val)
else:
return NotImplemented
def __pow__(self, exp):
if not exp:
return self.__class__(self.dom.one)
if exp < 0:
val, exp = self.invert().val, -exp
else:
val = self.val
return self.__class__(pow(val, int(exp), self.mod))
def _compare(self, other, op):
val = self._get_val(other)
if val is not None:
return op(self.val, val % self.mod)
else:
return NotImplemented
def __eq__(self, other):
return self._compare(other, operator.eq)
def __ne__(self, other):
return self._compare(other, operator.ne)
def __lt__(self, other):
return self._compare(other, operator.lt)
def __le__(self, other):
return self._compare(other, operator.le)
def __gt__(self, other):
return self._compare(other, operator.gt)
def __ge__(self, other):
return self._compare(other, operator.ge)
def __bool__(self):
return bool(self.val)
@classmethod
def _invert(cls, value):
return cls.dom.invert(value, cls.mod)
def invert(self):
return self.__class__(self._invert(self.val))
_modular_integer_cache: dict[tuple[Any, Any, Any], type[ModularInteger]] = {}
def ModularIntegerFactory(_mod, _dom, _sym, parent):
"""Create custom class for specific integer modulus."""
try:
_mod = _dom.convert(_mod)
except CoercionFailed:
ok = False
else:
ok = True
if not ok or _mod < 1:
raise ValueError("modulus must be a positive integer, got %s" % _mod)
key = _mod, _dom, _sym
try:
cls = _modular_integer_cache[key]
except KeyError:
class cls(ModularInteger):
mod, dom, sym = _mod, _dom, _sym
_parent = parent
if _sym:
cls.__name__ = "SymmetricModularIntegerMod%s" % _mod
else:
cls.__name__ = "ModularIntegerMod%s" % _mod
_modular_integer_cache[key] = cls
return cls
|
aa46ea497cee9b1c10abb406032bcdb2025997317931bbcdd8ef67cf6962fa44 | """Domains of Gaussian type."""
from sympy.core.numbers import I
from sympy.polys.polyerrors import CoercionFailed
from sympy.polys.domains.integerring import ZZ
from sympy.polys.domains.rationalfield import QQ
from sympy.polys.domains.algebraicfield import AlgebraicField
from sympy.polys.domains.domain import Domain
from sympy.polys.domains.domainelement import DomainElement
from sympy.polys.domains.field import Field
from sympy.polys.domains.ring import Ring
class GaussianElement(DomainElement):
"""Base class for elements of Gaussian type domains."""
base: Domain
_parent: Domain
__slots__ = ('x', 'y')
def __new__(cls, x, y=0):
conv = cls.base.convert
return cls.new(conv(x), conv(y))
@classmethod
def new(cls, x, y):
"""Create a new GaussianElement of the same domain."""
obj = super().__new__(cls)
obj.x = x
obj.y = y
return obj
def parent(self):
"""The domain that this is an element of (ZZ_I or QQ_I)"""
return self._parent
def __hash__(self):
return hash((self.x, self.y))
def __eq__(self, other):
if isinstance(other, self.__class__):
return self.x == other.x and self.y == other.y
else:
return NotImplemented
def __lt__(self, other):
if not isinstance(other, GaussianElement):
return NotImplemented
return [self.y, self.x] < [other.y, other.x]
def __pos__(self):
return self
def __neg__(self):
return self.new(-self.x, -self.y)
def __repr__(self):
return "%s(%s, %s)" % (self._parent.rep, self.x, self.y)
def __str__(self):
return str(self._parent.to_sympy(self))
@classmethod
def _get_xy(cls, other):
if not isinstance(other, cls):
try:
other = cls._parent.convert(other)
except CoercionFailed:
return None, None
return other.x, other.y
def __add__(self, other):
x, y = self._get_xy(other)
if x is not None:
return self.new(self.x + x, self.y + y)
else:
return NotImplemented
__radd__ = __add__
def __sub__(self, other):
x, y = self._get_xy(other)
if x is not None:
return self.new(self.x - x, self.y - y)
else:
return NotImplemented
def __rsub__(self, other):
x, y = self._get_xy(other)
if x is not None:
return self.new(x - self.x, y - self.y)
else:
return NotImplemented
def __mul__(self, other):
x, y = self._get_xy(other)
if x is not None:
return self.new(self.x*x - self.y*y, self.x*y + self.y*x)
else:
return NotImplemented
__rmul__ = __mul__
def __pow__(self, exp):
if exp == 0:
return self.new(1, 0)
if exp < 0:
self, exp = 1/self, -exp
if exp == 1:
return self
pow2 = self
prod = self if exp % 2 else self._parent.one
exp //= 2
while exp:
pow2 *= pow2
if exp % 2:
prod *= pow2
exp //= 2
return prod
def __bool__(self):
return bool(self.x) or bool(self.y)
def quadrant(self):
"""Return quadrant index 0-3.
0 is included in quadrant 0.
"""
if self.y > 0:
return 0 if self.x > 0 else 1
elif self.y < 0:
return 2 if self.x < 0 else 3
else:
return 0 if self.x >= 0 else 2
def __rdivmod__(self, other):
try:
other = self._parent.convert(other)
except CoercionFailed:
return NotImplemented
else:
return other.__divmod__(self)
def __rtruediv__(self, other):
try:
other = QQ_I.convert(other)
except CoercionFailed:
return NotImplemented
else:
return other.__truediv__(self)
def __floordiv__(self, other):
qr = self.__divmod__(other)
return qr if qr is NotImplemented else qr[0]
def __rfloordiv__(self, other):
qr = self.__rdivmod__(other)
return qr if qr is NotImplemented else qr[0]
def __mod__(self, other):
qr = self.__divmod__(other)
return qr if qr is NotImplemented else qr[1]
def __rmod__(self, other):
qr = self.__rdivmod__(other)
return qr if qr is NotImplemented else qr[1]
class GaussianInteger(GaussianElement):
"""Gaussian integer: domain element for :ref:`ZZ_I`
>>> from sympy import ZZ_I
>>> z = ZZ_I(2, 3)
>>> z
(2 + 3*I)
>>> type(z)
<class 'sympy.polys.domains.gaussiandomains.GaussianInteger'>
"""
base = ZZ
def __truediv__(self, other):
"""Return a Gaussian rational."""
return QQ_I.convert(self)/other
def __divmod__(self, other):
if not other:
raise ZeroDivisionError('divmod({}, 0)'.format(self))
x, y = self._get_xy(other)
if x is None:
return NotImplemented
# multiply self and other by x - I*y
# self/other == (a + I*b)/c
a, b = self.x*x + self.y*y, -self.x*y + self.y*x
c = x*x + y*y
# find integers qx and qy such that
# |a - qx*c| <= c/2 and |b - qy*c| <= c/2
qx = (2*a + c) // (2*c) # -c <= 2*a - qx*2*c < c
qy = (2*b + c) // (2*c)
q = GaussianInteger(qx, qy)
# |self/other - q| < 1 since
# |a/c - qx|**2 + |b/c - qy|**2 <= 1/4 + 1/4 < 1
return q, self - q*other # |r| < |other|
class GaussianRational(GaussianElement):
"""Gaussian rational: domain element for :ref:`QQ_I`
>>> from sympy import QQ_I, QQ
>>> z = QQ_I(QQ(2, 3), QQ(4, 5))
>>> z
(2/3 + 4/5*I)
>>> type(z)
<class 'sympy.polys.domains.gaussiandomains.GaussianRational'>
"""
base = QQ
def __truediv__(self, other):
"""Return a Gaussian rational."""
if not other:
raise ZeroDivisionError('{} / 0'.format(self))
x, y = self._get_xy(other)
if x is None:
return NotImplemented
c = x*x + y*y
return GaussianRational((self.x*x + self.y*y)/c,
(-self.x*y + self.y*x)/c)
def __divmod__(self, other):
try:
other = self._parent.convert(other)
except CoercionFailed:
return NotImplemented
if not other:
raise ZeroDivisionError('{} % 0'.format(self))
else:
return self/other, QQ_I.zero
class GaussianDomain():
"""Base class for Gaussian domains."""
dom = None # type: Domain
is_Numerical = True
is_Exact = True
has_assoc_Ring = True
has_assoc_Field = True
def to_sympy(self, a):
"""Convert ``a`` to a SymPy object. """
conv = self.dom.to_sympy
return conv(a.x) + I*conv(a.y)
def from_sympy(self, a):
"""Convert a SymPy object to ``self.dtype``."""
r, b = a.as_coeff_Add()
x = self.dom.from_sympy(r) # may raise CoercionFailed
if not b:
return self.new(x, 0)
r, b = b.as_coeff_Mul()
y = self.dom.from_sympy(r)
if b is I:
return self.new(x, y)
else:
raise CoercionFailed("{} is not Gaussian".format(a))
def inject(self, *gens):
"""Inject generators into this domain. """
return self.poly_ring(*gens)
def canonical_unit(self, d):
unit = self.units[-d.quadrant()] # - for inverse power
return unit
def is_negative(self, element):
"""Returns ``False`` for any ``GaussianElement``. """
return False
def is_positive(self, element):
"""Returns ``False`` for any ``GaussianElement``. """
return False
def is_nonnegative(self, element):
"""Returns ``False`` for any ``GaussianElement``. """
return False
def is_nonpositive(self, element):
"""Returns ``False`` for any ``GaussianElement``. """
return False
def from_ZZ_gmpy(K1, a, K0):
"""Convert a GMPY mpz to ``self.dtype``."""
return K1(a)
def from_ZZ(K1, a, K0):
"""Convert a ZZ_python element to ``self.dtype``."""
return K1(a)
def from_ZZ_python(K1, a, K0):
"""Convert a ZZ_python element to ``self.dtype``."""
return K1(a)
def from_QQ(K1, a, K0):
"""Convert a GMPY mpq to ``self.dtype``."""
return K1(a)
def from_QQ_gmpy(K1, a, K0):
"""Convert a GMPY mpq to ``self.dtype``."""
return K1(a)
def from_QQ_python(K1, a, K0):
"""Convert a QQ_python element to ``self.dtype``."""
return K1(a)
def from_AlgebraicField(K1, a, K0):
"""Convert an element from ZZ<I> or QQ<I> to ``self.dtype``."""
if K0.ext.args[0] == I:
return K1.from_sympy(K0.to_sympy(a))
class GaussianIntegerRing(GaussianDomain, Ring):
r"""Ring of Gaussian integers ``ZZ_I``
The :ref:`ZZ_I` domain represents the `Gaussian integers`_ `\mathbb{Z}[i]`
as a :py:class:`~.Domain` in the domain system (see
:ref:`polys-domainsintro`).
By default a :py:class:`~.Poly` created from an expression with
coefficients that are combinations of integers and ``I`` (`\sqrt{-1}`)
will have the domain :ref:`ZZ_I`.
>>> from sympy import Poly, Symbol, I
>>> x = Symbol('x')
>>> p = Poly(x**2 + I)
>>> p
Poly(x**2 + I, x, domain='ZZ_I')
>>> p.domain
ZZ_I
The :ref:`ZZ_I` domain can be used to factorise polynomials that are
reducible over the Gaussian integers.
>>> from sympy import factor
>>> factor(x**2 + 1)
x**2 + 1
>>> factor(x**2 + 1, domain='ZZ_I')
(x - I)*(x + I)
The corresponding `field of fractions`_ is the domain of the Gaussian
rationals :ref:`QQ_I`. Conversely :ref:`ZZ_I` is the `ring of integers`_
of :ref:`QQ_I`.
>>> from sympy import ZZ_I, QQ_I
>>> ZZ_I.get_field()
QQ_I
>>> QQ_I.get_ring()
ZZ_I
When using the domain directly :ref:`ZZ_I` can be used as a constructor.
>>> ZZ_I(3, 4)
(3 + 4*I)
>>> ZZ_I(5)
(5 + 0*I)
The domain elements of :ref:`ZZ_I` are instances of
:py:class:`~.GaussianInteger` which support the rings operations
``+,-,*,**``.
>>> z1 = ZZ_I(5, 1)
>>> z2 = ZZ_I(2, 3)
>>> z1
(5 + 1*I)
>>> z2
(2 + 3*I)
>>> z1 + z2
(7 + 4*I)
>>> z1 * z2
(7 + 17*I)
>>> z1 ** 2
(24 + 10*I)
Both floor (``//``) and modulo (``%``) division work with
:py:class:`~.GaussianInteger` (see the :py:meth:`~.Domain.div` method).
>>> z3, z4 = ZZ_I(5), ZZ_I(1, 3)
>>> z3 // z4 # floor division
(1 + -1*I)
>>> z3 % z4 # modulo division (remainder)
(1 + -2*I)
>>> (z3//z4)*z4 + z3%z4 == z3
True
True division (``/``) in :ref:`ZZ_I` gives an element of :ref:`QQ_I`. The
:py:meth:`~.Domain.exquo` method can be used to divide in :ref:`ZZ_I` when
exact division is possible.
>>> z1 / z2
(1 + -1*I)
>>> ZZ_I.exquo(z1, z2)
(1 + -1*I)
>>> z3 / z4
(1/2 + -3/2*I)
>>> ZZ_I.exquo(z3, z4)
Traceback (most recent call last):
...
ExactQuotientFailed: (1 + 3*I) does not divide (5 + 0*I) in ZZ_I
The :py:meth:`~.Domain.gcd` method can be used to compute the `gcd`_ of any
two elements.
>>> ZZ_I.gcd(ZZ_I(10), ZZ_I(2))
(2 + 0*I)
>>> ZZ_I.gcd(ZZ_I(5), ZZ_I(2, 1))
(2 + 1*I)
.. _Gaussian integers: https://en.wikipedia.org/wiki/Gaussian_integer
.. _gcd: https://en.wikipedia.org/wiki/Greatest_common_divisor
"""
dom = ZZ
dtype = GaussianInteger
zero = dtype(ZZ(0), ZZ(0))
one = dtype(ZZ(1), ZZ(0))
imag_unit = dtype(ZZ(0), ZZ(1))
units = (one, imag_unit, -one, -imag_unit) # powers of i
rep = 'ZZ_I'
is_GaussianRing = True
is_ZZ_I = True
def __init__(self): # override Domain.__init__
"""For constructing ZZ_I."""
def get_ring(self):
"""Returns a ring associated with ``self``. """
return self
def get_field(self):
"""Returns a field associated with ``self``. """
return QQ_I
def normalize(self, d, *args):
"""Return first quadrant element associated with ``d``.
Also multiply the other arguments by the same power of i.
"""
unit = self.canonical_unit(d)
d *= unit
args = tuple(a*unit for a in args)
return (d,) + args if args else d
def gcd(self, a, b):
"""Greatest common divisor of a and b over ZZ_I."""
while b:
a, b = b, a % b
return self.normalize(a)
def lcm(self, a, b):
"""Least common multiple of a and b over ZZ_I."""
return (a * b) // self.gcd(a, b)
def from_GaussianIntegerRing(K1, a, K0):
"""Convert a ZZ_I element to ZZ_I."""
return a
def from_GaussianRationalField(K1, a, K0):
"""Convert a QQ_I element to ZZ_I."""
return K1.new(ZZ.convert(a.x), ZZ.convert(a.y))
ZZ_I = GaussianInteger._parent = GaussianIntegerRing()
class GaussianRationalField(GaussianDomain, Field):
r"""Field of Gaussian rationals ``QQ_I``
The :ref:`QQ_I` domain represents the `Gaussian rationals`_ `\mathbb{Q}(i)`
as a :py:class:`~.Domain` in the domain system (see
:ref:`polys-domainsintro`).
By default a :py:class:`~.Poly` created from an expression with
coefficients that are combinations of rationals and ``I`` (`\sqrt{-1}`)
will have the domain :ref:`QQ_I`.
>>> from sympy import Poly, Symbol, I
>>> x = Symbol('x')
>>> p = Poly(x**2 + I/2)
>>> p
Poly(x**2 + I/2, x, domain='QQ_I')
>>> p.domain
QQ_I
The polys option ``gaussian=True`` can be used to specify that the domain
should be :ref:`QQ_I` even if the coefficients do not contain ``I`` or are
all integers.
>>> Poly(x**2)
Poly(x**2, x, domain='ZZ')
>>> Poly(x**2 + I)
Poly(x**2 + I, x, domain='ZZ_I')
>>> Poly(x**2/2)
Poly(1/2*x**2, x, domain='QQ')
>>> Poly(x**2, gaussian=True)
Poly(x**2, x, domain='QQ_I')
>>> Poly(x**2 + I, gaussian=True)
Poly(x**2 + I, x, domain='QQ_I')
>>> Poly(x**2/2, gaussian=True)
Poly(1/2*x**2, x, domain='QQ_I')
The :ref:`QQ_I` domain can be used to factorise polynomials that are
reducible over the Gaussian rationals.
>>> from sympy import factor, QQ_I
>>> factor(x**2/4 + 1)
(x**2 + 4)/4
>>> factor(x**2/4 + 1, domain='QQ_I')
(x - 2*I)*(x + 2*I)/4
>>> factor(x**2/4 + 1, domain=QQ_I)
(x - 2*I)*(x + 2*I)/4
It is also possible to specify the :ref:`QQ_I` domain explicitly with
polys functions like :py:func:`~.apart`.
>>> from sympy import apart
>>> apart(1/(1 + x**2))
1/(x**2 + 1)
>>> apart(1/(1 + x**2), domain=QQ_I)
I/(2*(x + I)) - I/(2*(x - I))
The corresponding `ring of integers`_ is the domain of the Gaussian
integers :ref:`ZZ_I`. Conversely :ref:`QQ_I` is the `field of fractions`_
of :ref:`ZZ_I`.
>>> from sympy import ZZ_I, QQ_I, QQ
>>> ZZ_I.get_field()
QQ_I
>>> QQ_I.get_ring()
ZZ_I
When using the domain directly :ref:`QQ_I` can be used as a constructor.
>>> QQ_I(3, 4)
(3 + 4*I)
>>> QQ_I(5)
(5 + 0*I)
>>> QQ_I(QQ(2, 3), QQ(4, 5))
(2/3 + 4/5*I)
The domain elements of :ref:`QQ_I` are instances of
:py:class:`~.GaussianRational` which support the field operations
``+,-,*,**,/``.
>>> z1 = QQ_I(5, 1)
>>> z2 = QQ_I(2, QQ(1, 2))
>>> z1
(5 + 1*I)
>>> z2
(2 + 1/2*I)
>>> z1 + z2
(7 + 3/2*I)
>>> z1 * z2
(19/2 + 9/2*I)
>>> z2 ** 2
(15/4 + 2*I)
True division (``/``) in :ref:`QQ_I` gives an element of :ref:`QQ_I` and
is always exact.
>>> z1 / z2
(42/17 + -2/17*I)
>>> QQ_I.exquo(z1, z2)
(42/17 + -2/17*I)
>>> z1 == (z1/z2)*z2
True
Both floor (``//``) and modulo (``%``) division can be used with
:py:class:`~.GaussianRational` (see :py:meth:`~.Domain.div`)
but division is always exact so there is no remainder.
>>> z1 // z2
(42/17 + -2/17*I)
>>> z1 % z2
(0 + 0*I)
>>> QQ_I.div(z1, z2)
((42/17 + -2/17*I), (0 + 0*I))
>>> (z1//z2)*z2 + z1%z2 == z1
True
.. _Gaussian rationals: https://en.wikipedia.org/wiki/Gaussian_rational
"""
dom = QQ
dtype = GaussianRational
zero = dtype(QQ(0), QQ(0))
one = dtype(QQ(1), QQ(0))
imag_unit = dtype(QQ(0), QQ(1))
units = (one, imag_unit, -one, -imag_unit) # powers of i
rep = 'QQ_I'
is_GaussianField = True
is_QQ_I = True
def __init__(self): # override Domain.__init__
"""For constructing QQ_I."""
def get_ring(self):
"""Returns a ring associated with ``self``. """
return ZZ_I
def get_field(self):
"""Returns a field associated with ``self``. """
return self
def as_AlgebraicField(self):
"""Get equivalent domain as an ``AlgebraicField``. """
return AlgebraicField(self.dom, I)
def numer(self, a):
"""Get the numerator of ``a``."""
ZZ_I = self.get_ring()
return ZZ_I.convert(a * self.denom(a))
def denom(self, a):
"""Get the denominator of ``a``."""
ZZ = self.dom.get_ring()
QQ = self.dom
ZZ_I = self.get_ring()
denom_ZZ = ZZ.lcm(QQ.denom(a.x), QQ.denom(a.y))
return ZZ_I(denom_ZZ, ZZ.zero)
def from_GaussianIntegerRing(K1, a, K0):
"""Convert a ZZ_I element to QQ_I."""
return K1.new(a.x, a.y)
def from_GaussianRationalField(K1, a, K0):
"""Convert a QQ_I element to QQ_I."""
return a
QQ_I = GaussianRational._parent = GaussianRationalField()
|
28e8f7fac0f32e8c7cea7dc0bf6565ea71315accf2597909cf4fa50e95c3c09e | """Implementation of :class:`Domain` class. """
from __future__ import annotations
from typing import Any
from sympy.core.numbers import AlgebraicNumber
from sympy.core import Basic, sympify
from sympy.core.sorting import default_sort_key, ordered
from sympy.external.gmpy import HAS_GMPY
from sympy.polys.domains.domainelement import DomainElement
from sympy.polys.orderings import lex
from sympy.polys.polyerrors import UnificationFailed, CoercionFailed, DomainError
from sympy.polys.polyutils import _unify_gens, _not_a_coeff
from sympy.utilities import public
from sympy.utilities.iterables import is_sequence
@public
class Domain:
"""Superclass for all domains in the polys domains system.
See :ref:`polys-domainsintro` for an introductory explanation of the
domains system.
The :py:class:`~.Domain` class is an abstract base class for all of the
concrete domain types. There are many different :py:class:`~.Domain`
subclasses each of which has an associated ``dtype`` which is a class
representing the elements of the domain. The coefficients of a
:py:class:`~.Poly` are elements of a domain which must be a subclass of
:py:class:`~.Domain`.
Examples
========
The most common example domains are the integers :ref:`ZZ` and the
rationals :ref:`QQ`.
>>> from sympy import Poly, symbols, Domain
>>> x, y = symbols('x, y')
>>> p = Poly(x**2 + y)
>>> p
Poly(x**2 + y, x, y, domain='ZZ')
>>> p.domain
ZZ
>>> isinstance(p.domain, Domain)
True
>>> Poly(x**2 + y/2)
Poly(x**2 + 1/2*y, x, y, domain='QQ')
The domains can be used directly in which case the domain object e.g.
(:ref:`ZZ` or :ref:`QQ`) can be used as a constructor for elements of
``dtype``.
>>> from sympy import ZZ, QQ
>>> ZZ(2)
2
>>> ZZ.dtype # doctest: +SKIP
<class 'int'>
>>> type(ZZ(2)) # doctest: +SKIP
<class 'int'>
>>> QQ(1, 2)
1/2
>>> type(QQ(1, 2)) # doctest: +SKIP
<class 'sympy.polys.domains.pythonrational.PythonRational'>
The corresponding domain elements can be used with the arithmetic
operations ``+,-,*,**`` and depending on the domain some combination of
``/,//,%`` might be usable. For example in :ref:`ZZ` both ``//`` (floor
division) and ``%`` (modulo division) can be used but ``/`` (true
division) cannot. Since :ref:`QQ` is a :py:class:`~.Field` its elements
can be used with ``/`` but ``//`` and ``%`` should not be used. Some
domains have a :py:meth:`~.Domain.gcd` method.
>>> ZZ(2) + ZZ(3)
5
>>> ZZ(5) // ZZ(2)
2
>>> ZZ(5) % ZZ(2)
1
>>> QQ(1, 2) / QQ(2, 3)
3/4
>>> ZZ.gcd(ZZ(4), ZZ(2))
2
>>> QQ.gcd(QQ(2,7), QQ(5,3))
1/21
>>> ZZ.is_Field
False
>>> QQ.is_Field
True
There are also many other domains including:
1. :ref:`GF(p)` for finite fields of prime order.
2. :ref:`RR` for real (floating point) numbers.
3. :ref:`CC` for complex (floating point) numbers.
4. :ref:`QQ(a)` for algebraic number fields.
5. :ref:`K[x]` for polynomial rings.
6. :ref:`K(x)` for rational function fields.
7. :ref:`EX` for arbitrary expressions.
Each domain is represented by a domain object and also an implementation
class (``dtype``) for the elements of the domain. For example the
:ref:`K[x]` domains are represented by a domain object which is an
instance of :py:class:`~.PolynomialRing` and the elements are always
instances of :py:class:`~.PolyElement`. The implementation class
represents particular types of mathematical expressions in a way that is
more efficient than a normal SymPy expression which is of type
:py:class:`~.Expr`. The domain methods :py:meth:`~.Domain.from_sympy` and
:py:meth:`~.Domain.to_sympy` are used to convert from :py:class:`~.Expr`
to a domain element and vice versa.
>>> from sympy import Symbol, ZZ, Expr
>>> x = Symbol('x')
>>> K = ZZ[x] # polynomial ring domain
>>> K
ZZ[x]
>>> type(K) # class of the domain
<class 'sympy.polys.domains.polynomialring.PolynomialRing'>
>>> K.dtype # class of the elements
<class 'sympy.polys.rings.PolyElement'>
>>> p_expr = x**2 + 1 # Expr
>>> p_expr
x**2 + 1
>>> type(p_expr)
<class 'sympy.core.add.Add'>
>>> isinstance(p_expr, Expr)
True
>>> p_domain = K.from_sympy(p_expr)
>>> p_domain # domain element
x**2 + 1
>>> type(p_domain)
<class 'sympy.polys.rings.PolyElement'>
>>> K.to_sympy(p_domain) == p_expr
True
The :py:meth:`~.Domain.convert_from` method is used to convert domain
elements from one domain to another.
>>> from sympy import ZZ, QQ
>>> ez = ZZ(2)
>>> eq = QQ.convert_from(ez, ZZ)
>>> type(ez) # doctest: +SKIP
<class 'int'>
>>> type(eq) # doctest: +SKIP
<class 'sympy.polys.domains.pythonrational.PythonRational'>
Elements from different domains should not be mixed in arithmetic or other
operations: they should be converted to a common domain first. The domain
method :py:meth:`~.Domain.unify` is used to find a domain that can
represent all the elements of two given domains.
>>> from sympy import ZZ, QQ, symbols
>>> x, y = symbols('x, y')
>>> ZZ.unify(QQ)
QQ
>>> ZZ[x].unify(QQ)
QQ[x]
>>> ZZ[x].unify(QQ[y])
QQ[x,y]
If a domain is a :py:class:`~.Ring` then is might have an associated
:py:class:`~.Field` and vice versa. The :py:meth:`~.Domain.get_field` and
:py:meth:`~.Domain.get_ring` methods will find or create the associated
domain.
>>> from sympy import ZZ, QQ, Symbol
>>> x = Symbol('x')
>>> ZZ.has_assoc_Field
True
>>> ZZ.get_field()
QQ
>>> QQ.has_assoc_Ring
True
>>> QQ.get_ring()
ZZ
>>> K = QQ[x]
>>> K
QQ[x]
>>> K.get_field()
QQ(x)
See also
========
DomainElement: abstract base class for domain elements
construct_domain: construct a minimal domain for some expressions
"""
dtype: type | None = None
"""The type (class) of the elements of this :py:class:`~.Domain`:
>>> from sympy import ZZ, QQ, Symbol
>>> ZZ.dtype
<class 'int'>
>>> z = ZZ(2)
>>> z
2
>>> type(z)
<class 'int'>
>>> type(z) == ZZ.dtype
True
Every domain has an associated **dtype** ("datatype") which is the
class of the associated domain elements.
See also
========
of_type
"""
zero: Any = None
"""The zero element of the :py:class:`~.Domain`:
>>> from sympy import QQ
>>> QQ.zero
0
>>> QQ.of_type(QQ.zero)
True
See also
========
of_type
one
"""
one: Any = None
"""The one element of the :py:class:`~.Domain`:
>>> from sympy import QQ
>>> QQ.one
1
>>> QQ.of_type(QQ.one)
True
See also
========
of_type
zero
"""
is_Ring = False
"""Boolean flag indicating if the domain is a :py:class:`~.Ring`.
>>> from sympy import ZZ
>>> ZZ.is_Ring
True
Basically every :py:class:`~.Domain` represents a ring so this flag is
not that useful.
See also
========
is_PID
is_Field
get_ring
has_assoc_Ring
"""
is_Field = False
"""Boolean flag indicating if the domain is a :py:class:`~.Field`.
>>> from sympy import ZZ, QQ
>>> ZZ.is_Field
False
>>> QQ.is_Field
True
See also
========
is_PID
is_Ring
get_field
has_assoc_Field
"""
has_assoc_Ring = False
"""Boolean flag indicating if the domain has an associated
:py:class:`~.Ring`.
>>> from sympy import QQ
>>> QQ.has_assoc_Ring
True
>>> QQ.get_ring()
ZZ
See also
========
is_Field
get_ring
"""
has_assoc_Field = False
"""Boolean flag indicating if the domain has an associated
:py:class:`~.Field`.
>>> from sympy import ZZ
>>> ZZ.has_assoc_Field
True
>>> ZZ.get_field()
QQ
See also
========
is_Field
get_field
"""
is_FiniteField = is_FF = False
is_IntegerRing = is_ZZ = False
is_RationalField = is_QQ = False
is_GaussianRing = is_ZZ_I = False
is_GaussianField = is_QQ_I = False
is_RealField = is_RR = False
is_ComplexField = is_CC = False
is_AlgebraicField = is_Algebraic = False
is_PolynomialRing = is_Poly = False
is_FractionField = is_Frac = False
is_SymbolicDomain = is_EX = False
is_SymbolicRawDomain = is_EXRAW = False
is_FiniteExtension = False
is_Exact = True
is_Numerical = False
is_Simple = False
is_Composite = False
is_PID = False
"""Boolean flag indicating if the domain is a `principal ideal domain`_.
>>> from sympy import ZZ
>>> ZZ.has_assoc_Field
True
>>> ZZ.get_field()
QQ
.. _principal ideal domain: https://en.wikipedia.org/wiki/Principal_ideal_domain
See also
========
is_Field
get_field
"""
has_CharacteristicZero = False
rep: str | None = None
alias: str | None = None
def __init__(self):
raise NotImplementedError
def __str__(self):
return self.rep
def __repr__(self):
return str(self)
def __hash__(self):
return hash((self.__class__.__name__, self.dtype))
def new(self, *args):
return self.dtype(*args)
@property
def tp(self):
"""Alias for :py:attr:`~.Domain.dtype`"""
return self.dtype
def __call__(self, *args):
"""Construct an element of ``self`` domain from ``args``. """
return self.new(*args)
def normal(self, *args):
return self.dtype(*args)
def convert_from(self, element, base):
"""Convert ``element`` to ``self.dtype`` given the base domain. """
if base.alias is not None:
method = "from_" + base.alias
else:
method = "from_" + base.__class__.__name__
_convert = getattr(self, method)
if _convert is not None:
result = _convert(element, base)
if result is not None:
return result
raise CoercionFailed("Cannot convert %s of type %s from %s to %s" % (element, type(element), base, self))
def convert(self, element, base=None):
"""Convert ``element`` to ``self.dtype``. """
if base is not None:
if _not_a_coeff(element):
raise CoercionFailed('%s is not in any domain' % element)
return self.convert_from(element, base)
if self.of_type(element):
return element
if _not_a_coeff(element):
raise CoercionFailed('%s is not in any domain' % element)
from sympy.polys.domains import ZZ, QQ, RealField, ComplexField
if ZZ.of_type(element):
return self.convert_from(element, ZZ)
if isinstance(element, int):
return self.convert_from(ZZ(element), ZZ)
if HAS_GMPY:
integers = ZZ
if isinstance(element, integers.tp):
return self.convert_from(element, integers)
rationals = QQ
if isinstance(element, rationals.tp):
return self.convert_from(element, rationals)
if isinstance(element, float):
parent = RealField(tol=False)
return self.convert_from(parent(element), parent)
if isinstance(element, complex):
parent = ComplexField(tol=False)
return self.convert_from(parent(element), parent)
if isinstance(element, DomainElement):
return self.convert_from(element, element.parent())
# TODO: implement this in from_ methods
if self.is_Numerical and getattr(element, 'is_ground', False):
return self.convert(element.LC())
if isinstance(element, Basic):
try:
return self.from_sympy(element)
except (TypeError, ValueError):
pass
else: # TODO: remove this branch
if not is_sequence(element):
try:
element = sympify(element, strict=True)
if isinstance(element, Basic):
return self.from_sympy(element)
except (TypeError, ValueError):
pass
raise CoercionFailed("Cannot convert %s of type %s to %s" % (element, type(element), self))
def of_type(self, element):
"""Check if ``a`` is of type ``dtype``. """
return isinstance(element, self.tp) # XXX: this isn't correct, e.g. PolyElement
def __contains__(self, a):
"""Check if ``a`` belongs to this domain. """
try:
if _not_a_coeff(a):
raise CoercionFailed
self.convert(a) # this might raise, too
except CoercionFailed:
return False
return True
def to_sympy(self, a):
"""Convert domain element *a* to a SymPy expression (Expr).
Explanation
===========
Convert a :py:class:`~.Domain` element *a* to :py:class:`~.Expr`. Most
public SymPy functions work with objects of type :py:class:`~.Expr`.
The elements of a :py:class:`~.Domain` have a different internal
representation. It is not possible to mix domain elements with
:py:class:`~.Expr` so each domain has :py:meth:`~.Domain.to_sympy` and
:py:meth:`~.Domain.from_sympy` methods to convert its domain elements
to and from :py:class:`~.Expr`.
Parameters
==========
a: domain element
An element of this :py:class:`~.Domain`.
Returns
=======
expr: Expr
A normal SymPy expression of type :py:class:`~.Expr`.
Examples
========
Construct an element of the :ref:`QQ` domain and then convert it to
:py:class:`~.Expr`.
>>> from sympy import QQ, Expr
>>> q_domain = QQ(2)
>>> q_domain
2
>>> q_expr = QQ.to_sympy(q_domain)
>>> q_expr
2
Although the printed forms look similar these objects are not of the
same type.
>>> isinstance(q_domain, Expr)
False
>>> isinstance(q_expr, Expr)
True
Construct an element of :ref:`K[x]` and convert to
:py:class:`~.Expr`.
>>> from sympy import Symbol
>>> x = Symbol('x')
>>> K = QQ[x]
>>> x_domain = K.gens[0] # generator x as a domain element
>>> p_domain = x_domain**2/3 + 1
>>> p_domain
1/3*x**2 + 1
>>> p_expr = K.to_sympy(p_domain)
>>> p_expr
x**2/3 + 1
The :py:meth:`~.Domain.from_sympy` method is used for the opposite
conversion from a normal SymPy expression to a domain element.
>>> p_domain == p_expr
False
>>> K.from_sympy(p_expr) == p_domain
True
>>> K.to_sympy(p_domain) == p_expr
True
>>> K.from_sympy(K.to_sympy(p_domain)) == p_domain
True
>>> K.to_sympy(K.from_sympy(p_expr)) == p_expr
True
The :py:meth:`~.Domain.from_sympy` method makes it easier to construct
domain elements interactively.
>>> from sympy import Symbol
>>> x = Symbol('x')
>>> K = QQ[x]
>>> K.from_sympy(x**2/3 + 1)
1/3*x**2 + 1
See also
========
from_sympy
convert_from
"""
raise NotImplementedError
def from_sympy(self, a):
"""Convert a SymPy expression to an element of this domain.
Explanation
===========
See :py:meth:`~.Domain.to_sympy` for explanation and examples.
Parameters
==========
expr: Expr
A normal SymPy expression of type :py:class:`~.Expr`.
Returns
=======
a: domain element
An element of this :py:class:`~.Domain`.
See also
========
to_sympy
convert_from
"""
raise NotImplementedError
def sum(self, args):
return sum(args)
def from_FF(K1, a, K0):
"""Convert ``ModularInteger(int)`` to ``dtype``. """
return None
def from_FF_python(K1, a, K0):
"""Convert ``ModularInteger(int)`` to ``dtype``. """
return None
def from_ZZ_python(K1, a, K0):
"""Convert a Python ``int`` object to ``dtype``. """
return None
def from_QQ_python(K1, a, K0):
"""Convert a Python ``Fraction`` object to ``dtype``. """
return None
def from_FF_gmpy(K1, a, K0):
"""Convert ``ModularInteger(mpz)`` to ``dtype``. """
return None
def from_ZZ_gmpy(K1, a, K0):
"""Convert a GMPY ``mpz`` object to ``dtype``. """
return None
def from_QQ_gmpy(K1, a, K0):
"""Convert a GMPY ``mpq`` object to ``dtype``. """
return None
def from_RealField(K1, a, K0):
"""Convert a real element object to ``dtype``. """
return None
def from_ComplexField(K1, a, K0):
"""Convert a complex element to ``dtype``. """
return None
def from_AlgebraicField(K1, a, K0):
"""Convert an algebraic number to ``dtype``. """
return None
def from_PolynomialRing(K1, a, K0):
"""Convert a polynomial to ``dtype``. """
if a.is_ground:
return K1.convert(a.LC, K0.dom)
def from_FractionField(K1, a, K0):
"""Convert a rational function to ``dtype``. """
return None
def from_MonogenicFiniteExtension(K1, a, K0):
"""Convert an ``ExtensionElement`` to ``dtype``. """
return K1.convert_from(a.rep, K0.ring)
def from_ExpressionDomain(K1, a, K0):
"""Convert a ``EX`` object to ``dtype``. """
return K1.from_sympy(a.ex)
def from_ExpressionRawDomain(K1, a, K0):
"""Convert a ``EX`` object to ``dtype``. """
return K1.from_sympy(a)
def from_GlobalPolynomialRing(K1, a, K0):
"""Convert a polynomial to ``dtype``. """
if a.degree() <= 0:
return K1.convert(a.LC(), K0.dom)
def from_GeneralizedPolynomialRing(K1, a, K0):
return K1.from_FractionField(a, K0)
def unify_with_symbols(K0, K1, symbols):
if (K0.is_Composite and (set(K0.symbols) & set(symbols))) or (K1.is_Composite and (set(K1.symbols) & set(symbols))):
raise UnificationFailed("Cannot unify %s with %s, given %s generators" % (K0, K1, tuple(symbols)))
return K0.unify(K1)
def unify(K0, K1, symbols=None):
"""
Construct a minimal domain that contains elements of ``K0`` and ``K1``.
Known domains (from smallest to largest):
- ``GF(p)``
- ``ZZ``
- ``QQ``
- ``RR(prec, tol)``
- ``CC(prec, tol)``
- ``ALG(a, b, c)``
- ``K[x, y, z]``
- ``K(x, y, z)``
- ``EX``
"""
if symbols is not None:
return K0.unify_with_symbols(K1, symbols)
if K0 == K1:
return K0
if K0.is_EXRAW:
return K0
if K1.is_EXRAW:
return K1
if K0.is_EX:
return K0
if K1.is_EX:
return K1
if K0.is_FiniteExtension or K1.is_FiniteExtension:
if K1.is_FiniteExtension:
K0, K1 = K1, K0
if K1.is_FiniteExtension:
# Unifying two extensions.
# Try to ensure that K0.unify(K1) == K1.unify(K0)
if list(ordered([K0.modulus, K1.modulus]))[1] == K0.modulus:
K0, K1 = K1, K0
return K1.set_domain(K0)
else:
# Drop the generator from other and unify with the base domain
K1 = K1.drop(K0.symbol)
K1 = K0.domain.unify(K1)
return K0.set_domain(K1)
if K0.is_Composite or K1.is_Composite:
K0_ground = K0.dom if K0.is_Composite else K0
K1_ground = K1.dom if K1.is_Composite else K1
K0_symbols = K0.symbols if K0.is_Composite else ()
K1_symbols = K1.symbols if K1.is_Composite else ()
domain = K0_ground.unify(K1_ground)
symbols = _unify_gens(K0_symbols, K1_symbols)
order = K0.order if K0.is_Composite else K1.order
if ((K0.is_FractionField and K1.is_PolynomialRing or
K1.is_FractionField and K0.is_PolynomialRing) and
(not K0_ground.is_Field or not K1_ground.is_Field) and domain.is_Field
and domain.has_assoc_Ring):
domain = domain.get_ring()
if K0.is_Composite and (not K1.is_Composite or K0.is_FractionField or K1.is_PolynomialRing):
cls = K0.__class__
else:
cls = K1.__class__
from sympy.polys.domains.old_polynomialring import GlobalPolynomialRing
if cls == GlobalPolynomialRing:
return cls(domain, symbols)
return cls(domain, symbols, order)
def mkinexact(cls, K0, K1):
prec = max(K0.precision, K1.precision)
tol = max(K0.tolerance, K1.tolerance)
return cls(prec=prec, tol=tol)
if K1.is_ComplexField:
K0, K1 = K1, K0
if K0.is_ComplexField:
if K1.is_ComplexField or K1.is_RealField:
return mkinexact(K0.__class__, K0, K1)
else:
return K0
if K1.is_RealField:
K0, K1 = K1, K0
if K0.is_RealField:
if K1.is_RealField:
return mkinexact(K0.__class__, K0, K1)
elif K1.is_GaussianRing or K1.is_GaussianField:
from sympy.polys.domains.complexfield import ComplexField
return ComplexField(prec=K0.precision, tol=K0.tolerance)
else:
return K0
if K1.is_AlgebraicField:
K0, K1 = K1, K0
if K0.is_AlgebraicField:
if K1.is_GaussianRing:
K1 = K1.get_field()
if K1.is_GaussianField:
K1 = K1.as_AlgebraicField()
if K1.is_AlgebraicField:
return K0.__class__(K0.dom.unify(K1.dom), *_unify_gens(K0.orig_ext, K1.orig_ext))
else:
return K0
if K0.is_GaussianField:
return K0
if K1.is_GaussianField:
return K1
if K0.is_GaussianRing:
if K1.is_RationalField:
K0 = K0.get_field()
return K0
if K1.is_GaussianRing:
if K0.is_RationalField:
K1 = K1.get_field()
return K1
if K0.is_RationalField:
return K0
if K1.is_RationalField:
return K1
if K0.is_IntegerRing:
return K0
if K1.is_IntegerRing:
return K1
if K0.is_FiniteField and K1.is_FiniteField:
return K0.__class__(max(K0.mod, K1.mod, key=default_sort_key))
from sympy.polys.domains import EX
return EX
def __eq__(self, other):
"""Returns ``True`` if two domains are equivalent. """
return isinstance(other, Domain) and self.dtype == other.dtype
def __ne__(self, other):
"""Returns ``False`` if two domains are equivalent. """
return not self == other
def map(self, seq):
"""Rersively apply ``self`` to all elements of ``seq``. """
result = []
for elt in seq:
if isinstance(elt, list):
result.append(self.map(elt))
else:
result.append(self(elt))
return result
def get_ring(self):
"""Returns a ring associated with ``self``. """
raise DomainError('there is no ring associated with %s' % self)
def get_field(self):
"""Returns a field associated with ``self``. """
raise DomainError('there is no field associated with %s' % self)
def get_exact(self):
"""Returns an exact domain associated with ``self``. """
return self
def __getitem__(self, symbols):
"""The mathematical way to make a polynomial ring. """
if hasattr(symbols, '__iter__'):
return self.poly_ring(*symbols)
else:
return self.poly_ring(symbols)
def poly_ring(self, *symbols, order=lex):
"""Returns a polynomial ring, i.e. `K[X]`. """
from sympy.polys.domains.polynomialring import PolynomialRing
return PolynomialRing(self, symbols, order)
def frac_field(self, *symbols, order=lex):
"""Returns a fraction field, i.e. `K(X)`. """
from sympy.polys.domains.fractionfield import FractionField
return FractionField(self, symbols, order)
def old_poly_ring(self, *symbols, **kwargs):
"""Returns a polynomial ring, i.e. `K[X]`. """
from sympy.polys.domains.old_polynomialring import PolynomialRing
return PolynomialRing(self, *symbols, **kwargs)
def old_frac_field(self, *symbols, **kwargs):
"""Returns a fraction field, i.e. `K(X)`. """
from sympy.polys.domains.old_fractionfield import FractionField
return FractionField(self, *symbols, **kwargs)
def algebraic_field(self, *extension, alias=None):
r"""Returns an algebraic field, i.e. `K(\alpha, \ldots)`. """
raise DomainError("Cannot create algebraic field over %s" % self)
def alg_field_from_poly(self, poly, alias=None, root_index=-1):
r"""
Convenience method to construct an algebraic extension on a root of a
polynomial, chosen by root index.
Parameters
==========
poly : :py:class:`~.Poly`
The polynomial whose root generates the extension.
alias : str, optional (default=None)
Symbol name for the generator of the extension.
E.g. "alpha" or "theta".
root_index : int, optional (default=-1)
Specifies which root of the polynomial is desired. The ordering is
as defined by the :py:class:`~.ComplexRootOf` class. The default of
``-1`` selects the most natural choice in the common cases of
quadratic and cyclotomic fields (the square root on the positive
real or imaginary axis, resp. $\mathrm{e}^{2\pi i/n}$).
Examples
========
>>> from sympy import QQ, Poly
>>> from sympy.abc import x
>>> f = Poly(x**2 - 2)
>>> K = QQ.alg_field_from_poly(f)
>>> K.ext.minpoly == f
True
>>> g = Poly(8*x**3 - 6*x - 1)
>>> L = QQ.alg_field_from_poly(g, "alpha")
>>> L.ext.minpoly == g
True
>>> L.to_sympy(L([1, 1, 1]))
alpha**2 + alpha + 1
"""
from sympy.polys.rootoftools import CRootOf
root = CRootOf(poly, root_index)
alpha = AlgebraicNumber(root, alias=alias)
return self.algebraic_field(alpha, alias=alias)
def cyclotomic_field(self, n, ss=False, alias="zeta", gen=None, root_index=-1):
r"""
Convenience method to construct a cyclotomic field.
Parameters
==========
n : int
Construct the nth cyclotomic field.
ss : boolean, optional (default=False)
If True, append *n* as a subscript on the alias string.
alias : str, optional (default="zeta")
Symbol name for the generator.
gen : :py:class:`~.Symbol`, optional (default=None)
Desired variable for the cyclotomic polynomial that defines the
field. If ``None``, a dummy variable will be used.
root_index : int, optional (default=-1)
Specifies which root of the polynomial is desired. The ordering is
as defined by the :py:class:`~.ComplexRootOf` class. The default of
``-1`` selects the root $\mathrm{e}^{2\pi i/n}$.
Examples
========
>>> from sympy import QQ, latex
>>> K = QQ.cyclotomic_field(5)
>>> K.to_sympy(K([-1, 1]))
1 - zeta
>>> L = QQ.cyclotomic_field(7, True)
>>> a = L.to_sympy(L([-1, 1]))
>>> print(a)
1 - zeta7
>>> print(latex(a))
1 - \zeta_{7}
"""
from sympy.polys.specialpolys import cyclotomic_poly
if ss:
alias += str(n)
return self.alg_field_from_poly(cyclotomic_poly(n, gen), alias=alias,
root_index=root_index)
def inject(self, *symbols):
"""Inject generators into this domain. """
raise NotImplementedError
def drop(self, *symbols):
"""Drop generators from this domain. """
if self.is_Simple:
return self
raise NotImplementedError # pragma: no cover
def is_zero(self, a):
"""Returns True if ``a`` is zero. """
return not a
def is_one(self, a):
"""Returns True if ``a`` is one. """
return a == self.one
def is_positive(self, a):
"""Returns True if ``a`` is positive. """
return a > 0
def is_negative(self, a):
"""Returns True if ``a`` is negative. """
return a < 0
def is_nonpositive(self, a):
"""Returns True if ``a`` is non-positive. """
return a <= 0
def is_nonnegative(self, a):
"""Returns True if ``a`` is non-negative. """
return a >= 0
def canonical_unit(self, a):
if self.is_negative(a):
return -self.one
else:
return self.one
def abs(self, a):
"""Absolute value of ``a``, implies ``__abs__``. """
return abs(a)
def neg(self, a):
"""Returns ``a`` negated, implies ``__neg__``. """
return -a
def pos(self, a):
"""Returns ``a`` positive, implies ``__pos__``. """
return +a
def add(self, a, b):
"""Sum of ``a`` and ``b``, implies ``__add__``. """
return a + b
def sub(self, a, b):
"""Difference of ``a`` and ``b``, implies ``__sub__``. """
return a - b
def mul(self, a, b):
"""Product of ``a`` and ``b``, implies ``__mul__``. """
return a * b
def pow(self, a, b):
"""Raise ``a`` to power ``b``, implies ``__pow__``. """
return a ** b
def exquo(self, a, b):
"""Exact quotient of *a* and *b*. Analogue of ``a / b``.
Explanation
===========
This is essentially the same as ``a / b`` except that an error will be
raised if the division is inexact (if there is any remainder) and the
result will always be a domain element. When working in a
:py:class:`~.Domain` that is not a :py:class:`~.Field` (e.g. :ref:`ZZ`
or :ref:`K[x]`) ``exquo`` should be used instead of ``/``.
The key invariant is that if ``q = K.exquo(a, b)`` (and ``exquo`` does
not raise an exception) then ``a == b*q``.
Examples
========
We can use ``K.exquo`` instead of ``/`` for exact division.
>>> from sympy import ZZ
>>> ZZ.exquo(ZZ(4), ZZ(2))
2
>>> ZZ.exquo(ZZ(5), ZZ(2))
Traceback (most recent call last):
...
ExactQuotientFailed: 2 does not divide 5 in ZZ
Over a :py:class:`~.Field` such as :ref:`QQ`, division (with nonzero
divisor) is always exact so in that case ``/`` can be used instead of
:py:meth:`~.Domain.exquo`.
>>> from sympy import QQ
>>> QQ.exquo(QQ(5), QQ(2))
5/2
>>> QQ(5) / QQ(2)
5/2
Parameters
==========
a: domain element
The dividend
b: domain element
The divisor
Returns
=======
q: domain element
The exact quotient
Raises
======
ExactQuotientFailed: if exact division is not possible.
ZeroDivisionError: when the divisor is zero.
See also
========
quo: Analogue of ``a // b``
rem: Analogue of ``a % b``
div: Analogue of ``divmod(a, b)``
Notes
=====
Since the default :py:attr:`~.Domain.dtype` for :ref:`ZZ` is ``int``
(or ``mpz``) division as ``a / b`` should not be used as it would give
a ``float``.
>>> ZZ(4) / ZZ(2)
2.0
>>> ZZ(5) / ZZ(2)
2.5
Using ``/`` with :ref:`ZZ` will lead to incorrect results so
:py:meth:`~.Domain.exquo` should be used instead.
"""
raise NotImplementedError
def quo(self, a, b):
"""Quotient of *a* and *b*. Analogue of ``a // b``.
``K.quo(a, b)`` is equivalent to ``K.div(a, b)[0]``. See
:py:meth:`~.Domain.div` for more explanation.
See also
========
rem: Analogue of ``a % b``
div: Analogue of ``divmod(a, b)``
exquo: Analogue of ``a / b``
"""
raise NotImplementedError
def rem(self, a, b):
"""Modulo division of *a* and *b*. Analogue of ``a % b``.
``K.rem(a, b)`` is equivalent to ``K.div(a, b)[1]``. See
:py:meth:`~.Domain.div` for more explanation.
See also
========
quo: Analogue of ``a // b``
div: Analogue of ``divmod(a, b)``
exquo: Analogue of ``a / b``
"""
raise NotImplementedError
def div(self, a, b):
"""Quotient and remainder for *a* and *b*. Analogue of ``divmod(a, b)``
Explanation
===========
This is essentially the same as ``divmod(a, b)`` except that is more
consistent when working over some :py:class:`~.Field` domains such as
:ref:`QQ`. When working over an arbitrary :py:class:`~.Domain` the
:py:meth:`~.Domain.div` method should be used instead of ``divmod``.
The key invariant is that if ``q, r = K.div(a, b)`` then
``a == b*q + r``.
The result of ``K.div(a, b)`` is the same as the tuple
``(K.quo(a, b), K.rem(a, b))`` except that if both quotient and
remainder are needed then it is more efficient to use
:py:meth:`~.Domain.div`.
Examples
========
We can use ``K.div`` instead of ``divmod`` for floor division and
remainder.
>>> from sympy import ZZ, QQ
>>> ZZ.div(ZZ(5), ZZ(2))
(2, 1)
If ``K`` is a :py:class:`~.Field` then the division is always exact
with a remainder of :py:attr:`~.Domain.zero`.
>>> QQ.div(QQ(5), QQ(2))
(5/2, 0)
Parameters
==========
a: domain element
The dividend
b: domain element
The divisor
Returns
=======
(q, r): tuple of domain elements
The quotient and remainder
Raises
======
ZeroDivisionError: when the divisor is zero.
See also
========
quo: Analogue of ``a // b``
rem: Analogue of ``a % b``
exquo: Analogue of ``a / b``
Notes
=====
If ``gmpy`` is installed then the ``gmpy.mpq`` type will be used as
the :py:attr:`~.Domain.dtype` for :ref:`QQ`. The ``gmpy.mpq`` type
defines ``divmod`` in a way that is undesirable so
:py:meth:`~.Domain.div` should be used instead of ``divmod``.
>>> a = QQ(1)
>>> b = QQ(3, 2)
>>> a # doctest: +SKIP
mpq(1,1)
>>> b # doctest: +SKIP
mpq(3,2)
>>> divmod(a, b) # doctest: +SKIP
(mpz(0), mpq(1,1))
>>> QQ.div(a, b) # doctest: +SKIP
(mpq(2,3), mpq(0,1))
Using ``//`` or ``%`` with :ref:`QQ` will lead to incorrect results so
:py:meth:`~.Domain.div` should be used instead.
"""
raise NotImplementedError
def invert(self, a, b):
"""Returns inversion of ``a mod b``, implies something. """
raise NotImplementedError
def revert(self, a):
"""Returns ``a**(-1)`` if possible. """
raise NotImplementedError
def numer(self, a):
"""Returns numerator of ``a``. """
raise NotImplementedError
def denom(self, a):
"""Returns denominator of ``a``. """
raise NotImplementedError
def half_gcdex(self, a, b):
"""Half extended GCD of ``a`` and ``b``. """
s, t, h = self.gcdex(a, b)
return s, h
def gcdex(self, a, b):
"""Extended GCD of ``a`` and ``b``. """
raise NotImplementedError
def cofactors(self, a, b):
"""Returns GCD and cofactors of ``a`` and ``b``. """
gcd = self.gcd(a, b)
cfa = self.quo(a, gcd)
cfb = self.quo(b, gcd)
return gcd, cfa, cfb
def gcd(self, a, b):
"""Returns GCD of ``a`` and ``b``. """
raise NotImplementedError
def lcm(self, a, b):
"""Returns LCM of ``a`` and ``b``. """
raise NotImplementedError
def log(self, a, b):
"""Returns b-base logarithm of ``a``. """
raise NotImplementedError
def sqrt(self, a):
"""Returns square root of ``a``. """
raise NotImplementedError
def evalf(self, a, prec=None, **options):
"""Returns numerical approximation of ``a``. """
return self.to_sympy(a).evalf(prec, **options)
n = evalf
def real(self, a):
return a
def imag(self, a):
return self.zero
def almosteq(self, a, b, tolerance=None):
"""Check if ``a`` and ``b`` are almost equal. """
return a == b
def characteristic(self):
"""Return the characteristic of this domain. """
raise NotImplementedError('characteristic()')
__all__ = ['Domain']
|
4825227222f5d171868f116e33aba5cc0e3ad17014551ca45b71cb6fc44db1cd | from sympy.polys.domains import QQ, EX, RR
from sympy.polys.rings import ring
from sympy.polys.ring_series import (_invert_monoms, rs_integrate,
rs_trunc, rs_mul, rs_square, rs_pow, _has_constant_term, rs_hadamard_exp,
rs_series_from_list, rs_exp, rs_log, rs_newton, rs_series_inversion,
rs_compose_add, rs_asin, rs_atan, rs_atanh, rs_tan, rs_cot, rs_sin, rs_cos,
rs_cos_sin, rs_sinh, rs_cosh, rs_tanh, _tan1, rs_fun, rs_nth_root,
rs_LambertW, rs_series_reversion, rs_is_puiseux, rs_series)
from sympy.testing.pytest import raises, slow
from sympy.core.symbol import symbols
from sympy.functions import (sin, cos, exp, tan, cot, atan, atanh,
tanh, log, sqrt)
from sympy.core.numbers import Rational
from sympy.core import expand, S
def is_close(a, b):
tol = 10**(-10)
assert abs(a - b) < tol
def test_ring_series1():
R, x = ring('x', QQ)
p = x**4 + 2*x**3 + 3*x + 4
assert _invert_monoms(p) == 4*x**4 + 3*x**3 + 2*x + 1
assert rs_hadamard_exp(p) == x**4/24 + x**3/3 + 3*x + 4
R, x = ring('x', QQ)
p = x**4 + 2*x**3 + 3*x + 4
assert rs_integrate(p, x) == x**5/5 + x**4/2 + 3*x**2/2 + 4*x
R, x, y = ring('x, y', QQ)
p = x**2*y**2 + x + 1
assert rs_integrate(p, x) == x**3*y**2/3 + x**2/2 + x
assert rs_integrate(p, y) == x**2*y**3/3 + x*y + y
def test_trunc():
R, x, y, t = ring('x, y, t', QQ)
p = (y + t*x)**4
p1 = rs_trunc(p, x, 3)
assert p1 == y**4 + 4*y**3*t*x + 6*y**2*t**2*x**2
def test_mul_trunc():
R, x, y, t = ring('x, y, t', QQ)
p = 1 + t*x + t*y
for i in range(2):
p = rs_mul(p, p, t, 3)
assert p == 6*x**2*t**2 + 12*x*y*t**2 + 6*y**2*t**2 + 4*x*t + 4*y*t + 1
p = 1 + t*x + t*y + t**2*x*y
p1 = rs_mul(p, p, t, 2)
assert p1 == 1 + 2*t*x + 2*t*y
R1, z = ring('z', QQ)
raises(ValueError, lambda: rs_mul(p, z, x, 2))
p1 = 2 + 2*x + 3*x**2
p2 = 3 + x**2
assert rs_mul(p1, p2, x, 4) == 2*x**3 + 11*x**2 + 6*x + 6
def test_square_trunc():
R, x, y, t = ring('x, y, t', QQ)
p = (1 + t*x + t*y)*2
p1 = rs_mul(p, p, x, 3)
p2 = rs_square(p, x, 3)
assert p1 == p2
p = 1 + x + x**2 + x**3
assert rs_square(p, x, 4) == 4*x**3 + 3*x**2 + 2*x + 1
def test_pow_trunc():
R, x, y, z = ring('x, y, z', QQ)
p0 = y + x*z
p = p0**16
for xx in (x, y, z):
p1 = rs_trunc(p, xx, 8)
p2 = rs_pow(p0, 16, xx, 8)
assert p1 == p2
p = 1 + x
p1 = rs_pow(p, 3, x, 2)
assert p1 == 1 + 3*x
assert rs_pow(p, 0, x, 2) == 1
assert rs_pow(p, -2, x, 2) == 1 - 2*x
p = x + y
assert rs_pow(p, 3, y, 3) == x**3 + 3*x**2*y + 3*x*y**2
assert rs_pow(1 + x, Rational(2, 3), x, 4) == 4*x**3/81 - x**2/9 + x*Rational(2, 3) + 1
def test_has_constant_term():
R, x, y, z = ring('x, y, z', QQ)
p = y + x*z
assert _has_constant_term(p, x)
p = x + x**4
assert not _has_constant_term(p, x)
p = 1 + x + x**4
assert _has_constant_term(p, x)
p = x + y + x*z
def test_inversion():
R, x = ring('x', QQ)
p = 2 + x + 2*x**2
n = 5
p1 = rs_series_inversion(p, x, n)
assert rs_trunc(p*p1, x, n) == 1
R, x, y = ring('x, y', QQ)
p = 2 + x + 2*x**2 + y*x + x**2*y
p1 = rs_series_inversion(p, x, n)
assert rs_trunc(p*p1, x, n) == 1
R, x, y = ring('x, y', QQ)
p = 1 + x + y
raises(NotImplementedError, lambda: rs_series_inversion(p, x, 4))
p = R.zero
raises(ZeroDivisionError, lambda: rs_series_inversion(p, x, 3))
def test_series_reversion():
R, x, y = ring('x, y', QQ)
p = rs_tan(x, x, 10)
assert rs_series_reversion(p, x, 8, y) == rs_atan(y, y, 8)
p = rs_sin(x, x, 10)
assert rs_series_reversion(p, x, 8, y) == 5*y**7/112 + 3*y**5/40 + \
y**3/6 + y
def test_series_from_list():
R, x = ring('x', QQ)
p = 1 + 2*x + x**2 + 3*x**3
c = [1, 2, 0, 4, 4]
r = rs_series_from_list(p, c, x, 5)
pc = R.from_list(list(reversed(c)))
r1 = rs_trunc(pc.compose(x, p), x, 5)
assert r == r1
R, x, y = ring('x, y', QQ)
c = [1, 3, 5, 7]
p1 = rs_series_from_list(x + y, c, x, 3, concur=0)
p2 = rs_trunc((1 + 3*(x+y) + 5*(x+y)**2 + 7*(x+y)**3), x, 3)
assert p1 == p2
R, x = ring('x', QQ)
h = 25
p = rs_exp(x, x, h) - 1
p1 = rs_series_from_list(p, c, x, h)
p2 = 0
for i, cx in enumerate(c):
p2 += cx*rs_pow(p, i, x, h)
assert p1 == p2
def test_log():
R, x = ring('x', QQ)
p = 1 + x
p1 = rs_log(p, x, 4)/x**2
assert p1 == Rational(1, 3)*x - S.Half + x**(-1)
p = 1 + x +2*x**2/3
p1 = rs_log(p, x, 9)
assert p1 == -17*x**8/648 + 13*x**7/189 - 11*x**6/162 - x**5/45 + \
7*x**4/36 - x**3/3 + x**2/6 + x
p2 = rs_series_inversion(p, x, 9)
p3 = rs_log(p2, x, 9)
assert p3 == -p1
R, x, y = ring('x, y', QQ)
p = 1 + x + 2*y*x**2
p1 = rs_log(p, x, 6)
assert p1 == (4*x**5*y**2 - 2*x**5*y - 2*x**4*y**2 + x**5/5 + 2*x**4*y -
x**4/4 - 2*x**3*y + x**3/3 + 2*x**2*y - x**2/2 + x)
# Constant term in series
a = symbols('a')
R, x, y = ring('x, y', EX)
assert rs_log(x + a, x, 5) == -EX(1/(4*a**4))*x**4 + EX(1/(3*a**3))*x**3 \
- EX(1/(2*a**2))*x**2 + EX(1/a)*x + EX(log(a))
assert rs_log(x + x**2*y + a, x, 4) == -EX(a**(-2))*x**3*y + \
EX(1/(3*a**3))*x**3 + EX(1/a)*x**2*y - EX(1/(2*a**2))*x**2 + \
EX(1/a)*x + EX(log(a))
p = x + x**2 + 3
assert rs_log(p, x, 10).compose(x, 5) == EX(log(3) + Rational(19281291595, 9920232))
def test_exp():
R, x = ring('x', QQ)
p = x + x**4
for h in [10, 30]:
q = rs_series_inversion(1 + p, x, h) - 1
p1 = rs_exp(q, x, h)
q1 = rs_log(p1, x, h)
assert q1 == q
p1 = rs_exp(p, x, 30)
assert p1.coeff(x**29) == QQ(74274246775059676726972369, 353670479749588078181744640000)
prec = 21
p = rs_log(1 + x, x, prec)
p1 = rs_exp(p, x, prec)
assert p1 == x + 1
# Constant term in series
a = symbols('a')
R, x, y = ring('x, y', QQ[exp(a), a])
assert rs_exp(x + a, x, 5) == exp(a)*x**4/24 + exp(a)*x**3/6 + \
exp(a)*x**2/2 + exp(a)*x + exp(a)
assert rs_exp(x + x**2*y + a, x, 5) == exp(a)*x**4*y**2/2 + \
exp(a)*x**4*y/2 + exp(a)*x**4/24 + exp(a)*x**3*y + \
exp(a)*x**3/6 + exp(a)*x**2*y + exp(a)*x**2/2 + exp(a)*x + exp(a)
R, x, y = ring('x, y', EX)
assert rs_exp(x + a, x, 5) == EX(exp(a)/24)*x**4 + EX(exp(a)/6)*x**3 + \
EX(exp(a)/2)*x**2 + EX(exp(a))*x + EX(exp(a))
assert rs_exp(x + x**2*y + a, x, 5) == EX(exp(a)/2)*x**4*y**2 + \
EX(exp(a)/2)*x**4*y + EX(exp(a)/24)*x**4 + EX(exp(a))*x**3*y + \
EX(exp(a)/6)*x**3 + EX(exp(a))*x**2*y + EX(exp(a)/2)*x**2 + \
EX(exp(a))*x + EX(exp(a))
def test_newton():
R, x = ring('x', QQ)
p = x**2 - 2
r = rs_newton(p, x, 4)
assert r == 8*x**4 + 4*x**2 + 2
def test_compose_add():
R, x = ring('x', QQ)
p1 = x**3 - 1
p2 = x**2 - 2
assert rs_compose_add(p1, p2) == x**6 - 6*x**4 - 2*x**3 + 12*x**2 - 12*x - 7
def test_fun():
R, x, y = ring('x, y', QQ)
p = x*y + x**2*y**3 + x**5*y
assert rs_fun(p, rs_tan, x, 10) == rs_tan(p, x, 10)
assert rs_fun(p, _tan1, x, 10) == _tan1(p, x, 10)
def test_nth_root():
R, x, y = ring('x, y', QQ)
assert rs_nth_root(1 + x**2*y, 4, x, 10) == -77*x**8*y**4/2048 + \
7*x**6*y**3/128 - 3*x**4*y**2/32 + x**2*y/4 + 1
assert rs_nth_root(1 + x*y + x**2*y**3, 3, x, 5) == -x**4*y**6/9 + \
5*x**4*y**5/27 - 10*x**4*y**4/243 - 2*x**3*y**4/9 + 5*x**3*y**3/81 + \
x**2*y**3/3 - x**2*y**2/9 + x*y/3 + 1
assert rs_nth_root(8*x, 3, x, 3) == 2*x**QQ(1, 3)
assert rs_nth_root(8*x + x**2 + x**3, 3, x, 3) == x**QQ(4,3)/12 + 2*x**QQ(1,3)
r = rs_nth_root(8*x + x**2*y + x**3, 3, x, 4)
assert r == -x**QQ(7,3)*y**2/288 + x**QQ(7,3)/12 + x**QQ(4,3)*y/12 + 2*x**QQ(1,3)
# Constant term in series
a = symbols('a')
R, x, y = ring('x, y', EX)
assert rs_nth_root(x + a, 3, x, 4) == EX(5/(81*a**QQ(8, 3)))*x**3 - \
EX(1/(9*a**QQ(5, 3)))*x**2 + EX(1/(3*a**QQ(2, 3)))*x + EX(a**QQ(1, 3))
assert rs_nth_root(x**QQ(2, 3) + x**2*y + 5, 2, x, 3) == -EX(sqrt(5)/100)*\
x**QQ(8, 3)*y - EX(sqrt(5)/16000)*x**QQ(8, 3) + EX(sqrt(5)/10)*x**2*y + \
EX(sqrt(5)/2000)*x**2 - EX(sqrt(5)/200)*x**QQ(4, 3) + \
EX(sqrt(5)/10)*x**QQ(2, 3) + EX(sqrt(5))
def test_atan():
R, x, y = ring('x, y', QQ)
assert rs_atan(x, x, 9) == -x**7/7 + x**5/5 - x**3/3 + x
assert rs_atan(x*y + x**2*y**3, x, 9) == 2*x**8*y**11 - x**8*y**9 + \
2*x**7*y**9 - x**7*y**7/7 - x**6*y**9/3 + x**6*y**7 - x**5*y**7 + \
x**5*y**5/5 - x**4*y**5 - x**3*y**3/3 + x**2*y**3 + x*y
# Constant term in series
a = symbols('a')
R, x, y = ring('x, y', EX)
assert rs_atan(x + a, x, 5) == -EX((a**3 - a)/(a**8 + 4*a**6 + 6*a**4 + \
4*a**2 + 1))*x**4 + EX((3*a**2 - 1)/(3*a**6 + 9*a**4 + \
9*a**2 + 3))*x**3 - EX(a/(a**4 + 2*a**2 + 1))*x**2 + \
EX(1/(a**2 + 1))*x + EX(atan(a))
assert rs_atan(x + x**2*y + a, x, 4) == -EX(2*a/(a**4 + 2*a**2 + 1)) \
*x**3*y + EX((3*a**2 - 1)/(3*a**6 + 9*a**4 + 9*a**2 + 3))*x**3 + \
EX(1/(a**2 + 1))*x**2*y - EX(a/(a**4 + 2*a**2 + 1))*x**2 + EX(1/(a**2 \
+ 1))*x + EX(atan(a))
def test_asin():
R, x, y = ring('x, y', QQ)
assert rs_asin(x + x*y, x, 5) == x**3*y**3/6 + x**3*y**2/2 + x**3*y/2 + \
x**3/6 + x*y + x
assert rs_asin(x*y + x**2*y**3, x, 6) == x**5*y**7/2 + 3*x**5*y**5/40 + \
x**4*y**5/2 + x**3*y**3/6 + x**2*y**3 + x*y
def test_tan():
R, x, y = ring('x, y', QQ)
assert rs_tan(x, x, 9)/x**5 == \
Rational(17, 315)*x**2 + Rational(2, 15) + Rational(1, 3)*x**(-2) + x**(-4)
assert rs_tan(x*y + x**2*y**3, x, 9) == 4*x**8*y**11/3 + 17*x**8*y**9/45 + \
4*x**7*y**9/3 + 17*x**7*y**7/315 + x**6*y**9/3 + 2*x**6*y**7/3 + \
x**5*y**7 + 2*x**5*y**5/15 + x**4*y**5 + x**3*y**3/3 + x**2*y**3 + x*y
# Constant term in series
a = symbols('a')
R, x, y = ring('x, y', QQ[tan(a), a])
assert rs_tan(x + a, x, 5) == (tan(a)**5 + 5*tan(a)**3/3 +
2*tan(a)/3)*x**4 + (tan(a)**4 + 4*tan(a)**2/3 + Rational(1, 3))*x**3 + \
(tan(a)**3 + tan(a))*x**2 + (tan(a)**2 + 1)*x + tan(a)
assert rs_tan(x + x**2*y + a, x, 4) == (2*tan(a)**3 + 2*tan(a))*x**3*y + \
(tan(a)**4 + Rational(4, 3)*tan(a)**2 + Rational(1, 3))*x**3 + (tan(a)**2 + 1)*x**2*y + \
(tan(a)**3 + tan(a))*x**2 + (tan(a)**2 + 1)*x + tan(a)
R, x, y = ring('x, y', EX)
assert rs_tan(x + a, x, 5) == EX(tan(a)**5 + 5*tan(a)**3/3 +
2*tan(a)/3)*x**4 + EX(tan(a)**4 + 4*tan(a)**2/3 + EX(1)/3)*x**3 + \
EX(tan(a)**3 + tan(a))*x**2 + EX(tan(a)**2 + 1)*x + EX(tan(a))
assert rs_tan(x + x**2*y + a, x, 4) == EX(2*tan(a)**3 +
2*tan(a))*x**3*y + EX(tan(a)**4 + 4*tan(a)**2/3 + EX(1)/3)*x**3 + \
EX(tan(a)**2 + 1)*x**2*y + EX(tan(a)**3 + tan(a))*x**2 + \
EX(tan(a)**2 + 1)*x + EX(tan(a))
p = x + x**2 + 5
assert rs_atan(p, x, 10).compose(x, 10) == EX(atan(5) + S(67701870330562640) / \
668083460499)
def test_cot():
R, x, y = ring('x, y', QQ)
assert rs_cot(x**6 + x**7, x, 8) == x**(-6) - x**(-5) + x**(-4) - \
x**(-3) + x**(-2) - x**(-1) + 1 - x + x**2 - x**3 + x**4 - x**5 + \
2*x**6/3 - 4*x**7/3
assert rs_cot(x + x**2*y, x, 5) == -x**4*y**5 - x**4*y/15 + x**3*y**4 - \
x**3/45 - x**2*y**3 - x**2*y/3 + x*y**2 - x/3 - y + x**(-1)
def test_sin():
R, x, y = ring('x, y', QQ)
assert rs_sin(x, x, 9)/x**5 == \
Rational(-1, 5040)*x**2 + Rational(1, 120) - Rational(1, 6)*x**(-2) + x**(-4)
assert rs_sin(x*y + x**2*y**3, x, 9) == x**8*y**11/12 - \
x**8*y**9/720 + x**7*y**9/12 - x**7*y**7/5040 - x**6*y**9/6 + \
x**6*y**7/24 - x**5*y**7/2 + x**5*y**5/120 - x**4*y**5/2 - \
x**3*y**3/6 + x**2*y**3 + x*y
# Constant term in series
a = symbols('a')
R, x, y = ring('x, y', QQ[sin(a), cos(a), a])
assert rs_sin(x + a, x, 5) == sin(a)*x**4/24 - cos(a)*x**3/6 - \
sin(a)*x**2/2 + cos(a)*x + sin(a)
assert rs_sin(x + x**2*y + a, x, 5) == -sin(a)*x**4*y**2/2 - \
cos(a)*x**4*y/2 + sin(a)*x**4/24 - sin(a)*x**3*y - cos(a)*x**3/6 + \
cos(a)*x**2*y - sin(a)*x**2/2 + cos(a)*x + sin(a)
R, x, y = ring('x, y', EX)
assert rs_sin(x + a, x, 5) == EX(sin(a)/24)*x**4 - EX(cos(a)/6)*x**3 - \
EX(sin(a)/2)*x**2 + EX(cos(a))*x + EX(sin(a))
assert rs_sin(x + x**2*y + a, x, 5) == -EX(sin(a)/2)*x**4*y**2 - \
EX(cos(a)/2)*x**4*y + EX(sin(a)/24)*x**4 - EX(sin(a))*x**3*y - \
EX(cos(a)/6)*x**3 + EX(cos(a))*x**2*y - EX(sin(a)/2)*x**2 + \
EX(cos(a))*x + EX(sin(a))
def test_cos():
R, x, y = ring('x, y', QQ)
assert rs_cos(x, x, 9)/x**5 == \
Rational(1, 40320)*x**3 - Rational(1, 720)*x + Rational(1, 24)*x**(-1) - S.Half*x**(-3) + x**(-5)
assert rs_cos(x*y + x**2*y**3, x, 9) == x**8*y**12/24 - \
x**8*y**10/48 + x**8*y**8/40320 + x**7*y**10/6 - \
x**7*y**8/120 + x**6*y**8/4 - x**6*y**6/720 + x**5*y**6/6 - \
x**4*y**6/2 + x**4*y**4/24 - x**3*y**4 - x**2*y**2/2 + 1
# Constant term in series
a = symbols('a')
R, x, y = ring('x, y', QQ[sin(a), cos(a), a])
assert rs_cos(x + a, x, 5) == cos(a)*x**4/24 + sin(a)*x**3/6 - \
cos(a)*x**2/2 - sin(a)*x + cos(a)
assert rs_cos(x + x**2*y + a, x, 5) == -cos(a)*x**4*y**2/2 + \
sin(a)*x**4*y/2 + cos(a)*x**4/24 - cos(a)*x**3*y + sin(a)*x**3/6 - \
sin(a)*x**2*y - cos(a)*x**2/2 - sin(a)*x + cos(a)
R, x, y = ring('x, y', EX)
assert rs_cos(x + a, x, 5) == EX(cos(a)/24)*x**4 + EX(sin(a)/6)*x**3 - \
EX(cos(a)/2)*x**2 - EX(sin(a))*x + EX(cos(a))
assert rs_cos(x + x**2*y + a, x, 5) == -EX(cos(a)/2)*x**4*y**2 + \
EX(sin(a)/2)*x**4*y + EX(cos(a)/24)*x**4 - EX(cos(a))*x**3*y + \
EX(sin(a)/6)*x**3 - EX(sin(a))*x**2*y - EX(cos(a)/2)*x**2 - \
EX(sin(a))*x + EX(cos(a))
def test_cos_sin():
R, x, y = ring('x, y', QQ)
cos, sin = rs_cos_sin(x, x, 9)
assert cos == rs_cos(x, x, 9)
assert sin == rs_sin(x, x, 9)
cos, sin = rs_cos_sin(x + x*y, x, 5)
assert cos == rs_cos(x + x*y, x, 5)
assert sin == rs_sin(x + x*y, x, 5)
def test_atanh():
R, x, y = ring('x, y', QQ)
assert rs_atanh(x, x, 9)/x**5 == Rational(1, 7)*x**2 + Rational(1, 5) + Rational(1, 3)*x**(-2) + x**(-4)
assert rs_atanh(x*y + x**2*y**3, x, 9) == 2*x**8*y**11 + x**8*y**9 + \
2*x**7*y**9 + x**7*y**7/7 + x**6*y**9/3 + x**6*y**7 + x**5*y**7 + \
x**5*y**5/5 + x**4*y**5 + x**3*y**3/3 + x**2*y**3 + x*y
# Constant term in series
a = symbols('a')
R, x, y = ring('x, y', EX)
assert rs_atanh(x + a, x, 5) == EX((a**3 + a)/(a**8 - 4*a**6 + 6*a**4 - \
4*a**2 + 1))*x**4 - EX((3*a**2 + 1)/(3*a**6 - 9*a**4 + \
9*a**2 - 3))*x**3 + EX(a/(a**4 - 2*a**2 + 1))*x**2 - EX(1/(a**2 - \
1))*x + EX(atanh(a))
assert rs_atanh(x + x**2*y + a, x, 4) == EX(2*a/(a**4 - 2*a**2 + \
1))*x**3*y - EX((3*a**2 + 1)/(3*a**6 - 9*a**4 + 9*a**2 - 3))*x**3 - \
EX(1/(a**2 - 1))*x**2*y + EX(a/(a**4 - 2*a**2 + 1))*x**2 - \
EX(1/(a**2 - 1))*x + EX(atanh(a))
p = x + x**2 + 5
assert rs_atanh(p, x, 10).compose(x, 10) == EX(Rational(-733442653682135, 5079158784) \
+ atanh(5))
def test_sinh():
R, x, y = ring('x, y', QQ)
assert rs_sinh(x, x, 9)/x**5 == Rational(1, 5040)*x**2 + Rational(1, 120) + Rational(1, 6)*x**(-2) + x**(-4)
assert rs_sinh(x*y + x**2*y**3, x, 9) == x**8*y**11/12 + \
x**8*y**9/720 + x**7*y**9/12 + x**7*y**7/5040 + x**6*y**9/6 + \
x**6*y**7/24 + x**5*y**7/2 + x**5*y**5/120 + x**4*y**5/2 + \
x**3*y**3/6 + x**2*y**3 + x*y
def test_cosh():
R, x, y = ring('x, y', QQ)
assert rs_cosh(x, x, 9)/x**5 == Rational(1, 40320)*x**3 + Rational(1, 720)*x + Rational(1, 24)*x**(-1) + \
S.Half*x**(-3) + x**(-5)
assert rs_cosh(x*y + x**2*y**3, x, 9) == x**8*y**12/24 + \
x**8*y**10/48 + x**8*y**8/40320 + x**7*y**10/6 + \
x**7*y**8/120 + x**6*y**8/4 + x**6*y**6/720 + x**5*y**6/6 + \
x**4*y**6/2 + x**4*y**4/24 + x**3*y**4 + x**2*y**2/2 + 1
def test_tanh():
R, x, y = ring('x, y', QQ)
assert rs_tanh(x, x, 9)/x**5 == Rational(-17, 315)*x**2 + Rational(2, 15) - Rational(1, 3)*x**(-2) + x**(-4)
assert rs_tanh(x*y + x**2*y**3, x, 9) == 4*x**8*y**11/3 - \
17*x**8*y**9/45 + 4*x**7*y**9/3 - 17*x**7*y**7/315 - x**6*y**9/3 + \
2*x**6*y**7/3 - x**5*y**7 + 2*x**5*y**5/15 - x**4*y**5 - \
x**3*y**3/3 + x**2*y**3 + x*y
# Constant term in series
a = symbols('a')
R, x, y = ring('x, y', EX)
assert rs_tanh(x + a, x, 5) == EX(tanh(a)**5 - 5*tanh(a)**3/3 +
2*tanh(a)/3)*x**4 + EX(-tanh(a)**4 + 4*tanh(a)**2/3 - QQ(1, 3))*x**3 + \
EX(tanh(a)**3 - tanh(a))*x**2 + EX(-tanh(a)**2 + 1)*x + EX(tanh(a))
p = rs_tanh(x + x**2*y + a, x, 4)
assert (p.compose(x, 10)).compose(y, 5) == EX(-1000*tanh(a)**4 + \
10100*tanh(a)**3 + 2470*tanh(a)**2/3 - 10099*tanh(a) + QQ(530, 3))
def test_RR():
rs_funcs = [rs_sin, rs_cos, rs_tan, rs_cot, rs_atan, rs_tanh]
sympy_funcs = [sin, cos, tan, cot, atan, tanh]
R, x, y = ring('x, y', RR)
a = symbols('a')
for rs_func, sympy_func in zip(rs_funcs, sympy_funcs):
p = rs_func(2 + x, x, 5).compose(x, 5)
q = sympy_func(2 + a).series(a, 0, 5).removeO()
is_close(p.as_expr(), q.subs(a, 5).n())
p = rs_nth_root(2 + x, 5, x, 5).compose(x, 5)
q = ((2 + a)**QQ(1, 5)).series(a, 0, 5).removeO()
is_close(p.as_expr(), q.subs(a, 5).n())
def test_is_regular():
R, x, y = ring('x, y', QQ)
p = 1 + 2*x + x**2 + 3*x**3
assert not rs_is_puiseux(p, x)
p = x + x**QQ(1,5)*y
assert rs_is_puiseux(p, x)
assert not rs_is_puiseux(p, y)
p = x + x**2*y**QQ(1,5)*y
assert not rs_is_puiseux(p, x)
def test_puiseux():
R, x, y = ring('x, y', QQ)
p = x**QQ(2,5) + x**QQ(2,3) + x
r = rs_series_inversion(p, x, 1)
r1 = -x**QQ(14,15) + x**QQ(4,5) - 3*x**QQ(11,15) + x**QQ(2,3) + \
2*x**QQ(7,15) - x**QQ(2,5) - x**QQ(1,5) + x**QQ(2,15) - x**QQ(-2,15) \
+ x**QQ(-2,5)
assert r == r1
r = rs_nth_root(1 + p, 3, x, 1)
assert r == -x**QQ(4,5)/9 + x**QQ(2,3)/3 + x**QQ(2,5)/3 + 1
r = rs_log(1 + p, x, 1)
assert r == -x**QQ(4,5)/2 + x**QQ(2,3) + x**QQ(2,5)
r = rs_LambertW(p, x, 1)
assert r == -x**QQ(4,5) + x**QQ(2,3) + x**QQ(2,5)
p1 = x + x**QQ(1,5)*y
r = rs_exp(p1, x, 1)
assert r == x**QQ(4,5)*y**4/24 + x**QQ(3,5)*y**3/6 + x**QQ(2,5)*y**2/2 + \
x**QQ(1,5)*y + 1
r = rs_atan(p, x, 2)
assert r == -x**QQ(9,5) - x**QQ(26,15) - x**QQ(22,15) - x**QQ(6,5)/3 + \
x + x**QQ(2,3) + x**QQ(2,5)
r = rs_atan(p1, x, 2)
assert r == x**QQ(9,5)*y**9/9 + x**QQ(9,5)*y**4 - x**QQ(7,5)*y**7/7 - \
x**QQ(7,5)*y**2 + x*y**5/5 + x - x**QQ(3,5)*y**3/3 + x**QQ(1,5)*y
r = rs_asin(p, x, 2)
assert r == x**QQ(9,5)/2 + x**QQ(26,15)/2 + x**QQ(22,15)/2 + \
x**QQ(6,5)/6 + x + x**QQ(2,3) + x**QQ(2,5)
r = rs_cot(p, x, 1)
assert r == -x**QQ(14,15) + x**QQ(4,5) - 3*x**QQ(11,15) + \
2*x**QQ(2,3)/3 + 2*x**QQ(7,15) - 4*x**QQ(2,5)/3 - x**QQ(1,5) + \
x**QQ(2,15) - x**QQ(-2,15) + x**QQ(-2,5)
r = rs_cos_sin(p, x, 2)
assert r[0] == x**QQ(28,15)/6 - x**QQ(5,3) + x**QQ(8,5)/24 - x**QQ(7,5) - \
x**QQ(4,3)/2 - x**QQ(16,15) - x**QQ(4,5)/2 + 1
assert r[1] == -x**QQ(9,5)/2 - x**QQ(26,15)/2 - x**QQ(22,15)/2 - \
x**QQ(6,5)/6 + x + x**QQ(2,3) + x**QQ(2,5)
r = rs_atanh(p, x, 2)
assert r == x**QQ(9,5) + x**QQ(26,15) + x**QQ(22,15) + x**QQ(6,5)/3 + x + \
x**QQ(2,3) + x**QQ(2,5)
r = rs_sinh(p, x, 2)
assert r == x**QQ(9,5)/2 + x**QQ(26,15)/2 + x**QQ(22,15)/2 + \
x**QQ(6,5)/6 + x + x**QQ(2,3) + x**QQ(2,5)
r = rs_cosh(p, x, 2)
assert r == x**QQ(28,15)/6 + x**QQ(5,3) + x**QQ(8,5)/24 + x**QQ(7,5) + \
x**QQ(4,3)/2 + x**QQ(16,15) + x**QQ(4,5)/2 + 1
r = rs_tanh(p, x, 2)
assert r == -x**QQ(9,5) - x**QQ(26,15) - x**QQ(22,15) - x**QQ(6,5)/3 + \
x + x**QQ(2,3) + x**QQ(2,5)
def test_puiseux_algebraic(): # https://github.com/sympy/sympy/issues/24395
K = QQ.algebraic_field(sqrt(2))
sqrt2 = K.from_sympy(sqrt(2))
x, y = symbols('x, y')
R, xr, yr = ring([x, y], K)
p = (1+sqrt2)*xr**QQ(1,2) + (1-sqrt2)*yr**QQ(2,3)
assert dict(p) == {(QQ(1,2),QQ(0)):1+sqrt2, (QQ(0),QQ(2,3)):1-sqrt2}
assert p.as_expr() == (1 + sqrt(2))*x**(S(1)/2) + (1 - sqrt(2))*y**(S(2)/3)
def test1():
R, x = ring('x', QQ)
r = rs_sin(x, x, 15)*x**(-5)
assert r == x**8/6227020800 - x**6/39916800 + x**4/362880 - x**2/5040 + \
QQ(1,120) - x**-2/6 + x**-4
p = rs_sin(x, x, 10)
r = rs_nth_root(p, 2, x, 10)
assert r == -67*x**QQ(17,2)/29030400 - x**QQ(13,2)/24192 + \
x**QQ(9,2)/1440 - x**QQ(5,2)/12 + x**QQ(1,2)
p = rs_sin(x, x, 10)
r = rs_nth_root(p, 7, x, 10)
r = rs_pow(r, 5, x, 10)
assert r == -97*x**QQ(61,7)/124467840 - x**QQ(47,7)/16464 + \
11*x**QQ(33,7)/3528 - 5*x**QQ(19,7)/42 + x**QQ(5,7)
r = rs_exp(x**QQ(1,2), x, 10)
assert r == x**QQ(19,2)/121645100408832000 + x**9/6402373705728000 + \
x**QQ(17,2)/355687428096000 + x**8/20922789888000 + \
x**QQ(15,2)/1307674368000 + x**7/87178291200 + \
x**QQ(13,2)/6227020800 + x**6/479001600 + x**QQ(11,2)/39916800 + \
x**5/3628800 + x**QQ(9,2)/362880 + x**4/40320 + x**QQ(7,2)/5040 + \
x**3/720 + x**QQ(5,2)/120 + x**2/24 + x**QQ(3,2)/6 + x/2 + \
x**QQ(1,2) + 1
def test_puiseux2():
R, y = ring('y', QQ)
S, x = ring('x', R)
p = x + x**QQ(1,5)*y
r = rs_atan(p, x, 3)
assert r == (y**13/13 + y**8 + 2*y**3)*x**QQ(13,5) - (y**11/11 + y**6 +
y)*x**QQ(11,5) + (y**9/9 + y**4)*x**QQ(9,5) - (y**7/7 +
y**2)*x**QQ(7,5) + (y**5/5 + 1)*x - y**3*x**QQ(3,5)/3 + y*x**QQ(1,5)
@slow
def test_rs_series():
x, a, b, c = symbols('x, a, b, c')
assert rs_series(a, a, 5).as_expr() == a
assert rs_series(sin(a), a, 5).as_expr() == (sin(a).series(a, 0,
5)).removeO()
assert rs_series(sin(a) + cos(a), a, 5).as_expr() == ((sin(a) +
cos(a)).series(a, 0, 5)).removeO()
assert rs_series(sin(a)*cos(a), a, 5).as_expr() == ((sin(a)*
cos(a)).series(a, 0, 5)).removeO()
p = (sin(a) - a)*(cos(a**2) + a**4/2)
assert expand(rs_series(p, a, 10).as_expr()) == expand(p.series(a, 0,
10).removeO())
p = sin(a**2/2 + a/3) + cos(a/5)*sin(a/2)**3
assert expand(rs_series(p, a, 5).as_expr()) == expand(p.series(a, 0,
5).removeO())
p = sin(x**2 + a)*(cos(x**3 - 1) - a - a**2)
assert expand(rs_series(p, a, 5).as_expr()) == expand(p.series(a, 0,
5).removeO())
p = sin(a**2 - a/3 + 2)**5*exp(a**3 - a/2)
assert expand(rs_series(p, a, 10).as_expr()) == expand(p.series(a, 0,
10).removeO())
p = sin(a + b + c)
assert expand(rs_series(p, a, 5).as_expr()) == expand(p.series(a, 0,
5).removeO())
p = tan(sin(a**2 + 4) + b + c)
assert expand(rs_series(p, a, 6).as_expr()) == expand(p.series(a, 0,
6).removeO())
p = a**QQ(2,5) + a**QQ(2,3) + a
r = rs_series(tan(p), a, 2)
assert r.as_expr() == a**QQ(9,5) + a**QQ(26,15) + a**QQ(22,15) + a**QQ(6,5)/3 + \
a + a**QQ(2,3) + a**QQ(2,5)
r = rs_series(exp(p), a, 1)
assert r.as_expr() == a**QQ(4,5)/2 + a**QQ(2,3) + a**QQ(2,5) + 1
r = rs_series(sin(p), a, 2)
assert r.as_expr() == -a**QQ(9,5)/2 - a**QQ(26,15)/2 - a**QQ(22,15)/2 - \
a**QQ(6,5)/6 + a + a**QQ(2,3) + a**QQ(2,5)
r = rs_series(cos(p), a, 2)
assert r.as_expr() == a**QQ(28,15)/6 - a**QQ(5,3) + a**QQ(8,5)/24 - a**QQ(7,5) - \
a**QQ(4,3)/2 - a**QQ(16,15) - a**QQ(4,5)/2 + 1
assert rs_series(sin(a)/7, a, 5).as_expr() == (sin(a)/7).series(a, 0,
5).removeO()
assert rs_series(log(1 + x), x, 5).as_expr() == -x**4/4 + x**3/3 - \
x**2/2 + x
assert rs_series(log(1 + 4*x), x, 5).as_expr() == -64*x**4 + 64*x**3/3 - \
8*x**2 + 4*x
assert rs_series(log(1 + x + x**2), x, 10).as_expr() == -2*x**9/9 + \
x**8/8 + x**7/7 - x**6/3 + x**5/5 + x**4/4 - 2*x**3/3 + \
x**2/2 + x
assert rs_series(log(1 + x*a**2), x, 7).as_expr() == -x**6*a**12/6 + \
x**5*a**10/5 - x**4*a**8/4 + x**3*a**6/3 - \
x**2*a**4/2 + x*a**2
|
d72adc23436a3d455261352ed7498199bbba90147fe07b4329b85c8fc554f5b2 | """Test sparse polynomials. """
from functools import reduce
from operator import add, mul
from sympy.polys.rings import ring, xring, sring, PolyRing, PolyElement
from sympy.polys.fields import field, FracField
from sympy.polys.domains import ZZ, QQ, RR, FF, EX
from sympy.polys.orderings import lex, grlex
from sympy.polys.polyerrors import GeneratorsError, \
ExactQuotientFailed, MultivariatePolynomialError, CoercionFailed
from sympy.testing.pytest import raises
from sympy.core import Symbol, symbols
from sympy.core.numbers import (oo, pi)
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.miscellaneous import sqrt
def test_PolyRing___init__():
x, y, z, t = map(Symbol, "xyzt")
assert len(PolyRing("x,y,z", ZZ, lex).gens) == 3
assert len(PolyRing(x, ZZ, lex).gens) == 1
assert len(PolyRing(("x", "y", "z"), ZZ, lex).gens) == 3
assert len(PolyRing((x, y, z), ZZ, lex).gens) == 3
assert len(PolyRing("", ZZ, lex).gens) == 0
assert len(PolyRing([], ZZ, lex).gens) == 0
raises(GeneratorsError, lambda: PolyRing(0, ZZ, lex))
assert PolyRing("x", ZZ[t], lex).domain == ZZ[t]
assert PolyRing("x", 'ZZ[t]', lex).domain == ZZ[t]
assert PolyRing("x", PolyRing("t", ZZ, lex), lex).domain == ZZ[t]
raises(GeneratorsError, lambda: PolyRing("x", PolyRing("x", ZZ, lex), lex))
_lex = Symbol("lex")
assert PolyRing("x", ZZ, lex).order == lex
assert PolyRing("x", ZZ, _lex).order == lex
assert PolyRing("x", ZZ, 'lex').order == lex
R1 = PolyRing("x,y", ZZ, lex)
R2 = PolyRing("x,y", ZZ, lex)
R3 = PolyRing("x,y,z", ZZ, lex)
assert R1.x == R1.gens[0]
assert R1.y == R1.gens[1]
assert R1.x == R2.x
assert R1.y == R2.y
assert R1.x != R3.x
assert R1.y != R3.y
def test_PolyRing___hash__():
R, x, y, z = ring("x,y,z", QQ)
assert hash(R)
def test_PolyRing___eq__():
assert ring("x,y,z", QQ)[0] == ring("x,y,z", QQ)[0]
assert ring("x,y,z", QQ)[0] is ring("x,y,z", QQ)[0]
assert ring("x,y,z", QQ)[0] != ring("x,y,z", ZZ)[0]
assert ring("x,y,z", QQ)[0] is not ring("x,y,z", ZZ)[0]
assert ring("x,y,z", ZZ)[0] != ring("x,y,z", QQ)[0]
assert ring("x,y,z", ZZ)[0] is not ring("x,y,z", QQ)[0]
assert ring("x,y,z", QQ)[0] != ring("x,y", QQ)[0]
assert ring("x,y,z", QQ)[0] is not ring("x,y", QQ)[0]
assert ring("x,y", QQ)[0] != ring("x,y,z", QQ)[0]
assert ring("x,y", QQ)[0] is not ring("x,y,z", QQ)[0]
def test_PolyRing_ring_new():
R, x, y, z = ring("x,y,z", QQ)
assert R.ring_new(7) == R(7)
assert R.ring_new(7*x*y*z) == 7*x*y*z
f = x**2 + 2*x*y + 3*x + 4*z**2 + 5*z + 6
assert R.ring_new([[[1]], [[2], [3]], [[4, 5, 6]]]) == f
assert R.ring_new({(2, 0, 0): 1, (1, 1, 0): 2, (1, 0, 0): 3, (0, 0, 2): 4, (0, 0, 1): 5, (0, 0, 0): 6}) == f
assert R.ring_new([((2, 0, 0), 1), ((1, 1, 0), 2), ((1, 0, 0), 3), ((0, 0, 2), 4), ((0, 0, 1), 5), ((0, 0, 0), 6)]) == f
R, = ring("", QQ)
assert R.ring_new([((), 7)]) == R(7)
def test_PolyRing_drop():
R, x,y,z = ring("x,y,z", ZZ)
assert R.drop(x) == PolyRing("y,z", ZZ, lex)
assert R.drop(y) == PolyRing("x,z", ZZ, lex)
assert R.drop(z) == PolyRing("x,y", ZZ, lex)
assert R.drop(0) == PolyRing("y,z", ZZ, lex)
assert R.drop(0).drop(0) == PolyRing("z", ZZ, lex)
assert R.drop(0).drop(0).drop(0) == ZZ
assert R.drop(1) == PolyRing("x,z", ZZ, lex)
assert R.drop(2) == PolyRing("x,y", ZZ, lex)
assert R.drop(2).drop(1) == PolyRing("x", ZZ, lex)
assert R.drop(2).drop(1).drop(0) == ZZ
raises(ValueError, lambda: R.drop(3))
raises(ValueError, lambda: R.drop(x).drop(y))
def test_PolyRing___getitem__():
R, x,y,z = ring("x,y,z", ZZ)
assert R[0:] == PolyRing("x,y,z", ZZ, lex)
assert R[1:] == PolyRing("y,z", ZZ, lex)
assert R[2:] == PolyRing("z", ZZ, lex)
assert R[3:] == ZZ
def test_PolyRing_is_():
R = PolyRing("x", QQ, lex)
assert R.is_univariate is True
assert R.is_multivariate is False
R = PolyRing("x,y,z", QQ, lex)
assert R.is_univariate is False
assert R.is_multivariate is True
R = PolyRing("", QQ, lex)
assert R.is_univariate is False
assert R.is_multivariate is False
def test_PolyRing_add():
R, x = ring("x", ZZ)
F = [ x**2 + 2*i + 3 for i in range(4) ]
assert R.add(F) == reduce(add, F) == 4*x**2 + 24
R, = ring("", ZZ)
assert R.add([2, 5, 7]) == 14
def test_PolyRing_mul():
R, x = ring("x", ZZ)
F = [ x**2 + 2*i + 3 for i in range(4) ]
assert R.mul(F) == reduce(mul, F) == x**8 + 24*x**6 + 206*x**4 + 744*x**2 + 945
R, = ring("", ZZ)
assert R.mul([2, 3, 5]) == 30
def test_sring():
x, y, z, t = symbols("x,y,z,t")
R = PolyRing("x,y,z", ZZ, lex)
assert sring(x + 2*y + 3*z) == (R, R.x + 2*R.y + 3*R.z)
R = PolyRing("x,y,z", QQ, lex)
assert sring(x + 2*y + z/3) == (R, R.x + 2*R.y + R.z/3)
assert sring([x, 2*y, z/3]) == (R, [R.x, 2*R.y, R.z/3])
Rt = PolyRing("t", ZZ, lex)
R = PolyRing("x,y,z", Rt, lex)
assert sring(x + 2*t*y + 3*t**2*z, x, y, z) == (R, R.x + 2*Rt.t*R.y + 3*Rt.t**2*R.z)
Rt = PolyRing("t", QQ, lex)
R = PolyRing("x,y,z", Rt, lex)
assert sring(x + t*y/2 + t**2*z/3, x, y, z) == (R, R.x + Rt.t*R.y/2 + Rt.t**2*R.z/3)
Rt = FracField("t", ZZ, lex)
R = PolyRing("x,y,z", Rt, lex)
assert sring(x + 2*y/t + t**2*z/3, x, y, z) == (R, R.x + 2*R.y/Rt.t + Rt.t**2*R.z/3)
r = sqrt(2) - sqrt(3)
R, a = sring(r, extension=True)
assert R.domain == QQ.algebraic_field(sqrt(2) + sqrt(3))
assert R.gens == ()
assert a == R.domain.from_sympy(r)
def test_PolyElement___hash__():
R, x, y, z = ring("x,y,z", QQ)
assert hash(x*y*z)
def test_PolyElement___eq__():
R, x, y = ring("x,y", ZZ, lex)
assert ((x*y + 5*x*y) == 6) == False
assert ((x*y + 5*x*y) == 6*x*y) == True
assert (6 == (x*y + 5*x*y)) == False
assert (6*x*y == (x*y + 5*x*y)) == True
assert ((x*y - x*y) == 0) == True
assert (0 == (x*y - x*y)) == True
assert ((x*y - x*y) == 1) == False
assert (1 == (x*y - x*y)) == False
assert ((x*y - x*y) == 1) == False
assert (1 == (x*y - x*y)) == False
assert ((x*y + 5*x*y) != 6) == True
assert ((x*y + 5*x*y) != 6*x*y) == False
assert (6 != (x*y + 5*x*y)) == True
assert (6*x*y != (x*y + 5*x*y)) == False
assert ((x*y - x*y) != 0) == False
assert (0 != (x*y - x*y)) == False
assert ((x*y - x*y) != 1) == True
assert (1 != (x*y - x*y)) == True
assert R.one == QQ(1, 1) == R.one
assert R.one == 1 == R.one
Rt, t = ring("t", ZZ)
R, x, y = ring("x,y", Rt)
assert (t**3*x/x == t**3) == True
assert (t**3*x/x == t**4) == False
def test_PolyElement__lt_le_gt_ge__():
R, x, y = ring("x,y", ZZ)
assert R(1) < x < x**2 < x**3
assert R(1) <= x <= x**2 <= x**3
assert x**3 > x**2 > x > R(1)
assert x**3 >= x**2 >= x >= R(1)
def test_PolyElement__str__():
x, y = symbols('x, y')
for dom in [ZZ, QQ, ZZ[x], ZZ[x,y], ZZ[x][y]]:
R, t = ring('t', dom)
assert str(2*t**2 + 1) == '2*t**2 + 1'
for dom in [EX, EX[x]]:
R, t = ring('t', dom)
assert str(2*t**2 + 1) == 'EX(2)*t**2 + EX(1)'
def test_PolyElement_copy():
R, x, y, z = ring("x,y,z", ZZ)
f = x*y + 3*z
g = f.copy()
assert f == g
g[(1, 1, 1)] = 7
assert f != g
def test_PolyElement_as_expr():
R, x, y, z = ring("x,y,z", ZZ)
f = 3*x**2*y - x*y*z + 7*z**3 + 1
X, Y, Z = R.symbols
g = 3*X**2*Y - X*Y*Z + 7*Z**3 + 1
assert f != g
assert f.as_expr() == g
X, Y, Z = symbols("x,y,z")
g = 3*X**2*Y - X*Y*Z + 7*Z**3 + 1
assert f != g
assert f.as_expr(X, Y, Z) == g
raises(ValueError, lambda: f.as_expr(X))
R, = ring("", ZZ)
assert R(3).as_expr() == 3
def test_PolyElement_from_expr():
x, y, z = symbols("x,y,z")
R, X, Y, Z = ring((x, y, z), ZZ)
f = R.from_expr(1)
assert f == 1 and isinstance(f, R.dtype)
f = R.from_expr(x)
assert f == X and isinstance(f, R.dtype)
f = R.from_expr(x*y*z)
assert f == X*Y*Z and isinstance(f, R.dtype)
f = R.from_expr(x*y*z + x*y + x)
assert f == X*Y*Z + X*Y + X and isinstance(f, R.dtype)
f = R.from_expr(x**3*y*z + x**2*y**7 + 1)
assert f == X**3*Y*Z + X**2*Y**7 + 1 and isinstance(f, R.dtype)
r, F = sring([exp(2)])
f = r.from_expr(exp(2))
assert f == F[0] and isinstance(f, r.dtype)
raises(ValueError, lambda: R.from_expr(1/x))
raises(ValueError, lambda: R.from_expr(2**x))
raises(ValueError, lambda: R.from_expr(7*x + sqrt(2)))
R, = ring("", ZZ)
f = R.from_expr(1)
assert f == 1 and isinstance(f, R.dtype)
def test_PolyElement_degree():
R, x,y,z = ring("x,y,z", ZZ)
assert R(0).degree() is -oo
assert R(1).degree() == 0
assert (x + 1).degree() == 1
assert (2*y**3 + z).degree() == 0
assert (x*y**3 + z).degree() == 1
assert (x**5*y**3 + z).degree() == 5
assert R(0).degree(x) is -oo
assert R(1).degree(x) == 0
assert (x + 1).degree(x) == 1
assert (2*y**3 + z).degree(x) == 0
assert (x*y**3 + z).degree(x) == 1
assert (7*x**5*y**3 + z).degree(x) == 5
assert R(0).degree(y) is -oo
assert R(1).degree(y) == 0
assert (x + 1).degree(y) == 0
assert (2*y**3 + z).degree(y) == 3
assert (x*y**3 + z).degree(y) == 3
assert (7*x**5*y**3 + z).degree(y) == 3
assert R(0).degree(z) is -oo
assert R(1).degree(z) == 0
assert (x + 1).degree(z) == 0
assert (2*y**3 + z).degree(z) == 1
assert (x*y**3 + z).degree(z) == 1
assert (7*x**5*y**3 + z).degree(z) == 1
R, = ring("", ZZ)
assert R(0).degree() is -oo
assert R(1).degree() == 0
def test_PolyElement_tail_degree():
R, x,y,z = ring("x,y,z", ZZ)
assert R(0).tail_degree() is -oo
assert R(1).tail_degree() == 0
assert (x + 1).tail_degree() == 0
assert (2*y**3 + x**3*z).tail_degree() == 0
assert (x*y**3 + x**3*z).tail_degree() == 1
assert (x**5*y**3 + x**3*z).tail_degree() == 3
assert R(0).tail_degree(x) is -oo
assert R(1).tail_degree(x) == 0
assert (x + 1).tail_degree(x) == 0
assert (2*y**3 + x**3*z).tail_degree(x) == 0
assert (x*y**3 + x**3*z).tail_degree(x) == 1
assert (7*x**5*y**3 + x**3*z).tail_degree(x) == 3
assert R(0).tail_degree(y) is -oo
assert R(1).tail_degree(y) == 0
assert (x + 1).tail_degree(y) == 0
assert (2*y**3 + x**3*z).tail_degree(y) == 0
assert (x*y**3 + x**3*z).tail_degree(y) == 0
assert (7*x**5*y**3 + x**3*z).tail_degree(y) == 0
assert R(0).tail_degree(z) is -oo
assert R(1).tail_degree(z) == 0
assert (x + 1).tail_degree(z) == 0
assert (2*y**3 + x**3*z).tail_degree(z) == 0
assert (x*y**3 + x**3*z).tail_degree(z) == 0
assert (7*x**5*y**3 + x**3*z).tail_degree(z) == 0
R, = ring("", ZZ)
assert R(0).tail_degree() is -oo
assert R(1).tail_degree() == 0
def test_PolyElement_degrees():
R, x,y,z = ring("x,y,z", ZZ)
assert R(0).degrees() == (-oo, -oo, -oo)
assert R(1).degrees() == (0, 0, 0)
assert (x**2*y + x**3*z**2).degrees() == (3, 1, 2)
def test_PolyElement_tail_degrees():
R, x,y,z = ring("x,y,z", ZZ)
assert R(0).tail_degrees() == (-oo, -oo, -oo)
assert R(1).tail_degrees() == (0, 0, 0)
assert (x**2*y + x**3*z**2).tail_degrees() == (2, 0, 0)
def test_PolyElement_coeff():
R, x, y, z = ring("x,y,z", ZZ, lex)
f = 3*x**2*y - x*y*z + 7*z**3 + 23
assert f.coeff(1) == 23
raises(ValueError, lambda: f.coeff(3))
assert f.coeff(x) == 0
assert f.coeff(y) == 0
assert f.coeff(z) == 0
assert f.coeff(x**2*y) == 3
assert f.coeff(x*y*z) == -1
assert f.coeff(z**3) == 7
raises(ValueError, lambda: f.coeff(3*x**2*y))
raises(ValueError, lambda: f.coeff(-x*y*z))
raises(ValueError, lambda: f.coeff(7*z**3))
R, = ring("", ZZ)
assert R(3).coeff(1) == 3
def test_PolyElement_LC():
R, x, y = ring("x,y", QQ, lex)
assert R(0).LC == QQ(0)
assert (QQ(1,2)*x).LC == QQ(1, 2)
assert (QQ(1,4)*x*y + QQ(1,2)*x).LC == QQ(1, 4)
def test_PolyElement_LM():
R, x, y = ring("x,y", QQ, lex)
assert R(0).LM == (0, 0)
assert (QQ(1,2)*x).LM == (1, 0)
assert (QQ(1,4)*x*y + QQ(1,2)*x).LM == (1, 1)
def test_PolyElement_LT():
R, x, y = ring("x,y", QQ, lex)
assert R(0).LT == ((0, 0), QQ(0))
assert (QQ(1,2)*x).LT == ((1, 0), QQ(1, 2))
assert (QQ(1,4)*x*y + QQ(1,2)*x).LT == ((1, 1), QQ(1, 4))
R, = ring("", ZZ)
assert R(0).LT == ((), 0)
assert R(1).LT == ((), 1)
def test_PolyElement_leading_monom():
R, x, y = ring("x,y", QQ, lex)
assert R(0).leading_monom() == 0
assert (QQ(1,2)*x).leading_monom() == x
assert (QQ(1,4)*x*y + QQ(1,2)*x).leading_monom() == x*y
def test_PolyElement_leading_term():
R, x, y = ring("x,y", QQ, lex)
assert R(0).leading_term() == 0
assert (QQ(1,2)*x).leading_term() == QQ(1,2)*x
assert (QQ(1,4)*x*y + QQ(1,2)*x).leading_term() == QQ(1,4)*x*y
def test_PolyElement_terms():
R, x,y,z = ring("x,y,z", QQ)
terms = (x**2/3 + y**3/4 + z**4/5).terms()
assert terms == [((2,0,0), QQ(1,3)), ((0,3,0), QQ(1,4)), ((0,0,4), QQ(1,5))]
R, x,y = ring("x,y", ZZ, lex)
f = x*y**7 + 2*x**2*y**3
assert f.terms() == f.terms(lex) == f.terms('lex') == [((2, 3), 2), ((1, 7), 1)]
assert f.terms(grlex) == f.terms('grlex') == [((1, 7), 1), ((2, 3), 2)]
R, x,y = ring("x,y", ZZ, grlex)
f = x*y**7 + 2*x**2*y**3
assert f.terms() == f.terms(grlex) == f.terms('grlex') == [((1, 7), 1), ((2, 3), 2)]
assert f.terms(lex) == f.terms('lex') == [((2, 3), 2), ((1, 7), 1)]
R, = ring("", ZZ)
assert R(3).terms() == [((), 3)]
def test_PolyElement_monoms():
R, x,y,z = ring("x,y,z", QQ)
monoms = (x**2/3 + y**3/4 + z**4/5).monoms()
assert monoms == [(2,0,0), (0,3,0), (0,0,4)]
R, x,y = ring("x,y", ZZ, lex)
f = x*y**7 + 2*x**2*y**3
assert f.monoms() == f.monoms(lex) == f.monoms('lex') == [(2, 3), (1, 7)]
assert f.monoms(grlex) == f.monoms('grlex') == [(1, 7), (2, 3)]
R, x,y = ring("x,y", ZZ, grlex)
f = x*y**7 + 2*x**2*y**3
assert f.monoms() == f.monoms(grlex) == f.monoms('grlex') == [(1, 7), (2, 3)]
assert f.monoms(lex) == f.monoms('lex') == [(2, 3), (1, 7)]
def test_PolyElement_coeffs():
R, x,y,z = ring("x,y,z", QQ)
coeffs = (x**2/3 + y**3/4 + z**4/5).coeffs()
assert coeffs == [QQ(1,3), QQ(1,4), QQ(1,5)]
R, x,y = ring("x,y", ZZ, lex)
f = x*y**7 + 2*x**2*y**3
assert f.coeffs() == f.coeffs(lex) == f.coeffs('lex') == [2, 1]
assert f.coeffs(grlex) == f.coeffs('grlex') == [1, 2]
R, x,y = ring("x,y", ZZ, grlex)
f = x*y**7 + 2*x**2*y**3
assert f.coeffs() == f.coeffs(grlex) == f.coeffs('grlex') == [1, 2]
assert f.coeffs(lex) == f.coeffs('lex') == [2, 1]
def test_PolyElement___add__():
Rt, t = ring("t", ZZ)
Ruv, u,v = ring("u,v", ZZ)
Rxyz, x,y,z = ring("x,y,z", Ruv)
assert dict(x + 3*y) == {(1, 0, 0): 1, (0, 1, 0): 3}
assert dict(u + x) == dict(x + u) == {(1, 0, 0): 1, (0, 0, 0): u}
assert dict(u + x*y) == dict(x*y + u) == {(1, 1, 0): 1, (0, 0, 0): u}
assert dict(u + x*y + z) == dict(x*y + z + u) == {(1, 1, 0): 1, (0, 0, 1): 1, (0, 0, 0): u}
assert dict(u*x + x) == dict(x + u*x) == {(1, 0, 0): u + 1}
assert dict(u*x + x*y) == dict(x*y + u*x) == {(1, 1, 0): 1, (1, 0, 0): u}
assert dict(u*x + x*y + z) == dict(x*y + z + u*x) == {(1, 1, 0): 1, (0, 0, 1): 1, (1, 0, 0): u}
raises(TypeError, lambda: t + x)
raises(TypeError, lambda: x + t)
raises(TypeError, lambda: t + u)
raises(TypeError, lambda: u + t)
Fuv, u,v = field("u,v", ZZ)
Rxyz, x,y,z = ring("x,y,z", Fuv)
assert dict(u + x) == dict(x + u) == {(1, 0, 0): 1, (0, 0, 0): u}
Rxyz, x,y,z = ring("x,y,z", EX)
assert dict(EX(pi) + x*y*z) == dict(x*y*z + EX(pi)) == {(1, 1, 1): EX(1), (0, 0, 0): EX(pi)}
def test_PolyElement___sub__():
Rt, t = ring("t", ZZ)
Ruv, u,v = ring("u,v", ZZ)
Rxyz, x,y,z = ring("x,y,z", Ruv)
assert dict(x - 3*y) == {(1, 0, 0): 1, (0, 1, 0): -3}
assert dict(-u + x) == dict(x - u) == {(1, 0, 0): 1, (0, 0, 0): -u}
assert dict(-u + x*y) == dict(x*y - u) == {(1, 1, 0): 1, (0, 0, 0): -u}
assert dict(-u + x*y + z) == dict(x*y + z - u) == {(1, 1, 0): 1, (0, 0, 1): 1, (0, 0, 0): -u}
assert dict(-u*x + x) == dict(x - u*x) == {(1, 0, 0): -u + 1}
assert dict(-u*x + x*y) == dict(x*y - u*x) == {(1, 1, 0): 1, (1, 0, 0): -u}
assert dict(-u*x + x*y + z) == dict(x*y + z - u*x) == {(1, 1, 0): 1, (0, 0, 1): 1, (1, 0, 0): -u}
raises(TypeError, lambda: t - x)
raises(TypeError, lambda: x - t)
raises(TypeError, lambda: t - u)
raises(TypeError, lambda: u - t)
Fuv, u,v = field("u,v", ZZ)
Rxyz, x,y,z = ring("x,y,z", Fuv)
assert dict(-u + x) == dict(x - u) == {(1, 0, 0): 1, (0, 0, 0): -u}
Rxyz, x,y,z = ring("x,y,z", EX)
assert dict(-EX(pi) + x*y*z) == dict(x*y*z - EX(pi)) == {(1, 1, 1): EX(1), (0, 0, 0): -EX(pi)}
def test_PolyElement___mul__():
Rt, t = ring("t", ZZ)
Ruv, u,v = ring("u,v", ZZ)
Rxyz, x,y,z = ring("x,y,z", Ruv)
assert dict(u*x) == dict(x*u) == {(1, 0, 0): u}
assert dict(2*u*x + z) == dict(x*2*u + z) == {(1, 0, 0): 2*u, (0, 0, 1): 1}
assert dict(u*2*x + z) == dict(2*x*u + z) == {(1, 0, 0): 2*u, (0, 0, 1): 1}
assert dict(2*u*x + z) == dict(x*2*u + z) == {(1, 0, 0): 2*u, (0, 0, 1): 1}
assert dict(u*x*2 + z) == dict(x*u*2 + z) == {(1, 0, 0): 2*u, (0, 0, 1): 1}
assert dict(2*u*x*y + z) == dict(x*y*2*u + z) == {(1, 1, 0): 2*u, (0, 0, 1): 1}
assert dict(u*2*x*y + z) == dict(2*x*y*u + z) == {(1, 1, 0): 2*u, (0, 0, 1): 1}
assert dict(2*u*x*y + z) == dict(x*y*2*u + z) == {(1, 1, 0): 2*u, (0, 0, 1): 1}
assert dict(u*x*y*2 + z) == dict(x*y*u*2 + z) == {(1, 1, 0): 2*u, (0, 0, 1): 1}
assert dict(2*u*y*x + z) == dict(y*x*2*u + z) == {(1, 1, 0): 2*u, (0, 0, 1): 1}
assert dict(u*2*y*x + z) == dict(2*y*x*u + z) == {(1, 1, 0): 2*u, (0, 0, 1): 1}
assert dict(2*u*y*x + z) == dict(y*x*2*u + z) == {(1, 1, 0): 2*u, (0, 0, 1): 1}
assert dict(u*y*x*2 + z) == dict(y*x*u*2 + z) == {(1, 1, 0): 2*u, (0, 0, 1): 1}
assert dict(3*u*(x + y) + z) == dict((x + y)*3*u + z) == {(1, 0, 0): 3*u, (0, 1, 0): 3*u, (0, 0, 1): 1}
raises(TypeError, lambda: t*x + z)
raises(TypeError, lambda: x*t + z)
raises(TypeError, lambda: t*u + z)
raises(TypeError, lambda: u*t + z)
Fuv, u,v = field("u,v", ZZ)
Rxyz, x,y,z = ring("x,y,z", Fuv)
assert dict(u*x) == dict(x*u) == {(1, 0, 0): u}
Rxyz, x,y,z = ring("x,y,z", EX)
assert dict(EX(pi)*x*y*z) == dict(x*y*z*EX(pi)) == {(1, 1, 1): EX(pi)}
def test_PolyElement___truediv__():
R, x,y,z = ring("x,y,z", ZZ)
assert (2*x**2 - 4)/2 == x**2 - 2
assert (2*x**2 - 3)/2 == x**2
assert (x**2 - 1).quo(x) == x
assert (x**2 - x).quo(x) == x - 1
assert (x**2 - 1)/x == x - x**(-1)
assert (x**2 - x)/x == x - 1
assert (x**2 - 1)/(2*x) == x/2 - x**(-1)/2
assert (x**2 - 1).quo(2*x) == 0
assert (x**2 - x)/(x - 1) == (x**2 - x).quo(x - 1) == x
R, x,y,z = ring("x,y,z", ZZ)
assert len((x**2/3 + y**3/4 + z**4/5).terms()) == 0
R, x,y,z = ring("x,y,z", QQ)
assert len((x**2/3 + y**3/4 + z**4/5).terms()) == 3
Rt, t = ring("t", ZZ)
Ruv, u,v = ring("u,v", ZZ)
Rxyz, x,y,z = ring("x,y,z", Ruv)
assert dict((u**2*x + u)/u) == {(1, 0, 0): u, (0, 0, 0): 1}
raises(TypeError, lambda: u/(u**2*x + u))
raises(TypeError, lambda: t/x)
raises(TypeError, lambda: x/t)
raises(TypeError, lambda: t/u)
raises(TypeError, lambda: u/t)
R, x = ring("x", ZZ)
f, g = x**2 + 2*x + 3, R(0)
raises(ZeroDivisionError, lambda: f.div(g))
raises(ZeroDivisionError, lambda: divmod(f, g))
raises(ZeroDivisionError, lambda: f.rem(g))
raises(ZeroDivisionError, lambda: f % g)
raises(ZeroDivisionError, lambda: f.quo(g))
raises(ZeroDivisionError, lambda: f / g)
raises(ZeroDivisionError, lambda: f.exquo(g))
R, x, y = ring("x,y", ZZ)
f, g = x*y + 2*x + 3, R(0)
raises(ZeroDivisionError, lambda: f.div(g))
raises(ZeroDivisionError, lambda: divmod(f, g))
raises(ZeroDivisionError, lambda: f.rem(g))
raises(ZeroDivisionError, lambda: f % g)
raises(ZeroDivisionError, lambda: f.quo(g))
raises(ZeroDivisionError, lambda: f / g)
raises(ZeroDivisionError, lambda: f.exquo(g))
R, x = ring("x", ZZ)
f, g = x**2 + 1, 2*x - 4
q, r = R(0), x**2 + 1
assert f.div(g) == divmod(f, g) == (q, r)
assert f.rem(g) == f % g == r
assert f.quo(g) == f / g == q
raises(ExactQuotientFailed, lambda: f.exquo(g))
f, g = 3*x**3 + x**2 + x + 5, 5*x**2 - 3*x + 1
q, r = R(0), f
assert f.div(g) == divmod(f, g) == (q, r)
assert f.rem(g) == f % g == r
assert f.quo(g) == f / g == q
raises(ExactQuotientFailed, lambda: f.exquo(g))
f, g = 5*x**4 + 4*x**3 + 3*x**2 + 2*x + 1, x**2 + 2*x + 3
q, r = 5*x**2 - 6*x, 20*x + 1
assert f.div(g) == divmod(f, g) == (q, r)
assert f.rem(g) == f % g == r
assert f.quo(g) == f / g == q
raises(ExactQuotientFailed, lambda: f.exquo(g))
f, g = 5*x**5 + 4*x**4 + 3*x**3 + 2*x**2 + x, x**4 + 2*x**3 + 9
q, r = 5*x - 6, 15*x**3 + 2*x**2 - 44*x + 54
assert f.div(g) == divmod(f, g) == (q, r)
assert f.rem(g) == f % g == r
assert f.quo(g) == f / g == q
raises(ExactQuotientFailed, lambda: f.exquo(g))
R, x = ring("x", QQ)
f, g = x**2 + 1, 2*x - 4
q, r = x/2 + 1, R(5)
assert f.div(g) == divmod(f, g) == (q, r)
assert f.rem(g) == f % g == r
assert f.quo(g) == f / g == q
raises(ExactQuotientFailed, lambda: f.exquo(g))
f, g = 3*x**3 + x**2 + x + 5, 5*x**2 - 3*x + 1
q, r = QQ(3, 5)*x + QQ(14, 25), QQ(52, 25)*x + QQ(111, 25)
assert f.div(g) == divmod(f, g) == (q, r)
assert f.rem(g) == f % g == r
assert f.quo(g) == f / g == q
raises(ExactQuotientFailed, lambda: f.exquo(g))
R, x,y = ring("x,y", ZZ)
f, g = x**2 - y**2, x - y
q, r = x + y, R(0)
assert f.div(g) == divmod(f, g) == (q, r)
assert f.rem(g) == f % g == r
assert f.quo(g) == f / g == q
assert f.exquo(g) == q
f, g = x**2 + y**2, x - y
q, r = x + y, 2*y**2
assert f.div(g) == divmod(f, g) == (q, r)
assert f.rem(g) == f % g == r
assert f.quo(g) == f / g == q
raises(ExactQuotientFailed, lambda: f.exquo(g))
f, g = x**2 + y**2, -x + y
q, r = -x - y, 2*y**2
assert f.div(g) == divmod(f, g) == (q, r)
assert f.rem(g) == f % g == r
assert f.quo(g) == f / g == q
raises(ExactQuotientFailed, lambda: f.exquo(g))
f, g = x**2 + y**2, 2*x - 2*y
q, r = R(0), f
assert f.div(g) == divmod(f, g) == (q, r)
assert f.rem(g) == f % g == r
assert f.quo(g) == f / g == q
raises(ExactQuotientFailed, lambda: f.exquo(g))
R, x,y = ring("x,y", QQ)
f, g = x**2 - y**2, x - y
q, r = x + y, R(0)
assert f.div(g) == divmod(f, g) == (q, r)
assert f.rem(g) == f % g == r
assert f.quo(g) == f / g == q
assert f.exquo(g) == q
f, g = x**2 + y**2, x - y
q, r = x + y, 2*y**2
assert f.div(g) == divmod(f, g) == (q, r)
assert f.rem(g) == f % g == r
assert f.quo(g) == f / g == q
raises(ExactQuotientFailed, lambda: f.exquo(g))
f, g = x**2 + y**2, -x + y
q, r = -x - y, 2*y**2
assert f.div(g) == divmod(f, g) == (q, r)
assert f.rem(g) == f % g == r
assert f.quo(g) == f / g == q
raises(ExactQuotientFailed, lambda: f.exquo(g))
f, g = x**2 + y**2, 2*x - 2*y
q, r = x/2 + y/2, 2*y**2
assert f.div(g) == divmod(f, g) == (q, r)
assert f.rem(g) == f % g == r
assert f.quo(g) == f / g == q
raises(ExactQuotientFailed, lambda: f.exquo(g))
def test_PolyElement___pow__():
R, x = ring("x", ZZ, grlex)
f = 2*x + 3
assert f**0 == 1
assert f**1 == f
raises(ValueError, lambda: f**(-1))
assert x**(-1) == x**(-1)
assert f**2 == f._pow_generic(2) == f._pow_multinomial(2) == 4*x**2 + 12*x + 9
assert f**3 == f._pow_generic(3) == f._pow_multinomial(3) == 8*x**3 + 36*x**2 + 54*x + 27
assert f**4 == f._pow_generic(4) == f._pow_multinomial(4) == 16*x**4 + 96*x**3 + 216*x**2 + 216*x + 81
assert f**5 == f._pow_generic(5) == f._pow_multinomial(5) == 32*x**5 + 240*x**4 + 720*x**3 + 1080*x**2 + 810*x + 243
R, x,y,z = ring("x,y,z", ZZ, grlex)
f = x**3*y - 2*x*y**2 - 3*z + 1
g = x**6*y**2 - 4*x**4*y**3 - 6*x**3*y*z + 2*x**3*y + 4*x**2*y**4 + 12*x*y**2*z - 4*x*y**2 + 9*z**2 - 6*z + 1
assert f**2 == f._pow_generic(2) == f._pow_multinomial(2) == g
R, t = ring("t", ZZ)
f = -11200*t**4 - 2604*t**2 + 49
g = 15735193600000000*t**16 + 14633730048000000*t**14 + 4828147466240000*t**12 \
+ 598976863027200*t**10 + 3130812416256*t**8 - 2620523775744*t**6 \
+ 92413760096*t**4 - 1225431984*t**2 + 5764801
assert f**4 == f._pow_generic(4) == f._pow_multinomial(4) == g
def test_PolyElement_div():
R, x = ring("x", ZZ, grlex)
f = x**3 - 12*x**2 - 42
g = x - 3
q = x**2 - 9*x - 27
r = -123
assert f.div([g]) == ([q], r)
R, x = ring("x", ZZ, grlex)
f = x**2 + 2*x + 2
assert f.div([R(1)]) == ([f], 0)
R, x = ring("x", QQ, grlex)
f = x**2 + 2*x + 2
assert f.div([R(2)]) == ([QQ(1,2)*x**2 + x + 1], 0)
R, x,y = ring("x,y", ZZ, grlex)
f = 4*x**2*y - 2*x*y + 4*x - 2*y + 8
assert f.div([R(2)]) == ([2*x**2*y - x*y + 2*x - y + 4], 0)
assert f.div([2*y]) == ([2*x**2 - x - 1], 4*x + 8)
f = x - 1
g = y - 1
assert f.div([g]) == ([0], f)
f = x*y**2 + 1
G = [x*y + 1, y + 1]
Q = [y, -1]
r = 2
assert f.div(G) == (Q, r)
f = x**2*y + x*y**2 + y**2
G = [x*y - 1, y**2 - 1]
Q = [x + y, 1]
r = x + y + 1
assert f.div(G) == (Q, r)
G = [y**2 - 1, x*y - 1]
Q = [x + 1, x]
r = 2*x + 1
assert f.div(G) == (Q, r)
R, = ring("", ZZ)
assert R(3).div(R(2)) == (0, 3)
R, = ring("", QQ)
assert R(3).div(R(2)) == (QQ(3, 2), 0)
def test_PolyElement_rem():
R, x = ring("x", ZZ, grlex)
f = x**3 - 12*x**2 - 42
g = x - 3
r = -123
assert f.rem([g]) == f.div([g])[1] == r
R, x,y = ring("x,y", ZZ, grlex)
f = 4*x**2*y - 2*x*y + 4*x - 2*y + 8
assert f.rem([R(2)]) == f.div([R(2)])[1] == 0
assert f.rem([2*y]) == f.div([2*y])[1] == 4*x + 8
f = x - 1
g = y - 1
assert f.rem([g]) == f.div([g])[1] == f
f = x*y**2 + 1
G = [x*y + 1, y + 1]
r = 2
assert f.rem(G) == f.div(G)[1] == r
f = x**2*y + x*y**2 + y**2
G = [x*y - 1, y**2 - 1]
r = x + y + 1
assert f.rem(G) == f.div(G)[1] == r
G = [y**2 - 1, x*y - 1]
r = 2*x + 1
assert f.rem(G) == f.div(G)[1] == r
def test_PolyElement_deflate():
R, x = ring("x", ZZ)
assert (2*x**2).deflate(x**4 + 4*x**2 + 1) == ((2,), [2*x, x**2 + 4*x + 1])
R, x,y = ring("x,y", ZZ)
assert R(0).deflate(R(0)) == ((1, 1), [0, 0])
assert R(1).deflate(R(0)) == ((1, 1), [1, 0])
assert R(1).deflate(R(2)) == ((1, 1), [1, 2])
assert R(1).deflate(2*y) == ((1, 1), [1, 2*y])
assert (2*y).deflate(2*y) == ((1, 1), [2*y, 2*y])
assert R(2).deflate(2*y**2) == ((1, 2), [2, 2*y])
assert (2*y**2).deflate(2*y**2) == ((1, 2), [2*y, 2*y])
f = x**4*y**2 + x**2*y + 1
g = x**2*y**3 + x**2*y + 1
assert f.deflate(g) == ((2, 1), [x**2*y**2 + x*y + 1, x*y**3 + x*y + 1])
def test_PolyElement_clear_denoms():
R, x,y = ring("x,y", QQ)
assert R(1).clear_denoms() == (ZZ(1), 1)
assert R(7).clear_denoms() == (ZZ(1), 7)
assert R(QQ(7,3)).clear_denoms() == (3, 7)
assert R(QQ(7,3)).clear_denoms() == (3, 7)
assert (3*x**2 + x).clear_denoms() == (1, 3*x**2 + x)
assert (x**2 + QQ(1,2)*x).clear_denoms() == (2, 2*x**2 + x)
rQQ, x,t = ring("x,t", QQ, lex)
rZZ, X,T = ring("x,t", ZZ, lex)
F = [x - QQ(17824537287975195925064602467992950991718052713078834557692023531499318507213727406844943097,413954288007559433755329699713866804710749652268151059918115348815925474842910720000)*t**7
- QQ(4882321164854282623427463828745855894130208215961904469205260756604820743234704900167747753,12936071500236232304854053116058337647210926633379720622441104650497671088840960000)*t**6
- QQ(36398103304520066098365558157422127347455927422509913596393052633155821154626830576085097433,25872143000472464609708106232116675294421853266759441244882209300995342177681920000)*t**5
- QQ(168108082231614049052707339295479262031324376786405372698857619250210703675982492356828810819,58212321751063045371843239022262519412449169850208742800984970927239519899784320000)*t**4
- QQ(5694176899498574510667890423110567593477487855183144378347226247962949388653159751849449037,1617008937529529038106756639507292205901365829172465077805138081312208886105120000)*t**3
- QQ(154482622347268833757819824809033388503591365487934245386958884099214649755244381307907779,60637835157357338929003373981523457721301218593967440417692678049207833228942000)*t**2
- QQ(2452813096069528207645703151222478123259511586701148682951852876484544822947007791153163,2425513406294293557160134959260938308852048743758697616707707121968313329157680)*t
- QQ(34305265428126440542854669008203683099323146152358231964773310260498715579162112959703,202126117191191129763344579938411525737670728646558134725642260164026110763140),
t**8 + QQ(693749860237914515552,67859264524169150569)*t**7
+ QQ(27761407182086143225024,610733380717522355121)*t**6
+ QQ(7785127652157884044288,67859264524169150569)*t**5
+ QQ(36567075214771261409792,203577793572507451707)*t**4
+ QQ(36336335165196147384320,203577793572507451707)*t**3
+ QQ(7452455676042754048000,67859264524169150569)*t**2
+ QQ(2593331082514399232000,67859264524169150569)*t
+ QQ(390399197427343360000,67859264524169150569)]
G = [3725588592068034903797967297424801242396746870413359539263038139343329273586196480000*X -
160420835591776763325581422211936558925462474417709511019228211783493866564923546661604487873*T**7 -
1406108495478033395547109582678806497509499966197028487131115097902188374051595011248311352864*T**6 -
5241326875850889518164640374668786338033653548841427557880599579174438246266263602956254030352*T**5 -
10758917262823299139373269714910672770004760114329943852726887632013485035262879510837043892416*T**4 -
13119383576444715672578819534846747735372132018341964647712009275306635391456880068261130581248*T**3 -
9491412317016197146080450036267011389660653495578680036574753839055748080962214787557853941760*T**2 -
3767520915562795326943800040277726397326609797172964377014046018280260848046603967211258368000*T -
632314652371226552085897259159210286886724229880266931574701654721512325555116066073245696000,
610733380717522355121*T**8 +
6243748742141230639968*T**7 +
27761407182086143225024*T**6 +
70066148869420956398592*T**5 +
109701225644313784229376*T**4 +
109009005495588442152960*T**3 +
67072101084384786432000*T**2 +
23339979742629593088000*T +
3513592776846090240000]
assert [ f.clear_denoms()[1].set_ring(rZZ) for f in F ] == G
def test_PolyElement_cofactors():
R, x, y = ring("x,y", ZZ)
f, g = R(0), R(0)
assert f.cofactors(g) == (0, 0, 0)
f, g = R(2), R(0)
assert f.cofactors(g) == (2, 1, 0)
f, g = R(-2), R(0)
assert f.cofactors(g) == (2, -1, 0)
f, g = R(0), R(-2)
assert f.cofactors(g) == (2, 0, -1)
f, g = R(0), 2*x + 4
assert f.cofactors(g) == (2*x + 4, 0, 1)
f, g = 2*x + 4, R(0)
assert f.cofactors(g) == (2*x + 4, 1, 0)
f, g = R(2), R(2)
assert f.cofactors(g) == (2, 1, 1)
f, g = R(-2), R(2)
assert f.cofactors(g) == (2, -1, 1)
f, g = R(2), R(-2)
assert f.cofactors(g) == (2, 1, -1)
f, g = R(-2), R(-2)
assert f.cofactors(g) == (2, -1, -1)
f, g = x**2 + 2*x + 1, R(1)
assert f.cofactors(g) == (1, x**2 + 2*x + 1, 1)
f, g = x**2 + 2*x + 1, R(2)
assert f.cofactors(g) == (1, x**2 + 2*x + 1, 2)
f, g = 2*x**2 + 4*x + 2, R(2)
assert f.cofactors(g) == (2, x**2 + 2*x + 1, 1)
f, g = R(2), 2*x**2 + 4*x + 2
assert f.cofactors(g) == (2, 1, x**2 + 2*x + 1)
f, g = 2*x**2 + 4*x + 2, x + 1
assert f.cofactors(g) == (x + 1, 2*x + 2, 1)
f, g = x + 1, 2*x**2 + 4*x + 2
assert f.cofactors(g) == (x + 1, 1, 2*x + 2)
R, x, y, z, t = ring("x,y,z,t", ZZ)
f, g = t**2 + 2*t + 1, 2*t + 2
assert f.cofactors(g) == (t + 1, t + 1, 2)
f, g = z**2*t**2 + 2*z**2*t + z**2 + z*t + z, t**2 + 2*t + 1
h, cff, cfg = t + 1, z**2*t + z**2 + z, t + 1
assert f.cofactors(g) == (h, cff, cfg)
assert g.cofactors(f) == (h, cfg, cff)
R, x, y = ring("x,y", QQ)
f = QQ(1,2)*x**2 + x + QQ(1,2)
g = QQ(1,2)*x + QQ(1,2)
h = x + 1
assert f.cofactors(g) == (h, g, QQ(1,2))
assert g.cofactors(f) == (h, QQ(1,2), g)
R, x, y = ring("x,y", RR)
f = 2.1*x*y**2 - 2.1*x*y + 2.1*x
g = 2.1*x**3
h = 1.0*x
assert f.cofactors(g) == (h, f/h, g/h)
assert g.cofactors(f) == (h, g/h, f/h)
def test_PolyElement_gcd():
R, x, y = ring("x,y", QQ)
f = QQ(1,2)*x**2 + x + QQ(1,2)
g = QQ(1,2)*x + QQ(1,2)
assert f.gcd(g) == x + 1
def test_PolyElement_cancel():
R, x, y = ring("x,y", ZZ)
f = 2*x**3 + 4*x**2 + 2*x
g = 3*x**2 + 3*x
F = 2*x + 2
G = 3
assert f.cancel(g) == (F, G)
assert (-f).cancel(g) == (-F, G)
assert f.cancel(-g) == (-F, G)
R, x, y = ring("x,y", QQ)
f = QQ(1,2)*x**3 + x**2 + QQ(1,2)*x
g = QQ(1,3)*x**2 + QQ(1,3)*x
F = 3*x + 3
G = 2
assert f.cancel(g) == (F, G)
assert (-f).cancel(g) == (-F, G)
assert f.cancel(-g) == (-F, G)
Fx, x = field("x", ZZ)
Rt, t = ring("t", Fx)
f = (-x**2 - 4)/4*t
g = t**2 + (x**2 + 2)/2
assert f.cancel(g) == ((-x**2 - 4)*t, 4*t**2 + 2*x**2 + 4)
def test_PolyElement_max_norm():
R, x, y = ring("x,y", ZZ)
assert R(0).max_norm() == 0
assert R(1).max_norm() == 1
assert (x**3 + 4*x**2 + 2*x + 3).max_norm() == 4
def test_PolyElement_l1_norm():
R, x, y = ring("x,y", ZZ)
assert R(0).l1_norm() == 0
assert R(1).l1_norm() == 1
assert (x**3 + 4*x**2 + 2*x + 3).l1_norm() == 10
def test_PolyElement_diff():
R, X = xring("x:11", QQ)
f = QQ(288,5)*X[0]**8*X[1]**6*X[4]**3*X[10]**2 + 8*X[0]**2*X[2]**3*X[4]**3 +2*X[0]**2 - 2*X[1]**2
assert f.diff(X[0]) == QQ(2304,5)*X[0]**7*X[1]**6*X[4]**3*X[10]**2 + 16*X[0]*X[2]**3*X[4]**3 + 4*X[0]
assert f.diff(X[4]) == QQ(864,5)*X[0]**8*X[1]**6*X[4]**2*X[10]**2 + 24*X[0]**2*X[2]**3*X[4]**2
assert f.diff(X[10]) == QQ(576,5)*X[0]**8*X[1]**6*X[4]**3*X[10]
def test_PolyElement___call__():
R, x = ring("x", ZZ)
f = 3*x + 1
assert f(0) == 1
assert f(1) == 4
raises(ValueError, lambda: f())
raises(ValueError, lambda: f(0, 1))
raises(CoercionFailed, lambda: f(QQ(1,7)))
R, x,y = ring("x,y", ZZ)
f = 3*x + y**2 + 1
assert f(0, 0) == 1
assert f(1, 7) == 53
Ry = R.drop(x)
assert f(0) == Ry.y**2 + 1
assert f(1) == Ry.y**2 + 4
raises(ValueError, lambda: f())
raises(ValueError, lambda: f(0, 1, 2))
raises(CoercionFailed, lambda: f(1, QQ(1,7)))
raises(CoercionFailed, lambda: f(QQ(1,7), 1))
raises(CoercionFailed, lambda: f(QQ(1,7), QQ(1,7)))
def test_PolyElement_evaluate():
R, x = ring("x", ZZ)
f = x**3 + 4*x**2 + 2*x + 3
r = f.evaluate(x, 0)
assert r == 3 and not isinstance(r, PolyElement)
raises(CoercionFailed, lambda: f.evaluate(x, QQ(1,7)))
R, x, y, z = ring("x,y,z", ZZ)
f = (x*y)**3 + 4*(x*y)**2 + 2*x*y + 3
r = f.evaluate(x, 0)
assert r == 3 and isinstance(r, R.drop(x).dtype)
r = f.evaluate([(x, 0), (y, 0)])
assert r == 3 and isinstance(r, R.drop(x, y).dtype)
r = f.evaluate(y, 0)
assert r == 3 and isinstance(r, R.drop(y).dtype)
r = f.evaluate([(y, 0), (x, 0)])
assert r == 3 and isinstance(r, R.drop(y, x).dtype)
r = f.evaluate([(x, 0), (y, 0), (z, 0)])
assert r == 3 and not isinstance(r, PolyElement)
raises(CoercionFailed, lambda: f.evaluate([(x, 1), (y, QQ(1,7))]))
raises(CoercionFailed, lambda: f.evaluate([(x, QQ(1,7)), (y, 1)]))
raises(CoercionFailed, lambda: f.evaluate([(x, QQ(1,7)), (y, QQ(1,7))]))
def test_PolyElement_subs():
R, x = ring("x", ZZ)
f = x**3 + 4*x**2 + 2*x + 3
r = f.subs(x, 0)
assert r == 3 and isinstance(r, R.dtype)
raises(CoercionFailed, lambda: f.subs(x, QQ(1,7)))
R, x, y, z = ring("x,y,z", ZZ)
f = x**3 + 4*x**2 + 2*x + 3
r = f.subs(x, 0)
assert r == 3 and isinstance(r, R.dtype)
r = f.subs([(x, 0), (y, 0)])
assert r == 3 and isinstance(r, R.dtype)
raises(CoercionFailed, lambda: f.subs([(x, 1), (y, QQ(1,7))]))
raises(CoercionFailed, lambda: f.subs([(x, QQ(1,7)), (y, 1)]))
raises(CoercionFailed, lambda: f.subs([(x, QQ(1,7)), (y, QQ(1,7))]))
def test_PolyElement_compose():
R, x = ring("x", ZZ)
f = x**3 + 4*x**2 + 2*x + 3
r = f.compose(x, 0)
assert r == 3 and isinstance(r, R.dtype)
assert f.compose(x, x) == f
assert f.compose(x, x**2) == x**6 + 4*x**4 + 2*x**2 + 3
raises(CoercionFailed, lambda: f.compose(x, QQ(1,7)))
R, x, y, z = ring("x,y,z", ZZ)
f = x**3 + 4*x**2 + 2*x + 3
r = f.compose(x, 0)
assert r == 3 and isinstance(r, R.dtype)
r = f.compose([(x, 0), (y, 0)])
assert r == 3 and isinstance(r, R.dtype)
r = (x**3 + 4*x**2 + 2*x*y*z + 3).compose(x, y*z**2 - 1)
q = (y*z**2 - 1)**3 + 4*(y*z**2 - 1)**2 + 2*(y*z**2 - 1)*y*z + 3
assert r == q and isinstance(r, R.dtype)
def test_PolyElement_is_():
R, x,y,z = ring("x,y,z", QQ)
assert (x - x).is_generator == False
assert (x - x).is_ground == True
assert (x - x).is_monomial == True
assert (x - x).is_term == True
assert (x - x + 1).is_generator == False
assert (x - x + 1).is_ground == True
assert (x - x + 1).is_monomial == True
assert (x - x + 1).is_term == True
assert x.is_generator == True
assert x.is_ground == False
assert x.is_monomial == True
assert x.is_term == True
assert (x*y).is_generator == False
assert (x*y).is_ground == False
assert (x*y).is_monomial == True
assert (x*y).is_term == True
assert (3*x).is_generator == False
assert (3*x).is_ground == False
assert (3*x).is_monomial == False
assert (3*x).is_term == True
assert (3*x + 1).is_generator == False
assert (3*x + 1).is_ground == False
assert (3*x + 1).is_monomial == False
assert (3*x + 1).is_term == False
assert R(0).is_zero is True
assert R(1).is_zero is False
assert R(0).is_one is False
assert R(1).is_one is True
assert (x - 1).is_monic is True
assert (2*x - 1).is_monic is False
assert (3*x + 2).is_primitive is True
assert (4*x + 2).is_primitive is False
assert (x + y + z + 1).is_linear is True
assert (x*y*z + 1).is_linear is False
assert (x*y + z + 1).is_quadratic is True
assert (x*y*z + 1).is_quadratic is False
assert (x - 1).is_squarefree is True
assert ((x - 1)**2).is_squarefree is False
assert (x**2 + x + 1).is_irreducible is True
assert (x**2 + 2*x + 1).is_irreducible is False
_, t = ring("t", FF(11))
assert (7*t + 3).is_irreducible is True
assert (7*t**2 + 3*t + 1).is_irreducible is False
_, u = ring("u", ZZ)
f = u**16 + u**14 - u**10 - u**8 - u**6 + u**2
assert f.is_cyclotomic is False
assert (f + 1).is_cyclotomic is True
raises(MultivariatePolynomialError, lambda: x.is_cyclotomic)
R, = ring("", ZZ)
assert R(4).is_squarefree is True
assert R(6).is_irreducible is True
def test_PolyElement_drop():
R, x,y,z = ring("x,y,z", ZZ)
assert R(1).drop(0).ring == PolyRing("y,z", ZZ, lex)
assert R(1).drop(0).drop(0).ring == PolyRing("z", ZZ, lex)
assert isinstance(R(1).drop(0).drop(0).drop(0), R.dtype) is False
raises(ValueError, lambda: z.drop(0).drop(0).drop(0))
raises(ValueError, lambda: x.drop(0))
def test_PolyElement_pdiv():
_, x, y = ring("x,y", ZZ)
f, g = x**2 - y**2, x - y
q, r = x + y, 0
assert f.pdiv(g) == (q, r)
assert f.prem(g) == r
assert f.pquo(g) == q
assert f.pexquo(g) == q
def test_PolyElement_gcdex():
_, x = ring("x", QQ)
f, g = 2*x, x**2 - 16
s, t, h = x/32, -QQ(1, 16), 1
assert f.half_gcdex(g) == (s, h)
assert f.gcdex(g) == (s, t, h)
def test_PolyElement_subresultants():
_, x = ring("x", ZZ)
f, g, h = x**2 - 2*x + 1, x**2 - 1, 2*x - 2
assert f.subresultants(g) == [f, g, h]
def test_PolyElement_resultant():
_, x = ring("x", ZZ)
f, g, h = x**2 - 2*x + 1, x**2 - 1, 0
assert f.resultant(g) == h
def test_PolyElement_discriminant():
_, x = ring("x", ZZ)
f, g = x**3 + 3*x**2 + 9*x - 13, -11664
assert f.discriminant() == g
F, a, b, c = ring("a,b,c", ZZ)
_, x = ring("x", F)
f, g = a*x**2 + b*x + c, b**2 - 4*a*c
assert f.discriminant() == g
def test_PolyElement_decompose():
_, x = ring("x", ZZ)
f = x**12 + 20*x**10 + 150*x**8 + 500*x**6 + 625*x**4 - 2*x**3 - 10*x + 9
g = x**4 - 2*x + 9
h = x**3 + 5*x
assert g.compose(x, h) == f
assert f.decompose() == [g, h]
def test_PolyElement_shift():
_, x = ring("x", ZZ)
assert (x**2 - 2*x + 1).shift(2) == x**2 + 2*x + 1
def test_PolyElement_sturm():
F, t = field("t", ZZ)
_, x = ring("x", F)
f = 1024/(15625*t**8)*x**5 - 4096/(625*t**8)*x**4 + 32/(15625*t**4)*x**3 - 128/(625*t**4)*x**2 + F(1)/62500*x - F(1)/625
assert f.sturm() == [
x**3 - 100*x**2 + t**4/64*x - 25*t**4/16,
3*x**2 - 200*x + t**4/64,
(-t**4/96 + F(20000)/9)*x + 25*t**4/18,
(-9*t**12 - 11520000*t**8 - 3686400000000*t**4)/(576*t**8 - 245760000*t**4 + 26214400000000),
]
def test_PolyElement_gff_list():
_, x = ring("x", ZZ)
f = x**5 + 2*x**4 - x**3 - 2*x**2
assert f.gff_list() == [(x, 1), (x + 2, 4)]
f = x*(x - 1)**3*(x - 2)**2*(x - 4)**2*(x - 5)
assert f.gff_list() == [(x**2 - 5*x + 4, 1), (x**2 - 5*x + 4, 2), (x, 3)]
def test_PolyElement_sqf_norm():
R, x = ring("x", QQ.algebraic_field(sqrt(3)))
X = R.to_ground().x
assert (x**2 - 2).sqf_norm() == (1, x**2 - 2*sqrt(3)*x + 1, X**4 - 10*X**2 + 1)
R, x = ring("x", QQ.algebraic_field(sqrt(2)))
X = R.to_ground().x
assert (x**2 - 3).sqf_norm() == (1, x**2 - 2*sqrt(2)*x - 1, X**4 - 10*X**2 + 1)
def test_PolyElement_sqf_list():
_, x = ring("x", ZZ)
f = x**5 - x**3 - x**2 + 1
g = x**3 + 2*x**2 + 2*x + 1
h = x - 1
p = x**4 + x**3 - x - 1
assert f.sqf_part() == p
assert f.sqf_list() == (1, [(g, 1), (h, 2)])
def test_PolyElement_factor_list():
_, x = ring("x", ZZ)
f = x**5 - x**3 - x**2 + 1
u = x + 1
v = x - 1
w = x**2 + x + 1
assert f.factor_list() == (1, [(u, 1), (v, 2), (w, 1)])
def test_issue_21410():
R, x = ring('x', FF(2))
p = x**6 + x**5 + x**4 + x**3 + 1
assert p._pow_multinomial(4) == x**24 + x**20 + x**16 + x**12 + 1
|
a7ca4ed30ac50e744506380d2af1e387d4d61dac9bc9b5f5c2c5276bcef7ad6f | """
Module for the DomainMatrix class.
A DomainMatrix represents a matrix with elements that are in a particular
Domain. Each DomainMatrix internally wraps a DDM which is used for the
lower-level operations. The idea is that the DomainMatrix class provides the
convenience routines for converting between Expr and the poly domains as well
as unifying matrices with different domains.
"""
from functools import reduce
from typing import Union as tUnion, Tuple as tTuple
from sympy.core.sympify import _sympify
from ..domains import Domain
from ..constructor import construct_domain
from .exceptions import (DMNonSquareMatrixError, DMShapeError,
DMDomainError, DMFormatError, DMBadInputError,
DMNotAField)
from .ddm import DDM
from .sdm import SDM
from .domainscalar import DomainScalar
from sympy.polys.domains import ZZ, EXRAW
def DM(rows, domain):
"""Convenient alias for DomainMatrix.from_list
Examples
=======
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DM
>>> DM([[1, 2], [3, 4]], ZZ)
DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ)
See also
=======
DomainMatrix.from_list
"""
return DomainMatrix.from_list(rows, domain)
class DomainMatrix:
r"""
Associate Matrix with :py:class:`~.Domain`
Explanation
===========
DomainMatrix uses :py:class:`~.Domain` for its internal representation
which makes it faster than the SymPy Matrix class (currently) for many
common operations, but this advantage makes it not entirely compatible
with Matrix. DomainMatrix are analogous to numpy arrays with "dtype".
In the DomainMatrix, each element has a domain such as :ref:`ZZ`
or :ref:`QQ(a)`.
Examples
========
Creating a DomainMatrix from the existing Matrix class:
>>> from sympy import Matrix
>>> from sympy.polys.matrices import DomainMatrix
>>> Matrix1 = Matrix([
... [1, 2],
... [3, 4]])
>>> A = DomainMatrix.from_Matrix(Matrix1)
>>> A
DomainMatrix({0: {0: 1, 1: 2}, 1: {0: 3, 1: 4}}, (2, 2), ZZ)
Directly forming a DomainMatrix:
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([
... [ZZ(1), ZZ(2)],
... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> A
DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ)
See Also
========
DDM
SDM
Domain
Poly
"""
rep: tUnion[SDM, DDM]
shape: tTuple[int, int]
domain: Domain
def __new__(cls, rows, shape, domain, *, fmt=None):
"""
Creates a :py:class:`~.DomainMatrix`.
Parameters
==========
rows : Represents elements of DomainMatrix as list of lists
shape : Represents dimension of DomainMatrix
domain : Represents :py:class:`~.Domain` of DomainMatrix
Raises
======
TypeError
If any of rows, shape and domain are not provided
"""
if isinstance(rows, (DDM, SDM)):
raise TypeError("Use from_rep to initialise from SDM/DDM")
elif isinstance(rows, list):
rep = DDM(rows, shape, domain)
elif isinstance(rows, dict):
rep = SDM(rows, shape, domain)
else:
msg = "Input should be list-of-lists or dict-of-dicts"
raise TypeError(msg)
if fmt is not None:
if fmt == 'sparse':
rep = rep.to_sdm()
elif fmt == 'dense':
rep = rep.to_ddm()
else:
raise ValueError("fmt should be 'sparse' or 'dense'")
return cls.from_rep(rep)
def __getnewargs__(self):
rep = self.rep
if isinstance(rep, DDM):
arg = list(rep)
elif isinstance(rep, SDM):
arg = dict(rep)
else:
raise RuntimeError # pragma: no cover
return arg, self.shape, self.domain
def __getitem__(self, key):
i, j = key
m, n = self.shape
if not (isinstance(i, slice) or isinstance(j, slice)):
return DomainScalar(self.rep.getitem(i, j), self.domain)
if not isinstance(i, slice):
if not -m <= i < m:
raise IndexError("Row index out of range")
i = i % m
i = slice(i, i+1)
if not isinstance(j, slice):
if not -n <= j < n:
raise IndexError("Column index out of range")
j = j % n
j = slice(j, j+1)
return self.from_rep(self.rep.extract_slice(i, j))
def getitem_sympy(self, i, j):
return self.domain.to_sympy(self.rep.getitem(i, j))
def extract(self, rowslist, colslist):
return self.from_rep(self.rep.extract(rowslist, colslist))
def __setitem__(self, key, value):
i, j = key
if not self.domain.of_type(value):
raise TypeError
if isinstance(i, int) and isinstance(j, int):
self.rep.setitem(i, j, value)
else:
raise NotImplementedError
@classmethod
def from_rep(cls, rep):
"""Create a new DomainMatrix efficiently from DDM/SDM.
Examples
========
Create a :py:class:`~.DomainMatrix` with an dense internal
representation as :py:class:`~.DDM`:
>>> from sympy.polys.domains import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> from sympy.polys.matrices.ddm import DDM
>>> drep = DDM([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> dM = DomainMatrix.from_rep(drep)
>>> dM
DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ)
Create a :py:class:`~.DomainMatrix` with a sparse internal
representation as :py:class:`~.SDM`:
>>> from sympy.polys.matrices import DomainMatrix
>>> from sympy.polys.matrices.sdm import SDM
>>> from sympy import ZZ
>>> drep = SDM({0:{1:ZZ(1)},1:{0:ZZ(2)}}, (2, 2), ZZ)
>>> dM = DomainMatrix.from_rep(drep)
>>> dM
DomainMatrix({0: {1: 1}, 1: {0: 2}}, (2, 2), ZZ)
Parameters
==========
rep: SDM or DDM
The internal sparse or dense representation of the matrix.
Returns
=======
DomainMatrix
A :py:class:`~.DomainMatrix` wrapping *rep*.
Notes
=====
This takes ownership of rep as its internal representation. If rep is
being mutated elsewhere then a copy should be provided to
``from_rep``. Only minimal verification or checking is done on *rep*
as this is supposed to be an efficient internal routine.
"""
if not isinstance(rep, (DDM, SDM)):
raise TypeError("rep should be of type DDM or SDM")
self = super().__new__(cls)
self.rep = rep
self.shape = rep.shape
self.domain = rep.domain
return self
@classmethod
def from_list(cls, rows, domain):
r"""
Convert a list of lists into a DomainMatrix
Parameters
==========
rows: list of lists
Each element of the inner lists should be either the single arg,
or tuple of args, that would be passed to the domain constructor
in order to form an element of the domain. See examples.
Returns
=======
DomainMatrix containing elements defined in rows
Examples
========
>>> from sympy.polys.matrices import DomainMatrix
>>> from sympy import FF, QQ, ZZ
>>> A = DomainMatrix.from_list([[1, 0, 1], [0, 0, 1]], ZZ)
>>> A
DomainMatrix([[1, 0, 1], [0, 0, 1]], (2, 3), ZZ)
>>> B = DomainMatrix.from_list([[1, 0, 1], [0, 0, 1]], FF(7))
>>> B
DomainMatrix([[1 mod 7, 0 mod 7, 1 mod 7], [0 mod 7, 0 mod 7, 1 mod 7]], (2, 3), GF(7))
>>> C = DomainMatrix.from_list([[(1, 2), (3, 1)], [(1, 4), (5, 1)]], QQ)
>>> C
DomainMatrix([[1/2, 3], [1/4, 5]], (2, 2), QQ)
See Also
========
from_list_sympy
"""
nrows = len(rows)
ncols = 0 if not nrows else len(rows[0])
conv = lambda e: domain(*e) if isinstance(e, tuple) else domain(e)
domain_rows = [[conv(e) for e in row] for row in rows]
return DomainMatrix(domain_rows, (nrows, ncols), domain)
@classmethod
def from_list_sympy(cls, nrows, ncols, rows, **kwargs):
r"""
Convert a list of lists of Expr into a DomainMatrix using construct_domain
Parameters
==========
nrows: number of rows
ncols: number of columns
rows: list of lists
Returns
=======
DomainMatrix containing elements of rows
Examples
========
>>> from sympy.polys.matrices import DomainMatrix
>>> from sympy.abc import x, y, z
>>> A = DomainMatrix.from_list_sympy(1, 3, [[x, y, z]])
>>> A
DomainMatrix([[x, y, z]], (1, 3), ZZ[x,y,z])
See Also
========
sympy.polys.constructor.construct_domain, from_dict_sympy
"""
assert len(rows) == nrows
assert all(len(row) == ncols for row in rows)
items_sympy = [_sympify(item) for row in rows for item in row]
domain, items_domain = cls.get_domain(items_sympy, **kwargs)
domain_rows = [[items_domain[ncols*r + c] for c in range(ncols)] for r in range(nrows)]
return DomainMatrix(domain_rows, (nrows, ncols), domain)
@classmethod
def from_dict_sympy(cls, nrows, ncols, elemsdict, **kwargs):
"""
Parameters
==========
nrows: number of rows
ncols: number of cols
elemsdict: dict of dicts containing non-zero elements of the DomainMatrix
Returns
=======
DomainMatrix containing elements of elemsdict
Examples
========
>>> from sympy.polys.matrices import DomainMatrix
>>> from sympy.abc import x,y,z
>>> elemsdict = {0: {0:x}, 1:{1: y}, 2: {2: z}}
>>> A = DomainMatrix.from_dict_sympy(3, 3, elemsdict)
>>> A
DomainMatrix({0: {0: x}, 1: {1: y}, 2: {2: z}}, (3, 3), ZZ[x,y,z])
See Also
========
from_list_sympy
"""
if not all(0 <= r < nrows for r in elemsdict):
raise DMBadInputError("Row out of range")
if not all(0 <= c < ncols for row in elemsdict.values() for c in row):
raise DMBadInputError("Column out of range")
items_sympy = [_sympify(item) for row in elemsdict.values() for item in row.values()]
domain, items_domain = cls.get_domain(items_sympy, **kwargs)
idx = 0
items_dict = {}
for i, row in elemsdict.items():
items_dict[i] = {}
for j in row:
items_dict[i][j] = items_domain[idx]
idx += 1
return DomainMatrix(items_dict, (nrows, ncols), domain)
@classmethod
def from_Matrix(cls, M, fmt='sparse',**kwargs):
r"""
Convert Matrix to DomainMatrix
Parameters
==========
M: Matrix
Returns
=======
Returns DomainMatrix with identical elements as M
Examples
========
>>> from sympy import Matrix
>>> from sympy.polys.matrices import DomainMatrix
>>> M = Matrix([
... [1.0, 3.4],
... [2.4, 1]])
>>> A = DomainMatrix.from_Matrix(M)
>>> A
DomainMatrix({0: {0: 1.0, 1: 3.4}, 1: {0: 2.4, 1: 1.0}}, (2, 2), RR)
We can keep internal representation as ddm using fmt='dense'
>>> from sympy import Matrix, QQ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix.from_Matrix(Matrix([[QQ(1, 2), QQ(3, 4)], [QQ(0, 1), QQ(0, 1)]]), fmt='dense')
>>> A.rep
[[1/2, 3/4], [0, 0]]
See Also
========
Matrix
"""
if fmt == 'dense':
return cls.from_list_sympy(*M.shape, M.tolist(), **kwargs)
return cls.from_dict_sympy(*M.shape, M.todod(), **kwargs)
@classmethod
def get_domain(cls, items_sympy, **kwargs):
K, items_K = construct_domain(items_sympy, **kwargs)
return K, items_K
def copy(self):
return self.from_rep(self.rep.copy())
def convert_to(self, K):
r"""
Change the domain of DomainMatrix to desired domain or field
Parameters
==========
K : Represents the desired domain or field.
Alternatively, ``None`` may be passed, in which case this method
just returns a copy of this DomainMatrix.
Returns
=======
DomainMatrix
DomainMatrix with the desired domain or field
Examples
========
>>> from sympy import ZZ, ZZ_I
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([
... [ZZ(1), ZZ(2)],
... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> A.convert_to(ZZ_I)
DomainMatrix([[1, 2], [3, 4]], (2, 2), ZZ_I)
"""
if K is None:
return self.copy()
return self.from_rep(self.rep.convert_to(K))
def to_sympy(self):
return self.convert_to(EXRAW)
def to_field(self):
r"""
Returns a DomainMatrix with the appropriate field
Returns
=======
DomainMatrix
DomainMatrix with the appropriate field
Examples
========
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([
... [ZZ(1), ZZ(2)],
... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> A.to_field()
DomainMatrix([[1, 2], [3, 4]], (2, 2), QQ)
"""
K = self.domain.get_field()
return self.convert_to(K)
def to_sparse(self):
"""
Return a sparse DomainMatrix representation of *self*.
Examples
========
>>> from sympy.polys.matrices import DomainMatrix
>>> from sympy import QQ
>>> A = DomainMatrix([[1, 0],[0, 2]], (2, 2), QQ)
>>> A.rep
[[1, 0], [0, 2]]
>>> B = A.to_sparse()
>>> B.rep
{0: {0: 1}, 1: {1: 2}}
"""
if self.rep.fmt == 'sparse':
return self
return self.from_rep(SDM.from_ddm(self.rep))
def to_dense(self):
"""
Return a dense DomainMatrix representation of *self*.
Examples
========
>>> from sympy.polys.matrices import DomainMatrix
>>> from sympy import QQ
>>> A = DomainMatrix({0: {0: 1}, 1: {1: 2}}, (2, 2), QQ)
>>> A.rep
{0: {0: 1}, 1: {1: 2}}
>>> B = A.to_dense()
>>> B.rep
[[1, 0], [0, 2]]
"""
if self.rep.fmt == 'dense':
return self
return self.from_rep(SDM.to_ddm(self.rep))
@classmethod
def _unify_domain(cls, *matrices):
"""Convert matrices to a common domain"""
domains = {matrix.domain for matrix in matrices}
if len(domains) == 1:
return matrices
domain = reduce(lambda x, y: x.unify(y), domains)
return tuple(matrix.convert_to(domain) for matrix in matrices)
@classmethod
def _unify_fmt(cls, *matrices, fmt=None):
"""Convert matrices to the same format.
If all matrices have the same format, then return unmodified.
Otherwise convert both to the preferred format given as *fmt* which
should be 'dense' or 'sparse'.
"""
formats = {matrix.rep.fmt for matrix in matrices}
if len(formats) == 1:
return matrices
if fmt == 'sparse':
return tuple(matrix.to_sparse() for matrix in matrices)
elif fmt == 'dense':
return tuple(matrix.to_dense() for matrix in matrices)
else:
raise ValueError("fmt should be 'sparse' or 'dense'")
def unify(self, *others, fmt=None):
"""
Unifies the domains and the format of self and other
matrices.
Parameters
==========
others : DomainMatrix
fmt: string 'dense', 'sparse' or `None` (default)
The preferred format to convert to if self and other are not
already in the same format. If `None` or not specified then no
conversion if performed.
Returns
=======
Tuple[DomainMatrix]
Matrices with unified domain and format
Examples
========
Unify the domain of DomainMatrix that have different domains:
>>> from sympy import ZZ, QQ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([[ZZ(1), ZZ(2)]], (1, 2), ZZ)
>>> B = DomainMatrix([[QQ(1, 2), QQ(2)]], (1, 2), QQ)
>>> Aq, Bq = A.unify(B)
>>> Aq
DomainMatrix([[1, 2]], (1, 2), QQ)
>>> Bq
DomainMatrix([[1/2, 2]], (1, 2), QQ)
Unify the format (dense or sparse):
>>> A = DomainMatrix([[ZZ(1), ZZ(2)]], (1, 2), ZZ)
>>> B = DomainMatrix({0:{0: ZZ(1)}}, (2, 2), ZZ)
>>> B.rep
{0: {0: 1}}
>>> A2, B2 = A.unify(B, fmt='dense')
>>> B2.rep
[[1, 0], [0, 0]]
See Also
========
convert_to, to_dense, to_sparse
"""
matrices = (self,) + others
matrices = DomainMatrix._unify_domain(*matrices)
if fmt is not None:
matrices = DomainMatrix._unify_fmt(*matrices, fmt=fmt)
return matrices
def to_Matrix(self):
r"""
Convert DomainMatrix to Matrix
Returns
=======
Matrix
MutableDenseMatrix for the DomainMatrix
Examples
========
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([
... [ZZ(1), ZZ(2)],
... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> A.to_Matrix()
Matrix([
[1, 2],
[3, 4]])
See Also
========
from_Matrix
"""
from sympy.matrices.dense import MutableDenseMatrix
elemlist = self.rep.to_list()
elements_sympy = [self.domain.to_sympy(e) for row in elemlist for e in row]
return MutableDenseMatrix(*self.shape, elements_sympy)
def to_list(self):
return self.rep.to_list()
def to_list_flat(self):
return self.rep.to_list_flat()
def to_dok(self):
return self.rep.to_dok()
def __repr__(self):
return 'DomainMatrix(%s, %r, %r)' % (str(self.rep), self.shape, self.domain)
def transpose(self):
"""Matrix transpose of ``self``"""
return self.from_rep(self.rep.transpose())
def flat(self):
rows, cols = self.shape
return [self[i,j].element for i in range(rows) for j in range(cols)]
@property
def is_zero_matrix(self):
return self.rep.is_zero_matrix()
@property
def is_upper(self):
"""
Says whether this matrix is upper-triangular. True can be returned
even if the matrix is not square.
"""
return self.rep.is_upper()
@property
def is_lower(self):
"""
Says whether this matrix is lower-triangular. True can be returned
even if the matrix is not square.
"""
return self.rep.is_lower()
@property
def is_square(self):
return self.shape[0] == self.shape[1]
def rank(self):
rref, pivots = self.rref()
return len(pivots)
def hstack(A, *B):
r"""Horizontally stack the given matrices.
Parameters
==========
B: DomainMatrix
Matrices to stack horizontally.
Returns
=======
DomainMatrix
DomainMatrix by stacking horizontally.
Examples
========
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> B = DomainMatrix([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ)
>>> A.hstack(B)
DomainMatrix([[1, 2, 5, 6], [3, 4, 7, 8]], (2, 4), ZZ)
>>> C = DomainMatrix([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ)
>>> A.hstack(B, C)
DomainMatrix([[1, 2, 5, 6, 9, 10], [3, 4, 7, 8, 11, 12]], (2, 6), ZZ)
See Also
========
unify
"""
A, *B = A.unify(*B, fmt='dense')
return DomainMatrix.from_rep(A.rep.hstack(*(Bk.rep for Bk in B)))
def vstack(A, *B):
r"""Vertically stack the given matrices.
Parameters
==========
B: DomainMatrix
Matrices to stack vertically.
Returns
=======
DomainMatrix
DomainMatrix by stacking vertically.
Examples
========
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([[ZZ(1), ZZ(2)], [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> B = DomainMatrix([[ZZ(5), ZZ(6)], [ZZ(7), ZZ(8)]], (2, 2), ZZ)
>>> A.vstack(B)
DomainMatrix([[1, 2], [3, 4], [5, 6], [7, 8]], (4, 2), ZZ)
>>> C = DomainMatrix([[ZZ(9), ZZ(10)], [ZZ(11), ZZ(12)]], (2, 2), ZZ)
>>> A.vstack(B, C)
DomainMatrix([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12]], (6, 2), ZZ)
See Also
========
unify
"""
A, *B = A.unify(*B, fmt='dense')
return DomainMatrix.from_rep(A.rep.vstack(*(Bk.rep for Bk in B)))
def applyfunc(self, func, domain=None):
if domain is None:
domain = self.domain
return self.from_rep(self.rep.applyfunc(func, domain))
def __add__(A, B):
if not isinstance(B, DomainMatrix):
return NotImplemented
A, B = A.unify(B, fmt='dense')
return A.add(B)
def __sub__(A, B):
if not isinstance(B, DomainMatrix):
return NotImplemented
A, B = A.unify(B, fmt='dense')
return A.sub(B)
def __neg__(A):
return A.neg()
def __mul__(A, B):
"""A * B"""
if isinstance(B, DomainMatrix):
A, B = A.unify(B, fmt='dense')
return A.matmul(B)
elif B in A.domain:
return A.scalarmul(B)
elif isinstance(B, DomainScalar):
A, B = A.unify(B)
return A.scalarmul(B.element)
else:
return NotImplemented
def __rmul__(A, B):
if B in A.domain:
return A.rscalarmul(B)
elif isinstance(B, DomainScalar):
A, B = A.unify(B)
return A.rscalarmul(B.element)
else:
return NotImplemented
def __pow__(A, n):
"""A ** n"""
if not isinstance(n, int):
return NotImplemented
return A.pow(n)
def _check(a, op, b, ashape, bshape):
if a.domain != b.domain:
msg = "Domain mismatch: %s %s %s" % (a.domain, op, b.domain)
raise DMDomainError(msg)
if ashape != bshape:
msg = "Shape mismatch: %s %s %s" % (a.shape, op, b.shape)
raise DMShapeError(msg)
if a.rep.fmt != b.rep.fmt:
msg = "Format mismatch: %s %s %s" % (a.rep.fmt, op, b.rep.fmt)
raise DMFormatError(msg)
def add(A, B):
r"""
Adds two DomainMatrix matrices of the same Domain
Parameters
==========
A, B: DomainMatrix
matrices to add
Returns
=======
DomainMatrix
DomainMatrix after Addition
Raises
======
DMShapeError
If the dimensions of the two DomainMatrix are not equal
ValueError
If the domain of the two DomainMatrix are not same
Examples
========
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([
... [ZZ(1), ZZ(2)],
... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> B = DomainMatrix([
... [ZZ(4), ZZ(3)],
... [ZZ(2), ZZ(1)]], (2, 2), ZZ)
>>> A.add(B)
DomainMatrix([[5, 5], [5, 5]], (2, 2), ZZ)
See Also
========
sub, matmul
"""
A._check('+', B, A.shape, B.shape)
return A.from_rep(A.rep.add(B.rep))
def sub(A, B):
r"""
Subtracts two DomainMatrix matrices of the same Domain
Parameters
==========
A, B: DomainMatrix
matrices to substract
Returns
=======
DomainMatrix
DomainMatrix after Substraction
Raises
======
DMShapeError
If the dimensions of the two DomainMatrix are not equal
ValueError
If the domain of the two DomainMatrix are not same
Examples
========
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([
... [ZZ(1), ZZ(2)],
... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> B = DomainMatrix([
... [ZZ(4), ZZ(3)],
... [ZZ(2), ZZ(1)]], (2, 2), ZZ)
>>> A.sub(B)
DomainMatrix([[-3, -1], [1, 3]], (2, 2), ZZ)
See Also
========
add, matmul
"""
A._check('-', B, A.shape, B.shape)
return A.from_rep(A.rep.sub(B.rep))
def neg(A):
r"""
Returns the negative of DomainMatrix
Parameters
==========
A : Represents a DomainMatrix
Returns
=======
DomainMatrix
DomainMatrix after Negation
Examples
========
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([
... [ZZ(1), ZZ(2)],
... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> A.neg()
DomainMatrix([[-1, -2], [-3, -4]], (2, 2), ZZ)
"""
return A.from_rep(A.rep.neg())
def mul(A, b):
r"""
Performs term by term multiplication for the second DomainMatrix
w.r.t first DomainMatrix. Returns a DomainMatrix whose rows are
list of DomainMatrix matrices created after term by term multiplication.
Parameters
==========
A, B: DomainMatrix
matrices to multiply term-wise
Returns
=======
DomainMatrix
DomainMatrix after term by term multiplication
Examples
========
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([
... [ZZ(1), ZZ(2)],
... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> B = DomainMatrix([
... [ZZ(1), ZZ(1)],
... [ZZ(0), ZZ(1)]], (2, 2), ZZ)
>>> A.mul(B)
DomainMatrix([[DomainMatrix([[1, 1], [0, 1]], (2, 2), ZZ),
DomainMatrix([[2, 2], [0, 2]], (2, 2), ZZ)],
[DomainMatrix([[3, 3], [0, 3]], (2, 2), ZZ),
DomainMatrix([[4, 4], [0, 4]], (2, 2), ZZ)]], (2, 2), ZZ)
See Also
========
matmul
"""
return A.from_rep(A.rep.mul(b))
def rmul(A, b):
return A.from_rep(A.rep.rmul(b))
def matmul(A, B):
r"""
Performs matrix multiplication of two DomainMatrix matrices
Parameters
==========
A, B: DomainMatrix
to multiply
Returns
=======
DomainMatrix
DomainMatrix after multiplication
Examples
========
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([
... [ZZ(1), ZZ(2)],
... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> B = DomainMatrix([
... [ZZ(1), ZZ(1)],
... [ZZ(0), ZZ(1)]], (2, 2), ZZ)
>>> A.matmul(B)
DomainMatrix([[1, 3], [3, 7]], (2, 2), ZZ)
See Also
========
mul, pow, add, sub
"""
A._check('*', B, A.shape[1], B.shape[0])
return A.from_rep(A.rep.matmul(B.rep))
def _scalarmul(A, lamda, reverse):
if lamda == A.domain.zero:
return DomainMatrix.zeros(A.shape, A.domain)
elif lamda == A.domain.one:
return A.copy()
elif reverse:
return A.rmul(lamda)
else:
return A.mul(lamda)
def scalarmul(A, lamda):
return A._scalarmul(lamda, reverse=False)
def rscalarmul(A, lamda):
return A._scalarmul(lamda, reverse=True)
def mul_elementwise(A, B):
assert A.domain == B.domain
return A.from_rep(A.rep.mul_elementwise(B.rep))
def __truediv__(A, lamda):
""" Method for Scalar Division"""
if isinstance(lamda, int) or ZZ.of_type(lamda):
lamda = DomainScalar(ZZ(lamda), ZZ)
if not isinstance(lamda, DomainScalar):
return NotImplemented
A, lamda = A.to_field().unify(lamda)
if lamda.element == lamda.domain.zero:
raise ZeroDivisionError
if lamda.element == lamda.domain.one:
return A.to_field()
return A.mul(1 / lamda.element)
def pow(A, n):
r"""
Computes A**n
Parameters
==========
A : DomainMatrix
n : exponent for A
Returns
=======
DomainMatrix
DomainMatrix on computing A**n
Raises
======
NotImplementedError
if n is negative.
Examples
========
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([
... [ZZ(1), ZZ(1)],
... [ZZ(0), ZZ(1)]], (2, 2), ZZ)
>>> A.pow(2)
DomainMatrix([[1, 2], [0, 1]], (2, 2), ZZ)
See Also
========
matmul
"""
nrows, ncols = A.shape
if nrows != ncols:
raise DMNonSquareMatrixError('Power of a nonsquare matrix')
if n < 0:
raise NotImplementedError('Negative powers')
elif n == 0:
return A.eye(nrows, A.domain)
elif n == 1:
return A
elif n % 2 == 1:
return A * A**(n - 1)
else:
sqrtAn = A ** (n // 2)
return sqrtAn * sqrtAn
def scc(self):
"""Compute the strongly connected components of a DomainMatrix
Explanation
===========
A square matrix can be considered as the adjacency matrix for a
directed graph where the row and column indices are the vertices. In
this graph if there is an edge from vertex ``i`` to vertex ``j`` if
``M[i, j]`` is nonzero. This routine computes the strongly connected
components of that graph which are subsets of the rows and columns that
are connected by some nonzero element of the matrix. The strongly
connected components are useful because many operations such as the
determinant can be computed by working with the submatrices
corresponding to each component.
Examples
========
Find the strongly connected components of a matrix:
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> M = DomainMatrix([[ZZ(1), ZZ(0), ZZ(2)],
... [ZZ(0), ZZ(3), ZZ(0)],
... [ZZ(4), ZZ(6), ZZ(5)]], (3, 3), ZZ)
>>> M.scc()
[[1], [0, 2]]
Compute the determinant from the components:
>>> MM = M.to_Matrix()
>>> MM
Matrix([
[1, 0, 2],
[0, 3, 0],
[4, 6, 5]])
>>> MM[[1], [1]]
Matrix([[3]])
>>> MM[[0, 2], [0, 2]]
Matrix([
[1, 2],
[4, 5]])
>>> MM.det()
-9
>>> MM[[1], [1]].det() * MM[[0, 2], [0, 2]].det()
-9
The components are given in reverse topological order and represent a
permutation of the rows and columns that will bring the matrix into
block lower-triangular form:
>>> MM[[1, 0, 2], [1, 0, 2]]
Matrix([
[3, 0, 0],
[0, 1, 2],
[6, 4, 5]])
Returns
=======
List of lists of integers
Each list represents a strongly connected component.
See also
========
sympy.matrices.matrices.MatrixBase.strongly_connected_components
sympy.utilities.iterables.strongly_connected_components
"""
rows, cols = self.shape
assert rows == cols
return self.rep.scc()
def rref(self):
r"""
Returns reduced-row echelon form and list of pivots for the DomainMatrix
Returns
=======
(DomainMatrix, list)
reduced-row echelon form and list of pivots for the DomainMatrix
Raises
======
ValueError
If the domain of DomainMatrix not a Field
Examples
========
>>> from sympy import QQ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([
... [QQ(2), QQ(-1), QQ(0)],
... [QQ(-1), QQ(2), QQ(-1)],
... [QQ(0), QQ(0), QQ(2)]], (3, 3), QQ)
>>> rref_matrix, rref_pivots = A.rref()
>>> rref_matrix
DomainMatrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]], (3, 3), QQ)
>>> rref_pivots
(0, 1, 2)
See Also
========
convert_to, lu
"""
if not self.domain.is_Field:
raise DMNotAField('Not a field')
rref_ddm, pivots = self.rep.rref()
return self.from_rep(rref_ddm), tuple(pivots)
def columnspace(self):
r"""
Returns the columnspace for the DomainMatrix
Returns
=======
DomainMatrix
The columns of this matrix form a basis for the columnspace.
Examples
========
>>> from sympy import QQ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([
... [QQ(1), QQ(-1)],
... [QQ(2), QQ(-2)]], (2, 2), QQ)
>>> A.columnspace()
DomainMatrix([[1], [2]], (2, 1), QQ)
"""
if not self.domain.is_Field:
raise DMNotAField('Not a field')
rref, pivots = self.rref()
rows, cols = self.shape
return self.extract(range(rows), pivots)
def rowspace(self):
r"""
Returns the rowspace for the DomainMatrix
Returns
=======
DomainMatrix
The rows of this matrix form a basis for the rowspace.
Examples
========
>>> from sympy import QQ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([
... [QQ(1), QQ(-1)],
... [QQ(2), QQ(-2)]], (2, 2), QQ)
>>> A.rowspace()
DomainMatrix([[1, -1]], (1, 2), QQ)
"""
if not self.domain.is_Field:
raise DMNotAField('Not a field')
rref, pivots = self.rref()
rows, cols = self.shape
return self.extract(range(len(pivots)), range(cols))
def nullspace(self):
r"""
Returns the nullspace for the DomainMatrix
Returns
=======
DomainMatrix
The rows of this matrix form a basis for the nullspace.
Examples
========
>>> from sympy import QQ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([
... [QQ(1), QQ(-1)],
... [QQ(2), QQ(-2)]], (2, 2), QQ)
>>> A.nullspace()
DomainMatrix([[1, 1]], (1, 2), QQ)
"""
if not self.domain.is_Field:
raise DMNotAField('Not a field')
return self.from_rep(self.rep.nullspace()[0])
def inv(self):
r"""
Finds the inverse of the DomainMatrix if exists
Returns
=======
DomainMatrix
DomainMatrix after inverse
Raises
======
ValueError
If the domain of DomainMatrix not a Field
DMNonSquareMatrixError
If the DomainMatrix is not a not Square DomainMatrix
Examples
========
>>> from sympy import QQ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([
... [QQ(2), QQ(-1), QQ(0)],
... [QQ(-1), QQ(2), QQ(-1)],
... [QQ(0), QQ(0), QQ(2)]], (3, 3), QQ)
>>> A.inv()
DomainMatrix([[2/3, 1/3, 1/6], [1/3, 2/3, 1/3], [0, 0, 1/2]], (3, 3), QQ)
See Also
========
neg
"""
if not self.domain.is_Field:
raise DMNotAField('Not a field')
m, n = self.shape
if m != n:
raise DMNonSquareMatrixError
inv = self.rep.inv()
return self.from_rep(inv)
def det(self):
r"""
Returns the determinant of a Square DomainMatrix
Returns
=======
S.Complexes
determinant of Square DomainMatrix
Raises
======
ValueError
If the domain of DomainMatrix not a Field
Examples
========
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([
... [ZZ(1), ZZ(2)],
... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> A.det()
-2
"""
m, n = self.shape
if m != n:
raise DMNonSquareMatrixError
return self.rep.det()
def lu(self):
r"""
Returns Lower and Upper decomposition of the DomainMatrix
Returns
=======
(L, U, exchange)
L, U are Lower and Upper decomposition of the DomainMatrix,
exchange is the list of indices of rows exchanged in the decomposition.
Raises
======
ValueError
If the domain of DomainMatrix not a Field
Examples
========
>>> from sympy import QQ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([
... [QQ(1), QQ(-1)],
... [QQ(2), QQ(-2)]], (2, 2), QQ)
>>> A.lu()
(DomainMatrix([[1, 0], [2, 1]], (2, 2), QQ), DomainMatrix([[1, -1], [0, 0]], (2, 2), QQ), [])
See Also
========
lu_solve
"""
if not self.domain.is_Field:
raise DMNotAField('Not a field')
L, U, swaps = self.rep.lu()
return self.from_rep(L), self.from_rep(U), swaps
def lu_solve(self, rhs):
r"""
Solver for DomainMatrix x in the A*x = B
Parameters
==========
rhs : DomainMatrix B
Returns
=======
DomainMatrix
x in A*x = B
Raises
======
DMShapeError
If the DomainMatrix A and rhs have different number of rows
ValueError
If the domain of DomainMatrix A not a Field
Examples
========
>>> from sympy import QQ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([
... [QQ(1), QQ(2)],
... [QQ(3), QQ(4)]], (2, 2), QQ)
>>> B = DomainMatrix([
... [QQ(1), QQ(1)],
... [QQ(0), QQ(1)]], (2, 2), QQ)
>>> A.lu_solve(B)
DomainMatrix([[-2, -1], [3/2, 1]], (2, 2), QQ)
See Also
========
lu
"""
if self.shape[0] != rhs.shape[0]:
raise DMShapeError("Shape")
if not self.domain.is_Field:
raise DMNotAField('Not a field')
sol = self.rep.lu_solve(rhs.rep)
return self.from_rep(sol)
def _solve(A, b):
# XXX: Not sure about this method or its signature. It is just created
# because it is needed by the holonomic module.
if A.shape[0] != b.shape[0]:
raise DMShapeError("Shape")
if A.domain != b.domain or not A.domain.is_Field:
raise DMNotAField('Not a field')
Aaug = A.hstack(b)
Arref, pivots = Aaug.rref()
particular = Arref.from_rep(Arref.rep.particular())
nullspace_rep, nonpivots = Arref[:,:-1].rep.nullspace()
nullspace = Arref.from_rep(nullspace_rep)
return particular, nullspace
def charpoly(self):
r"""
Returns the coefficients of the characteristic polynomial
of the DomainMatrix. These elements will be domain elements.
The domain of the elements will be same as domain of the DomainMatrix.
Returns
=======
list
coefficients of the characteristic polynomial
Raises
======
DMNonSquareMatrixError
If the DomainMatrix is not a not Square DomainMatrix
Examples
========
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([
... [ZZ(1), ZZ(2)],
... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> A.charpoly()
[1, -5, -2]
"""
m, n = self.shape
if m != n:
raise DMNonSquareMatrixError("not square")
return self.rep.charpoly()
@classmethod
def eye(cls, shape, domain):
r"""
Return identity matrix of size n
Examples
========
>>> from sympy.polys.matrices import DomainMatrix
>>> from sympy import QQ
>>> DomainMatrix.eye(3, QQ)
DomainMatrix({0: {0: 1}, 1: {1: 1}, 2: {2: 1}}, (3, 3), QQ)
"""
if isinstance(shape, int):
shape = (shape, shape)
return cls.from_rep(SDM.eye(shape, domain))
@classmethod
def diag(cls, diagonal, domain, shape=None):
r"""
Return diagonal matrix with entries from ``diagonal``.
Examples
========
>>> from sympy.polys.matrices import DomainMatrix
>>> from sympy import ZZ
>>> DomainMatrix.diag([ZZ(5), ZZ(6)], ZZ)
DomainMatrix({0: {0: 5}, 1: {1: 6}}, (2, 2), ZZ)
"""
if shape is None:
N = len(diagonal)
shape = (N, N)
return cls.from_rep(SDM.diag(diagonal, domain, shape))
@classmethod
def zeros(cls, shape, domain, *, fmt='sparse'):
"""Returns a zero DomainMatrix of size shape, belonging to the specified domain
Examples
========
>>> from sympy.polys.matrices import DomainMatrix
>>> from sympy import QQ
>>> DomainMatrix.zeros((2, 3), QQ)
DomainMatrix({}, (2, 3), QQ)
"""
return cls.from_rep(SDM.zeros(shape, domain))
@classmethod
def ones(cls, shape, domain):
"""Returns a DomainMatrix of 1s, of size shape, belonging to the specified domain
Examples
========
>>> from sympy.polys.matrices import DomainMatrix
>>> from sympy import QQ
>>> DomainMatrix.ones((2,3), QQ)
DomainMatrix([[1, 1, 1], [1, 1, 1]], (2, 3), QQ)
"""
return cls.from_rep(DDM.ones(shape, domain))
def __eq__(A, B):
r"""
Checks for two DomainMatrix matrices to be equal or not
Parameters
==========
A, B: DomainMatrix
to check equality
Returns
=======
Boolean
True for equal, else False
Raises
======
NotImplementedError
If B is not a DomainMatrix
Examples
========
>>> from sympy import ZZ
>>> from sympy.polys.matrices import DomainMatrix
>>> A = DomainMatrix([
... [ZZ(1), ZZ(2)],
... [ZZ(3), ZZ(4)]], (2, 2), ZZ)
>>> B = DomainMatrix([
... [ZZ(1), ZZ(1)],
... [ZZ(0), ZZ(1)]], (2, 2), ZZ)
>>> A.__eq__(A)
True
>>> A.__eq__(B)
False
"""
if not isinstance(A, type(B)):
return NotImplemented
return A.domain == B.domain and A.rep == B.rep
def unify_eq(A, B):
if A.shape != B.shape:
return False
if A.domain != B.domain:
A, B = A.unify(B)
return A == B
|
26170091a40c82390e4b3890da3640a49f1bf28be28a5e5c532d217c5a8d9998 | from math import prod
from sympy import QQ, ZZ
from sympy.abc import x, theta
from sympy.ntheory import factorint
from sympy.ntheory.residue_ntheory import n_order
from sympy.polys import Poly, cyclotomic_poly
from sympy.polys.matrices import DomainMatrix
from sympy.polys.numberfields.basis import round_two
from sympy.polys.numberfields.exceptions import StructureError
from sympy.polys.numberfields.modules import PowerBasis, to_col
from sympy.polys.numberfields.primes import (
prime_decomp, _two_elt_rep,
_check_formal_conditions_for_maximal_order,
)
from sympy.testing.pytest import raises
def test_check_formal_conditions_for_maximal_order():
T = Poly(cyclotomic_poly(5, x))
A = PowerBasis(T)
B = A.submodule_from_matrix(2 * DomainMatrix.eye(4, ZZ))
C = B.submodule_from_matrix(3 * DomainMatrix.eye(4, ZZ))
D = A.submodule_from_matrix(DomainMatrix.eye(4, ZZ)[:, :-1])
# Is a direct submodule of a power basis, but lacks 1 as first generator:
raises(StructureError, lambda: _check_formal_conditions_for_maximal_order(B))
# Is not a direct submodule of a power basis:
raises(StructureError, lambda: _check_formal_conditions_for_maximal_order(C))
# Is direct submod of pow basis, and starts with 1, but not sq/max rank/HNF:
raises(StructureError, lambda: _check_formal_conditions_for_maximal_order(D))
def test_two_elt_rep():
ell = 7
T = Poly(cyclotomic_poly(ell))
ZK, dK = round_two(T)
for p in [29, 13, 11, 5]:
P = prime_decomp(p, T)
for Pi in P:
# We have Pi in two-element representation, and, because we are
# looking at a cyclotomic field, this was computed by the "easy"
# method that just factors T mod p. We will now convert this to
# a set of Z-generators, then convert that back into a two-element
# rep. The latter need not be identical to the two-elt rep we
# already have, but it must have the same HNF.
H = p*ZK + Pi.alpha*ZK
gens = H.basis_element_pullbacks()
# Note: we could supply f = Pi.f, but prefer to test behavior without it.
b = _two_elt_rep(gens, ZK, p)
if b != Pi.alpha:
H2 = p*ZK + b*ZK
assert H2 == H
def test_valuation_at_prime_ideal():
p = 7
T = Poly(cyclotomic_poly(p))
ZK, dK = round_two(T)
P = prime_decomp(p, T, dK=dK, ZK=ZK)
assert len(P) == 1
P0 = P[0]
v = P0.valuation(p*ZK)
assert v == P0.e
# Test easy 0 case:
assert P0.valuation(5*ZK) == 0
def test_decomp_1():
# All prime decompositions in cyclotomic fields are in the "easy case,"
# since the index is unity.
# Here we check the ramified prime.
T = Poly(cyclotomic_poly(7))
raises(ValueError, lambda: prime_decomp(7))
P = prime_decomp(7, T)
assert len(P) == 1
P0 = P[0]
assert P0.e == 6
assert P0.f == 1
# Test powers:
assert P0**0 == P0.ZK
assert P0**1 == P0
assert P0**6 == 7 * P0.ZK
def test_decomp_2():
# More easy cyclotomic cases, but here we check unramified primes.
ell = 7
T = Poly(cyclotomic_poly(ell))
for p in [29, 13, 11, 5]:
f_exp = n_order(p, ell)
g_exp = (ell - 1) // f_exp
P = prime_decomp(p, T)
assert len(P) == g_exp
for Pi in P:
assert Pi.e == 1
assert Pi.f == f_exp
def test_decomp_3():
T = Poly(x ** 2 - 35)
rad = {}
ZK, dK = round_two(T, radicals=rad)
# 35 is 3 mod 4, so field disc is 4*5*7, and theory says each of the
# rational primes 2, 5, 7 should be the square of a prime ideal.
for p in [2, 5, 7]:
P = prime_decomp(p, T, dK=dK, ZK=ZK, radical=rad.get(p))
assert len(P) == 1
assert P[0].e == 2
assert P[0]**2 == p*ZK
def test_decomp_4():
T = Poly(x ** 2 - 21)
rad = {}
ZK, dK = round_two(T, radicals=rad)
# 21 is 1 mod 4, so field disc is 3*7, and theory says the
# rational primes 3, 7 should be the square of a prime ideal.
for p in [3, 7]:
P = prime_decomp(p, T, dK=dK, ZK=ZK, radical=rad.get(p))
assert len(P) == 1
assert P[0].e == 2
assert P[0]**2 == p*ZK
def test_decomp_5():
# Here is our first test of the "hard case" of prime decomposition.
# We work in a quadratic extension Q(sqrt(d)) where d is 1 mod 4, and
# we consider the factorization of the rational prime 2, which divides
# the index.
# Theory says the form of p's factorization depends on the residue of
# d mod 8, so we consider both cases, d = 1 mod 8 and d = 5 mod 8.
for d in [-7, -3]:
T = Poly(x ** 2 - d)
rad = {}
ZK, dK = round_two(T, radicals=rad)
p = 2
P = prime_decomp(p, T, dK=dK, ZK=ZK, radical=rad.get(p))
if d % 8 == 1:
assert len(P) == 2
assert all(P[i].e == 1 and P[i].f == 1 for i in range(2))
assert prod(Pi**Pi.e for Pi in P) == p * ZK
else:
assert d % 8 == 5
assert len(P) == 1
assert P[0].e == 1
assert P[0].f == 2
assert P[0].as_submodule() == p * ZK
def test_decomp_6():
# Another case where 2 divides the index. This is Dedekind's example of
# an essential discriminant divisor. (See Cohen, Exercise 6.10.)
T = Poly(x ** 3 + x ** 2 - 2 * x + 8)
rad = {}
ZK, dK = round_two(T, radicals=rad)
p = 2
P = prime_decomp(p, T, dK=dK, ZK=ZK, radical=rad.get(p))
assert len(P) == 3
assert all(Pi.e == Pi.f == 1 for Pi in P)
assert prod(Pi**Pi.e for Pi in P) == p*ZK
def test_decomp_7():
# Try working through an AlgebraicField
T = Poly(x ** 3 + x ** 2 - 2 * x + 8)
K = QQ.alg_field_from_poly(T)
p = 2
P = K.primes_above(p)
ZK = K.maximal_order()
assert len(P) == 3
assert all(Pi.e == Pi.f == 1 for Pi in P)
assert prod(Pi**Pi.e for Pi in P) == p*ZK
def test_decomp_8():
# This time we consider various cubics, and try factoring all primes
# dividing the index.
cases = (
x ** 3 + 3 * x ** 2 - 4 * x + 4,
x ** 3 + 3 * x ** 2 + 3 * x - 3,
x ** 3 + 5 * x ** 2 - x + 3,
x ** 3 + 5 * x ** 2 - 5 * x - 5,
x ** 3 + 3 * x ** 2 + 5,
x ** 3 + 6 * x ** 2 + 3 * x - 1,
x ** 3 + 6 * x ** 2 + 4,
x ** 3 + 7 * x ** 2 + 7 * x - 7,
x ** 3 + 7 * x ** 2 - x + 5,
x ** 3 + 7 * x ** 2 - 5 * x + 5,
x ** 3 + 4 * x ** 2 - 3 * x + 7,
x ** 3 + 8 * x ** 2 + 5 * x - 1,
x ** 3 + 8 * x ** 2 - 2 * x + 6,
x ** 3 + 6 * x ** 2 - 3 * x + 8,
x ** 3 + 9 * x ** 2 + 6 * x - 8,
x ** 3 + 15 * x ** 2 - 9 * x + 13,
)
def display(T, p, radical, P, I, J):
"""Useful for inspection, when running test manually."""
print('=' * 20)
print(T, p, radical)
for Pi in P:
print(f' ({Pi!r})')
print("I: ", I)
print("J: ", J)
print(f'Equal: {I == J}')
inspect = False
for g in cases:
T = Poly(g)
rad = {}
ZK, dK = round_two(T, radicals=rad)
dT = T.discriminant()
f_squared = dT // dK
F = factorint(f_squared)
for p in F:
radical = rad.get(p)
P = prime_decomp(p, T, dK=dK, ZK=ZK, radical=radical)
I = prod(Pi**Pi.e for Pi in P)
J = p * ZK
if inspect:
display(T, p, radical, P, I, J)
assert I == J
def test_PrimeIdeal_eq():
# `==` should fail on objects of different types, so even a completely
# inert PrimeIdeal should test unequal to the rational prime it divides.
T = Poly(cyclotomic_poly(7))
P0 = prime_decomp(5, T)[0]
assert P0.f == 6
assert P0.as_submodule() == 5 * P0.ZK
assert P0 != 5
def test_PrimeIdeal_add():
T = Poly(cyclotomic_poly(7))
P0 = prime_decomp(7, T)[0]
# Adding ideals computes their GCD, so adding the ramified prime dividing
# 7 to 7 itself should reproduce this prime (as a submodule).
assert P0 + 7 * P0.ZK == P0.as_submodule()
def test_str():
# Without alias:
k = QQ.alg_field_from_poly(Poly(x**2 + 7))
frp = k.primes_above(2)[0]
assert str(frp) == '(2, 3*_x/2 + 1/2)'
frp = k.primes_above(3)[0]
assert str(frp) == '(3)'
# With alias:
k = QQ.alg_field_from_poly(Poly(x ** 2 + 7), alias='alpha')
frp = k.primes_above(2)[0]
assert str(frp) == '(2, 3*alpha/2 + 1/2)'
frp = k.primes_above(3)[0]
assert str(frp) == '(3)'
def test_repr():
T = Poly(x**2 + 7)
ZK, dK = round_two(T)
P = prime_decomp(2, T, dK=dK, ZK=ZK)
assert repr(P[0]) == '[ (2, (3*x + 1)/2) e=1, f=1 ]'
assert P[0].repr(field_gen=theta) == '[ (2, (3*theta + 1)/2) e=1, f=1 ]'
assert P[0].repr(field_gen=theta, just_gens=True) == '(2, (3*theta + 1)/2)'
def test_PrimeIdeal_reduce():
k = QQ.alg_field_from_poly(Poly(x ** 3 + x ** 2 - 2 * x + 8))
Zk = k.maximal_order()
P = k.primes_above(2)
frp = P[2]
# reduce_element
a = Zk.parent(to_col([23, 20, 11]), denom=6)
a_bar_expected = Zk.parent(to_col([11, 5, 2]), denom=6)
a_bar = frp.reduce_element(a)
assert a_bar == a_bar_expected
# reduce_ANP
a = k([QQ(11, 6), QQ(20, 6), QQ(23, 6)])
a_bar_expected = k([QQ(2, 6), QQ(5, 6), QQ(11, 6)])
a_bar = frp.reduce_ANP(a)
assert a_bar == a_bar_expected
# reduce_alg_num
a = k.to_alg_num(a)
a_bar_expected = k.to_alg_num(a_bar_expected)
a_bar = frp.reduce_alg_num(a)
assert a_bar == a_bar_expected
def test_issue_23402():
k = QQ.alg_field_from_poly(Poly(x ** 3 + x ** 2 - 2 * x + 8))
P = k.primes_above(3)
assert P[0].alpha.equiv(0)
|
66d48b318353d7e454bcf9425296338fdeda13735a7ef1a0a7453345738f7744 | #!/usr/bin/env python
"""
Import diagnostics. Run bin/diagnose_imports.py --help for details.
"""
from __future__ import annotations
if __name__ == "__main__":
import sys
import inspect
import builtins
import optparse
from os.path import abspath, dirname, join, normpath
this_file = abspath(__file__)
sympy_dir = join(dirname(this_file), '..', '..', '..')
sympy_dir = normpath(sympy_dir)
sys.path.insert(0, sympy_dir)
option_parser = optparse.OptionParser(
usage=
"Usage: %prog option [options]\n"
"\n"
"Import analysis for imports between SymPy modules.")
option_group = optparse.OptionGroup(
option_parser,
'Analysis options',
'Options that define what to do. Exactly one of these must be given.')
option_group.add_option(
'--problems',
help=
'Print all import problems, that is: '
'If an import pulls in a package instead of a module '
'(e.g. sympy.core instead of sympy.core.add); ' # see ##PACKAGE##
'if it imports a symbol that is already present; ' # see ##DUPLICATE##
'if it imports a symbol '
'from somewhere other than the defining module.', # see ##ORIGIN##
action='count')
option_group.add_option(
'--origins',
help=
'For each imported symbol in each module, '
'print the module that defined it. '
'(This is useful for import refactoring.)',
action='count')
option_parser.add_option_group(option_group)
option_group = optparse.OptionGroup(
option_parser,
'Sort options',
'These options define the sort order for output lines. '
'At most one of these options is allowed. '
'Unsorted output will reflect the order in which imports happened.')
option_group.add_option(
'--by-importer',
help='Sort output lines by name of importing module.',
action='count')
option_group.add_option(
'--by-origin',
help='Sort output lines by name of imported module.',
action='count')
option_parser.add_option_group(option_group)
(options, args) = option_parser.parse_args()
if args:
option_parser.error(
'Unexpected arguments %s (try %s --help)' % (args, sys.argv[0]))
if options.problems > 1:
option_parser.error('--problems must not be given more than once.')
if options.origins > 1:
option_parser.error('--origins must not be given more than once.')
if options.by_importer > 1:
option_parser.error('--by-importer must not be given more than once.')
if options.by_origin > 1:
option_parser.error('--by-origin must not be given more than once.')
options.problems = options.problems == 1
options.origins = options.origins == 1
options.by_importer = options.by_importer == 1
options.by_origin = options.by_origin == 1
if not options.problems and not options.origins:
option_parser.error(
'At least one of --problems and --origins is required')
if options.problems and options.origins:
option_parser.error(
'At most one of --problems and --origins is allowed')
if options.by_importer and options.by_origin:
option_parser.error(
'At most one of --by-importer and --by-origin is allowed')
options.by_process = not options.by_importer and not options.by_origin
builtin_import = builtins.__import__
class Definition:
"""Information about a symbol's definition."""
def __init__(self, name, value, definer):
self.name = name
self.value = value
self.definer = definer
def __hash__(self):
return hash(self.name)
def __eq__(self, other):
return self.name == other.name and self.value == other.value
def __ne__(self, other):
return not (self == other)
def __repr__(self):
return 'Definition(%s, ..., %s)' % (
repr(self.name), repr(self.definer))
# Maps each function/variable to name of module to define it
symbol_definers: dict[Definition, str] = {}
def in_module(a, b):
"""Is a the same module as or a submodule of b?"""
return a == b or a != None and b != None and a.startswith(b + '.')
def relevant(module):
"""Is module relevant for import checking?
Only imports between relevant modules will be checked."""
return in_module(module, 'sympy')
sorted_messages = []
def msg(msg, *args):
global options, sorted_messages
if options.by_process:
print(msg % args)
else:
sorted_messages.append(msg % args)
def tracking_import(module, globals=globals(), locals=[], fromlist=None, level=-1):
"""__import__ wrapper - does not change imports at all, but tracks them.
Default order is implemented by doing output directly.
All other orders are implemented by collecting output information into
a sorted list that will be emitted after all imports are processed.
Indirect imports can only occur after the requested symbol has been
imported directly (because the indirect import would not have a module
to pick the symbol up from).
So this code detects indirect imports by checking whether the symbol in
question was already imported.
Keeps the semantics of __import__ unchanged."""
global options, symbol_definers
caller_frame = inspect.getframeinfo(sys._getframe(1))
importer_filename = caller_frame.filename
importer_module = globals['__name__']
if importer_filename == caller_frame.filename:
importer_reference = '%s line %s' % (
importer_filename, str(caller_frame.lineno))
else:
importer_reference = importer_filename
result = builtin_import(module, globals, locals, fromlist, level)
importee_module = result.__name__
# We're only interested if importer and importee are in SymPy
if relevant(importer_module) and relevant(importee_module):
for symbol in result.__dict__.iterkeys():
definition = Definition(
symbol, result.__dict__[symbol], importer_module)
if definition not in symbol_definers:
symbol_definers[definition] = importee_module
if hasattr(result, '__path__'):
##PACKAGE##
# The existence of __path__ is documented in the tutorial on modules.
# Python 3.3 documents this in http://docs.python.org/3.3/reference/import.html
if options.by_origin:
msg('Error: %s (a package) is imported by %s',
module, importer_reference)
else:
msg('Error: %s contains package import %s',
importer_reference, module)
if fromlist != None:
symbol_list = fromlist
if '*' in symbol_list:
if (importer_filename.endswith('__init__.py')
or importer_filename.endswith('__init__.pyc')
or importer_filename.endswith('__init__.pyo')):
# We do not check starred imports inside __init__
# That's the normal "please copy over its imports to my namespace"
symbol_list = []
else:
symbol_list = result.__dict__.iterkeys()
for symbol in symbol_list:
if symbol not in result.__dict__:
if options.by_origin:
msg('Error: %s.%s is not defined (yet), but %s tries to import it',
importee_module, symbol, importer_reference)
else:
msg('Error: %s tries to import %s.%s, which did not define it (yet)',
importer_reference, importee_module, symbol)
else:
definition = Definition(
symbol, result.__dict__[symbol], importer_module)
symbol_definer = symbol_definers[definition]
if symbol_definer == importee_module:
##DUPLICATE##
if options.by_origin:
msg('Error: %s.%s is imported again into %s',
importee_module, symbol, importer_reference)
else:
msg('Error: %s imports %s.%s again',
importer_reference, importee_module, symbol)
else:
##ORIGIN##
if options.by_origin:
msg('Error: %s.%s is imported by %s, which should import %s.%s instead',
importee_module, symbol, importer_reference, symbol_definer, symbol)
else:
msg('Error: %s imports %s.%s but should import %s.%s instead',
importer_reference, importee_module, symbol, symbol_definer, symbol)
return result
builtins.__import__ = tracking_import
__import__('sympy')
sorted_messages.sort()
for message in sorted_messages:
print(message)
|
52417c8efc136eed6d74e3e4adb70fe39810c86669e8eafe119446eb69236c14 | # coding=utf-8
from os import walk, sep, pardir
from os.path import split, join, abspath, exists, isfile
from glob import glob
import re
import random
import ast
from sympy.testing.pytest import raises
from sympy.testing.quality_unicode import _test_this_file_encoding
# System path separator (usually slash or backslash) to be
# used with excluded files, e.g.
# exclude = set([
# "%(sep)smpmath%(sep)s" % sepd,
# ])
sepd = {"sep": sep}
# path and sympy_path
SYMPY_PATH = abspath(join(split(__file__)[0], pardir, pardir)) # go to sympy/
assert exists(SYMPY_PATH)
TOP_PATH = abspath(join(SYMPY_PATH, pardir))
BIN_PATH = join(TOP_PATH, "bin")
EXAMPLES_PATH = join(TOP_PATH, "examples")
# Error messages
message_space = "File contains trailing whitespace: %s, line %s."
message_implicit = "File contains an implicit import: %s, line %s."
message_tabs = "File contains tabs instead of spaces: %s, line %s."
message_carriage = "File contains carriage returns at end of line: %s, line %s"
message_str_raise = "File contains string exception: %s, line %s"
message_gen_raise = "File contains generic exception: %s, line %s"
message_old_raise = "File contains old-style raise statement: %s, line %s, \"%s\""
message_eof = "File does not end with a newline: %s, line %s"
message_multi_eof = "File ends with more than 1 newline: %s, line %s"
message_test_suite_def = "Function should start with 'test_' or '_': %s, line %s"
message_duplicate_test = "This is a duplicate test function: %s, line %s"
message_self_assignments = "File contains assignments to self/cls: %s, line %s."
message_func_is = "File contains '.func is': %s, line %s."
message_bare_expr = "File contains bare expression: %s, line %s."
implicit_test_re = re.compile(r'^\s*(>>> )?(\.\.\. )?from .* import .*\*')
str_raise_re = re.compile(
r'^\s*(>>> )?(\.\.\. )?raise(\s+(\'|\")|\s*(\(\s*)+(\'|\"))')
gen_raise_re = re.compile(
r'^\s*(>>> )?(\.\.\. )?raise(\s+Exception|\s*(\(\s*)+Exception)')
old_raise_re = re.compile(r'^\s*(>>> )?(\.\.\. )?raise((\s*\(\s*)|\s+)\w+\s*,')
test_suite_def_re = re.compile(r'^def\s+(?!(_|test))[^(]*\(\s*\)\s*:$')
test_ok_def_re = re.compile(r'^def\s+test_.*:$')
test_file_re = re.compile(r'.*[/\\]test_.*\.py$')
func_is_re = re.compile(r'\.\s*func\s+is')
def tab_in_leading(s):
"""Returns True if there are tabs in the leading whitespace of a line,
including the whitespace of docstring code samples."""
n = len(s) - len(s.lstrip())
if not s[n:n + 3] in ['...', '>>>']:
check = s[:n]
else:
smore = s[n + 3:]
check = s[:n] + smore[:len(smore) - len(smore.lstrip())]
return not (check.expandtabs() == check)
def find_self_assignments(s):
"""Returns a list of "bad" assignments: if there are instances
of assigning to the first argument of the class method (except
for staticmethod's).
"""
t = [n for n in ast.parse(s).body if isinstance(n, ast.ClassDef)]
bad = []
for c in t:
for n in c.body:
if not isinstance(n, ast.FunctionDef):
continue
if any(d.id == 'staticmethod'
for d in n.decorator_list if isinstance(d, ast.Name)):
continue
if n.name == '__new__':
continue
if not n.args.args:
continue
first_arg = n.args.args[0].arg
for m in ast.walk(n):
if isinstance(m, ast.Assign):
for a in m.targets:
if isinstance(a, ast.Name) and a.id == first_arg:
bad.append(m)
elif (isinstance(a, ast.Tuple) and
any(q.id == first_arg for q in a.elts
if isinstance(q, ast.Name))):
bad.append(m)
return bad
def check_directory_tree(base_path, file_check, exclusions=set(), pattern="*.py"):
"""
Checks all files in the directory tree (with base_path as starting point)
with the file_check function provided, skipping files that contain
any of the strings in the set provided by exclusions.
"""
if not base_path:
return
for root, dirs, files in walk(base_path):
check_files(glob(join(root, pattern)), file_check, exclusions)
def check_files(files, file_check, exclusions=set(), pattern=None):
"""
Checks all files with the file_check function provided, skipping files
that contain any of the strings in the set provided by exclusions.
"""
if not files:
return
for fname in files:
if not exists(fname) or not isfile(fname):
continue
if any(ex in fname for ex in exclusions):
continue
if pattern is None or re.match(pattern, fname):
file_check(fname)
class _Visit(ast.NodeVisitor):
"""return the line number corresponding to the
line on which a bare expression appears if it is a binary op
or a comparison that is not in a with block.
EXAMPLES
========
>>> import ast
>>> class _Visit(ast.NodeVisitor):
... def visit_Expr(self, node):
... if isinstance(node.value, (ast.BinOp, ast.Compare)):
... print(node.lineno)
... def visit_With(self, node):
... pass # no checking there
...
>>> code='''x = 1 # line 1
... for i in range(3):
... x == 2 # <-- 3
... if x == 2:
... x == 3 # <-- 5
... x + 1 # <-- 6
... x = 1
... if x == 1:
... print(1)
... while x != 1:
... x == 1 # <-- 11
... with raises(TypeError):
... c == 1
... raise TypeError
... assert x == 1
... '''
>>> _Visit().visit(ast.parse(code))
3
5
6
11
"""
def visit_Expr(self, node):
if isinstance(node.value, (ast.BinOp, ast.Compare)):
assert None, message_bare_expr % ('', node.lineno)
def visit_With(self, node):
pass
BareExpr = _Visit()
def line_with_bare_expr(code):
"""return None or else 0-based line number of code on which
a bare expression appeared.
"""
tree = ast.parse(code)
try:
BareExpr.visit(tree)
except AssertionError as msg:
assert msg.args
msg = msg.args[0]
assert msg.startswith(message_bare_expr.split(':', 1)[0])
return int(msg.rsplit(' ', 1)[1].rstrip('.')) # the line number
def test_files():
"""
This test tests all files in SymPy and checks that:
o no lines contains a trailing whitespace
o no lines end with \r\n
o no line uses tabs instead of spaces
o that the file ends with a single newline
o there are no general or string exceptions
o there are no old style raise statements
o name of arg-less test suite functions start with _ or test_
o no duplicate function names that start with test_
o no assignments to self variable in class methods
o no lines contain ".func is" except in the test suite
o there is no do-nothing expression like `a == b` or `x + 1`
"""
def test(fname):
with open(fname, encoding="utf8") as test_file:
test_this_file(fname, test_file)
with open(fname, encoding='utf8') as test_file:
_test_this_file_encoding(fname, test_file)
def test_this_file(fname, test_file):
idx = None
code = test_file.read()
test_file.seek(0) # restore reader to head
py = fname if sep not in fname else fname.rsplit(sep, 1)[-1]
if py.startswith('test_'):
idx = line_with_bare_expr(code)
if idx is not None:
assert False, message_bare_expr % (fname, idx + 1)
line = None # to flag the case where there were no lines in file
tests = 0
test_set = set()
for idx, line in enumerate(test_file):
if test_file_re.match(fname):
if test_suite_def_re.match(line):
assert False, message_test_suite_def % (fname, idx + 1)
if test_ok_def_re.match(line):
tests += 1
test_set.add(line[3:].split('(')[0].strip())
if len(test_set) != tests:
assert False, message_duplicate_test % (fname, idx + 1)
if line.endswith(" \n") or line.endswith("\t\n"):
assert False, message_space % (fname, idx + 1)
if line.endswith("\r\n"):
assert False, message_carriage % (fname, idx + 1)
if tab_in_leading(line):
assert False, message_tabs % (fname, idx + 1)
if str_raise_re.search(line):
assert False, message_str_raise % (fname, idx + 1)
if gen_raise_re.search(line):
assert False, message_gen_raise % (fname, idx + 1)
if (implicit_test_re.search(line) and
not list(filter(lambda ex: ex in fname, import_exclude))):
assert False, message_implicit % (fname, idx + 1)
if func_is_re.search(line) and not test_file_re.search(fname):
assert False, message_func_is % (fname, idx + 1)
result = old_raise_re.search(line)
if result is not None:
assert False, message_old_raise % (
fname, idx + 1, result.group(2))
if line is not None:
if line == '\n' and idx > 0:
assert False, message_multi_eof % (fname, idx + 1)
elif not line.endswith('\n'):
# eof newline check
assert False, message_eof % (fname, idx + 1)
# Files to test at top level
top_level_files = [join(TOP_PATH, file) for file in [
"isympy.py",
"build.py",
"setup.py",
"setupegg.py",
]]
# Files to exclude from all tests
exclude = {
"%(sep)ssympy%(sep)sparsing%(sep)sautolev%(sep)s_antlr%(sep)sautolevparser.py" % sepd,
"%(sep)ssympy%(sep)sparsing%(sep)sautolev%(sep)s_antlr%(sep)sautolevlexer.py" % sepd,
"%(sep)ssympy%(sep)sparsing%(sep)sautolev%(sep)s_antlr%(sep)sautolevlistener.py" % sepd,
"%(sep)ssympy%(sep)sparsing%(sep)slatex%(sep)s_antlr%(sep)slatexparser.py" % sepd,
"%(sep)ssympy%(sep)sparsing%(sep)slatex%(sep)s_antlr%(sep)slatexlexer.py" % sepd,
}
# Files to exclude from the implicit import test
import_exclude = {
# glob imports are allowed in top-level __init__.py:
"%(sep)ssympy%(sep)s__init__.py" % sepd,
# these __init__.py should be fixed:
# XXX: not really, they use useful import pattern (DRY)
"%(sep)svector%(sep)s__init__.py" % sepd,
"%(sep)smechanics%(sep)s__init__.py" % sepd,
"%(sep)squantum%(sep)s__init__.py" % sepd,
"%(sep)spolys%(sep)s__init__.py" % sepd,
"%(sep)spolys%(sep)sdomains%(sep)s__init__.py" % sepd,
# interactive SymPy executes ``from sympy import *``:
"%(sep)sinteractive%(sep)ssession.py" % sepd,
# isympy.py executes ``from sympy import *``:
"%(sep)sisympy.py" % sepd,
# these two are import timing tests:
"%(sep)sbin%(sep)ssympy_time.py" % sepd,
"%(sep)sbin%(sep)ssympy_time_cache.py" % sepd,
# Taken from Python stdlib:
"%(sep)sparsing%(sep)ssympy_tokenize.py" % sepd,
# this one should be fixed:
"%(sep)splotting%(sep)spygletplot%(sep)s" % sepd,
# False positive in the docstring
"%(sep)sbin%(sep)stest_external_imports.py" % sepd,
"%(sep)sbin%(sep)stest_submodule_imports.py" % sepd,
# These are deprecated stubs that can be removed at some point:
"%(sep)sutilities%(sep)sruntests.py" % sepd,
"%(sep)sutilities%(sep)spytest.py" % sepd,
"%(sep)sutilities%(sep)srandtest.py" % sepd,
"%(sep)sutilities%(sep)stmpfiles.py" % sepd,
"%(sep)sutilities%(sep)squality_unicode.py" % sepd,
}
check_files(top_level_files, test)
check_directory_tree(BIN_PATH, test, {"~", ".pyc", ".sh", ".mjs"}, "*")
check_directory_tree(SYMPY_PATH, test, exclude)
check_directory_tree(EXAMPLES_PATH, test, exclude)
def _with_space(c):
# return c with a random amount of leading space
return random.randint(0, 10)*' ' + c
def test_raise_statement_regular_expression():
candidates_ok = [
"some text # raise Exception, 'text'",
"raise ValueError('text') # raise Exception, 'text'",
"raise ValueError('text')",
"raise ValueError",
"raise ValueError('text')",
"raise ValueError('text') #,",
# Talking about an exception in a docstring
''''"""This function will raise ValueError, except when it doesn't"""''',
"raise (ValueError('text')",
]
str_candidates_fail = [
"raise 'exception'",
"raise 'Exception'",
'raise "exception"',
'raise "Exception"',
"raise 'ValueError'",
]
gen_candidates_fail = [
"raise Exception('text') # raise Exception, 'text'",
"raise Exception('text')",
"raise Exception",
"raise Exception('text')",
"raise Exception('text') #,",
"raise Exception, 'text'",
"raise Exception, 'text' # raise Exception('text')",
"raise Exception, 'text' # raise Exception, 'text'",
">>> raise Exception, 'text'",
">>> raise Exception, 'text' # raise Exception('text')",
">>> raise Exception, 'text' # raise Exception, 'text'",
]
old_candidates_fail = [
"raise Exception, 'text'",
"raise Exception, 'text' # raise Exception('text')",
"raise Exception, 'text' # raise Exception, 'text'",
">>> raise Exception, 'text'",
">>> raise Exception, 'text' # raise Exception('text')",
">>> raise Exception, 'text' # raise Exception, 'text'",
"raise ValueError, 'text'",
"raise ValueError, 'text' # raise Exception('text')",
"raise ValueError, 'text' # raise Exception, 'text'",
">>> raise ValueError, 'text'",
">>> raise ValueError, 'text' # raise Exception('text')",
">>> raise ValueError, 'text' # raise Exception, 'text'",
"raise(ValueError,",
"raise (ValueError,",
"raise( ValueError,",
"raise ( ValueError,",
"raise(ValueError ,",
"raise (ValueError ,",
"raise( ValueError ,",
"raise ( ValueError ,",
]
for c in candidates_ok:
assert str_raise_re.search(_with_space(c)) is None, c
assert gen_raise_re.search(_with_space(c)) is None, c
assert old_raise_re.search(_with_space(c)) is None, c
for c in str_candidates_fail:
assert str_raise_re.search(_with_space(c)) is not None, c
for c in gen_candidates_fail:
assert gen_raise_re.search(_with_space(c)) is not None, c
for c in old_candidates_fail:
assert old_raise_re.search(_with_space(c)) is not None, c
def test_implicit_imports_regular_expression():
candidates_ok = [
"from sympy import something",
">>> from sympy import something",
"from sympy.somewhere import something",
">>> from sympy.somewhere import something",
"import sympy",
">>> import sympy",
"import sympy.something.something",
"... import sympy",
"... import sympy.something.something",
"... from sympy import something",
"... from sympy.somewhere import something",
">> from sympy import *", # To allow 'fake' docstrings
"# from sympy import *",
"some text # from sympy import *",
]
candidates_fail = [
"from sympy import *",
">>> from sympy import *",
"from sympy.somewhere import *",
">>> from sympy.somewhere import *",
"... from sympy import *",
"... from sympy.somewhere import *",
]
for c in candidates_ok:
assert implicit_test_re.search(_with_space(c)) is None, c
for c in candidates_fail:
assert implicit_test_re.search(_with_space(c)) is not None, c
def test_test_suite_defs():
candidates_ok = [
" def foo():\n",
"def foo(arg):\n",
"def _foo():\n",
"def test_foo():\n",
]
candidates_fail = [
"def foo():\n",
"def foo() :\n",
"def foo( ):\n",
"def foo():\n",
]
for c in candidates_ok:
assert test_suite_def_re.search(c) is None, c
for c in candidates_fail:
assert test_suite_def_re.search(c) is not None, c
def test_test_duplicate_defs():
candidates_ok = [
"def foo():\ndef foo():\n",
"def test():\ndef test_():\n",
"def test_():\ndef test__():\n",
]
candidates_fail = [
"def test_():\ndef test_ ():\n",
"def test_1():\ndef test_1():\n",
]
ok = (None, 'check')
def check(file):
tests = 0
test_set = set()
for idx, line in enumerate(file.splitlines()):
if test_ok_def_re.match(line):
tests += 1
test_set.add(line[3:].split('(')[0].strip())
if len(test_set) != tests:
return False, message_duplicate_test % ('check', idx + 1)
return None, 'check'
for c in candidates_ok:
assert check(c) == ok
for c in candidates_fail:
assert check(c) != ok
def test_find_self_assignments():
candidates_ok = [
"class A(object):\n def foo(self, arg): arg = self\n",
"class A(object):\n def foo(self, arg): self.prop = arg\n",
"class A(object):\n def foo(self, arg): obj, obj2 = arg, self\n",
"class A(object):\n @classmethod\n def bar(cls, arg): arg = cls\n",
"class A(object):\n def foo(var, arg): arg = var\n",
]
candidates_fail = [
"class A(object):\n def foo(self, arg): self = arg\n",
"class A(object):\n def foo(self, arg): obj, self = arg, arg\n",
"class A(object):\n def foo(self, arg):\n if arg: self = arg",
"class A(object):\n @classmethod\n def foo(cls, arg): cls = arg\n",
"class A(object):\n def foo(var, arg): var = arg\n",
]
for c in candidates_ok:
assert find_self_assignments(c) == []
for c in candidates_fail:
assert find_self_assignments(c) != []
def test_test_unicode_encoding():
unicode_whitelist = ['foo']
unicode_strict_whitelist = ['bar']
fname = 'abc'
test_file = ['α']
raises(AssertionError, lambda: _test_this_file_encoding(
fname, test_file, unicode_whitelist, unicode_strict_whitelist))
fname = 'abc'
test_file = ['abc']
_test_this_file_encoding(
fname, test_file, unicode_whitelist, unicode_strict_whitelist)
fname = 'foo'
test_file = ['abc']
raises(AssertionError, lambda: _test_this_file_encoding(
fname, test_file, unicode_whitelist, unicode_strict_whitelist))
fname = 'bar'
test_file = ['abc']
_test_this_file_encoding(
fname, test_file, unicode_whitelist, unicode_strict_whitelist)
|
32b37b19593bff3156c0349f221b43dc58281609851a54e98ce9e723374fd35d | from sympy.holonomic import (DifferentialOperator, HolonomicFunction,
DifferentialOperators, from_hyper,
from_meijerg, expr_to_holonomic)
from sympy.holonomic.recurrence import RecurrenceOperators, HolonomicSequence
from sympy.core import EulerGamma
from sympy.core.numbers import (I, Rational, pi)
from sympy.core.singleton import S
from sympy.core.symbol import (Symbol, symbols)
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.elementary.hyperbolic import (asinh, cosh)
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (cos, sin)
from sympy.functions.special.bessel import besselj
from sympy.functions.special.beta_functions import beta
from sympy.functions.special.error_functions import (Ci, Si, erf, erfc)
from sympy.functions.special.gamma_functions import gamma
from sympy.functions.special.hyper import (hyper, meijerg)
from sympy.printing.str import sstr
from sympy.series.order import O
from sympy.simplify.hyperexpand import hyperexpand
from sympy.polys.domains.integerring import ZZ
from sympy.polys.domains.rationalfield import QQ
from sympy.polys.domains.realfield import RR
def test_DifferentialOperator():
x = symbols('x')
R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
assert Dx == R.derivative_operator
assert Dx == DifferentialOperator([R.base.zero, R.base.one], R)
assert x * Dx + x**2 * Dx**2 == DifferentialOperator([0, x, x**2], R)
assert (x**2 + 1) + Dx + x * \
Dx**5 == DifferentialOperator([x**2 + 1, 1, 0, 0, 0, x], R)
assert (x * Dx + x**2 + 1 - Dx * (x**3 + x))**3 == (-48 * x**6) + \
(-57 * x**7) * Dx + (-15 * x**8) * Dx**2 + (-x**9) * Dx**3
p = (x * Dx**2 + (x**2 + 3) * Dx**5) * (Dx + x**2)
q = (2 * x) + (4 * x**2) * Dx + (x**3) * Dx**2 + \
(20 * x**2 + x + 60) * Dx**3 + (10 * x**3 + 30 * x) * Dx**4 + \
(x**4 + 3 * x**2) * Dx**5 + (x**2 + 3) * Dx**6
assert p == q
def test_HolonomicFunction_addition():
x = symbols('x')
R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
p = HolonomicFunction(Dx**2 * x, x)
q = HolonomicFunction((2) * Dx + (x) * Dx**2, x)
assert p == q
p = HolonomicFunction(x * Dx + 1, x)
q = HolonomicFunction(Dx + 1, x)
r = HolonomicFunction((x - 2) + (x**2 - 2) * Dx + (x**2 - x) * Dx**2, x)
assert p + q == r
p = HolonomicFunction(x * Dx + Dx**2 * (x**2 + 2), x)
q = HolonomicFunction(Dx - 3, x)
r = HolonomicFunction((-54 * x**2 - 126 * x - 150) + (-135 * x**3 - 252 * x**2 - 270 * x + 140) * Dx +\
(-27 * x**4 - 24 * x**2 + 14 * x - 150) * Dx**2 + \
(9 * x**4 + 15 * x**3 + 38 * x**2 + 30 * x +40) * Dx**3, x)
assert p + q == r
p = HolonomicFunction(Dx**5 - 1, x)
q = HolonomicFunction(x**3 + Dx, x)
r = HolonomicFunction((-x**18 + 45*x**14 - 525*x**10 + 1575*x**6 - x**3 - 630*x**2) + \
(-x**15 + 30*x**11 - 195*x**7 + 210*x**3 - 1)*Dx + (x**18 - 45*x**14 + 525*x**10 - \
1575*x**6 + x**3 + 630*x**2)*Dx**5 + (x**15 - 30*x**11 + 195*x**7 - 210*x**3 + \
1)*Dx**6, x)
assert p+q == r
p = x**2 + 3*x + 8
q = x**3 - 7*x + 5
p = p*Dx - p.diff()
q = q*Dx - q.diff()
r = HolonomicFunction(p, x) + HolonomicFunction(q, x)
s = HolonomicFunction((6*x**2 + 18*x + 14) + (-4*x**3 - 18*x**2 - 62*x + 10)*Dx +\
(x**4 + 6*x**3 + 31*x**2 - 10*x - 71)*Dx**2, x)
assert r == s
def test_HolonomicFunction_multiplication():
x = symbols('x')
R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
p = HolonomicFunction(Dx+x+x*Dx**2, x)
q = HolonomicFunction(x*Dx+Dx*x+Dx**2, x)
r = HolonomicFunction((8*x**6 + 4*x**4 + 6*x**2 + 3) + (24*x**5 - 4*x**3 + 24*x)*Dx + \
(8*x**6 + 20*x**4 + 12*x**2 + 2)*Dx**2 + (8*x**5 + 4*x**3 + 4*x)*Dx**3 + \
(2*x**4 + x**2)*Dx**4, x)
assert p*q == r
p = HolonomicFunction(Dx**2+1, x)
q = HolonomicFunction(Dx-1, x)
r = HolonomicFunction((2) + (-2)*Dx + (1)*Dx**2, x)
assert p*q == r
p = HolonomicFunction(Dx**2+1+x+Dx, x)
q = HolonomicFunction((Dx*x-1)**2, x)
r = HolonomicFunction((4*x**7 + 11*x**6 + 16*x**5 + 4*x**4 - 6*x**3 - 7*x**2 - 8*x - 2) + \
(8*x**6 + 26*x**5 + 24*x**4 - 3*x**3 - 11*x**2 - 6*x - 2)*Dx + \
(8*x**6 + 18*x**5 + 15*x**4 - 3*x**3 - 6*x**2 - 6*x - 2)*Dx**2 + (8*x**5 + \
10*x**4 + 6*x**3 - 2*x**2 - 4*x)*Dx**3 + (4*x**5 + 3*x**4 - x**2)*Dx**4, x)
assert p*q == r
p = HolonomicFunction(x*Dx**2-1, x)
q = HolonomicFunction(Dx*x-x, x)
r = HolonomicFunction((x - 3) + (-2*x + 2)*Dx + (x)*Dx**2, x)
assert p*q == r
def test_addition_initial_condition():
x = symbols('x')
R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
p = HolonomicFunction(Dx-1, x, 0, [3])
q = HolonomicFunction(Dx**2+1, x, 0, [1, 0])
r = HolonomicFunction(-1 + Dx - Dx**2 + Dx**3, x, 0, [4, 3, 2])
assert p + q == r
p = HolonomicFunction(Dx - x + Dx**2, x, 0, [1, 2])
q = HolonomicFunction(Dx**2 + x, x, 0, [1, 0])
r = HolonomicFunction((-x**4 - x**3/4 - x**2 + Rational(1, 4)) + (x**3 + x**2/4 + x*Rational(3, 4) + 1)*Dx + \
(x*Rational(-3, 2) + Rational(7, 4))*Dx**2 + (x**2 - x*Rational(7, 4) + Rational(1, 4))*Dx**3 + (x**2 + x/4 + S.Half)*Dx**4, x, 0, [2, 2, -2, 2])
assert p + q == r
p = HolonomicFunction(Dx**2 + 4*x*Dx + x**2, x, 0, [3, 4])
q = HolonomicFunction(Dx**2 + 1, x, 0, [1, 1])
r = HolonomicFunction((x**6 + 2*x**4 - 5*x**2 - 6) + (4*x**5 + 36*x**3 - 32*x)*Dx + \
(x**6 + 3*x**4 + 5*x**2 - 9)*Dx**2 + (4*x**5 + 36*x**3 - 32*x)*Dx**3 + (x**4 + \
10*x**2 - 3)*Dx**4, x, 0, [4, 5, -1, -17])
assert p + q == r
q = HolonomicFunction(Dx**3 + x, x, 2, [3, 0, 1])
p = HolonomicFunction(Dx - 1, x, 2, [1])
r = HolonomicFunction((-x**2 - x + 1) + (x**2 + x)*Dx + (-x - 2)*Dx**3 + \
(x + 1)*Dx**4, x, 2, [4, 1, 2, -5 ])
assert p + q == r
p = expr_to_holonomic(sin(x))
q = expr_to_holonomic(1/x, x0=1)
r = HolonomicFunction((x**2 + 6) + (x**3 + 2*x)*Dx + (x**2 + 6)*Dx**2 + (x**3 + 2*x)*Dx**3, \
x, 1, [sin(1) + 1, -1 + cos(1), -sin(1) + 2])
assert p + q == r
C_1 = symbols('C_1')
p = expr_to_holonomic(sqrt(x))
q = expr_to_holonomic(sqrt(x**2-x))
r = (p + q).to_expr().subs(C_1, -I/2).expand()
assert r == I*sqrt(x)*sqrt(-x + 1) + sqrt(x)
def test_multiplication_initial_condition():
x = symbols('x')
R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
p = HolonomicFunction(Dx**2 + x*Dx - 1, x, 0, [3, 1])
q = HolonomicFunction(Dx**2 + 1, x, 0, [1, 1])
r = HolonomicFunction((x**4 + 14*x**2 + 60) + 4*x*Dx + (x**4 + 9*x**2 + 20)*Dx**2 + \
(2*x**3 + 18*x)*Dx**3 + (x**2 + 10)*Dx**4, x, 0, [3, 4, 2, 3])
assert p * q == r
p = HolonomicFunction(Dx**2 + x, x, 0, [1, 0])
q = HolonomicFunction(Dx**3 - x**2, x, 0, [3, 3, 3])
r = HolonomicFunction((x**8 - 37*x**7/27 - 10*x**6/27 - 164*x**5/9 - 184*x**4/9 + \
160*x**3/27 + 404*x**2/9 + 8*x + Rational(40, 3)) + (6*x**7 - 128*x**6/9 - 98*x**5/9 - 28*x**4/9 + \
8*x**3/9 + 28*x**2 + x*Rational(40, 9) - 40)*Dx + (3*x**6 - 82*x**5/9 + 76*x**4/9 + 4*x**3/3 + \
220*x**2/9 - x*Rational(80, 3))*Dx**2 + (-2*x**6 + 128*x**5/27 - 2*x**4/3 -80*x**2/9 + Rational(200, 9))*Dx**3 + \
(3*x**5 - 64*x**4/9 - 28*x**3/9 + 6*x**2 - x*Rational(20, 9) - Rational(20, 3))*Dx**4 + (-4*x**3 + 64*x**2/9 + \
x*Rational(8, 3))*Dx**5 + (x**4 - 64*x**3/27 - 4*x**2/3 + Rational(20, 9))*Dx**6, x, 0, [3, 3, 3, -3, -12, -24])
assert p * q == r
p = HolonomicFunction(Dx - 1, x, 0, [2])
q = HolonomicFunction(Dx**2 + 1, x, 0, [0, 1])
r = HolonomicFunction(2 -2*Dx + Dx**2, x, 0, [0, 2])
assert p * q == r
q = HolonomicFunction(x*Dx**2 + 1 + 2*Dx, x, 0,[0, 1])
r = HolonomicFunction((x - 1) + (-2*x + 2)*Dx + x*Dx**2, x, 0, [0, 2])
assert p * q == r
p = HolonomicFunction(Dx**2 - 1, x, 0, [1, 3])
q = HolonomicFunction(Dx**3 + 1, x, 0, [1, 2, 1])
r = HolonomicFunction(6*Dx + 3*Dx**2 + 2*Dx**3 - 3*Dx**4 + Dx**6, x, 0, [1, 5, 14, 17, 17, 2])
assert p * q == r
p = expr_to_holonomic(sin(x))
q = expr_to_holonomic(1/x, x0=1)
r = HolonomicFunction(x + 2*Dx + x*Dx**2, x, 1, [sin(1), -sin(1) + cos(1)])
assert p * q == r
p = expr_to_holonomic(sqrt(x))
q = expr_to_holonomic(sqrt(x**2-x))
r = (p * q).to_expr()
assert r == I*x*sqrt(-x + 1)
def test_HolonomicFunction_composition():
x = symbols('x')
R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
p = HolonomicFunction(Dx-1, x).composition(x**2+x)
r = HolonomicFunction((-2*x - 1) + Dx, x)
assert p == r
p = HolonomicFunction(Dx**2+1, x).composition(x**5+x**2+1)
r = HolonomicFunction((125*x**12 + 150*x**9 + 60*x**6 + 8*x**3) + (-20*x**3 - 2)*Dx + \
(5*x**4 + 2*x)*Dx**2, x)
assert p == r
p = HolonomicFunction(Dx**2*x+x, x).composition(2*x**3+x**2+1)
r = HolonomicFunction((216*x**9 + 324*x**8 + 180*x**7 + 152*x**6 + 112*x**5 + \
36*x**4 + 4*x**3) + (24*x**4 + 16*x**3 + 3*x**2 - 6*x - 1)*Dx + (6*x**5 + 5*x**4 + \
x**3 + 3*x**2 + x)*Dx**2, x)
assert p == r
p = HolonomicFunction(Dx**2+1, x).composition(1-x**2)
r = HolonomicFunction((4*x**3) - Dx + x*Dx**2, x)
assert p == r
p = HolonomicFunction(Dx**2+1, x).composition(x - 2/(x**2 + 1))
r = HolonomicFunction((x**12 + 6*x**10 + 12*x**9 + 15*x**8 + 48*x**7 + 68*x**6 + \
72*x**5 + 111*x**4 + 112*x**3 + 54*x**2 + 12*x + 1) + (12*x**8 + 32*x**6 + \
24*x**4 - 4)*Dx + (x**12 + 6*x**10 + 4*x**9 + 15*x**8 + 16*x**7 + 20*x**6 + 24*x**5+ \
15*x**4 + 16*x**3 + 6*x**2 + 4*x + 1)*Dx**2, x)
assert p == r
def test_from_hyper():
x = symbols('x')
R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
p = hyper([1, 1], [Rational(3, 2)], x**2/4)
q = HolonomicFunction((4*x) + (5*x**2 - 8)*Dx + (x**3 - 4*x)*Dx**2, x, 1, [2*sqrt(3)*pi/9, -4*sqrt(3)*pi/27 + Rational(4, 3)])
r = from_hyper(p)
assert r == q
p = from_hyper(hyper([1], [Rational(3, 2)], x**2/4))
q = HolonomicFunction(-x + (-x**2/2 + 2)*Dx + x*Dx**2, x)
# x0 = 1
y0 = '[sqrt(pi)*exp(1/4)*erf(1/2), -sqrt(pi)*exp(1/4)*erf(1/2)/2 + 1]'
assert sstr(p.y0) == y0
assert q.annihilator == p.annihilator
def test_from_meijerg():
x = symbols('x')
R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
p = from_meijerg(meijerg(([], [Rational(3, 2)]), ([S.Half], [S.Half, 1]), x))
q = HolonomicFunction(x/2 - Rational(1, 4) + (-x**2 + x/4)*Dx + x**2*Dx**2 + x**3*Dx**3, x, 1, \
[1/sqrt(pi), 1/(2*sqrt(pi)), -1/(4*sqrt(pi))])
assert p == q
p = from_meijerg(meijerg(([], []), ([0], []), x))
q = HolonomicFunction(1 + Dx, x, 0, [1])
assert p == q
p = from_meijerg(meijerg(([1], []), ([S.Half], [0]), x))
q = HolonomicFunction((x + S.Half)*Dx + x*Dx**2, x, 1, [sqrt(pi)*erf(1), exp(-1)])
assert p == q
p = from_meijerg(meijerg(([0], [1]), ([0], []), 2*x**2))
q = HolonomicFunction((3*x**2 - 1)*Dx + x**3*Dx**2, x, 1, [-exp(Rational(-1, 2)) + 1, -exp(Rational(-1, 2))])
assert p == q
def test_to_Sequence():
x = symbols('x')
R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
n = symbols('n', integer=True)
_, Sn = RecurrenceOperators(ZZ.old_poly_ring(n), 'Sn')
p = HolonomicFunction(x**2*Dx**4 + x + Dx, x).to_sequence()
q = [(HolonomicSequence(1 + (n + 2)*Sn**2 + (n**4 + 6*n**3 + 11*n**2 + 6*n)*Sn**3), 0, 1)]
assert p == q
p = HolonomicFunction(x**2*Dx**4 + x**3 + Dx**2, x).to_sequence()
q = [(HolonomicSequence(1 + (n**4 + 14*n**3 + 72*n**2 + 163*n + 140)*Sn**5), 0, 0)]
assert p == q
p = HolonomicFunction(x**3*Dx**4 + 1 + Dx**2, x).to_sequence()
q = [(HolonomicSequence(1 + (n**4 - 2*n**3 - n**2 + 2*n)*Sn + (n**2 + 3*n + 2)*Sn**2), 0, 0)]
assert p == q
p = HolonomicFunction(3*x**3*Dx**4 + 2*x*Dx + x*Dx**3, x).to_sequence()
q = [(HolonomicSequence(2*n + (3*n**4 - 6*n**3 - 3*n**2 + 6*n)*Sn + (n**3 + 3*n**2 + 2*n)*Sn**2), 0, 1)]
assert p == q
def test_to_Sequence_Initial_Coniditons():
x = symbols('x')
R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
n = symbols('n', integer=True)
_, Sn = RecurrenceOperators(QQ.old_poly_ring(n), 'Sn')
p = HolonomicFunction(Dx - 1, x, 0, [1]).to_sequence()
q = [(HolonomicSequence(-1 + (n + 1)*Sn, 1), 0)]
assert p == q
p = HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).to_sequence()
q = [(HolonomicSequence(1 + (n**2 + 3*n + 2)*Sn**2, [0, 1]), 0)]
assert p == q
p = HolonomicFunction(Dx**2 + 1 + x**3*Dx, x, 0, [2, 3]).to_sequence()
q = [(HolonomicSequence(n + Sn**2 + (n**2 + 7*n + 12)*Sn**4, [2, 3, -1, Rational(-1, 2), Rational(1, 12)]), 1)]
assert p == q
p = HolonomicFunction(x**3*Dx**5 + 1 + Dx, x).to_sequence()
q = [(HolonomicSequence(1 + (n + 1)*Sn + (n**5 - 5*n**3 + 4*n)*Sn**2), 0, 3)]
assert p == q
C_0, C_1, C_2, C_3 = symbols('C_0, C_1, C_2, C_3')
p = expr_to_holonomic(log(1+x**2))
q = [(HolonomicSequence(n**2 + (n**2 + 2*n)*Sn**2, [0, 0, C_2]), 0, 1)]
assert p.to_sequence() == q
p = p.diff()
q = [(HolonomicSequence((n + 2) + (n + 2)*Sn**2, [C_0, 0]), 1, 0)]
assert p.to_sequence() == q
p = expr_to_holonomic(erf(x) + x).to_sequence()
q = [(HolonomicSequence((2*n**2 - 2*n) + (n**3 + 2*n**2 - n - 2)*Sn**2, [0, 1 + 2/sqrt(pi), 0, C_3]), 0, 2)]
assert p == q
def test_series():
x = symbols('x')
R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
p = HolonomicFunction(Dx**2 + 2*x*Dx, x, 0, [0, 1]).series(n=10)
q = x - x**3/3 + x**5/10 - x**7/42 + x**9/216 + O(x**10)
assert p == q
p = HolonomicFunction(Dx - 1, x).composition(x**2, 0, [1]) # e^(x**2)
q = HolonomicFunction(Dx**2 + 1, x, 0, [1, 0]) # cos(x)
r = (p * q).series(n=10) # expansion of cos(x) * exp(x**2)
s = 1 + x**2/2 + x**4/24 - 31*x**6/720 - 179*x**8/8064 + O(x**10)
assert r == s
t = HolonomicFunction((1 + x)*Dx**2 + Dx, x, 0, [0, 1]) # log(1 + x)
r = (p * t + q).series(n=10)
s = 1 + x - x**2 + 4*x**3/3 - 17*x**4/24 + 31*x**5/30 - 481*x**6/720 +\
71*x**7/105 - 20159*x**8/40320 + 379*x**9/840 + O(x**10)
assert r == s
p = HolonomicFunction((6+6*x-3*x**2) - (10*x-3*x**2-3*x**3)*Dx + \
(4-6*x**3+2*x**4)*Dx**2, x, 0, [0, 1]).series(n=7)
q = x + x**3/6 - 3*x**4/16 + x**5/20 - 23*x**6/960 + O(x**7)
assert p == q
p = HolonomicFunction((6+6*x-3*x**2) - (10*x-3*x**2-3*x**3)*Dx + \
(4-6*x**3+2*x**4)*Dx**2, x, 0, [1, 0]).series(n=7)
q = 1 - 3*x**2/4 - x**3/4 - 5*x**4/32 - 3*x**5/40 - 17*x**6/384 + O(x**7)
assert p == q
p = expr_to_holonomic(erf(x) + x).series(n=10)
C_3 = symbols('C_3')
q = (erf(x) + x).series(n=10)
assert p.subs(C_3, -2/(3*sqrt(pi))) == q
assert expr_to_holonomic(sqrt(x**3 + x)).series(n=10) == sqrt(x**3 + x).series(n=10)
assert expr_to_holonomic((2*x - 3*x**2)**Rational(1, 3)).series() == ((2*x - 3*x**2)**Rational(1, 3)).series()
assert expr_to_holonomic(sqrt(x**2-x)).series() == (sqrt(x**2-x)).series()
assert expr_to_holonomic(cos(x)**2/x**2, y0={-2: [1, 0, -1]}).series(n=10) == (cos(x)**2/x**2).series(n=10)
assert expr_to_holonomic(cos(x)**2/x**2, x0=1).series(n=10).together() == (cos(x)**2/x**2).series(n=10, x0=1).together()
assert expr_to_holonomic(cos(x-1)**2/(x-1)**2, x0=1, y0={-2: [1, 0, -1]}).series(n=10) \
== (cos(x-1)**2/(x-1)**2).series(x0=1, n=10)
def test_evalf_euler():
x = symbols('x')
R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
# log(1+x)
p = HolonomicFunction((1 + x)*Dx**2 + Dx, x, 0, [0, 1])
# path taken is a straight line from 0 to 1, on the real axis
r = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]
s = '0.699525841805253' # approx. equal to log(2) i.e. 0.693147180559945
assert sstr(p.evalf(r, method='Euler')[-1]) == s
# path taken is a triangle 0-->1+i-->2
r = [0.1 + 0.1*I]
for i in range(9):
r.append(r[-1]+0.1+0.1*I)
for i in range(10):
r.append(r[-1]+0.1-0.1*I)
# close to the exact solution 1.09861228866811
# imaginary part also close to zero
s = '1.07530466271334 - 0.0251200594793912*I'
assert sstr(p.evalf(r, method='Euler')[-1]) == s
# sin(x)
p = HolonomicFunction(Dx**2 + 1, x, 0, [0, 1])
s = '0.905546532085401 - 6.93889390390723e-18*I'
assert sstr(p.evalf(r, method='Euler')[-1]) == s
# computing sin(pi/2) using this method
# using a linear path from 0 to pi/2
r = [0.1]
for i in range(14):
r.append(r[-1] + 0.1)
r.append(pi/2)
s = '1.08016557252834' # close to 1.0 (exact solution)
assert sstr(p.evalf(r, method='Euler')[-1]) == s
# trying different path, a rectangle (0-->i-->pi/2 + i-->pi/2)
# computing the same value sin(pi/2) using different path
r = [0.1*I]
for i in range(9):
r.append(r[-1]+0.1*I)
for i in range(15):
r.append(r[-1]+0.1)
r.append(pi/2+I)
for i in range(10):
r.append(r[-1]-0.1*I)
# close to 1.0
s = '0.976882381836257 - 1.65557671738537e-16*I'
assert sstr(p.evalf(r, method='Euler')[-1]) == s
# cos(x)
p = HolonomicFunction(Dx**2 + 1, x, 0, [1, 0])
# compute cos(pi) along 0-->pi
r = [0.05]
for i in range(61):
r.append(r[-1]+0.05)
r.append(pi)
# close to -1 (exact answer)
s = '-1.08140824719196'
assert sstr(p.evalf(r, method='Euler')[-1]) == s
# a rectangular path (0 -> i -> 2+i -> 2)
r = [0.1*I]
for i in range(9):
r.append(r[-1]+0.1*I)
for i in range(20):
r.append(r[-1]+0.1)
for i in range(10):
r.append(r[-1]-0.1*I)
p = HolonomicFunction(Dx**2 + 1, x, 0, [1,1]).evalf(r, method='Euler')
s = '0.501421652861245 - 3.88578058618805e-16*I'
assert sstr(p[-1]) == s
def test_evalf_rk4():
x = symbols('x')
R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
# log(1+x)
p = HolonomicFunction((1 + x)*Dx**2 + Dx, x, 0, [0, 1])
# path taken is a straight line from 0 to 1, on the real axis
r = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]
s = '0.693146363174626' # approx. equal to log(2) i.e. 0.693147180559945
assert sstr(p.evalf(r)[-1]) == s
# path taken is a triangle 0-->1+i-->2
r = [0.1 + 0.1*I]
for i in range(9):
r.append(r[-1]+0.1+0.1*I)
for i in range(10):
r.append(r[-1]+0.1-0.1*I)
# close to the exact solution 1.09861228866811
# imaginary part also close to zero
s = '1.098616 + 1.36083e-7*I'
assert sstr(p.evalf(r)[-1].n(7)) == s
# sin(x)
p = HolonomicFunction(Dx**2 + 1, x, 0, [0, 1])
s = '0.90929463522785 + 1.52655665885959e-16*I'
assert sstr(p.evalf(r)[-1]) == s
# computing sin(pi/2) using this method
# using a linear path from 0 to pi/2
r = [0.1]
for i in range(14):
r.append(r[-1] + 0.1)
r.append(pi/2)
s = '0.999999895088917' # close to 1.0 (exact solution)
assert sstr(p.evalf(r)[-1]) == s
# trying different path, a rectangle (0-->i-->pi/2 + i-->pi/2)
# computing the same value sin(pi/2) using different path
r = [0.1*I]
for i in range(9):
r.append(r[-1]+0.1*I)
for i in range(15):
r.append(r[-1]+0.1)
r.append(pi/2+I)
for i in range(10):
r.append(r[-1]-0.1*I)
# close to 1.0
s = '1.00000003415141 + 6.11940487991086e-16*I'
assert sstr(p.evalf(r)[-1]) == s
# cos(x)
p = HolonomicFunction(Dx**2 + 1, x, 0, [1, 0])
# compute cos(pi) along 0-->pi
r = [0.05]
for i in range(61):
r.append(r[-1]+0.05)
r.append(pi)
# close to -1 (exact answer)
s = '-0.999999993238714'
assert sstr(p.evalf(r)[-1]) == s
# a rectangular path (0 -> i -> 2+i -> 2)
r = [0.1*I]
for i in range(9):
r.append(r[-1]+0.1*I)
for i in range(20):
r.append(r[-1]+0.1)
for i in range(10):
r.append(r[-1]-0.1*I)
p = HolonomicFunction(Dx**2 + 1, x, 0, [1,1]).evalf(r)
s = '0.493152791638442 - 1.41553435639707e-15*I'
assert sstr(p[-1]) == s
def test_expr_to_holonomic():
x = symbols('x')
R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
p = expr_to_holonomic((sin(x)/x)**2)
q = HolonomicFunction(8*x + (4*x**2 + 6)*Dx + 6*x*Dx**2 + x**2*Dx**3, x, 0, \
[1, 0, Rational(-2, 3)])
assert p == q
p = expr_to_holonomic(1/(1+x**2)**2)
q = HolonomicFunction(4*x + (x**2 + 1)*Dx, x, 0, [1])
assert p == q
p = expr_to_holonomic(exp(x)*sin(x)+x*log(1+x))
q = HolonomicFunction((2*x**3 + 10*x**2 + 20*x + 18) + (-2*x**4 - 10*x**3 - 20*x**2 \
- 18*x)*Dx + (2*x**5 + 6*x**4 + 7*x**3 + 8*x**2 + 10*x - 4)*Dx**2 + \
(-2*x**5 - 5*x**4 - 2*x**3 + 2*x**2 - x + 4)*Dx**3 + (x**5 + 2*x**4 - x**3 - \
7*x**2/2 + x + Rational(5, 2))*Dx**4, x, 0, [0, 1, 4, -1])
assert p == q
p = expr_to_holonomic(x*exp(x)+cos(x)+1)
q = HolonomicFunction((-x - 3)*Dx + (x + 2)*Dx**2 + (-x - 3)*Dx**3 + (x + 2)*Dx**4, x, \
0, [2, 1, 1, 3])
assert p == q
assert (x*exp(x)+cos(x)+1).series(n=10) == p.series(n=10)
p = expr_to_holonomic(log(1 + x)**2 + 1)
q = HolonomicFunction(Dx + (3*x + 3)*Dx**2 + (x**2 + 2*x + 1)*Dx**3, x, 0, [1, 0, 2])
assert p == q
p = expr_to_holonomic(erf(x)**2 + x)
q = HolonomicFunction((8*x**4 - 2*x**2 + 2)*Dx**2 + (6*x**3 - x/2)*Dx**3 + \
(x**2+ Rational(1, 4))*Dx**4, x, 0, [0, 1, 8/pi, 0])
assert p == q
p = expr_to_holonomic(cosh(x)*x)
q = HolonomicFunction((-x**2 + 2) -2*x*Dx + x**2*Dx**2, x, 0, [0, 1])
assert p == q
p = expr_to_holonomic(besselj(2, x))
q = HolonomicFunction((x**2 - 4) + x*Dx + x**2*Dx**2, x, 0, [0, 0])
assert p == q
p = expr_to_holonomic(besselj(0, x) + exp(x))
q = HolonomicFunction((-x**2 - x/2 + S.Half) + (x**2 - x/2 - Rational(3, 2))*Dx + (-x**2 + x/2 + 1)*Dx**2 +\
(x**2 + x/2)*Dx**3, x, 0, [2, 1, S.Half])
assert p == q
p = expr_to_holonomic(sin(x)**2/x)
q = HolonomicFunction(4 + 4*x*Dx + 3*Dx**2 + x*Dx**3, x, 0, [0, 1, 0])
assert p == q
p = expr_to_holonomic(sin(x)**2/x, x0=2)
q = HolonomicFunction((4) + (4*x)*Dx + (3)*Dx**2 + (x)*Dx**3, x, 2, [sin(2)**2/2,
sin(2)*cos(2) - sin(2)**2/4, -3*sin(2)**2/4 + cos(2)**2 - sin(2)*cos(2)])
assert p == q
p = expr_to_holonomic(log(x)/2 - Ci(2*x)/2 + Ci(2)/2)
q = HolonomicFunction(4*Dx + 4*x*Dx**2 + 3*Dx**3 + x*Dx**4, x, 0, \
[-log(2)/2 - EulerGamma/2 + Ci(2)/2, 0, 1, 0])
assert p == q
p = p.to_expr()
q = log(x)/2 - Ci(2*x)/2 + Ci(2)/2
assert p == q
p = expr_to_holonomic(x**S.Half, x0=1)
q = HolonomicFunction(x*Dx - S.Half, x, 1, [1])
assert p == q
p = expr_to_holonomic(sqrt(1 + x**2))
q = HolonomicFunction((-x) + (x**2 + 1)*Dx, x, 0, [1])
assert p == q
assert (expr_to_holonomic(sqrt(x) + sqrt(2*x)).to_expr()-\
(sqrt(x) + sqrt(2*x))).simplify() == 0
assert expr_to_holonomic(3*x+2*sqrt(x)).to_expr() == 3*x+2*sqrt(x)
p = expr_to_holonomic((x**4+x**3+5*x**2+3*x+2)/x**2, lenics=3)
q = HolonomicFunction((-2*x**4 - x**3 + 3*x + 4) + (x**5 + x**4 + 5*x**3 + 3*x**2 + \
2*x)*Dx, x, 0, {-2: [2, 3, 5]})
assert p == q
p = expr_to_holonomic(1/(x-1)**2, lenics=3, x0=1)
q = HolonomicFunction((2) + (x - 1)*Dx, x, 1, {-2: [1, 0, 0]})
assert p == q
a = symbols("a")
p = expr_to_holonomic(sqrt(a*x), x=x)
assert p.to_expr() == sqrt(a)*sqrt(x)
def test_to_hyper():
x = symbols('x')
R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
p = HolonomicFunction(Dx - 2, x, 0, [3]).to_hyper()
q = 3 * hyper([], [], 2*x)
assert p == q
p = hyperexpand(HolonomicFunction((1 + x) * Dx - 3, x, 0, [2]).to_hyper()).expand()
q = 2*x**3 + 6*x**2 + 6*x + 2
assert p == q
p = HolonomicFunction((1 + x)*Dx**2 + Dx, x, 0, [0, 1]).to_hyper()
q = -x**2*hyper((2, 2, 1), (3, 2), -x)/2 + x
assert p == q
p = HolonomicFunction(2*x*Dx + Dx**2, x, 0, [0, 2/sqrt(pi)]).to_hyper()
q = 2*x*hyper((S.Half,), (Rational(3, 2),), -x**2)/sqrt(pi)
assert p == q
p = hyperexpand(HolonomicFunction(2*x*Dx + Dx**2, x, 0, [1, -2/sqrt(pi)]).to_hyper())
q = erfc(x)
assert p.rewrite(erfc) == q
p = hyperexpand(HolonomicFunction((x**2 - 1) + x*Dx + x**2*Dx**2,
x, 0, [0, S.Half]).to_hyper())
q = besselj(1, x)
assert p == q
p = hyperexpand(HolonomicFunction(x*Dx**2 + Dx + x, x, 0, [1, 0]).to_hyper())
q = besselj(0, x)
assert p == q
def test_to_expr():
x = symbols('x')
R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
p = HolonomicFunction(Dx - 1, x, 0, [1]).to_expr()
q = exp(x)
assert p == q
p = HolonomicFunction(Dx**2 + 1, x, 0, [1, 0]).to_expr()
q = cos(x)
assert p == q
p = HolonomicFunction(Dx**2 - 1, x, 0, [1, 0]).to_expr()
q = cosh(x)
assert p == q
p = HolonomicFunction(2 + (4*x - 1)*Dx + \
(x**2 - x)*Dx**2, x, 0, [1, 2]).to_expr().expand()
q = 1/(x**2 - 2*x + 1)
assert p == q
p = expr_to_holonomic(sin(x)**2/x).integrate((x, 0, x)).to_expr()
q = (sin(x)**2/x).integrate((x, 0, x))
assert p == q
C_0, C_1, C_2, C_3 = symbols('C_0, C_1, C_2, C_3')
p = expr_to_holonomic(log(1+x**2)).to_expr()
q = C_2*log(x**2 + 1)
assert p == q
p = expr_to_holonomic(log(1+x**2)).diff().to_expr()
q = C_0*x/(x**2 + 1)
assert p == q
p = expr_to_holonomic(erf(x) + x).to_expr()
q = 3*C_3*x - 3*sqrt(pi)*C_3*erf(x)/2 + x + 2*x/sqrt(pi)
assert p == q
p = expr_to_holonomic(sqrt(x), x0=1).to_expr()
assert p == sqrt(x)
assert expr_to_holonomic(sqrt(x)).to_expr() == sqrt(x)
p = expr_to_holonomic(sqrt(1 + x**2)).to_expr()
assert p == sqrt(1+x**2)
p = expr_to_holonomic((2*x**2 + 1)**Rational(2, 3)).to_expr()
assert p == (2*x**2 + 1)**Rational(2, 3)
p = expr_to_holonomic(sqrt(-x**2+2*x)).to_expr()
assert p == sqrt(x)*sqrt(-x + 2)
p = expr_to_holonomic((-2*x**3+7*x)**Rational(2, 3)).to_expr()
q = x**Rational(2, 3)*(-2*x**2 + 7)**Rational(2, 3)
assert p == q
p = from_hyper(hyper((-2, -3), (S.Half, ), x))
s = hyperexpand(hyper((-2, -3), (S.Half, ), x))
D_0 = Symbol('D_0')
C_0 = Symbol('C_0')
assert (p.to_expr().subs({C_0:1, D_0:0}) - s).simplify() == 0
p.y0 = {0: [1], S.Half: [0]}
assert p.to_expr() == s
assert expr_to_holonomic(x**5).to_expr() == x**5
assert expr_to_holonomic(2*x**3-3*x**2).to_expr().expand() == \
2*x**3-3*x**2
a = symbols("a")
p = (expr_to_holonomic(1.4*x)*expr_to_holonomic(a*x, x)).to_expr()
q = 1.4*a*x**2
assert p == q
p = (expr_to_holonomic(1.4*x)+expr_to_holonomic(a*x, x)).to_expr()
q = x*(a + 1.4)
assert p == q
p = (expr_to_holonomic(1.4*x)+expr_to_holonomic(x)).to_expr()
assert p == 2.4*x
def test_integrate():
x = symbols('x')
R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
p = expr_to_holonomic(sin(x)**2/x, x0=1).integrate((x, 2, 3))
q = '0.166270406994788'
assert sstr(p) == q
p = expr_to_holonomic(sin(x)).integrate((x, 0, x)).to_expr()
q = 1 - cos(x)
assert p == q
p = expr_to_holonomic(sin(x)).integrate((x, 0, 3))
q = 1 - cos(3)
assert p == q
p = expr_to_holonomic(sin(x)/x, x0=1).integrate((x, 1, 2))
q = '0.659329913368450'
assert sstr(p) == q
p = expr_to_holonomic(sin(x)**2/x, x0=1).integrate((x, 1, 0))
q = '-0.423690480850035'
assert sstr(p) == q
p = expr_to_holonomic(sin(x)/x)
assert p.integrate(x).to_expr() == Si(x)
assert p.integrate((x, 0, 2)) == Si(2)
p = expr_to_holonomic(sin(x)**2/x)
q = p.to_expr()
assert p.integrate(x).to_expr() == q.integrate((x, 0, x))
assert p.integrate((x, 0, 1)) == q.integrate((x, 0, 1))
assert expr_to_holonomic(1/x, x0=1).integrate(x).to_expr() == log(x)
p = expr_to_holonomic((x + 1)**3*exp(-x), x0=-1).integrate(x).to_expr()
q = (-x**3 - 6*x**2 - 15*x + 6*exp(x + 1) - 16)*exp(-x)
assert p == q
p = expr_to_holonomic(cos(x)**2/x**2, y0={-2: [1, 0, -1]}).integrate(x).to_expr()
q = -Si(2*x) - cos(x)**2/x
assert p == q
p = expr_to_holonomic(sqrt(x**2+x)).integrate(x).to_expr()
q = (x**Rational(3, 2)*(2*x**2 + 3*x + 1) - x*sqrt(x + 1)*asinh(sqrt(x)))/(4*x*sqrt(x + 1))
assert p == q
p = expr_to_holonomic(sqrt(x**2+1)).integrate(x).to_expr()
q = (sqrt(x**2+1)).integrate(x)
assert (p-q).simplify() == 0
p = expr_to_holonomic(1/x**2, y0={-2:[1, 0, 0]})
r = expr_to_holonomic(1/x**2, lenics=3)
assert p == r
q = expr_to_holonomic(cos(x)**2)
assert (r*q).integrate(x).to_expr() == -Si(2*x) - cos(x)**2/x
def test_diff():
x, y = symbols('x, y')
R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx')
p = HolonomicFunction(x*Dx**2 + 1, x, 0, [0, 1])
assert p.diff().to_expr() == p.to_expr().diff().simplify()
p = HolonomicFunction(Dx**2 - 1, x, 0, [1, 0])
assert p.diff(x, 2).to_expr() == p.to_expr()
p = expr_to_holonomic(Si(x))
assert p.diff().to_expr() == sin(x)/x
assert p.diff(y) == 0
C_0, C_1, C_2, C_3 = symbols('C_0, C_1, C_2, C_3')
q = Si(x)
assert p.diff(x).to_expr() == q.diff()
assert p.diff(x, 2).to_expr().subs(C_0, Rational(-1, 3)).cancel() == q.diff(x, 2).cancel()
assert p.diff(x, 3).series().subs({C_3: Rational(-1, 3), C_0: 0}) == q.diff(x, 3).series()
def test_extended_domain_in_expr_to_holonomic():
x = symbols('x')
p = expr_to_holonomic(1.2*cos(3.1*x))
assert p.to_expr() == 1.2*cos(3.1*x)
assert sstr(p.integrate(x).to_expr()) == '0.387096774193548*sin(3.1*x)'
_, Dx = DifferentialOperators(RR.old_poly_ring(x), 'Dx')
p = expr_to_holonomic(1.1329138213*x)
q = HolonomicFunction((-1.1329138213) + (1.1329138213*x)*Dx, x, 0, {1: [1.1329138213]})
assert p == q
assert p.to_expr() == 1.1329138213*x
assert sstr(p.integrate((x, 1, 2))) == sstr((1.1329138213*x).integrate((x, 1, 2)))
y, z = symbols('y, z')
p = expr_to_holonomic(sin(x*y*z), x=x)
assert p.to_expr() == sin(x*y*z)
assert p.integrate(x).to_expr() == (-cos(x*y*z) + 1)/(y*z)
p = expr_to_holonomic(sin(x*y + z), x=x).integrate(x).to_expr()
q = (cos(z) - cos(x*y + z))/y
assert p == q
a = symbols('a')
p = expr_to_holonomic(a*x, x)
assert p.to_expr() == a*x
assert p.integrate(x).to_expr() == a*x**2/2
D_2, C_1 = symbols("D_2, C_1")
p = expr_to_holonomic(x) + expr_to_holonomic(1.2*cos(x))
p = p.to_expr().subs(D_2, 0)
assert p - x - 1.2*cos(1.0*x) == 0
p = expr_to_holonomic(x) * expr_to_holonomic(1.2*cos(x))
p = p.to_expr().subs(C_1, 0)
assert p - 1.2*x*cos(1.0*x) == 0
def test_to_meijerg():
x = symbols('x')
assert hyperexpand(expr_to_holonomic(sin(x)).to_meijerg()) == sin(x)
assert hyperexpand(expr_to_holonomic(cos(x)).to_meijerg()) == cos(x)
assert hyperexpand(expr_to_holonomic(exp(x)).to_meijerg()) == exp(x)
assert hyperexpand(expr_to_holonomic(log(x)).to_meijerg()).simplify() == log(x)
assert expr_to_holonomic(4*x**2/3 + 7).to_meijerg() == 4*x**2/3 + 7
assert hyperexpand(expr_to_holonomic(besselj(2, x), lenics=3).to_meijerg()) == besselj(2, x)
p = hyper((Rational(-1, 2), -3), (), x)
assert from_hyper(p).to_meijerg() == hyperexpand(p)
p = hyper((S.One, S(3)), (S(2), ), x)
assert (hyperexpand(from_hyper(p).to_meijerg()) - hyperexpand(p)).expand() == 0
p = from_hyper(hyper((-2, -3), (S.Half, ), x))
s = hyperexpand(hyper((-2, -3), (S.Half, ), x))
C_0 = Symbol('C_0')
C_1 = Symbol('C_1')
D_0 = Symbol('D_0')
assert (hyperexpand(p.to_meijerg()).subs({C_0:1, D_0:0}) - s).simplify() == 0
p.y0 = {0: [1], S.Half: [0]}
assert (hyperexpand(p.to_meijerg()) - s).simplify() == 0
p = expr_to_holonomic(besselj(S.Half, x), initcond=False)
assert (p.to_expr() - (D_0*sin(x) + C_0*cos(x) + C_1*sin(x))/sqrt(x)).simplify() == 0
p = expr_to_holonomic(besselj(S.Half, x), y0={Rational(-1, 2): [sqrt(2)/sqrt(pi), sqrt(2)/sqrt(pi)]})
assert (p.to_expr() - besselj(S.Half, x) - besselj(Rational(-1, 2), x)).simplify() == 0
def test_gaussian():
mu, x = symbols("mu x")
sd = symbols("sd", positive=True)
Q = QQ[mu, sd].get_field()
e = sqrt(2)*exp(-(-mu + x)**2/(2*sd**2))/(2*sqrt(pi)*sd)
h1 = expr_to_holonomic(e, x, domain=Q)
_, Dx = DifferentialOperators(Q.old_poly_ring(x), 'Dx')
h2 = HolonomicFunction((-mu/sd**2 + x/sd**2) + (1)*Dx, x)
assert h1 == h2
def test_beta():
a, b, x = symbols("a b x", positive=True)
e = x**(a - 1)*(-x + 1)**(b - 1)/beta(a, b)
Q = QQ[a, b].get_field()
h1 = expr_to_holonomic(e, x, domain=Q)
_, Dx = DifferentialOperators(Q.old_poly_ring(x), 'Dx')
h2 = HolonomicFunction((a + x*(-a - b + 2) - 1) + (x**2 - x)*Dx, x)
assert h1 == h2
def test_gamma():
a, b, x = symbols("a b x", positive=True)
e = b**(-a)*x**(a - 1)*exp(-x/b)/gamma(a)
Q = QQ[a, b].get_field()
h1 = expr_to_holonomic(e, x, domain=Q)
_, Dx = DifferentialOperators(Q.old_poly_ring(x), 'Dx')
h2 = HolonomicFunction((-a + 1 + x/b) + (x)*Dx, x)
assert h1 == h2
def test_symbolic_power():
x, n = symbols("x n")
Q = QQ[n].get_field()
_, Dx = DifferentialOperators(Q.old_poly_ring(x), 'Dx')
h1 = HolonomicFunction((-1) + (x)*Dx, x) ** -n
h2 = HolonomicFunction((n) + (x)*Dx, x)
assert h1 == h2
def test_negative_power():
x = symbols("x")
_, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
h1 = HolonomicFunction((-1) + (x)*Dx, x) ** -2
h2 = HolonomicFunction((2) + (x)*Dx, x)
assert h1 == h2
def test_expr_in_power():
x, n = symbols("x n")
Q = QQ[n].get_field()
_, Dx = DifferentialOperators(Q.old_poly_ring(x), 'Dx')
h1 = HolonomicFunction((-1) + (x)*Dx, x) ** (n - 3)
h2 = HolonomicFunction((-n + 3) + (x)*Dx, x)
assert h1 == h2
def test_DifferentialOperatorEqPoly():
x = symbols('x', integer=True)
R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx')
do = DifferentialOperator([x**2, R.base.zero, R.base.zero], R)
do2 = DifferentialOperator([x**2, 1, x], R)
assert not do == do2
# polynomial comparison issue, see https://github.com/sympy/sympy/pull/15799
# should work once that is solved
# p = do.listofpoly[0]
# assert do == p
p2 = do2.listofpoly[0]
assert not do2 == p2
|
46935047778dc79be07f376dd271190c2079ea417ffd29d831aa96377ce56b4d | from sympy.external import import_module
lfortran = import_module('lfortran')
if lfortran:
from sympy.codegen.ast import (Variable, IntBaseType, FloatBaseType, String,
Return, FunctionDefinition, Assignment)
from sympy.core import Add, Mul, Integer, Float
from sympy.core.symbol import Symbol
asr_mod = lfortran.asr
asr = lfortran.asr.asr
src_to_ast = lfortran.ast.src_to_ast
ast_to_asr = lfortran.semantic.ast_to_asr.ast_to_asr
"""
This module contains all the necessary Classes and Function used to Parse
Fortran code into SymPy expression
The module and its API are currently under development and experimental.
It is also dependent on LFortran for the ASR that is converted to SymPy syntax
which is also under development.
The module only supports the features currently supported by the LFortran ASR
which will be updated as the development of LFortran and this module progresses
You might find unexpected bugs and exceptions while using the module, feel free
to report them to the SymPy Issue Tracker
The API for the module might also change while in development if better and
more effective ways are discovered for the process
Features Supported
==================
- Variable Declarations (integers and reals)
- Function Definitions
- Assignments and Basic Binary Operations
Notes
=====
The module depends on an external dependency
LFortran : Required to parse Fortran source code into ASR
References
==========
.. [1] https://github.com/sympy/sympy/issues
.. [2] https://gitlab.com/lfortran/lfortran
.. [3] https://docs.lfortran.org/
"""
class ASR2PyVisitor(asr.ASTVisitor): # type: ignore
"""
Visitor Class for LFortran ASR
It is a Visitor class derived from asr.ASRVisitor which visits all the
nodes of the LFortran ASR and creates corresponding AST node for each
ASR node
"""
def __init__(self):
"""Initialize the Parser"""
self._py_ast = []
def visit_TranslationUnit(self, node):
"""
Function to visit all the elements of the Translation Unit
created by LFortran ASR
"""
for s in node.global_scope.symbols:
sym = node.global_scope.symbols[s]
self.visit(sym)
for item in node.items:
self.visit(item)
def visit_Assignment(self, node):
"""Visitor Function for Assignment
Visits each Assignment is the LFortran ASR and creates corresponding
assignment for SymPy.
Notes
=====
The function currently only supports variable assignment and binary
operation assignments of varying multitudes. Any type of numberS or
array is not supported.
Raises
======
NotImplementedError() when called for Numeric assignments or Arrays
"""
# TODO: Arithmetic Assignment
if isinstance(node.target, asr.Variable):
target = node.target
value = node.value
if isinstance(value, asr.Variable):
new_node = Assignment(
Variable(
target.name
),
Variable(
value.name
)
)
elif (type(value) == asr.BinOp):
exp_ast = call_visitor(value)
for expr in exp_ast:
new_node = Assignment(
Variable(target.name),
expr
)
else:
raise NotImplementedError("Numeric assignments not supported")
else:
raise NotImplementedError("Arrays not supported")
self._py_ast.append(new_node)
def visit_BinOp(self, node):
"""Visitor Function for Binary Operations
Visits each binary operation present in the LFortran ASR like addition,
subtraction, multiplication, division and creates the corresponding
operation node in SymPy's AST
In case of more than one binary operations, the function calls the
call_visitor() function on the child nodes of the binary operations
recursively until all the operations have been processed.
Notes
=====
The function currently only supports binary operations with Variables
or other binary operations. Numerics are not supported as of yet.
Raises
======
NotImplementedError() when called for Numeric assignments
"""
# TODO: Integer Binary Operations
op = node.op
lhs = node.left
rhs = node.right
if (type(lhs) == asr.Variable):
left_value = Symbol(lhs.name)
elif(type(lhs) == asr.BinOp):
l_exp_ast = call_visitor(lhs)
for exp in l_exp_ast:
left_value = exp
else:
raise NotImplementedError("Numbers Currently not supported")
if (type(rhs) == asr.Variable):
right_value = Symbol(rhs.name)
elif(type(rhs) == asr.BinOp):
r_exp_ast = call_visitor(rhs)
for exp in r_exp_ast:
right_value = exp
else:
raise NotImplementedError("Numbers Currently not supported")
if isinstance(op, asr.Add):
new_node = Add(left_value, right_value)
elif isinstance(op, asr.Sub):
new_node = Add(left_value, -right_value)
elif isinstance(op, asr.Div):
new_node = Mul(left_value, 1/right_value)
elif isinstance(op, asr.Mul):
new_node = Mul(left_value, right_value)
self._py_ast.append(new_node)
def visit_Variable(self, node):
"""Visitor Function for Variable Declaration
Visits each variable declaration present in the ASR and creates a
Symbol declaration for each variable
Notes
=====
The functions currently only support declaration of integer and
real variables. Other data types are still under development.
Raises
======
NotImplementedError() when called for unsupported data types
"""
if isinstance(node.type, asr.Integer):
var_type = IntBaseType(String('integer'))
value = Integer(0)
elif isinstance(node.type, asr.Real):
var_type = FloatBaseType(String('real'))
value = Float(0.0)
else:
raise NotImplementedError("Data type not supported")
if not (node.intent == 'in'):
new_node = Variable(
node.name
).as_Declaration(
type = var_type,
value = value
)
self._py_ast.append(new_node)
def visit_Sequence(self, seq):
"""Visitor Function for code sequence
Visits a code sequence/ block and calls the visitor function on all the
children of the code block to create corresponding code in python
"""
if seq is not None:
for node in seq:
self._py_ast.append(call_visitor(node))
def visit_Num(self, node):
"""Visitor Function for Numbers in ASR
This function is currently under development and will be updated
with improvements in the LFortran ASR
"""
# TODO:Numbers when the LFortran ASR is updated
# self._py_ast.append(Integer(node.n))
pass
def visit_Function(self, node):
"""Visitor Function for function Definitions
Visits each function definition present in the ASR and creates a
function definition node in the Python AST with all the elements of the
given function
The functions declare all the variables required as SymPy symbols in
the function before the function definition
This function also the call_visior_function to parse the contents of
the function body
"""
# TODO: Return statement, variable declaration
fn_args = [Variable(arg_iter.name) for arg_iter in node.args]
fn_body = []
fn_name = node.name
for i in node.body:
fn_ast = call_visitor(i)
try:
fn_body_expr = fn_ast
except UnboundLocalError:
fn_body_expr = []
for sym in node.symtab.symbols:
decl = call_visitor(node.symtab.symbols[sym])
for symbols in decl:
fn_body.append(symbols)
for elem in fn_body_expr:
fn_body.append(elem)
fn_body.append(
Return(
Variable(
node.return_var.name
)
)
)
if isinstance(node.return_var.type, asr.Integer):
ret_type = IntBaseType(String('integer'))
elif isinstance(node.return_var.type, asr.Real):
ret_type = FloatBaseType(String('real'))
else:
raise NotImplementedError("Data type not supported")
new_node = FunctionDefinition(
return_type = ret_type,
name = fn_name,
parameters = fn_args,
body = fn_body
)
self._py_ast.append(new_node)
def ret_ast(self):
"""Returns the AST nodes"""
return self._py_ast
else:
class ASR2PyVisitor(): # type: ignore
def __init__(self, *args, **kwargs):
raise ImportError('lfortran not available')
def call_visitor(fort_node):
"""Calls the AST Visitor on the Module
This function is used to call the AST visitor for a program or module
It imports all the required modules and calls the visit() function
on the given node
Parameters
==========
fort_node : LFortran ASR object
Node for the operation for which the NodeVisitor is called
Returns
=======
res_ast : list
list of SymPy AST Nodes
"""
v = ASR2PyVisitor()
v.visit(fort_node)
res_ast = v.ret_ast()
return res_ast
def src_to_sympy(src):
"""Wrapper function to convert the given Fortran source code to SymPy Expressions
Parameters
==========
src : string
A string with the Fortran source code
Returns
=======
py_src : string
A string with the Python source code compatible with SymPy
"""
a_ast = src_to_ast(src, translation_unit=False)
a = ast_to_asr(a_ast)
py_src = call_visitor(a)
return py_src
|
5fa837995fd3cd24a9ae19269f9b8a884d264a74c9d34eed7975af66ef93dbc1 | from sympy.external import import_module
import os
cin = import_module('clang.cindex', import_kwargs = {'fromlist': ['cindex']})
"""
This module contains all the necessary Classes and Function used to Parse C and
C++ code into SymPy expression
The module serves as a backend for SymPyExpression to parse C code
It is also dependent on Clang's AST and SymPy's Codegen AST.
The module only supports the features currently supported by the Clang and
codegen AST which will be updated as the development of codegen AST and this
module progresses.
You might find unexpected bugs and exceptions while using the module, feel free
to report them to the SymPy Issue Tracker
Features Supported
==================
- Variable Declarations (integers and reals)
- Assignment (using integer & floating literal and function calls)
- Function Definitions and Declaration
- Function Calls
- Compound statements, Return statements
Notes
=====
The module is dependent on an external dependency which needs to be installed
to use the features of this module.
Clang: The C and C++ compiler which is used to extract an AST from the provided
C source code.
References
==========
.. [1] https://github.com/sympy/sympy/issues
.. [2] https://clang.llvm.org/docs/
.. [3] https://clang.llvm.org/docs/IntroductionToTheClangAST.html
"""
if cin:
from sympy.codegen.ast import (Variable, Integer, Float,
FunctionPrototype, FunctionDefinition, FunctionCall,
none, Return, Assignment, intc, int8, int16, int64,
uint8, uint16, uint32, uint64, float32, float64, float80,
aug_assign, bool_, While, CodeBlock)
from sympy.codegen.cnodes import (PreDecrement, PostDecrement,
PreIncrement, PostIncrement)
from sympy.core import Add, Mod, Mul, Pow, Rel
from sympy.logic.boolalg import And, as_Boolean, Not, Or
from sympy.core.symbol import Symbol
from sympy.core.sympify import sympify
from sympy.logic.boolalg import (false, true)
import sys
import tempfile
class BaseParser:
"""Base Class for the C parser"""
def __init__(self):
"""Initializes the Base parser creating a Clang AST index"""
self.index = cin.Index.create()
def diagnostics(self, out):
"""Diagostics function for the Clang AST"""
for diag in self.tu.diagnostics:
print('%s %s (line %s, col %s) %s' % (
{
4: 'FATAL',
3: 'ERROR',
2: 'WARNING',
1: 'NOTE',
0: 'IGNORED',
}[diag.severity],
diag.location.file,
diag.location.line,
diag.location.column,
diag.spelling
), file=out)
class CCodeConverter(BaseParser):
"""The Code Convereter for Clang AST
The converter object takes the C source code or file as input and
converts them to SymPy Expressions.
"""
def __init__(self):
"""Initializes the code converter"""
super().__init__()
self._py_nodes = []
self._data_types = {
"void": {
cin.TypeKind.VOID: none
},
"bool": {
cin.TypeKind.BOOL: bool_
},
"int": {
cin.TypeKind.SCHAR: int8,
cin.TypeKind.SHORT: int16,
cin.TypeKind.INT: intc,
cin.TypeKind.LONG: int64,
cin.TypeKind.UCHAR: uint8,
cin.TypeKind.USHORT: uint16,
cin.TypeKind.UINT: uint32,
cin.TypeKind.ULONG: uint64
},
"float": {
cin.TypeKind.FLOAT: float32,
cin.TypeKind.DOUBLE: float64,
cin.TypeKind.LONGDOUBLE: float80
}
}
def parse(self, filenames, flags):
"""Function to parse a file with C source code
It takes the filename as an attribute and creates a Clang AST
Translation Unit parsing the file.
Then the transformation function is called on the translation unit,
whose reults are collected into a list which is returned by the
function.
Parameters
==========
filenames : string
Path to the C file to be parsed
flags: list
Arguments to be passed to Clang while parsing the C code
Returns
=======
py_nodes: list
A list of SymPy AST nodes
"""
filename = os.path.abspath(filenames)
self.tu = self.index.parse(
filename,
args=flags,
options=cin.TranslationUnit.PARSE_DETAILED_PROCESSING_RECORD
)
for child in self.tu.cursor.get_children():
if child.kind == cin.CursorKind.VAR_DECL:
self._py_nodes.append(self.transform(child))
elif (child.kind == cin.CursorKind.FUNCTION_DECL):
self._py_nodes.append(self.transform(child))
else:
pass
return self._py_nodes
def parse_str(self, source, flags):
"""Function to parse a string with C source code
It takes the source code as an attribute, stores it in a temporary
file and creates a Clang AST Translation Unit parsing the file.
Then the transformation function is called on the translation unit,
whose reults are collected into a list which is returned by the
function.
Parameters
==========
source : string
Path to the C file to be parsed
flags: list
Arguments to be passed to Clang while parsing the C code
Returns
=======
py_nodes: list
A list of SymPy AST nodes
"""
file = tempfile.NamedTemporaryFile(mode = 'w+', suffix = '.cpp')
file.write(source)
file.seek(0)
self.tu = self.index.parse(
file.name,
args=flags,
options=cin.TranslationUnit.PARSE_DETAILED_PROCESSING_RECORD
)
file.close()
for child in self.tu.cursor.get_children():
if child.kind == cin.CursorKind.VAR_DECL:
self._py_nodes.append(self.transform(child))
elif (child.kind == cin.CursorKind.FUNCTION_DECL):
self._py_nodes.append(self.transform(child))
else:
pass
return self._py_nodes
def transform(self, node):
"""Transformation Function for Clang AST nodes
It determines the kind of node and calls the respective
transformation function for that node.
Raises
======
NotImplementedError : if the transformation for the provided node
is not implemented
"""
try:
handler = getattr(self, 'transform_%s' % node.kind.name.lower())
except AttributeError:
print(
"Ignoring node of type %s (%s)" % (
node.kind,
' '.join(
t.spelling for t in node.get_tokens())
),
file=sys.stderr
)
handler = None
if handler:
result = handler(node)
return result
def transform_var_decl(self, node):
"""Transformation Function for Variable Declaration
Used to create nodes for variable declarations and assignments with
values or function call for the respective nodes in the clang AST
Returns
=======
A variable node as Declaration, with the initial value if given
Raises
======
NotImplementedError : if called for data types not currently
implemented
Notes
=====
The function currently supports following data types:
Boolean:
bool, _Bool
Integer:
8-bit: signed char and unsigned char
16-bit: short, short int, signed short,
signed short int, unsigned short, unsigned short int
32-bit: int, signed int, unsigned int
64-bit: long, long int, signed long,
signed long int, unsigned long, unsigned long int
Floating point:
Single Precision: float
Double Precision: double
Extended Precision: long double
"""
if node.type.kind in self._data_types["int"]:
type = self._data_types["int"][node.type.kind]
elif node.type.kind in self._data_types["float"]:
type = self._data_types["float"][node.type.kind]
elif node.type.kind in self._data_types["bool"]:
type = self._data_types["bool"][node.type.kind]
else:
raise NotImplementedError("Only bool, int "
"and float are supported")
try:
children = node.get_children()
child = next(children)
#ignoring namespace and type details for the variable
while child.kind == cin.CursorKind.NAMESPACE_REF:
child = next(children)
while child.kind == cin.CursorKind.TYPE_REF:
child = next(children)
val = self.transform(child)
supported_rhs = [
cin.CursorKind.INTEGER_LITERAL,
cin.CursorKind.FLOATING_LITERAL,
cin.CursorKind.UNEXPOSED_EXPR,
cin.CursorKind.BINARY_OPERATOR,
cin.CursorKind.PAREN_EXPR,
cin.CursorKind.UNARY_OPERATOR,
cin.CursorKind.CXX_BOOL_LITERAL_EXPR
]
if child.kind in supported_rhs:
if isinstance(val, str):
value = Symbol(val)
elif isinstance(val, bool):
if node.type.kind in self._data_types["int"]:
value = Integer(0) if val == False else Integer(1)
elif node.type.kind in self._data_types["float"]:
value = Float(0.0) if val == False else Float(1.0)
elif node.type.kind in self._data_types["bool"]:
value = sympify(val)
elif isinstance(val, (Integer, int, Float, float)):
if node.type.kind in self._data_types["int"]:
value = Integer(val)
elif node.type.kind in self._data_types["float"]:
value = Float(val)
elif node.type.kind in self._data_types["bool"]:
value = sympify(bool(val))
else:
value = val
return Variable(
node.spelling
).as_Declaration(
type = type,
value = value
)
elif child.kind == cin.CursorKind.CALL_EXPR:
return Variable(
node.spelling
).as_Declaration(
value = val
)
else:
raise NotImplementedError("Given "
"variable declaration \"{}\" "
"is not possible to parse yet!"
.format(" ".join(
t.spelling for t in node.get_tokens()
)
))
except StopIteration:
return Variable(
node.spelling
).as_Declaration(
type = type
)
def transform_function_decl(self, node):
"""Transformation Function For Function Declaration
Used to create nodes for function declarations and definitions for
the respective nodes in the clang AST
Returns
=======
function : Codegen AST node
- FunctionPrototype node if function body is not present
- FunctionDefinition node if the function body is present
"""
if node.result_type.kind in self._data_types["int"]:
ret_type = self._data_types["int"][node.result_type.kind]
elif node.result_type.kind in self._data_types["float"]:
ret_type = self._data_types["float"][node.result_type.kind]
elif node.result_type.kind in self._data_types["bool"]:
ret_type = self._data_types["bool"][node.result_type.kind]
elif node.result_type.kind in self._data_types["void"]:
ret_type = self._data_types["void"][node.result_type.kind]
else:
raise NotImplementedError("Only void, bool, int "
"and float are supported")
body = []
param = []
try:
children = node.get_children()
child = next(children)
# If the node has any children, the first children will be the
# return type and namespace for the function declaration. These
# nodes can be ignored.
while child.kind == cin.CursorKind.NAMESPACE_REF:
child = next(children)
while child.kind == cin.CursorKind.TYPE_REF:
child = next(children)
# Subsequent nodes will be the parameters for the function.
try:
while True:
decl = self.transform(child)
if (child.kind == cin.CursorKind.PARM_DECL):
param.append(decl)
elif (child.kind == cin.CursorKind.COMPOUND_STMT):
for val in decl:
body.append(val)
else:
body.append(decl)
child = next(children)
except StopIteration:
pass
except StopIteration:
pass
if body == []:
function = FunctionPrototype(
return_type = ret_type,
name = node.spelling,
parameters = param
)
else:
function = FunctionDefinition(
return_type = ret_type,
name = node.spelling,
parameters = param,
body = body
)
return function
def transform_parm_decl(self, node):
"""Transformation function for Parameter Declaration
Used to create parameter nodes for the required functions for the
respective nodes in the clang AST
Returns
=======
param : Codegen AST Node
Variable node with the value and type of the variable
Raises
======
ValueError if multiple children encountered in the parameter node
"""
if node.type.kind in self._data_types["int"]:
type = self._data_types["int"][node.type.kind]
elif node.type.kind in self._data_types["float"]:
type = self._data_types["float"][node.type.kind]
elif node.type.kind in self._data_types["bool"]:
type = self._data_types["bool"][node.type.kind]
else:
raise NotImplementedError("Only bool, int "
"and float are supported")
try:
children = node.get_children()
child = next(children)
# Any namespace nodes can be ignored
while child.kind in [cin.CursorKind.NAMESPACE_REF,
cin.CursorKind.TYPE_REF,
cin.CursorKind.TEMPLATE_REF]:
child = next(children)
# If there is a child, it is the default value of the parameter.
lit = self.transform(child)
if node.type.kind in self._data_types["int"]:
val = Integer(lit)
elif node.type.kind in self._data_types["float"]:
val = Float(lit)
elif node.type.kind in self._data_types["bool"]:
val = sympify(bool(lit))
else:
raise NotImplementedError("Only bool, int "
"and float are supported")
param = Variable(
node.spelling
).as_Declaration(
type = type,
value = val
)
except StopIteration:
param = Variable(
node.spelling
).as_Declaration(
type = type
)
try:
self.transform(next(children))
raise ValueError("Can't handle multiple children on parameter")
except StopIteration:
pass
return param
def transform_integer_literal(self, node):
"""Transformation function for integer literal
Used to get the value and type of the given integer literal.
Returns
=======
val : list
List with two arguments type and Value
type contains the type of the integer
value contains the value stored in the variable
Notes
=====
Only Base Integer type supported for now
"""
try:
value = next(node.get_tokens()).spelling
except StopIteration:
# No tokens
value = node.literal
return int(value)
def transform_floating_literal(self, node):
"""Transformation function for floating literal
Used to get the value and type of the given floating literal.
Returns
=======
val : list
List with two arguments type and Value
type contains the type of float
value contains the value stored in the variable
Notes
=====
Only Base Float type supported for now
"""
try:
value = next(node.get_tokens()).spelling
except (StopIteration, ValueError):
# No tokens
value = node.literal
return float(value)
def transform_string_literal(self, node):
#TODO: No string type in AST
#type =
#try:
# value = next(node.get_tokens()).spelling
#except (StopIteration, ValueError):
# No tokens
# value = node.literal
#val = [type, value]
#return val
pass
def transform_character_literal(self, node):
"""Transformation function for character literal
Used to get the value of the given character literal.
Returns
=======
val : int
val contains the ascii value of the character literal
Notes
=====
Only for cases where character is assigned to a integer value,
since character literal is not in SymPy AST
"""
try:
value = next(node.get_tokens()).spelling
except (StopIteration, ValueError):
# No tokens
value = node.literal
return ord(str(value[1]))
def transform_cxx_bool_literal_expr(self, node):
"""Transformation function for boolean literal
Used to get the value of the given boolean literal.
Returns
=======
value : bool
value contains the boolean value of the variable
"""
try:
value = next(node.get_tokens()).spelling
except (StopIteration, ValueError):
value = node.literal
return True if value == 'true' else False
def transform_unexposed_decl(self,node):
"""Transformation function for unexposed declarations"""
pass
def transform_unexposed_expr(self, node):
"""Transformation function for unexposed expression
Unexposed expressions are used to wrap float, double literals and
expressions
Returns
=======
expr : Codegen AST Node
the result from the wrapped expression
None : NoneType
No childs are found for the node
Raises
======
ValueError if the expression contains multiple children
"""
# Ignore unexposed nodes; pass whatever is the first
# (and should be only) child unaltered.
try:
children = node.get_children()
expr = self.transform(next(children))
except StopIteration:
return None
try:
next(children)
raise ValueError("Unexposed expression has > 1 children.")
except StopIteration:
pass
return expr
def transform_decl_ref_expr(self, node):
"""Returns the name of the declaration reference"""
return node.spelling
def transform_call_expr(self, node):
"""Transformation function for a call expression
Used to create function call nodes for the function calls present
in the C code
Returns
=======
FunctionCall : Codegen AST Node
FunctionCall node with parameters if any parameters are present
"""
param = []
children = node.get_children()
child = next(children)
while child.kind == cin.CursorKind.NAMESPACE_REF:
child = next(children)
while child.kind == cin.CursorKind.TYPE_REF:
child = next(children)
first_child = self.transform(child)
try:
for child in children:
arg = self.transform(child)
if (child.kind == cin.CursorKind.INTEGER_LITERAL):
param.append(Integer(arg))
elif (child.kind == cin.CursorKind.FLOATING_LITERAL):
param.append(Float(arg))
else:
param.append(arg)
return FunctionCall(first_child, param)
except StopIteration:
return FunctionCall(first_child)
def transform_return_stmt(self, node):
"""Returns the Return Node for a return statement"""
return Return(next(node.get_children()).spelling)
def transform_compound_stmt(self, node):
"""Transformation function for compond statemets
Returns
=======
expr : list
list of Nodes for the expressions present in the statement
None : NoneType
if the compound statement is empty
"""
try:
expr = []
children = node.get_children()
for child in children:
expr.append(self.transform(child))
except StopIteration:
return None
return expr
def transform_decl_stmt(self, node):
"""Transformation function for declaration statements
These statements are used to wrap different kinds of declararions
like variable or function declaration
The function calls the transformer function for the child of the
given node
Returns
=======
statement : Codegen AST Node
contains the node returned by the children node for the type of
declaration
Raises
======
ValueError if multiple children present
"""
try:
children = node.get_children()
statement = self.transform(next(children))
except StopIteration:
pass
try:
self.transform(next(children))
raise ValueError("Don't know how to handle multiple statements")
except StopIteration:
pass
return statement
def transform_paren_expr(self, node):
"""Transformation function for Parenthesized expressions
Returns the result from its children nodes
"""
return self.transform(next(node.get_children()))
def transform_compound_assignment_operator(self, node):
"""Transformation function for handling shorthand operators
Returns
=======
augmented_assignment_expression: Codegen AST node
shorthand assignment expression represented as Codegen AST
Raises
======
NotImplementedError
If the shorthand operator for bitwise operators
(~=, ^=, &=, |=, <<=, >>=) is encountered
"""
return self.transform_binary_operator(node)
def transform_unary_operator(self, node):
"""Transformation function for handling unary operators
Returns
=======
unary_expression: Codegen AST node
simplified unary expression represented as Codegen AST
Raises
======
NotImplementedError
If dereferencing operator(*), address operator(&) or
bitwise NOT operator(~) is encountered
"""
# supported operators list
operators_list = ['+', '-', '++', '--', '!']
tokens = [token for token in node.get_tokens()]
# it can be either pre increment/decrement or any other operator from the list
if tokens[0].spelling in operators_list:
child = self.transform(next(node.get_children()))
# (decl_ref) e.g.; int a = ++b; or simply ++b;
if isinstance(child, str):
if tokens[0].spelling == '+':
return Symbol(child)
if tokens[0].spelling == '-':
return Mul(Symbol(child), -1)
if tokens[0].spelling == '++':
return PreIncrement(Symbol(child))
if tokens[0].spelling == '--':
return PreDecrement(Symbol(child))
if tokens[0].spelling == '!':
return Not(Symbol(child))
# e.g.; int a = -1; or int b = -(1 + 2);
else:
if tokens[0].spelling == '+':
return child
if tokens[0].spelling == '-':
return Mul(child, -1)
if tokens[0].spelling == '!':
return Not(sympify(bool(child)))
# it can be either post increment/decrement
# since variable name is obtained in token[0].spelling
elif tokens[1].spelling in ['++', '--']:
child = self.transform(next(node.get_children()))
if tokens[1].spelling == '++':
return PostIncrement(Symbol(child))
if tokens[1].spelling == '--':
return PostDecrement(Symbol(child))
else:
raise NotImplementedError("Dereferencing operator, "
"Address operator and bitwise NOT operator "
"have not been implemented yet!")
def transform_binary_operator(self, node):
"""Transformation function for handling binary operators
Returns
=======
binary_expression: Codegen AST node
simplified binary expression represented as Codegen AST
Raises
======
NotImplementedError
If a bitwise operator or
unary operator(which is a child of any binary
operator in Clang AST) is encountered
"""
# get all the tokens of assignment
# and store it in the tokens list
tokens = [token for token in node.get_tokens()]
# supported operators list
operators_list = ['+', '-', '*', '/', '%','=',
'>', '>=', '<', '<=', '==', '!=', '&&', '||', '+=', '-=',
'*=', '/=', '%=']
# this stack will contain variable content
# and type of variable in the rhs
combined_variables_stack = []
# this stack will contain operators
# to be processed in the rhs
operators_stack = []
# iterate through every token
for token in tokens:
# token is either '(', ')' or
# any of the supported operators from the operator list
if token.kind == cin.TokenKind.PUNCTUATION:
# push '(' to the operators stack
if token.spelling == '(':
operators_stack.append('(')
elif token.spelling == ')':
# keep adding the expression to the
# combined variables stack unless
# '(' is found
while (operators_stack
and operators_stack[-1] != '('):
if len(combined_variables_stack) < 2:
raise NotImplementedError(
"Unary operators as a part of "
"binary operators is not "
"supported yet!")
rhs = combined_variables_stack.pop()
lhs = combined_variables_stack.pop()
operator = operators_stack.pop()
combined_variables_stack.append(
self.perform_operation(
lhs, rhs, operator))
# pop '('
operators_stack.pop()
# token is an operator (supported)
elif token.spelling in operators_list:
while (operators_stack
and self.priority_of(token.spelling)
<= self.priority_of(
operators_stack[-1])):
if len(combined_variables_stack) < 2:
raise NotImplementedError(
"Unary operators as a part of "
"binary operators is not "
"supported yet!")
rhs = combined_variables_stack.pop()
lhs = combined_variables_stack.pop()
operator = operators_stack.pop()
combined_variables_stack.append(
self.perform_operation(
lhs, rhs, operator))
# push current operator
operators_stack.append(token.spelling)
# token is a bitwise operator
elif token.spelling in ['&', '|', '^', '<<', '>>']:
raise NotImplementedError(
"Bitwise operator has not been "
"implemented yet!")
# token is a shorthand bitwise operator
elif token.spelling in ['&=', '|=', '^=', '<<=',
'>>=']:
raise NotImplementedError(
"Shorthand bitwise operator has not been "
"implemented yet!")
else:
raise NotImplementedError(
"Given token {} is not implemented yet!"
.format(token.spelling))
# token is an identifier(variable)
elif token.kind == cin.TokenKind.IDENTIFIER:
combined_variables_stack.append(
[token.spelling, 'identifier'])
# token is a literal
elif token.kind == cin.TokenKind.LITERAL:
combined_variables_stack.append(
[token.spelling, 'literal'])
# token is a keyword, either true or false
elif (token.kind == cin.TokenKind.KEYWORD
and token.spelling in ['true', 'false']):
combined_variables_stack.append(
[token.spelling, 'boolean'])
else:
raise NotImplementedError(
"Given token {} is not implemented yet!"
.format(token.spelling))
# process remaining operators
while operators_stack:
if len(combined_variables_stack) < 2:
raise NotImplementedError(
"Unary operators as a part of "
"binary operators is not "
"supported yet!")
rhs = combined_variables_stack.pop()
lhs = combined_variables_stack.pop()
operator = operators_stack.pop()
combined_variables_stack.append(
self.perform_operation(lhs, rhs, operator))
return combined_variables_stack[-1][0]
def priority_of(self, op):
"""To get the priority of given operator"""
if op in ['=', '+=', '-=', '*=', '/=', '%=']:
return 1
if op in ['&&', '||']:
return 2
if op in ['<', '<=', '>', '>=', '==', '!=']:
return 3
if op in ['+', '-']:
return 4
if op in ['*', '/', '%']:
return 5
return 0
def perform_operation(self, lhs, rhs, op):
"""Performs operation supported by the SymPy core
Returns
=======
combined_variable: list
contains variable content and type of variable
"""
lhs_value = self.get_expr_for_operand(lhs)
rhs_value = self.get_expr_for_operand(rhs)
if op == '+':
return [Add(lhs_value, rhs_value), 'expr']
if op == '-':
return [Add(lhs_value, -rhs_value), 'expr']
if op == '*':
return [Mul(lhs_value, rhs_value), 'expr']
if op == '/':
return [Mul(lhs_value, Pow(rhs_value, Integer(-1))), 'expr']
if op == '%':
return [Mod(lhs_value, rhs_value), 'expr']
if op in ['<', '<=', '>', '>=', '==', '!=']:
return [Rel(lhs_value, rhs_value, op), 'expr']
if op == '&&':
return [And(as_Boolean(lhs_value), as_Boolean(rhs_value)), 'expr']
if op == '||':
return [Or(as_Boolean(lhs_value), as_Boolean(rhs_value)), 'expr']
if op == '=':
return [Assignment(Variable(lhs_value), rhs_value), 'expr']
if op in ['+=', '-=', '*=', '/=', '%=']:
return [aug_assign(Variable(lhs_value), op[0], rhs_value), 'expr']
def get_expr_for_operand(self, combined_variable):
"""Gives out SymPy Codegen AST node
AST node returned is corresponding to
combined variable passed.Combined variable contains
variable content and type of variable
"""
if combined_variable[1] == 'identifier':
return Symbol(combined_variable[0])
if combined_variable[1] == 'literal':
if '.' in combined_variable[0]:
return Float(float(combined_variable[0]))
else:
return Integer(int(combined_variable[0]))
if combined_variable[1] == 'expr':
return combined_variable[0]
if combined_variable[1] == 'boolean':
return true if combined_variable[0] == 'true' else false
def transform_null_stmt(self, node):
"""Handles Null Statement and returns None"""
return none
def transform_while_stmt(self, node):
"""Transformation function for handling while statement
Returns
=======
while statement : Codegen AST Node
contains the while statement node having condition and
statement block
"""
children = node.get_children()
condition = self.transform(next(children))
statements = self.transform(next(children))
if isinstance(statements, list):
statement_block = CodeBlock(*statements)
else:
statement_block = CodeBlock(statements)
return While(condition, statement_block)
else:
class CCodeConverter(): # type: ignore
def __init__(self, *args, **kwargs):
raise ImportError("Module not Installed")
def parse_c(source):
"""Function for converting a C source code
The function reads the source code present in the given file and parses it
to give out SymPy Expressions
Returns
=======
src : list
List of Python expression strings
"""
converter = CCodeConverter()
if os.path.exists(source):
src = converter.parse(source, flags = [])
else:
src = converter.parse_str(source, flags = [])
return src
|
92137221500d2a7405204ea147751d4aa97361d6560ed3b4bece93c61a560d42 | from sympy.testing.pytest import raises, XFAIL
from sympy.external import import_module
from sympy.concrete.products import Product
from sympy.concrete.summations import Sum
from sympy.core.add import Add
from sympy.core.function import (Derivative, Function)
from sympy.core.mul import Mul
from sympy.core.numbers import (E, oo)
from sympy.core.power import Pow
from sympy.core.relational import (GreaterThan, LessThan, StrictGreaterThan, StrictLessThan, Unequality)
from sympy.core.symbol import Symbol
from sympy.functions.combinatorial.factorials import (binomial, factorial)
from sympy.functions.elementary.complexes import (Abs, conjugate)
from sympy.functions.elementary.exponential import (exp, log)
from sympy.functions.elementary.integers import (ceiling, floor)
from sympy.functions.elementary.miscellaneous import (root, sqrt)
from sympy.functions.elementary.trigonometric import (asin, cos, csc, sec, sin, tan)
from sympy.integrals.integrals import Integral
from sympy.series.limits import Limit
from sympy.core.relational import Eq, Ne, Lt, Le, Gt, Ge
from sympy.physics.quantum.state import Bra, Ket
from sympy.abc import x, y, z, a, b, c, t, k, n
antlr4 = import_module("antlr4")
# disable tests if antlr4-python3-runtime is not present
if not antlr4:
disabled = True
theta = Symbol('theta')
f = Function('f')
# shorthand definitions
def _Add(a, b):
return Add(a, b, evaluate=False)
def _Mul(a, b):
return Mul(a, b, evaluate=False)
def _Pow(a, b):
return Pow(a, b, evaluate=False)
def _Sqrt(a):
return sqrt(a, evaluate=False)
def _Conjugate(a):
return conjugate(a, evaluate=False)
def _Abs(a):
return Abs(a, evaluate=False)
def _factorial(a):
return factorial(a, evaluate=False)
def _exp(a):
return exp(a, evaluate=False)
def _log(a, b):
return log(a, b, evaluate=False)
def _binomial(n, k):
return binomial(n, k, evaluate=False)
def test_import():
from sympy.parsing.latex._build_latex_antlr import (
build_parser,
check_antlr_version,
dir_latex_antlr
)
# XXX: It would be better to come up with a test for these...
del build_parser, check_antlr_version, dir_latex_antlr
# These LaTeX strings should parse to the corresponding SymPy expression
GOOD_PAIRS = [
(r"0", 0),
(r"1", 1),
(r"-3.14", -3.14),
(r"(-7.13)(1.5)", _Mul(-7.13, 1.5)),
(r"x", x),
(r"2x", 2*x),
(r"x^2", x**2),
(r"x^\frac{1}{2}", _Pow(x, _Pow(2, -1))),
(r"x^{3 + 1}", x**_Add(3, 1)),
(r"-c", -c),
(r"a \cdot b", a * b),
(r"a / b", a / b),
(r"a \div b", a / b),
(r"a + b", a + b),
(r"a + b - a", _Add(a+b, -a)),
(r"a^2 + b^2 = c^2", Eq(a**2 + b**2, c**2)),
(r"(x + y) z", _Mul(_Add(x, y), z)),
(r"a'b+ab'", _Add(_Mul(Symbol("a'"), b), _Mul(a, Symbol("b'")))),
(r"y''_1", Symbol("y_{1}''")),
(r"y_1''", Symbol("y_{1}''")),
(r"\left(x + y\right) z", _Mul(_Add(x, y), z)),
(r"\left( x + y\right ) z", _Mul(_Add(x, y), z)),
(r"\left( x + y\right ) z", _Mul(_Add(x, y), z)),
(r"\left[x + y\right] z", _Mul(_Add(x, y), z)),
(r"\left\{x + y\right\} z", _Mul(_Add(x, y), z)),
(r"1+1", _Add(1, 1)),
(r"0+1", _Add(0, 1)),
(r"1*2", _Mul(1, 2)),
(r"0*1", _Mul(0, 1)),
(r"1 \times 2 ", _Mul(1, 2)),
(r"x = y", Eq(x, y)),
(r"x \neq y", Ne(x, y)),
(r"x < y", Lt(x, y)),
(r"x > y", Gt(x, y)),
(r"x \leq y", Le(x, y)),
(r"x \geq y", Ge(x, y)),
(r"x \le y", Le(x, y)),
(r"x \ge y", Ge(x, y)),
(r"\lfloor x \rfloor", floor(x)),
(r"\lceil x \rceil", ceiling(x)),
(r"\langle x |", Bra('x')),
(r"| x \rangle", Ket('x')),
(r"\sin \theta", sin(theta)),
(r"\sin(\theta)", sin(theta)),
(r"\sin^{-1} a", asin(a)),
(r"\sin a \cos b", _Mul(sin(a), cos(b))),
(r"\sin \cos \theta", sin(cos(theta))),
(r"\sin(\cos \theta)", sin(cos(theta))),
(r"\frac{a}{b}", a / b),
(r"\dfrac{a}{b}", a / b),
(r"\tfrac{a}{b}", a / b),
(r"\frac12", _Pow(2, -1)),
(r"\frac12y", _Mul(_Pow(2, -1), y)),
(r"\frac1234", _Mul(_Pow(2, -1), 34)),
(r"\frac2{3}", _Mul(2, _Pow(3, -1))),
(r"\frac{\sin{x}}2", _Mul(sin(x), _Pow(2, -1))),
(r"\frac{a + b}{c}", _Mul(a + b, _Pow(c, -1))),
(r"\frac{7}{3}", _Mul(7, _Pow(3, -1))),
(r"(\csc x)(\sec y)", csc(x)*sec(y)),
(r"\lim_{x \to 3} a", Limit(a, x, 3, dir='+-')),
(r"\lim_{x \rightarrow 3} a", Limit(a, x, 3, dir='+-')),
(r"\lim_{x \Rightarrow 3} a", Limit(a, x, 3, dir='+-')),
(r"\lim_{x \longrightarrow 3} a", Limit(a, x, 3, dir='+-')),
(r"\lim_{x \Longrightarrow 3} a", Limit(a, x, 3, dir='+-')),
(r"\lim_{x \to 3^{+}} a", Limit(a, x, 3, dir='+')),
(r"\lim_{x \to 3^{-}} a", Limit(a, x, 3, dir='-')),
(r"\lim_{x \to 3^+} a", Limit(a, x, 3, dir='+')),
(r"\lim_{x \to 3^-} a", Limit(a, x, 3, dir='-')),
(r"\infty", oo),
(r"\lim_{x \to \infty} \frac{1}{x}", Limit(_Pow(x, -1), x, oo)),
(r"\frac{d}{dx} x", Derivative(x, x)),
(r"\frac{d}{dt} x", Derivative(x, t)),
(r"f(x)", f(x)),
(r"f(x, y)", f(x, y)),
(r"f(x, y, z)", f(x, y, z)),
(r"f'_1(x)", Function("f_{1}'")(x)),
(r"f_{1}''(x+y)", Function("f_{1}''")(x+y)),
(r"\frac{d f(x)}{dx}", Derivative(f(x), x)),
(r"\frac{d\theta(x)}{dx}", Derivative(Function('theta')(x), x)),
(r"x \neq y", Unequality(x, y)),
(r"|x|", _Abs(x)),
(r"||x||", _Abs(Abs(x))),
(r"|x||y|", _Abs(x)*_Abs(y)),
(r"||x||y||", _Abs(_Abs(x)*_Abs(y))),
(r"\pi^{|xy|}", Symbol('pi')**_Abs(x*y)),
(r"\int x dx", Integral(x, x)),
(r"\int x d\theta", Integral(x, theta)),
(r"\int (x^2 - y)dx", Integral(x**2 - y, x)),
(r"\int x + a dx", Integral(_Add(x, a), x)),
(r"\int da", Integral(1, a)),
(r"\int_0^7 dx", Integral(1, (x, 0, 7))),
(r"\int\limits_{0}^{1} x dx", Integral(x, (x, 0, 1))),
(r"\int_a^b x dx", Integral(x, (x, a, b))),
(r"\int^b_a x dx", Integral(x, (x, a, b))),
(r"\int_{a}^b x dx", Integral(x, (x, a, b))),
(r"\int^{b}_a x dx", Integral(x, (x, a, b))),
(r"\int_{a}^{b} x dx", Integral(x, (x, a, b))),
(r"\int^{b}_{a} x dx", Integral(x, (x, a, b))),
(r"\int_{f(a)}^{f(b)} f(z) dz", Integral(f(z), (z, f(a), f(b)))),
(r"\int (x+a)", Integral(_Add(x, a), x)),
(r"\int a + b + c dx", Integral(_Add(_Add(a, b), c), x)),
(r"\int \frac{dz}{z}", Integral(Pow(z, -1), z)),
(r"\int \frac{3 dz}{z}", Integral(3*Pow(z, -1), z)),
(r"\int \frac{1}{x} dx", Integral(Pow(x, -1), x)),
(r"\int \frac{1}{a} + \frac{1}{b} dx",
Integral(_Add(_Pow(a, -1), Pow(b, -1)), x)),
(r"\int \frac{3 \cdot d\theta}{\theta}",
Integral(3*_Pow(theta, -1), theta)),
(r"\int \frac{1}{x} + 1 dx", Integral(_Add(_Pow(x, -1), 1), x)),
(r"x_0", Symbol('x_{0}')),
(r"x_{1}", Symbol('x_{1}')),
(r"x_a", Symbol('x_{a}')),
(r"x_{b}", Symbol('x_{b}')),
(r"h_\theta", Symbol('h_{theta}')),
(r"h_{\theta}", Symbol('h_{theta}')),
(r"h_{\theta}(x_0, x_1)",
Function('h_{theta}')(Symbol('x_{0}'), Symbol('x_{1}'))),
(r"x!", _factorial(x)),
(r"100!", _factorial(100)),
(r"\theta!", _factorial(theta)),
(r"(x + 1)!", _factorial(_Add(x, 1))),
(r"(x!)!", _factorial(_factorial(x))),
(r"x!!!", _factorial(_factorial(_factorial(x)))),
(r"5!7!", _Mul(_factorial(5), _factorial(7))),
(r"\sqrt{x}", sqrt(x)),
(r"\sqrt{x + b}", sqrt(_Add(x, b))),
(r"\sqrt[3]{\sin x}", root(sin(x), 3)),
(r"\sqrt[y]{\sin x}", root(sin(x), y)),
(r"\sqrt[\theta]{\sin x}", root(sin(x), theta)),
(r"\sqrt{\frac{12}{6}}", _Sqrt(_Mul(12, _Pow(6, -1)))),
(r"\overline{z}", _Conjugate(z)),
(r"\overline{\overline{z}}", _Conjugate(_Conjugate(z))),
(r"\overline{x + y}", _Conjugate(_Add(x, y))),
(r"\overline{x} + \overline{y}", _Conjugate(x) + _Conjugate(y)),
(r"x < y", StrictLessThan(x, y)),
(r"x \leq y", LessThan(x, y)),
(r"x > y", StrictGreaterThan(x, y)),
(r"x \geq y", GreaterThan(x, y)),
(r"\mathit{x}", Symbol('x')),
(r"\mathit{test}", Symbol('test')),
(r"\mathit{TEST}", Symbol('TEST')),
(r"\mathit{HELLO world}", Symbol('HELLO world')),
(r"\sum_{k = 1}^{3} c", Sum(c, (k, 1, 3))),
(r"\sum_{k = 1}^3 c", Sum(c, (k, 1, 3))),
(r"\sum^{3}_{k = 1} c", Sum(c, (k, 1, 3))),
(r"\sum^3_{k = 1} c", Sum(c, (k, 1, 3))),
(r"\sum_{k = 1}^{10} k^2", Sum(k**2, (k, 1, 10))),
(r"\sum_{n = 0}^{\infty} \frac{1}{n!}",
Sum(_Pow(_factorial(n), -1), (n, 0, oo))),
(r"\prod_{a = b}^{c} x", Product(x, (a, b, c))),
(r"\prod_{a = b}^c x", Product(x, (a, b, c))),
(r"\prod^{c}_{a = b} x", Product(x, (a, b, c))),
(r"\prod^c_{a = b} x", Product(x, (a, b, c))),
(r"\exp x", _exp(x)),
(r"\exp(x)", _exp(x)),
(r"\lg x", _log(x, 10)),
(r"\ln x", _log(x, E)),
(r"\ln xy", _log(x*y, E)),
(r"\log x", _log(x, E)),
(r"\log xy", _log(x*y, E)),
(r"\log_{2} x", _log(x, 2)),
(r"\log_{a} x", _log(x, a)),
(r"\log_{11} x", _log(x, 11)),
(r"\log_{a^2} x", _log(x, _Pow(a, 2))),
(r"[x]", x),
(r"[a + b]", _Add(a, b)),
(r"\frac{d}{dx} [ \tan x ]", Derivative(tan(x), x)),
(r"\binom{n}{k}", _binomial(n, k)),
(r"\tbinom{n}{k}", _binomial(n, k)),
(r"\dbinom{n}{k}", _binomial(n, k)),
(r"\binom{n}{0}", _binomial(n, 0)),
(r"x^\binom{n}{k}", _Pow(x, _binomial(n, k))),
(r"a \, b", _Mul(a, b)),
(r"a \thinspace b", _Mul(a, b)),
(r"a \: b", _Mul(a, b)),
(r"a \medspace b", _Mul(a, b)),
(r"a \; b", _Mul(a, b)),
(r"a \thickspace b", _Mul(a, b)),
(r"a \quad b", _Mul(a, b)),
(r"a \qquad b", _Mul(a, b)),
(r"a \! b", _Mul(a, b)),
(r"a \negthinspace b", _Mul(a, b)),
(r"a \negmedspace b", _Mul(a, b)),
(r"a \negthickspace b", _Mul(a, b)),
(r"\int x \, dx", Integral(x, x)),
(r"\log_2 x", _log(x, 2)),
(r"\log_a x", _log(x, a)),
(r"5^0 - 4^0", _Add(_Pow(5, 0), _Mul(-1, _Pow(4, 0)))),
(r"3x - 1", _Add(_Mul(3, x), -1))
]
def test_parseable():
from sympy.parsing.latex import parse_latex
for latex_str, sympy_expr in GOOD_PAIRS:
assert parse_latex(latex_str) == sympy_expr, latex_str
# These bad LaTeX strings should raise a LaTeXParsingError when parsed
BAD_STRINGS = [
r"(",
r")",
r"\frac{d}{dx}",
r"(\frac{d}{dx})",
r"\sqrt{}",
r"\sqrt",
r"\overline{}",
r"\overline",
r"{",
r"}",
r"\mathit{x + y}",
r"\mathit{21}",
r"\frac{2}{}",
r"\frac{}{2}",
r"\int",
r"!",
r"!0",
r"_",
r"^",
r"|",
r"||x|",
r"()",
r"((((((((((((((((()))))))))))))))))",
r"-",
r"\frac{d}{dx} + \frac{d}{dt}",
r"f(x,,y)",
r"f(x,y,",
r"\sin^x",
r"\cos^2",
r"@",
r"#",
r"$",
r"%",
r"&",
r"*",
r"" "\\",
r"~",
r"\frac{(2 + x}{1 - x)}",
]
def test_not_parseable():
from sympy.parsing.latex import parse_latex, LaTeXParsingError
for latex_str in BAD_STRINGS:
with raises(LaTeXParsingError):
parse_latex(latex_str)
# At time of migration from latex2sympy, should fail but doesn't
FAILING_BAD_STRINGS = [
r"\cos 1 \cos",
r"f(,",
r"f()",
r"a \div \div b",
r"a \cdot \cdot b",
r"a // b",
r"a +",
r"1.1.1",
r"1 +",
r"a / b /",
]
@XFAIL
def test_failing_not_parseable():
from sympy.parsing.latex import parse_latex, LaTeXParsingError
for latex_str in FAILING_BAD_STRINGS:
with raises(LaTeXParsingError):
parse_latex(latex_str)
|
de250792d7ce467eb40f9481a513634926b1b8a966cc4048e7e0e295f924450d | # Ported from latex2sympy by @augustt198
# https://github.com/augustt198/latex2sympy
# See license in LICENSE.txt
from importlib.metadata import version
import sympy
from sympy.external import import_module
from sympy.printing.str import StrPrinter
from sympy.physics.quantum.state import Bra, Ket
from .errors import LaTeXParsingError
LaTeXParser = LaTeXLexer = MathErrorListener = None
try:
LaTeXParser = import_module('sympy.parsing.latex._antlr.latexparser',
import_kwargs={'fromlist': ['LaTeXParser']}).LaTeXParser
LaTeXLexer = import_module('sympy.parsing.latex._antlr.latexlexer',
import_kwargs={'fromlist': ['LaTeXLexer']}).LaTeXLexer
except Exception:
pass
ErrorListener = import_module('antlr4.error.ErrorListener',
warn_not_installed=True,
import_kwargs={'fromlist': ['ErrorListener']}
)
if ErrorListener:
class MathErrorListener(ErrorListener.ErrorListener): # type: ignore
def __init__(self, src):
super(ErrorListener.ErrorListener, self).__init__()
self.src = src
def syntaxError(self, recog, symbol, line, col, msg, e):
fmt = "%s\n%s\n%s"
marker = "~" * col + "^"
if msg.startswith("missing"):
err = fmt % (msg, self.src, marker)
elif msg.startswith("no viable"):
err = fmt % ("I expected something else here", self.src, marker)
elif msg.startswith("mismatched"):
names = LaTeXParser.literalNames
expected = [
names[i] for i in e.getExpectedTokens() if i < len(names)
]
if len(expected) < 10:
expected = " ".join(expected)
err = (fmt % ("I expected one of these: " + expected, self.src,
marker))
else:
err = (fmt % ("I expected something else here", self.src,
marker))
else:
err = fmt % ("I don't understand this", self.src, marker)
raise LaTeXParsingError(err)
def parse_latex(sympy):
antlr4 = import_module('antlr4')
if None in [antlr4, MathErrorListener] or \
not version('antlr4-python3-runtime').startswith('4.11'):
raise ImportError("LaTeX parsing requires the antlr4 Python package,"
" provided by pip (antlr4-python3-runtime) or"
" conda (antlr-python-runtime), version 4.11")
matherror = MathErrorListener(sympy)
stream = antlr4.InputStream(sympy)
lex = LaTeXLexer(stream)
lex.removeErrorListeners()
lex.addErrorListener(matherror)
tokens = antlr4.CommonTokenStream(lex)
parser = LaTeXParser(tokens)
# remove default console error listener
parser.removeErrorListeners()
parser.addErrorListener(matherror)
relation = parser.math().relation()
expr = convert_relation(relation)
return expr
def convert_relation(rel):
if rel.expr():
return convert_expr(rel.expr())
lh = convert_relation(rel.relation(0))
rh = convert_relation(rel.relation(1))
if rel.LT():
return sympy.StrictLessThan(lh, rh)
elif rel.LTE():
return sympy.LessThan(lh, rh)
elif rel.GT():
return sympy.StrictGreaterThan(lh, rh)
elif rel.GTE():
return sympy.GreaterThan(lh, rh)
elif rel.EQUAL():
return sympy.Eq(lh, rh)
elif rel.NEQ():
return sympy.Ne(lh, rh)
def convert_expr(expr):
return convert_add(expr.additive())
def convert_add(add):
if add.ADD():
lh = convert_add(add.additive(0))
rh = convert_add(add.additive(1))
return sympy.Add(lh, rh, evaluate=False)
elif add.SUB():
lh = convert_add(add.additive(0))
rh = convert_add(add.additive(1))
if hasattr(rh, "is_Atom") and rh.is_Atom:
return sympy.Add(lh, -1 * rh, evaluate=False)
return sympy.Add(lh, sympy.Mul(-1, rh, evaluate=False), evaluate=False)
else:
return convert_mp(add.mp())
def convert_mp(mp):
if hasattr(mp, 'mp'):
mp_left = mp.mp(0)
mp_right = mp.mp(1)
else:
mp_left = mp.mp_nofunc(0)
mp_right = mp.mp_nofunc(1)
if mp.MUL() or mp.CMD_TIMES() or mp.CMD_CDOT():
lh = convert_mp(mp_left)
rh = convert_mp(mp_right)
return sympy.Mul(lh, rh, evaluate=False)
elif mp.DIV() or mp.CMD_DIV() or mp.COLON():
lh = convert_mp(mp_left)
rh = convert_mp(mp_right)
return sympy.Mul(lh, sympy.Pow(rh, -1, evaluate=False), evaluate=False)
else:
if hasattr(mp, 'unary'):
return convert_unary(mp.unary())
else:
return convert_unary(mp.unary_nofunc())
def convert_unary(unary):
if hasattr(unary, 'unary'):
nested_unary = unary.unary()
else:
nested_unary = unary.unary_nofunc()
if hasattr(unary, 'postfix_nofunc'):
first = unary.postfix()
tail = unary.postfix_nofunc()
postfix = [first] + tail
else:
postfix = unary.postfix()
if unary.ADD():
return convert_unary(nested_unary)
elif unary.SUB():
numabs = convert_unary(nested_unary)
# Use Integer(-n) instead of Mul(-1, n)
return -numabs
elif postfix:
return convert_postfix_list(postfix)
def convert_postfix_list(arr, i=0):
if i >= len(arr):
raise LaTeXParsingError("Index out of bounds")
res = convert_postfix(arr[i])
if isinstance(res, sympy.Expr):
if i == len(arr) - 1:
return res # nothing to multiply by
else:
if i > 0:
left = convert_postfix(arr[i - 1])
right = convert_postfix(arr[i + 1])
if isinstance(left, sympy.Expr) and isinstance(
right, sympy.Expr):
left_syms = convert_postfix(arr[i - 1]).atoms(sympy.Symbol)
right_syms = convert_postfix(arr[i + 1]).atoms(
sympy.Symbol)
# if the left and right sides contain no variables and the
# symbol in between is 'x', treat as multiplication.
if not (left_syms or right_syms) and str(res) == 'x':
return convert_postfix_list(arr, i + 1)
# multiply by next
return sympy.Mul(
res, convert_postfix_list(arr, i + 1), evaluate=False)
else: # must be derivative
wrt = res[0]
if i == len(arr) - 1:
raise LaTeXParsingError("Expected expression for derivative")
else:
expr = convert_postfix_list(arr, i + 1)
return sympy.Derivative(expr, wrt)
def do_subs(expr, at):
if at.expr():
at_expr = convert_expr(at.expr())
syms = at_expr.atoms(sympy.Symbol)
if len(syms) == 0:
return expr
elif len(syms) > 0:
sym = next(iter(syms))
return expr.subs(sym, at_expr)
elif at.equality():
lh = convert_expr(at.equality().expr(0))
rh = convert_expr(at.equality().expr(1))
return expr.subs(lh, rh)
def convert_postfix(postfix):
if hasattr(postfix, 'exp'):
exp_nested = postfix.exp()
else:
exp_nested = postfix.exp_nofunc()
exp = convert_exp(exp_nested)
for op in postfix.postfix_op():
if op.BANG():
if isinstance(exp, list):
raise LaTeXParsingError("Cannot apply postfix to derivative")
exp = sympy.factorial(exp, evaluate=False)
elif op.eval_at():
ev = op.eval_at()
at_b = None
at_a = None
if ev.eval_at_sup():
at_b = do_subs(exp, ev.eval_at_sup())
if ev.eval_at_sub():
at_a = do_subs(exp, ev.eval_at_sub())
if at_b is not None and at_a is not None:
exp = sympy.Add(at_b, -1 * at_a, evaluate=False)
elif at_b is not None:
exp = at_b
elif at_a is not None:
exp = at_a
return exp
def convert_exp(exp):
if hasattr(exp, 'exp'):
exp_nested = exp.exp()
else:
exp_nested = exp.exp_nofunc()
if exp_nested:
base = convert_exp(exp_nested)
if isinstance(base, list):
raise LaTeXParsingError("Cannot raise derivative to power")
if exp.atom():
exponent = convert_atom(exp.atom())
elif exp.expr():
exponent = convert_expr(exp.expr())
return sympy.Pow(base, exponent, evaluate=False)
else:
if hasattr(exp, 'comp'):
return convert_comp(exp.comp())
else:
return convert_comp(exp.comp_nofunc())
def convert_comp(comp):
if comp.group():
return convert_expr(comp.group().expr())
elif comp.abs_group():
return sympy.Abs(convert_expr(comp.abs_group().expr()), evaluate=False)
elif comp.atom():
return convert_atom(comp.atom())
elif comp.floor():
return convert_floor(comp.floor())
elif comp.ceil():
return convert_ceil(comp.ceil())
elif comp.func():
return convert_func(comp.func())
def convert_atom(atom):
if atom.LETTER():
sname = atom.LETTER().getText()
if atom.subexpr():
if atom.subexpr().expr(): # subscript is expr
subscript = convert_expr(atom.subexpr().expr())
else: # subscript is atom
subscript = convert_atom(atom.subexpr().atom())
sname += '_{' + StrPrinter().doprint(subscript) + '}'
if atom.SINGLE_QUOTES():
sname += atom.SINGLE_QUOTES().getText() # put after subscript for easy identify
return sympy.Symbol(sname)
elif atom.SYMBOL():
s = atom.SYMBOL().getText()[1:]
if s == "infty":
return sympy.oo
else:
if atom.subexpr():
subscript = None
if atom.subexpr().expr(): # subscript is expr
subscript = convert_expr(atom.subexpr().expr())
else: # subscript is atom
subscript = convert_atom(atom.subexpr().atom())
subscriptName = StrPrinter().doprint(subscript)
s += '_{' + subscriptName + '}'
return sympy.Symbol(s)
elif atom.number():
s = atom.number().getText().replace(",", "")
return sympy.Number(s)
elif atom.DIFFERENTIAL():
var = get_differential_var(atom.DIFFERENTIAL())
return sympy.Symbol('d' + var.name)
elif atom.mathit():
text = rule2text(atom.mathit().mathit_text())
return sympy.Symbol(text)
elif atom.frac():
return convert_frac(atom.frac())
elif atom.binom():
return convert_binom(atom.binom())
elif atom.bra():
val = convert_expr(atom.bra().expr())
return Bra(val)
elif atom.ket():
val = convert_expr(atom.ket().expr())
return Ket(val)
def rule2text(ctx):
stream = ctx.start.getInputStream()
# starting index of starting token
startIdx = ctx.start.start
# stopping index of stopping token
stopIdx = ctx.stop.stop
return stream.getText(startIdx, stopIdx)
def convert_frac(frac):
diff_op = False
partial_op = False
if frac.lower and frac.upper:
lower_itv = frac.lower.getSourceInterval()
lower_itv_len = lower_itv[1] - lower_itv[0] + 1
if (frac.lower.start == frac.lower.stop
and frac.lower.start.type == LaTeXLexer.DIFFERENTIAL):
wrt = get_differential_var_str(frac.lower.start.text)
diff_op = True
elif (lower_itv_len == 2 and frac.lower.start.type == LaTeXLexer.SYMBOL
and frac.lower.start.text == '\\partial'
and (frac.lower.stop.type == LaTeXLexer.LETTER
or frac.lower.stop.type == LaTeXLexer.SYMBOL)):
partial_op = True
wrt = frac.lower.stop.text
if frac.lower.stop.type == LaTeXLexer.SYMBOL:
wrt = wrt[1:]
if diff_op or partial_op:
wrt = sympy.Symbol(wrt)
if (diff_op and frac.upper.start == frac.upper.stop
and frac.upper.start.type == LaTeXLexer.LETTER
and frac.upper.start.text == 'd'):
return [wrt]
elif (partial_op and frac.upper.start == frac.upper.stop
and frac.upper.start.type == LaTeXLexer.SYMBOL
and frac.upper.start.text == '\\partial'):
return [wrt]
upper_text = rule2text(frac.upper)
expr_top = None
if diff_op and upper_text.startswith('d'):
expr_top = parse_latex(upper_text[1:])
elif partial_op and frac.upper.start.text == '\\partial':
expr_top = parse_latex(upper_text[len('\\partial'):])
if expr_top:
return sympy.Derivative(expr_top, wrt)
if frac.upper:
expr_top = convert_expr(frac.upper)
else:
expr_top = sympy.Number(frac.upperd.text)
if frac.lower:
expr_bot = convert_expr(frac.lower)
else:
expr_bot = sympy.Number(frac.lowerd.text)
inverse_denom = sympy.Pow(expr_bot, -1, evaluate=False)
if expr_top == 1:
return inverse_denom
else:
return sympy.Mul(expr_top, inverse_denom, evaluate=False)
def convert_binom(binom):
expr_n = convert_expr(binom.n)
expr_k = convert_expr(binom.k)
return sympy.binomial(expr_n, expr_k, evaluate=False)
def convert_floor(floor):
val = convert_expr(floor.val)
return sympy.floor(val, evaluate=False)
def convert_ceil(ceil):
val = convert_expr(ceil.val)
return sympy.ceiling(val, evaluate=False)
def convert_func(func):
if func.func_normal():
if func.L_PAREN(): # function called with parenthesis
arg = convert_func_arg(func.func_arg())
else:
arg = convert_func_arg(func.func_arg_noparens())
name = func.func_normal().start.text[1:]
# change arc<trig> -> a<trig>
if name in [
"arcsin", "arccos", "arctan", "arccsc", "arcsec", "arccot"
]:
name = "a" + name[3:]
expr = getattr(sympy.functions, name)(arg, evaluate=False)
if name in ["arsinh", "arcosh", "artanh"]:
name = "a" + name[2:]
expr = getattr(sympy.functions, name)(arg, evaluate=False)
if name == "exp":
expr = sympy.exp(arg, evaluate=False)
if name in ("log", "lg", "ln"):
if func.subexpr():
if func.subexpr().expr():
base = convert_expr(func.subexpr().expr())
else:
base = convert_atom(func.subexpr().atom())
elif name == "lg": # ISO 80000-2:2019
base = 10
elif name in ("ln", "log"): # SymPy's latex printer prints ln as log by default
base = sympy.E
expr = sympy.log(arg, base, evaluate=False)
func_pow = None
should_pow = True
if func.supexpr():
if func.supexpr().expr():
func_pow = convert_expr(func.supexpr().expr())
else:
func_pow = convert_atom(func.supexpr().atom())
if name in [
"sin", "cos", "tan", "csc", "sec", "cot", "sinh", "cosh",
"tanh"
]:
if func_pow == -1:
name = "a" + name
should_pow = False
expr = getattr(sympy.functions, name)(arg, evaluate=False)
if func_pow and should_pow:
expr = sympy.Pow(expr, func_pow, evaluate=False)
return expr
elif func.LETTER() or func.SYMBOL():
if func.LETTER():
fname = func.LETTER().getText()
elif func.SYMBOL():
fname = func.SYMBOL().getText()[1:]
fname = str(fname) # can't be unicode
if func.subexpr():
if func.subexpr().expr(): # subscript is expr
subscript = convert_expr(func.subexpr().expr())
else: # subscript is atom
subscript = convert_atom(func.subexpr().atom())
subscriptName = StrPrinter().doprint(subscript)
fname += '_{' + subscriptName + '}'
if func.SINGLE_QUOTES():
fname += func.SINGLE_QUOTES().getText()
input_args = func.args()
output_args = []
while input_args.args(): # handle multiple arguments to function
output_args.append(convert_expr(input_args.expr()))
input_args = input_args.args()
output_args.append(convert_expr(input_args.expr()))
return sympy.Function(fname)(*output_args)
elif func.FUNC_INT():
return handle_integral(func)
elif func.FUNC_SQRT():
expr = convert_expr(func.base)
if func.root:
r = convert_expr(func.root)
return sympy.root(expr, r, evaluate=False)
else:
return sympy.sqrt(expr, evaluate=False)
elif func.FUNC_OVERLINE():
expr = convert_expr(func.base)
return sympy.conjugate(expr, evaluate=False)
elif func.FUNC_SUM():
return handle_sum_or_prod(func, "summation")
elif func.FUNC_PROD():
return handle_sum_or_prod(func, "product")
elif func.FUNC_LIM():
return handle_limit(func)
def convert_func_arg(arg):
if hasattr(arg, 'expr'):
return convert_expr(arg.expr())
else:
return convert_mp(arg.mp_nofunc())
def handle_integral(func):
if func.additive():
integrand = convert_add(func.additive())
elif func.frac():
integrand = convert_frac(func.frac())
else:
integrand = 1
int_var = None
if func.DIFFERENTIAL():
int_var = get_differential_var(func.DIFFERENTIAL())
else:
for sym in integrand.atoms(sympy.Symbol):
s = str(sym)
if len(s) > 1 and s[0] == 'd':
if s[1] == '\\':
int_var = sympy.Symbol(s[2:])
else:
int_var = sympy.Symbol(s[1:])
int_sym = sym
if int_var:
integrand = integrand.subs(int_sym, 1)
else:
# Assume dx by default
int_var = sympy.Symbol('x')
if func.subexpr():
if func.subexpr().atom():
lower = convert_atom(func.subexpr().atom())
else:
lower = convert_expr(func.subexpr().expr())
if func.supexpr().atom():
upper = convert_atom(func.supexpr().atom())
else:
upper = convert_expr(func.supexpr().expr())
return sympy.Integral(integrand, (int_var, lower, upper))
else:
return sympy.Integral(integrand, int_var)
def handle_sum_or_prod(func, name):
val = convert_mp(func.mp())
iter_var = convert_expr(func.subeq().equality().expr(0))
start = convert_expr(func.subeq().equality().expr(1))
if func.supexpr().expr(): # ^{expr}
end = convert_expr(func.supexpr().expr())
else: # ^atom
end = convert_atom(func.supexpr().atom())
if name == "summation":
return sympy.Sum(val, (iter_var, start, end))
elif name == "product":
return sympy.Product(val, (iter_var, start, end))
def handle_limit(func):
sub = func.limit_sub()
if sub.LETTER():
var = sympy.Symbol(sub.LETTER().getText())
elif sub.SYMBOL():
var = sympy.Symbol(sub.SYMBOL().getText()[1:])
else:
var = sympy.Symbol('x')
if sub.SUB():
direction = "-"
elif sub.ADD():
direction = "+"
else:
direction = "+-"
approaching = convert_expr(sub.expr())
content = convert_mp(func.mp())
return sympy.Limit(content, var, approaching, direction)
def get_differential_var(d):
text = get_differential_var_str(d.getText())
return sympy.Symbol(text)
def get_differential_var_str(text):
for i in range(1, len(text)):
c = text[i]
if not (c == " " or c == "\r" or c == "\n" or c == "\t"):
idx = i
break
text = text[idx:]
if text[0] == "\\":
text = text[1:]
return text
|
439ca9615a9d89d200de4c4aa857d5cb81f651d6eb01e52d488ac3e5f0e895ec | """Dirac notation for states."""
from sympy.core.cache import cacheit
from sympy.core.containers import Tuple
from sympy.core.expr import Expr
from sympy.core.function import Function
from sympy.core.numbers import oo
from sympy.core.singleton import S
from sympy.functions.elementary.complexes import conjugate
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.integrals.integrals import integrate
from sympy.printing.pretty.stringpict import stringPict
from sympy.physics.quantum.qexpr import QExpr, dispatch_method
__all__ = [
'KetBase',
'BraBase',
'StateBase',
'State',
'Ket',
'Bra',
'TimeDepState',
'TimeDepBra',
'TimeDepKet',
'OrthogonalKet',
'OrthogonalBra',
'OrthogonalState',
'Wavefunction'
]
#-----------------------------------------------------------------------------
# States, bras and kets.
#-----------------------------------------------------------------------------
# ASCII brackets
_lbracket = "<"
_rbracket = ">"
_straight_bracket = "|"
# Unicode brackets
# MATHEMATICAL ANGLE BRACKETS
_lbracket_ucode = "\N{MATHEMATICAL LEFT ANGLE BRACKET}"
_rbracket_ucode = "\N{MATHEMATICAL RIGHT ANGLE BRACKET}"
# LIGHT VERTICAL BAR
_straight_bracket_ucode = "\N{LIGHT VERTICAL BAR}"
# Other options for unicode printing of <, > and | for Dirac notation.
# LEFT-POINTING ANGLE BRACKET
# _lbracket = "\u2329"
# _rbracket = "\u232A"
# LEFT ANGLE BRACKET
# _lbracket = "\u3008"
# _rbracket = "\u3009"
# VERTICAL LINE
# _straight_bracket = "\u007C"
class StateBase(QExpr):
"""Abstract base class for general abstract states in quantum mechanics.
All other state classes defined will need to inherit from this class. It
carries the basic structure for all other states such as dual, _eval_adjoint
and label.
This is an abstract base class and you should not instantiate it directly,
instead use State.
"""
@classmethod
def _operators_to_state(self, ops, **options):
""" Returns the eigenstate instance for the passed operators.
This method should be overridden in subclasses. It will handle being
passed either an Operator instance or set of Operator instances. It
should return the corresponding state INSTANCE or simply raise a
NotImplementedError. See cartesian.py for an example.
"""
raise NotImplementedError("Cannot map operators to states in this class. Method not implemented!")
def _state_to_operators(self, op_classes, **options):
""" Returns the operators which this state instance is an eigenstate
of.
This method should be overridden in subclasses. It will be called on
state instances and be passed the operator classes that we wish to make
into instances. The state instance will then transform the classes
appropriately, or raise a NotImplementedError if it cannot return
operator instances. See cartesian.py for examples,
"""
raise NotImplementedError(
"Cannot map this state to operators. Method not implemented!")
@property
def operators(self):
"""Return the operator(s) that this state is an eigenstate of"""
from .operatorset import state_to_operators # import internally to avoid circular import errors
return state_to_operators(self)
def _enumerate_state(self, num_states, **options):
raise NotImplementedError("Cannot enumerate this state!")
def _represent_default_basis(self, **options):
return self._represent(basis=self.operators)
#-------------------------------------------------------------------------
# Dagger/dual
#-------------------------------------------------------------------------
@property
def dual(self):
"""Return the dual state of this one."""
return self.dual_class()._new_rawargs(self.hilbert_space, *self.args)
@classmethod
def dual_class(self):
"""Return the class used to construct the dual."""
raise NotImplementedError(
'dual_class must be implemented in a subclass'
)
def _eval_adjoint(self):
"""Compute the dagger of this state using the dual."""
return self.dual
#-------------------------------------------------------------------------
# Printing
#-------------------------------------------------------------------------
def _pretty_brackets(self, height, use_unicode=True):
# Return pretty printed brackets for the state
# Ideally, this could be done by pform.parens but it does not support the angled < and >
# Setup for unicode vs ascii
if use_unicode:
lbracket, rbracket = getattr(self, 'lbracket_ucode', ""), getattr(self, 'rbracket_ucode', "")
slash, bslash, vert = '\N{BOX DRAWINGS LIGHT DIAGONAL UPPER RIGHT TO LOWER LEFT}', \
'\N{BOX DRAWINGS LIGHT DIAGONAL UPPER LEFT TO LOWER RIGHT}', \
'\N{BOX DRAWINGS LIGHT VERTICAL}'
else:
lbracket, rbracket = getattr(self, 'lbracket', ""), getattr(self, 'rbracket', "")
slash, bslash, vert = '/', '\\', '|'
# If height is 1, just return brackets
if height == 1:
return stringPict(lbracket), stringPict(rbracket)
# Make height even
height += (height % 2)
brackets = []
for bracket in lbracket, rbracket:
# Create left bracket
if bracket in {_lbracket, _lbracket_ucode}:
bracket_args = [ ' ' * (height//2 - i - 1) +
slash for i in range(height // 2)]
bracket_args.extend(
[' ' * i + bslash for i in range(height // 2)])
# Create right bracket
elif bracket in {_rbracket, _rbracket_ucode}:
bracket_args = [ ' ' * i + bslash for i in range(height // 2)]
bracket_args.extend([ ' ' * (
height//2 - i - 1) + slash for i in range(height // 2)])
# Create straight bracket
elif bracket in {_straight_bracket, _straight_bracket_ucode}:
bracket_args = [vert] * height
else:
raise ValueError(bracket)
brackets.append(
stringPict('\n'.join(bracket_args), baseline=height//2))
return brackets
def _sympystr(self, printer, *args):
contents = self._print_contents(printer, *args)
return '%s%s%s' % (getattr(self, 'lbracket', ""), contents, getattr(self, 'rbracket', ""))
def _pretty(self, printer, *args):
from sympy.printing.pretty.stringpict import prettyForm
# Get brackets
pform = self._print_contents_pretty(printer, *args)
lbracket, rbracket = self._pretty_brackets(
pform.height(), printer._use_unicode)
# Put together state
pform = prettyForm(*pform.left(lbracket))
pform = prettyForm(*pform.right(rbracket))
return pform
def _latex(self, printer, *args):
contents = self._print_contents_latex(printer, *args)
# The extra {} brackets are needed to get matplotlib's latex
# rendered to render this properly.
return '{%s%s%s}' % (getattr(self, 'lbracket_latex', ""), contents, getattr(self, 'rbracket_latex', ""))
class KetBase(StateBase):
"""Base class for Kets.
This class defines the dual property and the brackets for printing. This is
an abstract base class and you should not instantiate it directly, instead
use Ket.
"""
lbracket = _straight_bracket
rbracket = _rbracket
lbracket_ucode = _straight_bracket_ucode
rbracket_ucode = _rbracket_ucode
lbracket_latex = r'\left|'
rbracket_latex = r'\right\rangle '
@classmethod
def default_args(self):
return ("psi",)
@classmethod
def dual_class(self):
return BraBase
def __mul__(self, other):
"""KetBase*other"""
from sympy.physics.quantum.operator import OuterProduct
if isinstance(other, BraBase):
return OuterProduct(self, other)
else:
return Expr.__mul__(self, other)
def __rmul__(self, other):
"""other*KetBase"""
from sympy.physics.quantum.innerproduct import InnerProduct
if isinstance(other, BraBase):
return InnerProduct(other, self)
else:
return Expr.__rmul__(self, other)
#-------------------------------------------------------------------------
# _eval_* methods
#-------------------------------------------------------------------------
def _eval_innerproduct(self, bra, **hints):
"""Evaluate the inner product between this ket and a bra.
This is called to compute <bra|ket>, where the ket is ``self``.
This method will dispatch to sub-methods having the format::
``def _eval_innerproduct_BraClass(self, **hints):``
Subclasses should define these methods (one for each BraClass) to
teach the ket how to take inner products with bras.
"""
return dispatch_method(self, '_eval_innerproduct', bra, **hints)
def _apply_from_right_to(self, op, **options):
"""Apply an Operator to this Ket as Operator*Ket
This method will dispatch to methods having the format::
``def _apply_from_right_to_OperatorName(op, **options):``
Subclasses should define these methods (one for each OperatorName) to
teach the Ket how to implement OperatorName*Ket
Parameters
==========
op : Operator
The Operator that is acting on the Ket as op*Ket
options : dict
A dict of key/value pairs that control how the operator is applied
to the Ket.
"""
return dispatch_method(self, '_apply_from_right_to', op, **options)
class BraBase(StateBase):
"""Base class for Bras.
This class defines the dual property and the brackets for printing. This
is an abstract base class and you should not instantiate it directly,
instead use Bra.
"""
lbracket = _lbracket
rbracket = _straight_bracket
lbracket_ucode = _lbracket_ucode
rbracket_ucode = _straight_bracket_ucode
lbracket_latex = r'\left\langle '
rbracket_latex = r'\right|'
@classmethod
def _operators_to_state(self, ops, **options):
state = self.dual_class()._operators_to_state(ops, **options)
return state.dual
def _state_to_operators(self, op_classes, **options):
return self.dual._state_to_operators(op_classes, **options)
def _enumerate_state(self, num_states, **options):
dual_states = self.dual._enumerate_state(num_states, **options)
return [x.dual for x in dual_states]
@classmethod
def default_args(self):
return self.dual_class().default_args()
@classmethod
def dual_class(self):
return KetBase
def __mul__(self, other):
"""BraBase*other"""
from sympy.physics.quantum.innerproduct import InnerProduct
if isinstance(other, KetBase):
return InnerProduct(self, other)
else:
return Expr.__mul__(self, other)
def __rmul__(self, other):
"""other*BraBase"""
from sympy.physics.quantum.operator import OuterProduct
if isinstance(other, KetBase):
return OuterProduct(other, self)
else:
return Expr.__rmul__(self, other)
def _represent(self, **options):
"""A default represent that uses the Ket's version."""
from sympy.physics.quantum.dagger import Dagger
return Dagger(self.dual._represent(**options))
class State(StateBase):
"""General abstract quantum state used as a base class for Ket and Bra."""
pass
class Ket(State, KetBase):
"""A general time-independent Ket in quantum mechanics.
Inherits from State and KetBase. This class should be used as the base
class for all physical, time-independent Kets in a system. This class
and its subclasses will be the main classes that users will use for
expressing Kets in Dirac notation [1]_.
Parameters
==========
args : tuple
The list of numbers or parameters that uniquely specify the
ket. This will usually be its symbol or its quantum numbers. For
time-dependent state, this will include the time.
Examples
========
Create a simple Ket and looking at its properties::
>>> from sympy.physics.quantum import Ket
>>> from sympy import symbols, I
>>> k = Ket('psi')
>>> k
|psi>
>>> k.hilbert_space
H
>>> k.is_commutative
False
>>> k.label
(psi,)
Ket's know about their associated bra::
>>> k.dual
<psi|
>>> k.dual_class()
<class 'sympy.physics.quantum.state.Bra'>
Take a linear combination of two kets::
>>> k0 = Ket(0)
>>> k1 = Ket(1)
>>> 2*I*k0 - 4*k1
2*I*|0> - 4*|1>
Compound labels are passed as tuples::
>>> n, m = symbols('n,m')
>>> k = Ket(n,m)
>>> k
|nm>
References
==========
.. [1] https://en.wikipedia.org/wiki/Bra-ket_notation
"""
@classmethod
def dual_class(self):
return Bra
class Bra(State, BraBase):
"""A general time-independent Bra in quantum mechanics.
Inherits from State and BraBase. A Bra is the dual of a Ket [1]_. This
class and its subclasses will be the main classes that users will use for
expressing Bras in Dirac notation.
Parameters
==========
args : tuple
The list of numbers or parameters that uniquely specify the
ket. This will usually be its symbol or its quantum numbers. For
time-dependent state, this will include the time.
Examples
========
Create a simple Bra and look at its properties::
>>> from sympy.physics.quantum import Bra
>>> from sympy import symbols, I
>>> b = Bra('psi')
>>> b
<psi|
>>> b.hilbert_space
H
>>> b.is_commutative
False
Bra's know about their dual Ket's::
>>> b.dual
|psi>
>>> b.dual_class()
<class 'sympy.physics.quantum.state.Ket'>
Like Kets, Bras can have compound labels and be manipulated in a similar
manner::
>>> n, m = symbols('n,m')
>>> b = Bra(n,m) - I*Bra(m,n)
>>> b
-I*<mn| + <nm|
Symbols in a Bra can be substituted using ``.subs``::
>>> b.subs(n,m)
<mm| - I*<mm|
References
==========
.. [1] https://en.wikipedia.org/wiki/Bra-ket_notation
"""
@classmethod
def dual_class(self):
return Ket
#-----------------------------------------------------------------------------
# Time dependent states, bras and kets.
#-----------------------------------------------------------------------------
class TimeDepState(StateBase):
"""Base class for a general time-dependent quantum state.
This class is used as a base class for any time-dependent state. The main
difference between this class and the time-independent state is that this
class takes a second argument that is the time in addition to the usual
label argument.
Parameters
==========
args : tuple
The list of numbers or parameters that uniquely specify the ket. This
will usually be its symbol or its quantum numbers. For time-dependent
state, this will include the time as the final argument.
"""
#-------------------------------------------------------------------------
# Initialization
#-------------------------------------------------------------------------
@classmethod
def default_args(self):
return ("psi", "t")
#-------------------------------------------------------------------------
# Properties
#-------------------------------------------------------------------------
@property
def label(self):
"""The label of the state."""
return self.args[:-1]
@property
def time(self):
"""The time of the state."""
return self.args[-1]
#-------------------------------------------------------------------------
# Printing
#-------------------------------------------------------------------------
def _print_time(self, printer, *args):
return printer._print(self.time, *args)
_print_time_repr = _print_time
_print_time_latex = _print_time
def _print_time_pretty(self, printer, *args):
pform = printer._print(self.time, *args)
return pform
def _print_contents(self, printer, *args):
label = self._print_label(printer, *args)
time = self._print_time(printer, *args)
return '%s;%s' % (label, time)
def _print_label_repr(self, printer, *args):
label = self._print_sequence(self.label, ',', printer, *args)
time = self._print_time_repr(printer, *args)
return '%s,%s' % (label, time)
def _print_contents_pretty(self, printer, *args):
label = self._print_label_pretty(printer, *args)
time = self._print_time_pretty(printer, *args)
return printer._print_seq((label, time), delimiter=';')
def _print_contents_latex(self, printer, *args):
label = self._print_sequence(
self.label, self._label_separator, printer, *args)
time = self._print_time_latex(printer, *args)
return '%s;%s' % (label, time)
class TimeDepKet(TimeDepState, KetBase):
"""General time-dependent Ket in quantum mechanics.
This inherits from ``TimeDepState`` and ``KetBase`` and is the main class
that should be used for Kets that vary with time. Its dual is a
``TimeDepBra``.
Parameters
==========
args : tuple
The list of numbers or parameters that uniquely specify the ket. This
will usually be its symbol or its quantum numbers. For time-dependent
state, this will include the time as the final argument.
Examples
========
Create a TimeDepKet and look at its attributes::
>>> from sympy.physics.quantum import TimeDepKet
>>> k = TimeDepKet('psi', 't')
>>> k
|psi;t>
>>> k.time
t
>>> k.label
(psi,)
>>> k.hilbert_space
H
TimeDepKets know about their dual bra::
>>> k.dual
<psi;t|
>>> k.dual_class()
<class 'sympy.physics.quantum.state.TimeDepBra'>
"""
@classmethod
def dual_class(self):
return TimeDepBra
class TimeDepBra(TimeDepState, BraBase):
"""General time-dependent Bra in quantum mechanics.
This inherits from TimeDepState and BraBase and is the main class that
should be used for Bras that vary with time. Its dual is a TimeDepBra.
Parameters
==========
args : tuple
The list of numbers or parameters that uniquely specify the ket. This
will usually be its symbol or its quantum numbers. For time-dependent
state, this will include the time as the final argument.
Examples
========
>>> from sympy.physics.quantum import TimeDepBra
>>> b = TimeDepBra('psi', 't')
>>> b
<psi;t|
>>> b.time
t
>>> b.label
(psi,)
>>> b.hilbert_space
H
>>> b.dual
|psi;t>
"""
@classmethod
def dual_class(self):
return TimeDepKet
class OrthogonalState(State, StateBase):
"""General abstract quantum state used as a base class for Ket and Bra."""
pass
class OrthogonalKet(OrthogonalState, KetBase):
"""Orthogonal Ket in quantum mechanics.
The inner product of two states with different labels will give zero,
states with the same label will give one.
>>> from sympy.physics.quantum import OrthogonalBra, OrthogonalKet
>>> from sympy.abc import m, n
>>> (OrthogonalBra(n)*OrthogonalKet(n)).doit()
1
>>> (OrthogonalBra(n)*OrthogonalKet(n+1)).doit()
0
>>> (OrthogonalBra(n)*OrthogonalKet(m)).doit()
<n|m>
"""
@classmethod
def dual_class(self):
return OrthogonalBra
def _eval_innerproduct(self, bra, **hints):
if len(self.args) != len(bra.args):
raise ValueError('Cannot multiply a ket that has a different number of labels.')
for arg, bra_arg in zip(self.args, bra.args):
diff = arg - bra_arg
diff = diff.expand()
is_zero = diff.is_zero
if is_zero is False:
return S.Zero # i.e. Integer(0)
if is_zero is None:
return None
return S.One # i.e. Integer(1)
class OrthogonalBra(OrthogonalState, BraBase):
"""Orthogonal Bra in quantum mechanics.
"""
@classmethod
def dual_class(self):
return OrthogonalKet
class Wavefunction(Function):
"""Class for representations in continuous bases
This class takes an expression and coordinates in its constructor. It can
be used to easily calculate normalizations and probabilities.
Parameters
==========
expr : Expr
The expression representing the functional form of the w.f.
coords : Symbol or tuple
The coordinates to be integrated over, and their bounds
Examples
========
Particle in a box, specifying bounds in the more primitive way of using
Piecewise:
>>> from sympy import Symbol, Piecewise, pi, N
>>> from sympy.functions import sqrt, sin
>>> from sympy.physics.quantum.state import Wavefunction
>>> x = Symbol('x', real=True)
>>> n = 1
>>> L = 1
>>> g = Piecewise((0, x < 0), (0, x > L), (sqrt(2//L)*sin(n*pi*x/L), True))
>>> f = Wavefunction(g, x)
>>> f.norm
1
>>> f.is_normalized
True
>>> p = f.prob()
>>> p(0)
0
>>> p(L)
0
>>> p(0.5)
2
>>> p(0.85*L)
2*sin(0.85*pi)**2
>>> N(p(0.85*L))
0.412214747707527
Additionally, you can specify the bounds of the function and the indices in
a more compact way:
>>> from sympy import symbols, pi, diff
>>> from sympy.functions import sqrt, sin
>>> from sympy.physics.quantum.state import Wavefunction
>>> x, L = symbols('x,L', positive=True)
>>> n = symbols('n', integer=True, positive=True)
>>> g = sqrt(2/L)*sin(n*pi*x/L)
>>> f = Wavefunction(g, (x, 0, L))
>>> f.norm
1
>>> f(L+1)
0
>>> f(L-1)
sqrt(2)*sin(pi*n*(L - 1)/L)/sqrt(L)
>>> f(-1)
0
>>> f(0.85)
sqrt(2)*sin(0.85*pi*n/L)/sqrt(L)
>>> f(0.85, n=1, L=1)
sqrt(2)*sin(0.85*pi)
>>> f.is_commutative
False
All arguments are automatically sympified, so you can define the variables
as strings rather than symbols:
>>> expr = x**2
>>> f = Wavefunction(expr, 'x')
>>> type(f.variables[0])
<class 'sympy.core.symbol.Symbol'>
Derivatives of Wavefunctions will return Wavefunctions:
>>> diff(f, x)
Wavefunction(2*x, x)
"""
#Any passed tuples for coordinates and their bounds need to be
#converted to Tuples before Function's constructor is called, to
#avoid errors from calling is_Float in the constructor
def __new__(cls, *args, **options):
new_args = [None for i in args]
ct = 0
for arg in args:
if isinstance(arg, tuple):
new_args[ct] = Tuple(*arg)
else:
new_args[ct] = arg
ct += 1
return super().__new__(cls, *new_args, **options)
def __call__(self, *args, **options):
var = self.variables
if len(args) != len(var):
raise NotImplementedError(
"Incorrect number of arguments to function!")
ct = 0
#If the passed value is outside the specified bounds, return 0
for v in var:
lower, upper = self.limits[v]
#Do the comparison to limits only if the passed symbol is actually
#a symbol present in the limits;
#Had problems with a comparison of x > L
if isinstance(args[ct], Expr) and \
not (lower in args[ct].free_symbols
or upper in args[ct].free_symbols):
continue
if (args[ct] < lower) == True or (args[ct] > upper) == True:
return S.Zero
ct += 1
expr = self.expr
#Allows user to make a call like f(2, 4, m=1, n=1)
for symbol in list(expr.free_symbols):
if str(symbol) in options.keys():
val = options[str(symbol)]
expr = expr.subs(symbol, val)
return expr.subs(zip(var, args))
def _eval_derivative(self, symbol):
expr = self.expr
deriv = expr._eval_derivative(symbol)
return Wavefunction(deriv, *self.args[1:])
def _eval_conjugate(self):
return Wavefunction(conjugate(self.expr), *self.args[1:])
def _eval_transpose(self):
return self
@property
def free_symbols(self):
return self.expr.free_symbols
@property
def is_commutative(self):
"""
Override Function's is_commutative so that order is preserved in
represented expressions
"""
return False
@classmethod
def eval(self, *args):
return None
@property
def variables(self):
"""
Return the coordinates which the wavefunction depends on
Examples
========
>>> from sympy.physics.quantum.state import Wavefunction
>>> from sympy import symbols
>>> x,y = symbols('x,y')
>>> f = Wavefunction(x*y, x, y)
>>> f.variables
(x, y)
>>> g = Wavefunction(x*y, x)
>>> g.variables
(x,)
"""
var = [g[0] if isinstance(g, Tuple) else g for g in self._args[1:]]
return tuple(var)
@property
def limits(self):
"""
Return the limits of the coordinates which the w.f. depends on If no
limits are specified, defaults to ``(-oo, oo)``.
Examples
========
>>> from sympy.physics.quantum.state import Wavefunction
>>> from sympy import symbols
>>> x, y = symbols('x, y')
>>> f = Wavefunction(x**2, (x, 0, 1))
>>> f.limits
{x: (0, 1)}
>>> f = Wavefunction(x**2, x)
>>> f.limits
{x: (-oo, oo)}
>>> f = Wavefunction(x**2 + y**2, x, (y, -1, 2))
>>> f.limits
{x: (-oo, oo), y: (-1, 2)}
"""
limits = [(g[1], g[2]) if isinstance(g, Tuple) else (-oo, oo)
for g in self._args[1:]]
return dict(zip(self.variables, tuple(limits)))
@property
def expr(self):
"""
Return the expression which is the functional form of the Wavefunction
Examples
========
>>> from sympy.physics.quantum.state import Wavefunction
>>> from sympy import symbols
>>> x, y = symbols('x, y')
>>> f = Wavefunction(x**2, x)
>>> f.expr
x**2
"""
return self._args[0]
@property
def is_normalized(self):
"""
Returns true if the Wavefunction is properly normalized
Examples
========
>>> from sympy import symbols, pi
>>> from sympy.functions import sqrt, sin
>>> from sympy.physics.quantum.state import Wavefunction
>>> x, L = symbols('x,L', positive=True)
>>> n = symbols('n', integer=True, positive=True)
>>> g = sqrt(2/L)*sin(n*pi*x/L)
>>> f = Wavefunction(g, (x, 0, L))
>>> f.is_normalized
True
"""
return (self.norm == 1.0)
@property # type: ignore
@cacheit
def norm(self):
"""
Return the normalization of the specified functional form.
This function integrates over the coordinates of the Wavefunction, with
the bounds specified.
Examples
========
>>> from sympy import symbols, pi
>>> from sympy.functions import sqrt, sin
>>> from sympy.physics.quantum.state import Wavefunction
>>> x, L = symbols('x,L', positive=True)
>>> n = symbols('n', integer=True, positive=True)
>>> g = sqrt(2/L)*sin(n*pi*x/L)
>>> f = Wavefunction(g, (x, 0, L))
>>> f.norm
1
>>> g = sin(n*pi*x/L)
>>> f = Wavefunction(g, (x, 0, L))
>>> f.norm
sqrt(2)*sqrt(L)/2
"""
exp = self.expr*conjugate(self.expr)
var = self.variables
limits = self.limits
for v in var:
curr_limits = limits[v]
exp = integrate(exp, (v, curr_limits[0], curr_limits[1]))
return sqrt(exp)
def normalize(self):
"""
Return a normalized version of the Wavefunction
Examples
========
>>> from sympy import symbols, pi
>>> from sympy.functions import sin
>>> from sympy.physics.quantum.state import Wavefunction
>>> x = symbols('x', real=True)
>>> L = symbols('L', positive=True)
>>> n = symbols('n', integer=True, positive=True)
>>> g = sin(n*pi*x/L)
>>> f = Wavefunction(g, (x, 0, L))
>>> f.normalize()
Wavefunction(sqrt(2)*sin(pi*n*x/L)/sqrt(L), (x, 0, L))
"""
const = self.norm
if const is oo:
raise NotImplementedError("The function is not normalizable!")
else:
return Wavefunction((const)**(-1)*self.expr, *self.args[1:])
def prob(self):
r"""
Return the absolute magnitude of the w.f., `|\psi(x)|^2`
Examples
========
>>> from sympy import symbols, pi
>>> from sympy.functions import sin
>>> from sympy.physics.quantum.state import Wavefunction
>>> x, L = symbols('x,L', real=True)
>>> n = symbols('n', integer=True)
>>> g = sin(n*pi*x/L)
>>> f = Wavefunction(g, (x, 0, L))
>>> f.prob()
Wavefunction(sin(pi*n*x/L)**2, x)
"""
return Wavefunction(self.expr*conjugate(self.expr), *self.variables)
|
f51f550d82d5d577be1a403d4d06e3f0f56504b683d1f17a2977c7275cdee5ab | """Operators and states for 1D cartesian position and momentum.
TODO:
* Add 3D classes to mappings in operatorset.py
"""
from sympy.core.numbers import (I, pi)
from sympy.core.singleton import S
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.special.delta_functions import DiracDelta
from sympy.sets.sets import Interval
from sympy.physics.quantum.constants import hbar
from sympy.physics.quantum.hilbert import L2
from sympy.physics.quantum.operator import DifferentialOperator, HermitianOperator
from sympy.physics.quantum.state import Ket, Bra, State
__all__ = [
'XOp',
'YOp',
'ZOp',
'PxOp',
'X',
'Y',
'Z',
'Px',
'XKet',
'XBra',
'PxKet',
'PxBra',
'PositionState3D',
'PositionKet3D',
'PositionBra3D'
]
#-------------------------------------------------------------------------
# Position operators
#-------------------------------------------------------------------------
class XOp(HermitianOperator):
"""1D cartesian position operator."""
@classmethod
def default_args(self):
return ("X",)
@classmethod
def _eval_hilbert_space(self, args):
return L2(Interval(S.NegativeInfinity, S.Infinity))
def _eval_commutator_PxOp(self, other):
return I*hbar
def _apply_operator_XKet(self, ket, **options):
return ket.position*ket
def _apply_operator_PositionKet3D(self, ket, **options):
return ket.position_x*ket
def _represent_PxKet(self, basis, *, index=1, **options):
states = basis._enumerate_state(2, start_index=index)
coord1 = states[0].momentum
coord2 = states[1].momentum
d = DifferentialOperator(coord1)
delta = DiracDelta(coord1 - coord2)
return I*hbar*(d*delta)
class YOp(HermitianOperator):
""" Y cartesian coordinate operator (for 2D or 3D systems) """
@classmethod
def default_args(self):
return ("Y",)
@classmethod
def _eval_hilbert_space(self, args):
return L2(Interval(S.NegativeInfinity, S.Infinity))
def _apply_operator_PositionKet3D(self, ket, **options):
return ket.position_y*ket
class ZOp(HermitianOperator):
""" Z cartesian coordinate operator (for 3D systems) """
@classmethod
def default_args(self):
return ("Z",)
@classmethod
def _eval_hilbert_space(self, args):
return L2(Interval(S.NegativeInfinity, S.Infinity))
def _apply_operator_PositionKet3D(self, ket, **options):
return ket.position_z*ket
#-------------------------------------------------------------------------
# Momentum operators
#-------------------------------------------------------------------------
class PxOp(HermitianOperator):
"""1D cartesian momentum operator."""
@classmethod
def default_args(self):
return ("Px",)
@classmethod
def _eval_hilbert_space(self, args):
return L2(Interval(S.NegativeInfinity, S.Infinity))
def _apply_operator_PxKet(self, ket, **options):
return ket.momentum*ket
def _represent_XKet(self, basis, *, index=1, **options):
states = basis._enumerate_state(2, start_index=index)
coord1 = states[0].position
coord2 = states[1].position
d = DifferentialOperator(coord1)
delta = DiracDelta(coord1 - coord2)
return -I*hbar*(d*delta)
X = XOp('X')
Y = YOp('Y')
Z = ZOp('Z')
Px = PxOp('Px')
#-------------------------------------------------------------------------
# Position eigenstates
#-------------------------------------------------------------------------
class XKet(Ket):
"""1D cartesian position eigenket."""
@classmethod
def _operators_to_state(self, op, **options):
return self.__new__(self, *_lowercase_labels(op), **options)
def _state_to_operators(self, op_class, **options):
return op_class.__new__(op_class,
*_uppercase_labels(self), **options)
@classmethod
def default_args(self):
return ("x",)
@classmethod
def dual_class(self):
return XBra
@property
def position(self):
"""The position of the state."""
return self.label[0]
def _enumerate_state(self, num_states, **options):
return _enumerate_continuous_1D(self, num_states, **options)
def _eval_innerproduct_XBra(self, bra, **hints):
return DiracDelta(self.position - bra.position)
def _eval_innerproduct_PxBra(self, bra, **hints):
return exp(-I*self.position*bra.momentum/hbar)/sqrt(2*pi*hbar)
class XBra(Bra):
"""1D cartesian position eigenbra."""
@classmethod
def default_args(self):
return ("x",)
@classmethod
def dual_class(self):
return XKet
@property
def position(self):
"""The position of the state."""
return self.label[0]
class PositionState3D(State):
""" Base class for 3D cartesian position eigenstates """
@classmethod
def _operators_to_state(self, op, **options):
return self.__new__(self, *_lowercase_labels(op), **options)
def _state_to_operators(self, op_class, **options):
return op_class.__new__(op_class,
*_uppercase_labels(self), **options)
@classmethod
def default_args(self):
return ("x", "y", "z")
@property
def position_x(self):
""" The x coordinate of the state """
return self.label[0]
@property
def position_y(self):
""" The y coordinate of the state """
return self.label[1]
@property
def position_z(self):
""" The z coordinate of the state """
return self.label[2]
class PositionKet3D(Ket, PositionState3D):
""" 3D cartesian position eigenket """
def _eval_innerproduct_PositionBra3D(self, bra, **options):
x_diff = self.position_x - bra.position_x
y_diff = self.position_y - bra.position_y
z_diff = self.position_z - bra.position_z
return DiracDelta(x_diff)*DiracDelta(y_diff)*DiracDelta(z_diff)
@classmethod
def dual_class(self):
return PositionBra3D
# XXX: The type:ignore here is because mypy gives Definition of
# "_state_to_operators" in base class "PositionState3D" is incompatible with
# definition in base class "BraBase"
class PositionBra3D(Bra, PositionState3D): # type: ignore
""" 3D cartesian position eigenbra """
@classmethod
def dual_class(self):
return PositionKet3D
#-------------------------------------------------------------------------
# Momentum eigenstates
#-------------------------------------------------------------------------
class PxKet(Ket):
"""1D cartesian momentum eigenket."""
@classmethod
def _operators_to_state(self, op, **options):
return self.__new__(self, *_lowercase_labels(op), **options)
def _state_to_operators(self, op_class, **options):
return op_class.__new__(op_class,
*_uppercase_labels(self), **options)
@classmethod
def default_args(self):
return ("px",)
@classmethod
def dual_class(self):
return PxBra
@property
def momentum(self):
"""The momentum of the state."""
return self.label[0]
def _enumerate_state(self, *args, **options):
return _enumerate_continuous_1D(self, *args, **options)
def _eval_innerproduct_XBra(self, bra, **hints):
return exp(I*self.momentum*bra.position/hbar)/sqrt(2*pi*hbar)
def _eval_innerproduct_PxBra(self, bra, **hints):
return DiracDelta(self.momentum - bra.momentum)
class PxBra(Bra):
"""1D cartesian momentum eigenbra."""
@classmethod
def default_args(self):
return ("px",)
@classmethod
def dual_class(self):
return PxKet
@property
def momentum(self):
"""The momentum of the state."""
return self.label[0]
#-------------------------------------------------------------------------
# Global helper functions
#-------------------------------------------------------------------------
def _enumerate_continuous_1D(*args, **options):
state = args[0]
num_states = args[1]
state_class = state.__class__
index_list = options.pop('index_list', [])
if len(index_list) == 0:
start_index = options.pop('start_index', 1)
index_list = list(range(start_index, start_index + num_states))
enum_states = [0 for i in range(len(index_list))]
for i, ind in enumerate(index_list):
label = state.args[0]
enum_states[i] = state_class(str(label) + "_" + str(ind), **options)
return enum_states
def _lowercase_labels(ops):
if not isinstance(ops, set):
ops = [ops]
return [str(arg.label[0]).lower() for arg in ops]
def _uppercase_labels(ops):
if not isinstance(ops, set):
ops = [ops]
new_args = [str(arg.label[0])[0].upper() +
str(arg.label[0])[1:] for arg in ops]
return new_args
|
4ff5646ed244374adb381f30ae5645908ecd5355c9d8c1b2131f4f5f718257fe | """An implementation of gates that act on qubits.
Gates are unitary operators that act on the space of qubits.
Medium Term Todo:
* Optimize Gate._apply_operators_Qubit to remove the creation of many
intermediate Qubit objects.
* Add commutation relationships to all operators and use this in gate_sort.
* Fix gate_sort and gate_simp.
* Get multi-target UGates plotting properly.
* Get UGate to work with either sympy/numpy matrices and output either
format. This should also use the matrix slots.
"""
from itertools import chain
import random
from sympy.core.add import Add
from sympy.core.containers import Tuple
from sympy.core.mul import Mul
from sympy.core.numbers import (I, Integer)
from sympy.core.power import Pow
from sympy.core.numbers import Number
from sympy.core.singleton import S as _S
from sympy.core.sorting import default_sort_key
from sympy.core.sympify import _sympify
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.printing.pretty.stringpict import prettyForm, stringPict
from sympy.physics.quantum.anticommutator import AntiCommutator
from sympy.physics.quantum.commutator import Commutator
from sympy.physics.quantum.qexpr import QuantumError
from sympy.physics.quantum.hilbert import ComplexSpace
from sympy.physics.quantum.operator import (UnitaryOperator, Operator,
HermitianOperator)
from sympy.physics.quantum.matrixutils import matrix_tensor_product, matrix_eye
from sympy.physics.quantum.matrixcache import matrix_cache
from sympy.matrices.matrices import MatrixBase
from sympy.utilities.iterables import is_sequence
__all__ = [
'Gate',
'CGate',
'UGate',
'OneQubitGate',
'TwoQubitGate',
'IdentityGate',
'HadamardGate',
'XGate',
'YGate',
'ZGate',
'TGate',
'PhaseGate',
'SwapGate',
'CNotGate',
# Aliased gate names
'CNOT',
'SWAP',
'H',
'X',
'Y',
'Z',
'T',
'S',
'Phase',
'normalized',
'gate_sort',
'gate_simp',
'random_circuit',
'CPHASE',
'CGateS',
]
#-----------------------------------------------------------------------------
# Gate Super-Classes
#-----------------------------------------------------------------------------
_normalized = True
def _max(*args, **kwargs):
if "key" not in kwargs:
kwargs["key"] = default_sort_key
return max(*args, **kwargs)
def _min(*args, **kwargs):
if "key" not in kwargs:
kwargs["key"] = default_sort_key
return min(*args, **kwargs)
def normalized(normalize):
r"""Set flag controlling normalization of Hadamard gates by `1/\sqrt{2}`.
This is a global setting that can be used to simplify the look of various
expressions, by leaving off the leading `1/\sqrt{2}` of the Hadamard gate.
Parameters
----------
normalize : bool
Should the Hadamard gate include the `1/\sqrt{2}` normalization factor?
When True, the Hadamard gate will have the `1/\sqrt{2}`. When False, the
Hadamard gate will not have this factor.
"""
global _normalized
_normalized = normalize
def _validate_targets_controls(tandc):
tandc = list(tandc)
# Check for integers
for bit in tandc:
if not bit.is_Integer and not bit.is_Symbol:
raise TypeError('Integer expected, got: %r' % tandc[bit])
# Detect duplicates
if len(set(tandc)) != len(tandc):
raise QuantumError(
'Target/control qubits in a gate cannot be duplicated'
)
class Gate(UnitaryOperator):
"""Non-controlled unitary gate operator that acts on qubits.
This is a general abstract gate that needs to be subclassed to do anything
useful.
Parameters
----------
label : tuple, int
A list of the target qubits (as ints) that the gate will apply to.
Examples
========
"""
_label_separator = ','
gate_name = 'G'
gate_name_latex = 'G'
#-------------------------------------------------------------------------
# Initialization/creation
#-------------------------------------------------------------------------
@classmethod
def _eval_args(cls, args):
args = Tuple(*UnitaryOperator._eval_args(args))
_validate_targets_controls(args)
return args
@classmethod
def _eval_hilbert_space(cls, args):
"""This returns the smallest possible Hilbert space."""
return ComplexSpace(2)**(_max(args) + 1)
#-------------------------------------------------------------------------
# Properties
#-------------------------------------------------------------------------
@property
def nqubits(self):
"""The total number of qubits this gate acts on.
For controlled gate subclasses this includes both target and control
qubits, so that, for examples the CNOT gate acts on 2 qubits.
"""
return len(self.targets)
@property
def min_qubits(self):
"""The minimum number of qubits this gate needs to act on."""
return _max(self.targets) + 1
@property
def targets(self):
"""A tuple of target qubits."""
return self.label
@property
def gate_name_plot(self):
return r'$%s$' % self.gate_name_latex
#-------------------------------------------------------------------------
# Gate methods
#-------------------------------------------------------------------------
def get_target_matrix(self, format='sympy'):
"""The matrix representation of the target part of the gate.
Parameters
----------
format : str
The format string ('sympy','numpy', etc.)
"""
raise NotImplementedError(
'get_target_matrix is not implemented in Gate.')
#-------------------------------------------------------------------------
# Apply
#-------------------------------------------------------------------------
def _apply_operator_IntQubit(self, qubits, **options):
"""Redirect an apply from IntQubit to Qubit"""
return self._apply_operator_Qubit(qubits, **options)
def _apply_operator_Qubit(self, qubits, **options):
"""Apply this gate to a Qubit."""
# Check number of qubits this gate acts on.
if qubits.nqubits < self.min_qubits:
raise QuantumError(
'Gate needs a minimum of %r qubits to act on, got: %r' %
(self.min_qubits, qubits.nqubits)
)
# If the controls are not met, just return
if isinstance(self, CGate):
if not self.eval_controls(qubits):
return qubits
targets = self.targets
target_matrix = self.get_target_matrix(format='sympy')
# Find which column of the target matrix this applies to.
column_index = 0
n = 1
for target in targets:
column_index += n*qubits[target]
n = n << 1
column = target_matrix[:, int(column_index)]
# Now apply each column element to the qubit.
result = 0
for index in range(column.rows):
# TODO: This can be optimized to reduce the number of Qubit
# creations. We should simply manipulate the raw list of qubit
# values and then build the new Qubit object once.
# Make a copy of the incoming qubits.
new_qubit = qubits.__class__(*qubits.args)
# Flip the bits that need to be flipped.
for bit, target in enumerate(targets):
if new_qubit[target] != (index >> bit) & 1:
new_qubit = new_qubit.flip(target)
# The value in that row and column times the flipped-bit qubit
# is the result for that part.
result += column[index]*new_qubit
return result
#-------------------------------------------------------------------------
# Represent
#-------------------------------------------------------------------------
def _represent_default_basis(self, **options):
return self._represent_ZGate(None, **options)
def _represent_ZGate(self, basis, **options):
format = options.get('format', 'sympy')
nqubits = options.get('nqubits', 0)
if nqubits == 0:
raise QuantumError(
'The number of qubits must be given as nqubits.')
# Make sure we have enough qubits for the gate.
if nqubits < self.min_qubits:
raise QuantumError(
'The number of qubits %r is too small for the gate.' % nqubits
)
target_matrix = self.get_target_matrix(format)
targets = self.targets
if isinstance(self, CGate):
controls = self.controls
else:
controls = []
m = represent_zbasis(
controls, targets, target_matrix, nqubits, format
)
return m
#-------------------------------------------------------------------------
# Print methods
#-------------------------------------------------------------------------
def _sympystr(self, printer, *args):
label = self._print_label(printer, *args)
return '%s(%s)' % (self.gate_name, label)
def _pretty(self, printer, *args):
a = stringPict(self.gate_name)
b = self._print_label_pretty(printer, *args)
return self._print_subscript_pretty(a, b)
def _latex(self, printer, *args):
label = self._print_label(printer, *args)
return '%s_{%s}' % (self.gate_name_latex, label)
def plot_gate(self, axes, gate_idx, gate_grid, wire_grid):
raise NotImplementedError('plot_gate is not implemented.')
class CGate(Gate):
"""A general unitary gate with control qubits.
A general control gate applies a target gate to a set of targets if all
of the control qubits have a particular values (set by
``CGate.control_value``).
Parameters
----------
label : tuple
The label in this case has the form (controls, gate), where controls
is a tuple/list of control qubits (as ints) and gate is a ``Gate``
instance that is the target operator.
Examples
========
"""
gate_name = 'C'
gate_name_latex = 'C'
# The values this class controls for.
control_value = _S.One
simplify_cgate = False
#-------------------------------------------------------------------------
# Initialization
#-------------------------------------------------------------------------
@classmethod
def _eval_args(cls, args):
# _eval_args has the right logic for the controls argument.
controls = args[0]
gate = args[1]
if not is_sequence(controls):
controls = (controls,)
controls = UnitaryOperator._eval_args(controls)
_validate_targets_controls(chain(controls, gate.targets))
return (Tuple(*controls), gate)
@classmethod
def _eval_hilbert_space(cls, args):
"""This returns the smallest possible Hilbert space."""
return ComplexSpace(2)**_max(_max(args[0]) + 1, args[1].min_qubits)
#-------------------------------------------------------------------------
# Properties
#-------------------------------------------------------------------------
@property
def nqubits(self):
"""The total number of qubits this gate acts on.
For controlled gate subclasses this includes both target and control
qubits, so that, for examples the CNOT gate acts on 2 qubits.
"""
return len(self.targets) + len(self.controls)
@property
def min_qubits(self):
"""The minimum number of qubits this gate needs to act on."""
return _max(_max(self.controls), _max(self.targets)) + 1
@property
def targets(self):
"""A tuple of target qubits."""
return self.gate.targets
@property
def controls(self):
"""A tuple of control qubits."""
return tuple(self.label[0])
@property
def gate(self):
"""The non-controlled gate that will be applied to the targets."""
return self.label[1]
#-------------------------------------------------------------------------
# Gate methods
#-------------------------------------------------------------------------
def get_target_matrix(self, format='sympy'):
return self.gate.get_target_matrix(format)
def eval_controls(self, qubit):
"""Return True/False to indicate if the controls are satisfied."""
return all(qubit[bit] == self.control_value for bit in self.controls)
def decompose(self, **options):
"""Decompose the controlled gate into CNOT and single qubits gates."""
if len(self.controls) == 1:
c = self.controls[0]
t = self.gate.targets[0]
if isinstance(self.gate, YGate):
g1 = PhaseGate(t)
g2 = CNotGate(c, t)
g3 = PhaseGate(t)
g4 = ZGate(t)
return g1*g2*g3*g4
if isinstance(self.gate, ZGate):
g1 = HadamardGate(t)
g2 = CNotGate(c, t)
g3 = HadamardGate(t)
return g1*g2*g3
else:
return self
#-------------------------------------------------------------------------
# Print methods
#-------------------------------------------------------------------------
def _print_label(self, printer, *args):
controls = self._print_sequence(self.controls, ',', printer, *args)
gate = printer._print(self.gate, *args)
return '(%s),%s' % (controls, gate)
def _pretty(self, printer, *args):
controls = self._print_sequence_pretty(
self.controls, ',', printer, *args)
gate = printer._print(self.gate)
gate_name = stringPict(self.gate_name)
first = self._print_subscript_pretty(gate_name, controls)
gate = self._print_parens_pretty(gate)
final = prettyForm(*first.right(gate))
return final
def _latex(self, printer, *args):
controls = self._print_sequence(self.controls, ',', printer, *args)
gate = printer._print(self.gate, *args)
return r'%s_{%s}{\left(%s\right)}' % \
(self.gate_name_latex, controls, gate)
def plot_gate(self, circ_plot, gate_idx):
"""
Plot the controlled gate. If *simplify_cgate* is true, simplify
C-X and C-Z gates into their more familiar forms.
"""
min_wire = int(_min(chain(self.controls, self.targets)))
max_wire = int(_max(chain(self.controls, self.targets)))
circ_plot.control_line(gate_idx, min_wire, max_wire)
for c in self.controls:
circ_plot.control_point(gate_idx, int(c))
if self.simplify_cgate:
if self.gate.gate_name == 'X':
self.gate.plot_gate_plus(circ_plot, gate_idx)
elif self.gate.gate_name == 'Z':
circ_plot.control_point(gate_idx, self.targets[0])
else:
self.gate.plot_gate(circ_plot, gate_idx)
else:
self.gate.plot_gate(circ_plot, gate_idx)
#-------------------------------------------------------------------------
# Miscellaneous
#-------------------------------------------------------------------------
def _eval_dagger(self):
if isinstance(self.gate, HermitianOperator):
return self
else:
return Gate._eval_dagger(self)
def _eval_inverse(self):
if isinstance(self.gate, HermitianOperator):
return self
else:
return Gate._eval_inverse(self)
def _eval_power(self, exp):
if isinstance(self.gate, HermitianOperator):
if exp == -1:
return Gate._eval_power(self, exp)
elif abs(exp) % 2 == 0:
return self*(Gate._eval_inverse(self))
else:
return self
else:
return Gate._eval_power(self, exp)
class CGateS(CGate):
"""Version of CGate that allows gate simplifications.
I.e. cnot looks like an oplus, cphase has dots, etc.
"""
simplify_cgate=True
class UGate(Gate):
"""General gate specified by a set of targets and a target matrix.
Parameters
----------
label : tuple
A tuple of the form (targets, U), where targets is a tuple of the
target qubits and U is a unitary matrix with dimension of
len(targets).
"""
gate_name = 'U'
gate_name_latex = 'U'
#-------------------------------------------------------------------------
# Initialization
#-------------------------------------------------------------------------
@classmethod
def _eval_args(cls, args):
targets = args[0]
if not is_sequence(targets):
targets = (targets,)
targets = Gate._eval_args(targets)
_validate_targets_controls(targets)
mat = args[1]
if not isinstance(mat, MatrixBase):
raise TypeError('Matrix expected, got: %r' % mat)
#make sure this matrix is of a Basic type
mat = _sympify(mat)
dim = 2**len(targets)
if not all(dim == shape for shape in mat.shape):
raise IndexError(
'Number of targets must match the matrix size: %r %r' %
(targets, mat)
)
return (targets, mat)
@classmethod
def _eval_hilbert_space(cls, args):
"""This returns the smallest possible Hilbert space."""
return ComplexSpace(2)**(_max(args[0]) + 1)
#-------------------------------------------------------------------------
# Properties
#-------------------------------------------------------------------------
@property
def targets(self):
"""A tuple of target qubits."""
return tuple(self.label[0])
#-------------------------------------------------------------------------
# Gate methods
#-------------------------------------------------------------------------
def get_target_matrix(self, format='sympy'):
"""The matrix rep. of the target part of the gate.
Parameters
----------
format : str
The format string ('sympy','numpy', etc.)
"""
return self.label[1]
#-------------------------------------------------------------------------
# Print methods
#-------------------------------------------------------------------------
def _pretty(self, printer, *args):
targets = self._print_sequence_pretty(
self.targets, ',', printer, *args)
gate_name = stringPict(self.gate_name)
return self._print_subscript_pretty(gate_name, targets)
def _latex(self, printer, *args):
targets = self._print_sequence(self.targets, ',', printer, *args)
return r'%s_{%s}' % (self.gate_name_latex, targets)
def plot_gate(self, circ_plot, gate_idx):
circ_plot.one_qubit_box(
self.gate_name_plot,
gate_idx, int(self.targets[0])
)
class OneQubitGate(Gate):
"""A single qubit unitary gate base class."""
nqubits = _S.One
def plot_gate(self, circ_plot, gate_idx):
circ_plot.one_qubit_box(
self.gate_name_plot,
gate_idx, int(self.targets[0])
)
def _eval_commutator(self, other, **hints):
if isinstance(other, OneQubitGate):
if self.targets != other.targets or self.__class__ == other.__class__:
return _S.Zero
return Operator._eval_commutator(self, other, **hints)
def _eval_anticommutator(self, other, **hints):
if isinstance(other, OneQubitGate):
if self.targets != other.targets or self.__class__ == other.__class__:
return Integer(2)*self*other
return Operator._eval_anticommutator(self, other, **hints)
class TwoQubitGate(Gate):
"""A two qubit unitary gate base class."""
nqubits = Integer(2)
#-----------------------------------------------------------------------------
# Single Qubit Gates
#-----------------------------------------------------------------------------
class IdentityGate(OneQubitGate):
"""The single qubit identity gate.
Parameters
----------
target : int
The target qubit this gate will apply to.
Examples
========
"""
gate_name = '1'
gate_name_latex = '1'
# Short cut version of gate._apply_operator_Qubit
def _apply_operator_Qubit(self, qubits, **options):
# Check number of qubits this gate acts on (see gate._apply_operator_Qubit)
if qubits.nqubits < self.min_qubits:
raise QuantumError(
'Gate needs a minimum of %r qubits to act on, got: %r' %
(self.min_qubits, qubits.nqubits)
)
return qubits # no computation required for IdentityGate
def get_target_matrix(self, format='sympy'):
return matrix_cache.get_matrix('eye2', format)
def _eval_commutator(self, other, **hints):
return _S.Zero
def _eval_anticommutator(self, other, **hints):
return Integer(2)*other
class HadamardGate(HermitianOperator, OneQubitGate):
"""The single qubit Hadamard gate.
Parameters
----------
target : int
The target qubit this gate will apply to.
Examples
========
>>> from sympy import sqrt
>>> from sympy.physics.quantum.qubit import Qubit
>>> from sympy.physics.quantum.gate import HadamardGate
>>> from sympy.physics.quantum.qapply import qapply
>>> qapply(HadamardGate(0)*Qubit('1'))
sqrt(2)*|0>/2 - sqrt(2)*|1>/2
>>> # Hadamard on bell state, applied on 2 qubits.
>>> psi = 1/sqrt(2)*(Qubit('00')+Qubit('11'))
>>> qapply(HadamardGate(0)*HadamardGate(1)*psi)
sqrt(2)*|00>/2 + sqrt(2)*|11>/2
"""
gate_name = 'H'
gate_name_latex = 'H'
def get_target_matrix(self, format='sympy'):
if _normalized:
return matrix_cache.get_matrix('H', format)
else:
return matrix_cache.get_matrix('Hsqrt2', format)
def _eval_commutator_XGate(self, other, **hints):
return I*sqrt(2)*YGate(self.targets[0])
def _eval_commutator_YGate(self, other, **hints):
return I*sqrt(2)*(ZGate(self.targets[0]) - XGate(self.targets[0]))
def _eval_commutator_ZGate(self, other, **hints):
return -I*sqrt(2)*YGate(self.targets[0])
def _eval_anticommutator_XGate(self, other, **hints):
return sqrt(2)*IdentityGate(self.targets[0])
def _eval_anticommutator_YGate(self, other, **hints):
return _S.Zero
def _eval_anticommutator_ZGate(self, other, **hints):
return sqrt(2)*IdentityGate(self.targets[0])
class XGate(HermitianOperator, OneQubitGate):
"""The single qubit X, or NOT, gate.
Parameters
----------
target : int
The target qubit this gate will apply to.
Examples
========
"""
gate_name = 'X'
gate_name_latex = 'X'
def get_target_matrix(self, format='sympy'):
return matrix_cache.get_matrix('X', format)
def plot_gate(self, circ_plot, gate_idx):
OneQubitGate.plot_gate(self,circ_plot,gate_idx)
def plot_gate_plus(self, circ_plot, gate_idx):
circ_plot.not_point(
gate_idx, int(self.label[0])
)
def _eval_commutator_YGate(self, other, **hints):
return Integer(2)*I*ZGate(self.targets[0])
def _eval_anticommutator_XGate(self, other, **hints):
return Integer(2)*IdentityGate(self.targets[0])
def _eval_anticommutator_YGate(self, other, **hints):
return _S.Zero
def _eval_anticommutator_ZGate(self, other, **hints):
return _S.Zero
class YGate(HermitianOperator, OneQubitGate):
"""The single qubit Y gate.
Parameters
----------
target : int
The target qubit this gate will apply to.
Examples
========
"""
gate_name = 'Y'
gate_name_latex = 'Y'
def get_target_matrix(self, format='sympy'):
return matrix_cache.get_matrix('Y', format)
def _eval_commutator_ZGate(self, other, **hints):
return Integer(2)*I*XGate(self.targets[0])
def _eval_anticommutator_YGate(self, other, **hints):
return Integer(2)*IdentityGate(self.targets[0])
def _eval_anticommutator_ZGate(self, other, **hints):
return _S.Zero
class ZGate(HermitianOperator, OneQubitGate):
"""The single qubit Z gate.
Parameters
----------
target : int
The target qubit this gate will apply to.
Examples
========
"""
gate_name = 'Z'
gate_name_latex = 'Z'
def get_target_matrix(self, format='sympy'):
return matrix_cache.get_matrix('Z', format)
def _eval_commutator_XGate(self, other, **hints):
return Integer(2)*I*YGate(self.targets[0])
def _eval_anticommutator_YGate(self, other, **hints):
return _S.Zero
class PhaseGate(OneQubitGate):
"""The single qubit phase, or S, gate.
This gate rotates the phase of the state by pi/2 if the state is ``|1>`` and
does nothing if the state is ``|0>``.
Parameters
----------
target : int
The target qubit this gate will apply to.
Examples
========
"""
gate_name = 'S'
gate_name_latex = 'S'
def get_target_matrix(self, format='sympy'):
return matrix_cache.get_matrix('S', format)
def _eval_commutator_ZGate(self, other, **hints):
return _S.Zero
def _eval_commutator_TGate(self, other, **hints):
return _S.Zero
class TGate(OneQubitGate):
"""The single qubit pi/8 gate.
This gate rotates the phase of the state by pi/4 if the state is ``|1>`` and
does nothing if the state is ``|0>``.
Parameters
----------
target : int
The target qubit this gate will apply to.
Examples
========
"""
gate_name = 'T'
gate_name_latex = 'T'
def get_target_matrix(self, format='sympy'):
return matrix_cache.get_matrix('T', format)
def _eval_commutator_ZGate(self, other, **hints):
return _S.Zero
def _eval_commutator_PhaseGate(self, other, **hints):
return _S.Zero
# Aliases for gate names.
H = HadamardGate
X = XGate
Y = YGate
Z = ZGate
T = TGate
Phase = S = PhaseGate
#-----------------------------------------------------------------------------
# 2 Qubit Gates
#-----------------------------------------------------------------------------
class CNotGate(HermitianOperator, CGate, TwoQubitGate):
"""Two qubit controlled-NOT.
This gate performs the NOT or X gate on the target qubit if the control
qubits all have the value 1.
Parameters
----------
label : tuple
A tuple of the form (control, target).
Examples
========
>>> from sympy.physics.quantum.gate import CNOT
>>> from sympy.physics.quantum.qapply import qapply
>>> from sympy.physics.quantum.qubit import Qubit
>>> c = CNOT(1,0)
>>> qapply(c*Qubit('10')) # note that qubits are indexed from right to left
|11>
"""
gate_name = 'CNOT'
gate_name_latex = r'\text{CNOT}'
simplify_cgate = True
#-------------------------------------------------------------------------
# Initialization
#-------------------------------------------------------------------------
@classmethod
def _eval_args(cls, args):
args = Gate._eval_args(args)
return args
@classmethod
def _eval_hilbert_space(cls, args):
"""This returns the smallest possible Hilbert space."""
return ComplexSpace(2)**(_max(args) + 1)
#-------------------------------------------------------------------------
# Properties
#-------------------------------------------------------------------------
@property
def min_qubits(self):
"""The minimum number of qubits this gate needs to act on."""
return _max(self.label) + 1
@property
def targets(self):
"""A tuple of target qubits."""
return (self.label[1],)
@property
def controls(self):
"""A tuple of control qubits."""
return (self.label[0],)
@property
def gate(self):
"""The non-controlled gate that will be applied to the targets."""
return XGate(self.label[1])
#-------------------------------------------------------------------------
# Properties
#-------------------------------------------------------------------------
# The default printing of Gate works better than those of CGate, so we
# go around the overridden methods in CGate.
def _print_label(self, printer, *args):
return Gate._print_label(self, printer, *args)
def _pretty(self, printer, *args):
return Gate._pretty(self, printer, *args)
def _latex(self, printer, *args):
return Gate._latex(self, printer, *args)
#-------------------------------------------------------------------------
# Commutator/AntiCommutator
#-------------------------------------------------------------------------
def _eval_commutator_ZGate(self, other, **hints):
"""[CNOT(i, j), Z(i)] == 0."""
if self.controls[0] == other.targets[0]:
return _S.Zero
else:
raise NotImplementedError('Commutator not implemented: %r' % other)
def _eval_commutator_TGate(self, other, **hints):
"""[CNOT(i, j), T(i)] == 0."""
return self._eval_commutator_ZGate(other, **hints)
def _eval_commutator_PhaseGate(self, other, **hints):
"""[CNOT(i, j), S(i)] == 0."""
return self._eval_commutator_ZGate(other, **hints)
def _eval_commutator_XGate(self, other, **hints):
"""[CNOT(i, j), X(j)] == 0."""
if self.targets[0] == other.targets[0]:
return _S.Zero
else:
raise NotImplementedError('Commutator not implemented: %r' % other)
def _eval_commutator_CNotGate(self, other, **hints):
"""[CNOT(i, j), CNOT(i,k)] == 0."""
if self.controls[0] == other.controls[0]:
return _S.Zero
else:
raise NotImplementedError('Commutator not implemented: %r' % other)
class SwapGate(TwoQubitGate):
"""Two qubit SWAP gate.
This gate swap the values of the two qubits.
Parameters
----------
label : tuple
A tuple of the form (target1, target2).
Examples
========
"""
gate_name = 'SWAP'
gate_name_latex = r'\text{SWAP}'
def get_target_matrix(self, format='sympy'):
return matrix_cache.get_matrix('SWAP', format)
def decompose(self, **options):
"""Decompose the SWAP gate into CNOT gates."""
i, j = self.targets[0], self.targets[1]
g1 = CNotGate(i, j)
g2 = CNotGate(j, i)
return g1*g2*g1
def plot_gate(self, circ_plot, gate_idx):
min_wire = int(_min(self.targets))
max_wire = int(_max(self.targets))
circ_plot.control_line(gate_idx, min_wire, max_wire)
circ_plot.swap_point(gate_idx, min_wire)
circ_plot.swap_point(gate_idx, max_wire)
def _represent_ZGate(self, basis, **options):
"""Represent the SWAP gate in the computational basis.
The following representation is used to compute this:
SWAP = |1><1|x|1><1| + |0><0|x|0><0| + |1><0|x|0><1| + |0><1|x|1><0|
"""
format = options.get('format', 'sympy')
targets = [int(t) for t in self.targets]
min_target = _min(targets)
max_target = _max(targets)
nqubits = options.get('nqubits', self.min_qubits)
op01 = matrix_cache.get_matrix('op01', format)
op10 = matrix_cache.get_matrix('op10', format)
op11 = matrix_cache.get_matrix('op11', format)
op00 = matrix_cache.get_matrix('op00', format)
eye2 = matrix_cache.get_matrix('eye2', format)
result = None
for i, j in ((op01, op10), (op10, op01), (op00, op00), (op11, op11)):
product = nqubits*[eye2]
product[nqubits - min_target - 1] = i
product[nqubits - max_target - 1] = j
new_result = matrix_tensor_product(*product)
if result is None:
result = new_result
else:
result = result + new_result
return result
# Aliases for gate names.
CNOT = CNotGate
SWAP = SwapGate
def CPHASE(a,b): return CGateS((a,),Z(b))
#-----------------------------------------------------------------------------
# Represent
#-----------------------------------------------------------------------------
def represent_zbasis(controls, targets, target_matrix, nqubits, format='sympy'):
"""Represent a gate with controls, targets and target_matrix.
This function does the low-level work of representing gates as matrices
in the standard computational basis (ZGate). Currently, we support two
main cases:
1. One target qubit and no control qubits.
2. One target qubits and multiple control qubits.
For the base of multiple controls, we use the following expression [1]:
1_{2**n} + (|1><1|)^{(n-1)} x (target-matrix - 1_{2})
Parameters
----------
controls : list, tuple
A sequence of control qubits.
targets : list, tuple
A sequence of target qubits.
target_matrix : sympy.Matrix, numpy.matrix, scipy.sparse
The matrix form of the transformation to be performed on the target
qubits. The format of this matrix must match that passed into
the `format` argument.
nqubits : int
The total number of qubits used for the representation.
format : str
The format of the final matrix ('sympy', 'numpy', 'scipy.sparse').
Examples
========
References
----------
[1] http://www.johnlapeyre.com/qinf/qinf_html/node6.html.
"""
controls = [int(x) for x in controls]
targets = [int(x) for x in targets]
nqubits = int(nqubits)
# This checks for the format as well.
op11 = matrix_cache.get_matrix('op11', format)
eye2 = matrix_cache.get_matrix('eye2', format)
# Plain single qubit case
if len(controls) == 0 and len(targets) == 1:
product = []
bit = targets[0]
# Fill product with [I1,Gate,I2] such that the unitaries,
# I, cause the gate to be applied to the correct Qubit
if bit != nqubits - 1:
product.append(matrix_eye(2**(nqubits - bit - 1), format=format))
product.append(target_matrix)
if bit != 0:
product.append(matrix_eye(2**bit, format=format))
return matrix_tensor_product(*product)
# Single target, multiple controls.
elif len(targets) == 1 and len(controls) >= 1:
target = targets[0]
# Build the non-trivial part.
product2 = []
for i in range(nqubits):
product2.append(matrix_eye(2, format=format))
for control in controls:
product2[nqubits - 1 - control] = op11
product2[nqubits - 1 - target] = target_matrix - eye2
return matrix_eye(2**nqubits, format=format) + \
matrix_tensor_product(*product2)
# Multi-target, multi-control is not yet implemented.
else:
raise NotImplementedError(
'The representation of multi-target, multi-control gates '
'is not implemented.'
)
#-----------------------------------------------------------------------------
# Gate manipulation functions.
#-----------------------------------------------------------------------------
def gate_simp(circuit):
"""Simplifies gates symbolically
It first sorts gates using gate_sort. It then applies basic
simplification rules to the circuit, e.g., XGate**2 = Identity
"""
# Bubble sort out gates that commute.
circuit = gate_sort(circuit)
# Do simplifications by subing a simplification into the first element
# which can be simplified. We recursively call gate_simp with new circuit
# as input more simplifications exist.
if isinstance(circuit, Add):
return sum(gate_simp(t) for t in circuit.args)
elif isinstance(circuit, Mul):
circuit_args = circuit.args
elif isinstance(circuit, Pow):
b, e = circuit.as_base_exp()
circuit_args = (gate_simp(b)**e,)
else:
return circuit
# Iterate through each element in circuit, simplify if possible.
for i in range(len(circuit_args)):
# H,X,Y or Z squared is 1.
# T**2 = S, S**2 = Z
if isinstance(circuit_args[i], Pow):
if isinstance(circuit_args[i].base,
(HadamardGate, XGate, YGate, ZGate)) \
and isinstance(circuit_args[i].exp, Number):
# Build a new circuit taking replacing the
# H,X,Y,Z squared with one.
newargs = (circuit_args[:i] +
(circuit_args[i].base**(circuit_args[i].exp % 2),) +
circuit_args[i + 1:])
# Recursively simplify the new circuit.
circuit = gate_simp(Mul(*newargs))
break
elif isinstance(circuit_args[i].base, PhaseGate):
# Build a new circuit taking old circuit but splicing
# in simplification.
newargs = circuit_args[:i]
# Replace PhaseGate**2 with ZGate.
newargs = newargs + (ZGate(circuit_args[i].base.args[0])**
(Integer(circuit_args[i].exp/2)), circuit_args[i].base**
(circuit_args[i].exp % 2))
# Append the last elements.
newargs = newargs + circuit_args[i + 1:]
# Recursively simplify the new circuit.
circuit = gate_simp(Mul(*newargs))
break
elif isinstance(circuit_args[i].base, TGate):
# Build a new circuit taking all the old elements.
newargs = circuit_args[:i]
# Put an Phasegate in place of any TGate**2.
newargs = newargs + (PhaseGate(circuit_args[i].base.args[0])**
Integer(circuit_args[i].exp/2), circuit_args[i].base**
(circuit_args[i].exp % 2))
# Append the last elements.
newargs = newargs + circuit_args[i + 1:]
# Recursively simplify the new circuit.
circuit = gate_simp(Mul(*newargs))
break
return circuit
def gate_sort(circuit):
"""Sorts the gates while keeping track of commutation relations
This function uses a bubble sort to rearrange the order of gate
application. Keeps track of Quantum computations special commutation
relations (e.g. things that apply to the same Qubit do not commute with
each other)
circuit is the Mul of gates that are to be sorted.
"""
# Make sure we have an Add or Mul.
if isinstance(circuit, Add):
return sum(gate_sort(t) for t in circuit.args)
if isinstance(circuit, Pow):
return gate_sort(circuit.base)**circuit.exp
elif isinstance(circuit, Gate):
return circuit
if not isinstance(circuit, Mul):
return circuit
changes = True
while changes:
changes = False
circ_array = circuit.args
for i in range(len(circ_array) - 1):
# Go through each element and switch ones that are in wrong order
if isinstance(circ_array[i], (Gate, Pow)) and \
isinstance(circ_array[i + 1], (Gate, Pow)):
# If we have a Pow object, look at only the base
first_base, first_exp = circ_array[i].as_base_exp()
second_base, second_exp = circ_array[i + 1].as_base_exp()
# Use SymPy's hash based sorting. This is not mathematical
# sorting, but is rather based on comparing hashes of objects.
# See Basic.compare for details.
if first_base.compare(second_base) > 0:
if Commutator(first_base, second_base).doit() == 0:
new_args = (circuit.args[:i] + (circuit.args[i + 1],) +
(circuit.args[i],) + circuit.args[i + 2:])
circuit = Mul(*new_args)
changes = True
break
if AntiCommutator(first_base, second_base).doit() == 0:
new_args = (circuit.args[:i] + (circuit.args[i + 1],) +
(circuit.args[i],) + circuit.args[i + 2:])
sign = _S.NegativeOne**(first_exp*second_exp)
circuit = sign*Mul(*new_args)
changes = True
break
return circuit
#-----------------------------------------------------------------------------
# Utility functions
#-----------------------------------------------------------------------------
def random_circuit(ngates, nqubits, gate_space=(X, Y, Z, S, T, H, CNOT, SWAP)):
"""Return a random circuit of ngates and nqubits.
This uses an equally weighted sample of (X, Y, Z, S, T, H, CNOT, SWAP)
gates.
Parameters
----------
ngates : int
The number of gates in the circuit.
nqubits : int
The number of qubits in the circuit.
gate_space : tuple
A tuple of the gate classes that will be used in the circuit.
Repeating gate classes multiple times in this tuple will increase
the frequency they appear in the random circuit.
"""
qubit_space = range(nqubits)
result = []
for i in range(ngates):
g = random.choice(gate_space)
if g == CNotGate or g == SwapGate:
qubits = random.sample(qubit_space, 2)
g = g(*qubits)
else:
qubit = random.choice(qubit_space)
g = g(qubit)
result.append(g)
return Mul(*result)
def zx_basis_transform(self, format='sympy'):
"""Transformation matrix from Z to X basis."""
return matrix_cache.get_matrix('ZX', format)
def zy_basis_transform(self, format='sympy'):
"""Transformation matrix from Z to Y basis."""
return matrix_cache.get_matrix('ZY', format)
|
ec1eb28cc7a804b20c646391aa38d7f17a7439f796c568df29a30d01925241d5 | """Quantum mechanical operators.
TODO:
* Fix early 0 in apply_operators.
* Debug and test apply_operators.
* Get cse working with classes in this file.
* Doctests and documentation of special methods for InnerProduct, Commutator,
AntiCommutator, represent, apply_operators.
"""
from sympy.core.add import Add
from sympy.core.expr import Expr
from sympy.core.function import (Derivative, expand)
from sympy.core.mul import Mul
from sympy.core.numbers import oo
from sympy.core.singleton import S
from sympy.printing.pretty.stringpict import prettyForm
from sympy.physics.quantum.dagger import Dagger
from sympy.physics.quantum.qexpr import QExpr, dispatch_method
from sympy.matrices import eye
__all__ = [
'Operator',
'HermitianOperator',
'UnitaryOperator',
'IdentityOperator',
'OuterProduct',
'DifferentialOperator'
]
#-----------------------------------------------------------------------------
# Operators and outer products
#-----------------------------------------------------------------------------
class Operator(QExpr):
"""Base class for non-commuting quantum operators.
An operator maps between quantum states [1]_. In quantum mechanics,
observables (including, but not limited to, measured physical values) are
represented as Hermitian operators [2]_.
Parameters
==========
args : tuple
The list of numbers or parameters that uniquely specify the
operator. For time-dependent operators, this will include the time.
Examples
========
Create an operator and examine its attributes::
>>> from sympy.physics.quantum import Operator
>>> from sympy import I
>>> A = Operator('A')
>>> A
A
>>> A.hilbert_space
H
>>> A.label
(A,)
>>> A.is_commutative
False
Create another operator and do some arithmetic operations::
>>> B = Operator('B')
>>> C = 2*A*A + I*B
>>> C
2*A**2 + I*B
Operators do not commute::
>>> A.is_commutative
False
>>> B.is_commutative
False
>>> A*B == B*A
False
Polymonials of operators respect the commutation properties::
>>> e = (A+B)**3
>>> e.expand()
A*B*A + A*B**2 + A**2*B + A**3 + B*A*B + B*A**2 + B**2*A + B**3
Operator inverses are handle symbolically::
>>> A.inv()
A**(-1)
>>> A*A.inv()
1
References
==========
.. [1] https://en.wikipedia.org/wiki/Operator_%28physics%29
.. [2] https://en.wikipedia.org/wiki/Observable
"""
@classmethod
def default_args(self):
return ("O",)
#-------------------------------------------------------------------------
# Printing
#-------------------------------------------------------------------------
_label_separator = ','
def _print_operator_name(self, printer, *args):
return self.__class__.__name__
_print_operator_name_latex = _print_operator_name
def _print_operator_name_pretty(self, printer, *args):
return prettyForm(self.__class__.__name__)
def _print_contents(self, printer, *args):
if len(self.label) == 1:
return self._print_label(printer, *args)
else:
return '%s(%s)' % (
self._print_operator_name(printer, *args),
self._print_label(printer, *args)
)
def _print_contents_pretty(self, printer, *args):
if len(self.label) == 1:
return self._print_label_pretty(printer, *args)
else:
pform = self._print_operator_name_pretty(printer, *args)
label_pform = self._print_label_pretty(printer, *args)
label_pform = prettyForm(
*label_pform.parens(left='(', right=')')
)
pform = prettyForm(*pform.right(label_pform))
return pform
def _print_contents_latex(self, printer, *args):
if len(self.label) == 1:
return self._print_label_latex(printer, *args)
else:
return r'%s\left(%s\right)' % (
self._print_operator_name_latex(printer, *args),
self._print_label_latex(printer, *args)
)
#-------------------------------------------------------------------------
# _eval_* methods
#-------------------------------------------------------------------------
def _eval_commutator(self, other, **options):
"""Evaluate [self, other] if known, return None if not known."""
return dispatch_method(self, '_eval_commutator', other, **options)
def _eval_anticommutator(self, other, **options):
"""Evaluate [self, other] if known."""
return dispatch_method(self, '_eval_anticommutator', other, **options)
#-------------------------------------------------------------------------
# Operator application
#-------------------------------------------------------------------------
def _apply_operator(self, ket, **options):
return dispatch_method(self, '_apply_operator', ket, **options)
def matrix_element(self, *args):
raise NotImplementedError('matrix_elements is not defined')
def inverse(self):
return self._eval_inverse()
inv = inverse
def _eval_inverse(self):
return self**(-1)
def __mul__(self, other):
if isinstance(other, IdentityOperator):
return self
return Mul(self, other)
class HermitianOperator(Operator):
"""A Hermitian operator that satisfies H == Dagger(H).
Parameters
==========
args : tuple
The list of numbers or parameters that uniquely specify the
operator. For time-dependent operators, this will include the time.
Examples
========
>>> from sympy.physics.quantum import Dagger, HermitianOperator
>>> H = HermitianOperator('H')
>>> Dagger(H)
H
"""
is_hermitian = True
def _eval_inverse(self):
if isinstance(self, UnitaryOperator):
return self
else:
return Operator._eval_inverse(self)
def _eval_power(self, exp):
if isinstance(self, UnitaryOperator):
if exp == -1:
return Operator._eval_power(self, exp)
elif abs(exp) % 2 == 0:
return self*(Operator._eval_inverse(self))
else:
return self
else:
return Operator._eval_power(self, exp)
class UnitaryOperator(Operator):
"""A unitary operator that satisfies U*Dagger(U) == 1.
Parameters
==========
args : tuple
The list of numbers or parameters that uniquely specify the
operator. For time-dependent operators, this will include the time.
Examples
========
>>> from sympy.physics.quantum import Dagger, UnitaryOperator
>>> U = UnitaryOperator('U')
>>> U*Dagger(U)
1
"""
def _eval_adjoint(self):
return self._eval_inverse()
class IdentityOperator(Operator):
"""An identity operator I that satisfies op * I == I * op == op for any
operator op.
Parameters
==========
N : Integer
Optional parameter that specifies the dimension of the Hilbert space
of operator. This is used when generating a matrix representation.
Examples
========
>>> from sympy.physics.quantum import IdentityOperator
>>> IdentityOperator()
I
"""
@property
def dimension(self):
return self.N
@classmethod
def default_args(self):
return (oo,)
def __init__(self, *args, **hints):
if not len(args) in (0, 1):
raise ValueError('0 or 1 parameters expected, got %s' % args)
self.N = args[0] if (len(args) == 1 and args[0]) else oo
def _eval_commutator(self, other, **hints):
return S.Zero
def _eval_anticommutator(self, other, **hints):
return 2 * other
def _eval_inverse(self):
return self
def _eval_adjoint(self):
return self
def _apply_operator(self, ket, **options):
return ket
def _apply_from_right_to(self, bra, **options):
return bra
def _eval_power(self, exp):
return self
def _print_contents(self, printer, *args):
return 'I'
def _print_contents_pretty(self, printer, *args):
return prettyForm('I')
def _print_contents_latex(self, printer, *args):
return r'{\mathcal{I}}'
def __mul__(self, other):
if isinstance(other, (Operator, Dagger)):
return other
return Mul(self, other)
def _represent_default_basis(self, **options):
if not self.N or self.N == oo:
raise NotImplementedError('Cannot represent infinite dimensional' +
' identity operator as a matrix')
format = options.get('format', 'sympy')
if format != 'sympy':
raise NotImplementedError('Representation in format ' +
'%s not implemented.' % format)
return eye(self.N)
class OuterProduct(Operator):
"""An unevaluated outer product between a ket and bra.
This constructs an outer product between any subclass of ``KetBase`` and
``BraBase`` as ``|a><b|``. An ``OuterProduct`` inherits from Operator as they act as
operators in quantum expressions. For reference see [1]_.
Parameters
==========
ket : KetBase
The ket on the left side of the outer product.
bar : BraBase
The bra on the right side of the outer product.
Examples
========
Create a simple outer product by hand and take its dagger::
>>> from sympy.physics.quantum import Ket, Bra, OuterProduct, Dagger
>>> from sympy.physics.quantum import Operator
>>> k = Ket('k')
>>> b = Bra('b')
>>> op = OuterProduct(k, b)
>>> op
|k><b|
>>> op.hilbert_space
H
>>> op.ket
|k>
>>> op.bra
<b|
>>> Dagger(op)
|b><k|
In simple products of kets and bras outer products will be automatically
identified and created::
>>> k*b
|k><b|
But in more complex expressions, outer products are not automatically
created::
>>> A = Operator('A')
>>> A*k*b
A*|k>*<b|
A user can force the creation of an outer product in a complex expression
by using parentheses to group the ket and bra::
>>> A*(k*b)
A*|k><b|
References
==========
.. [1] https://en.wikipedia.org/wiki/Outer_product
"""
is_commutative = False
def __new__(cls, *args, **old_assumptions):
from sympy.physics.quantum.state import KetBase, BraBase
if len(args) != 2:
raise ValueError('2 parameters expected, got %d' % len(args))
ket_expr = expand(args[0])
bra_expr = expand(args[1])
if (isinstance(ket_expr, (KetBase, Mul)) and
isinstance(bra_expr, (BraBase, Mul))):
ket_c, kets = ket_expr.args_cnc()
bra_c, bras = bra_expr.args_cnc()
if len(kets) != 1 or not isinstance(kets[0], KetBase):
raise TypeError('KetBase subclass expected'
', got: %r' % Mul(*kets))
if len(bras) != 1 or not isinstance(bras[0], BraBase):
raise TypeError('BraBase subclass expected'
', got: %r' % Mul(*bras))
if not kets[0].dual_class() == bras[0].__class__:
raise TypeError(
'ket and bra are not dual classes: %r, %r' %
(kets[0].__class__, bras[0].__class__)
)
# TODO: make sure the hilbert spaces of the bra and ket are
# compatible
obj = Expr.__new__(cls, *(kets[0], bras[0]), **old_assumptions)
obj.hilbert_space = kets[0].hilbert_space
return Mul(*(ket_c + bra_c)) * obj
op_terms = []
if isinstance(ket_expr, Add) and isinstance(bra_expr, Add):
for ket_term in ket_expr.args:
for bra_term in bra_expr.args:
op_terms.append(OuterProduct(ket_term, bra_term,
**old_assumptions))
elif isinstance(ket_expr, Add):
for ket_term in ket_expr.args:
op_terms.append(OuterProduct(ket_term, bra_expr,
**old_assumptions))
elif isinstance(bra_expr, Add):
for bra_term in bra_expr.args:
op_terms.append(OuterProduct(ket_expr, bra_term,
**old_assumptions))
else:
raise TypeError(
'Expected ket and bra expression, got: %r, %r' %
(ket_expr, bra_expr)
)
return Add(*op_terms)
@property
def ket(self):
"""Return the ket on the left side of the outer product."""
return self.args[0]
@property
def bra(self):
"""Return the bra on the right side of the outer product."""
return self.args[1]
def _eval_adjoint(self):
return OuterProduct(Dagger(self.bra), Dagger(self.ket))
def _sympystr(self, printer, *args):
return printer._print(self.ket) + printer._print(self.bra)
def _sympyrepr(self, printer, *args):
return '%s(%s,%s)' % (self.__class__.__name__,
printer._print(self.ket, *args), printer._print(self.bra, *args))
def _pretty(self, printer, *args):
pform = self.ket._pretty(printer, *args)
return prettyForm(*pform.right(self.bra._pretty(printer, *args)))
def _latex(self, printer, *args):
k = printer._print(self.ket, *args)
b = printer._print(self.bra, *args)
return k + b
def _represent(self, **options):
k = self.ket._represent(**options)
b = self.bra._represent(**options)
return k*b
def _eval_trace(self, **kwargs):
# TODO if operands are tensorproducts this may be will be handled
# differently.
return self.ket._eval_trace(self.bra, **kwargs)
class DifferentialOperator(Operator):
"""An operator for representing the differential operator, i.e. d/dx
It is initialized by passing two arguments. The first is an arbitrary
expression that involves a function, such as ``Derivative(f(x), x)``. The
second is the function (e.g. ``f(x)``) which we are to replace with the
``Wavefunction`` that this ``DifferentialOperator`` is applied to.
Parameters
==========
expr : Expr
The arbitrary expression which the appropriate Wavefunction is to be
substituted into
func : Expr
A function (e.g. f(x)) which is to be replaced with the appropriate
Wavefunction when this DifferentialOperator is applied
Examples
========
You can define a completely arbitrary expression and specify where the
Wavefunction is to be substituted
>>> from sympy import Derivative, Function, Symbol
>>> from sympy.physics.quantum.operator import DifferentialOperator
>>> from sympy.physics.quantum.state import Wavefunction
>>> from sympy.physics.quantum.qapply import qapply
>>> f = Function('f')
>>> x = Symbol('x')
>>> d = DifferentialOperator(1/x*Derivative(f(x), x), f(x))
>>> w = Wavefunction(x**2, x)
>>> d.function
f(x)
>>> d.variables
(x,)
>>> qapply(d*w)
Wavefunction(2, x)
"""
@property
def variables(self):
"""
Returns the variables with which the function in the specified
arbitrary expression is evaluated
Examples
========
>>> from sympy.physics.quantum.operator import DifferentialOperator
>>> from sympy import Symbol, Function, Derivative
>>> x = Symbol('x')
>>> f = Function('f')
>>> d = DifferentialOperator(1/x*Derivative(f(x), x), f(x))
>>> d.variables
(x,)
>>> y = Symbol('y')
>>> d = DifferentialOperator(Derivative(f(x, y), x) +
... Derivative(f(x, y), y), f(x, y))
>>> d.variables
(x, y)
"""
return self.args[-1].args
@property
def function(self):
"""
Returns the function which is to be replaced with the Wavefunction
Examples
========
>>> from sympy.physics.quantum.operator import DifferentialOperator
>>> from sympy import Function, Symbol, Derivative
>>> x = Symbol('x')
>>> f = Function('f')
>>> d = DifferentialOperator(Derivative(f(x), x), f(x))
>>> d.function
f(x)
>>> y = Symbol('y')
>>> d = DifferentialOperator(Derivative(f(x, y), x) +
... Derivative(f(x, y), y), f(x, y))
>>> d.function
f(x, y)
"""
return self.args[-1]
@property
def expr(self):
"""
Returns the arbitrary expression which is to have the Wavefunction
substituted into it
Examples
========
>>> from sympy.physics.quantum.operator import DifferentialOperator
>>> from sympy import Function, Symbol, Derivative
>>> x = Symbol('x')
>>> f = Function('f')
>>> d = DifferentialOperator(Derivative(f(x), x), f(x))
>>> d.expr
Derivative(f(x), x)
>>> y = Symbol('y')
>>> d = DifferentialOperator(Derivative(f(x, y), x) +
... Derivative(f(x, y), y), f(x, y))
>>> d.expr
Derivative(f(x, y), x) + Derivative(f(x, y), y)
"""
return self.args[0]
@property
def free_symbols(self):
"""
Return the free symbols of the expression.
"""
return self.expr.free_symbols
def _apply_operator_Wavefunction(self, func, **options):
from sympy.physics.quantum.state import Wavefunction
var = self.variables
wf_vars = func.args[1:]
f = self.function
new_expr = self.expr.subs(f, func(*var))
new_expr = new_expr.doit()
return Wavefunction(new_expr, *wf_vars)
def _eval_derivative(self, symbol):
new_expr = Derivative(self.expr, symbol)
return DifferentialOperator(new_expr, self.args[-1])
#-------------------------------------------------------------------------
# Printing
#-------------------------------------------------------------------------
def _print(self, printer, *args):
return '%s(%s)' % (
self._print_operator_name(printer, *args),
self._print_label(printer, *args)
)
def _print_pretty(self, printer, *args):
pform = self._print_operator_name_pretty(printer, *args)
label_pform = self._print_label_pretty(printer, *args)
label_pform = prettyForm(
*label_pform.parens(left='(', right=')')
)
pform = prettyForm(*pform.right(label_pform))
return pform
|
9068af5e3cd85dc5d533678180ad072700e3f679413a9d6b3234676df1b12e9d | """Matplotlib based plotting of quantum circuits.
Todo:
* Optimize printing of large circuits.
* Get this to work with single gates.
* Do a better job checking the form of circuits to make sure it is a Mul of
Gates.
* Get multi-target gates plotting.
* Get initial and final states to plot.
* Get measurements to plot. Might need to rethink measurement as a gate
issue.
* Get scale and figsize to be handled in a better way.
* Write some tests/examples!
"""
from __future__ import annotations
from sympy.core.mul import Mul
from sympy.external import import_module
from sympy.physics.quantum.gate import Gate, OneQubitGate, CGate, CGateS
from sympy.core.core import BasicMeta
from sympy.core.assumptions import ManagedProperties
__all__ = [
'CircuitPlot',
'circuit_plot',
'labeller',
'Mz',
'Mx',
'CreateOneQubitGate',
'CreateCGate',
]
np = import_module('numpy')
matplotlib = import_module(
'matplotlib', import_kwargs={'fromlist': ['pyplot']},
catch=(RuntimeError,)) # This is raised in environments that have no display.
if np and matplotlib:
pyplot = matplotlib.pyplot
Line2D = matplotlib.lines.Line2D
Circle = matplotlib.patches.Circle
#from matplotlib import rc
#rc('text',usetex=True)
class CircuitPlot:
"""A class for managing a circuit plot."""
scale = 1.0
fontsize = 20.0
linewidth = 1.0
control_radius = 0.05
not_radius = 0.15
swap_delta = 0.05
labels: list[str] = []
inits: dict[str, str] = {}
label_buffer = 0.5
def __init__(self, c, nqubits, **kwargs):
if not np or not matplotlib:
raise ImportError('numpy or matplotlib not available.')
self.circuit = c
self.ngates = len(self.circuit.args)
self.nqubits = nqubits
self.update(kwargs)
self._create_grid()
self._create_figure()
self._plot_wires()
self._plot_gates()
self._finish()
def update(self, kwargs):
"""Load the kwargs into the instance dict."""
self.__dict__.update(kwargs)
def _create_grid(self):
"""Create the grid of wires."""
scale = self.scale
wire_grid = np.arange(0.0, self.nqubits*scale, scale, dtype=float)
gate_grid = np.arange(0.0, self.ngates*scale, scale, dtype=float)
self._wire_grid = wire_grid
self._gate_grid = gate_grid
def _create_figure(self):
"""Create the main matplotlib figure."""
self._figure = pyplot.figure(
figsize=(self.ngates*self.scale, self.nqubits*self.scale),
facecolor='w',
edgecolor='w'
)
ax = self._figure.add_subplot(
1, 1, 1,
frameon=True
)
ax.set_axis_off()
offset = 0.5*self.scale
ax.set_xlim(self._gate_grid[0] - offset, self._gate_grid[-1] + offset)
ax.set_ylim(self._wire_grid[0] - offset, self._wire_grid[-1] + offset)
ax.set_aspect('equal')
self._axes = ax
def _plot_wires(self):
"""Plot the wires of the circuit diagram."""
xstart = self._gate_grid[0]
xstop = self._gate_grid[-1]
xdata = (xstart - self.scale, xstop + self.scale)
for i in range(self.nqubits):
ydata = (self._wire_grid[i], self._wire_grid[i])
line = Line2D(
xdata, ydata,
color='k',
lw=self.linewidth
)
self._axes.add_line(line)
if self.labels:
init_label_buffer = 0
if self.inits.get(self.labels[i]): init_label_buffer = 0.25
self._axes.text(
xdata[0]-self.label_buffer-init_label_buffer,ydata[0],
render_label(self.labels[i],self.inits),
size=self.fontsize,
color='k',ha='center',va='center')
self._plot_measured_wires()
def _plot_measured_wires(self):
ismeasured = self._measurements()
xstop = self._gate_grid[-1]
dy = 0.04 # amount to shift wires when doubled
# Plot doubled wires after they are measured
for im in ismeasured:
xdata = (self._gate_grid[ismeasured[im]],xstop+self.scale)
ydata = (self._wire_grid[im]+dy,self._wire_grid[im]+dy)
line = Line2D(
xdata, ydata,
color='k',
lw=self.linewidth
)
self._axes.add_line(line)
# Also double any controlled lines off these wires
for i,g in enumerate(self._gates()):
if isinstance(g, (CGate, CGateS)):
wires = g.controls + g.targets
for wire in wires:
if wire in ismeasured and \
self._gate_grid[i] > self._gate_grid[ismeasured[wire]]:
ydata = min(wires), max(wires)
xdata = self._gate_grid[i]-dy, self._gate_grid[i]-dy
line = Line2D(
xdata, ydata,
color='k',
lw=self.linewidth
)
self._axes.add_line(line)
def _gates(self):
"""Create a list of all gates in the circuit plot."""
gates = []
if isinstance(self.circuit, Mul):
for g in reversed(self.circuit.args):
if isinstance(g, Gate):
gates.append(g)
elif isinstance(self.circuit, Gate):
gates.append(self.circuit)
return gates
def _plot_gates(self):
"""Iterate through the gates and plot each of them."""
for i, gate in enumerate(self._gates()):
gate.plot_gate(self, i)
def _measurements(self):
"""Return a dict ``{i:j}`` where i is the index of the wire that has
been measured, and j is the gate where the wire is measured.
"""
ismeasured = {}
for i,g in enumerate(self._gates()):
if getattr(g,'measurement',False):
for target in g.targets:
if target in ismeasured:
if ismeasured[target] > i:
ismeasured[target] = i
else:
ismeasured[target] = i
return ismeasured
def _finish(self):
# Disable clipping to make panning work well for large circuits.
for o in self._figure.findobj():
o.set_clip_on(False)
def one_qubit_box(self, t, gate_idx, wire_idx):
"""Draw a box for a single qubit gate."""
x = self._gate_grid[gate_idx]
y = self._wire_grid[wire_idx]
self._axes.text(
x, y, t,
color='k',
ha='center',
va='center',
bbox=dict(ec='k', fc='w', fill=True, lw=self.linewidth),
size=self.fontsize
)
def two_qubit_box(self, t, gate_idx, wire_idx):
"""Draw a box for a two qubit gate. Does not work yet.
"""
# x = self._gate_grid[gate_idx]
# y = self._wire_grid[wire_idx]+0.5
print(self._gate_grid)
print(self._wire_grid)
# unused:
# obj = self._axes.text(
# x, y, t,
# color='k',
# ha='center',
# va='center',
# bbox=dict(ec='k', fc='w', fill=True, lw=self.linewidth),
# size=self.fontsize
# )
def control_line(self, gate_idx, min_wire, max_wire):
"""Draw a vertical control line."""
xdata = (self._gate_grid[gate_idx], self._gate_grid[gate_idx])
ydata = (self._wire_grid[min_wire], self._wire_grid[max_wire])
line = Line2D(
xdata, ydata,
color='k',
lw=self.linewidth
)
self._axes.add_line(line)
def control_point(self, gate_idx, wire_idx):
"""Draw a control point."""
x = self._gate_grid[gate_idx]
y = self._wire_grid[wire_idx]
radius = self.control_radius
c = Circle(
(x, y),
radius*self.scale,
ec='k',
fc='k',
fill=True,
lw=self.linewidth
)
self._axes.add_patch(c)
def not_point(self, gate_idx, wire_idx):
"""Draw a NOT gates as the circle with plus in the middle."""
x = self._gate_grid[gate_idx]
y = self._wire_grid[wire_idx]
radius = self.not_radius
c = Circle(
(x, y),
radius,
ec='k',
fc='w',
fill=False,
lw=self.linewidth
)
self._axes.add_patch(c)
l = Line2D(
(x, x), (y - radius, y + radius),
color='k',
lw=self.linewidth
)
self._axes.add_line(l)
def swap_point(self, gate_idx, wire_idx):
"""Draw a swap point as a cross."""
x = self._gate_grid[gate_idx]
y = self._wire_grid[wire_idx]
d = self.swap_delta
l1 = Line2D(
(x - d, x + d),
(y - d, y + d),
color='k',
lw=self.linewidth
)
l2 = Line2D(
(x - d, x + d),
(y + d, y - d),
color='k',
lw=self.linewidth
)
self._axes.add_line(l1)
self._axes.add_line(l2)
def circuit_plot(c, nqubits, **kwargs):
"""Draw the circuit diagram for the circuit with nqubits.
Parameters
==========
c : circuit
The circuit to plot. Should be a product of Gate instances.
nqubits : int
The number of qubits to include in the circuit. Must be at least
as big as the largest ``min_qubits`` of the gates.
"""
return CircuitPlot(c, nqubits, **kwargs)
def render_label(label, inits={}):
"""Slightly more flexible way to render labels.
>>> from sympy.physics.quantum.circuitplot import render_label
>>> render_label('q0')
'$\\\\left|q0\\\\right\\\\rangle$'
>>> render_label('q0', {'q0':'0'})
'$\\\\left|q0\\\\right\\\\rangle=\\\\left|0\\\\right\\\\rangle$'
"""
init = inits.get(label)
if init:
return r'$\left|%s\right\rangle=\left|%s\right\rangle$' % (label, init)
return r'$\left|%s\right\rangle$' % label
def labeller(n, symbol='q'):
"""Autogenerate labels for wires of quantum circuits.
Parameters
==========
n : int
number of qubits in the circuit.
symbol : string
A character string to precede all gate labels. E.g. 'q_0', 'q_1', etc.
>>> from sympy.physics.quantum.circuitplot import labeller
>>> labeller(2)
['q_1', 'q_0']
>>> labeller(3,'j')
['j_2', 'j_1', 'j_0']
"""
return ['%s_%d' % (symbol,n-i-1) for i in range(n)]
class Mz(OneQubitGate):
"""Mock-up of a z measurement gate.
This is in circuitplot rather than gate.py because it's not a real
gate, it just draws one.
"""
measurement = True
gate_name='Mz'
gate_name_latex='M_z'
class Mx(OneQubitGate):
"""Mock-up of an x measurement gate.
This is in circuitplot rather than gate.py because it's not a real
gate, it just draws one.
"""
measurement = True
gate_name='Mx'
gate_name_latex='M_x'
class CreateOneQubitGate(ManagedProperties):
def __new__(mcl, name, latexname=None):
if not latexname:
latexname = name
return BasicMeta.__new__(mcl, name + "Gate", (OneQubitGate,),
{'gate_name': name, 'gate_name_latex': latexname})
def CreateCGate(name, latexname=None):
"""Use a lexical closure to make a controlled gate.
"""
if not latexname:
latexname = name
onequbitgate = CreateOneQubitGate(name, latexname)
def ControlledGate(ctrls,target):
return CGate(tuple(ctrls),onequbitgate(target))
return ControlledGate
|
84f920ada340587202f9bd0faf4230898fe07d1f69b61402e88b8d23cf49e1d2 | #TODO:
# -Implement Clebsch-Gordan symmetries
# -Improve simplification method
# -Implement new simplifications
"""Clebsch-Gordon Coefficients."""
from sympy.concrete.summations import Sum
from sympy.core.add import Add
from sympy.core.expr import Expr
from sympy.core.function import expand
from sympy.core.mul import Mul
from sympy.core.power import Pow
from sympy.core.relational import Eq
from sympy.core.singleton import S
from sympy.core.symbol import (Wild, symbols)
from sympy.core.sympify import sympify
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.piecewise import Piecewise
from sympy.printing.pretty.stringpict import prettyForm, stringPict
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.physics.wigner import clebsch_gordan, wigner_3j, wigner_6j, wigner_9j
from sympy.printing.precedence import PRECEDENCE
__all__ = [
'CG',
'Wigner3j',
'Wigner6j',
'Wigner9j',
'cg_simp'
]
#-----------------------------------------------------------------------------
# CG Coefficients
#-----------------------------------------------------------------------------
class Wigner3j(Expr):
"""Class for the Wigner-3j symbols.
Explanation
===========
Wigner 3j-symbols are coefficients determined by the coupling of
two angular momenta. When created, they are expressed as symbolic
quantities that, for numerical parameters, can be evaluated using the
``.doit()`` method [1]_.
Parameters
==========
j1, m1, j2, m2, j3, m3 : Number, Symbol
Terms determining the angular momentum of coupled angular momentum
systems.
Examples
========
Declare a Wigner-3j coefficient and calculate its value
>>> from sympy.physics.quantum.cg import Wigner3j
>>> w3j = Wigner3j(6,0,4,0,2,0)
>>> w3j
Wigner3j(6, 0, 4, 0, 2, 0)
>>> w3j.doit()
sqrt(715)/143
See Also
========
CG: Clebsch-Gordan coefficients
References
==========
.. [1] Varshalovich, D A, Quantum Theory of Angular Momentum. 1988.
"""
is_commutative = True
def __new__(cls, j1, m1, j2, m2, j3, m3):
args = map(sympify, (j1, m1, j2, m2, j3, m3))
return Expr.__new__(cls, *args)
@property
def j1(self):
return self.args[0]
@property
def m1(self):
return self.args[1]
@property
def j2(self):
return self.args[2]
@property
def m2(self):
return self.args[3]
@property
def j3(self):
return self.args[4]
@property
def m3(self):
return self.args[5]
@property
def is_symbolic(self):
return not all(arg.is_number for arg in self.args)
# This is modified from the _print_Matrix method
def _pretty(self, printer, *args):
m = ((printer._print(self.j1), printer._print(self.m1)),
(printer._print(self.j2), printer._print(self.m2)),
(printer._print(self.j3), printer._print(self.m3)))
hsep = 2
vsep = 1
maxw = [-1]*3
for j in range(3):
maxw[j] = max([ m[j][i].width() for i in range(2) ])
D = None
for i in range(2):
D_row = None
for j in range(3):
s = m[j][i]
wdelta = maxw[j] - s.width()
wleft = wdelta //2
wright = wdelta - wleft
s = prettyForm(*s.right(' '*wright))
s = prettyForm(*s.left(' '*wleft))
if D_row is None:
D_row = s
continue
D_row = prettyForm(*D_row.right(' '*hsep))
D_row = prettyForm(*D_row.right(s))
if D is None:
D = D_row
continue
for _ in range(vsep):
D = prettyForm(*D.below(' '))
D = prettyForm(*D.below(D_row))
D = prettyForm(*D.parens())
return D
def _latex(self, printer, *args):
label = map(printer._print, (self.j1, self.j2, self.j3,
self.m1, self.m2, self.m3))
return r'\left(\begin{array}{ccc} %s & %s & %s \\ %s & %s & %s \end{array}\right)' % \
tuple(label)
def doit(self, **hints):
if self.is_symbolic:
raise ValueError("Coefficients must be numerical")
return wigner_3j(self.j1, self.j2, self.j3, self.m1, self.m2, self.m3)
class CG(Wigner3j):
r"""Class for Clebsch-Gordan coefficient.
Explanation
===========
Clebsch-Gordan coefficients describe the angular momentum coupling between
two systems. The coefficients give the expansion of a coupled total angular
momentum state and an uncoupled tensor product state. The Clebsch-Gordan
coefficients are defined as [1]_:
.. math ::
C^{j_3,m_3}_{j_1,m_1,j_2,m_2} = \left\langle j_1,m_1;j_2,m_2 | j_3,m_3\right\rangle
Parameters
==========
j1, m1, j2, m2 : Number, Symbol
Angular momenta of states 1 and 2.
j3, m3: Number, Symbol
Total angular momentum of the coupled system.
Examples
========
Define a Clebsch-Gordan coefficient and evaluate its value
>>> from sympy.physics.quantum.cg import CG
>>> from sympy import S
>>> cg = CG(S(3)/2, S(3)/2, S(1)/2, -S(1)/2, 1, 1)
>>> cg
CG(3/2, 3/2, 1/2, -1/2, 1, 1)
>>> cg.doit()
sqrt(3)/2
>>> CG(j1=S(1)/2, m1=-S(1)/2, j2=S(1)/2, m2=+S(1)/2, j3=1, m3=0).doit()
sqrt(2)/2
Compare [2]_.
See Also
========
Wigner3j: Wigner-3j symbols
References
==========
.. [1] Varshalovich, D A, Quantum Theory of Angular Momentum. 1988.
.. [2] `Clebsch-Gordan Coefficients, Spherical Harmonics, and d Functions
<https://pdg.lbl.gov/2020/reviews/rpp2020-rev-clebsch-gordan-coefs.pdf>`_
in P.A. Zyla *et al.* (Particle Data Group), Prog. Theor. Exp. Phys.
2020, 083C01 (2020).
"""
precedence = PRECEDENCE["Pow"] - 1
def doit(self, **hints):
if self.is_symbolic:
raise ValueError("Coefficients must be numerical")
return clebsch_gordan(self.j1, self.j2, self.j3, self.m1, self.m2, self.m3)
def _pretty(self, printer, *args):
bot = printer._print_seq(
(self.j1, self.m1, self.j2, self.m2), delimiter=',')
top = printer._print_seq((self.j3, self.m3), delimiter=',')
pad = max(top.width(), bot.width())
bot = prettyForm(*bot.left(' '))
top = prettyForm(*top.left(' '))
if not pad == bot.width():
bot = prettyForm(*bot.right(' '*(pad - bot.width())))
if not pad == top.width():
top = prettyForm(*top.right(' '*(pad - top.width())))
s = stringPict('C' + ' '*pad)
s = prettyForm(*s.below(bot))
s = prettyForm(*s.above(top))
return s
def _latex(self, printer, *args):
label = map(printer._print, (self.j3, self.m3, self.j1,
self.m1, self.j2, self.m2))
return r'C^{%s,%s}_{%s,%s,%s,%s}' % tuple(label)
class Wigner6j(Expr):
"""Class for the Wigner-6j symbols
See Also
========
Wigner3j: Wigner-3j symbols
"""
def __new__(cls, j1, j2, j12, j3, j, j23):
args = map(sympify, (j1, j2, j12, j3, j, j23))
return Expr.__new__(cls, *args)
@property
def j1(self):
return self.args[0]
@property
def j2(self):
return self.args[1]
@property
def j12(self):
return self.args[2]
@property
def j3(self):
return self.args[3]
@property
def j(self):
return self.args[4]
@property
def j23(self):
return self.args[5]
@property
def is_symbolic(self):
return not all(arg.is_number for arg in self.args)
# This is modified from the _print_Matrix method
def _pretty(self, printer, *args):
m = ((printer._print(self.j1), printer._print(self.j3)),
(printer._print(self.j2), printer._print(self.j)),
(printer._print(self.j12), printer._print(self.j23)))
hsep = 2
vsep = 1
maxw = [-1]*3
for j in range(3):
maxw[j] = max([ m[j][i].width() for i in range(2) ])
D = None
for i in range(2):
D_row = None
for j in range(3):
s = m[j][i]
wdelta = maxw[j] - s.width()
wleft = wdelta //2
wright = wdelta - wleft
s = prettyForm(*s.right(' '*wright))
s = prettyForm(*s.left(' '*wleft))
if D_row is None:
D_row = s
continue
D_row = prettyForm(*D_row.right(' '*hsep))
D_row = prettyForm(*D_row.right(s))
if D is None:
D = D_row
continue
for _ in range(vsep):
D = prettyForm(*D.below(' '))
D = prettyForm(*D.below(D_row))
D = prettyForm(*D.parens(left='{', right='}'))
return D
def _latex(self, printer, *args):
label = map(printer._print, (self.j1, self.j2, self.j12,
self.j3, self.j, self.j23))
return r'\left\{\begin{array}{ccc} %s & %s & %s \\ %s & %s & %s \end{array}\right\}' % \
tuple(label)
def doit(self, **hints):
if self.is_symbolic:
raise ValueError("Coefficients must be numerical")
return wigner_6j(self.j1, self.j2, self.j12, self.j3, self.j, self.j23)
class Wigner9j(Expr):
"""Class for the Wigner-9j symbols
See Also
========
Wigner3j: Wigner-3j symbols
"""
def __new__(cls, j1, j2, j12, j3, j4, j34, j13, j24, j):
args = map(sympify, (j1, j2, j12, j3, j4, j34, j13, j24, j))
return Expr.__new__(cls, *args)
@property
def j1(self):
return self.args[0]
@property
def j2(self):
return self.args[1]
@property
def j12(self):
return self.args[2]
@property
def j3(self):
return self.args[3]
@property
def j4(self):
return self.args[4]
@property
def j34(self):
return self.args[5]
@property
def j13(self):
return self.args[6]
@property
def j24(self):
return self.args[7]
@property
def j(self):
return self.args[8]
@property
def is_symbolic(self):
return not all(arg.is_number for arg in self.args)
# This is modified from the _print_Matrix method
def _pretty(self, printer, *args):
m = (
(printer._print(
self.j1), printer._print(self.j3), printer._print(self.j13)),
(printer._print(
self.j2), printer._print(self.j4), printer._print(self.j24)),
(printer._print(self.j12), printer._print(self.j34), printer._print(self.j)))
hsep = 2
vsep = 1
maxw = [-1]*3
for j in range(3):
maxw[j] = max([ m[j][i].width() for i in range(3) ])
D = None
for i in range(3):
D_row = None
for j in range(3):
s = m[j][i]
wdelta = maxw[j] - s.width()
wleft = wdelta //2
wright = wdelta - wleft
s = prettyForm(*s.right(' '*wright))
s = prettyForm(*s.left(' '*wleft))
if D_row is None:
D_row = s
continue
D_row = prettyForm(*D_row.right(' '*hsep))
D_row = prettyForm(*D_row.right(s))
if D is None:
D = D_row
continue
for _ in range(vsep):
D = prettyForm(*D.below(' '))
D = prettyForm(*D.below(D_row))
D = prettyForm(*D.parens(left='{', right='}'))
return D
def _latex(self, printer, *args):
label = map(printer._print, (self.j1, self.j2, self.j12, self.j3,
self.j4, self.j34, self.j13, self.j24, self.j))
return r'\left\{\begin{array}{ccc} %s & %s & %s \\ %s & %s & %s \\ %s & %s & %s \end{array}\right\}' % \
tuple(label)
def doit(self, **hints):
if self.is_symbolic:
raise ValueError("Coefficients must be numerical")
return wigner_9j(self.j1, self.j2, self.j12, self.j3, self.j4, self.j34, self.j13, self.j24, self.j)
def cg_simp(e):
"""Simplify and combine CG coefficients.
Explanation
===========
This function uses various symmetry and properties of sums and
products of Clebsch-Gordan coefficients to simplify statements
involving these terms [1]_.
Examples
========
Simplify the sum over CG(a,alpha,0,0,a,alpha) for all alpha to
2*a+1
>>> from sympy.physics.quantum.cg import CG, cg_simp
>>> a = CG(1,1,0,0,1,1)
>>> b = CG(1,0,0,0,1,0)
>>> c = CG(1,-1,0,0,1,-1)
>>> cg_simp(a+b+c)
3
See Also
========
CG: Clebsh-Gordan coefficients
References
==========
.. [1] Varshalovich, D A, Quantum Theory of Angular Momentum. 1988.
"""
if isinstance(e, Add):
return _cg_simp_add(e)
elif isinstance(e, Sum):
return _cg_simp_sum(e)
elif isinstance(e, Mul):
return Mul(*[cg_simp(arg) for arg in e.args])
elif isinstance(e, Pow):
return Pow(cg_simp(e.base), e.exp)
else:
return e
def _cg_simp_add(e):
#TODO: Improve simplification method
"""Takes a sum of terms involving Clebsch-Gordan coefficients and
simplifies the terms.
Explanation
===========
First, we create two lists, cg_part, which is all the terms involving CG
coefficients, and other_part, which is all other terms. The cg_part list
is then passed to the simplification methods, which return the new cg_part
and any additional terms that are added to other_part
"""
cg_part = []
other_part = []
e = expand(e)
for arg in e.args:
if arg.has(CG):
if isinstance(arg, Sum):
other_part.append(_cg_simp_sum(arg))
elif isinstance(arg, Mul):
terms = 1
for term in arg.args:
if isinstance(term, Sum):
terms *= _cg_simp_sum(term)
else:
terms *= term
if terms.has(CG):
cg_part.append(terms)
else:
other_part.append(terms)
else:
cg_part.append(arg)
else:
other_part.append(arg)
cg_part, other = _check_varsh_871_1(cg_part)
other_part.append(other)
cg_part, other = _check_varsh_871_2(cg_part)
other_part.append(other)
cg_part, other = _check_varsh_872_9(cg_part)
other_part.append(other)
return Add(*cg_part) + Add(*other_part)
def _check_varsh_871_1(term_list):
# Sum( CG(a,alpha,b,0,a,alpha), (alpha, -a, a)) == KroneckerDelta(b,0)
a, alpha, b, lt = map(Wild, ('a', 'alpha', 'b', 'lt'))
expr = lt*CG(a, alpha, b, 0, a, alpha)
simp = (2*a + 1)*KroneckerDelta(b, 0)
sign = lt/abs(lt)
build_expr = 2*a + 1
index_expr = a + alpha
return _check_cg_simp(expr, simp, sign, lt, term_list, (a, alpha, b, lt), (a, b), build_expr, index_expr)
def _check_varsh_871_2(term_list):
# Sum((-1)**(a-alpha)*CG(a,alpha,a,-alpha,c,0),(alpha,-a,a))
a, alpha, c, lt = map(Wild, ('a', 'alpha', 'c', 'lt'))
expr = lt*CG(a, alpha, a, -alpha, c, 0)
simp = sqrt(2*a + 1)*KroneckerDelta(c, 0)
sign = (-1)**(a - alpha)*lt/abs(lt)
build_expr = 2*a + 1
index_expr = a + alpha
return _check_cg_simp(expr, simp, sign, lt, term_list, (a, alpha, c, lt), (a, c), build_expr, index_expr)
def _check_varsh_872_9(term_list):
# Sum( CG(a,alpha,b,beta,c,gamma)*CG(a,alpha',b,beta',c,gamma), (gamma, -c, c), (c, abs(a-b), a+b))
a, alpha, alphap, b, beta, betap, c, gamma, lt = map(Wild, (
'a', 'alpha', 'alphap', 'b', 'beta', 'betap', 'c', 'gamma', 'lt'))
# Case alpha==alphap, beta==betap
# For numerical alpha,beta
expr = lt*CG(a, alpha, b, beta, c, gamma)**2
simp = S.One
sign = lt/abs(lt)
x = abs(a - b)
y = abs(alpha + beta)
build_expr = a + b + 1 - Piecewise((x, x > y), (0, Eq(x, y)), (y, y > x))
index_expr = a + b - c
term_list, other1 = _check_cg_simp(expr, simp, sign, lt, term_list, (a, alpha, b, beta, c, gamma, lt), (a, alpha, b, beta), build_expr, index_expr)
# For symbolic alpha,beta
x = abs(a - b)
y = a + b
build_expr = (y + 1 - x)*(x + y + 1)
index_expr = (c - x)*(x + c) + c + gamma
term_list, other2 = _check_cg_simp(expr, simp, sign, lt, term_list, (a, alpha, b, beta, c, gamma, lt), (a, alpha, b, beta), build_expr, index_expr)
# Case alpha!=alphap or beta!=betap
# Note: this only works with leading term of 1, pattern matching is unable to match when there is a Wild leading term
# For numerical alpha,alphap,beta,betap
expr = CG(a, alpha, b, beta, c, gamma)*CG(a, alphap, b, betap, c, gamma)
simp = KroneckerDelta(alpha, alphap)*KroneckerDelta(beta, betap)
sign = S.One
x = abs(a - b)
y = abs(alpha + beta)
build_expr = a + b + 1 - Piecewise((x, x > y), (0, Eq(x, y)), (y, y > x))
index_expr = a + b - c
term_list, other3 = _check_cg_simp(expr, simp, sign, S.One, term_list, (a, alpha, alphap, b, beta, betap, c, gamma), (a, alpha, alphap, b, beta, betap), build_expr, index_expr)
# For symbolic alpha,alphap,beta,betap
x = abs(a - b)
y = a + b
build_expr = (y + 1 - x)*(x + y + 1)
index_expr = (c - x)*(x + c) + c + gamma
term_list, other4 = _check_cg_simp(expr, simp, sign, S.One, term_list, (a, alpha, alphap, b, beta, betap, c, gamma), (a, alpha, alphap, b, beta, betap), build_expr, index_expr)
return term_list, other1 + other2 + other4
def _check_cg_simp(expr, simp, sign, lt, term_list, variables, dep_variables, build_index_expr, index_expr):
""" Checks for simplifications that can be made, returning a tuple of the
simplified list of terms and any terms generated by simplification.
Parameters
==========
expr: expression
The expression with Wild terms that will be matched to the terms in
the sum
simp: expression
The expression with Wild terms that is substituted in place of the CG
terms in the case of simplification
sign: expression
The expression with Wild terms denoting the sign that is on expr that
must match
lt: expression
The expression with Wild terms that gives the leading term of the
matched expr
term_list: list
A list of all of the terms is the sum to be simplified
variables: list
A list of all the variables that appears in expr
dep_variables: list
A list of the variables that must match for all the terms in the sum,
i.e. the dependent variables
build_index_expr: expression
Expression with Wild terms giving the number of elements in cg_index
index_expr: expression
Expression with Wild terms giving the index terms have when storing
them to cg_index
"""
other_part = 0
i = 0
while i < len(term_list):
sub_1 = _check_cg(term_list[i], expr, len(variables))
if sub_1 is None:
i += 1
continue
if not build_index_expr.subs(sub_1).is_number:
i += 1
continue
sub_dep = [(x, sub_1[x]) for x in dep_variables]
cg_index = [None]*build_index_expr.subs(sub_1)
for j in range(i, len(term_list)):
sub_2 = _check_cg(term_list[j], expr.subs(sub_dep), len(variables) - len(dep_variables), sign=(sign.subs(sub_1), sign.subs(sub_dep)))
if sub_2 is None:
continue
if not index_expr.subs(sub_dep).subs(sub_2).is_number:
continue
cg_index[index_expr.subs(sub_dep).subs(sub_2)] = j, expr.subs(lt, 1).subs(sub_dep).subs(sub_2), lt.subs(sub_2), sign.subs(sub_dep).subs(sub_2)
if not any(i is None for i in cg_index):
min_lt = min(*[ abs(term[2]) for term in cg_index ])
indices = [ term[0] for term in cg_index]
indices.sort()
indices.reverse()
[ term_list.pop(j) for j in indices ]
for term in cg_index:
if abs(term[2]) > min_lt:
term_list.append( (term[2] - min_lt*term[3])*term[1] )
other_part += min_lt*(sign*simp).subs(sub_1)
else:
i += 1
return term_list, other_part
def _check_cg(cg_term, expr, length, sign=None):
"""Checks whether a term matches the given expression"""
# TODO: Check for symmetries
matches = cg_term.match(expr)
if matches is None:
return
if sign is not None:
if not isinstance(sign, tuple):
raise TypeError('sign must be a tuple')
if not sign[0] == (sign[1]).subs(matches):
return
if len(matches) == length:
return matches
def _cg_simp_sum(e):
e = _check_varsh_sum_871_1(e)
e = _check_varsh_sum_871_2(e)
e = _check_varsh_sum_872_4(e)
return e
def _check_varsh_sum_871_1(e):
a = Wild('a')
alpha = symbols('alpha')
b = Wild('b')
match = e.match(Sum(CG(a, alpha, b, 0, a, alpha), (alpha, -a, a)))
if match is not None and len(match) == 2:
return ((2*a + 1)*KroneckerDelta(b, 0)).subs(match)
return e
def _check_varsh_sum_871_2(e):
a = Wild('a')
alpha = symbols('alpha')
c = Wild('c')
match = e.match(
Sum((-1)**(a - alpha)*CG(a, alpha, a, -alpha, c, 0), (alpha, -a, a)))
if match is not None and len(match) == 2:
return (sqrt(2*a + 1)*KroneckerDelta(c, 0)).subs(match)
return e
def _check_varsh_sum_872_4(e):
alpha = symbols('alpha')
beta = symbols('beta')
a = Wild('a')
b = Wild('b')
c = Wild('c')
cp = Wild('cp')
gamma = Wild('gamma')
gammap = Wild('gammap')
cg1 = CG(a, alpha, b, beta, c, gamma)
cg2 = CG(a, alpha, b, beta, cp, gammap)
match1 = e.match(Sum(cg1*cg2, (alpha, -a, a), (beta, -b, b)))
if match1 is not None and len(match1) == 6:
return (KroneckerDelta(c, cp)*KroneckerDelta(gamma, gammap)).subs(match1)
match2 = e.match(Sum(cg1**2, (alpha, -a, a), (beta, -b, b)))
if match2 is not None and len(match2) == 4:
return S.One
return e
def _cg_list(term):
if isinstance(term, CG):
return (term,), 1, 1
cg = []
coeff = 1
if not isinstance(term, (Mul, Pow)):
raise NotImplementedError('term must be CG, Add, Mul or Pow')
if isinstance(term, Pow) and term.exp.is_number:
if term.exp.is_number:
[ cg.append(term.base) for _ in range(term.exp) ]
else:
return (term,), 1, 1
if isinstance(term, Mul):
for arg in term.args:
if isinstance(arg, CG):
cg.append(arg)
else:
coeff *= arg
return cg, coeff, coeff/abs(coeff)
|
Subsets and Splits